

Mastering OpenCV 3
Second Edition

Get hands-on with practical Computer Vision using OpenCV 3

Daniel Lélis Baggio
Shervin Emami
David Millán Escrivá
Khvedchenia Ievgen
Jason Saragih
Roy Shilkrot

 BIRMINGHAM - MUMBAI

Mastering OpenCV 3

Second Edition
Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2012
Second edition: April 2017

Production reference: 1260417

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78646-717-1

www.packtpub.com

http://www.packtpub.com

Credits

Authors
Daniel Lélis Baggio
Shervin Emami
David Millán Escrivá
Khvedchenia Ievgen
Jason Saragih
Roy Shilkrot

Copy Editor
Safis Editing

Reviewer
Vinícius Godoy

Project Coordinator
Vaidehi Sawant

Commissioning Editor
Edward Gordon

Proofreader
Safis Editing

Acquisition Editor
Nitin Dasan

Indexer
Tejal Daruwale Soni

Content Development Editor
Rohit Kumar Singh

Graphics
Jason Monteiro

Technical Editor
Pavan Ramchandani

Production Coordinator
Shantanu N. Zagade

About the Authors
Daniel Lélis Baggio started his work in computer vision through medical image processing
at InCor (Instituto do Coração – Heart Institute) in São Paulo, where he worked with
intravascular ultrasound image segmentation. Since then, he has focused on GPGPU and
ported the segmentation algorithm to work with NVIDIA's CUDA. He has also dived into
6degrees of freedom head tracking with a natural user interface group through a project
called ehci (http://code.google.com/p/ehci/).He now works for the Brazilian Air Force.

Shervin Emami, born in Iran, taught himself electronics and hobby robotics during his
early teens in Australia. While building his first robot at the age of 15, he learned how RAM
and CPUs work. He was so amazed by the concept that he soon designed and built a whole
Z80 motherboard to control his robot, and wrote all the software purely in binary machine
code using two push buttons for 0s and 1s.

After learning that computers can be programmed in much easier ways such as assembly
language and even high-level compilers, Shervin became hooked on computer
programming and has been programming desktops, robots, and smartphones nearly every
day since then. During his late teens, he created Draw3D (h t t p ://d r a w 3d . s h e r v i n e m a m i . i

n f o /), a 3D modeler with 30,000 lines of optimized C and assembly code that rendered 3D
graphics faster than all the commercial alternatives of the time, but he lost interest in
graphics programming when 3D hardware acceleration became available.

In University, Shervin took a class on Computer Vision and became greatly interested in it.
So, for his first thesis in 2003, he created a real-time face detection program based on
Eigenfaces, using OpenCV (beta 3) for the camera input. For his master's thesis in 2005, he
created a visual navigation system for several mobile robots using OpenCV (v0.96).

From 2008, he worked as a freelance Computer Vision Developer in Abu Dhabi and
Philippines, using OpenCV for a large number of short-term commercial projects that
included:

Detecting faces using Haar or Eigenfaces
Recognizing faces using Neural Networks, EHMM, or Eigenfaces
Detecting the 3D position and orientation of a face from a single photo using
AAM and POSIT
Rotating a face in 3D using only a single photo

http://code.google.com/p/ehci/).
http://draw3d.shervinemami.info/),
http://draw3d.shervinemami.info/),
http://draw3d.shervinemami.info/),
http://draw3d.shervinemami.info/),
http://draw3d.shervinemami.info/),
http://draw3d.shervinemami.info/),
http://draw3d.shervinemami.info/),
http://draw3d.shervinemami.info/),
http://draw3d.shervinemami.info/),
http://draw3d.shervinemami.info/),
http://draw3d.shervinemami.info/),
http://draw3d.shervinemami.info/),
http://draw3d.shervinemami.info/),
http://draw3d.shervinemami.info/),
http://draw3d.shervinemami.info/),
http://draw3d.shervinemami.info/),
http://draw3d.shervinemami.info/),
http://draw3d.shervinemami.info/),
http://draw3d.shervinemami.info/),
http://draw3d.shervinemami.info/),
http://draw3d.shervinemami.info/),
http://draw3d.shervinemami.info/),
http://draw3d.shervinemami.info/),
http://draw3d.shervinemami.info/),
http://draw3d.shervinemami.info/),
http://draw3d.shervinemami.info/),
http://draw3d.shervinemami.info/),
http://draw3d.shervinemami.info/),
http://draw3d.shervinemami.info/),
http://draw3d.shervinemami.info/),
http://draw3d.shervinemami.info/),
http://draw3d.shervinemami.info/),
http://draw3d.shervinemami.info/),
http://draw3d.shervinemami.info/),
http://draw3d.shervinemami.info/),
http://draw3d.shervinemami.info/),
http://draw3d.shervinemami.info/),
http://draw3d.shervinemami.info/),
http://draw3d.shervinemami.info/),
http://draw3d.shervinemami.info/),
http://draw3d.shervinemami.info/),
http://draw3d.shervinemami.info/),
http://draw3d.shervinemami.info/),
http://draw3d.shervinemami.info/),
http://draw3d.shervinemami.info/),
http://draw3d.shervinemami.info/),
http://draw3d.shervinemami.info/),
http://draw3d.shervinemami.info/),
http://draw3d.shervinemami.info/),
http://draw3d.shervinemami.info/),
http://draw3d.shervinemami.info/),
http://draw3d.shervinemami.info/),
http://draw3d.shervinemami.info/),
http://draw3d.shervinemami.info/),

Face preprocessing and artificial lighting using any 3D direction from a single
photo
Gender recognition
Facial expression recognition
Skin detection
Iris detection
Pupil detection
Eye-gaze tracking
Visual-saliency tracking
Histogram matching
Body-size detection
Shirt and bikini detection
Money recognition
Video stabilization
Face recognition on iPhone
Food recognition on iPhone
Marker-based augmented reality on iPhone (the second-fastest iPhone
augmented reality app at the time)

OpenCV was putting food on the table for Shervin's family, so he began giving back to
OpenCV through regular advice on the forums and by posting free OpenCV tutorials on his
website (h t t p ://w w w . s h e r v i n e m a m i . i n f o /o p e n C V . h t m l). In 2011, he contacted the owners
of other free OpenCV websites to write this book. He also began working on computer
vision optimization for mobile devices at NVIDIA, working closely with the official
OpenCV developers to produce an optimized version of OpenCV for Android. In 2012, he
also joined the Khronos OpenVL committee for standardizing the hardware acceleration of
computer vision for mobile devices, on which OpenCV will be based in the future.

David Millán Escrivá was 8 years old when he wrote his first program on an 8086 PC with
basic language, which enabled the 2D plotting of basic equations. In 2005, he finished his
studies in IT through the Universitat Politécnica de Valencia with honors in human-
computer interaction supported by computer vision with OpenCV (v0.96). He had a final
project based on this subject and published it on HCI Spanish congress. He participated in
Blender, an open source, 3D-software project, and worked on his first commercial movie
Plumiferos—Aventuras voladorasas, as a computer graphics software developer.

http://www.shervinemami.info/openCV.html).
http://www.shervinemami.info/openCV.html).
http://www.shervinemami.info/openCV.html).
http://www.shervinemami.info/openCV.html).
http://www.shervinemami.info/openCV.html).
http://www.shervinemami.info/openCV.html).
http://www.shervinemami.info/openCV.html).
http://www.shervinemami.info/openCV.html).
http://www.shervinemami.info/openCV.html).
http://www.shervinemami.info/openCV.html).
http://www.shervinemami.info/openCV.html).
http://www.shervinemami.info/openCV.html).
http://www.shervinemami.info/openCV.html).
http://www.shervinemami.info/openCV.html).
http://www.shervinemami.info/openCV.html).
http://www.shervinemami.info/openCV.html).
http://www.shervinemami.info/openCV.html).
http://www.shervinemami.info/openCV.html).
http://www.shervinemami.info/openCV.html).
http://www.shervinemami.info/openCV.html).
http://www.shervinemami.info/openCV.html).
http://www.shervinemami.info/openCV.html).
http://www.shervinemami.info/openCV.html).
http://www.shervinemami.info/openCV.html).
http://www.shervinemami.info/openCV.html).
http://www.shervinemami.info/openCV.html).
http://www.shervinemami.info/openCV.html).
http://www.shervinemami.info/openCV.html).
http://www.shervinemami.info/openCV.html).
http://www.shervinemami.info/openCV.html).
http://www.shervinemami.info/openCV.html).
http://www.shervinemami.info/openCV.html).
http://www.shervinemami.info/openCV.html).
http://www.shervinemami.info/openCV.html).
http://www.shervinemami.info/openCV.html).
http://www.shervinemami.info/openCV.html).
http://www.shervinemami.info/openCV.html).
http://www.shervinemami.info/openCV.html).
http://www.shervinemami.info/openCV.html).
http://www.shervinemami.info/openCV.html).
http://www.shervinemami.info/openCV.html).
http://www.shervinemami.info/openCV.html).
http://www.shervinemami.info/openCV.html).
http://www.shervinemami.info/openCV.html).
http://www.shervinemami.info/openCV.html).
http://www.shervinemami.info/openCV.html).
http://www.shervinemami.info/openCV.html).
http://www.shervinemami.info/openCV.html).
http://www.shervinemami.info/openCV.html).
http://www.shervinemami.info/openCV.html).
http://www.shervinemami.info/openCV.html).
http://www.shervinemami.info/openCV.html).
http://www.shervinemami.info/openCV.html).
http://www.shervinemami.info/openCV.html).
http://www.shervinemami.info/openCV.html).
http://www.shervinemami.info/openCV.html).
http://www.shervinemami.info/openCV.html).
http://www.shervinemami.info/openCV.html).
http://www.shervinemami.info/openCV.html).
http://www.shervinemami.info/openCV.html).
http://www.shervinemami.info/openCV.html).
http://www.shervinemami.info/openCV.html).
http://www.shervinemami.info/openCV.html).
http://www.shervinemami.info/openCV.html).
http://www.shervinemami.info/openCV.html).
http://www.shervinemami.info/openCV.html).
http://www.shervinemami.info/openCV.html).
http://www.shervinemami.info/openCV.html).
http://www.shervinemami.info/openCV.html).
http://www.shervinemami.info/openCV.html).
http://www.shervinemami.info/openCV.html).
http://www.shervinemami.info/openCV.html).
http://www.shervinemami.info/openCV.html).

David now has more than 10 years of experience in IT, with experience in computer vision,
computer graphics, and pattern recognition, working on different projects and start-ups,
applying his knowledge of computer vision, optical character recognition, and augmented
reality. He is the author of the DamilesBlog (h t t p ://b l o g . d a m i l e s . c o m), where he
publishes research articles and tutorials about OpenCV, Computer Vision in general, and
Optical Character Recognition algorithms. David has reviewed the book gnuPlot Cookbook,
Packt Publishing, written by Lee Phillips.

Khvedchenia Ievgen is a Computer Vision expert from Ukraine. He started his career with
research and development of a camera-based driver assistance system for Harman
International. He then began working as a computer vision consultant for ESG. Nowadays,
he is a self-employed developer focusing on the development of augmented reality
applications. Ievgen is the author of the Computer Vision Talks blog
(http://computer-vision-talks.com),where he publishes research articles and tutorials
pertaining to computer vision and augmented reality.

Jason Saragih received his BE in mechatronics (with honors) and PhD in computer science
from the Australian National University, Canberra, Australia, in 2004 and 2008,
respectively. From 2008 to 2010, he was a Postdoctoral fellow at the Robotics Institute of
Carnegie Mellon University, Pittsburgh, PA. From 2010 to 2012, he worked at the
Commonwealth Scientific and Industrial Research Organization (CSIRO) as a research
scientist. He is currently a senior research scientist at Visual Features, an Australian tech
start-up company.

Dr. Saragih has made a number of contributions to the field of computer vision, specifically
on the topic of deformable model registration and modeling. He is the author of two
nonprofit open source libraries that are widely used in the scientific community; DeMoLib
and FaceTracker, both of which make use of generic computer vision libraries, including
OpenCV.

Roy Shilkrot is a researcher and professional in the area of computer vision and computer
graphics. He obtained a BSc in computer science from Tel-Aviv-Yaffo Academic College,
and an MSc from Tel-Aviv University. He is currently a PhD candidate in Media Laboratory
of the Massachusetts Institute of Technology (MIT) in Cambridge.

Roy has over seven years of experience as a software engineer in start-up companies and
enterprises. Before joining the MIT Media Lab as a research assistant, he worked as a
technology strategist in the Innovation Laboratory of Comverse, a telecom solutions
provider. He also dabbled in consultancy, and worked as an intern for Microsoft research at
Redmond.

http://blog.damiles.com),,
http://blog.damiles.com),,
http://blog.damiles.com),,
http://blog.damiles.com),,
http://blog.damiles.com),,
http://blog.damiles.com),,
http://blog.damiles.com),,
http://blog.damiles.com),,
http://blog.damiles.com),,
http://blog.damiles.com),,
http://blog.damiles.com),,
http://blog.damiles.com),,
http://blog.damiles.com),,
http://blog.damiles.com),,
http://blog.damiles.com),,
http://blog.damiles.com),,
http://blog.damiles.com),,
http://blog.damiles.com),,
http://blog.damiles.com),,
http://blog.damiles.com),,
http://blog.damiles.com),,
http://blog.damiles.com),,
http://blog.damiles.com),,
http://blog.damiles.com),,
http://blog.damiles.com),,
http://blog.damiles.com),,
http://blog.damiles.com),,
http://blog.damiles.com),,
http://blog.damiles.com),,
http://blog.damiles.com),,
http://blog.damiles.com),,
http://blog.damiles.com),,
http://blog.damiles.com),,
http://blog.damiles.com),,
http://blog.damiles.com),,
http://blog.damiles.com),,
http://blog.damiles.com),,
http://blog.damiles.com),,
http://blog.damiles.com),,
http://blog.damiles.com),,

About the Reviewer
Vinícius Godoy is a professor at PUCPR and the owner of the game development website
called Ponto V!. He has a Master’degree in Computer Vision and Image Processing
(PUCPR), a specialization degree in game development (Universidade Positivo) and
graduation in Technology in Informatics - Networking (UFPR). He is also one of the authors
of the book OpenCV by Example, Packt Publishing and is currently working on his Doctoral
thesis on medical imaging in PUCPR.

He is in the software development field for more than 20 years. His former professional
experience includes the design and programming of a multithreaded framework for PBX
tests at Siemens, coordination of Aurelio Dictionary Software 100 years edition
project—including its mobile versions for Android, IOS, and Windows
Phone—coordination of an augmented reality educational activity for Positivo's educational
table Mesa Alfabeto, presented at CEBIT and the IT Management of a BPMS company
called Sinax.

www.PacktPub.com
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.comand as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

h t t p s ://w w w . p a c k t p u b . c o m /m a p t

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt

Customer Feedback
Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial
process. To help us improve, please leave us an honest review on this book's Amazon page
at h t t p s ://w w w . a m a z o n . c o m /d p /1786467178.

If you'd like to join our team of regular reviewers, you can e-mail us at
customerreviews@packtpub.com. We award our regular reviewers with free eBooks and
videos in exchange for their valuable feedback. Help us be relentless in improving our
products!

https://www.amazon.com/dp/1786467178
https://www.amazon.com/dp/1786467178
https://www.amazon.com/dp/1786467178
https://www.amazon.com/dp/1786467178
https://www.amazon.com/dp/1786467178
https://www.amazon.com/dp/1786467178
https://www.amazon.com/dp/1786467178
https://www.amazon.com/dp/1786467178
https://www.amazon.com/dp/1786467178
https://www.amazon.com/dp/1786467178
https://www.amazon.com/dp/1786467178
https://www.amazon.com/dp/1786467178
https://www.amazon.com/dp/1786467178
https://www.amazon.com/dp/1786467178
https://www.amazon.com/dp/1786467178
https://www.amazon.com/dp/1786467178
https://www.amazon.com/dp/1786467178
https://www.amazon.com/dp/1786467178
https://www.amazon.com/dp/1786467178
https://www.amazon.com/dp/1786467178
https://www.amazon.com/dp/1786467178
https://www.amazon.com/dp/1786467178
https://www.amazon.com/dp/1786467178
https://www.amazon.com/dp/1786467178
https://www.amazon.com/dp/1786467178
https://www.amazon.com/dp/1786467178
https://www.amazon.com/dp/1786467178
https://www.amazon.com/dp/1786467178
https://www.amazon.com/dp/1786467178
https://www.amazon.com/dp/1786467178
https://www.amazon.com/dp/1786467178
https://www.amazon.com/dp/1786467178
https://www.amazon.com/dp/1786467178
https://www.amazon.com/dp/1786467178
https://www.amazon.com/dp/1786467178
https://www.amazon.com/dp/1786467178
https://www.amazon.com/dp/1786467178
https://www.amazon.com/dp/1786467178
https://www.amazon.com/dp/1786467178
https://www.amazon.com/dp/1786467178
https://www.amazon.com/dp/1786467178
https://www.amazon.com/dp/1786467178
https://www.amazon.com/dp/1786467178

Table of Contents
Preface 1

Chapter 1: Cartoonifier and Skin Changer for Raspberry Pi 7

Accessing the webcam 9
Main camera processing loop for a desktop app 11

Generating a black and white sketch 12
Generating a color painting and a cartoon 13
Generating an evil mode using edge filters 15
Generating an alien mode using skin detection 16

Skin detection algorithm 17
Showing the user where to put their face 17

Implementation of the skin color changer 20
Reducing the random pepper noise from the sketch image 25
Porting from desktop to embedded 27
Equipment setup to develop code for an embedded device 29
Configuring a new Raspberry Pi 31
Installing OpenCV on an embedded device 34
Using the Raspberry Pi Camera Module 37

Installing the Raspberry Pi Camera Module driver 38
Making Cartoonifier to run full screen 39
Hiding the mouse cursor 39
Running Cartoonifier automatically after bootup 40
Speed comparison of Cartoonifier on Desktop versus Embedded 40

Changing the camera and camera resolution 41
Power draw of Cartoonifier running on desktop versus embedded system 42

Streaming video from Raspberry Pi to a powerful computer 44
Customizing your embedded system! 46

Summary 47

Chapter 2: Exploring Structure from Motion Using OpenCV 48

Structure from Motion concepts 50
Estimating the camera motion from a pair of images 51

Point matching using rich feature descriptors 52
Finding camera matrices 55
Choosing the image pair to use first 60

Reconstructing the scene 62
Reconstruction from many views 65
Refinement of the reconstruction 70
Using the example code 73

[ii]

Summary 74
References 75

Chapter 3: Number Plate Recognition using SVM and Neural Network 76

Introduction to ANPR 76
ANPR algorithm 79
Plate detection 81

Segmentation 82
Classification 89

Plate recognition 92
OCR segmentation 93
Feature extraction 94
OCR classification 96
Evaluation 101

Summary 104

Chapter 4: Non-Rigid Face Tracking 105

Overview 107
Utilities 107

Object-oriented design 108
Data collection - image and video annotation 110

Training data types 110
Annotation tool 114
Pre-annotated data (the MUCT dataset) 115

Geometrical constraints 116
Procrustes analysis 118
Linear shape models 122
A combined local-global representation 125
Training and visualization 127

Facial feature detectors 130
Correlation-based patch models 132

Learning discriminative patch models 132
Generative versus discriminative patch models 136

Accounting for global geometric transformations 137
Training and visualization 140

Face detection and initialization 142
Face tracking 146

Face tracker implementation 147
Training and visualization 149
Generic versus person-specific models 150

Summary 151

[iii]

References 151

Chapter 5: 3D Head Pose Estimation Using AAM and POSIT 152

Active Appearance Models overview 153
Overview of the chapter algorithms 154

Active Shape Models 155
Getting the feel of PCA 157
Triangulation 161
Triangle texture warping 163

Model Instantiation - playing with the AAM 165
AAM search and fitting 166
POSIT 169

Diving into POSIT 170
POSIT and head model 172
Tracking from webcam or video file 173

Summary 175
References 176

Chapter 6: Face Recognition Using Eigenfaces or Fisherfaces 177

Introduction to face recognition and face detection 177
Step 1 - face detection 179

Implementing face detection using OpenCV 180
Loading a Haar or LBP detector for object or face detection 181
Accessing the webcam 182
Detecting an object using the Haar or LBP Classifier 182

Grayscale color conversion 182
Shrinking the camera image 183
Histogram equalization 183

Detecting the face 184
Step 2 - face preprocessing 186

Eye detection 186
Eye search regions 187

Geometrical transformation 191
Separate histogram equalization for left and right sides 193
Smoothing 195
Elliptical mask 196

Step 3 - Collecting faces and learning from them 197
Collecting preprocessed faces for training 199
Training the face recognition system from collected faces 201
Viewing the learned knowledge 203
Average face 205
Eigenvalues, Eigenfaces, and Fisherfaces 206

Step 4 - face recognition 208
Face identification - recognizing people from their face 209

[iv]

Face verification - validating that it is the claimed person 209
Finishing touches - saving and loading files 212
Finishing touches - making a nice and interactive GUI 212

Drawing the GUI elements 213
Startup mode 216
Detection mode 216
Collection mode 218
Training mode 220
Recognition mode 221

Checking and handling mouse clicks 222
Summary 225
References 225

Index 227

Preface
Mastering OpenCV3, Second Edition contains seven chapters, where each chapter is a tutorial
for an entire project from start to finish, based on OpenCV's C++ interface, including the full
source code. The author of each chapter was chosen for their well-regarded online
contributions to the OpenCV community on that topic, and the book was reviewed by one
of the main OpenCV developers. Rather than explaining the basics of OpenCV functions,
this book shows how to apply OpenCV to solve whole problems, including several 3D
camera projects (augmented reality, and 3D structure from Motion) and several facial
analysis projects (such as skin detection, simple face and eye detection, complex facial
feature tracking, 3D head orientation estimation, and face recognition), therefore it makes a
great companion to the existing OpenCV books.

What this book covers
Chapter 1, Cartoonifier and Skin Changer for Raspberry Pi, contains a complete tutorial and
source code for both a desktop application and a Raspberry Pi that automatically generates
a cartoon or painting from a real camera image, with several possible types of cartoons,
including a skin color changer.

Chapter 2, Exploring Structure from Motion Using OpenCV, contains an introduction to
Structure from Motion (SfM) via an implementation of SfM concepts in OpenCV. The
reader will learn how to reconstruct 3D geometry from multiple 2D images and estimate
camera positions.

Chapter 3, Number Plate Recognition Using SVM and Neural Networks, includes a complete
tutorial and source code to build an automatic number plate recognition application using
pattern recognition algorithms and also using a support vector machine and Artificial
Neural Networks. The reader will learn how to train and predict pattern-recognition
algorithms to decide whether an image is a number plate or not. It will also help classify a
set of features into a character.

Chapter 4, Non-Rigid Face Tracking, contains a complete tutorial and source code to build a
dynamic face tracking system that can model and track the many complex parts of a
person's face.

Preface

[2]

Chapter 5, 3D Head Pose Estimation Using AAM and POSIT, includes all the background
required to understand what Active Appearance Models (AAMs) are and how to create
them with OpenCV using a set of face frames with different facial expressions. Besides, this
chapter explains how to match a given frame through fitting capabilities offered by AAMs.
Then, by applying the POSIT algorithm, one can find the 3D head pose.

Chapter 6, Face Recognition Using Eigenfaces or Fisherfaces, contains a complete tutorial and
source code for a real-time face-recognition application that includes basic face and eye
detection to handle the rotation of faces and varying lighting conditions in the images.

Chapter 7, Natural Feature Tracking for Augmented Reality, includes a complete tutorial on
how to build a marker-based Augmented Reality (AR) application for iPad and iPhone
devices with an explanation of each step and source code. It also contains a complete
tutorial on how to develop a marker-less augmented reality desktop application with an
explanation of what marker-less AR is and the source code.

You can download this chapter from: h t t p s ://w w w . p a c k t p u b . c o m /s i t e s /d e f a u l t /f i l e s

/d o w n l o a d s /N a t u r a l F e a t u r e T r a c k i n g f o r A u g m e n t e d R e a l i t y . p d f .

What you need for this book
You don't need to have special knowledge in computer vision to read this book, but you
should have good C/C++ programming skills and basic experience with OpenCV before
reading this book. Readers without experience in OpenCV may wish to read the book
Learning OpenCV for an introduction to the OpenCV features, or read OpenCV 2 Cookbook for
examples on how to use OpenCV with recommended C/C++ patterns, because this book
will show you how to solve real problems, assuming you are already familiar with the
basics of OpenCV and C/C++ development.

In addition to C/C++ and OpenCV experience, you will also need a computer, and IDE of
your choice (such as Visual Studio, XCode, Eclipse, or QtCreator, running on Windows,
Mac, or Linux). Some chapters have further requirements, in particular:

To develop an OpenCV program for Raspberry Pi, you will need the Raspberry
Pi device, its tools, and basic Raspberry Pi development experience.
To develop an iOS app, you will need an iPhone, iPad, or iPod Touch device, iOS
development tools (including an Apple computer, XCode IDE, and an Apple
Developer Certificate), and basic iOS and Objective-C development experience.
Several desktop projects require a webcam connected to your computer. Any
common USB webcam should suffice, but a webcam of at least 1 megapixel may
be desirable.

https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf
https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf

Preface

[3]

CMake is used in some projects, including OpenCV itself, to build across
operating systems and compilers. A basic understanding of build systems is
required, and knowledge of cross-platform building is recommended.

An understanding of linear algebra is expected, such as basic vector and matrix operations,
and eigen decomposition.

Who this book is for
Mastering OpenCV 3, Second Edition is the perfect book for developers with basic OpenCV
knowledge to use to create practical computer vision projects, as well as for seasoned
OpenCV experts who want to add more computer vision topics to their skill set. It is aimed
at senior computer science university students, graduates, researchers, and computer vision
experts who wish to solve real problems using the OpenCV C++ interface, through practical
step-by-step tutorials.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "You
should put most of the code from this chapter into the cartoonifyImage() function"

A block of code is set as follows:

 int cameraNumber = 0;
 if (argc> 1)
 cameraNumber = atoi(argv[1]);
 // Get access to the camera.
 cv::VideoCapture capture

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

 // Get access to the camera.
 cv::VideoCapture capture;
 camera.open(cameraNumber);
 if (!camera.isOpened()) {
 std::cerr<< "ERROR: Could not access the camera or video!" <<

Preface

[4]

Any command-line input or output is written as follows:

cmake -G "Visual Studio 10"

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "In order to download new
modules, we will go to Files | Settings | Project Name | Project Interpreter."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book-what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of.
To send us general feedback, simply e-mail feedback@packtpub.com, and mention the
book's title in the subject of your message.
If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at h t t p ://w w w . p

a c k t p u b . c o m . If you purchased this book elsewhere, you can visit h t t p ://w w w . p a c k t p u b . c

o m /s u p p o r t and register to have the files e-mailed directly to you.

http://www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support

Preface

[5]

You can download the code files by following these steps:

Log in or register to our website using your e-mail address and password.1.
Hover the mouse pointer on the SUPPORT tab at the top.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box.4.
Select the book for which you're looking to download the code files.5.
Choose from the drop-down menu where you purchased this book from.6.
Click on Code Download.7.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at h t t p s ://g i t h u b . c o m /P a c k t P u b l

i s h i n g /M a s t e r i n g - O p e n C V 3- S e c o n d - E d i t i o n . We also have other code bundles from our
rich catalog of books and videos available at h t t p s ://g i t h u b . c o m /P a c k t P u b l i s h i n g /.
Check them out!

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output.
You can download this file from h t t p s ://w w w . p a c k t p u b . c o m /s i t e s /d e f a u l t /f i l e s /d o w n

l o a d s /M a s t e r i n g O p e n C V 3S e c o n d E d i t i o n _ C o l o r I m a g e s . p d f .

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting h t t p ://w w w . p a c k t p u b . c o m /s u b m i t - e r r a t a , selecting
your book, clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section of
that title.

https://github.com/PacktPublishing/Mastering-OpenCV3-Second-Edition
https://github.com/PacktPublishing/Mastering-OpenCV3-Second-Edition
https://github.com/PacktPublishing/Mastering-OpenCV3-Second-Edition
https://github.com/PacktPublishing/Mastering-OpenCV3-Second-Edition
https://github.com/PacktPublishing/Mastering-OpenCV3-Second-Edition
https://github.com/PacktPublishing/Mastering-OpenCV3-Second-Edition
https://github.com/PacktPublishing/Mastering-OpenCV3-Second-Edition
https://github.com/PacktPublishing/Mastering-OpenCV3-Second-Edition
https://github.com/PacktPublishing/Mastering-OpenCV3-Second-Edition
https://github.com/PacktPublishing/Mastering-OpenCV3-Second-Edition
https://github.com/PacktPublishing/Mastering-OpenCV3-Second-Edition
https://github.com/PacktPublishing/Mastering-OpenCV3-Second-Edition
https://github.com/PacktPublishing/Mastering-OpenCV3-Second-Edition
https://github.com/PacktPublishing/Mastering-OpenCV3-Second-Edition
https://github.com/PacktPublishing/Mastering-OpenCV3-Second-Edition
https://github.com/PacktPublishing/Mastering-OpenCV3-Second-Edition
https://github.com/PacktPublishing/Mastering-OpenCV3-Second-Edition
https://github.com/PacktPublishing/Mastering-OpenCV3-Second-Edition
https://github.com/PacktPublishing/Mastering-OpenCV3-Second-Edition
https://github.com/PacktPublishing/Mastering-OpenCV3-Second-Edition
https://github.com/PacktPublishing/Mastering-OpenCV3-Second-Edition
https://github.com/PacktPublishing/Mastering-OpenCV3-Second-Edition
https://github.com/PacktPublishing/Mastering-OpenCV3-Second-Edition
https://github.com/PacktPublishing/Mastering-OpenCV3-Second-Edition
https://github.com/PacktPublishing/Mastering-OpenCV3-Second-Edition
https://github.com/PacktPublishing/Mastering-OpenCV3-Second-Edition
https://github.com/PacktPublishing/Mastering-OpenCV3-Second-Edition
https://github.com/PacktPublishing/Mastering-OpenCV3-Second-Edition
https://github.com/PacktPublishing/Mastering-OpenCV3-Second-Edition
https://github.com/PacktPublishing/Mastering-OpenCV3-Second-Edition
https://github.com/PacktPublishing/Mastering-OpenCV3-Second-Edition
https://github.com/PacktPublishing/Mastering-OpenCV3-Second-Edition
https://github.com/PacktPublishing/Mastering-OpenCV3-Second-Edition
https://github.com/PacktPublishing/Mastering-OpenCV3-Second-Edition
https://github.com/PacktPublishing/Mastering-OpenCV3-Second-Edition
https://github.com/PacktPublishing/Mastering-OpenCV3-Second-Edition
https://github.com/PacktPublishing/Mastering-OpenCV3-Second-Edition
https://github.com/PacktPublishing/Mastering-OpenCV3-Second-Edition
https://github.com/PacktPublishing/Mastering-OpenCV3-Second-Edition
https://github.com/PacktPublishing/Mastering-OpenCV3-Second-Edition
https://github.com/PacktPublishing/Mastering-OpenCV3-Second-Edition
https://github.com/PacktPublishing/Mastering-OpenCV3-Second-Edition
https://github.com/PacktPublishing/Mastering-OpenCV3-Second-Edition
https://github.com/PacktPublishing/Mastering-OpenCV3-Second-Edition
https://github.com/PacktPublishing/Mastering-OpenCV3-Second-Edition
https://github.com/PacktPublishing/Mastering-OpenCV3-Second-Edition
https://github.com/PacktPublishing/Mastering-OpenCV3-Second-Edition
https://github.com/PacktPublishing/Mastering-OpenCV3-Second-Edition
https://github.com/PacktPublishing/Mastering-OpenCV3-Second-Edition
https://github.com/PacktPublishing/Mastering-OpenCV3-Second-Edition
https://github.com/PacktPublishing/Mastering-OpenCV3-Second-Edition
https://github.com/PacktPublishing/Mastering-OpenCV3-Second-Edition
https://github.com/PacktPublishing/Mastering-OpenCV3-Second-Edition
https://github.com/PacktPublishing/Mastering-OpenCV3-Second-Edition
https://github.com/PacktPublishing/Mastering-OpenCV3-Second-Edition
https://github.com/PacktPublishing/Mastering-OpenCV3-Second-Edition
https://github.com/PacktPublishing/Mastering-OpenCV3-Second-Edition
https://github.com/PacktPublishing/Mastering-OpenCV3-Second-Edition
https://github.com/PacktPublishing/Mastering-OpenCV3-Second-Edition
https://github.com/PacktPublishing/Mastering-OpenCV3-Second-Edition
https://github.com/PacktPublishing/Mastering-OpenCV3-Second-Edition
https://github.com/PacktPublishing/Mastering-OpenCV3-Second-Edition
https://github.com/PacktPublishing/Mastering-OpenCV3-Second-Edition
https://github.com/PacktPublishing/Mastering-OpenCV3-Second-Edition
https://github.com/PacktPublishing/Mastering-OpenCV3-Second-Edition
https://github.com/PacktPublishing/Mastering-OpenCV3-Second-Edition
https://github.com/PacktPublishing/Mastering-OpenCV3-Second-Edition
https://github.com/PacktPublishing/Mastering-OpenCV3-Second-Edition
https://github.com/PacktPublishing/Mastering-OpenCV3-Second-Edition
https://github.com/PacktPublishing/Mastering-OpenCV3-Second-Edition
https://github.com/PacktPublishing/Mastering-OpenCV3-Second-Edition
https://github.com/PacktPublishing/Mastering-OpenCV3-Second-Edition
https://github.com/PacktPublishing/Mastering-OpenCV3-Second-Edition
https://github.com/PacktPublishing/Mastering-OpenCV3-Second-Edition
https://github.com/PacktPublishing/Mastering-OpenCV3-Second-Edition
https://github.com/PacktPublishing/Mastering-OpenCV3-Second-Edition
https://github.com/PacktPublishing/Mastering-OpenCV3-Second-Edition
https://github.com/PacktPublishing/Mastering-OpenCV3-Second-Edition
https://github.com/PacktPublishing/Mastering-OpenCV3-Second-Edition
https://github.com/PacktPublishing/Mastering-OpenCV3-Second-Edition
https://github.com/PacktPublishing/Mastering-OpenCV3-Second-Edition
https://github.com/PacktPublishing/Mastering-OpenCV3-Second-Edition
https://github.com/PacktPublishing/Mastering-OpenCV3-Second-Edition
https://github.com/PacktPublishing/Mastering-OpenCV3-Second-Edition
https://github.com/PacktPublishing/Mastering-OpenCV3-Second-Edition
https://github.com/PacktPublishing/Mastering-OpenCV3-Second-Edition
https://github.com/PacktPublishing/Mastering-OpenCV3-Second-Edition
https://github.com/PacktPublishing/Mastering-OpenCV3-Second-Edition
https://github.com/PacktPublishing/Mastering-OpenCV3-Second-Edition
https://github.com/PacktPublishing/Mastering-OpenCV3-Second-Edition
https://github.com/PacktPublishing/Mastering-OpenCV3-Second-Edition
https://github.com/PacktPublishing/Mastering-OpenCV3-Second-Edition
https://github.com/PacktPublishing/Mastering-OpenCV3-Second-Edition
https://github.com/PacktPublishing/Mastering-OpenCV3-Second-Edition
https://github.com/PacktPublishing/Mastering-OpenCV3-Second-Edition
https://github.com/PacktPublishing/Mastering-OpenCV3-Second-Edition
https://github.com/PacktPublishing/Mastering-OpenCV3-Second-Edition
https://github.com/PacktPublishing/Mastering-OpenCV3-Second-Edition
https://github.com/PacktPublishing/Mastering-OpenCV3-Second-Edition
https://github.com/PacktPublishing/Mastering-OpenCV3-Second-Edition
https://github.com/PacktPublishing/Mastering-OpenCV3-Second-Edition
https://github.com/PacktPublishing/Mastering-OpenCV3-Second-Edition
https://github.com/PacktPublishing/Mastering-OpenCV3-Second-Edition
https://github.com/PacktPublishing/Mastering-OpenCV3-Second-Edition
https://github.com/PacktPublishing/Mastering-OpenCV3-Second-Edition
https://github.com/PacktPublishing/Mastering-OpenCV3-Second-Edition
https://github.com/PacktPublishing/Mastering-OpenCV3-Second-Edition
https://github.com/PacktPublishing/Mastering-OpenCV3-Second-Edition
https://github.com/PacktPublishing/Mastering-OpenCV3-Second-Edition
https://github.com/PacktPublishing/Mastering-OpenCV3-Second-Edition
https://github.com/PacktPublishing/Mastering-OpenCV3-Second-Edition
https://github.com/PacktPublishing/Mastering-OpenCV3-Second-Edition
https://github.com/PacktPublishing/Mastering-OpenCV3-Second-Edition
https://github.com/PacktPublishing/Mastering-OpenCV3-Second-Edition
https://github.com/PacktPublishing/Mastering-OpenCV3-Second-Edition
https://github.com/PacktPublishing/Mastering-OpenCV3-Second-Edition
https://github.com/PacktPublishing/Mastering-OpenCV3-Second-Edition
https://github.com/PacktPublishing/Mastering-OpenCV3-Second-Edition
https://github.com/PacktPublishing/Mastering-OpenCV3-Second-Edition
https://github.com/PacktPublishing/Mastering-OpenCV3-Second-Edition
https://github.com/PacktPublishing/Mastering-OpenCV3-Second-Edition
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringOpenCV3SecondEdition_ColorImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata

Preface

[6]

To view the previously submitted errata, go to h t t p s ://w w w . p a c k t p u b . c o m /b o o k s /c o n t e n

t /s u p p o r t and enter the name of the book in the search field. The required information will
appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions
If you have a problem with any aspect of this book, you can contact us
at questions@packtpub.com, and we will do our best to address the problem.

https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

1
Cartoonifier and Skin Changer

for Raspberry Pi
This chapter will show how to write some image processing filters for desktop and for small
embedded systems such as Raspberry Pi. First, we develop it for the desktop (in C/C++) and
then port the project to Raspberry Pi, since this is the recommended scenario when
developing for embedded devices. This chapter will cover the following topics:

How to convert a real-life image to a sketch drawing
How to convert to a painting and overlay the sketch to produce a cartoon
A scary evil mode to create bad characters instead of good characters
A basic skin detector and skin color changer, to give someone green alien skin
Finally, how to create an embedded system based on our desktop application

Cartoonifier and Skin Changer for Raspberry Pi

[8]

Note that an embedded system is basically a computer motherboard placed inside a
product or device, designed to perform specific tasks, and Raspberry Pi is a very low-cost
and popular motherboard for building an embedded system:

The preceding picture shows what you could make after this chapter: a battery-powered
Raspberry Pi + screen you could wear to Comic Con, turning everyone into a cartoon!

We want to make the real-world camera frames automatically look like they are from a
cartoon. The basic idea is to fill the flat parts with some color and then draw thick lines on
the strong edges. In other words, the flat areas should become much more flat and the
edges should become much more distinct. We will detect edges, smooth the flat areas, and
draw enhanced edges back on top, to produce a cartoon or comic-book effect.

Cartoonifier and Skin Changer for Raspberry Pi

[9]

When developing an embedded computer vision system, it is a good idea to build a fully
working desktop version first before porting it to an embedded system, since it is much
easier to develop and debug a desktop program than an embedded system! So this chapter
will begin with a complete Cartoonifier desktop program that you can create using your
favorite IDE (for example, Visual Studio, XCode, Eclipse, QtCreator). After it is working
properly on your desktop, the last section shows how to create an embedded system based
on the desktop version. Many embedded projects require some custom code for the
embedded system, such as to use different inputs and outputs or use some platform-specific
code optimizations. However, for this chapter, we will actually be running identical code on
the embedded system and the desktop, so we only need to create one project.

The application uses an OpenCV GUI window, initializes the camera, and with each
camera frame it calls the function cartoonifyImage(), containing most of the code in this
chapter. It then displays the processed image on the GUI window. This chapter will explain
how to create the desktop application from scratch using a USB webcam, and the embedded
system-based on the desktop application using a Raspberry Pi Camera Module. So first you
would create a desktop project in your favorite IDE, with a main.cpp file to hold the GUI
code given in the following sections such as the main loop, webcam functionality, and
keyboard input, and you would create a cartoon.cpp file with the image processing
operations with most of this chapter's code in a function called cartoonifyImage().

The full source code of this book is available at
http://github.com/MasteringOpenCV/code.

Accessing the webcam
To access a computer's webcam or camera device, you can simply call the open() function
on a cv::VideoCapture object (OpenCV's method of accessing your camera device), and
pass 0 as the default camera ID number. Some computers have multiple cameras attached,
or they do not work as default camera 0, so it is common practice to allow the user to pass
the desired camera number as a command-line argument, in case they want to try camera 1,
2, or -1, for example. We will also try to set the camera resolution to 640x480 using
cv::VideoCapture::set() to run faster on high-resolution cameras.

http://github.com/MasteringOpenCV/code

Cartoonifier and Skin Changer for Raspberry Pi

[10]

Depending on your camera model, driver, or system, OpenCV might not
change the properties of your camera. It is not important for this project,
so don't worry if it does not work with your webcam.

You can put this code in the main() function of your main.cpp file:

 int cameraNumber = 0;
 if (argc> 1)
 cameraNumber = atoi(argv[1]);

 // Get access to the camera.
 cv::VideoCapture camera;
 camera.open(cameraNumber);
 if (!camera.isOpened()) {
 std::cerr<<"ERROR: Could not access the camera or video!"<<
 std::endl;
 exit(1);
 }

 // Try to set the camera resolution.
 camera.set(cv::CV_CAP_PROP_FRAME_WIDTH, 640);
 camera.set(cv::CV_CAP_PROP_FRAME_HEIGHT, 480);

After the webcam has been initialized, you can grab the current camera image as a cv::Mat
object (OpenCV's image container). You can grab each camera frame by using the C++
streaming operator from your cv::VideoCapture object into a cv::Mat object, just like if
you were getting input from a console.

OpenCV makes it very easy to capture frames from a video file (such as an
AVI or MP4 file) or network stream instead of a webcam. Instead of
passing an integer such as camera.open(0), pass a string such as
camera.open("my_video.avi") and then grab frames just like it was a
webcam. The source code provided with this book has an initCamera()
function that opens a webcam, video file, or network stream.

Cartoonifier and Skin Changer for Raspberry Pi

[11]

Main camera processing loop for a desktop
app
If you want to display a GUI window on the screen using OpenCV, you call the
cv::namedWindow() function and then cv::imshow()function for each image, but you
must also call cv::waitKey() once per frame, otherwise your windows will not update at
all! Calling cv::waitKey(0) waits forever until the user hits a key in the window, but a
positive number such as waitKey(20) or higher will wait for at least that many
milliseconds.

Put this main loop in the main.cpp file, as the base of your real-time camera app:

 while (true) {
 // Grab the next camera frame.
 cv::Mat cameraFrame;
 camera>>cameraFrame;
 if (cameraFrame.empty()) {
 std::cerr<<"ERROR: Couldn't grab a camera frame."<<
 std::endl;
 exit(1);
 }
 // Create a blank output image, that we will draw onto.
 cv::Mat displayedFrame(cameraFrame.size(), cv::CV_8UC3);

 // Run the cartoonifier filter on the camera frame.
 cartoonifyImage(cameraFrame, displayedFrame);

 // Display the processed image onto the screen.
 imshow("Cartoonifier", displayedFrame);

 // IMPORTANT: Wait for atleast 20 milliseconds,
 // so that the image can be displayed on the screen!
 // Also checks if a key was pressed in the GUI window.
 // Note that it should be a "char" to support Linux.
 char keypress = cv::waitKey(20); // Needed to see anything!
 if (keypress == 27) { // Escape Key
 // Quit the program!
 break;
 }
 }//end while

Cartoonifier and Skin Changer for Raspberry Pi

[12]

Generating a black and white sketch
To obtain a sketch (black and white drawing) of the camera frame, we will use an edge
detection filter, whereas to obtain a color painting, we will use an edge preserving filter
(Bilateral filter) to further smoothen the flat regions while keeping edges intact. By
overlaying the sketch drawing on top of the color painting, we obtain a cartoon effect, as
shown earlier in the screenshot of the final app.

There are many different edge detection filters, such as Sobel, Scharr, Laplacian filters, or a
Canny edge detector. We will use a Laplacian edge filter since it produces edges that look
most similar to hand sketches compared to Sobel or Scharr, and are quite consistent
compared to a Canny edge detector, which produces very clean line drawings but is
affected more by random noise in the camera frames and therefore the line drawings would
often change drastically between frames.

Nevertheless, we still need to reduce the noise in the image before we use a Laplacian edge
filter. We will use a Median filter because it is good at removing noise while keeping edges
sharp, but is not as slow as a Bilateral filter. Since Laplacian filters use grayscale images, we
must convert from OpenCV's default BGR format to grayscale. In your empty
cartoon.cpp file, put this code on the top so you can access OpenCV and STD C++
templates without typing cv:: and std:: everywhere:

 // Include OpenCV's C++ Interface
 #include "opencv2/opencv.hpp"

 using namespace cv;
 using namespace std;

Put this and all remaining code in a cartoonifyImage() function in your cartoon.cpp
file:

 Mat gray;
 cvtColor(srcColor, gray, CV_BGR2GRAY);
 const int MEDIAN_BLUR_FILTER_SIZE = 7;
 medianBlur(gray, gray, MEDIAN_BLUR_FILTER_SIZE);
 Mat edges;
 const int LAPLACIAN_FILTER_SIZE = 5;
 Laplacian(gray, edges, CV_8U, LAPLACIAN_FILTER_SIZE);

Cartoonifier and Skin Changer for Raspberry Pi

[13]

The Laplacian filter produces edges with varying brightness, so to make the edges look
more like a sketch, we apply a binary threshold to make the edges either white or black:

 Mat mask;
 const int EDGES_THRESHOLD = 80;
 threshold(edges, mask, EDGES_THRESHOLD, 255, THRESH_BINARY_INV);

In the following figure, you see the original image (to the left) and the generated edge mask
(to the right) that looks similar to a sketch drawing. After we generate a color painting
(explained later), we also put this edge mask on top to have black line drawings:

Generating a color painting and a cartoon
A strong Bilateral filter smoothens flat regions while keeping edges sharp; and therefore, is
great as an automatic cartoonifier or painting filter, except that it is extremely slow (that is,
measured in seconds or even minutes, rather than milliseconds!). Therefore, we will use
some tricks to obtain a nice cartoonifier, while still running in acceptable speed. The most
important trick we can use is that we can perform Bilateral filtering at a lower resolution
and it will still have a similar effect as a full resolution, but run much faster. Lets reduce the
total number of pixels by four (for example, half width and half height):

 Size size = srcColor.size();
 Size smallSize;
 smallSize.width = size.width/2;
 smallSize.height = size.height/2;
 Mat smallImg = Mat(smallSize, CV_8UC3);
 resize(srcColor, smallImg, smallSize, 0,0, INTER_LINEAR);

Cartoonifier and Skin Changer for Raspberry Pi

[14]

Rather than applying a large Bilateral filter, we will apply many small Bilateral filters, to
produce a strong cartoon effect in less time. We will truncate the filter (see the following
figure) so that instead of performing a whole filter (for example, a filter size of 21x21, when
the bell curve is 21 pixels wide), it just uses the minimum filter size needed for a convincing
result (for example, with a filter size of just 9x9 even if the bell curve is 21 pixels wide). This
truncated filter will apply the major part of the filter (gray area) without wasting time on
the minor part of the filter (white area under the curve), so it will run several times faster:

Therefore, we have four parameters that control the Bilateral filter: color strength, positional
strength, size, and repetition count. We need a temp Mat since the
bilateralFilter()function can't overwrite its input (referred to as in-place processing),
but we can apply one filter storing a temp Mat and another filter storing back the input:

 Mat tmp = Mat(smallSize, CV_8UC3);
 int repetitions = 7; // Repetitions for strong cartoon effect.
 for (int i=0; i<repetitions; i++) {
 int ksize = 9; // Filter size. Has large effect on speed.
 double sigmaColor = 9; // Filter color strength.
 double sigmaSpace = 7; // Spatial strength. Affects speed.
 bilateralFilter(smallImg, tmp, ksize, sigmaColor, sigmaSpace);
 bilateralFilter(tmp, smallImg, ksize, sigmaColor, sigmaSpace);
 }

Remember that this was applied to the shrunken image, so we need to expand the image
back to the original size. Then we can overlay the edge mask that we found earlier. To
overlay the edge mask sketch onto the Bilateral filter painting (left side of the following
figure), we can start with a black background and copy the painting pixels that aren't edges
in the sketch mask:

 Mat bigImg;
 resize(smallImg, bigImg, size, 0,0, INTER_LINEAR);
 dst.setTo(0);
 bigImg.copyTo(dst, mask);

Cartoonifier and Skin Changer for Raspberry Pi

[15]

The result is a cartoon version of the original photo, as shown on the right side of the
following figure, where the sketch mask is overlaid on the painting:

Generating an evil mode using edge filters
Cartoons and comics always have both good and bad characters. With the right
combination of edge filters, a scary image can be generated from the most innocent looking
people! The trick is to use a small-edge filter that will find many edges all over the image,
then merge the edges using a small Median filter.

We will perform this on a grayscale image with some noise reduction, so the preceding code
for converting the original image to grayscale and applying a 7x7 Median filter should still
be used (the first image in the following figure shows the output of the grayscale Median
blur). Instead of following it with a Laplacian filter and Binary threshold, we can get a more
scary look if we apply a 3x3 Scharr gradient filter along x and y (second image in the figure),
then a binary threshold with a very low cutoff (third image in the figure),and a 3x3 Median
blur, producing the final evil mask (fourth image in the figure):

 Mat gray;
 cvtColor(srcColor, gray, CV_BGR2GRAY);
 const int MEDIAN_BLUR_FILTER_SIZE = 7;
 medianBlur(gray, gray, MEDIAN_BLUR_FILTER_SIZE);
 Mat edges, edges2;
 Scharr(srcGray, edges, CV_8U, 1, 0);
 Scharr(srcGray, edges2, CV_8U, 1, 0, -1);
 edges += edges2;

Cartoonifier and Skin Changer for Raspberry Pi

[16]

 // Combine the x & y edges together.
 const int EVIL_EDGE_THRESHOLD = 12
 threshold(edges, mask, EVIL_EDGE_THRESHOLD, 255,
 THRESH_BINARY_INV);
 medianBlur(mask, mask, 3)

Now that we have an evil mask, we can overlay this mask onto the cartoonified painting
image like we did with the regular sketch edge mask. The final result is shown on the right
side of the following figure:

Generating an alien mode using skin detection
Now that we have a sketch mode, a cartoon mode (painting + sketch mask), and an evil mode
(painting + evil mask), for fun, let's try something more complex: an alien mode, by detecting
the skin regions of the face and then changing the skin color to green.

Cartoonifier and Skin Changer for Raspberry Pi

[17]

Skin detection algorithm
There are many different techniques used for detecting skin regions, from simple color
thresholds using RGB (Red-Green-Blue), HSV (Hue-Saturation-Brightness) values, or
color histogram calculation and re-projection, to complex machine-learning algorithms of
mixture models that need camera calibration in the CIELab color-space and offline training
with many sample faces, and so on. But even the complex methods don't necessarily work
robustly across various camera and lighting conditions and skin types. Since we want our
skin detection to run on an embedded device, without any calibration or training, and we
are just using skin detection for a fun image filter, it is sufficient for us to use a simple skin
detection method. However, the color responses from the tiny camera sensor in the
Raspberry Pi Camera Module tend to vary significantly, and we want to support skin
detection for people of any skin color but without any calibration, so we need something
more robust than simple color thresholds.

For example, a simple HSV skin detector can treat any pixel as skin if its hue color is fairly
red, and saturation is fairly high but not extremely high, and its brightness is not too dark
or extremely bright. But cameras in mobile phones or Raspberry Pi Camera Modules often
have bad white balancing, therefore a person's skin might look slightly blue instead of red,
and so on, and this would be a major problem for simple HSV thresholding.

A more robust solution is to perform face detection with a Haar or LBP cascade classifier
(shown in Chapter 6, Face Recognition using Eigenfaces or Fisherfaces), then look at the range
of colors for the pixels in the middle of the detected face, since you know that those pixels
should be skin pixels of the actual person. You could then scan the whole image or nearby
region for pixels of a similar color as the center of the face. This has the advantage that it is
very likely to find at least some of the true skin region of any detected person, no matter
what their skin color is or even if their skin appears somewhat blueish or redish in the
camera image.

Unfortunately, face detection using cascade classifiers is quite slow on current embedded
devices, so that method might be less ideal for some real-time embedded applications. On
the other hand, we can take advantage of the fact that for mobile apps and some embedded
systems, it can be expected that the user will be facing the camera directly from a very close
distance, so it can be reasonable to ask the user to place their face at a specific location and
distance, rather than try to detect the location and size of their face. This is the basis of many
mobile phone apps, where the app asks the user to place their face at a certain position or
perhaps to manually drag points on the screen to show where the corners of their face are in
a photo. So let's simply draw the outline of a face in the center of the screen, and ask the
user to move their face to the shown position and size.

