O
=
<
-
®
T
=
®
o
3
o
B
=
o
®
3
=
®
T
s
®
=
T
o
v
=
o
q
o
>

O0y4eHue ¢ noakpensieHnem

Ha PyTorch

COopHMK peLienToB

HOcn (Xaripen) Jro

O6yueHue c nogKkpenneHneM
Ha PyTorch:
c60pHUK peuenToB

PyTorch 1.x
Reinforcement Learning
Cookbook

Over 60 recipes to design, develop,
and deploy self-learning
Al models using Python

Yuxi (Hayden) Liu

Packt

BIRMINGHAM - MUMBAI

O6yueHue ¢ nogkpenneHuem
Ha PyTorch:
c60pHUK peuenToB

Cebiwe 60 peuenToB NpoeKTUpPOBaHUS,
pa3paboTKu U pasBepTbiBaHUS
camooby4yarwwuxca moaenen Ha Python

Ocu (XapeH) Jo

MockBa, 2020

VIOK 004.85

BBK 32.971.3
JI93
JIro 10. (X.)
JI93 OO6yueHue c noakpervieHreMm Ha PyTorch: cGOpHUK pelenTos / mep. ¢ aHIvl.

A. A. CniuuakuHa. — M.: IMK Ilpecc, 2020. - 282 c.: ni.
ISBN 978-5-97060-853-1

Bubnuoreka PyTorch BLIXOAUT Ha ITepejOBbIe TO3UIIMHU B KAUECTBE CPeICTBA 06yUe-
Hus ¢ nopxperuienrem (OIT) 6narogapst apGeKTMBHOCTH 1 TPOCTOTE ee UCIONb30Ba-
HUs1. DTa KHUTa OPraHM30BaHa Kak CIIPaBOYHMK 110 pabote ¢ PyTorch, oxBaThIBaIOLIMit
MIMPOKUIL KPYT TeM — OT CaMbIX a30B (HaCTpoiika paboueil cpeibl) 1O MPAKTUUECKUX
3agay (paccmoTrpeHye OIT Ha KOHKPeTHBIX NTpUMepax).

BbI HAyYUTECH UCITONb30BATh AJITOPUTM «MHOTOPYKMUX 6AHIMUTOB» U alMPOKCUMAIUIO
GbyHKIMIT; y3HaeTe, Kak T00eoUTh B Urpax Atari ¢ MOMOIIbI0 ITy60KMUx Q-ceTeit U Kak
3¢ dexTMBHO peann3oBaTh METOH, rpaiMeHTa CTPaTernn; yBUAUTE, Kak MPUMEHUTD
meTop, OIT k urpe B G/I9KIKEK, K OKPY>KaIOUIM CpeiaM B CETOYHOM MMPe, K OIITUMM-
3alMi peKkyiaMbl B MHTepHeTe U K urpe Flappy Bird.

M3panye rpeHa3sHauY€HO AJIS1 CIIeLMA/IMCTOB 110 UCKYCCTBEHHOMY MHTEJUIEKTY, KOTO-
PBIM TpeGyeTcst TOMOIIb B peniernu 3anad OIL. [u3yueHust MaTepuaia Heo6X0ouMo
3HAKOMCTBO C KOHILIEMUIMSIMY MalIVIHHOTO OGYU€HUSI; OIMBIT PaGOThI ¢ 6MOGIMOTEKO
PyTorch Heobsi3aTeneH, HO skeyaTeNeH.

VIK 004.85
bbK 32.971.3

First published in the English language under the title ‘PyTorch 1.x Reinforcement Learning
Cookbook Russian language edition copyright © 2020 by DMK Press. All rights reserved.

Bce mpaBa 3amuieHbl. JIo6as 4acTh 3TOM KHUTY HE MOKET ObITh BOCIIPOM3BEIeHa B Ka-
KO¥1 6bI TO HM 6170 pOpMeE 1 KaKMM 6bI TO HY OBIIO CPeNCTBaMy 6€3 MICbMEHHOTO Pas3peleHust
BJIA/IEIbIIEB aBTOPCKMX TTPaB.

ISBN 978-1-83855-196-4 (aHrJ1.) Copyright © Packt Publishing 2019
ISBN 978-5-97060-853-1 (pyc.) © Odopmnenne, u3nanue, nepesoy,

MK TIIpecc, 2020

CopepxxaHue

00 @BTOPE.........oeeeeeee ettt sttt nenas 12
O PELLEHBEHTAX ...ttt ae b s s sesnans 13
TIPEAMCIIOBUE ...t 14

Mhasa 1. Mpucrynaem K o6y4eHuto ¢ noaKpenneHuem

M PYTOFCR ...ttt 19
TTOATOTOBKA CPEIBI PASPAOOTKI «eeeeeeeeeerrreeeeeeinrreeeeeaeissreeeseeassssesseesssseseesesssssseesannnns 19
=] el M I (=) = Tl N & P U 20
KaK 9TO PABOTACTeuvviieeeeeeiiieeeeeeiiieeeeeeeitteeeeeeeaseeeeeseenseseeeseesssassesaanssseaesaanes 21
OTO EIILE HE BCE euuuuuunreeeeeeeeeeeeeeerrrerassnnnsnnssaasaseseesessssssssssssssssnnnnsssssssesssssssssssssnsnnnn 21
VCTAHOBKA OPENAT GYIM c.tiiiiiiiiiiiiiiiieeieeeet ettt et e e e e e e e e e e e e 22
3@ Dl oI (<)) £ 1<l (- SRRt 23
KaK 9TO PABOTACTeeeevvieeieeiiieeeeeeeiteeeeeeeitteeeeeeeseeeeeseeensaseeeseessseesesaanssreeesannnes 23
OTO EIILE HE BCE eevruunreerrrrnneeeerrerneeeessssneseesssssneeessssssneeesssssnnsesesssssseseesssssneneessssnnnns 23
(0)149)70:2€0 011170 01501023 012\ -1 5 SRR UPTPPPPPTR 24
2] el N I (=) = 1< N SR 24
KK 9TO PABOTACT ...eeeeevieeieeiiieeeeeeeiteeeeeeetreeeeeeeareeeeseeeseseeeseenssaeessssnssseeesannnes 27
1 VO 11 (D & (< T I 28
OxpysRatomast CPefia CartPOLeccc..uviiiiieeeiieeeeecctee et e e e vee e e e e aaeeas 29
|) ey Mo I (<) £ Tk N F 30
KAK 3TO PABOTACT ..eeeuvvieeerreeeeiieeeireeeeeseeeeaseeeeaseeeaasseessssasesssssessssssesssseesssesesnnses 32
1 VO 11 (S % (< T SRR 32
(074 200):3:9 1 2074 L) ol s PO RSP 33
KK OTO JLOITACTCS . cevvuireieeeeieeeiieertieeertieeestaeerseeeersneeeseneersaneesssneesssnsesssneersneessnns 33
OTO EIILE HE BCEO uvuunneerrrrrneeerrrenneeeesssssnesesssssseeesssssseeessssssseesessssnnesessssssesesssssnnnns 36
Peanu3anus u onjeHMBaHME CTPATETUM CITYUAAHOTO MOMCKA.eevrrrerrnnnnnnasaseerereeananens 36
| €] el Ko I (=) £= = {0 SO 36
KK 9TO PAOOTACT ..ceeeevieeeeeeiiieeeeeeeitteeeeeeetteeeeeeeereeeeseeeseseeesessnssaesesasnsssseesannnns 39
1 VOIS 11 (D % (< T I 39
ANTOPUTM BOCXOXKIEHMS HA BEPILMHY ...uueeeeeerrereeeeeeerrmrunnnssssnsssssssesssseseessesssssssnnnns 41

| 2] ey Mo I (<) £ Tk N & C 42

6 <+ CopepxaHue

KAK 3TO PABOTACT .eeeuvveeeureeeeerieeeeeeeeeisseeaeseeeasseesaseeessssseassssesssssssasssseessssssssnsees 46
OTO EIIE HE BCE .evruunreerrrrnneeeerresnneeeeerssnneseesssssneseessssssesesssssssesessssssnseesssssnnneessssnnnns 46
AJITOPUTM TPATMEHTA CTPATETTM «.eeeneeneenennerreeeeeeeeeesessasseesssnnnssseseeeeeeeeeeesessassaennns 47
=] el Mo I (= = [N SO 48
KAK 3TO PABOTACT .eeeeuvreeeerieeeerieeeeieeeeeasreeaeseeeessseesaseeesssssesssseesssssssssssseesssssessnsees 51
OTO EIIE HE BCE evruunreerrrrnneeeerresnneeeessssnneeeesssssneseessessneeessssssneesessssssensesssssnanesssssnnnns 52

[maBsa 2. MapkoBcK1e npoueccbl NPUHATUS PeLUEeHKUH

M AUHAMUYECKOE NPOrPAMMMUPOBAHMUEoereeerreeeeerirneneesenneneenenns 53
TEXHUYECKUE TPEOOBAHMS ... veerneerrnreeurerrueeseeeseessstessseesssesssessseessseesssessssessneessssenns 53
CO3/1aHNE MAPKOBCKOM IIETIM .evvvreereeeeeeesesseasaessnnnnnssneeeeeeeeeeessssssssssssnnsssssseeseeseeeees 54
KaK 9TO J1OITACTC . ceeeeeeeeeeeeeeiteeeeeeeetee e e et e e s eeeee e e e s et e e s senneeeeseemnneeeesennee 54
KAK 9TO PABOTACT ..ceuvieeurieeieeneeeiieeiteeteeeteesatesstesseesseesstessseessseessaesnsessneesnnes 55
OTO EIIE HE BCE .evruuneeerrrrnneeeerrernneeeesrssnneeeesssssneseesssssseeesssssssesessssssessesssssnenesssssnnnns 57
(©a)eP1 £:1207 (<Y 1 1 1 1 1 22U 57
KaK 9TO J1OITACTC e eeueereeeieeiteeeeeeeeeeee e et ee e s eenree e e s e asre e e s s neeeeeseemnneeeesennee 58
KAK 9TO PABOTACT ..eeuvrerurieeieenieeieeiteeieesteeseeeseesseesseesstessseessseessaesnsesssnesnnes 59
OTO EIILE HE BCE evuuunreerrrrnneeeerrarneeeessssnneseesssssneseesssssneeesssssnneesesssssseseesssssneneessssnnnns 60
OLIEHVBAHME CTPATEIMM «eernenuereeerraanneeeeessaanreeessaeanreeessaannsreesseessseseessssnnseeessessnsenees 60
=] el M I (=) = 1=l N SO 61
KAK 9TO PABOTACT ..eeeuvieruriereeereeeeieeeiteesseeeiteesaeeestesseesseessessseessseesseesseesseesnnes 62
OTO EIILE HE BCE evvruunreerrernneeeerrrrneeeessssneeeesssssneeessssssseeesssssnnsesessssnneseesssssneneessssnnnns 63
Vmutanus okpykaoueii cpefibl FrozenLakeccceeeveeiniieenciiienniieeneieeeeeeennns 66
|)14 0)N0) =) 3¢ N 66
=] el M I (=) = 1=k N PO 66
KAK 9TO PABOTACT ..eeeuvreeurierreeeieeeieeeiteesieeeieees et estesseesseessseesseessseesseessessneesnes 68
OTO EIILE HE BCE eevrunneerrrrrnneeeerrrrneeeessssnneeeesssssneeessssssseeesssssnneesessssnneseesssssneseessssnnnns 69
Pemrenne MIIIIP ¢ OMOIIBIO aITOPUTMA UTEPALMM 10 LIEHHOCTH ...eeeeeeveeeereeeeennn 70
€=] el M I (=) = 1=k N SO 70
KAK 9TO PABOTACT ..ecuvreeuriereeerierieeiteesteesiteeseeeatesseesseessessseessseesseessessneesnnes 72
OTO EIILE HE BCE evvruuneeerrrrnneeeerrsrneeeessssneeeesssssneeessssssseeesssssnneesessssnneseesssssneseessssnnnns 73
Pemrenne MIIIIP ¢ mOMOIIIBIO aITOPUTMA UTEPALMM IO CTPATEIUSAIM ...ceevvvvvreeeeennn. 74
=] el M I (=) £= 1=l N SO 75
KAK 9TO PABOTACT ...eeuvieeuriereeerieeeieeiteesieeeteeseeeatesseesseesseesseessseesseesseesneesnnes 77
OTO EIILE HE BCE eevruuneeerrrrnneeeerrrrnneeeessssneeeesssssneeessssssseeesssssnneesesssssseseesssssneneessssnnnns 77
UTrpa ¢ MOMOPACHIBAHMEM MOHETDI ...uuveeueerueeeueesseesseesisessseessseessseesssessnsesssessseenns 78
=] el Mo I (=) £ =k V4 PO 79
KAK 9TO PABOTACT ...eeuvreruriereieeeteeieeeiteestteeieeesteestesseesseesseesaeessseesseesseesnnesnes 83

OTO EIILE HE BCE eevrunneeerrrrneeeererenneeeerssssneeeessssseeessssssneeesssssnneesesssssseseesssssnesesssssnnnns 85

CopepaHue % 7

Maea 3. [NpumeHeHue MmeTopoB MoHTe-Kapno

AN HACNEHHOIO OLUECHUBAHMUS.........coceeiiicec e 87
Boruncienyie m METOLOM MOHTE-KAPIIO «..uuuueieieiieieeeeeeeiiiiieiiieeee e eeeeeeeeeeeeeenae 88
=D el Mo I (= = 1<l N SO 88
KAK 3TO PABOTACT .eeeeuvveeeeureeeaerieeeaeeeeessteeeeseeeesseesaseeessssseesssesessssssssssseessnsesesnsses 89
OTO EIIE HE BCE evruunreerrrrnneeeerresnneeeessssnneseesssssneseesssssseeesssssssseeesssssseseesssssneneessssnnnns 90
O1ieHMBaHMe CTpATerUy MeTOIOM MOHTE-KAPITO ...vvveiieeiriieeieeieieeeeeeiieeee e e 92
=D el Mo I (= = 1<l N SO 92
KAK 3TO PABOTACT .eeecuvveeeereeeaerieeeeeeeeeisteeeeseeeaasseesaseeessssseesssssesssssssssssssssnsesesssees 94
OTO EIIE HE BCE evruunreerrrrnneeeerresnneeeessssnneseesssssneseesssssseeesssssssseeesssssseseesssssneneessssnnnns 94
IMpenckasanme MeTogoM MoHTe-Kapyio B UTPE GMIKITKEKeveeeerveeraereeeesveenansenens 95
=D el Mo I (= = 1< N SO 96
KAK 3TO PABOTACT .eeecuvveeeereeeaerieeeeeeeeeisteeeeseeeaasseesaseeessssseesssssesssssssssssssssnsesesssees 98
OTO EIIE HE BCE .evruuneeerrrrnneeeerrernneeeessssnneeeesssssneseesssssseeessssssnesesssssseneesssssneneessssnnnns 99
VYipaBneHue MeTonoM MoHTe-Kapyio ¢ eAMHOM CTPATETUEM ...eeeeeeeeeeeeeeeeeeeeeennnns 101
A=) el N I (=) £= < V4 P 102
KAK 3TO PABOTACT .eeuvveeeerieeerreeeereeeerteaeeseeeesseesaseseessssassseeesssssesssssesssssesnnns 104
OTO EIIE HE BCE evruunreerrrrnneeeerrenneeeesssssseeeesssssneeeesssssneeeesssssseseesssssnenessssssnessssssnnns 106
Paspab6oTka yrpasjieHus MeTogoM MoHTe-Kapio ¢ e-kagHoit CTpaTeruers 108
€=] el N I (=) =< V4 P 108
KAK 3TO PABOTACT ..eeuvveeeerieeerieeeereeeairteeeeseeeessseeseseeeassssaasseeesssssessssseesssssesnnns 111
Vripasnenue metonom MoHTe-Kapiio ¢ pa3fgeneHHOi CTPATEeTUeNceeeeeennnn..... 111
€=] el N I (=) = < V4 PO 112
KAK 3TO PABOTACT .eeuvveeeereeeerieeeeeeeeairteeeeseeeassseeaesseeeassseaasseeesssssesssssessssssennnns 114
OTO EIIIE HE BCE vvruunreerrennneeeerrenneeeeessssseeeesssssneeessssssseesssssseseesssssneesssssssnnssssssnnns 115
Paspab6oTka ympasjeHus MmetTogoM MoHTe-Kap/io co B3BeleHHOI
1533 (G10] 03 (0178 (oTe 33 £ e 71 (o Yol SN S 116
€=] el M I (=) £= < V0 PO 116
KAK 3TO PABOTACT ..eeeuvveeeereeeeiieeaereeeeerteeeeseeesssseesasesesssssassssesssssessssssesssssesnnns 117
OTO EIIE HE BCE eevruunreerrrnuneeerrrenneeeesssssneeeesssssneeeesssssneeeesssssneseesssssneesssssssnesesssssnnns 118
MhaBa 4. TD-06yueHMne U Q-00YUEHME ..o 119
IMoxaroroska okpyskawiei cpebl CLiff Walking.......ccveeeeeeeiiieeiieeiiiiieeeeciieeeee, 119
TTOZTOTOBKA «..euevteeereeunrreeereeereeeeseenrrteeeeeenrreeeseeannreeeesaensneeeeseensrneesaennnneeenann 120
KaK 9TO J1OITACTC . ceeeeueereeereeirteeeeeeietteeeeeeeteeeseesseeeeeseesreeeeeeenneneeseennnneeesannn 120
KAK 3TO PABOTACT eeeevveeeireeeerreeeeveeeairteeeeseeeessseesaseeessssessssesesssssesssssessssssennnes 122
Peanu3anyst aTOPUTMA Q-O0YUEHMS.....veeeerreeeerreeearreesarseeeaseeessseessssesesssssssnsees 122
KK 3TO JTOITACTCS . ..ttt ettt et et e e e s esrea e e e e e e e e e s 123
KAK 3TO PABOTACT eeeuvreeeereeeerieeeeeeeeaiteeeeseeesssseesasseeesssssesasseessssesssssessssssennnns 124
OTO EIIIE HE BC...tereuureeraureeeaueeeraureeeaaueeessseeesssseessseessssssessnseessssseessnseessssseessnsees 125
IMoaroroska okpyskawiei cpebl Windy Gridworldcccveeeeeeeciiiieeieciineeennne. 127
KaK 9TO J1OITACTC . ceeeeeueerieeeeeiiteeeeeeineteeeeeeeteeeeeeenrer e e s e seeeeeseennnneeseesnnnneeesannn 128

KAK 3TO PABOTACT eeeuvreeeereeeeiieeeereeeeiteeeeseeeessseesssseseassssesasseessssesssssessssssansnns 132

8 + Copepxanue

Peanu3zaniust amropUTMa SARSA. ... ettt 132
| =T el N I (=) = 1< V0 PO 132
KAK 3TO PABOTACT ..eeeevveeeerieeerreeeereeeaisteeeaseeeessseeeaseeeassssessseeesssssssssssessssssssnnns 134
OTO EIIE HE BCE evruunreerrrruneeeerrenneeeeessssseeeesssssneeesssssnseessssssnseesssssnensesssssnsesssssnnnn 134

PelreHye 3a1a4y O TAKCY METOOM Q-O0YUEHUSveeeerrreeereeeerreeeaneeesssreesaneees 136
|)1 101 ¥ 0) =) 2¢: IS 137
A=] el N I (=) = 1< V0 PO 137
KAK 3TO PABOTACT .eeeuvreeeerieeerreeeereeeairteeeaseeesssseeaaseseassseassseeessssssssssesssssssennnns 140

PeiieHne 3agau 0 TAKCU METOHIOM SARSAuuei e e e 142
=] el N I (=) = 1< V0 P 142
KAK 3TO PABOTACT eeeevveeeereeeeiieeeeeeeeeisteeeeseeeesseesaseeesssssassseessssssssssssessssssesnnns 143
OTO EIIE HE BCE evuunnreerrrnnneeeerranneeeesssssseeeesssssneeeesssssneesesssssseseesssssnessssssssnnsesssssnnns 144

Peanu3anys airOPUTMa JTBOTHOTO Q-O0YUEHMS ...c...uveeeerrreeenreeeeirreeeaneeessreessnees 146
=] el N I (=) £= = V0 P 146
KAK 3TO PABOTACT eeeevreeeereeeerieeeereeearteeeeeeeeessseeaaseeeasssesssseessssssesssssesssssennnns 148

[naBa 5. PewieHune 3agaumn 0 MHOrOpykoM 6aHauTe............................ 150

Co3pmaHie OKPYKaOMIEeii CPeIbl C MHOTOPYKUM GAHIUTOMeeeeevreeeenveeenereeeannens 150
| =] el Mo I (=) = <k V4 PN 151
KaK 9TO PABOTACT ..ceuuvieurerruierieeeiteeieeetesseesneeseessstessseesseessessseessaessseesssennns 152

Perrenye 3aauy 0 MHOTOPYKOM GaHINUTE C IOMOIIbIO £-3KaJHO CTpaTerum 153
=] el M I (=) = 1<k V4 PN 154
KaK 9TO PABOTACT ..ceuevieuieruieriieeiteeieeeteesseesetesteesttesseessseessessseessaessseessseenns 155
OTO EIITE HE BCE .evruunreerrrrnneeeereenneeeessssseeesssssseeesssssnneeessssssnseesssssnenessssssnsssssssnnns 156

PelreHye 3aauy 0 MHOTOPYKOM GaHINUTE C IOMOIIbIO

SOftMAX-VICCITEMOBAHIAS «.vvvvvvueeneeeeeeeeeeeeeereeesssssnnsseeeeeeeeeeeesessessssssssnnsnnnsseessessseeees 156
KAK OTO JLOITACTC . ceeuueeeneeetneeereeeeeteeesnneeetneeesneessneessnaeessneesssnsessnnsessnnsessnneesnnn 157
KAK 9TO PABOTACT ..ceuvieeuierruieriieeteeeieeetessseesaeeseesestessseessntessessseessaessseesnseann 158

PelreHye 3aauy 0 MHOTOPYKOM 6aHINUTE C TIOMOIIbIO aITOPUTMa BepXHelt

JOBEPUTEIIBHOM TPAHMLIBIevenniuniiirerrtteeeeeeeeetieneeeiianasesrreteteeeeesssssseesessssnssssssnenee 159
| =] el Mo I (=) £= =k V4 PO 160
KAK 9TO PABOTACT ..ceuvieuierruieriieeiteeeeeetesstesstesseesueessseessneesseesseesssaesaseessseanns 161
OTO EIILE HE BCE evruunreerrrruneeeerrenneeeesssssneeeesssssneeeesssssneeeesssssseseesssssnesessssssnoessssssnnns 162

Pemienne 3aaunt 0 pekjiaMe B MHTEPHETE C TIOMOIIIbIO aJITOPUTMA

MHOTOPYKOTO GAHIIVITA .vvveruveerureeenreraeessseessseesseesseessseessstessssesssessssessssessssessessseens 162
€=] el N I (=) £= Tl V4 PO 163
KaK 9TO PABOTACT ..ceuveeeurerruiereiieeiieeieeeteeseesntesseesstessseessneesseesneesssaessseessseanns 164

PelreHye 3aauy 0 MHOTOPYKOM GaHINUTE C TIOMOIIbIO BbIGOPKM TOMIICOHA....... 165
€=] el N I (=) £= Tl V4 PO 166
KAK 9TO PABOTACT ..ceuveeeurerruiereieeiteeieeeiteeseesntesseeestessseessneesseesseesssaesaseessseenns 171

PemieHne 3ajaunt 0 pekjiaMe B MHTEpPHETE C TIOMOIIIbI0 KOHTEKCTyaTIbHBIX

(G20 01074 Vo) : TR 172
KK 3TO JLOITACTC S ceuueeeeeneeetneeeeieeeeeteeeetneeeeneersneeessneeessneeesnneessnneessnnaeessnnssssnneesnnn 173

KAK 9TO PABOTACT ...eeuvieeurerrnieineeeiteeieeeiteeeeesatesseesstessneessntesseesssessseessseessseenns 175

CopepkaHue % 9

Ma.a 6. MaCI.I.ITaGMpOBaHMe C NOMOL,b0 anNnnNpoKCcuMmauunu

DYHKLMI. ...ttt sensnans 177
[MoaroroBka okpysKkawieii cpeibl MouNTain Carcccceveeeeeeeeeeeerreeeneesenieneeenes 178
|)10 ¥ 0) =) 3¢ N 179
| =] el N I (=) £= T V4 PO 179
KAK 3TO PABOTACT ..eeuvvieeerieeerieeeeteeeeerteeeeeeeeessseesaseeaessseassseeesssssesssssessssssennnns 180
OteHnBanue Q-byHKINIA TOCPEACTBOM Al POKCUMAIIMK METOIOM
TPALVEHTHOTO CITYCK®. . uuuuuuuunrerrertteeeeereeesieeseesinnssssereeeeeeeeeesssseseesssnmmssssssseseeeeessss 180
| 2] el N I (=) £= T V4 PO 181
KAK 3TO PABOTACT .eeeeuvvieeireeeerieeeeiteeeairteeeaseeesasseesasesesssssessssesssssessssssssssssnnnns 184
Peanusanuys Q-o0yueHMsI C IMHEHOI allpoKCUMaIeil GyHKIUI 185
KK OTO JLOITACTC S ceeuueeeneeetneeetieeeeteeetneeetneeestneeessneesrsnaeesnneessnneessnnsessnnsessnneesnns 185
KAK 3TO PABOTACT .eeeuvvieeeereeeeerieeeereeeairteeeeseeesasseesasesessssesssseeesssssesssssessssssesnnns 187
Peanu3zatiyst SARSA ¢ nMHEMHOM anIpOKCUMAITAEN DYHKINM «oveeeeereeeereeneeeeennnns 188
KK OTO JLOITACTC . cevuneeeneeetneeetieeeeteeetneeeeneeessneeessneeessnaessnneessnnsessnnsessnnssssnneesnnn 189
KAK 3TO PABOTACT .eeecuvveeeereeeeeiieeeereeeeisteeeeeeeesssseesaseeesssssasssseesssssessssseesssssnnnns 190
IMakeTHast 06paboTKa c MpUMeHeHeM 6ydepa BOCIIPOM3BEIEHMS OIIbITA 191
2] el N I (=) £= < (0 PO 192
KAK 3TO PABOTACT eeeuvrieeeereeeeerieeeereeeaisteeeeseeesasseesasesesasssassssessssssesssssssssssesanns 194
Peanusanuys Q-o0yueHMsI ¢ alpoKCcuManyeit GyHKIMii HeiipOHHOI CeThIO....... 195
| 2] el N I (=) £= < V0 PR 195
KAK 3TO PABOTACT eeeuvrieeeereeeeerieeeereeeaisteeeeseeesasseesasesesasssassssessssssesssssssssssesanns 197
Perrenye 3agauyt o0 6aaHCUPOBAHMUM CTEPSKHS C IIOMOIIBIO aIllITPOKCUMAIINA
DYHKLIMIA «eeeeenieeeeiieeeeiteeeeiteeeeteeee sttt e settesesaeeeseasee s s neeessaseeeeenseesenseeesnseeesseaessnsees 198
KK OTO JLOITACTC S ceuuueeeeneeetneeetieeeeteeetneeetneeestnesessnaeessnaeesnneessnneessnnasessnnsessnneesnnn 198
KAK 3TO PABOTACT .eeeuvveeeeerieeerieeeereeeeeteeeeseeeessseeesseeesasssassssesssssessssseesssssessnns 199
Mhaea 7. Tnyb6okue Q-ceTn B BEACTBUMoovueeeeereeeeeeereeeeaeieenes 200
Peanu3anyst TTYOOKMUX Q-COTEM...ccrvurereerreeeiereeeeieeeerreeeerseeeeseeesssseessseeessssassnsees 200
KK 9TO J1OITACTC . ceeeuueereeeeeeiiteeeeeeirteeeeeertt e e e e e nrer e e s e st eeeseennnrneeseesnnnneeesannn 201
KAK 3TO PABOTACT .eeeeuvreeeeureeeeerieeeereeeaerteeaeseeeessseesasseeeassssesasseesssssesssssessssssasnnns 204
Viyunienne DON ¢ MOMOIIBIO0 BOCTIPOMU3BEIEHMS OIIBITA cceuuueeeeeeraannneeeeeaaanneeeens 206
KK 9TO J1OITACTC . ceeeuueereeeeeeiiteeeeeeirteeeeeertt e e e e e nrer e e s e st eeeseennnrneeseesnnnneeesannn 207
KAK 3TO PABOTACT .eeeeuvreeeeureeeeerieeeereeeaerteeaeseeeessseesasseeeassssesasseesssssesssssessssssasnnns 209
Peanu3zatiyst anropmuTMa Double DONcciiecciiiiiieeeiiieeeeecieeee e e eeeee e 210
KaK 9TO J1OITACTC . ceeeuueereeeeeeiiteeeeeeitteeeeeente e e e e e nrer e e s e nereeeseesnsrneeseesnnnneeesennn 211
KAK 3TO PABOTACT .eeeeuvreeeeureeeeerieeeereeeaerteeaeseeeessseesasseeeassssesasseesssssesssssessssssasnnns 214
Hacrpoiika runeprnapameTpoB ajroputma Double DQN st cpenbi
CATTPOLE ..ttt ettt ettt et e et e s st e s e e s nraeeeanees 215
KaK 9TO J1OITACTC . ceeeeueereeeeeeieteeeeeeineteeeseeerteeeeeenrer e e s e neeeeeseesnnnneeseesnnnneeesannn 216
KAK 3TO PABOTACT ..eecuvrieeirieeeeiieeeeieeeesiteeeesseeesssseasassesesssssasssseesssssesssssessssssasnnns 217
Peammszatiyst anropmuTMa DUeling DONcoiieeiiiiiiieeeiiieeeeeceeee e e e 218
KaK 9TO J1OITACTC . ceeeuueerieeeeeirieeeeeernnteeeseenrteeeeeenrer e e s e neeeeeseesnnnneeeeeennnneeesannn 219

KAK 3TO PABOTACT ..eeeuvreeeirieeeeiieeeereeesirteeeesseeesssseeaasseeesssssasssseesssssessssseesssssasanns 220

10 <+ CopepxaHue

[MprumeHeHV e DON K UTPAM ALATT...euueiiiiiiiieiiriieieeeiieereeeeeeeeeeeeeeeeeeeessnneneeeees
KK OTO JTOITACT S ceeeeuuevrreeieeirieeeeeeaerteeeeeenrreeesesasereesesssnssseeeesssssseesssssssseeessnns
KAK 3TO PABOTACT ..eeeevveeeerieeerreeeereeeaisteeeaseeeessseeeaseeeassssessseeesssssssssssessssssssnnns

Ncnonb3oBaHMe CBEPTOYHBIX HEITPOHHBIX CETeN B UTPaxX Atariceeeeeeeuueuneneneees
KK OTO JTOITACT S ceeeeuuevrreeieeirieeeeeeaerteeeeeenrreeesesasereesesssnssseeeesssssseesssssssseeessnns
KAK 3TO PABOTACT eeeuvreeeerieeerieeeereeeesteeeeseeeessseessseeeassssassseessssssessssssssssssennnes

maBa 8. Peanusauuna MeToaoB rpagmMeHTa CTpaTermm
U ONTUMMBALMA CTPATEIMMM........coeeeeeeieeeeeeeeeseeeess st ssesaeees

Peanuzanyst anropyutmMa REINFORCEcooiiiiiiiiiieeeceeceeeeee e
KAK 9T JTEITABTC ..ceuveeureeeueerreeeetteeteestessseesstesseesstessseessseesasessseesssaesaseesseanns
KaK 9TO PABOTACT ..ceuvieuierrueerieieeieeeieeetessseesaeeseeesstessseessneessessseesseessseesnseanns

Peanmusatys anropuTMa REINFORCE € 6A300veeeeveeeeerreeeeeeeeeireeeeeeeeeereeeenenns
KAK 9T JTEITABTC ..ceuveeureeeueerreeeetteeteestessseesstesseesstessseessseesasessseesssaesaseesseanns
KAK 9TO PABOTACT ..ccuuvieeuierriierriieeieeeieeetessstesaeeseeesstessseessseessessseessaessseesseanns

Peann3auyst aIrTOPUTMA UCTIOMHUTETb—KPUTUK.....eeerurererrersreersseesseeessesseessseesnnes
KaK 9TO JTEITABTC ..ceuvteureeeieereteeiteeieeeeeseseesseesseesuteeseessstesasessseesssaesaseesseanns
KaK 9TO PABOTACT ..ceuvieeuierrieerieeeieeeteeetessteseeesteeeuteesseessseessessseessaessseesseanns

PemreHne 3aaum o Gy>kIaHuy Ha Kpaio 06pbIBa C MOMOIIBIO aIrOpPUTMa

VICTIOTTHUTEITD—KDUITHIK e uvveruveeenreenneessseessseessseessessssessseessssessseessessseessssessseessessseens
KAK 9TO JTEITABTC ..ceeuveeuiereueereteetteeteeetessseesaeessesentessseessstesseesseesseesaseesaseanns
KAK 9TO PABOTACT ..ceuvieeuierriierriieeiteeieeetesseeseeeseeeeseessseessseesseesseessaesaseessseanns

[MoaroToBKa HeMpPepbIBHOI OKpyXKatolei cpenbl Mountain Car.......ccceeeueuneneenes
KAK 9TO JTEITABTC ..ceeuveeuieeeueereeeetteeteeetessseesntesteeestessseesaneessseesseessseessseessseanns
KaK 9TO PABOTACT ..ceuvieeurerruiereieeeiieeieeetesseeseeeseeesstessseessneesseesseesssaesaseesnseanns

PerieHre HeNpePBIBHOI 3a[ja4y O OIY>KAAaHUM Ha KPato 00pbIBa

METOOM AZC eeunieeieiieeeeeettteeeeeettteeeeerttsneeeessssneeeessssnnteeessssnsesessssssnesessssssnnneessens
KAK 9TO JTEITABTCS . eeeuvieeureerueereeeetteeiteeeteesstesstesseesstessseessseesseesseessseessseessseanns
KaK 9TO PABOTACT ..ceeuvieeuieerieerrieeeiteeiteeetesseesntesseesstessseesneesseesseessseessseessseanns
OTO EIIIE HE BCE evruuneeerrrrnneeeerrenneeeessessneeeesssssneeeesssssnseeesssssseseesssssnesessssssnessssssnnns

Pemienne 3aaum 0 6aTaHCUPOBAHUM CTEPXKHS METO/IOM TTePEKPECTHOIA

DHTPOTIMM «.neeeneeeernreeaneeesuressntesseessessstessseesstessseesssesaseessstesseessessssessssessssesssessseens
KAK 9TO JTEITABTC . ..eeeuveeeureeeneeeeeeetteeteeeiteestesntesseesusessseessntesseesnsessseessseessseanns
KAK 9TO PABOTACT ..ceeuvieeureirieieieeeiteeteeeiteestesentesseesseessseessstesseesssesssaessseessseanns

Maea 9. KynbMMHaLMOHHDIN NpoekT - npumeHeHne DON
KUrpe FLappy Bird ...

TTOATOTOBKA UTPOBOM CPEIBL «..eeeeeeeerrrrrnnnnnnnnnnenaaaesereeeeeeememmsnsnnsnssssnsssssseseesssersssnnns
TTOZITOTOBRA «ceeeitiiiiiiiirt ettt ettt et e e e et et e e e e e e e s e e s asseeaeeeeeeeeeeeeas
KaK 9TO J1OITACTC . ceeeuueerieeeeeirteeeeeeiirteeeeeeeteeeseeeseee e e s e asnteeeseennnraeeseennnneeesannn
KAK 3TO PABOTACT ..ecevveeeereeeeiieeeereeeeisteeeeseeesssseeaasesesssssessssesssssessssssssssssasanns

CopepaHne <+ 11

IMocTpoenne ry6okoit Q-ceTut myst UTPhI Flappy Birdceeeeveeeeciieeeiieeeieeeeee, 269
=] el Mo I (=) = < (0 PO 270
KAK 3TO PABOTACT eeeevreeeereeeerieeeereeeaisteeeeseeeessseeasseseassssssssseesssssesssssessssssesnnns 272

OOGYUEHME U HACTPOMKA COTM .uuvernrreraueerueeriuteneeeaseesaseesastessessneessseessstesaseessessseens 273
€=] QY N I (=) £= < {0 P 273
KAK 3TO PABOTACT eeeevreeeereeeerreeeereeeeirteeeaseeeessseesaseeesssssessseesssssseessssessssssesnnes 275

Pa3BePTHIBAHNE MOEIIM Y VITPA «.euuuvveereeeeeeeeereeeasaesennnnnnnsneeeeeeesessesesssssssssnnnssnnenes 276
€=] el N I (=) £= < (0 PO 276
KAK 3TO PABOTACT eeeeuvveeeeerieeeeireeeeireeeeateeeaeeeeesseeassseseassssessssessssssessssssssssssesanns 277

MPEAMETHDBIN YKAZATESID ... 278

06 aBTOpe

IOcu (Xoaiimen) JIx0o — OMIBITHbBINA CIIELMAINUCT 10 06pabOTKe JaHHBIX, CIIeIaln-
3UpPYOLIMiicS Ha pa3paboTke Mopeseil U CUCTeM MAIlMHHOTO U ITy6OKOTO obyue-
Hus. OH paboTasl B pa3IMYHBIX MPEeIMEeTHbIX 00JIACTSIX, TPUMEHSISI CBOV MO3HAHUS
B 00yueHUM C nogkperieHneM. C yIOBOIbCTBYEM ITPETIONAET U SIBJISIETCS aBTOPOM
psila KHUT 110 MalllMHHOMY 06yueHuio. Ero nepsas kuura «Python Machine Learn-
ing By Example» 6b1a 6ectcemnepom Amazon B Uanum B 2017 u 2018 rogax. Ero
nepy mpuHaajiexkat Takke KHUTU «R Deep Learning Projects» 1 «Hands-On Deep
Learning Architectures with Python», omy6ikoBaHHbIe u3maTenbcTBoM Packt. Bo
BpeMs paboThI HaJl MAaruCTEPCKOIt quccepTaiyeit B TODOHTCKOM YHUBEPCUTETe Ha-
MMcast msITh paboT, ormyoaMKoBaHHbIX B usganusx [EEE u c6opHMKax TOKIam0B HA
KOH(pepeHLMsIX.

O peueH3eHTax

I'per Yonrepc 3aHMMaeTCss KOMIIbIOTEpPAaMM ¥ IIporpaMmupoBaHuem ¢ 1972 roga.
OtnnuHo Biageet s3bikamu Visual Basic, Visual Basic .NET, Python 1 SQL (aua-
nektamu MySQL, SQLite, Microsoft SQL Server, Oracle), C++, Delphi, Modula-2, Pas-
cal, C, accembnepom 80x86, COBOL u Fortran. O6y4yaeT mporpaMMMUpOBaHUIO, Ue-
pes3 ero pyKu IpoIuIo MHOKECTBO JII0fieli, KOTOPbIX OH YUMWI TaKUM MPOAYKTaM, Kak
MySQL, Open Database Connectivity, Quattro Pro, Corel Draw!, Paradox, Microsoft
Word, Excel, DOS, Windows 3.11, Windows for Workgroups, Windows 95, Windows
NT, Windows 2000, Windows XP u Linux. Cejtuac Ha eHCUM U B CBOOOJHOE BpeMsI
MY3UIIMPYET ¥ 060KaeT rOTOBUTh, HO BCETa rOTOB IOpaboTaTh GpuiaHCepoOM Haf,
Ppa3sHbIMU ITPOEKTAMIU.

PoGepT Mouu paboTraeT HaJl TOKTOPCKO AuccepTanueii B bymanemrckom yHUBEP-
CUTETe TEXHOJIOTUM U SKOHOMMKYM (BME), a Takyke SIBJISIETCSI SKCIIEPTOM I10 TITyOOKO-
My 06yueHM10 B KOHTVMHEHTAIbHOM LIeHTPEe KOMITETEHIIMIA 110 TIITyDOKOMY 00YUEHIIO
B Bymamenrre. PyKoBOAUT IMPOEKTOM, HAITPaBA€HHBIM Ha MOAIEPKKY CTyIeHUeCKIX
MCCIelOBaHMit B 06;1aCT IITyGOKOro 06yueHust ¥ paspaboTKy OeCIMIOTHBIX aBTO-
Mo6uieii. Tema ero ucciemoBaHui — ITy0oKoe 00ydeHte ¢ MTOAKPEIUIEH/EM B CJIOK-
HBIX OKPY>KAIOIIMX CPeJax, a KOHeUHas 11e/Tb — TPMMeHeHe 3TOV TEXHOTIOTUM K 6ec-
MMUJIOTHBIM TPAHCIIOPTHBIM CPEACTBAM.

lMpeaucnosue

Berteck nHTEpeca K o6ydyeHmio ¢ mogkperuieHneM (OIT) 06bsICHSIETCS TEM, UTO 3TO
PEBOMIOIIMOHHBIN MOAXOM K aBTOMAaTHU3alMM MTOCPECTBOM OOYUeHMs] TOMY, KaKkue
IeViCTBUS CIemyeT MpeApUHMMATh B OKpYsKalollleil cpee, YTOObl MaKCUMU3UPO-
BaTh ITOJIHOE BO3HATPaKAEeHNE.

DTa KHUTA IPeICTaB/IsIeT COO0I BBEIEHE B BaXKHbIE KOHIIETIIMY O0YUEHMSI C oA -
KpeIrvIeHreM U peau3alyy ero aJiITopUTMOB € TpuMeHeHneM 6ubanorexku PyTorch.
B Kaxkmoit raBe paccMaTpuBaeTcsl Kakoii-To omuH meton OIT u ero nmpuMeHeHUsT
B IIPOMBIIIJIEHHOCTH. PeIlenThl, copepskaliye MpakTUUeCKue MpuMephl, TOMOTYT
BaM 06OTaTUTh CBOM 3HAHMS ¥ HaBBIKM B 06sacTy OIl, B TOM uMc/ie AMHAMUYECKOe
MporpaMMupoBanue, Mmetombl MoHTe-Kapiio, MeTombl Ha OCHOBE BpEMEHHBIX pa3-
muunii, Q-obydyeHne, pellleHre 3aa4y O MHOTOPYKOM OaHAMTE, alllpOKCUMAIIS
dbyHKUMI, TITy60KMe Q-ceTu, MeTOIbI IpaiIieHTa CTpaTeru. VIHTepecHbIe U JIeTKe
IJIST yCBOEHMSI TIPUMEPBI — UTPbI Atari, 6JI9KIKeK, CETOUHBI MU, peKjIaMa B MHTep-
HeTe, MalllMHa Ha rope, urpa Flappy Bird — He 1103BOJISIT BaM 3aCKy4aTh.

[TpounTaB KHUTY, BbI OyJeTe YBEPEHHO BJIaJIeTh PACIIPOCTPAHEHHBIMM aJITOPUT-
MaMi 00y4YeHMs C TOAKPEIUIeHVeM U HayuMTeCh MPUMEHSTh UX K PelIeHNI0 pa3-
JIMYHBIX TTPAKTUYECKUX 3a/1a4.

MPEANONATAEMAS AYAUTOPUS

CrienaaiCThl 110 MaIMHHOMY 06YUYeHMIO, TI0 00pab0oTKe JaHHbIX ¥ MCKYCCTBEHHO-
My MHTEJIIEKTY, KOTOPbIM HYy;KHA IIOMOIIb B pemenuu 3agayd OIL. [peamonaraercs
IpeIBapuUTeIbHOE 3HAKOMCTBO C KOHLIEMIMSIMY MAIIMHHOTO O0yUYeHMsl, OIIbIT pa-
60ThI ¢ 616aMoTEKOIE PyTorch HeoGs13aTe/ieH, HO JKelaTesieH.

CTPYKTYPA KHUMM

InaBa 1 «IIpuctymnaem K o6yueHu1o ¢ nogkperieHueMm u PyTorch» — otripaBHast Tou-
Ka, C KOTOPOIi HAUMHAETCS TyTEeIIeCTBME B MUP 00yUeHNS C TIOAKPeIvieHreM u Py-
Torch. Mer HacTpouMm pabouyio cpeny u OpenAl Gym U MO3HAKOMUMCS C OKPY3Karo-
MMM cpefnamu s skcrepumMeHToB ¢ OIT, Bkimrouast CartPole u urpsr Atari. 3mech
ke OyIeT pacCMOTpEeHA peaau3ariys TakuxX 6a30BbIX aJTOPUTMOB, KaK CTyYaiiHbIi
MOVICK, BOCXOXKI€HME Ha BEPIIMHY U TPAIMEHT CTPATErnu. B KOHIIe I1aBbl OyIeT NaH
KpaTkuit 0630p PyTorch.

['maBa 2 «MapKOBCKMIi MPOLLECC IPUHATUS PellleHuii ¥ JMHaMMUJyecKoe IporpamM-
MMPOBaHMe» HAUMHAETCS C CO3[aHMsI MapKOBCKOM LNy ¥ MapKOBCKOTO Iporecca
npuHsATHUS periennii (MITTIP) — MOHSITUS, KOTOPOE JIEKUT B OCHOBE OOJbIIMHCTBA
aJITOPUTMOB OOyUYeHMUs C TIOAKPEeIvIeHreM. 3aTeM Mbl PAaCCMOTPUM [ABa IMOAXOAA

CrpykTypa kHurn % 15

K perreHunio MITIIP — uTepaius o IeHHOCTY Y UTepalus 1o CTpaTerusm. Msl 61m-
ke mosHakoMumcst ¢ MIITP 1 ypaBHeHMeM BenmMaHa, MOMPaKTUKOBABIINCH B Olie-
HMBaHMM cTpaTeruy. Takke OGymeT MPOAeMOHCTPMPOBAHO pellleHye MHTepPeCcHOo
UTPBI C TOJOpachIBaHMEM MOHETHI. 1 B KOHIIE MbI ITOKa)KeM, KaK C ITOMOIIbIO TMHA-
MMYECKOTO ITPOrpaMMMPOBAHNS MACIITA6MPOBaTh O6yUeHMe.

I'naBa 3 «[Ipumenenne metonoB MoHTe-Kapio Oy 4MCII€eHHOTO OLleHUBAHUS»
nocesigeHa metogam MoHTe-Kapsio. [Iis1 Hauaia Mbl OLleHUM, YeMy paBHO UMCIIO TT.
3aTeM pacCMOTPUM QJITOPUTM C €AVHOV CTpaTeruei — yrpasjaeHne MeTogoM MoH-
Te-Kapsio nepBoro moceeHns: — ¥ HeCKOIbKO aJrOPUTMOB C pa3felleHHON CTpa-
Terveir Ha ocHOBe MeTo0B MoHTe-Kapso. Takke 6yAyT pacCMOTPEHbI £-3KaTHAS
CTpaTerus 1 B3BellleHHast BHIOOPKa 110 3HAYMMOCTH.

[maBa 4 «TD-o6yueHnne u Q-obydyeHMre» HAUMHAETCSI C TIOATOTOBKY JIBYX OKPY-
SKAIOMIVX Cpef: Oy>kmaHue Ha Kparo 0O0pbIBA M BETPEHbI CETOUHBII MUP, KOTOPbIE
TTOHAM00STCS IJIsT MCC/IeAoBaHMsI OOyUYeHMsT Ha OCHOBE BpeMeHHbIX pasmyunii (TD-
obyuennst) u Q-obyueHusi. Mbl HAYYMMCSI BBITIOIHSTD ITPeICKa3aHMsl C TOMOIIbIO
TD-o6yuenust u obcyaum Q-obGydyeHue Kak IpuUMep aJrOpUTMa C pasmaeaeHHO
ctpaterueit 1 SARSA Kak mpumep ajaropuTMa C eIUHON cTpaTerueii. Mbl Takke
chopmynupyem 3amauy O TaKCK U IMOKaKeM, KaK ee peuiaTh ¢ MOMOULIbIO aJrOpPUT-
MoB Q-o6yuenus u SARSA. U HakoHell, 6yIeT pacCMOTPEH aJIfOPUTM ABOIHOIO
Q-o06yueHus.

B miaBe 5 «PemieHne 3a1auM 0 MHOTOPYKOM OGaHINUTE» PACCMATPUBAETCS aJiro-
PUTM MHOTOPYKOTO GaHIMTa — IMOXKaTyii, OOVH M3 CAMBIX TOMY/ISPHBIX B 06yUeHUN
¢ mofikperieHMeM. Mbl OKaXkeM YeThIpe MOAX0a K PelIeHNI0 ITOM 3a0aun: e-3Ka-
Hasl CTpaTerusi, ucciaeaoBaHue ¢ MIOMOIb0 QyHKIMM softmax, airopuTM BepxHeit
IIOBEPUTEIbHOI TPAaHUIIBI ¥ aJITOPUTM Ha OCHOBe BBhIOOPKM TomricoHa. MbI Takke
IIOrOBOPUM O peKjlaMe B MHTepHeTe ¥ IPOJLEeMOHCTPUPYEM ee pelleHye € IOMOILbI0
aJTOpuUTMa MHOTOPYKOTO 6aHauTa. Hamocmemok pa3paboraem Gojee CIOXHBIN asi-
TOPUTM KOHTEKCTyaJIbHOTO 6aHINUTA U IIPUMEHVM ero K PellleHUIo 3a0auy 00 ONTy-
MM3aIMM TT0Ka3a PeKIaMHBIX OObSIBIEHMIA.

[maBa 6 «MacITabupoBaHye C TOMOIIIBIO allPOKCUMALM GYHKIMI» TTOCBSIIE-
Ha anmnpoxrcuMai . Mbl HAUHEM € TOATOTOBKY OKpysKamweii cpenbl Mountain Car.
OO6BSACHMM, UeM aIIIPOKCUMaIMs GyHKINI JTyylile TaGIMIHOTO MOKUCKA, ¥ HayUYUM-
€S BKJIIOUATD allIIPOKCUMAIINIO B Y)Ke U3BEeCTHBIE aITOPUTMbI Q-06yueHust u SARSA.
Takske OyeT pacCMOTpeHa TeXHMKA MaKeTHOTO OOYYeHUS C UCTIOIb30BaHKeM Oy-
(bepa BocipousBeieHMs OIbITa. 1 HAKOHEII, MbI ITOKaskeM, KaK, BOCITOTb30BaBIIINCh
TTOJTyYeHHBIMY 3HAHMSIMMU, PEIIUTH 3a/1auy 0 6aTaHCUPOBAHWUY CTEPSKHST Ha TEJIEKKe.

B rnaBe 7 «I'myb6okue Q-ceTu B AeMCTBMM» PACCMATPUBAETCS aJTOPUTM I[y0O-
Koii Q-cetu (DQN), KOTOPBIIi CUMTAETCS OMHMM M3 Haubojee IMepeaoBbIX METO-
OB 00yueHus ¢ mogkperuieHneM. Mbl pa3paboraem mozens DQN 1 06bsICHUM [1Ba
MIPUHIIATIA, JIEKANUX B OCHOBE ee paboThl: Gydep BOCIPOU3BENEHNS U Iie/ieBast
ceTb. [Ij151 perieHus urp Atari Mbl ToKaxkeM, Kak MHTerpupoBath B DQN cBepTOYHYIO
HelfpoHHYI0 ceThb. bymyT paccMoTpens! fBa BapuanTa DON: Double DQN u Dueling
DOQON. MbI TakyKe OMMILIEM TOUHYIO HACTPOIKY anroputma Q-o6yueHns, B3sIB B Kaue-
ctBe nmpumepa Double DQN.

naBa 8 «Peanmsaiiusi MeTONOB IpafueHTa CTPATerMyu U ONTUMM3ALMS CTpaTe-
TMK» TIOCBSIIIIeHA MeTOLaM TpafijieHTa CTpaTeruu M HaYMHAeTCs C peanusalun ai-
roputma REINFORCE. 3aTem MbI paspaboraem anroputm REINFORCE c 6a30ii ojist

16 < Tpeaucnosue

peleHus 3amaun o 6;y>KIaHUY Ha Kparo o0pbIBa. Mbl TaKke peasnsyeM ajaropuTMm
VICTTOJTHUTEIb—KPUTUK Y MIPUMEHMM €ro K pelleHUIo TOii ke 3amgaun. UToObl Mac-
MITabupoBaTh JeTEPMUHUPOBAHHBIN aITOPUTM IrpafyieHTa CTPAaTeruu, BOCIIOIb3Y-
eMcs preMaMu, 3auMCcTBOBaHHbIMY 13 DQN, 1 pa3paboTaeM aJirOpUTM IITy6OKOTO
IleTepMUHUPOBAHHOTO TpaAeHTa cTpaTeruu. Paay nHTepeca Mbl MPUMEHUM Me-
TOJ, TIePeKPECTHOI SHTPOINY, UTOObI OOYUMUTh areHTa OaJlaHCUPOBAHMIO CTEPIKHS.
U HaKOHeII, TOTOBOPMM O TOM, KaK MacCIITabupoBaTh aITOPUTM TpafueHTa CTpaTe-
TYU C TOMOIIIbI0 aCMHXPOHHOTO MeTO/1a UCTIOTHUTEIb—KPUTUK U HEJIPOHHBIX CEeTelA.

B rnaBe 9 «KymbMIMHAIMOHHBIN TTpoekT — ipumeHeHne DON k urpe Flappy Bird»
MbI pPaCCMOTPUM, KaK METOIaMM OOyUYeHMs C TOJKperieHeM MOXKHO BOCITONIb30-
BaThCs B urpe Flappy Bird. Mbl TpyMeHUM Bce MOTyYeHHbIe 3HaHUSI, UTOOBI CO3ATh
MHTEJJIEKTYaTbHOTO 60Ta. 3aTeM HaCTPOMUM TapaMeTpbl MOZIEIU U Pa3BepPHEM ee.
U mocMoTpuMm, Kak JOATO MTUIIA CMOSKET MPOAEePsKaThCs B BO3AyXe.

PA®UYECKME BbIAENEHUS

B 9T0it KHUTe [7151 BhIZe/IeHNsI CeMaHTUUYeCKM pasanyHoi MHpopMalum npumeHs-
I0TCSL pa3nuyHble CTUAN. Huke pyBeneHbl IPUMepPBI CTUJIEN € TTOSICHEHUSIMMU.

Koa B TekcTe: PparMeHThI KOJa, MUMeHa TabauI| 6a3bl JaHHBIX, MMAMOK U (Haiiios,
URL-agpeca, naHHble, BBeleHHbIE MOb30BaTeNeM, agpeca B Twitter, Hampumep:
«CJI0BO nycTas He O3HAYaeT, YTO 3HAYEHMSI BCEX IeMEeHTOB paBHBI Null».

OtnmenbHO crosiinye (parMeHThI KoJja HabpaHbl TaK:

>>> def random_policy():
action = torch.multinomial(torch.ones(n_action), 1).item()
return action

TeKcT, KOTOPbI BBOAMUTCS Ha KOHCOJIM MV BBIBOAMUTCS Ha KOHCOJb, HaTleyaTaH
C/IeIYIOLIIM 00pa3oM:

conda install pytorch torchvision -c pytorch

HoBble TepMMHBI, BaKHbIE CJIOBA M CJI0BAa HA 3KpaHe HAOPAHbI MOTYKUPHBIM
mpucdTOoM. Tax ke BBIIESIOTCS 3JIeMeHThI MHTepdelica, HarlpuMep ITYHKThI MEHIO
U TIOJISI B MMAJIOTOBBIX OKHAX. Harpumep: «DTOT MOAXO0/ Ha3bIBAETCS CAyUaAMHBIM
IIOMCKOM, ITOTOMY YTO BeC B KasKOM MCIbITAHUM BhIOMPAETCS CTYUaifHO B HAIEK-
Ile, UTO IIpU OOJIBIIIOM YMC/Ie UCITBITAHUI OYIeT HaliieH HavIIydIlnii Bec».

o MpenynpexaeHus U BaxHble 3aMevaHnst ohopMIEHbI Tak.

O CoBeTbl U PEKOMEHALMM BbIFNAAAT TaK.

PA3OENDI

B 9T0Ji KHUTe ITOBTOPSIIOTCS ONHM M Te JKe 3arojoBKM pasnenos: ITodzomoeka, Kak
amo denaemcs, Kak amo pabomaem, Omo euie He 8ce i CM. makce.
OnuiemM ux Ha3HadYeHMe.

Cnncok onevatok ** 17

MoaroroBka

B aTrom paspene 0OBSICHSETCS, YeTO OKUAATH OT PellerTa, Kak MOATOTOBUTH IPO-
TPaMMHYIO CpeZly U BbITIOJIHUTH BCe TTpouye IpeiBapuTeIbHbIe YCIOBMS.

Kak 310 penaetca

BoinonHeHune peneriTa 110 maraM.

Kak 3to paboraer

IMogpo6HOEe 06BSICHEHME TOro, UYTO IMPOMCXOAWIO Ha KaskgOM IIare, OMMCaHHOM
B IIpeAbITYIIEM pa3pese.

JTO ele He Bce

HomomunuTenbHast MHGOPMAIVS, OTHOCSIIASICS K PEIerTy.

CM. TaKkxe

CChUTKM Ha APYTYIO TO/Ie3HYI0 MHPOPMAIIHIO.

OT3bIBbl M NOXENAHUS

MbI Bcergia pajipl OT3bIBAM HAIIUX YMTaTEEl. PACCKaskuTe HaM, UTO BbI TyMmaeTe 06
9TO¥ KHUTE — UTO MTOHPABUIOCH WJIM, MOXKET ObITb, He TOHPaBWIOCh. OT3bIBbI BASKHbI
IJIST HAC, UTOOBI BBITYCKATh KHUTHM, KOTOPbIe OYAYT IJ151 BAC MaKCMMAa/IbHO TTO/Ie3HBI.

Bbl MOskeTe HamucaTh OT3bIB IPSIMO Ha HallleM caiite www.dmkpress.com, 3aiias
Ha CTpaHUIy KHUTHU, ¥ OCTaBUTh KOMMeHTapuii B pasgesne «OT3bIBbI U pelieH3UU».
Takke MOXHO ITOCIaTh IMUCbMO IJIABHOMY pefakTopy 1o agpecy dmkpress@gmail.
com, Py 3TOM HaMMIIUTe Ha3BaHMe KHUTU B TeMe M1ChMa.

Ecnu ecTh Tema, B KOTOPOJ Bbl KBAIMGUILIMPOBAHBI, ¥ Bbl 3aMHTEPECOBAHBI B Ha-
MMCAaHMM HOBOV KHUTM, 3amojHuUTe (QOpMy Ha HamieMm caiite http://dmkpress.com/
authors/publish_book/ mau HanuiuTe B M3maTe/bCTBO: dmkpress@gmail.com.

Cnncok onEYATOK

XOT$ MbI IIPUHSITV BCE BO3MOSKHbBIE MEPBI JIJISI TOTO, YTOOBI yIOCTOBEPUTHCS B KAUECTBE
HAIIX TEKCTOB, OIIMOKYM BCe PaBHO CIydatoTcs. Eciv BbI HalieTe ommMoKy B OMHOI 13
HaIIMX KHUT — BO3MOYKHO, OIMOKY B TEKCTe MM B KO, — MbI OyieM OueHb 6y1aro-
IapHbI, eC/IM BbI COOOIIMTE HaM O Heii. ClieaB 3TO, Bbl M30aBUTE IPYTUX UUTATEIIEN OT
PacCTPOCTB ¥ IIOMOSKETe HaM Y/IYUIIIUTh MOCIEAYIONIME BepCUY JAHHO KHUTH.

Eciu BBl HalifeTe Kakue-1nb0 ommMOKM B KOMe, IMOXKaTYIiCTa, COOOIINTE O HUX
[JIaBHOMY PefakTopy 1o aapecy dmkpress@gmail.com, ¥ MbI UCTIPaBUM 3TO B CJie-
OYIOUIUX TUPayKax.

18 < MMpeauncnosue

CKAYMBAHVME MCXOQHOTO KOOA

CxauaTb (aitbl ¢ TOMOMHUTENbHONM MHpOpMalMel s KHUT u3aaTenbcTBa «JIMK
IIpecc» MoxkHO Ha caviTe www.dmkpress.com Ha CTpaHuILie C ONMCaHUEeM COOTBETCT-
BYIOLLIE} KHUTH.

HAPYILEHWE ABTOPCKUX MPAB

[MMpaTcTBO B MHTEpPHETE IO-IPEXKHEMY OCTAaeTCsl HAaCYI[HON mpob6iemoii. M3ma-
tenberBa «JIMK ITpecc» 1 Packt Publishing oueHb cepbe3HO OTHOCSTCSI K BOIIPOCaM
3alMThl aBTOPCKUX TIpaB U JUlleH3MpOoBaHMsI. EC/iM Bbl CTOJIKHETECh B MHTEPHETE
C HE3aKOHHO BBIIIOJIHEHHOJ KOMMe 0007 Hallleii KHUTY, TTOKaIyiiCcTa, COOOLUTe
HaM ajJipec KOTIMY Wi Beb-caitTa, YTo6bI Mbl MOV IPUMEHUTD CAHKITUNA.

[ToxkamyiicTa, CBSDKMUTECHh C HAMMU I10 agpecy dmkpress@gmail.com co cChIKOM Ha
TOA03pUTEIbHbIE MaTEPUAIbI.

MbI BBICOKO LIeHMM JIFOOYIO TTOMOIIb 110 3alllATe HAIIMX aBTOPOB, [TOMOTAIOIIYIO
HaM IpeJoCTaB/IsITh BaM KaueCTBEHHbIE MaTepUaJbl.

naBa

Mpucrynaem K 06y4eHuto
c nogkpenneHueM u PyTorch

MbI HAUHEM My TeIIeCTBYE B MUP 00yUYeHMs C ToaKperieHeM 1 PyTorch ¢ mpocThIX,
HO BaKHBIX aJITOPUTMOB: CTy4aiiHbIN ITOMCK, BOCXOKIeHME Ha BEPIIVHY U IPAIVIEHT
cTpaTeruu. [IJig Havasa MoAroTOBMUM cpeny paspabotku u OpenAl Gym, yTo6bI 11t
9KCIIEPUMEHTOB C OKpyKaoumumu cpegamu OIT MOKHO GbIIO MCITOIb30BAaTh UTPbI
Atari u CartPole. MbI Takske ITpOIeMOHCTPUPYEM IIOIIATOBYIO Pa3paboTKy aJiTOPUT-
MOB [IJIS1 peliieHus 3amaun o 6ajaHCMpPOBaHMUM CTepKHS. Kpome TOro, paccMoTpum
ocHOBBI PyTorch u mpuroToBuMMcs K MOCAeAYIOMINUM IIpUMepaM U yueGHbIM Ipo-
eKTaM.
B 3T0i1 r71aBe MIPUBOASTCS C/IEAYIOIINE PELIeIThI:

TIOATOTOBKA Cpebl pa3paboTKu;

ycraHoBka OpenAl Gym;

OKpy>katolye cpenbl Atari;

okpyskaromas cpema CartPole;

ocHOBHI PyTorch;

peanusalus U OlleHUBaHMe CTpaTermu CJIydaifHoOTro MOMCKa;
aJTOPUTM BOCXOXKIEHMS Ha BEPIUIMHY;

aJATOPUTM TpaJieHTa CTpaTeruiu.

(ONONCNORONCNORG

IMoAroToBKA CPEAbI PA3PABOTKM

[Ipeskme Bcero MOArOTOBMM Cpefy pa3paboTKy, B T. U. TOAXOAsAIIE Bepcuy Python,
Anaconda, a Takke 616mmoTeKky PyTorch, ¢ KoTopoii 6ymem paboTaTh Ha MPOTSKE-
HUM BCEJ KHUTH.

Python — 3T0 S3bIK, Ha KOTOPOM OYIYT peayn30BaHbI BCe AJITOPUTMbI OOYUEHNS
C TIOAKpEeIUIeHEeM, OITMCaHHbIe B 9TOJ KHUTre. Mbl 6yeM UCII0b30BaTh BEPCUIO 3,
a TouHee Bepcuio 3.8 wim 6osee mo3gHIow. Ecii BbI mo-mipeskHemMy pabortaeTte ¢ Py-
thon 2, camoe Bpems nepeiitu Ha Python 3, mockonbky Python 2 mocte 2020 roga
oA Iep>kUBaThcs He 6ymeT. [lepexop He CYTUT HUKAKMX MTPOO6JIEeM, TaK UTO He Bra-
JajiTe B ITaHUKY.

20 < [puctynaem k oByueHuio ¢ noakpenneHuem u PyTorch

Anaconda - 370 aucTpubyTHB Python ¢ OTKPBITHIM MCXOJHBIM KOZOM (WWW.ana-
conda.com/distribution/), crielinaabHO NpeAHa3HAUEHHBIN [IJIS MIPMMeHeHMs B Hayke
0 JAHHBIX ¥ MallMHHOM 00yueHuu. 1151 ycTaHOBKM Python-makeToB Mbl 6ymeM yc-
M0JIb30BaTh BXOAAIMIT B Anaconda MeHemkep akeToB conda, a TAKKe MPOTrpaMmy
pip.

PyTorch (https://pytorch.org/) — coBpemeHHast 6M6IMOTEKA MAIIMHHOTO OOyve-
Hus, paspaboraHHas nompasneneHueM Facebook mo wmccrmemoBaHusIM B 06/1aCTH
uckycctBeHHoro mHTeekTa (FAIR) Ha ocHoBe kapkaca Torch (http://torch.ch/).
B PyTorch Bmecto maccuBoB NumPy (ndarray) CIOTb3YIOTCSI TEH30DbI, 06/1aIAt01IIe
60sbIIIel 'MOKOCTHIO I COBMECTUMOCTBIO C rpadmyeckuMu rpotieccopamu. ITpusiie-
YyeHHOe MIVPOKMMM BO3MOKHOCTSIMY rpacdOB BBIUMCIEHNIA, @ TAK)Ke ITPOCTBIM U Y-
SKeCTBEHHBIM MHTEepdericoM, coobiectBo PyTorch exxemHeBHO pacTeT, a 6GMOIMOTEKY
6epyT Ha BOOPY)KEHME BCE HOBbIE U HOBbBIE TEXHOIOTMYECKYE TUTAHTHI.

Temepb MOCMOTPUM, KaK YCTAHOBUTD U HACTPOUTH BCE 3TU KOMIIOHEHTBHI.

Kak 3To penaetca

Haunem c ycraHoBku Anaconda. MoskeTe MpOITYCTUTb 3TOT pas3mest, ecyiv B Bamiei
CUCTEMeE YK€ YCTaHOBJIeH nucTpubyTuB Anaconda ajist Python 3.6 mau 3.7. B mipo-
TUBHOM CJTyyae CJIeyiiTe OIMyOJIMKOBAHHBIM Ha cTpaHuile https://docs.anaconda.
com/anaconda/install/ MHCTPYKIMSIM [IJISI CBOEI OTlepaliOHHON CUCTEMBI:

* [nstalling on Windows
¢ Installing on macOS

e [nstalling on Linux

Y106l MPOBEPUTh MPABMUIBHOCTh yCTaHOBKM Anaconda u Python, BBemute
B OKHe TepMMHasa B Linux/Mac mwin B OKHe KOMaHIHO cTpoku B Windows (Ha-
YMHAas C 3TOr0 MecTa 6yieM yIoTpe6iaTh 00liee Ha3BaHMe — TEPMUHAT) KOMaHIY

python

ITO/KHO TTOSIBUTHCS TpuIanenye Python ¢ ymnommuHanuem Anaconda:

Ecnut Takasi KapTMHKa He MOSIBUIIACh, TPOBEPBTE CIMCOK KaTaa0roB (ITyTeil), B KO-
TOPBIX MieTcst Python.

Cnemyrommii mar — ycranoBka PyTorch. Ileperimute mo aapecy https://pytorch.org/
get-started/locally/ u BeIGepuTe OmycaHue cpeasl pa3paboTKy U3 TaGIULbI!:

1 B gacrosiee BpeMs TabluIa BbINISAUT MHAUE, HO 9TO TUIIMYHAS IPodIeMa: yoImMKals
KHUT OTCTAeT OT Pa3BUTUS MPOTPAMMHOT0 obecrieueHust. Bipouem, M3MeHeHMs He TIPUH-
LMIUaIbHBL. — [Ipum. nepes.

MoarotoBka cpeabl paspabotku < 21

PyTorch Build Stable (1.0) Preview (Nightly)

Your OS Linux Mac Windows

Package Conda Pip LibTorch Source

Language Python 2.7 Python 3.5 Python 3.6 Python 3.7 C+

Run this Command: conda install pytorch torchvision -c pytorch

3mech mbl BeiOpanmu Mac, Conda, Python 3.7 u nokanbHOe BbinomHeHMe (6e3
CUDA), nosToMy B TepMMHaJIe JOIKHbI BBECTU TaKYI0 KOMaHIHYIO CTPOKY:

conda install pytorch torchvision -c pytorch

YTt0o6b1 yOeOuUThCs B TPaBUIbHOCTY YCTaHOBKY PyTorch, BHITOMHIUTE ITOKa3aHHbI
HIKe Kop Ha Python:

>>> import torch

>>> x = torch.empty(3, 4)

>>> print(x)

tensor([[0.0000e+00, 2.0000e+00, -1.2750e+16, -2.0005e+00],
[9.8742e-37, 1.4013e-45, 9.9222e-37, 1.4013e-45],
[9.9220e-37, 1.4013e-45, 9.9225e-37, 2.7551e-40]])

Ectm 6ymer BeIBeeHa MaTpuiia 3x4, 3HaunT, PyTorch ycraHOB/IeHA ITPaBUIbHO.
Utak, cpefa pa3paboTKM YCIEITHO MOITOTOBJIEHA.

Kak 3to paboraer

MbI TONIBKO UTO co3nmanu TeH30p PyTorch pasmepa 3x4. Oto mycrast matpuiia. Cio-
BO nycTas He 0O3Ha4vaeT, YTO 3HaUeHMsI BcexX 7eMeHTOB paBHbI Null. Ha camom mene
3TO HEeMHUIIMAIM3MPOBAHHbIE UMC/Ia C TUIaBaloleil TOUKOi, KOTOpble Ha3bIBAIOTCSI
MecTo3aMecTUTeasIMu. [1ob30BaTeNb TOJKeH OyAeT 3aJaTh UX BIOCIENCTBUNA. DTO
OUeHb MMOXOXKe Ha MycTol maccusB NumPy.

3710 eLe He Bce

Taxk i HeOO6XOOMMO yCTaHaB/IMBaTh Anaconda ¥ MCIIOJIb30BaTh IIPOrpamMmy conda
OIS yIIpaBjieHus MmaketaMmu? Beb MOKHO ke YCTaHaBJIMBATh IMAKeThI C IIOMOIIbIO
MeHemKkepa pip. Ho B HEKOTOPBIX OTHOLIEHMSIX conda JIydllle, YeM pip, a UMEHHO:

O oHa KOPPEeKTHO O0pabGaThIBaeT 3aBUCUMOCTU MEXKAY OMOIMOTEeKaMM.
Ecu makeT yCcTaHABAMBAETCS € TIOMOIIBIO conda, TO aBTOMATUYeCKU OymyT
YCTaHOBJIEHbI BCE €T0 3aBUCUMOCTH. A pip BBIJACT MpeAyNpekaAeH e, U ycTa-
HOBKa OYIeT OTMEHEHa;

O KOpPEeKTHO pas3penanTcs: KOHGIMKTHI MeKay makeramu. Eciu s ycra-
HOBKM ITaKeTa He0OXOIMM A PYToii MakeT KOHKPETHOI Bepcuu (Hampumep, 2.3
unu 6osee TO3/IHEI), TO conda AaBTOMATUUYECKY OGHOBUT YK€ YCTaHOBIEHHbI
TaKeT;

22 < T[lpuctynaem K oByyeHuto ¢ nogkpenneHvem u PyTorch

O Jerko co3gaTh BUPTYAJIBHYIO Cpedy. BupTyanbHas cpeia — 3T0 aBTOHOMHOE
JlepeBo TMaKeToB. [IJi1 pasHbIX MPUIOKEHU MY TTPOEKTOB MOTYT IOHAI0-
OUTHCS pasHble BUPTyalbHbIe Cpebl. Bce BUPTYyabHbIE CPeIbl M30JIMPOBAHbI
IPYT OT Ipyra. PeKoMeHAyeTCs UCII0NIb30BaTh UX, UTOOBI JEIICTBUS B OTHOM
TIPUIOKEHMM HUKAK He OTPaskayIiCh HA BCEX OCTAIbHBIX;

O oHa coBMecTHMa C pip. Mbl MOXXeM IIPOAOJIKATh UCIIONIb30BaTh pip BMECTE
¢ conda, BBITIOJIHUB CJIEAYIOIIYI0O KOMaHIY:

conda install pip

CM. TaKkxXe
,HOI'IOJ'IHI/ITE.T[LHI)IG cBeJeH!d O conda MOXKHO MMOYEPITHYTDb U3 CJIeAYIOINX PeCypCOB:

O pykoBoacTBO moib3oBaresst mo conda: https://conda.io/projects/conda/en/
latest/user-guide/index.html;

O co3maHMe BUPTya/JIbHBIX Cpel U yIpaBjieHue umu: https://conda.io/proj-
ects/conda/en/latest/user-guide/tasks/manage-environments.html.

Yro6bI 6/113Ke MO3HAKOMUTHCS ¢ PyTorch, epeiigute B pasmen «Getting Started»
oduIMaNIbHOTO IToco6us 1o aapecy https://pytorch.org/tutorials/#gettingstarted. Pe-
KOMEHAyeM IIPOUNTATh 10 KpaiHeli Mepe cyieAyrolye 4acTu:

O What is PyTorch: https://pytorch.org/tutorials/beginner/blitz/tensor_tutorial.
html#sphx-glr-beginner-blitz-tensor-tutorial-py;

O Learning PyTorch with examples: https://pytorch.org/tutorials/beginner/py-
torch_with_examples.html.

YcTaHoBKA OPENAI GYM

IMogroToBuB cpeny pa3paboOTKM, Mbl MOKeM IepeitTu K ycraHOBKe OpenAl Gym.
ATOT MPOIYKT COMEPKUT pa3HOOGpa3Hbie OKPYKAOIIVE CPeIbl 1Jisl pa3paboTKu aji-
TOPUTMOB 00yuyeHMsI, 6e3 Hero 3aHUMAThCsI 0OyUeHMeM C MOAKperieHueM HeBO3-
MO>XHO.

OpenAl (https://openai.com/) — HeKOMMepuecKas MCCIef0BaTeIbCKass KOMIIa-
HUSI, 3aHMMAIOIAsICSl CO3/IaHeM 0e30TacHbIX CUCTEM OOIIEr0 MCKYCCTBEHHOTO
uHTe/nekrta (artificial general intelligence — AGI), koTopbie GbUTM Gbl TIOTE3HbI
monsaM. OpenAl Gym — MOIIHBIM KOMIIJIEKT MHCTPYMEHTOB C OTKPBITBIM MCXOZ, -
HBIM KOJIOM, ITpe/THa3HAYEHHbIi 1151 pa3paboTKu U cpaBHeHUs anropuTmoB OI1. OH
npepjiaraeT MHTepdeic K pasaMyHbIM MMUTALMOHHBIM MonensiMm 1 3amavam OI,
0T 00yueHMs IIaralnero poboTa 4o Mocaaky Ha JyHY, OT aBTOMOOMUIbHBIX TOHOK
o urp Atari. I[TosHbIN CIIMCOK OKPY3KAIOIIMX Cpell, CM. TI0 agpecy https://gym.openai.
com/envs/. AT@HTOB 151 B3auMopeincteusi co cpegamu OpenAl Gym MOXHO Ipo-
rpaMMMPOBATh C IPUMeHeHMeM JII06071 6MOIMOTeKM UMCIeHHBIX PACUeTOB, HaTIpU-
mep PyTorch, TensorFlow mau Keras.

YcranoBka OpenAl Gym «¢ 23

Kak 310 penaerca
VeraHoBUTh Gym MOKHO IBYMSI crtoco6amu. [IepBblii — ¢ TOMOIIBIO pip:
pip install gym

Ecu BbI mosnb3yeTech conda, TO He 3a0ymbTe IpeNBapuUTENIbHO YCTAHOBUTH pip
B conda, BBITIOJTHMB KOMaHAY:

conda install pip

Ilesio B TOM, UTO MO COCTOSTHMIO Ha Havaio 2019 roma Gym oduiaabHO He GbLT
BK/IIOUEH B COCTaB MaKeTOB, ITOAepsKMBaeMbIX conda.
Bropoii BapuaHT — co6path Gym 13 MCXOTHOTO KOfa.

1. Cuauasia KJIOHUPYIiTe TTakeT u3 ero Git-permosuTopus:
git clone https://github.com/openai/gym
2. 3arem mepeyauTe B MAIKy 3aTPy3KMU U OTTyAA ycTaHOBUTe Gym:

cd gym
pip install -e .

Temepb MOXKHO 9KCIIEPUMEHTUPOBATD C gym.
3. TIpoBepbTe NMPaBWIBHOCTb YCTAHOBKY Gym, BBIIIOJIHUB TaKO KO,

>>> from gym import envs

>>> print(envs.registry.all())

dict_values([EnvSpec(Copy-v@), EnvSpec(RepeatCopy-v0),
EnvSpec(ReversedAddition-v0), EnvSpec(ReversedAddition3-v0),
EnvSpec(DuplicatedInput-v0), EnvSpec(Reverse-v0), EnvSpec(CartPolev@),
EnvSpec(CartPole-v1), EnvSpec(MountainCar-v0),
EnvSpec(MountainCarContinuous-v0), EnvSpec(Pendulum-v@),
EnvSpec(Acrobot-v1), EnvSpec(LunarLander-v2),
EnvSpec(LunarLanderContinuous-v2), EnvSpec(BipedalWalker-v2),
EnvSpec(BipedalWalkerHardcore-v2), EnvSpec(CarRacing-v@),
EnvSpec(Blackjack-v0)

Ecin Bce IIpaBMJIbHO, TO 6y,ELET BbIBE€IE€H ,El]II/IHHbIﬁ CIIMCOK OKPY)KaoIIMX Cpen.
C HEKOTOPbIMU M3 HMX MbI ITOSKCIIEPMMEHTUPYEM B CJIEAYIOIIEM PELeIlTe.

Kak 3to paboraer

ITo cpaBHEHMIO C IIPOCTOI yCTaHOBKOV Gym C IIOMOIIIBIO pip, BTOPOIi criocob obec-
reynBaeT GOJBIIYIO TMOKOCTh B CIyYae, eC/IM Bbl 3aXOTUTe JOOABUTb HOBbIE CPEJIbI
i MoauduIpoBaTh Gym caMOCTOSITENbHO.

370 eLe He Bce

BosHukaer BOIIPOC, 3a4eM TeCTUPOBATh aJITOPUTMBbI o6yqum[C MMogKpeIieHnem
B OKpY>KaloIIMX cpegax Gym, eI HaCTodle cpeabl MOI'yT OBITh COBEPIIIEeHHO Opy-

24 < [lpuctynaem K oByyeHuio ¢ nogkpenneHvem u PyTorch

rumu. Harmromaum, uto B OII mesaeTcst He Tak Y3k MHOTO ITPEATIONOKeH I 00 OKpysKa-
I0IIleli cpefie, 3HAHMSI 0 Helt COOMPAOTCS B TIpollecce B3anumoeiicTBus. Kpome Toro,
IIJISI CpPaBHEHMSI KaueCTBA Pa3JUMUYHBIX aJTOPUTMOB X HYKHO TIPUMEHSITh B OTHUX
U TeX Xe CTaH[IapTU30BaHHbBIX cpefax. Gym SIBSIETCS MPeKPaCHBIM CPeICTBOM JIJIsT
TECTUPOBAHMSI, TTOCKOIBKY COIEPKUT MHOTO IMOKMX U MPOCTHIX B UCITONIb30BAHUM
cpen. Ero MOKHO CpaBHUTD C HA60paMy JaHHBIX, KOTOPbIE YaCTO IPUMEHSIOTCS IJ1sT
paspabOTKY U TECTUPOBAHMS aJITOPUTMOB B OOYUEHUU C YUUTEIEM U 6e3 yuuTes,
Hampumep MNIST, Imagenet, MovieLens 1 Thomson Reuters News.

CM. TaKkXKe

O3HaKOMBTECh C 0ObUIIMATBHO JOKyMeHTanyelt mo Gym Ha caiitte https://gym.ope-
nai.com/docs/.

OKPYXAIOLWME CPEObLI ATARI

3HakoMcTBO ¢ Gym MbI HAUHEM C Urp Atari.

Oxpyxkatoriye cpenbl Atari (https://gym.openai.com/envs/#atari) o0cHOBaHbI Ha BU-
nmeourpax ajis mpucraBku Atari 2600, Harrpumep Alien, AirRaid, Pong u Space Race.
Ecsiu BbI Kora-HUOYIb UTPAIM B 9T UT'PBI, TO STOT PELIeNT pa3BiedeT Bac. [[paBaa,
3a Bac urpaTh ¢ Space Invaders mim ele B KaKylo-TO UTPY OyZIeT areHT.

Kak 3To penaetca
st umuTanyy Urpbl Atari Hy>KHO IIpojiesiaTh Cyiefylolye iaru.

1. Tlepenm mepBBIM 3aITyCKOM JII0607 OKpysKaloleii cpembl Atari Heo6XomuMo
YCTaHOBUTD 3aBUCUMOCTM, BBITIOJIHMB B TepMIHA/Ie KOMaHIY

pip install gym[atari]

Ecim ke muis YCTaHOBKU Gym BbI MICITOJIb30Ba/IN BTOpOﬁ "3 OIIMCAaHHBIX B ITpe-
ObIOyIIeM penerre CHOCOGOB, TO BBIINIOJIHUTE KOMaHOYy

pip install -e '.[atari]'

2. YcTaHOBMB 3aBUCUMOCTH Atari, UMIIOPTMPYEM B IIPOTpaMMy OMOIMOTEKY gym:
>>> import gym

3. Cospmaem 5K3eMIUISIP OKpysKarolei cpenbl Spacelnvaders:
>>> env = gym.make('SpaceInvaders-v0')

4. TIpuBogum cpeny B HAUaJIbHOE COCTOSIHME:

>>> env.reset()
array([[[o, o, 0],
[0! 0! 0],

[0! 0! 0],

cey

Okpyxatowme cpeapl Atari % 25

[80, 89, 22],
[80, 89, 22],
[80, 89, 22]]], dtype=uint8)

Kak BuauM, IIpyU 9TOM BO3BpalllaeTCsl HauaabHOE COCTOSTHME CPEebl.
PuicyeMm cpemy Ha 9KpaHe:

>>> env.render()
True

[TostBasIETCST HEGOJBIIIOE OKHO:

Kak BuayuM, riepBOHaYaJIbHO Y HAC €CTh TPY KMU3HM (TPU KPACHBIX KOCMUUE-
CKUX Kopabis).

CnyuyaifHbIM 06pa30M BbIOMPAEM JOITYCTUMBII XOJI U BBIITOJTHSIEM AEeViCTBIE:

>>> action = env.action_space.sample()
>>> new_state, reward, is_done, info = env.step(action)

Mertog step() Bo3BpalllaeT pe3yabTaT AeiCTBUS, & MUMEHHO:

Q new_state: HOBoe Hab/IOOEHNE;

O reward: Bo3HarpaxmeHye 3a BHIOPaHHOE AEeICTBME B JAHHOM COCTOSIHUM;

O 1is_done: ¢uiar 3aBepiieHust Urpsl. B cpeme Spacelnvaders OH paBeH True,
et OO He OCTalIOCh KU3HEN, MO0 BCe IMPUIIEbIbl YHUUTOXKEHDI,
B IIPOTMBHOM CJTy4ae OCTaeTCsI paBHbIM False;

O info: momomHuUTENbHAS MHGOPMALMS 00 OKpYKaIlei cpene. B maHHOM
cTydae 3TO KOJMYECTBO OCTABIIMXCS JKM3Hel. BbIBaeT mosesHa mpu oT-
JIaKe.

PacrieuataeMm 3HaueHus repeMeHHbIX is_done 1 info:

>>> print(is_done)
False

>>> print(info)
{'ale.lives': 3}

26 < [puctynaem k oByueHuio ¢ nogkpenneHuem u PyTorch

Ter{epb MOXHO HapmucoBaThb Cpeny:

>>> env.render()
True

OkHO WUT'DBI IIDMHUMAET BU:

CYI.LLECTBGHHI)IX paBJ’[I/I‘II/If;I C NMpeabIiaymmum He BUIOHO, IIOTOMY YTO K0p8.6.71b
caeyiaJ TOJIbKO OOVMH XO[,.

7. Temepb BoiigeM B LMK while ¥ IO3BOAMM areHTY CHe/aTh CTOIbKO XOMOB,
CKOJIBKO OH CMOKeT:

>>> is_done = False

>>> while not is_done:

cee action = env.action_space.sample()
cee new_state, reward, is_done, info = env.step(action)
cee print(info)

. env.render()

{'ale.lives': 3}

True

{'ale.lives': 3}

True

{'ale.lives': 2}

True

{'ale.lives': 2}

True

{'ale.lives': 1}

True

{'ale.lives': 1}

True

Okpyxatoume cpenbl Atari < 27

ATem BpeMeHeM MbI MOXXeM Ha6J’[IO,Z[aTb 3a TeM, KaK pa3BopaumnBaeTCsd Urpa, Kak
KOpa6Hb " IIpUIIeJabIbl IIPOAO/DKAIOT ABUTATHCSA M CTPEJIATD. 910 3a6aBHO. Korpa
urpa 3aKOHUYMTCA, OKHO 6y,£LET BbIINIAOETDb CJIEAYIOIIMM O6p<':130MZ

Kak Buaum, yganock HabpaTh 150 oukoB. Ha Baiiieit ManimMHe C4eT MOKET ObITb
OO0JIbIle VIV MeHbIIIe, TOCKOJIbKY areHT BhIOMpaeT Bce AeCTBHUS CTyUaifHoO.
MO3KHO TaKKe yOeIquUTbCs, UTO SKM3HEl He 0CTaaoCh:

>>> print(info)
{'ale.lives': 0}

Kak 3to paboraer

B Gym sk3eMIuisip OKpysKaroliei cpefbl Co3maeTcss MeToaoM make(), KOTOpOMY Iie-
penaercst UM CpeJibl.
AreHT BbIOMpAET AeCTBMS CIy4aiiHbIM 06pa3oM, o6paIiasch K Mmetony sample().
O6BIUHO Yy HAC MMeeTCsT 6osiee MHTEIUIEKTYaIbHbIN areHT, 00yUYeHHbBI TeM WUIn
uHbIM anroputmoM OII. Ceityac Mbl IPOCTO MPOAEMOHCTPUPOBAIN, KAK MOXKHO
CMOJIeTMPOBATh OKPYKAIOIIYIO CPely M KaK areHT BbIOMpaeT MeiicTBUS, He obpalast

BHMMAaHMS HAa UX pe3yJbTar.

HeckonbKo pa3 BbINOMIHNUB MeTOg, sample(), MOTyYuM:

>>> env.action_space.sample()

0

>>>

>>>

>>>

>>>

>>>

env.

env.

env.

env

env.

action_space.
action_space.
action_space.
.action_space.

action_space.

sample()
sample()
sample()
sample()

sample()

28 < T[lpuctynaem k oByueHuto ¢ nogkpenneHvem u PyTorch

>>> env.action_space.sample()
>>> env.action_space.sample()
>>> env.action_space.sample()

>>> env.action_space.sample()

Bcero nmeercs 1ecTb BO3MOXKHBIX AEMCTBUIA. DTO MOXHO MOATBEPAUTD, BbITIOI-
HMB TaKyl0 KOMaHy:

>>> env.action_space
Discrete(6)

Oty meiicTBust TakoBbI (B mopszake ot 0 go 5): No Operation (Huuero He menats),
Fire (Orouns), Up (BBepx), Right (BripaBo), Left (Bieso), Down (BHu3).

MerTop, step() ZaeT BO3MOKHOCTb aT€HTY BBITIOTHUTD AEVCTBME C YKa3aHHBIM HO-
MepoMm. Metog, render () 0GHOBJISIET OKHO UTPhI HA OCHOBE MOC/IEIHEr0 HaGMI0IeH S
3a OKpyKalolel cpenori.

Hab6miofenne new_state mpeacrasjaeHo MaTpuieit 210x160x3:

>>> print(new_state.shape)
(210, 160, 3)

OTO 03HAuaeT, UTO KaXKOblii KaAp Ha 3KpaHe — RGB-u3obpaskeHue pasmMepa
210x160.

370 eLe He Bce

MoskeT BO3HMKHYTh BOIIPOC, 3aUeM BOOOIIe HYKHO YCTaHaB/IMBATh 3aBUCUMOCTH
Atari. [Tefio B TOM, UTO €CTb €Ille HeCKOJIbKO OKPYKAIOIINX CPell, He SIBJISIOLIXCS
YaCThIO YCTAHOBKY gym, B T. U. Box2d, Classic control, MuJoCo 1 Robotics.

B3satb, K mpumepy, cpenbl Box2d. UToObI MOKHO ObUIO SKCIIEPUMEHTUPOBATH
C HMMM, HY’KHO CHavaja YCTaHOBUTh 3aBMCUMMOCTHM Box2d. TyT TOKe eCTh [IBa CIIO-
coba:

pip install gym[box2d]
pip install -e '.[box2d]'

[Tocste 3TOr0 MOKHO OymeT co3maTh cpeny LunarLander:

>>> env = gym.make('LunarLander-v2')
>>> env.reset()
array([-5.0468446e-04, 1.4135642e+00, -5.1140346e-02, 1.1751971e-01,
5.9164839%e-04, 1.1584054e-02, 0.0000000e+00, 0.0000000e+00],
dtype=float32)
>>> env.render()

Okpyxatowas cpena CartPole < 29

IOMKHO TTOSIBUTBHCSI OKHO UTPBI:

[]

CM. TaKkXxe

Eciin Bac mHTepecyeT Kakasi-TO OKpyXKalllas cpesa, HO Bbl He 3HaeTe, KaK OHa Ha-
3bIBAETCSs, MOSKETE HATY ee B Tab/MIIe Cpejl Ha CTpaHuIle Mo azpecy https://github.
com/openai/gym/wiki/Table-of-environments. IlToMuMo MMeHU cpefbl, TaM IIpUBeIe-
HBI pa3Mep MaTPUIibl HAOTIOAEHNIT U KOJIMUYECTBO BO3MOXKHBIX eCTBUIA.

OkpyxatowAsa cPEgA CARTPOLE

B aTOM pelieriTe MbI TOpaboTaeM elile € OLHOI OKpYysKaloleit cpemoit, YToObI ITOTyU-
e mosHakomuthest ¢ Gym. Cpena CartPole — kimaccuyeckuit mpumep, UCIOIb3ye-
MBI B MICCTIEIOBAHMSIX 10 0OYUEHMIO C TIOJIKPeIJIEHMEM.

3a7jaua COCTOUT B TOM, UTOOBI yIepsKaTh B BEPTUKAIbHOM ITOJIOKEHUM CTEPKEHD,
IapHMUPHO 3aKpervieHHbIl Ha Tenexkke. Ha KaskgjoM BpeMeHHOM Illare areHT mnepe-
MeIllaeT TeJeXKY BJAEBO MM BIIPaBO Ha paccTosiHMe 1, CTpeMsICh K TOMY, YTOOBI
CcTep>KeHb He ynan. CumMraeTcs, YTO CTepXkeHb yIal, ecyii OH OTKIOHWICS OT Bep-
TUKaIU 60see yeM Ha 12 TpagycoB WM eCIy TejleskKa COBMHYIACh OObIlle ueM Ha
2.4 eIVHUIIBI OT HAYAJIbHOT'O TIOJIOXKEeHMSI. DTIM30/1, 3aKaHUMBAETCS TP BbITIOTHEHUM
OIHOTO U3 CJIEAYIOIIVX YCIOBUIA:

O crepXkeHb yI1an;
Q KonMuyecTBO BpeMeHHbIX maroB gocturiao 200.

30 <+ Mpuctynaem k obydeHuto ¢ noakpensequem u PyTorch

Kak 310 penaetca

151 9KCIIepMMEHTOB €O cpenoi CartPole BBIMOIHUM C/IeAYIOLI/E AT,

1.

CHavasta HaiimeM MMs cpebl B Tabiuile 1o agpecy https://github.com/openai/
gym/wiki/Table-ofenvironments. BreisicHsieTcs1, 4TO OHa Ha3biBaeTcs ‘CartPole-
v0’, UYTO IMPOCTPAHCTBO HAOIIOEHNIT B Heli TIpeICTaB/IeHOo 4-MepPHbIM MaCCu-
BOM, & BO3MOYXHbIX [eiCTBUIL BCEro IBa (JIOTUYHO).

Mmrmoptupyem 616nmnoteky Gym 1 CO3aauM 9K3eMIUISIP cpenbl CartPole:

>>> import gym
>>> env = gym.make('CartPole-v0')

HpI/IBe,HEM cpeny B HAYa/JIbHOE COCTOSAHME:

>>> env.reset()
array([-0.00153354, 0.01961605, -0.03912845, -0.01850426])

Kak n paHbllle, BO3BpalllaeTCda Hada/lbHOE€ COCTOAHME Cpelbl, IIpeacTaB/I€H-
HO€ MaCCMBOM M3 YeThbIpeX unces ¢ MJ1aBaoIel TOUKOA.

Pucyem cpenly Ha 3KpaHe:

>>> env.render()
True

IOMKHO TTOSIBUTBCS HebOoJIbIIIoe OKHO:

Teneps BOViAeM B UMKI while ¥ MO3BOAMM areHTy COENATh CTOJIBKO XOZOB,
CKOJIBKO OH CMOKeT:

>>> is_done = False
>>> while not is_done:
action = env.action_space.sample()

Okpysxatowas cpena CartPole +¢ 31

new_state, reward, is_done, info = env.step(action)
print(new_state)
env.render()

[-0.00114122 -0.17492355 -0.03949854 0.26158095]
True
[-0.00463969 -0.36946006 -0.03426692 0.54154857]
True

[-0.11973207 -0.41075106 0.19355244 1.11780626]
True
[-0.12794709 -0.21862176 0.21590856 0.89154351]
True

TeM BpeMeHeM TeJieskKKa M CTeP3KeHb IBUTAIOTCS. B KOHIle UTpbl 06a OCTaHO-
BSITCSI, ¥ OKHO GYZeT BbIMISIIETh PYMEPHO TaK:

OMM30[, IJINTCS BCETO HECKOJIBKO IIAar0B, TOTOMY UTO JIe/iICTBUS — BIIPABO MU
BJIEBO — BBIOMPAIOTCS CJTyUaifHBIM 06pa3oM. MOKHO Jiv 3alIOMHUTb BECh ITPO-
11ecc, YTOOBI BIIOCIECTBUM BOCIIPOU3BECTU ero? MOXKHO, AJIsI 9TOTO HY>KHO
I06aBUTD IBE CTPOYKM, KaK ITOKa3aHo Ha mare 7. Ho ecyiu BbI paboTaeTe B CH-
creme Mac mnu Linux, To mpeaBapuTeIbHO HY;KHO BBITIOTHUTD 1IaT 6 (MHauUe
MOYKHO Cpa3y IepexoquTh K 1ary 7).

IJist 3ammcy Buieo HeoOX0IIMO YCTaHOBUTD MakeT ffmpeg. B Mac aTo menaet-
Csl KOMaHI0M

brew install ffmpeg
A B Linux — KoMaHI071

sudo apt-get install ffmpeg

32 <+ MMpuctynaem k obydeHuto ¢ noakpensiequem u PyTorch

7. Tlocme co3maHus sK3eMILIsipa CartPole o6aBbTe TaKye IBe CTPOUKIM:

>>> video_dir = './cartpole_video/'
>>> env = gym.wrappers.Monitor(env, video_dir)

B pesysbTaTe Bce oToGpaskaeMoe Ha SKpaHe OyIeT COXpaHEHO B YKa3aHHOM Ka-
Tajore.

Terepb MOBTOPHO BITIOMHMUM LIaru ¢ 3 1o 5. [To 3aBepiieHny snu3ona B KaTajo-
re video_dir okaxeTtcs (aiia ¢ pacuiMpeHnem .mp4. Biuyieo oueHb KOPOTKOE — BCETO
OKOJIO 1 CeKyH[IbI.

Kak 3to paboraer

B sTOM perenTe MbI Ha KaKIOM IlIare pacriedaTbiBaeM MacCuB cocTosiHMs. Ho uTo
O3HauaeT KasKIblit 97ieMeHT 9Toro Mmaccusa? ITogpo6Hblie cBemeHust o cpee CartPole
uMeroTcsl Ha Buku-crpanuile Gym B GitHub: https://github.com/openai/gym/wiki/
CartPole-v0. I BOT 4TO 03HAUAIOT 3TU YEThIPE UKCIIA:

Q T1ooKeHre TeNesKKU: Unciao oT —2.4 1o 2.4. Eciy nmonoykeHue BBIXOOUT 3a
TpeJiesibl 3TOrO AMana3oHa, TO 3MM307, 3aBeplaeTcs;

O CKOpOCTb TeNeXKMN;

O yron HaKJIOHA CTEePsKHS: ecyiv 3HaueHMe MeHbIe —0.209 (-12 rpamycoB) muan
6ombIie 0.209 (12 rpagycoB), TO SIIM30/, 3aBEPILIAETCS;

O CKOpOCTb BepXHero KOHIIA CTEPsKHS.

HeiicTBue MoxeT NmpuHMMATh 3HaueHue O (COBMHYTb TeNeXKY BjeBO) uau 1
(BIIpaBO).

B sT0li OKpyKaroleil cpefe Bo3HarpaskaeHue paBHO + 1 Ha KaXXJ0M BpeMeH-
HOM LiIare BIIOTh [0 3aBeplIeHMs 31IM304a. ITO MOXKHO JIETKO ITIPOBEPUTD, [leyaTast
BO3HarpaxgeHye Ha KaKIoM 1are. ITosHoe ske BO3HarpaXxaeHre paBHO KOJUYECTBY
BpeMeHHbIX 111aTOB.

370 elle He Bce

IToKa YTO MbI IPOTHAJIM BCETO OAVH 31130/, UTO6BI OLIeHUTh KAUeCTBO areHTa, MOK-

HO MMPOTHATh MHOTO 3T300B ¥ YCPeIHUTbH ITOJIHOE BO3HArpaxkaeHue. ITO AacT HaM

MpeACTaBIeHe O KAUeCTBe areHTa, BIOVPAIOIIero AeiCTBUS CTyJaifHbIM 06pa3soM:
[TycTb uncno snusonos pasHo 10 000:

>>> n_episode = 10000

B Kaxkgom srm3o4e BbIYUCISIETCS TTOJTHOe BO3HaArpaxjueHnue, paBHOe CyMMe BO3-
HaI‘pa)K,HEHI/Iﬁ Ha Ka’>KOOM IIare:

>>> total_rewards = []

>>> for episode in range(n_episode):

ves state = env.reset()

cee total_reward = 0

cee is_done = False

cee while not is_done:

ves action = env.action_space.sample()

OcHosbl PyTorch < 33

state, reward, is_done, _ = env.step(action)
total_reward += reward
total_rewards.append(total_reward)

M B caMOM KOHIIe BbIUNCIISIETCS cpeanHee II0/JIHOe BO3HarpakaeHme:

>>> print('CpeaHee nonHoe Bo3Harpaxaexue B {} anusogax: {}'.format(
n_episode, sum(total_rewards) / n_episode))
CpegHee nosnHoe Bo3HarpaxgeHuwe B 10 000 anusopoB: 22.2473

B cpemHeM 1oHOE BO3HATrpakaeHye TPy CIy4aiiHOM BbIOOpe IeiiCTBUIT COCTaB-
nset 22.25.

[ToHSITHO, UTO BBIOOP AEICTBMIT HAyTa — He camast pa3yMHasl CTpaTerus, B cJie-
IYIOIIMX pasiesiax Mbl yIydiimm ee. Ho roka ciesiaeM repepbiB M HEMHOTO ITOTOBO-
puM o camoii 6ubamoreke PyTorch.

OcHoBbl PYToRCH

Kaxk yxe 6b110 cka3aHo, PyTorch — 6ubnnoTeka 4icIeHHbIX PACUeTOB, KOTOPOIi MbI
6ymeM IMOIb30BaThCS B 3TOV KHUTE [IJIST Pean3alUy alirOPUTMOB 0OYIeHMSI C MO -
KpeIJIeHVeM.

PyTorch — MmopHast 6ubaMoTeKa AJ1s1 HAYYHBIX PACUETOB ¥ MAIIMHHOTO 00yJYeHMsI
(B T. 4. IIyboKOTO), pazpaboraHHasi komnaHueii Facebook. OCHOBHas CTpyKTypa
IAHHBIX B Hell — TEH30DP, HAIOMMHAKOIINI MaccuB ndarray u3 6mbnuorekn NumPy.
C TOukM 3peHMs1 HayuHbIX BbluncieHuii, PyTorch 1 NumPy npumepHO paBHOLIeH-
Hbl. OnHako PyTorch 6bicTpee BBITIOMHSIET OOXOM, MAacCMBOB U OIepanuu ¢ HUMMU.
CBsI3aHO 3TO TpeXkIe BCero ¢ TeM, 4To B PyTorch 6bicTpee MPOM3BOAUTCS TOCTYII
K 21ieMeHTY. [T03TOMY BCe 60sbliie HApomy mosaraeT, uTo PyTorch B KOHeEYHOM UTOTe
BbITeCHUT NumPy.

Kak 310 penaetcs
CrenaeM KpaTKuii 0630p MporpaMMMUPOBaHMSI C UCIIOb30BaHKeM PyTorch.

1. B npeabiayiuiemM penernTe Mbl CO30a/iM HEMHUIMAIM3UPOBAHHYIO MaTpUILy.
A 4TO, eCJIM HY>KHO MHUIMAJIN3NPOBATh €€ CJ'Iy‘-IaVIHbIMI/I 3HaueHussMu? Ha
IIOMOIIIb IMMPUXOOAT CJIEAYIOIE KOMaH/IbI:

>>> import torch

>>> X = torch.rand(3, 4)

>>> print(x)

tensor ([[0.8052, 0.3370, 0.7676, 0.2442],
[0.7073, 0.4468, 0.1277, 0.6842],
[0.6688, 0.2107, 0.0527, 0.4391]])

leHepupyrOTCS CIyvaiiHble Unciia C IJIaBaroleii TOUKOol C paBHOMEPHBIM pac-
npeneneHueM B uHtepnase (0, 1).

2. MbI MOXXeM 3aaTh TUII JaHHbBIX BO3BpalllaeMoro TeHsopa. Hampumep, 4To6b!
BEpPHYTb TeH30D IBOIHOM TouHOCTH (float64), HY>KHO HANUCATh:

34 <+ MMpuctynaem K obydeHuto ¢ noakpensiequem u PyTorch

>>> X = torch.rand(3, 4, dtype=torch.double)
>>> print(x)
tensor([[0.6848, 0.3155, 0.8413, 0.5387],
[0.9517, 0.1657, 0.6056, 0.5794],
[0.0351, 0.3801, 0.7837, 0.4883]], dtype=torch.float64)

[To ymonuaHMIoO ITogpa3syMeBaeTCs TUI JaHHbIX float.
3. Jlayee co3manyM MaTpPULIbl, COCTOSILIME U3 OOHUX HYJIei U U3 OGHUX eIVHNIL:

>>> X = torch.zeros(3, 4)

>>> print(x)

tensor([[0., 0., 0., 0.],
[e., 0., 0., 0.1,
[e., 0., 0., 0.1])

>>> X = torch.ones(3, 4)

>>> print(x)

tensor([[1., 1., 1., 1.],
[1., 1., 1., 1.1,
[1., 1., 1., 1.1])

4. BoT Kak MOXXHO y3HaTbh pa3Mep TeH30pa:

>>> print(x.size())
torch.Size([3, 4])

torch.Size gBisIeTCS KOPTEXKEM.
5. ns usmeHeHus GOpMbI TEH30pa CIYSKUAT MeTO[, view():

>>> x_reshaped = x.view(2, 6)

>>> print(x_reshaped)

tensor([[1., 1., 1., 1., 1., 1.],
[1., 1., 1., 1., 1., 1.1

6. TeH30p MOXKHO CO3[ATh M3 AAHHBIX APYTOTO TUIIA, HATIPUMEDP OOUHOYHOTO
3HAYEHMS, CTIMCKA MUY BIOKEHHOTO CITMCKA:

>>> x1 = torch.tensor(3)
>>> print(x1)
tensor(3)
>>> x2 = torch.tensor([14.2, 3, 4])
>>> print(x2)
tensor([14.2000, 3.0000, 4.0000])
>>> x3 = torch.tensor([[3, 4, 6], [2, 1.0, 5]])
>>> print(x3)
tensor([[3., 4., 6.],
[2., 1., 5.1])

7. YTOO6BI MOMYYUTD NOCTYII K 37IEMEHTAM TEH30pa, cofepskallero 60iee OIHOTO
2JIeMEeHTa, MOKHO BOCITOJIb30BaThCSI MHIEKCHMPOBaHMEM, Kak B NumPy:

>>> print(x2[1])
tensor(3.)

