Boxoft Image To PDEJReme fRViehasafienan

www.Boxoft.com to remove the watermark

bubnuoreka Keras —
MHCTPYMEHT rNMyb6oKoro
ob6yuyeHus

Peanunsaumns HeMPOHHbIX CETEN C MOMOLLbIO
buonuotek Theano n TensorFlow

http://www.boxoft.com/?itp-demo

Deep Learning with
Keras

Implement neural networks with Keras on
Theano and TensorFlow

Antonio Gulli

Sujit Pal

Pack®

BIRMINGHAM - MUMBAI

bubnuoreka Keras -
MHCTPYMEHT rNyboKoro
obyuyeHus

Peanusauua HeMpPOHHbIX CeTeH C MOMOLLbIO
oubnuorek Theano u TensorFlow

AHTOHMO [>Xynnu

Cynxut Man

LMY

[EREERA T ST PRSI S|

MockBa, 2018

VIK 004.85Keras
BBK 32.971.3

P51

P51

Auronuo Dxymmm, Cymxut [an

bubnunorexka Keras — MHCTpYMeHT raybokoro obyueHusi. Peanmusanus
HelpoHHBIX ceTeit ¢ nomoibio 6ubnuorek Theano u TensorFlow / nep.
¢ aurn. CnuHkuH A. A. - M.: IMK IIpecc, 2018. — 294 c.: ui.

ISBN 978-5-97060-573-8

Kuura npencrasnser coboii kpaTkoe, HO 06CTOsITeNbHOE BBELEHME
B COBPeMeHHble HeiipOHHbIe CeTH, MCKYCCTBEHHbI MHTeIeKT W Tex-
Hosmoruu rybokoro obyuenus. B Heii npencrasneHo 6onee 20 paboro-
criocoBGHBIX HeHpPOHHBIX ceTeii, HaNMMCcaHHbIX HA si3bike Python ¢ me-
[10/1b30BaHMeM MoOnyIbHOI 6ubnuorexn Keras, paboralouieii nosepx
6ubnmorek TensorFlow ot Google nan Theano or komnauuu Lisa Lab.
Onucan QyHkumoHanbHbii AP 6ubnmorekn Keras M BO3MOMKHOCTH €ro
pacwpenust. PaccMoTpeHbl aaropuTMbl 06yueHus ¢ yuurenem (Ipo-
cTasi JIMHelHas perpeccus, KJIacCM4yeckKuii MHOTOCIOMHBIN IepLer-
TPOH, INyBOKMe CBEePTOYHBIE CeTH), 8 TAKKe alropuTMbl 06yueHus 6e3
YUMTes - ABTOKOAMPOBLUIMKN U OO Iatoline ceT. [JaHO BBeieHMe B
TEXHOJIOrMIO M1yBOKOTro 06yueHus ¢ OAKPeIUIeHUeM U ee IIPUMeHeHue
K [TOCTPOEHMIO UIP CO BCTPOEHHBIM MCKYCCTBEHHBIM MHTE/IEKTOM.

Wspganue npegHasHaueHo A/ IPOrpaMMMUCTOR M CIIELMAIIMCTOB 110
aHanmM3y 1 06paboTke JaHHbIX.

VIK 004.85Keras
BBK 32.971.3

Authorized Russian translation of the English edition of Deep Learning
with Keras, ISBN 978-1-78712-842-2. Copyright @Packt Publishing 2017. First
published in the English language under the title 'Deep Learning with Keras —
(9781787128422)". This translation is published and sold by permission of Pub-
lished by Packt Publishing Ltd., which owns or controls all rights to publish and
sell the same.

Bce npaga sauiuiieHsl. Jliodas 4acTh 9TOM KHUIM He MOXeT GbITh BOCIIPO-
M3BeIeHa B KAKOM Obl TO HU ObU10 ropMe 1 Kakiumu Bbl TO HY BbUIO CPEACTBAMM
Ge3 MUCbMEHHOIO paspelleHns Blaje/lblles aBTOPCKUX MPaB.

Marepuan, M310KeHHbI B JaHHOM KHUre, MHOrOKpaTHO nposepen. Ho, no-
CKOJIbKY BEpPOSITHOCTb TEXHUUYECKMX OMMBOOK Bce PAaBHO CYLIECTBYET, M3aTellb-
CTBO He MOXKeT rapaHTHPOBaTh abCOMIOTHYIO TOYHOCTb U PABUABHOCTD IPUBO-
AMMBIX CBeeHMit. B CBA3KM ¢ 5TUM M3/1aTe/bCTBO He HeCceT OTBeTCTBEHHOCTH 3a
BO3MOYKHbBIE OUIMOKM, CBA3AHHBIE C MCHIO/Ib30BAHUEM KHUIM.

ISBN 978-1-78712-842-2 (aHr.) © Packt Publishing, 2017.
ISBN 978-5-97060-573-8 (pyc.) © Odopmiienne, EPEBO HA PYCCKUIE A3bIK,

uspanne, IMK Ilpece, 2018

OrnaBneHue

06 aBTopax 9
O peueHnseHTe 12
Mpeaucnosue 13
HaaHaUYBHME i oo mms s i aidianainannnsussmans 13
Yem rnybokoe 0by4eHre oTanyaeTcs oT MallMHHOIo 0By4eHus
N UCKYCCTBEHHOIMO MHTEIIIEKTA «.eneneenieaeaeeeeeeiuasneessneensaneenaanns 14
KpaTtkoe cogepxaHue KHUM16
YT0 HEOBXOAMMO AN HTEHUA KHUIM ..evneitiieeie it eaeeeseeeaneeaneeseens 17
Ha KO0 PACCHNTAHA 3TA KHMIA ..ceuiniiieneeieaeeeaeeeaneeeaneeeaneeaeanns 17
[PAPUUECKME BBIOEMEHNSA. ...ccueiienieiaeaeee e et e et s et e e e e eeaanes 17
G 1 18
MNopnepXKa KNUeHTOBR i s s iniaiinnis nsminaans 19
3arpy3Ka Koga npuMepos 19
3arpy2Ka UBETHLIX MNNHCTPaLLMIA 20
Oneyatku 20
HapylweHue agTOpCKMX Npae 20
BOMPOCBI ..ttt ettt e 21
Mhaea 1. OcHOBbI HEMPOHHbIX CETe 22
MepUenTPOH s s ensnsannnyssssans 24
Mepeblit npuMep Koaa ¢ Mcnonb3oeaHuem Keras 24
MHOroCNoMHbIA NepuenTpoH — NepPBbId NPUMER HEWPOCETH 25
Mpobnemsl 06y4eHUA NEPUENTPOHA M MX PELUEHME 26
CurMouaa 27
Bnok nuHeirHo# pekTduKaumm 28
MYHKUMKM 3KTHBALMK 28
PeanbHblil npumMep — pacnosHasaHue PYKOMUCHbLIX LNPP............... 29
YHUTapHOE KoaWpPOBaHMe 30
OnpegeneHue NpocToi HEMPOHHOW ceTun B Keras 30
Mporox npoctoi cetk Keras 1M CO3QaHKMe 3TanoHa ANA CPAaBHEHMA ... SO 7.
YnyuweHwe npocToi cetu B Keras nocpeacteom gobasnenus CKDbJTbIX cnoes.,....,.,.35
JanbHekwee ynyyweHue npocToi ceti Keras ¢ NOMOLWbH NPOPEXMBAHMA. 38
TectMpoBaHue pasnnyHbix onTMMM3aTopos B Keras 41
YBENMYEeHWe Yncna nepuonos 46
YnpasneHue CKOPOCTbH 0BYYeHns onTHMU3aTopa 46
YBENMUYEHWUE YUCNA HEWPOHOB B CKPLITLIX CNOAX 47
YsenuueHnue pasmepa naketa 48
MNoaseneHue MTOrOB IKCNEPUMEHTOB NO Pacro3HaBaHWIO PYKOMMCHbIX uubp..........49

6 < OrnaBnenue

MpuMeHeHWe perynapusalnn 409 NPeaoTBPaLUeHUA MEPEOBYUEHMA ..o ereveresene.

Hactpoiika runepnapametpos

MpenckasaHue Boixoaa

MpakTnyeckoe N3noxeHne anroputmMa 0bpaTHOro pacnpocTpaHeHus ...
B HanpaBneHUn ryBoKOr0 OBYHEHMNSovvuneeeieeeeeeeeiie e e e e eeaeenne
PRI i s e S s S e i e S e B R T e et

[naea 2. Ycranoeka Keras v onucaHue APl

NOTAHOBKE MBTES .. omirms s vmmsissmies sw s e s 95 e e e s e S s e
War 1 - ycTaHoBKa 3aBMCMMOCTEN

LWar 2 - ycraHoeka Theano

War 3 - ycraHoeka TensorFlow
LWar 4 - ycraHoeka Keras

War 5 - npoeepka pabotocnocobHocTn Theano, TensorFlow M Keras......c..e

HaCTPOMKA KEras ... e
YecraHoeka Keras B KOHTENHEP DOCKEN ...
YcrarnoBka Keras B Google Cloud ML........ovooiiiiiiniiiieeecee e
YeTaH08Ka Ketds BAMEZON AWS b i i s v s feas
YctanoBka Keras B MicroSoft AZUreoooooveeiiiieiiii e

Keras APl o= e E e e e E e s
Beenenwve B apxutextypy Keras

0630p roToBbIX CNOEE HEHPOHHLIX CETER

0630p roToBblX GYHKUMIA aKTHBaLKMK

0630p dyHKUMI NOTEPL

0630p nokasaTtenei kayecTea

0630p ONTUMM3ATOPOB

HekoTopsie nonesHsie onepawmnm

PRI i s e S s S e i e S e B R T e et

[haea 3. y6okoe o6yyeHHe ¢ NPUMEHEHUEM CBEPTOUYHbIX CETEN..

yb6okas ceepToYHas HEMPOHHas CeTb
NokanbHble peuenTUBEHbIe Nona

Paspensiembie BECa M CMELLEHWS

MynuHroesle cnou
MpoMEXYTOUHBIE UTOTK

ApaMep TEHE — LONGE v st it i i b s v
Kop LeNet g Keras

O cHNe rNYBOKOTO OBYUEHMSeeievieieeiiitiie e
PacnoaHasaHue n3obpaxeHuii u3 Habopa CIFAR-10 ¢ nomoLLbio
FNYOOKOTO OBYUEHM ...eeeitee ettt ettt e e s
MoBbileHKe kavecTBa pacnosHasaHus Habopa CIFAR-10 nytem
YINYBNEHUS CETM ..eiiiiiiiiiieeie ettt s e s
MoebileHne ka4ecTBa pacno3HaesaHus Habopa CIFAR-10 nytem
MOMONMHEHUS IAHHDBIX ...ttt e et e et n e e et s e e ae s e e e esane e e eenenas

MpenckasaHue Ha OCHOBE pe3ynsTaToB 0byyeHns Ha Habope CIFAR-10......... 100

Ornasnenne < 7

OueHb I'HYGOKMG CBEPTO4HLIE CETK OANA pacno3HaBaHWA BonbLLNX

[T 0 T= b < 11 S 101
PacnosHaBaHue kowek ¢ nomolbko ceth VGG-16 102
Mcnonb3oeanue scTpoeHHoro e Keras mogyna VGG-16 103
Mcnonb3osaHue rotoBbix Mogeneit rybokoro obyyeHus ans Bolaenequs
NpU3HAKOB 104
OueHb rnybokas ceTb inception-v3, npumeHsemas ans nepedoca obydenus.......... 105

PEBIONE s e e T L T P o S L R D 108

Maga 4. Mopoxpawwme coctasatenscHbole cetw u WaveNet.................... 109

T8 TAKOE FICET sunssusimspunn s s i s fe s A e S TS SR A 109
Hekotopsie npunoxerua MNCC 111

ybBokune cBepTo4YHbIE NOPOXAAIOLIME COCTA3aTENbHbIE CETU 114

MpumeHeHne Keras adversarial ons cosnanus MNCC,

noanenbiBaloWen MINIST ... e 118

MpumeHeHne Keras adversarial ans cosnanus MNCC,

noanenbiBaloWen CIFAR....... ... 124

WaveNet - nopoxaatouias mogens ans obydeHna reHepaumm 3syka ... 132

PEBIOME: s s s v e L S S R S B e S S R S P 141

Mhaea 5. MorpyxeHun cnos
PacnpeneneHHble NPeOCTABNEHMSvueneeieeeeeeeeeeeaeneenenaneaenaens
WOTTIRVBE 1 wes s swuivmvsnssnvsninsas s v s foss s s by su s s uan £ V304 Vo RuRo s B w RS R A S i

Mopgens skip-rpamm
Mogens CBOW
M3BneyeHune norpyeHuin word2vec 13 Mmogenm
CropoHHuWe peanusauum word2vec
Beenenne B GloVE ..cinnsnnnnisnssaninmiasnnnaanues
Mcnons3oBaHne NpenobyHeHHbIX MOTPYXKEHUAeeiwieeeinieeiineeee.
0ByYeHME NOrpyKEHHUIA C HYNA
Hactpoiika norpyxeHuit Ha ocHose npenobyyeHHoi Moaenn word2vec
Hactpoiika norpysKeHuit Ha ocHose npenobyyeHHoi Mogenu GloVe.............
Mouck norpyxeHuit

o= o Y L= PPN

Mhaea 6. PekyppeHTHan HelipoHHaa ceTb — PHC

MNpocTiie Aauelin PHC sonssimnaiannsnmannnssnannss
Mpoctas PHC ¢ npuMeHeHneM Keras = NOPOMAEHME TEKCT o immmsiemsesssasssnsssessenes

TONONORAMBEH G oo svsmmsmmoim s s e s s s s s SR S s
MpoBnema UCHE3atoLEro U B3PbIBHOMO MPAANMEHTA. ...cuvveeeeriaeeeeens.

Donras kpatkocpouHas Namsatb — LSTM ..o
Mpumep LSTM = aHanW3 3MOLUMOHANLHOM OKPaCKK
BeHTunbHbIN pekyppeHTHbIA 610K = GRU ..o,
Mpumep GRU - yacTepeyHan pasMmeTka

OByHanpPaBneHHbIE PHCo

8 < OrnaBneHue

PHC € 3aN0OMUHAHUEM COCTOSAHMS ..euviueiiteeieeeieeiteeiieeeeeineeaneereeannns 206
Mpumep LSTM ¢ 3anoMuMHaHWEM COCTOAHWA — Npeackasanne notpebnenus
3INEKTPUYECTBA 206

BApyrite BAPHMAHTBE PHC ...ovivivsimmmimimsises wasmssiiisa s 212

P B T TS et B A A R At 213

Mhagea 7. JononHutenbHble MOAENM MALWMHHOTO 0BYYEHUSccvceeeeneeee. 214

DYHKUMOHANBHBIA AP KEIaS ... coiiiviiiiciiiieeeeee e e 215

PErpECCHOHHBIR GBI s iiseiiv sisvss iuivsis s svsves i sevs li st isa vivs ioas 218
Mpumep perpeccuu - NpeackasaHue CoaepKaHus BEH30NE B BO3AYXE erreeeeens 218

O6y4deHne 6e3 yuuTenst — aBTOKOAUPOBLUMKIeveneeieieeeenieeaeneeannns 223
MpuMep aBTOKOAMPOBLUMKE — BEKTOPbI NPEANOMEHUIA 225

KOMNOSULMSA FNYBOKMX CETEM.eeueneeeiieeieeeieaeeieeeeeeeeiaeeeeneeeaeneeeeens 234
Mpumep - ceTb € NamATLIO ANS OTBETOB Ha BOMPOCH 235

PacllMPEHNE KETAS i s s s i ssvs lasa i i issa 242
Mpumep - ucnons3osanue cnos lambda 242
Mpumep - NocTpoeHne NONb30BATENLCKOIO CNOS HOPMUPOBKMoccrvvventiererivinssssnans 243

MNopeXxaatoLlMe MORENM : oo st i snsivamaing 247
Mpumep - ryBokue CHOBMAEHMA 248
Mpumep - nepeHoc cT1na 255

PBAIOMEeoiie e ieeeieee e e et r e e teaata e e naentsraneraennaeanassaannnns 260

Mhaea 8. UcKycCTBEHHbI MHTENAEKT UFPAET B Urpbl 262

OBYHEHNE C NOAKPEMNEHUMEMoeuieniiineeiiaaeeaaeeaaeaee e aeenaaeneneeenens 263
Makcumusauma ByaywmMx BO3HArpaxKaeH A 264
Q-obyuenue 265
MnyGokas Q-cetb kak Q-dyHKUMA 267
BanaHc Mexay MCCNEnOBAHMEM M UCMNONb30BAHWEM 268
BocnpouseeneHue oneita 269
Mpumep = rnyBokan Q-ceTe AN NOMMKKM MAYE 269

HTOUBIBLLED... . oo es nimmmsnm e £ s s s S £ e 8 SRS B e S 282

PBBIOME ...ttt et e e a e aanas 283

3aknwuyeHue 285

Keras 2.0+ 4T0 HOBOL O s i s s e 286

Ycranoeka Keras 2.0 287

MameHeHus API 287

06 aBTOpax

AnToHno JDKY/IM — IUPEKTOP [0 MPOrpaMMHOMY OOeCcreuyeHuIo u
MpearnpuHUMATe/Ib C TSIroi K CO30AaHMI0 M YIIPABIEHMUIO 100a/IbHbI-
MM WHHOBALMOHHBIMM TEXHOMOTMUECKMMM KoMmraHusamu. Crenu-
anusupyeTtcs: B 06JIaCTH [MOMCKOBBIX CUCTEM, OHJIAliHOBBIX CEPBUCOB,
MallMHHOrO 06yueHust, *HHOPMALIMOHHOTO MOUCKA, AHAIUTUKI U 06-
JauHbIX BbluMciaeHuit. IIpodeccuoHalbHbIA OMBIT NIpUOOpeTan B 1e-
¢y crpaHax EBpornbl M AMepuKu. AHTOHMO paboTall B O/KHOCTH UC-
MOTHUTEIBHOTO JUPEKTOPA, TeHEePaTbHOTO AUPEKTOPa, TEXHUUECKOTO
IUPEKTOPA, BULIe-TIPE3UIEHTA U PYKOBOJIMUTES IPYIIILI B PA3IMUHBIX
oTpac/six: or usgareinbckoro ousHeca (Elsevier) 1o MHTepHET-TEXHO-
JIOTMIA [j1s1 KOHeUHOro rojib3oBarens (Ask.com u Tiscali) 1 HUOKP B
cdepe Boicokux TexHonoruit (Microsoft u Google).

Boipaxcaio 6razodapHocnsy ceoemMy MaiaHNIUBOMY cOasniopy,
Cyomcumy Iany, 3a HeusmMeHHOe CmpemieHUe NoMoub, He mpebys
Huuezo 83ameH. S oueHb UeHIO €20 NPedaHHOCHb KOMAHOHOU pa-
6ome, 6aazodaps wemy 3ma KHU2a U cM02id Came 4emM-mo cmo-
AUUM.

Bnazodapio maxxce @parcya Hlonne u muozux modetl, 8HeClULX
axnad e Keras, 3a mo, 4mo oHu mpamuiu cgoe 8pems U Cujibl Ha
co3daHue gnewanifiouezo uHcmpymenmapus o0js 2iybokozo oby-
UeHLIsl, KOMOpbLLl NPOCIM 8 UCNOAB30BAHUL U HEe mpebyem ceepxse-
CMecmaeeHHbIX YCUIULL.

Cnacubo makxce Hawum pedakmopam u3 usdamenscmea Packt,
Hueus ITydxcapu, Yepun Jdca u Juuewy Iasapy, u peueHsenmam u3
Packt u Google 3a noddepxky u yexHste npedionceHus. bes eac ama
KHUZa He COCMOosnacy Obvt.

A maiowe 61azodapen ceoemy HauaibHuky, bpady, u koinezam
Matixy u Koppado uz Google, komopwie nodeuz/iu MeHs Hanucamso
My KHU2Y, HUM@IU ee YepHo8ble 8apuaHmsl U 8bICKA3bIBAIU C80€
MHeHLUe.

Euwe s npusnamenet kogetine Same Fusy e Bapwase, 20e y MeHsl
anepabie NOABUIACH MbICIb HANUCANB MY KHUZY, K020a 1 HAC1aM-
dasica waweuxoti was, eslOpaHHOLll U3 secbmMa 0OWUPHOZO MEHIO.

10 <+ 06 aBTOpax

2mo mecmo obnadaem ocoboli Mazuetl, u 51 20pa40 PEKOMEHOVIO €20
acem, uwywum, zoe 6ot nodcnezHyms ceoe goobpaxrceHue (htto://

www . samefusy . pl r’).

Hanee s xouy nobnazodapums omaden kadpos e Google, nouted-
Wil Hagcmpeuy MoemMy NOXeIdHUIo omaoams éce OMUUCIeHUs o0m
npodaxcu 3moil KHu2u Ha cmuneHouu npedcmasumensm 3mHuve-
CKUX MeHbUULHCMS.

Cnacubo moum opysesim, Ipuky, Jlaype, @panuecko, Immope u
AHnmoHeie, komopsle hoddeprcusant MeHs, Kozda s 8 MoM Hyxc-
danca. Apyxba — Gonbias UeHHOCMb, U 8bl — MOU HAcmosuue opy-
3081,

Cnacubo moemy cotry Jloperuyo, komopstii ho6youn mexs ycmpo-
umecs 6 Google, moemy coiry JleonHapdo 3a nocmosaHHoe cmpemiie-
HUe OmKpsleams 4mo-mo Hogoe u moeti douepu Aspope, brazodaps
Komopoti s ecmpeuaro kKaxovtil deHs ¢ yabtbroll. M HakoHeu, chacu-
60 moemy omuyy Inuo u mamepu Mapuu 3a ux n110608b.

Cymxut ITan - pykKoBoauTeNlb OTHOeNa TeXHOJOIMUYeCKMX uccie-
nosaHuii B Elsevier Labs, paboraer Haj cO3gaHUeM MHTeIEKTYallb-
HBIX CHUCTEM IIOMCKa 110 COOEepPKMMOMY M MeTajaHHbIM. B o6nacthb
ero MHTEePecoB BXOMAT MH(POPMALIMOHHbIN MTOMCK, OHTOJIOTMK, 06pa-
6GOTKa eCTeCTBEHHBIX S3bIKOB, MalllMHHOE 00y4YeHMe U paclipeeseH-
Hasi obpaborka. B Hacrosiiee BpeMs 3aHMMAaeTCsl KiaccuduKalein
M YCTAHOBJIEHMEM CXOJICTBA M306paXKeHMiA ¢ IPUMeHEeHUEeM MOJeJiei
rnybokoro obyuenus. 1o storo paboraj B IPOMBILIJIEHHOCTH Ge3pe-
LIeNTYPHBIX MEAULIMHCKMUX IIperapaToB, Ifie y4acTBOBAJ B IIOCTPOEHMUM
OHTOJIOFMYECKOM CUCTEMbI CEeMaHTUYECKOro II0MCKA, OpraHu3aiuu
KOHTEKCTHOM pekjiambl U ruiatdopm o6paboTKu HaHHBIX. Bemger mo-
CBSILIEHHBIN TexHonorusam 6or Salmon Run.

Boipaxcar 6razodapHocme cgoemy coasmopy, AHmoHuo Dy,
npuzaacuguiemMy MeHsl NPUHAMb yuacmue 6 Hanucamuu KHuzu. 3mo
pedkas 803MONHOCMb, B1az00apsa KOmMopoll 1 MHO20MY HAYUUIICA.
K momy e, eciut Obl He OH, MeHs Obl 30€Cb 8 OYKBANbHOM CMbICIE He
ObL10.

Xouy nobnazodapumse Pona Hanusna, dupekmopa Elsevier Labs,
u Bpaonu I1. Annena, enastozo apxumekmopa e Elsevier, komopuote
NO3HAKOMUIL MeHsl € 271y6OKUM 00yueHlleM U 3acmasuwiu hoee-
pums 8 603MOMCHOCIMU 3MOLL MexHoAo2UL.

*

06 agTopax < 11

Bnazodapio maxxce @parcya Hlonne u muozux nodetl, 8HeClULX
axnad e Keras, 3a mo, 4mo oHu mpamuiu cgoe 8pems U Cujisl Ha
co3daHue eneuamsiOuezo UHCMpymeHmapus ons 21yb0kozo
o0yueHUs, KOmopwlli Npocm 8 UCNOAb308aHUU U He mpebdyem
c8epxsecnecmeeHHblX yCuaul.

Cnacubo maxxce Hawum pedakmopam u3 uzdamenscmea Packt,
Hueus Iyoxcapu, Yepun Jdca u Junuewy Iasapy, u peueHseHmam u3
Packt u Google 3a noddepxky u yexHste npednoxceHus. be3 eac sama
KHU2a He COCMOosacy Oot.

S maxoice npusHameneH Koanezam U HayaabHUKAM, ¢ KOmopbiMil
paGoman Ha NpomsMeHuu ceoell Hu3Hu, a 0co6eHHO meM, KMo
@epuwi 8 MeHs U NOMO2A/l MHe Cmpoumb C80K U3BLILUCMYIO
npogeccuoHanbHy0 Kapbepy.

Haxoneu, s 61azodaper ceoeti ceMbe, KOMopas Ha NPomMseHuu
HECKONIbKUX MECAUes8 MUPUNACh C MeM, KaK I paspuleancs Mexaoy
pabomoii, 3moti KHU2ol u cembell — UMEHHO 8 MaKom nopsioxe.
Haderocs, 8ol coznacumecs, umo 0eso mozo cmouio.

O peueH3eHTe

Huk Makkiaop B Hacrosiiee Bpemsi paboTaeT cTaplinmM Creluaim-
CTOM I10 aHA/JIM3Y JaHHbIX B KomnaHuu PayScale Inc., Cuata, mrar
Bammurron, CIIA. [lo atoro paboran B komnanuu Zillow and Caesars
Entertainment. 3amuTiul nuccepTranmum 1o NpUKIAAHON MaTeMaTHKe B
VHupepcurere wrara MoHTaHa, Koyutenke Cesitoro beHenukra u YHU-
pepcurere Cearoro MoanHa. Huk — aBrop kuuru «TensorFlow Machine
Learning Cookbook», Beilemuieii B usgarenbcrse Packt Publishing.

Ero crpactb — u3ydaTh M J€IUTHCSI 3HAHUSIMU 00 aHANUTHUKE, Ma-
LIMHHOM 06YYEeHMM U MCKYCCTBEHHOM MHTe/UteKkTe. [101bl CBOMX pas-
mbliieHuit Huk ny6nukyer B 6Ji0re Ha CaifTe fromdata.org U B CBOEM
akkayHTe B TBUTTEpE 110 aJIpecy énfmcclure.

Mpeaucnosue

Kuitra, KOTOpPYIO Bbl JepPXKUTE B PyKaX, — KPaTKoe, HO 06CTOsITe/IbHOE
BBEJiEHME B COBPeMeHHbIe HeHPOHHbIE CeTH, MCKYCCTBEHHbIN MHTE-
JIEKT ¥ TEXHOJIOTMM IIy6oKoro ooyuenus. OHa HammcaHa CreluanbHo
LIS IPOTrPaMMMCTOB M CIIELIMAJIMCTOB 110 aHalIM3y U 06paboTKe maH-
HBIX.

Ha3HaueHue

B kuure ripeacrasieHo 6omee 20 paboTocnocoOHbIX HEMPOHHLIX CETeIH,
HaIMCAHHBIX Ha s13bIKe Python c mcrionb3oBaHueM MoayabHONM 6UbIM-
oreku Keras, paboratouieii nosepx 6ubnuorek TensorFlow ot Google
uiu Theano ot komranum Lisa Lab.

Yuraresb IIAr 3a IAroM MO3HAKOMUTCS C &JIFOPUTMAMM 00YUYeHUSI C
yumMTeIeM, HauMHasl C IPOCTON JIMHEIHO perpeccuu 1 KJacCuueckoro
MHOT'OCJIOMHOIO MePLeITPpoHa U KoHuast 6osiee CJI0KHBIMU [TYOOKMMU
CBEPTOYHBIMM CETSIMU U TTOPOXKAAIIMMU COCTA3ATEIbHBIMM CETSIMIA,
B KHure Tak:ke pacCMaTpPUBAIOTCS AJITOPUTMbI 00yueHus: 6e3 yuures:
aBTOKOJMPOBLIMKY U Topoxpatolimne cetu. [logpobHo obbsicHsieTcs,
4TO TAKOe PEeKYPPEHTHbIE CeTM M CEeTU C IOJIrOi KPaTKOCPOUHOIM
namatsio (long short-term memory, LSTM). OnucsiBaercst hyHKIMO-
Ha/bHbIM APl 616nnoreku Keras u o6cy:kaaercs, Kak paciuiuputs Keras,
ec/iM BCTPEeTUTCS 3a7a4a, [J1s1 KOTOPOii B Hell HeT rOTOBOr0 pelieHus.
Taxoke paccMaTpuBaOTCst 60Jiee KPYIHbIe U CJIOKHbIE CUCTEMbI, COCTO-
siMe M3 ONMMCAHHBIX paHee CTPYKTYPHbIX 6/I0KOB. B 3akimouenue na-
eTCsl BBeJIEHMe B TeXHOJIOTUIO [JTYDOKOro 06ydYeHMs C MoaKperieHuem
" ee [IpMMeHeHMe K IMTOCTPOEHMIO UT'P CO BCTPOEHHbIM UCKYCCTBEHHBIM
MHTEJJIEKTOM.

Ewin roBopuTh 0 MpakTUYECKUX MPUIOKEHUSIX, TO B KHUTY BKJIIO-
4eH KoOJ rmporpaMm st kiaccuduKaluuyu HOBOCTEN IM0 3apaHee 3a-
JAaHHBIM KaTeropusiM, IJisi CUHTAKCMUYECKOIr0 aHajauM3a Tekcra, IJis
aHa/1M3a IMOLIMOHA/IBHOI OKPACKM TEKCTa, [J1s1 CHHTEe3a TeKCTOB 1 ua-
cTepeuHoii pasmeTkiu. He ocrasieHa 6e3 BHMMaHMsI TakKke 06paboTKa
Mn300paXKeHuii: pacrio3HaBaHue PyKOMUCHbIX nudp, Kiaccupurams
n300paXkKeHii MO0 KaTeropmsiM M paciiosHaBaHue 0O6BEKTOB C Iociie-
OVIOIMM aHHOTMPOBaHMeM u300pakeHuit. M3 obaactu aHaniusa 3BY-

14 < [lpegucnosue

KOBBIX CMTHAJIOB B3ST [IPMMEP Paclio3HaBaHMsl CI0B, IPOM3HOCMMBbIX
HeCKOMbKUMM Jiamu. TexHuka o6ydeHus ¢ MOAKperieHMueM IpuMe-
HSIeTCsl [J1s1 TIOCTpoeHus my6okoii cet Q-o06yueHns, crioco6HOI aB-
TOHOMHO MIPaTh B UI'PbIL.

CyTb KHUTHM COCTaBJISIIOT 9KCIIepMMeHThl. Kaxkaasi ceTh mpecrasiie-
Ha HeCKOJIbKMMM BapMaHTaMM, KAYeCTBO KOTOPBIX MOCTEIIEHHO YIy4-
11aeTcs MyTeM M3MeHEHMsI BXOIHbBIX IMapaMeTpoB, GOpMbl CeTH, BUIA
(bYHKIMM [TOTEPH M TPMMEHSIEMBIX AITOPUTMOB ONTHMMM3ALIMK. B psige
ClyyaeB IIPUBOMSTCS CPaBHUTENIbHbIE pe3yibraThl 06yuenust Ha CPU
u GPU.

Yem rnybokoe obyyeHue otnmyaercs ot
MaLIMHHOIro 06y4eHUsA U UCKYCCTBEHHOTO
UHTENNIeKTa

HckycerBeHHbIi nuTe/1eKT (MU) — oueHb minpokast 06/1actb Ucciie-
OOBAaHWIA, TOCBSILEHHAS KOZHUMUBHBIM CIIOCODHOCTSIM MalllMH: 06yue-
HMe oIpeneeHHOMY MOBENEeHUI0, YIIPeXKaaliee B3aUMOIEHCTBIE ¢
OKpY)Kalolllei cpeoi, CriocOOHOCTh K JIOTMYECKOMY BbIBOY U JeyK-
MM, KOMITBIOTEPHOE 3PEHME, PAaCIiO3HABAHUE peuu, pellleHue 3aaady,
MpeaCcTaBeHe 3HAHUI, BOCIIPUSITHUE HEHCTBUTEIBHOCTM MU MHOTOE
apyroe (3a rogpobHoctsaMu oTcbuiaem K kHure S. Russell, P. Norvig
«Artificial Intelligence: A Modern Approach», Prentice Hall, 2003).
Menee dopmansto nmog MM noHumaeTtcs nwobasi cutyalus, B KOTOPOit
MalIMHbl UMUTUPYIOT UHMEWNEeKMYalsHoe TIOBEIEHUE, CUMTAIOIEECs
MIPUCYIIUM YesIOBEKY. UCKYCCTBEHHBIN MHTEIUIEKT 3aUMCTBYET METObI
uccienoBaHus u3 MHGOPMATUKY, MATEMATUKMA U CTATUCTUKM.
MammuuHoe obyuyenmue (MO) - orpacins MU, nocesiieHHas TOMY,
Kak 06yyaTh KOMITbIOTEPbI PEIIeHUI0 KOHKPETHBIX 3a/1au 6e3 rporpam-
mupoBanus (cm. kHury C. M. Bishop «Pattern Recognition and Machine
Learning», Springer, 2006). OcnoBHas unes MO sakiaouaeTcss B TOM,
4TO MOYKHO CO3[aBaTh aJITOPUTMbI, CIIOCOGHbIE 0OYYATHCS HA JaHHbIX
M BIIOCJENCTBUM AaBaTh mpenckazaHust. CyniecTByeT TPU OCHOBHBIX
Buaa MO. B ciiyyae obyueHust ¢ yuuTeneM MalllMHe MPembsBIsSOTCS
NaHHbIE U MTPABUJIbHbIE PE3YJIbTATI, 4 11eJIb COCTOUT B TOM, UTO6bI Ma-
1IMHa 00yuMIach Ha 3THUX MPUMEPAX M CMOIJIA BbIZABaTh OCMBbIC/IEH-
HbIE PE3YIbTATHI [JIS1 JaHHBIX, KOTOPbIE paHbllle He BUaena. B ciydae
00yueHus 6e3 yuuTesis MaliHe [IPebsBIISIOTCS TOJILKO CAMU aHHbIE,
a OHa [0/DKHA BBISIBUTD CTPYKTYPY 6€3 [T0CTOPOHHEero BMellaTe/IbCTBa.

*

MNpeoucnogue < 15

B ciryuae o6yueHust ¢ nojKpervieHeM MalliHa BeleT cedst Kak areHTr,
KOTOpBIiA B3aMMOJEICTBYET C OKpY:KaloLieil cpenoi u obydaeTcs: Ha-
XOOUTh BAPUAHTHI MOBEOEHUS, TPUHOCIIIME BOZHATPAXKIEHME.

I'ny6okoe o6yuenue (I'0O) - mogMHoO)XecTBo MeTogoB MO, B KOTOPbBIX
MPUMEHSIFOTCS MCKYCCTBEHHbIe HelipoHHbIe ceTu (MHC), nocTpoeHHbIe
Ha 6ase aHAJIOrUY CO CTPYKTYPOIi HEMPOHOB UeJI0OBeYeCcKoro Mo3sra (CMm.
cratbio Y. Bengio «Learning Deep Architectures for Al», Found. Trends,
vol. 2, 2009). HedbopmanbHO roBopsi, CJIOBO «ITyB60OKuit» rogpasymMena-
eT Hajimuue Bosbloro unucia cioes B MUHC, Ho ero uHTepriperauust co
BpeMeHeM MeHs1ack. Eciu ellle ueThipe roga Hasaj, CuMTanoch, yto 10
CJI0€B I0CTATOYHO, UTOOBI HA3LIBATL CEThb 2/1YO0KOL, TO Terepb riybo-
KOV 06bIYHO HA3bIBAETCSI CeTh, COIEPsKaLasi COTHM CJI0eB.

UckyccreeHHbIH
MHTENNEeKT

MauwuHHoe
obyueHue

[niybokoe obOyueHme — 3TO Hacrosilee LYHAMM (CM. CTaThlo
C.D. Manning «Computational Linguistics and Deep Learning» B sxxyp-
Hane «Computational Linguistics», vol. 41, 2015) B obnacTu MallimnH-
HOr0 00YyYeHMsI B TOM CMbIC/Ie, UTO CPABHUTEIbHO HeOO/IbIIOe YMCIO0
XUTPOYMHbBIX METO/I0B C OFPOMHBIM YCIEXOM IMPUMEHSIETCS B CaMbIX
pasHbIX obsacTsax (06paboTka M300pakeHMit, TeKCTa, BULEO 1 pedl,
KOMITbIOTEPHOE 3pPeHMe), YTO MO3BOIWIO H0OUTHCS 3HAYMTETLHOTIO
rnporpecca 1o CpaBHeHMIO C Pe3yIbTaTaMM, TOCTUTHYTBIMM 3a IIpef -
uiecTByoime gecsstku aet. Ceoumu yeriexamu 'O 00s13aHO TakKe Ha-
JTMYKIO GONbLIMX 00bEMOB 00YUAIOLMX JaHHBIX (HAlpuMep, Habopa
ImageNet B o6nactu 06paboTKu U300PaKeHUIT) U OTHOCUTENBHO Jie-
ueBbiX rpaduyeckux npoteccopos (GPU), 1103BOMSIOLIMX [TOCTPOUTH
oueHb addekTUBHYIO NpoLeaypy Beluncieduii. B komnanusx Google,
Microsoft, Amazon, Apple, Facebook u MHOruMX gpyrux MeTobl IIy-
60KOro 06yYeHusl MOCTOSIHHO MCIIOAb3YIOTCS [1Jisl aHaIM3a OOJbLINX

16 < [lpegucnosue

MacCUMBOB gaHHBIX. Terepb 9T 3HAHMSA M HABBIKM BBIILIM 38 paMKKU
YMCTO aKaJeMUYeCcKIUX MCCAeI0BaHMIL M CTaIM JOCTOSTHUeM KPYITHBIX
MPOMBINUIEHHBIX KOMIIaHMIi. OHM CTAIM HEOThbEM/IEMOI COCTABHOM
YacThl0 COBPEMEHHOI MpOorpaMMHOI MPOOYKLMM, M BiladeHUe UMM
00s13aTe/IBHO ISl IIPOrpaMMMCTa. B 3TOM KHUre He IperionaraeTcs
HaluuMe y YMTaTeNsl ClelMalbHOi MaTeMaTU4eCKOi IT0ArOTOBKM.
OnHaKo Ke 3HAaKOMCTBO C s3bIKOM Python siBisieTcss HeoOXoguMbIM
YCIIOBMEM.

KpaTkoe coaepxaHue KHUMU

Bznase 1 «OcHO8bL HELIPOHHbBIX CemMeli» U3/1araloTcs OCHOBHbIE CBEIEeHMs
0 HeJPOHHBIX CETSX.

B znase 2 «Ycmanoeka Keras u onucarue API» onucaHo, Kak YCTaHO-
BuUTb Keras B obake AWS, Microsoft Azure, Google Cloud miu Ha Baiiry
CODCTBEHHYI0 MAaLLMHY, a TAKKEe NaeTcst KpaTKuii 0630p pasinuHbix API
6ubnuorexu Keras.

I'nasa 3 «nybokoe obyueHue ¢ NPUMeHEHUEeM C8ePMOUHbIX cemeli» 3Ha-
KOMMUT C [TIOHSITUEM CBEPTOUYHOI ceTu. DTo hyHIaMeHTalIbHOe HOBILe-
CTBO CTAJ0 MPUUYMHOI ycrexa r1ybokoro o6yueHus: B IpUMeHeHUM K
pas3/IMUHBIM IIPeAMETHbIM 00JIACTSIM, OT BUIE0 10 PEUM, BbIi[Is 1aJIeKO
3a 1pejesibl 06paboTKM U300pasKeHUI, Ie aTa uies rnepBoHavYalIbHO
3apoAunIach.

I'nasa 4 «[lopoxcdawwue cocmszamensHole cemu u WaveNet» comep-
JKUT BBEIEHIE B TTOPOXKAAIIME COCTI3aTEIbHbIE CETH, UCIIOTb3YEeMbIE
111 CMHTE3a JaHHbBIX, [TOXOXKUX Ha MOPOoKaaemMble JiroabMu. Mbl nipef-
craBisiem y6oKylo HelipoHHy0 ceTb WaveNet, rpenHasHaueHHYIO
IJ1S1 BHICOKOKAYeCTBEHHOI MMUTALIMIM YeJIOBEUECKOTO TOjIoca M 3ByYa-
HMST MY3bIKaJIbHbIX UHCTPYMEHTOB.

B znase 5 «[lozpyxceHus cnoe» 0b6CYKIalOTCS METOMbI I1yOOKOro 06-
YUeHUS, CTyKalye /151 BHISBJIEHMS CBSI3€H MEXKY CJIOBAMM U TPYIITTNA-
POBKM TTOXOKMX CIIOB.

B 2nase 6 «PexyppeHmHbie HelipoHHble cemu» pacCMaTpPUBAETCS Kiace
HEIPOHHBIX CeTel, ONTUMMU3MPOBAHHBIX /i1 06pabOTKM MOCIen0Ba-
TEbHBIX AHHBIX, B T. 4. TEKCTA.

I'nasa 7 «/lononHumeinsHsle Modenu 2aybokozo 00yueHus» CONEPKUT
KpaTKuii 0630p pyHkumnoHansHoro API Keras, perpecCMOHHBIX CeTeild,
ABTOKOAMPOBIIMKOB U T. 1.

B znaee 8 «MckyccmeeHHsIll uHmMeiekm uzpaem 6 uzpsl» Bbl Y3HAETE O
ry6oKoM 00yueHMH ¢ MoKpervieHueM 1 o Tom, Kak Keras rossossier

-

MNpeoucnosue <+ 17

€ro UCI0JIb30BATD [IJIs1 [TOCTPOEHMsI IITYDOKUX CeTeil, yMeIoLMX UrPaTh
B apKaJiHbIE UTPbI.

[punoxkeHue COOEPNKUT CBOIKY 0OCY)KIaeMbIX B KHUIe TeM U WH-
(hopmaiuio o HopoBBeaeHUsX B Bepcuu Keras 2.0.

UYTo HE06X0AMMO AN UTEHUS KHUTU

Bam nonamoburcst ciaenyioiiiee porpaMmHoe obecriedeHue:
O TensorFlow Bepcun 1.0.0 1nu Boile;
O Keras sepcuu 2.0.2 uiu Bellle;
O Matplotlib Bepcuu 1.5.3 unu Boilie;
O Scikit-learn Bepcun 0.18.1 uau Bbille;
O NumPy Bepcun 1.12.1 win Beile.

K 060pynoBaHuI0 IIPeabsBISIOTCS Clieayionine TpeboBaHM
Q 32- unu 64-paspsaaHas apxuTeKTypa;
QO CPU c TakoBoii yactoToii He Hike 2 ITu;
O ornepaTuBHas naMsaTh 06beMoM He MeHblle 4 ['B;
QO He meHee 10 T'B cBobogHOro Mecra Ha JIMCKe.

Ha koro pacCinUTaHa 3Ta KHUI4

Eciu BbI — CITelManuceT no aHaausy M 00paboTKe JaHHBIX CO 3HAHMEM
MallMHHOTO O6Y4YeHUs] MIIM 3aHMMaeTech MporpaMmMmupoBaHuem UH
M 3HAKOMBI C HE{POHHBIMM CETSIMM, TO 9Ta KHMra CTAHET HEeIrJIOXOi
OTIPaBHOI TOYKOI [JIs1 OBJaJeHMS MEeTOZAMM [NTyDOKOro 0GydeHus:
¢ npumeHeduem 6mbnuorexku Keras. 3uanmue Python - o6sisaresnbHoe
YCJIOBME.

[paduueckue BbigeneHuUs

B aToit kHure Tun MHdopmMaiu odbosHavaetcs mpudrom. Hioke ripu-
BeJI€HO HECKOJIbKO IIPMMEepOB C MOSICHeHUSIMMU.

dparmMeHThI KoJa BHYTpU ab3alla, MMeHa Tab/ull 6a3bl JaHHbIX, 18-
nok u daitios, URL-agpeca, JaHHbIe, KOTOPbIe BBOIUT I10JIb30BaTe/Ib,
u agpeca B TBUTTEpe BbIAEIAIOTCA cleaylomum o6pasom: «Kpome Toro,
MbI 3arPY)KaeM UCTUHHbIE METKM COOTBETCTBEHHO BY trainUY test U
MpUMeHsIeM K HUM YHUTapHOe KOAMPOBaHUE».

18 < [lpegucnosue

KYCOK KoJa BbITIAOUT TaK:

from keras.meodels import Seguential
model = Seguential()
model.add (Dense (12, input dim=8, kernel initializer='random uniform'))

Kenast [IpuBJedYb BHMMaHKMe K 4aCTK Koaa, MbI BblAe/iiemM ee I10J1y-

AKHUPHBIM I.LIpHCbTOMZ

$ 10 outputs

final stage is softmax

model = Seguential()

model.add (Dense (NBE_CLASSES, input shape=(RESHAPED,)))

model.add (Activation('softmax'))

model. summary ()

BxonHast M BhIXOgHAS MHElJDpMaIJ,MFI KOMaHOHBIX YTUIWUT BBILISAOWUT
TakK:

pip install quiver_engine

HoBble TepMMHBI U BasKHbIe (hparMeHThI BbIIe/ISIIOTCS ITOTYKIUP-
HbiM wmipudrom. Haripumep, snemenTs! rpadgudeckoro nurepdeiica B
MEHIO WJIM IMAJIOTOBbIX OKHAX BBIMISAST B KHMUre Tak: «[lepBoHaUa/ib-
HO Hallla [IPOCTasl CeThb uMeeT BepHoCTh 92.22 %, T. e. ipumepHO 8 U3
100 pyKOMMUCHBIX CUMBOJIOB PACIIO3HAKTCS HETTPABUIBHO».

TakuM 3HaukoM 0603HAYAOTCA NMPEnyNPEKAEHWUS U BaKHble
NpUMEYaHms.

TakuM 3Ha4YKOM 0603HAYAKTCA COBETHI W pPEeKOMEHOAUMM .

OT3bIBbI

MbI Bcerga pajbl OT3bIBaM yMTaTe e, PacckakuTe HaM, YTO BbI AyMa-
eTe 06 9TOM KHUIe — UTO BaM IIOHPaBM/IOCH WM, OBITH MOXKET, He I10-
HPaBUIOCh. YMTaTeIbCKME OT3bIBbI BayKHbI [HAC, TAK KaK ITOMOralT
BBIITYCKATh KHUIH, U3 KOTOPBIX BbI UepIaeTe MaKCMMYM I10/Ie3HOTO JIJIs1
cebs.

Yro6bl OTIPABUTh OBBIUHBIN OT3bIB, IIPOCTO MOLUIMTE MMUCHMO Ha
ajipec feedback@packtpub.com, YKA3aB HA3BaHME KHUIM B KAYeCTBE Te-
MblL. EC/IM BbI IBJ/IsIeTECh CIIEMaJIMCTOM B HEKOTOPOI 061aCTy ¥ XOTeIn

*

MNpeaoucnogue <+ 19

OBl CTATh dBTOPOM MJIM COABTOPOM KHMUI'M, ITIO3HAKOMbTECH C MHCTPYK-
OMAMM 07151 aBTOPOB 110 agpecy www.packtpub. com/authors.

MNoanepxka KNMeHTOB

CuacTiMBbIM 0611a11a"renﬂm KHUT Packt Mbl MOKeM MpenioXUTb psn
YCIIyTr, KOTOpble IMO3BOJAT M3BJIe4b M3 CBOEro I'IIJI—’IOGPETEHMSI MaKCu-
MYM I10JIb3bI.

3arpyska Koaa npumepos

Bbl MOKeTe cKauaTh KO IPUMEPOB K 9TOJ KHUIre 13 CBOEI YUeTHOI
3anucy Ha caiite http://www.packtpub.com. Eciam kHura 6nuia KyI1Lie-
Ha B Opyrom mecre, 3aiauTe Ha CTPAaHUILY http://www.packtpub.com/
support, 3aPerUCTPUPYIATECH, U Mbl OTIIPaBUM (aiiibl 10 3/IeKTPOHHOI
noyre.

st ckauMBaHus (aiiyioB ¢ KOLOM BBIIIOJIHUTE ClAEAVIOIIMe IeiicT-
BUSA:

1. 3aperucrpupyiiTeck WM 3aliIMTEe Ha Hall CAiT, yKa3aB CBOM
ajipec AEeKTPOHHONM MOUTHI U TTAPOJIb.

Hasepute mbiub Ha BKIaaky SUPPORT B BepxHeii uacTu cTpa-
HUIIBL.

Mlenkuute 1o ccouike Code Downloads & Errata.

Beenute umst Kuuru B noje Search.

Bbi6epure MHTEPECYIOLIYIO BaC KHUTY.

C OMOIIbIO BBINAJAI0LUIEr0 MEHIO YKaKMUTe, [/1e Bbl Ipuobpenu
KHUTY.

7. Haxmure Code Download.

3arpy:keHHbli (aii MOXHO paclakoBaTh, BOCIIOIb30BaBIIMCh T10-
CAeIHUMU BePCUSIMU IIPOrpamMm:
O WIinRAR / 7-Zip gnst Windows;
Q Zipeg /iZip / UnRarX nng Mac;
Q 7-Zip / PeaZip gns Linux.

B2

AR Al

Kop K 3T0i KHUre MMeeTcsl TakKe Ha crpaHule caiita GitHub no agpe-
CY https://github.com/PacktPublishing/Deep-Learning-with-Keras. 1lO
aapecy https://github.com/PacktPublishing/ pa3MellleH TakK>Ke KO/ M BU-
[€0 K APYIrMM KHUraM M3 Hallero oGIimupHoro Karajiora. [1omo6omnsiTer-
ByiiTe!

20 < [lpegucnosue

3arpysKa LBETHbIX UNTOCTPaLMiA

Mbi Takke npenjaraem PDF-daiin, comepskaliuii LIBeTHbIE M30-
OpaykeHusl, BCTpedalolecs: B KHure. L[BeT nmoMoxkeT aydiie MOHSITh,
KakK M3MEHSIIOTCS pe3y/ibTaTbl. ITOT (aii MOXKHO CKavaThb I10 azpecy

https://www.packtpub.com/sites/default/files/downloads/DeeplLearn-

ingwithKeras ColorImages.pdf.

OneuaTku

Mb! 1poBepsUIu COIePXKMMOe KHUTM CO BCeM TIaHMeM, HO Kakue-
TO OLIMOKM BCE 3Ke MOIJIM ITPOCKO/Ib3HYTh. EC/iu Bbl HalimeTe B Hallei
KHUTe OLMOKY, B TEKCTe WIM B KOe, IOXKaayiicTa, COOBIIMUTe HaM O
Heiji. Tak Bbl M36aBUTE OPYrUX YUTATENEI OT pAa30UaPOBAHMS U [TOMO-
JKeTe HaM CHenaTh Coeayiolne u3ganust Kuuru jayyiie. [Ipu o6Hapy-
JKEHUM OredyaTKM Mpocbda 3aiiTu Ha CTPAHMILY http://www.packtpub.
com/support, BBIOPATh KHUTY, 1IEJIKHYTh 110 ccbuike Errata Submission
Form u Beectu nHdopmarimio o6 oneuarke. [Iposepus saiie coobiie-
HMe, Mbl omMecTuM uHbopMaluio 06 orreyaTke Ha HallleM caiiTe Win
no6aBMM ee B CIIMCOK 3aMEYeHHBbIX OIleyaTok B paspese Errata mist
IaHHOM KHUIH.

Criucok paHee OTIIPaBJIeHHBIX OIMeYaTOK MOXHO ITPOCMOTPeTh, Bbl-
6paB Haj3BaHMe KHMUI'M Ha CTpPaHMIE http://www.packtpub.com/books/
content/support. 3allpolleHHas MHGOPMALMS TOSIBUTCS B pasjiene
Errata.

HapyweHue aBTOpCcKUX npas

HezakoHHoe pasMellleHHe 3alllMIIeHHOr0 aBTOPCKMM IIpaBOM Ma-
Tepuaaa B HHTEIJHETE‘ 5 I'IIJOGJIEMI:I JIJIs1 BCeX HoCHTenen MHCbOpM&LLHM.
B usparenbcree Packt Mbl OTHOCHMMCSH K 3alUTe IIpaB MHTe/VIeKTyallb-
HOM cOBCTBEHHOCTH U JIMIIEH3MPOBAHWUK O4YeHb Cepbe3Ho. Ecin BoI
06Hapy>1<1—1're He3aKOHHbIe KONMM HallMX M3IaHUil B 1060it cljopme B
HHTEDHETE, nomanyﬁma, He3aMeoJIMTe/ILHO COOGI_U,HTE HaM ajipec MJIn
Ha3BaHME BEﬁ-CaﬁTa, 4yTOOBI MbI MOIIH npegrnpuHATL COOTBETCTBYIO-
e Mephbl.

npOCMM OTHPaBUTh CCBLIKY Ha BbI3bIBAIOLLIAT [nonospeHue B rupaT-
CTBe MaTepuall 110 afpecy copyrightipacktpub.com.

Mabi GY,EI,EM [MpM3HaTe/bHbI 34 MMOMOILIL B 3alllMTe IIpaB HAlllMX aB-
TOPOB U coJeicTBME B HALIMX CTapaHuAX [MPeaoCTaB/IsATh YMTATE/IsIM
I10J/Ie3HbIe CBEOEeHMS.

MNpeoucnogue < 21

Bonpocol

Eciu Bac CMyLiaeT 4TO-TO B 3TOI KHUI'e, Bbl MOXKETE CBA3aThCsl C HAMU
I10 afpecy questionsipacktpub.com, MU Mbl CJiejlaeM BCe BOSMOXKHOe JJ15

pelieHust Mpo6IeMbl.

MnaBa

OcHOBbI HEMPOHHbBIX CeTen

WckyceTBeHHbIE HEMPOHHbIE ceTu (Jisi KPaTKOCTU Helipocemu Win
MPOCTO cemu) — 3TO KJIACC MOesiell MalllMHHOrO 00yYeHusl, B OCHOBe
KOTOPbIX JIEKAT UCC/IEN0BAHMS LIEHTPAIbHOM HEPBHOM CUCTEMbI MJie-
KornuTawiux. HeiipoceTb COCTOUT M3 HECKOILKMUX B3aMMOCBSI3aHHBIX
HelipoH08, OPraHU30BAHHBIX B /10U, KOTOPble OOGMEHUBAKOTCS MEXKITY
c060ii co0BIIeHUAMU (KAaK FOBOPAT, 8030YH0aioncs) Py BbIIIOJIHEHUMX
onpeneneHHbIX yo1oBuii. [lepsbie uccnenoBanus orHocaTes K 1950-m
rogam, Korga 6bUlo0 BBEOEHO [OHSTHE MeplLernTpoHa (CM. CTaTbio
F. Rosenblatt «The Perceptron: A Probabilistic Model for Information
Storage and Organization in the Brain», Psychological Review, vol. 65,
pp. 386-408, 1958), ABYC/I0MHONI CceTU [Js1 BBLIMNOJHEHMS IPOCThIX
oriepaiuii. 3areM B KOHLEe 1960-X romoB ObLI MPEAIONKEH anz0pumm
obpamuozo pacnpocmpareruss ajas 3¢GpQeKTMBHOro 06y4eHmus: MHOTO-
cioiiHbIX ceteii (cm. cratbu P. J. Werbos «Backpropagation through
Time: What It Does and How to Do It», Proceedings of the IEEE, vol.
78, pp- 1550-1560, 1990 u G. E. Hinton, S. Osindero, Y. W. Teh «A Fast
Learning Algorithm for Deep Belief Nets, Neural Computing, vol. 18,
pp. 1527-1554, 2006). B HekoTopbIX paboTax yTBEpKAAeTCs, YTO 3TU
METO/bl KOPHSIMIM YXOISIT IJIyOKe, UeM MPUHSITO CUUTATH (CM. CTAThIO
]. Schmidhuber «Deep Learning in Neural Networks: An Overview», by,
vol. 61, pp. 85-117, 2015). HelipoHHbIe ceTH ObUIM IIPEIMETOM MHTEH-
CMBHBIX Hay4yHbIX UcciaenoBaHuii 1o 1980-x rosmos, Korna Ha IepBbii
IJIaH BbILUIM [pyrue, 6oee nipocTeie, noaxonbl. OqHAKoO ¢ cepennHbl
2000-x rogoB OTMeYaeTcsl BO3POXK/IeHMe MHTepeca K 3TOii TeMe B CBSI-
31 C MIPOPBIBHBIM AJITOPUTMOM OBICTPOro 00yUYeHus, [Peaa0sKeHHbIM
Ilx. XunroHom (cm. S. Leven «The Roots of Backpropagation: From Or-
dered Derivatives to Neural Networks and Political Forecasting», Neu-
ral Networks, vol. 9, 1996, 1 D. E. Rumelhart, G. E. Hinton, R.]. Williams
«Learning Representations by Backpropagating Errors», vol. 323, 1986),
u nosipyieHem (rpumepso B 2011 roay) rpadmdeckux MpoLeccopoB
IJIsI MACCOBO-TTapaslIe/IbHbIX YMC/IEHHBIX PACUETOB.

L7

Mopnepka knueHtoe < 23

DTU JOCTUKEHUS [TPOJIOKUIIN JOPOTY COBPEMEHHOMY 21y6oKoMY 00-
YUEHLII0, KITACCY HeMPOHHBIX CeTelt, JJisi KOTOPBIX XapaKTepHo O0JIbIlioe
UYMCIO CJI0€B M KOTOpbIE CriocoOHbI 00yUYaTh BeCbMa U30LPEHHbIE MO-
[eJI Ha OCHOBE Mepapxuu ypoBHeit abcrparnpoBanusi. Heckosbko et
Hasaj 21y60Koil cauTanach ceTb ¢ 3—5 c/10siMM, Terepb e X YMCI0 BO3-
pocno go 100-200.

Ob6yueHue myreM I0OC/AeI0BATEIbHOrO abCcTparupoBaHus HATIOMM-
HAaeT MOMAEIU 3PEHMS B MO3Te YeJIOBEKA, SBOTIOLMOHUPOBABIIME M-
JUOHBI JieT. YenoBeueckast cMCTEMA 3PEeHUS AeCTBUTENBHO COCTOUT
M3 HECKOJIbKMX YpOBHeii. [1a3 coenmuHeH ¢ 06/1acTbio MO3ra, KOTopast
HAa3bIBAETCS MEPBUUYHONM 3PUTENBHOI KOPOii, WM 3PUTEIBHOM KO-
poii V1 1 3aHMMaeT 3aiHMI1 NOJI0C 3aThUIOYHOM J0/AM KaXKI0ro Io-
ayirapusi. 3ta 061acTh UMEeTCsl Y MHOI'MX MJIEKOITMTAIOIIMX M UrpaeT
BAXKHYIO POJIb B PACIIO3HABAHUM MPOCTHIX 00pa3oB 1 0O6pabOTKe MH-
dbopmaim 06 u3MeHeHUM OpUEeHTALIMK, ITPOCTPAHCTBEHHOI YacToTe
u npete. CoriacHO HEKOTOPBIM OLIEHKAM, ePBUYHAS 3PUTEbHAS KO-
pa conepKuT rnpumepHo 140 MUIMOHOB HelipoHOB 1 10 Mu/UIMapaoB
cBaseit mexxay Humu. Kopa V1 coepuusiercs ¢ obnacramu V2, V3, V4, V5
u V6, 0TBeUalouMmMu 3a BCIO MOC/IeAYIONLYI0 06paboTKy M300paske Ui
M pacriosHaBaHue 0ojiee CI0XKHBIX 00BeKTOB: QUryp, Jull, XMBOTHBIX
M MHOroro apyroro. Takasi MHOTOC/OHAsI opraHu3aiust SIBUaach pe-
3yJbTATOM MHOMECTBA IOIBITOK, KOTOPbIE MPUPOJA MpeanpuHuMa-
J1a Ha NPOTSKEHUM COTEH MUJUTMOHOB JjieT. COracHO oleHKaM, Kopa
TOJIOBHOTO MO3Ta UYe/I0BEKAa HACUMTHIBAET MOpsaKa 16 MuuimMapnor
HelpoHOB, ¥ npuMepHOo 10-25 % 13 HUX OTHOCATCS K 3peHMI0 (CM. CTa-
Tbi0 S. Herculano-Houzel «The Human Brain in Numbers: A Linearly
Scaled-up Primate Brain», vol. 3, 2009). [liy6okoe oOy4yeHue 3aum-
CTBOBAJIO MJIEH0 MHOTOC/IOMHOM opraHu3aluu y 3pUTENbHON cucTe-
Mbl U€JIOBEKAa: HAPY)KHbIE CJIOM MCKYCCTBEHHBIX HEMPOHOB 00yUYaoTCst
6a30BbIM CBOMCTBaM M300pakeHMii, a Goee rybokue 06pabaTbiBaKOT
6oJs1ee CIoXKHbIe KOHLIETIUH,

B 3T0ii KHUIre pacCMOTPEHO HECKOJbKO BaXKHBIX aCIEKTOB Heli-
POHHBIX CE€Tel Ha MpUMepe Koja ¢ UCIMO/Ib30BAaHUEM MUHUMAIUCT-
cKkoii M BecbMa 3¢ QeKTUBHONI 6MOIMOTEKH IYOOKOro 0b6yueHus
Keras, HanucaHHO! Ha s3bike Python u paborawiiei nosepx ou-
onunoreku TensorFlow ot Google (CM. https://www.tensorilow.org/)
win 6ubnuoreku Theano, pazpaboraHHoit B MOHpealbCKOM YHM-
BepcuTere (CM. http://deeplearning.net/software/theana/). UTaAK,
MPUCTYIIUM.

24 < [naea 1. OcHOBbl HEMPOHHBIX CETEM

B 9T0i1 r1aBe 6YOyT paccMOTPEHbI CIeAYIOIIMe TeMb:
MepLEenTpPOH;

MHOTI'OC/IOMHbBIN MepUenTpoH;

byHKIMM akTUBALIMY;

rpajiueHTHBIN CITYCK;

CTOXaCTUYECKUI rpaiMeHTHbIN CIYCK;

aJropuTM o6paTHOrO PacIpoCTPaHeHMsI.

(ONONONCNON®,

MepuenTtpoH

[MepuernTpoH — 3TO MPOCTOI AITOPUTM, KOTOPLIN IoayyaeT BXOLHOM
BEKTOP X, COIepIKallluii 1 BHAUeHUIi (X, X,, ..., X,), KOTOPbI€ YaCTO Ha3bl~
BAKOTCSl BXOAHBIMM MPU3HAKAMU, WINM [IPOCTO MPU3HAKAMM, U BbIIAET
Ha Beixoze 1 (ma) wiam 0 (Het). GopMaibHO TOBOPSI, Mbl OIpenensem
(byHKIIMIO:

f(x)z{ 1, ecmwx+b>0
0 B IPOTUBHOM ClTyyae

3mech W — BEKTOP BECOB, WX — CKaJISIpHOE IPOu3BeaeHue Z. Wi,
a b — cmelenme. Kak Mbl 3HaeM U3 reomeTpun, ypaBHeHue wx + b =0
orpenessieT rpaHMYHYI0 TUITEePILUIOCKOCTD, MOJIOKEHUEe KOTOPOit u3Me-
HSIeTCSl B 3aBMCMMOCTM OT 3HAUeHMit w 1 b. Ecjiu X JieskuT Bblliie 970
TUIIEPIUIOCKOCTH (B IBYMEPHOM CJIy4ae — MPSIMO¥A), TO OTBET MOMOXKMU-
TeJIbHBII, MHAUe OTpULaTelbHbI. OueHb npocTtoii anropurm! C nnomo-
L[bIO MEePLENTPOHA He/Tb3s1 BEIPA3UTh OTBET «Modcem Gbtmb». OH MOXKET
orBeTUTh da (1) uiu Hem (0), ecyin Mbl 3HAeM, KaK ONpPeaenTs W u b,
a 9TO M eCTb IPOLeCC 0O0yUeHUsI, KOTOPbI 06CYKIAeTCsl B CIEIYIOLMX
pasmenax.

MepBbiit npuMep Koaa ¢ ucnonb3osaHuem Keras

UcxonHbiM cTponTe/ibHbIM 6710KOM Keras siBjisieTcst Mofiesib, a Ipo-
creiilias Mofie/ib Ha3bIBaeTCs mocjiegoBarenbHoit. B Keras nocnenosa-
TejibHAsl MOJIe/Ib [IPEeICTaBIIsgeT COO0I JIMHEeIHbII KOHBeliep (CTeK) ¢io-
€B HelipoHHOM ceTi. B wienyioleM dparMenTe orpeneieH OIUH CJIoii ¢
12 HelipoHaMM, KOTODPbIN OXMAAET MOJYUUTh 8§ BXOAHBIX ITePEMEHHbIX
(TIpM3HAKOB):

L7

MHOroCcnoMHbIM NEPUENTPOH — NMEPBLIA NpUMep HelpoceTn <% 25

from keras.models import Sequential
model = Sequential()
model.add (Dense (12, input dim=8, kernel initializer='random uniform'))

Ha srare MHMIMaIM3ALMMA KKIOMY HEHPOHY MOXHO HasHaAUUTh
Bec. Keras rpemjiaraeT HeCK0OJbKO BapMaHTOB, NIepeunucinM Hanbosee
VIIOTPe6GUTENbHbIE:

O random uniform: BeCa WHUIMAIM3UPYIOTCS PABHOMEPHO pac-
MpeneNeHHbIMU CIYYaHBIMM 3HAYEHMSIMM M3 [MarasoHa
(-0.05, 0.05) UHbIMU c/I0BAMHM, J11000€e 3HAYEHUE U3 3TOr0 MH-
TepBaja BLIOMPAEeTCsl C ONMHAKOBOI BEPOSITHOCTBIO;

O random normal: Beca MHULIMATM3UPYIOTCS HOPMAaJbHO pac-
NpeneleHHbIMU CIYYaliHBIMM 3HAYeHUsIMM €O cpeaHum 0 u
craHgapTHeIM oTkI0HeHneM 0.05. Te, KTO He 3HAET, YTO TAKOe
HOpMaJIbHOE paclipefe/ieHie, MOryT MpencTaBisaTh cebe CUM-
METPUYHYIO KOJIOK0JI000PA3HYI0 KPUBYIO;

Q zero: BCe Beca MHULUAIM3UPYIOTCS HYIISIMM.

[TonHoe onucaHue rnapaMeTpos MMeeTcs Ha CTpaHMLE https://

keras.io/initializations/.

MHoOrocnoiMHbI NepuenTpoH — NepBbii
npuMep HenupoceTu

B 5T0i r1aBe MBI ONIpefenuM repBblit IpUMep CeTH C HECKOAbKUMM JIN-
HeMHBIMU ¢10SIMK. UcTopUUecKM MepUenTpoHOM Ha3biBalach MOE/b
C eIMHCTBEHHBIM JIMHEHBIM CIIOEM, [TO3TOMY MOJIE/b ¢ HECKOIbKUMMU
C/I0SIMM JIOTMYHO HAa3BaTh MHOTOCIOMHBIM mnepuentpoxHom (MCIT).
Ha pucyHKe HMKe [0OKa3aHa HeMpPOHHAs ceTh OOLIEro BUOA C ONHUM
BXOJHBIM, OTHUM MTPOMEKYTOUYHBIM 1 OTHUM BbIXOIHBIM CJIOEM.

26 <+ [nhaea 1.0cHOBbl HEMPOHHBIX CETEM

Kask[blii y3es1 [epBOro ¢/10sl Moay4aeT BXOAHON CUTHAI M BO30YK-
OAeTcsi B COOTBETCTBMM C 3apaHee OINPEeNeSeHHBIMM JIOKaJbHbIMU
IrPaHMYHBIMU YCIOBMSIMM. BBIXOH NepBOro C/I0sl MOZAETCS Ha BXOI
BTOPOT0, & BbIXOZ BTOPOTO — MOC/IEAHEMY CJI00, COCTOSILEMY BCEro U3
OIIHOT0 HelipoHa. UHTepecHO, UTO TaKasi MHOTOCIOMHAS OpraHu3aLus
OTHAJIEHHO HAallOMMHAeT paboTy 4YeOBeYeCKOi CHUCTEMbI 3peHus, O
YeM MbI V)K€ TOBOPMIIN.

37a cems NNOTHAA B TOM CMbICNE, YTO KX AbI HEHPOH 0OHOrO
CNos CBSI3aH CO BCEMMW HeMpOoHaMuU NpeaplayLLero cos U BCeMu
HENpOHaMK CneayLLero cnos.

Mpo6nembl 06yueHUa nepuenTpoHa
U UX pelueHue

PaccMOTpUM OIMH HEMPOH; KAaKOB ONTUMAJIbHBI BbIOOD Beca W U
cventeHusi b? B upeane Mbl XOTelM Obl NpeabaBUTL Habop obyualo-
LIKUX MPUMEPOB M MOPYYMTh KOMIIbIOTEPY BhIOPATh BeC M CMelleHMe,
TaK uT06bI O1IMOKA IIPM BBIUMCIEHUM Pe3yabTaTa 6bl/ia MUHMMAaJbHA.
IMepexomsi K KOHKPeETHKE, MPeNIo0KUM, UYTO MMeeTcs Habop M30-
OGpakeHMit KOLIEK M IPYroit Habop 1M306paskeHnit, Ha KOTOPLIX KOIIeK
HeT. JIJis IPOCTOThI OYAeM CUYMTAaTh, UTO KaKIblii HEIPOH aHAIU3UPYET
TOJIbKO OJMH BXOJHO MMKCesIb. Mbl X0Tes 6bl, 4TOOLI B Ipoliecce 06-
paboTK 1306 pakeHMI KOMIIbIOTEPOM Halll HeIIPOH M3MEHSLI CBOI BeC
M CMEIeHME TaKUM 06pa3oM, UTOObI YMCIO U300pakeH Ui, OIIMB0YHO
Pacro3HaHHBIX KaK He KOIIKHY, CO BpeMEeHeM YMeHbIIAaa0Ch. ITOT IOJ-
XO[I KayKeTCsI MHTYUTUBHO OYeBUIHBIM, HO [7Isl HEro TpebyeTcsl, YTOObI
MaJioe M3MeHeHMe Beca (M/WIM CMeIlleHMsl) IPUBOAMIIO K MaJIOMY M3-
MeHEeHUIO pe3y/bTaTa.

Ecin umeeTcst GOMBIION CKAYOK HA BBIXOOE, TO NpozpecclieHoe 06-
y4YeHMe HeBO3MOXKHO (pasBe uTo Mpo6oBaTh BCe BO3MOXKHbIE HAIIpaB-
JIEHUS — 3TO HA3bIBAETCS MCUEPIIbIBAIOIIMM IIOMCKOM — He 3Hasl, JOCTH-
raem JiMi Mbl KAaKOTO-HMOYIb VIy4lieHus). B KOHLE KOHIIOB, 1€THU Belb
yuaTcs rocrerneHHo. K coxaneHu:o, i MepiLernTpoHa TakKoe «I1ocTe-
TeHHOe» [TI0BefieHre He XapakTepHo. [leplLenTpoH BbiiaeT 3HaueHmne 0
WK 1, pasHuila MeXIy HUMM BeJIMKA, M 9TO HMKaK He CII0CO6CTBYET ero
06Y4YeHHI0, YTO BUAHO M3 CIEAVIOIIEro PUCYHKA:

*

MHOrocn0MHbIA NepUEnTPOH — NEPBbIA NPUMEp HelpoceTn <+ 27

0.8 -

04

O-----@-----0

0o}

Ham HY)XHO 4TO-TO GoJee rafKoe — HernpepbiBHas1, audhepeHin-
pyemas DYHKIIMSA, MOHOTOHHO Bo3pacrtatoias ot 0 go 1.

Curmompa
Curmouja ornpeaensieTcs caeayiommum oo6pasom:
1
o(x)=—
l+e

Kak BugHO 13 rpaduKa HIDKe, OHA HeIlpepbiBHA 11 M3MeHsieTcs oT 0
no 1, korma apryMmeHT rpo6eraeT 06/1aCTh OIPeeIeHMs (—o, ©):

-6 -4 -2 0 2 4 6

28 <+ [nhaea 1. 0OcHOBbl HEMPOHHBIX CETEM

HeitpoH MOXKeT BOCIIOJIb30BATbLCA CUTMOMIOI MJIsi BbIUMCIEHMS
HeJIMHEHHOM QYHKUUU o(Z = wx + b). OTMEeTHUM, YTO KOrJa BeIMYMHA
z=wx + b oueHb BeJIMKa U MOJOKUTeNbHA, e — 0, Tak uTo o(z) — 1, a
KOIZia 3Ta BeJIMYMHA BeMKa 110 MOAY/II0 M OTPpULIATE/IbHA, TO €75 — o,
TaK 4To o(Z) — 0. MHbIMM CJIOBAMIM, HEIIPOH C CUIMOMIHOM QyHKIMEH
aKTUBALIMK BeAeT cedsi ogo0HO IepLenTPoHY, HO U3MEHSIeTCs IJIaBHO
M MOXKET IOPOXKAATh Takie sHayeHus, Kak 0.5539 mnum 0.123191. B He-
KOTOPOM CMBbIC/IE CUTMOMIHbBINA HEpOH YMeeT 1aBaTh OTBET «MOXeT
OBITh».

Bnok nuHeiHoOM pekTudUKaumnm

Curmouia — He eIMHCTBEHHAs rjagkas QyHKIMs, pUMeHsieMas B
HEeMPOHHBIX ceTsax. B rowienHee BpeMs CTaja OYeHb MOMYJSIPHA CO-
BceM mpoctast MYHKLMS, HasbiBaemast OJIOKOM JIMHENHON pexTudu-
kauuu (rectified linear unit, ReLU), IOCKO/IbKY B 3KCIIEPMMEHTAX OHA
Jaet sameuareibHble pe3yinbraThl. ReLU onpepnensiercs dopmynoii f(x)
= max(0, x), a ee rpaduxk nmoxkasaH Ha pucyHke Hike, Kak Buaum, oHa
paBHA HYJIIO [UIS1 OTPULIATEbHBIX 3HAYEHMIA X U JIMHEIHO BO3pacTaer
IJ1ST TIOJIOXKUTEJTbHBIX.

4t

CDYHKI.IMH dKTUBaLUMUH

Curmouga M ReLU HazbIBawTCa QyHKyusmu akmusayuu. B pasgene
«TecTupoBaHue pa3nMUHbIX ONITUMKU3ATOPOB B Keras» Mbl yBUIWUM, UTO
HelnpepbiBHOE M3MEeHeHUe, XapakTepHoe aJist 3tux (pyHKiuuit, KpaitHe
BaYKHO /11 pa3paboTKyu aJirOpUTMOB 00yUeHUsl, KOTOPbIE ajanTupy-
I0TCSI TIOCTEITeHHO, CTPeMSICh YMEeHbLINTh OlnbKy cetn. Ha pucyhke
HIDKE OKa3aHa cxema npuMeHeHust PyHKIMM aKTUBALIMK ¢ K BXOJIHO-
MY BEKTODY (X, X,, ..., X,), BEKTODY BECOB (W, W,, ..., W), CMEIIEHUIO b
W cymMMarTopy X:

L7

PeanbHbli npuMep - pacno3HaBaHWe PYKOMUCHbIX umbp <+ 29

b
BasewweHHasa cymma
w1
.s DyHKLUMA aKTHBALMK
w_
m

Keras rnoaaep:xuBaeT HeCKOJIbKO d)y’HK]J,MIFI aKTUBALIMK, UX [TOJIHbII
repe4dyeHb IIpMBeeH Ha CTPpaHMIe https://keras.io/activations/.

PeanbHbiii npuMep — pacno3HaBaHue
PYKONUCHbIX LUPp

B arom paspesie Mbl HOCTPOMM CETh, YMEINIIYIO PACIIO3HABAThL PYKO-
mucHble Hudpsl. 17151 3T0ro 6ymemM UCI0/Ib30BaTh HAbop faHHbIX MNIST
(CM.http://yann.lecun.com/exdb/mnist /), BKIOYaowmia 60 000 06)"-13.'
fouux 1 10 000 TecTOBBIX IPUMEPOB. B 00yUalonux npumMepax yejiope-
KOM IIPOCTaB/IeHbI [TpaBUibHbIe 0TBeThl. Hanpumep, ¢ usobpakeHuem
PYKOIMCHOM 1 pbl TPK accoluupoBaHa MeTka 3.

Korga nmeercst Habop TaHHBIX, COEPIKALLIMIA TTPABUJIbHBIE OTBETHI,
roBopsit 06 06yuenuul ¢ yuumesnem. Obydaloime rpuMepbl UCIONb3YIOT-
cs1 yist o6yueHust ceT. C TECTOBBIMM ITPUMEPAMM TAKIKe acCOLMUPOBA-
HbI IIPABU/IbHbIE OTBETHI, HO M[Iesl B TOM, YTOObI IIPUTBOPUTHCS, OYITO
OHM HEM3BECTHBI, IaTh CETU BO3MOXKHOCTb CHENaTh MpeacKasaHue, a
3aTeM, CPaBHUB €ro ¢ MPaBWIbLHBIM OTBETOM, OLIEHUTh, HACKOIBLKO X0-
POILO ceTh Hayumaach pacrosHaBaTh uudpel. Tak 4TO TeCTOBbIE ITPU-
MEepbI IPUMEHSIKOTCS TOIBKO 7151 TIPOBEPKA ' ' s.. lf 3
CeTU — UTO U He YAUBUTETBHO.

Bce uzobpaxkenus B Habope MNIST no- ,7 S 3 K4 3
JIyTOHOBbIE, pasmepa 28 x 28 nukcenei.

Ha pucyHke npuBeneHO HECKOJbKO Mpu- | & S' o b
23202

MEepOB.

9
3-

30 <+ [nhaea 1.0cHOBbl HEMPOHHBIX CETEM

YHuTapHoe kogupoBaHue

B0 MHOrMX IPUIOKEHUSIX YI00HO Mpeo6pasoBbIBaTh KaTeropuasib-
Hble (HeuMUIOBbie) IPM3HAKK B UMCI0BbIe. Harpumep, KaTeropmaib-
HBII IPU3HAK — 1Py, MPUHUMal0IIYI0 3HaueHue d ot 0 1o 9, — MOXKHO
MpeacTaBUTh OMHAPHBIM BEKTOPOM AjiuHbI 10, B KOTOpOM d-blii 3j1e-
MEHT paBeH 1, a Bce ocrajibHbie — HY/I0. Takoe npeacTaB/ieHUe Has3bl-
BaeTCs YHUmMapHsim xodupogaxuem (one-hot encoding) u oueHb yacro
MpUMeHSeTCs B J0ObIUe JaHHbIX, KOTOa aJiropuTM O6yYeHus] paccum-
TaH Ha paboTy ¢ YMCJIaMi.

OnpepneneHune npocToit HelipoHHOM ceTn B Keras

Bocrionbayemcst 01OIMOTeKOI Keras, 4TOOBI oIpenejlinTb CeTb, pac-
[MO3HAIOLIYI0 PYKOMUCHbIe Ludpbl U3 Habopa MNIST. Haunem ¢ oueHb
MPOCTOI HEMPOCETH U ITOCTEIIEHHO GY,EI,EM ee yayuyumarThb.

Keras rnpepocraeisier cpeiacrBa IJjisl 3arpysku Haﬁopa JaHHBIX U
pas3bueHus ero Ha 0BYYaIOIIMIA, X train, M TECTOBBIN, ¥ test. [lysi mopi-
nepsxkKu Belumuciaenuii Ha GPU paHHbIe 1TpeobpasyloTest K TUITY float3z
u HopMmupyloTcs Ha uHTepsan [0, 1]. Kpome Toro, B v train M ¥ test
MbI 3arpyxKaem I[paBMJbHbIe METKM M IIpMMeHsieM K HUM YHUTapHOe
KogupoBaHue. BOT KaK BBIIVISIIUT KO :
from _ future import print_ function
import numpy as np
from keras.datasets import mnist
from keras.models import Segquential
from keras.layers.core import Dense, Activation
from keras.optimizers import SG
from keras.utils import np utils
np.random.seed(1671) # Oona BOCOPOM3BOOMMOCTHM DPE3IYVIAETATOB

¥ cere u ee obyuexHms

NB_EPOCH = 200

BATCH SIZE = 128

VERBOSE = 1

NB _CLASSES = 10 # xoiMuecTBEO Pe3y/sTATOE = YMUCAY UMbp

OPTIMIZER = SGD() # CI'C-onTuMmM=zarop, oDCYEIASTCH HMEE B ITOM Djaee

N _HIDDEN = 128
VALIDATION SPLIT=0.2 # xaxaa uacTe oByvamuero Haopa 3a3pe3epEMPORAHA IUIA KOHTPOTA

mamHEEe: CIYYAMHO NEPETACOBAHH M pastMTH Ha ofydanumili M TeCcTOBEN Habop
¥

(X _train, y_train), (X test, y test) = mnist.load data()

¥ X _train cogepzxur 60000 m3obpaxenmi pasuepa 28x28 -->
npeobpasyem B maccue 60000 x 784 RESHAFED = 784

L7

PeanbHblil npUMep - pacno3HaBaHWe PYKOMNUCHbIX umhp <+ 31

¥

X _train = X train.reshape (60000, RESHAPED)
X_test = X_test.reshape (10000, RESHAPED)

X _train = X train.astype('float32"')

X _test = X _test.astype('float32')

HopMMpoBaTh

¥

X_train /= 255

X _test /= 255

print (X_train.shape[0], 'train samples')
print(X_test.shape[O]If 'test samples')

npeobpa=0BaT: BEKTOPH KIACCOE B OMHAPHEE MaTPMUE KIACCOB
Y train = np_utils.to categorical(y train, NB CLASSES)
Y test = np utils.to categorical (y_test, NB CLASSES)

Bo BXOOHOM Cj10€ C KaKIbIM ITMKCEIeM M300pakeHusl acCoLuupo-
BaH ONIMH HEMPOH, T. e. Bcero nonyuaercs: 28 x 28 = 784 HelipoHa.

OG6bIYHO 3HAYEHMSI, ACCOLIMMPOBAHHBIE C TMKCEIAMM, HOPMUPYIOTCS
¢ Lle/IbI0 NpUBECTU uX K guanasony [0, 1] (3T0 3HAUMT, UTO SIPKOCTh
KayK/I0ro IMMKCeJIsl AeIMTCSI Ha MAaKCUMMAa/IbHO BO3MOXKHYIO SIPKOCTD 255).
Ha Bbixope monyuaetcsi 10 KJ1accoB, 10 OTHOMY IJI1SI KasKI0M LU PBI.

[MocieaHMIA CI0M COCTOMUT U3 €MHCTBEHHOIO HelipoHa ¢ yHKIMei
aktuBauuu softmax, sipisiromeiicss 06o0eHeM curmMmouasl. Softmax
cnaowusaenm k-MepHbIiA BEKTOpP, COmepsKalliii IPOU3BOJIbLHbIE Bellle-
CTBEeHHbIE YMC/ia, B K- MepHBIii BEKTOP BellleCTBEHHBIX UMCe/T U3 MHTep-
Basa (0, 1). B Hawem cinyuae oHa arperupyet 10 oTBeTOB, BbIIAHHbIX
rnpenbayium cjioem 13 10 HelipoHOB:

10 Brxonoe

Ha nocnenHew sTane softmax

model = Seguential ()

model.add (Dense (NE_CLASSES, input shape=(RESHAPED,)))
model.add (Activation('softmax'))

model. summary ()

OrnpepeneHHY0 TaKMM 00pa3oM MoJie/ib HeoGX0AUMO OTKOMITHIIN-
POBaTh, T. €. IPUBECTH K BUILY, AOITYCKAIOIIEMY UCIIOJTHEHMe 6a30BOi
6ubnmnorexoit (Theano munu TensorFlow). Ilepen KoMuasiuein Heo6-
XOOMMO HPUHSITh HECKOJIBKO PelleHMIA:

Q BBIOpATbH ONMUMU3AMOP, T. €. KOHKPETHBII aJrOPUTM, KOTOPbIN
6GymeT 06HOBJIATE Beca B Ipoliecce 06yUeHMs] MO,

Q BBIOpaTDH LieNeBYI0 (DYHKINMIO, KOTOPYIO ONTUMM3ATOP MCIIOIb-
3yeT /i1 HaBMIrallMu T10 MPOCTPAHCTBY BECOB (YacTo liejeBasl

32 < [naea 1.0cHOBbl HEMPOHHBIX CETEM

(YHKIMs1 Ha3bIBAETCS TAKXKe (hyHKuuell nomeps, a MpoLEece OIl-
TUMU3ALUY — MUHUMU3ALLUEL TTIOTePH);
Q OLEeHUTb KaYecTBO 00YUEHHOIT MOmesIu.

[TepeuncnMM HECKOJABKO PacIpOCTPAHEHHBIX Ie/IeBbIX (bYHKIJ,HIFI
(IIOJTHBII ITepeueHb HeleBbIX dJYHK_U,MI?I, noaaep;kusaembix Keras, npu-
BeIeH Ha CTPAHMLIE https://keras.io/objectives/):

O CpepHekBagpaTuyeckasi ommbka (CKO): sto ycpenHeHHas
CcyMMa pasHOCTe KBaApaTOB MEXAY MpenckasaHHbIMM M MC-
TUMHHBIMM 3HAUeHUsIMU. Ec/in 0603HaUUThL Y BEKTOD N IIpencka-
3aHMii, a Y — BeKTOp n HabIi0gaeMbiX 3HAUEHUIA, TO CpeIHeKBa-
OpaTuuyeckas oumdka pasHa

1 n 2
CKO = ;Zﬁ. (X=%)

Ecnu npenckaszaHue cMNbHO OTAMYAETCA OT MCTMHHOrO 3Ha-
4YeHus, TO BO3BeAeHWe B KBaapaT Aenaet oTnuyue ewe bonee
ABCTBEHHbIM.

O BuHapHas mepeKpecTHas SHTPOIMSA: eI MOJEb MpeacKa-
3bIBAET 3HAUEHME P, TOrOA KaK UCTMHHOe 3HAaYeHWe PABHO f, TO
GuHapHasl epeKpecTHasl SHTPOIIMS PaBHAa:

~tlog(p) - (1 -t) log(1 - p)

J7a ueneeasn QYHKUMA NOAXOAMT ANA npeackaszaHus buHap-
HbIX METOK.

O KareropmanbHasa nmepekpecTHas IHTPOIMSI: 3T0 jorapud-
MuUYecKasi oTeps B Jiydae HeCKOAbKMX KaaccoB. Eciu Mogens
TpeJiCcKasbIBaeT 3HAUeHMs p, , TOrAA Kak UCTUHHbIE 3HAUEHMUS]
PaBHBI ¢, , TO KaTeropuaibHas epeKpecTHas SHTPOIMS Pas-
Ha:

L= —E;. t; log(p,)

J7a ueneeas QYHKUWA NOAXOAWT AN NPeACcKa3aHWs MHOro-
Knaccosbix MeTok. OHa e no YMON4YaHuK WCMonb3yeTcs co-
BMeCTHO € dyHKUMeir akTueaumum softmax.

PeanbHbli npuMep - pacno3HaBaHWe PYKOMNUCHbIX uMbp <+ 33

Huske niepeuncieHo HeCKOJIbKO MOMY/ISIPHBIX T0Ka3aTesei KauecTsa
(MOJTHBII CIIMCOK CM. HA CTPAHMUIIE https://keras.io/metrics/):

QO BepHOCTBb: OTHOILEHME 4KC/Ia IPaBUIbHBIX MpPECKa3aHWil K
061IeMY UMY METOK;

Q TOYHOCTB: 10151 IPAaBU/IbHBIX OTBETOB MOJIEJNA;

QO monHoTa: 108 06HAPY)KEHHbIX MCTUHHBIX COOBITHIA.

[TokasaTenu KauecTBa IMOXOXKU HA 1leJIeBble ElJYHKLI,HM, pPasaM4arTCs
OHM TOJIBKO TeM, UTO IIoKa3aTe/lIn MCIIOJIb3YITCA He IIJ14 OGYHEHI—’IQ MO-
nejinu, a 4j1s OleHKH ee KadyecTBa. Komnunsinyusa monenu B Keras IIpon3-
BOOMUTCS ITPOCTO:

model.compile (loss='categorical crossentropy',
optimizer=0PTIMIZER,
metrics=['accuracy']}

It 00yueHMs] OTKOMITM/IMPOBAHHOM MO CIYKUT (PYHKLMA fit (),
MPUHMMAOILAS B YACTHOCTH CJIEAYIOIIMe ITapaMeTphl:

Q epochs: YMCIO IMEPUONOB — CKOJbKO pa3 oOyuaioiiuii HaGop
npenbsBsieTcs Momenu. Ha Kakmoii MTepaiymy ONTUMM3aTop
MBITAETCS TTOAKOPPEKTUPOBATh BECa, CTPEMSICh MUHUMM3UPO-
BaTh 1[eJIeBYI0 QYHKIIUIO;

O batech size! CKOJIBKO OGYYAOUIMX TIPUMEPOB JO/KEH YBUIETh
ONTUMM3ATOP, [IPEXIE YeM OH OGHOBUT Beca.

OGY‘JHTB Moge/lb B Keras oueHb IIpocCTO. ,H,OHYCTMM, YTO BBIINIOJIHAET-
CSLNE_EPOCH MTEpaLuii:
history = model.fit (X _train, Y train,
batch_size—BATCH_S IZE, epochs=NB EPOCH,
verbose=VERBOSE, validation split=VALIDATICN SPLIT)

Mbl 3ape3epeupoBanu 4acTb obydarowero Habopa ans KoH-
Tponsa. Mpea B TOM, 4TOBb! OTNOMMTE HACTb 0BYYAKOLWMX AAHHBIX
[LNSl KOHTPONSA Ka4YecTea B npouecce obyyeHus. 3Ta pekoMeHay-
emMas NpakTuka ans Bcex 3a4ay MallMHHOMo 0by4eHus, u fanee
Mbl Byaem ee npuaepKUBaTLCS.

[Tocte Toro Kak Mofesnb o6yueHa, ee CeAyeT IIPOBEPUTh Ha Te-
CTOBOM Habope, KOTOPBIi COOEPKUT paHee He MpenbsB/sBIIMecs
npumepbl. TakuMm 06pasom, Mbl CMOXKEM TOAYYUTh MUHUMAJIbHOE
3HaueHMe, JOCTUraeMoe 1e/ieBoit QYyHKIMel, M Hauayullee 3HaUe-
HMe [oKa3aTeJlsl KauecTBa.

34 < [naea 1.0cHOBbl HEMPOHHBIX CETEM

[ToguepKHEeM, UTO 06YUaKOLIMii U TECTOBbIM HAGOP He JOJIKHbI Iepe-
cekaTbesl. He MMeeT HMKAKOro CMbIC/ia OLIEeHMBATh MOJEe/Ib Ha IIpuUMe-
pe, KOTOPbIit OHa BuIesa BO BpeMs 06yuennsi. CMbICTT 06YUeHMs B TOM,
yTOOBI MOAEIb MOIJIa 06001aThCSl HA paHee He BCTpeuaBLIMeCs OaH-
HbIE, 4 He B TOM, UYTOGbI OHA 3a[IOMMHAJIA TO, YTO YK€ M3BECTHO.

score = model.evaluate (X test, Y test, verbose=VERBOSE)
print ("Test score:", score[0])
print {'Test accuracy:', score[l])

Bbl TOMBKO YTO OINpemeIu/id CBOK IePBYI0 HEHPOHHYI CeTbh Ha
Keras, MoxeTe IPUMHUMATh MO3ApaBieHHsl. Bcero HeckoabKo CTPOK KO-
Ia — 1 KOMIIBIOTEP YMeeT paclo3HaBaTh pyKonucHbie 1 psl. Terepsb
BBIITOJIHMM 3TOT KOJI M OLIEHUM KauyecTBO.

MporoH npocroit cetn Keras u cosganue 3tanoHa
ANA CpaBHEHUA

Ha pucyHKe HiKe [MOKa3aHO, YTO MPOMCXOIMUT BO BPeMsl MPOroHa
MPOTPaMMBI:

LK] code — -bash — 118=71

gulli-macbookpro:code gulli$ python keras_MINST_Vi.py
Using TensorFlow backend.

60@P@ train sanples

10@0@ test samples

Layer (typel Output Shape Paran # Connected to

dense_1 {Dense) (None, 18) 7858 dense_input_1[@] [8]

activation_1 {Activation} (Wone, 18) [] dense_1[@][@]

Total params: 7858

Train an 48808 samples, validate on 12020 sanples
Epoch 1/280
4pene/4B080 |
Epoch 2/288
4B@0@/46000 | 1 = @s - loss: 0.8886 - acc: 8.8279 - val_loss: 0.6625 - val_acc: @.8567
Epoch 3/200

48@0e/48000 | 1 - 85 - loss: B.6467 - acc: B.8495 - val_loss: 8.565@ - val_acc: @.3784
Epoch 4/200

48@0e /48000 | 1 - @ - loss: 8,5728 - acc: 8,860 - val_loss: 0.5112 - val_acc: @.8778
Epoch 5/2080

4BRRR/4RERG | 1 - 85 - loss: 8.5280 - acc: B.8677 - val_loss: 0.4767 - val_acc: @.8822

] = 85 = loss: 1.4182 - acc: B8.6554 - val_loss: 0.9873 - val_acc: @.8244

CHauana pacrevyaTbiBAeTCsl apXMTEKTYPa CETH, Mbl BUIUM TUIIbI
coeB, Gopmy BbIXOIA, KOJIMUECTBO ONTUMU3UPYEMBbIX [TapaMeTpOB
M XapakTep CBSI3eil Mexay caosaMu. 3aTeM ceTh obyuaercs Ha 48 000
npumepax, a 12 000 npuMmepoB 3ape3epBUMPOBAHO IJISI KOHTPOJIS.
[MocTpoenHas HelipoHHas ceTh Tectupyercs:t Ha 10 000 npumepax.
Kak Buaum, Keras ucronb3yer [Jist BelumciaeHUii 6a3oByio 6ubnmnore-
Ky TensorFlow. I[Toka uto He 6yaeM BaBaTbCs B [AeTalu 00yUeHMs,
HO OTMETHUM, UTO rnporpamma BbinojiHuaa 200 urepaumii 1 ¢ Kax-
IbIM Pa30M BEPHOCTb YJIY4IIaIach.

L7

PeanbHblii npuMep — pacno3HaBaHWE PYKONMUCHBbIX UMbp ++ 35

Ilo 3aBepiieHUM 06YUEHMS Mbl [IPOBEPSIEM MOJIe/Ib Ha TECTOBOM Ha-
6ope 1 BUAMM, YTO Ha 06yuawileM Habope rojlydyeHa BepHoCTh 92.36%,
Ha KOHTpoiibHOM — 92.27%, a Ha TectoBoM — 92.22%.

JTO 3HAUMUT, YTO MOJIS HEMPABUIBHO PACTIO3HAHHBIX PYKOIMMCHBIX
CMMBOJIOB COCTABJISIET UYTh MEHEE OJIHOTO Ha flecaTh. be3ycioBHO, 3TOT
pe3yabTaT MOXKHO YAYULIIUTD.

Epoch 198/288

48008/ 48808 [:] - @#s — loss: @,2761 - acci @.923@ - val_loess: 8.2762 - val_acc: @,9224
Epoch 199/288

Agpop/48epa [] - @s - loss: &.276@ - acc: 8.9231 - val_loss: 8.2762 - val_acc: @.9223
Epoch 28@/280

Agpop/48e00 [i] - @s - loss: 8.2758 - acc: 8.9236 - val_loss: B.2761 - val_acc: @.9227
958E/10808 [-1 - ETA: @s

Test score: 8.277792117235

Test accuracy: 8,9222

gulli-macbookpro:code gullis I

Yny4yweHue npocroit cetu B Keras nocpeacrsom
A06aBneHUna CKPbITbIX COEB

Mbi gocturiu BepHoctn 92.36% Ha obyuawinem Habope, 92.27% -
Ha KOHTpoJAbHOM M 92.22% — Ha TectoBOM. JIjIsi HAua/ja HeIJ0Xo, HO
€CTh BO3MOKHOCTb J00UThCsI Gosbiiero. [locMoTpuM, Kak.

[TepBoe ynyullieHKMe — BKJIKYWUTb B CeTh AOIMOJHUTEIbHbIE CIOU.
[Tocne BXOAHOrO €104 MOMECTUM IEPBBIA IJIOTHBIM CIIOM € N HIDDEN
HelipoHaMM M (QYHKIUMEH aKTUBALMK relu. DTOT CJI0M HA3BIBAETCS
CKPbIMbIM, TOTOMY YTO OH HAIIPSIMYK) HE COeMHEH HM C BXOJI0M, HU C
BbIXo#OM. [Tociie 11epBOro CKPLITOro /o 106aBUM elile OfUH, TAKKe
COIepKalIUiA N HIDDEN HEHPOHOB, a YK€ 32 HUM OGYyIeT pacroiokeH
BBIXOAHOI ¢J10¥i ¢ 10 HelipoHaMM, KOTOPbIe BO3OYKIAKTCs, €C/Iu pac-
[103HAHA COOTBeTCTBYIOLAs udpa. BoT Kof, onpenensoii HOBYIO
CceTb:
from _ future import print_ function
import numpy as np
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers.core import Dense, Activation
from keras.optimizers import SGD
from keras.utils import np utils
np.random,seed(1671) # ons BOCOPOM3BEOOMMOCTHM PEe3yIETATOBR

¥ cere M ee obyueHuMe

NB_EPOCH = 20

BATCH SIZE = 128

VERBCSE = 1

NB CLASSES = 10 # xomMuecTBO pPe3yseTATOE = YUCIy UMbp

36 <+ [naea 1.0cHOBbl HEMPOHHBIX CETEM

OPTIMIZER = SGD() # CI'C-onrTrmmmzarop, oDCYy®DASTCHA HMEE B 3TOH TIaBe
N HIDDEN = 128
VALIDATION SPLIT=0.2 # xaxas uacTe ofyuammerc zafopa SapesepBMpOBAHA VA KOHTPONA

OaHHHE: CHYYalHO NepeTaACOBaHH ¥ pPa30MTH Ha oDydYamumMi M TeCTOEEN Habop
¥

(X _train, y_train), (X test, y test) = mnist.load data()

X train comepmur 60000 wzobpaxemwit pasmepa 28x28 --> npeoBpazyeM B Maccue
60000 = 784 RESHAPED = 784
¥

X _train = X _train.reshape (60000, RESHAPED)
X _test = X test.reshape (10000, RESHAPED)

X _train = X _train.astype('float32')

X _test = X test.astype('float32')

HopuupoBaTe

X_train /= 255

X test /= 255

print (X_train.shape[0], 'train samples')
print (X_test.shape[0], 'test samples')

npeobpa=0BaT: BEKTOPH KIACCOE B OMHAPHEE MaTPMUE KIACCOB
Y train = np_utils.to categorical(y train, NB CLASSES)
Y test = np utils.to categorical (y_test, NB CLASSES)

M _HIDDEN CKpHITHX CJOEB
10 Buxomos
zHa nocnegHem srane softmax
model = Sequential ()
model.add (Dense (N_HIDDEN, input_shape=(RESHAPED,)}}
model.add (Activation('relu'))
model.add (Dense (N_HIDDEN))
model.add (Activation('relu'))
model .add (Dense (NB_CLASSES))
model.add (Activation('softmax'))
model . summazry ()
model.compile (loss="'categorical crossentropy’',
optimizer=0PTIMIZER,
metrics=['accuracy'])
history = model.fit (X train, Y train,
batch size=BATCH SIZE, epochs=NB EPOCH,
verbose=VERBOSE, validation split=VALIDATION SPLIT)
score = model.evaluate(X test, Y test, verbose=VERBOSE)
print ("Test score:", scorell])
print ('Test accuracy:', score[l])

BBIMTOIHMM 3TOT KO/ M TIOCMOTPMM, KaKie Pe3y/ibTaThl JaeT TaKkas
MHOTOC/I0liHas ceTh. Herytoxo. [Jo6aBMB IBa CKPBITBIX CJI0SI, Mbl 40~
cruriu BepHoctu 94.50% Ha oGyualouiem Habope, 94.63% — Ha KOH-

*

PeanbHblii npUMep — pacnosHaBaHWe pyKOMUCHbIX umdp <+ 37

TPOAbHOM U 94.41% — Ha TECTOBOM, T. €. ITOJIYUJIN ripupoct 2.2% Ha
TECTOBOM Habope 10 CPaBHEHUIO C [Ipeablaylieii ceTbio. U npu aTom
YMCI0 uTepalmii pesko ymeHsinmiocs — ¢ 200 go 20. Xopo1uo, HO Mbl
XOTUM DO0JibllIero.

Eciin XoTuTe, MOKeTe MocMOTPeTh, 4To OyaeT, ecsin 1o6aBUTh TOJb-
KO OJIMH CKPBITBI CJI0I BMECTO ABYX MJIU eCiiu 106aBUTH GOJIbIIE IBYX
cnoeB. OCTaBIIsSIK0 3TO B KAUECTBE YIIpakHeHus. Ha pucyHKe HMKe 1mo-
Ka3aH pesy/bTaT paboTkl MOC/IeqHel TPOrpaMMBbl.

ene code — -bash — 118x66
gulli-macbockpro:code gulli$ python keras MINST_V2.py

Using TensorFlow backend.

60202 train samples

18202 test samples

Layer {type) Output Shape Param # Connected to
dense_1 (Dense) (None, 128) 188488 dense_input_1[0] [8]
activation_1 {Activation) (Mone, 128) [] dense_1[8] [@]
dense_2 (Dense) (Mone, 128) 16512 activation_1[@][e]
activation 2 (Activation) (None, 128} L] dense_2 (@) (@]
dense_3 (Dense) (None, 18) 1290 activation_2 @] [@]
activation_3 (Activation) (Mone, 1@) [] dense_3[@] [@]

Total params: 118282

Train an 48800 sanples, validate on 12089 sanples

Epoch 1/28
48208/ 48000 [1 - 1s - loss: 1.,5266 - acc: 9.6101 - val_loss: @.7839 - val_acc: 9.8296
Epoch 2/28
1800a/48820 | 1 - 1s - loss: 0.6188 - acc: 0.B464 - val_loss: @.4603 - val_acc: 8.8796
Epoch 3/28
CLELEIREL T 1 - 1s - loss: 0.4422 - acec: 0.8794 - val_loss: @.3765 - val_acc: @.8963
Epoch 4/2@
aEgRa aERRN | 1 = 1s = loss: @.3796 - acc: B.8945 - val_loss: @,3374 - val_acc: @.9865
Epoch 5/28
48208 48000 [1 = 1s = loss: 0.3458 - ace: 8.9027 - val_loss: @,3119 - val_acc: 8.9116
Epoch 6/29
48008/ 48080 [: 1 - 12 - loss: 0.3214 - scc: 8.9998 - val_loss: 8,2948 - val_acc: 8.9165
Epoch 7/28
agepas4Beed [1 = 1s - loss: 0.3833 - ace: 9.9148 - val_loss: 8.27%4 - val_acc: 8.9213
Epoch 8/28
48e0@/ 48080 1 - 1s = loss: 9.2885 - acc: 9.9181 - val_loss: 8.2668 - val_acc: 8.9251
Epoch 9/20

48ene/ 800 |
Epoch 1@/20

1s - loss: 0.2763 - acc: 0.9220 - val_loss: 9.2569 - val_acc: @.9287

4BRRA 4EER0 [1 - 15 - loss: 8.2654 - acc: 8.9245 - val_loss: 9.2491 - val_acc: 8.9304
Epoch 11/20
ABRRe/aE@e0 [1 - 1s - loss: 0.2556 - ace: 0.9274 - val_loss: 8.2408 - val_acc: 8.9335
Epoch 12720
Agepd aBeRR [1 - 15 - loss: 0.2464 - acc: 9.9209 - val_loss: @.2320 - val_acc! 8.9355
Epoch 13/20
48000 /48000 [1 - 15 - loss: 9.2382 - acc: 9.9321 - val_loss: 9.2279 - val_acc: 9.9369
Epoch 14/20
48000/ 48080 | 1 - 1s - loss: 9.2309 - acc: 9.9342 - val_loss: 9.2208 - val_acc: 9.9388
Epoch 15/20
4B@08 /48080 [1 - 15 - loss: 0.2237 - acc: 08,9365 - val_loss: 9,2140 - val_acc: 8,9413
Epoch 16/20
ABRBR/4EBDD 1 - 15 - loss: 9.2172 - ace: 0.9388 - val_loss: 9.2085 - val_acc! 8.9423
Epoch 17/20
4B20R/aBBR0 [1 = 15 = loss: 9.2118 - acc: 8.9397 - val_loss: @,2035 - val_acc: @.9435

Epoch 18/20
48203/ aERR |
Epoch 19/20

1s - loss: 0.2051 - acc: 0.9415 - val_loss: 8.1993 - val_acc: @.9445

4g@0as4E@80 | 1 - 1z - loss: 0.1997 - ace: 08,9427 - val_loss: 9,.1054 - val_scc: 9.9461
Epoch 20/20

ApeoesqBee0 [1 = 1s - loss: 0.1947 - ace: 9.9450 - val_loss: 8.1914 - val_acc: 8.9463
9E06/10020 «] = ETA: @s

Test score: 8.191852276902
Test accuracy: 9.9441
gulli-macbookpro:cede guilis I

38 <+ [nhaea 1.0cHOBbl HEMPOHHBIX CETEM

HanbHenwee yny4yweHue npocroin cetu Keras
C MNOMOLLbIO NPOPEXUBAHUS

Haiile mociegHee qocTukeHne — BepHocTh 94.50% Ha o6yuyaioliem
Habope, 94.63% - Ha KOHTPOJAbHOM U 94.41% — Ha TecToBOM. Bropoe
yayuleHue coBcem Ipocroe. Mbl MPUMEHMM IIPOpeKUBaHKE — C Be-
POSITHOCTBIO dropout OYIEM CIy4YaiiHbIM 00pa3zomM 0TOPachiBAThL HEKO-
TOpbIe 3HAYEHMS, PACIIPOCTPAHSIONIMECS BHYTPU CETH, COCTOSILEN U3
IUIOTHBIX CKPBITHIX CJIOEB. DTO XOPOIL0 U3BeCcTHAast JopMa peryispusa-
LMK B MalIMHHOM 00yueHuu. Kak HM cTpaHHO, 0TOpackiBaHUe HEKOTO-
PbIX 3HAYEHMI TPUBOIUT K MIOBBIIIEHUIO KAYECTBa:

from _ future import print function

import numpy as np

from keras.datasets import mnist

from keras.models import Segquential

from keras.layers.core import Dense, Dropout, Activation
from keras.optimizers import SGD

from keras.utils import np utils

np.random.seed(1671) # OonAa BOCOPOM3EBEOOMMOCTH PE3IVIETATOEB

¥ cers u ee obyueHue

NB_EPOCH = 20

BATCH STZE = 128

VERBOSE = 1

NB_CLASSES = 10 # xonMuYecTEO Pe3yNeTATOE = YMUCIy UMbp

OPTIMIZER = SGD() # CI'C-onTrmumzarop, obCy®IDAeTcHA HMES B 3TOH IIaBe
N HIDDEN = 128

VALIDATION SPLIT=0.2 # wxaxas uacTe obyuawmero Habopa 3apesepEMpPOBAaHA
nna xoHTpons DROPOUT = 0.3

mauHEe: CIYYANHO NEepEeTACOBAHH M pasz6uTH Ha ofydanumili M TeCTOBEl Habop
¥

(X _train, y train), (X test, y test) = mnist.load data()

X train comepxmr 60000 mzobpaxenwit pasmepa 28x28 --> npeobpazyewn
B maccue 60000 x 784 RESHAPED = 784

L7

PeanbHblii npuMep - pacno3HaBaHWe PYKOMNUCHbIX umbp <+ 39

¥

X _train = X train.reshape (60000, RESHAPED)
X_test = X_test.reshape (10000, RESHAPED)

X _train = X train.astype('float32"')

X _test = X _test.astype('float32')

HopMMpoBaTh

X _train /= 255

X _test /= 255

npeobpasoBaTE BEKTOpPH KNACCOE B DMHAPHHE MATPMLUE KIACCOB
Y train = np_utils.to categorical(y train, NB CLASSES)

Y test = np utils.to categorical (y_test, NB CLASSES)

M _HIDDEN CKpHITHX CJOEB
model = Sequential ()
model.add (Dense (N_HIDDEN, input_shape=(RESHAPED,)}}
model.add (Activation('relu'))
model .add (Dropout (DRCPOUT))
model.add (Dense (N_HIDDEN))
model.add (Activation('relu'))
model.add (Dropout (DRCPOUT))
model .add (Dense (NB_CLASSES))
model.add (Activation('softmax'))
model . summazry ()
model.compile (loss="'categorical crossentropy’',
optimizer=0PTIMIZER,
metrics=['accuracy'])
history = model.fit (X train, Y train,
batch size=BATCH SIZE, epochs=NB EPOCH,
verbose=VERBOSE, validation_split=VALIDATION_SPLIT}
score = model.evaluate(X test, Y test, verbose=VERBOSE)
print ("Test score:", scorell])
print('Test accuracy:', score[l])

BoinonHus Te ke 20 uTepaiuii, YTO U paHblile, Mbl YBUIUM, 4YTO C€Th
gocturia BepHoctu 91.54% Ha oby4yaloiiem Habope, 94.48% — Ha KOH-
TpoJibHOM U 94.25% — Ha TECTOBOM:

40

lnaea 1. OcHOBbI HEMPOHHBIX CETEM

ese

- code — -bash — 118x70

gulli-macbookpro:code qullis python keras MINST_VI_l.py
Using TensorFlow backend.

