<packth

Cracking the
Data Science Interview

Unlock insider tips from industry experts
to master the data science field

LEONDRA R. GONZALEZ
> AAREN STUBBERFIELD

Foreword by Angela Baltes, PhD (Data Scientist, UnitedHealth Group)

Cracking the Data Science
Interview

Unlock insider tips from industry experts to master the
data science field

Leondra R. Gonzalez

Aaren Stubberfield

Cracking the Data Science Interview

Copyright © 2024 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, without the prior written permission of the publisher, except in the case
of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express
or implied. Neither the authors, nor Packt Publishing or its dealers and distributors, will be held liable
for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot
guarantee the accuracy of this information.

Group Product Manager: Niranjan Naikwadi
Publishing Product Manager: Nitin Nainani
Senior Editor: Hayden Edwards

Technical Editor: Simran Haresh Udasi
Copy Editor: Safis Editing

Project Coordinator: Aishwarya Mohan
Proofreader: Safis Editing

Indexer: Rekha Nair

Production Designer: Prashant Ghare

Marketing Coordinators: Vinishka Kalra

First published: March 2024
Production reference: 1160224

Published by Packt Publishing Ltd.
Grosvenor House

11 St Paul’s Square

Birmingham

B3 1RB

ISBN 978-1-80512-050-6

www . packtpub.com

http://www.packtpub.com

Foreword

The data science landscape is ever-evolving and has been that way since its conception. Though it is
a rewarding field with many opportunities, navigating it can be a challenge, especially when you're
just getting started.

During my career, I have found that various companies can interpret data science differently depending
on their business needs or understanding of data science. When I first began my data science journey
in 2015, I was employed as a health data analyst with a start-up. It was there that I was exposed to
data science, as my role was not purely data analytics or data science, but a mixture somewhere in
between. I wanted to continue learning and advancing, but I did not know where to focus my energy
to gain the information needed to thrive in this field. So, I curated a list of lessons I needed to learn
in order to be competent enough to enter and advance in the field. I learned Python, data science
with Python, R programming, linear algebra, and calculus, and as time went on, it became more and
more daunting, the list of lessons becoming even longer than what was required for a graduate degree.
Unfortunately, even after all of my hard work, during interviews, I found there were still concepts that
I was unaware of. This has been the issue that I, as well as others, have noted with this field - there is
so much information, but it can be unclear where to begin and what information is necessary to know.

On top of this, the data science interview is universally dreaded and challenging for various reasons that
I have already alluded to. For instance, candidates are usually unsure of what that particular company
considers data science. Plus, take-home assignments can take hours to complete — and once that time
has been invested in completing the assignment, the company may choose to not offer feedback or,
even worse, disappear completely when they’ve decided they aren’t interested. After experiencing this
devastating outcome more than once, I became highly selective in what companies I chose to do a
take-home assignment for. Many companies had a habit of immediately asking candidates to complete
a take-home assignment before an interview, which I have learned rarely works in the candidate’s favor.

This book will address and outline the concepts that are necessary to begin or progress in a data
science role. Because this field is ever-evolving, our understanding of concepts will continue as well,
however this book can be used as a reference for those that are experienced in the field, or for those
that are in data science adjacent roles and want to keep their knowledge current. This book will include
imperative information so that candidates can be successful during a data science interview, as well
as removing some of the guesswork in what companies are expecting.

It is widely accepted that data science candidates have an online portfolio to showcase their talent
and application of knowledge - for this reason, there is information on how to build a portfolio and
create a resume that will get you noticed. Salary and benefits negotiation is also outlined to streamline
the process for you - a process many of us had to learn completely uninformed in the past, is now
disseminated for the benefit of others.

We are certain that you will find this book helpful in your data science journey. Cheers!
Angela Baltes, PhD

Data Scientist, UnitedHealth Group

Contributors

About the authors

Leondra R. Gonzalez is a senior data and applied scientist at Microsoft with a decade of experience
in data science, analytics, and corporate strategy. In addition to her work as a data scientist, Leondra
has led teams in the entertainment, media, and advertising space to produce advanced e-commerce
models for top brands, including NBC Peacock, First Aid Beauty, Procter & Gamble, HBO Max,
Toyota, Whirlpool, and Tubi.