>>> print(x3[1, 0])
tensor(2.)

OcHosbl PyTorch < 35

10.

>>> print(x3[:, 1])

tensor([4., 1.])

>>> print(x3[:, 1:])

tensor([[4., 6.],
[1., 5.1D

I TeH30pa ¢ OOHUM 3JIEMEHTOM 3TO MOXHO CAeaTh C MOMOIIbI0 MeTOoaa
item():

>>> print(xi.item())
3

TeH30p MOXHO Mpeo6pa3oBaTh B MaccuB NumPy 1 Hao60poT. 1151 ipeobpa-
30BaHMsI TeH30pa B MmaccuB NumPy ciy>kut meTtog, numpy():

>>> x3.numpy()
array([[3., 4., 6.1,
[2., 1., 5.]], dtype=float32)

A s mpeo6pasoBanus maccuBa NumPy B TeH30p — MeTop, from_numpy():

>>> import numpy as np

>>> x_np = np.ones(3)

>>> x_torch = torch.from_numpy(x_np)

>>> print(x_torch)

tensor([1., 1., 1.], dtype=torch.float64)

OTmeTuM, uto ecnm BxonHoW MaccuB NumPy mmeet Tun float, TO BbIXOAHOM
TeH3op 6yaeT umeTb TMN double. MHoraa HeobxoauMo sBHOE MpuBeAeHWE T!-
noB..

B cremyromem npumepe TeH30p Tuiia double mpeo6pasyercs B Tum float:

>>> print(x_torch.float())
tensor([1., 1., 1.])

Omneparuu B PyTorch 1 NumPy moxosku. Hampumep, CJioskeHue Mpou3BOaNUT-
Cs1 CIeIyIOIIM 00pa3soM:

>>> x4 = torch.tensor([[1, 0, 0], [0, 1.0, 0]])
>>> print(x3 + x4)
tensor([[4., 4., 6.],

[2., 2., 5.1D

MOYKHO TaKKe MCII0Jb30BaTh MeTos, add():

>>> print(torch.add(x3, x4))
tensor([[4., 4., 6.],
[2., 2., 5.1D

PyTorch mopmepskuBaeT omepaiuy Ha MeCTe, KOTOpble M3MEHSIOT 06heKT
TeH30pa. Hampumep, BHIITOJTHUM TaKy0 KOMaHIy:

>>> x3.add_(x4)
tensor([[4., 4., 6.],
[2., 2., 5.1D

36 <+ MMpucrynaem k obydeHuto ¢ noakpensequem u PyTorch

JleTKO BUIETD, UTO X3 CTaJI paBeH CyMMe TIPEsKHETO X3 U x4:

>>> print(x3)
tensor([[4., 4., 6.],
[2., 2., 5.1D

3T0 eLe He Bce

JIro6oii MeTOoH, MMsI KOTOPOI'0O OKaHUYMBAeTCs 3HAKOM _, BBITIOJIHAETCA Ha MeCTe, T. €.
B TEH30D 3allMCbIBa€TCA HOBOE 3HAUEHNE.

CM. TaKkxe

TMonHbIN TIepeueHb omnepaluii ¢ TeHzopamu B PyTorch ony6amMkoBaH B opuimaib-
HOIl JOKyMeHTaluu mo agpecy https://pytorch.org/docs/stable/torch.ntml. UmenHO
3/1eCh JTy4llle BCETo MCKaTh MH(POPMAIINIO, €C/TM BO3HMKIIA TPobieMa ¢ MCII0Tb30Ba-
HueM PyTorch.

PEANM3ALMS M OLEHUBAHME CTPATEMMN
C/TYYAMHOIO MOUCKA

VTak, MbIl HEMHOTO ITOTIPaKTUKOBAINCh B pabote ¢ PyTorch u, HaunHas ¢ 3TOro pe-
1enTa, 6ygeM paccMaTpuBaTh 6ojiee pasyMHbIe CTpaTernu peiieHus 3amaun Cart-
Pole, uem meiicTBuUS Hayram. B aToM pelieniTe Mbl O6CYOVM CTPATErnio CTy4aiiHOTO
ToMCKa.

[Tpoctoit, HO 3¢ deKTMBHBIN TOAXOM 3aK/TIOUAeTCsT B TOM, YTOOBI OTOOGPa3sUTh
Hab6JIoeHe Ha BEeKTOP M3 IBYX UMCes, IIPeICTaB/ISIONIMX ABa JeiicTBMs. Boioupa-
eTcsl IelicTBMe, IIEHHOCTb KOTOPOTo GoJibiile. JIMHeliHOe 0To6pakeHye OIMChIBAeTCsI
MaTpuileii BecoB pasMepa 4x2, MOCKOIbKY HAO/IONEeHNs B JTaHHOM C/Iyyae YeThIpex-
MepHbIe. B KaskIoM 911M30/1ie Beca TeHepUPYIOTCS CIyUaifHbIM 06pa3oM U MCITOIb3Y-
I0TCS J/IS BBIUMC/IeHMSI AeJCTBIMS Ha KaskIOM IlIare S1130/a. 3aTeM BhIUMC/ISIeTCS IO~
HOe BO3HarpaxkmeHue. DTOT MPOIecC MMOBTOPSIETCS AJist GOJBIIOrO YMC/Ia SMM30M00B,
¥ B KOHIIe OOYUEeHHOJi cTpaTerueil CTaHOBUTCSI MATPUIA BECOB, KOTOpast IIpUHecIa
HauboJIbIlIee MOTHOE BO3HArpaskaeHMe. Takoii IoaX0 1 Ha3bIBAeTCS CIyUaifHBIM ITO-
MICKOM, TTOCKOJIbKY Beca CJTyYaifHO BHIOMPAIOTCS B KaskKIOM MCIIBITAHMYM B HAZEXIe,
YTO ITOC/Ie GOIBIIOTO YMC/Ia MCIIBITAHMI OYOYT HaiiIeHbl HaUIyIlMe Beca.

Kak 310 penaetcs
IasaiiTe peanausyeM aJrOPUTM CIYUIaTHOTO IMOMCKaA ¢ omoIbio PyTorch.

1. Wmmnoprupyem naketsl Gym u PyTorch u co3manym sK3eMILISIp OKPY>KaroIei
cpepbl:
>>> import gym

>>> import torch
>>> env = gym.make('CartPole-v0')

Peanuzaums u oueHnBaHue cTpaterum cnyanHoro noucka % 37

TMonmyuum pa3sMepHOCTM ITPOCTPAHCTB HAGMIOOeHUIA 1 TeiiCTBIIA:

>>> n_state = env.observation_space.shape[0]
>>> p_state
4
>>> n_action = env.action_space.n
>>> n_action
2

OHM TTOHAOOSITCS /IS OTIpe/IeIeH s TEH30pa — MaTPUIIbI BECOB pasmepa 4x2.

Onpe,uem/{M (l)YHKU,I/I}O, KOTOpasd MMMUTUPYET 311307, C IaHHOI BXOJHOW MaT-
pMueﬁ BE€COB M BO3BpalllaeT IT0OJITHOE€ BO3HarpaXaeHme:

>>> def run_episode(env, weight):
. state = env.reset()
. total_reward = 0
. is_done = False

while not is_done:

state = torch.from_numpy(state).float()

eee action = torch.argmax(torch.matmul(state, weight))
cee state, reward, is_done, _ = env.step(action.item())
. total_reward += reward
. return total_reward

3[ech MacCUB COCTOSTHUIA state Ipeo6pasyeTcs B TeH30p Tuia float, MTOCKOIb-
KY HaM HY3KHO BBIYMCIUTD JIMHEHOe 0TOOpaskeHe — MPOuU3BeaeHe COCTOS -
HMS Ha Bec, torch.matmul(state, weight). JleiicTBue ¢ 60sblieil LeHHOCTHIO
BBIOVPAETCS C IIOMOIIBIO orepaluu torch.argmax(). VI He 3a6yapTe MOMYIUTD
3HaueHMe pesylIbTUPYIOLIero TeH30pa IeliCTBUS, BbI3BaB MeTO .item(), 11O-
TOMY UTO 3TO T€H30p, COLEP KA1 ONUH JJIEMEHT.

Saﬂa,HI/IM KOJ/INM4eCTBO 3IIN30400B:
>>> n_episode = 1000

Heo6xomm1mMo 3aItoMMHATB JTyYIliee [TOTHOe BO3HATPasKAeHNe 110 BCeM 31130~
IlaM ¥ COOTBETCTBYIOIIYIO eMy MaTpuIry BecoB. [I03TOMY 3a5a1M HavYaabHbIe
3HAYeHMsI:

>>> best_total_reward = 0
>>> best_weight = None

Taroke 6ymeM 3aIIOMMHATD TIOJTHOE BO3HATPAKIEHME B KaXKIOM SITM30/Ie:

>>> total_rewards = []

Terepb MOKHO IIPOrHATh n_episode 3mM30[0B. ISl KasKIOIO SI11M30/1a BbIMOJI-
HSIIOTCSI CJIeIYIONIe TeiCTBIUS :

CJTydaiiHbIM 00pa3oM BbIOPATh Beca,

IATh areHTy BO3MOKHOCTb IIPEAIIPUHSTD JEICTBIUS B COOTBETCTBUM C JI-
HeJMHBIM OTOOpaskeHMeM;

SMM30[, 3aBePIIAeTCsI, ¥ BO3BPAIIAeTCs ITOJTHOE BO3HATpakIeHue;

MpY Heo6XOAMMOCTY OOHOBUTH HauMydlllee IOJHOEe BO3HArpaXkIeHue
Y HAaWIYYINYI0 MaTPUITY BECOB;

3aIIOMHUTB [TOJIyYEHHOE B 3TM30/€e ITOJIHOE BO3HATPaXKIeHNE.

© 00 00

38 <+ MMpuctynaem k obydeHuto ¢ noakpensiequem u PyTorch

Huske mpuBeieH COOTBETCTBYIONINI KO/

>>> for episode in range(n_episode):
weight = torch.rand(n_state, n_action)
total_reward = run_episode(env, weight)
print('3nusog {}: {}'.format(episode+l, total_reward))
if total_reward > best_total_reward:
best_weight = weight
best_total_reward = total_reward
total_rewards.append(total_reward)

¢ 10.0
: 73.0
: 86.0
¢ 10.0
¢ 11,0

w
=]
=
w
(=}
k=1
T A WN R

3nu3og 996: 200.0
3nu3og 997: 11.0
3nu3og 998: 200.0
3nu3og 999: 200.0
3nu3op 1000: 9.0

Mpbl HalIM HAWIYYIIYIO CTpaTeruto, BeIonHuB 1000 311130408 Cl1y4aitHOTO
noucka. OHa rapamMeTpu3OBaHa MaTPULLE BeCOB best_weight.

7. HDE)K,ILG YeM IIPOBEPUTDb HAMIYUIIYIO CTPATEIrMI0 Ha TeCTOBBIX 3IIM304aX, BbI-
UYNCIMM CpeHee IIOJTHOE BO3HarpakaeHume:

>>> print('CpegHee nonHoe Bo3Harpaxpgeuue B {} anusopgax: {}'.format(
n_episode, sum(total_rewards) / n_episode))
CpepHee nosHoe BO3HarpaxaeHuwe B 1000 3nusopos: 47.197

OHo B ABa pasa 6osbllle, UeM i CIydaitHoii crpateruu (22.25).

8. Temepb MOCMOTPUM, KaKie pe3yabTaTbl OOyUeHHas CTpATerus MoKaxkeT Ha
100 HOBBIX MIM304aX:

>>> n_episode_eval = 100

>>> total_rewards_eval = []

>>> for episode in range(n_episode_eval):
total_reward = run_episode(env, best_weight)
print('3nusog {3}: {}'.format(episode+l, total_reward))
total_rewards_eval.append(total_reward)

dnusop 1: 200.0
dnusop 2: 200.0

Peanuzauus u oueHuBaHne cTpaterum cnyqaﬂHoro noucka ** 39

3nu3og 3: 200.0
3nu3og 4: 200.0
3nu3og 5: 200.0

3nu3op 96: 200.0

3nu3op 97: 188.0

3nu3op 98: 200.0

3nu3og 99: 200.0

3nu3og 100: 200.0

>>> print('CpeaHee nonHoe Bo3Harpaxgexue B {} 3nusogax: {}'.format(

n_episode, sum(total_rewards_eval) / n_episode_eval))

CpepHee nonHoe BO3HarpaxjaeHuwe B 1000 3nusopos: 196.72

Kak HUM cTpaHHO, CpelHee BO3HArpakaeHue Mpu CaefoBaHMM 00y4eHHOH cTpa-
TErMy Ha TECTOBBIX 3MM30JaX 0Ka3ajaoCh OJIM3KO K Makcumymy, paBHomy 200. Ho
pasbpoc MOBOJbHO BesiuK — oT 160 mo 200.

Kak 3to paboraer

AnropuTM C1y4aifHOTO Mmoycka Tak XOpOoUIo paboTaeT, IOTOMY UTO OKPYsKaroIiast
cpena CartPole oueHs pocrasi. Ee cocTostHVIe OIpeesisieTcs BCero YeThIpbMs ITepe-
MeHHbIMK. HammoMHMM, uTO B urpe Atari Space Invaders coctosiiuii 60mbie 100 000
(210*160* 3). A pasmepHOCTb ITpocTpaHcTBa geiicTBuit CartPole B Tpy pa3a meHblie,
yeM B Space Invaders. Boo0iiie, TpoCTbIe aJITOPUTMbI XOPOIIO PabOTAIOT B MPOCTHIX
3a1avax. B HalleM crydyae MbI BCero JIMIIb MCKaIM HauIydllee JIMHeHOe 0ToOpa-
SKeHYe U3 TPOCTPAHCTBA COCTOSIHMUIA B TTPOCTPAHCTBO JIeCTBUIA, CJTy4aiiHO BhIGMPAst
€ro 13 MHOKeCTBa BO3MOKHBIX.

MbI Takke 3aMeTU/IU ellle OIHY MHTEPECHYIO Belllb: CTpaTerus, o6yueHHast Me-
TOJOM CITy4alfHOTO MOMCKA, OKa3a1ach JIyqlle CIy4aifHOro BbI6opa IeicTBUiL. DTO
MOTOMY, YTO TIPY BHIOOPE CIIyYaifHOTO JIMHEHOTO OTOOPAKEHNMST YUUTHIBAIOTCS Ha-
6monenys. Mimest 6onbiiie MHGOpMalu 06 OKpysKaroueil cpee, Mbl MOKEM MPU-
HUMATb 60JIee OCMBICJIEHHbIE PEIIeHMSsT, YeM MPY TIOTHOCTHIO CTy4aifHOM BbIGODE.

370 elle He Bce
MpbI MOXXem IMTOCTPONUTD I‘pad)I/IK ITIOJTHOTI'O BOSHHI‘pa)K,ZLEHI/IH Ha oTaIlie O6Y‘~IE!HI/I$IZ

>>> import matplotlib.pyplot as plt
>>> plt.plot(total_rewards)

>>> plt.xlabel('3nu3o0g')

>>> plt.ylabel('Bo3suHarpaxgexue')
>>> plt.show()

40 < Mpucrtynaem K obydeHnto ¢ noakpeniequem u PyTorch

PesynpTat nokasaH HIXe.

200 ~

175 4

= =
P un
L =]
1 1

=

(=]

o
1

Bo3sHarpaxpaeHue

-~
w
1

g

hJ
(9]
1

T T T T
0 200 400 600 800 1000
onu3op,

Ewin Ha BalieM KOMITbIOTEpPE OTCYTCTBYeT 6ubnmoreka matplotlib, ycranosure
ee KOMaH/0M

conda install matplotlib

Kak BMHO, BO3HArpaxaeHue MeHsIeTCSI XaOTUUHO, M HUKAKOW TeHIeHIUM K YITyd-
IIIEHMIO C POCTOM UMCjIa STIM300B He HabmogaeTcst. UTo U ¢1eoBaao OKUIATh.

Ha rpacduke 3aBMCUMOCTM BO3HArpakieHus OT HOMepa SMM304a BUAHO, UTO
B HEKOTOPBIX 3Mn304ax Bo3HarpaxkaeHue gocruraet 200. IToce riepBoro Takoro co-
ObITHSI OOyUeHMe MOKHO 3aKaHUMBATh, IIOTOMY UTO JIYUIIIETO pe3y/abTaTa yke He
IocTuub. Hiske rmokasaH Koj, aTara 00ydeHusT ITOCyIe TaKoro M3MeHEeHMUSI :

>>> n_episode = 1000

>>> best_total_reward = 0

>>> best_weight = None

>>> total_rewards = []

>>> for episode in range(n_episode):

vee weight = torch.rand(n_state, n_action)

vee total_reward = run_episode(env, weight)

vee print('3nusog {3}: {}'.format(episode+1l, total_reward))
vee if total_reward > best_total_reward:

vee best_weight = weight

vee best_total_reward = total_reward

vee total_rewards.append(total_reward)

vee if best_total_reward == 200:

vee break

dnusop 1: 9.0

ANroput™ BOCXOXAEHUA Ha BepwmHy < 41

nu3og 2: 8.0
3nusog 3: 10.0
nusog 4: 10.0
3nu3og 5: 10.0
3nu3og 6: 9.0
dnu3og 7: 17.0
3nu3og 8: 10.0
3nusog 9: 43.0
3nu3og 10: 10.0
dnu3og 11: 10.0
3nu3op 12: 106.0
dnu3og 13: 8.0
dnu3og 14: 32.0
3nu3og 15: 98.0
dnu3og 16: 10.0
3nusog 17: 200.0

Crparerusi, Ipu KOTOPOI NOCTUTAETCSI MaKCUMMaJIbHOE BO3HarpaxpeHue, Hali-
IeHa B armm3one 17. Ho 310 mMor 66l ObITh JII000i IpPyroi 3mmu3o, T. K. Beca reHe-
PUPYIOTCS CIy4aiiHbIM 06pa3oM. UTOObI BHIUMCINTD MaTeMaTUUECKOe OXUIAHNE
HeOOXOIMMOro KOJIMYECTBA SIM30A0B, MOKHO ITOBTOPUTH 3TOT IIPOIIeCC 0OyUeHMSsI
1000 pa3 ¥ BBIUMCANUTD CpeHee KOJIMYECTBO SMU3000B:

>>> n_training = 1000

>>> n_episode_training = []

>>> for _ in range(n_training):

vee for episode in range(n_episode):

vee weight = torch.rand(n_state, n_action)

vee total_reward = run_episode(env, weight)

vee if total_reward == 200:

vee n_episode_training.append(episode+1)

cee break

>>> print('MaTeMaTMyeckoe oxupaHue Heob6XOAMMOro 4MCNa 3NKU30[0B: ',
sum(n_episode_training) / n_training)

MaTemaTuyeckoe OxugaHue HeobxoauMmoro uucna snusogos: 13.442

B cpennem st HAXOXKIEHNST HAWJTyJIlleli CTpaTernu Hy>kHO 13 3TIn30/0B.

ANroPUTM BOCXOXAEHUS HA BEPLUMHY

HpI/I pacCMOTpeHUN CTpaTernum CJIY‘-IHI‘/)IHOI‘O IMOMICKa BCe 3MMM300bI ObLIM HE3aBUCHU-
Mbl. Ha camom pmese mx MOXKHO ObLIO GBI BBITIOTHSTD Imapaajae]IibHO 1 B UTOT'€ BbI-
6paTb BecCa, IPpM KOTOPLIX ITOTYUMINCD HaWJTyUlllie pe3yabTaThbl. MbI TUIITHUIA pas
nmoaTBepAmn 3TO, IMOCTPOUB I‘pa(bI/IK 3dBUCMMOCTU BO3HATI'PpaKAEHMA OT HOMepa
3MMn30404, Ha KOTOPOM HET HMKAKOI'O BOCXOOsIIero TpeHad. B atom penernTe MbI pa3-
pa60TaeM AJITOPUTM BOCXOXKOEHMS HAa BEPIINHY, HOBBOHHIOH.[I/IIZ repenaBaTb Oaib-
i€ 3HaHNs, HAKOIIJIEHHbIE B MPEAbIAYIINX 3TMINU300aX.

B Hauane AJITOPUTMA BOCXOXIEHMA Ha BEPIIMHY BeCa TOXe BbI6I/IpaIOTCH Cnyqaﬁ-
HbIM O6p330M. Ho B kaxkgom anm3ope K BeCy HpI/I6aBI[${€TC${ IIyM. Eciu nosmHoe BO3-
HarpaxgeHune yBeJInumjioCb, TO Mbl 3aM€E€HAEM BeCa HOBbIMM, B IDOTMBHOM CIydae

42 < Mpuctynaem K obydeHnto ¢ noakpeniequem u PyTorch

ocrtaBJjisieM ctapsble. [Ipy 3TOM Beca OT 31m304a K SIIN304Y YyIydulialoTCd, a HE M3Me-
HAKTCA XaOTMYEeCKHM B KAXKOOM 3IIM304e€.

Kak 3Tto penaetca

Peanusyem aaropuTM BOCXOKIEHMS HA BEPIIMHY C TOMOIIbio PyTorch.

1.

Kak 1 mpexme, UMIIOPTUPYEM HEOOXOAMMbIE ITaKeThl, CO3MaAUM IK3EeMILISP
OKPY’KaIoIIei cpeaibl M MOJyYUMM PasMEPHOCTY MPOCTPAHCTBA HAOMIOIEeHMI
U NeCTBUIA.

>>> import gym

>>> import torch

>>> env = gym.make('CartPole-v0')

>>> n_state = env.observation_space.shape[0]
>>> n_action = env.action_space.n

[ToBTOPHO BOCITOIb3yeMCsT (DYHKIIMEN run_episode, HAIIMCAHHONM B TIPEIbIY-
1IeM pellenTe, 1 He CTaHeM IMOBTOPSITh ee KoJ. HarmmoMHMM, UTO OHA MoTyJyaeT
BXOJIHbIE Beca, UMUTHUPYET 311301, U BO3BpalllaeT IMOTHOe BO3HArpaxieHune.

Yncsto anmM30md0B ImycThb 6ymeT paBHo 1000:
>>> n_episode = 1000

Mb1 6yzmem 3allOMMHATH HawIydlllee TOJHOE BO3HArpaxkaeHue M COOTBET-
CTBYIOIIME Beca. 3a1aAM HauyabHble 3HAUEHUS:

>>> best_total_reward = 0
>>> best_weight = torch.rand(n_state, n_action)

Taroke 6ygeM 3aIIOMMHATD TIOJTHOE BO3HATPAKIEHME B KAXKIOM 3TM30/e:

>>> total_rewards = []

[MpubaBisgeM K BecaM IITyM B KaxkmoM snm3oze. [llym MmaciTabupyeTcst, YTo0bI
OH He 3aTMWJ C000Ji camu Beca. B KauecTBe MaciuTabHOro kosdduienrta
BbIGepem 0.01:

>>> noise_scale = 0.01

Ternepb MOKHO BBITIOJIHUTD n_episode anm3omoB. CaydyaiiHO BbIOpaB HauasIb-
HBIVi BeC, Mbl 3aT€M ITPOU3BOAMM CJIeYIOIIe NeiCTBUS:

O mnpubaBUTH CTYUAITHbII IIIYM K BeCY;

Q [aTb areHTy BO3MOXKHOCTb IIPeAIIPUHSATD AEeViCTBYUS B COOTBETCTBUM C JIU-
HEITHBIM OTOOPasKEeHUEM;

QO »snm30[3aBeplIaeTcs, ¥ BO3BpalLlaeTcs IIOJIHOe BO3HArPaKIeHue;

O ecnu Tekylee BO3HArpaxkaeHue 60Ibllle MaKCMMaIbHOTO Ha AAHHBI MO-

MEeHT, TO OOHOBUTbH TeKyIl[ee BO3HATPaKAEHMEe U COOTBETCTBYIOLINIT eMy

BeC;

MHaYe OCTaBUTb HaujIyulllee BO3HAarpaxaeHue U BeC IIPeXXHUMMU;

3alIOMHUTB NIOJTyYeHHOE B 3MM307e IIOJIHOe BO3HArpakIeHue.

(ON©,

ANropuT™ BOCXOXAEHUA Ha BeplnHy % 43

Huske mpuBeieH COOTBETCTBYIONINI KO/

>>> for episode in range(n_episode):
. weight = best_weight +
noise_scale * torch.rand(n_state, n_action)

vee total_reward = run_episode(env, weight)
. if total_reward >= best_total_reward:
. best_total_reward = total_reward
. best_weight = weight

vee total_rewards.append(total_reward)
vee print('3nusog {}: {}'.format(episode + 1, total_reward))

3nu3og 1: 56.0
dnu3og 2: 52.0
3nu3og 3: 85.0
dnu3og 4: 106.0
3nu3og 5: 41.0

3nu3op 996: 39.0
3nu3op 997: 51.0
dnu3op 998: 49.0
dnu3op 999: 54.0
3nu3og 1000: 41.0

Boerunciisiem CcpenHee IMO/JIHOE BO3HArpaXXjaeHue, rojiydeHHoe C TIOMOIIIbIO aI-
TOPMUTMa BOCXOXXOEHNMS Ha BEPIIMHY !

>>> print('CpeaHee nonHoe Bo3Harpaxgexue B {} 3nusogax: {}'.format(
n_episode, sum(total_rewards) / n_episode))
CpepHee nosnHoe BO3HarpaxjaexHuwe B 1000 snu3sogos: 50.024

YTOOBI OLIEHUTDb Pe3y/IbTaThl 0OYUEeHMS, TOBTOPUM BeCh ITpo1iecc (KO, OTu-
CaHHBIN B 1Iarax 4—6) HECKOJAbKO pas. MOXXHO BUETb, YTO CpelHEE MTOTHOE
BO3HArpakaeHue CUIbHO QIyKTyupyeT:

CpeaHee nosnHoe BO3HArpaxpeHue
CpeaHee nosnHoe BO3HArpaxpeHue
CpeaHee nosnHoe BO3HArpaxpeHue
CpeaHee nosnHoe BO3HArpaxpeHue
CpeaHee nosnHoe BO3HArpaxpeHue
CpeaHee nosnHoe BO3HArpaxpeHue
CpeaHee nosnHoe BO3HArpaxpeHue
CpeaHee nosnHoe BO3HArpaxpeHue
CpeaHee nosnHoe BO3HArpaxpeHue
CpeaHee nosnHoe BO3HArpaxpeHue

B 1000 3nusopgoB: 9.261

B 1000 3nu3opos: 88.565

B 1000 3nu3opgoB: 51.796

B 1000 3nusopgos: 9.41

B 1000 3nu3opgos: 109.758

B 1000 3nu3opos: 55.787

B 1000 3nu3opgos: 189.251

B 1000 3nusopos: 177.624

B 1000 3nusopgoB: 9.146

B 1000 3nusopgos: 102.311

B uem mpuumHa Takoi M3mMeHUMBOCTU? Kak BBISICHSIETCSI, €C/IM HadajbHbIe
Beca 6bUTM BBIOpAHBI HEYIAYHO, TO IIPUbOaBIeHe HEOOIBIIOTO IIyMa MOUYTH
He NPUBOAUT K yAyUIIEeHMIO KauecTBa, T. €. CXOAMMOCTb MeajieHHas. C apy-
TOJi CTOPOHBI, JakKe ecIy HauajbHble Beca BhIOpaHbl XOPOILIO, IIpMbaBieHe
CJIUILKOM O0JIbIIOTO 1rymMma MOXeT YBeCTU JajeKoO OT OINTUMMAa/JIbHbIX BECOB,

44 < Tpuctynaem K obydyeHnto ¢ noakpenieHuem u PyTorch

ITOCTaBMB KauecTBO IO, yrpo3y. Kak cmenath o6yueHye aaropuTMa BOCXOXK-
IeHNS Ha BepIIMHY 60j1ee YCTOMYMBBIM Y HaJe>KHbIM? MOKHO alanTMPOBATh
BEJIMUMHY IITyMa K KauecTBY, KaK MbI afaliTMPyeM CKOPOCTb OOyUeHUs TPy
rpaiieHTHOM cIycke. PaccMoTpuM 1ar 8 6osee geTaabHO.

8. UtoO6bI caenaTh IyM aJaliTUBHBIM, HYKHO BBITTOJIHUTD CIeIYIOIIe NeiCTBUS :

O 3amaTh HAYAIbHBIN KO3DPUIIMEHT 1TyMa;

O e KaYeCTBO B 3MM30[Ie YAYUIINIOCh, YMEHBIIUTb KO3(DOUIIMEHT IIyma.
B namem ciydae ko3 @uiieHT yMeHbIIaeTCs BABOE, HO HUKOTIA He CTa-
HoBUTCS MeHbIie 0.0001;

O e KaueCcTBO B 3MM30/1e YXYAIINUIOCh, YBEIUUYUTD KOIPOUIIMEHT IIyma.
B Hamem arydae KO3(GOUIIMEHT yBeIMUMBAETCS BIBOE, HO HUKOTAA HE
CTAaHOBUTCS OosbIie 2.

Huske mpyBeieH COOTBETCTBYIOIINIA KO

>>> noise_scale = 0.01
>>> best_total_reward = 0
>>> total_rewards = []
>>> for episode in range(n_episode):
. weight = best_weight +
noise_scale * torch.rand(n_state, n_action)
. total_reward = run_episode(env, weight)
. if total_reward >= best_total_reward:
. best_total_reward = total_reward
. best_weight = weight
. noise_scale = max(noise_scale / 2, le-4)
cee else:
. noise_scale = min(noise_scale * 2, 2)
cee print('3nusog {}: {}'.format(episode + 1, total_reward))
. total_rewards.append(total_reward)

3nu3og 1: 9.0
3nu3og 2: 9.0
3nu3og 3: 9.0
3nu3og 4: 10.0
3nu3og 5: 10.0

3nu3og 996: 200.0
3nu3og 997: 200.0
3nu3og 998: 200.0
3nu3og 999: 200.0
3nu3og 1000: 200.0

BosHarpaskgeHue OT 3MM30[a K 3MM300Y YBeIMUMBAETCS. YKe B IepBbIX
100 smmm3opax oHo gocturaet 200 1 ocTaeTcss HA 3TOM ypoBHe. CpefHee MoJi-
HO€ BO3HArpaskAeHVe TOXKe BhINVISIAUT OOHAIEKMBAIOIIE

>>> print('CpeaHee nonHoe Bo3Harpaxaexue B {} anusogax: {}'.format(
n_episode, sum(total_rewards) / n_episode))
CpepHee nosnHoe BO3HarpaxgexHuwe B 1000 snusogos: 186.11

ANropuT™ BOCXOXKAEHUA Ha BeplunHy < 45

HOCTpOI/IM I‘pad)I/IK 3aBMCMMOCTU ITOJTHOTO BO3HArpakaeHms OT HOMepa 31N -
301a.

>>> import matplotlib.pyplot as plt
>>> plt.plot(total_rewards)

>>> plt.xlabel('3nu3o0g')

>>> plt.ylabel('Bo3suHarpaxgexue')
>>> plt.show()

Ha6mo,uaeTc;[OTYET/IMBbIN BOCXOOSIINIA TpeH[C BbIXOOOM Ha I1JIaTO, COOT-
BETCTBYIOII e MaKCMMa/JIbHOMY 3HAUY€HUIO.

200 +

175 A

150 A

125 A

100 A

BOBHana)K,D.eHVIe

75 1

50 4

254

T T T T T
] 200 400 600 800 1000
onu3op,

MoskeTe BBITIOJTHUTb HOBBIN TMpoIecc 06yyeHss HeCKOIbKo pas. ITo cpaBHe-
HUIO C 06YUYeHMeM C ITOCTOSHHBIM KO3 GUIIMEHTOM IIyMa pe3y/lIbTaThl OUeHb
YCTONYUBBI.

Terepb MOCMOTPUM, KaK 00yueHHas crpaTerust mosemet ce6st B 100 HOBBIX
3MU30/ax.

>>> n_episode_eval = 100
>>> total_rewards_eval = []
>>> for episode in range(n_episode_eval):

vee total_reward = run_episode(env, best_weight)
vee print('3nusog {3}: {}'.format(episode+1l, total_reward))
vee total_rewards_eval.append(total_reward)

cee

nusop 1: 200.0
nusop 2: 200.0
3nusog 3: 200.0

46 < Mpuctynaem K obydeHuto ¢ noakpenieHuem u PyTorch

3nu3og 4: 200.0
dnu3op 5: 200.0

dnu3oa 96: 200.0
3nu3og 97: 200.0
3nu3op 98: 200.0
dnusop 99: 200.0
dnu3og 100: 200.0

Boeruncinm CpenoHee IMOJTHOE BO3HArpaXxageHune:

>>> print('CpegHee nonHoe BosHarpaxgenue B {} snusopgax: {}'.format(n_episode,
sum(total_rewards) / n_episode))
CpegHee nosnHoe BO3HarpaxgexHue B 1000 snu3sogosB: 199.94

Kak Bumum, cpemHee IOSHOE BO3HArpaxkaeHMe B TECTOBBIX 3MM304aX OIM3KO
K MakCMMaJbHOMY 3HaueHMio 200, MOTyYeHHOMY MpU CJIeAOBAHUYM OOYYeHHOI
crpaterny. MoxkeTe MOBTOPUTh SKCIIEPUMEHT HECKOJIBKO Pa3 — Pe3ylbTaThl MaJo
pasHsTCS.

Kak 3to paboraer

AJITOPUTM BOCXOKIEHMS Ha BEPIIMHY MO3BOIMI JOOUTHCS ropasmo 60bLIero Ka-
YeCTBa, UeM CIyJaiiHbIl MTOUCK, IIPOCTO OGyarogapst MpMoOaBIeHMIO K BeCY afarThB-
HOTO IIIyMa B KaKIOM 3113074e. MOXKHO CUMTATh, YTO ITO YACTHBIN Cydait rpamu-
€HTHOTO CITycKa 6e3 I1eJIeBOil TepeMeHHO . [JOMmOoMHUTENbHbIN ITYM UTPaeT pojb
rpajiieHTa, XOTS ¥ BbhIOMpaeMoro ciryuaitHo. KoadduiyeHT myma — 3T0 CKOPOCTh
0b6yueHMs1, aanTUPYIOIAsICs K BO3HAIPAKIEHMIO B IIPeIbIAyIeM 3mu3ome. 1lenbio
MIPY BOCXOXKIEHUM Ha BEPIIMHY CTAHOBUTCS AOCTMKeHMEe MaKCMMaJbHOTO BO3HA-
rpakaeHus. Terepb areHT MPOXOIUT KaKIbIii STM30/1 He M30JIMPOBAHHO OT APYTHUX,
a UCIONIb3YeT MOTyYeHHbIE paHee 3HAHMS, YTOOBI BBIOVPATH eV CTBYS O0Iee Hamexk-
HO. Bo3HarpaxmeHue, Kak 1 ¢JiefiyeT U3 Ha3BaHUSI aJITOPUTMA, C K&KIbIM TM30[0M
YBEIMUMBAETCS, TIOCKOIbKY Beca ITOCTEIIEHHO MPUOIVIKAIOTCS K OTITUMAaTbHBIM.

710 eLe He Bce

MbI BuIenyu, 4TO BO3HArpaxkaeHyue MOXKeT NOCTMYb MaKCMMyMa YK€ B IepBbIX
100 snm3omax. A Helb3sl i OCTAHOBUTH OOyUeHMe 110 AocTuskeHun 3HaueHus 200,
KaK B CTpaTeruy ciryvyaifHoro noucka? Het, 3To He CIMILKOM yaauHas uzaesi. Hamom-
HMM, UTO IIPM BOCXOXKIEHMM Ha BEPIIMHY areHT HelIPEPbIBHO COBEPIIEHCTBYETCSI.
Ilaxke Haiins Bec, IpY KOTOPOM BO3HAarpaxiaeHue MaKCUMaJbHO, OH IIPOJOJIKaeT
JICKAaTh ONITMMYM B OKDECTHOCTM 3TOrO Beca. B JaHHOM ciydae IoOf ONTYMMYMOM
MMOHMMAETCSI CTPATETHs, pellaloliast 3a1auy o 6asaHcupoBaHuu crepskHs. Cormac-
HO BUKU-CTpaHuile https://github.com/openai/gym/wiki/CartPole-v0, «pemiaroimas»
o3HavaeT, yTo B 100 mocnemoBaTeNbHBIX 3MM30[4aX CpefHee BO3HArpaXkAeHue He
meHee 195.
VTOYHUM KPUTEPUIi OCTAHOBKY B COOTBETCTBUM C 3TUM OIIpe/ie/IeHNEM.

>>> noise_scale = 0.01
>>> best_total_reward = 0

AnropuTt™ rpagueHTa ctpaterun % 47

>>> total_rewards = []
>>> for episode in range(n_episode):
weight = best_weight + noise_scale * torch.rand(n_state, n_action)
total_reward = run_episode(env, weight)
if total_reward >= best_total_reward:
best_total_reward = total_reward
best_weight = weight
noise_scale = max(noise_scale / 2, le-4)
else:
noise_scale = min(noise_scale * 2, 2)
print('3nusog {}: {}'.format(episode + 1, total_reward))
total_rewards.append(total_reward)
if episode >= 99 and sum(total_rewards[-100:]) >= 19500:
break

: 9.0
: 9.0
: 10.0
: 10.0
: 9.0

w
=
=
w
(=]
=
Ui A WN R

3nu3og 133: 200.0
dnusog 134: 200.0
3nu3og 135: 200.0
dnu3og 136: 200.0
3nusog 137: 200.0

[Tocne snmsona 137 3agavya CYUTAETCS PEIIEHHOIA.

CM. TaKkXxe

TMonpo6Hee 06 aIrOpUTMe BOCXOXKIEHNUS Ha BEPIIVHY MOKHO Y3HATD U3 CIeIYIOMINX
MCTOYHUKOB:

O https://en.wikipedia.org/wiki/Hill_climbing;
O https://www.geeksforgeeks.org/introduction-hill-climbing-artificialintelli-
gence/.

ANroPUTM rPALMEHTA CTPATEMMU

IMocnemHuit pelienT B 3TOJ I71aBe, MOCBSIIEHHON oKpyXkatoleii cpene CartPole, oT-
HOCUTCS K aqrOpPUTMY TpaaueHTa ctpateruu. OH, OXKanyii, HECKOJIbKO CIOXKHee,
yeM HeoOGXOOMMO IJIsl PeIlleHUsT STOi MPOCTOil 3amaun, IJIsT KOTOPOi CJTy4aifHOTO
MONCKa U aJITOPUTMA BOCXOXKIEHMSI Ha BePIIMHY BIIOJIHE AOCTATOYHO. HO 3TO BbI-
JAIOLINIICS aJITOPUTM, KOTOPBIM MbI eIlle BOCITO/Ib3yeMcsl B 60jiee CIIOKHBIX Cpemax.

B anroputMme rpamyeHTa cTpaTeruy Beca MOAEIM M3MEHSIIOTCS B HAIIpaBJIeHUM
rpafeHTa B KOHIIE KaKAOTo 3m1304a. Kak BhIUMCISIOTCS TPAAMeHThl, Mbl 00bsIC-
HUM B clenyiomniem pasnene. Kpome Toro, Ha KaskoM Iiare aJropuTm MPOU3BOIUT
BBIOOPKY 3 CTpaTeruy Ha OCHOBE BEPOSITHOCTE, BEIUMCIEHHBIX C MCITOIb30BaHM-

48 < Mpucrtynaem K obydyeHnto ¢ noakpenieHuem u PyTorch

€M COCTOSTHU 1 BeCOB. Terepb BbIOMPaeMoe JeiiCTBIE OTIpe/iesIeHO He OTHO3HAYHO,
KaK IIpY Cy4aiiHOM ITOMCKE ¥ BOCXOKIEHMM Ha BepIIMHY (KOTrma BeIOMpaeTcs meii-
CTBMeE C OOJbILEl YMCTIOBOI OIIeHKO). TakuM 06pa3oMm, CTpaTerus rnepecraet ObITh
IeTepMUHUPOBAHHO, a CTAHOBUTCS CTOXaCTUYECKOIA.

Kak 3To penaetca

Peanusyem aJropuTM rpagyeHTa CTpaTeruu ¢ momoinbio PyTorch.

1. Kak u npexpge, UMIIOPTUPYEM HEOOXOAMMbIE TTaKeThl, CO3Ma UM IK3EMILISP
OKPY’KaIoIIei cpeaibl M MOJyYUMM PasMEPHOCTY MPOCTPAHCTBA HAOMIOIEeHMI
U NeCTBUIA.

>>>
>>>
>>>
>>>
>>>

import gym

import torch

env = gym.make('CartPole-v0')

n_state = env.observation_space.shape[0]
n_action = env.action_space.n

2. Ompepenum GyHKUIMIO run_episode, KOTOpas MoyyyaeT HAa BXO/e Beca, UMUTH -
pyeT s1u307, ¥ BO3BpalllaeT MOJTHOe BO3HATPaKIeHNe U TpaaneHTsl. TouHee,
Ha KaKAOM IIlare OHa BBITIOIHSIET CIeAYIOIIVe OeiCTBUS

co O O O O O

BBIUMC/ISIET BEPOSITHOCTY probs 000MX IeCTBUIA, 3HASI TEKyIee COCTOsI-
HIe U BXOJIHbIe Beca,;

BBIOMpAET AeiiCcTBMe action B COOTBETCTBUM C BBIUMCIEHHBIMY BEPOSTHO-
CTSIMU;

BBIUMC/ISIET TPOM3BoAHbIe d_softmax MyHKIIMM softmax, KOTOpOIt mepea-
IOTCST BEPOSITHOCTH;

JelTUT BbIYMC/IeHHbIE TTPOMU3BOAHbIE d_sof tmax HAa BEPOSITHOCTU U TIOTyda-
eT nmpousBogHbIe d_log siorapudma crpareruu;

MpUMeHseT mpaBuiao nuddepeHIPOBAHMS CIOKHOM QYHKUNMM, UTOOBI
BBIUMCIUTD TPAMEHT grad IO Becam;

3arIOMMHAeT pe3yIbTUPYIOIIMIA IPaiueHT grad;

BBITIONTHSIET AEelCTBIe, YBeIMUMBAET MOJTHOe BO3HATPaXKIeHue ¥ 0OHOB-
JISIeT COCTOSTHME.

Huske mpuBeieH COOTBETCTBYIONINI KO

>>>

def run_episode(env, weight):

state = env.reset()

grads = []

total_reward = 0

is_done = False

while not is_done:
state = torch.from_numpy(state).float()
z = torch.matmul(state, weight)
probs = torch.nn.Softmax()(z)
action = int(torch.bernoulli(probs[1]).item())
d_softmax = torch.diag(probs) -

probs.view(-1, 1) * probs

d_log = d_softmax[action] / probs[action]

Anroput™m rpaguenTa ctpaterun <% 49

grad = state.view(-1, 1) * d_log
grads.append(grad)
state, reward, is_done, _ = env.step(action)
total_reward += reward
if is_done:
break
return total_reward, grads

ITocste 3aBepuieHKs 3mmu3o8a GYHKIMS BO3BpalliaeT IOJTHOe BO3HArpaXkaeHme
¥ IPAJMEHTDI, BBIUMCIEHHbIE HA KaKIOM Iiare. DTy 3HaUYeHMs [IOHAm00ITCs
JIJISI OOHOBJIEHNS BECOB.

ITycThb uncio anu3omoB 6ymet paBHo 1000:

>>> n_episode = 1000

910 03HAUaeT, YTO PYHKLMS run_episode Oy/eT BhITIOJHEHA n_episode pas.
VHuIanu3mupyem MaTpuIly BecoB weight:

>>> weight = torch.rand(n_state, n_action)

BymeM 3armoMimHaTh ITOJIHOE BO3HATPaskJeHMe B KaXKIOM SMM30/Ie:

>>> total_rewards = []

B KOHIIe KakI0ro 311M307a Heo6X0aMMO OGHOBUTD BECa C YUETOM BhIUMCIEH-
HBIX I'pagueHToB. Ha KaXXgoM Iiare 3113073 BeC M3MEHSIETCS Ha BEJIUUMHY
cKopocms 00yueHus * zpadueHm, BBIYMCIEHHBI HAa 3TOM Illare, * nojHoe 803-
HazpaxcdeHue Ha OCTaBIIMXCS IraraX. CKOpOCTb OGYUeHMsI IIPUMMeM pPaBHOI
0.001:

>>> learning_rate = 0.001
Terneps MporoHuM n_episode 3130008

>>> for episode in range(n_episode):

vee total_reward, gradients = run_episode(env, weight)

vee print('3nusog {}: {}'.format(episode + 1, total_reward))
vee for 1, gradient in enumerate(gradients):

vee weight += learning_rate * gradient * (total_reward - i)
vee total_rewards.append(total_reward)

cesee

cesee

dnu3og 101: 200.0
dnu3og 102: 200.0
nusop 103: 200.0
dnu3og 104: 190.0
nusop 105: 133.0

cesee

cesee

dnu3og 996: 200.0
dnusog 997: 200.0
dnu3og 998: 200.0
dnusog 999: 200.0
nusop 1000: 200.0

50 < [puctynaem k oByueHuto ¢ noakpenneHuem u PyTorch

6. Bpiuncium CpenqHee IMOJTHOE BO3HarpakmeHue, IIOJIydeHHOE€ B aJITOPUTMeE
rpagmeHTa CTpaTermm:

>>> print('CpegHee nonHoe BosHarpaxpgeuue B {} anusopgax: {}'.format(
n_episode, sum(total_rewards) / n_episode))
CpepHee nosnHoe BO3HarpaxaeHuwe B 1000 snusopos: 179.728

7. HOCTI)OI/IM rpacbm(3aBMCUMMOCTU ITIOJTHOTO BO3HATpaXXAeHVA OT HOMepa 311N~
304a:

>>> import matplotlib.pyplot as plt
>>> plt.plot(total_rewards)

>>> plt.xlabel('3nu3o0g')

>>> plt.ylabel('Bo3Harpaxaeuue')
>>> plt.show()

Ha rpaduke oT4eT/IMBO BUAEH BOCXOASIIINIT TPEH/, C BLIXOJOM Ha IIaTO, CO-
OTBETCTBYIOIIlee MaKCHMMAaIbHOMY 3HAUEHMUIO.

200 4

175 1

150 4

125 4

100 +

BosHarpaxaeHue

75 4

50 A

259

T T T T
0 200 400 600 800 1000
onusop,

8. Temepb IMOCMOTPUM, Kak 0OyueHHas cTpaTerust mosemet cebss B 100 HOBBIX
SMMU30[aX.

>>> n_episode_eval = 100

>>> total_rewards_eval = []

>>> for episode in range(n_episode_eval):

vee total_reward, _ = run_episode(env, weight)

vee print('3nusop {}: {}'.format(episode+1, total_reward))
vee total_rewards_eval.append(total_reward)

Anroput™m rpagmenTa ctpaterun <% 51

3nu3og 1: 200.0
3nu3og 2: 200.0
3nu3og 3: 200.0
3nu3og 4: 200.0
3nu3og 5: 200.0

3nu3op 96: 200.0
3nu3op 97: 200.0
3nu3op 98: 200.0
3nu3op 99: 200.0
3nu3og 100: 200.0

BbIunmcanmM cpeHee MoJTHOe BO3HATrPasKIeHMe:

>>> print('CpeaHee nonHoe Bo3Harpaxgexue B {} anusogax: {}'.
format(n_episode, sum(total_rewards) / n_episode))
CpegHee nosnHoe BO3HarpaxjaexHuwe B 1000 anusogoB: 199.78

Kak BuauM, cpegHee TIOTHOe BO3HArpaskJeHMe B TECTOBBIX 3IMM30[ax OIM3KO
K MakcuMayibHOMY 3HaueHuio 200, MOIyYeHHOMY IIpU CJIeJOBaHUM OOYUYeHHO
cTpaTernu. Moxkete MOBTOPUTb SKCIIEPUMEHT HECKOJIBKO pa3 — pe3yabTaThl Majo
pasHATCS.

Kak 3to paboraer

B anropuT™me rpagueHTa cTpaTeruy ISl OOyUeHMsT areHTa BBITIOTHSIIOTCS HeO0b-
IIye maryu, M B KOHIIe 3113014 Beca OOHOBJISIIOTCSI B COOTBETCTBUM C BO3HArpaXk-
IeHUsSIMM, MOTy4YeHHbIMM Ha 3TMUX IIarax. MeToauka, MpuU KOTOPOI CTpaTerusi
OOHOBJISIETCSI, TIOC/IE TOTO KakK areHT IPOIle BeCh 3304 OO0 KOHIIA, Ha3bIBAeTCs
rpagueHToM crparteruu MouTe-Kapiio.

IlejicTBUe BHIOMPAETCSI HA OCHOBE pacIpeesieHNs] BePOSTHOCTEN, BBIUMCIEHHO-
IO I10 TEeKYILIeMy COCTOSSHMIO ¥ BecaM mopnenn. Hanpumep, ecii BepOSTHOCTU Aeli-
CTBUII «BJIEBO» U «BIIPABO» PaBHBI COOTBETCTBEHHO 0.6 1 0.4, TO IeliCTBME «BIIEBO»
BbIOMpaeTcst B 60 % ciayyaeB; 5TO He O3HAUYaeT, YTO 00S13aTeIbHO OYIEeT BhIOPAHO
LleJICTBIE «BJIE€BO», KaK B aJATOPMUTMax CIy4aifHOTO MOMCKa M BOCXOXKIEHMS Ha Bep-
UIMHY.

Mbl 3HaeM, UTO 3a KaX[Oblil IIar IO 3aBeplieHus] 3MMU30[a HAUMCISeTCS BO3-
HarpaxkgeHue 1. [TosTomy Gymylinee BO3HArpaxkaeHMe, HY>KHOE [IJIST BbIYMCIEHMS
rpagyeHTa cTpaTerMy Ha KaXIOM Ilare, paBHO UMCIy OcTaBuimxcs maros. [Tocie
KaKIOTO 31130/ MbI MCIIOb3yeM UCTOPUIO IpaiieHTa, YMHOKeHHYI0 Ha OymyIiee
BO3HArpaskaeHue, YToO6bI 0OOHOBUTH Beca C IIpMMeHeHeM MeTO/Ia CTOXaCTUUeCKOTO
rpageHTHOTO MogbeMa. [l03ToMy UeM JyIiMHHee 3130/, TeM CUIbHee 0OHOBJISIOT-
cs1 Beca. B uTore moBbIIaeTcs MaHC Ha MTOTyYyeHye 60JbIIero MOJTHOTO BO3HArPasK-
IeHus.

B Hauase 3TOro pasnena Mbl TOBOPWIM, YTO &JITOPUTM TpajueHTa CTpaTernu —
repebop IJIsT TAKO¥ IMTPOCTO¥ cpenbl, Kak CartPole, HO 3aTO Terepb MbI TOTOBBI K pe-
IeHuIo 60Jiee TPYOHBIX 3a/1a4.

52 < [puctynaem k oByueHuto ¢ noakpenneHuem u PyTorch

3710 eLe He Bce

IMocmoTpeB Ha rpadMK 3aBUCMMOCTYM BO3HATPAKAEHMSI OT KOJIMYECTBA SMMU30/I0B,
MOSKHO ITPUIATH K BBIBOY, UYTO OOyUeHVEe MOXKHO OCTAaHOBUTH PaHbIIIE, KAK TOJHKO
3ajava OygerT pelieHa, T. e. CpeiHee IMoJHoe Bo3Harpaskaenye B 100 mociaenoBaTesib-
HBIX 3ITM30/1aX OKaXKeTCsT He MeHbIie 195. [Ij1s1 3TOro Hy>KHO A06aBUTh B KOJ 00yUe-
HMS TaKyue CTPOUKM:

>>> if episode >= 99 and sum(total_rewards[-100:]) >= 19500:

br

eak

Emie pa3 BbimomHnuTe 06yueHne. B pesynbraTe 06ydeHMe JODKHO MPEKPATUTHCS
1OC/Ie HECKOMBbKUX COTEH 3TM30/I0B:

Jnusop
Jnusop
Jnusop
Jnusop
Jnusop

Jnusop
Jnusop
Jnusop
Jnusop
Jnusop

v A WN R

549:
550:
551:
552:
553:

¢ 10.0
: 27.0
: 28.0
¢ 15.0
: 12.0

200.0
200.0
200.0
200.0
200.0

CM. TaKkxke

IlomomHKUTe/IbHbIE CBEIeHMSI O MeTOAax rpajieHTa CTpaTeruyu CM. Ha CTpaHUIle
http://www.scholarpedia.org/article/Policy_gradient_methods.

naBa

MapKoBcKHe npouecchbl
NPUHATUA peLUeHUM

U AUHaAMUYecKoe
nporpaMmMmpoBaHue

B 3T0J1 r1aBe Mbl, BOOPYKMUBIIMCH PyTorch, mpogo/skmm myTeniecTBie B Mup obyue-
HMS C NOAKpeIIeHeM U pacCMOTPUM MapKOBCKME IIPOLecChl NMPUHATUSI pe-
meHuri (MIIIIP) 1 guHamMmuveckoe mporpaMMupoBaHye. Mbl HAUHEM C CO3T0aHMUS
MapKOBCKOJ memnu ¥ MIIIIP, exkaiiero B OCHOBE GOJAbIIMHCTBA anroputmon OII.
Ha npumepe oueHMBaHMUA CTpaTernu Mbl IIO3HAKOMUMCS C YypaBHeHMeM berima-
Ha. A 3aTeM IpUMeEHMM [Ba noaxoaa K pemreHno MIITIP: utepaiinio no HeHHOCTU
U UTepaluio Mo CTpaTerusiM. B kauecTBe MpuMepa BOCIIONIb3yeMCSI OKpy>Karolei
cpenoii FrozenLake. B KoHIle I1aBbl OyIeT TPOAEMOHCTPMPOBAHO IIPUMEHeHMe T~
HaMMUYeCKOTO MTPOTPaMMMPOBAHMS K PEeIIeHNIO a3apTHO UIPHI € IToaGpachiBaHEM
MOHETHI.

B aT0I1 rM1aBe MpUBOASTCS CJIEAYIONINE PELIeIIThI:
C03JaH1e MapKOBCKOIA 1IeTn;
OLleHMBaHMe CTPaTerun;
MMUTALMS OKpYyKatoleii cpeasl FrozenLake;
petieHrie MIITIP ¢ mOMOIIbIO aATOPUTMA UTEPALY TI0 IIEHHOCTH;
petteHye MIITIP ¢ mOMOIIIbIO aJTOPUTMa UTEepallUK IO CTPATETUSIM
UTpa ¢ mogdpacbiBaHKEM MOHETHI.

(ONONCNONONE)

TEXHWUYECKUE TPEBOBAHMS

1711 BBITIOJTHEHUST penerToB B 9TOI1 I71aBe HOHa,ZLO65{TC$[Z

O Python Bepcun 3.6, 3.7 unu 6osee mo3HE;
Q Anaconda;

54 < MapKoBCKME NPOLECChl MPUHATUS PELIeHNH 1 AMHAMUYECKOE MPOrpaMMUPOBaHHUe

O PyTorch Bepcuu 1.0 wiu 6osee mo3mHen;
O OpenAl Gym.

COo3AHME MAPKOBCKOW LIENK

Iy Havaja co3maauM MapKOBCKYIO liellb, Ha 6a3e KOTOpoii pa3paboraem MIIIIP.

MapKoBcKasl IIeIlb OIMChIBAeT ITOCAEeIOBATEIbHOCTb COOBITHUII, 0671aIaI0IIyI0
MapKOBCKMM CBOVCTBOM. OHa COCTOUT M3 MHOXeCTBa AOIMYCTUMBIX COCTOSTHUI
S§=1{s0,s1, ..., sm} u maTpuLpl nepexonos 1(s, s’), ameMeHTaMu KOTOPOJi SIBJISTIOTCS
BEpPOSITHOCTU Iepexoa U3 COCTOSIHUS S B COCTOsIHME S°. MapKOBCKO€e CBOMCTBO O3Ha-
yaer, 4yTo GyAyIllee COCTOSTHIME MpoIlecca 3aBUCUT TOJIBKO OT €ro TeKYIIero COCTOosI-
HMS U He 3aBUCUT OT IPOIUIbIX COCTOSIHUI. IHBIMM CJIOBAMU, COCTOSIHUE IIpoLiecca
B MOMEHT t + 1 3aBUCUT TOJIbKO OT COCTOSIHMS B MOMEHT t. B mpumepe HUKe TIpo1ecc
MIMeEeT JIBa COCTOSIHUSI — YUMUThCS U CIIaTh, B MapKOBCKO 11emu OHM 0603HaueHbI SO
u s1 cCOOTBeTCTBEHHO. [IpeTonokuM, YTO MaTpuila ITepexofoB BITISIAUT CIeAyi0-
M 06pa3om:

04 0.6
0.8 0.2

e

So (yumThCH)

-

0.6 | K

ACJ (cmtaTp)

0.2

B cnepnyoliiemM pasfesie Mbl BBIUMCIMM MaTPUITy TIepexofoB mocje k 1maros. Be-
POSITHOCTHM, 3aJlaHHble B HauaJbHOM paclpeleseHny COCTOsiHUIA, Hanpumep [0.7,
0.3], o3HauamwrT, 4To B 70 % C/ryyaeB IPOLLECC HAUMHAETCS B COCTOSIHUU «yUUTHCSI»,
a B 30 % — B COCTOSIHUM «CIIaTb».

Kak 310 penaetca

YT06BI CO34ATH U MTPOAHATM3MUPOBATh MAPKOBCKYIO II€ITb IJISI TIPOIIECCa «yUUThCSI—
CTIATb», BHITTOJIHUM CJIeAyIOIVe AeiCTBUS.

Co3pnaHue MapkoBckow uenun % 55

1. VmMmopTtupyem 6MOIMOTEKY U ONIPeqeM MaTPUILY TePEXOH0B:

>>> import torch
>>> T = torch.tensor([[0.4, 0.6],
[0.8, 0.2]])

2. BbIumMoIMM BepOoSITHOCTY TIEPEXOA0B MocJe K maros, B3siB k=2, 5, 10, 15 1 20:

>>> T_2 = torch.matrix_power(T, 2)
>>> T_5 = torch.matrix_power(T, 5)
>>> T_10 = torch.matrix_power(T, 10)
>>> T_15 = torch.matrix_power(T, 15)
>>> T_20 = torch.matrix_power(T, 20)

3. Omnpenenum HavyaJbHOE paclipefesieHue IBYX COCTOSTHUI
>>> v = torch.tensor([[0.7, 0.3]])

4. BbIUMCIMM pacIipegeeHye BeposITHOCTe cocTostHumii mocie k= 1,2, 5,10, 15,
20 mraros:

>>> v_1 = torch.mm(v, T)

>>> v_2 = torch.mm(v, T_2)
>>> v_5 = torch.mm(v, T_5)
>>> v_10 = torch.mm(v, T_10)
>>> v_15 = torch.mm(v, T_15)
>>> v_20 = torch.mm(v, T_20)

Kak 3to paboraer

Ha mrare 2 Mbl BbIYMISIEM BEPOSITHOCTM TEPEXOMIOB MMOC/Ie K IIaroB, JIJIs Yero uc-
MOJIb3yeM MaTpPUITy TIepexoioB B k-1 cTeneHM.

>>> print("BepoAaTHocTb nepexoga nocne 2 waros:\n{}".format(T_2))
BepoATHOCTb NMepexofa nocje 2 Waros:
tensor([[0.6400, 0.3600],

[0.4800, 0.5200]])
>>> print("BepoAaTHocTb nepexoga nocne 5 waros:\n{}".format(T_5))
BepoATHOCTb Nepexofa nocje 5 waros:
tensor([[0.5670, 0.4330],

[0.5773, 0.4227]])
>>> print("BepoAaTHocTb nepexoga nocne 10 waros:\n{}".format(T_10))
BeposTHOCTb nepexoja nocie 10 waros:
tensor([[0.5715, 0.4285],

[0.5714, 0.4286]])
>>> print("BepoAaTHocTb nepexoga nocne 15 waros:\n{}".format(T_15))
BeposTHOCTb nepexoja nocne 15 waros:
tensor([[0.5714, 0.4286],

[0.5714, 0.4286]])
>>> print("BepoAaTHocTb nepexoga nocne 20 waros:\n{}".format(T_20))
BeposTHOCTb nepexoja nocie 20 waros:
tensor([[0.5714, 0.4286],

[0.5714, 0.4286]])

56 < MapKoBCKME NPOLECChl MPUHATUS PELIEHNH 1 AMHAMUYECKOE MPOrpaMMUPOBaHHUe

Bunno, uto mmocsie 10—15 maroB BeposITHOCTY IIEPEXOI0B CXOASITCS. DTO O3HAva-
€T, UTO BHE 3aBMUCHMMOCTH OT TOT'0, B KAKOM COCTOSTHUM HaXOAUTCSI IIPOIeCC, BEPOSIT-
HOCTM Tepexona B cocTosthus sO 1 s1 paBHBI COOTBETCTBEHHO 57.14 % 1 42.86 %.

Ha mare 4 MbI BBIYMCIMIN pacpeaeieHie BepOSITHOCTE COCTOSIHMI rmocie k=1,
2,5,10, 15, 20 mmaros, OHO PaBHO IIPOM3BENEHNIO HAUaIbHOIO pacIpeeIeHUs U CO-
OTBETCTBYIOIIEN CTeleHM MaTPUIIbI TiepexonoB. [IpuBenem pe3yabTaThl:

>>> print("Pacnpegenenne coctoauuii nocne 1 wara:\n{}".format(v_1))
PacnpepeneHne cocTosHuii nocne 1 wara:

tensor([[0.5200, 0.4800]])

>>> print("Pacnpegenenne coctoauuii nocne 2 waros:\n{}".format(v_2))
PacnpepeneHne coCTOAHMIA Mocne 2 Waros:

tensor([[0.5920, 0.4080]])

>>> print("Pacnpegenenne coctoauuii nocne 5 waros:\n{}".format(v_5))
PacnpepeneHne cocTosHuii nocne 5 waros:

tensor([[0.5701, 0.4299]])

>>> print("Pacnpegenenne coctoauuii nocne 10 waros:\n{}".format(v_10))
Pacnpegenenne coctosHui nocne 10 waros:

tensor([[0.5714, 0.4286]])

>>> print("Pacnpegenenne coctoauuii nocne 15 waros:\n{}".format(v_15))
Pacnpegenenne coctosHui nocne 15 waros:

tensor([[0.5714, 0.4286]])

>>> print("Pacnpegenenne coctoauuii nocne 20 waros:\n{}".format(v_20))
Pacnpegenenne cocTosHui nocie 20 waros:

tensor([[0.5714, 0.4286]])

BunHo, uto nociie 10 maroB pacripeneiieHue CXOguUTCsi. BepoSTHOCTb B KOHEUHOM
UTOTe 0Ka3aTbcs B cocTostHmu SO paBHa 57.14 %, a B coctosiuuy s1 — 42.86 %.

Ecnu HauanbHOe pacripeseneHye BeposiTHoOcTei paBHo [0.7, 0.3], To mtocie ogHOM
MTepauyyu OHO CTaHOBUTCS paBHO [0.52, 0.48]. eTanu BhIUMCIEHNS] TTOKA3aHbI Ha
PUCYHKE HIDKeE.

04 s, 028

As, 042

0.8 So 0.24

*s, 0.06

[Tocre emie omHOV MTepalyy pacipeneneHne npuaumaet Bup [0.592, 0.408], kak
TOKa3aHO Ha CIeayIoIeM PUCYyHKe:

Co3naHue MMMP < 57

04 _ So 0.208

S: 0.312

08 S, 0384

A5, 0.09
0.2

U co BpeMeHeM pacIipeeieHye BeposITHOCTEl COCTOSIHMI CTaOMIM3MPYeTCsL.

3710 eLe He Bce

Ha camomM [fesie He3aBMCUMO OT HaUYaJIbHOTO COCTOSIHMSI TTpoliecca pacripeaeneHue
BEPOSITHOCTEN COCTOSTHMI Beerga cxomutes K [0.5714, 0.4286]. MokeTe ITpOBEPUTH
9TO OJ151 AIPYTUX HAYaJIbHBIX pacrpenenenuii, Hanpumep [0.2, 0.8] minm [1, O]. ITocne
10 maroB mbI IpuAeM K pacapenenennto [0.5714, 0.4286].

MapKoBcKasl Ierb Heo0s3aTeTbHO CXOAUTCST, 0COGEHHO KOTHA COAEPKUT Iepe-
XOZHbIe COCTOSIHMSI. HO ecsii OHa CXOOUTCS, TO KOHEUHOe paclipefiesieHyie He 3aBU-
CUT OT HauaJIbHOTO.

CM. TaKkxKe

JlonnonHuTe/IbHbIE CBEAEeHMS O MapKOBCKHUX HEIAX MOXXHO ITOJIYUYUTDb U3 CJIeAYIOIINX
OBYX BeJIMKOJICITHbIX CT&TE]?I, cogepyKalnx KpaCcBbie BU3Yya/IM3allN:

O https://brilliant.org/wiki/markov-chains/;
Q http://setosa.io/ev/markov-chains/.

Co3panmve MNP

MIIIIP ocHOBaH Ha MapKOBCKONM LieNM M BKJIIOUAeT areHTa U IPOLEeCC MPUHITUSI
pemrenuii. Ceiiuac Mbl pazpaboraem MIITIP 1 BoIYMCIUM (QYHKIUIO IEHHOCTU TIPU
OMNTUMAJIbHO CTpaTerumn.

[TomMMO MHOXeCTBa JOMMYCTUMBIX cOCTOsiHMM S = {s0, 51, ..., sm}, B onpefiesieHne
MIIITP BXOOUT MHOKECTBO felicTBuit A ={a0, al, ..., an}, monens nepexomnos 1(s, a, s'),
dbyHKUMS Bo3HArpakaeHus R(s) u koabduiimeHT obeciieHMBaHus y. MaTpulia epe-
xomoB T(s, a, ') comeps>kUT BepOSITHOCTY BbIOOPA AEICTBYS a B COCTOSTHUY S, KOTOPOe
IepeBoAuUT Tpoliecc B coctosiHue s'. KoahduiimeHT obeciieHMBaHMS y ONpeaessieT
KOMITPOMMCC MEXKIY BO3HArpasKIeHUSIMM B O/IVKaiIIeM ¥ OTIaJeHHOM OyIyIieM.

58 < MapkoBCKMe NPOLECChl MPUHATUS PELIeHNH 1 AMHAMUYECKOE MPOrpaMMUPOBaHHUe

YT06BI HEMHOTO YCIOXKHUTH Haml MIIIIP, mo6aBuMM B MPOIECC «YUUTHCS—CIATh»
elle OJHO COCTOSTHME — «<UTPaTh B UTPbI», s2. V1 TycTb MMeeTcs fBa fgeiicTBus: al (pa-
6otatb) 1 al (oTHbIXaTh). MaTpuiia mepexomnos T(s, a, s') pasmepa 3 *2 *3 umeeT BUZ;:

0.8 0.1 0.1
0.1 0.6 0.3
0.7 0.2 0.1
0.1 0.8 0.1
0.6 0.2 0.2
0.1 0.4 0.5

OTO O3HAYaeT, UTO eCJIu, HallpuMep, Bbl BoibepeTe aeiicTBue al B cocTostHMU SO,
TO C BepOSITHOCTBIO 60 % TepeiineTe B cocTosiHME S1 (CIIaTh — GBITh MOSKET, BbI YTO-
MMJIMCB), C BePOSITHOCTBIO 30 % — B cOCTOsTHME S2 (XOTUTE paccIabuThCS ¥ TOUTPATh)
U C BepOSITHOCTBIO 10 % Mpono/skuTe YUUTHCS (He MHaue TPy oronnk). Onpenenum
dbyHkumio Bo3HarpaxkaeHus [+1, 0, —1], KoTopas moouipsieT TSDKKuUiA Tpyn. OueBuz-
HO, UTO B 9TOM C/Ty4ae ONITUMA/IbHASI CTPATErys COCTOUT B TOM, UYTOOBI HA KasKAOM
1rare BeIGMpaTh meiictBue al (IpooosiKail YUUThCS, Belb 6e3 Tpyna He BbUIOBUIID
" PBIOKY 13 TIpyaa). s Havuaia MmonoxkuM KoshuimeHT obeciieHMBaHMS PaBHBIM
0.5. B aiemyromeM paszgesne Mbl BBIYMCIUM (PYHKIIMIO IEHHOCTU COCTOSIHMIA (ee
TaKke Ha3bIBAIOT MPOCTO PYHKIMEN HEeHHOCTH, UJIN, IJIsI KPaTKOCTH, IEHHOCTHIO
WIN OKUIAaeMOJ MOJIe3HOCThI0) IIPU (JIeA0BaHMM ONTUMAIbHOM CTPaTernu.

Kak aTo penaerca
Ins cospanus MITIIP BbITTOTHUM CJieAyIoLIye aru.

1. HWmnoptupyem 6m6mmuoreky PyTorch u onpemenm MaTpulLy IIepexoioB:

>>> import torch
>>> T = torch.tensor([[[0.8, 0.1, 0.1],
[0.1, 0.6, 0.3]],
[[0.7, 0.2, 0.1],
[0.1, 0.8, 0.1]],
[[0.6, 0.2, 0.2],
[0.1, 0.4, 0.5]]]
)

2. Ompenenum QYHKIMIO BOSHATPpaKAeHMs U KO3bDuIeHT 06eclieHMBaHMS :

>>> R = torch.tensor([1., 0, -1.])
>>> gamma = 0.5

3. B maHHOM CJIy4ae OIITMMaJIbHas CTpaTernsa — BCeroa BbI6I/IpaTb ,ZleﬁCTBMe a0:

>>> action = 0

CospaHue MMMP + 59

4. BeruncasieM IeHHOCTD V OIITMMAaJIbHOM CTpaTeruu, BBIUMCISIS 0OpaTHYIO MaT-
puny:
>>> def cal_value_matrix_inversion(gamma, trans_matrix, rewards):
. inv = torch.inverse(torch.eye(rewards.shape[0])
- gamma * trans_matrix)
. V = torch.mm(inv, rewards.reshape(-1, 1))
eee return V

5. Tlomaem Ha BXO[3TOii (YHKIIMM BCe MepeMeHHbIe, BKIIOUasl BepOSITHOCTHU
repexono0B, aCCOLMMPOBaHHbIe ¢ AelicTBreM al:

>>> trans_matrix = T[:, action]
>>> V = cal_value_matrix_inversion(gamma, trans_matrix, R)
>>> print("OyHkyua yenHocTn npu ontumanbHon ctpaterun:\n{}".format(V))
OYHKUMA LEHHOCTN NpNU ONTMMANbLHOW CTPATervu:
tensor([[1.6787],
[0.6260],
[-0.4820]1)

Kak 3to paboraer

B sTOM 110 mipeperna yIIpoOIleHHOM IPOLecce «YUYUTbCSA—CIaTb—UTPaTh» ONTUMAJIb-
Has cTpaTerus, T. €. CTpaTerus, Ipu KOTOPOI NOCTUTAeTCs MaKCUMaJbHOe IOJIHOe
BO3HArpaskaeHue, COCTOUT B TOM, YTOOBI Ha KaskIOM Ilare BbIOMpaTh geiictBue al.
OnHako B GOJBIIMHCTBE CJIyUyaeB BCe He TaK IMPOCTO. [IeiicTBusI, BbIOMpaeMblie Ha
pa3HBIX IlIarax, HeoOsI3aTeJIbHO COBIama0T. OOBIYHO OHM 3aBUCSAT OT COCTOSTHUS.
[Tostomy Ham nipuxopuTcs pewatb MIIIIP, T. e. HAXOOUTH ONITUMAJIBHYIO CTPATETUIO
B peaJIbHbIX CUTYaALIUSIX.

OYHKIUMSA LLEeHHOCTU CTPATeruu u3MepsieT, HACKOJIbKO areHTY BbITOLHO HAXOOUTh-
€S B K&KI0M COCTOSIHUM IIPU CJIeLOBaHUU NAHHOM cTpaTernu. YeM Boillle 1IeHHOCTD,
TeM JIyullle COCTOSIHME.

Ha mrare 4 Mbl BBIUMCAMIN LIEHHOCTD V ONITUMAJIbHOM CTpaTeruu, BOCIOAb30BaB-
II1Ch oOpaleHuemM MaTpuibl. CoryiacHO ypaBHeHUI0 be/iMmaHa, COOTHOIIIEHYe
MeXIy LIeHHOCTbhIO Ha 11are t + 1 1 Ha wiare ¢t umeeT BUJ,:

Vig=R+y+xTxV,

Korpa neHHocTb coitpercs, T. e. V,,; = V,, Mbl CMOXXeM TIO/TyYUThb 3HaueHue V crie-
IyIoIM 06pasom:

V=R+y«xTxV,
V=(U-y*T)1xR.

3mech I — emMHMYHAS MaTpulla, cogepkalasi eIMHUIIbI Ha [JIaBHOI OMaroHaaun
U HYJIV BO BCEX OCTAIbHbBIX MO3ULUSIX.

V pemtenus MIIIIP ¢ momoIbio o6palieHus: MaTPULbl €CTh BasKHOE JOCTOMH-
CTBO — MBI BCeraa IMojayvyaeM TOUHbBIN OTBeT. Ho eCcTh 1 HelOCTaTOK — OTCYTCTBUE
MacmTabupyeMocTi. EC/IM 41CI0 COCTOSTHUIT m BeJIMKO, TO O6palieHe MaTPUIbl
pasmMepoM mxim 06XOAUTCSI JOPOTO C TOUKY 3peHMsI 00beMa BbIUMCIeHUIA.

60 «+ MapkoBCKME NPOLECChl MPUHATUS PELIEHUI U AMHAMUYECKOE MPOrpaMMUPOBaHHUe

3710 eLe He Bce

IlaBajiTe MO3KCIIEPUMEHTHPYEM C PA3IMIHBIMM 3HAUEHUSIMU KO3 duiineHTa obec-
LeHMBaHMsI, HauaB ¢ 0, — 9TO 03HAYAET, UTO HAC MHTEPECYeT TOJbKO HEIIOCPEICTBEH-
HOe BO3HarpaxieHue.

>>> gamma = 0
>>> V = cal_value_matrix_inversion(gamma, trans_matrix, R)
>>> print("OyHkyua yeHHocTH npu onTumanbHoi ctpaterumn:\n{}".format(V))
OYHKYMA LEHHOCTM NpU ONTUMANLHOW CTpaTeruu:
tensor([[1.1,
[o.],
[-1.1D

910 coBmagaer ¢ GpyHKIME BO3HATPAKIEHMS, TOTOMY UTO MbI pacCMaTpMBaeM
TOJIbKO BO3HArPaskAeHMe, IOTyIeHHOe Ha CJIeTYIoNEeM X0 e.

Korma koadduieHT obecrieHMBaHMs YBEIMUMBAETCS, IPUOIMIKasICh K 1, Haun-
HAIOT YYUTHIBATHCS OyAyIIye BO3HArpakaeHus. BosbMeM, K mpumepy, y = 0.99:

>>> gamma = 0.99
>>> V = cal_value_matrix_inversion(gamma, trans_matrix, R)
>>> print("OyHKyua ueHHocTM npu onTumanbHoit ctpaterun:\n{}".format(V))
OYHKUMA LEHHOCTW NpU ONTMMANbLHOW CTPaTeruu:
tensor([[65.8293],
[64.7194],
[63.487611)

CM. TaKkxke

[Imapranka 1o anpecy https://cs-cheatsheet.readthedocs.io/en/latest/subjects/ai/
mdp.html MoskeT CJIy>KUTb KPaTKUM CIIpaBOYHMKOM 110 MITIIP.

OLIEHMBAHVE CTPATErMM

Borme MbI pazpaborany MIIIP u Berancanium GyHKIWIO LIEHHOCTY ONMTUMAaIbHOM
CTpaTerny C MOMOIIbI0 06paIieHnst MaTpuilbl. Mbl TaKskKe OTMETU/IM OTPaHUYEHME
9TOTO MOAX0Aa Mpu 60/bIMX m (opsaka 1000, 10 000 vim 100 000). B aTom perien-
Te GyeT pacCMOTpeH 6oJiee MPOCTOIT TTOAXO0]], — OLEHUBAHME CTPATETUMN.
OueHuBaHMe CTpaTermMy — UTEPaTUBHBIM aaropMTM. Mbl HauMHAaeM C MPOU3-
BOJIbHBIX LIEHHOCTEIA, a 3aTeM UTEPATUBHO Y/IydlllaeM MX, ONMpasiChb Ha ypaBHeHVe
MaTeMaTUYeCcKoro oxumaHus Beimana, no6uBasch cxogumoctu. Ha Kaxkmoit
UTEpaIun IEHHOCTb COCTOSTHUS S TIPU CJIENOBAHUU CTPATETMM T OOHOBJISIETCS T10

dbopmyre:
V(s) = Zn(s,a)[R(s,a) +vY_T(s,a,s)V(s)|

3mechb T(s, a) 0603HAYAET BEPOSTHOCTb BbIOOPA AEMCTBUSI d B COCTOSTHUM S TIPU
crenoBaHuM ctpaTteruu T, 1(s, a, s') — BepOSITHOCTD ITepexojia M3 COCTOSIHMUS S B CO-

OuenuBanue ctpaterum % 61

CTOSTHME S’ B pe3y/bTaTe BbIOOpa AeiicTBUS a, a R(S, a) — BO3SHArpaskaeHue, oayJeH-
HOE B COCTOSIHUM S ITPU BbIOOpE eVCTBUS a.

OCTaHOBUTb UTEPATUBHBII ITPOLIECC OOHOBJIEHMSI MOKHO ABYMSI criocobamu. ITep-
BBIii — 3a7aTh (PUKCHMPOBAHHOE UMCIO uTepauuii, ckaskem 1000 wim 10 000, HoO rTofo-
6paTb IpaBWIbHOE 3HAUEHMe ObIBAET TPYIHO. BTOpOI1 — 3a4aTh TOPOTOBOE 3HAUEHVE
(06bryHO 0.0001, 0.00001 MM YTO-TO B STOM POAE) U IpeKpaIlaTh MPOLecc, Korma
LIEHHOCTY BCEX COCTOSIHUI M3MEHSIIOTCSI Ha BeIMUYMHY, MEHBIIYIO ITOPOra.

B crnenpytoniem pasperne Mbl BBIIIOJHUM OlleHMBaHMe CTpaTerMu B Ipoliecce
«YYUTBCSI—CIATb—UTPATh» OJIS1 ONITUMAIbHON U CJIy4aiiHOM CTpaTeruii.

Kak ato penaerca

Paspa60TaeM AJITOPUTM OLl€eHMBaHMS CTpATEerMM M IIPYMMEHMM €ro K IIponeccy
«YUUTbCA—CIIATb—UTPATb».

1. Wmmoptupyem 6m6amotexy PyTorch u onpemennm MaTpuILy IepexoioB:

>>> import torch

>>> T = torch.tensor([[[0.8, 0.1, 0.1],
[0.1, 0.6, 0.3]],
[[0.7, 0.2, 0.1],
[0.1, 0.8, 0.1]],
[[0.6, 0.2, 0.2],
[0.1, 0.4, 0.511]
eee)

2. Ompemenum GYHKIMIO BO3HArpakgeHus: M Ko3hduiveHT obeclieHMBaHUS
(monosxkum ero paBHbIM 0.5):

>>> R = torch.tensor([1., 0, -1.])
>>> gamma = 0.5

3. Onpe,uem/IM IMOPOTr OCTAaHOBKU IIpOo1ecCa OIEeHMBAHNUA

>>> threshold = 0.0001

4. OmpeneaM ONTUMAJIbHYIO CTPAaTEruio, MpyU KOTOPOW BCerna BhIOMpPAEeTCs
nerictBue a0:

>>> policy_optimal = torch.tensor([[1.0, 0.0],
[1.0, 0.0],
[1.0, 0.0]])

5. Cosmamum GYHKLMIO OLIEHMBAHMSI CTpAaTeruy, KOTopas MpMHMMAeT cTpaTe-
T'UI0, MATPUILY ITEPEXOA0B, BOSHATPAKAEHMS, KOIGOUIMEHT 06eCIIeHMBAHMS
Vi TIOPOT ¥ BBIUMCJISIET LIEHHOCTb.

>>> def policy_evaluation(
policy, trans_matrix, rewards, gamma, threshold):
nnn
v OueHuBaeT CTpaTeruw
- @param policy: MaTpuya, copepxauwas BepOATHOCTH Bbibopa AeicTBHMiA
B KaXgoM COCTOAHMM

62 <« MapKOBCKME NPOLECChl MPUHATUS PELIEHUI U AUMHAMUYECKOE MPOrpaMMUPOBaHHUe

@param trans_matrix: maTpuua nepexogos
@param rewards: BO3HarpaxAeHWs B KaXAOM COCTOSHMM
@param gamma: Ko3¢ouuMeHT obecueHnBaHUA
@param threshold: oueHuBaHue npekpawaeTcsi, Kak TOJNbKO W3MEHeHue
LYeHHOCTel BCEeX COCTOAHUI OKa3biBaeTCA MEeHblle Mopora

@return: LEHHOCTW BCEX COCTOAHWA MPU CNEAOBAHWUW [AHHOW CTpaTerum
nnn
n_state = policy.shape[0]
V = torch.zeros(n_state)
while True:

V_temp = torch.zeros(n_state)

for state, actions in enumerate(policy):

for action, action_prob in enumerate(actions):
V_temp[state] += action_prob * (R[state] +
gamma * torch.dot(trans_matrix[state, action], V))

max_delta = torch.max(torch.abs(V - V_temp))

V = V_temp.clone()

if max_delta <= threshold:

break

return V

6. TlogcTaBMM CIOAA ONTUMAIbHYIO CTPATETMIO M BCe OCTAIbHbIE TTapaMeTphI:

>>> V = policy_evaluation(policy_optimal, T, R, gamma, threshold)
>>> print(

"OyHKYMA LUEeHHOCTM npu onTuManbHoit ctpaterun:\n{}".format(V))
OYHKYMA LEHHOCTW NpU ONTUMANBLHOW CTpaTerun:

tensor([1.6786, 0.6260, -0.4821])

IMomyunioch MOYTH TO Ke caMOoe, UTO TP 0OpalleHNM MaTPUIIbI.

7. Ternepb BO3bMEM JPYTYI0, CIYYaliHYIO CTPATErMIO U 3a0aJUM [IJIsl Hee OfVHa-
KOBBIE BEPOSITHOCTM BbIOOPA JIeCTBUIA:

>>> policy_random = torch.tensor([[0.5, 0.5],
cee [0.5, 0.5],
[e.5, 0.5]])

8. TloacraBuMm CIy4dariHyIO CTpaTETUIO U BCe OCTaJbHbIE TapaMeTphl:

>>> V = policy_evaluation(policy_random, T, R, gamma, threshold)

>>> print("OyHKkyua ueHHocTn npu cayvaiHoit ctpateruu:\n{}".format(V))
OYHKYMA LEHHOCTW NpM CNYYailHOW CTpaTeruu:

tensor([1.2348, 0.2691, -0.9013])

Kak 3to paboraer

MbI TOJIBKO UTO Bugenan, Kak MOXXKHO 3(1)(1)EKTI/IBHO BbIUMC/IINTD dJYHK]_U/IIO HEHHOCTU
C IIOMOIIBIO AJITOPUTMA OLI€HMBAHMS CTPATETUN. OTOT HpOCTOﬁ MTEpaTI/IBHbIﬁ mon-
X0 Ha3bIBae€TCsAa HpMﬁJII/I)KeHHbIM AVMHAMUYECKUM IIPOrpaMMMPOBaAHMEM. MbIi
HauyMHaeM CO CHy‘-Iaf/IHO BbI6paHHbIX HEHHOCTEﬁ COCTOSIHUMI U UTEepaTuBHO OOHOB-
JisieM MX, IIPYMMEHSSI YPaBHEHME MAaTeMATNYECKOTO OXKMOaHMA BeJUIMaHa, IIOKa He
OOCTUTHEM CXOOMMOCTMN.

OueHunBaHue cTpaternn % 63

Ha mrare 5 dJYHKLU/IfI OL€HVMBAHMNA CTPATEIMM BBITIOJIHAET CJIEOYIOIIe HEﬁCTBMHZ

O wuHULIMATU3UPYET LIEHHOCTU BCEX COCTOSTHUI HYIISIMU;

O O0O6HOBJISIET IIEHHOCTY B COOTBETCTBUM C ypaBHEHMEM MaTEeMAaTUUECKOTO 03KV -
naHus bennmana;

Q BBRIUKCISET MaKCHMaJIbHOE M3MeHeHMe IIeHHOCTEN 10 BCeM COCTOSIHUSIM;

O ecau MakCUMMaJIbHOE M3MeHeHMe GOoJIbIlle IOPora, TO MPOLIecC OOHOBIEHMS
MPoJo/KaeTcs. B MpOTUMBHOM C/Ty4yae OlieHMBaHMe 3aBepliaeTcs, M BO3Bpa-
MIAI0TCST LIEHHOCTY, BbIUMC/I€HHbIE Ha TTOC/IeAHEeN UTepaln.

HOCKOJ'II)KY AJITOPUTM OLIEHMBAHUA CTPpATEI MM HpM6J’[M)KeHHbe;I, pe3yabTaT MOXKeT
OT/INMYATbCA OT IIOJIYUYEHHOTO C TIOMOIIIBIO o6pameHI/{${ MaTpUIbI. Ho Ham 1 He HYX-
Ha TOYHAas d)YHKLU/ISI eHHoctu. Ko BCeMYy IIpouyemy, OMNMCaHHBIN aJITOPUTM CIIpaB-
JIs1eTCA C IPOKIIATUEM pasMEepPHOCTH, T. €. C MaC].LITa6I/Ip0BaHI/IeM BBIUMCIEHUIT Ha
MMJIMapabl COCTOSTHUIA. HOBTOMy 0OBIUHO AJITOPUTM OL€HMBAHUA CTPATETUN SABJIA -
€TCs IIPearnoYTUTE/IbHbIM.

U ele 3artoMHMTE, YTO OLleHMBaHME CTpaTermm MCIOJb3yeTCda OJisd mpeacKkasa-
HWUSA pe3yJIbTaTOB CTPATEI'MM, a He OJId pellleHVAd 3aaa4 YIIPDaBJI€HUs.

JTO elle He Bce

YT0o6BI COCTaBUTD GoJTee MOTHOE TpecTaBieHe 06 aaropuTMe, IOCTPOUM rpaduk
M3MeHEeHMs [IeHHOCTeil B 3aBUMCUMMOCTY OT HOMepa uTepauuu. [Ijig 3TOro HYKHO
BKJIIOUUTD B PyHKINIO policy_evaluation 3ammoMMHaHMe IIEHHOCTEN Ha KaXKI0M UTe-
pauumn.

>>> def policy_evaluation_history(
policy, trans_matrix, rewards, gamma, threshold):
ves n_state = policy.shape[0]
ves V = torch.zeros(n_state)
ves V_his = [V]
ces i=0
ces while True:
ves V_temp = torch.zeros(n_state)
ces i+=1
ves for state, actions in enumerate(policy):
ves for action, action_prob in enumerate(actions):
ces V_temp[state] += action_prob * (R[state] + gamma *
torch.dot(trans_matrix[state, action], V))
ves max_delta = torch.max(torch.abs(V - V_temp))
ves V = V_temp.clone()
ves V_his.append(V)
cee if max_delta <= threshold:
ces break
cee return V, V_his

Teneps nepemaaum GyHKIMM policy evaluation_history onTMMasbHYIO CTpaTe-
ruio, ko3 duieHT obeciienuBanyst 0.5 1 Ipoune mapaMeTpbl:

>>> V, V_history = policy_evaluation_history(
policy_optimal, T, R, gamma, threshold)

64 <« MapKOBCKME NPOLECChl MPUHATUS PELIEHUIA U AUMHAMUYECKOE MPOrpaMMUPOBaHHUe

U HaHeceM VMICTOPUIO M3MEHEHUS LIeHHOCTEf;I Ha I‘paCl)I/IKi

>>> import matplotlib.pyplot as plt

>>> s0, = plt.plot([v[0] for v in V_history])
>>> s1, = plt.plot([v[1] for v in V_history])
>>> s2, = plt.plot([v[2] for v in V_history])

>>> plt.title('OntumanbHas ctpaterus npu gamma = {}'.format(str(gamma)))
>>> plt.xlabel('UTepauuns’)

>>> plt.ylabel('lenHocTn cocTosuwmii')

>>> plt.legend([s0, s1, s2],

["State s0",

"State s1",

ces "State s2"], loc="upper left")

>>> plt.show()

Hwuke mokasaH pe3ysbTar:

OnTuManbHas ctpaterus npu gamma = 0.5

— CocrosiHue sO
1.5 4 CoctosHue sl
— CocTosiHue s2
X 1.0 A
=
juy
=x
o
G
8 05
(v}
=
=
3
Q 0.0
I
(7]
=
=0.5
_1.0 -
T T T T T T T T
o] 2 4 6 a8 10 12 14
Utepaums

Kak Buaum, ctabuamsays IpoUCXoaUT Ha UTepauyu ¢ Homepom ot 10 mo 14.
Ilasee BBIITOJIHMM TOT K€ KOJ, HO C APYTMMM KO3 PULIMeHTaMy 00eCileHMBaHMSI :
0.2 1 0.99. Inst kKoadduimenTa 0.2 momyyaeTcst TaKoOii rpaduk:

OueHunBaHue ctpatermmn % 65

OnTtumanbHas ctpateruns npu gamma = 0.2
— CocrosiHue sO
1.0 4 — Cocrosuue s1
— CocTosHue 52
=
=
Z o054
o
(9]
o
o
hy
5 0.0+
o
ey
ju
(]
=
70.5 -
_1.0 .
T T T T T T T T
0 1 2 3 4 5 6 7
Utepauuns

CpaBHMBAS C TIPEIBITYIIVIM, Mbl BUMM, UYTO YeM MeHbIe Ko3DPuimeHT, Tem
ObICTpEE CXOISATCS IIEHHOCTU COCTOSTHUIA.
g koadduimenTa 0.99 nomyuaetcs Takoit rpadux:

OntumanbHag ctpaterus npu gamma = 0.99

— CoctosHue sO
| Cocrositue s1
— CocTosHue s2

(=]
(=]

w - (%)
(=] o =}
L L L

LleHHocTH cocTosaHMMA
(o9
(=]

] 200 400 600 800
Utepaums

CpaBHMBAsI €r0 C MPeIbIAYIIMMI, MbI IIPUXOANUM K BBIBOLY, UTO YeM KO3 duiim-
€HT 60JIbIIIe, TeM O0JIbIlIe BpeMeH) He06X0AIMO, UTOObI IIEHHOCTY COITNUCH. Koad-
duieHT 06eclieHNBAHMS — 9TO KOMIIPOMICC MEKAY HeIloCPeICTBeHHbIM 1 OT/Ia-
JIEHHBIM BO3HArPaskIeHUSIMA.

66 <« MapKOBCKME NPOLECChl MPUHATUS PELIEHUI U AUMHAMUYECKOE MPOrpaMMUPOBaHHUe

UMUTALMA OKPYXKAIOWEN CPEAbLI FROZENLAKE

Te ontumanbHble cTpaTterun peuienuss MIIIP, koTopbie Mbl pacCMaTPUBAIN 10 CUX
1IOp, MHTYUTUBHO ITOBOJBHO OUeBMIHBL. HO B GOJBIIMHCTBE C/IyuyaeB 3TO HE Tak,
B UeM MbI yOeIMMcs Ha IpuMepe OKpykatoleit cpensbl FrozenLake, KOTOpBIit Oz -
TOTOBUT HaC K CJIEAYIOIIUM pellelTaM.

FrozenLake — TummuHasi okpyxkatomias cpega Gym ¢ OMCKPETHBIM ITPOCTpaH-
CTBOM COCTOSIHMIA. 3afaya 3aK/IOYaeTcsl B TOM, UTOOBI ITepeMeCcTUTh areHTa U3
HavaJbHOTO IOJIOKEHMSI B KOHEUHOEe B CeTOUHOM Mupe, u3berast paccTaBlIeHHbIX
Ha myTu joBymiek. CeTka uMmeeT pasmep 4x4 (https://gym.openai.com/envs/Frozen-
Lake-v0/) unu 8x8 (https://gym.openai.com/envs/FrozenLake8x8-v0/). B ceTke MoTyT
BCTPEYAThCS STUENiKM CIeAyI0IIUX TUTIOB:

O S: HauajabHOE MOJIOXKEHHUE;

O G: KOHeYHOe MONoXKeHNe, B KOTOPOM 3130/, 3aBepIliaeTcs;
O F: 3amepa3iiiee 03epo, 10 KOTOPOMY MOKHO XOJIUTb;

O H: nonbiHbS, B KOTOPO¥ 3130/, 3aBepIiaeTcsl.

Ornpeneiniensl yeTbipe aeictBusi: BjieBo (0), BHu3 (1), BripaBo (2) u BBepx (3).
ATeHTy HauMCISIeTCsl BO3HArpaskaeHue +1, ey OH YCIeIIHO obepeTcs o0 Lienu,
1 0 B mpoTMBHOM ciay4dae. [IpocTpaHCTBO HabIIOIeHII TTpeICTaBIeHO MacCMBOM U3
16 1enbIx yucesl, a BO3MOXHBIX IEVICTBUI1 YeThbIpe (€CTECTBEHHO).

V 9TO0it cpefbl eCTb OCOOEHHOCTb, OCJIOKHSIONIAST OOyueHMe: MMOCKOJIbKY Jief,
CKOJIb3KUI1, aTeHT He BCeraa ABMKeTCs Ty, Kyma cobupaics. Harpumep, oH MOKeT
COBMHYTbHCS BJIEBO WM BIIPABO, XOTSI HAMEpeBaJsCs AT BHUS.

MNoaroTtoBka

Iyt 9KCTIepUMEHTOB cO cpenoit FrozenLake cHauasia OTBIIEM ee B TAOJIMIIE OKPYsKa-
IOIIVIX cpel Ha cTpaHulle https://github.com/openai/gym/wiki/Table-of-environments.
JTa cpefa Ha3bIBaeTcCs FrozenLake-vo.

Kak aTo penaerca
g uvuranuyy cpensl FrozenLake pazmepa 4x4 BBITTOTHUM CIeIYIONTNE TeCTBYS.
1. Hmrmoprtupyem 6M6IMOTEKY gym M CO3IaAMM 9K3eMILIsIp cpenbl FrozenLake:

>>> import gym

>>> import torch

>>> env = gym.make("FrozenLake-vO")
>>> n_state = env.observation_space.n
>>> print(n_state)

16

>>> n_action = env.action_space.n

>>> print(n_action)

MMmuTtaums okpyskatowei cpeabl FrozenLake % 67

[lepeBenem OKPY)XalOIyI0 Cpeny B MCXOOQHOE COCTOsSIHME:

>>> env.reset()
0

AreHT HauMHaeT paboTy B coctosiHum 0.
Hapucyem oKpysKaromyio cpemy:

>>> env.render()

Coenaem miar BHM3, 3TO BO3MOXXHO!

>>> new_state, reward, is_done, info = env.step(1)
>>> env.render()

Pacrieyataem Bce BO3BpallleHHbIE JAaHHbIE 1 YOIMMCS, UTO areHT OKa3bIBa-
€TCSI B COCTOSTHUM 4 C BePOSITHOCTBIO 33.33 %:

>>> print(new_state)

4

>>> print(reward)

0.0

>>> print(is_done)

False

>>> print(info)

{'prob': 0.3333333333333333}

[MonyuyenHoe Bo3HarpaxkaeHue paBHo 0, TOTOMY UTO Mbl elle He JOCTUIIU
1enn, a duiar is_done paBeH False, TOTOMY UTO 31130/, ellle He 3aKOHYEeH. Mbl
BUMM, UYTO areHT MepexoAuT B COCTOsTHME 1 miix ocTaeTcs B cocTosiHmM O 13-
3a CKOJIb3KOJi TOBEPXHOCTH.

YT06BI MPOIEMOHCTPUPOBATH, KAK TPYIHO XOOUTH IO 3aMep3IIeMy 03epy,
peanusyeM CIy4yaifHyl0 CTPaTernio 1 BBIYMUINM CpeJiHee MoTHOe BO3HArpax-
menue B 1000 srmm3omoB. CHavaja HanmuieM QyHKIMIO, KOTOpast UMUTUPYET
onvH snm30p, B cpefe FrozenLake ¢ 3agaHHoIi cTpaTerueii 1 BO3BpaliaeT Moj-
HOe BO3HarpasxaeHue (Mbl 3HaeM, 4YTO OHO paBHO 0 win 1).

>>> def run_episode(env, policy):

. state = env.reset()

. total_reward = 0

. is_done = False

. while not is_done:

. action = policy[state].item()

. state, reward, is_done, info = env.step(action)
eee total_reward += reward

eee if is_done:

. break

eee return total_reward

Terepd BeImoaHMM 1000 amm3010B. B KaxkmoMm s1m3oae OyieM reHepupoBaTh
M MCITOTb30BaTh CIyUaifHyIO CTpaTeruio.

>>> n_episode = 1000
>>> total_rewards = []
>>> for episode in range(n_episode):

68 <« MapKkoBCKME NPOLECChl MPUHATUS PELIEHUI U AUMHAMUYECKOE MPOrpaMMUPOBaHHUE

10.

. random_policy = torch.randint(

high=n_action, size=(n_state,))
. total_reward = run_episode(env, random_policy)
. total_rewards.append(total_reward)

>>> print('CpegHee nonHoe Bo3HarpaxgeHue npu cayvanHon ctpaterun: {}'.format(
sum(total_rewards) / n_episode))
CpefHee nosHoe BO3HarpaxgeHue npu cayyaiHoi ctpaTteruun: 0.014

DTO O3HAYaeT, UTO B CpeHEM BEpPOSTHOCTb JOCTUYD 1IeJIM IIPU CIydaiiHOM
BBIOOPE JEeiCTBUI cocTaBiseT Bcero 1.4 %.

Temnepsb MO3KCIIEpUMEHTMPYEM CO CTpaTerueil caydainHoro moucka. Ha sramne
0Oy4YeHMsT Mbl CTyuaifHO reHepUpPyeM HECKOJbKO CTPATeruil U 3aroMyuHaeM
Ty, KOTOpasi IePBOI JOCTUTAET LIeJIN:

>>> while True:

vee random_policy = torch.randint(high=n_action, size=(n_state,))
. total_reward = run_episode(env, random_policy)

. if total_reward == 1:

. best_policy = random_policy

cee break

Pacreuataem HaMTYYIyiO CTPATETHIO:

>>> print(best_policy)
tensor([0, 3, 2, 2, 0, 2, 1, 1, 3, 1, 3, 0, 0, 1, 1, 1])

Tereps BeinosHMM 1000 30111300B € 3TO¥ CTpaTernein:

>>> total_rewards = []

>>> for episode in range(n_episode):

vee total_reward = run_episode(env, best_policy)

vee total_rewards.append(total_reward)

>>> print('CpegHee nonHoe BO3HarpaxgeHue npu cayuvaiiHoi ctpatermm: {}'.
format(sum(total_rewards) / n_episode))

CpefHee no/HOe BO3HAarpaxpeHue Npu CAyyaiHo#W cTpaTeruu: 0.208

B cpenHem anropuTm cirydaiiHOTO Moucka gocturaet 1enu B 20.8 % ciyvyaes.

3aMeTUM, YTo pesynbTaT MOXET CUIbHO BapbWpPOBaTbCS, MOTOMY YTO HE UCKIHO-
YEHO, YTO BblIGpaHHAs HaMKU CTpaTerus He OMNTUMasbHa, @ LUEan Mbl LOCTUIIM
TONbKO 611aroAaps CKoNb3KOMy fbay.

Kak 3to paboraer

B sTOM pelieniTe Mbl CJIy4aiiHO CTeHEepPUPOBAIM CTpaTeruio, coaepkaiyo 16 nei-
cTBUit oast 16 cocrostumii. He 3a6biBaiiTe, uTo B cpeme FrozenLake HampaBjieHue
IBVDKEHMS JIUIITh OTYACTU OIpeNesiseTcsl BBIOpaHHBIM AEeiCTBIMEeM. DTO IOBBIIIAET
HeoIpe/ie/IeHHOCTD YIIpaBIeHNMs.

T[Tocste BBIMTOMHEHMS KOZIa Ha I1are 4 OyeT HarevyaTaHa cJieqyionias MaTpuiia 4x4,
MIpeACTaBIISIONIAs 3aMmep3iiiee 03epo U stueliky (coctosinue 0), B KOTOPOii HAXOAUTCS
areHr:

MMuTaums okpyskatoweit cpeabl FrozenLake < 69

[Tocte BHITTOJTHEHMS IlIara 5 ceTka GyIeT OoTpaxkaTh IepeMellleHe areHTa BHU3
B COCTOsSIHUE 4:

Omu307, 3aBePIIAETCs, KOT/IA BHIITOJIHEHO OTHO U3 IBYX YCIOBUIA:

O areHT momnas B ofHy 13 siueek H (cocrostHus 5, 7, 11, 12). ITpu sTOM IOJTHOE
BO3HarpaxkaeHue 6ymet paBHo 0;

O areHT mnoras B siueiiky G (cocrostaye 15). [Tpy 3TOM ITOTHOE BO3HArpaXkIeHMe
OymeT paBHO +1.

370 eLe He Bce

YT00bI IeTaTbHO M3YUUTh OKPYsKAIOIIYIO cpeny FrozenLake, BKiIouast MATPUILy I1e-
PEXOI0B U BO3HATPAKIEHMS)i KAXKIO0M Maphbl COCTOSHME —IeliCTBYE, MOXKHO BOC-
[10JIb30BaThCsl aTpubyTom P. Hampumep, o1sl COCTOSIHUS 6 9TO BBIVISIAUT CIEIYIO-
MM 06pa3oM:

>>> print(env.env.P[6])

{0: [(0.3333333333333333, 2, 0.0, False), (0.3333333333333333, 5, 0.0,
True), (0.3333333333333333, 10, 0.0, False)], 1: [(0.3333333333333333, 5,
0.0, True), (0.3333333333333333, 10, 0.0, False), (0.3333333333333333, 7,
0.0, True)], 2: [(0.3333333333333333, 10, 0.0, False), (0.3333333333333333,
7, 0.0, True), (0.3333333333333333, 2, 0.0, False)], 3:
[(0.3333333333333333, 7, 0.0, True), (0.3333333333333333, 2, 0.0, False),
(0.3333333333333333, 5, 0.0, True)]}

Bo3sBpaiuaeTcs cioBapsb, cogepskaiunii kiawoun 0, 1, 2 u 3, npecTaBsIole YeThl-
pe meicTBuUs. 3HaUeHMeM, acCOIMMPOBAHHBIM C KJIIOUOM, SIBJISIETCSI CITUCOK Tepe-
MellleHui TIpu BbIGOpPEe COOTBETCTBYIOIIETo MeiicTBUs B dopmare: (BepOSITHOCTh
repexojia, HOBOe COCTOSIHMe, TIOJIyYeHHOe BO3HarpakjaeHue, ¢uiar 3aBepiieHus).
Harmpumep, eciiu areHT HaXOIUTCSI B COCTOSTHMM 6 M BbIOMpaeT AeiicTBue 1 (BHU3),
TO C BEPOSITHOCTBIO 33.33 % OH OKaXkeTcsl B COCTOSTHMM 5, ITOJTYYMB TIPU ITOM BO3-
HarpaxpgeHnue 0 — srm304 Ha 3TOM 3aBepiunTcsa. C BepOSITHOCTBIO 33.33 % OH OKa-

70 < MapKOoBCKME NPOLECChl MPUHATUS PELIEHNH 1 AMHAMUYECKOE MPOrpaMMUPOBaHUe

skeTcsl B coctostHuM 10, mosmyumB Bo3HarpaxkaeHue 0, U ¢ BepoSITHOCThIO 33.33 % —
B COCTOSIHUM 7, MOTy4YUB BOo3HarpaxkaeHue O 1 3aBepIilinB 3MU307.
Inst coctostHust 11 pesynbTat GyeT Takoii:

>>> print(env.env.P[11])
{0: [(1.0, 11, O, True)], 1: [(1.0, 11, O, True)], 2: [(1.0, 11, O, True)],
3: [(1.0, 11, 0, True)]}

HOCKOJ’[])KY MNpoBa/IMBaHMe B ITOJIBIHBIO 3aBepIllaeT 3IMIM30/[, M3 3TOIr0 COCTOSIHUA
HEeT HMKAKOr'0O BbIXOdad.
OcTanbHbIE COCTOSTHUS InpoBepbTe CAMOCTOATE/IbHO.