60edd train samples

18008 test samples

gulli-macbookpro:

Test score: 9.191B873697177
Test accuracy: B.942

Layer (type) Qutput Shape Param # Connected to

dense_1 (Dense) {Mone, 128) 1@@480 dense_input_1[@] [@]

activation_1 (Activation) iNone, 128} [] dense_1(0] (8]

dropout_1 (Dropout) (None, 128} [] activation_1l8] (8]

dense_2 (Dense) {None, 128) 16512 dropout_1[8] [8]

activation 2 (Activation) (None, 128} L] dense_2(0] (8]

dropout_2 (Dropout) {Mone, 128) [] activation_2(@] (8]

dense_3 (Dense) {None, 1298 dropout_2[8] (8]

activation_3 (Activation) (Nane, L] dense_3(0] (8]

Total params: 118282

Train on 48@8@ samples, validate on 12808 sanmples

Epoch 1/2@

4808/ 48000 |] - loss: 1.7206 - acc: 0.4625 - val_loss: @.9125 - val_acc:
Epoch 2/28

48009/4E080 [= less: 8.9254 - acc: 8.7149 - val_loss: 0.5374 - val_ace:
Epoch 3/28

aBd08/ 48080 [1 - loss: 9.6938 - acc: 0.7883 - val_loss: 0.4240 - val_ace:
Epoch 4728

48008/ 48088 1= loss: 8.5917 - acc: 0.8285 - val_loss: 0.3724 - wal_acc:
Epoch 5728

48p@e/48008 |] = loss: 8,5387 - acc: 9.8398 - val_loss: B.3370 - val_acc:
Epoch 6/28

48208/ 48080 1 - loss: @.4868 - acc: 0.8546 - val_loss: 9.3126 - val_acc:
Epoch 7/28

48008/ 48082 } = loss: 8.4563 - acc: 0.8654 - val_loss: 0.2039 - val_acc:
Epoch B/20

48p08/48000 |] = loss: @.4322 - acc: R.B726 - val_loss: 0.2789 - val_ace:
Epoch 9/28

AgdessaBees [1 - loss: @.4861 - acc: 0.8799 - val_loss: @.2666 - val_acc:
Epoch 18728

ABeRds4B0ee [] - loss: ©.3908 - acc: 0.8848 - val_loss: 0.2556 - wval_acc:
Epoch 11/20

48000/48000 | 1= loss: 8.3758 - acc: 0.8893 - val_loss: 0.2463 - val_acc:
Epoch 12/28

48008/ 48000 | } - loss: 8.3592 - acc: 0.8938 - val_loss: 8.2372 - val_acc:
Epoch 13/28

48208/ 48080] - loss: 8.3401 - acc: 0.8970 - val_loss: @.2294 - val_acc:
Epoch 14/28

48209/ 48080 1= loss: 8.3361 - acc: 0.9009 - val_loss: 0.2224 - wval_acc:
Epoch 15/28

48000/48000 |] = loss: 8,3266 - acct 0.9936 - val_loss: ©.2165 - val_acc:
Epoch 16/28

48009/ 48088 1 - loss: @.3182 - acc: 0.9064 - val_loss: @.2182 - val_acc:
Epoch 17/28

48000/ 48000 [¥ = less: @.3873 - acc: 0.9183 - val_loss: 9.2035 - val_acc:
Epoch 1B/28

48@808/48000 |] - loss: 9.2998 - acc: 0.9199 - val_loss: 0.1987 - val_acc:
Epoch 19/28

4agped/ 48008 [1 - loss: @.293@ - acc: 9.9131 - val_loss: 0.1930 - val_acc:
Epoch 20/20

4800d/4B0eR [1= loss: @.2855 - acc: 0.9154 - val_loss: 0.1893 - val_acc:
SBBa/ /10000 | o + s

@.8036
0.8621
@.8872
0.8958
@.9938
0.9084
0.9126
8.9173
8.9196
0.9236
8.9263
8.9297
8.9313
0.9344
8.9348
9.9371
9.93595
@.9418
8.9423

@.9448

OTMeTHM, UTO BEPHOCTh Ha 06yualolemM Habope H0KHA GbITh Bbl-
e, YemM Ha TeCTOBOM, B IIPOTUBHOM CJIyyae Mbl [pepBajiu obyueHue
CIMIIKOM PaHO. YBEIMUYMB YUCIO MepuoaoB mo 250, Mbl MOTyYuMM
BepHOCTh 98.1% Ha obyualoiem Habope, 97.73% — Ha KOHTPOJILHOM U
97.7% — Ha TeCTOBOM:

L7

PeanbHbli npUMep - pacno3HaBaHWe PYKOMNUCHbIX uMbp <+ 41

Epoch 248/258
48000/48808 |
Epoch 249/25@

1 - 1s - loss: ®.863@ - acc: @.9884 - val_loss: 8.8785 - val_acc: 9.9769
43008 /48008 | 1 = 1s = loss: 8.8634 - acc: @.9799 - val_loss: 9.8789 - val_acc: 9.9775

1

1

Epoch 258/258
dapeesazee8 [
9696/ 10008 [
Test score: 8, 8726828922328
Test accuracy: 8.9777
gulli-macbookpro:code quilis [

- 1s - loss: @.8616 - acc: @.96810 - val_loss: @.8787 - val_acc: 0.9773
«] - ETA: 85

MHTepecHO MOHA0II0AATL 3a TEM, KaK BO3pacTaeT BEpPHOCTb Ha 00-
y4alollleM M TeCTOBOM Habope IIpy yBeJIMYeHMM Yucia nepnogos. Kak
BUIIHO M3 MPUBEIEHHOT0 HioKe rpadiKa, 3TU IBe KPMBbIE CXOMASTCH,
KOIZa YMCIO MeproL0B MPUOIM3HUTENIBHO paBHO 250, TaK UTO MOC/Ieny-
iolllee 06yYeHe HMUEro He JacT.

model accuracy s model loss

— — bain
16|| — test

oal/

10

oa | 12

(%] 4

06 asfl

accuracy
5

0s S

= 00 =0 200 FIr El 09 50 0 750
spach epoch

0

3aMeueHo, YTO CeTH CO CAyYaifHbIM MPOPEXMBAHMEM BHYTPEHHMX
CJI0EB YacTo JTy4lie 06061al0TCs HAa HOBbIE ITPMMepbI U3 TECTOBOrO Ha-
6opa. UHTYUTHBHO 3TO MOXKHO OOBSCHUTH TEM, UTO KaXKIbIii HEIPOH
CTAHOBUTCSI «yMHee», IIOTOMY YTO 3HAET, UTO HeJb3sl I0JIaraThCsl Ha
cocepeii. B ripoliecce TecTMPOBaHMS [IPOPEXKMBAHME HE TPOU3BOAMUTCS,
T. €. MCIIOJIb3YIOTCS BCE TIIATEeJbHO HACTpOeHHbie HelpoHbl. Kopoue
roBOpsl, B 001LEeM C/Tydae peKOMEHIYEeTCs IPOBEPsITh, Kak Gymer pabo-
TaTh CETh, €C/IM MIPMUMeHeHa Ta UM MHasa GopMa IPOpesKMBaHMs.

TectupoBaHue pasnuuHbix onTumMusatopos B Keras

Mb1 onpemesinin M UCIIOIb30BaIM CeTh, TeIepb OYIEeT MoJe3HO Ha
MHTYUTUBHOM YPOBHE OOBSICHUTDb, KAK IPOUCXOAUT OOyYeHue CeTu.
OCTaHOBUMCSI Ha OHOM ITOIY/IIPHOM MeTOe 00yUYeHMsl — TPaSUeHT-
"o crrycke (I'C). [IpencraBum cebe 0611yt0 dhyHKIMIO croumocTtu C(w)
OT O[IHOJi ITepeMeHHO W ¢ rpadMKOM TaKOro BUaA:

42 < [naea 1. OCHOBbI HEMPOHHbIX CETEN

DyHKUMA
CTOMMOCTH

C(w) . HauanbHblit Bec

I'paIMeHTHbINA CITYCK MOXXHO YIIOLOOUTh aJbIIMHMUCTY, CIYCKAIOIle-
Mycsi ¢ Topbl B fonuHy. [opa npeacrasieHa dyHkiues C, a 1011MHa — ee
MMUHMMaJIbHbIM 3HaueHueM C, . AIbIMHUCT HAXOAUTCS B HAYa/IbHO!
TOYKe W, ¥ lepeMeniaeTcst HeboabIMMy maxkkamu. Ha kaxaom ware r

rpajiueHT NaeT HarpaBjIeHue MakCMMalbHOTrO pocta. MaTeMaTuuyecku
ac
9TO HalPaBJIeHNE ONPeeNIseTCs YaCTHO IIPOM3BOJHOM (), BTOUKE W,

B KDTOpOﬁ AJIBITMHUCT OKa3aJICd Ha 1arer. HOSTOM)’, IOBUIasiCh IIPOTHU-

ac
BOITOJIOKHOM HallpaB/1eHMK _a_w(wr}, AJIbITMHMUCT GY,HET HaIipapJsATb-

Cs1 B CTOPOHY OOJ/IMHBI. Ha kaxxmom 1iare ajabIIMHUCT MOXKET YUYMTbIBATh
OJIMHY CBOEI1 HOT'U npen cjaegyiouMmM narom. B TePpMMHOJIOI'MM MeTOOa
rpagMeHTHOrO CITyCKa 3T0O Ha3bIBAETCS CKOPOCMbIO oﬁyqeﬂug Nz 0.Ewmm
OHa CJIMIIKOM MaJia, TO albIIMHMCT 6}’ﬂ,ET IBUIaTbCsa MeJJIeHHO, a eC/Iu
C/JIMIIKOM BeJIMKa, TO eCTh IaHC ITPOCKOYUTbL MMMO OOJIMHBL.

BCHOMHMM, 4YTO CMrMomaa — riiagKas ElJy'HKL!,I—’IFI, TaK 4TO MbI MOXXeM
BBIYMC/IUTL ee IPOM3BOOHYIO. MoskHo OOoKasaThb, 4YTO IPOM3BOOHAS
CUI'MOMObI

1
o(x)=——
l+e

L7

PeanbHblii npUMep - pacno3HaBaHWe PYKOMUCHbIX uMbp <+ 43

MMeer BUJL
do(x)

= o(x)(1-o(x))
d(x)
dyukuua ReLU He puddepenuupyema B Touke 0. OQHAKO MOXKHO
JIOOIpPENEeIUTDb ee IIPOM3BOIHYIO B 3TOI TOUKE, BbIOpAB B KAUECTBe 3Ha-
yenust 0 uau 1. Torga npou3BoaHONM 6/10Ka TMHEHHOM pekTuduKamum
y = max(0, x) 6yaeT Takasi KyCOYHO-IIOCTOSIHHAS (QYHKLIMS:

dy 0 x<0
dc |1 x>0

3Has NMpPOM3BOAHYIO, Mbl MOXEM OINTUMM3MPOBATh CETh METONOM
rpajiueHTHOro crrycka. Keras ronab3yeTcst sl BhIUMCIEHUST TPOU3BO-
nHOoI 6asoBoii 6ubnunorekoii (TensorFlow minu Theano), Tak uto Ham
OYyMaTh O peaausaluu He HY)KHO. Mbl 1TpocTo BhibUpaeM GYHKIMIO aK-
TuBauuy, a Keras Bblumnc/sieT ee Npou3BOAHYIO.

HeiiponHasi ceTb rpeacTas/isier co60i KOMITO3ULIUIO HECKOJIbKUX
byHKUMIT ¢ ThICSIUAMM, @ MHOTOA M MWUIMOHAMM napamerpoB. Kaxk-
Iblit c10i BeIuMCsieT BYHKINMIO, OIIMOKY KOTOPOi HEobXoaumo Mu-
HUMMU3UPOBATH, UTOOBI YIYUIIUTL BEPHOCThL Ha dTare obyuenust. [Tpu
00CYKIeHMM 0OPATHOrO PACIPOCTPAHEHUST Mbl ITOMMEM, YTO MMHU-
MM3alMsg — He TAKOe MPOCTOe [e10, KaK B HallleM WUIHCTPAaTUBHOM
npumepe. Ho Bce paBHO OHa OCHOBaHA HAa TEX JKe UesX, YTO CIYCK aJlb-
MMUHKUCTA B IOJIUHY.

B Keras peanu3oBaH ObICTpPbIIi BapUMAHT I'PaJUMEHTHOr0 CIyCKa —
cTOXacTUUYeCcKuii rpagueHTHbIN cnyck (CI'C) u gBa Gojee npoaBu-
HYTBIX MeToaa ontumusauuu: RMSprop u Adam. B o6oux yyacTByer
MOHSITHUE UMITY/IbCA B JOMOJHEHME K YCKOPEHUIO, UCIIOIb3YEMOMY B
CI'C. B pesynbrare gocruraetcsi Gosee 6bpICcTpas CXOAMMOCTb, [IPaB-
oa, LeHOW yBenuueHus: oObema BbluMciaeHuit. [TonHbIA MNepedeHb
OINTUMMU3ATOPOB, MOANEp]KMUBaeMbIX Keras, MpuBeNeH HA CTPAHULIE
https://keras.io/optimizers/. ,H,O CHUX IIOP MBI ITO YMOJYaHWUIO BBIOM-
panu ontumumsarop CI'C. Tenepsb nonpobyem aga apyrux. [jis atoro
BCEro-TO W HaJ/l0 UTO U3MEHUTH Napy CTPOK:

from keras.optimizers import BMSprop, Adam

QOPTIMIZER = EMSprop() # onTmumzarop

44 < [naea 1. OCHOBbI HEMPOHHbIX CETEN

Bot u Bce. PeBYIIbTaTbI TeCTUPOBAHMA ITOKA3aHbl HA PMCYHKE HIMKe!:

one code — python keras_MINST_VA.py — 118x71
gulli-macbookpro:icode gullis python keras_MINST_V4.py

Using TensorFlow backend.

60000 train samples

180208 test samples

Layer (type) Output Shape Paran # Connected to
dense_1 (Dense) (None, 128) 188488 dense_input_1[8] [@]
activation_1 {(Activation) (Nane, 128} [] dense_1[0][0]
dropout_1 (Dropout) (Nane, 128} @ activation_1(@][@]
dense_2 (Dense) (None, 128) 16512 dropout_1(8] [0]
activation_2 (Activation) (None, 128) L] dense_2[0] [8]
dropout_2 (Dropout) [Nane, 1281 @ activation_2[0][8]
dense_3 (Dense) [None, 18) 1298 dropout_2[@] [@]
activation_3 (Activation) (None, 18) L] dense_3[0] [0]

Total params: 11B282

Train on 48200 samples, validate on 12880 samples

Epoch 1/2@

4B@da/ 48000 | 1 = 25 - loss: @.4714 - acc: 0.8571 - val_loss: 8.1788 - val_acc: 9.9478
Epach 2/20

4gagn/48aen | 1 - 1s - loss: ©.2257 - scc: 0.9328 - val_loss: 9.1358 - val_acc: 9.9608
Epoch 3/28

4B@00/48000 | 1 = 1s - loss: 8.1737 - acc: 9.9477 - val_loss: 8.1217 - val_acc: 8.9643
Epoch 4/29

4g@e8/a8080 [1 - 1s - loss: @.1522 - acc: 8.9542 - val_loss: 9.1895 - val_acc: 9.9687
Epoch 5/28

4B000/48880 | 1 - 15 - loss: ©.1312 - scc: 0.9609 - val_loss: 9.1039 - val_acc: 9.9703
Epoch 6/28

4B080/43000 [1 - 1s - loss: @.1222 - acc: 9.9648 - val_loss: 9.1004 - val_acc: 9.9719
Epach 7/2@

4Baea/a8eea | 1 - 13 - loss: 8,1134 - acc: 9.9660 - val_loss: 9.0985 - val_acc: 9.9730
Epoch B/2@

48028/ 48080 1 = 1s - loss: @.1046 - acc: 0.9688 - val_loss: 8.8975 - val_acc: 8.9739
Epoch 9/2@

4geen/ 48000 | 1 = 1s - loss: @.1089 - acc: 9.9785 - val_loss: 9.1014 - val_acc: 9.9732
Epoch 18/20

ABae0/ 48080 1 = 1s - loss: 0.8970 - acc: 0.9717 - val_loss: 0.8967 - val_acc: 9.9748
Epoch 11/20

4se0e/48080 | 1= 1s - loss: 0.8922 - acc: 8.9726 - val_loss: 9.8956 - val_acc: 9.9764
Epoch 12720

4Bean/ 48000 | 1 = 1s - loss: @.8874 - acc: 0.9751 - val_loss: 9.0975 - val_acc: 9.9747
Epoch 13/70

48800/ 48000 | 1 - 1s - loss: @,8853 - acc: 9,9750 - val_loss: 9.8980 - val_acc: 9.9760
Epoch 14/2@

4qgee/s8000 I 1 = 1s - loss: @.80887 - acc: 0.9754 - val_loss: 9.1003 - val_acc: 9.9760
Epoch 15/20

4B@eD/ 48000 | 1 - 15 - loss: 8.8777 - acc: 9.9771 - val_loss: 8.1825 - val_acc: 8.9766
Epoch 16/28

4B@e0/ 48080 1 = 1s = loss: 8.8742 - acc: 9.9778 - val_loss: 8.1874 - val_acc: 8.9765
Epach 17/28

4gees/s80e@ [1 - 1s - loss: @.8746 - acc: 0.9786 - val_loss: 8.1104 - val_acc: 9.9750
Epoch 18720

4B0R0/ 48000 | 1 = 1s - loss: @.8730 - acc: 0.9788 - val_loss: 0.1046 - val_acc: 0.9776
Epoch 19/20

4820/ 48080] = 1s = loss: @.8711 - acc: 0.9793 - val_loss: 9.1112 - val_acc: 8.9769
Epoch 2@/29

4BRRR/ 48000 | 1 = 1s = loss: @.8725 - acc: 9.9797 - val_loss: 0.1060 - val_acc: 8.9759
9888/108800 | «1 - ETA: @3

Test score: 9.0962571567255
Test accuracy: 0.9784
['acc', 'loss', 'val_acc', 'val_loss'])

Kak Bupum, RMSprop 6sicrpee CI'C, Tak uTO AJisi JOCTHXKEHUS Bep-
Hoctu 97.97% Ha obyualwiuem Habope, 97.59% Ha KOHTPOJIBHOM M
97.84% Ha TeCTOBOM MOHam06mimoch Becero 20 urepaumii. s ronHo-
ThI IOCMOTPUM, KaK U3MEHSETCS BEPHOCTD U MOTEPS ITPU YBEJIMYEHUMN
yucia NepuonoB:

PeanbHblii npuMep — pacno3HaBaHWE PYKOMMUCHbIX UMbp ++ 45

madel accuracy
; ——— =
— tan| —————
|
asal
i
I|
gmn |
|
|
aso| |
|
|
ama||
|
086,
i s] b3 fl 30
woeh

Teneps nomnpobyem ontummuzatop Adam. [IJist 3TOro HY;KHO M3Me-
HUTB OJTHY CTPOKY:

OPTIMIZER = Adam() # onTuMMMsaTop

Kak BuagHo, Adam uyTh jnyuie. 3a 20 urepaumii JocTuraeTcs Bep-
HocTh 98.28% Ha obyuarouieMm Habope, 98.03% Ha KOHTPOJIBHOM U
97.93% Ha TeCcTOBOM.

1o

model accuracy EE

5 7]
epoch

L

LT

LS

o1

— ftrain
— test

DTO NSTHIA BAPUAHT, @ STAJIOHHASI BEPHOCTh, HATIOMHMM, ObLjIa paB-
Ha 92.36%.

MbI MOC/emOBATEIBHO YAYUIlIAa€M MOMEeb, HO C KaXXIbIM pPa3om
MPUPOCT fnaetcs Bee TpynHee. Ceifuac onTUMM3aLIMUs TPOU3BOIUTCS C
rnpopexkupanmem 30%. 1151 1OJTHOTHI KAPTUHBI IIOKAXXEM BEPHOCTb Ha
TECTOBBIX JAHHBIX JIJIS1 APYTMX 3HAUEHUIT MTPOPEXXMBAHMS, KOTIA B Ka-
yecTBe ONTUMM3aTOpa McIoab3yercess Adam:

46 <+ [naea 1. OCHOBbI HEMPOHHbIX CETEN

BepHocTb
96.10% —— BepHocTs
98.02%
97.99%
97.98%
£
§ 97.86%
S o7.86% 54
<4
5]
Q
97.74%
97.66%
\
97.62%
Dropout=0.1 Dropout=0.2 Dropout=0.3 Dropout=0.4

YBennueHue uucna nepuoaoe

[pepnpumeM ele OfHY TOMBITKY: YBEJIMUMM YUCIO [IePUOH0B 00Y-
yeHud ¢ 20 go 200. VBbI, BpeMsl BLIYMCIEHUI [TPU 9TOM YBEJIMUMBAETCS
B 10 pas, HO HUKAKOTO BBIMIPHIIIA Mbl HE MTOTYYaeM. IKCIIEPUMEHT OKa-
3aJ1Csl HeYauHbIM, HO Mbl Y3HAJIM, UTO YBEJMUEHMEe BPeMeHM 00yUueHust
HeobsI3aTe/IbHO MPUBOAUT K YITyUllIeHUI0. Ycrex obyyeHus: 00yCIoB/IeH
CKOpee MPUMMEHEHMEM YIAYHbIX METOAOB, 8 HE BPEMEHEM, MOTPaueH-
HbIM Ha pacueTbl. Pe3y/ibTaThl IIECTOr0 BapMaHTA IPEACTABIEHbI HA
wienytolem rpaduxe:

BepHocTb

100.00%
BepHocts

07.70% 07.84% 97.93% 97.91%
98 00%

95.00%

Beprocms

94.41 %
94.00%
G2 27%

92.00%
MINST_\1 MINST_DRF MINST_ADM
MINST_ZHID MINST_RMS MINST_EPC

YnpaeneHue cKopocTbio 06y4yeHUa onTummusaropa

Mbi MOKeM ellie MorpoboBaTh USMEHUTE CKOPOCTh OOYUYEeH sl OIITH-
musartopa. U3 cienyioiero rpaduka BUIHO, UTO ONTUMAlIbHOE 3HAUe-
Hue 6m3Ko K 0.001, a 3T0 KakK pa3 M ecTh 3HaueHue, IogpasyMeBaeMoe

*

PeanbHblii npUMep - pacnosHaBaHWe pYKOMUCHbIX umbp <+ 47

1o ymonuanui. [IpexkpacHo! Adam pabortaer, He TpeOysl HUKAKON Ha-
CTPOMKM.

BepHocTtb
120.00% —— BepHocTb
96.26% 97.93% 96.48%
80.00%
o
£
o
3 6000%
3 :
&
30.00%
10.28%
/
0.00%
MINST_LR=0.1 MINST_LR=0.001
MINST_LR=0.01 MINST_LR=0.0001

YBenuuyeHue 4ncia HeiMpoHOB B CKPbITbIX COSX

Ellle 0jHa BO3MOXXHOCTb — MU3MEHMUTDb YMC/IO HEI{POHOB BO BHYTPEH-
HUX CKPBITBIX C/10sX. Ha ciemyiouiem rpadmke MmokasaHbl Pe3y/lbTaThl,
rosiyyaeMble [P YBEIMUEHUM YKMCiia HEJIPOHOB, T. €. CJIOKHOCTH MO-
nenu. Kak BUaHO, BpeMsl BHIYMCIeHMIT OBICTPO PaCTeT, TOCKOIBKY ITPH-
XOOMTCSI ONITUMM3UPOBATh Bee GoJiblile rmapaMeTpos. Ho mjocTuraeMbiit
BBIMIPBILI ITPM 3TOM CTAHOBMTCSI BCE ME@HbIIIE 11 M@HbIIIe.

0O6wee yncno napameTpos
9 2000000 —Obuwee
g uMCno
g 00000 napameTpos
9
g
£ 1000000
§
3 sooooo
g
3
8 NHIDDEN=32 NHIDDEN=128 NHIDDEN=512

NHIDDEN=54 NHIDDEN=256 NHIDOEN=1024

Ha ciegyiomem rpaduke rokasaHo, Kak M3MeHsSIeTCsl BpeMsl OIHOI
MuTepaLMu IIPU POCTe YMCIA CKPBIThIX HEIIPOHOB.

48 <+ [naea 1. OCHOBbI HEMPOHHbIX CETEN

Bpenn BbiNONHEHHA OAHDﬁ UTEepaluMuH

Bpema
16 - BbIMONHEHHUA
OOHOH
13 MTepaLMK

12

Bpems Bsinonsenus odHol umepayut
[+]

NHIDDEN=32 NHIDDEN=128 NHIDDEN=512
NHIDDEN=64 NHIDDEN=256 NHIDDEN=1024

A nHa srom rpaduke Mbl BUIUM M3MEHEHME BEPHOCTU IIPU POCTE
yueia HelfipoOHOB.

BepHocTtb
99.00% —— BepHocTb
98.36%
98.17% 98.19%
97.96%
98.00%
97.31%
g
S 97.00%
g
96.00%
95.34%
I
NHIDDEN=32 NHIDDEN=128 NHIDDEN=512
NHIDDEN=64 NHIDDEN=256 NHIDDEN=1024

YBenuueHue pasmepa nakera

AJITOPUTM TpPagyMeHTHOr0 CIYCKA MbITAETCSI MWUHMMM3MPOBAThH
(DYHKIMIO CTOMMOCTY OOHOBPEMEHHO Ha BCexX IpuMepax M3 00ydaio-
mero Habopa M ISl BCeX MPEeNCTaBIeHHbIX B HEM IIPU3HAKOB. AJIro-
PUTM CTOXACTMYECKOTO IPaAMEeHTHOr0 CITycKa 06XOOMTCS ropasmio
Jelessie, MOTOMY YTO B HEM DPAacCMATPUBAETCS TOJNBKO BATCH SIZE

7 Mep - H bIX LM %
PeanbHbli npuMep - pacno3HaBaHWe PYKOMNUCHbIX uMbp <+ 49

IIpMMeEpOoB. HOCMOTDMM, KakK 3aBMCHT IIOBeOeHMe MOoOe/JM OT 3TOro
rnapamMeTpa. Kak Buaum, ornrTumasnbHast BEepPHOCTh JOCTHUraeTcs, Korga

BATCH SIZE=1281

BepHocTtb
98.05%

97.95%

97.85%

Beprocme

97.75%

97.65%
BATCH_SIZE=64

BATCH_SIZE=256

BATCH_SIZE=128

BATCH_SIZE=512

——BepHocTb

MonBeneHne UTOroB IKCNEPUMEHTOB
MO pacno3HaBaHMIO PYKOMUCHbIX LUdp

WTtak, orpoboBas I89Th BAPMAHTOB, Mbl CMOIJIM YJIYYIIUTL BbIOpaH-
HbIiT 1ToKa3aTeb KauecTsa ¢ 92.36% no 97.93%. CHauana Mbl orpene-
JIAJIX ITPOCTYIO OIHOCIOIHYIO ceThb cpencrBamm Keras. 3aTeM Mbl yiyd-
LIMJIA KauyecTBO, 106aBUB CKPbIThie (JIOU. [a/bHEHIIero yiayJiieHus
yIA/I0Ch J0OMUTHCS ITYTEM BKJIKOUEHMUS CYyUaifHOTro IpopeXuBaHus ce-
T M BbIOOpA MOAXOAALIEro onTuMusaropa. [lonyyeHHbie pe3yibTaThbl
CBeJIeHbI B TAOIULY HUKeE.

Ha obyuaiowem | Ha koHTponbHom | Ha tecroBom
$OARIE/BopHOcTs Habope Habope Habope
Mpocras 92.36% 92.37% 92.22%
CABYMA DL 94.50% 94.63% 94.41%
cnosmu (128)

C npopexusaHmem 97.7%

(30%) 98.10% 97.73% (200 nepuaaat)
97.84%

RMSprop 97.97% 97.59% (20 nepioaos)
Adam 98.28% 98.03% 903

(20 nepwnopos)

OnHako clenyolinue nBa SKCIepuMMeHTa He IIPpMHeCdIM CyllecTBeH-
HOr'o yiaydllieHus. VBennueHue uucia BHYTpPeHHMX HEﬁDOHOB BJleyeT

50 <+ [haea 1.0cHOBblI HEMPOHHBIX CETEM

3a coboii YCI0XKHeH e Moaeia M pocT obbema BBIUMCJIEHMIA, HO Jaer
enBa 0Cs3aeMblit BbIMI'DBIIIL. To ke camoe oTHOCKUTCS K VBeJIM4eHM0
qMcia repuoanoB 06yqe1ms1. Ham nocieguumit SKCIIepUMMEHT COCTOSI B
WU3MEHEeHMH napameTpa OITHMMM3aTOPa BATCH SIZE.

MpumeHeHue perynapusauum
AN NpefoTBpalLeHUa nepeobyueHus

WHTYMTUBHO MPEICTAB/SIETCs], UTO XOPOIlas MOIeIb MALIMHHOTO 06Y-
YeHMs JO/DKHA JaBaTh MaJIyIo OIIMOKY Ha 06YyJalolMX JaHHbIX. Matematit-
UeCKM 9TO PaBHOCH/IbHO MMHMMM3ALUKA [IOCTPOEHHOI MOJIe/bI0 (PYHKIIMNA
roTepb Ha 06YUAaIOIIMX JaHHbIX M BhIPAXKaeTcs CJIemyolei hopmMysoii:

min: {loss(Training Data | Model}

OmHAKo 9TOTO MOXKET 0KasaThCsl HemoCTaTouHo. Momenb MOXKeT
CTaTh U3OBITOYHO CIOXKHOI, CTPEMSICh YIOBUTh BCE CBSI3M, IIPUCYIIIE
06yvalouMM JaHHbIM. Y TAKOI0 YBeJIMUEHMsI CIOXKHOCTU eCTh J1Ba He-
JKeJlaTeIbHbIX IOCIeACTBUSL. BO-NepBbIX, sl BBIMOTHEHMS] CIIOXKHOM
MOZe/IM HY)KHO MHOTO BpeMeHH. BO-BTOPBIX, CJIOXKHASI MOJE/Ib MOXKET
MOKa3bIBaTh BEJIMKOJIEITHOE KAaYyeCcTBO Ha 00yyaloUuX AaHHBIX — I10-
CKOJIbKY OHa 3alIOMHM/Ia BCe MPUCYTCTBYIOI[ME B HUX CBSI3M, HO ropas-
[0 Xyjiliiee Ha KOHTPOJbHBIX — IMOCKOJILKY MOZeIb He 060611aeTcs Ha
HOBbIe naHHbie. TakuM 06pa3om, 06ydyeHMe CBeI0Ch He K CIIOCOOHOCTH
K 0606111eHMI0, a K 3anoMMHaHKI0. Ha cienyioinem rpadguke noxkasa-
Ha TunuYHasi QyHKIKsI [10TepPb, KOTOpast yObIBAET KaK Ha 06yJaloleM,
TaK ¥ Ha KOHTPOJIbHOM Habope. OQHAKO B KaKOI-TO MOMEHT MOTepst Ha
KOHTPOJIbHBIX JaHHbIX HAUMHAET PACTH U3-3a [1IepeodyueHusl.

A

Mlategs I'IepeoﬁyweHM_e

KoHTponsHbie
[AaHHble

O6yuaoume
AaHHbie

L7

PeanbHbli npuMep - pacno3HaBaHWe PYKONUCHbIX umhpp <+ 51

DBPUCTUYECKOE MTPAaBUIO COCTOMT B TOM, YTO €C/IM B Ipolecce 00-
yueHMs Mbl HAB/II0aeM BO3pacTaHue [oTepy Ha KOHTPOJIbHOM Habope
10CJIe [IePBOHAYAILHOrO YObIBAHMS, 3HAUUT, MOEIb CJIMLIKOM CJIOXKHA
M CIMIIKOM GJIM3KO MOAOrHaHa K 00yJYaoluM JaHHbIM. B MalllMHHOM
00ydyeHUM 3TOT PeHOMEH HA3bIBAETCH NepeofyueHuUeM.

s peureHus mpo6iemsl repeobyuyeHnss HeO0OX0AUMMO KAK-TO BbI-
PasUThb CJI0XKHOCTb MOIENM M YyIIpaBiaaTh €. M Kak ato caenats? Ho
BeIb MOME/b [0 CYIIEeCTBY — BCEro JiMilb BEKTOP BecoB. [loatomy ee
C/I0XKHOCTh MOXKHO IIPeCTaBUTh B BUJIe KOJIMUECTBA HEHY/IEBBIX BECOB.
Wubimu cnopamu, ecin gee mogenn M1 u M2 naioT npuMepHO OgMHAaKO-
BOE KauecTBO B TepMMUHax QYHKLUK 10TePb, TO CJIEAYeT MPearodecThb
TY, B KOTOPOJi KOIMYECTBO HEHY/IEBLIX BECOB MeHbIie. [IJ1s1 yIipaBaeHust
Ba)KHOCTBI0 BbIOOpa GoJiee MpoCcToil MOIE/IM MOKHO 3aBeCTH I1Ilepria-
pameTp A > 0 ¥ MUHMMM3UPOBATh CIEAYIOYIO (PYHKIMIO:

min: {loss(Training Data | Model} + /. = complexity(Model)

B MalIMHHOM 06Y4YeHMU IPUMEHSIOTCS TPM Criocoba peryispusa-
LN,

O Perynsipusanmsa nmo Hopme L1 (13BecTHas Takoke roj Ha3Ba-
HueM 1asso): CJIOKHOCTh MOZEIM BbIPAXKAETCS B BUIE CYMMbl
MOZYVJieil BeCOB.

O Peryasipuzanus nmo Hopme L2 (rpeGHeBast): CJI0KHOCTb MOJIE-
JTA BBIPAXKaeTcs B BUE CYMMbI KBaZipaTOB BECOB.

O OnacTUuHasg CeTh: [BhIPaKeHMs CJIOKHOCTU MOJEIH Ipu-
MeHsIeTcss KoMOMHALIMS ABYX [PebIAYIIMX CIIOCO00B.

OTMeTHM, YTO MIEI0 Peryaspusaliui MOXKHO IPUMEHUTh K BecaM, K
MOZeIM U K aKTUBaLMI.

TaxkuM 00pa3oM, peryispusalis MOXKeT C0CO6CTBOBATh MOBbILIE-
HMIO KauecTBa CeTH, 0CODEHHO ewIn HaIMIO OYeBMUIHOe repeobyue-
Hue. OcTaB/sieM SKCIIePUMEHTBI B KAUeCTBE YIIPayKHeHU [J1sl MHTepe-
CYIOIIMXCS YMTATeNI .

Keras nogmepskuBaet Bce Tpu (opmbl perynspusauun. JobaBuTh
peryjisipusaluio IpocTo, HIXKe IToKa3aHo 3aJaHue L2-perynsipmusatopa
simpa (Bekropa BecoB W):

from keras import regularizers model.add(Dense (64, input dim=64,
kernel regularizer=regularizers.l12(0.01)))

[TonHoe onucaHue rnapaMeTpos MMeeTcs Ha CTpaHMLE https://

keras.io/regularizers/.

52 < [haea 1. OcHOBbl HEMPOHHBIX CETEM

Hacrpoiika runepnapameTtpos

OrmnucaHHbIe BbIILE 3KCIIEPUMEHTBI TIOMOIIM COCTABUTh MPEICTaB-
JIEHME 0 TOM, KaKe MMEITCs Crioco6bl HACTPOIKY HelipoceTi. OqHaKO
TO, YTO TOOUTCS [IJIsl JAHHOTO MpUMepa, MOKET He MOJOITH B APYIUX
cryvasix. JIjist Kaskgoii ceT MMeeTcsi MHOI'O JOIMYCKALIMX ONTHUMMU3a-
L[MI0 TapaMeTPOB (KOJIMYECTBO CKPBIThIX HEMPOHOB, BATCH STZE, KOJU-
YeCTBO MePHOL0B U PAL APYIUX, 3aBUCSIIUX OT CJIOXKHOCTH CETH).

HacTpoiikoii rumeprnapaMeTpoB Ha3bIBaeTCsl MPOLECC MOMCKa OIl-
TUMaJIbHOTO COYETAHMSI 3TUX TIapaMeTpPOB, [IPU KOTOPOM JOCTUraeT-
Csl MUHUMYM QYHKLIMM CTOMMOCTHU. EC/iM MMeeTcst n mapaMeTpoB, TO
MOXXHO CUMTaTh, YTO OHM ONPEHESIOT N-MEepPHOe IIPOCTPAHCTBO, a
Hallla 11eJib — HAaliTU B 9TOM IIPOCTPAHCTBE TOUKY, B KOTOPOI (DYHKLIMS
CTOMMOCTY TIPUHUMAeT MMHMMAaJbHOE 3HaueHue. JIJisi JOCTHXKEHMSI
9TOi LeIM MOXHO, HAIPMMED, CO3aTh KOOPAMHATHYIO CETKY B IIPO-
CTPAHCTBE M [JIsl KayKA0T0 ee y3/ia BhIYMCIUTh 3HaUeHUe QYHKLIMK CTO-
MMOCTH. THBIMM CJIOBAMM, BBIIIOJIHMTE ITOJIHEINM repeGop Bcex KoMOu-
HallMii [TapaMeTpoB.

I'Ipep,c Ka3aHue BbiX04a

OOy4YeHHYIO CeTh eCTeCTBEHHO MCIIONIb30BAThL [JISl MpeicKasaHmsl.
B Keras aT0 0ueHb I1poCTO:

¥ BHMMCIMTE NpemCcKAZAHME
predictions = model.predict (X)

Inst 3a0aHHOTO BXOHOIO BeKTopa MOXXHO BbIYMCIMTbL HECKOJILKO
3HAYEeHMIA:
O model.evaluate () - BBIYMCJIAET [10TePI0;
Q model.predict classes(): BbIYMC/ISET KaTeropuajibHbi€ BbIXO-
I1b1;
O model .predict proba () ! BBIYMC/ISET BEPOATHOCTH KIaCCOB.

MpakTuueckoe U3NoxXeHne anropuTMma
obpaTHOro pacnpocrpaHeHus

MHOroc/10/HbIi ITepLenTpoH 06y4yaeTcs Ha JAHHBIX C IOMOIIbIO [IPO-
11ecca, Ha3bIBaeMOro 06paTHBIM pacipocTpaHeHKeM. Ero MoKHO omu-
caTh Kak IOCTOSIHHOE MCIIpaBjieHue OMBOK 10 Mepe X obGHapyKe-
Hust. [TocMOTpMM, KaK OH paboTaer.

L7

pakTyeckoe U3NOXEHWE anropuTMa 0BpaTHOro pacnpocTtpaHeHus < 53

HanoMHMM, 4TO € 1060 HEIHPOHHOM CeThI acCOLMMPOBAH Ha-
60p BECOB, KOTOPbIE CJIVKAT [Jisl BHIUYMCIEHMS] BBIXOAHbBIX 3HAUYEHMIH
110 BXoaHbIM. Kpome TOro, B HEIAPOHHOI CeTH MOXKET ObITh HECKOJIBKO
CKPBITBIX C/I0€B.

[lepBOHAUaJILHO BCEM BECAM IMPUCBAMBAIOTCS CJIydaiiHble 3HAUEHMSI.
3aTeM ceTh aKTUBUPYETCS /IS KayKI0T0 BXOJHOI'O 3HAUeHUs U3 0byua-
ouiero Habopa: 3HaYeH s PACIIPOCTPAHSIIOTCS B NPSMOM HATIPABIEHUM
OT BXOJITHOTO CJI0S1 Yepe3 CKPBIThIE K BHIXOAHOMY, KOTOPBI U BbIIAET
npeacKasaHue:

MNpsmoe pacnpoctpaHeHue

[TOCKOMBbKY MCTUHHOE Hab/II0IaeMoe 3HaUeHMe 1j1si 00yJaloIlero Ha-
60pa M3BECTHO, Mbl MOKEM BbIUMCINTD OIIKMOKY NpenckasaHus. Mmest
3aK/IIOUAeTCSl B TOM, UTOObI BBIMOJHUTL 0OpaTHOE PAClIpoCTpaHeHe
OIIMOKU ¥ C MOMOIIbI0 MOAXOMSIIEr0 aAIrOPUTMA ONITMMM3ALIMM, Ha-
NpuMep TPagMeHTHOrO CITyCcKa, MOAIIPaBMUTh Beca HeMpPOHHOI ceTu ¢
11€JTbI0 YMEHbILEHMsI OLIMOKM:

B o o e s e s o e oo

O6parHoe pacnpocTpaHeHWe oWHBKH

54 < [haea 1.0OcHOBbl HEMPOHHBIX CETEM

[Ipoiecc mpsIMOro pacipoCTpaHEeHMs] CHTHaja OT BXOAHOIO C/I0sI
K BBIXOOHOMY M 0OPaTHOrO paclpoCTpaHeHMs] OIIMOKHU MOBTOPSET-
Cs1 HECKOJIBKO pas, ToKa olMbKa He CTAaHeT HIKe 3apaHee 3aJaHHO-
ro MOpPOroBOro 3HaYeHusl. Bech mpoiiecc u306pakeH Ha CJIeYIOLIEM
PUCYHKe:

MeTka
DyHKUMA
noTepb
MpuaHaku Mpeackazanue
S—— Mopens —_—
OnTUMK3aTOp BbIYMC-
“NV— nset obHOBNEHHDIE
Beca

[IpM3HAKM — 3TO BXOAHbIE JaHHbIe, a METKM CIIYKAT [JIs1 yIIpaBJie-
HusI rpolieccom o6yuennst. Mozgesib 06GHOB/SETCS TAKMM 00pasoM, 4To
(yHKIMS MOTEPbh HAa KaKIOM liare MMHUMM3MpPYeTCs. B HelipOHHOI
CeTH BaKEH He CTOJIBKO OTKJIMK OTOEJbHO B3SATOr0 HEipOHA, CKOJIBKO
Bech Habop KOPPEKTUPYEMBIX BECOB B KaXK0M cJioe. [ToaToMy ceTb I10-
CTEeIIeHHO M3MEeHsIeT BHYTPEHHME Beca, TaK YTOObI YBEJIMYMTh KOJIM4e-
CTBO MPaBWJIBLHO ITpe/iCKa3aHHbIX MeTOK. KoHeuHo, 11t MMHUMM3a1U
PacxXoXmeHusl B Mpolecce 06ydeHMsl MPUHLMIKATBHO BAXKHO, YTOOBI
6bUIM BbIOPAHBI MOAXOAAIIME IIPM3HAKH, a JaHHbIe ObIIM pasMedeHbl
MPaBUJILHO.

B HanpaBneHum rnyb6okoro o6yyeHus

DKCIIePUMEHTHPYS C Pacllo3HABAHMEM PYKOIMMCHBIX LGP, Mbl IIPUILI-
JIX K BBIBOAY, UTO YeM 6/1iKe K 99 % IOCTUrHYTasl BEPHOCTh, TEM TPYII-
Hee ee YIyuliNTh. EC/IM Mbl XOTUM MPOABUHYTHCS OajIbILe, TO HY:KHA
KaKasi-To HoBast uesi. Yero HaM He XBaTaer?

BaskHejilee Hab/II0IEHI{E€ COCTOMUT B TOM, UTO 10 CUX TIOP MBI HE YUM-
ThIBAJIM MHGOPMALMIO O PACIIOIOKEHMM M300paKeHsl B MIPOCTPaH-
crBe. Tak, IpuBeIeHHbII HIKe Kof peobpasyeT pacTpoBoe n3o6pa-
JKeHMe, MpezcTaBsioilee Bee HUQPLI, B IJIOCKUI BEKTOP, B KOTOPOM
BCsI IIPOCTPAaHCTBEeHHAsI MHGOpMAaLMsI TOTepsiHa:

X train comepxmr 60000 mzobpaxenwi pasmepa 28x28 --> npeobpaszyem
B maccue 60000 x 784

L7

Pestome <+ 55

X _train = X _train.reshape (60000, 784)
X _test = X test.reshape (10000, 784)

OpHako e Haul Mo3r paboraer uHauye. HarloMHuM, YTO B OCHOBE
3PEHMST JIEKNUT HeCKOJIbKO 00/1aCTeli KOPbI, KaXK1as M3 KOTOPbIX paciios-
HaeT Bce Gosiee KPYIHbIE CTPYKTYPbI, COXPaHsIsl IIpU 3TOM MHbOpMa-
LMIO O JIOKa/MM3aluu B npoctpaHcTse. CHavyama Mbl BUIUM OT/E/IbHbIE
MMKCeM, 3aTeM PACIO3HAEM CPEeAM HUX TPOCThIE EOMETPUYECKUE
dbopmbl, a 3aTemM Bce Gosiee CIOKHbBIE 3JIEMEHTBI: ITPEIMeThI, JIn1ia, Tejia
JOAEI, SKMBOTHBIX U T. 1.

B rnase 3 Mbl MMO3HAKOMMMCS CO CIlel[Ma/lbHbIM THUIIOM CETH Ly-
6okoro obyueHus, CBEPTOYHOM HelipoHHOo cetbio (CHC), paspa-
60TaHHOI TaK, YTOObI MOXHO ObLIO OIHOBPEMEHHO COXPAHUThL IPO-
CTPAHCTBEHHYIO JIOKAJIM3ALMI0 B U300paskeH MK 1 00ydaThcst Bee Hosee
BBICOKMM YPOBHSIM abCTpakimu: OJIMKHMIA K BXOAHBIM JAHHBIM €105
obyuaeTcs pacrio3HaBaHUIO ITPOCThIX 00Pa30B, a YyeM CJI0i Jajiblie,
Tem Bosiee C0XKHbIe 00pasbl OH pacrosHaeT. Ho rnpexie uem mnepe-
xonuTh K 06cysknenunio CHC, HaMm rnpeacTonT paccMOTPeTh HEKOTOPbIe
0COBEHHOCTY apXUTEeKTYpbl Keras i OnoHUTe/IbHbIe KOHLEMIUNA Ma-
LIMHHOT'O 00yUeHMsI.

Pesiome

B aT0i1 rnaBe Mbl NO3HAKOMMJIMChL C OCHOBAMM HEMPOHHBIX CETEeli: UYTO
Takoe IMepuernTpoH U MHOTOC/IOMHBIN IepLerTPoH, KaKk OIpenesioT-
csl HelipoHHbIe ceTu B Keras, Kak MoCTeNneHHO VIy4lIMTh KauecTBo ce-
T 10 CPAaBHEHMIO C 9TAJOHOM M KaK HaCTpauBaTh I'MIlepIiapaMeTpbl.
Kpome Toro, Mbl Ternepb 3HaeM 0 HEKOTOPbIX [M01e3HbIX PYHKIMSIX aK-
TUBaLMK (cUrMoue u 61oke iuHeiHoi akTuBauum ReLU), o Tom, Kak
06y4aTh CeTh C MOMOIIbBIO AJIFTOPUTMa 00PATHOrO PacIpoCTpaHeHusl,
OCHOBAHHOTrO Ha MEeTOe IPaJgMeHTHOr0 CITYCKa MJIM CTOXaCTUYeCKOro
rpajiieHTHOrO CIIYCKa, MM Ha GoJiee CJIOXKHBIX MeTogax Tuina Adam u
RMSprop.

B ciepyiouieii maBe Mbl YBUAMM, Kak ycTaHOBUThL Keras B ob/ake
AWS, Microsoft Azure, Google Cloud uiiu Ha CBOIO JIOKaJIbHYIO MAILIMHY.
Mbi Takske gagum o63op API Keras.

lnaBa

L B B O BN BE B BN BN AN IR BN BN BE BN BN BN BN BN B BN N BN BN BN B BN B BN B BN B B N A N N I

YcraHoBKa Keras
u onucaHue API

B nipenbinyiiieit rnage Mbl 06CYIUIM OCHOBHbIE [PUHIMITHI HEIPOHHBIX
ceTeit U NMPUBETM HECKOIBKO MPUMEPOB CeTel, yMewluX pacio3Ha-
BaTh PYKOIMCHbIE MPbI U3 Habopa gaHHbiXx MNIST.

B sroii rmaBe Mbl 06cyauMm yeraHoBKy Keras, Theano u TensorFlow.
Mbl yBUIMM, KaK HACTPOUTH pabouee OKPYKeHME 1 32 KOPOTKOE Bpe-
Ml [IepeiiTi 0T CMYTHOI Meu K paboTocrocobHoi HelipoceTn. 3aTem
Mbl ITOrOBOPMM O TOM, KaK IPOM3BECTH YCTAHOBKY B MH(PACTPYKTY-
pe, OCHOBaHHOI Ha KoHTeliHepax Docker, u B obnakax Google GCP,
Amazon AWS u Microsoft Azure. [TornyTHo Mbl nipeacraBum 0630p API
Keras 1 onuiiemM HEKOTOpPbIE [MOJIE3HbIE OMEpaluu, B T. 4. 3arPy3Ky U
COXpaHEeHME apXUTEKTYPbl U BECOB HEPOHHOIT ceTH, paHHIOK OCTa-
HOBKY, COXPAHEHUE UCTOPUM, KOHTPOIbHBIE TOUKU U B3aUMOJIEICTBIE
¢ TensorBoard u Quiver.

YcraHoBKa Keras

B cnenyiommx pasmesnax Mbl MOKaXXeM, Kak ycTaHOBUTh Keras Ha pas-
JIMYHbIE [1aTGOPMBI.

lar 1 - ycraHOBKa 3aBUCMMOCTEH

[IepBbIM [EJIOM YCTAaHOBUM IMaKeT numpy, MOAAEePXKUBAIOLIMIT pabo-
TY C MHOIOMEpPHBIMM MacCMBAaMM M MaTpPULaAMM, a TAK)Ke C MaTema-
TUUYECKMMM QYHKIMSIMM. 3aT€M YCTAHOBUM OMOIMOTEKY ISl HAYUHbIX
PacueToB scipy. [IoC/Ie 3TOro UMeeT CMBICT YCTAHOBUTD MAKET scikit-
learn, CYMTAIONIMITCS B MalIMHHOM 06yueHuu Ha Python yHiBepcaib-
HBIM CPEICTBOM — HOXOM IBeiiliapckoii apmuin. Kpome Toro, mosnes-

*

YcraHoBka Keras <+ 57

HO OYIeT yCTaHOBUThL OMOIMOTEKY 00paboTKM M300pasKeHMI pillow U
6MbIMOTEKY cepuanu3alui TaHHbIX h5py, KOTOpoii Keras monb3ayercst
IJIsL coXpaHeHust mopesneit. JIis yeTaHOBKM BCero Heobxoaumoro no-
CTATOUHO OJHOM KOMAH/IbI.

MO3KHO BMECTO 3TOT0O YCTAaHOBUThL aucTpubyrus Anaconda Python,
KOTOprﬁ YXKe CogepX¥MT numpy, scipy, scikit-learn, hSpy, pillow M
MHOKECTBO APYrMx OMOMMOTEK, MCIONb3yeMbIX B HAy4YHBIX pacue-
tax (cm. S. loffe, C. Szegedy «Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift», arxiv.org/
abs/1502.03167, 2015). CIIMCOK IMaKeToB, BXOASIIMX B coctaB Anaconda
Python, CM. Ha CTpaHMUE https://docs.continuum.ioc/anaconda/pkg-
docs. Ha cHMMKe 9KpaHa HIDKe [MoKasaHa IMpoleaypa YCTAaHOBKU He-
00X0AMMBIX ITAKETOB.

[N code — -bash — 10320

gulli-macbookpro:code gullis pip install numpy scipy scikit-learn pillow hSpy
Collecting numpy

Using cached numpy=1.11.2-cp27-cp27m-macosx_10_6_intel.macosx_18_9_intel.macosx_18_9_xB6_64.macosx_10
_18_intel.macosx_10_10_xB86_64.whl
Collecting scipy

Using cached scipy-@.18.1-cp27-cp27m-macosx_18_6_intel.macosx_18_08_intel.macosx_18_9_x86_64.macosx_18
_18_intel.macosx_1@_18_x86_&4.whl
Collecting scikit-learn

Using cached scikit_learn-8.18.1-cp27-cp2Tm-macosx_10_6_intel.macosx_18_9_intel.macosx_1@8_9_x86_64.ma
cosx_18_18_intel.macosx_18_18_x86_64.whl
Collecting pillow

Using cached Pillow-3.4.2-cp27-cp2im-macosx_18_6_intel.macosx_18_8_intel.macosx_18_9_xB6_64.macosx_1@
_18_intel.macosx_10_18_ x86_&4.whl
Collecting hSpy

Using cached hSpy-2.6.8-cp27-cp27m-macosx_18_6_intel.macosx_18_9_intel.macosx_10_9_x86_64.macosx_18_1
@_intel.macosx_18_18_x86_64.whl
Reguirement already satisfied: six in /Users/qulli/miniconda2/lib/python2.7/site-packages (from h3py)
Installing collected packages: numpy, scipy, scikit-learn, pillow, hSpy
Successfully installed h5py-2.6.8 numpy-1,11.2 pillow-3.4.2 scikit-learn-8.18.1 scipy-8.18.1
gulli-machookpro:code gullis Jj

War 2 - ycraHoBka Theano
VeranosuTs Theano rnnomMosker pip:

L N] google-cloud-sdk — root@7b589d0dcash: | — -bash — 117=8

[gulld kpro:geogle-cloud-sdk gulli$ pip install Theano

Collecting Theano

Requirement already satisfied: numpy==1.7.1 in /Users/gulli/miniconda2/lib/python2.7/site-packages {(from Theano)
Requirement already satisfied: scipy==8.11 in fUsers/gullifminiconda2/lib/python2.7/site-packages (from Theano}
Requirement already satisfied: six»=1.9.@ in /Users/gulli/miniconda2/lib/python2.7/site-packages {(from Theano)
Installing collected packages: Theano

Successfully installed Theano-8.8.2

gulli-sacbookpro:google-cloud-sdk guilis I

War 3 - ycraHoBka TensorFlow

Terepb MOXHO YCTAHOBUTH TEHSOI‘FIOW, cenyst MHCTPYKUMAM Ha
caiite TensorFlow 1o ajapecy https://www.tensorflow.org/versions/
r0.11/get started/os_setup.htmlfpip-installation. M na srtor pas
OJ151 YCTaHOBKM HYXKHOTI'O [TakeTa MCIOAb3yeTcs pip, KAK II0OKa3aHOo Ha
PUCYHKE HMKe.

58 <+ [haBa 2.YctaHoBsKa Keras v onucaHue API

LN] code —-bash —103x27

gulli-machookpro:code qullis export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/mac/cpu/ten
sorflow=-8.11.8-py2-none-any .whl
gulli-macbookpro:code qullis sudo pip install —-upgrade $TF_BINARY_URL --ignore-installed
Collecting tensorflow==@.11.8 from https://storage.gocgleapis.com/tensorflow/mac/cpu/tensorflow-9.11.8-
py2=none-any.whl

Using cached https://storage.googleapis.com/tensorflow/mac/cpu/tensorflow—@.11.8-pyZ-none-any.whl
Collecting mock>=2.0.8 (from tensorflow==0.11.0)

Using cached mock-2.8.8-py2.py3-none-any.whl
Collecting protobuf==3.8.@ (from tensorflow==0.11.8)

Using cached protobuf-3.8.0-py2.py3-none-any.whl
Collecting numpy>=1.11.@ (from tensorflow==0.11.8@)

Using cached numpy-1.11.2-cp27-cp2?m-macosx_18_6_intel.macosx_18_9_intel.macosx_18_9_xB6_64.macosx_10
_18_intel.macosx_10_18_x86_64.whl
Collecting wheel (from tensorflow==8,11.8)

Using cached wheel-8.29.8-py2.py3-none-any.whl
Collecting six>=1,108.8 (from tensorflow==0,11.8)

Using cached six-1.1@8.8-py2.py3-none-any.whl
Collecting funcsigs==1; python_version < "3.3" {from mock>=2.0.8->tensorflow==0.11.0}

Using cached funcsigs-1.8.2-py2,py3-none-any.whl
Collecting pbr==08.11 (from mock==2.@.8->tensorflow==0.11.8)

Using cached pbr-1.18.8-py2.py3-none-any.whl
Collecting setuptools (from protobuf==3,0,@0->tensorflow==0.11.8)

Using cached setuptools—-28.8.0-py2.py3-none-any.whl
Installing collected packages: six, funcsigs, pbr, mock, setuptools, protobuf, numpy, wheel, tensorflow
Successfully installed funcsigs-1.0.2 mock-2.9.@ numpy-1.11.2 pbr-1.10,0 protobuf-3.0.0 setuptools-28.8
«@ 51x-1.18.9 tensorflow-9.11.@ wheel-8.25.9
gulli-macbookpro:code qullis |

War 4 - ycraHoBka Keras

Terneps MoKHO yeTaHOBUTB Keras:

ece code — -bash — 103x14

gulli-macbookpro:code gullis pip install keras

Collecting keras

Requirement already satisfied: theano in /fUsers/gulli/miniconda2/lib/python2.7/site-packages (from kera
5}

Requirement already satisfied: pyyaml in /Users/gullifminicondaZ/Llib/python2.7/site-packages (from kera
s}

Requirement already satisfied: six in /Users/gulli/miniconda2/lib/python2.7/site-packages (from keras)
Requirement already satisfied: numpy==1.9.1 in fUsers/qulli/miniconda2/lib/python2.7/site-packages (fro
m theano-=keras)

Requirement already satisfied: scipy>=8.14 in fUsers/gulli/miniconda2/lib/python2.7/site-packages (from
theano-=keras)

Installing collected packages: keras

Successfully installed keras-1.1.1

gulli-machookpro:code gullis [

War 5 - nposepka paborocnoco6HocTu Theano,
TensorFlow u Keras

[IpoBepum cosmaHHOe OKpykeHue. CHauana mompobyem orpeme-
muTh curmouay B Theano. Kak BUIKMM, 3TO OU€Hb IIPOCTO: HYKHO IIPO-
CTO 3alMcaTh MaTeMaTU4ecKyio GhopMyay M MPUMEHUTh ee KO BCeM
3jieMeHTaM mMarpuiibl. 3anycrure 060m04ky Python Shell u BBegute
MOKa3aHHbII HIDKE KOZ:

LN code — python — 10329

==> import theano
i=»> import theano.tensor as T
>»> % = T.dmatrix{'x")
»22 5 =1/ (1 + T,exp(-x})
>»> logistic = theano.function([x], s)
=»> logistic(([e, 11, [-1, -211)
array([[8.5 . 0.73185858],

[8.26894142, 0.11920292]1)
P |

L7

Hactpoika Keras < 59

Urak, Theano paboraert. 1 riposepku TensorFlow npocro umrop-
Tupyem Habop gaHHbix MNIST, Kak rokasaHo Ha pUCyHKe HipKe. B ra-
Be 1 MbI y3Ke BUIEJIM HECKOIbKO MPUMEPOBR HelipoceTeit, CO31aHHBIX B
Keras:

[BN code — python — 103217

lgulli-macbookpro:code qulli$ python

Pythen 2.7.12 |Continuum Analytics, Inc.| (default, Jul 2 2016, 17:43:17)
[GCC 4,2,1 (Based on Apple Inc. build 5658) (LLVM build 2336.11.08)] on darwin
Type "help", "copyright", “"credits" or "license" for more information.
Anaconda is brought to you by Continuum Analytics.

Please check out: http://continuum.io/thanks and https://anaconda.crg

[=>> from tensorflow.examples.tutorials.mnist import input_data

[==> mnist = input_data.read_data_sets("MNIST data/", one_hot=True)
Successfully downloaded train-images-idx3-ubyte.gz 9912422 bytes.
Extracting MNIST data/train-images—idx3-ubyte.gz

Successfully downloaded train-labels-idxl-ubyte.gz 28881 bytes.
Extracting MNIST_data/train-labels-idxl-ubyte.gz

Successfully downloaded t1@k-images-idx3-ubyte,gz 1648877 bytes.
Extracting MNIST_data/t1@k-images-idx3-ubyte.gz

Successfully downloaded t18k-labels-idxl-ubyte.gz 4542 bytes.

Extracting MNIST_data/tl@k-labels-idxl-ubyte.gz

2=

Hacrpoika Keras

Kondurypaumonnsliii daiin Keras oueHb rpoct. 3arpysmTe ero B pejakx-
TOP vi. BOT CIIMCOK MapaMeTpoB:

Mapametp 3HaueHus

Onpepnensiet npeacraBneHune M3obpaxeHui:

image dim ordering
- - +£ - npuuHaToe B TensorFlow, th — B Theano

epsilon 3HayYeHMe KOHCTaHTbl epsilon B BbIMUCNEHMUAX
floatx MoxeTt NPUHUMATL 3HAYEHME float 32 UNK floated
backend MoeT NpMHUMaTb 3HAYEeHHME tensorflow MAM theano

3HaueHue th MAPAMETPA image dim ordering OINPENENsIeT UHTYM-
TMBHO HEOUEBM/IHBIN MMOPSIOK M3MepeHMit u3obpaxenus: (raybuHa,
LUIMPUHA, BbICOTA) BMECTO (LIMPHHA, BICOTA, IMyOMHA), KaK B CJIyUae
t£. HisKe rpuBeqeHbl 3HAaU€HMSI TapaMeTPOB Ha MOeN MalllMHe:

one code — vi ~/.keras/keras.json — 103x8
]

"image_dim_ordering": "th",
"epsilon": le-87,
"floatx™: “"float32",

1 "packend": “tensorflow"

"~f.keras/keras.json" [noeol] 6L, 113C

60 <+ [hasa 2.YctaHosKa Keras v onucaHue API

[Mpu ycraHoeke sepcumn TensorFlow ¢ nogoepxkoi GPU Keras
asTomaTuuecku Byaet ucnonszosats GPU, ecnu B kavecTse Ga-
30B0# BubnuoTekn BoibpaHa TensorFlow.

YcraHoBka Keras B KoHTeiHep Docker

OnuH M3 caMbIX MPOCTBIX CIIOCO60B HauaTh pabory ¢ TensorFlow

Keras - ycraHoBuTh 1x B KOHTeliHep Docker. YIo6HO BOCII0/Ib30BATHCS
rotoBbIM o06paszom Docker ajis ry6okoro obydeHust, Co3gaHHbIM CO00-
LIECTBOM; OH COZIepKuUT Bee ronyisipHbie 6ubnuorexku 'O (TensorFlow,
Theano, Torch, Caffe u 1. 1.). Heo6xonumele ¢aiiibi UMEIOTCS B Pero-
suropun Ha GitHub mo agpecy nttps://github.com/saiprashanths/dl-
docker. B ripennonoxenun, uro Docker yxke ycraHoB/IeH U pabotaer (cm.

https://www.docker.com/products/overview), YCTAHOBKA He BbI3bIBaeT

HMKAKUX TPYIHOCTENA:

gulli-macbookpro:dil-docker gulli$ git clone https://github.com/saiprashanths/dl-docke
.git

Cloning into 'dl-docker'...

remote: Counting objects: 89, done.

remote: Total 89 (delta @), reused @ (delta @), pack-reused 89

Unpacking objects: 108% (B89/89), done,

gulli-macbookpro:dl-docker gullis l

v

Ha clenyroumemM CHMMEKe 3KpaHa ITOKd3aHO, KaK Imocdiie ImojiyyeHMs

obpa3za u3 Git crpoutcst Konreiinep Docker:

gulli-macbookpro:dl-docker gulli$ cd dl-docker/
gulli-macbookpro:dl-docker gulli$ docker build -t floydhub/dl-docker:cpu -f Dockerfile
.Cpu .

Sending build context to Docker daemon 284.2 kB
Step 1 : FROM ubuntu:14.94

---> 3f755cad2730

Step 2 : MAINTAINER Sai Soundararaj <saip@outlook.com=
===> Using cache

-——> af@2b42bdelc

Step 3 : ARG THEANO_VERSION=rel-0.8.2

---= Using cache

-=-> cBd@3ba7ecff

Step 4 : ARG TENSORFLOW_VERSION=8.8.8

———= lsing cache

-——> de@ed51e5732

Step 5 : ARG TENSORFLOW_ARCH=cpu

===> Using cache

-==> 278d4bfbccaa

Step 6 : ARG KERAS_VERSION=1.0.3

———= Using cache

———> 61219a95474f

Step 7 : ARG LASAGNE_VERSION=v@.1

-=--> Using cache

———> 585e125f1e76

Step B : ARG TORCH_VERSION=latest

———= lsing cache

---> fadc4246c2ec

Step 9 : ARG CAFFE_VERSION=master

=-==> lUsing cache

———> 089ad8491f04

Step 1@ : RUN apt-get update && apt-get install -y be build-

YcraHoeka Keras B koHTeitHep Docker < 61

A 31ech Mbl BMOMM, KaK 3TOT KOHTE‘ﬁHE]J 3alrycKaeTcs:

gulli-macbookpro:dl-docker gulli$ docker run -it —p 8888:8888 —p 60@6:6006 floydhub/dl]
—docker:cpu bash

root@780edd54bTc@:~% 1s 1
caffe iTeorch run_jupyter.sh torch

root@78eedds4bfca:~# [

W13 KoHTeliHepa MOKHO aKTMBMPOBATh MOAAEPKKY cepsepa Jupyter
Notebooks (cM. nttp: //jupyter.org/):

root@780e@d54bfc@:~# sh run_jupyter.sh

[T 18:51:17.489 NotebookAppl Copying /root/.ipython/kernels —> /froot/.local/share/jupy
ter/kernels

[T 18:51:17.498 NotebookApp] Writing notebook server cookie secret to /root/.local/sha
refjupyter/runtime/notebook_cookie_secret

(W 18:51:17.528 NotebookApp] WARNING: The notebook server is listening on all IP addre
sses and not using encryption. This is not recommended.

[I 18:51:17.536 NotebookApp] Serving notebooks from local directory: /root

[I 18:51:17.536 NotebookApp] @ active kernels

[T 18:51:17.537 NotebookApp] The Jupyter Notebook is running at: http://[all ip addres
ses on your system]:8B888/7token=5083b59dc969d43f588638e3bd153dd1525837ff46d7blebd

[T 18:51:17.537 NotebookApp] Use Control-C to stop this server and shut down all kerne
ls (twice to skip confirmation).

[C 18:51:17.539 NotebookAppl

Copy/paste this URL into your browser when you connect for the first time,
to login with a token:
http://localhost: 8888/ 7token=583b59dc969d43f588638e3bd153dd1525837ff46d7blebd

[T 10:51:32.547 NotebookApp] 302 GET / (172.17.€.1) 0.60ms
[I 10:51:32.553 NotebookApp] 302 GET ftree? (172.17.0.1) 0.B6ms
[I 10:51:40.207 NotebookApp] 302 GET /?token=503b50dc069d43f588638e3bd153dd1525837F146
d7blebd (172.17.@.1) @.36ms
| |

Cucrema Gymer paboTarhb IIPSIMO Ha JOKAIbHOI MalllMHe:

: Jupyter Logout

Files Rusining Chusters
Select items to perfonm actions on them. Upload New= &
- #
L3 catte
L3 Morch
3 torch

(i} run_jupyter.sh

Ecth TakKe BO3MOXKHOCTb Mnoiyunth mocryn K TensorBoard (cm.
https://www.tensorflow.org/how_tos/summaries and tensorboard/),

AJ1s1 4ero Hy»>XHO BbITIOJTHMTD ITOKA3aHHYI0 HMXKe KOMaHOy:

root@7b599dedcaeb:~# tensorboard --logdir .J ‘

B pesy/ibTaTte Bbl YBUJUTE TAKYIO CTPAHUILY:

€ @ lecalhostBO0E/#graphs

TensorBoard EVENTS IMAGES GRAPH HISTOGRAMS

62 <+ [hasa 2.YctaHosKa Keras v onucaHue API

YcraHoBka Keras B Google Cloud ML

Yeranosuts Keras B ob6nako Google Cloud ouens mnpocro. CHavana
HY}KHO YCTAHOBMTH KOMaH/HbI MHTepdeiic (daiil MOKHO CKavaTh 110
afpecy https://cloud.google.com/sdk/), K mardopme Google Cloud;
1nocjie 3Toro Mbl cMOXeM ucnonb3zosath CloudML, yripasisiemyio
cykBy, KoTopas rosposiser 6e3 Tpyna CTPOUTh MOJEIU MAlMHHOTO
obyuenus cpencreamu TensorFlow. Ilpexxme yem nepexoauTsh K Keras,
Bocronb3yemcst Google Cloud B coueranuu ¢ TensorFlow, uTo6s1 06yunTh
Mofeinb Ha Habope pmaHHbix MNIST, kotopbiit umeercst Ha GitHub. Kog
OyIeT HaXOOMUThCS HA JIOKAJIbHOM MalliHe, a 06yyeHue poucxoanThb B
obnake.

gulli-macbookpro:google-cloud-sdk gullis git clone https://github.com/GoogleCloudPlatform/cloudml-samples/|
Cloning into 'cloudml-samples'...

remote: Counting objects: 118, done.

remote: Total 118 (delta @), reused @ (delta @), pack-reused 118

Receiving objects: 1@@% (118/118), 84.40 KiB | @ bytes/s, done.

Resolving deltas: 18@% (49/49), done.

gulli-macbeokpro:google—cloud-sdk gullis JI

Ha cleagyrouiemM CHMMEKe SKpaHa IToKas3aH ITpoToKOJ OGYHQHI—’ISI:

gulli-macbookpro:codefook gulli¥ <d cloudm(-samples/mnist/irainable
gulli-machookpro:traineble gullis 1s
trainer
gulli-macbookprostraingble gullis gcloud beta ml lecal traim ——package-path=trainer --module-name=trainer,task
Successfully downloaded train-images-idx3=-ubyte.gz 9912422 bytes.
Extracting Sfver/folders/dx/s5b48119252_s1sGDTTI5M) r@@cn@1/T/tnpcARKT j/train-1nages—idx3-ubyte. g2
Successfully downloaded train-labels-idxl-ubyte.gz 28881 bytes.
Extracting fvar/folders /dx/s5b481192s2_s1sGbt135m) r@@cn@1/T/tnpcARKT j/train-1labels-idxl-ubyte. gz
Successfully downloaded t18k-images-idx3-ubyte.gz 1648877 bytes.
Extracting fvar/folders /dx/s5b48119252_s1sB0t135m) rd@cn@ 1/ T/ tnpcARKT j /t18k-images—idxI-ubyte.gz
Successfully downloaded t18k-labels-idxl-ubyte.gz 4542 bytes.
Extracting fvar/folders/dx/s5b4aBl192s5z_s1s6btf35m) ra@cn@1/T/tnpcARKT) /t18k-1abels-1dxl-ubyte.gz
Step 0: loss = 2.32 (9.918 sec)
Step 108: loss = 2,19 (0.@82 sec)
Step 208: loss = 1,94 (0,882 sec)
Step 30@: loss = 1.64 (0.@82 sec)
Step 48@: loss = 1,308 (0,882 sec)
Step 508: loss = 8.95 (9.882 sec)
Step 689: loss = 8.B@ (D.882 sec)
Step 708: loss = 8.67 (9.862 sec)
Step B@8: loss = B.62 (0.@882 sec)
Step 908: loss = 8,48 [9.882 sec)
Tralning Data Eval:
Num exanples: 55008 WNum correct: 47295 Precision @ 1: @.8599
Validation Data Eval:
Num exanples: 58008 MNun correct: 4347 Precision @ 1: 0.8694
Test Data Eval:
Num exanples:
Step 18@0: loss
Step 1188; loss = 8,43 (8,115 sec)

18088 MNum correct: BG43 Precision @ 1: 8.B643
= 81
Step 1280: loss = .49 (0.8082 sec)

0.58 (9.818 sec)

Step 1388: loss = .48 (0.892 sec)
Step 1488: loss = 0.46 [0.882 sec)
Step 1588: loss = 8.34 (@.882 sec)
Step 1688: loss = 0.49 [0.882 sec)
Step 1788: loss = 8.29 (@.882 sec)
Step 1888: loss = 8,35 (0.882 sec)
Step 19@8: loss = B.39 (0.882 sec)
Training Data Eval:
Mum examples: 55008 MNum correct: 49243 Precision @ 1: 9.8953
Validation Data Eval:
Num examples: 580@ MNun correct: 4519 Precision @ 1: 0.9838
Test Data Eval:
Num exanples: 18088 Mum correct: 9088 Precision @ 1: @.5008
gulli-machookproitrainable gullis fj

Yro6bl HabMOOATh 3a MOC/IEN0BATeIbHBIM YMEHBIIEHMEM Iepe-
KPeCTHOI SHTPOIIMK, MOXXHO BOCITIO/Ib30BaThesl TensorBoard:

YcraHoska Keras B Google Cloud ML+ 63

li-machookpro:trainable gullis tensorboard —-logdir=data/ ——port=80880
rting TenscrBoard 29 on port B888

Tpaduxk nepekpecTHol IHTPOIMM MIOKA3AH HA PUCYHKE HIKE.

TensorBoard EVENTS IMAGES AUDIO GRAPHS DISTRIBUTIONS HISTOGRAMS

Write a regex to create a tag group b 4 xentropy_mean 1
D Split on underscores xentropy_mean
[Data downlozd links 240 |
200 |
Tooltip sorting method: default - i
120
0.800 |
Smaathing |
0.400 |
—— 0.6 3
0000 4000 BOOO 1200k 1.600k
. —
Horizontal Axis

RELATIVE WALL

Yrobsl Bocronb3oBaThes Keras nosepx TensorFlow, HY)XHO ITpocTo
cKauaTb McxonHblit Kon Keras ¢ caiita PyPl (https://pypi.Python.org/
pypi/Keras/1.2.0 MM GoJjiee MO3HION BEPCUIO), & 3aTEM MCIIOIb30-
BaThb Keras Kak naxketHoe pemenue mis CloudML:

(gulli-macbookpro:trainable gullis pcloud beta ml local train --package-path=trainer -——package-path=../../../CloudML/fchol
let-kergs-1,2.8-B-g1200681 . tar.gz —-module-name=tralner, task?
Using TensarFlow backend.

i@, “input_1°, {None, 224, 224, 3])

(1, 'blockl_convl®, [Mone, 224, 224, 64))
{2, "blockl_convi', [None, 224, 224, &4))
(3, 'blockl_poel’, (None, 112, 112, G4}
(4, "block2_convl®, [Mone, 112, 112, 128))
{5, "block2_conv2', (Mone, 112, 112, 128))
(8, "block2_pool', (Mone, 56, 56, 128)1
{7, "block3_convl’, [Mone, 56, 56, 2561}
(8, 'blockd_convi’, (None, 56, 56, 256))
(9, 'block3_conv3', [Mone, 56, 56, 256})
(18, 'block3_pool', [Mone, 28, 28, 2561)
(11, 'blockd_convl', {Mone, 28, 28, 512))
(12, 'blockd_convZ', (Wone, 28, 28, 5121}
(13, 'block4_conv3', [None, 28, 28, 512))
(14, 'blockd_pool', [Mone, 14, 14, 512})
015, 'blockS_convl', [None, 14, 14, 512))
(16, 'block5_conv2', (None, 14, 14, 512))
(17, 'blockS_conv3’, (None, 14, 14, 512))
(18, 'blockS_pool', [Mone, 7, 7, 512))
(1%, 'flatten’, [None, 25888)}

(28, 'fcl', [(Mone, 4806]]

(21, 'Tcz', [(Mone, 4896)]

(22, 'predictions’, [None, 1888))
gulli-machockpro:trainable gullis s

data trainer
gulli-machockpro:trainable gullis Jj

Huxe B kKauecTBe InpuMepa rnpmMBeneH CKpMIIT trainer.taskZ.py!

from keras.applications.vggl6é import VGGl6
from keras.models import Model
from keras.preprocessing import image

64 <+ [hasa 2.YctaHosKa Keras v onucaHue API

from keras.applications.vgglé import preprocess_input
import numpy as np

roroBas, yme obydeHHas Mmomene rayboxoro obyuenma VGG-16
base _model = VGGl6 (weights='imagenet', include top=True)
for i, layer in enumerate (base model.layers):

print (i, layer.name, layer.output shape)

YcraHoBka Keras B Amazon AWS

Veranosuth TensorFlow u Keras B 06/ako Amazon 04eHb IIPOCTO.
MOKHO [aske UCII0/Ib30BaTh 'OTOBBIM 00pa3 MALIMHbI TFAMT .3, CBO-
GO HbBINI 11 6eCIUIATHBIN (CM. https://github.com/ritchieng/tensorflow-

aws-ami):

“« Q| & hitpsyfus-west-2 console.aws.amazon.cam/ec2 vl Mhamelragion=us-west-2#LasnchinstanceWizard: T w BB

Services ~ Resource Groups ~

1. Choose AMI 2 Chooge instance Type 3 Configure Instance 4 Add Storage 5 Add Tags & Configura Security Group 7 Review

3 i Cancel and Exit
Step 1: Choose an Amazon Machine Image (AMI) =
An AN is a template that contains the software configuration (operating system, application server, and applications) required to launch your =
Instance. You can Select an AMI provided by AWS, OUr User community, of the AWS Marketplace: or you can select one of your own AMIS

Quick Start . 1t01of 1 AMIs

My AMIS

TFAMIV3 - ami-52bb0c32 m
AN'S Marketplace (}

Crpan-zource Tansolow AMI that is maintainad ty the public that

2 % G4-DIt
| Community AMIs is open, free and it works

Rook device type sbis Virtuakzalion typa: hm

* 0 ing system

Otor 06pa3 yCTaHAB/IMBAETCSl MEHbIle YeM 3a MSITh MUHYT U IO -
nepxkuBaer TensorFlow, Keras, OpenAl Gym M Bce HeoBXOomuUMbie
zapucumoctu. 1o cocrosiHuio Ha stHBapb 2017 roay noamepxuBaincCh
cenyiolue BepCcun:

Q TensorFlow 0.12
O Keras 1.1.0

O TensorLayer 1.2.7
QO CUDA 8.0

Q CuDNN 5.1

O Python 2.7

Q Ubuntu 16.04

Kpowme Toro, 06pa3 TFAMI . v3 pa60TaeT Ha BbIYMCIIMTE/IbHBIX MHCTAaH-
cax P2 (CM. https://aws.amazon.com/ec2/instance-types/#p2), KaK M0-
Ka3aHo Ha ¢1egyioleM CHMMKe 3KpaHa:

L7

YcraHoBka Keras B Microsoft Azure <+ 65

< @ | @ hitps//us-west-2.console, aws.amazon,com,/ ec/ v ome region =us

Services ~ Resource Groups ~

4 Add Slorsge . Add Tags il Configrs Socurd

1 Choosa AMI 2.Choosa instance Type 3. Configure b

Step 2: Choose an Instance Type

Amazon EC2 provides a wige selection of instance lypes oplimized to it diferent use cases, Ir
combinations of ary, Storage. and netw cagaciy, and give you the Nexibie

an meet yaur computing nesds.

can fun applications. They have
N of FESOUTEES far your

applications. Learm mare about instance types and how b

Filter by, ~ GPU compute ~ Curent generation ~ Show/Hide Columns

Currently salected: 12 micro (Varable ECUs, 1 vCPUs, 2 5 GHz, intel Xeon Family, 1 GE memory, EES oniy)

P T " Instance Storage EBS-Optimized Network Performance
Famil: - T - wlPUs (| ~ Memory [GiB) - - B - .
S by LB, 38y (1 Availabiba [(]
AU computa P2 xlarge 1 (] EBS only e High
GPU compute p2 Bxtarge az B8 EBS onby Yag 10 Gigans
GFU computa P2 16xiarge 64 7z EBS only Yo 20 Gigabk

Huke repe4dymcieHbl HEKOTOPbIe XapaKTepUCTUMKKM MHCTaHCOB P2:

O npoueccopsr Intel Xeon E5-2686v4 (Broadwell);

O rpaduueckue rpoueccopst NVIDIA K80 ¢ 2496 napasuienbHbIMK
sapamu u 12 I'b namsiTu;

O nopmep:kKa rpamMoro obmMeHa gaHHbIMKU Mexay GPU;

O pacuiMpeHHbIe CeTeBble BO3MOMKHOCTU (CM. https://aws.ama-
zon.com/ec2/fags/#What networking capabilities are includ-
ed in this feature), ArperMpoOBaHHAsl MPOIYCKHAsl CIOCOO-
HocTh ceTu 20 I'6/c.

06pa?, TFAMI.v3 paﬁo'rae'r TaKKe Ha BEIUMCIUTENbHbIX MHCTaHCcax G2
(CM. https://aws.amazon.com/ec2/instance-types/#g2), oﬁna,nalom,ux,
B YACTHOCTH, TAKMMM CBOICTBAMM:

O mnpoueccopsr Intel Xeon E5-2670 (Sandy Bridge);
O rpaduueckue rpoueccopsl NVIDIA ¢ 1536 supamu CUDA u 4T'b
BUIEOTIaMSTH.

YctanHoBKa Keras B Microsoft Azure

OnuH u3 crioco6oB yeraHoBuUThL Keras B o6mako Azure — cHavyasa ycra-
HOBUTb Iopaepskky Docker, a 3aTeM cKayaTh KOHTEMHHEPHYIO BEPCUIO
TensorFlow rutroc Keras. B ceTu MOXXHO HaiiTH MOAPO6GHbIE MHCTPYKLIMM
o ycraHoBke Keras 1 TensorFlow B couetanmu ¢ Docker, Ho 110 cyuiect-
BY 3TO TO, UTO MbI YK€ BUJIE/IM B MPEIBIAYIIEM pasfiene (CM. https://

blogs.msdn.microsoft.com/uk_faculty_ connection/2016/09/26/

ten-:-.:3rflow—c:n—dccker—with—rr.icrr:,soft—az‘Jrex’).

66 < [nasa 2.YctaHoBka Keras 1 onucanue API

Eciu Bbl ucnonb3yere Theano B KauecTse 6a30B0ii 61M6/IMOTEKH, TO
st 3anycka Keras 1ocTaTouHO BCero JIMILb 3arpy3uTh TOTOBbLIA ITAKeT,
umerotumiicst B kKoutekiuu Cortana Intelligence Gallery (em. https://
gallery.ccrtanaintelligence.cDmfExperiment/TheanD—Keras—l).B cle-
IyIOLIeM IpUMepe [M0Ka3aHo, KaK MOXHO umropruposats Theano u
Keras B Azure ML HernocpencrBeHHo B Buje ZIP-daiina 1 uCIonb3o-
BaTh Ux B Moay/e Execute Python Script. 2Tum npumepom Mbl 06s13a-
Hbl Xait HMHIO (CM. https://goo.gl/VLR250), IO CylLIecTBY 3nech Keras
BBIITOJIHSIETCSI BHYTPU METOJA azureml main () !

¥ Cxpunt [OIIKEH comepxars QyHxkumw azureml main, ABIAONYOCH
Toukol BxOZa B ITOT MOOYIb.

import pandas as pd

import theano

import theano.tensor as T

from theano import function

from keras.models import Segquential

from keras.layers import Dense, Activation
import numpy as np

¥ Bra ¢yHKUMA NPUMHMMAST OBA HEODASATENBHHX APTYMEHTA:

Param<dataframel>: a pandas.DataFrame

Param<dataframeZ>: a pandas.DataFrame

def azureml_main(dataframel = None, dataframe? = None):

£

3neck OOM¥KHa BETE JOTHKA NpoIrpamMMel

T

print {'Input pandas.DataFrame #l:rnrn{0}'.format (dataframel)}

Ecmu zip-bdain NooknoueH K CTOPDOHHEMY BXOINHOMY MODPTY,

TO OH PACHakoBHEBaseTcA B karanor ".Script Bundle—, xoTopemt
noBaenaercAa B sys.path. [osTomy, ecnu zip-bain comepsuT
Python-daitn mymodule.py, TO €ro MO¥XHO MMIODTHMDOEBATE TaK:

= = e S e

import mymodule

model = Seguential ()

model.add (Dense (1, input dim=784, activation="relu"))

model.compile (optimizer='rmsprop', loss='binary crossentropy',
metrics=['accuracy'])

data = np.random.random{((1000,784))

labels = np.random.randint (2, size=(1000,1)

model.fit (data, labels, nb_epoch=10, batch size=32)

model .evaluate (data, labels)

return dataframel

Ha pucyHKe HUKe [T0KasaH [pUMep UCIoib3oBanus Microsoft Azure
ML g BeinonHeHus Theano u Keras:

Keras APl <+ 67

e Learning Studio gl epace - @ AP

Running] ¥ Properties Project
4 Execute Python Script

o Pythan seript
™ 1 # The seript MUST eont
i Blke Buyers 2 # which is the entry p
3
4 # imperts up hers con
5 import pandas as pd
B i t theano
gy thesno_keras.zip il .

Pythan Version
Anaconda 4.0/Pythen 2.7.11 5

ME L1/2007 3.
Bunning
SOETAS Nane
View output log
15';_ Execute Python Seript o View error log
[< it]
S NS
[Mini Mop v |
=
& e
Quick Help e

Executes a Python script from an Azure
Maching Learning experiment
{mara help..)

U HESTORY AT A5

FURLISH T
BALLERY

Keras API

Keras obnamaer MOOY/IbHO! MUHMMAIMCTCKOIN M JIEIKO pacilupsieMoit
apxurekrypoit. ®pancya Hlonne, aprop Keras, nuuier:

Ipu paspabomke 6ubAUOMEKU OCHOBHOE BHUMAHLUE YOENAN0Ch
noddepxcke Goicmpolx skcnepumermos. CokpaiyeHue nymiu om udeu
K pesyiismanty — Koy K ycnewHoti ucciedogamensckoii padome.

C nomowbsw Keras OIIpene/siloTCs BbICOKOYPOBHEBbIE HEﬁDOHHb[e

cetu, paboratouiue rosepx 6ubnauoreku TensorFlow (cM. https://
github.com/tensorflow/tensorflow) WIU Theano (CM. https://github.
com/Theano/Theano). laJlUM HEKOTOPbIE MOSICHEHUS.

O MoayiasHocTb. Mogenb rpeacrasisier coboii 1moc/ienoBaTeb-
HOCTb WM rpad aBTOHOMHBIX MOAY/IEM, KOTOPbIE COEIUHSIIOTCS
Mexay coboii, Kak getanu KoHcTpykropa LEGO, o6pa3sys Heii-
poceTb. B 61b/110TEKe MMEeTCsl MHOXKECTBO I'OTOBBIX MOJYJIENH,
peaM3yIOlMX pas/iMuHble TUIIbI CJI0€B, (PYHKLMIA CTOMMOCTH,

68 <+ [hasa 2.YctaHosKa Keras v onucaHue API

OITUMM3ATOPOB, CXeM MHULMaIM3ALMK, QYHKLMIT aKTUBALIMM
M METOMIOB PErysipusaliu.

O Munaumanusm. bubnuoreka Hanucana Ha Python, Bce momynn
KOPOTKHUE M CAaMOIOKYMEHTUPOBAHHBIE.

O PacuupsieMoCTb. B 6uO1MOTEKY MOXKHO [100aBJISTH HOBYIO
(pyHKIIMOHAIBHOCTE. DTOM TeMe IIOCBSALIEHA [1aBa 7.

BeeneHnune B apxutekrtypy Keras

B srom paspesie Mbl pacCMOTPMM CaMble Ba)KHbI€ KOMITOHEHTbI
Keras, npumeHsieMble [JIs1 OlpenejieHns: HeiipoHHbIX ceteil. CHauana
orpeieNinM, UYTO TaKoe TeH30p, 3aTeM O0CYIMM pasjiMnyHbie CI10Co0bI
CcoellMHEeHMsI TOTOBBIX MOMYJIEH M B 3aK/I0UeHue ornuileM Haubosee
yIoTpeduTeibHble MOIYITN.

Y10 Takoe TeH3op?

Keras nonbayercs 6ubnuorekoii Theano uiu TensorFlow mns ad-
(heKTUBHBIX BbIUMC/IEHUIT ¢ TeH30pamMu. Ho uTo Takoe TeHsop? [a npo-
CTO MHOTOMEpHbIIf MaccuB i matpuia. O6e 6uBIMOTEKN YMEIOT
3G (EKTUBHO BBIMOIHITH CUMBOJIMUECKUE BbIYUCIEHUSI C TEH30PaMH,
a 9T0 OCHOBHOJ CTPOUTEIIbHbII BJI0K J1J1sl CO3JaHMsI HEIPOHHbBIX CETeiA.

CoepuHeHue mopgenen Keras
B Keras ectb fBa criocoba coefiHeHMs MOJesleii:

O mnocnenoBaTe/ibHas KOMITO3ULIUS
Q (yHKUMOHAIBHAS KOMITO3ULIMS.

PaccMoTpUM KX rToapo6Hee.

MocnedosamenvHan koMmnosuyus

B sToM cjlyuae roToBbie MOJIEIM COEIUHSIIOTCS B JIMHEIHbIM KOHBe -
ep cjI0eB, HAallOMMHAIOILMIL CTeK MK ouepenb. B riaBe 1 mMbl BCTpeya-
JIMCh € TAKMMM MOC/EI0BATeIbHbIMM KOHBeItepaMu, HalipuMep:

model = Seguential ()

model . add (Dense (N_HIDDEN, input_shape—(?Sq,]]]
model.add (Activation('relu'))

model . add (Dropout (DROPOUT))

model . add (Dense (N_HIDDEN))

model . add (Activation('relu'))

model.add (Dropout (DROFQUT))

model . add (Dense (nb_classes))

Keras APl <+ 69

model . add (Activation ('softmax'))
model . summary ()

@ynxuuonanbnas Komnosuuua

dyukumnoHaibHbli APl mossosser onpenensite 6ojiee CI0XKHbIE
MOJIeJIU, HallpuMep, alluKIndeckue rpadbl, MOJIEIU ¢ pasaesse MbIMMU
CIOSIMM MJTA C HECKOJBKMMM BbIXogamu. [Ipumepsbl 6yayT npuUBeIeHbl
B Iyase 7.

0630p roToBbIX C/1I0€B HEMPOHHBIX CETEH

Keras penocTapjsgeT HeCKO/JAbKO I'OTOBBIX C/IOEB. Mbl paccMoTpUM
Haubomnee yrIO'rpeErMTeanme M OTMETHM, B KaKMX IJlaBax 3TH CJION UC-
IIOJIb3YIOTCS.

OOGbI4YHbINA NNOTHLIA CNON

[TnoTHas Mmofelib — 3TO IOJIHOCBSA3HbII €101 HelipoHHOI ceTu. [Tpu-
MEepbI Mbl YK€ BUJIEJIU B 171aBe 1. Huske npuBeieH MPOTOTUIT MOJEIN CO
BCEMM MMapaMeTpamu:

keras.layers.core.Dense (units, activation=None, use bias=True,
kernel_initializer-—"glorot_uniform' ; bias initializer='zeros',
kernel regularizer=None, bias regularizer=None, activity regularizer=None,
kernel constraint=None, bias_const:ai:‘lt—l\!one}

PeKkyppeHTHble HePOHHbIE CeTU — NPOoCTasi,
LSTM u GRU

PekyppeHTHbIe HEJiPOHHbIE CETU — 3TO KJIAcC HEPOHHBIX CeTeli, B
KOTOPBIX MCIOAb3YETCSl MOCHef0BaTe/IbHAS MPUPOAA BXOAHBIX HaH-
HbIX. BXOIHBIMU TaHHBIMM MOKET ObITh TEKCT, PEUb, BDEMEHHbIE PSI/Ibl
u BooG1Ie 110605 06BEKT, B KOTOPOM IOSIBJIEHME 3JIeMeHTa I10C/Ie10-
BAaTEbHOCTU 3aBUCUT OT MPEAIUIECTBYIOIIMX 3IEMEHTOB. B riaBe 6 Mbl
O6ynemM o6CY:KIATh PEKYPPEHTHBIE CeTU TPeX BUIOB: mpocThie, LSTM u
GRU. Huke ripuBeieHbl ITPOTOTUITEI MOAE/El cO BCeMU ITapaMeTpamu:

keras.layers.recurrent.Recurrent (return sequences=False,
go_backwards=False, stateful=False, unroll=False, implementation=0)
on='tanh', 'Jse_b:i_as—-True_.

keras.layers.recurrent.SimpleRNN (units, activat
kernel initializer="glorot uniform', recurrent initializer='orthogonal',
bias initializer='zeros', kernel regularizer=None,

recurrent regularizer=None, bias regularizer=None,

activity regularizer=None, kernel constraint=None,

recurrent constraint=None, bias_constraint=None, dropout=0.0,

70 <+ [hasa 2.YctaHoBsKa Keras v onucaHue API

recurrent_dropout=0.0)

keras.layers.recurrent.GRU (units, activation='tanh',

recurrent activation='hard sigmoid', use bias=True,
kernel initializer='glorot uniform', recurrent initializer='orthogonal',
bias initializer='zeros', kernel regularizer=HNone,

recurrent_regularizer=None, bias regularizer=None,

activity regularizer=None, kernel constraint=None,

recurrent constraint=None, bias_constraint=None, dropout=0.0,
recurrent dropout=0.0)

keras.layers.recurrent.LSTM (units, activation='tanh',
recurrent_activation='hard sigmoid', use_bias=True,
kernel initializer="glorot uniform', recurrent initializer='orthogonal',
bias initializer='zeros', unit forget bias=True, kernel regularizer=None,
recurrent regularizer=None, bias regularizer=None,
activity regularizer=None, kernel constraint=None,
recurrent constraint=None, bias_constraint=None, dropout=0.0,
recurrent_dropout=0.0)

CBepTO‘-IHbIe U NYyNAUHIroBblie Con

CBepTOUHbIE CeTH — KJIACC HEMIPOHHBIX CeTel, B KOTOPBIX CBEPTOU-
HbIE U MYJMHIOBLIE OI€PaLMii MCIIONb3YIOTCS IJISI TIOCTEIIeHHOTO 06-
y4eHMs JIOBOJIbHO CIOXHBIX MOJIENeil C TMOBBIIAIIIMMCS YPOBHEM
abcrpakumu. Takoii croco6 o6ydyeHust HalIOMUHAET MOJEJb YeJloBede-
CKOTO 3peHsI, CIOKMBIIYIOCS B Pe3Y/IbTaTe MIUJUTMOHOB JIET 9BOTIOLIMM.
CBepTOYHbIE CeTH 06CYKIAI0TCS B raBe 3. Hioke mpuBeneHbl IPOTOTH-
TIbI MOJIe/Ieli CO BCceMM ImapamMeTpamm:

keras.layers.convolutional .ConvlD (filters, kernel size, strides=1,
padding='valid', dilation rate=1, activation=None, use bias=True,
kernel initializer='glorot uniform', bias initializer='zeros',
kernel regularizer=None, bias regularizer=MNone, activity regularizer=None,
kernel constraint=None, bias constraint=None)

keras.layers.convoluticnal.Conv2D (filters, kernel size, strides=(1, 1),
padding='valid', data format=None, dilation rate=(l, 1), activation=None,
use bias=True, kernel initializer='glorot uniform',
bias initializer='zeros', kernel regularizer=None, bias regularizer=None,
activity regularizer=None, kernel constraint=None, bias constraint=None)

keras.layers.pooling.MaxPoolinglD(pool size=2, strides=None,
padding="'wvalid")

keras.layers.pooling.MaxPooling2D(pool size=(2, 2), strides=None,
padding='valid', data format=None)

Keras APl < 71

Perynspusauus

Lenb peryasipmsaiidi — peioTBPaTHTh epeobyueHne. Mbl yKe BU-
Ienu MpMMepbl UCIO/Ib30BaHMs B I1aBe 1. B ¢iosix pa3nmMuHbIX TUIIOB
MMEIOTCs TapaMeTphbl peryisapusannn. Hiske rpuBeneH CIIMCOK apa-
METPOB PeryaspM3aliii, YaCcTO MCIO0Ib3YEeMbIX B IJIOTHBIX M CBEPTOY-
HBIX MOIYJISIX.

Q kernel regularizer: flJYHKU,I—’lH peryiasipmMsaluu, rnpuMmeHsieMas
K MaTpulie BeCOB;

Q bias regularizer: dJYHKU,MH peryiasipusanmu, npMmMeHsemMas K
BEKTOPY CMelleHWIT;

Q activity regularizer: q}yHKLLHSl peryiadgapusanimy, rnpumeHsie-
Mast K BbIXONY ¢J10s1 (ero Cb'y"HKLLHM akTuBauuu).

Kpome Toro, 1jisi pery/isipusaliuy MOXHO MCII0/Ib30BaTh IIPOPEKU-
BaHMe 1 3a4aCTyI0 9TO JaeT BeCcoMbIii 3(hdeKT:

keras.layers.core.Dropout (rate, noise shape=None, seed=None)
roe:

QO rate - BeulecTBeHHOe uucsio 0T 0 10 1, MoKkasbiBawlliee, CKOJIbKO
BXOJIHBIX GJIOKOB 0TOpaCchIBaTh;

Q noise shape — OJHOMEpPHBII LeIOUMC/IEHHBII TeH30D, 3a4al0-
wuit hopMy IBOMYHOI MAacKy MPOPEKUBAHMS, KOTOpast YMHO-
JKaeTcsl Ha BXOIHOJ CUrHAal,

Q seed — LIeJI0E YMCIIO, CYIKALLIee IJIs1 MHULMAAM3aluyu reHepaTo-
pa CIy4yaitHbIX YMCel.

MakeTHas HOPpMUPOBKa

[TakeTHas HOPMMPOBKA (CM. https://www.colwiz.com/cite-in-
google-docs/cid=f20f9683aaf69ce) [03BONISIET YCKOPUTH 06‘54"\{91-[}19 "
B 0011eM cinydae rnojaydymTb 60.?'11:”.[}"[0 BepHOCTb. [Ipumepst 6Y,EWT pac-
CMOTpeHBI B [1aBe 4 1npu OGCY)KJIE‘HMI—’I MOPOXKOAIMX COCTA3aTe/IbHbIX
cereli. Huxke npuseeH NpoOTOTUII C apameTpamu:

keras.layers.normalization.BatchNormalization{axis=-1, momentum=0. %9,
epsilon=0.001, center=True, scale=True, beta initializer='zeros',
gamma initializer='ones', moving mean initializer='zeros',
moving_variance_initializer—'ones', beta regularizer=None,
gamma_regu;arizer—NDne,beta_constraintéNcne,gamma_constraintéNone}

72 < [hasa 2.YctaHosKa Keras v onucaHue API

0630p roToBbIX (PYHKLMM aKTUBALUU

K umcny roroBbix (pYHKLUMI aKTUBALMKM OTHOCSITCS, B YaCTHOCTM,
CUrMOMIA, IMHeHast QYHKIMSL, TUITepOoIMYecKiii TAHIeHC M OJIOK JIu-
HeiiHoii pektudukanum (ReLU). Hecko/nbKo pUMEpPOB Mbl Y3Ke BUIEIN
B IJIaBe 1, a B moCjienywIimux rjiaBax BCTpeTUM U apyrue. Ha pucyHke
HIDKe [puBeeHbl rpadMKy BblllerepedncieHHbIX hyHKImit.

Curmoupa NuHeitHas yHKUMA
= /
Er I e
50 5 [1548
3
.1_//
4112 3 4 5 B 7 8 9
2
/ B
£l
S o I I rar
BT -p-Fa-pq 1234858087809 Al
=t
Tunepbonuueckuii TaHreHc RelLU
Lot
//———— 8
f=l
| U_,,_/.) Lt
Lt
8-7-8-F-4-3-2-1 1 1 2 3 46 ¢ 7 8 08
3
/ Lol
B -7FT-F-FH4-3-F-1 1 23458 T8 9

0630p ¢yHKUMIA NOTEPL

DOyHKUMKU 10TEPh (WK LiefieBble PYHKUUM) (CM. https://keras.io/
losses/) MOXHO OTHECTU K YeTbIpeM KaTeropusim:

O BepHocTb, UcIoNb3yeMast B 3afauax Kinaceuburarym. Takux QyHK-
LIMI1 YeTbIpe: binary accuracy (CPEIHSISI BEPHOCTh I10 BCEM IIpe[i-
CKa3aHUSIM B 3afauax GMHApHOM KiIacCUUKALUM), categorical
accuracy (CpeIHsSISI BEPHOCTh 110 BCeM IpeACcKa3aHusIM B 3aavyax
MHOT'OKJIACCOBO maccmclmxaumu), sparse categorical accuracy
(Mcrionb3yeTest, KOraa MeTKWM PaspeXkeHHbIe) U top k categorical
accuracy (YCIIEXOM CUMTAETCS ¢JIyyaii, KOraa MCTUHHBIN 1eJ1eBOii
KJ1aCC HAXOUTCS CPeiM MePBLIX top k IpefCcKa3aHmii).

Q Omnbka, M3MepsIIolas pasjiMuue MEXIY MpeacKasaHHbBIMU U
(hakTHMUeCKMMM 3HAYEHMUSIMM. BapMaHThI TAKOBBI: mse (CpeIHe-

Keras APl <+ 73

KBafjpatuueckass oOumbKa), rmse (KBaIpaTHLI KOpeHb U3
CpeHeKBagPaTUULCKON OLIMOKNM), mae (CpeaHsisi abCOMIOTHAsI
OLIMOKA), mape (CPEOHSIS OWIMOKA B IMPOLIEHTAX), msle (CPemHSs
KBafipaTuuHO-1orapudMudeckas ommnoKka).

O KycouHo-nuHeitHas PyHKIMS [10TePb, KOTOPas 00bIUHO [IPUME-
HseTcs 1151 060yueHus KiaccuduraTopos. CylecTBYeT IBa Bapu-
aHTa: KYCOUHO-auHeliHas, onpe,ae:zslemaﬂ Kak max(1 -y, = Yorea

0) u keadpamuuHas KycouHo-auHeliHas, paBHasi KBapaTy Kycou-

HO-JIMHEeIHOIA.

O KnaccoBas rorepst MCIIOABL3YeTCsT OJISI BbIUMCIIeHUS IIepe-
KDECTHOﬁ SHTPOIIMHK B 3ajadax Knaccudn—mauuu. CYLIJ,E‘CTBy-
eT HeCKOJ/JILKO BapUMaHTOB, BKIO4ast 6HHapH‘y’}0 InepeKpecTHyO
SHTPOIIUIO (CM. ht-:ps:.f'.f'er.AwiZ{ipediaADrgf'wiki,"Crc-ss_en'—_ropy) "
KaTeropMaJlbHYIO [TIepeKpPeCcTHYIO 3HTPOIINIO.

Heckonbko I[IpUMepOB LeleBbIX CIJYHKLLHIFI Mbl BUIeau B rnase 1,
d JOINOJIHHUTe/IbHbIe GY,I!,YT NnpuBeageHsbl B CJIeAYVIOHNIMX IVIaBax.

0630p nokasatenen KayecTsa

OYyHKUMKM TOKasaTeseil KayectBa (CM. https://keras.io/metrics/)
aHaJIOrMYHbI 1ejieBbIM GYHKIMSIM. EQMHCTBEHHOE pasjiuuue MexIy
HUMM COCTOMUT B TOM, UTO PE3Y/IBTAThI BLIYMCJIEHMS TTOKAa3aTeneil He
MCITONIb3YIOTCS Ha aTare obyueHus: Momean. [IpyumMepbl Mbl BUaeIU B
rjase 1, a JOMNOJIHUTEIbHbIE OYIYT IIPUBEIEHBI HIKE.

0630p onTMMM3ATOPOB

K umcny ontumusaropos orHocsitess CI'C, RMSprop u Adam. He-
CKONIbKO IIPUMEPOB Mbl BUJIEH B I1aBe 1, a nomnonHutenbHeie (Adagrad
u Adadelta, cM. nttps://keras.io/optimizers/) OYAYT NPUBEIEHbI B Clle-
OYIOIIMX T1aBax.

HEKOTopre noses3Hbie onepauuu

Huke mnepeumcieHbl HEKOTOPbIE BCIIOMOTraTe/bHbIE OIepaluun,
BrIOUeHHble B Keras APIL. VX tenb — yIipocTUTh CO31aHME CeTEeN, [po-
1ecc 00yuyeHus: M COXpaHEeHUe IMPOMEKYTOUHbIX Pe3y/IbTaTOB.

CoxpaHeHue u 3arpy3ka BeCOB U apXUTEKTypbl

Mogenum

st coxpaHeHus 1 3arpysKu apXUTEeKTYPbI MOZIeIN CIYKAT CeayIo-
e pyHKIMM:

74 <+ [hasa 2.YctaHosKa Keras v onucaHue API

coxpanuTe B dopmare JSON

json_string = model.to json()
coxpaHurs B dopmare YAML
vaml string = model.to yaml ()

BOCCTaHOBMTE MOIens u= JSON-daiina
from keras.models import model from json

model = model from json(json_string)
BOCCTAHOBMTE MOIenk = YAML-daitna
model = model from yaml (yaml string)

Jlns coxpaHeHus M 3arpy3KM ImapaMeTpPOB MOJeIH CIIYXKAT CIemylo-
e pyHKIMM:

from keras.models import load model

cozpmare HDF5-dain 'my model.hS5'

model . save ('my model.h3")

yOamuTe CYyWEeCTEYDLYE MOISNb

del model

BEepHYTE OTKOMIMIMPDOBAHHYE MONENL, MISHTUUHYE MCXOOHOM
model = load model ('my model.h3')

OOpaTHbie BbI30BbI A9 YIPaB/IeHUs MPOLEeCCOoM

oOyuyeHus

Hpouecc OGWEHHE MOXHO OCTAHOBMUTDL, KOrlad rokKasaTe/lb KayecTBa
repecraeT yiIyqinatbes. s 3Toro CryxuT cieayiouas QyHKLus 06-
PaTHOr'O BhI3OBA:

keras.callbacks.EarlyStopping (monitor='val loss', min_delta=0,
patience=0, verbose=0, mode='autoc')

McTopuio moTepb MOXKHO COXPaHMUTB, OTNpeNeauB Takie o6paTHbIe
BBI30BbI:

class LossHistorylkeras.callbacks.Callback):
def on train begin(self, logs={}):
self.losses = []

def on batch end(self, batch, logs={}):
self,losses.append(logs.get('loss'))
model = Seqguential ()
model.add (Dense (10, input dim=784, init='uniform'))
model .add (Activation('softmax'))
model.compile(loss='categorical crossentropy', optimizer='rmsprop')
history = LossHistory()
model.fit (X train,¥ train, batch size=128, nb_epoch=20,
verbose=0, callbacks=[history])
print history.losses

Keras APl 75

KoHTpOnbHbIE TOYKU

KoHTponbHasi TOUKa — 9TO IMPOLECC HNepUOAMYeCcKOro CoOXpaHeHMs
MIHOBEHHOI'O CHUMKA COCTOSIHMSI IIPUJIOKEHMSI, TAK YTOObI ITPUIIOXKE-
HME MOKHO ObLI0 Mepe3anyCcTUTh C MOCIeIHero COXpaHeHHOro CoCTo-
SHMS B CJIydae OTKasa. ITO ObIBAeT M0Je3HO MpU 00Y4eHUU ryOoKuX
Mopmeseii, KOTopoe 4acTo 3aHMMaeT [jiuTe/ibHoe Bpems. CocTosiHMem
ry6oKoi Moenu o0yueHus B JI060i MOMEHT BpEMEHM SIBJISLIOTCS Be-
ca, BbIYMCJIEHHBIE K 3TOMY MOMeHTY. Keras coxpansiet Beca B popmare
HDF5 (cM. https://www.hdfgroup.org/) M [IPeNOCTaB/SIET CPEACTBA CO-
XpaHeHUsI KOHTPOJIbHOM TOYKHM € rToMolLbio APl 06paTHBIX BbI30OBOB.

[TpuBemeM HeCKOJIbKO CUTYaLlMii, KOrIa KOHTPO/IbHAs TOUKA I10JIe3Ha.

QO Ecnu TpeﬁYETCSI rnepesaryckaTh [porpaMmy ¢ rnocjiefiHeit KoH-
TPOJILHOI TOUKM I10C/Ie TOr0, KaK CIoTOBbII MHCcTaHe AWS Spot
(cm. http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/
'nc:w—spct—instances—work.'ntrr;l) WM BbITeCHsAeMasl BUPTYyallb-
Hasli MalllMHa Google (CM. https://cloud.google.com/compute/
dccsfinstancesfpreemptible)HEOHU1H3HPH)OCTHHOBHﬂaCb.

QO Ewin tpebyercss 0CTaHOBUThL 0GyuyeHMe, HAlpuMMep, IJisS TOTO
4yTOOBI IPOBEPUTH MOZE/Ib HA TECTOBBIX JAHHBIX, & 3aTEM IPO-
IOOJDKUTD C TIOCTeIHe KOHTPOIbHOM TOUKM.