Academically, Leondra graduated from Carnegie Mellon University’s Heinz College of Information
Systems Management with a master’ in entertainment industry management, with a focus on business
analytics; Quantic School of Business and Technology with an MBA, including a specialization in
statistics; and Otterbein University with a bachelor’s in music and business. Leondra is currently
pursuing a PhD in information technology with a specialization in artificial intelligence at the University
of the Cumberlands, and she has researched deep learning architectures as a PhD computer science
apprentice at Google.

To my loving husband, Chris, my parents, my sister, and my unborn son who kicked my bump every
day while writing this book.

Aaren Stubberfield is a senior data scientist for Microsoft’s digital advertising business and the author
of three popular courses on DataCamp. He graduated with an MS in predictive analytics and has over
10 years of experience in various data science and analytical roles, focused on finding insights for
business-related questions.

With his experience, he has led numerous teams of data scientists and has been instrumental in the
successful completion of many projects. Aaren’s technical skills include the use of Al, like LLMs,
Python, and various other tools necessary for the execution of data science projects.

I want to thank the people who have been close to me and supported me, especially my wife, Pam,
and my family.

About the reviewer

Vishal Kumar, a seasoned data scientist, has over seven years of experience with a premium credit card
company, where he has made indelible contributions to the realms of Al and ML. He has a master’s
degree in statistics from Delhi University.

Throughout his career, he has garnered a plethora of accolades, stemming from his adeptness in
constructing cutting-edge decision science tools that have steered various organizations’ success.
His commitment to continuous learning is evidenced by his embrace of new technologies, such as
generative Al to stay at the forefront of the ever-evolving data science landscape.

Beyond his professional pursuits, his creativity extends into his personal life, as he likes to paint and
play ukulele.

Table of Contents

Preface XV
Part 1: Breaking into the Data Science Field
Exploring Today’s Modern Data Science Landscape 3
What is data science? 4 Tackling the experience bottleneck 14
Exploring the data science process 5 Academic experience 15
Data collection 5 Work experience 16
Data exploration 6 Understanding expected skills and

Data modeling 6 competencies 17
Model evalnation 6 Hard (technical) skills 18
Model deployment and monitoring 6 Soft (communication) skills 19
Dissecting the flavors of data science 7 Exploring the evolution of data science 21
Data engineer 8 New models 21
Dashboarding and visual specialist 9 New environments 21
ML specialist 10 New computing 2
Domain expert 10 New applications 22
Reviewing career paths in data science 11 ¢, ary 23
The traditionalist 11 References 23
Domain expert 12

Off-the-beaten path-er 13

viii

Table of Contents

2

Finding a Job in Data Science 25
Searching for your first data science job 25 Crafting an effective resume 39
Preparing for the road ahead 26 Formatting and organization 40
Finding job boards 28 Using the correct terminology 42
Beginning to build a standout portfolio 33 Prepping for landing the interview 44
Applying for jobs 35 Moore’s Law 44
Constructing the Golden Resume 37 Research, research, research 45
The perfect resume myth 37 Branding 47
Understanding automated resume screening 38 References 48
Part 2: Manipulating and Managing Data
Programming with Python 51
Using variables, data types, and data Doing “stuff” with user-defined functions 66
structures 52 Getting familiar with lambda functions 68
Indexing in Python 56 Creating good functions 69
Using string operations 57 Handling files in Python 71
Initializing a string 57 Opening files with pandas 72
String indexi 57 . .