PeweHne MITP ¢ noMoLLbio AMTOPUTMA UTEPALIUK
Nno LEHHOCTU

MIIIIP cunTaeTcs pelleHHbIM, eCJIM HalileHa ONTUMasbHas cTpaTterus. B atom pe-
LIeTITe MbI HalileM ONTUMMAJIbHYIO CTpAaTeruio B OKpyKamwileit cpene FrozenLake,
MIPUMEHUB AJITOPUTM UTEPALMM IO IeHHOCTMN.

Ero upmest mpumepHO Takas ke, Kak B aJrOpUTMe OLieHMBAHUS CTpaTeruu. ITo
ele OVH UTepPaTUBHbBIN aJropuTM. B Hauase paboThl EHHOCTY COCTOSIHUIA TPO-
M3BOJIbHBI, a 3aTeM OOHOBJISIIOTCS C MPUMMEHEHMEM YpaBHEHMSI ONTMMAaJIbHOCTU
Bennmana, rnmoka He coiayTtcs. Ha Kaxkaoii utepanyum BMeCTO BBIUMCIEHUS MaTe-
MaTUYECKOTO OXMIAHMUS (CpemHero) MeHHOCTM IO BCEM HECTBUSIM BbIOMpaeTcs
nelicTBUe, TPU KOTOPOM IIeHHOCTh OKa3bIBAeTCsI MaKCUMaJIbHOIA:

V'(s) = max,|R(s,a) + Y>_T(s,a,s"V(s"),.

3mech V*(s) 0603HaUaeT ONTUMAJIbHYIO IIEHHOCTh COCTOSIHMS, T. €. LIEHHOCTb P
CJIeIOBaHNUM ONTUMAIbHOM cTpaTerun, 1(s, a, s') — BepOSITHOCTD Iepexoia U3 coc-
TOSTHUS S B COCTOSTHME S’ TIpU BBIGOPE eiiCTBUS d, a R(S, a) — BO3HArpaxkmeHme, mojy-
YEeHHOe B COCTOSIHUY S TIpU BbIOOpE HeiicTBUS a.

BpruncinBs onTuManibHbIe IIEHHOCTH, MbI JIETKO MOXXEM MOTYYUTh ONTUMAIbHYIO
CTpaTeruio:

(s) == argmax, > T(s,a,s")[R(s,a,s") + YV (5")].

Kak ato penaetcq

Inst umuranum cpensl FrozenLake ¢ TOMOIIBIO a/IrOpMUTMAa UTEPALIVIA 110 LIEHHOCTU
BBITTOJTHUM CJIeAyIol/e NeiCTBHS.

1. VimnoptupyeM Heo6XOomyMble GUOIMOTEKM U CO3MAAVM SK3EMILISIP CPembl
FrozenLake:

>>> import torch
>>> import gym
>>> env = gym.make('FrozenLake-v0')

PewweHwe MIIMP ¢ NoOMOLLbi0 anroputMa MTepaumum no LueHHoctn % 71

3agagum Kosdouiinent obecuenmuanust 0.99 u mopor cxogumoctu 0.0001:

>>> gamma = 0.99
>>> threshold = 0.0001

Onpe,uem/IM (I)YHKLU/IIO, KOTOpasd BbIUNCIAET OIITMMaJ/IbHbI€ LIEHHOCTH, ITPU-
MeHSS aJITOPUTM UTepalun 1o HeHHOCTN.

>>> def value_iteration(env, gamma, threshold):
nnn
MMHTMPYeT 33aAaHHYKW OKpYXawuyl CpPegy, NpUMEHAs aAropuTM MTepayuu no
L{eHHOCTH
@param env: uma OKpyxawuei cpegbl OpenAI Gym
@param gamma: Ko3¢ouUMEHT obecueHnBaHUA
@param threshold: obyuyeHue 3akaHuMBaeTCA, KOrAa LEHHOCTHU BCeX
COCTOAHMA 6YAYT MeHbWe 3TOro 3HaYeHus
@return: UEHHOCTW COCTOAHWA ANA ONTMMANLHOW CTpaTeruun
nnn
n_state = env.observation_space.n
n_action = env.action_space.n
V = torch.zeros(n_state)
while True:
V_temp = torch.empty(n_state)
for state in range(n_state):
v_actions = torch.zeros(n_action)
for action in range(n_action):
for trans_prob, new_state, reward, _ in
env.env.P[state][action]:
v_actions[action] += trans_prob * (reward
+ gamma * V[new_state])
V_temp[state] = torch.max(v_actions)
max_delta = torch.max(torch.abs(V - V_temp))
V = V_temp.clone()
if max_delta <= threshold:
break
return V

BrI3oBeM 3Ty (PYHKIINIO, TlepeiaB eil MMs OKpYsKalomeil cpeabl, KO3hPuim-
eHT 06eCIieHMBaHMS U ITOPOT CXOAMMOCTH, @ 3aTeM HareyaTaeM OITUMasIb-
HbIe [[EHHOCTM.

>>> V_optimal = value_iteration(env, gamma, threshold)

>>> print('OnTumanbHbie uennoctu:\n{}'.format(V_optimal))

ONTUMaNbHLIE LEHHOCTH:

tensor([0.5404, 0.4966, 0.4681, 0.4541, 0.5569, 0.0000, 0.3572, 0.0000, 0.5905,
0.6421, 0.6144, 0.0000, 0.0000, 0.7410, 0.8625, 0.0000])

3Has ONTUMAaJIbHbIe IeHHOCTH, HaIINIIeM CDYHK]_H/I}O, KOTOpasda CTPOUT I10 HUM
ONITMMAJ/IbHYIO CTpaTermio:

>>> def extract_optimal_policy(env, V_optimal, gamma):

CTPOMT ONTHUMANbHYW CTPaTerui, COOTBETCTBYWLYI ONTUMAajbHbiM LEHHOCTAM
@param env: uMa OKpyxawueit cpeabl OpenAI Gym

72 < MapKOBCKME MPOLECChl MPUHATUS PELIEHNH 1 AMHAMUYECKOE MPOrpaMMUPOBaHHUe

ces @param V_optimal: onTuManbHbie LEHHOCTH

. @param gamma: Ko3¢ouUMEHT obecueHnBaHUA

ces @return: onTuManbHas cTpaTerus

nnn

. n_state = env.observation_space.n

. n_action = env.action_space.n

. optimal_policy = torch.zeros(n_state)

. for state in range(n_state):

. v_actions = torch.zeros(n_action)

. for action in range(n_action):

. for trans_prob, new_state, reward, _ in
env.env.P[state][action]:

. v_actions[action] += trans_prob * (reward

+ gamma * V_optimal[new_state])
. optimal_policy[state] = torch.argmax(v_actions)
. return optimal_policy

6. Brbi3oBeM 3Ty QYHKIMIO, IEPEHAB €if MMSI OKpY>Kaloleii cpembl, Koahduim-
€HT 00€eCIIeHMBAHMS U ONTHMAaJIbHbIE IIEHHOCTH, @ 3aTeM HarleuaTaeM OITy-
MaJIbHYIO CTPaTeruio.

>>> optimal_policy = extract_optimal_policy(env, V_optimal, gamma)

>>> print('OntumanbHaa ctpaterusa:\n{}'.format(optimal_policy))
OnTuManbHasa cTpaTerusa:

tensor([0., 3., 3., 3., 0., 3., 2., 3., 3., 1., 0., 3., 3., 2., 1., 3.])

7. MbI XOTUM M3MePUTh, HACKOJIbKO XOPOIlla ONTUMaJIbHas cTpaterus. [10sTo-
My BbINOMHUM C Heli 1000 sn13010B 1 BBIUMCINM CpefHee BO3HATPAKIEHMe.
Iy 3TOTO BOCIIONMb3yeMCcst QYHKITME run_episode U3 MpeAbIIYIIETO pelenTa:

>>> n_episode = 1000

>>> total_rewards = []

>>> for episode in range(n_episode):

vee total_reward = run_episode(env, optimal_policy)

vee total_rewards.append(total_reward)

>>> print('CpegHee nonHoe BO3HarpaxjeHue npu onTuManbHoi ctpatermn: {}'.
format(sum(total_rewards) / n_episode))

CpegHee nosiHOe BO3HarpaxjeHue Npu ONTUMANbHOW cTpaTeruu: 0.75

Crnemyst ONTMMAJIbHO CTpaTeruu, areHT qobupaeTtcs 10 1enu B 75 % crydaeB. DTO
Jiy4diiiee, Ha YTO MOXXHO PaCCUMTBIBATD, KOTAA Jie[l, CKOJIb3KUIA.

Kak 3to paboraer

ANTOPUTM UTEpalUM IO IEHHOCTU HAXOOUT ONMTUMAIbHYIO (QDYHKINIO I€HHOCTH,
MUTEePATUBHO MPUMEHSIST ypaBHeHMe ONTUMAaIbHOCTY BeyimaHa.

Hiske mmokasaHa ele omHa ¢popmMa ypaBHEHMS ONTMMaIbHOCTK BeuimaHna, KoTo-
PYIO MOYKHO MCITOIb30BaTh, KOT/Ia BOSHATPAXKIEHNST, HAUMC/IIEMbIE CPeI0i, 3aBUCST
OT HOBOTO COCTOSTHUSI:

V'(s) := max, > T(s,a,s")[R(s,a,s") + YV (5")].

PewweHwe MIIMP ¢ NOMOLLb0 anropuTMa UTEePaLLMUm Mo LeHHoCTH % 73

3nech R(s, a, s’) — Bo3HarpaxaeHue, ojiydeHHOe IIpu Iepexoze M3 COCTOSTHUS S
B COCTOsIHMeE S’ B pe3ynbrare neiicTBus d. [IocKonbKy 3TO 6osee mogxonsiast hop-
Ma, MbI BOCITOJIb30Ba/IMCh €ii B QYHKIMMK value_iteration. Ha mrare 3 BBITTONHSIIOTCS
clenyrouye geicTBus:

Q VHNIMAIN3NPOBATh BCe HEHHOCTU HYJISIMU;

O 06HOBUTH LEeHHOCTN B COOTBETCTBMM C YPABHEHMEM OIITUMAaJIbHOCTU bem-
MaHa,;

Q BBIUUCIUTH MaKCHMMa/lIbHOE M3MeHeHMe IIeHHOCTel 110 BCeM COCTOSAHMSM;

QO ecau MakcuMMaibHOE M3MeHeHMe 60oJIbIlle Iopora, To 1mmporecc 0OHOBJIEHUS

MMpoao/IKaeTCs. B IIPOTMBHOM (CJ/iy4yae OLl€HMBAHME 3aBepIllaeTCdad M BO3Bpa-

IIAIOTCS LIeHHOCTU, BBIUMC/IEHHbIE Ha TT0C/IeHel urepanum, KOTOpbie CUMTa-

IOTCsI OIITMMAJIbHBIMM.

370 elle He Bce

MbI TO6GWINCH YaCTOTHI ycIexoB 75 % mipu koadduimenTte obecuenuBanus 0.99.
A Kak K03hPuULMEHT obeciieHMBaHKS BAMSIET Ha KauecTBO ajroputma? IToskcre-
pUMEHTHMpYeM C IPyTMMU 3HaYeHussMu, a umeHHo: 0, 0.2, 0.4, 0.6, 0.8,0.99, 1.

>>> gammas = [0, 0.2, 0.4, 0.6, 0.8, .99, 1.]

g Kakgoro kosdduiyeHTa obeclieHMBAHMS BBIUMCIMM CPEOHIOI YacTOTY
ycriexoB B 10 000 srin30m0B:

>>> avg_reward_gamma = []

>>> for gamma in gammas:

ves V_optimal = value_iteration(env, gamma, threshold)

cee optimal_policy = extract_optimal_policy(env, V_optimal, gamma)
ves total_rewards = []

ves for episode in range(n_episode):

cee total_reward = run_episode(env, optimal_policy)

ves total_rewards.append(total_reward)

ves avg_reward_gamma.append(sum(total_rewards) / n_episode)

[TocTpouMm rpaduk 3aBUCHMMOCTY CPeIHE 4acTOThI YCIIEXOB OT Ko3(duienTa
00eCLIeHVBaHNS:

>>> import matplotlib.pyplot as plt

>>> plt.plot(gammas, avg_reward_gamma)

>>> plt.title('3asucumMocTb 4YacToThl ycnexoe oT KoadduumeHta obecyeHusanna')
>>> plt.xlabel('KoadduuneHnt obecyenusanna')

>>> plt.ylabel('Cpeguss yactota ycnexos')

>>> plt.show()

74 < MapKOoBCKME NPOLECChl MPUHATUS PELIEHNH 1 AMHAMUYECKOE MPOrpaMMUPOBaHHUe

BOT Kak OH BBITVISIINT:

3aBUCMMOCTb YaCTOTbl ycnexos OT KOBCDCDVILI,VIEHTa obecueHnBaHus

0.7 4

0.6 1

0.5 4

0.4 4

0.3 4

0.2

CpepHss yacToTa ycnexos

0.1 4

0.0 1

T T
0.0 0.2 0.4 0.6 0.8 1.0
KoadduumeHT obecueHnBaHMs

Kaxk BMIMM, KaueCcTBO pacTeT o Mepe yBeanueHust KoadduieHTa obeciieHnBa-
HMSI. DTO MOATBEPKIAET TOT (PaKT, UTO MPY MajoM Koa(pdulieHTe mpeaIiouTeHne
OTIAeTCs HeroCPeICTBEHHOMY BO3HArpPaKIeHUIO, a TIPY OOIbIIOM YUYUTHIBAIOTCS
1 GymyIivie BOSHATpakIeHusI.

PeweHve MITP ¢ noMouibio AMTOPUTMA UTEPALIUK
MO CTPATEMMSIM

IOpyroit nonxon K peenuto MIIIIP gaeT anaropuTm urTepanymmn 1o CTpaTerusm, Ko-
TOPBII MBI ¥ O6CYIMM B 3TOM pPeLernTe.

AJITOPUTM UTepaL MM 110 CTPATErMsIM COCTOUT U3 IBYX UacCTeli: OLleHBaHye CTpa-
Teruu U yiayulileHye crpateruy. BHauase ctpareryus npoussonbHa. Ha kaxgoi ure-
panuy CcHavasa C IOMOIIbI0 YpaBHEHMS] MaTeMaTU4yecKoro oxkugaHus bennMaHa
BBIUMUISIIOTCS LIEHHOCTY COCTOSIHUI NIPU ClIeJOBaHUM ITOC/IeHeli CcTpaTerniu, a 3a-
TeM C IIOMOIIbI0 YpaBHEeHMSI ONTUMAJIbHOCTY be/iMaHa Ha MX OCHOBE CTPOMUTCS
yiIydllleHHas cTparerus. YepenoBaHue OLeHMBAHUS U YIyUlIeHUs MIPOAOJIKAETCs
JIO TeX I0p, TI0Ka CTpaTerus He nepecTaHeT U3MeHSThCS.

CHauasna peannsyem aJropuTM UTepalyy [0 CTpaTerusiM AJ1s1 OKpy>Kalolleli cpe-
nbl FrozenLake, a 3aTeM 06bsICHMM, KaK OH paboTaer.

PewweHwe MIIMP ¢ noMoLLbio anroputMa utepaumumu no crpateruam % 75

Kak 3T1o penaetca

Iy umuranyu cpensl FrozenLake ¢ TOMOIIbIO airopyUTMa UTEpPALu 110 CTPaTeru-
SIM BBITIOJTHUM CJIeIyIoIe neiiCTBUS.

1.

VMIiopTupyeM Heob6XomyMble GMOMMOTEKM U CO3HAAVM SK3eMIUISIP Cpembl
FrozenLake:

>>> import torch
>>> import gym
>>> env = gym.make('FrozenLake-v0')

3agagum KoadduimenT obecuenmuBanmst 0.99 u mopor cxogumoctu 0.0001:

>>> gamma = 0.99
>>> threshold = 0.0001

Onpenenum byHKIMIO policy_evaluation, KOTOpasi BEIUMCISIET IEHHOCTY IIPU
CJTemoBaHNUM 3aJaHHOI CTPATEeTM.

>>> def policy_evaluation(env, policy, gamma, threshold):

. BbiNO/IHAAGT OLieHMBaHME CTpaTeruun

ves @param env: uma oKpyxawuei cpegsl OpenAI Gym

cee @param policy: MaTpuya cTpaTeruu, cCopepxawas BEPOATHOCTH AEHCTBHN
. B KaX4oM COCTOAHMM

. @param gamma: Ko3¢duuueHT obecuyeHnBaHuA

. @param threshold: obyyeHue 3akaHuMBaeTcA, KOrga LEHHOCTH BCeX

. COCTOSHWA 6YAYT MEeHblle 3TOr0 3HaYeHus

. @return: LEHHOCTW NMpU CNeAOBaHMW 33JAHHOM CTpaTeruu

cee n_state = policy.shape[0]

eee V = torch.zeros(n_state)
vee while True:
eee V_temp = torch.zeros(n_state)

. for state in range(n_state):

. action = policy[state].item()

. for trans_prob, new_state, reward, _ in
env.env.P[state][action]:

. V_temp[state] += trans_prob * (reward
+ gamma * V[new_state])

eee max_delta = torch.max(torch.abs(V - V_temp))

cee V = V_temp.clone()

cee if max_delta <= threshold:

. break

cee return V

OTa QYHKIMS OYeHb ITOXOKa HA pa3pabOTAaHHYIO B MPEeIbIAYIIEM pelleriTe,
TOJIBKO JIOTIOTHUTEIBHO TTepenaeTcs mapameTp policy.

Tenepp paspaboTaeM BTOPYIO YaCTh aJrOPUTMa UTEpPaIMM 10 CTPATETUSIM —
yIy4llleHne CTpaTernn.
>>> def policy_improvement(env, V, gamma):

76 «

MapKOBCKlAE npoueccChbl NPpUHATUA peLIJeHVIFi N AMHaMMnyeckoe nporpaMMmMpoBaHue

YnyywaeT CTpaTeruw Ha ocHose LleHHOCTe‘V'I

. @param env: uma OKpyxawueir cpegbl OpenAI Gym
cee @param V: LeHHOCTH
. @param gamma: Ko3¢ouLMeHT obecueHnBaHUA
. @return: crparterua
. nnn
. n_state = env.observation_space.n
. n_action = env.action_space.n
vee policy = torch.zeros(n_state)
eee for state in range(n_state):
. v_actions = torch.zeros(n_action)
vee for action in range(n_action):

for trans_prob, new_state, reward, _ in
env.env.P[state][action]:

eee v_actions[action] += trans_prob * (reward
+ gamma * V[new_state])

cee policy[state] = torch.argmax(v_actions)

. return policy

31ech Mbl, ITOTb3YSICh YpaBHEHMEM ONITUMaJIbHOCTU be/iMana, 1o 3aJaHHbIM
IIEHHOCTSIM CTPOVIM YITYUIIIeHHYIO CTPaTeTnIO.

ViMest 06a KOMITOHEHTA, MOSKHO Peali30BaTh aJITOPUTM UTEPAIIMM 10 CTpaTe-
TUSIM:

>>> def policy_iteration(env, gamma, threshold):

cee MMUTUPYeT 33AaHHYW Cpefy C MOMOLbK ANropuTMa MTEpalUuK MO CTPATErusaM
cee @param env: uMa OKpyxawueit cpeasl OpenAI Gym
@param gamma: Ko3¢puuMeHT obecueHnBaHUA

vee @param threshold: obyuyeHue 3akaHuMBaeTCH, KOrAa LEHHOCTH BCEX
ces COCTOSHUIA 6yayT MeHble 3TOro 3HayeHus
cee @return: onTHUManbHbie 4EHHOCTH W ONTUMANbHAA CTPATerus ANA AAHHOW
. OKpYXawueil cpegpl

. nnn
. n_state = env.observation_space.n
cee n_action = env.action_space.n

vee policy = torch.randint(high=n_action, size=(n_state,)).float()
ces while True:

. V = policy_evaluation(env, policy, gamma, threshold)
. policy_improved = policy_improvement(env, V, gamma)
. if torch.equal(policy_improved, policy):

. return V, policy_improved

. policy = policy_improved

Bri3oBeM 3Ty YHKIINIO, TTIepeaB eif MMs OKpYKaroleii cpensl, Koaphuim-
€HT 00€eCIIeHMBAHMS U IOPOT CXOAMMOCTI:

>>> V_optimal, optimal_policy = policy_iteration(env, gamma, threshold)

MpbI HallJIM OTITMMAJIbHbIE [IEHHOCTU U OIITMUMAJIbHYIO CTPATErmnio. Pacneua-
TaeM UX:

>>> print('Optimal values:\n{}'.format(V_optimal))
Optimal values:

PeweHwe MTIMP ¢ noMoLLbio anroputMa utepaumu no crpateruam < 77

tensor([0.5404, 0.4966, 0.4681, 0.4541, 0.5569, 0.0000, 0.3572, 0.0000, 0.5905,
0.6421, 0.6144, 0.0000, 0.0000, 0.7410, 0.8625, 0.0000])

>>> print('Optimal policy:\n{}'.format(optimal_policy))

Optimal policy:

tensor([0., 3., 3., 3., 0., 3., 2., 3., 3., 1., 0., 3., 3., 2., 1., 3.])

Bce TO xe caMoe, 4YTO B aJITOPUTMe UTepaluu 110 IeHHOCTN.

Kak 3to paboraer

AJ'[I‘OpI/ITM urepanun 1o CTpaTermsam O6’be,Z[I/IHHET OLI€HVMBAHMeE U yIydllleHMe CTpa-
Terny B OHOM urepanumumn. Ha sramne oueHMBaHMUS CTpaTermm HeHHOCTU IIpn CjIem0-
BaHMUM 3a[IaHHOM CTpaTermmn (He OHTI/IMaHbHOﬁ) BbIUMCIAIOTCA C IIOMOIIIBIO YPAaBHE-
HMSI MaTeMaTUUYeCcKoro oxkmuaaHus bejanmana g0 CXOOMMOCTH:

V(s) = > T(s,a,s")[R(s,a,s") + yV(s')].

3mechb a = T(s) — geiicTBUe, MpeANIpUHMMaeMOe B COCTOSIHUM S TIPU CJIeJOBaHUN
CTpaTeruu .

Ha srame ynyuiiieHust cTpaTerusi OGHOBJISIETCS Ha OCHOBE BBIYMCIEHHOI paHee
dbyHkIMM eHHoCcTH V(S) C IpMMeHeHeM ypaBHEHMS ONITMMAaTbHOCTY beimaHa

n(s) == argmax, y T(s,a,s")[R(s,a,s’) + yYV(s')].

OTu IBa IIara IOBTOPSIOTCS, IIOKA CTpaTerusl He coimeTcsi. B 9aTOT MOMEHT I10-
CJIeHSIST CTpaTerust U COOTBETCTBYIOMIAS el QYHKIMS IeHHOCTHU SIBJISIIOTCSI OTITH-
ManbHbIMM. Ha mare 5 ¢yHKius policy_iteration BBIMTONHSIET Caemyiomiye mei-
CTBUS:

VHUIMATU3UPYET CIyYaifHyl0 CTPaTeruio;

BBIUMC/ISIET IEHHOCTH, ITOJTb3YSICh aJITOPUTMOM OII€HMBAHMS CTPATET N ;
TIOJTyYaeT YIy4YIIeHHYI0 CTPaTernio Ha OCHOBE BbIYVMCIEHHBIX IIeHHOCTEI
€TV HOBAsI CTPATErus OT/INYAETCSI OT CTAPOil, TO OGHOBJISIET CTPATETHIO U TIe-
PEXOIUT K CJIEYIOIEel uTepaun. B MpoTMBHOM CiTyJae MK/ 3aBepIIaeTcst
¥ BO3BPAIIAIOTCS HaliIeHHbIE IIEHHOCTY U CTPaTEeTMsl.

000

3T0 eLe He Bce

MbI TOJIBKO UTO PEINIvIN 3aauy [jist OKpysKatoleit cpeqsl FrozenLake ¢ TTOMOIIbIO
aJITOPUTMa UTEpaLMK 10 CTPATerusiM. BosHMKAEeT BOIIPOC, YTO JIyUIle: UTepals
I10 LIEHHOCTY VI UTepaLys 110 cTpaTerusm. ECTh Tpu c1ydasi, KOrma MMeeT CMBbICIT
MPeIIoYecTb OHO JPYTOMY:

Q ecnn HEVICTBMV[MHOTIO, HOJ'IbByﬁTer AJITOPUTMOM UTepalu I10 CTpATETUSAM,
IMOCKOJIbKY OH, CKOpee BCero, COVI,Z[QTCH 6bICTpee;

Q ecnn ,Z[EIZCTBI/IIZ Majio, HOJ'IbByﬁTer AJITOPUTMOM UTepaluu I10 HEeHHOCTH;

Q ecnn Y>Ke MMEETCS XOopo1nad CTpaTernsa (HOJ’[Y‘JEHH&H VHTYUTUBHO UJIN 6aro-
napsa 3HaKOMCTBY C Hpe,I[MeTHOﬁ 06HaCTbIO), HOHbSYﬁTECb AJITOPUTMOM UTE-
panyun 1o CTpaTermsm.

78 < MapKOoBCKME NPOLECChl MPUHATUS PELIEHNH 1 AMHAMUYECKOE MPOrpaMMUPOBaHHUe

B oCTa/IbHBIX C/TyUYasIX aJITOPUTMbI UTE€PALMANA [10 LEHHOCTH I [10 CTPATEIMSIM IIPH-
MepHO 9KBMBaI€HTHBI.

B ciiemyroiieM pelerte Mbl IpUMeHMM 06a aIrOpMTMa K pelIeHNI0 3a0aum O II01 -
OpachIBaHMM MOHETHI 1 IIOCMOTPUM, KaKoji coiimeTcst GbicTpee.

CM. TaKkXKe

MoskeTe MIPUMEHUTD MOTyUeHHbIe 3HAHMS K 3aMep31lIeMy 03epy OOJbIIero pasme-
pa, cpene FrozenLake8x8-v0O (https://gym.openai.com/envs/FrozenLake8x8-v0/).

UrPA ¢ NOABPACLIBAHMEM MOHETDI

AsapTHas urpa c mogbopacbiBaHMeM MOHETBI M3BeCTHA KaXKIOMY. B KaskIoM payHie
UTPOK CTAaBUT Ha BblNaZieHKe opia. Ein geiicTBUTeNbHO BbIMAl OPeJI, UTPOK MOy~
YaeT Ty CyMMY, KOTOPYIO TTIOCTaBWJI, B IPOTUBHOM CJTydae TepsieT CBOIO CTaBKy. Mrpa
MIPOJO/DKAETCS 0 Pa30peHMs] UTPOKA MJIM A0 BBIUIPBIIIA ONpeneseHHON CyMMBbI
(ckaxkeM, 6osbire 100 mommapos). IIpeAronoxkumM, 4TO MOHETa HeCMMMeTpUUHasl,
Tak 4TO opes BbimazgaeT B 40 % ciaydaeB. CKOMTBKO AOJKEH MOCTaBUTh UTPOK, UTO-
6bI MaKCMMM3MPOBATD MIAHCHI HA BBIMTPBIII, C yUETOM CBOEro TEKYIIEero Kammrasa
B K&k oM payHze? IHTepecHas 3amauka, He TipaBaa am?

Eciu open Beinagaer vaiie, ueM B 50 % cirydyaes, TO U 06CY;KIaTh Heuero. Irpok
MIPOCTO MOKET KaskKAblif pa3 CTaBUTb OJMH JOJIIAp ¥ B GOJBIIMHCTBE CTy4aeB OCTa-
HeTcsl B BeIMTpbIle. EciM MOHeTa cMMMeTpUYHasi, TO IIPU CTaBKe B OOMH JOJIap
UTPOK GYIeT BBIMIPHIBATH IpUMepHO B 50 % cryuaeB. A BOT KOTa BepOSITHOCTD
BBITIaJIeHNsT opiia MeHbIe 50 %, 6e30macHO CTaBKM He CyIecTBYyeT. U cayvaitHas
cTpaTerus Toxke He momoiinmet. Heo6xomumo mpuberHyTh K M3y4eHHbBIM METOIaM
06yueHMs C TOJKPeTUIeHNEM, UTOObI CTABUTD IIO-YMHOMY.

HauHeMm ¢ ITOCTAaHOBKM 3a7auli O IMOAOPAChIBAHMM MOHETbI Kak MIIIIP. 9To smu-
3oaMuecKkuit KoHeunblit MIITIP 6e3 oGeciieHMBaHMS, 06IaAIOMINIA CIETYIONMMU
CBOIICTBAMMU:

O cocTossHMEM SIBJISIETCST KaIllUTal UTpoKa B fmosuiapax. Becero umeetcst 101 co-
crosiaue: 0, 1, 2, ..., 98, 99, 100+;

O Bo3HarpaxieHue paBHO 1, eciu JOCTUTHYTO cocTossHMe 100+; nHaue BO3Ha-
rpaxkgeHue paBHo 0;

O peiicTBMe — 3TO CYyMMa, KOTOPYIO UTPOK CTaBUT B payHAe. B cocTosiHMM S 10-
MyCTUMBI fieficTBuUS 1, 2, ..., min(s, 100 — s). Hampumep, ecsin y urpoka 60 moJi-
JIApOB, TO OH MOXKET ITOCTaBUTD JI0OYI0 cyMmMy OT 1 10 40. CraBuTh 60bIIIe 40
He MMeeT CMbICJIa, TTOCKOJIbKY 3TO MOSKET JIMIIb YBeIMUUTD ITIOTePU, HE TIOBbI-
11asi NIaHCOB Ha BBIATPBIII;

O Kakoe COCTOSIHME HACTyMaeT Iocje IeliCTBUS, 3aBUCUT OT BEPOSITHOCTU BbI-
nageHus opiaa. ormyctum, oHa paBHa 40 %. Torga ciegyrommuM COCTOSIHUEM
IOCJIe TEeMCTBUS a B COCTOSIHUM S O6ymeT s + a B 40 % cinyyaeB u s —a B 60 %
CJIyyaes;

O npouecc 3aBepiiaeTcs B coctossHMsx 0 u 100+.

Wrpa c nogbpacbiBaHueM MoHeTbl % 79

Kak 3T1o penaetca

CHavasia pelm 3afady o oaO6pachlBAaHMM MOHETBI C TTOMOIIBIO AITOPUTMA UTepa-
LMY T10 IIEHHOCTMU, IJIS YeTO BBITMIOTHUM CIeAYIOIIVe NeiiCTBUSI.

1.

Wmnoptupyem PyTorch:
>>> import torch

3agagum Kod3(phuiieHT o6eciieHMBaHMSI M TTIOPOT CXOAMMOCTH:

>>> gamma = 1
>>> threshold = 1le-10

KosdduimenT obecriennBanus paBeH 1, moromy uto B aTomMm MIIIIP obecrie-
HMBaHMS HET, a TIOPOr BbIOpAaH MaJIeHbKMM, IIOCKOJIBKY MbI OXXUOA€M, 4TO
LIeHHOCTH IeICTBUI OYIYyT HEBEIMKMY, T. K. BO3HATPAKAEHMS 3a BCe AeiCTBHSI,
KpoMe repexojia B IToc/IeHee COCTOsTHMe, paBHbI 0.

Omnpenenum nmapamMeTpbl OKpPYsKaloIeil cpeibl.
Bcero numeercs 101 cocrossHue:

>>> capital_max = 100
>>> n_state = capital_max + 1

BosHarpaskaeHust 3aJal0Tcs TakK:

>>> rewards = torch.zeros(n_state)
>>> rewards[-1] = 1

>>> print(rewards)
tensor([0., 0., 0.,
., 0.,

. .

. .

. .

o 00 0o
o 0o 00
o 00 0o
-
o 00 0o
-
o 00 0o
.
0O 00000
-
0O 00000
-
0O 00000
-
O 00000
-
O 00000
-
B 0O 000 o
-
o 00 0o
-
o 00 0o
-
o 00 0o
-
o 00 0o
-
o 00 0o
-
o 00 00
-
o 00 0o
-

. .

[Mpenmonoxum, uTo open BbinagaeT B 40 % ciydyaes:
>>> head_prob = 0.4
[TomecTM 3T mapamMeTphl B CJIOBAPb:

>>> env = {'capital_max': capital_max,
'head_prob': head_prob,
'rewards': rewards,
'n_state': n_state}

Tenepb Hanmimem (.][)YHKLU/IIO, KOTOpad BbIUMUCILAET ONTMMAaJ/IbHbI€ IEHHOCTH,
MIPpUMEHAA aJITOPUTM UTEPpaALVM 110 IEHHOCTU.

>>> def value_iteration(env, gamma, threshold):

PewaeT 3ajjayy o noabpachiBaHMM MOHETHl C MOMOLbK aArOpUTMa
MTEepayuu no LEeHHOCTH
@param env: oKpyxawuas cpega

80 «

MapKOBCKlAE npoueccChbl NPpUHATUA peLIJeHVIFi N AMHaMMnyeckoe nporpaMMmMpoBaHue

@param gamma: Ko3¢puuMeHT obecueHnBaHUA

cee @param threshold: oyeHuBanue 3aKkaHuMBaeTCA, KOrga LEHHOCTH BCeX
vee COCTOAHNA 6YAYT MeHbWe 3TOr0 3HaYeHua

ces @return: LEHHOCTW NpU CNEAOBAHWN ONTUMaNbHOW CTpPaTeruu Ans

cee JaHHOW cpeppl

cee head_prob = env['head_prob']

. n_state = env['n_state']

cee capital_max = env['capital_max']

cee V = torch.zeros(n_state)

. while True:

vee V_temp = torch.zeros(n_state)

cee for state in range(1, capital_max):

cee v_actions = torch.zeros(min(state, capital_max - state) + 1)
. for action in range(1, min(state, capital_max - state) + 1):
cee v_actions[action] += head_prob * (

rewards[state + action] + gamma * V[state + action])
v_actions[action] += (1 - head_prob) * (
rewards[state - action] + gamma * V[state - action])

vee V_temp[state] = torch.max(v_actions)
cee max_delta = torch.max(torch.abs(V - V_temp))
vee V = V_temp.clone()
if max_delta <= threshold:
vee break
v return V

Ham HYXHO TOJBKO BBIUYMUCIUTD LIEHHOCTU COCTOSTHMI OT 1 10 99, MOCKOMBbKY
st cocrosiHmit 0 u 100+ oHu paBHbI 0. B COCTOSSHUM S BO3MOXHBI I€/ICTBUS
ot 1 1o min(s, 100 — s). TO cnemyeT MMeTb B BUIY IIPU PellleHUy YypaBHEeHUs
ONnTUMaJbHOCTU beimaHa.

Hanmmem d)YHKL[I/I}O, KOTOpasda BbIUMCIAET OIITMMa/JIbHYIO CTPATEIMIO IO OII-
TUMaJIbHBIM LI€HHOCTSIM.

>>> def extract_optimal_policy(env, V_optimal, gamma):

ces CTPONT ONTUMaNbHYW CTPATEruio MO ONTMMANbHLIM LEHHOCTAM
@param env: oKpyxawuas cpega

. @param V_optimal: onTuManbHble LYEHHOCTH

. @param gamma: Ko3¢ouLUMeHT obecueHnBaHUA

ces @return: onTUManbHaa cTpaTerus

head_prob = env['head_prob']

cee n_state = env['n_state']

. capital_max = env['capital_max']

eee optimal_policy = torch.zeros(capital_max).int()

vee for state in range(1, capital_max):

vee v_actions = torch.zeros(n_state)

vee for action in range(1, min(state, capital_max - state) + 1):
. v_actions[action] += head_prob * (

rewards[state + action] +
gamma * V_optimal[state + action])

Wrpa c nogbpacbiBaHuem mMoHetbl % 81

v_actions[action] += (1 - head_prob) *
(rewards[state - action] +
gamma * V_optimal[state - action])
optimal_policy[state] = torch.argmax(v_actions)
return optimal_policy

Y HaKOHeIl, BbI30BEM 3Ty (QDYHKIMIO, TlepeaB eii cpeny, KoadgduimeHT obec-
[IEHVBAaHUS U MOPOT CXOAMMOCTY, UYTOObI BBIUMCIUTH ONTUMAJIbHBIE IIeH-
HOCTU ¥ ONITUMAJIBHYIO CTpaTeruto. M 3amMepum, CKOJIbKO BpeMeH! YIILJIO Ha
pemenne storo MIIIP, a mOTOM CpaBHUM CO BpeMeHeM paboThl aJropuTMa
UTepaLum Mo CTpaTernsim.

>>> import time

>>> start_time = time.time()

>>> V_optimal = value_iteration(env, gamma, threshold)

>>> optimal_policy = extract_optimal_policy(env, V_optimal, gamma)

>>> print("[na peweHna METOAOM MTepaUWUM MO LEHHOCTW MOHAA06MNOCH
{:.3f}c".format(time.time() - start_time))

Qna peweHus METOJOM MTEpaLuMK MO LEHHOCTM MoHagobunocb 4.717 ¢

MpbI pemmin 3a,avy METOIOM UTepaluy Mo LeHHOCTH 3a 4.717 CeKyHIbI.

HOCMOTpI/IM, KaKye IoJIy4YmJIMChb OIITMMaJIbHbI€ IEHHOCTU U CTpaTeruda:

>>> print('OnTumanbhbie yeHHoctu:\n{}'.format(V_optimal))
>>> print('OnTumanbHas ctpaterua:\n{}'.format(optimal_policy))

MOsKHO TTOCTPOUTD IpadUK 3aBUCUMOCTU ONTUMAIbHONM IIEHHOCTM OT COC-
TOSTHUSI :

>>> import matplotlib.pyplot as plt

>>> plt.plot(V_optimal[:100].numpy())

>>> plt.title('OnTUManbHbie LEHHOCTH COCTOAHMI')
>>> plt.xlabel('Kanutan')

>>> plt.ylabel('leHHocTb')

>>> plt.show()

A Terepb pelnM Ty XXe 3a1a4y MeTOOOM UTepalum 110 CTpaTermsM.

CHauasa HanuiieM (QyHKIuIo policy_evaluation, KOTOpast BBIYMCISIET IIEHHO-
CTU TIpU CJIeA0BAaHUM 3aJaHHO CTpaTernu.

>>> def policy_evaluation(env, policy, gamma, threshold):

ves OueHnBaeT cTpaTeruw

cee @param env: oKpyxawuas cpega

cee @param policy: TeH30p CTpaTeruu, cogepxauui AeMCTBUA, NpeAnpUHUMAEMbie
vee B KaXgoM COCTOSHUM

cee @param gamma: Ko3¢puuueHT obecueHnBaHus

cee @param threshold: oueHuBaHMe 3aKaHuUMBAETCA, KOrJa LEHHOCTH BCEX
vee COCTOAHNA 6YAyT MeHbwe 3TOr0 3HAYeHHA

cee @return: LEeHHOCTW NpU CNeJOBaHMW [AAHHOW CTpaTeruu

. head_prob = env['head_prob']

cee n_state = env['n_state']

82 < MapkoBCKME NPOLECChl MPUHATUS PELIeHNH 1 AMHAMUYECKOE MPOrpaMMUPOBaHHUe

capital_max = env['capital_max']
V = torch.zeros(n_state)
while True:
V_temp = torch.zeros(n_state)
for state in range(1, capital_max):
action = policy[state].item()
V_temp[state] += head_prob * (
rewards[state + action] + gamma * V[state + action])
V_temp[state] += (1 - head_prob) * (
rewards[state - action] + gamma * V[state - action])
max_delta = torch.max(torch.abs(V - V_temp))
V = V_temp.clone()
if max_delta <= threshold:
break
return V

10. Janee peann3yeM OCHOBHYIO YaCTh aJrOPUTMa UTEpPALIMM II0 CTPATETUSIM —
yiTy4llieHye CTpaTerun.

>>> def policy_improvement(env, V, gamma):

. CTPOUT Y/NIyYWEHHYW CTPATEruw Ha OCHOBE LEHHOCTEW
. @param env: oKpyxawuas cpepa

. @param V: LEHHOCTHU COCTOSAHMI

cee @param gamma: Ko3¢duuMeHT obecuyeHnBaHuA

ves @return: ctparerus

eee head_prob = env['head_prob']

cee n_state = env['n_state']
cee capital_max = env['capital_max']
vee policy = torch.zeros(n_state).int()
vee for state in range(1, capital_max):
vee v_actions = torch.zeros(min(state, capital_max - state) + 1)
cee for action in range(1, min(state, capital_max - state) + 1):
. v_actions[action] += head_prob * (

rewards[state + action] + gamma * V[state + action])
. v_actions[action] += (1 - head_prob) * (

rewards[state - action] + gamma * V[state - action])
. policy[state] = torch.argmax(v_actions)
cee return policy

11. Vimest 06a KOMITOHEHTA, MbI MOXeM HAIMCATh IJIAaBHYIO QYHKINIO:

>>> def policy_iteration(env, gamma, threshold):

ces PewaeT 3ajayy 0 NOA6PacLIBAHMM MOHETHI C MOMOWbLI aNrOpUTMA

ces MTepayun no CTpaTeruam

vee @param env: oKpyxawuwasa cpega

. @param gamma: Ko3¢puuMeHT obecueHnBaHUA

cee @param threshold: oyeHuBanue 3aKkaHuMBaeTCs, KOrga LEHHOCTH BCeX
cee COCTOAHUI 6yAyT MeHble 3TOro 3HaYeHus

vee @return: onNTMManbHbie LEHHOCTU M ONTMMAaNbHAsA CTpaTerus ans

cee A3HHOW cCpepbl

Wrpa ¢ nogbpacbiBaHuem mMoHeTbl % 83

n_state = env['n_state']
policy = torch.zeros(n_state).int()
while True:
V = policy_evaluation(env, policy, gamma, threshold)
policy_improved = policy_improvement(env, V, gamma)
if torch.equal(policy_improved, policy):
return V, policy_improved
policy = policy_improved

12. V1 HaKOHeIl, BbI30BEM 3Ty QYHKIIMIO, TlepeaaB eii cpeny, KoagduieHT obec-
IIEHVBaHMS U TTOPOT CXOAMMOCTY, UTOOBI BBIUYMCIUTD ONTYMAaJIbHbIE [IEHHO-
CTY ¥ ONITUMAJIBHYIO CTpaTeruio. M 3amMmepnum, CKOJIbKO BpeMeH! YIIIO Ha pe-
meHue storo MIIITP.

>>> start_time = time.time()

>>> V_optimal, optimal_policy = policy_iteration(env, gamma, threshold)

>>> print("[na peweHus MeTO4OM MTepauuu No CTpPATeruaM NoHagobunochb
{:.3f}c".format(time.time() - start_time))

QnA peweHus METOAOM MTEpaLUUKM NO CTPATeruaM noHagobunocb 2.002 c

13. Pacrieyataem ITIOJTY4€HHbIE€ OINITMMAaJIbHbI€ HEHHOCTU U CTPATEIrnI0:

>>> print('Ontumanbhbie yenHoctu:\n{}'.format(V_optimal))
>>> print('OntumanbHas ctpaterua:\n{}'.format(optimal_policy))

Kak 3to paboraer

ITocsie BoITIO/IHEHMS Iara 7 6Y,HYT HaIrieyaTaHbI TaKMe OITVMMaJIbHbI€ I€HHOCTI

ONTMMaNbHble LEHHOCTH:

tensor([0.0000, 0.0021, 0.0052, 0.0092, 0.0129, 0.0174, 0.0231, 0.0278, 0.0323,
0.0377, 0.0435, 0.0504, 0.0577, 0.0652, 0.0695, 0.0744, 0.0807, 0.0866,
0.0942, 0.1031, 0.1087, 0.1160, 0.1259, 0.1336, 0.1441, 0.1600, 0.1631,
0.1677, 0.1738, 0.1794, 0.1861, 0.1946, 0.2017, 0.2084, 0.2165, 0.2252,
0.2355, 0.2465, 0.2579, 0.2643, 0.2716, 0.2810, 0.2899, 0.3013, 0.3147,
0.3230, 0.3339, 0.3488, 0.3604, 0.3762, 0.4000, 0.4031, 0.4077, 0.4138,
0.4194, 0.4261, 0.4346, 0.4417, 0.4484, 0.4565, 0.4652, 0.4755, 0.4865,
0.4979, 0.5043, 0.5116, 0.5210, 0.5299, 0.5413, 0.5547, 0.5630, 0.5740,
0.5888, 0.6004, 0.6162, 0.6400, 0.6446, 0.6516, 0.6608, 0.6690, 0.6791,
0.6919, 0.7026, 0.7126, 0.7248, 0.7378, 0.7533, 0.7697, 0.7868, 0.7965,
0.8075, 0.8215, 0.8349, 0.8520, 0.8721, 0.8845, 0.9009, 0.9232, 0.9406,
0.9643, 0.0000])

U Takast onTuMaabHas CTpaTerus:

ONTUManbHaA CTpaTerua:

tensor([O, 1, 2, 3, 4, 5, 6, 7, 8, 9,10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 22, 29, 30, 31, 32, 33, 35,
36, 37, 38, 11, 40, 9, 42, 43, 44, 5, 4, 3, 2, 1,50, 1, 47,

, 44, 7, 8, 9, 10, 11, 38, 12, 36, 35, 34, 17, 32, 19, 30, 4,

, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11,

, 8 7, 6, 5, 4, 3, 2, 1], dtype=torch.int32)

w
-
o N U
N
N O
.

84 < MapkoBCKME NPOLECChl MPUHATUS PELIEHNH 1 AMHAMUYECKOE MPOrpaMMUPOBaHHUe

Ha mrare 8 6ymeT MocTpoeH Takoii TpaduK ONMTUMAaTbHbBIX IIEHHOCTEI COCTOSTHUIA.

1.0

0.8

LleHHocTb

0.2 4

0.0 4

0.6

0.4 4

OnTMManbHble LEHHOCTM COCTOSAHWUM

20

40

80

Kanutan

80

T
100

Kak BuanmMm, mo Mepe yBeimueHus KarmuTtana (COCTOSTHUS) pacTeT U OlleHKa BO3Ha-
rpaxkaeHus (IleHHOCTb COCTOSIHMS), YTO eCTEeCTBEHHO.

Ha mrare 9 MbI ripomenany IpMMepPHO TO Xe, UTO B pelrienTe «Pemienye MIIIIP ¢ mo-
MOIIbI0 JITOPUTMA UTepalyy 0 IIeHHOCTH», TOJIbKO OKpYysKalolasi cpefa Apyrasi.

Ha nrare 10 yHKUIMS yITyuIieHUs CTPaTeTMy CTPOUT HOBYIO CTPATErMIO TI0 Tiepe-
JaHHBIM LIEHHOCTSIM, IPMMEHSISI ypaBHEHMeE ONTUMaabHOCTU bemmana.

Ha mrare 12 MbI BUAMM, UYTO C TOMOIIBIO METOAA UTEPALIVN 10 CTPATerMsIM 3agady
yzanoch pemntsb 3a 2.002 ceKyHIbI — MPMMEPHO B [jBa Pa3a MeHbllle, YeM METOA,0M
UTepanum Mo HEeHHOCTH.

Ha mare 13 nmeuaTaroTcst OIITMMa/JbHbIe II6HHOCTU:

OnTUManbHbIe LE€HHOCTK:

tensor([0.
.0377,
.0942,
1677,
.2355,
.3230,
.4194,
.4979,
.5888,
.6919,
.8075,
.9643,

0O 000000000000

0000,

0.
0.0435,
0.1031,
0.1738,
0.2465,
0.3339,
0.
0
0
0
0
0

0021,

4261,

.5043,
.6004,
.7026,
.8215,
.0000])

.0052,
.0504,
.1087,
.1794,
.2579,
.3488,
.4346,
.5116,
.6162,
.7126,
.8349,

0O 00000000000

.0092,
.0577,
.1160,
.1861,
.2643,
.3604,
.4417,
.5210,
.6400,
.7248,
.8520,

0O 000000000000

.0129,
.0652,
.1259,
.1946,
.2716,
.3762,
.4484,
.5299,
.6446,
.7378,
.8721,

0O 000000000000

.0174,
.0695,
.1336,
.2017,
.2810,
.4000,
.4565,
.5413,
.6516,
.7533,
.8845,

O 00000000000

.0231,
.0744,
.1441,
.2084,
.2899,
.4031,
.4652,
.5547,
.6608,
.7697,
.9009,

0O 00000000000

.0278,
.0807,
.1600,
.2165,
.3013,
.4077,
.4755,
.5630,
.6690,
.7868,
.9232,

0O 000000000000

.0323,
.0866,
.1631,
.2252,
.3147,
.4138,
.4865,
.5740,
L6791,
.7965,
.9406,

Wrpa ¢ nogbpacbiBaHuem mMoHeTbl < 85

A Takke onTMMabHas CTpaTerusd:

OnTUManbHasA cTpaTerua:

tensor([©, 1, 2, 3, 4, 5, 6, 7, 8, 9,10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 22, 29, 30, 31, 32, 33, 35,
36, 37, 38, 11, 40, 9, 42, 43, 44, 5, 4, 3, 2, 1,50, 1, 47,

N O
. e

4, 5, 44, 7, 8, 9, 10, 11, 38, 12, 36, 35, 34, 17, 32, 19, 30, 4,
3, 2, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11,
0, 9, 8 7, 6, 5, 4, 3, 2, 1], dtype=torch.int32)

Pe3ynbTathl, olyyeHHble 000MMM METOJaMM, COBIIAAAIOT.

MpblI pemmiy UTPOBYIO 3a7jaUy ABYMSI METOAaMM: UTepalueil o LeHHOCTU U UTe-
paimeit o crpaterusim. Camoe CJIOKHOe B 3ajjaue OOyueHMs C MOAKpeIieHeM —
chopmynupoBaTh ee B Buae MIIIIP. B Hamiem ciydyae cTpaTerust 3aK/1104aeTcsl B TOM,
YTOOBI MEPEeiTH OT TEKYIIEero KamuTaaa (COCTOSTHUSI) K HOBOMY KaIlMTaily, JIeast
cTaBkyM (peicTBus). OnTUMaAbHas CTpaTerusi MakKCUMMU3UPYET BEPOSITHOCTh BbI-
UTpaTh UT'PY (BO3HArpaxkoeHme +1).

VHTepeCcHO Takke OTMETUTh, KaK B HallleM IIpUMepe OIpelesIIoTCsl BePOSITHO-
CTU TIepexOollOB COCTOSIHUI [J1s1 ypaBHeHUs beriMaHa. BolllonHeHMe [eiicTBUS a
B COCTOSIHUM S (TIpU HaIMUUM KalluUTaIa S [IOCTaBUTh d NO/VIAPOB) MOXKET UMETh 1Ba
ucxona:

Q repexon B COCTOsSIHME S + d, eC/IM BbINIageT Opell. BepOHTHOCTb TAaKOrIo Iiepe-
X04a paBHA BEPOSITHOCTU BBINIAAEHMS OpJia;

Q rnepexon B COCTOsIHME S — d, €CJIM BbIIIaAeT pelIKa. BepOHTHOCTb TAKOIO I1epe-
X0Oa paBHA BEPOSITHOCTU BbIIIAOEHNS PEIIKN.

OTO oUueHb MOXOKEe Ha OKpyKalollyio cpeny FrozenLake, Korma areHT mepexomuT
B HAMEUYEHHYIO SIU€eliKy TOJIbKO C OIpeAeneHHOM BepOSITHOCThIO.

MbI Takke yOeIMUIUCh, UTO B TAaHHOM CJTyyae aJIFTOPUTM UTEPALIUY 110 CTPATETUSIM
CXOOUTCS GBICTpee MUTepalyy I0 IEHHOCTU. ITO CBSI3AHO C TeM, UTO KOJMUECTBO
BO3MOSKHBIX JIeJiCTBUIT MOXKeT mocTurath 50 — 60sbIine, uem 4 geiicTBus B cpene Fro-
zenLake. [Ijst MIIITP ¢ 60ibIIMM KOJIMYECTBOM JECTBUI aITOPUTM UTEPALIUU T10
cTpaTerusiM okasbiBaetcs s¢dekTuBHee.

3TO eLe He Bce

VIHTepecHO ITOCMOTPETb, IEMICTBUTEILHO JIM ONITUMAaJIbHas cTpaTerus paboraet. By-
JleM 1eiiCTBOBAaTh, KaK HaCTOsIIIe UTPOKU, U cbirpaeM 10 000 snin3omoB. Mbl XOTUM
CPaBHUTb ONITUMAbHYIO CTPATETUIO C ABYMS IPYTUMM: KOHCEPBATUBHO (CTaBUTh
1 monnap B KaXXIOM payHIe) U CIy4aifHOM (CTaBUTh CIYyYaiiHY0 CYMMY).

1. TlepBbIM Ie/IOM ONpefenyM BCe TPY BbIILIEYIIOMSIHYTbIe CTPAaTeruu.
CHauasna — ONTUMMAaabHYIO:

>>> def optimal_strategy(capital):
vee return optimal_policy[capital].item()

3aTeM — KOHCEPBATMBHYIO:

>>> def conservative_strategy(capital):
. return 1

86 < MapkoBCKME NPOLECChI MPUHATUS PELIEHNH 1 AMHAMUYECKOE MPOrpaMMUPOBaHHUe

U HakoHell, CTy4YaiiHyio:

>>> def random_strategy(capital):
vee return torch.randint(1, capital + 1, (1,)).item()

2. Omnpepenum GYHKIINIO, KOTOPast BBITIOIHSIET ONVH SIM30/I, ¥ COOOIIaeT, Kak OH
3aKOHYMJICSL.

>>> def run_episode(head_prob, capital, policy):
. while capital > 0:

. bet = policy(capital)

. if torch.rand(1).item() < head_prob:
. capital += bet

. if capital >= 100:

. return 1

cee else:

. capital -= bet

. return 0

3. 3amaguMM HavajabHbIA KamuTtan (50 mo/mwtapoB) M KOJMUYECTBO SMM30I0B
(10 000):

>>> capital = 50
>>> n_episode = 10000

4. Bomoaayum 10 000 sm130[,0B ¥ 3alIOMHMM, CKOJIBKO Pa3 Mbl BIUTPAIN:

>>> n_win_random = 0

>>> n_win_conservative = 0

>>> n_win_optimal = 0

>>> for episode in range(n_episode):

cee n_win_random += run_episode(head_prob, capital, random_strategy)
cee n_win_conservative += run_episode(

head_prob, capital, conservative_strategy)
cee n_win_optimal += run_episode(head_prob, capital, optimal_strategy)

5. HameuaTaem BEPOATHOCTU BbIMTPbIIIA OJIS BCeX TpexX CTpaTEI‘MVIZ

>>> print('CpeaHas BepOATHOCTb BbIMrpbia NPU cayuvaiiHoi ctpatermn: {}'
.format(n_win_random/n_episode))

CpefHAs BepOATHOCTb BLIMIpbiia NpU CAyYaiHo# cTpaTerun: 0.2251

>>> print('CpeaHas BepOATHOCTb BbIMIPbILA NMPU KOHCepBaTUBHOW cTpaTerun: {}'
.format(n_win_conservative/n_episode))

CpejHAA BEPOATHOCTb BbLIMFPbild NPU KOHCEPBAaTHBHOW cTpaTeruu: 0.0

>>> print('CpeaHas BepOATHOCTb BbIMFpbia MPU ONTMManbHOK cTtpaterun: {}'
.format(n_win_optimal/n_episode))

CpefHAs BEpOATHOCTb BLIMIpba NPU ONTUMANbHOW CTpaTerun: 0.3947

Her COMHeHIAVI, YTO Hallla OIITMMaJ/IbHAasA CTpaTerms nque!

naBa

[MpumMeHeHuUe
MetonoB MoHTe-Kapno
AN YUCSIEHHOrO OL,eHUBAHUS

B npepnpinyineli rimaBe Mbl 3aHUMa/IMCh MapKOBCKMMU ITPOLIeCCaMy IIPUHATUS pe-
menuii (MIIIIP) u npyMeHeHVeM K HUM METOA0B AMHAMMUUYECKOro porpaMmm-
poBanus ([III). V oCHOBaHHBIX Ha MOJENIN METONAaX, K KOTOpbIM OoTHOCUTCS U TII,
eCTb psifi, HemoCcTaTKoB. TpebyeTcs: oTHOe 3HaHMe OKPY>Kalolleii Cpefbl, T. €. MaTpu-
IIbI TTIePeXO0I0B ¥ MaTPUIIbl BO3HATpaKkaeHuit. Kpome TOro, 0HM IJI0X0 MacIiTabupy-
I0TCsI, 0COOEHHO Ha Cpe[ibl C GOJIBLIVM KOJTMYECTBOM COCTOSTHUIA.

B 3T0J% I71aBe Mbl ITPOIOJIKUM Iy TEIECTBYE, PACCMOTPUM 6€3MOIe/IbHbIE METObI
Mourte-Kapio (MK), KoTopbie He TPeGyIOT alipMOpHbIX 3HaHUT 06 OKpyKaroliei
cpele u ropaszo Jydile Macurabupyiorcs, yem [I1. [Ing Havama oleHUM 3HaUe-
HMe ynaia m metonom MoHTe-Kapro. 3aTeM IoropopuM O TOM, KakK MCII0/Ib30BaTh
meTtoz, MonTe-Kapio [jis npefickasaHus [IeHHOCTel COCTOSIHUIA M I1ap COCTOSIHMe—
IleliCTBUe, IIPUMEHSISl yCpeJHeHMe 10XO0/1a, II0TYUYeHHOro IIPY [IepBOM ITOCelleHUM
WIU TIPU BCEX TOCEIeHUsIX COCTOSTHMUS. Mbl 0OyuMM areHTa UrpaTh B GIIKIKEK.
Bypet Takke paccMOTpeHO yIipaBiieHye MeTonoM MoHTe-Kapio ¢ npuMeHeHuem
€-3KaI{HO CTpaTeruu 1 B3BelIeHHO! BbIOOPKM IO 3HAUMMOCTH.

B 57011 m1aBe NpMBOAATCS CJIeNyIOL)e PeLlelThl:

BbIUMC/IEHNe Tt MeTogoM MonTe-Kapio;

olleHMBaHMe cTpaTerny metomom MoHTe-Kapio;

npenckasanue metomoM MoHTe-Kapsio B Urpe G19KIKeEK;

yrpasjeHue MeTogoM MoHTe-Kapiio ¢ equHoii cTparerueit,

pa3paboTKa yIipaByiieHust MeTogoM MoHTe-Kapiio ¢ e-5kaHOi1 cTpaTeruei;
yrpasjieHue MeTogomM MoHTe-Kapiio ¢ pa3iesieHHO cTpaTerneii;
pa3paboTKa yIrpaBieHus MeTogoM MoHTe-Kapiio co B3BeleHHOI BhIOOPKOT
10 3HAYMMOCTH.

000000

88 < anIMeHeHMe MeTon0B MOHTe-KapﬂO Anga YWCNneHHoro oueHnBaHuA

BoiuncneHme T MetonoM MoHTE-KAPNO

HauHeM ¢ mpocCTOro rnpoekTa: OlieHMBaHue uncia T metogqoM MoHTe-Kapiio, 1exa-
IIYIM B OCHOBe 6€3MO/Ie/TbHbIX AJITOPUTMOB O0YUEHMSI C TTOAKPEITIEHUEM.

MeTtomom MouTe-Kapio Ha3bIBaeTcs 060/ MeTO, B KOTOPOM [IJisl pelleHus
3a/1a4M UCTIOMb3YETCS CTyYaliHOCTh. AITOPUTM MHOTO pa3 MPOU3BOAUT CIYUATHYIO
BBIOOPKY, CMOTPUT, KaKasl ee 4yacTb 00/IalaeT ONpeneIeHHbIMM CBOVICTBAMM, a 3a-
TeM BBITIOTHSIET UM CIEHHOE OlleHMBaHMe.

[MpuMenum meton MoHTe-Kapio, 4To6bI BBIYMCIUTD IPUOIKEHHOE 3HAUeHMe
yyca . [loMecTM MHOTO CJTy4aifHO BBIOPAHHBIX TOUEK B KBAZpaT CO CTOPOHOI 2
(-1<x<1,-1<y< 1) nocuntaem, CKOJIbKO U3 HUX MOMAJIO B KPYT €AVHUYHOTO
panuyca. Mbl 3HaeMm, 4TO IJIONIAAb KBagpaTa paBHa

C=22=4,
a IUIoIAb KPyra paBHa
S=mx12=m.
PasjenuB II0Iaab Kpyra Ha IUIoIab KBaapaTa, IOy dyM:
S/C=m/4.

S/C MOXHO OLIEHUTb KaK J0JI0 TOYEK, IMOIIaBIIMX BHYTPU Kpyra. CoOTBeTCTBEH-
HO, OLI€HKa Tt 6Y,ZLET B UeThbIpe pa3a OoJIbIlIe.

Kak ato penaetcs
Bocnonb3zyemcsa metogom MK fj151 mosnyyeHns: OLeHKM Ynciia .

1. Vmnoptupyem Heobxomumbie Momyau: PyTorch, math (Tam ornpemeneHo 3Ha-
yeHue) u matplotlib (@it pasmelneHMs CIy4aiiHbIX TOUEK BHYTPU KBagpa-
Ta).
>>> import torch

>>> import math
>>> import matplotlib.pyplot as plt

2. CnyuvaitHo creHepupyeM 1000 Touek BHYTpM KBaApaTa, Oyt KOTOPBIX —1 < x <
lu-1<y<1:
>>> n_point = 1000
>>> points = torch.rand((n_point, 2)) * 2 - 1

3. I/IHI/ILU/IaIH/IISI/IIJYEM CUYETUMK TOYEK, IIOIIaBIIMX BHYTPb €OMHMYHOIO Kpyra,
" CIIMCOK OJIsd X XpaHEeHUSs

>>> n_point_circle = 0
>>> points_circle = []

4.]I KaXKI0 CydaifHOM TOYKM BbIUMCIUM PAaCCTOSIHME 0 Hayasla KOOpAUHaAT.
Touka ronagaeT BHYTPb (MM Ha FPAHUILY) KPyra, eC/I 3TO PaCCTOSIHME MeHb-
1e uiau paBHoO 1:

BbluncneHue T MeTogoM MoHTte-Kapno % 89

>>> for point in points:
r = torch.sqrt(point[0] ** 2 + point[1] ** 2)
if r <= 1:
points_circle.append(point)
n_point_circle += 1

5. TIpeobpa3syeM CIIMCOK B TEH30D:
>>> points_circle = torch.stack(points_circle)

6. HaHeceM Bce cTyuaifHble TOUKM Ha TpaduK, M306pas3mB Te U3 HUX, YTO OKa3a-
JIXCh BHYTPU KPyTa, IPYTUM I[BETOM:

>>> plt.plot(points[:, 0].numpy(), points[:, 1].numpy(), 'y.')
>>> plt.plot(points_circle[:, 0].numpy(), points_circle[:,1].numpy(), 'c.')

7. Hapucyem, 4TO IOMYYNIIOChH:

>>> 1 = torch.linspace(0, 2 * math.pi)

>>> plt.plot(torch.cos(i).numpy(), torch.sin(i).numpy())
>>> plt.axes().set_aspect('equal')

>>> plt.show()

8. U HakoHell, BBIYMCIUM 3HaUeHle T:

>>> pi_estimated = 4 * (n_point_circle / n_point)
>>> print('OyeHka 3Hauenna pi:', pi_estimated)

Kak 3to paboraer

Ha mare 5 6ymer HapucoBaHa TaKasi KAPTMHKA — TOYKM CIYYaitHO pasOopocaHsbl 110
BCEMY KBaJ[paTy, YaCTbh 13 HUX IT0TIa/Ia B KPYT.

1.00 1
0.75 A
0.50 A
%o - ‘.-"o'.
J 5§ B, e
0.25 N :.:l :‘.‘ .'é:..o

0.00 A

0254

=0.50 4

=0.75 1

=1.00 +

90 < anIMeHeHMe MeTon0B MOHTe-KapﬂO Anga YWCNneHHoro oueHnBaHuA

Metonm MonTe-Kapso paboTaeT B CHJTy 3aKOHA OGOJBIIMX YMCEN, COIJIAaCHO KO-
TOPOMY CpefiHee B GOJIbIIIOM KOJTMYECTBE VCIIBITAHMIT CXOOUTCS K MaTeMaTUIeCKO-
My OXXUJIaHMI0. B Hamem ciaydae BenuuuHa 4 * (n_point_circle / n_point) cxogurcs
K UICTUHHOMY 3HaU€HMIO T, KOT/Ia KOIMYeCTBO CTeHePUPOBAHHBIX CTYyUaiHBIX TOUEK
CTPEMUTCS K 6@ CKOHEUHOCTH.

Ha mare 8 meuataeTcst BbIuMcaeHHas OlleHKa Tt:

OueHka 3Havenua pi: 3.156

[TpubGMIKEHHOE 3HAYEHNME T, BbIUMCIeHHOe MeTomoM MoHTe-Kapio, JoBolIbHO
0/113KO0 K UCTUHHOMY (3.14159...).

370 elle He Bce

Mbl MOXXeM YIYYIIUTh OI[€HKY, YBeIMUMB KOJIMYECTBO UTepaluii, Hampumep 10
10 000. Ha kaxkmoit utepauuy 6ygeM CIydaifHO TeHepupoBaTh TOUKY B KBajpaTe
" CMOTPETb, IOTIaia Ji OHA BHYTPb KPyra; OlleHUBATh T 6yIeM 10 XOAY Mesia, BbI-
YUCTISIS TEKYIITYIO OJTI0 TOUEK B KpyTe.

3aTeM 1300pa3uM Ha rpaduKe BCIO MCTOPHUIO OLIEHMBAHUS Y UCTUHHOE 3HAUEeHe
1. Bce 9T0O peann3oBaHo B ciaeayoiieil GyHKINN.

>>> def estimate_pi_mc(n_iteration):

cee n_point_circle = 0

ves pi_iteration = []

ves for 1 in range(1, n_iteration+1):

ves point = torch.rand(2) * 2 - 1

ves r = torch.sqrt(point[0] ** 2 + point[1] ** 2)
cee if r <= 1:

cee n_point_circle += 1

ces pi_iteration.append(4 * (n_point_circle / 1))
ces plt.plot(pi_iteration)

ves plt.plot([math.pi] * n_iteration, '--')

ces plt.xlabel('UTepayus')

ces plt.ylabel('Oyeuka pi')

ves plt.title('UcTopusa ouyennsanmna')

ves plt.show()

ves print('OuyeHka 3Haueuns pi:', pi_iteration[-1])

Bri3oBeM 3Ty QyHKIMIO, 3aaB 10 000 utepatmii:

>>> estimate_pi_mc(10000)
OueHKka 3Hayenua pi: 3.1364

Bbluncnenue T MeTogom MoHTte-Kapno % 91

PEBYJ'[bTaT IIOKa3aH Ha PUCYHKE HIDKe.

MUcTopus oueHnBaHms

4.00 A

3.75 1

3.50

325

3.00 A

OueHka pi

2.75 1

2.50 A

2.25 1

2.00 A

T T T T T
0 2000 4000 6000 8000 10000
NTepaums

BunHo, uTo uem 6oJibllle MTepanuit, TeM OIVsKe OIeHKA T K MCTMHHOMY 3Haue-
Huio. Koneuno, nmetor Mecto daykryaryu. Ho ¢ pocToM 4mcia uTepauuii OHM Cria-
SKMBAIOTCS.

CM. TaKkXKe

O Opyrux MHTEPECHbIX MpUMeEHeHMUsIX Metoma MoHTe-Kapio MOXKHO IPOYMTATh
B (JIELYIOIINX CTAThSIX:

O Playing games such as Go, Havannah, and Battleship, with MC tree search,
which searches for the best move (https://en.wikipedia.org/wiki/Monte_Carlo_
tree_search);

O Assessing investments and portfolio (https://en.wikipedia.org/wiki/Monte_Car-
lo_methods_in_finance);

O Studying biological systems with MC simulations (https://en.wikipedia.org/
wiki/Bayesian_inference_in_phylogeny).

92 % anIMeHeHMe MeTon0B MOHTe-KapﬂO Anga YWCNneHHoro oueHnBaHuA

OUEHMBAHUE CTPATErMM METOOOM MoHTE-KAPNO

B rnaBe 2 MbI ¢ nomotbio 11 olieHMBaMM CTPATETKIO, T. €. BBIYUC/ISIIN 1)1 Hee QyHK-
[[MI0 IIEHHOCTU COCTOSIHUIT. DTOT METO], HEIIOXO pab0oTaeT, HO UMEET HEKOTOPbIE
orpaHuueHus. U rmaBHOe — [IJIs1 HEr0 HEOOXOAMMO VMETh TIOTHYI0 MH(POPMAIIIO
06 OKpysKalolleii cpenie, B T. 4. 3HATh MaTPUITy ITEPEXOJIOB U MATPUILy BO3HArPask-
IeHuii. Ho Ha mpakTuke MaTpulia IepPeXonoB 3apaHee HEM3BEeCTHA. AJITOPUTMBI
o0b6yueHMs ¢ MoJKpeIvieHneM, Hykaarolyecs: B u3BecTHOM MIIIIP, Ha3bIBalOTCS OC-
HOBaHHBIMMU Ha MOJIeJIU. A aJITOPUTMbI, KOTOPBIM He HyKHa ampuopHasi uHdOp-
Malus O Mepexoax M BO3HArPaXkIeHUsX, Ha3bIBAlOTCS 6e3MoaenbHbIMMU. MeTo
MouTe-Kapyio OTHOCUTCS K YUCTY 6€3MOAETbHBIX.

B aTOM periernTe Mbl BBIYMCIMM GYHKIMIO IIEHHOCTY € TIOMOIIbI0 MeTona MoHTe-
Kaprno. B kauecTBe npumMepa CHOBa BO3bMeM OKpyxkarwliyio cpeny FrozenLake, Ho
6ymeM MpeAronaraTh, YTO K MaTPUIIAM MePEXOI0B ¥ BO3HArPaKIEHNIT HET JOCTYIIA.
HanoMHMM, 4TO JOXOOOM IIpoliecca Ha3bIBaeTCs IOJTHOE BO3HATrpakIeHue, Ioy-
YeHHOe B I0JITOCPOYHOI ITepCleKTHUBe:

k
Gt = ZY Rt+k+1'
k

B cTpaterun ouenuBanus metogqom MK B kauecTBe OLieHKM (QYHKIMM LIEeHHOCTU
BMECTO 0’KMAaeMoro Joxozga (kak B [II1) ucnonb3yeTcs: SMOMPUYeCKUii cpegHNUI
poxop,. CymecTByeT iBa criocoba Takoro oueHuBaHus: merog, MK nepsoro mo-
cellleHMs1, KOIa YCPeHSIOTCS TOAbKO [NOXOIbI, ITIONyYeHHbIe [IpM IepBOM I1oce-
LIeHMM COCTOSIHMS S B 9MIM30[le, M BCeX MOCEeIeHNi, KOTa YCPESHSIOTCS JOXOLBbI,
MIOJIyYeHHbIE [10C/Ie BCeX noceleHnii s. OueBUIHO, UYTO METOJ, [IePBOT0 NOCeIeHUs
TpeGyeT ropasio MeHbIlle BBIYMUCIEHUI, T0ITOMY ITPUMEHSIETCS Yallle.

Kak 310 penaetcs

IJisg moucKa ONTMMAaJbHOM cTparteruu B cpene FrozenLake mpumenum meton MK
MepBOro NOCelleHus.

1. Wmmnoprupyem 6ubmmorexku PyTorch u Gym u co3maaym sK3eMIUISIp OKpYysKa-
tomneit cpenbl FrozenLake:

>>> import torch
>>> import gym
>>> env = gym.make("FrozenLake-vO")

2. s oueHuBaHMs cTpateruyu MmetogoMm MoHTe-Kapno cHavana HY>KHO OIlpe-
IeIUTh (PYHKIINMIO, KOTOPasi BBIMOIHSIET OIMH 3IM30[, B3aMMOIENCTBUS CO
cpenoii FrozenLake, ciemyst 3ajaHHO CTpaTerui, ¥ BO3BpalaeT BO3HArpask-
JIeHMe ¥ COCTOSIHME Ha KakKIoM IIare.

>>> def run_episode(env, policy):
. state = env.reset()

vee rewards = []

vee states = [state]

vee is_done = False

vee while not is_done:

OueHunBaHue cTpaterum metonoM Mowte-Kapno < 93

action = policy[state].item()
state, reward, is_done, info = env.step(action)
states.append(state)
rewards.append(reward)
if is_done:
break
states = torch.tensor(states)
rewards = torch.tensor(rewards)
return states, rewards

[ToguepkHeM, 4TO B MeTOAaxX MoHTe-Kap/io HYy;KHO XpaHUTb BCE COCTOSTHUS
¥ BO3HArpakKmeHusl B HUX, IOTOMY UTO Y HaC HeT JOCTyIa K nHbopMammmn
0 cpeJie: BepOSITHOCTSIM ITepexoJi0B U MaTpulie BO3HArpaxkaeHuiA.

Hanee onpenenum QyHKIINIO, KOTOPas OLleHMBAeT 3aJJaHHYIO CTpaTeruio Mme-
TonoM MK mepBOro rnoceuieHusl.

>>> def mc_prediction_first_visit(env, policy, gamma, n_episode):

. n_state = policy.shape[0]

vee V = torch.zeros(n_state)

vee N = torch.zeros(n_state)

vee for episode in range(n_episode):

vee states_t, rewards_t = run_episode(env, policy)

cee return_t = 0

vee first_visit = torch.zeros(n_state)

. G = torch.zeros(n_state)

vee for state_t, reward_t in zip(reversed(states_t)[1:],
reversed(rewards_t)):

v return_t = gamma * return_t + reward_t

. G[state_t] = return_t

. first_visit[state_t] = 1

vee for state in range(n_state):

. if first_visit[state] > 0:

. V[state] += G[state]

. N[state] += 1

. for state in range(n_state):

. if N[state] > 0:

. V[state] = V[state] / N[state]

vee return V

3agagum KosdduieHT obeciieHMBaHMs 1, YTOOBI YIIPOCTUTD BIYMCIEHNS],
u umutupyem 10 000 snim3010B:

>>> gamma = 1
>>> n_episode = 10000

Bo3bMeM ONTUMAIbHYIO CTPATETMIO, BBIUMCIEHHYIO B MPEIbIAYINeil IaBe,
¥ momaaum ee Ha Bxon dyHKkiyy MK rmepBoro mocemnieHust Hapsiay ¢ pyTUMu
rmapaMeTpaMu:

>>> optimal_policy = torch.tensor([0., 3., 3., 3., 0., 3., 2., 3.,
3., 1., 0., 3., 3., 2., 1., 3.])

>>> value = mc_prediction_first_visit(env, optimal_policy, gamma,
n_episode)

94 % anIMeHeHMe MeTon0B MOHTe-KapﬂO Anga YWCNneHHoro oueHnBaHuA

>>> print('OyHKyMA LUeHHOCTH, BbluMCNEHHas MeTogoM MK nepsoro noceuenus:\n',
value)

OYHKUMA LEHHOCTH, BbLIYUCIEHHAA MeTogoM MK nepeoro noceweHus:

tensor([0.7463, 0.5004, 0.4938, 0.4602, 0.7463, 0.0000, 0.3914,

0.0000, 0.7463, 0.7469, 0.6797, 0.0000, 0.0000, 0.8038, 0.8911,

0.0000])

MBI TOJIBKO YTO BIYMCTIIN (PYHKIMIO [IEHHOCTY OIITUMAJIbHOM CTpaTerny MeTo-
nom MK nepBoro moceiieHusl.

Kak 3to paboraer
Ha mrare 3 BBITIOMHAIOTCS CJIeAyIOLMe OeCTBUS:

QO mnporoHseTcs n_episode 3M1300B;

O [ns KaxkAOoTo 3MM30Ma BHIUMCISIIOTCS TOXOAbI, TTIOyYeHHbIe TIPY [epPBOM I10-
CelIeHMUM KaKIOTO COCTOSTHHS

O [ns KaXOOTO COCTOSIHMSI BBIUMCISIETCS CpeflHee TOXOA0B, TOMyUYeHHBIX Mpu
€ro IepBOM ITOCEIeHNH, II0 BCeM SITM30HaM.

Kak Buaum, ecn rpeckasaHme ocHoBaHO Ha MK, To Heo6s13aTe/IbHO 3HATh ITOJI-
HYIO MOJIeJIb cpembl. Ha caMoM [fiejie B 6OIbIIMHCTBE ITPAKTUUECKUX CUTyallUii MaT-
pUIIbI TIEPEXO/IOB M BO3HArpakAeHMi1 3apaHee HEM3BECTHbI UM UX OU€Hb TPYIHO
MoyunTh. [IpencraBbTe TONBKO, CKOIBKO COCTOSIHMIT BO3SMOXKHO TP UI'Pe B Iax-
MaThbl MU T'O, @ TaKKe KOIMUECTBO BO3MOXKHBIX NEeMCTBUI — BHIUMCIUTD MaTPUIIbI
Iepexo/IoB M BO3HATPaskKIeHMIi e1Ba I BO3MOXKHO. Vest 6e3MOIeJIbHOTO 00yUeHMSI
C TIOAKPEIUIEHMEM B TOM M 3aKJII0YAeTCsl, YTOOBI MOMYUYaTh OIBIT BO B3aMMOJENi-
CTBUM C OKpY>Karolieli cpemo.

B maHHOM ciyyae MbI MMEJIM JIeJI0 TOJIBKO C TEM, UTO IOJIAEeTCsT HaOIIONeHNIO,
T. €. C HOBBIMM COCTOSTHMSIMM U TTOTYYE€HHBIMM JIJIST HUX BO3HArpaskeHMSIMM Ha KasK-
IIOM 1are, Moc¢jie 4ero Aenajy mnpenckasaHue metogom MoHTe-Kapio. 3ametum,
YTO yeM OOoJibllle 3MM30/I0B MMUTUPOBAHO, TEM TOUHEe IpencKasaHusi. ITocTpous
rpaduK QYHKIMM [EHHOCTHM ITOCJIE KasKIOTO SI130/1a, Mbl YBUAMM, KAK OH CXOIUTCS
CO BpeMeHeM, — TaK ke, KaK B 3a/iaue OlleHMBaHMSI UMcCia .

JT0 eLe He Bce

IaBaiiTe Takke OIeHMM (YHKIMIO IIEHHOCTY ONTUMAIbHOM CTpaTerMu MeTOd0M
MK Bcex rocenieHuii.

1. Omnpemenum QYHKIMIO, KOTOpasi OIEHMBAET 3aJaHHYIO CTPATETUI0 METOAOM
MK Bcex rocenieHmii:

>>> def mc_prediction_every_visit(env, policy, gamma, n_episode):
vee n_state = policy.shape[0]

vee V = torch.zeros(n_state)

vee N = torch.zeros(n_state)

vee G = torch.zeros(n_state)

vee for episode in range(n_episode):

vee states_t, rewards_t = run_episode(env, policy)

. return_t = 0

MpenckasaHue metogom MoHTe-Kapno B urpe 6nskaxek < 95

for state_t, reward_t in zip(reversed(states_t)[1:],
reversed(rewards_t)):
return_t = gamma * return_t + reward_t
G[state_t] += return_t
N[state_t] += 1
for state in range(n_state):
if N[state] > 0:
V[state] = G[state] / N[state]
return V

Kak u B MeTonme MK 1epBoro rocerieHusi, 3Ta GyHKIMS BbITTOIHSIET CIEIYIO-
1yie JeiCcTBUS :

O mnporonsieTcs n_episode 3M13000B;

O [mis KaxkAoro 3MM30/ia BBIUMUC/SIIOTCS TOXO/IbI, TIOTyUeHHbIe TTPU KaXkA0M
MTOCeIIeHUM KasKI0TO COCTOSTHMS ;

O 1S KakKOOro COCTOSIHMSI BBIUMCIISIETCSI CpejHee BCeX MOMyUeHHbIX B HeM
JIOXOO0B 110 BCEM 3TIM300aM.

2. Borunciasem beHKL[I/IIO LE€HHOCTHU, BbI3BAB TOJIbKO UTO HAIIMCAHHYIO beHK-
ouio, KOTOpOf/i rnepemgaeTcd CTpaTermsa M Jpyrme rnmapaMeTpbl:

>>> value = mc_prediction_every_visit(env, optimal_policy, gamma,
n_episode)

3. BbIBOAVM pe3ynbTar:

>>> print('OyHKYMA LEHHOCTH, BbluMCIEHHas MeTogoM MK Bcex nocewewuii:\n', value)
'OYHKYMA LEHHOCTH, BbiMMCAEHHAA mMeTogoM MK BCex noceweHuit:

tensor([0.6221, 0.4322, 0.3903, 0.3578, 0.6246, 0.0000, 0.3520,

0.0000, 0.6428, 0.6759, 0.6323, 0.0000, 0.0000, 0.7624, 0.8801,

0.0000])

MNMPeOCKA3SAHME METOOOM MOHTE-KAPNO B UIPE B3KAXKEK

B sTOM perente Mbl GyneM UTpaTh B KAPTOUHYIO UTPY OMIKIKEK (MU «IBaAIATh
OITHO») ¥ OILIEHUM CTpaTeruio, KOTopasl, Ha Halll B3IV, MOXeT paboTaTh XOPOIIIO.
MbI 6/11Ke TTO3HAKOMMMCS C TpeAcKasanueM metomoMm MouTe-Kapio u moaroro-
BUM TIOYBY /I HAXOKIEHMSI ONITUMAIbHOM CTpaTerMu myTeM NpUMeHeHUs YIIpaB-
neHust MoHTe-Kapiio B ciefyomux perenTax.

B 613KIKeKe 11eJib COCTOUT B TOM, YTOOBI HAGPATh KaK MOXKHO 6OJIbIlle OUKOB,
HO He Gosee 21. Baset, mama 1 KOpojb CTOSAT o 10 0O4KOB, a KapThl OT 2 10 10
OLIeHMBAIOTCSI IO HOMMHAAbHOMY AOCTOMHCTBY. Ty3 MoxXeT cTouThb 1 mau 11 ou-
KOB, B TIOC/eJHEM Cydae Ty3 Ha3bIBaeTCs UrparmomumM. VITpok uUrpaet mpoTuB
cmaroniero. Buavase 060MM yuyacTHMKAM CHAETCS IO IB€ KapThl, M OOHA U3 KapT
CHaIolero oTKpbiBaeTcs. UrpoKk MOXXeT MOMPOCUTh TOTIOTHUTENbHbIE KaPThI (CKa-
3aB elle) UM OCTAaHOBUTHCS (CKa3aB XBATUT). Korma UTPOK OCTaHaBIMBAETCS,
CIaloNINii 6epeT 13 KOJIOIbl KAPThI IO TeX IOP, IT0KA X CYMMa He OKaykeTcs1 60JIb-
me Ay paBHa 17. Eciu cyMMa KapT y UTpoOKa MpeBbICUT 21 (TIepeGop), UTPOK
MIPOUTPBIBAET. B IPOTMBHOM Cilyuyae, ecyii CyMMa KapT Y CAAIONIeT0 MPeBbICUT 21,
UTPOK BBIUTPBIBAET.

96 < anIMeHeHMe MeTon0B MOHTe-KapﬂO Anga YWCNneHHoro oueHnBaHuA

Ecmu HY OIMH YYACTHUK He Tepe6Gpast, TO BBIMTPHIBAET TOT, KTO Habpasl 6oJbIile
OUKOB, @ eC/I OYKOB ITOPOBHY, TO UTpa 3aBeplIaeTcsl BHUYbI0. B Gym okpyskaroast
cpena Blackjack ommceiBaeTcs ciieoyomyuM o6pa3om:

)

)

)

KaykIblii STIM30[, IIpeacTapisgeT co6oit MIIIIP, B Havaie KOTOPOro o6a yyact-
HMKA TIOTYYalOT IBE KapThl, ¥ OfHA KapTa CAAIOIIEero OTKPhITA;

SMM30[, 3aKaHYMBAETCS, KOTAa KaKoi-TO YYaCTHUK BBIUIPBIBAET MM UTpa
3aBepIIaeTCs BHMYbIO. B KOHIlE amM307a HAUMC/ISETCS BO3HArpaskkaeHme +1,
eCJIM BbIUTPaJl UTPOK, —1 — ecaiy Urpok mpourpai, u 0 — B ryuyae HUYbEIA;

B K&KIOM payH[ie Y UT'POKa eCThb ABA MeiicTBus: elte (1) — moayIuTs emle Kap-
Ty 1 xBaTuT (0) — 60IbIIE HE 6PATh KapT.

CHauaia momnpobyeM MPOCTYI0 CTpPAaTeruio — 6paTh KapThl, ITOKa CyMMa OYKOB
meHbuie 18 (min 19, unn 20 — Kak XoTuTe).

Kak 310 penaetcs

IpucTynum K UMUTAIMK OKpYKatolei cpenst Blackjack, momyTHo 06bsiIcHUB ee co-
CTOSTHUSI U Te/CTBUS.

1.

Vimnoptupyem 6ubamoreku PyTorch u Gym 1 co3gaaum sK3eMILISP OKpysKa-
tomneit cpensl Blackjack:

>>> import torch
>>> import gym
>>> env = gym.make('Blackjack-v0')

IlepeBemem cpeny B MCXOLHOE COCTOSTHME:

>>> env.reset()
(20, 5, False)

BosBpamiaiorcs Tpy IlepeMeHHble, Olpeesisiollyie COCTOsIHMe

O KOIMYeCcTBO OUKOB y UTpPOKa (B 3ToM npumepe 20);

O Ko/IMuecTBO OUYKOB Y CAalollero (B 9TOM Ipumepe 5);

O mpu3HaK HAIMYMS UTPAIOIEro Ty3a y UTpoka (B 3TOM npumepe False).
Ty3 Ha3bIBAETCSI UTPAIOLIMM, €CJIM €T0 MOKHO TOCUMTATh Kak 11 oukoB 6e3
nepe6opa. Eciiu y Urpoka HeT Ty3a WM eCTh, HO €r0 3a4eT IIPUBEJT Obl K repe-
60py, TO TPETHSI TIepeMeHHast COCTOSTHMS paBHa False.

PaccmoTpuM crienyrommii a1mn3on

>>> env.reset()
(18, 6, True)

18 04UKOB M True 03HAYAIOT, YTO Y UTPOKA HA PYKaX UTPAIOLIVIA TY3 U CeMepKa,
IpUYeMm Ty3 ITIOCYUTAH Kak 11 OUKoB.

Ha mpumepe HEKOTOPBIX JeiiCcTBUII TOKaxkeM, Kak paboraet cpena Blackjack.
CHayvana MmompocuMm elle KapTy, MOCKOJIbKY HaJM4YMe UTPAIOIIero Ty3a JaeT
HaM OIpeneeHHYI0 TMOKOCTh:

>>> env.step(1)
((20, 6, True), 0, False, {})

Mpenckasanue metonoM MowTe-Kapno B urpe 6nakmkek % 97

BosBpamarorcs Tpu nepemeHHble cocTosiHMA (20, 6, True), BO3HarpaxieHue
(noxka 0) 1 mpM3HAaK 3aBeplleHns 3NM304a (1moka False).
[Toce aTOrO MBI IEpecTaeM OpaTh KapThI:

>>> env.step(0)
((20, 6, True), 1, True, {})

B 3TOM 2m130/ie MbI BBIMTPA/IN, TOCKOIbKY BO3HArpaskaeHue paBHo 1 1 amu-
307, 3aBepuImicsa. Ho mocie TOro Kak UrpoK CcKasal «XBaTUT», K MeMCTBUSIM
MMPUCTYNAET CAAKIINIA.

BbIBaeT, YTO MBI IIDOUTPBIBAEM, HAIIpMMeEp:

>>> env.reset()
(15, 10, False)
>>> env.step(1)
((25, 10, False), -1, True, {})

ITepeiimem Temeps K MpecKasaHmIo IIeHHOCTHM IJ1s1 IIPOCTOI CTpaTeruu, Korna
MbI ITepecTaeM 6paTh KapThl, HA6paB 18 OUKOB.

Kaxk Bcerma, cHavasia HY>KHO HamucaTh GYHKIIMIO, KOTOPast UMUTHUPYET SIIM-
307 Blackjack rpu ciiemoBaHuy IpoCTOi CTpaTernm.

>>> def run_episode(env, hold_score):
. state = env.reset()
cee rewards = []
vee states = [state]
is_done = False
. while not is_done:

vee action = 1 if state[0] < hold_score else 0
eee state, reward, is_done, info = env.step(action)
cee states.append(state)
. rewards.append(reward)
if is_done:
vee break
ces return states, rewards

3aTteM omnpenenum QyHKLNIO, KOTOpast OlleHUBAEeT IPOCTYIO CTPATernio UrPbl
B Gi1akIkeKk MeTompoM MK mepBoro mocenieHus:

>>> from collections import defaultdict
>>> def mc_prediction_first_visit(env, hold_score, gamma, n_episode):
eee V = defaultdict(float)
cee N = defaultdict(int)
vee for episode in range(n_episode):
states_t, rewards_t = run_episode(env, hold_score)
return_t = 0

.. ¢ =0

cee for state_t, reward_t in zip(states_t[1::-1], rewards_t[::-1]):
. return_t = gamma * return_t + reward_t
vee G[state_t] = return_t

for state, return_t in G.items():
if state[0] <= 21:
. V[state] += return_t
vee N[state] += 1

98 < anIMeHeHMe MeTon0B MOHTe-KapﬂO Anga YWCNneHHoro oueHnBaHuA

for state in V:
V[state] = V[state] / N[state]
return V

7. 3amagum IapamMeTpsl: Topor octaHoBKM (hold_score) 18, KoaduimeHT obec-
LeHuBaHus 1, KoanuecTBo snm3omoB 500 000:

>>> hold_score = 18
>>> gamma = 1
>>> n_episode = 500000

8. BoimomHuM mnpepackasanyve MK ¢ TakMMM mapamMmeTpaMu:
>>> value = mc_prediction_first_visit(env, hold_score, gamma, n_episode)
PacmneyaTaeM MOyInBIIYIOCS GYHKIMIO IIEHHOCTH

>>> print('OyHKuMa UEHHOCTH, BbluMCIeHHAs MeTogoMm MK nepsoro nocewewns:\n',
value)

B pesynbraTte GyoyT HameuyaTaHbl LIEHHOCTY BCEX BO3MOXKHBIX COCTOSIHUIA.
U Hamocnenok HarleyaTaeM KOJMMUECTBO COCTOSTHUIA:

>>> print('Konnyectso coctosauuii:', len(value))
KonnyecTBo cocTosHuin: 280

Kak Bugyum, Bcero mnx 280.

Kak 3to paboraer

Ha 1rare 4 mbl Ha6pasiu 60sbiie 21 ouka 1, CTano 66ITh, Ipourpann. [IoBTopuMm, 4TO
B cpepe Blackjack cocTosiHMEe — KOPTEX U3 TpeX 371eMeHTOB. [IepBblii 371eMEeHT — KO-
JIMYECTBO OYKOB, HAOGPAHHBIX UTPOKOM, BTOPOI1 — B3SITast U3 KOOI KApTa JOCTOVH-
cTBOM OT 1 10 10, TpeTuit — mpM3HaK HaJIMUMS UTPAIOILEro Ty3a.

Ha 1rare 5 areHT rOBOPUT «elie» UM «XBATUT», UICXOMS U3 TEKYIIEero KoJIuuecTBa
0uKOB. Ec/ii oHO MeHbIiie hold_score, OH 6eper elle KapTy, MHAUe OCTAaHABIMBAETCSI.
Kaxk monoskeHo B MmeTome MoHTe-Kap/io, Mbl 3aIIOMIHAeM COCTOSTHMS ¥ BO3HarpasK-
IeHMs Ha BCeX Iarax.

TTocste BBITIOJTHEHMS 111ara 8 Mbl IIOJYUMM TaKOi pe3y/bTaT:

OYHKUMA LEHHOCTH, BbIYNCIEHHAA MeTogoM MK nepBoro moceweHus:
defaultdict(<class 'float's, {(20, 6, False): 0.6923485653560042, (17, 5,
False): -0.24390243902439024, (16, 5, False): -0.19118165784832453, (20,
10, False): 0.4326379146490474, (20, 7, False): 0.7686220540168588, (16, 6,
False): -0.19249478804725503,

(5, 9, False): -0.20612244897959184, (12, 7, True): 0.058823529411764705,
(6, 4, False): -0.26582278481012656, (4, 8, False): -0.14937759336099585,
(4, 3, False): -0.1680327868852459, (4, 9, False): -0.20276497695852536,
(4, 4, False): -0.3201754385964912, (12, 8, True): 0.11057692307692307})

Mb1 moka3anu, HaCKONMbKO 3G HEKTUBHO MOKHO BBIUMCINTD QYHKIMIO IIEHHOCTH
280 cocrostuumit B cpene Blackjack ¢ momombio nmpenckaszanus metomom MK. OyHk-
L[Ms1 TIPe/ICKa3aHusl, HANMCAHHAs Ha 1Iare 6, BBIMOHSIET CIeNyIolue NeiiCTBUS

Mpenckasanue metogoM MoHTe-Kapno B urpe 6rakmkek % 99

MIPOTOHSIeT n_episode 3M1M30[0B, CJIEAYS IPOCTO CTPAaTerniu;

IUIST KaKIIOTO SMIM30,a BRIUMCISET LOXOMAbI IIPY IIEPBOM IOCEIIeHNN KasKI0ro
COCTOSIHUS;

IUISI KaKIOTO COCTOSIHMSI BBIUMCIISIET LI€HHOCTh, YCPeIHSIST JOXOMbI IIPH Iep-
BOM ITOCEIeHUY 110 BCEM SITM30IaM.

(ON©;

OTMeTMM, YTO Mbl UTHOPMPYEM COCTOSIHMS, B KOTOPBIX UI'POK Habpas 60sblie
21 ouka, T. K. 3HaeM, 4YTO BO3HArpakaeHue B HUX paBHO —1.

Mopenb okpyskatoiieii cpenbl Blackjack (ee MaTpulibl HePeXom0OB 1 BO3HArpaxkae-
HMIT) 3apaHee HeM3BeCTHA. [[a ¥ TTOTYUUTh BEPOSITHOCTH ITEPEXOHN0B MEKIY IBYMS
COCTOSTHMSIMM OBbIIO ObI 3aTPYIHUTENIBHO. PasMep MaTpuilbl IepexonoB Obi ObI pa-
BeH 280 * 280 * 2, Tak UTO 00beM BBIUMCIEHMII OKa3ajcsl ObI OUeHb BeIMK. B pere-
Hyy MeTogoM MK HaM HY>KHO GbUTO JIMIIIb UMUTUPOBATH JOCTATOUHO MHOTO 3130~
IIOB, IJIST KasKAOTO M3 HUX BBIYMCIUTD JOXO, ¥ COOTBETCTBEHHO OOHOBUTD (QDYHKITUIO
IIEHHOCT.

B ciemyrommii pas, Korma 6ymere UrpaTh B OJISKIKEK, MIPUAEPXKUBASICH TPOCTOI
cTpaTerny (OCTAHOBUTHCS, HAOPaB 3apaHee 3aJJaHHOE KOJIMYECTBO OYKOB), [TOCMOT-
puUTe, IOMOTYT JIY MpeICKa3aHHbIe IIEHHOCTY COCTOSTHMIA JeIaTh CTABKMU.

3T0 eLe He Bce

TTOCKOJIBKY B 9TOM C/Iy4ae COCTOSIHMIT MHOI'O, BOCIIPMHMMATD UX LIEHHOCTH TPYLHO.
YT0ObI HAISIAHO MPENCTABUTh QYHKLMIO LIEHHOCTM, MOXKHO IIOCTPOUTDH TPEXMEP-
HbI1 rpaduk. CoCTOSIHME B JAHHOM C/Iydae TpeXMepHOe, IIp1YeM TPeThsl KOOpAMHaTa
MOKeT IIPMHMMATh BCe IBa 3HaYeHMsI (€CTh UIPAIOILMIL TY3 MK HeT). [I03ToMy MOK-
HO pa3aeanTb rpadyK Ha JABe YacTi: OAHA — IJIs COCTOSIHMIA C UTPAIOLIIM TY30M, IPY-
rast — [Iijist OCTaJIbHbIX. B KaskOM C/Tydae 110 OCH X OTK/IaIbIBAeTCST KOJIMUECTBO OUKOB,
HaOpaHHOEe UI'POKOM, IT0 OCM Y — OTKPbITAsl KApTa CAAIOLIET0, a II0 OCH Z — LIeHHOCTb.
Iast mocTpoeH s rpadMKOB BIIOJIHUM CIEAYIOLIE Je/iCTBUS.

1. Vmmnoptupyem Heo6XxomumMbie MOOy/Iu 13 6ubmmnoreky matplotlib:

>>> import matplotlib
>>> import matplotlib.pyplot as plt
>>> from mpl_toolkits.mplot3d import Axes3D

2. Hamwuiem BcrioMoTraTeabHYI0 QYHKITUIO AJ1S1 TOCTPOEHNMS TPEXMEepPHOTO Ipa-
¢duxa:

>>> def plot_surface(X, Y, Z, title):

vee fig = plt.figure(figsize=(20, 10))

vee ax = fig.add_subplot(111, projection='3d")

vee surf = ax.plot_surface(X, Y, Z, rstride=1, cstride=1,
. cmap=matplotlib.cm.coolwarm, vmin=-1.0, vmax=1.0)
. ax.set_xlabel('Ouku urpoka')

. ax.set_ylabel('OTkpbiTaa KapTa cpawuero')

vee ax.set_zlabel('lennocTs')

vee ax.set_title(title)

vee ax.view_init(ax.elev, -120)

vee fig.colorbar(surf)

vee plt.show()

100 < TMpumeneHune Metonos MoHTe-Kapo Ans YUCNEHHOTO OLEHWBAHMS

3. 3areM HamuileM (DYHKINIO, KOTOpasi CTPOUT MacCUBBI, M306paskaeMble I10
KaXXIIOMY M3 Tpex U3MepeHMUil, 1 BbI3oBeM plot_surface jisi BU3yanau3samun
(YHKLIMY LIEHHOCTY C UTPAIOIIMM TY30M U 6e3 Hero:

>>> def plot_blackjack_value(V):
.. player_sum_range = range(12, 22)
dealer_show_range = range(1, 11)
X, Y = torch.meshgrid([torch.tensor(player_sum_range),
torch.tensor(dealer_show_range)])
values_to_plot = torch.zeros((len(player_sum_range),
len(dealer_show_range), 2))
for 1, player in enumerate(player_sum_range):
for j, dealer in enumerate(dealer_show_range):
for k, ace in enumerate([False, True]):
values_to_plot[i, j, k] = V[(player, dealer, ace)]
plot_surface(X, Y, values_to_plot[:,:,0].numpy(),
"OyHKyMA yeHHocTn 6e3 urpawuero Tysa")
plot_surface(X, Y, values_to_plot[:,:,1].numpy(),
"OYHKYMA LEHHOCTH C MrpanwuMm Ty3som")

Hac MHTepecyIoT TONBKO COCTOSIHMSI, B KOTOPBIX UTPOK Habpas 6osble 11 o4-
KOB, TaK YTO B TeH30pe values_to_plot XpaHATCS TOJBKO TaKyMe IEHHOCTH.

4. U HakoHel, BbI3bIBaeM QyHKIINIO plot_blackjack_value:

>>> plot_blackjack_value(value)

Huske rmokasaH rpaduK QyHKUNMY IEHHOCTY COCTOSIHUI 63 UTparolero Tysa.

1.00

DYHKLMS LEHHOCTU 6E3 UrpatoLLero Ty3a

r0.50

r0.25

- 0.00

q1D0HH3T]

r—0.25

r—0.50

-0.75

—1.00

Yripasnenue metonom MoHTe-Kapno ¢ eguHoit crpaterveit % 101

A BOT KaKk BBITJIAOUT rpa(bMK (bYHKLU/II/I OEHHOCTU COCTOSIHMIA C uUrparimmnM Ty30M.

1.00
CDyHKLI.VIﬂ LEHHOCTKN C UrpakoLiMm TyaomM

0.75

o
™

- 0.50

o
o

o
S

r0.25

e
]

r0.00
0.0

q1I0HHIT

r—0.25

4;0 F—0.50
6, 8
/fe

18

=S
v“'pO\(a

16
14 UKW
Q/@/b 12 0

—1.00

[TorpoOyiiTe IO3KCIIEPUMEHTUPOBATh CO 3HAaueHMeM IapaMeTrpa hold_score
¥ TIOCMOTPUTE, KaK IPU 3TOM MeHSIeTCsT GYHKIMS LIeHHOCTM.

CM. TaKkxe

Ecin Bl paHee He CTaJKMBAIUCh C OKpyskatoeit cpenoit Blackjack, moskeTe mo-
YepIIHYTh JOTIOJIHUTE/IbHbIE CBeIeHUS O Hell U3 UCXOIHOr0 Koja 1o aapecy https://
github.com/openai/gym/blob/master/gym/envs/toy_text/blackjack.py.

WHorpa mpolije MpoYynuTaTh caM KOfl, UeM ero OmnucaHye Ha eCTeCTBeHHOM SI3bIKe.

YnraBneHue METOoOM MoHTE-KAPNO
C EAUHOMN CTPATEIMEMN

B mpenpigyiiemM pelienite Mbl IIpefcKa3ady LEHHOCTb CTpaTeruu, Mpu KOTOpOit
areHT OCTaHABIMBAETCs, HA6paB 18 0uKOB. TO MPOCTas CTpaTerusi, KOTOPOJ JIETKO
C/1eoBaTh, HO, OUEBUAHO, HE ONTUMAasbHas. B aTOM peljeriTe Mbl OymeM MCKaTh OTI-
TUMAaJbHYIO CTPATETMI0 UTPhI B GISKIKEK C ITOMOIIbIO YITpaBaeHus: MeToroM MoH-
Te-Kapio.

[Ipenckasanue MmeTogom MoHTe-Kapiio 1cIonb3yeTcs, YTOObI OLIeHUTh LIEHHOCTh
NIpU CAefOBaHUM 3aaHHOV CTpareruy, a ynpasiaeHue metrogom MoHTe-Kapno

102 < [Mpumenenune Metonos MoHTe-Kapio Ans YUCNEHHOTO OLEHWBAHMS

(yupasinenue MK) — uTO6bI HAITU ONITUMAJIbHYIO CTpaTernio. ECTh 1Be OCHOBHbBIE
KaTeropuu yrpasneHusi MK: ¢ eqyHOI cTpaterueii ¥ ¢ pasfeleHHON CTpaTerne.
MeTozpl ¢ emMHOI cTpaTerueii (on-policy) o6ydaloTcst ONTUMATbHOI CTPATETUH,
BBITIOJIHASL 3Ty CTpaTeruio, a 3aTeM OLIeHMBas M YIydllasl ee, TOILa KaK MeTOZbl
C pasgesieHHOI cTpaTterueii (off-policy) o6yuaroTcss onTMMaNbHOI CTpaTernu Ha
IaHHBIX, CTeHEPUPOBAHHBIX IPyToii cTpaTerueii. [IpuHIMn paboTsl yrpasaenus MK
C eMHOJ CTpaTerueli O4eHb IIOXOX Ha aJITOPUTM UTepaLyy IO CTpaTernsiM B IMHa-
MMUYeCKOM ITPOrpaMMMPOBaHMUMY, IOCKOIbKY COCTOUT M3 ABYX 3TAIlOB: OLleHMBAaHUS
U YIy4IIeHUs.

O Ha sTarme olleHMBAHUS BbIUNCISETCS He QYHKIMS IEHHOCTU (OHA ke (DyHK-
1IMS IEHHOCTY COCTOSTHUIA, VTV TIOJI€3HOCTH), 8 QYHKIIMS HEHHOCTHU JIeii-
cTBUiL. OTa GYHKIMS yalle HasbiBaeTcss Q-GyHKIMen 1 onpenesseT 1eH-
HOCTb IIapbl COCTOSTHME—[IelicTBME (S, a), KOTha Mpu CAeJoBaHUM 3aJaHHOI
CTpaTermmu B COCTOSIHUM S IMpeAIpuHMMaeTcsl AeiicTBue a. Kak M paHblie,
OLIEHMBaHMEe MOXXHO MPOM3BOAUTH JJISI TIEPBOTO IOCEIIeHUS WIN IJIST BCeX
MOCeIleHMIA.

O Ha sTamne yaydieHus CTpaTerysi OGHOBJISIETCS ITyTeM COTIOCTABIEHMS KaXKI0-
MY COCTOSIHUIO OIITMMAaJIbHOIO IeiiCTBUS:

ni(s) = argmax,Q(s, a).