O Ecwin tpebyeTcst cOXpaHaTh 6eTa-BepCiuio (C HaWIydLIuMM IT0Ka-
3aTe/ieM KauyecTBa, HAIpUMep, MoTepeii Ha KOHTPOJIbHOM Ha-
6ope) Momen, 00yuyaeMoli Ha MPOTSHKEHMM HEeCKOJIbKUX TIepu-
O[0B.

B nepBoM 1 BTOPOM Clly4ae MOXKHO COXPAHSTh KOHTPOJILHYIO TOUKY
ocjie Kaxa0ro nepuoa, ajsi 4ero JOCTaTOuHO CTaHAAPTHOIO UCIIONb-
30BaHMsI 0OPATHOIO BbI30BA Mode 1Checkpoint. [[pUBEIEHHBIA HUXKE KO,
[MOKA3bIBAET, KAK COXPAHUTh KOHTPOJIBHYIO TOUKY B IpoLiecce obyuye-
Hus1 rrybokoii mopenn B Keras:

from __ future import division, print function
from keras.callbacks import ModelCheckpoint
from keras.datasets import mnist

from keras.models import Sequential

from keras.layers.core import Dense, Dropout
from keras.utils import np utils

import numpy as np

import os

BATCH SIZE = 128
NUM_EPOCHS = 20

76 <+ [hasa 2.YctaHosKa Keras v onucaHue API

MCODEL_DIR = "/tmp"

(Xtrain, ytrain), (Xtest, ytest) = mnist.load data()

¥train = Xtrain.reshape (60000, 784).astype("float32™) / 255

Xtest = Xtest.reshape (10000, 784).astype("float32") / 255
Ytrain = np utils.to_categorical (ytrain, 10)

Ytest = np utils.to categorical (ytest, 10)

print (¥train.shape, Xtest.shape, Ytrain.shape, Ytest.shape)

model = Sequential ()

model.add (Dense (512, input_ shape=(784,), activation="relu"))
model.add (Dropout (0.2))

model .add (Dense (512, activation="relu"})

model.add (Dropout (0.2))

model.add (Dense (10, activation="softmax"))

model.compile {optimizer="rmsprop", loss="categorical crossentropy",
metrics=["accuracy"])

coxpaHMTE MODens

checkpoint = ModelCheckpoint (filepath=os.path.join (MODEL_ DIR,
"model-{epoch:02d}.h5"))

model .fit (Xtrain, Ytrain, batch size=BATCH SIZE, nb epoch=NUM EPOCHS,
va;zdation_splitéﬂ.i, callbacks=[checkpoint])

B TpeTheM ciyuae HYKHO C(JIEIMTH 3@ MOKa3aTejeM KauecTBa, Ha-
MpUMepP BEPHOCTHIO MM TTOTEPENt, U COXPAHSITh KOHTPOJIBHYIO TOUKY,
TOJIBKO eCJIM TEKYILMI TOKAa3aTe/ b JIyullle, YeM Y MPeAbIayIei coxpa-
HeHHOIi Bepcuiu. B Keras umeeTcs 10MOTHUTENIbHBIN rTapamMmeTp 06bek-
Ta KOHTPOJIbHOM TOYKM, save best only, KOTOPOMY CJIelyeT IPUCBOUTH
3HAYEHME true, €C/IM YKa3aHHAS PYHKLMOHAILHOCTD HeobXoauma.

Mcnonb3oBaHue TensorBoard coemecTHO ¢ Keras

Keras Inmpepjaaraetr OﬁpaTHbe—"I BbI30OB [Ji51 COXpaHeHMA rnoxkasaresnein
KayecTBa Ha oﬁyqammem N TeCTOBOM Haﬁope, d TakKe rmcrorpamMmm ak-
THUBa MK IJIA pa3/JIM4YHBIX CJIOeB MO eJIn:

keras.callbacks.TensorBoard(log dir='./logs', histogram freg=0,
write graph=True, write images=False)

CoxpaHeHHbIe JAHHbIE MOXKHO 3aTEM BU3YaIU3MUPOBATH C IIOMOIIBI0
rnporpammsbl TensorBoard, 3anyiieHHOM U3 KOMaHAHOM CTPOKM:

tensorboard --logdir=/full path to your logs

*

Pesiome <+ 77

Ucnonb3oeaHue Quiver coBmecTHO ¢ Keras

B maBe 3 Mbl 6ymem 06CY)XIATh CBEPTOUYHBbIE CETH, CIIELMATBHO
npeqHasHaueHHble [1jis1 06paboTkM M306pakeHMit. A ceifuac gagum
KpaTKuii 0630p npuioxkeHus Quiver (CM. https://github.com/jakebi-
an/quiver), TIOJIE3HOTO 151 UHTEPAKTUBHON BU3yaauU3alMK IPU3HAKOB
CBEPTOYHBIX ceTeit. [Tocsie MpocToii yCTaHOBKY JIJ1SI €T0 UCITO/Ib30BAHUS
NOCTATOYHO OAHOI CTPOKMA:

pip install quiver engine
from quiver engine import server server.launch(model)

JTa KOMaHja 3allyckaeT CepBep BM3yaJu3aluM Ha IOPTY
localhost:5000. Quiver ro3BojsieT BU3yaJlbHO MCC/IEN0BATh HENPOH-
HYI0 CE€Th, KaK IMOKa3aHo B CJIEYIOIIEM ITPUMEDE:

® L

L]

®

“ &

[
olen
eEe®

|
eHen
oHoHeoE oHOEeNR

ene

releoeleonme

Pesiome

B »r0ii rnaBe mbl 06cyamin, Kak yeraHoBuTh Theano, TensorFlow u
Keras:

Q Ha JIOKaJIbHYIO MAlllMHY;
O B kouTeitHep Docker;
O B obnako Google GCP, Amazon AWS u Microsoft Azure.

[ToMMMO 3TOro Mbl PACCMOTPE/IM HECKOJIBKO MomyJieii Keras 1 Takie
pacrpocTpaHeHHbIe OfepaliK, KaK 3arpyska 1 cOXpaHeHHue apXuTeK-

78 <+ [hasa 2.YctaHoBsKa Keras u onucaHue API

TYP M BECOB HEIIPOHHBIX CETEI, pAaHHSIS OCTAHOBKA, COXPAHEHUE UCTO-
pUM, KOHTPOJIbHbBIE TOUKH, B3aumoeiicreue ¢ TensorBoard u Quiver.

B wienyoiiei riaBe Mbl TO3HAKOMUMCS CO CBEPTOUHBIMM CETSIMM,
bynmaMeHTaNbLHOI HOBalME B yOOKOM 00yUeH I, KOTOPAs yCIIell-
HO IPUMEHSIETCS B TAKMX PA3HbIX MPeIMEeTHbIX 00/1acTsX, Kak obpa-
OOTKa TEKCTa, BUJIE0 M PeYM, a He TOJbKO 151 06paboTKu M300paxke-
HMIA, KAK MePBOHAYATBHO 3a1YMbIBAIOCh.

lnaBa

LI B B BN BE B BN IR AN IR N BN B B B BN B BN B BN BN BN BN BN BN BN B BN BE BN B B AN A N N I

[ny6okoe obyyeHue
C NPpUMMEHEeHUeM
CBEpPTOYHbIX CEeTEM

B npeapiayiimMx miaBax Mbl 00CY:KOa/IM IUIOTHBIE CETH, INE KaKIblid
HepPOoH CBSI3aH CO BCEMM HeiipoHaMM COCeTHUX c/10eB. Mbl TpUMeHMIN
IUVIOTHbIE CETM K KiacCHpMKALMKU PYKONMCHBIX wudp u3 Habopa
naHHbix MNIST. B aTOM KOHTEKCTE KaXXI0MY MMKCEIH0 BXOIHOIo M30-
OpaykeHMs COIOCTABIISIETCS OTE/IbHbINA HeiipOH, TaK UTO BCEro IOay-
yaeTcst 784 (28 x 28 nukceseii) BXOAHbIX HelipoHoB. OgHAKO npu Ta-
KOJi cTpaTerumu UTHOPUPYETCH MPOCTPAaHCTBEHHAN CTPYKTYpa U CBSI3U
BHYTpM M300paxeHus. Tak, cjienyoiuii parMeHT Koja rnpeobpasyer
pacTpoBbie M300paxKeHus BeeX HUQP B IVIOCKMIT BEKTOP, UTO [IPUBOLUT
K rorepe uH(GopMaLuu 0 MPOCTPAHCTBEHHOM JIOKAIM3aLIMu

X train comepzmr 60000 mzobpaxeswit pasmepa 28x28 --> npeofipasyem B
maccue 60000 x 784
¥ train = ¥ train.reshape (60000, 784)

¥ _test = X test.reshape (10000, 784)

CBepToUYHbIE CeTH 3aJeMCTBYIOT IPOCTPAHCTBEHHYI0 MHQOPMALIMIO
M TIOTOMY XOPOILO MMOAXOMAST Iist KiaccuuKaumu u306paxkeHuit. B Hux
MCII0/Ib3YETCs CrelanbHas apXUTeKTypa, MHCIIMPUPOBaHHAS JaHHbI-
MM, [TOJYYEHHBIMU B (DM3UOIOIMUECKMX IKCIIEPUMEHTaX CO 3PUTEb-
HOJt Kopoii. Kak yke oTMedasnoch, Hallla 3puTe/IbHasi CMCTeMa COCTOUT
M3 HECKOIbKMX YPOBHEI KOPbI, IPUUeM KaXKIbIi MOCIeIyIOLIMii pac-
Mo3HaeT Bce OoJiee KPYIIHbIE CTPYKTYPBI B IOCTYIalieit uHbopma-
umn. CHavuaaa Mbl BUAMM OTJe/IbHbIe ITMKCEJII, 3aTeM pasinuyaeM B HUX
MpocCThbie reoMeTpuYecKue (GOpPMbL, a 3aTeM — Bce 6oJiee CJI0KHbIE 3J1e-
MEHTBI: IIPeIMEeTHhI, JIMLIA, TeJla JII0Aeii M }KMBOTHBIX U T. I1.

80 <+ [nhaea 3.[nybokoe 0byyeHHWe C NPMMEHEHUEM CBEPTOYHBIX CETENH

CBepTouHbIe CETH 3aBOPAXKMBAIOT. Ha MpOTSLKEHUM KPaTKOIo Bpe-
MeHU OHM CTaJIu PesoioyUOHHOI TEXHOIOTHEN, TIepeBePHYBILEI ITpe -
CTaB/IeHUs] 0 BO3MOXKHOM B TaKMX 00/1acTsiX, Kak 06paboTka TekcTa,
BUJIE0 U Peul, a He TOJIbKO M300paXkeHMiA.

B 3T0ji [J1aBe Mbl PACCMOTPMUM C/IeIYIOLIME TEMBbI:

Q rnyboKMe CB€PTOUHbIE HEIIPOHHBIE CeTH;
O xinaccudukanms M306paskeHMiA.

[ny6oKas cBepTOUHasA HEMPOHHasA CeTb

I'ny6okas cBeprouyHas HelipoHHas ceTh (CHC) cocrouT 13 60/1b1110-
ro uncia eioes. OObIYHO B HEl YepemyoTcsl CJIOU IBYX TUIIOB — CBep-
TOUHBIE U IyJAUHroBbIe. [TTyduHa duibTpa BO3pacTaeT cjieBa Harpaso.
Ha nocnegnux starax 06bIYHO MCIIONBL3YETCS OOUH WM HECKOJIbKO
IMOJTHOCBS3HBIX CJIOEB.

KapTel npuaHakoe

‘u_ Boixopg,

- --T ------ \ cge;]ma

Ceeptka | Cy6pMckpeTHaauma Cybpuckpersaums MonHocessHbiA

B ocHoBe CBEPTOYHBIX ceTel exar TPpW MOen:

O nokaqbHOE PELEeNnTUBHOE T0Je;
O paspgensiemble Beca;
Q 1ynuHr.

PaCCMOTpHM MX [MooyepenHo.

JlokanbHble peuenTUBHbIe Nons

Iljist coxpaHeHus MMPOCTpaHCTBeHHOM nHbopMauuu yno6Ho rpemn-
CTaB/SITh KaXKI0e u3obpaxkeHue marpuiieit nukceneit. Torma mis Ko-
IMPOBAHMS JIOKAJIBHOM CTPYKTYPbl MOXHO IIPOCTO COEAMHUTH TOJ-
MaTpUILY COCETHUX BXOMHbBIX HEPOHOB C OJHUM CKPBITHIM HEIIPOHOM
CJIEYIOUIET0 /1051, KOTOPBIN U IMPeCTaB/ISIET OMHO JIOKAJbHOE pelern-
TUBHOE T10Jie. 3Ta Orepaius, Ha3biBaemMas CBEPTKOIA, M [jajia Ha3BaHUe
TUITY CeTeil.

L7

[nybokas ceepToyHan HeMpoHHaa ceTb < 81

Ucronb3ys nepekpbIBAKIIMECS MTOAMAaTPUIIbI, Mbl CMOXKEM 3aKOIM-
posartb bosbiie uudopmaimnu. [Ipearnonoxmum, K ipumMepy, UTo pasmep
KaXKIOM MMOAMATPULIBI PABEH 5 x 5 11 UTO 3T MTOAMATPULIBI UCITONIb3Y-
1oTes a1 06paboTku u3o0bpaxkenuii pasmepa 28 x 28 u3 Habopa MNIST.
Torna mbl cymeem co3gath 23 x 23 HelipOHOB JTOKaJIbHOI'O PeLernTUB-
HOTO T0JIS B CJIEAYIOIEM CKPBITOM ¢JI0e. JIeiiCTBUTENbHO, MOAMAaTPUILY
MOKHO CIBMHYTH TOJMbKO Ha 23 MO3MIIMK, @ 3aTEM OHA YT 3a rpaHu-
uy usobpaxkenus. B Keras pazmep ogHOI 1IoAMAaTPUIIbI, HA3bIBA€MbIi
anuHoi mara (stride length), sinsiercst runepriapaMeTpom, KOTOPbI
MOXHO HACTPOUTH B MPOLIECCE KOHCTPYUPOBAHUS CETEIA.

Omnpenenum KapTy MPU3HAKOB [IPU MEPEX0Ae OT OIHOTO CJI0S K APY-
romy. KoHeuHo, MOKHO 3aBECTU HECKOJIBKO KapT MPU3HAKOB, KOTOPBIE
obyualorcs HezaBucuMo. Harpumep, ajist 06paboTku u3o0paskeHmuii U3
Habopa MINST MoskHO HavaThb ¢ 28 x 28 BXOAHBLIX HEHPOHOB, a 3aTeM
opraHM30BaTh k KapT npusHakoB pasmepa 23 x 23 (c warom 5 x 5) B
CJIEIYIONIEM CKPBITOM CJIO€.

Paszpensiemble Beca u cMewweHus

HormycTym, Mbl XOTUM OTOWMTH OT CTPOKOBOTO TNPENCTABIEHUS TTUK-
celieit ¥ IMoJYyYUTb BO3SMOKHOCTb OOHAPYKMBATb OOUH U TOT JKe ITpu-
3HAK HE3aBUCKUMO OT TOI'0, B KAKOM MecCTe M300paskeHMst OH HAXOMUTCSL.
Ha ym cpa3sy npmuxouMT MbIC/Ib BOCIIO/Ib30BATHCS 001IMM HABOPOM Be-
COB M CMELIeHMIT [1J1s1 BCeX HeIIPOHOB B CKPBITHIX C10s1X. Toroa Kaskabiit
1031 0BYUMUTCSI PACIIO3HABATD MHOKECTBO MO3UIIMOHHO- HE3aBUCUMbBIX
MPU3HAKOB B U300 paskeHUM.

Ecin BxogHoe uzobpaskeHue umeeT pasmep (256, 256) ¢ TpemMst KaHa-
namu B ropsigke tf (TensorFlow), To ero MOXKHO peicTaBUTh TEH30POM
(256, 256, 3). OrmeTHUM, uTO B peskume th (Theano) nupekc KkaHana riy-
6uHbI paBeH 1, a B pexkume tf (TensoFlow) — 3.

B Keras, uTo6bl 106aBUThL CBEPTOYHBIIA C/10# ¢ 32 BhIXOAAMU 1 (PUIIb-
TPOM pasmepa 3 x 3, Mbl [TMLIEM:

model = Sequ

ential ()
model.add (Conv2D (32, (3, 3), input_shape=(256, 256, 3))

To ke caMoe MOXKHO 3aIIMCaTh U IO-apyromy:

model = Sequentiall()
model.add (ConvZD (32, kernel size=3, inp'.lt_shape;(IZSE, 256, 3))

DTO 3HAYUT, YTO CBEPTKA C AAPOM 3 x 3 npuMeHsieTcs: K u3obpaxe-
HMIO pa3mepa 256 x 256 ¢ TpeMsl BXOAHBIMM KaHa/laMM (BXOZHBIMM

82 <+ [haea 3.[nybokoe 0byyeHHWe C NPMMEHEHMEM CBEPTOYHBIX CETEMH

unbTpamu), u B pesyibTaTte mojaydaercs: 32 BbIXOOHBIX KaHasia (BbI-
XOOHBIX QUIBTpPA).
[IpyMep CBepTKM IIPUBEMEH Ha CJIeaVIOLIEM PHUCYHKE.

Mynuurosbie cnou

JomycTuM, Mbl XOTMM arperMpoBaTh BbIXOHO KapTbhl IPU3HAKOB.
W B sTOoM CIyyae MOKHO BOCIOIb30BAaThCA MPOCTPAHCTBEHHOM
CMEXKHOCTbI0 BbIXOIOB, [TOPOXKAEHHBIX M3 OIHOI KapThl MPU3HAKOB,
M arperMpoBaTh 3HAUEHMsI [IOAMATPULIbI B OTHO BBHIXOJHOE 3HAYEHME,
KOTOpOE [aeT CBOAHOE OMMCaHUe CMbIC/Id, ACCOLIMMPOBAHHOIO C JaHHOM
(husmueckoit 061aCTbIO.

Max-nynunz

YacTo npuMeHsIeTCs max-nyjauHz, KOrga rnpocro Gepercss Makcu-
MaJIbHbII OTKJIMK B 06iactu. B Keras, uTo6bl onpenennTh CJI0i max-
MyJiMHra pasmepa 2 x 2, Mbl IMILEM

model.add (MaxPooling2D(pool size = (2, 2)))

Ha cienyioiiem pUCYHKe TIPUBEAEH ITPMMep max-ITy/IMHIa:

1(@|3 |6

LGl [
K

YcpeodreHHbIli nynuHz

Ipyroii BapMaHT — YCpeOHEHHbII MYJIMHL, Korga 6epercs cpegHee
apudmMeTHUECKOe OTKIMKOB B HEKOTOPOIi 06J1aCTi.

Mpumep [CHC - LeNet < 83

B Keras peanu3oBaHO ellle MHOI'O MYJIMHIOBBIX CJI0€B, UX ITOJHbIN
repevyeHsb MPUBEIEH HA CTPAHULE https://keras.io/layers/pooling/. Bce
orepaiuu IyJIMHIa CBOASATCS K TOMY MJIM MHOMY CITIOCOOY arperupoBa-
HMS 3HAUEHMIA B 3aJJaHHOI 06/1acTH.

MpomexyTouHble utoru

MbI M3/105X1J1M OCHOBHBbIE ITOHSITUS cBepTOuHbIX ceTell. B CHC onepa-
LIMM CBEPTKM U ITYJIMHTA TPUMEHSIOTCS B OHOM HATlpaBieHUM (Bpemst)
17151 3BYKOBBIX M TEKCTOBBIX AHHBIX, B IBYX HATIPABIEHUAX (LIMPUHA U
BBICOTA) J1JIsl M300pasKeHMit M B TPeX HalpapIeHusX (IUPUHA, BbICO-
Ta, Bpemst) 1Jist Bueo. B ciiyuae nzobpaskeHuii nepemeltenye hunbrpa
110 BXOIHOM MaTpulle MOPOKIAeT KapTy, JAl0ILy0 OTKIUKY huibTpa
IJIS1 KasKI0TO TIOJIOXKEHUS B TIPOCTpaHCTBe. MHaue roBops, CBepTOYHAs
CeTb COCTOMT M3 HECKOJIbKMX COOPAHHbIX B CTONKY (DMUILTPOB, KOTOPbIE
00yualoTCsl pacro3HaBaTh KOHKPETHbIe BU3yalibHble ITPU3HAKM He3a-
BUCUMO OT TOI'O, B KAKOM MecTe 1M300pakKeHMs OHU HaxonsTcs. B Ha-
YaJIbHbIX CJIOSIX CETU MPU3HAKK MPOCTbIE, a 3aTeM CTAHOBSITCS Bce 60-
Jniee CIOKHBIMMU.

Mpumep NCHC - LeNet

fu JlexyH (Yann le Cun) npemyioxun (cm. cratbio Y. LeCun, Y. Bengio
«Convolutional Networks for Images, Speech, and Time-Series», Brain
Theory Neural Networks, vol. 3361, 1995) cemeiicTBO CBEPTOUHbIX Ce-
Teil, nomyunsliee HazpaHue LeNet, 06yueHHbIX PACIIO3HABAHUIO PY-
KOnUCHbIX 1idp u3 Habopa MNIST u ycTOYMBbLIX K ITPOCTLIM reoMe-
TPUUYECKUM IpeobpasoBaHusIM U UCKaskeHni0. OCHOBHAs Uiesl COCTOUT
B HAJIMUMU YEPEnyIOUIMXCsl CJIOEB, PEATU3YIOUIUX ONepaluu CBePTKU
U max-nyiauura. Onepanuu CBepPTKM OCHOBAHbI HA TUIATEBHO MOH0-
OpaHHBIX JIOKAJIbHBIX PELeNTUBHbBIX MOJISIX C BeCaMU, pasie/isieMbIMU
MEXIy HEeCKOMbKMMM KapTamu npusHakoB. [TocienHue ciou MoaHO-
CBsI3HbIE — Kak B TpaauimoHHoM MCIT co cKpeIThIMU C/I0SIMM U (DyHK-
uuei akruBaluu softmax B BLIXOIHOM CJ10€.

Kop LeNet B Keras

Hns onpenenenust ceru LeNet mcrionb3ayeTcs MOAY/Ib OBYMEPHOM
CBEPTOYHOIL CEeTU:

keras.layers.convolutional.Conv2D(filters, kernel size, padding='valid')

84 <+ [nhaea 3.[nybokoe 0byyeHWe C NMPMMEHEHUEM CBEPTOYHBIX CETENH

31ech filters — UYMCIO CBEPTOUHBIX SIIEP (HAIIPUMED, Pa3MEPHOCTh
BBIXOJIA), kernel size — OHO LIEJI0€ YMCIO WIM KOPTEX (JIMBO CIMCOK)
M3 ABYX LeJIbIX YMCel, 3aJa0lMX IMPUHY M BBICOTY IBYMEPHOI0 OKHA
CBEPTKU (eC/IM YKa3aHO OIHO Y1CI0, TO LIMPUHA ¥ BbICOTA OAMHAKOBLI),
a padding='same' O3HAYAET, YTO MUCIOIb3YETCS AOMNoNHeHMe. CylecTBy-
eT [IBa PeXMMa: padding='valid' O3HAYaeT, YTO CBEPTKA BLIUMCISAETCS
TOJILKO TaM, rae GUILTP LIeJIMKOM IIOMeIllaeTcsl B 00/1acTH BX0Ha, M0~
3TOMY BbIXOJ, OKa3bIBAETCSI MEHBIIIE BXOMA, @ padding='same' — YTO Pas-
Mep BbIXOHA TAKOM Ke (same), KaKk pasMep BX0Oa, [Jisl Yero BXOmHast
061aCThb AOTOIHSAETCS HYJISIMU 110 KpasiM.

MbI TaK)Ke MCI10b3YeM MOOYIIb MaxPooling2D:

keras.layers.pooling.MaxPooling2D(pool size=(2, 2), strides=(2, 2))

31ech pool size=(2, 2) — KOPTEX M3 ABYX Lle/IbIX YMCell, OIpeess-
0uuUxX Ko3GdOULIMEeHTbl YMeHbLIeHUsT M300pakeHUsT 110 BePTUKAIU U
1o ropusonTanu. Takum obpasom, (2, 2) 03HAYAET, YTO MU300paKeHMe
yMeHbllIaeTcsi BABoe B 06oux HarpapieHusx. HakowHel, napamerp
strides=(2, 2) OIpeaeseT war 06paboTKu.

Teneps nepeiigem K kogy. CHauana MUMIIOPTUPYETCS PSII MOIYIe:

from keras import backend as K

from keras.models import Sequential

from keras.layers.convolutional import Conv2D
from keras.layers.convolutional import MaxPooling2D
from keras.layers.core import Activation

from keras.layers.core import Flatten

from keras.layers.core import Dense

from keras.datasets import mnist

from keras.utils import np utils

from keras.optimizers import S5GD, EMSprop, Adam
import numpy as np

import matplotlib.pyplot as plt

3atem orpepnesnsiercs cethb LeNet:

#define the ConvNet
class LeNet:
@staticmethod
def build(input shape, classes):
model = Sequentiall)
CONV => RELU => POOL

[lepBbiii CJ10ii — cBepTOUYHbINA ¢ pyHKLMel akTuBauui ReLU, 3a HUM
clegyer cioi max-my/iuHra. B Haureii cetu 6yger 20 cBepTOUYHBIX (DUIIb-
TPOB pasmepa 5 x 5. Pasmep BbIX0/1a TaKoOJ JKe, KaK pasMep BXoja —
28 x 28. [TocKonbKY MepBbiM 3JIEMEHTOM KOHBelepa SIBISIeTCs MOIY/lb

Mpumep (CHC - LeNet <+ 85

Convolution2D, HEOGXO,U,I/IMO o11pene/IMThb ero d)OpMY, input_shape. One-
panuus max-IyjaMHra peajiMsyeT CKOIb3sdlllee OKHO, ITepeMeliaronieecs
I10 CJIOK), M BbIYMUISIEeT MaKCHMMaJ/ibHOe 3HaYeHne B ob6nactu. llar rnepe-
MelleHMs I10 TOPU30HTAIN U [10 BePTHUKaJIM paBeH 2.

model.add (Convolution2D (20, kernel size=5, padding="same",

input shape=input shape])

model.add (Activation("relu"))

model.add (MaxPooling2D(pool size=(Z, 2), strides=(2, 2}))

CONV => RELU => POOL

3arem mo6aBisieTCsl BTOPOi CBEPTOUYHbBIA €10 ¢ (PyHKIMe akTu-
Bauuu RelLU, a 3a HUM ele oauH cnoit max-mynmnHra. Ho ternepb mbl
VBEJIMUYMBAEM UYMCI0 CBepTOoUHbIX (uiabTpoB ¢ 20 o 50. VBenuuyeHue
uiciia GuIbTPoB B Gosee KIyOOKMX CIOSIX — CTAHAAPTHBINM IIPUEM Iy-
60KOro 00yueHmsl.
model . add (Conv2D (50, kernel size=3, border mode="same"))

model .add (Activation("relu"))
model.add (MaxPooling2D(pocl size=(2, 2), strides=(2, 2}))

3aTeM MAET NOBOJbHO CTAHAAPTHBIM €10 YIUIOLWEHUS], TJIOTHBI
c1oii ¢ 500 HeiipoHaMmu 1 softmax-kinaccudukarop ¢ 10 kinaccamu:
cnou Flatten => RELU
model.add (Flatten())

model . add (Dense (500))
model .add (Activation ("relu"))

softmax-rnaccudurarop
model.add (Dense(classes))

model . add (Activation("softmax"))
return model

Hy, BOT 1 Bc€. MbI TOJIBKO YTO OTIpeIeuii CBOI0 MIEPBYIO CeThb ITy-
60Koro o6yueHust! [TocMOTPMM, KAK OHA BBITJISIINUT.

MnoTHeH —
cnoi

50 kapt
MPHIHAKOB

T
| 20 kapt
NpH3HAKOB

86 <+ [nhaea 3.[nybokoe obyyeHue C NPUMEHEHWEM CBEPTOYHLIX CETEM

Hanbuie HYJKeH KoJ OﬁyquMﬁ ceTH, HO OH O4Y€eHb IMOX0X Ha TOT, YTO
Mbl Bujenu B rase 1. Ha ator pas rnmoxKasaH TakxKe Ko rnedaTu rnorepu:

$ cere u ee obyuenue

NB_EPOCH = 20

BATCH STZE = 128

VERBOSE =1

OPTIMIZER = Adam()

VALIDATION_SPLIT=G.2

IMG_ROWS, IMG COLS = 28, 28 # pasumepu BXOZHOTO M300pameHuA
MB_CLASSES = 10 # umcno BHXORNOR = uMcio umbp

INPUT SHAPE = (1, IMG ROWS, IMG COLS)

nauHHe: meperTacoBaHe ¥ pPasbuTH Ha ofyuamuMi ¥ TecTOBEM HaBop
(X train, y train), (X test, y test) = mnist.load dataf()
k.set image dim ordering("th")

paccumarTpMBaeM KAk 4KCIA C NJIaBaAKWEr TOUYKOW ¥ HODMMDYEM
¥ _train = X train.astype('float32')

¥ _test = X test.astype('float32')

¥ _train /= 255

X _test /= 255

nam nymua fopma 60K x [1 x 28 x 28], nomaeaeMas Ha BXOD CEEPTOYHON CETHM
¥ _train = X train[:, np.newaxis, :, :]

X test = X test[:, np.newaxis, :, :]

print (X _train.shape[0], 'train samples')

print (¥_test.shape[0], 'test samples')

npeofpasyeM BEEKTOPH KIACCOB B DMHADHHE MATPHLE KIACCOB
y_train = np utils.to categorical(y train, NB CLASSES)
y_test = np utils.to categorical (y_test, NE_CLASSES)

MHMUMATMSMPOBATE ONTHMMMIATOD M MOINENL
model = LeNet.build(input_ shape=INPUT SHAPE, classes=NB_CLASSES)
model.compile (loss="categorical crossentropy", optimizer=0PTIMIZER,
metrics=["accuracy"])
history = model.fit (X train, y_train,
batch size=BATCH SIZE, epochs=NB EPOCH,
verbose=VERBOSE, validation split=VALIDATION SPLIT)
score = model.evaluate (X _test, y test, verbose=VERBOSE)
print("Test score:", score((])
print('Test accuracy:', score[l])

nepeuMcnMTL BCE NAHHHE B MCTODWKM
print(history.history.keys())

nocrpouTk rpadMK MSMEHEHMA BEPHOCTH
plt.plot{history.history(['acc'])
plt.plot(history.history(['val acc'])

Mpumep (CHC - LeNet <+ 87

plt.title('model accuracy')

plt.ylabel ('accuracy')

plt.xlabel ('epoch')

plt.legend(['train', "test'], loc="upper left')
plt.show()

nocTpouTe TpadME MIMEHEHMA NOTEDH
plt.plot(history.history(['loss'])
plt.plot(history.history['val loss'])
plt.title({'model loss')

plt.ylabel('loss')

plt.xlabel ('epoch')

plt.legend(['train', 'test'], loc='upper left')
plt.show()

Teneps BbIOAHMM Kof. Kak BUAMM, Bpemsl 3aMeTHO BbIpOCJIO, Te-
[epb Ha KaKAYI0 UTEpaLuio oOydeHMS CeTH YXOOMUT ~134 cekyH[bl
BMecTO ~1-2 cekyHn st cetu 13 miapbl 1. OpHaKo M MakcuMaibHast
BEPHOCTb Terepb paBHa 99.96%.

ene code — python keras_Lehet.py — 121=50

gulli-nacbeokpro:code gulli$ python keras_LeNet.py

Using TensorFlow backend.

1680008, 'train samples’)

11e008, 'test samples')

Train on 48000 samples, validate on 12800 samples

Epoch 1/2@

40peRs 40888 | 1 - 1245 - loss: 9.1766 - acc: 0.9445 - val_loss: B.8568 - val_acc: 8.9826
Epoch 2/2¢

48ee0/ds8ee [1 - 1235 - lpss: 9.8465 - acc: 0.9847 - val_loss: 0.8487 - val_acc: 9.9477
Epoch 3/28

4ageeos4aees |] - 1205 - lpss: @.8300 - acc: ©.0988 - val_loss: 0.8367 - val_acc: 0.9895
Epoch 4728

ABpRR/ 48880 | 1 - 1315 - loss: 0.6202 - acc: @.9937 - val_loss: 0.0375 - val_acc: 0.98%6
Epoch 5/28

appeps4aeen |] — 1275 - loss: 8.8144 - acc: 0.9957 - val_loss: B.8482 - val_acc: 0.9875
Epuch 6/28

ABRE0/ 43800 1 = 1175 - loss: 0.8106 - acc: @.9965 - val_loss: 0.0332 - val_acc: 0.9940
Epoch 7/2@

48@p0 43888 | 1 - 1285 - loss: 9.8BBE - acc: B.9972 - val_less: 8.8386 - val_acc: 9.9989
Epoch B/28

ABBRDSABRGR = 1235 - loss: 0.0058 - acc: 0.9988 - val_loss: 0.8464 - val_acc: 0.9948
Epoch 9/2@

4Beeos43dee | 1 - 1235 - lpss: 0.8853 - acc: 0.9982 - val_loss: 0.8463 - val_acc: 0.9988
Epoch 18/28

4npea/saaae | 1 - 1245 - Lloss: 0.8845 - acc: 0.09987 - val_loss: B.8565 - val_sce: 0.9801
Epoch 11/28

ELLTTREEEE I 1 - 1255 - lpss: 9.8840 - acc: 0.9989 - val_loss: B.8558 - val_acc: 9.9988
Epoch 12/28

48pR0 /43888 | 1 - 1245 - lpss: 9.8832 - acc: 9,9989 - val_less: B.8551 - val_acc: @8.9914
Epoch 13/28

AaBpRR/488ee | 1 - 1255 - loss: 0.6030 - acc: @.9991 - val_loss: 0.0569 - val_acc: 0.9968
Epoch 14/28

appeps4aeen |] — 123s - lpss: 8.8B34 - acc: 0.9991 - val_loss: B.8450 - val_acc: 0.9926
Epuch 15/28

ABREO/ 23800 1 = 1245 - loss: 0.0025 - acc: @.9993 - val_loss: 0.0542 - val_acc: 0.9913
Epoch 16/28

48@p0/ 43888 | 1 - 1235 - loss: 9.8816 - acc: B.9995 - val_less: 8.8684 - val_acc: 9.9916
Epoch 17/28

ABBRDABRER = 1235 - loss: 8.0027 - acc: 0.9993 - val_loss: 0.8533 - val_acc: 0.9927
Epoch 18/28

4Bpees4gaee | 1 - 1245 - lpss: 0.8014 - acc: 0.9996 - val_loss: 0.0588 - val_acc: 0.9923
Epoch 19/28

4ppen/snaan | 1 - 1235 - loss: 3.8828 - acc: ,9995 - val_loss: 9.08623 - val_acc: 8.9911
Epoch 28/28

4speosasaes | 1 - 1235 - lpss: 9.8816 - acc: 0.9995 - val_loss: B.8837 - val_acc: 9.9911
laeee/laaes] - 11s

1'\nTest score:', @, B72166633289733453)

1'Test accuracy: ~HORGARRRROADGBRRAI)

['acc’, 'loss', 'val_acc', 'val_loss']

U3 rpadMKOB BEPHOCTH U IIOTEPU BUIHO, UTO [JI51 JOCTUIKEHUS Bep-
HoctH 99.2% 6bUI0 6b1 JOCTATOYHO BCErO 4-5 UTepaLimuii.

88 <+ [haea 3.[nybokoe 0byyeHWe C NPMMEHEHMEM CBEPTOYHBIX CETEMH

o madel accuracy o model lass
train | —
— test 018
098 3 [
7 atafl
|lr |
ogar | a1zf |
|
|
= | 010 II
&
asr| | 4
g | 2 |
i 008
| |
| |
CE a0s| |
| \
I a0s
oas
ooz G
004 a0a — —
H] 15 E & 1 15 0
epoch epach

Ha cleayiolenM pUMCyHKe IToKa3aHa OKOHYaTe/lbHas BepHOCTbL MOOesm:

[N | code — python keras_LeMNet.py — 121=18

gulli-machoskpro:code qullis python keras_LeNet.py
Using TensorFlow backend,

(68088, 'train samples']

(18088, 'test samples’)

Train on 48808 samples, validate on 12888 samples

laena/ 16808

- 125

0.827107118735135736)

Epoch 1/4

48008/ 48008 I - 1395 - loss: ©.1758 - acc: 9.9450 - val_loss: 0.0618 - val_acc: 0.0886
Epoch 2/4

4gppes 008 [I - 1365 - loss: 8.8461 - acc: 0.9849 - val_less: @.0488 - val_acc: @.0B7E
Epoch 3/4

48808/ 48008 | = 1305 - loss: @.8294 - acc: 0.9985 - val_loss: 9.0413 - val_acc: 0.9889
Epoch 4/4

48008/ 43008 [1 - 1295 - loss: ©.8199 - acc: 0.9936 - val_loss: 0.8373 - val_acc: 0.0988

('\nTest score:’,
('Test accuracy:',
‘val_acc’,

@.9970990990990990H)

['acc', 'loss', ‘val_loss']

PaccMOTpMM HECKOJIBKO M300paxkeHuit u3 Habopa MNIST, nmpocro
4TOOBI [TOHSATh, HACKOJIBKO XOPOIlo 3HayeHue 99.2%. Hanpumep, ecThb
MHOTO CI1oco60B Harmucanus 1udpsl 9, OOMH U3 HUX MMOKA3aH HA PU-
cyHKe Hipke. To e caMoe MOKHO cKasaTh 0 uudpax 3, 7,4 1 5. Yucno 1
HAa 3TOM PUCYHKE PAClO3HATh TaK TPYIHO, YTO, HABEPHOE, M Y UEIOBEKA
BO3HMKJ/IU Obl IIPOG/IEMBI.

Ha wiepyrouieM rpadMKe Mbl IIOBEJIM UTOT CBOMM ycriexam. Mbl Ha-
yajiu ¢ MpocToit mogenu, nocruriteii BepHocrt 92.22%, 1. e. u3 100

L7

O cvne rnybokoro obyyeHuna <+ 89

uudp npuMepHo 8 pacrio3HaBa/IMCh HEIIPABUIBHO. A UCIIOIb30BaHMe
ry6OKOI apXUTeKTYPbI [TO3BOJIMIO A0OUTHCS rpupocta 7% 1 Ioiy-
yuTh BepHOCTh 99.20% - HerpaBW/IbHO Pacrio3HaeTcs Jullb OgHAa
uudpa us 100.

BepHocTtb
100.00% S —
98.00%
o
13
§ 96.00%
Q
D
@ 94.41%
94.00%
92.22%
7
92.00%
MINST_V1 MINST_DRP MINST_ADM MINST_LNT
MINST_2HID MINST_RMS MINST_EPC

O cune rny6okoro obyueHums

YTo6bl JTyullle IOHATh CHTY Ty60KOro 06yYeHsl M CBePTOUYHBIX CeTeit,
MbI MOKEM ITOCTABUTh €l OIMH KCIIEPUMEHT: YMEeHbILUTb pasMep
obyualoniero Habopa M MoOHabMIIATh 3a CHIKEHMEM KauecTsa. st
sroro pazobbem Habop u3 50 000 ripumMepoB Ha ABa Habopa:

O pasmep coberBeHHO obyuarollero Habopa Oyaer IOCIenoBa-
TEeJIbHO YMeHbIaThes 1 cocrasisiTe 5900, 3000, 1800, 600 1 300
MPUMEPOB;

O ocrajbHble MpUMeEpbl GYIYT BXOAUThH B KOHTPOJIbHBIN Habop,
MCITOJIb3YEeMBIit 17151 OLIeHKM X0[1a 00yUYeHMsl.

TectoBblit HAOOP ocTaeTcs HeM3SMEHHBIM U comepxkut 10 000 mpu-
MEPOB.

[Tpu TaKoii KOHGUIYpaLMY CPAaBHUM TOJILKO YTO OIpeie/IeHHYIO CBep-
TOUYHYIO CETh IJIYBOKOro 06yueHus ¢ [epBoil HeIPOHHOI CeThI0, oripeie-
neHHolt B rnase 1. Ha cnenyioiem rpaduke BUIHO, YTO IIYOOKast CeTh
BCErIa IPeBOCXOANT ITPOCTYIO U PA3pbIB TEM OOJIbilie, YeM MeHblie 06y-
yarolux rnpumepos. [Ipu 5900 npumMepax BepHOCTh [TyOOKOI ceTH paB-
Ha 96.68% riporus 85.56% y npocroii. Ho BaskHee, uTo ripu xaakux 300

90 <+ [haea 3.[nybokoe obyyeHue C NPUMEHEHMEM CBEPTOYHbIX CETEN

[pUMepax BEPHOCTh IJIYOOKOIi ceTu Bee elle cocrasisier 72.44%, Torna
KaK y [MPOCTOit ceTy 0Ha cHU3MIach 00 48.26%. Bee skcriepuMeHTbI Ipo-
BOIWINCH [JIsl YeThIpex urepawuit o6yueHmst. Tem cambiM [TOATBEPIKIA-
€TCs 'PaHIMO3HbII [TPOrpecc, JOCTUTHYTHIA B pe3y/ibTaTe M300peTeHust
m1y6okoro obyuyeHust. Ha riepebiit B3Iisil, 3TO MOXKET OKA3aThCsl YK~
BUTEIbHBIM C MaTeMaTHYECKOI TOUKM 3PeHMsI, TIOTOMY UTO B [IyOOKOI
ceTu ropaszio 00Jblie HEM3BECTHbIX (BECOB), a, CIe[0BATE/IbHO, M IKC-
MepUMEeHTAIbHBIX TOUEK BPoje Obl TOJDKHO ObITh O0JIbILIe.

accuracy_deep and accuracy
100.00% 4 p—
92.32% 90.00% accuracy_deep
B5.56% —— accuracy
. T2.48%
75.00%
48.26%
50.00%
25.00%
0.00%
MINST_DEP=5500 MINST_DEP=1800 MINST_DEP=300
MINST_DEP=3000 MINST_DEP=600

OnHaKo CBePTOUYHbIE CeTH BbIMTPLIBAKOT OT COXPAHEHMS IPOCTPaH-
cTBeHHO MHbopMaLuy, 100aBIeHMs CBePTKY, MYJIMHIA U KapT Mpu-
3HAKOB, @ 3TM MeXaHU3Mbl COBEPLIEHCTBOBAIUCH B XOJie MUJUIMOHO/IeT-
Heil 3BOJII0L MY (Be[lb TAKasi OpraHu3auus MoAcMoTpeHa y 3pUTebHOI
KOPbI rOJIOBHOT'O MO3Ta).

0630p COBpeMEHHBIX pPe3yabTaToB [Ji Habopa gaHHbix MNIST
OHYGJIMKOBE[H Ha CTPAHMLE http://rodrigob.github.io/are we there yet/
build/classification datasets_ results.html. [To cocrostHuo Ha SIHBapb
2017 roga Iy4diiMmM JOCTMKeHUeM Obli1a yactoTa ommdox 0.21%.

Pacno3sHaBaHue usobpaxeHui
u3 Habopa CIFAR-10 ¢ nomoubio
rny6okoro obyyeHus

Habop mannbix CIFAR-10 comepskut 60 000 LBeTHBIX M300paskeHMit
pasmepa 32 x 32 nukcens ¢ 3 kaHajgaMmu, pasoéuTeix Ha 10 Kiaccos.

L7

PacnosHaeaHue n3obpaxeHuin u3 Habopa CIFAR-10... < 91

B o6yuatomem Habope 50 000 usobpaskenuii, B Tecrosom — 10 000. Ha
cnenyouem pucyHke, B3sitom 13 periosautopust CIFAR (https://www.
cs.torcmto.edu/~k:iz,f'c"_-far.htm'_), rnpencrabB/ieHbl Cﬂy‘-l&f‘[l—lﬂ BhIﬁpaHHble
MPUMEPbI U3 KaXKI0ro Kiacca:

v RIS - BN
== | TS
el WS
e RSP
R 2
ol | Y [
e 5 0 O D O
ool G T
e I i P
o d D D B

3a/aua COCTOMT B TOM, UTOObI PACIIO3HATh HE MPEIbsIBIISIBIIMECS Pa-
Hee U300payKeHMsI U OTHECTH MX K ogHOMY 13 10 Kaccos.

TIpesxe BCero MMIOPTUPYEM DSl MOZYJIeii, OTIpeie/IuM HEKOTOPbIe
KOHCTAHTbI ¥ 3arpy3MM Habop JaHHBIX:

oneHb

from keras.datasets import cifarl{

from keras.utils import np_utils

from keras.models import Sequential

from keras.layers.core import Dense, Dropout, Actiwvation, Flatten
from keras.layers.convolutional import Conv2D, MaxPooling2D

from keras.optimizers import SGD, Adam, EMSprop

import matplotlib.pyplot as plt

naBop CIFAR 10 comepmmr 60K mzobpamenmit 32x32 c 3 xaxanaum
IMG_CHANNELS = 3

IMG_ROWS = 32

IMG COLS = 32

KoOHCTAHTH

92 <+ [haea 3.[nybokoe obyyeHue C NPUMEHEHMEM CBEPTOYHbIX CETEN

BATCH SIZE = 128
NB_EPOCH = 20
NB_CLASSES = 10
VERBOSE = 1

VALIDATION SPLIT = 0.2
OPTIM = RMSpropl()

sarpysuTh HaBOp HAHHEX

(X _train, y train), (X test, y test) = cifarl0.load data()
print ('X train shape:', X train.shape)

print (X _train.shape[0], 'train samples')

print (X _test.shape[0], 'test samples')

te

Terepb HIPUMEHMM YHUTAPHOE KOAMPOBaHME M HOPMUpPYeM M306pa-
JKeHUSI:

¥ npecfpazcBaTE K KATETODMANEHOMY BHIY
Y train = np utils.to_categorical(y train, NB CLASSES)
Y test = np utils.to categorical (y_test, NE CLASSES)

nmpeoBpasoeaTs k QOpMATy C NIABAKWEX TOYKOM M HODMMPOBATE
¥_train = X train.astype('float32')

X test = X_test.astype{'ﬂoatBZ'}

¥ _train /= 25

X _test /= 255

B Hameii cetu 6ymer 32 ceeprTouHbIX (uibTpa pasmepa 3 x 3. Pas-
Mep BbIXO[A TAKOI1 Ke, Kak pasmep BXopa, T. e. 32 x 32, a B KauecTse
(yHkuMM akTHBaLMKM ucronb3yercs ReLU, BHOcsILAs HETMHEAHOCTD.

Ilanee ciiefyeT onepaiysi max-IyJIMHIa ¢ pasMepoMm 6j10Ka 2 x 2 U Ipo-
pexkuBaHue ¢ Koaduimentrom 25%:

¥ cers

model = Segquential()

model.add (Conv2D (32, (3, 3), padding='same',
input_shapeﬂ{IMG_ROWS, IMG COLS, IMG CHANNELS)))
model.add (Activation('relu'))

model.add (MaxPooling2D(pool size=(2, 2)))

model .add (Dropout (0.25))

Cnenyoluii sJieMeHT KOHBeliepa — IJIOTHBINA ¢J10i ¢ 512 HelipoHaMu
u pyukumeit akruauumu ReLU, a 3a HUM npopeskuBaHue ¢ Koagduim-

L7

PacnosHaeaHue n3obpaxeHuin u3 Habopa CIFAR-10... <+ 93

enTom 50% 1 BbIXOOHOI c10ii softmax-knaccudukauuu ¢ 10 kinaccamu,
110 OIHOMY Ha KaTeropuio:

model .add (Flatten())

model .add (Dense (512))

model.add (Activation('relu'))
model . add (Dropout (0.5))
model.add (Dense (NB_CLASSES))
model .add (Activation('softmax'))
model . summary ()

OrnpenenuB HeMpPOCEThb, Mbl MOKEM IepeiTH K 00YYeHUI0 MOMIe/In.
B maHHOM cJ1ydae Mbl BbifIeJisieM KOHTPOIbHbIN Ha6op, MOMUMO 06yya-
1o11ero 1 TecroBoro. O6yuaoliuii Habop HysKeH 17151 06ydYeHM st MOJEIH,
KOHTPOJIbHbIN — [J1s1 BbIG0Opa HAMIYYILEro M0AX0Aa K 06y4eHuIo, a Tec-
TOBBII — [IJIs1 IPOBEPKM 0OYUEHHOI MOJEIM HA HOBBIX JaHHBIX.

obyuenmre

model.compile (loss="categorical crossentropy', optimizer=0PTIM,
metrics=["accuracy'])

model.fit (X_train, Y train, batch_size=BATCH SIZE,
epochs=NB EPOCH, validation split=VALIDATION SPLIT,
verbose=VERBJSE)

score = model.evaluate(X_test, Y test,
batch size=BATCH SIZE, verbose=VERBOSE

print ("Test score:", score[0])

print('Test accuracy:', score(l])

CoxpaHuM elle apXUTEKTYpy LTyDOKOM ceTu:

¥ CoXpaHMTE MOOENE

model json = model.to json{()

open('cifarl{ architecture.json', 'w').write(model json)
¥ Beca, BLUMCIEHHHE B PE3YNETATE OOYUEHMA CETH
model.save weights('cifarl0 weights.h5', overwrite=True)

BoinonHum nporpammy. CeTb JOCTUTaeT BEPHOCTY HA TECTOBOM Ha-
6ope 66.4% npu 20 urepauusax. Mbl TakKe HOCTPOUIM rpadMKU Bep-
HOCTU U MTOTEPU U COXPAHUIIM CETh METOIOM model . summary () §

94 < [naea 3.[nybokoe obyyeHMe C NPUMEHEHWEM CBEPTOYHbIX CETEN

ene code — python keras_CIFARI0_simple.py — 121x77

gulli-macbookpro:code gullis python keras_CIFAR1®_simple.py
Using Tensorflow backend.

("X_train shape:', (50809, 3, 32, 32))

(5e80@, “train samples')

(19e0@, "test samples')

Layer (type) Dutput Shape Param # Connected to
convolution2d_1 (Canvolution20) (None, 32, 32, 32) 898 convalution2d_input_1[@][e]
activation_1 [Activation) (None, 32, 32, 31) L] convolution2d_1[e] [e]
maxpoaling2d_1 (MaxPooling2D) (None, 32, 16, 16) L activation_1[0] (0]
dropout_1 (Dropout) (None, 32, 16, 16) @ maxpaoling2d_1(8] [8]
flatten_1 (Flatten) (None, 8192) [] dropout_1[8][0]
dense_1 (Dense) (None, 512) 4194816 flatten_1[a]l[@]
activation_2 [Activation) (Nane, 512} [dense_1[8] [@]
dropout_2 (Drepout) [(None, 512) @ activation_2[0][e]
dense_2 (Dense) (None, 18] 5138 dropout_2[@][@]
activation_3 [Activation) (Nane, 18] [] dense_2[@] (@]

Total params: 4288842

Train on 40880 samples, validate on 10@82 sanples

Epach 1/2¢

4p@en/ 40080 [] - 1145 - loss: 1.7388 - acc: 0.3855 - val_loss: 1.5353 - val_acc: 8.4376
Epach 2/2@

4p@pR/apaen | 1 = 1145 - loss: 1.3847 - acc: 8.5081 - val_loss: 1.2392 - val_acc: 9.5629
Epach /28

4@eee/apeae | 1 = 116s = loss: 1.2481 - acc: 0.5566 - val_loss: 1.2737 - val_acc: 9.5446
Epach 4728

qpaens/ipees [- 114s - loss: 1.159@ - acc: @.5913 - val_loss: 1.1919 - val_acc: 8.5722
Epoch 5/2@

4p@en/deaes [] - 1165 - loss: 1.8004 - acc: 0.6138 - val_loss: 1.886@8 - val_acc: B8.6257
Epach &/2@

4p@en/apaee | I - 1158 - loss: 1.8282 - acc: 8.6391 - val_loss: 1.8771 - val_acc: B.6245
Epach /2@

4000/ 40080 | 1 = 1155 - loss: @.9828 - acc: 0.6523 - val_loss: 1.8491 - val_acc: 9.6375
Epoch 8/2@

4peee/qpean | 1 - 1145 - loss: @.9328 - acc: 0.6739 - val_loss: 1.8344 - val_acc: 0.6453
Epoch 9/2@

d@gen/dv008 |] = 1145 - loss: 0.8978 - acc: 0.6858 - val_loss: 1.6789 - val_acc: B.6384
Epoch 18/20

4peen/peee [] - 1158 — less: B.8556 - acc: 0.7084 - wval_loss: 1.8072 - val_scc: @.6538
Epoch 11/28

4Re00/ 0080 [1 - 1145 - loss: 8.8215 - acc: 8.7142 - val_loss: 1.1334 - val_acc: 9.6450
Epoch 12728

apgen/sagase [1 = 1155 = loss: 8.7638 - acc: 0.7256 - val_loss: 1.8761 - val_acc: 0.6464
Epoch 13/28

Apge/apoen [] = 1185 - loss: 0.7631 - acc: 9.7337 - val_loss: 1.6204 - val_acc: 9.6587
Epoch 14/28

dpeen/dpe8e [] - 1215 - loss: 0.7381 - acc: 9.7433 - val_loss: 0.9647 - val_acc: 6853
Epach 15/20

4peen/apaed [1 - 1145 - loss: 8.7094 - pcc: 0.7529 - val_loss: 1.8B52 - val_acc: 9.6604
Epoch 16/28

4papa/apaen [1 - 1145 - loss: 8.6872 - acc: @.7688 - val_loss: 1.0144 - val_acc: @.6688
Epoch 17/20

4B2R0/42080 - 1155 - loss: @.6642 - acc: 0.7682 - val_loss: 0.9787 - val_acc: 0.6781
Epoch 1B/20

4Bee0 /2080 = 1145 = loss: @.6524 - acc: 0.7758 - val_loss: 1.8035 - val_acc: @.6883
Epoch 15/28

apaen/ 8008 | 1 - 1145 - loss: 0.6302 - acc: 0.7834 - val_loss: 1.1080 - val_acc: @.6571
Epach 28/20

4pa00/p0e8 [1 - 113s - loss: 8.6081 - ace: 8.7982 - val_loss: 1.8744 - val_acc: B.6672
Testing...

1eeee/10000 [1 = 13s

("\nTest score:’', 1.876244B628796203)
("Test accuracy:', ©.66490800000000005)
["ace’, 'less', 'val_scc’, ‘val_loss']

Ha clegyioumMx rpacbl—ﬂ(ax IOKa3aHO, KaK M3MeHAKTCH BepHOCThL M
IoTepsda Ha OGY‘-IHIOH.I,EM M TEeCTOBOM Haﬁope B 3aBMCHMMOCTHM OT HOMepa
urepanmm:

[MoBbllWeHWE KayecTBa pacno3HaBaHua Habopa CIFAR-10... <+ 95

madel accura
s madel loss

i \‘\
043 T

i an s
an —
035 as _——

B 1 = 20 = £ 15 0
apach snoch

MoBbiweHUe KauecTBa pacno3HaBaHUS
Habopa CIFAR-10 nytem yrnybneHus cetu

OnuH u3 C110c000B MOBBICUTHL KAYeCTBO paciio3HaBaHMs — oIpene/inTh
Gonee myﬁoxyro CeThb C HeCKOJbKMMM OltepanMaMi CBepPTKH. B nanHom
cjlydyae Mbl BO3bMeEM TaKVyIO ITOC/1e00BaTe/IbHOCTh MO,ELYHEI::I:

conv+conv+maxpool+dropout+conv+conv+maxpool

UM B KOHIIe — CTaHIAPTHAS MOCIeN0BATEIbHOCTb dense+dropout+dense.
dyukiueit akrualuu eerga 6ymer ReLU. BoT Kak BBIISIAUT KOJ,

orpenejaeHMd HOBOI1 ceTu:

model = Seguential()
model.add (Conv2D(32, (3,
input_shape=(IMG ROWS, IMG COLS,

3), padding='same',
IMG CHRNNELS)))

model.
.add (Conv2D (32,
.add(Activation('relu'))

model
model

model.
model.

model

model.

model

model.
model.

model

model.
model.

model

model.
model.

.add (Conv2D (64,
model.

add (Activation('relu'))
(3, 3), padding="same'})

add (MaxPooling2D(pool size=(2, 2)))

add (Dropout (0.25))

(3, 3), padding="same'})
add (Activation('relu'))

add (Conv2D (64, 3, 3))

.add(Activation('relu'))

add (MaxPooling2D(pool size=(2, 2)))
add (Dropout (0.25))

.add(Flatten())

add (Dense(512))
add(Activation('relu'))

.add {Dropout {0.5))

add (Dense (NB_CLASSES))
add (Activation('softmax'))

96 <+ [naea 3.[nybokoe obyyeHMe C NPUMEHEHWEM CBEPTOYHbIX CETEN

Teneps nporouum nporpammy. CHauaja COXpaHUM CeTb, a 3aTeM
BbIIOJIHUM 40 urepaumii.

L N code — python keras CIFARI0.V2.py — 121x77

jthon keras CIFARIOVZpy 34|
gulli-macbookpro:code gulli$ python keras_CIFAR1®_V1.py
Using TensorFlow backend.
('X_train shape:', (58208, 3, 32, 32))
(50098, 'train samples’)
(1ee@e, 'test samples')
Layer [type) Output Shape Param # Connected to
canvolution2d_1 (Convolution20) (None, 32, 32, 32) 896 convalution2d_input_1[8] [8]
activation_1 (Activation) {None, 32, 32, 32) [] convolution2d_1[e][e]
convalution2d_2 (Convolution20] (None, 32, 32, 32) 9248 activation_1[@] [@]
mctivation_? (Activation) (Mone, 32, 32, 32) [canvalution2d_2 (@] [8]
maxpooling2d_1 (MaxPooling20} {Kone, 32, 16, 16} @ activation_2[@1[0]
dropout_1 (Dropout) {None, 32, 16, 16} [] maxpooling2d_1(@] [8]
convolution2d_3 [Convolution2D) (None, &4, 16, 16) 18496 dropout_1[@] [8]
activation_3 (Activation) {None, 64, 16, 16} [] convalution2d_3[e] [e]
convolution2d_4 (Convolution2D) (Mone, 64, 14, 14) 36928 activation_3[8][@]
activation_4 (Activation} {None, 64, 14, 14) [] convolution2d_4[8] [8]
naxpooling2d_2 (MaxPooling20) {None, &4, 7, 7) @ activation_a(@][e]
dropout_2 (Dropout) (None, 64, 7, 7) [] maxpooling2d_2[@] [8]
flatten_1 {Flatten) {Mone, 3136} [] dropout_2[@] (@]
dense_1 (Dense] {Nene, 512} 1686144 flatten_1(@] (0]
activation_ 5 (Activation) (None, 512} L dense_1[a] (8]
dropout_3 {Dropout) {None, 512) @ activation_5[@] [0]
dense_2 (Dense) (None, 18] 5130 dropout_3[a] (8]
activatien_ 6 (Activation) (None, 18] L] dense_2[a] [8]
Total params: 1676842
Train on 4008@ samples, validate on 10008 samples
Epoch 148
dagpa/ 008 1 - 4305 - loss: 1.8179 - acc: 9.3443 - val_loss: 1.5250 - val_acc: 0.4551
Epoch 2/40
Ageedsiveee | 1 - 3825 - loss: 1.3506 - acc: 9.5182 - val_loss: 1.1098 - val_acc: @.5714

Kak rokaszaHo Ha clenywollieM CHUMKe 3KpaHa, JOCTUIHYTA Bep-
HOCTb 76.9%.

Epoch 39/40

4pRan/ 0000 |] - 348s - loss: 9.5497 - acc: 9.8246 - val_loss: 8.8669 - val_acc: 0.7811
Epoch 40/48

4pRon/d0008 | 1 - 3465 - loss: 0.5447 - acc: 9.8280 - val_loss: @.7910 - val_acc: 8.7616
Testing...

1e0op/ 10208 [] - 41s

{'\nTest score:', B.79934534568786619)
('Test accuracy:', 0.76920900009990908}
['acc’, 'loss', ‘val_acc', 'val_loss']

Takum 06pazom, Mbl yayUIIWIK peabiayiiunii pesynbrat Ha 10.5%.
I1Jist 1OJIHOTBI KAPTUHBI ITOCTPOUM eliie rpadMKu 3aBUCMMOCTH BEPHO-
CTU M TTOTEPU OT YMCIa UTepaLinii:

lMoBblWEHWE KayecTBa pacno3HaBaHus Habopa CIFAR-10... < 97

model loss

@

=3 B i 5 @0 @ 3 35 @ i 5 o 1 = 2 W = W
spach epach

MoBbiweHMe KauecTBa pacno3HaBaHUS
Habopa CIFAR-10 nyreM nononHeHus
AAHHbIX

Ewe ofauH criocod MOBBICUTH KAYECTBO — CrEHEPUPOBATH HOTIOHMU-
TesbHble 06yualoiie uzobpakeHnus. iest COCTOUT B TOM, YTOObI B3STh
craHaapTHblii Habop gaHHbIX CIFAR M IONOJHWUTE €ro, IOABEPrHYB
M306paKeHMsl pasIMUHbBIM [1peodbpasoBaHMsIM: BpallleHMIo, rapasi-
JIeJIBHOMY epPeHOCY, MaCIITabUPOBAHUIO, OTPAKEHUI0 OTHOCUTENILHO
TOPU30HTANIBHOM M BEPTUKAIBHOI OCH, TePeCTaHOBKE KAHAJIOB U T. [I.
[IpuBegemM COOTBETCTBYHOLIMIT KO

from keras.preprocessing.image import ImageDataGenerator
from keras.datasets import cifarl(

import numpy as np

NUM TO AUGMENT=5

¥ zarpyzure HADOp DAHHEX
(X train, y train), (X test, y_test) = cifarl0.load data()

¥ nmononHeHMe
print ("Augmenting training set images...")
datagen = ImagelDataGenerator(
rotation range=40,
width shift range=0.2,
height shift range=0.2,
zoom_range=0.2,
horizontal flip=True,
fill mode='nearest')

APryMeHT rotation range — 3TO JMAIa3oH ymIoB B rpaaycax (0-180),
Ha KOTOPbIe MOXKHO [TOBOPAYMBATL M300paskeHusl (CaydyaiiHbIM obpa-

98 <+ [haea 3.[nybokoe obyuyeHue C NPUMEHEHMEM CBEPTOYHbIX CETEN

30M). ADIYMEHTBI width shift M height shift — IMATA30HbBI CIYYATHOTO
rapaijie/ibHOro repeHoca 1o rOpM30HTAIN M 110 BePTUKaIK. APIYMEeHT
zoom range 33J@ET JIMANIA30H CIy4aiiHOrO mMaciTabupoBaHus usobpa-
SKEHMUIA, horizontal flip TOBOPUT, UTO CYYAHBIM 06pa30M 0TOGPaHHYIO
MOJIOBMHY M306PaKeHMiA HY)KHO OTPasUTh OTHOCHMTEIbHO BePTHKAb-
HOJ1 0CH, & fill mode ONPENEJISIET CTPATEIUI0 BHIYMCIEHMS] HOBBIX MHUK-
ceseit, 06pasyoLIMXCs [IPY TIOBOPOTE WM TapasuieIbHOM [TepeHoce:

xtas, ytas = [], []
for i in range(X train.shape[0]):
num_aug = 0
x = X train[i] # (3, 32, 32)
®x = x.reshape((l,} + x.shape) # (1, 3, 32, 32)
for x aug in datagen.flow(x, batch size=1,
save_to dir='preview', save prefix="'cifar', save format='jpeg'):
if num aug >= NUM TO AUGMENT:
break
xtas.append (x_aug[0])
num_aug += 1

B pesynbrarte MOMOTHEHMS Mbl [TOJIYYMM MHOI'O HOBBIX M300paxe-
HMIA, CreHepUPOBAHHBIX HA OCHOBE cTaHgapTHOro Hadopa CIFAR-10:

cifar_0_85.jpeg cifar_0_270.jpeg cifar_0_396 peg cifar_0 429 jpeg cifar_0_463.jpeg cifar_0_475 jpeg
cifar_0.1052 jpeg cifar_0_1185.jpeg cifar_0.1239 jpeg cifar_0.1778 jpeg cifar_0.1853.jpeg cifar_0_2148.jpeg
v & 2 7 e
cifar_0_2258 jpeg cifar_0_2354.jpeg cifar_0_2457 jpeg cifar_0_2615.jpeg cifar_0_2745.jpeg cifar_0_2934.jpeg
clfar_0_2974.jpeg cifar_0_3070.jpeg cifar_0_3135.jpeg cifar_0_3497 jpeg cifar_0_3549.jpeg citar_0_3613.jpeg

Tenepb MOCMOTPUM, UTO 3TO HaM jAaeT. Mbl reHepupyeM HOBbIE
u306pakeHusl, a 3aTeM 0Oydyaem Ty Ke CaMyl0 CBEPTOUYHYIO CeTh, UTO
M paHblile, HA TMOMOJHEHHOM Habope naHHbIX. dddekTuBHOCTH pagu
reHeparop paboraer napauie/bHO 00yYeHUI0 MOie/I. DTO M03BOJISIET
nonoiaHaTh Habop Ha CPU 1 ogHOBpeMeHHO 06yuaTh ceTh Ha GPU. Koz
TOKAa3aH HUXKe:

[MoBblWEeHWE KayecTBa pacno3HaBaHua Habopa CIFAR-10... < 99

¥ MHMUMANMIMPOBATE TEHEPATOD
datagen.fit (¥ train}

¥ oByuuTh

history = model.fit generator(datagen.flow(X train, Y train,
batch size=BATCH SIZE), 3amples_per_epoch=x_train.shape[ﬂ],
epochs=NB EPOCH, verbose=VERBOSE)

score = model.evaluate (X_test, Y test,
batch size=BATCH SIZE, verbose=VERBOSE)

print("Test score:", score(0])

print('Test accuracy:', score[l])

Kaskmast mtepaiiyst terepb 06X0OOUTCS SOPOXKE, ITOCKOJIBKY 00ydaio-

MY JaHHbIX CTAJIO0 GoJibliie. BBITONIHUB

CTULJIM BepHOCTH 78.3%:

Bcero 50 urepauuii, Mbl 10-

Epoch 46/50

50000/50000
Epoch 47/58
Seeee/s0000

1 - 40855 - loss: @,B288

Epoch 48/5@
50000/50000

] - 4245 - loss: ©.8349

Epoch 49/58
50000/50000

4p8s - loss: @.8319

Epoch 58/5@
50000/50000

1 - 4035 - loss: @,B386

Testing...
10000/10000

1 - 3985 - loss: @,8394

('\nTest score:
('Test accuracy:', 0.783609999999999995)
['acc', 'loss']

]

', 0.731103328466415486)

acc

acc:

acc:

acc

acc

1 0.7297
0.7303
09.7295
i @.7281

1 @.7267

[Tosy4yeHHbIE B X0l SKCIIePUMEHTOB Pe3y/IbTaThbl OTPakeHbl Ha CJie-
ayoiem rpadguke:

80.00%

76.00%

72.00%

Beprocme

68.00%

64.00%

BepHocTtb
78.30% —— Bephoctb
76.90%
66.40%
P
CIFAR10_simple CIFAR10_deep_augmented
CIFAR10_deep

100 <+ T[haea 3.[ny6okoe 0byyeHUe C NPUMEHEHUEM CBEPTOYHbIX CETEN

0630p CcOBpeMEeHHBIX Pe3y/lbTaToB s Habopa maHHbix CIFAR-10
OHYGJIMKOBE[H Ha CTPAHULE http://rodrigob.github.io/are we there yet/
build/classification datasets_ results.html. [To cocrostHuioo Ha SIHBapb
2017 roga Iy4yliMM JOCTMKEHUEeM Oblila BEPHOCThL 96.53%.

MpeackasaHue Ha ocHOBe pe3ynbTaToB 00y4YeHUs
Ha Habope CIFAR-10

[lycth Termepb Mbl XOTMM MCIIO/Ib30BaTh OOyU4eHHYI0 Ha Habope
CIFAR-10 mopes /i MaccoBoii 06paboTku u3obpaskeHuii. [Tockoabky
Mbl COXpPaHM/IM MOJIe/ib BMECTe C Becamu, TO 06ydaTh ee Kax[blii pa3
He HYXKHO.

import numpy as np

import scipy.misc

from keras.models import model from json
from keras.optimizers import SGD

=arpysuTe MOOENh

model architecture = 'cifarl(architecture.json’

model weights = 'cifarl0 weights.h5'

model = model from json(open{model architecture).read())
model.load_wefgh:s?model_weights} B

¥ zarpysure MIcOpameHMA

img names = ['cat-standing.jpg', 'dog.jpg'l

imgs = [np.transpose (scipy.misc.imresize (scipy.misc.imread(img name), (32,32)),
(1, 0, 2)).astype('float32") for img name in img names]

imgs = np.array(imgs) / 255

oByunTh

optim = S5GD{()

model.compile (loss="categorical crossentropy', optimizer=cptim,
metrics=["accuracy'])

¥ nmpencrasare
predictions = model.predict classes(imgs)

print(predictions)

HapajiTe MocMOTPUM, UTO rpegckasbiBaeT MOOe]b IOJI5 Msoﬁpa}i{e-

f e,

it B o v ILY A Kak 1 oxmmanocs, Mbl 1osryyaeM KaTeropum
3 (komwka) u 5 (cobaka):

gulli-macbookpro:code gulli% python keras_EvaluateCIFAR1®.py
Using TensorFlow backend.

2/2 | 1 -0s

[3 5]

ulli-macbookpro:code quilis B

L7

OueHb rnybokuMe CBepTOYHbIE CETM N9 pacno3HaBaHus ... <+ 101

OueHb rnybokue cBepTOUYHbIE CETU ANSA
pacno3HaBaHUA 60nbLIMX U306paXKEHUMN

B 2014 rogy 6bU1 BHECEH MHTEPECHBIN BKJAJ B paclo3HaBaHKUe U30-
6paskenunit (cm. K. Simonyan, A. Zisserman «Very Deep Convolutional
Networks for Large-Scale Image Recognition», 2014). B aroit pabore
[I0KA3aHo, UTO, y8eauuls 4ucio eecosbix cioeg do 16—19, moxcHo do-
OUMBbCA 3HAUUMENBHO20 VAYULEHUS NO CPABHEHLIO ¢ hpeduiecmeyou-
MU KoH(puzypayusmu. B ogHOI U3 paccMmaTpuBaeMbIx Mogesei (D uin
VGG-16) 610 16 cinoes. [Ijist 06ydyeHus: Moaenu Ha Habope JaHHBIX
ImageNet ILSVRC-2012 (irlttp: x’x’irnage—net.Drgft:'nallc—:nges;’LS'-.FRCJ’2'312J’)
OblIa HallMCcaHa MporpamMma Ha Java ¢ MCIOJIb30BaHueM 6ubIMoTeKu
Caffe (nttp://caffe.berkeleyvision.org/). 3TOT HAOOP CONEPKUT M30-
6paxkenuss u3 1000 kiaccos, pasdbuTbie Ha TpU Habopa: 0OyualOLIMIA
(1.3 MmumiMoHa uzobpaskkeHuit), KOHTposbHbIi (50 000 3006 pakeHMit) 1
tectoBblii (100 000 uzobpaxkeHnnii). Bce 300paskeHUs TPEXKAHAIbHBIE
pasmepa 224 x 224. JIjis1 3T0i Mofe/iy olMbKa HeronaaaHus B epBbie
5 kiaccoB cocraBuia 7.5% Ha Habope ILSVRC-2012-val u 7.4% Ha Ha-
6ope ILSVRC-2012-test.
[Tpusenem nuraty c caitra ImageNet:

Llens copesHosaHus — oyeHuns codepycanue pomozpaduti ons
yesell noucka U agmMoMamu4eckoz0 aHHOMUPOBAHUS € NPUMEHe-
HUeM nodMHOMecmaa DONbLOZO0 PA3MEUEHHO20 8PYUHYI0 Habopa
ImageNet (10 MWiINUOHO8 nomeuerHbIX u300paxceHuil o6sexkmos
u3 10 ¢ auwrHum moicau kamezoputi) 0is o6yuerus. Tecmogsle u30-
OpaiceHUn He codepicam HUKAKUX AHHOMayull — HU cezmermayu,
HU MEMOK, a aizopumm O00JIHeH BbIBECNU MeMKL U300PaMEHHbIX
00BeKkmos.

BECE{, IIoJiydeHHbIE B pe3yJbTaTe 06Y‘JEHMH MO e/NH, peanuaosaﬂnoﬁ
Ha Caffe, 6b111 11peoOpa3oBaHbl K BUY, TOHATHOMY Keras (CM. https://
gist.github.com/baraldilorenzo/07d7802847aaad0a35d3), TAK UTO UX MOXKHO
3arpysmuTh B MOJie/ib, KOTOPAS HMKe ollpeaesieHa Tak »Ke, KaK B OpMIu-
HaJIHOI cTaThe:
from keras.models import Sequential
from keras.layers.core import Flatten, Dense, Dropout

om keras.layers.convolutional import Conv2D, MaxPooling2D, ZercPadding2D
ke
import cv2, numpy as np

.optimizers import SGD

onpememmrs ceres VGGLE

L7

102 < T[haea 3.[ny6okoe 0byyeHUe C NPUMEHEHUEM CBEPTOYHbIX CETENM

def VGG_16 (weights path=None) :

model

model.
model.
madel.
model.

model

model.
model.
madel.
maodel.

model
model

model.
madel.
maodel.
madel.
model.
model.
madel.
maodel.
madel.

model

model.
madel.
maodel.
madel.

model

model.
madel.
maodel.

model
model

model.

= Sequential ()}

add (ZeroPadding2D((1,1),input shape=(3,224,224)))
add (Conv2D (64, (3, 3), activation='relu'))
add (ZeroPadding2D((1,1)})

add (Conv2D (64, (3, 3), activation='relu'})
.add (MaxPooling2D((2,2), strides={2,2)))

add (ZeroPadding2D((1,1})))

add {Conw2D(128, (3, 3), activation='relu'))
add (ZeroPadding2D((1,1)})

add (Conv2D (128, (3, 3), activation='relu'))
.add (MaxPooling2D((2,2), strides={2,2)))
.add (ZeroPadding2D((1,1}))})

add {Conw2D (256, (3, 3), activation='relu'))
add (ZeroPadding2D((1,1)})

add (Conv2D (256, (3, 3), activation='relu'))
add (ZeroPadding2D((1,1})})

add (Conv2D (256, (3, 3), actiwvation='relu'))
add (MaxPooling2D((2,2), strides={2,2)))

add (ZeroPadding2D((1,1)})

add (Conv2D (512, (3, 3), activation='relu'))
add (ZeroPadding2D((1,1})})

.add(Conv2D (512, (3, 3), activation='relu'))
add (ZeroPadding2D{(1,1})}}

add (Conv2D (512, (3, 3), activation='relu'))
add (MaxPooling2D((2,2), strides={2,2)))

add (ZeroPadding2D((1,1})})

.add(Conv2D (512, (3, 3), activation='relu'))
add (ZeroPadding2D((1,1)})

add (Conw2D (512, (3, 3), activation='relu'))
add (ZeroPadding2D({(1,1})})

.add (Conv2D (512, (3, 3), activation='relu'))
.add (MaxPooling2D((2,2), strides={2,2})))

add (Flatten())

BepxHue cnom cerm VGG

madel.

model

model.
model.

model

add (Dense (4096, activation='relu'))
.add (Dropout (0.5})

add (Dense (4096, activation='relu'))
add (Dropout (0.5})

.add(Dense (1000, activation='softmax'))

if weights path:
model.load weights(weights path)

return model

Pacno3HaBaHue kowek ¢ nomowbto cetu VGG-16

Terepb MpOTECTHPYEM CeTh Ha M300paKeHUM l!i

L7

OueHb rnybokuMe CBepPTOYHbIE CETM N9 pacno3HaBaHus ... < 103

im = cv2.resize(cv?.imread|('cat.jpg'), (224, 224)).astvype(np.floatiz)
im = im.transpose((2,0,1)
= np.expand dims(im, axis=0)

[
3
|

TecTupoBaTh NpenobyueHHYHD MOOENb

model = VGG 16 ('/Users/gulli/Keras/codeBook/code/data/vgglé weights.h5')
optimizer = SGD()

model.compile (optimizer=optimizer, loss='categorical crossentropy')

out = model.predict (im)

print np.argmax(out)

[IporpaMma BO3BpalaeT Kjiacc 285 — KOUIKY IMOPOfAbl ChUHKC (CM.
https://gist.github.com/yrevar/942d3alac09eclesSeb3a):

LK | code — -bash — 108x5
~[Keras/codeBook/code — -bash e | ~[KerasjcodeBook/cade — -bash E
set properly.
gulli-macbookpro:code gulli$ python keras_VGG16.py
Using TensorFlow backend.
285
gulli-macbookpro:code gullis

Ucnonb3oBaHue BcTpoeHHoro B Keras
moayna VGG-16

[IpmnoxkeHns Keras — aTo nipeBapuTebHO TOCTPOEHHBIE 1 00yUEeH-
Hble y6OKMe Mozieny. Beca aBTOMaTMUYECKM 3arpyKaloTcs Ipu Co3-
OAaHMM K3eMIUISIpa MOMAEIM M XPaHSITCS B KaTajore ~/.keras/models/.
HMcronb30BaTh BCTPOEHHBINM KO 04€Hb IIPOCTO:

from keras.models import Model

from keras.preprocessing import image

from keras.optimizers import SGD

from keras.applications.vgglé import VGGLE
import matpleotlib.pyplot as plt

import numpy as np

import cv2

roroEas momens C npenofyueHHemMM Ha Habope imagenet Becaumnu

model = VGG1l6(weights='imagenet', include top=True)
sgd = SGD(lr=0.1, decay=le-6, momentum=0.9, nesterov=True)
model.compile [optimizer=sgd, loss='categorical crossentropy')

coenaTe pasMep TaxkMM me, Kax y M300paxediti, Ha xoTopex ofyuanace momens VGGL6E
im = ¢v2.resize(cv?.imread|('steam-locomotive.jpg'), (224, 224)
im = np.expand dims(im, axis=0)

npencxazaHue
out = model.predict (im)
plt.plot (out.ravel ())

104 <+ T[haea 3.[ny6okoe 0byyeHUe C NPUMEHEHUEM CBEPTOYHbIX CETEN

plt.show()
print np.argmax(out)

momsHa OWTh HaneuaraHa xarteropua 820 - naposmosz

Teriepb BO3bMeM M3006paskeHMe MapoBO3a:

Ha Takom e3nun moit negyiika. BeirnojHUB
rnporpammy, Mel rojayumum Kareroputo 820, Ko-
Topoit B Habope ImageNet o6o3Hauaercs ha-
po6o3. BaxkHO TakKe, YTO BEPOSITHOCTh BCEX
OCTa/IbHBIX KJIACCOB OY€Hb Maja, KaK BUIHO U3
wienyiouiero rpaduka:

10 - . - -

08| -

06} 1

04f -

02} |

0.0

0 200 400 600 800 1000

B zakitoueHue aroro paspena ormerum, utro VGG-16 — nuiib ogHa
U3 Mofeeit, BcrpoeHHbIX B Keras. [To/iHbli IepedeHb npeno0ydeHHbIX
Mopeseii MPUBeaeH Ha CTPAHMULIE https://keras.io/applications/.

Mcnonb3oBaHue rotoBbiX Moaenei rmybokoro
06y4yeHus ana BblAeNEeHUS NPU3HAKOB

Mopenb VGG-16 1 Boo6iie o6y 'CHC MOXHO 04eHb IIPOCTO UC-
M0JIb30BAaTh [IJI51 BbIAEIeHUs ITPU3HAKOB. Hitke 1mokasaHa peanusaius
3TOM UAen [Jist BbIAe/IeHUs IIPU3HAKOB B KOHKPETHOM CJioe.

from keras.applications.vgglé import VGGLE

from keras.models import Model

from keras.preprocessing import image

from keras.applications.vggl6 import preprocess_input

import numpy as np

OpenEapMTENEHO NOCTPOSHHaA M ofyueHHas momens rnybokoro ofyuenmusa VGGLE

base model = VGG1l6 (weights="'imagenet', include top=True)

OueHb rnybokMe CBEPTOYHbIE CETU ANS pacno3HaBaHms ... <+ 105

for i, layer in enumerate(base model.layers):
print (i, layer.name, layer.output shape)

BHOeMMTbL Npu3HaxM M2 cnoa blockd pool

model = Model [input=base model.input,

output=base model.get layer('blockd4 pool').output)
img path = 'cat.jpg'
img = image.load img(img_path, target size=(224, 224))
x = image.img to array(img)

x = np.expand dims(x, axis=0)
x = preprocess_input (x)

NoTYy4YHNTE [NPM3IHAKH

features = model.predict (x)

Bo3HuMKaeT BOIIPOC, a 3aUeM MOKET ITOHAn00MUThCsl BbIIEJISITh IIPU-
3HaKKM u3 npomexyrouHoro cios 'CHC? [leno B Tom, 4TO eciu CeThb
0byumiack KiaccuUIMPOBaTh U300paskeHUs, TO KaXKIbIii ee ¢/10ii 00-
YUMJICS HAXOOUTD [IPU3HAKK, HeOOXOIMMbIe JIJIsi OKOHUYATeIbHOI Kitac-
cudmkanuu. HuskHme ciou uaeHTHGUIMPYIOT TaKe HU3KOYPOBHEBbIe
MPU3HAKK, KK L[BETA 1 IPAHUIIbI, @ BEPXHME COCTAB/ISIIOT U3 HUX ITPU-
3HaKM Oojiee BHICOKOTO YPOBHSI, HAIIpUMeED, reomMerpudeckue GuUrypbl
uin o6bekTol. ClenoBaTe/IbHO, TPOMEKYTOUHbIN CJI0i CIIOCOOEH Bbi-
OeUThb 13 U300paKeHUS] BayKHbIe ITPU3HAKM, KOTOPbIE MOT'YT OKa3aTh-
Cs1 [OJIe3HbI 1151 APYTUX BUAOB Kiaccubukaumuu. [[peumyiecTs TyT He-
CKOJIbKO. BO-11epBbIX, MOKHO OIE€PeThCsl Ha HAXOSIIIMECs B OTKPbITOM
nocryre KpynHomaciiTabHbie 00yyeHHbIe MOIEIM U IepeHecTu pe-
3yJbTAThl UX 00yUYeHUs1 Ha [Apyrue npeamerHbie obiacT. Bo-BTOphIX,
MOYKHO CIKOHOMUTL BpeMSl Ha JOpPOrocTosieM 06yuyeHuMu 00JibIioi
Mozenn. B-TpeTbux, MOKHO MOJIYYUTh PA3yMHOE PellieHue Jaxe TOr-
1A, Korga ajisi HeKOTOPO#i MpeaMeTHOi 06J1acTi HeLoCTaTOUYHO 00Y-
yallux npumepos. Kpome Toro, Mbl IojydyaeMm xXopoliiee Hauya/lbHoe
npubaMsKeHne IJis pellieHus UMeleiics 3a1ayM BMeCTo C/ydaiHoii
UIIOTe3bl.

OueHb rnyb6okas cetb inception-v3, npyumeHsemas
ANA nepeHoca obyyeHus

[lepeHoc o6yueHust — Becbma 3¢pdeKTUBHAs TEXHUKA [1yOOKOro 06-
YUEHMS, UMEI0LLast [IPUJIOKEeHMst B pa3HbIX obnactsx. Maes oueHb npo-
cra, ojsi ee 0OBSICHEHMSI BOCIIOAb3yeMcsl aHajorueit. [Ipeanonoxum,
Bbl XOTUTE U3YUYMTh HOBBII SI3bIK, CKa)XXeM, McrtaHCKuii. Torna ronesHo
HAuyaTh C TOrO, UTO BbI V)K€ 3HAETe 0 KAKOM-TO JIPYTrOM SI3bIKe, HAIlpu-
Mep, aHIIMIICKOM.

106 <+ T[haea 3.[ny6okoe 0byyeHUe C NPUMEHEHUEM CBEPTOYHbIX CETEN

B pycie aToit uaeM CHeLMaJMCTbl [0 KOMIIbIOTEPHOMY 3PEHMUI0
aKTMBHO MCIOJL3YIOT npenobyuenHble CHC /s nmopoxkpeHus: npep-
CTABJIEHMIA B HOBBIX 3a/iavax, rjie Habop JaHHbIX He HACTOJILKO BEeJIUK,
yT06b1 06yunTh CHC ¢ Hys4. Ellle ofHa 4acTo BCTPEUaiiascs TakTu-
Ka — B34Th NpenobyueHHyto Ha Habope ImageNet ceTb M HACTPOUTH ee
0]l HOBYIO 3a/1auy.

Inception-v3 - oueHb mIyGOKasi CBEPTOYHAS CETh, pa3paboTaHHast
Google. Keras peanusyeT NoaHyI0 CeThb, TOKA3aHHYIO HA PUCYHKE HITKeE,
U Mofielnb, npefobyuenHas Ha Habope ImageNet, BKIIlOUeHa B AMCTPU-
6yTuB. [To yMO/IYaHMIO B 3TOI MOEIM UCIIOIb3YIOTCH TPEXKAHAIbHBIE
u3obpaxkeHus pasmepa 299 x 299:

-
-

]]]] i i i] L]] nmmn

Comvolution

MaxPpel
= Concat
= Deupout
- Fully conesced
- schma

B OCHOBY 3TOr'o cXeMaTHM4eCKOro rpumepa rnojioxeHo IIpujioxeHue,
uMemwlieecsa Ha CTpaHMIIE https://keras.ico/applications/. l'lpe,u,no.rlara-
eTcst, 4YTO eCThb 06}"1310].].[1'{1"‘1 Haﬁop JAaHHBIX DB I'IIJE,EI,METHOﬁ oﬁnacm,
orinuHoi oT ImageNet. B D umeercsa 1024 sxonHbix npusHaxka u 200
BbIXOIHBIX Ka'rempmﬁ. PaCCMOTpHM CJ'IEJIYIOLU,Hﬁ Cl)pa[‘ME‘HT Kopa:
from keras.applications.inception v3 import InceptionV3
from keras.preprocessing import image
from keras.models import Model
from keras.layers import Dense, GloballAveragePooling2D
from keras import backend as K

MbI MCITI0/Ib3yeM 00YUYEeHHYIO CeTh inception-v3 1 He BKJIKOYaeM BepX-
HME ¢JIOU, TIOTOMY UTO XOTUM aJanTUpoBaTth ee K D. B Hauiei momenu
BBIXO[HBIM OY/IeT IUIOTHBI ¢10 softmax-knaccuduranmu ¢ 200 Kiac-
camu. [Ist npeobpasoBaHMsl BXOMHBIX MNAaHHBIX K (opme, ITPUTOIHOM
IJIS1 STOTO TJIOTHOTO CJI0ST, IIPUMEHSIETCS MOJIYJ/Ib Global AveragePool ing2D.
B neicTBUTEMBHOCTH TEH30P base model.output UMeeT Gopmy (samples,
channels, rows, cols), ey dim ordering="th", uiu dopmy (samples, rows,

OueHb rnybokue CBEPTOYHbIE CETM ONA pacrno3HaBaHus ... <+ 107

cols, channels), ec/iv dim ordering="t£", TOLJA KaK IVIOTHOMY CJIOI0 HY)XHA
bopma (samples, channels). [103TOMY GlobaliveragePeoling2D IPOU3BOIUT
yCpeiHeHue 10 CTPOKam rows u cronbam cols. B3risHyB Ha mocieqHue
YeTbIpe ¢JI0s (TIPU include top=True), Mbl YBUIUM TaKue (POPMbI:

layer.name, layer.input shape, layer.output shape

{'mixed10', [(None, 8, &, 320), (None, 8, 8, 768), (None, &, 8, 768),
(None, 8, 8, 192)], (None, 8, &, 2048))

('avg pool', (None, 8, 8, 2048), (Nene, 1, 1, 2048))

('flatten', (Nene, 1, 1, 2048), (None, 2048))

{'predictions', (MNone, 2048), (MNone, 1000))

Ecin ske NONOXKUTD include top=False, TO TPU BEPXHUX CIIOS yIAJISIOT-
Cs,aCcBepxXyocraeTcs CTOM mi xedl 0, TAKYTO MOOY/b GloballveragePooling2D
npeo6pasyet (None, 8, 8, 2048) B (None, 2048), roe KaKIblii 5JIeMEHT
TeH3opa (None, 2048) — pe3ynbTaT yCpeaHeHMsI 10 COOTBETCTBYIOILEMY
rnoaTeHsopy pasmepa (8, 8) renszopa (None, 8, 8, 2048):

noBaBUTE TNODANEBHENT CIOM OYIMEDS, BHOOIHAKMETO [NPOCTPAHCTEEHHOE YCPEIHEHME
= base model.output

= GloballveragePooling2D() (x) # nepeam pDoGaBnAeM [ONHOCBASHENL CIOR

= Dense (1024, activation='relu')(x) # a nocnenwm RellU-cnoit ¢ 200 wmaccams
predictions = Dense (200, activation='softmax') (x)# ofyuaemas moment
model = Model (input=base model.input, output=predictions)

EE A

Bce CBePTOYHbIE CJIOM HDEHOGYT-IEHIJE, IMO5TOMY 3aMOpakKMBaeM MX
Ha BpeMsd Oﬁy‘IEHMH MOJe/IM B IeJIOM:

2aMopo3MTE BCE CEEpPTOYHHE ciou ceTtu InceptionV3
for layer in base model.layers: layer.trainable = False

3aTeM MOZe/b KOMIIMIMPYETCS U 06y4aeTcs B TeUeHMEe HeCKOIbKUX
1epUOI0B, YTOOLI 0BYUMThL BEPXHME CIIOU:

OTHKOMOMAMPOBATE MOZENb (3T0 HyxHo memars [OCHE Toro, Xax HEKOTOPHE CIOM

noMeusHH Kax HeobydacMus)
compile the model (should be done *after* setting layers to nontrainable)
model.compile (optimizer='rmsprop', loss='categorical crossentropy')

o0yuaTe MOOENE HA HOBHX OAHHHK B TEUSHME HECKONBKMX NSDMOOOE
model .fit generator(...)

3aTeM Mbl 3aMopaxKuMpaeM BepxHMe CJIOM MOIe/IM M HacTpauBaem
HIDKHKME. B JaHHOM (jlyyae 3aMOpaXXMBarTCs rnepsbie 172 ciost (ru-
rnepmnapamerp HaCTpOf“IKI’I):
uu peusuy oByunTs 2 cnoa inception, Tak uto nepexe 172 cnos SaMopawMBaKTCA,
& OCTaNbHHE PasMOPaXMBAKTCA
for layer in
model.layers[:172]: layer.trainable = False

108 <+ T[haea 3.[ny6okoe 0byyeHUe C NPUMEHEHUEM CBEPTOUHbIX CETEN

for layer in
model.layers[172:]: layer.trainable = True

3aTeM MOMeb MePeKOMITUIUPYETCS], YTOObI MU3MEHEHMs] BCTYIIMIINA
B CHITTY:

ucnonesyes CIC C MAnNoOM CEOpOCTEE O0yUeHMA

from keras.optimizers

import S5GD

model. pile (optimizer=5GD(1lr=0.0001, momentum=0.9%)

loss categorical_crossentropy'J

cHoeBa obyuaeM MOOen:s (Ha 3TOT pas HacoTpauBaes 2 BEDXHMX CNOA inception)
u Bepxume cnom Dense
model .fit generator(...)

Tertepb Mbl MUMEEM HOBYIO IJTYOOKYIO C€Th, B KOTOPOI [TOBTOPHO MUC-
[10/Ib3YeTCs YaCTh CTaHAapTHOI cetu Inception-v3, Ho 06yyeHa OHA Ha
NAHHBIX U3 IPYTOii MpeJMeTHOM 06/1acTi MOCPEACTBOM IlepeHoca 06-
yueHus. PasymeeTcs, 1J1 JOCTWKEHUS TPUEMJIEMOI BEPHOCTU MOXKHO
HACTPOUTh MHOTO NapameTpoB. Ho B KauecTBe OTIPABHO TOUKM Mbl
Terepb UCIO/Ab3yeM O0YeHb DOJbIYIO MTPeIo0yYeHHYIO CeThb, U, Clen0-
BaTeJIbHO, MOYKEM OTKA3aThCs OT IMOJIHOIO 0OYUYeHMsI Ha HALIMX Malliu-
HaxX ¥ BOCIIOJIb30BAThCS TEM, UTO y3Ke ecThb B Keras.

Pesiome

B aroii r;1aBe Mbl HAYYWIMCh UCITOIL30BATh [JIYOOKME CBEPTOUHbBIE CETH
[J1S1 pacIio3HaBaHMUs PYKOMMCHbIX g p 13 Habopa MNIST ¢ BbICOKOI
BEPHOCTBIO. 3aTeM Mbl BOCIO/Ib30BaIuCch Habopom nanHbix CIFAR 10,
4yT06bI MOCTPOUTDH ITyOOKMI Kiaccubukarop ¢ 10 kareropusimMu, 1 Ha-
6opom ImageNet mig nocrpoeHus TouHoro kiaccudukaropa ¢ 1000
Kareropuii. Kpome toro, Mbl y3Ha/IM, KaK MOXXHO MCITOJIb30BaTh GOJIb-
e npenobyueHHsie cetu tura VGG16 u odeHs riyboKue ceTu THIIa
InceptionV3. B 3akiodyeHne Mbl 06CYIMIM TEXHUKY IIepeHoca obyue-
HMSI, MIO3BOJISIIONIYVI0 AfalTUPOBAThL FOTOBbIE MOME/N, 00yUeHHbIe Ha
B0/bIINX HAOOPAX TaHHBIX, K HOBBIM ITPeIMeTHbIM 00/1acTsIM.

B ciienyoiiiedi riaBe Mbl TO3HAKOMMMCS C TIPUMEHEHUEM TTOPOKIA-
IOLMX COCTSI3aTEJIbHBIX CETEN K 3a/1a4e CMHTe3a JaHHbIX, TOX0KUX Ha
MnoposKaaemMbie JIOabMM. Mbl TakKe MpencraBuM [yOOKYI0 HepoH-
Hy10 ceTb WaveNet 1151 BBICOKOKaUeCTBEHHOTO BOCITPOM3BENEHUST ue-
JIOBEUYECKOT0 rojioca M 3By4aHUsI MY3bIKaJIbHBIX MHCTPYMEHTOB.

lnaBa

L B B O BN BE B BN BN AN IR BN BN BE BN BN BN BN BN B BN N BN BN BN B BN B BN B BN B B N A N N I

[Nopoxpalowme
cocTa3aTesNibHble CeTH
n WaveNet

B aToit miaBe Mbl 06CYIMM MOPOXKAAIONIME COCTA3ATE/IbHbIE Ce-
i (IICC) (generative adversarial network — GAN) u cetbr WaveNet.
1 JlekyH, OIMH M3 OTLOB D1y6oKoro obyuenus, cunraer [1ICC camoit
MHTEepecHol uaeeit 3a nowtegHue 10 net paszsurust MO (https

quora.

F W .

om/What-are-some-recent-and-potentially-upcoming-breakthroughs-
in-deep-learning). IICC cIocoBHbl 006YYaThCA IOPONKAEHUIO CHUHTE-
TUYECKUX TaHHbIX, KOTOPble BBIMVISIASIT B TOYHOCTU KaK HACTOsLMe.
Hanpumep, KoMIibloTep MOXHO Hay4uTh PUCOBATh M CO3[1aBaTh pe-
anuMcTuuHbie u3obpaxenus. Vines 6bu1a npenoxkena dnom Iyaden-
noy (cm. 1. Goodfellow «NIPS 2016 Tutorial: Generative Adversarial
Networks», 2016), koTopslit padora B MOHpeaibCKOM YHUBEPCUTETE,
B KoMmnaHui Google Brain u, B nmocienHee spems, B OpenAl (https://
openzi.com/). WaveNet — riyboKasi OpoKIa0LIast CeTh, IIPeIoKeHHAasI
komrauueit Google DeepMind aJist 06yueHMst KOMITbIOTEPOB BBICOKO-
KayeCTBEeHHOMY BOCITPOU3BEeHMIO YeI0OBeYeCKOro rojioca U 3By4aHust
MY3bIKaJIbHbIX MHCTPYMEHTOB.
Mpb1 06CyIMM ClieAyIoIue TeMbi:

O uro Takoe [1CC;
O rny6okue cgeprounblie [1CC;
QO npunoxenus I1CC.

Yr1o Takoe MNCC?

OcHoeHas upes [ICC aHanornuHa noddenke npoussedeHuil uckyccmed,
T. €. CO30aHHID paGOT (h::pe:.f".f'er-..wikipediaA-:-rqx"wikif'ér‘:), o1IM6oYHO

110 <+ T[haea 4.[lopoxaarwowme coctazatensHole cetn 1 WaveNet

MPUITUCBIBAEMBIX IPYrMM, 00bIYHO Goiee mu3BecTHbIM, aBTopam. [1CC
obyuaeTr IBe HEPOHHbIE CeTH OJHOBPEMEHHO, KaK IT0Ka3aHO Ha pu-
cyHKe Huke. leHepaTop G(Z) MOpoKaaeT MogmenKy, a AIMCKPUMUHATOPD
D(Y) cynut o TOM, HACKOJIBKO PEINPOAYKIMUS PEaTUCTUUHA, OCHOBBIBA-
SICh HA HAOIIOIeHUSIX ayTEHTUYHBIX [IPOU3BeIeHMIt 1 Kormii. D(Y) rpu-
HuMaeT Bxo, Y (Harpumep, n300paxkeHue) U BbIpaskaeT CBOe CyKaeHue
0 ero MoIJIMHHOCTY — B 0611eM ciyyae 3HaueHue, 6imskoe K 0, o3Hava-
eT nodauHHbLil, a 6U3Koe K eguHule — noddeika. G(Z) npUHUMAET Ha
BXOJle CJIy4yaiiHblii ymM Z 1 obydyaercs obMaHbIBaTh D, 3acTaBiiss ero
oyMaTh, 4TO pe3yibrat paborsl G(Z) — nomiMHHoe rnpoussenerue. Ta-
KMUM 00pa3oM, 1ejib 00yuyeHst UCKPUMMHATOPA — MAKCMMU3UPOBATh
D(Y) nnst Bcex m306pakeHUIt U3 MCTUHHOTO pacipeneneHus JaHHbIX
M MUHUMU3UPOBATH [JIs1 U300PaKeHUI, He BbIOPAHHBIX U3 UCTUHHOTO
pacripenenenusi. CnegosartenbHo, G 1 D BegyT cedst Kak IPOTMBHUKK B
HeKOTOPOI Urpe, 0TCI0NA U Ha3BaHUe cocmasameiibHoe 0byuette. Orme-
1M, utTo G 1 D 06yyaroTcs rorepeMeHHo, a B KauecTse 1eieBoi GpyHk-
LMY BbICTyTaeT MYHKUMS [I0TePb, OIITUMU3MPYEMast METOLOM rpazii-
eHTHOro crycka. [Topoxknaioniast moaens obyyaercs: MOAAe/bIBaTh, a
NUCKPUMMHAHTHAS PACo3HaBaTh MOAMENKNU. [IMCKPUMUHAHTHAS CETh
(0OBIYHO CTAHIAPTHASI CBEPTOUYHAS HEMPOHHAS CeTh) MbITAETCS Kiac-
cuduMpoBaTh U300paKeHMe KaK HACTOSIIEee UM CreHepUPOBaHHOe.
BaskHast HoBast uziest — 00paTHOE PaCIPOCTPAHEHME Yepes TUCKPUMU-
HATOP U F€HEPATOP C LB KOPPEKTUPOBATH TAPAMETPhI reHepaTopa
TakKuMM 06pa30oM, UTOObI reHepaTop MOr 06YUMThLCS, KaK yCIlellHee 06-
MaHbIBaTh AUCKPUMMHATOP. B KOHEUHOM MUTOTE reHepaTop HayuMuTCs
MOPOXKAATH MOAE/IbHbIe U300PAKEeHMS, HEOTIMUMMbIE OT HACTOSIIIMX.

e
CnyuaiHbii pesaas —
tiym (thanbcudmkarop)
N
) noaaenka
Hackonbko
noxoxe Ha <,‘:| JuckprMuHanTHas Moaenb
NOANMHHKK? (ap6urp)
-~/ NoANAMH-
HUK

Pasymeercs, ot [ICC TpebGyeTcsi HAWTH TOYKY PaBHOBECHSI B MUIDe
IBYX UIPOKOB. UT0OBI 00yUeHMe oKasanochk 3G peKTMBHbBIM, HEOOXO0 M-
MO, 4T0ObI OOHOBJIEHME, B PE3Y/IbTAaTe KOTOPOro OIMH UIPOK OIyCKa-

Yro Takoe MCC? < 111

eTcsl BHU3, OIHOBPEMEHHO ITPMBOIMIIO K OIYCKAaHMIO APYTOro UrPOKa.
3agymaiitTech 06 atom! Ecin danbecuduraTop HayuuTCes 0OMaHbIBATh
ap6urpa B KaxXa0oM cjiyuae, To caMomy daibcuduraTopy 6osbiie He-
yeMy yuuThes. MHorma oba MrpoKa JOCTUTaloT paBHOBECHS, HO 3TO He
rapaHTUPYeTCsl, M Urpa MOXKET IPoAo/KaThes Hoiro. Ha ciemyoniem
rpaduke roKasaH rpumMep obydyeHusi 060MX UIPOKOB.

16
—"|| —— NOTEPA JHCKPHMMHATOPA
—— NoTepA reHepaTopa

| ||J i ||*|| llllfvﬂ'||!\|ﬁ fw'\u
MMA WA

(] | ‘F

|
2 '\'-'l || Ilk"\
H A
0 A J j‘
50 0o 150 200 250 300 0

]

Hekotopbie npunoxenus MNCC

Ms! Bumeny, uto reHeparop obydaercs oAe/bIBaTh JaHHbIE. ITO
3HAUUT, YTO OH 0Oy4yaeTcsl CO37aBaTb HOBble CUHTETHMYECKME OaH-
Hble, KOTOpbIe BBIIIANAT TaK, OYATO co3maHbl uyenoBekoM. [Ipexne
yeM [epexoiuTb K KOy, XO4y [POAEeMOHCTPUPOBATL Pe3yIbTaThl U3
HepnaBHeit cratby Han Zhang, Tao Xu, Hongsheng Li, Shaoting Zhang,
Xiaolei Huang, Xiaogang Wang, Dimitris Metaxas «StackGAN: Text to
Photo-Realistic Image Synthesis with Stacked Generative Adversarial
Networks» (Ko», OOCTYIEeH IO aJpecy https://github.com/hanzhanggit/

StackGAN).

112 < T[haea 4.[lopoxaarwowme coctazatensHole cetn n WaveNet

3neck [ICC ucronb3yeTest Ijisl CMHTe3a U300paskeHuIi 110 TeKCTOBO-
MYy OIucaHuio. Pesynbrarsl BrieyaT/sior. B nepsom cronbiie Mbl BULUM
peajibHble M300PaKeHUS U3 TeCTOBOro Habopa, a BO BCeX OCTAJIbHbIX —
u306pakeHusi, creHepupoBanHbie Ha craguu [u II cerm StackGAN.
HononHuTeNbHbIE IPUMePbl MOXKHO HaiTu Ha YouTube (https://waw.

youtube. com/watch?v=SuRyL5vhCIMsfeature=youtu. be) :

Tenepb MOCMOTPUM, KaK MOXXHO HayuuThb I1ICC noddensieame Habop
naHHbix MNIST. B aTom ciiyuae B KauecTBe reHepatopa M IMCKPUMM-
Hartopa I1CC ucrionb3yiorcst cBeprouHbie cet (cM. A. Radford, L. Metz,
and S. Chintala «Unsupervised Representation Learning with Deep
Convolutional Generative Adversarial Networks», arXiv: 1511.06434,
2015). B Hayasie reHepaTop MOPOKAAeT HEUTO Hepa3bopuuBoe, HO 10-
CJ1e HeCKOJIbKMX UTepaliii CHHTeTHYecKue ndpbl CTAaHOBSTCS Bee 60-
nee oTueT/IMBbIMK. Ha ciemyiolem pyucyHKe MaHexu YIopsig04eHbl 110
HOMEpY UTepaluu 1, Kak BUIUTE, KAUECTBO MOCTEITEHHO MOBBIIIAETCSI.

e

113

L7
o

Yo Takoe MCC?

Iajee MokasaHbl UMUTALMKM PYKOMMUCHBIX HUGP HA MOCAEIVIOLIMX

uTepanmsx:

e e R e s ! .TI .(.-14
e B B ol e ¢
.T.le).-...II._J_..)J.ru

ﬂ.vu..r}l.rT.(d2¥n
BT R i J.r.T
e o—Oo b~

P T i Sl 2 T S
Axgngavy~asNg
..ﬂ..an,»}.f-&l!?_.wiﬂm

mMEyADHAY O
e S BN RN e
U~ =N~

b b S ol oB il Se B Bt

T s, e S e LA b s

e B B Mo S T o B T o

A BOT Kak BBIIJIAAT MOAAe/IbHbIe HUdPhI B KOHIE 06yueHusi. OHU

IpakTHYeCkK HeOTJIMYMMbI OT OpMI'MHAaJla.

[~ N Yy e
8] I_\ulj.a|f Q= &

f/Bd‘:J138$J
G e~) =
~=AmwrU-De
N -0~
~—lmRErN—-yy~=Q
Séffnreyboq}.
DPAOr~DHNDO D~
A= Q~NAh—4 ~~ 0§
TNMNIIODILILI 0N
AT~ =3/ SND
WWrrdvw—~aAmas QO
VB~~~ Q——a
PO G~ ~Ad
=0 nSFe—-Hh—m9Q
FrRaehNeMm -~
e R e, Bl R
U=t rrhdA»
Q== nns
= Q= A s~
HOV=rr—=rM D
DA B0 ~ = =D Oy
!132?!131!!/

5

OOHO M3 caMbIxX Morpacaioiux npumenenuii I1CC - apudmernue-

CKMe OIepalum ¢ JIMaMi B BeKTOpe reHepartopa Z. MUHbIMM C1I0BaMM,
0CTaBasiCh B IIPOCTPAHCTBE CMHTETUYECKUX M306PaskeHMi1, Mbl MOKEM

IIPOMU3BOOUTL TaKMe OJeUCTBUS:

umpaibHslu

[vasibarowasca yeHuunal — [HellmpanvHas ieHwuHal + [He

J

ticss MyHcuuHa

[yreibarowu

MYHCHUHA]

WMnu rakue:

[mysrcuuna Ge3 ouxoe) + [HeHwuHa 6e3 0uKos)

[MyxHcuuHa 6 oukax] -

[HceHwuHa 6 ourax)

Cneayolliee M300pakeHe B3SITO M3 BhIIEYITOMSIHYTOM craThu «Un-
supervised Representation Learning with Deep Convolutional Genera-

tive Adversarial Networks»:

114 < T[haea 4.[lopoxaarwowme coctaszatensHole cetn n WaveNet

ynbibaowasca HeHTpanbHaa HEeHTpanbHbii ynbibarowmiica
IEHLLMHA JKEHLLMHA MY>KUMHA MY>KUHHA

MYyHHHHa MyH4YHHa HeHWwHWHa MEHLUIMHA B OYKaxX
B O4Kax He3 ouKoB Bes oukoB

lny6okue cBepToUHbIE NOPOXKAAOLME
cocTasareNibHble CEeTHU

[nyGoKime CBepTOYHBIE MOPOKAAIOIIME COCTSA3ATE/NbHbIE CeTH
(I'CIICC, anri. DCGAN) BriepBbie onucanbl B crathe A. Radford, L. Metz,
and S. Chintala «Unsupervised Representation Learning with Deep
Convolutional Generative Adversarial Networks», arXiv: 1511.06434,
2015. B reneparope ucroibsyercsa 100-MepHOe MpoCTPaHCTBO C paB-
HOMEPHbLIM pacripefiejieHueM Z, KOTopoe MPoeLupyeTcs Ha poCTpaH-
CTBO MEHbIel PA3MEPHOCTU € MOMOILbIO [TOC/eN0BATeIbBHOCTH Tap-
HbIX orepaluii ceepTku. [Ipymep rokasaH Ha PUCYHKe HIKe.

l'nyﬁome CEEPTOYHbIE NOPOXOALWKME COCTAZATENbHbIE CETH %*

CBA3HbIX W NYNHHIOBBIX CNOEB.

