MONITORING
WITH
PROMETHEUS

Monitoring With Prometheus

James Turnbull

June 12, 2018
Version: v1.0.0 (427b8e9)

Website: Monitoring With Prometheus

http://www.prometheusbook.com

[@lolse]

Some rights reserved. No part of this publication may be reproduced, stored in a

retrieval system, or transmitted in any form or by any means, electronic,

mechanical or photocopying, recording, or otherwise, for commercial purposes

without the prior permission of the publisher.

This work is licensed under the Creative Commons

Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of

this license, visit here.

© Copyright 2018 - James Turnbull <james@lovedthanlost.net >

I=EN

q7S- (-G5S 02 -5—-9

9778033575

2

0283

http://creativecommons.org/licenses/by-nc-nd/3.0/
mailto:james+pm@lovedthanlost.net

Contents

o

o
o9

(¢}

Foreword
Who is this book for?
Credits and Acknowledgments
Technical Reviewers it

Codeand Examples.,
Colophon e e
Errata e e e e
Disclaimer e e e e
Copyright. e e

>
c
—t
=
e}
=
g g A DN DN DN W W NDNDNNDND = = -

Version o i i i e e e e e e e e e e e e e e e e e

Chapter 1 Introduction
What is monitoring? e
Technology asacustomerc0.o.vu....
The business asacustomer
Monitoring fundamentals

O W O N O &

Monitoring as afterthought

Contents

Monitoring by rote
Not monitoring for correctness
Monitoring statically
Not monitoring frequently enough
No automation or self-service
Good monitoring summary
Monitoring mechanics
Probing and introspection
Pullversuspush
Types of monitoringdata.
Metrics o it e
So what’sametric?
Typesof metrics
Metric summaries
Metric aggregation
Monitoring methodologies
The USEMethod
The Google Four Golden Signals

Contextual, useful alerts and notifications

Visualization i i

Chapter 2 Introduction to Prometheus

The Prometheus backstory
Prometheus architecture.
Metric collection
Service discovery
Aggregation and alerting
Queryingdata

Version: v1.0.0 (427b8e9)

ii

Contents

Autonomy e e e 52
Redundancy and high availability 53
Visualization e 54
The Prometheus datamodel 54
Metricnamesttt i it e 54
Labels e e 55
Samples e e 56
Notation oo 56
Metricsretention.t it i e e e e 57
Security model 57
Prometheus ecosystem 58
Useful Prometheuslinks 58
Summary 59
Chapter 3 Installation and Getting Started 60
Installing Prometheus 61
Installing Prometheuson Linux 62
Installing Prometheus on Microsoft Windows 63
Alternative Microsoft Windows installation. 64
Alternative Mac OS X installation 65
Stacks e e e 66
Installing via configuration management 66
Deploying via Kubernetes 67
Configuring Prometheus 67
Global 69
Alerting e 70
Rulefiles e 71
Scrape configuration e 71
Starting theserver 73
Running Prometheus via Docker 74
Firstmetrics o i e e e e 75

Version: v1.0.0 (427b8e9) iii

Contents

Prometheus expression browser 76
Time series aggregation 79
Capacity planning e 83
Memory o i i e e e e e e e 84
Disk . .. e 85
Summary e 86
Chapter 4 Monitoring Nodes and Containers 87
Monitoring nodes e e e e 88
Installing the Node Exporter 89
Configuring the Node Exporter 90
Configuring the Textfile collector 91
Enabling the systemd collector 93
Running the Node Exporter 93
Scraping the Node Exporter 94
Filtering collectorson theserver 95
Monitoring Docker e 97
Running cAdvisor 97
Scraping cAdvisor 100
Scrape lifecycle e 101
Labels e e e e 104
Label taxonomies 105
Relabelling 107
The Node Exporter and cAdvisor metrics. 112
The trinity and the USEmethod 113
Servicestatus e e e e 124
Availability and theupmetric. 126
The metadatametric 128
Query PermanencCeottt e e e e e e e e e e 131
Recordingrules 131
Configuring recording rules 132

Version: v1.0.0 (427b8e9) iv

Contents

Adding recording rules 133
Visualization e e 138
Installing Grafana 138
Starting and configuring Grafana 142
Configuring the Grafana web interface 144
Firstdashboard 149
Summary 150
Chapter 5 Service Discovery 151
Scrape lifecycle and static configurationredux 152
File-based discovery 154
Writing files for file discovery 157
Inbuilt service discovery plugins 159
Amazon EC2 service discovery plugin 159
DNS service discovery o i i it e e e 165
Summary e 168
Chapter 6 Alerting and Alertmanager 170
Alerting e e e e e 171
How the Alertmanager works 173
Installing Alertmanager, 175
Installing Alertmanageron Linux 175
Installing Alertmanager on Microsoft Windows 177
Stacks 178
Installing via configuration management 179
Configuring the Alertmanager 179
Running Alertmanager 183
Configuring Prometheus for Alertmanager 184
Alertmanager service discovery 185
Monitoring Alertmanager, 187
Adding alertingrules e 187

Version: v1.0.0 (427b8e9) \'

Contents

Adding our first alertingrule 188
What happens when an alert fires? 192
The alert at the Alertmanager 193
Adding new alerts and templates 195
Routing e e e e 201
Routes e 203
Receivers and notification templates 206
Silences and maintenanceol e .. 209
Controlling silences via the Alertmanager. 210
Controlling silences viaamtool 213
Summary e e e e e 216
Chapter 7 Scaling and Reliability 217
Reliability and fault tolerance 218
Duplicate Prometheusservers 220
Setting up Alertmanager clustering 220
Configuring Prometheus for an Alertmanager cluster 224
Scaling e 226
Functional scaling 227
Horizontal shards 229
Remote storage i 236
Third-party tools e 237
Summary e e 237
Chapter 8 Instrumenting Applications 238
An application monitoring primer 238
Where should I instrument? 240
Instrument taxonomies Lo e 240
MetriCs o e e e 240
Application metrics e 241
Business metrics 241

Version: v1.0.0 (427b8e9) vi

Contents

Where to put your metricsot 242
The utility pattern e 242
The external pattern. 244
Building metrics into a sample application 244
SumMmary e e e e e e e e e e e e e e e 255
Chapter 9 Logging as Instrumentation 256
Processing logs for metrics 257
Introducingmtail 257
Installingmtail 258
Usingmtail 259
Runningmtail, 261
Processing web server accesslogs L. 264
Parsing Rails logs into a histogram 268
Deployingmtail, 271
Scraping our mtail endpoint o Lo, 271
Summary 272
Chapter 10 Probing 274
Probing architecture oo 274
The blackbox exporter i 276
Installing theexporter, 276
Installing the exporteron Linux 277
Installing the exporter on Microsoft Windows 278
Installing via configuration management 279
Configuring theexporter 280
HTTPcheck 281
ICMPcheck e 282
DNScheck. 282
Starting the exporter v it i i e e e e 283
Creating the Prometheusjob 285

Version: v1.0.0 (427b8e9) vii

Contents

Summary e e e e e 288
Chapter 11 Pushing Metrics and the Pushgateway 290
The Pushgateway 291
When not to use the Pushgateway 292
Installing the Pushgateway 293
Installing the Pushgateway on Linux 294
Installing the Pushgateway on Microsoft Windows 295
Installing via configuration management 297
Configuring and running the Pushgateway 297
Sending metrics to the Pushgateway 299
Viewing metrics on the Pushgateway 302
Deleting metrics in the Pushgateway 304
Sending metrics fromaclient 305
Summary e e e 310
Chapter 12 Monitoring a Stack - Kubernetes 311
Our Kubernetes cluster 311
Running Prometheus on Kubernetes 312
Monitoring Kubernetes 313
Monitoring our Kubernetesnodes 314
Node Exporter DaemonSet iv ... 314
Node Exporter service.o v v vt vttt it 318
Deploying the Node Exporter 320
The Node Exporterjob 322
Node Explorerrules 326
Kubernetes 328
Kube-state-metrics 328
Kube API e 332
CAdvisorand Nodes, 336
Summary e e e e 338

Version: v1.0.0 (427b8e9) viii

Contents

Chapter 13 Monitoring a Stack - Tornado 339
Sidecar pattern i e e e 340
MySQL . . . e e e 342

MySQL Prometheus configuration 345
Redis e 349
Redis Prometheus configuration 351
Tornado. e 353
Adding the Clojure wrapper 353
Adding aregistry 355
Adding metrics 356
Exporting themetrics 357
Tornado Prometheus configuration. 358
Summary 359

List of Figures 364

List of Listings 373

Index 374

Version: v1.0.0 (427b8e9) ix

Foreword

Who is this book for?

This book is a hands-on introduction to monitoring with Prometheus.

Most of the book’s examples are Ubuntu Linux-based, and there is an expectation
that the reader has basic Unix/Linux skills and is familiar with the command line,
editing files, installing packages, managing services, and basic networking.

Finally, Prometheus is evolving quickly. That means “Here Be Dragons,” and you
should take care to confirm what versions you’re using of the tools in this book.

The book is designed to be used with Prometheus version 2.3.0 and later. This
Material will not work with earlier releases.

Credits and Acknowledgments

* Ruth Brown, who continues to humor these books and my constant tap-tap-
tap of keys late into the night.

Sid Orlando, who makes my words good.

 Bryan Brazil for his excellent Prometheus blog. He also runs training that
you should check out.

+ David Karlsen for his technical review work.

https://www.robustperception.io/blog/
https://training.robustperception.io/

Foreword

Technical Reviewers

Thanks to the folks who helped make this book more accurate and useful!

Jamie Wilkinson

Jamie is a Site Reliability Engineer in Google’s Storage Infrastructure team. He
began in Linux systems administration in 1999, while earning a Bachelor’s in
Computer Science, so knows just enough theory of computation to be dangerous
in his field. He contributed a chapter on monitoring to the Google SRE Book.
Jamie lives with his family in Sydney, Australia.

Paul Gier

As a curious kid growing up at a time when proprietary software was the rule, Paul
was frustrated by a lack of money and licenses. Soon after learning about a new
operating system called Linux, Paul was hooked on the ideas of free software—
ideas that eventually led him to his current role as a Principal Software Engineer
at Red Hat, where he has been happily developing free software for more than
10 years. Paul is excited about new container-based infrastructures and all the
solutions and problems they bring. He lives in Austin, Texas, with his wife, three
children, two dogs, and one mischievous cat.

Editor

Sid Orlando is an editor and writer, among some other things. She’s currently
making Increment, Stripe’s software engineering/tech magazine, while drawing
lots of friendly monsters and raising a giant army of plants in her NYC apartment.

Version: v1.0.0 (427b8e9) 2

https://twitter.com/ohreallysid

Foreword

Author

James is an author and engineer. His most recent books are The Packer Book; The
Terraform Book; The Art of Monitoring; The Docker Book, about the open-source
container virtualization technology; and The Logstash Book, about the popular
open-source logging tool. James also authored two books about Puppet, Pro Pup-
pet and Pulling Strings with Puppet. He is the author of three other books: Pro
Linux System Administration, Pro Nagios 2.0, and Hardening Linux.

He is currently CTO at Empatico and was formerly CTO at Kickstarter, VP of
Services and Support at Docker, VP of Engineering at Venmo, and VP of Technical
Operations at Puppet. He likes food, wine, books, photography, and cats. He is
not overly keen on long walks on the beach or holding hands.

Conventions in the book

This is an inline code statement.

This is a code block:

(P
Listing 1: Sample code block

This is a code block

Long code strings are broken. If you see . . . in a code block it indicates that
the output has been shortened for brevity’s sake.

Version: v1.0.0 (427b8e9) 3

https://www.packerbook.com
https://www.terraformbook.com
https://www.terraformbook.com
https://www.artofmonitoring.com
http://www.dockerbook.com
http://www.logstashbook.com
http://www.amazon.com/gp/product/1430230576/ref=as_li_ss_tl?ie=UTF8&tag=puppet0e-20&linkCode=as2&camp=217145&creative=399349&creativeASIN=1430230576
http://www.amazon.com/gp/product/1430230576/ref=as_li_ss_tl?ie=UTF8&tag=puppet0e-20&linkCode=as2&camp=217145&creative=399349&creativeASIN=1430230576
http://www.amazon.com/gp/product/1590599780?ie=UTF8&tag=puppet0e-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=1590599780
http://www.amazon.com/gp/product/1430219122?ie=UTF8&tag=puppet0e-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=1430219122
http://www.amazon.com/gp/product/1430219122?ie=UTF8&tag=puppet0e-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=1430219122
http://www.amazon.com/gp/product/1590596099?ie=UTF8&tag=puppet0e-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=1590596099
http://www.amazon.com/gp/product/1590594444?ie=UTF8&tag=puppet0e-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=1590594444

Foreword

Code and Examples

The code and example configurations contained in the book are available on
GitHub at:

https://github.com/turnbullpress/prometheusbook-code

Colophon

This book was written in Markdown with a large dollop of LaTeX. It was then
converted to PDF and other formats using PanDoc (with some help from scripts
written by the excellent folks who wrote Backbone.js on Rails).

Errata

Please email any errata you find to james+errata@lovedthanlost.net.

Disclaimer

This book is presented solely for educational purposes. The author is not offering
it as legal, accounting, or other professional services advice. While best efforts
have been used in preparing this book, the author makes no representations or
warranties of any kind and assumes no liabilities of any kind with respect to the
accuracy or completeness of the contents and specifically disclaims any implied
warranties of merchantability or fitness of use for a particular purpose. The author
shall not be held liable or responsible to any person or entity with respect to
any loss or incidental or consequential damages caused, or alleged to have been
caused, directly or indirectly, by the information or programs contained herein.
Every company is different and the advice and strategies contained herein may

Version: v1.0.0 (427b8e9) 4

https://github.com/turnbullpress/prometheusbook-code
https://github.com/turnbullpress/prometheusbook-code
https://github.com/turnbullpress/prometheusbook-code
mailto:james+errata@lovedthanlost.net

Foreword

not be suitable for your situation. You should seek the services of a competent
professional before beginning any infrastructure project.

Copyright

Some rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted in any form or by any means, electronic, mechan-
ical or photocopying, recording, or otherwise, for commercial purposes without
the prior permission of the publisher.

[@0SIe)

Figure 1: License

This work is licensed under the Creative Commons Attribution-NonCommercial-
NoDerivs 3.0 Unported License. To view a copy of this license, visit here.

© Copyright 2018 - James Turnbull & Turnbull Press

ISEN G7&-0-9&55202-5-9

3 7780388820283
Figure 2: ISBN

Version

This is version v1.0.0 (427b8e9) of Monitoring with Prometheus.

Version: v1.0.0 (427b8e9) 5

http://creativecommons.org/licenses/by-nc-nd/3.0/

Chapter 1
Introduction

This book is an introduction to Prometheus, an open-source monitoring system.
Prometheus provides real-time collection of time series data from your applica-
tions backed by a powerful rules engine to help identify the information you
need to monitor your environment. In the next chapter we’ll introduce you to
Prometheus and its architecture and components. We’ll use Prometheus in the
book to take you through building a monitoring environment, with a focus on
monitoring dynamic cloud, Kubernetes, and container environments. We’ll also
look at instrumenting applications and using that data for alerting and visualiza-

tion.

This is also a book about monitoring in general—so, before we introduce you to
Prometheus, we’re going to take you through some monitoring basics. We’ll go
through what monitoring is, some approaches to monitoring, and we’ll explain
some terms and concepts that we’ll rely on later in this book.

What is monitoring?

From a technology perspective, monitoring is the tools and processes by which
you measure and manage your technology systems. But monitoring is much more

6

https://prometheus.io

Chapter 1: Introduction

than that. Monitoring provides the translation to business value from metrics
generated by your systems and applications. Your monitoring system translates
those metrics into a measure of user experience. That measure provides feedback
to the business to help ensure it’s delivering what customers want. The measure
also provides feedback to technology, as we’ll define below, to indicate what isn’t
working and what’s delivering an insufficient quality of service.

A monitoring system has two customers:

+ Technology
» The business

Technology as a customer

The first customer of your monitoring system is Technology. That’s you, your
team, and the other folks who manage and maintain your technology environment
(you might also be called Engineering or Operations or DevOps or Site Reliability
Engineering). You rely on monitoring to let you know the state of your technol-
ogy environment. You also use monitoring quite heavily to detect, diagnose, and
help resolve faults and other issues in your technology environment, preferably
before it impacts your users. Monitoring contributes much of the data that in-
forms your critical product and technology decisions, and measures the success
of those projects. It’s a foundation of your product management life cycle and
your relationship with your internal customers, and it helps demonstrate that the
business’s money is being well spent. Without monitoring you’re winging it at
best—and at worst being negligent.

' NOTE There’s a great diagram from Google’s SRE book that shows how
monitoring is the foundation of the hierarchy of building and managing applica-
tions.

Version: v1.0.0 (427b8e9) 7

https://landing.google.com/sre/book/chapters/part3.html#fig_part-practices_reliability-hierarchy

Chapter 1: Introduction

The business as a customer

The business is the second customer of your monitoring. Your monitoring exists
to support the business—and to make sure it continues to do business. Monitoring
provides the reporting that allows the business to make good product and tech-
nology investments. Monitoring also helps the business measure the value that
technology delivers.

Monitoring fundamentals

Monitoring should be a core tool for managing infrastructure and your business.
Monitoring should also be mandatory, built, and deployed with your applications.
Without it you will not be able to understand the state of your world, readily
diagnose problems, capacity plan, or provide information to your organization
about performance, costs, or status.

An excellent exposition of this foundation is the Google service hierarchy chart
we mentioned earlier.!

ISite Reliability Engineering, edited by Betsy Beyer, Chris Jones, Jennifer Petoff, and Niall
Richard Murphy (O’Reilly). Copyright 2016 Google, Inc., 978-1-491-92912-4.

Version: v1.0.0 (427b8e9) 8

Chapter 1: Introduction

Product

Development

(apacity Planning

Testing + Release procedures

Postmortem / Root Cause Analysis

Incident Response

/ Monitoring \

Figure 1.1: Service hierarchy

But monitoring can be hard to implement well, and it can very easily be bad if
you’re monitoring the wrong things or in the wrong way. There are some key

monitoring anti-patterns and mitigation:

Monitoring as afterthought

In any good application development methodology, it’s a good idea to identify
what you want to build before you build it. Sadly, there’s a common anti-pattern

Version: v1.0.0 (427b8e9) 9

Chapter 1: Introduction

of considering monitoring, and other operational functions like security, as value-
add components of your application rather than core features. Monitoring, like
security, is a core feature of your applications. If you’re building a specification
or user stories for your application, include metrics and monitoring for each com-
ponent of your application. Don’t wait until the end of a project or just before
deployment. I guarantee you’ll miss something that needs to be monitored.

Q TIP see the discussion about automation and self-service below for ideas on
how to make this process easier.

Monitoring by rote

Many environments create cargo cult monitoring checks for all your applications.
A team reuses the checks they have built in the past rather than evolving those
checks for a new system or application. A common example is to monitor CPU,
memory, and disk on every host, but not the key services that indicate the appli-
cation that runs on the host is functional. If an application can go down without
you noticing, even with monitoring in place, then you need to reconsider what
you are monitoring.

A good approach to your monitoring is to design a top-down monitoring plan
based on value. Identify the parts of the application that deliver value and monitor
those first, working your way down the stack.

Version: v1.0.0 (427b8e9) 10

https://en.wikipedia.org/wiki/Cargo_cult

Chapter 1: Introduction

Business Logic

Application

Operating System

Figure 1.2: Monitoring design

Start with business logic and business outputs, move down to application logic,
and finally into infrastructure. This doesn’t mean you shouldn’t collect infrastruc-
ture or operating system metrics—they provide value in diagnostics and capacity
planning—but you’re unlikely to need them to report the value of your applica-

tions.

' NOTE 1t you can’t start with business metrics, then start monitoring close

Version: v1.0.0 (427b8e9) 11

Chapter 1: Introduction

to the user. They are the ultimate customer and their experience is what drives
your business. Understanding what their experience is and detecting when they
have issues is valuable in its own right.

Not monitoring for correctness

Another common variant of this anti-pattern is to monitor the status of services
on a host but not the correctness. For example, you may monitor if a web appli-
cation is running by checking for an HTTP 200 response code. This tells you the
application is responding to connections, but not if it’s returning the correct data
in response to those requests.

A better approach is monitoring for the correctness of a service first—for example,
monitor the content or rates of a business transaction rather than the uptime of
the web server it runs on. This allows you to get the value of both: if the content
of a service isn’t correct because it is misconfigured, buggy, or broken you’ll see
that. If the content isn’t correct because underlying web service goes down, you’ll
also know that.

Monitoring statically

A further check anti-pattern is the use of static thresholds—for example, alerting if
CPU usage on a host exceeds 80 percent. Checks are often inflexible Boolean logic
or arbitrary static in time thresholds. They generally rely on a specific result or
range being matched. The checks don’t consider the dynamism of most complex
systems. A match or a breach in a threshold may be important or could have
been triggered by an exceptional event—or could even be a natural consequence
of growth.

Arbitrary static thresholds are almost always wrong. Baron Schwartz, CEO of

Version: v1.0.0 (427b8e9) 12

Chapter 1: Introduction

database performance analysis vendor VividCortex, put it well:

They’re worse than a broken clock, which is at least right twice a day.
A threshold is wrong for any given system, because all systems are
slightly different, and it’s wrong for any given moment during the day,
because systems experience constantly changing load and other cir-
cumstances.

To monitor well we need to look at windows of data, not static points in time, and
we need to use smarter techniques to calculate values and thresholds.

Not monitoring frequently enough

In many monitoring tools, scaling is a challenge or the default check period is
set to a high value—for example, only checking an application once every five to
15 minutes. This often results in missing critical events that occur between your
checks. You should monitor your applications frequently enough to:

+ Identify faults or anomalies.
* Meet human response time expectations—you want to find the fault before
your users report the fault.

+ Provide data at sufficient granularity for identifying performance issues and
trends.

Always remember to store sufficient historical data to identify performance issues
and trends. In many cases this might only need to be days or weeks of data—but
it’s impossible to identify a trend or reoccurring problem if you have thrown away
the data that shows it.

Version: v1.0.0 (427b8e9) 13

https://www.vividcortex.com/
https://www.vividcortex.com/blog/2013/04/10/2-reasons-why-threshold-based-monitoring-is-hopelessly-broken/

Chapter 1: Introduction

No automation or self-service

A frequent reason monitoring is poor or not implemented correctly is that it can be
hard to implement. If you make it hard for application developers to instrument
their applications, collect the data, or visualize its results, they won’t do it. If your
monitoring infrastructure is manual or overly complex then fault and issues will
result in monitoring gaps, failures, and the potential for you to spend more time
fixing and maintaining your monitoring than actually monitoring.

Monitoring implementations and deployments should be automated wherever pos-
sible:

+ Deployments should be managed by configuration management.

+ Configuration of hosts and services should be via discovery or self-service
submission, so new applications can be automatically monitored rather than
needing someone to add them.

+ Adding instrumentation should be simple and based on a pluggable utility
pattern, and developers should be able to include a library or the like rather
than having to configure it themselves.

« Data and visualization should be self-service. Everyone who needs to see the
outputs of monitoring should be able to query and visualize those outputs.
(This is not to say that you shouldn’t build dashboards for people, but rather
that if they want more they shouldn’t have to ask you for it.)

Good monitoring summary

Good monitoring should provide:

 The state of the world, from the top (the business) down.

« Assistance in fault diagnostics.

« A source of information for infrastructure, application development, and
business folks.

Version: v1.0.0 (427b8e9) 14

Chapter 1: Introduction

And it should be;

« Built into design and the life cycle of application development and deploy-
ment.
« Automated and provided as self-service, where possible.

' NOTE This definition of “good” monitoring heavily overlaps with an emerg-
ing term: observability. You can read more about this in Cindy Sridharan’s excel-
lent blog post on the differences between the two.

Let’s now look at the actual mechanics of monitoring.

Monitoring mechanics

There are a variety of ways you can monitor. Indeed, you could argue that every-
thing from unit testing to checklists are a form of monitoring.

' NOTE Lindsay Holmwood has a useful presentation on test-driven monitor-
ing that talks about the connection between testing and monitoring. Additionally,
Cindy Sridharan’s post on testing microservices draws some interesting parallels
between testing and monitoring.

Traditionally, though, the definition of monitoring focuses on checking and mea-
suring the state of an application.

Version: v1.0.0 (427b8e9) 15

https://medium.com/@copyconstruct/monitoring-and-observability-8417d1952e1c
https://medium.com/@copyconstruct/monitoring-and-observability-8417d1952e1c
https://www.slideshare.net/auxesis/monitoring-web-application-behaviour-with-cucumbernagios
https://www.slideshare.net/auxesis/monitoring-web-application-behaviour-with-cucumbernagios
https://medium.com/@copyconstruct/testing-microservices-the-sane-way-9bb31d158c16

Chapter 1: Introduction

Probing and introspection

There are two major approaches to monitoring applications: probing and intro-
spection.? Probing monitoring probes the outside of an application. You query
the external characteristics of an application: does it respond to a poll on an open
port and return the correct data or response code? An example of probing moni-
toring is performing an ICMP check and confirming you have received a response.
Nagios is an example of a monitoring system that is largely based around probe

monitoring.

Introspection monitoring looks at what’s inside the application. The application
is instrumented and returns measurements of its state, the state of internal com-
ponents, or the performance of transactions or events. This is data that shows
exactly how your application is functioning, rather than just its availability or the
behavior of its surface area. Introspection monitoring either emits events, logs,
and metrics to a monitoring tool or exposes this information on a status or health
endpoint of some kind, which can then be collected by a monitoring tool.

The introspection approach provides an idea of the actual running state of ap-
plications. It allows you to communicate a much richer, more contextual set of
information about the state of your application than probing monitoring does. It
also provides a better approach to exposing the information both you and the
business require to monitor your application.

This is not to say that probing monitoring has no place. It is often useful to know
the state of external aspects of an application, especially if the application is pro-
vided by a third party and if you don’t have insight into its internal operations. It
is often also useful to view your application from outside to understand certain
types of networking, security, or availability issues. It’s generally recommended
to have probing for your safety net, a catchall that something is wrong, but to use
introspection to drive reporting and diagnostics. We’ll see some probe monitoring
in Chapter 10.

2Some folks call probing and introspection, black-box and white-box monitoring respectively.

Version: v1.0.0 (427b8e9) 16

Chapter 1: Introduction

Pull versus push

There are two approaches to how monitoring checks are executed that are worth
briefly discussing. These are the pull versus push approaches.

Pull-based systems scrape or check a remote application—for example, an end-
point containing metrics or, as from our probing example, a check using ICMP. In
push-based systems, applications emit events that are received by the monitoring
system.

Both approaches have pros and cons. There’s considerable debate in monitoring
circles about those pros and cons, but for the purposes of many users, the debate is
largely moot. Prometheus is primarily a pull-based system, but it also supports re-
ceiving events pushed into a gateway. We’ll show you how to use both approaches
in this book.

Types of monitoring data

Monitoring tools can collect a variety of different types of data. That data primar-
ily takes two forms:

« Metrics — Most modern monitoring tools rely most heavily on metrics to
help us understand what’s going on in our environments. Metrics are stored
as time series data that record the state of measures of your applications.
We’ll see more about this shortly.

+ Logs — Logs are (usually textual) events emitted from an application. While
they’re helpful for letting you know what’s happening, they’re often most
useful for fault diagnosis and investigation. We won’t look at logs much
in this book, but there are plenty of tools available, like the ELK stack, for
collecting and managing log events.

Version: v1.0.0 (427b8e9) 17

https://www.elastic.co

Chapter 1: Introduction

Q TIP I've written a book about the ELK stack that might interest you.

As Prometheus is primarily focused on collecting time series data, let’s take a
deeper look at metrics.

Metrics

Metrics always appear to be the most straightforward part of any monitoring archi-
tecture. As aresult, we sometimes don’t invest quite enough time in understanding
what we’re collecting, why we’re collecting it, and what we’re doing with those
metrics.

In a lot of monitoring frameworks, the focus is on fault detection: detecting if a
specific system event or state has occurred (this is very much the Nagios style of
operation—more on this below). When we receive a notification about a specific
system event, usually we go look at whatever metrics we’re collecting, if any, to
find out what exactly has happened and why. In this world, metrics are seen as a
by-product of, or a supplement to, our fault detection.

Q TIP See the discussion later in this chapter about notification design for
further reasons why this is a challenging problem.

Prometheus changes this idea of “metrics as supplement.” Metrics are the most im-
portant part of your monitoring workflow. Prometheus turns the fault-detection—
centric model on its head. Metrics provide the state and availability of your envi-
ronment and its performance.

Version: v1.0.0 (427b8e9) 18

https://www.logstashbook.com

Chapter 1: Introduction

' NOTE This book generally avoids duplicating Boolean status checks when
a metric can provide information on both state and performance.

Harnessed correctly, metrics provide a dynamic, real-time picture of the state of
your infrastructure that will help you manage and make good decisions about
your environment. Additionally, through anomaly detection and pattern analysis,
metrics have the potential to identify faults or issues before they occur or before
the specific system event that indicates an outage is generated.

So what’s a metric?

As metrics and measurement are so critical to our monitoring framework, we’re
going to help you understand what metrics are and how to work with them. This
is intended to be a simplified background that will allow you to understand what
different types of metrics, data, and visualizations will contribute to our monitor-
ing framework.

Metrics are measures of properties of components of software or hardware. To
make a metric useful we keep track of its state, generally recording data points
over time. Those data points are called observations. An observation consists of
the value, a timestamp, and sometimes a series of properties that describe the
observation, such as a source or tags. A collection of observations is called a time
series.

A classic example of time series data we might collect is website visits, or hits. We
periodically collect observations about our website hits, recording the number of
hits and the times of the observations. We might also collect properties such as
the source of a hit, which server was hit, or a variety of other information.

We generally collect observations at a fixed-time interval—we call this the gran-
ularity or resolution. This could range from one second to five minutes to 60

Version: v1.0.0 (427b8e9) 19

Chapter 1: Introduction

minutes or more. Choosing the right granularity at which to record a metric is
critical. Choose too coarse a granularity and you can easily miss the detail. For
example, sampling CPU or memory usage at five-minute intervals is highly un-
likely to identify anomalies in your data. Alternatively, choosing fine granularity
can result in the need to store and interpret large amounts of data.

Time series data is a chronologically ordered list of these observations. Time series
metrics are often visualized, sometimes with a mathematical function applied, as a
two-dimensional plot with data values on the y-axis and time on the x-axis. Often
you’ll see multiple data values plotted on the y-axis—for example, the CPU usage
values from multiple hosts or successful and unsuccessful transactions.

Sample plot

_ j\ ‘“‘“‘Mﬁ ‘\"HL‘“-E*.MJD - |

9/12 00:00 9/12 04:00 9/12 08:00 9/12 12:00 9/12 16:00 9/12 20:00

Figure 1.3: A sample plot

These plots can be incredibly useful. They provide us with a visual representation
of critical data that is (relatively) easy to interpret, certainly with more facility
than perusing the same data in the form of a list of values. They also present
us with a historical view of whatever we’re monitoring: they show us what has
changed and when. We can use both of these capabilities to understand what’s
happening in our environment and when it happened.

Version: v1.0.0 (427b8e9) 20

Chapter 1: Introduction

Types of metrics

There are a variety of different types of metrics you’ll see in the wild.

Gauges

The first type of metric we’ll look at is a gauge. Gauges are numbers that are
expected to go up or down. A gauge is essentially a snapshot of a specific mea-
surement. The classic metrics of CPU, memory, and disk usage are usually articu-
lated as gauges. For business metrics, a gauge might be the number of customers
present on a site.

A CPU Gauge

14:30 14:35 14:40

= productiona.hosts.graphitea.cpu.user

Figure 1.4: A sample gauge

Counters

The second type of metric we’ll see frequently is a counter. Counters are numbers
that increase over time and never decrease. Although they never decrease, coun-
ters can sometimes reset to zero and start incrementing again. Good examples of
application and infrastructure counters are system uptime, the number of bytes
sent and received by a device, or the number of logins. Examples of business coun-
ters might be the number of sales in a month or the number of orders received by
an application.

Version: v1.0.0 (427b8e9) 21

Chapter 1: Introduction

A sample counter

23:58 23:59 00:00 00:01 00:02 00:03 00:04 00:05 00:06 00:07 00:08 00:09 00:10 00:11 00:12

== productiona.hosts.app1-web1.statsd.derive-aom-rails.user.created

Figure 1.5: A sample counter

In this figure we have a counter incrementing over a period.

A useful thing about counters is that they let you calculate rates of change. Each
observed value is a moment in time: t. You can subtract the value at t from the
value at t+1 to get the rate of change between the two values. A lot of useful
information can be understood by understanding the rate of change between two
values. For example, the number of logins is marginally interesting, but create a
rate from it and you can see the number of logins per second, which should help
identify periods of site popularity.

Histograms

A histogram is a metric that samples observations. This is a frequency distribution
of a dataset. You group data together—a process called “binning”—and present
the groups in a such a way that their relative sizes are visualized. Each observation
is counted and placed into buckets. This results in multiple metrics: one for each
bucket, plus metrics for the sum and count of all values.

A common visualization of a frequency distribution histogram looks like a bar
graph.

Version: v1.0.0 (427b8e9) 22

Chapter 1: Introduction

frequency

]

155 160 165 170 175 180 185 190 1S|)5 2(|)0
height

Figure 1.6: A histogram example

Here we see a sample histogram for the frequency distribution of heights. On the
y-axis we have the frequency and on the x-axis we have the distribution of heights.
We see that for the height 160-165 cm tall there is a distribution of two.

' NOTE There’s another metric type, called a summary, which is similar
to a histogram, but it also calculates percentiles. You can read more about im-
plementation details and some caveats of histogram and summaries specific to
Prometheus.

Histograms can be powerful representations of your time series data and especially
useful for visualizing data such as application latencies.

Metric summaries

Often the value of a single metric isn’t useful to us. Instead, visualization of a met-
ric requires applying mathematical transformations to it. For example, we might
apply statistical functions to our metric or to groups of metrics. Some common
functions we might apply include:

Version: v1.0.0 (427b8e9) 23

https://prometheus.io/docs/practices/histograms/
https://prometheus.io/docs/practices/histograms/
https://prometheus.io/docs/practices/histograms/

Chapter 1: Introduction

+ Count or n — Counts the number of observations in a specific time interval.

* Sum — To sum is to add together values from all observations in a specific
time interval.

+ Average — Provides the mean of all values in a specific time interval.

* Median — The median is the dead center of our values: exactly 50 percent
of values are below it, and 50 percent are above it.

* Percentiles — Measures the values below which a given percentage of ob-
servations in a group of observations fall.

+ Standard deviation — Shows standard deviation from the mean in the distri-
bution of our metrics. This measures the variation in a data set. A standard
deviation of 0 means the distribution is equal to the mean of the data. Higher
deviations mean the data is spread out over a range of values.

« Rates of change — Rates of change representations show the degree of

change between data in a time series.

Q TIP This is a brief introduction to these summary methods. We’ll use some
of them in more detail later in the book.

Metric aggregation

In addition to summaries of specific metrics, you often want to show aggregated
views of metrics from multiple sources, such as the disk space usage of all your
application servers. The most typical example of this results in multiple metrics
being displayed on a single plot. This is useful in identifying broad trends over

Version: v1.0.0 (427b8e9) 24

Chapter 1: Introduction

your environment. For example, an intermittent fault in a load balancer might
result in web traffic dropping off for multiple servers. This is often easier to see
in aggregate than by reviewing each individual metric.

Disk used on/

50

40_—_—,’—_—__’_,_,—.&_——4'/”___———

30
20

10
8/23 8/25 8/27 8/29 8/31 9/2 9/4 9/6 /8 9/10 9/12

— graphiteb — graphitea — appi-proxy — es3 — appi-webl — es1 — riemanna — riemannMC — es2 = graphitemc — logstash — docker

Figure 1.7: An aggregated collection of metrics

In this plot we see disk usage from numerous hosts over a 30-day period. It gives
us a quick way to ascertain the current state (and rate of change) of a group of
hosts.

Ultimately you’ll find that a combination of single and aggregate metrics provide
the most representative view of the health of your environment: the former to
drill down into specific issues, and the latter to see the high-level state.

Let’s take a deeper dive into types of metric summaries: the whys, why nots, and
hows of using averages, the median, standard deviation, percentiles, and other
statistical choices.

' NOTE This is a high-level overview of some statistical techniques rather
than a deep dive into the topic. Exploration of some topics may appear overly
simplistic to folks with strong statistics or mathematics backgrounds.

Averages

Averages are the de facto metric analysis method. Indeed, pretty much everyone
who has ever monitored or analyzed a website or application has used averages.

Version: v1.0.0 (427b8e9) 25

Chapter 1: Introduction

In the web operations world, for example, many companies live and die by the
average response time of their site or API.

Averages are attractive because they are easy to calculate. Let’s say we have a list
of seven time series values: 12, 22, 15, 3, 7, 94, and 39. To calculate the average
we sum the list of values and divide the total by the number of values in the list.

(12 + 22 + 15 + 3 + 7 + 94 + 39) / 7 = 27.428571428571

We first sum the seven values to get the total of 192. We then divide the sum
by the number of values, here 7, to return the average: 27.428571428571. Seems
pretty simple, huh? The devil, as they say, is in the details.

Averages assume there is a normal event or that your data is a normal (or Gaus-
sian) distribution—for example, in our average response time, it’s assumed that all
events run at equal speed or that response time distribution is roughly bell curved.
But this is rarely the case with applications. In fact, there’s an old statistics joke
about a statistician who jumps in a lake with an average depth of only 10 inches
and nearly drowns...

Version: v1.0.0 (427b8e9) 26

https://en.wikipedia.org/wiki/Normal_distribution
https://en.wikipedia.org/wiki/Normal_distribution
https://en.wikipedia.org/wiki/Gaussian_function

Chapter 1: Introduction

Figure 1.8: The flaw of averages - copyright Jeff Danzinger

Why did he nearly drown? The lake contained large areas of shallow water and
some areas of deep water. Because there were larger areas of shallow water, the
average depth was lower overall. In the monitoring world the same principal
applies: lots of low values in our average distort or hide high values and vice
versa. These hidden outliers can mean that while we think most of our users are
experiencing a quality service, there may be a significant number that are not.

Let’s look at an example using response times and requests for a website.

Version: v1.0.0 (427b8e9) 27

Chapter 1: Introduction

Average

s

10

Requests

2

Response time

*
]
L]
L]
L]
L]
L]
L]
L]
L]
]
L]
L]
]
L]
L]
L]
L]
L]
]
L]
L]
]
L]
L]
L]
L]
L]
]
L]
L]
]
L]
L]
L]
L]
L]
L]
[]
L]
L]
L]
L]
L]
L]
L]
L]

Figure 1.9: Response time average

Here we have a plot showing response time for a number of requests. Calculating
the average response time would give us 4.1 seconds. The vast majority of our
users would experience a (potentially) healthy 4.1 second response time. But
many of our users are experiencing response times of up to 12 seconds, perhaps
considerably less acceptable.

Let’s look at another example with a wider distribution of values.

Version: v1.0.0 (427b8e9) 28

Chapter 1: Introduction

Average

s

10

Requests

2

2R EE AT EEEEEEAEEEEEEEERERE R R AR EREERE RN R Y

Respon;se time

.
[

Figure 1.10: Response time average Mk II

Here our average would be a less stellar 6.8 seconds. But worse, this average is
considerably better than the response time received by the majority of our users
with a heavy distribution of request times around 9, 10, and 11 seconds long. If
we were relying on the average alone, we’d probably think our application was
performing a lot better than it is.

Median

At this point you might be wondering about using the median. The median is
the dead center of our values: exactly 50 percent of values are below it, and 50
percent are above it. If there’s an odd number of values, then the median will be
the value in the middle. For the first data set we looked at—12, 22, 15, 3, 7, 94,
and 39—the median is 15. If there were an even number of values, the median

Version: v1.0.0 (427b8e9) 29

Chapter 1: Introduction

would be the mean of the two values in the middle. So if we were to remove 39
from our data set to make it even, the median would become 13.5.

Let’s apply this to our two plots.

e e]

Response time

.
L]
1]
L]
L]
' Average
1]
L]
10 .
L]
L]
1]
‘]
]
B ' i
. i Median
L]
[[}
2 6 ! !
@ ¥
& H
g :
4 L]
L]
L]
1]
- .
& L]
1]
1]
L]
]
0 :
1]
L]
L]
1]
L]
L]
L]
1]

L]
1
L]
L]
L]
L]
L]
L]

Figure 1.11: Response time average and median

We see in our first example figure that the median is 3, which provides an even
rosier picture of our data.

In the second example the median is 8, a bit better but close enough to the average
to render it ineffective.

Version: v1.0.0 (427b8e9) 30

Chapter 1: Introduction

s

.
L[]
[}
@
[]
. Average
[]
[}
10 .
[}
@
[] 3
]
8 . i
. i Median
. H
n 5] P H
W
g
or
']
3 4

2

1]
Respon;se time

L]
L]

]
a
[
]
"]
L]
']
v
L]

Figure 1.12: Response time average and median Mk II

You can probably already see that the problem again here is that, like the mean,
the median works best when the data is on a bell curve... And in the real world
that’s not realistic.

Another commonly used technique to identify performance issues is to calculate
the standard deviation of a metric from the mean.

Standard deviation

As we learned earlier in the chapter, standard deviation measures the variation
or spread in a data set. A standard deviation of 0 means most of the data is
close to the mean. Higher deviations mean the data is more distributed. Standard
deviations are represented by positive or negative numbers suffixed with the sigma
symbol—for example, 1 sigma is one standard deviation from the mean.

Version: v1.0.0 (427b8e9) 31

Chapter 1: Introduction

Like the mean and the median, however, standard deviation works best when the
data is a normal distribution. In a normal distribution there’s a simple way of
articulating the distribution: the empirical rule, also known as the 68-95-99.7
rule or three-sigma rule. Within the rule, one standard deviation or 1 to -1 will
represent 68.27 percent of all transactions on either side of the mean, two standard
deviations or 2 to -2 would be 95.45 percent, and three standard deviations will
represent 99.73 percent of all transactions.

99.7% of the data are within

€ 3 standard deviations of the mean >
95% within
2 standard deviations
68% within
<— 1 standard —>
deviation
u— 30 u—2a U—ac U u+o U+ 20 u+ 30

Figure 1.13: The empirical rule

Many monitoring approaches take advantage of the empirical rule and trigger on
transactions or events that are more than two standard deviations from the mean,
potentially catching performance outliers. In instances like our two previous ex-
amples, however, the standard deviation isn’t overly helpful either. And without

Version: v1.0.0 (427b8e9) 32

https://en.wikipedia.org/wiki/68%E2%80%9395%E2%80%9399.7_rule

Chapter 1: Introduction

a normal distribution of data, the resulting standard deviation can be highly mis-
leading.

Thus far, our methods for identifying anomalous data in our metrics haven’t been
overly promising. But all is not lost! Our next method, percentiles, offer a little
more hope.

Percentiles

Percentiles measure the values below which a given percentage of observations
in a group of observations fall. Essentially they look at the distribution of values
across your data set. For example, the median we looked at above is the 50th
percentile (or p50). In the median, 50 percent of values fall below and 50 per-
cent above. For metrics, percentiles make a lot of sense because they make the
distribution of values easy to grasp. For example, the 99th-percentile value of 10
milliseconds for a transaction is easy to interpret: 99 percent of transactions were
completed in 10 milliseconds or less, and 1 percent of transactions took more than
10 milliseconds.

Q TIP Percentiles are a type of quantile.

Percentiles are ideal for identifying outliers. If a great experience on your site
is a response time of less than 10 milliseconds then 99 percent of your users are
having a great experience—but 1 percent of them are not. Once you’re aware of
this, you can focus on addressing the performance issue that’s causing a problem
for that 1 percent.

Let’s apply this to our previous request and response time graphs and see what
appears. We’ll apply two percentiles, the 75th and 99th percentiles, to our first
example data set.

Version: v1.0.0 (427b8e9) 33

https://en.wikipedia.org/wiki/Quantile

Chapter 1: Introduction

i

sponse time

‘ i i '
L]]] L]
] \] 1]
[1 1 [[1
. 1] 1 v
' ' \ ' Average
' \ i '
v 1] 1 v
10 ' ' 3 .
]] 1]
L] 1] L]
L] \ [L]
[[} [[;
;] . E 3 .]
' ' .
\ v H ' i Median
L] L]
L] \ : W :
2 6 . v '
@ ' 1 N
S ' 3 ’
o \] [.
D \ \ M]
€ o : :
Voo . i p75
. ' i
5] y] '
< 1 ¥ v
\]]
} \ ' .
\ :] :
. — : ! po9
1 2 4 = 5 : 6 7 8 g 10 N 11 12 H P
\ \ ' !
\]] '
] Re []
' \]
\]]
\ i '

e w s -

Figure 1.14: Response time average, median, and percentiles

We see that the 75th percentile is 5.5 seconds. That indicates that 75 percent com-
pleted in 5.5 seconds, and 25 percent were slower than that. Still pretty much in
line with the earlier analysis we’ve examined for the data set. The 99th percentile,
on the other hand, shows 10.74 seconds. This means 99 percent of users had re-
quest times of less than 10.74 seconds, and 1 percent had more than 10.74 seconds.
This gives us a real picture of how our application is performing. We can also use
the distribution between p75 and p99. If we’re comfortable with 99 percent of
users getting 10.74 second response times or better and 1 percent being slower
than that, then we don’t need to consider any further tuning. Alternatively, if
we want a uniform response, or if we want to lower that 10.74 seconds across our
distribution, we’ve now identified a pool of transactions we can trace, profile, and
improve. As we adjust the performance, we’ll also be able to see the p99 response
time improve.

Version: v1.0.0 (427b8e9) 34

Chapter 1: Introduction

The second data set is even more clear.

TEERRRERY
s

\ N \
L] L] L]
1] 1]]
L] 1] L]
E E E Average
10 . . .
L] 1] L]
L] L] L]
1] 1] 1]
L] [] [.
8 : : ' E
) :) t Median
[[[!
N] L] [:
2 6 . . .
o ' '
=1 L] 1]
U’ 1] [1 "
7] \ \ [
o 4 ’ ' :
' . i p75
] ¥ :
. ' ' t
“ L]
1]
1]
' .
]
1]
0 : i
12 3 4 5 6 11 i P99
' [
]

L]
F.’espon;se time

'
7 3 8 1

'

L]

'

'

L]

'

sssssEaAn
crosonao .-

Figure 1.15: Response time average, median, and percentiles Mk II

The 75th percentile is 10 seconds and the 99th percentile is 12 seconds. Here
the 99th percentile provides a clear picture of the broader distribution of our
transactions. This is a far more accurate reflection of the outlying transactions
from our site. We now know that—as opposed to what the mean response times
would imply—not all users are enjoying an adequate experience. We can use this
data to identify elements of our application we can potentially improve.

Percentiles, however, aren’t perfect all the time. We recommend graphing several
combinations of metrics to get a clear picture of the data. For example, when
measuring latency it’s often a good idea to display a graph that shows:

+ The 50th percentile, or median.
» The 99th percentile.

Version: v1.0.0 (427b8e9) 35

Chapter 1: Introduction

» The max value.

The addition of the max value helps visualize the upward bounds of the metric
you are measuring. It’s again not perfect though—a high max value can dwarf
other values in a graph.

We’re going to apply percentiles and other calculations later in the book as we
start to build checks and collect metrics.

Monitoring methodologies

We'll also make use of a combination of several monitoring methodologies on top
of our metrics and metric aggregations to help focus our monitoring. We’re going
to combine elements of two monitoring methodologies:

« Brendan Gregg’s USE or Utilization Saturation and Errors Method, which
focuses on host-level monitoring.
« Google’s Four Golden Signals, which focus on application-level monitoring.

Monitoring methodologies provide guidelines that allow you to narrow down
and focus on specific metrics in the sea of time series you collect. When com-
bined, these two frameworks—one focused on host-level performance, the other
on application-level performance—represent a reasonably holistic view of your
environment that should assist you in tackling any issues.

The USE Method

The USE, or Utilization Saturation and Errors, Method was developed by Brendan
Gregg, a kernel and performance engineer at Netflix. The methodology proposes
creating a checklist for server analysis that allows the fast identification of issues.

Version: v1.0.0 (427b8e9) 36

http://www.brendangregg.com/usemethod.html
https://landing.google.com/sre/book/chapters/monitoring-distributed-systems.html#xref_monitoring_golden-signals

Chapter 1: Introduction

You work down the checklist to identify common performance issues, making use
of data collected from your environment.

The USE Method can be summarized as: For every resource, check
utilization, saturation, and errors. The method is most effective for
the monitoring of resources that suffer performance issues under high utilization
or saturation. Let’s quickly define each term to help understand this.

* A resource - A component of a system. In Gregg’s definition of the model it’s
traditionally a physical server component like CPUs, disks, etc., but many
folks also include software resources in the definition.

* Utilization - The average time the resource is busy doing work. It’s usually
expressed as a percentage over time.

« Saturation - The measure of queued work for a resource, work it can’t pro-
cess yet. This is usually expressed as queue length.

* Errors - The scalar count of error events for a resource.

We combine these definitions to create a checklist of the resources and an ap-
proach to monitor each element of the methodology: utilization, saturation, or
errors. How might this work? Well, let’s say we have a serious performance issue,
and we want to dive into some diagnosis. We refer to our checklist and check each
element for each monitored component. In our example, we’ll start with CPU:

+ CPU utilization as a percentage over time.
+ CPU saturation as the number of processes awaiting CPU time.
« Errors, generally less important for the CPU resource.

And then, perhaps, memory:
« Memory utilization as a percentage over time.

« Memory saturation measured via monitoring swapping.
+ Errors, generally less important here but also can be captured.

Version: v1.0.0 (427b8e9) 37

Chapter 1: Introduction

And so on through other components on the system until we’ve identified the

bottleneck or signal that points us to the issue.

We’ll see more of this in Chapter 4 when we look at monitoring some system-level

metrics.

Q TIP You can find an example checklist for a Linux system here.

The Google Four Golden Signals

The Google Four Golden Signals come out of the Google SRE book. They take a

similar approach to the USE Method, specifying a series of general metric types

to monitor. Rather than being system-level-focused time series, the metric types

in this methodology are more application or user-facing:

Latency - The time taken to service a request, distinguishing between the
latency of successful and failed requests. A failed request, for example, might
return with very low latency skewing your results.

Traffic - The demand on your system—for example, HTTP requests per
second or transactions for a database system.

Errors - The rate that requests fail, whether explicit failures like HTTP
500 errors, implicit failures like wrong or invalid content being returned,
or policy-based failures—for instance if you’ve mandated that failures over
30ms should be considered errors.

Saturation - The “fullness” of your application or the resources that are
constraining it—for example, memory or IO. This also includes impending
saturation, such as a rapidly filling disk.

Version: v1.0.0 (427b8e9) 38

http://www.brendangregg.com/USEmethod/use-linux.html
https://landing.google.com/sre/book/chapters/monitoring-distributed-systems.html#xref_monitoring_golden-signals

Chapter 1: Introduction

Using the golden signals is easy. Select high-level metrics that match each signal
and build alerts for them. If one of those signals becomes an issue then an alert
will be generated and you can diagnose or resolve the issue.

We'll see golden signals again in Chapter 7 and 8 when we look at monitoring

some applications.

Q TIP There’s a related framework called RED—or Rate, Errors, and Duration,
developed by the team at Weaveworks, that might also interest you.

Contextual, useful alerts and notifications

Alerts and notifications are the primary output from monitoring tools. So what’s
the difference between an alert and a notification? An alert is raised when some-
thing happens—for example, when a threshold is reached. This, however, doesn’t
mean anyone’s been told about the event. That’s where notifications come in. A
notification takes the alert and tells someone or something about it: an email is
sent, an SMS is triggered, a ticket is opened, or the like. It may seem like this
should be a really simple domain, but it contains a lot of complexity and is often
poorly implemented and managed.

To build a good notification system you need to consider the basics of:

What problems to notify on.

Who to tell about a problem.

« How to tell them.

« How often to tell them.

« When to stop telling them, do something else, or escalate to someone else.

Version: v1.0.0 (427b8e9) 39

http://rancher.com/red-method-for-prometheus-3-key-metrics-for-monitoring/

Chapter 1: Introduction

If you get it wrong and generate too many notifications then people will be unable
to take action on them all and may even mute them. We all have war stories of
mailbox folders full of thousands of notification emails from monitoring systems.3
Sometimes so many notifications are generated that you suffer from alert fatigue
and ignore them (or worse, conduct notification management via Select All ->

Delete). Consequently, you're likely to miss actual critical notifications when
they are sent.

Most importantly, you need to work out what to tell whoever is receiving the
notifications. Notifications are usually the sole signal that you receive to tell
you that something is amiss or requires your attention. They need to be concise,
articulate, accurate, digestible, and actionable. Designing your notifications to
actually be useful is critical. Let’s make a brief digression and see why this matters.
We’ll look at a typical Nagios notification for disk space.

Listing 1.1: Sample Nagios notification

PROBLEM Host: server.example.com
Service: Disk Space

State is now: WARNING for Od Oh 2m 4s (was: WARNING) after 3/3
checks

Notification sent at: Thu Aug 7th 03:36:42 UTC 2015 (
notification number 1)

Additional info:
DISK WARNING - free space: /data 678912 MB (9% inode=99%)

Imagine you’ve just received this notification at 3:36 a.m. What does it tell you?
That we have a host with a disk space warning. And that the /data volume is 91
percent full. At first glance this seems useful, but in reality it’s not all that practical.
First, is this a sudden increase, or has this grown gradually? And what’s the rate

30r cron.

Version: v1.0.0 (427b8e9) 40

Chapter 1: Introduction

of expansion? (Consider that 9 percent disk space free on a 1 GB partition is
quite different from 9 percent disk space free on a 1 TB disk.) Can you ignore or
mute this notification or do you need to act now? Without the additional context
your ability to take action on the notification is limited, and you need to invest
considerably more time to gather context.

In our framework we’re going to focus on:

« Making notifications actionable, clear, and articulate. Just the use of notifi-
cations written by humans rather than by computers can make a significant
difference in the clarity and utility of those notifications.

« Adding context to notifications. We’re going to send notifications that con-
tain additional information about the component we’re notifying on.

* Only sending those notifications that make sense.

Q TIP The simplest advice we can give here is to remember/ notifications are
read by humans, not computers. Design them accordingly.

Visualization

Visualizing data is both an incredibly powerful analytic and interpretive technique
and an amazing learning tool. Metrics and their visualizations are often tricky to
interpret. Humans tend towards apophenia—the perception of meaningful pat-
terns within random data—when viewing visualizations. This often leads to mak-
ing sudden leaps from correlation to causation, and can be further exacerbated by
the granularity and resolution of our available data, how we choose to represent
it, and the scale on which we represent it.