OrnrumaibHasi CTpaTerusl MmoayvyaeTcs, eCiv YepeoBaTh 9TH Ba JTara Ha Mpo-
TSDKEHUY GOJIBIIOTO UMCIa UTepaluii.

Kak ato penaetca

IlaBaiiTe HaliIeM ONMTUMAaIbHYIO CTPATErMI0 UTPHI B O9KIKEK C TIOMOIIbIO YITpaB-
snenuss MK ¢ equHOI1 cTpaTerueii.

1. VmmopTtupyem Heob6XoaumMbie MOIY/IM 13 6ubmmoTeky matplotlib:

>>> import torch
>>> import gym
>>> env = gym.make('Blackjack-v0')

2. Hamwumem ¢GyHKUMIO, KOTOpas BBITIOMHSIET OOWH 3MMU30[, MpeAnpuHUMas
IeiicTBUS, MPOAUKTOBaHHbIe Q-GdYyHKIIMeN . DTO aTal yayqleHusI.

>>> def run_episode(env, Q, n_action):
nnn
ces BbiNONHSAET 3NU30A, PYKOBOACTBYACH 33faHHOK Q-dyHKuueii
cee @param env: uma OKpyxawuei cpegbl OpenAI Gym
. @param Q: Q-dyHKyms
. @param n_action: npocTpaHCTBO AelCTBHiA
ces @return: pesynbTupyWlHe COCTOAHUA, AEHCTBUA W BO3HArpaxieHus Ana
ces BCEro 3nusopa
nnn
vee state = env.reset()
vee rewards = []
vee actions = []
vee states = []

Yripasnenue metonom MoHTe-Kapno ¢ eguHoit crpaterveit % 103

is_done = False
action = torch.randint(0, n_action, [1]).item()
while not is_done:

actions.append(action)

states.append(state)

state, reward, is_done, info = env.step(action)

rewards.append(reward)

if is_done:

break

action = torch.argmax(Q[state]).item()

return states, actions, rewards

3. Temnepb peannsyeM ajiroputm yrpasaenus MK ¢ eguHoi cTpaTerneii.

>>> from collections import defaultdict
>>> def mc_control_on_policy(env, gamma, n_episode):
HaxoguT ONTMManbHYW CTpaTeruw MeTofoM ynpasneHus MK c eguHoit
cTpaTeruei
@param env: uma oKpyxawuei cpegsl OpenAI Gym
@param gamma: Ko3¢duuueHT obecueHnBaHuA
@param n_episode: Konn4yecTso 3nu3040B
@return: onTuManbHas Q-QYHKUMA M ONTUMANbHAA CTpaTerus
n_action = env.action_space.n
G_sum = defaultdict(float)
N = defaultdict(int)
Q = defaultdict(lambda: torch.empty(env.action_space.n))
for episode in range(n_episode):
states_t, actions_t, rewards_t = run_episode(env, Q, n_action)
return_t = 0
G={}
for state_t, action_t, reward_t in zip(states_t[::-1],
actions_t[::-1], rewards_t[::-1]):
return_t = gamma * return_t + reward_t
G[(state_t, action_t)] = return_t
for state_action, return_t in G.items():
state, action = state_action
if state[0] <= 21:
G_sum[state_action] += return_t
N[state_action] += 1
Q[state][action] = G_sum[state_action] / N[state_action]
policy = {}
for state, actions in Q.items():
policy[state] = torch.argmax(actions).item()
return Q, policy

4. 3agagum KoddduiyeHT obecueHBanms 1 1 KomuecTBo smu3onos 500 000:

>>> gamma = 1
>>> n_episode = 500000

5. BbImosHUM aaroputm yrpasiaennss MK ¢ eqyHoi cTpaTerueit, 4Toobl HaiTH
onTuMasibHble Q-GYHKIIMIO U CTPATErnIo:

104 < [Mpumenenue Metonos MoHTe-Kapio Ans YUCNEHHOTO OLEHWBAHMS

>>> optimal_Q, optimal_policy = mc_control_on_policy(env, gamma, n_episode)
>>> print(optimal_policy)

6. BbrumomM (QYHKIMIO IIEHHOCTY IJIS1 ONITUMAaJIbHOM CTpaTermu 1 paciieyara-
eMm ee:

>>> optimal_value = defaultdict(float)

>>> for state, action_values in optimal_Q.items():
optimal_value[state] = torch.max(action_values).item()
>>> print(optimal_value)

7. Busyanmmusupyem QYHKIIMIO IIEHHOCTY, BbI3BaB hyHKIMM plot_blackjack_value
u plot_surface, pa3paboTaHHbIe B MPEbIAYIIEM pelernTe:

>>> plot_blackjack_value(optimal_value)

Kak 3to paboraer

B arom pelente Mbl IPUMEHUIIM K UTpe B GIIKIKeK yrpasienre MK c equHoit
CTpaTerueit, uccienysi pa3nuuHble HavyalibHble HeiicTBUS. llenb — onmTMMu3anus
CTpaTerny — NOCTUTAETCS MyTeM YepeoBaHMs TANOB OLlEHUBAHUS U YIydllleHUs
B K&3KA,0M UMUTUPOBAHHOM 3MM30[e.

Ha mrare 2 Mbl BBITIOJIHSIEM T30/, U BBIOMpPaeM JIeiiCTBUS, TUKTyeMble Q-(pyHK-
nueit:

O uMHMIMaNIU3MUpPyeM STU30/;

O mnpennpuMHMMaeM IydyaiiHOe [eJiCTBME B KadyeCTBEe MCCAeN0BaTeIbCKOrO
cTapra;

O mocnenpylomye eiicTBMS BbIOMpaeM Ha OCHOBe Tekyrieit Q-dbyHKuuu, T. €.
a’ = argmax,Q(s, a);

O 3arommuHaeM COCTOSIHMS, AEVICTBYS ¥ BO3HATPasKIeHMS Ha BCeX IIarax 3Im30-

Jla IJIST MICTIOJIb30BAaHMS Ha STalle OleHMBaHMS.

BaskHO OTMETHUTD, UYTO TIEPBOE AeiCTBIE BbIOMPAETCS CaydaifHbIM 00pa3oM, Io-
TOMY UTO aJIrOPUTM yrpaBieHuss MK cxoguTcst K ONTUMaJIbHOMY pellleHUI0 TOJIbKO
MIpY TaKOM YCI0BMM. BoinosHeHMe snm3oga B anroputMme MK, HaunHas co ciayyvari-
HOTO J1eJiCTBYSI, Ha3bIBAETCS MCC/Ie0BaTEeIbCKIUM CTApPTOM.

[TepBoe neiicTBMe BbIOMpAeTCsl CAyJYaifHO, IJIST TOTO UTOOBI CTpATerus COILIACh
K OIITMMaJIbHOMY pelleHNI0. B MPOTMBHOM ciTyuyae HEKOTOpbIe COCTOSIHMS HUKOTAA
He ObUIM ObI MOCeIeHbl, IEHHOCTY COOTBETCTBYIOLIMX AP COCTOSIHMe—IeJiCTBIe He
6BV OBl ONITUMMU3UPOBAHBI, i B UTOTE CTPATETHSI MTOyUMUIACh ObI HEOTITUMATbHOIA.

Ilar 2 mpencrassieT cOO0J TAM YAYUIIEHNS, a mar 3 — yrpasiaenne MK, Ha Hem
BBITIOTHSIOTCS C/IeAyoINe IeiCTBUS:

Yripasnenue metonom MonTe-Kapno ¢ eguHoit ctpaterveit % 105

Q-byHKUIMS MHULMAIU3UPYETCS CTyYaifHbIMU HeOONMbIIMMIU 3HAUEHUSIMU;
BBITIOJIHSIETCS n_episode 3MM30/0B;

IIJISI KQXKI0TO 3MM30a BBITIOTHSIETCS yayUllleHl e CTPaTeruu U BhIUUCISIIOTCS
COCTOSIHMSI, IeJICTBMS ¥ BO3HArpaskaeHMs. 3aTeM IMPOM3BOAUTCS OlleHUBaHMe
CTpaTeruu C IIOMOIIbIO TpeacKaszaHus MeTogoM MK mepBoro noceureHus Ha
OCHOBE TOJIbKO UTO MOSYUYEHHBIX COCTOSIHUM, NeViCTBUI U BO3HATPaKIEHUI;
TIpY 3TOM 0OHOBIIgeTCS Q-QYyHKIINS;

O B uTOre MbI TIOJlyyaeM ONMTUMaIbHYI0 Q-(QYHKIINIO 1 ONITUMAaTbHYIO CTpaTe-
T'UI0, 3aK/TIOUAONIYIOCS B TOM, UTOOBI BBIOMPATh B KasKIOM COCTOSTHUM Hau-
ayudiiiee neiicTBue, AUKTyeMoe ONTUMaabHOM Q-(pyHKIIMe.

(ONONG)

Ha kaskmoit uTepanyy cTpaTerust BbIOMpaeT MeiicTByUeE KagHO, T. €. CO0OPA3YsICh
¢ TeKyuleii GyHKIMeli neHHoCcTH AeiicTBuii Q (m(s) = argmax,Q(s, a)). B pesynbrate
yIaeTcs MOMYIUTb ONITUMAJIbHYIO CTPATernio, XTSI HAUMHAJIM MbI CO CJTy4aiiHOIA.

Ha mrare 5 pacrmeuatsiBaeTcsl CeIyrOmast ONTUMATbHAS CTPATETHSI

{(16, 8, True): 1, (11, 2, False): 1, (15, 5, True): 1, (14, 9, False): 1,
(11, 6, False): 1, (20, 3, False): 0, (9, 6, False): 0, (12, 9, False): 0,
(21, 2, True): O, (16, 10, False): 1, (17, 5, False): 0, (13, 10, False):
1, (12, 10, False): 1, (14, 10, False): 0, (10, 2, False): 1, (20, 4,
False): 0, (11, 4, False): 1, (16, 9, False): 0, (10, 8,

1, (18, 6, True): 0, (12, 2, True): 1, (8, 3, False): 1, (13, 3, True): O,
(4, 7, False): 1, (18, 8, True): 0, (6, 5, False): 1, (17, 6, True): O,
(19, 9, True): 0, (4, 4, False): 0, (14, 5, True): 1, (12, 6, True): 0, (4,
9, False): 1, (13, 4, True): 1, (4, 8, False): 1, (14, 3, True): 1, (12, 4,
True): 1, (4, 6, False): 0, (12, 5, True): 0, (4, 2, False): 1, (4, 3,
False): 1, (5, 4, False): 1, (4, 1, False): 0}

Ha mare 6 paciieyaTbIBA€TCSI OKOHYATE/IbHA OIITMMAaJIbHA CTpaTerms:

{(21, 8, False): 0.9262458682060242, (11, 8, False): 0.16684606671333313,
(16, 10, False): -0.4662476181983948, (16, 10, True): -0.3643564283847809,
(14, 8, False): -0.2743947207927704, (13, 10, False): -0.3887477219104767,
(12, 9, False): -0.22795115411281586

(4, 3, False): -0.18421052396297455, (4, 8, False): -0.16806723177433014,
(13, 2, True): 0.05485232174396515, (5, 5, False): -0.09459459781646729,
(5, 8, False): -0.3690987229347229, (20, 2, True): 0.6965699195861816, (17,
2, True): -0.09696969389915466, (12, 2, True): 0.0517241396009922}

Ha miare 7 crpoutcs rpadMK EHHOCTY COCTOSIHMIT 63 UTPAIOIEro Ty3a:

106 < [MpumeHenue Metonos MoHTe-Kapio Ans YUCNEHHOTO OLEHWBAHMS

DYHKUMA LEHHOCTM BE3 UrpatoLLero Ty3a

q1J0HH3N
o
o

18

14 UrpoKa

16
12 Quxv

100

0.75

tos0

F0.25

r0.00

[—0.25

—0.50

=0.75

U rpaduK 1IeHHOCTM COCTOSIHMIA C UTPAIOIINM TY30M:

—1.00

DYHKLMS LEHHOCTM C UTPAOLLMM TY30M

ko4
o

o
o

o
S

o
[N

q1J0HH3T
o
o

-0.2

16
Quin W

- 14
Q/@/b 12

1.00

0.75

0.50

F0.25

r 0.00

[-'=0.25

—0.50

—0.75

370 elle He Bce

-1.00

UHTepecHO, AeliCTBUTENBHO M ONTUMAaJIbHAsI CTpaTerus Jaydiine mpocToii. s oT-
BeTa Ha 3TOT BOIpoc ceiMuTHpyeM 1o 100 000 snm3010B UTPLI B OJI9KIKEK MIJIST OTI-
TUMAaabHOI U AJISI IPOCTOM CTpaTeruu, a 3aTeM CPaBHMUM IIaHChI HA BBIUTPBIIII.

Yrpasneuue metogom MonTe-Kapno ¢ equHoi ctpaternenn % 107

CHavayla OIpeleNM IMPOCTYI0 CTPATeruio, Mpu KOTOPOii UTPOK TOBOPUT
«XBaTUT», HAOpaB 18 OUKOB MM GOJIBIIIE.

>>> hold_score = 18

>>> hold_policy = {}

>>> player_sum_range = range(2, 22)

>>> for player in range(2, 22):

for dealer in range(1, 11):

action = 1 if player < hold_score else 0
hold_policy[(player, dealer, False)] = action
hold_policy[(player, dealer, True)] = action

3aTeM oIpenenuM (QYHKIMIO-00ePTKY, KOTOpast BBITOJHSIET OOUH SIMU30[,
cJlemys 3aJaHHOM CTpaTeruy, U BO3BpalllaeT IOJHOe BO3HATpaskIeHMe.

>>> def simulate_episode(env, policy):

state = env.reset()

is_done = False

while not is_done:
action = policy[state]
state, reward, is_done, info = env.step(action)
if is_done:

return reward

3aganum konmu4dectBo 31n3040B (100 000) m MHMLManM3upyeM CYeTUMKU BbI-
UTPBIIIEN Y IIPOUTPBILIEN:

>>> n_episode = 100000
>>> n_win_optimal = 0
>>> n_win_simple = 0

>>> n_lose_optimal = 0
>>> n_lose_simple = 0

Beimonaum 100 000 31M3040B, MOACYMUTHIBAS] MOIYTHO BBIMIPBIIIN U MPO-
UTPBIILNA:

>>> for _ in range(n_episode):

reward = simulate_episode(env, optimal_policy)

if reward == 1:
n_win_optimal += 1
elif reward == -1:

n_lose_optimal += 1
reward = simulate_episode(env, hold_policy)
if reward ==

n_win_simple += 1
elif reward == -1:

n_lose_simple += 1

U HareyaTaeMm IOTyUYeHHbIE PE3Y/IbTAThI:

>>> print('BepoATHOCTb BbiMrpbiwa npu npocton crpaterun: {}'.
format(n_win_simple/n_episode))

'BepoAATHOCTb BbiMrpbiwa NMpu NpocToit cTpaTerun: 0.39923

>>> print('BepoATHOCTb BLIMrpbild MPU ONTMManbHOW cTpaTterun: {}'.
format(n_win_optimal/n_episode))

BepoATHOCTb BbIMFpbiWa MPU ONTUMANbHOW cTpaTerun: 0.41281

108 <« [Mpumenenune Metonos MoHTe-Kapso Ans YUCNEHHOTO OLEHWUBAHMS

[Tpu ciemoBaHMUM OMITUMABbHO CTpAaTeruy IIaHC BBIMTPATh cocTaBisieT 41.28 %,
a mpu ciaegoBaHuM MPOCTOoi — 39.92 %. [locuntaeM TakKe BePOSITHOCTD MTPOUTPbIIIA:

>>> print('BepoATHOCTb npourpbiwa npu npoctoit ctpateruu:{}’
.format(n_lose_simple/n_episode))

BepoATHOCTb NMpOMrpbiwa MU NPOCTOH cTpaTerun: 0.51024

>>> print('BepoATHOCTb NMPOMrpbiwa NpU onTUManbHoi cTpaTterun:{}'
.format(n_lose_optimal/n_episode))

BepoATHOCTb NMpOMrpblwa MpW NPOCTOi cTpaTerun: 0.493

C Ipyroii CTOpPOHBI, IAHC TIPOUTPATh MIPU CJIeTOBAHMUM ONITUMAIbHO CTpaTerumn
cocrasisieT 49.3 %, a ipu ciiemoBaHuy mpoctoii — 51.02 %. be3 coMHeHMs, ONTH-
MaJibHasl CTpaTerusi BBIMTPhIBAET 10 BCEM CTAThsIM!

PA3PABOTKA YNPABNEHMS METOAOM MoHTE-KAPNO
C £-)XAOHOW CTPATEMMEN

B npenpigyiiiem pelenTe Mbl MCKaJIM ONITUMAa/IbHYIO CTPATETMI0 METOLOM yIIpaBiie-
Hust MK - Rorza skafHO BbIOMpPAeTCs feiicTBYe ¢ Haubosblleli IeHHOCThIO TIaphl CO-
cTostHMe—[elicTBue. Ho skaiHbIi BbIOOD B HAYAIbHBIX ATIM30/IaX He TapaHTUpPyeT Ha-
XOXKIAEHMSI ONITUMAaJIBHOTO pellieHNs. Ecii orpaHMuInThCS TOIBKO TEM, UTO KaXKeTCsl
HaWIy4IIMM pelnieHneM ceituac, UTHOpUPYs IPo6IeMy B 11eJI0M, TO MOXKHO 3aCTPSITh
B JIOKAJIbHOM OTNITUMYMe, TaK 1 He Hali[is I7106aabHOro. YTOOI 3TOT0 He ITPOM30IILIO,
MIPUMEHSIeTCS €-3KaJlHasl CTpaTerus.

B ympaBnennu MK ¢ e-kagHO¥ cTpaTerueii Mbl He TIbITA€MCSI BCeryia BbIOMPATh
HauIydlllee U3 M3BECTHBIX JEICTBUIA, a MHOIMA BbhIOMpaeM CaydaiiHOe AeiCTBUE.
Kak cremyeT 13 Ha3BaHMSl, y aJiTOPUTMa eCThb 1Ba acIleKkTa:

O srncwioH: mapaMeTp &, MpUHUMalolnii 3HaueHus ot 0 1o 1, onpepensieT Be-
POSITHOCTb, C KOTOPOJ1 BhIOGMpaeTCs cTydaifHoe IeiicTBIe:

(s, a) = /Al

rae |A| — KoauuecTBO BO3MOKHBIX JeCTBUI;
QO KagHOCTb: C BEPOSITHOCTBIO 1 — € BhIOMpAETCS AeiiCTBIeE, IJIsI KOTOPOTO LieH-
HOCTb Mapbl COCTOSIHME—IeICTBME MaKCMMaJIbHa:

n(s,a) =1 -¢ + /Al

€-KaJHasI CTpaTerust B 6OMbIIMHCTBE CIyYaeB BbIOMpPAET HAWTyUIllee M3 U3BECT-
HBIX JIeJICTBUI, HO BpeMSI OT BpeMeHMU UCCIenyeT IpyTue NeliCTBUS.

Kak 310 penaetca

3ajimemMcst MMUTaIMel oKpyKaroleit cpenbl Blackjack ¢ moMolpio e-3kaiHO cTpa-
TErmmn.

1. Vmmnoprtupyem Heo6XoAyMble MOAYIU U CO3AaauM K3eMILIsIp cpenbl Black-
jack:

Paspabotka ynpasnexus metonoM Mownte-Kapro c e-xaaHoit ctpatervein « 109

>>> import torch
>>> import gym
>>> env = gym.make('Blackjack-v0')

Hanumem (yHKIMIO, KOTOpast BHIMOMHSIET OOWH STMU30[, CIeAysl €-KaaHOM
CTpaTerum.

>>> def run_episode(env, Q, epsilon, n_action):

vee Bbino/IHAGT 3nM304, CNeAyA £-XafHOW CTpaTeruu
vee @param env: uma OKpyxawueir cpegbl OpenAI Gym
@param Q: Q-dyHKuua
ces @param epsilon: kKoMnpoMMcC Mexgy MCCNeflOBaHWEM M WCMONb30BaHWEM
. @param n_action: npocTpaHCTBO AenCTBMi
ces @return: pe3ynbTupyluMe COCTOAHWA, AENCTBMA W BO3HArpaxjeHus ANA
ces BCEro 3nu3opa
nnn
. state = env.reset()
. rewards = []
. actions = []

vee states = []
is_done = False

. while not is_done:
probs = torch.ones(n_action) * epsilon / n_action
. best_action = torch.argmax(Q[state]).item()
. probs[best_action] += 1.0 - epsilon
cee action = torch.multinomial(probs, 1).item()
vee actions.append(action)
states.append(state)
eee state, reward, is_done, info = env.step(action)
. rewards.append(reward)
vee if is_done:
cee break

return states, actions, rewards
Tenieps peanusyem yripapieHue MK ¢ e-)xafHOM eIVMHON CTpaTerue:

>>> from collections import defaultdict
>>> def mc_control_epsilon_greedy(env, gamma, n_episode, epsilon):

vee CTPOMT ONTUMANbHYKW £-XafHYW CTpaTerul MeTogoM ynpasiaeHua MK
C efWHoil CTpaTeruen
. @param env: uma oKpyxawueir cpegsl OpenAI Gym
. @param gamma: Ko3¢ouuMeHT obecueHnBaHUA
@param n_episode: KonMyecTBO 3nNM3030B
ces @param epsilon: KOMNpoOMMCC MexAy MCCNeOBaHWEM M WCMONb30BaHWEM

@return: onTuManbHble Q-QYHKUMA WM cTpaTerus
. n_action = env.action_space.n
. G_sum = defaultdict(float)
cee N = defaultdict(int)
Q = defaultdict(lambda: torch.empty(n_action))
vee for episode in range(n_episode):

110 < [MpumeHeHue Metonos MoHTe-Kapso Ans YUCNEHHOTO OLEHWBAHMS

. states_t, actions_t, rewards_t =
run_episode(env, Q, epsilon, n_action)
cee return_t = 0
. G ={}
. for state_t, action_t, reward_t in zip(states_t[::-1],
actions_t[::-1], rewards_t[::-1]):
ces return_t = gamma * return_t + reward_t
. G[(state_t, action_t)] = return_t
. for state_action, return_t in G.items():
vee state, action = state_action
. if state[0] <= 21:
. G_sum[state_action] += return_t
. N[state_action] += 1
. Q[state][action] = G_sum[state_action] / N[state_action]
. policy = {}
. for state, actions in Q.items():
. policy[state] = torch.argmax(actions).item()
. return Q, policy

4. 3agagum KosdduimeHT obecieHuBanus 1, € = 0.1 ¥ KOJMUECTBO SIM30/I0B
500 000:

>>> gamma = 1
>>> n_episode = 500000
>>> epsilon = 0.1

5. Beimonmaum anroputm yripasieHus MK c e-5kaHO cTpaTerueii, 9To0bl HANTU
onTuMaibHble Q-OYHKIINIO U CTPATETHIO:

>>> optimal_Q, optimal_policy = mc_control_epsilon_greedy(env,
gamma, n_episode, epsilon)

PacneyaTtaTb onTMManbHble LEHHOCTM M MOCTPOUTb FPAPUKM Bbl MOXETE CaMM,
BOCMO/Ib30BABLUMCL HanMCaHHbIMKM paHee dyHKuMammn plot_blackjack_value
n plot_surface

6. U HakoHell, TOCMOTPUM, Kak paboTaeT e-XaaHblii MeTo. CHOBA CbIMUTUDPY-
em 100 000 311130/10B UTPHI B GJISK/IKEK C ONITUMAIBHOJ CTpaTerueit, HaiieH-
HOJVi OIMCAHHBIM BBIIIE CITOCOOOM, M TTOACUNTAEM BEPOSITHOCTY BBIMIPBINIA
U IIPOUTPBHIIIIA.

>>> n_episode = 100000
>>> n_win_optimal = 0
>>> n_lose_optimal = 0
>>> for _ in range(n_episode):

cee reward = simulate_episode(env, optimal_policy)
cee if reward == 1:

. n_win_optimal += 1

cee elif reward == -1:

. n_lose_optimal += 1

3mech TOBTOPHO MCIONb3yeTcs GyHKIMS simulate_episode M3 MpeABIIyLIETO pe-
HemnTa.

Yripasnexue metogom MonTe-Kapno ¢ pasaenenHon crpaternenn < 111

Kak 3To paboraer

B aTOM peliernte Mbl IPUMEHMIM K UTpe B GIIKIKEK yrpasiaeHne MK ¢ eguHoi
€-’KaHOI CTpaTernei.

Ha m1are 2, cienysi e-3kaiHOV CTpaTeruu, BHITIONHSIETCS OAVH 3TIU30[, U TPOU3BO-
ISITCS Cleytolye TeiCTBUS:

QO snu30n MHULMANU3UPYETCS;

O BBIUNCSAIOTCS BEPOSITHOCTY KaXKIOTO AEMCTBUS; Jydlllee COIIaCHO TeKyleii
Q-byHKIIMK TeiicTBME BHIOMPAETCS C BEPOSITHOCTBIO 1 — € + g/|Al, B MPOTUB-
HOM CJTy4yae BbIOMpaeTcs CIyyaifHoe IejiCTBIE,

O coxpaHSIOTCS COCTOSIHUS, AeViCTBUS M BO3HArpaXIeHMs Ha BCeX Liarax 3mu-
30/1a, YTOOBI MCITOIb30BATh X Ha JTAlle OIleHMBAHMSI.

€-)KafiHasl CTpaTerus Jiydllie >KaJHOrO0 MeTofla MOMCKA, TTOCKOJbKY MUCIIOIb3yeT
JIy4ilee OeiiCcTBYe JIUIIb C BEPOSITHOCTBIO 1 — € + €/|Al, HO TpM 3TOM OTyCKaeT UC-
clenoBaHue IPYrux OefiCTBUIL C BEPOSITHOCTBIO €/|A|. TuriepriapaMeTp € npeacraB-
JisieT KOMITPOMMCC MeX]y UCIIOb30BaHMeM U ucciaenoBanmem. Ecin oH paseH 0, To
AJTOPUTM CTAHOBUTCS YMCTO SKaLHbIM, a ecu 1, To Kaskhoe [eiicTBye BbIOupaeTcst
C PaBHOJi BEPOSITHOCTHIO, T. €. AJITOPUTM BBIPOKAAETCS B CTyUaliHOe uccaeloBaHue.

3HaueHMe € CIeyeT Moa0MPaTh IKCIIEPUMEHTAIbHO, HET HUKAKOTO YHUBEPCAThb-
HOTO perieriTa ajis Jo6oi cutyauyuu. Tem He MeHee, Kak IIPaBMjI0, HAUMHAIOT CO
sHauenus 0.1, 0.2 wum 0.3. JIpyroit rmoaxop — B3SITh 3HaAUeHMe MOOOJIbIIIe (CKasKeM,
0.5 mau 0.7) ¥ rocTeneHHO YMEHbIIATh ero (cKaxkeM, yMHOXast Ha 0.999 B KaxkIom
anmsopne). Torma BHavaie cTpaTerus 6yIeT yaeasiTh O0bllle BHUMAaHMS MCCIeI0Ba-
HUIO, & B KOHIIE CTaHeT MCII0Ib30BaTh XOPOIlne NeCTBUSI.

Hakowner, mocie mara 6 Mbl ycpegHsem pe3ynbTarsl 1o 100 000 anin30[0B U Tie-
yaTaeM BEepPOSITHOCTb BbIUTPhIIIIA:

>>> print('BepoATHOCTb BLIMIpbila NpU ONTUManbHoW ctpaterum: {}'.
format(n_win_optimal/n_episode))
BepoATHOCTb BbIMFpbIWa MPWU ONTUMANbHOW cTpaTeruu: 0.42436

OnTMmanbHasl CTpaTerusi, HalleHHasl €-XKaJHbIM METOJOM, BBIUTPBbIBAET C Be-
pPOSITHOCTBIO 42.44 %, 9TO GOsbllle, YeM B CJTydae CTpaTeruu 6e3 MCCIemOBaHUS
(41.28 %).

U ene HameuaTaeM BepPOSITHOCTDb MTPOUTPBIIIA:
>>> print('BepoATHOCTb npourpbiia Npu onTUManbHoi ctpaterun:{}'
.format(n_lose_optimal/n_episode))

BepoATHOCTb NMpoMrpbiwa NP NPOCTOM cTpaTerun: 0.48048

Kak Buayum, nipu e->kalHOM CTpaTerny IIaHChl HAa MIPOUTPBILI MeHbIlle, YeM IIPU

crparteruu 6e3 ucciaegoBanus (48.05 % 1 49.3 % cOOTBETCTBEHHO).

YnraBneHue METoooM MoHTE-KAPNO
C PASOENEHHOWM CTPATEMMEN

Ewme oguu mogxon k pewreHnto MIITIP metonamu MonTe-Kapiio — yripasieHue ¢ pas-
JleJIeHHOI cTpaTerueii, KOTopoe Mbl U3y4UM B 3TOM peliernTe.

112 <+ TpumeHeHne mMeTonoB MoHTe-Kap/o 4ns YMCIEHHOTO OLEHUBAHKS

Mertop, ¢ pa3feneHHON cTpaTermeri onTUMMU3UPYET IieeBYI0 CTpaTeruio T
Ha JAHHbBIX, CTeHEPMPOBAHHbIX JAPYroii, IOBegeHYeCcKoi cTparerueii b. llesesas
CTpaTerus TOIbKO UCIOJb3YyeT Tyulllne JeiCTBUS, TOTIa Kak ToBeeHuecKast ClTyKUT
LIS MCCIIef,0BaHMsl. DTO O3HAvyaeT, YTO LiesieBas CTpaTerus kaJHasi OTHOCUTEIbHO
cBOeit TekyIeit Q-byHKIMM, a TOBeeHUeCKasi TeHepUpPYeT IoBeieHNe, UTOOBI y Ie-
JIEBOJ cTpaTerMy ObUIM AAaHHbIE, HA KOTOPBIX MOKHO 00ydaThcs. I[ToBemeHuecKas
CTpaTerusi MOXKeT ObITh JIF060, TIPY YCIOBUM UTO BCE AEHCTBIUS BO BCEX COCTOSTHUSIX
BBIOMPAIOTCSI C HEHY/IEBO BEPOSITHOCTBIO, 3TO FapaHTUPYET, UTO CTPATETUS] MOXKET
MCCIIelOBATh BCE BO3MOYXXHOCTH.

[TockoyibKYy B METOJe C pa3fe/JieHHON cTpaTermeii Mol MMeeM AeJ0 C ABYMS pas3-
HBIMM CTpPaTerUsIMU, B SIM30[1aX, BCTPEUAIOIINXCS B 00eMX CTpaTerusiX, MOXKHO MC-
MT0JIb30BaTh TOJILKO OOMIIME IIari. DTO 03HAYAET, YTO Mbl HAUMHAEM C TTOCIeTHETO
miara, Ajisi KOTOpOTo JAelicTBye, MpeIIPUHSATOe COIJIAaCHO MOBeAEeHUYeCcKol cTpare-
TUU, OTIIMYAETCS OT NeMCTBUS, IPEATIPUHSITOrO COTJIACHO YKaJHOM CTpaTerun. A 4to-
6bI 0OYUMTD I1EJIEBYIO CTPATETHIO C TIOMOIIbIO IPYTO¥ CTPATErUy, TPUMEHSIETCS BbI-
6GOpKa IO 3HAUMMOCTH — TeXHIKA, KOTOPAas YaCTO MUCITONb3yeTCs AJIs OLleHMBaHMS
MaTeMaTUYeCKOTO OKMUIaHWSI HEKOTOPOTO pacIpeneneHus py HaIMIny BIOOPOK
U3 IPYTOro pacripenenieHus. B3BelleHHass 3HAUMMOCTD Mapbl COCTOSIHME—/Ie/iCTBIe
BBIUMC/ISIETCS CJIETYIONMM 06pa3om:

W, = > [1(agls,)/blaglsy),
k=t
e 1(a,|s,) — BepOSATHOCTb BbIOOPA JeViCTBUS), B COCTOSIHUM S, IIPU ClIelOBaHUA
1esieBoii ctpaternn; b(a,|s,) — BEpOSITHOCTb TOTO e IIPY C1efl0BaHNM MTOBeleHYe-
CKOVi CTpaTeruu, a BeC w, — CyMMa OTHOLIEHMIi STUX BEPOATHOCTEI 10 BCeM LiIaram,
HauMHasg C £-Io U 10 KOHIIA 31I130/1a. Bec w, IpuMeHseTcs K JOXO4y Ha Iuare t.

Kak 3T1o penaetca

IIJisT HaXOKIEeHMSI ONTUMAJIbHOM CTPATerMy UTPHI B OJI9KIKEK METOAOM YIIpaBJe-
Husg MK ¢ paszmeneHHOI cTpaTernei BoIIIOIHUM CJIeAylolue AeiCTBUSI.

1. Vmmnoptupyem Heo6XoAyMble MOZYIU U CO3JaauM K3eMILIsIp cpenbl Black-
jack:

>>> import torch
>>> import gym
>>> env = gym.make('Blackjack-v0')

2. CHayvaja OTpefeauM MOBeIEHUYECKYI0 CTPATEInI0, KOTOpast CIyYaitHbIM 06-
PasoM C OJMHAKOBOJ BEPOSITHOCTBIO BHIOMPAET JeiCTBMS.

>>> def gen_random_policy(n_action):

. probs = torch.ones(n_action) / n_action

. def policy_function(state):

. return probs

. return policy_function

>>> random_policy = gen_random_policy(env.action_space.n)

[ToBemeHUecKast CTpaTerusi MOKeT OBITh JII000¥, IIPU YCIIOBUM UTO BCE Jeii-
CTBMSI BO BCEX COCTOSIHUSIX BBIOMPAIOTCS C HEHY/IEBOW BEPOSITHOCTHIO.

Yripasnexue metogom MonTe-Kapno ¢ pasaenenHoi crpaternein % 113

3aTeM HamuireM (QYHKIMIO, KOTOpasi BHIMOMTHSIET OAVH 3MM30[¥ BhIOGMpaeT
JIeCTBYS, CJIeys TIOBEeIEHUECKOV CTPATernn:

>>> def run_episode(env, behavior_policy):
nnn
vee BbiNONIHAGT OAWH 3MU30f, Cledya 3aJaHHOW NOBeJeHYeCcKOoi CTpaTeruu
cee @param env: uma oKpyxawuei cpegbl OpenAI Gym
. @param behavior_policy: noBegeHyeckas cTpaTerus
ces @return: pesynbTupyWlNe COCTOAHUA, AEHCTBUSA W BO3HArpaxieHus Ana
BCEro 3nnsopa

vee state = env.reset()

. rewards = []

cee actions = []
states = []

. is_done = False

while not is_done:
. probs = behavior_policy(state)

vee action = torch.multinomial(probs, 1).item()
ces actions.append(action)
vee states.append(state)

state, reward, is_done, info = env.step(action)
eee rewards.append(reward)
. if is_done:
. break
vee return states, actions, rewards

3[ech 3aTIOMMHAIOTCST COCTOSTHMSI, IEMCTBUSI M BO3HArpaXkaeHMs Ha BCex IIa-
rax 31u30/a, o3ke OHM OYIYT UCIIOIb30BaThCS B KAUECTBE 00yUAIONIMX TaH-
HBIX JIJIS1 11eJIEBOI CTpaTernmu.

Terepb peannsyem asiroputm yrpasieHus MK ¢ pasmeneHHOI cTpaTerneii:

>>> from collections import defaultdict

>>> def mc_control_off_policy(env, gamma, n_episode, behavior_policy):
nnn
CTPONT ONTUMaNbHYW CTPAaTeru MeToAoM ynpasnexus MK

ves C pa3sfefieHHOl CTpaTeruei

vee @param env: uma OKpyxawuei cpegbl OpenAI Gym
vee @param gamma: Ko3¢puuMeHT obecueHnBaHUA
. @param n_episode: KonnyecTso 3nM30408B

@param behavior_policy: noBegeHyeckas cTpaTerus
cee @return: onTumanbHbie Q-dyHKUMA W CTpaTerus
. n_action = env.action_space.n
vee G_sum = defaultdict(float)
. N = defaultdict(int)
cee Q = defaultdict(lambda: torch.empty(n_action))
vee for episode in range(n_episode):
ces W= {}
. w=1

states_t, actions_t, rewards_t = run_episode(env, behavior_policy)

vee return_t = 0

114 <+ TpumeHeHue mMeTonoB MoHTe-Kap/o 4ns YMCIEHHOTO OLEHUBAHKS

. G ={}

. for state_t, action_t, reward_t in zip(states_t[::-1],
actions_t[::-1], rewards_t[::-1]):

ces return_t = gamma * return_t + reward_t

. G[(state_t, action_t)] = return_t

. if action_t != torch.argmax(Q[state_t]).item():

cee break

. w *= 1./ behavior_policy(state_t)[action_t]

. for state_action, return_t in G.items():

vee state, action = state_action

. if state[0] <= 21:

. G_sum[state_action] += return_t * W[state_action]

. N[state_action] += 1

. Q[state][action] = G_sum[state_action] / N[state_action]

. policy = {}

. for state, actions in Q.items():

. policy[state] = torch.argmax(actions).item()

. return Q, policy

5. 3amagum kKoadduLeHT obecrieHuBanHus 1 1 KomuuecTBo 3nm3omoB 500 000:

>>> gamma = 1
>>> n_episode = 500000

6. BwimomHMM anroputm yrpasiaennst MK ¢ pasgeneHHO cTpaTerueii, YTo6b
HaITV oNTUMasbHble Q-(QYHKIMIO ¥ CTPATETUIO:

>>> optimal_Q, optimal_policy = mc_control_off_policy(env, gamma,
n_episode, random_policy)

Kak 3to paboraer

B aTom penienite Mbl ipuMeHnnu yripasieHue MK ¢ pa3zeieHHOI cTpaTernein K urpe
OJISKIKEK.
Ha mare 1 BBINMOMHSIIOTCS CJIeAylolIye TeiiCTBUS:

O Q-byHKIMSI MTHUIMATIU3UPYETCS CTyYaifHbIMU MaIbIMU 3HAUEHUSIMU;

O mnporoHseTcs n_episode 3M130[0B:

O @I KakOgoro SMM30[a BBITIOMHSETCS ITOBeJeHYecKasl CTpaTerusi, KoTopas
TeHepUpyeT COCTOSIHMUSI, MEeICTBYST Y BOSHATPAKIEHMSI. 3aT€M BBITTOHSIETCS
OlieHMBaHMe 1eeBoil cTpaTerny metogoM MK 1epBoro mnoceuieHust Ha OC-
HOBe 00IIMX IIaroB 1 Q-(yHKIMSI 0OHOBJISIETCS C YUETOM B3BEIIEHHOTO J10-
Xoma;

O B KOHIIe TOAYYaeTcsT onTuMaabHas Q-QYHKIMS ¥ ONTUMAaIbHAST CTPATerus,
KOTOpasi B KaKAOM COCTOSIHMM BbIOMpAaeT HawIyulllee MeiiCTBYE B COOTBET-
CTBUM C 3TOI Q-DyHKIMeEIA.

AJIFOpI/ITM 06y11aeT eJIeByl0 CTpaTermio, Ha6]1}0,[(a$[3a IIoOBeaeHMeM Opyroro
dareHTa M MCIIOJIb3YyS OIIbIT, HaKOIIJIEHHbIN npn cjiegoBaHUn VHOM CTpaTermm. Ie-
JieBad CTpaTerus OIITMMU3IMPYETCA KaaHO, TOrga Kak IoBedeH4YeCKas ITpoao/KaeT
nucciaenoBaTb pa3HMQHbKEBapMaHTbL<Hp0M3BOHMTCH yCpeagHeHue moxXoa0B, ITOIy-
YEHHBIX ITpU CJieAOBAHNUNU MOBeIeHUeCKOi cTpaTermm C KOS(l)d)I/ILU/IeHTaMI/I BbIGOpKI/I

Yripasnexue metogom Monte-Kapno ¢ pasaenenHoit crpaternein % 115

M0 3HAYMMOCTU OTHOCUTENIBHO 11eJIeBOI CcTpaTern. Bo3MOXXHO, BbI HeloyMeBaeTe,
moyeMy Ipy BbIYMCIEHUM Beca W, BelnunHa m(a,|s,) Bcerma pasHa 1. Hamomuum,
YTO MBI paCCMaTPMBAEM TOJIBKO OOIIVeE IIaru, CAeIaHHbIe TIPU CJIeJOBAHUY TI0Be-
JIIeHUeCKOV CTpaTernu U MPeaIiooKUTENbHO 11e/IeBOJi CTpaTernu, a LeieBast crpa-
Terus Bcerga skagHas. [fIosromy m(a|s) Bcerma paBHoO 1.

370 elle He Bce

Meton MK MOXXHO peann30BaTh MHKPEMEHTHO. [Ipyu MpoXoXKaeHMM 31M30/1a, BMeC-
TO TOT'O YTOOBI COXPAHSTD JOXOM U KO3(DGUIMEHTbI BBIOOPKM 10 3HAUMMOCTY JJIsT
KaskIOro MePBOTo MOCENeHMS ITaphbl COCTOSIHME—IeiCTBIE, Mbl MOXKEM BBIUMCISTh
Q-dyHKIMIO AMHAMUYECKA. B cliyyae HeMHKpeMeHTHOTO noaxoaa Q-(QyHKINS BbI-
YUC/ISIETCS B KOHIIE, KOIIa M3BECTHBI BCE TOXOMbI B 1 STIMU304aX:

n
> WR,
k=1

B cryuae ke MHKpeMeHTHOro moaxoma Q-GyHKIMS OGHOBJISETCS Ha KaxkKIoM
are anm3opa 1o hopmysie

V,= /n.

Vo1 = Vo + W (R = Vy)/(n+1).

VIHKpeMeHTHbI IToaxo 6oiee 3¢pdeKTUBeH, TOTOMY UTO IO3BOJISIET YMEHbBIIIUTD
MoTpe6/eHe MaMsITH 1 JIydllie MaciTabupyeTcs. Huske mokasaHa ero peaamsalysi.

>>> def mc_control_off_policy_incremental(env, gamma, n_episode, behavior_policy):
cee n_action = env.action_space.n
ves N = defaultdict(int)
ces Q = defaultdict(lambda: torch.empty(n_action))
cee for episode in range(n_episode):
W=1.
states_t, actions_t, rewards_t = run_episode(env, behavior_policy)
ces return_t = 0.
cee for state_t, action_t, reward_t in
zip(states_t[::-1], actions_t[::-1], rewards_t[::-1]):
v return_t = gamma * return_t + reward_t
N[(state_t, action_t)] += 1
Q[state_t][action_t] += (W / N[(state_t, action_t)])
* (return_t - Q[state_t][action_t])
ves if action_t != torch.argmax(Q[state_t]).item():
ces break
vee W *= 1./ behavior_policy(state_t)[action_t]
policy = {}
ves for state, actions in Q.items():
ves policy[state] = torch.argmax(actions).item()
vee return Q, policy

IIJ1s1 HaXOXKIeHU ST OITUMAaJIbHOM CTpaTermm BbiI3OBEM 3Ty (bYHKLU/IIOZ

>>> optimal_Q, optimal_policy = mc_control_off_policy_incremental(env,
gamma, n_episode, random_policy)

116 < [Mpumenenue Metonos MoHTe-Kapio Ans YUCNEHHOTO OLEHWBAHMS

CM. TaKkxXe

IMogpo6HOEe 0O6BsICHEHNE BBIOOPKM II0 3HAUMMOCTM CM. B JTOKYMEHTE II0 afpecy
https://statweb.stanford.edu/~owen/mc/Ch-var-is.pdf.

PA3PABOTKA YNPABNEHUS METOAOM MOHTE-KAPNO
CO B3BELLUEHHOM BbIBOPKOW MO 3HAUMMOCTHU

B nipenpimyiiem perienTe Mbl IIPOCTO YCPETHSIIN JOXOAbI, TTOJTydYeHHbIe TIPU CIefo-
BaHUM ITOBEIEHUYECKOV cTpaTerny ¢ Ko3DpuieHTaM BbIGOPKM IO 3HAUMMOCTH
OTHOCUTEJIbHO 11eJIeBOJ CTpaTerny. OTa TEXHMKA HOCUT Ha3BaHle 0ObIKHOBEHHOI
BBIOOPKM IO 3HAYMMOCTM. VI3BECTHO, UTO Y Hee BbICOKAs IMUCIIEPCHUs], [TOITOMY
0OBIUHO TIPeAIIOUTeHNe OTHAETCS B3BeIllleHHOI BhIGOPKE 0 3HAUMMOCTH, O KOTO-
pOJi MbI ¥ IOTOBOPMM B 9TOM peIlernTe.

B3BenrenHast BHIOOPKA IO 3HAYMMOCTHU OTVINYAETCSI OT 0OBIKHOBEHHOJ TEM, KaK
YCPeIHSIIOTCS JO0XOIbl. BMeCcTo mpocToro ycpemHeHMs TPOM3BOINTCSI B3BEIlIeHHOE:

n n
Vo= |2 WiR |/ 2o Wi
k=1 k=1

3ayvacTyro gucIiepcus OKa3bIBAeTCS TOpas3io HIKe, YeM B 0ObIKHOBEHHOI BEPCUM.
IMorpo6oBaB MPUMEHUTb 06LIKHOBEHHYIO BRIOOPKY IO 3HAUMMOCTH K cpefe Black-
jack, BbI 0OHAPYKUTE, UTO PE3Y/IbTaThl PA3HbIX IIPOTOHOB CYJIBHO Pa3/IMUaIOTCS.

Kak 310 penaetca

Yro6bI MpMMeHNUTH yIIpaBiieHne MK ¢ pa3mesieHHOI cTpaTerueii M B3BeleHHO BbI-
OOPKOJ TI0 3HAUMMOCTH, BHITTOJIHUM C/IAYIOIIVe NeiiCTBUSI.

1. Mmnoptupyem HeoOXOIMMbIe MOIY/IU U CO3MaAUM 3K3eMIUISIp cpenbl Black-
jack:
>>> import torch

>>> import gym
>>> env = gym.make('Blackjack-v0')

2. CHauaja ompenenM MOBeIeHYECKYI0 CTPAaTErnio, KOTopasl CIydaifHbIM 00-
pPa3oM C OIMHAKOBO BEPOSITHOCTbIO BHIOMPAET AEeiCTBHUS.

>>> random_policy = gen_random_policy(env.action_space.n)

3. 3aTeM BOCITIOJIb3yeMCsl HallMCaHHON paHee (yHKIMel run_episode, KoTopas
BBITIOJTHSIET OIVH SIM30[, BbIOWPAsI IEeICTBUS B COOTBETCTBUM C TIOBeIeHYe-
CKOJi CTpaTeruein.

4. Temeps peanmmsdyem ajropuTM yrpasieHusi MK ¢ pasmeneHHON cTpaTeruen
¥ B3BEIIIEHHO BbIOOPKOIA IO 3HAUMMOCTH:

>>> from collections import defaultdict
>>> def mc_control_off_policy weighted(env, gamma, n_episode,
behavior_policy):

PaspabotkaynpasneHusa MeTogoM MoHTe-Kapio co B3BelLeHHOM BbIGOpKOi no3Haunmoctn % 117

CTPOMT ONTUMANbHYW CTpaTeruw MeTojgoM ynpasiaeHus MK
C pasfjefieHHol CTpaTervei W B3BeWEHHOW BbLIGOPKOH MO 3HAYNMOCTH
@param env: uma oKpyxawuei cpegbl OpenAI Gym
@param gamma: Ko3¢ouuMeHT obecueHuBaHUA
@param n_episode: konMyecTBo 3nM3030B
@param behavior_policy: noBegeHyeckas cTpaTerus
@return: onTuManbHbie Q-dYHKUMA W CTpaTerus
n_action = env.action_space.n
N = defaultdict(float)
Q = defaultdict(lambda: torch.empty(n_action))
for episode in range(n_episode):
W=1.
states_t, actions_t, rewards_t = run_episode(env, behavior_policy)
return_t = 0.
for state_t, action_t, reward_t in zip(states_t[::-1],
actions_t[::-1], rewards_t[::-1]):
return_t = gamma * return_t + reward_t
N[(state_t, action_t)] += W
Q[state_t][action_t] += (W / N[(state_t, action_t)])
* (return_t - Q[state_t][action_t])
if action_t != torch.argmax(Q[state_t]).item():
break
W *= 1./ behavior_policy(state_t)[action_t]
policy = {}
for state, actions in Q.items():
policy[state] = torch.argmax(actions).item()
return Q, policy

JTO MHKPEMEHTHbIV BapuaHT yrpasieHus MK.

5. 3amamgum KoshdueHT obecueHBanus 1 1 KomuuecTBo anu3onos 500 000:

>>> gamma = 1
>>> n_episode = 500000

6. BoeimomHum yripasnenue MK ¢ pasmeneHHON cTpaTerueil, 3aaB oBegeHye-
CKy10 cTpaTteruto random_policy, 1 Halimem onTuMasbHble Q-(QyHKINIO U CTpa-
TEeTUI0:

>>> optimal_Q, optimal_policy = mc_control_off_policy_weighted(env,
gamma, n_episode, random_policy)

Kak 3to paboraer

MbI TOSBKO UTO MPUMEHWIM K OKpYyKamieii cpeme Blackjack anroputm ympasie-
Hust MK ¢ pa3feneHHO cTpaTeruei 1 B3BeleHHO BbIOOPKOI 110 3HAYMMOCTU. ITO
OU€eHb IOX0)Ke Ha OOBIKHOBEHHYIO BHIOOPKY 10 3HAUMMOCTH, HO BMECTO YMHOKEHMSI
IOXOJ0B Ha KO3(POUIMEHTHI U YCpeIHEHNST pe3ylIbTaTOB Mbl MacCIITabMpyeM 0-
XOIbI C TIOMOIIIbIO B3BEIIEHHOTO cpeqHero. Ha mpakTuke B3BemeHHAs! BbIOOPKA 110
3HAYMMOCTY MMeeT ropa3fo MEHbIIYIO AVCIIEPCHUI0, UeM OObIKHOBEHHAS, TO3TOMY
SIBJISIETCS 60Jiee MpeaIIoYTUTETbHOIA.

118 < [Mpumenenune Metonos MoHTe-Kapso Ans YUCNEHHOTO OLEHWBAHMS

3710 eLe He Bce

HaxkoHelr, maBajiTe CBIMUTMPYeM HECKOIbKO 3MM300B 1 TOCMOTPUM, KaKOBBI IIaH-
Cbl Ha BBIUTPBIII U ITPOUTPBIII TIPU CeJ0BaHUM TTOTYUYeHHO ONTUMa/IbHOI CTpa-
Terun.

Bocronb3yemcst pyHKIMENR simulate_episode, paspaboTaHHOI B perienTe «YIIpaB-
jieHre metonoM MoHTe-Kapno ¢ eguHoi cTrpaterueii», v Boiroaaum 100 000 snm-
30/0B.

>>> n_episode = 100000
>>> n_win_optimal = 0
>>> n_lose_optimal = 0
>>> for _ in range(n_episode):
reward = simulate_episode(env, optimal_policy)

if reward == 1:
n_win_optimal += 1
elif reward == -1:

n_lose_optimal += 1
U pacrieuaTaeM pe3ynbTaThi:

>>> print('BepoATHOCTb BbLIMIpbiid MpU ONTMManbHoOW cTpaTteruu: {}'.
format(n_win_optimal/n_episode))

'BepoATHOCTb BbLIMIPbiLa NPU ONTUMANbHOW CTpaTerun: 0.43072

>>> print('BepoATHOCTb Mpourpbiwa npu onTUManbHoit ctpateruu: {}'.
format(n_lose_optimal/n_episode))

BepoATHOCTb NMPOMIpbiwa MPU ONTUMANbHOW cTpaTeruu: 0.47756

CM. TaKkxke

IloKkas3aTenbCTBO TOTO, UTO B3BEIlIeHHAS BhIOOPKA MO 3HAUMMOCTHU HEeiCTBUTENTbHO
JIydiiie 06bIKHOBEHHOI, MOKHO HaTH B CJIEOYIOMIVX paboTax:

O Hesterberg T. C. Advances in importance sampling. Ph. D. Dissertation, Statis-
tics Department, Stanford University, 1988;

O Casella G., Robert C. P. Post-processing accept-reject samples: recycling and
rescaling // Journal of Computational and Graphical Statistics, 7 (2): 139-157,
1988;

O Precup D., Sutton R. S., Singh S. Eligibility traces for off-policy policy evalua-
tion. In: Proceedings of the 17th International Conference on Machine Learn-
ing, p. 759-766, 2000.

naBa

TD-o06yueHue un Q-obyueHue

B nipenpimymieit rnaBe mbl pemaan MIITIP metogom MoHTe-Kapio, KOTOpbIi OTHO-
CUTCST K CEMEICTBY 6€3MO/Ie/IbHBIX aITOPUTMOB, HE MMEIOIINX allpMOPHO MHMOP-
Maiuu o6 okpysKatorei cpeme. OmHako B o6yueHuu MmetomoM MK byHKIMS 1IeH-
HOCTU ¥ Q-GYHKIINMS 0OBIYHO OOHOBJISIIOTCS TOJTBKO B KOHIIE 3MMM30#4a. ITO IUIOXO,
ITOCKOJIbKY OBIBAIOT OUEHD IJIMHHbBIE 1 Jake OeCKOHEUHbIe MPOIecchl. B aToit r1aBe
MBI PACCMOTPUM MeTO, 06yUeHMsT Ha OCHOBE BpeMeHHbIX pa3anunii (TD-o6yueHns),
KOTOPBIN pemaer 3Ty npobnemy. B anroputme TD-06yueHnsT EHHOCTY OeiCTBUI
OGHOBJISIOTCS Ha KasKIOM BPEMEHHOM Illare smm307a, YTO 3HAUMUTETbHO MOBBIIIAET
3 GeRTUBHOCTh 06yUEHMS.

MbI HaUHEM 3Ty IIaBY ¢ 06cykmeHust okpykawomux cpen Cliff Walking (6myskna-
HMe Ha Kpaio 06pbiBa) 1 Windy Gridworld (BeTpeHbIit CeTOUHbBI MIUP), Ha KOTOPBIX
MIPOIeMOHCTPUPYEeM 0b6CykmaeMble MeTombl TD-o6ydeHust. Ciiemyst IOIIaroBbIM
MHCTPYKIVSIM, YATATENb MOTYYUT IIPAKTUUECKUI OIBIT TpuMeHeHusT Q-00yueHmst
ILJIsI YIIpaBJIeHUsI C pa3AeneHHoli cTpaTterueli u anroputma SARSA niis yripasieHust
C eIMHO cTpaTerueii. Mbl Takke pa3bepeM MHTEePECHYIO 3aaUy O [Toe3Ke Ha TaKCU
¥ TMOKa)keM, Kak OHa perraeTcss 060MMu MeTogaMu. Y HarmocIemoK 06CyIuM ajaro-
PUTM OBOIHOTO Q-06yUeHMs.

B 91011 r1aBe NpUBOASTCS CJIEAYIOLINE PELIETIThI:

MOATroTOBKa oKpyskatomieii cpeasl Cliff Walking;
peanu3zaius aaroputma Q-obyueHus;

MOATOTOBKA OKpysKatoueir cpenbl Windy Gridworld,;
peanusanus anroputma SARSA;

pelieHue 3a1aun O TakCyu MeTogom Q-o6yueHus;
pelieHue 3amaum 0 Takcu MeTogomM SARSA;
peanusalus airopuTMa IBOHOro Q-o6yueHus.

(ONONCNORONONE)

MonrotoBkA okPYXAOLWEN CPEAbI CLIFF WALKING

B rmepBoM peliente MbI o3HakoMuMcst co cpenoii Cliff Walking, Ha KoTopoit 6ygem
orpo60oBaTh omnyMcbiBaeMble fgajaee TD-MeTombl.

Cliff Walking — TunuHast okpykarorias cpega Gym ¢ JIMHHBIMMU S1M301aMu 6e3
rapaHTUM 3aBeplleHus. ITO 3a4aua Ha ceTke 4x12. Ha KakaoM 1are areHT geiaeT

120 <« TD-o6y4eHue u Q-obyueHue

XO[l BBE€PX, BIIPaBO, BHMU3 WJIM BJ€BO. BHauase areHT HaXOOUTCS B JIEBOM HIDKHEM
YITy, a IJIs1 yCHeITHOTO 3aBepilieHns SNM30a JTO/DKeH MepeiiTy B MpaBblii HUKHUIA
yroji. Bce ocTanbHbIe sSTUEIiKY B TTOCTeIHEl CTPOKe — OGPBIB, TIPY MOMAJAHUM B HUX
areHT BO3BPAIllaeTCsl Ha MCXOLHYIO MTO3MLMIO, HO 3MM30[MPOAODKAETCS. 3a Kax-
IbIF IIIaT aTeHTy HauMC/IsIeTcss BO3HarpakkaeHue —1, a 3a majeHue ¢ o6pbiBa — BO3-
Harpaxnenue —100.

MoaroroBka

g Havasta HavimeMm MMs oKkpykaroieit cpensr Cliff Walking B Tabnuiie mo agpecy
https://github.com/openai/gym/wiki/Table-of-environments. OHa HasbiBaeTcst Cliff-
Walking-v0, IPOCTPAHCTBO HAGIIOAEHMIT B Heli PeACTaB/IeHO 1[eIbIMU UMCIaMU OT
0 (yieBbIVI BepxXHMIA yTON) 40 47 (TIpaBbIii HMXKHUIA YTOM), a OeiICTBUIA BCETO YeThbIpe
(BBepx = 0, BIpaBo = 1, BHU3 = 2, BJIEBO = 3).

Kak 3to aenaerca
st umnrauyu cpenst Cliff Walking BeimionHMM cemytone neicTBus.

1. Vmmnoprtupyem 6m6amoreky Gym 1 CO3AaANM 9K3eMIUISIP OKpYsKalolleli cpe-
nb1 Cliff Walking:

>>> import gym

>>> env = gym.make("CliffWalking-v0")
>>> n_state = env.observation_space.n
>>> print(n_state)

48

>>> n_action = env.action_space.n

>>> print(n_action)

4

2. HpI/IBe,ELeM OKDPY>XaIOIIyI0 Cpeny B MCXOOQHOe COCTOsSTHIUE!:

>>> env.reset()
0

AreHT HauMHaeT paboTy B COCTOSIHMM 36, B JIEBOM HUKHEM YITY.
3. Hapucyem OKpysKarollyr Cpeny:
>>> env.render()
4. Tlompo6yeMm cenaTh X0 BHU3, HECMOTPSI Ha TO UTO TAKOM X0l HEBO3MOKEH.

>>> new_state, reward, is_done, info = env.step(2)
>>> env.render()

000000000000

000000000000

000000000000

xccececececceccceccer

AreHT ocTaeTcs Ha MecTe. Harmeyataem, 4To IMOJTy4YMJIOCh:

>>> print(new_state)
36

MoarotoBka okpyxatowen cpeabl CLiff Walking <+ 121

>>> print(reward)
-1

DTOT XO[I, KaK ¥ JII000i1 IPyroii, MPMHOCUT BO3HArpakaeHme —1:

>>> print(is_done)
False

O30/ He 3aBepIIeH, T. K. areHT ellle He JOCTUT 1eJIn:

>>> print(info)
{'prob': 1.0}

OJTO 03HAYAEeT, YTO HOBOE MOJOXKeHNe OTHO3HAYHO orrpenensaeTcsa Xoa0oMm.
Teneps caenaeM XOJ, BBepX — 3TO BO3MOYKHO:

>>> new_state, reward, is_done, info = env.step(0)
>>> env.render()

000000000000

000000000000

X00000000000

occcccccccecr

HamneuaTtaeMm, 4To IMOJTYyYMJIOCh:

>>> print(new_state)
24

ATeHT CIBUHYJICS BBEPX:

>>> print(reward)
-1

U 3TO npuHecIo Bo3HarpaxkaeHme —1.
Terneps MMompobyem caenath X0/, BIIPaBo M BHU3:

>>> new_state, reward, is_done, info = env.step(1)
>>> new_state, reward, is_done, info = env.step(2)
>>> env.render()

000000000000O0

000000000000O0

000000000000O

xgcececececcecceccceccerT

AreHT copBasics ¢ 06pbIBa, TO3TOMY GbIT BO3BpAILEH B MCXOIHYIO TOUKY 1 3a-
paborai Bo3Harpaskaenue —100:

>>> print(new_state)
36

>>> print(reward)
-100

>>> print(is_done)
False

Hakowner, mpoiieM 1o KpaTuaiiiemy ImyTH K LeJTn:

>>> new_state, reward, is_done, info = env.step(0)
>>> for _ in range(11):

122 <« TD-o6y4eHue u Q-obyueHue

env.step(1)
>>> new_state, reward, is_done, info = env.step(2)
>>> env.render()
000000000000
000000000000
000000000000
oCccCccccccccecx
>>> print(new_state)
47
>>> print(reward)
-1
>>> print(is_done)
True

Kak 3to paboraer

Ha mare 1 Mbl MMIIOpTHpOBaiu 616aoTexky Gym 1 CO3a/Iy 9K3eMILISIP OKPYsKalo-
mieii cpens Cliff Walking. 3aTem Ha mare 2 cOpocuiu Cpefy B MICXOHOE COCTOSTHUE.
Ha miare 3 Mbl HapucoBaau OKPYKAIOIILYIO Cpeny — MaTpully 4x12, KoTopas mpef -
CTaBJISIET CETKY. ByKBOi1 X 0603HaUeHO HAavaJIbHOE ITOJIOKEeHMe areHTa, 6ykBoii T —
KOHeuHas siueiika, 6ykBamyu C — 06PbIB, a GYKBAMM O — OOBIUHBIE STUEIIKI:

Ha marax 4, 5, 6 MbI clieJiajii HECKOJIbKO XO/IOB U ITOHAOJTIONAIN 33 pe3y/IbTaTaMu
U TTOJTyYeHHBIMU BO3HATPAXKIEHUSIMMU.

[MTousiTHO, uTo 31M307, B cpene Cliff Walking moskeT mjimThCst OUeHb OITO U Jaske
6eCcKOHeUHO, IMOCKOJIbKY TajieHre ¢ 00pbIBa BO3BpAlllaeT areHTa B HauaJbHOe T0-
JIoXkeHMe, HO He 3aBeplaeT Urpy. Yem paHblile TOCTUTHYTA 11e/ib, TEM JIyullie, T0-
CKOJIbKY KaXXZbI/l pe3yibTaT yMeHbIlIaeT BO3HarpaxaeHue — Ha —1 mim Ha —100.
B wrenmytomieM periernite Mbl ITOKakeM, KakK pelIUTh 3aady O OIy>KIaHMM Ha Kpalo
06pbiBa ¢ moMoIipio TD-mMeTopa.

Peanusaumns anroputma Q'OBV‘-IEHMSI

O6yueHne Ha OCHOBe BpeMeHHbIX pa3nnunii (TD-o6yueHnue), Kak 1 oOyueHue Me-
TogoM MoHTe-Kapio, siBisieTcst 6e3MOAeNbHbIM aJITOPUTMOM. HarmoMHMM, UTO
npu obyueHun metogoM MK Q-dyHKuMS 0O6HOBISIETCS B KOHIlE 3Mu3oga (Kak
B peXXMMe TIepBOro IMocelleHus], TaK B peskuMe Bcex Iocemnienuit). [maBHoe no-
cTouHCTBO TD-006y4eHMsI COCTOUT B TOM, UTO Q-(QyHKIMST 0OHOBIISIETCS HA KaXKIOM
mare smMu13o0/a.

Peanusaums anroputma Q-obyuenus < 123

B 3TOM pelieniTe Mbl pacCMOTPUM MOMYSIpHbI TD-MeTon — Q-oGyueHue. ITo
aJITOPUTM OOyUeHMsI C pasfeneHHoi cTpaTerneit. B HeM Q-GyHKIINS OOHOBIISIETCS
o cienymouieit bopmysne:

Q(S’a) = Q(S7a) + O((r + ymaxa/Q(s/,a’) - Q(S’a))’

rae s’ — COCTOsIHMe, B KOTOpOoe TepexouT cpelia Tocje BBIMOJHEHUS NeiiCTBUST a
B COCTOSTHUM S, I'— HAUMCJIIEHHOE BO3HATPakIeHye, « — CKOPOCTb 06yUeHMs, y — Koad-
buuyenT obecueHnBanus. Ynen max,Q(s’, a’) 03HavaeT, UTO MOBe/IeHYECKas! CTpa-
Terus skagHas, T. e. IJisl TeHepUPOBaHMS 00yUaIoIMX TaHHbIX BbIOMpPAeTCs IeiicTBIe
¢ Hau6obIIUM 3HauUeHVeM Q-(QYHKIIMM B COCTOSTHUY S'. B MeTome Q-06yueHus neit-
CTBYSI BBIOVPAIOTCSI B COOTBETCTBUM C £-3KaHOI CTpaTerueii.

Kak 370 penaetcs
Peanmusyem anroputm Q-o6ydeHus aJis B3aumomeiictsus co cpenoit Cliff Walking.

1. Vmnoprtupyem 6ubmnorexu PyTorch u Gym 1 co3gagym 3K3eMIUISIP OKPYXKa-
tomneit cpenwr Cliff Walking:

>>> import torch

>>> import gym

>>> env = gym.make("CliffWalking-vO")
>>> from collections import defaultdict

2. Ormpepenum e->kagHYIO CTPaTErnio:

>>> def gen_epsilon_greedy_policy(n_action, epsilon):

def policy_function(state, Q):
probs = torch.ones(n_action) * epsilon / n_action
best_action = torch.argmax(Q[state]).item()
probs[best_action] += 1.0 - epsilon
action = torch.multinomial(probs, 1).item()
return action

return policy_function

3. Hammmem GbyHKIINIO, BBITIOTHSIONTYI0 Q-00yueHme:

>>> def q_learning(env, gamma, n_episode, alpha):
nnn
CTPONT ONTUMaNbHY CTPATeruo MeToAoM Q-obyyeHus C paspeneHHoM
cTparteruei
@param env: uMa OKpyxawueit cpeabl OpenAI Gym
@param gamma: Ko3ddULUMEHT obecueHNBaHUA
@param n_episode: konn4yecTso 3nuU3040B
@return: onTuManbHbie Q-dyHKUMA W CTpaTerus
nnn
n_action = env.action_space.n
Q = defaultdict(lambda: torch.zeros(n_action))
for episode in range(n_episode):
state = env.reset()
is_done = False
while not is_done:

124

¢ TD-o06y4eHue u Q-o6yueHue

. action = epsilon_greedy_policy(state, Q)

cee next_state, reward, is_done, info = env.step(action)

cee td_delta = reward + gamma * torch.max(Q[next_state])
- Q[state][action]

vee Q[state][action] += alpha * td_delta

. if is_done:

vee break

v state = next_state
vee policy = {}

eee for state, actions in Q.items():
vee policy[state] = torch.argmax(actions).item()
. return Q, policy

3agagum KoadouieHT obecuieHuBanmus 1, ckopoctb ooyuenust 0.4, € = 0.1
¥ BbINOMHUM 500 31130108

>>> gamma = 1

>>> n_episode = 500
>>> alpha = 0.4
>>> epsilon = 0.1

Co3magym 9K3eMILISIP £-3KaSHOM CTPATerMn:

>>> epsilon_greedy_policy =
gen_epsilon_greedy_policy(env.action_space.n, epsilon)

BoinmonHuM Q-O6Y‘IGHI/I6 C 3aJaHHBIMM BbIllI€ ITapaMeTpaMM U pacrieuaTaem
ONTMMAJIbHYIO CTpAaTermio:

>>> optimal_Q, optimal_policy = q_learning(env, gamma, n_episode, alpha)
>>> print('OnTumanbHas ctpaterua:\n', optimal_policy)

OnTUManbHaA cTpaTerua:

{36: 0, 24: 1, 25: 1, 13: 1, 12: 2, 0: 3, 1: 1, 14: 2, 2: 1, 26:

1, 15: 1, 27: 1, 28: 1, 16: 2, 4: 2, 3: 1, 29: 1, 17: 1, 5: 0, 30:

1, 18: 1, 6: 1, 19: 1, 7: 1, 31: 1, 32: 1, 20: 2, 8: 1, 33: 1, 21:

1, 9: 1, 34: 1, 22: 2, 10: 2, 23: 2, 11: 2, 35: 2, 47: 3}

Kak ato paboraer

Ha mrare 2 e->xafiHasg ctpaTerus npuHuMaet napaMmerp € ot 0 5o 1 ¥ KonmuuecTBo BO3-
MOKHBIX IeiicTBuii |Al. C BepOSITHOCTBIO £/|A| meiicTBIe BbIOMpaeTCs TPOU3BOIbHOE
IeiiCTBME, a C BEepOSITHOCTBIO 1 — £ + &/|A| meiicTBUe — ¢ HaubGOJbIIIel 1[eHHOCThIO
rapbl COCTOSIHUe—IeliCTBUe.

Ha mare 3 BoinonHsieTcst Q-o6yueHne:

O
O

O
O

VHULMATU3UPYEeM Tabauiy 3HaueHuit Q-QyHKIMM HY/IIMU;

B Ka)XKIOM SITM30[Ie aTeHT BbIOMPAET eiiCTBUe, CIeqys £-)KaHOI CTpaTeruu.
U nocne kaskporo mrara Q-GyHKIMS 0OHOBIISIETCS;

BBITIOJTHSIEM n_episode STM30/I0B;

TTOJTyYaeM OINTUMAaJIbHYIO CTPATerMio Ha OCHOBE ONTUMAaJIbHOI Q-GyHKIINMA.

OnTumanbHas CcTpaTerus, pacrieuaTaHHasl Ha IIare 6, MoKa3bIBaeT, UTO M3 Ha-
YaJIbHOT'O COCTOSIHUS 36 areHT JeJlaeT 1ar BBepX B COCTOsIHME 24, 3aTeM UAET BIIpa-
BO IO COCTOSIHMS 35 1, Jesast 1iar BHU3, JOCTUTAeT LIeJIn:

Peanusaums anroputMa Q-obyuenus <+ 125

o112 (3 |4 |5 |6 |7 |8 |9 |10|11

12113114 (15|16 |17 (18 |19 | 20| 21| 22 | 23

24 125|126 |27 (28 (29|30 |31 |32|33(34 |35

36 |37 (38 |39 (40 |41 |42 43|44 | 45| 46 | 47

Kak Bumum, aaroputm Q-oGyueHust onTumusupyetr Q-dyHKIMIO, 00yuasch Ha
OIIbITE, CTeHePUPOBAHHOM JIPYIOii CTpaTerueil. 910 OUeHb [I0XOXKe Ha YIIpaBjieHue
MeTonom MK c pasneneHHOI cTpaTerneit. Pasuuiia B Tom, uTo Q-QyHKIMSI 06HOB-
JIIeTcsl TTOC/Ie KaskIoro 11ara, a He B KOHIle 3Mu307a. JTO Jyyllle paboTaeT B OKpY-
SKaIoOLIMX Cpelax, IIe SMM30Ab! IIMHHbIE M JKIATh, ITOKa 311130/, 3aBepPIINTCS, He-
a¢ddexTuBHO. Ha KaskaoMm mare Q-o6yuenust (Wit 1060ro apyroro TD-meToza) Mbl
MoJTy4aeM HOBYIO MHGOPMAIIo 06 OKpYKaIOIIei cpeie 1 UCIOAb3yeM 3Ty MHGOP-
MaluIio AJis1 HeMe[[JIeHHOTO OOHOBJIeHMSI 1leHHOCTelt. B HauleM npumepe mjis Ha-
XOKIEHMS OTITUMAIbHOM CTpaTerny moHaaoommoch Bcero 500 samm3010B.

37O elle He Bce

IIJIs1 HAXOXKIeHMsI ONITUMAJIbHOJ CTpaTeruu MoHago0miIoch okojio 50 samn30m0B. Mbl
MOYXKeM HaHeCTM Ha rpadukK IIMHY KakIoro 3mm3ona. Takke MOXKHO Tpaduuecku
MIpeCTaBUTh, KAK M3MEHSIACh BeJIMUMHA BO3HATPAKIEHNUS.

1. Omnpenenum aBa CIIMCKA: IJISI XpaHEHWS AJIMH 3ITM3040B U MOJTyYeHHbIX B HUX
BO3Harpa>kaeHuii:

>>> length_episode = [0] * n_episode
>>> total_reward_episode = [0] * n_episode

2. B mporecce o6yueHus 6ymemM COXpaHSITDb AJIMHY SIM30[a ¥ BO3HATpakaeHme
B HeM. Hiske mpuBefeHa MmoaubuipoBanHas GyHKIMS q_learning:

>>> def q_learning(env, gamma, n_episode, alpha):
n_action = env.action_space.n
Q = defaultdict(lambda: torch.zeros(n_action))
for episode in range(n_episode):
state = env.reset()
is_done = False
while not is_done:
action = epsilon_greedy_policy(state, Q)
next_state, reward, is_done, info = env.step(action)
td_delta = reward + gamma * torch.max(Q[next_state])
- Q[state][action]
Q[state][action] += alpha * td_delta
length_episode[episode] += 1
total_reward_episode[episode] += reward
if is_done:
break

126 <+ TD-o6yueHune n Q-obyueHue

state = next_state
policy = {}
for state, actions in Q.items():
policy[state] = torch.argmax(actions).item()
return Q, policy

3. Tloctpoum rpadMK 3aBUCUMMOCTHU AJIVHBI STIM30/a OT BPEMEHMU:

>>> import matplotlib.pyplot as plt

>>> plt.plot(length_episode)

>>> plt.title('3aBucumMocTb AnuHbl 3nKU304a OT BpeMeHu')
>>> plt.xlabel('3nuson')

>>> plt.ylabel('fnuna')

>>> plt.show()

BOT KaK OH BBITJISIANT:

3aBUCMMOCTb A/IMHBI 3NU3043 OT BpeMeHU

600

500 4

400 4

300 +

OnuHa

200 4

100 A

T T T T
0 100 200 300 400 500
onusopn

4. Teneps nocTpoum rpaduk 3aBUCUMOCTY BO3HATPAXKIEHUS OT BpeMeHU:

>>> plt.plot(total_reward_episode)

>>> plt.title('3aBucuMoCTb BO3HArpaxgeHua B 3nM304e OT BpemeHun')
>>> plt.xlabel('3nu3o0g')

>>> plt.ylabel('NMonHoe Bo3Harpaxgeuue')

>>> plt.show()

Moarotoeka okpyxatolen cpeabl Windy Gridworld < 127

BOT Kax BbITISIAUT pe3yibTart:

3aBMCUMOCTb BO3HarpaxgeHua B anm3one OT BpeMeHu

D -

—250 4

o 5001
by
u

& -750
X
©

£ ~1000 1
I
S

@ —1250 -
()
[e]

= —1500
S
-

—1750

—2000 4

T T T T T T
0 100 200 300 400 500
onuson,

Ewi yMeHbIIUTD 3HAUEHME €, TO QIYKTYalUM CTAHYT cjiabee — 310 3G deKT cmy-
YafHOTO MCCIeNOBAHMS B £-KaHOI CTpAaTeruu.

MonrotoBkA okPYXAloLWEX cPEAbI WINDY GRIDWORLD

B npenpiayiiem penerTe Mbl B3aMMOAECTBOBAIN CO CPABHUTEIBHO ITPOCTOI OKPY-
SKaIOIIei Cpemoil 1 JIErKO HAIIM ONITMMAaIbHYIO0 cTpaTeruio. Ceiiuac 3aitmemcst 60-
Jlee CJIOKHOI okpyskatomieii cpemoii Windy Gridworld, Toxke Ha ceTke, B KOTOPOJi
JlelICTByeT BHEIIHSSI CUja, CAyBalollas areHTa M3 HeKOTOPBIX siueek. A B Clie[lyI0-
meM peuernTe Mbl npuMeHMM TD-meTon O/ MOMCKa ONTUMAJIBHONM CTpaTeruu
B 9TOJ cpefie.

128 <« TD-o6y4eHue u Q-obyueHue

Cpena Windy Gridworld pasBepHyTa Ha ceTke 7x10, n300paskeHHOIT Ha PUCYHKe
HIKE:

o (1|2 |3 |4 |5 |6 |7 |8 |9

101112 |13 |14 |15|16 |17 | 18 | 19

2021|2223 |24 |25 |26 |27 |28 | 29

30 (3132|3334 |35|36 |37 38|39

40 |41 [42 |43 |44 |45 |46 |47 | 48 | 49

50 (51|52 |53 |54 |55|56 |57 | 58|59
63 |64 | 65 | 66 | 67 | B8
ATeHT MOKeT IBUTATbCS BBepX, BIIPaBO, BHU3 U BJjieBO. [lepBoHavYaIbHO OH Ha-
XOOuUTCS B siuevike 30, a 1e/ib — MOIACThb B SIUEVIKY 37, B 3TOT MOMEHT 31130/, 3aKaH-
YuBaeTCs. 32 KKAbIM COe/IaHHbIN 1Iar areHTy HauUCIsIeTCsl BO3SHarpaxkaeHme —1.
CJIO’KHOCTD 9TO¥ Cpembl B TOM, UTO B CTONOIAX ¢ 4 110 9 myeT BeTep. Ecyin areHT
OKa3bIBAETCS B JTI000I STUEiiKe U3 ITUX CTOJIOIOB, TO €r0 OyIeT cayBaTh BBepx. Cuta
BeTpa B C€AbMOM M BOCHBMOM CTOJIOLIAX paBHA 1, a B UeTBEPTOM, IISITOM, IIIECTOM
u neBsiToM — 2. Haripumep, eciiv areHT MONbITaeTCs CAeaaTh IIar BIIpaBo U3 COCTOSI-
HUST 43, TO OKaXKeTCsI B COCTOSTHUM 34. ChenaB LIar BjeBO M3 COCTOSIHUS 48, areHT
OKaxkeTcs B cocTossHuM 37. CheiaB 1iar BBEpX M3 COCTOSIHUS 67, OH OKasKeTCs B CO-
CTOSIHMM 37, TIOTOMY YTO BETep CAYET ero elje Ha JBe suyeliky BBepX. Ecin ke oH

cAesaeT mar BHU3 U3 COCTOSIHUS 27, TO OKaXKETCS B COCTOSIHUM 17, TOTOMY UTO BeTep
CIyBaeT Ha JiBe sueliku BBepX, IpeceKasi MOMbITKY CITYCTUTbCS.

60 | 61 | B2 69

O B HacTosiee Bpems okpyxatowas cpeaa Windy Gridworld He Bk/itoueHa B KOM-
nnekt Gym. Mbl peanusyem ee, B3sB 3a 0cHOBY Kog, cpenbl CLiff Walking, Haxo-
aswmica no agpecy https://github.com/openai/gym/blob/master/gym/envs/
toy_text/cliffwalking.py.

Kak 310 penaercs
Peanusyem cpeny Windy Gridworld:

1. Vmmnoprtupyem Heobxomumbie Momyau: NumPy u kiacc discrete u3 6u6mamo-
Teku Gym.

>>> import numpy as np
>>> import sys
>>> from gym.envs.toy_text import discrete

MoaroToBka okpyxatouen cpeabl Windy Gridworld < 129

Ornpenenyum YeThipe TeiiCTBUS:

>>> UP = 0

>>> RIGHT = 1
>>> DOWN = 2
>>> LEFT = 3

Hanuiuem metop __init__ kmacca WindyGridworldEnv:

>>> class WindyGridworldEnv(discrete.DiscreteEnv):
def __init__(self):
self.shape = (7, 10)
nS = self.shape[0] * self.shape[1]
nA =4
CTonbupl, B KOTOpLIX AyeT BeTep
winds = np.zeros(self.shape)
winds[:,[3,4,5,8]] = 1
winds[:,[6,7]] = 2
self.goal = (3, 7)
3apaTb BepPOATHOCTM NEpPexoAoB M BO3HArpaxaeHus
P=1{}
for s in range(nS):
position = np.unravel_index(s, self.shape)
P[s] = {a: [] for a in range(nA)}
P[s][UP] = self._calculate_transition_prob(
position, [-1, 0], winds)
P[s][RIGHT] = self._calculate_transition_prob(
position, [0, 1], winds)
P[s][DOWN] = self._calculate_transition_prob(
position, [1, 0], winds)
P[s][LEFT] = self._calculate_transition_prob(
position, [0, -1], winds)
3ajaTb HayanbHOe COCTOSHME
AreHT BCerpga HauuHaeT B Aueiike (3, 0)
isd = np.zeros(nS)
isd[np.ravel_multi_index((3,0), self.shape)] = 1.0
super(WindyGridworldEnv, self).__init__(nS, nA, P, isd)

31ech OTIPENesISTIOTCS POCTPAHCTBO HAGJIOMEHMIT, BETPEHbIe YUaCTKM U C1JIa
BeTpa, MaTPUIIbI TEPEXOHOB M BO3HATPAXKAEHMIT 1 HauaIbHOE COCTOSTHME.

Omnpenenum meTop, _calculate_transition_prob, KOTOpBIV BO3BpaliaeT pe3yib-
TaT OeiiCTBUSI: BePOSITHOCTD (OHA BCerpaa paBHa 1), HOBOe COCTOsIHME, BO3HA-
rpaxaeHue (Bceraa paBHO —1) 1 MpU3HAK 3aBepIlleHus 3MMU301a.

def _calculate_transition_prob(self, current, delta, winds):
nnn
OnpefensieT pe3ynbTaT AeidCTBMA. BepoATHOCTb nepexoja Bcerpa
paBHa 1.0.
@param current: (row, col), TeKkywas nosuyus B ceTKe
@param delta: u3MeHeHMe nO3nuMM NpU nepexope
@param winds: a¢pekT BeTpa
@return: (1.0, new_state, reward, is_done)

130 <+ TD-o6yueHune n Q-obyueHue

new_position = np.array(current) + np.array(delta)

+ np.array([-1, 0]) * winds[tuple(current)]

new_position = self._limit_coordinates(new_position).astype(int)
new_state = np.ravel_multi_index(tuple(new_position), self.shape)
is_done = tuple(new_position) == self.goal

return [(1.0, new_state,

-1.0, is_done)]

31ech BBIUMC/ISIETCS] HOBOE TTOJIOKEeHME areHTa, 3Has TeKyiiee, Xo 1 3¢ dexr
BeTpa. IIpy 3TOM rapaHTUPYeTCs, YTO HOBOE ITOJIOKEeHMe He BhIIeT 3a Ipefe-
JIbI CeTKM. V1 B KOHIIE TIPOBEPSIETCS, OCTUT JIX areHT KOHEUHOI e/IN.

5. Ompenenum MeTop, _limit_coordinates, KOTOPBIN MpeaOTBpallaeT BbIXO[areH-

Ta 3a IIpenaejibl CETOYHOTO Mupa:

def _limit_coordinates(self, coord):
coord[0] = min(coord[0], self.shape[0] - 1)
coord[0] = max(coord[0], 0)
coord[1] = min(coord[1], self.shape[1] - 1)
coord[1] = max(coord[1], 0)

return coord

6. Emie mob6aBuM MeTo[render, KOTOPBI OTOOPAXKAET CETKY M areHTa:

def render(self):
outfile = sys.stdout
for s in range(self.nS):

position = np.unravel_index(s, self.shape)

if self.s == s:

output = " x "

elif position == self.goal:
output =" T "

else:
output = "o "

if position[1] == 0:

output = output.lstrip()
if position[1] == self.shape[1] - 1:
output = output.rstrip()

output += "\n"

outfile.write(output)

outfile.write("\n")

3mech X 0603HavYaeT TEKyIee MOJIOKeHMe areHTa, T — KOHEUHYIO STUeiiKy, a o —

BCe IIpouMe STYeiKi.

Ternepb BBITIOJIHMM HECKOJIBKO B3aMMOJIECTBUI ¢ OKpyKatolieii cpemoit Windy

Gridworld.

1. Cosgamum sk3emruisip cpenbl Windy Gridworld:

>>> env = WindyGridworldEnv()

2. COpocuM cpeny B MCXOHOE COCTOSTHME:

>>> env.reset()
>>> env.render()
0000000000

MoaroToBka okpysxatowein cpeabl Windy Gridworld + 131

O O O X o o
©O O O 0 o o
©O O 0 0 o o
©O O 0o 0o o o
©O O 0O 0 o o
©O O 0O 0 o o
©O O 0 0o o o
© o o 40 o
©O O 0O 0 o o
©O O 0O 0 o o

AreHT HauMHaeT paboTy B cocTosiHuM 30.

3. Cmemaem XOfi BITPaBo:

>>> print(env.step(1))

>>> env.
(31,

©O O 0O 0O 0o 0o
©O O O X o o

o

©O O 0O 0o 0o 0o
O O 0o o o o

-1.

(=]

render()

0, False,

o

O O 0O 0 o o

©O O 0O 0O 0o 0o
©O O 0 0 o o

0o

o

©O o o 40 o
©O O 0O 0O 0o 0o

{v
o
o
o
o
o
o
o

prob': 1.0})

ATreHT OKa3bIBaeTCs B COCTOSIHUM 31 M MosyyaeT BO3HarpaxkzaeHme —1.

4. CpenaeM IBa X04a BIIPaBo:

>>> print(env.step(1))
>>> print(env.step(1))

>>> env.render()

(32, -1.0, False,
(33, -1.0, False,
00

o

O O 0O 0 o o

©O O 0O 0 0o 0o
©O O 0 0o 0o 0o
O O O X O o

O O 0O 0 o o

©O O 0O 0 0o 0o
©O O 0 0 o o
o o0 o 40 o

o

o

©O O 0O 0O 0o 0o
©O O 0O 0o 0o 0o

{l
{l

prob': 1.0})
prob': 1.0})

5. W emie oguH X0, BIIPaBO:

>>> print(env.step(1))

>>> env.
(24, -1.

©O O 0O 0O 0O 0o
©O O 0 0 o o

o

©O O 0 0O 0O 0o
©O O 0O 0O 0O 0o
O O O O X o

render()

0, False,

[}

©O O 0O 0O 0O 0o
O O 0 0o o o
©O o o 40 o

o

o

©O O 0O 0O 0o 0o

{I
o
o
o
o
o
0
0

prob': 1.0})

BeTep cayn areHTa Ha OAHY sUeliKy BBepX, TaK UTO OH OKa3ascs B COCTOSI-
Huu 24.

[TpoposkaiiTe, oKa He IoiigeTe 00 LeIn.

132 <« TD-o6y4eHue u Q-obyyeHue

Kak 3to paboraer

MBI TOTBKO UTO paspaboTav OKpyKalolyio cpemy, moxoxkyto Ha Cliff Walking. Pa3s-
HUIIA MEXKIY HUMM B TOM, uTO B cpeme Windy Gridworld ecTb eme BeTep, Ayt
BBepx. Kaxkmoe meiicTBMe MIPUMHOCUT areHTy Bo3HarpaxmaeHue —1. [TosTomy Tpeby-
eTcsT obpaThCs OO0 e Kak MOXKHO paHblile. B cienyomneM pelente Mbl pelinm
3a4auy, IpMMeHuB elle oguH TD-MeTon, yripaBaeHusI.

Peanusauma anrorputMA SARSA

Harmmomuum, uto Q-o6yuenne — anroputm TD-o06ydeHMs ¢ pas3meieHHOM CTpaTeru-
eii. B atrom penernre Mol pernium MITTIP meTomom TD-006y4eHust C eAVMHOI CTpaTer-
eif — SARSA (State-Action-Reward-State-Action).

Kak 1 Q-o6yuenne, SARSA 3aBsizaH Ha LIEHHOCTH I1ap cOCTostHMe—pelicTBue. 06-
HoBJIeHMe Q-(PYHKINM TPOU3BOIUTCS IO CJIeAyIoleii opmyie:

QGs, a) = Q(s, a) + a(r + yQ(s', a’) - Q(s, a)).

3mech s’ — COCTOsIHME, B KOTOpPOE MePEXOIUT Cpea Iocie BbIOopa areHToM Jeii-
CTBUSI d B COCTOSIHUM S; I' — TIOJIyUeHHOE IIPY 3TOM BO3HArpaxkaeHNe; o — CKOPOCTh
obyuenus, y — koabduumeHt obeciieHnBanus. Hamomuum, yto B Q-00y4eHUm IJIst
06HOBIeHMST 3HAUeHUsT Q-(QYHKIMM MIPUMEHSIETCS KaJHasl TOBeJeHYecKasi CTpa-
rerust max,Q(s’, a’). B SARSA g o6HOBIeHMs1 3HaueHns Q-QyHKUMM MbI IIPOCTO
BBIOMpaeM Clienmyloliee AeiicTBUe a’, cienys e->kKagHoii crparernu. [Tostomy SARSA
SIBJISIETCSI QJITOPUTMOM C €OUHOI CTpaTerneii.

Kak 310 penaetca

HajimeM onTuMMalbHYIO CTpaTeruio B3ammogeicTBusi co cpenoit Windy Gridworld
meTomom SARSA.

1. Wmmoptupyem 6mubmmorexky PyTorch u momymb WindyGridworldEnv (B TIpemtio-
JIOXKeHUM, UTO MOCJIeIHMIT HaxoauTcsl B daitie windy_gridworld.py) u co3ga-
VM 9K3eMIUISIp oKpysKatoreit cpensl Windy Gridworld:

>>> import torch
>>> from windy_gridworld import WindyGridworldEnv
>>> env = WindyGridworldEnv()

2. Onpepenum e->kafHYI0 TOBEIEHUYECKYIO CTPATeruio:

>>> def gen_epsilon_greedy_policy(n_action, epsilon):

def policy_function(state, Q):
probs = torch.ones(n_action) * epsilon / n_action
best_action = torch.argmax(Q[state]).item()
probs[best_action] += 1.0 - epsilon
action = torch.multinomial(probs, 1).item()
return action

return policy_function

Peanuzaums anroputma SARSA < 133

Ba,ﬂaﬂI/IM KOJIMYECTBO 3IIM3000B M MHNINAJIM3NPYEM OBa CIIMCKaA OJI XpaHe-
HVA OJIVH 3IIM3000B U IMMOJIYY€HHbIX B HUX BOBHaI‘pa)K,E[eHMIZZ

>>> n_episode = 500
>>> length_episode = [0] * n_episode
>>> total_reward_episode = [0] * n_episode

Omnpepenum QyHKIMIO, peaan3yoILyio airoputm SARSA:

>>> from collections import defaultdict
>>> def sarsa(env, gamma, n_episode, alpha):
CTPOMUT ONTMMaNbHyW CTpaTeruw MmetogoM SARSA C ejuHoi cTpaTeruen
@param env: uma OKpyxawuei cpegbl OpenAI Gym
@param gamma: Ko3¢ouUMeHT obecueHnBaHUA
@param n_episode: konMyecTBo 3nM3040B
@return: onTuManbHbie Q-dYHKUMA W CTpaTerus
n_action = env.action_space.n
Q = defaultdict(lambda: torch.zeros(n_action))
for episode in range(n_episode):
state = env.reset()
is_done = False
action = epsilon_greedy_policy(state, Q)
while not is_done:
next_state, reward, is_done, info = env.step(action)
next_action = epsilon_greedy_policy(next_state, Q)
td_delta = reward + gamma * Q[next_state][next_action]
- Q[state][action]
Q[state][action] += alpha * td_delta
length_episode[episode] += 1
total_reward_episode[episode] += reward
if is_done:
break
state = next_state
action = next_action
policy = {}
for state, actions in Q.items():
policy[state] = torch.argmax(actions).item()
return Q, policy

3agagum KodduieHT obectieHUBanms 1, ckopoctb obyuenus 0.4 n e=0.1:

>>> gamma = 1
>>> alpha
>>> epsilon = 0.1

n
(=]
n

Co3panym 3K3eMILISIP €-)XKaaHO CTpaTerun:

>>> epsilon_greedy_policy =
gen_epsilon_greedy_policy(env.action_space.n, epsilon)

Beimonaum anroputm SARSA ¢ mapameTpamu, onpeneneHHbIMHU BbIIlle, U pac-
rnevyataeM ONTUMAIbHYIO CTPATETUIO:

134 <+ TD-o6yueHune un Q-obyueHue

>>> optimal_Q, optimal_policy = sarsa(env, gamma, n_episode, alpha)
>>> print('OnTumanbHaa ctpaterusa:\n', optimal_policy)

OnTMManbHasA cTpaTerusa:

{30: 2, 31: 1, 32: 1, 40: 1, 50: 2, 60: 1, 61: 1, 51: 1, 41: 1,

42: 1, 20: 1, 21: 1, 62: 1, 63: 2, 52: 1, 53: 1, 43: 1, 22: 1, 11:
1, 10: 1, 0: 1, 33: 1, 23: 1, 12: 1, 13: 1, 2: 1, 1: 1, 3: 1, 24:
1, 4: 1, 5: 1, 6: 1, 14: 1, 7: 1, 8: 1, 9: 2, 19: 2, 18: 2, 29: 2,
28: 1, 17: 2, 39: 2, 38: 1, 27: 0, 49: 3, 48: 3, 37: 3, 34: 1, 59:
2, 58: 3, 47: 2, 26: 1, 44: 1, 15: 1, 69: 3, 68: 1, 57: 2, 36: 1,
25: 1, 54: 2, 16: 1, 35: 1, 45: 1}

Kak 3to paboraer
Ha mrare 4 ¢GyHKIMS sarsa BBITIOJIHSIET CJIEAVIOIINE TeiCTBUS :

O MHMIMAIU3UPYET HYASIMU TabIuIy 3HaUeHuit Q-QYHKINHK;

O B KaXAOM 3MM307e MO3BOJISIeT areHTy CJIeJ0BaTh £-3KagHOM CTpaTerum mpu
BbIOOpE AeiicTBUS. VI Ha KaXKaoM Iiare o0HOBISIeT Q-GYyHKIMIO IO Gopmysie
Q(s, a) = Q(s, a) + a(r + yQ(s’, a’) - Q(s, a)), B KOTOpOi1 a’ BbIOMpaeTcs, ciemyst
£-3KaJHOJ cTpaTeruu. 3aTeM BbITIOJHSIET HOBOE JelicTBMe a’ B HOBOM COCTOSI-
HUu s';

O mporoHserT n_episode 3MM130/I0B;

O CTPOUT ONITUMAJIBHYIO CTPATETMIO HA OCHOBE ONTMMAaIbHOM Q-(DYHKLINN.

Kak Bummum, anroputm SARSA ontumusupyet Q-byHKIMIO, BbIOMpas AeiiCcTBIe
B COOTBETCTBUM C TOI XXe €-3KagHOM cTpaTermeii. 3T0O OUeHb MOXOXKe Ha MeTO[
yrmpasienust MK ¢ enyHo# cTparterueii. Pasuniia B ToM, uTo Q-GYyHKIMSI OGHOBJIS -
eTCs HeOObIIMMY TIpUPAaIleHMSIMM Ha KaKIOM IIare, a He B KOHILIE BCEro SIM30/a.
OTO cuMTaeTCs MPEeMMYIIeCTBOM B OKPYKAIOIIMX Cpefax C JJIMHHBIMU TU30[aMMU,
KOIJa KOATh 3aBeplieHus snmusona HesddekTuBHo. Ha kaxkgom mare SARSA Mbl
IoJTyyaeM HOBYIO MHGOPMAILMIO O Cpelie U Cpasy ke MCIOAb3yeM ee IJisT OOHOB-
JIeHUs IIeHHOCTeli. B HallleM Ipumepe O/ HaXOXKAeHMST ONTUMAaIbHON CTpaTernmu
rmoHago6miock Bcero 500 ammM30m0B.

3710 eLe He Bce

Ha camom pene [jisl TIOMyYeHMsI ONMTMMAJIbHOM CTpaTeruyu XBaTWIO MPUMEPHO
200 snm30m0B. YT0ObI YOEAUTHCS B 9TOM, ITOCTPOUM I'padVKM IJIMH U MOTHBIX BO3-
HarpakaeHuit IJIsT KaXkJoTo SIM307a.

Peanuzaumsa anroputma SARSA <+ 135

HapI/IcyeM rpa(bl/u(3aBUCMMOCTHU OJIMHBI 31IM304a OT BpEMEeHMN:

>>> import matplotlib.pyplot as plt

>>> plt.plot(length_episode)

>>> plt.title('3aBucumMocTb AnvHbl 3nKU304a OT BpeMeHu')
>>> plt.xlabel('3nu3o0g')

>>> plt.ylabel('fAnuna')

>>> plt.show()

v

IMonyuaeTcs Takoit rpaduk:

3aBUCMMOCTb AJIMHBI 3NU3043 OT BpeMeHU

800 +

700 4

600

500 4

400

OnvuHa

300 4

200 4

100 A

T T T T
100 200 300 400 500
onu3op,

o <

Kak Buaum, gjimHa snusona crabuamsupyetcs mocie 200 anmu3omoB. A He-
6osbinre GQIYKTYaluy CBSI3aHbI CO CTyYaiiHBIM MCCIeTOBaHMEM B €-3KaHOM
CTpaTerumn.

Hapucyem rpaduk 3aBMCYMMOCTY BO3HArPaskaAeHMS OT BpEMEHN!:

>>> plt.plot(total_reward_episode)

>>> plt.title('3aBucumMocTb BO3HarpaxgeHns oT BpeMeHH')
>>> plt.xlabel('3nuson')

>>> plt.ylabel('MonHoe Bo3Harpaxaexue')

>>> plt.show()

136 <+ TD-o6yueHune n Q-obyueHue

PEBYJ'[bTaT IIOKa3aH Ha PMCYHKE HIDKe.

3aBMCMMOCTb BO3HArpaXaeHus OT BpEMEHU

0 .

—=100 -

o —200 -
=
3

Y -300
X
o

S —400
I
3

o —500 1
[}
2

= —600
o
C

—700 -

—B800 A

T T T T T T
0 100 200 300 400 500
onus3on,

YeM MeHbIlle 3HAUEHME €, TeM cj1abee QUIyKTyaluy, SIBJSIOIINMECS] Pe3yIbTaTOM
CJIy4aliHOTO MCC/IeA0BaHMs B e-)KaJHOM CTpaTeruun.

B cemyromux IByX pelienTax Mbl BOCIIONb3YeMCsI 000MMY M3yUeHHBIMY MeTOa-
MU OJ1S1 B3aMMOZENCTBUS C OKPYsKalolleli Cpeoit MOoCaoXKHee, rae KOJIMYeCTBO CO-
CTOSTHMIT U IeficTBUit 6osbiine. HauneMm ¢ anroputMa Q-o0yueHms.

PEWEHKWE 3ADAYM O TAKCM METOAOM Q'OBV‘-IEHMSI

3amaua o takcu (https://gym.openai.com/envs/Taxi-v2/) — ele ogHa MOIyJ/IsIpHAs 3a-
Java Ha CeTKe. ATeHT CyIIeCTBYeT B CETOUHOM Mupe pasMepa 5x5 u urpaer posb
BOOMTES TaKCU, KOTOPbIN AO/DKEH MOCAAUTDb MacCaXupa B KaKOW-TO siuelike U BbI-
caIuTh B MecTe HasHaueHus. PaccMoTpum nmpumep:

PeweHwue 3aaaun o Takcu MetogoM Q-o6ydeHus < 137

[IBeTa MHTEPIIPETUPYIOTCS CJIEMYIOIUM 0OPa30OM.

O JKenThplit: HauaIbHOE TTONOKEHMe Takcu. OHO BbIOMpAETCs CIydaifHbIM 00-
pa3oMm B KaXKIOM 3MM30[e.

O CwuHwuit: onoxkeHue naccaxkupa. CaydaifHpiM 06pa3oM BbIOMPAETCS B Kak-
JIOM 31I130[eE.

O ®wuosneToBbIii: MecTo HasHaveHus. CaydyaiiHIM 00pa3oM BbIOMpPAETCS
B K&XZ,0M 51M130[e.

O 3esneHsbIli: TONIOKEHNE TAKCH, BE3YIIEro Naccaxmupa.

BykBamu R, Y, B, G 0603HaueHbI Te STUEiKM, B KOTOPBIX paspelleHbl IT0caaKka
1 Bbicagka. OmHa M3 HUX COBIIaJAeT C MeCTOM HaXOXAeHUs IMaccaskupa, Apyras —
C MeCTOM Ha3HaueHMs.

Takcyu MOsKeT COBepIlIaTh IeCTh JeTePMUHUPOBAHHBIX AeVICTBUIA:

0: IBUTaThCs HA 10T,

1: nBUTraThCS Ha CeBep;
2: IBUTAThCS HA BOCTOK;
3: IBUTATHCS Ha 3araji;
4: MoCaguTh Mmaccaxxmpa;
5: BrICAAUTh Maccaxkupa.

00000

BepTuKasbHbIe UEPTOUKM MEXKIY STUEIKAMM 03HAUAKOT, YTO B STOM HaIIpaBIeHUN
IBVKEHME 3arpeleHo.
Bo3HarpaskaeHue Ha KaskIOM IIare paBHO —1 CO CJIeTyIONMMY VCKITIOUEHVSIMMU :

O +20: maccaxkup AOCTaB/JIeH B MeCTO Ha3HaveHMs. Ha 3ToM anm3of 3akaHUM-
BaeTcy;

Q -10: momnbITKa MOCaAUTD UM BbICAAUTD MacCakMpa B Hepa3pelleHHOM MeCTe
(He coBmagarwIleM HI C OfHOI 13 ssueek R, Y, B, G).

3aMeTMM TaKKe, UYTO IIPOCTPAHCTBO HAOMIOmeHII1 ropa3no 6obiie, ueM 25 (5%5),
ITOCKOJIbKY HYKHO YUMTBIBATh MECTO TIOCAIKM M BBICAIKM Maccaxkyupa, a Takke 3a-
HATO TakCu uiau cBobomHo. CemoBaTelbHO, pasMep MPOCTPAHCTBA HAGIOMEHMIA
paBeH 25 * 5 (4 BOSMOXKHBIX MECTa MOCAAKM ITaccaskupa IUII0C IIPU3HAK TOTO, UYTO OH
yKe CUMIUT B MalHe) * 4 (Mecta Bbicagku) = 500.

MoaroroBka

[Ipeskme Bcero Haiimem MM OKpysKatomieil cpenbl Taxi B Tabmuile 1o agpecy https://
github.com/openai/gym/wiki/Table-of-environments. OHa Ha3biBaeTcs Taxi-v2, u no-
ITyTHO MbI y3HAaeM, UTO HaOIogeHns mpeacTaBaeHbl yuciamu ot 0 1o 499, a Bo3-
MOXXHBIX AeiicTBUIi yeThipe (BBepx = 0, BpaBo = 1, BHU3 = 2, BJIeBO = 3).

Kak 310 penaetcs
I uMmuTaum okpyskarlieii cpefibl Taxi BBIMOJIHUM C/IeAYIOIIUM OeiiCTBUS.
1. Wmmoptupyem 6u6amoTexy Gym u co3gaamumM 9K3eMILIsIp cpebl Taxi:

>>> import gym
>>> env = gym.make('Taxi-v2')

138 <+ TD-o6yueHune n Q-obyueHue

>>> n_state = env.observation_space.n
>>> print(n_state)

500

>>> p_action = env.action_space.n

>>> print(n_action)

6

2. C6pocum cpeny B MCXOTHOE COCTOSTHUE

>>> env.reset()
262

3. Hapucyem cpeny:
>>> env.render()

[TosiBUTCS yoke 3HAaKOMast MaTpuiia pasMmepa 5x5.

Hacca>1<1/1p HaxoauTcCs B syelike R, a MeCTO Ha3HaueHMs — B sguelike Y. Ha Ba-
IeM KOMITbIOTEPE KaPTMHKA MOXXeT OBITh ,E[perﬁ, IIOTOMY UTO Ha4a/JIbHOE CO-
CTOsSIHME TEHEPUDPYETCA CHY‘JHVIHBIM 06p830M.

4. Teneppb OTHpaBMMCS 3a ITaCCa’kKMPOM, KOTOPBIV HAaXOOUTCS OT HAC B TPeX
syelikax K 3amnany M ABYX K ceBepy (CHesaiiTe MOIPaBKy HAa TO, YTO BUOUTE
y ceOst Ha 9KpaHe), U MOCAAVM ero B MallyHy. 3aTeM CHOBAa HapUCyeM OKpY-
SKaIOILYIO Cpefy:

>>> print(env.step(3))

(242, -1, False, {'prob': 1.0})
>>> print(env.step(3))

(222, -1, False, {'prob': 1.0})
>>> print(env.step(3))

(202, -1, False, {'prob': 1.0})
>>> print(env.step(1))

(102, -1, False, {'prob': 1.0})
>>> print(env.step(1))

(2, -1, False, {'prob': 1.0})
>>> print(env.step(4))

(18, -1, False, {'prob': 1.0})
Render the environment:

>>> env.render()

PeweHune 3agaum o Takcu Metonom Q-obyueHus < 139

5. Marpuiia Ha 3KpaHe 0GHOBUTCS CIeIyIOIM 06pa3oM (Y BaC MOKET ObITb I10-

opyromy):

Takcy mepekpacuioch B 3eJIeHbI IIBET.