G(z)

Puc. 1. Tenepatop NCMNCC ucnone3syetca ana mogenposadus cuersl LSUN. 100-mepHoe pasHomepHoe
pacnpegenedue Z NPOELUMPYETCA Ha CEEPTOMHOE NPEACTABNEHHE MEHbLUEH Pa3MepPHOCTH € MHOMMMM
KapTamu NpW3HaKkos. 3aTeM NocnefoBaTeNsHOCTh CBEPTOK € APOBHBIM WaroM (B HEKOTOPBIX HEAABHMX
paboTax oHW OWKHBOUHO Ha3sIBaOTCA 0BpaLLEHHBIMU CBEPTKaMK) Npeobpasyet 370 BblCOKOYPOBHEEOE
npegcraenexye e Maobpakenue paamepa 64 * 64 nukcens. OBpaliaem BHHMaHWe Ha OTCYTCTBME NONHO-

l'eneparop I'CIICC moHO ornucaTth Cleayoimum Kojaom Ha Keras;
MMEeTCSl TAaKkKe Apyrasi peaju3alusi Mo afpecy https://github.com/

jaccbgil/keras-dcgan.

def generator model():
model = Sequential ()
model .add (Dense (input_dim=100, output dim=1024))
model ,add (Activation('tanh'))
model .add (Dense (128*7*7))
model ,add (BatchNormalization())
model .add (Activation('tanh'))
model.add (Reshape ((128, 7, 7), input shape=(128+*7*7,)))
model . add (UpSampling2D(size=(2, 2}})
model.add (Convolution2D(64, 5, 5, border mode='same'))
model .add (Activation('tanh'))
model . add (UpSampling2D(size=(2, 2}})
model .add (Convolution2D(1, 5, 5, border mode='same'))
model ,add (Activation('tanh'))
return model

OTMeTHM, UTO 3/IeCh MCIoNb3yeTcs cuHTakeuc Keras 1.x. Ho 6iaro-
napst yHacIe1oBaHHbIM uHTepdeiicam Ko 6yner paboTaTs U B BepCun
Keras 2.0. [TpaBna, BbIAAKOTCS peayIipesxxaeHus, IoKasaHHble Ha clie-

AVIOLIeM PUCYHKe:

116 <+ [haea 4.[lopoxaarwowme coctazatensHole cetn 1 WaveNet

LN] keras-dcgan — python degan.py =-mode train— 140x14

Using Tensorflow backend,

degan.pyi48: Userarning: Update your "ConvZD™ call to the Keras 2 APL: “Conv2Di6d, (5, 5), padding="same”, Lput_shape=il, 28, 28...}°
input_shape=(1, 28, 28}))

degan.py:43: UserWarning: Update your “Conv2D™ call to the Keras 2 API: “ConvaD{128, (5, 5})°
model.add{Convalution20{128, 5, 5}

dogan,py:20: UserWarning: Update your “Dense’ call to the Keras 2 APT: ‘Denselunits=1@24, input_dims1@@)”
model. addiDense [input_din=180, cutput_din=1824)}

degan.py:27: UserWarning: Update your “ConviD' call to the Keras 2 API: “Conv2Di6d4, (5, 5), padding="same"}’
model.addiConvolution2Di6d, 5, 5, border_mode="same"l)

degan.pyt30: UserMarning: Update your "Conv2D call to the Keras 2 API: "Conv2Di1, (5, 5], padding="same")’
model.addiConvolution20{1, %, %, border_node='same'}]

{*Epoch is*, 8)

{"Murber of batches®, 35B) l

Teneps pacemorpum Kopn. TlepBblif IUIOTHBIA CJ10I [pUHMMAaET
100-mepHbIN BXOOHOI BeKTOp U ropoxaaet 1024 BbIxona, B KauecTBe
dbyHkuMu akTUBaLyMu ucnoabayercs tanh. [penronaraeTcs, YTo BXO/-
Hble JaHHbIe BHIOMPAIOTCS M3 PABHOMEPHOI'0 paclpeneieHus Ha oT-
peske [-1, 1]. Cnepyrouuii IJIOTHBLA (JIOH TOPOKAAET HA BBIXOJE TeH-
30p hopmbl 128 x 7 x 7, IpuMeHsisl [TAKeTHYI0 HOPMUPOBKY (cm. S. [offe,
C. Szegedy «Batch Normalization: Accelerating Deep Network Training
by Reducing Internal Covariate Shift», arXiv: 1502.03167, 2014) - Tex-
HUKY, TOMOTaloIyio CTabWwin3upoBaTh 06yuyeHue myTeM HOPMUPOBKU
BXOIHbIX JAHHBIX, TAK YTOObI UX cpefHee ObLIO PABHO HYIIIO, a JIMC-
rnepcust — efUHMUIE. IMITUPUIECKHM YCTAHOBIEHO, YTO MAKeTHAash HOP-
MMPOBKA BO MHOIMX CJIy4asx yCKopsieT obydeHue, cMsiryaer rnpobe-
Mbl, BbI3BAHHbIE HEYIaUHOM MHUIMATU3ALIMEN, U BOOOLIE IPUBOAUT K
6os1ee TOUHbIM pesy/ibTaTaM. B KOHBeliep BCTABJISIOTCS TAKKe MOIY/Ib
Reshzape (), KOTOPBIIT MTOpoKaaeT gaHHbie opmbl 127 x 7 x 7 (127 ka-
HAJIOB, WMPKHA 7, BbICOTA 7) C NAPaMETPOM dim ordering PABHBIM tf,
M MOJY/Ib MMOBBIMIAMOIIEH MepeayuCcKPeTU3aUN UpSanpling (), KOTOPBIH
MOBTOPSIET KaXKbIN NUKceb B KBagpate 2 x 2. [Tocie aToro uaer ceep-
TOYHBIIA €100, MOpOXAALIMA 64 duibTpa ¢ IApoM pasmepa 5 x 5 u
dbyukumeit akruBauuy tanh, a 3a HUM elle OIUH MOIY/Ib UpSanpling () U
MOCJIeHSISE CBEPTKA C OJHUM BBIXOIHBIM (GUILTPOM, SIIPOM pasmepa
5 % 5 u pyHrumeit akrupauuu tanh. OTMETUM, YTO B 3TOI CBEPTOYHOI
CeTU HET MYJIMHIOBbIX oreparuit. JJMCKPUMMUHATOD OMUChIBAETCS CJle-
OYIOIIUM KOIOM:
def discriminator model():

model = Sequential ()

model.add (Convolution2D(64, 5, 5, border mode='same', input shape=(1, 28, 28)))
model ,add (Activation('tanh'))

model.add (MaxPooling2D(pool size=(2, 2)))

model . add (Convolution2D (128, 5, 5))

model .add (Activation('tanh'))

model.add (MaxPooling2D({pocl size=(2, 2)))

moadel .add (Flatten())

madel . add (Dense (1024))
model .add (Activation('tanh'))

[nybokue ceepTOYHbIE MOPOXAAKLME COCTA3aTENbHbIE ceTh <+ 117

model . add (Dense (1))
model . add (Activation('sigmoid'}})

return model

Mbi Gepem uszobpaxkeHue u3 crangaprHoro Habopa MNIST, umero-
wee dopmy (1, 28, 28), npumeHsieM CBepPTKY ¢ 64 Guibrpamu pasme-
pa 5 x 5 u GpyHkumio akruBauuu tanh. lanee cieayer onepanusi max-
IyJuHra 1o obiactu pasmepa 2 x 2 i ellle ofHa CBepTKa U oreparusi
max-nyiauudra. [TocienHue aBa ¢/10sl MJI0THbIE, M CAMBbI BEPXHMIA, na-
0L TpefcKa3aHue o MOJIeNIKe, COCTOUT BCEro M3 OIHOIO HelpoHa
¢ cUrMoMaHOM (pyHKIIMeil akTuBalyu. Ha nporsskeHuu BbIOPAHHOIO
KOJIMYeCTBA MePUO0B I'eHepaTop U AUCKPUMUHATOP IO ouepeny 06-
YHaKTCS € MCIIOJIb30BAHMEM binary crossentropy B KaUeCTBe (lJYHK]J,MI/l
norepsb. B KaxkaoM repuoe reHepaTop aenaet psaj rnpenckasanuii (Ha-
rpuMep, MOPOXKAAET MOA1e/IbHbIe M300pasKeHus: PYKOIMUCHbIX Ludp),
a IMCKPUMMHATOP IbITAETCSI 0OYUUTHCS [MOC/Ie CMELIeHUs IpecKa-
3aHMS C HACTOSIIMMM M300pakeHusamu u3 Habopa MNIST. Yepes 32
rnepuoaa reHepatTop obyuyaeTcs Moae/biBaTh 3TOT HAbop naHHbIX. Hu-
KTO He I1CcaJl IporpaMmy [jist BbiBoga 1mdp, OqHAKO MalllMHa HAYYM-
Jlach MOPOXKAATh 1MdPbI, HEOTIMUMMbIE OT HAMMCAHHBIX YETOBEKOM.
OrmetumM, utro obydyeHue [ICC MOXKeT OKasaThCsl OYEHb TPYAHOI 3a-
naveii 13-3a HeOBXOAMMOCTH MOAIEPKMBATH PABHOBECHE MeKLY 000-
umMu urpokamu. Eciim ata Tema Bac 3auMHTepecoBasia, PEKOMEHIYIO 110-
3HAKOMMUTBCS C MPAKTUUECKMMM MIPUEMAaMM, OIMMCAHHBIMI TI0 afipecy
https://github.c

soumith/ganhacks.

'
2
6
7
3
>
7
/
v
3
@)

oNSSAQeed NN
LQAACWRVARANN=

118 <+ T[haea 4.[lopoxaarwowme coctazatensHole cetn 1 WaveNet

MpumMeHenune Keras adversarial
ana co3panmsa NCC, noaaensiBalowemn
MNIST

Keras adversarial (https://github.com/bstriner/keras-adversarial) — Ha-
nucaHHbIi Ha Python nakeTr ¢ OTKpbITHIM MCXOIHBIM KOIIOM, ITpeIHa-
3HaueHHbIi gys nocrpoenus [MCC. Ero asrop — ben Crpaiinep (Ben
Striner) (n s://github.com/bstriner WM https://github.com/bstriner/
keras-adversarial/blob/master/LICENSE, txt). [Tockonbky Bepcust Keras 2.0
MOSIBUNIACH COBCEM HeJaBHO, S PeKOMEH/IYI CKayaTh caMylo rocjien-
HIOI0 BEPCUIO 3TOTO IaKeTa:

git clone --depth=50 --branch=master
https://github.com/bstriner/keras-adversarial.git

" VYCTAHOBUTD ero:

python setup.py install

CoemectumocTs ¢ Keras 2.0 o6cyKnaeTcs 110 afipecy https://github.
com/bstriner/keras-adversarial/issues/11.

Ecnu reneparop G u guckpumuHaTop D OCHOBaHbI HA OJIHOI U TOJ
Ke Mopenu M, TO UX MOXKHO 00beIMHUThL B COCTSI3aTeIbHYI0 MOIeb;
OHa Io/IyyaeT TOT e BX0/, uTo M M, HO 1le/IM U IoKa3aTe/u KauecTsa
pasiauuHel 151 G u D. B 6ubnnoTexe onpeaesieHa cieayouas pyHKus
CO3JaHMSI MOJE/NN:

adversarial model = AdversarialModel (base_model=M,

player params=[generator.trainable weights, discriminator.trainable weights],
player names=["generator", "discriminator"])

Ecu reHepaTtop G 1 AMCKPUMMHATOP D OCHOBAaHbI HAa pa3sHbIX MOIE-
JISIX, TO MOKHO BOCII0/Ib30BaThCS TaKOM DYHKIMEN:

model = AdversarialModel (player

adversaria'_ wodels=[gan_g, gan d],
player params=[generator.trainable weights, discriminator.trainable weights],
player names=["generator", "discriminator"])

PaccmoTpum nipumep BbrumcyieHuit mjist MNIST:

import matplotlib as mpl
JTa CTpOKA NOZBONAST MCNONL30BATE mpl Ges onpemenenma DISPLAY
mpl.use('Agg')

Hixe paccMarTpuBaeTcs OTKpthblﬁ HCXO,ELHbIﬁ Kon (h::‘:ps:f' /github.
com/bstriner/keras-adversarial/blob/master/examples/example gan convolu-

tional.py). B HeM ucnonbsyercs cuHTakeuc Keras 1.x, Ho Kox paboraeT

L7

MNpumeHeHue Keras adversarial ana cozpganma NCC... <+ 119

u ¢ Keras 2.x 6narogaps Habopy BCIIoMorare/ibHbIX QYHKIMIA B daiiie
legacy.py. CO,ELEIJ}KMMOE clJalea legacy.py HIPUBEOEHO B IIPHUIOXKEHWM,
d TakKxXe 0 aJpecy https://github.com/bstriner/keras-adversarial/blob/
master/keras adversarial/legacy.py.

CHauasia MMITOPTUPYETCS Psifi, Moaysieit. Mbl yoke BCTpeuannch co Bee-
mu, kKpome LeakyReLU, cnienmanbHoit Bepcun ReLU, KoTopas I0IycKaer
MaJIblii FPaIMEHT, KOTIA HEMPOH He aKTUBEH. JKCIePUMEHTAIbHO IToKa-
3aHO, UTO B psje crydaeB (yHKiuMs LeakyReLU MoOKeT yaydIlUTh Kavye-
crBo IICC (cm. B. Xu, N. Wang, T. Chen, M. Li «Empirical Evaluation of
Rectified Activations in Convolutional Network», arXiv:1505.00853, 2014).
from keras.layers import Dense, Reshape, Flatten, Dropout, LeakyRell,

Input, Activation, BatchNormalization
from keras.models import Sequential, Model

from layers.convolutional import Convolution2D, UpSampling2D
from s.optimizers import Adam
from .regularizers import 11, 1112

from keras.datasets import mnist

import pandas as pd
import numpy as np

3aTeM UMIIOPTUPYIOTCS crieluanbHble Moy ast [TCC:

from keras adversarial import AdversarialModel, ImageGridCallback,
simple gan, gan targets

from keras adversarial import AdversarialOptimizerSimultaneous,
normal latent sampling, AdversarialOptimizerAlternating

from image utils import dim ordering fix, dim ordering_input,
dim ordering reshape, dim ordering unfix

CocrsizaTeNibHbIe MOIEIM 00yUYaloTCs B XOMNE UIPhI ¢ HECKOJIbKUMMU
urpokamu. Ecinu gaHa 6a3oBasi MOAENb C N LEISIMUA M K UTPDOKAMM, TO
CO3/1aeTCs MOJIeJb € ¥k LesiMi, B KOTOPOIi KaXKIbli MTPOK OIITUMMU3U-
pyeT norepo Ha cBoux 1essx. Kpome Toro, GyHKUMS sinple gan TOPOXK-
naet I1CC ¢ 3a1aHHBIMM LIESIMU gan_targets. OTMETUM, UTO B 61GIMO-
TeKe LIeJIM [/ reHepaTopa M JUCKPUMMUHATOPA IIPOTUBOIIOI0KHBI, 3TO
craHpaprHas npaktuka as [1CC:

def gan_targets(n):
wan
CraHpapTHHE Uenm o8yueHMA
[generator fake, generator real, discriminator fake, discriminator real] = [1, 0, 0, 1]
;param n: 4YMCIO OPMMEpOB
ireturn: MaccMe Uenei

generator fake = np.ones{(n, 1))

12

0 < [haea 4.[lopoxaarowme coctaszatensHole cetn n WaveNet

generator real = np.zeros((n, 1))
discriminator fake = np.zeros({(n, 1))
discriminator real = np.ones{(n, 1))

I

eturn [generator fake, generator real, discriminator fake, discriminator real]

FeHepa'rop B 3TOM IIpMMepe oIpenensaeTrcsda Tak e, KaK Mbl BUOe-

nu panbine. Ho Tereps Mbl MCIIONb3yeM (DYHKIMOHANIbBHBIA CHMHTAK-

cH
Ia

C — KaXK/Iblii MOOY/Ib B KOHBelepe MpocTo MepenaeTcs B KauecTBe
paMeTpa ciaenyrueMy Moayito. [lepBblii ¢10i ceTH MIIOTHBII, MHU-

UMATM3HUPOBAH B PeXKMME glorot normal. B sTom peXXmume MCIIOJIb3YeT-

cA
M3

rayccos LIyM, MacIITa0MpPOBaHHbIMA HA CYMMY BXO/IOB M BbIXOIOB
y3/1a. AHaJIOTMYHO MHMLMAIM3UPOBAaHbl BCE OCTA/lbHbIE MOMYJIN.

IMapameTp node=2 QYHKLIMU BatchlNormalization OMPeAeIsieT MOMPU3HA-

KOBYIO HOPDMMPOBKY Ha OCHOBe CTaTMCTHMKM KaXOo0Tro ImakeTa. JKcIe-
PMMeHTa/IbHO IMTOKa3aHO, YTO TaK IMOJYy4YarTCH 6onee KadyecTBeHHbIO
pesynbTaTbl:
def model generator():

nch = 256

g_input = Input (shape=[100])

H = Dense(nch * 14 * 14, init='glorot normal') (g_input)

H = BatchNormalization (mode=2) (H)

H = Activation('relu') (H)

H = dim ordering reshape(nch, 14) (H)

H = UpSampling2D(size=(2, 2)) (H)

H = Convolution2D(int{nch / 2), 3, 3, border mode='same',

init="glorot uniform') (H)

H = BatchNormalization(mode=2, axis=l) (H)

H = Activation('relu') (H)

H = ConvolutionZD(int(nch / 4), 3, 3, border mode='same',

init="glorot uniform') (H)

H = BatchNormalization(mode=2, axis=l) (H)

H = Activation('relu') (H)

H = Convolution2D(l, 1, 1, border mode='same',

g
¥

init="glorot uniform') (H)
WV = Activation('sigmoid') (H)
eturn Model (g_input, g V)

ﬂMCKpHMMHaTOD O4YeHb II0XO0XK Ha OHDEﬂERGHHHﬁ HaMM BbIlIe.

EnunHcTBeHHOE pasiuuue — moay/ib LeakyReLU:

def model discriminator(input_shape=(1, 28, 28), dropout_rate=0.5):
d input = dim ordering input(input_shape, name="input x")
nch = 512

H

H

= Convolution2D({int{nch / 2}, 5, 5, subsample=(2, 2},
border mode='same', activation='relu') (d_input)
= LeakyReLU(0.2) {H)

MNpumeHeHue Keras adversarial ana cozpganma NCC... < 121

H = Dropout (dropout rate) (H)

H = Convolution2D(nch, 5, 5, subsample=(2, 2},
border mode='same', activation='relu') (H)

H = LeakyReLU(D.2) (H)

H = Dropout (dropout rate) (H)

H = Flatten() (H)

H = Dense{int{nch / 2}) (H)

H = LeakyReLU(D.2) (H)

H = Dropout (dropout rate) (H)

d ¥V = Dense(l, activation='sigmoid') (H)

return Model (d_input, d V)

[asiee cyieayioT ABe MPOCThie (PYHKLIMU [J1s1 3arPY3KU MU HOPMUPOBKM
Habopa gaHHbix MNIST:

def mnist process(x):
x = X.astype{np.float32) / 255.0
return x

def mnist data():
(xtrain, ytrain), {xtest, ytest) = mnist.load data{)
return mnist process(xtrain), mnist process(xtest)

Ha cnepyrouem wiare onpepesnsercs copmecrHas mogens [1CC B Bu-
e KOMOMHALMKM reHepaTopa M JMCKPMMMHATOPA. 3aMeTHM, 4TO Beca
MHUOMAJIM3HUPYIOTCH ¢YHKuHeﬁ normal latent sampling, KOTOPAs IPO-
M3BOAMUT BbIOOPKY M3 HOPMAaJbHOIO paciipeie/eHus:

" "

if name =="_main_ ":
z npueagnexmt RA100
latent dim = 100

x npuHapnemmt R™[28x28}

input_shape = (1, 28, 28)

renepartop (z -> x)

generator = model generator()

ODMcEpMMMEATOR (X -> ¥)

discriminator = model discriminator (input_shape=input shape)

NCC (x - > yfake, yreal), =z rexHepupyercsa Ha GPU

gan = simple gan(generator, discriminator, normal latent sampling((latent dim,})
nmeuarare ofuMe CEENEHMA O MOOENAX

generator.summary ()

discriminator.summary ()

gan.summary ()

3atem B nipumepe cospaercs [ICC u KoMIMIupyeTcst MOesb, 06y-
YeHHAas ¢ UCIo/b30BaHMeM ontumusaTopa Adam u dyHKUMM TIOTEPH
binary crossentropy.

NoCTROMTE COCTAZIATENEHYD MOO2IBE

model = AdversarialModel (base model=gan,

122 < T[haea 4.[lopoxaarwowme coctazatensHole cetn 1 WaveNet

player params=[generator.trainable weights, discriminator.trainable weights],
player names=["generator", "discriminator"])

model.adversarial compile (adversarial optimizer=AdversarialCptimizerSimultanecus (),
player optimizers=[Adam(le-4, decay=le-4), Adam(le-3, decay=le-4)],
loss='binary crossentropy')

OrnpepensieTcsi reHEPATOP, KOTOPBINM CO3/1aeT HOBbIE U300 PaskKeHMsI,
MOX0XKIMe Ha HacTose. B KakamoM repuofe 06yueHis TeHepUpyeTest
HOBOE IO Ie/IbHOE M306pakeHie:

def generator sampler():
zsamples = np.random.normal (size=(10 * 10, latent dim))
gen = dim ordering unfix (generator.predict (zsamples))
return gen.reshape((10, 10, 28, 28))

generator_cb = ImageGridCallback(
"output/gan convolutional/epoch-{:03d}.png",generator sampler)

xtrain, xtest = mnist data()

xtrain = dim ordering fix (xtrain.reshape((-1, 1, 28, 28)))

xtest = dim ordering fix(xtest.reshape((-1, 1, 28, 28)))

y = gan_targets(xtrain.shape[0])

ytest = gan_targets[xtest.shape[DL

history = model.fit (x=xtrain, y=y,

validation data=(xtest, ytest), callbacks=[generator cbl, nb_epoch=100,
batch size=32)

df = pd.DataFrame (history.history)

df.to_esv("output/gan _convolutional/history.csv")

generator.save ("output/gan_convolutional/generator.h5")

discriminator.save ("output/gan convolutional/discriminator.h5")

30eCh dim ordering unfix — BCIIOMOTATeIbHAS (DYHKIMS [I7ISI TIOMI e P3K-
KM pasnauyHbix GopMaToB MsobpaxkeHuii. OHa omnpeneneHa B daiine
image utils.py M BBIDISIUT CJIEAYIOIIMM 06pa3sOM:

def dim_ordering fix(x):
if K.image dim ordering() == 'th':
return x
else:
return np.transpose(x, (0, 2, 3, 1))

Tenepb 3anyCcTuM rporpamMmmy M nocMOTpMM, Kak M3MeHAeTCs 110~
Teps redepaTopa M IMCKpMMMHATOPA. Ha clegyrouiemM CHMMEKe 3KpaHa
pacriedaTaHbl XapaKTepuMCTUKH obeux cereii:

MNpumeHeHue Keras adversarial ana cozpganma NCC... < 123

] examples — python example_gan ¢ oy — 180xTE
| ook dogan — python deganpy o tral B8 ~ersicodeook kares dogan —-tash | tjexse e o e
|qulli-machookpro:exatples gullis python example_gan_conwolutional.py

Using Tenscrflow backend.

AUsers/gulll Lib/py Skeras_adversarial-g.0,3-py2,7.egg/keras_adversarialslegacy. pyr48: Userdarning: Update yo
ur “ConvZD’ call to the Keras 2 API: 'Conv2D(236, (5. 5), padding-"same", strides=12, 21, activation="relu”, kernel_initializer="glorat_unif
ore", kernel_regularizersNonel’

AUsers/guilisminicondal/Lib/pythan. 7/site-packages/keras_adversarial-@.8.3-py2.7. egp/heras_adversarial/legacy.py:48: Userdarning: Update yo
ur "Conv2D’ call to the Keras 2 API: "ConvID(512, (5, 5), padding="same", strides={2, 2], activation="relu”, kernel_initializer="glorot_unif
arm", kernel_reqularizer=None]’

Layer (type) Qutput Shape Paran #
input 1 [Inputiayer) iNone, 108) L}
dense_1 [Dense) None, 58176) SB67776
batch_normalization_1 {Batch {None, 58176) 289704
activation_1 [Activation) {None, 58178) []
reshape_1 (Reshape) iNone, 14, 14, 256) L]
up_sanpling2d_1 (UpSempling? {Nose, 28, 28, 2561 L]
conv2d_1 {Convad) INone, 28, 28, 128] 205040
batch_nomalizatien_2 (Batch {None, 28, 28, 128 12
activation_2 {Activation} {None, 28, 28, 128} L]
cenv2d 2 {Conv2l) INone, 28, 28, 64) 73782
batch_normalizaticn 3 {Batch {None, 28, 28, B4) 1nz2
activation 3 [Activation} iNone, 28, 28, B4) []
conv2d_3 {ComvaD) {None, 28, 28, 1) 65
activation_d (Activation} {None, 28, 28, 1) L]

Total params: 5,637,601.8
Trainable parans: 5,537,137.9
Nen=trainable params: 108,464.9

Layer [typel Output Shape Paran @
input_x (InputLayer) {None, 28, 28, 1] L]
convid 4 {ComviD) {None, 14, 14, 256} BE5E
leaky_re_lu_1 (LeakyRell} {None, 14, 14, 256) L]
dropout_1 (Oropout) {None, 14, 14, 2%6]) []
convid 5 {ConvZl) {None, 7, 7, 512) Bt
leaky_re_lu_Z (LeakyRell} {None, 7, 7, 5121 L]
dropout_2 (Dropout) {None, 7, 7, 5121 L]
flatten_1 [Flatten) {None, 25888) []

dense_2 [Dense) 1None, 236) sazazes
leaky_re_lu_3 (LeakyRelU} None, 256) L]
dropout_3 [Dropout] {None, 256) L]

dense_3 [Dense) {None, 1) 257

Total params: 9,707,809.8
Trainable parans: 9,707,005.9
Nen-trainable params: B.B

A Ha 5TOM CHMMKE Mbl BUIMM KOJIMUYECTBO IpuMMepoB, UCIIO0JIb30-
BAHHBIX OJ15 Oﬁy‘-leHlﬁl M OJ151 KOHTPOIA:

124 <+ T[haea 4.[lopoxaarwowme coctazatensHole cetn n WaveNet

L] L] examples — -bash — 123x35

,_ddversar — -bash o ples — -bagh ._! I
Trainable params: 15,244,418
Mon-trainable parems: 10@,736

Train on 68400 samples, validate on 18009 samples
Epoch 1/108

Gaes0/ee008 | I - 75795 - loss: 18.6313 - generator_loss: 1B.4795 - generator_yfake_loss: 10.7

765 - generator_yreal_loss: 7.7830 - discriminator_loss: 8.1519 - discriminator_yfake_loss: 8.8793 - discriminater_yreal_lo
55: 0.8726 - val_loss: 16.2338 - val_generator_loss: 15.9908 - val_generator_yfake_loss: 7.5463 - val_generator_yreal_loss:
B.4445 - val_discriminator_loss: 8.2431 - val_discriminator_yfake_loss: 8.2044 - val_discriminator_yreal_loss: @.8386
Epoch 2/10@

62000/ 68008 - 77375 - loss: 14,5333 - generator_loss: 14,2141 - generator_yfake_less: 7.22

@B - generator_yreal_loss: 6.9933 - discriminator_loss: 8.3192 - discriminater_yfake_less: @8.1523 - discrininetar_yreal_los
5: 0.1668 — val_loss: 13,6769 — val_generator_loss: 13,4418 - vel_generator_yfake_loss: 6.0485 - val_generator_yreal_loss:
7.4008 - val_discrininator_loss: 8.2359 - val_discriminater_yfake_loss: @.1093 - val_discriminator_yreal_loss: @.1265
Epoch 3/10@

GRe00/68008 I - 78425 - loss: 11.613% - generator_loss: 11.2356 - generator_yfake_loss: 4.88

83 - generator_yreal_less: 7.1473 - discriminator_loss: @.3775 - discriminator_yfake_loss: @.17088 - discriminator_yreal_los
§: B.2867 — val_loss: 10,7820 - val_generator_loss: 10,3857 - val_generator_yfeke_loss: 2.3518 - val_generator_yresl_loss:

8.0348 - val_discriminator_loss: 9.3963 - val_discriminator_yfake_loss: @.3058 - val_discrininator_yreal_loss: 9.8013
Epoch 4/10@

G0000/60008 = 75675 - loss: 9.6041 - generator_loss: 9.1363 - generator_yfake_loss: 3.1345
- generator_yreal_loss: 6.8018 - discriminator_loss: .4678 - discriminator_yfake_loss: 8.2147 - discriminator_yreal_less:
8.2531 - val_loss: 7.B728 - val_generator_loss: 7.45B2 - val_generator_yfake_loss: 2.1574 - val_generator_yreal_loss: 5.3@

@7 - val_discriminator_loss: 0.4146 - val_discriminator_yfake_loss: 8.2797 - val_discriminator_yreal_loss: 9.1358
Epoch 5/10@

G2000/60008 = 78715 - loss: 9.0191 - generator_loss: 8.5203 - generator_yfake_loss: 2.9953
- generator_yreal_loss: 5.5250 - discrininator_loss: 0.498B - discriminator_yfake_loss: 8.2280 - discriminator_yreal_loss:
#.2699 - val_loss: 7.3B37 - val_generator_loss: 6.92B7 - val_generator_yfake_loss: 1,9531 - val_generator_yreal_loss: 4,97
56 - val_discriminator_loss: 9.4558 - val_discriminator_yfake_loss: 8.3175 - val_discriminator_yreal_loss: @.1375
Epoch &/10@

GRBAD/GRDAR | 1 - 73335 - loss: 8.7654 - generator_loss: 8.2540 - generator_yfake_loss: 2.9357
- generator_yreal _loss: 5.3184 - discrininator_loss: 0.5114 - discriminator_yfake_loss: #.2354 - discriminator_yreal_ loss:
8.2759 - val_loss: 7.4316 - val_generator_loss! 6.9981 - val_generator_yfake_loss: 2.217B - val_generator_yreal_loss: 4.77
22 - val_discriminator_loss: B.4416 - val_discriminator_yfake_loss: #.2494 - val_discriminator_yreal_loss: 9.1922
Epoch 7/10@

[ociie 5-6 UTepaluii MbI Y3Ke UMEeM MCKYCCTBEHHBIE U300 pakeH st
MPUEeMJIEMOr0 KauecTBa, T. €. KOMITbIOTep 06YUMIICS ITOPOKIAThL PYKO-
IMCHbIE U PBL:

MpumeHenune Keras adversarial
ana co3panmsa MNCC, nogaensiBalowwem
CIFAR

Terneps nnpumenum [1CC pia noppenbiBanus Habopa gaHHbix CIFAR-10
M IIOJTYYEHMS] CUHTETUYECKUX M300pasKeHUI, OX0KMX Ha HACTOMILIME.,
HCXOﬂHhIﬁ KOO HaxoouTCs Mo aapecy ht ://github.com/bstriner/keras-

3 al/blob/master/ex farl D.py). KaKMpaHhLI.[E,
ucnonabsyercsa cuHrakeuc Keras 1.x, Ho Giaromapsi BCIIOMOraTe/bHbIM

ples/ example gan c

L7

MNpumeHeHme Keras adversarial ana cospanma NCC... <« 125

dbyuxiuam u3 daiina legacy.py kon pabdoraer u anst Keras 2.x. CHauana
MMIIOPTUPYETCS PSi/i [TAKETOB:

import matplotlib as mpl

3Ta CTpOKA NO3BONAST MCOONE30BATE mpl Ges onpepensama DISPLAY

mpl.use('Agg')

import pandas as pd

import numpy as np

import os

from keras.layers import Dense, Reshape, Flatten, Dropout, LeakyRell,
Activation, BatchMormalization, SpatialDropoutZD

from keras.layers.convolutional import Convelution2D, UpSampling2D,
MaxPooling2D, AveragePooling2D

from keras.models import Sequential, Model

from keras.optimizers import Adam

from keras.callbacks import TensorBoard

from keras.reqularizers import 1112

from keras adversarial import AdversarialModel, ImageGridCallback,

simp;e_ganj gan_targets

from keras adversarial import AdversarialOptimizerSimultaneous,
normal latent sampling, fix names

import keras.backend as K

from cifarlO_utils import cifarlO_data

from image utils import dim ordering fix, dim_ordering unfix,
dim ordering shape

3aTeM orpeeNnsieTcs: reHepaTop, B KOTOPOM UCITOIb3YeTcs: KoMOu-
HallMsl CBEPTOK C peryiaspusatmeii o Hopme L1 u L2, nakeTHol HOp-
MMPOBKOI M IOBbILIAIOLIEN nepeguckpermsaumeit. IlapaMerp axis=1
rOBOPWUT, 110 KAKOMY M3MEPEHMIO TeH30pa MPOU3BOAUTE HOPMUPOBKY
CHAYa/Ia, a mode=0 O3HayaeT IONPU3HAKOBYI0 HOPMUPOBKY. 3Ta KOH-
KpeTHas CeTh CTa/la pe3yabTaToOM MHOIOUKMCIEHHBIX 3KCIIePUMEHTOB,
HO I10 CYTU [1eJla OHA TO-TIPeXHeMY SIBJISIeTCsl [10C/1e10BaTe/IbHOCTbIO
orepauuii AByMepHOI CBepTKM U [TOBbILLIA0LIel [TepeIucKpeTu3alui,
B Hauajie KOTOPOI MCIONb3YeTCsl MOAY/Ib Dense, @ B KOHIE — (QyHKIUS
aKTUBALUU sigmoid. Kpome TOro, BO Bcex cBepTKax npumeHsiercs: pyHk-
s aKTUBALMUM LeakyReLU M IIaKeTHAS! HOPMMPOBKA Batchlormalization:

def model generator():
model = Sequential ()

nch = 256
reg = lambda: 1112 (11=1e-7, 12=1e-7)
h =25

model.add (Dense (input_dim=100, cutput_dim=nch*4 *4, W_regularizer=reg()))
model . add (BatchNormalization (mode=0))

model.add (Reshape (dim _ordering shape({nch, 4, 4))))
model.add(CDnvolutiDn2Dinchf2,h,h,horder_mchL'same' W _regularizer=reg()))

126 <+ [naea 4.[lopoxaarwowme coctazatensHole cetn 1 WaveNet

model .add (BatchNormalization (mode=0, axis=1l))

model . add (LeakyRelU(D.2})

model . add (UpSampling2D({size=(2, 2)})

model . add (Convolution2D(nch / 2, h, h, border mode='same', W regularizer=reg()))
model .add (BatchNormalization (mode=0, axis=1l))

model . add (LeakyRelU(D.2})

model . add (UpSampling2D({size=(2, 2)})

model . add (Convolution2D(nch / 4, h, h, border mode='same', W regularizer=reg()))
model .add (BatchNormalization (mode=0, axis=1l))

model . add (LeakyRelU(D.2})

model . add (UpSampling2D({size=(2, 2)})

model.add (Convolution2D (3, h, h, border mode='same', W_regularizer=reg()))
model .add (Activation('sigmoid'})

return model

3arem orpegendaeTcsa IMCKPUMMHATOP. W cHoBa MbI MMeeM I1ocie-
0OBaTeJIbHOCTH onepaumﬁ ,ELByMEpHOﬁ CBepPTKHM, HO B 3TOM C/Iydde McC-
TOJb3yeTCa MOOY/Ib SpatialDropout2D, KOTO[JBII'”{ OTGDRCLIBGET 1esble
OBYMepHbIe KapThl IIPM3HAKOB, @ He OTOe/IbHbIe 3JIeMeHThI. ITo Tem xe
NpUYMHaAM UCIOAb3YIOTCA MOLY/IU MaxPooling2D M AveragePooling2D:

def model discriminator():
nch = 256
h =25
reg = lambda: 1112(11=1e-7, 1l2=1e-7)
¢l = ConvolutionZD(nch / 4, h, h, border mode='same', W_regularizer=reg{},
input shape=dim ordering shape((3, 32, 32)))
c2 = Convolution2D(nch / 2, h, h, border mode='same', W_regularizer=reg())
c3 = ConvolutionZD(nch, h, h, border mode='same', W regularizer=reg(})
¢4 = Convolution2D(l, h, h, horder_made='same', W_rggularizerﬂreg{))

def m(dropout):
model = Seguential()
model.add(cl)
model .add (SpatialDropout2D(dropout))
model.add (MaxPooling2D(pool size=(2, 2)))
model . add (LeakyRelU(0.2))
model.add(c2)
model .add (SpatialDropout2D(dropout))
model.add (MaxPooling2D(pool size=(2, 2)))
model . add (LeakyRelU(0.2))
model.add(c3)
model .add (SpatialDropout2D(dropout))
model.add (MaxPooling2D(pool size=(2, 2)))
model . add (LeakyRelU(0.2))
model.add(c4)
model.add (AveragePooling2D (pool size=(4, 4), border mode='valid'))
model.add(Flatten())
model.add (Activation('sigmoid'))

MNpumeHeHne Keras adversarial ana cozpanua NCC... < 127

return model
return m

Tenepb MOXHO 1octpouts 1 camu [1CC. Cnenyroniast GyHKLMS TIPU-
HMMAaeT HECKOJIBKO apryMeHTOB, BKJIHOYAasl TeHEPaTop, AUCKPUMMHA-
TOP, YMCJIO JIATEHTHBIX M3Mepenuit u ueiau [1CC:

def example gan(adversarial optimizer, path, opt_g, opt_d, nb_epoch,
generator, discriminator, latent dim, targets=gan_targets,
loss="binary crossentropy'):
csvpath = os.path.join{path, "history.csv"}
if os.path.exists(csvpath):
print("Already exists: {}".format(csvpath))
return

Hanee cozparorcs aee INCC, B ogHOI M3 HUX AUCKPUMMHATOD C I1PO-
peXXuBaHMUEM, B IPYroi — 6es:

print ("Training: {}".format (csvpath))

CC (x - » yfake, yreal), z renepupymrca Ha GEU

MOXHO Tax®e NO3IKCrIepMMenTMpoBaTe ¢ uniform latent sampling

d g = discriminator (0)

d d = discriminator(0.5)

generator.summary ()

d d.summary ()

gan g = simple gan(generator, d_g, None)

gan d = simple gan(generator, d d, None)

®x = gan_g.inputs[1]

z = normal latent sampling((latent dim,)) (x)

MCEMDUMTE Z M3 BXOOHHK OAaHHEX

gan g = Model ([x], ﬁx_names[gan_g[iz, x1), gan_g.output names))
gan d = Model ([x], ﬁx_namestgan_dt:z, x1), gan_d.output names))

Teneps o6e [ICC KOMOMHUPYIOTCA B COCTSI3ATENILHYIO MOJIe/b C pas-
nenbHBIMU BECAMM, M MOAEJIb KOMITMJIMPYETCS

NoOCTROMTE COCTAZIATENEHYHD MOOeIb

model = AdversarialModel (player models=[gan g, gan_d],
player params=[generator.trainable weights, d d.trainable weights],
player names=["generator", "discriminator"])

model.adversarial compile (adversarial optimizer=adversarial optimizer,
player optimizers=[opt g, opt_d], loss=loss)

A 310 npocrasi pyHKLMA 06paTHOrO BbI30BA 151 BEIOOPKU M3006pa-
SKeHMI M 3alMCU UX B (aii.

cozpare OODATHHEM BHZ0E 04 TeHepAUMM M300pameHMi

zsamples = np.random.normal (size=(10 * 10, latent dim})

128 <+ T[haea 4.[lopoxaarwowme coctazatensHole cetn 1 WaveNet

def generator sampler():
xpred = dim ordering unfix (generator.predict (zsamples)) .transpose((0, 2, 3, 1))
return xpred.reshape((10, 10) + xpred.shape[l:])

generator cb = ImageGridCallback(os.path.join(path, "epoch-{:03d)}.png"},
generator sampler, cmap=None)

Teneps HacTaJo BpeMs 3arpy3uTh Habop ganHbix CIFAR-10 u 06-
yuuth mogenb. Eciin B KauecTBe 6a30B0it 6MGIMOTEKM UCITONb3YETCS
TensorFlow, To uudopmauust o norepe coxpansiercss B TensorBoard,
4yT06bI MOXKHO GbUIO CIEIUTH 3@ TEM, KaK [OTepst CO BpeMeHeM YMeHb-
waetcs. Ucropus xpanurces B opmate CSV, a Beca mogenu — B Gop-
mate h5:

oByuuTe Momens

xtrain, xtest = cifarl(_dataf)

vy = targets(xtrain.shape([0])

ytest = targets(xtest.shape([0])

callbacks = [generator cb]

if K.backend() == "tensorflow":
callbacks.append (TensorBoard(log dir=os.path.join(path, 'logs'),

histogram freg=0, write graph=True, write images=True))

histoery = model.fit (x=dim ordering fix(xtrain),y=y,
validation data=(dim ordering fix(xtest), ytest),
callbacks=callbacks, nb_epoch=nb_epoch, batch size=32)

coxpaHMTe MCTOpME B dopmare CS5V

df = pd.DataFrame (history.history)

df.to csv(csvpath)
COXPAHWTE MOOEIH

generator.save (os.path.join(path, "generator.hs"))

d_d.save[os.path.jcintpath, "discriminator.hb")

M HakoHell, MOXXHO 3aIlyCTMTh BCIO CeTh. [eHepaTop IMpPOM3BOLUT
BBIGOPKY M3 TIpocTpaHcTBa co 100 1aTeHTHBIMM M3MepeHUsIMH, a B Ka-
yecTBe ontumusarTopa st obeux I1CC Bpi6pan Adam:

def main():

z npueagnexmt RA100

latent dim = 100

x npuHapnemmt R™[28x28}

reneparop (z -> x)

generator = model generator()

muckpummHATOP (X -> V)

discriminator = model discriminator()

example gan(AdversarialOptimizerSimultaneous(), "output/gan-cifarlO",
opt_g=Rdam({le-4, decay=le-5),
opt_d:Adam{le—B, decay=le-5),
nb_epoch=100, generator=generator, discriminator=discriminator,

L7

MNpumeHeHue Keras adversarial ana cozpganma NCC... <+ 129

latent_dim=latent dim)
if name_ =="_main_":
main{)

Yr0o06bI COCTABMTD MOJIHOE IIPECTaB/IeHKe 00 MCXOMHOM KOZe, HyXK-
HO ellie pacCMOTPETh HECKOJIBKO BCIIOMOTaTeIbHbIX (QYHKLIMI IS CO-
XpaHeHUsI CeTKM M300pakeHUIA:

from matplotlib import pyplot as plt, gridspec
import os

def write image grid(filepath, imgs, figsize=None, cmap='gray'):
directory = os.path.dirname (filepath)
if not os.path.exists(directory):
os.makedirs (directory)
fig = create image grid(imgs, figsize, cmap=cmap)
fig.savefig (filepath)
plt.close (fig)

def create image grid(imgs, figsize=None, cmap='gray'):
n = imgs.shape[0]
m = imgs.shape[l]
if figsize is None:
figsize=(n,m)
fig = plt.figure (figsize=figsize)
gsl = gridspec.GridSpec(n, m)
gsl.update (wspace=0.025, hspace=0.025) # set the spacing between axes.
for i in range(n):
for j in range(m):
ax = plt.subplot(gsl[i, J])
img = imgs[i, J, :]
ax,imshow (img, cmap=cmap)
ax.axis('off'")
return fig

Kpome Toro, Heo6X0aMMbl METObI JJIs1 pABGOThI ¢ pasinyHbiMu hop-
Maramu u300paxkeHuii (mpumensiembiMu B Theano 1 TensorFlow):

import keras.backend as K
import numpy as np
from keras.layers import Input, Reshape

def dim_ordering fix(x):
if K.image dim ordering() == 'th':
return x
else:
return np.transpose(x, (0, 2, 3, 1))

def dim ordering unfix (x) :

130 <+ T[haea 4.[lopoxaarwowme coctazatensHole cetu 1 WaveNet

if K.image dim ordering() == 'th':
return x

else:
return np.transpose(x, (0, 3, 1, 2))

def dim_ordering shape (input_shape) :
if K.image dim ordering() == 'th':
return input shape
else:

return (input shape([l], input shape[2], input shape[0])

def dim_ordering input (input shape, name):
if K.image dim ordering() == 'th':
return Input{input_shape, name=name)
else:

return Input ((input_shape[l], input shape[Z2], input shape[(0]), name=name)

def dim_ordering reshape(k, w, **kwargs):
if K.image dim ordering() == 'th':
return Reshape((k, w, w), **kwargs)
else:
return Reshape((w, w, k), **kwargs)

W eme opHa GyHEUMA ONA MCODABISHMA MMEH
def ﬁx_names[outputs, names) :
if not isinstance (outputs, list):
cutputs = [outputs]
if not isinstance(names, list):
names = [names]
return [Activation('linear', name=name) (output)
for cutput, name in zip({outputs, names}]

Ha cleayiolinemM CHMMKe 3KpaHa INOoKas3aHbl XapaKTepuCcTHMKHM oIlpe-
IeJIEHHbIX CeTel:

MNpumeHeHue Keras adversarial ana cozpganma NCC... <+ 131

LJ eanmplos — python example_gan_cifariC.py — 140=78
gulli-macsookpro:examples gullis python exsaple gan_cifari®.py
Using TensorFlow Backend,

Training: output/gan-cifarl@/history.cev

Layer (typel Output Shape Paras &
dense_1 (Densel {None, 24896} 413686
batch_normalization_1 (Batch (Nene, 4896) 16384
reshape_1 |Reshape) (None, 256, 4, 4) L]
capvZd_1 (ComviD) (Nene, 128, 4, 4} 819328
batch_normalization 2 {Batch (None, 128, 4, 4} 512
leaky_re_lu_1 [LeakyRell| Ncne, 128, 4, 4} a
up_sampling2d_1 {UpSampling2 (Nene, 128, 8, 8} []
canvid_2 (ComvaD} {None, 128, 8, 8 409728
batch_normalization_3 (Batch (None, 128, 8, B} 312
leaky_re_lu_2 (LeakyRell| Nene, 128, 8, B} L]
up_samroling2d_? {UpSampling2 (None, 128, 18, 18) []
convid_3 (ConvzDl Nene, &3, 16, 16) Z04B64
batch_normalization 4 {Batch (None, 64, 16, 16) 256
leaky_re_lu_3 (LeakyRell| INone, 64, 18, 16) L]
up_sampling2d_3 (UpSampling2 (None, 64, 32, 32) []
carvid_d4 (ConviD) {Nene, 3, 32, 32} 4803
activation_1 [Activation} (None, 3, 32, 32} L]
Total params: 1,078,883.8

Trainsble parsas: 1,861,251.8

Non-trainsble params: 8,832.2

Layer (tysel Qutput Shape Paras &
conv2d_5 (Conv2D) {None, 64, 32, 32) 4854
max_pooling2d_1 {MaxPooling2 (None, 64, 18, 16) []
leaky_re_lu_4 (LeakyRellU| iNone, &4, 15, 16) L]
corvid_6 (ConviD) iNene, 128, 16, 16) 204928
max_proling2d_2 (MazPooling? (None, 128, 8, 8} []
Teaky_re_lu5 (LeakyRell] (Wone, 126, 8, 8])
comvZd_7 (ConviD} {Nene, 256, 8, 8 BL9456
max_pooling2d_3 {MaxPooling2 (Mone, 256, 4, &) []
leaky_re_lu 6 [LeskyRell| (Nene, 756, 4, 4} °
conv2d_B (ConwiD) TNone, 1. 4, 4] G421
average_psoling2d_1 (Aversge (Nene, 1, 1, 1) L]
flatten_1 [Flatten) {Nene, 1) []
activatios 2 [Activation] (Nene, 1} L]
Tatal parsms: 1,835,849.0

Trairable parass: 1,835,649.9

Mon-trainable perams: 8.8

Train on 58800 samples, validate on 18408 sanples

Eciu 3anycTuTh 3Ty nporpaMmy, TO Ha repBoit urepauuu Gyayr re-
HePUPOBATHLCS HepealncTuuHbie nzobpaxkenus. Ho nocie 99 urepa-
Uit ceThb obyuaeTcs MOPOXKAATh M300paKeHUsI, KOTOPbIE BBILJISISAT,
Kak HacTosiuue usobpakenust u3 Habopa CIFAR-10:

132 < T[haea 4.[lopoxaarwowme coctazatensHole cetn n WaveNet

epoch-000.png

Huke Mbl BUAMM HacTosiuMe M3o0paxkeHus us Habopa CIFAR-10

CIIpaBa M Ioanejikm cjiesa:
Ll |- e
EEIIENHHHB

dﬂhIHEiHII

WaveNet - nopoxaatowasa moaenb
ANns 06yyeHus reHepauum 3ByKa

WaveNet — riy6okast OpoKaaioniasi MOiesb st FeHepaluu 3BYKOBbIX
CUIHAJIOB. JTa MPOPbIBHAS TEXHOJIOTMS Obl1a M300peTeHa KoMITaHuei
Google DeepMind (https://deepmind.com/blog/wavenet-generative-model-
raw-audio/) IJISI OOYUEHMsI [10/Ib30BATE/IEI TOMY, KAK FOBOPUTH C KOM-
nboTepamMmu. Pes3yibraThl MOUCTUMHE BIEYATISIOT, Bl MOXETEe HalTH
B CETU MPUMEPHI TOTO, KAK KOMITBIOTEP FOBOPUT rojiocaMu 3HAMEHM-
TocTeit, HanpumMmep, Marra [leiimona. CripaliuBaeTcs, II0UeMy CUMHTE3

L7

WaveNet - nopoxaarowas mogens ons obyyeHus reHepaumm 3syka <+ 133

ay[IMOCUIHAJIOB — TaKasl TpyaHas 3agada? ClblIMMbIid Hamu Hubpo-
BOI1 3BYK umeeT uactory 16 000 orcuetoB B cekyHay (MHorpa 48 000 u
Haxke 60Jblile), M IIOCTPOUTD ITPOrHOCTUYECKY) MOJIelb, KOTopas 00y-
YaeTcsl BOCIPOM3BOAUThL OTCYET Ha OCHOBE BCEX IPebIAYIINX — OUeHb
Herpocroe neno. TeM He MeHee 3KCIIEPMMEHTbI [MOKAa3bIBAlOT, UTO
WaveNet ynyuilinia KayecTBO CUCTEM PEYEBOro BOCIIPOM3BeIeHMs
TeKkcra (text-to-speech, TTS), yMeHbIIMB pa3/iMumMe ¢ YeJIOBEUECKUM
rojocom Ha 50 % /11 aMepUKAHCKOro BapMaHTa aHIIMIACKOTO SI3bIKa U
MaHIapUHCKOro auajiekta Kuraickoro. Bonee Toro, DeepMind goka-
3aJia, uTo WaveNet MOKHO TaKKe MCII0/Ib30BATh [1J151 FeHepalliK 3ByYa-
HMSI MY3bIKAJIbHBIX MHCTPYMEHTOB, B yacTHOCTU (opTenbsHo. Tenepb
[opa JaTh HEeCKOIbKO onpepaeneHuii. TTS-cucremMbl 06bIMHO AT HA
JIBa Kjacca:

O KomMmisaumMoHHbIM cuHTe3. Kaxkablii pparMeHT IpoM3HeCceH-
HOIf peuM cHaya/ia 3alIOMMHAETCS, & 3aTEM BOCCTAHABIMBAELT-
€1, KOIJla HYKHO Bocrmpou3sBecTu roioc. OqHaKo 3TOT MOAXOM,
He Maclutabupyercs, IOTOMY YTO BOCIIPOM3BECTH BO3MONKHO
TOJIBKO paHee 3aroMHeHHbIe (hparMeHTbl 1 HeJlb3s BOCIIPOM3-
BECTM HOBbIE IOJIOCA WM APYTME TUITbI 3BYUAHUS, /151 KOTOPBIX
HEeT 3aII0MHeHHbIX (hparMeHToB.

O INapameTpuuyecKuii cuHTe3. B 3TOM wiyuae cosaeTcs Mojellb
IJIsI XpaHeHMSsT BCeX XapaKTepHbIX MPU3HAKOB CMHTE3UPYyeMO-
ro ayauo. o nosienenuss WaveNet 3ByuaHue, reHepupyemoe
napaMmerpuueckumu TTS-cucremamu, 66110 MEHEE €CTECTBEH-
HBIM, YeM Y KOMIMISLIMOHHBIX. WaveNet ymanoch ylIy4diiuTh
KauecTBO 3a CYET [PAMOI0 MOAETMPOBAHMS [TOPOKIEHUS 3BYKA
BMECTO [IPUMEHEHMSI IPOMEKYTOUHBIX aJIrOPUTMOB 06padoTKM
CUI'HAJIOB.

B npuniune WaveNet MOXKHO pacCMaTpPUBATh KaK CTeK OOHOMEP-
HBIX CBEPTOYHBIX CJIOEB (C ABYMEPHOI CBEPTKOI MbI O3HAKOMMIIUChH
B I7lIaBe 3) C MOCTOSIHHBIM Iarom 1 u 6e3 cioeB mynuura. OTMeTHM,
YTO BXO[, M BBIXO[, 110 ITOCTPOEHMI0 MMEIT OAMHAKOBBII pasmep, Mo-
3TOMY CBEPTOYHAs CeTh MMPEKPACHO MOAXOOUT IJisl MOAEIMPOBAHMS
TaKMX I0C/Ie0BaTeIbHbIX NAHHbIX, KAK 3BYKOBbIE CUrHa/bl. OmHAKO
ObIJIO [TOKAa3aHO, YTO [/l HOCTIKeHMS OONbIIOro pasMepa peLer-
TUBHOTO I10JIS1 BLIXOAHOTIO HeMpoHa (HallOMHMM, YTO pPeLeNnTUBHBIM
1ojieM HeipoHa Ha3bIBAeTCsl MHOXKECTBO HEHPOHOB IPedbIAYILEro
Q10s1, OT KOTOPBIX JaHHBI HEHPOH IMOAy4YaeT BXOAHbIE CUTHAJIbI) He-
06x0aMMO 160 MMETh MHOrO GoJbIINX (MMIBTPOB, JIMOO Ype3MepHO

134 < [naBa 4.[lopoxaarwowme coctazatensHole cetn 1 WaveNet

YBeJIMUUTH [AYy6UHY ceTu. [To aT0# IpuUMHe UMCThIe CBePTOYHbIE CEeTU
He KoM 3ddeKTUBHbI [Jis 00ydyeHus cuHTe3y 3ByKa. OCHOBHAs
upest WaveNet — kaysanbHasi ceeprka ¢ npomnyckamu (dilated causal
convolution) (cm. cratbio Fisher Yu, Vladlen Koltun «Multi-Scale
Context Aggregation by Dilated Convolutions», 2016, mocTymnHyio
II0 aapecy https://www.semanticscholar.org/paper/Multi-Scale-Context-
Bggregation-by-Dilated-Yu-Koltun/420c46d7cafcbB41309f02ad04cf51lchblfl
90248), MHOTJA HasbiBaeMasi AbIpuyaToit (atrous) cBeprTKoii (atrous —
ByJibrapmsanus (ppaHIy3CKOro BbIPaKeHMs! @ trous, 03HAYaolero
«C AbIpamMu»). ITO MPOCTO O3HAYALT, UTO [IPU MPUMeHeHUn GUIbTpa B
CBEPTOYHOM CJIOE HEKOTOPbIE BXOAHbIE 3HAUEHUs rportycKatoTest. Ha-
npumep, B ONHOMEPHOM ¢/iyyae (huIbTp W IIMPUHBL 3 ¢ Iporyckom 1
BBIUMUCIISIET CAEAYIONULYI0 CYMMY:

w[O]x[0] + w[1]x[2] + w[3]x[4]

Brarogapst 9Toi mpocToii uaee dslpoK CTAHOBUTCSI BO3SMOMKHBIM CO-
O6paTh HECKONbKO AbIPYAThIX CBEPTOUHBIX CJI0EB C 3KCIIOHEHIIMAILHO
YBEJIMUMBAIOIMMUCS (PUIbTPAMM M PACIIPOCTPAHUTD OOIACTD BIUSIHUS
BXOIHBIX HEIPOHOB, HE YBEJIMUMBAasl [IYOMHY CeTU [0 3arpee/ibHbIX
3HaueHuit. Takum o6paszom, WaveNet — 3T0 cBepTOUYHAs CETh, CJIOU KO-
TOPOI UMEIOT pasHbie KO3D(UIMEHTDbI IIPOIYCKa, B pe3yjibTaTe yero
pellelTUBHOE T10Jle MOXeT IKCIIOHEeHIMAaIbHO PacTu ¢ yBeJIMYeHUuem
DIYOMHBL M, CIe0BaTe/IbHO, MMOKPBLIBATH ThICSUM BPEMEHHbIX LIATOB
3BYKOBOIO curHajia. Bo Bpemst o6yueHust BXOIHBIMM JAHHBIMMU SIBJISI-
IOTCS 3BYKM 3alTMCAHHOI YesioBeueckoit peun. CUrHasbl [OJIBEPrawTcs
oucKperusauuu ¢ GUKCHPOBAHHBIM LeIoUMcIeHHbIM arom. WaveNet
ornpenensieT HauajibHbli CBEPTOYHBINM €101, UMEILMWIA OCTYIT TOAbKO
K TeKYILIeMY U MpeasiayuieMy Bxony. B KoHle nonyyaeTtcs rocjienosa-
TeJIbHOCTD IJIOTHBIX CJIOEB, KOMOMHUPYIOLUMX TIPebIaAyIIe Pe3y/ibTa-
ThI, 32 KOTOPbIMM CJiefiyeT ¢Jioit ¢ dyHKimMelt akruBauuu softmax mst
MOPOXIEHUs] KaTeropuaibHbIX BbIXOA0B. Ha KaXk/1oMm liiare 3HayeHue,
MpeacKasaHHOe CeThio, MogaeTcst 00paTHO Ha BXOM. B To ke BpeMst Bbl-
UyMC/ISIeTCS. HOBOE TIpeficKasaHue sl cienyolero iara. B ponu GyHk-
LMK TOTePb BLICTYIAET IepeKpecTHas SHTPOIUS MEXIY BbIXOI0M
TeKylllero uara 1 Bxonom cienywoliero. [To agpecy https://github.com/
basveeling/wavenet pasMellleHa peanusaiius Ha Keras, paspaboraHHast
Bacom Beenuurom (Bas Veeling). Ee nerko ycraHoBUTb € MOMOILBIO git:

pip install virtualenv

mkdir ~/wvirtualenvs && cd ~/virtualenvs

virtualenv wavenet
source wavenet/bin/activate

WaveNet - nopoxaarowas Mogenb aAns obyyeHus reHepaumm 3gyka <+ 135

cd ~

git clone https://github.com/basveeling/wavenet.git
cd wavenet

pip install -r requirements.txt

2ror kop Hamucad s Keras 1.x, undopmanmsi o xome ero mepe-
Hoca Ha Keras 2.x mybauKyeTcst 10 afipecy https://github.con/basvesl-
ing/wavenet/issues/29. [Ipolenypa o6ydyeHus: OUeHb [IPOCTa, HO TpebyeT
GO/IBLIMX BEIYMCIUTEIBHBIX PECYpCcoB (YoeauTech, 4TO MMEETCs afgek-
BaTHas nognepxkka GPU).

$ python wavenet.py with 'data dir=your data dir name'

FEHEpa]J,HH 3BYKOBBIX CUI'HAJIOB I1OC/IEe Oﬁy‘-JEHI—’lﬂ HMYYTb He CJIOXK-
Hee:

python wavenet.py predict with 'models/[run folder]/config.json predict seconds=1'

B UHTepHeTe MOXHO HalTH CBeJEeHMS 0 MHOTOYMUCIEHHbIX rumep-
rnapamerpax Ijisi HacTpoiKu rpoiiecca obyuenusi. CeTb Ioaydyaercs
BechbMa IIyOOKONM, Kak cjiefyeT M3 MPUBENEeHHOI HIKe pacredaTku
BHYTPEHHUX C/I0eB. 3aMeTUM, UTO BXOJHOI1 3BYKOBOI CUrHAM JUCKpe-
TU3UPYETCA C napaMeTpaMM fragment length = 1152 M nb_output bins =
256, 3TO M €CTh TEH30D, IogasaeMblii WaveNet. Cets WaveNet yerpoeHa
B BUJIE TOBTOPSIIOUIMXCS GJIOKOB, Ha3biBaeMbIX ocraTkamu (residual).
Kaxaplit 610K sIBJSIETCSl 0ObeIMHEHMEM B DEKUME YMHOXKEHUS IBYX
MOZYJIei CBePTKM C ITPOIYCKAMU (B OTHOM (DYHKLIVMS aKTUBALIUS — CUT-
Mouaa, B gpyrom — tanh) ¢ nowienyoumm o6beIMHEHUEM B pexXxuMe
CYMMBI C MOZYy/1eM OOHOMepHOI cBepTKu. OTMeTHM, UTO pasmep [ibi-
POK B CBepTKax C IMPOIYCKaMM 3KCITOHEeHI[MAlbHO BO3pacTaeT (paBeH
2 == i) or 1 go 512, Kak BUIHO U3 CJieyloniero pparMeHTa Koja:

def residual block(x):

original x = x

tanh out = CausalBAtrousConvolutionlD(nb filters, 2, atrous rate=2 ** i,
border mode='valid', causal=True, bias=use bias,
name='dilated conv_%d tanh s%d' % (2 ** i, s), activation='tanh',
W_regularizer=12(res_12}) (x)

sigm out = CausalAtrousConvolutionlD(nb filters, 2, atrous rate=2 ** i,
border mode='valid', causal=True, bias=use bias,
name='dilated conv_%d sigm s%d' % (2 ** i, s), activation='sigmoid',
W_regularizer=12(res_12}) (x)

x = layers.Merge (mode="mul"',
name='gated activation %d s%*d' % (i, s))([tanh_out, sigm out])
res x = layers.ConvolutionlD(rﬂ{jilters, 1, border mode='same', bias=use bias,
W_regularizer=12(res_12}) (x)

skip x = layers.CDnvclutiDnlD(nb_ﬁlters, 1, border mode='same', bias;use_bias,
W_regularizer=12(res_12}) (x)

136 <+ [haea 4.[lopoxaarwowme coctazatensHole cetn 1 WaveNet

res x = layers.Merge(mode='sum') ([original x, res x])
return res x, skip x

[Tocne ocraTouyHOro 6J0Ka € MPOMYCKaMM MAET I0C/Iel0BaTe/lb-
HOCTb 00bEIUHEHHBIX CBEPTOYHBLIX MOMAY/ei, 3a HUMKM [Ba CBep-
TOYHBIX MOMAY/ISI M 338 HMMM BBIXOJHOM CJIOi ¢ (QyHKIMeH akTHUBa-
uuu softmax, MOPOKMAIIMIMIA nb cutput bins KaTeropuii. Bor nonunas
CTPYKTYpa CeTu:

Layer (type) Output Shape Param # Connected to

input part (Inputlayer) (None, 1152, 256) 0

initial causal conv (CausalAtrou (None, 1152, 256) 131328 input part[0]
[0]

dilated conv_1 tanh s0 (CausalAt (None, 1152, 256) 131072
initial causal_conv[0] [0]

dilated conv_1 sigm s0 (CausalAt (None, 1152, 256) 131072
initial causal_conv[0] [0]

gated activation 0 _s0 (Merge) (None, 1152, 256) 0
dilated conv_1_ tanh s0[0][0]
dilated conv_1_sigm s0[0][0]

convolutionld 1 (ConvolutionlD) (None, 1152, 256) 65536
gated activation 0 s0[0][0]

merge 1 (Merge) (MNome, 1152, 256) 0 initial causal_conv[0][0]
convolutionld 1[0][0]

dilated conv_2_ tanh s0 (CausalAt (None, 1152, 256) 131072 merge 1[0][0]

dilated conv_2 sigm s0 (CausalAt (None, 1152, 256) 131072 merge 1[0][0]

gated activation_l s0 (Merge) (None, 1152, 256) 0
dilated conv_2 tanh s0[0][0]
dilated conv_2 sigm s0[0][0]

WaveNet — nopoxaatowas Moaens ans obyyeHus reHepaumm 3syka < 137

convolutionld 3 (ConvolutionlD) (None, 1152, 256) 65536
gated activation_1 s0[0][0]

merge 2 (Merge) (None, 1152, 256) 0 merge 1[0][0]
convolutionld 3[0][0]

dilated conv_4_ tanh s0 (CausalAt (None, 1152, 256) 131072 merge 2[0][0]

dilated conv_4_sigm s0 (CausalAt (None, 1152, 256) 131072 merge 2[0][0]

gated activation_2 s0 (Merge) (None, 1152, 256) 0
dilated conv_4_tanh s0[0][0]
dilated conv_4_ sigm s0[0][0]

convolutionld 5 (ConvolutionlD) (None, 1152, 256) 65536
gated activation_2 s0[0][0]

merge 3 (Merge) (None, 1152, 256) 0 merge 2[0][0]
conveolutionld 5[0][0]

dilated conv_8_tanh s0 (CausalAt (None, 1152, 256) 131072 merge 3[0] [0]

dilated conv_8 sigm s0 (CausalAt (None, 1152, 256) 131072 merge 3[0][0]

gated activation_3 s0 (Merge) (None, 1152, 256) 0
dilated conv_8 tanh s0[0][0]
dilated conv_8 sigm s0[0][0]

conveolutionld 7 (ConvolutionlD) (None, 1152, 256) 65536
gated activation_3 s0[0][0]

merge 4 (Merge) (None, 1152, 256) 0 merge 3[0][0]
convolutionld 7[0][0]

dilated conv_16 tanh s0 (CausalA (None, 1152, 256) 131072 merge 4([0][0]

138 <+ [haea 4.[lopoxaarwowme coctazatensHole cetn n WaveNet

dilated conv_16 sigm sO (CausalA (None, 1152, 256)

131072 merge_4[0] [0]

gated activation_4 s0 (Merge) (None, 1152, 256) 0
dilated conv_16 tanh s0[0][0]
dilated conv_16 sigm s0[0][0]

convolutionld 9 (ConvolutionlD) (None, 1152, 256) 65536

gated activation_4 s0[0][0]

merge 5 (Merge) (None, 1152, 256) 0 merge 4[0][0]
conveolutionld 9[0][0]

dilated conv_32 tanh sO (CausalA (None, 1152, 256)

131072 merge_5[0] [0]

dilated conv_32 sigm sO (CausalA (None, 1152, 256)

131072 merge_5[0] [0]

gated activation 5 s0 (Merge) (None, 1152, 256) 0
dilated conv_32 tanh s0[0][0]
dilated conv_32 sigm s0[0][0]

convolutionld 11 (ConvolutionlD) (None, 1152, 256)
gated activation 5 s0[0][0]

65536

merge 6 (Merge) (None, 1152, 256) 0 merge 5[0][0]
convolutionld 11[0][0]

dilated conv_64_ tanh s0 (CausalA (None, 1152, 256)

131072 merge_6[0] [0]

dilated conv_64 sigm sO (CausalA (None, 1152, 256)

131072 merge_6[0] [0]

gated activation_6 s0 (Merge) (None, 1152, 256) 0
dilated conv_64 tanh s0[0][0]
dilated conv_64 sigm s0[0] [0]

convolutionld 13 (ConvolutionlD) (None, 1152, 256)
gated activation_6 s0[0][0]

65536

L7

WaveNet - nopoxaarowas mogens ons obyyeHus reHepaumm 3syka <+ 139

merge 7 (Merge) (None, 1152, 256) 0 merge 6[0][0]
convelutionld 13[0][0]

dilated conv_128 tanh s0 (Causal (None, 1152, 256)

131072 merge_7[0] [0]

dilated conv_128 sigm s0 (Causal (None, 1152, 256)

131072 merge_7[0] [0]

gated activation_7 s0 (Merge) (None, 1152, 256) 0
dilated conv_128 tanh_s0[0][0]
dilated conv_128 sigm s0[0][0]

convolutionld 15 (ConvolutionlD) (None, 1152, 256)
gated activation_7 s0[0][0]

65536

merge 8 (Merge) (None, 1152, 256) 0 merge 7[0][0]
convolutionld 15[0][0]

dilated conv_256_tanh _s0 (Causal (None, 1152, 256)

131072 merge_8[0] [0]

dilated conv_256_sigm s0 (Causal (None, 1152, 256)

131072 merge_8[0] [0]

gated activation_8 s0 (Merge) (None, 1152, 256) 0
dilated conv_256_tanh _s0[0][0]
dilated conv_256_sigm s0[0][0]

convolutionld 17 (ConvolutionlD) (None, 1152, 256)
gated activation_8 s0[0][0]

65536

merge 9 (Merge) (None, 1152, 256) 0 merge 8[0][0]
convelutionld 17[0] [0]

dilated conv_512 tanh s0 (Causal (None, 1152, 256)

131072 merge_9[0] [0]

dilated conv_512 sigm s0 (Causal (None, 1152, 256)

131072 merge_9[0] [0]

gated activation_9 s0 (Merge) (None, 1152, 256) 0
dilated conv_512 tanh s0[0][0]

140 <+ T[haea 4.[lopoxaarwowme coctazatensHole cetu 1 WaveNet

dilated conv_512 sigm s0[0][0]

conveolutionld 2 (ConvolutionlD) (None, 1152, 256) 65536
gated activation 0 s0[0][0]

convolutionld 4 (ConvolutionlD) (None, 1152, 256) 65536
gated activation_1 s0[0][0]

convolutionld 6 (ConvolutionlD) (None, 1152, 256) 65536
gated activation_2 s0[0][0]

convolutionld 8 (ConvolutionlD) (None, 1152, 256) 65536
gated activation_3 s0[0][0]

convolutionld 10 (ConvolutionlD) (None, 1152, 256) 65536
gated activation_4 s0[0][0]

convolutionld 12 (ConvolutionlD) (None, 1152, 256) 65536
gated activation 5 s0[0][0]

convolutionld 14 (ConvolutionlD) (None, 1152, 256) 65536
gated activation_6 s0[0] [0]

convolutionld 16 (ConvolutionlD) (None, 1152, 256) 65536
gated activation_7 s0[0][0]

convolutionld 18 (ConvolutionlD) (None, 1152, 256) 65536
gated activation_8 s0[0][0]

convolutionld 20 (ConvolutionlD) (None, 1152, 256) 65536
gated activation_9 s0[0][0]

merge 11 (Merge) (None, 1152, 256) 0 convolutionld 2[0][0]
convolutionld 4[0][0]

convolutionld 6[0][0]

convolutionld 8[0][0]

conveolutionld 10[0] [0]

convolutionld 12[0][0]

conveolutionld 14[0][0]

convolutionld 16[0][0]
convelutionld 18[0] [0]
convolutionld 20[0][0]

activation 1 (Activation) (None, 1152, 256) 0 merge 11[0][0]

convolutionld 21 (ConvolutionlD) (None, 1152, 256) 65792 activation 1[0][0]

activation 2 (Activation) (None, 1152, 256) 0 convolutionld 21[0][0]

convolutionld 22 (ConvolutionlD) (None, 1152, 256) 65792 activation 2[0][0]

output_softmax (Activation) (None, 1152, 256) 0 convolutionld 22[0][0]

Total params: 4,129,536
Trainable params: 4,129,536
Non-trainable params: 0

DeepMind oﬁyqana ceTb Ha Haﬁopax OaHHBIX, coAepiKaliux pedb
HEeCKOJIbKMX JI}O,ELEE, 3TO 3aMeTHO YIY4IIMIO Cr1ocoBHOCTD OGY‘IaTbCSI
paspejisieMOMY ITpeJCTaBJIeHUIO 13bIKOB U MHTOHALINIA, d, 3Ha4YMT, [Ipu-
GIM3UII0 pe3yabTaThl K eCTeCTBeHHOMY 3BYUYaHWUIO peul. B HHTEDHETE
(https 1/ /deepmind. c:c-.'n,f'b'_Gg,f'wavenet—gener-:-tive—m-:-de'_—raw—-:-udi:,f") MMeeTCHd
norpscarmas HD,ELGO}JK& IIpMUMepoB cnmemposannoﬁ pedH, M UHTe-
pecHO OTMeTUThb, YTO Ka4eCTBO 3BYyYdHMA [TOBLINIAETC S, KOrga WaveNet
BUIOWUT He TOJILKO 3BYKOBbIe CMI'HaJIbl, HO HOMOJTHUTE/IbHBINI TeKCT, [pe-
06paSOBaHHB[f1 B I10CJ/1e00BaTe/IbHOCTL JIMHIBUCTHUYECKHMX M cbone'm-
YeCKMX [TPHU3HAKOB. MHe 6oJibliie BCero HPaBATCS [IPUMEPLI, B KOTOPBIX
OOHO M TO 3Ke MNpeaioKeHKe IIPOM3HOCUTCS C pasanﬂoﬁ MHTOHALMeE.
M xoHeuHoO, 3dBOpaXMBdeT MY3bIKa, CO3aHHasI i UCIIO/IHSIeMas CeThblo
WaveNet. [Tociayuaiite, He roxkaneere!

Pesiome

B sroii rnaBe mbl 06CyniIM ropoxaaminue ceeprouyrsie cetu (I1ICC).
Tunuunas [ICC cocTouUT M3 ABYX ceTeii: ofHa 06ydaeTcs MOPOXKIaTh
CUHTETUYECKME JTaHHbIE, ITOXOKME HA MOJJMHHBIE, a Apyrasg — OT/IU-
4yaTh MOMJIMHHbIE JAaHHbIE OT MOmIebHbiX. O6e ceTu COpPeBHYIOTCS
OPYT C OPYromM M TeM CaMbIM CIIOCOOCTBYIOT B3aMMHOMY COBEPILIEH-

142 < T[haea 4.[lopoxaarwowme coctazatensHole cetn 1 WaveNet

cTBOBaHUIO. MbI paccMOTpe/iM MCXOAHbINA KOH ceTel, 00ydyaloumxes
MnoafenbiBaTh M306pakenuss usz Habopos MNIST u CIFAR-10. Kpome
TOro, Mbl 06CyIMIM yOOKYI0 opokpaioliyio cetb WaveNet, paspa-
6oraHHyio KoMmriauuei Google DeepMind ajist 06yueHMst KOMITBIOTEPOB
BbICOKOKAUeCTBEHHOMY BOCIIPOM3BENEHUI0 UYeJI0BeYeCcKOro rojoca u
3BYyYaHMSI My3bIKaIIbHbIX MHCTpYMeHTOB. WaveNet HerocpecTBeHHO
MOPOXKIAeT 3BYKOBbIE CUTHAJIbI, IPUMEHSISI [TapaMeTPUUeCcKiii CUHTe3
peuu Ha OCHOBE CBEPTOUYHBIX ceTeii ¢ rporryckamu. CBepTOUYHAast CeTh C
MPOIYCKaMM — 9TO CIeLMabHbIN BUJI CBEPTOUHbBIX CeTel, B KOTOPbIX
cBepTouHble GUILTPBI UMEIOT AbIPKM, UTO MO3BOJISIET PELENTUBHOMY
T1OJTI0 9KCIIOHEHIIMAIBHO PACTU C YBEJIMUEHUEeM [IYOMHbI M TeM CaMbIM
O0XBaThIBATh ThICSYM BpeMeHHbIX maros aynmo. DeepMind nokasana,
uyTo ceTh WaveNet MOKHO MCIIO/Ib30BATH [IJisI CUHTE3a Ye/I0BeYeCKOro
roz0ca ¥ 3By4aHMsI MYy3bIKaJbHBIX MHCTPYMEHTOB C KAYeCTBOM, 3Ha-
YMTEeIbHO MPEeBbIIAIIMM MIpeablayiine JoCTKeHus. B cienyiomei
[J1aBe MblI 00CYIUM [OIPYXKEeHMs CJIOB — HA00p MeTOH0B I1y60oKoro 06-
YUeHMS 1Jist OOHAPYIKEeH s CBSI3ei MEXKIY C/IOBAMM U IPYITITMPOBKHA [10-
XOXUX CJIOB.

aBa

L B B O BN BE B BN BN AN IR BN BN BE BN BN BN BN BN B BN N BN BN BN B BN B BN B BN B B N A N N I

MorpyxeHus cnos

B BuKMIeauu rorpyxkeHume, Win BeKTOPHOE NpencrasjieHue cios (word
embedding) onpenensiercs Kak 001lee HA3BAHME PA3IMUYHBIX METOIOB
SI3bIKOBOI'0 MOEIMPOBAHUSL M 00YUYEHMS TIPM3HAKOB, [TPUMEHSIEMbIX
B 00paboTKe ecrecTBeHHbIX a3bIKOB (OES, anmi. NLP), korpa cio-
Ba win (hpasbl U3 CJIOBAPSI OTOOPAKAIOTCSI HA BEKTOPbI BELIECTBEHHbIX
yucesn.

[Morpy:keHue CJI0B — 3TO CIr1ocod 1peobpasoBaTh TEKCTOBOE Ipe-
CTaBJIEHME CJIOB B YMCJIOBbIE BEKTOPHI, JOMYCKAONIME aHAJIU3 CTaH-
OAPTHBIMM AATOPUTMAMU MALIMHHOTO 0OYyYeHMs, MPUHUMAIMMK
Ha BXOJe UMCHa.

B riaBe 1 Mbl y3Ke BCTPEUATUCh C OJHUM BUIOM TOTPYKEHUS CJIOB —
YHUTApPHBIM KOIMPOBAHMEM. ITO CaMblii IPOCTOI MOAXO0M, K MOrPYyKe-
HU10. HarloMHKMM, UTO YHUTAPHBIM KOAOM CJIOBA OYIET BEKTOp, YMCIIO
3JIEMEHTOB KOTOPOT0 PaBHO pa3Mepy CI0Bapsi, TAKOi, UTO 37IEMEHT, CO-
OTBETCTBYOIIMI JaHHOMY CJIOBY, paBeH 1, a Bce ocranbHbie (.

OcHoBHast 1po6yieMa YHUTaPHOT'O KOAMPOBAHUSL B TOM, UYTO HET HU-
KaKoro crrocoba rnpeacTaBUTh CXOACTBO CI0B. B j11060M 3a1aHHOM KOP-
IyCe TeKCTOB Mbl OKMUIAEM, YTO MEXKIY C/IOBAMM «KOLIKa» U «cobaka»
WM «<HOX» U «BUJIKA» €CTh KAKOe-TO CX0ACTBO. CXOACTBO BEKTOPOB BbI-
YUCISIETCS ¢ MTOMOIIBI CKAISIPHOTO TTPOM3BEAEHMS, T. €, CYMMBbI [IPO-
U3BENEeHUIT COOTBETCTBEHHBIX 3/IEMEHTOB. B c/tyuae yHUTapHOTO KOJIM-
POBaHMSI CKAJISIPHOE MPOU3BeneHMe JIH00bIX IBYX C/IOB PABHO HYITIO.

Ijis ripeofofieHUs OrpaHUMYeHMII YHUTAPHOTO KOAMPOBAHMSI CO-
obiecrso OES 3aumMcreoBasio 13 mHdopmanuoHHoro moucka (UIT)
MUIIEI0 BEKTOPU3ALMM TEKCTa C MCIMOAb30BAHMEM JOKYMEHTA B Kaue-
CTBE KOHTeKCTa. 3[1eCch CTOUT OTMETUTb Takue noaxonsi, kak TF-IDF
(https://en.wikipedia.org/wiki/TE3E2%80%931df), JIaTeHTHO-CeMaHTH-
YyecKHuil aHa/Iu3 (.HCA) (h::ps:.f'f'en.wi.’{ipedia.urg.-"wiZ{i.-"La:er!_:_Eemani—_ic_
an.—}'_ysis) M TeMaTHM4yeckoe MopenuMpoBaHMe (h:tps:.f'.f'er'..wikipr:‘diau:!rgf
wiki/Topic model). HO 9TM mpepacTaB/ieHMUs] YIABIMUBAKT HECKOJIBKO
UHYIO, TOKYMEHTO-EHTPUYECKYI0, UIEH CEMaHTUYeCKOT0 CXO/ICTBRA.

144 < [naea 5.[lorpyxeHua cnos

CepbesHast paspaboTKa MeTOHOB [IOIPYKeHMs CJIOB Hayajach B
2000 rony. ITorpy:keHue CJIOB OT/IMYAETCSI OT MpeUIeCTBYIOLIMX Me-
TONOB, IpuMeHsieMbix B UII, TeM, UTO C/I0Ba UCIOAL3YIOTCS KaK cO6-
CTBEHHbBII KOHTEKCT, UTO NMPUBOAUT K Oojiee ecrecTBeHHON dopme
CEMAHTMYECKOTO CXOJCTBA C TOYKM 3PEHMUS TMOHMMAHMUS UYETOBEKOM.
B Hacrosiiee Bpemst OrPy)XeHUE CI0B — OOLIEIIPUHSITAS TEXHUKA BeK-
TopusalMKu TeKcTa Bo Beex samauax OES: wraccudukanusi TeKCTos,
KjlacTepusalys JOKYMEHTOB, YaCTepeuHast pa3MeTKa, pacro3HaBaHue
MMEHOBAHHBIX CYIUIHOCTEI, aHA/IM3 SMOLMOHATBHOM OKPAaCKy U T. 11

B 3T0ii 1aBe Mbl paccMOTPUM JBe (GOpMBbI ITOrpyskeHus cjios, GloVe
u word2vec, M3BeCTHbIe MOJ, OOIMM Ha3BaHMEM «paclipele/ieHHOoe
NpencTasjieHne CJI0B». TU IIpeCcTaB/IeHus: okasaauch donee addek-
TUBHBIMU U MOTOMY IIMPOKO PACIIPOCTPAHEHBI B CPe[ie CIelMaJuCTOR
110 rrybokomy obyuenmo u OES.

MpbiI TakyKe y3HaeM o criocobax rmopoxkaeHus: CoOOCTBEHHbBIX MTOrpyKe-
Huii B iporpamme Ha Keras, a paBHO 0 TOM, KaK MCIOIb30BaTh U Ha-
cTpauBaTh rpenobyyeHHbie Moaean Ha ocHoBe word2vec u GloVe.

BynyT paccMOTpeHbI CJIeIyIOIIMe TEMBI:

O mnocTtpoeHMe pPasIUUHBIX pacnpeneeHHbIX MpPenCcTaBIeHui
CJIOB B KOHTEKCTE;

O mnocrpoeHue MoJeNeli Ha OCHOBE MOrPY>KeHUIt 17151 peleHMs Ta-
kux 3agay OES, Kak rpaMmaTuuecKkuii pasbop rnpeioKeHus 1
aHa/IM3 3MOLIMOHAIBHO OKpacKu.

PacnpeaeneHHble npeacTaBneHuUs

PacnipesesnieHHOE MPeCTaBIEHUE — 3TO TOIBITKA YIOBUTh CMBICH CJIO-
Ba MYTEM PacCMOTPEHMSI ero CBs3eit ¢ APYrMMHU CJIOBAMU B KOHTEKCTE.
drta uages chopMyIMpoBaHa B CIeAYIOLEM BbiCKasbiBaHum K. P. Dup-
ta (]. R. Firth) (cMm. crarbio Andrew M. Dai, Christopher Olah, Quoc V.
Le «Document Embedding with Paragraph Vectors», arXiv:1507.07998,
2015), nMHTBUCTA, KOTOPbI ITEPBLIM BbIJIBUHYII €€:

Mbt y3Haem 1080 nNo KOMNAHUU, C KOMOPOT 0HO Opyxcum.
PaccMOTpUM TaKKe ABa MPeIOKeH s :

Mapuic — cmoauya Gpavuuu.
Bepnux — cmoauya l'epmanuu.

Ilake ecu Bbl COBCEM He 3HaeTe reorpaduio (MJIM PYCCKUIA S3bIK),
BCE PABHO HETPYIHO CO06pasuTh, uTo mapsl cioB (Ilapisk, Bepnuu) u

word2vec <+ 145

(Ppanyst, FepManust) KaK-TO CBSA3aHbI ¥ UTO MEXIY COOTBETCTBEHHbI-
MM CJIOBAMM CBSI3M OOMHAKOBEI, T. €.

Mapuic : ©panuusa :: bepaun : lepmarus

CrnenoBaTesibHO, 3a/iaua paciipeeJleHHOTO NpeaCcTaBIeHMs — HAlTH
TaKyl 00LIyI0 QYHKIIMIO ¢ MpeoGpa3oBaHMs CJIOBA B COOTBETCTBYIO-
LIt eMy BEKTOp, YTO CIIPaBeAJIMBbI COOTHOLIEHUS! CIeAYIOIIEro BMaa:

o («ITapuk») — ¢ («@panuus») = ¢ («bepnuu») — ¢ («'epmanHms»)

WHBIMM CTIOBAMH, 11eJ1b PacIipee/ieHHOro IpeICTaBIeHus] — [Peos-
Pa3o0BaTh CJIOBA B BEKTOPbI, TAK UTO6GBI CXOJICTBO BEKTOPOB KOPPEIUPO-
BaJIO C CEMAHTUYECKUM CXOICTBOM CJIOB.

B cienyouiyix pasmenax Mbl PACCMOTPMM Ba HauboIee M3BeCTHBIX
rnorpy:kenus oios: word2vec u GloVe.

word2vec

I'pynna mogeneii word2vec 6bi1a paspadborasa B 2013 rofgy rpyIimnoi uc-
cneposareneit Google nop pykoogersom Tomaiia Muxonosa (Tomas
Mikolov). Mogenu o6yuatorcs 6e3 yuuTesnss Ha OOJIBLUIOM KOPITyCe
TEKCTOB M MOPOXKIAKT BEKTOPHOE MPOCTPAHCTBO CJIOB. PasmepHOCTb
MPOCTPAHCTBA MOrpyskeHust word2vec 06bIYHO MeHblie pasMepHOCTH
MPOCTPAHCTBA MOTPYKEHUS IS YHUTAPHOTO KOAMPOBAHMS, KOTOPast
paBHa pasmepy ciopaps. Kpome Toro, 3T0 MpoCTPaHCTBO MOTPYKEHUS
IJIOTHEE PA3PEKEHHOTO MMOTPY)KEHMS ITPU YHUTAPHOM KOIMPOBAHUM.
CyleCcTBYIOT JIBe apXUTEKTYpbl word2vec:

O HenpepbIBHBIN MelioK ¢10B (Continuous Bag Of Words, CBOW);
O skip-rpamMmsl.

B apxurexkrype CBOW mopens rpenckasbiBaeT TeKyllee cjl10B0, ec-
JIM U3BECTHO OKHO OKPYKAIIUX ero cjioB. Kpome Toro, nopsiok KOH-
TEKCTHBIX CJIOB HE BJIMSIET HA TpefcKazaHue (3To DOMnylieHue Moae-
1 Melika cioB). B apxurekrype skip-rpaMmm mMopmenb rnpeackasbiBaer
OKpY3KalIlMe C/I0Ba M0 M3BECTHOMY LIEHTPaIbHOMY CJIOBY. CoracHo
3asBjieHUuI0 aBTopoB, CBOW GbicTpee, HO skip-rpaMmbl Jyulie ripef-
CKa3bIBAIOT PEIKME CIIOBA.

WHTEpecHO OTMETUTb, UTO XOTs1 word2vec cosjaeTr IOrpysKeHusl,
MCIIO/Ib3yeMble B Moaensix ry6okoro obyuenust OESl, o6a BapuaHTa
word2vec, KOTopble Mbl 6yaemM 06CYKIaTh M KOTOPbIe CHUCKAIM Hau-
BO/bIINIA yCITeX M MpU3HAHKe, SBSIOTCS MeJIKUMU HelipOHHBIMU ce-
TAMM.

146 <+ [naea 5.[lorpyxeHua cnos

Mogaenb skip-rpamm

Mogens skip-rpamm o6y4aeTcs pecKasbiBaTh OKPYKaloliKe ¢I0Ba
10 M3BECTHOMY LIeHTpaibHOMY. UTOOBI TOHSTh, KAK OHa paboTaert, pac-
CMOTPMM TaKOe IpeajioKeHe:

I love green eggs and ham. (5 11061110 3eeHble giilja U BeTUMHY)!

B rpearonoxkeHni, YTo pasMep OKHA PABeH 3, MPeI/IosKeHe MOKHO
Pa3JioKUTh Ha TaKue Mapbl (KOHTEKCT, CZIOBO):

(I, green], love)
([love, eggs], green)
(lgreen, and|, eggs)

INockonbKy Mofenb sKip-rpaMm npeacKasbiBaeT KOHTEKCTHOE CJIOBO
10 LIeHTpaJbHOMY, MBI MOXXeM Ipeo6pa30oBaTh 9TOT HAGOP JaHHLIX B
Habop nap (Bxof, Bbixon). To ecTh, 3Has BXOJHOE CJI0BO, MbI OXKMJaeM,
4YTO MOZeIb SKip-rpaMMm IpecKakeT COOTBETCTBYIOIIee BhIXOIHOE:

(love, 1), (love, green), (green, love), (green, eggs), (eggs, green), (eggs, and), ...

MbI MOXKeM TakKe CreHepMpOBaTh JOIMOTHUTE/NbHbIE OTPULATEb-
HbIe [IPUMepPbl, 00beIMHSIS B Mapy Kak[0e BXOOHOE CJI0BO CO CIydaii-
HBIM CJIOBOM M3 CJIOBapsl, HalpuMep:

(love, Sam), (love, zebra), (green, thing), ...

HakoHell, MbI TeHepUPYEM T0JI0KUTEIbHbIE M OTPUIIATEIbHbIE TIPH-
MepbI [Jis1 KjaaccupukaTopa:

((love, D), 1), ((love, green), 1), ..., ((love, Sam), 0), ((love, zebra), 0), ...

Terepp MOXKHO 00YUMTb KiIacCM(GMUKATOP, KOTOPLIA MPUHMMAET
BEKTOpP CJIOB M KOHTEKCTHBIN BeKTOp M IpeiackaspiBaeT 0 mwin 1 B 3a-
BUCHMOCTH OT TOTO, KaKOif IPUMEpP BUANT: MOJIOXKUTEIbHbINA MK OT-
puLaTe/lbHbIA. Pe3ayibraTroM 06yueHMsl CeTH SBJISIIOTCS Beca ¢Jiosl I10-
IPY’KEHMsI CJIOB (cepblii 610K Ha PUCYHKe HIKe):

: «Green eggs and hams — JACTCHAA CKA3KA, HallHCaHHaA JOKTOPOM CriozoM. — H[Ji{.\t. nepes.

word2vec ++ 147

CNnoBo KOHTEKCT
(None, 1) (None, 1)
Embedding Embedding

CkanapHoe
npou3BeseHHe

Dense

Metka (None, 0/ 1)

OmnuileMm, Kak crpouTtesa mopeb skip-rpamm B Keras. [Tpeanonoxum,
yro pasmep cinosapsd paseH 5000, pasMep BbIXOOHOI'O ITPOCTPAHCTBA
norpyxenust 300, pasmep okHa 1. [lociegHee 03HaUaeT, YTO KOHTEKCT
COCTOMT M3 MMPEAbIAYILIEro U clieaywilero ¢iopa. CHauama MUMIIOPTUPY-
€M HYKHbIe MOAY/IM U MHUITUATM3UPYEM [TepEeMEHHbIE:

from keras.layers import Merge

from keras.layers.core import Dense, Reshape
from keras.layers.embeddings import Embedding
from keras.models import Sequential

vocab size = 5000
embed size = 300

3aTeM Cco3mamyMM I0C/Ieq0BaTe/IbHYI0 MOIe/ b CJIoBa. Bxomom mome-
7 SIBJIAIOTCS MAEHTU(GMKATOPLI CI0OB B cjoBape. Becam norpyxkenui
MepBOHAYA/IbHO TIPMCBAMBAIOTCS HeGOJbIlNe CIYYaiiHO BbIOpaHHbBIE
3HaueHus. B ripoiiecce o6ydyeHus: Moaenb OyneT 0OHOBIIATL Beca, ITpyu-
MeHsIsl aJrOpuTM 06paTHOro pacmpocrpaHeHus. Clrenyiomuii crioi
agantupyeT opMy BXOa 10 pasMep [MOrPYKeHMs:

word model = Sequential ()

word model.add(Embedding (vocab_size, embed size,
embeddings_initializer="glorot uniform",
input length=1}))

word_model.add{Reshape{{embed_size, 1))

148 <+ [haea 5.[lorpyxeHua cnos

Ham Taxoke HyKHA elle OfgHa MOMeNb /)il KOHTeKCTHBIX CI0B. JIjis
KaxKnoit napel skip-rpaMm Mbl MMeeM 0JHO KOHTEKCTHOE CJIOBO, COOT-
BETCTBYIOILLEe 11e/IeBOMY C/IOBY, TAK UTO 3Ta MOJE/Ib UAEHTHUUYHA MOJe-
JIU CJIOB:

context model = Sequential ()

context model.add {Embedding (vocab size, embed size,
embeddings initializer="glorot uniform",
input length=1))

context model.add(Reshape ({embed_size,. 1)

Ha Bbixonme 06eux mofeseii MoiydanTcss BEKTOPbl Pa3Mepa embed
size. UX CcKaJIIpHOE TIPOM3BEAEHME TIOAETCS HA BXOM, IVIOTHOMY C/1010
C CUrMOMIHON (PYHKLMEl aKTUBaLUK, KOTOPBIA MOPOKIAAET OOUH BbI-
xon. Hanomumm, uto curmoua rpeobpasyer CBOM apryMeHT B UMCIIO
u3 nuarasoHa [0,1] u acMMITOTUYECKH OICTPO MPUOIIKAETCS K eu-
HUIIE HA MOJIOKUTENIBHOM romyocu U K 0 — Ha OTpUIIATENbHOI.

model = Seguential()

model.add (Merge { [word model, context model], mode="dot"))
model.add(Dense(l, init="glorot uniform", activation="sigmoid"))
model.cumpile{lcnss—'“mean_squared_error“, optimizer="adam")

B kauecTtBe [bYHKLLHH MoTepb UCIIONb3YETCHA mean squared error, MOES
B TOM, yTOGBI MMHMMM3MPOBATHL CKAJIIPHOE I[Ipou3BegeHMe OJIs 11010~
JKMTeJIbHBIX IIPUMePOB UM MaKCMMM3MPOBATD OJ18 OTPpHULIATE/IbHbIX. Ha-
IIOMHMM, UTO CKa/IsSIpHOe IIpOoKM3BeaeHMe paBHO CYMMe IIIJOHSBE,ELEHHI:I
COOTBETCTBEHHBIX 3JIEMEHTOB, [I03TOMY CKa/IIpHOe [IpoM3BeJeHHe [10-
XO0XKHX BEKTOPOB GY,ELET 60HbIJ.iE, yeM HeIllOXOXKMX, T. K. Y IIOX0XKHX BeK-
TOPOB Qoblie OOMHAKOBBIX 3/IEMEHTOB B COOTBETCTBEHHBIX ITO3MIIMSIX.

Keras npenocTaBjsieT ElJYHKLLH}D OJ1s1 U3BJIeYeHWA Skip-[‘p&MM u3
TeKCTa, Hp806pa3OBaHHO[‘0 B CIMCOK MHIEKCOB ¢10B. Huske npuBeneH
IIpuMep ee MCIIOJAb30BaHMS IJIs1 M3BJIeUeHMsI [TePBbIX 10 u3 56 crene-
PUMPOBAHHBIX skip-rpaMM (IIONMOKUTEJIBHBIX U OTPULIATE/IbHBIX).

CHauana MMIIOPTUPYEM I[MaKeTbl M MHULIMAIM3IUPYEM HogaesKalmit
dHA/IM3Y TeKCT:

from keras.preprocessing.text import *
from keras.preprocessing.seguence import skipgrams

text = "I love green eggs and ham .

3aremM 00bSBIsIEM OOBEKT OJIs1 BblAeeHUd JIieKCceM M IpoIycKaem
yepes Hero TeKCT. HOJIYQHETCH CITMCOK JIeKCeM:

word2vec <+ 149

tokenizer = Tokenizer()
-—_okenizer.f_'—__on_texf:s ([text])

O6BEKT tokenizer CO3MAET CIOBAPb, COIMOCTAB/SIOUIMIT KaKIOMY
VHMKAIbHOMY CJIOBY LIeJIOYMCIEHHBIH MOeHTU(DUKATOP, M AeaeT ero
JOCTYITHBIM Yepe3 aTpUBYT word index. Mbl UMTaEM 3TOT aTPUOYT U CO3-
HaeM JIBe TabIMIIbl COOTBETCTBUSI:

word2id = tokenizer.word index
id2word = {wv:k for k, v in word2id.items()}

HaxkoHell, BXOIHO! CIIMCOK CJIOB [peodpasyeTcst B CIIMCOK UIEHTHU-
duxkaropoB u nepemaercss GYHKLUMYU skipgrams. 3aT€M Mbl IedaTaem
nepsbie 10 u3 56 creHepupoBaHHbIX skip-rpamm (mapa, MeTKa):

wids = [word2id([w] for w in text to word sequence (text)]
pairs, labels = skipgrams(wids, len(word2id))
print(len(pairs), len(labels))
for i in range(10):
print (" ({:s} ({:d}}), {:s} ({:d}}}) -» {:d}".format(
id?word[pairs[i][0]], pairs[i][0],
id2word[pairs[i] [1]], pairs[i][1],

labels(il))

Huzke nokasaHbl pe3ynbTaThl paboThl 9T0# rporpammel. Ha Baieii
MalllMHe Pe3yabTaTbl MOTYT OT/IMYATHLCS, [IOTOMY YTO (PYHKIMS skip-
grams NPOU3BOAMUT CIIYUaiiHYI0 BBIOOPKY M3 MHOMXKECTBA BO3MOXXHBIX
MOJIOKUTE/IbHbIX NTpuMepoB. KpoMe Toro, reHepauus OTpuLiaTeIbHbIX
MPUMEPOB ITPOU3BOIUTCS MYTEM BbIGOPKU CJIYUANHBIX [1ap JeKCceM U3
Tekcra. C yBelMyeHMeM pasmepa BXOJHOIO TEKCTa BePOSITHOCTh Bbl-
6paTh Iapbl HEe CBSI3aHHBIX MesKAy cob0ii cj1oB Bo3pacraer. Ho B Hatem
MpuMepe TeKCT 0YeHb KOPOTKMIL, TOITOMY BbICOKM LIAHCHI, YTO GymyT
CreHepUpPOBAHbBI U TIOJIOKUTE/IbHbIE [TPUMePbl TOXe:

(and (1), ham (3)) -> 0

(green (6), i (4)) -> 0

(love (2), i (4)) -> 1

(and (1), love (2)) -> 0

(love (2), eggs (5)) -> 0

(ham (3), ham (3)) -> 0

(green (6), and (1)) -> 1

(eggs (5), love (2)) ->1

(i (4), ham (3)) -> 0

(and (1), green (6)) -> 1

KO,U, 3TOro ripumMepa HaxonouTcs B cbai—‘me skipgram example.py B MCXOM-
HOM Kojie K 9TOJi r/ase.

150 <+ T[haea 5.[lorpyxeHua cnos

Mopenb, CBOW

Terneps pacemorpum mopenb CBOW us cemerictea word2vec. Harom-
HMM, UTO OHA MMPEICKA3bIBAET CJIOBO 10 U3BECTHBIM KOHTEKCTHBIM CJI0-
Bam. Takum oGpasom, [Jjisl [IEPBOr0 KOpPTexa u3 rnpumepa Hiwke CBOW
IOJKHA [TPeaCcKasaTh ¢I0BO love, 3HAast KOHTEKCTHBIE c/10Ba [1 green:

([I, green], love) ([love, eggs), green) ([green, and), eggs) ...

Kak u mopmens skip-rpamm, mopmens CBOW mpegcrasisier coboit
KiaccuduKaTop, KOTOPbIA TMOJYyYaeT Ha BXOAE KOHTEKCTHbIE CJIOBA U
MpeacKasbiBaeT 1eieBoe 10Bo. Ho apxuTekTypa Inpoiie, uemM B MoJe-
nu skip-rpamm. BXOIZHBIMY JaHHBIMM MOJIE/IN SIBJISIIOTCS MAeHTUDMKA-
TOPbI KOHTEKCTHBIX ¢JI0B. OHM MOCTYIAKOT HA BXO[, CI0SI TOTPY>KEeHUS,
Beca KOTOPOro MHULIMANIUZUPYIOTCS HeOOIbIIMMI CJIYYAfHbIMU 3HA-
YeHMUSIMU. DTOT CJI0I MpeobpasyeT Kaxkblit uaeHTUhUKaTOpP B BEKTOP
pasMmepa embed size. C/leIOBaTe/IbHO, KaX/1asi CTPOKA BXOJHOI'O KOH-
TeKcTa rpeobpasyercst B MATPULLY PA3Mepa (2*windon size, embed size).
3aTem mMaTpuila roaaeTcs Ha Bxof ¢yiost lambda, KoTopbIit BbIUMCIISIET
cpemHee Mo BceM morpykeHusiM. [osyyeHHasl BeJIMUMHA MEpPegaeTcs
IJIOTHOMY CJIOK0, KOTOPbIiA CO3[aeT IJIOTHBII BEKTOP pasmepa vocab
size IJISI KAXKI0M CTPOKK. B KauecTBe YHKUIMY aKTUBALIMK B TJIOTHOM
C10e UCIoNb3yetcst softmax, KoTopast BO3BpallaeT BeposiTHOCTD, PaB-
HYH0 MakCMMaJIbHOMY 3JIEMEHTY BbIXOIHOr0 BekTopa. Moentuduka-
TOP C MAKCUMAJIbHOM BEPOSITHOCTBIO COOTBETCTBYET L[€JIEBOMY CJIOBY.

KOHTEKCTHbIe CNoBa
[None, 2*window_size)

Embedding

(None, 2*window_size
embed size)

Lambda

* (None, embed size)

Dense

l (None, vocab_size)

target word id =
softmax(output)

L7

word2vec ++ 151

Hixe MpuBeageH KoOI MOIOe/lM Ha Keras. Mb1 cHOBa Inpenriojiaraem,
4TO pasMep C1oBaps paBeH 5000, pa3smMep BBIXOOHOI'O ITPOCTPaHCTBA
norpyxenus 300, pazmep KOHTEKCTHOro okHa 1. CHauana MMIopTupy-
eM IMaKeTbl M MHUMIIMaJIUu3KMpyeM IlepeMeHHbIe:

from keras.models import Sequential

from keras.layers.core import Dense, Lambda

from keras.layers.embeddings import Embedding

import keras.backend as K

vocab size = 50
embed size = 30
window size = 1
3arem CTpOMM IIOC/IeJ0oBaTe/IbHYH0 MOOe/lb, B KOTOPYH) BKJIKYaeM
CJ101 rorpyxeHus ¢ secaMiM, MHMUMAJIU3IMPOBAHHBIMM MaJlbIMM CITY-
YallHbIMM 3HAYEHUSIMMU. OTMGTHM, 4TO OJIMHA BXOMA input length 3TO-
r'o /105 paBHa YMCIy KOHTeKCTHLIX C/I0B. KH}K,H,OE KOHTeKCTHOe CJIOBO
rnogaeTcst Ha BXOo[4 C/J105, M Beca OBGHOBJISIOTCS B rnpouecce 06paTHOF0
pacrpocTpaHeHus. Ha BbIXO[e CJ/104 IToJIy4aeTcs MaTpuia norpy)l{eﬁl—iﬁ
KOHTEeKCTHbLIX C/I0B, KOTOpasd ycpeaHseTcs B OAUMH BeEKTOP (Ha KKy
CTpOKY Bxoja) cjioem lambda. HakoHel, IJ10THBIN €10 npeodpasyer
CTPOKH B [JIOTHBIN BEKTOp pasMepa vocab size. U,EHEBBIM ClIoOBOM ﬁy,D,ET
TO, AJi1 KOTOPOro BeposATHOCTDL H,D,EHTHCIJHKaTODH B IMMJIOTHOM BBIXOM-
HOM BeKTOpe MakKCMMaJibH4.
model = Sequentiall)
model.add (Embedding (input_dim=vocab size, output dim=embed size,
embeddings_initializer='glorot uniform',
input_length=window size*2))
model.add (Lambda (lambda x: K.mean(x, axis=1), output shape= (errbed_size,)
model . add (Dense (vocab_size, ke?:ne'__initia'_izer-—'g'_:,rct_unifo?:m' i
activation="softmax"))

model .compile (loss='categorical crossentropy', optimizer="adam")

B kauecrBe (QyHKUMM TOTEPb 3[€Ch MCIONb3YETCS categorical
crossentropy — TUIIMYHBII BbIOOD [JIS1 CJTyYast, KOTIA KATEropuit 1Be uiau
6osiblie (B HALEM IPUMEPE vocab size).

Kop aroro npumepa Haxogutest B aiine keras cbow.py B UCXOIHOM
KO[le K 3TOIli rnase.

U3Bne4yeHune norpyxeHunini word2vec us moaenm

Bblllie y)Xe 0TMeuanoch, 4YTO XOTsl 0be Momenu cemeiicTBa word2vec
MOXXHO CBECTM K 3ajaye KiaccuduKalim, cama 9Ta 3agada HaC He MH-
TepecyerT. A MHTepeceH HaMm o6ouHbli addekT knaccuburkanmm — Ma-

152 < T[haea 5.[lorpyxeHua cnos

TpULIA BECOB, KOTOpas npeodpasyeT CI0BO U3 C/IOBaps B IVIOTHOE pac-
NpeeneHHOe MPefCcTaB/IeHe HU3KOI pa3MepHOCTH.

EcTh HEMaNO MPUMEPOB TOTO, KAK pacrpefieieHHble MpecTasiie-
HMSI BBISIBJISIIOT YOAMBUTEIbHYH) CHMHTAKCUUECKYHD) M CEMAHTHUYECKYI0
unbopmaumio. Tak, Ha CIEAVIOUEM PUCYHKe, B3SITOM M3 [IpPe3eHTa-
uuu Tomaira Mukonosa Ha KoH(pepenuuu NIPS 2013 (cm. T. Mikolov,
I. Sutskever, K. Chen, G. S. Corrado,]. Dean, Q. Le, T. Strohmann
«Learning Representations of Text using Neural Networks», NIPS
2013), nokaszaHo, YTO BEKTOPHI, COEAMHSIIOIIME CJI0BA, UMEIII1e Ou-
HAKOBbIi CMbIC/I, HO OTHOCSILI[MECS K Pa3HbIM I10/1aM, IIPUGIU3UTEILHO
rnapauie/ibHbl B PeAYLMPOBAHHOM ABYMEPHOM IPOCTPAHCTBE M UTO
3a4acTyi0 MOXXHO TIOJIYYUTh COIIACYIOLUMECS C WMHTYULMEH pesyiib-
TAThl, IPOU3BOAS apudmMeTnyecKue AeicTBUS HaJl BEKTOpaMM CJIOB.
B nipeseHTal M1 MHOrO TaKUX IMPUMEPOB.

QUEENS
WOMAN
A X
MAN UNCLE QUEEN KINGS
\ QUEEN
KING KING

WHTYMTUBHO KaKeTCsl, 4TO IpoLiecc 06yueHus] MPMBHOCHT JOCTa-
TOYHO MH(OPMALMK BO BHYTPEHHIOK KOOMPOBKY, UTOOBI IIPeCKa3aTh
BLIXOIHOE CJIOBO, BCTPEYAIOIIeecss B KOHTEKCTe BXOOHOTro. [Tostomy
TOUKM, MPEACTAB/IAIONINME CJI0BA B 3TOM IIPOCTPAaHCTBE, PACIIO/IAraiT-
cs1 GrmiKe K TOUKaM CJI0B, C KOTOPBIMM OHM BCTPEYAIOTCSI COBMECTHO.
B pesynbraTte Moxoxue ¢jioBa o6pasyior Kinacrepel. M cioBa, BeTpe-
yarIMecs BMeCTe C HOXO0KMMIM CJIOBAMM, TOXKe 00pasyioT KJIacTepsbl.
CriegoBaTe/ibHO, BEKTOPbI, COEAMHSIONIME TOYKM, IMPEeACTaB/IsSIolI1e
CeMaHTUYECK! CBSI3aHHbIE (JIOBA B PacIipe/ie/IeHHOM MpeaCcTaBIeHHH,
IEeMOHCTPUPYIOT PEry/sipHOe [T0BeieHHe.

Keras mpemocraB/isieT CpenCcTBa AJisl M3BJIeYeHMsI BECOB U3 00yUeH-
HBIX Mogzesei. B ciaydae skip-rpaMm Beca CJIOsl ITOTPYKEHMSI MOXKHO
MOTYYMTh C/IEAYIOLUMM 06pasoM:

merge layer = model.layers([(]
word model = merge layer.layers[0]

L7

word2vec <+ 153

word embed layer = word_model.layers[ﬁ]
weights = word embed layer.get weights() [0]

A B cryyae CBOW 18 1oJiyueHMst BECOB JOCTATOUYHO OHOM CTpPOY-
KH:

weights = model.layers([0].get_weights () [0]

B oboux ciyuasix MaTpulia BECOB UMEET Pa3MEep vocab size X embed
size. [IJI1 BBIUMCIEHMSI PACpeneeHHOTO IPeNCTaB/JIeHMs CI0Ba U3
CJI0BAapst HYKHO TTOCTPOUTH YHUTAPHBIN BEKTOP, 3aucaB 1 B 57€MeHT
BEKTOpA PasMepa wvocab size C MHAEKCOM, DABHbIM UAEHTU(UKATOPY
CJIOBA, U YMHOXHUTDb €r0 HA MaTPUILy BECOB, TOTYYMUB B PE3Y/ILTATE BEK-
TOD MOIPYKeHUsl pa3Mepa embed size.