Version: v1.0.0 (427b8e9) 41

Chapter 1: Introduction

Our ideal visualizations will clearly show the data, with an emphasis on high-
lighting substance over visuals. In this book we’re not going to look at a lot of
visualizations but where we have, we’ve tried to build visuals that subscribe to
these broad rules:

* Clearly show the data.

 Induce the viewer to think about the substance, not the visuals.
+ Avoid distorting the data.

Make large data sets coherent.

Allow changing perspectives of granularity without impacting comprehen-
sion.

We’ve drawn most of these ideas from Edward Tufte’s The Visual Display of Quan-
titative Information and thoroughly recommend reading it to help you build good
visualizations.

There’s also a great post from the Datadog team on visualizing time series data
that is worth reading.

But didn’t you write that other book?

As many folks know, I am one of the maintainers of Riemann, an event stream
processor focused on monitoring distributed systems. I wrote a book about mon-
itoring in which I used Riemann as a centerpiece to explore new monitoring pat-
terns and approaches. In the book, I described an architecture of introspection
monitoring (with some selective probing monitoring).

In the book I also focused on push-based monitoring over pull-based monitoring.
There are lots of reasons I favor the push model versus the pull model but, as we
mentioned earlier, for many folks the distinction is arbitrary. Indeed, many of
the concerns of either approach don’t impact implementation due to issues like
scale. Other concerns, like many arguments over implementation or tool choice,

Version: v1.0.0 (427b8e9) 42

http://www.edwardtufte.com/tufte/books_vdqi
http://www.edwardtufte.com/tufte/books_vdqi
https://www.datadoghq.com/blog/timeseries-metric-graphs-101/
https://riemann.io
https://artofmonitoring.com
https://artofmonitoring.com

Chapter 1: Introduction

don’t change the potential success of the implementation. I'm a strong exponent
of using tools that work for you, rather than unreviewed adoption of the latest
trend or dogmatism.

It’s this lack of distinction for folks, and a desire not to be dogmatic about my
beliefs, that has encouraged me to write another book, this one about one of the
leading pull-based monitoring tools: Prometheus. In the Art of Monitoring I wrote:

Perhaps a better way of looking at these tool choices is that they are
merely ways to articulate the change in monitoring approach that is
proposed in this book. They are the trees in the woods. If you find
other tools that work better for you and achieve the same results then
we’d love to hear from you. Write a blog post, give a talk, or share
your configuration.

Hence, you’ll see much of the methodology of The Art of Monitoring reflected
in this book—indeed, much of this chapter is a distillation of some of the book’s
elements. We're taking the core motivation of that book—a better way to monitor
applications—and applying it with an alternative tool, and a different architecture
and approach.

What’s in the book?

This book covers an introduction to a good approach to monitoring, and then uses
Prometheus to instantiate that monitoring approach. By the end of the book you
should have a readily extensible and scalable monitoring platform.

The book assumes you want to build, rather than buy a monitoring platform.
There are a lot of off-the-shelf Software-as-a-Service (SaaS) and cloud-based mon-
itoring solutions that might work for you. There’s even some hosted Prometheus
options. For many folks, this is a better solution when starting out with moni-
toring rather than investing in building their own. It’s our view that ultimately

Version: v1.0.0 (427b8e9) 43

http://mcfunley.com/choose-boring-technology
http://mcfunley.com/choose-boring-technology
https://prometheus.io

Chapter 1: Introduction

most folks, as their environment and requirements grow, will discover that these
platforms don’t quite suit their needs, and will build (some) monitoring in house.
But whether that’s the case for you is something you’ll need to determine yourself.

In this book, we’re going to introduce you to the Prometheus monitoring platform
piece by piece, starting with monitoring node and container metrics, service dis-
covery, alerting, and then instrumenting and monitoring applications. The book
will try to cover a representative sample of technologies you're likely to manage
yourself but that can be adapted to a wide variety of other environments and
stacks.

The book’s chapters are:

 Chapter 1: This introduction.

« Chapter 2: Introducing Prometheus.

+ Chapter 3: Installing Prometheus.

+ Chapter 4: Monitoring nodes and containers.
« Chapter 5: Service discovery.

+ Chapter 6: Alerting and AlertManager.

+ Chapter 7: Scaling.

« Chapter 8: Instrumenting an application.

+ Chapter 9: Logging as instrumentation.

+ Chapter 10: Probing.

+ Chapter 11: Pushgateway.

« Chapter 12: Monitoring a stack - Kubernetes.
+ Chapter 13: Monitoring a stack - Application.

Summary

In this chapter we introduced you to modern monitoring approaches. We laid out
the details of several types of monitoring implementations. We discussed what
makes good and bad monitoring, and how to avoid poor monitoring outcomes.

Version: v1.0.0 (427b8e9) 44

Chapter 1: Introduction

We also introduced the details of time series data and metrics to you. We broke
down the types of data that can be delivered as metrics. And we demonstrated
some common mathematical functions applied to metrics to manipulate and ag-
gregate them.

In the next chapter, we’re going to introduce you to Prometheus and give some
insight into its architecture and components.

Version: v1.0.0 (427b8e9) 45

Chapter 2
Introduction to Prometheus

In this chapter we’re going to introduce you to Prometheus, its origins, and give
you an overview of:

* Where Prometheus came from and why.
* Prometheus architecture and design.

The Prometheus data model.

The Prometheus ecosystem.

This should give you an introduction and understanding of what Prometheus is
and where it fits into the monitoring universe.

' NOTE This book focuses on Prometheus version 2.0 and later. Much of
the book’s information will not work for earlier releases.

46

Chapter 2: Introduction to Prometheus

The Prometheus backstory

Once upon a time there was a company in Mountain View, California, called
Google. They ran a swathe of products, most famously an advertising erm, search
engine platform. To run these diverse products they built a platform called Borg.
The Borg system is “a cluster manager that runs hundreds of thousands of jobs,
from many thousands of different applications, across a number of clusters each
with up to tens of thousands of machines.”! The open-source container manager
Kubernetes owes much of its heritage to Borg. Shortly after Borg was deployed at
Google, folks realized that this complexity required a similarly capable monitoring
system. Google built that system and called it Borgmon. Borgmon is a real-time-
focused time series monitoring system that uses that data to identify issues and
alert on them.

' NOTE Neither Borg nor Borgmon have ever been open sourced. It’s only
recent that one can learn about how they work. You can read a bit more about it
in the Practical Alerting chapter of the SRE book.

Prometheus owes its inspiration to Google’s Borgmon. It was originally devel-
oped by Matt T. Proud, an ex-Google SRE, as a research project. After Proud
joined SoundCloud, he teamed up with another engineer, Julius Volz, to develop
Prometheus in earnest. Other developers joined the effort, and it continued de-
velopment internally at SoundCloud, culminating in a public release in January
2015.

Like Borgmon, Prometheus was primarily designed to provide near real-time in-
trospection monitoring of dynamic cloud- and container-based microservices, ser-
vices, and applications. SoundCloud was an earlier adopter of these architec-

! Abhishek Verma et al, Large-scale cluster management at Google with Borg, EuroSys, 2015.

Version: v1.0.0 (427b8e9) 47

https://research.google.com/pubs/pub43438.html
http://blog.kubernetes.io/2015/04/borg-predecessor-to-kubernetes.html
https://landing.google.com/sre/book/chapters/practical-alerting.html
https://landing.google.com/sre/book/chapters/practical-alerting.html
https://www.slideshare.net/grobie/the-history-of-prometheus-at-soundcloud

Chapter 2: Introduction to Prometheus

tural patterns, and Prometheus was built to respond to those needs. These days,
Prometheus is used by a wide range of companies, generally for similar monitoring
needs, but also for monitoring of more traditional architectures.

Prometheus is focused on what’s happening right now, rather than tracking data
over weeks or months. This is based on the premise that the majority of monitor-
ing queries and alerts are generated from recent, usually less than day-old, data.
Facebook validated this in a paper on Gorilla, its internal time series database.
Facebook discovered that 85 percent of queries were for data less than 26 hours
old. Prometheus assumes that the problems you may be trying to fix are likely
recent, hence the most useful data is the most recent data. This is reflected in the
powerful query language available and the typically limited retention period for
monitoring data.

Prometheus is written in Go, open source, and licensed under the Apache 2.0
license. It is incubated under the Cloud Native Computing Foundation.

Prometheus architecture

Prometheus works by scraping or pulling time series data exposed from appli-
cations. The time series data is exposed by the applications themselves often
via client libraries or via proxies called exporters, as HTTP endpoints. Exporters
and client libraries exist for many languages, frameworks, and open-source
applications—for example, for web servers like Apache and databases like
MySQL.

Prometheus also has a push gateway you can use to receive small volumes of
data—for example, data from targets that can’t be pulled, like transient jobs or
targets behind firewalls.

Version: v1.0.0 (427b8e9) 48

http://www.vldb.org/pvldb/vol8/p1816-teller.pdf
https://www.cncf.io/announcement/2016/05/09/cloud-native-computing-foundation-accepts-prometheus-as-second-hosted-project/
https://github.com/Lusitaniae/apache_exporter
https://github.com/prometheus/mysqld_exporter
https://github.com/prometheus/pushgateway

Chapter 2: Introduction to Prometheus

Alert manager

HTTP

Prometheus %

Exporters run here

Figure 2.1: Prometheus architecture

Metric collection

Prometheus calls the source of metrics it can scrape endpoints. An endpoint usu-
ally corresponds to a single process, host, service, or application. To scrape an
endpoint, Prometheus defines configuration called a target. This is the informa-
tion required to perform the scrape—for example, how to connect to it, what
metadata to apply, any authentication required to connect, or other information
that defines how the scrape will occur. Groups of targets are called jobs. Jobs
are usually groups of targets with the same role—for example, a cluster of Apache
servers behind a load balancer. That is, they’re effectively a group of like pro-

Version: v1.0.0 (427b8e9) 49

Chapter 2: Introduction to Prometheus

cesses.

The resulting time series data is collected and stored locally on the Prometheus
server. It can also be sent from the server to external storage or to another time
series database.

Service discovery

Discovery of resources to be monitored can be handled in a variety of ways in-
cluding:

+ A user-provided static list of resources.

« File-based discover—for example, using a configuration management tool to
generate a list of resources that are automatically updated in Prometheus.

+ Automated discovery—for example, querying a data store like Consul, run-
ning instances in Amazon or Google, or using DNS SRV records to generate
a list of resources.

Q TIP we’ll see how to use a variety of service discovery approaches in Chapter
S.

Aggregation and alerting

The server can also query and aggregate the time series data, and can create rules
to record commonly used queries and aggregations. This allows you to create new
time series from existing time series—for example, calculating rates and ratios or
producing aggregations like sums. This saves you having to recreate common ag-
gregations, say ones you use for debugging, and the precomputation is potentially
more performant than running the query each time it is required.

Version: v1.0.0 (427b8e9) 50

Chapter 2: Introduction to Prometheus

Prometheus can also define rules for alerting. These are criteria—for example, a
resource time series starting to show escalated CPU usage—that can be configured
to trigger an alert when the criteria are met. The Prometheus server doesn’t come
with an inbuilt alerting tool. Instead, alerts are pushed from the Prometheus server
to a separate server called Alertmanager. Alertmanager can manage, consolidate,
and distribute alerts to a variety of destinations—for example, it can trigger an
email when an alert is raised, but prevent duplicates.

Q TIP we’ll see a lot more about Alertmanager in Chapter 6.

Querying data

The Prometheus server also comes with an inbuilt querying language, PromQL;
an expression browser; and a graphing interface you can use to explore the data
on your server.

Version: v1.0.0 (427b8e9) 51

https://prometheus.io/docs/alerting/alertmanager/

Chapter 2: Introduction to Prometheus

Prometheus Alerts Graph Status ~ Help

& Enable query history

Load time: 147ms
Resolution: 14s
Total time series: 9

100 - avg (irate(node_cpu{mode="idle"}[5m])) by (instance) * 100

Execute - insert metric at cursor - B

Graph ~ Console

- 1h + « Until » Res. (s) O stacked

100 my——1] [[e e e e [e [e e e e i

Figure 2.2: Prometheus expression browser

Autonomy

Each Prometheus server is designed to be as autonomous as possible. It is designed
to scale to millions of time series from many thousands of hosts. Its data storage
format is designed to keep disk use down and provide fast retrieval of time series
during queries and aggregations.

Q TIP A good helping of memory (Prometheus does a lot in memory) and SSD
disks are recommended for Prometheus servers, for speed and reliability. You are
using SSDs, right?

Version: v1.0.0 (427b8e9) 52

https://www.youtube.com/watch?v=H7PJ1oeEyGg

Chapter 2: Introduction to Prometheus

Redundancy and high availability

Redundancy and high availability center on alerting resilience rather than data

durability. The Prometheus team recommends deploying Prometheus servers to

specific purposes and teams rather than to a single monolithic Prometheus server.

If you do want to deploy in an HA configuration, two or more identically con-

figured Prometheus servers collect the time series data, and any alerts generated

are handled by a highly available Alertmanager configuration that deduplicates

alerts.

Alertmanager

Alertmanager

Prometheus

Prometheus

N

Figure 2.3: Redundant Prometheus architecture

Version: v1.0.0 (427b8¢e9)

53

Chapter 2: Introduction to Prometheus

Q TIP we’ll see how to implement this configuration in Chapter 7.

Visualization

Visualization is provided via an inbuilt expression browser and integration with
the open-source dashboard Grafana. Other dashboards are also supported.

Q TIP we’ll get to know this integration in Chapter 4.

The Prometheus data model

As we’ve seen, Prometheus collects time series data. To handle this data it has a
multi-dimensional time series data model. The time series data model combines
time series names and key/value pairs called labels; these labels provide the di-
mensions. Each time series is uniquely identified by the combination of time series
name and any assigned labels.

Metric names

The time series name usually describes the general nature of the time series data
being collected—for example, website visits total as the total number of web-
site visits.

The name can contain ASCII letters, digits, underscores, and colons.

Version: v1.0.0 (427b8e9) 54

https://grafana.com/
https://prometheus.io/docs/practices/naming/

Chapter 2: Introduction to Prometheus

Labels

Labels enable the Prometheus dimensional data model. They add context to a
specific time series. For example, our total website visits time series could
have labels that identify the name of the website, IP of the requester, or other
dimensions that specifically identify that time series and connect it to its source.
Prometheus can query on these dimensions to select one time series, groups of
time series, or all relevant time series.

Labels come in two broad types: instrumentation labels and target labels. Instru-
mentation labels come from the resource being monitored—for example, for a
HTTP-related time series, a label might show the specific HTTP verb used. These
labels are added to the time series before they are scraped, such as by a client
or exporter. Target labels relate more to your architecture—they might iden-
tify the data center where the time series originated. Target labels are added
by Prometheus during and after the scrape.

A time series is identified by both its name and labels (although technically the
name itself is also a label called name). If you add or change a label on a time

series, Prometheus treats this as a new time series.

Q TIP You can generally think of labels as tags, albeit in key/value form and
where a new tag creates a new time series.

Label names can contain ASCII letters, digits, and underscores.

Q TIP Label names prefixed with __ are reserved for internal Prometheus use.

Version: v1.0.0 (427b8e9) 55

Chapter 2: Introduction to Prometheus

Samples

The actual value of the time series is called a sample. It consists of:

* A float64 value.
+ A millisecond-precision timestamp.

Notation

Combining these elements we can see how Prometheus represents a time series as
notation.

Listing 2.1: Time series notation

<time series name>{<label name>=<label value>, ...}

For example, our total website visits time series, with attached labels, might
look like:

Listing 2.2: Example time series

total website visits{site="MegaApp", location="NJ", instance="
webserver", job="web"}

The time series name is represented first, with a map of key/value pair labels
attached. All time series generally have an instance label, which identifies the
source host or application, and a job label, which contains the name of the job
that scraped the specific time series.

Version: v1.0.0 (427b8e9) 56

Chapter 2: Introduction to Prometheus

' NOTE This is roughly the same notation that OpenTSDB uses, which in
turn was influenced by Borgmon.

Metrics retention

Prometheus is designed for short-term monitoring and alerting needs. By default,
it keeps 15 days of time series locally in its database. If you want to retain data
for longer, the recommended approach is to send the required data to remote,
third-party platforms. Prometheus has the ability to write to external data stores,
which we’ll see in Chapter 7.

Security model

Prometheus can be configured and deployed in a wide variety of ways. It makes
two broad assumptions about trust:

« That untrusted users will be able to access the Prometheus server’s HTTP
API and hence all the data in the database.

 That only trusted users will have access to the command line, configuration
files, rule files, and runtime configuration of Prometheus and its compo-
nents.

Q TIP Since Prometheus 2.0, some administrative elements of the HTTP API
are disabled by default.

Version: v1.0.0 (427b8e9) 57

http://opentsdb.net/docs/build/html/user_guide/definitions.html

Chapter 2: Introduction to Prometheus

As such, Prometheus and its components do not provide any server-side authen-
tication, authorization, or encryption. If you are working in a more secure envi-
ronment you’ll need to implement additional controls yourself—for instance by
front-ending the Prometheus server with a reverse proxy or by proxying your ex-
porters. Because of the huge potential variations in configuration, this book does
not document how to do this.

Prometheus ecosystem

The Prometheus ecosystem has a mix of components provided by the Prometheus
project itself and a rich collection of open-source integrations and tools. The heart
of the ecosystem is the Prometheus server that we’ll see in more detail in the next
chapter. Also available is Alertmanager, which provides an alerting manager and
engine for Prometheus.

The Prometheus project also includes a collection of exporters, used to instru-
ment applications and services and to expose relevant metrics on an endpoint
for scraping. Common tools—like web servers, databases, and the like—are sup-
ported by core exporters. Many other exporters are available open source from
the Prometheus community.

Prometheus also published a collection of client libraries, used for instrumenting
applications and services written in a number of languages. These include com-
mon choices like Python, Ruby, Go, and Java. Additional client libraries are also
available from the open-source community.

Useful Prometheus links

« The Prometheus home page.
« The Prometheus documentation.
+ Prometheus organization on GitHub.

Version: v1.0.0 (427b8e9) 58

https://prometheus.io/download/
https://prometheus.io/download/
https://prometheus.io/docs/alerting/alertmanager/
https://prometheus.io/docs/instrumenting/exporters/
https://prometheus.io/docs/instrumenting/clientlibs/
https://prometheus.io
https://prometheus.io/docs/
https://github.com/prometheus/

Chapter 2: Introduction to Prometheus

« Prometheus source code GitHub.
« Prometheus and time series at scale presentation by Jamie Wilkinson.

» Grafana.

Summary

In this chapter we’ve been introduced to Prometheus. We also walked through
the Prometheus architecture, data model, and other aspects of the ecosystem.

In the next chapter, we’ll install Prometheus, configure it, and collect our first

metrics.

Version: v1.0.0 (427b8e9) 59

https://github.com/prometheus/prometheus
https://www.youtube.com/watch?v=gNmWzkGViAY
https://grafana.com/

Chapter 3
Installation and Getting Started

In the last chapter we got an overview of Prometheus. In this chapter, we’ll take
you through the process of installing Prometheus on a variety of platforms. This
chapter doesn’t provide instructions for the full list of supported platforms, but
a representative sampling to get you started. We’ll look at installing Prometheus
on:

e Linux.
» Microsoft Windows.
« Mac OS X.

The lessons here for installing Prometheus can be extended to other supported
platforms.

' NOTE we've written the examples in this book assuming Prometheus is
running on a Linux distribution. The examples should also work for Mac OS X but
might need tweaking for Microsoft Windows.

60

Chapter 3: Installation and Getting Started

We'll also explore the basics of Prometheus configuration and scrape our first tar-
get: the Prometheus server itself. We’ll then use the metrics scraped to walk
through the basics of the inbuilt expression browser and see how to use the
Prometheus query language, PromQL, to glean interesting information from our
metrics. This will give you a base Prometheus server that we’ll build on in subse-
quent chapters.

Installing Prometheus

Prometheus is shipped as a single binary file. The Prometheus download page con-
tains tarballs containing the binaries for specific platforms. Currently Prometheus
is supported on:

 Linux: 32-bit, 64-bit, and ARM.

Max OS X: 32-bit and 64-bit.

FreeBSD: 32-bit, 64-bit, and ARM.
OpenBSD: 32-bit, 64-bit, and ARM.
NetBSD: 32-bit, 64-bit, and ARM.
Microsoft Windows: 32-bit and 64-bit.
DragonFly: 64-bit.

Older versions of Prometheus are available from the GitHub Releases page.

' NOTE At the time of writing, Prometheus was at version 2.3.0.

To get started, we’re going to show you how to manually install Prometheus in
the next few sections. At the end of this section we’ll also provide some links to
configuration management modules for installing Prometheus. If you’re deploying

Version: v1.0.0 (427b8e9) 61

https://prometheus.io/download/
https://github.com/prometheus/prometheus/releases

Chapter 3: Installation and Getting Started

Prometheus into production or at scale you should always choose configuration
management as the installation approach.

Installing Prometheus on Linux

To install Prometheus on a 64-bit Linux host, we first download the binary file.
We can use wget or curl to get the file from the download site.

Listing 3.1: Download the Prometheus tarball

$ cd /tmp
$ wget https://github.com/prometheus/prometheus/releases/
download/v2.3.0/prometheus-2.3.0.linux-amd64.tar.gz

Now let’s unpack the prometheus binary from the tarball and move it somewhere
useful. We’ll also install promtool, which is a linter for Prometheus configuration.

Listing 3.2: Unpack the prometheus binary

$ tar -xzf prometheus-2.3.0.linux-amd64.tar.gz
$ sudo cp prometheus-2.3.0.linux-amd64/prometheus /usr/local/bin/

$ sudo cp prometheus-2.3.0.linux-amd64/promtool /usr/local/bin/

We can test if Prometheus is installed and in our path by checking its version using
the - -version flag.

Version: v1.0.0 (427b8e9) 62

Chapter 3: Installation and Getting Started

Listing 3.3: Checking the Prometheus version on Linux

$ prometheus --version
prometheus, version 2.3.0 (branch: HEAD, revision: 3569
eef8blbc062bb5df43181b938277818f365b)

build user: root@bd4857492255
build date: 20171006-22:16:15
go version: gol.9.1

\. J

Now that we have Prometheus installed, you can skip down to looking at its con-
figuration, or you can continue to see how we install it on other platforms.

Installing Prometheus on Microsoft Windows

To install Prometheus on Microsoft Windows we need to download the prometheus
.exe executable and put it in a directory. Let’s create a directory for the executable
using Powershell.

Listing 3.4: Creating a directory on Windows

C:\> MKDIR prometheus
C:\> CD prometheus

\. J

Now download Prometheus from the GitHub site:

Listing 3.5: Prometheus Windows download

https://github.com/prometheus/prometheus/releases/download/v
2.3.0/prometheus-2.3.0.windows-amd64.tar.gz

Version: v1.0.0 (427b8e9) 63

Chapter 3: Installation and Getting Started

Unzip the executable using a tool like 7-Zip and put the contents of the unzipped
directory into the C:\prometheus directory.

Finally, add the C:\prometheus directory to the path. This will allow Windows to
find the executable. To do this, run this command inside Powershell.

Listing 3.6: Setting the Windows path

$env:Path += ";C:\prometheus"

You should now be able to run the prometheus.exe executable.

Listing 3.7: Checking the Prometheus version on Windows

C:\> prometheus.exe --version
prometheus, version 2.3.0 (branch: HEAD, revision: 3569
eef8blbc062bb5df43181b9382778181365b)

build user: root@bd4857492255
build date: 20171006-22:16:15
go version: gol.9.1

You can use something like nssm, the Non-Sucking Service Manager, if you want
to run the Prometheus server as a service.

Alternative Microsoft Windows installation

You can also use a package manager to install Prometheus on Windows. The
Chocolatey package manager has a Prometheus package available. You can use
these instructions to install Chocolatey and then use the choco binary to install
Prometheus.

Version: v1.0.0 (427b8e9) 64

http://www.7-zip.org/
https://nssm.cc/
https://chocolatey.org/
https://chocolatey.org/install

Chapter 3: Installation and Getting Started

Listing 3.8: Installing Prometheus via Chocolatey

C:\> choco install prometheus

Alternative Mac OS X installation

In addition to being available as a binary for Mac OS X, Prometheus is also avail-
able from Homebrew. If you use Homebrew to provision your Mac OS X hosts
then you can install Prometheus via the brew command.

Listing 3.9: Installing Prometheus via Homebrew

$ brew install prometheus

. J

Homebrew will install the prometheus binary into the /usr/local/bin directory.
We can test that it is operating via the prometheus --version command.

Listing 3.10: Checking the Prometheus version on Mac OS X

$ prometheus --version
prometheus, version 2.3.0 (branch: HEAD, revision: 3569
eef8blbc062bb5df43181b9382778181365b)

build user: root@bd4857492255
build date: 20171006-22:16:15
go version: gol.9.1

Version: v1.0.0 (427b8e9) 65

https://prometheus.io/download/
http://brew.sh/

Chapter 3: Installation and Getting Started

Stacks

In addition to installing Prometheus standalone, there are several prebuilt stacks
available. These combine Prometheus with other tools—the Grafana console, for
instance.

« A Prometheus, Node Exporter, and Grafana docker-compose stack.

 Another Docker Compose single-node stack with Prometheus, Alertmanager,
Node Exporter, and Grafana.

» A Docker Swarm stack for Prometheus.

Installing via configuration management

There are also configuration management resources available for installing
Prometheus. Here are some examples for a variety of configuration management
tools:

+ A Puppet module for Prometheus.
A Chef cookbook for Prometheus.
An Ansible role for Prometheus.

A SaltStack formula for Prometheus.

Q TIP Remember that configuration management is the recommended ap-
proach for installing and managing Prometheus!

Version: v1.0.0 (427b8e9) 66

https://github.com/vegasbrianc/prometheus
https://github.com/danguita/prometheus-monitoring-stack
https://github.com/chmod666org/docker-swarm-prometheus
https://forge.puppet.com/puppet/prometheus
https://supermarket.chef.io/cookbooks/prometheus-platform
https://github.com/cloudalchemy/ansible-prometheus
https://github.com/bechtoldt/saltstack-prometheus-formula

Chapter 3: Installation and Getting Started

Deploying via Kubernetes

Last, there are many ways to deploy Prometheus on Kubernetes. The best way for
you to deploy likely depends greatly on your environment. You can build your
own deployments and expose Prometheus via a service, use one of a number of
bundled configurations, or you can use the Prometheus Operator from CoreOS.

Configuring Prometheus

Now that we have Prometheus installed let’s look at its configuration. Prometheus
is configured via YAML configuration files. When we run the prometheus bi-
nary (or prometheus.exe executable on Windows), we specify a configuration file.
Prometheus ships with a default configuration file: prometheus.yml. The file is in
the directory we'’ve just unpacked. Let’s take a peek at it.

Q TIP YAML configuration is fiddly and can be a real pain. You can validate
YAML online at YAML Lint or from the command line with a tool like this.

Version: v1.0.0 (427b8e9) 67

https://github.com/giantswarm/kubernetes-prometheus
https://github.com/kayrus/prometheus-kubernetes
https://github.com/coreos/prometheus-operator
https://prometheus.io/docs/prometheus/latest/configuration/configuration/
http://www.yamllint.com/
https://github.com/adrienverge/yamllint

Chapter 3: Installation and Getting Started

(P
Listing 3.11: The default Prometheus configuration file

global:
scrape_interval: 15s
evaluation interval: 15s

alerting:
alertmanagers:
- static configs:
- targets:
- alertmanager:9093

rule files:
- "first rules.yml"
- "second rules.yml"

scrape_configs:
- job name: ‘'prometheus’
static configs:
- targets: ['localhost:9090']

' NOTE we’ve removed some comments from the file for brevity’s sake. The
default file changes from time to time, so yours might not look exactly like this
one.

Our default configuration file has four YAML blocks defined: global, alerting,
rule files, and scrape configs.

Let’s look at each block.

Version: v1.0.0 (427b8e9) 68

Chapter 3: Installation and Getting Started

Global

The first block, global, contains global settings for controlling the Prometheus
server’s behavior.

The first setting, the scrape interval parameter, specifies the interval between
scrapes of any application or service—in our case, 15 seconds. This value will be
the resolution of your time series, the period in time that each data point in the
series covers.

It is possible to override this global scrape interval when collecting metrics from
specific places. Do not do this. Keep a single scrape interval globally across your
server. This ensures that all your time series data has the same resolution and
can be combined and calculated together. If you override the global scrape inter-
val, you risk having incoherent results from trying to compare data collected at
different intervals.

A WARNING Only configure scrape intervals globally and keep resolution

consistent!

The evaluation interval tells Prometheus how often to evaluate its rules. Rules
come in two major flavors: recording rules and alerting rules:

* Recording rules - Allow you to precompute frequent and expensive expres-
sions and to save their result as derived time series data.
+ Alerting rules - Allow you to define alert conditions.

With this parameter, Prometheus will (re-)evaluate these rules every 15 seconds.
We’ll see more about rules in subsequent chapters.

Version: v1.0.0 (427b8e9) 69

Chapter 3: Installation and Getting Started

' NOTE You can find the full Prometheus configuration reference in the
documentation.

Alerting

The second block, alerting, configures Prometheus’ alerting. As we mentioned
in the last chapter, alerting is provided by a standalone tool called Alertmanager.
Alertmanager is an independent alert management tool that can be clustered.

Listing 3.12: Alertmanager configuration

alerting:
alertmanagers:
- static configs:
- targets:
- alertmanager:9093

In our default configuration, the alerting block contains the alerting configura-
tion for our server. The alertmanagers block lists each Alertmanager used by this
Prometheus server. The static configs block indicates we’re going to specify
any Alertmanagers manually, which we have done in the targets array.

Q TIP Prometheus also supports service discovery for Alertmanagers—for ex-
ample, rather than specifying each Alertmanager individually, you could query
an external source like a Consul server to return a list of available Alertmanagers.
We’ll see more about this in Chapters 5 and 6.

Version: v1.0.0 (427b8e9) 70

https://prometheus.io/docs/prometheus/latest/configuration/configuration/
https://prometheus.io/docs/alerting/overview/

Chapter 3: Installation and Getting Started

In our case we don’t have an Alertmanager defined; instead we have a commented-
out example at alertmanager:9093. We can leave this commented out because
you don’t specifically need an Alertmanager defined to run Prometheus. We’ll add
an Alertmanager and configure it in Chapter 6.

Q TIP We’ll see more about alerting in Chapter 6 and clustering alerting in
Chapter 7.

Rule files

The third block, rule files, specifies a list of files that can contain recording or
alerting rules. We’ll make some use of these in the next chapter.

Scrape configuration

The last block, scrape configs, specifies all of the targets that Prometheus will
scrape.

As we discovered in the last chapter, Prometheus calls the source of metrics it can
scrape endpoints. To scrape an endpoint, Prometheus defines configuration called
a target. This is the information required to perform the scrape—for example,
what labels to apply, any authentication required to connect, or other information
that defines how the scrape will occur. Groups of targets are called jobs. Inside
jobs, each target has a label called instance that uniquely identifies it.

Version: v1.0.0 (427b8e9) 71

Chapter 3: Installation and Getting Started

Listing 3.13: The default Prometheus scrape configuration

scrape configs:
- job _name: ‘prometheus’
static configs:
- targets: ['localhost:9090']

. J

Our default configuration has one job defined called prometheus. Inside this job

we have a static config block, which lists the targets this job will scrape. The
static config block indicates that we’re going to individually list the targets we
want to scrape, rather than use any automated service discovery method. You can
think about static configuration as manual or human service discovery.

Q TIP we’re going to look at methods to automatically discover targets to be
scraped in Chapter 5.

The default prometheus job has one target: the Prometheus server itself. It
scrapes localhost on port 9090, which returns the server’s own health metrics.
Prometheus assumes that metrics will be returned on the path /metrics, so
it appends this to the target and scrapes the address http://localhost:9090/
metrics.

Q TIP You can override the default metrics path.

Version: v1.0.0 (427b8e9) 72

https://prometheus.io/docs/operating/configuration/#%3Cstatic_config%3E

Chapter 3: Installation and Getting Started

Starting the server

Let’s start the server and see what happens. First, though, let’s move our configu-
ration file somewhere more suitable.

Listing 3.14: Moving the configuration file

$ sudo mkdir -p /etc/prometheus
$ sudo cp prometheus.yml /etc/prometheus/

\. J

Here we’ve created a directory, /etc/prometheus, to hold our configuration file,

and we’ve moved our new file into this directory.

Listing 3.15: Starting the Prometheus server

$ prometheus --config.file "/etc/prometheus/prometheus.yml"
level=info ts=2017-10-23T14:03:02.274562Z caller=main.go:216 msg
="Starting prometheus"...

We run the binary and specify our configuration file in the --config.file com-
mand line flag. Our Prometheus server is now running and scraping the instances
of the prometheus job and returning the results.

If something doesn’t work, you can validate your configuration with promtool, a
linter that ships with Prometheus.

Listing 3.16: Validating your configuration with promtool

$ promtool check config prometheus.yml
Checking prometheus.yml
SUCCESS: 0 rule files found

. J

Version: v1.0.0 (427b8e9) 73

Chapter 3: Installation and Getting Started

Running Prometheus via Docker

It’s also easy to run Prometheus in Docker. There’s a Docker image provided by
the Prometheus team available on the Docker Hub. You can execute it with the
docker command.

Listing 3.17: Running Prometheus with Docker

$ docker run -p 9090:9090 prom/prometheus

\. J

This will run a Prometheus server locally, with port 9090 bound to port 9090 inside
the Docker container. You can then browse to that port on your local host to see
your Prometheus server. The server is launched with a default configuration, and
you will need to provide custom configuration and data storage. You can take a
number of approaches here—for example, you could mount a configuration file
into the container.

Listing 3.18: Mounting a configuration file into the Docker container

$ docker run -p 9090:9090 -v /tmp/prometheus.yml:/etc/prometheus/
prometheus.yml prom/prometheus

This would bind mount the file /tmp/prometheus.yml into the container as the
Prometheus server’s configuration file.

Q TIP You can find more information on running Prometheus with Docker in
the documentation.

Version: v1.0.0 (427b8e9) 74

https://hub.docker.com/r/prom/prometheus/
https://hub.docker.com/r/prom/prometheus/
https://prometheus.io/docs/prometheus/latest/installation/#using-docker

Chapter 3: Installation and Getting Started

First metrics

Now that the server is running, let’s take a look at the endpoint we are scraping
and see some raw Prometheus metrics. To do this, let’s browse to the URL http
://localhost:9090/metrics and see what gets returned.

' NOTE i all our examples we assume you’re browsing on the server running
Prometheus, hence localhost.

Listing 3.19: Some sample raw metrics

HELP go_gc_duration seconds A summary of the GC invocation
durations.

TYPE go_gc _duration seconds summary

go gc duration seconds{quantile="0"} 1.6166e-05

go _gc duration seconds{quantile="0.25"} 3.8655e-05

go gc duration seconds{quantile="0.5"} 5.3416e-05

Here we can see our first Prometheus metrics. These look much like the data
model we saw in the last chapter.

Listing 3.20: A raw metric

go _gc _duration seconds{quantile="0.5"} 1.6166e-05

The name of our metric is go gc duration seconds. We can see one label on the
metric, quantile="0.5", indicating this is measuring the 50th percentile, and the
value of the metric.

Version: v1.0.0 (427b8e9) 75

Chapter 3: Installation and Getting Started

Prometheus expression browser

It is not user friendly to view our metrics this way, though, so let’s make use of
Prometheus’ inbuilt expression browser. It’s available on the Prometheus server
by browsing to http://localhost:9090/graph.

Q TIP The Prometheus Expression browser and web interface have other use-
ful information, like the status of targets and the rules and configuration of the
Prometheus server. Make sure you check out all the interface menu items.

Prometheus Alerts Graph Status ~ Help

& Enable query history

Load time: 147ms
Resolution: 14s
Total time series: 9

100 - avg (irate(node_cpu{mode="idle"}[5m])) by (instance) * 100

Execute - insert metric at cursor -

Graph ~ Console

- 1h + « Until » Res. (s) O stacked

Figure 3.1: Prometheus expression browser

Let’s find the go gc duration seconds metric using the expression browser. To
do this, we can either open the dropdown list of available metrics or we can type
the metric name into the query box. We then click the Execute button to display

Version: v1.0.0 (427b8e9) 76

Chapter 3: Installation and Getting Started

all the metrics with this name.

Prometheus Alerts Graph Status v

go_gc_duration_seconds

Graph Console

Element Value

go_gc_duration, 4 :9090" job=" * quantile="0.25"} 0.000031027

go_gc_duration, " job=" *.quantile="0.75"} 0.000052903

go_gc_duration, ,job=" *,quantile="1"} 0.000173318

go_gc_duration, ,job=" ",quantile="0"} 0.000023897

go_gc_duration. job= ,quantile="0.5"} 0.000036829

Add Graph

Remove Graph

Figure 3.2: List of metrics

We can see a list of metrics here, each decorated with one or more labels. Let’s
find the 50th percentile in the list.

Listing 3.21: Go garbage collection 50th percentile

go _gc duration seconds{instance="localhost:9090", job="prometheus
",quantile="0.5"}

\ J

We can see that two new labels have been added to our metrics. This has been

done automatically by Prometheus during the scrape process. The first new label,
instance, is the target from which we scraped the metrics. The second label, job,
is the name of the job that scraped the metrics. Labels provide dimensions to our
metrics. They allow us to query or work with multiple or specific metrics—for
example, Go garbage collection metrics for multiple targets.

Q TIP we’ll see a lot more about labels in the next chapter and later in the
book.

Version: v1.0.0 (427b8e9) 77

Chapter 3: Installation and Getting Started

Prometheus has a highly flexible expression language called PromQL built into
the server, allowing you to query and aggregate metrics. We can use this query
language in the query input box at the top of the interface.

Prometheus Alerts Graph Status ~ Help

‘ {quantile="0.5"} y

Load time: 33ms
Resolution: 14s
Total time series: 86

- insert metric at cursor - B

Graph Console

Element Value
http_request_size_bytes{handler="version",instance="localhost:9090" ,job="prometheus",quantile="0.5"} NaN
http_request_duration_microseconds{handler="series",instance="localhost:9090" ,job="prometheus",quantile="0.5"} NaN

prometheus_sd_azure_refresh_duration_secor q :9090" job= Lquantile="0.5"} NaN

http_request_size_bytes{handler="federate" instance="localhost:9090" job="prometheus",quantile="0.5"} NaN

http_response_size_bytes{handler="query",instance="localhost:9090" job="prometheus",quantile="0.5"} 122

Figure 3.3: Querying quantiles

Here we’ve queried all metrics with a label of quantile="0.5" and it has returned
a possible 86 metrics. This set is one of the four data types that expressions in the
PromQL querying language can return. This type is called an instant vector: a set
of time series containing a single sample for each time series, all sharing the same
timestamp. We can also return instant vectors for metrics by querying a name
and a label. Let’s go back to our go gc duration seconds but this time the 75th
percentile. Specify:

go _gc duration seconds{quantile="0.75"}

In the input box and click Execute to search. It should return an instant vector
that matches the query. We can also negate or match a label using a regular
expression.

go gc duration seconds{quantile!="0.75"}

This will return an instant vector of all the metrics with a quantile label not equal
to 0.75.

Version: v1.0.0 (427b8e9) 78

https://prometheus.io/docs/querying/basics/
https://prometheus.io/docs/prometheus/latest/querying/basics/#expression-language-data-types

Chapter 3: Installation and Getting Started

Q TIP 1f we’re used to tools like Graphite, querying labels is like parsing dotted-
string named metrics. There’s a blog post that provides a side-by-side comparison
of how Graphite, InfluxDB, and Prometheus handle a variety of queries.

Let’s look at another metric, this one called prometheus build info, that contains
information about the Prometheus server’s build. Put prometheus build info
into the expression browser’s query box and click Execute to return the metric.
You'll see an entry like so:

Listing 3.22: The prometheus_build_info metric

prometheus build info{branch="HEAD",goversion="gol.9.1",instance
="localhost:9090", job="prometheus", revision="5
ab8834befbd92241a88976c790ace7543edcd59" ,version="2.3.0"}

You can see the metric is heavily decorated with labels and has a value of 1. This is
a common pattern for passing information to the Prometheus server using a metric.
It uses a metric with a perpetual value of 1, and with the relevant information you
might want attached via labels. We’ll see more of these types of informational
metrics later in the book.

Time series aggregation

The interface can also do complex aggregation of metrics. Let’s choose another
metric, http requests total, which is the total HTTP requests made by various
handlers in the Prometheus server. Query for that now by specifying its name and
clicking Execute.

Version: v1.0.0 (427b8e9) 79

https://www.robustperception.io/translating-between-monitoring-languages/
https://www.robustperception.io/translating-between-monitoring-languages/

Chapter 3: Installation and Getting Started

Prometheus Alerts Graph Status ~ Help

http_requests_total
a

Load time: 12ms
Resolution: 14s
Total time series: 6

Execute - insert metric at cursor - $

Graph Console

Element Value
http_requests_total{code="200",handler="query" instance="localhost:9090" job="prometheus",method="get"} 4
http_requests_total{code="200",handler="prometheus" instance="localhost:9090" job="prometheus",method="get"} 4534
http_requests_total{code="400",handler="query" instance="localhost:9090" job="prometheus",method="get"} 8

http_requests_total{code="200",handler="graph"instance="localhost:9090" job="prometheus" method="get'} 1
http_requests_total{code="200",handler="static",instance="localhost:9090" job="prometheus" method="get"} 3
1

http_requests_total{code="200",handler="label_values",instance="localhost:9090" ,job="prometheus",method="get"}

Add Graph

Remove Graph

Figure 3.4: Querying total HTTP requests

We have a list of HTTP request metrics. But what we really want is the total
HTTP requests per job. To do this, we need to create a new metric via a query.
Prometheus’ querying language, PromQL, has a large collection of expressions and
functions that can help us do this.

Let’s start by summing the HTTP requests by job. Add the following to the query
box and click Execute.

sum(http requests total)

This new query uses the sum() operator on the http requests total metric. It
adds up all of the requests but doesn’t break it down by job. To do that we need
to aggregate over a specific label dimension. PromQL has a clause called by that
will allow us to aggregate by a specific dimension. Add the following to the query
box and then click Execute.

sum(http requests total) by (job)

Q TIP PromQL also has a clause called without that aggregates without a spe-
cific dimension.

Version: v1.0.0 (427b8e9) 80

https://prometheus.io/docs/prometheus/latest/querying/basics/
https://prometheus.io/docs/prometheus/latest/querying/basics/
https://prometheus.io/docs/prometheus/latest/querying/operators/

Chapter 3: Installation and Getting Started

You should see something like the following output:

sum(http_requests_total) by (job)
Z

Load time: 53ms

Execute - insert metric at cursor -

Graph Console

Element Value

{job="prometheus"} 4575

Figure 3.5: Calculating total HTTP requests by job

Now click the Graph tab to see this metric represented as a plot.

Q TIP The folks at Robust Perception have a great blog post on common query-
ing patterns.

The new output is still not quite useful—let’s convert it into a rate. Update our
query to:
sum(rate(http requests total[5m])) by (job)

Here we’ve added a new function: rate(). We’ve inserted it inside our sum func-
tion.

rate(http requests total[5m])

The rate() function calculates the per-second average rate of increase of the time
series in a range. The rate function should only be used with counters. It is quite
clever and automatically adjusts for breaks, like a counter being reset when the
resource is restarted, and extrapolates to take care of gaps in the time series, such
as a missed scrap. The rate() function is best used for slower-moving counters
or for alerting purposes.

Version: v1.0.0 (427b8e9) 81

https://www.robustperception.io/common-query-patterns-in-promql/
https://www.robustperception.io/common-query-patterns-in-promql/
https://prometheus.io/docs/prometheus/latest/querying/functions/#rate()
https://www.robustperception.io/rate-then-sum-never-sum-then-rate/
https://www.robustperception.io/rate-then-sum-never-sum-then-rate/

Chapter 3: Installation and Getting Started

Q TIP There’s also an irate() function to calculate the instant rate of increase
for faster-moving timers.

Here we’re calculating the rate over a five-minute range vector. Range vectors
are a second PromQL data type containing a set of time series with a range of
data points over time for each time series. Range vectors allow us to display the
time series for that period. The duration of the range is enclosed in [] and has an
integer value followed by a unit abbreviation:

+ s for seconds.
« m for minutes.
« h for hours.

+ d for days.

+ w for weeks.

« vy for years.

So here [5m] is a five-minute range.

Q TIP The other two PromQL data types are Scalars, numeric floating-point
values, and Strings, which is a string value and is currently unused.

Let’s Execute that query and see the resulting range vector of time series.

Version: v1.0.0 (427b8e9) 82

https://prometheus.io/docs/prometheus/latest/querying/functions/#irate
https://prometheus.io/docs/prometheus/latest/querying/basics/#range-vector-selectors

Chapter 3: Installation and Getting Started

Prometheus Alerts Graph Status ~ Help

sum(rate(http_requests_total[5m])) by (job)

jobihttp_requests_total:sum 4

Graph Console

Element Value

{iob="prometheus"} 0.07057880994480353
Figure 3.6: Our rate query

Cool! We’ve now got a new metric that is actually useful for tracking or graphing.

Q TIP 1f you want help constructing PromQL queries, there’s a query editor
called Promeditor available that you can run locally with Prometheus.

Now that we’ve walked through the basics of Prometheus operation, let’s look at
some of the requirements for running a Prometheus server.

Capacity planning

Prometheus performance is hard to estimate because it depends greatly on your
configuration, the volume of time series you collect, and the complexity of any
rules on the server. There are two capacity concerns: memory and disk.

Q TIP we’ll look at Prometheus scaling concepts in Chapter 7.

Version: v1.0.0 (427b8e9) 83

https://github.com/kausalco/public/tree/master/promeditor
https://github.com/kausalco/public/tree/master/promeditor

Chapter 3: Installation and Getting Started

Memory

Prometheus does a lot in memory. It consumes process memory for each time
series collected and for querying, recording rules, and the like. There’s not a lot
of data on capacity planning for Prometheus, especially since 2.0 was released, but
a good, rough, rule of thumb is to multiply the number of samples being collected
per second by the size of the samples. We can see the rate of sample collection
using this query.

rate(prometheus tsdb head samples appended total[1lm])

This will show you the per-second rate of samples being added to the database
over the last minute.

If you want to know the number of metrics you’re collecting you can use:
sum(count by (_ name_) ({ name =\~"\.\+"}))

This uses the sum aggregation to add up a count of all metrics that match, using
the =~ operator, the regular expression of .+, or all metrics.

Each sample is generally one to two bytes in size. Let’s err on the side of caution
and use two bytes. Assuming we’re collecting 100,000 samples per second for 12
hours, we can work out memory usage like so:

100,000 * 2 bytes * 43200 seconds
Or roughly 8.64 GB of RAM.

You'll also need to factor in memory use for querying and recording rules. This
is very rough and dependent on a lot of other variables. I recommend playing
things by ear with regard to memory usage. You can see the memory usage of the
Prometheus process by checking the process resident memory bytes metric.

Version: v1.0.0 (427b8e9) 84

Chapter 3: Installation and Getting Started

Disk

Disk usage is bound by the volume of time series stored and the retention of those
time series. By default, metrics are stored for 15 days in the local time series
database. The location of the database and the retention period are controlled by
command line options.

« The --storage.tsdb.path option, which has a default directory of data lo-
cated in the directory from which you are running Prometheus, controls your
time series database location.

* The --storage.tsdb.retention controls retention of time series. The de-
fault is 15d representing 15 days.

Q TIP The best disk for time series databases is SSD. You should use SSDs.

For our 100,000 samples per second example, we know each sample collected in
a time series occupies about one to two bytes on disk. Assuming two bytes per
sample, then a time series retained for 15 days would mean needing about 259
GB of disk.

Q TIP There’s more information on Prometheus disk usage in the Storage doc-
umentation.

Version: v1.0.0 (427b8e9) 85

https://www.youtube.com/watch?v=H7PJ1oeEyGg
https://prometheus.io/docs/prometheus/latest/storage/
https://prometheus.io/docs/prometheus/latest/storage/

Chapter 3: Installation and Getting Started

Summary

In this chapter we installed Prometheus and configured its basic operation. We
also scraped our first target, the Prometheus server itself. We made use of the met-
rics collected by the scrape to see how the inbuilt expression browser works, in-
cluding graphing our metrics and deriving new metrics using Prometheus’s query
language, PromQL.

In the next chapter we’ll use Prometheus to collect some host metrics, including
collecting from Docker containers. We’ll also see a lot more about scraping, jobs,
and labels, and we’ll have our first introduction to recording rules.

Version: v1.0.0 (427b8e9) 86

Chapter 4
Monitoring Nodes and Containers

In the last chapter we installed Prometheus and did some basic configuration.
We also scraped some time series data from the Prometheus server itself. In this
chapter, we’re going to look at using Prometheus to monitor the metrics of both
hosts and containers. We’re going to demonstrate this on a cluster of three Ubuntu
hosts running the Docker daemon.

First, we’ll install exporters on each host, configure exporting of node and Docker
metrics, and configure Prometheus to scrape them.

Next, we’ll look at monitoring some basic host resources, including:

1. CPU.

2. Memory.

3. Disk.

4. Availability.

To determine what to monitor, we’ll revisit the USE Method monitoring method-
ology to help assist in identifying the right metrics. We’ll also look at how we
might use Prometheus to detect the state of services and the availability of hosts.

Then we’ll make use of the collected metrics to build some aggregated metrics and
save them as recording rules.

87

http://www.brendangregg.com/usemethod.html
http://www.brendangregg.com/usemethod.html

Chapter 4: Monitoring Nodes and Containers

Last, we’ll very briefly introduce Grafana to do basic visualizations of some of the
data we’re collecting.

These are probably the most standard tasks for which monitoring tools are de-
ployed, and they provide a solid foundation for learning more about Prometheus.
This base set of data will allow us to identify host performance issues or will pro-
vide sufficient supplemental data for the fault diagnosis of application issues.

Monitoring nodes

Prometheus uses tools called exporters to expose metrics on hosts and applica-
tions. There are a number of exporters available for a variety of purposes. Right
now we’re going to focus on one specific exporter: the Node Exporter. The Node
Exporter is written in Go and has a library of collectors for various host metrics
including CPU, memory, and disk. It also has a textfile collector that allows you
to export static metrics, which is useful for sending information about the node,
as we’ll see shortly, or metrics exported from batch jobs.

' NOTE we’ll use the term “node” at times to refer to hosts.

Let’s start by downloading and installing the Node Exporter on a Linux host. We’re
going to choose one of our Docker daemon hosts.

Q TIP If you don’t want to use one of the Prometheus exporters there are a
swath of host-monitoring clients that support Prometheus. For example, collectd
can also write Prometheus metrics.

Version: v1.0.0 (427b8e9) 88

https://prometheus.io/docs/instrumenting/exporters/
https://github.com/prometheus/node_exporter
https://collectd.org/wiki/index.php/Plugin:Write_Prometheus
https://collectd.org/wiki/index.php/Plugin:Write_Prometheus

Chapter 4: Monitoring Nodes and Containers

Installing the Node Exporter

The Node Exporter is available as a tarball and for a limited number of platforms
via packages. The tarball of the Node Exporter is available, with a number of
other exporters, from the Prometheus website.

Let’s download and extract the Node Exporter for Linux and move the binary into
our path.

Listing 4.1: Downloading the Node Exporter

wget

https://github.com/prometheus/node exporter/releases/download/v
0.16.0/node_exporter-0.16.0.linux-amd64.tar.gz

$ tar -xzf node exporter-*

$ sudo cp node exporter-*/node exporter /usr/local/bin/

' NOTE At the time of writing the Node Exporter was at version 0.16.0. You
should download the latest version.

The Node Exporter is also available as a CentOS and Fedora package via a COPR
build.

' NOTE Using configuration management is the best way to run and install
any Prometheus exporters. This is an easy way to control configuration, and to
provide automation and service management.

Let’s test that the node exporter binary is working.

Version: v1.0.0 (427b8e9) 89

https://prometheus.io/download/#node_exporter
https://copr.fedorainfracloud.org/coprs/ibotty/prometheus-exporters/
https://copr.fedorainfracloud.org/coprs/ibotty/prometheus-exporters/

Chapter 4: Monitoring Nodes and Containers

Listing 4.2: Testing the Node Exporter binary

$ node exporter --version
node_exporter, version 0.16.0 (branch: HEAD, revision: 6
€2053¢c557f96efb63aef3691f15335a70baaffd)

Configuring the Node Exporter

The node exporter binary is configured via flags. You can see a full list of flags
by running the binary with the - -help flag.

Listing 4.3: Running the help for Node Exporter

$ node exporter --help

. J

You'll see a list of available flags. The node exporter exporter runs, by default, on

port 9100 and exposes metrics on the /metrics path. You can control the interface
and port via the - -web.listen-address and --web.telemetry-path flags like so:

Listing 4.4: Controlling the port and path

$ node exporter --web.listen-address=":9600" --web.telemetry-
path="/node metrics"

\. J

This will bind the node exporter to port 9600 and return metrics on the /node-

metrics path.

These flags also control which collectors are enabled. By default, many of the
collectors are enabled. Collectors either have a disabled or enabled status, and

Version: v1.0.0 (427b8e9) 90

https://github.com/prometheus/node_exporter#enabled-by-default
https://github.com/prometheus/node_exporter#enabled-by-default

Chapter 4: Monitoring Nodes and Containers

the status can be flipped by specifying the relevant flag with a no- prefix. For ex-
ample, the arp collector, which exposes statistics from /proc/net/arp, is enabled
by default. It is controlled by the --collector.arp flag. To disable this collector

we’d run;

Listing 4.5: Disabling the arp collector

$ node _exporter --no-collector.arp

Configuring the Textfile collector

We also want to configure one specific collector, the textfile collector, that we’re
going to use later in this chapter. The textfile collector is very useful because
it allows us to expose custom metrics. These custom metrics might be the result
of tasks like batch or cron jobs, which can’t be scraped; they might come from
sources that don’t have an exporter; or they might even be static metrics which
provide context for the host.

The collector works by scanning files in a specified directory, extracting any strings
that are formatted as Prometheus metrics, and exposing them to be scraped.

Let’s set the collector up now, starting with creating a directory to hold our the
metric definition files.

Listing 4.6: Creating a textfile directory

$ mkdir -p /var/lib/node exporter/textfile collector

Now let’s create a new metric in this directory. Metrics are defined in files ending
in .prom inside the directory we’ve just created. Metrics are defined using the
Prometheus text exposition format.

Version: v1.0.0 (427b8e9) 91

https://prometheus.io/docs/instrumenting/exposition_formats/#text-format-details

Chapter 4: Monitoring Nodes and Containers

l NOTE The text exposition format allows us to specify all the metric types
that Prometheus supports: counters, gauges, timers, etc.