Cartoonifier and Skin Changer for Raspberry Pi

[18]

Showing the user where to put their face
When the alien mode is first started, we will draw the face outline on top of the camera
frame so the user knows where to put their face. We will draw a big ellipse covering 70% of
the image height, with a fixed aspect ratio of 0.72, so that the face will not become too
skinny or fat depending on the aspect ratio of the camera:

 // Draw the color face onto a black background.
 Mat faceOutline = Mat::zeros(size, CV_8UC3);
 Scalar color = CV_RGB(255,255,0); // Yellow.
 int thickness = 4;

 // Use 70% of the screen height as the face height.
 int sw = size.width;
 int sh = size.height;
 int faceH = sh/2 * 70/100; // "faceH" is radius of the ellipse.

 // Scale the width to be the same nice shape for any screen width.
 int faceW = faceH * 72/100;
 // Draw the face outline.
 ellipse(faceOutline, Point(sw/2, sh/2), Size(faceW, faceH),
 0, 0, 360, color, thickness, CV_AA);

To make it more obvious that it is a face, let's also draw two eye outlines. Rather than
drawing an eye as an ellipse, we can give it a bit more realism (see the following figure) by
drawing a truncated ellipse for the top of the eye and a truncated ellipse for the bottom of
the eye, because we can specify the start and end angles when drawing with the ellipse()
function:

 // Draw the eye outlines, as 2 arcs per eye.
 int eyeW = faceW * 23/100;
 int eyeH = faceH * 11/100;
 int eyeX = faceW * 48/100;
 int eyeY = faceH * 13/100;
 Size eyeSize = Size(eyeW, eyeH);

 // Set the angle and shift for the eye half ellipses.
 int eyeA = 15; // angle in degrees.
 int eyeYshift = 11;

 // Draw the top of the right eye.
 ellipse(faceOutline, Point(sw/2 - eyeX, sh/2 -eyeY),
 eyeSize, 0, 180+eyeA, 360-eyeA, color, thickness, CV_AA);

 // Draw the bottom of the right eye.
 ellipse(faceOutline, Point(sw/2 - eyeX, sh/2 - eyeY-eyeYshift),
 eyeSize, 0, 0+eyeA, 180-eyeA, color, thickness, CV_AA);

Cartoonifier and Skin Changer for Raspberry Pi

[19]

 // Draw the top of the left eye.
 ellipse(faceOutline, Point(sw/2 + eyeX, sh/2 - eyeY),
 eyeSize, 0, 180+eyeA, 360-eyeA, color, thickness, CV_AA);

 // Draw the bottom of the left eye.
 ellipse(faceOutline, Point(sw/2 + eyeX, sh/2 - eyeY-eyeYshift),
 eyeSize, 0, 0+eyeA, 180-eyeA, color, thickness, CV_AA);

We can do the same to draw the bottom lip of the mouth:

 // Draw the bottom lip of the mouth.
 int mouthY = faceH * 48/100;
 int mouthW = faceW * 45/100;
 int mouthH = faceH * 6/100;
 ellipse(faceOutline, Point(sw/2, sh/2 + mouthY), Size(mouthW,
 mouthH), 0, 0, 180, color, thickness, CV_AA);

To make it even more obvious that the user should put their face where shown, let's write a
message on the screen!

 // Draw anti-aliased text.
 int fontFace = FONT_HERSHEY_COMPLEX;
 float fontScale = 1.0f;
 int fontThickness = 2;
 char *szMsg = "Put your face here";
 putText(faceOutline, szMsg, Point(sw * 23/100, sh * 10/100),
 fontFace, fontScale, color, fontThickness, CV_AA);

Now that we have the face outline drawn, we can overlay it onto the displayed image by
using alpha blending, to combine the cartoonified image with this drawn outline:

 addWeighted(dst, 1.0, faceOutline, 0.7, 0, dst, CV_8UC3);

This results in the outline in the following figure, showing the user where to put their face,
so we don't have to detect the face location:

Cartoonifier and Skin Changer for Raspberry Pi

[20]

Implementation of the skin color changer
Rather than detecting the skin color and then the region with that skin color, we can use
OpenCV's floodFill() function, which is similar to the bucket fill tool in many image
editing software. We know that the regions in the middle of the screen should be skin pixels
(since we asked the user to put their face in the middle), so to change the whole face to have
green skin, we can just apply a green flood fill on the center pixel, which will always color
some parts of the face green. In reality, the color, saturation, and brightness is likely to be
different in different parts of the face, so a floodfill will rarely cover all the skin pixels of a
face unless the threshold is so low that it also covers unwanted pixels outside of the face. So
instead of applying a single flood fill in the center of the image, let's apply a flood fill on six
different points around the face that should be skin pixels.

A nice feature of OpenCV's floodFill() is that it can draw the floodfill into an external
image rather than modify the input image. So this feature can give us a mask image for
adjusting the color of the skin pixels without necessarily changing the brightness or
saturation, producing a more realistic image than if all the skin pixels became an identical
green pixel(losing significant face detail).

Skin color changing does not work so well in the RGB color-space, because you want to
allow brightness to vary in the face but not allow skin color to vary much, and RGB does
not separate brightness from color. One solution is to use the HSV color-space, since it
separates brightness from the color (Hue) as well as the corlorful-ness (Saturation).
Unfortunately, HSV wraps the Hue value around red, and since skin is mostly red, it means
that you need to work both with Hue < 10% and Hue > 90%, since these are both red. So,
instead we will use the Y'CrCb color-space (the variant of YUV that is in OpenCV), since it
separates brightness from color, and only has a single range of values for typical skin color
rather than two. Note that most cameras, images, and videos actually use some type of YUV
as their color-space before conversion to RGB, so in many cases you can get a YUV image
free without converting it yourself.

Cartoonifier and Skin Changer for Raspberry Pi

[21]

Since we want our alien mode to look like a cartoon, we will apply the alien filter after the
image has already been cartoonified. In other words, we have access to the shrunken color
image produced by the Bilateral filter, and access to the full-sized edge mask. Skin detection
often works better at low resolutions, since it is the equivalent of analyzing the average
value of each high-resolution pixel's neighbors (or the low-frequency signal instead of the
high-frequency noisy signal). So let's work at the same shrunk scale as the Bilateral filter
(half-width and half-height). Let's convert the painting image to YUV:

 Mat yuv = Mat(smallSize, CV_8UC3);
 cvtColor(smallImg, yuv, CV_BGR2YCrCb);

We also need to shrink the edge mask so it is at the same scale as the painting image. There
is a complication with OpenCV's floodFill() function, when storing to a separate mask
image, in that the mask should have a 1 pixel border around the whole image, so if the
input image is WxH pixels in size then the separate mask image should be (W+2) x (H+2)
pixels in size. But the floodFill() function also allows us to initialize the mask with
edges, that the flood fill algorithm will ensure it does not cross. Let's use this feature, in the
hope that it helps prevent the flood fill from extending outside of the face. So we need to
provide two mask images: one is the edge mask of WxH in size, and the other image is the
exact same edge mask but (W+2)x(H+2) in size because it should include a border around
the image. It is possible to have multiple cv::Mat objects (or headers) referencing the same
data, or even to have a cv::Mat object that references a sub-region of another cv::Mat
image. So, instead of allocating two separate images and copying the edge mask pixels
across, let's allocate a single mask image including the border, and create an extra cv::Mat
header of WxH (that just references the region-of-interest in the flood fill mask without the
border). In other words, there is just one array of pixels of size (W+2)x(H+2) but two
cv::Mat objects, where one is referencing the whole (W+2)x(H+2) image and the other is
referencing the WxH region in the middle of that image:

 int sw = smallSize.width;
 int sh = smallSize.height;
 Mat mask, maskPlusBorder;
 maskPlusBorder = Mat::zeros(sh+2, sw+2, CV_8UC1);
 mask = maskPlusBorder(Rect(1,1,sw,sh));
 // mask is now in maskPlusBorder.
 resize(edges, mask, smallSize); // Put edges in both of them.

Cartoonifier and Skin Changer for Raspberry Pi

[22]

The edge mask (shown on the left of the following figure) is full of both strong and weak
edges, but we only want strong edges, so we will apply a binary threshold (resulting in the
middle image in the following figure). To join some gaps between edges, we will then
combine the morphological operators dilate() and erode() to remove some gaps (also
referred to as the close operator), resulting in the right of the figure:

 const int EDGES_THRESHOLD = 80;
 threshold(mask, mask, EDGES_THRESHOLD, 255, THRESH_BINARY);
 dilate(mask, mask, Mat());
 erode(mask, mask, Mat());

As mentioned earlier, we want to apply flood fills in numerous points around the face, to
make sure we include the various colors and shades of the whole face. Let's choose six
points around the nose, cheeks, and forehead, as shown on the left-hand side of the
following figure. Note that these values are dependent on the face outline drawn earlier:

 int const NUM_SKIN_POINTS = 6;
 Point skinPts[NUM_SKIN_POINTS];
 skinPts[0] = Point(sw/2, sh/2 - sh/6);
 skinPts[1] = Point(sw/2 - sw/11, sh/2 - sh/6);
 skinPts[2] = Point(sw/2 + sw/11, sh/2 - sh/6);
 skinPts[3] = Point(sw/2, sh/2 + sh/16);
 skinPts[4] = Point(sw/2 - sw/9, sh/2 + sh/16);
 skinPts[5] = Point(sw/2 + sw/9, sh/2 + sh/16);

Cartoonifier and Skin Changer for Raspberry Pi

[23]

Now we just need to find some good lower and upper bounds for the flood fill. Remember
that this is being performed in Y'CrCb color-space, so we basically decide how much the
brightness can vary, how much the red component can vary, and how much the blue
component can vary. We want to allow the brightness to vary a lot, to include shadows as
well as highlights and reflections, but we don't want the colors to vary much at all:

 const int LOWER_Y = 60;
 const int UPPER_Y = 80;
 const int LOWER_Cr = 25;
 const int UPPER_Cr = 15;
 const int LOWER_Cb = 20;
 const int UPPER_Cb = 15;
 Scalar lowerDiff = Scalar(LOWER_Y, LOWER_Cr, LOWER_Cb);
 Scalar upperDiff = Scalar(UPPER_Y, UPPER_Cr, UPPER_Cb);

We will use the floodFill() function with its default flags, except that we want to store to
an external mask, so we must specify FLOODFILL_MASK_ONLY:

 const int CONNECTED_COMPONENTS = 4; // To fill diagonally, use 8.
 const int flags = CONNECTED_COMPONENTS | FLOODFILL_FIXED_RANGE
 | FLOODFILL_MASK_ONLY;
 Mat edgeMask = mask.clone(); // Keep a copy of the edge mask.
 // "maskPlusBorder" is initialized with edges to block floodFill().
 for (int i = 0; i < NUM_SKIN_POINTS; i++) {
 floodFill(yuv, maskPlusBorder, skinPts[i], Scalar(), NULL,
 lowerDiff, upperDiff, flags);
 }

The following figure on the left-side shows the six flood fill locations (shown as circles), and
the right-side of the figure shows the external mask that is generated, where skin is shown
as gray and edges are shown as white. Note that the right-side image was modified for this
book so that skin pixels (of value 1) are clearly visible:

Cartoonifier and Skin Changer for Raspberry Pi

[24]

The mask image (shown on the right side of the previous figure) now contains the
following:

Pixels of value 255 for the edge pixels
Pixels of value 1 for the skin regions
Pixels of value 0 for the rest

Meanwhile, edgeMask just contains edge pixels (as value 255). So to get just the skin pixels,
we can remove the edges from it:

 mask -= edgeMask;

The mask variable now just contains 1's for skin pixels and 0's for non-skin pixels. To
change the skin color and brightness of the original image, we can use the
cv::add()function with the skin mask, to increase the green component in the original
BGR image:

 int Red = 0;
 int Green = 70;
 int Blue = 0;
 add(smallImgBGR, CV_RGB(Red, Green, Blue), smallImgBGR, mask);

The following figure shows the original image on the left, and the final alien cartoon image
on the right, where at least six parts of the face will now be green!

Notice that we have made the skin look green but also brighter (to look like an alien that
glows in the dark). If you want to just change the skin color without making it brighter, you
can use other color changing methods, such as adding 70 to green while subtracting 70 from
red and blue, or convert to HSV color space using cvtColor(src, dst,
"CV_BGR2HSV_FULL"), and adjust the hue and saturation.

Cartoonifier and Skin Changer for Raspberry Pi

[25]

Reducing the random pepper noise from the sketch
image
Most of the tiny cameras in smartphones, RPi Camera Modules, and some webcams have
significant image noise. This is normally acceptable, but it has a large effect on our 5x5
Laplacian edge filter. The edge mask (shown as the sketch mode) will often have thousands
of small blobs of black pixels called pepper noise, made of several black pixels next to each
other in a white background. We are already using a Median filter, which is usually strong
enough to remove pepper noise, but in our case it may not be strong enough. Our edge
mask is mostly a pure white background (value of 255) with some black edges (value of 0)
and the dots of noise (also values of 0). We could use a standard closing morphological
operator but it will remove a lot of edges. So instead, we will apply a custom filter that
removes small black regions that are surrounded completely by white pixels. This will
remove a lot of noise while having little effect on actual edges.

We will scan the image for black pixels, and at each black pixel, we'll check the border of the
5x5 square around it to see if all the 5x5 border pixels are white. If they are all white then
we know we have a small island of black noise, so then we fill the whole block with white
pixels to remove the black island. For simplicity in our 5x5 filter, we will ignore the two
border pixels around the image and leave them as they are.

The following figure shows the original image from an Android tablet on the left-side, with
a sketch mode in the center, showing small black dots of pepper noise, and the result of our
pepper-noise removal shown on the right-side, where the skin looks cleaner:

Cartoonifier and Skin Changer for Raspberry Pi

[26]

The following code can be named the removePepperNoise()function to edit the image in-
place for simplicity:

 void removePepperNoise(Mat &mask)
 {
 for (int y=2; y<mask.rows-2; y++) {
 // Get access to each of the 5 rows near this pixel.
 uchar *pUp2 = mask.ptr(y-2);
 uchar *pUp1 = mask.ptr(y-1);
 uchar *pThis = mask.ptr(y);
 uchar *pDown1 = mask.ptr(y+1);
 uchar *pDown2 = mask.ptr(y+2);

 // Skip the first (and last) 2 pixels on each row.
 pThis += 2;
 pUp1 += 2;
 pUp2 += 2;
 pDown1 += 2;
 pDown2 += 2;
 for (int x=2; x<mask.cols-2; x++) {
 uchar value = *pThis; // Get pixel value (0 or 255).
 // Check if it's a black pixel surrounded bywhite
 // pixels (ie: whether it is an "island" of black).
 if (value == 0) {
 bool above, left, below, right, surroundings;
 above = *(pUp2 - 2) && *(pUp2 - 1) && *(pUp2) &&
 *(pUp2 + 1) && *(pUp2 + 2);
 left = *(pUp1 - 2) && *(pThis - 2) && *(pDown1 - 2);
 below = *(pDown2 - 2) && *(pDown2 - 1) && *(pDown2)
 &&*(pDown2 + 1) && *(pDown2 + 2);
 right = *(pUp1 + 2) && *(pThis + 2) && *(pDown1 + 2);
 surroundings = above && left && below && right;
 if (surroundings == true) {
 // Fill the whole 5x5 block as white. Since we
 // knowthe 5x5 borders are already white, we just
 // need tofill the 3x3 inner region.
 *(pUp1 - 1) = 255;
 *(pUp1 + 0) = 255;
 *(pUp1 + 1) = 255;
 *(pThis - 1) = 255;
 *(pThis + 0) = 255;
 *(pThis + 1) = 255;
 *(pDown1 - 1) = 255;
 *(pDown1 + 0) = 255;
 *(pDown1 + 1) = 255;
 // Since we just covered the whole 5x5 block with
 // white, we know the next 2 pixels won't be
 // black,so skip the next 2 pixels on the right.

Cartoonifier and Skin Changer for Raspberry Pi

[27]

 pThis += 2;
 pUp1 += 2;
 pUp2 += 2;
 pDown1 += 2;
 pDown2 += 2;
 }
 }
 // Move to the next pixel on the right.
 pThis++;
 pUp1++;
 pUp2++;
 pDown1++;
 pDown2++;
 }
 }
 }

That's all! Run the app in the different modes until you are ready to port it to embedded!

Porting from desktop to embedded
Now that the program works on desktop, we can make an embedded system from it. The
details given here are specific to Raspberry Pi, but similar steps apply when developing for
other embedded Linux systems such as BeagleBone, ODROID, Olimex, Jetson, and so on.

There are several different options for running our code on an embedded system, each with
some advantages and disadvantages in different scenarios.

There are two common methods for compiling the code for an embedded device:

Copy the source code from the desktop onto the device and compile it directly1.
onboard the device. This is often referred to as native compilation, since we are
compiling our code natively on the same system that it will eventually run on.
Compile all the code on the desktop but using special methods to generate code2.
for the device, and then you copy the final executable program onto the device.
This is often referred to as cross-compilation since you need a special compiler
that knows how to generate code for other types of CPUs.

Cartoonifier and Skin Changer for Raspberry Pi

[28]

Cross-compilation is often significantly harder to configure than native compilation,
especially if you are using many shared libraries, but since your desktop is usually a lot
faster than your embedded device, cross-compilation is often much faster at compiling large
projects. If you expect to be compiling your project hundreds of times so as to work on it for
months, and your device is quite slow compared to your desktop, such as the Raspberry Pi
1 or Raspberry Pi Zero that are very slow compared to a desktop, then cross-compilation is
a good idea. But in most cases, especially for small simple projects, you should just stick
with native compilation since it is easier.

Note that all the libraries used by your project will also need to be compiled for the device,
so you will need to compile OpenCV for your device. Natively compiling OpenCV on a
Raspberry Pi 1 can take hours, whereas, cross-compiling OpenCV on a desktop might take
just 15 minutes. But you usually only need to compile OpenCV once and then you'll have it
for all your projects, so it is still worth sticking with native compilation of your project
(including native compilation of OpenCV) in most cases.

There are also several options for how to run the code on an embedded system:

Use the same input and output methods you used on desktop, such as the same
video files or USB webcam or keyboard as input, and display text or graphics to
an HDMI monitor in the same way you were doing on desktop.
Use special devices for input and output. For example, instead of sitting at a desk
using a USB webcam and keyboard as input and displaying the output to a
desktop monitor, you could use the special Raspberry Pi Camera Module for
video input, use custom GPIO push-buttons or sensors for input, and use a 7-inch
MIPI DSI screen or GPIO LED lights as the output, and then by powering it all
with a common portable USB charger, you can be wearing the whole computer
platform in your backpack or attach it on your bicycle!
Another option is to stream data in or out of the embedded device to other
computers, or even use one device to stream out the camera data and one device
to use that data. For example, you can use the Gstreamer framework to configure
the Raspberry Pi to stream H.264 compressed video from its Camera Module
onto the Ethernet network or through Wi-Fi, so that a powerful PC or server rack
on the local network or Amazon AWS cloud-computing services can process the
video stream somewhere else. This method allows a small and cheap camera
device to be used in a complex project requiring large processing resources
located somewhere else.

Cartoonifier and Skin Changer for Raspberry Pi

[29]

If you do wish to perform computer vision onboard the device, beware that some low-cost
embedded devices such as Raspberry Pi 1, Raspberry Pi Zero, and BeagleBone Black have
significantly slower computing power than desktops or even cheap netbooks or
smartphones, perhaps 10-50 times slower than your desktop, so depending on your
application you might need a powerful embedded device or to stream video to a separate
computer as mentioned previously. If you don't need much computing power (for example,
you only need to process one frame every 2 seconds, or you only need to use 160x120 image
resolution), then a Raspberry Pi Zero running some Computer Vision onboard might be fast
enough for your requirements. But many Computer Vision systems need far more
computing power, and so if you want to perform Computer Vision onboard the device, you
will often want to use a much faster device with a CPU in the range of 2 GHz, such as a
Raspberry Pi 3, ODROID-XU4, or Jetson TK1.

Equipment setup to develop code for an embedded
device
Let's begin by keeping it as simple as possible, by using a USB keyboard and mouse and a
HDMI monitor just like our desktop system, compiling the code natively on the device, and
running our code on the device. Our first step will be to copy the code onto the device,
install the build tools, and compile OpenCV and our source code on the embedded system.

Many embedded devices such as Raspberry Pi have an HDMI port and at least one USB
port. Therefore, the easiest way to start using an embedded device is to plug in a HDMI
monitor and USB keyboard and mouse for the device, to configure settings and see output,
while doing the code development and testing using your desktop machine. If you have a
spare HDMI monitor, plug that into the device, but if you don't have a spare HDMI
monitor, you might consider buying a small HDMI screen just for your embedded device.

Also, if you don't have a spare USB keyboard and mouse, you might consider buying a
wireless keyboard and mouse that has a single USB wireless dongle, so you only use up a
single USB port for both the keyboard and mouse. Many embedded devices use a 5V power
supply, but they usually need more power (electrical current) than a desktop or laptop will
provide in its USB port. So you should obtain either a separate 5V USB charger (atleast 1.5
Amps, ideally 2.5 Amps), or a portable USB battery charger that can provide atleast 1.5 Amps
of output current. Your device might only use 0.5 Amps most of the time, but there will be
occasional times when it needs over 1 Amps, so it's important to use a power supply that is
rated for at least 1.5 Amps or more, otherwise your device will occasionally reboot or some
hardware could behave strangely at important times or the filesystem could become corrupt
and you lose your files! A 1 Amp supply might be good enough if you don't use cameras or
accessories, but 2.0-2.5 Amps is safer.

Cartoonifier and Skin Changer for Raspberry Pi

[30]

For example, the following photographs show a convenient setup containing a Raspberry Pi
3, a good quality 8 GB micro-SD card for $10 (http://ebay.to/2ayp6Bo), a 5-inch HDMI
resistive-touchscreen for $30-$45 (http://bit.ly/2aHQO2G), a wireless USB keyboard and
mouse for $30 (http://ebay.to/2aN2oXi), a 5V 2.5A power supply for $5
(http://ebay.to/2aCBLVK), a USB webcam such as the very fast PS3 Eye for just $5
(http://ebay.to/2aVWCUS), a Raspberry Pi Camera Module v1 or v2 for $15-$30
(http://bit.ly/2aF9PxD), and an Ethernet cable for $2
(http://ebay.to/2aznnjd),connecting the Raspberry Pi into the same LAN network as
your development PC or laptop. Notice that this HDMI screen is designed specifically for
the Raspberry Pi, since the screen plugs directly into the Raspberry Pi below it, and has a
HDMI male-to-male adapter (shown in the right-hand side photo) for the Raspberry Pi so
you don't need an HDMI cable, whereas other screens may require an HDMI cable
(http://ebay.to/2aW4Fko) or MIPI DSI or SPI cable. Also note that some screens and touch
panels need configuration before they will work, whereas most HDMI screens should work
without any configuration:

Notice the black USB webcam (on the far left of the LCD), the Raspberry Pi Camera Module
(green and black board sitting on the top-left corner of the LCD), Raspberry Pi board
(underneath the LCD), HDMI adapter (connecting the LCD to the Raspberry Pi below it), a
blue Ethernet cable (plugged into a router), a small USB wireless keyboard and mouse
dongle, and a micro-USB power cable (plugged into a 5V 2.5A power supply).

http://ebay.to/2ayp6Bo
http://bit.ly/2aHQO2G
http://ebay.to/2aN2oXi
http://ebay.to/2aCBLVK
http://ebay.to/2aVWCUS
http://bit.ly/2aF9PxD
http://ebay.to/2aznnjd
http://ebay.to/2aW4Fko

Cartoonifier and Skin Changer for Raspberry Pi

[31]

Configuring a new Raspberry Pi
The following steps are specific to Raspberry Pi (also referred to as an RPi), so if you are
using a different embedded device or you want a different type of setup, search the Web
about how to setup your board. To setup an RPi 1, 2, or 3 (including their variants such as
RPi Zero, RPi2B, 3B, and so on, and RPi 1A+ if you plug in a USB Ethernet dongle):

Get a fairly new, good-quality micro-SD card of at least 8 GB. If you use a cheap1.
micro-SD card or an old micro-SD card that you already used many times before
and it has degraded in quality, it might not be reliable enough to boot the RPi, so
if you have trouble booting the RPi, you should try a good quality Class 10 micro-
SD card (such as SanDisk Ultra or better) that says it handles at least 45 MB/s or
can handle 4K video.
Download and burn the latest Raspbian IMG (not NOOBS) to the micro-SD card.2.
Note that burning an IMG is different to simply copying the file to SD. Visit
https://www.raspberrypi.org/documentation/installation/installing-imag

es/ and follow the instructions for your desktop's OS, to burn Raspbian to a
micro-SD card. Be aware that you will lose any files that were previously on the
card.
Plug a USB keyboard and mouse and HDMI display into the RPi, so you can3.
easily run some commands and see the output.
Plug the RPi into a 5V USB power supply with atleast 1.5A, ideally 2.5A or4.
higher. Computer USB ports aren't powerful enough.
You should see many pages of text scrolling while it is booting up Raspbian5.
Linux, then it should be ready after 1 or 2 minutes.
If, after booting, it's just showing a black console screen with some text (such as if6.
you downloaded Raspbian Lite), you are at the text-only login prompt. Log in by
typing pi as the username and then hit Enter. Then type raspberry as the
password and hit Enter again.
Or if it booted to the graphical display, click on the black Terminal icon at the top7.
to open a shell (Command Prompt).
Initialize some settings in your RPi:8.

Type sudo raspi-config and hit Enter (see the following
screenshot).
First, run Expand Filesystem and then finish and reboot your device,
so the Raspberry Pi can use the whole micro-SD card.

https://www.raspberrypi.org/documentation/installation/installing-images/
https://www.raspberrypi.org/documentation/installation/installing-images/

Cartoonifier and Skin Changer for Raspberry Pi

[32]

If you use a normal (US) keyboard, not a British keyboard, in
Internationalization Options, change to Generic 104-key keyboard,
Other, English (US), and then for the AltGr and similar questions just
hit Enter unless you are use a special keyboard.
In Enable Camera, enable the RPi Camera Module.
In Overclock Options, set to RPi2 or similar so the device runs faster
(but generates more heat).
In Advanced Options, enable SSH server.
In Advanced Options, if you are using Raspberry Pi 2 or 3, change
Memory Split to 256MB so the GPU has plenty of RAM for video
processing. For Raspberry Pi 1 or Zero, use 64 MB or the default.
Finish then Reboot the device.

(Optional) Delete Wolfram, to save 600 MB of space on your SD card:9.

 sudo apt-get purge -y wolfram-engine

It can be installed back using sudo apt-get install wolfram-engine

To see the remaining space on your SD card, run df -h | head -2

Cartoonifier and Skin Changer for Raspberry Pi

[33]

Assuming you plugged the RPi into your Internet router, it should already have10.
Internet access. So update your RPi to the latest RPi firmware, software locations,
OS, and software. Warning: Many Raspberry Pi tutorials say you should run
sudo rpi-update; however, in recent years it's no longer a good idea to run
rpi-update since it can give you an unstable system or firmware. The following
instructions will update your Raspberry Pi to have stable software and firmware
(note that these commands might take up to 1 hour):

 sudo apt-get -y update
 sudo apt-get -y upgrade
 sudo apt-get -y dist-upgrade
 sudo reboot

Find the IP address of the device:11.

 hostname -I

Try accessing the device from your desktop.12.

For example, assuming the device's IP address is 192.168.2.101.

On a Linux desktop:

 ssh-X pi@192.168.2.101

Or on a Windows desktop:

Download, install, and run PuTTY
Then in PuTTY, connect to the IP address (192.168.2.101),
As user pi with password raspberry

(Optional) If you want your Command Prompt to be a different color than the13.
commands and show the error value after each command:

 nano ~/.bashrc

Add this line to the bottom:

 PS1="[e[0;44m]u@h: w ($?) $[e[0m] "

Save the file (hit Ctrl + X, then hit Y, and then hit Enter).

Cartoonifier and Skin Changer for Raspberry Pi

[34]

Start using the new settings:

 source ~/.bashrc

To disable the screensaver/screen blank power saving feature in Raspbian from14.
turning off your screen on idle:

 sudo nano /etc/lightdm/lightdm.conf

Look for the line that says #xserver-command=X (jump to line 87 by pressing Alt
+ G and then typing 87 and hitting Enter).
Change it to: xserver-command=X -s 0 dpms

Save the file (hit Ctrl + X then hit Y then hit Enter).

 sudo reboot

You should be ready to start developing on the device now!

Installing OpenCV on an embedded device
There is a very easy way to install OpenCV and all its dependencies on a Debian-based
embedded device such as Raspberry Pi:

 sudo apt-get install libopencv-dev

However, that might install an old version of OpenCV from 1 or 2 years ago.

To install the latest version of OpenCV on an embedded device such as Raspberry Pi, we
need to build OpenCV from the source code. First we install a compiler and build system,
then libraries for OpenCV to use, and finally OpenCV itself. Note that the steps for
compiling OpenCV from source on Linux is the same whether you are compiling for
desktop or for embedded. A Linux script install_opencv_from_source.sh is provided
with this book; it is recommended you copy the file onto your Raspberry Pi (for example,
with a USB flash stick) and run the script to download, build, and install OpenCV including
potential multi-core CPU and ARM NEON SIMD optimizations (depending on hardware
support):

 chmod +x install_opencv_from_source.sh
./install_opencv_from_source.sh

Cartoonifier and Skin Changer for Raspberry Pi

[35]

The script will stop if there is any error; for example, if you don't have Internet access, or a
dependency package conflicts with something else you already installed. If the script stops
with an error, try using info on the Web to solve that error, then run the script again. The
script will quickly check all the previous steps and then continue from where it finished last
time. Note that it will take between 20 minutes to 12 hours depending on your hardware
and software!

It's highly recommended to build and run a few OpenCV samples every time you've
installed OpenCV, so when you have problems building your own code, at least you will
know whether the problem is the OpenCV installation or a problem with your code.

Let's try to build the simple edge sample program. If we try the same Linux command to
build it from OpenCV 2, we get a build error:

cd ~/opencv-3.*/samples/cpp
g++ edge.cpp -lopencv_core -lopencv_imgproc -lopencv_highgui
-o edge
/usr/bin/ld: /tmp/ccDqLWSz.o: undefined reference to symbol
'_ZN2cv6imreadERKNS_6StringEi'
/usr/local/lib/libopencv_imgcodecs.so.3.1: error adding symbols: DSO
missing from command line
collect2: error: ld returned 1 exit status

The second to last line of that error message tells us that a library was missing from the
command line, so we simply need to add -lopencv_imgcodecs in our command next to
the other OpenCV libraries we linked to. Now you know how to fix the problem anytime
you are compiling an OpenCV 3 program and you see that error message. So let's do it
correctly:

cd ~/opencv-3.*/samples/cpp
g++ edge.cpp -lopencv_core -lopencv_imgproc -lopencv_highgui
-lopencv_imgcodecs -o edge

It worked! So now you can run the program:

 ./edge

Hit Ctrl + C on your keyboard to quit the program. Note that the edge program might crash
if you try running the command in an SSH terminal and you don't redirect the window to
display on the device's LCD screen. So if you are using SSH to remotely run the program,
add DISPLAY=:0 before your command:

 DISPLAY=:0 ./edge

Cartoonifier and Skin Changer for Raspberry Pi

[36]

You should also plug a USB webcam into the device and test that it works:

g++ starter_video.cpp -lopencv_core -lopencv_imgproc
-lopencv_highgui -lopencv_imgcodecs -lopencv_videoio \
-o starter_video
DISPLAY=:0 ./starter_video 0

Note: If you don't have a USB webcam, you can test using a video file:

 DISPLAY=:0 ./starter_video ../data/768x576.avi

Now that OpenCV is successfully installed on your device, you can run the Cartoonifier
applications we developed earlier. Copy the Cartoonifier folder onto the device (for
example, by using a USB flash stick, or using scp to copy files over the network). Then
build the code just like you did for desktop:

cd ~/Cartoonifier
export OpenCV_DIR="~/opencv-3.1.0/build"
mkdir build
cd build
cmake -D OpenCV_DIR=$OpenCV_DIR ..
make

And run it:

DISPLAY=:0 ./Cartoonifier

Cartoonifier and Skin Changer for Raspberry Pi

[37]

Using the Raspberry Pi Camera Module
While using a USB webcam on Raspberry Pi has the convenience of supporting identical
behavior and code on desktop as on embedded device, you might consider using one of the
official Raspberry Pi Camera Modules (referred to as the RPi Cams). They have some
advantages and disadvantages over USB webcams.

The RPi Cams use the special MIPI CSI camera format, designed for smartphone cameras to
use less power. They have smaller physical size, faster bandwidth, higher resolutions,
higher frame rates, and reduced latency, compared to USB. Most USB 2.0 webcams can only
deliver 640x480 or 1280x720 30 FPS video, since USB 2.0 is too slow for anything higher
(except for some expensive USB webcams that perform onboard video compression) and
USB 3.0 is still too expensive. Whereas, smartphone cameras (including the RPi Cams) can
often deliver 1920x1080 30 FPS or even Ultra HD/4K resolutions. The RPi Cam v1 can in fact
deliver upto 2592x1944 15 FPS or 1920x1080 30 FPS video even on a $5 Raspberry Pi Zero,
thanks to the use of MIPI CSI for the camera and a compatible video processing ISP and
GPU hardware inside the Raspberry Pi. The RPi Cams also support 640x480 in 90 FPS mode
(such as for slow-motion capture), and this is quite useful for real-time computer vision so
you can see very small movements in each frame, rather than large movements that are
harder to analyze.

However, the RPi Cam is a plain circuit board that is highly sensitive to electrical
interference, static electricity, or physical damage (simply touching the small orange flat
cable with your finger can cause video interference or even permanently damage your
camera!). The big flat white cable is far less sensitive but it is still very sensitive to electrical
noise or physical damage. The RPi Cam comes with a very short 15 cm cable. It's possible to
buy third-party cables on eBay with lengths between 5 cm to 1 m, but cables 50cm or longer
are less reliable, whereas USB webcams can use 2 m to 5 m cables and can be plugged into
USB hubs or active extension cables for longer distances.

There are currently several different RPi Cam models, notably the NoIR version that doesn't
have an internal infrared filter; therefore, a NoIR camera can easily see in the dark (if you
have an invisible infrared light source), or see infrared lasers or signals far clearer than
regular cameras that includes an infrared filter inside them. There are also two different
versions of RPi Cam: RPi Cam v1.3 and RPi Cam v2.1, where the v2.1 uses a wider angle
lens with a Sony 8 Mega-Pixel sensor instead of a 5 Mega-Pixel OmniVision sensor, and has
better support for motion in low lighting conditions, and adds support for 3240x2464 video
at 15 FPS and potentially upto 120 FPS video at 720p. However, USB webcams come in
thousands of different shapes and versions, making it easy to find specialized webcams
such as waterproof or industrial-grade webcams, rather than requiring you to create your
own custom housing for an RPi Cam.

Cartoonifier and Skin Changer for Raspberry Pi

[38]

IP cameras are also another option for a camera interface that can allow 1080p or higher
resolution videos with Raspberry Pi, and IP cameras support not just very long cables, but
potentially even work anywhere in the world using the Internet. But IP cameras aren't quite
as easy to interface with OpenCV as USB webcams or the RPi Cam.

In the past, RPi Cams and the official drivers weren't directly compatible with OpenCV; you
often used custom drivers and modified your code in order to grab frames from RPi Cams,
but it's now possible to access an RPi Cam in OpenCVin the exact same way as a USB
webcam! Thanks to recent improvements in the v4l2 drivers, once you load the v4l2 driver
the RPi Cam will appear as a /dev/video0 or /dev/video1 file like a regular USB
webcam. So traditional OpenCV webcam code such as cv::VideoCapture(0) will be able
to use it just like a webcam.

Installing the Raspberry Pi Camera Module driver
First let's temporarily load the v4l2 driver for the RPi Cam to make sure our camera is
plugged in correctly:

 sudo modprobe bcm2835-v4l2

If the command failed (if it printed an error message to the console, or it froze, or the
command returned a number besides 0), then perhaps your camera is not plugged in
correctly. Shutdown and then unplug power from your RPi and try attaching the flat white
cable again, looking at photos on the Web to make sure it's plugged in the correct way
around. If it is the correct way around, it's possible the cable wasn't fully inserted before
you closed the locking tab on the RPi. Also check whether you forgot to click Enable
Camera when configuring your Raspberry Pi earlier, using the sudoraspi-config
command.

If the command worked (if the command returned 0 and no error was printed to the
console), then we can make sure the v4l2 driver for the RPi Cam is always loaded on
bootup, by adding it to the bottom of the /etc/modules file:

sudo nano /etc/modules
Load the Raspberry Pi Camera Module v4l2 driver on bootup:
bcm2835-v4l2

After you save the file and reboot your RPi, you should be able to run ls /dev/video* to
see a list of cameras available on your RPi. If the RPi Cam is the only camera plugged into
your board, you should see it as the default camera (/dev/video0), or if you also have a
USB webcam plugged in then it will be either /dev/video0 or /dev/video1.

Cartoonifier and Skin Changer for Raspberry Pi

[39]

Let's test the RPi Cam using the starter_video sample program we compiled earlier:

 cd ~/opencv-3.*/samples/cpp
DISPLAY=:0 ./starter_video 0

If it's showing the wrong camera, try DISPLAY=:0 ./starter_video 1.

Now that we know the RPi Cam is working in OpenCV, let's try Cartoonifier:

 cd ~/Cartoonifier
DISPLAY=:0 ./Cartoonifier 0

Or DISPLAY=:0 ./Cartoonifier 1 for the other camera.

Making Cartoonifier to run full screen
In embedded systems, you often want your application to be full screen and hide the Linux
GUI and menu. OpenCV offers an easy method to set the full screen window property, but
make sure you created the window using the NORMAL flag:

// Create a fullscreen GUI window for display on the screen.
namedWindow(windowName, WINDOW_NORMAL);
setWindowProperty(windowName, WND_PROP_FULLSCREEN,
CV_WINDOW_FULLSCREEN);

Hiding the mouse cursor
You might notice the mouse cursor is shown on top of your window even though you don't
want to use a mouse in your embedded system. To hide the mouse cursor, you can use the
xdotool command to move it to the bottom-right corner pixel, so it's not noticeable, but is
still available if you want to occasionally plug in your mouse to debug the device. Install
xdotool and create a short Linux script to run it with Cartoonifier:

sudo apt-get install -y xdotool
cd ~/Cartoonifier/build
nano runCartoonifier.sh
#!/bin/sh
Move the mouse cursor to the screen's bottom-right pixel.
xdotoolmousemove 3000 3000
Run Cartoonifier with any arguments given.
/home/pi/Cartoonifier/build/Cartoonifier "$@"

Cartoonifier and Skin Changer for Raspberry Pi

[40]

Finally, make your script executable:

chmod +x runCartoonifier.sh

Try running your script, to make sure it works:

DISPLAY=:0 ./runCartoonifier.sh

Running Cartoonifier automatically after bootup
Often when you build an embedded device, you want your application to be executed
automatically after the device has booted up, rather than requiring the user to manually run
your application. To automatically run our application after the device has fully booted up
and logged into the graphical desktop, create an autostart folder with a file in it with
certain contents including the full path to your script or application:

 mkdir ~/.config/autostart
nano ~/.config/autostart/Cartoonifier.desktop
 [Desktop Entry]
 Type=Application
 Exec=/home/pi/Cartoonifier/build/runCartoonifier.sh
 X-GNOME-Autostart-enabled=true

Now, whenever you turn the device on or reboot it, Cartoonifier will begin running!

Speed comparison of Cartoonifier on Desktop versus
Embedded
You will notice that the code runs much slower on Raspberry Pi than on your desktop! By
far the two easiest ways to run it faster are to use a faster device or use a smaller camera
resolution. The following table shows some frame rates, Frames per Seconds (FPS) for both
the Sketch and Paint modes of Cartoonifier on a desktop, RPi 1, RPi 2, RPi 3, and Jetson TK1.
Note that the speeds don't have any custom optimizations and only run on a single CPU
core, and the timings include the time for rendering images to the screen. The USB webcam
used is the fast PS3 Eye webcam running at 640x480 since it is the fastest low-cost webcam
on the market.

Cartoonifier and Skin Changer for Raspberry Pi

[41]

It's worth mentioning that Cartoonifier is only using a single CPU core, but all the devices
listed have four CPU cores except for RPi 1 which has a single core, and many x86
computers have hyperthreading to give roughly eight CPU cores. So if you wrote your code
to efficiently make use of multiple CPU cores (or GPU), the speeds might be 1.5 to 3 times
faster than the single-threaded figures shown:

Computer Sketch mode Paint mode

Intel Core i7 PC 20 FPS 2.7 FPS

Jetson TK1ARM CPU 16 FPS 2.3 FPS

Raspberry Pi 3 4.3 FPS 0.32 FPS (3 seconds/frame)

Raspberry Pi 2 3.2 FPS 0.28 FPS (4 seconds/frame)

Raspberry Pi Zero 2.5 FPS 0.21 FPS (5 seconds/frame)

Raspberry Pi 1 1.9 FPS 0.12 FPS (8 seconds/frame)

Notice that Raspberry Pi is extremely slow at running the code, especially the Paint mode,
so we will try simply changing the camera and the resolution of the camera.

Changing the camera and camera resolution
The following table shows how the speed of the Sketch mode compares on Raspberry Pi 2
using different types of cameras and different camera resolutions:

Hardware 640x480 resolution 320x240 resolution

RPi 2 with RPi Cam 3.8 FPS 12.9 FPS

RPi 2 with PS3 Eye webcam 3.2 FPS 11.7 FPS

RPi 2 with unbranded webcam 1.8 FPS 7.4 FPS

As you can see, when using the RPi Cam in 320x240, it seems we have a good enough
solution to have some fun, even if it's not in the 20-30 FPS range that we would prefer.

Cartoonifier and Skin Changer for Raspberry Pi

[42]

Power draw of Cartoonifier running on desktop versus
embedded system
We've seen that various embedded devices are slower than desktop, from the RPi 1 being
roughly 20 times slower than a desktop, up to Jetson TK1 being roughly 1.5 times slower
than a desktop. But for some tasks, low speed is acceptable if it means there will also be
significantly lower battery draw, allowing for small batteries or low year-round electricity
costs for a server or low heat generated.

Raspberry Pi has different models even for the same processor, such as Raspberry Pi 1B,
Zero, and 1A+ that all run at similar speeds but have significantly different power draw.
MIPI CSI cameras such as the RPi Cam also use less electricity than webcams. The following
table shows how much electrical power is used by different hardware running the same
Cartoonifier code. Power measurements of Raspberry Pi were performed as shown in the
following photo using a simple USB current monitor (for example, J7-T Safety Tester--h t t p

://b i t . l y /2a S Z a 6H --for $5), and a DMM multimeter for the other devices:

http://bit.ly/2aSZa6H
http://bit.ly/2aSZa6H
http://bit.ly/2aSZa6H
http://bit.ly/2aSZa6H
http://bit.ly/2aSZa6H
http://bit.ly/2aSZa6H
http://bit.ly/2aSZa6H
http://bit.ly/2aSZa6H
http://bit.ly/2aSZa6H
http://bit.ly/2aSZa6H
http://bit.ly/2aSZa6H
http://bit.ly/2aSZa6H
http://bit.ly/2aSZa6H
http://bit.ly/2aSZa6H
http://bit.ly/2aSZa6H
http://bit.ly/2aSZa6H
http://bit.ly/2aSZa6H
http://bit.ly/2aSZa6H
http://bit.ly/2aSZa6H
http://bit.ly/2aSZa6H
http://bit.ly/2aSZa6H
http://bit.ly/2aSZa6H
http://bit.ly/2aSZa6H
http://bit.ly/2aSZa6H
http://bit.ly/2aSZa6H
http://bit.ly/2aSZa6H
http://bit.ly/2aSZa6H
http://bit.ly/2aSZa6H
http://bit.ly/2aSZa6H

Cartoonifier and Skin Changer for Raspberry Pi

[43]

Idle Power measures power when the computer is running but no major applications are
being used, whereas Cartoonifier Power measures power when Cartoonifier is running.
Efficiency is Cartoonifier Power / Cartoonifier Speed in a 640x480 Sketch mode.

Hardware Idle Power Cartoonifier Power Efficiency

RPi Zero with PS3 Eye 1.2 Watts 1.8 Watts 1.4 Frames per Watt

RPi 1A+ with PS3 Eye 1.1 Watts 1.5 Watts 1.1 Frames per Watt

RPi 1B with PS3 Eye 2.4 Watts 3.2 Watts 0.5 Frames per Watt

RPi 2B with PS3 Eye 1.8 Watts 2.2 Watts 1.4 Frames per Watt

RPi 3B with PS3 Eye 2.0 Watts 2.5 Watts 1.7 Frames per Watt

Jetson TK1 with PS3 Eye 2.8 Watts 4.3 Watts 3.7 Frames per Watt

Core i7 laptop with PS3 Eye 14.0 Watts 39.0 Watts 0.5 Frames per Watt

We can see that RPi 1A+ uses the least power, but the most power-efficient options are
Jetson TK1 and Raspberry Pi 3B. Interestingly, the original Raspberry Pi (RPi1B) has
roughly the same efficiency as an x86 laptop. All later Raspberry Pis are significantly more
power-efficient than the original (RPi 1B).

Disclaimer: The author is a former employee of NVIDIA that produced
the Jetson TK1, but the results and conclusions are believed to be
authentic.

Lets also look at the power draw of different cameras that work with Raspberry Pi:

Hardware Idle Power Cartoonifier Power Efficiency

RPi Zero with PS3 Eye 1.2 Watts 1.8 Watts 1.4 Frames per Watt

RPi Zero with RPi Cam v1.3 0.6 Watts 1.5 Watts 2.1 Frames per Watt

RPi Zero with RPi Cam v2.1 0.55 Watts 1.3 Watts 2.4 Frames per Watt

We see that RPi Cam v2.1 is slightly more power-efficient than RPi Cam v1.3, and
significantly more power-efficient than a USB webcam.

Cartoonifier and Skin Changer for Raspberry Pi

[44]

Streaming video from Raspberry Pi to a powerful computer
Thanks to the hardware-accelerated video encoders in all modern ARM devices including
Raspberry Pi, a valid alternative to performing Computer Vision onboard an embedded
device is to use the device to just capture video and stream it across a network in realtime to
a PC or server rack. All Raspberry Pi models contain the same video encoder hardware, so
an RPi 1A+ or RPi Zero with a Pi Cam is quite a good option for a low-cost, low-power
portable video streaming server. Raspberry Pi 3 adds Wi-Fi for additional portable
functionality.

There are numerous ways live camera video can be streamed from a Raspberry Pi, such as
using the official RPi V4L2 camera driver to allow the RPi Cam to appear like a webcam,
then use Gstreamer, liveMedia, netcat, or VLC to stream the video across a network.
However, these methods often introduce 1 or 2 seconds of latency and often require
customizing the OpenCV client code or learning how to use Gstreamer efficiently. So
instead, the following section will show how to perform both the camera capture and
network streaming using an alternative camera driver named UV4L:

Install UV4L on the Raspberry Pi by following h t t p ://w w w . l i n u x - p r o j e c t s . o r g1.
/u v 4l /i n s t a l l a t i o n /:

 curl http://www.linux-projects.org/listing/uv4l_repo/lrkey.asc
 sudo apt-key add -
 sudo su
 echo "# UV4L camera streaming repo:">> /etc/apt/sources.list
 echo "deb http://www.linux-
 projects.org/listing/uv4l_repo/raspbian/jessie main">>
 /etc/apt/sources.list
 exit
 sudo apt-get update
 sudo apt-get install uv4l uv4l-raspicam uv4l-server

Run the UV4L streaming server manually (on the RPi) to check that it works:2.

 sudo killall uv4l
sudo LD_PRELOAD=/usr/lib/uv4l/uv4lext/armv6l/libuv4lext.so
uv4l -v7 -f --sched-rr --mem-lock --auto-video_nr
--driverraspicam --encoding mjpeg
--width 640 --height 480 --framerate15

http://www.linux-projects.org/uv4l/installation/
http://www.linux-projects.org/uv4l/installation/
http://www.linux-projects.org/uv4l/installation/
http://www.linux-projects.org/uv4l/installation/
http://www.linux-projects.org/uv4l/installation/
http://www.linux-projects.org/uv4l/installation/
http://www.linux-projects.org/uv4l/installation/
http://www.linux-projects.org/uv4l/installation/
http://www.linux-projects.org/uv4l/installation/
http://www.linux-projects.org/uv4l/installation/
http://www.linux-projects.org/uv4l/installation/
http://www.linux-projects.org/uv4l/installation/
http://www.linux-projects.org/uv4l/installation/
http://www.linux-projects.org/uv4l/installation/
http://www.linux-projects.org/uv4l/installation/
http://www.linux-projects.org/uv4l/installation/
http://www.linux-projects.org/uv4l/installation/
http://www.linux-projects.org/uv4l/installation/
http://www.linux-projects.org/uv4l/installation/
http://www.linux-projects.org/uv4l/installation/
http://www.linux-projects.org/uv4l/installation/
http://www.linux-projects.org/uv4l/installation/
http://www.linux-projects.org/uv4l/installation/
http://www.linux-projects.org/uv4l/installation/
http://www.linux-projects.org/uv4l/installation/
http://www.linux-projects.org/uv4l/installation/
http://www.linux-projects.org/uv4l/installation/
http://www.linux-projects.org/uv4l/installation/
http://www.linux-projects.org/uv4l/installation/
http://www.linux-projects.org/uv4l/installation/
http://www.linux-projects.org/uv4l/installation/
http://www.linux-projects.org/uv4l/installation/
http://www.linux-projects.org/uv4l/installation/
http://www.linux-projects.org/uv4l/installation/
http://www.linux-projects.org/uv4l/installation/
http://www.linux-projects.org/uv4l/installation/
http://www.linux-projects.org/uv4l/installation/
http://www.linux-projects.org/uv4l/installation/
http://www.linux-projects.org/uv4l/installation/
http://www.linux-projects.org/uv4l/installation/
http://www.linux-projects.org/uv4l/installation/
http://www.linux-projects.org/uv4l/installation/
http://www.linux-projects.org/uv4l/installation/
http://www.linux-projects.org/uv4l/installation/
http://www.linux-projects.org/uv4l/installation/
http://www.linux-projects.org/uv4l/installation/
http://www.linux-projects.org/uv4l/installation/
http://www.linux-projects.org/uv4l/installation/
http://www.linux-projects.org/uv4l/installation/
http://www.linux-projects.org/uv4l/installation/
http://www.linux-projects.org/uv4l/installation/
http://www.linux-projects.org/uv4l/installation/
http://www.linux-projects.org/uv4l/installation/
http://www.linux-projects.org/uv4l/installation/
http://www.linux-projects.org/uv4l/installation/
http://www.linux-projects.org/uv4l/installation/
http://www.linux-projects.org/uv4l/installation/
http://www.linux-projects.org/uv4l/installation/
http://www.linux-projects.org/uv4l/installation/
http://www.linux-projects.org/uv4l/installation/
http://www.linux-projects.org/uv4l/installation/
http://www.linux-projects.org/uv4l/installation/
http://www.linux-projects.org/uv4l/installation/
http://www.linux-projects.org/uv4l/installation/
http://www.linux-projects.org/uv4l/installation/
http://www.linux-projects.org/uv4l/installation/
http://www.linux-projects.org/uv4l/installation/
http://www.linux-projects.org/uv4l/installation/
http://www.linux-projects.org/uv4l/installation/
http://www.linux-projects.org/uv4l/installation/
http://www.linux-projects.org/uv4l/installation/
http://www.linux-projects.org/uv4l/installation/
http://www.linux-projects.org/uv4l/installation/
http://www.linux-projects.org/uv4l/installation/
http://www.linux-projects.org/uv4l/installation/
http://www.linux-projects.org/uv4l/installation/
http://www.linux-projects.org/uv4l/installation/
http://www.linux-projects.org/uv4l/installation/
http://www.linux-projects.org/uv4l/installation/
http://www.linux-projects.org/uv4l/installation/
http://www.linux-projects.org/uv4l/installation/
http://www.linux-projects.org/uv4l/installation/

Cartoonifier and Skin Changer for Raspberry Pi

[45]

Test the camera's network stream from your desktop:3.

Install VLC Media Player.
File | Open Network Stream | visit h t t p ://192. 168. 2. 111:8080/s t r

e a m /v i d e o . m j p e g .
Adjust the URL to the IP address of your Raspberry Pi. Run hostname
-I on RPi to find its IP address.