Huke mokaszaHa BU3yaaM3alMsl MOTPYKEHUIi (JIOB, BBIMOTHEHHAS
Kpucrodepom Ona (cm. Andrew M. Dai, Christopher Olah, and Quoc V.
Le «Document Embedding with Paragraph Vectors», arXiv:1507.07998,
2015). Insa aroro GbUIO NPOM3BENEHO TOHMXXKEHME Pa3sMEpPHOCTU [0
IBYX M3MepeHMii M ucrojb3oBaHa 6ubnuoreka T-SNE. Cioa, 06-
pasyioliue TUIbl CYIIHOCTEN, BbIOpaHbl M3 CMHOHMMMUYECKUX PSIOB
(cuHceToB) cemaHTHueckoi cetu WordNet. Kak BUAHO, TOYKM, COOT-
BETCTBYIOIIME [TOXOXKMM TUIIAM CYIIHOCTEI, 06pasyioT KiacTepsbl.

- body part
Y _.3“" food

city ..:_h 3 ,

o ot w e s tavel ST,
f) .e 3 0} ® 3] .
. v > Ty - gl r VR4l

:‘ o y r . -5 :)
< e 2 feel
v o » -
3 relative

Koz aToro npumepa HaxofuTcsi B haitie keras skipgram.py B MCXOJI-
HOM KOJIe K 3TOI1 [JIaBe.

154 < [haea 5.[lorpyxeHua cnos

CropoHHue peanusauum word2vec

B nipenbiayuiMx pasaenax 6bU10 MOAPOOHO PACCMOTPEHO CEMEICTBO
mopeneii word2vec. Bol noHMMaeTe, Kak paboraioTt mopenn skip-rpamm
1 CBOW u Kak camMOCTOSITEIbHO ITOCTPOUTDL MX peain3aluio ¢ MomMo-
b0 Keras. OfHAKO CYIIECTBYIOT FOTOBbIe peajiu3ailun word2vec u B
MpearoaoKeHu, YTO Ballla 3ajaya He CJAMILIKOM CJI0XKHA M He CUJIbHO
OT/IMYAETCS OT TUIIMYHOM, MMeeT CMBIC/I BOCIIO/Ib30BAaThCSI OIHOM U3
HMX M He U300peTaTh BeJIocuIies,.

OpHa Takast peanusauust word2vec — 6ubnuoreka gensim. U xots sra
KkHura nocesuleHa Keras, a He gensim, Mbl peminin BKIHOUUTD ee 00-
CcyKaeHue, rMockoinbKy Keras He noamepsxkuBaer word2vec, a MHTerpa-
uust gensim u Keras — pacripoctpaHeHHast pakTuKa.

YcTaHoBKa gensim He Bbi3blBAaeT CNOXHOCTEH WM noapobHo
OMNMCaHa Ha CTpaHMue https://radimrehurek.com/gensim/in-
stall.html.

Huke roxkasaHo, Kak MocTPOUTh MOJelib word2vec ¢ oMOLIbI0 gen-
sim 1 06YUMThL ee Ha TeKCTe M3 Kopiyca text8, mocrynmHOM o ajape-
CY http://mattmahoney.net/de/text®.zip. 3TOT (AT COOEPKUAT OKOIO 17
MUJUIMOHOB CJIOB, B3STBIX M3 cTaTeil Bukuienuu. Teker 6b11 nogsep-
FHYT OYMCTKE — YIAJIEHUI0 PasMeTKM, 3HAKOB IPeriMHaHus 1 CMMBO-
Ji0B, He npuHamiexaux koguposke ASCII. TTepsbie 100 MU/LIMOHOB
3HAKOB OUMIIEHHOIO TeKCTa U coctaBuin Kopryc text8. OH yacro uc-
I0JIb3YeTCS B KauecTBe npuMepa Ijis Mmoaein word2vec, oTomy 4to
obydyeHMe HAa HEM IIPOUCXOIUT BBICTPO U JAeT XOPOIIKE Pe3y/bTaThbl.
CHayvajia MMIIOPTUPYEM HEOBX0AMMbIE [TAKEeThI:

from gensim.models import KeyedVectors

import logging
import os

3areM yMTaeM [OTOK CJIOB M3 Kopryca text8 u pasbuBaeM ero Ha
npenioxkenus mo 50 ¢ioB B Kaxkaom. Bubauoreka gensim conepskuT
BCTPOEHHBI 06paboTumK text8, KOTOpPLIA OeinaeT He4YTo IomobHoe.
[TocKoABKY MbI XOTMM II0KA3aTh, KAaK ITOCTPOUThL MOAEb IS 1106010
(TIpeAnoYTUTENEHO BONBIIOro) KOPITyca, KOTOPbI MOXKET U He roMe-
IATHCS LIEJIMKOM B ITAMSITh, TO [IPOAEMOHCTPUPYEM MOPOKIEHNUE STUX
IIpeJIoKeHMIi ¢ IOMOIIBI0 reHepaTopa Python.

L7

word2vec <+ 155

Knace text8sentences MopoxgaeT IpeaiosKeHHM 110 maxlen CJIOB B KaXK-
noMm u3 (aiina text8. B jaHHOM cjlyyae Mbl TaKM 4MTaeM BeCh Qaii B
naMsAThb, HO IIPpH obxome d)aﬁn(m, HaxoAMXCs B HeCKOJIbKMX KaTa/lo-
rax, reHepaTtop ro3BoJdeT 3arpy3uTb B [IaMSATh 4aCThb JaHHBIX, 06[_')360-
TaTh ee M OTIATh BbI3bIBAIOILEl CTOPOHE:

class Text8Sentences(ochject):

def init (self, fname, maxlen):

self.fname = fname
self.maxlen = maxlen

def iter (self):
with open(os.path.join(DATA DIR, "text8"), "rb") as ftext:
text = ftext.read().split(" ")
sentences, words = [], []
for word in text:
if len(words) >= self.maxlen:
yield words
words = []
words.append (word)
yield words

Tenepb 3aiiMeMCs BbI3bIBaKOIlei IporpaMmoii. B 6Gubnuoreke
gensim ucrnonb3yercss umelonuiicss B Python mMexaHusm MmpoToKoju-
pOBaHMS JIJis YBeOOMJIEHUSI O Xoje 06paboTKe, MOITOMY [Jisl Havaia
aKTUBUPYEM ero. B cienymoliei cTpoke co31aeTcs 3K3eMIUISAp Kiacca
TextfSentences, & 3aTeM MOMe/b 0OydaeTcst Ha MPeUIOKEeHUSIX U3 Ha-
6opa gaHHBIX. MbI 3312/ pa3mep BeKTOpoB mnorpyxenus 300 u pac-
CMaTpUBAEM TOBKO CJIOBA, KOTOPbIE BCTPEUAKOTCS B KOPITYCE HE MeHee
30 pas. Pasmep OKHa 10 YMOJUYAHUIO PaBeH 5, I109TOMY KOHTEKCTOM
AL CNOBA W, OyayT cnoBa Wis Wi Wigs Wigs Wiy Wiiis Wi Wi Wi Wisse
[To ymonuanuio cospaercss moneias CBOW, HO 5T0 MOXKHO M3MEHUTD,
3aJ1aB rapameTp sg=1:

logging.basicConfig (format="% (asctime)s : %(levelname)s : %(message)s',
level=logging.INFO)

DATA DIR = ", ./data/"
sentences = TextSSentences{os.path.jDin{DATA_DIR, "text8"), 50)
model = word2vec.Word2Vec (sentences, size=300, min_count=30)

Peanusaius word2vec pou3BOAMT IBa IIPOX0OAa 110 JAHHBIM: CHa-
yajia CTPOMTCS CJI0BapPh, a 3aTeM — (pakTHudecKas MOe/b. 3a XO40M pa-
60ThI MOKHO CJIEAUTD 10 paciiedaTke Ha KOHCOIU:

156 <+ T[haea 5.[lorpyxeHusa cnos

2017-01-30 16:16:27,7686 :
1 INFO : PROGRESS: at 77.74% examples, 693040 words/s, in_gsize 0, out_gsize 0
2017-01-30 16:16:29,807 :
2017-01-30 16:16:30,815 :
2017-01-30 16:16:31,819 :
2017-01-30 16:16:32,842 :

2017-01-30 16:16:28,801

2017-01-30 16:16:33,869

2017-01-30 16:16:34,873 :
2017-01-30 16:16:35,882 :
2017-01-30 16:16:36,884 :
2017-01-30 16:16:37,925 :
2017-01-30 16:16:38,925 ;
2017-01-30 16:16:30,933 :
2017-01-30 16:16:40,936 :
2017-01-30 16:16:41,939 :

2017-01-30 16:16:42,946

2017-01-30 16:16:43,960 :
2017-01-30 16:16:44,978 :
2017-01-30 16:16:45,982 :
2017-01-30 16:16:46,980 :
2017-01-30 16:16:48,002 :
2017-01-30 16:16:48,124 :
2017-01-30 16:16:48,125 ©
2017-01-30 16:16:48,128 :

2017-01-30 16:16:48,129 : INFO : training on 85026040 raw words (59645573 effective words) took 86.2s, 691572

effective words/s

INFO : PROGRESS: at 76.44% examples, 691859 words/s, in_gsize 0, out_gsize 0

INFO : PROGRESS: at 79.00% examples, 893746 words/s, in_gsize 2, out_gsize 0
INFO : PROGRESS: at 79.99% examples, 892107 words/s, in_gsize 0, out_qsize 0
INFO : PROGRESS: at B0.03% examples, 682583 words/s, in_gsize 0, out_gsize 0
INFO : PROGHESS: at 81.15% examples, 682090 words/s, in_gsize 1, out_qgsize 0
INFO : PROGRESS: at 82.46% examples, 683117 words/s, in_gsize 0, out_gsize 1
INFO : PROGHRESS: at 83.77% examples, 684403 words/s, in_gsize 0, out_gsize 0
INFO : PROGRESS: at B5.02% examples, 685224 words/s, in_gsize 5, out_gsize 0
INFO : PROGRESS: at B6.36% examples, 686831 words/s, in_gsize 0, out_gsize 1
INFO : PROGRESS: at B7.51% examples, 686556 words/s, in_gsize 2, out_gsize 0
INFO : PROGRESS: at 88.57% examples, 685873 words/s, in_gsize 0, out_gsize 0
INFO : PROGRESS: at 89.84% examples, 686756 words/s, in_gsize 0, out_qgsize 0
INFO : PROGRESS: at 91.17% examples, 688126 words/s, in_gsize 0, out_gsize 0
INFO : PROGHESS: at 92.43% examples, 688894 words/s, in_gsize 0, out_gsize 1
INFO : PROGRESS: at 93.69% examples, 689612 words/s, in_gsize 1, out_gsize 0
INFO : PROGRESS: at 94.97% examples, 690484 words/s, in_gsize 1, out_gsize 0
INFO : PROGRESS: at 96.30% examples, 691348 words/s, in_gsize 0, out_gsize 0
INFO : PROGRESS: at 97.58% examples, 692158 words/s, in_gsize 0, out_gsize 0
INFO : PROGRESS: at 98.83% examples, 892731 words/s, in_gsize 2, out_gsize 0
INFO : PROGRESS: at 99.92% examples, 691317 words/s, in_gsize 4, out_gsize 1
INFO : worker thread finished; awaiting finish of 2 more threads

INFO : worker thread finished, awaiting finish of 1 more threads

INFO : worker thread finished; awaiting finish of 0 more threads

|2017-01-30 16:16:48,129 : INFO : precomputing L2-norms of word weight vectors

[MTocie cospanust mogenn HY>KHO HOpMMPOBATD IMMOAYYMBLIMECS BEK-
TOPLbI. B OOKYMeHTalM1 CKa3aHo, 4YTO 3TO C3KOHOMMT MHOI'O ITaMATH.

OGY‘IEHHY}O MOJellb MOXHO COXPaHWUTb Ha JUCKe:

model.init sims(replace=True)
model.save ("wordZvec_gensim.bin")

Ijis1 3arpy3Ku COXPaHEHHO MO/ B IMaMsITh CJIYKUT TAKOI MeTO/:

model = Word2Vec.load("word2vec gensim.bin")

Hanee MOXHO 3alipoCHTb ¥ MOJe/lM BCe U3BeCTHbIe et wioBa:

>>> model.vocab.keys () [0:10]
["homomorphism',

'woods ',
'spiders’,
'hanging',
'woody',
'localized',
'sprague’,

'originality',

'alphabetic',

'hermann']

MoskHO IMOJIY4YMTL BEKTOPHOe IIpefcTasjieHye 3a0aHHOoro ¢iosa

>>> model ["woman"]
array([-3.13099056e-01, -1.85702944e+00, 1.18816841e+00,
-1.86561719e-01, -2.23673001e-01, 1.06527400e+00,

…

L7

word2vec ++ 157

4.31755871e-01, -2.90115297e-01, 1.0095518le-01,
-5.17173052e-01, 7.22485244e-01, -1.30940580e+00], dtype="float32")

MO3KHO TakKe HaliTH CJ10Ba, MMTOX0XKKMe Ha 3aJaHHOoe:

>>> model.most_similar ("woman")
[('child', 0.7057571411132812),
('girl', 0.702182412147522),
('man', 0.6846336126327515),
('herself', 0.6292711496353149),
('lady', 0.6229539513587952),
('person', 0.6190367937088013),
('lover', 0.6062309741973877),
('baby', 0.5993420481681824),
('mother', 0.5954475402832031),
('daughter', 0.5871444940567017)]

MOKHO JaBaTh YKa3aHMsl O TOM, KaKue ¢JI0Ba CYUTATh MOXOXKUMU.
Tak, wieaywoias KoMaHaa Bo3ppaiiaet nepsbie 10 OB, MOXOXKME HA
woman (JKEHILMHA) U king (KOPOJIb), HO HE ITOXOXKUE HA nan (MYXKYMHA):

>>> model.most similar(positive=['woman', 'king'], negative=['man'], topn=10)
[('queen', 0.6237582564353943),
('prince', 0.5638638734817505),
('elizabeth', 0.5557916164398193),
('princess', 0.5456407070159912),
('throne', 0.5439794063568115),
('daughter', 0.5364126563072205),
('empress', 0.5354889631271362),
('isabella', 0.5233952403068542),
('regent', 0.520746111869812),
('matilda', 0.5167444944381714)]

MOKHO TakxKe 3alpoCUTbh MEPY CXOICTBA MEXAY 3aHaHHBIMM CJI0-
BaMu. UT06bI ITOIYUMTE MPEACTABIEHUE O TOM, KaK MOJIOJKEHME CJIOB B
MPOCTPAHCTBE MOTPYKEHUS] KOPPEIUPYeT C UX CeMAHTUKOI, paccmMo-
TPUM CJIeYIOLINe [aphl CI0B:

>>> model.similarity("girl", "woman")
0.702182479574

>>> model.similarity("girl", "man")
0.574259909834

>>> model.similarity("girl", "car")
0.289332921793

>>> model.similarity("bus", "car")

0.483853497748

Kak BMOMM, CJIOBA girl M woman GoJblie IMOX0XHM, YeM girl M man, d car
(aBTOMOGMJIB) U bus (aBTOBYC) GOJIbILE, YEM girl U car. 3TO XOPOILLO CO-
IJIacyeTes C TeM, KaK PaHKMPOBa Obl CXOXKECThb YeI0BeK.

158 <+ T[haea 5.[lorpyxeHna cnos

Koz atoro npumepa HaxoguTcs B Gaiiie word2vec gensim.py B MCXOJI-
HOM KOJIe K 9TOI1 [1aBe.

Beepenue B GloVe

[Morpy:xenue cinoB GloVe (Global Vector — rio6anbHblii BeKTOp) ObI-
no npepjioxkeHo B pabore |. Pennington, R. Socher, and C. Manning
«GloVe: Global Vectors for Word Representation», Proceedings of the
2014 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pp. 1532-1543, 2013. Asropsl onuckiBaioT GloVe kak anro-
puTM 00yUeHust 6e3 yuuTeisl, 11ejib KOTOPOro — Moy4YeHue BEKTOPHbIX
npencrasieHuii o, O6yueHmne ITPOU3BOAMUTCS HA arperMpoBaHHOMN
17100aJIbHOM CTATUCTUKE COBMECTHOI BCTPEYaeMOCTH CJIOB U3 KOpITyca,
a [oJIyyaloimecs 1peicTaB/IeHUs BCKPbIBAIOT MHTePECHbIe JIMHEeHHbIe
CTPYKTYPbI B BEKTOPHOM [MPOCTPAHCTBE C/I0B.

GloVe otnuuaercs or word2vec Tem, uro word2vec — MpOrHOCTH-
ueckast Mofeb, Torga Kak GloVe ocHoBana Ha cueTunkax. Ha nepsom
uiare cTpouTcst Gosblias MaTpuUila COBMECTHOM BCTpeYaeMoCTH Iap
(CJ10BO, KOHTEKCT) B obyualoiiem Kopryce. Kaxkubiii anemeHT MaTpu-
Libl OMMCBIBAET, KAK YaCTO CJI0BO, IPEICTABJIEHHOe TaHHOM CTPOKOI,
BCTpeYaeTcs: B KOHTeKcTe (00bIYHO 3TO IMOCIeNOBATE/bHOCTL CJIOB),
MPeaCcTaBieHHOM JaHHbIM CTOIOLIOM.

KOHTEKCT NPU3HAKKU KOHTEKCT
— —
|
NpU3HaKK
cnosa cnosa P MaTpuLa
G (npu3Hak,
MaTpULia COBMECTHOH | e MaTpuLa * KOHTEKCT)
BCTPEYAEMOCTH CNOBa (cnoso,
U KOHTEKCTa npU3Hak)

Anropurm GloVe rpeo6pasyer MaTpuily COBMECTHOI BCTpeyaemMo-
CTU B mapy marpuii: (CJI0BO, IPU3HAK) M (IIPU3HAK, KOHTEKCT). STOT
npoiecc HasbiBaerTcs (haKTopMUsanmMeil MaTPUIbI U BBINOJIHAETCS
UTePAaTUBHO C IMOMOLIbI0 METO/ld CTOXaCTUYEeCKOro rpagMeHTHOro
cnycka (CI'C). B ¢popme ypaBHEeHMS OH 3alIMCbIBAETCS TaK:

R=P*Q~R'

3nech R — MCXOaHAs MaTpULIA COBMECTHOI Berpeyaemoctu. CHava-
J1a Mbl MHMOManu3upyem P 1 Q ciydyaliHbIMM 3HAYEHMUSIMM U [TbITaeM-

L7

Mcnonb3oBaHue npenobyyeHHbIX Norpy;eHuin - <+ 159

Cs1 BOCCO3aTh R' myTem uX IrepeMHOKeHus. PasHuiia Mexay pexkoH-
CTPYMPOBAHHOM MaTpuieil R' u ucxomHoi R nokasbiBaeT, Kak Haao
M3MEHUTb 3HaueHust P u Q, utobsl R' crana Gimmske K R, T. e. omnbKa
PEKOHCTPYKLMM YMEHBIIMIACh. 3Ta Orepalys MOBTOPSETCS HECKO/Tb-
KO pas, noka ajroputMm CI'C He coiifercs u omMOKa PeKOHCTPYKIIMM
He CTaHeT HMXKE 33JJaHHOrO MOPOroBoro 3HauyeHust. [lonyunBiiasics B
3TOT MOMEHT MaTpHlia (CJI0BO, MIPU3HAK) U SIBJISIETCS MMOTPYKEHUEM B
cmbiciie GloVe. [1ns yekopenus npouecca CI'C yacTo BbINOAHSETCS Ta-
paJulesibHO, KaK ommucaHo B cratbe «Hogwild!: A Lock-Free Approach to
Parallelizing Stochastic Gradient Descent» (nttps://people.secs.berke-
ley.edu/~brecht/papers/hogwildTR.pdf).

OTMETHM, UTO MPOTHOCTUYECKME MOJIE/IM HA OCHOBE HEIPOHHBIX Ce-
Teil Tna word2vec M OCHOBaHHbIe Ha cueTumnkax moaenu Tumna GloVe
MpeciaenyoT OgHY U TY Ke 1efb. Te 1 Apyrue cTPoST BEKTOPHOE Ipo-
CTPAHCTBO, TAK UTO ITOJIOKEHME JIOBA B HEM 3aBUCUT OT COCEIHUX CJIOB.
HeijiponHast ceTb HauMHaeT paboTy C OTIENbHBIX ITPUMEPOB COBMECT-
HOJf BCTPEUaeMOCTU (JIOB, & OCHOBAHHbIE HA CUETUMKAX MOMEINU — CO
CTATMCTUKU COBMECTHO BCTPEYAEMOCTM BCEX CIOB B KopItyce. Hepag-
HO OBLJIO OIMYOIMKOBAHO HECKOILKO PaboT, B KOTOPBIX I€MOHCTPUPYET-
Cs1 KOPPeJISILIMSI MEXKTY MOAeIsIMM 060UX TUIIOB.

B 3roi1 KHuUre Mbl He 6yzieM oAPOOHO paccMaTPUBATH FeHepaLuio
BekropoB GloVe. Xorst B 06mem cinyuyae GloVe orinuaercst Gosnbileit
BepHOCTbIO, ueM word2vec, u GbicTpee oBydyaeTcs IpU UCIOIb30Ba-
HUM pacrapa/uie/inBanus, rnomaepkka ee Ha Python moka He cTonb
pasBuTasi, kak word2vec. Ha naHHbIif MOMEHT €JMHCTBEHHBIM J10-
CTYIIHBIM MHCTPYMeHTOM 6bu1 poekT GloVe-Python (https://github.
c::ﬁf’-.'nsciejku'_s,f'g'_:ve—pythcn), npe,aﬂaralommﬁ MOJeJIbHVIO pealn3alnio
GloVe na Python.

Ucnonb3oBaHue npenobyyeHHbIX
NOrpy>eHuu

Boo6iie rosopsi, 06yuats mopesib word2vec mian GloVe ¢ Hyns ciepyer
TOJIbKO TOTAA, KOIIA UMEETCsSl 0YeHb DOJbIIONI 00beM y3KOCeMaan-
3MPOBAaHHBIX TEKCTOB. Yallle BCero TeM MM UHBIM CIIOCOO0M MCIIO/b-
3YIOTCsl NpenoOyueHHble MMOrpy)KeHus. ECTb TPpM OCHOBHBIX Criocoba
BKJIIOUEHMS] TIOTPYIKEHMIT B COGCTBEHHYIO CETh:

O obydeHMe MOTrPYKEHMIT C HYJIS;

160 <+ T[haea 5.[lorpyxeHua cnos

QO HacTpoiika NOrpykeHuii Ha OCHOBe IpefoOyUeHHbIX MOjeseii
GloVe/word2vec;

O MmoMCK IOrpy:KeHuii B IpenobydyeHHbix wmopensx GloVe/
word2vec.

B nepBom ciiyuae Beca IOTPYKEHUI MHUIMATU3UPYIOTCS HEBO/b-
UMMM CIYYaiiHbIMM 3HAUYEHUSIMM M 00y4YaloTCss METOI0M 00paTHOro
pacripocrparenusi. Takoii criocod Mbl BUe/M Ha IpuUMepe Mopmeseit
skip-rpamm u CBOW B Keras. 3T0 pesKiM 110 YMOIYAHUIO IIPU UCIIONb-
3oBaHuu cnost Embedding B coberBeHHOI ceTu.

Bo BTOpoM ciiyuae M3 npenobyuyeHHOM mMopenn Gepercst MaTpuia
BECOB M MCIIOJIb3YETCS /11 MHUIIMATU3ALMM BECOB CJIOS TIOTPYKEHMSI.
CeTb TaKke 0OOHOBJISIET Beca METOJ0M 0OpPATHOrO PacipoCTpaHeHMsl,
HO MOJeJIb CXOOUTCS GhicTpee BCIENCTBIE XOPOIero Bbibopa Haualib-
HBIX BECOB.

B TpeTheM ciydae rorpyskeHust ¢JI0B ULIYTCS B peobyuyeHHO Mo-
neu, U BXOIHbIE JaHHbIe [TPeobpasyoTCs B BEKTOPHbDIE MOTPYKeHUSI.
Ha npeo6pa3oBaHHbIX JaHHbIX MOXKHO 3aTeM 00Y4YUTh JTI06YI0 MOIelb
(HeoGs3aTebHO CeTh [MYyOoKoro obyuenus). Eciu npemodyueHHast
Mozeb 06ydasiach Ha TEKCTaX M3 TOI Ke IMpeamMeTHOol 06/acTu, 4To
M LiesieBast, TO 3TOT Croco6 OObIUHO [aeT MpeKpacHble pe3yibTaThbl U
SBJISIETCS CAMBIM JIE€IIEBbIM.

Jlist aHIIOSI3BIYHBIX TEKCTOB 06IIero Xxapakrepa MOXKHO MCIIOIb30-
BaTb Mofenb word2vec ot Google, 06yueHHyio Ha 10 Mu/uMapaax cioB
u3 Habopa nanHbiXx Google news. Pazmep ciioBaps cocTasisieT Hpumep-
HO 3 MMJUIMOHA CJIOB, @ PA3MEPHOCTb MPOCTPAHCTBA MTOIPYKEHUS PaB-
Ha 300. Mogens Google news (pazmepom okoso 1.5 I'B) MOXKHO cKauaTth
10 ajapecy https://drive.google.com/file/d/0BTXkCwpISKDYNINUTT1SS2 1pQmM/
edit?usp=sharing.

C caiita GloVe MOXHO cKayaTh MOJe/ib, OOYUEHHYI0 Ha 6 MUJUIK-
appax JeKCeM M3 aHIJIOSI3bIYHOM BUKUIIEAMM M KOPIIYCE TEKCTOB, CO-
nepkauieM ropsigka MuwuiMapaa cioB. Pasmep ciioBapsi COCTaB/sieT
npumepHo 400 000 wioB, o1 CKAYMBAHUSI TOCTYIIHbI MOJENIM C pas-
MEPHOCTBIO ITpocTpaHcTBa rorpyxkenust 50, 100, 200 1 300. Pazmep mo-
nenu cocrasjsier npubausutenbHo 822 MB. CkavyaTh MOJelb MOXKHO
10 agpecy http://nlp.stanford.edu/data/glove.6B.zip. Tam sxe umerTcs
6os1ee KpyIHble MOIe/i, 00YUeHHbIe HA JaHHbIX U3 PeIo3UTOPUSI [PO-
exra Common Crawl u u3 Twitter.

B wrepywommx pasmenax Mbl PAaCCMOTPMM, KaK MCIIOIb30BATh 3THU
MOZEJIM TPeMsI BbILIEYITOMSIHYTBIMM CIIOCOBamMu.

L7

Mcnonb3oBaHWe npenobyyeHHbIX NorpyxeHuin - <+ 161

O6yuyeHue NorpyXeHui ¢ Hyns

B aTom rpumepe Mbl 0OYYMM OJHOMEPHYIO CBEPTOYHYIO HEePOH-
Hy10 cetb (CHC) knaccuduiimpoBaTh IpeijioskKeHns: KaK OKpallieHHbIe
MOMOKUTETBHO UM OTPULIATENMBHO. B r1aBe 3 Mbl y)Ke paccMaTpUBaIu
obyuenue asymepnoit CHC st knaccudukaumum usobpaxkenuii. Ha-
rnoMHuM, uTo B 5T0i CHC mcrnonb3yeTcs poCcTpaHCTBEHHAS CTPYKTYpa
M306paskeHust IyTem obecrieyeHns1 T0KaAbHOM CBSI3HOCTH MEXITY Heli-
POHAMM COCETHUX CJIOER.

Ijis CIOB MIPEeUIOKEHMST XapaKTepHa JIMHeliHas CTPYKTYpa, aHalo-
MYHAsT [POCTPAHCTBEHHOM CTPYKTYpe B M300paxeHuu. TpaauimoH-
Hble (He Ha Hase ray6oKoro obyueHus) MOAXOAbl K SI3bIKOBOMY MOJe-
JMUPOBAHUIO TTOAPA3YMEBAIOT CO3/IaHUE CJIOBECHBIX N-IPaAMM (https://
en.wikipedia.org/wiki/N-gram), YIABJIMBAOUIUX ITY ﬂHHEﬁHYI{) CTPYKTY-
py. OgHomepHbie CHC pmenaior HeuTo moxoxee, 0bydasi CBEPTOYHBIE
(bunbTphl, KOTOPBIE 3aTPArMBalOT CPasy HECKOJIbKO JIOB IPEIJIoKe-
HMSL, M TIPUMEHSISl K pe3yiibTaTaM max-IyJIMHT, YTOObI CO3aTh BEKTOP,
MPeACTaBISIONIUI BAXKHEMIIIME CMBIC/IOBbIE ACTIEKTHI MPEJIOKEHUSI.

CyiiecTByeT elie OfMH KJIacC HEHPOHHBIX CeTeil, peKyppeHTHbIEe
HelipoHHbie cetu (PHC), crienuaibHO NpeaHasHauyeHHble 1 obpa-
BOTKM MOC/IeJ0BATeIbHBIX JAHHBIX, B T. Y. TEKCTa, KOTOPbIIA €CTh He UTO
MHOE, KaK I10C/Iel0BaTe/IbHOCTh (I0B. [lopsigok obpaborki B PHC He
takoii, Kak B CHC. [TogpobHee o PHC mbl OyneM roBOpUTh B CJIeYIO-
el rnase.

B Halieii ceTy BXOIHON TeKCT [peobpasyercs B [0C/Ie0BaTe/IbHOCTh
MHIEKCOB ¢/I0B. [Ijis rpaMmMaTuyeckoro pasbopa TeKCTa Mbl BOCIIO/b-
30BaJIUCh OUOIMOTEKOI /151 00paboTKM ecrecTBeHHbIX s13bIKOB NLTK
(natural language toolkit). MosxHO 66110 6bI TPUMEHUTD IJI51 9TOM 1€/
pery/isipHbie BbIPaKEHMSI, HO CTATUCTUYECKIWE MOMIENH, TIPeiaraeMbie
NLTK, 6osiee nipuroaHsl AJist pazbopa Tekcra. Eciu Bac MHTEpPeCyoT 1o-
I'PY)KEHMS CJI0B, TO, CKOpee Bcero, Bbl 3aHumaetecsk OES, tak uto NLTK
YKe YCTaHOBJIEHA.

Mo agpecy http://www.nltk.org/install.html NpWMBEOeHa
uHbopmauma o6 ycraHoeke NLTK. NoHapnobatca Takke BKAKO-
4eHHble B coctae NLTK gaHHble — obyveHHble Moaenu, Kopnychbl
TEKCTOB W npouee. MHCTPYKUMK N0 MX YCTaHOBKE WMEIOTCS Ha
CTPaHMWUE http://www.nltk.org/data.html.

[TocienopaTenbHOCTL MHIEKCOB CJIOB 3arpy:kaeTrcs B coii rnorpy-
JKeHMs 3aJaHHOro pasmMepa (B Hallem ¢iydyae 4yucio ¢JIOB B CaMOM

162 <+ [naea 5.[lorpyxeHua cnos

OJIMHHOM IpemiokeHun). I1o yMOonIU4aHMIO C/I0W MOrpY:KeHUsT MHULIM-
anu3MpyeTcsl CJIy4alHbIMM 3HAUYEHMSIMM. BbIXOH C/10S1 MOrpPY:KeHMst
COeNMHSIETCS ¢ OOHOMEPHBIM CBEPTOUHBIM C/I0€M, KOTOPbIi CBOpadu-
BaeT (B HAleM IpUMepe) CJI0BeCHbIe TPUIPaMMbl 256 pasIM4YHbIMMU
criocobamu (110 CyTH Jeia MPUMEHSIET pa3/IMuHble 00yUeHHbIe JIMHe-
Hble KOMOMHALIMI BECOB K MOTPY;KEHUAM CJIOB). DTU IPUSHAKK 3aTEM
CBOISITCS K €IMHCTBEHHOMY CJIOBY (JIOEM I/106a/IbHOrO max-I1y/JIMHIa.
Bexkrop minHb 256 riogaeTcs Ha BXO, IVIOTHOIO CJI0S1, KOTOPbIA BbIBO-
OUT BeKTOp MiMHbl 2. OyHKUMA akTuBaluKu softmax BosBpallaer aBe
BEPOSITHOCTM: TMOJIOKMUTEALHON M OTPULIATENILHON 5MOLIMOHATLHOM
okpacku. CeTb [OKa3aHa Ha PUCYHKe HIDKe.

nocnenoBartenbHoOCTb Hﬂ,eHTHqﬁ)HKaTOpOB Cnos
(None, 1, maxlen)

Embedding

& (None, embed _size, maxlen)

ConvolutionlD

l (None, num steps, num filters

GlobalMaxPoolinglD

* (None, num_filters)

Dense

i (None, 2)

[TocMoTpuM, Kak 3TO peajiusyeTcs ¢ momoiibio Keras. CHauana — um-
MopT nakeTos. [Tocie 3TOro 3aaeTcst HAYa/JIbHOE 3HAUEHME reHepaTo-
pa ciayyaiHbIX yKucel — 42. DTo caeaHo [AJis TOro, YTo0bl Pe3y/IbTaTh
MPOroHa IMPOrpaMMbl ObUIM BOCIIPOU3BOAMMbIMU (HATIOMHMM, 4TO Ma-
TPUIBI BECOB MHUIIMAIU3UPYIOTCS CJIyYaliHBIMU 3HAUEHUSIMM).

from keras.layers.core import Dense, Dropout, SpatiallropoutlD
from keras.layers.convolutional import ConvlD

from keras.layers.embeddings import Embedding

from keras.layers.pooling import GlobalMaxPoolinglD

L7

Mcnonb3oBaHWe nNpenobyyeHHbIX NOrpyxeHuin - <+ 163

from keras.models import Sequential

from keras.preprocessing.sequence import pad sequences
from keras.utils import np_utils

from sklearn.model selection import train test split
import collections

import matplotlib.pyplot as plt

import nltk

import numpy as np

np.random. seed (42}

Hanee 0ObSABISIIOTCS. KOHCTAHTBI. Bo Bcex ocTaBIIMXCS pUMepax B
3TO¥ V1aBe Mbl Bynem KiaaccubuUMpPOBATh MPEJIOKEHUs M3 KOHKYpCa
UMICH SI650, npoBoauBierocst Ha caiite Kaggle. B atom Habope naH-
HbIX 0Kos10 7000 npeniosKeHMit, puyem MojJIOKUTE/bHO OKpallleHHbIe
cHabxkeHbl MeTKOI 1, a orpuiatenbHo — metTkoit 0. Koneranta tueor
FILE OIpeJe/sieT IyTh K aiiy rnoMeueHHbIX IpeaioxkeHuii. [lepsblii
CUMBOJI B KaXK10ii cTpoke daiina — metka (0 mwim 1), 3aTem 3HaK Taby-
JISIMUM W 32 HUM TIpefJioKeHue.

KoHcTaHTa vocas 5128 TOBOPUT, UTO Mbl GyleM pacCMaTpPUBATh TOJb-
Ko riepBbie 5000 JieKceM TEKCTA. EMBED SIZE — Pa3Mep MOTPYKeHUs, re-
HepUpyeMoro ¢j10eM [OrPYKeHMS Halllell CeTU. NuM FILTERS — YMCIIO
CBePTOUYHbBIX QUILTPOB, 0OYUaeMbIX B CBEPTOUHOM CJIO€, a NUM WORDS —
pasmep Kaxaoro Guibrpa, T. €. KOJIMYeCTBO CBOPAYMBAEMbIX 3a OIUH
pas cnoB. KOHCTAHTBI BATCH SIZE M NUM EPOCHS — COOTBETCTBEHHO YMCIIO
3arpy’kaeMbiX B OJJHOM I1aKeTe 3ariuceil M KOJIMYeCcTBO MPOXOJ0B 110
Bcemy HaBOpy JaHHLIX B [Ipolecce 00yYeHus.

INPUT FILE = "../data/umich-sentiment-train.txt"

VOCAB SIZE = 5000

EMBED STZE = 100

NOUM FILTERS = 25

NUM WORDS = 3

BATCH STZE = 64

NUM EPOCHS = 20

Hanee Mbl UMTAEM BXOIHbIE InpegjloKeHusa M CTpoMM CJ10Bapb, CO-
nepmamuﬁ HauboJIee 4acTo BCTpedawliuecs B KOpPIIyce CJIOBA. 3arem
3TOT CJ1IOBapb MCIIONb3YeTCHS 118 npeoﬁpa303aumn BXOOHBIX IIpenjio-
JKEHMI B CIIMCOK MHIEKCOB CJI0B.

counter = collections.Counter()
fin = open (INPUT_FILE, "rb")
maxlen = 0
for line in fin:
_» sent = line.strip().split("t")
words = [x.lower() for x in nltk.word_tokenize[sentj]

164 <+ [naea 5.[lorpyxeHna cnos

if len{words) > maxlen:
maxlen = len(words)
for word in words:
counter [word] 4= 1
fin.close ()

word2index = collections.defaultdict (int)

or wid, word in enumerate (counter.most common (VOCAB SIZE)):

wordZ2index[word([0]] = wid + 1
vocab size = len(word2index) + 1
indexZword = {v:k for k, v in wordZindex.items ()}

Kax{,noe mnpenjioxXeHue OOIOJMHAeTCS OO0 OJMHbI maxlen (B Hallem
IIpuMepe 3TO YMCI0 CJ10B B CaMOM OJIMHHOM I[IpelIosKeHMM M3 oﬁyua-
wiero Haﬁopa). KDOME TOro, METKH HDGOGDRSY}DTCH B KaTeropualb-
HbIii hopmar ¢ nmomouibio ciaykebHoi dyukumum Keras. [TociegHue nsa
1iara — CTaHgapTHbie olepannm 06[3360TKDI TeKCTd, ¢ KOTOPbLIMM MbI
ele He pas3 BCTpeTHMmCs.
xs, ys = [], [1
fin = open (INPUT FILE, "rb")
for line in fin:

label, sent = line,strip{).split{"t"™)
ys.append({int (label})
words = [x.lower(} for x in nltk.word_tokenize[sentJ]
wids = [wordZindex([word] for word in words]
xs.append (wids)
fin.close ()
¥ = pad_sequences (xs, maxlen=maxlen)
Y = np utils.to_categorical (vs)

Hakonell, Mbl paséuBaem JlaHHbIe HA OOYYAIOIINIA M TECTOBBIA Ha-

60p B nponopuuu 70:30. Terepb JaHHbIe IPUBEAEHDBI K BUAY, IIPUIO/-
HOMY JIJ1 3arpy3KM B CE€Th:

Xtrain, Xtest, Ytrain, Ytest = train test split(X, Y, test size=0.3, random state=42)

OHIJE,II,E‘JIHM OIIMCAaHHVIO paHee CeThb:
model = Seguentiall)
model.add (Embedding (vocab size, EMBED SIZE, input length=maxlen)
model .add (SpatialDropoutlD (Dropout (0.2)))
model . add (ConvlD (filters=NUM FILTERS, kernel s izezNUM_WORDS, activation="relu"))
model . add (GleobalMaxPoolinglD())
model . add (Dense (2, activation="softmax"))

Ter{epb OTKOMITUJIMPYeM MOJe/lb. HOCKELJ'IBK&Ir MbI CTPOMM GMHaprIﬁ
Knaccmdmxa'rop (ronoKuTe/ibHad WM OTpULiaTebHAsl IMOLMOHAb-
Hasl OKpacka), To B KauecTse GJYHKU,MM IoTepsb BhIGMpaEM categorical
crossentropy. B kauectBe OIITMMM3ATOPA BO3bMEM adam. Oﬁy‘IMM Mogenb

L7

Mcnonb3oBaHue npenobyyeHHbIx norpyxeHuin - <+ 165

Ha HauleM obyJaroilemM Habope, yKasap pasmep rnakerta 64 u 4ucio re-
puopnog 20:

model . compile (loss="categorical crossentropy”, optimizer="adam", metrics=["accuracy"])

history = model.fit (Xtrain, Ytrain, batch size=BATCH SIZE,
epochs=NUM EPOCHS, wvalidation data=(Xtest, Ytest))

npDTOKDJ'I OGY‘IEHMSI I[MOKa3aH HIKe!:

Epoch 8/20
4960/4960 |-] - 3s - loss: 0.0337 - acc: 0.9855 - val_loss: 0.0263 - val_ace; 0.9882
Epoch 1020

4960/4960 [:] - 3s - loss: 0.0369 - acc: 0.9843 - val_loss: 0.0277 - val_acc: 0.9878
Epoch 11/20

4960/4960 [] - 3s - loss: 0.0331 - acc: 0.9881 - val_loss: 0.0303 - val_acc: 0.9878
Epoch 12/20

4960/4960 [] - 3s - loss: 0.0289 - acc: 0.9879 - val_loss: 0.0291 - val_acc: 0.9882
Epach 13/20

ADBO/4960 [-] - 38 - loss: 0.0261 - acc: 0.9901 - val_loss: 0.0305 - val_acc: 0.9878
Epoch 14/20

4960/4960 |-] - 35 - loss: 0.0261 - acc: 0.9895 - val_loss: 0.0310 - val_acc: 0.9859
Epoch 15/20

4960/4960 [] - 3= - loss: 0.0355 - acc: 0.9857 - val_loss: 0.0307 - val_acc: 0.9873
Epoch 16/20

4960/4960 [:] - 3s - loss: 0.0247 - acc: 0.9893 - val_loss: 0.0283 - val_acc: 0.9868
Epoch 17/20

4960/4960 [] - 35 - loss: 0.0249 - ace: 0.9891 - val_loss: 0.0329 - val_ace: 0.9854
Epoch 18/20

4960/4960 [:] - 35 - loss: 0.0299 - acc: 0.9895 - val_loss: 0.0285 - val_acc: 0.9882
Epoch 18/20

4960/4360 [] - 3s - loss: 0.0282 - acc: 0.9887 - val_loss: 0.0287 - val_acc: 0.9882
Epach 20/20

4960/4960 [:] - 35 - loss: 0.0401 - acc: 0,9839 - val_loss: 0.0311 - val_acc: 0.9878
2126/2126 -] - 0s

Test score: 0.031, accuracy: 0,986

Kak BMIMM, Ha TeCTOBOM Habope BEPHOCTh ceTu cocTaBuiia 98.6%.
Kopn atoro IIpuMepa HaxoauTcs B cbar?me learn embedding from scratch.
py B UCXO[THOM KOJIe K 3TOI1 [/1aBe.

Hacrpoiika norpyxeHuit Ha ocHoBe
npepobyyeHHon Mmoaenu word2vec

B stom IIpuMepe MbI GY,ELEM MCIIOJIB30BATh TV XKe CeThb, UTO B IIpe-
ObIOYIIIEeM. B nporpamMme eIMHCTBEHHOE CYLIeCTBeHHOe OT/IMYKe — [0~
MOJHWUTE/IbHbII Kof AJist 3arpy3kmM Mojenmn word2vec u IMOCTPOeHMs
MaTpHMLLI BeCOB /151 CJI0S [TOIPY KeHM s,

Kak Bcerga, HauyMHaeM ¢ MMIIOPTa M 3aJaHWS HAYaJIbHOI'O 3HaYeHMsI
CHY‘IaﬁHO[‘D reHepaTtopa oJjs BOCIIPOM3BOAMMOCTH. ITomMuMoO TOrO, UTO
OBLIO MMITIOPTUPOBAHO B IIpeabIaylienM [IpMMepe, Mbl ellle MMIIOPTHUDY-
eM MOoIelb word2vec 13 mmakera gensim:

from gensim.models import KeyedVectors

from keras.layers.core import Dense, Dropout, SpatiallropoutlD
from keras.layers.convolutional import ConwvlD

166 <+ [naea 5.[lorpyxeHusa cnos

from
from
from
from
from
from

keras.layers.embeddings import Embedding
keras.layers.pooling import GlobalMaxPoolinglD
keras.models import Sequential
keras.preprocessing.sequence import pad sequences
keras.utils import np_utils

sklearn.model selection import train test split

import collections
import matplotlib.pyplot as plt
import nltk

import numpy as np

np.random. seed (42}

Han

ee 3a7arTcsl KOHCTaHThl. [1o CpaBHeHMIO C Ipedblayiuimm Ciry-

yaeM Mbl yMeHblIMK nuu erccks ¢ 20 go 10. HamoMHMM, 4TO MHUIIM-
aaM3alisl BeCOB 3HAYEHUSIMM, B3ATBIMM M3 IPeao0yYeHHO MOoen,
0OBIYHO YCKOPSIET CXOAUMOCTh:

INPU

T FILE = "../data/umich-sentiment-train.txt"

WORD2VEC MODEL = "../data/GoogleNews-vectors-negative300.bin.gz"
VOCAB SIZE = 5000

EMEE

NUM
NUM |

BATC

NUM .

D SIZE = 300
FILTERS = 256
WORDS = 3

H SIZE = 64
EPOCHS = 10

B cienyoliei yacTi M3 Habopa JaHHBIX M3BJIEKAKOTCS CJIOBA U CO3-
IAeTcsl CIOBapb CaMbIX YACThIX TEPMOB, TMOC/Ae 4ero Habop JaHHbIX
pa3bupaeTcs ¢ LeJIb0 CO3MaHMs CIIMCKA CITMCKOB JOITOJIHEHHBIX CJIOB.
Kpome Toro, MeTKu I1peo6pasyioTcs B KaTeropmaibHbiii popmar. U Ha-
KOHell, Mbl pa36yBaeM JaHHbIe Ha 0OYy4YalOLIMii M TECTOBBI Habop.
DTOT 6JI0K HUYEM He OTIMYaeTCs] OT IIPedblayIIero mpuMepa, rae 0buin
MpUBeEHbI TOAPOOHbIE MOSICHEHMS.

counter = collections.Counter /()
fin = open (INPUT_FILE, "rb")

maxlen

=0

for line in fin:
_y sent = line.strip().split("t")
words = [x.lower() for x in nltk.word_tokenize[sentj]

if len(words) > maxlen:

max

len = len(words)

for word in words:
counter [word] 4= 1
fin.close ()

word2index = collections.defaultdict(int)
for wid, word in enumerate (counter.most_common (VOCAB SIZE)):

]

L7

McnonbzoBaHue npenobyyeHHbIX NOrpyKeHuin <+ 167

wordZ2index[word([0]] = wid + 1
vocab sz = len(word2index) + 1
indexZword = {v:k for k, v in wordZindex.items ()}
xs, ys = [],

fin = open (INPUT_FILE, "rb")
for line in fin:
label, sent = line,strip{).split{"t")
ys.append(int {label))
words = [x.lower(} for x in nltk.word_tokenize[sentj]
wids = [word2index([word] for word in words]
x5.append (wids)
fin.close ()
X = pad_sequences (xs, maxlen=maxlen)
Y = np_utils.to_categorical (ys)

Xtrain, Xtest, Ytrain, Ytest = train test split(X, ¥, test _size=0.3,
random_state=42)

Ianee Mbl 3arpyxaem mofeib word2vec, rnpenodyueHHyioo Ha 10
MuuUIMapaax cios u3 HoBocreit Google News co ciioBapem Ha 3 MM~
JoHa coB. [Tociie 3arpy3ky Mbl MILEM B MOJEIM BEKTOPbI MOIpyKe-
HMIt 17151 CJIOB M3 HALLero CJIOBapsl M 3alMCbiBA€M BEKTOP OrPY:KeHMI
B Hally MaTPUILY BECOB enbedding weights. CTPOKM 3TOI MaTpULIbl BECOB
COOTBETCTBYIOT CJIOBAM M3 CJIOBApSL, a CTO/IOLbI — BEKTOPY HOrPYKeHUIA
C/10Ba.

MaTpuua embedding weights UMEET Pa3sMep vocab sz X EMBED SIZE. Be-
JUUMHA vocab sz HA €JUHUILY GONbIIE UMC/IA YHUKATHHBIX TEPMOB B
clioBape, NOMOMHUTENbHASA (DUKTUBHAS JIeKCeMa UNK TIpPefiCTaB/sieT
OTCYTCTBYIOLLME B CJIOBApe CJI0OBA.

BriojsiHe BO3MOKHO, UTO B HAllleM CJIOBape eCThb CJI0Ba, OTCYTCTBYIO-
mue B Mopenu word2vec Ha 6asze GoogleNews. JIjist TaKMX CJIOB BEKTOP
MOTPY;KeHMI IPUMHUMAET 3HaUYeHM e 110 YMOJIYaHUIO — BCe HYJIU.

szarpysuTe Mogens wordZvec
word2vec = Word2Vec.load word2vec_ format (WORD2VEC MODEL, binary=True)
embedding weights = np.zeros((vocab sz, EMBED SIZE))
for word, index in wordZindex.items():
try:
embedding weights[index, :] = word2vec[word]
except KeyError:
pass

Terepsb onpenennm Haury ceTb. OTIMYKMe OT IIPeabIAYILEro IpuMepa
3aK/II0UAeTCs B TOM, UTO BECA CJI0s1 [TIOTPYIKEHMUST, XPaHsILIMeCst B MaTpy-

1€ embedding weights, MHMLMAJIM3MPOBAHBI B MPE/IIIECTBYIONIEH yacTu
MPOrPaMMBI:

168 <+ T[haea 5.[lorpyxeHua cnos

model = Sequentiall)

model. add (Embedding (vocab sz, EMBED SIZE, input length=maxlen,
weights=[embedding weights]))

model . add (SpatialDropoutlD (Dropout (0.2)}))

model.add (ConvlD(filters=NUM FILTERS, kernel size=NUM WORDS, activation="relu"))

model . add (GlebalMaxPoolinglD())

model . add (Dense (2, activation="softmax"))

3areM Mbl KOMIMUJIUPYEM MOJI€/b, IPUMEHSISI KATEropUabHYI0 I1e-
PEKPECTHYIO SHTPOIMIO B KauecTBe (DYHKLMM [TOTePhb M ONTUMMU3ATOP
Adam, u o6ydaeM ceTb rpu pasmMepe rnakera 64 Ha rporsokeHun 10 re-
puonos. [Tocie aToro oleHUBaeM 06YUEHHYIO MOJIE/b.

"

model .compile (optimizer=
metrics=["accuracy"])
history = model.fit (¥train, ¥Ytrain, batch_ size=BATCH SIZE,
epochs=NUM EPOCHS, wvalidation data=(Xtest, Ytest))
score = model.evaluate (Xtest, Ytest, verbose=1)

adam", loss="categorical crossentropy”,

print ("Test score: {:.3f), accuracy: {:.3f}".format(score([0], score[l]}}
Huke noxkasansbl pesy/ibTaTbl BbINNOJIHEHMS 9TOM rnporpamMmali:

((4960, 42), (2126, 42), (4960, 2), (2126, 2))

Train on 4960 samples, validate on 2126 samples

Epoch 1/10

4960/4960 [] - 7s - loss: 0.1766 - acc:
0.9369 - val loss: 0.0397 - val_acc: 0.9854

Epoch 2/10

4960/4960 [] - 78 - loss: 0.0725 - acc:
0.9706 - val loss: 0.0346 - val_acc: 0.9887

Epoch 3/10

4960/4960 [] - 7s - loss: 0.0553 - acec:
0.9784 - val loss: 0.0210 - wval_acc: 0.9915

Epoch 4/10

4960/4960 [] - 78 - loss: 0.0519 - acc:
0.9790 - val loss: 0.0241 - val _acc: 0.9934

Epoch 5/10

4960/4960 [] - 7s - loss: 0.0576 - acc:
0.9746 - val loss: 0.0219 - val _acc: 0.9929

Epoch 6/10

4960/4960 [] - 78 - loss: 0.0515 - acc:
0.9764 - val loss: 0.0185 - val _acc: 0.9929

Epoch 7/10

4960/4960 [] - 7s - loss: 0.0528 - acc:
0.9790 - val loss: 0.0204 - val_acc: 0.9920

Epoch 8/10

4960/4960 [] - 78 - loss: 0.0373 - acc:
0.9849 - val loss: 0.0221 - val_acc: 0.9934

Epoch 9/10

4960/4960 [] - 7s - loss: 0.0360 - acc:

L7

Mcnonb3oBaHWe npenobyyeHHbIX NOrpyeHuin - <+ 169

0.9845 - val loss: 0.0194 - val_acc: 0.9929
Epoch 10/10

4960/4960 [] - 78 - loss: 0.0389 - acc:
0.9853 - val loss: 0.0254 - val_acc: 0.9915
2126/2126 |] - 1s

Test score: 0.025, accuracy: 0.993

[Mocie 10 nepuoaoB o6yueHMs MO/e/b [TOKa3bIBaeT BEPHOCTh 99.3%
Ha TeCTOBOM Habope. ITo jiyuliie, YeM HpeablayIuii pumep, rae obuia
nocTUrHyta sepHoctb 98.6% rnocie 20 repuoios.

Kopn sToro InpuMepa HaxoauTcs B QJaﬁne finetune word2vec embeddings.
py B UCXOJTHOM KOJle K 3TOIi I/1aBe.

Hacrpoiika norpyxeHuit Ha ocHoBe
npenobyyeHHoi moaenu GloVe

[TorpyskeHust Ha ocHoBe npenobyuenHoi mopenu GloVe Hacrpau-
BAIOTCSI IPMMEPHO TakK 3Ke, Kak B ciaydae momenn word2vec. Ha camom
nee OTIMYAETCS] TOMIBKO KOI TOCTPOEHMST MATPUILbI BECOB [IJISI CIOSI
norpy:keHus. TombKO ero Mbl U paCCMOTPUM.

EcTb HECKOIBKO BUOB IpeaobydyeHHbIX Moaesei GloVe. Mbl 6ynem
paborarth C TOi, UTO 0OyUeHa HA 6 MUJUTMAPIAX JIEKCeM U Ha Kopriyce
TEKCTOB 06beMOM MOPSIKA MIWUIMAPAA CJIOB U3 aHIIOSI3bIYHOM BUKU-
nenun. Pasamep wiosapst Mogenu cocrasister npumepHo 400 000 cios,
MMEIOTCS 3arpyskaembie (aiibl 1 pasMepHocTu norpyskenus 50, 100,
200 u 300. Mbi Bo3bMeM daii s pazmepHoctu 300.

ENMHCTBEHHOE, YTO HY}KHO U3MEHUTH B KOZE MPeIbIIYIIEr0 MPUMe-
pa, — 4acTb, I7ie CO3aeTcss Moaeib word2vec M MHULMATUSUPYETCS ee
MaTpHULA BeCOB. A ec/ii Obl Mbl B3SL/IM MOJIe/Ib C PA3MEPHOCTbIO, OT/IMY-
Hoit oT 300, TO HY}KHO 6bUIO GBI e11e U3MEHUTh KOHCTAHTY EMBED SIZE.

Bexropb! 3anucadbl B (aitie B TekcroBoM dopmare uepes rnpooder,
MO3TOMY Hallla [epBast 3a7aua — MPOYUTATh UX B CJIOBAPD wordZemb. ITO
[eaeTcsl aHaJIoOrMuHo pasbopy crpoku daitia JaHHbIX A1 MOMeIn
word2vec.

GLOVE_MODEL = "../data/glove.6B.300d.txt"
wordZemb = {}
fglove = open(GLOVE MODEL, "rb")
for line in fglove:
cols = line.strip().split(}
word = cols[0]
embedding = np.array({cols[l:], dtype="float32")
wordZemb [word] = embedding

fglove.close()

170 <+ T[haea 5.[lorpyxeHua cnos

3areM co3[aeM MaTPUILy BECOB ITOTPYKEHMSI Pa3Mepa vocab sz X El-
BED STZE M 3AIIOJIHSEM ee BeKTOPaMM M3 CI0Baps word2emb. BEKTOPSI,
KOTOpbI€ COOTBETCTBYIOT CJIOBAM, MMEIOLIMMCS B CJIOBape, HO OTCYT-
cTBYIOIIMM B Monenu GloVe, ocTaloTcsl HyJIeBbIMM:

embedding weights = np.zeros((vocab sz, EMBED SIZE})
for word, index in wordZindex.items():
try:
embedding weights[index, :] = word2emb[word]
except KeyError:
pass

KO,U, 3TOro rnpumMepa HaxogMTcs B cbaﬁne finetune glove embeddings.py

B MCXOIHOM KOJIe K 9TOi miase. Huke nokasaHbl pesyiibTaThbl BbIIIOJI-
HeHMWd rporpaMmabl:

({4960, 42), (2126, 42), (4960, 2), (21286, 2))
Train on 4960 samples, validate on 2126 samples

Epoch 1/10

4960/4960 [] - 7s - loss: 0.1748 - acc: 0.9240 - val_loss: 0.0320 - val_acc: 0.9840
Epoch 2110

4960/4960 [] - 75 - loss: 0.0859 - acc: 0.9649 - val_loss: 0.0431 - val_acc: 0.9845
Epoch 3/10

4960/4960 [] - 7s - loss: 0.0586 - acc: 0.9754 - val_loss: 0.0528 - val_acc: 0.9779
Epoch 4/10

4960/4960 [] - 85 - loss: 0.0565 - acc: 0.9798 - val_loss: 0.0386 - val_acc: 0.9873
Epoch 5/10

4960/4960 [] - 85 - loss: 0.0792 - acc: 0.9683 - val_loss: 0.0233 - val_acc: 0.9892
Epoch 6/10

4960/4960 [] - 85 - loss: 0.0618 - acc: 0.9746 - val_loss: 0.0247 - val_acc: 0.9911
Epoch 7110

4960/4960 [] - 7s - loss: 0.0568 - acc: 0.9752 - val_loss: 0.0266 - val_acc: 0.9906
Epoch 810

4960/4960 [] - 82 - loss: 0.0419 - acc: 0.9829 - val_loss: 0.0211 - val_acc: 0.9920
Epoch 9/10

4960/4960 [] - 7s - loss: 0.0371 - acc: 0.9849 - val_loss: 0.0206 - val_acc: 0.9920
Epoch 1010

4960/4960 [] - 05 - loss: 0.0422 - acc: 0.9815 - val_loss: 0.0266 - val_acc: 0.9906
2126/2126 []-1s

Test score: 0.027, accuracy: 0.991

[pu 06yueHmu Ha rpoTsskeHuu 10 epmuoaoB 1OCTUraeTCss BEPHOCTb
99.1%, 4TO NOYTU He yCTyraeT pe3yibTaTaM, [OJly4eHHbIM I10¢/Ie Ha-
CTPOMKM BeCcoB Mopenu word2vec.

Mouck norpyxeHui

41 rnocjaegHss crparerms — IOMCK HOI’py}KEHMﬁ B HpEﬂOGWEHHOf“l
CeTH. ﬂ,ﬂﬁ 3TOro Irnpoiie BCero 3ajaTh B HalllMX IIpMMepax rapamerp
trainable CJIOA IIOT'PYXKEeHMS PaBHBIM False. Tor,n,a Ipu OﬁpaTHOM pac-
IIpoCcTpaHeHM He 6‘5’,[[,30"[‘ 06GHOBJISITLCS Beca 3TOro CJIOs:

model.add(Embedding{‘Jocab_sz, EMBED SIZE, input_leng:h=maxlen,

weights=[embedding weights], trainable=False))

model .add (SpatialDropoutlD(Dropout(0.2)))

L7

Mcnonb3oBaHWe npenobyyeHHbIX norpyxerHuin - <+ 171

[NocTynuB Tak B IpuMepax ajst moaeseit word2vec u GloVe, Mbi no-
JIYYUM COOTBETCTBEHHO BepHOCTb 98.7% u 98.9% mnowie 10 nepuonos
obydeHMs.

OpHako B 001IeM ciydae rnpenobydyeHHbIe IMOIPYKeHUs UCIONb3Y-
10Tcs He Tak. OObIYHO POU3BOAUTCSA IIpeaBapuTeibHas 00paboTka Ha-
6opa JaHHbIX, L[eJIb KOTOPOii — MOCTPOUTH BEKTOPHBIE IIPeCTaBIeHMUs
CJIOB IIyTEM IIOMCKA B KAKOI-TO IpeaodyyeHHOI MOe/Ii, a 3aTeM BOC-
[10/1b30BAThCS 3TUMM JAHHBIMU [J1s1 00YUeHUsI APYroi Moaenn. Bropas
MOje/ib He GYIeT COlepsKaTh CI0s IOIPYKEeHUsT M BOODILe MOXeT He
OBITh CEThIO INIYOOKOro 06yUeHMs..

B npumepe HiKe ornucaHa IUIOTHasl CeTb, KOTOpas MpUHMMAaeT Ha
BXojzie BekTop pasmepa 100, npencrapisommii npeajioxkeHue, U Bbi-
BOAMT 1, eciu npenioKeHe MMeeT IOJ0XKUTeIbHYI0 SMOLMOHA/IBHYIO
oKkpacky, 1 0 — ecsin oTpuLiaTe/bHy0. Mbl NO-TIIpexxHeMy UCIIONb3YeM
Habop maHHbIX M3 KoHKypca UMICH S1650, comepskaluuii IpMMepHO
7000 npenioKeHuIi.

Kak u paHbliie, GoJblliMe KYCKM KOJa IOBTOPSIIOTCS, I03TOMY MbI
320CTPUM BHMMAHME TOJIbKO HAa HOBBIX UACTSIX, HYKIAWIIMXCS B I10-
SICHeHMM. B Hauvane MMIIOPTUPYIOTCS ITAKeTbl, MHULIMAIWU3UPYETCS
reHeparop CJyyaiiHbIX uMCesl M 3a[arTCs 3HAaueHust KoHCTaHT. st
coznanus 100-MepHbIX BEKTOPOB /I KAXKA0I0 [Pea/IOKeHUST HaMm I10-
Hagoburcs moaens GloVe paszmepuoctu 100, KoTopast XxpaHuTces B daii-
e glove.6B.100d. txt:

from keras.layers.core import Dense, Dropout, SpatiallropoutlD

from keras.models import Sequential

from keras.preprocessing.sequence import pad_segquences

from keras.utils import np utils

from sklearn.model selection import train_test split

import collections

import matplotlib.pyplot as plt

import nltk

import numpy as np

np.random.seed (42)

INPUT FILE = "../data/umich-sentiment-train.txt"
GLOVE MODEL = "../data/glove.6R.100d. txt

VOCAB SIZE = 5000

EMBED STZE = 100

BATCH STZE = 64

NUM EPOCHS = 10

Hajiee MbI yMTaeM MPEIJIOKEHUsI U CO3[aeM TabIMIy YacTOT CJIOB.
W3 sroii Tabnuiibl Mbl 0T6Mpaem 5000 caMbIX YACTHIX JIEKCEM M CTPOMM

172 < T[naea 5.[lorpyxeHusa cnos

TaGJIHU,bl COOTBETCTBMS (DTOGDH}KHIOHJ,HE CJ1I0Ba HA MHOEKCbI 1 Haobo-
pOT). ﬂ,ﬂﬂ JieKceM, OTCYTCTBYIOLIMX B CJloBape, B Taﬁnuue CcOo3gaeTcst
(bMKTHBHaH JIeKceMa UNK . HOJH:?:YHCB ITUMMK TaﬁﬂMLl,aMH, MbI l'IpE‘OG-
p33y9h1KaHQﬂOGITDEﬂHCDKeHMEISHOCHEﬂOBaTEHBHOCTbILHEHTMqN&K&TO-
POB CJIOB, OOIIOJHAS BCe MIpenoXeHUd Oo O,H,MHRKOBCIIH OJIMHBI (p&B-
IJOfi‘IMCHSFCHCH3E!Cah&Oh&IUﬂMPUiDA&IIDEHIH(HKE}UAM).E(pCHﬂE'FOFO,R&ETKDI
HDEOGDBSYIOTCSI B KaTEFDpMaﬂhHHﬁ d)opma‘r.

counter = collections.Counter ()

fin = open (INPUT_FILE, "rb")

maxlen = 0

for line in fin:
_s sent = line.strip().split("t")
words = [x.lower() for x in nltk.word_tokenize[sent]]
if len{words) > maxlen:
maxlen = len(words)

for word in words:
counter [word] += 1
fin.close ()

word2index = collections.defaultdict (int)

or wid, word in enumerate (counter.most_common (VOCAB SIZE)):
word?index[word([0]] = wid + 1

vocab sz = len{word2index) + 1

index2word = {v:k for k, v in wordZindex.items()}

index2word[0] = "_UNK "

ws, ys = [], []

fin = open (INPUT FILE, "rb")

for line in fin:
label, sent = line.strip().split("t"
ys.append (int (label})
words = [x.lower() for x in nltk.word_tokenize[sentj]
wids = [word?index([word] for word in words]
ws.append (wids)

fin.close ()

W = pad_sequences (ws, maxlen=maxlen)

Y = np_utils.to_categorical (ys)

Bekropsl GloVe 3arpyskawTrcs B ¢JioBapb. Eciiu 6b1 Mbl 3aX0Te/n UC-
10/Ib30BaTh MoAe/lb word2vec, TO HYKHO ObLIO Obl JIMLIL 3AMEHUTH
9TOT GJIOK BBHI3OBOM (YHKIUMU Word2Vec.load word2vec format () U3 OU-
61MOTEeKU genism, a ciaeayouuit — moMckoM B Mopenu word2vec, a He
B wioBape word2emb:
wordZemb = collections.defaultdict (int)

fglove = open(GLOVE MODEL, "rb")
for line in fglove:

L7

Mcnonb3oBaHWe npenobyyeHHbIX NorpyxeHuin - <+ 173

cols = line.strip().split()
word = cols[0]
embedding = np.array({cols[l:], dtype="float32")
wordZemb [word] = embedding
fglove.close()

B cienyiomiemM hparMeHTe Mbl MIEM CJIOBA KaXKIOT0 MPeJI0KeHMUs
B MaTpuile MAeHTU(MUKATOPOB CJIOB v M 3aIMChIBAEM B MATPUILY E CO-
OTBETCTBYIOLINMIA BEKTOp MorpyxkeHusi. CyMMa 9THX BEKTOPOB 00pasyeT
BEKTOP IpeniosKeH!sI, KOTOPbIN 3aIMChIBAeTCS B MaTpUILy x. Ha BeIXO-
Il TOTy4aeTcs MaTPUILIA X PA3MePa num records X EMBED STZE):

¥ = np.zeros((W.shape[0O], EMBED SIZE))

for i in range (W.shape([0]):
E = np.zeros((EMBED SIZE, maxlen))
words = [indexZword[wid] for wid in W[i].tolist()]

for j in range(maxlen):
E[:, 7] = wordZemb[words[]]]
¥[i, :] = np.sum(E, axis=1)

Wrak, Mbl 3aBepIl/IM [IpeaBapUTeIbHYI0 00paboTKY JaHHbBIX C MC-
10JIb30BaHMeM MPenobyueHHO! MOIEeIN U rOTOBbI IPUMEHUTh UX [1JIs1
00yueHMsI 1 OLIEHKM OKOHYATelbHO# Momesin. Kak 06bI1uHO, pa3obbem
JaHHble Ha 06yJYaroIIMii M TeCTOBBIN Habop B rnponopuuu 70:30:

Xtrain, Xtest, Ytrain, Ytest = train test split(¥, ¥, test size=0.3,
random state=42)

[l1s1 aHaMM3a SMOLIMOHAIbHOM OKpPAaCcKy Mbl 00YUMM MTPOCTYIO I1JIOT-
HYI0 ceTb. [Ipy KOMOWISLIMKM 3alaeM KaTeropuaabHYI0 IIePeKPeCcTHYIO
SHTPOIMIO B KauecTBe QYHKLMUK MTOTEPh M onTUMusaTop Adam u 06-
y4aeM CeTh Ha BEKTOPAaX IIpeIIoKeHHI, IOCTPOEHHBIX Ha OCHOBE ITpe-
H06y4eHHBIX MOrpy:KeHuit. M HakoHell, OlleHMBaeM MOJENIN Ha TeCTO-
BOM Habope.

model = Sequentiall()
model.add (Dense (32, input dim=100, activation="relu"))
model . add (Dropout (0.2))
model.add (Dense (2, activation="softmax"))
model.compile (optimizer="adam", loss="categorical crossentropy",
metrics=["accuracy"])
history = model .fit (¥train, Ytrain, batch size=BATCH SIZE,
epochs=NUM _EPOCHS, wvalidation data=(Xtest, Ytest))
score = model.evaluate (Xtest, Ytest, verbose=1)

print ("Test score: {:.3f)}, accuracy: {:.3f)".format(score[0], score[l]}}

Huke nokasaHsbl pesy/ibTaTbl BbINOJIHEHMS ITPOrpamMMbl:

174 <+ T[naea 5.[lorpyxeHusa cnos

({4960, 100), (2126, 100), (4960, 2), (21286, 2))
Train on 4960 samples, validate on 2126 samples

Epoch 1/10

4960/4960 [] - 0s - loss: 1.9577 - acc: 0.5667 - val_loss: 0.4448 - val_acc: 0.8556
Epoch 2110

4960/4960 [] - 08 - loss: 0.5245 - ace: 0.7942 - val_loss: 0.3167 - val_acc: 0.9078
Epoch 3/10

4960/4960 [] - Os - loss: 0.3026 - acc: 0.8002 - val_loss: 0.2456 - val_acc: 0.9473
Epoch 4110

4960/4960 [] - 0s - loss: 0.2338 - acc: 0.9270 - val_loss: 0.2068 - val_acc: 0.9398
Epoch 510

4960/4960 [] - Os - loss: 0.1802 - acc: 0.9520 - val_loss: 0.1720 - val_acc: 0.9581
Epoch 6/10

4960/4960 [] - 0s - loss: 0.1561 - acc: 0.9552 - val_loss: 0.1561 - val_ace: 0.9610
Epoch 710

4960/4960 [] - 0s - loss: 0.1396 - acc: 0.9631 - val_loss: 0.1535 - val_acc: 0.9577
Epoch 8/10

4960/4960 [] - 0s - loss: 0.1216 - acc: 0.9645 - val_loss: 0.1338 - val_acc: 0.9628
Epoch 9/10

4960/4960 [] - 0s - loss: 0.1152 - acc: 0.9641 - val_loss: 0.1273 - val_acc: 0.9643
Epoch 10/10

4960/4960 | | - 0s - loss: 0.1044 - acc: 0.9706 - val_loss: 0.1257 - val_acc: 0.9647
1888/2126 [..] - ETA: Os

Test score: 0.126, accuracy: 0.965

[LnoTHast ceThb C IpeaBapuUTe/ibHOM 00padoTkoii Ha 100-MmepHOit Mo-
nenu GloVe paer BepHocTb 96.5% Ha TecToBOM Habope rocjie 06ydeHust
Ha nporsokeHui 10 rnepuopos. CeThb ¢ MpeaBapUTe/IbHOM 06paboTKoM
Ha 300-mepHoii Mmogenn word2vec gaet BepHOCTh 98.5%.

KO,U, 3TOro npumMepa HaXxooMTCHd B d)aﬁﬂe transfer glove embeddings.
py (st mpumepa ¢ mogensio GloVe) u B daiine transfer word2vec embed-
dings.py (LIS IpUMEpPA C MOJe/Ibio word2vec) B MCXOMHOM KOJie K 9TOi
rnaBe.

Pesiome

B aT0i1 riaBe Mbl M3y4MIK, KaK [IPeobpasoBaTh CJIOBAa M3 TEKCTA B BEK-
TOPHbIE [PECTABAEHUS] C COXPAaHEHUEM AUCTPUOYTUBHOM CEMaHTUKK
10B. MBI Tak:Ke HA MHTYUTMBHOM YPOBHE MOHSJINM, [TOUEMY MOTPYKe-
HMSI CJIOB B BEKTOPHOE MPOCTPAHCTBO NeMOHCTPUPYIOT TAKOE TOBejIe-
HUME U [10UYeMy OHM I10JIe3HbI /Il [IPUMEHeHUsT B IIyO0KUX MOIessx
TEKCTOBBIX JaHHBIX.

3aTeM Mbl pacCMOTPENIM ABE MOMY/ISIPHbIE MOMEIU MMOTrPYKEHUS
w10B, word2vec 1 GloVe, 1 yacHMIM, Kak OHM paboTaloT. Mbl TaKsKe 110-
3HAKOMMJIUCH C IPUMEHeHeM 61bIMoTeRY gensim f1Jist 06yueHust MO-
nenu word2vec Ha JaHHbIX.

HaxoHell, Mbl Y3HaJ/IM O PA3IMUHbIX CIIOCOOAX MCIOIb30BAHUS [10-
IPY;KeHUIi B cOOCTBeHHOI ceTn. [lepBblii — 06YUUTHL Beca MOrpyKeHuit
C HyJs1 B rpotecce obyuenust ceti. Bropoit — umropruposath Beca
IOrpy:KeHuii u3 npepobyuerHoit mogenn word2vec munu GloVe B cBoio

L7

Pesiome <+ 175

CeTh M HACTPOMTh UX B Ipoliecce 06ydyeHms ceTi. TpeTuit — UCTONb30-
BaTh [pefobyueHHbIe BeCca HEMOCPeACTBEHHO B CBOEM IPUIIOKEHMIA.

B crenyiolileii riaBe Mbl Y3HaeM O PEKYPPEHTHBIX HEMPOHHBIX Ce-
TSIX, ONITHMMU3UPOBAHHBIX [Jis1 06pabOTKM MOC/IeA0BATE/ILHOCTH, B T. 4.
TeKCTa.

lnaBa

L B B O BN BE B BN BN AN IR BN BN BE BN BN BN BN BN B BN N BN BN BN B BN B BN B BN B B N A N N I

PekyppeHTHast HEMpPOHHas
cetb - PHC

B rnaBe 3 Mbl [MO3HAKOMUWINCH CO CBEPTOYHBIMM HEHPOHHBIMHU Ce-
Tamu (CHC) y3Hanmu, Kak B HUX MCIIONb3YETCsl MPOCTPAHCTBEHHAS
reomMeTpust BXOAHbIX TaHHbIX. Tak, onepanum CBepTKI 1 IyJIMHTa [pu-
MEHSIKOTCSI BAOJIb BpeMEeHHOI OCH 17151 3BYKOBBIX [JAHHbIX, B IBYX IPO-
CTPAHCTBEHHBIX U3MEPEHUSIX [JIs1 U300PasKeHMIt 1 B TPeX U3MepeHUsIX
(BBICOTA, IUMPUHA, BpeMs) IJi BUEO.

B 970i1 71aBe Mbl 6yIeM rOBOPUTH O PEKYPPEHTHBIX HEMPOHHbBIX
cerax (PHC, anmi. RNN) — kiacce HelipOHHBIX CETEI, B KOTOPbIX YUU-
ThIBAETCsl MOWIeIOBATeIbHBIN XapakTep BXOOHbIX AaHHbIX. Ha Bxop,
TAKOI CeTH MOXeT I0JaBaThCs TEKCT, peub, BpeMeHHON! psifi Win ellle
KaKue-TO JaHHble, B KOTOPbIX [MOSIBJIEHME 3JIeMeHTa B [10¢/1eioBaTeb-
HOCTHM 3aBUCUT OT IpeliecTByOKMX snemeHToB. Hanpumep, cinemny-
IOLMM CJIOBOM B IPEIUIOKEHUM «C00aKa...» CKopee Oy[er «jiaeT», uem
«MalluHa», 1 UMeHHO ero PHC npegckakeT ¢ 60/bliei BeposSTHOCTbIO.

PHC MOKHO paccMaTpuBaTh Kak rpady, cocTosimMii U3 sjeMeHTap-
HBIX SUeeK, KayK[1asi U3 KOTOPbIX BBIMOJHSET OJHY U TY e orepaluio
ILISI KJKIOTo aneMeHTa nociegosarensHoct. PHC o6namaoT 60/1b1105
rMOKOCTBIO M IIPUMEHSIIOTCS [J1S1 PelieHMsl TAKMX 3a/1a4, KaK Paciio3Ha-
BaHMEe peuu, sI3bIKOBoe MOAeNpoBaHue, MalllMHHbII [IepeBo/l, aHaIuU3
SMOLMOHAJIBHOM OKPACKM, MOAMMChIBAHME M300paskeHMIt M MHOIMX
apyrux. PHC MOKHO aanTupoBaTh K pa3/iIMUYHbIM TUIIAM 3a/1a4, M3Me-
Hsist KoHbuUrypaimio ssueex B rpade. Mbl pacCMOTPUM HECKOJIBKO TAKUX
KoHbuUrypamii 1 ux ipuMeHeHue K KOHKPeTHbIM 3a1auyam.

Mpi Takke ysHaem 00 OCHOBHOM OrpaHMYEHMM TMPOCTOI SUeKu
PHC u 0 1ByX ee BapMaHTaX: JOJroil KpaTKOCPOUHOI nmamsaru (long
short term memory, LSTM) 1 BEHTMIbHOM PEKYPPEHTHOM OG/I0Ke
(gated recurrent unit, GRU), mo3Boisiomux rnpeogojieTs 3T0 OrpaHu-

L7

MNpoctble aueitku PHC < 177

yeHue. LSTM u GRU MOKHO IOACTAaBUTb BMECTO MPOCTOI siueitku, u
3a4acTyr 9TO 3aMeTHO yiayuinaet kayectso cetu. Xorss LSTM u GRU —
HE eNMHCTBEHHbIE BAPUAHTbI, SMIIMPUUECKU TOKA3aHO (CM. CTATbU
R. Jozefowicz, W. Zaremba, 1. Sutskever «An Empirical Exploration of
Recurrent Network Architectures», JMLR, 2015 u K. Greff «LSTM: A
Search Space Odyssey», arXiv:1503.04069, 2015), uto /st GONbILIMH-
cTBa 3a7a4 00paboTKM MMOC/IeA0BATEIbHOCTE! OHM OKAa3bIBAKOTCS HAM-
JYUIITUMMU,

HakoHell, Mbl JaAMM HECKOJIBKO PEKOMEHIAIUIT O TOM, KaK MOBbI-
cutb KauectBo PHC, 1 0 TOM, KOria M Kak UX CJIeIyeT MPUMEHSTh.

B 3T0i1 1aBe paccMaTpPUBAIOTCS CJIEIYIONIME BOITPOCHI:

O mnpocras siueiika PHC;

QO peanusauusa PHC nist nopoxkaeHus rekera ¢ nomolnbio Keras;
O Tononoruu PHC;

QO LSTM, GRU u gpyrue sapuantsl PHC.

MpocTbie aueitku PHC

TpagUIIMOHHO B HEMPOHHBIX CETSIX HA OCHOBE MHOI'OC/IOMHbBIX [epLer-
TPOHOB IIpearojaraeTcs, YTo BCe BXOIbl He3aBUCUMBIL. [1Jisl mociemo-
BaTeJIbHbIX JAHHBIX 9TO MPEAINoIoXKeHe HapyiiaeTcs. B ipeabiayiiem
paszene Mbl BUIe/IM [IPUMeD, KOTa IepBoe CJI0BO IIPeIIosKeHUsI B -
seT Ha Bropoe. To ke OTHOCUTCSI M K Peuu — pa3roBapuBasi B IIYMHOM
KOMHATe, 1 MOI'Y BBIABMHYTb PA3yMHYI0 TMIIOTE3Y O CJIOBE, KOTOPOE He
paccIbILIAN, UCXOAsl U3 CJIOB, IIPOM3HECeHHBIX COOeCceIHUKOM paHee.
st BpeMeHHBIX PSIIOB, HAIIpUMep LieH Ha aKIMK UM IIPOrHO30B M0-
rojibl, TAK)Ke XapakTepHa 3aBUCMMOCTb OT IMPOILIbIX JAHHBIX, 9TO SIB-
JIeHe Ha3bIBAeTCs JOJIFOBPEeMEHHBIM TPEHIOM.

B sueiikax PHC sTa 3aBMCMMOCTb MPEACTAB/SIETCS C IMOMOILbIO
CKPBITOrO COCTOSIHMS, MJIM TTAMSITH, B KOTOPOI XpaHUTCSA CBOJKA IPO-
1U10# MHGOpMAaL UK. 3HAYEHUE CKPLITOI0 COCTOSIHMS B J1H000I MOMEHT
BpeMeHM — (PYHKIIMS ero 3HaYeHUs] Ha MPeAbIAYIIEM LIare 1 3HaUeHusI
IaHHBIX HA TeKYIIEeM Liare:

hr = gﬂ(ht_l, X[)!

rae h,u h,, — 3HaUEHUs CKPBITOrO COCTOSHMA Ha 1wiare t u t—1 coot-
BETCTBEHHO, M X, — BXO[JHOE 3HaueHue B MOMeHT t. OTMeTUM, YTO 3TO
ypaBHeHMe PeKypPeHTHOe, T. €. h,_, MOXHO BbIPasuTh yepe3 h,, U X, U
T. [., IOKa Mbl He [10iiZieM 10 Hauaja I10C/Ie0BaTelbHOCTH. FIMeHHO

178 <+ [haBa 6.PekyppeHTHaa HeitpoHHaa ceTb — PHC

tak B PHC kopgupyercs u 3ariomunaetcst uHGOpPMAaLus 0 CKOJIb YTOIHO
IUTMHHOM MOC/eq0BaTeIbHOCTH.

MbI Tak:Ke MOXKeM rpeacTaBuThb siueiiky PHC rpaduuecku, Kak 1o-
Ka3aHo B JIEBOIi UaCTU CJIEAYIOIIETO PUCYHKA. B MOMEHT t sueiika romy-
yaeT Ha BXOJle 3HaYeHMe X U BbIBOAMUT 3HaueHue y. YacTs y, (CKpbiTOE
cocrosinue h) nopaercst 06paTHO Ha BXOJ SYEKY IS UCIIONb30BAHMUS]
Ha cnenywolem ware t+1. Euin napameTps! TpaguMUIMOHHON HeiipoH-
HOJM CceTH XpaHsITcsl B MaTpule Becos, To napamerpsl PHC sapatorcs
Tpemst Mmatpuiiamu Becos, U, V u W, coOTBETCTBYIOUMMI BXOY, BbI-
XOOY U CKPBITOMY COCTOSIHMIO.

y(t) y(1) y(2) y(3)
v
w =
U
x(t) x(1) x(2) x(3)

BEpeMeHHble Wark

Ewe onuu B3rnan Ha PHC — pazgepmia, okazaHHAas HA TOM Ke pu-
CYHKe crpaBa. 3TO 03HAYaeT, YTO Mbl PUCYEM CETh HA TMPOTSIKEHUU
BCeil rnocwienopareibHocTH. Ha pucyHke msobpaxkena PHC ¢ tpems
CJI0SIMM, TIPUrOHAs /1Sl 06paboTKM MOC/Ieq0BATEIbHOCTEN ¢ TpeMmst
3lleMeHTaMu. 3aMeTuM, uTo MaTpuiibl BecoB U, V u W paspensitorcs
MEX/1Y BCEMM LIaraMu, ITOCKObKY Ha KayK[IOM Il1are K pasHbIM TaHHbIM
MPUMEHSIOTCS OHU M Te Ke onepauuu. Birarogapst MCrojib30BaHUIO
OIHMX U T€ K€ BECOB HA BCEX BPEMEHHBIX 1IAraxX yAaeTcs CYILeCTBEHHO
CHM3UTb KOJIMYECTBO 0OyuaemMbix rapamerpos PHC.

Borunciienusi, BoironHsiemble PHC, MOXHO Takyke onucarbh B BUje
ypaBHeHUit. BHyTpeHHee coctosiiue PHC B MoMeHT t onpepensieTcst
3HAUeHMeM BeKTOpa h, paBHOIO pesy/bTaTy NpPUMeHeHMUs HejuHeli-
HOCTH tanh K cymMe [pou3BeneHus MaTpuiibl BecoB W Ha CKpbITOE CO-
crosiHMe h, , B MOMEHT t—1 1 mpousBeeHus MaTpuLlbl Becos U Ha BXOJI-
HOe 3HaueHMue X, B MOMeHT t. Bbi6op HenmuHeliHocTH tanh, a He KaKoii-To

L7

MNpoctble aueitku PHC <+ 179

IPYrOJi, CBSI3aH C T€M, UTO ee BTOpasl [IPOM3BOJAHAS OYeHb MeJIeHHO
ybbIBaeT, MpubIKaach K Hymo. [I09TOMY IrpaJieHThl OCTAIOTCS B JIM-
HelfHOoI yacTy QYHKLMIM aKTHMBALMM, YTO IIOMOTaeT CIIPaBUTHCS C IIPO-
6iiemoii ucuesawlero rpaguerTa. [logpobHee 06 3T0i 1pobiieme Mbl
TOrOBOPUM HILKE.

BbIXO[HOIi BEKTOp y, B MOMEHT t paBeH pe3y/ibTary NpuMeHeHUs
byHKLIMY Softmax K IpoM3BeIeHII0 MaTPULIbl BecoB V Ha CKPBITOE CO-
crosHue h, v npescrap/seT HaboOp BePOSITHOCTEN BbIXOAa:

h, =tanh(Wh,_, + Ux)
y, = softmax(Vh,)

Keras mpepmocrasisier cioii pekyppeHTHOM cetu SimpleRNN (cm.
https://keras.io/layers/recurrent/), BKJIHOYAIOLIMIT BCIO OITMCAHHVIO BbI-
11Ie JIOTMKY, a Takke bonee adexrusHbie BapuanTbl LSTM 1 GRU, xo-
TOpbIe OYAYT pacCMOTpeHbI Hiske. YTo6bl UCII0Ib30BaTh UX, HE0Os3a-
TeJIbHO TOYHO [TOHUMATb, KaK OHM paboratoT. OMHAKO 3HATh CTPYKTYPY
M ypaBHeHMsl M0JIe3HO, ecyii Bbl 3aX0TUTe rnocrpouts ¢sow PHC miis
pellieHKs1 TOCTaBJIIeHHOM 3aaun.

Mpocraa PHC ¢ npumeHeHuem Keras -
NopoXAeHUe TeKCTa

PHC akTMBHO UCII0/Ib3YIOTCSI B 00PabOTKE eCTECTBEHHBIX SI3bIKOB
(OE{, anrin. NLP) nns pemrenust pasnnuHbix 3agad. OgHa U3 HUX — 10-
CTPOEHME SI3IKOBBIX Mopesteit. Takast Mogenb MO3BOISeT peacKkasaTh
BEPOSITHOCTD MOSIBJIEHMS CJIOBA B TEKCTE MTPU YCJIOBUUM M3BECTHBIX Mpe-
OBIAYIMAX CITOB. SI3bIKOBbIE MOJIEN BAXKHBI 111 TAKMX BBICOKOYPOBHE-
BbIX MPUJIOKEHMIA, KAK MalllMHHBIN MepeBol, UCITPaBIeHWe MPABOMU-
CaHWUS U T. [I.

[To6ouHbiM addexToM yMeHUs] MpeacKasbiBaTh Clieayioliee CJo-
BO MO M3BECTHBIM MPEIBIAYIIMM SIBJISETCS MOPOXKIAMOIIAS MOJENb,
KOTOpAsi reHepUpyeT TeKCT IyTeM BbIOOPKM CJI0B M3 BbIXOJHOIO pac-
npeneneHus. B ciaydae si3bIKOBOrO MOJEIMPOBAHMS BXOLOM OObIYHO
SBJISIETCS] TIOC/IEI0BATENBHOCTh CJIOB, @ BBIXOJOM — TOC/IEN0BATE/lb-
HOCTb NpeacKasaHHbIX CI0B. B ponu obyvarommux JaHHbIX BbICTYIIAeT
UMEIOIMIACS HeIIOMeYeHHBbIH TEKCT, U MeTKa Y, B MOMEHT t CTAaHOBUTCS
BXOJIOM X, | B MOMEHT t+1.

[lepBbIM HAIIMM IIPUMEPOM MCIONb30BaHM Keras 15t TOCTpoeHUs
PHC 6yper s13bIKOBast MOJ€/1b, 06y4YeHHas! [IPefcKa3blBaTh CJAEIYIOLMA
cumMBoJ 110 10 npenbiayiimm Ha Tekere «Anucel B CrpaHe uynec». Mol

180 <+ [haBa 6.PekyppeHTHaa HeitpoHHaa ceTb — PHC

OCTaHOBMJIMCH HA MOJellM IJid IpeacKasaHusa CMMBO/IA, IIOTOMY 4YTO Y
Hee MeHbllle C/1oBapb M 06}"191—[}19 IIpoOXooMT 6hICTpE‘E. Ho Ta ke noest
IIpMMeHMMa M K npeackasaHMi CJI10B, HY>KHO TOJIBKO CMMBOJIbI 3aMe-
HHUTH CJIOBaAMM. OGYHEHH&H MoOOelb 6y,ne'r MCIT0/Ib30BaHa OJIS1 TTIOPOXK-
OeHMsI HOBOI'O TeKCTa B TOM JKe CTHJIe.

CHauana MMIIOPpTUPYEM MOIY/IM:

from _ future import print function

from keras.layers import Dense, Activation

from keras.layers.recurrent import SimpleRNN

from keras.models import Sequential

from keras.utils.visualize util import plot

import numpy as np

BxonHoii Teker «Anucekl B CTpaHe uyfec» (Ha aHIMIMIICKOM SI3bIKE)
GEDEM C caiira [poexra FYTEHGEDF 10 afapecy http://www.gutenberg.org/
files/11/11-0.txt. DAl CONEPKUT CUMMBOJIbLI KOHILA CTPOKM M CMMBOJIbI
He B Koguposke ASCII, mosTomy NpoMU3BeeM MpeBapUTEIbHYI0 06-
paboTKy M 3aIUILeM Pe3y/ibTaT B IePEMEeHHYIO text:

fin = open("../data/alice in wonderland.txt", 'rb')
lines = []
for line in fin:

line = line.strip()}.lower(}

line = line.decode("ascii", "ignore")
if len{line}) == (:
continue

lines.append(line)
fin.close ()

text = .join(lines)

[NockonbKy Haiia PHC 6ymeT ripefckasbiBaTh CUMBOJIbL, TO U CJI0BAPb
COCTOUT M MHOKECTBA CMMBOJIOB, BCTPEUAKOIIMXCS B TeKeTe. TaKoBbIX
B HaueMm ciryuae 42. Mbl 6ynemM umMeTsb [e/1o He ¢ CaMUMM CUMBOJIAMMU,
a ¢ UX MHIEeKCcaMu, [I03TOMY B CieyioleM GpparMeHTe co34alTcs He-
06xonMble TabIUIbl COOTBETCTBUSI:

chars = set([c for ¢ in text])

nb_chars = len{chars)

charZindex = dict({c, i) for i, ¢ in enumerate(chars))
index2char = dict((i, ¢) for i, ¢ in enumerate(chars))

Cnenyommii mar — co3gaHue BXOAHBIX CTPOK M MeTOK. [Ijist aToro
MPOXOAMUM 0 TEKCTY € IIArOM STEP CMMBOJIOB (B Hallem cjiydae 1) u
BbIZIEJISIEM OTPE3KU IJIMHOM sEoLEn (B Hawem ciydae 10). Cnepyroonmii
1ocJie 0TpesKa CMMBOJ OyieM MeTKOI:

L7

MNpoctble aueiku PHC <+ 181

SEQLEN = 10
STEP = 1

input_chars = []

label chars = []

for i in range(0, len(text) - SEQLEN, STEP):
input chars.append(text[i:1 + SEQLEN])
label chars.append(text[i + SEQLEN])

3ToT Kopg, CTPOMUT M3 TEKCTA it turned into a pig TAKYIO IIOC/IedO0Ba-
TeJIbHOCTb BXOOHBIX CTPOK M MEeTOK:

it turned -> i
t turned i -> n
turned in -> t
turned int -> o
urned into ->
rned into -> a
ned into a ->
ed into a -> p
dintoap->1i
into a pi -> g

Cremyrolmii 1ar — BeKTOpM3aL s BXOAHBIX CTPOK U MeTOK. Ha Bxof,
PHC noparTcs NOCTpPOEHHbIE BhIle BXOOHbIE CTPOKM. B Kaxmoi ua
HUX SEQLEN CMMBOJIOB, @ ITOCKOJILKY pasmep Hallero ¢JioBaps CoCTaB-
JSIeT nb chars CMMBOJIOB, TO KaX[blii BXOZHOI CMMBOJ INpeacTaBiisi-
eTCsl YHUTApPHbIM BEKTOPOM [JIMHbBI nb chars. ClleoBaTe/lbHO, KaX-
Iblii BXOJHON 3JIeMEHT MpeAcTaB/sieT coboii TeH30p (GOPMBbI SEQLEN *
nb chars. BbIXOIHAsI METKA — 9TO eJUHCTBEHHbII CMMBOJI, [103TOMY I10
aHaJIOrMM C IIPeiCTaB/IeHMeM BXOIHbIX CMMBOJIOB OHA [IPECTAB/ISIeTCS
YHUTAPHBIM BEKTOPOM JIJIUHBI nb_chars.

¥ = np.zeros{{len{input_chars}t SEQLEN, nb chars), dtype=np.bool)
y = np.zeros{{len(input_chars}, nb_chars), dtype=np.bool)
for i, input char in enumerate(input_chars):
for j, ch in enumerate (input char):
¥[i, J, charZindex([ch]] =1
y[i, char2index[label chars[i]]] =1

M HAKOHEI-TO Mbl FOTOBBI MOCTPOUTH MOME/Tb. PA3MEPHOCTb BHIXO-
na PHC mycrs 6yger pasHa 128. 9To rureprapaMerp, Onpeaeisie Mbli
B XOMe 3KCIepuMeHTOB. B obiiem ciyuae, eciim BbIOpaTh CJIMIIKOM
MaJleHbKOe 3HauyeHue, TO eMKOCTb MOMe/IMu OyleT HegoCTaTouHa st
MOPOXKAEHUS XOPOUIMX TEKCTOB, U Mbl YBUAMM JJIMHHBIE CEPUU MO-
BTOPSIIOLIMXCS CUMBOJIOB MJTU TTIOBTOPSIIOLIMECS TPYIIIbI CIOB. Eciin ke
3HAYeHMe BEIUKO, TO Y MOofenu OyaeT CIMIIKOM MHOIO [apaMeTpos,

182 <+ [haBa 6.PekyppeHTHaa HeitpoHHaa ceTb — PHC

TaK 4To [is1 ee obOyueHus rorpebyercs ropasmno 6osblie gJaHHbIX. Mbl
XOTUM TOTYYaTh HA BHIXOOE OJUH CUMBOJI, a HE MOC/Ie10BATEIbHOCTD,
MO3TOMY 3ajaeM IapaMeTp return sequences=False. BXO,B,HIJIE JaHHbIe
PHC umetor, Kak Mbl BUe/H, DOPMY MATPULLbL SEQLEN X nb_chars. Kpome
TOT0, Mbl 33/Ia€M unroll=True, IOTOMY UTO [IPU 3TOM MOBBIIIAETCS Kaue-
¢TBO paboTsl 6a30B0i 6ubmorekn TensorFlow.

PHC coepuHsieTcsl ¢ IJIOTHBIM (ITOJIHOCBSI3HBIM) ciioem. B ruioT-
HOM CJIO€ nb char HEIIDOHOB, KOTOPbIe BbIAIOT OLEHKU [OSIBIEHMS
KaXJ0ro CMMBoOJa U3 cyioBapsi. DyHKiMe akTUBAL[MM B 3TOM CJI0E
sBisierca softmax, KoTopasi HOpMUPYET OLIEHKM, [Ipeodpasyst ux B
BeposiTHOCTH. CUMBOJI ¢ HAUBOJbIIEH BEPOSITHOCTHIO BO3BpalllaeT-
Cg B KauecTBe rnpeackaszaHud. [Ipu KOMIWISIIMMA MO 3a0aeTcs
KareropuajibHas nepekpectTHas 3HTPOIus B KauecTBe QYHKIMHA I10-
Tepb (OHA XOPOIIO MOAXOAMUT A KATErOpMaabHOrO BbIX0OA) M OIl-
TuMusatTop RMSprop:

HIDDEN SIZE = 128

BATCH SIZE = 128

NUM ITERATIONS = 25

NUM EPQCHS PER ITERATION = 1
NUM PREDS PER EFOCH = 100

model = Seguential()
modelAadd{SimpleRNN(HIDDEN_SIZE, return sequences=False,
input_ shape=(SEQLEN, nb chars),unroll=True})
model.add (Dense (nb_chars))
model.add (Activation ("softmax"))
model.compile (loss="categorical crossentropy", optimizer="rmsprop")

[Mogxon K 06y4eHUI0 HEMHOI'O OT/IMYAETCS OT TOrO, YTO Mbl BUIEIN
pasbiie. [Io cux 1op Mbl 00y4Yaau Moellb B TedeHue GUKCMPOBAHHO-
ro 4yMcia MmepuomoB, a 3aTeM OLeHMBA/IM ee Ha 3ape3epBUMPOBAHHBIX
IJIsSI 9TOI 1LleJIM TeCTOBBIX MaHHbIX. [IOCKONBLKY B JAHHOM CJIydae y Hac
HeT [IOMEYEHHbBIX JaHHbIX, TO MbI BBIIIOJIHSIEM O MH [1ePHUOJ, 06yYeHMUsI
(WUM EPOCHS PER ITERATION=1), a 3aTe€M TeCTUpyeM mMonesb. Tak npoucxo-
IAT Ha MPOTSDKeHUU 25 urepanmii (num 11erations=25). CliegoBaTenbHo,
T10 CYIIECTBY Mbl BBITIOJHIEM NUM_ITERATIONS TIEPUMOAOB OOYUeHUS 1 Te-
CTUpYyeM MOZesib I0C/Ie KaXKaoro mnepuoaa.

TecTupoBaHMe MPOMU3BOAUTCH TaK: MOIEIb IMOPOKIAET CMMBOJI 110
3alaHHbIM BXOIHBIM OaHHBIM, 3aT€M I1€PBbIif CMMBOJI BXOJIHOI CTpO-
K 0TOpachiBaeTcs, B KOHEll JOMUChIBAETCS IpeIcKa3saHHbIi Ha Ipe-
ObIAYIIEM MPOTOHe CMMBOJ M Y MOMEIM 3alpalliuBaeTcs Clieayioilee
npepckasanue. Tak nopropsercst 100 pas (oM prREDS PER EPOCH=100), [10-

MNpoctble aueitku PHC <+ 183

cJle yero IrojJydyMBIIasACs CTpoOKa rnevaraercs. Jra CTpOKa M ABJISIEeTCH
MHIOIMKaTOPOM Ka4dyeCcTBa MOJeNnu:

for iteration in range (NUM ITERATIONS) :

print ("=" * 50}

print("Iteration #: %d" % (iteration))

model.fit (X, v, batch_size;BATCH_SIZE, epochs=NUM EPQOCHS PER ITERATION)

test idx = np.random.randint (len(input chars))
test_chars = input_chars[test_ idx]
print ("Generating from seed: %s" % (test _chars))
prin:{test_chars, end="")
for i in range (NUM PREDS PER_EPOCH) :

Xtest = np.zeros((l, SEQLEN, nb chars)

for i, ch in enumerate(test chars):

¥test[0, i, charZindex[ch]] =1

pred = model.predict (¥test, verbose=0)[0]

ypred = indexZchar[np.argmax (pred)]

print (ypred, end="")

coBumyTsCA Brepen za test chars + ypred

test chars = test chars([l:] + ypred
print{}

Huske rokasaH pesyabTaT padoThl MporpamMMbl. BHavasie Momesb
MpencKasbiBaeT B3A0P, HO K KOHILY 25-T0 Iepro/ia OHa Y3Ke ITUILIeT 104~
Ti 6e3 OLIMOO0K, XOTS CO CBSAI3HOCTBIO MBIC/IEH 1e/10 00CTOMT HEBAXKHO.
VIMBUTENBHO, YTO MOZE/b 00yUuaaach BbIBOOUTL CUMBOJIbI M HE MMEET
HM MaJiejiliero rpeacTasjieHus O CJIOBAX, M TEM He MeHee OHa Haydu-
Jlach MOPOKIATH C/I0BA, BIMISIASLIME TaK, OYITO B3SThI U3 OPUTHMHAIIb-
HOrO TEKCTAa.

Iteration #: 21

Epoch 111

142544/142544 []- 10s - loss: 1.3916
Generating from seed: e with the

e with the white rabbit had no the that the mouse the mouse the mouse the mouse the mouse the mouse the mouse|

Iteration #: 22

Epoch 111

142544/142544 |] - 10s - loss: 1.3831

Generating from seed: and an ol

and an ollar the caterpillar the seapped did not a moment the cook of the courter the caterpillar the seapped

Iteration #: 23

Epoch 111

142544/142544 []-10s - loss: 1.3757

Generating from seed: ' the mock

'the mock turtle said the dormouse some of the conce in the dormouse some of the conce in the dormouse some o

Iteration #: 24

Epoch 11

142544/142544 |] - 10s - loss: 1.3685

Generating from seed: raving mad

raving made to goon of the sord alice could got to the dormouse so they looked at the sord alice could got to

184 <+ [naBa 6.PekyppeHTHaa HeitpoHHaa ceTb — PHC

[MopokaeHue cienylolero CMMBOJIA MM CI0BA — He eIMHCTBEH-
HOe, Ha 4TO crocobHa Takasi Moje/b. [logo6GHble MOAENM YCIELUIHO
[IPUMEeHSUIMCh IS [IpefcKasaHus LieH akuuii (cm. A. Bernal, S. Fok,
R. Pidaparthi «Financial Market Time Series Prediction with Recurrent
Neural Networks», 2012) 1 /151 reHepaLMM KJIaCCUUECKON MY3bIKM (CM.
G. Hadjeres, F. Pachet «DeepBach: A Steerable Model for Bach Chorales
Generation», arXiv:1612.01010, 2016). Auapeii KapnaTslii npusoaur
ellle HeCKOJILKO JIBO0IBITHLIX IPUMEPOB M MCXOAHBINM Ko, aJist Linux B
craTtbe «The Unreasonable Effectiveness of Recurrent Neural Networks»
B cBoeMm 6jore 1o aapecy http://karpathy.github.io/2015/05/21/rnn-
effectiveness/.

KO,U, 3TOro rnpumepa HaxoauTcs B (jJai—ine alice chargen rnn.py B MC-
XOIHOM Kojie K 9T0Ji rmape. CaMu 1aHHbIe MOXKHO HATKU Ha caiiTe I11po-
exra ['yreH6epr.

Tononorum PHC

API mHorocoiiHoro nepuentpoHa u CHC orpanuyenbl. Obe apxuTek-
TYPbI MPUHUMAIOT Ha BXOJE M IMOPOXKIAIOT Ha BbIXOIE TeH30PbI GuK-
CMPOBAHHOrO pasmepa, a Jjisl [peobpasoBaHusl BXOHA B BbIXOH, Bbl-
MOMHAOT GUKCUPOBAHHOE YKCJIO LIAr0B, OIpeie/isieMoe YMC/I0M CJIOEB
cetu. Y PHC Takoro orpaHMueHMst HET — BXOI0M, BBIXOJI0M WJIM TEM U
OPYTMM MOTYT ObITh IMOC/IEA0BATEIbHOCTU. DTO 03HAYALT, UTO [IJIs1 pe-
HIeHMsl KOHKpeTHbIX 3afa4 PHC MOXHO KOHOUIYPUPOBATH Pa3HbIMM
criocobamu.

Kak mbl y:ke 3HaeM, PHC koMOGMHUPYET BXOLHOI BEKTOP C Ipembl-
OYIIMM BEKTOPOM COCTOSTHUSI [1J151 TIOJTYUE€HUSI HOBOTO BEKTOPA COCTOS -
HUSL. DTO MOXKHO PACCMATPUBATh KAK AHAJIOT BbITTOJIHEHUS ITPOrPaMMbl
C HEKOTOPBIMM BXOJHBIMU MaHHBIMM Y BHYTPEHHUMMU IMEPEMEHHBIMU.
CnepoBareibHo, PHC MOXHO cuMTaTh CI10COOB0M OMMCAHUSI KOMIIbIO-
TepHbIX rnporpamm. Ha camom pene, gokasaHo, uro PHC siBasitor-
cs1 nonubiMu 110 Terlopunry ucrnonuutensivu (cm. H. T. Siegelmann,
E. D. Sontag «On the Computational Power of Neural Nets», Proceed-
ings of the Fifth Annual Workshop on Computational Learning Theory,
ACM, 1992) B TOM CMBbIC/IE, UTO IIPU 3a0aHMM HAJIeKalllMX BECOB OHU
MOTYT MOAEIUPOBATH MPOU3BOJIBHBIE TPOTrPAMMBI.

VYmenune paboraTh € MOCIEI0BATE/ILHOCTSIMMY OTKPbIBAET BO3MOX-
HOCTb JJIsI PA3/IMUHBIX TOIOJIOIUI, HEKOTOPbIE U3 KOTOPBIX Mbl 00CY-
IUM HUKE.

Tononorun PHC <+ 185

can il sia

(a) MHOr1e-ko-mMHorum (1) (b) ogHH-KO-MHOrUM
(c) MHOrMe-ko-MHorum (2) (d) MHorue-k-ogHOMY

Bce 3T TOMOMOrMU BHITEKAIOT M3 0611l 6a30BOIt CTPYKTYPbI, [IOKA-
3aHHO Ha MpeabIayIeM pucyHke. B 6a30B0oit CTPYKTYpe BCe BXOIHbIE
MOC/Ie0BATENBHOCTU MMEIOT OMHAKOBYIO JIJIMHY, a BBIXOH, MOPOXKIA-
eTCs Ha KaKoM BpeMeHHOM miare. [Ipumep Mbl yoKe BUIENM B CETH T10-
POKIEHUS CMMBOJIOB, 00YUEHHOI Ha TekcTe «Ajyckl B CTpaHe uyaec».

HOpyroit npumep PHC Tuiia MHOrme-Ko-mMmHOIMM — CeTh MalllMHHO-
ro nepesoga Ha pucyHke (b), sBisiouiasics npeacraBuTesieM oobie-
ro cemeiicTBa ceTeil TMOCIEI0BATENbHOCTb-B-TTOC/IEI0BATENLHOCTD
(cm. O. Vinyals «Grammar as a Foreign Language», Advances in Neu-
ral Information Processing Systems, 2015). OHM NIPUHMMAIOT Ha BXO-
Ie TMoC/Ie0BaTeIbHOCTD M TTOPOXKIAIT APYTYIO MOCIeA0BATENbHOCTD.
B oryuae MalllMHHOrO IepeBofla BXOOOM MOXeT ObITh, Harmpumep,
MOC/IeI0BATEbHOCT AHIIMIICKMX CIOB, & BBIXOAOM — TepeBefeHHOe
MpeaaoKeHe Ha MCIIAHCKOM s13bIKe. TaKkoii ke TUIT MOMENIM UCIOJb-
3yeTcs il YacTepeYHoi pa3sMeTKH, KOTIa BXOOM SBJISIIOTCS CJIOBA
MPeAaoKeH!s, & BbIXOJOM — COOTBETCTBYIOIIME METKM YaCTeil peun.
OT npeabiAylieii TOMOMOTMKM 3TA OTIMYAETCS TEM, UTO B HEKOTODbIE
MOMEHTbI BpEMEHU MOKET OTCYTCTBOBATb BXOl, @ B HEKOTOPbIE — BbI-
xof. C mpuMepoM Takoii CeTH Mbl BCTPETUMCS HUXKE.

Elle ogMH BapMaHT TOMOJOTMM — CE€Th THUIA OAMH-KO-MHOTMM Ha
pUCyHKe (C), IPUMEPOM KOTOPOI MOXKET CITYKUTb CeTh [JIsl TTOAITN-
ceiBaHMs u30bpakennit (cm. A. Karpathy, F. Li «Deep Visual-Semantic
Alignments for Generating Image Descriptions», Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2015),

186 <+ [naBa 6.PekyppeHTHaa HeitpoHHaa ceTb — PHC

Iae BXOHOM SIBJSIETCSt M300paskeHue, a BbIXOIOM — I[OC/Ie10BaTe/b-
HOCTb CJIOB.

[Ipumep ceTu TUIIA MHOT'ME-K-0gHOMY Ha pucyHKe (d) — ceTb aHa/M-
38 9MOLMOHAILHOM OKPACKM IpejIoKeHUi, KOra BXOJ0M SIBJISeTCS
MoC/Ie0BATeILHOCTb CJIOB, 8 BHIXOAOM — MHIUKATOP MOJIOXUTEIbHOM
MM OTpULIaTe/IbHOI oKpacku (cM. R. Socher «Recursive Deep Models for
Semantic Compositionality over a Sentiment Treebank», Proceedings of
the Conference on Empirical Methods in Natural Language Processing
(EMNLP). Vol. 1631, 2013). Huske B 3T0Ji [J1laBe Mbl paCCMOTPUM [IPU-
Mep TaKoit Torosoruu (npasia, CyLUeCTBEHHO YIIPOLIEHHbI 110 CpaB-
HEHUIO C LIUTUPOBAHHOI BbILLE MOJIE/bIO).

Mpo6nema mcyesaroLero U B3pbIBHOrO
rpagmMeHTa

Kak M B TpaiMLIMOHHBIX HEIIPOHHBIX ceTsiX, 0oyyenue PHC Bxiouaer
obpartHoe pacrpocTpaHeHnue. Pasjiuume B TOM, UTO IIOCKOJIbKY Ha BCeX
1rarax MCIo/b3ylOTCS OJMHAKOBbIE MapaMeTpbl, TO IPAIMEHT B Kax-
IIOM BbIXO/I€ 3aBUCUT He TOJIbKO OT TeKYIIero BpeMeHHOro 1iara, Ho U
OT IpeIbIayLIMX.