Let’s use this format to create a metric that will contain some metadata about this
host.

metadata{role="docker server",datacenter="NJ"} 1

We can see we have a metric name, metadata, and two labels. One label is
called role to define a role for this node. In this case this label has a value of
docker server. We also have a label called datacenter to define the geograph-
ical location of the host. Finally, the metric has a static value of 1 because it’s
providing context rather than recording a counter, gauge, or timer.

Let’s add this metric to a file called metadata.prom in our textfile collector
directory.

Listing 4.7: A metadata metric

$ echo 'metadata{role="docker server",datacenter="NJ"} 1' | sudo
tee /var/lib/node_exporter/textfile collector/metadata.prom

Here we’ve piped our metric into a file called metadata.prom.

Q TIP In the real world, you’d populate this file using your configuration man-
agement tool. For example, when a new host is provisioned, a metadata metric
could be created from a template. This could allow you to automatically classify
your hosts and services.

Version: v1.0.0 (427b8e9) 92

Chapter 4: Monitoring Nodes and Containers

To enable the textfile collector we don’t need to set a flag—it’s loaded by
default—but we do need to specify our textfile exporter directory so the Node
Exporter knows where to find our custom metrics. To do this, we specify the
--collector.textfile.directory flag.

Enabling the systemd collector

Let’s also turn on an extra collector, systemd, which records services and system
status from systemd. This collector gathers a lot of metrics, but we don’t want to
collect the status of everything systemd is managing, just some key services. To
keep things clean, we can whitelist specific services. We’re only going to collect
metrics for:

* docker.service
* ssh.service

* rsyslog.service

Which are the Docker daemon, the SSH daemon, and the RSyslog daemon. We do
this using the - -collector.systemd.unit-whitelist flag, which takes a regular
expression matching systemd units.

Running the Node Exporter

Finally, we can launch node exporter on one of our Docker nodes like so:

Listing 4.8: Starting Node Exporter with the textfile collector and systemd

$ node _exporter --collector.textfile.directory /var/lib/
node exporter/textfile collector --collector.systemd --collector.
systemd.unit-whitelist=(docker|ssh|rsyslog).service

\. J

Version: v1.0.0 (427b8e9) 93

https://www.freedesktop.org/wiki/Software/systemd/

Chapter 4: Monitoring Nodes and Containers

We’ve specified the directory for the textfile collector to find our metrics, en-
abled the systemd collector, and used a regular expression whitelist to match the
three services for which we want to collect metrics.

Now that the Node Exporter is running on one of our Docker daemon nodes, let’s
add it to the others. We have three nodes, and we’ve identically configured two
of them. The name and IP address of each node is:

» Dockerl - 138.197.26.39
» Docker2 - 138.197.30.147
* Docker3 - 138.197.30.163

Now let’s see how to scrape the time series data that we’ve just exported.

Scraping the Node Exporter

Back on our Prometheus server, let’s configure a new job to scrape the data ex-
ported by the Node Exporter. Let’s examine the scrape configs block from our

current prometheus.yml file and our existing scrape configuration.

Listing 4.9: The current Prometheus scrape configuration

scrape configs:
- job name: 'prometheus'
static configs:
- targets: ['localhost:9090']

. J

To get this new data, we need to add another job to this configuration. We're

going to call our new job node. We're also going to continue to add individual
targets using static configs, rather than by using any kind of service discovery.
(We’ll see more about service discovery in the next chapter.) Let’s add that new

job now.

Version: v1.0.0 (427b8e9) 94

Chapter 4: Monitoring Nodes and Containers

(P
Listing 4.10: Adding the node job

scrape configs:
- job _name: ‘prometheus’
static configs:
- targets: ['localhost:9090']
- job _name: 'node’
static configs:
- targets: ['138.197.26.39:9100', '138.197.30.147:9100', '
138.197.30.163:9100"']

You can see that we’ve added the new job called node. It contains a
static configs block with a list of our three Docker hosts listed via their
IP addresses and the relevant port, 9100. Prometheus assumes the Node Exporter
has the default path, /metrics, and scrapes a target of:

138.197.26.39:9100/metrics

If we now SIGHUP or restart the Prometheus server, our configuration will be
reloaded and the server will start scraping. We’ll see the time series data start
flowing into the Prometheus server shortly.

Filtering collectors on the server

The Node Exporter can return a lot of metrics though, and perhaps you don’t want
to collect them all. In addition to controlling which collectors the Node Exporter
runs locally via local configuration, Prometheus also has a way we can limit the
collectors actually scraped from the server side. This is especially useful when
you don’t control the configuration of the host you’re scraping.

Prometheus achieves this by adding a list of the specific collectors to scrape to our
job configuration.

Version: v1.0.0 (427b8e9) 95

Chapter 4: Monitoring Nodes and Containers

Listing 4.11: Filtering collectors

scrape configs:

- job _name: ‘'node’
static configs:
- targets: ['138.197.26.39:9100', '138.197.30.147:9100', '
138.197.30.163:9100']
params:
collect[]:
- cpu
- meminfo
- diskstats
- netdev
- netstat
- filefd
- filesystem
- xfs
- systemd

\. J

Here we’ve limited the metrics being scraped to this list of collectors, specified

using the collect[] list inside the params block. These are then passed to the
scrape request as URL parameters. You can test this using the curl command on
a Node Exporter instance.

Listing 4.12: Testing collect params

$ curl -g -X GET http://138.197.26.39:9100/metrics?collect[]=cpu

\. J

This would return the base Node Exporter metrics, like the Go metrics we saw for

the Prometheus server, and the metrics generated by the CPU collector. All other
metrics will be disregarded.

For now though, on our Prometheus server, we’re going to collect everything.

Version: v1.0.0 (427b8e9) 96

Chapter 4: Monitoring Nodes and Containers

Now that we have our node metrics, let’s instrument our Docker daemons too.

Monitoring Docker

There are several ways to monitor Docker with Prometheus, including several cus-
tom exporters. However these exporters have generally been deprecated in favor
of the recommended approach: Google’s cAdvisor tool. cAdvisor runs as a Docker
container on your Docker daemon. A single cAdvisor container returns metrics for
your Docker daemon and all running containers. It has native Prometheus support
to export metrics, as well as support for a variety of other storage destinations like
InfluxDB, Elasticsearch, and Kafka.

' NOTE we're going to assume that you have installed and are running
Docker daemons, and that you understand the basics of how Docker works. If
you’re new to Docker, I have a book on it that might interest you.

Running cAdvisor

As cAdpvisor is just another container on our Docker host, we can launch it with
the docker run command. Let’s run a cAdvisor container on our Dockerl host.

Version: v1.0.0 (427b8e9) 97

https://github.com/google/cadvisor
https://dockerbook.com

Chapter 4: Monitoring Nodes and Containers

Listing 4.13: Running the caAdvisor container

$ docker run \
--volume=/:/rootfs:ro \
--volume=/var/run:/var/run:rw \
--volume=/sys:/sys:ro \
--volume=/var/lib/docker/:/var/lib/docker:ro \
--volume=/dev/disk/:/dev/disk:ro \
--publish=8080:8080 \
--detach=true \
- -name=cadvisor \
google/cadvisor:latest

. J

Let’s break this docker run command down a little. First, we mount a few directo-

ries inside the container. The directories are broken into two types. The first are
read-only mounts from which cAdvisor will gather data—for example, mounting
the /sys directory like so:

--volume=/sys:/sys:ro

Q TIP The ro indicates read-only.

The second type, which contains one mount, is a read-write mount of the Docker
socket, usually located in the /var/run directory. We also publish port 8080 from
inside the container to 8080 on the host. You could override this with any port
that suited you. We run the container with the - -detach flag to daemonize it and
name it cadvisor. Last, we use the google/cadvisor image with the latest tag.

If we now run docker ps, we can see our running cAdvisor container.

Version: v1.0.0 (427b8e9) 98

Chapter 4: Monitoring Nodes and Containers

Listing 4.14: The cAdvisor container

CONTAINER ID IMAGE COMMAND CREATED STATUS
PORTS NAMES
6fca3002e351 google/cadvisor "/usr/bin/..." 1 hours ago Up 1

hours 0.0.0.0:8080->8080/tcp cadvisor

cAdvisor should start monitoring immediately. We can browse to port 8080 on
the host to see cAdvisor’s web interface and confirm that it is operational.

< (¢ [® 138.197.30.163:8080/containers/

cAdvisor

root

Docker Containers

Subcontainers

/docker

Figure 4.1: cAdvisor web interface

If we browse to the path /metrics on port 8080, we’ll see the built-in Prometheus
metrics being exposed.

Version: v1.0.0 (427b8e9) 99

Chapter 4: Monitoring Nodes and Containers

< C [® 138.197.30.163:3080/metrics %]

HELP cadvisor_version_info A metric with a constant 'l' value labeled by kernel version, OS version, docker version, cadvisor
revision.

TYPE cadvisor_version_info gauge
cadvisor_version_info{cadvisorRevision="17543be",cadvisorVersion="v0.25.0",dockerVersion="1.13.1",kernelVersion="4.4.0-97-gener:
Linux v3.4"} 1

HELP container_cpu_system seconds_total Cumulative system cpu time consumed in seconds.

TYPE container_cpu_system seconds_total counter

container_cpu_system_seconds_total{id="/"} 7326.99

container_cpu_system_seconds_total{id="/docker"} 2453.86

container_cpu_system_seconds_total{id="/init.scope"} 48.74

container_cpu_system seconds_total{id="/system.slice"} 4419.46
container_cpu_system_seconds_total{id="/system.slice/accounts-daemon.service"} 63.89
container_cpu_system_seconds_total{id="/system.slice/acpid.service"} 0
container_cpu_system_seconds_total{id="/system.slice/apparmor.service"} 0
container_cpu_system_seconds_total{id="/system.slice/apport.service"} 0
container_cpu_system_seconds_total{id="/system.slice/apt-daily-upgrade.service"} 25.82

container_cpu_system_ seconds_total{id="/system.slice/atd.service"} 0.06
container_cpu_system_seconds_total{id="/system.slice/cgroupfs-mount.service"} 0
container_cpu_system_seconds_total{id="/system.slice/cloud-config.service"} 0
container_cpu_system_seconds_total{id="/system.slice/cloud-final.service"} 0

Figure 4.2: cAdvisor Prometheus metrics

We’ll also install cAdvisor on our other two Docker daemons as well.

Scraping cAdvisor

With cAdvisor running on our Docker daemons, we need to tell Prometheus about
it. To do this, we’re going to add a third job to our configuration. Let’s edit
prometheus.yml on our Prometheus server.

We’re again going to add individual targets using static configs, rather than by
using any kind of service discovery.

Version: v1.0.0 (427b8e9) 100

Chapter 4: Monitoring Nodes and Containers

(P
Listing 4.15: Adding the Docker job

scrape configs:
- job _name: ‘prometheus’
static configs:
- targets: ['localhost:9090']
- job _name: 'node’
static configs:
- targets: ['138.197.26.39:9100', '138.197.30.147:9100', '
138.197.30.163:9100"']
- job name: ‘docker’
static configs:
- targets: ['138.197.26.39:8080', '138.197.30.147:8080', '
138.197.30.163:8080"']

You can see we’ve added the new job called docker. It contains a static configs
block with a list of our three Docker daemon servers with their IP addresses and
the relevant port, 8080. Again we assume the default /metrics path. If we again
SIGHUP or restart the Prometheus server, then our configuration will be reloaded,
it will start scraping, and the new time series will appear.

I think it’s important, though, before we continue, that we understand how a
scrape works and a bit about the lifecycle of labels. We’ll use our cAdvisor metrics
to explore this lifecycle.

Scrape lifecycle

Let’s look at the lifecycle of a scrape itself, and into the lifecycle of labels. Every
scrape interval period, in our case 15 seconds, Prometheus will check for jobs to
be executed. Inside those jobs it’ll generate a list of targets: the service discovery
process. In the cases we’ve seen so far we’ve got manually specified, statically
configured hosts. There are other service discovery mechanisms, like loading
targets from a file or querying an API.

Version: v1.0.0 (427b8e9) 101

Chapter 4: Monitoring Nodes and Containers

Q TIP we’ll learn more about service discovery in Chapter 5.

Service discovery returns a list of targets with a set of labels attached called meta-
data. These labels are prefixed with meta . Each service discovery mechanism
has different metadata—for example, the AWS EC2 discovery mechanism returns
the availability zone of instances in a label called meta ec2 availability zone

Service discovery also sets additional labels based on the configuration of the
target. These configuration labels are prefixed and suffixed with . They include
the scheme , address , and metrics path labels. These contain the
scheme, http or https, of the target; the address of the target; and the specific
path to the metrics respectively.

Each label usually has a default—for example, metrics path would default
to /metrics, and scheme to http. Additionally, if any URL parameters are
present in the path then they’re set into labels prefixed with param *.

The configuration labels are also reused during the lifecycle of the scrape to pop-
ulate other labels. For example, the default contents of the instance label on our
metrics is the contents of the address label.

' NOTE so, wait—why haven’t we seen any of those __ prefixed and suffixed
labels? That’s because some are removed later in the lifecycle, and all of them are
specifically excluded from display on the Web UI.

This list of targets and labels are then returned to Prometheus. Some of those
labels can be overridden in configuration—for example, the metrics path via the
metrics path parameter, and the scheme to be used via the scheme parameter.

Version: v1.0.0 (427b8e9) 102

Chapter 4: Monitoring Nodes and Containers

Listing 4.16: Overriding the discovered labels

scrape configs:
- job_name: ‘'node’
scheme: https
metrics path: /moremetrics
static configs:
- targets: ['138.197.26.39:9100', '138.197.30.147:9100', '
138.197.30.163:9100"']

Here we’re overriding the scheme to https and the metric’s path to /moremetrics.

Prometheus then offers an opportunity to relabel your targets and to potentially
make use of some metadata your service discovery has added. You can also filter
targets to drop or keep specific items.

After this, the actual scrape takes place, and the metrics are returned. When the
metrics are being scraped you are offered a final opportunity to relabel and filter
them before they are saved to the server.

Phew. That’s complicated. Let’s see a simplified image of that lifecycle:

Version: v1.0.0 (427b8e9) 103

Chapter 4: Monitoring Nodes and Containers

Service Relabel

) . Relabel
Discovery Configuration relabel_configs Scrape

metric_relabel_configs

Figure 4.3: Scrape lifecycle

You can see we’ve introduced a bunch of concepts, including two blocks where
Prometheus relabels metrics. This is a good time to talk a bit more about labels,
relabelling, and taxonomies. Let’s take a little interlude.

Labels

We learned in Chapter 2 that labels provide the dimensions of our time series.
They can define what the target is and add context to the time series. But most
importantly, combined with the metric name, they make up the identity of your
time series. They represent the identity of your time series—if they change, so
does the identity of the time series.

Changing a label or adding a new label creates a new time series.

Version: v1.0.0 (427b8e9) 104

Chapter 4: Monitoring Nodes and Containers

This means that labels should be used judiciously and remain as constant as possi-
ble. Failure to adhere to this can spawn new time series, creating a dynamic data
environment that makes your monitoring data sources harder to track. Imagine
you have a time series that you’re using to track the state of a service. You have
an alert configured for that time series that relies on the labels of the metric to
determine the right criteria. By changing or adding a label, that alert definition
is rendered invalid. The same applies to historical time series data: By changing
or adding a label we lose track of the previous time series, breaking graphs and
expressions, and causing general mayhem.

Q TIP what happens to the old time series if it’s not being written anymore? If
a scrape no longer returns data for a time series that was previously present, that
series will be marked as stale. The same applies for any targets that are removed:
All of their time series will be marked as stale. Stale data is not returned in graphs.

Label taxonomies

So when should we add labels and what labels should we add? Well, like all
good monitoring architectures, it’s worth building a taxonomy. Labels, like most
monitoring taxonomies, are probably best when broadly hierarchical. A good way
of thinking about a taxonomy is in terms of topological and schematic labels.

The topological labels slice the service components by their physical or logical
makeup, e.g., the datacenter label we saw above. We already get two topological
labels for free with every metric: job and instance. The job label is set from the
job name in the scrape configuration. We tend to use job to describe the type of
thing we’re monitoring. In the case of our Node Exporter job we called it node

Version: v1.0.0 (427b8e9) 105

Chapter 4: Monitoring Nodes and Containers

This will label all the Node Exporter metrics with a job label of node. The
instance label identifies the target. It’s usually the IP address and port of the
target, and it’s usually sourced from the address label.

Schematic labels are things like url, error code, or user which let you match
time series at the same level in the topology together—for example, to create
ratios of one against the other.

If you need to add additional labels consider a hierarchy something like this:

Service
Application

A

Environment
Dev-Staging-Production

A

Datacenter
Location
Region

Figure 4.4: Sample label taxonomy

A little later in this chapter, we’ll look at metrics like the metadata metric we
created earlier with the Textfile collector that can be decorated with contextual
information.

We can also create and manipulate existing labels to help us better manage our
time series data.

Version: v1.0.0 (427b8e9) 106

Chapter 4: Monitoring Nodes and Containers

Relabelling

Given the desire to judiciously use labels, why would we relabel things? In a word:
control. In a centralized, complex monitoring environment you sometimes don’t
control all the resources you are monitoring and the monitoring data they expose.
Relabelling allows you to control, manage, and potentially standardize metrics in
your environment. Some of the most common use cases are:

* Dropping unnecessary metrics.
+ Dropping sensitive or unwanted labels from the metrics.
+ Adding, editing, or amending the label value or label format of the metrics.

Remember there are two phases at which we can relabel. The first phase is re-
labelling targets that have come from service discovery. This is most useful for
applying information from metadata labels from service discovery into labels on
your metrics. This is done in a relabel configs block inside a job. We’ll see
more of that in the next chapter.

The second phase is after the scrape but before the metric is saved in the storage
system. This allows us to determine what metrics we save, what we drop, and
what those metrics will look like. This is done in the metric relabel configs
block in our job.

Q TIP The easiest way to remember the two phases are: relabel configs hap-
pens before the scrape and metric relabel configs happens after the scrape.

Let’s take a look at some relabelling of our cAdvisor metrics. cAdvisor collects a
lot of data. Not all of it is always useful. So let’s see how we might drop some of
these metrics before they hit our storage and take up unnecessary space.

Version: v1.0.0 (427b8e9) 107

Chapter 4: Monitoring Nodes and Containers

Listing 4.17: Dropping metrics with relabelling

- job name: 'docker'
static_configs:
- targets: ['138.197.26.39:8080', '138.197.30.147:8080"',
138.197.30.163:8080"1]
metric relabel configs:
- source labels: [name |
regex: '(container tasks state|
container _memory failures total)'
action: drop

Here we have our docker job. After our static configs block we’ve added a
new block: metric relabel configs. Inside the block we specify a series of rela-
belling actions.

Dropping metrics

Let’s look at our first action. We select the metrics we want to take action on
using the source labels parameter. This takes an array of label names. In our
case we're using the name label. The name label is a reserved label used
for the name of a metric. So our source label for our docker job in this case would
be the concatenated names of all the metrics scraped from cAdvisor.

Multiple labels are concatenated together using a separator, by default ;. The
separator can be overridden using the separator parameter.

Version: v1.0.0 (427b8e9) 108

https://prometheus.io/docs/prometheus/latest/configuration/configuration/#%3Crelabel_config%3E
https://prometheus.io/docs/prometheus/latest/configuration/configuration/#%3Crelabel_config%3E

Chapter 4: Monitoring Nodes and Containers

Listing 4.18: Specifying a new separator

metric_relabel configs:
- source labels: [name]
separator: ',
regex: '(container tasks state|
container memory failures total)'
action: drop

Here our name label values would be separated with a ,.

Next, we specify a regular expression to search our concatenated metric names
and match specific names. The regular expression uses the RE2 expression syntax,
which is what the Go regular expression’s library RegExp uses.

Q TIP Suck at regular expressions? You’re not alone. There are some good
expression testers available online.

Our regular expression, contained in the regex parameter, is:
(container tasks state|container memory failures total)

Which will match and capture two metrics:

* container_tasks state

e container_memory failures total

If we had specified multiple source labels we would specify each regular expres-
sion using the separator, for example:

regexl;regex2; regex3

Version: v1.0.0 (427b8e9) 109

https://github.com/google/re2/wiki/Syntax
https://golang.org/pkg/regexp/
https://regex-golang.appspot.com/assets/html/index.html
https://regex101.com/
http://www.regexplanet.com/advanced/golang/index.html

Chapter 4: Monitoring Nodes and Containers

We then perform an action, specified in the action parameter. In this case, both
of these metrics contain a significant number of time series—of potentially limited
usefulness—so we're taking the drop action. This will drop the metrics before stor-
age. Other actions include keep, which keeps the metrics that match the regular
expression and drops all others.

Replacing label values

We can also replace a label’s value with a new value. Let’s take an example. Many
cAdvisor metrics have an id label that contains the name of the running process.
If that process is a container we’ll see something like:

id="/docker/6fca3002e3513d23ed7e435ca0641557ed1d4226et788e771b81933a49d55804

This is a bit unwieldy. So we’d like to take the container ID:
6fca3002e3513d23ed7e435ca064f557ed1d4226ef788e771b81933a49d55804

And put it into a new label: container id. Using relabelling we can do this like
SO:

Listing 4.19: Replacing a label

metric relabel configs:

- source labels: [id]
regex: '/docker/([a-z0-9]+);"
replacement: '$1°
target label: container id

Q TIP Relabelling is applied sequentially, using top-down ordering in the con-
figuration file.

Version: v1.0.0 (427b8e9) 110

https://prometheus.io/docs/prometheus/latest/configuration/configuration/#relabel_config

Chapter 4: Monitoring Nodes and Containers

Our source label is id. We then specify a regex to match and capture the container
ID. The replacement field holds the new value, in this case our capture group $1.
We then specify the destination for the captured information, here container id,
in the target label parameter.

You’ll notice we didn’t specify an action for this relabel. This is because the
default action is replace. If you don’t specify an action, Prometheus will assume
you want to perform a replacement.

Prometheus also has a parameter, honor labels, that controls the conflict be-
havior if you try to overwrite and attach a label that already exists. Let’s say
your scraped data already has a label called job. Using the default behavior, in
which honor labels is set to false, Prometheus will rename the existing label by
prefixing it with exported . So our job label would become exported job. If
honor labels is set to true then Prometheus will keep the label on the scraped
data and ignore any relabelling on the server.

Dropping labels

In our last example, we’re going to drop a label. This is often useful for hiding
sensitive information or simplifying a time series. In this (somewhat contrived)
example we’re going to remove the kernelVersion label, hiding the kernel version
of our Docker hosts.

Listing 4.20: Dropping a label

metric relabel configs:
- regex: 'kernelVersion'
action: labeldrop

For dropping a label, we specify a regex watching our label and then the
labeldrop action. This will remove all labels that match the regular expression.

Version: v1.0.0 (427b8e9) 111

Chapter 4: Monitoring Nodes and Containers

This action also has an inverse action, labelkeep, which will keep all labels that
match the regular expression and drop all others.

A WARNING Remember that labels are uniqueness constraints for time
series. If you drop a label and that results in duplicate time series, you will have
issues!

Usefully, you can see the state of labels prior to relabelling in the Prometheus
web interface. We can see this in the list of targets at http://localhost:9090/
targets. Hover your mouse over the instance label in the Labels box to see a
list of the labels as they were before relabelling.

m Q localhost:9090/targets

Prometheus Alerts Graph Status ~ Help

Before relabeling:

0="{__address__ 138.197.26.39:9100}"

1="{__meta filepath targets/nodes/nodes.json}"
node (3/3 up) 2="{_metrics_path__/metrics}"

3="{__scheme__ http}"

Endpoint SIEIE) 4-"(ob node}”

http://138.197.26.39:9100/metrics UP
http://138.197.30.147:9100/metrics UP
http://138.197.30.163:9100/metrics UP

Figure 4.5: Labels prior to relabelling

Now let’s take a closer look at our new metrics.

The Node Exporter and cAdvisor metrics

We’re now collecting seven individual sets of metrics from four unique hosts:

Version: v1.0.0 (427b8e9) 112

Chapter 4: Monitoring Nodes and Containers

« The Prometheus server’s own metrics.
* Node Exporter metrics from three hosts.
» cAdvisor metrics from three hosts.

Q TIP You can see the status of each target being scraped by looking at the
Prometheus web interface. Browse to http://localhost:9090/targets to see a
list of what Prometheus is scraping and the status of each.

Let’s skip over the Prometheus server’s own metrics and focus on the Node Ex-
porter and cAdvisor metrics. Let’s use some of these metrics to explore the capa-
bilities of Prometheus and ensure our hosts are properly monitored.

The trinity and the USE method

We’re going to make use of one of the monitoring frameworks we introduced at
the start of the book: the USE Method. You’ll remember this method suggests
collecting and focusing on utilization, saturation, and error metrics to assist with
performance diagnostics. We're going to apply this method, broadly, to one of the
common monitoring patterns—CPU, memory, and disk—to see how we can make
use of our Node Exporter metrics and how PromQL can be used.

Q TIP Remember, these host metrics are useful mostly as broad signals of
performance trouble on your hosts. We’re using them to learn more about working
with metrics. Most of the time, though, we’re going to focus on application metrics,
which are better indicators of poor user experience.

Version: v1.0.0 (427b8e9) 113

http://www.brendangregg.com/usemethod.html

Chapter 4: Monitoring Nodes and Containers

Let’s start by looking at CPU metrics.

CPU Utilization

To get the U-for-utilization in USE, we’re going to use a metric the Node Exporter
collects named node cpu. This is the utilization of the CPUs on our host, broken
down by mode and presented in seconds used. Let’s query for that metric now
from the Prometheus web interface. Navigate to http://localhost:9090/graph,
select node cpu from the metric dropdown and click Execute.

Prometheus Alerts Graph Status ~ Help

Load time: 26ms
Resolution: 14s

Total time series: 60
Execute node_cpu

Graph Console

node_cpu

«

Element

Value
node_cpu{cpu="cpu0",instance="138.197.26.39:9100" job="node",mode="guest'} 0
node_cpufcpu="cpu0",instance="138.197.26.39:9100" job="node",mode="guest_nice"} 0
node_cpufcpu="cpu0" instance="138.197.26.39:9100" job="node",mode="idle"} 2187000.6
node_cpufcpu="cpu0",instance="138.197.26.39:9100" job="node",mode="iowait"} 318.78
node_cpufcpu="cpu0",instance="138.197.26.39:9100" job="node",mode="irq"} 0
node_cpufcpu="cpu0",instance="138.197.26.39:9100" job="node",mode="nice"} 146.34
node_cpufcpu="cpu0",instance="138.197.26.39:9100" job="node",mode="softirq"} 24.47

Figure 4.6: node_cpu metrics

You should see a list of metrics, much like so:

node cpu{cpu="cpu0",instance="138.197.26.39:9100", job="node",mode="
user"}

The node cpu metric has a number of labels including the instance and job labels,
which identify what host it came from and what job scraped the metric, respec-
tively.

' NOTE The instance label is generally made up of the address of the host
and the port that was scraped.

Version: v1.0.0 (427b8e9) 114

Chapter 4: Monitoring Nodes and Containers

We also have two labels specific to CPUs: the cpu the metric was collected from—
for example, cpud—and mode for the CPU mode being measured—for example,
user, system, idle, etc. Drawn from /proc/stat, the data are counters that tell
us how many seconds each CPU spent in each mode.

This list of metrics isn’t overly useful as is. For any performance analysis, we’ll
need to make use of PromQL to turn these into useful metrics. What we’d really
like here is to get the percentage CPU used on each instance—but to get there
we’ll need to work with our metrics a little. Let’s step towards this outcome by
looking at a sequence of PromQL calculations.

We start with calculating the per-second rate for each CPU mode. PromQL has
a function called irate that calculates the per-second instant rate of increase of
a time series in a range vector. Let’s use the irate function over our node cpu
metric. Enter this into the query box:

irate(node cpu{job="node"}[5m])

And click Execute. This wraps the node cpu metric in the irate function and
queries a five-minute range. It’ll return the list of per-cpu, per-mode metrics from
the node job, now represented as per-second rates in a five-minute range. But
this still isn’t overly helpful—we need to aggregate our metrics across CPUs and
modes too.

To do this, we can use the avg or average operator and the by clause we saw in
Chapter 3.

avg(irate(node cpu{job="node"}[5m])) by (instance)

Now we’ve wrapped our irate function inside an avg aggregation and added a by
clause that aggregates by the instance label. This will produce three new metrics
that average CPU usage by host using the values from all CPUs and all modes.

But this metric is still not quite right. It still includes idle usage, and it isn’t
represented in a useful form like a percentage. Let’s constrain our calculation by

Version: v1.0.0 (427b8e9) 115

https://prometheus.io/docs/prometheus/latest/querying/functions/#irate()
https://prometheus.io/docs/prometheus/latest/querying/operators/#aggregation-operators

Chapter 4: Monitoring Nodes and Containers

querying only the per-instance idle usage and, as it’s already a ratio, multiplying
it by 100 to convert it into a percentage.

avg (irate(node cpu{job="node",mode="idle"}[5m])) by (instance) * 100

Here we’ve added the mode label with a value of idle to our irate query. This
only queries the idle data. We’ve averaged the result by instance and multiplied
it by 100. Now we have the average percentage of idle usage in a five-minute
range on each host. We can turn this into the percentage used by subtracting this
value from 100, like so:

100 - avg (irate(node cpu{job="node",mode="idle"}[5m])) by (instance)
* 100

And now we have three metrics, one for each host, showing the average percentage
CPU used in a five-minute window.

100 - ayg (irate(node_cpufjob="node",mode="idle"}[5m])) by (instance) * 100|

Execute - insert metric at cursor -

Graph Console

Element Value
{instance="138.197.26.39:9100"} 3.0333333338300292
{instance="138.197.30.147:9100"} 2.9268617919658197

{instance="138.197.30.163:9100"} 4.087211629707397

Figure 4.7: Per-host average percentage CPU usage metrics

Now, if we click the Graph tab, we can also see these represented as a plot.

Version: v1.0.0 (427b8e9) 116

Chapter 4: Monitoring Nodes and Containers

- 1h + « | Until » Res. (s) O stacked

| Mwﬁtw] \M

N

|

M {instance="138.197.30.163:9100"}

8 {instance="138.197.30.147:9100"}
{instance="138.197.26.39:9100"}

Figure 4.8: Per-host percentage CPU plot

CPU Saturation

One of the ways to get the saturation of CPU on a host is to track the load average,
essentially the average run queue length over a time period, taking into consider-
ation the number of CPUs on the host. An average less than the number of CPUs
is generally normal; averages over that number for prolonged periods indicate the
CPU is saturated.

To see the host’s load average, we can use the node load* metrics for these. They
show load average over one minute, five minutes, and 15 minutes. We’re going
to use the one-minute load average: node loadl.

Let’s take a quick look at this metric. Select node loadl from the metric dropdown
and click Execute. Alist of the nodes being monitored with the current one-minute
load average will be listed.

We also need to calculate the number of CPUs on our hosts. We can do this using
the count aggregation like so:

count by (instance) (node cpu{mode="idle"})

Version: v1.0.0 (427b8e9) 117

https://prometheus.io/docs/prometheus/latest/querying/operators/#aggregation-operators

Chapter 4: Monitoring Nodes and Containers

Here we’re counting the number of occurrences of the node cpu time series with a
mode of idle. We're then using the by clause to remove all labels except instance
from the result vector, giving us a list of hosts with the number of CPUs in each.

i vidle Load time: 9ms
count by (instance)(node_cpu{mode="idle"}) Resolution: 14s.

Total time seri es:3
Execute - insert metric at cursor -

Graph ~ Console

Element Value
{instance="138.197.26.39:9100"} 2
{instance="138.197.30.147:9100"} 2

{instance="138.197.30.163:9100"} 2

Remove Graph

Figure 4.9: Number of CPUs in each host

We can see our three nodes have two CPUs apiece.

Q TIP since we’re also collecting Docker metrics we could use one of cAdvisor’s
metrics here too, machine cpu_cores, as a shortcut.

We can then combine this count with the node loadl metric like so:

node loadl > on (instance) 2 * count by (instance) (node cpu{mode="idle

"})

Here we’re showing if the one-minute load average is two times more than the
CPU count on the host. This is not necessarily an issue, but we’ll see in Chapter 6
how to turn it into an alert that should tell you when there is an issue.

Now let’s see if we can’t do something similar with our memory metrics.

Q TIP we’re going to skip the E-for-error in USE for CPU errors because it’s
unlikely there will be anything useful in any data we could collect.

Version: v1.0.0 (427b8e9) 118

https://prometheus.io/docs/prometheus/latest/querying/operators/#aggregation-operators

Chapter 4: Monitoring Nodes and Containers

Memory utilization

Let’s look at the utilization of memory on a host. The Node Exporter’s memory
metrics are broken down by type and usage of memory. You’ll find them in the
list of metrics prefixed with node memory.

Prometheus Alerts Graph Status ~ Help

node_memory_MemTotal

Execute - insert metric at cursor - 4

Graph Console

Element Value
node_memory_MemTotal{instance="138.197.26.39:9100",job="node"} 2097352704
node_memory_MemTotal{instance="138.197.30.147:9100" ,job="node"} 2097352704

node_memory_MemTotal{instance="138.197.30.163:9100" job="node"} 2097352704

Figure 4.10: The node_memory_MemTotal

We’re going to focus on a subset of the node memory metrics to provide our uti-
lization metric:

* node memory MemTotal - The total memory on the host.
* node memory MemFree - The free memory on the host.

* node memory Buffers - The memory in buffer cache.

« node memory Cached - The memory in the page cache.

All of these metrics are represented in bytes.

We’re going to use this combination of metrics to calculate the percentage of
memory used on each host. To do this, we’re going to add the values of the
node memory MemFree, node memory Cached, and node memory Buffers metrics.
This represents the free memory on our host. We’re then going to calculate the

Version: v1.0.0 (427b8e9) 119

Chapter 4: Monitoring Nodes and Containers

percentage of free memory using this value and the node memory MemTotal metric.
We’re going to use this query to do that:

(node_memory MemTotal - (node memory MemFree + node memory Cached +

node memory Buffers)) / node memory MemTotal * 100

Here we’ve added together our three memory metrics, subtracted them from the
total, divided by the total, and then multiplied by 100 to convert it into a per-
centage. This will produce three metrics showing percentage memory used per
host.

Prometheus Alerts Graph Status ~ Help

Execute - insert metric at cursor - s

Graph Console

Element Value
{instance="138.197.26.39:9100" ,job="node"} 21.75221512003734
{instance="138.197.30.147:9100" job="node"} 23.403619575470316

{instance="138.197.30.163:9100" job="node"} 20.21505754332105

Figure 4.11: Per-host percentage memory usage

Here we don’t need to use the by clause to preserve distinct dimensions because
the metrics have the same dimensional labels; each metric will have the query
applied to it in turn.

Memory saturation

We can also monitor our memory saturation by checking on the rate of paging
in and out of memory. We can use data gathered from /proc/vmstat on paging

exposed in two Node Exporter metrics:

* node vmstat pswpin - Number of kilobytes the system has paged in from

disk per second.

Version: v1.0.0 (427b8e9) 120

Chapter 4: Monitoring Nodes and Containers

* node vmstat pswpout - Number of kilobytes the system has paged out to
disk per second.

Both are totals in kilobytes since last boot.

To get our saturation metric, we generate a one-minute rate for each metric, add
the two rates, and then multiply them by 1024 to get bytes. Let’s create a query
to do this now.

Listing 4.21: Memory saturation query

1024 * sum by (instance) (
(rate(node_vmstat pgpgin[1lm])
+ rate(node vmstat pgpgout[1lm]))

\. J

We can then graph or alert on this to identify hosts with misbehaving applications.

Disk usage

For disks we’re only going to measure disk usage rather than utilization, saturation,
or errors. This is because it’s the most useful data in most cases for visualization
and alerting. The Node Exporter’s disk usage metrics are in the list of metrics
prefixed with node filesystem.

Prometheus Alerts Graph Status ~ Help

§ R Load time: 19ms
node_filesystem_size Resolution: 14s.

Total time series: 15
Execute node_filesystem_size B

Graph Console

Element Value

node_filesystem_size{device="/dev/vda1" fstype="ext4",instance="138.197.26.39:9100" ,job="node",mountpoint="/"} 42142052352
node_filesystem_size{device="/dev/vda1" fstype="ext4" instance="138.197.26.39:9100" ,job="node",mountpoint="/var/lib/docker/aufs"} 42142052352
node_filesystem_size{device="/dev/vda1" fstype="ext4",instance="138.197.30.147:9100",job="node",mountpoint="/"} 42142052352
node_filesystem_size{device="/dev/vda1" fstype="ext4",instance="138.197.30.147:9100" ,job="node",mountpoint="/var/lib/docker/aufs"} 42142052352
node_filesystem_size{device="/dev/vda1" fstype="ext4",instance="138.197.30.163:9100",job="node",mountpoint="/"} 42142052352
node_filesystem_size{device="/dev/vda1" fstype="ext4" instance="138.197.30.163:9100" ,job="node",mountpoint="/var/lib/docker/aufs"} 42142052352

Version: v1.0.0 (427b8e9) 121

Chapter 4: Monitoring Nodes and Containers

Figure 4.12: Disk metrics

Here, for example, the node filesystem size metric shows the size of each file
system mount being monitored. We can use a similar query to our memory metrics
to produce a percentage figure of disk space used on our hosts.

(node filesystem size{mountpoint="/"} - node filesystem free{mountpoint

="/"}) / node filesystem size{mountpoint="/"} * 100

Unlike the memory metrics, though, we have filesystem metrics per mount point
on each host. So we’ve added the mountpoint label, specifically the / filesystem
mount. This will return a disk usage metric for that filesystem on each host being
monitored.

Prometheus Alerts Graph Status ~ Help

Execute - insert metric at cursor - s

Graph Console

Element Value
{device="/dev/vda1" fstype="ext4" instance="138.197.26.39:9100" ,job="node",mountpoint="/"} 28.995371278874348
{device="/dev/vda1l" fstype="ext4" instance="138.197.30.147:9100" job="node",mountpoint="/"} 28.438676759014626

{device="/dev/vda1l" fstype="ext4" instance="138.197.30.163:9100" job="node",mountpoint="/"} 28.824444017434075

Figure 4.13: Per-host disk space metrics

If we wanted or needed to, we could add additional queries for specific mount
points to the configuration now. To monitor a mount point called /data we would
use:

(node filesystem size{mountpoint="/data"} - node filesystem free{
mountpoint="/data"}) / node filesystem size{mountpoint="/data"} * 100

Or we could use a regular expression to match more than one mountpoint.

(node filesystem size{mountpoint=~"/|/run"} - node filesystem free{
mountpoint=~"/|/run"}) / node filesystem size{mountpoint=~"/|/run"} *
100

Version: v1.0.0 (427b8e9) 122

https://prometheus.io/docs/prometheus/latest/querying/basics/

Chapter 4: Monitoring Nodes and Containers

Q TIP You cannot use a regular expression that matches an empty string.

You can see that we’ve updated our mountpoint label to change the operator from
= to =~ which tells Prometheus that the right-hand-side value will be a regular
expression. We’ve then matched both the /run and / root filesystems.

Q TIP There’s also a operator for regular expressions that do not match.

This is still a fairly old-school measure of disk usage. It tells us a current percentage
usage of the filesystem. In many cases, this data is useless. An 80 percent full 1
GB filesystem might not be a concern at all if it’s growing at 1 percent a year. A
10 percent full 1 TB filesystem might be at serious risk of filling up if it’s growing
at 10 percent every 10 minutes. With disk space, we really need to understand
the trend and direction of a metric. The question we usually want answered is:
“Given the usage of the disk now, combined with its growth, in what time frame
will we run out of disk space?”

Prometheus actually has a mechanism, a function called predict linear, by
which we can construct a query to answer this exact question. Let’s look at an
example:

predict linear(node filesystem free{mountpoint="/"}[1h], 4*3600) < 0

Here we’re grabbing the root filesystem, node filesystem free{mountpoint="/"}
. We could select all the filesystems by specifying the job name or selectively using
a regular expression, as we did earlier in this section.

predict linear(node filesystem free{job="node"}[1h], 4*3600) < 0

We have selected a one-hour time window, [1h]. We’ve also placed this time

Version: v1.0.0 (427b8e9) 123

https://prometheus.io/docs/prometheus/latest/querying/functions/#predict_linear()

Chapter 4: Monitoring Nodes and Containers

series snapshot inside the predict linear function. The function uses simple
linear regression to determine when a filesystem will run out of space based on
previous growth. The function takes a range vector, our one-hour window, and
the point in the future for which to predict the value, measured in seconds. Hence,
four times 3600 (the number of seconds in an hour), or four hours. The < 0 filters
for values less than 0, i.e., the filesystem running out of space.

So, if, based on the last hour’s worth of growth history, the filesystem is going to
run out of space in the next four hours, the query will return a negative number,
which we can then use to trigger an alert. We’ll see how this alert would work in
Chapter 6.

Service status

Now let’s look at the data from the systemd collector. Remember this shows us
the state of services and various other systemd configuration on our hosts. The
state of the services is exposed in the node systemd unit state metric. There’s a
metric for each service and service state you’re collecting. In our case we’re only
gathering metrics for the Docker, SSH, and RSyslog daemons.

Listing 4.22: The node_systemd_unit_state metrics

node systemd unit state{name="docker.service",b state="activating"
} 0

node systemd unit state{name="docker.service",state="active"} 1
node systemd unit state{name="docker.service",state="
deactivating"} ©

node systemd unit state{name="docker.service",state="failed"} 0
node systemd unit state{name="docker.service",6state="inactive"}
0

We can query a segment of this data via the Expression Browser and look specifi-

Version: v1.0.0 (427b8e9) 124

https://en.wikipedia.org/wiki/Simple_linear_regression
https://en.wikipedia.org/wiki/Simple_linear_regression

Chapter 4: Monitoring Nodes and Containers

cally for this docker service. To do this, we query using the name label.

node systemd unit state{name="docker.service"}

- " . Load time: 63ms
node_systemd_unit_state{name="docker.service"} Resolution: 14s.

node_systemd_unit_state 5

Graph Console

Total time series: 15

Element Value
node_systemd_unit_state({instance="138.197.26.39:9100" ,job="node",name="docker.service",state="activating"}
node_systemd_unit_state{instance="138.197.26.39:9100",job="node",name="docker.service" state="active"}
node_systemd_unit_state({instance="138.197.26.39:9100" ,job="node",name="docker.service",state="deactivating"}
node_systemd_unit_state{instance="138.197.26.39:9100",job="node",name="docker.service" state="failed"}
node_systemd_unit_state{instance="138.197.26.39:9100" ,job="node",name="docker.service" state="inactive"}
node_systemd_unit_state{instance="138.197.30.147:9100" job="node",name="docker.service",state="activating"}
node_systemd_unit_state{instance="138.197.30.147:9100" job="node",name="docker.service" state="active"}
node_systemd_unit_state{instance="138.197.30.147:9100",job="node" ,name="docker.service" state="deactivating"}
node_systemd_unit_state{instance="138.197.30.147:9100" job="node" ,name="docker.service" state="failed"}
node_systemd_unit_state{instance="138.197.30.147:9100" job="node" ,name="docker.service",state="inactive"}
node_systemd_unit_state{instance="138.197.30.163:9100" job="node" ,name="docker.service" state="activating"}
node_systemd_unit_state{instance="138.197.30.163:9100",job="node",name="docker.service" state="active"}
node_systemd_unit_state({instance="138.197.30.163:9100",job="node" ,name="docker.service" state="deactivating"}

node_systemd_unit_state{instance="138.197.30.163:9100",job="node",name="docker.service",state="failed"}

© ©o o - o © © ©6 = © © © © = o

node_systemd_unit_state{instance="138.197.30.163:9100" job="node" ,name="docker.service" state="inactive"}

Remove Graph

Figure 4.14: The systemd time series data

This query produces a metric for each combination of potential service and state:
failed, inactive, active, etc. The metric that represents the current state of
each service is set to 1. We could narrow this down further by adding the state
label to our search and only returning the active state.

node systemd unit state{name="docker.service",state="active"}

Alternatively, we could search for all of the metrics with the value 1, which would
return the state of the current service.

node systemd unit state{name="docker.service"} == 1

Here we’ve seen a new query, one that uses a comparison binary operator: ==.
This will retrieve all metrics with a value equal to 1 with a name label of docker.

service.

Version: v1.0.0 (427b8e9) 125

https://prometheus.io/docs/prometheus/latest/querying/operators/#comparison-binary-operators

Chapter 4: Monitoring Nodes and Containers

X X Load time: 12ms
node_systemd_unit_state{name="docker.service"} == 1 Resolution: 14s

node_systemd_unit_state 5

Graph ~ Console

Total time series: 3

Element Value
node_systemd_unit_state{instance="138.197.26.39:9100",job="node",name="docker.service" state="active"} 1
node_systemd_unit_state{instance="138.197.30.147:9100" job="node",name="docker.service" state="active"} 1

node_systemd_unit_state{instance="138.197.30.163:9100" job="node" ,name="docker.service" state="active"} 1

Remove Graph

Figure 4.15: The active services

We’re going to make use of the systemd metrics to monitor the availability of ser-
vices on our host—for example, our Docker daemon—and alert on this in Chapter
6.

Availability and the up metric

Worth mentioning is another useful metric for monitoring the state of specific
nodes: the up metric. For each instance scrape, Prometheus stores a sample in the

following time series:

Listing 4.23: The up metric

up{job="<job—name>", instance="<instance-id>"}

. J

The metric is set to 1 if the instance is healthy—i.e., the scrape successfully

returned—or to 0 if the scrape failed. The metric is labelled with the job name
and the instance of the time series.

Q TIP Prometheus also populates some other instrumentation metrics, includ-
ing scrape_duration_seconds, the duration of the scrape, and scrape_samples -
scraped, the number of samples that the target exposed.

Version: v1.0.0 (427b8e9) 126

Chapter 4: Monitoring Nodes and Containers

We can query all the up metrics for our hosts.

Prometheus Alerts Graph Status ~ Help

up

Execute - insert metric at cursor -

Graph Console

«

Element Value
upf{instance="138.197.26.39:8080" ,job="docker"}

upfinstance="138.197.26.39:9100" ,job="node"}

upf{instance="138.197.30.147:8080" ,job="docker"}

upfinstance="138.197.30.147:9100",job="node"}

upfinstance="138.197.30.163:9100",job="node"}

1
1
1
1
up{instance="138.197.30.163:8080" job="docker"} 1
1
up{instance="localhost:8080" job="docker"} 1

1

upfinstance="localhost:9090",job="prometheus"}

Figure 4.16: The up metrics

In addition, many exporters have specific metrics designed to identify the last
successful scrape of a service. The cAdvisor metrics include container last seen,
for example, which provides a list of containers and the last time they were active.
The MySQL Exporter returns a metric, mysql up, that is set to 1 if a successful
SELECT query works on a database server.

We'll see in Chapter 6 how we can use the up metrics to help us do availability
monitoring.

' NOTE You cannot relabel autopopulated metrics like up because they are
generated after the relabelling phase.

Version: v1.0.0 (427b8e9) 127

Chapter 4: Monitoring Nodes and Containers

The metadata metric

Last, let’s look at the metric we created, metadata, using the Node Exporter’s
Textfile collector.

metadata{role="docker server",datacenter="NJ"} 1

This metric provides context for the resource: its role, docker server, and the
location of the host, datacenter. This data is useful in its own right, but why
create a separate metric rather than just add these as labels to all of our metrics
from this host? Well, we already know that labels provide the dimensions of our
time series and, combined with the metric name, they make up the identity of our
time series. We’ve also already been warned that:

Changing a label or adding a new label creates a new time series.

This means that labels should be used judiciously and should remain as constant
as possible. So, instead of decorating every time series with the set of complete
labels, we instead create a time series that we can use to query specific types or
classes of resources.

Let’s see how we could make use of the labels on this metric. Suppose we want
to select metrics only from a specific data center or set of data centers. We can
quickly find all hosts in, say, a non-New Jersey (NJ) data center by querying like
SO:

metadata{datacenter != "NJ"}

You can see that we’ve queried the metadata metric and specified the datacenter
with an operator, != or not equal to, to return any metadata metric from a non-
New Jersey data center.

Q TIP Prometheus has a full set of arithmetic and comparison binary operators
you can use.

Version: v1.0.0 (427b8e9) 128

https://prometheus.io/docs/prometheus/latest/querying/operators/

Chapter 4: Monitoring Nodes and Containers

Vector matches

We can also use our metadata metric to make vector matches. Vector matches
can use any of the PromQL binary operators. Vector matches attempt to find a
matching element in the right-hand-side vector for each entry on the left-hand
side.

There are two kinds of vector matches: One-to-one and many-to-one (or one-to-
many).

One-to-one matches

One-to-one matches find a unique pair of entries from each side of the operation.
Two entries match if they have the exact same set of labels and values. You can
modify the set of labels considered by using the ignoring modifier, which ignores
specific labels, or by using the on modifier, which reduces the set of considered
labels to a list. Let’s see an example.

Listing 4.24: A one-to-one vector match

node systemd unit state{name="docker.service"} == 1
and on (instance, job)
metadata{datacenter="SF"}

\. J

This queries any node systemd unit state metrics with the name label of docker
.service and a value of 1. We then use the on modifier to reduce the consid-
ered label set to the instance and job labels of the metadata metric, where the
datacenter label has a value of SF.

In our case, this will return a single metric:

node systemd unit state{instance="138.197.30.147:9100", job="node", name
="docker.service",state="active"}

Version: v1.0.0 (427b8e9) 129

https://prometheus.io/docs/prometheus/latest/querying/operators/#vector-matching
https://prometheus.io/docs/prometheus/latest/querying/operators/#binary-operators

Chapter 4: Monitoring Nodes and Containers

If we were to change the datacenter label in our query to NJ, we’d return two
metrics: one for each of the two Docker servers in the NJ data center.

Many-to-one and one-to-many matches

Many-to-one and one-to-many matches are where each vector element on the
“one” side can match with multiple elements on the “many” side. These matches
are explicitly specified using the group left or group right modifiers, where left
or right determines which vector has the higher cardinality. The Prometheus doc-
umentation contains some examples of this kind of match, but they are generally
not required. In most cases one-to-one matches will suffice.

Metadata-style metrics

Many existing exporters use this “metadata” pattern to provide information about
extra state—for example, cAdvisor has the cadvisor version metric that provides
information about the local Docker daemon and related configuration.

Prometheus Alerts Graph Status v+ Help

) Load time: 14ms
cadesor,verswonflnfo Resolution: 14s

Execute cadvisor_version_info s

Graph Console

Total time series:

Element Value

cadvisor_version_ir i 1="17543be" ,cadvisorVersion="v0.25.0", ion="1.13.1",instance="138.197.26.39:8080" job="docker" kernelVersion="4.4.0-97-generic",osVersion="Alpine Linux v3.4"} 1

cadvisor_version_ir 1="17543be" ,cadvisorVersion="v0.25.0",dockerVersion="1.13.1",instance="138.197.30.147:8080" ,job="docker" 1="4.4.0-97-generic" ="Alpine Linux v3.4"} 1

cadvisor_version_ir i 1="17543be" ,cadvisorVersion="v0.25.0" ion="1.13.1",instance="138.197.30.163:8080" ,job="docker" 1="4.4.0-97-generic" "Alpine Linux v3.4"} 1

Figure 4.17: The cadvisor_version metric

This type of metric allows you to use vector matches to list all metrics that match

some contextual criteria: a location, a version, etc.

So now that we’ve seen how to use some of the metrics, how do we persist the

queries we’ve seen?

Version: v1.0.0 (427b8e9) 130

https://prometheus.io/docs/prometheus/latest/querying/operators/#vector-matching
https://prometheus.io/docs/prometheus/latest/querying/operators/#vector-matching

Chapter 4: Monitoring Nodes and Containers

Query permanence

Until now, we’ve just run queries in the Expression Browser. Whilst viewing the
output of that query is interesting, the result is stuck on the Prometheus server
and is transitory. There are three ways we can make our queries more permanent:

* Recording rules - Create new metrics from queries.
+ Alerting rules - Generate alerts from queries.
* Visualization - Visualize queries using a dashboard like Grafana.

The queries we’ve looked at can be used interchangeably in all three of these
mechanisms because all of these mechanisms can understand and execute PromQL
queries.

In this chapter we’re going to make use of some recording rules to create new
metrics from our queries and configure Grafana as a dashboard to visualize metrics.
In Chapter 6 we’ll make use of alerting rules to generate alerts.

Recording rules

We talked about recording rules and their close cousin, alerting rules in Chapter
2.

Recording rules are a way to compute new time series, particularly aggregated
time series, from incoming time series. We might do this to:

+ Produce aggregates across multiple time series.
» Precompute expensive queries.

« Produce a time series that we could use to generate an alert.

Let’s write some rules.

Version: v1.0.0 (427b8e9) 131

https://prometheus.io/docs/querying/rules/
https://prometheus.io/docs/prometheus/latest/configuration/alerting_rules/

Chapter 4: Monitoring Nodes and Containers

Configuring recording rules

Recording rules are stored on the Prometheus server, in files that are loaded by
the Prometheus server. Rules are calculated automatically, with a frequency
controlled by the evaluation interval parameter in the global block of the
prometheus.yml configuration file we saw in Chapter 3.

Listing 4.25: The evaluation_interval parameter

global:
scrape_interval: 15s
evaluation interval: 15s

Rule files are specified in our Prometheus configuration inside the rules files
block.

Let’s create a sub-directory called rules in the same directory as our prometheus.
yml file, to hold our recording rules. We’ll also create a file called node rules.yml
for our node metrics. Prometheus rules are written, like Prometheus configuration,
in YAML.

A WARNING YAML rules were updated in Prometheus 2.0. Earlier re-
leases used a different structure. Your older rule files will not work in Prometheus
2.0 or later. You can use the promtool to upgrade older rules files. There’s a good
blog post on the upgrading process here.

Version: v1.0.0 (427b8e9) 132

https://www.robustperception.io/converting-rules-to-the-prometheus-2-0-format/

Chapter 4: Monitoring Nodes and Containers

Listing 4.26: Creating a recorded rules file

$ mkdir -p rules
$ cd rules
$ touch node rules.yml

Let’s add that file to our Prometheus configuration in the rule files block in the
prometheus.yml file.

Listing 4.27: Adding the rules file

rule files:
- "rules/node rules.yml"

Now let’s populate this file with some rules.

Adding recording rules

Let’s convert our CPU, memory, and disk calculations into recording rules. We
have a lot of hosts to be monitored, so we’re going to precompute all the trinity
queries. That way we’ll also have the calculations as metrics that we can alert on
or visualize via a dashboard like Grafana.

Let’s start with our CPU calculation.