Hing Imaexng Wrangling data with pandas 73
Using Python control statements, Handling missing data 73
loops, and list comprehensions 61 Selecting data 75
Conditional statements such as if, elif, and else 61 Sorting data 78
Loop statements such as for and while 62 Merging data 80
List comprehension 64 Aggregation with groupby() 81
Using user-defined functions 65 Summary 86
Breaking down the user-defined function syntax 65 References 86

Table of Contents

4

Visualizing Data and Data Storytelling 87
Understanding data visualization 88 Matplotlib (Python) 100
Bar charts 38 Seaborn (Python) 101
Line charts 91 Developing dashboards, reports, and
Scatter plots 92 KPIs 101
Histograms 93 Developing charts and graphs 104
Density plots 94 .
Quantile-quantile plots (Q-Q plots) 95 Bar chart -~ Matplotlib 104
q P P Bar chart - Seaborn 106
Box plots 97
. Scatter plot — Matplotlib 108
Pie charts 97
Scatter plot — Seaborn 110
Surveying tools of the trade 99 Histogram plot - Matplotlib 112
Power BI 100 Histogram plot - Seaborn 114
Tableau 100 Applying scenario-based storytelling 116
Shiny 100 s 119
geplot2 (R) 100 ~Summary
Querying Databases with SQL 121
Introducing relational databases 121 Subqueries in the WHERE clause 134
Mastering SQL basics 124 Subqueries in the HAVING clause 136
The SELECT statement 124 Distinguishing common table expressions
(CTEs) from subqueries 137
The WHERE clause 125
The ORDER BY clause 125 Merging tables with joins 140
Aggregating data with GROUP BY Inner jOin_S N 140
and HAVING 127 Left and right join 143
The GROUP BY statement 127 Fulll (.)utt:lj o.m. 145
The HAVING clause 129 Multi-tablejoins 146
Creating fields with CASEWHEN 131 Calculating window functions 147
. . OVER, ORDER BY, PARTITION, and SET 147
Analyzing subqueries and CTEs 131
LAG and LEAD 150
Subqueries in the SELECT clause 132 ROW NUMBER 152
Subqueries in the FROM clause 133 _

RANK and DENSE_RANK 152

Table of Contents

Using date functions 155

Approaching complex queries 155
Summary 159

Scripting with Shell and Bash Commands in Linux 161
Introducing operating systems 161 Introducing control statements 171
Navigating system directories 162 Creating functions 174
Introducing basic command-line prompts 163 Processing data and pipelines 176
Understanding directory types 164 Using pipes 177
Filing and directory manipulation 166 Using cron 178
Scripting with Bash 169 Summary 180
Using Git for Version Control 181
Introducing repositories (repos) 181 Using Git tags for data science 189
Creating a repo 183 Understanding Git tags 189
Cloning an existing remote repository 183 Using tagging as a data scientist 189
Creating a local repository from scratch 183 Understanding common operations 190
Linking local and remote repositories 185

Detailing the Git workflow
for data scientists 187

Summary 192

Part 3: Exploring Artificial Intelligence

Mining Data with Probability and Statistics

197

Describing data with descriptive

statistics 198
Measuring central tendency 198
Measuring variability 199

Introducing populations and samples 201
Defining populations and samples 201
Representing samples 202
Reducing the sampling error 203

Table of Contents

Understanding the Central Limit Testing hypotheses 217
Thereom (CLT) 205 Understanding one-sample t-tests 218
The CLT 205 Understanding two-sample t-tests 218
Demonstrating the assumption of normality 205 Understanding paired sample t-tests 219
Shaping data with sampling Understanding ANOVA and MANOVA 219
distributions 210 Chisquaredtest 220

A/B tests 222
Probability distributions 210
Uniform distribution 210 Understanding Type I and Type II
Normal and student’s t-distributions 211 €rrors 224
The binomial distribution 211 Type I error (false positive) 225
The Poisson distribution 212 Type II error (false negative) 225
Exponential distribution 213 Striking a balance 225
Geomet.rlc dlS.tI'lb'utl().n 214 Summary 227
The Weibull distribution 215

References 227
9
Understanding Feature Engineering and Preparing Data
for Modeling 229
Understanding feature engineering 230 Performing feature selection 250
Avoiding data leakage 230 Types of feature selection 250
Handling missing data 231 Recursive feature elimination 250
Scaling data 233 L1 regularization 252
Applying data transformations 235 Tree_ba.sed fe.ature‘seleaion 222