DTOT MpPOLIECC HA3bLIBAETCH OOPATHBIM PACIPOCTPAHEHMEM BO
Bpemen# (backpropagation through time, BPTT) (cm. cratsio G. E. Hin-
ton, D. E. Rumelhart, R.]. Williams «Learning Internal Representations
by Backpropagating errors», Parallel Distributed Processing: Explora-
tions in the Microstructure of Cognition 1, 1985).

y(1) L(1) y(2) L(2) y(3) L(3)
i i diL(3)
v dh(1) dh(2)
: i dh(2)
dh(n) dh(1) h 4
. ‘................
—»
u | i a
v v v
x(1) x(2) x(3)

PaccMoTpum HebBoblIyIO TpexcioiHyw PHC, nokasaHHYK Ha pu-
CYHKe BbIlle. B mpoliiecce mpgMoro pacrpocTpaHeHus (CIUIOUIHbIE

L7

MNpobnema McyesaowWwero M B3pbIBHOrO rpaguMeHTa <%+ 187

JMHUM) CeTh TOPOXKOAeT IpencKa3aHusl, KOTOPbIE CPaBHMBAKOTCS C
MeTKaMM /il BbIYMC/IeHUs NoTepy L Ha KakIoM BpeMeHHOM luare.
B mpouiecce 06paTHOrO pacrpoCcTpaHeHus: (IIYHKTUPHbIE JMHUKM) Ha
Ka)kKIOM BPEMEeHHOM IlIare BEIUMCISIOTCSA IPagMeHTbl QYHKLIMK II0TePh
o napamerpam U, Vu W, u cymMa rpaiMeHTOB ITPMMEHsIeTCs IJ1s 00-
HOBJIEHUSI [TapaMETPOB.

B cremyiolieM ypaBHEHMM [MOKasaH rpagueHT QYHKLUUM OTePh
no W - marpuile, B KOTOPOI 3aKOAMPOBaHbl Beca [AJis J0JT0CPOY-
HBIX 3aBMCMMOCTeil. Mbl aklleHTUpyeM BHMMaHMe Ha 9TOM 4acTu
0GHOB/IEHMSI, [IOTOMY UTO MMEHHO OHA — IIPUYMHA [IPo6IeMbl Ucue-
3aI011lero M B3PbIBHOTO rpajuenTa. [IBa Ipyrux rpaguenTa QyHKInn
noreps 1o marpuuam U u V Takke CyMMUPYIOTCS 10 BCEM BpeMeH-
HbIM LIAram:

AL~ OK
8—W_Z‘8W

Terepb MOCMOTPUM, YTO MPOUCXOANT C rPagueHTOM (GYHKLHUM I10-
Tepb Ha MoCJIeIHeM BpeMeHHOM Iuare (t = 3). Kak Buaum, sToT rpa-
OUEeHT MOKHO PasJioKUTh B IPOM3BeIeHIe TPeX MOArPaiueHTOB, ITPU-
MeHUB TpaBuio guddepeHIMPOBaHMs CI0KHON QYHKIMKA. [pagueHT
CKPBITOrO cocTosiHust h, 10 W MOXKHO 3aTeM Ipe/iCTaBUThb B BUJE CyM-
MbI IPAaAMEeHTOB Ka)XXI0ro CKPbITOr0 COCTOSIHUS 110 Mpeabiayiiemy. Ha-
KOHEll, 'PaJMeHT CKPbITOr0 COCTOSIHUS T10 IPeIbIAyIeMy MOXHO pas-
JIOXKWUTh B MIPOM3BE/IeHNe IPAMEHTOB TEKYILEr0 CKPITOTO COCTOSTHUS
110 MpeabIaYIIeMy:

oL, dL, dy, oh,
oWy, oh, oW
B ifshri3 dy, oh, oh
= A
— - 0L, dy, ﬁ doh;) ok,
TS0y, oh, (jimon_,) ow

AHAJIOTMYHO BBIYMCISIOTCS IpajueHThl QyHKUMU noTepb L u L,
(Ha warax 1 1 2) no W, nocjie yero ux cymma MCIoJb3yeTcs AJjsi 06-
HOBjIeHUd rpagueHTa o W. Mbl He cTaHEM B 3TOM KHUTE BIABaThCS
B MateMmaruueckue geraau. EQiM BaM 3TO MHTEPECHO, MOYUTANTE B

188 <+ [naBa 6.PekyppeHTHaa HeitpoHHaa ceTb — PHC

6ore WILDML (nhttps://goo.gl/1061b%) CTAThIO, COOEPKALIYI0 OYEHb
xopouiee o6bsicHenue BPTT ¢ nogpo6HbIMM MaTeMaTUYeCKMMU Bbl-
KJIafKaMu.

Hy a Ham roc/ieHero BeIpakeHus! rpafuenTa B hopmyJie Bblliie [10-
CTATOYHO, YTOObI IOHATD, OTKY1a BO3HUKAET ITpob/iemMa ucuesaolero
u B3peiBHOro rpaauedta B PHC. Pacemorpum cnyuaii, Korga oTaeb-
HbIE€ TPAJIMEHTBI CKPBITOTO COCTOSHUS IO TMPEAbIAYIIeMY MeHbIie 1.
[Ipu obpaTHOM pacrpoCTPaHEHUM Yepes HeCKOIbKO BPpeMeHHbBIX Ia-
T'OB MPOM3BEAEHME I'PAJUEHTOB CTAHOBUTCS BCE MEHbIIE U MEHbIIIE,
4TO U BeMIeT K npobiieme mcuesatollero rpaguenta. C [pyroi CTOPOH.I,
ec/iu rpajiueHTsl 6oblle 1, TO Mpou3BeneHus: PacTyT — U BOT BaM [1PO-
6/1eMa B3PbIBHOTO IpafiUeHTa.

W13-3a addexra ncuesalolero rpageHTa rnojydyaeTcs, YTo rpaaueH-
Thl Ha OTHAJIEHHbIX LIArax He OalT HMKAKOro BKJaaa B rpoiecc 06y-
yeHwust, Tak uTo PHC He MOXKeT yuecTh I0JITOBPEMEHHbIE 3aBUCUMOCTHU.
Jta npobiieMa MOKET BO3HUKHYTb U B TPAAULIMOHHOI HEMPOHHOI ce-
™™, HO B cityuae PHC oHa niposiesisiercs: 6osiee pejibedHo, oTOMY 4TO B
PHC Gorbliie ci0eB (BpeMEHHbIX 1IAroB), Yepes KOTOPbie MPOUCXOIUT
obpaTHOe pacnpocTpaHeHue.

B3pbIBHbIE I'DaiMEHTbl 06HAPYKMBAIOTCS TPOILe, MOCKOIbLKY KOrma
rpagyMeHT CTAHOBUTCS CJAUILIKOM OOMBILIMM U IPEeBpPallaeTCs B HeYnC-
a0 (NaN), npoiecc o6yuyeHus aBapuiiHO 3aBepuiaercs. Poct rpagueH-
TOB MOYKHO KOHTPOJIMPOBATh, 00pe3as UX Mpu JOCTVKeHUY 3aJaHHO-
ro nopora (cm. R. Pascanu, T. Mikolov, Y. Bengio «On the Difficulty of
Training Recurrent Neural Networks», ICML, Pp 1310-1318, 2013).

Cyl1ecTByeT HeCKOIBKO MOIX0I0B K CMSTYeHUI0 [IPoB/IeMbl Mcuesa-
OLUX FPAJMEHTOB, B YACTHOCTH, XOPOLIAast MHULIMAIM3ALAS MAaTPUIIbI
W, ucnionbsoBanue QpyHKuMK akTuBanmuu ReLU Bmecro tanh u nipego-
OyueHue cjioeB 6e3 yuuTesisi, HO Haubosiee MOIMYJISIPHbI APXUTEKTYPbI
LSTM u GRU. OHM crienmansbHO MPOEKTUPOBAINUCH [Jisl 60PLOBI € UC-
ye3awinuM rpagueHToM U 6onee adgdekTuBHO 06y4arOTCs N0IroBpe-
MEHHBIM 3aBUCUMOCTSIM.

Honrasa kpatkocpoyHasa namatb — LSTM

LSTM - sto BapuanT PHC, crioco6HbIi 00y4yaThCs AOArOCPOYHBLIM 3a-
BucumMocTsiM. LSTM-cetu BriepBbie ObUIM IpeiokeHbl XoXpaiiTepom
u HIMmuaxybepom, a 3aTeM yaydilieHbl MHOTMMU IPYTUMU MCCIIeq0Ba-
ressiMmy. OHM XOPOIIO PaboTAIOT /IS LIMPOKOTO KPyra 3a/1a4 U siBJIsTioT-
Cs1 cambIM Tonysipabim Tinom PHC.

L7

Honras kpatkocpoyHas namate — LSTM <+ 189

Mas1 Buaenu, kak B ripoctoit PHC nnst peanmsaim pekyppeHTHOCTU
MUCITOJIb3YETCSI KOMOMHALIMS CKPBITOrO COCTOSIHMSI Ha IPenbiayniem
uiare ¥ TEKyIIMX BXOMHBIX JAHHBIX B cjioe ¢ (QyHKIMeN akTUBALIMN.
B LSTM-ceTH peKyppeHTHOCTb peaju3yeTcs aHaJorMuHo, Ho tanh-
CJIOEB He O[IMH, a YeThIpe, U B3aUMOECTBYIOT OHM BeCbMa crieudud-
HbIM 06pa3zom. Ha prcyHke HIoKe IToKasaHbl IpeobpasoBaHus, pume-
HSIEMbIE K CKPBITOMY COCTOSHMIO HA BPEMEHHOM 1are t:

VAR >
c(t-1) C c(t)

f i tanh

o

sigm sigm tanh sigm

h(t-1) h(t)

x(t)

BBIIISIAMT CJIOKHO, HO Mbl PACCMOTPUM 3Ty cxXemy mo uraram. Ha
TOPU30HTANIBHOM TMHUM CBEPXY MOKA3aHO COCTOSIHME SYEiKU ¢, OHO
MPeCcTaB/isieT BHYTPEHHIOW NaMsiTh 6j10ka. Ha TMHMKM CHU3Y 1ToKasaHo
CKPBITOE COCTOSIHME, a BEHTUIH i, f, 0 U g — 3TO MeXxaHU3Mbl, Graroza-
pst KotopsiM LSTM-ceTb 06XoauT npo6jieMy UCUe3aollero rpagueHTa.
B nipouecce o6yuenus LSTM HaxoquT rapamMmeTpbl 3TUX BEHTUIIEN.

Yro6bl JIydllle MOHSATh, KAK 9TH BEHTU/IM MOOYIUPYIOT CKPbITOE CO-
crosiiue LSTM-cetu, paccMoTpum (GOPMYJ/Ibl BbIYMCIEHUSI CKPLITOIO
COCTOsIHMSL h, B MOMEHT t 110 COCTOSIHMIO h, | Ha MTpeJiblylleM Liare:

i=o (Wh,_,+Ux)
f=o(Wh,_ +Ux)
o=c(Wh,_ +Ux)

g=tanh(W,h,_, + U,x)

.= ®N®EDI)
h =tahn(c) ® o

190 <+ [haBa 6.PekyppeHTHaa HeitpoHHaa ceTb — PHC

3peck i, fU 0 — BXOGHOIA BEHTU/Ib, BEHTUJIb 3a0bIBAHUS M BBIXOJHOM
BeHTW/Ib. Bce OHM BBIUMCISIIOTCS 110 OLHUM UM TeM e (hopmynam, HO ¢
pasHbIMKM MaTpuLiaMu napamerpoB. CurmouaHast GYHKIMS MOILYJIM-
pyeT BbIXO[, BeHTWIel, NpUBO/s ero K auanaszony ot 0 mo 1, tak yro
MOPOXAAeMbIi1 BbIXOJHOI BEKTOP MOXHO YMHOXUTb [103JIEMEHTHO Ha
IPYroii BEKTOP, YTOOBI OIPefe/IuTh, KAKasi 4aCTh BTOPOIO BEKTOPa MO-
JKeT MPOIMTH Uepes MepBblii.

BenTuib 3abbIBaHUST OIpeesiseT, KaKyl0 YacTh [PeabIIyIIero co-
CTOSIHMSL N, JKeJlaTe/IbHO POITYCTUTh JaJibliie. BXOAHO BeHTIIIb OIpe-
neJisieT, KaKyr 4acTh BHOBb BbIUMCIIEHHOTO COCTOSIHUS J1S1 T@KYIero
BXOJIa X, [IPOITYCTUTD, & BLIXOJHOI BEHTMJIb — KAKYI0 4aCTh BHYTPEHHE-
ro COCTOSIHMS MepeaTh ¢ieaywlileMy 0. BHyTpeHHee CKpbITOe CO-
CTOSIHUE § BHIUMCI/ISIETCS HA OCHOBE TEeKYLIEero BX0/a X, M Mpebiayllero
CKPBITOro cocTosiHust h, . OTMETHM, YTO BbIpaskeHue sl § COBajaer
C aHAJIOTMYHbIM BbIpaskeHMeM 11151 siueiiku rpoctoiit PHC, Ho B naHHOM
cryyae Mbl MOAYIMPYEM BbIXOM, CMELIMBAsl ero ¢ BbIXOJOM BXOJHOTO
BeHTUIIS 1.

3Hasd i, f, 0 ¥ g, Mbl MOXeM BBIUMCIUThL COCTOSIHME SYeIKU ¢, B MO-
MEHT { B TeDMMHAX [TPOU3BEeHNs C, | Ha BeHTU/Ib 3a0bIBAHMS U IIPOU3-
Be[leHMS g Ha BXOJTHOM BEHTUIb i. 3TO U eCTb C110c06 KOMOUHMPOBAHUS
MpeabIAYIero coIepKMMOoro namMsTi ¢ HOBbIM BXoa0M. Ecjin BeHTHb
3abbIBaHMs ycTaHOoBEH B 0, TO cTapoe 3allOMHEHHOE COCTOSIHUE T10J1-
HOCTbIO UTHOPUPYETCS, a ec/ii YCTaHOBUThL B) BXOHOI BEHTWJIb, TO
UTHOPUPYETCS HOBOE BbIUMCJIEHHOE COCTOSIHUE.

HakoHell, CKpbITO® COCTOSIHME h, B MOMEHT ¢ BHIUMCIISIETCS ITyTeM
YMHOXEHMsI [IaMSITH ¢, Ha 3HaUeHMe BbIXOAHOI0 BEHTUJIS.

BaxkHo rnonumarts, uro LSTM Bcerma MOXKHO IOOCTaBUTb BMECTO
saueiiky Tuna SimpleRNN, u eqMHCTBEHHAs pasHMIlA COCTOUT B TOM,
uto LSTM ycToituuBa K ripobjiemMe ucyesaloiero rpaaMeHTa. 3aMmeHuB
sueiiky PHC Ha LSTM, Mbl MOXeM He BOJTHOBATbLCSI HM O KaKUX 110604-
HbIX 3(dexrax.

Kak nmpasujio pesyabTar [ojiydaeTcs Tem jydiie, yem 60Jiblie Bpe-
Ms1 06yuenus. [ljist unTepecylommxcs B 61ore WILDML umeeTcst oueHb
nogpobHoe 0ObsICHEeHUE IIPUHLIKIIOB paboTsl BeHTMeir LSTM. Bonee
HarnsaHoe rnosicHeHue ectb B cratbe Kpucrodepa Ona «Understanding
LSTMs» {}‘-.:‘:p:f'f'colahAgit}‘-.ubAic:.f'poszsf'ZL‘l5-—'J8—Under5:anding—LSTMEf'), rge
BCE BbIUMC/IEHMSI pAa36MPAIOTCs 1Al 3a Iarom, M Kaskblii ar corpo-
BOXXJAeTCsl WUTKCTPALMSIMU.

Honras kpatkocpoyHas namate — LSTM <+ 191

Mpumep LSTM - aHanu3 sMouMoOHaNbHOU OKPaCKK

Keras npepocrasisier cinoit LSTM, KoTopbIM MbI BOCIIOJIb3YyeMCS,
yT06bI HOCTPOUTH U 06yunTh PHC THAa MHOrMe-K-ogHOMY. CeThb Oyaer
MPUHUMATh TPeaJoKeHue (IMoC/IeI0BaTe/IbHOCTb C/I0B) M BbIZABAaTh
MHIMKATOP 3MOIIMOHATBHOM OKPACKH (TIOMOXKUTENbHOM WM OTPULIa-
Te/bHOI). O6yuatoumii Habop cocrouT npumepHo 13 7000 KOPOTKUX
NpefaoKeHuH, npearapumuxes Ha KoHKypee Kaggle UMICH SI1650
1o kiaccuduKauuy SMOLMOHAIbHOM OKPACKM (https://inclass. kaggle.
com/c/sis50winter1l). Kakmoe npepjioskenue cHabxkeHo meTkoii 1 (1ro-
noxuTeNbHAg okpacka) wiu 0 (oTpuiiaTenbHast OKpacka).

Kak 06bIYHO, HAUMHAEM C UMITOPTA:

from keras.layers.core import Activation, Dense, Dropout, SpatialDropoutlD
from keras.layers.embeddings import Embedding

from keras.layers.recurrent import LSTM

from keras.models import Sequential

from keras.preprocessing import sequence

from sklearn.model selection import train test split
import collections

import matplotlib.pyplot as plt

import nltk

import numpy as np

import os

Hpe,nBapMTeano 3aliMeMcsl MCCIefOBATEIbCKUM aHaIM30M OaH-
HbIX. Ham HYJKHO 3HATh, CKOJIbKO YHMKaJ/IbHBIX CJIOB BCTpeYaeTCs B KOP-
IIyce TeKCTOB M CKOJIBKO CJIOB B KaKIOM IpedloxKeHWH:

maxlen = 0
word freqs = ceollections.Counter/()
num _recs = 0
ftrain = Cpen[cs.path.jcinIDRTR_D:R, "umich-sentiment-train.txt"), 'rb')
for line in ftrain:
label, sentence = line.strip{().split{("t")
words = nltk.word tokenize(sentence.decode("ascii", "ignore").lower())
if len{words) > maxlen:
maxlen = len{words)
for word in words:
word fregs[word] += 1
num_recs += 1
ftrain.close()

st Hatero KopIryca rojiydyaeM TakKue ymcjia:

maxlen : 42
len(word fregs) : 2313

192 <+ [haBa 6.PekyppeHTHaa HeitpoHHaa ceTb — PHC

3Hag KOIMYECTBO YHMKAJIBHBIX CJIOB len(word fregs), Mbl 3aJaeM
(bukcupoBaHHbBIi pasmep JIOBapsi, a BCe OCTa/bHbIE CI0BA CUMTAEM
HeCJI0BapHbIMUM 1 3aMeHsieM nx GuKTUBHbIM csioBoM UNK (unknown).
Ha srane npeackasaHusi 3TO MO3BOJUT HAM 06pabaTbhiBaTh paHee He
BCTpeuaBllMecs CJ10Ba KaK HecJloBapHbIe.

3Hast UMCIO CJIOB B MPEIJIOKEHUM (maxlen), Mbl MOKEM 3a1aTh QK-
CUPOBAHHYIO JUIMHY TIPeIJIOKeHUSI 1 0oJiee KOPOTKUE IMpPeioxKeHus
JOIOJIHATh HYJISIMM, a 6o/1ee ajuHHbIe 06pe3aTs. Xors PHC crioco6Ha
00pabaThiBaTh MOC/AEN0BATEILHOCTI [TI€PEeMEHHOM IJIMHbI, JOCTUIAeT-
€51 9TO 0OBIUHO JOIOIHEHUEM M 0Ope3aHueM, KaK OIMCAHO Bblllie, MK
PYIIIMPOBKOI BXOAHBIX NAHHBIX B IMAKeTbl, coJep:Kallue [ocjieno-
BATEJIbHOCTH OIMHAKOBOM IJiMHbL. Mbl Oyem MCII0/b30BaTh MepPBbiit
noaxof. Utro kacaetcst BToporo, Keras pekomeHayeT rakeThbl AJAWHbBL 1
(CM. https://github.com/fchollet/keras/issues/40).

Ucxons U3 BbIYMC/IEHHBIX [TOKa3aTenei, Mbl 3a[1aeM VOCABULARY SIZE
PaBHBIM 2002. 3TO 2000 CJIOB B cjioBape Iuioc GukruBHoe cioBo UNK
ioc dukTBHOe c/1oBo PAD (Ucronb3yercst 1/1s1 JOTIOIHeHUS [Tpeio-
JKeHUH 10 PUKCUPOBAHHOTO YMC/IA CTIOB, B HAILIEM C/IYYae MaX SENTENCE
LENGTH = 40).

DATA DIR = "../data"

MAX FEATURES = 2000
MAX SENTENCE LENGTH = 40

,H,anee Ham l'lOHa,D,OﬁI/ITCSI rnapa Taﬁ.ﬂl—’lﬂ, COOTBETCTBMA. B){O,[LH]:IMDI
OAHHbIMM 0714 PHC saBnsiercs CTPOKa MHIOEKCOB CJIOB, IIpHU4YyeM CJ10Ba
VIIOpsiaodeHsl 1o Y6blBaHI—’1}0 4acTOThbl BCTpe4YaeMOCTH B OGYHBEOLLLGM
Haﬁope. Taﬁnmum COOTBETCTBHMA ITO3BOAAKOT HAX0OWUTL MHOEKC 110 CJ10-
BY M CJIOBO 110 MHEKCY (BKIouast puKTUBHbIE cyioBa PAD u UNK):
vocab size = min(MAX FEATURES, len(word fregs)) + 2
wordZ2index = {x[0]: i+2 for i, x in enumerate (word freqs.most common (MAX FEATURES)) }
wordZ2index["BAD"] = 0
wordZ2index["UNE"] = 1
index2word = {v:k for k, v in wordZindex.items ()}

3aTem MbI 1peobpasyeM BXOZHbIE MPEIIOKEHMS B [10C/IE0BATE/Ib-
HOCTU MHJIEKCOB CJIOB, IOMOJIHAS UX [0 MAY SENTENCE LENGTH CJIOB. [To-
CKOJIBKY B HallleM C/yuyae pPe3y/bTaToM SIBJISIeTCs] OMHapHas BeJIMUMHa
(TTonoKUTeNbHASl WK OTPULATEIbHAS SMOLMOHA/IbHASI OKpacka), 06-
pabaTbIBaTh METKM HE HYXKHO:

¥ = np.empty((num recs,), dtype=list)
y = np.zeros((num recs,))

Honras kpatkocpoyHas namate — LSTM <+ 193

i=10
ftrain = apen(cs.path.jcin(DETA_D:R, "umich-sentiment-train.txt"), 'rb')
for line in ftrain:
label, sentence = line.strip().split("t"
words = nltk.word tokenize{sentence.decode{"ascii", "ignore").lower{())
seqs = []
for word in words:
if word2index.has key(word):
seqgs.append (word2index [word])
else:
seqgs.append (word2index ["UNE"])
H[i] = seqgs
y[1i] = int{label}
i4=1
ftrain.close()
X = sequence.pad sequences (X, maxlen=MAX SENTENCE LENGTH)

Haxkownell, pasbuBaemM Bech HaOOp MaHHbLIX Ha 0OYYAIOLIMIt 1 TECTO-
Bblit B nporopuyu 80:20:

¥Xtrain, Xtest, ytrain, ytest = train test split(X, y, test_sizeLO.Z,
random state=42)

Ha pucyHke HiKe 1okasaHa cTpykTypa Haueii PHC

(None, MAX_SENTENCE_LENGTH, 1)

v VYV v vy

Embedding

(None, MAX_SENTENCE_LENGTH, EMBEDDING_SIZE

LSTM

(None, HIDDEN LAYER SIZE)

Dense

(None, 0/1)

BXOOHBIMM HAHHBIMM SIBJISIETCS MOCIEN0BATEIbHOCTh WHIEKCOB
C10B. JIJIMHA MOCIeIOBATEIbHOCTY PABHA MAX SENTENCE LENGTH. [lepBOMY
M3MEpPEeHMIO TeH30pa [IPUCBAMBAETCSl 3HAUEHME None, MIOKA3bIBAIOIIIEE,
YTO pasMep MakeTa (4MC/I0 3aTMCeii, 3arpy>kKaeMbIX B CETh 3a OIMH pa3)

194 <+ [haBa 6.PekyppeHTHaa HeitpoHHaa ceTb — PHC

B MOMEHT OIpeaeieHus CeTH HeM3BeCTeH; OH OymeT 3afaH Ha Jrare
BBINIOJTHEHUSI C TIOMOLbI0 MMAPAMETPA batch size. TAKMM 00pasom, B
MperoaoKeH !, YTO pazmep lakeTa [MoKa Heu3BeCTeH, BXOIHO! TeH-
30p umeet POPMY (lone, MEX SENTENCE LENGTH, 1). TaKue T€H30pbI MoJa-
10TCS Ha BXOJ, ¢JI0S1 [IOTPY>KeHMS pa3Mepa EMBEDDING SIZE, Beca KOTOpOro
MHULIMATM3UPOBAHBI HEOOIbLIMMY CIYYaMHBIMMY 3HAYEHUSIMU U TI0[1-
nexar o0ydyeHuo. DTOT 10t rpeobpasyeT BXOAHOI TeH30p K dopme
(Mone, MAX SENTENCE LENGTH, EMBEDDING S1ZE). BBIXOZ, CJIOSI MOrpyXeHus 3a-
rpyxkaetcsi B LSTM ¢ pyinHOM 1oc/1e0BaTe/IbHOCTH MAX SENTENCE LENGTH
U pasMepoM BBbIXOJHOro ¢J10sl nIopen Laver size. Ha Beixoge LSTM no-
nyuaeTcs: TeH30p (GOPMBI (None, HIDDEN LAYER SIZE, MAX SENTENCE LENGTH).
[To ymonuanuio LSTM BbIBOOUT eAUMHCTBEHHLIIA TeH30p (POPMBI (Hone,
HIDDEN LAVER SIZE) B Ka4ecTBe pesyJbTUPYIOLLel [ocaefoBaTe/IbHOCTH
(‘:eturn_sequenceS—Palse). OH rnogaeTcst Ha BXOJ IUVIOTHOIO CJI0SI C pas-
MepOM BbIXoaa 1 u curMouaHoM PyHKILIMEH aKTUBALIMM, KOTOPbI BbI-
BoauT 0 (oTpuuAaTe/IbHAS OKpacKa) UK 1 (IoaoKUTeIbHASI OKpacKa).
[Ipy KOMITMJIALIMKM MOJENIM YKasbiBaeTCs GMHapHAasl MepekpecTHast
HTpoIMs B KauecTBe (GYHKUMM IOTEPb, MOCKOJIbKY MOJEb Ipef-
CKasbiBaeT OuHapHoe 3HauyeHue, u Adam — Xopolnit yHUBepcaabHbIi
ontumMmsarop. [uneprnapaMeTpbl EMEEDDING SIZE, HIDDEN LAYER SIZE,
BATCH STZE M NUM_EPOCHS (3@[J@aHHBIE HIKE B BUE KOHCTAHT) BbIOPAHBI 110
pes3ylibTaTaM HeCKONbKIMX 3KCIIepUMEHTOB:
EMBEDDING SIZE = 128
HIDDEN LAYER SIZE = 64
BATCH SIZE = 32
NUM EPOCHS = 10

model = Sequentiall)

model. add (Embedding (vocab size, EMBEDDING SIZE,

input length=MAYX SENTENCE LENGTH))

model . add (SpatialDropoutlD (Dropout (0.2)))

model.add (LSTM(HIDDEN LAYER SIZE, dropout=0.2, recurrent dropout=0.2))
model . add (Dense (1))

model . add (Activation ("sigmoid™))

model .compile (loss="binary crossentropy", optimizer="adam", metrics=["accuracy"])

3aTem Mbl 06yuaem ceTb Ha npoTsukeHun 10 (uuM ErPocHS) TTEPUOAOB
¢ pasmepoM makera (sarca s1zz) 32. [lowre Kaxmoro nepuopa mMonenb
IPOBEPSIETCSH HA TECTOBBIX JaHHBIX:

Honras kpatkocpoyHas namate - LSTM <+ 195

histery = model.fit (X¥train, ytrain, batch size=BATCH SIZE,
epochs=NUM EPOCHS, wvalidation data=(Xtest, ytest))

Ha pesy/bTaTax BbIITOJHEHMS [IPOrPAaMMbl BUIHO, KaK YObIBAET M0-
Tepsi U BO3PaCTaeT BEPHOCTD:

Train on 5668 samples, validate on 1418 samples

Epoch 1710
5668/5668 | |- 20s - loss: 0.3316 - acc: 0.8626 - val_loss: 0.0799 - val_acc: 0.9746
Epach 2/10

[]- 198 - logs: 0.0911 - ace: 0.9626 - val_loss: 0.0512 - val_ace: 0.9810
Epoch 3110
5668/5668 [] - 18s - loss: 0.0648 - acc: 0.9730 - val_loss: 0.0553 - val_acc: 0.9859
Epach 4/10
5668/5668 |] - 19s - loss: 0.0642 - acc: 0.9746 - val_loss: 0.0596 - val_acc: 0,9845
Epoch 5/10
5668/5668 [] - 208 - loss: 0.0531 - acc: 0.9787 - val_loss: 0.0434 - val_acc: 0.9845
Epoch 6/10
5668/5668 [] - 19s - loss: 0.0575 - acc: 0.9762 - val_loss: 0.0396 - val_acc: 0.9852
Epoch 710
E5668/5668 [] - 195 - loss: 0.0494 - ace: 0.9797 - val_loss: 0.0374 - val_acc: 0.9873
Epoch 8/10
5668/5668 | |- 195 - loss: 0.0467 - acc: 0.9809 - val_loss: 0.0374 - val_acc: 0.9859
Epach 9/10

[]- 185 - logs: 0.0440 - ace: 0.9811 - val_loss: 0.0425 - val_acc: 0.0852
Epoch 10/10
5668/5668 [] - 18s - loss: 0.0484 - acc: 0.9795 - val_loss: 0.0378 - val_acc: 0.9873
1418/1418 |]1-0s

B cnenyioiiem (pparMeHTe Mbl CTPOUM rpaduKM 3aBUCUMOCTH M0~
TepPH U BEPHOCTH OT BPEMEeHMU:

plt.subplot{21l)

plt.title ("Accuracy")

plt.plott{history.history["acc"], color="g", label="Train")

plt.plot (history.history["val acc"], color="b", label="Validation")
plt.legend(loc="best")

plt.subplot(212)

plt.title("Loss")

plt.plot (history.history["loss"], color="g", label="Train")
plt.plot(history.history["val loss"], color="b", label="Validation")
plt.legend(loc="best")

plt.tight layout()

plt.show()

Bot uto rojiyyaeTcs:

196 <+ [naBa 6.PekyppeHTHaa HeitpoHHaa ceTb — PHC

100 T T T A.CCLl rac.y

098
096
094 |
092 |
090 |
0.88
0.86 - - - - - - -

0 1 2 3 4 5 6 7 8 9
035 . . . loss .
030
0.25 |
0.20 +
0.15
010
005
0.00 ' ' ' ' ' '

0

— Train]
— Validation |/

— Train
— Validation ||

HaKDHEU,, MOIe/lb OlleHMBaeTCcs Ha IMOJIHOM TeCTOBOM Ha60pe u 1e-

YATAEeTCsl OLIEHKA M BepHOCTh. Mbl TakKe BbIOMpaeM HECKOJIBKO CIIy-
YafHBIX MPEeIJIOKEeHMIT U3 TEeCTOBOro Habopa u IedaTaem IpejcKasa-
Hue PHC, meTKy 1 camo IpenjioKeHue:

score, acc = model.evaluate(Xtest, ytest, batch_sizezBATCH_SIZE}
print("Test score: %.3f, accuracy: %.3f" % (score, acc))

for i in range(5):

idx = np.random.randint (len(Xtest))

xtest = Htest[idx].reshape(1,40)

ylabel = ytest[idx]

ypred = model.predict (xtest) [0] [0]

" " Join([indexZword[x] for = in xtest([0].tolist() if x != 0])
print("%.0ftidt%s" % (ypred, ylabel, sent))

sent =

Kak Bugum, BepHOCTb G/1M3Ka K 99 %. Ha 3ToM KOHKpeTHOM Habope

npencKkasaHus Moge/i B TOYHOCTH COBIIAOar0T ¢ MeTKaMM, HO 3TO Bep-
HO He IOJ1d BCex npe,n(:l(asanuﬁ.

—_—0 = =

Test score: 0.038, accuracy: 0.987

#pred label sentence

i like th mission impossible one ...

we 're gon na like watch mission impossible or hoot . (

the people who are worth it know how much i love the da vinci code .
ok brokeback mountain is such a horrible movie .

brokeback mountain is the most amazing / beautiful / romantic /
Heartbraking movie i have ever or will ever see in my life

i

L7

BeHTUNbHbINA pekyppeHTHbI Bnok — GRU <+ 197

Ecin xorure BBIIOIHUTD 3Ty IHporpaMMy Ha CBOEJ1 malluHe, TO
HYKHO 6}’,[[8’1‘ cKayaTb JaHHBIE ¢ caiiTa Kaggle

KO,U, 3TOro rnnpumMepa HaxoguTcs B tbafme umich sentiment lstm.py B CO-
CTaBe MCXOMHOI0 KoOa K 3Toli riiase.

BeHTUNbHbLIN pekyppeHTHbI 610K — GRU

BeHTunbHbIil pekyppeHTHbIH 670K (gated recurrent unit, GRU) — ato
papuanTt LSTM, Briepssie npemioxkeHHsiit K. Yo (cm. «Learning Phrase
Representations using RNN Encoder-Decoder for Statistical Machine
Translation», arXiv:1406.1078, 2014). Ou Takke obnagaeT yCTOHUMBO-
CTBIO K IIPOB/IeMe MCUe3a01Iero rpajiueHTa, HO ero BHYTPEHHSISI CTPYK-
Typa Ipolile, a IOTOMY M 00yuaeTcst OH ObICTpee, T. e. 1Jist 0OHOBJIEHUSI
CKPBITOTO COCTOSIHMSI HYKHO MeHbllie BbluMcieHMit. Ha cnemyiomem
PUCYHKe IMoKa3aHbl BeHTUIM B siuelike GRU:

h(t-1) h(t)
e

sigm sigm tanh

x(t)

Bmecro Tpex BeHTuel B sueiike LSTM - BXomHOro, 3abbiBaHUsS U
BBIXOAHOIO, B siueiike GRU Bcero gBa BeHTWIs1: 0OHOBJIEHMSI Z U cOpo-
ca r. BeduTwib 0OHOBJIEHUS OIpee/isieT, KaKyl YacTh [IPeablayIlero
3aIIOMHEHHOI'0 3HAUEHMSI COXPAaHATh, @ BEHTWIb cOpOCca — KaK CMelIn-
BaTh HOBbBII BXOZ, C IIpeablayiiei naMsaTeio. He cylecTByeT HMKaKoro
IMOCTOSIHHOI'O COCTOSTHMS STUeHKM, OTIIMUHOTO OT CKPBITOTO COCTOSTHUS,
kak B LSTM. Mexanu3sm pabotsl GRU onucekiBaeTcst cnepytommumu dhop-
MyJIaMu:

198 <+ [haBa 6.PekyppeHTHaa HeitpoHHaa ceTb — PHC

z=o(Wh,_ +Ux,)
r=e(Wh,_ +Ux)
c=tanh(W (h_ ®r) +Ux)
h=z®cq@((1-2®h_)

CornacHO sMIIMpUYecKuM oleHkam (cm. cratbu R. Jozefowicz,
W. Zaremba, and I. Sutskever «An Empirical Exploration of Recurrent
Network Architectures», JMLR, 2015 u |. Chung «Empirical Evaluation
of Gated Recurrent Neural Networks on Sequence Modeling»,
arXiv:1412.3555. 2014), kauecreo GRU u LSTM cpaBHumO, U nath
anpUOPHYI0 PEKOMEHIALIMIO, KAKYI0 MOJIe/b BLIOPATh [1JIsSI KOHKPETHO
3agaun, HeBo3MoKHO. GRU 6GbicTpee 06yualoTcss U TPeOYyIOT MeHblie
NAHHBIX J1JIsI JOCTMKEeHMs 060011aeMOCTH, HO B CUTYALIMSIX, KOTa 00y-
YAKOIIMX JAaHHBIX AO0CTATOUYHO, GOJIbIIASI BhIPA3UTEIbHAS CIIOCOOHOCTh
LSTM moxer npuBoauTh K ayuiium pesyiasraraMm. Kak u LSTM, GRU
MOJKHO I0/ICTABUTh BMECTO siueiiku Tura SimpleRNN.

Keras npenocrasisier BerpoeHHble peanusauuu LSTM u GRU Haps-
Iy C paCcCMOTPEHHBbIM Bbilile Kiaccom SimpleRNN.

Mpumep GRU - yacTtepeuHasn pasmeTka

B Keras ectb peanusaiiist GRU, KoTopoit Mbl BOCIIOIb3YEMCSI [1J18 [10-
CTPOEHMSI CeTH YaCTePeYHOi pasMeTKM, KOTOpast pacro3HaeT rpaMma-
TUUYECKHE KATEeropuu ¢JIOB: CYLEeCTBUTE/IbHbIE, [JIAr0/Ib, [IPUIaraTeib-
Hble U T. 1. PaHblile yacTepeyHy pasMeTKy IPUXOAUIOCH BbITIONHATh
BPYUYHYI0, HO Telepb 3T0 [AeIaeTCsl aBTOMATHYECKM ¢ ITIOMOIbIO CTa-
TUCTUUYECKMX Mofesieit. B mocieHue rofibl K 9T0 3agade ObUIO TAKKe
npumMeHeHo rybokoe obyuenue (cMm. R. Collobert «Natural Language
Processing (almost) from Scratch», Journal of Machine Learning
Research, pp. 2493-2537, 2011).

B kauecTBe 06YUAIOUIMX TaHHBIX HAM HYXKHBI [TPeIJIOXKEeHUs, B KO-
TOPBIX IIPOCTABJIEHbI METKM uacrteii peun. OOMH M3 TaKUX HABGOPOB,
Penn Treebank (nttps://catalog.ldc.upenn.edu/1dc99t42), COOEPKUT
pa3MeueHHbIi JIIAbMM KOPITYC TEKCTOB, copep:Kaliuii npumMmepHo 4.5
MMWLUIMOHA CJI0BA Ha aMepPUKAaHCKOM JMajeKTe aHIIMICKOro s3bika. Ho
3TOT pecypc rartHbii. 10%-ast Bbibopka Habopa Penn Treebank cso-
6oaHo gocryrnHa B cocraBe nakera NLTK (nttp://www.nltk.org/), U MbI
BOCITOJIb3YeMCSI €1 [isl 06yUeHMs] Halleil CeTu.

Haia mofiesib MpMHUMAET [OC/Ie10BATe/IbHOCTh CJIOB [TPeIJIOKEeHUsI
M BBIBOAUT METKM YacTeii peun sl Kakaoro ciosa. Tak, ijist BXOJHOIM

L7

BeHTUNbHBIM pekyppeHTHbI bnok - GRU <+ 199

nocnenoBaTenbHOCTH, cocTosieit us cios | The, cat, sat, on, the, mat, .],
BBIXOJ|HAS MOCTIeIOBATeNLHOCTh OyaeT conepkatrh metku [DT, NN, VB,
IN, DT, NN].

HaumHaem ¢ ummnopra:

from keras.layers.core import Activation, Dense, Dropout, RepeatVector, SpatialDropoutlD
from keras.layers.embeddings import Embedding

from keras.layers.recurrent import GRU

from keras.layers.wrappers import TimeDistributed
from keras.models import Sequential

from keras.preprocessing import segquence

from keras.utils import np utils

from sklearn.model selection import train test split
import collecticons

import nltk

import numpy as np

import os

Hanee ckaunBaem Kopiyc NLTK Treebank B hopmare, ynobHOM st
rnocienyiomieii 06paboTKu — B yike paso6paHHoM Buae. [TokasaHHBII
HIKe KO 3arpy)kaer JaHHbIe B [Ba Mapajule/ibHbIX (daiiia: B oMHOM
CJI0BA, COCTABJIAIOIIME ITPEJIOKEeHMS], a B APYTOM — METKIM YacTeii pedin.

DATA DIR = "../data"

fedata = cpentcs.path.jointDATA_D:R, "treebank sents.txt"), "wb")
ffdata = epentos.path.join[DRTR_D:R, "treebank poss.txt™), "wb")

sents = nltk.corpus.treebank.tagged sents()
for sent in sents:

words, poss = [], []
for word, pos in sent:
if pos == "-NONE-":
continue

words.append (word)
poss,append (pos)
fedata.write("{:s}n".format (" ".join{words)))

woF

ffdata.write("{:s}n".format (" ".join(poss)))

fedata.close()
ffdata.close()

M Ha 3TOT pas Mbl BbIIOJHUM IIpeJBapUTeNIbHYI0 00paboTKy, 4TO-
OblI OIIpenenuTh pasmep cioBaps. Ho teneps y Hac 6yaeT aBa ciioBapsi:
MCXOAHBIX CJIOB U LieJieBbIX MeTOK. TpebyeTcs BEIUMCIUTL KOJIMYECTBO
VHMKA/IbHBIX 3JIEMEHTOB B KaXXA0M cioBape. Kpome Toro, Ham HYKHO
3HATh MaKCMMaJ/IbHOE YKUC/I0 CJI0B B MPEIJIOKEHUM M KOJIUYECTBO 3a-
nuceii. B cuiy B3aMMHOM 0QHO3HAYHOCTH YaCTePEUHOM pasMeTKH I10-
CJleiHMe IBA 3HAUYEeHMsI O MHAKOBBI JJ1s1 000MX CJIOBApEii.

200 <+ [naBa 6.PekyppeHTHaa HeitpoHHaa ceTb — PHC

def parse_sentencestﬁ;aname]:
word fregs = collections.Counter ()
num_recs, maxlen = 0, 0
fin = gpen (filename, "rb")
for line in fin:
words = line.strip().lower().split{()
for word in words:
word fregs[word] += 1
if len{words) > maxlen:
maxlen = len(words)
num _recs += 1
fin.close ()
return word freqs, maxlen, num recs

s_wordfreqs, s maxlen, s numrecs = parse sentences|(
os.pa:h.join{DATA_DIR, "treebank sents.txt"))

t _wordfreqs, t maxlen, t numrecs = parse sentences|(
os.pa:h.join{DATA_DIR, "treebank poss.txt"))

print[len{s_wordfreqs], s maxlen, s numrecs, len(t wordfreqgs), t maxlen, t numrecs)

BrisicHsieTcst, utTo Koprryce cogepkut 10 947 yHUKANbHBIX CJIOB U 45
YHUKAbHBIX MeTOK. PasMep caMoro JJIMHHOTO TMPEIJoKeHUsS PaBeH
249, a uncno npepaoxenuit — 3914, 3Hast Bce 9T0, Mbl IPUHMUMAEM pe-
IIeHMe BKJIIOUATh B MCXOOHBI c/ioBapb To/ibKO repebie 5000 cyioB. A B
1ielIeBOM cjioBape 6yrer 45 YHUKabHBIX METOK YaCTeli Peun, oCKOoIb-
KY MbI XOTUM IPeCKa3bIBaTh BCe METKK. M B KauecTBe MaKCUMaJIbHOM
IJIMHBI TOC/IeI0BaTeIbHOCTH 3agagum 250.

MAX SEQLEN = 250
5_MAYX FEATURES = 5
T_MAX FEATURES = 4

Kak 1 B mpuMepe aHaaM3a SMOLMOHAIbHOM OKPAaCKM, BXOIHbIE JaH-
Hble GYIYT [IPeCTAB/IEHbI I0C/Ie0BATE/IbHOCTHIO MHAEKCOB C/I0B. A Ha
BbIXOIe OyaeT noc/ie[0BaTe/IbHOCTh MHIIEKCOB MeTOK. [[03TOMY HYKHO
MOCTPOUTH TABIULILI COOTBETCTBUSI MEXKIY C/IOBAMM (METKaMi) U UX
uHAekcamu. [Toka3aHHbIN HMUKE KOJ UMEHHO 3TO M aenaert. [Ipu pac-
CMOTPEHUM CIIOBAPS CJIOB Mbl BKJIFOUaEM B MHJIEKC [BA JOTOIHUTEb-
HBIX 371eMeHTa 11 GUKTUBHBIX ¢/ioB PAD 1 UNK. A B ciioBape meTok
buxrusHoe ctoBo UNK He HYKHO, MOCKOJIbKY HUKAKME METKU He OT-
OpachIBaOTCSL.

s_vocabsize = min(len(s_wordfreqgs), S _MAX FEATURES] + 2

s_word2index = {x[0]:i+2 for i, x in
enumerate (s_wordfregs.most common (S MAX FEATURES))}
s_word2index["PAD"] = 0

s_word2index["UNK"] = 1

L7

BeHTUNbHBIM pekyppeHTHbI bnok - GRU <+ 201

s_index2word = (v:k for k, v in s_word2index.items() }
t_vocabsize = len(t wordfreqgs) + 1
t_word2index = {x[0]:i for i, x in

enumerate (t_wordfregs.most commen (T _MAX FEATURES))}
t_word2index["PAD"] = 0
t_index2word = (v:k for k, v in t_word2index.items()}

Cnemyiouiuii war — rnocrpoeHie HabopoB HaHHbBIX IJIS 1I0JaYM Ha
BXO[, ceTU. Mbl BOCITO/Ib3YEMCSI STUMM TabAMIIAMM COOTBETCTBUS [JIs1
npeo6GpasoBaHMsl BXOOHBIX [PEIJIOKEHU B [OCAEH0BATE/ILHOCTh
UIeHTUDUKATOPOB CIOB JIMHOM wax seoren (250). MeTKM HOMKHBI
ObITh IIPENCTAB/IeHbl B BUE MMOCIEI0BATE/IbHOCTU YHUTAPHBIX BEK-
TOPOB pasMepa T Max FEATURES + 1 (46), TAaKKe AMUHOM Max_seorLen (250).
DYHKUMS build tensor UMTAET aHHBIe U3 00oux (aitnos u npeodbpa-
3yeT UX BO BXOJHON M BbIXOAHOI TeH30p. [s rnocTpoeHust BbIX0O-
HOrO TeH30pa IepefalnTcsl AOIOJHUTeIbHbIe MapaMeTpsl, 1oapas-
ymeBaeMmble 110 ymoauaHuio. Hama dyHkuus obpaiaercs: K GyHKIUK
np utils.to categorical (), KOTOPAs npeobpasyer BIXOJHYIO MOC/Ien0-
BATeIbHOCTh MAEHTU(GUKATOPOB METOK YacTeil peuu B YHUTApHOE
rnpencraBieHue:
def build tensor (filename, numrecs, wordZindex, maxlen,

make_categorical=?alse, num_cla5595=3}:

data = np.empty((numrecs,), dtype=list)
fin = open (filename, "rb")

i=0
for line in fin:
wids = []

for word in line.strip().lower().split():
if wordZindex.has key(word):
wids.append (word2index [word]}
else:
wids.append (word2index ["UNE"])
if make categorical:

data[i] = np utils.to categorical (wids, num classes=num classes)
else:

data[i] = wids
i4=1

fin.close()
pdata = sequence.pad sequences(data, maxlen=maxlen)
return pdata

X = build_tensor(cs.path.jointDATA_DZR, "treebank sents.txt"),
s_numrecs, s_word2index, MAX SEQLEN)

Y o= build_tensor(cs.path.jointDATA_DZR, "treebank poss.txt"),
t_numrecs, t word2index, MAX SEQLEN, True, t vocabsize)

202 <+ [naBa 6.PekyppeHTHaa HeitpoHHaa ceTb — PHC

3arem pasﬁusaeM Haﬁop JAaHHBIX Ha oﬁyqalom,uﬁ M TeCTOBBII B Ipo-
rnopuymu 80:20:
Xtrain, Xtest, Ytrain, Ytest = train test split(X, Y, test size=0. 2
random state=42)
Ha PUMCYHKe HMIKe [NTOKa3aHa cxeMa Hallleif ceTu. BbII'.TISIILHT CIIOXKHO-
BATO, [TO3TOMY pasﬁepem ee I10 maram.

The cat sat on the mat
(None, MAX_SEQILEN, 1)

vy 444

Embedding

(None, MAX_SEQLEN, EMBED_SIZE]

Encoder
RNN

(None, HIDDEN_SIZE)

RepeatVector

(None, MAX_SEQLEN, HIDDEN_SIZE

Decoder * * * * * *|
RMNN

(None, MAX_SEQLEN, HIDDEN_SIZE

vy 444

Dense

(None, MAX_SEQLEN, t_vocab_size

BEEEE

DT NN VB IN DT NN

Kak u paHblile, B IMpeArioloxeHnn, YTO pasMep raxkera elje He
oripefiesieH, BXOJOM B CeTb SIBJISIOTCSI TeH30p MAeHTU(GUKATOPOB C/IOB
dbopmbl (vone, Max sEoLEN, 1). OH NPOXOOUT UEPe3 CJIONM MMOrPYKeHMs,
KOTOPBbIiT peodpasyer Kaxi0e ¢JIOBO B IJIOTHbLII BEKTOP pasMepa -
BED STZE, TAK UTO TEH30P HA BBIXOME 3TOTr0 C/10s1 uMeeT GOpMy (None,
MAY SEQLEN, EMBED SIZE). JTOT T€H30p I10JaeTCsl Ha BXO[KOOUPYIOLIEero
GRU-cog ¢ pasmepom Bbixopa nrooen size. GRU HacTpoeH Ha BO3Bpar
€IMHCTBEHHOI'0O KOHTEKCTHOI'0 BeKTOpa (return_sequences—False) rnocie

L7

BeHTUNbHBIM pekyppeHTHbI bnok - GRU <+ 203

06paboTKU MMOCIe0BaTENbHOCTH IJIMHOM MAX SEQLEN, TO3TOMY TEH30D
Ha Bbixoie GRU-ciiost umeeT opmMy (tone, HIDDEN SIZE).

JTOT KOHTEKCTHbIIi BEKTOp [Janee perulMUMpyeTcs: CJ10oeMm
RepeatVector B TeH30p POPMBI (Hone, MAX SEQLEN, HIDDEN SIZE) M MOFA-
eTcst Ha Bxop pekonupytowero GRU-cnos. PesyibraT rnocrymnaer rioT-
HOMY CJI010, KOTOPBI ITOPOXKIAET BBIXOLHOM TeH30p (DOpMbI (None,
MAX SEQLEN, t vocab size).B KauecTBe DYHKIMM aKTUBALIMU B [JIOTHOM
c1oe ucrosb3yeres softmax. 3HaueHUeM argmax AJist Kaxaoro cToib-
11a 3TOTO TeH30Pa SIBJISIeTCS] MHJIEKC MpecKa3aHHOM MeTKI YacTh peun
IUJIsI CJTOBA B COOTBETCTBYIOLIEH MO3ULIMHN.

Huke npuBefeHo ollpefe/ieHue 3TOM MOIENN; EMBED SIZE, HIDDEN
SIZE, BATCH SIZE M NUM EPOCHS — CUIIEpIIapaMeTpbl, 3SHAYEHUST KOTOPbIX
BbIOpAHBI 110 Pe3y/abTaTaM dKCIepumMeHToB. [Ipu KoMIuisimumu Momie-
1 6buTa YKasaHa qJYHKL[I—’ISI NOTEePb categorical crossentropy, IOCKOJIBKY
MeTKM NPUHAJIEXKAT HECKOJIBKUM KaTeropusim, 1 IMOMy/IsipHbINA OITH-
musarop Adam:

EMBED SIZE = 128
HIDDEN SIZE = 64
BATCH SIZE = 32

NUM EPOCHS = 1

model = Sequentiall)

model.add (Embedding (s_vocabsize, EMBED SIZE, input length=MAX SEQLEN))

model . add (SpatialDropoutlD (Dropout (0.2)))

model.add (GRU(HIDDEN SIZE, dropout=0.2, recurrent dropout=0.2)

model. add (RepeatVector (MAX SEQLEN))

model.add (GRU(HIDDEN SIZE, return sequences=True))

mcdeL.addtTimeDistributedtDense(t_vccabsize]]]

model . add (Activation ("softmax"))

model.compile (loss="categorical crossentropy”, optimizer="adam",
metrics=["accuracy”]}

Moneinb oﬁyqae'rcn Ha MNpOoTsKeHWMM OOHOIro Iepuojda. HOCKOHIJKY
KO/JIMYeCTBO IapaMeTpoB MOJe/l BeJlIMKO, TO [10cjie 1mepeoro nepmuoaa
HayMHaeT I[NPOABJISATLCHA TeHIeHII WS K HEDGOGY‘IE‘HMK} — eC/iM OJHM U Te
JKe faHHbIe [10JaBaTh B MMoC/aeayILninx riepmonax, To Moae/b IIoaroHsa-
eTcst K HUM M XYIKe BefeT cebst Ha KOHTPOJIbHBIX JaHHBbIX.

model .fit (¥train, Ytrain, batch_size-—BATCH_SIZE, epochs=NUM EPOCHS,

validation data=[Xtest, Ytest])
score, acc = model.evaluate (Xtest, Ytest, batch_size—'BA’I‘CH_SlZE]
print ("Test score: %.3f, accuracy: %.3f" % (score, acc))

204 <+ [naBa 6.PekyppeHTHaa HeitpoHHaa ceTb — PHC

Huke nokasan pesynbTart oﬁyqem—m 1 oueHMBaHMs mompenu. Kak
BUMIMM, ViKe I10CJIe I1epBoro repuoga Mojejlb segeT cebs BecbMa He-
I1110X0.

Train on 3131 samples, validate on 783 samples
Epoch 11
313143131 |]-B1s - loss: 0.3013 - acc: 0.8263 - val_loss: 0.2934 - val_acc: 0.9159

783783 | 1-3s
Test score: 0,293, accuracy: 0.916

Kak 1 oiokeHo, TpH KJacca peKyppeHTHbIX ceTeil B Keras (simplerin,
LSTM M GRU) B3aMMO3aMeHsieMbl. YTo6b1 y6eIUThCsl B TOM, 3aMEHMM BCe
TP BXOXKIOEHMS CI0BA GRU B MPEeAbIAYIIeil IporpaMme Ha LeTd M CHO-
Ba 3amycTum ee. U3MeHUThb MPUOETCS TOMBKO OUPEKTHMBY MMIIOPTA U
onpeeieHe MOIEN:

from keras.layers.recurrent import LSTM

model = Seguential()

model.add (Embedding (s_vocabsize, EMBED SIZE, input length=MAX SEQLEN))
model .add (SpatialDropoutlD(Dropout(0.2)))

model.add (LSTM (HIDDEN SIZE, dropout=0.2, recurrent dropout=0.2))
model.add (RepeatVector (MAX SEQLEN))

model.add (LSTM(HIDDEN SIZE, return sequences=True))
model.add(TimeDistributed (Dense (t_vocabsize)))

model.add (Activation ("softmax"))

Pesynbratsl ceteit Ha ocHoBe GRU 1 LSTM cornocraBuMsl.

Kiacc mogesieit Buaa rociefqoBaTelbHOCTb-B-10C/Ie0BATEIbHOCTh
ob67amaeT MOI[HbBIMM BbIpasMTeIbHBIMKM BO3MOKHOCTIMU. Ero ka-
HOHMYECKOEe IPWIOKEeHUEe — MAIIMHHBII [epeBoll, HO eCcTb U MHOIO
IOPYTUX, B T. 4. PACCMOTPEHHOE Bhbillie. B KauecTBe MpuMepoB MOXKHO
Ha3BaThb pasjuuHble 3a7auyyn 0O6pabOTKM eCcTecTBEHHOIO si3blKa: pac-
Mo3HaBaHMe MMEHOBaHHBIX cyuiHocTeit (cm. J. Hammerton «Named
Entity Recognition with Long Short Term Memory», Proceedings
of the Seventh Conference on Natural Language Learning at HLT-
NAACL, Association for Computational Linguistics, 2003), rpammaTu-
yeckuit pasbop npemnoxenuit (cm. O. Vinyals «Grammar as a Foreign
Language», Advances in Neural Information Processing Systems, 2015),
a taKoke Gosiee CIOXKHbBIE CeTH, HAaIIpUMeD, [Jisl TOAIMChIBAaHMUS M300pa-
skenms (cMm. A. Karpathy, F. Li «Deep Visual-Semantic Alignments for
Generating Image Descriptions», Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2015).

[MonHblit KON MpUMepa HaXOAUTCS B (aiiie pos tagging gru.py B CO-
CTaBe MCXOIHOI'0 KOJa K 3TOi raBe.

L7

[eyHanpaeneHHble PHC «+ 205

[syHanpaBneHHble PHC

Beixon PHC B MOMeHT BpeMeHM t 3aBMCUT OT BbIXOAOB HA BCEX IIpe]l-
LIECTBYIOIIMX BPEMEHHBIX liarax. Ho BIO/IHE MOXET CIIy4UTbCS, UTO
BBIXOJ, 3aBMCUT TaKKe OT OYAYIIMX BBIXOAOB. OTO CIIpaBeliMBO, B
YacTHOCTH, JJia npunoxkenuii OES, korga arpubyTel c1oBa uiau dpa-
3bl, KOTOPBIE MBI ITBITAEMCS TTPECKa3aTh, MOTYT 3aBMCETh OT KOHTEK-
CTa, OIpeie/iIeMoro Bcem 00'be MITIOLMM IIPeJIOKeHMeM, a He TOJIbKO
rnpenuecTByrimMMI cioBaMmu. iIsyHanpasienssie PHC nomorator rio-
CTPOUTH apXUTEKTYPY CETH, KOTOPAst MPUIAET OJMHAKOBYH BasKHOCTh
Hayvaly ¥ KOHILLY IPeJIOKEeHUs!, U [O3BOJISIIOT YBEIMUUTD 00beM JaH-
HbIX, HOCTYITHBIX JJ1sl OOYUeHMSI.

IeyHanpasnenHast PHC - ato e PHC, coGpaHHbie BMecTe, KOTOpbIe
YMTAIOT BXOAHbIE MaHHBIE B PA3HBIX HANIpapJIeHUsIX. B HalleM npumepe
onxa PHC 6yger unrarh (JIOBa OT HavasIa MpeiioskKeHus K KOHILY, a Ipy-
rast — OT KOHLA K Havasy. BbIXo Ha KakI0M BpeMeHHOM liare Gymer
3aBUCETh OT CKPLITOro cocrosinus obeux PHC.

Keras noggep:xusaet aByHarpasiaeHHbie PHC ¢ noMouibio 06epThl-
BAIOLIETO CJI0S Bidirectional. TAK, B (JIyUyae YaCTEPEUHOI PA3METKM MbI
moru 6b1 caenath LSTM-ceTu aByHaIIpaBieHHbIMK, 00EPHYB UX CJ10-
€M Bidirectional, KAK MTOKA3aHO HIUXKeE:

from keras.layers.wrappers import Bidirectional

model = Seguentiall)

model.add (Embedding (s_vocabsize, EMBED SIZE, input length=MAX SEQLEN))
model .add (SpatialDropoutlD (Dropout (0.2)))

model.add (Bidirectional (LSTM (HIDDEN SIZE, dropout=0.2, recurrent dropout=0.2}))
model. add (RepeatVector (MAX SEQLEN))

model.add (Bidirectional (LSTM(HIDDEN SIZE, return sequences=True)))
m:de;.add(TimeDistributediDensett_vecabsize]]]

model . add (Activation ("softmax"))

[Momyyaemoe KaueCcTBO CPaBHUMO C KayeCcTBOM B C/lyyae OgHOHA-
rnpasieHHoi LSTM-ceru:

Train on 3131 samples, validate on 783 samples

Epach 141
3131/3131 |] - 268s - loss: 0.2B89 - acc: 0,8226 - val_loss: 0.2788 - val_acc: 08036
783/783 [1-12s

Test score: 0.279, accuracy: 0.904

206 <+ [naBa 6.PekyppeHTHaa HeitpoHHaa ceTb — PHC

PHC c 3anoMuUHaHUeM COCTOSAHUS

PHC moxeT coXpaHSTb COCTOSIHME MPK epexoie OT OJHOTOo MmakeTa K
Ipyromy Bo Bpemsi 06yueHus. MHaue roBopsi, CKPbITOE COCTOSIHUE, BbI-
YMC/IEHHOE [IJIS1 OJHOr0 IaKeTa 00y4alouux JaHHbIX, UCIIOIbL3YeTCs B
KauecTBe HAYaJIbHOIO CKPLITOrO COCTOSIHMS [JIsI CIAVIOLIero rmakera.
Ho sror pexkuM HeoOXoAMMO 3afaBaTh SIBHO, IoToMy 4To B Keras PHC
10 YMOJIYaHMIO HE 3alIOMMHAET COCTOSIHME M cOpachiBaeT ero Iocie
06paboTKM KaxKI0ro nakera. 3arioMMHaHue COCTos HKA 11o3Bojsier PHC
CTPOUTD CBOE BHYTPEHHEE COCTOSIHUE HA ITPOTSIKEeHUM 06paboTKu Beei
[0C/IeI0BATEILHOCTH 06YYaloIMX JAHHBIX U Ja)Ke MCII0b30BaTh ero
Ha sTarne mnpeacKkasaHusl.

K nocronucersam PHC ¢ 3arioMMHaHMEM COCTOSIHUS C/IeIyeT OTHECTH
MEHBILMIA pasmMep ceTy U (WIK) COKpallleHue BpeMeHu 00ydyeHusl, a K
He/I0CTATKAM — TO, UTO MbI TEIIEPh HECEM OTBETCTBEHHOCTh 3a BbIOOP
TAKOro pasMepa rnakera, KOTOpbIit OTpa)kaeT nepuoguYHOCTb JaHHbBIX,
M 3a COPOC COCTOSIHMS 1OC/Ie Kaxkaoro rnepuoaa. Kpome toro, jaHHbie
He cjiefyeT IepeTacoBbIBAThL B IIPOLiecce 00y4YeHMs], IOTOMY YTO JJIst
cereli C 3alIOMMHAHMEM COCTOSIHUSI ITOPSIAOK MPeabsB/IeHUS JaHHBIX
CYILeCTBEHEH.

Mpumep LSTM ¢ 3anoMuHaHKEM COCTOAHUA —
npeacKkasaHue NoTpebneHUsa 3NeKTpuyecTsa

B aToM ripumMepe Mbl [IpeicKaxkeM [oTpebdieHie 3JIeKTpUuuecTBa C ro-
motibio LSTM-cetn ¢ 3ariommuHaHmneM 1 6e3 3aIIOMUHAHMUS COCTOSTHUS
M cpaBHUM pesynbraThl. Hannomuum, uro B Keras PHC 1o ymonyaHuio
He 3al0MUHAaeT CoCTosiHMe. B Mmopensix ¢ 3arioMMHaHMeM BHYTpeHHee
COCTOSIHME, BLIYMC/IEHHOE [1JIsl 3JIeMEeHTA [B ITpedblayiiemM nakere, 0y-
IeT UCII0JIb30BATHCSL B KaYeCTBe Haua/IbHOI'0 COCTOSIHMSL 3/IeMeHTa i B
clenyooleM rnakere.

It 06yueHust Mbl 6yIeM MCI0/b30BaTh HAOOP JAHHBIX M3 Perlo-
sutopusi MaliMHHOro obyuenus UCI (https://archive.ics.uci.edu/ml/
datasets/ElectricityLoadDiagrams20112014), KOTDIJIJ[ﬁ COOepxKuT MH(IJOD'
MalMio o rnorpediennn sekrpuyectea 370 moTpebUTeNSIMI C MHTEP-
Bajiom 15 munyT 3a nepuop ¢ 2011 nno 2014 rop. st ipumepa Mbl cJiy-
4yaliHO BbIOpain norpebutesns ¢ Homepom 250.

BonbUIMHCTBO 3aay MOXHO pelinThb ¢ romoibio PHC 6e3 3aro-
MMWHAHMSI COCTOSIHMSI, TIoaTomy, nipuberas Kk PHC ¢ 3arnomuHaHuem
COCTOSIHMSI, HY}KHO TOHMMAaTh, 3a4eM Bbl 3TO JAenaete. Kak nmpasuiio,

L7

PHC c 3anomuHaHuem coctoaHua < 207

TaKasi He06X0AMMOCTh BOSHUMKAET, KOrIa B JaHHbBIX MMEeTCs ITepUOoIMu-
yeckast cocrapisioniast. U st norpe6ieHus 3J1eKTpUYecTBa aeicTBu-
TeJIbHO XapaKTepHa IIepUOAMYHOCTE — ITOTpeb/ieHe BhIIIe JHEM U HU-
JKe HOUbH0. Boiieium gaHHbie [jis morpeburess 250, Hapucyem rpaduk
3a [epBble OecaTh AHEe M COXPAaHMM JaHHbIE B IBOMYHOM (opmare
NumPy mjis cyiefyioliero mara.

import numpy as np

import matplotlib.pyplot as plt
import os

import re

DATA DIR = "../data"

fld = open(os.path.join(DATA DIR, "LD2011 2014.txt"™), "rb™)
data = [] - -
cid = 250
for line in fld:

if line.startswith(""";"):

continue

cols = [float(re.sub(",",

data.append(cols[cid])
fld.close()

; %)) for x in line.strip().split(";")[1:]1]

NUM ENTRIES = 1000

plt.plot (range (NUM ENTRIES), data:U:NUM_ENTRIES]]
plt.ylabel ("electricity consumption™)

plt.xlabel ("time (lpt = 15 mins)")

plt.show()

np.save (os.path.join (DATA DIR, "LD 250.npy"), np.array(data))

Ha pucyHKe HMKe IT0Ka3aH MoJIyuYMBLIMIACS rpaduK:
140 -

[
L)
(=}

g

2

3

MNoTpebneHue anekTpuyecTea
]

=]

0 200 400 600 BOO 1000
time {1pt = 15 mins)

208 <+ [naBa 6.PekyppeHTHaa HeitpoHHaa ceTb — PHC

Kak BuaguTe, uMeeTcs: oTyeTIMBast CYTO4YHasl [MepuMoauM4HOCThb, TaK
UTO [JIS1 3TOM 3a7auyM MOAE/b C 3allOMMHAHMEM COCTOSIHUS OTIMYHO
MonoiaeT. KDDME TOro, M3 pe3yjiabTaTOB HabI0IeHus cieayer, 4To
MMeeT CMbIC/ B34Th BATCH SIZE PABHBIM 96 (KOMMUYECTBO 15-MMHYTHBIX
OTCUeTOB 3a 24 yaca).

Mas1 6Y,U,EM IMOKa3bIBATh OOHOBPEMEeHHO KOoJ, 0beux Bepcuﬁ: C 3ario-
MMHaHKeM 4 6e3 3aIIoMMUHaHWs COCTOSIHM S, ITOCKOJILKY ITOUYTH BeCbh KO
coBnapgaet. Ha otnuuus GY,U,EM crielyMaibHO 06pam,a'rb BHMMaHMKeE.

Kak 06b14HO, cHauyaja MMIIOPTUPYEM HeoOXoauMble OMOIMOTEKH U
KJIaCChl:
from keras.layers.core import Dense
from keras.layers.recurrent import LSTM
from keras.models import Sequential
from sklearn.preprocessing import MinMaxScaler
import numpy as np
import math
import os

3aTeM 3arpy3Mm JaHHbie Ajis rorpedburens 250 B 60JbILIOI MacCUB
(pasmepa 140256) 3 coxpaHeHHOro paHee ABou4yHOro Qaitia NumPy 1
rnpuseem ero K auanasony (0, 1). HakoHel, usmeHum Gopmy BXOIHBIX
JaHHBIX HAa TPEXMEPHYIO, KaK TOro TpebyeT Hallla CeTh:
DATA DIR = "../data"
data = np.load(os.path.join(DATA DIR, "LD 250.npy"))
data = data.reshape(-1, 1)
scaler = MinMaxScaler (feature range=(0, 1), copy=False)
data = scale:.fit_transforml{data]

[1pu 06paboTKe KaXKIoro rnakeTa Moeib IIPUMHUMAET I10C/IeI0BaTe/ b~
HOCTh 15-MMHYTHBIX OTCYETOB M IIpe/CKa3biBaeT CIemyrommii. [IiuHa
BXOMIHOI NOC/Ie0BATE/ILHOCTH OIIpeesisieTCs] [IepeMeHHOM Nu TIMESTERS,
ITo pesynbraTam IKCIIEPUMEHTOR MbI BbIOPAIM 3HAYEHME NUM TIMESTEPS=20,
T. €. IJIMHA BXOAHOI rnowienopateasHocT pasHa 20, a BeixonHoi — 1. Ha
CIeAYIOIIEM Liare BXOAHO MacCUB Ipeobpa3oBbIBAeTCsI B TEH30PbI X U ¥
(hopmbl (vone, 4) M (Nene, 1).M HakoHeLl, BXOJHOI TEH30p x [Ipeodpasyer-
Cs1 B TPEXMEPHbI B COOTBETCTBUM C TPEOOBAHMSIMM CETH:
¥ = np.zeros|((data.shape[0], NUM TIMESTEPS))
¥ = np.zeros | (data.shape([0], 1))
for i in range(len(data) - NUM TIMESTEPS - 1):

X[i] = datafi:i + NUM TIMESTEPS].T
¥[i] = data[i + NUM TIMESTEPS + 1]

vavenuTs dopuy X, NDMBEOA €00 K TPEM MEMSDeHMAM (OTCYETH, BPEMEHHEE WATM, NDWSHAKM)
X = np.expand dims (X, axis=2)

L7

PHC c 3anoMuHaHuem coctosiHua <+ 209

Ilanee Mbl paaﬁmaaeM TEeH30pbl ¥ U ¥ Ha 06}"-[310]].[1—111 M TeCTOBBIH
Ha6op B npomnopumun 70:30. I[TockonbKy Mbl paboTaeM ¢ BpeMEeHHbIMMU
psoaMu, TO [IpOCTO BIJIGMIJ&EM TOUYKY pasgejieHMs M pa3pe3aeM OaH-
Hble Ha IBe 4acCTH, He IT0Jb3ysICh liJYHKLI,MeI?I train test split, KOTOpas
OOIMOJIHMUTEJIbHO [MepeTacoBbIBAET NaHHbIE!:
sp = int (0.7 * len(data))
¥train, ¥test, Ytrain, Ytest = ¥[0:spl, ¥X[sp:l, Y[0:spl, Ylsp:]
print (Xtrain.shape, Xtest.shape, Ytrain.shape, Ytest.shape)

CHauasia ornpeieisieTcst Mmoae/b 6e3 coxpaHeHus coegyHenusi. Kpo-
Me TOro, 3aJ1al0TCs 3HAYEHMs] IePeMEeHHbIX BATCH SIZE M NUM TIMESTEPS.
Pasmep Boixogma LSTM-ceTu ornpenensercs: IepeMeHHOI HIDDEN SIZE,
3TO elle OAMH ruIepriapameTp, KOTOpblii 0OBIYHO BBICTABJISIETCS 10
pesyiabTaTaM 3KcrepumMeHTOB. Mbl 3amanu 3Hauenue 10, moromy uTo
Hallla 1[eJ1b — POCTO CPABHUTH [IBE CETH:

NUM TIMESTEPS = 20

HIDDEN SIZE = 10
BATCH SIZE = 96 # 24 uaca (xomMuecTBO l5-MMHYTHHX MHTEDBANOE)

623 COXpaHeHMA COCTOAHMA

model = Sequentiall)

model.add (LSTM (HIDDEN SIZE, input shape= (MM TIMESTEPS, 1), return sequences=False))
model . add (Dense (1))

Ornpenenenyue COOTBETCTBYIONILK MOJIe/IM C COXpPaHEeHMeM COCTOS-
HUSI OUEHDB TTOX0Xe (cM. HIpKe). B koHerpykTope LSTM Hy:KHO 3a1aTh
napameTp stateful=True, & BMECTO NapamMeTpa input shape, B KOTOPOM
noJipasymMeBaeTcsi, 4TO pasMep IakeTa oIlpe/efisieTcsl Ha 3Tarle Bbl-
IOJTHEeHMSI, Mbl 337aeM I1apaMeTp batch input shape, L€ 3TOT pasmep
yKasbiBaeTcs: sBHO. Kpome ToOro, pasmepsl 06y4yaioiiero M TecToBoro
Habopa JaHHbIX JO/DKHbBI ObITh KpaTHBI pasMepy nakera. Kak atoro mo-
OUTHCS, Mbl YBUIMM HIKE ITPU PACCMOTPEHMM KOa 00yUeHMsI.

#c CoXpaHeHMeM COCTOAHMA

model = Sequentiall)
model.add (LSTM (HIDDEN SIZE, stateful=True,
batch input shape=(BATCH SIZE, NUM TIMESTEPS, 1), return_sequences=False))

model.add (Dense (1))

Kog komrmisinuy Mopeiu oguHakoB st 06enx PHC. Ormerum, uto
B POJIM [OKa3aTesl KAYeCTBa BBICTYIIAET HE BEPHOCTD, KaK 00bIYHO, a
cpegHeKBajpaTUUecKasl olmMbKa, MOCKOAbKY Mbl MMeeM 3ajaudy pe-
rpeccuu: HaC MHTepecyeT He COBMNajieHue IpeacKasaHus ¢ MeTKOI, a
pacxokaeHue MexXay rnpeackasaHusaMm M MmeTKaMu. [1oHbIi repeyeHb
BCTpoeHHBIX B Keras rokasaTesieil KauecTBa UMeeTCsl B JOKYMEHTaL M.

210 <+ [naBa 6.PekyppeHTHaa HeitpoHHaa ceTb — PHC

model .compile (loss="mean squared error", optimizer="adam",
metrics=["mean squared error"])

s obyueHust Mmojeny 6e3 COCTOSIHMS JOCTATOYHO OJHOM CTPOKM,
KOTOpasi BaM, HaBepHOoe, y3Ke CTaja MPUBbIUHOI:

BATCH SIZE = 96 # 24 uwaca (monMuUeCTEQ lS5-MMHYTHHX MHTEDEANOE)

Be3 COXpAaHeHMA COCTOAHMA
model.fit (Xtrain, Ytrain, epochs=NUM EPOCHS, batch size=BATCH SIZE,
validation data=(Xtest, Ytest), shuffle=False)

COOTBEeTCTBYIOLIMIT KO, [JIst MOe/IU C COXPAHEeHUeM COCTOSIHMS [10-
KasaH HiKe. B Hem ecTb TpM BasKHbIX MOMEHTA.

Bo-repssix, pasmep Iakera [OO0/DKEH OTPAKaThb [MEPUOAMUYHOCTH
naHHbIX, Mockoyibky PHC ¢ coxpaHeHMeM COCTOSIHMSI COIOCTAaBJISIET
COCTOSIHMSI COOTBETCTBEHHbIX 3/IeMEHTOB COCEeJHMX [aKeTOB, a 3TO
3HAYMT, UTO IIPU NPABMILHOM pasMepe rakera ceThb Oyaer 06yyaThest
6picTpee. PasMepsl 00y4aoIero U TECTOBOro Habopa OOJKHBI ObITh
KpaTHbI pasMepy rnakera. Mbl obecrieunsiu BbIIIOJIHEHME ITOr0 YCI0-
BUSI, OTOPOCUB MOC/IeHMEe HECKOJIbKO 3aruceit B 060X Habopax.

Bo-BTOpbBIX, MbI B LIMKJIe 00yyaeM MO/1e/Ib Ha MPOTSHKeHMM 3aJaHHO-
ro YMC/1a [epromioB, MPK 3TOM COCTOSIHME COXPAHSIETCsI IIPU Iepexoe
OT Iakera K rakery. Ho mocie Kaxmoro rnmepuoja coOCTOsH1e MOMIen
Heob6X0MMO COPOCUTE BPYYHYIO.

B-Tperbux, maHHble HeoOXOOUMO IOAABATHL CTPOrO IMOC/IeHoBa-
tTenbHo. [To ymonuanuio Keras reperacoBbiBaeT JaHHbIE B KaXKI0M
rnakeTe, a 3TO HapylIaeT COOTBETCTBUE 3/IEMEHTOB, HE0OXoAMMOe JJ1s1
sdgdekrupHoro obyyenus PHC ¢ coxpaneHuem coctosHusi. YToObl 0T-
MEeHMUTb TACOBaHMe, 3a1aeTCsl MapaMeT]p shufile=False IPU 0OpaLLEHUN
K model . fit () :

BATCH STZE = 96 # 24 uwaca (xomMuUeCTEO lS5-MMHYTHHX MHTEDEANOE)

© CcoxpaHeHMEM COCTOAHMA
pasuepd ofyuanmero ¥ TeCcTOBOTO Habopa nomsHn OHTE xpaTHe BATCH SIZE
train size = (Xtrain.shape[0] // BATCH SIZE) * BATCH SIZE
test size = (Xtest.shape[0] // BATCH SIZE) * BATCH SIZE
Xtrain, Ytrain = Xtrain[O:train size], Ytrain[O:train size]
Xtest, Ytest = Xtest[0:test size], Ytest[O:test size]
print (¥train.shape, Xtest.shape, Ytrain.shape, Ytest.shape)
for 1 in range (NUM_EPOCHS) :
print{"Epoch {:d}/{:d}".format{i+l, NUM EPOCHS))
model .fit (Xtrain, Ytrain, batch_size:BATCH_SIZE, epochs=1,
validation data=(Xtest, Ytest), shuffle=False)
model.reset states()

L7

PHC c 3anoMuHaHuem coctosiHua <+ 211

HaKOHEU,, MbI OLIeHMBaeM MOOe/ib Ha TeCTOBBIX NIAHHLIX M ITedaTaem
pes3yabTaThbl:

score, _ = model.evaluate (Xtest, Ytest, ba::ch_siZE\:BATC}{_SI ZE)

rmse = math.sgrt(score)

print ("MSE: {:.3f}, RMSE: {:.3f}".format (score, rmse))

[Toce OGYT-IGHI—’IH MOge/1n oe3 COXpaHeHMs COCTOSIHMSA Ha ITPOTsDKe-
HMHM [IATH IIepUOO0B 1TONYYAaKTCH TaKKMe pesyibTaThl:

(98179, 20, 1) (42077, 20, 1) (98178, 1) (42077, 1)
Train on 98179 samples, validate on 42077 samples
Epoch 1/5
S8179/98179 [:
val_mean_squared_error: 0.0040

= 415 - loss: 0.0086 - mean_squared_error: 0.0086 - val_loss: 0.0040 -

SB179/98179 [:] - 41s - loss: 0.0045 - mean_squared_error: 0.0045 - val_loss: 0.0039 -
val_mean_squared_error: 0.0039

Epoch 35

9B179/98179 [:] - 43s - loss: 0.0041 - mean_squared_error; 0.0041 - val_loss: 0.0038 -
val_mean_squared_error: 0.0038

Epoch 4/5

SE1T9/98179 |] - 445 - loss: 0.0039 - mean_squared_error: 0.0030 - val_loss: 0.0040 -
val_mean_squared_error: 0.0040

Epoch 5/5

SB1TH8179 [] - 445 - loss: 0.0038 - mean_squared_error; 0.0038 - val_loss: 0.0038 -
val_mean_squared_error: 0.0038

2077142077 [-2

MSE: 0.004, RMSE: 0.062

[nst MOmenu ¢ COXpaHeHMeM COCTOSIHMSI, KOTopasl IsITh pas obyda-
Jach B LIMKJIE C OOHMM II€PUOLOM, ITOJIYYMIMCh TAKKE Pe3y/abTaThl (06-
paTuUTe BHMMAHME, YTO YUCIO MPUMEPOB B 06YYaIOIEM 1 TECTOBOM
Habope yMeHbIIIeHO, YTOObI C/1e/IaTh €r0 KPaTHBIM pasMepy MaKkeTa):

Train on 98112 samples, validate on 42048 samples

h 11
9811288112 [:]-3
val_mean_squared_error: 0.0038
Epoch 2/5
Train on 98112 samples, validate on 42048 samples
Epoch 111
9811298112
val_mean_squared_error: 0.0037

=

s - loss: 0.0056 - mean_squared_error: 0.0056 - val_loss: 0.0038 -

- 368 - loss: 0.0044 - mean_squared_error: 0.0044 - val_loss; 0.0037 -

Epoch 3/5

Train on 98112 samples, validate on 42048 samples

Epoch 1/1

B8112/98112 [;] - 38s - loss: 0.0043 - mean_squared_error: 0.0043 - val_loss: 0.0038 -
val_mean_squared_error: 0.0038

Epoch 4/5

Train on 98112 samples, validate on 42048 samples

Epoch 1711

98112/98112 [:] - 37s - loss: 0.0042 - mean_squared_error: 0.0042 - val_loss: 0.0038 -
val_mean_squared_error: 0.0038

Epoch 5/5

Train on 98112 samples, validate on 42048 samples

Epoch 111

98112/98112:] - 375 - loss: 0.0040 - mean_squared_error: 0.0040 - val_loss: 0.0035 -
val_mean_squared_error: 0.0035

41952/42048 [.]- ETA: 0s

MSE: 0.003, RMSE: 0.059

212 <+ [naBa 6.PekyppeHTHaa HeitpoHHaa ceTb — PHC

Kak BuAMM, pe3yibTaTbl MOOEIU C COXPAHEHUEM COCTOSIHUSI UyTh
ayuiiie. YUUTbIBAsI, YTO Mbl [IPUBe/IM gaHHbie K auanasony (0,1), B ab-
COMOTHBIX nudpax Monesib 6e3 CoOXpaHeHMsl COCTOSIHUSI JaeT 4acToTy
o1mbok 6.2%, a ¢ coxpaHeHueM — 5.9%. To ke caMoOe MOXKHO BbIPa3uTh,
CKa3aB, UTO BEPHOCTb COCTABJISIET COOTBETCTBEHHO 93.8% 1 94.1%.

Kop atoro npumepa HaxoauTcs B IBYX daiiiax: econs data.py COOEP-
JKUT Kof, pa36opa UCXOIHOr0 HAbopa NAHHBIX, 4 scons stateful.py — KO
orpeneneHust U obyueHust obeux mopeseit. 06a daiiia BXOAAT B COCTAB
MCXOIHOTO KOA K 3TOM I1aBe.

Opyrue sapuanTtbl PHC

B 3awioueHue 3TO¥ IMIaBbl KPATKO PAacCMOTPUM IPYTHEe BapUaHTbI
sueiiku PHC. B aT0ii 06/1acT BegyTcs akTUBHbIE MCCIELOBAHMS 1 Obl-
JIU TIPeIJIOKEeHbl MHOTOUYMC/IEHHBIE BAPMAHTBI [J151 PellieHNsI KOHKPeT-
HBIX 3a/1a4.

OpuH 13 nony/sipHbix BapuanToB LSTM xapakrepusyercs nobasiie-
HUMEM «CMOTPOBBIX I71a3K0B» (peephole connections), 6iarogapst KOTO-
PbIM BEHTUJIbHBIE CJIOM MOTYT BUAETH COCTOSIHUE STUeiiKu. ITOT Bapu-
auT npegioxex B 2002 rogy l'epcom u HImuaxybepom (cm. F. A. Gers,
N. N. Schraudolph,]J. Schmidhuber «Learning Precise Timing with
LSTM Recurrent Networks», Journal of Machine Learning Research,
pp. 115-43).

Ewe oaguu BapuanT LSTM, KOTOpEIII B KOHEYHOM MTOre MpPUBEN K
GRU, — ciapuTh BeHTH/Ib 3a0bIBAHMSI C BLIXOMHBIM BeHTMIEeM. Pelie-
HUSI O TOM, YTO 3a0bITh, & UTO OCTABUTh, IIPUHMMAIOTCSI COBMECTHO
000MMM BEHTWISIMU, a HOBast MHOpMAaLIM 3aMeliaeT 3adbiTyio.

Keras mpepmjiaraet TOJIbKO TPU OCHOBHBIX BapMaHTa B BUJIE CJIOEB
SimpleRNN, LSTM 1 GRU. Ho sto HeoGsizaTesnbHO 1110X0. ['ped sKe-
[IePUMEHTAIbHO uccaenoBal MHoro BapuanToB LSTM (cm. K. Greff
«LSTM: A Search Space Odyssey», arXiv:1503.04069, 2015) u ripuiuesn
K BBIBOAY, UTO HU OJMH U3 HUX HE aeT 3HAUMUTETbHOTO BBIUTIPHIIIA 110
CpaBHEHMIO CO CTAaHAApPTHOI apxuTekTypoit LSTM. Takum obGpasom,
KOMIIOHEHTOB, uMeronuxcs B Keras, 00bI4HO JOCTATOYHO IS pellie-
HUS1 GONBLIMHCTBA 3a/a4.

B ciyuae, eciin BaM [IeMCTBUTEILHO HEOOXOOMMO CKOHCTPYMPO-
BaTh COOCTBEHHBIN C/10i, MOXKHO IPUOETHYTh K [PEA0CTaB/IsIeMOMY
Keras mexaHu3my I10JIb30BaTe/lbCKKUX C/10€B. B cienylolleii rnase Mbl
MOCMOTPUM, Kak 3T0 menaetcs. CylecTByeT Takke Kapkac Recurrent
ShOp C OTKPBITBIM MCXOJHBIM KOAOM (https://github.com/datalogai/

L7

Pesiome <+ 213

recurrentshop), HO3BOJISIIOIINIA CO3@BATh CJI0XHbIE PEKYPPEHTHbBIE Heli-
POHHBIE CeTH ¢ IomMolibio Keras.

Pesiome

B 9T0ii raBe Mbl paccMoTpesiu 6a30BYI0 apXUTEKTYPY PEKYPPEHTHBIX
HePOHHBIX ceTeil U OObICHWIN, [T0YeMY OHM IIPEBOCXOMIST TPaauIu-
OHHble HEPOHHbIE CETU B MPUMEHEHUU K MOCIeI0BATENbHBIM JaH-
HbIM. Mbl TakoKe BUAEIN, KAK MOXHO K1croib3oBaTs PHC niist o6yuenust
aBTOPCKOMY CTMITIO TMCbMa M MOPOXKAEHMS HOBBIX TEKCTOB C [IOMOIIBI0
00yueHHOI Mofe/u. Mbl oKasanu, Kak aTOT MPUMep MOXKHO pacipo-
CTPAHUTD Ha MpecKazaHue 1eH Ha akIMKU WK IPYTUX BpeMeHHBIX psi-
IOB, HA BBIJEJIEHUE PEUM M3 3aLIYMIEHHOTO 3BYKOBOIO CUIHAJIA U T. [I.

Mpbl 0bCcyamwIM pasiMuHble Crocobbl coeguHedus 6nokoB PHC u
MpUMEHEeHWe 3TUX TOMOMOrMIA K PelIeHUI0 TaKMX 3a[au, KaK aHaju3
9MOLIMOHAJIBHOM OKPACKU, MAIMHHBII TePeBO, MOAMUChIBAHUE M30-
OpaykeHMit, KiaccuburaLms u T. 1.

3areM Mbl OCTAHOBMJIMCh HA IVIABHOM HEHOCTATKE apXUTEKTYPbI
rpocroii PHC - npo6ieMe ucuesamiux 1M B3pbIBHBIX I'PagueHTOB. Mbl
BUJIEJIM, YTO TIPOGJIEMY MCUe3al0Iero rpagueHTa MOKHO PeLnTb C [10-
MoIlbio apxutekTypbl LSTM (1 GRU). Mbl nnogpo6Ho paccmoTpesin 0be
3TM apXMUTEKTYPbl M MPUBEIM Ba MIPUMeEpA: NMpeacKkasaHue aMoLuo-
HaJBLHOI OKpacku Tekcra ¢ nomoliubio LSTM-Mmonenu u npenckasaHue
METOK yacTeil peuM ¢ 1omollblo ocHoBaHHOI Ha GRU apxuTekTypbl
THUIIA MTOCJIE0BATEIBHOCTb-B-TI0C/I€I0BATEILHOCTb.

3atem mbl nnorosopuiin 0 PHC ¢ coxpaHeHem COCTOSIHUSI U ee T10/1-
nepxke B Keras. Mbl nnpuBein rnpmumep ucrnosib3zosaHus takoit PHC nist
npencKasaHus moTpedneHus 31eKTpudecTsa.

HaxkoHel1, Mbl KpaTKO YIIOMSIHYIM 0 apyrux BapuanTax PHC, orcyt-
crByouMx B Keras, o criocobax 1mocTpoeHusi COOTBETCTBYIOLIMX MOJe-
neid.

B crenyionieii rnase mMbl Gymem paccMaTpuMBaTh MOJIENM, He YKIa-
NbIBAIOLIMECS] HU B OOMH M3 OIMCAHHBIX BbIllle 111a6/I0HOB. MbI TakKe
MOKayKeM, KaK 13 MPOCTbIX MOJeJIeil MOXKHO CcO31aBaTh 60Jiee CJIOKHbIE,
0/1b3ysch QyHKUMOHaNLHbIM API Keras, u npuBeieM HeCKOJIbKO Mpu-
mepoB aganTtaimu Keras rop cBoyu noTpebHOCTH.

lnaBa

L B B O BN BE B BN BN AN IR BN BN BE BN BN BN BN BN B BN N BN BN BN B BN B BN B BN B B N A N N I

IononHutenbHble Moaenu
MaLUMHHOro 06yyeHuUs

Ilo cux nop Mbl 06CYKIAIM B OCHOBHOM MOJE/IH, IIpeiHa3sHauUeHHbIe
st knaceudukauuu. OHM 00y4ualoTes Ha OCHOBE IIPU3HAKOB M METOK
0OBEKTOB C LIeJIbI0 [PeCKa3biBaATh METKM PaHee He IPeIbsBISIBILNX-
¢s1 06beKTOB. Y TaKUX MOJeJieii JOBOJIbHO MPOCTasi apXuTeKTypa — Bce
paccMOTpEHHBIE BbIllle MOETM OCHOBAHbI Ha JIMHEITHOM KOHBeliepe,
KOTOPbIIT CTPOUTCS € MOMOLbIO NTocienoBaTenbHoro API Keras.

Temoii aT0I r1aBbl OYOYT O0JIee CIOXKHBIE apXUTEKTYPbl, B KOTOPbIX
KOHBelep Heobs13aTe/IbHO JIMHEHbII. Mbl y3HaeM, Kak OIpeneinTb CeTh
¢ 1OMOILbI0 QYHKIMOHAILHOrO APL. OTMeTHM, BiipoueM, 4To (DYHKIIM-
OHaNbHbI API nipurogeH 1 ajist OCTPOEHUS IMHEHHON apXUTEKTYPbL.

I[Ipocreiiiiee 06061IeHe ceTeli KnaccuGuKalMu — perpeccuoHHbIe
cetu. Boobue, kinaccudmkanmust u perpeccust — ABe CaMbIX HIMPOKUX
KaTeropum MalllMHHOro obyueHust 6e3 yuuress. Bmecto kareropum
perpeccMoHHasi CeTh MPeACcKa3sblBaeT 3HAYEHUE HEIPepbIBHONM Beju-
yiHbl. C IpMMEpPOM TAKOTO POJA Mbl BCTPEUAIMCH MPU OOCYIKIEHUM
PHC c cocrosinuem u 6e3. MHOrMe 3a1a4y perpeccu MosKHO o4t 6e3
VCUJIMI PELlUTh ¢ IMOMOILbI0 Moaeseil Kiaccudurkaumn. B 31oii rnase
Mbl pACCMOTPUM IPUMED ITOI0OHOI ceTH 1Jist ITpecKasaHus COLepKa-
Hus1 BeH30/1a B aTMocdepe.

Enie onuH Kjiacc Mojenei npeqHasHaueH JJist BbISIBJEHUS CTPYKTY-
Dbl HEITOMEUEHHbIX JaHHbIX. DTO TaK Ha3bIBaeMOe 00yueHne 6e3 yum-
Tena. Omimumne ot Mmoaenei kiaccudukalMu B TOM, 4TO METKU T1PU-
CYTCTBYIOT JIMIIIb HESIBHO. [IpMMepbl HAM YK€ BCTPEYaIMCh: MOMIEIH
CBOW u skip-rpammsbl 13 cemeiicrea word2vec. [Ipyroii npumep — aB-
TOKOAMPOBIIMKK. Mbl pacCMOTPMUM aBTOKOAMPOBIIUKY ITOAPOGHee 1 B
KauecTBe MpuMepa MpuBeaemM MocTpPoeHUue KOMIAKTHOTO BEKTOPHOTO
MPeaCTaBIeHUS TTPEJIOKEHMS.

L7

MyHkuMoHanbHbIM APl Keras < 215

3aTeM Mbl IIOTOBOPMM O TOM, KaK COCTaB/ISATb M3 PAcCMOTPEHHBIX
Mojeseii 6onee KpyinHbie rpadgsl BoiuMeieHuii. Llenb Takoro rpada —
IOCTUUYL HEKOTOPON e, 1Jisl KOTOPOI OOHONM IocienoBaTe/lbHOM
MOJ€e/IM HeIOCTaTOUHO. B yacTHOCTH, rpad) MOXKET MMETbh HECKOJIbKO
BXOJIOB M BbIXOOB U CONMHSTLCS C Pa3/IMUHbIMM BHELIHMMM KOMITO-
HeHTaMu. Mbl pacCMOTPUM [IPUMEP CeTH IJisl OTBETOB Ha BOIIPOCHI.

3areM Mbl HEMHOIO OTBJIeueMcs Ha paccMoTpeHue 6azosoro API
Keras 1 pacckaxkem, Kak €ro MOXKHO MCIIOJIb30BaTh [JISI CO3IAHMS
[10JIb30BATE/ILCKMX KOMIIOHEHT, PACIIUPSIONUX (YHKIMOHAIBHOCTh
Keras.

[Tocie 3TOro Mbl BepHeMCSl K HepasMeueHHbIM JaHHbIM. Ellle onuH
KJIaCC MOjiesieit, He TpedyIoLMX MeTOK, — nopoxaatomie cetu. OHu 06-
yuarTcs Ha Habope CYLIeCTBYIOUIUMX 00bEKTOB U IbITAIOTCS BbISIBUTH
MX MCTMHHOE pacrpenejeHue BeposTHocTu. Haiinsa pacnpenenenue,
MbI CMOKEM JIeJIaTh U3 HEero BbIOOPKY, MOIydast IPUMEpbI, ITOX0XKe Ha
obyuarouiye gaHHbie. [Togo6HbIA IpUMep Mbl BUAEIM B IIPeblayILeit
rnase, Korga ooyuanu PHC mist reHepalii TEKCTOB, IOXOKUX HA «AJIN-
cy B CrpaHe uymec». Bo3ppalllaTbCsl K 3TOMY IIpUMMEpPY MbI HE CTaHEeM,
a [MOCMOTPUM, KaK IIPUMEHUTb UL 00yYeHMs pacrpene/eHuIo qaH-
HBIX [JIsI CO3/IAHUSI UHTEPECHBIX BU3YaIbHbIX 3(Q(]EKTOB C MOMOILbIO
cetu VGG-16, npenobyueHHoi Ha Habope maHHbIX ImageNet.

Ellle pas nepeuncium TeMbl, paccMaTpMUBaeMble B 3TOJ I71aBe:

O ¢yukumnonansHbiii API Keras;

QO perpeccUOHHBIE CETH;

QO aBTOKOAMPOBLIMKM KaK IIpuMep 0bydyeHus 6e3 yuuTess;

O KOMIO3MLIMSI CIOXKHBIX CETEl C ITOMOILBI0 (PYHKLIMOHATLHOrO API;
O nonb3oBaTenbckue pacumperns Keras;

QO nopoxpgarouue ceTu.

PyHkumoHanbHbi APl Keras

B dyukimonanbHom API Keras Kaskiblii CJI0¥ oripefensieTcs Kak pyHK-
LMSI M IIPEIOCTAB/ISIIOTCS OTePATOPbI)11 00beuHeH sl 3TUX DYHKIUI
B Gosbioii rpad BeruMciieHuii. DyHKLIU npeacTasiseT coboii npeod-
pasoBaHMe ¢ OJHUM BXOIOM M OOHMM BbIXOAOM. Tak, BhipaxkeHue y =
f(x) onpenenser dyHKIUIO f ¢ BXOZOM X M BBIXOA0M y. PaccMOTpuM Ipo-
CTYI0 T0C/IeoBaTe/IbHY0 Mojenb Keras (CM.https://keras.io/getting-

started/sequential-model-guide/):

216 <+ [naea 7. [JononHWTeNbHbIE MOLENW MALIMHHOIO 0BYYeHUs

from keras.models import Segquential
from keras.layers.core import dense, Activation

model = Seguential([
dense (32, input dim=784),
Activation("sigmoid"),

dense (10),

Activation("softmax"),

1)

model .compile(loss="categorical crossentropy", optimizer="adam")

Kak Buaum, rnocjieoBaTeibHas MOJe/b MIPECTaBIsSeT CeTh B BUIE
NUHEHOro KOHBelepa, T. e. CIicKa ciioeB. Ho MOXHO TakKe rpeacra-
BUTb CETh B BUIE MOKA3AHHOI HMKe KOMITO3uimm QYHKIMIL. 30ech x —
BXOAHOM TeH30p Gopmel (None, 784), a y — BbIXOAHOI TeH30p (OpMBbI
(None, 10), rne None o3HayaeT, UTo pazMep IakeTa [10Ka He orpeeseH.

raue

Huke nokasaHo,

y = 0, (flo,(8(x))),

g(x)=W,x+b,

e

S(x)=W,x+b,
e.\'
K

Sre
k=1

KakK orpelie/lrThb 3Ty CeThb C INOMOIIBH ClJYHKL[I—’IO-

o, (x)=

HanbHOro API Keras. O6paTure BHMMaHME, UTO [IePeMeHHasi predictions
SIBJISIETCSI KOMITO3MIIMEH TeX caMbIX (YHKI[MIA, KOTOPbIE IIPUCYTCTBYIOT
B YPAaBHEHUM BBIIIIE:

from keras.layers
from keras.layers
from keras.models

from keras.layers.

import Input

.core import dense

import Model
core import Activation

inputs = Input (shape=(784,))

¥ = dense(32) (inputs)
¥ = Activation("sigmoid") (x)

¥ = dense (10} (x)

L7

M®yHKkuMoHanbHbliA APl Keras <+ 217

predictions = Activation("softmax") (x)
model = Model (inputs=inputs, outputs=predictions)

model .compile (loss="categorical crossentropy", optimizer="adam")

[TocKONMbKY MOMAEIb eCTh KOMIIO3MLIMS CJIOeB, KOTOPbIE SIBJISIIOTCS
TakkKe QYHKLMSIMM, TO U MOAEIb aBjsieTcs: pyHKiueit. CleqoBaTellb-
HO, 00YUEHHYI0 MOJIe/Ib MOXKHO PAacCMaTPUBaTh IIPOCTO KAk ellle OJuH
CJI0¥i ¥ BBI3BIBATH €€, [epeaB TeH30p rnogxoasieii gpopmsl. Takmum 06-
pasoMm, ecJiM MblI yiKe ITOCTPOMIM MOJe/lb, KOTOpasl AeaeT HeuTo I10-
JIe3HOe, Hallpumep, KiaccuguuupyeT u3o00paxkeHus, TO JIErKO MOXeM
PAaCIIpPOCTPAHUTh €€ Ha MOCIeN0BaTeIbHOCTh M300pakKeHni, 06epHYB
cioem Keras TimeDistributed:

sequence predictions = TimeDistributed(model) {input_seguences)

C nomoubio GyHKIMOHATBHOrO APl MOXHO OIpemeninTh Jilobyio
CeTb, MOIYCKAWIIYIO ONpeae/ieH|e MOCPEACTBOM MOCIen0BATEIbHOTO
API. Ho 06paTHOe HEBEPHO — CIeAYIOLIIME TUITbI CETEI MOKHO OIpe/e-
JIUTH TOJIBLKO C TIOMOLIBI0 hyHKIMOHANbHOTO APL:

QO MoIenu ¢ HeCKOJIbKMMM BXOLAMM U BbIXOOAMMU;
QO Mopenu, ABsI0LMecs KOMIIO3UIMei HeCKOIbKUX ITOIMOIeIel;
Q Mopenu, B KOTOPBIX MCIIONb3YIOTCS pasje/sieMble CJI0M.

Mozenu ¢ HeCKOJIbKMMM BXOZAMM M BBIXOZAMM OIPEHesIsSiOTCs IMy-
TeM pas[ebHONM KOMIIO3MIIMM BXOHOB M BBIXOAOB, KaK IIOKA3aHO B
npenbiAyieM IIpUMepe, ¢ Mocaeayiollei nepegadeii MacCMBOB BXOJI-
HBIX M BBIXOOHBIX ()YHKLIMI1 B KaUeCTBE MApaMeTPOB inputs M outputs
KOHCTPYKTOPY KJIacca Model:

model = Model (inputs=[inputl, inputl], outputs=[outputl, outputl])

OO6BbIYHO MOJEIM C HECKOJIBKMMI BXOHAMU M BbIXOIAMM COCTOSIT U3
HECKOJIbKMX TOJICeTel, pe3y/IbTaThl BIYMC/IEHUSI KOTOPBIX 00beIMHSI-
I0TCS B KOHEUHbBIN pe3ynbTaT. OYHKIUS merge MPEIJIaraeT HECKOIBKO
CII0COO0B OObEAMHEeHUSI TTPOMEXYTOUYHbIX Pe3y/bTaTOB, Halpumep:
BEKTOPHOE CJIOKEHUe, CKAJISIPHOE MPOM3BENEHMEe M KOHKATeHAalMsl.
C npumepamy 06beIMHEeHNUS] Mbl BCTPETUMCS IIPU PACCMOTPEHUM BOTI-
POCHO-OTBETHOI CUCTEMbI HUXKE.

He meHee 1ojiesHbIM MMpuMeHeHueM (QYHKLUMOHAIbHOro API saBs-
0TCS MO C pasie/iseMbIMK ClI0siMU. PasnenseMslii ¢jioit onpeme-
NSIeTCS OMH pas, U UCTIOMb3YeTCS BO BCEX KOHBElepax, rie Hy:KHbI ero
Beca.

218 <+ [haea 7. JononHWTeNbHbIE MOLENW MALMHHOIO 0BYYeHUs

B aroit raBe mMbl O6yIeM 110/Ib30BaThCSI B OCHOBHOM (DYHKIIMOHA/Ib-
HbIM AP, Tak uTO B nipMMepax HegocTaTka He 6yaer. A Ha caiite Keras
MMEEeTCS elle MHOTO MPUMEPOB Ha 3Ty TEMY.

PerpeccuoHHble ceTu

JlBa OCHOBHBIX BMIIa 0OyUeHMsI ¢ yuuTenem — kiaccuduraims u pe-
rpeccust. B oboux ciayyasix Mozesib 06yuaeTcst Ha JaHHBIX C M3BECTHbI-
MM MeTKamu. B ciayuae knaccudukanmuy MeTKM — IUCKPeTHbIe 3Haue-
HUSI, HAIIPUMeD, JKaHP TeKCTa WM KaTeropus usobpaxenus. B ciyuae
perpeccuy MeTKaMM SBJSIOTCS 3HAUEHUS HEINpepbiBHOW BeTUUMHBI,
HanpuMmep, UeHbl akuuit Wi KosdGUIMeHT UHTeIEKTYaJIbHOTO Pas-
BUTHA uenoseka (1Q).

B G0/IbIIMHCTBE PACCMOTPEHHBIX BbILIE MPUMEPOB MOLENN Iybo-
KOr'o 00y4eHust MCITIOIb30BaIUCh 1Jist Kiaaccudukaimm, B srom paspgene
MbI PACCMOTPMM, KaK TaKast MOZE/b [I03BOJISIET BHITTOTHUTE PETPECCUIO.

HanomHuMm, uTo B MOIE/IsIX KiaccupUKaluy B KOHIIE MUMEeeTCs II0T-
HBIIf CJI0J C HEJIMHEMHOM (PYHKLIMEe aKTUBaLIMUK, YMCIIO BLIXOI0B KOTO-
pPOro paBHO YMCTY KIaccoB B momenu. Tak, B Mogenu kiaccudukaimm
u3obpaxkeHuit u3 Habopa ImageNet pasMepHOCTb IJIOTHOTO BbIXOJI-
Horo cjos pagHa 1000, 1. e. oH moxKeT rnpenckassiBath 1000 Kiaccos.
AHAJIOrMYHO B MOMAEIM aHA/JIM3a 3MOLMOHAIBHON OKPACKM TUIOTHBIN
CJI0V MMeeT [Ba BbIX0OMA, COOTBETCTBYIOIUIME TIOIOXKMUTETbHOM U OTPU-
LIaTebHOI OKpacke.

B perpeccMOHHBIX MOJENSIX B KOHIIE TOXKe UMEeTCs TIIOTHBIN C/0i,
HO TOJIbKO C OTHMUM BBIXOZOM U 6€3 HeJIMHeNHOM GYHKLIMY aKTUBALIMN.
3TO 3HAUMT, UTO IUIOTHBII CI0 BO3BpAIlaeT MPOCTO CYMMY OTK/IMKOB
HeiipoHOB npeabiayiero ciost. Kpome toro, B kauecrse GyHKIMK [10-
Tepb 0OBIYHO UCIIOJIL3YeTCS cpeaHeKBaapaTndeckas ommnoka (CKO,
anmt. MSE), HO JOITYCTUMO M HECKOJIBKO APYruX (PYHKIMIA (CM. https://

keras.io/losses/).

Mpumep perpeccum — npeackasaHue coaepKaHus
6eH3ona B Bo3ayxe

B sTom npumepe MbI 3aiiMeMcsl MpefncKa3aHMeM KOHIIeHTPaluu
6eH3o/1a B armocdepe, 3Hast TaKUe BeJIMUMHDI, KAK KOHLIEHTPALIUY OKU-
CU YIJIepOa, OKUCH a30Ta U T. 1., @ TAKXKE TeMITePaTypPy U OTHOCUTE/Th-
HYI0 BJIAXKHOCTh. B KauecTBe 00y4alommnx JaHHBIX UCIIONIb3yeTcst Habop
u3 pernosutopust MaiMHHOro o6yuenmust UCI (https://archive.ics.uci.

L7

PerpeccuoHHble ceTn <+ 219

edu/ml/datasets/Air+Quality). ITOT Habop comepxkut 9358 MnokasaHuii,
IOJIYYEeHHBIX C 4YaCOBbIM MHTEpPBAJIOM OT MaTpPMUbI M3 IIATH XMMMHYe-
CKMX JaTYMKOB OKMC/IOB MeTa/lJIOB. Ma’rpmua OJaTUYMKOB Haxoau/jiach B
OOHOM MTaIbSHCKOM ropoje, a nokKasaHus perMcTpMpopaimch ¢ MapTa
2004 no eBpans 2005.

Kak Oﬁbl‘-IHO, CHa4yajla MMIIOPTHUPYeM HYXXHbIe OMOIMOTEKN:

from keras.layers import Input

from keras.layers.core import dense

from keras.models import Model

from sklearn.preprocessing import StandardScaler

import matplotlib.pyplot as plt

import numpy as np

import os

import pandas as pd

Habop maHHbIX IpepcrasiedH B Buge CSV-daiina. JlaHHbIe 3arpy-
Kawres Bo dpeiM gaHHbIX Pandas (CM. http://pandas.pydata.org/).
Pandas - nomnynasipuasi 6ubnmnorexka 1jsi aHajau3a JAHHbIX, B OCHOBE
KOTOPOi# JIeskUT IoHsTUe ¢dpeiiMma NaHHbIX (0OBEKT DataFrame), 3a-
MMCTBOBaHHOE 13 s13bika R. Mbi ucrnonb3yem 3neck Pandas o npym
rnpuuuHam. Bo-repBbix, HABOP JaHHBIX COIAEPKUT ITYCThIe 10JIs, COOT-
BETCTBYIOL[ME OTCYTCTBUIO MOKA3aHUI 1aTYMKOB. BO-BTOPBIX, BMECTO
NEeCSTUUHBIX TOUEK MCIIOIb3YIOTCS 3amaThie, KaK MPUHITO B HEKOTO-
phIX eBporneiickux crpaHax. B Pandas BcrpoeHa ropiepskka TOro M
IPYroro, a TaksKe psii JOMOJIHUTEIbHBIX YI00CTB, 0 KOTOPBIX Mbl CKa-
JKeM B CBOE BpeMsl.

DATA DIR = ".. /data"
ATRQUALITY FILE = os.path.join(DATA DIR, "RirQualityUCI.csv")

agdf = pd.read csv(AIRQUALITY FILE, sep=";", decimal=",", header=0)

¥ vmanure 2 nepeux M 2 nocnemHux cronbua
del agdf["Date"]

del agdf["Time"]

del agdf["Unnamed: 15"]

del agdf["Unnamed: 16"]

Buecro NaN moncTaBMTh CpeIHKE SHAYEHMA N[O CTOROLY
agdf = agdf.fillna(agdf.mean(})

¥orig = agdf.as matrix()

31ech MblI yajsieM [epBbie JBa CTOAOLA, comepsKallie 1aTy M Bpe-
M$ HabIIofe M, 1 IBa MTOCJIeIHMX CTONOLA, KOTOPhIe, TIOX0XKe, He CO-
JepyKaT HMYero rojie3Horo. 3aTeM 3aMeHsieM ITYCThIe Mo CPeIHUMU

220 <+ [naea 7. [JononHWTeNbHblE MOLENW MALWMHHOIO 0BYYeHUs

3HAYeHMUSIMU 110 cToa0LY. M HakoHel, 3KCIIopTupyeMm, GpeiiMm JaHHbIX
B BUJIe MaTPULI IJISI IIOC/IeAYIOIIEero MCIo/ib30BaHMSI.