Version: v1.0.0 (427b8e9) 133

Chapter 4: Monitoring Nodes and Containers

Listing 4.28: A recording rule

groups:
- name: node rules
rules:
- record: instance:node cpu:avg rate5m
expr: 100 - avg (irate(node cpu{job="node",mode="idle"}[5m]))
by (instance) * 100

Recording rules are defined in rule groups; here ours is named node rules. Rule
group names must be unique in a server. Rules within a group are run sequentially
at a regular interval. By default, this is the global evaluation interval, but it
can be overridden in the rule group using the interval clause.

The sequential nature of rule execution in groups means that you can use rules you
create in subsequent rules. This allows you to create a metric from a rule and then
reuse that metric in a later rule. This is only true within rule groups though—rule
groups are run concurrently, so it’s not safe to use rules across groups.

Q TIP This also means you can use recording rules as parameters, for example
you might want to create a rule with a threshold in it. You can then set the
threshold once in the rule and re-use it multiple times. If you need to change the
threshold you just need to change it that one place.

Version: v1.0.0 (427b8e9) 134

Chapter 4: Monitoring Nodes and Containers

Listing 4.29: A recording group interval

groups:

- name: node rules
interval: 10s
rules:

. J

This would update the rule group to be run every 10 seconds rather than the
globally defined 15 seconds.

Next, we have a YAML block called rules, which contains this group’s recording
rules. Each rule contains a record, which tells Prometheus what to name the
new time series. You should name rules so you can identify quickly what they
represent. The general recommended format is:

level:metric:operations

Where level represents the aggregation level and labels of the rule output. Met-
ric is the metric name and should be unchanged other than stripping total off
counters when using the rate() or irate() functions. This makes it easier to find
the new metric. Finally, operations is a list of operations that were applied to the
metric, the newest operation first.

So our CPU query would be named:

instance:node cpu:avg rate5m

Q TIP There are some useful best practices on naming in the Prometheus doc-
umentation.

We then specify an expr field to hold the query that should generate the new time
series.

Version: v1.0.0 (427b8e9) 135

https://prometheus.io/docs/practices/naming/
https://prometheus.io/docs/practices/naming/

Chapter 4: Monitoring Nodes and Containers

We could also add a labels block to add new labels to the new time series. Time
series created from rules inherit the relevant labels of the time series used to create
them, but you can also add or overwrite labels. For example:

(P
Listing 4.30: A recording rule

groups:
- name: node rules
rules:
- record: instance:node cpu:avg rate5m
expr: 100 - avg (irate(node cpu{job="node",mode="idle"}[5m]))
by (instance) * 100
labels:
metric type: aggregation

Let’s create rules for some of our other trinity queries, and add them, too.

(P
Listing 4.31: A recording rule

groups:
- name: node rules
rules:
- record: instance:node cpu:avg rate5m
expr: 100 - avg (irate(node cpu{job="node",mode="idle"}[5m]))
by (instance) * 100
- record: instance:node memory usage:percentage
expr: (node memory MemTotal - (node memory MemFree +
node memory Cached + node memory Buffers)) /
node_memory MemTotal * 100
- record: instance:root:node filesystem usage:percentage
expr: (node filesystem size{mountpoint="/"} -
node filesystem free{mountpoint="/"}) / node filesystem size{
mountpoint="/"} * 100

Version: v1.0.0 (427b8e9) 136

Chapter 4: Monitoring Nodes and Containers

Q TIP The configuration files and code for this book are located on GitHub.

We now need to restart or SIGHUP the Prometheus server to activate the new rules.
This will create a new time series for each rule. You should be able to find the
new time series on the server in a few moments.

Q TIP The rule files can be reloaded at runtime by sending SIGHUP to the
Prometheus process (or by restarting on Microsoft Windows). The reload will
only work if the rules file is well formatted. The Prometheus server ships with a
utility called promtool that can lint rule files.

If we now search for one of the new time series, instance:node cpu:avg rate5m
for example, we should see:

Execute - insert metric at cursor - $

Graph ~ Console

Element Value
instance:node_cpu:avg_rate5m({instance="138.197.26.39:9100"} 3.2064529030156166
instance:node_cpu:avg_rate5Sm({instance="138.197.30.147:9100"} 1.9666666677221656

instance:node_cpu:avg_rate5m{instance="138.197.30.163:9100"} 5.300000001055508

Figure 4.18: The node_cpu recorded rule

Last, let’s quickly look at how we might visualize the metrics we’ve just created.

Q TIP You can see the current rules defined on your server in the /rules path

Version: v1.0.0 (427b8e9) 137

https://github.com/turnbullpress/pm-code

Chapter 4: Monitoring Nodes and Containers

of the Web UL This includes useful information, like the execution time of each
rule, that can help you debug expensive rules that might need optimization.

Visualization

As we’ve seen, Prometheus has an inbuilt dashboard and graphing interface. It’s
fairly simple and generally best for reviewing metrics and presenting solitary
graphs. To add a more fully featured visualization interface to Prometheus, the
platform integrates with the open-source dashboard Grafana. Grafana is a dash-
board fed via data sources. It supports a variety of formats including Graphite,
Elasticsearch, and Prometheus.

It’s important to note that Prometheus isn’t generally used for long-term data
retention—the default is 15 days worth of time series. This means that Prometheus
is focused on more immediate monitoring concerns than, perhaps, other systems
where visualization and dashboards are more important. The judicious use of the
Expression Browser, graphing inside the Prometheus Ul, and building appropriate
alerts are often more practical uses of Prometheus’ time series data than building
extensive dashboards.

With that said, in this last section we’re going to quickly install Grafana and con-
nect Prometheus to it.

Installing Grafana

Installing Grafana depends on the platform you’re installing on. Grafana supports
running on Linux, Microsoft Windows, and Mac OS X. Let’s look at installation on
each platform.

Version: v1.0.0 (427b8e9) 138

https://grafana.org

Chapter 4: Monitoring Nodes and Containers

Installing Grafana on Ubuntu

For Ubuntu and Debian systems, we can add the Grafana package repository. We
first need to add the PackageCloud public key, like so:

Listing 4.32: Getting the PackageCloud public key on Ubuntu

$ curl https://packagecloud.io/gpg.key | sudo apt-key add -

We add the following Apt configuration so we can find the Grafana repository:

Listing 4.33: Adding the Grafana packages

$ echo "deb https://packagecloud.io/grafana/stable/debian/
stretch main" | sudo tee -a /etc/apt/sources.list.d/grafana.list

\. J

Then we update Apt and install the grafana package with the apt-get command.

Listing 4.34: Updating Apt and installing the Grafana package

$ sudo apt-get update
$ sudo apt-get install grafana

On Red Hat

To install Grafana on Red Hat systems, we first need to add the Elastic.co public
key, like so:

Version: v1.0.0 (427b8e9) 139

Chapter 4: Monitoring Nodes and Containers

Listing 4.35: Getting the Grafana public key on Red Hat

$ sudo rpm --import https://packagecloud.io/gpg.key

\. J

Then we add the following to our /etc/yum.repos.d/ directory in a file called

grafana. repo:

Listing 4.36: The Grafana Yum configuration

[grafanal

name=grafana
baseurl=https://packagecloud.io/grafana/stable/el/7/$basearch
repo_gpgcheck=1

enabled=1

gpgcheck=1

gpgkey=https://packagecloud.io/gpg.key https://grafanarel.s3.
amazonaws.com/RPM-GPG-KEY-grafana

sslverify=1

sslcacert=/etc/pki/tls/certs/ca-bundle.crt

Now we install Grafana using the yum or dnf commands.

Listing 4.37: Installing Grafana on Red Hat

$ sudo yum install grafana

Installing Grafana on Microsoft Windows

To install Grafana on Microsoft Windows, we need to download and put it in a
directory. Let’s create a directory for the executable using Powershell.

Version: v1.0.0 (427b8e9) 140

Chapter 4: Monitoring Nodes and Containers

Listing 4.38: Creating a Grafana directory on Windows

C:\> MKDIR grafana
C:\> CD grafana

Now download Grafana from the Grafana site.

Listing 4.39: Grafana Windows download

https://s3-us-west-2.amazonaws.com/grafana-releases/release/
grafana-5.1.3.windows-x64.zip

The zip file contains a folder with the current Grafana version. Unzip the file
using a tool like 7-Zip, and put the contents of the unzipped directory into the
C:\grafana directory. Finally, add the C:\grafana directory to the path. This
will allow Windows to find the executable. To do this, run this command inside
Powershell.

Listing 4.40: Setting the Windows path for Grafana

$env:Path += ";C:\grafana"”

\. J

We then need to make some quick configuration changes to adjust the default
port. The default Grafana port is 3000, a port which requires extra permissions on
Microsoft Windows. We want to change it to port 8080 to make Grafana easier to
use.

Go into the c:\grafana\conf\ directory and copy the sample.ini file to custom.
ini. Edit the custom.ini file and uncomment the http port configuration option.
It'll be prefixed with the ; character, which is the comment character in ini files.

Version: v1.0.0 (427b8e9) 141

http://www.7-zip.org/

Chapter 4: Monitoring Nodes and Containers

Change the port number to 8080. That port will not require extra Microsoft Win-
dows privileges.

Installing Grafana on Mac OS X

Grafana is also available from Homebrew. If you use Homebrew to provision your
Mac OS X hosts then you can install Grafana via the brew command.

Listing 4.41: Installing Grafana via Homebrew

$ brew install grafana

Installing Grafana via configuration management or a stack

There are a variety of options for installing Grafana via configuration manage-
ment. Many of the stacks and configuration management modules we saw in
Chapter 3 also support Grafana installations.

+ Chef cookbooks for Grafana at https://supermarket.chef.io/cookbooks/
grafana.

» Puppet modules for Grafana at https://forge.puppetlabs.com/modules?
utf-8=%E2/9C%93&sort=rank&q=grafana.

* Ansible roles for Grafana at https://galaxy.ansible.com/list#/roles/
3563.

« Docker images Grafana at https://hub.docker.com/search/?q=grafana.

Starting and configuring Grafana

There are two places where we can configure Grafana: a local configuration file
and the Grafana web interface. The local configuration file, which is primarily for

Version: v1.0.0 (427b8e9) 142

https://grafana.com/grafana/download?platform=mac
http://brew.sh/
https://supermarket.chef.io/cookbooks/grafana
https://supermarket.chef.io/cookbooks/grafana
https://forge.puppetlabs.com/modules?utf-8=%E2%9C%93&sort=rank&q=grafana
https://forge.puppetlabs.com/modules?utf-8=%E2%9C%93&sort=rank&q=grafana
https://galaxy.ansible.com/list#/roles/3563
https://galaxy.ansible.com/list#/roles/3563
https://hub.docker.com/search/?q=grafana

Chapter 4: Monitoring Nodes and Containers

configuring server-level settings like authentication and networking, is available
at either:

» /etc/grafana/grafana.ini on Linux.
* /usr/local/etc/grafana/grafana.ini on OS X.
« c:\grafana\conf\custom.ini on Microsoft Windows.

The Grafana web interface is used to configure the source of our data and our
graphs, views, and dashboards. Our configuration in this chapter is going to be
via the web interface.

To access the web interface we need to start the Grafana web service, so let’s do
that first. On Linux we’d use the service.

Listing 4.42: Starting the Grafana Server on Linux

$ sudo service grafana-server start

. J

This will work on both Ubuntu and Red Hat.

On OS X, if we want to start Grafana at boot, we need to run:

Listing 4.43: Starting Grafana at boot on OSX

$ brew services start grafana

\. J

Or to start it ad hoc on OS X, run:

Version: v1.0.0 (427b8e9) 143

Chapter 4: Monitoring Nodes and Containers

Listing 4.44: Starting Grafana server on OS X

$ grafana-server --config=/usr/local/etc/grafana/grafana.ini --
homepath /usr/local/share/grafana cfg:default.paths.logs=/usr/
local/var/log/grafana cfg:default.paths.data=/usr/local/var/lib/
grafana cfg:default.paths.plugins=/usr/local/var/lib/grafana/
plugins

\. J

On Microsoft Windows we would run the grafana-server.exe executable and use

something like NSSM if we want to run it as a service.

Configuring the Grafana web interface

Grafana is a Go-based web service that runs on port 3000 (or 8080 on Microsoft
Windows, as we configured it) by default. Once it’s running you can browse to it
using your web browser—for example, if it’s running on the local host: http://
localhost:3000.

Version: v1.0.0 (427b8e9) 144

https://nssm.cc/

Chapter 4: Monitoring Nodes and Containers

< C' | ® localhost:3000/login

Grafana

Login

User

Password

Figure 4.19: The Grafana console login

You’ll see a login screen initially. The default username and password are admin
and admin. You can control this by updating the [security] section of the Grafana
configuration file.

You can configure user authentication, including integration with Google authen-
tication, GitHub authentication, or local user authentication. The Grafana config-
uration documentation includes sections on user management and authentication.
For our purposes, we’re going to assume the console is inside our environment
and stick with local authentication.

Log in to the console by using the admin / admin username and password pair and
clicking the Log in button. You should see the Grafana default console view.

Version: v1.0.0 (427b8e9) 145

http://docs.grafana.org/v2.0/installation/configuration/#security
http://docs.grafana.org/v2.0/installation/configuration/#users
http://docs.grafana.org/v2.0/installation/configuration/#users

Chapter 4: Monitoring Nodes and Containers

[9- ZHome- @ < zoomOut > Qlast6hours &

Home Dashboard

[
§

Add data source

Figure 4.20: The Grafana console

It contains a Getting Started workflow. We first want to connect Grafana to our
Prometheus data. Click on Add data source in the Getting Started workflow.
You'll see a new definition for a data source.

To add a new data source we need to specify a few details. First, we need to name
our data source. We're going to call ours Prometheus. Next, we need to check the
Default checkbox to tell Grafana to search for data in this source by default. We
also need to ensure the data source Type is set to Prometheus.

We also need to specify the HTTP settings for our data source. This is the URL of
the Prometheus server we wish to query. Here, let’s assume we’re running Grafana
on the same host as Prometheus—for our local server, it’s http://localhost
:9090. If you’re running Prometheus elsewhere you’ll need to specify the URL
to Prometheus and to ensure connectivity is available between the Grafana host
and the Prometheus server.

l NOTE The Prometheus server needs to be running for Grafana to retrieve
data.

We also need to set the Access option to proxy. Surprisingly this doesn’t configure

Version: v1.0.0 (427b8e9) 146

Chapter 4: Monitoring Nodes and Containers

an HTTP proxy for our connection, but it tells Grafana to use its own web service
to proxy connections to Prometheus. The other option, direct, makes direct con-
nections from the web browser. The proxy setting is much more practical, as the
Grafana service takes care of connectivity.

Add data source

Config Dashboards

Prometheus Default

Prometheus

HTTP settings

URL http://localhost:9090

Access proxy

HTTP Auth

Basic Auth With Credentials

TLS Client Auth With CA Cert

Skip TLS Verification (Insecure)

Figure 4.21: Adding a Grafana data source for Prometheus

Version: v1.0.0 (427b8e9) 147

Chapter 4: Monitoring Nodes and Containers

To add our new data source, click the Add button. This will save it. On the screen
we can now see our data source displayed. If it saved with a banner saying Data
source is working then it is working!

Click the Grafana logo and then click on Dashboards -> Home to return to the
main console view.

Data Sources -

admin
Main Org.

wurce

Dashboards e
HEWIN S

Alerting Snapshots

Data Sources + New

& Import
[IELieus

Plugins

Admin

. //localhost:9090
Pin

Access proxy

Figure 4.22: Adding a Grafana data source for Prometheus

Version: v1.0.0 (427b8e9) 148

Chapter 4: Monitoring Nodes and Containers

First dashboard

Now that you’re back on the Getting Started workflow, click on the New dashboard
button to create a new dashboard.

You can then see the first dashboard here:

{9 - %% Node Dashboard - 0 < ZoomOut » @lLast6hours <

Node CPU average 1m Disk usage -/ %

200 ———————

19.0
14:00 16:00 14:00 16:00 14:00 16:00

== 138.197.26.39:9100 == 138.197.30.147:9100 == 138.197.26.39:9100 == 138.197.30.147:9100 == 138.197.26.39:9100 == 138.197.30.147:9100
== 138.197.30.163:9100 == 138.197.30.163:9100 == 138.197.30.163:9100

+ ADD ROW

Figure 4.23: The Node dashboard

The process of creating graphs and dashboards is reasonably complex and beyond
the scope of this book. But there are a large number of resources and examples
that can help:

+ Grafana Getting Started

« Grafana Tutorials and screencasts
 Grafana Prometheus documentation
 Grafana Prebuilt Dashboard collection

Many projects also include prebuilt Grafana dashboards for their specific needs—
for example, monitoring MySQL or Redis.

You can then add graphs for some of the other metrics we’ve explored in this
chapter. We’ve included the JSON for our complete dashboard in the code for the
book that you can import and play with.

Version: v1.0.0 (427b8e9) 149

http://docs.grafana.org/guides/getting_started/
http://docs.grafana.org/tutorials/screencasts/
https://prometheus.io/docs/visualization/grafana/
https://grafana.com/dashboards
https://github.com/percona/grafana-dashboards
https://grafana.com/dashboards/763
https://github.com/turnbullpress/prometheusbook-code/blob/master/4/dashboard.json
https://github.com/turnbullpress/prometheusbook-code/blob/master/4/dashboard.json

Chapter 4: Monitoring Nodes and Containers

Summary

In this chapter we used our first exporters and scraped node and container metrics.

We’ve started to explore the PromQL query language, how to make use of it to
aggregate those metrics and report on the state of some of our node resources, and
we’ve delved into the USE Method to find some key metrics to monitor. We also
learned how to save those queries as recording rules.

From here we can extend the use of those exporters to our whole fleet of hosts.
This presents a challenge, though: how does Prometheus know about new hosts?
Do we continue to manually add IP addresses to our scrape configuration? We
can quickly see that this will not scale. Thankfully, Prometheus has a solution:
service discovery. In the next chapter we’ll explore how Prometheus can discover
your hosts and services.

Version: v1.0.0 (427b8e9) 150

Chapter 5
Service Discovery

In the last chapter we installed exporters and scraped node and container metrics.
For each target we specified, we manually listed their IP address and port in the
scrape configuration. This approach is fine for a few hosts but not for a larger
fleet, especially not a dynamic fleet using containers and cloud-based instances,
where the instances can change, appear, and disappear.

Prometheus solves this issue by using service discovery: automated mechanisms
to detect, classify, and identify new and changed targets. Service discovery can
work via a variety of mechanisms:

+ Receiving lists of targets from files populated via configuration management
tools.

« Querying an API, such as the Amazon AWS API, for lists of targets.

+ Using DNS records to return lists of targets.

In this chapter, we’re going to use service discovery to learn how to discover our

hosts and services and expose them to Prometheus. We’ll see a variety of discovery
mechanisms including file-based, API-driven, and DNS-powered.

151

Chapter 5: Service Discovery

Scrape lifecycle and static configuration redux

To understand how service discovery works we need to harken back to our scrape
lifecycle. When Prometheus runs a job, the very first step initiated is service
discovery. This populates the list of targets and metadata labels that the job will

scrape.
DSerV|ce Configuration Relabel Scrape Relabel
Iscovery relabel_configs metric_relabel_configs

Figure 5.1: Scrape lifecycle

In our existing configuration, our service discovery mechanism is the
static configs block:

Version: v1.0.0 (427b8e9) 152

Chapter 5: Service Discovery

Listing 5.1: Our static service discovery

scrape configs:
- job _name: ‘prometheus’
static configs:
- targets: ['localhost:9090']
- job _name: 'node’
static configs:
- targets: ['138.197.26.39:9100', '138.197.30.147:9100', '
138.197.30.163:9100"']

The list of targets and any associated labels are manual service discovery. It’s
pretty easy to see that maintaining a long list of hosts in a variety of jobs isn’t
going to be a human-scalable task (nor is HUP’ing the Prometheus server for each
change overly elegant). This is especially true with the dynamic nature of most
environments and the scale of hosts, applications, and services that you’re likely
to want to monitor.

This is where more sophisticated service discovery comes into its own. So what
alternatives do we have? We're going to explore several service discovery meth-
ods:

« File-based.
 Cloud-based.
» DNS-based.

We'll start with file-based discovery.

' NOTE Jobs can use one more than type of service discovery. We can source
targets from multiple service discovery techniques by specifying them in a job.

Version: v1.0.0 (427b8e9) 153

Chapter 5: Service Discovery

File-based discovery

File-based discovery is only a small step more advanced than static configurations,
but it’s great for provisioning by configuration management tools. With file-based
discovery Prometheus consumes targets specified in files. The files are usually
generated by another system—such as a configuration management system like
Puppet, Ansible, or Chef—or queried from another source, like a CMDB. Periodi-
cally a script or query runs or is triggered to (re)populate these files. Prometheus
then reloads targets from these files on a specified schedule.

The files can be in YAML or JSON format and contain lists of targets defined much
like we’d define them in a static configuration. Let’s start by moving our existing
jobs to file-based discovery.

Listing 5.2: File-based discovery

- job _name: node
file sd configs:
- files:
- targets/nodes/*. json
refresh _interval: 5m

- job _name: docker
file sd configs:
- files:
- targets/docker/*.json
refresh _interval: 5m

We’ve replaced the static configs blocks in our prometheus.yml file with
file sd configs blocks. Inside these blocks we’ve specified a list of files,
contained in the files array. We’ve specified our files for each job under a
parent directory, targets, and created a sub-directory for each job. You can
create whatever structure works for you.

Version: v1.0.0 (427b8e9) 154

Chapter 5: Service Discovery

We’ve then specified the files using a glob: *. json. This will load targets from all
files ending in .json in this directory, whenever those files change. I've chosen
JSON for our files because it’s a popular format that’s easy to write using a variety
of languages and integrations.

Every time the job runs or these files change, Prometheus will reload the files’
contents. As a safeguard, we’ve also specified the refresh interval option. This
option will load the targets in the listed files at the end of each interval—for us
this is five minutes.

Q TIP There’s also a metric called prometheus_sd_file mtime_seconds that
will tell you when your file discovery files were last updated. You could monitor
this metric to identify any staleness issues.

Let’s quickly create this directory structure.

(P
Listing 5.3: Creating the target directory structure

$ cd /etc/prometheus
$ mkdir -p targets/{nodes,docker}

Let’s move our nodes and Docker daemons to new JSON files. We’ll create two
files to hold the targets.

(/P
Listing 5.4: Creating JSON files to hold our targets

$ touch targets/nodes/nodes.json
$ touch targets/docker/daemons.json

Version: v1.0.0 (427b8e9) 155

Chapter 5: Service Discovery

And now populate them with our existing targets.

Listing 5.5: The nodes.json file

[{

"targets": [
"138.197.26.39:9100",
"138.197.30.147:9100",
"138.197.30.163:9100"

]

}

\

And the daemons. json file.

Listing 5.6: The daemons.json file

[{

"targets": [
"138.197.26.39:8080",
"138.197.30.147:8080",
"138.197.30.163:8080"

]

}

\.

We can also articulate the same list of targets we’ve created in JSON in YAML.

Listing 5.7: The daemons file in YAML

- targets:
- "138.197.26.39:8080"

- "138.197.30.147:8080"
- "138.197.30.163:8080"

J

\.

This moves our existing static configuration into our files. We could add labels to

156

Version: v1.0.0 (427b8¢e9)

Chapter 5: Service Discovery

these targets, too.

Listing 5.8: Adding labels
[{

"targets": [
"138.197.26.39:8080",
"138.197.30.147:8080",
"138.197.30.163:8080"

1,

"labels": {

"datacenter": "nj"

}

}

Here we’ve added the label datacenter with a value of nj to the Docker daemon
targets. File-based discovery automatically adds one metadata label during the
relabelling phase to every target: meta filepath. This contains the path and
filename of the file containing the target.

' NOTE You can see a full list of the service discovery targets and their meta
labels on the Web UI at https://localhost:9090/service-discovery.

Writing files for file discovery

Since writing files out to JSON is fairly specific to the source of the targets, we'’re
not going to cover any specifics, but we’ll provide a high-level overview of some
approaches.

First, if your configuration management tool can emit a list of the nodes it is man-
aging or configuring, that’s an ideal starting point. Several of the configuration

Version: v1.0.0 (427b8e9) 157

Chapter 5: Service Discovery

management modules we introduced in Chapter 3 have such templates.

If those tools include a centralized configuration store or configuration manage-
ment database (CMDB) of some kind, this can be a potential source for the target
data. For example, if you are using PuppetDB, there’s a file-based discovery script
you can use to extract your nodes from the database.

Alternatively, if you’re going to write your own, there’s a few simple rules to
follow:

« Make your file discovery configurable—don’t hardcode options. Preferably,
ensure that your file discovery will also work automatically with its default
configuration. For instance, ensure the default configuration options assume
the default installation state of the source.

« Don’t expose secrets like API keys or passwords in configuration. Instead,
rely on secret stores or the environment.

+ Operations on the files to which you output your targets should be atomic.

Here are some file discovery scripts and tools that might provide examples you
can crib from:

* Amazon ECS.
* An API-driven file discovery script that Wikimedia uses with its CMBD.
« Docker Swarm.

Q TIP There’s also a list of file-based discovery integrations in the Prometheus
documentation.

Version: v1.0.0 (427b8e9) 158

https://github.com/camptocamp/prometheus-puppetdb
https://12factor.net/config
https://en.wikipedia.org/wiki/Linearizability
https://github.com/teralytics/prometheus-ecs-discovery
https://github.com/wikimedia/puppet/blob/production/modules/prometheus/files/usr/local/bin/prometheus-labs-targets
https://github.com/ContainerSolutions/prometheus-swarm-discovery
https://prometheus.io/docs/operating/integrations/#file-service-discovery

Chapter 5: Service Discovery

Inbuilt service discovery plugins

Some tools and platforms are supported by native service discovery integrations.
These ship with Prometheus. These service discovery plugins use those tools and
platform’s existing data stores or APIs to return lists of targets.

The currently available native service discovery plugins include platforms like:

Amazon EC2

» Azure

+ Consul

* Google Compute Cloud
» Kubernetes

Q TIP we’ll see the Kubernetes service discovery in Chapter 7 when we instru-
ment an application running on Kubernetes.

Let’s take a look at the Amazon EC2 service discovery plugin.

Amazon EC2 service discovery plugin

The Amazon EC2 service discovery plugin uses the Amazon Web Services EC2 API
to retrieve a list of EC2 instances to use as Prometheus targets. In order to use the
discovery plugin you’ll need to have an Amazon account and credentials. We’re
going to assume you already have an Amazon account, but if you haven’t already
got an AWS account, you can create one at the AWS Console.

Then follow the Getting Started process.

Version: v1.0.0 (427b8e9) 159

https://prometheus.io/docs/prometheus/latest/configuration/configuration/#%3Cec2_sd_config%3E
https://prometheus.io/docs/prometheus/latest/configuration/configuration/#%3Cazure_sd_config%3E
https://prometheus.io/docs/prometheus/latest/configuration/configuration/#%3Cconsul_sd_config%3E
https://prometheus.io/docs/prometheus/latest/configuration/configuration/#%3Cgce_sd_config%3E
https://prometheus.io/docs/prometheus/latest/configuration/configuration/#%3Ckubernetes_sd_config%3E
https://aws.amazon.com/
https://aws.amazon.com/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/get-set-up-for-amazon-ec2.html

Chapter 5: Service Discovery

As part of the Getting Started process you’ll receive an access key ID and a secret ac-
cess key. If you have an Amazon Web Services (AWS) account you should already
have a pair of these.

Let’s add a new job to our Prometheus configuration to retrieve our EC2 instances.

Listing 5.9: An EC2 discovery job

- job _name: amazon instances
ec2 sd configs:
- region: us-east-1
access key: AKIAIOSFODNN7EXAMPLE
secret key: wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY

We’ve specified a new amazon instances job. Our service discovery is provided
via the ec2 sd configs block. Inside this block we’ve specified three parame-
ters: region for the AWS region, and access key and secret key for our Amazon
credentials.

If you don’t want to specify your keys in the file (and, remember, you shouldn’t
hardcode your secrets in configuration), Prometheus supports Amazon’s local CLI
configuration approaches. If you don’t specify keys, Prometheus will look for the
appropriate environment variables, or for AWS credentials in the user running
Prometheus’ home directory.

Alternatively, you can specify a role ARN to use IAM roles.

Prometheus also supports profiles if you have multiple AWS accounts specified on
the host.

Version: v1.0.0 (427b8e9) 160

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-roles.html

Chapter 5: Service Discovery

(P
Listing 5.10: An EC2 discovery job with a profile

- job _name: amazon instances
ec2 sd configs:
- region: us-east-1
profile: work

\. J

Here Prometheus will use the work profile when discovering instances.

The discovery

The EC2 discovery plugin will return all running instances in that region. By
default, it’ll return targets with the private IP address of the instance, with a
default port of 80, and with a metrics path of /metrics. So, if you have an EC2
instance with the private IP address of 10.2.1.1, it will return a scrape target
address of http://10.2.1.1:80/metrics. We can override the default port with
the port parameter.

(P
Listing 5.11: An EC2 discovery job with a port

- job _name: amazon_instances
ec2 sd configs:
- region: us-east-1
port: 9100

\. J

This will override the default port of 80 with a port of 9100.

Often, though, we want to override more than just the port. If this isn’t where you
have metrics exposed, we can adjust this prior to the scrape by relabelling. This
relabelling takes place in the first relabel window, prior to the scrape, and uses
the relabel configs block.

Version: v1.0.0 (427b8e9) 161

Chapter 5: Service Discovery

Let’s assume each of our EC2 instances has the Node Exporter configured, and we
want to scrape the public IP address—not the private IP address—and relabel the
targets accordingly.

(P
Listing 5.12: Relabelling an EC2 discovery job

- job name: amazon instances
ec2 sd configs:
- region: us-east-1
access key: AKIAIOSFODNN7EXAMPLE
secret key: wlalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY
relabel configs:
- source labels: [meta ec2 public ip]
regex: '(.*)'
target label: address
replacement: '$1:9100'

Q TIP Remember, a job can have more than one type of service discovery
present. For example, we could discover some targets via file-based service dis-
covery and others from Amazon, we could statically specify some targets, and so
on. Despite this, any relabelling will be applied to all targets. If you’re using ser-
vice discovery metadata labels they won’t be available for all targets.

The configuration syntax and structure for relabelling is identical between the
relabel configs and metric relabel configs blocks. The only difference is
when they take place: relabel configs is after service discovery and before the
scrape, and metrics relabel configs is after the scrape.

Here we’ve specified one of the metadata labels collected by the EC2 service dis-
covery plugin, meta ec2 public ip, as the value for our source labels. We
specified (.*) as our regular expression. We technically don’t need to specify this

Version: v1.0.0 (427b8e9) 162

Chapter 5: Service Discovery

as this is the default value of the regex parameter. But we’ve included it to make it
clear what’s happening. This expression captures the entire contents of the source
label.

We then specify the target for our replacement in the target label parameter.
As we need to update the IP address we’re writing into the address label Fi-
nally, the replacement parameter contains the regular expression capture from
the regex and suffixes it with the Node Exporter default port: 9100. If the public
IP address of our instance was 34.201.102.225, then the instance would be rela-
belled as a target to 34.201.102.225:9100 and the default scheme, http, and the
metrics path, /metrics, would be added. The final target would be scraped at
http://34.201.102.225:9100/metrics.

Q TIP The metalabels are dropped after the first relabelling phase, relabel -

configs.

Other metadata collected by the EC2 discovery plugin includes:

« meta ec2 availability zone - The availability zone of the instance.

« meta ec2 instance id - The EC2 instance ID.

+ meta ec2 instance state - The state of the EC2 instance.

« meta ec2 instance type - The type of the EC2 instance.

« meta ec2 private ip-The private IP address of the EC2 instance, if avail-
able.

« meta ec2 public dns name - The public DNS name of the instance, if
available.

* meta ec2 subnet id- A comma-separated list of subnet IDs in which the
instance is running, if available.

« meta ec2 tag <tagkey> - Each tag value of the instance. (One label per

tag.)

Version: v1.0.0 (427b8e9) 163

Chapter 5: Service Discovery

« meta ec2 vpc id - The ID of the VPC in which the instance is running, if
available.

Q TIP The full list of metadata is available in the Prometheus configuration
documentation.

The meta ec2 tag <tagkey> metadata label for EC2 tags also allows us to use
relabelling to better name our targets. Rather than using the IP address for the
instance label, effectively the public name of the target, we can make use of the
tag values. Let’s say we had an EC2 tag called Name that contained the hostname
(or a friendly name of some sort) of the instance. We could use relabelling to make
use of that tag value.

Listing 5.13: Relabelling the instance name in a EC2 discovery job

- job name: amazon instances

ec2 sd configs:
- region: us-east-1

relabel configs:

- source_labels: [meta ec2 public ip]
regex: ‘'(.*)'
target label: address
replacement: '$1:9100'

- source labels: [meta ec2 tag Name]
target label: instance

You can see that we’ve added a second relabel that uses the meta ec2 tag Name
label, which contains the value of the Name tag as the source label, and writes it
into the instance label. Assuming the Name tag, for instance 10.2.1.1, contained
bastion, then our instance label would be relabelled from:

Version: v1.0.0 (427b8e9) 164

https://prometheus.io/docs/prometheus/latest/configuration/configuration/#<ec2_sd_config>
https://prometheus.io/docs/prometheus/latest/configuration/configuration/#<ec2_sd_config>

Chapter 5: Service Discovery

node cpu{cpu="cpu@",instance="10.2.1.1",job="nodes",mode="system"}
to:
node cpu{cpu="cpu@",instance="bastion", job="nodes", mode="system"}

Making it easier to parse metrics from that target.

DNS service discovery

If file discovery doesn’t work for you, or your source or service doesn’t support
any of the existing service discovery tools, then DNS discovery may be an option.
DNS discovery allows you to specify a list of DNS entries and then query records
in those entries to discover a list of targets. It relies on querying A, AAAA, or SRV
DNS records.

Q TIP The DNS records will be resolved by the DNS servers that are defined
locally on the Prometheus server—for example, /etc/resolv.conf on Linux.

Let’s look at a new job that uses DNS service discovery.

Listing 5.14: DNS service discovery job

- job _name: webapp
dns sd configs:
- names: [' prometheus. tcp.example.com']

\. J

We’ve defined a new job called webapp and specified a dns sd configs block.

Inside that block we’ve specified the names parameter which contains an array of
the DNS entries we’re going to query.

Version: v1.0.0 (427b8e9) 165

Chapter 5: Service Discovery

By default, Prometheus’s DNS service discovery assumes you’re querying SRV or
Service records. Service records are a way to define services in your DNS con-
figuration. A service generally consists of one or more target host and port com-
binations upon which your service runs. The format of a DNS SRV entry looks
like:

Listing 5.15: A SRV record

_service. proto.name. TTL IN SRV priority weight port target.

Where service is the name of the service being queried, proto is the protocol
of the service, usually TCP or UDP. We specify the name of the entry, ending in
a dot. We then have the TTL, or time to live, of the record. IN is the standard
DNS class (it’s always IN). And we specify a priority of the target host: lower
values are higher priority. The weight controls preferences for targets with the
same priority; higher values are preferred. Last, we specify the port the service
runs on and the host name of the host providing the service, ending in a dot.

So, for Prometheus, we might define records like:

Listing 5.16: Example SRV records

_prometheus. tcp.example.com. 300 IN SRV 10 1 9100 webappl.
example.com.
_prometheus. tcp.example.com. 300 IN SRV 10 1 9100 webapp2.
example.com.
_prometheus. tcp.example.com. 300 IN SRV 10 1 9100 webapp3.
example.com.

' NOTE There is a whole RFC for DNS service discovery: RFC6763.
Prometheus’s DNS discovery does not support it.

Version: v1.0.0 (427b8e9) 166

https://en.wikipedia.org/wiki/SRV_record
https://en.wikipedia.org/wiki/SRV_record
https://tools.ietf.org/html/rfc6763

Chapter 5: Service Discovery

When Prometheus queries for targets it will look up the DNS server for the example.
com domain. It will then search for a SRV record called prometheus. tcp.example
.com in that domain and return the service records in that entry. We only have
the three records in that entry, so we’d see three targets returned.

(/P
Listing 5.17: The DNS targets from the SRV

webappl.example.com:9100
webapp2.example.com:9100
webapp3.example.com:9100

We can also query individual A or AAAA records using DNS service discovery. To
do so we need to explicitly specify the query type and a port for our scrape. We
need to specify the port because the A and AAAA records only return the host, not
the host and port combination of the SRV record.

(P
Listing 5.18: DNS A record service discovery job

- job_name: webapp
dns sd configs:
- names: ['example.com']
type: A
port: 9100

\.

This will only return any A records at the root of the example.com domain. If we
wanted to return records from a specific DNS entry, we’d use this:

Version: v1.0.0 (427b8e9) 167

Chapter 5: Service Discovery

Listing 5.19: DNS subdomain A record service discovery job

- job _name: webapp
dns sd configs:
- names: ['web.example.com']
type: A
port: 9100

\. J

Here we’re pulling A records that resolve for web.example. com and suffixing them
with the 9100 port.

Q TIP There’s only one metadata label available from DNS service discovery:
__meta_dns_name. This is set to the specific record that generated the target.

Summary

In this chapter we learned about service discovery. We’ve seen several mecha-
nisms for discovering targets for Prometheus to scrape, including:

+ File-based discovery, populated by external data sources.

+ Platform-based service discovery, using the APIs and data of platforms like
AWS, Kubernetes, or Google Cloud.

+ DNS-based using SRV, A, or AAAA records.

Between these three discovery approaches, you should have sufficient means to
identify the resources you wish to monitor.

We also learned a bit more about relabelling, looking at the pre-scrape relabelling
phase and seeing how to use metadata to add more context to our metrics.

Version: v1.0.0 (427b8e9) 168

Chapter 5: Service Discovery

Now that we’ve got metrics coming into Prometheus, let’s tell folks about them.
In the next chapter, we’re going to look at alerting.

Version: v1.0.0 (427b8e9) 169

Chapter 6
Alerting and Alertmanager

I think we ought to take the men out of the loop.
— War Games, 1983

In the last few chapters we’ve installed, configured, and done some basic mon-
itoring with Prometheus. Now we need to understand how to generate useful
alerts from our monitoring data. Prometheus is a compartmentalized platform,
and the collection and storage of metrics is separate from alerting. Alerting is
provided by a tool called Alertmanager, a standalone piece of your monitoring
environment. Alerting rules are defined on your Prometheus server. These rules
can trigger events that are then propagated to Alertmanager. Alertmanager then
decides what to do with the respective alerts, handling issues like duplication, and
determines what mechanism to use when sending the alert on: realtime messages,
email, or via tools like PagerDuty and VictorOps.

In this chapter, we’re going to discuss what makes good alerting, install and con-
figure Alertmanager and look at how to use it to route notifications and manage
maintenance. We’ll then define our alerting rules on our Prometheus server, using
metrics we’ve collected thus far in the book, and then trigger some alerts.

First let’s talk a bit about good alerting.

170

Chapter 6: Alerting and Alertmanager

Alerting

Alerting provides us with indication that some state in our environment has

changed, usually for the worse. The key to a good alert is to send it for the right

reason, at the right time, with the right tempo, and to put useful information in

The most common anti-pattern seen in alerting approaches is sending too many

alerts. Too many alerts is the monitoring equivalent of “the boy who cried wolf”.

Recipients will become numb to alerts and tune them out. Crucial alerts are often

buried in floods of unimportant updates.

The reasons you’re usually sending too many alerts can include:

« An alert is not actionable, it’s informational. You should turn all of these
alerts off or turn them into counters that count the rate rather than alert on
the symptom.

A failed host or service upstream triggers alerts for everything downstream
of it. You should ensure your alerting system identifies and suppresses these
duplicate, adjacent alerts.

You’re alerting for causes and not symptoms. Symptoms are signs your ap-
plication has stopped working, they are the manifestation of issues that may
have many causes. High latency of an API or website is a symptom. That
symptom could be caused by any number of issues: high database usage,
memory issues, disk performance, etc. Alerting on symptoms identifies real
problems. Alerting on causes alone, for example high database usage, could
identify an issue but most likely will not. High database usage might be per-
fectly normal for this application and may result in no performance issues
for an end user or the application. Alerting on it is meaningless as its an
internal state. This alert is likely to result in engineers missing more criti-
cal issues because they have become numb to the volume of non-actionable,

Version: v1.0.0 (427b8e9) 171

http://en.wikipedia.org/wiki/The_Boy_Who_Cried_Wolf

Chapter 6: Alerting and Alertmanager

cause-based alerts. You should focus on symptom-based alerts and rely on
your metrics or other diagnostic data to identify causes.

The second most common anti-pattern is misclassification of alerts. Sometimes
this also means a crucial alert is buried in other alerts. But other times the alert
is sent to the wrong place or with the incorrect urgency.

The third most common anti-pattern is sending alerts that are not useful, especially
when the recipient is often a tired, freshly woken engineer on her third or fourth
on-call notification for the night. Here’s an example of a stock Nagios alert:

Listing 6.1: Stock Nagios alert

PROBLEM Host: server.example.com
Service: Disk Space

State is now: WARNING for 0d Oh 2m 4s (was: WARNING) after 3/3
checks

Notification sent at: Thu Aug 7th 03:36:42 UTC 2015 (
notification number 1)

Additional info:
DISK WARNING - free space: /data 678912 MB (9% inode=99%)

. J

This notification appears informative but it isn’t really. Is this a sudden increase?

Or has this grown gradually? What’s the rate of expansion? For example, as we
noted in the introduction, 9 percent disk space free on a 1 GB partition is different
from 9 percent disk free on a 1 TB disk. Can we ignore or mute this notification
or do we need to act now?

Good alerting has some key characteristics:

1. An appropriate volume of alerts that focus on symptoms not causes - Noisy
alerting results in alert fatigue and, ultimately, alerts being ignored. It’s

Version: v1.0.0 (427b8e9) 172

Chapter 6: Alerting and Alertmanager

easier to fix under-alerting than over-alerting.

2. The right alert priority should be set. If the alert is urgent then it should
be routed quickly and simply to the party responsible for responding. If
the alert isn’t urgent, we should send it with an appropriate tempo, to be
responded to when required.

3. Alerts should include appropriate context to make them immediately useful.

Q TIP There’s a great chapter on alerting in the SRE book.

Now, let’s look a little more closely at the Alertmanager.

How the Alertmanager works

The Alertmanager handles alerts sent from a client, generally a Prometheus server.
(It can also receive alerts from other tools, but this is beyond the scope of this
book.) Alertmanager handles deduplicating, grouping, and routing alerts to re-
ceivers like email, SMS, or SaaS services like PagerDuty. You can also manage
maintenance using Alertmanager.

Version: v1.0.0 (427b8e9) 173

http://landing.google.com/sre/book/chapters/practical-alerting.html
https://prometheus.io/docs/alerting/alertmanager/

Chapter 6: Alerting and Alertmanager

Prometheus

Alert rules
)\I /I

Prometheus Alert manager
Alertrules
Aef

Pager

./

Prometheus
Alert rules

Figure 6.1: Alertmanager architecture

On our Prometheus server we’ll be writing alerting rules. These rules will use
the metrics we’re collecting and trigger on thresholds or criteria we’ve specified.
We'll also see how we might add some context to the alerts. When the threshold or
criteria is met, an alert will be generated and pushed to Alertmanager. The alerts
are received on an HTTP endpoint on the Alertmanager. One or many Prometheus
servers can direct alerts to a single Alertmanager, or you can create a highly avail-
able cluster of Alertmanagers, as we’ll see later in Chapter 7.

After being received, alerts are processed by the Alertmanager and routed accord-
ing to their labels. If their path determines it, they are sent by the Alertmanager
to external destinations like email, SMS, or chat.

Version: v1.0.0 (427b8e9) 174

https://prometheus.io/docs/prometheus/latest/configuration/alerting_rules/

Chapter 6: Alerting and Alertmanager

Let’s continue with installing Alertmanager.

Installing Alertmanager

Alertmanager is a standalone Go binary. The Prometheus.io download page con-
tains files with the binaries for specific platforms. Currently Alertmanager is sup-
ported on:

 Linux: 32-bit, 64-bit, and ARM.

« Max OS X: 32-bit and 64-bit.

« FreeBSD: 32-bit, 64-bit, and ARM.

« OpenBSD: 32-bit, 64-bit, and ARM.

« NetBSD: 32-bit, 64-bit, and ARM.

« Microsoft Windows: 32-bit and 64-bit.
+ DragonFly: 64-bit.

Older versions of Alertmanager are available from the GitHub Releases page.

' NOTE At the time of writing, Alertmanager was at version 0.15.0-rc.2.

Installing Alertmanager on Linux

To install Alertmanager on a 64-bit Linux host, we can download the zipped tarball.
We can use wget or curl to get the file from the download site.

Version: v1.0.0 (427b8e9) 175

https://github.com/prometheus/alertmanager
https://prometheus.io/download/#alertmanager
https://github.com/prometheus/alertmanager/releases

Chapter 6: Alerting and Alertmanager

Listing 6.2: Download the Alertmanager tarball

$ cd /tmp

$ wget
https://github.com/prometheus/alertmanager/releases/download/v
0.15.0-rc.2/alertmanager-0.15.0-rc.2.linux-amd64.tar.gz

Now let’s unpack the alertmanager binary from the tarball, copy it somewhere
useful, and change its ownership to the root user.

Listing 6.3: Unpack the alertmanager binary

$ tar -xzf alertmanager-0.15.0-rc.2.linux-amd64.tar.gz
$ sudo cp alertmanager-0.15.0-rc.2.linux-amd64/alertmanager /usr/
local/bin/

\.

Let’s also copy the amtool binary into our path. The amtool binary is used to help
manage the Alertmanager and schedule maintenance windows from the command
line.

Listing 6.4: Moving the amtool binary

$ sudo cp alertmanager-0.15.0-rc.2.linux-amd64/amtool /usr/local/
bin

We can now test if Alertmanager is installed and in our path by checking its ver-
sion.

Version: v1.0.0 (427b8e9) 176

Chapter 6: Alerting and Alertmanager

Listing 6.5: Checking the Alertmanager version on Linux

$ alertmanager --version
alertmanager, version 0.15.0-rc.2 (branch: HEAD, revision: 30
dd0426c08b6479d9a26259ea5efd63bclee273)

build user: root@3el03e3fc918
build date: 20171116-17:45:26
go version: gol.9.2

Q TIP This same approach will work on Mac OS X with the Darwin version of
the Alertmanager binary.

Installing Alertmanager on Microsoft Windows

To install Alertmanager on Microsoft Windows, we need to download the
alertmanager.exe executable and put it in a directory. Let’s create a directory
for the executable using Powershell.

Listing 6.6: Creating a directory on Windows

C:\> MKDIR alertmanager
C:\> CD alertmanager

Now download the alertmanager.exe executable from GitHub into the C:\
alertmanager directory:

Version: v1.0.0 (427b8e9) 177

Chapter 6: Alerting and Alertmanager

Listing 6.7: Alertmanager Windows download

https://github.com/prometheus/alertmanager/releases/download/v
0.15.0-rc.2/alertmanager-0.15.0-rc.2.windows-amd64.tar.gz

Unzip the executable using a tool like 7-Zip into the C:\alertmanager directory.
Finally, add the C:\alertmanager directory to the path. This will allow Windows
to find the executable. To do this, run this command inside Powershell.

Listing 6.8: Setting the Windows path

$env:Path += ";C:\alertmanager"

You should now be able to run the alertmanager.exe executable.

Listing 6.9: Checking the Alertmanager version on Windows

C:\> alertmanager.exe --version
alertmanager, version 0.15.0-rc.2 (branch: HEAD, revision: 30
dd0426c08b6479d9a26259%9ea5efd63bclee273)

build user: root@3el103e3fc918
build date: 20171116-17:45:26
go version: gol.9.2

Stacks

The stacks we saw in Chapter 3 also include Alertmanager installations.

« A Prometheus, Node Exporter, and Grafana docker-compose stack.

Version: v1.0.0 (427b8e9) 178

http://www.7-zip.com/
https://github.com/vegasbrianc/prometheus

Chapter 6: Alerting and Alertmanager

« Another Docker Compose single node stack with Prometheus, Alertmanager,
Node Exporter, and Grafana.
* A Docker Swarm stack for Prometheus.

Installing via configuration management

Some of the configuration management modules we saw in Chapter 3 can also
install Alertmanager: You could review their capabilities to identify which install
and configure Alertmanager.

Q TIP Remember configuration management is the recommended approach for
installing and managing Prometheus and its components!

Configuring the Alertmanager

Like Prometheus, Alertmanager is configured with a YAML-based configuration
file. Let’s create a new file and populate it.

Listing 6.10: Creating the alertmanager.yml file

$ sudo mkdir -p /etc/alertmanager/
$ sudo touch /etc/alertmanager/alertmanager.yml

. J

Now let’s add some configuration to the file. Our basic configuration will send

any alerts received out via email. We’ll build on this configuration as the chapter
unfolds.

Version: v1.0.0 (427b8e9) 179

https://github.com/danguita/prometheus-monitoring-stack
https://github.com/chmod666org/docker-swarm-prometheus
https://prometheus.io/docs/alerting/configuration/

Chapter 6: Alerting and Alertmanager

Listing 6.11: A simple alertmanager.yml configuration file

global:
smtp_smarthost: 'localhost:25'
smtp from: 'alertmanager@example.com'
smtp require tls: false

templates:
- '/etc/alertmanager/template/*.tmpl'

route:
receiver: email

receivers:
- name: ‘'email’
email configs:
- to: 'alerts@example.com'

. J

This configuration file contains a basic setup that processes alerts and sends them

via email to one address. Let’s look at each block in turn.

The first block, global, contains global configuration for the Alertmanager. These
options set defaults for all the other blocks, and are valid in those blocks as over-
rides. In our case, we're just configuring some email/SMTP settings: the email
server to use for sending emails, the source/from address of those emails, and
we’re disabling the requirement for automatically using TLS.

Q TIP This assumes you have a SMTP server running on the localhost on port
25.

The templates block contains a list of directories that hold alert templates. As

Version: v1.0.0 (427b8e9) 180

https://prometheus.io/docs/alerting/notifications/

Chapter 6: Alerting and Alertmanager

Alertmanager can send to a variety of destinations, you often need to be able to
customize what an alert looks like and the data it contains. Let’s just create this
directory for the moment.

Listing 6.12: Creating the templates directory

$ sudo mkdir -p /etc/alertmanager/template

\. J

We’ll see more about templates later.

Next, we have the route block. Routes tell Alertmanager what to do with specific
incoming alerts. Alerts are matched against rules and actions taken. You can
think about routing like a tree with branches. Every alert enters at the root of
the tree—the base route or node. Each route, except the base node, has matching
criteria which should match all alerts. You can then define child routes or nodes—
the branches of the tree that take specific action or interest in specific alerts. For
example, all the alerts from a specific cluster might be processed by a specific
child route.

Version: v1.0.0 (427b8e9) 181

Chapter 6: Alerting and Alertmanager

«(1)«()

Child Child Child

—
e
—

Email Chat

Figure 6.2: Alertmanager routing

In our current configuration, we have only defined the base route, the node at the
root of the tree. Later in this chapter, we’ll take advantage of routes to ensure our
alerts have the right volume, frequency, and destinations.

We’ve also only defined one parameter: receiver. This is the default destination
for our alerts, in our case email. We’ll define that receiver next.

The last block, receivers, specifies alert destinations. You can send alerts via
email, to services like PagerDuty and VictorOps, and to chat tools like Slack and
HipChat. We only have one destination defined: an email address.

Each receiver has a name and associated configuration. Here we’ve named our
receiver email. We then provide configuration for the specific types of receivers.

Version: v1.0.0 (427b8e9) 182

Chapter 6: Alerting and Alertmanager

For our email alerts, we use the email configs block to specify email options,
like the to address to receive alerts. We could also specify SMTP settings, which
would override the settings in global, and additional items to be added, like mail
headers.

Q TIP One of the built-in receivers is called the webhook receiver. You can use
this receiver to send alerts to other destinations that do not have specific receivers
in Alertmanager.

Now that we have configured Alertmanager, let’s launch it.

Running Alertmanager

Alertmanager runs as a web service, by default on port 9093. It is started by
running the alertmanager binary on Linux and OS X, or the alertmanager.exe
executable on Windows, specifying the configuration file we’ve just created. Let’s
start Alertmanager now.

Listing 6.13: Starting Alertmanager

$ alertmanager --config.file alertmanager.yml

\. J

We’ve specified our alertmanager.yml configuration file with the - -config.file
flag. Alertmanager has a web interface at:

http://localhost:9093/

Version: v1.0.0 (427b8e9) 183

https://prometheus.io/docs/alerting/configuration/#email_config
https://prometheus.io/docs/alerting/configuration/#webhook_config

Chapter 6: Alerting and Alertmanager

[alertmanager:9093/#/alerts

Alertmanager Alerts Silences Status

Filter Group Receiver: All Silenced Inhibited

Custom matcher, e.g. env="production"

No alerts found

Figure 6.3: Alertmanager web interface

You can use this interface to view current alerts and manage maintenance window
alert suppression, named “silences” in Prometheus terminology.

Q TIP There’s also a command line tool amtool, that ships with Alertmanager
that allows you to query alerts, manage silences and work with an Alertmanager
server.

Now’s lets configure Prometheus to find our Alertmanager.

Configuring Prometheus for Alertmanager

Let’s quickly detour back to our Prometheus configuration to tell it about our new
Alertmanager. In Chapter 3 we saw the default Alertmanager configuration in the
prometheus.yml configuration file. The Alertmanager configuration is contained
in the alerting block. Let’s have a look at the default block.

Version: v1.0.0 (427b8e9) 184

Chapter 6: Alerting and Alertmanager

Listing 6.14: The alerting block

alerting:
alertmanagers:
- static configs:
- targets:
- alertmanager:9093

\. J

The alerting block contains configuration that allows Prometheus to identify

one or more Alertmanagers. To do this, Prometheus reuses the same discovery
mechanisms it uses to find targets to scrape. In the default configuration this is
static configs. Like a monitoring job this specifies a list of targets, here in the
form of a host name, alertmanager, and a port, 9093—the Alertmanager default
port. This listing assumes your Prometheus server can resolve the alertmanager
hostname to an IP address and that the Alertmanager is running on port 9093 on
that host.

Q TIP You’ll also be able to see any configured Alertmanagers in the Prometheus
web interface on the status page: http://localhost:9090/status.

Alertmanager service discovery

As we have access to service discovery mechanisms, we could also use one of those
to identify one or more Alertmanagers. Let’s add a DNS SRV record that allows
Prometheus to discover our Alertmanagers.

Let’s create that record now.

Version: v1.0.0 (427b8e9) 185

Chapter 6: Alerting and Alertmanager

Listing 6.15: The Alertmanager SRV record

_alertmanager. tcp.example.com. 300 IN SRV 10 1 9093
alertmanagerl.example.com.