6. Termepb roeaemM K MeCTy Ha3HAUEHMSI — YeThIpe STYeiiky Ha 0T — U BbICAAUM

maccaxxmpa:

>>> print(env.step(0))

(118, -1, False, {'prob':

>>> print(env.step(0))

(218, -1, False, {'prob':

>>> print(env.step(0))

(318, -1, False, {'prob':

>>> print(env.step(0))

(418, -1, False, {'prob':

>>> print(env.step(5))

1.0})
1.0})
1.0})
1.0})

(410, 20, True, {'prob': 1.0})

B utore nonyuaem BosHarpaxkgeHue +20, 1 30130/, 3aKaHUNBAETCS

>>> env.render()

O6HOBJIeHHAsT MaTpuiia BBITJIAOUT TaK:

(Dropoff)

140 <+ TD-o6yueHune n Q-obyueHue

Tenepb IIPpMMEHMM K 3aJade O TaKCU MeTO Q—06yquM$[.

1.

Vimnoptupyem 6m6mmuorexky PyTorch:
>>> import torch

IToBTOpPHO MCITONb3yeM (GYHKIIMIO £-KaIHOI CTpaTeruu gen_epsilon_greedy_
policy u3 penernra «Peam3anust anroputma Q-o0ydeHUsI».

3agaayM KOJIMYECTBO SIM30[0B M MHULIMAIM3UPYEM ABa CITMCKA IJIs1 XpaHe-
HUSI IJIVH STIM30,0B ¥ TIOJTYUYEHHBIX B HUX BO3HATPAKIEHUIA:

>>> n_episode = 1000
>>> length_episode = [0] * n_episode
>>> total_reward_episode = [0] * n_episode

B kauectBe DyHKIMM, BRITOMHSIONMEN Q-00yUueHme, UCIOab3yeM (QYHKIMIO
q_learning u3 perenTa «Peanm3aius anroputma Q-o6yueHms ».

3agaaum oCTabHbIe TTapaMeTphl: KOG GuImeHT obeciieHBaHus, CKOPOCTh
06yueHMs 1 €, a 3aTEM CO3/IaIMM dK3EMILISIP -5KaHOI CTPATEerUM:

>>> gamma = 1

>>> alpha = 0.4

>>> epsilon = 0.1

>>> epsilon_greedy_policy =
gen_epsilon_greedy_policy(env.action_space.n, epsilon)

1 HakoHell, BRIMOTHUM Q-06yueHye M HalieM OINTMMAIbHYIO CTPATETuIo
B 3aJlaue O TaKCu:

>>> optimal_Q, optimal_policy = q_learning(env, gamma, n_episode, alpha)

Kak 3to paboraer

B aTOM pelienTe MbI pemIu 3aady 0 Takcu MeTofoM Q-o06yueHns ¢ pasaeaeHHOo
cTpaTeruei.

I[Mocse 1ara 6 MOKHO IMOCTPOUTD rpadyKy IJIMHBI STIM30/a U TTOTYyYeHHOTO BO3-
HarpakgeHus: ¥ yoemuTbCs, YTO MOJEeTb CXOOUTCS. I'padMK 3aBUCUMOCTU IJIMHbI
3MM30[a OT BpeMeHMU BbIISIAUT CJIeTYIONMM 06pasom:

Pewenwe 3agaum o Takcu MetopoM Q-o6ydenuns <+ 141

3aBUCMMOCTb AJIMHBI 3NU3043 OT BPpEMEHU

200 4

175 4

150

T

T T T
200 400 600 800
onu3opa,

T
1000

A rpaduK 3aBMCUMOCTM BO3HArpaskAeHMsI OT BpeMeH! — TaK:

[MonHoe BO3HarpaxaeHue

3aBMCMMOCTb BO3HArPaXAeHWs OT BpEMEHU

—100 4

—200 4

—300 4

—400 4

—500 1

_600 =

=700 4

—800 4

o4

T T T
200 400 600 800
onu3on,

T
1000

142 <« TD-o6y4eHue u Q-obyueHue

Kak Buaum, ctabuamsaiys HaumHaeTcs rmocie 400 snm30m0B.

Taxi — TOBOJILHO CI0KHASI CETOYHAs OKpysKaroias cpena ¢ 500 AMCKpeTHBIMU CO-
CTOSTHUSIMY ¥ 6 BO3MOKHBIMM IeACTBUSIMU. ATTOpUTM Q-06yUeHNS ONITUMU3UPYET
Q-¢byHKIMIO HA KaXKIOM IlIare 3I130[a, 00yJasich Ha OIbITE, TeHEPUPYEMOM SKaf-
HOJt cTpaTerueit. Mbl mosyyaeM MHdopMaimio 06 oKpyskaroleii cpefe B Ipoliecce
06yueHMs U cpasy ke UCIOIb3yeM ee IJisi OGHOBIEHMS LIEHHOCTe, Caemys e-sKaf-
HOJi CTpaTerun.

PEWEHME 3A0AUYM O TAKCM METOoZOM SARSA

B 3TOM pelienTe Mbl penium 3aauvy o Takcu MeTogom SARSA 1 HacTpouM rumneprna-
paMeTpbl, IPMMEHUB aATOPUTM ITOMCKA Ha CeTKe.

HauneMm c Habopa rumneprapametrpoB SARSA, mompa3ymeBaeMoro ro yMmoida-
HIto. OHM BBIGPAHbBI M3 MHTYUTUBHBIX COOOLIEHNMIT ¥ HA OCHOBE IMPe/IIIeCTBYOIIETO
orbITa. BriociecTBMY Mbl TIoZI6epeM HaMTyuIlie 3HaUeHUsI.

Kak 310 penaetcs
[Mpumenum anroputm SARSA K B3auMoeiicTBMIO co cpenoit Taxi.
1. Wmmnoprupyem 6mbmmuoteku PyTorch u gym u co3maaum 5K3eMIUISIP OKpY-
sKaroleit cpembl Taxi:

>>> import torch
>>> import gym
>>> env = gym.make('Taxi-v2')

2. TloBTOpPHO UCIONb3yeM (QYHKIIMIO £-3KaTHOM MTOBEIEHYECKON CTpaTernu gen_
epsilon_greedy_policy u3 penenra «Peanu3sanys airoputma SARSA».

3. 3amanyM KOJIMUYeCcTBO 3IM30/10B U VHNLIMaIN3NPYyEM JiBa CIIMCKa OJId XpaHe-
HVS OJIVH 3IIM3000B U IMMOJIYYE€HHbIX B HUX BosHarpaxmeHmZ:

>>> n_episode = 1000
>>> length_episode = [0] * n_episode
>>> total_reward_episode = [0] * n_episode

4. BrkauecrtBe QyHKIMHA, BhITOMHSIONEH SARSA, 1cronb3yem QyHKIIMIO sarsa U3
peuernta «Peannsanus anropurma SARSA».

PewweHue 3apaumn o Takcn MetogoM SARSA <+ 143

5. 3amagum KoadduineHT obecuieHMBaHus 1, ckopocTb o6yuenust 0.4 me=0.1:

>>> gamma = 1
>>> alpha = 0.4
>>> epsilon = 0.01

6. Co3maguM 9K3eMILISIP £-3KaJHOM CTPaTernin:

>>> epsilon_greedy_policy =
gen_epsilon_greedy_policy(env.action_space.n, epsilon)

7. W HakoHell, BBITIOJHUM anropuTMm SARSA ¢ 3ajaHHBIMM BBIIIE ITapaMeTpaMu:

>>> optimal_Q, optimal_policy = sarsa(env, gamma, n_episode, alpha)

Kak 3to paboraer

IMocste miara 7 MOSKHO MOCTPOUTH rpadMKY IJIMHBI SMTM30/a Y TOTYyIeHHOTO BO3HA-
TPaKAEHUS U YOeIUThCS, YTO MOJIETb CXOAUTCS. IpadMK 3aBUCUMOCTY JIMHbI ST~
30/1a OT BpEMEHM BBITVISIIAT CJIeAYIOMM 06pa3soM:

3aBUCMMOCTb AJIMHBI NU3043 OT BpeMeHU

200 4

175 4

150 4

125 1

100 4

NnuHa

73

T T T T
200 400 600 800 1000
3nu3op,

o -

144 < TD-o6y4eHue u Q-obyueHue

A I‘paCl)I/IK 3aBUCMMOCTHM BO3HaArpaXaeHmns OT BpeMeH! — TaK:

3aBUCMMOCTb BO3HaArpaxxaeHua ot BpeMeHu

Dd

—200 -
()
=
)

T -400
X
©
a
—

2 —600
m
[e]
o
8

£ -800-
=
[e]
_

~1000 -

. : : :
0 200 400 600 800 1000
onu3on,

OnucaHublii anroputT™ SARSA paboTaeT HEIUIOXO, HO €CTh BO3MOXXHOCTh €ro
yAy4dImnTh. [1035Ke MbI BOCITOJIb3YEeMCSI TOMCKOM Ha CeTKe, UTOObI HAal TV HaMTy I
Habop rumneprapaMeTpoB.

3710 eLe He Bce

IMock Ha ceTKe — 3TO MPOTPAMMHBII CITOCO6 HATY HaVITyJIIit HAbop TMUIeprapa-
MeTpOB B 06yueHnn ¢ mogkperuieHneM. KauectBo Habopa M3MepsieTcst 1o CJieAyo-
MM TIOKa3aTessIM:

QO cpenHee MOMHOE BO3HATPAKAEHNME B HECKOJIbKMUX MEPBbIX SIMMU300aX: Mbl XO-
TUM, YTOGBI BO3HArpaskAeHMe CTalIo 60JBIIMM KaK MOKHO ObICTpee;

O cpemHss IIMHA HECKOIbKMX MEPBbIX 3MM30/I0B: Mbl XOTUM, UTOOBI TAKCH 10-
BO3MJIO TTaCCakyMpa 10 MeCTa Ha3HaueHMs Kak MOXKHO 6bICTpee;

O cpenmHee BO3HArpaskaeHMe Ha OFHOM BpeMEHHOM Ilare B HeCKOJIbKUX IEPBbIX
3MM30[aX: Mbl XOTVM, YTOGBI 3TO BO3HArpaskaAeHe JOCTUITIO MaKCHMMyMa Kak
MOSKHO OBICTpee.

Peanusyem 3asiBJI€HHBIN aJTOPUTM.

1. anee Gymem MCITONb30BATh TPU MOTEHIMAIbHBIX 3HaUeHNS anbda, [0.4, 0.5,
0.6], TpM MOTeHIMAIbHBIX 3HAUeHMs 3rcuioH, [0.1, 0.03, 0.01]. U 6ymem
paccMaTpuBaTh TOIbKO IepBbie 500 sM130I0B.

>>> alpha_options = [0.4, 0.5, 0.6]
>>> epsilon_options = [0.1, 0.03, 0.01]
>>> n_episode = 500

PeweHune 3apaum o Takcn Metonom SARSA < 145

2. BBbIMOMHMM TTOMCK Ha ceTKe, 06yunB aaroputM SARSA c¢ KaxkmbIM HabOpOM
rumnepIiapaMeTpOB U OLIEHMB €ro KauecTBO.

>>> for alpha in alpha_options:

for epsilon in epsilon_options:

length_episode = [0] * n_episode

total_reward_episode = [0] * n_episode

sarsa(env, gamma, n_episode, alpha)

reward_per_step = [reward/float(step) for reward, step in zip(
total_reward_episode, length_episode)]

print('alpha: {}, epsilon: {}'.format(alpha, epsilon))

print('CpegHee Bo3Harpaxgenne B {} anusogax: {}'.format(
n_episode, sum(total_reward_episode) / n_episode))

print('Cpegnaa anuva {} anusogos: {}'.format(
n_episode, sum(length_episode) / n_episode))

print('CpegHee Bo3HarpaxgeHne Ha ogHom ware B {} anusogax:{}\n'.format(
n_episode, sum(reward_per_step) / n_episode))

BbBIOMHUB 3TOT KO, MbI ITOJTYUMM TaKMe pe3yjJabTaTbl:

alpha: 0.4, epsilon: 0.1

CpepHee Bo3HarpaxpgeHue B 500 3nusopax: -75.442

CpepHas anuHa 500 snusopos: 57.682

CpefHee BO3HarpaxjeHuMe Ha ofHoM ware B 500 anu3opax: -0.32510755063660324
alpha: 0.4, epsilon: 0.03

CpepHee BO3HarpaxpgeHue B 500 3nu3opax: -73.378

CpepHas anuHa 500 snusopos: 56.53

CpepHee BO3HarpaxjeHuMe Ha ojHoM ware B 500 anu3opax: -0.2761201410280632

alpha: 0.4, epsilon: 0.01

CpepHee BO3HarpaxpgeHue B 500 3nusopax: -78.722

CpepHas anuHa 500 anusopos: 59.366

CpepHee BO3HarpaxjeHune Ha ofHoM ware B 500 anu3opax: -0.3561815084186654

alpha: 0.5, epsilon: 0.1

CpepHee BO3HarpaxpgeHue B 500 3nu3opax: -72.026

CpepHas anuHa 500 snusopos: 55.592

CpepHee BO3HarpaxjeHue Ha ofHoM ware B 500 anu3opax: -0.25355404831497264
alpha: 0.5, epsilon: 0.03

CpepHee BO3HarpaxpgeHue B 500 3nu3opax: -67.562

CpepHas anuHa 500 anusopgos: 52.706

CpepHee BO3HarpaxjeHue Ha ojHoM ware B 500 3anu3opax: -0.20602525679639022
alpha: 0.5, epsilon: 0.01

CpepHee Bo3HarpaxpgeHue B 500 3nusopax: -75.252

CpepHas anuHa 500 snusopos: 56.73

CpepHee BO3HarpaxjeHuMe Ha ofHoM ware B 500 anu3opax: -0.2588407558703358

alpha: 0.6, epsilon: 0.1

CpepHee BO3HarpaxpgeHune B 500 3nu3opax: -62.568

CpepHas anuHa 500 snusopos: 49.488

CpepHee BO3HarpaxjeHune Ha ofHoM ware B 500 anu3opax: -0.1700284221229244

alpha: 0.6, epsilon: 0.03

CpepHee Bo3HarpaxpgeHue B 500 3nu3opax: -68.56

CpepHas anuHa 500 snusopos: 52.804

CpepHee BO3HarpaxpgeHuMe Ha ofHoM ware B 500 anu3opax: -0.24794191768600077
alpha: 0.6, epsilon: 0.01

146 <+ TD-o6yueHune n Q-obyueHue

CpepHee Bo3HarpaxpgeHune B 500 3nu3opax: -63.468
CpegHas anuHa 500 anusopos: 49.752
CpepHee BO3HAarpaxpeHve Ha opHom ware B 500 anusopax: -0.14350124172091722

Kak BuayM, B JaHHOM C/Tyuyae HaWIydIIuM CTajl Habop rurepriapametpos alpha:
0.6, epsilon: 0.01, mpu KOTOPOM AOCTUTHYTHI HAMOOJIbIIIEE BO3HATPAKAEHNE HA Of-
HOM Ii1are, HaMboblilee CpeHee BO3HarpaskJeHye 1 HauMeHblIlas JjI1Ha 9MM130/a.

PEAnNM3ALMS ANTOPUTMA ABOVHOIO Q'OBVLIEHMSI

U HamoceioK Mbl B 9TOJ IVIaBe pean3yeM aJTOPUTM ABOMHOT0 Q-00yueHmsI.

Q-o6yuenye — 3¢ GeKTUBHBI U MOMYIIpHbIi TD-aJropuT™M O6YUEHMS C MOA-
KkperieHueM. Ho uHOrma oH paboTaeT IJIOXO, IVIABHBIM 00Pa3oM M3-3a JKaJHOIA
KOMIIOHeHTbI max,,Q(s’, a’). OH MOXKeT 3aBbIIIATh OLIEHKY LIEHHOCTU IeViCTBUI, UTO
MIPUBOAUT K HEYAOBJIETBOPUTEIBHBIM pe3ybTaTaM. AJITOPUTM IBOIHOro Q-obyue-
HMSI TIPU3BAaH TNPEOHOJNIETh 3TOT HENOCTAaTOK IMOCPENCTBOM MCIONb30BAHUSI IBYX
O-dyHKIMI1, KoTOpble MbI 0603HauMM QI 1 Q2. Ha KakmoM 1mare OOHOBJISIETCST OMHA
cydaitHo BeiopanHas Q-pyHkuus. Eciv Boi6pana QI, To 06HOBIeHVE TPOU3BOINUT-
cs1 1o hopmyiie:

a’ = argmax,QI(s/, a);
QI(s, a) = QI(s, a) + a(r +yQ2(s', a’) - QI(s, a)),

a e Q2, To o popmyse:

a’ = argmax ,Q2(s’, a);
Q2(s, a) = Q2(s, a) + a(r + yQI(s', a’) - Q2(s, a)).

9TO 3HAUNT, YTO B OOHOBIEHUM KasKAOI Q-(DYHKIMY YIaCTBYeT APYTas, IPU 3TOM
MIPUMEHSIeTCS KaJHbll TIOMCK, YTO YMEHbILIAET CTelleHb 3aBbIIIeHMS] OLleHKY LIeH-
HOCTU JeiiCTBUII 110 CpaBHEHMIO € OfHOI Q-dyHKUIMeR.

Kak 3To penaetcs
Peanusyem aqropuTm ABOMHOTO Q-00y4eHMsI 1)l OKpYysKaroleit cpenbl Taxi.
1. VmMmnopTtupyeM HeoOGXOauMble OUOTMOTEKM M CO3MAOMM SK3EMIUISIP CPeIbl
Taxi:

>>> import torch
>>> import gym
>>> env = gym.make('Taxi-v2')

2. TloBTOpHO uCIONb3yeM (GYHKIMIO £-KagHOV cTpaTeruu gen_epsilon_greedy_
policy u3 penernra «Peanmusanuust anroputma Q-o6ydeHus ».

3. 3a,ﬂa,IU/IM KOJ/JIM4YeCTBO 3MM3040B M MHULIMAJINM3VPYyEeM Bad CIIMCKa OJIsA XpaHe-
HVA OJIVH 3TIM3000B U MMOJIYYE€HHbIX B HUX BosHarpameHuﬁ:

>>> n_episode = 3000
>>> length_episode = [0] * n_episode
>>> total_reward_episode = [0] * n_episode

Peanusaums anroputma ABoiHoro Q-obyueHns < 147

Msi umutupyeM 3000 31130[0B, MOCKOIBKY IJISI CXOOVMMOCTU aarOpuUTMa
IBOITHOTO Q-06y4eHMs SM30[0B HY;KHO OOJIbIIIe.
Onpenenum GYHKIIMIO, KOTOPAs BBITIOMHSET ABOIHOE Q-00yueHme:

>>> def double_g_learning(env, gamma, n_episode, alpha):

CTPOMT ONTUMANbHYW CTPaTeruw MeToAoM ABOIHOro Q-obyyeHusa c
pasfjeneHHoil CTpaTeruen

@param env: uma OKpyxawueir cpegbl OpenAI Gym

@param gamma: Ko3¢duuueHT obecuyeHnBaHuA

@param n_episode: konnyecTso 3nuU3030B

@return: onTuManbHbie Q-dYHKUMA W CTpaTerus

n_action = env.action_space.n
n_state = env.observation_space.n

01
02

= torch.zeros(n_state, n_action)
torch.zeros(n_state, n_action)

for episode in range(n_episode):

state = env.reset()
is_done = False
while not is_done:
action = epsilon_greedy_policy(state, Q1 + Q2)
next_state, reward, is_done, info = env.step(action)
if (torch.rand(1).item() < 0.5):
best_next_action = torch.argmax(Q1i[next_state])
td_delta = reward + gamma * Q2[next_state][best_next_action]
- Q1[state][action]
Q1[state][action] += alpha * td_delta
else:
best_next_action = torch.argmax(Q2[next_state])
td_delta = reward + gamma * Q1[next_state][best_next_action]
- Q2[state][action]
Q2[state][action] += alpha * td_delta
length_episode[episode] += 1
total_reward_episode[episode] += reward
if is_done:
break
state = next_state

policy = {}
Q=01+Q

for

state in range(n_state):
policy[state] = torch.argmax(Q[state]).item()

return Q, policy

3amamum OCTa/IbHbIE TTapaMeTpbl: Ko3DuImMeHT obeciieHMBaHMsI, CKOPOCTb

0b6yueHmst

U €, a 3aTeM CO3aAVIM 9K3eMILISIP £-KaIHO CTpaTeruu:

>>> gamma = 1

>>> alpha
>>> epsilon

0.4
=0.1

>>> epsilon_greedy_policy =
gen_epsilon_greedy_policy(env.action_space.n, epsilon)

148 <+ TD-o6yueHune n Q-obyueHue

6. U HakoHeIl, BLITIOJHUM ABOJiHOe Q-06yUueHne U HaiieM ONTUMAaIbHYIO CTpa-
TeruIo B 3aJ1a4e O TaKCU:

>>> optimal_Q, optimal_policy = double_q_learning(env, gamma,
n_episode, alpha)

Kak 3to paboraer

B aToM pereriTe MbI peliniiu 3aJauy O TaKCUM METOIOM ABOTHOTO Q-00yueHms.
OYHKUMS Ha LIare 4 BbINOIHSET CJIeAyrolye OeiCTBUS:

O UMHMIMATU3UPYET HYISIMU IBe TaOIUIIbl 3HaUeHMIT Q-hYHKINIA;

O Ha KaXOoM Iare smm30[a CIydaiiHbIM 00pa3oM BbIOMpAeT Ijisl OOGHOBJIE-
HUsT omHYy Q-(QYHKIINMIO U JaeT areHTy BO3MOKHOCTb, CIelysl €-XKaJHOl cTpa-
Termu, BbIOpaTh, Kakoe AECTBME MPEONPUHSITb, ¥ OOHOBUTh BBIOPAHHYIO
Q-(dyHKIIMIO C TTOMOIIBIO APYTO¥A;

BBINIOIHSIET n_episode SIIM300B;

CTPOUT ONTUMAJIbHYIO CTPATeruio, CyMMUpPYs (Mau ycpenHsisi) ob6e Q-dyHK-
LN

O
O
[Tocste mrara 6 MOKHO ITOCTPOUTD IPadMKY IJIMHBI STIM30/1a U TTOTyUeHHOTO BO3-

HaTrpaskAeHusT ¥ yOemuThCsl, YTO MOAENb CXOAUTC. I'paduK 3aBUMCHMMOCTM IJIVHBI
SM130/1a OT BpEMEHU BBIIJISIAUT CIeAYIONIMM 06pa3oM:

3aBUCMMOCTb AJIMHBI 3NU3043 OT BpeMeHun

200 4

175 A

150 A

125 A

100 -

OnvHa

75

T T T T T
0 500 1000 1500 2000 2500 3000
3nu3son

Peanusaums anroputma asoiHoro Q-obyueHus < 149

A I‘paCl)I/IK 3aBUCMMOCTHM BO3HArpakaeHmns OT BpeMeH! — TaK:

3aBMCMMOCTb BO3HArpaXaeHus OT BpeMeH!

0 -

—100 A

2 —200 -
I
(0]
=4

X —300
o
Q.
—
©

T —400 A
o
[21]

S 500
I
=
o

C —600 A

—700 A

0 500 1000 1500 2000 2500 3000
dnu3og,

Anroput™m nBoVHOrO Q-00yueHMsT IIPeomosIeBaeT IMOTEHIIMATbHbIN HEeJOCTATOK
mpocToro Q-o6ydeHus B CJIOKHBIX OKpYKalomMx cpemax. OH crydaiiHbIM 06pa3om
yepenyeT 1 OGHOBJISIET ABe Q-(QYHKINM, UYTO MPeIOTBPAIlaeT 3aBbIIIeH e OI[€HOK
LIeHHOCTeI IeliCTBUIA, CBOICTBEHHOE ofgHOV Q-hyHKIMN. OTHAKO BO3MOKHO 3aHM-
SKeHME OIIeHKM, ITOCKOJIbKY Ha Pa3HbIX IIarax OOHOBJISIIOTCS pasHble Q-(QyHKINN.
[MosTomy IJIsI HAXOXKIEHMS OITMMAaTbHbIX IIEHHOCTEN JeiiCTBUIi TpebyeTcs 6oblie
SMM30/I0B.

CM. TaKkxXe

TeopeTuyeckoe 060CHOBaHME ABOMHOTO Q-06y4eHUsI CM. B OPUTMHAJIbHON CTaThe
Xano BaH XaccesbTa, OIyOIMKOBAaHHOM B XypHase «Advances in Neural Informa-
tion Processing Systems» 23 (NIPS 2010), 2613-2621, 2010 (https://papers.nips.cc/
paper/3964-double-g-learning).

naBa

PeweHue 3apaum
O MHOropykom b6aHpurte

AJTOPUTMBI MHOTOPYKMX OQHAVTOB SIBJISTIOTCS, TIOSKATYi1, OMHUMM U3 CAaMBbIX ITOITY-
JIIPHBIX B 0OYUeHUM C ITOAKperieHreM. Mbl HAUHEM 3TY IJIaBY C TOTO, UTO CO3AAUM
MHOTOPYKOTO 6aHAUTA U TTOIKCIIEPUMEHTHUPYEM CO CTyUaifHBIMMU CTpaTerusiMu. Jla-
Jlee Hac GYAyT MHTEPEeCcOBaTh YEThIPe CTPATETMM pelleHNs 3aJaui O MHOTOPYKOM
G6aHauTe: £-)KamHasl, ccIeqoBaHme ¢ yHKIMeli softmax, BepxHsist JOBepuUTeabHasI
rpanuiia u Bei6opka TomricoHa. Ha ux rpumepe Mbl YBUAMM pas3IMUHbIE TTOIXOIbI
K AMIeMMe MCCIeJOBaHSI—YCIIOIb30BaHMsI. MbI TaKkKe pacCMOTPUM 3a[ady O PeK-
JlaMe B MHTePHeTe U MTOKaskeM, KaK ee PeIInTh C TOMOIIbI0 aJITOPUTMa MHOTOPYKOTO
6anauTa. HakoHel, Mbl peliuM 3aavy O KOHTEKCTHOJ peKiamMme ¢ IOMOIIbIO ajro-
pUTMa KOHTEKCTYaJbHbIX OaHAUTOB, KOTOPBII MO3BOJISIET IPUHMUMATD 6osiee 060-
CHOBaHHbIE PeLIeHNs TIPU ONITUMMU3ALIUY TTI0Ka3a 0ObSIBICHMIA.
B 3TOi1 I71aBe MIPUBOASTCS CIEAYIOIINE PELleIThI:

CO3[IaHMe OKPYKAIOIIEeii Cpebl C MHOTOPYKUM GaHIMUTOM;

pellieHe 3a1auM 0 MHOTOPYKOM GaHAMTE C IIOMOIIbIO £-)KaJHOM CTpaTerun;
pellieHle 3a7ja4¥ 0 MHOTOPYKOM 6aH/MTe C TOMOIIbI0 softmax-mcciienoBanms;
pellieHe 3a[1aui 0 MHOTOPYKOM OaHAMTe C ITOMOIIbIO aJITOPUTMAa BepXHeii
IOBEPUTETbHO IPaHMIIbI;

pellieHMe 3afauM O peKiaMe B MHTEPHETE C MMOMOIIbI0 aJTOPMTMa MHOIO-
PYKOro 6aHIuUTa;

pellieHle 3a1aui 0 MHOTOPYKOM GaHAMTE C IOMOIIbI0 BbIGOPKM TOMIICOHA;
pellieHMe 3a/auM O peKkiiaMe B MHTEpPHEeTEe C IOMOIIbI0 KOHTEKCTYalTbHbIX
GaHINTOB.

0 O 0000

CO30AHME OKPYXXAIOLLEA CPE[bI C MHOTOPYKUM BAHOWUTOM

3amaya 0 MHOTOPYKOM OaHAUTEe — OIHA M3 CaMbIX ITPOCTBIX 3amad OOydeHMs
¢ TloAKpervieHeM. [jisi ee omucaHus IpoIlle BCero MpeAcTaBUTh UTPaIbHbIN aB-
TOMAaT C HECKOJIbKMMU pblyaraMm (pykamm), mpudyeM BCe OHM BbIAAIOT pa3Hble BbI-
UTPBILIN C PA3HBIMM BEPOSITHOCTSIMM. Haria 1enp — HaliTM HavwIy4dlInii pbryar, Ko-

Co3aaHve okpyxaroLen cpeabl ¢ MHOropykum 6anautom < 151

TOPBIN JaeT MaKCUMaTbHbBIN AOXOM, (M BIOCJIEICTBUY TOJIBKO €T0 U UCIOAb30BaTh).
Haunem ¢ mpocCTOli MOCTaHOBKY, KOT/la BeJIMUMHA U BEPOSITHOCTb BBIMUTPBIIIA 11T
KakOoro ppiuara pukcuponaHbl. CHauama co34aAMM OKPYKAIOUIYIO Cpey U Pelnm
ee C TIOMONIbI0 AJITOPUTMA CO CITyJaliHOM CTpaTeruei.

Kak 3T1o penaetca

I co3maHmst OKPY>KaroIeil Cpeabl ¢ MHOTOPYKUM OaHAMTOM BBITTOIHUM CJIeYIO-
1M KOJI,.

>>>
>>>

import torch
class BanditEnv():

OKpyXawwasa cpefja C MHOrOpyKUM 6aHaMTOM
payout_list:
CNMCOK BEPOATHOCTEN BbIMIpbieii OTAENbHbLIX PblYaros
reward_list:
CnUCOK BEeNWYWH BbIMT pbilueit
def __init__(self, payout_list, reward_list):
self.payout_list = payout_list
self.reward_list = reward_list

def step(self, action):
if torch.rand(1).item() < self.payout_list[action]:
return self.reward_list[action]
return 0

Mertop, step BBIINIOIHAET ,ELeIZCTBI/Ie " BO3BpaliaeT BEJIMYMHY BO3HarpakKaeHMs
B CJTy4ae BbIMTIDbIIIA, B IIPDOTMBHOM CJTydae 0.

Tenepb pemym 3aaavy O MHOTOPYKOM 6aH,Z[I/ITe, IIpMMEHSISA CJIY‘JaﬁHYIO CTpa-
TEermuio.

1.

OmnpenenymM BepOSITHOCTYU M BeJIMUMHBI BBIMTPBIIIA [IJIS TPEXPYKOTO GaHIANTA
¥ CO34aAUM SK3eMIUISIP OKPY>KAIOIeit Cpeibl:

>>> bandit_payout = [0.1, 0.15, 0.3]
>>> bandit_reward = [4, 3, 1]
>>> bandit_env = BanditEnv(bandit_payout, bandit_reward)

Hampumep, Bbi60op pbruara O MpMHOCUT BO3HArpaskaeHue 4 ¢ BePOSTHOCTbIO
10 %.

3afaayM KOIMYeCTBO 31M30I0B U OIIPeAeIM CIMCKM IJISI XpaHeHUS CIIeayIo-
IIMX JaHHBIX: ITOJIHOE BO3HATpaskaeHMe, IMOJyueHHOe IIPM BhIGOpe Kaskaoro
phIuara, CKOJIbKO pa3 BhIOMPAJICS Kaskablii pbluar 1 cpefHee BO3HarpaxkaeHme
IUIST KaskKIOro phlyara.

>>> n_episode = 100000

>>> n_action = len(bandit_payout)

>>> action_count = [0 for _ in range(n_action)]

>>> action_total_reward = [0 for _ in range(n_action)]

>>> action_avg_reward = [[] for action in range(n_action)]

152 <+ PeweHune 3a4a4M 0 MHOTOPYKOM BaHauTe

3. Ompenmenum CTpaTeruio, KOTOpas BbIOMpPAeT phIuar CIydaiiHbIM 00pa3oM:

>>> def random_policy():
action = torch.multinomial(torch.ones(n_action), 1).item()
return action

4. TIporonum 100 000 smm3omos. I[Tocime kaxkmoro smusopa Oymem OOHOBIATH
CTaTUCTUKY PbIYaroB:

>>> for episode in range(n_episode):
action = random_policy()
reward = bandit_env.step(action)
action_count[action] += 1
action_total_reward[action] += reward
for a in range(n_action):
if action_count[a]:
action_avg_reward[a].append(
action_total_reward[a] / action_count[a])
else:
action_avg_reward[a].append(0)

5. Tlo 3aBepiieHu MOCTPOUM TrpadMK 3aBUCUMOCTY CPeIHEr0 BO3HATrpaxkie-
HUSI OT BpEMEHU

>>> import matplotlib.pyplot as plt

>>> for action in range(n_action):

. plt.plot(action_avg_reward[action])

>>> plt.legend(['Povar {}'.format(action) for action in range(n_action)])
>>> plt.title('3aBucUMOCTb BO3HArpaxpeHus oT BpemeHu')

>>> plt.xscale('log')

>>> plt.xlabel('3nuszon')

>>> plt.ylabel('CpeaHee Bo3Harpaxaexue')

>>> plt.show()

Kak 3to paboraer

B TO/MBKO UTO pacCMOTPEHHOM MpUMepe eCTb UTPATbHbBIN aBTOMAT C TPEMSI pblUara-
mu. Kaxkaplil ppluar BbijaeT BbIMIPBIII (BO3HArpaXkaeHue) pa3Hoii BeJIMUMHBI C pas3-
HOJ BEpOSTHOCTbIO. B KaXKmoM amu3ofe Mbl CJTydaifHbIM 06pa3om BbIOMpaeM, 3a
KaKOJ pbIvar MoTsSHYTh (KaKOe eliCTBME BBITIOTHUTD), U TTOJTydaeM BhIMTPBIII C He-
KOTOPOJ1 BEPOSITHOCTBIO.

PeweHune 3aaaum 0 MHOTOpyKOM GaHAMTE C NOMOLLbIO £-XKadHoM cTpaterumn < 153

[Tocste BBITIOJTHEHMS KOl HA IIare 5 6ymeT IMOCTPOEeH TaKoi rpadmk:

3aBMCMMOCTb BO3HArPaXAeHWs OT BpEMEHU

2.00 4 = Pbiyar 0

Pbiyar 1
1.75 4

= Pbiyar 2

1.50 ~

1.25 ~

1.00 ~

0.75 A

0.50 A

CpeaHee Bo3HarpaxaeHve

0.25 7

0.00

10 10! 102 107 104 105
onuson,

Pbruar 1 gaet Haubosblllee cpegHee Bo3HarpaxkaeHnue. Y, Kak BUIMM, BOSHaTpak-
IeHue cTabunmusupyeTcs mocie npumepHo 10 000 smmusomos.

ODTO HAaMBHOE pellleHNe, TOCKOIbKY Mbl TOJIbKO U ielaeM, UTO UCCIelyeM pbluari.
Bosnee ocmbic/ieHHbIE CTpaTeruu Mbl pa3paboTaeM B CJIeAYIOMINUX pellernTax.

PEWEHME 3A0AYM O MHOTOPYKOM BAHAMTE
C NOMOLLbIO E-XXALHOM CTPATEIUU

JIyyminx pe3yibTaTOB MOKHO TOCTUUb, €CJIM COUeTaTh MCCaefoBaHNe C UCII0Nb30-
BaHMeM. B 3TOM pelleniTe Mbl BOCIOJIb3yeMCSI XOPOIIIO M3BECTHON €-XKaJHOI CTpa-
Teruen.

€->KaJiHasl CTpaTerus penieHust 3a4auM 0 MHOTOPYKOM OaHauTe GOJbIIYI0 YacTh
BpeMeHM MCIIOJIb3YeT Jiyulliee 13 HalileHHbIX IeliCTBUIL, HO MHOTIa UCCIeyeT Ipy-
rue nelictBus. TouHee, BepOSITHOCTD MCC/IeIOBaHMS paBHA €, a8 BEPOSITHOCTD MCIIOJIb-
30BaHus — 1 — g, rme € — unceno ot 0 1o 1.

154 <+ PeweHune 3a4a4M 0 MHOTOPYKOM BaHauTe

QO DOmncuioH: Kaxagoe ,ZLEIZCTBMG BbI6I/IpaETCH C BepOATHOCTBIO

(s, a) = /Al

rae |A| — KolmM4ecTBO BO3MOXKHBIX JEeVICTBUIA.

JKamHas: nmpearouTeHne OTOAETCS AeVCTBUIO C MaKCMMaJIbHOM II€HHOCTBIO
Iapbl COCTOSTHME—IelCTBIE, a BEPOSITHOCTh €ro BhIOOpa YBEIMUMBAETCS Ha
1-¢:

n(s,a)=1-¢ + /Al

Kak 310 penaercs

st pelieHuda 3agady O MHOTOPYKOM GaH,[[I/ITe BBITTOJIHAIOTCA CJIeayromie ,ILEVICTBMSI.

1.

Vimnoptupyem 616nmnoteky PyTorch u okpykarolyio cpeny, pa3paboTaHHYIO
B IIpeIbIayIeM pelernTe (IpeAronaraeTcs, uTo Ko Kiaacca BanditEnv Haxo-
ouTcs B aiiie multi_armed_bandit.py):

>>> import torch
>>> from multi_armed_bandit import BanditEnv

Ompenenum BePOSTHOCTU M BeJIMUMHBI BBIMTPBIIIA AJISI TPEXPYKOTo 6aHaUTa
¥ CO3IaAVIM 9K3eMIUISIP OKPY>KAIoIeil Cpeibl:

>>> bandit_payout = [0.1, 0.15, 0.3]
>>> bandit_reward = [4, 3, 1]
>>> bandit_env = BanditEnv(bandit_payout, bandit_reward)

3agaauM KOJMUYeCTBO 3MM30/I0B U OIPee UM CITMCKU JIJIST XpaHeHUS cemy-
IOIIVIX JaHHBIX: TTOJIHOE BO3HATPaXkaeHMe, IOyYeHHOe ITPU BbIG0pe KaskI0ro
phIuara, CKOJIbKO pa3 BbIOMPAJICS KaskKIbIii pbluar 1 cpefiHee BO3HarpaxkaeHue
IIJISI KasKIOro pbIyara.

>>> n_episode = 100000

>>> n_action = len(bandit_payout)

>>> action_count = [0 for _ in range(n_action)]

>>> action_total_reward = [0 for _ in range(n_action)]
>>> action_avg_reward = [[] for action in range(n_action)]

Onpepenym GYHKIUMIO £-3KaJHOI CTPATErMH, 3a8aJUM 3HaYeHMe € U CO3/1a-
IVIM 9K3eMILISIP CTPaTerun:

>>> def gen_epsilon_greedy_policy(n_action, epsilon):

. def policy_function(Q):

. probs = torch.ones(n_action) * epsilon / n_action
. best_action = torch.argmax(Q).item()

. probs[best_action] += 1.0 - epsilon

PeweHune 3aaaum 0 MHOTOpyKOM BaHaMTE C NOMOLLBI £-XKafHOoi cTpatermm <« 155

action = torch.multinomial(probs, 1).item()
return action
return policy_function
>>> epsilon = 0.2
>>> epsilon_greedy_policy = gen_epsilon_greedy_policy(n_action, epsilon)

5. Wuauumanmsupyem Q-GyHKINMIO, KOTOpasi 6yaeT BO3BpalllaTh CpelHee BO3HA-
rpakaeHe IJIs1 KaXKIoro pbluara:

>>> Q = torch.zeros(n_action)
91y O-byHKIINMIO MbI 6yIeM 0GHOBJISITh IO X0y 06yUeHMSI.

6. IIporonum 100 000 srm3omoB. ITocie Kaskmoro smnm3ona OymeM OOHOBJISITH
CTaTUCTUKY PhIUaroB:

>>> for episode in range(n_episode):
action = epsilon_greedy_policy(Q)
reward = bandit_env.step(action)
action_count[action] += 1
action_total_reward[action] += reward
Q[action] = action_total_reward[action] / action_count[action]
for a in range(n_action):
if action_count[a]:
action_avg_reward[a].append(
action_total_reward[a] / action_count[a])
else:
action_avg_reward[a].append(0)

7. Tlo 3aBepiieHu MOCTPOUM rpadMK 3aBMCUMMOCTM CPeIHEro BO3HArpaxkie-
HISI OT BPEMEHN

>>> import matplotlib.pyplot as plt

>>> for action in range(n_action):

vee plt.plot(action_avg_reward[action])

>>> plt.legend(['Povar {}'.format(action) for action in range(n_action)])
>>> plt.title('3aBucumMocTb BO3HarpaxgeHnsa OoT BpeMeHu')

>>> plt.xscale('log')

>>> plt.xlabel('3nu3og')

>>> plt.ylabel('CpegHee Bo3Harpaxpgenue')

>>> plt.show()

Kak 3to paboraer

Kaxk u B mpyrux MIIIIP, e-skagHast CTpaTerus BbIOMpaeT HaVTyYIInii pbIyar ¢ BepOosiT-
HOCTBIO 1 — g, a ciIy4aiiHoe IeiicTBMe — C BepOSITHOCTBIO €. BeMumHa € onpegensier
KOMITPOMMCC MEXKIY MCC/IeAOBAaHMEM U UCIIONTb30BaHMEM.

156 <+ PeweHune 3a4a4M 0 MHOTOPYKOM BaHauTe

I'pad K, MOCTPOEHHBIIT Ha IIare 7, BLINISIAUT CIeOYIONIM 06pa3oM:

3aBUCMMOCTb BO3HarpaxaeHua ot BpeMeHu

1.0 1 = Ppiyar 0
Pbiyar 1

= Pbplyar 2

b o o
= (=] o
L L 1

CpenHee Bo3HarpaxaeHue

=
]
1

0.0 T

T T T T T T
10° 10! 10? 103 104 10°
onusop,

Poruar 1 gaet Haubosblee cpenHee Bo3HarpakaeHne. CpemHee BO3HArpaskaeHMe
crabunusupyetcs mocie npumepHo 1000 3mM3010B.

3710 eLe He Bce

Bo3HuKaeT BONpoC, AeCTBUTENBHO JIU €-KaaHasl CTpaTerusi MpeBOCXOAUT CITydaii-
Hy10. Bo-miepBbIx, IpU CAefOoBaHUM €-)KaJHOM CTpaTerum CXOAMMOCTh HaCTyIaeT
OBICTPee, a BO-BTOPBIX, KAK JIETKO YOeIUThCS, BeIMUMHA CPeTHET0 BO3HATPASKIEHMS
BbILIIE.

elicTBUTENbHO, yCPeJHMM BO3HArpaskaeHue 1o BceM 3M1304aM:

>>> print(sum(action_total_reward) / n_episode)
0.43718

ITpu 100 000 31113010B CpeoHMIT BBIMTPBIII IPU €-3KaJHOM CTpaTerny COCTaBsIeT
0.43718. Takoe ke BbIUNMCIIEHME [IJTS CTy4daliHol cTpaternu gaet 0.37902.

PEWEHME 3A0AYM O MHOTOPYKOM BAHAMTE
C NOMOLbIO SOFTMAX-UCC/IEAOBAHUA

B srom penerTe Mbl IMPMMEHMM K 3agadye O MHOIOPYKOM 6aH,Z[I/ITE AJITOPUTM
SOftmaX-MCCJ’IeZ{OBaHI/IH " IIOCMOTPMM, KaK OH OT/IMYaeTCd OT S-)K&,ILHOVI CTpaTermm.
Mbi Bugenan, 4To rnmpu cjieagoBaHUN S-)KEI,E[HOIZ CTpaTerum He JIY‘JI.LU/If/i pbryar ciy-

PeweHune 3aaaum 0 MHOTOpykoM BaHaMTe C NOMOLLbIO softmax-uccienosaHua ¢ 157

YyalfHO BBIOMPAETCS C BEPOSITHOCTBIO £/|A|. Bce Takue phIuaru TpaKTyIOTCS OJMHAKO-
BO, HE3aBUCUMMO OT LIeHHOCTH, BO3BpaiaemMoii Q-dyHkiueit. JIyuimii peraar Takske
BBIOMpaeTcsl ¢ GUKCUPOBAHHOI BEPOSTHOCTbIO, HE 3aBUCSIIEI OT €ro IeHHOCTH.
B ciyuae softmax-mcciaeqoBaHus pblyar BhIOVPAETCS C BEPOSITHOCTHIO, OCHOBaH-
HoVi Ha softmax-pacmpepeneHun 3HaueHMt Q-PyHKIMM. OTa BEepPOSTHOCTH BbI-
yucsieTcs o popmyse:

exp(Q(a)/1)
S Mexp(Qiy/n)’

e T — TeMIepaTypHbIi KO3 dULIMeHT, 3aal01Iiii CTeleHb CTyYaiiHOCTM UCCIeN0-
BaHMs. YeM Gosblile T, TeM G/IVKe MCCIeqoBaHMe K CTy4aifHOMY; UeM MEHbIIIE T, TEM
¢ 6oJIbIIIEe/T BEPOSITHOCTBIO BHIOMPAETCST IYUIINMil phIUar.

P(a) =

Kak 310 penaetcs

Pemum 3agady O MHOTOPpYKOM 6aH,I[I/ITe C IIOMOIIIBbIO AJITOPUTMaA softmax—uccne,uo-
BaHUS.

1. HVmnoptupyem 6m6nnoreky PyTorch u okpyskalolyio cpeny, pa3paboTaHHYIO
B perenTe «Co3aHye OKPYsKalolei Cpeibl ¢ MHOTOPYKUM GaHIMTOM» (TIpej -
ToJIaraeTcst, YTO KOJ, Kacca BanditEnv HaxoguTcs B daiie multi_armed_bandit.
py):

>>> import torch
>>> from multi_armed_bandit import BanditEnv

2. OmpenmenyM BEPOSITHOCTY ¥ BEJIMUMHBI BBIUIPBIIIA JJIST TPEXPYKOTO OaHAUTA
¥ CO3AaAVIM 9K3eMIUISIP OKPY>KAIoIeil Cpeibl:

>>> bandit_payout = [0.1, 0.15, 0.3]
>>> bandit_reward = [4, 3, 1]
>>> bandit_env = BanditEnv(bandit_payout, bandit_reward)

3. 3amaaum KOJMYECTBO 3TM300B M ONpeenM CIMCKY JIs1 XpaHeHUST CiefTy-
IOIIVIX JaHHBIX: TTOJIHOE BO3HATPaXKIeHMe, IIOJyYeHHOe ITPU BbIGOPEe KaskKIO0Tro
phIuara, CKOJIbKO pa3 BbIOMPAJICS KasKIbIii pbluar 1 cpefiHee BO3HarpaxkaeHue
IJISI KaSKIOro pbIyara.

>>> n_episode = 100000

>>> n_action = len(bandit_payout)

>>> action_count = [0 for _ in range(n_action)]

>>> action_total_reward = [0 for _ in range(n_action)]

>>> action_avg_reward = [[] for action in range(n_action)]

4. OHpe,ELeJII/IM d)YHKI.U/I}O SOftmaX-I/ICCIIe,ZlOBaHI/ISI, 3aJaaM 3HaueHme T U CO3-
OaayM SK3eMIUISP CTpaTermm:

>>> def gen_softmax_exploration_policy(tau):
def policy_function(Q):
probs = torch.exp(Q / tau)
probs = probs / torch.sum(probs)
action = torch.multinomial(probs, 1).item()

158 <+ PeweHune 3a4a4m 0 MHOTOpyKoM BaHauTe

return action
return policy_function
>>> tau = 0.1
>>> softmax_exploration_policy = gen_softmax_exploration_policy(tau)

5. Vuauumanmsupyem Q-GyHKINMIO, KOTOpasi 6yaeT BO3BpalllaTh CpelHee BO3HA-
rpakaeHue IJIs1 KaKIoro pblyara:

>>> Q = torch.zeros(n_action)
91y Q-bYHKIINMIO MbI 6yIeM 0GHOBJISITH IO X0y 06yUeHMSI.

6. IIporonum 100 000 srm3omoB. ITocie Kaskmoro smnm3ona OymeM OOHOBJISITH
CTaTUCTUKY PhIUaroB:

>>> for episode in range(n_episode):
. action = softmax_exploration_policy(Q)
cee reward = bandit_env.step(action)
. action_count[action] += 1
. action_total_reward[action] += reward
. Q[action] = action_total_reward[action] / action_count[action]
. for a in range(n_action):
. if action_count[a]:
. action_avg_reward[a].append(
action_total_reward[a] / action_count[a])
cee else:
cee action_avg_reward[a].append(0)

7. Tlo 3aBepiieHu MOCTPOUM rpadMK 3aBMCUMOCTM CPeIHEro BO3HArpaxkie-
HUSI OT BpEMEHN

>>> import matplotlib.pyplot as plt

>>> for action in range(n_action):

cee plt.plot(action_avg_reward[action])

>>> plt.legend(['Povar {}'.format(action) for action in range(n_action)])
>>> plt.title('3aBucUMOCTb BO3HArpaxgeHus oT BpemeHu')

>>> plt.xscale('log')

>>> plt.xlabel('3nu3og')

>>> plt.ylabel('CpegHee Bo3Harpaxpgenue')

>>> plt.show()

Kak 3to paboraer

IMpu cmemoBaHuM cTpaTernu softmax-yccnaemoBaHus OuyieMMa MCCIeI0BaHUS—MC-
MOJIb30BAHMST PENIaeTCsl C MOMOIIbI0 (QYHKIMM softmax, IMOCTpOeHHOl Mo 3Ha-
yeHussM Q-byHKIMKM. BMecTo GUKCHMpOBaHMS BEPOSTHOCTE) BbIOOpA JIYYILIEro
Y CTy4aliHOTO phIUara 9Ta CTpaTeryus BhIUMCIISIET BEpPOSITHOCTH, ITOb3Ysch softmax-
pacrpefesieHreM C TeMIlepaTypHbIM Ko3dduiieHToM t. YUeM 6oJibIlie T, TeM 60Tb-
I1Ie BHUMAaHUS YOEISIeTCs MCCIeIOBaHMIO.

PeweHune 3aaaum 0 MHOTOPYKOM BaHaMTe C oMol anroputMa % 159

Ha mrare 7 6ymeT MoCTpOeH CieayIonuii rpaduk:

3aBMCMMOCTbBO3HanaXAEHMﬂOTBpEMEHM

Pbiyar 0
1.4 4 Pbiuar 1
Pbiyar 2

L2 A

1.0 ~

0.8 1

0.6

0.4

CpenHee Bo3HarpaxaeHue

0.2

0.0 | B
TTTTT T T T T o T IR e e s " T
10 10! 102 103 104 10%
onu3op,

Poruar 1 gaet HaubosbIllee cpegHee Bo3HarpaxkaeHue. CpeqHee BO3HArpaskaeHue
cTabunmsupyeTcs rmocie npumepHo 800 arm3040B.

PELWEHVE 3A0AYM O MHOTOPYKOM BAHOMTE
C NOMOLLbIO ANTOPUTMA BEPXHEWN
NOBEPUTENIbHOM MPAHULIbI

B mByx mpempiaylux penentax Mbl MCCIENOBAIN ClydaliHble AECTBUS B 3a1a-
ye 0 MHOTOPYKOM OaHAuTe ¢ GDMKCUPOBAHHBIMM BEPOSITHOCTSIMM, KaK B €-3KaHOM
CTpaTEeTruy, VI C BEPOSITHOCTSIMM, OCHOBAaHHBIMM Ha 3HAUeHMSIX Q-(QyHKIUM, KaKk
B asiropuTMe softmax-mcciaemoBanus. B 060oux crydastx BepOSTHOCTM BbIOGOpA CITy-
YalfHbIX NEICTBUI He M3MEHSIIOTCSI CO BpeMeHeM. B uieasie Mbl XOTeny 6bI YMeHb-
MIUTh 06BbEM VICCIIEIOBAHMS TI0 Mepe TOTO, Kak o6yueHue MpUOIIsKaeTCsT K KOHITY.
B aTom penieniTe MCIMOMB3yeTCS aJTOPUTM BepxHel KOBEpPUTEIbHON TPaHUIIbI,
Kak pa3s u MpegHa3HaueHHbI [IJ1S1 3TOM 1Ie/IN.

160 <+ PeweHune 3a4a4M 0 MHOTOPYKOM BaHauTe

B ocHOBe ajiropuTMa BepXHEl KOBepUTEIbHOM rpaHuibl (upper confidence
bound — UCB) neXuUT ues [OBepUTEIbHOIO MHTEPBaja. Boobie ToBOps, JOBEPH-
TeJIbHbII MHTEePBAJI — 9TO AMAIIa30H, BHYTPU KOTOPOTO HAXOAUTCS UICTUHHOE 3Haue-
Hue. B anroputme UCB noBepuTeIbHBIM MHTEPBAJIOM pblUuara SIBJSIETCST AUaIa3oH,
B KOTOPOM HaXOOMUTCS CpelHee BO3HarpaxkaeHue, MoayyeHHoe Py BhIOOpe 3TOTro
pbluara. IHTepBas uMeeT BUJ, [HVOKHSS LOBepUTeabHas IPaHuIla, BEpXHSI NOBEpU-
TelbHASI TPAHUIIA], HO JIJIST OLIEHKM MOTEeHI[Maja phlyara Mbl GyZeM MCII0Mb30BaTh
TobKO BepxHioto. UCB BoiumcsieTcs mo popmyiie

UCB(a) = Q(a) + +/2log(t)/N(a),

rae t — KOJIMYeCcTBO 3IM30/0B, a N(d) — CKOJIbKO pas B 3TUX ¢ SMM304aX BbIOMPAICS
pbruar a. [To mepe mporpecca 06yueHus JOBEPUTETbHbIN MHTEPBAJ CY>KAeTCs U CTa-
HOBUTCS Bce 6osiee TOUHBIM. BoI6UpaTh ciiemyeT pbryar ¢ HaubosbIneir UCB.

Kak 310 penaercs
Pemum 3aauy 0 MHOTOPYKOM GaHAMTE ¢ TOMOIIIbIo aaropmutma UCB.

1. Umnoptupyem 616amoTexy PyTorch 1 oKpysKaloIyio cpeay, pa3padoTaHHYIO
B perieniTe «Co3maHye OKPYKalolieii Cpeibl C MHOTOPYKMUM 6aHIUTOM» (TIpem-
TrojIaraeTcst, YTO KoJ, Kiaacca BanditEnv HaxoguTes B (aiiie multi_armed_bandit.

py):

>>> import torch
>>> from multi_armed_bandit import BanditEnv

2. Ompepnenum BepOSITHOCTY Y BeIMUMHBI BBIUTPBILIA [IJIST TPEXPYKOTO GaHIMUTA
M CO3JaM 3K3eMIUISIP OKPYsKalollleii Cpefbl:

>>> bandit_payout = [0.1, 0.15, 0.3]
>>> bandit_reward = [4, 3, 1]
>>> bandit_env = BanditEnv(bandit_payout, bandit_reward)

3. 3amagyM KOJMYECTBO SIM30A0B U ONPedenM CIIMCKU [JISI XpaHeHUS CJIeTy-
IOIIVX JaHHBIX: TTOJIHOE BO3HATPAXKIEHME, TIOTyIeHHOE ITPY BbIOOPE KasKI0Tro
phIuara, CKOJIbKO pa3 BbIOMPAJICS KaskIblii pbIuar 1 cpeiHee BO3HArpaxkaeHye
IIJIST KQKIOTO phIyara.

>>> n_episode = 100000

>>> n_action = len(bandit_payout)

>>> action_count = torch.tensor([0. for _ in range(n_action)])
>>> action_total_reward = [0 for _ in range(n_action)]

>>> action_avg_reward = [[] for action in range(n_action)]

4. Onpegenum byHkimo crpareruyu UCB, KoTopast BBIYMC/ISIET JIYUIINI pbIuar
1o hbopMyJie BepxHeit JOBepUTeTbHOM IPAaHUITbI:

>>> def upper_confidence_bound(Q, action_count, t):

vee ucb = torch.sqrt((2 * torch.log(torch.tensor(float(t))))
/ action_count) + Q

vee return torch.argmax(ucb)

PelwweHune 3aaaum 0 MHOTOpYKOM BaHauTe € noMolublo anroputMa % 161

5. Hunnmanusupyem Q-(YHKINMIO, KOTOpas 6yIeT BO3BpallaTh CpeaHee BO3HA-
rpaskaeHe IJIs1 KaKIOoro phlyara:

>>> Q = torch.empty(n_action)
91y Q-GYHKIINIO MbI 6yIeM 06HOBJISITh 10 X0y 00yUeHMSI.

6. TIporonum 100 000 smm3omoB co ctpaterueit UCB. ITocsie KaXkaoro amm3oaa
6ymeM OOHOBJISITH CTATUCTUKY PhIYaroB:

>>> for episode in range(n_episode):

vee action = upper_confidence_bound(Q, action_count, episode)

vee reward = bandit_env.step(action)

vee action_count[action] += 1

. action_total_reward[action] += reward

vee Q[action] = action_total_reward[action] / action_count[action]

vee for a in range(n_action):

vee if action_count[a]:

vee action_avg_reward[a].append(
action_total_reward[a] / action_count[a])

cee else:

ves action_avg_reward[a].append(0)

7. Tlo 3aBepuieHUM MOCTPOMM TpaduK 3aBUCUMOCTU CpelHero BO3Harpaskuie-
HUS OT BpEMEHU:

>>> import matplotlib.pyplot as plt

>>> for action in range(n_action):

vee plt.plot(action_avg_reward[action])

>>> plt.legend(['Povar {}'.format(action) for action in range(n_action)])
>>> plt.title('3aBucUMOCTb BO3HArpaxAeHUs OT BpemeHu')

>>> plt.xscale('log')

>>> plt.xlabel('3nu3o0g')

>>> plt.ylabel('CpegHee Bo3Harpaxgeuue')

>>> plt.show()

Kak 3To paboraer

B aTOM perieriTe Mbl pelIv 3aavy O MHOTOPYKOM OaHIMTE C TIOMOIIIbIO aJITOPUT-
ma UCB. OH afanTuBHO pellaeT AUIeMMY UCCIeT0BaHNSI—UCIIONb30BaHNS, U3MEHSIS
BEPOSITHOCTY I10 Mepe MPOABYIKEeHMST 00yueHus . Ecmm mHpopmaym o IeicTBUM ele
MaJjio, ero JOBepUTeNbHbIN MHTEPBaJ OTHOCUTEIbHO IIMPOKUIL, TIO3TOMY Heollpe-
JIeJIEHHOCTb, COITPOBOKIAIONIAsT BHIOOP TAKOTO IECTBMS, BhICOKA. YeM B OOJIbIIEM
KOJIMYECTBE SMM30I0B BIOVPAJIOCh AEICTBIE, TEM YK€ JOBEPUTEIbHBIN MHTEPBAJL.
B TakoM cjrydyae MOKHO € OOJIbIIEN ONMpPENeIeHHOCTbI0 CKa3aTh, CTOUT BbIOMPATh
neicTBye uiu HetT. B koHeuHoM utore ajroputM UCB B KaskIoM 31130/1e BbIOVIpaeT
pbruar ¢ HanboabIM 3HaueHreM UCB, 1 cTerieHb YBEPEHHOCTM CO BpeMEHEM BO3-
pacraer.

162 <+ PeweHune 334a4M 0 MHOTOPYKOM BaHauTe

Ha mrare 7 6ymeT MoCTpOeH cieaylomuii rpaduk:

3aBUCMMOCTD BO3HarpaxaeHua ot BpeMeHu

0.7 F = Pbiyar 0
l | Poivar 1
0.6 T ' = Pblvar 2

0.5 4
0.4 4
0.3 A

0.2 A

CpenHee Bo3HarpaxaeHue

0.1 1

0.0

108 10! 102 10° 104 105
onu3on,

Poruar 1 gaet HaubosbIllee cpeJHee BO3HATPaKAEHMeE.

3710 eLe He Bce

Bo3Hukaetr Bompoc, gerctButenbHO n aaroput™ UCB mpeBOCXOOUT e€-XKagHYIO
CTpaTeruio. Berumucaum cpegHee BO3HArpaskaeHue mo BCeM SIM30/IaM:

>>> print(sum(action_total_reward) / n_episode)
0.44605

B 100 000 snin3omoB UCB nipuHOCUT cpemHee Bo3HarpakaeHme 0.44605, 5To 60/1b-
11e, ueM MpU CJielOBaHUU e-KafHOM cTparerum — 0.43718.

CM. TaKkXKe

Ecsu BBI XOTUTE TIOUMUTATh O TOBEPUTEbHBIX MHTEPBAIaX, 00paTUTECh K CTAThe 110
anpecy http://www.stat.yale.edu/Courses/1997-98/101/confint.htm.

PELWEHKWE 3ADAYM O PEKNIAME B MHTEPHETE
C NOMOLLbIO AJITOPUTMA MHOIOPYKOIro bAHOUTA

[TpencraBbTe, UYTO Bbl PEKIAMIIVK M XOTUTE ONTUMMU3UPOBATD MTOKA3 OObSIBIECHMI
Ha caiiTe.

PeweHue 3agaum o pekname B MHTEPHETE C NOMOLLbK anropUuTMa MHOTOpPYKOro 6aHanTa < 163

O EcTb TpM BO3MOXKHBIX IIBeTa (pOHA peKIaMHbIX OOBSIBIIEHUI: KPACHbIA, 3e-
JIeHbIN ¥ cuHMit. Kakoii BeT obecreunBaeT HaubGObIIYIO KIMKa6eTbHOCTb
(CTR)?

O Ectb Tpu criocoba mogauy pekaaMbl: y3Hatime..., 6eCniamHo... u nonpobytime.
IMpu KaKOM 13 HUX KIMKa6eTbHOCTh MaKCMMaJbHA?

IIJIs KaskAoro ImoceTuTensl TpebyeTcsl BbIOpaTh 00bSIBIE€HME, KOTOPOe MaKCUMU-
s3upyeT CTR Ha MPOTSOKEHUU IJINTENbHOTO BpeMeHu. Kak pemnTs 3Ty 3amauy?

Bo3MOXXHO, BBl TogyMau Mmpo A/B-TecTupoBaHue, KOrma Bech Tpaduk caydaii-
HBIM 00pa30M pa36MBaeTCsl Ha IPYIIIbI, KaXKIOMY OOBSIBIEHMIO HA3HAUAETCSI CBOSI
IpyIIIia, a 3aTeM BbIOMpaeTcst 06bsiBieHre ¢ Hanboabmm CTR 3a Bech mepuop, Ha-
6momenys. Ho 1o cymecTBy 3TO 4MCTOE MCC/IeqOBaHNe, K TOMY ke OObIYHO MbI He
3HaeM, Kak JIOJITO IMMPOJIUTCS Hab/omeHe, M MOKEM MTOTEPSITh 3aMeTHYIO OO IT0-
TeHILMa/IbHBIX KIMKOB. Kpome Toro, ripu A/B-TeCcTUpOBaHMM MpeaIioaaraeTcs, 4To
HeusBecTHbII CTR 0OBSBIEHMSI CO BpEMEHEM OCTaeTCs] HeM3MEeHHbIM. B mpoTuB-
HOM citydae A/B-TecTupoBaHNe HY>)KHO epUOINYeCKU TOBTOPSITh.

[Togxomd Ha OCHOBE MHOTOPYKOro 6aHauTa, 6e3ycJIoBHO, ayulie A/B-TecTpoBa-
HMSI. PpruaramMu 3/1eChb SIBJISIIOTCSI OOBSIBJIEHNS, @ BO3HATPakIeHNe, BhITTIaUMBaeMOe
IIpy BbIOGOPE pbluara, paBHO 1 (KuK) vy O (HeT KJIuKa).

[Torrpo6yeM OPUMEHUTH K 3TOi 3amave anroputm UCB.

Kak 310 penaetca

Insa npumenenus anroputma UCB K 3aaue o0 pekyiamMme B MHTEPHETE MOCTYIIUM Clie-
IYIOIIM 06pasoM.

1. Wmmoptupyem 6m6amoTexy PyTorch 1 oKpysKaloIyio cpeiy, pa3paboTaHHYIO
B perieniTe «Co3maHye OKPYKaloIIeli Cpeibl C MHOTOPYKUM 6aHIUTOM» (TIpem-
I10JIaraeTcst, YTO KO, Kimacca BanditEnv HaxoguTcst B paiiie multi_armed_bandit.
py):
>>> import torch
>>> from multi_armed_bandit import BanditEnv

2. Or[pe,uem/[M BEPOATHOCTU U BEJIMUMHBI BbIMI'DbIIIA OJISI TPEXPYKOTO 63.H,HI/ITa
" CO3gaaMM 3K3EeMIUIAP OKPY)Ka}OH.leI‘/JI cpenbr:

>>> bandit_payout = [0.01, 0.015, 0.03]
>>> bandit_reward = [1, 1, 1]
>>> bandit_env = BanditEnv(bandit_payout, bandit_reward)

3nech CTR gyst o6bsiBienus 0 paBeH 1 %, nyist o6bsiBienus 1 — 1.5 %, a mia
00bstBIEHUST 2 — 3 %.

3. 3amaaum KOIMUYeCTBO 3MMU300B U ONpeNenM CIIUCKY JIs1 XpPaHeHUSI Cleny-
IOIIMX JaHHBIX: ITOJITHOE BO3HArpaXKAeHMe, IMMOJTy4eHHOe IIpU Bb160pe Ka>KO,0ro
pbIiuara, CKOJIbKO pa3 BbI6I/IpaJ'[CFI Ka)K,E[be;I pbIyar u cpegHee BO3HarpaXaeHue
JJIs1 KaXXKO0ro pbryara.
>>> n_episode = 100000

>>> n_action = len(bandit_payout)
>>> action_count = torch.tensor([0. for _ in range(n_action)])

164 <+ PeweHune 334341 0 MHOTOPYKOM BaHauTe

>>> action_total_reward = [0 for _ in range(n_action)]
>>> action_avg_reward = [[] for action in range(n_action)]

4. Onpegemum byHkimo crparernyu UCB, KoTopast BBIYMCISIET JIYUIINIA pbIuar
1o popmysie BepxHeit JOBEPUTETbHOM IrPAaHULIbI:

>>> def upper_confidence_bound(Q, action_count, t):
ucb = torch.sqrt((2 * torch.log(
torch.tensor(float(t)))) / action_count) + Q
return torch.argmax(ucb)

5. Vuauumanmsupyem Q-GyHKINMIO, KOTOpasi 6yaeT BO3BpalllaTh CpelHee BO3HA-
TpakaeHue IJIsT KaskAoro phlyara:

>>> Q = torch.empty(n_action)
91y Q-GYHKLNIO MBI 6yZIeM OGHOBJISITD 10 X0y 00yUeHMSs.

6. TIporonmm 100 000 snmsomoB co crpaTtervert UCB. ITocie Kaxkaoro anm3ona
OyeM OOHOBJISITh CTATUCTUKY PhIYaroB:

>>> for episode in range(n_episode):
action = upper_confidence_bound(Q, action_count, episode)
reward = bandit_env.step(action)
action_count[action] += 1
action_total_reward[action] += reward
Q[action] = action_total_reward[action] / action_count[action]
for a in range(n_action):
if action_count[a]:
action_avg_reward[a].append(
action_total_reward[a] / action_count[a])
else:
action_avg_reward[a].append(0)

7. Tlo 3aBepiieHMM MOCTPOUM TpadMK 3aBMCUMOCTU CpeJHEr0 BO3Harpaskie-
HMSI OT BpeMEHN:

>>> import matplotlib.pyplot as plt

>>> for action in range(n_action):

. plt.plot(action_avg_reward[action])

>>> plt.legend(['Povar {}'.format(action) for action in range(n_action)])
>>> plt.title('3aBucUMOCTb BO3HArpaxgeHus oT BpemeHu')

>>> plt.xscale('log')

>>> plt.xlabel('3nu3o0g')

>>> plt.ylabel('CpeaHee Bo3Harpaxaexue')

>>> plt.show()

Kak 3to paboraer

B 3TOM pelienTe Mbl peurin 3afady ONTUMU3ALMK ITOKa3a PeKIaMHbIX 00bsIBIIe-
HUIA, pAaCCMOTPEB ee Kak 3a7jauy 0 MHOTOPYKOM 6aHAuTe. Mbl Ipeofoen TPyAHO-
CTHU, CBOJICTBEHHbIE TTOAX0LY Ha OCHOBe A/B-TecTMpoBaHus. [I1s pelieHus 3agauu
0 MHOTOPYKOM OaHauTe Mbl npuMeHwm anroputm UCB; BosHarpaskkaeHue 3a Bbi-
60p Kaxkmoro peryara paBHo 1 wim 0. BmecTo umcroro mccienoBanust 6e3 Kakoii-
b0 CBSI3M MEXAOY HeiicTBueM U Bo3Harpaknenuem UCB (1 gpyrue ajropuTMbI,

PeweHnwue 3aaaun 0 MHOTOpyKOM 6aHauMTe C MOMOLLb0 BbiGopky TommncoHa *¢ 165

HampuMep e-KagHbIl U softmax-uccieqoBaHue) OMHAMMUYECKM ITePEKITI0Ya0TCs
MeXAy McCIeqoBaHMeM ¥ MCIIONb30BaHMEM [0 Mepe Heobxomumoctu. Ecim pys
0OBSIBJIEHMSI ellle MaJIO TaHHBIX, TO JOBePUTENbHbBIV MHTEePBaT OTHOCUTENbHO M-
POKMIA, TIOITOMY HeOIpeLleJIeHHOCTh, COMPOBOXKAAIOLIAs ero mokas, BbicoKa. Yem
B 60JIbIIIEM KOJTMYECTBE MU30/I0B BbIOMPATIOCH OOBSIBIEHNE, TEM Y3Ke JOBePUTEeTb-
HbIi MHTEPBa X TeM MeHbIlle HeoIpeaeleHHOCTb.

Ha mare 7 6yzeT 1ocTpoeH ciaenyonni rpaduk:

BaBMCMMOCTbBOBHanaXAEHMHOTBDEMEHM
0.35

= Poiyar 0

Pbivar 1
0.30 1

Pbivar 2

0.25 4

0.20 A

0.15 4

0.10 4

CpenHee Bo3HarpaxaeHuve

0.05 A

0.00 gt
b v i) v " v o " L] v Ll L T e "y
107 10! 107 103 104 10°
onu3on,

Hau6omnbiiasg KiukabeabHOCTb (CpemgHee BO3HArpaxkaeHue) MpeackasaHa Ijist
OOBSBIIEHNS 2, I QJITOPUTM CXOIUTCS.

WTak, Mbl HaIIM, YTO ONITMMAJIBHO TTOKA3bIBATh 00bsIBIeHMEe 2. I yeM paHbIile
MBI YCTAHOBMM 3TOT (DAKT, TEM JIydIlle, TTOCKOIbKY UMCIIO ITOTEHIIMATbHO TIOTEePSTH-
HbIX KJIMKOB OyZieT MeHblIlle. B TaHHOM IpMMepe MPeBOCXOICTBO OOBSIBIEHNS 2 CTa-
JIO 0UeBUAHO moce rmpumepHo 100 sann3om0B.

PELWIEHME 3A0AYM O MHOTOPYKOM BAHOMUTE
C NMOMOLLbIO BbIBOPKM TOMMCOHA

B aTOM perenTe MbI paspemnmm IUIeMMY MCCIeI0BaHMI—MUCITOIb30BAHNS B 3a1aUe
0 pekjaMe B MHTepHeTe, IPUMEHUB IPYTOii aITOPUTM — BbIGOPKY TomricoHa. Kak
MbI YBUIVMM, OH CMJIBHO OT/IMYAeTCsI OT PACCMOTPEHHbIX BBIIIE aJITOPUTMOB.

Bo16opky Tommcona (Thompson sampling — TS) Ha3bIBAIOT elrle 6aiteCOBCKUM
6aHANTOM, TOTOMY UTO STOT &JIFTOPUTM OCHOBAH Ha 6aiieCOBCKOM IOIXO/eE, T. €. IJIsI
HEro XxapaKkTepHbI CIeAYIOL/e 0COOeHHOCTI:

166 <+ PeweHune 3a4a4M 0 MHOTOPYKOM BaHauTe

3TO BEPOSITHOCTHBIN aJITCOPUTM;

OH BBIUMCISIET alIPpMOPHOE pacipefeieHne Ijs1 KaXKI0ro pbluara U IpousBo-
AT BBIOOPKY IIEHHOCTY e CTBYSI M3 9TOTO pacIipeneeHus;

3aTeM BbIOMpaeTCs pbluar ¢ HauMbOobIIeli IEHHOCTHIO M HABGMI0IaeTcs momy-
YeHHOe BO3HarpaxkaeHue;

HaKOHell, allpMOpHOe paclpeeneHe OOHOBISIETCS C YUYETOM pe3ysabTaTa
HabmogeHns. JTa Mpolleaypa Ha3bIBaeTcsl 6aiieCOBCKMM OOHOBJIEHUEM.

©c O 00

B Haillleit 3amave oNTMMMU3aLUUM BO3HATPakAeHNMe 32 HaXXaTue KaKI0ro pbluara
paBHoO 1 uau 0. B KauecTBe alpMOPHOT0 MOKHO B3SITh 6eTa-pacipeneaeHmne, KOTo-
poe CIY>KUT [JIs1 OTIMCaHUS CTy4YaiiHbIX BEIMUYMH, 3HAaUEHUS] KOTOPbIX OTPaHMYeHbl
KOHEeUYHBbIM MHTepBa/ioM. beTa-pacripeniesieH1e AByxIapaMmeTpuyeckoe, ¢ mapamerT-
paMmu o 1 (. BeunyHa o TOBOPUT, CKOJILKO pa3 Mbl ITOSYYMIM BO3HAarpaxkaeHue 1,
a } — CKOIIbKO pa3s noyiyueHo Bo3HarpaxkaeHue 0.

YTo6BI BBI JIyYllle OCBOMJIMCH, PACCMOTPMM HECKOIBKO OeTa-pacrpenesieHuii,
Mpexae yeM NPUCTYIaTh K peanusanuyy anropurma TS.

Kak 310 penaetca
I[JIFI ucciengoBaHMs 6eTa-paCHpe,ELeJIEHI/IH BBITIOJIHMM CJIeayruiye ,ZLEVICTBMH.

1. Vmmnoprupyem PyTorch, a Takke 6ubnmnorexy matplotlib, uro6sr HarnsgHO
rokasaTb (popMy pacrpeneneHuii.

>>> import torch
>>> import matplotlib.pyplot as plt

2. Jlnst Havasia paccMoTpum hopMy pacrpeeneHusi ¢ mapamMetrpamm a=1u =
1:

>>> betal = torch.distributions.beta.Beta(1, 1)

>>> samplesl = [betal.sample() for _ in range(100000)]
>>> plt.hist(samplesl, range=[0, 1], bins=10)

>>> plt.title('beta(l, 1)')

>>> plt.show()

PelwweHune 3aaaum 0 MHOTOpYKOM BaHaMTe C NoMoLLblo BbiGopku TomncoHa % 167

Bynet HapucoBaH Takoii rpaduk:

beta(l, 1)

10 000 A

8000 +

6000 +

4000

2000 +

OueBuAHO, uTO TIpU a = 1 U B = 1 pacmpeneneHne He AaeT HUKAKOI MHOOP-
Maluu O TOM, rae B MHTepBase oT 0 1o 1 HaXOAUTCS UCTMHHOE 3HaueHue. Mbl
ToTyyaeM IMPOCTO paBHOMEpPHOE pacIipeiesieHue.

Terepb MOCMOTPMM, KaK BBIIIIAUT GeTa-pacipenenerme mpu a=5u B =1:

>>> beta2 = torch.distributions.beta.Beta(5, 1)

>>> samples2 = [beta2.sample() for _ in range(100000)]
>>> plt.hist(samples2, range=[0, 1], bins=10)

>>> plt.title('beta(5, 1)')

>>> plt.show()

168 <+ PeweHune 3a4a4M 0 MHOTOPYKOM BaHauTe

I'padMK MOTYUUTCS TAKUM:

beta(5, 1)

40 000 4

35 000 -

30 000 4

25 000 A

20 000 4

15 000

10 000

5000 ~

0.0 0.2

IMapameTpsl a = 5 1 = 1 03HAYAIOT, YTO B UETHIPEX UCIIBITAHUSIX ITOTyYEHO 4
BO3HArpaxOeHusl, paBHbIX 1, mogps. PacnipeneneHye SBHO CMEILEHO B CTO-
pony 1.

4. TenmeppmycTboa=1wup=5:

>>> beta3 = torch.distributions.beta.Beta(1, 5)

>>> samples3= [beta3.sample() for _ in range(100000)]
>>> plt.hist(samples3, range=[0, 1], bins=10)

>>> plt.title('beta(1, 5)')

>>> plt.show()

PeweHwue 3aaaun 0 MHOTOpYKOM GaHauMTe C NOMOLLbIO BbIGopkM TomncoHa ** 169

BOT Kak BBITTISIAUT rpaduK:

beta(1, 5)

40 000 -

35 000 4

30 000 -

25000 4

20000

15 000 A

10 000 A

5000 +

0.8 1.0

IMapameTtpsl o = 1 ¥ B = 5 03HAYAIOT, UTO B YEThIPEX MUCIIBITAHUSIX TTOTyUe-
HO 4 BO3HarpaxpeHus, paBHbIX 0, moapsia. PacripeneneHye SSBHO CMeIeHO
B cTOpOHY 0.

W HaKOHell, pacCMOTPUM CUTyalMIo o =51 B =5:

>>> beta4 = torch.distributions.beta.Beta(5, 5)

>>> samples4= [betad.sample() for _ in range(100000)]
>>> plt.hist(samples4, range=[0, 1], bins=10)

>>> plt.title('beta(5, 5)')

>>> plt.show()

170 <+ PeweHune 3a4a4M 0 MHOTOPYKOM BaHauTe

Terepb rpaduK BBIISIAUT TaK:

beta(5, 5)

20000 A

15 000 A

10 000 A

5000 +

0.0

IMapameTphl a = 5 1 3 = 5 03HAYAIOT, UTO B BOCbMM MCITBITAHMSIX HAOJTIOIAI0Ch
MTOPOBHY KJIMKOB M OTCYTCTBUSI KJIMKOB. PacripenenieHe KOHIEHTPUPYETCS
B OKPECTHOCTU cpenHeit Touku 0.5.

Terepb peliuM 3aavy o0 pekjaaMe B MHTEPHETE C ITOMOIIbIO aJITOPUTMAa BIOOPKU
TomricoHa.

1.

VIMIopTupyeM OKpYsKalolIyio cpemy, pa3paboraHHyio B perenTte «Co3maHue
OKpY’KaIOIIei Cpebl C MHOTOPYKMM OaHOMTOM» (TIPEII0NIaraeTcs, UTo KO
KJiacca BanditEnv HaxoguTcs B ¢aiiie multi_armed_bandit.py):

>>> import torch
>>> from multi_armed_bandit import BanditEnv

Ompenenum BepPOSTHOCTU U BeJIMUMHBI BBIMTPBIILA AJISI TPEXPYKOro 6aHauTa
(Tpu 06BSIBIIEHUSI-KAHAMIATA) ¥ CO3TAAMM 9K3eMILISIP OKPYsKaIoIIeit cpembl:

>>> bandit_payout = [0.01, 0.015, 0.03]
>>> bandit_reward = [1, 1, 1]
>>> bandit_env = BanditEnv(bandit_payout, bandit_reward)

Ba,ﬂa,EU/IM KOJIMYeCTBO 3MMM3040B U OIIpenejmMm CIIMCKU OJISI XpaHeHUs C1eay-
IOIIMX JaHHBIX: ITOJITHOE BO3HArpakaeHme, roJiydyeHHOe IIpu BbIGOpe Ka>XKO,0ro
pbryara, CKOJIbKO pa3 BbI6I/Ipaf[CH Ka)K,E[bIﬁ pbluar 1 CpejHee BO3HAarpaXXaeHue
OJIS1 KayKA0ro pbIyara.

>>> n_episode = 100000

>>> n_action = len(bandit_payout)
>>> action_count = torch.tensor([0. for _ in range(n_action)])

PeweHwue 3aaaun 0 MHOTOpYKOM 6aHauTe € MoMoLLbio BbiGopku TomncoHa % 171

>>> action_total_reward = [0 for _ in range(n_action)]
>>> action_avg_reward = [[] for action in range(n_action)]

4. Onpegenum ¢yHKIMIO TS, KOTOpast MPOU3BOAUT BbIGOPKY U3 GeTa-pacrpe-
IeseHus sl KasKAOro pbluara, a 3aTeM BO3BpalllaeT pbIuar ¢ HaubosbiIe
LIEHHOCTBIO.

>>> def thompson_sampling(alpha, beta):
prior_values = torch.distributions.beta.Beta(alpha, beta).sample()
return torch.argmax(prior_values)

5. Vuuumanusupyem o M (3 Ij1sT KaskKAOoro pbryara:

>>> alpha = torch.ones(n_action)
>>> beta = torch.ones(n_action)

3aMeTuM, UTO HauajbHbIe ITapaMeTpbl Bcex OeTa-pacrpenenenuii a == 1.

6. TIIporonum 100 000 smm3040B, NpUMeHSIST anropuTM TS. B Kaxkaom anm3one
OymeM OOHOBJISITH o M [3 KakKAOTO phluara ¢ y4eTOM HaOJII0JJaeMOro BO3Ha-
IpakIeHNs.

>>> for episode in range(n_episode):
action = thompson_sampling(alpha, beta)
reward = bandit_env.step(action)
action_count[action] += 1
action_total_reward[action] += reward
if reward > 0:
alpha[action] += 1
else:
beta[action] += 1
for a in range(n_action):
if action_count[a]:
action_avg_reward[a].append(
action_total_reward[a] / action_count[a])
else:
action_avg_reward[a].append(0)

7. Tlo 3aBepiieHUM MOCTPOMM TpaduK 3aBUCHMMOCTYM CPeIHEero BO3Harpaskie-
HUSI OT BpeMeH!:

>>> import matplotlib.pyplot as plt

>>> for action in range(n_action):

. plt.plot(action_avg_reward[action])

>>> plt.legend(['Povar {}'.format(action) for action in range(n_action)])
>>> plt.title('3aBucumMocTb BO3HarpaxgeHna oT BpeMeHn')

>>> plt.xscale('log')

>>> plt.xlabel('3nuszon')

>>> plt.ylabel('CpegHee Bo3Harpaxgeuue')

>>> plt.show()

Kak 3to paboraer

B sTOM periernTe Mbl pelliiy 3afauy O MoKa3e peKaaMbl B MHTEPHETE C TTIOMOIIIbI0
asiroputma TS. OcHOBHOe oTanume TS OT Tpex APYruX MOAXONOB — IIPUMEHEHMe
6aiiecoBckoit onTummsaiyy. CHavaja BBIUMCISIETCS allpMOPHOE paclipeneieHue

172 <+ PeweHune 334a4M 0 MHOTOPYKOM BaHauTe

ILJI KaKA,0TO pbluara, a 3aTeM U3 KaKIO0T0 pacrpeneneHns NPOU3BOLUTCS CIydaii-
Has BbIOOPKA. [Tocste 3TOro BbIGMpaEeTCs pbIuar ¢ HaubOIIbIIel IEHHOCTbIO, a HAbJI0-
JaeMblil pe3yabTaT MCIIOAb3YeTCs IS OOHOBIEHMSI allpMOPHOTO pacipeeeHus .
Crpaterus TS sgBJSIETCSI CTOXAaCTUYECKON U >KagHO. Ecnu BepOSITHOCTD KiMKa I10
OOBSIBJIEHNIO BBICOKA, TO COOTBETCTBYIOIIEe eMy OeTa-pacripefiesieHyie CMeIieHO
B CTOPOHY 1, TO3TOMY CJTydaifHO BRIOpaHHOE 3HaueHue OymeT 6/ike K 1.

Ha mrare 7 6ymeT MoCTpoeH cieaylonuit rpaduk:

3aBUCMMOCTb BO3HarpaxaeHus ot BpeMeHu

= Ppiyar 0

ge3e- Pbiyar 1

~— Pbvar 2
0.025 ~

0.020 ~

0.015 - \I\H\N\lj\

0.010 ~

Cpe,u.Hee BO3HarpaxneHue

0.005 ~

0.000

T T T T
107 101 102 10% 104 10°
onuson,

Hambosnbmas KInKabeabHOCTb (CpemgHee BO3HArpakmeHue) IMpeacKasaHa Ijist
0OBSIBIIEHMS 2.

CM. TaKkxXe

JKenaromrye mounTaTh 0 6eTa-pacrnpeaeseHnt MOTYT 06PaTUTHCS K CIIeAYIOIIM JC-
TOUHMKAM:

O https://www.itl.nist.gov/div898/handbook/eda/section3/eda366h.htm;
O http://varianceexplained.org/statistics/beta_distribution_and_baseball/.

PEWEHME 3A0AYM O PEKJIAME B MHTEPHETE
C NMOMOLLbIO KOHTEKCTYAJIbHbIX BAHOUTOB

Bbl, HaBepHOe, 06paTWIM BHMMAaHMe, YTO TIPU ONTUMM3ALNUYU [T0Ka3a O0ObSIBIEHMI
MbI MHTEPECOBAIMCH TOIBKO CAMUM OObSIBJIEHMEM U UTHOPUPOBAJIM BCIO OCTAIBHYIO
MHGOpMAIMIO, HAITpMMeD O TTOJIb30BaTesIe U Be6-CTpaHUIIe, XOTS OHA TaKKe MOXKET

PeweHue 3agaum o pekname B MHTEPHETE C MOMOLLbK KOHTEKCTYa/IbHbIX 6aHanTOB < 173

BJIMSATH Ha TO, 6YIET Iepexo/I M0 CChIKe VJIM HeT. B 3ToM pelierTe Mbl IOTOBOPUM
0 TOM, KaK yUeCTb IOMOTHUTENbHYIO0 MH(POPMAINIO, U pellM 3a1ady MeTOIOM KOH-
TEeKCTyaJIbHbIX OaHIUTOB.

Ilo cux mop B 3a/1aue 0 MHOTOPYKMX OAHIMUTaX He yUacTBOBAJIO MIOHSITHE COCTOSI-
HMSI, ¥ B 3TOM COCTOUT ITyOOKoe ommune oT MIIIIP. Ham gocTyImHO HEeCKOIBKO Jeii-
CTBUIA, ¥ BO3HATPaXKIEeHVEe HAUMCIISIETCS B 3aBMCUMMOCTY OT BBIOPAHHOTO e ICTBUS.
KoHTeKcTya/IbHbIe GaHAUTBI — 3TO 0006IIeHI e MHOTOPYKMX OaHAMTOB ITyTEM J10-
6aByeHus coctosiHus. COCTOSIHME HAaeT OICcaHMe OKPYKaIoIeii cpebl ¥ IOMOTaeT
areHTy MpUHMUMAaTh 601ee 060CHOBAHHBIE pelleHys. B mpumepe MHTEpHET-peKIa-
MBI COCTOSTHMEM MOSKeT OBITb ITOJT TI0JIb30BaTES (IBa 3HAUEHMS — MYKCKO U JKeH-
CKUI1), BO3paCTHAas IpyIina nojib30BaTesns (HalpyumMmep, YeTbIpe 3HAaUeHMsI) UK KaTe-
TOPMS CTPAHMIIBI (CKasKEM, CITOPT, GMHAHCHI MM HOBOCTH). IHTYUTUBHO KaykeTcs,
YTO IOJIb30BaTeNM U3 ONpeleeHHOl JeMorpaduueckoil rpymibl 601ee CKIOHHbI
IIeJIKATh 110 OObSIBJIEHUSIM, pa3MellleHHbIM Ha OIpee/IeHHbIX CTPaHMIIaX.

[ToHSITh A0 KOHTEKCTYaTIbHbIX 0AHAMTOB HETPYIHO. MHOTOPYKMI GAHIUT — TO
OZIVIH UTPAJIbHBIN aBTOMAT C HECKOJIBbKMMM pblUaraMu, TOTa KaK KOHTEKCTyaIbHbIN
OGaHAUT — 3TO MHOKECTBO TaKUX aBTOMATOB. Kaskaplii aBTOMAT IMpeACTABIISIET CO-
CTOSTHME C HECKOJIbKMMU JeiCTBUSIMM (pbruarammu). llesb 0OyueHusT — HaiiTU Hau-
JIYYIINIA pbluar (OeicTBue) IJisl KaKI0To aBTOMaTa (COCTOSTHMSI).

71 mpOoCTOTBI paCCMOTPUM IPUMEP UHTEPHET-PeKIaMbl C IBYMS COCTOSTHUSMMU.

Kak 310 penaetcs

PemmiM 3amauy 0 KOHTEKCTYaJIbHOM GaHIMTe B 061aCTY MHTEPHET-PeKIaMbl C T0-
Moo anroputma UCB.

1. Umnoptupyem 616amnoTexy PyTorch 1 OKpysKaloIyio cpeiy, pa3pad0TaHHYIO
B perienTe «Co3maHye OKPYKalolieii Cpeibl C MHOTOPYKMUM 6aHIUTOM» (TIpef-
ToJIaraeTcst, YTO KOJ, Kacca BanditEnv HaxoguTes B daiiie multi_armed_bandit.
Py):

>>> import torch
>>> from multi_armed_bandit import BanditEnv

2. Ompenenum BepOSITHOCTY U BeIMUMHBI BBIUIPBIIIA AJISI ABYX TPEXPYKMUX OaH-
IUTOB:

>>> bandit_payout_machines = [

e [0.01, 0.015, 0.03],

e [0.025, 0.01, 0.015]

|

>>> bandit_reward_machines = [

[1, 1, 11,

[1, 1, 1]

eee]

3mech uctuHHbIN CTR 06bsiBenus 0 paBeH 1 %, o6bsBenns 1 — 1.5 %, 06b-
saBnaeHust 2 — 3 % miia mepBoro coctostHus u [2.5%, 1%, 1.5%] nns BToporo
COCTOSTHMSI.

KonuyecTBO UTpa/ibHBIX aBTOMATOB B HallleM CJTyyae paBHO IBYM:

>>> n_machine = len(bandit_payout_machines)

174 <+ PeweHune 334a4M 0 MHOTOPYKOM BaHauTe

Co3gamyuM CIIMCOK GaHAUTOB, MMes MH(MOPMALMIO O BhIIIATAX:

>>> bandit_env_machines = [BanditEnv(bandit_payout, bandit_reward)
. for bandit_payout, bandit_reward in
vee zip(bandit_payout_machines, bandit_reward_machines)]

3. 3amaayM KOJMYeCTBO 3MMU30H0B U orpenejamm CIIMCKU IJid XpaHeHUs Cjie-
OYIOIIMX JAaHHBIX: ITOJITHOE€ BO3HArpaXaeHue, IoJIydeHHOe IMpn BbI60pe KaxK-
OOr0 pbrdyara B KaXKOAOM COCTOSSHMM, CKOJIBKO pa3 BI)I6I/IpaJICH KXk bl PbI-
4ar B KaXXOOM COCTOAHMM U CpeaHee BO3HarpaKaeHue OJisd KaXXI0ro pbluara
B KKIOM COCTOSIHUN.

>>> n_episode = 100000

>>> n_action = len(bandit_payout_machines[0])

>>> action_count = torch.zeros(n_machine, n_action)

>>> action_total_reward = torch.zeros(n_machine, n_action)

>>> action_avg_reward = [[[] for action in range(n_action)] for _
in range(n_machine)]

4. Omnpenenum pyHkuuio crparerny UCB, KoTopast BBIUMCISIET HAVUTYYINIA PbI-
yar 1o ¢opMyJie BepXHei TOBePUTETbHO! I'PAHNUIIbI:

>>> def upper_confidence_bound(Q, action_count, t):

cee ucb = torch.sqrt((2 * torch.log(
torch.tensor(float(t)))) / action_count) + Q

cee return torch.argmax(ucb)

5. Wuunmamsupyem Q-(yHKINMIO, KOTOpas OyIeT BO3BpallaTh CpegHee BO3HA-
rpaskaeHue IJIs1 KaXKIOrOo pbluara B KaskJIOM COCTOSTHIAMA

>>> Q_machines = torch.empty(n_machine, n_action)
91y Q-GYHKIINMIO MbI 6yIeM 06GHOBJISITh IO X0y 00yUeHMSI.

6. IIporonum 100 000 smm3omoB, npuMeHsisi ajroputm UCB. ITocie Kaskmoro
amm3oma 6yeM OOHOBJIATH CTATUCTUKY KasKAOTO pbluara B KaskIOM COCTOSI-

HUN.
>>> for episode in range(n_episode):
vee state = torch.randint(0, n_machine, (1,)).item()
eee action = upper_confidence_bound(
Q_machines[state], action_count[state], episode)
eee reward = bandit_env_machines[state].step(action)
eee action_count[state][action] += 1
eee action_total_reward[state][action] += reward
eee Q_machines[state][action] = action_total_reward[state][action]
| action_count[state][action]
eee for a in range(n_action):
cee if action_count[state][a]:
cee action_avg_reward[state][a].append(

action_total_reward[state][a]
| action_count[state][a])

cee else:

cee action_avg_reward[state][a].append(0)

PeweHue 3agaum o pekname B MHTEPHETE C MOMOLLbK KOHTEKCTYa/IbHbIX 6aHanTOB < 175

7. Tlo 3aBepiieHMM MOCTPOUM TpadMK 3aBMCUMOCTU CpeJHET0 BO3Harpaskie-
HUSI OT BpeMeHU JIJIST KaXKIOTO COCTOSTHUSI:

>>> import matplotlib.pyplot as plt

>>> for state in range(n_machine):

vee for action in range(n_action):

vee plt.plot(action_avg_reward[state][action])

vee plt.legend(['Povar {}'.format(action) for action in range(n_action)])
vee plt.xscale('log')

. plt.title('3aBucumocTb BO3HArpaxgeHus oT BpemeHu ana coctoanua{l}'.
format(state))

vee plt.xlabel('3nusog')
vee plt.ylabel('CpegHee Bo3Harpaxgeuue')
vee plt.show()

Kak 3To paboraer

B sToM peleniTe MbI pemIvMaM 3amady ONTUMM3ALNUM MHTEPHET-pPeKIaMbl C T10-
Moripio anroputma UCB 17151 KOHTEKCTyaabHbIX OaHIUTOB.

Ha mare 7 6yayT IMOCTPOEHbI TOKa3aHHbIE HIKE IpadUKA.

I1J1s TIepBOTO COCTOSTHUS :

3aBUCUMOCTb BO3HarpaxageHua ot BpeMeHun ana CoCToaHna 0
0.035 - Pbivar 0
Pbivar 1
~— Poblyar 2
0.030
(5]
I
5 0.025 4
S|
%
©
S 0.020 1
0o} '
& A i
2 0.015- ' N
g N\
T ' N
& o.0104 -
a
S W
0.005
0.000
107 101 102 103 104
onu3op,

176 <+ PeweHue 3a4a4M 0 MHOTOPYKOM BaHauTe

U pnsa BTOPOTO COCTOAHMSA:

3aBUCMMOCTb BO3HarpaxaeHus ot BpeMeHn ansa CoCToAaHUA 1

0.200 A = Pbivar 0
Pbiyar 1
0.175 A = Pblvar 2
0.150
0.125 ~
0.100

0.075 -

0.050 ~

CpenHee Bo3HarpaxaeHue

0.025 A

5000 W

e . o b . e i b | . . e T . . i T
107 101 102 103 10*
onuson,

B 1epBOM COCTOSIHUM JIYUIIIVM SIBJIIETCS OOBSIBJIEHME 2, [IJIST HETO Tpe/CKa3aH
Hau6onbmit CTR. Bo BTOPOM COCTOSTHUY JIYUIIUM SIBJIsIeTCST 00bsiBiieHMe 0. B 060-
UX CIydasix 9To cornacyetcs ¢ uctuHHbIM CTR.

KoHTeKCTya/IbHbI 6AaHIUT TIPECTaBIIsSIeT CO00 MHOXKECTBO MHOTOPYKMX OaH-
IVUTOB, KQXXAbIM 13 KOTOPBIX COOTBETCTBYET OJHOMY COCTOSIHUIO OKPYsKalolleil cpe-
nbl. COCTOSIHME [TaeT OMMCAHUE CPEMIbI, M ITO TTOMOTAET areHTy MPUHUMATDh 6ojiee
060CHOBaHHbIE pellleHus. B HalieM mpuMepe MysKUMHBI TTePENAYT M0 PEKIaMHOIA
CCBIIKE C OOJIbIIEN BEPOSITHOCTDIO, YEM SKEHIIMHBI. Mbl MCIIOIb30BAIN ABA UTPAJIb-
HBIX aBTOMATa, YTOOBI BKIIIOUUTH 06a COCTOSIHMS, M MCKAJIU, KAKOH PhIUar BhITOIHEE
TIOTSIHYTDb B KaKOM COCTOSTHUM.

CremyeT OTMETUTD, YTO KOHTEKCTya/IbHbIE GAHAUTHI BCE PABHO OTIMYAIOTCS OT
MIIIIP, XOTS ¥ BK/IIOUAIOT KOHIETILINIO COCTOSIHYS. BO-TIepBbIX, COCTOSIHME KOHTEKC-
TYaJbHOTO GAHIUTA HE OTIPENeISIeTCs MPEABIAYIINMY e iCTBUSIMU WJIM COCTOSTHU-
SIMU, a TPOCTO SIBJISIETCS] HAbMIOMeHEM 3a OKpYKarwlel cpenoii. Bo-BTOpbIX, He
CYIIECTBYET 3a/Iep)KaHHOTO MM 06ECIIeHEHHOTO BO3HATPAaKAEHUS, TTOTOMY UTO
3MU30/, TSI KOHTEKCTYaTbHOTO OaHIMTA BCETA COCTOUT M3 OFHOTO Iara. OmHaKo Imo
CPaBHEHUIO C MHOTOPYKUMM GaHIUTaMy KOHTEKCTYaIbHbIe BCe ke 6myske K MIIIIP,
T. K. IeJiCTBUS 06YCIOBIEHBI COCTOSTHUSIMY OKPYsKaloleii cpembl. MOXKHO CKa3aTh,
YTO KOHTEKCTya/IbHble GAHAUTHI 3aHMMAIOT MPOMEXYTOUHOE IOJIOKEHNE MEXKAY
MHOTOPYKMMM GaHIUTaMU 1 0OYUYEeHNEM C TIOAKPeIUIeHeM Ha ocHOBe MIIITP.

naBa

MacwTtabupoBaHue
C NOMOLLbIO annpoKCMMaLL UK

PYHKLUUH

o cux nop B MeTogax MonTte-Kapno u TD-MeTogax mMbl IpeAcTaBiasuiv QyHKIIUIO
LIEHHOCTU B Buze Tabauibl. TD-MeTObI MO3BOISIIOT OOHOB/SATh Q-(QYHKIMIO JUHA-
MMYeCKM Ha NPOTSDKeHUM 3MM304a, U 3TO CYMTAETCS YIydlleHVeM 10 CPDaBHEHUIO
¢ metogamu MK. OgHako TD-MeTO[bI MO-MPEXKHEMY IJIOXO MaCIITaOMPYIOTCS Ha
3a/iauM ¢ 6OTBIINM YMCIOM COCTOSTHUI MU IeiicTBUil. O6ydeHue B TAKUX YCIOBUSIX
3aHSII0 ObI CJIUIIKOM MHOTO BPEMEHM.

B aT0i1 IMaBe Mbl OymeM paccMaTpuBaTh amnmpokcumauuio QyHKIui, 9TO IMOo-
3BOJIUT PELIUTH MpobiemMy Maciitabupyemocty TD-MeTomoB. HauHem ¢ onucaHus
oKpykamtieit cpensl Mountain Car (MaiHa Ha rope). PazpaboTaHHy10 TMHEHYI0
OIIeHKY (DYHKLUMYM MbI BKIIOUMM B aliropuTMbl Q-00yueHus u SARSA. 3atem ynyu-
MM anroputm Q-obyuenusi, 1o6aBuB 6ydep BOCIIPOU3BEIEHMS OIIbITA, ¥ TIOJKCITe-
pPUMEHTHMPYeM C UCTIOb30BaHNeM HelfPOHHBIX ceTeli B KauecTBe OLeHKM QYHKIUNA.
U HakoHel, oKaxkeM, KaK IPMMEeHUTD [TOJTy4YeHHbIE B 3TOJ IVIaBe 3HaHMS K pellle-
HUIO 3aJja4M O OalaHCMPOBAHUY CTEPIKHS.

B 5T0i1 1aBe IpUBOAATCS CJIefyIOL)e PeLlelThl:

MOATOTOBKA OKpYysKatoleit cpensl Mountain Car;

oreHnBaune Q-(QyHKUMI OCPEACTBOM amIPOKCHMMAIIUM METOAOM Tpaay-
€HTHOTO CITyCKa;

peanu3aiust Q-06yueHus ¢ IMHEeMHOI anpoKcuManeil QyHKIuii;
peanu3aiust SARSA c TMHEITHOI armpoKRCcuManyei QyHKInii;

rakeTHast 06paboTka c mpuMeHeHneM 6ydepa BOCIIPOU3BEIEHNS OITbITA;
peanu3aiust Q-06yueHus C alMmpoKCUMaIein GyHKIMIT HelipOHHOI CeThIO;
peleHyne 3agauy 0 6aJlaHCUPOBAHUM CTEPSKHS C TIOMOIIBIO allITPOKCUMAIINN

byHKIMI.

0000 0O

178 < MacwrabupoBaHue C MOMOLLbI0 annpOKCUMALIUK BYHKLMUIA

MoorotoBkA OKPY)XAIOLWEM CPEOLI MOUNTAIN CAR

TD-meTon MoxeT 06yuaTh Q-(QYHKIMIO HA KaXOOM Ilare 3113073, HO OH He Mac-
mrrabupyercs. Harpumep, KolMmM4ecTBO COCTOSIHMI B Imaxmarax mopsaka 1040, a B ur-
pe ro — 107%, K Tomy ke 06YUnThCS [IEHHOCTSIM COCTOSIHMIA B HEIIPEPhIBHOM CTydyae
TD-meToz Boo61ie He criocobeH. [T03TOMY Takue 3a1auy MPUXOJUTCS PEIIATh, TPU-
6erast K armpoKCUMaIu QyHKIUIA, T. €. alMTPOKCUMALIMK MTPOCTPAHCTBA COCTOSTHUIA
HabOPOM TPU3HAKOB.

B sToM peneniTe Mbl TO3HAKOMMMCS € OKpYyXKatouieii cpenoit Mountain Car, a B mo-
C/IeAyIoMMX PelinM 3Ty 3a/1a4y € TOMOIIbIO allpoKcuMaIm QyHKIIMIA.

Mountain Car (https://gym.openai.com/envs/MountainCar-v0/) — TunIM4Hasi OKpy-
>kaouas cperga Gym ¢ HellpepbIBHBIMM COCTOSSHMSIMM. Kak IOKa3aHO Ha pUCYHKe
HIKe, 11eJTh 3aK/TF0YAEeTCs B TOM, UTOOBI TPUBECTY aBTOMOOMIb Ha BEPIIVHY TOPBI.

Onusop 1

ABTOMOGMITb MOKET HAXOMUThCS B Auara3oHe oT —1.2 (cmeBa) mo 0.6 (crpaBa),
a 1ejIb (KeIThIN (UIaskoK) HaXOOUTCS B TOUKe ¢ abeiyccoii 0.5. JIBuratenb aBTOMO-
OWJIsI HEIOCTATOYHO MOIIHBIN, YTOGBI ITPEOIONIETh BECh MTOIbEM CaMOCTOSITEIBHO,
IMO3TOMY HeO6XOIMMO OTheXaTh Ha3a/ M pa3orHaThCs Ha cITycke. Ha Kaskmom 1mare
IOCTYITHO TPU AVUCKPETHDIX AeVCTBUS:

O ra3s, 3agauii xon, (0);
O 1o nnepuuu (1);
O ras, mepegumii xox (2).

U cyiiecTByeT IBa COCTOSTHUSI CPEJIbI:

O mnoswuiyst aBTOMOOWIISI: HeIPephIBHO M3MeHseTcs oT —1.2 1o 0.6;
O cropocTh aBTOMOOWIIS: HenpepbIBHO u3MeHsieTcst oT —0.07 go 0.07.

Ha Kask[oM Il1are HauMCIsSIeTCs BO3HArpakaeHue —1, moka aBTOMOGMIb HE J10-
crurHer uenu (mosuium 0.5).

MoaroToBka okpyxatolen cpeabl Mountain Car < 179

dnu3om 3aKaHYMBAeTCs, Korma 6ymeT JOCTUIHYTA 11eTb (3TO MOHSITHO) WM TToC/Te
200 m1aros.