The variance inflation factor 252
Introducing data transformations 235
Logarithm transformations 237 Working with imbalanced data 253
Power transformations 238 Understanding imbalanced data 254
Box-Cox transformations 239 Treating imbalanced data 254
Exponential transformations 241 Re ducing the dimensionality 255
Engineering categorical data and Principal component analysis 255
other features 243 Singular value decomposition 256
One-hot encoding 243 t-SNE 257
Label encoding 244 Autoencoders 257
Target encoding 246 Summary 258
Calculated fields 247

xi

Xii

Table of Contents

10

Mastering Machine Learning Concepts 259
Introducing the machine learning K-means 280
workflow 260 Density-based spatial clustering of
Problem statement 261 applications with noise (DBSCAN) 283
Model selection 261 Other clustering algorithms 286
Model tuning 261 Evaluating clusters 287
Model predictions 261 Summarizing other notable machine
Getting started with supervised learning models 288
machine learning 262 Understanding the bias-variance
Regression versus classification 262 trade-off 289
Linear regression - regression 264 Tuning with hyperparameters 291
Logistic regression 268 Grid search 291
k-nearest neighbors (k-NN) 270 Random search 292
Random forest 273 Bayesian optimization 292
Extreme Gradient Boosting (XGBoost 277

8) Summary 293
Getting started with unsupervised
machine learning 279
Building Networks with Deep Learning 295
Introducing neural networks and Gradient descent 304
deep learning 296 What is backpropagation? 304
Weighing in on weights and biases ~ 298 Loss functions 305
Introduction to weights 298 Gradient descent steps 305
Introduction to biases 299 The vanishing gradient problem 306
Activating neurons with activation Using optimizers 309
functions 300 Optimization algorithms 310
Common activation functions 301 Network tuning 310
Choosing the right activation function 302 Understanding embeddings 312
Unraveling backpropagation 303 Word embeddings 312

Training embeddings 313

Table of Contents

Listing common network Unveiling language models 317
architectures 313 Transformers and self-attention 318
Common networks 314 Transfer Learning 319
Tools and packages 315 GPTinaction 319
Introducing GenAlI and LLMs 317 Summary 322
Implementing Machine Learning Solutions with MLOps 323
Introducing MLOps 324 management 331
A model pipeline overview 325 Deploying a model with containers 332
Understanding data ingestion 326 Using Docker 332
Learning the basics of data storage 328 Validating and monitoring the model 334
Reviewing model development 329 validating the model deployment 334
Packaging for model deployment 330 Model monitoring 335
Identifying requirements 330 Thinking about governance 336
Virtual environments 331 Using Azure ML for MLOps 337
Tools and approaches for environment Summary 338
Part 4: Getting the Job

Mastering the Interview Rounds 341
Mastering early interactions with the The technical interview 346
recruiter 342 Coding questions, step by step 347
Mastering the different interview The panel stage 350
stages 344 Summary 351
The hiring manager stage 345 References 352

xiii

Xiv

Table of Contents

Negotiating Compensation 353
Understanding the compensation Maximum negotiable compensation and
landscape 353 situational value 357
Negotiating the offer 354 Summary 363
Negotiation considerations 354 Final words 364
Responding to the offer 356

Index 365
Other Books You May Enjoy 380

Preface

In today’s dynamic technological landscape, the demand for skilled professionals in artificial intelligence
(AI) and data science roles has surged, and the data science job market is increasingly saturated by
various levels of data science and Al employees. This book is a comprehensive guide, crafted to equip
both aspiring and seasoned individuals with the essential tools and knowledge required to navigate
the intricacies of data science interviews. Whether you're stepping into the AI realm for the first time
or aiming to elevate your expertise, this book offers a holistic approach to mastering the fundamental
and cutting-edge facets of the field.

The chapters within this book span a wide spectrum of critical subjects, from programming with
Python and SQL to statistical analysis, pre-modeling and data cleaning concepts, machine learning
(ML), deep learning, Large Language Models (LLMs), and generative AI. We aim to provide a
comprehensive review and update on the foundational concepts while also delving into the latest
advancements. In an era marked by the disruptive potential of language models and generative Al,
it’s imperative to continually hone your skills. This book serves as a compass, guiding you through
the intricacies of these transformative technologies, ensuring you’re poised to tackle the challenges
and harness the opportunities they present.