Here we’ve specified a TCP service called alertmanager in the form of a SRV
record. Our record returns the hostname alertmanagerl.example.com and port
number 9093 where Prometheus will expect to find an Alertmanager running. Let’s
configure the Prometheus server to search there.

Listing 6.16: Discovering the Alertmanager

alerting:
alertmanagers:
- dns sd configs:
- names: [' alertmanager. tcp.example.com']

Here Prometheus will query the alertmanager. tcp.example.com SRV record
to return our Alertmanager’s hostname. We can do the same with other service
discovery mechanisms to identify Alertmanagers to Prometheus.

Q TIP You'll need to reload or restart Prometheus to enable the Alertmanager
configuration.

Version: v1.0.0 (427b8e9) 186

Chapter 6: Alerting and Alertmanager

Monitoring Alertmanager

Like Prometheus, Alertmanager exposes metrics about itself. Let’s create a
Prometheus job for monitoring our Alertmanager.

Listing 6.17: The Alertmanager Prometheus job

- job _name: 'alertmanager'
static configs:
- targets: ['localhost:9093']

This will collect metrics from http://localhost:9093/metrics and scrape a series
of time series prefixed with alertmanager . These include counts of alerts by
state, and counts of successful and failed notifications by receiver—for example,
all failed notifications to the email receiver. It also contains cluster status metrics
that we can make use of when we look at clustering Alertmanagers in Chapter 7.

Adding alerting rules

Now that we’ve got Alertmanager set up, let’s add our first alerting rules. We're
going to create alerts from the node queries we developed in Chapter 4 as well as
some basic availability alerting using the up metric.

Like recording rules, alerting rules are defined as YAML statements in rules
files loaded in the Prometheus server configuration. Let’s create a new file,
node alerts.yml, in our rules directory to hold our node alerting rules.

Q TIP You can comingle recording rules and alerting rules in the same file, but
I like to keep them in separate files for clarity.

Version: v1.0.0 (427b8e9) 187

Chapter 6: Alerting and Alertmanager

Listing 6.18: Creating an alerting rules file

$ cd rules
$ touch node alerts.yml

Rather than add this file to the rule files block in our prometheus.yml config-
uration file, let’s use globbing to load all files that end in either rules.yml or
~alerts.yml in that directory.

Listing 6.19: Adding globbing rule files block

rule files:
- "rules/* rules.yml"
- "rules/* alerts.yml"

You can see that we’ve added configuration that will load all files with the right
naming convention. We’d need to restart the Prometheus server to load this new
alerting rules file.

Adding our first alerting rule

Let’s add our first rule: a CPU alerting rule. We're going to create an alert that
will trigger if the CPU query we created, the average node CPU five-minute rate,
is over 80 percent for at least 60 minutes.

Let’s see that rule now.

Version: v1.0.0 (427b8e9) 188

https://prometheus.io/docs/prometheus/latest/configuration/alerting_rules/

Chapter 6: Alerting and Alertmanager

Listing 6.20: Our first alerting rule

groups:
- name: node alerts
rules:
- alert: HighNodeCPU
expr: instance:node cpu:avg rate5m > 80
for: 60m
labels:
severity: warning
annotations:
summary: High Node CPU for 1 hour
console: You might want to check the Node Dashboard at
http://grafana.example.com/dashboard/db/node-dashboard

Like our recording rules, alerting rules are grouped together. We’ve specified a
group name: node alerts. The rules in this group are contained in the rules
block. Each has a name, specified in the alert clause. Ours is called HighNodeCPU.
In each alert group, the alert name needs to be unique.

We also have the test or expression that will trigger the alert. This is specified
in the expr clause. Our test expression uses the instance:node cpu:avg rate5m
metric we created in Chapter 4 using a recording rule.

instance:node cpu:avg rate5m > 80
We append a simple check—is the metric greater than 80, or 80 percent?

The next clause, for, controls the length of time the test expression must be true
for before the alert is fired. In our case, the instance:node cpu:avg rate5mneeds
to be greater than 80 percent for 60 minutes before the alert is fired. This limits
the potential of the alert being a false positive or a transitory state.

Last, we can decorate our alert with labels and annotations. All the current labels
on time series in the alert rule are carried over to the alert. The labels clause
allows us to specify additional labels to be attached to the alert; here we’ve added

Version: v1.0.0 (427b8e9) 189

Chapter 6: Alerting and Alertmanager

a severity label with a value of warning. We’ll see how we can use this label
shortly.

The labels on the alert, combined with the name of the alert, represent the identity
of the alert. This is the same premise as time series, where the metric name and
labels represent the identity of a time series.

The annotations clause allows us to specify informational labels like a description,
a link to a run book, or instructions on how to handle this alert. We’ve added a
label called summary that describes the alert. We’ve also added an annotation
called console that points the recipient to a Grafana dashboard for node-based

metrics. This is an excellent example of providing context with an annotation.
Now we need to reload Prometheus to enable our new alerting rule.

Once Prometheus is restarted, you’ll be able to see your new alert in the
Prometheus web interface at http://localhost:9090/alerts.

Version: v1.0.0 (427b8e9) 190

Chapter 6: Alerting and Alertmanager

- @ localhost:9090/alerts

Prometheus Alerts Graph Status ~ Help

Alerts

HighNodeCPU (0 active)

alert: HighNodeCPU

expr: instance:node_cpu:avg_ratebm
> 80

for: 1h

labels:
severity: medium

annotations:
summary: High CPU for 1 hour

Figure 6.4: List of Prometheus alerts

This is both a summary of the alerting rule and, as we’ll see shortly, a way to see
the status of each alert.

Version: v1.0.0 (427b8e9) 191

Chapter 6: Alerting and Alertmanager

What happens when an alert fires?

So how does an alert fire? Prometheus evaluates all rules at a regular interval,
defined by the evaluation interval, which we’ve set to 15 seconds. At each
evaluation cycle, Prometheus runs the expression defined in each alerting rule
and updates the alert state.

An alert can have three potential states:

* Inactive - The alert is not active.

* Pending - The alert has met the test expression but is still waiting for the
duration specified in the for clause to fire.

* Firing - The alert has met the test expression and has been Pending for
longer than the duration of the for clause.

The Pending to Firing transition ensures an alert is more likely to be valid and not
flapping. Alerts without a for clause automatically transition from Inactive to
Firing and only take one evaluation cycle to trigger. Alerts with a for clause will
transition first to Pending and then to Firing, thus taking at least two evaluation
cycles to trigger.

So far, the lifecycle of our alert is:

1. The CPU of a node constantly changes, and it gets scraped by Prometheus
every scrape interval. For us this is every 15 seconds.

2. Alerting rules are then evaluated against the metrics every evaluation interval
. For us this is 15 seconds again.

3. When the alerting expression is true—for us, CPU is over 80 percent—an
alert is created and transitions to the Pending state, honoring the for clause.

4. Over the next evaluation cycles, if the alert test expression continues to be
true, then the duration of the for is checked. If that duration is then com-
plete, the alert transitions to Firing and a notification is generated and
pushed to the Alertmanager.

Version: v1.0.0 (427b8e9) 192

Chapter 6: Alerting and Alertmanager

5. If the alert test expression is no longer true then Prometheus changes the
alerting rule’s state from Pending to Inactive.

The alert at the Alertmanager

Our alert is now in the Firing state, and a notification has been pushed to the
Alertmanager. We can see this alert and its status in the Prometheus web interface
at http://localhost:9090/alerts.

' NOTE The Alertmanager API receives alerts on the URI /api/vi/alerts.

Prometheus will also create a metric for each alert in the Pending and Firing
states. The metric will be called ALERT and will be constructed like this example
for our HighNodeCPU alert.

Listing 6.21: The ALERT time series

ALERTS{alertname="HighNodeCPU",alertstate="firing", severity=
warning,instance="138.197.26.39:9100"}

Each alert metric has a fixed value of 1 and exists for the period the alert is in
the Pending or Firing states. After that it receives no updates and is eventually
expired.

The notification is sent to the Alertmanager(s) defined in the Prometheus
configuration—in our case at the alertmanager host on port 9093. The notifica-
tion is pushed to an HTTP endpoint:

http://alertmanager:9093/api/vl/alerts

Version: v1.0.0 (427b8e9) 193

Chapter 6: Alerting and Alertmanager

Let’s assume one of our HighNodeCPU alerts has fired. We’ll be able to see that
alert in the Alertmanager web console at http://alertmanager:9093/#/alerts.

Alertmanager Alerts Silences Status

Filter Group Receiver: All Silenced Inhibited

Custom matcher, e.g. env="production"

alertname="HighNodeCPU"

00:21:25, 2017-12-18

severity="medium" instance="138.197.30.163:9100"

Figure 6.5: Fired alert in Alertmanager
You can use this interface to search for, query, and group current alerts, according
to their labels.

In our current Alertmanager configuration, our alert will immediately be routed
to our email receiver, and an email like this one below will be generated:

Version: v1.0.0 (427b8e9) 194

Chapter 6: Alerting and Alertmanager

1 alert for alertname=HighNodeCPU

View In AlertManager

[1] Firing

Labels

alertname = HighNodeCPU
instance = 138.197.30.147:9100
severity = medium

Annotations

summary = High CPU for 1 hour
Source

Sent by AlertManager

Figure 6.6: HighNodeCPU alert email

Q TIP we’ll see how to update this template later in the chapter.

This doesn’t seem very practical if we have many teams, or alerts of different
severities. This is where Alertmanager routing is useful.
Adding new alerts and templates

So that we have more alerts to route, let’s quickly add some other alert rules to
the node alerts.yml alerting rule file.

Version: v1.0.0 (427b8e9) 195

Chapter 6: Alerting and Alertmanager

(P
Listing 6.22: Adding more alerting rules

groups:
- name: node alerts
rules:

- alert: DiskWillFillIn4Hours
expr: predict linear(node filesystem free{mountpoint="/"}[1h
1, 4*3600) < 0
for: 5m
labels:
severity: critical
annotations:
summary: Disk on {{ $labels.instance }} will fill in
approximately 4 hours.
- alert: InstanceDown
expr: up{job="node"} == 0
for: 10m
labels:
severity: critical
annotations:
summary: Host {{ $labels.instance }} of {{ $labels.job }}
is down!

. J

The first alert replicates the predict linear disk prediction we saw in Chapter 4.

Here, if the linear regression predicts the disk space of the / root filesystem will
be exhausted within four hours, the alert will fire. You’ll also notice that we’ve
added some template values to the summary annotation.

Templates

Templates are a way of making use of the labels and value of your time series data
in your alerts. Templates can be used in annotations and labels. The templates
use the standard Go template syntax and expose some variables that contain the
labels and value of a time series. The labels are made available in a convenience

Version: v1.0.0 (427b8e9) 196

https://golang.org/pkg/text/template/

Chapter 6: Alerting and Alertmanager

variable, $1abels, and the value of the metric in the variable $value.

Q TIP The $1abels and $value variables are more convenient names for the
underlying Go variables: .Labels and .Value, respectively.

To refer to the instance label in our summary annotation we use {{ $labels.
instance }}. If we wanted to refer to the value of the time series, we’d use
{{ $value }}. Prometheus also provides some functions, which you can see in
the template reference. An example of this is the humanize function, which turns
a number into a more human-readable form using metric prefixes. For example:

Listing 6.23: Humanizing a value

annotations:
summary: High Node CPU of {{ humanize $value }}% for 1
hour

\. J

This would display the value of the metric as a two-decimal-place percentage, e.g.,
88.23%.

Prometheus alerts

We shouldn’t forget that things can go wrong with our Prometheus server, too.
Let’s add a couple of rules to identify issues there and alert on them. We’ll create
a new file, prometheus alerts.yml, in the rules directory to hold these. As this
matches our rules glob, it’ll also be loaded by Prometheus.

Version: v1.0.0 (427b8e9) 197

https://prometheus.io/docs/prometheus/latest/configuration/template_reference/
https://prometheus.io/docs/prometheus/latest/configuration/template_reference/#numbers

Chapter 6: Alerting and Alertmanager

Listing 6.24: Creating the prometheus_alerts.yml file

$ touch rules/prometheus alerts.yml

And let’s populate this file.
(P

Listing 6.25: The prometheus_alerts.yml file

groups:
- name: prometheus alerts
rules:
- alert: PrometheusConfigReloadFailed
expr: prometheus config last reload successful ==
for: 10m
labels:
severity: warning
annotations:
description: Reloading Prometheus configuration has failed
on {{ $labels.instance }}.
- alert: PrometheusNotConnectedToAlertmanagers
expr: prometheus notifications alertmanagers discovered < 1
for: 16m
labels:
severity: warning
annotations:
description: Prometheus {{ $labels.instance }} is not
connected to any Alertmanagers

Here we’ve added two new rules. The first, PrometheusConfigReloadFailed, lets
us know if our Prometheus configuration has failed a reload. This lets us know,
using the metric prometheus config last reload successful, if the last reload
failed. If the reload did fail, the metric will have a value of 0.

The second rule makes sure our Prometheus server can discover Alertmanagers.

This uses the prometheus notifications alertmanagers discovered metric,

Version: v1.0.0 (427b8e9) 198

Chapter 6: Alerting and Alertmanager

which is a count of Alertmanagers this server has found. If it is less than 1,
Prometheus hasn’t discovered any Alertmanagers and this alert will fire. As there
aren’t any Alertmanagers, it will only show up on the Prometheus console on the
/alerts page.

Availability alerts

Our last alerts help us determine the ability of hosts and services. The first of these
alerts takes advantage of the systemd metrics we are collecting using the Node
Exporter. We’re going to generate an alert if any of the services we’re monitoring
on our nodes is no longer active.

Listing 6.26: Node service alert

- alert: NodeServiceDown

expr: node systemd unit state{state="active"} !=1
for: 60s
labels:
severity: critical
annotations:

summary: Service {{ $labels.name }} on {{ $labels.instance }}
is no longer active!
description: Werner Heisenberg says - "OMG Where's my
service?"

This alert will trigger if the node systemd unit state metric with the active
label is 0, indicating that a service has failed for at least 60 seconds.

The next alert uses the up metric we also saw in Chapter 4. This metric is useful
for monitoring the availability of a host. It’s not perfect because what we’re really
monitoring is the success or failure of a job’s scrape of that target. But it’s useful
to know if the instance has stopped responding to scrapes, which potentially indi-
cates a larger problem. To do this, the alert detects if the up metric has a value of
0, indicating a failed scrape.

Version: v1.0.0 (427b8e9) 199

Chapter 6: Alerting and Alertmanager

up{job="node"} == 0

We’ve added a new value to our severity label of critical and added a templated
annotation to help indicate which instance and job have failed.

In many cases, knowing a single instance is down isn’t actually very important.
Instead we could also test for a number of failed instances—for example, a per-
centage of our instances:

avg(up) by (job) <= 0.50

This test expression works out the average of the up metric, aggregates it by job,
and fires if that value is below 50 percent. If 50 percent of the instances in a job
fail their scrapes, the alert will fire.

Another approach might be:
sum by job (up) / count(up) <= 0.8

Here we’re summing the up metric by job, dividing it by the count, and firing if
the result is greater than or equal to 0.8 or indicating that 20 percent of instances
in a specific job are not up.

We can make our up alert slightly more robust by identifying when targets dis-
appear. If, for example, our target is removed from service discovery, then its
metrics will no longer be updated. If all targets disappear from service discovery,
no metrics will be recorded—hence our up alert won’t be fired. Prometheus has a
function, absent, that detects the presence of missing metrics.

Version: v1.0.0 (427b8e9) 200

https://prometheus.io/docs/prometheus/latest/querying/functions/#absent()

Chapter 6: Alerting and Alertmanager

Listing 6.27: The up metric missing alert

- alert: InstancesGone
expr: absent(up{job="node"})
for: 10s
labels:
severity: critical
annotations:
summary: Host {{ $labels.instance }} is no longer
reporting!
description: 'Werner Heisenberg says, OMG Where are my
instances?'

. J

Here our expression uses the absent function to detect if any of the up metrics
from the node job disappear, and it fires an alert if they do.

Q TIP Another approach for availability monitoring is the probing of endpoints
over HTTP, HTTPS, DNS, TCP, and ICMP. We’ll see more of it in Chapter 10.

Finally, we’ll need to restart the Prometheus server to load these new alerts.

Routing

Now that we have a selection of alerts with some varying attributes, we need to
route them to various folks. We discovered earlier that routing is a tree. The top,
default route is always configured and matches anything that isn’t matched by a
child route.

Going back to our Alertmanager configuration, let’s add some routing configura-
tion to our alertmanager.yml file.

Version: v1.0.0 (427b8e9) 201

Chapter 6: Alerting and Alertmanager

(P
Listing 6.28: Adding routing configuration

route:

group by: ['instance']

group wait: 30s

group_interval: 5m

repeat interval: 3h

receiver: email

routes:

- match:

severity: critical
receiver: pager
- match _re:
severity: ~(warning]|critical)$
receiver: support team

receivers:
- name: ‘'email’

email configs:

- to: 'alerts@example.com'
- name: 'support team'

email configs:

- to: 'support@example.com'
- name: 'pager'

email configs:

- to: 'alert-pager@example.com'

\.

You can see that we’ve added some new options to our default route. The first op-
tion, group by, controls how the Alertmanager groups alerts. By default, all alerts
are grouped together, but if we specify group by and any labels, then Alertman-
ager will group alerts by those labels. For example, we’ve specified the instance
label, which means that all alerts from a specific instance will be grouped together.

If you list more than one label, alerts are grouped if every specified label value
matches, for example:

Version: v1.0.0 (427b8e9) 202

Chapter 6: Alerting and Alertmanager

Listing 6.29: Grouping

route:
group by: ['service', 'cluster']

Here the values of the service and cluster labels need to match for an alert to
be grouped.

' NOTE This only works for labels, not annotations.

Grouping also changes the behavior of Alertmanager. If a new alert is raised,
Alertmanager will wait for the period specified in our next option, group wait, to
see if other alerts from that group are received, before firing the alert(s). You can
think about this like a group alert buffer. In our case, this wait is 30 seconds.

After the alert(s) are fired, if new alerts from the next evaluation are received
for that grouping, Alertmanager will wait for the period specified in the
group interval option, five minutes for us, before sending the new alerts. This
prevents alert floods for groupings of alerts.

We’ve also specified the repeat interval. This is a pause that applies not to our
groups of alerts, but rather to each single alert, and is the period to wait to resend
the same alert. We’ve specified three hours.

Routes

We’ve then listed our branched routes. Our first route uses a new receiver we’ve
defined, pager. This sends the alerts on this route to a new email address. It
finds the specific alerts to be sent using the match option. There are two kind

Version: v1.0.0 (427b8e9) 203

Chapter 6: Alerting and Alertmanager

of matching: label matching and regular expression matching. The match option
does simple label matching.

(P
Listing 6.30: Label matching

match:
severity: critical

Here we’re matching all severity labels with a value of critical and sending
them to the pager receiver.

As routes are branches, we can also branch the route again if we need. For exam-
ple:

(P
Listing 6.31: Routing branching

routes:
- match:
severity: critical
receiver: pager
routes:
- match:
service: applicationl
receiver: support team

You can see our new routes block nested inside our existing route. To trigger this
route our alert would first need a severity label of critical and then a service
label of applicationl. If both these criteria matched, then our alert would be
routed to the receiver support team.

We can nest our routes as far down as we need. By default, any alert that matches
a route is handled by that route. We can, however, override that behavior using
the continue option. The continue option controls whether an alert will traverse
the route and then return to traverse the route tree.

Version: v1.0.0 (427b8e9) 204

Chapter 6: Alerting and Alertmanager

l NOTE Alertmanager routes are post-order traversed.

(P
Listing 6.32: Routing branching

routes:
- match:
severity: critical
receiver: pager
continue: true

\.

The continue option defaults to false, but if set to true the alert will trigger in
this route if matched, and continue to the next sibling route. This is sometimes
useful for sending alerts to two places, but a better approach is to specify multiple
endpoints in your receiver. For example:

Listing 6.33: Multiple endpoints in a receiver

receivers:
- name: ‘'email’
email configs:
- to: 'alerts@example.com'
pagerduty configs:
- service key: TEAMKEYHERE

This adds a second pagerduty configs block that sends to PagerDuty as well as via
email. We could specify any of the available receiver destinations—for example,
we could send email and a message to a chat service like Slack.

Q TIP Used to seeing resolution alerts? These are alerts generated when the

Version: v1.0.0 (427b8e9) 205

https://en.wikipedia.org/wiki/Tree_traversal#Post-order

Chapter 6: Alerting and Alertmanager

alert condition has been resolved. They can be sent with Alertmanager by setting
the send resolved option to true in your receiver configuration. Sending these
resolution alerts is often not recommended as it can lead to a cycle of alerting
“false alarms” that result in alert fatigue. Think carefully before enabling them.

Our second route uses the match re option to match a regular expression against
a label. The regular expression also uses the severity label.

Listing 6.34: A regular expression match

- match_re:
severity: ~(informational|warning)$
receiver: support team

' NOTE Prometheus and Alertmanager regular expressions are fully an-
chored.

It matches either informational or warning values in the severity label.

Once you've reloaded or restarted Alertmanager to load the new routes, you can
try to trigger alerts and see the routing in action.

Receivers and notification templates

Now that we’ve got some basic rules in place, let’s add a non-email receiver. We’re
going to add the Slack receiver, which sends messages to Slack instances. Let’s
see our new receiver configuration in the alertmanager.yml configuration file.

Version: v1.0.0 (427b8e9) 206

https://slack.com/
https://prometheus.io/docs/alerting/configuration/#%3Cslack_config%3E

Chapter 6: Alerting and Alertmanager

First, we’ll add a Slack configuration to our pager receiver.

(P
Listing 6.35: Adding a Slack receiver

receivers:
- name: 'pager'

email configs:

- to: 'alert-pager@example.com'

slack configs:

- api url: https://hooks.slack.com/services/ABC123/ABC123/
EXAMPLE

channel: #monitoring

\. J

Now, any route that sends alerts to the pager receiver will be sent both to Slack
in the #monitoring channel and via email to the alert-pager@example.com email

address.

The generic alert message that Alertmanager sends to Slack is pretty simple. You
can see the default template that Alertmanager uses in its source code. This tem-
plate contains the defaults for email and other receivers, but we can override these
values for many of the receivers. For example, we can add a text line to our Slack
alerts.

(P
Listing 6.36: Adding a Slack receiver

slack configs:
- api_url: https://hooks.slack.com/services/ABC123/ABC123/
EXAMPLE
channel: #monitoring
text: '{{ .CommonAnnotations.summary }}'

\.

J

Alertmanager notification customization uses Go templating syntax. The

data contained in the alerts is also exposed via variables. We’re using the
CommonAnnotations variable, which contains the set of annotations common to

Version: v1.0.0 (427b8e9) 207

https://github.com/prometheus/alertmanager/blob/master/template/default.tmpl
https://golang.org/pkg/text/template/

Chapter 6: Alerting and Alertmanager

a group of alerts. We're using the summary annotation as the text of the Slack
notification.

Q TIP You can find a full reference to notification template variables in the
Alertmanager documentation.

We can also use the Go template function to reference external templates, to save
on having long, complex strings embedded in our configuration file. We refer-
enced the template directory earlier in this chapter—ours is at /etc/alertmanager
/templates/. Let’s create a template in this directory.

Listing 6.37: Creating a template file

$ touch /etc/alertmanager/templates/slack.tmpl

And let’s populate it.

.|
Listing 6.38: The slack.tmpl file

{{ define "slack.example.text" }}{{ .CommonAnnotations.summary

PHA{ end}}

Here we’ve defined a new template using the define function and ending with
end. We’ve called it slack.example.text and moved the content from text in-
side the template. We can now reference that template inside our Alertmanager
configuration.

Version: v1.0.0 (427b8e9) 208

https://prometheus.io/docs/alerting/notifications/
https://prometheus.io/docs/alerting/notifications/

Chapter 6: Alerting and Alertmanager

Listing 6.39: Adding a Slack receiver

slack configs:
- api_url: https://hooks.slack.com/services/ABC123/ABC123/
EXAMPLE
channel: #monitoring
text: '{{ template "slack.example.text" . }}'

\. J

We’ve used the template option to specify the name of our template. The text

field will now be populated with our template notification. This is useful for
decorating notifications with context.

Q TIP There are some other examples of notification templates in the Alertman-
ager documentation.

Silences and maintenance

Often we need to let our alerting system know that we’ve taken something out
of service for maintenance and that we don’t want alerts triggered. Or we need
to mute downstream services and applications when something upstream is bro-
ken. Prometheus calls this muting of alerts a “silence.” Silences can be set for
specific periods—for example, an hour—or over a set window—for example, un-
til midnight today. This is the silence’s expiry time or expiration date. If required,
we can also manually expire a silence early, if, say, our maintenance is complete
earlier than planned.

You can schedule silences using two methods.

Version: v1.0.0 (427b8e9) 209

https://prometheus.io/docs/alerting/notification_examples/

Chapter 6: Alerting and Alertmanager

« Via the Alertmanager web console.
* Via the amtool command line tool.

Controlling silences via the Alertmanager
The first method is to use the web interface and click the New Silence button.

Alertmanager Alerts Silences Status

Filter Group Receiver: All Silenced Inhibited

Custom matcher, e.g. env="production"

Figure 6.7: Scheduling silences

Silences specify a start time, end time, or a duration. The alerts to be silenced
are identified by matching alerts using labels, much like alert routing. You can
use straight matches—for example, matching every alert that has a label with
a specific value—or you can use a regular expression match. You also need to
specify an author for the silence and a comment explaining why alerts are being
silenced.

Version: v1.0.0 (427b8e9) 210

Chapter 6: Alerting and Alertmanager

New Silence
Start Duration End
[2018-01-02T17:29:53.922Z v J [4h v] [2018-01-02T21:29:53.922Z v

Matchers Alerts affected by this silence.

Name Value
severity v } { critical v O Regex
+
Creator
[Werner Heisenberg v]
Comment

‘ Silence is a virtue

Figure 6.8: A new silence

We click Create to create the new silence (and we can use Preview Alerts to
identify if any current alerts will be silenced). Once created we can edit a silence
or expire it to remove the silence.

Version: v1.0.0 (427b8e9) 211

Chapter 6: Alerting and Alertmanager

Silence Expire

ID 0430a422-3463-42cd-b48b-d6ca2deabefb
Starts at 2018-01-02 18:36:22

Ends at 2018-01-02 21:29:53

Updated at 2018-01-02 18:36:22

Created by Werner Heisenberg

Comment Silence is a virtue

State active

Matchers severity="critical"

Affected alerts No silenced alerts

Figure 6.9: Editing or expiring silences

You can see a list of the currently defined silences in the web interface by clicking
on the Silences menu item in the Alertmanager top menu.

' NOTE There’s an alternative Alertmanager console called Unsee you might
like to check out.

Version: v1.0.0 (427b8e9) 212

 https://github.com/cloudflare/unsee

Chapter 6: Alerting and Alertmanager

Controlling silences via amtool

The second method is using the amtool command line. The amtool binary ships
with the Alertmanager installation tarball, and we installed it when we installed
Alertmanager earlier in the chapter.

Listing 6.40: Using amtool to schedule a silence

$ amtool --alertmanager.url=http://localhost:9093 silence add
alertname=InstancesGone service=applicationl
784ac68d-33ce-4e9b-8b95-431ale0fc268

This will add a new silence on the Alertmanager at http://localhost:9093. The
silence will match alerts with two labels: alertname, an automatically populated
label containing the alert’s name, and service, a label we’ve set.

Q TIP silences created with amtool are set to automatically expire after one
hour. You can specify longer times or a set window with the --expires and
--expire-on flags.

A silence ID will also be returned that you can use to later work with the silence.
Here ours is:

784ac68d-33ce-4e9b-8b95-431ale0fc268

We can query the list of current silences using the query sub-command.

Version: v1.0.0 (427b8e9) 213

Chapter 6: Alerting and Alertmanager

Listing 6.41: Querying the silences

$ amtool --alertmanager.url=http://localhost:9093 silence query

\.

This will return a list of silences and their configurations. You can expire a specific
silence via its ID.

Listing 6.42: Expiring the silence

$ amtool --alertmanager.url=http://localhost:9093 silence expire
784ac68d-33ce-4e9b-8b95-431ale0fc268

\. J

This will expire the silence on the Alertmanager.

Rather than having to specify the --alertmanager.url flag every time, you can
create a YAML configuration file for some options. The default configuration file
paths that amtool will look for are $HOME/.config/amtool/config.yml or /etc/
amtool/config.yml. Let’s see a sample file.

Listing 6.43: Sample amtool configuration file

alertmanager.url: "http://localhost:9093"
author: sre@example.com
comment required: true

You can see that we’ve added an Alertmanager to work with. We’ve also specified
an author. This is the setting for the creator of a silence; it defaults to your local
username, unless overridden like this, or on the command line with the -a or -
-author flag. The comment required flag controls whether a silence requires a
comment explaining what it does.

Version: v1.0.0 (427b8e9) 214

Chapter 6: Alerting and Alertmanager

l NOTE You can specify all antool flags in the configuration file, but some
don’t make a lot of sense.

Back to creating silences. You can also use a regular expression as the label value
when creating a silence.

Listing 6.44: Using amtool to schedule a silence

$ amtool silence add --comment "Appl maintenance" alertname=~'
Instance.*' service=applicationl

Here we’ve used =~ to indicate the label match is a regular expression and matched
on all alerts with an alertname that starts with Instance. We’ve also used the - -
comment flag to add information about our alert.

We can also control further details of the silence, like so:

Listing 6.45: Omitting alertname

$ amtool silence add --author "James" --duration "2h" alertname=
InstancesGone service=applicationl

. J

Here we’ve overridden the silence’s creator with the - -author flag and specified
the duration of the silence as two hours, instead of the default one hour.

Q TIP The amtool also allows us to work with Alertmanager and validate its
configuration files, among other useful tasks. You can see the full list of command
line flags by running amtool with the --help flag. You can also get help for specific

Version: v1.0.0 (427b8e9) 215

Chapter 6: Alerting and Alertmanager

sub-commands, amtool silence --help. You can generate Bash completions and
a man page for amtool using instructions from here.

Summary

In this chapter, we had a crash course on alerting with Prometheus and Alertman-
ager.

We touched upon what good alerts look like. We installed Alertmanager on a
variety of platforms and configured it.

We saw how to use our time series as a source for alerts, and how to generate those
alerts using alerting rules. We saw how to use time series directly or how to build
further expressions that analyze time series data to identify alert conditions. We
also saw how to add new labels and decorate alerts with additional information
and context.

We also saw how to control alerting using silences to mute alerts during mainte-

nance windows or outages.

In the next chapter we’ll see how to make Prometheus and the Alertmanager more
resilient and scalable. We’ll also see how to extend the retention life of your
metrics by sending them to remote destinations.

Version: v1.0.0 (427b8e9) 216

https://github.com/prometheus/alertmanager/blob/master/cmd/amtool/README.md

Chapter 7
Scaling and Reliability

Up until now we’ve seen Prometheus operate as a single server with a single Alert-
manager. This fits many monitoring scenarios, especially at the team level when
a team is monitoring their own resources, but it often doesn’t scale to multiple
teams. It’s also not very resilient or robust. In these situations, if our Prometheus
server or Alertmanager becomes overloaded or fails, our monitoring or alerting
will fail, too.

We’re going to separate these into two concerns:

+ Reliability and fault tolerance.
* Scaling.

Prometheus addresses each concern differently, but we’ll see how some archi-
tectural choices address both. In this chapter we’ll discuss the philosophy and
methodology by which Prometheus approaches each concern and understand how
to build more scalable and robust Prometheus implementations.

217

Chapter 7: Scaling and Reliability

Reliability and fault tolerance

Prometheus’s approach to addressing the issue of fault tolerance is tempered by
concern about the operational and technical complexities of achieving a high tol-
erance. In many cases, fault tolerance for monitoring services is addressed by
making the monitoring service highly available, usually by clustering the imple-
mentation. Clustering solutions, however, require relatively complex networking
and management of state between nodes in the cluster.

It’s also important to note, as we mentioned in Chapter 2, that Prometheus is
focused on real time monitoring, typically with limited data retention, and con-
figuration is assumed to be managed by a configuration management tool. An
individual Prometheus server is generally considered disposable from an avail-
ability perspective. Prometheus architecture argues that the investment required
to achieve that cluster, and consensus of data between nodes of that cluster, is
higher than the value of the data itself.

Prometheus doesn’t ignore the need to address fault tolerance though. Indeed,
the recommended fault-tolerant solution for Prometheus is to run two identically
configured Prometheus servers in parallel, both active at the same time. Duplicate
alerts generated by this configuration are handled upstream in Alertmanager using
its grouping (and its inhibits capability). Instead of focusing on the fault tolerance
of the Prometheus server, the recommended approach is to make the upstream
Alertmanagers fault tolerant.

Version: v1.0.0 (427b8e9) 218

Chapter 7: Scaling and Reliability

/ Prometheus

Alertmanager

Alertmanager

Prometheus

™~

Figure 7.1: Fault-tolerant architecture

This is achieved by creating a cluster of Alertmanagers. All Prometheus servers
send alerts to all Alertmanagers. As mentioned, the Alertmanagers take care of
deduplication and share alert state through the cluster.

There are obviously downsides to this approach. First, both Prometheus servers
will be collecting metrics, doubling any potential load generated by that collection.
However, one could argue that the load generated by a scrape is likely low enough
that this isn’t an issue. Second, if an individual Prometheus server fails or suffers
an outage, you’ll have a gap in data on one server. This means being aware of that
gap when querying data on that server. This is also a relatively minor concern
given there’s another server to query and that the general focus is on immediate
data, not on using Prometheus data for long-term trending analysis.

Version: v1.0.0 (427b8e9) 219

Chapter 7: Scaling and Reliability

Q TIP There are ways to compensate for this in PromQL. For example, when
asking for a single metric value from two sources, you could use the max by of
both metrics. Or, when alerting from a single worker shard with possible gaps,
you might increase the for clause to ensure you have more than one measure.

Duplicate Prometheus servers

We’re not going to document the details of building two duplicate Prometheus
servers; this should be relatively easy to achieve using your configuration man-
agement tool. We recommend replicating the installation steps from Chapter 3
using one of the configuration management solutions documented there.

Instead we’re going to focus on the more complex operation of clustering Alert-
managers.

Setting up Alertmanager clustering

Alertmanager contains a cluster capability provided by Hashicorp’s memberlist
library. Memberlist is a Go library that manages cluster membership and member-
failure detection using a gossip-based protocol, in this case an extension of the
SWIM protocol.

To configure clustering we need to install Alertmanager on more than one host.
In our case we’re going to run it on three hosts: aml, am2, and am3. We first install
Alertmanager on each host as we did in Chapter 6. We’ll then use the aml host to
initiate the cluster.

Version: v1.0.0 (427b8e9) 220

https://github.com/hashicorp/memberlist
https://arxiv.org/abs/1707.00788

Chapter 7: Scaling and Reliability

Listing 7.1: Starting Alertmanager cluster

aml$ alertmanager --config.file alertmanager.yml --cluster.
listen-address 172.19.0.10:8001

We’ve run the alertmanager binary specifying a configuration file, we can just
use the file we created in Chapter 6, and a cluster listen address and port. You
should use identical configuration on every node in the cluster. This ensures that
alert handling is identical and that your cluster will behave consistently.

A WARNING a1l Alertmanagers should use identical configuration! If it’s
not identical, it’s not actually highly available.

We’ve specified the IP address of the aml host, 172.19.0.10, and a port of 8001.
Other nodes in the Alertmanager cluster will use this address to connect to the clus-
ter, so that port will need to be open on the network between your Alertmanager
cluster nodes.

Q TIP 1f you don’t specify the cluster listen address, it’ll default to 0.0.0.0 on
port 9094,

We can then run the Alertmanager on the remaining two hosts, listening on their
local IP addresses, and referencing the IP address and port of the cluster node
we’ve just created.

Version: v1.0.0 (427b8e9) 221

Chapter 7: Scaling and Reliability

Listing 7.2: Starting Alertmanager cluster remaining nodes

am2$ alertmanager --config.file alertmanager.yml --cluster.
listen-address 172.19.0.20:8001 --cluster.peer 172.19.0.10:8001
am3$ alertmanager --config.file alertmanager.yml --cluster.
listen-address 172.19.0.30:8001 --cluster.peer 172.19.0.10:8001

. J

You can see that we’ve run the alertmanager binary on the other two Alertman-

ager hosts: am2 and am3. We’ve specified a cluster listen address for each using
their own IP addresses and the 8001 port. We’ve also specified, using the cluster
.peer flag, the IP address and port of the am1 node as a peer so they can join the
cluster.

You won’t see any specific messages indicating the cluster has started (although if
you pass the - -debug flag you’ll get more informative output) but you can confirm
it on one of the Alertmanager’s console status page at /status. Let’s look at aml
at https://172.19.0.10:9093/status.

Version: v1.0.0 (427b8e9) 222

Chapter 7: Scaling and Reliability

Alertmanager Alerts Silences Status

Status

Uptime: 2018-03-17T03:39:54.954534041Z
Cluster Status

Name: 01C8SONPP8RWIY2FS45R6R08CR
Status:

Peers: « Name: 01C8SONPPBRWIY2FS45R6R08CR

Address: 172.19.0.10:8001

« Name: 01C8SONR4QYCF6D6W2FATESYZR
Address: 172.19.0.20:8001

« Name: 01C8SONS7J7E0ZAXPY4T4XT5FK
Address: 172.19.0.30:8001

Figure 7.2: Alertmanager cluster status

We can see our aml Alertmanager can see three nodes in the cluster: itself plus
am2 and am3.

You can test that the cluster is working by scheduling a silence on one Alertman-
ager and seeing if it is replicated to the other Alertmanagers. To do this, click
the New Silence button on aml and schedule a silence. Then check the /silences
path on am2 and am3. You should see the same silence replicated on all hosts.

Now that our cluster is running, we need to tell Prometheus about all the Alert-

Version: v1.0.0 (427b8e9) 223

Chapter 7: Scaling and Reliability

managers.

Configuring Prometheus for an Alertmanager cluster

For resilience purposes, we have to specifically identify all Alertmanagers to the
Prometheus server. This way, if an Alertmanager goes down, Prometheus can
find an alternative to send an alert to. The Alertmanager cluster itself takes care
of sharing any received alert with the other active members of the cluster and
potentially handles any deduplication. Thus you should not load balance your
Alertmanagers—Prometheus handles that for you.

We could define all of the Alertmanagers to Prometheus using static configuration
like so:

Listing 7.3: Defining alertmanagers statically

alerting:
alertmanagers:
- static configs:
- targets:
- aml:9093
- am2:9093
- am3:9093

. J

With this configuration the Prometheus server will connect to all three of our

Alertmanagers. This assumes that our Prometheus server can resolve DNS entries
for each of the Alertmanagers. A smarter approach is to use service discovery to
find all of the Alertmanagers. For example, to use DNS-based discovery as we saw
in Chapter 6, we can add DNS SRV records for each Alertmanager.

Version: v1.0.0 (427b8e9) 224

Chapter 7: Scaling and Reliability

Listing 7.4: The Alertmanager SRV record

_alertmanager. tcp.example.com. 300 IN SRV 10 1 9093 aml.example.

com.
_alertmanager. tcp.example.com. 300 IN SRV 10 1 9093 am2.example.

com.
_alertmanager. tcp.example.com. 300 IN SRV 10 1 9093 am3.example.

com.

\.

Here we’ve specified a TCP service called alertmanager in the form of a SRV
record. Our record returns three host names—am1, am2, and am3—and port num-
ber 9093 where Prometheus can expect to find an Alertmanager running. Let’s

configure the Prometheus server to discover them.

Listing 7.5: Discovering the Alertmanager

alerting:
alertmanagers:
- dns_sd configs:
- names: [' alertmanager. tcp.example.com']

Here Prometheus will query the alertmanager.example.com SRV record to return
our list of Alertmanagers. We could do the same with other service discovery
mechanisms to identify all the Alertmanagers in our cluster to Prometheus.

If we now restart Prometheus we can see all of our connected Alertmanagers in
the Prometheus server’s status page.

Version: v1.0.0 (427b8e9) 225

Chapter 7: Scaling and Reliability

Alertmanagers

Endpoint
hitp:/fam1:9093/api/v1/alerts
hitp://am2:9093/api/v1/alerts

hitp://am3:9093/api/v1/alerts

Figure 7.3: Prometheus clustered Alertmanagers

Now when an alert is raised it is sent to all the discovered Alertmanagers. The
Alertmanagers receive the alert, handle deduplication, and share state across the
cluster.

Together this provides the upstream fault tolerance that ensures your alerts are
delivered.

Scaling

In addition to fault tolerance, we also have options for scaling Prometheus. Most
of the options are essentially manual and involve selecting specific workloads to
run on specific Prometheus servers.

Scaling your Prometheus environment usually takes two forms: functional scaling
or horizontal scaling.

Version: v1.0.0 (427b8e9) 226

Chapter 7: Scaling and Reliability

Functional scaling

Functional scaling uses shards to split monitoring concerns onto separate

Prometheus servers. For example, this could be splitting servers via geography

or logical domains.

Team A
Prometheus

Team B
Prometheus

/o

\ Application A

/o

Application B

Figure 7.4: Organizational sharding

Or it could be via specific functions, sending all infrastructure monitoring to one

server and all application monitoring to another server.

Version: v1.0.0 (427b8¢e9)

227

Chapter 7: Scaling and Reliability

Prometheus —— o

Prometheus Application

Figure 7.5: Functional sharding

It is a relatively simple process to create otherwise identical Prometheus servers
with specific jobs running on each server. It is best done using configuration
management tools to ensure creating servers, and the specific jobs that run on
them, is an automated process.

From here, if you need a holistic view of certain areas or functions, you can po-
tentially use federation (more on this shortly) to extract time series to centralized
Prometheus servers. Usefully, Grafana supports pulling data from more than one
Prometheus server to construct a graph. This allows you to federate data from
multiple servers at the visualization level, assuming some consistency in the time
series being collected.

Version: v1.0.0 (427b8e9) 228

https://prometheus.io/docs/prometheus/latest/federation/
http://docs.grafana.org/guides/whats-new-in-v2-5/#mix-different-data-sources
http://docs.grafana.org/guides/whats-new-in-v2-5/#mix-different-data-sources

Chapter 7: Scaling and Reliability

Horizontal shards

At some point, usually in huge installations, the capacity and complexity of ver-
tical sharding will become problematic. This is especially true when individual
jobs contain thousands of instances. In that case, you can consider an alternative:
horizontal sharding. Horizontal sharding uses a series of worker servers, each of
which scrapes a subset of targets. We then aggregate specific time series we’re in-
terested in on the worker servers. For example, if we’re monitoring host metrics,
we might aggregate a subset of those metrics. A primary server then scrapes each
of the worker’s aggregated metrics using Prometheus’s federation API.

/ - \
M m

o o o
Version: v1.0.0 (427b8e9) 229

Figure 7.6: Horizontal sharding

https://prometheus.io/docs/prometheus/latest/federation/

Chapter 7: Scaling and Reliability

Our primary server not only pulls in the aggregated metrics but now also acts as
the default source for graphing or exposing metrics to tools like Grafana. You
can add tiered layers of workers and primaries if you need to go deeper or scale
further. A good example of this is a zone-based primary and workers, perhaps for
a failure domain or a logical zone like an Amazon Availability Zone, reporting up
to a global primary that treats the zone-based primaries as workers.

Q TIP 1f you need to query metrics that are not being aggregated, you will
need to refer to the specific worker server that is collecting for the specific target
or targets you are interested in. You can use the worker label to help you identify
the right worker.

It’s important to note that this sort of scaling does have risks and limitations,
perhaps the most obvious being that you need to scrape a subset of metrics from
the worker servers rather than a large volume or all of the metrics the workers
are collecting. This is a pyramid-like hierarchy rather than a distributed hierarchy.
The scraping requests of the primary onto the workers is also load that you will
need to consider.

Next, you're creating a more complex hierarchy of Prometheus servers in your
environment. Rather than just the connection between the workers and the tar-
gets, you also need to worry about the connection between the primary and the
workers. This could reduce the reliability of your solution.

Last, the potential consistency and correctness of your data could be reduced. Your
workers are scraping targets according to their intervals, and your primary server
is in turn scraping the workers. This introduces a delay in the results reaching the
primary server and could potentially skew data or result in an alert being delayed.

A consequences of the latter two issues is that it’s probably not a good idea to
centralize alerting on the primary server. Instead, push alerting down onto the

Version: v1.0.0 (427b8e9) 230

Chapter 7: Scaling and Reliability

worker servers where they are more likely to identify issues, like a missing target,
or reduce the lag between identifying the alert condition and the alert firing.

' NOTE Horizontal sharding is generally a last resort. We’d expect you to
have tens of thousands of targets or large volumes of time series being scraped
per target before you’d need to scale out in this manner.

With these caveats in mind, let’s look at how we might use this configuration.

Creating shard workers

Let’s create some workers and see how they can scrape the target subsets. We’re
going to create workers and number them 0 through 2. We’re going to assume
that the primary job our workers will execute is scraping the node exporter. Ev-
ery worker needs to be uniquely identifiable. We’re going to use external labels
to do this. External labels are added to every time series or alert that leaves a
Prometheus server. External labels are provided via the external labels config-
uration block in our prometheus.yml.

Let’s create the base configuration for our first worker, worker6, now.

Q TIP As always, use configuration management to do this.

Version: v1.0.0 (427b8e9) 231

Chapter 7: Scaling and Reliability

Listing 7.6: The worker0 configuration

global:
external labels:
worker: 0O
rule files:

- "rules/node rules.yml"

scrape_configs:
- job _name: ‘'node’
file sd configs:
- files:
- targets/nodes/*.json
refresh _interval: 5m
relabel configs:
- source labels: [address]

modulus: 3
target label: tmp hash
action: hashmod

- source labels: [tmp hash]
regex: ~0%
action: keep

. J

We can see our external labels block contains a label, worker, with a value of

0. We’ll use worker: 1, worker: 2, and so on for our remaining workers. We've
defined a single job, which uses file-based service discovery, to load a list of targets
from any file ending in *. json in the targets/nodes directory. We would use a
service discovery tool or a configuration management tool to populate all of our
nodes into the JSON file or files.

We then use relabelling to create a modulus of the source labels hash. In our
case, we're just creating a modulus of the hash of the concatenated address label.
We use a modulus of 3, the number of workers scraping metrics. You’ll need to
update this value if you add workers (another good reason to use a configuration
management tool that can automatically increment the modulus). The hash is

Version: v1.0.0 (427b8e9) 232

Chapter 7: Scaling and Reliability

created using the hashmod action. The result is then stored in a target label called
__tmp_hash.

We then use the keep action to match any time series from any targets that match
the modulus. So worker® would retrieve time series from targets with a modulo
of 0, workerl those targets with a modulo of 1, etc. This evenly distributes targets
between the workers. If you need to scale to more targets you can add workers
and update the modulus used on the hash.

We can then aggregate the worker time series we want to federate using rules.
Let’s say we’d like to gather the memory, CPU, and disk metrics from the Node
Exporter for federation. To aggregate the time series we want we’re going to use
the rules we created in Chapter 4—for example, the CPU rule:

Listing 7.7: The instance CPU rule

groups:
- name: node rules
rules:
- record: instance:node cpu:avg rate5m
expr: 100 - avg (irate(node cpu{job="node",mode="idle"}[5m]))
by (instance) * 100

This will create a series of new time series that we’ll then scrape upstream using
a primary Prometheus server.

Primary shard server

Let’s now configure a primary Prometheus server to scrape the workers for the
time series. The primary Prometheus server has a job or jobs to scrape workers;
each worker is a target in a job. Let’s look at the prometheus.yml configuration
for our primary server.

Version: v1.0.0 (427b8e9) 233

https://prometheus.io/docs/prometheus/latest/configuration/configuration/#relabel_config

Chapter 7: Scaling and Reliability

Listing 7.8: The primary configuration

scrape_configs:
- job _name: 'node workers'
file sd configs:
- files:
- 'targets/workers/*.json'
refresh _interval: 5m
honor labels: true
metrics path: /federate
params:
'match[]':
- '{_ name =~""instance:.*"}'

\.

On our primary server, we’ve got a job called node workers. This job discovers

the list of workers using file-based service discovery. Our workers are in workers

/targets/workers.json.

Listing 7.9: Worker file discovery

[{

"targets": [
"worker0:9090",
"workerl:9090",
"worker2:9090"

1

}

You’ll note we’ve enabled the honor labels flag. This flag controls how
Prometheus handles conflicts between labels. By setting it to true we ensure that
an upstream primary server doesn’t overwrite labels from downstream workers.

We’ve overridden the standard metrics path to use the /federate API. The

Version: v1.0.0 (427b8e9) 234

Chapter 7: Scaling and Reliability

federate API endpoint allows us to query a remote Prometheus server for
specific time series, specified by a matching parameter.

Listing 7.10: Matching parameter

metrics path: /federate
params:
‘match[]"':
- '{ name =~""instance:.*"}'

We use the params option to specify the match[] parameter. The match[] param-
eter takes an instant vector selector that has to match the specific time series we
want to return. In our case we’re matching against the name of the time series.

Listing 7.11: condition] The match[] condition

'{_ name =~""instance:.*"}'

Q TIP You can specify multiple natch [] parameters, and Prometheus will return
the union of all of the conditions.

This match is a regular expression match that returns all of the time series that
start with instance:. All of the rules we used to aggregate our Node Exporter
metrics are prefixed with instance:, so the time series for CPU, memory, and
disk will be selected and scraped by the primary server.

We can see what is going to be selected by the query parameter by using curl or
browsing to the /federate path, with an appropriate match[] parameter, on one
of the worker servers.

Version: v1.0.0 (427b8e9) 235

Chapter 7: Scaling and Reliability

&« C | O workerD

TYPE instance:node_cpu:avg_rate5m untyped

instance:node_cpu:avg ratebm{instance="nel2:9100",worker="0"} 31.833333333334707 1522087637378
instance:node cpu:avg ratebm{instance="nel6:9100",worker="0"} 30.89999999999918 1522087637378

instance:node cpu:avg ratedm{instance="nel7:9100" ,worker="0"} 28.350000000001884 1522087637378
instance:node cpu:avg ratebm{instance="ne20:9100" ,worker="0"} 27.108333333333135 1522087637378
instance:node cpu:avg ratebm{instance="ne25:9100" ,worker="0"} 28.799999999999585 1522087637378
instance:node cpu:avg ratebSm{instance="ne27:9100" ,worker="0"} 27.69166666666706 1522087637378

instance:node_cpu:avg ratebm{instance="ne28:9100" ,worker="0"} 28.774999999999793 1522087637378
instance:node cpu:avg ratebm{instance="ne2:9100",worker="0"} 27.183333333334758 1522087637378

instance:node cpu:avg ratebm{instance="ne5:9100" ,worker="0"} 31.816666666667658 1522087637378

instance:node cpu:avg ratebm{instance="neB8:9100",worker="0"} 32.633333333335486 1522087637378

instance:node cpu:avg ratebSm{instance="ne9:9100",worker="0"} 28.94999999999905 1522087637378

TYPE instance:node_cpus:count untyped

instance:node cpus:count{instance="nel2:9100",worker="0"} 8 1522087637378
instance:node cpus:count{instance="nel6:9100",worker="0"} 8 1522087637378
instance:node cpus:count{instance="nel7:9100",worker="0"} 8 1522087637378
instance:node cpus:count{instance="ne20:9100",worker="0"} 8 1522087637378
instance:node cpus:count{instance="ne25:9100",worker="0"} 8 1522087637378
instance:node_cpus:count{instance="ne27:9100",worker="0"} 8 1522087637378
instance:node cpus:count{instance="ne28:9100",worker="0"} 8 1522087637378
instance:node cpus:count{instance="ne2:9100" ,worker="0"} 8 1522087637378

instance:node cpus:count{instance="ne5:9100" ,worker="0"} 8 1522087637378

instance:node cpus:count{instance="ne8:9100" ,worker="0"} 8 1522087637378

instance:node_cpus:count{instance="ne9:9100" ,worker="0"} 8 1522087637378

Figure 7.7: The Federate API

Our query has returned all of the time series starting with instance:.

The primary server’s node workers job will scrape these metrics each time it’s run.
You can then use the primary server to query and graph the aggregated metrics
from all of the targets scraped by the worker servers.

Remote storage

There’s one last aspect of scaling we should mention: remote storage. Prometheus
has the capability to write to (and in some cases read from) remote stores of
metrics. The ability to write to remote storage allows you to send metrics from
Prometheus, working around its constraints in scalability, to a remote system.

Prometheus has two types of remote storage integration:

« It can write metric samples to a remote destination.
« It can read metric samples to a remote destination.

Version: v1.0.0 (427b8e9) 236

Chapter 7: Scaling and Reliability

The remote storage protocol uses a Snappy-compressed protocol buffer encoding
over HTTP. It’s configured in Prometheus via the remote write and remote read
blocks.

Currently, Prometheus supports a variety of endpoints for writing and reading.
You can find a full list in the Prometheus documentation but highlights include
Chronix, CrateDB, Graphite, InfluxDB, OpenTSDB, and PostgreSQL.

We’re not going to cover any of these in any detail, but you should be able to
follow the documentation and examples to get started.

Third-party tools

There’s a small selection of third-party tools that aim to make Prometheus scaling
easier. These include:

* Cortex - A scalable Prometheus-as-a-Service tool.

« Thanos - A highly available Prometheus setup with long-term storage capa-
bilities.

* Vulcan - A now discontinued attempt to build a more scalable Prometheus.
Mostly useful as a reference.

Summary

In this chapter we learned how Prometheus handles fault tolerance for monitoring.
We saw how to create a cluster of Alertmanagers to ensure that your alerts are sent.

We also saw how to scale Prometheus monitoring using additional servers or via
sharding with federation.

In the next chapter we’ll look at instrumenting applications for monitoring.

Version: v1.0.0 (427b8e9) 237

https://github.com/prometheus/prometheus/blob/master/prompb/remote.proto
https://en.wikipedia.org/wiki/Snappy_(compression)
https://prometheus.io/docs/prometheus/latest/configuration/configuration/#%3Cremote_write%3E
https://prometheus.io/docs/prometheus/latest/configuration/configuration/#%3Cremote_read%3E
https://prometheus.io/docs/operating/integrations/#remote-endpoints-and-storage
https://github.com/weaveworks/cortex
https://github.com/improbable-eng/thanos
https://github.com/digitalocean/vulcan

Chapter 8
Instrumenting Applications

In the last few chapters we’ve seen the mechanics of Prometheus. We’ve collected
metrics to process and visualize. We’ve gathered host and container metrics using
Prometheus and exporters.

In this chapter we’re going to extend our monitoring and collection to applica-
tions. We’re going to focus on monitoring applications and how to emit metrics
by instrumenting code. We’re going to see how to add a Prometheus client to
an application, add metrics to the application, and then use a Prometheus job to
scrape those metrics.