MoaroroBka

Iyis Havasia HaiimeM MMS OKpysKamolieii cpenbl Mountain Car B Tabnuile 1Mo aapecy
https://github.com/openai/gym/wiki/Table-of-environments. OHa Ha3bIBaeTcst Moun-
tainCar-v0, TPOCTPAHCTBO HAGIIONEHNIT B Heli MPeACTaBIeH0 YMCIaMy C TIaBao-
11ei TOUKOIA, a JeiicTBuii Bcero Tpu (BjaeBo = 0, 1To MHepLyu = 1, BIIpaBo = 2).

Kak 3To penaetca

Iyst umuTanum cpenbl Mountain Car BBITTOJIHUM C/IeIyIolye NeiiCTBUSI.

1.

MmrmopTtupyem 61bmiotreky Gym 1 CO3TaaumM 9K3eMIUISIpP OKPYKaoIIeii cpe-
el Mountain Car:

>>> import gym

>>> env = gym.envs.make("MountainCar-vo")
>>> n_action = env.action_space.n

>>> print(n_action)

3

HpI/IBe,E[eM OKDPYXXaIOMIYI0 Cpeny B MCXOOQHOe COCTOsSTHIME!:

>>> env.reset()
array([-0.52354759, 0.])

ABTOMOGM/Ib HAUMHAET ABVKEHNE B COCTOSIHUM [-0.52354759, 0.], T. €. HaXo-
ouTcs B paitoHe Touku —0.5 u umeeT ckopocTh 0. Ha BalieM KOMITbIOTEpE Ha-
YyaJbHOEe T0JI0KEeH e MOKET ObITh IPYTUM, T. K. 3TO CJIyUaifHOe UMC/IO B Aya-
nasoHe oT —0.6 7o —0.4.

CHavasna Honpo6yeM HauBHBIN TTOOXON,: IIpoCTO 6y,ueM JAaBUTb Ha ra3 B Ha-
Oexnae, YTo CMOXXeM moexaTb 40 BepIIMHBI:

>>> is_done = False

>>> while not is_done:
next_state, reward, is_done, info = env.step(2)
print(next_state, reward, is_done)
env.render()

>>> env.render()

[-0.49286453 0.00077561] -1.0 False

[-0.4913191 0.00154543] -1.0 False

[-0.48901538 0.00230371] -1.0 False

[-0.48597058 0.0030448] -1.0 False

[-0.29239555 -0.0046231] -1.0 False
[-0.29761694 -0.00522139] -1.0 False
[-0.30340632 -0.00578938] -1.0 True

3aKpoeM OKPYKaIoIyIo Cpeay:

env.close()

180 < MacwrabupoBaHue C MOMOLLBIO anmnpPOKCUMALIUK BYHKLMIA

Kak 3to paboraer

Ha miare 3 cocTostHue (MO3MIMS M CKOPOCTh) U3MEHSIETCSI, M BO3HArpaskaeHue BCS-
Kuit pas paBHO —1.

Ha Bupeo 6ymeT BUIHO, UTO MalIMHA ABMUKETCS TO BIIPABO, TO BJIEBO, HO BepIIIN-
HBI TOPBI HE JOCTUTAeT.

[) mountain_car.py

&

Wrak, 3ajaya o Malll/He Ha rOpe He Tak IPoCTa, Kak Kasanaoch. Heobxomyumo ABu-
raThCs B3a/i-BIIepe/, UTOObI pa30THATHCS. A TepeMeHHbIe COCTOSIHMSI HETTPEPbIBHbIE,
T. €. MeTO[, IT0}CKa B Tabnulie ¢ MocIefyoyM ee 00HOBIeHNeM (Kak B TD-meTtore)
He roguUTcs. B ciemyioniem pelerite Mbl pelliuM 3a7ady ¢ ITIOMOIIbIO alllIpOKCUMa-
iy QyHKINIA.

OLIEHVBAHME Q'(DYHKLIMﬂ NMOCPEACTBOM ANMMPOKCUMMALUU
METOAOM NPAOMEHTHOIO CIMYCKA

HaumHas ¢ 3TOr0 perernTta Mbl 6yieM pa3pabaTbhiBaTh aITOPUTMbI AlIITPOKCUMALIY
ILJISI B3aMMOJEVICTBUS CO CpeflaMi, B KOTOPBIX [lepeMeHHbIe COCTOSIHYS HellpepbiB-
Hbl. HauHeM c nuHeltHO annporcumainuyu Q-dbyHKIMIE M MeToma rpaJueHTHOTO
CITyCKa.

OcHOBHas uzes anmpoKcMMaIuu QyHKINW — BOCIIONb30BaThCsI HA60POM HMpU-
3HAKOB JIJ1s1 OLleHKM 3HaueHuit Q-byHKINUM. OTO OUeHb IT0JIe3HO, KOTIa MPOCTpaH-
CTBO COCTOSIHUIT BelMuKo U Tabnuiia Q-dyHKiuy Moria 6bl 0Ka3aTbCsl Upe3MepHO
60s1b111071. ECTh HECKOJIBKO CITOCOG0B 0TOOPAa3UTh MPU3HAKY Ha 3HAUeHUs Q-PYyHK-
LMK, HalIpUMeDp JIMHeMHas anlpokcuManys (alnmnpoKcumalnus aMHeHbIMU KOM-
OMHAILMSIMU TIPU3HAKOB) U HEPOHHBIE CETU. B CIy4aiiHO JMHEITHOI ammpoKCHu-

OuenuBanue Q-yHKLMIA NOCPEACTBOM annpoKCUMaLLMM METOLOM rPaaMeHTHoro crycka * 181

Malnn (bYHKLU/IH IOeHHOCTU COCTOSIHMI 3aIIMChIBAETCS B Buae B3BellleHHO CYMMBI
IIPM3HAKOB:

VI(s) = 0,F,(s) + 0,F,(s) +... + 0,F,(s),

rae F,(s), Fy(s), ..., F,(s) — Habop Npu3HaKOB, 3aBUCSLIUX OT COCTOSIHUA S, a 0, 0, ...,
8, — Beca 9TUX MPU3HAKOB. ITO PABEHCTBO MOXHO 3al}CaTh TAKXKe B BEKTOPHOM
Bume V(s) = 6F(s).

IMpu ommcanuy TD-MeToma MbI BBIUMCISTM OYIYIITME COCTOSTHUS 10 hopmyIie

V(sy) = VIsp + afr +yV(s,,y) = V(s)l,

rJe r — BO3HarpaxJeHue, HauucIsgeMoe py fepexofie U3 COeIMHeHNs S, B COCTOSI-
HMeE S,,;, & — CKOPOCTb 0OyueHus1, y — Ko3pduuyenT obecuennpanms. O603HaumB
TD-ommnbKy 6yKBOJi §, 6yIeM MMeTh:

d=r+ yV(St+1) - V(St)’
V(sp = V(s,) + aéb.

OTO U eCTb YpaBHEHMS I'PaJMEHTHOTO cITycKa. Takum o6pa3om, 11e1b 06yueHms —
HaJITV ONTUMMAaJIbHBIE Beca O [yIsl armpoKcuManyuy GyHKUNWY IeHHOCTM COCTOSTHMI
V(s) myst Bcex BO3SMOSKHBIX AelicTBUIA. OYHKIMS MMOTEePhb, KOTOPYI MbI MbITA€MCS
MMHMMM3UPOBATh, B 3TOM CJIy4yae Takas ke, Kak B 3ajJaye perpeccumu, T. €. Cpefi-
HeKBaJpaTuyeckast onmbKa MeXIy MCTMHHBIM 3HAUeHMEeM U ero OlleHKOi. IToce
KaXXJIOTo I1ara 3M130/a Mbl MMeeM HOBYIO OII€HKY MCTUMHHO LIEHHOCTU COCTOSTHUSI
" M3MeHseM Beca 0, mpuo/KasICh K ONITUMATbHBIM 3HAUEHUSIM.

Cnemyer Takke 0OpaTUTh BHMMaHMe Ha Habop Mpu3HaAKOB F(s). XOpoIiM cumuTa-
eTcst Habop MPU3HAKOB, YIABAMBAIINI IUHAMUKY M3MeHEeHUs COCTOSTHYST. OObIY-
HO HabOp MPU3HAKOB T€HEPUPYeTCs C ITOMOIIbI0 HOPMATbHBIX pacIipeeseHmin
C pa3HBIMM [MTapaMeTpaMi — CPeIHUM U CTAaHZAPTHBIM OTKIOHEHUEM.

Kak 370 penaetcs
PaspaboTaeMm JiMHEHbI anmpokcumaTop Q-QyHKIUN.
1. VmmnoptupyeM HEOOXOAVIMbIE MTaKeThl:

>>> import torch
>>> from torch.autograd import Variable
>>> import math

Mopyib Variable 06epThIBaeT TEH30PbI U MOAAEPKMBAET 06paTHOE PACIpo-
cTpaHeHMe.

2. Peanusyem metop __init__ Kjacca IMHEIHON OLeHKU Estimator:

>>> class Estimator():

vee def __init__(self, n_feat, n_state, n_action, 1r=0.05):
vee self.w, self.b = self.get_gaussian_wb(n_feat, n_state)
vee self.n_feat = n_feat

vee self.models = []

cee self.optimizers = []

182 <« MacwrabupoBaHue C MOMOLLbI0 annpPOKCUMALIUK BYHKLMIA

. self.criterion = torch.nn.MSELoss()

. for _ in range(n_action):

. model = torch.nn.Linear(n_feat, 1)

. self.models.append(model)

. optimizer = torch.optim.SGD(model.parameters(), 1r)
. self.optimizers.append(optimizer)

OH npuHMMAaEeT TPU MapaMeTpa: KOJIMYEeCTBO MPU3HAKOB n_feat, KOMMUECTBO
COCTOSTHUMIA U KOJIMYEeCTBO JeiicTBuii. CHauaia reHepupyeTcst Habop Koahdu-
LIVEHTOB W 1 b 117151 GyHKIMIA F(S), X 3HAUEHUST BBIOVPAIOTCS M3 HOPMAaJIbHbIX
pacrpenesieHni1, KOTopble OYIyT orpeeieHbl HIbKe. 3aTeM MHUIUATU3UPY-
eTcs n_action IMHEHbIX Mojeseit, Kaxkaas U3 KOTOPbIX COOTBETCTBYET OfHO-
MY IeMCTBUIO, ¥ COOTBETCTBEHHO n_action ONMTMMM3aTOPOB. /151 TMHEMHBIX
MoJiesieli Mbl OyIeM MCIT0JIb30BaTh MOAYJb Linear 3 PyTorch. OH mpuHMMaeT
n_feat Mpu3HaKOB M BO3BpalllaeT MpeACcKa3aHHYI0 IeHHOCTb COCTOSIHUS IJIs1
IeiicTByUS. BmecTe ¢ KaxKmoi IMHEeNHOM MOJe/IbI0 MHUIUATU3UPYETCS TakkKe
ONTUMMM3ATOP METOIOM CTOXaCTUUYECKOro TpaJMeHTHOTO cirycka. CKOpoCThb
06yueHMs Kaskaoro ontumusaTopa pasHa 0.05. B kauecTBe QyHKINM ITOTEPD
6epeTcs cpegHeKBagpaTUUecKast OloKa.

3. anee ompemennm MeToq get_gaussian_wb, KOTOPBIi reHepUpyeT Habop KOIP-
uyeHTOB W ¥ b 11 TMHEHOV QyHKIMY F(S):

>>> def get_gaussian_wb(self, n_feat, n_state, sigma=.2):

cee LeHepupyeT Ko3$OMUUMEHTHI MPU3HAKOB, BLIGMPAs MX U3 HOPMANLHOIO
ces pacnpegeneHus
ces @param n_feat: KonuyecTBO Npu3HaKoB
ces @param n_state: Konn4ecTBO COCTOSHMI
ces @param sigma: napameTp sgpa
ces @return: Ko3¢oMUMEHTbHI NPU3HAKOB
nnn
vee torch.manual_seed(0)

vee w = torch.randn((n_state, n_feat)) * 1.0 / sigma
vee b = torch.rand(n_feat) * 2.0 * math.pi
vee return w, b

Marpuiia k03bduimeHToB w MMeeT pa3Mmep n_feat x n_state, a ee a7eMeHTbI
BBIOMPAIOTCS 3 HOPMAJIBHOTO pacIipeiesieHnsi ¢ JUCIiepcueil signa; cmele-
HUSI b IpecTaBIeHbI CIIMCKOM n_feat 3HAUEHMIA, BBIOMPAEMBIX 3 paBHOMEP-
HOTrO pacripeneneHus Ha orpeske [0, 2.

OTMeTHM, UTO OYEHb BaXKHO BblOMPATbh KOHKPETHOE HaYaslbHOE 3HAYeHUe reHe-
paTopa ciyyaiHbix uncen (torch.manual_seed(0)), Tak 4To6bl NpU pasHbIX Npo-
rOHax COCTOsSIHME 0TOBpaXKanoch Ha OAMH U TOT e Habop NMPU3HAKOB.

4. Temneps HamuieM QYHKIMIO, KOTOPAs, 3Has w 1 b, 0TOGpaskaeT MPOCTPAHCTBO
COCTOSIHUII B IIPOCTPAHCTBO IIPU3HAKOB.

>>> def get_feature(self, s):

ces LeHepupyeT NpU3HAKK NO BXOAHOMY COCTOAHMIO
ces @param s: BXOAHOe COCTOSHME

OuenuBanue Q-yHKLMIA NOCPEACTBOM annpoKCUMaLLMM METOLOM rPaaMeHTHOro crycka % 183

@return: npusHaKu

features = (2.0 / self.n_feat) ** .5 * torch.cos(
torch.matmul(torch.tensor(s).float(), self.w) + self.b)
return features

[IpM3HaK, COOTBETCTBYIOLIMII COCTOSIHUIO S, BBIUUC/ISIETCS 110 (hopMmysie

F(s) = J2/n_feat cos(wx*s + b).

Kocunyc B 9T0ii hopMysie rapaHTUPYeT, UTO MPU3HAK TOMAAAeT B AYAra3oH
[-1, 1], KakuM 6bI HM O6BITIO BXOZHOE COCTOSTHME.

5. Mogenb 1 Tpolleypa reHepauyuy MpU3HAKOB OIPeAeIeHbl, U Terepb MOKHO
peanu3oBaTh METOJ, 00YUYeHMsI, KOTOPbIVi OOHOBJISIET TMHEIIHbIe MOJIEJN, T10-
JIYYMB HOBOE HabIIOeHe.
>>> def update(self, s, a, y):

06HOBNSIET BECA NMHEHOI OLEeHKW Ha OoCHOoBe nepejaHHOro o6yqa|ou|ero

ves npumepa
. @param s: cocTosiHue
cee @param a: pgencTeue
cee @param y: ueneBoe 3HayeHue

. features = Variable(self.get_feature(s))
eee y_pred = self.models[a](features)

eee loss = self.criterion(y_pred, Variable(torch.Tensor([y])))
cee self.optimizers[a].zero_grad()
vee loss.backward()

self.optimizers[a].step()

[TonyunB obOyuvaromiuii mpumMep, (GYHKIMS CHavaja MHEePeBOIUT COCTOSTHME
B IPOCTPAHCTBO MPU3HAKOB, BbI3bIBast MeTOZ, get_feature. [lomyyeHHbIE TTPU-
3HaAKM MOJAIOTCSI Ha BXO[, TeKYIeli TMHeHOV Mmoaenu AeiicTBus a. [1o mpe-
CKa3aHHOMY pe3y/IbTaTy U 1[eJIeBOMY 3HAUEHUI0 BBIUUCISIETCS TIOTePST U rpa-
IMEeHTHI. 3aTeM Beca 6 0GHOBJISIIOTCS C TIOMOIIbIO 06PATHOIO pacIpene/ieHus
OIINOKN.

6. Cremyomast omepaiys — IpeackasaHue [eHHOCTM COCTOSHMS IJIST KaXKIOro
IEeJCTBYS C IIOMOIIBIO TEKYLIVIX MOJEJIeN:

>>> def predict(self, s):

win
vee BbiuMcnseT 3HayeHMA Q-QPyHKUMM OT COCTOSIHMA, NMPUMEHAS
cee obyueHHyw Moaenb

@param s: BXOJHOe COCTOSIHME

@return: uyeHHOCTH coCTOAHMA

cee features = self.get_feature(s)
vee with torch.no_grad():
vee return torch.tensor([model(features)

for model in self.models])

C kiaccoM Estimator Mbl 3aKOHUMIIN.

184 <+ MacwrabupoBaHWe C MOMOLLbI0 annpPOKCUMALIUK BYHKLMUIA

7. Temepb MpoBepUM €ro paboTy Ha TeCTOBBIX JaHHbIX. CHauaja co3gaanum 06b-
eKT Estimator, KOTOpBI/I OTOGpakaeT 2-MepHOe IPOCTPAHCTBO COCTOSTHMIA
B 10-MepHOe MPOCTPAHCTBO MIPU3HAKOB 1 PabOTaeT C OTHUM JeliCTBUEM:

>>> estimator = Estimator(10, 2, 1)

8. Crenepupyem nmpusHaku gjist cocrostuus [0.5, 0.1]:

>>> s1 = [0.5, 0.1]

>>> print(estimator.get_feature(s1))

tensor([0.3163, -0.4467, -0.0450, -0.1490, 0.2393, -0.4181,
-0.4426, 0.3074, -0.4451, 0.1808])

Kaxk Buaym, monyunscs 10-MepHbIi1 BEKTOP ITPU3HAKOB.

9. O6yuMM OLIeHUBATEb HA CIIVCKE COCTOSTHMIT U UX IIEHHOCTE (B JAHHOM MPU-
Mepe [eiiCTBYe TOIIbKO OHO):

>>> s_list = [[1, 2], [2, 2], [3, 4], [2, 3], [2, 1]]
>>> target_list = [1, 1.5, 2, 2, 1.5]

>>> for s, target in zip(s_list, target_list):

vee feature = estimator.get_feature(s)

vee estimator.update(s, 0, target)

10. 1 HaKOHelI, BOCIIOJIb3yeMCsl 00yUeHHO JIMHEITHOI MOIEJIbIO JJ1s1 IIpeIcKasa-
HUS LIEHHOCTY HOBBIX COCTOSTHUIA:

>>> print(estimator.predict([0.5, 0.1]))
tensor([0.6172])

>>> print(estimator.predict([2, 3]))
tensor([0.8733])

s cocrostams [0.5, 0.1] mpenckasana 1eHHOCTD 0.5847, a myist coctostums [2, 3] —
HeHHocTb 0.7969.

Kak ato pa6oraer

Mertoq, anmpokcumaiuyu GyHKIMKY 3aMeHsIeT IeHHOCTY COCTOSIHMU 6ojiee KOM-
MMaKTHOJ MOAe/bl0, YeM Tabiuila TOUHbIX 3HaUueHMt B TD-meTome. CHavasa mpo-
CTPAHCTBO COCTOSIHMII OTOOpaskaeTcs B MPOCTPAHCTBO MPM3HAKOB, a 3aTEM 3Ha-
yeHMsT Q-(QYHKIMM OIEHMBAIOTCS C IOMOINbI0 Momenu perpeccuu. ObydueHue
MMPOU3BOAUTCS € yuuTesneM. B kauecTBe MOLeN perpeccum MOXKeT UCIT0Ib30BaTh-
Cs1 TMHEHas Mofeab MM HelipOHHas ceTb. B 9TOM pererTe Mbl paspaboTanm
OLIeHMBAaTe/b Ha OCHOBeE JIMHEIHOI perpeccuu. OH reHepupyeT MPU3HAKU B BULE
K03(hPUIMEHTOB, BbIOMPaeMbIX 13 HOPMaJbHOTO pacnpeneneHus. Beca nnHeltHOM
MOjIe/i OOHOBJISIOTCS MPY MOCTYIIEHUYM 06YUYaIOIIMX JaHHBIX METOAOM Tpaau-
€@HTHOTO CITyCKa. 3aTeM C ITOMOIIbI0 00YUeHHOI MOAe M MpeaCcKasblBalOTCs 3HAa-
yeHus: Q-QyHKimn.

AnrmiporeuManust QyHKIMIA MHOTOKPATHO YMEHbBIIAET KOJINMYECTBO COCTOSTHUIA
B TeX CJIy4yasix, KOrma OHO (JIMILKOM BeMKO IJisd npumeHeHus TD-mertopa. U uto
ele BajkHee, OHA JOITyCKaeT 000OIIeHMe Ha paHee He BCTPEYaBIINMECS COCTOSI-
HMUSI, TIOCKOJIBKY II@HHOCTYM COCTOSIHMIA aIllIPOKCMMMPOBaHbI (QYHKIMSIMU OLIEHKU,
06yUeHHBIMM Ha M3BECTHBIX BXOJHBIX COCTOSTHUSIX.

Peanuzauma Q-o6yueHus C NIMHENHOM annpokcumaumen bhyHkumin % 185

CM. TaKkxXe

UnraTensMm, He3SHAKOMbBIM C JIMHEIHON perpeccuein uin MeTOLOM IpPagueHTHOro
CITyCKa, peKOMeHAYyeM CleAyloliie UCTOYHUKHA:

O https://towardsdatascience.com/step-by-step-tutorial-on-linearregression-with-
stochastic-gradient-descent-1d35b088a843;

O https://machinelearningmastery.com/simple-linear-regression-tutorialfor-ma-
chine-learning/.

PeanvzAuma Q-oByYEHMS
C JIMHEAHOW AMMPOKCUMALIMEA YHKLUA

B mpeppinyiiieM pelienTe Mbl pa3paboTain OlleHKY MeTOIOM JIMHEeHOI perpeccun.
Ternepb BOCIIONb3yeMCs €f B anroputMe Q-o6yueHus.

Bhliiie Mbl BUIeNN, UYTo Q-00yueHye — 3TO aJiTOPUTM C pasmeeHHO cTpaTerueit,
B KOTOpOoM Q-(yHKIIMSI 06HOBIIsSIETCS 10 hopMmyrie

Q(s,) = Q(s, a) + a(r + ymax,,Q(s’, a’) - Q(s, a)).

3mech s’ — coCTOsIHME, B KOTOpOE OKpY)KaloIas cpea MepexoauT U3 COCTOSHUS
S TIowIe AEeWCTBUS a, I — TIOy4eHHOoe TIpU 3TOM BO3HArpaskieHue, o — CKOPOCTb
obyuenus, y — koadduumeHT obecuieHnBanus. Ynen max,Q(s’, a’) o3Hauaer, 4To
cTpaTerus kagHasd, T. €. IJIsI TeHepalyy 06yJarollyx JaHHbIX BbIOMPAETCs IeiicTBIe
B COCTOSIHMM S’ ¢ HAaMOOIbIINM 3HaueHreM Q-byHKiun. B anroputme Q-o6yueHnust
IeiCTBYS BBIOGMPAIOTCS C IIOMOIIIBIO £-3KagHOI cTpaTernu. B Q-o6yyeHnu ¢ anmpox-
cuMaimeit GyHKINI uMeeTcst TTIOXOKMIT WIeH OMMOKMA:

8=r+yV(s,,,) — V(s) =r+ymax,V(s') - V(s,).

Llenb 06yueHMSI - MUHUMMU3UPOBATD UieH OLIMOKM, CBeAS ero K HYJTIO, T. €. OlleHKa
V(s,) moikHa yA0BAETBOPSTh YPaBHEHUIO

V(s,) =r+ymax,V(s').

Temnepsb 3afaua CBOAUTCS K TOMY, UTOOBI HaiiTV ONITMMAaJIbHbIE Beca 6 B popmyiie
V(s) = OF(s), Iipy KOTOPBIX IOCTUTAETCS] HAMTyUIIIast almpoKcuMaIust GyHKIIUm 1eH-
HOCTM COCTOSIHMIA V(S) 1151 BCeX BO3MOHBIX AeiicTBUIL. DYHKUIMS [TOTePb, KOTOPYIO
MBI [TbITaeMCSI MMHMMM3MPOBATD B 3TOM C/Iy4yae, Takas JKe, KaK B 3aJlaue perpeccuiu,
T. €. CpeIHEeKBaIpaTuyeckast OIMOKa MexKIy CTUHHBIM 3HAUYEHUEM U €T0 OLIEHKOIA.

Kak ato penaetcs

Peanusyem anroputm Q-o6ydeHMs C ammpokcuMaryeii GyHKIMiA, Oab3ysIach -
HeJHBIM OLleHMBaTeJeM — KjaaccoM Estimator 13 ¢aitna linear_estimator.py, KOTO-
DBV 6bUT CO3[IaH B IIPEIbIAYIIEM pelleriTe.

1. ViMmopTupyeMm HeO6XOoAMMbIe MOIY/IN 1 CO3AAANM SK3eMIUISIP OKPY>KaroIei
cpenbl Mountain Car:

186 < MacwrabupoBaHWe C MOMOLLBI0 anmnpPOKCUMALIUK BYHKLMIA

>>> import gym

>>> import torch

>>> from linear_estimator import Estimator
>>> env = gym.envs.make("MountainCar-vo")

2. Ornpepenum e->KaHYI0 CTPaTEeTUIO:

>>> def gen_epsilon_greedy_policy(estimator, epsilon, n_action):
vee def policy_function(state):

cee probs = torch.ones(n_action) * epsilon / n_action
vee q_values = estimator.predict(state)

vee best_action = torch.argmax(q_values).item()

vee probs[best_action] += 1.0 - epsilon

vee action = torch.multinomial(probs, 1).item()

ces return action

. return policy_function

OyHKIMYK TIepefaeTcs IapaMeTp €, IpuMHUMarui 3HaueHus ot 0 1o 1, Ko-
JIMYEeCTBO BO3MOXXHBIX AENCTBUI |A| U OLleHUBATe/b, UCHOAb3YeMbIi MJIsT
MpecKa3aHus LIeHHOCTe COCTOSTHMIA. Kaskmoe meiicTBye BbIOMPAETCS C Be-
POSITHOCTBIO &/|A|, a JTyuIiiee 13 M3BECTHBIX NEMCTBUI (C HAaMOObIIIeN IIeHHO-
CTBIO Mapbl COCTOSIHUE—TEICTBYME) C BEPOSATHOCTBIO 1 — € + &/|A|.

3. Ompenmenum GYHKIIMIO, BBITIONHSIONIYI0 Q-00yuyeHue € ammpokcumanyeit
byHKIMIA.

>>> def q_learning(env, estimator, n_episode, gamma=1.0,
epsilon=0.1, epsilon_decay=.99):

. AnroputM Q-o6ydyeHna c annpokcuMauuen GYHKUMi
vee @param env: okpyxawuas cpega Gym
vee @param estimator: obvekT knacca Estimator
ces @param n_episode: KonMyecTBO 3nNM3030B
. @param gamma: Ko3¢ouLUMeHT obecueHnBaHUA
cee @param epsilon: napameTp £-XafHO# CTpaTeruu
. @param epsilon_decay: ko3dduymeHT 3aTyxanusa epsilon
nnn
vee for episode in range(n_episode):
. policy = gen_epsilon_greedy_policy(estimator,
epsilon * epsilon_decay ** episode, n_action)
eee state = env.reset()
is_done = False
vee while not is_done:
. action = policy(state)
cee next_state, reward, is_done, _ = env.step(action)
vee q_values_next = estimator.predict(next_state)
. td_target = reward + gamma * torch.max(q_values_next)
vee estimator.update(state, action, td_target)
. total_reward_episode[episode] += reward
. if is_done:
vee break

e state = next_state

Peanusaums Q-06y4eHus C IMHEeNHOM annpokcuMaumein dyHkuuin < 187

@yHKUMA q_learning() BBITIOIHSET CJIeAyIOIINe TeiCTBUS:

O B KaXXIOM 3MM30/le€ CO3[AaeT £-)KaJHYIO CTPATeTuIo, IPUUYEM & 3aTyXaeT
¢ koabduumentTom 0.99 (e B mepBoMm amu30fe € 66110 paBHO 0.1, TO BO
BTOpOM 6ymeT paBHO 0.099);

O BBITTONHSIET 3MM30/]: HA KaKIOM IIIare BhIOMpAETCS HEeiCTBUE d, CIeqys
€-3KagHOI cTpaTernu; 3HaueHusT Q-QYHKIINUY 1T HOBOTO COCTOSTHMSI BbI-
YUCISIOTCS C VICTIONb30BaHMEM TEKYIIEro OLIeHMBATENIS, 3aTEM I[eJIeBOe
3HaueHue V(s = r + ymax,V(s') ucnonbsyercs ajis1 00yuyeHusl OLleHUBA~
TeJs;

O mporouseT n_episode SMM30I0B ¥ 3aIIOMMHAET ITOJTHbIE BO3HATPAKIAEHNUS
B KaKIOM 31M30]e€.

4. 3agmaem KoimuecTBo mpusHakoB 200, ckopocth ob6yuenus 0.03 u cosmaem
OlleHMBaTesb C TAKMMU [lapaMeTpamMu:

>>> n_state = env.observation_space.shape[0]

>>> n_action = env.action_space.n

>>> n_feature = 200

>>> lr = 0.03

>>> estimator = Estimator(n_feature, n_state, n_action, 1r)

5. Beimonusem Q-o6ydeHne ¢ anmpokcumanyeit pyakuuit Ha 300 arm3opax, 3a-
ITOMMHasI [TOJIHbIe BO3HATPAKAEHMS B KAXKIOM SITMU30/I€.

>>> n_episode = 300
>>> total_reward_episode = [0] * n_episode
>>> q_learning(env, estimator, n_episode, epsilon=0.1)

6. CTpOI/IM I‘pa(flJI/IK 3aBUCMMOCTHU BO3HArpakaeHus B 31IM3040€e OT BpEMEHN:

>>> import matplotlib.pyplot as plt

>>> plt.plot(total_reward_episode)

>>> plt.title('3aBucuMocTb BO3HArpaxAeHua B 3nu304e OT BpemeHun')
>>> plt.xlabel(3nu3og')

>>> plt.ylabel('MonHoe Bo3HarpaxaeHue')

>>> plt.show()

Kak 3to paboraer

Kaxk Buayum, anroputm Q-o6yueHus ¢ armpoKcuManmeil QyHKIMit bITaeTCs HANTU
OTITVMAaJIbHbIE Beca B MOZEJSX alllPOKCUMAIMK, CTPEMSICh HAWIYUYIIMM 06pa3om
ouleHUTh 3HauUeHus1 Q-GyHKuMM. OH OX0X Ha TabimuHoe Q-00yueHe B TOM CMbIC-
Jie, YTo 06a TeHepUPYIOT OOyUalolMe AaHHbIe C TIOMOILIbIO APYTroit cTpaTernu. OH
GoJIbIIIe TTOAXOANT JIJIS OKPYKAIOIMX CPel C OGOMBIIVM ITPOCTPAHCTBOM COCTOSTHUIA,
Korga Q-dbyHKIMS anmpoKCMMUPYeTCsl HAOOpOM Mofiesieli perpeccui 1 JlaTeHTHbI-
MM TIpU3HAKaMM, B TO BpeMsl Kak IMpu TabamyHoM Q-oOyueHMM s 0OHOBIEHMS
LEHHOCTE MTPUMEHSIETCS TOUHbIN TTOUCK B Tabuile. TOT GhakT, UTO MOJIE perpec-
cyy OGHOBJISIIOTCSI TTOCJTe KaskIOTO LIara S1m30/a, comokaeT Q-obydeHne ¢ anmpoK-
cuMaieit GyHKUM u TabamyHoe Q-obyueHue.

[Tocre Toro kak Mozienb 06yyeHa, HaM OCTaeTCs TOIbKO MPYMEHUTb MOJ NN pe-
rpeccuy Ojisl IpefcKasaHyus LIeHHOCTe Map COCTOsIHMe—IeiCcTBMe OJIsl BCeX BO3-

188 < MacwrabupoBaHue C MOMOLLbI0 annpPOKCUMALIUK DYHKLMIA

MOSKHBIX JI€CTBUI U BbIOPATh AEICTBME C MaKCUMAaIbHO [IeHHOCThIO B JAHHOM
cocrostHMM. I'paduK, MOCTPOEHHBIN Ha IIare 6, BHIIIIIUT CAeIYIOIIMM 00pa3oM:

3aBUCMMOCTb BO3HarpaxxaeHua B ann3oge oT BpeMeHU

—130 4

—140

=430

—160 -

=170

=180

MonHoe BO3HarpaxaeHue

—190

=200 A

T T T T T
0 50 100 150 200 250 300
onuson,

MbI BUAVIM, UTO TIOC/IEe IEPBBIX 25 MTepaluii B OONbIIMHCTBE SMM30]0B aBTOMO-
6MIT10, UTOOBI JO6PATHCS 10 BEPIIMHBI TOPBI, HY;KHO OT 130 mo 160 maros.

Peanusauma SARSA
C JIMHEMHOW ANMPOKCUMALMEN ®YHKLUNA

B npenpimyiiem peliernite Mbl peliv 3afauy O MalllMHe Ha Tope C MOMOIIbI0 ajiro-
putMa Q-o0yueHus ¢ pas3feneHHo cTparerueit. Temepb MPoAeIaeM TO K& caMoe
¢ momo1npio anroputma SARSA (pasymeeTcst, ero Bepcuiu ¢ anrpokcumaimen QyHk-
LWiA).

B anroputme SARSA Q-dyHKIMsS 06HOBsIETCS 10 hopMmyIie:

Q(s, a) = Q(s, a) + a(r +yQ(s', a’) - Q(s, a)).

31ech s’ — cocTosiHMe, B KOTOPOe OKpyKalolas cpefia MepexoiuT U3 COCTOSIHUS S
rocyie AeiicTBUS a, I — IIOyYeHHOe TIPY 9TOM BO3HarpakaeHue, « — CKOPOCThb 06yue-
HuUs, y — Koo duiimeHT obectieHnBanus. Cenylolee neiicTBue a’ BIOMpaeTcs, cie-
ITyst TO¥A Ke £-3KaJHOJ CTpaTerum, KOTopast UCIob3yeTcs ajst o6HoBaeHus Q. U 310
nejicTBYME BBITIONHSIETCSl Ha cenyooileM Imare. [Tostomy wieH omm6ku B SARSA
C anmpokcuManyei GYHKIMIA BBITJISIONUT TaK:

8=r+yV(s,.,) - V(s)=r+yV(s', a') - V(s,).

Peanuzauma SARSA c nuHeinHoi annpokcumaumen dyHkumin % 189

Llesnb 06yueHMsI — MUHMMM3UPOBATD WIeH OMIMOKM, CBEAS €r0 K HYJIO, T. €. OlleHKa
V(s,) momKkHa yA0BAeTBOPSATh YPaBHEHUIO

V(s) =r+yV(s', a’).

Terepb 3aa4a CBOAUTCST K TOMY, UYTOOBI HAMTY ONTHMAaJIbHbIE Beca O B hopmyie
V(s) = OF(s), Ipy KOTOPBIX JOCTUTAETCS] HAMTYUIIIast almpoKcuMaIust GyHKIUM 1eH-
HOCTU COCTOSTHMI V(S) 171 BCeX BO3MOSKHBIX JIeicTBUI. OYHKIIMS TTOTEPh, KOTOPYIO
MbI IIBITAEMCSI MMHUMM3UPOBATh B 3TOM C/Iyvyae, TaKasl ke, Kak B 3ajlaue perpeccuu,
T. €. CpeIHeKBaApaTNIecKas OumoKa MeXITy MICTUHHBIM 3HaUE€HVEM ¥ €T0 OI[€HKOiA.

Kak 310 penaetca

Peanusyem anroputm Q-o6ydeHMs C ammpokcuMaryeii GyHKIMiA, oab3ysach -
HeJHBIM OlLleHMBATeNeM — KjaaccoM Estimator m3 ¢aitia linear_estimator.py, KOTO-
pbIii ObLT co3maH B perienTe «OreHnBanne Q-GyHKIINIA TOCPEICTBOM aIllIPOKCHMMa-
LV METOJIOM TPaVieHTHOTO CITyCKa».

1. VmmopTtupyem HeoOGXoAMMble MOIY/IV Y CO3TAAMM SK3eMILISIP OKPYsKaIOIIei
cpenbl Mountain Car:

>>> import gym

>>> import torch

>>> from linear_estimator import Estimator
>>> env = gym.envs.make("MountainCar-vo")

2. Bocrmonb3yeMcs TOJ ske QYHKLMEN £-3KaJHOW CTpaTeruu, KoTopast Obuia Ha-
M1CaHa B MpeAbIAyIeM pelenTe.

3. Ompenenum GYHKIMIO, BBITIOTHSIONIYIO0 aaropuTM SARSA ¢ anmpokcumany-
el pyHKIMiA.

>>> def sarsa(env, estimator, n_episode, gamma=1.0,
epsilon=0.1, epsilon_decay=.99):

Anroputm SARSA C annpokcumauuen QyHKLWiA

vee @param env: okpyxawuas cpega Gym
@param estimator: obvekT knacca Estimator
vee @param n_episode: Ko/MYeCTBO 3nNM3030B

cee @param gamma: Ko3¢duyueHT obecuyeHnBaHuA

. @param epsilon: napameTp €-XafHO# CTpaTerum

vee @param epsilon_decay: ko3¢duumeHt 3atyxawusa epsilon

vee for episode in range(n_episode):

. policy = gen_epsilon_greedy_policy(estimator,
epsilon * epsilon_decay ** episode,
env.action_space.n)

state = env.reset()
vee action = policy(state)

. is_done = False

eee while not is_done:
eee next_state, reward, done, _ = env.step(action)

190 < MacwrabupoBaHWe C MOMOLLbI0 anmnpPOKCUMALIUK BYHKLMIA

. q_values_next = estimator.predict(next_state)

. next_action = policy(next_state)

. td_target = reward + gamma * q_values_next[next_action]
. estimator.update(state, action, td_target)

. total_reward_episode[episode] += reward

cee if done:

cee break

ves state = next_state
. action = next_action

OYHKIUMS sarsa() BBIMOJHSET CJIeAYIOLIeE OeiICTBUS

O B KaX[OM 3MM30[€e CO3[aeT £-KagHYI0 CTpaTeruio, MpuyeM € 3aTyxaeT
¢ koapduumentom 0.99;

O BBIMIOMHSIET 3MM30[: Ha KaXXIOM Ilare BbIOMpaeTCs OeiiCcTBUe d, CIeqys
€-3KaHOM CTpaTerumu; B HOBOM COCTOSIHUM BbIOMpAeTCs OeliCcTBUe B CO-
OTBETCTBUM C TOJi K€ €-KaHOI cTpaTerueit, 3HaueHus: Q-QyHKunm st
HOBOT'O COCTOSIHMSI BBIUMCIISIIOTCS C UCIIOb30BaHMEM TEKYLIero OLeHM-
BaTeJIsl, 3aTeM LjeJieBoe 3HaueHue V(s,) = r + ymax,V(s', a’) ucronbsyercs
IJIST OOyUeHMs OlleHUBATeIS;

O mnporoHsieT n_episode aN1M3040B ¥ 3alIOMMHAET MOJIHbIE BO3HAIPAXKIEHUS
B K&XXJIOM 3MM307e€.

4. 3apmamum KonmudecTBo MpusHakoB 200, ckopocTs 06yuenus 0.03 u cosmagum
OlleHMBaTe/b C TAKMMM IIapaMeTpaMu:

>>> n_state = env.observation_space.shape[0]

>>> n_action = env.action_space.n

>>> n_feature = 200

>>> lr = 0.03

>>> estimator = Estimator(n_feature, n_state, n_action, 1r)

5. Boimonuum anroputm SARSA c anmpoxkcumanyeit pyHkuuit Ha 300 snm3onax,
3arl0MMHas [10JIHbIe BO3HATPAXKAEHMS B K&KIOM 3IIU30/eE.

>>> n_episode = 300
>>> total_reward_episode = [0] * n_episode
>>> sarsa(env, estimator, n_episode, epsilon=0.1)

6. TTocTpoum rpaduk 3aBUCUMOCTY BO3HATPAXKIEHNS B 3TIM30/e OT BpeMEHN

>>> import matplotlib.pyplot as plt

>>> plt.plot(total_reward_episode)

>>> plt.title('3aBucuMoCTb BO3HarpaxgeHUs B 3NM30je OT BpeMeHun')
>>> plt.xlabel(3nuszoa')

>>> plt.ylabel('MonHoe Bo3Harpaxaexue')

>>> plt.show()

Kak 3to paboraer

SARSA c anmpokcuMmariveit GyHKIMI IIbITaeTCS HATH ONITUMAaJIbHbIE Beca B MoOjIe-
JISIX aIIPOKCUMAaINY, CTPEMSICh HAVITYUIITMM 06pa3oM OIeHUTh 3HaueHus Q-(pyHK-
1. OH ONITUMU3UPYET OIl€HUBATEb, BBIOMPAs TEICTBUSI B COOTBETCTBUM C TO 3Ke

MakeTHas o6paboTka c npumeHeHnem Bydbepa BocriponsseaeHus onbita < 191

CTpaTerueit, B IPOTUBOIIOIOKHOCTh OOYUEHIIO Ha OIbITE, CTeHEPUPOBAHHOM JIPY-
roJi cTparerueii, Kak B Q-06yueHmm.

[Tocre TOTO KaK Moieb 06yueHa, HaM OCTAeTCsI TOJbKO MPUMEHUTDh MOJENN pe-
rpeccuy Oj1sl IpefcKasaHus LIeHHOCTel Map COCTOSIHMe—IeliCTBME AJI1s1 BCeX BO3-
MOSKHBIX JT€IICTBUIT M BBIOpPATD IEiCTBME C MAaKCUMMAaIbHONM II€HHOCTHIO B TaHHOM
cocrostHuM. I'paduK, MOCTPOEHHBIN Ha IIare 6, BHIIIIIUT CAeAYIOIIMM 00pa3oM:

3aBMCUMOCTb BO3HArpaXkAeHusi B 3NM304e OT BpEMEHU
=100
=120 4
()
=
I
Q
3
X —140 1
a
—_
1]
I
m
o
o —160
Q
o
I
=
=
—180 A
—200 - v
T T T T T T T
0 50 100 150 200 250 300
onu3on,

MBI BUIVM, YTO ITOC/Ie TIEPBBIX 25 uTepanuii B 60JbIIMHCTBE SMM30I0B aBTOMO-
6WT10, UTOOBI JOGPATHCS IO BEPIIMHBI TOPBI, HY;KHO OT 130 mo 160 maros.

IMAKETHASI OBPABOTKA C NMPUMEHEHUEM BY®EPA
BOCIMPOM3BEAEHWUA OMNbITA

B ABYX mpembImymMx perernTax Mbl peaan30BaIi ABa aIrOpUTMa OOydeHMUs C arm-
MIpOKCUMMAaIMeit GyHKIINIA: ¢ pas3eseHHOM U C eMHOV cTpaTerueii. B sTom perente
MBI YAYUIIMM KauecTBO Q-00yueHMs C pa3zie/eHHOl CTpaTerueii, BKIOUNB Oydep
BOCIIPOM3BEZIeHMSI OIbITA.

BocnpousBeneHue onbITa 03HAYAET, YTO Mbl COXpPaHsieM OMBIT areHTa, HaKOM -
JIEHHBIVI Ha MPOTSDKEHUM SMU307a, BMECTO TOTO YTOOBI BBIMIOIHSTh Q-00yueHMe.
Ortam 06yueHMs ¢ BOCIIPOU3BEAEHMEM OITbITA ITPeBPAIlaeTCs B IBa dTalla: HaKOTLIe-
HIi€e OITbITA 1 OOHOBJIEHVE MOZIEJIell Ha OCHOBE MOJTyYeHHOT'O OTIbITA IO 3aBePIIeHNN
amm3ona. TouHee, OTBIT (KOTOPBIN TaKsKe HAa3bIBAIOT 6yhepoM, MiI MaMsThIO) BKITIO-
YaeT MPOIIJIoe COCTOSTHME, BHIOpAaHHOE B HEM JeJiCTBMe, IOTyYeHHOe BO3HArpaskae-
HMe U (JIeAyIollee COCTOSIHME IJIST KaKAO0TO 1Iara Snm30/a.

192 < MacwrabupoBaHWe C MOMOLLbI0 annpPOKCUMALIUK BYHKLMIA

Ha srare o6yuenust 13 6ydepa ombITa CIyuaifHbIM 06pa30M BbIOMPAETCS CKOJTbKO-
TO MPUMEPOB, KOTOPbIE MCIIOIb3YIOTCS IJIs 06yUueHMst Mopeeit. BocponsseneHme
OTIbITA MOXKET CTabMUIM3MPOBATD Mpollecc 00yueHus, obecreunB Habop c1abo Kop-
penpOBaHHbIX IIPUMEPOB, & 3HAUMUT, TOBBICUTCS U 3D (HEKTUBHOCTD 00YUEHNMS.

Kak 310 penaetcs

[TpuMeHUM BOCIIPOU3BeIeHMe OIbITa K Q-00yUeHMIO C arIpoKcuMaIein QyHKIMiA,
BOCITIO/Ib30BABIINCh JIMHEITHBIM OlleHMBaTeNleM — KjiaccoM Estimator 13 daiiia 1in-
ear_estimator.py, KOTOpPbIi1 6bLT co3maH B perente «OneHuBanue Q-QyHKIMIT MO-
CpeaCTBOM allIpoKCUMAalIMM MeTOAO0M IPpaiieHTHOTO CITyCKa».

1.

MmriopTupyemM He0OXOAMMbIe MOIYIN U CO3aAMM 9K3eMIUISIP OKPYysKatomiei
cpenbl Mountain Car:

>>> import gym

>>> import torch

>>> from linear_estimator import Estimator
>>> from collections import deque

>>> import random

>>> env = gym.envs.make("MountainCar-vo")

Bocrtonbs3yemcst Toi ke (DYHKIMEN £-KaIHOM CTpaTernu, KoTopast 6blaa Ha-
micaHa B periente «Peanusaiiys Q-o6ydyeHus C IpyUMeHeHeM JIMHeHOI ar-
MIPOKCUMAIVY PYHKINI».

3agaayM KoaumdecTBo mpusHakoB 200, ckopocTb o6yuenns 0.03 u cosmagum
OlleHMBaTe b C TAKMMU [TapaMeTpaMu:

>>> n_state = env.observation_space.shape[0]

>>> n_action = env.action_space.n

>>> n_feature = 200

>>> lr = 0.03

>>> estimator = Estimator(n_feature, n_state, n_action, 1r)

Omnpenenum 6ydep s XpaHeHMs OIbITa:
>>> memory = deque(maxlen=400)

HoBble mpumepsl 6YyAyT T06ABISTHCS B KOHELL 0Uepeii, a CTapble — YOATISIThCS
13 Havasa, Korjaa KoJimyecTBO 371eMeHTOB B ouepeny rpeBbicuT 400.

Ormpenmenum (DYHKINIO, BBHIMONHSIONMYI0 Q-00ydyeHue € ammpoKCUMariye
(YHKIMIT ¥ BOCIIPOM3BEIeHEM OIIbITa.

>>> def q_learning(env, estimator, n_episode, replay_size,
gamma=1.0, epsilon=0.1, epsilon_decay=.99):

ces AnroputM Q-obyuyeHus C annpoKcuMauueid GYHKUMA M BOCNPOM3BEAEHMEM OMbITa

vee @param env: okpyxawuas cpega Gym

cee @param estimator: obvekT knacca Estimator

vee @param replay_size: CKOMbKO NPUMEPOB MCMONbL30BaTb MpU KaxAoM
. o6HoBNeHUN Mogenu

ces @param n_episode: KonnyecTso 3nuU3040B
. @param gamma: Ko3¢puuMeHT obecueHnBaHUA

MakeTHast 06paboTka c npuMeHeHueM Gydepa BoCnpousseaeHus onbita % 193

@param epsilon: napameTp £-XafHO# CTpaTeruu

@param epsilon_decay: koa¢duymeHT 3aTyxaHusa epsilon

for episode in range(n_episode):

policy = gen_epsilon_greedy_policy(estimator,
epsilon * epsilon_decay ** episode,
n_action)

state = env.reset()

is_done = False

while not is_done:

action = policy(state)

next_state, reward, is_done, _ = env.step(action)
total_reward_episode[episode] += reward
if is_done:

break

q_values_next = estimator.predict(next_state)
td_target = reward + gamma * torch.max(q_values_next)
memory.append((state, action, td_target))

state = next_state

replay_data = random.sample(memory,
min(replay_size, len(memory)))
for state, action, td_target in replay_data:
estimator.update(state, action, td_target)

OTa QYHKUMS BBITIOTHSIET CJIEAYIOIIVE TeiCTBUS:

o

o

o

B K&)KIOM 3IM307€ CO34aeT £-XKaAHYI CTpaTeruio, IpuueM & 3aTyxaeT
¢ koadduumentrom 0.99 (ecsin B mepBom amm3ope € 66110 paBHO 0.1, TO BO
BTOpOM OyzeT paBHo 0.099);

BBITIOJTHSIET 3MM30[: Ha KaskJOM Illare BbIOMpaeTCs [eiicTBUe d, CAemyst
€-KagHOM cTpaTernu; 3HaueHMUs Q-GOYHKUMM [/ HOBOTO COCTOSTHMSI
BBIUMCIISIIOTCS C MCIIOJIb30BaHMEM TEKYIEro OLleHMBaTessl, 3aTeM Bbl-
qucasieTcs LeneBoe 3HadeHue V(s,) = r + ymax,V(s") u B 6ydepe Bocrpo-
M3Be[eHMsI COXPAHSETCS KOPTeX, COCTOSILIMIA U3 COCTOSIHUS, HEeCTBUS
" 1IeJIeBOTO 3HAYeHMS;

MowIe KaXkIoro smusona u3 Oydepa crydaiiHbIM 00pa3oM BbIOMpPAETCS
replay_size IpMMepOB, KOTOPbIE UCIIOIb3YIOTCS /1T 0OyUeHMs OlleHMBa-
Tess;

MIPOTOHSIET n_episode SMM30L0B U 3alIOMMHAET MOJHbIE BO3HArPaskIeHus
B KaXX[IOM 3MM307e€.

Boimonuum Q-o6yuenue ¢ 6ydepom Bocripoussenenus Ha 1000 smm3010B:

>>> n_episode = 1000

Bosibiiie 3M130/10B HY>KHO ITPOCTO MTOTOMY, UTO MOJIE/V HeJOCTATOUHO 00yUe-
HbI, II09TOMY areHT BBIIOIHSIET 6OJIbIIe CAYYaifHbIX [IATOB B PAHHMX 3IIM-
307ax.

3agaaum pasmep 6ydepa Bocriponssemenns 190:

>>> replay_size = 190

194 < MacwrabupoBaHWe C MOMOLLBI0 annpPOKCUMALIUK BYHKLMUIA

By,ILEM 3aIIOMMHATD ITOJTHbI€ BO3HArpa kaeHms B KaXKI0M 3IIM30/4e:

>>> total_reward_episode = [0] * n_episode
>>> q_learning(env, estimator, n_episode, replay_size, epsilon=0.1)

7. HOCTpOI/IM I‘pa(l)l/IK 3aBUCMMOCTHU BO3HArpakaeHus B 31IM3040€e OT BpEMEHI

>>> import matplotlib.pyplot as plt

>>> plt.plot(total_reward_episode)

>>> plt.title('3aBucuMoCTb BO3HAarpaxgeHusa B 3nM304e OT BpeMeHun')
>>> plt.xlabel('3nu3o0g')

>>> plt.ylabel('NMonHoe Bo3Harpaxgeuue')

>>> plt.show()

ITocTpoeHHbIT rpadyK BHINISIAUT CIETYIONMM 06pa3som:

3aBVICMMOCTb BO3HarpaxxgeHua B ann3oe oT BpeMeHU

—120 1
()
=
I
&
g —140 1
o
a
—_
1)
ey
m
 -160 A
()
(]
I
=
[}
= 180 -

—200 1

T T T T T T
0 200 400 600 800 1000
onuson,

Mb1 BuauM, uTO Tipy Haymunum 6ydepa BocmpousBemeHus Q-obydyeHue CTaHO-
BUTCS ropaso ycroitunsee. [Tocte mepsoix 500 uTepaiuii BO3HArpaskaeHus B 60b-
IIMHCTBE 3MM30I0B KOJIeO/I0TCS B Auarnas3oHe oT —160 mo —120.

Kak 3to paboraer

B aTOM peliernte Mbl peliIv 3afady O MallMHe Ha TOpe C MOMOIIbI0 Q-06yueHust
C armpokcumManyeil GyHKIuii 1 6ydhepoM BoCIpousBeAeHus omnbiTa. HoBoe pere-
H1e mpeBocxoguT Q-obyueHne 6e3 6ydepa BOCIIpOM3BeqeHMSs, TOCKOIbKY, BMECTO
TOT0 YTOOBI Cpasy MPUHUMATHCS 3a OOyUeHMe OlleHMBaTeIsI, Mbl CHauaia HaKaTlii-
BaeM B Gydepe JaHHbIe, HAGTIOJABIIMECS B 3IM307aX, a 3aT€M MPOU3BOAUM CITy-

Peanusaums Q-06y4eHus ¢ annpokcuMaumen GyHKUmiA HeMpoHHOM ceTbio % 195

yajiHble BHIOOPKY MAKeTOB IIPMMepPOB 13 Gydepa 1 Ha HUX 00ydyaeM OIleHUBATEb.
B pesynbTraTe mpuMepbl BO BXOTZHOM Habope JaHHBIX MeHbIIIe 3aBUCST APYT OT IPY-
ra, I03TOMy 06yueHMe OKa3bIBaeTcs 60j1ee yCTOMUMBBIM U 3G (DEKTUBHBIM.

PeEann3AuMS Q-0BYUEHMS C AMMPOKCUMALIMEN ®YHKLMIA
HEAPOHHOW CETbIO

Boiiie MBI ykKe TOBOPUIIN, UTO AJIS1 alllIPOKCUMALMY MOXKHO MCIIO/Ib30BaTh U Heil-
pOHHBIE CeTU. B 3TOM peljenTe Mbl pelliMM 3aJauy O MalllfHe Ha rope, IpMMeHUB
Q-o06yueHue c anmpoKcuMalueii HeiipOHHOI CeThIO.

enp anmporcuManyy QyHKIMIT — B3SITh HA60p TPU3HAKOB U OLEHUTb Q-PyHK-
LIMI0 C MIOMOILBI0 Mofenu perpeccun. VICronb3ys Ojs OLeHMBAaHUS HEVPOHHYIO
CeTb, Mbl TIOBBIIIAEM T'MOKOCTb perpeccuu (6aromapss HECKOIbKUM CJIOSIM CETH)
¥ BBOAVM HEeIMHEIHOCTb (HeMMHelHYyI0 GYHKI[MI0O aKTUBALUU B CKPBITHIX CIOSIX).
B octanbHbIX yepTax Q-o6yuyeHue MPOU3BOAUTCS MPUMEPHO TaK JKe, Kak B CJryyae
JVHENHON anmpokcuManyu. s oOGyuyeHus CeTU UCIIOAb3YeTCsl METO/, TPaJVeHT-
HOTO crrycka. KoHeuHas 11e/1b 06yueHUst — HaiiTy ONTUMAaJIbHbIE Beca CeTH, TIPU KO-
TOPBIX NOCTUTAETCS HAWIyUIlasl anmpokcumauusi GyHKIUY 1eHHOCTU COCTOSTHUI
V(s) nyst Bcex BO3MOXHBIX AeiicTBMIL. B KauecTBe MUHUMMU3UPYEMOI QYHKIUK T10-
Tephb MO-MPEXHEMY BBICTYTIAET CPeJHEKBAAPATUUECKAS OIIMOKA MEKAY UCTUHHBIM
3HAUYeHMeM U ero OLIeHKOA.

Kak 3to penaetcs

HauHeMm c peanusauyy OIeHMBATENSI HA OCHOBE HEMPOHHON ceTy. Mbl BOCIIONb-
3yeMcsl MHOTMMM YacTSIMU JIMHETHOTO OIleHMBATeIs, pa3paboTaHHOTO B pellenTe
«OuennBanme Q-GbYyHKIMIT TOCPEICTBOM aIIPOKCHUMAIINM METOIOM I'PaiieHTHO-
ro ciycka». Paznuune nuilb B TOM, YTO BXOAHON U BBIXOHOJ CJIOM CO€IVHEHBI CO
CKPBITBIM CJ1oeM ¢ dyHKIMel akTuBaruu ReLU (6510K TMHETHOM peKTudUKamum).
[IosTOMY M3MEHUTH HYKHO TOJIBKO MeTOf, __init__:

>>> class Estimator():

ces def __init__(self, n_feat, n_state, n_action, 1r=0.05):
ces self.w, self.b = self.get_gaussian_wb(n_feat, n_state)
ces self.n_feat = n_feat

ces self.models = []

ces self.optimizers = []

cee self.criterion = torch.nn.MSELoss()

ces for _ in range(n_action):

cee model = torch.nn.Sequential(

vee torch.nn.Linear(n_feat, n_hidden),

ces torch.nn.ReLU(),

ces torch.nn.Linear(n_hidden, 1)

cee)

ces self.models.append(model)

vee optimizer = torch.optim.Adam(model.parameters(), lr)
ces self.optimizers.append(optimizer)

196 < MacwrabupoBaHWe C MOMOLLBI0 anmnpPOKCUMALIUK BYHKLMIA

Kak BUIVMM, CKpPBITBIN €10V cOmepskuUT n_hidden 6J10KOB 1 HameseH GyHKIMe ak-
tuBauyu ReLU, torch.nn.RelLU(), a 3a HUM CJiefyeT BBIXOJHOV CIOM, TOPOXKIAIOLINIA
OLIeHKY.

OcranbHble yacTy Kiacca Estimator ¢ HeMipOHHON CeThIO TaKMe XKe, KaK B JIMHel-
HOM olleHuBaTene. MoxkeTe CKONMpPOBATh UX U3 (aiina nn_estimator.py.

Terepb MOXKHO TepeiiTy co6CTBEHHO K Q-06yueHuio ¢ 6ydepom Bocpon3sBee-
HMS OTIBITA.

1. VmmopTtupyem Heo6XOaMMble MOIYIIN, B T. U. TOJTbKO UTO HATIMCAHHBIN K1acc
OlIeHMBATEJISI HA OCHOBE HEeMPOHHO ceTu Estimator u3 aiina nn_estimator.
py, ¥ CO3IaAMM 3K3eMIUISIp OKpy»Katolieii cpebl Mountain Car:

>>> import gym

>>> import torch

>>> from nn_estimator import Estimator
>>> from collections import deque

>>> import random

>>> env = gym.envs.make("MountainCar-v0")

2. Bocronbsyemcs TO¥ ke GQYHKIMEN e-5KagHOM CTpaTeruy, KoTopas 6buia Ha-
mycaHa B pererre «Peanusanys Q-06ydyeHus ¢ IpUMeHeHeM JIMHEeTHOI ar-
MIpOKCUMAIUY QYHKINI».

3. 3amaguMm KoimdecTBO mpusHakoB 200, ckopocth obyuenust 0.001, pasmep
CKpBITOTO /1081 50 ¥ cO3aiuM OLieHMBATeb C TAKMMM ITapaMeTpaMu:

>>> n_state = env.observation_space.shape[0]

>>> n_action = env.action_space.n

>>> n_feature = 200

>>> n_hidden = 50

>>> 1r = 0.001

>>> estimator = Estimator(n_feature, n_state, n_action, n_hidden, 1r)

4. Onpenenum 6ydep A XpaHeHUS OIbITA:
>>> memory = deque(maxlen=300)

HoBble mpumeps! OYAYT TOOABISATHCS B KOHELL OUepeii, a CTapble — YIS ThCS
13 Hayvaja, Korga KOJIMUYeCTBO 3JIEMEHTOB B ouepenn nmpesbicut 300.

5. Bocmonb3yeMmcs TOV ke QyHKIMe 00yueHus q_learning, KoTopast 6bl1a pas-
paboraHa B IpeapiaynieM perernTte. OHa BITONHSIET Q-06yueHue ¢ armpoK-
cuMaimeii GyHKUM 1 6ydbepom BOCIIPOM3BeIeHMS OIbITA.

6. BoimomauM Q-o6yueHne ¢ 6ybepom BocmpousBemenust Ha 1000 smu30moB
U 3a1aauM pasMep BeIbopKu u3 6ydepa 200:

>>> n_episode = 1000
>>> replay_size = 200

BYILEM 3aIIOMMHATDb ITOJTHOE€ BO3HATPAXKAEHNME B KaXKIOM 3IIM304e:

>>> total_reward_episode = [0] * n_episode
>>> q_learning(env, estimator, n_episode, replay_size, epsilon=0.1)

7. Tloctpoum rpadmk 3aBUCHMOCTY BO3HATPasKAEHNS B SMM30/I€ OT BpEMEHM:

>>> import matplotlib.pyplot as plt

Peanusauums Q-06y4eHus ¢ annpoKcUMaumnen GyHKLMA HeipoHHOI ceTbio % 197

>>> plt.plot(total_reward_episode)

>>> plt.title('3aBucuMoCTb BO3HArpaxgeHusa B nM304e OT BpemeHun')
>>> plt.xlabel(3nu3og')

>>> plt.ylabel('MonHoe Bo3Harpaxpexue')

>>> plt.show()

Kak 3to paboraer

Anrmipokcumaniusi GyHKIMIA HEJAPOHHBIMU CETSIMM OUeHb TTOXO0Ka Ha JIMHEHYIO afl-
MIPOKCUMMAIINIO, TOJbKO BMECTO ITPOCTOM JIMHETHON (GYHKIUM JIT OTOOpasKeHMsI
MPU3HAKOB Ha IiejieBble 3HAUeHMsl MPUMEHsIeTCsl HelipOHHas ceTb. B ocTaibHOM
aJTOPUTM TaKOJ ke, HO Garofapst CJIOKHOV apXUTEKType HepOHHOW ceTu U He-
JIMHeHOM GYHKINMY aKTUBALMY OH 00/1afaeT 60JIbllel r’MOKOCTbIO, 8 3HAUMT, U JTyU-
1Ieji mpecKa3aTeabHO CIIOCOOHOCTHIO.

[TocTpoeHHbIN Ha 1Iare 7 rpadUK BHIVISIAUT CJIEIYIOIIIM 00pa3oMm:

3aBUCMMOCTb BO3HarpaxaeHusa B ann3one oT BpeMeHun

_80 -

=100 1

=120

~140 -

—160

MonHoe BO3HarpaxaeHue

—180 A

—=200

T T T T
4] 200 400 600 800 1000
onu3opn,

MbI BUAMM, UTO Ka4ecTBO Q-00yUeHMs C HEiiPOHHOJ CeThIO BHIIIE, UeM IIPU UC-
M0JIb30BaHUM MuHetHOo GyHKuMu. [Toce nepssix 500 uTepainii BO3HArpasKoeHmsI
B OOJIBIIMHCTBE SMM3000B KOJIeOII0TCs B AnarnasoHe ot —140 go —85.

CM. TaKkXKe

LII/IT.':ITGJ'[F[M, JKeJTaloM OCBEXXKUTDH 3HAHMSA O HeﬁpOHHbIX CeT4daX, peKoMeHayeMm Cjie-
AYyIoue MCTOYHUKI:

O https://pytorch.org/tutorials/beginner/blitz/neural_networks_tutorial.html;
O https://www.cs.toronto.edu/~jlucas/teaching/csc411/lectures/tut5_handout.pdf.

198 < MacwrabuposaHue C MOMOLLBIO annpPOKCUMALIUK BYHKLMUIA

PEWEHWE 3A0AYM O BAIAHCUPOBAHWUM CTEPXHS
C NMOMOLLbIO AMMPOKCUMALIMU DYHKLMIA

B aTOM GOHYCHOM pellenTe Mbl pellMM 3a[auy O GalaHCMpoBaHuM crepxkHs (Cart-
Pole), mpuMeHUB anpoOKCUMAINi0 QYHKITMIA.

B rnmaBe 1 MbI yyke pelaam 3Ty 3a4a4dy € IOMOIIBI0 CIYYaliHOIO ITOMCKA, a TakxkKe
aJITOPUTMOB BOCXOXKIEHUSI Ha BEPUIMHY U IPaJMeHTHOI cTpaTeruu. A ceiiuac mMbl
IIPMMEHMM K Hell 3HaHMSI, ITOJTyYeHHbIe B 3TOI I71aBe.

Kak 310 penaetcs

[TpogeMOHCTPUPYEM pellleHMe ¢ MPUMEHEHMEM aIllIpOKCUMaIuy QYHKUWIA Heii-
POHHOI1 ceThI0 6e3 6ydepa BOCITPOM3BEIEHNS OIIbITA.

1.

VIMIopTupyeM HeoOXOAIMbIe MOIY/IN, B T. U. TOJIBKO UTO HaIlMCaHHbIi KIacc
OlIeHMBATe/ISI Ha OCHOBE HEeMPOHHO ceTu Estimator u3 aiina nn_estimator.
py, ¥ CO3IIaAMM SK3eMILISIp OKpysKatomieir cpembr CartPole:

>>> import gym

>>> import torch

>>> from nn_estimator import Estimator
>>> env = gym.envs.make("CartPole-v0")

Bocrionb3yemcst TO ke (QYHKIMEN £-KagHOM CTpaTernu, Kotopast Oblaa Ha-
micaHa B periente «Peanusaiiys Q-o6yuyeHns ¢ IpyuMeHeHeM JIMHeHOI ar-
MIPOKCUMAIVM QYHKIM».

3agaaum KoamuuecTBo mpu3HakoB 400 (OTMETUM, UTO IMPOCTPAHCTBO COCTOSI-
Huit B okpyxkatomieii cpeme CartPole 4-mepHoe), ckopocTb o6yuenus 0.01,
pasmep ckpbiToro cyiosg 100 1 co3maauM olleHUBaTedb ¢ TaKMMM TTapaMer-
pamu:

>>> n_state = env.observation_space.shape[0]

>>> n_action = env.action_space.n

>>> n_feature = 400

>>> n_hidden = 100

>>> 1r = 0.01

>>> estimator = Estimator(n_feature, n_state, n_action, n_hidden, 1lr)

Bocmonb3yemcst Toit ske GpyHKIIMe 06yueHns q_learning, KoTopast 6pl1a pas-
paboraHa B penenTe «Peanmmsanusi Q-o6yueHus ¢ MpUMeHEeHMEeM JIMHETHO
anrnpokcumaimu QyHKuuii». OHa BITONMHSIET Q-00yUueHue ¢ anmpoKCUMaI-
et QyHKIMIA.

Boimonaum Q-o6yueHue ¢ ammpokcumanueit dyHkuuii Ha 1000 3mm3010B
1 OyzieM 3aITOMMHATD TIOJTHOE BO3HArPakeHMe B KaXKIOM 31M130/e:

>>> n_episode = 1000
>>> total_reward_episode = [0] * n_episode
>>> q_learning(env, estimator, n_episode, epsilon=0.1)

U HaKOHeII, TOCTPOUM TpadyK 3aBMCUMOCTY BO3HATPAKAEHMS B STIM30€E OT
BpeMEeHN:

PeweHwue 3aaaun 0 6anaHCMPOBaHMM CTEPXKHA C MOMOLLBIO annpoKcuMaumun hyHkumun < 199

>>> import matplotlib.pyplot as plt

>>> plt.plot(total_reward_episode)

>>> plt.title('3aBucumMocTb BO3HarpaxgeHus B 3nusoge OT BpeMeHH')
>>> plt.xlabel(3nu3og')

>>> plt.ylabel('MonHoe Bo3HarpaxaeHue')

>>> plt.show()

Kak 3to paboraer

Mbsr1 pemmiu 3agavuy CartPole, TpMMeHMB anTOPUTM C ariIpokcuManyein GyHKimi
HePOHHOI CeThio, pa3paboTaHHbIl B IpenbiAyIleM pelente. OTMeTUM, UTO MPO-
CTPaAHCTBO HAOJIOAEHMIT B 3TOJ cpefie 4-MepHoe, T. €. ero pa3sMepHOCTh B [iBa pasa
6onbie, yeM B cpeme Mountain Car, Mo3TOMY MbI, PyKOBOICTBYSCbh MHTYUITUEI,
BIIBOE YBeJIMYMIN KOJIMYECTBO MPU3HAKOB U pa3Mep CKPBITOro cios. IToskcnepu-
MeHTHUpYJiTe ¢ anroputMom SARSA 1 Q-o6yueHneM c 6ypepomM BOCITPOU3BEIEHNS
Y IOCMOTPUTE, KAKO¥ 13 HUX OKaXKeTCs JIydIle.
[TocTpoeHHbIT Ha 11are 6 rpadUK BRITIIAUT CIEAYIOMM 06pa3soM:

3aBUCMMOCTb BO3HarpaxaeHusa B ann3one OT BpeMeHu

200 4 [-I I T

= T [
N w ~
u o wu
A i A

100 4

[MonHoe BO3HarpaxgeHue
]
wn
i

L
L=
I

=)
(%3]
i

T

T T T T
200 400 600 800 1000
onu3op,

o -

Mb1 BuauMm, uTo mocie nepssix 300 MTepanuit Bo3HArpaskaeHue B 6ONbIIMHCTBE
3MNM30[0B MakCUMaJIbHO U paBHO +200.

naBa

[ny6okune Q-cetu
B AEeUCTBUM

Imy6okoe Q-o6yueHye, B KOTOPOM UCITONb3YIOTCS IyOOoKMe Q-CceTu, CUMTAETCS ca-
MOJi COBpEMEHHOJ TeXHOIOoTruell 06yueHus ¢ MOoAKpeIvIeHeM. B 3Toil miaBe Mbl
paspaboTaeM pasauMyHble MOIEIM Ha OCHOBe TTy6oKMX Q-ceTeli M MPUMEHUM UX
K pelieHMI0 HecKoabKux 3amau OIl. HauneM c mpocTbix Q-ceTeli, a 3aTeM AOIMOIHUM
MX BOCIIPOM3BeJeHNEM OTbITa. UTOOBI MTOBBICUTH POOACTHOCTD, MbI BBEIEM JOTION-
HUTEJbHYIO IIeJIEBYIO CeTh U IMOKaKeM, KaK HacTpauBaeTcs Trybokass Q-ceTb. Mbl
TaKoKe MO3KCIIEPUMEHTUPYEM C TYIIbHBIMM Q-CeTIMM U YBUAUM, YeM UX (QyHKIMS
IIEHHOCTM OT/IMYAETCS OT APYIUX TUIIOB ITyOOKuX Q-ceTeii. B IBYX mocieqHux pe-
LIeTITax Mbl pelllM TPyIHbIe 3a/1auy, CBSI3aHHbIe C UTpamu Atari, BKIIIOUMB CBEPTOU-
HYI0 HEeJIPOHHYIO CETh B ITTyOOKYIO Q-CeTh.
B 37011 r1aBe NpUBOASTCS CJIEAYIONINE PELIETIThI:

peanusanus ryookux Q-cereir;

ynyuieHye DQN ¢ moMoIb0 BOCIIPOU3BENEHMS OIIbITA;

peanusaius anroputma Double DQN;

HAaCTpoViKa rureprnapaMeTpoB ajaropmutma Double DON niist cpensr CartPole;
peanusanys anroputma Dueling DON;

npumeHenne DON Kk urpam Atari;

MCII0/Ib30BaHMe CBePTOUHBIX HEMPOHHBIX ceTeli B urpax Atari.

000000

Peanuzaums rnysokux Q-ceTein

HarmomHuM, 4TO IpMMeHeH)e anmpoKcuManuu (GyHKIMIi 103BOJISIET 3aMEeHUTD
MPOCTPAHCTBO COCTOSIHMII HAOOPOM IPU3HAKOB, MMOPOXKIAEMBIX 10 MCXOTHBIM CO-
crosiuusiM. Imyookme Q-cetm (Deep Q-Network — DQN) oueHb ITOXOXKM Ha arl-
MIPOKCUMAIINIO HEMAPOHHBIMM CETSIMM, HO HeIIPOHHAS CeTh B HUX MCIIOJIb3YeTCS JIJIsT
MIPSIMOTO OTOOpaskeHMSI COCTOSIHMI Ha II@HHOCTY OeiCTBUii 6e3 MCIOIb30BaHMUSs
MMPOMEKYTOUHBIX CTeHepMPOBAaHHBIX ITPV3HAKOB.

B riry6okom Q-06yueHny HelipoHHas ceTh 00yYaeTcst BLIBOAUTh 3HaueHus Q(s, a)
ILJIST KasKIOTO AEeiCTBYSI, 3HAsI BXOTHOE COCTOSIHME S. [IeiicTBIe areHTa d BhIOMpaeTcst

Peanusaums ry6okux Q-ceten < 201

Ha OCHOBe TTOpOXKAaeMbIx 3HaUeHuit Q(s, a), cyienys e-5KagHO CTpaTerun. ApXuTek-
Typa DQN ¢ ABYMSI CKPBITBIMM (JIOSIMM TTIOKa3aHa Ha PUCYHKe HIDKe:

' Y
Q(s, 0)
Qs 1)
Q(s, 2)
Q(s, n)
| — | —
S CKpbITbIV CKpbITbIV LleHHocTn
cnon 1 cnon 2 NEeNCTBUM

Hamomuum, uto Q-06yueHie — 3TO aIrOPUTM 0OyUeHMsI C paseIeHHOl cTpaTe-
rueit, B KoTopoM Q-GYHKIMS 0OHOBIISIETCS TI0 hopMyIIe:

Q(s, a) = Q(s, a) + a(r + ymax,,Q(s', a’) - Q(s, a)),

rae s’ — COCTOsIHME, B KOTOPOe TePEeXOIMUT Cpefia 13 COCTOSIHMS S TI0C/Ie IeiiCTBHUS
a, r — TIOJTyYeHHOe TP 3TOM BO3HArpakmeHue, « — CKOPOCTh 00yUeHwus, y — Koad-
duiyenT obecueHuBanus. Hamume uneHa max,Q(s’, a’) o3HavyaeT, 4TO MOBeJeH-
yecKasl CTpaTerus >KagHas, T. e. /Il TeHepaluy 00yJualolinX JaHHbIX BbIOMpPAeTCs
JeViCTBYE B COCTOSIHMM S’ ¢ HaMbonbIuM 3HaueHreM Q-dyHkimu. DON ob6yyaercst
MMWHUMM3UPOBATh UWIEH OIINOKM

8 =r+ymax,Q(s’) — Q(s).

TakuM 06pa3oM, Hallla LeJIb — HAMTY ONTUMAIbHYIO MOJE/b CETU, IIPU KOTOPOIA
OOCTUTAeTCS HAWIyUIIasl armpoKCcuMaIus GyHKIuM IeHHOCTH cocTossHuit Q(S, a)
IJIST BCEX BO3MOXKHBIX AeiicTBUii. MUHMMM3UpyeMast (YHKUMSI [IOTePh, KaK U B 3a-
Jaue perpeccuu, — CpeJHeKBaapaTndeckas ommoKa MexXIy VCTMHHBIM 3HAUeHVeM
1 eT0 OLIeHKOJA.

Paspaboraem momenb DON nj1s perieHust 3amgaum o MmammHe Ha rope (https://gym.
openai.com/envs/MountainCar-v0/).

Kak 310 aenaerca
Peanusyem riny6okoe Q-o6yueHne ¢ moMoiibio ceti DON.
1. VmMmmopTtupyem HeOOXOIMMbIe ITaKEeThI:

>>> import gym

>>> import torch

>>> from torch.autograd import Variable
>>> import random

Mopynb Variable o6epThiBaeT TEH30P U MOJAEPKMBAET 06paTHOE PacIpo-
cTpaHeHMe.

202 <+ Tny6okue Q-ceTu B AeiCTBUM

2. Haunewm c meToma __init__ kmacca DON:

>>> class DQN():
def __init__(self, n_state, n_action, n_hidden=50, 1r=0.05):
self.criterion = torch.nn.MSELoss()
self.model = torch.nn.Sequential(
torch.nn.Linear(n_state, n_hidden),
torch.nn.ReLU(),
torch.nn.Linear(n_hidden, n_action)
)

self.optimizer = torch.optim.Adam(self.model.parameters(), 1r)

3. Temepb HamuiIeM MeTOH 00yUeHMsI, KOTOPbIi OOHOBJISIET HEIPOHHYIO CETb,
IOJIyYMB HOBBII IIpUMeED.

>>> def update(self, s, y):
06HoBnsieT Beca DQN, nonyuus obyuvawuuin npumep
@param s: cocTofiHue
@param y: ueneeoe 3HaueHue
y_pred = self.model(torch.Tensor(s))
loss = self.criterion(y_pred, Variable(torch.Tensor(y)))
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()

4. Janee ciemyeT QyHKIMS ITpeacKa3saHus IEHHOCTY COCTOSTHUS:

>>> def predict(self, s):
nnun
BoluMcnfeT 3HaYeHMs Q-OYHKUMM COCTOAHMA ANA BCeX AeHCTBMIA,
npumeHsas o6yyeHHyw Mogenb
@param s: BXOAHOE COCTOSHME
@return: 3HayeHus Q anA Bcex AeHCTBMIA
with torch.no_grad():
return self.model(torch.Tensor(s))

C ximaccom DQN — Bce! Terepb MOSKHO 3aHSITbCSI QITOPUTMOM OOYUeHUSI.
5. Cosgagum 3K3eMIUISIp OKpysKatoleit cpeasl Mountain Car:

>>> env = gym.envs.make("MountainCar-v0")
6. Ompenenum e->kagHYI0 CTPaTernio:

>>> def gen_epsilon_greedy_policy(estimator, epsilon, n_action):
def policy_function(state):
if random.random() < epsilon:
return random.randint(0, n_action - 1)
else:
q_values = estimator.predict(state)
return torch.argmax(q_values).item()
return policy_function

Peanuzaumsa rny6okux Q-ceteir % 203

7. Ompenmenum anroputm Q-obyueHus ¢ mpumeHeHnem DON:

>>> def q_learning(env, estimator, n_episode, gamma=1.0,
epsilon=0.1, epsilon_decay=.99):

L[ny6okoe Q-o6yyeHne c npumeHeHuem DQN

@param env: uMA OKpyxawuei cpegbl Gym

@param estimator: obvekT knacca Estimator

@param n_episode: konnyecTso 3nuU3040B

@param gamma: Ko3¢ouUMeHT obecueHnBaHUA

@param epsilon: napameTp €-XafHO# CTpaTeruu

@param epsilon_decay: ko3¢duymeHT 3aTyxanusa epsilon

for episode in range(n_episode):

policy = gen_epsilon_greedy_policy(estimator, epsilon, n_action)

state = env.reset()
is_done = False
while not is_done:
action = policy(state)
next_state, reward, is_done, _ = env.step(action)
total_reward_episode[episode] += reward
modified_reward = next_state[0] + 0.5
if next_state[0] >= 0.5:
modified_reward += 100
elif next_state[0] >= 0.25:
modified_reward += 20
elif next_state[0] >= 0.1:
modified_reward += 10
elif next_state[0] >= 0:
modified_reward += 5

q_values = estimator.predict(state).tolist()

if is_done:
q_values[action] = modified_reward
estimator.update(state, q_values)
break
q_values_next = estimator.predict(next_state)
q_values[action] = modified_reward + gamma *
torch.max(q_values_next).item()
estimator.update(state, q_values)
state = next_state

print('dnusoa: {}, nonHoe BosHarpaxgeuue: {}, epsilon:{}'.

format(episode,

total_reward_episode[episode], epsilon))

epsilon = max(epsilon * epsilon_decay, 0.01)

8. 3amagum pa3mep CKPLITOIO CJI0A M CKOPOCTb O6Y‘IeHI/IH ” Cco3gaamm 3K3eMII-

JIgp Ki1acca DQN ¢ TakKMMM IapaMeTpamu:

>>> n_state = env.observation_space.shape[0]
>>> n_action = env.action_space.n
>>> n_hidden = 50

204 <« Tny6okue Q-cetv B LEACTBUM

>>> 1r = 0.001
>>> dqn = DQN(n_state, n_action, n_hidden, 1r)

9. BsimonmHuM 11y60K0e Q-06yueHMe, IPUMEHSISI TOJIbKO YTO pa3pabOTaHHbI
agroputm DQON, Ha 1000 31m1113010B 1 GymeM 3aITOMUHATD ITOJIHbIE BO3HArPask-
IeHus (0o o0eciieHMBaHKs) B KaXKIOM 3IMU30Me:

>>> n_episode = 1000

>>> total_reward_episode = [0] * n_episode

>>> q_learning(env, dqn, n_episode, gamma=.99, epsilon=.3)

3nusog: 0, nonHoe Bo3HarpaxpeHue: -200.0, epsilon: 0.3

3nusof: 1, nonHoe Bo3Harpaxpgenue: -200.0, epsilon: 0.297

3nusof: 2, NonHOe BO3HarpaxpaeHue: -200.0, epsilon: 0.29402999999999996

3nuson: 993, nonHoe BO3HarpaxpeHue: -177.0, epsilon: 0.01
3nuson: 994, nonHoe BO3HarpaxpeHue: -200.0, epsilon: 0.01
3nuson: 995, nonHoe Bo3Harpaxpenue: -172.0, epsilon: 0.01
3nuson: 996, nonHoe BO3HarpaxpeHue: -200.0, epsilon: 0.01
dnuson: 997, nonHoe BO3Harpaxpewue: -200.0, epsilon: 0.01
dnuson: 998, nonHoe Bo3Harpaxpewue: -173.0, epsilon: 0.01
3nuson: 999, nonHoe BO3HarpaxpeHue: -200.0, epsilon: 0.01

10. IMToctpoum rpaduK 3aBUCUMOCTY BO3HATPAXKIEHMSI B SIIM30Me OT BpEMEHM

>>> import matplotlib.pyplot as plt

>>> plt.plot(total_reward_episode)

>>> plt.title('3aBucUMOCTb BO3HArpaxgeHua B 3nM30f4e OT BpemeHun')
>>> plt.xlabel('3nu3og')

>>> plt.ylabel('MonHoe Bo3Harpaxpexue')

>>> plt.show()

Kak 3to paboraer

Metopn __init__ xyacca DQN (mar 2) mpuMHMMAaeT 4YeTbIpe MapaMeTpa: KOJIMUEeCTBO
COCTOSIHMII BO BXOZHOM CJIOe, KOJIMYECTBO [eJiCTBMIT B BBIXOJHOM CJIO€, KOJMU-
YeCTBO CKPBITHIX 6JIOKOB (B JAaHHOM IIpUMepe CKPBIThIN CJIOI BCEro OOVH) U CKO-
pocTb 06yuenust. OH MHUIIMATU3UPYET HEIIPOHHYIO CETh C OMHUM CKPBITBIM CJIOEM
u byukimeit aktuBauu ReLU. CeTb uMeeT n_state BXOIOB U MOPOKAAET n_action
BBIXOJIOB — ITpe[icKa3aHHbIe IeHHOCTM COCTOSTHMIA IIPY BbIOOPE KaKIOTO IEeiICTBHS.
B xauecTBe onTMMM3aToOpa UCHOAb3yeTcsl aropuTMm Adam, a B KauecTBe QyHKIUU
IOTepb — CpeaHeKBaApaTUIecKast ouoKa.

Ha miare 3 mpousBoauTCS OGHOBIEHYE CETH: 3Hasl MCXOIHOEe COCTOSIHME U COOT-
BEeTCTBYIOIIlee eMy IiejieBoe 3HaueHye, MeTOJ, BhIUMC/SET MOTepI0 U rpaeHThl.
3aTeM MOJIeNib HelipOHHOJ ceTy OOHOBJSIETCSI METOAOM OOPAaTHOTO PacIpoCTpa-
HeHUSI.

Ha mrare 7 dyHkims rmy6okoro Q-o6yueHus BbITIOMHSIET CIeQyIoNIe TeiiCTBUS :

O B KaXXIOM 9MM307e CO3TaeT £-KaJHYI0 CTPATErUIO, IPUYUEM € 3aTyXaeT C KO-
s puientom 0.99 (ecu B mepBoM amm30e € 66110 paBHO 0.1, TO BO BTOPOM
oymet paBHo 0.099). 3amaeTcst TaKKe HUKHUI TIpenen €, paBHbii 0.01;

Peanuzaumsa rmy6okux Q-ceteir % 205

O BBIMOJTHSIET 3MM30/I: Ha KK OM IIIare BbIOMPAETCs NeiiCTBYE d B COCTOSTHUN S,
cemyst e-XKaIHO cTpaternu; 3HaueHns Q-QyHKIMM q_values B IpeAbIAyIeM
COCTOSTHUM BBIUMUCJISIIOTCS C MCITOJIb30BaHMeM MeTopa predict kimacca DQN;

O Borunciset 3HaueHMs Q-hyHKIMK q_values_next JIJisI HOBOTO COCTOSTHUS S’ 3a-
TeM BBIUMCIISET 1eJIeBOe 3HaueHe, OOHOBJISIS CTapble 3HAUeHMs q_values ISt
nevictBus 1o popmyine Q(s, a) =r +ymax,Q(s’, a’);

MCITONb3yeT mpumep (s, Q(s)) mist o6yueHust HeiipoHHOI ceTn. OTMETUM, UTO
Q(s) BriIIOUaeT [eHHOCTU JIJISI BCeX AeCTBUIA;

MpOToHSIeT n_episode SMM30[0B M 3allOMMHAET IOHbIE BO3HArpaxkaeHus
B K&K OM 3TU30]I€.

O6paTuTe BHMMAaHME, YTO IIPU OOYUEHMY MOMAEIM UCTIOIb3YeTCsT MOOUMUITMPO-
BaHHAs Bepcusl BosHarpakmeHust. OHO 3aBUICUT OT ITOJIOKEHUST aBTOMOOMJIS, TT0-
CKOJIbKY MbI XOTUM JI06paThCs IO BEPIIMHBI, PACITONIOKEHHOI B TOUKe C aOCICCOT
+0.5. [ToaTOMy MBI UCIIOSTb3YEM ITOPOTOBYIO CUCTEMY IOOMIPeHMi ¢ moporamu +0.5,
+0.25, +0.1 1 0 — uem GoJibllie ITOPOT, TEM BbIIlIe BO3HArpaskaeHue. I1pu Takoit cu-
cTeMe TIOOMIPEeHMS MPeNIoYTeHe OTHAETCS MO3ULMSIM, KOTOpble O/iske K I,
IT03TOMY CKOPOCTh OOyUeHMST 3aMeTHO 6OJIbIIIe TI0 CPABHEHUIO C MCXOIHBIM TIOCTO-
SIHHBIM BO3HarpaxkaeHueM —1 Ha Kask[oM Iliare.

Haxownerr, rpaduk, TOCTpoeHHbIi Ha mare 10, BRIIISAUT CIeIyIonM 06pa3om:

3aBUCMMOCTb BO3HarpaxxgeHua B anm3one oT BpeMeHu

~130 |
—140 A
~150 A

—160 ~

T T T T
0 200 400 600 800 1000
onu3op,

MonHoe BO3HarpaxmaeHue

| | |
= = =
[¥s] o |
(=} (=] (=]

1 1 1

Mb1 BuauM, uTo B rmocienHux 200 snm3omax aBTOMOOMIIb JOOUPAETCST BEPIIMHbI
ropsl 3a 170-180 maros.

['my6okoe Q-oOyueHMe MCIOAb3YeT MJIS alllIPOKCMMALNUM LIEHHOCTU COCTOSTHUIA
60siee TPSIMONVHENHYIO MOJIeNb, HEMIPOHHYIO CeTh, OTKa3bIBasICh OT Habopa Ipo-
MEXYTOUYHBIX MCKYCCTBEHHBIX ITpM3HAKOB. Ha 0fHOM 111are, KOTIa cpesa mepexonuT

206 <+ Tny6okue Q-ceTu B AeiCTBUM

13 CTApOro COCTOSIHMSI B HOBOE I10C/Ie BbI6Opa areHTOM HeKOTOPOTO IeiCTBIS 1 Ha-
YNC/ISIeT 3a 9TO BO3HATpaXkaeHue, o6yueHme DQN COCTOUT U3 CIENYIONIUX CTaIuii:

JICIIONIb30BaTh MOZe/Ib HEMPOHHOJ CeTU AJ1s1 OLleHKM 3HaYeHut Q CTaporo co-
CTOSIHUS

JICIIONIb30BaTh MO E/Ib HeMIPOHHO CeTU [IJIs1 OLIeHKM 3HaueHuli Q HOBOTO CO-
CTOSTHUS

OOHOBUTH lieJieBoe 3HaueHue Q IJIs1 JeiCTBUSI C YUYETOM BO3HATrpaskIeHUs
¥ HOBBIX 3HaueHmit Q o popmyie r +y max, Q(s', a’);

3aMeTMM, UTO B 3aK/JIIOUMTE/IbHOM COCTOSIHMM lielieBoe 3HaueHue Q MpUHU-
MaeTCsl paBHbBIM T;

00yUNTb HEMPOHHYIO CEeThb, NMPUHSB B KayecTBe BXOAA CTApOe COCTOSIHME,
a B KauecTBe BbIX0a IiejieBble 3HaueHus Q.

(@)

(@)

(@)

Beca ceTu 06GHOBJISIIOTCSI METOA,OM I'paJMeHTHOTO crrycka. O6yueHHast CeTh MOKET
TpeAcKa3bIBaTh 3HaUeHMs Q [IJIS1 3aJJaHHOTO COCTOSTHUSI.

DON 3HauMTeTbHO YMEHbIIAET KOJIMUECTBO 00yUaeMbIX COCTOSTHUIA, M 9TO 3aMe-
YyaTeJbHO, TOTOMY UTO 06yUeHMe Ha MUIIMOHAX COCTOSIHMIA € ITOMOIIbi0 TD-MeTo-
IOB HeoCylecTBMMO. KpoMe TOro, 3TOT aJIrOPUTM HATIPSIMYI0 OTOOPaskaeT BXOTHOE
COCTOSIHME Ha 3HaueHMst Q-PyHKIMM, 06X0/IsICh 6€3 TOMOTHUTETbHBIX QYHKIIMI 1S
reHepauuy UCKYCCTBEHHbBIX MTPU3HAKOB.

CM. Takxke

UnratensiM, He3HAKOMbIM C METOAOM ONTUMM3ALMKU HA OCHOBE TPAAMEHTHOTO
crrycka Adam, pekoMeHIyeM cieyiolye UCTOUHUKA:
O https://towardsdatascience.com/adam-latest-trends-in-deep-learningoptimiza-
tion-6be%9a291375¢;
O https://arxiv.org/abs/1412.6980.

Ynyuwenne DON ¢ nomoLbio BOCNPOU3BEAEHMS OMbITA

Anmpokcumanyst sHaueHuit Q-GyHKIIMY HEeMiPOHHO ceThIo, 06yuyaeMoil Ha OJTHOM
rpuMepe 3a pas, BefleT ceOsl He OUeHb YCToitunBo. HarmoMHMM, UTO paHblIle /IS T10-
BBIIIEHNST YCTOMUMBOCTM MbI BKITIOUWIN Oydep BOCIIPOM3BEIEeHMS OIbITa. A ceifuac
NpUMeHUM 3Ty uzeto K DON.

Vnmest BOCIIpOM3BEE€HMS OIbITA 3aK/II0UAETCS B TOM, UTOOBI COXPAHSATh B MTAMSITU
OIIBIT areHTa (CTapoe COCTOSIHNE, HOBOE COCTOSIHME, IeJICTBME U BO3HAarpaxieHue),
HaKOIUIEHHbIIT Ha MPOTSKEeHUY 3MM300B B ceaHce o0yueHust. HaGpaB JOCTaTOYHO
OTIBITA, MBI MIPOM3BOAMM CJIyYaiiHyI0 BHIOOPKY MakeTa MpuMepoB u3 6ydepa B na-
MSITY U UCIIOSIb3YeM €ro JIJisl 06y4ueHust HeiipoHHO1 ceTu. OGyueHue ¢ Gydpepom Boc-
MPOU3BeJIeHNUSI COCTOUT 13 ABYX 3TAIOB: HAKOIIJIEHNE OTIbITA M OGHOBIEHVE MOJIENN
Ha CyJaiiHOi BbIOOPKE 13 MPOILUIOTO OIbITa. BbIOGOPKA MOIKHA ObITH CITYYaITHOI,
MOTOMY YTO MHAYU€e MOJIe/b 06ydanach 661 Ha CAMOM HeJJaBHEM OIIbITE, U HeIIPOHHAs
CeThb MOTJIa 6bI 3aCTPSITh B JIOKATbHOM MUHUMYME.

Hike mMbl paspabotaem DON c 6ydepom BocIpou3BeneHus /s pelieHus 3a1aun
0 MalllHe Ha rope.

Ynyuwenne DON c noMoubto BocnpousseneHus onbita % 207

Kak 3T1o penaetca

1.

ViMnoptupyeM HeO0OXOAIMbIE MOIY/IM Y CO3AAMM SK3eMILISIP OKPYsKaIoIIei
cpenbl Mountain Car.

>>> import gym

>>> import torch

>>> from collections import deque

>>> import random

>>> from torch.autograd import Variable
>>> env = gym.envs.make("MountainCar-vo")

g peanu3anyy 6ydepa BoCIpousBeneHns 1o6aBuM B Kiaacc DQN MeTof, re-
play:

>>> def replay(self, memory, replay_size, gamma):
Bocnpoussegenne onbvita
@param memory: 6ydep BocnpoussegeHus ombiTa
@param replay_size: cKo/AbKO MpuUMEpOB MCMONbL30BATb MPU KaxAoM
obHoBNEHUN Mogenu
@param gamma: Ko3¢duyMeHT obecuyeHnBaHuA
if len(memory) >= replay_size:
replay_data = random.sample(memory, replay_size)
states = []
td_targets = []
for state, action, next_state, reward, is_done in replay_data:
states.append(state)
q_values = self.predict(state).tolist()
if is_done:
q_values[action] = reward
else:
q_values_next = self.predict(next_state)
q_values[action] = reward + gamma *
torch.max(q_values_next).item()
td_targets.append(q_values)

self.update(states, td_targets)
Bosbiiie B Kj1acce HMYEro He MeHSIeTCSI.

Mb1 Bocmonb3yeMcs GyHKLMe gen_epsilon_greedy_policy, pa3paboTaHHOI
B perienre «Peannsanust y6okux Q-cereii», u He 6ymeM 3/1eCh IIOBTOPSTH €€
KO,

3agagum hopMy HEMIPOHHO CETU — pa3Mepbl BXOJHOTO, BBIXOJHOTO U CKPbI-
TOTO CJI0€B, CKOPOCTh 06yuennst 0.001 1 co3gaaum sK3eMIUISIp Kiaacca DQN:

>>> n_state = env.observation_space.shape[0]
>>> n_action = env.action_space.n

>>> n_hidden = 50

>>> 1r = 0.001

>>> dqn = DQN(n_state, n_action, n_hidden, 1r)

208 <+ Tny6okue Q-ceTn B AeiCTBUM

5. Ompenmenvm Gydep st XpaHEeHMS OTbITA:
>>> memory = deque(maxlen=10000)

Hosble mpuMeps! 6yAyT 06aBISITHCS B KOHEI OUepein, a CTapbie — yIalsIThCS
13 Hayvaja, KOTga KOJIMYeCTBO 3JIeMeHTOB B ouepeny npesbicut 10 000.

6. Ompemenum (QYHKINIO, BBITIOMHSIONYIO TTy6oKoe Q-06ydeHne ¢ BOCIIPOU3-
BeZleHMEeM OTIbITA.

>>> def q_learning(env, estimator, n_episode, replay_size,
gamma=1.0, epsilon=0.1, epsilon_decay=.99):
Lny6okoe Q-obyyeHne meTogom DQN c BOCnpoM3BeAeHMEM OMbiTa
@param env: uMa OKpyxawueih cpefbl Gym
@param estimator: obvekT knacca Estimator
@param replay_size: cKo/ibKO NpUMEpPOB WUCMONb30BaTb NpU KaXAOM
obHOBNEeHMM Mopenwu
@param n_episode: KonMyecTso 3nM30408B
@param gamma: Ko3¢puLUMEHT obecueHnBaHUA
@param epsilon: napameTp €-XafHO# CTpaTerum
@param epsilon_decay: ko3dduymeHT 3aTyxanusa epsilon
for episode in range(n_episode):
policy = gen_epsilon_greedy_policy(estimator, epsilon, n_action)
state = env.reset()
is_done = False
while not is_done:
action = policy(state)
next_state, reward, is_done, _ = env.step(action)
total_reward_episode[episode] += reward
modified_reward = next_state[0] + 0.5
if next_state[0] >= 0.5:
modified_reward += 100
elif next_state[0] >= 0.25:
modified_reward += 20
elif next_state[0] >= 0.1:
modified_reward += 10
elif next_state[0] >= 0:
modified_reward += 5
memory.append((state, action, next_state,
modified_reward, is_done))
if is_done:
break
estimator.replay(memory, replay_size, gamma)
state = next_state
print('dnusoa: {3}, nonHoe BosHarpaxgenue: {}, epsilon:{}'.
format(episode,
total_reward_episode[episode], epsilon))
epsilon = max(epsilon * epsilon_decay, 0.01)

Ynyuwenue DON ¢ nomoubio BocriponsseaeHus onbita < 209

7. Boimonuum rmy6okoe Q-o6yueHne ¢ 6ydhepom BocripousBenenus Ha 600 amu-
30[10B:

>>> n_episode = 600

3amaauM pasmep BbIOOPKM U3 Gydepa BOCIPOMU3BEIEeHNMS Ha KaskKIOM Iare:
>>> replay_size = 20

bynem 3arioMuHaTh MOHbBIE BO3SHATPAKAEHNS B KaXKOOM 3MM30[€:

>>> total_reward_episode = [0] * n_episode
>>> q_learning(env, dqn, n_episode, replay_size, gamma=.9, epsilon=.3)

8. Tloctpoum rpaduk 3aBMCUMOCTM BO3HATPasKAEHMS B SMTM30/ie OT BpeMeHN:

>>> import matplotlib.pyplot as plt

>>> plt.plot(total_reward_episode)

>>> plt.title('3aBucUMOCTb BO3HarpaxgeHusa B 3nu30je OT BpeMeHun')
>>> plt.xlabel('3nu3o0g')

>>> plt.ylabel('MonHoe Bo3HarpaxaeHue')

>>> plt.show()

Kak 3to paboraer

Ha mare 2 dyHKIMS replay cHavasa MMpOM3BOAUT CJTYYaliHYIO BBIGOPKY pasmepa re-
play_size u3 6ydepa BoCIpousBeneHMs OIMbITA. 3aTeM KaKIblii 3/IeMEHT BbIOOPKU
rpeobpasyeTcss B 06yJalomuii MpuMep, COCTOSIIINI U3 BXOJHOTO COCTOSTHUS U BbI-
XOJTHOTO 11e/1eBOT0 3HaueHusI. [Toc/ie 3TOro MOMyYMBIINIICS TTaKeT UCTIONb3YeT s 1J1sT
OGHOBJIEHMSI HEMIPOHHO CeTH.

Ha mare 6 ¢yHKIIMS T1y60K0oro Q-o0yueHMsT ¢ BOCIIPOM3BEIEHMEM OIbITA BbI-
TIOJTHSIET CJieAylolyie AeiCTBUS:

O B KaXXIOM 3MM307e CO3TAeT £-KaJHYI0 CTPATETHIO, IPUUEM € 3aTyXaeT C KO-
sppunentom 0.99;

O BBITIOMHSIET 3MM30/T: HA KaKIOM IlIare BbIOMPAETCs IeICTBYE d, CTIeAYS -3Kaf -
HOJ CTpaTeruu, OIbIT (CTApOe COCTOSTHME, AEeVCTBIE, HOBOE COCTOSIHME, BO3-
HarpakgeHue) COXpaHseTcs B ITaMsITH;

O Ha KaKAOM IIare 3aIIOMHEHHBIN OITbIT UCITOb3YeTCs AJIs 00yUeHMsT HeMpOH-
HOJ ceTu, Ipu YUIOBMUM UTO B Gydepe JOCTATOUHO OOYyUAOIMX TPUMEPOM
7SI BBIOOPKMA;

O mporonsieT n_episode 3MM30M0B U 3aIIOMMHAET IIOTHbIE BO3HATPAKIEHMS
B K&KIOM 31IM30/€.

210 <+ Tny6okue Q-ceTu B AeiCTBUM

I'padmK, MOCTPOEHHBIIT Ha IIare 8, BLINISIAUT CJIeTYIONMM 06pasoM:

3aBUCUMOCTb BO3HarpaxgeHua B anm3one OT BpeMeHu

—100 1
g
T —120 A
(]
IS
X
o
£ 1401
ju
m
o
o
Y —160-
ey
=
o
-

—180 -

—200

T T T T T T T
0 100 200 300 400 500 600
onu3onq,

MblI BUAMM, 4TO B 60bLIMHCTBE M3 mocaequux 200 31130408 aBTOMOOMIb 10-
61paeTcs I0 BeplIMHbI Tophl 3a 120-160 maros.

B rmy6okom Q-06y4yeHUM C BOCIIPOM3BEIEHMEM OITbITA MbI COXPAHSEM OITbIT
areHTa Ha KaskaoM Iare u st o6yuennst DON mpousBoguM cydaifHbie BBIOOPKU
13 MPOITOro ombiTa. O6GyUeHe B 9TOM CJTydae COCTOMT U3 IBYX JTAIIOB: HAKOILIe-
HIi€e OIThITa ¥ OGHOBJIEH)E MOV Ha OCHOBE 3TOTO OIbITa. TOUHee, OMbIT (KOTOPBI
TaKke Ha3bIBAOT OydepoM, 1M MaMITbhIO) BKIIOUAET IMPOIIJIOe COCTOSTHME, BbI-
OpaHHOe B HEM JIefiCTBUE, TIOyYeHHOe BO3HATPAsKAEHMEe U CIeyIolllee COCTOSTHIE
IJIST KaKIOro Iara smm3oma. BocrpoussefeHe ombiTa MOXKET CTaOWIN3UPOBATh
rpoiiecc o6yueHus1, obecrieunB Ha6op €1abo KOPPeaMPOBAaHHBIX MIPUMEPOB, a 3Ha-
YUT, TOBBICUTCS U 3D PEKTUBHOCTh 0O6YUEHMS.

Peannzaums anropntma DousLe DON

B paspaboTaHHBIX BbIlIe AJITOPUTMaxX IITYOOKOTOo Q-00ydeHMs [T BHIUMCIIEHUST
MpeACcKa3aHHbIX U IIeJIeBbIX 3HAUEHUI MCIOMb3yeTCsI OOHA M Ta >Xe HelipOHHas
CeThb. ITO MOXKET CTaTh MPUUMHOI PACXOOMMOCTH, TOTOMY UTO Ile/ieBble 3HAUeHUS
BCe BpeMsl M3MEeHSIIOTCSI, a MpecKa3aHus MO/KHbBI C/Ief0BaTh 32 HUMM IO IISITaM.
B sTOM pelieniTe MbI pa3paboTaeM HOBbIN aITOPUTM, B KOTOPOM OYIET ABe HeilpoH-
HbI€ CeTM BMeCTO O HOIA.

B anroputme gBoiiHoit DQN (Double DQN) 1151 o1ileHMBaHMSI 11e/IeBbIX 3HaUeHU
UCTIO/Ib3YeTCSsl OTHe/IbHASI CETh, KOTOPAasi UMeeT TaKylo XXe CTPYKTYpPY, KaK CeTb ISl

Peanusaums anroputma Double DON <+ 211

npenckasanusi. Ho ee Beca M3MeHSIIOTCS TONBKO MOC/IE KKIbIX T 3NU3000B (34eCh
T - HacTpauBaeMblii rTuneprapameTp). OGHOBJIEHE CBOANUTCS IMPOCTO K KOMMPOBA-
HUIO BECOB TIpeficKa3aTebHOI ceTu. TakuM 06pa3om, 1esieBast PyHKIVS B TeUEHVE
HEKOTOPOro BpeMEHM OCTaeTCs HeM3MEHHO, YTO MOBbIIIaeT YCTOHYMBOCTb MPO-
1ecca ooyueHmsl.

MaremaTuuecku obyuenne nBoiiHoit DON o3HayaeT MMHMMM3ALMIO CIeTyome-
'O UjIeHa OUIMOKN:

8 =r+ymax,Qs’) - Q(s),

rae s’ — COCTOsIHMe, B KOTOpOe TepexXOqUT Cpefia M3 COCTOSIHUS S TI0C/ie OeiiCTBUS
a, r — TIoJIyueHHOe TP 3TOM BO3HAarpakieHue, « — CKOPOCTb 00ydeHUs, y — Koad-
dunmeHT obecuennBanus, Q, — QyHKUMS LIeHHOCTHU /14 LiesieBoit ceTu, a Q — A1
NpeficKa3aTe/bHOM CeTH.

Tenepsb pelminm 3a7auy o MaliMHe Ha rope metogom Double DON.