Moreover, beyond technical prowess, we delve into the art of interviewing for Al roles, offering guidance
on how to ace interviews and negotiate compensation effectively. Additionally, crafting a standout
résumé tailored for data science roles is a crucial step, and our guide offers insights into writing
compelling résumés that capture attention in a competitive job market. As Al reshapes industries and
innovation accelerates, now is the ideal time to embark on or advance in your data science journey.
We invite you to dive into this comprehensive resource and embark on your path to mastering the
dynamic world of data science and Al

Who this book is for

If you are a seasoned or young professional who needs to brush up on your technical skills, or you
are looking to break into the exciting world of the data science industry, then this book is for you.

What this book covers

In Chapter 1, Exploring the Modern Data Science Landscape, we begin our journey with a brief but
valuable overview of the contemporary landscape of data science and Al

In Chapter 2, Finding a Job in Data Science, we will introduce data science roles and their various categories.

XVi

Preface

In Chapter 3, Programming with Python, you will familiarize yourself with the most common and
useful tasks and operations in the Python language.

In Chapter 4, Visualizing Data and Storytelling, you will learn techniques for telling engaging data stories.

In Chapter 5, Querying Databases with SQL, you will dive into the world of databases, understanding
their design and how to query them to acquire data.

In Chapter 6, Scripting with Bash and Shell Commands in Linux, you will boost your operating system
skills with the power of bash and shell commands, enabling you to interface with multiple technologies
either locally or in the cloud.

In Chapter 7, Using Git for Version Control, we explore the most useful commands in Git for project
collaboration and reproducibility.

In Chapter 8, Mining Data with Probability and Statistics, you will understand some of the most relevant
topics in probability and statistics that serve as the foundation for many ML models and assumptions.

In Chapter 9, Understanding Feature Engineering and Preparing Data for Modeling, you will use your
understanding of descriptive statistics to create clean, “machine-legible” datasets.

In Chapter 10, Mastering Machine Learning Concepts, you will learn about the most used ML algorithms,
their assumptions, how they work, and how to best evaluate their performance.

In Chapter 11, Building Networks with Deep Learning, we take a step further into building and evaluating
neural networks in various applications while also touching base on the latest advancements in Al

In Chapter 12, Implementing Machine Learning Solutions with MLOps, we will review the data science
process, tools, and strategies to effectively design and implement an end-to-end ML solution.

In Chapter 13, Mastering the Interview Rounds, you will learn the best techniques to successfully bypass
technical and non-technical factors at every stage of the interview process.

In Chapter 14, Negotiating Compensation, you will learn to optimize your earning potential.

To get the most out of this book

To get the most out of this book, you should have a basic knowledge of Python, SQL, and statistics.
However, you will also benefit from this book if you have familiarity with other analytical languages,
such as R. By brushing up on critical data science concepts such as SQL, Git, statistics, and deep
learning, you’ll be well-equipped to crack through the interview process.

Software/hardware covered in the book Operating system requirements
Python 3.12 Windows, macOS, or Linux
Bash Linux

Jupyter Notebooks Windows, macOS, or Linux

Preface

Conventions used

There are a number of text conventions used throughout this book.

Code in text:Indicates code words in text, database table names, folder names, filenames, file
extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: The
split () method can be used to split s into individual words: words = s.split ().

A block of code is set as follows:

x =5

print (type(x)) # <class 'int's>

Bold: Indicates a new term, an important word, or words that you see on screen. For instance, words
in menus or dialog boxes appear in bold. Here is an example: “The increased computing power and
the development of advanced algorithms, especially in machine learning (ML) and deep learning
(DL), have made it possible to efficiently process and analyze massive amounts of data”

Tips or important notes

Appear like this.