First, though, we’re going to go through some high-level design patterns and prin-
ciples you should consider when thinking about application monitoring.

An application monitoring primer

Let’s look at some basic tenets for application monitoring. First, in any good ap-
plication development methodology, it’s a great idea to identify what you want
to build before you build it. Monitoring is no different. Sadly there’s a common
anti-pattern in application development of considering monitoring and other oper-

238

Chapter 8: Instrumenting Applications

ational functions like security as value-add components of your application rather
than core features. Monitoring (and security!) are core functional features of your
applications. If you’re building a specification or user stories for your application,
include monitoring for each component of your application. Not building metrics
or monitoring is a serious business and operational risk resulting in:

* An inability to identify or diagnose faults.

+ An inability to measure the operational performance of your application.

+ An inability to measure the business performance and success of an applica-
tion or a component, such as tracking sales figures or the value of transac-
tions.

Another common anti-pattern is not instrumenting enough. We’ll always recom-
mended that you over-instrument your applications. One will often complain
about having too little data, but rarely will one worry about having too much.

' NOTE within constraints of storage capacity, your monitoring stopping
working because you exceeded that capacity is obviously undesirable. It’s often
useful to look at retention time as a primary way to reduce storage without losing
useful information.

Third, if you use multiple environments—for example development, testing, stag-
ing, and production—ensure that your monitoring configuration provides labels
so you know that the data is from a specific environment. This way you can parti-
tion your monitoring and metrics. We’'ll talk more about this later in the chapter.

Version: v1.0.0 (427b8e9) 239

Chapter 8: Instrumenting Applications

Where should I instrument?

Good places to start adding instrumentation for your applications are at points of
ingress and egress. For example:

« Measure counts and timings of requests and responses, such as to specific
web pages or API endpoints. If you're instrumenting an existing application,
make a priority-driven list of specific pages or endpoints, and instrument
them in order of importance.

« Measure counts and timings of calls to external services and APIs, such as
if your application uses a database, cache, or search service, or if it uses
third-party services like a payments gateway.

« Measure counts and timings of job scheduling, execution, and other periodic
events like cron jobs.

+ Measure counts and timings of significant business and functional events,
such as users being created, or transactions like payments and sales.

Instrument taxonomies

You should ensure that metrics are categorized and clearly identified by the appli-
cation, method, function, or similar marker so that you can ensure you know what
and where a metric is generated. We talked about label taxonomies in Chapter 4.

Metrics

Like much of the rest of our monitoring, metrics are going to be key to our appli-
cation monitoring. So what should we monitor in our applications? We want to
look at two broad types of metrics—albeit types with considerable overlap:

+ Application metrics, which generally measure the state and performance of
your application code.

Version: v1.0.0 (427b8e9) 240

https://github.com/google/cronutils

Chapter 8: Instrumenting Applications

* Business metrics, which generally measure the value of your application.
For example, on an e-commerce site, it might be how many sales you made.

We’re going to look at examples of both types of metrics in this chapter, with the
caveat that Prometheus tends to focus on more immediate metrics. For longer-
term business metrics, you may, in many cases, use event-based systems.

Application metrics

Application metrics measure the performance and state of your applications. They
include characteristics of the end user experience of the application, like latency
and response times. Behind this we measure the throughput of the application:
requests, request volumes, transactions, and transaction timings.

Q TIP Good examples of how to measure application performance are the USE
and RED Methods and Google Golden Signals that we mentioned earlier.

We also look at the functionality and state of the application. A good example
of this might be successful and failed logins or errors, crashes, and failures. We
could also measure the volume and performance of activities like jobs, emails, or
other asynchronous activities.

Business metrics

Business metrics are the next layer up from our applications metrics. They are
usually synonymous with application metrics. If you think about measuring the
number of requests made to a specific service as being an application metric, then
the business metric usually does something with the content of the request. An

Version: v1.0.0 (427b8e9) 241

http://www.brendangregg.com/usemethod.html
https://www.weave.works/blog/the-red-method-key-metrics-for-microservices-architecture/
https://landing.google.com/sre/book/chapters/monitoring-distributed-systems.html

Chapter 8: Instrumenting Applications

example of the application metric might be measuring the latency of a payment
transaction; the corresponding business metric might be the value of each payment
transaction. Business metrics might include the number of new users/customers,
number of sales, sales by value or location, or anything else that helps measure
the state of a business.

Where to put your metrics

Once we know what we want to monitor and measure, we need to work out where
to put our metrics. In almost all cases the best place to put these metrics is inside
our code, as close as possible to the action we’re trying to monitor or measure.

We don’t, however, want to put our metrics configuration inline everywhere that
we want to record a metric. Instead we want to create a utility library: a function
that allows us to create a variety of metrics from a centralized setup. This is
sometimes called the utility pattern: a metrics-utility class that does not require
instantiation and only has static methods.

The utility pattern

A common pattern is to create a utility library or module using one of the available
clients. The utility library would expose an API that allows us to create and incre-
ment metrics. We can then use this API throughout our code base to instrument
the areas of the application we’re interested in.

Let’s take a look at an example of this. We’ve created some Ruby-esque code to
demonstrate, and we’ve assumed that we have already created a utility library
called Metric.

' NOTE we'll see a functioning example of this pattern later in this chapter.

Version: v1.0.0 (427b8e9) 242

https://prometheus.io/docs/instrumenting/clientlibs/
https://prometheus.io/docs/instrumenting/clientlibs/

Chapter 8: Instrumenting Applications

Listing 8.1: A sample payments method

include Metric

def pay_user(user, amount)
pay(user.account, amount)
Metric.increment 'payment'
Metric.increment "payment-amount, #{amount.to i}"
send payment notification(user.email)
end

def send payment notification(email)
send email(payment, email)
Metric.increment 'email-payment'
end

\. J

Here we’ve first included our Metric utility library. We can see that we’ve spec-

ified both application and business metrics. We’ve first defined a method called
pay user that takes user and amount values as parameters. We’ve then made a
payment using our data and incremented two metrics in our first method:

* A payment metric — Here we increment the metric each time we make a
payment.
« A payment-amount metric — This metric records each payment by amount.

Finally, we’ve sent an email using a second method, send payment notification
, Where we’ve incremented a third metric: email-payment. The email-payment
metric counts the number of payment emails sent.

Version: v1.0.0 (427b8e9) 243

Chapter 8: Instrumenting Applications

The external pattern

What if you don’t control the code base, can’t insert monitors or measures inside
your code, or perhaps have a legacy application that can’t be changed or updated?
Then you need to find the next closest place to your application. The most obvi-
ous places are the outputs and external subsystems around your application—for
example, a database or cache.

If your application emits logs, then identify what material the logs contain and
see if you can use their contents to measure the behavior of the application. Often
you can track the frequency of events by simply recording the counts of specific
log entries. If your application records or triggers events in other systems—things
like database transactions, job scheduling, emails sent, calls to authentication or
authorization systems, caches, or data stores—then you can use the data contained
in these events or the counts of specific events to record the performance of your
application.

We’ll talk more about this in Chapter 9.

Building metrics into a sample application

Now that we have some background on monitoring applications, let’s look at an
example of how we might implement this in the real world. We’re going to build
an application that takes advantage of a utility library to send events from the ap-
plication. We’ve created a sample Rails application using Rails Composer. We’re
going to call it mwp- rails, or Monitoring with Prometheus Rails application. The
mwp-rails application allows us to create and delete users and sign in to the ap-
plication.

' NOTE vou can find the nvp-rails application on GitHub.

Version: v1.0.0 (427b8e9) 244

http://www.railscomposer.com/
https://github.com/turnbullpress/mwp-rails

Chapter 8: Instrumenting Applications

To instrument our application we first need to add support for Prometheus using a
Ruby-based client. The prometheus-client gem allows us to create a Prometheus
client inside our application.

There are similar clients for a number of platforms including:

* Go
« Java/JVM
+ Python

There is also a large collection of third-party clients for a variety of frameworks
and languages.

Adding the client

Let’s add the prometheus-client gem to our Rails application’s Gemfile.

Listing 8.2: The mwp-rails Gemfile

source 'https://rubygems.org’
ruby '2.4.2'
gem 'rails', '5.1.5'

gem 'prometheus-client’

. J

We then install the new gem using the bundle command.

Version: v1.0.0 (427b8e9) 245

https://github.com/prometheus/client_ruby
https://github.com/prometheus/client_ruby
https://github.com/prometheus/client_golang
https://github.com/prometheus/client_java
https://github.com/prometheus/client_python
https://prometheus.io/docs/instrumenting/clientlibs/

Chapter 8: Instrumenting Applications

Listing 8.3: Install prometheus-client with the bundle command

$ sudo bundle install

Fetching gem metadata from https://rubygems.org/...
Fetching version metadata from https://rubygems.org/...
Fetching dependency metadata from https://rubygems.org/..

Installing prometheus-client 0.7.1

We can then test the client using a Rails console. Let’s launch one now using the
rails c command.

Listing 8.4: Testing the Prometheus client with the Rails console

$ rails c
Loading development environment (Rails 4.2.4)
[1] pry(main)> prometheus = Prometheus::Client.registry
[2] pry(main)> test counter = prometheus.counter(:test counter,
'A test counter')
=> #<Prometheus::Client::Counter:0x00007f9aeab51dd8
@base labels={},
@docstring="A test counter",
@mutex=#<Thread: :Mutex:0x00007f9aea®51d88>,
@name=:test counter,
@validator=#<Prometheus::Client: :LabelSetValidator:0
x00007f9aeaf51d10 @validated={}>,
@values={}>

[3] pry(main)> test counter.increment
= 1.0

We’ve launched a Rails console and created a Prometheus registry using the code:

Version: v1.0.0 (427b8e9) 246

Chapter 8: Instrumenting Applications

Listing 8.5: Creating a Prometheus registry

prometheus = Prometheus::Client.registry

\. J

The registry is the core of the Prometheus application instrumentation. Every
metric you create needs to be registered first. We've created a registry called
prometheus. We can now create metrics in this registry.

Listing 8.6: Registering a Prometheus metric

test counter = prometheus.counter(:test counter, 'A test counter
)

\.

We have a new metric called test counter. It’s created with the counter method
on the registry. The metric name needs to be a symbol, : test counter, and needs
a description. Our is: A test counter.

We can increment our new metric with the increment method.

Listing 8.7: Incrementing a metric

test counter.increment

\. J

Now the value of the test counter metric will be 1.0, which we can see by query-
ing the value of the metric using the get method.

Version: v1.0.0 (427b8e9) 247

Chapter 8: Instrumenting Applications

Listing 8.8: Incrementing a metric

test counter.get
1.0

We can register a number of types of metrics, including summaries and histograms.

Listing 8.9: The basic Prometheus client_ruby metrics

test counter = prometheus.counter(:test counter, 'A test counter
")

test gauge = prometheus.gauge(:test gauge, 'A test gauge')

test histogram = prometheus.histogram(:test histogram, 'A test
histogram')

test summary = prometheus.summary(:test summary, 'A test summary

")

\.

We can now add the instrumentation to our Rails application.

Adding it to Rails

We’re not going to manually create a registry and metrics every time we want to
log any metrics, so let’s set up some utility code to do this for us. We’re going to
create a Metrics module in our lib directory that we’ll use in our Rails application.
Let’s do that now.

(P
Listing 8.10: Creating a Metrics module

$ touch lib/metrics.rb

\.

And let’s populate the file with a module.

Version: v1.0.0 (427b8e9) 248

Chapter 8: Instrumenting Applications

Listing 8.11: The Metrics module

module Metrics
def self.counter(name, docstring, base labels = {})
provide metric(name) || registry.counter(name, docstring,
base labels)
end

def self.summary(name, docstring, base labels = {})
provide metric(name) || registry.summary(name, docstring,
base labels)
end

def self.gauge(name, docstring, base labels = {})
provide metric(name) || registry.gauge(name, docstring,
base labels)
end

def self.histogram(name, docstring, base labels = {}, buckets
= ::Prometheus::Client::Histogram: :DEFAULT BUCKETS)

provide metric(name) || registry.histogram(name, docstring,
base labels, buckets)
end
private

def self.provide metric(name)
registry.get(name)
end

def self.registry
@registry || ::Prometheus::Client.registry
end
end

Our Metrics module has methods for each metric type. The metric methods check
for the presence of an existing metric in the registry (using the get method in
provide metric which retrieves metric names) or creates a new metric.

Version: v1.0.0 (427b8e9) 249

Chapter 8: Instrumenting Applications

We then need to extend Rails to load our Metrics library. There’s a few ways to
do this, but adding an initializer is my favorite.

Listing 8.12: Creating an initializer for the metrics library

$ touch config/initializers/lib.rb

\.

And then requiring our library.

(P
Listing 8.13: The config/initializers/lib.rb file

require 'metrics'

Q TIP we could also extend the autoload paths configuration option to load
everything in 1ib, but I feel like this gives us less control over what loads.

We can then add metrics to some of our methods. Let’s start with incrementing a
counter when users are deleted.

Listing 8.14: Counter for user deletions

def destroy

user = User.find(params[:id])

user.destroy

Metrics.counter(:users deleted counter, "Deleted users counter
").increment

redirect to users path, :notice => "User deleted."
end

Version: v1.0.0 (427b8e9) 250

Chapter 8: Instrumenting Applications

We can see the line:

Metrics.counter(:users deleted counter, "Deleted users counter").

increment

We call the counter metric in the Metrics module and pass in a metric name
in the form of a symbol, :users deleted counter, then a description of the
metric, Deleted users counter. We’ve ended the line with the increment
method that increments the counter once. This will create a metric called
users _deleted counter.

We could also add a label or increment by a specific value by using the increment
method like so:

.increment({ service: 'foo' }, 2)

This would increment a counter with a value of 2 and add the label service: foo
to the metric. You can specify multiple labels by separating each with commas:

{ service: 'foo', app: 'bar' }.

We could also create another counter for created users by adding it to the User
model.

Listing 8.15: Counter for user creation

class User < ActiveRecord: :Base
enum role: [:user, :vip, :admin]
after initialize :set default role, :if => :new record?
after create do
Metrics.counter(:user created counter, "Users created
counter").increment
end

end

\. J

Here we’ve used an Active Record callback, after create, to increment a counter,
users created counter, when a new user is created.

Version: v1.0.0 (427b8e9) 251

Chapter 8: Instrumenting Applications

' NOTE vou may have a wide variety of applications you want to instrument.
We’re creating an example application to show you how we might apply some of
these principles. While you might not be able to reuse the code, the high-level
principles apply to almost every framework and language you’re likely to have
running.

We then need to expose our metrics to be scraped. We're also going to enable some
Rack middleware to auto-create some useful metrics on HTTP requests. In our
case we enable the metrics endpoint by adding an exporter (and the middleware
collector) to our config. ru file.

Listing 8.16: Adding Prometheus to the config.ru file

require 'prometheus/middleware/collector’
require 'prometheus/middleware/exporter’

use Prometheus::Middleware::Collector
use Prometheus::Middleware: :Exporter

. J

Here we’ve required and used two components of the Prometheus client: the mid-
dleware exporter and collector. The exporter creates a route, /metrics, containing
any metrics specified in Prometheus registries defined by the app. The collector
adds some HTTP server metrics to the endpoint that are collected via Rack mid-
dleware.

If we browse to this endpoint, /metrics, we’ll see some of those metrics.

Version: v1.0.0 (427b8e9) 252

Chapter 8: Instrumenting Applications

(P
Listing 8.17: The Rails /metrics endpoint

HELP http server requests total The total number of HTTP
requests handled by the Rack application.

http server requests total{code="200",method="get",path="/"} 2.0
HELP http server request duration seconds The HTTP response
duration of the Rack application.

http server request duration seconds bucket{method="get",path="/
",1le="0.005"} 0.0

http server request duration seconds bucket{method="get",b path="/
",le="0.01"} 0.0

HELP users updated counter Users updated counter
users updated counter 1.0

We can see a selection of the metrics available. Perhaps most interesting is a series
of histogram buckets showing the HTTP server request duration, with dimensions
for method and path. This histogram is an easy way to measure request latency
for specific paths and to identify any badly performing requests.

Using our metrics

Now our application has metrics being generated and we can make use of them
in Prometheus. Let’s create a job to scrape our /metrics endpoint. We’re going
to add our Rails servers to our file-based service discovery. We’re going to add
three Rails servers by their hostnames.

Version: v1.0.0 (427b8e9) 253

Chapter 8: Instrumenting Applications

Listing 8.18: Our Rails servers service discovery

[{

"targets": ["mwp-railsl.example.com", "mwp-rails2.example.
com", "mwp-rails3.example.com"]

H

\

J

We’re then going to create our new job in our prometheus.yml configuration file.

Listing 8.19: The rails job

— job _name: rails
file sd configs:
- files:
— targets/rails/*.json
refresh _interval: 5m

\.

If we reload Prometheus we’ll be able to see our Rails servers as new targets.

rails (3/3 up)

Endpoint State Labels Last Scrape Error
http://mwp-rails1.example.com:80/metrics up 203ms ago
http://mwp-rails2.example.com:80/metrics uP 3.378s ago
hitp:/mwp-rails3.example.com:80/metrics uP 12,6585 ago

Figure 8.1: Rails server targets

And see our new metrics in the dashboard.

O Enable query history

Load time: 13ms
users_created_counter

y Resolution: 14s
Total time series: 3
Execute users_created_counter]

Graph Console

Element
users_created_counter{instance="mwp-rails1.example.com:80" job="rails"}
users_created_counter{instance="mwp-rails2.example.com:80" job="rals"}

users_created_counter{instance="mwp-rails3.example.com:80" job="rals"}

Version: v1.0.0 (427b8e9) 254

Chapter 8: Instrumenting Applications

Figure 8.2: Rails metrics

Now we can make use of these metrics to monitor our Rails servers.

Summary

In this chapter we explored ways to monitor and instrument our applications and
their workflows, including understanding where to place our application monitor-
ing.

We learned about building our own metrics into our applications and services,

and we built a sample Rails application to show how to expose and scrape metrics
with Prometheus.

In the next chapter we will see how to turn external data, specifically log entries,
into metric data you can consume with Prometheus.

Version: v1.0.0 (427b8e9) 255

Chapter 9
Logging as Instrumentation

In previous chapters we looked at application, host, and container-based monitor-
ing. In this chapter we’re going to look at how we can use our logging data as the
source of time series data that can be scraped by Prometheus. While our hosts,
services, and applications can generate crucial metrics and events, they also often
generate logs that can tell us useful things about their state and status.

This is especially true if you’re monitoring a legacy application that is not instru-
mented or that it’s not feasible to instrument. In this case, sometimes the cost of
rewriting, patching, or refactoring that application to expose internal state is not
a good engineering investment, or there are technological constraints to instru-
mentation. You still need to understand what’s happening inside the application,
though—and one of the easiest ways is to adapt log output.

Q TIP Another potential approach is to look at the contents of the /proc sub-
system using the Process exporter.

Log output often contains useful status, timing, and measurement information.

256

https://github.com/ncabatoff/process-exporter

Chapter 9: Logging as Instrumentation

For example, using the access log output from a web or application server is a
useful way of tracking transaction timings or error volumes. Tools can parse these
log entries, create metrics from matched output, and make them available to be
scraped by a Prometheus job.

In this chapter we’re going to look at using log entries to create metrics, and then
scrape them with Prometheus.

Processing logs for metrics

In order to extract data from our log entries we’re going to make use of a log
processing tool. There are several we could use, including the Grok Exporter and
a utility from Google called mtail. We’ve chosen to look at mtail because it’s a
little more lightweight and somewhat more popular.

Q TIP Got a Logstash/ELK installation? You can’t currently directly output to
Prometheus but you can use Logstash’s metric filter to create metrics and output
them to Alertmanager directly.

Introducing mtail

The mtail log processor is written by SRE folks at Google. It’s a Go application
licensed with the Apache 2.0 license. The mtail log processor is specifically de-
signed for extracting metrics from application logs to be exported into a time
series database. It aims to fill the niche we described above: parsing log data
from applications that cannot export their own internal state.

The mtail log processor works by running “programs” that define log matching

Version: v1.0.0 (427b8e9) 257

https://github.com/fstab/grok_exporter
https://github.com/google/mtail
https://www.elastic.co/guide/en/logstash/current/plugins-filters-metrics.html
https://github.com/wtliuNA/logstash-output-prometheus

Chapter 9: Logging as Instrumentation

patterns, and specify the metrics to create from the matches and any actions to
take. It works very well with Prometheus and exposes any created metrics for
scraping, but can also be configured to send the metrics to tools like collectd,
StatsD, or Graphite.

Installing mtail
The mtail log processor is shipped as a single binary: mtail. It’s packaged for a
variety of operating systems including Linux, OS X, and Microsoft Windows.

Let’s download the binary now.

Listing 9.1: Download and install the mtail binary

$ wget https://github.com/google/mtail/releases/download/v3.0.0-
rcl3/mtail v3.0.0-rcl3 linux_amd64 -0 mtail

$ chmod 0755 mtail

$ sudo cp mtail /usr/local/bin

We can confirm the mtail binary is working by running it with the --version

flag
/e

Listing 9.2: Running the mtail binary

$ mtail --version
mtail version v3.0.0-rcl3-119-g01c76cd git revision 01
c76cdelee5399be4d6c62536d338ba3077e0e7 go version gol.8.3

Version: v1.0.0 (427b8e9) 258

https://github.com/google/mtail/releases
https://github.com/google/mtail/releases

Chapter 9: Logging as Instrumentation

Using mtail

The mtail binary is configured via the command line. You specify a list of log
files to parse, and a directory of programs to run over those files.

Q TIP You can see a full list of ntails’s command line flags using the --help
flag.

Let’s start by creating a directory to hold our mtail programs. As always, this is
usually better done by creating a configuration management module (or a Docker
container) rather than being done manually, but we’ll show you the details so you
can understand what’s happening.

Listing 9.3: Creating an mtail program directory

$ sudo mkdir /etc/mtail

Now let’s create our first mtail program in a file in our new directory. Every mtail
program needs to end with the suffix .mtail. Let’s create a new program called
line count.mtail. This is the simplest mtail program: it increments a counter
every time it parses a new line.

Listing 9.4: Creating the line_count.mtail program

$ sudo touch /etc/mtail/line count.mtail

\. J

And let’s populate that file.

Version: v1.0.0 (427b8e9) 259

Chapter 9: Logging as Instrumentation

Listing 9.5: The line_count.mtail program

counter line count

/$/ A
line count++

}

\. J

We've started our program by defining a counter called line count. Counter

names are prefixed with counter (and, naturally, gauges are prefixed with gauge
). These counters and gauges are exported by mtail to whatever destination you
define; in our case, it’ll be an endpoint that can be scraped by Prometheus. You
must define any counters or gauges before you can work with them.

Next, we define the guts of our mtail program: the condition we want to match
and the action we want to take, with the condition specified first and the action
following, wrapped in { }.

You can specify multiple sets of conditions and actions in a program. You can
extend them with conditional logic in the form of an else clause too.

' NOTE mtail programs look a lot like awk programs.

The condition can be a regular expression, matching some specific log entry. In our
case, we’ve specified /$/, which matches the end of the line. The mtail processor
uses RE2 regular expressions. You can see the full syntax on the RE2 wiki.

We could also specify a relational expression, much like those in a C if clause, for
example:

Version: v1.0.0 (427b8e9) 260

https://github.com/google/mtail/blob/master/docs/Language.md#else-clauses
https://github.com/google/re2/wiki/Syntax

Chapter 9: Logging as Instrumentation

Listing 9.6: A relational clause

line count < 20 {

} .

Here the program would only take the action if the value of the line count
counter was greater than 20.

In the case of our initial program our action is:
line count++

Which uses an operator, ++, to increment the line counter counter. It’s about
the simplest action we can take.

Let’s count some log entries now.

Q TIP You can find more documentation on the mtail syntax on GitHub and on
the guide to programming in it.

Running mtail

To run mtail we need to specify some programs to run and some log files to parse.
Let’s do that now.

Listing 9.7: Running mtail

$ sudo mtail --progs /etc/mtail --logs '/var/log/*.log'

Version: v1.0.0 (427b8e9) 261

https://github.com/google/mtail/wiki/Language
https://github.com/google/mtail/wiki/Programming-Guide

Chapter 9: Logging as Instrumentation

This will run mtail with two flags. The first flag, - - progs, tells mtail where to find
our programs. The second flag, - - logs, tells mtail where to find log files to parse.
We’re using a glob pattern to match all log files in the /var/log directory. You can
specify a comma-separated list of files or specify the --1logs flag multiple times.
mtail is also conscious of log file truncation so it can handle stopping, restarting,
and actions like log rotation.

' NOTE The user youre running mtail as will need permissions to the log
files you're parsing, otherwise mtail will not be able to read the files. You will get
aread error in the mtail log output, obtained using the --logtostderr flag, when
it can’t read a file.

When we run mtail, it'll launch a web server on port 3903 (you can control the IP
address and port using the --address and - -port flags). Let’s browse to that web

Server now.

The home path shows some diagnostic information, like so:

mtail on :3903

Build: mtail version v3.0.0-rc5-119-g01c76c¢d git revision 01c76cdelee5399bedd6c62536d338ba3077¢0e7 go version gol.8.3

Metrics: json, prometheus, varz

Debug: debug/pprof, debug/vars

Program Loader

line_count.mtail
No compile errors

Total load errors ; successes: 1

Log Tailer

/var/log

Version: v1.0.0 (427b8e9) 262

https://godoc.org/path/filepath#Match

Chapter 9: Logging as Instrumentation

Figure 9.1: mtail diagnostics

You can see the build of mtail as well as links to the default metric output formats,
diagnostic information, and a list of programs loaded, any errors, and log files
being tracked. You can see mtail outputs metrics in JSON, varz (an internal Google
format for metrics collection), and the format we want: Prometheus. Let’s click
on the Prometheus link, which will take us to the /metrics path.

Q TIP You can also send metrics to tools like StatsD and Graphite.

Listing 9.8: The mtail /metrics path

TYPE line_count counter
line count defined at line count.mtail:1:9-18
line count{prog="line count.mtail"} 1561

We can see some familiar output: help text and a Prometheus metric with a single
label, prog. This is added automatically to each metric and populated with the
name of the program that generated the metric. You can omit this label by setting
the --emit prog label flag to false.

In our case, our line count metric has counted 1561 lines worth of log entries.
We could then add a job to scrape this endpoint for our line counter metric.

This isn’t an overly useful example though. Let’s look at some more complex
programs.

Version: v1.0.0 (427b8e9) 263

Chapter 9: Logging as Instrumentation

Processing web server access logs

Let’s use mtail to extract some metrics from an Apache access log, specifically
one using the combined log format. To save some time, we can use an example
program provided with mtail. We create the program in the /etc/mtail directory
and name it apache combined.mtail. The contents are:

Listing 9.9: The apache_combined program

Parser for the common apache "NCSA extended/combined" log

format

LogFormat "%h %l %u %t |"%r\" %>s %b \|"%{Referer}il\" |"%{User-

agent}il\"

counter apache http requests total by request method,

http version, request status

counter apache http bytes total by request method, http version,
request status

/™ +
/ (?P<hostname>[0-9A-Za-z\.-]+) / + # %h
/(?P<remote logname>[0-9A-Za-z-]+) / + # %1
/(?P<remote username>[0-9A-Za-z-]+) / + # %u
/ (?P<timestamp>\[\d{2}\/\w{3}\/\d{4}:\d{2}:\d{2}:\d{2} (\+]|-)\d
{43\1) / + # %u
/" (?P<request method>[A-Z]+) (?P<URI>\S+) (?P<http version>HTTP
\/[0-9\.1+)" / + # \"%r\"
/(?P<request status>\d{3}) / + # %>s
/(?P<response size>\d+) / + # %b
/" (?P<referer>\S+)" / + # |"%{Referer}i\"
/" (?P<user agent>[[:print:]1+)"/ + # \"%{User-agent}i\"
/%7 {
apache http requests total[$request method] [$http version][
$request status]++
apache http bytes total[$request method][$http version]|
$request status] += $response size

}

Version: v1.0.0 (427b8e9) 264

Chapter 9: Logging as Instrumentation

Q TIP You can find the code for this program on GitHub. There’s also a large
collection of example programs to help you get started on GitHub.

We can see our program is well commented; comments are specified using the #
symbol. It includes an example of the log format at the top of the program and
then defines two counters:

* apache http requests total by request method, http version,
request status

* apache http bytes total by request method, http version, request status

The by operator specifies additional dimensions to add to the metric. In the first
counter, apache http requests total, we’ve added the additional dimensions
of request method, http version, and request status, which will be added as
labels on the resulting counter.

We then see a series of regular expressions that match each element of the access
log line and are chained together using + operators.

Q TIP These regular expressions can get quite complex when parsing convo-
luted log lines, so mtail also allows you to reuse regular expressions by defining
them as constants.

Inside these regular expressions you can see a series of captures like so:
(?P<request status>\d{3})

These are named capture groups. In this example, we’re capturing a named value

Version: v1.0.0 (427b8e9) 265

https://github.com/google/mtail/blob/master/examples/apache_combined.mtail
https://github.com/google/mtail/tree/master/examples
https://github.com/google/mtail/blob/master/docs/Language.md#single-definition-of-constants
https://github.com/google/mtail/blob/master/docs/Language.md#capture-groups

Chapter 9: Logging as Instrumentation

of request status. We can then use these captures in our actions.

Listing 9.10: The combined access log actions

{
apache http requests total[$request method][$http version][

$request status]++
apache http bytes total[$request method][$http version][
$request status] += $response size

}

. J

The action increments the first counter, apache http requests total, adding

some of the captures, prefixed with $, to the counter as dimensions. Each di-
mension is wrapped in [] square brackets.

The second counter has an additive operation, using the += operator to add each
new response size in bytes to the counter.

Q TIP mtail can record either integer or floating point values for metrics. By
default, all metrics are integers, unless the compiler can infer a floating point.
Inference is achieved by analyzing expressions, for example identifying that a
regular expression is capturing a floating point value.

If we were to run mtail again, this time loading some Apache (or other web server
that used the combined log format), we’d see these new metrics populated.

Version: v1.0.0 (427b8e9) 266

Chapter 9: Logging as Instrumentation

Listing 9.11: Running mtail

$ sudo mtail --progs /etc/mtail --logs '/var/log/apache/*.access

And then browse to the /metrics path:
.

Listing 9.12: Apache combined metrics

TYPE apache http requests total counter

apache http requests total defined at apache combined.mtail
:6:9-34

apache http requests total{http version="HTTP/1.1",

request method="GET", request status="200",prog="apache combined.
mtail"} 73

apache http requests total defined at apache combined.mtail
:6:9-34

apache http requests total{http version="HTTP/1.1",

request method="GET", request status="304",prog="apache combined.
mtail"} 3

TYPE apache http bytes total counter

apache http bytes total defined at apache combined.mtail:7:9-
31

apache http bytes total{http version="HTTP/1.1", request method="
GET", request status="200",prog="apache combined.mtail"} 2814654
apache http bytes total defined at apache combined.mtail:7:9-
31

apache http bytes total{http version="HTTP/1.1",request method="
GET", request status="304",prog="apache combined.mtail"} 0

We can see a new set of counters, with one counter for each method and HTTP
response code dimension.

We can also do more complex operations, like building histograms.

Version: v1.0.0 (427b8e9) 267

Chapter 9: Logging as Instrumentation

Parsing Rails logs into a histogram

To see a histogram being created, let’s look at some lines from the example Rails
mtail program. Rails request logging is useful for measuring performance, but
somewhat unfriendly to parse. Let’s see how mtail does it.

Version: v1.0.0 (427b8e9) 268

https://github.com/google/mtail/blob/master/examples/rails.mtail
https://github.com/google/mtail/blob/master/examples/rails.mtail

Chapter 9: Logging as Instrumentation

Listing 9.13: The mtail rails program

counter
counter
counter
counter
counter
counter
counter
status

}

}

\.

rails
$request milliseconds
rails

rails requests started total

rails_requests started by verb

rails requests completed total

rails requests completed by status

rails requests completed milliseconds sum by status
rails requests completed milliseconds count by status
rails requests completed milliseconds bucket by le,

/"Started (?P<verb>[A-Z]+) .*/ {
rails
rails

requests started total++
requests started[$verb]++

/"~Completed (?P<status>\d{3}) .+ in (?P<request milliseconds>\d+)
ms .*$/ {
rails
rails_

requests completed total++
requests completed[$status]++

requests completed milliseconds sum[$status] +=

requests completed milliseconds count[$status]++

10ms bucket
$request milliseconds <= 10 {
rails requests completed milliseconds bucket["10"][$status]++

50ms bucket
$request milliseconds <= 50 {
rails requests completed milliseconds bucket["50"][$status]++

J

Our program opens with defining counters for started and completed requests.

We then see a condition and action that increments the request started counters, a

Version: v1.0.0 (427b8¢e9)

269

Chapter 9: Logging as Instrumentation

total and a set of counters with dimensions created from the status of the request.

Next, our program calculates completed requests. Here we’re capturing the status
code and the request time in milliseconds. We use these to create a sum of request
time and a count of requests, both by status.

We then nest in another set of conditions and actions, this time to create our
histogram. We have a series of conditions testing the length in milliseconds of the
request:

$request milliseconds <= 10

If our request time is less than or equal to 10, then a histogram bucket counter,
with the length test attached as a dimension and also the status, is incremented.
We can create counters for each bucket we want.

Let’s run our new program over some Rails logs and see what our resulting metrics
look like.

Listing 9.14: Rails mtail metric output

rails requests started total{prog="rails.mtail"} 44

rails requests started{verb="POST",prog="rails.mtail"} 19

rails requests started{verb="PUT",prog="rails.mtail"} 18

rails requests started{verb="GET",prog="rails.mtail"} 7

rails requests completed total{prog="rails.mtail"} 217

rails requests completed{status="200",prog="rails.mtail"} 217
rails requests completed milliseconds sum{status="200",prog="
rails.mtail"} 3555

rails requests completed milliseconds count{status="200",prog="
rails.mtail"} 217

rails requests completed milliseconds bucket{le="10",status="200
",prog="rails.mtail"} 93

rails requests completed milliseconds bucket{le="50",status="200
“,prog="rails.mtail"} 217

Version: v1.0.0 (427b8e9) 270

Chapter 9: Logging as Instrumentation

Q TIP The 1e is a common abbreviation for “less than or equal to,” indicating
the content of the specific bucket.

We can see that we have counters for each request started by total and verb. We
can also see our completed total and a total by status code. And we can see our
buckets—in our case just the 10 ms and 50 ms buckets.

Deploying mtail

We’ve now seen two mtail programs. We deploy them in a number of ways. We
recommend running an mtail instance per application, adjacent to the application
and deployed via configuration management as a dependency. This pattern is
often called a sidecar and lends itself well to containerized applications. We’'ll see
it in Chapter 13, when we look at monitoring applications running on Kubernetes.

We can also run multiple programs in a single mtail instance, but this has the
caveat that mtail will run every program over every log file passed to it, which
could have a performance impact on your host.

Scraping our mtail endpoint

Now that we’ve got some metrics being exposed, let’s create a Prometheus job to
scrape them.

Version: v1.0.0 (427b8e9) 271

Chapter 9: Logging as Instrumentation

Listing 9.15: The mtail job

scrape_configs:
- job name: ‘'mtail’
file sd configs:
- files:
- 'targets/mtail/*.json'
refresh _interval: 5m

Our job uses file-based service discovery to define a couple of targets, a web server
and our rails server. Both targets are scraped on port 3903.

Listing 9.16: Worker file discovery

[{

"targets": [
"web:3903",
"rails:3903"

1

1

If we restart Prometheus we’re now collecting the time series generated from our
mtail programs on our Prometheus server, and can make use of these metrics.

Summary

In this chapter we saw how to use log entries to provide metrics for applications
we can’t, or can’t afford to, instrument. We did this using the mtail log processor.

Note that we only scratched the surface of the capabilities of mtail’s language for
log parsing and processing. You should read the wiki on GitHub and review the

Version: v1.0.0 (427b8e9) 272

https://github.com/google/mtail/wiki
https://github.com/google/mtail/tree/master/examples
https://github.com/google/mtail/tree/master/examples

Chapter 9: Logging as Instrumentation

example programs to learn more about the language and how to write your own
mtail programs.

In the next chapter we’ll learn how to do probe monitoring using Prometheus.

Version: v1.0.0 (427b8e9) 273

https://github.com/google/mtail/tree/master/examples
https://github.com/google/mtail/tree/master/examples

Chapter 10
Probing

In Chapter 1 we discussed that there are two major approaches to monitoring ap-
plications: probing and introspection. In this chapter we’re going to explore probe
monitoring. Probe monitoring probes the outside of an application. You query
the external characteristics of an application: does it respond to a poll on an open
port and return the correct data or response code? An example of probe monitor-
ing is performing an ICMP ping or echo check and confirming you have received
a response. This type of probing is also called blackbox monitoring because we’re
treating the application inside as a black box.

We’ll use probe monitoring to see the state of external aspects of our applications,
which is especially useful from outside of our network. We’re going to use an
exporter called the blackbox exporter to conduct this monitoring.

Probing architecture
Probing with Prometheus works by running an exporter, the blackbox exporter,

that probes remote targets and exposes any time series collected on a local end-
point. A Prometheus job then scrapes any metrics from the endpoint.

274

https://en.wikipedia.org/wiki/Black_box

Chapter 10: Probing

Alert manager

Blackbox

Exporter
HTTP

Prometheus
Probe

Figure 10.1: Probing architecture
Monitoring probes have three constraints:

« They need to be in a position to see the resources being probed.

+ The position of the probe needs to test the right path to the resources. For ex-
ample, if you're testing external access to an application, running the probe
behind your firewall won’t validate this access.

+ The position of the probing exporter needs to be able to be scraped by your
Prometheus server.

It’s common to position probes in geographically distributed locations outside of
an organization’s network to ensure maximum coverage for the detection of faults
and the collection of data about user experience with the application.

Version: v1.0.0 (427b8e9) 275

Chapter 10: Probing

Because of the complexity of deploying probes externally, and if a wide distribu-
tion of probes is needed, it’s common to outsource these probes to a third-party
service. There are all sorts of commercial vendors that provide this service, some
of which expose metrics on their platforms and others that allow metrics to be
exported for use.

For our purposes, however, we’re going to deploy the blackbox exporter to an
external host and use it to monitor the outside of our applications.

The blackbox exporter

The blackbox exporter is a single binary Go application licensed under the Apache
2.0 license. The exporter allows probing of endpoints over HTTP, HTTPS, DNS,
TCP, and ICMP. Its architecture is a little different from other exporters. Inside the
exporter we define a series of modules that perform specific checks—for example,
checking a web server is running, or that a DNS record resolves. When the exporter
runs, it exposes these modules and an API on a URL. Prometheus passes targets and
specific modules to run on those targets as parameters to that URL. The exporter
executes the check and returns the resulting metrics to Prometheus.

Let’s see about installing it.

Installing the exporter

The Prometheus.io download page contains zip files with the binaries for specific
platforms. Currently, the exporter is supported on:

Linux: 32-bit, 64-bit, and ARM.
Max OS X: 32-bit and 64-bit.
FreeBSD: 32-bit, 64-bit, and ARM.
OpenBSD: 32-bit, 64-bit, and ARM.

Version: v1.0.0 (427b8e9) 276

https://github.com/prometheus/blackbox_exporter
https://prometheus.io/download/#blackbox_exporter

Chapter 10: Probing

« NetBSD: 32-bit, 64-bit, and ARM.
« Microsoft Windows: 32-bit and 64-bit.
+ DragonFly: 64-bit.

Older versions of the exporter are available from the GitHub Releases page.

' NOTE At the time of writing, blackbox exporter was at version 0.12.0.

Installing the exporter on Linux

To install blackbox exporter on a 64-bit Linux host, we can download the zipped
tarball. We can use wget or curl to get the file from the download site.

(/.
Listing 10.1: Download the blackbox exporter zip file

$ cd /tmp

$ wget

https://github.com/prometheus/blackbox _exporter/releases/
download/v0.12.0/blackbox_exporter-0.12.0.linux-amd64.tar.gz

Now let’s unpack the blackbox exporter binary from the tarball and move it
somewhere useful.

(P
Listing 10.2: Unpack the blackbox_exporter binary

$ tar -xzf blackbox exporter-0.12.0.linux-amd64.tar.gz
$ sudo cp blackbox exporter-0.12.0.1linux-amd64/blackbox exporter
/usr/local/bin/

. J

Version: v1.0.0 (427b8e9) 277

https://github.com/prometheus/blackbox_exporter/releases

Chapter 10: Probing

We can now test if the exporter is installed and in our path by checking its version.

Listing 10.3: Checking the blackbox exporter version on Linux

$ blackbox exporter --version
blackbox exporter, version 0.12.0 (branch: HEAD, revision: 30
dd0426c08b6479d9a26259%9ea5efd63bclee273)

build user: root@3el103e3fc918
build date: 20171116-17:45:26
go version: gol.9.2

Q TIP This same approach will work on Mac OS X with the Darwin version of
the blackbox exporter binary.

Installing the exporter on Microsoft Windows

To install blackbox exporter on Microsoft Windows, we need to download the
blackbox exporter.exe executable and put it in a directory. Let’s create a direc-
tory for the executable using Powershell.

Listing 10.4: Creating a directory on Windows

C:\> MKDIR blackbox exporter
C:\> CD blackbox exporter

Now download the blackbox exporter.exe executable from GitHub into the C:\
blackbox exporter directory:

Version: v1.0.0 (427b8e9) 278

Chapter 10: Probing

Listing 10.5: Blackbox exporter Windows download

https://github.com/prometheus/blackbox _exporter/releases/
download/v0.12.0/blackbox exporter-0.12.0.windows-amd64.tar.gz

Unzip the executable, using a tool like 7-Zip, into the C:\blackbox exporter di-
rectory. Finally, add the C:\blackbox exporter directory to the path. This will
allow Windows to find the executable. To do this, run this command inside Pow-
ershell.

Listing 10.6: Setting the Windows path

$env:Path += ";C:\blackbox exporter"

\.

You should now be able to run the blackbox exporter.exe executable.

Listing 10.7: Checking the blackbox exporter version on Windows

C:\> blackbox exporter.exe --version
blackbox exporter, version 0.12.0 (branch: HEAD, revision: 30
dd0426c08b6479d9a26259ea5efd63bclee273)

build user: root@3el103e3fc918
build date: 20171116-17:45:26
go version: gol.9.2

Installing via configuration management

Some of the configuration management modules we saw in Chapter 3 can also
install the blackbox exporter:

Version: v1.0.0 (427b8e9) 279

http://www.7-zip.com/

Chapter 10: Probing

+ A Puppet module for Prometheus.
A Chef cookbook for Prometheus.
A blackbox exporter Docker image.
A SaltStack formula.

Q TIP Remember, configuration management is the recommended approach
for installing and managing Prometheus and its components!

Configuring the exporter

The exporter is configured via a YAML-based configuration file and driven with
command line flags. The command line flags specify the location of the configu-
ration file, the port to bind to, and logging. We can see the available command
line flags by running the blackbox exporter binary with the -h flag.

Let’s create a configuration file to run the exporter now.

(P
Listing 10.8: The prober.yml file

$ sudo mkdir -p /etc/prober
$ sudo touch /etc/prober/prober.yml

. J

And let’s populate it with some basic configuration. The exporter uses modules

to define various checks. Each module has a name, and inside each is a specific
prober—for example, an http prober to check HTTP services and web pages, and
an icmp prober to check for ICMP connectivity. Prometheus jobs supply targets
to each check inside the module, and the exporter returns metrics that are then
scraped.

Version: v1.0.0 (427b8e9) 280

https://forge.puppet.com/puppet/prometheus
https://supermarket.chef.io/cookbooks/prometheus-platform
https://hub.docker.com/r/prom/blackbox-exporter/
https://github.com/bechtoldt/saltstack-prometheus-formula

Chapter 10: Probing

(P
Listing 10.9: The /etc/prober/prober.yml file

modules:
http 2xx_check:
prober: http
timeout: 5s

http:
valid status codes: []
method: GET

icmp_check:
prober: icmp
timeout: 5s
icmp:
preferred ip protocol: "ip4"
dns_examplecom_check:
prober: dns
dns:
preferred ip protocol: "ip4"
query name: "www.example.com"

\. J

We’ve defined three checks: an HTTP check that ensures that a web server returns
a 2XX status code when queried, an ICMP check that pings the target, and a DNS
check that makes a DNS query. Let’s look at each in turn.

Q TIP The exporter example configuration is also useful to help explain how
the exporter works.

HTTP check

Our HTTP status check uses the http prober. This prober makes HTTP requests
using a variety of methods like GET or POST. We specify a timeout of 5s, or five

Version: v1.0.0 (427b8e9) 281

https://github.com/prometheus/blackbox_exporter/blob/master/example.yml
https://github.com/prometheus/blackbox_exporter/blob/master/CONFIGURATION.md#http_probe

Chapter 10: Probing

seconds, for any requests. We then configure the prober to make a GET request.
We leave the valid status codes blank; it defaults to any 2XX status code. If
we wanted to validate that a different status code was returned, we’d specify the
code or codes in an array in this field.

Listing 10.10: Valid status codes

valid status codes: ['200', '304']

Here our check will be for the status codes 200 and 304. We could also check valid
HTTP versions, if an HTTP connection is SSL, or if the content matches or does

not match a regular expression.

ICMP check

Our second check pings a target using ICMP. We set the prober to icmp and specify
a timeout of five seconds. We configure the icmp prober with the protocol to use,
ip4.

Q TIP The ICMP requires some additional permissions. On Windows it needs
Administrator privileges, on Linux the root or CAP_NET RAW capability, and on
BSD or OS X the root user.

DNS check

Our last check uses the dns prober to check if a DNS entry resolves. In this case
our target will be the DNS server we want to make the resolution. We specify our

Version: v1.0.0 (427b8e9) 282

https://github.com/prometheus/blackbox_exporter/blob/master/CONFIGURATION.md#icmp_probe
https://github.com/prometheus/blackbox_exporter/blob/master/CONFIGURATION.md#dns_probe

Chapter 10: Probing

preferred protocol, again ip4, and we specify a query.
query name: "www.example.com"

This will check that DNS for the www.example.com site will resolve. A query type
of ANY is made of the target, and a successful DNS probe relies on the status code
returned for the query. The default indicator for success is if the NOERROR response
code is received. We can configure for other query types using the query type
option and other response codes using the valid rcodes option.

Starting the exporter

Now that we have our three checks defined, let’s start the exporter. We’re going
to run our exporter on an Ubuntu host called prober.example.com running on
an AWS EC2 instance. We run the blackbox exporter binary and pass it the
configuration file we’ve just created.

Listing 10.11: Starting the exporter

$ sudo blackbox exporter --config.file="/etc/prober/prober.yml"

\. J

The exporter runs on port 9115, and you can browse to its console page at http
://localhost:9115.

Version: v1.0.0 (427b8e9) 283

Chapter 10: Probing

<« C | () localhost

Blackbox Exporter

Probe prometheus.io for http_2xx
Debug probe prometheus.io for http 2xx
Metrics

Configuration

Recent Probes

Module | Target|Result|Debug

Figure 10.2: The blackbox exporter console

The console includes the exporter’s own metrics, available on the http://
localhost:9115/metrics path, to allow us to monitor it too. It also contains a list
of recent checks executed, their status, and debug logs showing what happened.
These are useful to debug checks if they have failed.

Version: v1.0.0 (427b8e9) 284

Chapter 10: Probing

Creating the Prometheus job

Now we can create some Prometheus jobs to scrape the exporter. As we’ve dis-
cussed, the blackbox exporter is a little different in how it operates: the exporter
scrapes the targets passed to it using the checks defined on it. We’ll use a separate
job for each check.

Let’s create a job called http probe that will query our http 2xx check module.

Listing 10.12: The http_probes job

- job name: ‘'http probe’
metrics path: /probe
params:
module: [http 2xx check]
file sd configs:
- files:
- 'targets/probes/http probes.json'
refresh interval: 5m
relabel configs:
- source labels: [address 1
target label: param target
- source labels: [param target]
target label: instance
- target label: address
replacement: prober.example.com:9115

We specify the metrics path, /probe, on the exporter. We pass in the module name
as a parameter to the scrape. We're using file-based discovery to list targets for
this job.

Version: v1.0.0 (427b8e9) 285

Chapter 10: Probing

(P
Listing 10.13: The http_probe targets

[{

"targets": [
"http://www.example.com",
"https://www.example.com",

]

}

We’re going to probe one website, www.example. com, using both HTTP and HTTPS.

So how does Prometheus know how to find the exporter? We use relabel configs

to overwrite the address label of the target to specify the exporter’s hostname.
We do three relabels:

1. Our first relabel creates a parameter by writing the address label, the
current target’s address, into the param target label.

2. Our second relabel writes that param target label as the instance label.

3. Last, we relabel the address label using the host name (and port) of our
exporter, in our case prober.example.com.

The relabeling results in a URL being constructed for the scrape:

http://prober.example.com:9115/probe?target=www.example.com?module=
http 2xx check

We can browse to this URL to see the metrics that will be returned. Here are the
metrics, minus the comments.

Version: v1.0.0 (427b8e9) 286

Chapter 10: Probing

Listing 10.14: The http_2xx_check metrics

probe dns lookup time seconds 0.404881857

probe duration seconds 0.626351441

probe failed due to regex 0

probe http content length -1

probe http duration seconds{phase="connect"}
0.013192816999999999

probe http duration seconds{phase="processing"}
0.013948647000000002

probe http duration seconds{phase="resolve"} 0.531245733
probe http duration seconds{phase="tls"} 0.073685882
probe http duration seconds{phase="transfer"} 0.000128069
probe http redirects 1

probe http ssl 1

probe http status code 200

probe http version 1.1

probe ip protocol 4

probe ssl earliest cert expiry 1.527696449e+09

probe success 1

The key metric here is probe http status code which shows the status code re-
turned by the HTTP request. If this is a 2xx status code, then the probe is consid-
ered successful and the probe success metric will be set to 1. The metrics here
also supply useful information like the time of the probe and the HTTP version.

The other jobs operate in a similar manner to our HTTP check. They use the same
relabelling rules to find the right target and the exporter’s address.

' NOTE voull find the source code for this chapter, including the
Prometheus jobs, on GitHub.

The ICMP job takes host names or IP addresses, performs an ICMP ping, and re-

Version: v1.0.0 (427b8e9) 287

https://github.com/turnbullpress/prometheusbook-code/tree/master/10
https://github.com/turnbullpress/prometheusbook-code/tree/master/10

Chapter 10: Probing

turns the results. The targets for the DNS check are the DNS servers whose reso-
lutions you wish to test.

If we now reload or restart Prometheus, we’ll see the metrics from these jobs in
the console.

Prometheus

O Enable query history
probe

probe_ dns_additional _rrs
probe dns answer rrs
probe_dns_authority_rrs
probe_dns_lookup_time_seconds
probe_ duration_seconds
probe_ip_protocol

probe success

Figure 10.3: The probe metrics in Prometheus

Summary

In this chapter we used the blackbox exporter to probe some resources. We were
introduced to the basics of probing architecture, and how to install, configure
some basic probe checks with, and run the exporter. We also saw how to create
Prometheus jobs to initiate probes and how to use relabelling rules to scrape the
targets via the exporter.

Version: v1.0.0 (427b8e9) 288

Chapter 10: Probing

In the next chapter we’ll learn how to push metrics to Prometheus, especially for
short-running processes like jobs and deployments, using the Pushgateway.

Version: v1.0.0 (427b8e9) 289

Chapter 11

Pushing Metrics and the
Pushgateway

Up until now, we’ve seen the Prometheus server running jobs to scrape metrics
from targets: a pull-based architecture. In some cases, though, there isn’t a target
from which to scrape metrics. There are a number of reasons why this might be
SO:

* You can’t reach the target resources because of security or connectivity. This
is quite a common scenario when a service or application only allows ingress
to specific ports or paths.

 The target resource has too short a lifespan—for example, a container start-
ing, executing, and stopping. In this case, a Prometheus job will run and
discover the target has completed execution and is no longer available to be
scraped.

+ The target resource doesn’t have an endpoint, such as a batch job, that can
be scraped. It’s unlikely that a batch job will have a running HTTP service
that can be scraped, even assuming the job runs long enough to be available
to be scraped.

290

Chapter 11: Pushing Metrics and the Pushgateway

In these cases we need some way to deliver or push our time series to the
Prometheus server. In this chapter we’re going to learn how to handle these
scenarios using the Pushgateway.

The Pushgateway

The Pushgateway is a standalone service that receives Prometheus metrics on an
HTTP REST API. The Pushgateway sits between an application sending metrics
and the Prometheus server. The Pushgateway receives metrics and is then scraped
as a target to deliver the metrics to the Prometheus server. You can think about
it like a proxy service, or the opposite of the blackbox exporter’s behavior: it’s
receiving metrics rather than probing for them.

Version: v1.0.0 (427b8e9) 291

https://github.com/prometheus/pushgateway

Chapter 11: Pushing Metrics and the Pushgateway

Alert manager

Pushgateway

HTTP

Prometheus Push

Service

Job

Figure 11.1: The Pushgateway

Like most of the Prometheus ecosystem, the Pushgateway is written in Go, open
source, and licensed under Apache 2.0.

When not to use the Pushgateway

The Pushgateway is essentially a workaround for monitoring resources that can’t
be scraped by a Prometheus server for the reasons we discussed above. The gate-
way isn’t a perfect solution and should only be used as a limited workaround,

especially for monitoring otherwise inaccessible resources.

You also want to avoid making the gateway a single point of failure or a perfor-

Version: v1.0.0 (427b8e9) 292

Chapter 11: Pushing Metrics and the Pushgateway

mance bottleneck. The Pushgateway definitely does not scale in the same way a
Prometheus server will scale.

Q TIP Although you could use a variant of the worker scaling pattern we intro-
duced in Chapter 7 or push metrics to multiple Pushgateways.

The gateway is also closer to a proxy than a fully featured push monitoring tool,
hence, in using it, you lose a number of useful features that the Prometheus server
provides. This includes instance state monitoring via up metrics and the expiration
of metrics. It is also a static proxy by default, and remembers every metric sent
to it, continuing to expose them as long as it is running (and the metrics aren’t
persisted) or until they are deleted. This means that metrics for instances that no
longer exist may be persisted in the gateway.

You should focus the gateway on monitoring short-lifespan resources, like
jobs, or the short-term monitoring of inaccessible resources. You should install
Prometheus servers to monitor inaccessible resources in the longer term.

Q TIP A useful tool to monitor some of these inaccessible resources is the
PushProx proxy which is designed to allow scrapes through NAT’ed connections.

Installing the Pushgateway

The Prometheus.io download page contains zip files with the binaries for specific
platforms. Currently Pushgateway is supported on:

 Linux: 32-bit, 64-bit, and ARM.