Now get the UV4L server to run automatically on bootup:4.

 sudo apt-get install uv4l-raspicam-extras

Edit any UV4L server settings you want in uv4l-raspicam.conf such as5.
resolution and frame rate:

 sudo nano /etc/uv4l/uv4l-raspicam.conf
 drop-bad-frames = yes
 nopreview = yes
 width = 640
 height = 480
 framerate = 24
 sudo reboot

Now we can tell OpenCV to use our network stream as if it was a webcam. As6.
long as your installation of OpenCV can use FFMPEG internally, OpenCV will be
able to grab frames from an MJPEG network stream just like a webcam:

 ./Cartoonifier http://192.168.2.101:8080/stream/video.mjpeg

Your Raspberry Pi is now using UV4L to stream the live 640x480 24 FPS video to a PC that
is running Cartoonifier in Sketch mode, achieving roughly 19 FPS (with 0.4 seconds of
latency). Notice this is almost the same speed as using the PS3 Eye webcam directly on the
PC (20 FPS)!

Note that when you are streaming the video to OpenCV, it won't be able to set the camera
resolution; you need to adjust the UV4L server settings to change the camera resolution.
Also note that instead of streaming MJPEG, we could have streamed H.264 video that uses
lower bandwidth, but some computer vision algorithms don't handle video compression
such as H.264 very well, so MJPEG will cause less algorithm problems than H.264.

http://192.168.2.111:8080/stream/video.mjpeg
http://192.168.2.111:8080/stream/video.mjpeg
http://192.168.2.111:8080/stream/video.mjpeg
http://192.168.2.111:8080/stream/video.mjpeg
http://192.168.2.111:8080/stream/video.mjpeg
http://192.168.2.111:8080/stream/video.mjpeg
http://192.168.2.111:8080/stream/video.mjpeg
http://192.168.2.111:8080/stream/video.mjpeg
http://192.168.2.111:8080/stream/video.mjpeg
http://192.168.2.111:8080/stream/video.mjpeg
http://192.168.2.111:8080/stream/video.mjpeg
http://192.168.2.111:8080/stream/video.mjpeg
http://192.168.2.111:8080/stream/video.mjpeg
http://192.168.2.111:8080/stream/video.mjpeg
http://192.168.2.111:8080/stream/video.mjpeg
http://192.168.2.111:8080/stream/video.mjpeg
http://192.168.2.111:8080/stream/video.mjpeg
http://192.168.2.111:8080/stream/video.mjpeg
http://192.168.2.111:8080/stream/video.mjpeg
http://192.168.2.111:8080/stream/video.mjpeg
http://192.168.2.111:8080/stream/video.mjpeg
http://192.168.2.111:8080/stream/video.mjpeg
http://192.168.2.111:8080/stream/video.mjpeg
http://192.168.2.111:8080/stream/video.mjpeg
http://192.168.2.111:8080/stream/video.mjpeg
http://192.168.2.111:8080/stream/video.mjpeg
http://192.168.2.111:8080/stream/video.mjpeg
http://192.168.2.111:8080/stream/video.mjpeg
http://192.168.2.111:8080/stream/video.mjpeg
http://192.168.2.111:8080/stream/video.mjpeg
http://192.168.2.111:8080/stream/video.mjpeg
http://192.168.2.111:8080/stream/video.mjpeg
http://192.168.2.111:8080/stream/video.mjpeg
http://192.168.2.111:8080/stream/video.mjpeg
http://192.168.2.111:8080/stream/video.mjpeg
http://192.168.2.111:8080/stream/video.mjpeg
http://192.168.2.111:8080/stream/video.mjpeg
http://192.168.2.111:8080/stream/video.mjpeg
http://192.168.2.111:8080/stream/video.mjpeg
http://192.168.2.111:8080/stream/video.mjpeg
http://192.168.2.111:8080/stream/video.mjpeg
http://192.168.2.111:8080/stream/video.mjpeg
http://192.168.2.111:8080/stream/video.mjpeg
http://192.168.2.111:8080/stream/video.mjpeg
http://192.168.2.111:8080/stream/video.mjpeg
http://192.168.2.111:8080/stream/video.mjpeg
http://192.168.2.111:8080/stream/video.mjpeg

Cartoonifier and Skin Changer for Raspberry Pi

[46]

If you have both the official RPi V4L2 driver and the UV4L driver
installed, they will both be available as cameras 0 and 1 (devices
/dev/video0 and /dev/video1), but you can only use one camera driver
at a time.

Customizing your embedded system!
Now that you have created a whole embedded Cartoonifier system, and you know the
basics of how it works and which parts do what, you should customize it! Make the video
full screen, change the GUI, or change the application behavior and workflow, or change
the Cartoonifier filter constants, or the skin detector algorithm, or replace the Cartoonifier
code with your own project ideas. Or stream the video to the cloud and process it there!

You can improve the skin detection algorithm in many ways, such as a more complex skin
detection algorithm (for example, using trained Gaussian models from many recent CVPR
or ICCV conference papers at http://www.cvpapers.com), or add face detection (see the
Face detection section of Chapter 6, Face Recognition using Eigenfaces and Fisherfaces) to the
skin detector, so it detects where the user's face is, rather than asking the user to put their
face in the center of the screen. Beware that face detection may take many seconds on some
devices or high-resolution cameras, so they may be limited in their current real-time uses.
But embedded system platforms are getting faster every year, so this may be less of a
problem over time.

The most significant way to speed up embedded computer vision applications is to reduce
the camera resolution absolutely as much as possible (for example, 0.5 mega pixel instead of
5 megapixels), allocate and free images as rarely as possible, and do image format
conversions as rarely as possible. In some cases, there might be some optimized image
processing or math libraries, or optimized version of OpenCV from the CPU vendor of your
device (for example, Broadcom, NVIDIA Tegra, Texas Instruments OMAP, Samsung
Exynos), or for your CPU family (for example, ARM Cortex-A9).

To make customizing embedded and desktop image processing code easier, this book
comes with the files, ImageUtils.cpp and ImageUtils.h, to help you experiment. They
include functions such as printMatInfo() that prints a lot of info about a cv::Mat object,
making debugging OpenCV much easier. There are also timing macros to easily add
detailed timing statistics to your C/C++ code. For example:

 DECLARE_TIMING(myFilter);

 void myImageFunction(Mat img) {
 printMatInfo(img, "input");

http://www.cvpapers.com/

Cartoonifier and Skin Changer for Raspberry Pi

[47]

 START_TIMING(myFilter);
 bilateralFilter(img, ...);
 STOP_TIMING(myFilter);
 SHOW_TIMING(myFilter, "My Filter");
 }

You would then see something like the following printed to your console:

 input: 800w600h 3ch 8bpp, range[19,255][17,243][47,251]
 My Filter: time: 213ms (ave=215ms min=197ms max=312ms, across 57 runs).

This is useful when your OpenCV code is not working as expected, particularly for
embedded development where it is often difficult to use an IDE debugger.

Summary
This chapter has shown several different types of image processing filters that can be used
to generate various cartoon effects, from a plain sketch mode that looks like a pencil
drawing, a paint mode that looks like a color painting, to a cartoon mode that overlays the
Sketch mode on top of the paint mode to appear like a cartoon. It also shown that other fun
effects can be obtained, such as the evil mode that greatly enhanced noisy edges, and the
alien mode that changed the skin of a face to appear bright green.

There are many commercial smartphone apps that perform similar fun effects on the user's
face, such as cartoon filters and skin color changers. There are also professional tools using
similar concepts, such as skin-smoothing video post-processing tools that attempt to
beautify women's faces by smoothing their skin while keeping the edges and non-skin
regions sharp, in order to make their faces appear younger.

This chapter shows how to port the application from a desktop to an embedded system, by
following the recommended guidelines of developing a working desktop version first, and
then porting it to embedded, and creating a user interface that is suitable for the embedded
application. The image processing code is shared between the two projects, so that the
reader can modify the cartoon filters for the desktop application, and easily see those
modifications in the embedded system as well.

Remember that this book includes an OpenCV installation script for Linux and full source
code for all projects discussed.

2
Exploring Structure from Motion

Using OpenCV
In this chapter, we will discuss the notion of Structure from Motion (SfM),or better put,
extracting geometric structures from images taken with a camera under motion, using
OpenCV's API to help us. First, let's constrain the otherwise very b road approach to SfM
using a single camera, usually called a monocular approach, and a discrete and sparse set of
frames rather than a continuous video stream. These two constrains will greatly simplify
the system we will sketch out in the coming pages, and help us understand the
fundamentals of any SfM method. To implement our method, we will follow in the
footsteps of Hartley and Zisserman (hereafter referred to as H&Z, for brevity), as
documented in Chapters 9 through 12 of their seminal book Multiple View Geometry in
Computer Vision.

In this chapter, we will cover the following:

Structure from Motion concepts
Estimating the camera motion from a pair of images
Reconstructing the scene
Reconstructing from many views
Refining the reconstruction

Throughout the chapter, we assume the use of a calibrated camera, one that was calibrated
beforehand. Calibration is a ubiquitous operation in Computer Vision, fully supported in
OpenCV using command-line tools, and was discussed in previous chapters. We, therefore,
assume the existence of the camera's intrinsic parameters embodied in the K matrix and
distortionn coefficients vector - the outputs from the calibration process.

Exploring Structure from Motion Using OpenCV

[49]

To make things clear in terms of language, from this point on, we will refer to a camera as a
single view of the scene rather than to the optics and hardware taking the image. A camera
has a 3D position in space (translation) and a 3D direction of view (orientation). In general,
we describe this as the 6 Degree of Freedom (DOF) camera pose, sometimes referred to as
extrinsic parameters. Between two cameras, therefore, there is a 3D translation element
(movement through space) and a 3D rotation of the direction of view.

We will also unify the terms for the point in the scene, world, real, or 3D to be the same
thing, a point that exists in our real world. The same goes for points in an image or 2D,
which are points in the image coordinates of some real 3D point that was projected on the
camera sensor at that location and time.

In the chapter's code sections, you will notice references to Multiple View Geometry in
Computer Vision, for example // HZ 9.12. This refers to equation number 12 of Chapter 9
of the book. Also, the text will include excerpts of code only; while the complete runnable
code is included in the material accompanied with the book.

The following flow diagram describes the process in the SfM pipeline we will implement.
We begin by triangulating an initial reconstructed point cloud of the scene, using 2D
features matched across the image set and a calculation of two camera poses. We then add
more views to the reconstruction by matching more points into the forming point cloud,
calculating camera poses and triangulating their matching points. In between, we will also
perform bundle adjustment to minimize the error in the reconstruction. All the steps are
detailed in the next sections of this chapter, with relevant code excerpts, pointers to useful
OpenCV functions, and mathematical reasoning:

Exploring Structure from Motion Using OpenCV

[50]

Structure from Motion concepts
The first discrimination we should make is the difference between stereo (or indeed any
multiview) and 3D reconstruction using calibrated rigs and SfM. A rig of two or more
cameras assumes that we already know the motion between the cameras, while in SfM, we
don't know what this motion is and we wish to find it. Calibrated rigs, from a simplistic
point of view, allow a much more accurate reconstruction of 3D geometry because there is
no error in estimating the distance and rotation between the cameras, it is already known.
The first step in implementing an SfM system is finding the motion between the cameras.
OpenCV may help us in a number of ways to obtain this motion, specifically using the
findFundamentalMat and findEssentialMat functions.

Let's think for one moment of the goal behind choosing an SfM algorithm. In most cases, we
wish to obtain the geometry of the scene, for example, where objects are in relation to the
camera and what their form is. Having found the motion between the cameras picturing the
same scene, from a reasonably similar point of view, we would now like to reconstruct the
geometry. In Computer Vision jargon, this is known as triangulation, and there are plenty
of ways to go about it. It may be done by way of ray intersection, where we construct two
rays-one from each camera's center of projection and a point on each of the image planes.
The intersection of these rays in space will, ideally, intersect at one 3D point in the real
world that is imaged in each camera, as shown in the following diagram:

Exploring Structure from Motion Using OpenCV

[51]

In reality, ray intersection is highly unreliable; H&Z recommend against it. This is because
the rays usually do not intersect, making us fall back to using the middle point on the
shortest segment connecting the two rays. OpenCV contains a simple API for a more
accurate form of triangulation--the triangulatePoints function--so we do not need to
code this part on our own.

After you learn how to recover 3D geometry from two views, we will see how we can
incorporate more views of the same scene to get an even richer reconstruction. At that
point, most SfM methods try to optimize the bundle of estimated positions of our cameras
and 3D points by means of Bundle Adjustment, in the Refinement of the reconstruction
section. OpenCV contains the means for Bundle Adjustment in its new Image Stitching
Toolbox. However, the beauty of working with OpenCV and C++ is the abundance of
external tools that can be easily integrated into the pipeline. We will, therefore, see how to
integrate an external bundle adjuster, the Ceres nonlinear optimization package.

Now that we have sketched an outline of our approach to SfM using OpenCV, we will see
how each element can be implemented.

Estimating the camera motion from a pair of
images
Before we set out to actually find the motion between two cameras, let's examine the inputs
and the tools we have at hand to perform this operation. First, we have two images of the
same scene from (hopefully not extremely) different positions in space. This is a powerful
asset, and we will make sure that we use it. As for tools, we should take a look at
mathematical objects that impose constraints over our images, cameras, and the scene.

Two very useful mathematical objects are the fundamental matrix (denoted by F) and the
essential matrix (denoted by E), which impose a constraint over corresponding 2D points in
two images of the scene. They are mostly similar, except that the essential matrix is
assuming usage of calibrated cameras; this is the case for us, so we will choose it. OpenCV
allows us to find the fundamental matrix via the findFundamentalMat function and the
essential matrix via the findEssentialMatrix function. Finding the essential matrix can
be done as follows:

 Mat E = findEssentialMat(leftPoints, rightPoints, focal, pp);

Exploring Structure from Motion Using OpenCV

[52]

This function makes use of matching points in the left-hand side image, leftPoints, and
right-hand side image, rightPoints, which we will discuss shortly, as well as two
additional pieces of information from the camera's calibration: the focal length, focal, and
principal point, pp.

The essential matrix E is a 3x3 sized matrix, which imposes the following constraint on a
point x in one image and a point and a point x' corresponding image:

x'KTEKx = 0

Here, K is the calibration matrix.
This is extremely useful, as we are about to see. Another important fact we use is that the
essential matrix is all we need in order to recover the two cameras' positions from our
images, although only up to an arbitrary unit of scale. So, if we obtain the essential matrix,
we know where each camera is positioned in space, and where it is looking. We can easily
calculate the matrix if we have enough of those constraint equations, simply because each
equation can be used to solve for a small part of the matrix. In fact, OpenCV internally
calculates it using just five point-pairs, but through the Random Sample Consensus
algorithm (RANSAC), many more pairs can be used and they make for a more robust
solution.

Point matching using rich feature descriptors
Now, we will make use of our constraint equations to calculate the essential matrix. To get
our constraints, remember that for each point in image A, we must find a corresponding
point in image B. We can achieve such a matching using OpenCV's extensive 2D feature-
matching framework, which has greatly matured in the past few years.

Feature extraction and descriptor matching is an essential process in Computer Vision, and
is used in many methods to perform all sorts of operations, for example, detecting the
position and orientation of an object in an image or searching a big database of images for
similar images through a given query. In essence, feature extraction means selecting points in
the image that would make for good features and computing a descriptor for them. A
descriptor is a vector of numbers that describes the surrounding environment around a
feature point in an image. Different methods have different length and data types for their
descriptor vectors. Descriptor Matching is the process of finding a corresponding feature of
one set in another using its descriptor. OpenCV provides very easy and powerful methods
to support feature extraction and matching.

Exploring Structure from Motion Using OpenCV

[53]

Let's examine a very simple feature extraction and matching scheme:

 vector<KeyPoint> keypts1, keypts2;
 Mat desc1, desc2;

 // detect keypoints and extractORBdescriptors
 Ptr<Feature2D>orb = ORB::create(2000);
 orb->detectAndCompute(img1, noArray(), keypts1, desc1);
 orb->detectAndCompute(img2, noArray(), keypts2, desc2);

 // matching descriptors
 Ptr<DescriptorMatcher>matcher
 =DescriptorMatcher::create("BruteForce-Hamming");
 vector<DMatch> matches;
 matcher->match(desc1, desc2, matches);

You may have already seen similar OpenCV code, but let's review it quickly. Our goal is to
obtain three elements: feature points for two images, descriptors for them, and a matching
between the two sets of features. OpenCV provides a range of feature detectors, descriptor
extractors, and matchers. In this simple example, we use the ORB class to get both the 2D
location of Oriented BRIEF (ORB)(where, BRIEF stands for Binary Robust Independent
Elementary Features) feature points and their respective descriptors. ORB may be preferred
over traditional 2D features such as the Speeded-Up Robust Features (SURF) or Scale
Invariant Feature Transform (SIFT) because it is unencumbered with intellectual property
and shown to be faster to detect, compute, and match.

We use a bruteforce binary matcher to get the matching, which simply matches two feature
sets by comparing each feature in the first set to each feature in the second set (hence the
phrasing bruteforce).

In the following image, we will see a matching of feature points on two images from the
Fountain P11 sequence can be found at h t t p ://c v l a b . e p f l . c h /~s t r e c h a /m u l t i v i e w /d e n s

e M V S . h t m l :

http://cvlab.epfl.ch/~strecha/multiview/denseMVS.html
http://cvlab.epfl.ch/~strecha/multiview/denseMVS.html
http://cvlab.epfl.ch/~strecha/multiview/denseMVS.html
http://cvlab.epfl.ch/~strecha/multiview/denseMVS.html
http://cvlab.epfl.ch/~strecha/multiview/denseMVS.html
http://cvlab.epfl.ch/~strecha/multiview/denseMVS.html
http://cvlab.epfl.ch/~strecha/multiview/denseMVS.html
http://cvlab.epfl.ch/~strecha/multiview/denseMVS.html
http://cvlab.epfl.ch/~strecha/multiview/denseMVS.html
http://cvlab.epfl.ch/~strecha/multiview/denseMVS.html
http://cvlab.epfl.ch/~strecha/multiview/denseMVS.html
http://cvlab.epfl.ch/~strecha/multiview/denseMVS.html
http://cvlab.epfl.ch/~strecha/multiview/denseMVS.html
http://cvlab.epfl.ch/~strecha/multiview/denseMVS.html
http://cvlab.epfl.ch/~strecha/multiview/denseMVS.html
http://cvlab.epfl.ch/~strecha/multiview/denseMVS.html
http://cvlab.epfl.ch/~strecha/multiview/denseMVS.html
http://cvlab.epfl.ch/~strecha/multiview/denseMVS.html
http://cvlab.epfl.ch/~strecha/multiview/denseMVS.html
http://cvlab.epfl.ch/~strecha/multiview/denseMVS.html
http://cvlab.epfl.ch/~strecha/multiview/denseMVS.html
http://cvlab.epfl.ch/~strecha/multiview/denseMVS.html
http://cvlab.epfl.ch/~strecha/multiview/denseMVS.html
http://cvlab.epfl.ch/~strecha/multiview/denseMVS.html
http://cvlab.epfl.ch/~strecha/multiview/denseMVS.html
http://cvlab.epfl.ch/~strecha/multiview/denseMVS.html
http://cvlab.epfl.ch/~strecha/multiview/denseMVS.html
http://cvlab.epfl.ch/~strecha/multiview/denseMVS.html
http://cvlab.epfl.ch/~strecha/multiview/denseMVS.html
http://cvlab.epfl.ch/~strecha/multiview/denseMVS.html
http://cvlab.epfl.ch/~strecha/multiview/denseMVS.html
http://cvlab.epfl.ch/~strecha/multiview/denseMVS.html
http://cvlab.epfl.ch/~strecha/multiview/denseMVS.html
http://cvlab.epfl.ch/~strecha/multiview/denseMVS.html
http://cvlab.epfl.ch/~strecha/multiview/denseMVS.html
http://cvlab.epfl.ch/~strecha/multiview/denseMVS.html
http://cvlab.epfl.ch/~strecha/multiview/denseMVS.html
http://cvlab.epfl.ch/~strecha/multiview/denseMVS.html
http://cvlab.epfl.ch/~strecha/multiview/denseMVS.html
http://cvlab.epfl.ch/~strecha/multiview/denseMVS.html
http://cvlab.epfl.ch/~strecha/multiview/denseMVS.html
http://cvlab.epfl.ch/~strecha/multiview/denseMVS.html
http://cvlab.epfl.ch/~strecha/multiview/denseMVS.html
http://cvlab.epfl.ch/~strecha/multiview/denseMVS.html
http://cvlab.epfl.ch/~strecha/multiview/denseMVS.html
http://cvlab.epfl.ch/~strecha/multiview/denseMVS.html
http://cvlab.epfl.ch/~strecha/multiview/denseMVS.html
http://cvlab.epfl.ch/~strecha/multiview/denseMVS.html
http://cvlab.epfl.ch/~strecha/multiview/denseMVS.html
http://cvlab.epfl.ch/~strecha/multiview/denseMVS.html
http://cvlab.epfl.ch/~strecha/multiview/denseMVS.html
http://cvlab.epfl.ch/~strecha/multiview/denseMVS.html
http://cvlab.epfl.ch/~strecha/multiview/denseMVS.html
http://cvlab.epfl.ch/~strecha/multiview/denseMVS.html
http://cvlab.epfl.ch/~strecha/multiview/denseMVS.html
http://cvlab.epfl.ch/~strecha/multiview/denseMVS.html
http://cvlab.epfl.ch/~strecha/multiview/denseMVS.html
http://cvlab.epfl.ch/~strecha/multiview/denseMVS.html
http://cvlab.epfl.ch/~strecha/multiview/denseMVS.html
http://cvlab.epfl.ch/~strecha/multiview/denseMVS.html
http://cvlab.epfl.ch/~strecha/multiview/denseMVS.html
http://cvlab.epfl.ch/~strecha/multiview/denseMVS.html
http://cvlab.epfl.ch/~strecha/multiview/denseMVS.html
http://cvlab.epfl.ch/~strecha/multiview/denseMVS.html
http://cvlab.epfl.ch/~strecha/multiview/denseMVS.html
http://cvlab.epfl.ch/~strecha/multiview/denseMVS.html
http://cvlab.epfl.ch/~strecha/multiview/denseMVS.html
http://cvlab.epfl.ch/~strecha/multiview/denseMVS.html
http://cvlab.epfl.ch/~strecha/multiview/denseMVS.html
http://cvlab.epfl.ch/~strecha/multiview/denseMVS.html
http://cvlab.epfl.ch/~strecha/multiview/denseMVS.html
http://cvlab.epfl.ch/~strecha/multiview/denseMVS.html
http://cvlab.epfl.ch/~strecha/multiview/denseMVS.html
http://cvlab.epfl.ch/~strecha/multiview/denseMVS.html
http://cvlab.epfl.ch/~strecha/multiview/denseMVS.html
http://cvlab.epfl.ch/~strecha/multiview/denseMVS.html
http://cvlab.epfl.ch/~strecha/multiview/denseMVS.html
http://cvlab.epfl.ch/~strecha/multiview/denseMVS.html
http://cvlab.epfl.ch/~strecha/multiview/denseMVS.html
http://cvlab.epfl.ch/~strecha/multiview/denseMVS.html
http://cvlab.epfl.ch/~strecha/multiview/denseMVS.html
http://cvlab.epfl.ch/~strecha/multiview/denseMVS.html
http://cvlab.epfl.ch/~strecha/multiview/denseMVS.html
http://cvlab.epfl.ch/~strecha/multiview/denseMVS.html
http://cvlab.epfl.ch/~strecha/multiview/denseMVS.html
http://cvlab.epfl.ch/~strecha/multiview/denseMVS.html
http://cvlab.epfl.ch/~strecha/multiview/denseMVS.html
http://cvlab.epfl.ch/~strecha/multiview/denseMVS.html
http://cvlab.epfl.ch/~strecha/multiview/denseMVS.html
http://cvlab.epfl.ch/~strecha/multiview/denseMVS.html
http://cvlab.epfl.ch/~strecha/multiview/denseMVS.html

Exploring Structure from Motion Using OpenCV

[54]

Practically, raw matching like we just performed is good only up to a certain level, and
many matches are probably erroneous. For that reason, most SfM methods perform some
form of filtering on the matches to ensure correctness and reduce errors. One form of
filtering, which is built into OpenCV's brute-force matcher, is cross-check filtering. That is,
a match is considered true if a feature of the first image matches a feature of the second
image, and the reverse check also matches the feature of the second image with the feature
of the first image. Another common filtering mechanism, used in the provided code, is to
filter based on the fact that the two images are of the same scene and have a certain stereo-
view relationship between them. In practice, the filter tries to robustly calculate the
fundamental or essential matrix which we will learn about in the Finding camera matrices
section and retain those feature pairs that correspond with this calculation with small
errors.

An alternative to using rich features, such as ORB, is to use optical flow. The following
information box provides a short overview of optical flow. It is possible to use optical flow
instead of descriptor matching to find the required point matching between two images,
while the rest of the SfM pipeline remains the same. OpenCV recently extended its API to
get the flow field from two images and now it is faster and more powerful.

Optical flow is the process of matching selected points from one image to
another, assuming both images are part of a sequence and relatively close
to one another. Most optical flow methods compare a small region, known
as the search window or patch, around each point from image A to the
same area in image B. Following a very common rule in Computer Vision,
called the brightness constancy constraint (and other names), the small
patches of the image will not change drastically from one image to the
other, and therefore the magnitude of their subtraction should be close to
zero. In addition to matching patches, newer methods of optical flow use a
number of additional methods to get better results. One is using image
pyramids, which are smaller and smaller resized versions of the image,
which allow for working from-coarse-to-fine, a very well-used trick in
Computer Vision. Another method is to define global constraints on the
flow field, assuming that the points close to each other move together in
the same direction. A more in-depth review of optical flow methods in
OpenCV can be found in a chapter named Developing Fluid Wall Using the
Microsoft Kinect which is available on the Packt website.

Exploring Structure from Motion Using OpenCV

[55]

Finding camera matrices
Now that we have obtained matches between keypoints, we can calculate the essential
matrix. However, we must first align our matching points into two arrays, where an index
in one array corresponds to the same index in the other. This is required by the
findEssentialMat function as we've seen in the Estimating Camera Motion section. We
would also need to convert the KeyPoint structure to a Point2f structure. We must pay
special attention to the queryIdx and trainIdx member variables of DMatch, the OpenCV
struct that holds a match between two keypoints, as they must align with the way we used
the DescriptorMatcher::match() function. The following code section shows how to
align a matching into two corresponding sets of 2D points, and how these can be used to
find the essential matrix:

 vector<KeyPoint> leftKpts, rightKpts;
 // ... obtain keypoints using a feature extractor

 vector<DMatch> matches;
 // ... obtain matches using a descriptor matcher

 //align left and right point sets
 vector<Point2f>leftPts, rightPts;
 for(size_ti = 0; i < matches.size(); i++){
 // queryIdx is the "left" image
 leftPts.push_back(leftKpts[matches[i].queryIdx].pt);

 // trainIdx is the "right" image
 rightPts.push_back(rightKpts[matches[i].trainIdx].pt);
 }

 //robustly find the Essential Matrix
 Mat status;
 Mat E = findEssentialMat(
 leftPts, // points from left image
 rightPts, // points from right image
 focal, // camera focal length factor
 pp, // camera principal point
 cv::RANSAC, // use RANSAC for a robust solution
 0.999, // desired solution confidence level
 1.0, // point-to-epipolar-line threshold
 status); // binary vector for inliers

Exploring Structure from Motion Using OpenCV

[56]

We may, later, use the status binary vector to prune those points that align with the
recovered essential matrix. Look at the following image for an illustration of point matching
after pruning. The red arrows mark feature matches that were removed in the process of
finding the matrix, and the green arrows are feature matches that were retained:

Now we are ready to find the camera matrices. This process is described at length in a
chapter of H&Z's book; however, the new OpenCV 3 API makes things very easy for us by
introducing the recoverPose function. First, we will briefly examine the structure of the
camera matrix we are going to use:

Exploring Structure from Motion Using OpenCV

[57]

This is the model for our camera pose, which consists of two elements: rotation (denoted
by R) and translation (denoted by t). The interesting thing is that it holds a very essential
equation: x = PX, where x is a 2D point on the image and X is a 3D point in space. There is
more to it, but this matrix gives us a very important relationship between the image points
and the scene points. So, now that we have a motivation for finding the camera matrices, we
will see how it can be done. The following code section shows how to decompose the
essential matrix into the rotation and translation elements:

 Mat E;
 // ... find the essential matrix

 Mat R, t; //placeholders for rotation and translation

 //Find Pright camera matrix from the essential matrix
 //Cheirality check is performed internally.
 recoverPose(E, leftPts, rightPts, R, t, focal, pp, mask);

Very simple. Without going too deeply into the mathematical interpretation, this conversion
of the essential matrix to rotation and translation is possible because the essential matrix
was originally composed by these two elements. Strictly for satisfying our curiosity, we can
look at the following equation for the essential matrix, which appears in the literature:
E=[t]xR. We see it is composed of (some form of) a translation element t and a rotational
element R.

Note that a cheirality check is internally performed in the recoverPose function. The
cheirality check makes sure that all triangulated 3D points are in front of the reconstructed
camera. H&Z show that camera matrix recovery from the essential matrix has in fact four
possible solutions, but the only correct solution is the one that will produce triangulated
points in front of the camera, hence the need for a cheirality check. We will learn about
triangulation and 3D reconstruction in the next section.

Note what we just did only gives us one camera matrix, and for triangulation, we require
two camera matrices. This operation assumes that one camera matrix is fixed and canonical
(no rotation and no translation, placed at the world origin):

Exploring Structure from Motion Using OpenCV

[58]

The other camera that we recovered from the essential matrix has moved and rotated in
relation to the fixed one. This also means that any of the 3D points that we recover from
these two camera matrices will have the first camera at the world origin point (0, 0, 0). The
assumption of a canonical camera is just how cv::recoverPose works; however in other
situations, the origin camera pose matrix may be different than the canonical and still be
valid for 3D points' triangulation, as we will see later when we will not use
cv::recoverPose to get a new camera pose matrix.

One more thing we can think of adding to our method is error checking. Many times, the
calculation of an essential matrix from point matching is erroneous, and this affects the
resulting camera matrices. Continuing to triangulate with faulty camera matrices is
pointless. We can install a check to see if the rotation element is a valid rotation matrix.
Keeping in mind that rotation matrices must have a determinant of 1 (or -1), we can simply
do the following:

 bool CheckCoherentRotation(const cv::Mat_<double>& R) {
 if(fabsf(determinant(R))-1.0 >EPS) {
 cerr <<"rotation matrix is invalid" <<endl;
 return false;
 }
 return true;
 }

Think of EPS (from Epsilon) as a very small number that helps us cope with numerical
calculation limits of our CPU. In reality, we may define the following in code:

 #define EPS 1E-07

We can now see how all these elements combine into a function that recovers the P
matrices. First, we will introduce some convenience data structures and type shorthand:

 typedef std::vector<cv::KeyPoint> Keypoints;
 typedef std::vector<cv::Point2f> Points2f;
 typedef std::vector<cv::Point3f> Points3f;
 typedef std::vector<cv::DMatch> Matching;

 struct Features { //2D features
 Keypoints keyPoints;
 Points2f points;
 cv::Mat descriptors;
 };

 struct Intrinsics { //camera intrinsic parameters
 cv::Mat K;
 cv::Mat Kinv;
 cv::Mat distortion;

Exploring Structure from Motion Using OpenCV

[59]

 };

Now we can write the camera matrix finding function:

 void findCameraMatricesFromMatch(
 const Intrinsics& intrin,
 const Matching& matches,
 const Features& featuresLeft,
 const Features& featuresRight,
 cv::Matx34f& Pleft,
 cv::Matx34f& Pright) {
 {
 //Note: assuming fx = fy
 const double focal = intrin.K.at<float>(0, 0);
 const cv::Point2d pp(intrin.K.at<float>(0, 2),
 intrin.K.at<float>(1, 2));

 //align left and right point sets using the matching
 Features left;
 Features right;
 GetAlignedPointsFromMatch(
 featuresLeft,
 featuresRight,
 matches,
 left,
 right);

 //find essential matrix
 Mat E, mask;
 E = findEssentialMat(
 left.points,
 right.points,
 focal,
 pp,
 RANSAC,
 0.999,
 1.0,
 mask);

 Mat_<double> R, t;

 //Find Pright camera matrix from the essential matrix
 recoverPose(E, left.points, right.points, R, t, focal, pp, mask);

 Pleft = Matx34f::eye();
 Pright = Matx34f(R(0,0), R(0,1), R(0,2), t(0),
 R(1,0), R(1,1), R(1,2), t(1),
 R(2,0), R(2,1), R(2,2), t(2));

Exploring Structure from Motion Using OpenCV

[60]

 }

At this point, we have the two cameras that we need in order to reconstruct the scene. The
canonical first camera in the Pleft variable, and the second camera we calculated form the
essential matrix in the Pright variable.

Choosing the image pair to use first
Given we have more than just two image views of the scene, we must choose which two
views we will start the reconstruction from. In their paper, Snavely et al. suggest to picking
the two views that have the least number of homography inliers. A homography is a
relationship between two images or sets of points that lie on a plane; the homography
matrix defines the transformation from one plane to another. In case of an image or a set of
2D points, the homography matrix is of size 3x3.

When Snavely et al. look for the lowest inlier ratio, they essentially suggest that you calculate
the homography matrix between all pairs of images and pick the pair whose points mostly
do not correspond with the homography matrix. This means that the geometry of the scene
in these two views is not planar, or at least, not the same plane in both views, which helps
when doing 3D reconstruction. For reconstruction, it is best to look at a complex scene with
non-planar geometry, with things closer and farther away from the camera.

The following code snippet shows how to use OpenCV's findHomography function to
count the number of inliers between two views whose features were already extracted and
matched:

 int findHomographyInliers(
 const Features& left,
 const Features& right,
 const Matching& matches) {
 //Get aligned feature vectors
 Features alignedLeft;
 Features alignedRight;
 GetAlignedPointsFromMatch(left, right, matches, alignedLeft,
 alignedRight);

 //Calculate homography with at least 4 points
 Mat inlierMask;
 Mat homography;
 if(matches.size() >= 4) {
 homography = findHomography(alignedLeft.points,
 alignedRight.points,
 cv::RANSAC, RANSAC_THRESHOLD,
 inlierMask);

Exploring Structure from Motion Using OpenCV

[61]

 }

 if(matches.size() < 4 or homography.empty()) {
 return 0;
 }

 return countNonZero(inlierMask);
 }

The next step is to perform this operation on all pairs of image views in our bundle and sort
them based on the ratio of homography inliers to outliers:

 //sort pairwise matches to find the lowest Homography inliers
 map<float, ImagePair>pairInliersCt;
 const size_t numImages = mImages.size();

 //scan all possible image pairs (symmetric)
 for (size_t i = 0; i < numImages - 1; i++) {
 for (size_t j = i + 1; j < numImages; j++) {

 if (mFeatureMatchMatrix[i][j].size() < MIN_POINT_CT) {
 //Not enough points in matching
 pairInliersCt[1.0] = {i, j};
 continue;
 }

 //Find number of homography inliers
 const int numInliers = findHomographyInliers(
 mImageFeatures[i],
 mImageFeatures[j],
 mFeatureMatchMatrix[i][j]);

 const float inliersRatio =
 (float)numInliers /
 (float)(mFeatureMatchMatrix[i][j].size());

 pairInliersCt[inliersRatio] = {i, j};
 }
 }

Note that std::map<float, ImagePair> will internally sort the pairs based on the map's
key: the inliers ratio. We then simply need to traverse this map from the beginning to find
the image pair with least inlier ratio, and if that pair cannot be used, we can easily skip
ahead to the next pair. The next section will reveal how we use these cameras pair to obtain
a 3D structure of the scene.

Exploring Structure from Motion Using OpenCV

[62]

Reconstructing the scene
Next, we look into the matter of recovering the 3D structure of the scene from the
information we have acquired so far. As we had done before, we should look at the tools
and information we have at hand to achieve this. In the preceding section, we obtained two
camera matrices from the essential matrix; we already discussed how these tools would be
useful for obtaining the 3D position of a point in space. Then, we can go back to our
matched point pairs to fill in our equations with numerical data. The point pairs will also be
useful in calculating the error we get from all our approximate calculations.

This is the time to see how we can perform triangulation using OpenCV. Luckily, OpenCV
supplies us with a number of functions that make this process easy to implement:
triangulatePoints, undistortPoints, and convertPointsFromHomogeneous.

Remember we had two key equations arising from the 2D point matching and P matrices:
x=PX and x'= P'X, where x and x' are matching 2D points and X is a real-world 3D point
imaged by the two cameras. If we examine these equations, we will see that the x vector that
represents a 2D point should be of size (3x1) and X that represents a 3D point should be
(4x1). Both points received an extra entry in the vector; this is called Homogeneous
Coordinates. We use these coordinates to streamline the triangulation process.

The equation x = PX (where x is a 2D image point, X is a world 3D point, and P is a camera
matrix) is missing a crucial element: the camera calibration parameters matrix, K. The
matrix K is used to transform 2D image points from pixel coordinates to normalized
coordinates (in the [-1, 1] range) removing the dependency on the size of the image in
pixels, which is absolutely necessary. For example, a 2D point x1 = (160, 120) in a 320x240
image, may transform to x1' = (0, 0) under certain circumstances. To that end, we use the
undistortPoints function:

 Vector<Point2f> points2d; //in 2D coordinates (x, y)
 Mat normalizedPts; //in homogeneous coordinates (x', y', 1)

 undistortPoints(points2d, normalizedPts, K, Mat());

We are now ready to triangulate the normalized 2D image points into 3D world points:

 Matx34f Pleft, Pright;
 //... findCameraMatricesFromMatch

 Mat normLPts;
 Mat normRPts;
 //... undistortPoints

 //the result is a set of 3D points in homogeneous coordinates (4D)

Exploring Structure from Motion Using OpenCV

[63]

 Mat pts3dHomog;
 triangulatePoints(Pleft, Pright, normLPts, normRPts, pts3dHomog);

 //convert from homogeneous to 3D world coordinates
 Mat points3d;
 convertPointsFromHomogeneous(pts3dHomog.t(), points3d);

In the following image, we can see a triangulation result of two images out of the Fountain
P-11 sequence at http://cvlabwww.epfl.ch/data/multiview/denseMVS.html. The two
images at the top are the original two views of the scene, and the bottom pair is the view of
the reconstructed point cloud from the two views, including the estimated cameras looking
at the fountain. We can see how the right-hand side section of the red brick wall was
reconstructed, and also the fountain that protrudes from the wall:

http://cvlabwww.epfl.ch/data/multiview/denseMVS.html

Exploring Structure from Motion Using OpenCV

[64]

However, as we discussed earlier, we have an issue with the reconstruction being only up
to scale. We should take a moment to understand what up to scale means. The motion we
obtained between our two cameras is going to have an arbitrary unit of measurement that
is, it is not in centimeters or inches, but simply a given unit of scale. Our reconstructed
cameras we will be one unit of scale distance apart. This has big implications, should we
decide to recover more cameras later, as each pair of cameras will have their own units of
scale, rather than a common one.

We will now discuss how the error measure that we set up may help us in finding a more
robust reconstruction. First, we should note that reprojection means we simply take the
triangulated 3D point and reimage it on a camera to get a reprojected 2D point, we then
compare the distance between the original 2D point and the reprojected 2D point. If this
distance is large, this means we may have an error in triangulation, so we may not want to
include this point in the final result. Our global measure is the average reprojection distance
and may give us a hint to how our triangulation performed overall. High average
reprojection rates may point to a problem with the P matrices, and therefore a possible
problem with the calculation of the essential matrix or the matched feature points. To
reproject points, OpenCV offers the projectPoints function:

 Mat x34f P; //camera pose matrix
 Mat points3d; //triangulated points
 Points2d imgPts; //2D image points that correspond to 3D points
 Mat K; //camera intrinsics matrix

 // ... triangulate points

 //get rotation and translation elements
 Mat R;
 Rodrigues(P.get_minor<3, 3>(0, 0), rvec);
 Mat t = P.get_minor<3, 1>(0, 3);

 //reproject 3D points back into image coordinates
 Mat projPts;
 projectPoints(points3d, R, t, K, Mat(),projPts);

 //check individual reprojection error
 for (size_t i = 0; i < points3d.rows; i++) {
 const double err = norm(projPts.at<Point2f>(i) - imgPts[i]);

 //check if point reprojection error is too big
 if (err > MIN_REPROJECTION_ERROR){
 // Point reprojection error is too big.
 }
 }

Exploring Structure from Motion Using OpenCV

[65]

Next, we will take a look at recovering more cameras looking at the same scene, and
combining the 3D reconstruction results.

Reconstruction from many views
Now that we know how to recover the motion and scene geometry from two cameras, it
would seem simple to get the parameters of additional cameras and more scene points
simply by applying the same process. This matter is in fact not so simple, as we can only get
a reconstruction that is upto scale, and each pair of pictures has a different scale.

There are a number of ways to correctly reconstruct the 3D scene data from multiple views.
One way to achieve camera pose estimation or camera resectioning, is the Perspective N-
Point(PnP) algorithm, where we try to solve for the position of a new camera using N 3D
scene points, which we have already found and their respective 2D image points. Another
way is to triangulate more points and see how they fit into our existing scene geometry; this
will tell us the position of the new camera by means of point cloud registration. In this
section, we will discuss using OpenCV's solvePnP functions that implements the first
method.

The first step we choose in this kind of reconstruction, incremental 3D reconstruction with
camera resection, is to get a baseline scene structure. As we will look for the position of any
new camera based on a known structure of the scene, we need to find an initial structure to
work with. We can use the method we previously discussed-for example, between the first
and second frames, to get a baseline by finding the camera matrices (using the
findCameraMatricesFromMatch function) and triangulate the geometry (using
triangulatePoints).

Having found an initial structure, we may continue; however, our method requires quite a
bit of bookkeeping. First we should note that the solvePnP function needs aligned vectors
of 3D and 2D points. Aligned vectors mean that the ith position in one vector aligns with
the ith position in the other. To obtain these vectors we need to find those points among the
3D points that we recovered earlier, which align with the 2D points in our new frame. A
simple way to do this is to attach, for each 3D point in the cloud, a vector denoting the 2D
points it came from. We can then use feature matching to get a matching pair.

Exploring Structure from Motion Using OpenCV

[66]

Let's introduce a new structure for a 3D point as follows:

 struct Point3DInMap {
 // 3D point.
 cv::Point3f p;

 // Mapping from image index to a 2D point in that image's
 // list of features that correspond to this 3D point.
 std::map<int, int> originatingViews;
 };

It holds, on top of the 3D point, an index to the 2D point inside the vector of 2D points that
each frame has, which had contributed to this 3D point. The information for
Point3DInMap::originatingViews must be initialized when triangulating a new 3D
point, recording which cameras were involved in the triangulation. We can then use it to
trace back from our 3D point cloud to the 2D point in each frame.

Let's add some convenience definitions:

 struct Image2D3DMatch { //Aligned vectors of 2D and 3D points
 Points2f points2D;
 Points3f points3D;
 };

 //A mapping between an image and its set of 2D-3D aligned points
 typedef std::map<int, Image2D3DMatch> Images2D3DMatches;

Now, let's see how to get aligned 2D-3D point vectors to use with solvePnP. The following
code segment illustrates the process of finding 2D points in a new image from the existing
3D point cloud augmented with the originating 2D views. Simply put, the algorithm scans
the existing 3D points in the cloud, looks at their originating 2D points, and tries to find a
match (via the feature descriptors) to 2D points in the new image. If such a match is found,
it may indicate that this 3D point also appears in the new image at a specific 2D point:

 Images2D3DMatches matches;

 //scan all pending new views
 for (size_tnewView = 0; newView<images.size(); newView++) {
 if (doneViews.find(newView) != doneViews.end()) {
 continue; //skip done views
 }

 Image2D3DMatch match2D3D;

 //scan all current cloud's 3D points
 for (const Point3DInMap&p : currentCloud) {

Exploring Structure from Motion Using OpenCV

[67]

 //scan all originating views for that 3D cloud point
 for (const auto& origViewAndPoint : p.originatingViews) {

 //check for 2D-2D matching via the match matrix
 int origViewIndex = origViewAndPoint.first;
 int origViewFeatureIndex = origViewAndPoint.second;

 //match matrix is upper-triangular (not symmetric)
 //so the left index must be the smaller one
 bool isLeft = (origViewIndex <newView);
 int leftVIdx = (isLeft) ? origViewIndex: newView;
 int rightVIdx = (isLeft) ? newView : origViewIndex;

 //scan all 2D-2D matches between originating and new views
 for (const DMatch& m : matchMatrix[leftVIdx][rightVIdx]) {
 int matched2DPointInNewView = -1;

 //find a match for this new view with originating view
 if (isLeft) {
 //originating view is 'left'
 if (m.queryIdx == origViewFeatureIndex) {
 matched2DPointInNewView = m.trainIdx;
 }
 } else {
 //originating view is 'right'
 if (m.trainIdx == origViewFeatureIndex) {
 matched2DPointInNewView = m.queryIdx;
 }
 }

 if (matched2DPointInNewView >= 0) {
 //This point is matched in the new view
 const Features& newFeat = imageFeatures[newView];

 //Add the 2D point form the new view
 match2D3D.points2D.push_back(
 newFeat.points[matched2DPointInNewView]
);

 //Add the 3D point
 match2D3D.points3D.push_back(cloudPoint.p);

 break; //look no further
 }
 }
 }
 }
 matches[viewIdx] = match2D3D;

Exploring Structure from Motion Using OpenCV

[68]

 }

Now we have aligned the pairing of 3D points in the scene to the 2D points in a new frame,
and we can use them to recover the camera position as follows:

 Image2D3DMatch match;
 //... find 2D-3D match

 //Recover camera pose using 2D-3D correspondence
 Mat rvec, tvec;
 Mat inliers;
 solvePnPRansac(
 match.points3D, //3D points
 match.points2D, //2D points
 K, //Calibration intrinsics matrix
 distortion, //Calibration distortion coefficients
 rvec,//Output extrinsics: Rotation vector
 tvec, //Output extrinsics: Translation vector
 false, //Don't use initial guess
 100, //Iterations
 RANSAC_THRESHOLD, //Reprojection error threshold
 0.99, //Confidence
 inliers //Output: inliers indicator vector
);

 //check if inliers-to-points ratio is too small
 const float numInliers = (float)countNonZero(inliers);
 const float numPoints = (float)match.points2D.size();
 const float inlierRatio = numInliers / numPoints;

 if (inlierRatio < POSE_INLIERS_MINIMAL_RATIO) {
 cerr << "Inliers ratio is too small: "
 << numInliers<< " / " <<numPoints<< endl;
 //perhaps a 'return;' statement
 }

 Mat_<double>R;
 Rodrigues(rvec, R); //convert to a 3x3 rotation matrix

 P(0, 0) = R(0, 0); P(0, 1) = R(0, 1); P(0, 2) = R(0, 2);
 P(1, 0) = R(1, 0); P(1, 1) = R(1, 1); P(1, 2) = R(1, 2);
 P(2, 0) = R(2, 0); P(2, 1) = R(2, 1); P(2, 2) = R(2, 2);
 P(0, 3) = tvec.at<double>(0, 3);
 P(1, 3) = tvec.at<double>(1, 3);
 P(2, 3) = tvec.at<double>(2, 3);

Exploring Structure from Motion Using OpenCV

[69]

Note that we are using the solvePnPRansac function rather than the solvePnP function as
it is more robust to outliers. Now that we have a new P matrix, we can simply use the
triangulatePoints function as we did earlier and populate our point cloud with more
3D points.

In the following image, we see an incremental reconstruction of the Fountain-P11 scene at
http://cvlabwww.epfl.ch/data/multiview/denseMVS.html, starting from the fourth
image. The top-left image is the reconstruction after four images were used; the
participating cameras are shown as red pyramids with a white line showing the direction.
The other images show how more cameras add more points to the cloud:

http://cvlabwww.epfl.ch/data/multiview/denseMVS.html

Exploring Structure from Motion Using OpenCV

[70]

Refinement of the reconstruction
One of the most important parts of an SfM method is refining and optimizing the
reconstructed scene, also known as the process of Bundle Adjustment (BA). This is an
optimization step where all the data we gathered is fitted to a monolithic model. Both the
position of the recovered 3D points and the positions of the cameras are optimized, so re-
projection errors are minimized. In other words, recovered 3D points that are re-projected
on the image are expected to lie close to the position of originating 2D feature points that
generated them. The BA process we use will try to minimize this error for all 3D points
together, making for a very big system of simultaneous linear equations with on the order
of thousands of parameters.

We will implement a BA algorithm using the Ceres library, a well-known optimization
package from Google. Ceres has built-in tools to help with BA, such as automatic
differentiation and many flavors of linear and nonlinear optimization schemes, which result
in less code and more flexibility.

To make things simple and easy to implement, we will make a few assumptions, whereas in
a real SfM system, these things cannot be neglected. Firstly, we will assume a simple
intrinsic model for our cameras, specifically that the focal length in x and y is the same and
the center of projection is exactly the middle of the image. We further assume that all
cameras share the same intrinsic parameters, meaning that the same camera takes all the
images in the bundle with the exact configuration (for example, zoom). These assumptions
greatly reduce the number of parameters to optimize, which in turn makes the optimization
not only easier to code but also faster to converge.

To start, we will model the error function, sometimes also called the cost function, which is,
simply put, the way the optimization knows how good the new parameters are and also
which way to go to get even better parameters. We can write the following functor that
makes use of Ceres' Auto Differentiation mechanism:

 // The pinhole camera is parameterized using 7 parameters:
 // 3 for rotation, 3 for translation, 1 for focal length.
 // The principal point is not modeled (assumed be located at the
 // image center, and already subtracted from 'observed'),
 // and focal_x = focal_y.
 struct SimpleReprojectionError {
 using namespace ceres;

 SimpleReprojectionError(double observed_x, double observed_y) :
 observed_x(observed_x), observed_y(observed_y) {}

 template<typenameT>
 bool operator()(const T* const camera,

Exploring Structure from Motion Using OpenCV

[71]

 const T* const point,
 const T* const focal,
 T* residuals) const {
 T p[3];
 // Rotate: camera[0,1,2] are the angle-axis rotation.
 AngleAxisRotatePoint(camera, point, p);

 // Translate: camera[3,4,5] are the translation.
 p[0] += camera[3];
 p[1] += camera[4];
 p[2] += camera[5];

 // Perspective divide
 const T xp = p[0] / p[2];
 const T yp = p[1] / p[2];

 // Compute projected point position (sans center of
 // projection)
 const T predicted_x = *focal * xp;
 const T predicted_y = *focal * yp;

 // The error is the difference between the predicted
 // and observed position.
 residuals[0] = predicted_x - T(observed_x);
 residuals[1] = predicted_y - T(observed_y);
 return true;
 }

 // A helper construction function
 static CostFunction* Create(const double observed_x,
 const double observed_y) {
 return (newAutoDiffCostFunction<SimpleReprojectionError,
 2, 6, 3, 1>(
 newSimpleReprojectionError(observed_x,
 observed_y)));
 }
 double observed_x;
 double observed_y;
 };

This functor calculates the deviation a 3D point has from its originating 2D point by re-
projecting it using simplified extrinsic and intrinsic camera parameters. The error in x and y
is saved as the residual, which guides the optimization.

Exploring Structure from Motion Using OpenCV

[72]

There is quite a bit of additional code that goes into the BA implementation, but it primarily
handles bookkeeping of cloud 3D points, originating 2D points, and their respective
cameras. The readers may wish to review how this is done in the code attached to the book.

The following image shows the effects of BA. The two images on the left are the points of
the point cloud before adjustment from two perspectives, and the images on the right show
the optimized cloud. The change is quite dramatic, and many misalignments between
points triangulated from different views are now mostly consolidated. We can also notice
how the adjustment created a far better reconstruction of flat surfaces:

Exploring Structure from Motion Using OpenCV

[73]

Using the example code
We can find the example code for SfM with the supporting material of this book. We will
now see how we can build, run, and make use of it. The code makes use of CMake, a cross-
platform build environment similar to Maven or SCons. We should also make sure that we
have all the following prerequisites to build the application:

OpenCV v3.0 or higher
Ceres v1.11 or higher
Boost v1.54 or higher

First, we must set up the build environment. To that end, we may create a folder named
build in which all build-related files will go; we will now assume that all command-line
operations are within the build/ folder, although the process is similar (up to the locations
of the files) even if not using the build folder. We should also make sure that CMake can
find boost and Ceres.

If we are using Windows as the operating system, we can use Microsoft Visual Studio to
build; therefore, we should run the following command:

cmake -G "Visual Studio 10"

If we are using Linux, Mac OS, or another Unix-like operating system, we execute the
following command:

cmake -G "Unix Makefiles"

If we prefer to use XCode on Mac OS, execute the following command:

cmake -G Xcode

CMake also has the ability to build macros for Eclipse, Codeblocks, and more.