Special Note

The prevalence of accessible AI technology has exploded over the past few months, particularly over
the course of writing this book. We encourage our readers to utilize AI during their educational
journey, leveraging tools such as Chat GPT to test your newly acquired skills. Long gone are the days
where you browse StackOverFlow for hours for your specific inquiry. Now, the power of asking for
help is right at your fingertips.

xvii

xviii

Preface

Even we, the authors of this book, leveraged generative Al to aid in minor editorial tasks and creating
code examples. However, rest assured that humans wrote the content and laid out what is covered in
the book! In this new era, we just wanted to make our readers aware of how we used the tool.

Get in touch

Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at customercare@
packtpub. com and mention the book title in the subject of your message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you have found a mistake in this book, we would be grateful if you would report this to us. Please
visit www . packtpub.com/support/errata and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would
be grateful if you would provide us with the location address or website name. Please contact us at
copyrighte@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you
are interested in either writing or contributing to a book, please visit authors . packtpub. com.

mailto:customercare@packtpub.com
mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packtpub.com
http://authors.packtpub.com

Preface Xix

Share Your Thoughts

Once you've read Cracking the Data Science Interview, wed love to hear your thoughts! Please click
here to go straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re delivering

excellent quality content.

https://packt.link/r/1-805-12050-6
https://packt.link/r/1-805-12050-6

XX

Preface

Download a free PDF copy of this book

Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don't worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content
in your inbox daily

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below

| O

o
v
o

https://packt.link/free-ebook/978-1-80512-050-6

2. Submit your proof of purchase

3. That’s it! We'll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/978-1-80512-050-6

Part 1:
Breaking into the
Data Science Field

In the first part of this book, you will learn about the data science profession as it exists in the modern
day, and how this relates to your endeavors in the field. This will serve as an introduction to various
career paths and help to set expectations in terms of the skills and competencies required to be successful.

This part includes the following chapters:

o Chapter 1, Exploring Todays Modern Data Science Landscape
o Chapter 2, Finding a Job in Data Science

1
Exploring Today’s Modern

Data Science Landscape

If you've picked up this book, chances are that you've already heard of data science. It’s arguably one of
the fastest-growing, most discussed professions within the tech and STEM space, all while maintaining
its relative edge and mystique. That is, many people have heard of data scientists, but very few know
what they do, how a data scientist produces value, or how to break into the field from scratch.

In this chapter, we will verify the definition of data science with a practical description. Then, we
will discuss what most data science jobs entail, while spending some time describing the distinction
between different flavors of data science. We'll then dive into the various paths into data science and
what makes it so challenging to land your first job. We'll finish the chapter with an overview of the
non-negotiable competencies expected of data scientists.

By the end of this chapter, you will have a firm understanding of the modern data scientist, the various
paths to getting the job, and what to expect in your journey to becoming one.

With this gentle introduction, you’ll have a better understanding of the job of a data scientist, which
path to becoming a data scientist best fits your journey, the barriers to expect in your journey, and
which skills you should master.

In this chapter, we will cover the following topics:

o What is data science?

o Exploring the data science process

o Dissecting the flavors of data science

o Reviewing career paths in data science

o Tacking the experience bottleneck

o Understanding expected skills and competencies

« Exploring the evolution of data science

Exploring Today’s Modern Data Science Landscape

What is data science?

To begin, let’s offer a definition of data science. According to Wikipedia, data science “is an interdisciplinary
academic field that uses statistics, scientific computing, scientific methods, processes, algorithms, and
systems to extract or extrapolate knowledge and insights from noisy, structured, and unstructured
data”[1]. It encompasses various techniques, procedures, and tools to process, analyze, and visualize
data, enabling businesses and organizations to make data-driven decisions and predictions. The
primary goal of data science is to identify patterns, relationships, and trends within data to support
decision-making and create actionable insights.

You are not alone in your interest in data science - it was called by the Harvard Business Review one
of the sexiest jobs in the 21st century [2], and stories of data scientists earning enormous salaries
in the six-figure range are not uncommon. Data scientists are often looked at as oracles within an
organization, answering complex business questions such as, “If we increase our offering to this group
of customers, can we increase our revenues?” or “What are the common causes of customer churn?”