Version: v1.0.0 (427b8e9) 293

https://github.com/robustperception/pushprox
https://prometheus.io/download/#pushgateway

Chapter 11: Pushing Metrics and the Pushgateway

Max OS X: 32-bit and 64-bit.

FreeBSD: 32-bit, 64-bit, and ARM.
OpenBSD: 32-bit, 64-bit, and ARM.
NetBSD: 32-bit, 64-bit, and ARM.
Microsoft Windows: 32-bit and 64-bit.
DragonFly: 64-bit.

Older versions of Pushgateway are available from the GitHub Releases page.

' NOTE At the time of writing Pushgateway was at version 0.5.1.

Installing the Pushgateway on Linux

To install Pushgateway on a 64-bit Linux host, we can download the zipped tarball.
We can use wget or curl to get the file from the download site.

Listing 11.1: Download the Pushgateway zip file

$ cd /tmp

$ wget
https://github.com/prometheus/pushgateway/releases/download/v
0.5.1/pushgateway-0.5.1.linux-amd64.tar.gz

. J

Now let’s unpack the pushgateway binary from the tarball and move it somewhere

useful.

Version: v1.0.0 (427b8e9) 294

https://github.com/prometheus/pushgateway/releases

Chapter 11: Pushing Metrics and the Pushgateway

(P
Listing 11.2: Unpack the pushgateway binary

$ tar -xzf pushgateway-0.5.1.linux-amd64.tar.gz
$ sudo cp pushgateway-0.5.1.1linux-amd64/pushgateway /usr/local/
bin/

We can now test if the Pushgateway is installed and in our path by checking its
version.

Listing 11.3: Checking the Pushgateway version on Linux

$ pushgateway --version
pushgateway, version 0.5.1 (branch: HEAD, revision: 30
dd0426c08b6479d9a26259ea5efd63bclee273)

build user: root@3el03e3fc918
build date: 20171116-17:45:26
go version: gol.9.2

Q TIP This same approach will work on Mac OS X with the Darwin version of
the Pushgateway binary.

Installing the Pushgateway on Microsoft Windows

To install Pushgateway on Microsoft Windows, we need to download the
pushgateway.exe executable and put it in a directory. Let’s create a directory for
the executable using Powershell.

Version: v1.0.0 (427b8e9) 295

Chapter 11: Pushing Metrics and the Pushgateway

Listing 11.4: Creating a directory on Windows

C:\> MKDIR pushgateway
C:\> CD pushgateway

\.

Now download the pushgateway.exe executable from GitHub into the C:\
pushgateway directory:

Listing 11.5: Pushgateway Windows download

https://github.com/prometheus/pushgateway/releases/download/v
0.5.1/pushgateway-0.5.1.windows-amd64.tar.gz

\. J

Unzip the executable, using a tool like 7-Zip, into the C:\pushgateway directory.

Finally, add the C:\pushgateway directory to the path. This will allow Windows
to find the executable. To do this, run this command inside Powershell.

Listing 11.6: Setting the Windows path

$env:Path += ";C:\pushgateway"

You should now be able to run the pushgateway.exe executable.

Version: v1.0.0 (427b8e9) 296

http://www.7-zip.com/

Chapter 11: Pushing Metrics and the Pushgateway

Listing 11.7: Checking the Pushgateway version on Windows

C:\> pushgateway.exe --version
pushgateway, version 0.5.1 (branch: HEAD, revision: 30
dd0426c08b6479d9a26259ea5efd63bclee273)

build user: root@3el03e3fc918
build date: 20171116-17:45:26
go version: gol.9.2

Installing via configuration management

Some of the configuration management modules we saw in Chapter 3 can also
install the Pushgateway:

* A Puppet module for Prometheus.
* A Chef cookbook for Prometheus.

Q TIP Remember configuration management is the recommended approach for
installing and managing Prometheus and its components!

Configuring and running the Pushgateway

The Pushgateway doesn’t need any configuration out of the box, but it can be
configured by setting flags on the command line when you run the pushgateway
binary. The gateway runs on port 9091, but you can override this port and any
interface using the - -web.listen-address flag.

Version: v1.0.0 (427b8e9) 297

https://forge.puppet.com/puppet/prometheus
https://supermarket.chef.io/cookbooks/prometheus-platform

Chapter 11: Pushing Metrics and the Pushgateway

Listing 11.8: Running the Pushgateway on an interface

$ pushgateway --web.listen-address="0.0.0.0:9091"

This will bind the Pushgateway on all interfaces. When the gateway is running,
you can browse to its dashboard on that address and port.

& C | (O localhost

jateway Metrics

Code Community © Prometheus Authors 2014

Figure 11.2: The Pushgateway dashboard

By default, the gateway stores all of its metrics in memory. This means if the
gateway stops or is restarted you’ll lose any metrics in memory. You can persist
the metrics to disk by specifying the - -persistence. file flag with a path a file.

Version: v1.0.0 (427b8e9) 298

Chapter 11: Pushing Metrics and the Pushgateway

Listing 11.9: Persisting the metrics

$ pushgateway --persistence.file="/tmp/pushgateway persist"

\.

The persistence file is written to every five minutes by default, but you can over-
ride this with the - -persistence.interval flag.

You can see other available flags by running the binary with the - -help flag.

Sending metrics to the Pushgateway

Once the Pushgateway is running you can start to send it metrics. Most
Prometheus client libraries support sending metrics to the Pushgateway, in
addition to exposing them for scraping. The easiest way to see how the gateway
works is to use a command line tool like curl to post metrics. Let’s push a single
metric to our running gateway.

Listing 11.10: Posting a metric to the gateway

$ echo 'batchjobl user counter 2' | curl --data-binary @- http://
localhost:9091/metrics/job/batchjobl

\.

We push metrics to the path /metrics. The URL is constructed using labels, here

/metrics/job/<jobname> where batchjobl is our job label. A full metrics path
with labels looks like:

Listing 11.11: The Pushgateway metrics path

/metrics/job/<jobname>{/<label>/<label>}

Version: v1.0.0 (427b8e9) 299

Chapter 11: Pushing Metrics and the Pushgateway

The <jobname> will be used as the value of the job label, followed by any other
specified labels. Labels specified in the path will override any labels specified in
the metric itself.

Let’s add an instance label to our metric using the URL path.

Listing 11.12: Posting a metric to the gateway

$ echo 'batchjobl user counter 2' | curl --data-binary @- http://
localhost:9091/metrics/job/batchjobl/instance/sidekiq _server

A WARNING You cannot use / as part of a label value or job name, even
if it is escaped. This is because the decoding sequences makes it impossible to
determine what was escaped, see the Go URL documentation.

In the above example, we’ve echoed the metric batchjobl user counter 2 from
the job batchjobl to our gateway. This will create a new metric grouping for
the job batchjobl with an instance label of sidekiq server. Metric groupings
are collections of metrics. You can add and delete metrics within the grouping,
or even delete the whole group. Because the gateway is a cache and not an ag-
gregator, metric groupings will live on until the gateway is stopped or they are
deleted.

This counter is the most simple metric we can send. We name the counter,
batchjobl user counter, and give it a value: 2.

We can add labels to pushed metrics by enclosing them in {}.

Version: v1.0.0 (427b8e9) 300

https://golang.org/pkg/net/url/#URL

Chapter 11: Pushing Metrics and the Pushgateway

Listing 11.13: Adding labels to pushed metrics

echo 'batchjobl user counter{job id="123ABC"} 2' | curl --data-
binary @- http://localhost:9091/metrics/job/batchjobl/instance/
sidekiq_server

Currently, the metric will be uploaded untyped; the gateway won’t know whether
this is a counter, gauge, or any other metric type. You can add a type (and a
description) to a metric by passing TYPE and HELP statements in the push.

Listing 11.14: Passing types and descriptions

$ cat <<EOF | curl --data-binary @- http://localhost:9091/
metrics/job/batchjobl/instance/sidekiq server

TYPE batchjobl user counter counter

HELP batchjobl user counter A metric from BatchJobl.
batchjobl user counter{job id="123ABC"} 2

EOF

We can also add further metrics to our metric group.

Listing 11.15: Passing types and descriptions

$ cat <<EOF | curl --data-binary @- http://localhost:9091/
metrics/job/batchjobl/instance/sidekiq server

TYPE batchjobl avg latency gauge

HELP batchjobl avg latency Another metric from BatchJobl.
batchjobl avg latency{job id="123ABC"} 74.5

TYPE batchjobl sales counter counter

HELP batchjobl sales counter A third metric from BatchJobl.
batchjobl sales counter{job id="123ABC"} 1

EOF

Version: v1.0.0 (427b8e9) 301

Chapter 11: Pushing Metrics and the Pushgateway

This would add two metrics, batchjobl avg latencyandbatchjobl sales counter
, to our batchjobl metric group.

Viewing metrics on the Pushgateway

We can then see the metrics we’ve pushed to the gateway by using curl on the /
metrics path (or by browsing to the Pushgateway dashboard at http://localhost
:9091).

Version: v1.0.0 (427b8e9) 302

Chapter 11: Pushing Metrics and the Pushgateway

Listing 11.16: Curling the gateway metrics

$ curl http://localhost:9091/metrics

HELP batchjobl user counter A metric from BatchJobl.

TYPE batchjobl user counter counter

batchjobl {instance="sidekiq server",job="batchjobl",job id="123
ABC"} 2

HELP batchjobl avg latency Another metric from BatchJobl.

TYPE batchjobl avg latency gauge

batchjobl avg latency{instance="sidekiq server", job="batchjobl",
job id="123ABC"} 74.5

HELP batchjobl sales counter A third metric from BatchJobl.

TYPE batchjobl sales counter counter

batchjobl sales counter{instance="sidekiq server",job="batchjobl
",job id="123ABC"} 1

HELP push_time seconds Last Unix time when this group was

changed in the Pushgateway.

TYPE push time seconds gauge

push time seconds{instance="sidekiq server",job="batchjobl"}

1.523303909484092e+09

HELP pushgateway build info A metric with a constant '1' value
labeled by version, revision, branch, and goversion from which

pushgateway was built.

TYPE pushgateway build info gauge

pushgateway build info{branch="master",goversion="gol.10.1",
revision="d07ed465fcfcf2be4a2d80026d057fb5944c9283",version="

0.4.0"} 1

' NOTE we’ve skipped a number of health and performance metrics from
the gateway in our output.

We can see our batchjobl metrics. We can see the job label has been set to

Version: v1.0.0 (427b8e9) 303

Chapter 11: Pushing Metrics and the Pushgateway

batchjobl, and we have an instance label of sidekiq server.

For batchjobl user counter, we can see that the value of the metric is 2 even
though we sent three pushes to the gateway. This is because the gateway is NOT
an aggregator, like StatsD or similar tools. Instead, the last push of the metric is
exported until it is updated or deleted.

You'll also see another metric here: push time seconds. This is a per-job metric
that indicates the last time a push occurred. You can use this metric to determine
when the last push occurred, and to potentially identify missing pushes. It’s only
useful if you expect a push to occur within a specific time frame.

Deleting metrics in the Pushgateway

Metrics exist in the gateway until it is restarted (assuming no persistence is set),
or until they are deleted. We can delete metrics using the Pushgateway API. Let’s
do this now, again using curl, as an example.

Listing 11.17: Deleting Pushgateway metrics

$ curl -X DELETE localhost:9091/metrics/job/batchjobl

This will delete all metrics for the job batchjobl. You can further limit the se-
lection by making the path more granular—for example, by deleting only those
metrics from a specific instance.

Listing 11.18: Deleting a selection of Pushgateway metrics

$ curl -X DELETE localhost:9091/metrics/job/batchjobl/instance/
sidekiq server

Version: v1.0.0 (427b8e9) 304

Chapter 11: Pushing Metrics and the Pushgateway

Q TIP You can also delete an entire metrics grouping from the Pushgateway by
using the Delete Group button on the dashboard.

Sending metrics from a client

Obviously curl’ing metrics to the gateway isn’t practical. Instead we’re going
to use a Prometheus client to push metrics to the gateway. All of the official
Prometheus clients, and many of the unofficial ones, support the push gateway as
a target for metrics.

To demonstrate how to do this, we’ll use the Rails application we demonstrated
in Chapter 8. We’re going to create a MetricsPush class in our 1ib directory to
use in our Rails application. Let’s do that now.

Listing 11.19: Creating MetricsPush class

$ touch lib/metricspush.rb

And let’s populate the file with a class.

Version: v1.0.0 (427b8e9) 305

https://prometheus.io/docs/instrumenting/clientlibs/

Chapter 11: Pushing Metrics and the Pushgateway

Listing 11.20: The MetricsPush module

require 'prometheus/client’
require 'prometheus/client/push’

class MetricsPush

attr reader :job, :registry, :pushgateway url

def initialize

def registry

end

end

end

end

end
def push
registry)

end
end

@job = 'mwp-rails'
@pushgateway url = 'http://localhost:9091"'
end

@registry ||= Prometheus::Client.registry

def counter(name, desc, labels = {})

registry.get(name) || registry.counter(name, desc)

def gauge(name, desc, labels = {})

registry.get(name) || registry.counter(name, desc)

def summary(name, desc, labels = {})

registry.get(name) || registry.counter(name, desc)

def histogram(name, desc, labels = {}, buckets = Prometheus::
Client::Histogram: :DEFAULT BUCKETS)

registry.get(name) || registry.counter(name, desc)

Prometheus::Client: :Push.new(job, nil, pushgateway url).add(

Version: v1.0.0 (427b8¢e9)

306

Chapter 11: Pushing Metrics and the Pushgateway

Our class is very similar to the code we used in Chapter 8. We can create a wide
variety of metrics. We’ve also added a method called push that sends the metrics in
the registry to a Pushgateway. In our case, we’ve assumed the gateway is running
locally on the host.

\DNnote{In addition to the add method on Prometheus: :Client: :Push, we also
have replace and delete methods we could use to replace or delete a

metric on the gateway.
We can then use our class when we run a job or some other transitory task.

Listing 11.21: Pushing a metric

mp = MetricsPush.new

mp.counter(:test counter, "A test counter for a job").increment({
service: 'mwp-rails-job' })

mp.push

\ J

We create an instance of the MetricsPush class and increment a counter called
test counter. We’ve added a label—one called service with a value of mwp-
rails-job. We then use the push method to push the metric. If we were to run
this snippet of code we could then check for the metric in the gateway, on the
http://localhost:9091/metrics path or in the Pushgateway console.

< C | @ localhost:
% Bookmarks B tmp B8 New Tattoo B8 Books

- instance="172.19.0.1"

~ push_time_seconds (B R e e

[ET) last pushed: 2018-04-13 20:12:04.390464082 +0000 UTC m=+104.503618126

~ test_counter (YIS CAC I

last pushed: 2018-04-13 20:12:04.390464082 +0000 UTC m=+104.503618126

Labels Value Timestamp

instance="172.19.0.1" 1

Figure 11.3: The test_counter in the Pushgateway dashboard

Version: v1.0.0 (427b8e9) 307

https://github.com/turnbullpress/mwp-rails/blob/master/lib/metrics.rb

Chapter 11: Pushing Metrics and the Pushgateway

Here we can see our pushed metric. Its instance label has been automatically
populated with the IP address of our Rails server. We can override this during the
push if required (especially as a lot of short-lived jobs are more likely associated
with a service than a specific host). We see a job label and the service label we
added.

Now we’re ready to have the Prometheus server scrape the gateway to acquire

our metrics.
Scraping the Pushgateway

The Pushgateway is only the interim stop for our metrics. We now need to get
them into the Prometheus server. For that we’re going to need a job. Let’s create
one now.

Listing 11.22: The pushgateway job

- job _name: pushgateway
honor_ labels: true
file sd configs:
- files:
- targets/pushgateway/*. json
refresh _interval: 5m

We can see our job is pretty typical and follows the pattern we’ve seen throughout
the book, using file-based discovery. The job will load all targets specified in
JSON files in the targets/pushgateway directory. We’ve specified a Pushgateway
named pgl.example.com in our file-based service discovery configuration.

Version: v1.0.0 (427b8e9) 308

Chapter 11: Pushing Metrics and the Pushgateway

(P
Listing 11.23: Our Pushgateway

[{

"targets": ["pgl.example.com"]

H

We’ve then specified the honor labels option and set it to true. As we’ve learned,
when Prometheus scrapes a target, it will attach the name of the job that did the
scraping, here pushgateway, and an instance label populated with the host or IP
address of the target. With the Pushgateway, our metrics already have job and
instance labels that indicate where our metrics were pushed from. We want to
perpetuate this information in Prometheus rather than have it rewritten by the
server when it scrapes the gateway.

If honor labels is set to true, Prometheus will use the job and instance labels
on the Pushgateway. Set to false, it’ll rename those values, prefixing them with
\texttt{exported_} and attaching new values for those labels on the server.

If we restart Prometheus it’ll start scraping the gateway. Let’s now look for our
test counter metric.

€~ C Q@ localhost @
* Bookmarks B tmp B NewTattoo B Books

O Enable query history

test_counter

Element Value

Figure 11.4: The test_counter metric

We can see it’s been scraped, and the Prometheus server has honored the local
labels.

Version: v1.0.0 (427b8e9) 309

Chapter 11: Pushing Metrics and the Pushgateway

Summary

In this chapter we saw how to use “push” mechanics with Prometheus via the
Pushgateway. We articulated the limited circumstances in which it’s an appropri-
ate use case. In those circumstances, we showed you how to install and configure
the gateway and instrument your applications and jobs to push metrics to the
gateway. And finally, we saw how to use a Prometheus job to scrape the gateway
and acquire your pushed metrics.

In the next two chapters we’ll look at monitoring a whole application stack run-
ning on top of Kubernetes, first looking at Kubernetes, and then a multi-service
application.

Version: v1.0.0 (427b8e9) 310

Chapter 12
Monitoring a Stack - Kubernetes

Now that we’ve got a handle on the building blocks of Prometheus, let’s put the
pieces together to monitor a modern application stack in the real world. To do
this, we’re going to monitor an API service application called Tornado. Tornado
is written in Clojure, and runs on the JVM,; it has a Redis data store and a MySQL
database. We’re going to deploy Tornado into a Kubernetes cluster we’ve built, so
we’ll also look at monitoring Kubernetes with Prometheus.

In this chapter, we’re going to examine the Kubernetes portion of our stack and
how to monitor it.

To make our monitoring simpler we’ve deployed Prometheus onto Kubernetes,
too.

Our Kubernetes cluster

Our Kubernetes cluster is named tornado.quicknuke.com. The cluster is running
Kubernetes 1.8.7 and is running in AWS. We built the cluster with kops, and you
can find the cluster configuration here. It has three masters and six worker nodes.
All nodes are divided between three Availability Zones.

311

https://github.com/turnbullpress/tornado-api
https://github.com/kubernetes/kops
https://gist.github.com/jamtur01/4554e4d749c122619cf1f68362a114d2

Chapter 12: Monitoring a Stack - Kubernetes

The cluster was created with the following kops command.

Listing 12.1: The cluster kops command

$ kops create cluster \
--node-count 6 \
--zones us-east-2a,us-east-2b,us-east-2c \
--master-zones us-east-2a,us-east-2b,us-east-2c \
--node-size t2.micro \
--master-size t2.micro \
--topology private \
--networking kopeio-vxlan \
--api-loadbalancer-type=public \
--bastion \
tornado.quicknuke.com

' NOTE This chapter assumes you’ve already installed Kubernetes and have
some understanding of how it works. If you need more information on Kubernetes,
the book Kubernetes: Up and Running is recommended reading.

Running Prometheus on Kubernetes

There are a variety of ways to deploy Prometheus on Kubernetes. The best way for
you likely depends greatly on your environment. As possibilities, you can build
your own deployments and expose Prometheus via a service, use one of a number
of bundled configurations, or use the Prometheus Operator from CoreOS.

We’ve chosen to manually create a deployment and a service. We configure the
Prometheus server and manage rules using ConfigMaps and mount these as vol-
umes in our deployment. We also expose the Prometheus WebUI via an AWS Load

Version: v1.0.0 (427b8e9) 312

http://shop.oreilly.com/product/0636920043874.do
https://github.com/giantswarm/kubernetes-prometheus
https://github.com/kayrus/prometheus-kubernetes
https://github.com/coreos/prometheus-operator
https://github.com/turnbullpress/prometheusbook-code/blob/master/12-13/prometheus.yml
https://github.com/turnbullpress/prometheusbook-code/blob/master/12-13/prom-config-map-v1.yml

Chapter 12: Monitoring a Stack - Kubernetes

Balancer service.

We’ve also installed a cluster of three Alertmanagers running on the cluster. We've
enclosed all of this in a namespace called monitoring.

You can find the configuration for all of this with the book’s code on GitHub. How-
ever, we're not going to go into huge detail about how we deployed Prometheus
onto Kubernetes; instead we’ll focus on monitoring Kubernetes and applications
running on Kubernetes with Prometheus.

' NOTE This decision also reflects the speed at which Kubernetes is evolving:
any deployment documented here is likely to be dated very quickly. This config-
uration provided here is not guaranteed to work for later Kubernetes releases.

Monitoring Kubernetes

Let’s start by talking about monitoring Kubernetes itself. While it’s likely to
change, it’s more manageable as a topic. Kubernetes is a container orchestrator
and scheduler with a lot of moving pieces. We’re going to show you how to mon-
itor aspects of Kubernetes with Prometheus jobs, and we’ll match each of these
jobs with some recording and alert rules.

This chapter will be broken into sections dealing with each piece, how the time se-
ries are collected, and any rules and alerts we’re going to generate from those time
series. We’re not going to provide the definitive monitoring approach, but instead
touch on some key highlights, especially where they expand on a Prometheus con-
cept worth exploring.

To identify what we need to monitor we’ll also make use of Prometheus’s built-in

service discovery mechanism for Kubernetes.

Version: v1.0.0 (427b8e9) 313

https://github.com/turnbullpress/prometheusbook-code/blob/master/12-13/alertmanager.yml
https://github.com/turnbullpress/prometheusbook-code/blob/master/12-13/
https://prometheus.io/docs/prometheus/latest/configuration/configuration/#kubernetes_sd_config
https://prometheus.io/docs/prometheus/latest/configuration/configuration/#kubernetes_sd_config

Chapter 12: Monitoring a Stack - Kubernetes

Let’s start with monitoring the nodes upon which Kubernetes is running.

Monitoring our Kubernetes nodes

Our Kubernetes cluster is made up of nine AWS EC2 instances. To monitor them
we’re going to use the Node Exporter. There are several ways we can deploy the
Node Exporter onto those instances. We can install the Node Exporter onto the
base instances when they are provisioned, much as we did in Chapter 4. Or we
can install the Node Exporter into a Kubernetes pod on each node. We can take
advantage of Kubernetes DaemonSet controller that automatically deploys a pod
on every node in the cluster. This approach is useful when you don’t control the
base instances—for example, if you’re using a hosted Kubernetes solution.

A WARNING There is a major caveat with this approach. The Node Ex-
porter accesses a lot of root-level resources, and running it in a Docker container
requires mounting those resources into the container and, for the systemd collec-
tor, running the container as root. This poses a potential security risk. If that
risk isn’t acceptable to you then you should install Node Exporter directly onto
the instances.

Node Exporter DaemonSet

A DaemonsSet ensures that a pod runs on all nodes, potentially including the mas-
ters, using a toleration. It’s ideal for items like monitoring or logging agents. Let’s
look at some elements of our DaemonSet.

Version: v1.0.0 (427b8e9) 314

https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/

Chapter 12: Monitoring a Stack - Kubernetes

' NOTE You can find the full configuration for the Node Exporter on GitHub.

Listing 12.2: The Node Exporter DaemonSet tolerations

apiVersion: extensions/vlbetal
kind: DaemonSet
metadata:
name: node-exporter
namespace: monitoring

spec:

tolerations:

- key: node-role.kubernetes.io/master
effect: NoSchedule

hostNetwork: true

hostPID: true

hostIPC: true

securityContext:
runAsUser: 0

First, you can see we’ve specified a DaemonSet with a name, node-exporter, and
that we’re using a toleration to ensure this pod is also scheduled on our Kubernetes
masters, not just our normal nodes.

Now here’s the caveat with this approach. We’re running the pod as user 0 or root
(this allows access to systemd). We’ve also enabled hostNetwork, hostPID, and
hostIPC to specify that the network, process, and IPC namespace of the instance
will be available in the container. This is a potential security exposure, and you
must definitely consider if you want to take this risk. If this risk isn’t acceptable,
baking the Node Exporter into the image of your instances is potentially a better
approach.

Version: v1.0.0 (427b8e9) 315

https://github.com/turnbullpress/prometheusbook-code/blob/master/12-13/node-exporter.yml
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/

Chapter 12: Monitoring a Stack - Kubernetes

Let’s look at the containers in the pod.

Listing 12.3: The Node Exporter DaemonSet containers

containers:
- image: prom/node-exporter:latest
name: node-exporter
volumeMounts:
- mountPath: /run/systemd/private
name: systemd-socket
readOnly: true
args:
- "--collector.systemd"
- "--collector.systemd.unit-whitelist=(docker|ssh]|
rsyslog|kubelet).service"
ports:
- containerPort: 9100
hostPort: 9100
name: scrape

Here we’re using the DockerHub image for Node Exporter, prom/node exporter,
and grabbing the latest release. We’re also mounting in a volume for the /run/
systemd/private directory on the instances themselves. This allows the Node Ex-
porter to access the systemd state and gather the service state of systemd-managed

services on the instance.

We’ve also specified some arguments for the node exporter binary. We saw both
in Chapter 4: enabling the systemd collector, and specifying a regular expression
of the specific services to monitor, rather than all the services on the host.

We’ve also specified the port we want our metrics exposed on, 9100: the default
port.

To help keep the Node Exporter pods healthy and to enhance their uptime, we’ve
also added liveness and readiness probes to our Node Exporter container. Liveness
probes detect the status of applications inside containers.

Version: v1.0.0 (427b8e9) 316

https://hub.docker.com/r/prom/node-exporter/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-probes/

Chapter 12: Monitoring a Stack - Kubernetes

Listing 12.4: Node Exporter liveness and readiness probes

livenessProbe:
httpGet:
path: /metrics
port: 9100
initialDelaySeconds: 30
timeoutSeconds: 10
periodSeconds: 1
readinessProbe:
failureThreshold: 5
httpGet:
path: /metrics
port: 9100
initialDelaySeconds: 10
timeoutSeconds: 10
periodSeconds: 2

In our case we use an HTTP GET probe to the /metrics path on port 9100 to
confirm the Node Exporter is still working. The probe runs every periodSeconds
, one second in our case. If the liveness check fails, Kubernetes will restart the
container.

' NOTE wel see these probes in applications we monitor too. They can
assist in managing the health of your applications by reducing possible false
positives—such as a service triggering an alert by not being ready while it is
starting—while monitoring. These checks can also restart containers that are
faulty, potentially fixing issues before they trigger alerts.

Readiness probes confirm the application is functional. Here, that means an HTTP
GET can connect to the /metrics path on port 9100 before marking the container

Version: v1.0.0 (427b8e9) 317

Chapter 12: Monitoring a Stack - Kubernetes

as available and delivering traffic to it. The remaining settings control the probe’s
behavior: it’ll wait 10 seconds, the initialDelaySeconds setting, before checking
the readiness; thereafter it will check every two seconds, the periodSeconds value,
for readiness. If the probe times out after 10 seconds, the timeoutSeconds, more
than five times, garnered from the failureThreshold setting, then the container
will be marked as Unready.

' NOTE You can find the full configuration for the Node Exporter on GitHub.

Node Exporter service

We also need a service to expose the Node Exporter so it can be scraped.

Version: v1.0.0 (427b8e9) 318

https://github.com/turnbullpress/prometheusbook-code/blob/master/7/node-exporter.yml

Chapter 12: Monitoring a Stack - Kubernetes

Listing 12.5: The Node Exporter service

apiVersion: vl
kind: Service
metadata:
annotations:
prometheus.io/scrape: 'true'
labels:
app: node-exporter
name: node-exporter
name: node-exporter
namespace: monitoring
spec:
clusterIP: None
ports:
- name: scrape
port: 9100
protocol: TCP
selector:
app: node-exporter
type: ClusterIP

Our service is relatively straightforward. We add an annotation, prometheus.io
/scrape: 'true', as metadata on the services. This will tell Prometheus that it
should scrape this service. We’ll see how it’s used in the Prometheus job we’ll
create to scrape our Node Exporters.

We also expose port 9100 as a ClusterIP. This means it is only available to the
internal cluster network. As Prometheus is on the local Kubernetes cluster it’ll
be able to internally scrape the Node Exporter, and there’s no need to expose it
externally.

' NOTE You can find the complete Node Exporter service on GitHub.

Version: v1.0.0 (427b8e9) 319

https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://github.com/turnbullpress/prometheusbook-code/blob/master/7/node-exporter.yml

Chapter 12: Monitoring a Stack - Kubernetes

Deploying the Node Exporter

Let’s create our DaemonSet and service on our Kubernetes cluster using the
kubectl command. We’ll create both inside the monitoring namespace.

Listing 12.6: Deploying the Node Exporter daemonset and service

$ kubectl create -f ./node-exporter.yml -n monitoring
daemonset "node-exporter" created
service "node-exporter" created

\. J

If you don’t want to keep specifying the -n monitoring namespace you can specify
a default using.

Listing 12.7: The default namespace

$ kubectl config set-context $(kubectl config current-context) --
namespace=monitoring

\.

We can now check our pods are running.

Version: v1.0.0 (427b8e9) 320

Chapter 12: Monitoring a Stack - Kubernetes

Listing 12.8: Checking the Node Exporter pods

$ kubectl get pods -n monitoring
NAME
alertmanager-6854b5d59b-jvjcw
node-exporter-4fx57
node-exporter-4nzfk
node-exporter-5n7kl
node-exporter-f2mvb
node-exporter-km7sc
node-exporter-1lvrsq
node-exporter-mvstg
node-exporter-tj4cs
node-exporter-wh56¢

READY STATUS

1/1
1/1
1/1
1/1
1/1
1/1
1/1
1/1
1/1
1/1

prometheus-core-785bc8584b-7vfrd 1/1

Running
Running
Running
Running
Running
Running
Running
Running
Running
Running
Running

RESTARTS AGE
7d
5s
5s
5s
5s
5s
5s
5s
5s
5s
8d

[cNoNoNoNoNoNoNoNoNONO]

We can see nine pods, one for each instance in the cluster: three masters and six

nodes. We can also see our Prometheus server pod, prometheus-core, and our

Alertmanager, alertmanager.

We can check the Node Exporter pods are running correctly by grabbing their logs.
(P

\.

Listing 12.9: A Node Exporter pod’s logs

$ kubectl logs node-exporter-4fx57 -n monitoring

time="2018-01-18T22:46:05Z" level=info msg="Starting
node exporter (version=0.15.2, branch=HEAD, revision=98

bc64930d34878b84a0f87dfebelabdable532d)" source="node exporter.

go:43"

time="2018-01-18T22:46:05Z" level=info msg="Build context (go=
g0l.9.2, user=root@d5c4792c921f, date=20171205-14:50:53)" source

="node exporter.go:44"

J

We can see our Node Exporter daemon is running. We can also confirm our service

Version: v1.0.0 (427b8¢e9)

321

Chapter 12: Monitoring a Stack - Kubernetes

is in place.

Listing 12.10: Checking the Node Exporter service

$ kubectl get services -n monitoring
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
node-exporter ClusterIP None <none> 9100/TCP 8s

Here we can see our node-exporter service with a ClusterIP type and with the
9100 port exposed to the internal Kubernetes cluster, ready to be scraped. We're
not scraping it yet, however, because we haven’t added a Prometheus job.

The Node Exporter job

In our Prometheus configuration we now want to add a job to scrape our Node
Exporter endpoints. We’re going to kill many birds with one stone by defining a
job that scrapes all the service endpoints that Kubernetes exposes. We’re going
to control which endpoints Prometheus actually scrapes by only scraping those
with a specific annotation, prometheus.io/scrape, set to 'true'. We'll also use
the built-in Kubernetes service discovery to find our endpoints and return them
as potential targets to Prometheus.

' NOTE All of these jobs are derived or based on the amazing example
Kubernetes jobs shipped with Prometheus. Thanks to the contributors to that
project for developing them.

Let’s look at that job now.

Version: v1.0.0 (427b8e9) 322

https://github.com/prometheus/prometheus/blob/master/documentation/examples/prometheus-kubernetes.yml
https://github.com/prometheus/prometheus/blob/master/documentation/examples/prometheus-kubernetes.yml

Chapter 12: Monitoring a Stack - Kubernetes

Listing 12.11: The Kubernetes service endpoints job

- job name: 'kubernetes-service-endpoints'
kubernetes sd configs:
- role: endpoints
relabel configs:
- source labels: [
__meta kubernetes service annotation prometheus io scrapel
action: keep
regex: true
- source labels: [
__meta kubernetes service annotation prometheus io scheme]
action: replace
target label: scheme
regex: (https?)
- source_labels: [
__meta kubernetes service annotation prometheus io path]
action: replace
target label: metrics path
regex: (.+)
- source labels: [address ,
__meta_ kubernetes service annotation prometheus io port]
action: replace
target label: address
regex: ([7:1+) (?2::\d+)7?; (\d+)
replacement: $1:$2
- action: labelmap
regex: _ meta kubernetes service label (.+)
- source labels: [meta kubernetes namespace]
action: replace
target label: kubernetes namespace
- source labels: [meta kubernetes service name]
action: replace
target label: kubernetes name

We’ve called the job kubernetes-service-endpoints. We’ve specified service dis-
covery using the kubernetes sd discovery mechanism. This is in inbuilt service
discovery mechanism, specifically for Kubernetes. It queries the Kubernetes API

Version: v1.0.0 (427b8e9) 323

Chapter 12: Monitoring a Stack - Kubernetes

for targets that match specific search criteria.

As our Prometheus server is running inside Kubernetes we’re able to automatically,
with minimal configuration, fetch Kubernetes targets that match specific roles.
There are roles for nodes, pods, services, and ingresses. Here, specified by the
role parameter, we’re asking our service discovery to return all the Kubernetes
endpoints. The endpoints role returns targets for all listed endpoints of a service,
with one target per port for each endpoint address. If the endpoint is backed by a
pod, as our Node Exporter service is, then any additional container ports are also
discovered as targets. In our case, we’ve only exposed port 9100.

Service discovery also populates a variety of metadata. We use this metadata to
relabel and identify each endpoint. Let’s see what our relabelling rules do and
explore that metadata.

Our first rule checks the prometheus.io/scrape: 'true' annotation that we
set in our Node Exporter service. During the service discovery process the
prometheus.io/scrape annotation will be translated to prometheus io scrape
to create a valid label name. This is because the dot and slash are not le-
gal characters in a Prometheus metric label. Since this is an annotation on
a Kubernetes service, the Prometheus service process also adds the prefix

~ _meta kubernetes service annotation to the label.

Our job only keeps any targets that have the metadata label: ~meta kubernetes service annotati
set to true. All other targets are dropped. This lets you only scrape those
endpoints that you want.

The next three rules check for the presence of more annotations: prometheus.
io/scheme, prometheus.io/path, and prometheus.io/port. If these labels are
present it’ll use the contents of these annotations as the scheme, path, and port
to be scraped. This lets us control, from the service endpoint, what precisely to
scrape, allowing our job to be flexible.

Our next rule maps any labels on the service into Prometheus labels of the
same name by using the labelmap action. In our case, this consumes the

Version: v1.0.0 (427b8e9) 324

https://prometheus.io/docs/prometheus/latest/configuration/configuration/#endpoints
https://prometheus.io/docs/prometheus/latest/configuration/configuration/#endpoints

Chapter 12: Monitoring a Stack - Kubernetes

~ meta kubernetes service label app metadata label, which will become a
label simply called app. Our next rule copies the meta kubernetes namespace
label as kubernetes namespace and the meta kubernetes service name
metadata label to kubernetes name.

We now add our job to the ConfigMap we’re using for our Prometheus server
configuration. We then replace our existing configuration.

Listing 12.12: Replacing the ConfigMap

$ kubectl replace -f ./prom-config-map-vl.yml -n monitoring

\. J

We generally have to delete our Prometheus pod and allow it to be recreated in

order to load our new configuration. Shortly, we should see some new targets on
the Prometheus expression browser.

kubernetes-service-endpoints (13/13 up)

Endpoint State Labels Last Scrape

hitp://100.96.3.2:9090/metrics up app="prometheus” 4.693s ago
Instance="100.96.3.2:9090"

kubernetes_name="prometheus”

kubernetes_namespace="monitoring"

hitp://100.96.4.2:9093/metrics uP app="alertmanager” 11.389s ago
Instance="100.96.4.2:9093"

kubernetes_name="alertmanager-webui"

kubernetes_namespace="monitoring"

hitp://100.96.5.3:9093/metrics uP app="alertmanager” 6.569s ago
Instance="100.96.5.3:9093"

kubernetes_name="alertmanager-webui"

kubernetes_namespace="monitoring"

hitp://100.96.6.2:9093/metrics uP app="alertmanager” 11.367s ago
Instance="100.96.6.2:9093"

kubernetes_name="alertmanager-webui"

kubernetes_namespace="monitoring"

http://172.20.112.25:9100/metrics uP app="node-exporter” 10.516s ago

kubernetes_name="node-exporter"

kubernetes_namespace="monitoring"

Version: v1.0.0 (427b8e9) 325

https://github.com/turnbullpress/prometheusbook-code/blob/master/7/prom-config-map-v1.yml

Chapter 12: Monitoring a Stack - Kubernetes

Figure 12.1: The Kubernetes endpoint targets

You can see that we’ve got thirteen targets listed. Nine of them are the Node
Exporter endpoints on our instances. The tenth and eleventh are Prometheus and
Alertmanager. The Prometheus and Alertmanager targets have been discovered
automatically because their interfaces are exposed as a service too.

Listing 12.13: The monitoring services

$ kubectl get services -n monitoring

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT (
S) AGE

alertmanager LoadBalancer 100.68.82.44 a6f953a641191...
9093:32288/TCP 27m

node-exporter ClusterIP None <none> 9100/
TCP 15h

prometheus LoadBalancer 100.68.154.121 a953a66970c13...
9090:30604/TCP 4d

. J

This job is really useful because we only need to define it once and all future Ku-
bernetes service endpoints will be automatically discovered and monitored. We’ll
see this in action in this and the next chapter.

We will also see node time series start to appear in the expression browser soon
after the job is loaded.

Node Explorer rules

We’re not going to add any new recording or alert rules for our Kubernetes nodes.
Rather we’ve added the rules we created in Chapter 4 to the ConfigMap we’re
using to populate Prometheus’s rule files. So we’re adding all the CPU, memory,
and disk rules we created, and we’re also adding some availability alert rules for
our Kubernetes services. Let’s look at those now.

Version: v1.0.0 (427b8e9) 326

https://github.com/turnbullpress/prometheusbook-code/blob/master/12-13/prometheus.yml
https://github.com/turnbullpress/prometheusbook-code/blob/master/12-13/prom-config-rules-map-v1.yml

Chapter 12: Monitoring a Stack - Kubernetes

.

Listing 12.14: Kubernetes availability alerting rules

- alert: KubernetesServiceDown

expr: up{job="kubernetes-service-endpoints"} == 0
for: 10m
labels:
severity: critical
annotations:

summary: Pod {{ $labels.instance }} is down!
alert: KubernetesServicesGone
expr: absent(up{job="kubernetes-service-endpoints"})
for: 10m
labels:
severity: critical
annotations:
summary: No Kubernetes services are reporting!

description: Werner Heisenberg says - OMG Where are my
servicez?

J

The first alert triggers when the value of the up metric for the kubernetes-service

-endpoints job is 0. This indicates that Prometheus has failed to scrape a service.

The second alert caters for a service disappearing and uses the absent function to

check for the presence of the up metric.

We’ve also added alert rules for the services we’re monitoring on individual nodes

using the node systemd unit state metric, which tracks the status of systemd

services.

Version: v1.0.0 (427b8¢e9)

327

Chapter 12: Monitoring a Stack - Kubernetes

Listing 12.15: Kubernetes availability alerting rules

- alert: CriticalServiceDown

expr: node systemd unit state{state="active"} !=1
for: 2m
labels:
severity: critical
annotations:

summary = {{ $labels.instance }}: Service {{ $labels.name }}
failed to start.

description = {{ $labels.instance }} failed to (re)start
service {{ $labels.name }}.

. J

This will alert when it detects that any of the services our Node Exporter is

monitoring—Docker, Kubelet, RSyslog, and SSH—are in a failed state.

There are other rules and alerts in the configuration that you can explore and
adapt for node monitoring.

Now let’s look at monitoring some Kubernetes components.

Kubernetes

There are a number of ways to monitor Kubernetes itself. These include tools
in the open-source Kubernetes ecosystem like Heapster and Kube-state-metrics as
well as commercial and SaaS-based tools. In this chapter, we’re going to focus on
Kube-state-metrics to do our monitoring.

Kube-state-metrics

We’ll install Kube-state-metrics on our Kubernetes cluster using a deployment and
service. The deployment uses the Kube-state-metrics Docker image and runs it on

Version: v1.0.0 (427b8e9) 328

https://github.com/turnbullpress/prometheusbook-code/blob/master/12-13/prom-config-rules-map-v1.yml
https://github.com/turnbullpress/prometheusbook-code/blob/master/12-13/prom-config-rules-map-v1.yml
https://github.com/kubernetes/heapster
https://github.com/kubernetes/kube-state-metrics
https://github.com/turnbullpress/prometheusbook-code/blob/master/12-13/kube-state-metrics.yml
https://github.com/turnbullpress/prometheusbook-code/blob/master/12-13/kube-state-metrics.yml

Chapter 12: Monitoring a Stack - Kubernetes

one of our nodes. The service exposes the metrics on port 8080. As it’s a service,
it allows us to take advantage of our existing Prometheus service job we created
in the last section. When we run it, Prometheus will automatically discover the
new service endpoint and start scraping the Kube-state-metrics.

Once we’ve added the service we’ll see a new target in the kubernetes-service-
endpoints job in the http://prometheus.quicknuke.com:9090/targets listing.

hitp:/100.96.8.2:8080/merics uP

Figure 12.2: The Kube-state-metrics endpoint target

With Kube-state-metrics we’re going to focus on the success and failure of the
workloads we’re deploying to Kubernetes and the state of our nodes. Let’s look at
some alerts for which we can use our Kube-state-metrics time series.

Q TIP You can see a full list of the metrics that Kube-state-metrics produces in
its documentation.

Version: v1.0.0 (427b8e9) 329

https://github.com/turnbullpress/prometheusbook-code/blob/master/12-13/prom-config-map-v1.yml#L34
https://github.com/turnbullpress/prometheusbook-code/blob/master/12-13/prom-config-map-v1.yml#L34
https://github.com/kubernetes/kube-state-metrics/tree/master/Documentation

Chapter 12: Monitoring a Stack - Kubernetes

Listing 12.16: Kube-state-metrics deployment generation alert

- alert: DeploymentGenerationMismatch
expr: kube deployment status observed generation !=
kube deployment metadata generation
for: 5m
labels:
severity: warning
annotations:
description: Observed deployment generation does not match
expected one for
deployment {{$labels.namespace}}/{{$labels.deployment}}
summary: Deployment is outdated

\. J

Our first rule detects if a deployment has succeeded. It compares the running
generation of a deployment with the generation in the metadata. If the two are
not equal for five minutes then an alert is raised indicating that a deployment has
failed.

Our second rule does similar but for deployment replicas.

Version: v1.0.0 (427b8e9) 330

Chapter 12: Monitoring a Stack - Kubernetes

Listing 12.17: Kube-state-metrics Deployment replicas not updated alert

- alert: DeploymentReplicasNotUpdated
expr: ((kube deployment status replicas updated !=
kube deployment spec replicas)
or (kube deployment status replicas available !=
kube deployment spec replicas))
unless (kube deployment spec paused == 1)
for: 5m
labels:
severity: warning
annotations:
description: Replicas are not updated and available for
deployment {{$labels.namespace}}/{{$labels.deployment}}
summary: Deployment replicas are outdated

Here we perform a more complex expression that confirms that either the updated
or available replicas should match the number of replicas in the deployment spec-
ification, assuming the deployment isn’t paused.

Our next rule checks for pod restarts.

Listing 12.18: Kube-state-metrics pod restarting alert

- alert: PodFrequentlyRestarting
expr: increase(kube pod container status restarts total[lh]) >
5
for: 10m
labels:
severity: warning
annotations:
description: Pod {{ $labels.namespace }}/{{ $labels.pod }}
was restarted {{ $value }}
times within the last hour
summary: Pod is restarting frequently

Version: v1.0.0 (427b8e9) 331

Chapter 12: Monitoring a Stack - Kubernetes

Here we measure the number of pod restarts using the increase function. The
increase function measures the rate of increase in a time series in range vector,
here one hour. If the rate is over five for 10 minutes then the alert is raised.

There are a number of other time series we can use to monitor Kubernetes. For
example, we could use the kube node status condition to determine the avail-
ability of the Kubernetes’ nodes. You’ll find some additional alerts in the alert
rules we’re creating for this chapter.

Kube API

We also want to create a job to monitor our Kubernetes API itself. The metrics
associated with the API will form the central core of our Kubernetes monitoring,
allowing us to monitor latency, error rate, and availability for our cluster. We're
going to monitor the Kubernetes API specifically looking at latency, errors, and
availability. Let’s create a job to monitor the API now.

Version: v1.0.0 (427b8e9) 332

https://prometheus.io/docs/prometheus/latest/querying/functions/#increase()
https://github.com/turnbullpress/prometheusbook-code/blob/master/12-13/prom-config-rules-map-v1.yml
https://github.com/turnbullpress/prometheusbook-code/blob/master/12-13/prom-config-rules-map-v1.yml

Chapter 12: Monitoring a Stack - Kubernetes

Listing 12.19: API server job

- job name: 'kubernetes-apiservers'
scheme: https
tls config:
ca file: /var/run/secrets/kubernetes.io/serviceaccount/ca.
crt
insecure skip verify: true
bearer token file: /var/run/secrets/kubernetes.io/
serviceaccount/token
kubernetes sd configs:
- role: endpoints
relabel configs:
- source labels: [meta kubernetes namespace,
__meta_ kubernetes service name,
__meta_ kubernetes endpoint port name]
action: keep
regex: default;kubernetes;https

. J

We’ve called our job kubernetes-apiservers. We use https to scrape the metrics,

and to specify the certification authority and a local token file to authenticate to
Kubernetes. We again use Kubernetes discovery, this time to return a list of the
Kubernetes endpoints. We won’t use all of the endpoints, and our relabelling
configuration uses the keep action to only retain services named kubernetes in
the default namespace—which will only be our master Kubernetes nodes running
the APL

Now that we’re collecting API server metrics, let’s create some recording rules to
calculate the latency of the API servers.

Version: v1.0.0 (427b8e9) 333

Chapter 12: Monitoring a Stack - Kubernetes

(P
Listing 12.20: The API server recording rules

- record: apiserver latency seconds:quantile
expr: histogram quantile(0.99, rate(

apiserver request latencies bucket[5m])) / le+06
labels:

quantile: "0.99"
- record: apiserver latency seconds:quantile
expr: histogram quantile(0.9, rate(
apiserver request latencies bucket[5m])) / 1le+06
labels:
quantile: "0.9"
- record: apiserver latency seconds:quantile
expr: histogram quantile(0.5, rate(
apiserver request latencies bucket[5m])) / 1le+06
labels:
quantile: "0.5"

We make use of the apiserver request latencies bucket metric to calculate our
latency. This bucket metric, with dimensions for the specific API resource, sub-
resource, and verb, measures request latency. We’ve created three rules for the
50th, 90th, and 99th percentiles, setting the quantile to the specific percentile.
We’ve used the histogram quantile function to create the percentiles from the
metric buckets. We’ve specified the percentile we’re seeking, 0.99 for example,
and then calculated a rate over a five minute vector and divided the result by
le+06 or 1,000,000 to get microsecond latency.

We can then make use of the latency histograms our recording rules have created
to create alerts. Let’s start with an alert to detect high latency from the API.

Version: v1.0.0 (427b8e9) 334

https://prometheus.io/docs/prometheus/latest/querying/functions/#histogram_quantile

Chapter 12: Monitoring a Stack - Kubernetes

(P
Listing 12.21: API high latency alert

- alert: APIHighLatency
expr: apiserver latency seconds:quantile{quantile="0.99",
subresource!="1log",verb!~"~(?:WATCH|WATCHLIST|PROXY|CONNECT)$"} >
4
for: 10m
labels:
severity: critical
annotations:
description: the API server has a 99th percentile latency of
{{ $value }} seconds for {{ $labels.verb }} {{ $labels.resource
+}

\. J

Our alert uses the apiserver latency seconds:quantile metric we just created.
We use labels to select the 99th percentile, any sub-resource that isn’t log, and
any verb that isn’t WATCH, WATCHLIST, PROXY, or CONNECT. If the latency of any of
the remaining metrics exceeds 4 for 10 minutes then the alert will be raised.

Our next alert detects high levels of error rates in the API server.

(/P
Listing 12.22: API high error rate alert

- alert: APIServerErrorsHigh
expr: rate(apiserver request count{code=~""(7:5..)$%$"}[5m]) /
rate(apiserver request count[5m]) * 100 > 5
for: 10m
labels:
severity: critical
annotations:
description: API server returns errors for {{ $value }}% of
requests

This alert calculates the error rate on API requests, using a regular expression to
match any errors beginning with 5xx. If the percentage rate over a five minute

Version: v1.0.0 (427b8e9) 335

Chapter 12: Monitoring a Stack - Kubernetes

vector exceeds 5 percent then the alert will be raised.

Our last two alerts monitor the availability of the API server, monitoring the up
metrics and the presence or absence of the up metric.

Listing 12.23: API servers down or absent

- alert: KubernetesAPIServerDown

expr: up{job="kubernetes-apiservers"} == 0
for: 10m
labels:
severity: critical
annotations:

summary: Apiserver {{ $labels.instance }} is down!
- alert: KubernetesAPIServersGone
expr: absent(up{job="kubernetes-apiservers"})
for: 10m
labels:
severity: critical
annotations:
summary: No Kubernetes apiservers are reporting!
description: Werner Heisenberg says - OMG Where are my
apiserverz?

\. J

Last, we can monitor the Kubernetes nodes and the Docker daemons and contain-

ers running on them.

CAdyvisor and Nodes

Kubernetes also has CAdvisor and node-specific time series available by default.
We can create a job to scrape these time series from the Kubernetes API for each
node. We can use these time series, much as we did in Chapter 4, to monitor the
nodes, and the Docker daemons and container-level on each node.

Let’s add a job for CAdvisor.

Version: v1.0.0 (427b8e9) 336

Chapter 12: Monitoring a Stack - Kubernetes

(P
Listing 12.24: The CAdvisor job

- job name: 'kubernetes-cadvisor'
scheme: https
tls config:
insecure skip verify: true
ca file: /var/run/secrets/kubernetes.io/serviceaccount/ca.
crt
bearer token file: /var/run/secrets/kubernetes.io/
serviceaccount/token
kubernetes sd configs:
- role: node
relabel configs:
- action: labelmap
regex: _ meta kubernetes node label (.+)
- target label: address
replacement: kubernetes.default.svc:443
- source labels: [meta kubernetes node name]
regex: (.+)
target label: metrics path
replacement: /api/vl/nodes/${1}/proxy/metrics/cadvisor

We’ve called our job kubernetes-cadvisor and used service discovery to return a
list of the Kubernetes nodes using the node role. We use https to scrape the met-
rics, and to specify the certification authority and a local token file to authenticate
to Kubernetes.

We’re then relabelling our time series to create labels from the metadata labels
we’ve discovered using labelmap. We replace the address label with the
default DNS name of the Kubernetes API server. We then use one of the metadata
labels, a label with the name of the node, to create a new metrics path on
the API that passes in the node name to the path.

/api/vl/nodes/${1}/proxy/metrics/cadvisor

This will scrape the required time series for each node discovered by the job. We
also have a job for the nodes themselves in our configuration that exposes some

Version: v1.0.0 (427b8e9) 337

https://github.com/turnbullpress/prometheusbook-code/blob/master/12-13/prom-config-map-v1.yml

Chapter 12: Monitoring a Stack - Kubernetes

Kubernetes node-level metrics.

We can use these metrics to monitor the performance of the underlying containers,
Docker daemons and the Kubernetes-level performance of the nodes.

Summary

In this chapter we started looking at monitoring a stack, starting with our compute
platform: Kubernetes. We installed Prometheus onto Kubernetes to make our
monitoring easier. We looked at monitoring Kubernetes nodes and the nodes
upon which they are deployed using the Node Exporter.

We created several Prometheus jobs, including several that use Kubernetes service
discovery to automatically discover the nodes, API servers, and services that make
up our environment. The service discovery also allows us to configure jobs that
automatically begin scraping specific Kubernetes or application services as they
appear, using annotations to select the right addresses, ports, and paths.

In the next chapter we’re going to monitor a multi-service application running on
top of our Kubernetes cluster. We’ll look at monitoring some specific services, like
MySQL and Redis, as well as our application.

Version: v1.0.0 (427b8e9) 338

Chapter 13
Monitoring a Stack - Tornado

In the last chapter we saw the basics of monitoring Kubernetes, using Prometheus.
In this chapter we’re going to deploy an application, called Tornado, onto our
Kubernetes cluster and monitor it. Tornado is a simple REST-ful HTTP API written
in Clojure which runs on the JVM, has a Redis data store, and a MySQL database.

We’ve deployed each component of the application onto our Kubernetes cluster
and will look at how we can monitor each component, collecting information on
the component and identifying some key alerts. We’ll monitor:

* MySQL,
« Redis, and
+ the Tornado API application.

We’re going to start with monitoring our two data stores. We're going to use a
pattern called sidecar, which we referenced in Chapter 9. Let’s take a quick look
at that pattern.

339

https://github.com/turnbullpress/tornado-api/tree/prometheus
https://github.com/turnbullpress/tornado-api/blob/prometheus/tornado-db.yaml
https://github.com/turnbullpress/tornado-api/blob/prometheus/tornado-redis.yaml
https://github.com/turnbullpress/tornado-api/blob/prometheus/tornado-api.yaml

Chapter 13: Monitoring a Stack - Tornado

Sidecar pattern

To perform much of our monitoring, we’ll rely heavily on an architecture pat-
tern called sidecar. The pattern is named sidecar because it resembles a sidecar
attached to a motorcycle: the motorcycle is our application, and the sidecar is at-
tached to this parent application. The sidecar provides supporting features for the
application—for example, an infrastructure sidecar might collect logs or conduct
monitoring. The sidecar also shares the same life cycle as the parent application,
being created and deleted alongside the parent.

Q TIP Sidecars are sometimes called sidekicks.

Version: v1.0.0 (427b8e9) 340

Chapter 13: Monitoring a Stack - Tornado

Prometheus

Sidecar

Figure 13.1: The sidecar

In our case, the sidebars run Prometheus exporters. The exporters query our ap-
plications and in turn are queried by Prometheus. This sidecar model works on
more than just Kubernetes, too; anywhere you’re deploying containers or services
in clusters lends itself to this pattern.