After CMake is done creating the environment, we are ready to build. If we are using a
Unix-like system, we can simply execute the make utility, else we should use our
development environment's building process.

After the build has finished, we should be left with an executable named ExploringSfM,
which runs the SfM process. Running it with no arguments
will result in the following:

USAGE ./build/ExploringSfM [options] <input-directory>
-h [--help] Produce help message
-d [--console-debug] arg (=2) Debug output to console log level
(0 = Trace, 4 = Error).

Exploring Structure from Motion Using OpenCV

[74]

-v [--visual-debug] arg (=3) Visual debug output to screen log
 level
(0 = All, 4 = None).
-s [--downscale] arg (=1) Downscale factor for input images.
-p [--input-directory] arg Directory to find input images.
-o [--output-prefix] arg (=output) Prefix for output files.

To execute the process over a set of images, we should supply a location on the drive to find
image files. If a valid location is supplied, the process should start and we should see the
progress and debug information on the screen. If no errors arise, the process will end with a
message stating that the point cloud that arises from the images was saved to PLY files,
which can be opened in most 3D editing software.

Summary
In this chapter, we saw how OpenCV v3 can help us approach Structure from Motion in a
manner that is both simple to code and simple to understand. OpenCV v3's new API
contains a number of useful functions and data structures that make our lives easier and
also assist in a cleaner implementation.

However, the state-of-the-art SfM methods are far more complex. There are many issues we
choose to disregard in favor of simplicity, and plenty more error examinations that are
usually in place. Our chosen methods for the different elements of SfM can also be revisited.
For one, H&Z propose a highly accurate triangulation method that minimizes the
reprojection error in the image domain. Some methods even use the N-view triangulation
once they understand the relationship between the features in multiple images.

If we would like to extend and deepen our familiarity with SfM, we will certainly benefit
from looking at other open source SfM libraries. One particularly interesting project is
libMV, which implements a vast array of SfM elements that may be interchanged to get the
best results. There is a great body of work from University of Washington that provides
tools for many flavors of SfM (Bundler and VisualSfM). This work inspired an online
product from Microsoft called PhotoSynth and 123D Catch from Adobe. There are many
more implementations of SfM readily available online, and one must only search to find
quite a lot of them.

Exploring Structure from Motion Using OpenCV

[75]

Another important relationship we have not discussed in depth is that of SfM and Visual
Localization and Mapping, better known as Simultaneous Localization and Mapping
(SLAM) methods. In this chapter, we dealt with a given dataset of images and a video
sequence, and using SfM is practical in those cases; however, some applications have no
prerecorded dataset and must bootstrap the reconstruction on the fly. This process is better
known as Mapping, and it is done while we are creating a 3D map of the world, using
feature matching and tracking in 2D, and after triangulation.

In the next chapter, we will see how OpenCV can be used for extracting license plate
numbers from images, using various techniques in machine learning.

References
Hartley, Richard, and Andrew Zisserman, Multiple View Geometry in Computer Vision,
Cambridge University Press, 2003
Hartley, Richard I., and Peter Sturm; Triangulation, Computer Vision and image
understanding 68.2 (1997): 146-157
Snavely, Noah, Steven M. Seitz, and Richard Szeliski; Photo Tourism: Exploring Photo
Collections in 3D, ACM Transactions on Graphics (TOG). Vol. 25. No. 3. ACM, 2006
Strecha, Christoph, et al, On Benchmarking Camera Calibration and Multi-view Stereo
for High Resolution Imagery, IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) 2008
h t t p ://c v l a b w w w . e p f l . c h /d a t a /m u l t i v i e w /d e n s e M V S . h t m l h t t p s ://d e v e l o p e
r . b l e n d e r . o r g /t a g /l i b m v /

h t t p ://c c w u . m e /v s f m /

h t t p ://w w w . c s . c o r n e l l . e d u /~s n a v e l y /b u n d l e r /

h t t p ://p h o t o s y n t h . n e t

h t t p ://e n . w i k i p e d i a . o r g /w i k i /S i m u l t a n e o u s _ l o c a l i z a t i o n _ a n d _ m a p p i n g

h t t p ://w w w . c m a k e . o r g

h t t p ://c e r e s - s o l v e r . o r g

h t t p ://w w w . 123d a p p . c o m /c a t c h

http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://cvlabwww.epfl.ch/data/multiview/denseMVS.htmlhttps://developer.blender.org/tag/libmv/
http://ccwu.me/vsfm/
http://ccwu.me/vsfm/
http://ccwu.me/vsfm/
http://ccwu.me/vsfm/
http://ccwu.me/vsfm/
http://ccwu.me/vsfm/
http://ccwu.me/vsfm/
http://ccwu.me/vsfm/
http://ccwu.me/vsfm/
http://ccwu.me/vsfm/
http://ccwu.me/vsfm/
http://ccwu.me/vsfm/
http://ccwu.me/vsfm/
http://ccwu.me/vsfm/
http://ccwu.me/vsfm/
http://ccwu.me/vsfm/
http://ccwu.me/vsfm/
http://ccwu.me/vsfm/
http://ccwu.me/vsfm/
http://ccwu.me/vsfm/
http://ccwu.me/vsfm/
http://ccwu.me/vsfm/
http://ccwu.me/vsfm/
http://ccwu.me/vsfm/
http://ccwu.me/vsfm/
http://ccwu.me/vsfm/
http://ccwu.me/vsfm/
http://ccwu.me/vsfm/
http://ccwu.me/vsfm/
http://ccwu.me/vsfm/
http://ccwu.me/vsfm/
http://www.cs.cornell.edu/~snavely/bundler/
http://www.cs.cornell.edu/~snavely/bundler/
http://www.cs.cornell.edu/~snavely/bundler/
http://www.cs.cornell.edu/~snavely/bundler/
http://www.cs.cornell.edu/~snavely/bundler/
http://www.cs.cornell.edu/~snavely/bundler/
http://www.cs.cornell.edu/~snavely/bundler/
http://www.cs.cornell.edu/~snavely/bundler/
http://www.cs.cornell.edu/~snavely/bundler/
http://www.cs.cornell.edu/~snavely/bundler/
http://www.cs.cornell.edu/~snavely/bundler/
http://www.cs.cornell.edu/~snavely/bundler/
http://www.cs.cornell.edu/~snavely/bundler/
http://www.cs.cornell.edu/~snavely/bundler/
http://www.cs.cornell.edu/~snavely/bundler/
http://www.cs.cornell.edu/~snavely/bundler/
http://www.cs.cornell.edu/~snavely/bundler/
http://www.cs.cornell.edu/~snavely/bundler/
http://www.cs.cornell.edu/~snavely/bundler/
http://www.cs.cornell.edu/~snavely/bundler/
http://www.cs.cornell.edu/~snavely/bundler/
http://www.cs.cornell.edu/~snavely/bundler/
http://www.cs.cornell.edu/~snavely/bundler/
http://www.cs.cornell.edu/~snavely/bundler/
http://www.cs.cornell.edu/~snavely/bundler/
http://www.cs.cornell.edu/~snavely/bundler/
http://www.cs.cornell.edu/~snavely/bundler/
http://www.cs.cornell.edu/~snavely/bundler/
http://www.cs.cornell.edu/~snavely/bundler/
http://www.cs.cornell.edu/~snavely/bundler/
http://www.cs.cornell.edu/~snavely/bundler/
http://www.cs.cornell.edu/~snavely/bundler/
http://www.cs.cornell.edu/~snavely/bundler/
http://www.cs.cornell.edu/~snavely/bundler/
http://www.cs.cornell.edu/~snavely/bundler/
http://www.cs.cornell.edu/~snavely/bundler/
http://www.cs.cornell.edu/~snavely/bundler/
http://www.cs.cornell.edu/~snavely/bundler/
http://www.cs.cornell.edu/~snavely/bundler/
http://www.cs.cornell.edu/~snavely/bundler/
http://www.cs.cornell.edu/~snavely/bundler/
http://www.cs.cornell.edu/~snavely/bundler/
http://www.cs.cornell.edu/~snavely/bundler/
http://www.cs.cornell.edu/~snavely/bundler/
http://www.cs.cornell.edu/~snavely/bundler/
http://www.cs.cornell.edu/~snavely/bundler/
http://www.cs.cornell.edu/~snavely/bundler/
http://www.cs.cornell.edu/~snavely/bundler/
http://www.cs.cornell.edu/~snavely/bundler/
http://www.cs.cornell.edu/~snavely/bundler/
http://www.cs.cornell.edu/~snavely/bundler/
http://www.cs.cornell.edu/~snavely/bundler/
http://www.cs.cornell.edu/~snavely/bundler/
http://www.cs.cornell.edu/~snavely/bundler/
http://www.cs.cornell.edu/~snavely/bundler/
http://www.cs.cornell.edu/~snavely/bundler/
http://www.cs.cornell.edu/~snavely/bundler/
http://www.cs.cornell.edu/~snavely/bundler/
http://www.cs.cornell.edu/~snavely/bundler/
http://www.cs.cornell.edu/~snavely/bundler/
http://www.cs.cornell.edu/~snavely/bundler/
http://www.cs.cornell.edu/~snavely/bundler/
http://www.cs.cornell.edu/~snavely/bundler/
http://www.cs.cornell.edu/~snavely/bundler/
http://www.cs.cornell.edu/~snavely/bundler/
http://www.cs.cornell.edu/~snavely/bundler/
http://www.cs.cornell.edu/~snavely/bundler/
http://www.cs.cornell.edu/~snavely/bundler/
http://www.cs.cornell.edu/~snavely/bundler/
http://www.cs.cornell.edu/~snavely/bundler/
http://www.cs.cornell.edu/~snavely/bundler/
http://www.cs.cornell.edu/~snavely/bundler/
http://www.cs.cornell.edu/~snavely/bundler/
http://photosynth.net
http://photosynth.net
http://photosynth.net
http://photosynth.net
http://photosynth.net
http://photosynth.net
http://photosynth.net
http://photosynth.net
http://photosynth.net
http://photosynth.net
http://photosynth.net
http://photosynth.net
http://photosynth.net
http://photosynth.net
http://photosynth.net
http://photosynth.net
http://photosynth.net
http://photosynth.net
http://photosynth.net
http://photosynth.net
http://photosynth.net
http://photosynth.net
http://photosynth.net
http://photosynth.net
http://photosynth.net
http://photosynth.net
http://photosynth.net
http://photosynth.net
http://photosynth.net
http://photosynth.net
http://photosynth.net
http://photosynth.net
http://photosynth.net
http://photosynth.net
http://photosynth.net
http://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
http://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
http://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
http://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
http://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
http://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
http://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
http://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
http://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
http://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
http://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
http://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
http://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
http://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
http://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
http://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
http://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
http://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
http://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
http://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
http://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
http://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
http://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
http://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
http://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
http://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
http://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
http://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
http://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
http://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
http://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
http://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
http://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
http://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
http://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
http://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
http://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
http://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
http://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
http://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
http://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
http://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
http://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
http://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
http://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
http://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
http://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
http://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
http://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
http://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
http://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
http://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
http://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
http://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
http://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
http://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
http://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
http://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
http://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
http://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
http://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
http://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
http://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
http://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
http://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
http://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
http://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
http://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
http://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
http://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
http://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
http://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
http://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
http://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
http://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
http://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
http://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
http://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
http://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
http://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
http://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
http://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
http://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
http://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
http://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
http://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
http://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
http://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
http://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
http://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
http://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
http://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
http://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
http://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
http://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
http://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
http://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
http://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
http://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
http://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
http://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
http://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
http://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
http://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
http://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
http://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
http://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
http://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
http://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
http://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
http://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
http://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
http://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
http://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
http://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
http://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
http://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
http://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
http://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
http://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
http://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
http://www.cmake.org
http://www.cmake.org
http://www.cmake.org
http://www.cmake.org
http://www.cmake.org
http://www.cmake.org
http://www.cmake.org
http://www.cmake.org
http://www.cmake.org
http://www.cmake.org
http://www.cmake.org
http://www.cmake.org
http://www.cmake.org
http://www.cmake.org
http://www.cmake.org
http://www.cmake.org
http://www.cmake.org
http://www.cmake.org
http://www.cmake.org
http://www.cmake.org
http://www.cmake.org
http://www.cmake.org
http://www.cmake.org
http://www.cmake.org
http://www.cmake.org
http://www.cmake.org
http://www.cmake.org
http://www.cmake.org
http://www.cmake.org
http://www.cmake.org
http://www.cmake.org
http://www.cmake.org
http://www.cmake.org
http://ceres-solver.org
http://ceres-solver.org
http://ceres-solver.org
http://ceres-solver.org
http://ceres-solver.org
http://ceres-solver.org
http://ceres-solver.org
http://ceres-solver.org
http://ceres-solver.org
http://ceres-solver.org
http://ceres-solver.org
http://ceres-solver.org
http://ceres-solver.org
http://ceres-solver.org
http://ceres-solver.org
http://ceres-solver.org
http://ceres-solver.org
http://ceres-solver.org
http://ceres-solver.org
http://ceres-solver.org
http://ceres-solver.org
http://ceres-solver.org
http://ceres-solver.org
http://ceres-solver.org
http://ceres-solver.org
http://ceres-solver.org
http://ceres-solver.org
http://ceres-solver.org
http://ceres-solver.org
http://ceres-solver.org
http://ceres-solver.org
http://ceres-solver.org
http://ceres-solver.org
http://ceres-solver.org
http://ceres-solver.org
http://ceres-solver.org
http://ceres-solver.org
http://ceres-solver.org
http://ceres-solver.org
http://www.123dapp.com/catch
http://www.123dapp.com/catch
http://www.123dapp.com/catch
http://www.123dapp.com/catch
http://www.123dapp.com/catch
http://www.123dapp.com/catch
http://www.123dapp.com/catch
http://www.123dapp.com/catch
http://www.123dapp.com/catch
http://www.123dapp.com/catch
http://www.123dapp.com/catch
http://www.123dapp.com/catch
http://www.123dapp.com/catch
http://www.123dapp.com/catch
http://www.123dapp.com/catch
http://www.123dapp.com/catch
http://www.123dapp.com/catch
http://www.123dapp.com/catch
http://www.123dapp.com/catch
http://www.123dapp.com/catch
http://www.123dapp.com/catch
http://www.123dapp.com/catch
http://www.123dapp.com/catch
http://www.123dapp.com/catch
http://www.123dapp.com/catch
http://www.123dapp.com/catch
http://www.123dapp.com/catch
http://www.123dapp.com/catch
http://www.123dapp.com/catch
http://www.123dapp.com/catch
http://www.123dapp.com/catch
http://www.123dapp.com/catch
http://www.123dapp.com/catch
http://www.123dapp.com/catch
http://www.123dapp.com/catch
http://www.123dapp.com/catch
http://www.123dapp.com/catch
http://www.123dapp.com/catch
http://www.123dapp.com/catch
http://www.123dapp.com/catch
http://www.123dapp.com/catch

3
Number Plate Recognition

using SVM and Neural Network
This chapter introduces us to the steps needed to create an application for Automatic
Number Plate Recognition (ANPR). There are different approaches and techniques based
on different situations, for example, IR camera, fixed car position, light conditions, and so
on. We can proceed to construct an ANPR application to detect automobile license plates in
a photograph taken between 2 or 3 meters from a car, in ambiguous light condition and
with non-parallel ground with minor perspective distortions in the automobile's plate.

The main purpose of this chapter is to introduce us to image segmentation and feature
extraction, pattern recognition basics, and two important pattern recognition algorithms:
that are Support Vector Machine (SVM) and Artificial Neural Network (ANN). In this
chapter, we will cover the following topics:

ANPR
Plate detection
Plate recognition

Introduction to ANPR
Automatic Number Plate Recognition, or known by other terms such as Automatic License-
Plate Recognition (ALPR), Automatic Vehicle Identification (AVI), or Car Plate
Recognition (CPR), is a surveillance method that uses Optical Character Recognition
(OCR) and other methods such as segmentations and detection to read vehicle registration
plates.

Number Plate Recognition using SVM and Neural Network

[77]

The best results in an ANPR system can be obtained with an Infrared (IR) camera, because
the segmentation steps for detection and OCR segmentation are easy, and clean, and they
minimize errors. This is due to the laws of light, the basic one being that the angle of
incidence equals the angle of reflection. We can see this basic reflection when we see a
smooth surface such as a plane mirror. Reflection off of rough surfaces such as paper, leads
to a type of reflection known as diffuse or scatter reflection. However, the majority of
country plates have special characteristics named retro-reflection, that is, the surface of the
plate is made with a material that is covered with thousands of tiny hemispheres that cause
light to be reflected back to the source, as we can see in the following figure:

If we use a camera with filter-coupled, structured infrared light projector, we can retrieve
just the Infrared light, and then, we have a very high quality image to segment, with which
we can subsequently detect and recognize the plate number that is independent of any light
environment, as shown in the following image:

Number Plate Recognition using SVM and Neural Network

[78]

We will not use IR photographs in this chapter; we will use regular photographs so that we
do not obtain the best results, and we get a higher level of detection errors and higher false
recognition rate, as opposed to if we used an IR camera. However, the steps for both are the
same.

Each country has different license plate sizes and specifications. It is useful to know these
specifications in order to get the best results and reduce errors. Algorithms used in every
chapter are designed for explaining the basics of ANPR and concrete for license plates used
in Spain, but we can extend it to any country or specification.

In this chapter, we will work with license plates from Spain. In Spain, there are three
different sizes and shapes of license plates, but we will only use the most common (large)
license plate, which has a 520 mm width by a 110 mm height. Two groups of characters are
separated by a 41 mm space, and a 14 mm width separates each individual character. The
first group of characters have four numeric digits, and the second group has three letters
without the vowels A, E, I, O, U, or the letters N or Q. All characters have dimensions of 45
mm by 77 mm.

This data is important for character segmentation since we can check both the character and
blank spaces to verify that we get a character and no other image segment:

Number Plate Recognition using SVM and Neural Network

[79]

ANPR algorithm
Before explaining the ANPR code, we need to define the main steps and tasks in the ANPR
algorithm. ANPR is divided in two main steps: plate detection and plate recognition. Plate
detection has the purpose of detecting the location of the plate in the whole camera frame.
When a plate is detected in an image, the plate segment is passed to the second step (plate
recognition), which uses an OCR algorithm to determine the alphanumeric characters on
the plate.

In the following diagram, we can see the two main algorithm steps: plate detection and
plate recognition. After these steps, the program draws over the camera frame the plate's
characters that have been detected. The algorithms can return bad results or may not return
any result:

Number Plate Recognition using SVM and Neural Network

[80]

In each step shown in the previous figure, we will define three additional steps that are
commonly used in pattern recognition algorithms. These steps are as follows:

Segmentation: This step detects and removes each patch/region of interest in the1.
image.
Feature extraction: This step extracts from each patch a set of characteristics.2.
Classification: This step extracts each character from the plate recognition-step or3.
classifies each image patch into plate or no plate in the plate-detection step.

In the following diagram, we can see these pattern recognition steps in the whole algorithm
application:

Number Plate Recognition using SVM and Neural Network

[81]

Aside from the main application, whose purpose is to detect and recognize a car plate
number, we will briefly explain two more tasks that are usually not explained:

How to train a pattern recognition system
How to evaluate it

These tasks, however, can be more important than the main application, because if we do
not train the pattern recognition system correctly, our system can fail and not work
correctly; different patterns need different training's and evaluation. We need to evaluate
our system in different environments, conditions, and features to get the best results. These
two tasks are sometimes used together, since different features can produce different results
that we can see in the evaluation section.

Plate detection
In this step, we have to detect all the plates in a current camera frame. To do this task, we
divide it in two main steps: segmentation and segment classification. The feature step is not
explained because we use the image patch as a vector feature.

In the first step (segmentation), we will apply different filters, morphological operations,
contour algorithms, and validations to retrieve parts of the image that could have a plate.

In the second step (classification), we will apply a Support Vector Machine (SVM)
classifier to each image patch, our feature. Before creating our main application, we will
train with two different classes: plate and non-plate. We will work with parallel frontal view
color images having 800 pixels of width and taken between 2 and 4 meters from a car. These
requirements are important for correct segmentations. We can get perform detection if we
create a multi-scale image algorithm.

In the next image, we will shown all process involved in plate detection:

Sobel filter
Threshold operation
Close morphologic operation
Mask of one of filled area
In red possible detected plates (features images)

Number Plate Recognition using SVM and Neural Network

[82]

Detected plates after SVM classifier

Segmentation
Segmentation is the process of dividing an image into multiple segments. This process is to
simplify the image for analysis and make feature extraction easier.

One important feature of plate segmentation is the high number of vertical edges in a
license plate, assuming that the image was taken frontally and the plate is not rotated and
without perspective distortion. This feature can be exploited during the first segmentation
step to eliminate regions that don't have any vertical edges.

Before finding vertical edges, we need to convert the color image to a grayscale image
(because color can't help us in this task) and remove possible noise generated from the
camera or other ambient noise. We will apply a 5x5 Gaussian blur and remove noise. If we
don't apply a noise removal method, we can get a lot of vertical edges that produce fail
detection:

 //convert image to gray
 Mat img_gray;
 cvtColor(input, img_gray, CV_BGR2GRAY);
 blur(img_gray, img_gray, Size(5,5));

Number Plate Recognition using SVM and Neural Network

[83]

To find the vertical edges, we will use a Sobel filter and find the first horizontal derivate.
The derivate is a mathematic function that allows us to find vertical edges on an image. The
definition of Sobel function in OpenCV is as follows:

 void Sobel(InputArray src, OutputArray dst, int ddepth, int
 xorder, int yorder, int ksize=3, double scale=1, double delta=0,
 int borderType=BORDER_DEFAULT)

Here, ddepth is the destination image depth; xorder is the order of the derivate by x;
yorder is the order of the derivate by y; ksize is the kernel size of 1, 3, 5, or 7; scale is an
optional factor for computed derivative values; delta is an optional value added to the
result; and borderType is the pixel interpolation method.

Then, for our case, we can use xorder=1, yorder=0, and ksize=3:

 //Find vertical lines. Car plates have high density of vertical
 lines
 Mat img_sobel;
 Sobel(img_gray, img_sobel, CV_8U, 1, 0, 3, 1, 0);

After applying a Sobel filter, we will apply a threshold filter to obtain a binary image with a
threshold value obtained through Otsu's method. Otsu's algorithm needs an 8-bit input
image, and Otsu's method automatically determines the optimal threshold value:

 //threshold image
 Mat img_threshold;
 threshold(img_sobel, img_threshold, 0, 255,
 CV_THRESH_OTSU+CV_THRESH_BINARY);

To define Otsu's method in threshold function, we will combine the type parameter with
the CV_THRESH_OTSU value and the threshold value parameter is ignored.

When the CV_THRESH_OTSU value is defined, the threshold function
returns the optimal threshold value obtained by Otsu's algorithm.

By applying a close morphological operation, we can remove blank spaces between each
vertical edge line and connect all regions that have a high number of edges. In this step, we
have possible regions that can contain plates.

Number Plate Recognition using SVM and Neural Network

[84]

First, we will define our structural element to use in our morphological operation. We will
use the getStructuringElement function to define a structural rectangular element with
a 17x3 dimension size in our case; this may be different in other image sizes:

 Mat element = getStructuringElement(MORPH_RECT, Size(17, 3));

Then, we will use this structural element in a close morphological operation using the
morphologyEx function:

 morphologyEx(img_threshold, img_threshold, CV_MOP_CLOSE,
 element);

After applying these functions, we have regions in the image that could contain a plate;
however, most of the regions do not contain license plates. These regions can be split with a
connected component analysis or using the findContours function. This last function
retrieves the contours of a binary image with different methods and results. We only need
to get the external contours with any hierarchical relationship and any polygonal
approximation results:

 //Find contours of possibles plates
 vector< vector< Point>> contours;
 findContours(img_threshold,
 contours, // a vector of contours
 CV_RETR_EXTERNAL, // retrieve the external contours
 CV_CHAIN_APPROX_NONE); // all pixels of each contours

For each contour detected, extract the bounding rectangle of minimal area. OpenCV brings
up the minAreaRect function for this task. This function returns a rotated
RotatedRect rectangle class. Then, using a vector iterator over each contour, we can get
the rotated rectangle and make some preliminary validations before we classify each region:

 //Start to iterate to each contour founded
 vector<vector<Point>>::iterator itc= contours.begin();
 vector<RotatedRect> rects;

 //Remove patch that has no inside limits of aspect ratio and
 area.
 while (itc!=contours.end()) {
 //Create bounding rect of object
 RotatedRect mr= minAreaRect(Mat(*itc));
 if(!verifySizes(mr)){
 itc= contours.erase(itc);
 }else{
 ++itc;
 rects.push_back(mr);
 }

Number Plate Recognition using SVM and Neural Network

[85]

 }

We make basic validations about the regions detected based on their area and aspect ratio.
We will consider that a region can be a plate if the aspect ratio is approximately 520/110 =
4.727272 (plate width divided by plate height) with an error margin of 40 percent and an
area based on a minimum of 15 pixels and maximum of 125 pixels for the height of plate.
These values are calculated depending on the image size and camera position:

 bool DetectRegions::verifySizes(RotatedRect candidate){

 float error=0.4;
 //Spain car plate size: 52x11 aspect 4,7272
 const float aspect=4.7272;
 //Set a min and max area. All other patchs are discarded
 int min= 15*aspect*15; // minimum area
 int max= 125*aspect*125; // maximum area
 //Get only patches that match to a respect ratio.
 float rmin= aspect-aspect*error;
 float rmax= aspect+aspect*error;

 int area= candidate.size.height * candidate.size.width;
 float r= (float)candidate.size.width /
 (float)candidate.size.height;
 if(r<1)
 r= 1/r;

 if((area < min || area > max) || (r < rmin || r > rmax)){
 return false;
 }else{
 return true;
 }
 }

We can make even more improvements using the license plate's white background
property. All plates have the same background color, and we can use a flood fill algorithm
to retrieve the rotated rectangle for precise cropping.

The first step to crop the license plate is to get several seeds near the last rotated rect center.
Then, we will get the minimum size of plate between the width and height, and use it to
generate random seeds near the patch center.

We want to select the white region, and we need several seeds to touch at least one white
pixel. Then, for each seed, we use a floodFill function to draw a new mask image to store
the new closest cropping region:

 for(int i=0; i< rects.size(); i++){
 //For better rect cropping for each possible box

Number Plate Recognition using SVM and Neural Network

[86]

 //Make floodfill algorithm because the plate has white background
 //And then we can retrieve more clearly the contour box
 ircle(result, rects[i].center, 3, Scalar(0,255,0), -1);
 //get the min size between width and height
 float minSize=(rects[i].size.width < rects[i].size.height)?
 rects[i].size.width:rects[i].size.height;
 minSize=minSize-minSize*0.5;
 //initialize rand and get 5 points around center for floodfill
 algorithm
 srand (time(NULL));
 //Initialize floodfill parameters and variables
 Mat mask;
 mask.create(input.rows + 2, input.cols + 2, CV_8UC1);
 mask= Scalar::all(0);
 int loDiff = 30;
 int upDiff = 30;
 int connectivity = 4;
 int newMaskVal = 255;
 int NumSeeds = 10;
 Rect ccomp;
 int flags = connectivity + (newMaskVal << 8) +
 CV_FLOODFILL_FIXED_RANGE + CV_FLOODFILL_MASK_ONLY;
 for(int j=0; j<NumSeeds; j++){
 Point seed;
 seed.x=rects[i].center.x+rand()%(int)minSize-(minSize/2);
 seed.y=rects[i].center.y+rand()%(int)minSize-(minSize/2);
 circle(result, seed, 1, Scalar(0,255,255), -1);
 int area = floodFill(input, mask, seed, Scalar(255,0,0), &ccomp,
 Scalar(loDiff, loDiff, loDiff), Scalar(upDiff, upDiff, upDiff),
 flags);

The floodfill function fills a connected component with a color into a mask image
starting from a point seed, and sets maximal lower and upper brightness/color difference
between the pixel to fill and the pixel neighbors or pixel seed:

 intfloodFill(InputOutputArray image, InputOutputArray mask, Point
 seed, Scalar newVal, Rect* rect=0, Scalar loDiff=Scalar(), Scalar
 upDiff=Scalar(), int flags=4)

The newval parameter is the new color we want to put into the image when filling.
Parameters loDiff and upDiff are the maximal lower and maximal upper
brightness/color difference between the pixel to fill and the pixel neighbors or pixel seed.

Number Plate Recognition using SVM and Neural Network

[87]

The parameter flag is a combination of the following bits:

Lower bits: These bits contain connectivity value, 4 (by default) or 8, used within
the function. Connectivity determines which neighbors of a pixel are considered
Upper bits: These can be 0 or a combination of the following values-
CV_FLOODFILL_FIXED_RANGE and CV_FLOODFILL_MASK_ONLY.

CV_FLOODFILL_FIXED_RANGE sets the difference between the current pixel and the seed
pixel. CV_FLOODFILL_MASK_ONLY will only fill the image mask and not change the image
itself.

Once we have a crop mask, we will get a minimal area rectangle from the image mask
points and check the validity size again. For each mask, a white pixel gets the position and
uses the minAreaRect function for retrieving the closest crop region:

 //Check new floodfill mask match for a correct patch.
 //Get all points detected for get Minimal rotated Rect
 vector<Point> pointsInterest;
 Mat_<uchar>::iterator itMask= mask.begin<uchar>();
 Mat_<uchar>::iterator end= mask.end<uchar>();
 for(; itMask!=end; ++itMask)
 if(*itMask==255)
 pointsInterest.push_back(itMask.pos());
 RotatedRect minRect = minAreaRect(pointsInterest);
 if(verifySizes(minRect)){

The segmentation process is finished, and we have valid regions. Now, we can crop each
detected region, remove possible rotation, crop the image region, resize the image, and
equalize the light of the cropped image regions.

First, we need to generate the transform matrix with getRotationMatrix2D to remove
possible rotations in the detected region. We need to pay attention to height, because
RotatedRect can be returned and rotated at 90 degrees. So, we have to check the rectangle
aspect, and if it is less than 1, we need to rotate it by 90 degrees:

 //Get rotation matrix
 float r= (float)minRect.size.width / (float)minRect.size.height;
 float angle=minRect.angle;
 if(r<1)
 angle=90+angle;
 Mat rotmat= getRotationMatrix2D(minRect.center, angle,1);

Number Plate Recognition using SVM and Neural Network

[88]

With the transform matrix, we now can rotate the input image by an affine transformation
(affine transformation in geometry is a transformation that takes parallel lines to parallel
lines) with the warpAffine function where we set the input and destination images, the
transform matrix, the output size (same as input in our case), and the interpolation method
to use. We can define the border method and border value if needed:

 //Create and rotate image
 Mat img_rotated;
 warpAffine(input, img_rotated, rotmat, input.size(),
 CV_INTER_CUBIC);

After we rotate the image, we will crop the image with getRectSubPix which crops and
copies an image portion of width and height centered in a point. If the image is rotated, we
need to change the width and height sizes with the C++ swap function:

 //Crop image
 Size rect_size=minRect.size;
 if(r < 1)
 swap(rect_size.width, rect_size.height);
 Mat img_crop;
 getRectSubPix(img_rotated, rect_size, minRect.center,
 img_crop);

Cropped images are not good for use in training and classification since they do not have
the same size. Also, each image contains different light conditions, making them more
different. To resolve this, we resize all the images to same width and height, and apply a
light histogram equalization:

 Mat resultResized;
 resultResized.create(33,144, CV_8UC3);
 resize(img_crop, resultResized, resultResized.size(), 0, 0,
 INTER_CUBIC);
 //Equalize croped image
 Mat grayResult;
 cvtColor(resultResized, grayResult, CV_BGR2GRAY);
 blur(grayResult, grayResult, Size(3,3));
 equalizeHist(grayResult, grayResult);

For each detected region, we store the cropped image and its position in a vector:

 output.push_back(Plate(grayResult,minRect.boundingRect()));

Number Plate Recognition using SVM and Neural Network

[89]

Classification
After we preprocess and segment all possible parts of an image, we now need to decide
whether each segment is (or is not) a license plate. To do this, we will use a Support Vector
Machine (SVM) algorithm.

A Support Vector Machine is a pattern recognition algorithm included in a family of
supervised learning algorithms that was originally created for binary classification.
Supervised learning is the machine learning algorithm technique that is trained with
labeled data. We need to train the algorithm with an amount of data that is labeled; each
data set needs to have a class.

The SVM creates one or more hyperplanes, which is used to discriminate each class of data.

A classic example is a 2D point set that defines two classes; the SVM searches the optimal
line that differentiates each class:

Number Plate Recognition using SVM and Neural Network

[90]

The first task before any classification is to train our classifier; this is a job before the main
application and it's named "offline training". This is not an easy job because it requires a
sufficient amount of data to train the system, but a bigger dataset does not always imply the
best results. In our case, we do not have enough data due to the fact that there are no public
license plate databases. Because of this, we need to take hundreds of car photos, and then
preprocess and segment all of it.

We trained our system with 75 license plate images and 35 images without license plates,
containing a 144x33 pixel resolution. We can see a sample of this data in the following
image. This is not a large dataset, but sufficient enough to get decent results for our chapter.
In a real application, we would need to train with more data:

To easily understand how machine learning works, we will proceed to use image pixel
features of the classifier algorithm (keep in mind that there are better methods and features
to train an SVM, such as Principal Components Analysis (PCA), Fourier transform, texture
analysis, and so on).

We need to create the images to train our system using the DetectRegions class and set
the savingRegions variable to "true" in order to save the images. We can use the
segmentAllFiles.sh bash script to repeat the process on all image files under a folder.
This can be taken from the source code of the book:

To make this easier, we will store all image training data that is processed and prepared
into an XML file for use directly with the SVM function. The trainSVM.cpp application
creates this file using the folders and number of image files.

Number Plate Recognition using SVM and Neural Network

[91]

Training data for a machine learning OpenCV algorithm is stored in an
NxM matrix, with N samples and M features. Each dataset is saved as a
row in the training matrix.

The classes are stored in another matrix with nx1 size, where each class is
identified by a float number.

OpenCV has an easy way to manage a data file in the XML or YAML format with the
FileStorage class. This class lets us store and read OpenCV variables and structures or
our custom variables. With this function, we can read the training data matrix and training
classes and save it in SVM_TrainingData and SVM_Classes:

 FileStorage fs;
 fs.open("SVM.xml", FileStorage::READ);
 Mat SVM_TrainingData;
 Mat SVM_Classes;
 fs["TrainingData"] >>SVM_TrainingData;
 fs["classes"] >>SVM_Classes;

Now, we have the training data in the SVM_TrainingData variable and labels in
SVM_Classes. Then, we only have to create the training data object that connects data and
labels to use in our machine learning algorithm. To do this, we will use the TrainData class
as a OpenCV pointer Ptr class as follows:

 Ptr<TrainData> trainData = TrainData::create(SVM_TrainingData,
 ROW_SAMPLE, SVM_Classes);

We will create the classifier object using the SVM class using the PtrOpenCV class:

 Ptr<SVM> svmClassifier = SVM::create()

Now, we need to set the SVM parameters that define the basic parameters to use in an SVM
algorithm. To do this, we only have to change some object variables. After different
experiments, we will choose the next parameter's setup:

 svmClassifier-
 >setTermCriteria(TermCriteria(TermCriteria::MAX_ITER, 1000,
 0.01));
 svmClassifier->setC(0.1);
 svmClassifier->setKernel(SVM::LINEAR);

Number Plate Recognition using SVM and Neural Network

[92]

We chose a 1000 iterations for training, a C param variable optimization of 0.1, and finally, a
kernel function.

We only need train our classifier with thetrain function and the train data:

 svmClassifier->train(trainData);

Our classifier is ready to predict a possible cropped image using the predict function of
our SVM class; this function returns the class identifier i. In our case, we will label a plate
class with 1 and no plate class with 0. Then, for each detected region that can be a plate, we
will use SVM to classify it as plate or no plate, and save only the correct responses. The
following code is a part of a main application called online processing:

 vector<Plate> plates;
 for(int i=0; i< posible_regions.size(); i++)
 {
 Mat img=posible_regions[i].plateImg;
 Mat p= img.reshape(1, 1);//convert img to 1 row m features
 p.convertTo(p, CV_32FC1);
 int response = (int)svmClassifier.predict(p);
 if(response==1)
 plates.push_back(posible_regions[i]);
 }

Plate recognition
The second step in License Plate Recognition aims to retrieve the characters of the license
plate with Optical Character Recognition. For each detected plate, we proceed to segment
the plate for each character and use an Artificial Neural Network machine learning
algorithm to recognize the character. Also, in this section, you will learn how to evaluate a
classification algorithm.

Number Plate Recognition using SVM and Neural Network

[93]

OCR segmentation
First, we will obtain a plate image patch as an input to the OCR segmentation function with
an equalized histogram. We then need to apply only a threshold filter and use this
threshold image as the input of a Find Contours algorithm. We can observe this process in
the following image:

This segmentation process is coded as follows:

 Mat img_threshold;
 threshold(input, img_threshold, 60, 255, CV_THRESH_BINARY_INV);
 if(DEBUG)
 imshow("Threshold plate", img_threshold);
 Mat img_contours;
 img_threshold.copyTo(img_contours);
 //Find contours of possibles characters
 vector< vector< Point>> contours;
 findContours(img_contours,
 contours, // a vector of contours
 CV_RETR_EXTERNAL, // retrieve the external contours
 CV_CHAIN_APPROX_NONE); // all pixels of each contours

We used the CV_THRESH_BINARY_INV parameter to invert the threshold output by turning
the white input values black and the black input values white. This is needed to get the
contours of each character, because the contours algorithm looks for white pixels.

Number Plate Recognition using SVM and Neural Network

[94]

For each detected contour, we can make a size verification and remove all regions where the
size is smaller or the aspect is not correct. In our case, the characters have a 45/77 aspect,
and we can accept a 35 percent error of aspect for rotated or distorted characters. If an area
is higher than 80 percent, we will consider that region to be a black block and not a
character. For counting the area, we can use the countNonZero function that counts the
number of pixels with a value higher than 0:

 bool OCR::verifySizes(Mat r){
 //Char sizes 45x77
 float aspect=45.0f/77.0f;
 float charAspect= (float)r.cols/(float)r.rows;
 float error=0.35;
 float minHeight=15;
 float maxHeight=28;
 //We have a different aspect ratio for number 1, and it can be
 ~0.2
 float minAspect=0.2;
 float maxAspect=aspect+aspect*error;
 //area of pixels
 float area=countNonZero(r);
 //bb area
 float bbArea=r.cols*r.rows;
 //% of pixel in area
 float percPixels=area/bbArea;
 if(percPixels < 0.8 && charAspect > minAspect && charAspect <
 maxAspect && r.rows >= minHeight && r.rows < maxHeight)
 return true;
 else
 return false;
 }

If a segmented character is verified, we have to preprocess it to set the same size and
position for all characters, and save it in a vector with the auxiliary CharSegment class. This
class saves the segmented character image and the position that we need to order the
characters, because the Find Contour algorithm does not return the contours in the correct
and needed order.

Feature extraction
The next step for each segmented character is to extract the features for training and classify
the Artificial Neural Network algorithm.

Number Plate Recognition using SVM and Neural Network

[95]

Unlike plate detection, the feature extraction step used in SVM doesn't use all of the image
pixels. We will apply more common features used in OCR that contain horizontal and
vertical accumulation histograms and low-resolution image samples. We can see this
feature more graphically in the next image, as each image has a low resolution 5x5 image
and the histogram accumulations:

For each character, we will count the number of pixels in a row or column with a nonzero
value using the countNonZero function and store it in a new data matrix called mhist. We
will normalize it by looking for the maximum value in the data matrix using the
minMaxLoc function and divide all elements of mhist by the maximum value with the
convertTo function. We will create the ProjectedHistogram function to create the
accumulation histograms that have a binary image and a type of histogram that we need,
horizontal or vertical, as input:

 Mat OCR::ProjectedHistogram(Mat img, int t)
 {
 int sz=(t)?img.rows:img.cols;
 Mat mhist=Mat::zeros(1,sz,CV_32F);

 for(int j=0; j<sz; j++){
 Mat data=(t)?img.row(j):img.col(j);
 mhist.at<float>(j)=countNonZero(data);
 }

 //Normalize histogram
 double min, max;
 minMaxLoc(mhist, &min, &max);

Number Plate Recognition using SVM and Neural Network

[96]

 if(max>0)
 mhist.convertTo(mhist,-1 , 1.0f/max, 0);

 return mhist;
 }

Other features use a low-resolution sample image. Instead of using the whole character
image, we will create a low-resolution character, for example, a character of 5x5. We will
train the system with 5x5, 10x10, 15x15, and 20x20 characters and then evaluate which one
returns the best result to use it in our system. Once we have all features, we will create a
matrix of M columns by one row where the columns are the features:

 Mat OCR::features(Mat in, int sizeData){
 //Histogram features
 Mat vhist=ProjectedHistogram(in,VERTICAL);Mat
 hhist=ProjectedHistogram(in,HORIZONTAL);
 //Low data feature
 Mat lowData;resize(in, lowData, Size(sizeData, sizeData));
 int numCols=vhist.cols + hhist.cols + lowData.cols *
 lowData.cols;
 Mat out=Mat::zeros(1,numCols,CV_32F);
 //Asign values to feature
 int j=0;
 for(int i=0; i<vhist.cols; i++){
 out.at<float>(j)=vhist.at<float>(i); j++;}
 for(int i=0; i<hhist.cols; i++){
 out.at<float>(j)=hhist.at<float>(i);
 j++;}
 for(int x=0; x<lowData.cols; x++){
 for(int y=0; y<lowData.rows; y++){
 out.at<float>(j)=(float)lowData.at<unsigned char>(x,y);
 j++;
 }
 }
 return out;
 }

OCR classification
In the classification step, we used an Artificial Neural Network machine learning algorithm,
more specifically, a Multi-Layer Perceptron (MLP) which is the most commonly used ANN
algorithm.

Number Plate Recognition using SVM and Neural Network

[97]

MLP consists of a network of neurons with an input layer, output layer, and one or more
hidden layers. Each layer has one or more neurons connected with the previous and next
layers.

The following example represents a three-layer perceptron (is a binary classifier that maps a
real-valued vector input to a single binary value output) with three inputs, two outputs,
and the hidden layer including five neurons:

All neurons in an MLP are similar, and each one has several inputs (the previous linked
neurons) and several output links with the same value (the next linked neurons). Each
neuron calculates the output value as a sum of the weighted inputs plus a bias term and is
transformed by a selected activation function:

Number Plate Recognition using SVM and Neural Network

[98]

There are three widely used activation functions: Identity, Sigmoid, and Gaussian. The most
common and default activation function is the Sigmoid function; it has an alpha and beta
value set to 1:

An ANN-trained network has a vector of input with features; it passes the values to the
hidden layer and computes the results with the weights and activation function. It passes
outputs further downstream until it gets the output layer that has the number of neurons
classes.

The weight of each layer, synapses, and neuron is computed and learned by training the
ANN algorithm. To train our classifier, we will create two matrices of data, as we did in the
SVM training, but the training labels are a bit different. Instead of an Nx1 matrix, where N
stands for training data rows and 1 is the column, we will use the label number identifier.
We have to create an NxM matrix, where N is the training/samples data and M are the
classes (10 digits + 20 letters in our case), and set 1 in a position i, j if the data row i is
classified with class j:

Number Plate Recognition using SVM and Neural Network

[99]

We will create an OCR::train function to create all needed matrix and train our system,
with the training data matrix, classes matrix, and the number of hidden neurons in the
hidden layers. The training data is loaded from an XML file, just as we did in SVM training.

We have to define the number of neurons in each layer to initialize the ANN class. For our
sample, we will use only one hidden layer. Then, we will define a matrix of one row and
three columns. The first column position is the number of features, the second column
position is the number of hidden neurons on the hidden layer, and the third column
position is the number of classes.

OpenCV defines an ANN_MLP class for ANN. With the create function, we can initiate the
class pointer and later define the number of layers and neurons and the activation function.
We can thencreate the training data like SVM, and alpha and beta parameters of training
method:

 void OCR::train(Mat TrainData, Mat classes, int nlayers){
 Mat_<int> layerSizes(1, 3);
 layerSizes(0, 0) = data.cols;
 layerSizes(0, 1) = nlayers;
 layerSizes(0, 2) = numCharacters;
 ann= ANN_MLP::create();
 ann->setLayerSizes(layerSizes);
 ann->setActivationFunction(ANN_MLP::SIGMOID_SYM, 0, 0);
 ann->setTrainMethod(ANN_MLP::BACKPROP, 0.0001, 0.0001);

 //Prepare trainClases
 //Create a mat with n trained data by m classes
 Mat trainClasses;
 trainClasses.create(TrainData.rows, numCharacters, CV_32FC1);
 for(int i = 0; i <trainClasses.rows; i++)
 {
 for(int k = 0; k < trainClasses.cols; k++)
 {
 //If class of data i is same than a k class
 if(k == classes.at<int>(i))
 trainClasses.at<float>(i,k) = 1;
 else
 trainClasses.at<float>(i,k) = 0;
 }
 }

 Ptr<TrainData> trainData = TrainData::create(data, ROW_SAMPLE,
 trainClasses);
 //Learn classifier
 ann->train(trainData);

Number Plate Recognition using SVM and Neural Network

[100]

 }

After training, we can classify any segmented plate features using the OCR::classify
function:

 int OCR::classify(Mat f){
 int result=-1;
 Mat output;
 ann.predict(f, output);
 Point maxLoc;
 double maxVal;
 minMaxLoc(output, 0, &maxVal, 0, &maxLoc);
 //We need know where in output is the max val, the x (cols) is
 the class.
 return maxLoc.x;
 }

The ANN_MLP class uses the predict function for classifying a feature vector in a class.
Unlike the SVM classify function, the ANN predict function returns a row with the size
of equal to the number of classes, with the probability of belonging the input feature to each
class.

To get the best result, we can use the minMaxLoc function to get the max and min response,
and the position in the matrix. The class of our character is specified by the x position of
higher value:

Number Plate Recognition using SVM and Neural Network

[101]

To finish each plate detected, we order its characters and return a string with the str()
function of the Plate class, and we can draw it on the original image:

 string licensePlate=plate.str();
 rectangle(input_image, plate.position, Scalar(0,0,200));
 putText(input_image, licensePlate, Point(plate.position.x,
 plate.position.y), CV_FONT_HERSHEY_SIMPLEX, 1,
 Scalar(0,0,200),2);

Evaluation
Our project is finished. However, when we train a machine learning algorithm like OCR, for
example, we need to know the best features and parameters to use and how to correct the
classification, recognition, and detection errors in our system.

We need to evaluate our system with different situations and parameters and evaluate the
errors produced in order to get the best parameters that minimize those errors.

In this chapter, we evaluated the OCR task with variables: size of low-level resolution
image feature and the number of hidden neurons in the hidden layer.

We created the evalOCR.cpp application where we uses the XML training data file
generated by the trainOCR.cpp application. The OCR.xml file contains the training data
matrix for 5x5, 10x10, 15x15, and 20x20 downsampled image features:

 Mat classes;
 Mat trainingData;
 //Read file storage.
 FileStorage fs;
 fs.open("OCR.xml", FileStorage::READ);
 fs[data] >> trainingData;
 fs["classes"] >> classes;

The evaluation application gets each downsampled matrix feature and gets 100 random
rows for traning, as well as other rows for testing the ANN algorithm and checking the
error.

Before training the system, we will test each random sample and check whether the
response is correct. If the response is not correct, we increment the error counter variable
and then divide by the number of samples to evaluate. This indicates the error ratio
between 0 and 1 for training with random data:

 float test(Mat samples, Mat classes){
 float errors=0;

Number Plate Recognition using SVM and Neural Network

[102]

 for(int i=0; i<samples.rows; i++){
 int result= ocr.classify(samples.row(i));
 if(result!= classes.at<int>(i))
 errors++;
 }
 return errors/samples.rows;
 }

The application returns output command-line error ratio for each sample size. For a good
evaluation, we need to train the application with different random training rows. This
produces different test error values. Then, we can add up all the errors and obtain an
average. To do this task, we will create the bash UNIX script to automate it:

 #!/bin/bash
 echo "#ITS t 5 t 10 t 15 t 20">data.txt
 folder=$(pwd)

 for numNeurons in 10 20 30 40 50 60 70 80 90 100 120 150 200 500
 do
 s5=0;
 s10=0;
 s15=0;
 s20=0;
 for j in {1..100}
 do
 echo $numNeurons $j
 a=$($folder/build/evalOCR $numNeurons TrainingDataF5)
 s5=$(echo "scale=4; $s5+$a" | bc -q 2>/dev/null)

 a=$($folder/build/evalOCR $numNeurons TrainingDataF10)
 s10=$(echo "scale=4; $s10+$a" | bc -q 2>/dev/null)

 a=$($folder/build/evalOCR $numNeurons TrainingDataF15)
 s15=$(echo "scale=4; $s15+$a" | bc -q 2>/dev/null)

 a=$($folder/build/evalOCR $numNeurons TrainingDataF20)
 s20=$(echo "scale=4; $s20+$a" | bc -q 2>/dev/null)
 done

 echo "$i t $s5 t $s10 t $s15 t $s20"
 echo "$i t $s5 t $s10 t $s15 t $s20">>data.txt
 done

Number Plate Recognition using SVM and Neural Network

[103]

This script saves a data.txt file that contains all results for each size and neuron hidden
layer number. This file can be used for plotting with gnuplot. We can see the result in the
following image:

We can see that the lowest error is over 8 percent and is using 20 neurons in hidden layer
and character's features extracted from a downscaled to 10x10 image patch.

Number Plate Recognition using SVM and Neural Network

[104]

Summary
In this chapter, you learned how an Automatic Plate License Recognition program works
and its two important steps: plate localization and plate recognition.

In the first step, you learned how to segment an image looking for patches where we can
have a plate, and use a simple heuristics and SVM algorithm to make a binary classification
for patches with plates and no plates.

In the second step, you learned how to segment with the Find Contours algorithm, extract
feature vector from each character, and use an ANN to classify each feature in a character
class.

You also learned how to evaluate a machine algorithm with training with random samples,
and using different parameters and features.

In the next chapter, you will learn how to create a face-recognition application using
eigenfaces.

4
Non-Rigid Face Tracking

Non-rigid face tracking, which is the estimation of a quasi-dense set of facial features in
each frame of a video stream, is a difficult problem for which modern approaches borrow
ideas from a number of related fields, including Computer Vision, computational geometry,
machine learning, and image processing. Non-rigidity here refers to the fact that relative
distances between facial features vary between facial expression and across the population,
and is distinct from face detection and tracking, which aims only to find the location of the
face in each frame, rather than the configuration of facial features. Non-rigid face tracking is
a popular research topic that has been pursued for over two decades, but it is only recently
that various approaches have become robust enough, and processors fast enough, which
makes the building of commercial applications possible.

Although commercial-grade face tracking can be highly sophisticated and pose a challenge
even for experienced Computer Vision scientists, in this chapter we will see that a face
tracker that performs reasonably well under constrained settings can be devised using
modest mathematical tools and OpenCV's substantial functionality in linear algebra, image
processing, and visualization. This is particularly the case when the person to be tracked is
known ahead of time, and training data in the form of images and landmark annotations
are available. The techniques described henceforth will act as a useful starting point and a
guide for further pursuits towards a more elaborate face-tracking system.

An outline of this chapter is as follows:

Overview: This section covers a brief history of face tracking.
Utilities: This section outlines the common structures and conventions used in
this chapter. It includes object-oriented design, data storage and representation,
and a tool for data collection and annotation.

Non-Rigid Face Tracking

[106]

Geometrical constraints: This section describes how facial geometry and its
variations are learned from the training data and utilized during tracking to
constrain the solution. This includes modeling the face as a linear shape model
and how global transformations can be integrated into its representation.
Facial feature detectors: This section describes how to learn the appearance of
facial features in order to detect them in an image where the face is to be tracked.
Face detection and initialization: This section describes how to use face detection
to initialize the tracking process.
Face tracking: This section combines all components described previously into a
tracking system through the process of image alignment. Discussion on the
settings in which the system can be expected to work best.

The following block diagram illustrates the relationships between the various components
of the system:

Note that all methods employed in this chapter follow a data-driven
paradigm whereby all models used are learned from data rather than
designed by hand in a rule-based setting. As such, each component of the
system will involve two components: training and testing. Training builds
the models from data and testing employs these models on new unseen
data.

Non-Rigid Face Tracking

[107]

Overview
Non-rigid face tracking was first popularized in the early to mid-1990s with the advent of
Active Shape Models (ASM) by Cootes and Taylor. Since then, a tremendous amount of
research has been dedicated to solving the difficult problem of generic face tracking with
many improvements over the original method that ASM proposed. The first milestone was
the extension of ASM to Active Appearance Models (AAM) in 2001, also by Cootes and
Taylor. This approach was later formalized though the principled treatment of image warps
by Baker and colleges in the mid-2000s. Another strand of work along these lines was the
3D morphable model (3DMM) by Blanz and Vetter, which like AAM, not only modeled
image textures as opposed to profiles along object boundaries as in ASM, but took it one
step further by representing the models with a highly dense 3D data learned from laser
scans of faces. From the mid- to late 2000s, the focus of research on face tracking shifted
away from how the face was parameterized to how the objective of the tracking algorithm
was posed and optimized. Various techniques from the machine-learning community were
applied with various degrees of success. Since the turn of the century, the focus has shifted
once again, this time towards joint parameter and objective design strategies that guarantee
global solutions.