OTMeTHM, 4TO Maciitab B Kaka0M CTO/OLE pasHblii, IOTOMY YTO
M3MEpPSUINCh Pa3/iMuHble BeIMYMHbL. Hampumep, KOHLIEHTpALIUs OKMU-
cu 0/10Ba MsMepsiiack B macirabe 1:1000, a KOHLEHTpaLMKM HeMeTa-
HOBBIX YIVIEBOAOPOHOB — B macitade 1:100. Bo MHOrMX cUTyalusx
MIPU3HAKKM OJHOPOAHBI, TAK UTO pa3/iMuue MaciiTaboB He COCTABJISIeT
1Ipo6JieMbl, HO B TAKUX, KaK 3Ta, Jy4lle IIPUBECTH JaHHbIe K eUHOMY
macurrady. B gaHHOM ciyvyae MacliTabupoBaHue CBOAMTCS K BhIYMTA-
HUIO U3 KaKIOro 3HaYeHMsI CPeIHero o cTojb1y U IejIeHMI0 Ha CTaH-
IapTHOe OTKIOHEeHMe:

ﬂ,ﬂﬂ 3TOr'o BOCIIOJIb3YyeMCS KIaCCOM StandardScaler M3 01OIMOTeKN
scikit-learn, KdK IIOKa3aHO HMIKe. Mbi COoxpaHseM CpeiHee M CTaH-
naprHoe OTKJIOHeHKe, IIOTOMY 4YTO OHHM elle HOHH,H,OGHTCH IJis1 BbIBOOA
pesyjabTaToB M IpegckasaHMsa Ha OCHOBE HOBBIX HaHHDbIX. MeTKoii sa1B-
JisleTCs T~IE'.‘TBE'.‘If)'I'bII«':i CTOJIﬁELI Haﬁopa JaHHBIX, [TO3TOMY MbI pasgensaem
MB.CU.[T&ﬁMpOBaHHhIE‘ OaHHbIe Ha BXOOHbBIE IlepeMeHHbIe ¥ M LelleBYyI0
rnepeMeHHVIO y:

scaler = StandardScaler()

¥scaled = scaler.ﬁ:_transform{Xorig}

¥ coxpaHfgeM ONA NPENCKABAHMM HA OCHOEE HOBHX IaHHEHX

Xmeans = scaler.mean
¥stds = scaler.scale

y = ¥scaled[:, 3]
X = np.delete(¥scaled, 3, axis=1}

3aTeM Mbl pa3buBaeM JaHHbie Ha 06YUYAOLIMIT U TECTOBLII HAbOD B
npormopuun 70:30, . e. ocrapisiem 6549 zanuceii ajist ob6yuenus u 2808
IUJIsI TECTUPOBAHMSL:

train size = int (0.7 * X.shape([0])

Xtrain, Xtest, ytrain, ytest = X[0:train size], X[train size:],

y[0: train size], y[train size:]

Hanee onpepnensietTcs ceTb. ITO MPOCTAast [IJIOTHAS CTh C ABYMSI CJ10-
SIMM, KOTOpasi MPMHUMAeT Ha BXOJe BeKTop u3 12 npu3HaKkoB U Bbl-
BOAUT MacliTabMpoBaHHOE rpenckasaHue. [II0THBINA CKPBITBIA CI0I
COOEPKUT BOCEMb HEMPOHOB. MaTpuiia BeCOB B 000MX IUIOTHBIX CJI0-

PerpeccuoHHble ceTn <+ 221

SIX MHULIMaJIM3MpPyeTCsd 110 cXeMe, KOTOpaslt Ha3blBaeTCs gfomt uniforrn
(paBHOMepHast MHMUManu3auus I[nopora). [TonHbI epedyeHb cxem
MHMIMaAM3alMK NpuBeaeH 110 aapecy https://keras.io/initializers/.
B kauectBe dJYHI{]J,L‘II—’l I1oTepb Mbl 3ajaeM CpeldHeKBaJpaTH4YeCKylo
OI]JM6KY (mse), d B KauecTee OIITMMM3aTOpPa adam:

readings = Input (shape=(12,))

% = dense (8, activation="relu", kernel_ini::i_a]_izer—-"gloro:_:_miform"} (readings)
benzene = dense(l, kernel initializer="glorot uniform") (x)

model = Model (inputs=[readings], ocutputs=[benzene])
model .compile(loss="mse", optimizer="adam")

MbI 06y4aeM 3Ty MOJie/ib Ha IpoTsukeHuu 20 epuoios ¢ pa3Mepom
nakera 10:

NUM EPOCHS = 20
BATCH SIZE = 10

history = model.fit (Xtrain, ytrain, batch size=BATCH_ SIZE,
epochs=NUM EPQCHS, validation split=0. 2)

B pesysbrare rnojyyaeTcst MOJIe/ib CO CpellHeKBaApaTUueckoii onmo-
kot 0.0003 (kBagpaTHbI KOPEHb U3 Hee MPUBAM3UTEILHO paBeH 2%)
Ha o6yuatouiem Habope u 0.0016 (KBagpaTHBIA KOPEHb IIPUMEPHO 4%)
Ha KOHTPOJIbHOM Habope. 3TO BUJHO U3 ITOKA3aHHOTO HUXKE ITPOTOKO-
na o6yueHus:

Epoch 8/20 -

5239/5239 [] - Os - loss: 0.0015 - val_loss: 0.0024
Epoch 9/20

5239/5239 [] - Os - loss: 0.0012 - val_loss: 0.0020
Epoch 10/20

5239/5239 [] - 0s - loss: 9.5742e-04 - val_loss: 0.0018
Epoch 11/20

5239/5239 [] - Os - loss: 8.2761e-04 - val_loss: 0.0019
Epoch 12/20

5239/5239 [] - 0s - loss: 7.1237e-04 - val_loss: 0.0021
Epoch 13/20

5239/5239 [] - Os - loss: 6.4492e-04 - val_loss: 0.0018
Epoch 14/20

5239/5239 [] - 0s - loss: 6.0119e-04 - val_loss: 0.0019
Epoch 15/20

5239/5239 [:] - Os - loss: 5.1915e-04 - val_loss: 0.0017
Epoch 16/20

5239/5239 [] - 05 - loss: 4.4686e-04 - val_loss: 0.0014
Epoch 17/20

5239/5239 [] - Os - loss: 5.6912e-04 - val_loss: 0.0019
Epoch 18/20

5239/5239 [] - Os - loss: 3.6897e-04 - val_loss; 0.0013
Epoch 19/20

5239/5239 [] - Os - loss: 3.6652e-04 - val_loss: 0.0012
Epoch 20/20

5239/5239 [| - Os - loss: 3.2395e-04 - val_loss: 0.0016

222 < [naea 7. JononHWTENbHbIE MOLENW MALWMHHOIO 0BY4YeHUs

MbI TaKkyke CpaBHMM 3aperMCTPUPOBaHHbIE KOHLIEHTpaLuy 6eHsona
¢ npeacKa3saHHbIMKM MofeNblo. Te u Apyrue mpeobpasyloTcst K MCXO[-
HOMY MaciTaby.

ytest = model .predict (Xtest) .flatten()
for i in range(10):

label = (ytest[i]

* ¥stds[3]) + ¥means[3]

prediction = (ytest [1] * ¥stds[3]) + ¥means[3]

print ("Benzene Conc.

prediction))

expected: {:.3f}, predicted: {:.3f}".format (label,

CpaBHEHHe IIOKa3bIBaeT, YTO rpeacKasaHMa 1OBOJIBHO OIM3KU K UC-
THMHHBIM 3HaYeHMAM:

Benzene Conc.
Benzene Conc.
Benzene Conc.
Benzene Conc.
Benzene Conc.
Benzene Conc.
Benzene Conc.
Benzene Conc.
Benzene Conc.
Benzene Conc.

expected:
expected:
expected:
expected:
expected:
expected:
expected:
expected:
expected:
expected:

4.600, predicted: 5.254
5.500, predicted: 4.932
6.500, predicted: 5.664
10.300, predicted: 8.482
8.900, predicted: 6.705
14.000, predicted: 12.928
9.200, predicted: 7.128
8.200, predicted: 5.983
7.200, predicted: 6.256
5.500, predicted: 5.184

HaxoHell, HaHeceM Ha 061yt rpaduK daKkTHUecKie 1 IpecKasaH-
Hble 3HAYeHMs [Jisl BCero TecToBoro Habopa. M cHoBa Mbl BUAUM, UTO
NpencKasaHmus ceTH oueHb 6/IM3KM K MCTUHHBIM HaO/I0IeHUsIM

plt.plot{np.arange (ytest.shape[0]}), (ytest * Xstds[3]) / Xmeans[3],
color="h", label="actual")

plt.plot(np.arange(ytest .shape[0]), (ytest * Xstds[3]) / ¥means[3],
color="r", alpha=0.5, label="predicted")

plt.xlabel ("time")
plt.ylabel ("C6H6 concentrations”)
plt.legend(loc="best")

plt.show()}

[TocTpoeHHbIi rpaduK MOKa3aH HIKe.

L7

0O6yueHue 6e3 yuntens — aBTOKOAMPOBLMKK <+ 223

" o s M i L

v
[=4
S
*E —-20
€ — actual
o 40 :
= predicted
“
w —60F -
e
o
“ _go} 4
-100 ;
Lo LJ -
-120 L L 1 L L
0 500 1000 1500 2000 2500 3000
ome

O6yueHue 6e3 yuntens -
aBTOKOAUPOBLUUKK

ABTOKOAUPOBUIMKK — 3TO KJIACC HEMPOHHBIX CETEI, KOTOPHIE MBITAIOT-
Cs1 PEKOHCTPYMPOBATH BXOAHbIE JaHHbIE C IMPUMEHeHeM 00paTHOro
pacrpoctpaHeHusi. ABTOKOIMPOBIIMK COCTOUT M3 IBYX vacreii: Komu-
POBIIMK U Aekomep. KompupoBUIMK UMTAET BXOIHbIE JAHHBIE U CKUMAET
MX, MOpoKaas 6ojiee KOMIIAKTHOE IpefcTaBieHue, a AeKoaep YMTaeT
3TO TpeCTaBJIEHUE U TMBITAETCS BOCCTAHOBUTH TI0 HEMY BXO[. MHBI-
MM C/IOBAMM, aBTOKOAMPOBIIMK ITBITAETCSA OOYUMTH TOXKIECTBEHHYIO
byHKUMIO, MUHUMU3UPYS OLIMOKY PEKOHCTPYKLIMI,

Ha riepBblif B3I/IsI]1, TOKIECTBEHHASI DYHKIMSI He [TPeCTaB/IsieT Hu-
Yero MHTEPeCcHOro, HO BaXKHO, KAK UMEHHO MPOM3BOAUTCS 0OyUueHMe.
Unceio CKpbITBIX CI0€B aBTOKOAMPOBIIMKA OOGBIYHO MEHbIle 4uciia
BXOIHbIX (M BBIXOIHBIX) GJIOKOB. DTO BbIHYKIAeT KOAUPOBIIMK 0OY-
YaThCd CKATOMY MPENCTABIEHUI0 BXOA, KOTOPOE IEKOAED PEKOHCTPY-
upyet. Ecjin BXoAHbIe JaHHbIe 00/IafaioT CTPYKTYPOU B BUle KOppe-
NSLMI MEKIY BXOIHBIMM MPU3HAKAMM, TO aBTOKOAUPOBUIMK BBISIBUT
HEKOTOpbIe KOPPEJISILMK U B UTOre OOYUUTCS IIPEeICTABIEHUIO JaHHBIX
MEHBbIIIEeH Pa3MEPHOCTM aHAJIOTMYHO TOMY, KaK 3TO [I€JIaeTCs B METOHE
r1aBHBIX KOMIOHeHT (principal component analysis, PCA).

224 < [naea 7. JononHWTeNbHbIE MOLENW MALWMHHOIO 0BYYeHUs

OO6yuMB aBTOKOAMPOBLIUK, ITeKomep OObIUHO OTOPACBIBAIOT M MUC-
MOJb3YIOT TONBKO KOIMPOBIIMK [JISI [IOPOXKAEHMST KOMITAKTHbIX ITPe-
CTABJIEHMIT BXOMHbIX HAaHHbIX. MOXHO BMECTO 3TOr0 MCII0JIb30BaTh
KOIMPOBIIMK KaK JeTeKTOP MPU3HAKOB, TOPOXKIAIOIMIT KOMITAKTHOE,
CeMaHTMYEeCKM [OJHOLEHHOe [peaCcTaB/ieHue BX0Ha, M IOCTPOUTh
KiaccuduKaTop, NPUCOEINHUE K CKPBITOMY CJIOK0 CI10i ¢ QyHKIMEH
akTuBaiuu softmax.

KonupoBIIMK 1 JeKOAep MOXKHO PeaiM30BaTh C IOMOILbIO IIOTHOIA,
CBEPTOUHOM WIM PEKYPPEHTHONM CeTH B 3aBMCUMOCTM OT Xapakrepa
MOIEeNIUPYeMbIX HaHHbIX. Tak, IJIOTHbIE CETU XOPOIIN JIJisi ABTOKOIM-
POBIIMKOB, IPUMEHSEMbIX ISl TIOCTPOEHMsI Mojejeii Ko/utabopa-
TuBHOM dmabTpamuu (cM. S. Sedhain «AutoRec: Autoencoders Meet
Collaborative Filtering», Proceedings of the 24th International
Conference on World Wide Web, ACM, 2015 1 H. Cheng «Wide & Deep
Learning for Recommender Systems», Proceedings of the 1st Workshop
on Deep Learning for Recommender Systems, ACM, 2016), rune oby-
yaeTcsl cKaTasi MOJe/ib I[0/Ib30BATEIbCKUX IPEATIOYTeHUIT Ha OCHO-
Be MMEIOIIMXCS Pa3peXXeHHbIX PeiiTMHIoB. CBepTOUYHbIe HelipOHHbIe
CeTU MOAXOMST A/l CUTYalUK, pacCMOTpeHHoit B ctatbe M. Runfeldt
«Using Deep Learning to Remove Eyeglasses from Faces», a pekyp-
PeHTHbIe — JjIsl aBTOKOAMPOBUIMKOB HA OCHOBE TEKCTOBbIX JAHHbIX, B
YACTHOCTH, JIJIsI NpefcKas3aHus Gynyiiero naueHTa rno s1eKTpOHHbIM
ucropusim 6onesuu (cMm. R. Miotto «Deep Patient: An Unsupervised
Representation to Predict the Future of Patients from the Electronic
Health Records», Scientific Reports 6, 2016) u npenckasaHusi pep-
JIOKEeHMIT, OKPY)KAKIIMX TaHHOE, MeTOI0M «BEKTOPOB MPOITYIIEHHBIX
mbicieit» (skip-thought vectors) (cm. R. Kiros «Skip-Thought Vectors»,
Advances in Neural Information Processing Systems, 2015).

ABTOKOJIMPOBLIMKY MOXKHO TakKe OObeIUHSTH, MOCIeI0BATEIbHO
COeMIMHSIS KOIMPOBIMKM, KOTOPbIE BCe IJIOTHEE U IUVIOTHEe CKUMAIOT
BXO[HbIE JaHHbIe, U AeKOAePbl, KOTOPbIE BbIMOJIHSIOT [TPOTUBOIIONIOMNK-
Hble onepauuu. CocTaBHbie aBTOKOAMPOBLIMKKM 00/1a1al0T GOJbILei
BbIPA3UTEIbHOM CIIOCOOHOCTDIO, & ITOC/eN0BATE/IbHbIE C/IOU MPECTaB-
JIEHUI YIaBIMBAIOT MePAPXMUECKYI0 CTPYKTYPY BXOMHBIX JAHHBIX 10
aHaJIOrMU CO CBEPTOYHBIMU M ITYJMHIOBLIMU CJIOSIMM B CBEPTOUHBIX
HePOHHbBIX CeTSIX.

PaHbllle cOCTaBHbIE aBTOKOAMPOBIMKM 06ydaiuch nocioitHo. Ha-
Mnpumep, B MOKa3saHHOM HIXKe ceTH Mbl CHauyajaa obyumin 6bl ¢ioi X
PEKOHCTPYMPOBaTh J10ii X' € MOMOILBIO CKPBITOTrO ¢ios HI (MrHOpUpyst
H2). 3atem mbl 06yumin 661 cnoit HI pekoHcrpyuposath H1' ¢ momo-

L7

ObyyeHue 6e3 yunTensa — aBTOKOAMPOBLUMKK <+ 225

b0 CKpbITOro ciost H2. HakoHell, Mbl coeauHuan Obl BCe C/IOM BMe-
cTe B M300paKeHHYIO HAa pPUCYHKe KOHGUTYpalUIo U [IPOU3Ben Obl ee
OKOHYATEJIbHYIO HACTPOMKY i pekoHcTpyKiu X' o X. Ho teneps,
KOr/a nosiBuauch dosee copepiieHHbie QYHKIMM aKTUBALUU U METO-
Ilbl perysipusaLym, Takue CeTu cTajiu 0bydyaTh Kak efuHoe 1eoe.

BXO[
e 00000 0 -
N
C
(o)
D 000
E
R
® 0 -
D
E
c [ooee@n
D
E
- 00000 e
PEKOHCTPYHPOBAHO

B crartbe «Building Autoencoders in Keras» (nttps://blog.keras.io/
building-autoencoders-in-keras.html) €CThb WMHTEpPeCHbIe TMPUMEpbI I0-
CTPOEHMSI aBTOKOAMPOBIIUKOB, KOTOPbIE PEKOHCTPYUPYIOT M300pake-
HMSI PYKOIMMCHBIX Ludp 13 Habopa MNIST ¢ noMoIIbi0 IMOTHOCBSA3HbIX
M CBEPTOUYHBIX HEMPOHHBIX cereit. Tam ke umeeTcst 06CyKIeHue 1iry-
MOTIOAAB/SIIOIIUX M BAPUALMOHHbBIX aBTOKOJUPOBIIMKOB, O KOTOPbIX
371eCh Mbl TOBOPUTD He Oyzem.

Mpumep aBTOKOAUPOBLUMKA — BEKTOPbI
npeanoXxXeHuu

B sToM npumepe Mbl IIOCTPOMM M 0OYUMM OCHOBaHHbIH Ha LSTM
ABTOKOJAMPOBLIUK, KOTOPbIN OyaeT MOpOKAaTh BEKTOPbI IMPeIIoKe-
HUIT 1J1s1 1OKYMeHTOB 13 Kopiryca Reuters-21578 (nttps
uci .edu,f"-:."_,f"datasets,f"Reuters—2'_5'-*8—fext—C5teqc:izati:n—(.’o'_'_ecti:n). B rna-

Be 5 MbI VKe BCTpedya/IMCh C IIOrpy>KeHMusaMM C10B, B pe3yabTaTe 4ero

-4

Jarchive.ics.

226 <+ [naea 7. [JononHWTeNbHbIE MOLENW MALWMHHOIO 0BYYeHUs

IojaydyaeTcs BeKTop, I'[]JE,EI,CTaBIISIIOHJ,I—’lﬁ CMBICJI CJIOBA B KOHTEKCTe Apy-
I'MX CJI0OB, COBMECTHO C KOTOPbIMM OHO BCTpe4dyaeTcs. A cejiuac MbI 1o-
CMOTPHMM, KaK IMOCTPOUTH aHAJIOI'MYHbIe BEeKTOPbI IJId npe,nnomeﬁmﬁ.
HDEMOH{EHME — 3TO Mou1eJ0BaTe/JbHOCTDL CJIOB, @ BEeKTOp IIpelioxKe-
Hus IIpencrapasgeT ero CMbICI.

Campbiit HpOCTOﬁ criocod I[MOCTPOMTDL BEKTOP IIpeljioXKeHWs — CJIOXKHUTh
BCe BEKTOpPbI CJIOB M IIOJeJMTh CYMMY Ha 4YMCI0 C/I0B. Ho B aTom ciy4yae
InpegjioKeHue TpakTyeTcsd Kak MelloK C/10B, M ITOPSIOOK CJIOB He ITPpUMHHK-
maercs Bo BHuManue. [Ipu Takom noaxone npepnokenust The dog bit the
man (Cobaka ykycusa yenoseka) u The man bit the dog (YenoBek yKycus
cobaky) cunranuch 6b1 upeHTUuuHbIMKU. LSTM nipegHasHaueHa st pabo-
ThI C BXOOHbIMM ITOCNEN0BATEe/IbHOCTAMM M YUMThIBAET ITOPSAI0K C/10B, I10-
3TOMY SABJIAETCH fojiee eCcTeCTBeHHbIM rnpencraBjieHeM IpeanoKeHms.

CHauana MMIIOpTHUPYEM OMOIMOTeKHN:

from sklearn.model selection import train test split

from keras.callbacks import ModelCheckpoint

from keras.layers import Input

from keras.layers.core import RepeatVector

from keras.layers.recurrent import LSTM

from keras.layers.wrappers import Bidirectional

from keras.models import Model

from keras.preprocessing import seguence

from scipy.stats import describe

import collections

import matplotlib.pyplot as plt

import nltk

import numpy as np

import os

IlaHHbIe NpeacTapieHbl B Buae Habopa SGML-daiinos. Mbl yke pas-
OMpasi 1 KOHCOJMMAMUPOBAIM 3T NAHHbIE B OOUH TEKCTOBbII daitn B
rjaBe 6, KOrga pacCMaTpUBaii YacTepPeuyHylo pasMeTky Ha 6ase GRU.
Bocronbsyemcst uMU MOBTOPHO, YTO6LI CHAvasa 1peobpasoBaTh Kax-
IbIit B/IOK TEKCTa B CIIMCOK IPEIJIOKEeHMIT, 110 OTHOMY ITPe/IOKeHIIO
B CTPOKe.

sents = []

fsent = open(sent filename, "rb")

for line in fsent:
ocid, sent id, sent = line.strip().split("t")
sents.append (sent)

fsent.close()

Hnst IMOCTpOeHM CJ1I0BAPS MbI CHOBA ITpOoYMTaeM 3TOT CIIMCOK IIpef-
JIOXKEeHUI [OCJIOBHO. l'lpn ,H,OGHBJIEHHM B CJIOBAPb KaXXO0e CJiIDBO HOpMa-

L7

ObyuyeHue 6e3 yumuTens — aBTOKOAMPOBLUMKK %+ 227

nusyetcst. Hopmanusaius 3ak/a0uaeTcsl B TOM, YTOObI 3aMEHUTh KaxK-
IYI0 JIeKCEMY, TIOXO3KYI0 Ha 4icIto, Ludpoii 9 1 mepeBecTit Bee JIeKCeMbl
B HIDKHMIL perucTp. B pesynbrate dhopmupyeTcs Tabiuiia YaCTOT CJIOB
word freqs. KpOMe TOro, Mbl BHIUMCISIEM [JIMHY KAXKI0TO MPeI0KeHMsI
M CO30AeM CIIMCOK pa300paHHBIX MPEJIOKEHMIA, COedMHSISA JIEKCeMbI
yepes npobest, uToObl MX OLIIO POoLLe pa3o0paTh Ha CIeAYIOLIEM IlIare.

def is number(n):
temp = re.sub("[.,-/1", "", n}
return temp.isdigit /()

word fregs = collections.Counter ()
sent lens = []
parsed sentences = []
for sent in sentences:
words = nltk.word tokenize (sent)
parsed words = []
for word in words:
if is_number (word) :
word = "8"
word freqgs[word.lower()] += 1
parsed words.append (word)
sent lens.append(len(words))
parsed sentences.append(" ".joln(parsed words))

JTO JaeT HaMm HEeKOTOPYIO MHCbOpMaU,M[O 0 KopI1iyce TeKCTOB, KOTO-
pasi MOMOXKeT BbIUMCIUTD MOAX0As e 3HaYeHust KoHctauT st LSTM-
CeTH:

sent_lens = np.array(sent lens)

print ("number of sentences: {:d}".format (len(sent_lens)))

print("distribution of sentence lengths (number of words)")

print{"min:{:d}, max:{:d}, mean:{:.3f}, med:{:.3f}".format(
np.min{sen:_lens}, np.max (sent lens), np.mean(sent lens),
np.median{sent_lens)))

print("vocab size (full): {:d}".format (len(word fregs)))

B pesyibTaTte 1ojydyaeM TaKMe ceeJeHM s O KopIiyce:

number of sentences: 131545
distribution of sentence lengths (number of words)

ann

min: 1, max: 429, mean: 22.315, median: 21.000
vocab size (full): 50751

Wcxopst 13 aroit uHdopmaLiu, 3agaium KOHCTaHTbL. [Tonoxum vo-
CAE STZE=5000, T. €. cJloBapb Oymet BrawouaTh 5000 camMbIx 4acTo BCTpe-
YAOIIMXCS CJIOB, UTO MOKPLIBAET CBbIlIe 93 % BCeX CIIOB B KOPITyCE.
OcrajibHble C10Ba OyeM CYMTATh HECJIOBAPHBIMM M 3aMeHSTh (QUK-
TUBHOI Jiekcemoit vuk. Ha aTane ripeackasanus jio60My CIOBY, KOTO-

228 <+ [naea 7. JononHWTeNbHbIE MOOENW MALIMHHOIO 0BY4YeHUs

poe MOJieJib PaHblile He Bie/a, TaKKe OyIeT COMoCTaB/IsSITLCS JeKceMa
uik. B kauecTBe sequEncE LEN BbiOepeM 3HaueHue, GIM3KOE K YIABOEH-
HOIi MeJIMaHHOM [IJIMHe [T0C/Ief0BaTelbHOCTel B 00ydaloiem Habope;
Ha camoMm pene npumepHo 110 munnmuoHoB M3 131 MuIMoOHA 1pef-
JIOXKEeHMIT Kopoue BhIOpaHHOro 3HaueHust. Te rpenjioxeHus, KOTOpbie
KOpOYe SEQUENCE LENGTH, JOITOJHSIIOTCS CIIeLalbHbIM CMMBOJIOM PAD, &
Te, UTO JJIMHHee, 00pe3alTcs:

VOCAB SIZE = 5000

SEQUENCE_LEN = 50

[TockonbKy Ha Bxop Haiuei LSTM-cetu noparoTcsl YMcia, Heobxo-
OMMO MOCTPOUTH TaBIMIbI COOTBETCTBUSI MEXKIY CJIOBAMU U UX UIEH-
tuduraropamu. Tak Kak Mbl orpaHuuuiu ciosaps 5000 cioBamu u
nobasuin aBa GUKTUBHBIX CJI0BA PAD M UNK, B 9TUX TabauLax 6yayT or-
paykeHbl 4998 peanbHbIX CJIOB IUIKOC PAD M UNK:

wordZ2id = {}

word2id["FAD"] = 0

word2id ["UHE"] = 1

for v, (k,) in enumerate (word fregs.most common(VOCAE SIZE - 23)::
word2id([k] = v + 2

id2word = {v:k for k, v in word2id.items{)}

Ha BXOf ceTy rofaeTcs nocjaenoBaTe/IbHOCTh CIIOB, B KOTOPOI Kaxk-
[0e CJIOBO IPeJiCTaB/IeHO BeKTOPOM. MOXKHO Ob110 6bI YIIPOCTUTDL cebe
JKM3Hb M UCITIO/Ib30BATh YHUTAPHOE KOAMPOBAHME CJIOB, HO TOrAA 06b-
€M BXO[IHbIX IaHHbIX ObL1 6bl CIMIIKOM BesinK. [loaTomy cjioBa Kogupy-
1otes 50-mepHbiMu norpyskeHusimu GloVe. IorpyskeHue 1oposxKmgaeTcst
MaTpuieit Gopmbl (VockE SIZE, EMBED STZE), B KOTOPOI KaXpasi cTpoka
npencrasisier GloVe-norpyskeHue cjiosa u3 ciaopapsi. B crpokax, omnm-
ChIBAOIIMX pap U Uik (¢ HoMepamu 0 1 1), HAXOASATCS COOTBETCTBEHHO
HYJIM M CJTydaifHO BhIOpaHHAst KOMOMHALMS

EMBED SIZE = 50

def lookup_wordZid{word}:
try:
return wordZid[word]
except KeyError:
return wordZid["UNK"]

def load glove vectors(glove file, word2id, embed_size}:
embedding = np.zeros|((len(word2id}, embed_size}}
fglove = open(glove file, "rb")
for line in fglove:
cols = line.strip().split()

L7

ObyyeHue 6e3 yuuTens — aBTOKOAMPOBLUMKKM <+ 229

word = cols[0]
if embed size == 0:
embed size = lenfcols) - 1
if wcrdZid.has_keyiwnrd]:
vec = np.array|([float(v) for v in cols[l:]]})
embedding[lookup_word2idfword}] = veq
embedding [word2id ["PAD"]] = np.zeros ((embed size)
embedding [word2id["UNK"]] = np.random.uniform(-1, 1, embed_size]

return embedding

embeddings = load_glove_vec:ors{os.pa:h.juin{

DATA DIER, "g;eve.éB.{:d}d.txt".fcrmat(EMBED_S:ZE]],
word2id, EMBED SIZE)

Hauia mopenb aBTOKOAMPOBLUIMKA ITPUHMMAET MOCIeI0BATEIbHOCTh
GloVe-BekTopoB c10B M 00yuyaeTcsl MMOPOXKIATh APYIYI0 IOCIen0Ba-
TEJILHOCTh, TOXO0XYI0 Ha BXOAHYI0. LSTM-KoguMpPOBUIMK CKUMAET I10-
CJIe[I0BATE/ILHOCTb B KOHTEKCTHbI BeKTOP (PMKCHPOBAHHOM [IJIMHBL, 110
koropoit LSTM-nekonep peKOHCTPYUMPYeT MCXOOHYIO0 MOC/Ien0BaTe/lb-
HoCTb. CXeMaTUuyecKky ceTb MpeacTaBjieHa Ha CIeayoliemM PUCYHKe:

(None, SEQUENCE_LEN, EMBED_SIZE)

TR

00000000

e 2] LSTM-koaupoBLMK

Bekrop
npeaioXKeHus xx]
Y

RepeatVector

(None, 1024, SEQUENCE_LEN)

[
Vo

(None, SEQUENCE LEN, EMBED SIZE)

[TockonbKy 00bEM BXOJHbIX HAHHBIX OYeHb BEIUK, Mbl BOCIIOJb-
3yeMCsl TeHEPaTOpPOM, MOPOXKIAWIIMM BXOIHBIE TMAaKeThl, & UMEHHO
TeH30Pbl GOPMBI (BATCH SIZE, SEQUENCE LEN, EMBED S1ZE). 3/1€Ch BATCH SIZE
paBHO 64, a MOCKOIbKY MbI MCIIO/NIb3YeM norpykenusi GloVe B 50-mep-
HOE BEKTOPHOE MPOCTPAHCTBO, TO EveED s1z8 paBHO 50. B Hauame Kax-

230 <+ [naea 7. [JononHWTeNbHblE MOLENW MALWMHHOIO 0BYYeHUs

IOro repuopa MnpeajioxkeHus MmepeMelnBalTCs M OTOAI0TCS MaKeThbl
1o 64 npegnoxkeHus B KakgoM. Kaxkmoe npepyioxkeHue rpeacrapieHo
B Buge Bekropa GloVe-ekropoB cioB. Ecjin y ©1oBa U3 cjioBapst HeT
coorBeTcTByioliero GloVe-morpy:keHust, To OHO [IPeICTaB/ISIeTCs HyJle-
BbIM BeKTOpOM. Mbl CO3/1a€M JiBa reHepaTopa: OUH [1Jig 06ydaroimx
IAaHHBIX, IPYTOI 1151 TECTOBLIX, COCTAB/SIIOIINX COOTBEeTCTBEHHO 70 %
u 30 % ucxoaHOro Habopa JaHHbBIX.

BATCH SIZE = 64

def sentence generator (X, embeddings, batch_size}:
while True:

OOHa MTepauMA LMKIa Ha [Nepuon

num_recs = X.shape[0]

indices = np.random.permutation(np.arange (num recs)

num_batches = num recs // batch size

or bid in range (num batches):
sids = indices([bid * batch size : (bid + 1) * batch size]
yield Xbatch, Xbatch

train size = 0.7

¥train, Xtes train test_split(sent wids, train size=train size)
train gen = sentence generator(Xtrain, embeddings, BATCH SIZE)
test_gen = sentence generator(Xtest, embeddings, BATCH SIZE)

Teneps BCe FOTOBO K OMPeIeIeHIMI0 aBTOKOMpoBIuKa. Kak rmokasa-
HO Ha pUCyHKe, oH coctouT 13 LSTM-konuposuiuka n LSTM-nekonepa.
LSTM-KogMpOBIIMK uMTaeT TeH30p OPMbL (BATCH SIZE, SEQUENCE LEN,
EMBED SIZE), IIPENCTAaBIIONIMIT TakeT npemioxkenuii. Kaxgoe npenno-
JKEHME TPEeCTaB/IEHO MOCAef0BaTeIbHOCTBI CJIOB, HOMOMHEHHO 10
(bUKCUMPOBAHHOM IJIMHBL SEQUENCE LEN, 8 KaXK/10e C10BO — 50-MepHbIM
GloVe-BekropoM. PasmepHocth Bbixoga LSTM-KomupoBLIMKE, T. €.
IJIMHA BEKTOpa, MOPOKIaeMoro 06y4eHHbIM aBTOKOIMPOBIIMKOM —
rurepriapamMeTp LATENT SIZE. BEKTOpHOe MPOCTPAHCTBO pa3MepHOCTH
LATENT SIZE M €CTb JIATEHTHOE [POCTPAHCTBO, KOAUPYIOLIEe CMbICI
npepaokenus. [lockonbky Bbixogom LSTM mjist i060ro npemjioxkeHuns
SIBJISIETCSL BEKTOP IJIMHBL LATENT SIZE, TO BBIXOJHOM TEH30p OJIs1 BCero
nakera umeet GoOpMy (BATCH SIZE, LATENT SIZE). 3TOT TEH30D IOJAETCS
Ha Bxoj1 ¢io RepeatVector, KOTOPBII periMuupyer ero ist Beeit 1o-
CJ1e0BATEIbHOCTH, T. €. BBIXOZHOI TEH30p 3TOro cjiost umeer hopmy
(BATCH SIZE, SEQUENCE LEN, LATENT SIZE). DTOT TEH30p MOAEeTCs Ha BXO[
LSTM-pexonepy ¢ pa3smMepHOCTBIO BbIXOJA EMBED SIZE, TAK UTO BBIXOJ-
HOIt TeH30p umeet GopMy (BATCH STZE, SEQUENCE LEN, EMBED SIZE) — TAKYIO
ke, KaK Y BXOJHOTO TEH30pa.

L7

06yueHue 6e3 yuntens — aBTOKOAMPOBLWMKM <+ 231

[MTpu komrsiuym atoit monenn sapgaercst ornrumusatop CI'C u cpeniHe-
KBagpaTmyecKasi OlLIMOKA B KauecTse Cl)YHKIJ,HM orepsb. Taxas rnoreps Bbli-
GpaHa, IIOTOMY 4YTO MbIl XOTHMM PEeKOHCTPYMPOBATD IIpe/jioKeHue, coxpa-
HMB I10 BOSMOKHOCTHM CMbICI, T. €. ITOJTYYMUTb HEUYTO 6/11M3K0e K MCXOOHOMY
MpefIoKeHMIO B ITPOCTPAHCTBE MOTrPy>KeHMs pasMepPHOCTM LATENT SIZE:

inputs = Input {shape= (SEQUENCE_LEN, EMBED SIZE), name="1input"})

encoded = Bidirectional (LSTM(LATENT SIZE), merge mode="sum",
name="encoder lstm") (inputs)

decoded = RepeatVector (SEQUENCE LEN, name="repeater") (encoded)

decoded = Bidirectional (LSTM(EMBED SIZE, return_seguences=True),
merge mode="sum", name="decoder lstm") (decoded)

autoencoder = Model (inputs, decoded)

autoencoder.compile (optimizer="sgd", loss="mse")

DTOT aBTOKOAMPOBIMK MbI 00y4yaeM Ha rpoTsukeHuu 10 nepuoaos.
Takoe 3HaueHue pocratouyHo mst cxonumoct CKO. Kpome Toro, mbl
COXpaHsieM Hauayulylo ¢ Touky spenus norepu CKO mopeib, HaliieH-
HYIO 3a 3TO BpeMsl.

num_train steps = len(Xtrain) // BATCH SIZE
num_test steps = len(Xtest) // BATCH SIZE
checkpoint = ModelCheckpoint (filepath=os.path.join (DATA DIR,
"sent-thoughts-autoencoder.hd"), save best only=True)
history = autoencoder.fit generator(train gen,
steps per epoch=num train steps,
epochs=NUM EPOCHS,
validation data=test gen,
validation steps=num_test steps,
callbacks=[checkpoint])

Hiske nokasaHbl pesyibTaThl 06ydyenust. Kak Bugmum, CKO Ha obyuaro-
1emM Habope ymeHbiIoch ¢ 0.14 10 0.1, a Ha KoHTpobHOM — ¢ 0.12 10 0.1.

Epoch 1/10
B2032/92032 |] - 5425 - loss: 0.1368 - val_loss: 0.1238
Epoch 2/10

92032/92032 [] - 540s - loss: 0.1203 - val_loss: 0.1164
Epoch 3/10

82032/92032 |] - 546s - loss: 0.1138 - val_loss: 0.1107
Epoch 4/10

92032/92032 [] - 5475 - loss: 0.1087 - val_loss: 0.1064
Epoch 5/10

92032/92032 |] - 542s - loss: 0.1053 - val_loss: 0.1038
Epoch 6/10

92032/92032 [] - 5435 - loss: 0.1034 - val_loss: 0.1020
Epoch 710

92032/92032 [: | - 544s - loss: 0.1021 - val_loss: 0.1025
Epoch 810

8203292032 [] - 5455 - loss: 0.1011 - val_loss: 0.1002
Epoch 9110

92032/92032 [| - 545s - loss: 0.1003 - val_loss: 0.0993
Epoch 1010

B2032/92032 [:] - 5455 - loss: 0.0997 - val_loss: 0.1009

232 < [naea 7. JononHWTeNbHbIE MOLENW MALUWMHHOIO 0BYYeHUs

Ha rpaduke usmenenue CKO BuIDISIAUT CIeAYIOLIMM 00pa3om:

0.14 . ’ - : T . r
— train
— validation

loss (MSE)

epochs

[TOCKOMIBbKY MbI [10a€M Ha BXOJ, MaTPUILY ITOTPY}KEHMIA, TO Ha BbIXO-
Ie TaKKe GymeT MaTpuLia IOrpyKeHuit ¢ioB. [TOCKONIbKY MPOCTPAHCTBO
MOTPY;KeHMsI HelpepbIBHOE, a Halll (JIOBAapb AMCKPETHbIH, HE BCSIKOE
BBIXOIHOE TOrpy:KeHie OYIeT COOTBETCTBOBAThH CJIOBY. JIyuilee, 4TO
MOXXHO CHeNaTh, — HANTH CJIOBO, O/IMIKaliIlee K BLIXOLHOMY I[TOIpYIKe-
HUIO, M TAKMM 06pa3oM PeKOHCTPYMPOBATh OPMIMHANBHBII TEKCT. DTO
CIALIKOM TPOMO3/IKO, [T03TOMY MbI GyeM OL€eHMBATbh aBTOKOAMPOB-
LUK MHAYe.

[TOCKOMBKY 1ie/ib aBTOKOAMPOBIIKMKA — MMOJYYMNTh XOPOIIee JIaTeHT-
HOe Mpe[cTaBjlieHue, TO OyIeM OLEeHMBATh JJATEHTHbIE BEKTOPBI, [10-
POXKIEHHbIE KOOMPOBLIMKOM, COMOCTaBJsSI OPUTMHAIbHbBIE BXOIHbBIE
IaHHbIE C BLIXOAOM aBTOKOIMPOBIIMKA:

encoder = Model (autoencoder.input, autocencoder.get layer ("encoder lstm™).output)

3aTeM IMPOrOHMM aBTOKOIMPOBILMK Ha TECTOBOM Habope 1 BepHeM
npencKasaHHble MMOrpykeHus. [locjae 3TOro MpoIyCcTMM BXOOHbIE U
npencKasaHHbIe TIOTPY)KeHMs Yepe3 KOAMPOBLIUK, KOTOPbIH MOPOLUT
IJIsl TeX M OPYTMX BEKTOPbI MPenioyKeHUit, ¥ CPaBHUM 3TH BEKTOPBI,
MPUMEHSST KOCUHYCHOe paccTosiHue. Eciu KOCMHYCHOE pacCcTosiHue
61M3KO K 1, TO BEKTOPBI MOX0XKU, a ecin K 0, To He roxoxu. [TokasaH-

L7

06yueHue 6e3 yuntens — aBTOKOAMPOBLWMKK <+ 233

HBI/l HIKe KOJ BbIOMpaeT ciydaifHoe IMOAMHOKECTBO, ComepiKaliee
500 TecTOBbIX MPEATOKEeHMIA, M BbIUMCISET KOCMHYCHBIE PACCTOSIHMS
MEKIY BeKTOPaMU MpeIosKeHI i, CreHepMPOBAHHBIMM 10 MCXOTHOMY
MOTPY;KEHMIO M 10 COOTBETCTBYIOIIEMY 1LI€JIEBOMY IOTPY)KEHMIO, 110~
POXKIEHHOMY aBTOKOAMPOBIIMKOM:

def compute cosine similarity(x, y):

return np.dot(x, vy} / (np.linalg.normix, 2} * np.linalg.normiy, 2})
k = 500
cosims = np.zeros((k))
i=10

for bid in range(num_test steps):

Xtest, ytest = test_gen.next(}
ytest = autcencoder.predict (xtest)
¥vec = encoder.predict (xtest)
Yvec = encoder.predict (ytest)
for rid in range (Xvec.shape[0]):
if 1 >= k:
break
cosims[i] = compute cosine similarity(Xvec[rid], Ywvec[rid])
if 1 <= 10:
print{cosims[i])
i+4=1
if 1 >= k:
break

Huke npusenexs! nepsbie 10 KOCMHYCHBIX paccTosiHuii. Kak Bugum,
BEKTOPbI 0YEHb ITOXO0XKMN:

(=1

0000000000

.982818722725
.970908224583
.98131018877

.974798440933
.968060493469
.976065933704
.96712064743

.949920475483
.973583400249
.980291545391
.817819952965

Ha crnenmyioieM pUCYHKe MOKa3aHa I'MCTOrpaMMa paciipeneieHus
KOCMHYCHBIX PaCCTOSIHMIT MEXIy BEKTOpamMM MPemioKeHuit aJist mep-
BbiX 500 nmpepJioxKeHMit U3 TecToBOro Habopa. OHa TakKe IOATBEPIKAa-
€T, YTO BEeKTOPbI, CreHePHUPOBAHHBIE 10 BXOOHBIM JaHHBIM U I10 BHIXOIY
aBTOKOIMPOBIIMKA, OUEHb ITOXO0XKM, a, 3HAUMT, [OJIYUMBIIMIICS BEKTOD
MPeJIoKeHMS ABJISIeTCS XOPOLIMM ITPeCcTaBIeHMeM IIPeIIoKeHMs.

234 < [naea 7. JononHWTENbHbIE MOLENW MALIMHHOIO 0BYYeHUs

14 T T T T

10

(s4]
T

frequency

0 - L L L
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

cosine similarity

KoMnosuuus rny6okux cetei

Mbl ogpoOHO pacCMOTPEIN TPY OCHOBHBIX BiIa ceTeli ryboKoro oo-
yueHus: monHocBasHbIe ceTu (IICC), cBepTOUHbIE CETU 1 PEKYPPEHT-
Hble ceTy. Kaxknas 113 HUX [IPUMeHSIeTCs [Jisl PelleHus] ONpee/ie HHbIX
3aga4. Ho M3 HMX MOXKHO COCTaBJISATh TakKxKe Gosiee KPYIIHbIe 1 110JIe3-
Hble MOJIeNM, COBMHSS, KaK JeTalu KOHCTpYKTopa Lego, ¢ MoMOIIbI0
dyukimonansHoro API Keras pasHbIMM MHTEPECHBIMM CI10COGAMM.

Takue Momaenu 00bIYHO MpegHA3HAUYEHbI /I PeLIeHUS Y3KOCTIeLu-
aaM3MPOBaHHbIX 3a7a4, I03TOMY TOBOPUTE 00 MX 00006I1eHI He TIPK-
xonutest. Kak rnpaBuiio, oHM 1160 00yuaioTcs Ha JaHHBIX U3 HECKOJIb-
KMX MCTOYHMKOB, JiN60 reHepHpyloT HECKOIBKO BBIXOAOB. [IpumMepom
MOJXKET CJTY3KUTh BOTIPOCHO-OTBETHAS CeTh, KOTOpasi 06ydaeTcs 1aBaTh
OTBETHI, MOAYYMB Ha BXOIE HEKOTOPYID MCTOPUIO M Boripoc. JIpyroi
MpMMep — CMaMCKasl CeTh, KOTOPas BLIYMC/ISIET CXOACTBO MEXKIY IBY-
Ms M306paKeHUs MM M BbIIAET GMHAPHBIN (TTOXOKM-HEIOX0XKH) MU
KaTeropmajbHblii (CTEIIeHb CXOACTBA) OTBET. Ellle 0fMH MpuUMep — CeTh
KinaccupuKalumuu 1 JIOKaau3anun 06beKToB, KOTopas 06yJaeTcs npep-
CKa3sbIBaTh KATErOPHUIO M300pakeHMsl, & TAKIKE MECTO M300pakeHHOTO
0o6beKTa Ha IIpeiaraeMoli KapTuHKe. B mepBbIxX ABYX CIydasxX Mbl MMe-
eM COCTaBHbIE CeTH C HECKOJIbKMMM BXOLAMH, a B IIOCJIeIHEM — CETh C
HECKOJIBKMMM BbIXOJaMMu.

L7

Komnosuums rnybokmx ceteir <+ 235

Mpumep - ceTb C NaMATLIO AN OTBETOB
Ha BONpPOCbl

B sToM npumMepe Mbl IIOCTPOMM CETh € IAMSIThI0, KOTOpast OymeT oT-
BeyaTh Ha BONpOoChl. CETH C MAMSITBI — 3TO CleLMa/IM3UPOBAHHAS ap-
XUTEKTYpPa, B KOTOPOIi IOMMUMO APYrux 00ydyaeMbIX HEIPOHOB (6J10KOB),
06b1yHO PHC, umetoTcst 6/10Kku mamsaTi. Kaxkaplit BXOIHOIM 371eMeHT 06-
HOBJISIET COCTOSTHUE MAMSITH, & [IPU BLIYMCIIEHUM OKOHYATE/IbHOT'0 BBIX0-
[YUUTBIBAIOTCS HE TOJILKO BbIXO/bI 00y4aeMbIX 6JI0KOB, HO M COIePIKM-
MOe NaMsITi. ITa apxuTeKTypa 6buta npeioxeHa B 2014 roay B pabore
]. Weston, S. Chopra, A. Bordes «Memory Networks», arXiv:1410.3916,
2014.Togom no3sxe B pabote |. Weston «Towards Al-Complete Question
Answering: A Set of Prerequisite Toy Tasks», arXiv:1502.05698, 2015,
ObLI OIMCAH CMHTETUYECKIIit HAabOop JAaHHBIX M CTAHIAPTHbIA Habop U3
20 BONPOCHO-OTBETHBIX 3a/1a4 YBEJIMUMBAIOLIEINCS TPYIHOCTH, IJIS1 pe-
LIEHKUS KOTOPBIX MIPUMEHSIMCh Pa3/iMuHbIe CeTU [I1yOOKOro o6yueHus.
Kak oka3zanocsk, ceTh C NaMsIThIO0 BO BCEX CJIyYasiX [MOKa3biBajia HauIyu-
LIMe pe3y/bTaThl. BriocieacTBuu 3T0T HAOOP JaHHbIX ObUI BHUIOKEH B
OTKPBITBIN JOCTYII B paMKax rpoekra Facebook bAbI (https://research.
f£b.com/projects/babi/). Hallla peanmsalus ceTH ¢ MaMsTbio 6J1MXKe BCero
HaIllOMMHAeT Ipe/jiIoKeHHY10 B craThe S. Sukhbaatar, . Weston, R. Fer-
gus «End-To-End Memory Networks», Advances in Neural Information
Processing Systems, 2015 B TOM CMbIC/Ie, YTO MPOU3BOIUTCSI COBMECT-
HOe oByueHuMe BCeX KOMIIOHEHTOB eMHOI ceTu. [l pelueHust epBoi
BOIIPOCHO-OTBETHOM 3a/1a4M MCIO/b3yeTcs Habop gaHHbIX bAbIL.

[lepBbIM JEJI0M MMIIOPTUPYEM OMOIMOTEKM:

from keras.layers import Input

from keras.layers.core import Activation, dense, Dropout, Permute

from keras.layers.embeddings import Embedding

from keras.layers.merge import add, concatenate, dot

from keras.layers.recurrent import LSTM

from keras.models import Model

from keras.preprocessing.sequence import pad_sequences

from keras.utils import np utils

import collections

import itertools

import nltk

import numpy as np

import matplotlib.pyplot as plt

import os

HanHbie B HaGope bADbI g repsoit 3agaum cocroat U3 10 000 Ko-
POTKMX TIpeIJIOKeHMI [id obydeHus M TecTupoBaHus. Mctopus co-

236 <+ [naea 7. [JononHWTeNbHblE MOLENW MALWMHHOIO 0BY4YeHUs

OEePXUT OT ABYX 110 TPeX IpeajoxKeHit. 3a 1ocjefHUM [peaioKeHuem
B Ka)KI0i1 MCTOPUM clenyeT Borpoc u oTeet. [IpuBeeHHbII HUKe KO,
pasbupaet oby4yaloliie U TecToBbie (aiiibl, GopMUpYs TPOMKK (MCTO-
pusi, BOIIPOC, OTBET).

DATA DIR = "../data"

TRAIN FILE = os.path.join(DATA DIR, "gal single-supporting-fact train.txt")
TEST FILE = os.path.join(DATA DIR, "gal single-supporting-fact_ test.txt")

def get _data(infile):
stories, gquestions, answers = [], [1, []
story text = []
fin = open (TRAIN FILE, "rb")
for line in fin:
line = line.decode ("utf-8").strip()

lno, text = line.split(" ", 1)
if "t" in text:
question, answer, _ = text.split("t")

stories.append (story text)
guestions.append(guestion)
answers.append (answer)

story text = []
else:
story text.append(text)
fin.close ()

return stories, guestions, answers

data train = get data (TRAIN FILE)
data test = get_data(TEST FILE)

Crnenyioiiuii mar — 06paboTaTh TEKCThl B IOCTPOEHHBIX CIIMCKAX U
€O31aTh C10Bapb. Mbl y)kKe HeOOHOKPATHO Je/aii HeuTo rnogobHoe. Ho
Ha 3TOT pa3 ¢JIoBaphb GYIET COBCEM MaJeHbKMUM, OH COOEPIKUT BCEro 22
VHMKA/IbHBIX C/I0BA, TAK UTO HEC/IOBApHbIE CJI0BA HE TIOHA00sTCA.

def build wvocab(train data, test data):
counter = collections.Counter()
for stories, questions, answers in [train data, test data]:
for story in stories:
for sent in story:
for word in nltk.word tokenize(sent):
counter [word.lower ()] += 1
for question in gquestions:
for word in nltk.word tokenize(question):
counter [word. lower ()] += 1
for answer in answers:
for word in nltk.word tokenize{answer):
counter [word. lower ()] += 1
word2idx = {w:(i+l) for i, (w, _) in enumerate(counter.most common({))}

Komnosuums rnybokmx ceteir <+ 237

word2idx ["BAD"] = 0
idx2word = {v:k for k, v in wordZ?idx.items{)}
return wordZidx, idxZword

word2idx, idx2word = build vocab(data train, data test)
vocab size = len (word2idx)

CeTtb ¢ namsiThbo ocHoBaHa Ha PHC, B KOTOPOIi Kaxkaoe rpeijioxeHue
MCTOPUM M BOMPOC PACCMaTPUBAKOTCS KaK MOCIEN0BATEIBHOCTH CJIOB,
MO3TOMY HaM HYKHO HalTU MaKCUMAJIbHYIO JJIMHY NPeJIOKeH Ui, ITO
nenaeT rMoKasaHHbIN HIKe Kof. Kak BhISICHSAETCS, MAaKCMMAa/IbHOE YuC-
JIO CJIOB B IPeIOKEHUSIX M3 UCTOPUI paBHO 14, a B BOIIpocax — Bcero 4.

def get_maxlens[train_dats, test_data):
story maxlen, question maxlen = 0, 0
for stories, questions, _ in [train data, test data]:
for story in stories:
story len = 0
for sent in story:
swords = nltk.word_tokenizetsent]
story len += len(swords)
if story len > story_maxlen:
story maxlen = story len
for gquestion in gquestions:
question len = len(nltk.word_tokenize(question}}
if guestion len > guestion maxlen:
question maxlen = question len
return story maxlen, question maxlen

story maxlen, questian_maxlen = get maxlens(data train, data test)

Kak u panbiie, Ha xon PHC nopaeTrcs nocienoBaTe/lbHOCTh UEH-
Tudmxa'ropoa CJIOB. HOSTOMY MbI BOCITIONIB3YEMCS ClioBapeM, YTOOBI
HDEOGDaBOBaTbTPOﬁKy(HCTODHH,BDHDOC,OTBET)B rnociaenoBaTe/ib-
HOCTbh LEe/TOUYMC/IeHHBIX MHEHTMCI)MK&TODOB. JT0 aenaetr CHE,EI,YIDLI.LHI:I
¢paFMEHT KOﬂa,KOTOpHﬁ 3d00HO OOIIOJNHSIET HY/ISAMM pe3yiabTHUPY-
wiMe 1nocienoBaTe/ibHOCTH OO BBIYMCIEHHOI paHee MaKCUMMaJIbHOM
OJVHBI. ITocne storo Ml 6Y,HEM MMETb CIIMCKKM JOIMOJHEHHBIX I1OCe-
,ELOBBTEJI}JHOCTEI;I M,II,E‘HTHdJMKaTOpOB CJIOB OJis1 Ka}l{ﬂ(}ﬁ TpDﬁK}I 13 06-
ydarwliero 1 TeCToBOro Haﬁopa.
def vectorize(data, word2idx, story maxlen, question maxlen):

Xs, ¥Xgq, Y = [], [1, [I
stories, gquestions, answers = data
for story, question, answer in zip(stories, questions, answers):

xs = [[word2idx[w.lower()] for w in nltk.word tokenize(s)] for s in storyl]

xs = list(itertools.chain.from iterable(xs))

238 <+ [naea 7. JononHWTeNbHbIE MOLENW MALWMHHOIO 0BYYeHUs

xq = [word2idx[w.lower()] for w in nltk.word tokenize(guestion)]
¥s.append(xs)
¥g.append (xq)
Y.append (word2idx [answer.lower ()]}
return pad sequences(Xs, maxlen=story maxlen),
pad_sequences (Xg, maxlen=guestion maxlen),
np_utils.to_categorical (Y, num classes=len (wordZidx))

¥strain, Xqtrain, Ytrain = vectorize(data train, wordZ2idx, story maxlen,
question maxlen)

¥Xstest, Xgtest, Ytest = vectorize (data test, word2idx, story maxlen,
question maxlen)

Ham Hy3KHO onpenenuTh Mojelb. OnpeneneHie 0KasblBaeTCs IJIMH-
Hee, ueM BCe, UYTO MbI BUIeJIM PaHbllle, I03TOMY, 3HAKOMSCh C HUM, OY-
IeT ya00HO CIPaBIsIThCS CO CIeAyIoNeii JuarpaMMOoi:

cuestion story
(Mone, max guestion len] [Mone, max story len]

Embedding Embedding Embedding

{Mone, embed size, max question len] (Mone, embed size, max story len]) (None, max queston len, max story len

match
[Mone, max_guestion_len, max_slory_len]

respanse
[Mone, max _gquestion_len, max story len]

[None, max_stery_len, max_guestion_len)

[Mone, embed size+max story len, max_guestion len)

—.—.—.f.—.—.—

(None, Istm output size)

(Mone, vocab size)
answer

Komnosuums rnybokux cetein <+ 239

V Haileii Mopejiu IBa BXOJA: MOCiAenoBaTelbHOCTU uueHTuduKa-
TOPOB CJIOB B BOIpOCe U B rpenjoxeHusx ucropuu. Kaxpas rocne-
noBaTenbHOCTDb nepenaercs cioiw Embedding, koropsrii npeobpasyer
MIeHTU(UKATOPL CJIOB B BEKTOPbI B 64-MEpPHOM IIPOCTPAHCTBE I10-
rpyxkeHusi. [IOMOJMHUTENBHO [MOC/e0BATeIbHOCTb, OTHOCSIIASICS K
MCTOPUH, NIPOTIyCcKaeTcs yepes eie opauH cioit Embedding, koropsiit
Ipoepyer ee B [OrpyKeHue pasMepHOCTU nax_guestion len. Bee cion
MOrPY;KeHUsT MHULMATIM3UPOBAHbI CJIyYaiiHbIMM BecamMy M 00y4yaoTest
BMeCTe C OCTa/IbHOMH CeThbI0.

[lepBbie ABa MOrpykeHust (MCTOPMSI U BOIIPOC) OOBEAMHSIIOTCS C [10-
MOIbIO OIepalMy CKAISIPHOTO MMPOMU3BeeHMs, 00pasyst [aMsITh CETH.
OTO JaeT npejcTaB/ieHKs TeX ¢JIOB B UCTOPUM U BOIIPOCe, KOTOPbIe CO-
BITAAl0T WM GJM3KKM B IIPOCTPAHCTBE MorpyskeHust. Boixon 610ka na-
MSITH OObEAMHSIETCS CO BTOPBIM MOIPYKEHUEM, OTHOCSIMMCS K UCTO-
PUK, C MIOMOILLBIO Onepaluu cioskeHus . [loayuyeHHbII OTKIMK CeTU ellle
pas o6beIMHSIeTCs C [OTPY;KeHUeM JIJisl Borpoca, 06pasyst rnocjieqosa-
TEJIbHOCTh-OTK/IMK, KoTopast rpomyckaercs uyepes LSTM. Konrekcr-
Hblit BekTop LSTM nepepaercs [J0THOMY CJ1010, TPe/ICKa3blBaOILIEMY
OTBeT — OIHO U3 (JIOB B CJIOBape.

Iljist o6yueHus: MOJIe/N UCIob3YyeTcs onTuMmusaTop RMSprop u ka-
TeropuasibHas IepeKkpecTHasi SHTPOIMUS B KauecTBe hyHKIMK ITOTePh:
EMBEDDING SIZE = 64
LATENT SIZE = 32
BXOOHHE® OAHHLE
story input = Input(shape=(story maxlen,))
question input = Input (shape=(question maxlen,))

KOOMPOBUME MCTOPMI

story encoder = Embedding (input_dim=vocab_size, output dim=EMBEDDING SIZE,
input_length=story maxlen) (story_ input)

story encoder = Dropeutt0.3]tstcry_enccder]

KOOMpOBUMK BONPOCOSB

question encoder = Embedding (input dim=vocab size, output dim=EMBEDDING SIZE,
input_length=question maxlen) (question_input)

question encoder = Dr:p:utiU.B]Equestian_enccder]

conocTraBfeHMe MCTOPMM C BONPOCOM

match = dot([story encoder, question encoder], axes=[2, 2])

NOrpy®eHME MCTOPMM B BEKTOPHOE NPOCTPAHCTEC BONpPOCA
story encoder c = Embedding(input dim=vocab size, output dim=guestion maxlen,
input_length=story maxlen) (story_ input)

240 <+ [naea 7. JononHWTeNbHbIE MOOENW MALWMHHOIO 0BYYeHUs

story_encoder c = Dropoutt0.3l[story_enccder_c]

HOMOMHMpOBAHME BEKTODOE CONOCTABISHMA M MOTODMM

response = add([match, story encoder c])

response = Permute((2, 1)) (response)

HOMOMHMpOBAHME BEKTODOE OTKIMEA M BONPOCA

answer = concatenate ([response, question_enccderf, axis=-1)
answer = LSTM(LATENT SIZE) (answer)

answer = Dropout (0.3) (answer)

answer = dense(vocab_size) (answer)

output = Activation("softmax") (answer)

model = Model (inputs=[story input, question_input], outputs=ocutput)
model.compile (optimizer="rmsprop", loss="categorical crossentropy",
metrics=["accuracy"])

JTa ceThb 06y11ae'rc51 Ha ITPOTsKe MK 50 [epuogosB ¢ pasMepoM rake-
Ta 32 1 IOCTUraeT Ha KOHTPOJbHOM Habope BepHOoCTH 81%:
BATCH SIZE = iz
NUM EPOCHS = 50
history = model.fit ([Xstrain, Xgtrain], [Ytrain], batch size=BATCH SIZE,
epochs=NUM EPQCHS,
validation data=([Xstest, Xgtest], [Ytest]})

Huxe nokasan IIPOTOKOJ OﬁquHMH:

Epoch 38/50
10000/10000 |] - 55 - loss: 0.4636 - acc: 0.7952 - val_loss: 0.4499 - val_acc: 0.8071
Epoch 39/50
10000/10000 [] - 55 - loss: 0.4603 - acc: 0.7993 - val_loss: 0,4489 - val_acc: 0.8083
Epoch 40/50
10000/10000 [] - 55 - loss: 0.4590 - acc: 0.8003 - val_loss: 0.4475 - val_acc: 0.8086
Epoch 41/50
1000010000 [] - 55 - loss: 0.4592 - ace: 0.7997 - val_loss: 0.4472 - val_acc: 0.8099
Epoch 42/50
10000/10000 |] - 55 - loss: 0.4611 - acc: 0.7966 - val_loss: 0.4466 - val_acc: 0.8099
Epoch 43/50
10000/10000 |] - 55 - loss: 0.4577 - acc: 0.8025 - val_loss: 0.4437 - val_acc: 0.8114
Epoch 44/50
10000/10000 |] - 55 - loss: 0.4576 - acc: 0.8023 - val_loss: 0.4431 - val_acc: 0.8136
Epoch 45/50
10000/10000 [] - 55 - loss: 0.4575 - ace: 0.8013 - val_loss: 0.4422 - val_ace: 0.8127
Epoch 46/50
10000/10000 [] - 55 - loss: 0.4587 - acc: 0.7998 - val_loss: 0.4420 - val_acc: 0.8127
Epoch 47/50
10000/10000 |] - Bs - loss: 0.4574 - acc: 0.B005 - val_loss: 0.4412 - val_acc: 0.8126
Epoch 48/50
10000/10000 |] - 5% - loss: 0.4558 - acc: 0.8023 - val_loss: 0.4408 - val_acc: 0.8168
Epoch 49/50
10000/10000 |[:] - B5 - loss: 0.4550 - acc: 0.8003 - val_loss: 0.4395 - val_acc: 0.8154
Epoch 50/50
10000/10000 |] - 55 - loss: 0.4577 - acc: 0.7985 - val_loss: 0.4407 - val_acc: 0.8138

Ha cienyronux rpadukax okasaHo M3MeHeHMe BEPHOCTH U [TOTepU
Ha 00yuaioiiemM U KOHTPOJIbHOM Habopax.

Komnosuums rnybokux cetein <+ 241

Accuracy

— train
— validation ||
20 30 40 50

Loss

— train |
— validation |4
10 20 30 40 50

MbI IIporHa Iy Mofes i rnepsbix 10 McTopuii U3 TecToBoro Habopa
IJ1S1 IPOBEPKU KAauyecTBa MpecKasaHuii:

ytest = np.argmax(Ytest, axis=l)
test = model .predict { [¥stest, Xgtest])
ytest = np.argmax(Ytest , axis=l)

for i in range (NUM DISPLAY):
story = " ".join{[idx2word[x] for x in Xstest[i].tolist() if = != 0])
gquestion = " ".join({[idx2word[x] for x in Xgtest[i].tolist(}]}
label = idx2word[ytest[i]]
prediction = idx2word([ytest [i]]
print(story, guestion, label, prediction)

Kak BMOHO M3 cileayioiieil Tabiauibl, Mpeacka3aHus 110 Gosblieit
YaCTH BePHBDL.

Story T " Predicted
mary maved to the bathroom . john went to the hallway . where is mary 7 | bathroom | bathroom

daniel went back to the hallway . sandra moved to the garden . |where is daniel 7 |hallway | hallway

john moved to the office . sandra journeyed to the bathroom . where is daniel ? |hallway |kitchen

mary moved to the hallway . daniel travelled to the office . where is daniel 7 |office office
john went back to the garden . john moved to the bedroom . where is sandra 7 | bathroom | bedroom
sandra travelled to the office . sandra went to the bathroom . where is sandra 7 | bathroom | bathroom
mary went to the bedroom . daniel moved to the haltway . where is sandra ? | bathrocom | garden
john went to the garden . john travelled to the office . where is sandra ? | bathroom | bathroom

daniel journeyed to the bedroom . daniel travelled to the hallway . |where is john 7 |office kitchen
john went to the bedroom . john travelled to the office . where is daniel 7 |hallway |kitchen

242 < [naea 7. JononHWTENbHbIE MOLENW MALUWMHHOIO 0BYYeHUs

Pacwupenue Keras

CocraBjieHMe KPYIHbIX apXUTEKTYP U3 3JIeMEHTAPHBIX CTPOMTEIbHbIX
6JI0KOB ITO3BOJISIET CTPOUTDH MHTEPECHbIEe MOJIe/ N ITy6OKOro 06yuyeHus,
HO MHOIIA HYKHO TOJOMTH K 3amade ¢ apyroro koHua. B Keras ye
BcTpoeHa 6orartast QYHKIMOHAIBHOCTh, [I03TOMY Bbl, CKOpee BCero,
CMOMKeTe CO3[aTh HYKHbIe MOe/IM U3 rOTOBbIX KOMIIOHEHTOB, U I10-
TpeOGHOCTU B paciliupeHuu Boobiie He Bo3HMKHeT. Ho eciu Bce ke 1o-
Hamoburcs, To B Keras ectb fiJist 3T0Oro cpescraa.

Kak Bbl momuuTe, Keras mnpepcrasisier cob60ii BbICOKOYPOBHEBBINI
API, KoTOpBIii AesierupyeT TsoKelyio pabory 6asoBoii 6ubnuorexe Ten-
sorFlow muam Theano. JIiob6oit 1o6aBaeHHBIA BaMM KO, pacilUpeHust
IOJDKeH 00pallaThesl K OOHOM 13 3Tux 6ubauorek. YtroObl COXpaHUTh
MepeHOCHMOCTb MEXIY HUMM, HEOOXOIMMO M0JIb30BAThCS TePexoj-
HbIM API Keras (https://keras.io/backend/), B KOTOPOM MMeeTcs Habop
(byukumii, obpasyromux dacan aJis BpiopaHHoM 6ubauMoTeku. B 3aBu-
CMMOCTH OT TOr0, Kakasi 6ubmorexka BoiOpaHa, acazn 6ymeT TpaHC/Im-
poBaThb o6paiieHust B Bbi30Bbl GyHKuMii u3 TensorFlow mwin Theano.
[MonHbli epeyeHb UMEIOIIMXCST PYHKLMI ¢ TOAPOOHBIMU OITMCAHMSI -
MM MMEEeTCsl Ha BBIIIEYIIOMSIHYTOM CTpaHuLie.

[TomMumo nepeHOCHMMOCTH, UCTTIONIB30BaHUe nepexoaHoro API nosso-
JISIeT NONYYnTh BoJiee ya06HbI [J1s1 COITPOBOKIEHMS KO, [IOTOMY 4TO
Koz Ha Keras 06bIuHO H0Jiee KOMITAKTHBINA U BbICOKOYPOBHEBBIN, yeM
3KBMBaJIeHTHbI Koj Ha TensorFlow unu Theano. B Tom manoseposiT-
HOM CJlydae, Korjga Heooxonumo paboraTth ¢ 6a30B0ii 6MBIMOTEKOI Ha-
MPsSIMY10, KOMIIOHeHTbI Keras MoskHO Bbi3bIBaTh 13 Koaa Ha TensorFlow
(Ho He Theano), Kak ormcaHo B Giore Keras (https://blog.keras.io/
ke:5s—as—5—Simp;iﬁed—interface—te—tenscrﬂew—tut::ia;.htm;}

Pacummpenue Keras o6bIYHO CBOAMTCS K HAIMCAHUIO CBOErO CJIOSI
i cBoeit dyHKUMY paccTosiHus. B aToM pasiesie Mbl [TPOIEMOHCTPU-
pyeM co3liaHue HeCKOJIbKUX IIpocThiX cyioeB B Keras. [lormoiHUTe/IbHbIE
MPUMepPbI UCITOIb30BAHMS TePEXOAHbIX (GYHKIUIA 71T CO3IaHMST I10JIb-
30BaTeNbCKUX KomItoHeHTOB Keras, Hanpumep dyHKUMIT r10TEpb, OY-
YT [PUBENEHbI B [MOCIEIYIOUUX pasieiax.

Mpumep - ucnonbsosaHue cnog lambda

Keras npepocragsier ¢1oii lambda, nossossionnii 06epHyTh I100YI0
dyukiuMio. Haripumep, 4TO6bI TOCTPOUTD CJI0#4, KOTOPbIH 103/IEMEHTHO
BO3BOJUT B KBaJIpaT BXOAHOI TEH30D, JOCTATOYHO HAIIMCATh:

model.add (lambda (lambda x: x ** 2))

L7

Pacwuperue Keras <+ 243

Cnoem lambda mMoxHO Takxke 06epThiBaTh (PyHKIMKM. Hanpumep,
IIYCTb HaM HVYKeH [10/1b30BaTe/ILCKMIT CJ'IOI;:I, KOTOphIﬁ [os31eMeHTHO
BBIYMUISAET eBKIMO0BO pacCTOssHMe MeXXay OBYMS BXOOHBIMM T€H30-
pammu. TOI‘,U,& MBbI OIIpenenmm dJYHK]J,MIO, KOTOpas BbIYMC/IsIeT caMo 3Ha-
YyeHue, 1 ellle OOHY, KOTOpas BO3BpalliaeT cbopmy ee BbIXona:
def euclidean distance (vecs):

X, ¥ = vecs
return K.sqgrt(K.sum(K.square(x - y), axis=l, keepdims=True))

def euclidean distance output shape (shapes):
shapel, shape? = shapes
return (shapel[0], 1)

Hasee 51 QYHKLMM BbI3bIBAIOTCA U3 cj1os lambda:
lhs input = Input (shape=(VECTOR SIZE,))
lhs = dense (1024, kernel initializer="glorot uniform",
activation="relu") (lhs_input)

rhs _input = Input (shape=(VECTOR_SIZE,))
rhs = dense (1024, kernel initializer="glorot uniform",

activation="relu") (rhs_input)

sim = lambda(euclidean distance,
output_shape=eucl ideal‘._diEi—_ance_oui—_pu:_shape} ([lhs, rhs])

Mpumep - NOCTpOEHUE NONb30BATENbCKOrO CN0A
HOPMUPOBKM

Cnoii lambda 6biBaeT oueHb 110/1e3€H, HO MHOIIA HeoOXoauM 60Jb-
LKA KOHTPOJb. PaccMOTpUM, K NpUMeEpy, KOHA €10 HOPMMPOBKH,
peausyIolMii MeTol, JTOKaAbHOI HOPMMPOBKHM OTKIMKA. CMbICI
MeTOa 3aK/II0YaeTcsl B HOPMMPOBKE BXOJHbIX JAHHBIX B JIOKAJbHBIX
00/1aCTsX, HO Ceifuac OH BbIIIE M3 MOAbI, [IOTOMY YTO OKAa3aJICs He Ta-
k1M 3¢ (eKTHBHBIM, KaK Jpyriue MeTOoAbl peryiapusaliu, Harnpumep,
MpOopeKMBaHe MM IMaKeTHas HOPMUPOBKA, M K TOMY JKe MOSBUINCH
VIyYIIeHHbIe MEeTObI MHUIMATM3ALIAN.

JInis TOCTPOeHMS T0/b30BATEIbCKMUX CI0€B OOBIYHO MPUMEHSIOTCS
rnepexoaHbie PYHKIMHK, [I0ITOMY HYKHO BbIpaboTaTh MPUBBIUKY pac-
CY)KIATh 0 KoJie B TepMMUHaX TeH30poB. HarmoMmuuM, uto paboTa ¢ TeH-
30paMy — ABYXILIAroBblii pouecc. CHayala Mbl OIpefeiseM TeH30Pbl
M CTPOMM M3 HUX rpad BbIUMCIEHMI, a 3aTeM IpUMeHseM 3ToT rpad K
dakTuueckum gaHHbIM. [TosToMmy paGoTaTh Ha 3TOM YpPOBHE TpyAHee,
yeM C ocTajbHbIMMK yacTsaMy Keras. B JOKyMeHTaLMU UMEIOTCS PeKO-

244 < [naea 7. JononHWTENbHbIE MOLENW MALIMHHOIO 0BYYeHUs

MEeHAAIMKU 10 KOHCTPYMPOBAHUIO IMOJIb30BATEIbCKUX CJIOEB (https://
keras. ia/'_-aye‘:s,f'writing—yaur—Gwn—keras—;ayerS/), W MX HYXKHO obsa3aTenb-
HO [TPOYMUTATH.

Yrobbl yrIpocTuTh paspaboTKy Koma ¢ IpUMeHeHUeM IepexoHOro
API, MOXHO ITOJArOTOBUTH MPOCTEHbKIUIA TECTOBBII CTEH[, HA KOTOPOM
MPOBePSIeTCsl, YTO KOJ 1eJ1aeT TO, YTO HY3KHO. BOT npuMep Takoro cTeH-
Ila, 103auMCTBOBAHHbBI 13 McxonHOro Koaa Keras, oH npumeHsieT /10
K BXOJIHbIM JaHHbIM U BO3BpAlllaeT pe3ynbrar:

from keras.models import Sequential
from keras.layers.core import Dropout, Reshape

def test layer{layer, x):
layer config = layer.get config()
layer config["input shape"] = x.shape
layer = layer. class__ .from config(layer config)
model = Seguential(
model ., add (layer)
model.compile ("rmsprop”, "mse")
¥_ = np.expand dims(x, axis=0)
return model.predict(x_][ﬂ]

A BOT HECKOJIBKO TECTOB, KoTopbie Keras rpemocrasisier, 4To6bl yoe-
OUTBCS B IPABMJIbBHOCTY pab0ThI CJIOEB HA 9TOM CTEHJE:

from keras.layers.core import Dropout, Reshape
from keras.layers.convolutional import ZeroPadding2D
import numpy as np

¥ = np.random.randn {10, 10}
layer = Dropout (0.5}

y = test layer(layer, x)
assert (x.shape == y.shape)

¥ = np.random.randn (10, 10, 3)
layer = ZeroPadding2D(padding=(1,1})

y = test layer(layer, x)
assert (x.shape[0] + 2 == y.shape[0])
assert (x.shape[l] + 2 == y.shape[l])

¥ = np.random.randn (10, 10}
layer = Reshape((5, 20)})
y = test layer(layer, x)
assert (y.shape == (5, 20)})

[Ipexxae ueM MepPexoauTh K MOCTPOEHUIO C/10sl JIOKAJIbHOI HOPMM-
POBKM OTK/IMKa, pa3bepemMcs, UTO MMEHHO OH Me/aeT. JTa TeXHMKa
BIepBble OblIa MpuMeHeHa B 6ubnuoreke Caffe, u B mokymeHTanum

L7

Pacwupenue Keras <+ 245

(http:,f",f’c:iffe.berke'_eyvisic-n.crg,f'tutc-r"_-a'_,f"_-:-ye?:s,f"_:n.ht-.’n'_) OIMMChIBAET-
€51 Kak crocob JlamepajabH0o20 MOPMOXCEHUS, B OCHOBE KOTOPOI'O JIeKHUT
HOPMHMPOBKA B JIOKAJ/IbHBIX BXOOHBIX obnactsx. B PeXXMMe ACROSS CHAN-
NEL JIOKaJIbHbIe 00/1aCTH 3aXBaTbhIBAIOT HECKOJIbKO coCcefHMX KaHAaJlOB,
HO He MMEWT HpOCTpaHCTBeHHOﬁ MPpOTSLKEHHOCTH. B peXXumMe WITH-
IN CHANNEL JIOKaJIbHbIE 06/1aCTH 3aHMMAKOT MeCTO B IIpOCTPaHCTBE, HO
TOJBLKO B IIpefejiaX OJHOrI'o KaHalla. Hike onucbiBaeTcst peam3ans
peXXMMa WITHIN CHANNEL. CDOIJM}I’JI& HOPMMPOBKH JIOKAJIBHOI'O OTKJIMKA B
PeXxuMe WITHIN CHANNEL MMeeT BMI:

.o
LRN(x,) = *

(k+gzixf.

n

g

CTpyKTypa Koja IoJjib30BaTe/IbCKOro /105l cTaHfapTHas. B merone
_ init 3a0al0TCS 3aBuUCsLMe OT INPWIOKEeHUs [apameTpsl, T. €.
rurepriapameTpsl ¢10s1. [TocKoNbKY Halll CJ1I01 TPOU3BOIUT BbIUMCIIEHWS
TOJIBKO B IPSIMOM HAIIpaBIeHUM U He umeeT 0OyyaeMbIX BECOB, TO B
METO[E build HY)KHO JIMIIb 3a1aTh (DOPMY BXOJ1A M BbI3BATb METO[, build
cyrepKiiacca, KOTOpbIi 1103ab0TUTCS 0 BHYTpeHHel KyxHe. Eciu 6bl
1031 MMes1 obyyaembie Beca, TO 3[1eCh Mbl JOJ/DKHBI ObLTM ObI 3a1aTh UX
HayvallbHble 3HAYeHUs.

B mMeTome ca11 MPOU3BOASITCS caMM BblumcieHust, He 3a0yabre yuecTs
nopsfgok musmepenmii. Eme cinefgyer NMOMHMTb, YTO pasmep raxkerta
O0ObIYHO HEM3BECTEH Ha aTalle MPOeKTHPOBAHMS, [T0ITOMY Orepaiuu
HY3KHO [POrpaMMMpPOBATh Tak, YTOObI pa3Mep MaKeTa He YIIOMUHAJICS.
Camo BblUMUJIEHME He BbI3bIBaeT TPYIHOCTE U BIIIOJHIETCS. B COOT-
BercTBUM ¢ hopmysioit. CyMMY B 3HAMEHaTe/1e MOKHO MHTePIIpeTupo-
BaTh KaK YCPeIHEHHbIN IYJIMHT [10 CTPOKE M CTOMIOLLY C SIAPOM pasmepa
(n, n) u marom (1, 1). ITockonbKy B rpoliecce MmyJanHra ycpeHeHue yxe
IIPOU3BeIeHO, TO ellle Pa3 IeJIMTh CYMMY Ha N He HYXKHO.

n nocjieaHsasa 4acThb Kjtacca — MeTO[get output shape for. HOCKOHBKY
C/I011 HOPMUPYeT KaXK[1bli /IeMeHT BXOLHOT0 TeH30Pa, pa3smMep BbIX01a
paBeH pazMmepy BXoja:

from keras import backend as K
from keras.engine.topology import Layer, InputSpec

class LocalResponseNormalization (Laver):

def init (self, n=5, alpha=0.0005, beta=0.75, k=2, **kwargs):
self.n = n

246 <+ [naea 7. JononHWTENbHbIE MOLENW MALUMHHOIO 0BYYeHUs

self.alpha = alpha

self.beta = beta

self.k = k

super (LocalResponseNormalization, self). init (**kwargs)

def build(self, input shape):
self.shape = input_ shape
super (LocalResponseNormalization, self).build{input_shape)

def call(self, x, mask=None):
if K.image dim ordering == "th":
_+ £y 4 c = self.shape
else:
_+ Iy o, £ = self.shape
sgquared = K.sguare (x)
pooled = K.pool2d (squared, (n, n), strides=(1, 1), padding="sams", pool mode="avg")
if K.image dim ordering == "th":
summed = K.sum(pooled, axis=1, keepdims=True)
averaged = self.alpha * K.repeat elements(summed, f, axis=1)
else:
summed = K.sum(poocled, axis=3, keepdims=True)
averaged = self.alpha * K.repeat elements(summed, f, axis=3)
denom = K.pow(self.k + averaged, self.beta)
return x / denom

def get output shape for(self, input shape):
return input shape

STOT CJI0Mi MOXHO TECTMPOBaTh B mpolecce paspaboTKu, IMOJIb3y-
SICh OIIMCAHHBIM BbILIE TECTOBLIM CTEHAOM. DTO IPOILLIE, YeM CTPOUTh
LEeYI0 CeTh, B KOTOPYI0 MOXHO BCTABUTh CJIONM, MM, XY3Ke TOro, pu-
CTYIATh K TECTUPOBAHUIO TOJIBKO I1OC/IE OKOHYATE/ILHOTO 3aBePIeHNSs
pa3paboTKu C10sl.

¥ = np.random.randn (225, 225, 3)

layer = LocalResponseNormalization()

y = test layer(layer, x)

assert (x.shape == y.shape)

XoT4 co3gaHue [M0Jb30BaTeIbCKIX C/I0eB — 0ObIYHOE [1eJ10 JJ15 OTIbIT-
HbIX paspaboTunkoB Ha Keras, B MUHTepHeTe He TaK MHOrO IIPUMEPOB
Ha 3Ty Temy. BO3MOXKHO, 3TO OOBSICHSIETCS TeM, YTO I10/Ib30BATE/b-
CKMe CJIOM IMULITYTCS [J1s1 Y3KOCIIeMaJIM3MPOBAHHbBIX 3a1au U He 1peji-
CTABJISIIOT MHTEpeca i IKUPOoKoi nyeinuku. Kpome Toro, u3-3a y3Koi
crielMaamu3almum OgHOro NpUMepa HelloCTaTOUHO 151 JeMOHCTpaLuu
Bcex BoamoskHocTei APL. Teneps, Korga y Bac ecrb IpeAcTaBlieHue 0
TOM, KaK IUILIYTCH [0J1b30BaTeIbCcKue cion Keras, 6yieT oyuuTeIbHO

L7

MNopoxpawwue mogenu <+ 247

B3IVISIHYTh HA nipumMepsl ciost Melspectogram B crathe Keunwoo Choi
(h:tps:ffkeunwoochoi.werdpress.cemfZO16!llf18!for—beginne:s—writing—a—
custom-keras-laver/) U c0si NodeEmbeddingLayer B cratbe Shashank
(hjpta (http://shashankg?.github.i0/2016/10/12/Custom-Layer-In-Keras-
Graph—Embedding—Case—Study.htm;}

MNopoxaaowme Mmoaenu

[Mopoxkpatoiie mompenn oOY4alTCsl CO3[aBaTh JaHHbIe, IMOL0OHBIE
TeM, Ha KOTOPBIX OHM 06yuanuch. OOyH Takoit puMep Mbl BULEIHU B
rjaBe 6, Korga 06ydaam MoIe/lb COUMHATh TeKCThI, [IOXOKUE Ha « AJn-
cy B CrpaHe uygec». Tam Mbl 00YUYM/IM MOJIE/Ib IPEACKa3biBaTh 11-blit
CUMBOJI TEKCTA T10 MePBbIM AecaTu. Ellle oiuH npUumMep — MoOpoKAa0-
mue cocrazarenbHbie ceTu ([ICC), HegaBHO MOSIBUBIIMIICS BeChMa
MOIIIHBIN KJIACC MOJIeNelt, — BCTpeuasics Ham B miaBe 4. Maes nopoxna-
0UMX MOJe/Iei 3aK/II0YaeTCsl B TOM, UTO MOZe/Tb 00yUaeTcst XOpoiiemy
MPeCcTaBIeHnI0 00YUAIONIUMX NJaHHbIX 1 ITIOTOMY MOXKET reHepupoBaTh
MOXOXKKe TaHHbIE HA 3Tare MpencKasaHms.

Ha noposkpamliue MOAEeIM MOXKHO B3IISIHYTh TAK)Ke C BEPOSITHOCT-
HOJi TOUKM 3peHust. TurnmuHasl ceTb sl Kiaccudukaumm uin perpec-
CUM, HasbiBaeMasl TaKKe OMCKPUMMHAHTHOM MOIe/blo, obyuyaercs
by, oTOGpaZkalolieit BXoaHble faHHbIe X Ha HEKOTOPYIO METKY Y,
T. €. 3TY MOJe/IM 00yUaTcs YeIoBHOM BeposTHocTH P(y|X). C apyroi
CTOPOHBI, MOPOXKIA0LAs MOAe/b 006y4aeTcsi COBMECTHOI BeposT-
HOCTM BXOMHBIX JAHHBIX U MeTOK P(X, y). 9TU 3HAHMS 3aTEM MOXKHO
MUCIIO/Nb30BaTh ISl BbIOOPKM HOBLIX MPUMEPOB U3 paclipenesieHust
(X, y). [Tosromy noposkpaoias MoJe/ib ClIoCOOHA 0OBACHSITh CKPBITYIO
CTPYKTYPY BXOJHBIX JAHHBIX JaXKe B OTCYTCTBMM MeTOK. Ha mpakTuke
3TO 0YEHb BaKHOE MPEUMYIIECTBO, MOTOMY UTO HEITOMEYEHHBIX JaH-
HbIX B MIpe ropasjio 6obliie, 4emM IIOMeUYeHHbIX.

[IpocThbie MOPOXKAAOIUIME MOIETU TUIIA BBILIEYTIOMSIHYTOrO TIpUMe-
pPa MOXHO PaclpoCTPaHUTh TAKKe HA 3BYKOBbIe NaHHbIe. Tak, Moesb
MOYKHO 00YUMTH COUMHEHUIO ¥ BOCIIPOM3BeaeHUI0 My3biku. [Ipo ogHy
TaKyI0 MOJe/b MOXKHO IIPOYMTaTh B cTaThe A. van den Oord «WaveNet:
A Generative Model for Raw Audio», 2016, roe omnmcbiBaeTcs CeTb
WaveNet, MocTpoeHHas ¢ IPUMEHEHUEM JIbIPYATHIX CBEPTOUHBIX CJI0-
eB, ee peanusaluio Ha Keras MoskHO HaliTu Ha caiite GitHub o agpecy

https://github.com/basvesling/wavenet.

248 <+ [naea 7. JononHWTENbHbIE MOLENW MALUWMHHOIO 0BYYeHUs

Mpumep - rny6okue cHOBUAEHUSA

B aToMm npumepe Mbl pACCMOTPUM HEMHOT'O APYTYIO ITOPOKIAILYIO
ceTb. Mbl YBUIMM, KAK BOCIIO/Ib30BATHCS npeﬂoﬁyqeﬁﬂoﬁ CBEPTOYHOIT
CeThbIO OJis1 MOPOXOeHWsI HOBBIX 00BEeKTOB B HSOﬁpHJKEHMI—’l. Ceru, 06-
YVUeHHbIe pas’/iMyaThb MSOGD&H(GHHSI, HAKaIuIMBalOT CTOJbKO 3HAaHMIt
00 MSOG}J&H(EHHF[X, YTO CIIOCOOHBI TAKKE nopoXaatTh ux. Briepeslie sTo
rnpogeMoHcTpupoBan Ayekcanap MopasuHIEB U3 GOOg]E W onucan
B 6iore GOOglE (https://research.googleblog.com/2015/06/inceptionism-
gcing—deeper—ints—neuza;.ht-.’.'.'_). HEpBOHa'\-IaJ'IbHO 3Ta Muaest II0Jy4duiia
Ha3BaHMe UHUeNnUUOHU3M, HO TepMIMH deep dreamfng, unu Deap Dream
(rnyﬁoxue CHOBUJIEHMS) OKa3alics Gonee MoIyjasipeH.

B TexHonorun Deap Dream akruBauuu 06[33"[‘1-[0 pacrpocTpaHsao-
mierocs rpagueHTa npuﬁaanam’rca K M306pa}i{€HMKJ, W 3TOT IIponecc
rnopTopsercs: B uukie. [To xony mena cetb ONTUMUIUPYET EIJYHKLI,I—’IIO
110Tepb, HO MBI [TIOCMOTPMM, KaK OHa 3TO [e/iaeT Ha [IpMMepe BXOOHOT'0
HSOGDI:UKEHMSI (TpexKaHa/lbHOr0), 8 He MHOTOMEPHOIr'0 CKPBITOTO CJIOS,
KOTOPbII TPYIHO BU3YAAU3UPOBAT.

V 310ii 6a30BOI CTpaTerMu MHOI'O BapuaLuii, 1 BCE OHM IA0T HOBbIE
MHTepeCcHbIe S(iJ(iJEKTI:I. ViomsiHeM pasMbITHE, HAJIOXKEHUE OrpaHuye-
HMI1 Ha oblee YuciIo aKTHUBAaL M1, CHUKEeHMe IPajiueHTa, GecKoHeUYHoe
npmﬁnm{(em—ie H306pa}1(€HMSI InyreMm KaapUpoBaHMSI M Maciuradu-
pOBaHMS, IobaBneHue IPOXAaHUS IYyTEM CIYUaliHOIro repemerieHust
MSOGD&)KEHMSI B pPasHbIX HAIlpaBJIeHMSIX U T. . B npumepe Huke 6}’-
IeT MPoAEeMOHCTPUPOBAH MPOCTEMIINMIA ITOAX0H — Mbl OIITUMMU3UPYEM
rpagMeHT cpenHeil akTuBalun BhIﬁpaHHOI‘O CJ1081 4J151 KaKIIOTo IMyJIMH-
roBoro ¢iog npegodyyenHoi mogenu VGG-16 u nocMorpum, Kak 3To
OTpaxxaeTcsl Ha BXOOHOM 1—1306pa>1<emu—1.

CHauasa, Kak 06bIUHO, UMIIOPTUPYEM GMOIMOTEKN:

from keras import backend as K

from keras.applications import wgglé

from keras.layers import Input

import matplotlib.pyplot as plt

import numpy as np

import os

3aTeM 3arpysum BXofHoe u3obpaxkeHue. Bbl HaBepHSIKa BCTpevain
ero B 6/10rax, MOCBSILEHHbIX [TYO0KOMY 00yueHuo. OpuruHai usobpa-
JKeHUS HaXOOMTCS Mo agpecy https://www.flickr.com/photos/billgarrett-
newagecrap/14984990912):

DATA DIR = "../data"

IMAGE FILE = os.path.join (DATA DIR, "cat.jpg")

MNopoxpawwue Mogenu <+ 249

img = plt.imread(IMAGE FILE)
plt.imshow (img)

Bor pesynbTaT paboThl 3TOr0 Koaa:

0

100

200

0 50 100 150 200

Hasnee onpenenum aBe QYHKLUMU: preprocess IpeobpasyeT usobpa-
JKeHMe B UeThIpexMepHOe MpejicTaB/leHne, KOTOpoe MOXHO MoaaTh Ha
Bxo[rpenobyyeHHoit cetn VGG-16, a deprocess MPOM3BOIMT 06paTHOE
npeobpasoBaHue.

def preprocess(img):

imgdd = img.copy()

imgdd = imgdd.astype("float6d")

if K.image dim ordering() == "th":
(H, W, C) -=> (C, H, W)
imgdd = imgdd.transpose((2, 0, 1))
img4d = np.expand dims(imgdd, axis=0)
img4d = vgglé.preprocess input (img4d)

return imgdd

def deprocess(imgdd):

img = imgdd.copy ()

if K.image dim ordering() == "th":
$# (B, C, H, W)
img = img.reshape((imgd4d.shape([l], imgdd.shape([2], imgdd.shape[3]))
$# (C, H, W) => (H, W, C)
img = img.transpose((l, 2, 0))

else:
¥ (B, H, W, C)

250 <+ [haea 7. [JononHWTeNbHbIE MOLENW MALWMHHOIO 0BYYeHUs

img = img.reshape ((imgdd.shape(l], imgdd.shape(2], imgdd.shape[3]))
img[:, :, 0] += 103,939

img[:, :, 1] 4= 116.779
img[:, :, 2] += 123.68
BGR -> RGB

img = img[:, :, ::-1]

img = np.clip(img, 0, 255).astype("uintg")
return img

21U QYHKLMKU B3aMMHO 0OpAaTHBI, T. €. eCJIM CHAYaJla repejarTh u30-
ﬁpa}KEHME preprocess, d 3aTeM I1epefaTh pe3yibTaT deprocess, TO IIOTY-
YMTCH UCXOIHOE M300pakeHe.

Hasee 3arpyxaem ceTb VGG-16, npegodyuyeHHYI0 Ha HABope JaHHbIX
ImageNet u Bxopsiyio B cocraB auctpubytusa Keras. B riaBe 3 mbl
VIKEe PaccKasbiBa/im, Kak paborarth ¢ npesobyuyeHHbIMU MOAeIsiMu. Mbl
BbIOMpaeM BapMaHT, U3 KOTOPOrO YK€ YIajeHbl IOJHOCBSA3HbIE CJIOM.
MaJio Toro 4To 310 M36aBIsgeT HAC OT HEOBXOAMMOCTH YIAISATh UX Ca-
MOCTOSITEJIbHO, TAK MbI €lle MOXKEM [epenarh uzobpaxkeHue 11060ro
pasmepa, IIOTOMY YTO LIMPUHA M BbICOTA BXOMAHOrO M300paskeHMs 3a-
[OAI0TCS TOJBKO [JIS TOro, 4YTOBbI OIpeNe/dTh pasMep MaTpull BECOB
B IOJIHOCBA3HBIX (JIOSIX. [IOCKO/IBKY npeobpa3oBaHusl, BbIIIOIHAEMbIE
CHC, o nipupofe cBOeii JOKa/JbHbI, pasmMep U300paxkKeHUs] He BJIUSI-
€T Ha pasmepbl MAaTPULL BECOB CBEPTOUHBIX U IMYJIMHIOBLIX cjioeB. Tak
YTO OCTAETCS TOILKO OJHO OrPpaHMYEeHME Ha pa3Mep u300paskeHus — OH
JOJKEH BbITh OIMHAKOBLIM B IIpe/ie/iaxX OfHOr0 IaKeTa:

img_copy = img.copy()

print ("Original image shape:", img.shape)

p_img = preprocess(img_copy)

batch shape = p_img.shape

dream = Input(batch shape=batch shape)

model = vgglé.VGGl6 (input_tensor=dream, weights="imagenet",

include top=False)

B nocienyommx BbIYMCIEHUSIX HAM [IPUIETCSI CChLIAaThCS HA 00beK-
Tbl cioeB CHC 110 MMeHam, ro3TomMy mocTpoum cjioBapb. Hy>kKHO Takxke
MOHMMATH CoIiallieHne 06 UMEeHOBAHMU CJIOEB, IOITOMY paciiedyaTaem
3TOT CI0Baph:

layer dict = {layer.name : layer for layer in model.layers}
print{layer dict)

PEBYﬂhTaT BBIMIAOWT TAK:

{'blockl convl': <keras.layers.convolutional.Convolution2D at 0x11b847690>,
'blockl conv2': <keras.layers.convolutional.Convolution2D at 0x11bB47£90>,

MNopoxpawwue Mmogenn <+ 251

'blockl pool': <keras.layers.pooling.MaxPooling2D at 0x11c45db%0>,

'block2 convl': <keras.layers.convolutional.Convolution2D at 0Ox1lcd5ddd0>,
'block2 conv2': <keras.layers.convolutional.Convolution2D at Ox11bB8f810>,
'block2 pool': <keras.layers.pooling.MaxPoolingZD at 0x11c2d26%0>,

'block3 convl': <keras.layers.convolutional.Convolution2D at 0x11c47b890>,
'block3 conv2': <keras.layers.convolutional.Convolution2D at 0x11c510290>,
'block3 conv3': <keras.layers.convolutional.Convolution2D at OxllcdafalQ>,
'block3 pool': <keras.layers.pooling.MaxPoolingZD at 0x11c334al10>,

'blockd convl': <keras.layers.convolutional.Convolution2D at 0x11c345b10>,
'blockd conv2': <keras.layers.convolutional.Convolution2D at 0x11c345%50>,
'blockd conv3': <keras.layers.convolutional.Convolution2D at 0x11d52c¢%10>,
'blockd pool': <keras.layers.pooling.MaxPoolingZD at 0x11d550c%0>,

'block5 convl': <keras.layers.convolutional.Convolution2D at 0x11d566c50>,
'blockS conv2': <keras.layers.convolutional.Convolution2D at 0x11d5b1%10>,
'block5 conv3': <keras.layers.convolutional.Convolution2D at 0x11d5b1710>,
'blockS pool': <keras.layers.pooling.MaxPoolingZD at 0x11£d68e10>,

'input 1': <keras.engine.topology.Inputlayer at Ox11b847410>}

3aTeM BLIUMCISETCS TOTePs B KaXKIOM M3 IISITH IYJIMHIOBBIX CJIOEB U
rpagueHT cpefHeli aKTUBaLMK IJ1s KayKI0ro U3 Tpex maros., [pagueHt
CHOBA CKJIA[bIBAETCS C M3006ParKeHMeM M Ha KaKI0M LIare BhIBOIUTCS
M300paAKEHUE B KAKIOM U3 TYJIUHTOBbIX (JIOEB:

num pool layers = 5
num_iters_per_ layer = 3
step = 100

for i in range(num pool layers):
MOeHTMPMKUMPOBATE NYIMHTOBEI CION
layer name = "block[:d}_pool".format[i+lj
noCTpOMTE GQYHKUME NOTEPE, MAKCHMM3MPYDLYE CPEOHOD AKTMEAUME B CIOE
layer output = layer dict[layer name].output
loss = K.mean(layer output)
BHUMCIMTE TpagMeHT M300pameHMA N0 NOTEpE M HODMMPOBATE
grads = K.gradients(loss, dream) [0]
grads /= (K.sgrt(K.mean(K.square(grads))) + le-5)
ompenemMTe DYHKIDE, EOSEDRALANIYD NOTEPK M TPAIMEHT OAHHOTO BXOIHOTO M300paseHM
f = K.function([dream], [loss, grads])
img_value = p_img.copy()
fig, axes = plt.subplots(l, num iters per layer, figsize=(20, 10))
for it in range(num iters per layer):
loss value, grads value = f{[img_ualue]}
img_value += grads_value * step
axes[it].imshow(deprocess(img value))
plt.show()

Hike roxkasaHbl PesyIbTUPYIOIIME M300paykeHMsI:

252 < [haea 7. JononHWTENbHbIE MOLENW MALWMHHOIO 0BY4YeHUs

lnaea 7. JononHWTENbHbIE MOAENM MALWMHHOTO 00yYeHKn

L7
-

254

L7

MNopoxpawwue mogenm ++ 255

Mbl MOKeM MOBTOPUTh 3TOT HKCIIEPMMEHT C IIYMOM Ha BXOmIe U
BBIYMCIUTD IIOTEPI0 HA OAHOM (DUIbTPe BMECTO yCPeaAHEeHUS 110 BCEM
(unprpam. BeiGpaHHblii HaMU QUIBTP OTHOCUTCS K U300paKeHUI0 U3
Habopa ImageNet ¢ meTkoit «adpukaHckuit cion» (24). Takum obpa-
30M, B IIPEIbIAYIIEM KOIe Mbl BMECTO BbIUMCIEHMS CPEHETO [0 BCEM
dbunbTpam cuuTaeM IoTepeit BbIXom (GUIbTPA, IPeICTaBISIOIEro
KJacc apMKaHCKOro CJIOHA:

loss = layer output[:, :, :, 24]

Ha Beixope ciios blockd pool MOMYYAETCH HEUYTO, HAITOMMHAKOLLee 110~
BTOpSAOIIMeCcs MSOGD&H{GHHH CJIOHOBBEIo X000Ta:

Mpumep - nepeHoc ctuna

O6o61eHue TexHonoruu Deep Dream onucaHo B pabote L. A. Gatys,
A. S. Ecker, M. Bethge «Image Style Transfer Using Convolutional Neu-
ral Networks», Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2016, rie nokasaHo, UToO HeIfPOHHAS CEThb TH-
rna VGG-16 obyuaeTcsi 0AHOBPEMEHHBIM IIPU3HAKAM COOEPKMMOro 1
CTWUJISL M YTO TEM U IPYTUM MOXXHO MaHMITYJIMPOBATH HE3aBUCUMO. ITO
3HAYUT, UTO U300pasKeHe 00beKTa (COTePKMMOe) MOKHO MOACTPOUTh
TIOJ], CTWJIb TIPEIbIBIEHHON KapTUHBI.

Kak 06b1uHO, HAUMHAEM C UMIIOPTa BUBIMOTEK:

from keras.applications import wgglé

from keras import backend as K

from scipy.misc import imresize

import matplotlib.pyplot as plt

import numpy as np

import os

Inst mpuMepa HApUCyeM Halle M300pakeHue KOTEeHKA B CTUIIe pe-
npoaykiuu kaptuHbl Kinoma MoHe «SrnoHCKMIA MOCTMK» (https://goo.
gl/0vXC39):

256 <+ [naea 7. JononHWTeNbHbIE MOLENW MALWMHHOIO 0BYYeHUs

DATA DIR = "../data"

CONTENT IMAGE FILE = os.path.join(DATA DIR, "cat.jpg")

STYLE IMAGE FILE = os.path.join(DATA DIR, "JapaneseBridgeMonetCopy.jpg")
RESIZED WH = 400

content _img value = imresize(plt.imread (CONTENT IMAGE FILE), (RESIZED WH,
RESIZED WH))

style img value = imresize[pit.imread[S?YLE_EMAGE_FILEJ, (RESIZED WH,
RESIZED WH))

plt.subplot (121}
plt.title ("content™)
plt.imshow(content img value)

plt.subplot (122}
plt.title("style™)
plt.imshow(style img value)

plt.show()

Bot uTo BEIBOOUT 3Ta IporpaMma:c

content

0 50 100150 200 2501}0350400400 0 50 100150200250300350400

Kak u panblie, Hanumem GyHKImMuM 1jist mpeodpasoBaHms usobpa-
skeHus B Hy>KHbI CHC yeThlpexmMepHblii TeH30p U 00paTHO:

def preprocess(img):

imgdd = img.copy()
imgdd = imgdd.astype("floated")
if K.image dim ordering() == "th":

¥ (H, W, C) -> (C, H, W)

imgdd = imgdd.transpose((2, 0, 1))
img4d = np.expand dims(imgdd, axis=0)
img4d = wgglé.preprocess input (imgdd)
return imgdd

def deprocess(imgédd):

L7

MNopoxpawwue mogenu <+ 257

img = imgdd.copy()
if K.image dim ordering() == "th":
(B, C, H, W)
img = img.reshape((imgd4d.shape(l], imgd4d.shape([2], imgdd.shape[3]))
4 (C, H, W) -> (H, W, C)
img = img.transpose((l, 2, 0))
else:
¥ (B, H, W, C)
img = img.reshape ((imgdd.shape(l], imgdd.shape(2], imgdd.shape[3]))
img[:, :, 0] += 103,939
img[:, :, 1] 4= 116.779
img[:, :, 2] += 123.68
BGR -> RGB
img = img[:, :, ::-1]
img = np.clip(img, 0, 255).astype("uintg")
return img

O6DsaBiIsIeM TeH30PbI /151 XPaHEeHMS ob6oux H306pa}1{e1{uﬁ, cogepim-
MOI'O M CTWJIS, a TAKXKe TeH30pP OJis pe3yabTUPYIOLero HSOGDR}KEHIAQ.
3areMm KOHKaTeHMpyeM COgep>XMMoe M CTHU/Ib B E,II,MHhIf—"I BXO,ELHOf’I TeH-
30D, KOTOPbII MOoJaeTcs: Ha BXo[IpenobydyeHHoit cetu VGG-16:
content_img = K.variable (preprocess (content img wvalue))
style img = K.variable (preprocess (style_img value))
if K.image dim ordering() == "th":

:omb_img = K.placeholder ({1, 3, RESIZED WH, RESIZED WH))
else:
:omb_img = K.placeholder ({1, RESIZED WH, RESIZED WH, 3N
KOHEKATSHMPOBATE M300DAMSHMA B SOMHHM BXOOHOM TEH3O0D
input tensor = K.concatenate ([content img, style img, comb img], axis=0)

Cospaem o6bekT cetit VGG-16, npenobyyeHHOi Ha Habope JaHHbIX
ImageNet, ¢ yraJeHHbIMU [IOJTHOCBSI3HBIMM CJIOSIMU

et =

model = vggl6.VGGl6é (input_tensor=input tensor, weights="imagenet",
include top=False)

Kak u paHblIe, CTPOMM CJI0BApb, COHOCTaBJ’IﬂIO].U,I—’Iﬁ MMS BbIXOOY
o105 06yuyeHHoit cetn VGG-16:
layer dict = {layer.name : layer.cutput for layer in model.layers)
Hanee BbIUMCISIKOTCS MOTePU content loss, style loss M variational

loss. VI HAKOHeIl, Mbl OTIpefe/isieM 061IYI0 [TOTePI0 KaK TMHEeMHYI0 KOM-
GMHALIMIO 9TUX TPEX MOTEPh:

def content loss(content, comb):
return K.sum(K.square (comb - content))

def gram matrix(x):
if K.image dim ordering() == "th":

258 <+ [nasa 7.[ononHuTeNbHble MOAENM MALLUMHHOTO 06y4YeHUs

features = K.batch flatten(x)
else:
features = K.batch flatten(K.permute_dimensions(x, (2, 0, 1)))

b
gram = K.dot (features, K.transpose(features))
return gram

def style loss per layer(style, comb):
S = gram matrix(style)
C = gram matrix(comb)
channels = 3
size = RESIZED WH * RESIZED WH
return K.sum(K.square(S - C)) / (4 * (channels ** 2) * (size ** 2))

def style loss{():

stl loss = 0.0

for i in range (NUM_LAYERS) :
layer name = “block{:d}_convl“.format{i+1}
layer features = layer dict[layer name]
style features = layer features[l, :, :, :]
comb_features = layer_features[2, L -
stl loss += style loss per layer(style features, comb features)

return stl _loss / ﬁﬁM_Lﬁ?ERé_ B B

def variation loss(comb) :
if K.image dim ordering() == "th":
dx = K.square(comb[:, :, :RESIZED WH-1, :RESIZED WH-1]
comb[z, :, l:, :RESIZED WH-1])
dy = K.square(comb[:, :, :RESIZED WH-1, :RESIZED WH-1] -
comb[:, :, :RESIZED WH-1, 1:])

else:
dx = K.square(comb[:, :RESIZED WH-1, :RESIZED WH-1, :]
comb[:, 1:, :RESIZED WH-1, :])
dy = K.square(comb[:, :RESIZED WH-1, :RESIZED WH-1, :] -
comb[:, :RESIZED WH-1, 1:, :])
return K.sum(K.pow(dx + dy, 1.25}))

CONTENT WEIGH
STYLE WEIGHT
VAR WEIGHT =
NUM_LAYERS =

c_loss = content loss(content img, comb_img)

s_loss = style loss()

v_loss = variation_loss(comb_img)

loss = (CONTENT WEIGHT * ¢ loss) + (STYLE WEIGHT * s loss) + (VAR WEIGHT * v loss)

L7

MNopoxpawwue Mmogenn <+ 259

31ech content loss — KBAIPATHBI KOPEHb U3 CYMMbI KBaJIpaTOB pas-
Hocreit kKoopauHat (L2-paccTosiHMe) TIPU3HAKOB, BBIIEIEHHBIX W3
M306pakeHUsI-COOLPKMMOr0 M PesyibTUPYIOIIell KOMOMHALIMY U30-
OpaskeHuit. braromapss MMHMMM3ALUKUKM 3TON TOTEPU CTUIN30BAHHOE
u306paskeHe ocTaeTcs GJIM3KUM K OPUIMHAIBHOMY.

IMoTepsi style loss onpenensiercs Kak L2-paccTogHue Mexy MaTpu-
uamu ['paMma M300pasKeHUsI-CTUIISL U PE3YIbTUPYIOLLel KOMOMUHAIMK
u3obpaxkenuii. Marpuueit 'pamma marpuiibl M Ha3blBaeTCs IIPOMU3-
Benenue M" * M, rme M' o603Hauaer TPAHCIOHUPOBAHHYIO MATPUILY.
Takas roreps M3MepsieT 4aCTOTY COBMECTHOI BCTPEUaeMOCTH MPU3HA-
KOB B U300pakeHMM-CTUIICH M KOMOMHUPOBaHHOM M306paskeHn. D10,
KCTaTH, 03HAYAET, YTO MATPULbI content U style HOJIKHBI ObITh KBaIpaT-
HBIMU.

[NonHas BapualMOHHAS [IOTePS variation loss M3MeEpPSIeT PA3HOCTb
MEXIY COCeMHMMM THKcensiMu, B pesynbrare ee MUHUMMU3ALUM CO-
cenHue MUKCeTM OYIYT ITOX0KU, TAK YTO OKOHYATE/IbHOe M300pakeHue
OKa)KeTCsl TJIaBHBIM, & HE PBaHbIM.