We’ll run sidecar-monitoring exporters next to our Redis and MySQL installations,
starting with our MySQL database.

Version: v1.0.0 (427b8e9) 341

Chapter 13: Monitoring a Stack - Tornado

MySQL

Monitoring MySQL with Prometheus is done using an exporter: the MySQLd Ex-
porter. The exporter works by connecting to a MySQL server using provided cre-
dentials and querying the state of the server. The queried data is then exposed
and can be scraped by the Prometheus server. This means that the exporter needs
to have both network access to the MySQL server as well as credentials for authen-
tication. In our case, we’re going to run the exporter inside a Docker container
deployed to Kubernetes in our sidecar pattern.

Here’s the segment of our MySQL Kubernetes deployment which runs the exporter
in our sidecar container.

Listing 13.1: The exporter container

- image: prom/mysqld-exporter:latest
name: tornado-db-exp
args:
- --collect.info_schema.innodb metrics
- --collect.info_schema.userstats
- --collect.perf schema.eventsstatements
- --collect.perf schema.indexiowaits
- --collect.perf schema.tableiowaits
env:
- name: DATA SOURCE NAME
value: "tornado-db-exp:anotherstrongpassword@(tornado-db
:3306) /"
ports:
- containerPort: 9104
name: tornado-db-exp

You can see we’re using the prom/mysqld-exporter image with the latest tag.
We’ve called the container tornado-db-exp. We’ve specified our connection de-
tails using the DATA SOURCE NAME environment variable. This connection uses the
DSN format to configure connection and credential details for our MySQL server.

Version: v1.0.0 (427b8e9) 342

https://github.com/prometheus/mysqld_exporter
https://github.com/prometheus/mysqld_exporter
https://github.com/turnbullpress/tornado-api/blob/prometheus/tornado-db.yaml
https://github.com/turnbullpress/tornado-api/blob/prometheus/tornado-db.yaml
https://github.com/turnbullpress/tornado-api/blob/prometheus/tornado-db.yaml
https://hub.docker.com/r/prom/mysqld-exporter/
https://github.com/go-sql-driver/mysql#dsn-data-source-name
https://github.com/go-sql-driver/mysql#dsn-data-source-name

Chapter 13: Monitoring a Stack - Tornado

The exporter running inside the container will automatically pick up the connec-
tion details from the environmental variable.

You should create a separate user with a limited set of permissions. To query the
required data from the MySQL server, you'll need to grant your user the PROCESS,
REPLICATION CLIENT, and SELECT permissions.

You can connect to the MySQL container using kubectl’s exec command, like so:

Listing 13.2: Connecting to the MySQL container

$ kubectl exec -ti <pod> -- /usr/bin/mysql -p

. J

We can then run CREATE USER and GRANT statements to assign the required permis-

sions.

Listing 13.3: Creating a MySQL user

CREATE USER 'tornado-db-exp'@'localhost' IDENTIFIED BY '
anotherstrongpassword';

GRANT PROCESS, REPLICATION CLIENT, SELECT ON *.* TO 'tornado-db-
exp';

GRANT SELECT ON performance schema.* TO 'tornado-db-exp';

\. J

Here we’ve created a user called tornado-db-exp with the required permissions

including a SELECT grant to the performance schema table containing query per-
formance data.

Q TIP 1f you have a ny . cnf file then the exporter can also use credentials hard-
coded in there.

Version: v1.0.0 (427b8e9) 343

Chapter 13: Monitoring a Stack - Tornado

We could also configure the exporter using a variety of flags to control its behavior.
We’ve enabled some additional collectors:

(P
Listing 13.4: Additional MySQL exporter collector

--collect.info _schema.innodb metrics
--collect.info schema.userstats
--collect.perf schema.eventsstatements
--collect.perf schema.indexiowaits
--collect.perf schema.tableiowaits

These all collect data from MySQL’s performance schema database, allowing us to
track the performance of specific queries and operations.

In our container deployment, we’ve also exposed port 9104, the default port of the
MySQL Exporter, which in turn we’ve exposed in a service.

(P
Listing 13.5: The tornado-db service

apiVersion: vl
kind: Service
metadata:
name: tornado-db
annotations:
prometheus.io/scrape: 'true'
prometheus.io/port: '9104'
spec:
selector:
app: tornado-db
type: ClusterIP

ports:
- port: 3306

name: tornado-db
- port: 9104

name: tornado-db-exp

Version: v1.0.0 (427b8e9) 344

https://github.com/prometheus/mysqld_exporter#collector-flags
https://dev.mysql.com/doc/refman/8.0/en/performance-schema.html

Chapter 13: Monitoring a Stack - Tornado

We’ve used two annotations: prometheus.io/scrape, which tells Prometheus to
scrape this service, and prometheus.io/port, which tells Prometheus which port
to scrape. We specify this because we want Prometheus to hit the MySQL Ex-
porter port at 9104 rather than the MySQL server directly. These annotations are
automatically picked up by the kubernetes-service-endpoints job we created
in Chapter 12, and parsed by the relabelling configuration in that job, which we
can see below:

Listing 13.6: The Kubernetes endpoint job relabelling

relabel configs:
- source labels: [
__meta kubernetes service annotation prometheus io scrape]
action: keep
regex: true

- source labels: [address ,
__meta kubernetes service annotation prometheus io port]
action: replace
target label: address
regex: ([~:]1+)(?::\d+)?; (\d+)
replacement: $1:$2

The prometheus.io/scrape annotation ensures Prometheus will only keep metrics
from service endpoints with the annotation set to true. The prometheus.io/port
annotation will be placed into the address label to be scraped by the job. The
next service discovery will start collection of the MySQL metrics.

MySQL Prometheus configuration

As our exporter is being exposed as a service endpoint, we don’t need to configure
a specific job to scrape it. We will, however, create some rules for our MysQL
time series and add them to our rules ConfigMap. We’re just going to create a

Version: v1.0.0 (427b8e9) 345

Chapter 13: Monitoring a Stack - Tornado

sampling of possible rules, loosely aligned with Google’s Four Golden Signals, to
give you an idea of how you might use your MySQL metrics. We’ll focus on:

« Latency

« Traffic

* Errors

+ Saturation

A WARNING Measuring MySQL performance is hard, especially when
tracking signals like latency, and circumstances vary greatly depending on your
application and server configuration. These rules give you starting point, not a
definitive answer. There are a number of guides online that might prove useful.

First, let’s look at some rules, starting with tracking the growth rate of slow
queries using the mysql global status slow queries metric. This counter is
incremented when a query exceeds the long query time variable, which defaults
to 10 seconds.

Listing 13.7: MySQL slow query alert

- alert: MySQLHighSlowQueryRate
expr: rate(mysql global status slow queries[2m]) > 5
labels:
severity: warning
annotations:
summary: MySQL Slow query rate is exceeded on {{ $labels.
instance }} for {{ $labels.kubernetes name }}

. J

This will generate an alert if the rate over two minutes exceeds five. We can also

create recording rules to track the request rates on our server.

Version: v1.0.0 (427b8e9) 346

https://medium.com/@steve.mushero/mysqls-sre-golden-signals-67e2adf88824
https://blog.serverdensity.com/how-to-monitor-mysql/
https://www.datadoghq.com/blog/monitoring-mysql-performance-metrics/

Chapter 13: Monitoring a Stack - Tornado

Listing 13.8: MySQL request rate records

- record: mysql:write requests:rate2m
expr: sum(rate(mysql global status commands total{command=~"
insert|update|delete"}[2m])) without (command)
- record: mysql:select requests:rate2m
expr: sum(rate(mysql global status commands total{command="
select"}[2m]))
- record: mysql:total requests:rate2m
expr: rate(mysql global status commands total[2m])
- record: mysql:top5 statements:rate5m
expr: topk(5, sum by (schema,digest text) (rate(
mysql perf schema events statements total[5m])))

\. J

We use the mysql global status commands total metric and grab all the write
requests for specific commands: insert, update, and delete. We then calculate a
rate over two minutes for these requests. We do the same for read requests using
the select command, and for total requests. We’re also using the topk aggregation
operator to get the most frequently used statements by schema and rate over the
last five minutes, which helps us understand what the server is doing.

© Enable query history

Load time: 501
topk(5, sum by (schema,digest_text) Rﬂ:smm;n 125

(rate(mysql_perf_schema_events_statements_total[5m]))) @ Total time series: 5

Execute - insert metric at cursor - v

Graph Console

Element Value

(digest_text="SET "autocommi’ =7 ",schema="tems"} 5.870003051325506
{digest_text="SET "character_set_results’ = ? ".schema="tems"} 2.515754164853827
{digest_text="SET "sql_mode’ = ?"schema="items"} 2.515754164853827
{digest_text="SELECT @@SESSION ."tx_read_only" ",schema="items"} 2.515754164853827

{digest_text="SELECT @@SESSION . ‘auto_increment_increment™ AS “auto_increment_increment’, @@ character_set_client’ AS “character_set” schema="items"} 2515754164853827

Remove Graph

Figure 13.2: The topk operator over MySQL statements

We could graph or alert on these as needed. We can also track connection requests
and errors.

Version: v1.0.0 (427b8e9) 347

https://prometheus.io/docs/prometheus/latest/querying/operators/#aggregation-operators
https://prometheus.io/docs/prometheus/latest/querying/operators/#aggregation-operators

Chapter 13: Monitoring a Stack - Tornado

Listing 13.9: Connections and aborted connections

- alert: MySQLAbortedConnectionsHigh
expr: rate(mysql global status aborted connects[2m]) > 5
labels:
severity: warning
annotations:
summary: MySQL Aborted connection rate is exceeded on {{
$labels.instance }} for {{ $labels.kubernetes name }}
- record: mysqgl:connection:rate2m
expr: rate(mysql global status connections[2m])

Here we’re alerting if the rate of aborted connections exceeds a threshold, and
creating a recording rule to track the rate of connections overall.

Last, we want to know when our MySQL service is unavailable. These alerts
use the combination of the state and presence of the exporter-specific up metric:
mysql up. Themysql up metric doesa SELECT 1 on the MySQL server and is set to
1 if the query succeeds. The first alert checks if the value of the mysql up metric
is 0, indicating the query has failed. The second alert checks for the presence of
this metric in the event the service disappears and the metric is expired.

Version: v1.0.0 (427b8e9) 348

Chapter 13: Monitoring a Stack - Tornado

(/P
Listing 13.10: MySQL alerts

- alert: TornadoDBServerDown
expr: mysql up{kubernetes name="tornado-db"} == 0
for: 10m
labels:
severity: critical
annotations:
summary: MySQL Server {{ $labels.instance }} is down!
- alert: TornadoDBServerGone
expr: absent(mysql up{kubernetes name="tornado-db"})
for: 10m
labels:
severity: critical
annotations:
summary: No Tornado DB servers are reporting!
description: Werner Heisenberg says - there is no
uncertainty about the Tornado MySQL server being gone.

. J

These are are some useful starter rules. You can find these rules in the code for
this chapter.

Redis

Like MySQL, Prometheus has an exporter for Redis. The Redis Exporter will export
most of the items from the INFO command with details of server, client, memory,
and CPU usage. There are also metrics for total keys, expiring keys, and the
average TTL for keys in each database. You can also export values of keys.

And, again like MySQL, we can run the exporter as a sidecar of the Redis container.
Here’s a snippet of our Redis Kubernetes deployment.

Version: v1.0.0 (427b8e9) 349

https://github.com/turnbullpress/prometheusbook-code/blob/master/12-13/
https://github.com/turnbullpress/prometheusbook-code/blob/master/12-13/
https://github.com/oliver006/redis_exporter/
https://redis.io/commands/info
https://github.com/turnbullpress/tornado-api/blob/prometheus/tornado-redis.yaml

Chapter 13: Monitoring a Stack - Tornado

Listing 13.11: Redis service and sidecar

apiVersion: apps/vlbeta2
kind: Deployment

- name: redis-exporter
image: oliver006/redis exporter:latest
env:
- name: REDIS ADDR
value: redis://tornado-redis:6379
- name: REDIS PASSWORD
value: tornadoapi
ports:
- containerPort: 9121

We’re running a container called redis-exporter from a Docker image,
oliver006/redis exporter. We’ve specified two environments variables:
REDIS ADDR, which specifies the address of the Redis server we want to scrape,
and REDIS PASSWORD, which specifies a password to connect to the server with.
We also specify port 9121 to export our metrics on.

Q TIP There are other environment variables and command line flags you can
set, which you can read about in the documentation.

We then expose this port via a Kubernetes service.

Version: v1.0.0 (427b8e9) 350

https://github.com/oliver006/redis_exporter#flags

Chapter 13: Monitoring a Stack - Tornado

Listing 13.12: The Redis Kubernetes service

apiVersion: vl
kind: Service
metadata:
name: tornado-redis
annotations:
prometheus.io/scrape: 'true’
prometheus.io/port: '9121°

spec:
selector:
app: tornado-redis
ports:
- port: 6379
name: redis
- port: 9121

name: redis-exporter
clusterIP: None

. J

You can see that we’ve exposed port 9121, and specified two annotations—one

to tell our Prometheus service endpoint job to scrape this service, and one which
port to scrape. The next time Prometheus does service discovery it will detect the
updated service and start collecting our Redis metrics.

Redis Prometheus configuration

As our exporter is being exposed as a service endpoint, we don’t need to configure
a specific job to scrape it. We will, however, create some rules for our Redis
time series and add them. We’re again going to show you a sampling of rules, for
example:

Version: v1.0.0 (427b8e9) 351

Chapter 13: Monitoring a Stack - Tornado

(/P
Listing 13.13: Redis alerts

- alert: TornadoRedisCacheMissesHigh
expr: redis keyspace hits total / (redis keyspace hits total +
redis keyspace misses total) > 0.8
for: 10m
labels:
severity: warning
annotations:
summary: Redis Server {{ $labels.instance }} Cache Misses
are high.
- alert: RedisRejectedConnectionsHigh
expr: avg(redis rejected connections total) by (addr) < 10
for: 10m
labels:
severity: warning
annotations:
summary: "Redis instance {{ $labels.addr }} may be hitting
maxclient limit."
description: "The Redis instance at {{ $labels.addr }} had {{
$value }} rejected connections during the last 10m and may be
hitting the maxclient limit."

Here we’re measuring if cache misses exceed 0.8 and if the rejected connections
average is high.

Last, like our MySQL service, we want to know when our Redis service is unavail-
able. These alerts use the combination of the state and presence of the exporter-
specific up metric, redis up. The redis up metric is set to 1 if the scrape of the
Redis server succeeds. The first alert checks if the value of the redis up metric
is 0, indicating the scrape has failed. The second alert checks for the presence of
this metric in the event the service disappears and the metric is expired.

Version: v1.0.0 (427b8e9) 352

Chapter 13: Monitoring a Stack - Tornado

(/P
Listing 13.14: Redis availability alerts

- alert: TornadoRedisServerDown
expr: redis up{kubernetes name="tornado-redis"} == 0
for: 10m
labels:
severity: critical
annotations:
summary: Redis Server {{ $labels.instance }} is down!
- alert: TornadoRedisServerGone
expr: absent(redis up{kubernetes name="tornado-redis"})
for: 10m
labels:
severity: critical
annotations:
summary: No Tornado Redis servers are reporting!
description: Werner Heisenberg says - there is no
uncertainty about the Tornado Redis server being gone.

\. J

Now that we’ve added some monitoring to our MySQL and Redis services, we

want to monitor our API service.

Tornado

The Tornado API is a Clojure application that uses Ring and runs on the JVM. It
has a single API endpoint that buys and sells items. We’re going to instrument
the application in much the same way we saw in Chapter 8 to create metrics that
monitor each API action.

Adding the Clojure wrapper

To instrument our application we’re using the iapetos Clojure wrapper. There are
several Clojure wrappers and clients for Prometheus; we chose iapetos because

Version: v1.0.0 (427b8e9) 353

https://github.com/ring-clojure/ring
https://github.com/xsc/iapetos

Chapter 13: Monitoring a Stack - Tornado

its up to date and easy to use. To enable the iapetos wrapper we need to add it
to the project’s dependencies in the project.clj file.

Listing 13.15: Adding the client to the project.clj

(defproject tornado-api-prometheus "0.1.0-SNAPSHOT"
:description "Example Clojure REST service for
:url "http://artofmonitoring.com"
:dependencies [[org.clojure/clojure "1.8.0"]

[iapetos "0.1.8"]
[io.prometheus/simpleclient hotspot "0.4.0"

11
:plugins [[lein-ring "0.7.3"]]

Here we’ve added the iapetos and the Prometheus simpleclient hotspot (which
we need for exporting some JVM metrics) dependencies.

We can then require the relevant components of the wrapper in our application’s
source code.

Listing 13.16: Requiring the wrapper components

(:require [compojure.handler :as handler]

[iapetos.core :as prometheus]
[iapetos.collector.ring :as ring]
[iapetos.collector.jvm :as jvm]

We’ve included the base iapetos wrapper as prometheus and two context-specific
components for exporting Ring and JVM metrics respectively.

Version: v1.0.0 (427b8e9) 354

https://github.com/turnbullpress/tornado-api/blob/prometheus/project.clj
https://github.com/turnbullpress/tornado-api/blob/prometheus/src/tornado_api/handler.clj
https://github.com/turnbullpress/tornado-api/blob/prometheus/src/tornado_api/handler.clj

Chapter 13: Monitoring a Stack - Tornado

Adding a registry

Like our Ruby application in Chapter 8, we need to define a registry to hold all
of our metrics. Our application is pretty simple so we’re just adding one registry,
but you can add more than one or a registry per subsystem, if, for instance, you
want the same counter in different subsystems.

Listing 13.17: Defining the registry

(defonce registry
(-> (prometheus/collector-registry)

(jvm/initialize)

(ring/initialize)

(prometheus/register
(prometheus/counter :tornado/item-get)
(prometheus/counter :tornado/item-bought)
(prometheus/counter :tornado/item-sold)
(prometheus/counter :tornado/update-item)
(prometheus/gauge :tornado/up))))

We’ve created a registry called registry and we’ve initialized the Ring and JVM
metrics, which will be automatically collected and exported. We’ve then de-
fined five specific metrics, four of them counters and one gauge, all prefixed with
tornado. We have one counter for each of the API's actions and a gauge to act
as an up metric for the application. We can also add labels to the metrics we've
defined.

Listing 13.18: Adding labels

(prometheus/counter :tornado/item-bought
{:description "Total items bought"})

Here we’ve added a description label to the item-bought counter.

Version: v1.0.0 (427b8e9) 355

https://github.com/turnbullpress/tornado-api/blob/prometheus/src/tornado_api/handler.clj
https://github.com/turnbullpress/tornado-api/blob/prometheus/src/tornado_api/handler.clj

Chapter 13: Monitoring a Stack - Tornado

Adding metrics

We can now add function calls to each API method on our application to increment
our counters. For example, here’s the function that increments the metric for
buying an item:

(P
Listing 13.19: Adding metric calls

(defn buy-item [item]
(let [id (uuid)]
(sql/db-do-commands db-config
(Llet [item (assoc item "id" id)]
(sql/insert! db-config :items item)
(prometheus/inc (registry :tornado/item-bought))))
(wcar* (car/ping)
(car/set id (item "title")))
(get-item id)))

We’re calling the inc function to increment our item-bought counter when an item
is bought. We could also set gauges or other time series including histograms.

We’ve also added a gauge called tornado up that will act as the up metric for our

application. When the application starts it will automatically set the value of the
gauge to 1.

(/P
Listing 13.20: The tornado_up gauge

(prometheus/set (registry :tornado/up) 1)

Version: v1.0.0 (427b8e9) 356

Chapter 13: Monitoring a Stack - Tornado

Exporting the metrics

Last, we want to enable the /metrics page itself, in our case by using the built-in
Ring support.

(/P
Listing 13.21: Starting the export

(def app
(-> (handler/api app-routes)
(middleware/wrap-json-body)
(middleware/wrap-json-response)
(ring/wrap-metrics registry {:path "/metrics"})))

\. J

This will make the metrics we’ve defined, some JVM-centric metrics and some
HTTP-specific metrics emitted from Ring, available on the application at the /
metrics path.

If we now browse to this path we’ll see our metrics emitted. Here’s a quick sample.

Listing 13.22: Tornado metrics

HELP http request latency seconds the response latency for
HTTP requests.

TYPE http request latency seconds histogram

http request latency seconds bucket{method="GET", status="404",
statusClass="4XX", path="index.php", le="0.001",} 2.0

HELP tornado item sold a counter metric.
TYPE tornado item sold counter
tornado item sold 0.0

HELP jvm threads peak Peak thread count of a JVM
TYPE jvm threads peak gauge
jvm_threads peak 14.0

Version: v1.0.0 (427b8e9) 357

Chapter 13: Monitoring a Stack - Tornado

Tornado Prometheus configuration

Like our other services, our Clojure exporter is being exposed as an endpoint, and
we don’t need to configure a specific job to scrape it. We get a wide variety of
metrics—metrics from the JVM, HTTP metrics from Ring, and metrics from the
application itself. We can now create some alerts and rules to monitor our API.

Here’s a latency recording rule we created using one of the Ring HTTP metrics.

Listing 13.23: Ring latency rule

- record: tornado:request latency seconds:avg
expr: http request latency seconds sum{status="200"} /
http request latency seconds count{status="200"}

\. J

We’re created a new metric, tornado: request latency seconds:avg, The aver-

age request latency in seconds for requests which result in a 200 HTTP code.

We can also take advantage of one of the Ring-related historgrams to alert on high
latency.

Listing 13.24: Ring high latency alert

- alert: TornadoRequestLatencyHigh
expr: histogram quantile(0.9, rate(
http request latency seconds bucket{ kubernetes name="tornado-
api" [5m])) > 0.05
for: 10m
labels:
severity: warning
annotations:
summary: API Server {{ $labels.instance }} latency is over
0.05.

Here we’ve used the histogram quantile function to generate the 90th percentile

Version: v1.0.0 (427b8e9) 358

https://github.com/turnbullpress/prometheusbook-code/blob/master/12-13/prometheus-config-rules-map-v1.yml
https://prometheus.io/docs/prometheus/latest/querying/functions/#histogram_quantile

Chapter 13: Monitoring a Stack - Tornado

of our request latency over 5 minutes. Our alert will be triggered if that exceeds
0.05 for 10 minutes.

We can also take advantage of the up-style metric we created, tornado up, to
watch for the availability of our API service.

Listing 13.25: Monitoring the Tornado API availability

- alert: TornadoAPIServerDown
expr: tornado up{kubernetes name="tornado-api"} !=1
for: 10m
labels:
severity: critical
annotations:
summary: API Server {{ $labels.instance }} is down!
- alert: TornadoAPIServerGone
expr: absent(tornado up{kubernetes name="tornado-api"})
for: 10m
labels:
severity: critical
annotations:
summary: No Tornado API servers are reporting!
description: Werner Heisenberg says - there is no
uncertainty about the Tornado API server being gone.

Here we’ll detect if the tornado up metric has a value other than 0 or if it disap-
peared from our metrics.

This gives you a simple overview of how you might apply what you’ve learned in
the book to monitoring an application stack.

Summary

In this chapter we’ve seen how we’d monitor services and applications running
on top of Kubernetes. We used the sidecar pattern to do this, parallel monitoring

Version: v1.0.0 (427b8e9) 359

Chapter 13: Monitoring a Stack - Tornado

running next to our services and application, inside the same deployment.

We also saw another application instrumented, this time a Clojure-based applica-

tion using the iapetos wrapper.

You can easily build upon this basis to monitor more complex applications and
services using this simple building-block pattern.

Version: v1.0.0 (427b8e9) 360

https://github.com/xsc/iapetos

List of Figures

TLicense o i i e e 5
2 ISBN . . e e e e e e e e e e e e S
1.1 Service hierarchy 9
1.2 Monitoring design e 11
1.3 Asampleplot e 20
l.4Asamplegauge 21
1.5Asamplecounter 22
1.6 Ahistogramexample 23
1.7 An aggregated collection of metrics 25
1.8 The flaw of averages - copyright Jeff Danzinger 27
1.9 Response time average v v v v vt vttt e e 28
1.10 Response time average MKII 29
1.11 Response time average and median 30
1.12 Response time average and median MkII 31
1.13 The empiricalrule 32
1.14 Response time average, median, and percentiles 34
1.15 Response time average, median, and percentiles Mk IT 35
2.1 Prometheus architecture, 49
2.2 Prometheus expression browser 52
2.3 Redundant Prometheus architecture 53
3.1 Prometheus expression browser 76
3.2Listof metrics e e 77

List of Figures

3.3 Querying quantiles e 78
3.4 Querying total HTTP requests vt v v v v v v i e 80
3.5 Calculating total HTTP requests by job 81
o0urrate QUELYttt e e e e e e e e e e 83
4.1 cAdvisor webinterface L o ... 99
4.2 cAdvisor Prometheus metrics 100
4.3 Scrape lifecycle 104
4.4 Sample label taxonomy oo e 106
4.5 Labels prior torelabelling 112
4.6 node_CPUMELTICS . . .t v v v v it e e e e e e e 114
4.7 Per-host average percentage CPU usage metrics. 116
4.8 Per-host percentage CPUplot 117
4.9 Number of CPUsineachhost 118
4.10 The node_memory MemTotal 119
4.11 Per-host percentage memory USAge « v v v v v v v v v v v .. 120
4.12Diskmetrics o . e e e e 121
4.13 Per-host disk space metrics 122
4.14 The systemd time seriesdata 125
4.15 The active ServiCes. v v v v i v it i e e e e e e e e e 126
416 The up metrics v v it i et e e e e e e e 127
4.17 The cadvisor_version metric v i i i 130
4.18 The node_cpurecordedrule 137
4.19 The Grafana consolelogin 145
4.20 The Grafanaconsole. 146
4.21 Adding a Grafana data source for Prometheus 147
4.22 Adding a Grafana data source for Prometheus 148
4.23 The Node dashboard 149
5.1 Scrape lifecycle e 152
6.1 Alertmanager architecture oo 174

Version: v1.0.0 (427b8e9) 362

List of Figures

6.2 Alertmanager routingt teeeeeeeeee. 182
6.3 Alertmanager web interface, 184
6.4 List of Prometheusalerts 191
6.5 Fired alert in Alertmanager 194
6.6 HighNodeCPU alertemail 195
6.7 Scheduling silences oo 210
6.8 Anewsilence e 211
6.9 Editing or expiring silences L L. 212
7.1 Fault-tolerant architecture 219
7.2 Alertmanager cluster status e 223
7.3 Prometheus clustered Alertmanagers 226
7.4 Organizational sharding 227
7.5 Functional sharding 228
7.6 Horizontal sharding 229
7.7 The Federate API 236
8.1 Railsserver targetsttt 254
8.2Railsmetrics e 254
9.1 mtail diagnostics. e 262
10.1 Probing architecture. 275
10.2 The blackbox exporter console 284
10.3 The probe metrics in Prometheus 288
11.1 The Pushgateway, 292
11.2 The Pushgateway dashboard 298
11.3 The test_counter in the Pushgateway dashboard 307
11.4 The test_ counter metric v v v v v vt e e e e et e 309
12.1 The Kubernetes endpoint targets 325
12.2 The Kube-state-metrics endpoint target 329

Version: v1.0.0 (427b8e9) 363

List of Figures

131 Thesidecar 341
13.2 The topk operator over MySQL statements 347

Version: v1.0.0 (427b8e9) 364

Listings

1Samplecodeblock. 3
1.1 Sample Nagios notification 40
2.1 Time seriesnotation, 56
2.2 Example time Series v v v i it e e e e 56
3.1 Download the Prometheus tarball 62
3.2 Unpack the prometheus binary 62
3.3 Checking the Prometheus version on Linux 63
3.4 Creating a directory on Windows 63
3.5 Prometheus Windows download 63
3.6 Setting the Windowspath 64
3.7 Checking the Prometheus version on Windows 64
3.8 Installing Prometheus via Chocolatey 65
3.9 Installing Prometheus via Homebrew 65
3.10 Checking the Prometheus versionon MacOSX 65
3.11 The default Prometheus configuration file 68
3.12 Alertmanager configuration 70
3.13 The default Prometheus scrape configuration 72
3.14 Moving the configuration file 73
3.15 Starting the Prometheusserver 73
3.16 Validating your configuration with promtool 73
3.17 Running Prometheus with Docker 74
3.18 Mounting a configuration file into the Docker container 74

365

Listings

3.19 Some sample raw metrics 75
320 ArawmetriC e 75
3.21 Go garbage collection 50th percentile 77
3.22 The prometheus_build_info metric 79
4.1 Downloading the Node Exporter 89
4.2 Testing the Node Exporter binary 90
4.3 Running the help for Node Exporter 90
4.4 Controlling the portandpath 90
4.5 Disabling thearpcollector 91
4.6 Creating a textfile directory 91
4.7 Ametadatametric. L e 92
4.8 Starting Node Exporter with the textfile collector and systemd. . . . 93
4.9 The current Prometheus scrape configuration 94
4.10 Adding thenodejob. 95
4.11 Filtering collectors v v it i it e e e 96
4.12 Testing collect paramsttt it 96
4.13 Running the caAdvisor container 98
4.14 The cAdvisor containert enn.. 99
4.15 Adding the Dockerjob 101
4.16 Overriding the discovered labels 103
4.17 Dropping metrics with relabelling 108
4.18 Specifying anew separator. it it 109
4.19 Replacingalabel 110
4.20 Dropping alabel 111
4.21 Memory saturation qUeryo v v i i 121
4.22 The node_systemd_unit_state metrics 124
423 Theupmetric. o v i i it e e e e e e e e 126
4.24 A one-to-onevectormatch L o L. 129
4.25 The evaluation_interval parameter 132
4.26 Creating arecorded rulesfile 133
4.27 Adding therulesfile. 133

Version: v1.0.0 (427b8e9) 366

Listings

4.28 Arecordingrule e 134
4.29 A recording groupinterval L L L L oL 135
4.30Arecordingrule 136
4.31 Arecordingrule e 136
4.32 Getting the PackageCloud public key on Ubuntu 139
4.33 Adding the Grafana packages 139
4.34 Updating Apt and installing the Grafana package 139
4.35 Getting the Grafana publickeyonRedHat 140
4.36 The Grafana Yum configuration. 140
4.37 Installing GrafanaonRed Hat 140
4.38 Creating a Grafana directory on Windows 141
4.39 Grafana Windows download 141
4.40 Setting the Windows path for Grafana 141
4.41 Installing Grafana via Homebrew 142
4.42 Starting the Grafana Server on Linux 143
4.43 Starting Grafana at booton OSX 143
4.44 Starting Grafana serveron OSX 144
5.1 Our static service diSCOVEry v v v i v i it e e 153
5.2 File-based discovery oo 154
5.3 Creating the target directory structure 155
5.4 Creating JSON files to hold our targets 155
5.5Thenodes.jsonfile 156
5.6 The daemons.jsonfile. 156
5.7 The daemons filein YAML, 156
5.8 Addinglabels. 157
59An EC2discoveryjob 160
5.10 An EC2 discovery job withaprofile 161
5.11 An EC2 discovery job withaport. 161
5.12 Relabelling an EC2 discoveryjob 162
5.13 Relabelling the instance name in a EC2 discovery job 164
5.14 DNS service discoveryjob, 165

Version: v1.0.0 (427b8e9) 367

Listings

515ASRVIrecordttt 166
5.16 Example SRV records, 166
5.17 The DNS targets fromthe SRV 167
5.18 DNS A record service discoveryjob 167
5.19 DNS subdomain A record service discoveryjob 168
6.1 Stock Nagiosalert 172
6.2 Download the Alertmanager tarball 176
6.3 Unpack the alertmanager binary 176
6.4 Moving the amtool binary 176
6.5 Checking the Alertmanager versionon Linux 177
6.6 Creating a directory on Windows 177
6.7 Alertmanager Windows download 178
6.8 Setting the Windowspath 178
6.9 Checking the Alertmanager version on Windows 178
6.10 Creating the alertmanager.ymlfile 179
6.11 A simple alertmanager.yml configuration file 180
6.12 Creating the templates directory 181
6.13 Starting Alertmanager 183
6.14 The alerting block 185
6.15 The Alertmanager SRVrecord 186
6.16 Discovering the Alertmanager 186
6.17 The Alertmanager Prometheusjob 187
6.18 Creating an alerting rulesfile 188
6.19 Adding globbing rule filesblock 188
6.20 Our first alertingrule 189
6.21 The ALERT time series v it n ... 193
6.22 Adding more alertingrules. L oL L 196
6.23 Humanizingavalue 197
6.24 Creating the prometheus_alerts.ymlfile 198
6.25 The prometheus_alerts.ymlfile 198
6.26 Node service alert 199

Version: v1.0.0 (427b8e9) 368

Listings

6.27 The up metric missing alert 201
6.28 Adding routing configuration 202
6.29 GIOUPING . . . o ¢t v i e e e e e e e e e e e e e e e e e e e 203
6.30 Label matching 204
6.31 Routing branching 204
6.32 Routing branching L o o o oL 205
6.33 Multiple endpoints in areceiver 205
6.34 A regular expressionmatch, 206
6.35 Adding a Slack receiver L Lo oo 207
6.36 Adding a Slack receiver.o o ... 207
6.37 Creating atemplatefile. 208
6.38 The slack.tmplfile 208
6.39 Adding a Slack receiver. 209
6.40 Using amtool to scheduleasilence 213
6.41 Querying thesilences, 214
6.42 Expiring thesilence 214
6.43 Sample amtool configurationfile 214
6.44 Using amtool to scheduleasilence 215
6.45 Omitting alertname 215
7.1 Starting Alertmanager cluster 221
7.2 Starting Alertmanager cluster remaining nodes 222
7.3 Defining alertmanagers statically 224
7.4 The Alertmanager SRVrecord 225
7.5 Discovering the Alertmanager. 225
7.6 The workerO configuration 232
7.7 Theinstance CPUrule 233
7.8 The primary configuration. 234
7.9 Worker file discovery e 234
7.10 Matching parameter e e 235
7.11 Thematch[. e e e e s e e e 235
8.1 A sample paymentsmethod, 243

Version: v1.0.0 (427b8e9) 369

Listings

8.2 The mwp-railsGemfile 245
8.3 Install prometheus-client with the bundle command 246
8.4 Testing the Prometheus client with the Rails console. 246
8.5 Creating a Prometheus registry 247
8.6 Registering a Prometheus metric 247
8.7 Incrementing ametric e 247
8.8 Incrementing ametric e 248
8.9 The basic Prometheus client_ruby metrics 248
8.10 Creating a Metricsmodule 248
8.11 The Metricsmodule 249
8.12 Creating an initializer for the metrics library 250
8.13 The config/initializers/lib.rbfile 250
8.14 Counter for user deletions 250
8.15 Counter foruser creation 251
8.16 Adding Prometheus to the config.rufile. 252
8.17 The Rails /metrics endpoint 253
8.18 Our Rails servers service discovery 254
8.19Therailsjob 254
9.1 Download and install the mtail binary 258
9.2 Running the mtail binary 258
9.3 Creating an mtail program directory. 259
9.4 Creating the line_count.mtail program 259
9.5 The line_count.mtail program 260
9.6 Arelationalclause. 261
9.7Running mtail e 261
9.8 The mtail /metricspath 263
9.9 The apache_combined program 264
9.10 The combined access log actions 266
9.11 Running mtail 267
9.12 Apache combined metrics, 267
9.13Themtail railsprogram. 269

Version: v1.0.0 (427b8e9) 370

Listings

9.14 Rails mtail metricoutput, 270
9.15Themtailjob 272
9.16 Worker file discovery 272
10.1 Download the blackbox exporter zipfile 277
10.2 Unpack the blackbox_exporter binary 277
10.3 Checking the blackbox exporter version on Linux 278
10.4 Creating a directory on Windows 278
10.5 Blackbox exporter Windows download 279
10.6 Setting the Windowspath 279
10.7 Checking the blackbox exporter version on Windows 279
10.8 The prober.ymlfile 280
10.9 The /etc/prober/prober.ymlfile 281
10.10 Valid statuscodes o 282
10.11 Starting theexporter. 283
10.12 The http_probesjob 285
10.13 The http_probe targets., 286
10.14 The http_2xx_check metrics. 287
11.1 Download the Pushgateway zipfile 294
11.2 Unpack the pushgateway binary 295
11.3 Checking the Pushgateway version on Linux 295
11.4 Creating a directory on Windows 296
11.5 Pushgateway Windows download 296
11.6 Setting the Windowspath 296
11.7 Checking the Pushgateway version on Windows 297
11.8 Running the Pushgateway on an interface 298
11.9 Persisting the metrics 299
11.10 Posting a metricto the gateway 299
11.11 The Pushgateway metricspath 299
11.12 Posting a metric to thegateway 300
11.13 Adding labels to pushed metrics 301
11.14 Passing types and descriptions 301

Version: v1.0.0 (427b8e9) 371

Listings

11.15 Passing types and descriptions 301
11.16 Curling the gateway metrics 303
11.17 Deleting Pushgateway metrics 304
11.18 Deleting a selection of Pushgateway metrics 304
11.19 Creating MetricsPush class 305
11.20 The MetricsPushmodule 306
11.21 Pushingametric 307
11.22 The pushgatewayjob 308
11.23 Our Pushgateway 309
12.1 The cluster kopscommand 312
12.2 The Node Exporter DaemonSet tolerations 315
12.3 The Node Exporter DaemonSet containers 316
12.4 Node Exporter liveness and readiness probes 317
12.5 The Node Exporter service v v v v v v v i oo e 319
12.6 Deploying the Node Exporter daemonset and service 320
12.7 The default namespace 320
12.8 Checking the Node Exporter pods 321
12.9 A Node Exporter pod’slogs 321
12.10 Checking the Node Exporter service 322
12.11 The Kubernetes service endpointsjob 323
12.12 Replacing the ConfigMap 325
12.13 The monitoring services.ot i v i i e ... 326
12.14 Kubernetes availability alertingrules. 327
12.15 Kubernetes availability alerting rules. 328
12.16 Kube-state-metrics deployment generation alert 330
12.17 Kube-state-metrics Deployment replicas not updated alert 331
12.18 Kube-state-metrics pod restarting alert 331
12,19 APIserverjob e e 333
12.20 The API server recordingrules. 334
12.21 APl high latency alert 335
12.22 APT high errorrate alert 335

Version: v1.0.0 (427b8e9) 372

Listings

12.23 API serversdownorabsent. 336
12.24 The CAdvisorjob i i 337
13.1 The exporter containero uuenenenn.. 342
13.2 Connecting to the MySQL container 343
13.3 Creatinga MySQL user 343
13.4 Additional MySQL exporter collector 344
13.5 The tornado-db service 344
13.6 The Kubernetes endpoint job relabelling 345
13.7 MySQL slow query alert 346
13.8 MySQL request raterecords 347
13.9 Connections and aborted connections 348
13.10 MySQL alerts v v v vt e e e e e e e e e e e e e e e 349
13.11 Redis serviceand sidecar 350
13.12 The Redis Kubernetes service 351
13.13Redisalerts 352
13.14 Redis availability alerts 353
13.15 Adding the client to the project.clj 354
13.16 Requiring the wrapper components. 354
13.17 Defining theregistry 355
13.18 Adding labels 355
13.19 Adding metriccalls 356
13.20 The tornadoup gaugettt ... 356
13.21 Starting theexport e 357
13.22 Tornado metrics o v ittt it e 357
13.23Ring latencyrule e 358
13.24 Ring high latency alert 358
13.25 Monitoring the Tornado API availability. 359

Version: v1.0.0 (427b8e9) 373

Index

$labels, 197

$value, 197

__time series names, 55
address, 102, 163, 337
_meta_ec2_public_ip, 162
_metrics_path_, 102, 337
name, 108

scheme, 102

Absent, 200
action
hashmod, 233
keep, 233
Aggregation, 80
Alert
Annotations, 197
templates, 197
Alerting, 70, 170
Symptoms versus causes, 172
Alerting rules, 69, 131, 187
Alertmanager, 51, 58, 70, 170
amtool, 184
API, 193
Cluster, 218

374

configuration, 179
continue, 204
default route, 201
Email, 180
email
emails_configs, 183
global, 180
group_by, 202
group_interval, 202
group_wait, 202
grouping, 202
High availability, 218
Installation, 175
Linux, 175
Mac OS X, 177
Windows, 177
Installing via configuration manage-
ment, 179
match, 204
match_re, 206
Mesh, 218
Notification template variable refer-
ence, 208

Index

receivers, 182
Resolved alerts, 206
routing, 181, 204
send_resolved, 206
Silences, 210
Supported platforms, 175
templates, 181, 207
version, 176
web hooks, 183
web interface, 184
Alerts, 39
amtool, 184, 213, 216
Annotations, 197
Ansible, 66, 142
Apophenia, 41
Application architecture, 9, 238
Application metrics, 238
Application monitoring, 9, 238
Architecture, 48, 51
Availability monitoring, 126
Average, 24
Averages, 25, 29
AWS, 159, 161, 164
Access Key ID, 160
Profile, 161
Secret Access Key, 160

Batch jobs, 291

Bell Curve, 26

Binary operators, 128
Black Exporter

Configuration, 280
Blackbox Exporter, 274, 276
Installation, 276
Linux, 277
Mac OS X, 278
Windows, 278
Installing via configuration manage-
ment, 279
Scraping the exporter, 285
Supported platforms, 276
version, 278
Blackbox exporter, 201
DNS prober, 283
HTTP prober, 282
ICMP prober, 282
Blackbox monitoring, 15, 274
Borg, 47
Borgmon, 47
Business metrics, 238
Buy-v-build, 43

cAdvisor, 97

Capacity planning, 83

Chef, 66, 142, 280, 297
Chocolatey, 64

Client libraries, 58, 245
client_ruby, 245

Clustering, 218

CNCF, 48

collectd, 88, 258

Comparison binary operator, 125

Version: v1.0.0 (427b8e9)

375

Index

Configuration, 67, 73
Configuration Management,
179, 279, 297

Configuration management, 142

container_last_seen, 127
Count, 24

Counters, 21

CPU, 114, 117

Data model, 54

Disabling collectors, 91
Disk, 121

DNS service discovery, 165
dns_sd_configs, 165
Docker, 97, 142, 280

EC2 Service Discovery
metadata, 161, 164
Profile, 161
Role ARN, 160

EC2 Service discovery, 159

ec2_sd_config
access_key, 160
port, 161
profile, 161
region, 160
secret_key, 160

ELK, 17, 257

Endpoints, 50, 71

Exporters, 48, 58
Grok, 257
Node, 88

Expression browser, 51, 76

Fault tolerance, 217
Federation, 228, 229

File-based service discovery, 154

file_sd_config, 154
files, 154
refresh_interval, 155
Frequency distribution, 22

Gauges, 21
global
evaluation_interval, 69
scrape_interval, 69
Go, 48
client, 245
Google’s Golden Signals, 36
Grafana, 54
installation
0S X, 142
Windows, 140
Granularity, 13, 20, 69
Graph, 20
Graphite, 258, 263
Grok Exporter, 257

hashmod, 233

High Availability, 217
High availability, 51, 53
Histogram, 22
histogram_quantile, 334
Homebrew, 65, 142

Version: v1.0.0 (427b8e9)

376

Index

honor labels, 309 Kubernetes, 67, 159, 312
Host monitoring, 88 Node Exporter, 314
kubernetes_sd_config, 313
ICMP, 288
increase, 332 Label
Installation, 61 Instance, 114
Linux, 62, 175, 277, 294 instance, 102, 164
Mac OS X, 65, 142 Labels, 54, 55, 105, 128
Microsoft Windows, 63, 64, 140, _address_, 102, 163
177, 278 _meta_ec2_public_ip, 162
Windows, 63, 140 _meta_filepath, 157
Installing mtail, 258 _metrics_path_, 102
Installing onto Kubernetes, 67, 312 _name_, 108
Installing via configuration manage- _scheme_, 102
ment, 66 Metadata, 102
Instance label, 102, 114, 164 Latency, 36
Instances, 50, 71 Logging, 17, 256
Instrumentation, 58, 238 Logs, 17
Instrumentation labels, 55 Logstash, 257

Instrumenting applications, 305

. .. Maintenance, 209
Introspection monitoring, 15

. Mean, 25
irate, 115
Median, 24, 30, 35
Java Memory, 119
client, 245 Metric names, 54, 55, 135
Job definition, 72 metric_relabel_configs, 107
job_name, 72 action, 110
Jobs, 50, 71, 94, 291 regex, 109, 111
Service discovery, 151 replacement, 111
I 933 separator, 108
ceps source_labels, 108
kops, 312

target_label, 111

Version: v1.0.0 (427b8e9) 377

Index

Metrics, 18, 242
latency, 36
metrics_relabel_configs, 162
modulus, 232
Monitoring, 6
Monitoring anti-patterns, 9
Monitoring CPU, 114, 117
Monitoring disk, 121
Monitoring jobs, 291
Monitoring Kubernetes, 313
Monitoring memory, 119
Monitoring methodologies, 36
Google’s Golden Signals, 36
USE Method, 36
mtail, 257
configuration, 259
constants, 265
histogram, 268
installation, 258
programs, 259
running, 262
types, 266
MySQL, 342

NAT, 293

Node Exporter, 88, 314
disabling collectors, 91
filtering collectors, 95
Textfile collector, 92

Node monitoring, 88

Notification templates, 207

Notifications, 39

Observability, 15
Observations, 19

Percentiles, 24, 33, 35
Plot, 20
predict_linear, 123
Probe
DNS, 288
ICMP, 288
Probing, 274
Architecture, 275
Probing monitoring, 15
Promeditor, 83
Prometheus, 6
configuration, 67
disk usage, 83
duplicate servers, 220
fault-tolerance, 220
installation
Linux, 62
OS X, 65
Windows, 63
memory usage, 83
Web interface, 76
prometheus
—config.file, 73
—version, 62
Prometheus server, 58
prometheus.yml, 67
PromQL, 51, 78, 80

Version: v1.0.0 (427b8e9)

378

Index

Binary operators, 128
by, 80
count, 117
irate, 82, 115
predict_linear, 123
Range vectors, 82
rate, 81
regular expressions, 122
Scalar, 82
String, 82
Vector matches, 129
without, 80
promtool, 62, 67, 73, 132, 137
Pull-based monitoring, 17
Puppet, 66, 142, 280, 297
Push Gateway, 48
Push-based monitoring, 17
Pushgateway, 291
Aggregation, 304
clients, 305
Configuration, 299
Delete metrics, 304
Installation, 293
Linux, 294
Mac OS X, 295
Windows, 295
Installing via configuration manage-
ment, 297
push_time_seconds, 304
Scaling, 293
Scraping the gateway, 308

Sending metrics, 299
Supported platforms, 293
version, 295
Viewing metrics, 302
PushProx, 293
Python
client, 245

Quantile, 33
Querying labels, 78

Rails, 244
metrics, 244
Prometheus, 244
Range vectors, 82
Rates of change, 24
RE2, 109
Receivers, 207
Recording rules, 69, 131, 132
sequencing, 134
Redis, 349
Regex, 109
regex, 163
RegExp, 109
relabel_configs, 107, 161, 162
Relabelling, 107, 128, 162
action
drop, 110
keep, 324
labeldrop, 112
labelmap, 325, 337
replace, 324

Version: v1.0.0 (427b8e9)

379

Index

honor_labels, 111
ordering, 110
Remote storage, 236

remote_read, 237
remote_write, 237
Resolution, 13, 20, 69
Ruby

client, 245
Rule files, 71
rule files, 71, 133
Rules, 69

co-mingle, 187

SaltStack, 66, 280
Samples, 19
Scaling, 217
Scrape configuration, 50, 71
Scrape interval, 69
Scrape lifecycle, 101, 152
scrape_configs, 50, 71
Server, 58
Service discovery, 94, 151-153
DNS, 165
EC2, 159
File-based, 154
multiple configurations, 153, 162
Service records, 166
Sharding, 228
Sidecar, 271
Sidecar pattern, 340
Silences, 209, 210

expiration, 213
SoundCloud, 48
source_labels, 162
SRV records, 166, 167
SSD, 52, 85
Standard Deviation, 24, 33
static_configs, 94
StatsD, 258, 263
Sum, 24
Summary, 23
Supported platforms, 61

Tags, 55

Target labels, 55
target_label, 163
Targets, 50, 71
Templates, 197

Text exposition format, 91
Textfile collector, 92
Thanos, 237
Thresholds, 12

Time series, 19
topk, 347

Unsee, 212

Up metric, 126

USE Method, 36, 113
Utility model, 242

Vector matches, 129
Visualization, 41, 131

Whitebox monitoring, 15

Version: v1.0.0 (427b8e9)

380

Index

YAML, 67
YAML validation, 67

Version: v1.0.0 (427b8e9) 381

Thanks! I hope you enjoyed the book.

© Copyright 2018 - James Turnbull <james@lovedthanlost.net>

ISEN A7&-0-9566202-5-9

3 7/80355"820259

mailto:james+pm@lovedthanlost.net

	Foreword
	Who is this book for?
	Credits and Acknowledgments
	Technical Reviewers
	Jamie Wilkinson
	Paul Gier

	Editor
	Author
	Conventions in the book
	Code and Examples
	Colophon
	Errata
	Disclaimer
	Copyright
	Version

	Introduction
	What is monitoring?
	Technology as a customer
	The business as a customer

	Monitoring fundamentals
	Monitoring as afterthought
	Monitoring by rote
	Not monitoring for correctness
	Monitoring statically
	Not monitoring frequently enough
	No automation or self-service
	Good monitoring summary

	Monitoring mechanics
	Probing and introspection
	Pull versus push
	Types of monitoring data

	Metrics
	So what's a metric?
	Types of metrics
	Metric summaries
	Metric aggregation

	Monitoring methodologies
	The USE Method
	The Google Four Golden Signals

	Contextual, useful alerts and notifications
	Visualization
	But didn't you write that other book?
	What's in the book?
	Summary

	Introduction to Prometheus
	The Prometheus backstory
	Prometheus architecture
	Metric collection
	Service discovery
	Aggregation and alerting
	Querying data
	Autonomy
	Redundancy and high availability
	Visualization

	The Prometheus data model
	Metric names
	Labels
	Samples
	Notation
	Metrics retention

	Security model
	Prometheus ecosystem
	Useful Prometheus links
	Summary

	Installation and Getting Started
	Installing Prometheus
	Installing Prometheus on Linux
	Installing Prometheus on Microsoft Windows
	Alternative Microsoft Windows installation
	Alternative Mac OS X installation
	Stacks
	Installing via configuration management
	Deploying via Kubernetes

	Configuring Prometheus
	Global
	Alerting
	Rule files
	Scrape configuration

	Starting the server
	Running Prometheus via Docker

	First metrics
	Prometheus expression browser
	Time series aggregation
	Capacity planning
	Memory
	Disk

	Summary

	Monitoring Nodes and Containers
	Monitoring nodes
	Installing the Node Exporter
	Configuring the Node Exporter
	Configuring the Textfile collector
	Enabling the systemd collector
	Running the Node Exporter
	Scraping the Node Exporter
	Filtering collectors on the server

	Monitoring Docker
	Running cAdvisor
	Scraping cAdvisor

	Scrape lifecycle
	Labels
	Label taxonomies
	Relabelling

	The Node Exporter and cAdvisor metrics
	The trinity and the USE method
	Service status
	Availability and the up metric
	The metadata metric

	Query permanence
	Recording rules
	Configuring recording rules
	Adding recording rules

	Visualization
	Installing Grafana
	Starting and configuring Grafana
	Configuring the Grafana web interface
	First dashboard

	Summary

	Service Discovery
	Scrape lifecycle and static configuration redux
	File-based discovery
	Writing files for file discovery

	Inbuilt service discovery plugins
	Amazon EC2 service discovery plugin

	DNS service discovery
	Summary

	Alerting and Alertmanager
	Alerting
	How the Alertmanager works
	Installing Alertmanager
	Installing Alertmanager on Linux
	Installing Alertmanager on Microsoft Windows
	Stacks
	Installing via configuration management

	Configuring the Alertmanager
	Running Alertmanager
	Configuring Prometheus for Alertmanager
	Alertmanager service discovery
	Monitoring Alertmanager

	Adding alerting rules
	Adding our first alerting rule
	What happens when an alert fires?
	The alert at the Alertmanager
	Adding new alerts and templates

	Routing
	Routes

	Receivers and notification templates
	Silences and maintenance
	Controlling silences via the Alertmanager
	Controlling silences via amtool

	Summary

	Scaling and Reliability
	Reliability and fault tolerance
	Duplicate Prometheus servers
	Setting up Alertmanager clustering
	Configuring Prometheus for an Alertmanager cluster

	Scaling
	Functional scaling
	Horizontal shards

	Remote storage
	Third-party tools
	Summary

	Instrumenting Applications
	An application monitoring primer
	Where should I instrument?
	Instrument taxonomies

	Metrics
	Application metrics
	Business metrics
	Where to put your metrics
	The utility pattern
	The external pattern
	Building metrics into a sample application

	Summary

	Logging as Instrumentation
	Processing logs for metrics
	Introducing mtail
	Installing mtail
	Using mtail
	Running mtail

	Processing web server access logs
	Parsing Rails logs into a histogram
	Deploying mtail
	Scraping our mtail endpoint
	Summary

	Probing
	Probing architecture
	The blackbox exporter
	Installing the exporter
	Installing the exporter on Linux
	Installing the exporter on Microsoft Windows
	Installing via configuration management

	Configuring the exporter
	HTTP check
	ICMP check
	DNS check

	Starting the exporter
	Creating the Prometheus job
	Summary

	Pushing Metrics and the Pushgateway
	The Pushgateway
	When not to use the Pushgateway
	Installing the Pushgateway
	Installing the Pushgateway on Linux
	Installing the Pushgateway on Microsoft Windows
	Installing via configuration management
	Configuring and running the Pushgateway
	Sending metrics to the Pushgateway
	Viewing metrics on the Pushgateway
	Deleting metrics in the Pushgateway
	Sending metrics from a client

	Summary

	Monitoring a Stack - Kubernetes
	Our Kubernetes cluster
	Running Prometheus on Kubernetes
	Monitoring Kubernetes
	Monitoring our Kubernetes nodes
	Node Exporter DaemonSet
	Node Exporter service
	Deploying the Node Exporter
	The Node Exporter job
	Node Explorer rules

	Kubernetes
	Kube-state-metrics
	Kube API
	CAdvisor and Nodes

	Summary

	Monitoring a Stack - Tornado
	Sidecar pattern
	MySQL
	MySQL Prometheus configuration

	Redis
	Redis Prometheus configuration

	Tornado
	Adding the Clojure wrapper
	Adding a registry
	Adding metrics
	Exporting the metrics
	Tornado Prometheus configuration

	Summary

	List of Figures
	List of Listings
	Index