Despite the continued intense research into face tracking, there have been relatively few
commercial applications that use it. There has also been a lag in uptake by hobbyists and
enthusiasts, despite there being a number of freely available source code packages for a
number of common approaches. Nonetheless, in the past 2 years there has been a renewed
interest in the public domain for the potential use of face tracking and commercial-grade
products are beginning to emerge.

Utilities
Before diving into the intricacies of face tracking, a number of book-keeping tasks and
conventions common to all face-tracking methods must first be introduced. The rest of this
section will deal with these issues. An interested reader may want to skip this section at the
first reading and go straight to the section on geometrical constraints.

Non-Rigid Face Tracking

[108]

Object-oriented design
As with face detection and recognition, programmatically, face tracking consists of two
components: data and algorithms. The algorithms typically perform some kind of operation
on the incoming (that is, online) data by referencing prestored (that is, offline) data as a
guide. As such, an object-oriented design that couples algorithms with the data they rely on
is a convenient design choice.

In OpenCV v2.x, a convenient XML/YAML file storage class was introduced that greatly
simplifies the task of organizing offline data for use in the algorithms. To leverage this
feature, all classes described in this chapter will implement read-and write-serialization
functions. An example of this is shown as follows for an imaginary class foo:

 #include <opencv2/opencv.hpp>
 using namespace cv;
 class foo {
 public:
 Mat a;
 type_b b;
 void write(FileStorage &fs) const{
 assert(fs.isOpened());
 fs<< "{" << "a" << a << "b" << b << "}";
 }
 void read(const FileNode& node){
 assert(node.type() == FileNode::MAP);
 node["a"] >> a; node["b"] >> b;
 }
 };

Here, Mat is OpenCV's matrix class and type_b is a (imaginary) user-defined class that also
has the serialization functionality defined. The I/O functions read and write implement
the serialization. The FileStorage class supports two types of data structures that can be
serialized. For simplicity, in this chapter all classes will only utilize mappings, where each
stored variable creates a FileNode object of type FileNode::MAP. This requires a unique
key to be assigned to each element. Although the choice for this key is arbitrary, we will use
the variable name as the label for consistency reasons. As illustrated in the preceding code
snippet, the read and write functions take on a particularly simple form, whereby the
streaming operators (<< and >>) are used to insert and extract data to the FileStorage
object. Most OpenCV classes have implementations of the read and write functions,
allowing the storage of the data that they contain to be done with ease.

Non-Rigid Face Tracking

[109]

In addition to defining the serialization functions, one must also define two additional
functions for the serialization in the FileStorage class to work, as follows:

 void write(FileStorage& fs, const string&, const foo& x) {
 x.write(fs);
 }
 void read(const FileNode& node, foo& x,const foo& default){
 if(node.empty())x = d; else x.read(node);
 }

As the functionality of these two functions remains the same for all classes we describe in
this section, they are templated and defined in the ft.hpp header file found in the source
code pertaining to this chapter. Finally, to easily save and load user-defined classes that
utilize the serialization functionality, templated functions for these are also implemented in
the header file as follows:

 template<class T>
 T load_ft(const char* fname){
 T x; FileStorage f(fname,FileStorage::READ);
 f["ft object"] >> x; f.release(); return x;
 }
 template<class T>
 void save_ft(const char* fname,const T& x){
 FileStorage f(fname,FileStorage::WRITE);
 f << "ft object" << x; f.release();
 }

Note that the label associated with the object is always the same (that is, ft object). With
these functions defined, saving and loading object data is a painless process. This is shown
with the help of the following example:

 #include "opencv_hotshots/ft/ft.hpp"
 #include "foo.hpp"
 int main() {
 ...
 foo A; save_ft<foo>("foo.xml",A);
 ...
 foo B = load_ft<foo>("foo.xml");
 ...
 }

Note that the .xml extension results in an XML-formatted data file. For any other extension,
it defaults to the (more human-readable) YAML format.

Non-Rigid Face Tracking

[110]

Data collection - image and video annotation
Modern face-tracking techniques are almost entirely data driven, that is, the algorithms
used to detect the locations of facial features in the image rely on models of the appearance
of the facial features and the geometrical dependencies between their relative locations from
a set of examples. The larger the set of examples, the more robust the algorithms behave, as
they become more aware of the gamut of variability that faces can exhibit. Thus, the first
step in building a face-tracking algorithm is to create an image/video annotation tool, where
the user can specify the locations of the desired facial features in each example image.

Training data types
The data for training face tracking algorithms generally consists of four components:

Images: This component is a collection of images (still images or video frames)
that contain an entire face. For best results, this collection should be specialized to
the types of conditions (that is, identity, lighting, distance from camera, capturing
device, among others) in which the tracker is later deployed. It is also crucial that
the faces in the collection exhibit the range of head poses and facial expressions
that the intended application expects.
Annotations: This component has ordered hand-labeled locations in each image
that correspond to every facial feature to be tracked. More facial features often
lead to a more robust tracker as the tracking algorithm can use their
measurements to reinforce each other. The computational cost of common
tracking algorithms typically scales linearly with the number of facial features.
Symmetry indices: This component has an index for each facial feature point that
defines its bilaterally symmetrical feature. This can be used to mirror the training
images, effectively doubling the training set size and symmetrizing the data
along the y axis.
Connectivity indices: This component has a set of index pairs of the annotations
that define the semantic interpretation of the facial features. These connections
are useful for visualizing the tracking results.

Non-Rigid Face Tracking

[111]

A visualization of these four components is shown in the following image, where from left
to right we have the raw image, facial feature annotations, color-coded bilateral symmetry
points, mirrored image, and annotations and facial feature connectivity:

To conveniently manage such data, a class that implements storage and access functionality
is a useful component. The CvMLData class in the ml module of OpenCV has the
functionality for handling general data often used in machine-learning problems. However,
it lacks the functionality required from the face-tracking data. As such, in this chapter, we
will use the ft_data class, declared in the ft_data.hpp header file, which is designed
specifically with the peculiarity of face-tracking data in mind. All data elements are defined
as public members of the class, as follows:

 class ft_data{
 public:
 vector<int> symmetry;
 vector<Vec2i> connections;
 vector<string> imnames;
 vector<vector<Point2f>> points;
 ...
 }

The Vec2i and Point2f types are OpenCV classes for vectors of two integers and 2D
floating-point coordinates respectively. The symmetry vector has as many components as
there are feature points on the face (as defined by the user). Each of the connections
define a zero-based index pair of connected facial features. As the training set can
potentially be very large, rather than storing the images directly, the class stores the
filenames of each image in the imnames member variable (note that this requires the images
to be located in the same relative path for the filenames to remain valid). Finally, for each
training image, a collection of facial feature locations are stored as vectors of floating-point
coordinates in the points member variable.

Non-Rigid Face Tracking

[112]

The ft_data class implements a number of convenience methods for accessing the data. To
access an image in the dataset, the get_image function loads the image at the specified
index, idx, and optionally mirrors it around the y axis as follows:

 Mat
 ft_data::get_image(
 const int idx, //index of image to load from file
 const int flag) { //0=gray,1=gray+flip,2=rgb,3=rgb+flip
 if((idx < 0) || (idx >= (int)imnames.size()))return Mat();
 Mat img,im;
 if(flag < 2) img = imread(imnames[idx],0);
 else img = imread(imnames[idx],1);
 if(flag % 2 != 0) flip(img,im,1);
 else im = img;
 return im;
 }

The (0,1) flag passed to OpenCV's imread function specifies whether the image is loaded as
a three-channel color image or as a single-channel grayscale image. The flag passed to
OpenCV's flip function specifies the mirroring around the y axis.

To access a point set corresponding to an image at a particular index, the get_points
function returns a vector of floating-point coordinates with the option of mirroring their
indices as follows:

 vector<Point2f>
 ft_data::get_points(
 const int idx, //index of image corresponding to points
 const bool flipped) { //is the image flipped around the y-axis?
 if((idx < 0) || (idx >= (int)imnames.size()))
 return vector<Point2f>();
 vector<Point2f> p = points[idx];
 if(flipped){
 Mat im = this->get_image(idx,0); int n = p.size();
 vector<Point2f> q(n);
 for(int i = 0; i < n; i++){
 q[i].x = im.cols-1-p[symmetry[i]].x;
 q[i].y = p[symmetry[i]].y;
 } return q;
 } else return p;
 }

Non-Rigid Face Tracking

[113]

Note that when the mirroring flag is specified, this function calls the get_image function.
This is required to determine the width of the image in order to correctly mirror the facial
feature coordinates. A more efficient method could be devised by simply passing the image
width as a variable. Finally, the utility of the symmetry member variable is illustrated in
this function. The mirrored feature location of a particular index is simply the feature
location at the index specified in the symmetry variable with its x coordinate flipped and
biased.

Both the get_image and get_points functions return empty structures if the specified
index is outside the one that exists for the dataset. It is also possible that not all images in
the collection are annotated. Face-tracking algorithms can be designed to handle missing
data; however, these implementations are often quite involved and are outside the scope of
this chapter. The ft_data class implements a function for removing samples from its
collection that do not have corresponding annotations, as follows:

 void ft_data::rm_incomplete_samples(){
 int n = points[0].size(),N = points.size();
 for(int i = 1; i < N; i++)n = max(n,int(points[i].size()));
 for(int i = 0; i < int(points.size()); i++){
 if(int(points[i].size()) != n){
 points.erase(points.begin()+i);
 imnames.erase(imnames.begin()+i); i--;
 } else {
 int j = 0;
 for(; j < n; j++) {
 if((points[i][j].x <= 0) ||
 (points[i][j].y <= 0))break;
 }
 if(j < n) {
 points.erase(points.begin()+i);
 imnames.erase(imnames.begin()+i); i--;
 }
 }
 }
 }

The sample instance that has the most number of annotations is assumed to be the canonical
sample. All data instances that have a point set with less than that number of points are
removed from the collection using the vector's erase function. Also notice that points with
(x, y) coordinates less than 1 are considered missing in their corresponding image (possibly
due to occlusion, poor visibility, or ambiguity).

Non-Rigid Face Tracking

[114]

The ft_data class implements the serialization functions read and write, and can thus be
stored and loaded easily. For example, saving a dataset can be done as simply as:

 ft_data D; //instantiate data structure
 ... //populate data
 save_ft<ft_data>("mydata.xml",D); //save data

For visualizing the dataset, ft_data implements a number of drawing functions. Their use
is illustrated in the visualize_annotations.cpp file. This simple program loads
annotation data stored in the file specified in the command-line, removes the incomplete
samples, and displays the training images with their corresponding annotations, symmetry,
and connections superimposed. A few notable features of OpenCV's highgui module are
demonstrated here. Although quite rudimentary and not well suited for complex user
interfaces, the functionality in OpenCV's highgui module is extremely useful for loading
and visualizing data and algorithmic outputs in Computer Vision applications. This is
perhaps one of OpenCV's distinguishing qualities compared to other Computer Vision
libraries.

Annotation tool
To aid in generating annotations for use with the code in this chapter, a rudimentary
annotation tool can be found in the annotate.cpp file. The tool takes as input a video
stream, either from a file or from the camera. The procedure for using the tool is listed in the
following four steps:

Capture images: In this first step, the image stream is displayed on the screen1.
and the user chooses the images to annotate by pressing the S key. The best set of
features to annotate are those that maximally span the range of facial behaviors
that the face-tracking system will be required to track.
Annotate first image: In this second step, the user is presented with the first2.
image selected in the previous stage. The user then proceeds to click on the image
at the locations pertaining to the facial features that require tracking.
Annotate connectivity: In this third step, to better visualize a shape, the3.
connectivity structure of points needs to be defined. Here, the user is presented
with the same image as in the previous stage, where the task now is to click a set
of point pairs, one after the other, to build the connectivity structure for the face
model.
Annotate symmetry: In this step, still with the same image, the user selects pairs4.
of points that exhibit bilateral symmetry.

Non-Rigid Face Tracking

[115]

Annotate remaining images: In this final step, the procedure here is similar to2.
that of step 2, except that the user can browse through the set of images and
annotate them asynchronously.

An interested reader may want to improve on this tool by improving its usability or may
even integrate an incremental learning procedure, whereby a tracking model is updated
after each additional image is annotated and is subsequently used to initialize the points to
reduce the burden of annotation.

Although some publicly available datasets are available for use with the code developed in
this chapter (see for example, the description in the following section), the annotation tool
can be used to build person-specific face-tracking models, which often perform far better
than their generic, person-independent, counterparts.

Pre-annotated data (the MUCT dataset)
One of the hindering factors of developing face-tracking systems is the tedious and error-
prone process of manually annotating a large collection of images, each with a large
number of points. To ease this process for the purpose of following the work in this chapter,
the publicly available MUCT dataset can be downloaded from h t t p ://w w w /m i l b o . o r g /m u c

t .

The dataset consists of 3,755 face images annotated with 76 point landmarks. The subjects in
the dataset vary in age and ethnicity and are captured under a number of different lighting
conditions and head poses.

To use the MUCT dataset with the code in this chapter, perform the following steps:

Download the image set: In this step, all the images in the dataset can be1.
obtained by downloading the files muct-a-jpg-v1.tar.gz to muct-e-jpg-
v1.tar.gz and uncompressing them. This will generate a new folder in which
all the images will be stored.
Download the annotations: In this step, download the file containing the2.
annotations muct-landmarks-v1.tar.gz. Save and uncompress this file in the
same folder as the one in which the images were downloaded.

http://www/milbo.org/muct
http://www/milbo.org/muct
http://www/milbo.org/muct
http://www/milbo.org/muct
http://www/milbo.org/muct
http://www/milbo.org/muct
http://www/milbo.org/muct
http://www/milbo.org/muct
http://www/milbo.org/muct
http://www/milbo.org/muct
http://www/milbo.org/muct
http://www/milbo.org/muct
http://www/milbo.org/muct
http://www/milbo.org/muct
http://www/milbo.org/muct
http://www/milbo.org/muct
http://www/milbo.org/muct
http://www/milbo.org/muct
http://www/milbo.org/muct
http://www/milbo.org/muct
http://www/milbo.org/muct
http://www/milbo.org/muct
http://www/milbo.org/muct
http://www/milbo.org/muct
http://www/milbo.org/muct
http://www/milbo.org/muct
http://www/milbo.org/muct
http://www/milbo.org/muct
http://www/milbo.org/muct
http://www/milbo.org/muct
http://www/milbo.org/muct
http://www/milbo.org/muct
http://www/milbo.org/muct
http://www/milbo.org/muct
http://www/milbo.org/muct
http://www/milbo.org/muct
http://www/milbo.org/muct
http://www/milbo.org/muct
http://www/milbo.org/muct

Non-Rigid Face Tracking

[116]

Define connections and symmetry using the annotation tool: In this step, from2.
the command-line, issue the command ./annotate -m $mdir -d $odir,
where $mdir denotes the folder where the MUCT dataset was saved and $odir
denotes the folder to which the annotations.yaml file, containing the data
stored as an ft_data object, will be written.

Usage of the MUCT dataset is encouraged to get a quick introduction to
the functionality of the face-tracking code described in this chapter.

Geometrical constraints
In face tracking, geometry refers to the spatial configuration of a predefined set of points
that correspond to physically consistent locations on the human face (such as eye corners,
nose tips, and eyebrow edges). A particular choice of these points is application dependent,
with some applications requiring a dense set of over 100 points and others requiring only a
sparser selection. However, the robustness of face-tracking algorithms generally improves
with an increased number of points, as their separate measurements can reinforce each
other through their relative spatial dependencies. For example, the location of an eye corner
is a good indication of where to expect the nose to be located. However, there are limits to
improvements in robustness gained by increasing the number of points, where performance
typically plateaus after around 100 points. Furthermore, increasing the point set used to
describe a face carries with it a linear increase in computational complexity. Thus,
applications with strict constraints on computational load may fare better with fewer
points.

It is also the case that faster tracking often leads to more accurate tracking in the online
setting. This is because, when frames are dropped, the perceived motion between frames
increases, and the optimization algorithm used to find the configuration of the face in each
frame has to search a larger space of possible configurations of feature points; a process that
often fails when displacement between frames becomes too large. In summary, although
there are general guidelines on how to best design the selection of facial feature points, to
get an optimal performance, this selection should be specialized to the application's
domain.

Non-Rigid Face Tracking

[117]

Facial geometry is often parameterized as a composition of two elements: a global
transformation (rigid) and a local deformation (non-rigid). The global transformation
accounts for the overall placement of the face in the image, which is often allowed to vary
without constraint (that is, the face can appear anywhere in the image). This includes the (x,
y) location of the face in the image, the in-plane head rotation, and the size of the face in the
image. Local deformations, on the other hand, account for differences between facial shapes
across identities and between expressions. In contrast to the global transformation, these
local deformations are often far more constrained largely due to the highly structured
configuration of facial features. Global transformations are generic functions of 2D
coordinates, applicable to any type of object, whereas local deformations are object specific
and must be learned from a training dataset.

In this section, we will describe the construction of a geometrical model of a facial structure,
hereby referred to as the shape model. Depending on the application, it can capture
expression variations of a single individual, differences between facial shapes across a
population, or a combination of both. This model is implemented in the shape_model class
which can be found in the shape_model.hpp and shape_model.cpp files. The following
code snippet is a part of the header of the shape_model class that highlights its primary
functionality:

 class shape_model { //2d linear shape model
 public:
 Mat p; //parameter vector (kx1) CV_32F
 Mat V; //linear subspace (2nxk) CV_32F
 Mat e; //parameter variance (kx1) CV_32F
 Mat C; //connectivity (cx2) CV_32S
 ...
 void calc_params(
 const vector<Point2f>&pts, //points to compute parameters
 const Mat &weight = Mat(), //weight/point (nx1) CV_32F
 const float c_factor = 3.0); //clamping factor
 ...
 vector<Point2f> //shape described by parameters
 calc_shape();
 ...
 void train(
 const vector<vector<Point2f>>&p, //N-example shapes
 const vector<Vec2i>&con = vector<Vec2i>(),//connectivity
 const float frac = 0.95, //fraction of variation to retain
 const int kmax = 10); //maximum number of modes to retain
 ...
 }

Non-Rigid Face Tracking

[118]

The model that represents variations in face shapes is encoded in the subspace matrix V and
variance vector e. The parameter vector p stores the encoding of a shape with respect to the
model. The connectivity matrix C is also stored in this class as it pertains only to visualizing
instances of the face's shape. The three functions of primary interest in this class are
calc_params, calc_shape, and train. The calc_params function projects a set of points
onto the space of plausible face shapes. It optionally provides separate confidence weights
for each of the points to be projected. The calc_shape function generates a set of points by
decoding the parameter vector p using the face model (encoded by V and e). The train
function learns the encoding model from a dataset of face shapes, each of which consists of
the same number of points. The parameters frac and kmax are parameters of the training
procedure that can be specialized for the data at hand.

The functionality of this class will be elaborated in the sections that follow, where we begin
by describing Procrustes analysis, a method for rigidly registering a point set, followed by
the linear model used to represent local deformations. The programs in the
train_shape_model.cpp and visualize_shape_model.cpp files train and visualize the
shape model respectively. Their usage will be outlined at the end of this section.

Procrustes analysis
In order to build a deformation model of face shapes, we must first process the raw
annotated data to remove components pertaining to global rigid motion. When modeling
geometry in 2D, a rigid motion is often represented as a similarity transform; this includes
the scale, in-plane rotation, and translation. The following image illustrates the set of
permissible motion types under a similarity transform. The process of removing global
rigid motion from a collection of points is called Procrustes analysis.

Non-Rigid Face Tracking

[119]

Mathematically, the objective of Procrustes analysis is to simultaneously find a canonical
shape and similarity, and transform each data instance that brings them into alignment with
the canonical shape. Here, alignment is measured as the least-squares distance between
each transformed shape with the canonical shape. An iterative procedure for fulfilling this
objective is implemented in the shape_model class as follows:

 #define fl at<float>
 Mat shape_model::procrustes (
 const Mat &X, //interleaved raw shape data as columns
 const int itol, //maximum number of iterations to try
 const float ftol) //convergence tolerance
 {
 int N = X.cols,n = X.rows/2; Mat Co,P = X.clone();//copy
 for(int i = 0; i < N; i++){
 Mat p = P.col(i); //i'th shape
 float mx = 0,my = 0; //compute centre of mass...
 for(int j = 0; j < n; j++) { //for x and y separately
 mx += p.fl(2*j); my += p.fl(2*j+1);
 }
 mx /= n; my /= n;
 for(int j = 0; j < n; j++) { //remove center of mass
 p.fl(2*j) -= mx; p.fl(2*j+1) -= my;
 }
 }
 for(int iter = 0; iter < itol; iter++) {
 Mat C = P*Mat::ones(N,1,CV_32F)/N; //compute normalized...
 normalize(C,C); //canonical shape
 if(iter > 0) { if(norm(C,Co) < ftol) break; } //converged?
 Co = C.clone(); //remember current
estimate
 for(int i = 0; i < N; i++){
 Mat R = this->rot_scale_align(P.col(i),C);
 for(int j = 0; j < n; j++) { //apply similarity transform
 float x = P.fl(2*j,i), y = P.fl(2*j+1,i);
 P.fl(2*j ,i) = R.fl(0,0)*x + R.fl(0,1)*y;
 P.fl(2*j+1,i) = R.fl(1,0)*x + R.fl(1,1)*y;
 }
 }
 } return P; //returned procrustes aligned shapes
 }

Non-Rigid Face Tracking

[120]

The algorithm begins by subtracting the center of mass of each shape's instance followed by
an iterative procedure that alternates between computing the canonical shape, as the
normalized average of all shapes, and rotating and scaling each shape to best match the
canonical shape. The normalization step of the estimated canonical shape is necessary to fix
the scale of the problem and prevent it from shrinking all the shapes to zero. The choice of
this anchor scale is arbitrary; here, we have chosen to enforce the length of the canonical
shape vector C to 1.0, as is the default behavior of OpenCV's normalize function.
Computing the in-plane rotation and scaling that best aligns each shape's instance to the
current estimate of the canonical shape is effected through the rot_scale_align function
as follows:

 Mat shape_model::rot_scale_align(
 const Mat &src, //[x1;y1;...;xn;yn] vector of source shape
 const Mat &dst) //destination shape
 {
 //construct linear system
 int n = src.rows/2;
 float a=0, b=0, d=0;
 for(int i = 0; i < n; i++) {
 d+= src.fl(2*i)*src.fl(2*i)+src.fl(2*i+1)*src.fl(2*i+1);
 a+= src.fl(2*i)*dst.fl(2*i)+src.fl(2*i+1)*dst.fl(2*i+1);
 b+= src.fl(2*i)*dst.fl(2*i+1)-src.fl(2*i+1)*dst.fl(2*i);
 }
 a /= d; b /= d;//solve linear system
 return (Mat_<float>(2,2) << a,-b,b,a);
 }

This function minimizes the following least squares difference between the rotated and
canonical shapes. Mathematically this can be written as:

Non-Rigid Face Tracking

[121]

Here the solution to the least-squares problem takes on the closed-form solution shown in
the following image on the right-hand side of the equation. Note that rather than solving for
the scaling and in-plane rotation, which are nonlinearly related in the scaled 2D rotation
matrix, we solve for the variables (a, b). These variables are related to the scale and rotation
matrix as follows:

A visualization of the effects of Procrustes analysis on raw annotated shape data is
illustrated in the following image. Each facial feature is displayed with a unique color. After
translation normalization, the structure of the face becomes apparent, where the locations of
facial features cluster around their average locations. After the iterative scale and rotation
normalization procedure, the feature clustering becomes more compact and their
distribution becomes more representative of the variation induced by facial deformation.
This last point is important as it is these deformations that we will attempt to model in the
following section. Thus, the role of Procrustes analysis can be thought of as a preprocessing
operation on the raw data that will allow better local deformation models of the face to be
learned:

Non-Rigid Face Tracking

[122]

Linear shape models
The aim of facial-deformation modeling is to find a compact parametric representation of
how the face's shape varies across identities and between expressions. There are many ways
of achieving this goal with various levels of complexity. The simplest of these is to use a
linear representation of facial geometry. Despite its simplicity, it has been shown to
accurately capture the space of facial deformations, particularly when the faces in the
dataset are largely in a frontal pose. It also has the advantage that inferring the parameters
of its representation is an extremely simple and cheap operation, in contrast to its nonlinear
counterparts. This plays an important role when deploying it to constrain the search
procedure during tracking.

The main idea of linearly modeling facial shapes is illustrated in the following image. Here,
a face shape, which consists of N facial features, is modeled as a single point in a 2N-
dimensional space. The aim of linear modeling is to find a low-dimensional hyperplane
embedded within this 2N-dimensional space in which all the face shape points lie (that is,
the green points in the image). As this hyperplane spans only a subset of the entire 2N-
dimensional space, it is often referred to as the subspace. The lower the dimensionality of
the subspace, the more compact the representation of the face is and the stronger the
constraint that it places on the tracking procedure becomes. This often leads to more robust
tracking. However, care should be taken in selecting the subspace's dimension so that it has
enough capacity to span the space of all faces, but not so much that non-face shapes lie
within its span (that is, the red points in the image). It should be noted that when modeling
data from a single person, the subspace that captures the face's variability is often far more
compact than the one that models multiple identities. This is one of the reasons why person-
specific trackers perform much better than generic ones.

Non-Rigid Face Tracking

[123]

The procedure for finding the best low-dimensional subspace that spans a dataset is called
Principal Component Analysis (PCA). OpenCV implements a class for computing PCA;
however, it requires the number of preserved subspace dimensions to be prespecified. As
this is often difficult to determine a priori, a common heuristic is to choose it based on the
fraction of the total amount of variation it accounts for. In the shape_model::train
function, PCA is implemented as follows:

 SVD svd(dY*dY.t());
 int m = min(min(kmax,N-1),n-1);
 float vsum = 0; for(int i = 0; i < m; i++)vsum += svd.w.fl(i);
 float v = 0; int k = 0;
 for(k = 0; k < m; k++){
 v += svd.w.fl(k); if(v/vsum >= frac){k++; break;}
 }
 if(k > m)k = m;
 Mat D = svd.u(Rect(0,0,k,2*n));

Non-Rigid Face Tracking

[124]

Here, each column of the dY variable denotes the mean-subtracted Procrustes-aligned
shape. Thus, Singular Value Decomposition (SVD) is effectively applied to the covariance
matrix of the shape data (that is, dY.t()*dY). The w member of OpenCV's SVD class stores
the variance in the major directions of variability of the data, ordered from largest to
smallest. A common approach to choose the dimensionality of the subspace is to choose the
smallest set of directions that preserve a fraction frac of the total energy of the data, which
is represented by the entries of svd.w. As these entries are ordered from largest to smallest,
it suffices to enumerate the subspace selection by greedily evaluating the energy in the top
k directions of variability. The directions themselves are stored in the u member of the SVD
class. The svd.w and svd.u components are generally referred to as the eigen spectrum
and eigen vectors respectively. A visualization of these two components is shown in the
following figure:

Note that the eigen spectrum decreases rapidly, which suggests that most
of the variation contained in the data can be modeled with a low-
dimensional subspace.

Non-Rigid Face Tracking

[125]

A combined local-global representation
A shape in the image frame is generated by the composition of a local deformation and a
global transformation. Mathematically, this parameterization can be problematic, as the
composition of these transformations results in a nonlinear function that does not admit a
closed-form solution. A common way to circumvent this problem is to model the global
transformation as a linear subspace and append it to the deformation subspace. For a fixed
shape, a similarity transform can be modeled with a subspace as follows:

In the shape_model class, this subspace is generated using the calc_rigid_basis
function. The shape from which the subspace is generated (that is, the x and y components
in the preceding equation) is the mean shape over the Procustes-aligned shape (that is, the
canonical shape). In addition to constructing the subspace in the aforementioned form, each
column of the matrix is normalized to unit length. In the shape_model::train function,
the variable dY described in the previous section is computed by projecting out the
components of the data that pertain to rigid motion, as follows:

 Mat R = this->calc_rigid_basis(Y); //compute rigid subspace
 Mat P = R.t()*Y; Mat dY = Y - R*P; //project-out rigidity

Note that this projection is implemented as a simple matrix multiplication. This is possible
because the columns of the rigid subspace have been length normalized. This does not
change the space spanned by the model, and means only that R.t()*R equals the identity
matrix.

As the directions of variability stemming from rigid transformations have been removed
from the data before learning the deformation model, the resulting deformation subspace
will be orthogonal to the rigid transformation subspace. Thus, concatenating the two
subspaces results in a combined local-global linear representation of facial shapes that is
also orthonormal. Concatenation here can be performed by assigning the two subspace
matrices to submatrices of the combined subspace matrix through the ROI extraction
mechanism implemented in OpenCV's Mat class as follows:

 V.create(2*n,4+k,CV_32F); //combined subspace
 Mat Vr = V(Rect(0,0,4,2*n)); R.copyTo(Vr); //rigid subspace
 Mat Vd = V(Rect(4,0,k,2*n)); D.copyTo(Vd); //nonrigid subspace

Non-Rigid Face Tracking

[126]

The orthonormality of the resulting model means that the parameters describing a shape
can be computed easily, as is done in the shape_model::calc_params function:

 p = V.t()*s;

Here s is a vectorized face shape and p stores the coordinates in the face subspace that
represents it.

A final point to note about linearly modeling facial shapes is how to constrain the subspace
coordinates such that shapes generated using it remain valid. In the following image,
instances of face shapes that lie within the subspace are shown for an increasing value of the
coordinates in one of the directions of variability in increments of four standard deviations.
Notice that for small values, the resulting shape remains face-like, but deteriorates as the
values become too large.

A simple way to prevent such deformation is to clamp the subspace coordinate values to lie
within a permissible region as determined from the dataset. A common choice for this is a
box constraint within ±3 standard deviations of the data, which accounts for 99.7
percent of variation in the data. These clamping values are computed in the
shape_model::train function after the subspace is found, as follows:

 Mat Q = V.t()*X; //project raw data onto subspace
 for(int i = 0; i < N; i++) { //normalize coordinates w.r.t scale
 float v = Q.fl(0,i); Mat q = Q.col(i); q /= v;
 }
 e.create(4+k,1,CV_32F); multiply(Q,Q,Q);
 for(int i = 0; i < 4+k; i++) {
 if(i < 4) e.fl(i) = -1; //no clamping for rigid coefficients
 else e.fl(i) = Q.row(i).dot(Mat::ones(1,N,CV_32F))/(N-1);
 }

Non-Rigid Face Tracking

[127]

Notice that the variance is computed over the subspace coordinate Q after normalizing with
respect to the coordinate of the first dimension (that is, scale). This prevents data samples
that have relatively large scale from dominating the estimate. Also, notice that a negative
value is assigned to the variance of the coordinates of the rigid subspace (that is, the first
four columns of V). The clamping function shape_model::clamp checks to see if the
variance of a particular direction is negative and only applies clamping if it is not, as
follows:

 void shape_model::clamp(const float c) {
 //clamping as fraction of standard deviation
 double scale = p.fl(0); //extract scale
 for(int i = 0; i < e.rows; i++) {
 if(e.fl(i) < 0)continue; //ignore rigid components
 float v = c*sqrt(e.fl(i)); //c*standard deviations box
 if(fabs(p.fl(i)/scale) > v) { //preserve sign of coordinate
 if(p.fl(i) > 0) p.fl(i) = v*scale; //positive threshold
 else p.fl(i) = -v*scale; //negative threshold
 }
 }
 }

The reason for this is that the training data is often captured under contrived settings where
the face is upright and centered in the image at a particular scale. Clamping the rigid
components of the shape model to adhere to the configurations in the training set would
then be too restrictive. Finally, as the variance of each deformable coordinate is computed in
the scale-normalized frame, the same scaling must be applied to the coordinates during
clamping.

Training and visualization
An example program for training a shape model from the annotation data can be found in
train_shape_model.cpp. With the command-line argument argv[1] containing the path
to the annotation data, training begins by loading the data into memory and removing
incomplete samples, as follows:

 ft_data data = load_ft<ft_data>(argv[1]);
 data.rm_incomplete_samples();

Non-Rigid Face Tracking

[128]

The annotations for each example, and optionally their mirrored counterparts, are then
stored in a vector before passing them to the training function as follows:

 vector<vector<Point2f>> points;
 for(int i = 0; i < int(data.points.size()); i++) {
 points.push_back(data.get_points(i,false));
 if(mirror)points.push_back(data.get_points(i,true));
 }

The shape model is then trained by a single function call to shape_model::train as
follows:

 shape_model smodel;
 smodel.train(points,data.connections,frac,kmax);

Here, frac (that is, the fraction of variation to retain) and kmax (that is, the maximum
number of eigen vectors to retain) can be optionally set through command-line options,
although the default settings of 0.95 and 20, respectively, tend to work well in most cases.
Finally, with the command-line argument argv[2] containing the path to save the trained
shape model to, saving can be performed by a single function call as follows:

 save_ft(argv[2],smodel);

The simplicity of this step results from defining the read and write serialization functions
for the shape_model class.

To visualize the trained shape model, the visualize_shape_model.cpp program
animates the learned non-rigid deformations of each direction in turn. It begins by loading
the shape model into memory as follows:

 shape_model smodel = load_ft<shape_model>(argv[1]);

The rigid parameters that place the model at the center of the display window are
computed as follows:

 int n = smodel.V.rows/2;
 float scale = calc_scale(smodel.V.col(0),200);
 float tranx =
 n*150.0/smodel.V.col(2).dot(Mat::ones(2*n,1,CV_32F));
 float trany =
 n*150.0/smodel.V.col(3).dot(Mat::ones(2*n,1,CV_32F));

Non-Rigid Face Tracking

[129]

Here, the calc_scale function finds the scaling coefficient that would generate face shapes
with a width of 200 pixels. The translation components are computed by finding the
coefficients that generate a translation of 150 pixels (that is, the model is mean-centered and
the display window is 300x300 pixels in size).

Note that the first column of shape_model::V corresponds to scale and
the third and fourth columns to x and y translations respectively.

A trajectory of parameter values is then generated, which begins at zero, moves to the
positive extreme, moves to the negative extreme, and then back to zero, as follows:

 vector<float> val;
 for(int i = 0; i < 50; i++)val.push_back(float(i)/50);
 for(int i = 0; i < 50; i++)val.push_back(float(50-i)/50);
 for(int i = 0; i < 50; i++)val.push_back(-float(i)/50);
 for(int i = 0; i < 50; i++)val.push_back(-float(50-i)/50);

Here, each phase of the animation is composed of 50 increments. This trajectory
is then used to animate the face model and render the results in a display window
as follows:

 Mat img(300,300,CV_8UC3); namedWindow("shape model");
 while(1) {
 for(int k = 4; k < smodel.V.cols; k++){
 for(int j = 0; j < int(val.size()); j++){
 Mat p = Mat::zeros(smodel.V.cols,1,CV_32F);
 p.at<float>(0) = scale;
 p.at<float>(2) = tranx;
 p.at<float>(3) = trany;
 p.at<float>(k) = scale*val[j]*3.0*
 sqrt(smodel.e.at<float>(k));
 p.copyTo(smodel.p); img = Scalar::all(255);
 vector<Point2f> q = smodel.calc_shape();
 draw_shape(img,q,smodel.C);
 imshow("shape model",img);
 if(waitKey(10) == 'q')return 0;
 }
 }
 }

Non-Rigid Face Tracking

[130]

Note that the rigid coefficients (that is, those corresponding to the first
four columns of shape_model::V) are always set to the values computed
previously, to place the face at the center of the display window.

Facial feature detectors
Detecting facial features in images bares a strong resemblance to general object detection.
OpenCV has a set of sophisticated functions for building general object detectors, the most
well-known of which is the cascade of Haar-based feature detectors used in their
implementation of the well-known Viola-Jones face detector. There are, however, a few
distinguishing factors that make facial feature detection unique. These are as follows:

Precision versus robustness: In generic object detection, the aim is to find the
coarse position of the object in the image; facial feature detectors are required to
give highly precise estimates of the location of the feature. An error of a few
pixels is considered inconsequential in object detection but it can mean the
difference between a smile and a frown in facial expression estimation through
feature detections.
Ambiguity from limited spatial support: It is common to assume that the object
of interest in generic object detection exhibits sufficient image structure such that
it can be reliably discriminated from image regions that do not contain the object.
This is often not the case for facial features, which typically have limited spatial
support. This is because image regions that do not contain the object can often
exhibit a very similar structure to facial features. For example, a feature on the
periphery of the face, seen from a small bounding box centered at the feature, can
be easily confused with any other image patch that contains a strong edge
through its center.
Computational complexity: Generic object detection aims to find all instances of
the object in an image. Face tracking, on the other hand, requires the locations of
all facial features, which often ranges from around 20 to 100 features. Thus, the
ability to evaluate each feature detector efficiently is paramount in building a face
tracker that can run in real time.

Due to these differences, the facial feature detectors used in face tracking are often
specifically designed with that purpose in mind. There are, of course, many instances of
generic object-detection techniques being applied to facial feature detectors in face tracking.
However, there does not appear to be a consensus in the community about which
representation is best suited for the problem.

Non-Rigid Face Tracking

[131]

In this section, we will build facial feature detectors using a representation that is perhaps
the simplest model one would consider: a linear image patch. Despite its simplicity, with
due care in designing its learning procedure, we will see that this representation can in fact
give reasonable estimates of facial feature locations for use in a face-tracking algorithm.
Furthermore, their simplicity enables an extremely rapid evaluation that makes real-time
face tracking possible. Due to their representation as an image patch, the facial feature
detectors are hereby referred to as patch models. This model is implemented in the
patch_model class that can be found in the
patch_model.hpp and patch_model.cpp files. The following code snippet is
of the header of the patch_model class that highlights its primary functionality:

 class patch_model{
 public:
 Mat P; //normalized patch
 ...
 Mat //response map
 calc_response(
 const Mat &im, //image patch of search region
 const bool sum2one = false); //normalize to sum-to-one?
 ...
 void train(const vector<Mat>&images, //training image patches
 const Size psize, //patch size
 const float var = 1.0, //ideal response variance
 const float lambda = 1e-6, //regularization weight
 const float mu_init = 1e-3, //initial step size
 const int nsamples = 1000, //number of samples
 const bool visi = false); //visualize process?
 ...
 };

The patch model used to detect a facial feature is stored in the matrix P. The two functions
of primary interest in this class are calc_response and train. The calc_response
function evaluates the patch model's response at every integer displacement over the search
region im. The train function learns the patch model P of size psize that, on an average,
yields response maps over the training set that is as close as possible to the ideal response
map. The parameters var, lambda, mu_init, and nsamples are parameters of the training
procedure that can be tuned to optimize performance for the data at hand.

Non-Rigid Face Tracking

[132]

The functionality of this class will be elaborated in this section. We begin by discussing the
correlation patch and its training procedure, which will be used to learn the patch model.
Next, the patch_models class, which is a collection of the patch models for each facial
feature and has functionality that accounts for global transformations will be described. The
programs in train_patch_model.cpp and visualize_patch_model.cpp train and
visualize the patch models, respectively, and their usage will be outlined at the end of this
section on facial feature detectors.

Correlation-based patch models
In learning detectors, there are two primary competing paradigms: generative and
discriminative. Generative methods learn an underlying representation of image patches
that can best generate the object appearance in all its manifestations. Discriminative
methods, on the other hand, learn a representation that best discriminates instances of the
object from other objects that the model will likely encounter when deployed. Generative
methods have the advantage that the resulting model encodes properties specific to the
object, allowing novel instances of the object to be visually inspected. A popular approach
that falls within the paradigm of generative methods is the famous Eigenfaces method.
Discriminative methods have the advantage that the full capacity of the model is geared
directly towards the problem at hand; discriminating instances of the object from all others.
Perhaps the most well-known of all discriminative methods is the support vector machine.
Although both paradigms can work well in many situations, we will see that when
modeling facial features as an image patch, the discriminative paradigm is far superior.

Note that the Eigenfaces and support vector machine methods were
originally developed for classification rather than detection or image
alignment. However, their underlying mathematical concepts have been
shown to be applicable to the face-tracking domain.

Learning discriminative patch models
Given an annotated dataset, the feature detectors can be learned independently from each
other. The learning objective of a discriminative patch model is to construct an image patch
that, when cross-correlated with an image region containing the facial feature, yields a
strong response at the fease. Mathematically, this can be expressed as:

Non-Rigid Face Tracking

[133]

Here, P denotes the patch model, I denotes the ith training image, I(a:b, c:d) denotes the
rectangular region whose top-left and bottom-right corners are located at (a, c) and (b, d),
respectively. The period symbol denotes the inner product operation and R denotes the
ideal response map. The solution to this equation is a patch model that generates response
maps that are, on average, closest to the ideal response map as measured using the least-
squares criterion. An obvious choice for the ideal response map, R, is a matrix with zeros
everywhere except at the center (assuming the training image patches are centered at the
facial feature of interest). In practice, since the images are hand-labeled, there will always be
an annotation error. To account for this, it is common to describe R as a decaying function
of distance from the center. A good choice is the 2D-Gaussian distribution, which is
equivalent to assuming the annotation error is Gaussian distributed. A visualization of this
setup is shown in the following figure for the left outer eye corner:

The learning objective as written previously is in a form commonly referred to as linear
least squares. As such, it affords a closed-form solution. However, the degrees of freedom of
this problem; that is, the number of ways the variables can vary to solve the problem, is
equal to the number of pixels in the patch. Thus, the computational cost and memory
requirements of solving for the optimal patch model can be prohibitive, even for a
moderately sized patch; for example, a 40x40 patch model has 1,600 degrees of freedom.

Non-Rigid Face Tracking

[134]

An efficient alternative to solving the learning problem as a linear system of equations is a
method called stochastic gradient descent. By visualizing the learning objective as an error
terrain over the degrees of freedom of the patch model, stochastic gradient descent
iteratively makes an approximate estimate of the gradient direction of the terrain and takes
a small step in the opposite direction. For our problem, the approximation to gradient can
be computed by considering only the gradient of the learning objective for a single,
randomly chosen image from the training set:

In the patch_model class, this learning process is implemented in the train function:

 void patch_model::train(
 const vector<Mat>&images, //featured centered training images
 const Size psize, //desired patch model size
 const float var, //variance of annotation error
 const float lambda, //regularization parameter
 const float mu_init, //initial step size
 const int nsamples, //number of stochastic samples
 const bool visi) { //visualise training process
 int N = images.size(),n = psize.width*psize.height;
 int dx = wsize.width-psize.width; //center of response map
 int dy = wsize.height-psize.height; //...
 Mat F(dy,dx,CV_32F); //ideal response map
 for(int y = 0; y < dy; y++) {
 float vy = (dy-1)/2 - y;
 for(int x = 0; x < dx; x++) {
 float vx = (dx-1)/2 - x;
 F.fl(y,x) = exp(-0.5*(vx*vx+vy*vy)/var); //Gaussian
 }
 }
 normalize(F,F,0,1,NORM_MINMAX); //normalize to [0:1] range

 //allocate memory
 Mat I(wsize.height,wsize.width,CV_32F);
 Mat dP(psize.height,psize.width,CV_32F);
 Mat O = Mat::ones(psize.height,psize.width,CV_32F)/n;
 P = Mat::zeros(psize.height,psize.width,CV_32F);

 //optimise using stochastic gradient descent
 RNG rn(getTickCount()); //random number generator
 double mu=mu_init,step=pow(1e-8/mu_init,1.0/nsamples);
 for(int sample = 0; sample < nsamples; sample++){
 int i = rn.uniform(0,N); //randomly sample image index

Non-Rigid Face Tracking

[135]

 I = this->convert_image(images[i]); dP = 0.0;
 for(int y = 0; y < dy; y++) { //compute stochastic gradient
 for(int x = 0; x < dx; x++){
 Mat Wi=I(Rect(x,y,psize.width,psize.height)).clone();
 Wi -= Wi.dot(O); normalize(Wi,Wi); //normalize
 dP += (F.fl(y,x) - P.dot(Wi))*Wi;
 }
 }
 P += mu*(dP - lambda*P); //take a small step
 mu *= step; //reduce step size
 ...
 } return;
 }

The first highlighted code snippet in the preceding code is where the ideal response map is
computed. Since the images are centered on the facial feature of interest, the response map
is the same for all samples. In the second highlighted code snippet, the decay rate, step, of
the step sizes is determined such that after nsamples iterations, the step size would have
decayed to a value close to zero. The third highlighted code snippet is where the stochastic
gradient direction is computed and used to update the patch model. There are two things to
note here. First, the images used in training are passed to the
patch_model::convert_image function, which converts the image to a single-channel
image (if it is a color image) and applies the natural logarithm to the image pixel intensities:

 I += 1.0; log(I,I);

A bias value of 1 is added to each pixel before applying the logarithm since the logarithm of
zero is undefined. The reason for performing this pre-processing on the training images is
because log-scale images are more robust against differences in contrast and changes in
illumination conditions. The following figure shows images of two faces with different
degrees of contrast in the facial region. The difference between the images is much less
pronounced in the log-scale images than it is in the raw images.

Non-Rigid Face Tracking

[136]

The second point to note about the update equation is the subtraction of lambda*P from the
update direction. This effectively regularizes the solution from growing too large; a
procedure that is often applied in machine-learning algorithms to promote generalization to
unseen data. The scaling factor lambda is user defined and is usually problem dependent.
However, a small value typically works well for learning patch models for facial feature
detection.

Generative versus discriminative patch models
Despite the ease of which discriminative patch models can be learned as described
previously, it is worth considering whether generative patch models and their
corresponding training regimes are simple enough to achieve similar results. The generative
counterpart of the correlation patch model is the average patch. The learning objective for
this model is to construct a single image patch that is as close as possible to all examples of
the facial feature as measured via the least-squares criterion:

The solution to this problem is exactly the average of all the feature-centered training image
patches. Thus, in a way, the solution afforded by this objective is far simpler.

In the following figure, a comparison is shown for the response maps obtained by cross-
correlating the average and correlation patch models with an example image. The
respective average and correlation patch models are also shown, where the range of pixel
values is normalized for visualization purposes. Although the two patch model types
exhibit some similarities, the response maps they generate differ substantially. While the
correlation patch model generates response maps that are highly peaked around the feature
location, the response map generated by the average patch model is overly smooth and
does not strongly distinguish the feature location from those close by. Inspecting the patch
models' appearance, the correlation patch model is mostly gray, which corresponds to zero
in the un-normalized pixel range, with strong positive and negative values strategically
placed around prominent areas of the facial feature. Thus, it preserves only those
components of the training patches, useful for discriminating it from misaligned
configuration, which leads to highly peaked responses. In contrast, the average patch model
encodes no knowledge of misaligned data. As a result, it is not well suited to the task of
facial feature localization, where the task is to discriminate an aligned image patch from
locally shifted versions of itself:

Non-Rigid Face Tracking

[137]

Accounting for global geometric transformations
So far, we have assumed that the training images are centered at the facial feature and are
normalized with respect to global scale and rotation. In practice, the face can appear at any
scale and rotation within the image during tracking. Thus, a mechanism must be devised to
account for this discrepancy between the training and testing conditions. One approach is to
synthetically perturb the training images in scale and rotation within the ranges one expects
to encounter during deployment. However, the simplistic form of the detector as a
correlation patch model often lacks the capacity to generate useful response maps for that
kind of data. On the other hand, the correlation patch model does exhibit a degree of
robustness against small perturbations in scale and rotation. Since motion between
consecutive frames in a video sequence is relatively small, one can leverage the estimated
global transformation of the face in the previous frame to normalize the current image with
respect to scale and rotation. All that is needed to enable this procedure is to select a
reference frame in which the correlation patch models are learned.

The patch_models class stores the correlation patch models for each facial feature as well
as the reference frame in which they are trained. It is the patch_models class, rather than
the patch_model class, that the face tracker code interfaces with directly, to obtain the
feature detections. The following code snippet of the declaration of this class highlights its
primary functionality:

 class patch_models {
 public:
 Mat reference; //reference shape [x1;y1;...;xn;yn]
 vector<patch_model> patches; //patch model/facial feature
 ...
 void train(ft_data &data, //annotated image and shape data
 const vector<Point2f>&ref, //reference shape
 const Size psize, //desired patch size
 const Size ssize, //training search window size
 const bool mirror = false, //use mirrored training data

Non-Rigid Face Tracking

[138]

 const float var = 1.0, //variance of annotation error
 const float lambda = 1e-6, //regularisation weight
 const float mu_init = 1e-3, //initial step size
 const int nsamples = 1000, //number of samples
 const bool visi = false); //visualise training procedure?
 ...
 vector<Point2f>//location of peak responses/feature in image
 calc_peaks(
 const Mat &im, //image to detect features in
 const vector<Point2f>&points, //current estimate of shape
 const Size ssize = Size(21,21)); //search window size
 ...
 };

The reference shape is stored as an interleaved set of (x, y) coordinates that are used to
normalize the scale and rotation of the training images, and later, during deployment, that
of the test images. In the patch_models::train function, this is done by first computing
the similarity transform between the reference shape and the annotated shape for a given
image using the patch_models::calc_simil function, which solves a similar problem to
that in the shape_model::procrustes function, albeit for a single pair of shapes. Since
the rotation and scale is common across all facial features, the image normalization
procedure only requires adjusting this similarity transform to account for the centers of
each feature in the image and the center of the normalized image patch. In
patch_models::train, this is implemented as follows:

 Mat S = this->calc_simil(pt),A(2,3,CV_32F);
 A.fl(0,0) = S.fl(0,0); A.fl(0,1) = S.fl(0,1);
 A.fl(1,0) = S.fl(1,0); A.fl(1,1) = S.fl(1,1);
 A.fl(0,2) = pt.fl(2*i) - (A.fl(0,0)*(wsize.width -1)/2 +
 A.fl(0,1)*(wsize.height-1)/2);
 A.fl(1,2) = pt.fl(2*i+1) - (A.fl(1,0)*(wsize.width -1)/2 +
 A.fl(1,1)*(wsize.height-1)/2);
 Mat I; warpAffine(im,I,A,wsize,INTER_LINEAR+WARP_INVERSE_MAP);

Non-Rigid Face Tracking

[139]

Here, wsize is the total size of the normalized training image, which is the sum of the patch
size and the search region size. As just mentioned, the top-left (2x2) block of the similarity
transform from the reference shape to the annotated shape pt, which corresponds to the
scale and rotation component of the transformation, is preserved in the affine transform
passed to OpenCV's warpAffine function. The last column of the affine transform A is an
adjustment that will render the ith facial feature location centered in the normalized image
after warping (that is, the normalizing translation). Finally, the cv::warpAffine function
has the default setting of warping from the image to the reference frame. Since the
similarity transform was computed for transforming the reference shape to the image-
space annotations, the pt, the WARP_INVERSE_MAP flag needs to be set to ensure the
function applies the warp in the desired direction. Exactly the same procedure is performed
in the patch_models::calc_peaks function, with the additional step that the computed
similarity transform between the reference and the current shape in the image-frame is re-
used to un-normalize the detected facial features, placing them appropriately in the image:

 vector<Point2f>
 patch_models::calc_peaks(const Mat &im,
 const vector<Point2f>&points,const Size ssize){
 int n = points.size(); assert(n == int(patches.size()));
 Mat pt = Mat(points).reshape(1,2*n);
 Mat S = this->calc_simil(pt);
 Mat Si = this->inv_simil(S);
 vector<Point2f> pts = this->apply_simil(Si,points);
 for(int i = 0; i < n; i++){
 Size wsize = ssize + patches[i].patch_size();
 Mat A(2,3,CV_32F),I;
 A.fl(0,0) = S.fl(0,0); A.fl(0,1) = S.fl(0,1);
 A.fl(1,0) = S.fl(1,0); A.fl(1,1) = S.fl(1,1);
 A.fl(0,2) = pt.fl(2*i) - (A.fl(0,0)*(wsize.width -1)/2 +
 A.fl(0,1)*(wsize.height-1)/2);
 A.fl(1,2) = pt.fl(2*i+1) - (A.fl(1,0)*(wsize.width -1)/2 +
 A.fl(1,1)*(wsize.height-1)/2);
 warpAffine(im,I,A,wsize,INTER_LINEAR+WARP_INVERSE_MAP);
 Mat R = patches[i].calc_response(I,false);
 Point maxLoc; minMaxLoc(R,0,0,0,&maxLoc);
 pts[i] = Point2f(pts[i].x + maxLoc.x - 0.5*ssize.width,
 pts[i].y + maxLoc.y - 0.5*ssize.height);
 } return this->apply_simil(S,pts);

Non-Rigid Face Tracking

[140]

In the first highlighted code snippet in the preceding code, both the forward and inverse
similarity transforms are computed. The reason why the inverse transform is required here
is so that the peaks of the response map for each feature can be adjusted according to the
normalized locations of the current shape estimate. This must be performed before
reapplying the similarity transform to place the new estimates of the facial feature locations
back into the image frame using the
patch_models::apply_simil function.