Kak 310 penaetca

1. UmnopTtupyeM Heo6GXOAMMble MOIY/IM ¥ CO3TAAMM 9K3eMILISIP OKpYsKaoIei
cpensl Mountain Car.

>>> import gym

>>> import torch

>>> from collections import deque

>>> import random

>>> import copy

>>> from torch.autograd import Variable
>>> env = gym.envs.make("MountainCar-vo")

2. TIpesxkme yeM BKIIOUATH Oydep BOCIPOU3BENAEHMS B IIeJIEBYIO CETh, MHUIIVA-
JIu3yupyem ee B MeToze __init__ kyacca DQN:

>>> class DQN():
eee def __init__(self, n_state, n_action, n_hidden=50, 1r=0.05):
self.criterion = torch.nn.MSELoss()

. self.model = torch.nn.Sequential(

vee torch.nn.Linear(n_state, n_hidden),

cee torch.nn.ReLU(),

eee torch.nn.Linear(n_hidden, n_action)
)

vee self.optimizer = torch.optim.Adam(self.model.parameters(), 1r)
vee self.model_target = copy.deepcopy(self.model)

LleneBas ceTb uMeeT TaKYIO JKe CTPYKTYDY, KakK IIpeacKa3aTe/JIbHasd.

3. JIo6aBMM BbIUMC/IEHME [IEHHOCTE C IIOMOIIbIO LIeJIeBOI CeTI!:

>>> def target_predict(self, s):
nun
ces BoiuMcnsfeT 3HauyeHus Q-QYHKLUMM COCTOSHMA ANA BCEX AeHCTBHI
ces C noMoLbl LeNeBoi CeTH
ces @param s: BXOAHOE COCTOSHME

212 <+ Tny6okue Q-ceTu B AeiCTBUM

vee @return: uyenesble LEHHOCTH COCTOAHWA ANA BCeX AENCTBUM

vee with torch.no_grad():
. return self.model_target(torch.Tensor(s))

4. Jlo6aBMM MeTO[IJIsl CMHXPOHM3AIMM BECOB 1Ie€JIeBOI U IpeacKa3aTeabHO
ceTeii:

>>> def copy_target(self):
cee self.model_target.load_state_dict(self.model.state_dict())

5. Ins BBIUMCIIEHUS I1€JIeBO IIeHHOCTM OymeM MCIIOIb30BaTh IIeJIEBYIO, a He
MpeaCcKa3aTeabHyIO CeTh:

>>> def replay(self, memory, replay_size, gamma):
LLALALE
ces bydep BoCnpou3BefeHNA COBMECTHO C LeNeBOH CEeTbi
. @param memory: 6ydep BoCnpousBefeHUs OMbITA
ces @param replay_size: CKO/NbKO MpUMEPOB MCMOAbL30BaTb NMPU KAXAOM
. o6HOBNIEHUM MoAenu
@param gamma: Ko3pdpuyueHT obecueHnBaHUA
LLALALE
cee if len(memory) >= replay_size:
cee replay_data = random.sample(memory, replay_size)
cee states = []
cee td_targets = []
. for state, action, next_state, reward, is_done in replay_data:
cee states.append(state)
cee q_values = self.predict(state).tolist()
cee if is_done:
cee q_values[action] = reward
cee else:
ves q_values_next = self.target_predict(next_state).detach()
ves q_values[action] = reward + gamma *

torch.max(q_values_next).item()
ves td_targets.append(q_values)

ves self.update(states, td_targets)
Bosblie B Kinacce DQN HMYEro He MeHSIeTCSl.

6. Mbl Bocmonb3yemcst (pyHKiueii gen_epsilon_greedy_policy, pa3paboTaHHOI
B perienTe «Peanu3sanus riy6okux Q-ceteii», 1 He 6yIeM 37eCh ITIOBTOPSITh ee
KO,

7. 3amagum (opmy HEVPOHHOI CeTy — pa3sMepbl BXOJHOTO, BBIXOAHOTO U CKPbI-
TOTO CJ10€B, cCKOpocTh 06yuenust 0.01 1 co3maanm 9K3eMIUIIp Kiaacca DQN:

>>> n_state = env.observation_space.shape[0]
>>> n_action = env.action_space.n

>>> n_hidden = 50

>>> lr = 0.01

>>> dqn = DQN(n_state, n_action, n_hidden, 1r)

Peanusaums anroputma Double DON <+ 213

Omnpenenum 6ydep st XpaHeHMS OIbITa:
>>> memory = deque(maxlen=10000)

HoBble mpumeps! 6YAyT T0OABISATLCS B KOHELL 0Uepe/in, a CTapble — yIATSIThCS
13 Hayaja, Koraa KOJIMUeCcTBO 3jieMeHTOB B ouepenn nmpesbicut 10 000.

OnpenmenuM (YHKINMIO, BBIOIHSIONIYI0 I[My6oKkoe Q-o6yuyeHue MeTOmOM
Double DQN:

>>> def q_learning(env, estimator, n_episode, replay_size,
target_update=10, gamma=1.0, epsilon=0.1, epsilon_decay=.99):
L[ny6okoe Q-obyuyeHue metogoM Double DQN c BOCmpou3BegeHMEM OMbITA
@param env: MMA OKpyXawuei cpegsl Gym
@param estimator: obvekT knacca DQN
@param replay_size: CKo/JbKO NMpUMEpPOB WUCMONb30BaTb NpU KAXAOM
obHoBNeHUN Mogenu
@param target_update: uepe3s ckonbKo 3nnU3040B O6HOBAATL LeENEBYW CeTb
@param n_episode: Konn4yecTso 3nu3040B
@param gamma: Ko3¢ouLUMeHT obecueHnBaHUA
@param epsilon: napameTp €-XafHO# CTpaTerum
@param epsilon_decay: ko3¢puumeHT 3atyxawusa epsilon
for episode in range(n_episode):
if episode % target_update ==
estimator.copy_target()
policy = gen_epsilon_greedy_policy(estimator, epsilon, n_action)
state = env.reset()
is_done = False
while not is_done:
action = policy(state)
next_state, reward, is_done, _ = env.step(action)
total_reward_episode[episode] += reward
modified_reward = next_state[0] + 0.5
if next_state[0] >= 0.5:
modified_reward += 100
elif next_state[0] >= 0.25:
modified_reward += 20
elif next_state[0] >= 0.1:
modified_reward += 10
elif next_state[0] >= 0:
modified_reward += 5
memory.append((state, action, next_state,
modified_reward, is_done))
if is_done:
break
estimator.replay(memory, replay_size, gamma)
state = next_state
print('3nusog: {3}, nonHoe BosHarpaxgenne: {}, epsilon:{}'.
format(episode, total_reward_episode[episode],epsilon))
epsilon = max(epsilon * epsilon_decay, 0.01)

214 < Tny6okue Q-cetv B AEACTBUM

10. BeimonHuM rimy6okoe Q-o6yuenne metomom Double DON Ha 1000 smi3010B:

11.

>>> n_episode = 600

3agamum pasMep BoIOOPKM 13 Oydepa BOCIIPOU3BEIeHMS Ha KaskAOM Iare:
>>> replay_size = 20

LleneBast ceTb OOHOBJISIETCS MOC/IE KaXKAbIX 10 3M1M3010B:

>>> target_update = 10

Bynem 3anomMmHaTh MOIHBIE BO3HArpaskAeHMsI B KaXXA,0M dNM307e:

>>> total_reward_episode = [0] * n_episode
>>> q_learning(env, dqn, n_episode, replay_size, gamma=.9, epsilon=.3)

3nu3op: 0, nonHoe Bo3Harpaxgexue: -200.0, epsilon: 1
3nu3oa: 1, nonHoe Bo3Harpaxgexue: -200.0, epsilon: 0.99
3nu304: 2, nonHoe BO3Harpaxgexue: -200.0, epsilon: 0.9801

3nu3op: 991, nonHoe Bo3Harpaxgexue: -151.0, epsilon: 0.01
3nu3op: 992, nonHoe BoO3HarpaxgeHue: -200.0, epsilon: 0.01
3nu3op: 993, nonHoe Bo3Harpaxgexue: -158.0, epsilon: 0.01
3nu3op: 994, nonHoe Bo3Harpaxgexue: -160.0, epsilon: 0.01
3nu3op: 995, nosHoe Bo3Harpaxgexue: -200.0, epsilon: 0.01
3nu3op: 996, nonHoe Bo3Harpaxgexue: -200.0, epsilon: 0.01
3nu3op: 997, nonHoe Bo3Harpaxgexue: -200.0, epsilon: 0.01
3nu3op: 998, nosHoe Bo3Harpaxgenue: -151.0, epsilon: 0.01
3nu3op: 999, nosHoe Bo3Harpaxgexue: -200.0, epsilon: 0.01

[TocTporm rpadmK 3aBUCMMOCTY BO3HATPAKIEHMS B STIM30/€ OT BPEMEeHM:

>>> import matplotlib.pyplot as plt

>>> plt.plot(total_reward_episode)

>>> plt.title('3aBucumMocTb BO3HarpaxieHus B 3nusoge OT BpeMeHu')
>>> plt.xlabel('3nuson')

>>> plt.ylabel('MonHoe Bo3Harpaxpexue')

>>> plt.show()

Kak 3to paboraer

Ha mare 5 dyHKIMs replay cHavyaa MpOM3BOAUT CJTYYaliHYIO BBIGOPKY pasmepa re-
play_size u3 6ydepa BoCIpousBemeHMs OIMbITA. 3aTeM KaKIblii 3/IEMEHT BbIOOPKU
npeobpasyeTcss B 06yJaromuii MpumMep, COCTOSIIINIT U3 BXOJHOTO COCTOSTHUS M BbI-
XOJITHOTO 11e71eBOT0 3HaueHMs. [Toc/ie 3TOro MOMyYMBIINIICS TTaKeT UCTIONb3YeTCS 1J1ST
OOHOBJIEHMSI HEIIPOHHOI CeTH.

[llar 9 cambIit BaxkHbIl B anroputme Double DQN: Ha HeM [1JisI BBIUMCIEHUS 1ie/ie-
BbIX 3HAUEHMI MCITONIb3YeTCS IPYyTasi CeTh, KOTOpast 0GHOBJISIETCS He ITOC/Te KaXKI0Tro
snmsona. [Ipoune vactu GyHKIMM replay Takue ke, Kak B TTy6okoM Q-06yueHnmn
C BOCIIpOU3BeleHeM OTIbITa.

Hacrpoiika runepnapametpog anroputMa Double DON ans cpeabl CartPole < 215

I'paduk, MOCTPOEHHBIIT Ha mIare 11, BRIIIIOAUT CAemYIOIMM 00pa3oM:

3aBUCMMOCTb BO3HarpaxaeHusa B ann3one OT BpeMeHU

—80 -

—100 ~

|
et
M
o
L

|
[}
o
(=]
L

[TonHoe BO3HarpaxageHue
|
-
B
=
1

|
=
(=]
(=]
I

—200 A

T T T T
0 200 400 600 800 1000
onu3op,

Mb1 BUOMM, UTO Tocse rnepBbix 400 a11304,0B aBTOMOOMIIL 1OOMPAEeTCs IO Bep-
IIMHBI TOPBI B OOJBIIMHCTBE ciryyaeB 3a 80—160 maros.

B rny6okom Q-o6yuenun ¢ gBoitHoit DQN 1crnonb3yoTcs 1Be pa3sHble CeTH: IJis
npefcKasaHys M JOJs1 BBIUYMCIEHUS LieJieBbIX 3HaueHuit. [lepBasi CIy>KUT [IJi NIpef-
CKasaHus 3HaueHuit Q-QyHKIMM, a BTOpasi — IJIs BBIUMCIEHUS YCTOMUMBBIX 1eje-
BbIX 3HaUeHM Q-pyHKIMK. C HEKOTOPHIM MHTEPBAIOM (CKaskeM, Kaskabie 10 amm30-
IoB vy Kaxkapie 1500 maroB o6yueHMs) 06e ceTy CMHXPOHU3UPYIOTCS. [TOCKOIBKY
LieJieBble 3HAUEHMSI B TeueHMe HEeKOTOPOrO BpeMeHM OCTalTCSI HeU3MEHHbBIMU,
IaHHbIe, HA KOTOPbIX 00y4YaeTcs peacKasaTeabHasl ceTb, 6osiee cTabuIbHbL Tomy-
YeHHbIe Pe3y/bTaThl IIOKa3bIBAIOT, uTO MeTon Double DON mpeBocXoguUT 0OBIUHBI
DON c ogHOJ4 ceThI0.

Hactpoitka runepnaPAMETPOB AnroPuTMA DousLe DON
ons cPenbl CARTPOLE

B 3TOM periernte Mbl peniMm 3agavy 0 6aJaHCUPOBAHUM CTEPXKHS MeTomom Double
DQON. MsI nokaxkeM, KaK HaCTPOUTh €ro ruriepriapaMeTpsl 451 JOCTVMKEHUST Hau-
JIYUYILIUX Pe3yJIbTaTOB.

IJig HACTPOMKY TUIIepIIapaMeTpPOB IIPUMMEHUM TEXHUKY IMOMCKa Ha ceTKe — Oy-
JeM JCCIeqoBaTh pas3iMuHble KOMOMHALIMY 3HAUeHIi 1 BbIOepeM Ty, IIpU KOTOPO¥

216 <+ Tny6okue Q-ceTu B AeiCTBUM

cpegHee KauyeCTBO MAaKCMMaJ/IbHO. HauaTpe MOXHO ¢ FDY60ﬁ CeTKM, a 3aTeM II0CTe-
TIeHHO M3MeJIbuaTh ee. U1 He 3a6biBaiiTe d)]/IKCI/I[JOBaTb HadaJIbHbI€ 3HAUYeHUId CJie-
OYIOIIX reHepaTOpPOB CJ'[y‘Iaf;IHbIX qucei, YTOOBI 00ECIIEUNUTH BOCIIPOM3BOAMMOCTDb
pe3yJ/IbTATOB:

O reHepaToOp CIydaliHbIX Ulcesl, BCTPOEHHbIN B OKpYy)Kalollyto cpeny Gym;
O reHepaTOp CIyYaMHBIX UMCeNI €-3KaJHOI CTpaTerun;
O HauvajbHbIE Beca HeiipoHHOI1 ceTu B PyTorch.

Kak 310 penaetca

HOns pelieHua 3agadm O 6aJ'IaHCI/IpOBaHI/II/I CTEepP>KHSA BBITIOJIHUM CJIeAyIolne neii-
CTBUS.

1. VmMmmnopTtupyeM HeoOGXOAMMble MOIY/IV Y CO3TAAMM 9K3eMILISIP OKpYsKaloIei
cpenpl CartPole.

>>> import gym

>>> import torch

>>> from collections import deque

>>> import random

>>> import copy

>>> from torch.autograd import Variable
>>> env = gym.envs.make("CartPole-v0")

2. Bocronbsyemcs kiaaccom DQN, pa3paGOTaHHBIM B IIPEIbIAYILEM pelierTe.

3. Bocmonb3ayemcs pyHKImeit gen_epsilon_greedy_policy, pa3spaboTaHHOI B pe-
ternre «Peanmsanys my6okux Q-ceTeii», u He 6yIeM 3[1eCh IIOBTOPSTH ee KO[I.

4. OmnpenenuM (GYHKINMIO, BBITOJHSIONYIO TINTy60oKoe Q-00ydyeHMe MeTOIOM
Double DON:

>>> def q_learning(env, estimator, n_episode, replay_size,
target_update=10, gamma=1.0, epsilon=0.1, epsilon_decay=.99):

. ILny6okoe Q-o6ydyeHne metogom Double DQN c BocnpousBegeHueM OMbITa

ces @param env: uMA OKpyxawwei cpefbl Gym

. @param estimator: o6bekT knacca DQN

cee @param replay_size: ckonbko NpUMEpPOB MCMONb30BaTb MpU KaxAOM

vee o6HoBNeHUN Mogenu

vee @param target_update: uyepe3s cKonbko 3nM3040B O6HOBAATbL LeneByl CeTb
ces @param n_episode: konMyecTBo 3nM3030B

. @param gamma: Ko3¢duuueHT obecuyeHnBaHUA

. @param epsilon: napameTp €-XajgHo# CTpaTeruu

. @param epsilon_decay: ko3¢puumeHT 3atyxanus epsilon

vee for episode in range(n_episode):

vee if episode % target_update == 0:

. estimator.copy_target()

. policy = gen_epsilon_greedy_policy(estimator, epsilon, n_action)
vee state = env.reset()

cee is_done = False

Hacrpoiika runepnapametpos anroputma Double DON ans cpenpl CartPole < 217

while not is_done:
action = policy(state)
next_state, reward, is_done, _ = env.step(action)
total_reward_episode[episode] += reward
memory.append((state, action, next_state, reward, is_done))
if is_done:
break
estimator.replay(memory, replay_size, gamma)
state = next_state
epsilon = max(epsilon * epsilon_decay, 0.01)

5. 3amagum opmy HEIPOHHOI CeTy — pa3sMepbl BXOJHOTO, BBIXOAHOI'O ¥ CKPbI-
TOT'O CJIOEB, CKOPOCTh 06yuenust 0.01, ob1iee KOJIMYECTBO SMU300B U KOJIM-
YeCTBO 3M130/10B, Ha KOTOPbBIX OI[eHMBAETCSI KAUueCcTBO:

>>> n_state = env.observation_space.shape[0]
>>> n_action = env.action_space.n

>>> n_episode = 600

>>> last_episode = 200

6. Ormpemenum rumeprapaMeTpbl, HACTpauBaeMble C TTIOMOIIbIO ITOMCKA Ha CeT-
Ke:

>>> n_hidden_options = [30, 40]

>>> lr_options = [0.001, 0.003]

>>> replay_size_options = [20, 25]
>>> target_update_options = [30, 35]

7. U HaKoHell, TPOM3BeIeM MOUCK Ha CeTKe: Ha KakIOol urepaiuu 6ymemM co3-
IaBaTh HK3EeMIUISIP Kyiacca DQN ¢ TeKYIIMMU TUIlepriapaMeTpaMu U o6ydaThb
ero Ha 600 smm3ofax. 3aTeM OLLIEHMM KauyecTBO, YCPeOHUB IIOJHbIe BO3Ha-
rpaxkaeHus 1o nocaegHum 200 snmsomam.

>>> for n_hidden in n_hidden_options:
for lr in lr_options:
for replay_size in replay_size_options:
for target_update in target_update_options:

env.seed(1)

random.seed(1)

torch.manual_seed(1)

dgn = DQN(n_state, n_action, n_hidden, 1r)

memory = deque(maxlen=10000)

total_reward_episode = [0] * n_episode

q_learning(env, dqn, n_episode, replay_size,
target_update, gamma=.9, epsilon=1)

print(n_hidden, lr, replay_size, target_update,
sum(total_reward_episode[-last_episode:])/last_episode)

Kak 3To paboraer
TTocne mara 7 rmevaTaioTcs clenyroniye pe3yjabTaThbl ITOMCKa Ha CeTKe:

30 0.001 20 30 143.15
30 0.001 20 35 156.165

218 <+ Tny6okue Q-ceTu B AeiCTBUM

30 0.001 25 30 180.575
30 0.001 25 35 192.765
30 0.003 20 30 187.435
30 0.003 20 35 122.42
30 0.003 25 30 169.32
30 0.003 25 35 172.65
40 0.001 20 30 136.64
40 0.001 20 35 160.08
40 0.001 25 30 141.955
40 0.001 25 35 122.915
40 0.003 20 30 143.855
40 0.003 20 35 178.52
40 0.003 25 30 125.52
40 0.003 25 35 178.85

Kak Buaum, Hamtyulliee cpefHee BO3HarpaxkaeHue, 192.77, monyyeHo mpu Takomn
KOMOVMHAaIMM TUreprnapamMmerpoB: n_hidden=30, 1r=0.001, replay_size=25, target_up-
date=35.

Moskere ellle TTO3KCIIEPMMEHTUPOBATD C rUIeprapaMeTpaMmyu — BO3MOXKHO, BamM
yAacTcs HaTy aydinryio moaenb DQN.

B sToM pemenTe Mbl pemmau 3amady O GaJaHCMPOBAHWUM CTEPKHS METOIOM
Double DON. MbI puMeHMUIN TTIOMCK HA CeTKe AJIsI HACTPOKM IrUIeprapaMmeTpoB:
pasMepa CKpPbITOTO CJIOSI, CKOPOCTM OOyueHMsI, pa3Mepa IaKkeTa, BbIOMpPaeMoro us3
6ydepa BocIIpom3BeIeHNs OIbITA, ¥ YaCTOThl 0OHOBIEHMS 1eneBoit ceTu. CyIecT-
BYIOT U Ipyrue rurieprnapaMeTpbl: KOIMUYECTBO SMMU30/[I0B, HAUaJbHOE 3HAUEHUeE €,
KO3 OUIIMeHT 3aTyxXaHuUs €, — MX TOKe MOXKHO yccienoBaTsb. Ho Bo Bcex akcrepu-
MeHTax (PUKCUpyiiTe HauaabHbIe 3HAUYEHMSI TeHePaTOPOB CAYUYaHbIX UMCEe, YTOOBI
pe3ynbTaThl OBLIM BOCITPOM3BOAMMBI UM MOITyCKaaM CpaBHeHMe. KauecTBO Momenn
DON u3MepsieTcs Kak CpeHee II0JIHOe BO3HArpaskJeHyue B HeCKOIbKUX MOC/TIeSHUX
SMU307aX.

Peannzaums anropntMA DueLine DON

B aToMm periernite Mbl pazpaboTaem elie OAVH MpoABKHYThIi anroputm DQN — Duel-
ing DQN (DDQN), nnu gyanbabie DON. MbI 1okakeM, Kak BbluKCIeHue 3HaYeHui
Q-dyukunm paséusaercss B DDQN Ha 1Be yacTu.

B DDON Q-dyHKIIMS BeIUnC/IsIeTCs 1o hopmyiie:

1 Al
T Z A(S’a)’

Q(s,a) = V(s) + A(s,a) — A
a=1

roe V(s) — QYHKUMST IIeHHOCTU COCTOSTHUI, BBIUMC/ISIONIAST IIeHHOCTh HAaXOXKIEeHMS
B COCTOSIHUU S, a A(S, @) — 3aBUCSIIIASI OT COCTOSTHUS (QYHKITMS TPeVMYIIecTBa, KOTO-
pasi olleHMBaeT, HACKOIbKO AEeCTBME d B COCTOSIHUM S JIyUllle BCeX OCTaIbHbIX Jeii-
CTBUIT B TOM ke coCTOsTHUM. Pas3mennB GyHKIMM LIEHHOCTU U TIPEeUMYIIecTBa, Mbl
CMOXEM YUYecTb TOT (haKT, UYTO B IIpoliecce 0OyUeHMst areHT Heobs13aTeIbHO CMOTPUT
Ha IIEHHOCTb U IIPeMMYIIeCTBO OJHOBpeMEeHHO. IHbIMM CJIOBaMM, areHT, ooyJae-
MbIif ¢ TToMoIIIbIo anroputmMa DDQN, MOKeT 10 CBOeMy BbIOOPY ONMTUMMU3MPOBATD
06e GYHKIIMM UM KaKyI0-TO OOHY U3 HUX.

Peanusauus anroputma Dueling DON <+ 219

Kak 3T1o penaetca

Peminm 3apgauy o mamiuHe Ha rope metogoMm DDON.

1.

VMIiopTupyeM Heo6XoayMble MOIY/IN M CO3IaaM 9K3eMIUISIpP OKpYysKaloliei
cpensl Mountain Car.

>>> import gym

>>> import torch

>>> from collections import deque

>>> import random

>>> from torch.autograd import Variable
>>> import torch.nn as nn

>>> env = gym.envs.make("MountainCar-v0")

Omnpepnennum monenb DDQN:

>>> class DuelingModel(nn.Module):
def __init__(self, n_input, n_output, n_hidden):
super(DuelingModel, self).__init__()
self.advl = nn.Linear(n_input, n_hidden)
self.adv2 = nn.Linear(n_hidden, n_output)
self.vall = nn.Linear(n_input, n_hidden)
self.val2 = nn.Linear(n_hidden, 1)

def forward(self, x):
adv = nn.functional.relu(self.advi(x))
adv = self.adv2(adv)
val = nn.functional.relu(self.vali(x))
val = self.val2(val)
return val + adv - adv.mean()

Bocmonb3syemcst mogenbio DDQN B kitacce DQN:

>>> class DQN():
def __init__(self, n_state, n_action, n_hidden=50, 1r=0.05):

self.criterion = torch.nn.MSELoss()
self.model = DuelingModel(n_state, n_action, n_hidden)
self.optimizer = torch.optim.Adam(self.model.parameters(), 1r)

Bosnbiire B kytacce DQN HUUEro He MEHSIeTCs.

Bocmonb3yemcs dyHKIMe gen_epsilon_greedy_policy, paspaboTaHHOIi B pe-
menTe «Peanusaums ray6okux Q-cereit», U He GymeM 37eChb IOBTOPSTH ee
KOJI.

Bocmonbsyemcs dyHKIIMed q_learning, paspab0TaHHOI B pellerTe «Yaydiie-
Hre DON ¢ ITOMOIIIbIO BOCIIPOM3BEIeHNS OIbITa», ¥ He GymeM 31ech ITOBTO-
PSTDb ee KOJ.

3agaaymM hopmMy HEMIPOHHO CeTU — pa3Mepbl BXOJHOTO, BBIXOIHOTO ¥ CKPbI-
TOrO CJIOEB, CKOpPOCTh 06yueHus 0.001 1 cosmamymM 5K3eMIUISp Kaacca DQN:

>>> n_state = env.observation_space.shape[0]
>>> n_action = env.action_space.n
>>> n_hidden = 50

220 <+ Tny6okue Q-ceTu B AeiCTBUM

>>> 1r = 0.001
>>> dqn = DQN(n_state, n_action, n_hidden, 1r)

7. Omnpenmenum 6ydep IJ1s XpaHeHMs OITbITa:
>>> memory = deque(maxlen=10000)

HoBble mpyMepbI 6YAYT OOABSTHCS B KOHEL 0Uepe/in, a CTapble — YOAISIThCS
13 Hayvaja, Korga KOJIMUeCcTBO 3jieMeHTOB B ouepeny mpeBbicuT 10 000.

8. Bymem BBINOIHATH IITyookoe Q-ob6yuenne meTomom DDON Ha 600 smm3onmax:
>>> n_episode = 600
3amaayM pasmep BbIOOPKM U3 Gydepa BOCIPOM3BeIeHNS HA KaskIOM Iare:
>>> replay_size = 20
ByneM 3armomMimHaTh ITOJIHbIE BO3HATPaKIEHMS B KaXKI0M 3TM307e:

>>> total_reward_episode = [0] * n_episode
>>> q_learning(env, dqn, n_episode, replay_size, gamma=.9,
epsilon=.3)

9. HOCTpOI/IM I‘pad)I/IK 3aBMCMMOCTU BO3HArpakKaeHus B 31IM30/1€ OT BpEeMEHMN:

>>> import matplotlib.pyplot as plt

>>> plt.plot(total_reward_episode)

>>> plt.title('3aBucuMoCTb BO3HArpaxgeHUa B 3nM304e OT BpemeHun')
>>> plt.xlabel(3nu3og')

>>> plt.ylabel('MonHoe Bo3HarpaxaeHue')

>>> plt.show()

Kak 3to paboraer

[Iar 2 - ocHOBHas yacThb ajiropuT™Ma Dueling DON. OH cOCTOUT M3 ABYX YaCTe: Ipe-
VIMYILECTBO OeicTBUS (adv) U LIEeHHOCTh COCTOSIHMSA (val). B mpumMepe ucmonb3yercs
TOJIBKO OOVH CKPBITBIN CII0M.

Mpumenenne DON k urpam Atari < 221

I'paduK, MOCTPOEHHBIIT Ha IIare 9, BLINISIAUT CIeTYIONMM 06pasoM:

3aBUCUMOCTb BO3HarpaxaeHusa B ann3one OT BpeMeHu

-100
()
I -120
Q
=%
%
o
e
= —140
I
m
o
o
8 —160
I
=
[}
-

~180

—200

T T T T T T T
0 100 200 300 400 500 600
onuson,

B DDON mpeackasanHoe 3HaueHMe Q-(pyHKIUM eCTh CyMMa ABYX CaraeMbIX:
LIEHHOCTM COCTOSIHUSI U TIpeuMYyIliecTBa AeiicTBus. [lepBoe OlieHMBAET, HACKOJIbKO
XOPOIIIO HAXOAUTHCSI B HEKOTOPOM COCTOSIHMM, BTOPOE — HACKOJIBKO JTyUIlle BbIOPATh
JaHHOe IeliCTBMe 10 CPABHEHUIO CO BCEMM OCTAIbHBIMM. DTY JIBA CJIaTa€MbIX BbI-
YUCSIIOTCS 110 OTAEIbHOCTU ¥ OObeOUHSIIOTCS B nociaegHeM cioe cetu DQN. Ha-
TTOMHMM, 4TO B TPaAuLMOHHbIX DQN 06HOBJIsIeTCST 3HaUeHye Q TOIbKO AJ1s1 JAHHOTO
JIeicTBYSI B HEKOTOpOM cocTosiHuM. B DDQN LIeHHOCTb COCTOSIHMSI OOHOBJISIETCS IJ1sT
BCeX AeiCTBUN (He TOJIbKO JAHHOTO), a TaKKe BBIUMCISIETCSI TPEeUMYIIeCTBO Aei-
ctBus. IToaTromy cett DDQN cumTaroTcs 60mee po6acTHbBIMIA.

MPuMEHEHME DQN K 1rpam ATARI

Ilo cux mop MbI UMeJH [IeJI0 C JOBOAbHO MPOCThIMM 3aJauami, KOTAa IPUMEHSITh
DQN - Bce paBHO, UTO CTPEJISITh U3 ITyIIEK 110 BOPOOBSIM. B aTOM U1 Ctemyiomniem pe-
LleTITax MbI BOCIIO/Nb3yeMcsi ceTbio DQN myist peieHMs urp Atari, pecTaBiasiioninx
co60ii ropasgo 6osee CJIOKHBIE 3a1aUM.

B aTom pelieniTe Mbl B KauecTBe IpuMepa BO3bMeEM OKpPYXXKalollyio cpeny Pong
(https://gym.openai.com/envs/Pong-v0/), KOTOpasi sMyaupyeT OJHOMMEHHYIO0 WUTPYy
st Atari 2600, B KOTOpOJi areHT UrpaeT B HACTOJbHBIN TEHHMUC IIPOTUB MapTHepa.
B aT0i1 cpene HabmogeHmem sBisieTcs: RGB-u3o6paskeHne Ha 5KpaHe (CM. CHUMOK
SKpaHa HUKe).

222 <+ Tny6okue Q-cetu B AeiCTBUM

9to maTpuiia, umeromas dopmy (210, 160, 3), KOTOpast COOTBETCTBYET M300paske-
Huo pasmepa 210x160 ¢ Tpemsi RGB-kananamm.

AreHT (crrpaBa) MOYKET IBUTAThCS BBEPX M BHU3 U MOJKeH OTOMBATH Ms4. Ecim
OH MPOMaxM1BaeTCsl, TO COMepHUK (caeBa) mosyyaeTt 1 ouko. Ecin ke rnmpomaxmsa-
€TCST COTIEPHUK, TO 1 OYKO TOYYaeT areHT. BIUTphIBAEeT TOT, KTO IT€PBbIM HabepeT
21 ouxo.V areHTa MMeeTcs I1eCTb BO3MOKHbIX JIeACTBUIA:

0: NOOP: areHT CTOMUT Ha MeCTe;

1: FIRE: 6eccMbIC/IEHHOE JeiCTBIE;
2: RIGHT': areHT cMellaeTcs BBEpX;
3: LEFT: areHT cMelllaeTcsi BHU3;

4: RIGHTFIRE: To e, uTO 2;

5: LEFTFIRE: To ke, uTO 5.

(ORONCNORONE)

Kaskmoe meiicTBMe MTOBTOPSIETCS HA MPOTSRKEHUM k KagpoB (kK MOKET 6bITh PaBHO
2, 3,4 unu 16 B 3aBUCMMOCTHU OT BapMaHTa OKpyKatoiiei cpeasl Pong). BosHarpaxk-
JleHIe HAaYMC/SIeTCS CIeayoImuM 06pa3om:

QO -1:areHT NPOMAaxHYyJICS IO MUY
O 1: comepHMK MPOMAaXHYJICS MO MUy,
O 0: B oCTaJIbHBIX CIYYASIX.

IpocTpaHcTBO HabmoneHuii B urpe Pong nmeet pasmep 210 * 160 * 3, ato Ha-
MHOTO 60JIbIlle, YeM BCE, C YEM HAM IPUXOAWIOCH MMETD JeJI0 paHblie. [TosTomy
MBI TIPeJIBAPUTETHHO YMEHBIIUM pa3mep 1u3obpaxkenuii qo 84 * 84 u npeobpaszyem
VX B TIOJTyTOHOBBIE.

Mpumenenne DON k urpam Atari %+ 223

Kak 3T1o penaetca

s B3aMOZEeCTBUSI C OKpY>Kawlleil cpefoii Pong BBIMMOJHUM ClIeAyrouue nen-
CTBUSI.

1.

VmnopTupyeM Heo6XOIMMble MOAY/TU U CO3IaIUM IK3EMILISIP OKPYsKaIoIei
cpernnl Pong.

>>> import gym

>>> import torch

>>> import random

>>> env = gym.envs.make("PongDeterministic-v4")

B atom BapmaHTe Pong pneiicTBue NeTepMMHMPOBAHHOE ¥ MOBTOPSIETCS HA
MPOTSDKeHUM 16 KaapoB.

VI3y4yM ITPOCTPAHCTBO HAOTIOMEeHNIT Y IPOCTPAHCTBO AeiCTBIIA:

>>> state_shape = env.observation_space.shape

>>> n_action = env.action_space.n

>>> print(state_shape)

(210, 160, 3)

>>> print(n_action)

6

>>> print(env.unwrapped.get_action_meanings())

['NOOP', 'FIRE', 'RIGHT', 'LEFT', 'RIGHTFIRE', 'LEFTFIRE']

3ajaaum TpU AeiiCTBUS:

>>> ACTIONS = [0, 2, 3]
>>> n_action = 3

9TO cienyrmye IEeVCTBUS: OCTAaBaTbCs Ha MecTe, CMeCTUTBLCS BBEPX, CMeC-
TUTHCS BHU3.

[IpenrpymeM HECKOIBKO CJIYYaiHBIX OeJICTBUI U HAPUCYEeM SKPaH:

>>> env.reset()

>>> is_done = False

>>> while not is_done:
action = ACTIONS[random.randint(@, n_action - 1)]
obs, reward, is_done, _ = env.step(action)
print(reward, is_done)

vee env.render()

0.0 False

0.0 False

0.0 False

0.0 False
0.0 False
0.0 False
-1.0 True

BbI yBUAMUTE, KaK IBA UTPOKA UTPAIOT B HACTOIbHbIN TEHHIC, XOTSI areHT BCe
BpeMSI POUTPhIBAET.

224 < Tny6okue Q-cetv B AEACTBUM

5. Hamuiiem ¢GyHKIMIO, KOTOpas YMeHbIIaeT pa3Mep M300paskeHus 1 IIpeobpa-
3yeT ero B MOJIyTOHOBOE:

>>> import torchvision.transforms as T

>>> from PIL import Image

>>> image_size = 84

>>> transform = T.Compose([T.ToPILImage(),
T.Grayscale(num_output_channels=1),
T.Resize((image_size, image_size),

interpolation=Image.CUBIC),

T.ToTensor(),
D

OTO MbI CO31anM MpeobpasoBaTesib, U3MEHSIONMI pa3mMep Ha 84 * 84:

>>> def get_state(obs):
. state = obs.transpose((2, 0, 1))
. state = torch.from_numpy(state)
. state = transform(state)
. return state

A sra QyHKIUS ITpeobpasyeT M3MeHEHHOe M300paskeHye B TeH30p (popMbI
(1, 84, 84):

>>> state = get_state(obs)
>>> print(state.shape)
torch.Size([1, 84, 84])

Temeps MOKHO MPUCTYIIUTh K B3aMMOEMCTBUIO C OKPYKaIOIel cpenoi, npu-
MeHsIst aaroputm Double DQN.

1. HaaroT pas 6ymeM UCIIOMb30BaTh HEMPOHHYIO CETh C IBYMSI CKPBITHIMU CJIOSI-
MM, IIOCKOJIbKY BO BXOITHOM cJ10e TIpuom3uTenbHo 21 000 6;10K0B.

>>> from collections import deque
>>> import copy
>>> from torch.autograd import Variable
>>> class DQN():
def __init__(self, n_state, n_action, n_hidden, 1r=0.05):
self.criterion = torch.nn.MSELoss()
self.model = torch.nn.Sequential(
torch.nn.Linear(n_state, n_hidden[0]),
torch.nn.ReLU(),
torch.nn.Linear(n_hidden[0], n_hidden[1]),
torch.nn.ReLU(),
torch.nn.Linear(n_hidden[1], n_action)
)
self.model_target = copy.deepcopy(self.model)
self.optimizer = torch.optim.Adam(self.model.parameters(), 1r)

2. B ocranbHOM Kacc DQN MOYTH TaKOM Ke, KaK B pelienTe «Peann3anus aaro-
putMa Double DQN», c omHMM MEJIKUM OTIMYMEM B MeTojie replay:

>>> def replay(self, memory, replay_size, gamma):

BocnponsBejeHue onuiTa C LeNeBoi CETbH

Mpumenenne DON k urpam Atari %+ 225

@param memory: 6ydep BOCNpOM3BEAEHNA ONbITA
@param replay_size: konuyecTBo Bbibupaembix M3 6ydepa npumepoB npu
KaxgoM o6HOBNEHWM Mopenu
@param gamma: Ko3¢dpuuueHT obecueHUBaHUA
if len(memory) >= replay_size:
replay_data = random.sample(memory, replay_size)
states = []
td_targets = []
for state, action, next_state, reward, is_done in replay_data:
states.append(state.tolist())
q_values = self.predict(state).tolist()
if is_done:
q_values[action] = reward
else:
q_values_next = self.target_predict(next_state).detach()
q_values[action] = reward + gamma *
torch.max(q_values_next).item()
td_targets.append(q_values)
self.update(states, td_targets)

Bocronbs3yemcst pyHKIMeER gen_epsilon_greedy_policy, pa3paboTaHHOIi B pe-
uerre «Peanusanys rmyookux Q-ceTeii», 1 He 6yaeM 34,eCh IIOBTOPSITH ee KO,

Hamuem GyHKuyio nry6okoro Q-o6yuenust merogom Double DQN:

>>> def q_learning(env, estimator, n_episode, replay_size,
target_update=10, gamma=1.0, epsilon=0.1, epsilon_decay=.99):
Lny6okoe Q-o6ydyeHue c npumeHennem DDQN u 6ydepa BocnpousBefeHUs OMbiTa
@param env: MMA OKpyXawuei cpegsl Gym
@param estimator: obbekTa knacca DQN
@param replay_size: cKoibKO NpUMepoB WCMONb30BaTb NpU KaxAoM
o6HoBNeHUN Mogenun
@param target_update: 4epe3s cCKONbKO 3NN30f0B O6HOBAATL LeneByl CeTb
@param n_episode: konn4yecTso 3nu3040B
@param gamma: Ko3¢puLUMEHT obecueHuUBaHUA
@param epsilon: napameTp €-XafHO# CTpaTeruu
@param epsilon_decay: ko3a¢duymeHT 3aTyxanusa epsilon
for episode in range(n_episode):
if episode % target_update ==
estimator.copy_target()
policy = gen_epsilon_greedy_policy(estimator, epsilon, n_action)
obs = env.reset()
state = get_state(obs).view(image_size * image_size)[0]
is_done = False
while not is_done:
action = policy(state)
next_obs, reward, is_done, _ = env.step(ACTIONS[action])
total_reward_episode[episode] += reward
next_state = get_state(obs).view(image_size * image_size)
memory.append((state, action, next_state, reward, is_done))

226 <+ Tny6okue Q-cetu B AeiCTBUM

if is_done:
break
estimator.replay(memory, replay_size, gamma)
state = next_state
print('3nu3oa: {}, nonHoe Bo3sHarpaxgenue: {}, epsilon:{}'.
format(episode, total_reward_episode[episode], epsilon))
epsilon = max(epsilon * epsilon_decay, 0.01)

Hab6mogenne pasmepa [210, 160, 3] 6ymeT mpeo6pa3oBaHO B MaTPHUILy TTOTY-
TOHOBOTO M300paskeHMsI MeHbIero pasmepa [84, 84] u cepmanmM3oBaHO s
MoJauy Ha BXO[, HEMIPOHHOM CeTH.

5. Tenepb 3amamum GopMy HEPOHHON CeTU: pasMepbl BXOZHOTO UM CKPBITHIX
CJI0eB:

>>> n_state = image_size * image_size
>>> n_hidden = [200, 50]

3ajagyM TakKe TuIeprapaMeTpsl:

>>> n_episode = 1000
>>> lr = 0.003

>>> replay_size = 32
>>> target_update = 10

U co3panmym 00beKT Kiaacca DQN:

>>> dqn = DQN(n_state, n_action, n_hidden, 1r)
6. Ompenenum 6ydep s XpaHEHUST OIbITA:

>>> memory = deque(maxlen=10000)

7. U HaKkoHell, BbITIOJIHUM I‘J'IYGOKOE Q-O6Y‘16HI/IE n GYHEM 3aIlIOMMHATDb ITO/THbIe
BO3HarpaXzaeHns B Ka’KOOM 3IIM30/e:

>>> total_reward_episode = [0] * n_episode
>>> q_learning(env, dqn, n_episode, replay_size, target_update,
gamma=.9, epsilon=1)

Kak 3to paboraer

Habmomenue B cpeme Pong ropasmo cioskHee, 4eM B cpefjaxX, ¢ KOTOPbIMM MbI pa-
60oTany paHee. DTO TpexKaHaJIbHOe M300pakeHMe pasmepa 210x160. [TosToMy MbI
MpeIBapUTENIbHO ITPeobpas3yeM ero B ITOJIyTOHOBOE 1 YMeHbIIaeM pasmep a0 84x84,
a 3aTeM cepuanusyeM, T. e. IpeobpasyeM B OFHOMEPHBIII MACCUB, YTOOBI MMOAATH
Ha BXOJ, TIOJTHOCBSI3HOM HeMpPOHHOW ceTu. BXOZHOV €103 COCTOUT NMPUMEPHO U3
6000 6;710K0B, 1, YTOOBI CITPABUTHCS C TAKOI CJIOXKHOCTHIO, MbI BK/TIOUVIIV B CETh JIBa
CKPBITBIX CJIOS.

Mcnonb3oBaHue CBEPTOUHBIX HEMPOHHbIX CeTel B urpax Atari < 227

Mcnonb30BAHUE CBEPTOYHbIX HEMPOHHDBIX CETEMN
B UrPAX ATARI

B mpeppiayiiem perieniTe Bce HabmomaemMble n306pakeHus B cpeme Pong mpeo6-
Pa30BBIBAIMCH B TIOJIYTOHOBBIE, & 3aTeM B OLHOMEPHbII MacCUB, ITOLAaBAEMBbII Ha
BXO[I, TIOJIHOCBSI3HOY HEMPOHHOI ceTu. Takasi cepuanmsaius u300pakeHus] MOKET
MIPUBECTHU K ITOTepe MHpopManyu. A mouemy ObI He IT0IaBaTh Ha BXOJ] CaMO 1M300pa-
>xeHue? B aTOM pelieniTe Mbl BKIIOUMM B Mogenb DQN cBepTOUHYI0 HEJIpOHHYIO
cetb (CHC).

CHC - omHa M3 MyYlIMX apXUTEKTYP HEMPOHHBIX CETeli i1 pabOoThI C M306paske-
Husmu. Ee cBeprounbie ciiou 3(HEeKTUBHO BBIIEISIOT U3 M300paskeHNS TTPU3HAKH,
KOTOpBIE 3aTeM MepefalTcs MOJHOCBI3HBIM CI0IM. Ha puCcyHKe HMDKe NpUBeLEeH
npuMep CHC ¢ ByMS CBePTOYHBIMU CIOSIMMU.

Cepuanun3oBaHHble

KapTbl NpU3HaKK
Kaptbl Npu3HaKoB
npu3HaKoB
| b0 | .
BbixoaHow
B % |15
Relu Relu Relu

[TonHOCBSI3HbIN
CBepToYHbIi CBepToYHbIM
[MoNnHOCBA3HbIN

JIerko IMOHSITh, YTO eC/IM IMPOCTO «PaCIPSIMUTh» M300paskeHne B BEKTOP, TO MbI
roTepsieM 4acTb MHGOPMAIMM O MECTOTIOJIOKEHUY MsTya M UTPOKOB, & TAKOTO pojia
MHGOpMaIlMs OUeHb BaskHa IIJIsT 06yueHus Mopenn. B cBepTounbix crosx CHC aTa
nHbopMaIus IpecTaBieHa KapTaMiy MIPU3HAKOB, MTOPOKIAeMbIMY HECKOTbKUMM
dbunpTpamu.

MbI Ho-TIpeskHeMY YMeHbIlaeM pasmep uzobpakenusi ¢ 210x160 mo 84x84, Ho co-
xpaHsieM Bce Tpu RGB-KkaHaa, He mpeo6pasys UX B IMHETHbI MacCHB.

Kak aTo penaerca
Pemum 3amauy 06 urpe Pong ¢ momonrbio kom6uHamyy DON n CHC.

1. HmnopTtupyem HeoOGXOAMMble MOIY/IM M CO3TAAMM 9K3EMILISIP OKpYsKaIoIiei
cpensl Pong.
>>> import gym

>>> import torch
>>> import random

228 <+ Tny6okue Q-cetu B AeiCTBUM

>>> from collections import deque

>>> import copy

>>> from torch.autograd import Variable

>>> import torch.nn as nn

>>> import torch.nn.functional as F

>>> env = gym.envs.make("PongDeterministic-v4")

2. 3amaguM TpU OEeiCTBUS:

>>> ACTIONS = [0, 2, 3]
>>> n_action = 3

OTo wiemyolMe NeCTBUS: OCTaBATbCS HA MECTe, CMECTUTHCS BBEPX, CMeC-
TUTHCSI BHUS.

3. Hamummiem dbyHKIIMIO, KOTOpAsi yMeHbIIIaeT pa3Mep M300paskeHms :

>>> import torchvision.transforms as T
>>> from PIL import Image
>>> image_size = 84
>>> transform = T.Compose([T.ToPILImage(),
T.Resize((image_size, image_size),
interpolation=Image.CUBIC),
T.ToTensor()])

Hanee ompepenuM QYyHKIMIO, KOTOpasi yMeHbIIAeT M300paskeHue U mpeood-
pasyerT ero B TeH30p GhopMbl (3, 84, 84):

>>> def get_state(obs):
state = obs.transpose((2, 0, 1))
state = torch.from_numpy(state)
state = transform(state).unsqueeze(0)
return state

4. Temepb MOXHO MPUCTYIIUTh K B3aMMOMENCTBUIO CO cpenoit Pong, nis dero
HY3KHO paspaboraTb momenb CHC:

>>> class CNNModel(nn.Module):
def __init__(self, n_channel, n_action):
super(CNNModel, self).__init__()
self.convl = nn.Conv2d(in_channels=n_channel,
out_channels=32, kernel_size=8, stride=4)
self.conv2 = nn.Conv2d(32, 64, 4, stride=2)
self.conv3 = nn.Conv2d(64, 64, 3, stride=1)
self.fc = torch.nn.Linear(7 * 7 * 64, 512)
self.out = torch.nn.Linear(512, n_action)

def forward(self, x):

x = F.relu(self.convi(x))
F.relu(self.conv2(x))
F.relu(self.conv3(x))
x.view(x.size(0), -1)
= F.relu(self.fc(x))
output = self.out(x)
return output

X X X X

Mcnonb3oBaHMe CBEPTOUHBIX HEMPOHHbIX CeTel B urpax Atari «* 229

Bocmonb3yemcst TONbKO UTO co3aanHol mopaenbio CHC B Hatteit Mogenu DON:

>>> class DQN():
def __init__(self, n_channel, n_action, 1r=0.05):
self.criterion = torch.nn.MSELoss()
self.model = CNNModel(n_channel, n_action)
self.model_target = copy.deepcopy(self.model)
self.optimizer = torch.optim.Adam(self.model.parameters(), 1r)

B ocTrasbHOM Ki1acc DQN IoUuTH Tako Xe, Kak B perenTe «Peanusaiuus ajiro-
putMa Double DON», c omHMM MEJIKUM OTIMYMEM B MeTole replay:

>>> def replay(self, memory, replay_size, gamma):
Bocnpou3BejeHne OMbLITa C LeNeBOi CeTbi
@param estimator: 6ydep BoCnpousBefeHUs OMbITA
@param replay_size: cKoibKO NpUMepoB WUCMONb30BaTb NpU KaxAoM
o6HoBNeHUN Mogenu
@param gamma: Ko3¢puUMeHT obecueHnBaHUA
if len(memory) >= replay_size:
replay_data = random.sample(memory, replay_size)
states = []
td_targets = []
for state, action, next_state, reward, is_done in replay_data:
states.append(state.tolist()[0])
q_values = self.predict(state).tolist()[0]
if is_done:
q_values[action] = reward
else:
q_values_next = self.target_predict(next_state).detach()
q_values[action] = reward + gamma *
torch.max(q_values_next).item()
td_targets.append(q_values)
self.update(states, td_targets)

Bocronbs3ayemcst pyHKIMER gen_epsilon_greedy_policy, pa3paboTaHHOIi B pe-
uerre «Peannsanys ryookux Q-ceTeii», 1 He 6yaeM 34,eCh IIOBTOPSITh €€ KO,

Hamumem ¢yHKumio nry6okoro Q-o6yuenust metrogom Double DQN:

>>> def q_learning(env, estimator, n_episode, replay_size,
target_update=10, gamma=1.0, epsilon=0.1, epsilon_decay=.99):
L[ny6okoe Q-o6yyeHne metogom Double DQN c BoCnpousBegeHWeM OMbITa
@param env: MMA OKpyXawuei cpegbl Gym
@param estimator: obvekT knacca DQN
@param replay_size: cKoibKO NpUMepoB WCMONb30BaTb NpU KaxAoM
o6HoBNEHUN Mogenu
@param target_update: 4epe3s CKONbKO 3NN30f0B O6HOBAATL LeneBylw CeTb
@param n_episode: konnyecTso 3nu3040B
@param gamma: Ko3¢puLUMEHT obecueHnBaHUA
@param epsilon: napameTp €-XafHO# CTpaTeruu
@param epsilon_decay: ko3¢duymeHT 3aTyxanusa epsilon

230 <+ Tny6okue Q-ceTu B AeiCTBUM

for episode in range(n_episode):
if episode % target_update ==
estimator.copy_target()
policy = gen_epsilon_greedy_policy(estimator, epsilon, n_action)
obs = env.reset()
state = get_state(obs)
is_done = False
while not is_done:
action = policy(state)
next_obs, reward, is_done, _ = env.step(ACTIONS[action])
total_reward_episode[episode] += reward
next_state = get_state(obs)
memory.append((state, action, next_state, reward, is_done))
if is_done:
break
estimator.replay(memory, replay_size, gamma)
state = next_state
print('dnu3og: {}, nonHoe BosHarpaxgeuue: {}, epsilon: {}'.
format(episode, total_reward_episode[episode], epsilon))
epsilon = max(epsilon * epsilon_decay, 0.01)

9. 3amaguM rurepriapaMeTphbl:

>>> n_episode = 1000
>>> lr = 0.00025

>>> replay_size = 32
>>> target_update = 10

U cospagum o6beKT Kiaacca DQN:
>>> dqn = DQN(3, n_action, 1lr)

10. Onpenenum 6ydep AJisg XpaHeHUs OIbITA:
>>> memory = deque(maxlen=100000)

11. 1 HaKOHell, BBITIOJTHUM I7Ty60K0e Q-06yueHne 1 6yaeM 3alIOMUHATD TOHbIE
BO3HATPaskIeHMS B KaXKIOM 3TMU30e:

>>> total_reward_episode = [0] * n_episode
>>> q_learning(env, dqn, n_episode, replay_size, target_update,
gamma=.9, epsilon=1)

Kak 3to paboraer

OyHKIMS 06paboTKM M300pakeHMil Ha Iare 3 cHavyaja yMeHbIIaeT pasMep U30-
O6paskeHMsI 10 KaskIoMy KaHary 10 84x84, a 3aTeM ITpeo6pasyeT pe3ysbTaT B TEH30D
dopmbi (3, 84, 84) niist mogaum Ha BXOJ, HEMAPOHHOI CETH.

Mopenb CHC, co3maHHast Ha Iare 4, COCTOUT M3 TPEX CBEPTOUYHBIX CJI0EB C (PYHK-
umveri akruBauuy ReLU. KapTel mpu3HaKoB, MOPOXKIEHHbIE IMOCAEOHUM CBEPTOY-
HBIM CJIOEM, CEPUANIU3YIOTCST Y TIONAIOTCSI HA BXOZ, MOTHOCBSI3HOTO CKPBITOTO CJI0SI
¢ 512 61o0kamMu, 3a KOTOPBIM CJIEIYET BBIXOHOI CJIOJA.

Mcnonb3oBaHue CBEPTOUHBIX HEMPOHHbIX ceTeit B urpax Atari % 231

Briepsbie BriaoueHne CHC B DON 6bUTO OMMCaHO B CTaThe KOMITaHMM Deep-
Mind «Playing Atari with Deep Reinforcement Learning» (https://www.cs.toronto.
edu/~vmnih/docs/dgn.pdf). Mogenb TpMHMMAaeT Ha BXOHAe IUKCeIU U300paskeHMsI
¥ BBIBOIUT OIIEHKM OYIYIIUMX BOo3HArpaxkaeHuit. OHa XopoIo paboTaeT U IJis Ipy-
TMX UTPOBBIX cpen Atari, B KOTOPBIX HAGMIOMEHUSIMMU SIBJISIIOTCST M300paskeHMs Ha
3KkpaHe urpbl. CBepTOYHbIE CJIOU UTPAIOT PO 3¢HEKTUBHBIX MepapxXudecKux 3KC-
TPAKTOPOB IPM3HAKOB. OHY MOTYT OGYUMTHLCS IIPeICTaBIeHNSIM IPU3HAKOB Ha MC-
XOIHBIX MAHHBIX U300paskeHMii, a 3aTeM IOaTh MPU3HAKM Ha BXOJ TTOJTHOCBSI3HbIX
CJI0€B JIJ1sT 06yUeHMsI CTpaTerny YCIIeNHOTO YIIpaBIeHs.

MmeiiTe B BUIY, UTO MpoIlecc 06yUeHMs B MPeIbIAyIIeM IpuMepe 06bIYHO 3aHM-
MaeT napy nHeii gaxke npu Haanuuu GPU u okono 90 yacoB Ha MatiuHe C 4-si1ep-
HbBIM MpoiieccopoM Intel i7 2.9 I'T11.

CM. Takke
Yurartensm, He3HakKOMbIM ¢ CHC, pekoMeHIyeM cenyrolye UCTOUHUKA:

O Yuxi (Hayden) Liu and Saransh Mehta. Hands-On Deep Learning Architectures
with Python: riaBa 4 «Apxutextypa CHC» (u3gatensctBo Packt Publishing);

O Yuxi (Hayden) Liu and Pablo Maldonado. R Deep Learning Projects: masa 1
«Pacro3HaBaHye PYKOMUCHBIX HUGP C MOMOIIbI0 CBEPTOUHbBIX HEWPOHHBIX
ceTeit» 1 1aBa 2 «Pacro3HaBaHye JOPOKHBIX 3HAKOB 6eCIMIOTHBIMU TPAHC-
TTOPTHBIMU cpefncTBaMm» (u3maTenbcTBO Packt Publishing).

naBa

Peanusauua metonos
rpaAueHTa cTparterum
U ONTUMMU3aLMUS CTpaTeruu

OTa I1aBa MOCBsIleHa MeToLaM IrpaiiieHTa CTpaTernu — OAHOM U3 CAaMbIX TIOITYJISIp-
HBbIX TEeXHUK OOyUeHMsI C TTOAKpeIvIeHeM B TOCIeIHe Toabl. Mbl HAUHEM C pea-
nu3auuy ocHoporosarariero aaroputma REINFORCE, a 3aTemM pacCMOTpUM €ro
ycoBepmieHcTBOBaHHbI BapuaHT — REINFORCE c 6a30it. Mbl Takke peanmsyeMm
HECKOJIbKO BapMaHTOB 00jiee MOIIHOTO aJITOPUTMa MCIIOMHUTETb—KPUTUK U TIPU-
MEHMM ero K 3ajayaM O OaJlaHCHMPOBAHUM CTEPKHS U O OMYKIaHUM Ha Kpaio 06-
pbiBa. ByzmeT paccMoTpeHa oKpysKaloliasi cpefia ¢ HelpepbIBHBIM ITPOCTPAHCTBOM
IeCTBUIA, IJIST pellleHMsI KOTOPO# MbI 06paTUMCS K HOPMaJIbHOMY pacipeneIeHnio.
B KOHIIe T/1aBbl MBI METOHOM IT€PEKPECTHON SHTPOIMM 0O6yUMM areHTa pemaTh 3a-
JIauy o 6aaHCUPOBAHNUY CTEPIKHS.
B 3T0i% I71aBe MPUBOASITCS CIeAYIOIIe pellerThl:

peanu3saius airoputma REINFORCE;

peanu3saiius aaroputma REINFORCE c 6a30ii;

peanu3anus anropuTMa UCTIOTHUTETb—KPUTUK;

pellieHMe 3a1aun O OIIYKIaHMM HA Kpalo 00pbIBa C TOMOILbIO aTOpUTMa UC-
MMOJTHUTEIb—KPUTUK;

MOJIrOTOBKA HEIIPepPbhIBHOI OKpysKaroliei cpeasl Mountain Car;

pellieHne HempepbIBHONM 3amaur o OIysKmaHuM Ha Kpao O6pbIBa METOIOM
A2C;

pelleHMe 3aauy 0 6aTaHCUPOBAHUY CTEPXKHS METOMIOM IePeKPeCTHO H-
TPOTIUM.

©C 00 0000

Peanuzauus anroemtMA REINFORCE

VI3 HeaBHUX MTyOIMKALINIA CIeyeT, YTO METOABI TPaMeHTa CTPATErM CTAHOBSITCS
Bce 6ojiee TTOMy/sIpHbIMMA. Llesb 06yueHnsT B 9TOM CTydae — ONTUMU3UPOBATDb pac-
Tpeqe/ieHye BepOSITHOCTEe JeiiCTBIUIA, TaK YTOOBI B JAHHOM COCTOSIHMUM BbIGOD fAeli-

Peannsaums anroputma REINFORCE % 233

CTBUSI, IPUHOCSIIETo Gojblliee BO3HArpaskaeHue, 6b1 60/iee BeposiTeH. B mepsom
perienTe 3TOV rmaBbl Mbl paccMoTpuM anroputM REINFORCE, neskaiinii B oCHOBe
BCeX MEeTO/I0B IpaJijieHTa CTpaTernu.

AnroputMm REINFORCE Ha3bIBalOT TaKKe MeTOI0M I'paaueHTa crpaTermu MoH-
Te-Kapsio, MOCKO/IbKY OH ONITUMU3UPYET CTpaTeruio, mpumeHsist meton MonTe-Kap-
j10. TouHee, oH co6upaeT MpUMeEPhI TPAEKTOPUIL B OJHOM STM30[e, CIemys TeKy-
IIeit cTpaTernu, M UCIoMb3yeT UX J1Ji 00ydueHus mapaMeTpoB cTpateruu 0. IleneBast
(byHKIMSI B MeTO/le TpaiIueHTOB CTpaTeruy TaKoBa:

T-1 T-1

J©) = E|Y 1| = > P(s,a)r,
t=0 t=0

Ee rpagyeHT MOXKHO 3aIMCaTh B BUJIE:

T-1

V() = > Vlogmn(a,ls,)*G,.

t=0

3pech G, — 10XOf, T. €. TIOTHOe 06eclieHeHHOe BO3HArpaxaeHue, olTy4eHHoe /10
MOMEHTa t, a T(a,ls,) — cToxacTuMyeckast CTpaTerusi, Onpenesiollas BepPOSITHOCTH
Pas3IMYHBIX AEMCTBUII B JAHHOM COCTOSTHUM. [TOCKOJMIbKY OOHOBJIEHME CTpaTerumu
MIPOM3BOIUTCS TIOC/Ie 3aBeplIeHMsT BCero 3Mmu3ona 1 coopa Bcex mpumepon, REIN-
FORCE siBnsieTcst anrTopuTMOM C pa3feleHHO cTpaTeruerni.

BbIumcaMB TpagyeHThl CTPATeruy, Mbl IPUMEHsSIeM 00paTHOe PacIpoCTpaHeH e
I71sT OGHOBJIEHMS TTapaMeTpoB cTpaTeruu. [locie TOro Kak cTpaTerus OOHOBJIEHA,
MBI BBITIOJTHSIEM 311307, cO6MpaeM HabOp IIPUMEPOB U UCIOIb3YeM UX IS CJIedy-
I0IIero OOHOBJIEHMS TTApaMEeTPOB CTPATETUM.

Teneps peanusyem anroputm REINFORCE 151 B3aumMogeincTBusI C OKpy>Karolei
cpemoii CartPole (https://gym.openai.com/envs/CartPole-v0/).

Kak 3To penaetca

1. VMnoptupyeM HeoOXOAMMbIe ITAKEThI M CO3aAMM SK3eMIUISIP OKPYsKaIoIIei
cpensl CartPole:

>>> import gym

>>> import torch

>>> import torch.nn as nn

>>> env = gym.make('CartPole-v0')

2. Cnauana Hamuiiem MeTof, __init__ kmacca PolicyNetwork, KOTOpbIi allIpOKCH-
MUPYET CTPaTeTI0 HeliPOHHO CeThIO:

>>> class PolicyNetwork():

ves def __init__(self, n_state, n_action, n_hidden=50, 1r=0.001):
ves self.model = nn.Sequential(

ves nn.Linear(n_state, n_hidden),

. nn.ReLU(),

ves nn.Linear(n_hidden, n_action),

cee nn.Softmax(),

ves self.optimizer = torch.optim.Adam(self.model.parameters(), 1r)

234 <« Peanusauna metonos rpagmMeHTa cTpaterMm n onTuMn3sauma cTtpatermm

3. Jo6aBuMm MeToq, predict, KOTOPBI BBIUYMCISIET OI[€HKY CTPATEruu:

>>> def predict(self, s):

cee BbluMCNAET BEPOATHOCTH AEACTBNA B COCTOAHMM S,
cee npuMeHsas o6yyeHHyw mopenb

cee @param s: BXOAgHOE COCTOAHME

cee @return: npegckasaHHas cTpaTerus

v LLALALE

vee return self.model(torch.Tensor(s))

4. Temepb HaNMIIEM METO[, KOTOPbIii OGHOBJISIET HEMIPOHHYIO CETh HAa OCHOBE
COOpaHHBIX B 3M130/ie IPUMEpPOB:

>>> def update(self, returns, log_probs):

ces 06HOBNAET Beca CeTH CTpaTerMu Ha OCHoBe O06Y4awWWUX NpuUMepoB
ces @param returns: foxop (HakonuTenbHOe BO3HAarpaxAeHue) Ha KaxpoM
ces ware 3nusoga

. @param log_probs: norapudmbl BepOATHOCTEH HAa KaxgoMm ware
. policy_gradient = []

. for log_prob, Gt in zip(log_probs, returns):

vee policy_gradient.append(-log_prob * Gt)

. loss = torch.stack(policy_gradient).sum()

. self.optimizer.zero_grad()

vee loss.backward()

. self.optimizer.step()

5. Tlocmemuwmit MeToq Kiacca PolicyNetwork — get_action, OH BbIOMpAET JIeiiCTBIE
B JAHHOM COCTOSIHMM Ha OCHOBeE ITpefcKa3aHHO CTpaTernin.

>>> def get_action(self, s):

cee NpeackasbiBaeT CTpaTeruw, BLIGUPAeT AedCTBUE W BLIMUCAAET OrapuoM
cee ero BepOATHOCTH

cee @param s: BXOJHOE COCTOSAHME

. @return: Bbi6paHHOe AeiicTBME M NOrapu¢m ero BEepOATHOCTH

cee probs = self.predict(s)

cee action = torch.multinomial(probs, 1).item()

cee log_prob = torch.log(probs[action])

cee return action, log_prob

JlorapudM BepOSITHOCTY e ICTBUS CTAHET YacThIo 06yUaloIero mpumepa.
C knaccoM PolicyNetwork — Bce.

6. Teneps nepeiigem K anroputMmy REINFORCE c ceTeBOi1 MOi€/IbIO CTPaTErM.

>>> def reinforce(env, estimator, n_episode, gamma=1.0):

cee Anroputm REINFORCE
. @param env: uMAa OKpyxawwei cpefbl Gym
ves @param estimator: ceTb, annpoKcMMmMpyKWas CTpaTeruw

Peannsaums anroputma REINFORCE « 235

@param n_episode: Konn4yecTso 3nu3040B
@param gamma: Ko3¢puuMeHT obecueHnBaHUA
for episode in range(n_episode):

log_probs = []

rewards = []

state = env.reset()

while True:
action, log_prob = estimator.get_action(state)
next_state, reward, is_done, _ = env.step(action)

total_reward_episode[episode] += reward
log_probs.append(log_prob)
rewards.append(reward)

if is_done:
returns = []
Gt =0
pw =0
for reward in rewards[::-1]:
Gt += gamma ** pw * reward
pw += 1
returns.append(Gt)
returns = returns[::-1]
returns = torch.tensor(returns)
returns = (returns - returns.mean()) / (
returns.std() + 1e-9)
estimator.update(returns, log_probs)
print('dnu3og: {}, nonHoe Bo3Harpaxgenne: {}'.
format(episode, total_reward_episode[episode]))
break

state = next_state

3agagum GopMy ceTu crpaTtermu (pasMepbl BXOJHOTO, BHIXOZHOIO U CKPbI-
TOT'O CJIOEB) U CKOPOCTH OOYUEHMSI, 3aTEM CO3IaAMM 3K3eMILISp Kiacca Poli-
cyNetwork:

>>> n_state = env.observation_space.shape[0]

>>> n_action = env.action_space.n

>>> n_hidden = 128

>>> 1r = 0.003

>>> policy_net = PolicyNetwork(n_state, n_action, n_hidden, 1r)

KosdduiinenT obecuieHMBaHMS MOJIO0KMUM paBHbIM 0.9:
>>> gamma = 0.9

Boimonuum o6yuenue metogom REINFORCE c¢ ToOMbKO UTO pa3paboTaHHOI
cTpaTeruei ¢ HeifpoHHOII ceThio Ha 500 smM30max 1 GymeM COXpaHsITh MOJ-
Hble BO3HATPAKAEHMS B KQXKIOM 3MM30/Ie:

>>> n_episode = 500
>>> total_reward_episode = [0] * n_episode
>>> reinforce(env, policy_net, n_episode, gamma)

236 <« Peanusauna metonos rpagmMeHTa cTpaterMm n onTuMn3sauma cTtpatermm

9.

HOCTpOI/IM I‘pa(I)I/IK 3aBUCMMOCTHU BO3HArpakaeHus B 31IM3040€e OT BpEMEHI

>>> import matplotlib.pyplot as plt

>>> plt.plot(total_reward_episode)

>>> plt.title('3aBucuMoCTb BO3HArpaxgeHua B 3nM304e OT BpemeHun')
>>> plt.xlabel('3nu3o0g')

>>> plt.ylabel('MonHoe Bo3HarpaxaeHue')

>>> plt.show()

Kak ato pa6oraer

Ha mrare 2 MblI IJ1s1 IPOCTOTBI CO3,A/TY HEMIPOHHYIO CETh C OMHUM CKPBITHIM CJIOEM.
Ha BX07 ceTu ojaeTcsi COCTOSIHME, 3aTeM CJIEYET CKPBIThIi CJI0I, ¥ Ha BHIXOJIE BbI-
IAI0TCSI BEPOSITHOCTY BHIOOPA Pa3IMUHBIX IeiCTBMIA. [[09TOMY B KauecTBe QYHKIUM
aKTMBALMM B BBIXOZHOM CJIO€ MUCIIOb3yeTcs softmax.

Ha 1mare 4 0GHOBJISIIOTCSI TAPaMETPbI CeTH: MOMIb3YsICh BCEMM JaHHBIMU, COGPaH-

HBIMU

B 3IM30[€, B T. Y. JOXOAAMM 1 JIorapubMaMy BEPOSITHOCTEI, MbI BbIYMC/ISIEM

TPafieHThbl CTPATErny, a 3aTeM MPUMeEHsIeM 06paTHOE PacpOCTPaHEHME, UTOOBI
O0GHOBUTD ITapaMeTPbI CTPATETUMN.
Ha mare 6 anroputma REINFORCE BBITTOMHSIOTCS Clienyroniue 1eiicTBUS

o

o

TIPOTOHSIETCS OAVH 3IM30/;: Ha KaskKIOM Illare BoIOGMpaeTcs AeiicTBIe, CIemyst
TeKYIIeit CTpaTerum, COXpPaHsIIOTCS BO3HATpakaeHye 1 jjorapudM BeposiTHO-
CTU,

[0 3aBepIIeHM) SMM30[a BHIUKUCISIETCS 06eCLieHeHHbI JOX0H Ha KaskIoM
IIare; IoJy4eHHbIE TOXOIbl HOPMUPYIOTCS ITyTEM BbIUMTAHUSI CPEIHETO U Jie-
JIeHMSI Ha CTaHJApPTHOE OTKJIOHEeHMe;

3Has JOXOIbI U JIorapu(Mbl BEPOSITHOCTE, BEIUMC/ISIOTCS IPadMeHThbI CTpa-
Teruu, a 3aTeM 0OHOBJISIIOTCS ITapaMeTphbl cTpaTteruu. Kpome Toro, otobpaska-
eTCsI IOJIHOe BO3HATPakAeHNe B KasKAOM SI130¢;

BCe BbIIIeNepeurc/IeHHbIe IIark MOBTOPSIOTCS B n_episode SmM300ax.

Ha miare 8 reyararoTcs Takue COOOIeHNS

dnu3oa:
dnu3oa:
dnu3oa:
dnu3oa:
dnu3oa:

dnu3oa:
dnu3oa:
dnu3oa:
dnu3oa:
dnu3oa:

0, nonHoe BO3HAarpaxpeHue: 12.0
1, nonHoe Bo3Harpaxgevue: 18.0
2, NoNHoe BO3HAarpaxgewue: 23.0
3, nonHoe BO3Harpaxgewue: 23.0
4, nonHoe BO3HAarpaxpeHue: 11.0

495, nonHoe BO3HarpaxgeHue: 200.0
496, nonHoe BO3HarpaxjeHue: 200.0
497, nonHoe BO3HarpaxjeHue: 200.0
498, nonHoe BO3HarpaxgeHue: 200.0
499, nonHoe BO3HarpaxjeHue: 200.0

Peanusaums anroputma REINFORCE <+ 237

I'paduk, MOCTPOEHHBIIT HA IIare 9, BLINISIAUT CIeTYIONMM 06pasoM:

3aBUCMMOCTb BO3HarpaxaeHusa B ann3one OT BpeMeHu

[MonHoe BO3HarpaxaeHue
~d
]
|

g

A%
wn
1

T T T T
100 200 300 400 500
onuson,

=

MbI BUAMM, UTO B GONMbIIMHCTBE M3 mocaenHux 200 sMM130[0B BO3HArPasKAeHMe
JOCTUraeT MakcuMaJbHOro 3HaueHus +200.

REINFORCE - 3TO cemeliCTBO MeTOAOB TpafMeHTa CTpaTeruu, B KOTOPbIX Mapa-
MEeTPbI CTpaTeruy O6HOBIISIOTCS IO hopmyIie

T-1
A8 =) Vlogmn(a,ls,) xG,,
t=0

r7e o — CKOpOCThb 06yueHus, m(a,ls,) — OToOpaskeHue NeiiCTBUI Ha MX BepOSITHOCTH,
a G, - 0X0f, T. e. HAaKOIMTeIbHOe 06eClleHeHHOe BO3HArpakjeHue Ha 11are 31ms3o-
na t. [TockonbKy HAG60Op 06YUAIOIIMX TPUMEPOB CTPOUTCS TOMBKO MOCJIE 3aBePIIeHNST
snu3ona, REINFORCE gBisieTcst airopuTMoOM C pasfeneHHoi ctpaTerueit. IIponecc
00yuYeHMsI MOSKHO CBECTM K C/IeAYIOIIM IlIaram.

1.
2.

CnyvaiiHbIM 06pa3soM MHUIIMAIM3YPOBATh MapaMeTphbl cTpaTeruu 0.
BBITTOTHUTD 3MM30[I, BbIOMpast IeICTBUS B COOTBETCTBUM C TEKYIIEi CTpaTe-
TUein.

Ha KaskmoMm Irare COXpaHsITh IOTapudM BepOSITHOCTY BIGPAHHOTO AeiiCTBHIS,
a TaKke MOJTyYeHHOE BO3HArpaskaeHNe.

BBIUMCIUTD JOXOM Ha KaskIOM Iare.

BBIUMCIUTD IPaiMeHThbI CTPATeruy, 3Hasl JorapmudMbl BEPOSTHOCTEN 1 JOXO0-
IIbI, ¥ OOHOBUTD IMapaMeTphl CTpaTernu 6 MeTogoM 06paTHOTO pacIpocTpa-
HEHMUSI.

IMoBTOPATSH IIaru 2-5.

238 <« Peanusauna metonos rpagmMeHTa cTpaterMm n onTuMn3sauma cTtpatermm

Emie pa3 MoBTOPUM, UTO MOCKOAbKY aaroputmy REINFORCE Heo6X0omuMBbI TTOJI-
HbI€ TPAaeKTOPUM, TeHePYpyeMble CTOXaCTUUYECKOVi CTpaTermeii, OH OTHOCUTCS K ce-
MelicTBy MeTon0B MoHTe-Kapiio.

CM. TaKkXKe

BeiBecTn hopMysy rpavieHTa CTpaTerny HempocTo. [IJIst STOro UCIoNb3yeTcs hop-
Mysa rpaguenTa gorapudma (log derivative trick). aTepecyommecss MoryT o6pa-
TUTBCS K CTaThe M0 afapecy http://www.1-4-5.net/~dmm/ml/log_derivative_trick.pdf.

Peannsauma anroputMA REINFORCE ¢ BA30i

B anroputme REINFORCE smnu3on mporoHsieTcs 40 KOHIA, ¥ TOJIbKO IIOTOM CO-
OpaHHbIe TaHHbIE VICTIOIL3YIOTCS IJIT OOHOBIeHMS cTpaTeruy. OMHAKO B CYITY CTO-
XaCTUYHOCTYU CTPATerui B OLHOM M TOM K€ COCTOSTHUM B Pa3HbIX 3MM30[laX MOTYT
BBIOMPATHCS pa3Hble NeCTBUS. DTO MOXKET 3alyTaTh 00yUeHye, IOTOMY YTO OIUH
MpuMep TpebyeT YBEIMUUTh BEPOSITHOCTh BbIOOpPA HEKOTOPOTO MIEVCTBUS, a Ipy-
rO¥i — yMEHBIIUTD ee. [IJIsT pereHus 3Toii Tpo6yieMbl BLICOKOI IucIiepcum pa3pabo-
TaH BapuaHT aaroputma — REINFORCE ¢ 6a30ii, KOTOpBIif MbI ¥ PACCMOTPUM B 3TOM
petieriTe.

B anroputme REINFORCE c 6a307t MbI BbIuuTaeM 6a30BYIO IIEHHOCTb COCTOSTHUS
n3 goxona G. [TosTomMy mpy OGHOBJIEHUM TpaieHTa VCIOIb3yeTcs] (PYHKIVS TIpe-
MMYIIeCTBa A, OTIpe/ieJIeHHasI CIeAyIOIUM 00pa3oM:

A, =G, —V(s,);
T-1

AJ(0) = > Vlogm(a,ls,)* A,.
t=0

3mech V(s) — QYHKIMS, OlleHMBAIOIIAs [IEHHOCTb COCTOSIHMIT. OGBIUHO MCIIO/b-
3yeTcst MO0 aMHelHas GYHKIMS, 60 HelipoHHas ceTh. BBemeHme 6a30BOil 1eH-
HOCTM TIO3BOJISIET OTKAIMOPOBATh BO3HATPAKAEHNSI OTHOCUTEIBHO CPETHETO Jeli-
CTBUS B JAHHOM COCTOSTHUM.

Ms1 paspa6oraem anroputm REINFORCE c¢ 6a30ii, MCITONb3YS IBE HepOHHbBIE
CeTy — OAHY [AJ1s1 CTpaTeruu, APYyTyIo AJ1s1 OlleHMBAHUS LIeHHOCTHU, — ¥ IPUMEHUM eTo
K OKpyKkamoteii cpene CartPole.

Kak ato penaetcs

1. VmmopTtupyeMm Heo6XOaMMbIe ITaKeThI M CO3AAANM SK3eMIUISIP OKpYsKaloIeit
cpenpl CartPole:

>>> import gym

>>> import torch

>>> import torch.nn as nn

>>> from torch.autograd import Variable
>>> env = gym.make('CartPole-v0')

Peanuzaums anroputma REINFORCE c 6ason +* 239

2. qaCTb, OTHOCAIIAsICA K CeTu CTpaTermim, B OCHOBHOM TaKa#d >Xe, KaK B Kjiacce
PolicyNetwork, HalMCaHHOM B MpebIayIleM perernte. HarioMHuM, 4TO B Me-
ToJle update MCIONb3yeTCst QYHKUMS TPeUMYIecTBa:
>>> def update(self, advantages, log_probs):

06HOBNAET Beca CeTH CTpPaTermm Ha OCHoBe 06Y4awwux NpUMEpoB

@param advantages: npeuMywecTBa Ha KaxAoM ware 3nn30pa

@param log_probs: norapu¢Mmbl BepoSTHOCTEH Ha KaxioMm ware

policy_gradient = []

for log_prob, Gt in zip(log_probs, advantages):
policy_gradient.append(-log_prob * Gt)

loss = torch.stack(policy_gradient).sum()
self.optimizer.zero_grad()
loss.backward()

self.optimizer.step()

3. BKkauecTBe ceT LIeHHOCTY MbI 6y,ZLEM MICIIO/JIb30BaTh Ce€Thb perpecCumn C OHHUM
CKPBITBIM CJIOEM:

>>> class ValueNetwork():
def __init__(self, n_state, n_hidden=50, 1r=0.05):
self.criterion = torch.nn.MSELoss()
self.model = torch.nn.Sequential(
torch.nn.Linear(n_state, n_hidden),
torch.nn.ReLU(),
torch.nn.Linear(n_hidden, 1)

)

self.optimizer = torch.optim.Adam(self.model.parameters(), lr)

[Ipu ee oOyyeHMM CTABUTCSI LEJIb ANIIPOKCUMUPOBATH IEHHOCTU COCTOSI-

HUIA, TIO3TOMY B poyiv GYHKIIMM ITIOTEPH BBICTYIIAET CPeIHEeKBaApaTUIeCcKast

omrmoKa.

Mertop, update o6y4yaeT MO/IeIb perpeccu Ha MHOXKECTBE BXOHBIX COCTOSTHUIA

U 11€JIEBBIX LIEHHOCTEN, pa3yMeeTCst, MeTOI0M 0OpaTHOTO PacIIpOCTPaHEeHMSI:
def update(self, s, y):

06HOBMTL Beca DQN, nonyuums obyuyaiuwmuii npumep

@param s: COCTOSHMSA
@param y: leneBble LEHHOCTH

y_pred = self.model(torch.Tensor(s))

loss = self.criterion(y_pred, Variable(torch.Tensor(y)))
self.optimizer.zero_grad()

loss.backward()

self.optimizer.step()

A metof predict olleHMBaeT 1IeHHOCTh COCTOSTHUS :

def predict(self, s):

240 <« Peanusauna metonos rpagmMeHTa cTpaterMm n onTuMn3sauma cTtpatermm

BoluMcnfeT 3HaYeHMA Q-OYHKUMM COCTOAHMA ANA BCeX AeHCTBMIA,
npumeHssa obyuyeHHyw Mogenb
@param s: BXOJHOe COCTOSHME
@return: 3HavyeHus Q-QYHKUMM COCTOAHMA ANA BCeX AeHCTBMI
nun
with torch.no_grad():

return self.model(torch.Tensor(s))

4. Terepb MOKHO TlepeiiTy K peanusanum aaroputma REINFORCE c 6a30ii ¢ Mmo-
JleNblo, BKJIIOUAIOIlelt CeTU CTpaTernm u 1eHHOCTU

>>> def reinforce(env, estimator_policy, estimator_value,
n_episode, gamma=1.0):
Anroputm REINFORCE c 6a3oi
@param env: MMA OKpyxawuei cpegsl Gym
@param estimator: ceTb cTpaTerum
@param estimator_value: ceTb LeHHOCTH
@param n_episode: Konn4yecTso 3nu30408
@param gamma: Ko3dduuMeHT obecuyeHnBaHuA
for episode in range(n_episode):
log_probs = []
states = []
rewards = []
state = env.reset()
while True:

states.append(state)
action, log_prob = estimator_policy.get_action(state)
next_state, reward, is_done, _ = env.step(action)

total_reward_episode[episode] += reward
log_probs.append(log_prob)
rewards.append(reward)

if is_done:

Gt =0
pw =0
returns = []

for t in range(len(states)-1, -1, -1):
Gt += gamma ** pw * rewards[t]
pw += 1
returns.append(Gt)
returns = returns[::-1]
returns = torch.tensor(returns)
baseline_values = estimator_value.predict(states)
advantages = returns - baseline_values
estimator_value.update(states, returns)
estimator_policy.update(advantages, log_probs)
print('dnu3og: {}, nonHoe Bo3Harpaxaeuue: {}'.
format(episode, total_reward_episode[episode]))
break
state = next_state

Peanusaums anroputMa REINFORCE c 6azoit <+ 241

3agagum dhopmy ceTu cTpaTermu (pasMepbl BXOJHOTO, BHIXOAHOTO U CKPbI-
TOT'O CJIOEB) U CKOPOCTh 0OyUEHMSs, 3aTeM CO3IaAMM 3K3eMIUISIp Kiracca Poli-
cyNetwork:

>>> n_state = env.observation_space.shape[0]

>>> n_action = env.action_space.n

>>> n_hidden_p = 64

>>> lr_p = 0.003

>>> policy_net = PolicyNetwork(n_state, n_action, n_hidden_p, lr_p)

IIJ1s1 ceTy IeHHOCTU TaKKe 3a4aaM pasmep 1 co3gaauM 3K3eMIIAP Kiaacca:

>>> n_hidden_v = 64
>>> lr_v = 0.003
>>> value_net = ValueNetwork(n_state, n_hidden_v, 1lr_v)

KosdduimeHT obeciieHMBaHMS MTOTOKMUM paBHbIM 0.9:
>>> gamma = 0.9

Boimonmuum o6yuenue metomom REINFORCE c 6a3oit Ha 2000 sm130m0B 1 6y-
JIleM COXPaHSITh ITOJIHbIE BOSHATPAKIEHMS B KasKIOM SIIM30e:

>>> n_episode = 2000
>>> total_reward_episode = [0] * n_episode
>>> reinforce(env, policy_net, value_net, n_episode, gamma)

HOCTpOI/IM I‘pa(bI/IK 3aBUCMMOCTHU BO3HArpakKaeHus B 31IM3040€e OT BpEMEHN

>>> import matplotlib.pyplot as plt

>>> plt.plot(total_reward_episode)

>>> plt.title('3aBucuMocTb BO3HArpaxgeHnsa B anu3ofe OT BpemeHun')
>>> plt.xlabel('3nu3o0g')

>>> plt.ylabel('MonHoe Bo3HarpaxaeHue')

>>> plt.show()

Kak 3To paboraer

AnroputMm REINFORCE oTHOCUTCS K cemelicTBY meTon,0B MoHTe-Kapio, MOCKOIbKY
I7IST OOyUeHMST CEeTU CTpaTerny emMy Hy>KHa TojiHasl TpaekTopusi. OqHaKO B pa3HbIX
SMM30MaX MPY OTHOI U TOM Ke CTOXACTUUECKOI CTpaTernu MOTYT BbIOMPAThCS pas-
Hble feicTBuUs. UT0Obl yMEHbIINUTD AMUCIIEPCHUIO, Mbl BBIUMTAaEM IIEHHOCTb COCTOSTHMS
n3 poxona. ITomyuatomiasics GyHKIMS IpeUMYIecTBa M3MepseT BO3HATpaKIeHe
OTHOCUTEJIbHO CpelHero AeiiCTBUS, OHO U MUCIIONb3yeTCs IIpY OOHOBJIEHUN IPaay-

€HTa.

Ha miare 4 anroputma REINFORCE c 6a30it BHITTOMHSIIOTCS CJIeyIolie qeiiCTBUS:

o

o

MIPOTOHSIETCS OIVH STM30/,: Ha KaXKIOM IIlare COXPaHsSIIOTCSI COCTOSIHME, BO3-
HarpaxgeHue u jorapudm BeposITHOCTH;

110 3aBepIIEeHUM SMMU307a BbIUKUCISIETCST 06eCIeHeHHBI JOX0 Ha KaKIoM
IIare; ¢ IOMOIIbIO CETY IIEHHOCTY BBIUMCISIETCST OIleHKa 6a3bl; BBIUMCISIETCST
MIPEeMMYIIECTBO ITyTeM BbIUMTAHMS Oa3bl M3 JOXOMA;

242 < Peanusauna metonos rpagmMeHTa cTpaterMm n onTuMn3sauma cTtpatermm

QO 3Hag npenmyliiecTBa "1 J'[OI‘apI/I(beI BepOHTHOCTeﬁ, BbIUMCIAIOTCS I'paaieH-
TbI CTpAaTerumn, rmocjie 4yero OOHOBJISIIOTCS CETU CTpaTermm m HeHHOCTH. KpOMe
TOTO, OTO6pa)KaeTC5[IIOJTHOE€ BO3HarpaxaeHne B Ka>KIOM 3IIN301€;

Q Bce BhIIIEIIepeuYMCJI€HHbIe IIar IIOBTOPSIOTCA B n_episode sanm3opax.

I'padmk, MOCTPOEHHBII HA IIare 7, BLINISIAUT CJIeOYIONIM 06pa3oMm:

3aBUCMMOCTb BO3HarpaxaeHusa B ann3one oT BpeMeHu

g I

200 4

= I = =

o ¥ w -

[=) un o n
1 1 1 1

-~
ul
1

MonHoe BO3HarpaxneHue

(%]
(=]
|

r
(%]
I

T T T T T T T T
0 250 500 750 1000 1250 1500 1750 2000
onusop,

BuaHOo, UTO pe3yabTaThl CTAOMIM3UPYIOTCS Towte mpuMepHo 1200 smm30m0B.
Bbnaromapst 6a3e MbI CMOIVIM OTKaIMOPOBATh BO3HAIPAKAEHMS M YMEHBIIUTD OUC-
TepCUI0 OLIEHOK IPafiieHTa.

PEANM3ALMS ANTOPUTMA UCMONHUTEND = KPUTUK

B anroputme REINFORCE c 6a30i1 ecTb Ba KOMIIOHEHTA: MOAEJb CTpaTerum 1 QyHK-

1Ml IEHHOCTU. VIX MOSKHO O0beAVHUTD, TIOTOMY UTO I1eJIb 00yueHMss QYHKINUA 1eH-

HOCTM 3aK/TIOYAEeTCsI B TOM, UYTOObI OGHOBUTD CETh CTpaTeruu. IMeHHO Tak ¥ MOoCTy-

MaeT aJITOPUTM MCIIOTHUTEIb—KPUTUK, KOTOPBIN MbI pa3paboTaeM B 3TOM peIleriTe.
CeTb B aJITOPUTMeE UCTIOTHUTETb—KPUTUK COCTOUT 13 ABYX UaCTeA.

O HcnonuuTenb. [I[pMHMMAET BXOLHOE COCTOSIHME M BBIBOAUT BEPOSITHOCTYU
nevicTeuii. Ilo cymu mena, OH 00ydaeT ONTUMAIbHYIO CTPATeruio, 0OHOBISIS
MO/I€eJIb C ITOMOILbIO MH(POPMALIVIY, IIPEIOCTAB/ISIEMON KPUTUKOM.

O Kpurux. OueHnBaeT, HACKOJIbKO XOPOLIO 0Ka3aThCs BO BXOLHOM COCTOSHUM,
BBIUMCISAS QYHKIMY HEeHHOCTA. I[eHHOCTh COCTOSIHMS IO CKA3bIBAET MCITON-
HUTEJII0, YTO OH JOJ/DKEH IOLIIPABUTS.

Peanusauus anroputMa UCMoSHUTENb-KPUTUK % 243

V 3TuX IBYX KOMIIOHEHTOB OOIIVe BXOMHOI M CKPBITBIA CIIOM CETU, ITOCKOJIbKY
TIPY TaKOM apXUTEKType UX obyueHue Mpoucxoaut 6omee 3¢ PekTUBHO, UeM ecan
OBl CceTy ObUIM TOTHOCThIO pasgeneHbl. COOTBETCTBEHHO, QYHKIMS MOTepb IMpem-
CTaByseT Co60il CyMMy ABYX CIaraeMbIX: OTPULIATETBHOTO JIOTapu(pMUUECKOTO
MIPaBIOIIONO0NS IeJCTBYSI, KOTOPOE OIIEHMBAET KaueCTBO VICIIOJTHUTEJIS, U CpeiHe-
KBaJpaTUUYECKON OMIMOKM MEXKITY OLIEHKOI M BBIUMCIEHHBIM 3HaUeHMeM OO0XOoma
(M3MepsieT KaueCcTBO KPUTHKA).

Bosnee pacripocTpaHeHHast Bepcys aiTOPUTMa UCIOTHUTETb—KPUTUK Ha3bIBaeT-
cs1 Advantage Actor-Critic (A2C). I3 camoro Ha3BaHMSI CJIeIyeT, YTO KPUTUK BbI-
YUCIISIeT He [eHHOCTb COCTOSTHMSI, & MpeuMyIecTBo, Kak B asiroputme REINFORCE
¢ 6a30ii. VlHaue TOBOPSI, OH OIIeHMBAET, HACKOJIILKO HEKOTOPOE AEeCTBYE B TaHHOM
COCTOSTHUM JTyullle PYTUX JeCTBUIA. ITO IMO3BOJISIET YMEHbIIUTD IVCIIEPCUIO B CETU
CTpaTerumu.

Kak 310 penaetcs
Peanusyem aaropuTM MCIIOTHUTEIb—KPUTUK IJIST OKpYysKatoreit cpenst CartPole.

1. WMmnopTtupyeM HeoOXOHMMbIe TTAKeThl M CO3MaaAUM K3eMIUISIP OKPYKarolei
cpensbr CartPole:

>>> import gym

>>> import torch

>>> import torch.nn as nn

>>> import torch.nn.functional as F
>>> env = gym.make('CartPole-v0')

2. CHauasa peaqnsyeM MOJe/Ib HEMPOHHOM CeTU UCIIOJHUTENb—KPUTUK:

>>> class ActorCriticModel(nn.Module):

eee def __init__(self, n_input, n_output, n_hidden):
eee super(ActorCriticModel, self).__init__()

eee self.fc = nn.Linear(n_input, n_hidden)

vee self.action = nn.Linear(n_hidden, n_output)
eee self.value = nn.Linear(n_hidden, 1)

eee def forward(self, x):

vee x = torch.Tensor(x)

eee x = F.relu(self.fc(x))

cee action_probs = F.softmax(self.action(x), dim=-1)
. state_values = self.value(x)

. return action_probs, state_values

3. Hanmmem meton, __init__ kmacca PolicyNetwork ¢ MCronb30BaHMEM MOMENIN
VCIIOTHUTEeIb—KPUTUK:

>>> class PolicyNetwork():
vee def __init__(self, n_state, n_action, n_hidden=50, 1r=0.001):

cee self.model = ActorCriticModel(n_state, n_action, n_hidden)
vee self.optimizer = torch.optim.Adam(self.model.parameters(), 1r)
vee self.scheduler = torch.optim.lr_scheduler.StepLR(

self.optimizer, step_size=10, gamma=0.9)

244 < Peanusauna metonos rpagmMeHTa cTpaterMm n onTuMn3sauma cTtpatermm

OTMETUM, 4TO Mbl BOCMO/b30BAIMCh MOHMXKATENEM CKOPOCTU 0BY4eHUs, KOTO-
pblii MO3BONSET AMHAMUYECKM YMEHBLLIATbL €€ B npoLiecce obyyeHus.

4. JobaBum MeTop, predict, KOTOPbIN BBIUMCISIET OLIEHKM BEPOSTHOCTEN meii-
CTBUIL U LIEHHOCTb COCTOSTHMSI :

>>>

def predict(self, s):

BbluMcCAAET BbIXOAZ, NPUMEHAS MOAENb MCMONHNTENb-KPUTHK
@param s: BXOAHOE COCTOSIHME
@return: BepoATHOCTM AEACTBUA, LEHHOCTb COCTOSHUA

return self.model(torch.Tensor(s))

5. Hammimiem meToj, training, KOTOPbII OGHOB/ISIET HEPOHHYIO CETh C YUETOM
TIPMMePOB, COOPaHHBIX B SMIU30[€:

>>>

def update(self, returns, log_probs, state_values):

06HOBNAET BeCa CETH WCMONHUTENb-KPUTUK HA OCHOBE NepefaHHbIX
06y4anuux npuMepoB
@param returns: foxop (HakonuTenbHOe BO3HarpaxjeHue) Ha
KaxAoM ware 3nM30Aa
@param log_probs: norapu¢M BepOATHOCTM Ha KaxjoM ware
@param state_values: LEHHOCTW COCTOSHMI Ha KaxjoM ware
loss = 0
for log_prob, value, Gt in zip(log_probs, state_values, returns):
advantage = Gt - value.item()
policy_loss = -log_prob * advantage
value_loss = F.smooth_1l1_loss(value, Gt)
loss += policy_loss + value_loss
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()

6. Ilocremunii MeTon Kiacca PolicyNetwork — get_action, OH BbIOMpaeT elicTBue
B JaHHOM COCTOSIHMM Ha OCHOBe MpefCcKa3aHHO CTpaTernn.

>>>

def get_action(self, s):

NpeackasbiBaeT CTpaTeruw, BLiGUPaeT AedCTBUE W BLMUCAAET OrapuoM
ero BepOATHOCTH

@param s: BXOJHOE COCTOSHUE

@return: BbibpaHHOe AeicTBME W NOrapudM ero BepOATHOCTH
action_probs, state_value = self.predict(s)

action = torch.multinomial(action_probs, 1).item()

log_prob = torch.log(action_probs[action])

return action, log_prob, state_value

OH Takke BO3BpallaeT JjorapudmM BepOSTHOCTM BbIGPAHHOTO eiiCTBUS
U OLIEHKY LIEHHOCTY COCTOSTHMSI.
C knaccoM PolicyNetwork — Bce.

Peanu1sauus anroputMa UCMosHUTENb—KPUTUK % 245

Terepb MOXKHO TT€PEITH K pa3paboTKe IIaBHOM QYHKIMM 06yUeHNST MOMEN
VICITOJTHUTENIb—KPUTHK.

>>> def actor_critic(env, estimator, n_episode, gamma=1.0):

ANrOPUTM WUCNONHUTENb-KPUTUK

. @param env: uMA OKpyxawwei cpefbl Gym
v @param estimator: ceTb cTpaTeruu

. @param n_episode: konnyecTso 3nuU3040B
vee @param gamma: Ko3¢duuueHT obecuyeHnBaHuA

for episode in range(n_episode):

vee log_probs = []

vee rewards = []

vee state_values = []
. state = env.reset()

while True:
action, log_prob, state_value = estimator.get_action(state)

cee next_state, reward, is_done, _ = env.step(action)
. total_reward_episode[episode] += reward
vee log_probs.append(log_prob)
cee state_values.append(state_value)
rewards.append(reward)
. if is_done:
vee returns = []
ces Gt =0
cee pw =10
for reward in rewards[::-1]:
cee Gt += gamma ** pw * reward
vee pw += 1
vee returns.append(Gt)
. returns = returns[::-1]

returns = torch.tensor(returns)
returns = (returns - returns.mean()) /
(returns.std() + 1e-9)
vee estimator.update(returns, log_probs, state_values)
vee print('dnusoa: {3}, nonHoe BosHarpaxgenue: {}'.format(
episode, total_reward_episode[episode]))
if total_reward_episode[episode] >= 195:
estimator.scheduler.step()
cee break

e state = next_state

3agagum dhopmy ceTu cTpaTermu (pasMepbl BXOJHOTO, BBIXOAHOTO U CKPbI-
TOTO CJIOEB) ¥ CKOPOCTb 0OYUEHMSI, 3aT€M CO3JaaMM dK3eMIUIIp Kaacca Poli-
cyNetwork:

>>> n_state = env.observation_space.shape[0]
>>> n_action = env.action_space.n
>>> n_hidden = 128

246 <« Peanusauna metonos rpagmMeHTa cTpaterMm n onTuMn3sauma cTtpatermm

>>> lr = 0.03
>>> policy_net = PolicyNetwork(n_state, n_action, n_hidden, 1r)

KoadduimeHT obeciieHMBaHMS MTOIOKMUM paBHbIM 0.9:
>>> gamma = 0.9

9. BbIMmoMHMM 06yUYeHE METOOM UCIIOTHUTEIb—KPUTHK C TOJILKO pa3paboTaH-
HoJ1 ceThio cTpaTerny Ha 1000 sanm3070B 1 Oy[IeM COXPaHSITh MTOJTHbIE BO3HA-
rpakaeHMs B KKIOM 3IM30/e:

>>> n_episode = 1000
>>> total_reward_episode = [0] * n_episode
>>> actor_critic(env, policy_net, n_episode, gamma)

10. HOCTpOI/IM I‘pa(bI/IK 3aBUCMMOCTHU BO3HArpakaeHus B 31IM3040€e OT BpEMEHI

>>> import matplotlib.pyplot as plt

>>> plt.plot(total_reward_episode)

>>> plt.title('3aBucUMOCTb BO3HArpaxgeHUa B 3nNM304€ OT BpemeHun')
>>> plt.xlabel('3nu3o0g')

>>> plt.ylabel('MonHoe Bo3HarpaxaeHue')

>>> plt.show()

Kak 3to paboraer

Ha mare 2 BUAHO, YTO MICTIOJIHUTENb ¥ KPUTUK PasIesIsioT O0IIe TapaMeTpbl BXOJI-
HOTO U CKPBITOTO CJIOeB. BHIXOMHOI CI0J MCIIOMHUTENS TIOPOXKAAeT BepPOSITHOCTYU
BbIOOpA [IeVICTBUIA, a BBIXOAHOI C/I0¥ KPUTUKA — OLIEHKY LIEHHOCTM BXOLHOTO CO-
CTOSTHUSI.

Ha mrare 5 BbruMQiIsieTcsl BeJIMUMHA MIPEUMYILNECTBA U €€ OTPUIIATeJIbHOEe Jiora-
pudMmuIeckoe mpaBaonoaoovie. OyHKIMS ITOTEPh B AJITOPUTME UCTIOTHUTETb—KPU-
TUK — 3TO CyMMa OTPULIATEIbHOIO JOrapu(pMIUUIECKOro MPaBaoOIIoOg00us IIperuMy-
IIeCTBa U CPeIHEKBAAPATUIECKON OMIMOKY MEXKIY TOXOAOM M OI€HKOM [IeHHOCTH
cocrostHMsI. OTMETMM, UYTO MbI BOCITOJIb30BaIMCh (DyHKIMEN smooth_11_loss, KOTO-
past paBHa KBaJpaTy pa3sHOCTH, eCJiM abCONIOTHASI BeJIMUMHA OMMOKM MeHbIe 1,
a B IIPOTMBHOM CJTydae paBHA abCOIOTHO BeJIMYMHE.

Ha mare 7 ¢yHKUMS 06ydeHMS] MOMENM UCIIOTHUTENb—KPUTHUK BBITIOTHSET Clie-
OyIollye IeiCTBUS :

O mporoHsieTcs OOVH 3MM30/: Ha KakKIOM IIare BbIOMpPaeTCs AeiicTBIe, Claemyst
TEKYIIeil OlleHKe CTpaTeruy, a Takske COXPaHSIOTCS BO3HATpaXkaeHue, JIoTa-
prdM BEpPOSITHOCTM U OLleHKA IIEHHOCTM COCTOSTHUS;

O 1o 3aBepuIeHNM 3MMU300a BBIUMUCISIETCS 00EeCIIeHEeHHbBI JOXOA Ha KaskIoM
IIare; pe3yJabTUPYIOIIVe TOXOIbl HOPMUPYIOTCS ITyT€M BBIUYMTAHMS CPEIHETO
" IeJIeH)s Ha CTaHJApTHOE OTKIOHEHME;

O Ha 0CHOBe JOXOM0B, JOrapudMOB BepOSITHOCTEI 1 LIEHHOCTE! COCTOSIHMIT 06-
HOBJISIIOTCST TTapaMeTphI cTpaTernu. KpoMe TOro, 0TOOpaskaeTcst IMOJTHOE BO3-
HarpakgeHue B KaKIOM 3TM30]IE;
eci MOTHOe BO3HArpakaeHue B amu3one 6osblie +195, To CKOpoCTh 06yde-
HMSI HEMHOT'O YMEHbIIIaeTCs;

BCe BBIIIENIepeuCIeHHbIe ATy IMTOBTOPSIIOTCS B n_episode MmM3omax.

Peanusauus anroput™Ma UCMosHUTENb-KpUTUK % 247

Hwuke mokaszaHbl C006]J.[8HI/I$I, HaIrieyaTaHHbIe I10C/Ie O6Y‘-IeHI/I${ Ha mare 9:

nu3opf:
nu3opf:
nu3opf:
nu3opf:
nu3opf:

e

nu3opf:
nu3opf:
nu3opf:
nu3opf:
nu3opf:

0, nonHoe
1, nosnHoe
2, nojHoe
3, nosHoe
4, nonHoe

BO3HarpaxaeHue: 18.0
BO3HarpaxpaeHnue: 9.0
BO3HarpaxpaeHnue: 9.0
BO3HarpaxaeHnue: 10.0
BO3HarpaxaeHnue: 10.0

995, nonHoe BO3HarpaxpeHue: 200.0
996, nonHoe BO3HarpaxpeHue: 200.0
997, nonHoe BO3HarpaxpeHue: 200.0
998, nonHoe BO3HarpaxpeHue: 200.0
999, nonHoe BO3HarpaxpeHue: 200.0

I'paduk, TOCTpOeHHbII Ha 11are 10, BHIIISIIUT CIeIYIOIMM 00pasoM:

3aBUCMMOCTb BO3HarpaxxgeHua B anm3one OT BpeMeHu

200 1

1754

150 4

125 4

100 4

754

MonHoe BO3HarpaxaeHue

T

T T T T
200 400 600 800 1000
onusog,

o -

Kak Bugyum, nocie npumepHo 400 smu3000B BO3HArpaxkaeHue yCTONYMBO 0-
cTuraeT MakcumanbHOro sHaueHusi +200. B ajropuTme MCIOTHUTETb—KPUTUK
obyueHue pacragaeTcs Ha IBa KOMIIOHEHTA: UCIIOIHUTENTb Y KPUTUK. KpUTHK B am-
roputMme A2C BBIYKCIISIET, HACKOJIBKO XOPOILIUM SIBJISIETCS IEVICTBME€ B HEKOTOPOM
COCTOSIHMMU, U 3TO MO/ CKa3bIBAET UCIIOJIHUTENIO, KaK pearnpoBaTh. [IpenmMyInecTBo
rapbl COCTOSIHME—IeiicTBIe BhruncisieTcs 1o gopmyne A(s, a) = Q(s, a) — V(s), T. e.
IIEHHOCTDb COCTOSTHUS BbIUMTAETCS 13 3HAUeHMs Q-QyHKIyu. VICTIOTHUTEH OIleHN -
BaeT BePOSITHOCTY JeiCTBMUSI, PyKOBOACTBYSICh MTOICKa3kaMi KpUTHUKa. BritoueHne
MIPEUMYIIECTBA CIIOCOOCTBYET YMEHBIIEHNIO AVICTIepcyn, mosTomy A2C cumTaeTcs

248 <« Peanusauna metonos rpagmMeHTa cTpaterMm n onTuMn3sauma cTtpatermm

60Jiee YCTOIUMBBIM, UeM CTAaHIAPTHBIN aTOPUTM UCIIOTHUTETb—KPUTUK. [Ipumep
okpyskaromieii cpensl CartPole mokaspiBaeT, 4To pe3yabTaThl A2C CTaGUIN3UPYIOTCS
rmocjie o6yJueHMs Ha HeCKOJIbKUX COTHSIX STM30M0B M IPEBOCXOMAST pe3yabTaThl RE-
INFORCE c 6a30ii.