Borumciisiem rpaineHT M OYHKIUIO MOTEPb U BLITIOTHSIEM ISITh UTe-
pauuit paboThl ceTi B 00PAaTHOM HarlpaB/IeHUN:

grads = K.gradients(loss, comb_img) [0]
f = K.function({[comb_img], [loss, grads])

NUM ITERATIONS = 5
LEARRNING RATE = 0.001

content imgd4d = preprocess(content_img value)

for i in range (NUM_ITERATIONS):
print ("Epech {:d}/{:d}".format (i+1, NUM ITERATIONS))
loss_value, grads value = f([content img4dd])
content imgd4d += grads value * LEARNING RATE
plt.imshow (deprocess (content img4dd))
plt.show()

Hiske roxkasaH pesynbTaT MOCIeOHMX OBYX MTepalmii. Kak Bumum,
M306pakeHne MPUoBPesIo YePThl PA3MbITOCTH, XapaKTePHbIe OJIsT MM-
MPeCCHOHUCTOB, a B MOCIEAHEM C/Iydae Jake CKOIMMPOBaHA TEKCTypa
XO0JICTA.

260 <+ [naea 7. [ononHWTeNbHbIE MOOENW MALWMHHOIO 0BYYeHUs

100

150

200

250

300

350

400 e N]
0 50 100 150 200 250 300 350 400

100

150

200

250

300

350

400 E 3 = =
0 50 100 150 200 250 300 350 400

Pesiome

B 3T0j1 I71aBe Mbl PACCMOTPEIM HECKOJILKO CeTelf y6oKoro o6yueHus,
He BOILIEAIIMX B MPeAilecTBYIOIIMe IMIaBbl. Mbl HAUaau C KPaTKOro 06-
3opa yHkumnoHanbHoro API Keras, Mo3BO/SOIIET0 CTPOUTH HE TOJIBKO
rocjenoBaTe/bHbIe, HO M GoJiee CIOKHbIE CeTH. 3aTeM Mbl 06paTHINCh
K PerpecCMOHHBIM CEeTSIM, KOTOPbIE HeNaloT IMpeicKasaHisl B Herpe-
PBIBHOM TIPOCTPAHCTBE M T€M CAMbIM IO3BOJISIOT PELIUTh IIMPOKMUIA
psif HOBbIX 3amay. OJHAKO PerpeccMoHHasl CeTh Ha CaMOM [iefie Mpe-

L7

Pesiome <+ 261

crapisier coboii OYeHb MPOCTYI0 MOAM(MMUKALIMIO CTAHAAPTHONM CeTH
kiaccuduranmu. Jlajgee Mbl 3aHSTMCh aBTOKOAMPOBLUIMKAMM — KJIACCOM
ceTeii, JOITYyCKawIIUX 06ydyeHue 6e3 yuuTess, KOTOPble OTKPbIBAIOT 40~
CTYIl K OrPOMHOMY MacCCHMBY HEIIOMEUYEHHbIX JaHHbIX, HAXOOSIIUXCS B
pacropsuKeHMM KaXKa0ro 13 Hac. Mbl TakyKe HaydMIMCh COCTABJISITh U3
VK€ M3BECTHBIX CeTeil GoJiee KPyIlHbIe, KaK B TMIAHTCKOM KOHCTPYKTO-
pe Lego. Ot nocTpoeHusi 60bIIKUX ceTeil U3 6oJiee MeJIKUX MbI IIepelii-
JIM K BOIIPOCY O CO3JaHMM MOJIb30BATEILCKUX CI0EB C IMPUMEHEeHHeM
nepexonHoro API Keras. I Hanowiegok paccMoTpenn nopoxiawimue
MO/[Ie/IM, CIIOCOOHBIE UMUTUPOBATD JaHHbIE, HA KOTOPBIX 00YUYaINUCh, U
MPOAEMOHCTPUPOBAIM HECKOIBKO HOBATOPCKMX IPUMMEHEHMI TaKux
Mopgenei.

Temoii ciieayiollei maBbl Oyger oOyueHue ¢ nogkperieHuemM. Mal
MCOIeIYEM 3TU UAEU HA IIPUMEpPE MOCTPOEHUSI U 00YYeHMsI CeTH, KOTO-
past GyaeTr UrpaTh B [IPOCTYH) KOMITLIOTEPHYIO UDY.

MnaBa

LA L IR BN B BN L BN IR O IR B BN IR B B BN B BE B BN IR B B B I BN B N N NN

UCKYCCTBEHHbIN UHTENNEKT
UrpaeTt B Urpbl

B npenpiayiinx miagax Mbl pacCMaTPUBAIM METO/ bl 0OYUeHUSI C yuuTe-
neM — KiraccupUKaLMIO M perpeccuio — u 6es yuuress — opoxaaoiue
cocTg3aTebHble CeTH, ABTOKOAMPOBIIMKMA U MOPOKAAIOIIME MOIETH.
[Tpu obyueHun ¢ yuurenem ceTb 006yuanach Ha IOMEYEHHbIX TAHHBIX U
IOJDKHA Oblj1a [MpecKasbiBaTh BbIXO/, KOTIA el MpeqbaB/sINCh HOBbIE
nanubie. [Ipy o6yueHuu Ges yuuTesss CeTH IMPENbIBISIUCL BXOIHbIE
NaHHbIe, a OHA JOJDKHA ObUIA BLISIBUTH B HUX CTPYKTYPY M IIPUMEHUTH
MOTYYEHHbIE 3HAHMST K HOBBIM TAHHBIM.

B 5701 r/1aBe mMbl Oyem roBOPUTD 0 ITyOOKOM 0O6yUyeHUM ¢ MogKpe-
IJIEHUEM, T. €. IPUMEHEeHUM IIIyO0KUX HEeIPOHHBIX ceTelt K 00y4eHIIo
¢ nogkperuienuem. O6yuenue ¢ rnogxperyieHuem 6eper Hauaao B I1CU-
XOJIOTMU [MOBeieHust. AreHT 00ydaeTcs, 1ojiyuasl BO3HarpaxkjaeHue 3a
MpaBWIbHOE MOBEIEHME M HAKa3aHME 3a HEeINpaBuiibHOE. B KOHTEKCTE
r1yBOKOro 00y4eHMs C MOAKPEIJIEHUEeM CeTU TPeqbsBISIOTCS BXO/-
Hble JaHHbIE, 1 B 3aBUCMMOCTH OT TOT0O, KAKOIi OTBET OHA JaeT — Mnpa-
BWJIbHBII WJIM HENPABUJIbHBIN — MPUMEHSIOTCS MTOJIOKUTEIbHBIE WITU
oTpuLiaTeibHble CTUMYIIbL. CliefoBaTeIbHO, B 00YUeHUH C MoAKperLie-
HMEM Mbl UMEEM pa3pekeHHbIE U OTIIOXEHHbIE BO BpeMeHu MmeTku. Ha
MPOTSHKEHUIM OOJIBIIOro YMC/Ia UTepalmii ceTb 06yUaeTcst JaBaTh rpa-
BUJIbHBII pe3ybTar.

[TnoHepoMm ray6oKoro odydyeHust ¢ MmoJgKperyieHnemM crajia HeGo/b-
masi 6puraHckas komranus DeepMind, B 2013 rogy onyoaMKoBaBILast
cratbio (V. Mnih «Playing Atari with Deep Reinforcement Learning»,
arXiv:1312.5602, 2013), B KOTOPOIi OMMCHIBAIOCH, KAK MOXHO HAYUUTh
CBEPTOUYHYIO HEHPOHHYIO CeTh UTPaTh B BUIEOUTPHI ¢ KOMIBIOTEPOM
Atari 2600, riokasbiBast eii SKpaHHbIe ITMKCeIM U BO3HArPaXK1asl, Korua

L7

OBbyueHue c nogkpennenvem <% 263

cueT yBeJIMUMBaeTcs B ee 1osib3y. OfHa 1 Ta ke apxuTeKkTypa Obua uc-
0JIb30BaHa [1Jist 00Y4eHMs CeMU PA3HbIX UT'D, B LLIECTH M3 KOTOPbIX MO-
Iesb IMPEB30I1ILIa BCe MPeIIeCTBYIOIIME MOIX0AbI, & B TPEX — PE3Y/IbTaT
yesIoBeKa.

B oTimuue oT paHee pacCMOTPEHHBIX CTpaTeruit oGydyeHuit, Korua
ceTb 0ByuaeTcsl TOJNBKO B OJHON IpenmMeTHOI obnactu, obydyeHue
MoAKpeIUieH1eM, IIOX0Ke, SIBJISIeTCS] YHUBEPCalbHbIM a/Ir0PUTMOM 00-
YUEHMSI, KOTOPBIN [IPUMEHUM B PA3HBIX CUTYaLMSIX; ObITh MOXKET, 3TO
IaxKe MepBbIii ar K HaCTOSIIEMY MCKYCCTBEHHOMY UHTeIeKTy. Brio-
cepctBuu komranuio DeepMind kyniuina Google, 1 ee KO/UIEKTUB Beer-
Ila HaXOIMJICSI Ha repeHeM Kpae uccnenoBaHmii o MU, B ciepyroweit
cratbe (V. Mnih «Human-Level Control through Deep Reinforcement
Learning», Nature 518.7540, 2015:529-533), ony6/IMKOBaHHOM B Tipe-
cTuKHOM KypHaje Nature B 2015 romy, olMChIBa/I0OCh IIPUMEHEHME TOM
JKe mopenu K 49 urpam.

B 9T0i1 r/1aBe Mbl paccKakeM O TeOpeTHUeCKUMX OCHOBAHMSIX [y6o-
KOr'o 00yueHus1 ¢ oKpervieHuemM. A 3aTeM MPUMeHUM 3TU UIeHU K [10-
CTpPOeHMIO ¢ roMolibio Keras cetu, koropast 6yger obydyaThest urpe B
MOMMKY Msiya. Mbl TakKe Jagum KpaTkuii 0630p BO3MOXKHbBIX MyTeii
VAYUILEeHUS ITOM CeTU M HEKOTOPbIX MHOT000 1A MX HarlpaBieHui
MuccJieqoBaHuii B 3TOI 06/1aCTH.

Wrak, B 9TOI1 rMiaBe 06CYKAAIOTCS CJIeAYIOlIMe KOHIeIIIMM, Kacak-
uiyecst 06yYeHust ¢ yuuTeseM:

QO Q-obyueHue;
Q uccienoBaHue M UCTIONb30BAHME;
Q BoCIIpoKM3BeeHKE OTIbITA.

O6yuyeHue c noagkpenneHuem

Haua 1esib — MOCTPOUTH HEMPOHHYIO CETh JJIs1 UTPhI B TIOMMKY MSTua.
B Hauase urpel U3 cydaiiHOM TOUKM CBEPXY 3KpaHa rnagaeT MsIUMK. 3a-
[lauya UrpoKa — rMojCTaBUTh PAKETKY B HYIKHEN 4acTH SKpaHa, Iojib3ysich
KJIaBUILIAMM CO CTPEIKAMM BJIEBO M BIIPABO, M HE aTh MIYMKY YIaCTh.
Kak Bupure, Bce oueHb 1ipocto. COCTOsIHME UTPbI B JIH060§ MOMEHT Bpe-
MEHU OIKMChIBAETCS KOOPAMHATAMM Msiua U pakeTKu (X, y). B 60bLIH-
CTBE apKaJHbIX UI'P MOIBUKHBIX 3JIEMEHTOB ropasio 60Jibliie, I03TOMY
oblee pelleHue — CYMTATh TEKYIMM COCTOSIHMEM BCe M300paxkeHue
Ha sKpaHe. Ha puCyHKe HUKe MOKa3aHbl YEThIPE MOCAen0BaTEIbHbIX
CHMMEKA 3KpaHa Ur'PbL.

264 <+ [naBa 8.MCKyCCTBEHHbIA MHTENNEKT UIPAET B UrPbl

BHMUMAaTeNbHbIE YUTATEIM, BEPOSITHO, 3aMETU/IM, YTO 3Ty 3a7auy
MOKHO 0bL10 661) OPMYIMPOBATH KaK 3agauy Kiaccuukalum, B Ko-
TOPOI Ha BXO[, CETH IMOOAI0TCS M300paskeHMsI Ha 9KpaHe UIPbI, a Bbl-
XOI0M SBJISIETCSI OTHO M3 TPEX NeCTBUIA: [BUTATHCS BIIEBO, OCTABATHCS
Ha MecCTe, IBUraThCs BIpaBo. Ho Torma Mbl JODKHBL ObLUIM Obl IIPeab-
SIBUTb CeTH 0OOydaloliue MpMMepbl, BO3MOXHO, M3 MApPTUIi, CbIrPaH-
HBIX JoabMK. [Ipyroi, 6ojee MpoCToil MOAX0H COCTOUT B TOM, YTOOI
MMOCTPOUTh CETh M 3aCTABUTH €€ UIPaTh CHOBA M CHOBA, OPraHM30BaB
00paTHYIO CBSI3b, COOOILAOLIYIO0, YAAIOCh ITOMMATh MSIY WU HEeT. ITOT
IooxXom MHTYMTUBHO 6JIPI}KE KTOMY, KaK 06yqaloTcs1 JHON WM KMBOTHLBIE.

CaMblif pacIpoCTpaHeHHBI CrIocob IpeacTaBIeHus TAKMX 3a1ay —
MapKOBCKMIT MpoLecc NPpUHATHUS peuieHuii. irpa — aTo okpyxkato-
11ast cpena, B KOTOPO areHT reiraeTcs 00yuntbest. CocTosiHue cpefibl B
MOMEHT t 0603HaUMM S, (OHO BKJIIOYAET MOJIOKEeHMe MsAYa M PaKeTKu).
ATEeHT MOXKET BbIMOJIHATL HEKOTOPbIE OeiicTBUS (IBUraTh PAKeTKY BJle-
BO WK BIpaBo). UHorma sTu geiicTBis BIIEKYT 3a c0B0ii BOSHArpaxKae-
HUeE I, TIONOXKUTEIbHOE WM OTPULIATeIbHOE (HarpuMep, yBelnueHne
WM yMeHblleHue cuera). [leiicTBUS M3MEHSIIOT cpeny U MOTYT [pU-
BECTH K HOBOMY COCTOSIHUMIO S, ,, B KOTOPOM areHT MOXKeT BbIINOJIHUTD
HOBOE [eiicTBKE d,,, U T. i. MHOKeCTBO COCTOSIHMIM, IeiiCTBUIA 1 BO3HA-
rpakaeHMIA, a TAKKe MpaBuia Mepexona M3 OGHOT0 COCTOSHMS B PYTroe
M COCTABJISIIOT MAPKOBCKUIL IPOLLECT MPUHSITHS pelteHuii. OgHa urpa
SIBJISIETCS SMTM30[,0M 3TOTO MPoLecca U NpeacTaBaseTcss KOHEeUHOit 1o-
C/1e10BaTE/IbHOCTLIO COCTOSIHMIA, MeMCTBUIT M BO3HArPaXKIeHMIi:

Sy Ay T3S,y Ay Tyy Spyensy S

0? n-1? an—l’ rn’ sn

ITocko/bKy 3TO MAapKOBCKUIi ITPOLLECC, BePOSTHOCTh COCTOSIHMUS S,
3aBUCUT TOJILKO OT TEKYLIEro COCTOSHUA S, U IefiCTBUS a,.

Makcumusauma 6yaywmx BO3HarpaXaeHuit

Llens arenra — MaKCMMM3MPOBATH IIOJIHOE BO3HAlPAKOEeHME B KaXK-
noit urpe. [Tonunoe BO3HarpaXxiaeHue MOXHO IIpedCcTaBMTh B BUeE:

ObyueHue c nogkpenneHmem < 265

R= ir;
=1

st MakcMMM3aLMK IOIHOTO BO3HarpaXXjaeHMus aredT JOJ/IXKeH CTpe-
MHUTBCSI MAKCMMM3MPOBATh I1I0JIHOE BO3Harpa)XKjmeHue, HauyMHas ¢ J10-
60ro MOMeHTa t B urpe. ITonnoe BO3HarpakaeHue B MOMEHT { 0b603Ha-
qyaeTcs era‘l umeeT BULI:

n
R=Y r=r+r,++r,
i=1

OmHako yeM [ajbllie Mbl 3ar/isiibiBaeM B Oyayiiee, TeM TpyaHee
NpencKasaTh BeIMUMHY BO3HArpaxkaeHus. YToObl yuyecTb 9TO, areHT
IOJ/DKEH CTPEMUTBCSI MaKCMMM3MPOBATh TOMHOE AMCKOHTUPOBAHHOE
Oymyliee BO3HArpaXXmeHue B MOMEHT t. IIJIsl 3TOro Mbl YMEHbLIaem
BO3HArpaXkIeHMe Ha KaXkIoM OyayieM BpeMeHHOM Liare B y pas o
CpPaBHEHMIO C Tpembiayinyum marom. Ecim y paBHo 0, To ceTh BoOOIIE
He YYMThIBaeT Gyaylie BO3HATPaKIEHMs, a eciM y PaBHO 1, TO ceThb
MOJTHOCTBIO IeTePMUHMPOBaHA. XOPOIUM SIBJISIETCS 3HAYEeHMe y B paii-
oHe 0.9. Beinucas Bce uWieHbl IPeIbIAYIINEro TOXIECTBA, Mbl CMOKEM
PEKYPCUBHO BBIPa3UTh IIOJHOE OMCKOHTMPOBAHHOE OGymyliee BO3-
HarpakaeHue B BUE CYMMbI TEKYILIEr0 BO3HATPAKIEHUS M TMOJTHOTO
OUCKOHTMPOBAHHOI0 OYAYILEro BOSHArpaXkaAeHMsl Ha CJIeAYIOIEeM Bpe-
MEHHOM IlIare:

= 2 n—t
R:_rz+yrn-l+}'rr+2+'"+y i
= rt + Y(r[dl + y(rt.rz + R))

=r. TR,

0-obyuenune

B r1y6oKoM 00yuyeHMM C MOAKPeIUIEHMeM MCIIONb3YeTCs TeXHMKa
obyueHust 6e3 GopMMUpOBaHMS MOIENM OKPYKAIOIIEH Cpeibl, Ha3bl-
paemasi Q-o6yuenmem. Q-o6yueHie MOXKHO MCIIONb30BaTh ISl Ha-
XOXKIEHMSI ONTUMAIbHOIO OeHCTBMs B JIl0OOM 3aJaHHOM COCTOSTHMU
KOHEYHOr0 MapKOBCKOI'O IpOLiecca MPUHSITHUSI PeIieHMid. ATE@HT ITbI-
TAaeTcsl MAaKCMMM3MPOBAaTh 3HaueHue Q-GdYHKUMM, IPeaCTaBIsouei
MaKCHMMa/lbHOe OUCKOHTHMPOBAaHHOe Oyayliee BO3HArpakmeHue Ipu
BBIITOJIHEHMM I€CTBUS d B COCTOSIHMU S:

Q(s,» a) =max(R,.,)

266 <+ [naBa 8.MCKycCTBEHHbIA MHTENNEKT UIPAET B UrPbl

Ecn Q-yHKILIMS M3BECTHA, TO ONTUMAJIbHBIM JIeICTBMEM d B COCTO-
SiHUM S GyIeT To, AJ1s1 KoToporo sHaueHue Q MakcumanbHo. CliefoBa-
TeJIbHO, Mbl MOKEM OTIpeNeNnTh MOAUTUKY [1(S), Hal0lyi0 ONTHMAalb-
HOE JIeiCTBIE B JII0O0M COCTOSTHMIA:

I1(s) = argmax_Q(s, a)

Mbl MoxeM onpeneanTs Q-QyHKUMIO /15l [IepeXoHOi TOUKH (S, a,,
r,s,,) B TepMUHAX Q-(yHKUMM B CIEOYIOLIEH TOUKE (850 My T Siy)
aHaJIOrMYHO TOMY, KaK MbI ITOCTYITM/IM C AUCKOHTUPOBAHHBIM OYIYIIUM
BO3HarpaxieHuem. B pesynbrare rnonydaercst ypaBHeHue bennmana:

Q(st’ at) = + y maxaﬁl Q(sn.l! a[+1)

Q-(yHKUMIO MOXKHO aIpPOKCMMMPOBAThL C [MOMOIIbI0 YpaBHEHUS
Bemimana. Q-(QyHKUMIO MOXKHO pacCMaTpMBaTh Kak TabIMIY COOT-
BeTCTBMS (OHA Ha3biBaeTcs Q-Tabiuiieii), B KOTOPOii coctosiHus (060-
3HauaemMble OYKBOI S) IPeACTaB/sIOTCS CTPOKaMM, JeiicTBusl (060-
3HayaeMble OYKBOI @) — CTONOLAMM, a HJIEMEHT Ha [IepeceyeHnu S-0i
CTPOKM U a-ro cronbua Q(s, a) paBeH BO3HArPaXKIEHMIO, ITOJIyYaeMOMY
B C/ly4dae, KOrga B COCTOSAHMM S BbIIIOJIHEHO ,JIE]‘?ICTBMG . Hamnquee
,[L'E'ﬁCTBME B JaHHOM COCTOSIHMM — TO, I4JI KOTOPOro BO3HarpaxiaeHue
MakCMMaJibHO. B Hauae Q-Tabiauia MHULMATU3UPYETCS CIIyUaiftHbIMMU
3Ha4YeHMSIMM, 3aTeM BbIITOJIHAKOTCS c.rlyqai—iHme ,U,EI:ICTBHFI u Q-Taﬁnmua
0OHOB/ISIETCSI B COOTBETCTBUM C Haﬁﬂlﬂ,ﬂaEMhIMM BO3HarpaXxXneHMsaMu
10 CJIeIyI0EeMY alropuTMy:

MHMLMANTKMIMPOEATE J-Tabmmuy O

HABIKOATE HAYANLHOE COCTOAHME S

repeat
exfpaTs M BHOOAHUTE OEHCTEME &

HaBneoars BOZHATpaXxOoeHMe I M .'IEpEI:'ITPI E HOEBOE COCTOAHHME 5'

Qf(s, a) = Q(s, a) + af(r + y max_a' Q(s', a') - Q(s, a))

-
5=8

until wrpa sakoHueHa

HeTpymHO MOHSITh, UTO 3TOT aJIFOPUTM I10 CYLECTBY SIBJSIETCS CTO-
XaCTUYEeCKMM I'pagMeHTHBIM CITyCKOM I10 ypaBHeHMI0 BesimaHa ¢ 06-
paTHBIM PAacCIpOCTPaHEHMEM BO3HATPAXKIEHMsI Yepe3 MPOCTPAHCTBO
COCTOSIHMIA (3MM30/1) M YCPEeJHeHMEM 110 MHOTMM MCIIBITAHMUSIM (TIepu-
omam). B HeM @ — CKOpOCTh 06y4YeHus], OIpeaeisiiolas, Kakylo 4acTh
Pa3sHOCTH MEXAY MPeabiAyIMM 3HaueHueM Q ¥ HOBBIM AUCKOHTUPO-
BaHHBIM MaKCHMaJ/IbHbIM 3HauUeHKeM Q C/ielyeT BKIIOUUTD.

O6yuyeHue c nogkpenneHnem %

L7

267

lhy6okas Q-ceTb Kak O-pyHKums

Mbi 3HaeM, yTo Q-(pyHKLMS OYAET HEMPOHHOI CeThIO, HO KAKOT0 BU-
na? B wiyuae Haltei pocToii Urpbl KaKI0e COCTOSIHME TIpeicTaB/IsieT-
Csl YUeTbIPbMSsI OC/IEeI0BATe/IbHBIMU YePHO-0e/bIMU M306paskeH MU
skpaHa pazmepa (80, 80), Tak uTo 0611ee YUMC/I0 BOSMOMKHbBIX COCTOSIHUIA
paBHO 25884 K cyacTbio, MHOTME U3 HUX — HEBO3MOXKHBIE MJIM KpaiiHe
MaJIOBePOsITHbIe KOMOMHALMK ITUKcesieit. [ToCKOIbKY CBePTOUYHAST Heli-
POHHasl ceTh 00J1aJ1aeT JOKAIbHOM CBASHOCTBIO (T. €. KaK/blii HeIpoH
CBSI3aH TOJILKO C JIOKAJIbHOM 06/1aCThI0 CBOMX BXOMOB), OHA u3beraer
TaKMUX HEBO3MOXKHBIX M HEBEPOSITHbIX KOMOMHAaLMIi rukcesieit. Kpome
TOro, B 0011eM ¢/Ty4ae HeliPOHHbIe CeTH XOPOIO BhIAEISIOT PU3HAKK
M3 TAKUX CTPYKTYPUPOBAHHbIX AAHHbIX, KaK u3oopaxkenus. [loaromy

CHC o6yamer oueHb 3(Q(eKTUBHBIM MHCTPY-
MeHTOM MopeupoBanust Q-GyHKIMN,

B umuTHpoBaHHOI Bblilie paboTe KOMITaH MK
DeepMind ormnmucaHa ceTb ¢ Tpemsi CBEpTOY-
HBIMM CJIOSMM, 338 KOTOPBIMM CIAEAYIOT IBa
MMOTHOCBSA3HBIX (JI051. B oT/inune ot Tpaguimn-
oHHbIXx CHC, npumMeHsieMbIx IJisi Kiiaccudu-
KalMM WIM PaCO3HABAHUS M300pasKeHMIi,
MYJIMHTOBBIX CJI0EB 3JIECh HET, MOCKOJbKY
MYJIMHTOBBIN JI0¥i /IeJ1aeT CETh MEHEEe UyB-
CTBUTENIBHONM K TOJOXKEHUIO KOHKPETHBIX
00beKTOB B M306pakeHun. Ho B ciiyuae urpbi
ara uHbopMalus, cKopee Bcero, Heobxoam-
Ma [Jis1 BBIYMCIEHUS] BO3HATPasKIeHUs, Mo-
3TOMY 0TOPAChIBATH €€ HeJlb3sl.

Ha cnenyioliem pUCyHKe MOKa3aHa CTPYK-
Typa miybokoit Q-ceTu B HalllemM IpuMepe.
OHa OT/IMYAeTCsI OT CETU B OPUTMHANBHOI
cratbe DeepMind Tonbko GopMoii BXOOHO-
r'o M BBIXOAHOTO ciost. Dopma Kaxkmoro sie-
MeHTa BXOAHbIX naHHbIx (80, 80, 4): ueTbipe
1oc/ieloBaTe/lbHbIX CHMMKA YepHO-6e/10ro
9KpaHa UrpoBoit KoHcoin pasmepa 80 x 80
nukceneil. BeixogHoii cjioii umeer Qop-
My (3), UTO COOTBETCTBYET TPEM BO3MOXK-
HBIM JI€MCTBUSIM areHTa (BJIEBO, HA MeCTe,
BIIPABO).

(80, 80,
CONV-1
(20, 20,
CONV-2
(10, 10,
CONV-3
(10, 10,
flatten
(6400,)
FC-1
(512,)
FC-2
(3,)

4)

64,

268 <+ [naBa 8.MCKycCTBEHHbIA MHTENNEKT UIPAET B UrPbl

[TOCKONBbKY BBIXOJ COCTOMUT M3 TpeXx Q-3HaueHuit, 3T 3a7aya perpec-
CUM, M Mbl MOKEM DELIUTh ee MyTeM MMHMMM3alMKU CpeaHeKBaapa-
TUYECKOM OMmMOKM: KBagpaTa PasHOCTH MEXKIY TeKYIIMM 3HaueHHeM
Q(s, a) 1 npefcKasaHHbIM 3HAYEHMEM, KOTOPOE BhIUMCIISIETCS B TEp-
MMHAX CYMMbl BO3HArpakKIE€HWUSI M OMCKOHTMPOBAHHOTO OYAyILEro
Q-3uauenust Q(s', a"). Texyliee 3HaUeHME YIKe M3BECTHO B HavaJle UTe-
paiuu, a Gyayiee BbIUMCISETCS Ha OCHOBE BO3HArpakKOeHMs, MoJy-
YEHHOTO OT OKPYXKalollei cpefbl:

L= %[u ymax Q(s”.a’) — O(s.a)|’

banaHc Mexay uccnegoeaHuem
M UCNOoNb30BaHUEM

['myBokoe obyueHme ¢ MoAKpeIvieHeM — [IpMMep OHJIaliHOBOro 00Y-
YeHMs, KOrja mary o6yueHusl ¥ rpeackasanus yepenyiores. B ormune
OT [TAKeTHOI'0 06YUeHMsI, KOrma HaWIydLiuii IIPeIuKTOp reHepupyeTcst
myTem o0y4eHMst Ha BCeM MAacCUBe 00ydYalolU[MX JaHHbIX, IPeIUKTOP,
00yuaemblit B IIpOLIECCe OHJIAHOBOTO 0OYUYeHMsI, TOCTOSIHHO Y/Iy4dila-
€TCs 10 MEepPe MOCTYIIEHWST HOBBIX aHHBIX.

Takum 06pasomM, Ha HauyajbHbIX [epuofgax obyuyeHus raybokast
Q-ceTb gaeT ¢IydaiiHble MPeACKa3aHMs, UTO BEAET K IJIOXOMY KaueCTBY
Q-00yueHust. YToObI CIIPABUTHLCS C ITO ITPOBIEMOI, Mbl MOXKEM ITPU-
MEHMTb [IPOCTO METOM, UCCIEIOBAHMST, HATIPUMED, £-3KATHYI0 CTpaTe-
rui0. B arom ciyuae areHT BbiOMpaeT aeicTeie, pejioyKeHHOe CeThIo,
€ BEPOATHOCTBIO 1 — & win cinyuaiiHoe feiicTBue ¢ paBHOMEPHBIM pac-
npeneneHmem. Takasi cTpaTerust Ha3bIBa€TCS MCCIEN0BAHUEM-UCIIONb-
30BaHUEM.

[To mepe yBenuuenus uucia repuonoB Q-GyHKIMsS CXOOUTCS U Ha-
yiHAaeT BO3BpaliaTh 6osee ocMbic/ieHHble Q-3HaueHMst. YToObI yuecThb
3T0, 3HAYEHME & MOXKHO MMOCTEMEHHO YMEHBINATh: 110 MEepe TOro Kak
MpeacKasaHust CeT CTaHOBSITCS OoJiee COrIacOBAHHBIMM, AreHT yalle
MPeANoUYUTAeT TIpejlaraeMoe CeThl0 AeicTBue ciayuaiiHomy. B cetu
DeepMind BesnnunHa & co BpemeHem ybbiBaer ot 1 g0 0.1, a B Halem
npumepe — ot 0.1 no 0.001.

CnenoBaTelibHO, £-3Ka[HbI AIrOPUTM rapaHTUpYeT, UTO B Havaje
paboTbl cucTemMa MIET OAJaHC MEXKIY HeHAMesKHbIMM [peacKasaHu-
amu Q-ceTH U CTydyaitHbIMU [TepeMEIeHUSIMU, CTPEMSICh MCCTeI0BATh

L7

OB6yueHue c nogkpenneHvem < 269

MPOCTPAHCTBO COCTOSIHUMIA, a 3aTeM, [0 Mepe YIyJulIeHus MpeacKasa-
HUIA, TIEPEXOIUT B PEXMM MeHee arpecCMBHOIO McCIefoBaHus (0Taa-
Bas [TPeAIIOUTEHIE MCII0/Ib30BAHMIO).

BOCﬂpOHBBEﬂ,EHHe OfnbITa

Vicxops u3 ypaBHeHMiA, npefcTaBisiomux 3Hayenue Q st napsl (s,
@) B TEPMMHAX TeKYIero BO3HArPaKIeHUs! I, U JUCKOHTUPOBAHHOIO
MAaKCMMa/bHOro 3HaueHust Q Ha Cle/lyloleM BpeMeHHOM liare (s,
a,.,), 6b1710 GBI TOrMYHO 06YUYATh CETh IIPeICKa3bIBaTh HauIyyllee ciie-
OyIOIllee COCTOsIHIME S’ [10 TeKYIIMM 3HaYeHusIM (S, d, r). Ho, Kak BbIsic-
HSETCsl, TaKasl CTPAaTerus 3aBOJMT CeThb B JIOKA/IbHbI MUHUMYM. O6b-
SICHSIETCsI 3TO TEM, UTO MOC/IeI0BaTeIbHbIe 06yYalolIye ITpUMepbl KaKk
MPaBUJIO OYEHb ITOXOXKM.

Yr0o6bl IPOTUBOCTOSITH 3TOMY, MBI COXPaHsIeM BCe MpeabiayIline Xo-
ol (s, a, r, s') B BonbliIoii ouepenyu GUKCMPOBAHHOIO pasmepa, KOTo-
pasi Ha3blBaeTCs HAKOIUIEHHOM mamMsATbI0 (replay memory). B atoii
MaMsITH MpeiCTaBJIeH OMbIT CETK. B mpoliecce 06yueHMsl CeTH Mbl FeHe-
pUpyeM cyJaiiHble ITaKeThl U3 HAKOIUIEHHOM [MaMsITH, a He 6epeM I10-
CJIeIHMIA MMaKeT TpaH3aKuuii. [IoCKONbKY MaKeThl COmepykKaT MPOILIbe
KOPTeXHu (S, a, r, s'), B3sAThie B CIyU4aiiHOM IIOPSIIKE, CETh 00yUaeTcst
JIydllie M He 3aCTPeBaeT B JIOKAJIbHOM MUHUMYyME.

OIbIT MOYKHO HaKaIIMBAaTh M U3 UI'P, CbITPAHHBIX YEJIOBEKOM, — BMe-
CTO WM B OOMOJIHEHKME K IPOILILIM X0AaM, CoelaHHbIM ceTblo. Eire
OIIMH IOIXO[K HAKOIUIEHMIO OIbITA — B HayaJle 1aTh CeTH 11opaboTaTh
B peXXuMe Hab/odeHuUs, KOIa OHA eHepUpyeT COBepIIeHHO Cyyaii-
HbIe AeiicTBusA (¢ = 1) 1 3alIOMMHAET [OJyYeHHbIe OT UI'PbI BO3HATPaXK-
IOeHMe U CJIeAYIOLee COCTOSIHME B HAKOIJIEHHO! ITaMsTH.

Mpumep - rny6okasn Q-ceTb AN NOUMKU Msiva

Llenb Hallei Urpsl — IOMMaTh MSUMK, [MAAAOLINIT M3 CIyYaiiHOM TOU-
KM CBEpPXY 3KpaHa, PaKeTKOii, Haxoagieiics BHU3Y 3KpaHa, KOTOPYIO
MbI MOXKEM JABUraTh KJIaBMUILIAMM BIIPABO WU BJIeBO. ITPOK BBIUIPBI-
BAeT, eC/IM €My YIaJI0Ch MOMMAaTh MSTUMK HA PAKETKY, M TPOUTPHIBAET,
ec/Ty MSIYMK YTl paHbiie. [IoCTOMHCTBOM UTPbI SIBJISIETCS TPOCTOTA —
Kak [J1sl TOHMMaHMst, Tak 1 115t peanusannu. OHa ycTpoeHa 1o o6pasity
UrpbI, ONKMCcaHHOI B Giore 3pepa Cadranbl (cM. Eder Santana «Keras
Plays Catch, a Single File Reinforcement Learning Example, 2017), no-
CBSIILIEHHOM [TyOOKOMY 06yueHMI0 ¢ rogkperyieHuem. CaMy Urpy Mbl
HAaMKUCAIH C [TOMOILbI0 cBOGO 0¥ 61bIMoTeKM Pygame ¢ OTKPBITHIM UC-

270 <+ [naBa 8.MCKyCcCTBEHHbIA MHTENNEKT UIPAET B UrPbl

XOOHBIM KOOOM (https 2/ fwww pygame .Grg,f'news).)KE.TIaIOLI.LHE nonpoﬁosa’rb
HAMOYT KOO Urpbl B (aiisie game.py B COCTaBE KOA K TOJ IIaBe.

Yeranoska Pygame

Pygame Hanucana Ha Python, umeiotcs sepcum ans Linux
(paznuuHbix guctpubytueoe), macOS, Windows, a Takxke ans
HEKOTOPbIX MOBMABHbIX ONepPaLMOHHBIX CUCTEM, B T. 4. Android
1 Nokia. MNMonHelit cnucok nogaepxusaemblx nnatdopm onybnu-
KOBaH Ha CTpaHuUe http://www.pygame.org/download.shtml.
OTKOMNKUAMPOBaHHbIE BEPCMM UMeloTCs ansa 32- u 64-paspsa-
Hbix Bepcuit Linux u Windows 1 64-paspsgHoit sepcum macOS.
Ha stux nnatdopmax yctaHoBMTL Pygame MOMHO KOMaHOO0M pip
install pygame.

Ecnu roToBoit Bepcum Ans Bawein nnatopmbl He CyLLeCcTBYET,TO
ee MOXHO cobpaTh M3 UCXOAHbLIX TEKCTOB, CNeAYS MHCTPYKLUAM
Ha CTpaHuUe http://www.pygame.org/wiki/GettingStarted
[lns nonb3osaTenei Anaconda MMEIOTCA OTKOMMNMUAMPOBAHHbIE
sepcum Pygame B penosutopumn conda-forge:

conda install binstar

conda install anaconda-client

conda install -c https://conda.binstar.org/tlatorre
pygame # Linux

conda install -c https://conda.binstar.org/gquasiben
pygame # Mac

Yrobbl OGYT-IHTB HEﬁpOHHYH) CeTh, l'IGHa,EI,Of)MTCSI BHeCTH HEKOTOPhbIe
M3MeHeHMs B KO UI'PLIL, 4yTOGBI B HEee MOorjia HUIrpaTh CeTb BMeCTO 4eJio-
Beka. Mbl XOTHUM, 4yTOGBI CeTh MoIIa B3aMMO/eiCTBOBATD C I—’II‘])Of’I ye-
pes AP, a He nyTeM HaxkaTus Ha KiaBuiuu. Huske npuBeeH Kox obep-
HY’I‘Oﬁ TaKHUM 06[)3301\"1 HI'PBI:

Kak 061)1‘-[[-10, HauyMHaeM C MMIIOpTa:

from _ future import division, print function

import collections

import numpy as np

import pygame

import random

import os

Ormpenenum CBOI Kitacc. B KOHCTPYKTOpe MOXKHO 3a[aTh PEXUM 0e3
MOHUMopa, Toraa urpa He Gynet orobpaxarts 3KkpaH Pygame. 91o mo-

JIe3HO, eCiM MbI 3aIlyckaeM Iporpammy Ha MaiiHe ¢ GPU B o6nake,
[ie eCTh JOCTYII TOJIBKO K TEKCTOBBIM TEPMUHAIAM. ITY CTPOKY MOXKHO

L7

Ob6yueHue c nogkpennenvem < 271

3dKOMMEHTHUPOBATDb, eC/In OGEDHY"I‘&H urpa sanyckaeTcs JIOKaJbHO Ha
rpaclmqecxom TepMMHane. 3aTem Mbl BbI3bIBAEM METOJ pygame.init ()
0J1s1 MHUIMa/iM3al KOMIIOHEeHTOB Pygame. W Hanocnenok MHUIIMA-
JU3MpyeM psan KOHCTaHT:

class MyWrappedGame (object):

def init (self):
2anycTuTe pygame B pemuMe Ge3 MOHMTODRA
os.environ["SDL_VIDEODRIVER"] = "dummy"

pygame.init ()

MHMUMANTM3MPOBATE KOHCTAHTH

self.COLOR WHITE = (255, 255, 255)
self.COLCR BLACK = (0, 0, 0)

self.GAME WIDTH = 400

self.GAME HEIGHT = 400

self.BALL WIDTH = 20

self.BALL HEIGHT = 20

self.PADDLE WIDTH = 50

self.PADDLE HEIGHT = 10

self.GAME FLOOR = 350

self.GAME CEILING = 10

self.BALL VELCCITY = 10

self.PADDLE VELOCITY = 20

self . FONT SIZE = 30

self . MAX TRIES PER GAME = 1

self . CUSTOM EVENT = pygame.USEREVENT + 1
self.font = pygame.font.SysFont ("Comic Sans MS", self.FONT_SIZE)

MeTom reset () Copep:uT orepanmm, KOTOpbie OO/IKHDBI BBIITOJTHATHCH
B Hauajie Kaxxmoii UI'PBIL: OUMCTKA o4depenm COCTOSIHMIA, YCTaHOBKaA I10-
JIOXKeHMS Msda M pakeTKM, MHUIMaaM3anms cuyeTa M T. 0.

def reset(self)
self.frames = collections.deque (maxlen=4)
self.game over = False
2amarTe HAYANBHHE NONOESHMA
self.paddle x = self.GAME WIDTH // 2
self.game score = (
self.reward = 0
self.ball x = random.randint (0, self.GAME WIDTH)
self.ball y = self.GAME CEILING
self.num tries = 0

MHMUMANM3IMPOBATE OMCONEN M WaCH
self.screen = pygame.display.set_modet[self.GAME_WIDTH, self.GAME HEIGHT))
self.clock = pygame.time.Clock()

272 < [naBa 8.MCKyCCTBEHHbIA MHTENNEKT UIPAET B UrPbl

B opuruHanbHoit urpe umeertcst ouepenb cobbiTUit Pygame, B KOTO-
PYIO MOMEILAIOTCSI COObITUSI KIABMII, HAXKMMAEMbIX UIPOKOM, a TaK-
JKe BHYTpPEHHMe COOBITHSI, TeHepupyemMble KOMIIOHEHTaMMu Pygame.
CrepskKHEM KOJ1a UI'DbI SIBJISIETCS UMK 00paboTKM COOBITHIA, I/1e 1PO-
MCXOOUT YTeHKUe ¥ 00paboTKa cOObITHIT U3 OUepeIu.

B 06epHyTOli BepcuM Mbl IepeMECTUIM LUK 06paboTKu COBBITHIA
B KOJI BbI3bIBAIOMIEH CTOPOHBI. METO[| step() OMMCHIBAET, YTO MPOMUC-
XOAWUT HA OHOI urepauuu uukia. OH npuHumaeT sHauenue 0, 1 wiun
2, mpeacTaBigioIlee ornepauuio (BleBo, Ha MeCTe, BIIPABO), a 3aTeM
yCTaHABJIMBAET ITePEMEHHBIE, YITPABJISIOIIME TTOIOKEHUEM MSIYa U pa-
KeTKM Ha 3TOM BpeMeHHOM wiare. [lepeMeHHas pADDLE VELOCITY 3a/1aeT
CKOPOCTb ABMKEHMSI PAKETKHU, T. €. Ha CKOJIbKO MUKCeJIel OHA CABUTaeT-
€S MIPM HAXKATUM KIABUIIU CO CTPeNKOii. EC/iM MSUMK OKa3bIBAeTCS Ha
OIIHOM YPOBHE C PAKeTKO, METO IIPOBEPSET, €CTh JIM CTOJIKHOBEHUE.,
Ecnu na, To MSuMK roiiMaH, M, 3HaUYMT, UI'POK (HEIiPOHHAs CeThb) Bbi-
Urpaji, MHaue UrpoK npourpal. Jlajee MeTo[MepepucoBbIBAET SKPaH
M 106aB/sIeT ero B KOHLE 0Yepeau deque, PACCYMTAHHOIN Ha rocieqHue
yeThipe Kagpa Urpbl. M1 HaKOHell, OH BO3BpalllaeT COCTOSHKE (OTpeae-
nsieMoe MoUIeHUMHM YeThIPbMS KaJipaMu), BOZHArpaxkJieHue 3a TeKy-
uiee geicreue u Quar 3aBepiieHus Urpbl.

def step(self, action):
pygame.event.pump ()

if action == 0: # COBMHYTE PaKeTKy BJIEEQ
self.paddle x -= self.PADDLE VELOCITY
if self.paddle x < 0:
oTCOK OT CTEHKM, OBMAEHME EBIOPAED
self.paddle »x = self.PRDDLE VELOCITY
elif action == 2: # CHBMEYTE PaKeTHy BIOPaEBO
self.paddle x += self.PADDLE VELOCITY
if self.paddle x > self.GAME WIDTH - self.PADDLE WIDTH:
OoTCKOK OT CTEHKM, OEMESHME BJIEEO
self.paddle x = self.GAME WIDTH - self.PADDLE WIDTH - self.PADDLE VELOCITY
else: # He OBMDATE DAKETKY
pass

self.screen.fill (self.COLOR BLACK)
score text = self.font.render("Score: Eodl fled), Balls Eidp™
.format (self.game score, self.MAX TRIES PER GAME,
self.num tries), True, self.COLOR WHITE)
self.screen.blit[score_text,
((self .GAME WIDTH - score text.get width()) // 2,
(self.GAME FLOOR + self.FONT_SIZE // 2)))

ODHOBMTE NONOXMEHME MAuAE

L7

ObyueHue c nogkpennenvem < 273

self.ball y += self.BALL VELOCITY
ball = pygame.draw.rect(self.screen, self.COLOR WHITE,
pygame.Rect(self.ball_x, self.ball y, self.BALL WIDTH, self.BALL HEIGHT))
ODHOBMTE NONOWEHME DAKSTHM
paddle = pygame.draw.rect(self.screen, self.COLOR WHITE,
pygame.Rect (self.paddle x, self.GRME FLOOR,
self . PADDLE WIDTH, self.PADDLE HEIGHT})
npoEepMTE, CTONKHYNCA JM MAY C DAKETHON
self.reward = 0
if self.ball y >= self.GAME FLOOR - self.BALL WIDTH // 2:
if ball.colliderect (paddle):
self.reward = 1
else:
self.reward = -1

self.game score += self.reward

self.ball x = random.randint (0, self.GAME WIDTH)
self.ball y = self.GAME CEILING

self.num tries += 1

pygame.display.flip()

coxpaHuTe nocnegeEMe 4 magpa
self.frames.append (pygame.surfarray.array2d{self.screen))

if self.num tries >= self.MAX TRIES PER GAME:
self.game over = True

self.clock.tick(30)
return np.arrayi(list(self.frames)), self.reward, self.game over

Teriepb paccMOTPMUM KOZ, 0OyUEHUS CETH.

Kak 06b1yHO, cHaUana MMIOPTUPYIOTCs 6ubamoreku. [lomumo cro-
POHHUX KOMITOHEHTOB 13 6ubnuorek Keras u SciPy Mbl uMIoptTupyem
OITMCAHHBIN BhILIE Kj1acc wrapped game:

from _ future import division, print function

from keras.models import Sequential

from keras.layers.core import Activation, Dense, Flatten
from keras.layers.convolutional import Conv2D

from keras.optimizers import Adam

from scipy.misc import imresize

import collections

import numpy as np

import os

import wrapped game

Omnpepnenum ABe BerioMorarteibHble GyHKIMU. [lepBas rpeo6pasy-
er Habop U3 ueThipex M3o6pakeHuii B hopmy, oxkumaemylo cetbio. Ha

274 <+ [naBa 8.MCKyCCTBEHHbIA MHTENNEKT UIPAET B UrPbl

BXO/[I [IOJAKTCS YeThipe u3o0paxkeHus pasmepa 800 x 800, Tak UTO BXO/,
umeet opmy (4, 800, 800). OnHaKO CeTh OXKUAAET MOJIYUUTh YEThIPeX-
MepHBbIii TeH30p Gopmbl (pazmep nakema, 80, 80, 4). B camom Hauase
UI'PbI YeTbIPeX Ka[poB ellle HeT, [I03TOMY Mbl [TPOCTO IMOBTOPSeM rnep-
BbIif Kaip YeTbipe pasa. BeIXoaHON TeH30p, BO3BpAlaeMblii (PyHKIIM-
eit, umeet dopmy (80, 80, 4).

Bropast dyHKUMS get next batch() BBIOMPAET batch size KOPTEXKENd
COCTOSIHMSI M3 ouvepey HAKOIUIEHHOTO OIbITa M I0Jy4YaeT BO3Ha-
rpaxaeHue U rpejcKkas’aHHOe Clefyiollee COCTOSSHME OT HelPOHHOI
ceTu. 3aTeM OHa BbIYMC/SIET U BO3BpauiaeT 3HaueHue Q-dyHKIMM Ha
C1efyolleM BpeMeHHOM liare:
def preprocess_images (images):

if images.shape([0] < 4:
OOHO I/EBOE\anEHKE
= images[0]
= imresize(x_t, (80, 80))
= x t.astype ("float")
/= 255.0
= np.stack((x t, x t, x t, x t), axis=2)

#
b
X
b
X
s

(o i o O i o

eléé:
4 msobpaxenua
xt_list = []
for i in range(images.shape[0]):
x_t = imresize(images[i], (80, 80})
¥ t = x t.astype("float")
x t /= 255.0
xt_list.append(x t)
s_t =np.stack{(xt_list[0], xt_list[1], xt list[2], xt list[3]), axis=2)
5 t = np.expand dims(s_t, axis=0)
return s_t

def get_next_batch(experience, model, num actions, gamma, batch_size]:
batch indices = np.random.randint (low=0, high=len(experience}, size=batch size)
batch = [experience[i] for i in batch indices]
¥ = np.zeros((batch size, 80, B0, 4))
Y = np.zeros((batch size, num actions))
for i in range(len(batch)):
s_t, at, r t, s tpl, game over = batch[i]

X[i] = s t
¥Y[i] = model.predict(s_t) [0]
Q sa = np.max(model.predict(s_tpl) [0])
if game over:
Y[i, a t] = r t
else:
Y[i, a t] = r t + gamma * Q_sa
return X, Y

L7

Ob6yueHue c nogkpennenmem < 275

Ter[epb orpenejlMM CeTb, MOOEJIMPYIOLIYIO Q_-dJYHKU,HlO IJIsT UT'PBL.
Haiira ceTsb 6yeT oueHb I10X0Xa Ha MPeJIoKeHHYIO B crarhe DeepMind.
OTnu4uarTCs OHU TOILKO pasmepaMM BXoOa M BbIX0da. V Hac Bxog ume-
et hopmy (80, 80, 4), a y Hux (84, 84, 4), y Hac Bbixox umeet Gopmy (3),
4TO COOTBETCTBYET TpeM ,ELEﬁCTBHHM, IJIsI KOTOPBIX HY>KHO BbIYMCINUTL
3HauyeHue Q-QyHKUMM, a Y HuX (18) — o uMeIy geiicTBuii B urpe Atari.

CeTb COCTOMT U3 TpeX CBePTOYHLIX M OBYX [TOJTHOCBA3HbIX (I'IJIOTH]:IX)
cioeB. Bo Beex ciosix, KpoMe 11ocjieqHero, MCIojab3yeTcst q}YHKH,H_F[aK-
tusaumuy ReLU. [TockobKy Mbl ITpefcKasbiBaem sHauenms Q- GyHkimu,
3TO perpeccMOHHas ceThb, M B [1OC/IeAHEM C/I0e HeT 6JI0Ka aKTHBaIl M.

nmocTpoMTh MOmemnh

model = Seguential()

model.add (Conv2D (32, kernel size=8, strides=4,

kernel_ini‘:ial izer="normal",

padding="same",

input_shape=(80, 80, 4)))
model.add (Activation("relu"))

model.add(Conv2D (64, kernel size=4, strides=Z,

kernel initializer="normal",
padding="same"))

model.add (Activation("relu"))

model.add(Conv2D (64, kernel size=3, strides=l,

kernel initializer="normal",
padding="same"))

model.add (Activation("relu"))

model .add (Flatten())

model.add (Dense (512, kernel initializer="normal"))

model .add (Activation("relu"))

model.add (Dense (3, kernel initializer="normal"))

Kak y>xe 0b1J10 CKa3aHO, B KauecTBe QYHKLMYU I10TEPb UCIIOIb3YeTCs]
KBaJ[paT pasHOCTY MEXIY TeKYIIMM 3HaueHuem Q(S, a) U BbIUMCIEH-
HbIM 3HAYEHUEM — CYMMON BO3HArpakKIeHus U JUCKOHTUPOBAHHOIO
oyayuiero sHauenus Q(s', a"). [Tosromy cpeHeKBapaTHUeCcKas Ommb-
ka (MSE) BrnonHe nopoiiger. B kauecTBe onTMMM3aTopa BbiOMpaem
Adam u 3agaeM [Jist Hero HM3KYI0 CKOPOCTb 00YUeHUsI:

model .compile (optimizer=Adam(lr=1e-6), loss="mse")

3afaauMM HEKOTOpble KOHCTAHTbI — rUIlepriapameTpbl 06yueHMsI.
NUM ACTIONS — KOJMYeCTBO HeiiCTBUIi, KOTOPble CeTb MOXEeT [0ChUIATh
urpe. B Hamem ciayuae ato geiicteus 0, 1 u and 2 (BeBo, Ha mecre,
BIPABO). cams — KO3DOULIMEHT OUCKOHTUPOBAHMSI BYAYIIMX BO3HA-
I‘pa}I{,ELEHMﬁ. INITIAL EPSILCN " FINAL EPSILON — HavalbHOE M KOHe4YHOe
3HaueHMe rnapaMeTpa £-KaJHOoro MCC/IeJOBAHMS. MEMORY SIZE — pasMep

276 <+ [naBa 8.MCKyCcCTBEHHbIA MHTENNEKT UIPAET B UrPbl

odepeny HAKOIIJIEHHOI'O OIbITA. NUM EPOCHS OBSERVE — KOJIMYECTBO Iepu-
000B, B TedeHMe KOTOPLIX CeTH paspeliaeTcs MCCIegoBaTb UIPy, I110-
Chbll1ast Cﬂy‘l&f‘[ﬂhle ,H,EﬁCTBI—’lH n Haﬁﬂlﬂﬂ,aﬂ 3a BOSHarpa;<aeHuem. oM
EPOCHS TRAIN — KOJIMYECTBO MMepPHOa0B, B TeYeHMEe KOTOPBIX IMPOMUCXOOUT
OHJIaliHOBOE OGY‘IE‘HME‘ CeTH. l'lepmo,u, COOTBETCTBYeET O,U,H(Jf—'fl urpe, MJim
3MM300Y. 06]]],98 YMCI0 UI'p, ChI'PAaHHBIX B IIpo1iecce OGYT-IE‘HMFI, pPaBHO
CYMME NUM EPOCHS OBSERVE M NUM EPOCHS TRAIN. BATCH SIZE — pasmep MMHH-
IaKeTa, MCIIOJIb3YeMOI'0 B XOe OGY‘IE‘HMSI.

MHMUMATMEKPOBATE NapPaAMETDH

DATA DIR = "../data"

HUM ACTIONS = 3 § uMcno DODYCTHMMEX NeMCTEMH (BISBO, HA MeCTe, BIpAaso)

GEMMA = 0.99 # xos3ddMumMEeHT DMCKOHTMPOBAHMA NPOLIHX HABIOISHMA
INITIAL EPSILON = 0.1 # mavancHOe 3HAYEHME BICUNOH

MEMORY SIZE = 50000 # cromexo nmpemumyuMx XONOB 3aNOMMHATE
NUM EPOCHS OBSERVE = 100
NUM _EPOCHS TRAIN = 2000

BATCH SIZE = 32
NUM EPOCHS = NUM EPQCHS OBSERVE + NUM EPOCHS TRAIN

Co3naeM 06BEKT UIPI M OUepelb HAKOIUIEHHOro ombiTa. KpoMe To-
ro, OTKpbIBaeM (haii)XypHaia U MHMIMAIU3UPYeM HEeKOTOpbIe repe-
MeHHbIEe TIepe]] HauaaoM 00ydYeHu s :

game = wrapped game.MyWrappedGame ()
experience = collections.degue (maxlen=MEMORY SIZE)

fout = open{os.pat}hjoiu{DATA_DIR, "rl-network-results.tsv"), "wb")

n

num_games, num wins = 0, 0

epsilon = INITIAL EPSILON

Hanee BXOOMM B LMK [0 MOy I1epuooB OGY'JEHHH. Kak YoKe OBLIO
CKa3aHo, nepuon CooTBeTCcTByeT OIHOT urpe, 1O3TOMY B Hadalie rnepm-
o4a MbI CﬁpaCbIBaEM COCTOSIHME MIDBI. Hrpa Ha4yMHaeTCcd CpblBaHMeM
MsIda C II0TOJIKA M 3aKaH4YMBaeTcs 1IMbo ero I'IDMMKOﬁ, 6o nageHuem
Ha I10J1. nO‘TEpF[paBHa KBajgpaTy pasHOCTH MeXay IpeicKasaHHbIM M
ClJaKT]rI'-IECI(MM 3HavyeHMeM Q_-dJYHK]J,MI—’l IJ1s1 JaHHOI UI'DBL.

B Hauane MI'PbI MbI ITOChLIIAEM @MKTMBHOE neicreue (B HalLIeM Cy-
yae «Ha MecTe») U 1ojiyyaemM B OTBET KOPTeX Ha4ya/IbHOTrO COCTOSIHUS
WUI'pbI:

for e in range (NUM_EPOCHS) :

game.reset ()
loss = 0.0

NoAy4YMTs NEepBELOEe COCTOAHME

L7

O6yuyeHue c nogkpenneHvem <% 277

a 0=1#% (0 =1left, 1 = stay, 2 = right)
x t, r 0, game over = game.step(a 0)
s _t = preprocess_images(x t)

Hanee HauMHaeTCs IJIABHBINM LMKII UI'PbL. TO LMK 00paboTKM co-
OBITUIT OPUIMHAJIBHON UTPbI, KOTOPbIN Mbl IlepeHec/ B BbI3bIBAIO-
uryto nporpammy. CoxpaHsem TeKyllee COCTOSIHUE, TOTOMY UTO OHO
MOHAA00UTCS [JIs1 3aITIOMUHAHUSL B OUepeit HAKOIJIEHHOTO OIIbITa, &
3aTeM pelllaemM, Kakoe IeiicTBue nociaTh 00epHyToN urpe. Ecin mbi
paboraemM B pexxume HAOIIOEHMS, TO IPOCTO reHepUpyem cirydaii-
HOE YMCJI0, COOTBETCTBYIOILEE OMHOMY U3 AEeiCTBUIA, B IPOTUBHOM
cjyyae MpUMEHsIeM &-3KaJHbIM aJITOPUTM MCCIIeN0BaHMUS, KOTOPBIN
nubo BeIGUpaeT ciIyuaiiHoe JeiicTBue, MO0 M0Ib3YeTCs Hallleil Heli-
POHHOJ CeThbI0 (KOTOPYIO MbI ITOMYTHO 00yyaeM) IS [IpeacKasaHust
neicTBuUA:

while not game over:
5 tml = s t

$ cnegyomee melcTBEME
if e <= NUM EPOCHS OBSERVE:

a_t = np.random.randint (low=0, high=NUM ACTIONS, size=1) (0]
else:

if np.random.rand() <= epsilon:

a t = np.random.randint (low=0, high=NUM ACTICNS, size=1) (0]

else:

g = model.predict(s_t) [0]

a t = np.argmax(q)

OrnpenenuBIINCh C AEMCTBUEM, IIOCHITIAEM €TI0 UIPe, BbI3bIBASI METO,
game.step (), KOTOPBII BO3BpalllaeT HOBOE COCTOSIHME, BOSHArPaskKIeHe
u hnar saBepiieHus Urpbl. ECM Bo3HarpaXkaeHue MoIoKUTENbHO (T. .
Msid GbUT TTOMIMaH), TO YBeIMUMBAeM CUETUMK BbIMIPbILICH U B TI060M
clydae coxpaHsieM KOpTex (cocmosHue, delicmeue, 803HazpaxcdeHue,
HOB0e cocmosHile, (iaz 3asepuleHiis Uzpsl) B OUepeyu HAKOIUIEHHOTO
OIIBITA:

DpMMEHMTE NEMCTEME, NONYYMTE BOZSHATDAKISHME
X t, r t, game over = game.step(a_t)
s _t = preprocess images(x t)
ecnv BOSHATPaXIEHME NOJOKMTENBHO, YBENMYMTh NUM_Wins
1f £t = 1:
num wing += 1
COXpPAHMTE ONHT
experience.append{{E_:ml, at, rt, st, game over))

278 <+ [naBa 8.MCKyCcCTBEHHbIA MHTENNEKT UIPAET B UrPbl

3atem BhIﬁI/Ip&EM cnyqaﬁﬁmﬁ MHMHMITAKeT M3 odepenn HaKOILJIeHHO-
I'o OIlbITa M OﬁyanM ceTb. B KaxkioM ceaHce OGY'-IGHI—’ISI BbIYMCIISIEM 110~
Tepro. Cymma roTepsb 415 BCcex CeaHCoB B KAKI0OM Iepuoae cocras/isaeT
IIOTepH B 3TOM IIepuoje:

if e > NUM EPOCHS OBSERVE:
HaBnoOeHMe 33aKOHUYEHO, HauMHaeTca obyueHue
NONYyuUWMTE CHIEOVEUD NaKeT
¥, Y = get next batch(experience, model, NUM ACTIONS, GAMMA, BATCH SIZE)
loss += model.train_on_batch[x, Y)

[Toka ceTb elle TOJKOM He OﬁquHaCh, OHa jaeT IIoxXue rpejacKasa-
HIS, [TO9TOMY MMeeT CMbICI ITPOAOIKMTD MCC/IeoBaHMe [TPOCTPaHCTBA
COCTOHHI/Iﬁ, YTOObI YMEeHBUIMTb BEPOATHOCTL 3aCTpeBaHMS B JIOKAllb-
HOM MMHMMYME. Ho no Mepe TOro, Kak ceTb oﬁwae'rcg, MbI [1OCTEIIeH-
HO yMeHblliaeM BeJIMYMHY £, TAK YTO MOJle/ib BCe dallle IpefacKasbiBaeT
NeiiCTBUS, OChIJIAEMbIE CETBIO urpe:

MOCTENEHHOE YMEHBIIEHWE SMCHIOH
if epsilon > FINAL EPSTILON:
epsilon -= (INITIAL EPSILON - FINAL EPSILOM) / NUM EPOCHS

[IpoToKos 06yYeHUs BBIBOJUTCS Ha KOHCOJ/Ib M 3aIIMChIBaeTCs B (haiin
JKypHasia g5 nocienyoiero aHanmsa. [Mowie kaxabix 100 nepuonos
MbI COXPaHSIEM COCTOSIHME MOJEIN, YTOObI €r0 MOKHO ObLJIO BOCCTAHO-
BUTb B CJIy4ae, ec/ii [0 KaKoii-To mpuuMHe obydyeHue OYAeT IIpepBaHo.
TaksKke COXpaHsIeTCsl OKOHUYATe/IbHAsI MO/Ie/Ib, YTOObI BIIOCIEICTBUU €l
MOJKHO ObLIO BOCIIOIb30BATLCS ISl UTPBI.

print ("Epoch {:04d}/{:d} Loss {:.5f} Win Count {:d}"
-format{e + 1, NUM EPOCHS, loss, num_wins}}
fout.write(™{:04d}t{:.5f)t{:din".format (e + 1, loss, num wins))

if & % 100 == 0:
model.Eave{os.path.join{DATA_DIR, "rl-network.h5"), overwrite=True)

fout.close()
model . save (os.path.join (DATA DIR, "rl-network.h3"), overwrite=True)

st o6yueHUs1 MOAENM Mbl 3acTaBuiin ee HabmogaTh 3a 100 urpamu,
a 3arem coirpats 1000, 2000 1 5000 urp. Huke rokasaHbl [OC/aeqHUE
CTPOKM KypHasa ajis obyuerus: Ha 5000 urpax. Kak BugmUTe, K KOHILY
00yueHMsI CeTh CTajla UIPaTh OUeHb HEIJI0XO.

L7

Ob6yueHue c nogkpennenvem < 279

Epoch 5075/5100 | Loss 0.02603 | Win Count 2548
Epoch 5076/5100 | Loss 0.06248 | Win Count 2549
Epoch 5077/5100 | Loss 0.09836 | Win Count 2550
Epoch 5078/5100 | Loss 0.05955 | Win Count 2551
Epoch 5079/5100 | Loss 0.07357 | Win Count 2552
Epoch 5080/5100 | Loss 0.05425 | Win Count 2553
Epoch 5081/5100 | Loss 0.05961 | Win Count 2553
Epoch 5082/5100 | Loss 0.05737 | Win Count 2553
Epoch 5083/5100 | Loss 0.06699 | Win Count 2554
Epoch 5084/5100 | Loss 0.04265 | Win Count 2555
Epoch 5085/5100 | Loss 0.06579 | Win Count 2556
Epoch 5086/5100 | Loss 0.06825 | Win Count 2557
Epoch 5087/5100 | Loss 0.09329 | Win Count 2557
Epoch 5088/5100 | Loss 0.06124 | Win Count 2558
Epoch 5089/5100 | Loss 0.15128 | Win Count 2559
Epoch 5080/5100 | Loss 0.03769 | Win Count 2560
Epoch 5091/5100 | Loss 0.06348 | Win Count 2560
Epoch 5092/5100 | Loss 0.03817 | Win Count 2561
Epoch 5093/5100 | Loss 0.05225 | Win Count 2562
Epoch 5094/5100 | Loss 0.04986 | Win Count 2563
Epoch 5095/5100 | Loss 0.06316 | Win Count 2564
Epoch 5086/5100 | Loss 0.07558 | Win Count 2564
Epoch 5087/5100 | Loss 0.04027 | Win Count 2565
Epoch 5098/5100 | Loss 0.03801 | Win Count 2566
Epoch 5099/5100 | Loss 0.02446 | Win Count 2567
Epoch 5100/5100 | Loss 0.04321 | Win Count 2568

paduku noreps U YKMCIa BLIMIPLILIEH roBOpsAT 0 ToM Ke. 3a 5000
nepuonoB norepsi ymeHbimiack ¢ 0.6 no npumepHo 0.1 u, nmoxoxe,
Morvia Obl ellle yMeHbIIUThLCS, ecii 06yyaTh Moj1e/b rofosbiie. U Kpu-
Basl UMC/Ia BLIMIPBILIEN TOXEe MIET BBEPX U TeM ObicTpee, yeM Bosibiiie
MePUO/IOB MMPOLIO.

07 . : ——

loss {(MSE)
=
&

3000 4000 5000 6000
epochs

3000 T T WI.nS
2500 + 1
2000 1

1000 2000

1000 |- 1

z
(-]

wins (cumulative)
&
(=]
o

(=]

1000 2000 3000 4000 5000 6000
epochs

(=]

280 <+ [naBa 8.MCKycCTBEHHbIA MHTENNEKT UIPAET B UrPbl

W HakoHell, OLleHUM MacTepcTBO OGY‘JGHHOI::I MoOjgenM, st 4yero 3a-
CTaBMM ee CbII'PaThb q}HKCI—’IpOBaHHOE YKMCJI0 UIP (B HallleM ciyyae 100)
W I[IOCMOTPHMM, CKOJBKO pa3 OHA BbIMIpAeT. Hiuke IpuMBeneH cooTseT-
CTBYIOI_I.LHﬁ Kkon. Kax BCerga, HauMHaeM ¢ MMITIOpTa:

from _ future import division, print function

from keras.models import load model

from keras.optimizers import Adam

from scipy.misc import imresize

import numpy as np

import os

import wrapped game

Barpy)xaeM COXpaHeHHYH MoJe/lb M KOMIIMIMpyeM ee. Cosnaem
06BeKT wrapped game.
DATA DIR = "../data"

model = load model (os.path.join(DATA DIR, "rl-network.hi"))
model.compile (optimizer=Adam(lr=1e-6), loss="mse")

game = wrapped game.MyWrappedGame ()

3atem B umkiae opranusyem 100 urp. B Hauane Kaxaoil Urpbl BbI-
3bIBAETCSI €€ METOI reset (), @ 3aTE€M, MOKA Urpa HE 3aKOHUMUTCS, MbI
MPOCUM MOAENb TPeCcKasaTh OeicTBUEe ¢ HAWIYUIIUM 3HAaueHUeM
Q-dyHKkuMK. B KOHLIE rTeyaTaem, CKOJIbKO UT'D BbIMIpaia MOIE/b.

MbI MPOrHaAM 3TOT TECT ISl KaKO0H M3 MOCTPOEHHBIX MOIENeid.
[lepBasi, o6yuyennast Ha 1000 urp, Beiurpaia 42 urpsl u3 100, BTopasi,
obyuennast Ha 2000 urp, — 74 u3 100, a Tpetbsi, 0byuerHast Ha 5000
urp, — 87 13 100. 3To oOKa3bIBAET, UTO MACTEPCTBO CETU BO3PACTAET 110
Mepe obyueHus.

num games, num wins = 0, 0
or e in range(100):
game.reset ()

DONYyuYWTE NEPECE COCTOAHME

alb=14% (0= 1left, 1 = stay, 2 = right)
x:t, r_D, game over = game.step[a_DJ

s b= preprocess_images[x_t]

while not game over:
5 tml = s t
¥ cnemyomes NeMCTEME
g = model.predict(s_t) [0]
a t = np.argmax(q)
NPMMEHMTL NEMCTEME, NONYYMTh BOSHATPAKISHME
¥ t, r t, game over = game.step(a_t)
s_t = preprocess images(x t)

L7

Ob6yueHue c nogkpennenvem < 281

¥ ecn¥ BOSHATPAXISHME NONOEMTENLHO, YEENMYMTE NUM Wins
if r t == 1:
num wins += 1

num_games += 1
print ("Game: {:03d}, Wins: {:03d}".format (num_games, num wins), end="r")
print("™")

Ec/in BBIMOMTHUTH KOJ OLIEHMBAHUS, 3aKOMMEHTUPOBAB CTPOKY, Te
YCTAHABIMBAETCS PEXXUM 683 MOHUTOPA, TO Mbl Oy1€M BUETD, KAK CETh
urpaer. 3pejiuille OUeHb yBJeKaTelbHOe. YUMTHIBAS, YTO HAUA/IbHbIE
rnpenckasaHms sHaueHuit Q-OYHKIMM CTydaiiHbl M UTO 06yUeHue CeTu
HAarpagpJseTcs pa3peskeHHbIM MEeXaHM3MOM BO3HArPaKaAeHUs, TPYIHO
IMOBEPUTH, UTO CETh CMOXKET HAYUMTHCS XOPOILO UTrpaTh. Tem He MeHee,
KaK U B IPYrUx 00/1acTsIx rjiyboKoro 06y4eHust, 5To CIyYUIoCch.

MpbI IIpUBEM JOBOJIBHO ITPOCTOM TPUMED, HO OH WJTIOCTPUPYET, Kak
YCTPOEH Ipolecc ryboKoro obyueHus ¢ MoaKperieHueM, M XoueTcst
HaAEesIThCS, UTO OH MOMOr BaM MOCTPOUTH YMO3PUTEIbHYIO MOJENh,
KOTOPYI0 MOXHO OYIeT NPUMEHUTb K 60Jiee CI03KHBIM ITPUJIOKEHUSIM.
WurepecHa peanusauus urpsl FlappyBird ¢ ucnonssosanuem Keras,
onucaHHas B craThe Ben Lau «Using Keras and Deep Q-Network to Play
FlappyBird», 2016 u BbutokenHast Ha GitHub o agpecy n-«
com/yanpanlau/Keras-FlappyBird. B I[IpoeKTe Keras-RL (h:?:ps ://github.com/
matthiasplappert/keras-r1), 0MOIMOTEKE IITYOOKOro 00y4eHUs C ITOAKpe-
IJIeHMeM Ha 0oCHOBe Keras, TakyKe eCTh XOPOIUe MPUMEPBDL.

[locie BbIXoJa OpUrMHANbLHOM craTtbu DeepMind nosiBunuch pas-
JIMUHbIE YCOBEPILIEHCTBOBAHMS, HAIpUMep, IBojiHoe Q-o0yuyeHue (CM.
H. Van Hasselt, A. Guez, and D. Silver «Deep Reinforcement Learning
with Double O-Learning», AAAI, 2016), BoCrpoM3BeJeHUE OIIbI-
ta ¢ npuopureramu (cm. T. Schaul «Prioritized Experience Replay»,
arXiv:1511.05952, 2015) 1 apXuTeKTyphl Iy3MbHBIX ceTeii (cM. Z. Wang
«Dueling Network Architectures for Deep Reinforcement Learning»,
arXiv:1511.06581, 2015). Ilpu agpoiiHom Q-06YyUE€HUMM MCIIOIb3YIOT-
Cs1 IBe CeTU: OCHOBHASI BbIOMpaeT AeiicTBMe, a lie/ieBast — 3HaYeHue
Q-byHKIMK [/ ITOrO AeMCTBUS. ITO YMEHbIIAeT BO3MOXKHYIO [Iepeo-
LleHKy 3HaueHuit Q OIHOI CeThIO 1 ITO3BOJISIET CeTH 06yUaThest ObicTpee
u Jyuiie. BocripousBeneHue oMnbiTa ¢ MPUOPUTETAMM YBEIUYUBAET
BEPOSITHOCTh BHIOOPKM M3 HAKOIUIEHHOI'O OITbITa KOPTEKei, KOTOpble
AT OONbILNIT OXKUIAeMbIH nporpecc B 00yueHun. B apxurexrypax
nyaibHBIX cereit Q-dyHKUMS pasjaraeTcss Ha KOMIIOHEHTbI, COOTBeT-
CTBYIOLIMME COCTOSIHUIO U JIeMCTBUIO, a 3aTeM OHM BHOBb KOMOMHMPY-
H0TCS 110 OTAENTBHOCTH.

ps://github.

282 <+ [naBa 8.MCKyCcCTBEHHbIA MHTENNEKT UIPAET B UrPbl

Bech Koj, ripUBeIeHHBINH B 9TOM paszesie, BKI0JYast MCXOIHYI0 UTpY,
B KOTOPYIO MOXET UrpaTh Ue/IOBeK, MMEeeTCsl B COCTaBe MCXOMHOT0 Koia
K IAHHOI I/1aBe.

Yro panblue?

B siuBape 2016 komnaunusa DeepMind aHoHcupoBaia Beinyck AlphaGo
(cm. D. Silver «Mastering the Game of Go with Deep Neural Networks
and Tree Search», Nature 529.7587, pp. 484-489, 2016), HeiipoHHOIi ce-
TH it UTPbl B ro. CYUTAETCS, UTO UTrPa I'O OUEHb CJIOXKHA JJI MCKYC-
CTBEHHOI0 WHTEJJIEKTA, [TOTOMY YTO KOJIMYECTBO BO3MOXKHBIX XOIOB
IpepbIliaeT 10170 (CM. http://ai-depot.com/LogicGames/Go-Complexity. 3:1t_-'nl)
(oJ1s1 cpaBHEHMSI B LIaXmaTtax XomoB npubnausutensHo 10°°). [Tostomy
HaiTHU HAMJTYUILMIA X0/ ITyTem repebopa HeBO3MOXKHO IPI COBPEeMeH-
HbIX BBIUMC/IMTE/IbHBIX cpefacTBax. Ha momenT nybnukauyum AlphaGo
yKe BblMrpasa co cuerom 5-0 B MaTye M3 MSATH MApPTUIl y YeMITMOHA
Esponbl ®an Xy. [1o TOro KOMIbKTEPHLIM [IpOrpaMmMaM He yIaBajloch
nobexaaTh yejoseka B ro. [Tosxe, B mapre 2016, AlphaGo Beiurpaia co
cuerom 4—1y JIu Cemons, BTOporo B Mupe 1podeccuoHaabHOro Urpoka
B IO.

B AlphaGo 6bUI0 BOILIOIEHO HECKOJIbKO HOBBIX Meii. Bo-1epBbix,
Mpu 06yYeHUU UCII0/Ib30BA/IACh KOMOMHALIMS 0OYUEeHMS C YUMTEIeM Ha
MIpax OIBITHBIX MACTEPOB 1 00yUYeHUSsI C ITOAKPEIUIEHMeM ITyTeM UI'Pbl
OBYX sk3eMiuisipoB AlphaGo mexay co6oii. B rpenpiayiimux riaBax Mbl
BUIEJIM [TPUMEPbI peainsatym 06emnx ITux uaeii.

Bo-Bropsbix, AlphaGo cocrosiia U3 ABYX CceTeii: OLeHOYHOM U cTpa-
rTeruueckoit. Ha kaxpom xope AlphaGo ucronbsyer MOAeIMPOBaHKE
metonom MonTe-Kapmno st ipefckasaHust BEPOSITHOCTU Pa3IMUHbIX
MCXOMIOB B Oymyllem Mpu HaAU4uM CIydaiiHeiX GakTopoB, CTPeMsICh
MpeayrajaTh MHOTO BAPDMAHTOB Pa3BUTUSI UTPbI, HAUMHAS C TEKYILEH
nosuuuu. OLeHOYHast CeTh CAYKUT /ISl TOro, YTOObI YMEHBUIUTD ITy-
OMHY HepeBa MOUCKa sl OLEHKM BEPOSITHOCTU BBIMIPhILIA U IPOU-
I'PbIIIA, HE BBIYMUCISAS UTPY 10 KOHIIA, — 3TO CBOETr0 POJa MHTYMTHUBHAS
OllEHKAa KauecTBa Xofa. 3ajava CTPAaTerMuyeckoii CeTM — YMEeHbIIUTh
LIMPUHY TIOMCKA, HATIPABJISS ITIOMCK B CTOPOHY IEMCTBUI, 06e1aoiimx
MaKCMMaJIbHOE HeMe[jIeHHOe Bo3HarpaxneHue (3Hauenue Q). Bosee
noapobHoe omnucaHue cM. B ctathe «AlphaGo: Mastering the ancient
game of Go with Machine Learning», Google Research Blog, 2016.

Xots AlphaGo crajia 3HaUMTEIbHBIM YJIYULIEHMEM [ePBOHAYAb-
Hoii ceti DeepMind, oHa Bce sKe MpegHasHavyeHa [IJisl UIP, B KOTOPBIX

L7

Pesiome <+ 283

MUCPOKYM BUISAT OGHM U Te ke GULIKK, T. e. 00J1agaloT MoMHOM uHbOp-
maumeit. B susape 2017 roga mnccoienopaten us yuupepceurera Kap-
Hern-Mejuton aHoHcupoBaiu Libratus (cm. T. Revel «Al Takes on Top
Poker Players», New Scientist 223.3109, pp. 8, 2017), npunoxexnune M
st Urpbl B nokep. OQHOBpEMEHHO Apyrasl TpyIina UccaenoBaTeiei
u3 Anbbeptckoro yHusepcutera, Kapinosa yuusepcutera B Ilpare u
YelIcKOro TEXHMYECKOro yHuBepceuteTra (Toxe B [Ipare) mpemioxuia
apxutekrypy DeepStack (cm. M. Moravaak «DeepStack: Expert-Level
Artificial Intelligence in No-Limit Poker», arXiv:1701.01724, 2017) nns
TOI Ke uenn. [okep — urpa ¢ HernoaHoM uHdoOpMaLueii, MOCKOIbKY
UIPOK HE BUIUT Kapt conepHUKOB. [Toaromy MU nomKeH He TOJNBKO
caM 06YYMUTBCS UIPATh, HO U BbIPAbOTATh MHTYUTUBHOE Mpe[CTaBlie-
HUe 00 Urpe COrepHUKOB.

B Libratus HeT BCTPOEHHON CTpaTeruu BbIPabOTKM MHTYMIIMM, a
€CTh &JITOPUTM, KOTOPBIN BBIUMCIISIET 3TY CTPATErMI0, CTPEMSICh HAaii-
T GajlaHC MEXKIY PUCKOM M BO3HArpaxmueHuem — paBHoBecue Hoauma.
C 11 ssuBapst 2017 no 31 suBaps 2017 Libratus BeICTaBJISICS TIPOTUB
YyeThIpex JIyYIliuX UTPOKOB B mokep (cm. «Upping the Ante: Top Poker
Pros Face Off vs. Artificial Intelligence», Carnegie Mellon University,
January 2017) u nobemui ux ¢ OUYTUMbIM [I€PEBECOM.

it TperupoBky MHTYUIMKM DeepStack ucronb30Banock obyueHue
¢ NOAKPeIUIeHMEeM Ha MpUMepax U3 CiydaiiHbIX mapTuii B mokep. Ipo-
rpaMma ceirpaia c¢ 33 npodeccuoHaibHbIMM Urpokammu M3 17 crpad
u Habpana peitTUHT, Ha NOPAJOK TIPEBLILIAIONIMI PEHTUHT XOPOILero
urpoka (cm. C. E. Perez «The Uncanny Intuition of Deep Learning to
Predict Human Behavior», Medium corporation, Intuition Machine,
February 13, 2017).

Kak BuauTe, Hac XOYyT MHTEpecHble BpemeHa. [Iporpecc, Hauyas-
LIMIACS C TOTO, YTO CeTH [JIYDOKOro 06YyYeHMS HayuyMIuCh UTPATh B ap-
KaJ{Hble UTPbI, IPUBET K CETSIM, KOTOPbIE YUTAKT BALIM MBICU WA,
110 KpaitHeit Mepe, MpeaBuAsaT (MHOI/IA HEPAallMOHAIBHOE) ITOBEIEHUE
YyeJIoBeKa M 0OBIrPLIBAIOT €ro Ha 6ede. Bo3MOKHOCTH Iy6OKOro 06-
YUeHUs, TOXOXKe, HE UMEIOT IPaHMIL.

Pesiome

B 37001 raBe MbI y3HaIM 06 MaesX, IeXKall[X B OCHOBE 06Y4YeHMsI C ITOJ1-
KpeIlUIeHMEeM, ¥ 0 TOM, KaK MPMMEHUTh UX K IIOCTPOEHMIO C ITIOMOIbIO
Keras ceTeii ry60Koro 06y4yeHmsi, YMeKLIMX UTPATh B apKaJHbIe UTPbI
¢ 06paTHOI CBSI3bI0 (BO3HArPaXKOEHMeM). 3aTeM Mbl IIE€Pelyiu K 06-

284 <+ [naBa 8.MCKyCcCTBEHHbIA MHTENNEKT UIPAET B UrPbl

CY)KIEHMIO NOC/IeIHUX JOCTIDKEHMI B 9TOi 00/1aCTH, B T. U. CeTeit, 00-
VUYEHHBIX UI'PaTh B O0Jiee TPYIHbIe UTPbI, IO M [OKeP, IYYILE YeJI0BeKa.
Ha nepBblit B3IISIA, UTPbI MOTYT IOKA3aThCsl HECEPbE3HBIM ITPUIIOKE-
HMEM, HO 3T MIeU — MePBbIii LAl K HACTOSIIIEMY MCKYCCTBEHHOMY MH-
TeJIJIeKTY, KOTa CeTh 06y4YaeTcs Ha OIbITe, @ He Ha 60/IbLIMX 00beMax
06YyJaloMX JaHHbBIX.

3aKknuyeHue

[losgpaeisiem uuTatesiei, gob6paBlIIMXCS A0 KoHIa KHuru! JlaBaiite
OCTAHOBUMCS M [IOCMOTPUM, KAKOJ ITyTh MbI ITPOLUTH.

Ewin BBl — TMITMUHBINM YMTATENb, TO, IPUCTYIIAS K UTEHUIO, YMEIU
rnporpaMmMmupoBaTth Ha Python u obnagany 6a30BbIMY 3HAHUSIMUM O Ma-
LIMHHOM 06YyYeHMM, 8 XOTEIM Y3HATh 60JIblie O ITYyOOKOM 00y4eHUn 1
MPUMEHNUTh 9TU 3HAHMS Ha MPAKTHUKe B IporpaMmmax Ha Python.

Bbl y3Ha/Iu, Kak yCTaHOBUTH OubmoTeky Keras Ha CBOIO MalluHy, U
Hayaiy UCIOIb30BATh ee [JIsl TOCTPOeHMs! IPOCThIX MOJIe/iel IyfoKo-
ro oGyueHus1. 3aTeM Bbl Y3HA/IM O CAMOI IIePBOI TAKO! MOJEIN — MHO-
TOC/IOHOM TIEPHEHTPOHE, KOTOPBIN ellle HA3bIBAIOT MOIHOCBA3HOM
CceThI0. Bbl HAyUM/IUCh CTPOUTH TAKME CETH ¢ moMolIbio Keras.

BbI TakyKe y3HaIM 0 MHOTOUMC/IEHHBIX [lapaMeTpax, KOTopble Heob-
XOAMMO HACTPauBAaTh ISl MOMYUEHUS XOPOIUIMX PE3YAbTATOB OT CETHU.
B Keras camast cjioskHast pabora yske cfiejiaHa, IoCKO/IbKY B G1bmnoTexe
3aJjaHbl Pa3yMHble 3HAUeHUs] 110 YMOTYaHUI0, HO B HEKOTOPBIX CTy4asx
6e3 3HaHUs 0 ITapaMeTpax Bce e He 000MTHUCE.

Ianee Mbl Mepenyiv K CBEPTOYHBIM HEMPOHHBIM CETAM, KOTO-
pble M3HAYAbHO ObLIM MPeIIOXKEeHbI /IS yueTa JIOKaJIbHOCTYU IPU-
3HAKOB B U300paKeHUSX, @ [IOTOM BbISICHUJIOCH, YTO MX MOXHO ITPU-
MEHUTb M K JaHHBIM APYIrUX TUIIOB, BKJIIOYAs TEKCT, 3BYK M BUIEO.
Bl y3Hanu, uto Keras nmo3poJisieT CTPOUTh M TAKUE CETU TOXKE — JIer-
KO M MHTYUTUBHO IOHSITHO. Bbl BUgeu, Kak ceTu, rnpeaodydyeHHbie
Ha Habopax M3006paskeHuit, MO3BOJIAIOT Oe/iaTh MpeacKasaHus s
BalIMX M300paskeHuit ¢ MOMOIILbIO IIpoliecca rnepeHoca ooyyeHus u
OKOHYATEeJIbHOI HACTPOMUKU.

Been 3a 3TUM Bbl Y3HAIM O MOPOXKAAIIMX COCTA3ATETbHBIX
cerax (IICC), korma aBe ceTu (0OBIYHO CBEPTOYHBIX) ITLITAKTCS IPO-
TUBOCTOSITh IPYT APYTY U B PE3YIIbTATE KayK[asi CTAHOBUTCS CUJIbHEE.
IICC - aTo nepenHuii Kpai riyboKoro 0byueHus, UM MOCBSIILEHO He-
MaJio HelaBHUX pabor.

3aTeM Mbl 06paTHIMCD K MOTPYIKEHUIO CJIOB — TEXHOJIOT M, KOTOPas]
B MOCJIEAHME TIApY JIET CTAA AKTUBHO MPUMEHSITHCS JJIs1 BEKTOPHOTO
MpeacTaBieHus Tekera. Mbl pacCMOTPE/IM HECKOMBKO TIOMYJISIPHBIX aji-
TOPUTMOB TOIPY)XKeHMS CJIOB M BUMEJIM, KAK MCII0/Ib30BATh Mpenody-
YEHHbBIE TOTPYKEHMST IJIs1 IPECTABIEHMUS KOUTeKIMIA ¢/1oB. Mbl Tak-

(2861 | | [} 3akniosenme

Ke IMO3HAKOMMJIMCH C MOAAEPIKKOIM MOrpykeHust cioB B 6ubnuorekax
Keras 1 gensim.

[Tocjie 3TOro Ml MEpelii K peKyPPeHTHBIM HEHPOHHBIM CeTIM
(PHC) - kjaccy cereil, onTUMU3UPOBAHHOMY /Jisi paboThl ¢ MOC/Iea0-
BATEJIbHOCTSIMU JAHHBIX, B T. Y. C TEKCTOM M BpeMeHHbIMM psigami. Mbl
y3HA/IM 0 HejocTaTKax 6aszosoit momenu PHC u o Tom, Kak uX Ipeono-
JIeTh C IMOMOILBI0 6ojiee 3¢ deKTUBHBIX BapuallMii: JOAr0i KpaTKo-
cpouHoit namatu (LSTM) 1 BeHTWIBHBIX PEKYPPEHTHBIX OJIOKOB
(GRU) . MbI paccMOTpe/ii HECKOJIBKO IPUMEPOB MUCIOIb30BAHUS 3TUX
KOMITOHEHTOB. Mbl Takke KpaTko rosHakommiauck ¢ PHC ¢ coxpaHeHu-
€M COCTOSIHUSI M MX BO3MOKHBIMM ITPUMEHEHMUSIMM.

Hanee Mbl 006CYAMIM [JOIOJIHMUTE/IbHbIE MOMAEIM, KOTOPbIM HE Ha-
LJIOCh MECTa B MpemblayiiuX rjaaBax. K HMM OTHOCSTCSI aBTOKOMM-
POBHIIMKM — Mopeiu, obyuyaemass Ge3 yuyuTessl, U perpeccCMOHHbIE
CeTH, KOTOpbIe MPeICcKa3blBAlOT He OMCKPETHYIO METKY, a HeIllpPephbiB-
HOe 3HauyeHue. Mbl MO3HAKOMUIUCH ¢ pyHKImMoHanbHbIM API Keras,
KOTOPBIN ITO3BOJSIET CTPOUTH CJI0XKHBIE CETU C HECKOJIbKMMM BXOIaMM
M BBIXOHAMM M PasieisiTh KOMIIOHEHTbI MeXIY HeCKOJIbKMMM KOHBeli-
epamu. Ml 06cyauim paciuuperdue Keras ¢ 1eibio 1o6aBaeHust HOBOM
(byHKIIMOHAIBHOCTH.

HakoHell, MbI pacCMOTpe/IM [IyD0OK0e 06yueHM e ¢ MoAKPeIvieHueM
B KOHTEKCTe apKaJHbIX UI'P M 3aMeTUJIM, UTO TaKie CeTH MOTYT CTaTh
MEepBbIM LIArOM Ha MYTH K HACTOSILIEMY MCKYCCTBEHHOMY MHTEJUIeK-
Ty. MbI [TOKa3a/11, KAK MOXKHO 06Y4YMTh CeTh IIPOCTON Urpe CpeacTBaMMu
Keras. 3aremM Mbl Ia/iu KpaTKMii 0630p NOCjIeIHUX JOCTUKEHUIA B 3TOMI
06/1aCTH Ha pUMepe elle 6osiee CI0KHBIX UTP — [TIOKEP U o, — B KOTO-
PbIX HEIIPOHHbIE CeTH Y3Ke MPEeB30LUTH Ye0BeKa.

MbI nonaraem, 4TO TeIepb Bbl BO BCEOPYKUM [IJIS1 PELIeHMS HOBBIX
3aja4 MalllMHHOro 06yYyeHusl C IpUMMEHeHeM METO/I0B ITTyOOKOro 00-
yueHus u 6ubnuoreku Keras.

[Monb3ysich cryyaem, GarofapMm 3a TO, YTO MO3BOJIMIM COIIPOBO-
JKIATh BAC HA MYTU K CEKpeTamM MacTepCcTBa B IIIy6OKOM 00yUeHUH.

Keras 2.0 - yTo HOBOro

ITo ciosam ®pancya lllomie, 6ubnuorexka Keras Gbuia BbIIyllleHa B
mapre 2015 roga. M nocreneHHo 4MCIO M0JAb30BaTeNel YBeIUMUMIOCh
C OJIHOTO [0 COTHM Thicsiu. Ha ciemyioliiemM pucyHke, B3siToM 13 6iiora
Keras, nokasaH pocT uucia noab3opareneii Keras co BpemMeHeM.

L7

Keras 2.0 - yto HoBOrO **+ 287

Thursday, March 9, 2017

= 7 Day Active Users: 34,738

% 14 Day Active Users: 59,194
30 Day Active Users: 107,942

Unique users of the Keras documentation

OpnuM 13 BakHbIX HoBIinecTB B Keras 2.0 sapisiercss Tor (akr, uTo
ero API cran yacteio TensorFlow, HaunHas ¢ Bepcun TensorFlow 1.2.
Boo6uie, Keras Bce Gosibliie obpetaet 4epTbl «JIMHIBA (ppaHKa» (SI3bI-
Ka-I1ocpegHuKa) B [IyDOKOM 00yueHuu, cneyuduraiiu, UCroabL3yeMoi
BO BCe HOBbIX M HOBbIX KOHTeKcTax. Harpumep, komnauus Skymind
peanusyer cneuudukaiuo Keras Ha Scala s 6ubnuoreku ScalNet, a
Keras.js menaet To e camoe ajis JavaScript, yTobbl riybokuM obyue-
HMEM MOXKHO ObUIO 3aHMMATBLCS NpsMo B 6paysepe. Begyrces paboTsbl
o npepocrapneduo APl Keras st 6161muoTex riy6oKoro ob6ydyeHust
MXNET u CNTK.

YcraHoBka Keras 2.0

Ins yeranosku Keras 2.0 1ocTaTOYHO BBIMOJHUTD KOMAHY pip in-
stall keras -upgrade, d BCOJIen SHE{Eﬁ'—pip install tensorflow --upgrade.

U3meHeHus API

[Tepexon Ha Bepcuro Keras 2.0 BbIHYAMI [epecMOTpPeTb HEKOTO-
poie APL. ITonHbliA nepeyeHb U3MEHEHMIT CM. B 3aMeUaHUIX K BEPCUU
(https://github.com/fchollet/keras/wiki/Keras-2.0-release-notes). B MO-
Ka3aHHOM HIKE MOJIYJIE legacy.py CBEIEHBI CaMble CYLIeCTBEHHbIE U3-
MEHEHUS C [e/bI0 MPEeIOTBPATUTE TOSBJIEHUE MTPEAYIIPEXKIAEHUI TP
ucnoab3oBaHum GpyHkumii us sepcum Keras 1.x:

wn

Cnywefuue dyHKLUMM ONA NPeOOoTEPAWESHMA NpelyNpexOeHMH OPpM COBMECTHOM
ucnone3csanumn Keras 1 m 2.

wun

import keras

288 <+ [nasa 8.3aknoueHue

keras 2 = int(keras._ version__ .split(".") (0]} > 1 # Keras > 1

def fit generator (model, generator, epochs, steps_per epoch):
if keras 2:
model.fit generator (generator, epochs=epochs, steps per epoch=steps per epoch)
else:
medel . fit generator (generator, nb epoch=epochs, samples per epoch=steps per epoch)

def fit (medel, x, y, nb_epoch=10, *args, **kwargs):
if keras 2:
return model.fit (x, y, *args, epochs=nb _epoch, **kwargs)
else:
return model.fit (x, y, *args, nb_epoch=nb_epoch, **kwargs)

def 1112 (11=0, 12=0):
if keras 2:
return keras.regularizers.L1L2 (11, 12}
else:
return keras.regularizers.1112(11, 12}

def Dense(units, W _regularizer=None, W initializer='glorot uniform', **kwargs):
if keras 2:
return keras.layers.Dense(units, kernel regularizer=W regularizer,
kernel initializer=W initializer, **kwargs)
else:
return keras.layers.Dense(units, W regularizer=W regularizer,
init=W_initializer, **kwargs)

def BatchNormalization(mode=0, **kwargs):
if keras 2:
return keras.layers.BatchNormalization(**kwargs)
else:
return keras.layers.BatchNormalization(mode=mode, **kwargs)

def Convelutien2D(units, w, h, W_reqularizer=None,
W _initializer='glorot uniform', border mcde='same', **kwargs):
if keras 2:
return keras.layers.Conv2D(units, (w, h), padding=border mode,
kernel reqularizer=W_regularizer,
kernel initializer=W initializer,
**kwargs)
else:
return keras.layers.Conv2D(units, w, h, border mode=border mode,
W _regularizer=W_regularizer, init=W initializer, **kwargs)

def AveragePooling2D(pool size, border mode='valid', **kwargs):
if keras 2:
return keras.layers.AveragePooling2D(pool size=pool size,
padding=border mode, **kwargs)
else:

L7

Keras 2.0 - yto HoBOrO *+ 289

return keras.layers.AveragePooling2D(pool size=pool size,
border meode=border mode, **kwargs)

HMmeercs Takke paag HeCOBMeCTHMMBbIX HSMEHEHHﬁ, B YaCTHOCTHM:

Q VHaclegoBaHHbIe CIOM maxcut dense, time distributed dense W
highway MCKIIIOYEHbI;

O 10i1 NMakeTHOMH HOPMUPOBKM BOJIbILE He MOAAepKUBaeT apry-
MEHT mode, MMOCKOJMbKY M3MEHWIACh BHYTPEHHSS peanu3anus
Keras;

O ronb30BaTeNbCKUE CJIOU H806X0,EL1—1M0 06HOBMT}J;

Q n100ble HEMOKYMEHTUPOBAHHBIE BO3MOXKHOCTH Keras moryT re-
pecraTb paboTars.

Ko Bcemy mpouemy, komoBasi 6a3a Keras cHaGxeHa cpeacTBaMm
obHapykeHus orydaes obpauienus K API Keras 1.x, 1py 3TOM BEIBOASITCS
[peayrnpexaeHuss ¢ peKoMeHaaluei, Kak Mogu@uiupoBaTh BbI30B,
apantupoBas ero K API Keras 2. Eciin Bbl y3Ke Hanmcaau 40CTaTOYHO
MHoro Kopa mjst Keras 1.x u onacaetech nepexonuts Ha Keras 2 us-
32 HECOBMECTMMbIX M3MEHEHMIi, TO 3TU HpemyIpexmgeHus: obieryat
rnepexo/.

MpepMeTHbIN YKa3aTenb

A

ABTOKOAMPOBLLMKM
obwue ceenenna 223, 286
npumep 225

apxutekTypa Keras 68

B
60K NMHEIHOA pekTduKauum 28

B

BEHTUNbHbINA pekyppeHTHbIi 6ok (GRU)
176, 197, 286
yactepeyHas pasmertka 198
eca 81
COXPaHEeHWe U 3arpy3ka 73
BbITECHAEMas BUPTYanbHas MalMHa 75

r

rMnepnapameTpbl, HaCTpoika 52
rny6oKkas CBEPTOYHAR HEMPOHHAS CETh
(TCHC) 80
LeNet 83
geca 81
nynuHroBble cnon 82
pacno3HasaHue uobpaxenuii 101
peuentusHble nong 80
cmeleque 81
rnyboKas CBEPTOYHAN NOPOXKAAKLLAS
coctazatensHas cetob (MCNCC) 114
rnybokoe 0byyeHue
obwue ceegenna 54, 89
rpagMeHTHbIA cnyck 41
rPAIMEHTI
B3pbiBHble 188
ucyesaowme 188

a

nByHanpaenenHsle PHC 205
[nuHa wara 81

A0Nras KpaTkoCpoYHas namath (LSTM)
176, 188, 286

n

MHULManu3atopsl 25
MHBOPMALMOHHBIA noMcK 143

K

konnabopatueHan dunbtpauus 224
KOHTPOMbHbIE TOUKM 75

n

NaTEHTHO-CeMaHTUYecKuit aHanus (/1CA) 143
NoKanbHas HOPMMPOBKa OTKAMKA 243

METOA raeHbIX KoMnoHeHT (PCA) 223
MHOTOCN0MHbIA nepuentpox (MCM)
60K nuHelHoM pekTuduKaumm 28
npuMep Herpocetn 25
npobnemsbl 0byyenus 26
curmonpa 27
(byHKUMM akTHBaLMM 28
mopenu Keras
nocnefoBarensHas kKomMnosuuus 68
(yHKUMOHANBHAA KOMNo3uuUMs 69

H
HakonnexHas namats 269

0

o0bpaboTka ecrectBeHHbIX A3blkoB (OEA) 143

obparHoe pacnpocTpaHenue 52

06paTHOE PacnpoCTPaHEHUE BO BPEMEHM
(BPTT) 186

06paTHbIE BbI30BbI AN YIPaBAEHUS
npoueccom obyuenns 74

0byueHue be3 yuutens 223

06yueHus npouecc

MNpeameTHbli ykazatens < 291

ucnonb3osanue Quiver 76
ucnonb3oganue TensorBoard 76
KOHTPOMbHbIE TOUKM 75
yNpaBAeHKe ¢ NOMOLLLbI0 06PaTHbIX
Bbi30BOB 74

ONTUMU3ATOPbI
CCbINKA HA IOKYMEHTaUM 73
TectuposaHue B Keras 41

n

nakeTHas HopMupoBka 71
NaKETHbIE BbIYUCTIEHUS
YBENWYEHWE pa3Mepa naketa 48
nepBMYHan 3puTenbHas kopa 23
nepeHoc obyyeHus
Mcnonb3oBaHue cetu inception-v3 105
nepeHoc ctuna 255
nepuoa!
YBENWYEHME YuCna 46
nokasarenu kavectea 73
NONHOCBA3HaA ceTb 285
NONb30BATENLCKMIA CNOM, PEKOMEHAALMK MO
nocTpoeHuo 243
NONONHEHUE aHHbIX, Ha NpUMepe Habopa
u3obpaxennit CIFAR-10 97
nopoxpaatowan cocrasatensHas ceto (1CC)
109, 247, 285
nopoxpgatowme Mogenu 247
Deep Dream 248
nepeHoc ctung 255
nocnegosartenbHan Moaens B Keras 24
NpU3HaKu
BbIAENEHUE C NOMOLLbH NPEn0BYYEHHbIX
mopeneid 104
npopexmsaHue 38
npoctble ayeitkun PHC 177
nynuHroBsle cnou 82
max-nynuur 82
CCbINKA HA AOKYMEHTaUMID 83
YCPEOHEHHbIA NyAuHr 82

P

pacno3HaBaHue H30bpaxeHui
inception-v3, npuMeHeHue 4na nepeHoca
obyyenus 105
BCTPOEHHBIA Moaynb VGG-16 103
ICHC 101

MCMONb30BAHME FOTOBbIX MOAENE ans
Bblaenenus npusHakos 104
¢ nomolwbio cetu VGG-16 102
pacnpeneneHHsle npeactasnequs 144
paclumpenue Keras
ucnonb3oBaxua cnod lambda 242
obwwue ceenenus 242
MONb30BATENLCKOMO COS HOPMUPOBKK 243
PErpeccuoHHble cetn 218
perynapuzauma 71
NPUMEHEHUE ANA NPEAOTBPALLEHUS
nepeobyyenus 50
bl 51
peKyppeHTHas HeipoHHan cetb (PHC) 69, 161
ApYrie BapuaHTel 212
Tononorun 184
peuentusHoe none 80
peyesoe BocnpousseneHue tekcra (TTS)
KOMNMNALMOHHBIA cuHTe3 133
napaMeTpUUYEcKmii cuHTes 133
PHC ¢ 3anomMuHaHuem coctosHms 206
npeackasaHue notpebnexus
anekTpuuectea 206
pYKONMUCHbIE LMdpbI, pacno3HaBanue 29
[o0baBneHue CKPbITbIX CNOEB 35
HACTpOMKa runepnapaMeTpoe 52
onpeaenexue HeMpoHHoM ceu B Keras 30
NOABEAEHUE UTOFOB IKCNEPUMEHTOR 49
npenckasaxue ebixoga 52
perynapuzauus 50
C03AaHWe 3TaNoHa Ans CpaBHeHus 34
TECTMPOBaHWe onTuMK3aTopoe 41
YBENWYEHHE pasMepa nakeTa 48
YBENHYEHME YUCNE HEIPOHOB B CKPbITBIX
cnosix 47
YBENUYEHHE YKCna Nepuoaos 46
YAYULEHKE C NOMOLLBH) NPOpeXMBaHMs 38
YHUTapHOEe KoaupoBaHue 30
YNpaBneHue CKopocTbio 0bydeHus
ontMMu3aTopa 46

c

cBepToyHas HeiporHas cetb (CHC)
55, 79, 83, 161, 285

curmonpa 27

CKOPOCTb 0BYYEHHS ONTUMK3ATOPA,
ynpagnexue 46

CKpbITbIE CNOK 35

2921 | | [}

cvellenne 81
cpenHekBaapaTMyeckas owubka 218
CTOXACTMYECKMIA rpaamenTHBIA cnyck (CIC) 43

T
TeH3op 68

y
yHUTapHOe KopuposaHue 30, 143

(0]

takropuzaums matpuubl 158
dyHKUMM noTeps 72
dyHKkuMoHanbHbIA APl Keras 215, 286
(YHKLMA aKTMBALMM
Bnok nuHeitHon pektudmkaumm (ReLU) 28
CCbINKA Ha AOKYMEHTaLu 29
obuwue ceenenna 28
curmonpa 27

1]

Lenesas (yHkuma
BuHapHan nepekpecTHas 3HTponua 52
KaTeropuanbHasa nepexkpecTHas
JHTpONMA 32
CpeqHeKBafpaTMyeckas owmbka 32
umKn 0bpaboTkm cobbitui 272

y
yacrepeyHas pasmetka 185

A

Adam 43

AlphaGo 282

Amazon AWS
CNOTOBbIIA MHCTAHC 75
CCbiNKK 65
ycraHoBka Keras 64

B
bAbl npoekt 235

Cc
Caffe 101, 244

MpeamertHei ykazarens

CBOW word2vec mogenb 150
CIFAR-10, Habop u306pameHmit
MOBLILEHME KaYecTBa pacno3HaBaHus
nyTeM nononHenus 97
MOBLILIEHME KauecTBa pacno3HaBaHus
nyteM yrnybnexus cetn 95
npenckasatue 100
MCC ona nogaenbisanua 124
pacro3HaBaHKe C NOMOLLbH FyBoKoro
obyuenmns 90
ccbinka 91

D

Deap Dream (rnybokue cHoBuaenus) 248
DeepMind 132, 141
Docker, ycraHoska Keras 60

G

GloVe 158

GloVe-Python, npoekt 159

Google Cloud ML
ycraHoBka Keras 62

H
HDFS5, hopmar 75

ImageNet ILSVRC-2012, Habop AaHHbIX
101

inception-v3, UCNonb30BaHKE ANS NEpeHoca
obyueHuns 106

J
Jupyter Notebooks 61

K

Keras
kop cetu LeNet 83
HacTpoika 59
OonpeneneH1e NPoCToil HefipoHHoi cet 30
nposepka pabotocnocobHocTu 58
pacwmpenue 242
CCbINKa Ha aucTpubytue 63
TECTUPOBaHWE onTuMK3aTopoe 41
yCTaHoBKa 56
ycraHoska TensorFlow 57
ycraHoska Theano 57

MpenmeTHbiit yk3aTens

ycTaHoska B Amazon AWS 64
ycraHoska B Google Cloud ML 62
ycTaHoBka B Microsoft Azure 65
ycTaHoBKa B koHTelHep Docker 60
YCTaHOBKA 3aBMCHMOCTER 56
Keras 2.0 287
Keras adversarial
MCC pna noppensisanua CIFAR-10 124
CC pna nogoensisanua MNIST 118
Keras API
apxutekTypa Keras 68
BCMOMOraTeNbHble onepaumun 73
rotosble ciou 69
roToBble QYHKUMM aKTMBaLMK 72
3arpy3Ka M COXpaHeHue BECOB U
APXMTEKTYpbI Mopenu 73
obuwue ceenenns 67
onTUMM3aTOpLl 73
MoKa3aTenu Kauectea /3
dyHKLKK noTepb 72

L

LeNet, cetb 83
kon B Keras 83
Libratus 283

MNIST, Habop aaHHbIX
noaaenbisaque ¢ nomolbio MCC 118
cewinka 29, 90

N

NLTK, brubnunoteka ans 06pabotku
eCTeCTBeHHbIX A3blkoB 161

(0]
OpenAl 109

o293

P
Pygame 269

Q
Quiver 77

R
RMSprop 43

S
skip-rpammbl 146

T

TensorBoard 76

TensorFlow
nposepka pabotocnocobHoct 59
ccbinka 67
yCTaHoBka 57

Theano
nposepka pabotocnocobHocTu 58
ccbinka 67
yCTaHoBka 57

\
VGG-16 cems 102

w

WaveNet 132

word2vec
U3BNEYEHME norpyxeHuid 151
mogens CBOW 150
mogenb skip-rpaMm 146
obwwue ceenenmna 145
CTOPOHHME peanu3auun 154

Kuuru nzgarenscrea « /MK IIpeccs» MokHO 3aKa3aTh B TOPrOBO-U3/1aTENIBLCKOM
xonauare «[lmanera AnbsaHc» HANOKEHHBIM IJIATEKOM, BBICTAB OTKPLITKY W
MHCHLMO 110 TTOUTOBOMY ajipecy: 1153487, r. Mocksa, 2-it Haratunckwii np-, 1. 6A.

1Ipu ocopmrennn 3akasa cieayeT yKasaTh ajipec (MOJHOCTBIO), TT0 KOTOPOMY
JOJKHEI OBIThH BBICIAHLI KHUTH; (DaMILIHIO, MMs 1 OTYeCTBO nomyuartens. Kena-
TEJLHO TAKKE YKA3aTh CBOI TeeoH 1 aJIeKTPOHHDIH ajipec.

ITH KHUTH BLI MOJKETE 3aKa3aTh U B MHTepHeT-Marasnte: www.alians-kniga.ru.

OnrroBole 3akyngu: Teq. +7 (499) 782-38-89.

Daexrpounsiil agpec: books@alians-kniga.ru.

Anronno JIkyim, Cymxur [Tan

Bu6nuoreka Keras - MHCTPYMEHT I/TyGOKOIrO 0GydeHust

Peanu3saliist HeilipOHHBIX CETel ¢ OMOILbI
oubnuorek Theano u TensorFlow

InaBHbiit pegakrop Moguan 1. A.
dmkpress@gmail.com

[Mepeson ¢ anrnuiickoro CauHkuH A. A.
Koppexkrop Cunsiega I'. 1.
Bepcrka [lapauckas H. B.
Husaiin obnoxkku Mosuan A. T.

®opmar 60x90 1/16. FapuuTtypa «[lerepdypr».
[Teuats odcetHas. Yo rey. 1. 18,38.
Tupax 200 aks3.

Beb-caiiT M3gaTeNbCTBA: WWW.IMK.pQ