Training and visualization
An example program for training the patch models from the annotation data can be found
in train_patch_model.cpp. With the command-line argument argv[1] containing the
path to the annotation data, training begins by loading the data into memory and removing
incomplete samples:

 ft_data data = load_ft<ft_data>(argv[1]);
 data.rm_incomplete_samples();

The simplest choice for the reference shape in the patch_models class is the average shape
of the training set, scaled to a desired size. Assuming that a shape model has previously
been trained for this dataset, the reference shape is computed by first loading the shape
model stored in argv[2] as follows:

 shape_model smodel = load_ft<shape_model>(argv[2]);

This is followed by the computation of the scaled-centered average shape:

 smodel.p = Scalar::all(0.0);
 smodel.p.fl(0) = calc_scale(smodel.V.col(0),width);
 vector<Point2f> r = smodel.calc_shape();

The calc_scale function computes the scaling factor to transform the average shape (that
is, the first column of shape_model::V) to one with a width of width. Once the reference
shape r is defined, training the set of patch models can be done with a single function call:

 patch_models pmodel;
 pmodel.train(data,r,Size(psize,psize),Size(ssize,ssize));

The optimal choices for the parameters width, psize, and ssize are application
dependent; however, the default values of 100, 11, and 11, respectively, give reasonable
results in general.

Non-Rigid Face Tracking

[141]

Although the training process is quite simple, it can still take some time to complete.
Depending on the number of facial features, the size of the patches, and the number of
stochastic samples in the optimization algorithm, the training process can take anywhere
from between a few minutes to over an hour. However, since the training of each patch can
be performed independently of all others, this process can be sped
up substantially by parallelizing the training process across multiple processorcores or
machines.

Once training has been completed, the program in visualize_patch_model.cpp can be
used to visualize the resulting patch models. As with the visualize_shape_model.cpp
program, the aim here is to visually inspect the results to verify if anything went wrong
during the training process. The program generates a composite image of all the patch
models, patch_model::P, each centered at their respective feature location in the reference
shape, patch_models::reference, and displaying a bounding rectangle around the
patch whose index is currently active. The cv::waitKey function is used to get user input
for selecting the activee patch index and terminating the program. The following image
shows three examples of composite patch images learned for patch models with varying
spatial support. Despite using the same training data, modifying the spatial support of the
patch model appears to change the structure of the patch models substantially. Visually
inspecting the results in this way can lend intuition into how to modify the parameters of
the training process, or even the training process itself, in order to optimize results for a
particular application:

Non-Rigid Face Tracking

[142]

Face detection and initialization
The method for face tracking described thus far has assumed that the facial features in the
image are located within a reasonable proximity to the current estimate. Although this
assumption is reasonable during tracking, where face motion between frames is often quite
small, we are still faced with the dilemma of how to initialize the model in the first frame of
the sequence. An obvious choice for this is to use OpenCV's in-built cascade detector to find
the face. However, the placement of the model within the detected bounding box will
depend on the selection made for the facial features to track. In keeping with the data-
driven paradigm we have followed so far in this chapter, a simple solution is to learn the
geometrical relationship between the face detection's bounding box and the facial features.

The face_detector class implements exactly this solution. A snippet of its declaration that
highlights its functionality is given as follows:

 class face_detector{ //face detector for initialisation
 public:
 string detector_fname; //file containing cascade classifier
 Vec3f detector_offset; //offset from center of detection
 Mat reference; //reference shape
 CascadeClassifier detector; //face detector

 vector<Point2f> //points describing detected face in image
 detect(const Mat &im, //image containing face
 const float scaleFactor = 1.1,//scale increment
 const int minNeighbours = 2, //minimum neighborhood size
 const Size minSize = Size(30,30));//minimum window size

 void train(ft_data &data, //training data
 const string fname, //cascade detector
 const Mat &ref, //reference shape
 const bool mirror = false, //mirror data?
 const bool visi = false, //visualize training?
 const float frac = 0.8, //fraction of points in detection
 const float scaleFactor = 1.1, //scale increment
 const int minNeighbours = 2, //minimum neighbourhood size
 const Size minSize = Size(30,30)); //minimum window size
 ...
 };

Non-Rigid Face Tracking

[143]

The class has four public member variables: the path to an object of type
cv::CascadeClassifier called detector_fname, a set of offsets from a detection
bounding box to the location and scale of the face in the image detector_offset, a
reference shape to place in the bounding box reference, and a face detector detector.
The primary function of use to a face-tracking system is face_detector::detect, which
takes an image as the input, along with standard options for the cv::CascadeClassifier
class, and returns a rough estimate of the facial feature locations in the image. Its
implementation is as follows:

 Mat gray; //convert image to grayscale and histogram equalize
 if(im.channels() == 1) gray = im;
 else cvtColor(im,gray,CV_RGB2GRAY);
 Mat eqIm; equalizeHist(gray,eqIm);
 vector<Rect> faces; //detect largest face in image
 detector.detectMultiScale(eqIm,faces,scaleFactor, minNeighbours,0
 |CV_HAAR_FIND_BIGGEST_OBJECT
 |CV_HAAR_SCALE_IMAGE,minSize);
 if(faces.size() < 1) { return vector<Point2f>(); }

Rect R = faces[0]; Vec3f scale = detector_offset*R.width;
 int n = reference.rows/2; vector<Point2f> p(n);
 for(int i = 0; i < n; i++){ //predict face placement
 p[i].x = scale[2]*reference.fl(2*i) + R.x + 0.5 * R.width +
 scale[0];
 p[i].y = scale[2]*reference.fl(2*i+1) + R.y + 0.5 * R.height +
 scale[1];
 } return p;

The face is detected in the image in the usual way, except that the
CV_HAAR_FIND_BIGGEST_OBJECT flag is set so as to enable tracking the most prominent
face in the image. The highlighted code is where the reference shape is placed in the image
in accordance with the detected face's bounding box. The detector_offset member
variable consists of three components: an (x, y) offset of the center of the face from the
center of the detection's bounding box, and the scaling factor that resizes the reference
shape to best fit the face in the image. All three components are a linear function of the
bounding box's width.

Non-Rigid Face Tracking

[144]

The linear relationship between the bounding box's width and the detector_offset
variable is learned from the annotated dataset in the face_detector::train function.
The learning process is started by loading the training data into memory and assigning the
reference shape:

detector.load(fname.c_str()); detector_fname = fname; reference =
ref.clone();

As with the reference shape in the patch_models class, a convenient choice for the
reference shape is the normalized average face shape in the dataset. The
cv::CascadeClassifier is then applied to each image (and optionally its mirrored
counterpart) in the dataset and the resulting detection is checked to ensure that enough
annotated points lie within the detected bounding box (see the figure towards the end of
this section) to prevent learning from misdetections:

 if(this->enough_bounded_points(pt,faces[0],frac)){
 Point2f center = this->center_of_mass(pt);
 float w = faces[0].width;
 xoffset.push_back((center.x -
 (faces[0].x+0.5*faces[0].width))/w);
 yoffset.push_back((center.y -
 (faces[0].y+0.5*faces[0].height))/w);
 zoffset.push_back(this->calc_scale(pt)/w);
 }

If more than a fraction of frac of the annotated points lie within the bounding box, the
linear relationship between its width and the offset parameters for that image are added as
a new entry in an STL vector class object. Here, the face_detector::center_of_mass
function computes the center of mass of the annotated point set for that image and the
face_detector::calc_scale function computes the scaling factor for transforming the
reference shape to the centered annotated shape. Once all images have been processed, the
detector_offset variable is set to the median over all of the image-specific offsets:

 Mat X = Mat(xoffset),Xsort,Y = Mat(yoffset),Ysort,Z =
 Mat(zoffset),Zsort;
 cv::sort(X,Xsort,CV_SORT_EVERY_COLUMN|CV_SORT_ASCENDING);
 int nx = Xsort.rows;
 cv::sort(Y,Ysort,CV_SORT_EVERY_COLUMN|CV_SORT_ASCENDING);
 int ny = Ysort.rows;
 cv::sort(Z,Zsort,CV_SORT_EVERY_COLUMN|CV_SORT_ASCENDING);
 int nz = Zsort.rows;
 detector_offset =
 Vec3f(Xsort.fl(nx/2),Ysort.fl(ny/2),Zsort.fl(nz/2));

Non-Rigid Face Tracking

[145]

As with the shape and patch models, the simple program in train_face_detector.cpp is
an example of how a face_detector object can be built and saved for later use in the
tracker. It first loads the annotation data and the shape model, and sets the reference shape
as the mean-centered average of the training data (that is, the identity shape of the
shape_model class):

 ft_data data = load_ft<ft_data>(argv[2]);
 shape_model smodel = load_ft<shape_model>(argv[3]);
 smodel.set_identity_params();
 vector<Point2f> r = smodel.calc_shape();
 Mat ref = Mat(r).reshape(1,2*r.size());

Training and saving the face detector, then, consists of two function calls:

 face_detector detector;
 detector.train(data,argv[1],ref,mirror,true,frac);
 save_ft<face_detector>(argv[4],detector);

To test the performance of the resulting shape-placement procedure, the program in
visualize_face_detector.cpp calls the face_detector::detect function for each
image in the video or camera input stream and draws the results on screen. An example of
the results using this approach is shown in the following figure. Although the placed shape
does not match the individual in the image, its placement is close enough so that face
tracking can proceed using the approach described in the following section:

Non-Rigid Face Tracking

[146]

Face tracking
The problem of face tracking can be posed as that of finding an efficient and robust way to
combine the independent detections of various facial features with the geometrical
dependencies they exhibit in order to arrive at an accurate estimate of facial feature
locations in each image of a sequence. With this in mind, it is perhaps worth considering
whether geometrical dependencies are at all necessary. In the following figure, the results of
detecting the facial features with and without geometrical constraints are shown. These
results clearly highlight the benefit of capturing the spatial inter-dependencies between
facial features. The relative performance of these two approaches is typical, whereby relying
strictly on the detections leads to overly noisy solutions. The reason for this is that the
response maps for each facial feature cannot be expected to always peak at the correct
location. Whether due to image noise, lighting changes, or expression variation, the only
way to overcome the limitations of facial feature detectors is by leveraging the geometrical
relationship they share with each other:

A particularly simple, but surprisingly effective, way to incorporate facial geometry into the
tracking procedure is by projecting the output of the feature detections onto the linear
shape model's subspace. This amounts to minimizing the distance between the original
points and their closest plausible shape that lies on the subspace. Thus, when the spatial
noise in the feature detections is close to being Gaussian distributed, the projection yields
the most likely solution. In practice, the distribution of detection errors on occasion does not
follow a Gaussian distribution and additional mechanisms need to be introduced to account
for this.

Non-Rigid Face Tracking

[147]

Face tracker implementation
An implementation of the face-tracking algorithm can be found in the face_tracker class
(see face_tracker.cpp and face_tracker.hpp). The following code is a snippet of its
header that highlights its primary functionality:

 class face_tracker{
 public:
 bool tracking; //are we in tracking mode?
 fps_timer timer; //frames/second timer
 vector<Point2f> points; //current tracked points
 face_detector detector; //detector for initialisation
 shape_model smodel; //shape model
 patch_models pmodel; //feature detectors

 face_tracker(){tracking = false;}

 int //0 = failure
 track(const Mat &im, //image containing face
 const face_tracker_params &p = //fitting parameters
 face_tracker_params()); //default tracking parameters

 void
 reset(){
 //reset tracker
 tracking = false; timer.reset();
 }
 ...
 protected:
 ...
 vector<Point2f> //points for fitted face in image
 fit(const Mat &image,//image containing face
 const vector<Point2f>&init, //initial point estimates
 const Size ssize = Size(21,21),//search region size
 const bool robust = false, //use robust fitting?
 const int itol = 10, //maximum number of iterations
 const float ftol = 1e-3); //convergence tolerance
 };

Non-Rigid Face Tracking

[148]

The class has public member instances of the shape_model, patch_models, and
face_detector classes. It uses the functionality of these three classes to effect tracking.
The timer variable is an instance of the fps_timer class that keeps track of the frame rate
at which the face_tracker::track function is called and is useful for analyzing the
effects patch and shape model configurations on the computational complexity of the
algorithm. The tracking member variable is a flag to indicate the current state of the
tracking procedure. When this flag is set to false, as it is in the constructor and the
face_tracker::reset function, the tracker enters a detection mode whereby the
face_detector::detect function is applied to the next incoming image to initialize the
model. When in the tracking mode, the initial estimate used for inferring facial feature
locations in the next incoming image is simply their location in the previous frame. The
complete tracking algorithm is implemented simply as follows:

 int face_tracker::
 track(const Mat &im,const face_tracker_params &p) {
 Mat gray; //convert image to grayscale
 if(im.channels()==1) gray=im;
 else cvtColor(im,gray,CV_RGB2GRAY);
 if(!tracking) //initialize
 points = detector.detect(gray,p.scaleFactor,
 p.minNeighbours,p.minSize);
 if((int)points.size() != smodel.npts()) return 0;
 for(int level = 0; level < int(p.ssize.size()); level++)
 points = this->fit(gray,points,p.ssize[level],
 p.robust,p.itol,p.ftol);
 tracking = true; timer.increment(); return 1;
 }

Other than bookkeeping operations, such as setting the appropriate tracking state and
incrementing the tracking time, the core of the tracking algorithm is the multi-level fitting
procedure, which is highlighted in the preceding code snippet. The fitting algorithm,
implemented in the face_tracker::fit function, is applied multiple times with the
different search window sizes stored in face_tracker_params::ssize, where the output
of the previous stage is used as input to the next. In its simplest setting, the
face_tracker_params::ssize function performs the facial feature detection around the
current estimate of the shape in the image:

 smodel.calc_params(init);
 vector<Point2f> pts = smodel.calc_shape();
 vector<Point2f> peaks = pmodel.calc_peaks(image,pts,ssize);

Non-Rigid Face Tracking

[149]

It also projects the result onto the face shape's subspace:

 smodel.calc_params(peaks);
 pts = smodel.calc_shape();

To account for gross outliers in the facial features' detected locations, a robust model's
fitting procedure can be employed instead of a simple projection by setting the robust flag
to true. However, in practice, when using a decaying search window size (that is, as set in
face_tracker_params::ssize), this is often unnecessary as gross outliers typically
remain far from its corresponding point in the projected shape, and will likely lie outside
the search region of the next level of the fitting procedure. Thus, the rate at which the search
region size is reduced acts as an incremental outlier rejection scheme.

Training and visualization
Unlike the other classes detailed in this chapter, training a face_tracker object does not
involve any learning process. It is implemented in train_face_tracker.cpp simply as:

 face_tracker tracker;
 tracker.smodel = load_ft<shape_model>(argv[1]);
 tracker.pmodel = load_ft<patch_models>(argv[2]);
 tracker.detector = load_ft<face_detector>(argv[3]);
 save_ft<face_tracker>(argv[4],tracker);

Here arg[1] to argv[4] contain the paths to the shape_model, patch_model,
face_detector, and face_tracker objects, respectively. The visualization for the face
tracker in visualize_face_tracker.cpp is equally simple. Obtaining its input image
stream either from a camera or video file, through the cv::VideoCapture class, the
program simply loops until the end of the stream or until the user presses the Q key,
tracking each frame as it comes in. The user also has the option of resetting the tracker by
pressing the D key at any time.

Non-Rigid Face Tracking

[150]

Generic versus person-specific models
There are a number of variables in the training and tracking process that can be tweaked to
optimize the performance for a given application. However, one of the primary
determinants of tracking quality is the range of shape and appearance variability the tracker
has to model. As a case in point, consider the generic versus person-specific case. A generic
model is trained using annotated data from multiple identities, expressions, lighting
conditions, and other sources of variability. In contrast, person-specific models are trained
specifically for a single individual. Thus, the amount of variability it needs to account for is
far smaller. As a result, person-specific tracking is often more accurate than its generic
counter part by a large magnitude.

An illustration of this is shown in the following image. Here the generic model was trained
using the MUCT dataset. The person-specific model was learned from data generated using
the annotation tool described earlier in this chapter. The results clearly show a substantially
better tracking offered by the person-specific model, capable of capturing complex
expressions and head-pose changes, whereas the generic model appears to struggle even for
some of the simpler expressions:

It should be noted that the method for face tracking described in this chapter is a bare-bones
approach that serves to highlight the various components utilized in most non-rigid face-
tracking algorithms. The numerous approaches to remedy
some of the drawbacks of this method are beyond the scope of this book and
require specialized mathematical tools that are not yet supported by OpenCV's
functionality. The relatively few commercial-grade face-tracking software
packages available are testament to the difficulty of this problem in the general
setting. Nonetheless, the simple approach described in this chapter can work remarkably
well in constrained settings.

Non-Rigid Face Tracking

[151]

Summary
In this chapter, we have built a simple face tracker that can work reasonably in constrained
settings using only modest mathematical tools and OpenCV's substantial functionality for
basic image processing and linear algebraic operations. Improvements to this simple tracker
can be achieved by employing more sophisticated techniques in each of the three
components of the tracker: the shape model, the feature detectors, and the fitting algorithm.
The modular design of the tracker described in this section should allow these three
components to be modified without substantial disruptions to the functionality of the
others.

References
Procrustes Problems, Gower, John C. and Dijksterhuis, Garmt B, Oxford University
Press, 2004.

5
3D Head Pose Estimation

Using AAM and POSIT
A good computer vision algorithm can't be complete without great, robust capabilities, as
well as wide generalization and a solid math foundation. All these features accompany the
work mainly developed by Timothy Cootes with Active Appearance Models. This chapter
will teach you how to create an Active Appearance Model (AAM) of your own using
OpenCV as well as how to use it to search for the closest position your model is located at in
a given frame. Besides, you will learn how to use the POSIT algorithm and how to fit your
3D model in the posed image. With all these tools, you will be able to track a 3D model in a
video, in real time--ain't it great? Although the examples focus on head pose, virtually any
deformable model could use the same approach.

This chapter will cover the following topics:

Active Appearance Models overview
Active Shape Models overview
Model instantiation--playing with the Active Appearance Model
AAM search and fitting
POSIT

The following list has an explanation of the terms that you will come across in the chapter:

Active Appearance Model (AAM): This is an object model containing statistical
information of its shape and texture. It is a powerful way of capturing shape and
texture variation from objects.
Active Shape Model (ASM): This is a statistical model of the shape of an object.
It is very useful for learning shape variation.

3D Head Pose Estimation Using AAM and POSIT

[153]

Principal Component Analysis (PCA): This is an orthogonal linear
transformation that transforms the data to a new coordinate system, such that the
greatest variance by any projection of the data comes to lie on the first coordinate
(called the first principal component), the second greatest variance on the second
coordinate, and so on. This procedure is often used in dimensionality reduction.
When reducing the dimension of the original problem, one can use a faster fitting
algorithm.
Delaunay Triangulation (DT): For a set of P points in a plane, it is a triangulation
such that no point in P is inside the circumcircle of any triangle in the
triangulation. It tends to avoid skinny triangles. The triangulation is required for
texture mapping.
Affine transformation: This is any transformation that can be expressed in the
form of a matrix multiplication followed by a vector addition. This can be used
for texture mapping.
Pose from Orthography and Scaling with Iterations (POSIT): This is a computer
vision algorithm that performs 3D pose estimation.

Active Appearance Models overview
In few words, Active Appearance Models are a nice model parameterization of combined
texture and shape, coupled to an efficient search algorithm that can tell exactly where and
how a model is located in a picture frame. In order to do this, we will start with the Active
Shape Models section and see that they are more closely related to landmark positions. A
Principal Component Analysis and some hands-on experience will be better described in
the following sections. Then, we will be able to get some help from OpenCV's Delaunay
functions and learn some triangulation. From that, we will evolve to applying piecewise
affine warps in the triangle texture warping section, where we can get information from an
object's texture.

As we get enough background to build a good model, we can play with the techniques in
the model instantiation section. We will then be able to solve the inverse problem through
AAM search and fitting. These, by themselves, are already very useful algorithms for 2D
and maybe even 3D image matching. However, when one is able to get it to work, why not
bridge it to POSIT (Pose from Orthography and Scaling with Iterations), another rock-
solid algorithm for 3D model fitting? Diving into the POSIT section will give us enough
background to work with it in OpenCV, and you will then learn how to couple a head
model to it, in the following section. This way, we can use a 3D model to fit the already
matched 2D frame.

3D Head Pose Estimation Using AAM and POSIT

[154]

If you want to know where this will take us, it is just a matter of combining AAM and
POSIT in a frame-by-frame fashion to get real-time 3D tracking by detection for deformable
models! These details will be covered in the tracking from the webcam or video file section.

It is said that a picture is worth a thousand words; imagine if we get N pictures. This way,
what we previously mentioned is easily tracked in the following screenshot:

Overview of the chapter algorithms
Given an image (upper-left image in the preceding screenshot), we can use an Active
Appearance search algorithm to find the 2D pose of the human head. The top-right figure in
the screenshot shows a previously trained Active Appearance model used in the search
algorithm. After a pose has been found, POSIT can be applied to extend the result to a 3D
pose. If the procedure is applied to a video sequence, 3D tracking by detection will be
obtained.

3D Head Pose Estimation Using AAM and POSIT

[155]

Active Shape Models
As mentioned earlier, AAMs require a shape model, and this role is played by Active Shape
Models (ASMs). In the upcoming sections, we will create an ASM that is a statistical model
of shape variation. The shape model is generated through the combination of shape
variations. A training set of labeled images is required, as described in the article Active
Shape Models--Their Training and Application, by Timothy Cootes. In order to build a face-
shape model, several images marked with points on key positions of a face are required to
outline the main features. The following screenshot shows such an example:

There are 76 landmarks on a face, which are taken from the MUCT dataset. These
landmarks are usually marked up by hand, and they outline several face features such as
mouth contour, nose, eyes, eyebrows, and face shape, since they are easier to track.

Procrustes Analysis: A form of statistical shape analysis used to analyze
the distribution of a set of shapes. Procrustes superimposition is
performed by optimally translating, rotating, and uniformly scaling the
objects.

3D Head Pose Estimation Using AAM and POSIT

[156]

If we have the previously mentioned set of images, we can generate a statistical model of
shape variation. Since the labeled points on an object describe the shape of that object, we
will first align all the sets of points into a coordinate frame using Procrustes Analysis, if
required, and represent each shape by a vector, x. Then, we will apply Principal Component
Analysis to the data. We can then approximate any example using the following formula:

x = x + Ps bs

In the preceding formula, x is the mean shape, Ps is a set of orthogonal modes of variation,
and bs is a set of shape parameters. Well, in order to understand this better, we will create a
simple application in the rest of this section, which will show us how to deal with PCA and
shape models.

Why use PCA at all? Because PCA is going to really help us when it comes to reducing the
number of parameters of our model. We will also see how much that helps when searching
for it in a given image later in this chapter. The following is said about PCA
(http://en.wikipedia.org/wiki/Principal_component_analysis):

PCA can supply the user with a lower-dimensional picture, a shadow of this object when
viewed from its (in some sense) most informative viewpoint. This is done by using only the
first few principal components so that the dimensionality of the transformed data is
reduced.

This becomes clear when we see the following figure:

Image source: h t t p ://e n . w i k i p e d i a . o r g /w i k i /F i l e :G a u s s i a n S c a t t e r P C A . p n g

http://en.wikipedia.org/wiki/Principal_component_analysis
http://en.wikipedia.org/wiki/File:GaussianScatterPCA.png
http://en.wikipedia.org/wiki/File:GaussianScatterPCA.png
http://en.wikipedia.org/wiki/File:GaussianScatterPCA.png
http://en.wikipedia.org/wiki/File:GaussianScatterPCA.png
http://en.wikipedia.org/wiki/File:GaussianScatterPCA.png
http://en.wikipedia.org/wiki/File:GaussianScatterPCA.png
http://en.wikipedia.org/wiki/File:GaussianScatterPCA.png
http://en.wikipedia.org/wiki/File:GaussianScatterPCA.png
http://en.wikipedia.org/wiki/File:GaussianScatterPCA.png
http://en.wikipedia.org/wiki/File:GaussianScatterPCA.png
http://en.wikipedia.org/wiki/File:GaussianScatterPCA.png
http://en.wikipedia.org/wiki/File:GaussianScatterPCA.png
http://en.wikipedia.org/wiki/File:GaussianScatterPCA.png
http://en.wikipedia.org/wiki/File:GaussianScatterPCA.png
http://en.wikipedia.org/wiki/File:GaussianScatterPCA.png
http://en.wikipedia.org/wiki/File:GaussianScatterPCA.png
http://en.wikipedia.org/wiki/File:GaussianScatterPCA.png
http://en.wikipedia.org/wiki/File:GaussianScatterPCA.png
http://en.wikipedia.org/wiki/File:GaussianScatterPCA.png
http://en.wikipedia.org/wiki/File:GaussianScatterPCA.png
http://en.wikipedia.org/wiki/File:GaussianScatterPCA.png
http://en.wikipedia.org/wiki/File:GaussianScatterPCA.png
http://en.wikipedia.org/wiki/File:GaussianScatterPCA.png
http://en.wikipedia.org/wiki/File:GaussianScatterPCA.png
http://en.wikipedia.org/wiki/File:GaussianScatterPCA.png
http://en.wikipedia.org/wiki/File:GaussianScatterPCA.png
http://en.wikipedia.org/wiki/File:GaussianScatterPCA.png
http://en.wikipedia.org/wiki/File:GaussianScatterPCA.png
http://en.wikipedia.org/wiki/File:GaussianScatterPCA.png
http://en.wikipedia.org/wiki/File:GaussianScatterPCA.png
http://en.wikipedia.org/wiki/File:GaussianScatterPCA.png
http://en.wikipedia.org/wiki/File:GaussianScatterPCA.png
http://en.wikipedia.org/wiki/File:GaussianScatterPCA.png
http://en.wikipedia.org/wiki/File:GaussianScatterPCA.png
http://en.wikipedia.org/wiki/File:GaussianScatterPCA.png
http://en.wikipedia.org/wiki/File:GaussianScatterPCA.png
http://en.wikipedia.org/wiki/File:GaussianScatterPCA.png
http://en.wikipedia.org/wiki/File:GaussianScatterPCA.png
http://en.wikipedia.org/wiki/File:GaussianScatterPCA.png
http://en.wikipedia.org/wiki/File:GaussianScatterPCA.png
http://en.wikipedia.org/wiki/File:GaussianScatterPCA.png
http://en.wikipedia.org/wiki/File:GaussianScatterPCA.png
http://en.wikipedia.org/wiki/File:GaussianScatterPCA.png
http://en.wikipedia.org/wiki/File:GaussianScatterPCA.png
http://en.wikipedia.org/wiki/File:GaussianScatterPCA.png
http://en.wikipedia.org/wiki/File:GaussianScatterPCA.png
http://en.wikipedia.org/wiki/File:GaussianScatterPCA.png
http://en.wikipedia.org/wiki/File:GaussianScatterPCA.png
http://en.wikipedia.org/wiki/File:GaussianScatterPCA.png
http://en.wikipedia.org/wiki/File:GaussianScatterPCA.png
http://en.wikipedia.org/wiki/File:GaussianScatterPCA.png
http://en.wikipedia.org/wiki/File:GaussianScatterPCA.png
http://en.wikipedia.org/wiki/File:GaussianScatterPCA.png
http://en.wikipedia.org/wiki/File:GaussianScatterPCA.png
http://en.wikipedia.org/wiki/File:GaussianScatterPCA.png
http://en.wikipedia.org/wiki/File:GaussianScatterPCA.png
http://en.wikipedia.org/wiki/File:GaussianScatterPCA.png
http://en.wikipedia.org/wiki/File:GaussianScatterPCA.png
http://en.wikipedia.org/wiki/File:GaussianScatterPCA.png
http://en.wikipedia.org/wiki/File:GaussianScatterPCA.png
http://en.wikipedia.org/wiki/File:GaussianScatterPCA.png
http://en.wikipedia.org/wiki/File:GaussianScatterPCA.png
http://en.wikipedia.org/wiki/File:GaussianScatterPCA.png
http://en.wikipedia.org/wiki/File:GaussianScatterPCA.png
http://en.wikipedia.org/wiki/File:GaussianScatterPCA.png
http://en.wikipedia.org/wiki/File:GaussianScatterPCA.png
http://en.wikipedia.org/wiki/File:GaussianScatterPCA.png
http://en.wikipedia.org/wiki/File:GaussianScatterPCA.png
http://en.wikipedia.org/wiki/File:GaussianScatterPCA.png
http://en.wikipedia.org/wiki/File:GaussianScatterPCA.png
http://en.wikipedia.org/wiki/File:GaussianScatterPCA.png
http://en.wikipedia.org/wiki/File:GaussianScatterPCA.png
http://en.wikipedia.org/wiki/File:GaussianScatterPCA.png
http://en.wikipedia.org/wiki/File:GaussianScatterPCA.png
http://en.wikipedia.org/wiki/File:GaussianScatterPCA.png
http://en.wikipedia.org/wiki/File:GaussianScatterPCA.png
http://en.wikipedia.org/wiki/File:GaussianScatterPCA.png
http://en.wikipedia.org/wiki/File:GaussianScatterPCA.png
http://en.wikipedia.org/wiki/File:GaussianScatterPCA.png
http://en.wikipedia.org/wiki/File:GaussianScatterPCA.png
http://en.wikipedia.org/wiki/File:GaussianScatterPCA.png
http://en.wikipedia.org/wiki/File:GaussianScatterPCA.png
http://en.wikipedia.org/wiki/File:GaussianScatterPCA.png
http://en.wikipedia.org/wiki/File:GaussianScatterPCA.png
http://en.wikipedia.org/wiki/File:GaussianScatterPCA.png
http://en.wikipedia.org/wiki/File:GaussianScatterPCA.png
http://en.wikipedia.org/wiki/File:GaussianScatterPCA.png
http://en.wikipedia.org/wiki/File:GaussianScatterPCA.png
http://en.wikipedia.org/wiki/File:GaussianScatterPCA.png
http://en.wikipedia.org/wiki/File:GaussianScatterPCA.png
http://en.wikipedia.org/wiki/File:GaussianScatterPCA.png
http://en.wikipedia.org/wiki/File:GaussianScatterPCA.png
http://en.wikipedia.org/wiki/File:GaussianScatterPCA.png
http://en.wikipedia.org/wiki/File:GaussianScatterPCA.png
http://en.wikipedia.org/wiki/File:GaussianScatterPCA.png
http://en.wikipedia.org/wiki/File:GaussianScatterPCA.png
http://en.wikipedia.org/wiki/File:GaussianScatterPCA.png
http://en.wikipedia.org/wiki/File:GaussianScatterPCA.png
http://en.wikipedia.org/wiki/File:GaussianScatterPCA.png

3D Head Pose Estimation Using AAM and POSIT

[157]

The preceding figure shows the PCA of a multivariate Gaussian distribution centered at
(2,3). The vectors shown are the eigenvectors of the covariance matrix, shifted so their tails
are at the mean.

This way, if we wanted to represent our model with a single parameter, taking the direction
from the eigenvector that points to the upper-right part of the screenshot would be a good
idea. Besides, by varying the parameter a bit, we can extrapolate data and get values similar
to the ones we are looking for.

Getting the feel of PCA
In order to get a feeling of how PCA could help us with our face model, we will start with
an Active Shape Model and test some parameters.

Since face detection and tracking have been studied for a while, several face databases are
available online for research purposes. We will use a couple of samples from the IMM
database.

First, let's understand how the PCA class works in OpenCV. We can conclude from the
documentation that the PCA class is used to compute a special basis for a set of vectors,
which consist of eigenvectors of the covariance matrix computed from the input set of
vectors. This class can also transform vectors to and from the new coordinate space, using
project and backproject methods. This new coordinate system can be quite accurately
approximated by taking just the first few of its components. This means, we can represent
the original vector from a high-dimensional space with a much shorter vector consisting of
the projected vector's coordinates in the subspace.

Since we want a parameterization in terms of a few scalar values, the main method we will
use from the class is the backproject method. It takes principal component coordinates of
projected vectors and reconstructs the original ones. We could retrieve the original vectors
if we retained all the components, but the difference will be very small if we just use a
couple of components; that's one of the reasons for using PCA. Since we want some
variability around the original vectors, our parameterized scalars will be able to extrapolate
the original data.

Besides, the PCA class can transform vectors to and from the new coordinate space, defined
by the basis. Mathematically, it means that we compute projection of the vector to a
subspace formed by a few eigenvectors corresponding to the dominant eigenvalues of the
covariance matrix, as one can see from the documentation.

3D Head Pose Estimation Using AAM and POSIT

[158]

Our approach will be annotating our face images with landmarks yielding a training set for
our Point Distribution Model (PDM). If we have k-aligned landmarks in two dimensions,
our shape description will look like this:

X = { x1, y1, x2, y2, ..., xk, yk}

It's important to note that we need consistent labeling across all image samples. So, for
instance, if the left part of the mouth is landmark number 3 in the first image, it will need to
be number 3 in all other images.

These sequences of landmarks will now form the shape outlines, and a given training shape
can be defined as a vector. We generally assume this scattering is Gaussian in this space,
and we use PCA to compute normalized eigenvectors and eigenvalues of the covariance
matrix across all training shapes. Using the top-center eigenvectors, we will create a matrix
of dimensions 2k * m, which we will call P. This way, each eigenvector describes a principal
mode of variation along the set.

Now, we can define a new shape through the following equation:

X' = X' + Pb

Here, X' is the mean shape across all training images--we just average each of the
landmarks--and b is a vector of scaling values for each principal component. This leads us to
create a new shape modifying the value of b. It's common to set b to vary within three
standard deviations so that the generated shape can fall inside the training set.

The following screenshot shows point-annotated mouth landmarks for three different
pictures:

3D Head Pose Estimation Using AAM and POSIT

[159]

As can be seen in the preceding screenshot, the shapes are described by their landmark
sequences. One could use a program such as GIMP or ImageJ as well as building a simple
application in OpenCV in order to annotate the training images. We will assume the user
has completed this process and saved the points as sequences of x and y landmark positions
for all training images in a text file, which will be used in our PCA analysis. We will then
add two parameters to the first line of this file, which is the number of training images and
the number of read columns. So, for k 2D points, this number will be 2*k.

In the following data, we have an instance of this file, which was obtained through the
annotation of three images from IMM database, in which k is equal to 5:

 3 10
 265 311 303 321 337 310 302 298 265 311
 255 315 305 337 346 316 305 309 255 315
 262 316 303 342 332 315 298 299 262 316

Now that we have annotated images, let's turn this data into our shape model. First, load
this data into a matrix. This will be achieved through the loadPCA function. The following
code snippet shows the use of the loadPCA function:

 PCA loadPCA(char* fileName, int& rows, int& cols,Mat& pcaset){
 FILE* in = fopen(fileName,"r");
 int a;
 fscanf(in,"%d%d",&rows,&cols);

 pcaset = Mat::eye(rows,cols,CV_64F);
 int i,j;

 for(i=0;i<rows;i++){
 for(j=0;j<cols;j++){
 fscanf(in,"%d",&a);
 pcaset.at<double>(i,j) = a;
 }
 }

 PCA pca(pcaset, // pass the data
 Mat(), // we do not have a pre-computed mean vector,
 // so let the PCA engine compute it
 CV_PCA_DATA_AS_ROW, // indicate that the vectors
 // are stored as matrix rows
 // (use CV_PCA_DATA_AS_COL if the vectors are
 // the matrix columns)
 pcaset.cols// specify, how many principal components to retain
);
 return pca;

3D Head Pose Estimation Using AAM and POSIT

[160]

 }

Note that our matrix is created in the pcaset = Mat::eye(rows,cols,CV_64F) line and
that enough space is allocated for 2*k values. After the two for loops load the data into the
matrix, the PCA constructor is called with the data, an empty matrix, that could be our
precomputed mean vector, if we wish to make it only once. We also indicate that our
vectors will be stored as matrix rows and that we wish to keep the same number of given
rows as the number of components, though we could use just a few ones.

Now that we have filled our PCA object with our training set, it has everything it needs to
back project our shape according to the parameters. We do so by invoking
PCA.backproject, passing the parameters as a row vector, and receiving the back
projected vector into the second argument:

3D Head Pose Estimation Using AAM and POSIT

[161]

The two previous screenshots show two different shape configurations according to the
selected parameters chosen from the slider. The yellow and green shapes show training
data, while the red one reflects the shape generated from the chosen parameters. A sample
program can be used to experiment with Active Shape Models, as it allows the user to try
different parameters for the model. One is able to note that varying only the first two scalar
values through the slider (which correspond to the first and second modes of variation), we
can achieve a shape that is very close to the trained ones. This variability will help us when
searching for a model in AAM, since it provides interpolated shapes. We will discuss
triangulation, texturing, AAM, and AAM search in the following sections.

Triangulation
As the shape we are looking for might be distorted, such as an open mouth for instance, we
are required to map our texture back to a mean shape and then apply PCA to this
normalized texture. In order to do this, we will use triangulation. The concept is very
simple: we will create triangles including our annotated points and then map from one
triangle to another.

3D Head Pose Estimation Using AAM and POSIT

[162]

OpenCV comes with a handy class called Subdiv2D, which deals with Delaunay
Triangulation. You can just consider this a good triangulation that will avoid skinny
triangles.

In mathematics and computational geometry, a Delaunay Triangulation
for a set P of points in a plane is a triangulation DT(P) such that no point
in P is inside the circumcircle of any triangle in DT(P). Delaunay
Triangulations maximize the minimum angle of all the angles of the
triangles in the triangulation; they tend to avoid skinny triangles. The
triangulation is named after Boris Delaunay for his work on this topic
from 1934 onwards.

After a Delaunay subdivision has been created, one will use the insert member function to
populate points into the subdivision. The following lines of code will elucidate what a
direct use of triangulation would be like:

 Subdiv2D* subdiv;
 CvRect rect = { 0, 0, 640, 480 };

 subdiv = new Subdiv2D(rect);

 std::vector<CvPoint> points;

 //initialize points somehow
 ...

 //iterate through points inserting them in the subdivision
 for(int i=0;i<points.size();i++){
 float x = points.at(i).x;
 float y = points.at(i).y;
 Point2f fp(x, y);
 subdiv->insert(fp);
 }

Note that our points are going to be inside a rectangular frame that is passed as a parameter
to Subdiv2D. In order to create a subdivision, we need to instantiate the Subdiv2D class, as
seen earlier. Then, in order to create the triangulation, we need to insert points using the
insert method from Subdiv2D. This happens inside the for loop in the preceding code.
Note that the points should already have been initialized, since they are the ones we'll
usually be using as inputs.

3D Head Pose Estimation Using AAM and POSIT

[163]

The following diagram shows what the triangulation could look like:

This diagram is the output of the preceding code for a set of points that yield the
triangulation using Delaunay algorithm.

In order to iterate through all the triangles from a given subdivision, one can use the
following code:

 vector<Vec6f> triangleList;

 subdiv->getTriangleList(triangleList);
 vector<Point> pt(3);

 for(size_t i = 0; i < triangleList.size(); i++)
 {
 Vec6f t = triangleList[i];
 pt[0] = Point(cvRound(t[0]), cvRound(t[1]));
 pt[1] = Point(cvRound(t[2]), cvRound(t[3]));
 pt[2] = Point(cvRound(t[4]), cvRound(t[5]));
 }

Given a subdivision, we will initialize its triangleList through a Vec6f vector, which
will save space for each set of three points, which can be obtained iterating triangleList,
as shown in the preceding for loop.

Triangle texture warping
Now that we've been able to iterate through the triangles of a subdivision, we are able to
warp one triangle from an original annotated image into a generated distorted one. This is
useful for mapping the texture from the original shape to a distorted one.

3D Head Pose Estimation Using AAM and POSIT

[164]

The following piece of code will guide the process:

 void warpTextureFromTriangle(Point2f srcTri[3], Mat originalImage,
Point2f dstTri[3], Mat warp_final){

 Mat warp_mat(2, 3, CV_32FC1);
 Mat warp_dst, warp_mask;
 CvPoint trianglePoints[3];
 trianglePoints[0] = dstTri[0];
 trianglePoints[1] = dstTri[1];
 trianglePoints[2] = dstTri[2];
 warp_dst = Mat::zeros(originalImage.rows, originalImage.cols,
originalImage.type());
 warp_mask = Mat::zeros(originalImage.rows, originalImage.cols,
originalImage.type());

 /// Get the Affine Transform
 warp_mat = getAffineTransform(srcTri, dstTri);

 /// Apply the Affine Transform to the src image
 warpAffine(originalImage, warp_dst, warp_mat, warp_dst.size());
 cvFillConvexPoly(new IplImage(warp_mask), trianglePoints, 3,
CV_RGB(255,255,255), CV_AA, 0);
 warp_dst.copyTo(warp_final, warp_mask);
 }

The preceding code assumes we have the triangle vertices packed in the srcTri array and
the destination one packed in the dstTri array. The 2x3 warp_mat matrix is used to get the
Affine transformation from the source triangles to the destination ones. More information
can be quoted from OpenCV's cvGetAffineTransform documentation:

The cvGetAffineTransform function calculates the matrix of an affine transform in the
following way:

In the preceding equation, destination (i) is equal to (xi',yi'), source (i) is equal to (xi, yi), and
i is equal to 0, 1, 2.

3D Head Pose Estimation Using AAM and POSIT

[165]

After retrieving the affine matrix, we can apply the Affine transformation to the source
image. This is done through the warpAffine function. Since we don't want to do it in the
entire image, we want to focus on our triangle, a mask can be used for this task. This way,
the last line copies only the triangle from our original image with the mask we just created,
which was made through a cvFillConvexPoly call.

The following screenshot shows the result of applying this procedure to every triangle in an
annotated image. Note that the triangles are mapped back to the alignment frame, which
faces toward the viewer. This procedure is used to create the statistical texture of the AAM:

The preceding screenshot shows the result of warping all the mapped triangles in the left
image to a mean reference frame.

Model Instantiation - playing with the AAM
An interesting aspect of AAMs is their ability to easily interpolate the model that we trained
our images on. We can get used to their amazing representational power through the
adjustment of a couple of shape or model parameters. As we vary shape parameters, the
destination of our warp changes according to the trained shape data. On the other hand,
while appearance parameters are modified, the texture on the base shape is modified. Our
warp transforms will take every triangle from the base shape to the modified destination
shape so that we can synthesize a closed mouth on top of an open mouth, as shown in the
following screenshot:

3D Head Pose Estimation Using AAM and POSIT

[166]

This preceding screenshot shows a synthesized closed mouth obtained through Active
Appearance Model instantiation on top of another image. It shows how one could combine
a smiling mouth with an admired face, extrapolating the trained images.

The preceding screenshot was obtained by changing only three parameters for shape and
three for the texture, which is the goal of AAMs. A sample application has been developed
and is available at http://www.packtpub.com/ for you to try out AAM. Instantiating a new
model is just a question of sliding the equation parameters, as defined in the Getting the feel
of PCA section. You should note that AAM search and fitting rely on this flexibility to find
the best match for a given captured frame of our model in a different position from the
trained ones. We will see this in the next section.

AAM search and fitting
With our fresh, new combined shape and texture model, we have found a nice way to
describe how a face could change not only in shape, but also in appearance. Now, we want
to find which set of p shape and λ appearance parameters will bring our model as close as
possible to a given input image I(x). We could naturally calculate the error between our
instantiated model and the given input image in the coordinate frame of I(x), or map the
points back to the base appearance and calculate the difference there. We are going to use
the latter approach. This way, we want to minimize the following function:

http://www.packtpub.com/

3D Head Pose Estimation Using AAM and POSIT

[167]

In the preceding equation, S0 denotes the set of pixels x is equal to (x,y)T that lie inside the
AAMs base mesh, A0(x) is our base mesh texture, Ai(x) is appearance images from PCA,
and W(x;p) is the warp that takes pixels from the input image back to the base mesh frame.

Several approaches have been proposed for this minimization through years of studying.
The first idea was to use an additive approach, in which ∆pi and ∆λi were calculated as
linear functions of the error image and then the shape parameter p and appearance λ were
updated as pi ← pi + ∆pi and λi ← λi + ∆λi, in the iteration. Although convergence can occur
sometimes, the delta doesn't always depend on current parameters, and this might lead to
divergence. Another approach, which was studied based on the gradient descent
algorithms, was very slow, so another way of finding convergence was sought. Instead of
updating the parameters, the whole warp could be updated. This way, a compositional
approach was proposed by Ian Mathews and Simon Baker in a famous paper called Active
Appearance Models Revisited. More details can be found in the paper, but the important
contribution it gave to fitting was that it brought the most intensive computation to a pre-
compute step, as seen in the following screenshot:

Note that the update occurs in terms of a compositional step as seen in step (9) (see the
previous screenshot). Equations (40) and (41) from the paper can be seen in the following
screenshots:

3D Head Pose Estimation Using AAM and POSIT

[168]

Although the algorithm just mentioned will mostly converge very well from a position near
the final one, this might not be the case when there's a big difference in rotation, translation,
or scale. We can bring more information to the convergence through the parameterization
of a global 2D similarity transform. This is equation 42 in the paper and is shown as follows:

In the preceding equation, the four parameters q = (a, b, tx, ty) have the following
interpretations. The ﬁrst pair (a, b) is related to the scale k and rotation θ: a is equal to k
cos θ - 1 and b = k sin θ. The second pair (tx, ty) is the x and y translations, as proposed in the
Active Appearance Models Revisited paper.

With a bit more of math transformations, you can finally use the preceding algorithm to
find the best image fit with a global 2D transform.

As the warp compositional algorithm has several performance advantages, we will use the
one described in the AAM Revisited paper: the inverse compositional project-out algorithm.
Remember that in this method, the effect of appearance variation during fitting can be
precomputed, or projected out, improving AAM fitting performance.

3D Head Pose Estimation Using AAM and POSIT

[169]

The following screenshot shows convergence for different images from the MUCT dataset
using the inverse compositional project-out AAM fitting algorithm:

The preceding screenshot shows successful convergences, over faces outside the AAM
training set-using the inverse compositional project, out AAM fitting algorithm.

POSIT
After we have found the 2D position of our landmark points, we can derive the 3D pose of
our model using the POSIT. The pose P of a 3D object is defined as the 3 x 3 rotation matrix
R and the 3D translation vector T; hence, P is equal to [R | T].

Most of this section is based on the OpenCV POSIT tutorial by Javier
Barandiaran.

As the name implies, POSIT uses the Pose from Orthography and Scaling (POS) algorithm
in several iterations, so it is an acronym for POS with iterations. The hypothesis for its
working is that we can detect and match in the image four or more non-coplanar feature
points of the object and that we know their relative geometry on the object.

The main idea of the algorithm is that we can find a good approximation to the object pose,
supposing that all the model points are in the same plane, since their depths are not very
different from one another if compared to the distance from the camera to a face. After the
initial pose is obtained, the rotation matrix and translation vector of the object are found by
solving a linear system. Then, the approximate pose is iteratively used to better compute
scaled orthographic projections of the feature points, followed by POS application to these
projections instead of the original ones. For more information, you can refer to the paper by
DeMenton, Model-Based Object Pose in 25 Lines of Code.

3D Head Pose Estimation Using AAM and POSIT

[170]

Diving into POSIT
In order for POSIT to work, you need at least four non-coplanar 3D model points and their
respective matchings in the 2D image. We will add a termination criteria to that, since
POSIT is an iterative algorithm, which generally is a number of iterations or a distance
parameter. We will then call the cvPOSIT function, included in calib3d_c.h, which yields
the rotation matrix and the translation vector.

As an example, we will follow the tutorial from Javier Barandiaran, which uses POSIT to
obtain the pose of a cube. The model is created with four points. It is initialized with the
following code:

 float cubeSize = 10.0;
 std::vector<CvPoint3D32f> modelPoints;
 modelPoints.push_back(cvPoint3D32f(0.0f, 0.0f, 0.0f));
 modelPoints.push_back(cvPoint3D32f(0.0f, 0.0f, cubeSize));
 modelPoints.push_back(cvPoint3D32f(cubeSize, 0.0f, 0.0f));
 modelPoints.push_back(cvPoint3D32f(0.0f, cubeSize, 0.0f));
 CvPOSITObject *positObject = cvCreatePOSITObject(&modelPoints[0],
 static_cast<int>(modelPoints.size()));

Note that the model itself is created with the cvCreatePOSITObject method, which
returns a CvPOSITObject method that will be used in the cvPOSIT function. Be aware that
the pose will be calculated referring to the first model point, which makes it a good idea to
put it at the origin.

We then need to put the 2D image points in another vector. Remember that they must be
put in the array in the same order that the model points were inserted in; this way, the ith 2D
image point matches the ith 3D model point. A catch here is that the origin for the 2D image
points is located at the center of the image, which might require you to translate them. You
can insert the following 2D image points (of course, they will vary according to the user's
matching):

 std::vector<CvPoint2D32f> srcImagePoints;
 srcImagePoints.push_back(cvPoint2D32f(-48, -224));
 srcImagePoints.push_back(cvPoint2D32f(-287, -174));
 srcImagePoints.push_back(cvPoint2D32f(132, -153));
 srcImagePoints.push_back(cvPoint2D32f(-52, 149));

Now, you only need to allocate memory for the matrixes and create termination criteria,
followed by a call to cvPOSIT, as shown in the following code snippet:

 //Estimate the pose
 float* rotation_matrix = new float[9];
 float* translation_vector = new float[3];

3D Head Pose Estimation Using AAM and POSIT

[171]

 CvTermCriteria criteria = cvTermCriteria(CV_TERMCRIT_EPS |
 CV_TERMCRIT_ITER, 100, 1.0e-4f);
 cvPOSIT(positObject, &srcImagePoints[0], FOCAL_LENGTH, criteria,
 rotation_matrix, translation_vector);

After the iterations, cvPOSIT will store the results in rotation_matrix and
translation_vector. The following screenshot shows the inserted srcImagePoints
with white circles as well as a coordinate axis showing the rotation and translation results:

With reference to the preceding screenshot, let's see the following input points and results
of running the POSIT algorithm:

The white circles show input points, while the coordinate axes show the resulting
model pose.
Make sure you use the focal length of your camera as obtained through a
calibration process. You might want to check one of the calibration procedures
available in the Camera calibration section in Chapter 7, Natural Feature Tracking
for Augmented Reality. The current implementation of POSIT will only allow
square pixels, so there won't be room for focal length in the x and y axes.
Expect the rotation matrix in the following format:

[rot[0] rot[1] rot[2]]
[rot[3] rot[4] rot[5]]
[rot[6] rot[7] rot[8]]

https://www.packtpub.com/sites/default/files/downloads/NaturalFeatureTrackingforAugmentedReality.pdf

3D Head Pose Estimation Using AAM and POSIT

[172]

The translation vector will be in the following format:
[trans[0]]
[trans[1]]
[trans[2]]

POSIT and head model
In order to use POSIT as a tool for head pose, you will need to use a 3D head model. There
is one available from the Institute of Systems and Robotics of the University of Coimbra and
can be found at
http://aifi.isr.uc.pt/Downloads/OpenGL/glAnthropometric3DModel.cpp. Note that the
model can be obtained from where it says:

 float Model3D[58][3]= {{-7.308957,0.913869,0.000000}, ...

The model can be seen in the following screenshot:

The preceding screenshot shows a 58-point 3D head model available for POSIT.

http://aifi.isr.uc.pt/Downloads/OpenGL/glAnthropometric3DModel.cpp

3D Head Pose Estimation Using AAM and POSIT

[173]

In order to get POSIT to work, the point corresponding to the 3D head model must be
matched accordingly. Note that at least four non-coplanar 3D points and their
corresponding 2D projections are required for POSIT to work, so these must be passed as
parameters, pretty much as described in the Diving into POSIT section. Note that this
algorithm is linear in terms of the number of matched points. The following screenshot
shows how matching should be done:

The preceding screenshot shows the correctly matched points of a 3D head model and an
AAM mesh.

Tracking from webcam or video file
Now that all the tools have been assembled to get 6 degrees of freedom head tracking, we
can apply it to a camera stream or video file. OpenCV provides the VideoCapture class
that can be used in the following manner (see the Accessing the webcam section in Chapter 1,
Cartoonifier and Skin Changer for Raspberry Pi, for more details):

 #include "opencv2/opencv.hpp"

 using namespace cv;

 int main(int, char**)
 {
 VideoCapture cap(0);// opens the default camera, could use a
 // video file path instead

3D Head Pose Estimation Using AAM and POSIT

[174]

 if(!cap.isOpened()) // check if we succeeded
 return -1;

 AAM aam = loadPreviouslyTrainedAAM();
 HeadModel headModel = load3DHeadModel();
 Mapping mapping = mapAAMLandmarksToHeadModel();

 Pose2D pose = detectFacePosition();

 while(1)
 {
 Mat frame;
 cap >> frame; // get a new frame from camera

 Pose2D new2DPose = performAAMSearch(pose, aam);
 Pose3D new3DPose = applyPOSIT(new2DPose, headModel, mapping);

 if(waitKey(30) >= 0) break;
 }

 // the camera will be deinitialized automatically in VideoCapture
 // destructor
 return 0;
 }

The algorithm works like this. A video capture is initialized through VideoCapture
cap(0) so that the default webcam is used. Now that we have video capture working, we
also need to load our trained Active Appearance Model, which will occur in the
loadPreviouslyTrainedAAM pseudocode mapping. We will also load the 3D head model
for POSIT and the mapping of landmark points to 3D head points in our mapping variable.