PELWEHME 3A0AYM O BTY)KOAHWUM HA KPAIO OBPbIBA
C NOMOLLbIO AJITOPUTMA UCMNOJTHUTEJIb—=KPUTUK

B 3TOM perienTe MbI pemnm 60J1ee CIOXKHYIO 33[]a4y O OTysKIaHUY Ha Kpato 06pbiBa
¢ nomo1bio anroputma A2C.

Cliff Walking — TunnuHast okpyskarouias cpefga Gym ¢ IJIMHHBIMY 31T130aMu 6e3
rapaHTUM 3aBepuieHys. ITO 3ajayva Ha ceTke 4x12. Ha kakgom 1L1are areHT genaeT
XO[I BBEpX, BIIPaBO, BHM3 MJIM BJIeBO. BHauase areHT HaXOOUTCS B JIEBOM HIKHEM
YIJIy, a IJIS1 YCIIEITHOTO 3aBeplleHus 3N130/4a JO/DKeH MepeiTy B IIPaBblil HUKHUMI
yroi. Bce octanbHbIe STYEIKM B MTOCTEIHEl CTPOKE — OOPBIB, MPY MOTIAJaHUY B HUX
areHT BO3BPAIllaeTCsl Ha MCXOLHYIO MO3MLMIO, HO SMM30[, MPOAODKAETCS. 3a Kax-
IbIif IIAT aTeHTy HAYMC/ISIeTCST BO3HArpaskaeHue —1, a 3a magieHue ¢ o6pbiBa — BO3-
HarpaxzaeHue —100.

Cocrosinne — nenoe uncio ot 0 1o 47, onuceiBawllee MeCTONONOKeHMe areHTa,
Kak IT0OKa3aHo Ha PUCYHKe HIKe.

12 /13|14 (15|16 |17 (18 |19 | 20| 21| 22 | 23

24 125126 (27|28 |29 (30|31 3233|3435

36 (37 (38 39|40 |41 |42 43 (44|45 |46 | 47

Hukakoro BHyTpeHHET0 CMbIC/Ia Y YMC/Ia, ONMMChIBAIOIIEr0 COCTOsIHMe, HeT. Ha-
npumep, 30 He 03HAYAET, UTO COOTBETCTBYIOIIEE COCTOSIHME B 3 pa3a yeM-TO OT-
nudaetcst oT coctosiHus 10. [ToaTomy, repen TeM Kak MepenaBaTb COCTOSIHUE CETU
cTpaTerum, mpeobpasyemM ero B yHUTAPHBI BEKTOP.

Kak 3To penaetca

1. VmmnopTtupyem HeoO6XogMMble MTaKeThl M CO3AAAVM SK3eMIUISIP OKpYsKaroIei
cpenpi Cliff Walking:

>>> import gym

>>> import torch

>>> import torch.nn as nn

>>> import torch.nn.functional as F
>>> env = gym.make('CliffWalking-v0')

PewweHue 3apaum o 6yxAaHUM Ha Kpato 06pbiBa C NOMoLLb0 anroputMa < 249

ITOCKOIBKY pa3sMepHOCTb COCTOSIHMSI paBHa 48, 6yaeM MCII0Ib30BaTh 60-
Jiee CJIOKHYIO HeIPOHHYIO CeThb MCIIOJHUTEIb—KPUTHUK C ABYMSI CKPbITHIMMU
CIIOSIMMU:

>>> class ActorCriticModel(nn.Module):
def __init__(self, n_input, n_output, n_hidden):
super(ActorCriticModel, self).__init__()
self.fcl = nn.Linear(n_input, n_hidden[0])
self.fc2 = nn.Linear(n_hidden[0], n_hidden[1])
self.action = nn.Linear(n_hidden[1], n_output)
self.value = nn.Linear(n_hidden[1], 1)

def forward(self, x):
x = torch.Tensor(x)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
action_probs = F.softmax(self.action(x), dim=-1)
state_values = self.value(x)
return action_probs, state_values

Kak n paHbllIe, MCIIOJTHUTE/Ib M KPDUTUK Pa3aeiasaioT 06]].[]/[6 ImapaMeTpbl BXO -
HOTO M CKPBITBIX CJIOEB.

Kiacc PolicyNetwork HMUYEM He OTIMYAETCS OT pa3pabOTAHHOTO B pelerTe
«Peanusanusi anroputmMa UCIOTHUTETb—KPUTUK».

Hanurem rnaBHYI0 QYHKUNMIO 00yYeHMS] MO UCTIOTHUTETb—KPUTUK. OHa
TIOYTH TaKasl ke, KaK B MMPeIbIAYIIEeM pellernTe, TOMbKO T00aBIsIeTCsT ITpeod-
pa3oBaHMe COCTOSTHMS B YHUTAPHBIN BEKTOP:

>>> def actor_critic(env, estimator, n_episode, gamma=1.0):
ANFrOPUTM MCNONHNTENb—KPUTHUK
@param env: MMA OKpyxawuei cpegsl Gym
@param estimator: ceTb cTpaTerum
@param n_episode: Konn4yecTso 3nu30408
@param gamma: Ko3¢puuueHT obecueHnBaHuA
for episode in range(n_episode):
log_probs = []
rewards = []
state_values = []
state = env.reset()
while True:
one_hot_state = [0] * 48
one_hot_state[state] = 1
action, log_prob, state_value =
estimator.get_action(one_hot_state)
next_state, reward, is_done, _ = env.step(action)
total_reward_episode[episode] += reward
log_probs.append(log_prob)
state_values.append(state_value)
rewards.append(reward)

250 <« Peanusauna metonos rpagmMeHTa cTpaterMm n onTuMn3sauma cTtpatermm

if is_done:
returns = []
Gt =0
pw =10
for reward in rewards[::-1]:
Gt += gamma ** pw * reward
pw += 1
returns.append(Gt)
returns = returns[::-1]
returns = torch.tensor(returns)
returns = (returns - returns.mean()) /
(returns.std() + 1e-9)
estimator.update(returns, log_probs, state_values)
print('dnu3og: {}, nonHoe BosHarpaxgenne: {}'.format(
episode, total_reward_episode[episode]))
if total_reward_episode[episode] >= -14:
estimator.scheduler.step()
break

state = next_state

5. 3amagum ¢Gopmy ceTu cTpaTteruy (pasMepbl BXOTHOTO, BBIXOJHOTO U CKPbI-
TOT'O CJIOEB) U CKOPOCTh OOYUYEHMSI, 3aTEM CO3IaAMM 9K3eMILISp Kiacca Poli-
cyNetwork:

>>> n_state = 48

>>> n_action = env.action_space.n

>>> n_hidden = [128, 32]

>>> 1r = 0.03

>>> policy_net = PolicyNetwork(n_state, n_action, n_hidden, 1r)

KosdduumeHt obecuieHnBaHMsI IMOA0KMUM paBHbIM 0.9:
>>> gamma = 0.9

6. BbImomHUM 06y4yeHMe MEeTOAOM UCIIOMHUTETb—KPUTHUK C TOIBKO UTO paspa-
60TaHHOI1 ceTbio cTpaTeruu Ha 1000 3mM3000B U OyeM COXPaHSITh MOTHbIE
BO3HAarpaxaeHus B KaXXI0M 3IU30[€e:

>>> n_episode = 1000
>>> total_reward_episode = [0] * n_episode
>>> actor_critic(env, policy_net, n_episode, gamma)

7. TlocTpouMm rpaduk 3aBUCUMOCTYM BO3HATPAKAEHUSI B 3TMMU30M€ OT BpEMEHMU,
HaumHas ¢ 100-ro snm3ona:

>>> import matplotlib.pyplot as plt

>>> plt.plot(range(100, n_episode), total_reward_episode[100:])
>>> plt.title('3aBucuMocTb BO3HArpaxgeHna B 3nNM304e OT BpemeHun')
>>> plt.xlabel('3nu3og')

>>> plt.ylabel('NMonHoe BosHarpaxgeuue')

>>> plt.show()

PeweHnwue 3aaaun o 61yxaaHWM Ha Kpato 06pbiBa C NOMOLLbIO anroputMa % 251

Kak 3To paboraer

Ha 1mrare 4 Mpl HEMHOI'O YMEHbIIIAEM CKOPOCTh OOYUYEHMSI, €C/IM TIOJTHOE BO3HATPask-
IleHye B amm30/e 6oblie —14. MakCMMaabHO JOCTUKMMOE BO3HATPaskIeHe PaBHO
—13, gj1st 9TOrO HY>KHO IPOIMTH 10 MapUIPyTy 36-24-25-26-27-28-29-30-31-32-33-
34-35-47.

Hike rmokasaHbI COOOIEHMS, HAaTleYaTaHHbIE [T0C/Ie 00yJYeHMsI Ha Iare 6:

dnusop: 0, nonHoe BO3HarpaxpeHue: -85355
dnusop: 1, nonHoe BO3HarpaxpgeHnue: -3103
Jnu304: 2, NONHOe BO3HarpaxpgeHue: -1002
Jnu3oa: 3, NoNHOe BO3HarpaxpeHue: -240
Jnu3op: 4, nonHoe BO3HarpaxpeHue: -118

Jnu3oa: 995, nonHoe BO3HAarpaxpeHue: -13
Jnu3op: 996, nosHoe BO3HAarpaxpeHue: -13
dnusop: 997, nonHoe BO3HAarpaxpeHue: -13
Jnusop: 998, nosHoe BO3HAarpaxpeHue: -13
Jnu3oa: 999, nosHoe BO3HArpaxpeHue: -13

I'padmK, MOCTPOEHHDIIT HA IIare 7, BLINISIAUT CJIeOYIONIM 06pa3oMm:

3aBMCUMOCTb BO3HArPaXKAEHMS B 3MMU304€ OT BPEMEHMU
1 ' '

_20 <
()

S —40
I
(]
=%
X
o
e

5 —60 -
I
m
o
o
]

2 —s0
=
o
C

=100 A

T T T T T
200 400 600 800 1000
onu3opn,

Kak Bumum, mocie npumepHo 180 3mu30m0B BO3HarpaxkaeHue B GONbIIMHCTBE
STM30J0B JOCTUTraeT MaKCMMa/JIbHOI'O 3HaUeHus —13.

B aTOM pelienTe MbI pelInjv 3aauy O Oy>KIaHUM Ha Kpaio 00pbiBa, IPUMEHNB
anroputm A2C. [Tockonbky unciao oT 0 go 47, mpeacTaB/sioliee TTOJIOKeHe arTeHTa

252 <« Peanusauna metonos rpagmMeHTa cTpaterMm n onTuMn3sauma cTtpatermm

Ha ceTKe 4x12, He MMeeT HMKAKOro BHYTPEHHEero CMbIC/Ia, Mbl CHavasIa peobpaso-
BaJIV €T0 B YHUTAPHbII BEKTOP AJMHBI 48. UTOOBI CIIPaBUTHCS C 48-MepHBIM BXO/IOM,
MbI HEMHOTO YCJIOKHMUIU HEeMIPOHHYIO CeTh, 100aBMB ellle OOMH CKPBITHIN c1oit. Kak
BBISICHIJIOCH, A2C B HallleM IpuMepe BeAeT cebst yCTOMUMBO Y HaXOAUT ONTUMAJIb-
HYIO CTpaTeruio.

MoaroToBKA HEMPEPbIBHOM OKPY)XAIOLLEX CPE[bI
MounTaiN CAR

o cux mop Mbl paboTaay ¢ OKPYKAIOUIMMY CpeaMu, B KOTOPBIX AeiCTBUS TPUHU-
MaloT JMCKpeTHbIe 3HaueHus, cKkakem O 1 1 [y1s rpeficTaBieHus NeiCTBUI «BBePX»
U «BHU3». B 3TOM pelieriTe Mbl 3aiiMeMcs cpenoit Mountain Car ¢ HelpepbIBHbBIMM
IeiCTBUSIMMN.

Continuous Mountain Car (https://github.com/openai/gym/wiki/MountainCarCon-
tinuous-v0) — aTto BapuaHT cpenbl Mountain Car ¢ HempepbIBHBIMU [IEVICTBUSIMU,
NIPUHUMAKIIVMM 3HaYeHus OT —1 1o 1 (cM. puCyHOK HuKe). Llenib — joexaTh Ha Ma-
LIMHe [0 BepLIVHBI TOPbI, PACIIOIOKEHHOM CIIpaBa.

(] mountain_car.py

&

ABTOMOGMITb MOKET HAaXOIUThCS B Auara3oHe oT —1.2 (cmeBa) mo 0.6 (crpasa),
a 1ejIb (KeThIN (UIaskoK) HaXOOUTCS B TOUKe ¢ abeiyccoit 0.5. JIBuratenb aBTOMO-
OWJIsI HEMOCTATOYHO MOIIHBINM, YTOGBI ITPEOIONIETh BECh MTOIBEM CaMOCTOSITEIBHO,
IT03TOMY HeOOXOIMMO OTheXaTh Ha3aMd M pa3oTHAThCS Ha CITycKe. JleiicTBUe TIpem-
CTaBJIEHO UYMCJIOM C TJIaBaloIIeil TOUYKOM, OMMCHIBAIOIIEN CUITY, TOTKAIOIIYI0 aBTO-
MOGUJTb BJIEBO, €C/IY 3HAUEHMe ITPUHAIJIEeXKNT quarna3ony ot —1 mo 0, 1 BIIpaBo, ecin
OHO MPUHAAJIEXUT Auanaszony ot 0 7o 1.

CylilecTByeT JiBa COCTOSIHUST CPe/Ibl:

O moswuiust aBTOMOOWIISI: HEPEPBIBHO M3MeHseTcst oT —1.2 1o 0.6;
O ckopocTh aBTOMOOWIISI: HenmpepbIBHO M3MeHsieTcst oT —0.07 go 0.07.

MoAroToBKa HerpepbIBHOM OKpysKatowei cpeabl Mountain Car % 253

B HauasbHOM COCTOSIHMM MO3UILMS HAXOAUTCSI B auanasoHe oT —0.6 mo —0.4,
a ckopocTh paBHa 0. Ha KakaoM IIare HaumMc/IseTcsl BOSHArpaxkneHue —a?, rue d —
BbIOpaHHOE JejicTBMe. 3a AOCTVDKEHME 1@V HAUMCISIeTCs IOMOTHUTEIbHOE BO3-
Harpaxkaenue +100. Takum o6pasoM, Bce IIaru, KpoMe IocIegHero, mrpadymoTes,
U UeM uX Oojibllie, TeM MeHbllle OYAeT UTOrOBOe BO3HArpaskaeHue. D30/, 3aKaH-
YMBAETCs, KOIJia aBTOMOGMIb Jo6epeTcs 40 BepIIvHbl, uiu rmocie 1000 maros.

Kak 3To penaetca

Iljist uMuTaI My HerpepbIBHOM OKpysKawlei cpeasl Mountain Car BbITIOIHUM Cle-
IyIolye NeiCTBUSI.

1. VmMmmopTtupyem HeOO6XOaMMbIe ITaKeThI M CO3AAANM SK3eMIUISIP OKpYsKaIoIei
cpensl Mountain Car:

>>> import gym
>>> import torch
>>> env = gym.envs.make("MountainCarContinuous-vO")

2. W3yuum npoCcTpaHCTBO AECTBUIA:

>>> print(env.action_space.low[0])
-1.0
>>> print(env.action_space.high[0])
1.0

3. Hp]/IBe,E[eM OKDPYXXAIOMYI0 Cpeny B MCXOOHOE COCTOsSTHHUE!:

>>> env.reset()
array([-0.56756635, 0.])

ABTOMOGM/Ib HAUMHAET ABVKEHNE B COCTOSIHNUM [-0.56756635, 0.], T. €. HaXo0-
IuTcs B paiioHe Touky —0.56 1 umeeT ckopocTh 0. Ha BaliieM KoMIIbloTepe Ha-
YajJIbHOE T0JIOKEH e MOKET ObITh IPYTUM, T. K. 9TO CJIyYaifHOe UMC/IO B Aya-
na3oHe oT —0.6 mo —0.4.

4. CHavajya morpo6yeM HauBHBIN MOAXOH: OyaeM BbIOMpPATh CaydaiiHoe Jeii-
ctBue oT —1 10 1:

>>> is_done = False

>>> while not is_done:

ves random_action = torch.rand(1) * 2 - 1

vee next_state, reward, is_done, info = env.step(random_action)
vee print(next_state, reward, is_done)

. env.render()

>>> env.render()

[-0.5657432 0.00182313] -0.09924464356736849 False

[-0.5622848 0.00345837] -0.07744002014160288 False

[-0.55754507 0.00473979] -0.04372991690837722 False

R

CocrostHue (TO3ULIMS M CKOPOCTh) M3MEHSIETCSI B COOTBETCTBUM C €I CTBUEM,
" Ha KaKIOM LIare HaYMCIsSeTCs BO3HArpaxkaeHme —a’.,
Ha B1aeo mokasaHo, UTO Mallli{Ha JBMKETCSI TO BIIPABO, TO BJIEBO.

254 <« Peanusauna metonos rpagmMeHTa cTpaterMm n onTuMn3sauma cTtpatermm

Kak 3to paboraer

[MoHsITHO, UTO HempepbIBHAsI cpefa Mountain Car — 1OBOJIBHO TPyAHAasI 3aa4a, Kyaa
TpyIHee MePBOHAYAIBHOI, Iie ObIJI0 BCEI'O TPY BO3SMOXKHBIX AeMCTBYUS. MBI TOJIK-
HbI IBUTAThCSI B3aJ-BIIepe[l, MeHssI HallpaBieHue 1 rpuarasi Heo6XxoauMyo CUTY,
YTOOBI Pa30THATH ABTOMOOMIIb OO0 HYKHOJ CKOPOCTM. A TIOCKOJIBKY IPOCTPAHCTBO
IeICTBUII HeIpepbIBHO, IMOVUCK B TAOIMIlE C TOCAeYIOIMM OOHOBJIeHMEM (Kak
B TD-meTtome DQN) He nmoaxoguT. B cienyroieM pelienTe Mbl pelliMm 3Ty 3a1ayvy,
IIPMMEHMB HeIlpePbIBHbLINM BapuaHT ajiroputma A2C.

PELWEHWE HENPEPLIBHOM 3ALAYM O BAY)XOAHUU
HA KPAIO OBPbIBA METOZOM A2C

B aTOM perenTe MbI pemmM 3amady o 6;Iy>KIaHUM Ha KParo 06pbIBa C ITOMOIIBIO aj-
roputMma A2C, eCTeCTBEHHO, €r0 HeIIpepPbIBHOM Bepcuu. M 3a0HO YBUAMM, UYEM OHA
OT/INYAEeTCs OT AVCKPETHOIA.

Panee, mpu paboTe B cpefax ¢ JMCKPETHBIMM OECTBUSIMM, Mbl BbIOVIpAIN HOeii-
CTBUSI Ha OCHOBE OILIEHOK BeposiTHOCTeli. Ho kak cmopmennpoBaTh HeIlpepbiBHOE
yIpaBjieHue, e HeBO3MOXKHO IMPOM3BECTM TaKyl0 BBIOOPKY M3 GECKOHEUHOTO
KOJIM4ecTBa geiictBuit? Mbl MOKeM IPMUOErHyTh K HOPMaJbHOMY pacIIpeesieHIIo.
[Tpenronoxmm, 4To LeHHOCTH AeiCTBUI MMEIOT HOPpMaJIbHOE pacnpeneneHne:

m(als) = N(u, o),

IJe cpeflHee |1 ¥ CTaHapTHOE OTKJIOHEHME G BBIUMCIISIIOTCS CeThio cTpaTeruu. Torma
MOSKHO OyIeT BhIOMPATh AEVCTBUS M3 TAKOTO paclpeneeHs ¢ TEKYIMMU 3Have-
HUSIMU CpeIHero M CTaHAAPTHOTO OTKIOHeHUs . DyHKIMS MTOTEPh B HEIIPEPBIBHOM
A2C aHanormMyHa TOM, UTO Mbl paHbIEe UCIIOAb30BaaM B JUCKPETHOM C/Iyyae, T. €.
SIBJISIETCSI CYMMOJ OTPUIIATEIBHOTO JOTapu(pMMUUIECKOr0 MTPaBIOMoa00Ms, BbIUMC-
JIEHHOTO I10 BePOSITHOCTSIM HOPMAaJIbHO PacIipefielieHHbIX NeViCTBUI U Ipeumylle-
CTBY, ¥ OIIMOKM perpeccuu Mexay GakTUIecKy MOJTyYeHHbIM TOXOA0M U OLIEHKO
LIEHHOCTE COCTOSTHUIA.

OTMeTM, YTO HOpMaJbHOE paciipesiesieHle UCIOIb3yeTCs /il ONUCaHUS OJHO-
MEPHBIX JEMCTBUIA, @ ec/iM MPOCTPAHCTBO AECTBUII k-MepHOe, TO HYXKHO Oymer
B3SITh K HOpMaJIbHBIX paciipeneneHnii. B HenmpepsiBHOV cpeme Mountain Car mpo-
CTPAHCTBO AelicTBUii ogHOMepHOe. OCHOBHAS CJIOKHOCTDb NpuMeHeHuss A2C K He-
MIpePbIBHOMY YIIPaBJIEHMIO 3aK/II0UAEeTCsl B IIOCTPOEHUM CeTU CTpaTeruu, KoTopas
BBIUMCI/ISIET TTapaMeTpPbl HOPMaJIbHOIO pacIipeneneHmsl.

Kak 310 penaetca

1. VmMnopTtupyeM Heo6XOaMMbIe MTaKeThl i CO3AAAVM K3eMILISP OKpYsKaloIei
cpenbl Mountain Car:

>>> import gym
>>> import torch
>>> import torch.nn as nn

PelweHue HenpepbIBHOM 3a4a4vm 0 ByXAaHUM Ha Kpato 06pbiBa MeTogoM A2C +¢ 255

>>> import torch.nn.functional as F
>>> env = gym.make('MountainCarContinuous-v0')

CHavasia peasnzyeM HEMPOHHYIO CETh UCITOIHUTETb—KPUTUK:

>>> class ActorCriticModel(nn.Module):

cee def __init__(self, n_input, n_output, n_hidden):
super(ActorCriticModel, self).__init__()
self.fc = nn.Linear(n_input, n_hidden)

eee self.mu = nn.Linear(n_hidden, n_output)

vee self.sigma = nn.Linear(n_hidden, n_output)
vee self.value = nn.Linear(n_hidden, 1)
. self.distribution = torch.distributions.Normal

. def forward(self, x):

vee x = F.relu(self.fc(x))
ces mu = 2 * torch.tanh(self.mu(x))
cee sigma = F.softplus(self.sigma(x)) + le-5

vee dist = self.distribution(mu.view(1,).data, sigma.view(1,).data)
value = self.value(x)
cee return dist, value

Hanmnmem merton __init__ kimacca PolicyNetwork ¢ MCIOJb30BaHMEM TOJIBKO
YTO pa3paboTaHHOI MOLEIN UCIIOTHUTEIb—KPUTUK:

>>> class PolicyNetwork():
.. def __init__(self, n_state, n_action, n_hidden=50, 1r=0.001):
. self.model = ActorCriticModel(n_state, n_action, n_hidden)
eee self.optimizer = torch.optim.Adam(self.model.parameters(), 1r)

Ilo6aBuM MeTO[predict, KOTOPBI BBIUMC/ISIET OLIEHKM BEPOSITHOCTE meli-
CTBMI1 I IEHHOCTb COCTOSTHUS :

>>> def predict(self, s):

oo BblyucnfeT BbIXOA C MCNONAb30BaHWEM Henpepusuoﬁ moaenu
cee NCNONHUTENb-KPUTUK
e @param s: BXOAHOe COCTOfIHME

@return: BH50pKa W3 HOpMa/ibHOro pacnpejefieHna, LEHHOCTb COCTOAHUA

cee self.model.training = False
cee return self.model(torch.Tensor(s))

Hanuirem meTop training, KOTOpbINi OGHOB/ISIET CETh CTPATErMMi Ha OCHOBE
MIpMMeEPOB, COOpaHHbBIX B 3MM30/1e. Bocmonb3yemcs MeTomoM update, paspa-
O0TaHHBIM B pelierTe «Peannsarys aropuTMa UCIIOTHUTEIb—KPUTUK», U He
OyzeM 31eCh [IOBTOPSITH €TI0 KOI.

N nocnenunii meton, kimacca PolicyNetwork — get_action, OH mpou3BOAUT OIS
3aJJaHHOT'O COCTOSIHMSI BBIOOPKY AEICTBHUS U3 HOPMAaJIbHOTO pacIipee/ieHus
C OLleHEeHHBIMM ITapaMeTpaMu:

>>> def get_action(self, s):

OueHuBaeT cTpaTervw u BHGMpaeT AeﬁCTBMe, BblMUCAAET ﬂOFapM¢M ero
cee BEPOATHOCTH

256 <« Peanusauna metonos rpagmMeHTa cTpaterMm n onTuMn3sauma cTtpatermm

@param s: BXOAHOe COCTOfIHME

cee @return: Bbi6paHHoe pgeiicTBMEe, NorapudM BEpPOATHOCTH,
cee NPeACKa3aHHaA LUEHHOCTb COCTOAHUA

cee dist, state_value = self.predict(s)

cee action = dist.sample().numpy()

vee log_prob = dist.log_prob(action[0])

cee return action, log_prob, state_value

MeTop Bo3BpamaeT Jorapu(m BepoSITHOCTY BBIGPAHHOTO IEICTBUS U OLeH-
KY IIEHHOCTY COCTOSIHMSI.

C kmaccom PolicyNetwork AJjis1 HEITpePBIBHOTO YIIPABJIEHUSI — BCe.

Terepb MOXKHO TE€peTY K IIaBHOM GMYHKIMY 0OyYeHMS MOAENV VICTIOTHU-
Telb—KPUTHUK.

>>> def actor_critic(env, estimator, n_episode, gamma=1.0):

ces HenpepbiBHLIA aNrOPUTM UCMOAHUTENb-KPUTHK
ces @param env: uMA OKpyXawuei cpegsl Gym
ves @param estimator: ceTb cTpaTerum
. @param n_episode: KonMyecTso 3nM3040B
. @param gamma: Ko3¢puLMeHT obecueHnBaHUA
nnn
vee for episode in range(n_episode):
vee log_probs = []
cee rewards = []
state_values = []

vee state = env.reset()
. while True:
vee state = scale_state(state)
vee action, log_prob, state_value = estimator.get_action(state)
vee action = action.clip(env.action_space.low[0],
vee env.action_space.high[0])
eee next_state, reward, is_done, _ = env.step(action)
cee total_reward_episode[episode] += reward
cee log_probs.append(log_prob)

state_values.append(state_value)
vee rewards.append(reward)
. if is_done:
vee returns = []
cee Gt=0
vee pw =20
vee for reward in rewards[::-1]:
. Gt += gamma ** pw * reward
ces pw 4= 1
cee returns.append(Gt)

returns = returns[::-1]
. returns = torch.tensor(returns)
cee returns = (returns - returns.mean()) /
(returns.std() + 1e-9)
vee estimator.update(returns, log_probs, state_values)
vee print('dnusog: {}, nonHoe BosHarpaxgenne: {}'.
format(episode, total_reward_episode[episode]))

cee break

v state = next_state

PelueHve HenpepbiBHOM 3a4a4m 0 ByxaaHuu Ha kpato obpbisa MeTogoM A2C < 257

7. @OyHKUMS scale_state HOpMupyeT (CTaHIAPTMU3YeT) BXOHbI, UTOOBI YCKO-
PUTb CXOOMMOCTb Momenu. CHauajga CaydailHbIM 00pasoM TeHepUpyeTcs
10 000 HabIOmeHMI, HA KOTOPBIX 06yYaeTCsI HOPMMUPOBIIMK:

>>> import sklearn.preprocessing

>>> import numpy as np

>>> state_space_samples = np.array(

eee [env.observation_space.sample() for x in range(10000)])
>>> scaler = sklearn.preprocessing.StandardScaler()

>>> scaler.fit(state_space_samples)

O6y4yeHHbIIT HOPMUPOBIIMK MCITONb3yeTcss B QYHKIMK scale_state 1S mpe-
06pa3oBaHMsI HOBBIX JAHHbIX:

>>> def scale_state(state):
. scaled = scaler.transform([state])
... return scaled[0]

8. 3amagum dbopmMy ceTu cTpaTeruu (pasmepbl BXOAHOTO, BBIXOMHOTO U CKPBI-
TOT'O CJIOEB) U CKOPOCTh 0O6yUEHMS, 3aTeM CO3IaAMM SK3eMIUISIp Kiracca Poli-
cyNetwork:

>>> n_state = env.observation_space.shape[0]

>>> n_action = 1

>>> n_hidden = 128

>>> lr = 0.0003

>>> policy_net = PolicyNetwork(n_state, n_action, n_hidden, 1r)

KosdbduuyenT obeciieHMBaHNS MOMOKUM paBHbIM 0.9:

>>> gamma = 0.9

9. BbIMOTHMM 06YUYeHNe HelpepbIBHBIM METOIOM MUCIIOTHUTETb—KPUTUK C TOJNb-
KO UTO pa3paboTaHHOIi ceThio cTpaTerny Ha 200 smmsomax u Oyzmem coxpa-
HSITh TTOJIHbIE BO3HArPaKIeHMs B KaXkKA0M 3TMU307e:

>>> n_episode = 200
>>> total_reward_episode = [0] * n_episode
>>> actor_critic(env, policy_net, n_episode, gamma)

10. TTocTpoum rpaduK 3aBMCHMOCTM BO3HATPAKAEHMS B SIIM30/€ OT BpeMEeHN!:

>>> import matplotlib.pyplot as plt

>>> plt.plot(total_reward_episode)

>>> plt.title('3aBucuMocTb BO3HArpaxgeHusa B 3nu3oge OT BpemeHun')
>>> plt.xlabel('3nu3og')

>>> plt.ylabel('MonHoe Bo3Harpaxpexue')

>>> plt.show()

Kak 3To paboraer

B aTom peleriTe Mbl UCITONb30BaIM anropuTm rayccoa A2C 1jis pelieHus: Herpe-
PBIBHOI1 3a/1auM O Malllf{He Ha rope.

Ha miare ucnonb3oBaHa ceTb € OLHMUM CKPBITBIM (JIOeM. BbIXOHO1 €107 TOPO3K-
JlaeT TpU dJIeMeHTa: CpefHee U CTaHapPTHOEe OTKJIOHEHNE HOPMAaJIbHOTO pacIipee-
JIeHUs U LIeHHOCTb cocTossHMSI. CpefHee pacipeneneHus: IPUBOAUTCS K IMala30Hy

258 < Peanusauna metonos rpagmMeHTa cTpaterMm n onTuMn3sauma cTtpatermm

[-1, 1] (mu [-2, 2] B HawleM IpuMepe) ¢ ToMoIIbio GyHKIMY akTuBauuu tanh. s
MOJTyYeHMSI CTAHJaPTHOTO OTKJIOHEHMSI Mbl MCIIOIb30Ba/IM B KauecTBe (PyHKIUM aKk-
TuBanyu softplus, YTo6bI pe3yabTaT GBI TAPAHTUPOBAHHO MONOKUTENbHBIM. CeTh
BO3BpallaeT TeKylee HOpMaJbHOe pacipeeneHye (UCIIOMHUTENb) U OL[eHKY LleH-
HOCTY COCTOSTHUS (KPUTHUK).

DyHKUMS 06yUeHMsI ISl MOZeNTU VCTIOMHUTENb—KPUTKUK, HAallMCAHHAS Ha 1iare 7,
OueHb MOXO0Ka Ha CO3JaHHYIO B pellenTe «Peanusannst airopuTMa UCIIOTHUTENb—
KpUTUK». MbI T06aBMIM 06pe3Ky BBIOPAHHOTO MEiCTBMS, YTOOBI OHO TOMAamaio
B muamasoH [—1, 1]. Uro genaet GpyHKIMS scale_state, MbI OOBSICHUM UyTh HUXKE.

Huske rmoka3aHbl COOOIIEHMSI, HaTleuaTaHHbIE TI0C/Ie 00yueHMs Ha mare 9:

Jnusop: 0, nonHoe BO3HarpaxpeHue: 89.46417524456328
Jnusop: 1, nonHoe BO3HarpaxpeHue: 89.54226159679301
Jnu30A: 2, NoNHOe BO3HarpaxpeHue: 89.91828341346695
nusoa: 3, nonHoe BO3HarpaxpeHue: 90.04199470314816
Jnusop: 4, nonHoe BO3HarpaxpeHue: 86.23157467747066

Jnusop: 194, nonHoe BO3HAarpaxpeHue: 92.71676277432059
nusop: 195, nonHoe BO3HarpaxpeHue: 89.97484988523927
Jnusop: 196, nonHoe BO3HarpaxpeHue: 89.26063135086025
nusop: 197, nonHoe BO3HarpaxpeHue: 87.19460382302674
Jnusop: 198, nonHoe BO3HarpaxpeHue: 79.86081433777699
Jnusop: 199, nonHoe Bo3HarpaxpeHue: 88.98075638481279

I'padumk, MoCTpoeHHbII Ha 11are 10, BHIIISIOUT CIeIYIOIMM 00pasoM:

3aBMCMMOCTb BO3HArpasKAeHMsl B 3MU304€ OT BPEMEHM

904 4
(]
=
I
(]
3
= 85
e
1]
I
m
o
o
& 80
I
=
(]
=

75 4

T T T T T T T T T
Q 25 50 75 100 125 150 175 200
dnu3opn

PelweHue HenpepbIBHOM 3a4aum 0 By AaHuM Ha Kpato obpbiea Metogom A2C < 259

B TpeGoBaHusX K cpefe (cM. https://github.com/openai/gym/wiki/MountainCarCon-
tinuous-v0) TOBOPUTCS, UTO 3a/aua CUMTAETCS pelleHHO, e BO3HATPpaKIeHNne
npeBbicuIo +90. B HeCKOMBbKUX 3MM300aX Mbl JOCTUTIU ITOM 1eJN.

B HenpepsiBHOM anroputme A2C mpeArionaraeTcs, YTO pacupeneneHne mo Kaxk-
IIOMY M3MepeHUIO MPOCTPAHCTBA AeiiCTBUIT HOpMaabHOoe. CpefHee U CTaHAAPTHOE
OTKJIOHEHMeE BbIJIaeT BbIXOHO coi ceTu crpaTerun. OH ke GOPMUPYET OlLIEHKY
IIEHHOCTM COCTOSIHMIA. [leficTBue (MM HAabOp MeiicTBUIT) — pe3ynbTaT BHIOOPKM U3
HOPMaJIBHOTO pacripenenieHus (M1 HeCKOIbKUX TaKUX pacripenenenuii). OyHKIus
MOTepPb aHAJIOTUYHA TO, YTO MCHOJIb30BAJIACH B IMCKPETHON BepCUM, — 3TO CyMMa
OTPUIIATETHLHOTO JIOTapU(PMUUECKOTO TPaBIOIIOI00MS, BEIUMCIEHHOTO Ha OCHOBE
BEPOSITHOCTEN HOPMAJIbHO pacnpefeeHHbIX eiCTBUI U BeTUUMHBI TPeUMYILeCT-
Ba, U OIIMOKY perpeccuy Mexmy GaKkTHUUecKy IMOTYyYEeHHBIM JOXOIOM U OILIEHKO
LIeHHOCTe COCTOSTHUIA.

3710 eLe He Bce

Ilo cuxX TOp MbI MOIEIMPOBAIN CTPATETMI0 CTOXACTUUYECKM, TTPOU3BO/IS BHIOOPKY
IeVICTBUIT U3 paclipedesieHus] WJIM BBIUMUISISI X BEpOSTHOCTU. Harociemok Mbl
KpaTKO 06CYAVM aJITOPUTM JAeTEepMMHMPOBAHHOrO rpaayueHTa crpareruu (De-
terministic Policy Gradient — DPG), korma cTpaTerusi MOennpyeTcsl Kak I[ermovyKka
JeTepMMHUPOBAHHbBIX pellieHuit. Mbl paccMaTpMBaeM AeTepMUHUPOBAHHYIO CTpa-
Terui0 KaK YaCTHBIN CIy4daii CTOXaCTUUYeCKOI, KOTIa BXOOHbIE COCTOSIHISI HEIToCpey -
CTBEHHO O0TOOPaskaloTCs Ha IeCTBMS, @ He Ha BEPOSITHOCTHM IeiicTBUIL. B anropurme
DPG 1cnosib3y10TCS 1B HEMipOHHbBIE CeTH:

O ceTp UCIOMHUTETb—KPUTUK. OHAa OUeHb MOXOXKAa Ha AHAJIOTUUHYIO CeTh
B asiroputMe A2C, TOMBKO AEeTEPMMHMPOBAHHA. JTa CETh IpelcKa3biBaeT
LIEHHOCTM COCTOSIHUS U OeCTBUS;

O neneBas ceThb UCIIOTHUTEIb—KPUTUK. DTO KOS CETU UCTIOTHUTEb—KPU-
TUK, KOTOpasi CO3/IaeTCs He Ha KakKIOM Ilare, a epuoguueck, UToObI CTa-
6mM3upoBaTh obyueHme. OUeBMUIHO, YTO HAM He HYKHA ITOCTOSTHHO IBUKY-
IIasiCsl MUIIIEHb, TAK UTO 3TA CeTh HA HEKOTOPOe BpeMsl (GUKCUPYET 1eb JIJIs
0byUeHMs.

Kak Bumum, B anroputme DPG HOBOrO HEMHOTO, 3TO IMPOCTO KoMOMHanyst A2C
C MeXaHM3MOM 3aJepPKKU 1eyn. ITormpo6yiiTe caMOCTOSITEIbHO Peaan30BaTh STOT
aJITOPUTM UM BOCIIOIb30BAaThCSI UM [JIs1 B3aMMOJMEICTBUSI C HEMPEePBhIBHON Cpemoit
Mountain Car.

CM. TaKkxKe

IJis Tex, KTO He3HaKOM ¢ hyHKIMeil akTuBauyy softplus vy xouet 60sbIiie y3HATD
06 anroputme DPG, pekoMeHIyeM CIeIyIOIIe VCTOUHUKMN:

O Softplus: https://en.wikipedia.org/wiki/Rectifier_(neural_networks);
O opurmHanbHas cratbsi o DPG: https://hal.inria.fr/file/index/docid/938992/
filename/dpg-icml2014.pdf.

260 <« Peanusauna metonos rpagmMeHTa cTpaterMm n onTuMn3sauma cTtpatermm

PEWEHWE 3A0AYM O BAIAHCUPOBAHWUM CTEPXHS
METOAOM NEPEKPECTHOM SHTPOMUK

B aTOM nmocyieqHeM, 60HYCHOM pelerTe Mbl peaan3yeM MPoCToit, HO 9 heKTUBHbI
anropuTm pereHust 3agaun B cpene CartPole. OH ocHOBaH Ha MepPeKPECTHON 3H-
TPOIMM U HATIPSIMYIO OTOOpaskaeT BXOIHbIE COCTOSTHUSI Ha BhIXOIHOeE meiicTBie. OH
OoJee TIPSIMOIMHEHBIN, UeM IIPOYMe aJrOPUTMbI TpafgyeHTa CTpaTeruu, Ommucat-
HbI€e B 3TOJ IJ1aBe.

MplI IpUMEHWIM HECKOJIBKO aJTOPUTMOB rpaJeHTa CTpaTeruny K peleHunio 3a-
Iauy o GaJaHCHMPOBAHMUM CTEPKHS. B HUX MCITONb3YIOTCSI HETPUBUAIbHbBIE apXy-
TEKTYpbl HEMPOHHBIX ceTeii U QYHKIIUM TTOTePh — JJIsT TAKO¥ MIPOCTOI 3a7aum 3TO,
TTOXKaJTyii, mepe6op. A mouemy Obl He IIPeICKasbIBaTh MECTBMUS B 3aJaHHBIX COCTOSI-
HUSIX HeIocpeacTBeHHO? Vmes mpocTa: CMOIeIMpoBaTh OTOOpaskeHe COCTOSTHUS
Ha geiicTBMe u 06yuath ero TOJIBKO Ha camMoOM yCIeIrHOM MpOoNuIoM orbiTe. Hac
MHTEepecyeT, KaKUM JOJ/DKHO ObITh MpaBMUIbHOE JeiicTBYUe. B maHHOM CiTydae 1iejie-
BOI (PyHKIIMEN SABJSIETCST TIepeKpecTHasi SHTPOIMS Mexay haKTUIeCcKUM U Tpe-
CKa3aHHBIM neiicTBusiMu. B cpeme CartPole BO3MOXKHBIX JeiiCTBUIT IBa: TlepeMec-
TUTh TEJIEKKY BJIE€BO WM BHpPaBO. [IJisS MPOCTOTHI IepedopMyanpyeM Ipobiemy
KaK 3amauy OMHApHOI KaaccubuKauyum, KOTopasi CXeMaTUYHO IpeacTaBieHa Ha
PUCYHKe HIXKe.

BxogHoe

COCTOSAHUE DerictBue «oa»

Kak 3To penaetca

1. VimnoptupyeM HeoO6XOAMMbIe ITAKEeThI M CO3AaAYM SK3eMIUISIP OKPY KAl
cpensl CartPole:

>>> import gym

>>> import torch

>>> import torch.nn as nn

>>> from torch.autograd import Variable
>>> env = gym.make('CartPole-v0')

PeweHnwue 3aaaun 0 6anaHCMPOBaHUM CTEPXKHS METOLOM NEPEKPECTHOIM SHTponuu % 261

2. CHauasa ompenenanM Kiaacc Ojs1 OLleHUMBaHMS TeiiCTBUIA.

>>> class Estimator():
def __init__(self, n_state, 1r=0.001):

self.model = nn.Sequential(
nn.Linear(n_state, 1),
nn.Sigmoid()

)

self.criterion = torch.nn.BCELoss()

self.optimizer = torch.optim.Adam(self.model.parameters(), lr)

def predict(self, s):
return self.model(torch.Tensor(s))

def update(self, s, y):

06HOBASIET BECA MOAEAM HA OCHOBE 06yvanuwux NnpuUMepoB
y_pred = self.predict(s)

loss = self.criterion(y_pred, Variable(torch.Tensor(y)))
self.optimizer.zero_grad()

loss.backward()

self.optimizer.step()

3. Hanumiem riaBHY0 QYHKIMIO 06YYeHUs IJIsl aITOPUTMa TIePEKPECTHO H-
TPOIUM.

>>> def cross_entropy(env, estimator, n_episode, n_samples):
nnn
ANropUTM NepeKpecTHOM IHTPONUM Ana obyuyeHusa cTpaTeruu
@param env: uMA OKpyxawwei cpegbl Gym
@param estimator: 6MHapHbiii oleHMBaTeNb
@param n_episode: KoJMyeCTBO 3nNM3030B
@param n_samples: KoauyecTso o6y4awwux npuMepos
nnn
experience = []
for episode in range(n_episode):

rewards = 0
actions = []
states = []

state = env.reset()
while True:
action = env.action_space.sample()
states.append(state)
actions.append(action)
next_state, reward, is_done, _ = env.step(action)
rewards += reward
if is_done:
for state, action in zip(states, actions):
experience.append((rewards, state, action))
break
state = next_state

262

%* Peanusaumsa metonoBs rpagmMeHTa cTpaterMm n onTuMn3sauma cTtpatermm

. experience = sorted(experience, key=lambda x: x[0], reverse=True)
. select_experience = experience[:n_samples]

. train_states = [exp[1] for exp in select_experience]

. train_actions = [exp[2] for exp in select_experience]

vee for _ in range(100):
. estimator.update(train_states, train_actions

3aganum pasmep BXOOHOIO (JIOSI CETU OILEHMBATES IEeVCTBUI U CKOPOCTh
00yUeHNUs:

>>> n_state = env.observation_space.shape[0]
>>> 1r = 0.01

W cospaaym 3Kk3eMIUIsIp Kiacca Estimator:
>>> estimator = Estimator(n_state, 1r)

Crenepupyem 5000 cydaitHbIX 311M3010B U Bbibepem syutive 10 000 map (co-
CTOSTHUE, IeJiCTBIE), Ha KOTOPBIX OyIeM 06yJYaTh OLleHMBATEb:

>>> n_episode = 5000
>>> n_samples = 10000
>>> cross_entropy(env, estimator, n_episode, n_samples)

IporecTupyem o6yueHHYI0 Mofeab Ha 100 3mM30max ¥ 3aIIOMHUM ITOJTHbIE
BO3Harpa>kIeHusI:

>>> n_episode = 100

>>> total_reward_episode = [0] * n_episode

>>> for episode in range(n_episode):

. state = env.reset()

. is_done = False

. while not is_done:

. action = 1 if estimator.predict(state).item() >= 0.5 else 0
. next_state, reward, is_done, _ = env.step(action)

. total_reward_episode[episode] += reward

v state = next_state

ITocTpoum rpaduK 3aBUCUMOCTY BO3HATPAXKIEHNS B 3TIM30/Ie OT BPEMEHN

>>> import matplotlib.pyplot as plt

>>> plt.plot(total_reward_episode)

>>> plt.title('3aBucumMocTb BO3HarpaxieHus B 3nusoge OT BpeMeHH')
>>> plt.xlabel('3nuszoa')

>>> plt.ylabel('MonHoe Bo3Harpaxpexue')

>>> plt.show()

Kak 3to paboraer

CeTb olleHMBATENS NEMCTBUIL Ha 1Iare 2 COCTOUT U3 ABYX CJIOEB — BXOLHOTO U BbI-
XOIHOTO C CUTMOUAHOM (DyHKIME! aKTUBAIMM U TIePEeKPeCTHOM SHTPOIMei B Ka-
yecTBe QYHKIIUA ITOTEPD.

Ha mrare 3 o6yuaeTcst MOZe/Ib ITepeKPEeCcTHOI SHTpoIMK. TouHee, B KaSKIOM 3TIH-
307 Mbl IpeIIPMHMMAEM CTy4daliHble AeCTBUS, TTOlydaeM BO3HarpaxaeHus U 3a-

PeleHune 3agaum o 6anaHCMPOBaHMM CTEPKHA METOOM MEPEKPECTHOM 3HTponun % 263

IIOMMHAEeM COCTOSIHUS U meiicTBusi. CreHepupoBaB n_episode 3M1M30[0B, MbI OTOM-

paeM n_samples CaMbIX YCHEUIHBIX (C MAKCMMaJIbHBIM MOJHBIM BO3HArpaxxaeHueM)

¥ KOHCTPYMPYeM U3 HUX 0OyJarolie MpUMepsbl B BiIe Tap (COCTOSIHME, TeICTBUE).

3aTeM Ha 3TOM Habope npousBoautcs 100 uTepaimii 06yueHMs OlleHUBATEJIs.
I'paduk, MOCTPOEHHBIIT HA IIare 7, BLINISIAUT CIeTYIONMM 06pa3som:

3aBUCMMOCTb BO3HarpaxxgeHua B ann3one oT BpeMeHUu

210.0

207.5 A

205.0

202.5

200.0

197.5 1

195.0 4

MonHoe Bo3HArpaxaeHue

192.5 4

1920.0 4

4] 20 40 60 80 100
onu3on,

Kaxk BuauM BO BCeX TECTOBBIX 3MM30aX, ITI0y4eHO Bo3Harpaxaenue +200!

MeTop, repeKkpecTHOl 3HTPOIUYM OUeHb MPOCT, HO T0JIe3eH B MPOCThIX OKPYsKa-
omux cpegax. OH HaNpSIMYI0 MOJeNUPYeT CBSI3b MEXIY BXOAHBIMU COCTOSTHUSIMU
M BBIXOJHBIMU JECTBUSIMM. 3aaua yIipaBieHus repedopMyIupyeTcs: Kak 3agada
KiIaccuUKaLyn, B KOTOPOi HY>KHO TTpeACcKa3bIBaTh IIPaBUIbHOE EICTBIE 13 MHO-
SKeCTBA BO3MOKHBIX. XMTPOCTh B TOM, UYTOOBI 00yUaThCSI HA ITOAXOMSIIEM OITBITE,
KOTOPBbII TOBOPUT MOJIe/IM, KaKoe NelicCTBMe B TaHHOM COCTOSIHMM IIpUHECeT Hau-
60JIblIIee BO3HATPAKAEHME.

naBa

KynbMUHAUMUOHHbIA NPOEKT —
npumeHeHue DON
K urpe Flappy Bird

B aToi1, mocseqHel m1aBe Mbl 3aiiMeMcst (PMHAIBHBIM ITPOEKTOM — MPUMeHeHUeM
obyueHus ¢ mogkperuieHreM K urpe Flappy Bird. Bce, ueMy Mbl HayuM/Imch B KHUTE,
HaiileT BOILIONIEHVE B MHTEJIEKTYaJIbHOM UTPOBOM 60Te. Mbl ITOCTPOUM IIy0O-
Ky10 Q-cetrb (DON), HacTpouM MapaMeTpbl MO U pa3BepHEM ee. A TOTOM TO0-
CMOTPUM, Kak JOJITO TITUIIA CMOKET OCTaBaThCsI B BO3IyXe.

Haimr KyJbMMHALMOHHBIN TTPOEKT OYIET MOCIeI0BaTeIbHO U3JI0KEeH B CJIeYIO-
IIMX pelernTax:

MOJITOTOBKA UTPOBOI CPeJibl;

rocrpoeHue riry6okoii Q-cetu ajist urpsl Flappy Bird,
obyueHMe 1 HaCTPOJiKa CeTH;

pasBepThIBaHME MOJEN U UTPa.

000

IMoaroToBKA UrPOBOW CPEDI

Yrto6s1 DON-ceTh MomIa urpath B Flappy Bird, Hy>)kHO cHavaia mogroTOBUTb OKPY-
SKAIOMIYIO Cpemy.

g uvurauym Flappy Bird mbr Boconb3yemcst maketom Pygame (https://www.
pygame.org), KOTOPBIi COIEePsKUT MO/, TIpeAHA3HAUEHHbIE [JIsT pa3paboTKu BM-
JIeouTp, a Take rpaduyeckme 1 3BYKOBble 6ubmoTeku. [Ias ycTaHOBKY Pygame
BBITIOJTHUTE KOMaHIy

pip install pygame

Flappy Bird — sHamenuTast urpa 1jist MOOMIbHBIX YCTPOJIICTB, ee co3nmas JJoHr Hry-
eH. MoXkeTe mouUrpaTh B Hee C MOMOIIbIO KJIaBUATYphI Ha caiiTte https://flappybird.
io/. Llesib UTPBI — OCTaBaThCS B BO3[yXe KaK MOXKHO JoJibliie. Mirpa 3akaHUMBaeTCsl,
KOTa MTUIA KacaeTcs Imoja win Tpyosl. TakuM o6pa3om, ITUIA TOKHA B3Maxy-

lMoarotoBka MrpoBoi cpedbl *%* 265

BaTh KPbUIbSIMM B OIpe[eJieHHble MOMEHTBI BpeMeHM, UYTOObI 0O0OTHYTh Cy4YaiiHO
paccTaB/ieHHbIe TPYObI ¥ He yIacTh Ha 3eMJTI0. BO3MOKHBIX AeiCTBIIT BCETO ABA —
MaxaTh ¥ He MaxaTh KPbUIbSIMM. B UTPOBOI1 OKpysKatoleit cpeme 3a KaXIblii Bpe-
MEHHOJ1 1lIar HaunIsieTCss BO3HarpaskaeHue +1, ¢ IByMS MCK/TIOUeHUSIMUA:

O -1 B cryyae CTOJIKHOBEHUS;
O +1, xorma rTHUIA TPOIETAET B MTPOCBET MEKAY OABYMS TpybaMu. B opurnHamb-
Hovi urpe Flappy Bird cueT 3aBuces1 OT KoJMueCTBa IIPeoA0IeHHbIX TPOCBETOB.

MoaroroBka

CkauariTe pecypchl UTPOBONM Cpenbl ¢ caiTta https://github.com/yanpanlau/Keras-
FlappyBird/tree/master/assets/sprites. [IJi1 TpOCTOTHI Mbl OyZeM MCII0b30BATh TOJb-
KO M300paskeHMsI B Katayore sprites. TouHee, HaM TOHAAOOSITCS CIeAyIOIINe 130-
OpaskeHMsI:

background-black.png: ¢hoH Ha 3KpaHe;

base.png: n306paskeHue moJs;

pipe-green.png: M3o6paskeHue TPyO, OT KOTOPBIX MTUIA JO/DKHA TepsKaThCs
rnojasibliie;

redbird-downflap.png: M306paskeHe MITUIIBI C OMYIIEHHBIMM KPbUTbSIMMU;
redbird-midflap.png: M306paskeHe ITULIBI C TOPU3OHTAIBHO PACIIONIOKEHHbBI-
MM KPbUIbSIMU;

redbird-upflap.png: M306paskeH€e TITULIBI C TOGHSITHIMU KPbLUIbSIMMA.

©c 00 000

Ecmm xoTuTe, MOKeTe CKauaTh elle ¥ 3BYKOBbIe (paiijibl, YTOOBI ObLJIO MHTEPECHEE
UTPATh.

Kak 310 penaetca

[MoaroToBMM OKpYsKAOIILYIO cpeny st urpsl Flappy Bird c crnonb3oBaHMem nakeTa
Pygame.

1. HauHeM co cay>ke6HOM (DyHKIMM, KOTOpast 3arpyskaeT 1300paskeHs U mpe-
obpasyeT ux B HYKHbIii (hopMar.

>>> from pygame.image import load
>>> from pygame.surfarray import pixels_alpha
>>> from pygame.transform import rotate
>>> def load_images(sprites_path):
base_image = load(sprites_path + 'base.png').convert_alpha()
background_image = load(sprites_path + 'background-black.png').convert()
pipe_images = [rotate(load(sprites_path +
'pipe-green.png').convert_alpha(), 180),
load(sprites_path +
'pipe-green.png').convert_alpha()]
bird_images = [load(sprites_path +
'redbird-upflap.png').convert_alpha(),
load(sprites_path +
'redbird-midflap.png').convert_alpha(),
load(sprites_path +

266 < KynbMUHaUMOHHbIN NpoekT - npumereHne DON k urpe Flappy Bird

'redbird-downflap.png').convert_alpha()]
bird_hitmask = [pixels_alpha(image).astype(bool)
for image in bird_images]
pipe_hitmask = [pixels_alpha(image).astype(bool)
for image in pipe_images]
return base_image, background_image, pipe_images,
bird_images, bird_hitmask, pipe_hitmask

2. HmroprupyeM Heo6XOIVIMbIE ITAKEThI:

>>> from itertools import cycle
>>> from random import randint
>>> import pygame

3. Vuunmanusupyem UTpy ¥ TaiiMep ¥ 3aJagyM 4acTOTy OOHOBJIEHMS SKpaHa
30 kagpoB/c:

>>> pygame.init()
>>> fps_clock = pygame.time.Clock()
>>> fps = 30

4. 3amamyuM pa3mep 9KpaHa, CO3IaaMM SKpaH ¥ IIOMEeCTM Ha Hero HaJIluCh:

>>> screen_width = 288

>>> screen_height = 512

>>> screen = pygame.display.set_mode((screen_width, screen_height))
>>> pygame.display.set_caption('Flappy Bird')

5. 3arpysum HeoO6XoauMble M300paskeHMs (M3 TAMKM sprites):

>>> base_image, background_image, pipe_images, bird_images,
bird_hitmask, pipe_hitmask = load_images('sprites/')

6. Tlomyuum mapaMeTpbl UTPBI, B T. 4. pa3Mep IITUIIBI U TPYO, U 3a1aAUM BepTH-
KaJIbHBII TTpOCBeT Mexxay Tpyoamu 100:

>>> bird_width = bird_images[0].get_width()
>>> bird_height = bird_images[0].get_height()
>>> pipe_width = pipe_images[0].get_width()
>>> pipe_height = pipe_images[0].get_height()
>>> pipe_gap_size = 100

7. TlTuia B3MaxuBaeT KPbUIbSIMU B MOPSIAKE BBEPX, TOPMU30HTATBHO, BHU3, TO-
PU3OHTAIBHO, BBEPX U T. [I.

>>> bird_index_gen = cycle([0, 1, 2, 1])

9TO HY)KHO TOJIBKO JIJIsS TOTO, UTOOBI UTPa CMOTpeIach Becesee.
8. MUrak, Bce KOHCTaHTBI OTpeJle/ieHbl U MOXHO TepeiTu K meTtomy __init__
KJacca FlappyBird:

>>> class FlappyBird(object):
def __init__(self):
self.pipe_vel_x = -4
self.min_velocity y = -8
self.max_velocity_ y = 10
self.downward_speed = 1

MoarotoBka UrpoBoit cpeabl % 267

10.

self.upward_speed = -9

self.cur_velocity_y = 0

self.iter = self.bird_index = self.score = 0

self.bird_x = int(screen_width / 5)

self.bird_y = int((screen_height - bird_height) / 2)

self.base_x = 0

self.base_y = screen_height * 0.79

self.base_shift = base_image.get_width() -
background_image.get_width()

self.pipes = [self.gen_random_pipe(screen_width),
self.gen_random_pipe(screen_width * 1.5)]

self.is_flapped = False

OmnpepenuM MeTo[, gen_random_pipe, KOTOPBI CO3maeT mapy Tpyo (BepXHIO
M HIDKHIOK) B 3aJJaHHOV TOPM3OHTAJbHON U CJIy4aliHO BHIOPAHHON BEPTU-
KaJbHOJ MO3ULMSIX.

>>> def gen_random_pipe(self, x):
gap_y = randint(2, 10) * 10 + int(self.base_y * 0.2)
return {"x_upper": X,
"y_upper": gap_y - pipe_height,
"x_lower": x,
"y_lower": gap_y + pipe_gap_size}

BepxHsisa Tpy6a HauUMHAETCS B TOUKE C OPAMHATON gap_y - pipe_height, a HUDK-
HSIST — B TOUKE C OpAMHATOM gap_y + pipe_gap_size.

Hammmem metop, check_collision, KOTOpBIA BO3BpamjaeT True, eCJiM MTULLA
ymaia Ha 3eMJTIO WJIM CTOIIKHY/IACh C TPYOOIi.

>>> def check_collision(self):
if bird_height + self.bird_y >= self.base_y - 1:
return True
bird_rect = pygame.Rect(self.bird_x, self.bird_y,
bird_width, bird_height)
for pipe in self.pipes:
pipe_boxes = [pygame.Rect(pipe["x_upper"],
pipe["y_upper"], pipe_width, pipe_height),
pygame.Rect(pipe["x_lower"],
pipe["y_lower"], pipe_width, pipe_height)]
MpoBepUTb, NepeceKkaeTCs NN OrpaHUYMBAWWUA NTULY NPAMOYrONbHUK C
C npAMOYro/NbHNKaMM, OrpaHUYMBAWWUMU TPY6bI
if bird_rect.collidelist(pipe_boxes) == -1:
return False
for 1 in range(2):
cropped_bbox = bird_rect.clip(pipe_boxes[i])
x1 = cropped_bbox.x - bird_rect.x
yl = cropped_bbox.y - bird_rect.y
x2 = cropped_bbox.x - pipe_boxes[i].x
y2 = cropped_bbox.y - pipe_boxes[i].y
for x in range(cropped_bbox.width):
for y in range(cropped_bbox.height):
if bird_hitmask[self.bird_index][x1+x, yi+y]
and pipe_hitmask[i][x2+x, y2+y]:

268 < KynbMUHaUMOHHbIN NpoekT - npumeHeHne DON k urpe Flappy Bird

return True
return False

11. IMocneguuit 1 camblii BaXKHBI MeTOJ, — next_step, OH BBITIOJIHSIET AeliCTBUE
M BO3BpallaeT OOHOBJIEHHBIV Kajp WIPbI, MOJYUYEHHOE BO3HArpaXkaeHue
U IMPU3HAK 3aBepIIeHys 3M130/a.

>>> def next_step(self, action):
pygame.event.pump()
reward = 0.1
if action ==
self.cur_velocity_y = self.upward_speed
self.is_flapped = True
06HOBUTL cyeT
bird_center_x = self.bird_x + bird_width / 2
for pipe in self.pipes:
pipe_center_x = pipe["x_upper"] + pipe_width / 2
if pipe_center_x < bird_center_x < pipe_center_x + 5:
self.score += 1
reward = 1
break
06HOBMTb MHAEKC M306paxeHusi NTUUbl U HOMEp WTepauuun
if (self.iter + 1) % 3 == 0:
self.bird_index = next(bird_index_gen)
self.iter = (self.iter + 1) % fps
self.base_x = -((-self.base_x + 100) % self.base_shift)
06HOBMTb MO3MLMI0 NTHLDI
if self.cur_velocity_y < self.max_velocity_y
and not self.is_flapped:
self.cur_velocity_y += self.downward_speed
self.is_flapped = False
self.bird_y += min(self.cur_velocity_y,
self.bird_y - self.cur_velocity_y - bird_height)
if self.bird_y < 0:
self.bird_y = 0
06HOBUTb NonoxeHue Tpy6
for pipe in self.pipes:
pipe["x_upper"] += self.pipe_vel_x
pipe["x_lower"] += self.pipe_vel_x
[lo6aBuTb HOBYW Tpy6y, nepej TeM Kak nepsas yWAeT 3a NeBblii
Kpail 3KpaHa
if 0 < self.pipes[0]["x_lower"] < 5:
self.pipes.append(self.gen_random_pipe(screen_width + 10))
ypanuTb nepsyw Tpy6y, €CAM OHA He BMAHA HA JKpaHe
if self.pipes[0]["x_lower"] < -pipe_width:
self.pipes.pop(0)
if self.check_collision():
is_done = True
reward = -1
self.__init__()
else:

MocTpoenue rny6okoit Q-cetn ans urpbl Flappy Bird < 269

is_done = False
HapucoBaTb cnpaiiTbl
screen.blit(background_image, (0, 0))
screen.blit(base_image, (self.base_x, self.base_y))
screen.blit(bird_images[self.bird_index],

(self.bird_x, self.bird_y))

for pipe in self.pipes:

screen.blit(pipe_images[0], (pipe["x_upper"], pipe["y_upper"]))

screen.blit(pipe_images[1], (pipe["x_lower"], pipe["y_lower"]))
image = pygame.surfarray.array3d(pygame.display.get_surface())
pygame.display.update()
fps_clock.tick(fps)
return image, reward, is_done

U Ha aTOM C OKpysKatomieil cpenoit Flappy Bird mokoHueHo.

Kak 3to paboraer

Ha mare 8 Mbl ornipeieniuiv CKOpOCTh IBVDKEHMUS TPYO (Ha 4 eOVIHULIBI BJIEBO 32 e/I/-
HUIY BpeMeH!), MUHUMAJIbHYIO M MaKCYMAaIbHYIO BEPTUKAIbHYI0 CKOPOCTD IITULIBI
IIpU IBVMKeHUM BBepX U BHU3 (—8 1 10), ycKOpeHMe B HaIlpaBjieHUM BBEPX U BHU3
(-9 1 1), BepTUKaNIbHYIO CKOPOCTH 10 YMonuauuio (0), HauaabHbI MHIEKC U306pa-
skeHMs NTULBI (0), HAUa/IbHBIN CYeT, HAUaIbHYI0 TOPU30HTAIbHYIO U BepTUKAIbHYIO
MTO3UIIVIO TITULIBI, TIOJIOXKEHME 3EeMJIM, & TAK)KE KOOPAMHATHI TPYO, KOTOPbIE CITydari-
HO TeHepUpyI0TCSI MeTOA0M gen_random_pipe.

Ha miare 11 onpepesieHO BO3HarpaxxjeHue 110 yMOIYaHMIO Ha KaKA0M Li1are, paB-
Hoe +0.1. Eciiu peiicTBMeM SIBJISIETCS B3MaxX KPbUIbSIMM, TO Mbl YBeIUUMBAEM Bep-
TUKAJIbHYIO0 CKOPOCTh, TPUOABUB YCKOPEeHNe IBMKeHMS BBepX. 3aTeM IIpOBepsieTcs,
MPOCKOYMIa U MITHULIA MeXIy Tpy6amu. Eciu 1a, To cueT B UTpe yBeauMuMBaeTcs Ha
1, a 3a mar HauuciasieTcs Bo3HarpaxkiaeHue +1. Mbl 06HOBJISIEM MO3ULIMIO TITULDI,
MHZEKC ee 1300pakeHNMs1 U no3uuum Tpy6. HoBast mapa Tpyb reHepupyercs, ecin
cTapasl BOT-BOT BBIMJIET 3a JIEBbIN Kpali 5KpaHa, a KOTJa 3TO IIPOMCXOLUT, CTapast
napa Tpy6 cTupaeTcs ¢ skpaHa. Ecim ntuia croakHynack ¢ Tpy6oit, S1M307 3aKaH-
YMBAETCS, HAUMCISIeTCST BO3HArpaskkaeHue —1, u urpa copacbiBaeTcs: B MUCXOLHOE CO-
crostHue. V1 HarowiefoK OOHOBIISETCS Kaip Ha SKpaHe.

MocTpPoEHUE rnysoKkoin Q-ceTn ans urpbl FLAPPY BIRD

IMogroToBuB okpysKaromiyio cpeny Flappy Bird, mpuctynmum Kk moctpoenmio DQN-
MOJemu.

Kak mbl Buzenu, Ha KaKIOM IIare BO3BpalaeTcs M300paskeHrue Ha SKpaHe Ioc-
Jie coBeplIeHus AeiicTBus. [I1s1 paboThI ¢ M300paskeHUSIMM JIyUllle BCero MpucIioco-
61enHbI cBepTouHble HelipoHHble ceTu (CHC). CBepTounsie csion CHC acddekTBHO
BBIZEISIIOT U3 M300paskeHMii MPU3HAKM, KOTOpbIe 3aTeM IepeIaioTcsl MOTHOCBSI3-
HbIM c1osiM. MbI 6yziem mcmonb3oBaTh CHC ¢ TpeMst CBepTOUYHBIMM CIOSIMU U OTHUM
TIOJTHOCBSI3HBIM CKPBITBIM (JIOeM. ADXUTEKTYpa CeTU IT0OKa3aHa Ha PUCYHKe HIDKe.

270 < KynbMUHaUMOHHbIN NpoekT - npumeHeHne DON k urpe Flappy Bird

CepuanunsoBaHHble
Npu3HaKK

KapTbl

[MonHOCBA3HbIN

Kaprl NpU3HaKoB
NpU3HaKOB
BbixoaHow
-1
I Relu } Relu Relu

CBEpTOUHbIN CBEpTOUHbIN
MonHocBA3HbIN

Kak 3To0 penaetcs
[Moctpoum DQN-mopens Ha ocHoBe CHC.

1. VmmnoptupyeM HEOOXOAVIMbIE MO/

>>> import torch

>>> import torch.nn as nn

>>> import torch.nn.functional as F
>>> import numpy as np

>>> import random

2. Haunem c momenu CHC.

>>> class DQNModel(nn.Module):
def __init__(self, n_action=2):
super(DQNModel, self).__init__()
self.convl = nn.Conv2d(4, 32, kernel_size=8, stride=4)
self.conv2 = nn.Conv2d(32, 64, 4, stride=2)
self.conv3 = nn.Conv2d(64, 64, 3, stride=1)
self.fc = nn.Linear(7 * 7 * 64, 512)
self.out = nn.Linear(512, n_action)
self._create_weights()

def _create_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d) or isinstance(m, nn.Linear):
nn.init.uniform(m.weight, -0.01, 0.01)
nn.init.constant_(m.bias, 0)

def forward(self, x):

x = F.relu(self.convi(x))
= F.relu(self.conv2(x))
= F.relu(self.conv3(x))
= x.view(x.size(0), -1)
= F.relu(self.fc(x))
output = self.out(x)
return output

X X X X

MocTpoenue rny6okoit Q-cetn ans urpbl Flappy Bird <+ 271

3. 3areMm co3gmamum DQN c BOCIIpOM3BeIeHMEM OIIbITa, BOCIIOAb30BaBIINCH
TOJIBKO UTO MOCTPOeHHOI Monenbio CHC:

>>> class DQN():
def __init__(self, n_action, lr=1e-6):
self.criterion = torch.nn.MSELoss()
self.model = DQNModel(n_action)
self.optimizer = torch.optim.Adam(self.model.parameters(), 1r)

4. Mertop predict olleHMBAeT BbIXOMHbIE 3HAUeHUST Q-QYHKIMM B 3aJTaHHOM CO-
CTOSTHUU:

>>> def predict(self, s):
wn
BbiuucnseT 3HaueHua Q-QyHKUuMM AN BCeX AeNCTBUI B 33JaHHOM
COCTOSIHUN, NPUMEHAA 06YuYEeHHYl Mogenb
@param s: BXOAHOE COCTOsAHME
@return: 3HaueHna Q AnA BCeX AENCTBUA B COCTOAHWN S

return self.model(torch.Tensor(s))

5. Metop update 0GHOBJISIET BeCca HEPOHHOJ CeTH Ha OCHOBE 00YJaIoLIero mpu-
Mepa ¥ BO3BpallaeT TEKYIIYIO MOTePIO:

>>> def update(self, y_predict, y_target):
06HoBAsieT Beca DQN Ha ocHoBe o6yuvawuwero npumepa
@param y_predict: npeackasaHHoe 3HaueHue
@param y_target: yenesoe 3HauyeHue
@return: noteps
loss = self.criterion(y_predict, y_target)
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
return loss

6. U mocnemHsiss yacTh Kiacca DQN — meTton replay, KOTOPbI/i BOCITPOM3BOIUT
OTIBIT U3 Gydepa.

>>> def replay(self, memory, replay_size, gamma):
BocnponssegeHue onbiTa
@param memory: 6ydep BOCnpou3BefeHUs OMbITA
@param replay_size: CKOJbKO NpUMEpPOB MCNO/Mb30BaTb MPU KaXAoM
o6HOB/NIEHUN Mogenu
@param gamma: Ko3¢puyueHT obecueHUBaHuA
@return: noteps
if len(memory) >= replay_size:
replay_data = random.sample(memory, replay_size)
state_batch, action_batch, next_state_batch,
reward_batch, done_batch = zip(*replay_data)
state_batch = torch.cat(

272 < KynbMUHaUMOHHbIN NpoekT - npumeHeHne DON k urpe Flappy Bird

tuple(state for state in state_batch))
. next_state_batch = torch.cat(
tuple(state for state in next_state_batch))
. q_values_batch = self.predict(state_batch)
. q_values_next_batch = self.predict(next_state_batch)
. reward_batch = torch.from_numpy(np.array(
reward_batch, dtype=np.float32)[:, None])
. action_batch = torch.from_numpy(
. np.array([[1, 0] if action == 0 else [0, 1]
for action in action_batch], dtype=np.float32))
. q_value = torch.sum(
q_values_batch * action_batch, dim=1)
vee td_targets = torch.cat(
. tuple(reward if terminal else reward +
gamma * torch.max(prediction) for
reward, terminal, prediction
. in zip(reward_batch, done_batch,
q_values_next_batch)))
cee loss = self.update(q_value, td_targets)
cee return loss

C xiraccom DQN MBI TOSKE Pa3006paTCh. B ciiemyiomiem perernte Mbl 00yIMM MOZEIb
DQN.

Kak 3to paboraer

Ha mrare 2 mbI co6panu cetb DQN Ha ocHoBe CHC. HeiipoHHast ceTb COOEPKUT TPU
CBEPTOYHBIX CJIOSI C pa3HbIMU KOHbUrypauusimu. OyHKIMel akTUBaIUY B KaskaoM
cnoe sasnsgetcs ReLU. Kapra npusHakoB, CO34aHHAs MMOCTeSHUM CBEPTOYHBIM CJI0-
eM, cepuanm3yeTcs U repenaeTcsl IMOTHOCBSI3HOMY /1010 ¢ 512 6710KaMu, 3a KOTO-
PBIM CliefyeT BBIXOLHOI CI0M.

OTMeTUM TakKe, YTO MbI 3a7,a/1M TPAaHULbI HAYaIbHbIX C/TyYaiiHbIX 3HAUYEeHUI Be-
COB U HYyJIeBOe CMellleH}e, YTOObI YCKOPUTD CXOIUMOCTb MOJIEJN.

Ha miare 6 BbimonHsieTcsl 06ydyeHue ¢ 6yhepoM BOCIpoOu3BeAeHus omnbiTa. Ecin
OTIbITA JOCTATOYHO, TO IPOMU3BOIUTCSI CJIydyaiiHast BbIOOpKa pasmepa replay_size,
UCIIOTb3yeMast /ISl IOPOKAEeHMS oOyuaroiiero Habopa. Kaskapiit 3/leMeHT BbIGOPKU
npeo6pasyeTcst B 06yJaroluii IpuMep, COCTOSIIINI U3 TIPeICKa3aHHO U 1IeIeBoii
LIEHHOCTY 3aJaHHOTO BXOLHOTO COCTOSIHMS. LleneBbie IeHHOCTY BBIYMCISIOTCS Clle-
YoM 06pa3oMm:

O 06HOBUTSH 11eieBOe 3HaueHue Q-GhYHKIMM IJIST JeiCTBUS, MCIIONb3YsT BO3HA-
rpaxk/ieHye ¥ HoBble 3HaueHus Q, no popmyie r+ ymax, Q(s’, a’);

QO ewm cocTosiHME 3aKIIOUMUTEIbHOE, TO IlejieBoe 3HaueHue Q IMPUMHMMAeTCs
PaBHBIM T.

Y HaKOHeIl, Mbl OOHOBJISIEM HEMIPOHHYIO CETh, IPUMEHMB COOPMIUPOBAHHBII ITa-
KeT 00yJarolux MpyuMepoB.

O6yueHue 1 HacTpoika cetn % 273

OBYYEHVE 1 HACTPOMKA CETU

B sTom penenite Mbl 06yunm mozenb DQN urpats B Flappy Bird.

Ha kaskgoM 1rare o6ydeHnst Mbl BBIOVPaeM JeiiCcTBIE, CIeAysl e-KaTHO cTpaTe-
TUN: C BEPOSTHOCTHIO € BHIOMPAETCS CIyUaifHOE IeliCTBME — MaxaTh MY He MaxaTh
KPBUIBSIMM, & C BEPOSITHOCTBIO 1 — € — TeiicTBME ¢ HaMbGOJbIIIel M3BECTHOM Ha JJaH-
HBI/i MOMEHT LIeHHOCTbI0. Ha KakIoM Liare 3HaueHMe € KOPPEKTUPYETCs, TaK UTO
B Havaje 0OyJeHMsI MCCIeJOBaHMIO OTHAeTCsl Oombliiee peoyTeHNe, YeM B KOH-
1e, Korma Mozenb DON cTaHOBUTCS 6osiee 3pesioi.

Mbl Buien, 4TO HabIIOAeHMeM Ha KasKAOM Iare sIBJISIeTCsT ABYMepHOe 1306pa-
SKeHVe Ha 9KpaHe. TU U300paskeHusT HeoOX0AMMO Mpeobpa3oBaTh B COCTOSTHUS.
OmHo n306pakeHne He IaeT JOCTATOYHO MHGOPMAIMH, YTOObI HATIPAaBUTDb areHTa
B HY)XHOM HampasyieHMN. [103TOMY COCTOSIHME CKJIabIBaeTCs M3 YeThbIpex Iocie-
IOBaTEJIbHbIX 1300paxkeHnit. CHauasa Mbl YMEHBIIVMM U300pakeHNe 10 HYKHOTO
pasmMepa, a 3aTeM KOHKaTeHUPYyeM ero C MpeablIyIMMU.

Kak ato penaetcs

1. VmmnoptupyeM HEOOXOAVIMbIE MOIY/IN:

>>> import random
>>> import torch
>>> from collections import deque

2. Peanusyem e-3kaJHY10 CTPATETUIO:

>>> def gen_epsilon_greedy_policy(estimator, epsilon, n_action):
vee def policy_function(state):

. if random.random() < epsilon:

vee return random.randint(0, n_action - 1)

cee else:

vee q_values = estimator.predict(state)

vee return torch.argmax(q_values).item()

. return policy_function

3. 3amagum pasmep NpefoO6paboTaHHOTO M306pakeHNMs, pa3Mep IMakeTa, CKO-
pocThb 06yueHMs, Ko3hduIiMeHT 06eciieHMBaHNsI, KOTMYEeCTBO IeiCTBMIL, Ha-
YyaJIbHOE ¥ KOHEUHOe 3HAYEeHUS €, KOJIMYECTBO UTepaluii u pasmep Oydepa
BOCITPOU3BEIEHUS

>>> image_size = 84

>>> batch_size = 32

>>> lr = le-6

>>> gamma = 0.99

>>> init_epsilon = 0.1
>>> final_epsilon = 1le-4
>>> n_iter = 2000000

>>> memory_size = 50000
>>> n_action = 2

274 < KynbMUHaUMOHHbIN NpoekT - npumeHerne DON k urpe Flappy Bird

Byznem mepuoauuecku COXpaHsITh 06YUEHHYI0 MOJe/Tb, [IOTOMY UTO TPOIiece
0OYyUYeHUST TOTHIA:

>>> saved_path = 'trained_models'
He 3a6ynpTe co3maTh Marky ¢ uMeHeM trained_models.

4. 3agagyM HauyaJbHOE 3HAUEHMe reHepaTopa CIydaliHbIX UMCelT, YTOObI MOXKHO
OBLJIO BOCIIPOM3BECTY PE3Y/IbTAThI:

>>> torch.manual_seed(123)
5. Cosmagum monenb DON:
>>> estimator = DQN(n_action)
1 6ydep BoCIIpon3BeIeHNs OIbITA:
>>> memory = deque(maxlen=memory_size)

HoBble npuMepbl OyAyT A06ABISITHCS B KOHEI[OUepey, a CTapble yaaasIThCs,
Korga obimee uucio mpumepos mpesbicuT 50 000.

6. Hannmanmsupyem okpyskaromryio cpeny Flappy Bird:
>>> env = FlappyBird()
IMonyuum HavaIbHOE M300paskeHMe:
>>> image, reward, is_done = env.next_step(0)
7. YMeHBIIMM MCXOIHOEe 1300pakeHle 10 pasMepa image_size * image_size:

>>> import cv2
>>> import numpy as np
>>> def pre_processing(image, width, height):
image = cv2.cvtColor(cv2.resize(image,
(width, height)), cv2.COLOR_BGR2GRAY)
_, image = cv2.threshold(image, 1, 255, cv2.THRESH_BINARY)
return image[None, :, :].astype(np.float32)

Ecny makeT cv2 He yCTaHOBJIEH, cAeaiiTe 3TO KOMaHI0
pip install opencv-python
[TogBepruem M3o6paskeHye MpeaBapUTeIbHO 06paboTKe:

>>> image = pre_processing(image[:screen_width, :int(env.base_y)],
image_size, image_size)

8. Temepb CKOHCTPYMPYEM COCTOSIHME — pe3yJbTaT KOHKaTeHalMuU 4YeTbIpex
u306pakeHmii. IToka y HaC MMeeTCsl TOJIbKO IEePBbIi Kajp, IO3TOMY HOBTO-
pMM ero ueThipe pasa:

>>> image = torch.from_numpy(image)

>>> state = torch.cat(tuple(image for _ in range(4)))[None, :, :, :]

9. BBINIONHUM n_iter uTEpaLuii IMKIa OOYUEHUS:

>>> for iter in range(n_iter):
epsilon = final_epsilon + (n_iter - iter)
* (init_epsilon - final_epsilon) / n_iter

O6y4eHue 1 HacTpoika cetn % 275

policy = gen_epsilon_greedy_policy(
estimator, epsilon, n_action)

action = policy(state)
next_image, reward, is_done = env.next_step(action)
next_image = pre_processing(next_image[

:screen_width, :int(env.base_y)], image_size, image_size)
next_image = torch.from_numpy(next_image)
next_state = torch.cat((

state[0, 1:, :, :], next_image))[None, :, :, :]
memory.append([state, action, next_state, reward, is_done])
loss = estimator.replay(memory, batch_size, gamma)
state = next_state
print("Utepauyusa: {}/{}, Deiicteue: {3},

Motepa: {}, Epsilon {}, BosHarpaxgenue: {}".format(

iter + 1, n_iter, action, loss, epsilon, reward))
if iter+1 % 10000 == 0:

torch.save(estimator.model, "{}/{}".format(saved_path, iter+1))

B pesyibraTe BBINOTHEHMS ITO YacTM Koma OymyT HaleyaTaHbl TaKue CO-
OOIIeHNS:

UTepauna: 1/2000000, [Jeiicteue: 0, Motepa: None, Epsilon 0.1, BosHarpaxgeHue: 0.1
UTepauna: 2/2000000, [JleiicTeue: 0, Motepsa: None, Epsilon

0.09999995005000001, BosHarpaxaevue: 0.1
Utepauna: 3/2000000, [JeicTtsue: 0, Motepa: None, Epsilon 0.0999999001,
BosHarpaxgenue: 0.1

UTepauna: 4/2000000, [JleiicTeue: 0, Motepa: None, Epsilon

0.09999985015, BosHarpaxgevue: 0.1

UTepauna: 201/2000000, [Jeiicteue: 1, MoTepa: 0.040504034608602524,
Epsilon 0.09999001000000002, Bo3HarpaxgeHue: 0.1

UTepauna: 202/2000000, [Jeiicteue: 1, MoTepa: 0.010011588223278522,
Epsilon 0.09998996005, Bo3HarpaxaeHue: 0.1

UTepauna: 203/2000000, [Jeiicteue: 1, MoTepa: 0.07097195833921432,
Epsilon 0.09998991010000001, Bo3HarpaxgeHue: 0.1

UTepauna: 204/2000000, [Jeiicteue: 1, MoTepa: 0.040418840944767,
Epsilon 0.09998986015000001, Bo3sHarpaxgeHue: 0.1

UTepauna: 205/2000000, Jeiicteue: 1, MoTepsa: 0.00999421812593937,
Epsilon 0.09998981020000001, Bo3sHarpaxgeHue: 0.1

O6yueHne 3aHMMaeT JOBOJIbHO JJINTeIbHOE BpeMsi. KOHeuHO, ero MOXKHO
YCKOPUTB, BOCIOMb30BaBnch GPU.

10. 1 HaKOHeIl, COXpaHUM ITOCJIETHIO 00YUYEeHHYI0 MOIEb:

>>> torch.save(estimator.model, "{}/final".format(saved_path))

Kak 3to paboraer
Ha mare 9 BpINONHSIOTCS CIeAy0IIyie AeiCTBUS :

QO HEeMHOTO YMEHbBINAEeTCS € ¥ CO3[AeTCs e-KafHas CTpaTerus;
Q wrenmys e-KaiHOM CTpaTerui, BBIGUPAeTCs IeiiCTBIE;

276 < KynbMUHaUMOHHbIN NpoekT - npumereHne DON k urpe Flappy Bird

O pesynbTHpyIOLIEe M300paskeHe IOIBePraeTcs IpeaBapuTebHO 00padoT-
Ke, ITOC/Ie Yero IyTeM KOHKaTeHAalMy YeThIpeX I10C/IeI0BaTelbHbIX M306pa-
SKeHMI KOHCTPYMPYETCSI HOBOE COCTOSIHIE;

Q CoxpaHsIeTCs OIIbIT, IIOTyUYeHHbII Ha JAaHHOI MTepal, — COCTOSTHIASI, TeIiCT-

Blie, CJIeAYyIOlee COCTOsIHME, ITOYYeHHOe BO3HArpaxkaeHue, MpM3HaK OKOH-

YaHNS SMU3003;

Mo[Ie/ib 06HOBJISIETCSI C TOMOILIBIO 6ydepa BOCIIPOM3BEIeHNS;

[1eYaTaeTcst COCTOsIHME 06yUYeHMsI 1 OGHOBIISIETCSI COCTOSIHIAE;

06yueHHAsT MOZE/Ib [IePUOINUECKIM COXPAHSIeTCsI, YTOObI He IIepeodyJuaTh ee

€ CaMOT0 HavaJa B cIyuae cOos.

(ONONG)

PA3BEPTbIBAHUE MOAE/IN U UTPA

Wtak, DQON-Momenb obyueHa, mpuMeHuM ee K urpe Flappy Bird. CoenaTs 9TO mpoc-
TO. Hy>KHO JIMIITL BHIOMPATh Ha KaKIOM IIare AeiicTBMe ¢ HauOOoJIbIleil [eHHOCTbIO.
MBbI chITpaeM HeCKOJIbKO UT'P U ITOCMOTPUM Ha pe3yiabTaThl. He 3a6bIiBaiiTe momBep-
raTh M300pakeHue Ha SKpaHe MpeIBapUTeTbHOI 06pabOTKe U KOHCTPYUPOBATH CO-
CTOSIHME.

Kak 310 penaetcs
[Mpotectupyem DQN-mMopAenb Ha HECKOMBbKMX HOBBIX 3MU30/aX.
1. Cuauasa 3arpysum GUHAIbHYIO MOMENb:
>>> model = torch.load("{}/final".format(saved_path))

2. TIporonum 100 sm130[0B U B KasKIOM BBITIOJIHMM MOKa3aHHBIN HIDKE KO :

>>> n_episode = 100
>>> for episode in range(n_episode):
cee env = FlappyBird()

cee image, reward, is_done = env.next_step(0)

vee image = pre_processing(image[:screen_width,
:int(env.base_y)], image_size, image_size)

vee image = torch.from_numpy(image)

cee state = torch.cat(tuple(image for _ in range(4)))[None, :, :, :]

vee while True:

vee prediction = model(state)[0]

cee action = torch.argmax(prediction).item()

vee next_image, reward, is_done = env.next_step(action)

vee if is_done:

cee break

vee next_image = pre_processing(next_image[:screen_width,
:int(env.base_y)], image_size, image_size)

vee next_image = torch.from_numpy(next_image)

eee next_state = torch.cat((state[0, 1:, :, :],

next_image))[None, :, :, :]
cee state = next_state

PasseprtbiBaHue Mogenu u urpa ** 277

Eciu Bce HOPMaJIbHO, TO MbI YBUJAMM, KaK IITUIIA [TPOJIETAECT MEKIY TDY6aMI/I, Kak
IMOKa3aHO Ha PUCYHKEe HIKe:

® Deep Q-Network Flappy Bird

Kak 3to paboraer
Ha miare 2 B KaXkaoM 31M30[€ BBITIOIHSIOTCS CJIeAVIOLIe OeiCTBUS

MHUIMATU3UPYETCs oKpyKatomias cpena Flappy Bird;

HabI0maeTcss HavYaIbHOE M300paskeHne, M Ha ero OCHOBE TeHepUpPYyeTCs Co-
CTOSTHUE;

JIJISI 9TOT'O COCTOSTHMS C TIOMOIIbI0 MOJIENM BBIUYMCISIIOTCS 3HaUeHusT Q-(QyHK-
LMY M BBIOVIpAEeTCs IeiCTBME C HaubOobIlel IIeHHOCTbIO;

HabTI01aeTCss HOBOE M300paskeHye U OTIpeAeIsieTCsl, 3aKOHUMIICS STTM30, UJTU
elle HeT;

eI 3307, TTPOIOIKAETCS, BBIUMCIISETCSI HOBOE COCTOSTHME, KOTOpOe CTa-
HOBUTCS TEKYILVM;

9TU AEeMCTBUS TOBTOPSIIOTCS A0 3aBePIIEHMST STTM30/a.

© 0 O O 00

[lpeaMeTHbIU YKa3aTenb

CuMonbl

£-3KafHast CTpaTerns
pellieHe 3a1aui 0 MHOTOPYKOM
6anaure, 153
yIIpaBJieHle MeTOIOM
MownTe-Kapimo, 108

A
A2C anropuTm, UCTIONb30BaHME B Cpefie
Mountain Car, 254
Adam, onTumuM3saTop, ccbuika, 206
Anaconda, nuctpubyTHUB, cchlika, 20
Atari, okpyxkatoiiye cpebl
3aBUCUMMOCTH, 28
umuTanus, 108, 112
rpuMeHeHue TTy6okux Q-ceteit, 221
MpMMeHeHMe CBepPTOUYHBIX ceTeit, 227
CChInKa, 24

C

CartPole, okpykaroiast cpena
uMurtauus, 29
Kak paboraer, 32
HACTPOJiKa rureprapamMmeTpoB
DON, 215
pellieHVie MeTOI0M ITepeKpeCcTHO
sHTponuu, 260
peleHue ¢ IOMOIIbIO
anmporcuMauuy GyHKimii, 198
cchLaKa, 32

Cliff Walking, okpy:xaroias cpeia
oAroToBska, 119
peleHye ¢ MIOMOIIbIO aJITOPUTMa

UCIIOJTHUTENb—KPUTHUK, 248

D

Double DQN, anroputm
HaCTpoiiKa rureprIapaMeTpOB JIJis
cpensr CartPole, 215
peanu3anus, 210

Dueling DQN, anroputm
peanmsanus, 218

F
Flappy Bird, urpa
obyueHue 1 HaCTpoiika cetu, 273
TIOATOTOBKA OKpYsKaloleit cpempl, 265
nocrpoenne DON-mogeinu, 269
pa3BepThIBaHME MO en, 276
FrozenLake, okpykaroias cpena
UMuUTaLus, 66
CChbIIKa, 66

M

Mountain Car, HerpepbIBHasI
OKpyyKalolias cpena

Kak paboraer, 254

IOJIrOTOBKA, 252

pemenne metogom A2C, 254
Mountain Car okpyxkaroiasi cpefa

oAroToBka, 179

CChLIKa, 178

o)
OpenAl, 22
OpenAl Gym

Kak paboraer, 23

MpenmetHbin ykasatens % 279

CChLnKa, 24
YCTaHOBKa, 22

P
Pong oxpykatomiasi cpefa
CChlIKa, 221
Pygame ccbiika, 264
Python, 19
PyTorch
OCHOBBI, 33
CChLIKa, 20

Q
Q-ob6yueHne
pelleHue 3amaun O TakCcu, 136
Q-06yuyeHMs aJropuTM
Kak pabotaer, 124
peanmusanus, 123
peanu3aius C anmpokcumalen
(yHKIIMIT HEVIPOHHOI ceThlo, 195
peanu3anus ¢ IpUuMeHeHeM
JIMHEHO anIpoKCUMalun
bynkumit, 185
O-dbyukunm, 102
OlleHMBaHMe MMOCPeICTBOM
anIpoKCUMaIMK METOIOM
rpaayeHTHOro cIrycka, 180

R

REINFORCE, anroputm
peanusanus, 232
¢ 6asoit, 238

S

SARSA, anroputm
peanusanus, 132
peanu3aius IMHenHo
armporcumanyein byHkimii, 188
pellieHMe 3aaun O Takcu, 142

-
TD-o6yuenne, 119

w
Windy Gridworld, okpyskarorast cpena,
MoAroToBka, 127

A

AreHTBI, 22

ANropuTMBI, OCHOBaHHbBIE Ha

momenu, 92

Annporcumanys GyHKumit, 177
npumeHenue K cpepe CartPole, 198

b

besmogenbHbIE aITOPUTMBIL, 92
bennmvana ypaBHeHMe, 59
bennmana ypaBHeHue
MaTemMaTuueckoro oxmuganus, 60
BbennmaHa ypaBHeHMe
OITUMaabHOCTH, 70
Bera-pacnpenenenue, cchlyika, 172
Baskmkexk

npeAcKka3aHie MEeTOIOM

MownTe-Kapiio, 95

ccbliKa, 101

B
BepxHeiil 1oBepUTEIbHO TPAHUIIbI
(UCB) anroputm, 160

3aJaya 0 MHOTOpyKOM 6aHauTe, 159
B3BemienHast BbI6opKa
10 3HAUMMOCTH, 116
Bocriponssenenue ombita, 191
BocxoskzeHns1 Ha BepIIMHY aJITOPUTM

Kak paboraer, 46

peanu3sanusi, 41

cchlIKa, 47
Bri6opKa 1o 3HaUMMOCTH

omnucanue, 112

ccbliKa, 116

r
[my6oxkas Q-cets (DQN)
st urpsl Flappy Bird, 269
NpuMeHeHMe K urpam Atari, 221
I'pagueHTa cTpaTeruy airOpuTm, 47
['pagyieHTHBIN CITYCK
oneHMBaHue Q-pyHKImii, 180
CChIIKa, 185

il

[BoiiHOTO Q-00yU€eHMs aTOPUTM
Kak pabotaer, 148
peanu3sanusi, 146
CchbLIKa, 149

280 <+ [peaMeTHblil yKasaTesb

IeTepMUHMPOBAHHBIN rPagVeHT
crpateruu (DPG), 259
[oBepuTenbHbIe MHTEPBAJbI,
CChIIKa, 162

3

3aKoH 601bLKX yyces, 90

n
Urpatomiuii Ty3, 95
VCOMHUTENb—KPUTUK AJITOPUTM

Kak pabotaert, 246

peanusanusi, 242
WccnemoBaTenbckue craptsl, 104
Wtepauyu no 1eHHOCTU aJITOPUTM, 70

K

KonTekcTyanbHble 6aHANTHI
VCIIO/Ib30BaHMe JJIsl pellleHMsI 3aaui
0 pekjaMe B MHTepHeTe, 172
onucanue, 173

N

JIvHelHas anImpoKCUMaL s
peanu3saiius Q-obyuenns, 185
peann3annst SARSA, 188

JInHeliHas perpeccus
cchLIKa, 185

M

MapKkoBcKasi 11ellb
co3pganue, 54
cchbUIKa, 57
MapKOBCKMIA ITPOIIECC ITPYHSITHS
pemennii (MIIITP), 53
peleHye ¢ MMOMOIIbIO AJITOPUTMa
uTepamum 1o meHHocTu, 70
pelieHre C MOMOIIbIO €-XKaTHOI
crpaterun, 153
cospanue, 57
cchlIKa, 60
Meton MonTe-Kapino
BbIUMC/IeHMe uncia 1, 88
rpagyueHT cTpareruu, 51, 233
olleHMBaHMe cTpareruu, 92
MpeacKkasaHye B Urpe GIsKIKeK, 95
CChUIKM, 91

MHoropyKuii 6aHIUT, OKpY>KarOIIast
cpena
Kak paboraer, 152
MIpUMeHeHMe K 3a7jaue 0 pekiame
B UHTepHeTe, 162
peliieHue C IIOMOIIbIO aJITOPUTMa
BepXHell TOBEePUTEIbHOI
rpaHuiler, 159
pellieHye C IOMOIIbIO BHIGOPKU
TommcoHa, 165
pelieHye C MOMOIIIbIO €-XXaaHOI
crparerunu, 153
cospanue, 150

H

HeilipoHHble ceTu
CeTb UCIIOMHUTEISI—KPUTHUKA, 259
CcChbUIKM, 197
LiesieBast CeThb
UCIIOTHUTENISI—KPUTHKA, 259

o)

O6paieHe MaTpulibl, 59

OGImuit MCKYCCTBEHHBII MHTEJIEKT
(AGI), 22

OskumaeMast IIOJIE3HOCTh, 58
OxpyKaroliue cpefpl, TabanIia,
cchinka, 120

OnTtumasbHas cTpaTerus, 58
OueHuBaHue ctpaterun, 60

n

[TakeTHast 06paboTKa, 191
[TepekpecTHOI SHTPOIIUM METO/I,
npumMeHeHue B cpene CartPole, 260
IToBemeHueckas cTpaTerusi, 112
IToyck Ha ceTke, 215
[TpubaMsKEHHOE TMHAMMUYECKOE
MporpaMMMUpOBaHKE, 62
[Mpusnaku, 180

[IpoknsTue pasMepHOCTH, 63

C

Cseprounble HelipoHHbIe ceTu (CHC)
B urpax Atari, 227

CeTb UCITOIHUTENb—KPUTHUK, 259

MpenmeTHbii ykasatens < 281

City4aifHOTO TTOMCKa aaTOPUTM TomrcoHa BeibOpKa, 165
Kak pabotaer, 39 y
peanusaius ¢ momoubio PyTorch, 36
CroxacTtuueckas crparerusi, 48 vnpasnenye meTonom MonTe-Kapio
CO B3BEIIEHHOIT BIOOPKOIA
T I10 3HaUUMOCTH, 116
C emuHOM cTpaTterueii, 101

C pasmeneHHOJ cTpaTerueit, 111
C e-3KaiHOli cTpaTerueit, 108

Takcn, 3agavua
pereHne metonom Q-obyuenns, 136
pemieHne Mmetomom SARSA, 142
cchUIKa, 136 (0]

TeH30pkI, OIepaliiu, cChlaka, 36 @OYHKIMS [IEHHOCTM COCTOSTHMIA, 58

Kuuru nsparenbcra «IJMK ITPECC»
MOKHO KYIIUTD OIITOM ¥ B PO3HUILY
B KHUTOTOProBOi KoMIaHUM «['anakTuka»
(TIpencTaBsieT MHTePeChl M3JaTeTbCTB
«IMK ITPECC», «COJIOH ITPECC», «KTK T'amakTuka»).
Anpec: r. Mocksa, 1ip. AHIpOIIOBa, 38;
Te.: (499) 782-38-89, snekTpoHHas routa: books@alians-kniga.ru.
ITpu opopmieHnn 3aKasa ciaegyeT yKaszaThb aapec (MOTHOCTHIO),
10 KOTOPOMY JOJDKHBI ObITh BBICTIAHBI KHUTH;
amwnio, MMS ¥ OTYECTBO MTOTyJaTENS.
JKenartenpbHO Takke yKaszaThb CBOIi TeeOH 1 NIEKTPOHHBII afpec.
OTM KHUTY BbI MOKETe 3aKa3aTh ¥ B MHTepHeT-MarasuHe: www.a-planeta.ru.

HOcu (Xaiigen) Jiro

O6yueHue c noakpenneHuem Ha PyTorch:
C6OpHMK peuenToB

I'naBHbIN pegakTop Mosuan /1. A.
dmkpress@gmail.com

IlepeBon, CaunkuH A. A.
Koppektop Cunsiesa I. H.
Bepctka YaHHosa A. A.

IOu3zaitd o6moxkku MosuaH A. I.

®opmat 70100 1/16.
Fapuutypa PT Serif. ITeuats odceTHas.
Yen. ned. 1. 22,91. Tupask 200 3K3.

OrneuaraHo B [TAO «T8 MspaTenbckue TexHomornm»
109316, MockBa, Boarorpaackuii IIpoCIeKT, 1. 42, Kopmyc 5

Be6-caiiT nsgarenbcTBa: www.dmkpress.com

	Обучение с подкреплением на PyTorch_сборник рецептов.pdf
	Об авторе
	О рецензентах
	Предисловие
	Приступаем к обучению с подкреплением и PyTorch
	Подготовка среды разработки
	Как это делается
	Как это работает
	Это еще не все

	Установка OpenAI Gym
	Как это делается
	Как это работает
	Это еще не все

	Окружающие среды Atari
	Как это делается
	Как это работает
	Это еще не все

	Окружающая среда CartPole
	Как это делается
	Как это работает
	Это еще не все

	Основы PyTorch
	Как это делается
	Это еще не все

	Реализация и оценивание стратегии случайного поиска
	Как это делается
	Как это работает
	Это еще не все

	Алгоритм восхождения на вершину
	Как это делается
	Как это работает
	Это еще не все

	Алгоритм градиента стратегии
	Как это делается
	Как это работает
	Это еще не все

	Марковские процессы принятия решений и динамическое программирование
	Технические требования
	Создание марковской цепи
	Как это делается
	Как это работает
	Это еще не все

	Создание МППР
	Как это делается
	Как это работает
	Это еще не все

	Оценивание стратегии
	Как это делается
	Как это работает
	Это еще не все

	Имитация окружающей среды FrozenLake
	Подготовка
	Как это делается
	Как это работает
	Это еще не все

	Решение МППР с помощью алгоритма итерации по ценности
	Как это делается
	Как это работает
	Это еще не все

	Решение МППР с помощью алгоритма итерации по стратегиям
	Как это делается
	Как это работает
	Это еще не все

	Игра с подбрасыванием монеты
	Как это делается
	Как это работает
	Это еще не все

	Применение методов Монте-Карло для численного оценивания
	Вычисление π методом Монте-Карло
	Как это делается
	Как это работает
	Это еще не все

	Оценивание стратегии методом Монте-Карло
	Как это делается
	Как это работает
	Это еще не все

	Предсказание методом Монте-Карло в игре блэкджек
	Как это делается
	Как это работает
	Это еще не все

	Управление методом Монте-Карло с единой стратегией
	Как это делается
	Как это работает
	Это еще не все

	Разработка управления методом Монте-Карло с ε-жад­ной стратегией
	Как это делается
	Как это работает

	Управление методом Монте-Карло с разделенной стратегией
	Как это делается
	Как это работает
	Это еще не все

	Разработка управления методом Монте-Карло с взвешенной выборкой по значимости
	Как это делается
	Как это работает
	Это еще не все

	TD-обучение и Q-обучение
	Подготовка окружающей среды Cliff Walking
	Подготовка
	Как это делается
	Как это работает

	Реализация алгоритма Q-обучения
	Как это делается
	Как это работает
	Это еще не все

	Подготовка окружающей среды Windy Gridworld
	Как это делается
	Как это работает

	Реализация алгоритма SARSA
	Как это делается
	Как это работает
	Это еще не все

	Решение задачи о такси методом Q-обучения
	Подготовка
	Как это делается
	Как это работает

	Решение задачи о такси методом SARSA
	Как это делается
	Как это работает
	Это еще не все

	Реализация алгоритма двойного Q-обучения
	Как это делается
	Как это работает

	Решение задачи о многоруком бандите
	Создание окружающей среды с многоруким бандитом
	Как это делается
	Как это работает

	Решение задачи о многоруком бандите с помощью ε-жад­ной стратегии
	Как это делается
	Как это работает
	Это еще не все

	Решение задачи о многоруком бандите с помощью softmax-исследования
	Как это делается
	Как это работает

	Решение задачи о многоруком бандите с помощью алгоритма верхней доверительной границы
	Как это делается
	Как это работает
	Это еще не все

	Решение задачи о рекламе в интернете с помощью алгоритма многорукого бандита
	Как это делается
	Как это работает

	Решение задачи о многоруком бандите с помощью выборки Томпсона
	Как это делается
	Как это работает

	Решение задачи о рекламе в интернете с помощью контекстуальных бандитов
	Как это делается
	Как это работает

	Масштабирование с помощью аппроксимации функций
	Подготовка окружающей среды Mountain Car
	Подготовка
	Как это делается
	Как это работает

	Оценивание Q-функций посредством аппроксимации методом градиентного спуска
	Как это делается
	Как это работает

	Реализация Q-обучения с линейной аппроксимацией функций
	Как это делается
	Как это работает

	Реализация SARSA с линейной аппроксимацией функций
	Как это делается
	Как это работает

	Пакетная обработка с применением буфера воспроизведения опыта
	Как это делается
	Как это работает

	Реализация Q-обучения с аппроксимацией функций нейронной сетью
	Как это делается
	Как это работает

	Решение задачи о балансировании стержня с помощью аппроксимации функций
	Как это делается
	Как это работает

	Глубокие Q-сети в действии
	Реализация глубоких Q-сетей
	Как это делается
	Как это работает

	Улучшение DQN с помощью воспроизведения опыта
	Как это делается
	Как это работает

	Реализация алгоритма Double DQN
	Как это делается
	Как это работает

	Настройка гиперпараметров алгоритма Double DQN для среды CartPole
	Как это делается
	Как это работает

	Реализация алгоритма Dueling DQN
	Как это делается
	Как это работает

	Применение DQN к играм Atari
	Как это делается
	Как это работает

	Использование сверточных нейронных сетей в играх Atari
	Как это делается
	Как это работает

	Реализация методов градиента стратегии и оптимизация стратегии
	Реализация алгоритма REINFORCE
	Как это делается
	Как это работает

	Реализация алгоритма REINFORCE с базой
	Как это делается
	Как это работает

	Реализация алгоритма исполнитель–критик
	Как это делается
	Как это работает

	Решение задачи о блуждании на краю обрыва с помощью алгоритма исполнитель–критик
	Как это делается
	Как это работает

	Подготовка непрерывной окружающей среды Mountain Car
	Как это делается
	Как это работает

	Решение непрерывной задачи о блуждании на краю обрыва методом A2C
	Как это делается
	Как это работает
	Это еще не все

	Решение задачи о балансировании стержня методом перекрестной энтропии
	Как это делается
	Как это работает

	Кульминационный проект – применение DQN к игре Flappy Bird
	Подготовка игровой среды
	Подготовка
	Как это делается
	Как это работает

	Построение глубокой Q-сети для игры Flappy Bird
	Как это делается
	Как это работает

	Обучение и настройка сети
	Как это делается
	Как это работает

	Развертывание модели и игра
	Как это делается
	Как это работает

	Предметный указатель