After everything we need has been loaded, we will need to initialize the algorithm from a
known pose, which is a known 3D position, known rotation, and a known set of AAM
parameters. This could be made automatically through OpenCV's highly documented Haar
features classifier face detector (more details in the Face Detection section of Chapter 4, Non-
rigid Face Tracking, or in OpenCV's cascade classifier documentation), or we could manually
initialize the pose from a previously annotated frame. A brute-force approach, which would
be to run an AAM fitting for every rectangle, could also be used, since it would be very
slow only during the first frame. Note that by initialization, we mean finding the 2D
landmarks of the AAM through their parameters.

3D Head Pose Estimation Using AAM and POSIT

[175]

When everything is loaded, we can iterate through the main loop delimited by the while
loop. In this loop, we first query the next grabbed frame, and we then run an Active
Appearance Model fit so that we can find landmarks on the next frame. Since the current
position is very important at this step, we pass it as a parameter to the pseudocode function
performAAMSearch(pose,aam). If we find the current pose, which is signaled through
error image convergence, we will get the next landmark positions, so we can provide them
to POSIT. This happens in the following line, applyPOSIT(new2DPose, headModel,
mapping), where the new 2D pose is passed as a parameter, as also our previously loaded
headModel and the mapping. After that, we can render any 3D model in the obtained pose
like a coordinate axis or an augmented reality model. As we have landmarks, more
interesting effects can be obtained through model parameterization, such as opening a
mouth or changing eyebrow position.

As this procedure relies on the previous pose for the next estimation, we could accumulate
errors and diverge from head position. A workaround could be to reinitialize the procedure
every time it happens, checking a given error image threshold. Another factor to pay
attention to is the use of filters when tracking, since jittering can occur. A simple mean filter
for each of the translation and rotation coordinates can give reasonable results.

Summary
In this chapter, we discussed how Active Appearance Models can be combined with the
POSIT algorithm in order to obtain a 3D head pose. An overview on how to create, train,
and manipulate AAMs has been given, and you can use this background for any other field,
such as medical, imaging, or industry. Besides dealing with AAMs, we got familiar with
Delaunay subdivisions and learned how to use such an interesting structure as a
triangulated mesh. We also showed you how to perform texture mapping in the triangles
using OpenCV functions. Another interesting topic was approached in AAM fitting.
Although only the inverse compositional project-out algorithm was described, we could
easily obtain the results of years of research by simply using its output.

After enough theory and practice of AAMs, we dived into the details of POSIT in order to
couple 2D measurements to 3D ones, explaining how to fit a 3D model using matchings
between model points. We concluded the chapter by showing how to use all the tools in an
online face tracker by detection, which yields 6 degrees of freedom head pose-3 degrees for
rotation, and 3 for translation. The complete code for this chapter can be downloaded from
http://www.packtpub.com/.

http://www.packtpub.com/

3D Head Pose Estimation Using AAM and POSIT

[176]

References
Active Appearance Models, T.F. Cootes, G. J. Edwards, and C. J. Taylor, ECCV,
2:484-498, 1998
(http://www.cs.cmu.edu/~efros/courses/AP06/Papers/cootes-eccv-98.pdf)
Active Shape Models-Their Training and Application, T.F. Cootes, C.J. Taylor, D.H.
Cooper, and J. Graham, Computer Vision and Image Understanding, (61): 38-59, 1995
(http://www.wiau.man.ac.uk/~bim/Papers/cviu95.pdf)
The MUCT Landmarked Face Database, S. Milborrow, J. Morkel, and F. Nicolls, Pattern
Recognition Association of South Africa, 2010 (http://www.milbo.org/muct/)
The IMM Face Database - An Annotated Dataset of 240 Face Images, Michael M.
Nordstrom, Mads Larsen, Janusz Sierakowski, and Mikkel B.Stegmann, Informatics and
Mathematical Modeling, Technical University of Denmark, 2004,
(http://www2.imm.dtu.dk/~aam/datasets/datasets.html)
Sur la sphère vide, B. Delaunay, Izvestia Akademii Nauk SSSR, Otdelenie
Matematicheskikh i Estestvennykh Nauk, 7:793-800, 1934
Active Appearance Models for Facial Expression Recognition and Monocular Head Pose
Estimation Master Thesis, P. Martins, 2008
Active Appearance Models Revisited, International Journal of Computer Vision, Vol. 60,
No. 2, pp. 135 - 164, I. Mathews and S. Baker, November, 2004
(http://www.ri.cmu.edu/pub_files/pub4/matthews_iain_2004_2/matthews_ia
in_2004_2.pdf)
POSIT Tutorial, Javier Barandiaran
(http://opencv.willowgarage.com/wiki/Posit)
Model-Based Object Pose in 25 Lines of Code, International Journal of Computer Vision,
15, pp. 123-141, Dementhon and L.S Davis, 1995
(http://www.cfar.umd.edu/~daniel/daniel_papersfordownload/Pose25Lines.
pdf)

http://www.cs.cmu.edu/~efros/courses/AP06/Papers/cootes-eccv-98.pdf
http://www.wiau.man.ac.uk/~bim/Papers/cviu95.pdf
http://www.milbo.org/muct/
http://www2.imm.dtu.dk/~aam/datasets/datasets.html
http://www.ri.cmu.edu/pub_files/pub4/matthews_iain_2004_2/matthews_iain_2004_2.pdf
http://www.ri.cmu.edu/pub_files/pub4/matthews_iain_2004_2/matthews_iain_2004_2.pdf
http://opencv.willowgarage.com/wiki/Posit
http://www.cfar.umd.edu/~daniel/daniel_papersfordownload/Pose25Lines.pdf
http://www.cfar.umd.edu/~daniel/daniel_papersfordownload/Pose25Lines.pdf

6
Face Recognition Using

Eigenfaces or Fisherfaces
In this chapter, we cover the following:

Face detection
Face preprocessing
Training a machine-learning algorithm from collected faces
Face recognition
Finishing touches

Introduction to face recognition and face
detection
Face recognition is the process of putting a label to a known face. Just like humans learn to
recognize their family, friends, and celebrities just by seeing their face, there are many
techniques for a computer to learn to recognize a known face.

Face Recognition Using Eigenfaces or Fisherfaces

[178]

These generally involve four main steps:

Face detection: This is the process of locating a face region in an image (a large1.
rectangle near the center of the following screenshot). This step does not care who
the person is, just that it is a human face.
Face preprocessing: This is the process of adjusting the face image to look more2.
clear and similar to other faces (a small grayscale face in the top-center of the
following screenshot).
Collecting and learning faces: This is the process of saving many preprocessed3.
faces (for each person that should be recognized), and then learning how to
recognize them.
Face recognition: This is the process that checks which of the collected people are4.
most similar to the face in the camera (a small rectangle on the top-right of the
following screenshot).

Note that the phrase face recognition is often used by the general public
for finding positions of faces (that is, face detection, as described in step 1),
but this book will use the formal definition of face recognition referring to
step 4 and face detection referring to step 1.

The following screenshot shows the final WebcamFaceRec project, including a small
rectangle at the top-right corner highlighting the recognized person. Also notice the
confidence bar that is next to the preprocessed face (a small face at the top-center of the
rectangle marking the face), which in this case shows roughly 70 percent confidence that it
has recognized the correct person:

Face Recognition Using Eigenfaces or Fisherfaces

[179]

The current face detection techniques are quite reliable in real-world conditions, whereas
current face recognition techniques are much less reliable when used in real-world
conditions. For example, it is easy to find research papers showing face recognition
accuracy rates above 95 percent, but when testing those same algorithms yourself, you may
often find that accuracy is lower than 50 percent. This comes from the fact that current face
recognition techniques are very sensitive to exact conditions in the images, such as the type
of lighting, direction of lighting and shadows, exact orientation of the face, expression of the
face, and the current mood of the person. If they are all kept constant when training
(collecting images) as well as when testing (from the camera image), then face recognition
should work well, but if the person was standing to the left-hand side of the lights in a room
when training, and then stood to the right-hand side while testing with the camera, it may
give quite bad results. So the dataset used for training is very important.

Face preprocessing (step 2) aims to reduce these problems, such as by making sure the face
always appears to have similar brightness and contrast, and perhaps making sure the
features of the face will always be in the same position (such as aligning the eyes and/or
nose to certain positions). A good face preprocessing stage will help improve the reliability
of the whole face recognition system, so this chapter will place some emphasis on face
preprocessing methods.

Despite the big claims about face recognition for security in the media, it is unlikely that the
current face recognition methods alone are reliable enough for any true security system, but
they can be used for purposes that don't need high reliability, such as playing personalized
music for different people entering a room or a robot that says your name when it sees you.
There are also various practical extensions to face recognition, such as gender recognition,
age recognition, and emotion recognition.

Step 1 - face detection
Until the year 2000, there were many different techniques used for finding faces, but all of
them were either very slow, very unreliable, or both. A major change came in 2001 when
Viola and Jones invented the Haar-based cascade classifier for object detection, and in 2002
when it was improved by Lienhart and Maydt. The result is an object detector that is both
fast (it can detect faces in real time on a typical desktop with a VGA webcam) and reliable
(it detects approximately 95 percent of frontal faces correctly). This object detector
revolutionized the field of face recognition (as well as that of robotics and computer vision
in general), as it finally allowed real-time face detection and face recognition, especially as
Lienhart himself wrote the object detector that comes free with OpenCV! It works not only
for frontal faces but also side-view faces (referred to as profile faces), eyes, mouths, noses,
company logos, and many other objects.

Face Recognition Using Eigenfaces or Fisherfaces

[180]

This object detector was extended in OpenCV v2.0 to also use LBP features for detection
based on work by Ahonen, Hadid, and Pietikäinen in 2006, as LBP-based detectors are
potentially several times faster than Haar-based detectors, and don't have the licensing
issues that many Haar detectors have.

The basic idea of the Haar-based face detector is that if you look at most frontal faces, the
region with the eyes should be darker than the forehead and cheeks, and the region with
the mouth should be darker than cheeks, and so on. It typically performs about 20 stages of
comparisons like this to decide if it is a face or not, but it must do this at each possible
position in the image and for each possible size of the face, so in fact it often does thousands
of checks per image. The basic idea of the LBP-based face detector is similar to the Haar-
based one, but it uses histograms of pixel intensity comparisons, such as edges, corners, and
flat regions.

Rather than have a person decide which comparisons would best define a face, both Haar-
and LBP-based face detectors can be automatically trained to find faces from a large set of
images, with the information stored as XML files to be used later. These cascade classifier
detectors are typically trained using at least 1,000 unique face images and 10,000 non-face
images (for example, photos of trees, cars, and text), and the training process can take a long
time even on a multi-core desktop (typically a few hours for LBP but 1week for Haar!).
Luckily, OpenCV comes with some pretrained Haar and LBP detectors for you to use! In
fact you can detect frontal faces, profile (side-view) faces, eyes, or noses just by loading
different cascade classifier XML files to the object detector, and choose between the Haar or
LBP detector, based on which XML file you choose.

Implementing face detection using OpenCV
As mentioned previously, OpenCV v2.4 comes with various, pretrained XML detectors that
you can use for different purposes. The following table lists some of the most popular XML
files:

Type of cascade classifier XML filename

Face detector (default) haarcascade_frontalface_default.xml

Face detector (fast Haar) haarcascade_frontalface_alt2.xml

Face detector (fast LBP) lbpcascade_frontalface.xml

Profile (side-looking) face detector haarcascade_profileface.xml

Eye detector (separate for left and right) haarcascade_lefteye_2splits.xml

Mouth detector haarcascade_mcs_mouth.xml

Face Recognition Using Eigenfaces or Fisherfaces

[181]

Nose detector haarcascade_mcs_nose.xml

Whole person detector haarcascade_fullbody.xml

Haar-based detectors are stored in the datahaarcascades folder and LBP-based detectors
are stored in the datalbpcascades folder of the OpenCV root folder, such as
C:opencvdatalbpcascades.

For our face recognition project, we want to detect frontal faces, so let's use the LBP face
detector because it is the fastest and doesn't have patent licensing issues. Note that this
pretrained LBP face detector that comes with OpenCV v2.x is not tuned as well as the
pretrained Haar face detectors, so if you want more reliable face detection then you may
want to train your own LBP face detector or use a Haar face detector.

Loading a Haar or LBP detector for object or face
detection
To perform object or face detection, first you must load the pretrained XML file using
OpenCV's CascadeClassifier class as follows:

 CascadeClassifier faceDetector;
 faceDetector.load(faceCascadeFilename);

This can load Haar or LBP detectors just by giving a different filename. A very common
mistake when using this is to provide the wrong folder or filename, but depending on your
build environment, the load() method will either return false or generate a C++
exception (and exit your program with an assert error). So it is best to surround the load()
method with a try... catch block and display a nice error message to the user if
something went wrong. Many beginners skip checking for errors, but it is crucial to show a
help message to the user when something did not load correctly, otherwise you may spend
a very long time debugging other parts of your code before eventually realizing something
did not load. A simple error message can be displayed as follows:

 CascadeClassifier faceDetector;
 try {
 faceDetector.load(faceCascadeFilename);
 } catch (cv::Exception e) {}
 if (faceDetector.empty()) {
 cerr << "ERROR: Couldn't load Face Detector (";
 cerr << faceCascadeFilename << ")!" << endl;
 exit(1);
 }

Face Recognition Using Eigenfaces or Fisherfaces

[182]

Accessing the webcam
To grab frames from a computer's webcam or even from a video file, you can simply call the
VideoCapture::open() function with the camera number or video filename, then grab
the frames using the C++ stream operator, as mentioned in the section,Accessing the webcam
in Chapter 1, Cartoonifier and Skin Changer for Raspberry Pi.

Detecting an object using the Haar or LBP Classifier
Now that we have loaded the classifier (just once during initialization), we can use it to
detect faces in each new camera frame. But first, we should do some initial processing of the
camera image just for face detection, by performing the following steps:

Grayscale color conversion: Face detection only works on grayscale images. So1.
we should convert the color camera frame to grayscale.
Shrinking the camera image: The speed of face detection depends on the size of2.
the input image (it is very slow for large images but fast for small images), and
yet detection is still fairly reliable even at low resolutions. So we should shrink
the camera image to a more reasonable size (or use a large value for
minFeatureSize in the detector, as explained shortly).
Histogram equalization: Face detection is not as reliable in low-light conditions.3.
So we should perform histogram equalization to improve the contrast and
brightness.

Grayscale color conversion
We can easily convert an RGB color image to grayscale using the cvtColor() function. But
we should do this only if we know we have a color image (that is, it is not a grayscale
camera), and we must specify the format of our input image (usually 3-channel BGR on
desktop or 4-channel BGRA on mobile). So we should allow three different input color
formats, as shown in the following code:

 Mat gray;
 if (img.channels() == 3) {
 cvtColor(img, gray, CV_BGR2GRAY);
 }
 else if (img.channels() == 4) {
 cvtColor(img, gray, CV_BGRA2GRAY);
 }
 else {
 // Access the grayscale input image directly.
 gray = img;

Face Recognition Using Eigenfaces or Fisherfaces

[183]

 }

Shrinking the camera image
We can use the resize() function to shrink an image to a certain size or scale factor. Face
detection usually works quite well for any image size greater than 240x240 pixels (unless
you need to detect faces that are far away from the camera), because it will look for any
faces larger than the minFeatureSize (typically 20x20 pixels). So let's shrink the camera
image to be 320 pixels wide; it doesn't matter if the input is a VGA webcam or a five mega
pixel HD camera. It is also important to remember and enlarge the detection results,
because if you detect faces in a shrunk image then the results will also be shrunk. Note that
instead of shrinking the input image, you could use a large value for
the minFeatureSize variable in the detector instead. We must also ensure the image does
not become fatter or thinner. For example, a widescreen 800x400 image when shrunk to
300x200 would make a person look thin. So we must keep the aspect ratio (the ratio of
width to height) of the output the same as the input. Let's calculate how much to shrink the
image width by, then apply the same scale factor to the height as well, as follows:

 const int DETECTION_WIDTH = 320;
 // Possibly shrink the image, to run much faster.
 Mat smallImg;
 float scale = img.cols / (float) DETECTION_WIDTH;
 if (img.cols > DETECTION_WIDTH) {
 // Shrink the image while keeping the same aspect ratio.
 int scaledHeight = cvRound(img.rows / scale);
 resize(img, smallImg, Size(DETECTION_WIDTH, scaledHeight));
 }
 else {
 // Access the input directly since it is already small.
 smallImg = img;
 }

Histogram equalization
We can easily perform histogram equalization to improve the contrast and brightness of an
image, using the equalizeHist() function. Sometimes this will make the image look
strange, but in general it should improve the brightness and contrast and help face
detection. The equalizeHist() function is used as follows:

 // Standardize the brightness & contrast, such as
 // to improve dark images.
 Mat equalizedImg;
 equalizeHist(inputImg, equalizedImg);

Face Recognition Using Eigenfaces or Fisherfaces

[184]

Detecting the face
Now that we have converted the image to grayscale, shrunk the image, and equalized the
histogram, we are ready to detect the faces using the
CascadeClassifier::detectMultiScale() function! There are many parameters that
we pass to this function:

minFeatureSize: This parameter determines the minimum face size that we
care about, typically 20x20 or 30x30 pixels but this depends on your use case and
image size. If you are performing face detection on a webcam or smartphone
where the face will always be very close to the camera, you could enlarge this to
80 x 80 to have much faster detections, or if you want to detect far away faces,
such as on a beach with friends, then leave this as 20x20.
searchScaleFactor: This parameter determines how many different sizes of
faces to look for; typically it would be 1.1, for good detection, or 1.2 for faster
detection that does not find the face as often.
minNeighbors: This parameter determines how sure the detector should be that
it has detected a face, typically a value of 3 but you can set it higher if you want
more reliable faces, even if many faces are not detected.
flags: This parameter allows you to specify whether to look for all faces
(default) or only look for the largest face (CASCADE_FIND_BIGGEST_OBJECT). If
you only look for the largest face, it should run faster. There are several other
parameters you can add to make the detection about 1% or 2% faster, such as
CASCADE_DO_ROUGH_SEARCH or CASCADE_SCALE_IMAGE.

The output of the detectMultiScale() function will be a std::vector of the cv::Rect
type object. For example, if it detects two faces then it will store an array of two rectangles
in the output. The detectMultiScale() function is used as follows:

 int flags = CASCADE_SCALE_IMAGE; // Search for many faces.
 Size minFeatureSize(20, 20); // Smallest face size.
 float searchScaleFactor = 1.1f; // How many sizes to search.
 int minNeighbors = 4; // Reliability vs many faces.

// Detect objects in the small grayscale image.
std::vector<Rect> faces;
faceDetector.detectMultiScale(img, faces, searchScaleFactor,
 minNeighbors, flags, minFeatureSize);

We can see if any faces were detected by looking at the number of elements stored in our
vector of rectangles; that is, by using the objects.size() function.

Face Recognition Using Eigenfaces or Fisherfaces

[185]

As mentioned earlier, if we gave a shrunken image to the face detector, the results will also
be shrunk, so we need to enlarge them if we want to know the face regions for the original
image. We also need to make sure faces on the border of the image stay completely within
the image, as OpenCV will now raise an exception if this happens, as shown by the
following code:

 // Enlarge the results if the image was temporarily shrunk.
 if (img.cols > scaledWidth) {
 for (int i = 0; i < (int)objects.size(); i++) {
 objects[i].x = cvRound(objects[i].x * scale);
 objects[i].y = cvRound(objects[i].y * scale);
 objects[i].width = cvRound(objects[i].width * scale);
 objects[i].height = cvRound(objects[i].height * scale);
 }
 }
 // If the object is on a border, keep it in the image.
 for (int i = 0; i < (int)objects.size(); i++) {
 if (objects[i].x < 0)
 objects[i].x = 0;
 if (objects[i].y < 0)
 objects[i].y = 0;
 if (objects[i].x + objects[i].width > img.cols)
 objects[i].x = img.cols - objects[i].width;
 if (objects[i].y + objects[i].height > img.rows)
 objects[i].y = img.rows - objects[i].height;
 }

Note that the preceding code will look for all faces in the image, but if you only care about
one face, then you could change the flag variable as follows:

 int flags = CASCADE_FIND_BIGGEST_OBJECT |
 CASCADE_DO_ROUGH_SEARCH;

The WebcamFaceRec project includes a wrapper around OpenCV's Haar or LBP detector, to
make it easier to find a face or eye within an image. For example:

 Rect faceRect; // Stores the result of the detection, or -1.
 int scaledWidth = 320; // Shrink the image before detection.
 detectLargestObject(cameraImg, faceDetector, faceRect, scaledWidth);
 if (faceRect.width > 0)
 cout << "We detected a face!" << endl;

Now that we have a face rectangle, we can use it in many ways, such as to extract or crop
the face image from the original image. The following code allows us to access the face:

 // Access just the face within the camera image.
 Mat faceImg = cameraImg(faceRect);

Face Recognition Using Eigenfaces or Fisherfaces

[186]

The following image shows the typical rectangular region given by the face detector:

Step 2 - face preprocessing
As mentioned earlier, face recognition is extremely vulnerable to changes in lighting
conditions, face orientation, face expression, and so on, so it is very important to reduce
these differences as much as possible. Otherwise the face recognition algorithm will often
think there is more similarity between faces of two different people in the same conditions
than between two faces of the same person.

The easiest form of face preprocessing is just to apply histogram equalization using the
equalizeHist() function, like we just did for face detection. This may be sufficient for
some projects where the lighting and positional conditions won't change by much. But for
reliability in real-world conditions, we need many sophisticated techniques, including facial
feature detection (for example, detecting eyes, nose, mouth, and eyebrows). For simplicity,
this chapter will just use eye detection and ignore other facial features such as the mouth
and nose, which are less useful. The following image shows an enlarged view of a typical
preprocessed face, using the techniques that will be covered in this section.

Eye detection
Eye detection can be very useful for face preprocessing, because for frontal faces you can
always assume a person's eyes should be horizontal and on opposite locations of the face
and should have a fairly standard position and size within a face, despite changes in facial
expressions, lighting conditions, camera properties, distance to camera, and so on.

Face Recognition Using Eigenfaces or Fisherfaces

[187]

It is also useful to discard false positives when the face detector says it has detected a face
and it is actually something else. It is rare that the face detector and two eye detectors will
all be fooled at the same time, so if you only process images with a detected face and two
detected eyes then it will not have many false positives (but will also give fewer faces for
processing, as the eye detector will not work as often as the face detector).

Some of the pretrained eye detectors that come with OpenCV v2.4 can detect an eye
whether it is open or closed, whereas some of them can only detect open eyes.

Eye detectors that detect open or closed eyes are as follows:

haarcascade_mcs_lefteye.xml (and haarcascade_mcs_righteye.xml)
haarcascade_lefteye_2splits.xml (and
haarcascade_righteye_2splits.xml)

Eye detectors that detect open eyes only are as follows:

haarcascade_eye.xml

haarcascade_eye_tree_eyeglasses.xml

As the open or closed eye detectors specify which eye they are trained on,
you need to use a different detector for the left and the right eye, whereas
the detectors for just open eyes can use the same detector for left or right
eyes.
The detector haarcascade_eye_tree_eyeglasses.xml can detect the
eyes if the person is wearing glasses, but is not reliable if they don't wear
glasses.
If the XML filename says left eye, it means the actual left eye of the person,
so in the camera image it would normally appear on the right-hand side of
the face, not on the left-hand side!
The list of four eye detectors mentioned is ranked in approximate order
from most reliable to least reliable, so if you know you don't need to find
people with glasses then the first detector is probably the best choice.

Eye search regions
For eye detection, it is important to crop the input image to just show the approximate eye
region, just like doing face detection and then cropping to just a small rectangle where the
left eye should be (if you are using the left eye detector) and the same for the right rectangle
for the right eye detector.

Face Recognition Using Eigenfaces or Fisherfaces

[188]

If you just do eye detection on a whole face or whole photo then it will be much slower and
less reliable. Different eye detectors are better suited to different regions of the face; for
example, the haarcascade_eye.xml detector works best if it only searches in a very tight
region around the actual eye, whereas the haarcascade_mcs_lefteye.xml and
haarcascade_lefteye_2splits.xml detectors work best when there is a large region
around the eye.

The following table lists some good search regions of the face for different eye detectors
(when using the LBP face detector), using relative coordinates within the detected face
rectangle:

Cascade classifier EYE_SX EYE_SY EYE_SW EYE_SH

haarcascade_eye.xml 0.16 0.26 0.30 0.28

haarcascade_mcs_lefteye.xml 0.10 0.19 0.40 0.36

haarcascade_lefteye_2splits.xml 0.12 0.17 0.37 0.36

Here is the source code to extract the left-eye and right-eye regions from a
detected face:

 int leftX = cvRound(face.cols * EYE_SX);
 int topY = cvRound(face.rows * EYE_SY);
 int widthX = cvRound(face.cols * EYE_SW);
 int heightY = cvRound(face.rows * EYE_SH);
 int rightX = cvRound(face.cols * (1.0-EYE_SX-EYE_SW));

 Mat topLeftOfFace = faceImg(Rect(leftX, topY, widthX, heightY));
 Mat topRightOfFace = faceImg(Rect(rightX, topY, widthX, heightY));

The following image shows the ideal search regions for the different eye detectors, where
the haarcascade_eye.xml and haarcascade_eye_tree_eyeglasses.xml files are best
with the small search region, while the haarcascade_mcs_*eye.xml and
haarcascade_*eye_2splits.xml files are best with larger search regions. Note that the
detected face rectangle is also shown, to give an idea of how large the eye search regions are
compared to the detected face rectangle:

Face Recognition Using Eigenfaces or Fisherfaces

[189]

When using the eye search regions given in the preceding table, here are the approximate
detection properties of the different eye detectors:

Cascade classifier Reliability* Speed** Eyes found Glasses

haarcascade_mcs_lefteye.xml 80% 18 msec Open or
closed

no

haarcascade_lefteye_2splits.xml 60% 7 msec Open or
closed

no

haarcascade_eye.xml 40% 5 msec Open only no

haarcascade_eye_tree_eyeglasses.xml 15% 10 msec Open only yes

* Reliability values show how often both eyes will be detected after LBP frontal face
detection when no eyeglasses are worn and both eyes are open. If eyes are closed then the
reliability may drop, or if eyeglasses are worn then both reliability and speed will drop.

** Speed values are in milliseconds for images scaled to the size of 320x240 pixels on an
Intel Core i7 2.2 GHz (averaged across 1,000 photos). Speed is typically much faster when
eyes are found than when eyes are not found, as it must scan the entire image, but the
haarcascade_mcs_lefteye.xml is still much slower than the other eye detectors.

Face Recognition Using Eigenfaces or Fisherfaces

[190]

For example, if you shrink a photo to 320x240 pixels, perform a histogram equalization on
it, use the LBP frontal face detector to get a face, then extract the
left-eye-region and right-eye-region from the face using the haarcascade_mcs_lefteye.xml
values, then perform a histogram equalization on each eye region. Then if you the
haarcascade_mcs_lefteye.xml detector on the left eye (which is actually on the top-
right side of your image) and use the haarcascade_mcs_righteye.xml detector on the
right eye (the top-left part of your image), each eye detector should work in roughly 90
percent of photos with LBP-detected frontal faces. So if you want both eyes detected then it
should work in roughly 80 percent
of photos with LBP-detected frontal faces.

Note that while it is recommended to shrink the camera image before detecting faces, you
should detect eyes at the full camera resolution because eyes will obviously be much
smaller than faces, so you need as much resolution as you can get.

Based on the table, it seems that when choosing an eye detector to use, you
should decide whether you want to detect closed eyes or only open eyes.
And remember that you can even use a one eye detector, and if it does not
detect an eye then you can try with another one.
For many tasks, it is useful to detect eyes whether they are opened or
closed, so if speed is not crucial, it is best to search with the mcs_*eye
detector first, and if it fails then search with the eye_2splits detector.
But for face recognition, a person will appear quite different if their eyes
are closed, so it is best to search with the plain haarcascade_eye detector
first, and if it fails then search with the
haarcascade_eye_tree_eyeglasses detector.

We can use the same detectLargestObject() function we used for face detection to
search for eyes, but instead of asking to shrink the images before eye detection, we specify
the full eye region width to get a better eye detection. It is easy to search for the left eye
using one detector, and if it fails then try another detector (same for right eye). The eye
detection is done as follows:

 CascadeClassifier eyeDetector1("haarcascade_eye.xml");
 CascadeClassifier eyeDetector2("haarcascade_eye_tree_eyeglasses.xml");
 ...
 Rect leftEyeRect; // Stores the detected eye.
 // Search the left region using the 1st eye detector.
 detectLargestObject(topLeftOfFace, eyeDetector1, leftEyeRect,
 topLeftOfFace.cols);
 // If it failed, search the left region using the 2nd eye
 // detector.
 if (leftEyeRect.width <= 0)

Face Recognition Using Eigenfaces or Fisherfaces

[191]

 detectLargestObject(topLeftOfFace, eyeDetector2,
 leftEyeRect, topLeftOfFace.cols);
 // Get the left eye center if one of the eye detectors worked.
 Point leftEye = Point(-1,-1);
 if (leftEyeRect.width <= 0) {
 leftEye.x = leftEyeRect.x + leftEyeRect.width/2 + leftX;
 leftEye.y = leftEyeRect.y + leftEyeRect.height/2 + topY;
 }

 // Do the same for the right-eye
 ...

 // Check if both eyes were detected.
 if (leftEye.x >= 0 && rightEye.x >= 0) {
 ...
 }

With the face and both eyes detected, we'll perform face preprocessing by combining:

Geometrical transformation and cropping: This process would include scaling,
rotating, and translating the images so that the eyes are aligned, followed by the
removal of the forehead, chin, ears, and background from the face image.
Separate histogram equalization for left and right sides: This process
standardizes the brightness and contrast on both the left- and right-hand sides of
the face independently.
Smoothing: This process reduces the image noise using a bilateral filter.
Elliptical mask: The elliptical mask removes some remaining hair and
background from the face image.

The following image shows the face preprocessing steps 1 to 4 applied to a detected face.
Notice how the final image has good brightness and contrast on both sides of the face,
whereas the original does not:

Geometrical transformation
It is important that the faces are all aligned together, otherwise the face-recognition
algorithm might be comparing part of a nose with part of an eye, and so on. The output of
face detection just seen will give aligned faces to some extent, but it is not very accurate
(that is, the face rectangle will not always be starting from the same point on the forehead).

Face Recognition Using Eigenfaces or Fisherfaces

[192]

To have better alignment, we will use eye detection to align the face so the positions of the
two detected eyes line up perfectly in the desired positions. We will do the geometrical
transformation using the warpAffine() function, which is a single operation that will do
four things:

Rotate the face so that the two eyes are horizontal
Scale the face so that the distance between the two eyes is always the same
Translate the face so that the eyes are always centered horizontally and at a
desired height
Crop the outer parts of the face, since we want to crop away the image
background, hair, forehead, ears, and chin

Affine Warping takes an affine matrix that transforms the two detected eye locations to the
two desired eye locations, and then crops to a desired size and position. To generate this
affine matrix, we will get the center between the eyes, calculate the angle at which the two
detected eyes appear, and look at their distance apart as follows:

 // Get the center between the 2 eyes.
 Point2f eyesCenter;
 eyesCenter.x = (leftEye.x + rightEye.x) * 0.5f;
 eyesCenter.y = (leftEye.y + rightEye.y) * 0.5f;

 // Get the angle between the 2 eyes.
 double dy = (rightEye.y - leftEye.y);
 double dx = (rightEye.x - leftEye.x);
 double len = sqrt(dx*dx + dy*dy);

 // Convert Radians to Degrees.
 double angle = atan2(dy, dx) * 180.0/CV_PI;

 // Hand measurements shown that the left eye center should
 // ideally be roughly at (0.16, 0.14) of a scaled face image.
 const double DESIRED_LEFT_EYE_X = 0.16;
 const double DESIRED_RIGHT_EYE_X = (1.0f - 0.16);

 // Get the amount we need to scale the image to be the desired
 // fixed size we want.
 const int DESIRED_FACE_WIDTH = 70;
 const int DESIRED_FACE_HEIGHT = 70;
 double desiredLen = (DESIRED_RIGHT_EYE_X - 0.16);
 double scale = desiredLen * DESIRED_FACE_WIDTH / len;

Face Recognition Using Eigenfaces or Fisherfaces

[193]

Now we can transform the face (rotate, scale, and translate) to get the two detected eyes to
be in the desired eye positions in an ideal face as follows:

 // Get the transformation matrix for the desired angle & size.
 Mat rot_mat = getRotationMatrix2D(eyesCenter, angle, scale);
 // Shift the center of the eyes to be the desired center.
 double ex = DESIRED_FACE_WIDTH * 0.5f - eyesCenter.x;
 double ey = DESIRED_FACE_HEIGHT * DESIRED_LEFT_EYE_Y -
 eyesCenter.y;
 rot_mat.at<double>(0, 2) += ex;
 rot_mat.at<double>(1, 2) += ey;
 // Transform the face image to the desired angle & size &
 // position! Also clear the transformed image background to a
 // default grey.
 Mat warped = Mat(DESIRED_FACE_HEIGHT, DESIRED_FACE_WIDTH,
 CV_8U, Scalar(128));
 warpAffine(gray, warped, rot_mat, warped.size());

Separate histogram equalization for left and right sides
In real-world conditions, it is common to have strong lighting on one half of the face and
weak lighting on the other. This has an enormous effect on the face-recognition algorithm,
as the left- and right-hand sides of the same face will seem like very different people. So we
will perform histogram equalization separately on the left and right halves of the face, to
have standardized brightness and contrast on each side of the face.

If we simply applied histogram equalization on the left half and then again on the right half,
we would see a very distinct edge in the middle because the average brightness is likely to
be different on the left and the right side, so to remove this edge, we will apply the two
histogram equalizations gradually from the left-or right-hand side towards the center and
mix it with a whole-face histogram equalization, so that the far left-hand side will use the
left histogram equalization, the far right-hand side will use the right histogram
equalization, and the center will use a smooth mix of the left or right value and the whole-
face equalized value.

Face Recognition Using Eigenfaces or Fisherfaces

[194]

The following image shows how the left-equalized, whole-equalized, and right-equalized
images are blended together:

To perform this, we need copies of the whole face equalized as well as the left half
equalized and the right half equalized, which is done as follows:

 int w = faceImg.cols;
 int h = faceImg.rows;
 Mat wholeFace;
 equalizeHist(faceImg, wholeFace);
 int midX = w/2;
 Mat leftSide = faceImg(Rect(0,0, midX,h));
 Mat rightSide = faceImg(Rect(midX,0, w-midX,h));
 equalizeHist(leftSide, leftSide);
 equalizeHist(rightSide, rightSide);

Now we combine the three images together. As the images are small, we can easily access
pixels directly using the image.at<uchar>(y,x) function even if it is slow; so let's merge
the three images by directly accessing pixels in the three input images and output images,
as follows:

 for (int y=0; y<h; y++) {
 for (int x=0; x<w; x++) {
 int v;
 if (x < w/4) {

Face Recognition Using Eigenfaces or Fisherfaces

[195]

 // Left 25%: just use the left face.
 v = leftSide.at<uchar>(y,x);
 }
 else if (x < w*2/4) {
 // Mid-left 25%: blend the left face & whole face.
 int lv = leftSide.at<uchar>(y,x);
 int wv = wholeFace.at<uchar>(y,x);
 // Blend more of the whole face as it moves
 // further right along the face.
 float f = (x - w*1/4) / (float)(w/4);
 v = cvRound((1.0f - f) * lv + (f) * wv);
 }
 else if (x < w*3/4) {
 // Mid-right 25%: blend right face & whole face.
 int rv = rightSide.at<uchar>(y,x-midX);
 int wv = wholeFace.at<uchar>(y,x);
 // Blend more of the right-side face as it moves
 // further right along the face.
 float f = (x - w*2/4) / (float)(w/4);
 v = cvRound((1.0f - f) * wv + (f) * rv);
 }
 else {
 // Right 25%: just use the right face.
 v = rightSide.at<uchar>(y,x-midX);
 }
 faceImg.at<uchar>(y,x) = v;
 } // end x loop
 } //end y loop

This separated histogram equalization should significantly help reduce the effect of
different lighting on the left- and right-hand sides of the face, but we must understand that
it won't completely remove the effect of one-sided lighting, since the face is a complex 3D
shape with many shadows.

Smoothing
To reduce the effect of pixel noise, we will use a bilateral filter on the face, as a bilateral
filter is very good at smoothing, most of an image while keeping edges sharp. Histogram
equalization can significantly increase the pixel noise, so we will make the filter strength 20
to cover heavy pixel noise, but use a neighborhood of just two pixels as we want to heavily
smooth the tiny pixel noise but not the large image regions, as follows:

 Mat filtered = Mat(warped.size(), CV_8U);
 bilateralFilter(warped, filtered, 0, 20.0, 2.0);

Face Recognition Using Eigenfaces or Fisherfaces

[196]

Elliptical mask
Although we have already removed most of the image background and forehead and hair
when we did the geometrical transformation, we can apply an elliptical mask to remove
some of the corner region such as the neck, which might be in shadow from the face,
particularly if the face is not looking perfectly straight towards the camera. To create the
mask, we will draw a black-filled ellipse onto a white image. One ellipse to perform this has
a horizontal radius of 0.5 (that is, it covers the face width perfectly), a vertical radius of 0.8
(as faces are usually taller than they are wide), and centered at the coordinates 0.5, 0.4, as
shown in the following image, where the elliptical mask has removed some unwanted
corners from the face:

We can apply the mask when calling the cv::setTo() function, which would normally set
a whole image to a certain pixel value, but as we will give a mask image, it will only set
some parts to the given pixel value. We will fill the image in gray so that it should have less
contrast to the rest of the face:

 // Draw a black-filled ellipse in the middle of the image.
 // First we initialize the mask image to white (255).
 Mat mask = Mat(warped.size(), CV_8UC1, Scalar(255));
 double dw = DESIRED_FACE_WIDTH;
 double dh = DESIRED_FACE_HEIGHT;
 Point faceCenter = Point(cvRound(dw * 0.5),
 cvRound(dh * 0.4));
 Size size = Size(cvRound(dw * 0.5), cvRound(dh * 0.8));
 ellipse(mask, faceCenter, size, 0, 0, 360, Scalar(0),
 CV_FILLED);

 // Apply the elliptical mask on the face, to remove corners.
 // Sets corners to gray, without touching the inner face.
 filtered.setTo(Scalar(128), mask);

Face Recognition Using Eigenfaces or Fisherfaces

[197]

The following enlarged image shows a sample result from all the face preprocessing stages.
Notice it is much more consistent for face recognition at a different brightness, face
rotations, angle from camera, backgrounds, positions of lights, and so on. This preprocessed
face will be used as input to the face-recognition stages, both when collecting faces for
training, and when trying to recognize input faces:

Step 3 - Collecting faces and learning from them
Collecting faces can be just as simple as putting each newly preprocessed face into an array
of preprocessed faces from the camera, as well as putting a label into an array (to specify
which person the face was taken from). For example, you could use 10 preprocessed faces of
the first person and 10 preprocessed faces of a second person, so the input to the face-
recognition algorithm will be an array of 20 preprocessed faces and an array of 20 integers
(where the first 10 numbers are 0 and the next 10 numbers are 1).

The face-recognition algorithm will then learn how to distinguish between the faces of the
different people. This is referred to as the training phase and the collected faces are referred
to as the training set. After the face-recognition algorithm has finished training, you could
then save the generated knowledge to a file or memory and later use it to recognize which
person is seen in front of the camera. This is referred to as the testing phase. If you used it
directly from a camera input then the preprocessed face would be referred to as the test
image, and if you tested with many images (such as from a folder of image files), it would
be referred to as the testing set.

Face Recognition Using Eigenfaces or Fisherfaces

[198]

It is important that you provide a good training set that covers the types of variations you
expect to occur in your testing set. For example, if you will only test with faces that are
looking perfectly straight ahead (such as ID photos), then you only need to provide training
images with faces that are looking perfectly straight ahead. But if the person might be
looking to the left or up, then you should make sure the training set will also include faces
of that person doing this, otherwise the face-recognition algorithm will have trouble
recognizing them, as their face will appear quite different. This also applies to other factors
such as facial expression (for example, if the person is always smiling in the training set but
not smiling in the testing set) or lighting direction (for example, a strong light is to the left-
hand side in the training set but to the right-hand side in the testing set), then the face
recognition algorithm will have difficulty recognizing them. The face preprocessing steps
that we just saw will help reduce these issues, but it certainly won't remove these factors,
particularly the direction in which the face is looking, as it has a large effect on the position
of all elements in the face.

One way to obtain a good training set that will cover many different real-
world conditions is for each person to rotate their head from looking left,
to up, to right, to down, then looking directly straight. Then the person
tilts their head sideways and then up and down, while also changing their
facial expression, such as alternating between smiling, looking angry, and
having a neutral face. If each person follows a routine such as this while
collecting faces, then there is a much better chance of recognizing
everyone in the real-world conditions.
For even better results, it should be performed again with one or two more
locations or directions, such as by turning the camera around by 180
degrees and walking in the opposite direction of the camera and then
repeating the whole routine, so that the training set would include many
different lighting conditions.

So in general, having 100 training faces for each person is likely to give better results than
having just 10 training faces for each person, but if all 100 faces look almost identical then it
will still perform badly because it is more important that the training set has enough variety
to cover the testing set, rather than to just have a large number of faces. So to make sure the
faces in the training set are not all too similar, we should add a noticeable delay between
each collected face. For example, if the camera is running at 30 frames per second, then it
might collect 100 faces in just several seconds when the person has not had time to move
around, so it is better to collect just one face per second, while the person moves their face
around. Another simple method to improve the variation in the training set is to only collect
a face if it is noticeably different from the previously collected face.

Face Recognition Using Eigenfaces or Fisherfaces

[199]

Collecting preprocessed faces for training
To make sure there is at least a 1 second gap between collecting new faces, we need to
measure how much time has passed. This is done as follows:

 // Check how long since the previous face was added.
 double current_time = (double)getTickCount();
 double timeDiff_seconds = (current_time -
 old_time) / getTickFrequency();

To compare the similarity of two images, pixel by pixel, you can find the relative L2 error,
which just involves subtracting one image from the other, summing the squared value of it,
and then getting the square root of it. So if the person had not moved at all, subtracting the
current face with the previous face should give a very low number at each pixel, but if they
had just moved slightly in any direction, subtracting the pixels would give a large number
and so the L2 error will be high. As the result is summed over all pixels, the value will
depend on the image resolution. So to get the mean error, we should divide this value by
the total number of pixels in the image. Let's put this in a handy function,
getSimilarity(), as follows:

 double getSimilarity(const Mat A, const Mat B) {
 // Calculate the L2 relative error between the 2 images.
 double errorL2 = norm(A, B, CV_L2);
 // Scale the value since L2 is summed across all pixels.
 double similarity = errorL2 / (double)(A.rows * A.cols);
 return similarity;
 }

 ...

 // Check if this face looks different from the previous face.
 double imageDiff = MAX_DBL;
 if (old_prepreprocessedFaceprepreprocessedFace.data) {
 imageDiff = getSimilarity(preprocessedFace,
 old_prepreprocessedFace);
 }

This similarity will often be less than 0.2 if the image did not move much, and
higher than 0.4 if the image did move, so let's use 0.3 as our threshold for collecting
a new face.

Face Recognition Using Eigenfaces or Fisherfaces

[200]

There are many tricks we can play to obtain more training data, such as using mirrored
faces, adding random noise, shifting the face by a few pixels, scaling the face by a
percentage, or rotating the face by a few degrees (even though we specifically tried to
remove these effects when preprocessing the face!). Let's add mirrored faces to the training
set, so that we have both a larger training set as well as a reduction in the problems of
asymmetrical faces or if a user is always oriented slightly to the left or right during training
but not testing. This is done as follows:

 // Only process the face if it's noticeably different from the
 // previous frame and there has been a noticeable time gap.
 if ((imageDiff > 0.3) && (timeDiff_seconds > 1.0)) {
 // Also add the mirror image to the training set.
 Mat mirroredFace;
 flip(preprocessedFace, mirroredFace, 1);

 // Add the face & mirrored face to the detected face lists.
 preprocessedFaces.push_back(preprocessedFace);
 preprocessedFaces.push_back(mirroredFace);
 faceLabels.push_back(m_selectedPerson);
 faceLabels.push_back(m_selectedPerson);

 // Keep a copy of the processed face,
 // to compare on next iteration.
 old_prepreprocessedFace = preprocessedFace;
 old_time = current_time;
 }

This will collect the std::vector arrays preprocessedFaces and faceLabels for a
preprocessed face as well as the label or ID number of that person (assuming it is in the
integer m_selectedPerson variable).

To make it more obvious to the user that we have added their current face to the collection,
you could provide a visual notification by either displaying a large white rectangle over the
whole image or just displaying their face for just a fraction of a second so they realize a
photo was taken. With OpenCV's C++ interface, you can use the + overloaded cv::Mat
operator to add a value to every pixel in the image and have it clipped to 255 (using
saturate_cast, so it doesn't overflow from white back to black!) Assuming
displayedFrame will be a copy of the color camera frame that should be shown, insert this
after the preceding code for face collection:

 // Get access to the face region-of-interest.
 Mat displayedFaceRegion = displayedFrame(faceRect);
 // Add some brightness to each pixel of the face region.
 displayedFaceRegion += CV_RGB(90,90,90);

Face Recognition Using Eigenfaces or Fisherfaces

[201]

Training the face recognition system from collected
faces
After you have collected enough faces for each person to recognize, you must train the
system to learn the data using a machine-learning algorithm suited for face recognition.
There are many different face-recognition algorithms in the literature, the simplest of which
are Eigenfaces and Artificial Neural Networks. Eigenfaces tends to work better than ANNs,
and despite its simplicity, it tends to work almost as well as many more complex face-
recognition algorithms, so it has become very popular as the basic face-recognition
algorithm for beginners as well as for new algorithms to be compared to.

Any reader who wishes to work further on face recognition is recommended to read the
theory behind:

Eigenfaces (also referred to as Principal Component Analysis (PCA)
Fisherfaces (also referred to as Linear Discriminant Analysis (LDA)
Other classic face recognition algorithms (many are available at h t t p ://w w w . f a c e

- r e c . o r g /a l g o r i t h m s /)
Newer face recognition algorithms in recent Computer Vision research papers
(such as CVPR and ICCV at http://www.cvpapers.com/), as there are hundreds
of face recognition papers published each year

However, you don't need to understand the theory of these algorithms in order to use them
as shown in this book. Thanks to the OpenCV team and Philipp Wagner's libfacerec
contribution, OpenCV v2.4.1 provided cv::Algorithm as a simple and generic method to
perform face recognition using one of several different algorithms (even selectable at
runtime) without necessarily understanding how they are implemented. You can find the
available algorithms in your version of OpenCV by using the Algorithm::getList()
function, such as with this code:

 vector<string> algorithms;
 Algorithm::getList(algorithms);
 cout << "Algorithms: " << algorithms.size() << endl;
 for (int i=0; i<algorithms.size(); i++) {
 cout << algorithms[i] << endl;
 }

Here are the three face-recognition algorithms available in OpenCV v2.4.1:

FaceRecognizer.Eigenfaces: Eigenfaces, also referred to as PCA, first used
by Turk and Pentland in 1991.

http://www.face-rec.org/algorithms/
http://www.face-rec.org/algorithms/
http://www.face-rec.org/algorithms/
http://www.face-rec.org/algorithms/
http://www.face-rec.org/algorithms/
http://www.face-rec.org/algorithms/
http://www.face-rec.org/algorithms/
http://www.face-rec.org/algorithms/
http://www.face-rec.org/algorithms/
http://www.face-rec.org/algorithms/
http://www.face-rec.org/algorithms/
http://www.face-rec.org/algorithms/
http://www.face-rec.org/algorithms/
http://www.face-rec.org/algorithms/
http://www.face-rec.org/algorithms/
http://www.face-rec.org/algorithms/
http://www.face-rec.org/algorithms/
http://www.face-rec.org/algorithms/
http://www.face-rec.org/algorithms/
http://www.face-rec.org/algorithms/
http://www.face-rec.org/algorithms/
http://www.face-rec.org/algorithms/
http://www.face-rec.org/algorithms/
http://www.face-rec.org/algorithms/
http://www.face-rec.org/algorithms/
http://www.face-rec.org/algorithms/
http://www.face-rec.org/algorithms/
http://www.face-rec.org/algorithms/
http://www.face-rec.org/algorithms/
http://www.face-rec.org/algorithms/
http://www.face-rec.org/algorithms/
http://www.face-rec.org/algorithms/
http://www.face-rec.org/algorithms/
http://www.face-rec.org/algorithms/
http://www.face-rec.org/algorithms/
http://www.face-rec.org/algorithms/
http://www.face-rec.org/algorithms/
http://www.face-rec.org/algorithms/
http://www.face-rec.org/algorithms/
http://www.face-rec.org/algorithms/
http://www.face-rec.org/algorithms/
http://www.face-rec.org/algorithms/
http://www.face-rec.org/algorithms/
http://www.face-rec.org/algorithms/
http://www.face-rec.org/algorithms/
http://www.face-rec.org/algorithms/
http://www.face-rec.org/algorithms/
http://www.face-rec.org/algorithms/
http://www.face-rec.org/algorithms/
http://www.face-rec.org/algorithms/
http://www.face-rec.org/algorithms/
http://www.face-rec.org/algorithms/
http://www.face-rec.org/algorithms/
http://www.face-rec.org/algorithms/
http://www.face-rec.org/algorithms/
http://www.face-rec.org/algorithms/
http://www.face-rec.org/algorithms/
http://www.face-rec.org/algorithms/
http://www.face-rec.org/algorithms/
http://www.face-rec.org/algorithms/
http://www.cvpapers.com/
http://www.cvpapers.com/

Face Recognition Using Eigenfaces or Fisherfaces

[202]

FaceRecognizer.Fisherfaces: Fisherfaces, also referred to as LDA, invented
by Belhumeur, Hespanha, and Kriegman in 1997.
FaceRecognizer.LBPH: Local Binary Pattern Histograms, invented by Ahonen,
Hadid, and Pietikäinen in 2004.

More information on these face-recognition algorithm implementations
can be found with documentation, samples, and Python equivalents for
each of them on Philipp Wagner's websites (http://bytefish.de/blog
and http://bytefish.de/dev/libfacerec/).

These face recognition-algorithms are available through the FaceRecognizer class in
OpenCV's contrib module. Due to dynamic linking, it is possible that your program is
linked to the contrib module but it is not actually loaded at runtime (if it was deemed as
not required). So it is recommended to call the cv::initModule_contrib() function
before trying to access the FaceRecognizer algorithms. This function is only available
from OpenCV v2.4.1, so it also ensures that the face-recognition algorithms are at least
available to you at compile time:

 // Load the "contrib" module is dynamically at runtime.
 bool haveContribModule = initModule_contrib();
 if (!haveContribModule) {
 cerr << "ERROR: The 'contrib' module is needed for ";
 cerr << "FaceRecognizer but hasn't been loaded to OpenCV!";
 cerr << endl;
 exit(1);
 }

To use one of the face-recognition algorithms, we must create a FaceRecognizer object
using the cv::Algorithm::create<FaceRecognizer>() function. We pass the name of
the face-recognition algorithm we want to use, as a string to this create function. This will
give us access to that algorithm, if it is available in the OpenCV version. So it may be used
as a runtime error check to ensure the user has OpenCV v2.4.1 or newer. For example:

 string facerecAlgorithm = "FaceRecognizer.Fisherfaces";
 Ptr<FaceRecognizer> model;
 // Use OpenCV's new FaceRecognizer in the "contrib" module:
 model = Algorithm::create<FaceRecognizer>(facerecAlgorithm);
 if (model.empty()) {
 cerr << "ERROR: The FaceRecognizer [" << facerecAlgorithm;
 cerr << "] is not available in your version of OpenCV. ";
 cerr << "Please update to OpenCV v2.4.1 or newer." << endl;
 exit(1);
 }

http://bytefish.de/blog
http://bytefish.de/blog
http://bytefish.de/dev/libfacerec/
http://bytefish.de/dev/libfacerec/

Face Recognition Using Eigenfaces or Fisherfaces

[203]

Once we have loaded the FaceRecognizer algorithm, we simply call the
FaceRecognizer::train() function with our collected face data as follows:

 // Do the actual training from the collected faces.
 model->train(preprocessedFaces, faceLabels);

This one line of code will run the whole face recognition training algorithm that you
selected (for example, Eigenfaces, Fisherfaces, or potentially other algorithms). If you have
just a few people with less than 20 faces, then this training should return very quickly, but if
you have many people with many faces, it is possible that train() function will take
several seconds or even minutes to process all the data.

Viewing the learned knowledge
While it is not necessary, it is quite useful to view the internal data structures that the face-
recognition algorithm generated when learning your training data, particularly if you
understand the theory behind the algorithm you selected and want to verify if it worked or
find out why it is not working as you hoped. The internal data structures can be different
for different algorithms, but luckily they are the same for eigenfaces and fisherfaces, so let's
just look at those two. They are both based on 1D eigenvector matrices that appear
somewhat like faces when viewed as 2D images, therefore it is common to refer as
eigenvectors as eigenfaces when using the Eigenface algorithm or as fisherfaces when using
the Fisherface algorithm.

In simple terms, the basic principle of Eigenfaces is that it will calculate a set of special
images (eigenfaces) and blending ratios (eigenvalues), which when combined in different
ways can generate each of the images in the training set but can also be used to differentiate
the many face images in the training set from each other. For example, if some of the faces
in the training set had a moustache and some did not, then there would be at least one
eigenface that shows a moustache, and so the training faces with a moustache would have a
high blending ratio for that eigenface to show that it has a moustache, and the faces without
a moustache would have a low blending ratio for that eigenvector. If the training set had
five people with 20 faces for each person, then there would be 100 eigenfaces and
eigenvalues to differentiate the 100 total faces in the training set, and in fact these would be
sorted so the first few eigenfaces and eigenvalues would be the most critical differentiators,
and the last few eigenfaces and eigenvalues would just be random pixel noises that don't
actually help to differentiate the data. So it is common practice to discard some of the last
eigenfaces and just keep the first 50 or so eigenfaces.

Face Recognition Using Eigenfaces or Fisherfaces

[204]

In comparison, the basic principle of Fisherfaces is that instead of calculating a special
eigenvector and eigenvalue for each image in the training set, it only calculates one special
eigenvector and eigenvalue for each person. So in the preceding example that has
fivepeople with 20 faces for each person, the Eigenfaces algorithm would use 100 eigenfaces
and eigenvalues whereas the Fisherfaces algorithm would use just five fisherfaces and
eigenvalues.

To access the internal data structures of the Eigenfaces and Fisherfaces algorithms, we must
use the cv::Algorithm::get() function to obtain them at runtime, as there is no access to
them at compile time. The data structures are used internally as part of mathematical
calculations rather than for image processing, so they are usually stored as floating-point
numbers typically ranging between 0.0 and 1.0, rather than 8-bit uchar pixels ranging from
0 to 255, similar to pixels in regular images. Also, they are often either a 1D row or column
matrix or they make up one of the many 1D rows or columns of a larger matrix. So before
you can display many of these internal data structures, you must reshape them to be the
correct rectangular shape, and convert them to 8-bit uchar pixels between 0 and 255. As the
matrix data might range from 0.0 to 1.0 or -1.0 to 1.0 or anything else, you can use the
cv::normalize() function with the cv::NORM_MINMAX option to make sure it outputs
data ranging between 0 and 255 no matter what the input range may be. Let's create a
function to perform this reshaping to a rectangle and conversion to 8-bit pixels for us as
follows:

 // Convert the matrix row or column (float matrix) to a
 // rectangular 8-bit image that can be displayed or saved.
 // Scales the values to be between 0 to 255.
 Mat getImageFrom1DFloatMat(const Mat matrixRow, int height)
 {
 // Make a rectangular shaped image instead of a single row.
 Mat rectangularMat = matrixRow.reshape(1, height);
 // Scale the values to be between 0 to 255 and store them
 // as a regular 8-bit uchar image.
 Mat dst;
 normalize(rectangularMat, dst, 0, 255, NORM_MINMAX,
 CV_8UC1);
 return dst;
 }

To make it easier to debug OpenCV code and even more so, when internally debugging the
cv::Algorithm data structure, we can use the ImageUtils.cpp and ImageUtils.h files
to display information about a cv::Mat structure easily as follows:

 Mat img = ...;
 printMatInfo(img, "My Image");

Face Recognition Using Eigenfaces or Fisherfaces

[205]

You will see something similar to the following printed to your console:

My Image: 640w480h 3ch 8bpp, range[79,253][20,58][18,87]

This tells you that it is 640 elements wide and 480 high (that is, a 640 x 480 image or a 480 x
640 matrix, depending on how you view it), with three channels per pixel that are 8-bits
each (that is, a regular BGR image), and it shows the min and max value in the image for
each of the color channels.

It is also possible to print the actual contents of an image or matrix by
using the printMat() function instead of the printMatInfo() function.
This is quite handy for viewing matrices and multichannel-float matrices
as these can be quite tricky to view for beginners.
The ImageUtils code is mostly for OpenCV's C interface, but is gradually
including more of the C++ interface over time. The most recent version can
be found at http://shervinemami.info/openCV.html.

Average face
Both the Eigenfaces and Fisherfaces algorithms first calculate the average face that is the
mathematical average of all the training images, so they can subtract the average image
from each facial image to have better face recognition results. So let's view the average face
from our training set. The average face is named mean in the Eigenfaces and Fisherfaces
implementations, shown as follows:

 Mat averageFace = model->get<Mat>("mean");
 printMatInfo(averageFace, "averageFace (row)");
 // Convert a 1D float row matrix to a regular 8-bit image.
 averageFace = getImageFrom1DFloatMat(averageFace, faceHeight);
 printMatInfo(averageFace, "averageFace");
 imshow("averageFace", averageFace);

You should now see an average face image on your screen similar to the following
(enlarged) image that is a combination of a man, a woman, and a baby. You should also see
similar text to this shown on your console:

 averageFace (row): 4900w1h 1ch 64bpp, range[5.21,251.47]
 averageFace: 70w70h 1ch 8bpp, range[0,255]

http://shervinemami.info/openCV.html
http://shervinemami.info/openCV.html

Face Recognition Using Eigenfaces or Fisherfaces

[206]

The image would appear as shown in the following screenshot:

Notice that averageFace (row) was a single row matrix of 64-bit floats, whereas
averageFace is a rectangular image with 8-bit pixels covering the full range
from 0 to 255.

Eigenvalues, Eigenfaces, and Fisherfaces
Let's view the actual component values in the eigenvalues (as text):

 Mat eigenvalues = model->get<Mat>("eigenvalues");
 printMat(eigenvalues, "eigenvalues");

For Eigenfaces, there is one eigenvalue for each face, so if we have three people with four
faces each, we get a column vector with 12 eigenvalues sorted from best to worst as follows:

 eigenvalues: 1w18h 1ch 64bpp, range[4.52e+04,2.02836e+06]
 2.03e+06
 1.09e+06
 5.23e+05
 4.04e+05
 2.66e+05
 2.31e+05
 1.85e+05
 1.23e+05
 9.18e+04
 7.61e+04
 6.91e+04
 4.52e+04

Face Recognition Using Eigenfaces or Fisherfaces

[207]

For Fisherfaces, there is just one eigenvalue for each extra person, so if there are three
people with four faces each, we just get a row vector with two eigenvalues as follows:

 eigenvalues: 2w1h 1ch 64bpp, range[152.4,316.6]
 317, 152

To view the eigenvectors (as Eigenface or Fisherface images), we must extract them as
columns from the big eigenvectors matrix. As data in OpenCV and C/C++ is normally
stored in matrices using row-major order, it means that to extract a column, we should use
the Mat::clone() function to ensure the data will be continuous, otherwise we can't
reshape the data to a rectangle. Once we have a continuous column Mat, we can display the
eigenvectors using the getImageFrom1DFloatMat() function just like we did for the
average face:

 // Get the eigenvectors
 Mat eigenvectors = model->get<Mat>("eigenvectors");
 printMatInfo(eigenvectors, "eigenvectors");

 // Show the best 20 eigenfaces
 for (int i = 0; i < min(20, eigenvectors.cols); i++) {
 // Create a continuous column vector from eigenvector #i.
 Mat eigenvector = eigenvectors.col(i).clone();

 Mat eigenface = getImageFrom1DFloatMat(eigenvector,
 faceHeight);
 imshow(format("Eigenface%d", i), eigenface);
 }

Face Recognition Using Eigenfaces or Fisherfaces

[208]

The following figure displays eigenvectors as images. You can see that for three people with
four faces, there are 12 Eigenfaces (left-hand side of the figure) or two Fisherfaces (right-
hand side):

Notice that both Eigenfaces and Fisherfaces seem to have the resemblance of some facial
features but they don't really look like faces. This is simply because the average face was
subtracted from them, so they just show the differences for each Eigenface from the average
face. The numbering shows which Eigenface it is, because they are always ordered from the
most significant Eigenface to the least significant Eigenface, and if you have 50 or more
Eigenfaces then the later Eigenfaces will often just show random image noise and therefore
should be discarded.

Step 4 - face recognition
Now that we have trained the Eigenfaces or Fisherfaces machine-learning algorithm with
our set of training images and face labels, we are finally ready to figure out who a person is,
just from a facial image! This last step is referred to as face recognition or face identification.

Face Recognition Using Eigenfaces or Fisherfaces

[209]

Face identification - recognizing people from their face
Thanks to OpenCV's FaceRecognizer class, we can identify the person in a photo simply
by calling the FaceRecognizer::predict() function on a facial image
as follows:

 int identity = model->predict(preprocessedFace);

This identity value will be the label number that we originally used when collecting faces
for training. For example, 0 for the first person, 1 for the second person, and so on.

The problem with this identification is that it will always predict one of the given people,
even if the input photo is of an unknown person or of a car. It would still tell you which
person is the most likely person in that photo, so it can be difficult to trust the result! The
solution is to obtain a confidence metric so we can judge how reliable the result is, and if it
seems that the confidence is too low then we assume it is an unknown person.

Face verification - validating that it is the claimed
person
To confirm if the result of the prediction is reliable or whether it should be taken as an
unknown person, we perform face verification (also referred to as face authentication), to
obtain a confidence metric showing whether the single face image is similar to the claimed
person (as opposed to face identification, which we just performed, comparing the single
face image with many people).

OpenCV's FaceRecognizer class can return a confidence metric when you call the
predict() function but unfortunately the confidence metric is simply based on the
distance in eigen-subspace, so it is not very reliable. The method we will use is to
reconstruct the facial image using the eigenvectors and eigenvalues, and compare this
reconstructed image with the input image. If the person had many of their faces included in
the training set, then the reconstruction should work quite well from the learned
eigenvectors and eigenvalues, but if the person did not have any faces in the training set (or
did not have any that have similar lighting and facial expressions as the test image), then
the reconstructed face will look very different from the input face, signaling that it is
probably an unknown face.

Face Recognition Using Eigenfaces or Fisherfaces

[210]

Remember we said earlier that the Eigenfaces and Fisherfaces algorithms are based on the
notion that an image can be roughly represented as a set of eigenvectors (special face
images) and eigenvalues (blending ratios). So if we combine all the eigenvectors with the
eigenvalues from one of the faces in the training set then we should obtain a fairly close
replica of that original training image. The same applies with other images that are similar
to the training set--if we combine the trained eigenvectors with the eigenvalues from a
similar test image, we should be able to reconstruct an image that is somewhat a replica to
the test image.

Once again, OpenCV's FaceRecognizer class makes it quite easy to generate a
reconstructed face from any input image, by using the subspaceProject() function to
project onto the eigenspace and the subspaceReconstruct() function to go back from
eigenspace to image space. The trick is that we need to convert it from a floating-point row
matrix to a rectangular 8-bit image (like we did when displaying the average face and
eigenfaces), but we don't want to normalize the data, as it is already in the ideal scale to
compare with the original image. If we normalized the data, it would have a different
brightness and contrast from the input image, and it would become difficult to compare the
image similarity just by using the L2 relative error. This is done as follows:

 // Get some required data from the FaceRecognizer model.
 Mat eigenvectors = model->get<Mat>("eigenvectors");
 Mat averageFaceRow = model->get<Mat>("mean");

 // Project the input image onto the eigenspace.
 Mat projection = subspaceProject(eigenvectors, averageFaceRow,
 preprocessedFace.reshape(1,1));

 // Generate the reconstructed face back from the eigenspace.
 Mat reconstructionRow = subspaceReconstruct(eigenvectors,
 averageFaceRow, projection);

 // Make it a rectangular shaped image instead of a single row.
 Mat reconstructionMat = reconstructionRow.reshape(1,
 faceHeight);

 // Convert the floating-point pixels to regular 8-bit uchar.
 Mat reconstructedFace = Mat(reconstructionMat.size(), CV_8U);
 reconstructionMat.convertTo(reconstructedFace, CV_8U, 1, 0);

Face Recognition Using Eigenfaces or Fisherfaces

[211]

The following image shows two typical reconstructed faces. The face on the left-hand side
was reconstructed well because it was from a known person, whereas the face on the right-
hand side was reconstructed badly because it was from an unknown person or a known
person but with unknown lighting conditions/facial expression/face direction:

We can now calculate how similar this reconstructed face is to the input face by using the
same getSimilarity() function we created previously for comparing two images, where
a value less than 0.3 implies that the two images are very similar. For Eigenfaces, there is
one eigenvector for each face, so reconstruction tends to work well and therefore we can
typically use a threshold of 0.5, but Fisherfaces has just one eigenvector for each person, so
reconstruction will not work as well and therefore it needs a higher threshold, say 0.7. This
is done as follows:

 similarity = getSimilarity(preprocessedFace, reconstructedFace);
 if (similarity > UNKNOWN_PERSON_THRESHOLD) {
 identity = -1; // Unknown person.
 }

Now you can just print the identity to the console, or use it for wherever your imagination
takes you! Remember that this face-recognition method and this face-verification method
are only reliable in the certain conditions that you train them for. So to obtain good
recognition accuracy, you will need to ensure that the training set of each person covers the
full range of lighting conditions, facial expressions, and angles that you expect to test with.
The face preprocessing stage helped reduce some differences with lighting conditions and
in-plane rotation (if the person tilts their head towards their left or right shoulder), but for
other differences, such as out-of-plane rotation (if the person turns their head towards the
left-hand side or right-hand side), it will only work if it is covered well in your training set.

Face Recognition Using Eigenfaces or Fisherfaces

[212]

Finishing touches - saving and loading files
You could potentially add a command-line based method that processes input files and
saves them to the disk, or even perform face detection, face preprocessing and/or face
recognition as a web service, and so on. For these types of projects, it is quite easy to add the
desired functionality by using the save and load functions of the FaceRecognizer class.
You may also want to save the trained data and then load it on the program's start up.

Saving the trained model to an XML or YML file is very easy:

model->save("trainedModel.yml");

You may also want to save the array of preprocessed faces and labels, if you want to add
more data to the training set later.

For example, here is some sample code for loading the trained model from a file. Note that
you must specify the face-recognition algorithm (for
example, FaceRecognizer.Eigenfaces or FaceRecognizer.Fisherfaces) that was
originally used to create the trained model:

 string facerecAlgorithm = "FaceRecognizer.Fisherfaces";
 model = Algorithm::create<FaceRecognizer>(facerecAlgorithm);
 Mat labels;
 try {
 model->load("trainedModel.yml");
 labels = model->get<Mat>("labels");
 } catch (cv::Exception &e) {}
 if (labels.rows <= 0) {
 cerr << "ERROR: Couldn't load trained data from "
 "[trainedModel.yml]!" << endl;
 exit(1);
 }

Finishing touches - making a nice and interactive
GUI
While the code given so far in this chapter is sufficient for a whole face recognition system,
there still needs to be a way to put the data into the system and a way to use it. Many face
recognition systems for research will choose the ideal input to be text files listing where the
static image files are stored on the computer, as well as other important data such as the
true name or identity of the person and perhaps true pixel coordinates of regions of the face
(such as ground truth of where the face and eye centers actually are). This would either be
collected manually or by another face recognition system.

Face Recognition Using Eigenfaces or Fisherfaces

[213]

The ideal output would then be a text file comparing the recognition results with the
ground truth, so that statistics may be obtained for comparing the face recognition system
with other face recognition systems.

However, as the face recognition system in this chapter is designed for learning as well as
practical fun purposes, rather than competing with the latest research methods, it is useful
to have an easy-to-use GUI that allows face collection, training, and testing, interactively
from the webcam in real time. So this section will provide an interactive GUI providing
these features. The reader is expected to either use this provided GUI that comes with this
book, or to modify the GUI for their own purposes, or to ignore this GUI and design their
own GUI to perform the face recognition techniques discussed so far.

As we need the GUI to perform multiple tasks, let's create a set of modes or states that the
GUI will have, with buttons or mouse clicks for the user to change modes:

Startup: This state loads and initializes the data and webcam.
Detection: This state detects faces and shows them with preprocessing, until the
user clicks on the Add Person button.
Collection: This state collects faces for the current person, until the user clicks
anywhere in the window. This also shows the most recent face of each person.
The user clicks either one of the existing people or the Add Person button, to
collect faces for different people.
Training: In this state, the system is trained with the help of all the collected faces
of all the collected people.
Recognition: This consists of highlighting the recognized person and showing a
confidence meter. The user clicks either one of the people or the Add Person
button, to return to mode 2 (Collection).

To quit, the user can hit the Esc key in the window at any time. Let's also add a Delete All
mode that restarts a new face recognition system, and a Debug button that toggles the
display of extra debug info. We can create an enumerated mode variable to show the current
mode.

Drawing the GUI elements
To display the current mode on the screen, let's create a function to draw text easily.
OpenCV comes with a cv::putText() function with several fonts and anti-aliasing, but it
can be tricky to place the text in the correct location that you want. Luckily, there is also a
cv::getTextSize() function to calculate the bounding box around the text, so we can
create a wrapper function to make it easier to place text.

Face Recognition Using Eigenfaces or Fisherfaces

[214]

We want to be able to place text along any edge of the window and make sure it is
completely visible and also to allow placing multiple lines or words of text next to each
other without overwriting each other. So here is a wrapper function to allow you to specify
either left-justified or right-justified, as well as to specify top-justified or bottom-justified,
and return the bounding box, so we can easily draw multiple lines of text on any corner or
edge of the window:

 // Draw text into an image. Defaults to top-left-justified
 // text, so give negative x coords for right-justified text,
 // and/or negative y coords for bottom-justified text.
 // Returns the bounding rect around the drawn text.
 Rect drawString(Mat img, string text, Point coord, Scalar
 color, float fontScale = 0.6f, int thickness = 1,
 int fontFace = FONT_HERSHEY_COMPLEX);

Now to display the current mode on the GUI, as the background of the window will be the
camera feed, it is quite possible that if we simply draw text over the camera feed; it might
be the same color as the camera background! So let's just draw a black shadow of text that is
just 1 pixel apart from the foreground text we want to draw. Let's also draw a line of helpful
text below it, so the user knows the steps to follow. Here is an example of how to draw
some text using the drawString() function:

 string msg = "Click [Add Person] when ready to collect faces.";
 // Draw it as black shadow & again as white text.
 float txtSize = 0.4;
 int BORDER = 10;
 drawString (displayedFrame, msg, Point(BORDER, -BORDER-2),
 CV_RGB(0,0,0), txtSize);
 Rect rcHelp = drawString(displayedFrame, msg, Point(BORDER+1,
 -BORDER-1), CV_RGB(255,255,255), txtSize);

The following partial screenshot shows the mode and info at the bottom of the GUI
window, overlaid on top of the camera image:

We mentioned that we want a few GUI buttons, so let's create a function to draw a GUI
button easily as follows:

 // Draw a GUI button into the image, using drawString().
 // Can give a minWidth to have several buttons of same width.
 // Returns the bounding rect around the drawn button.
 Rect drawButton(Mat img, string text, Point coord,

Face Recognition Using Eigenfaces or Fisherfaces

[215]

 int minWidth = 0)
 {
 const int B = 10;
 Point textCoord = Point(coord.x + B, coord.y + B);
 // Get the bounding box around the text.
 Rect rcText = drawString(img, text, textCoord,
 CV_RGB(0,0,0));
 // Draw a filled rectangle around the text.
 Rect rcButton = Rect(rcText.x - B, rcText.y - B,
 rcText.width + 2*B, rcText.height + 2*B);
 // Set a minimum button width.
 if (rcButton.width < minWidth)
 rcButton.width = minWidth;
 // Make a semi-transparent white rectangle.
 Mat matButton = img(rcButton);
 matButton += CV_RGB(90, 90, 90);
 // Draw a non-transparent white border.
 rectangle(img, rcButton, CV_RGB(200,200,200), 1, CV_AA);

 // Draw the actual text that will be displayed.
 drawString(img, text, textCoord, CV_RGB(10,55,20));

 return rcButton;
 }

Now we create several clickable GUI buttons using the drawButton() function,
which will always be shown at the top-left of the GUI, as shown in the following
partial screenshot:

As we mentioned, the GUI program has some modes that it switches between (as a finite
state machine), beginning with the Startup mode. We will store the current mode as the
m_mode variable.

Face Recognition Using Eigenfaces or Fisherfaces

[216]

Startup mode
In the Startup mode, we just need to load the XML detector files to detect the face and eyes
and initialize the webcam, which we've already covered. Let's also create a main GUI
window with a mouse callback function that OpenCV will call whenever the user moves or
clicks their mouse in our window. It may also be desirable to set the camera resolution to
something reasonable; for example, 640x480, if the camera supports it. This is done as
follows:

 // Create a GUI window for display on the screen.
 namedWindow(windowName);

 // Call "onMouse()" when the user clicks in the window.
 setMouseCallback(windowName, onMouse, 0);

 // Set the camera resolution. Only works for some systems.
 videoCapture.set(CV_CAP_PROP_FRAME_WIDTH, 640);
 videoCapture.set(CV_CAP_PROP_FRAME_HEIGHT, 480);

 // We're already initialized, so let's start in Detection mode.
 m_mode = MODE_DETECTION;

Detection mode
In the Detection mode, we want to continuously detect faces and eyes, draw rectangles or
circles around them to show the detection result, and show the current preprocessed face.
In fact, we will want these to be displayed no matter which mode we are in. The only thing
special about the Detection mode is that it will change to the next mode (Collection) when
the user clicks the Add Person button.

If you remember from the detection step previously in this chapter, the output of our
detection stage will be:

Mat preprocessedFace: The preprocessed face (if face and eyes
were detected).
Rect faceRect: The detected face region coordinates.
Point leftEye, rightEye: The detected left and right eye center coordinates.

So we should check if a preprocessed face was returned and draw a rectangle and circles
around the face and eyes if they were detected as follows:

 bool gotFaceAndEyes = false;
 if (preprocessedFace.data)
 gotFaceAndEyes = true;

Face Recognition Using Eigenfaces or Fisherfaces

[217]

 if (faceRect.width > 0) {
 // Draw an anti-aliased rectangle around the detected face.
 rectangle(displayedFrame, faceRect, CV_RGB(255, 255, 0), 2,
 CV_AA);

 // Draw light-blue anti-aliased circles for the 2 eyes.
 Scalar eyeColor = CV_RGB(0,255,255);
 if (leftEye.x >= 0) { // Check if the eye was detected
 circle(displayedFrame, Point(faceRect.x + leftEye.x,
 faceRect.y + leftEye.y), 6, eyeColor, 1, CV_AA);
 }
 if (rightEye.x >= 0) { // Check if the eye was detected
 circle(displayedFrame, Point(faceRect.x + rightEye.x,
 faceRect.y + rightEye.y), 6, eyeColor, 1, CV_AA);
 }
 }

We will overlay the current preprocessed face at the top-center of the window
as follows:

 int cx = (displayedFrame.cols - faceWidth) / 2;
 if (preprocessedFace.data) {
 // Get a BGR version of the face, since the output is BGR.
 Mat srcBGR = Mat(preprocessedFace.size(), CV_8UC3);
 cvtColor(preprocessedFace, srcBGR, CV_GRAY2BGR);

 // Get the destination ROI.
 Rect dstRC = Rect(cx, BORDER, faceWidth, faceHeight);
 Mat dstROI = displayedFrame(dstRC);

 // Copy the pixels from src to dst.
 srcBGR.copyTo(dstROI);
 }
 // Draw an anti-aliased border around the face.
 rectangle(displayedFrame, Rect(cx-1, BORDER-1, faceWidth+2,
 faceHeight+2), CV_RGB(200,200,200), 1, CV_AA);

Face Recognition Using Eigenfaces or Fisherfaces

[218]

The following screenshot shows the displayed GUI when in the Detection mode.
The preprocessed face is shown at the top-center, and the detected face and
eyes are marked:

Collection mode
We enter the Collection mode when the user clicks on the Add Person button to signal that
they want to begin collecting faces for a new person. As mentioned previously, we have
limited the face collection to one face per second and then only if it has changed noticeably
from the previously collected face. And remember, we decided to collect not only the
preprocessed face but also the mirror image of the preprocessed face.

In the Collection mode, we want to show the most recent face of each known person and let
the user click on one of those people to add more faces to them or click the Add Person
button to add a new person to the collection. The user must click somewhere in the middle
of the window to continue to the next (Training mode) mode.

So first we need to keep a reference to the latest face that was collected for each person.
We'll do this by updating the m_latestFaces array of integers, which just stores the array
index of each person, from the big preprocessedFaces array (that is, the collection of all
faces of all the people). As we also store the mirrored face in that array, we want to
reference the second last face, not the last face. This code should be appended to the code
that adds a new face (and mirrored face) to the preprocessedFaces array as follows:

 // Keep a reference to the latest face of each person.

Face Recognition Using Eigenfaces or Fisherfaces

[219]

 m_latestFaces[m_selectedPerson] = preprocessedFaces.size() - 2;

We just have to remember to always grow or shrink the m_latestFaces array whenever a
new person is added or deleted (for example, due to the user clicking on the Add Person
button). Now let's display the most recent face for each of the collected people, on the right-
hand side of the window (both in the Collection mode and Recognition mode later) as
follows:

 m_gui_faces_left = displayedFrame.cols - BORDER - faceWidth;
 m_gui_faces_top = BORDER;
 for (int i=0; i<m_numPersons; i++) {
 int index = m_latestFaces[i];
 if (index >= 0 && index < (int)preprocessedFaces.size()) {
 Mat srcGray = preprocessedFaces[index];
 if (srcGray.data) {
 // Get a BGR face, since the output is BGR.
 Mat srcBGR = Mat(srcGray.size(), CV_8UC3);
 cvtColor(srcGray, srcBGR, CV_GRAY2BGR);

 // Get the destination ROI
 int y = min(m_gui_faces_top + i * faceHeight,
 displayedFrame.rows - faceHeight);
 Rect dstRC = Rect(m_gui_faces_left, y, faceWidth,
 faceHeight);
 Mat dstROI = displayedFrame(dstRC);

 // Copy the pixels from src to dst.
 srcBGR.copyTo(dstROI);
 }
 }
 }

We also want to highlight the current person being collected, using a thick red border
around their face. This is done as follows:

 if (m_mode == MODE_COLLECT_FACES) {
 if (m_selectedPerson >= 0 &&
 m_selectedPerson < m_numPersons) {
 int y = min(m_gui_faces_top + m_selectedPerson *
 faceHeight, displayedFrame.rows - faceHeight);
 Rect rc = Rect(m_gui_faces_left, y, faceWidth, faceHeight);
 rectangle(displayedFrame, rc, CV_RGB(255,0,0), 3, CV_AA);
 }
 }

Face Recognition Using Eigenfaces or Fisherfaces

[220]

The following partial screenshot shows the typical display when faces for several people
have been collected. The user can click any of the people at the top-right to collect more
faces for that person.

Training mode
When the user finally clicks in the middle of the window, the face-recognition algorithm
will begin training on all the collected faces. But it is important to make sure there have
been enough faces or people collected, otherwise the program may crash. In general, this
just requires making sure there is at least one face in the training set (which implies there is
at least one person). But the Fisherfaces algorithm looks for comparisons between people, so
if there are less than two people in the training set, it will also crash. So we must check
whether the selected face-recognition algorithm is Fisherfaces. If it is, then we require at
least two people with faces, otherwise we require at least one person with a face. If there
isn't enough data, then the program goes back to the Collection mode so the user can add
more faces before training.

To check if there are at least two people with collected faces, we can make sure that when a
user clicks on the Add Person button, a new person is only added if there isn't any empty
person (that is, a person that was added but does not have any collected faces yet). If there
are just two people and we are using the Fisherfaces algorithm, then we must make sure an
m_latestFaces reference was set for the last person during the Collection mode.
m_latestFaces[i] is initialized to -1 when there still haven't been any faces added to that
person, and then it becomes 0 or higher once faces for that person have been added. This is
done as follows:

 // Check if there is enough data to train from.
 bool haveEnoughData = true;
 if (!strcmp(facerecAlgorithm, "FaceRecognizer.Fisherfaces")) {
 if ((m_numPersons < 2) ||
 (m_numPersons == 2 && m_latestFaces[1] < 0)) {

Face Recognition Using Eigenfaces or Fisherfaces

[221]

 cout << "Fisherfaces needs >= 2 people!" << endl;
 haveEnoughData = false;
 }
 }
 if (m_numPersons < 1 || preprocessedFaces.size() <= 0 ||
 preprocessedFaces.size() != faceLabels.size()) {
 cout << "Need data before it can be learnt!" << endl;
 haveEnoughData = false;
 }

 if (haveEnoughData) {
 // Train collected faces using Eigenfaces or Fisherfaces.
 model = learnCollectedFaces(preprocessedFaces, faceLabels,
 facerecAlgorithm);

 // Now that training is over, we can start recognizing!
 m_mode = MODE_RECOGNITION;
 }
 else {
 // Not enough training data, go back to Collection mode!
 m_mode = MODE_COLLECT_FACES;
 }

The training may take a fraction of a second or it may take several seconds or even minutes,
depending on how much data is collected. Once the training of collected faces is complete,
the face recognition system will automatically enter the Recognition mode.

Recognition mode
In the Recognition mode, a confidence meter is shown next to the preprocessed face, so the
user knows how reliable the recognition is. If the confidence level is higher than the
unknown threshold, it will draw a green rectangle around the recognized person to show
the result easily. The user can add more faces for further training if they click on the Add
Person button or one of the existing people, which causes the program to return to the
Collection mode.

Now we have obtained the recognized identity and the similarity with the reconstructed
face as mentioned earlier. To display the confidence meter, we know that the L2 similarity
value is generally between 0 to 0.5 for high confidence and between 0.5 to 1.0 for low
confidence, so we can just subtract it from 1.0 to get the confidence level between 0.0 to 1.0.

Face Recognition Using Eigenfaces or Fisherfaces

[222]

Then we just draw a filled rectangle using the confidence level as the ratio shown as
follows:

 int cx = (displayedFrame.cols - faceWidth) / 2;
 Point ptBottomRight = Point(cx - 5, BORDER + faceHeight);
 Point ptTopLeft = Point(cx - 15, BORDER);

 // Draw a gray line showing the threshold for "unknown" people.
 Point ptThreshold = Point(ptTopLeft.x, ptBottomRight.y -
 (1.0 - UNKNOWN_PERSON_THRESHOLD) * faceHeight);
 rectangle(displayedFrame, ptThreshold, Point(ptBottomRight.x,
 ptThreshold.y), CV_RGB(200,200,200), 1, CV_AA);

 // Crop the confidence rating between 0 to 1 to fit in the bar.
 double confidenceRatio = 1.0 - min(max(similarity, 0.0), 1.0);
 Point ptConfidence = Point(ptTopLeft.x, ptBottomRight.y -
 confidenceRatio * faceHeight);

 // Show the light-blue confidence bar.
 rectangle(displayedFrame, ptConfidence, ptBottomRight,
 CV_RGB(0,255,255), CV_FILLED, CV_AA);

 // Show the gray border of the bar.
 rectangle(displayedFrame, ptTopLeft, ptBottomRight,
 CV_RGB(200,200,200), 1, CV_AA);

To highlight the recognized person, we draw a green rectangle around their face
as follows:

 if (identity >= 0 && identity < 1000) {
 int y = min(m_gui_faces_top + identity * faceHeight,
 displayedFrame.rows - faceHeight);
 Rect rc = Rect(m_gui_faces_left, y, faceWidth, faceHeight);
 rectangle(displayedFrame, rc, CV_RGB(0,255,0), 3, CV_AA);
 }

The following partial screenshot shows a typical display when running in Recognition
mode, showing the confidence meter next to the preprocessed face
at the top-center, and highlighting the recognized person in the top-right corner.

Checking and handling mouse clicks
Now that we have all our GUI elements drawn, we just need to process mouse events.
When we initialized the display window, we told OpenCV that we want a mouse event
callback to our onMouse function.

Face Recognition Using Eigenfaces or Fisherfaces

[223]

We don't care about mouse movement, only the mouse clicks, so first we skip the mouse
events that aren't for the left-mouse-button click as follows:

 void onMouse(int event, int x, int y, int, void*)
 {
 if (event != CV_EVENT_LBUTTONDOWN)
 return;

 Point pt = Point(x,y);

 ... (handle mouse clicks)
 ...
 }

As we obtained the drawn rectangle bounds of the buttons when drawing them, we just
check if the mouse click location is in any of our button regions by calling OpenCV's
inside() function. Now we can check for each button we have created.

When the user clicks on the Add Person button, we just add 1 to the m_numPersons
variable, allocate more space in the m_latestFaces variable, select the new person for
collection, and begin the Collection mode (no matter which mode we were previously in).

But there is one complication; to ensure that we have at least one face for each
person when training, we will only allocate space for a new person if there isn't already a
person with zero faces. This will ensure that we can always check the value of
m_latestFaces[m_numPersons-1] to see if a face has been collected for every person.
This is done as follows:

 if (pt.inside(m_btnAddPerson)) {
 // Ensure there isn't a person without collected faces.
 if ((m_numPersons==0) ||
 (m_latestFaces[m_numPersons-1] >= 0)) {
 // Add a new person.
 m_numPersons++;
 m_latestFaces.push_back(-1);
 }
 m_selectedPerson = m_numPersons - 1;
 m_mode = MODE_COLLECT_FACES;
 }

This method can be used to test for other button clicks, such as toggling the debug flag as
follows:

 else if (pt.inside(m_btnDebug)) {
 m_debug = !m_debug;
 }

Face Recognition Using Eigenfaces or Fisherfaces

[224]

To handle the Delete All button, we need to empty various data structures that are local to
our main loop (that is, not accessible from the mouse event callback function), so we change
to the Delete All mode and then we can delete everything from inside the main loop. We
also must deal with the user clicking the main window (that is, not a button). If they clicked
on one of the people on the right-hand side, then we want to select that person and change
to the Collection mode. Or if they clicked in the main window while in the Collection mode,
then we want to change to the Training mode. This is done as follows:

 else {
 // Check if the user clicked on a face from the list.
 int clickedPerson = -1;
 for (int i=0; i<m_numPersons; i++) {
 if (m_gui_faces_top >= 0) {
 Rect rcFace = Rect(m_gui_faces_left,
 m_gui_faces_top + i * faceHeight, faceWidth, faceHeight);
 if (pt.inside(rcFace)) {
 clickedPerson = i;
 break;
 }
 }
 }
 // Change the selected person, if the user clicked a face.
 if (clickedPerson >= 0) {
 // Change the current person & collect more photos.
 m_selectedPerson = clickedPerson;
 m_mode = MODE_COLLECT_FACES;
 }
 // Otherwise they clicked in the center.
 else {
 // Change to training mode if it was collecting faces.
 if (m_mode == MODE_COLLECT_FACES) {
 m_mode = MODE_TRAINING;
 }
 }
 }

Face Recognition Using Eigenfaces or Fisherfaces

[225]

Summary
This chapter has shown you all the steps required to create a real-time face recognition app,
with enough preprocessing to allow some differences between the training set conditions
and the testing set conditions, just using basic algorithms. We used face detection to find the
location of a face within the camera image, followed by several forms of face preprocessing
to reduce the effects of different lighting conditions, camera and face orientations, and facial
expressions. We then trained an Eigenfaces or Fisherfaces machine-learning system with the
preprocessed faces we collected, and finally we performed face recognition to see who the
person is with face verification providing a confidence metric in case it is an unknown
person.

Rather than providing a command-line tool that processes image files in an offline manner,
we combined all the preceding steps into a self-contained real-time GUI program to allow
immediate use of the face recognition system. You should be able to modify the behavior of
the system for your own purposes, such as to allow an automatic login of your computer, or
if you are interested in improving the recognition reliability then you can read conference
papers about recent advances in face recognition to potentially improve each step of the
program until it is reliable enough for your specific needs. For example, you could improve
the face preprocessing stages, or use a more advanced machine-learning algorithm, or an
even better face verification algorithm, based on methods at h t t p ://w w w . f a c e - r e c . o r g /a l

g o r i t h m s / and h t t p ://w w w . c v p a p e r s . c o m .

References
Rapid Object Detection using a Boosted Cascade of Simple Features, P. Viola
and M.J. Jones, Proceedings of the IEEE Transactions on CVPR 2001, Vol. 1,
pp. 511-518
An Extended Set of Haar-like Features for Rapid Object Detection, R. Lienhart and J.
Maydt, Proceedings of the IEEE Transactions on ICIP 2002, Vol. 1, pp. 900-903
Face Description with Local Binary Patterns: Application to Face Recognition, T.
Ahonen, A. Hadid and M. Pietikäinen, Proceedings of the IEEE Transactions on PAMI
2006, Vol. 28, Issue 12, pp. 2037-2041

http://www.face-rec.org/algorithms/
http://www.face-rec.org/algorithms/
http://www.face-rec.org/algorithms/
http://www.face-rec.org/algorithms/
http://www.face-rec.org/algorithms/
http://www.face-rec.org/algorithms/
http://www.face-rec.org/algorithms/
http://www.face-rec.org/algorithms/
http://www.face-rec.org/algorithms/
http://www.face-rec.org/algorithms/
http://www.face-rec.org/algorithms/
http://www.face-rec.org/algorithms/
http://www.face-rec.org/algorithms/
http://www.face-rec.org/algorithms/
http://www.face-rec.org/algorithms/
http://www.face-rec.org/algorithms/
http://www.face-rec.org/algorithms/
http://www.face-rec.org/algorithms/
http://www.face-rec.org/algorithms/
http://www.face-rec.org/algorithms/
http://www.face-rec.org/algorithms/
http://www.face-rec.org/algorithms/
http://www.face-rec.org/algorithms/
http://www.face-rec.org/algorithms/
http://www.face-rec.org/algorithms/
http://www.face-rec.org/algorithms/
http://www.face-rec.org/algorithms/
http://www.face-rec.org/algorithms/
http://www.face-rec.org/algorithms/
http://www.face-rec.org/algorithms/
http://www.face-rec.org/algorithms/
http://www.face-rec.org/algorithms/
http://www.face-rec.org/algorithms/
http://www.face-rec.org/algorithms/
http://www.face-rec.org/algorithms/
http://www.face-rec.org/algorithms/
http://www.face-rec.org/algorithms/
http://www.face-rec.org/algorithms/
http://www.face-rec.org/algorithms/
http://www.face-rec.org/algorithms/
http://www.face-rec.org/algorithms/
http://www.face-rec.org/algorithms/
http://www.face-rec.org/algorithms/
http://www.face-rec.org/algorithms/
http://www.face-rec.org/algorithms/
http://www.face-rec.org/algorithms/
http://www.face-rec.org/algorithms/
http://www.face-rec.org/algorithms/
http://www.face-rec.org/algorithms/
http://www.face-rec.org/algorithms/
http://www.face-rec.org/algorithms/
http://www.face-rec.org/algorithms/
http://www.face-rec.org/algorithms/
http://www.face-rec.org/algorithms/
http://www.face-rec.org/algorithms/
http://www.face-rec.org/algorithms/
http://www.face-rec.org/algorithms/
http://www.face-rec.org/algorithms/
http://www.face-rec.org/algorithms/
http://www.face-rec.org/algorithms/
http://www.cvpapers.com
http://www.cvpapers.com
http://www.cvpapers.com
http://www.cvpapers.com
http://www.cvpapers.com
http://www.cvpapers.com
http://www.cvpapers.com
http://www.cvpapers.com
http://www.cvpapers.com
http://www.cvpapers.com
http://www.cvpapers.com
http://www.cvpapers.com
http://www.cvpapers.com
http://www.cvpapers.com
http://www.cvpapers.com
http://www.cvpapers.com
http://www.cvpapers.com
http://www.cvpapers.com
http://www.cvpapers.com
http://www.cvpapers.com
http://www.cvpapers.com
http://www.cvpapers.com
http://www.cvpapers.com
http://www.cvpapers.com
http://www.cvpapers.com
http://www.cvpapers.com
http://www.cvpapers.com
http://www.cvpapers.com
http://www.cvpapers.com
http://www.cvpapers.com
http://www.cvpapers.com
http://www.cvpapers.com
http://www.cvpapers.com
http://www.cvpapers.com
http://www.cvpapers.com
http://www.cvpapers.com
http://www.cvpapers.com
http://www.cvpapers.com
http://www.cvpapers.com
http://www.cvpapers.com

Face Recognition Using Eigenfaces or Fisherfaces

[226]

Learning OpenCV: Computer Vision with the OpenCV Library, G. Bradski and A.
Kaehler, pp. 186-190, O'Reilly Media.
Eigenfaces for recognition, M. Turk and A. Pentland, Journal of Cognitive Neuroscience
3, pp. 71-86
Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection, P.N.
Belhumeur, J. Hespanha and D. Kriegman, Proceedings of the IEEE Transactions on
PAMI 1997, Vol. 19, Issue 7, pp. 711-720
Face Recognition with Local Binary Patterns, T. Ahonen, A. Hadid and M. Pietikäinen,
Computer Vision - ECCV 2004, pp. 469-48

Index

3
3D Morphable Model (3DMM) 107

A
Active Appearance Model (AAM)
 about 107, 152
 fitting 166
 overview 153
 search 166
 working with 165
Active Shape Model (ASM)
 about 107, 152, 155
 Principal Component Analysis (PCA) 157
 triangle texture wrapping 163
 triangulation 161
affline transformation 153
alien mode
 generating, skin detection used 16, 18
ANPR algorithm 79, 80, 81
Artificial Neural Network (ANN) 76
Automatic License-Plate Recognition (ALPR) 76,

77, 78
Automatic Number Plate Recognition (ANPR) 76
Automatic Vehicle Identification (AVI) 76
average face 205

B
backproject methods 157
Binary Robust Independent Elementary Features

(BRIEF) 53
black and white sketch
 generating 12, 13
Bundle Adjustment (BA) 70

C
camera matrices
 finding 55, 56, 57, 58
camera motion
 estimating, from pair of images 51, 52
camera pose estimation 65
camera resectioning 65
camera resolutions
 modifying 41
Car Plate Recognition (CPR) 76
Cartoonifier
 making, to run full screen 39
 power draw, running on desktop versus

embedded system 42, 43
 running, automatically after bootup 40
 speed comparison, on Desktop versus

Embedded 40, 41
Ceres library 70
CIELab color-space 17
classic face recognition algorithms
 reference 201
collected faces
 face recognition system, training from 201, 202
cost function 70
cross-check filtering 54
cross-compilation 27, 28
CVPR
 reference 201

D
data, for training face tracking algorithms
 annotations 110, 114, 115
 connectivity indices 110
 images 110
 pre-annotated data 115, 116
 symmetry indices 110

[228]

Degree of Freedom (DOF) 49
Delaunay Triangulation (DT) 153
Descriptor Matching 52
discriminative patch models
 learning 132, 134, 136
 versus generative patch models 136

E
edge filters
 used, for generating evil mode 15
Eigenfaces 206
Eigenfaces algorithm 203
Eigenvalues 206
embedded device
 OpenCV, installing on 34, 35, 36
embedded system
 about 8
 customizing 46
evil mode
 generating, edge filters used 15
example code, SfM
 using 73
extrinsic parameters 49
eye detection 186, 187
eye search regions 187, 188, 190

F
face authentication 209
face detection
 about 178, 179, 184, 185
 Haar or LBP detector, loading for 181
 implementing, OpenCV used 180
face identification
 people, recognizing from face 209
face preprocessing
 about 178, 186
 elliptical mask 196, 197
 eye detection 186
 geometrical transformation 191, 192, 193
 histogram equalization, separating for left and

right sides 193, 194
face recognition 177, 178, 208
face recognition system
 training, from collected faces 201, 202, 203
face tracker implementation 147, 148, 149

face tracking algorithms
 components 110, 111, 112, 113, 114
face tracking
 about 145
 generic, versus person-specific models 150
 training 149
 visualization 149
face training 143
face verification 209, 210, 211
faces
 collecting 197, 198
facial feature detectors
 about 130
 accounting, for global geometric transformations

137, 139, 140
 building 131, 132
 correlation-based patch models 132
 patch models, training 140, 141
 patch models, visualizing 140, 141
Fisherface algorithm 203
Fisherfaces 206
Frames per Seconds (FPS) 40

G
generative patch models
 versus discriminative patch models 136
geometrical constraints
 about 116, 117, 118
 combined local-global representation 125, 126,

127

 linear shape models 122, 124
 Procrustes analysis 118, 119, 120, 121
 shape model, training 127, 128
 shape model, visualizing 128, 129
global transformation 117

H
histogram equalization
 smoothing 195
Homogeneous Coordinates 62
homography 60
homography matrix 60
HSV (Hue-Saturation-Brightness) 17

[229]

I
image pair
 selecting 60
Infrared (IR) camera 77
intrinsic parameters 48

L
Linear Discriminant Analysis (LDA) 201
local deformation 117

M
main camera processing loop, for desktop app
 about 11
 alien mode, generating with skin detection 16
 black and white sketch, generating 12, 13
 cartoon, generating 13, 14, 15
 color painting, generating 13, 14, 15
 evil mode, generating with edge filters 15
model instantiation 165
monocular approach 48
mouse cursor
 hiding 39
MUCT database 155
Multi-Layer Perceptron (MLP) 96

N
native compilation 27
non-rigid face tracking 107
normalized coordinates 62

O
object detection, with Haar/LBP Classifier
 camera image, shrinking 183
 grayscale color conversion 182
 histogram equalization, performing 183
OmniVision sensor 37
OpenCV GUI window 9
OpenCV
 installing, on embedded device 34, 35, 36
 used, for implementing face detection 180
Optical Character Recognition (OCR) 76
optical flow 54
Oriented BRIEF (ORB) 53

P
pepper noise 25
Perspective N-Point(PnP) algorithm 65
plate detection
 about 81
 classification 89, 90, 91, 92
 segmentation 82, 83, 84, 87, 88
plate recognition
 about 92
 evaluation 101, 103
 feature extraction 94, 95
 OCR classification 96, 97, 98, 101
 OCR segmentation 93, 94
point cloud registration 65
Point Distribution Model (PDM) 158
point matching
 with rich feature descriptors 52, 53, 54
portable USB charger 28
Pose from Orthography and Scaling (POS)

algorithm 169
Pose from Orthography and Scaling with Iterations

(POSIT)
 about 153, 169
 head model 172
 head, tracking from webcam/video file 173
 overview 170
preprocessed faces
 collecting, for training 199, 200
Principal Component Analysis (PCA)
 about 90, 123, 153, 156, 157, 201
 reference 156
Procrustes analysis 118, 155

R
random pepper noise
 reducing, from sketch image 25, 26
Random Sample Consensus algorithm (RANSAC)

52

Raspberry Pi Camera Module driver
 installing 38, 39
Raspberry Pi Camera Module
 using 37, 38
Raspberry Pi
 about 8

 configuring 31, 32, 33, 34
Raspbian IMG 31
reconstructed scene
 refining 70, 72
RGB (Red-Green-Blue) 17
rich feature descriptors
 used, for point matching 52, 53, 54

S
Scale-Invariant Feature Transform (SIFT) 53
scene
 reconstructing 62, 64
 reconstructing, from views 65, 66, 69
segmentation 82
Singular Value Decomposition (SVD) 124
sketch image
 random pepper noise, reducing from 25, 26
skin color changer implementation
 about 20, 21, 22, 23, 24
 equipment setup, for developing code for

embedded device 29, 30
 porting from desktop, to embedded 27, 28, 29
 random pepper noise, reducing from sketch

image 25, 26
skin detection algorithm 17
skin detection
 used, for generating alien mode 16

Speeded-Up Robust Features (SURF) 53
Structure from Motion (SfM) 48, 50, 51
Support Vector Machine (SVM) 76, 81, 89

T
triangle texture wrapping 163
triangulation 50, 161

U
utilities, face tracking
 about 107
 data collection 110
 object-oriented design 108, 109
UV4L
 installation link 44

V
video
 streaming, from Raspberry Pi to powerful

computer 44, 45
views
 scene, reconstructing from 65, 66, 69
Viola-Jones face detector 130

W
webcam
 accessing 9, 10

	Cover
	Credits
	About the Authors
	About the Reviewer
	www.PacktPub.com
	Customer Feedback
	Table of Contents
	Preface
	Chapter 1: Cartoonifier and Skin Changer for Raspberry Pi
	Accessing the webcam
	Main camera processing loop for a desktop app
	Generating a black and white sketch
	Generating a color painting and a cartoon
	Generating an evil mode using edge filters
	Generating an alien mode using skin detection
	Skin detection algorithm
	Showing the user where to put their face

	Implementation of the skin color changer
	[Reducing the random pepper noise from the sketch image]
	Reducing the random pepper noise from the sketch image
	Porting from desktop to embedded
	Equipment setup to develop code for an embedded device
	Configuring a new Raspberry Pi
	Installing OpenCV on an embedded device
	Using the Raspberry Pi Camera Module
	Installing the Raspberry Pi Camera Module driver

	Making Cartoonifier to run full screen
	Hiding the mouse cursor
	Running Cartoonifier automatically after bootup
	Speed comparison of Cartoonifier on Desktop versus Embedded
	Changing the camera and camera resolution

	Power draw of Cartoonifier running on desktop versus embedded system
	Streaming video from Raspberry Pi to a powerful computer

	Customizing your embedded system!

	Summary

	Chapter 2: Exploring Structure from Motion Using OpenCV
	Structure from Motion concepts
	Estimating the camera motion from a pair of images
	Point matching using rich feature descriptors
	Finding camera matrices
	Choosing the image pair to use first

	Reconstructing the scene
	Reconstruction from many views
	Refinement of the reconstruction
	Using the example code
	Summary
	References

	Chapter 3: Number Plate Recognition using SVM and Neural Network
	Introduction to ANPR
	ANPR algorithm
	Plate detection
	Segmentation
	Classification

	Plate recognition
	OCR segmentation
	Feature extraction
	OCR classification
	Evaluation

	Summary

	Chapter 4: Non-Rigid Face Tracking
	Overview
	Utilities
	Object-oriented design
	Data collection - image and video annotation
	Training data types
	Annotation tool
	Pre-annotated data (the MUCT dataset)

	Geometrical constraints
	Procrustes analysis
	Linear shape models
	A combined local-global representation
	Training and visualization

	Facial feature detectors
	Correlation-based patch models
	Learning discriminative patch models
	Generative versus discriminative patch models

	Accounting for global geometric transformations
	Training and visualization

	Face detection and initialization
	Face tracking
	Face tracker implementation
	Training and visualization
	Generic versus person-specific models

	Summary
	References

	Chapter 5: 3D Head Pose Estimation Using AAM and POSIT
	Active Appearance Models overview
	[Overview of the chapter algorithms]
	[Overview of the chapter algorithms]
	Overview of the chapter algorithms

	Active Shape Models
	Getting the feel of PCA
	Triangulation
	Triangle texture warping

	Model Instantiation - playing with the AAM
	AAM search and fitting
	POSIT
	Diving into POSIT
	POSIT and head model
	Tracking from webcam or video file

	Summary
	References

	Chapter 6: Face Recognition Using Eigenfaces or Fisherfaces
	Introduction to face recognition and face detection
	Step 1 - face detection
	Implementing face detection using OpenCV
	Loading a Haar or LBP detector for object or face detection
	Accessing the webcam
	Detecting an object using the Haar or LBP Classifier
	Grayscale color conversion
	Shrinking the camera image
	Histogram equalization

	Detecting the face
	Step 2 - face preprocessing
	Eye detection
	Eye search regions
	Geometrical transformation
	Separate histogram equalization for left and right sides
	Smoothing
	Elliptical mask

	Step 3 - Collecting faces and learning from them
	Collecting preprocessed faces for training
	Training the face recognition system from collected faces
	Viewing the learned knowledge
	Average face
	Eigenvalues, Eigenfaces, and Fisherfaces

	Step 4 - face recognition
	Face identification - recognizing people from their face
	Face verification - validating that it is the claimed person

	Finishing touches - saving and loading files
	Finishing touches - making a nice and interactive GUI
	Drawing the GUI elements
	Startup mode
	Detection mode
	Collection mode
	Training mode
	Recognition mode

	Checking and handling mouse clicks

	Summary
	References

	Index