Within organizations, the demand for the skills of data scientists has continued to grow. The U.S.
Bureau of Labor Statistics estimated that in 2022, the number of jobs for data scientists will increase
by roughly 36% over the next 10 years [3]. This growth in the demand for data scientists is being
fuelled by several factors, which are shown here:

Advancement
Data in
Proliferation Computational
Power

Demand for Data
Scientist Skills

Data-Driven
Decision-
Making

Figure 1.1: Reasons for the increased demand for data scientists

The first is the proliferation of data. The exponential growth of data generated by digital devices,
social media, and various other sources has made it essential for organizations to harness this data
for decision-making and innovation. This data growth is expected to continue in the future, with the
International Data Corporation (IDC) expecting that by 2025, we will generate 175 zettabytes of
data annually [4]. That is a staggering amount of data!

Exploring the data science process

Organizations want to take advantage of this explosion in data availability to generate insights for
decision-making. As the world becomes more interconnected and complex, the need for evidence-based
decision-making has grown, leading to an increased demand for skilled data scientists who can transform
data into actionable insights. Organizations and businesses increasingly rely on data-driven insights
to gain a competitive edge in the market, optimize operations, and improve customer experiences.

Finally, transforming data into insights couldn't be accomplished without advancements in computational
power and the advancement of tools and platforms. The increased computing power and the development
of advanced algorithms, especially in machine learning (ML) and deep learning (DL), have made
it possible to efficiently process and analyze massive amounts of data. In addition, the development
of open source tools, libraries, and platforms has made data science more accessible to a broader
audience, fostering the growth of the profession.

Hence, data science is still an evolving field that is only expected to grow in parallel with computational
and technological advancements (such as generative AI). Furthermore, as companies continue to
embrace the digital age with an increased interest in maximizing their utility of data and capitalizing
on its underlying insights for a competitive advantage, the demand for data scientists will also expand.

However, although data science is often regarded and described as a monolithic function, you’ll soon
learn that it’s a multi-faceted discipline that often varies by team, department, or even company.
Naturally, the data scientist job profile is also an ever-evolving description, but we will cover all our
bases for the most common tasks.

Exploring the data science process

Performing data science work is often an iterative process, where the data scientist needs to return to
earlier steps if they run into challenges. There are many ways to categorize the data science process,
but it often includes:

« Data collection
o Data exploration
o Data modeling
e Model evaluation

o Model deployment and monitoring

Let’s briefly touch on each step and discuss what’s expected of the data scientist during them.

Data collection

Data collection and preprocessing involves gathering data from various sources (such as databases,
APIs, and web scraping), then cleaning and transforming the data to prepare it for analysis. This step
involves dealing with missing, inconsistent, or noisy data and converting it into a structured format.

Exploring Today’s Modern Data Science Landscape

Depending on the organization, a team of data engineers support this step of the data science process;
however, it is common for the data scientist to manage this process as well. This requires them to have
intimate knowledge of the data sources and the ability to write Structured Query Language (SQL)
queries, code that can query databases, or custom tools such as web scrapers to gather the needed data.

Data exploration

Data exploration involves conducting exploratory data analysis (EDA) to better understand the
data, detect anomalies, and identify relationships between variables. The key to this step is to look for
correlations and understand the distribution of the data. This involves using descriptive statistics and
visualization techniques to summarize the data and gain insights; therefore, the data scientist should
be able to use summary statistics, program descriptive visualizations, or utilize reporting tools such
as Power BI or Tableau to create robust charts.

Data modeling

Using what was learned in the data exploration step, data modeling is the step when the data scientist
builds their predictive or descriptive models using ML and statistical techniques that identify patterns
and relationships in the data. Here, the data scientist selects the appropriate algorithms, trains the
models on historical data, and validates their performance.

Model evaluation

Model evaluation and optimization involves assessing the performance of models using metrics such
as accuracy, RMSE, precision, recall, AUC, or F1 scores. Based on these evaluations, data scientists
may refine the models or try alternative algorithms to improve their performance. Understanding the
underlying reasons behind a model’s predictions is crucial for building trust in its results and ensuring
that it aligns with the domain knowledge. Therefore, the data scientist must be sure the model solves
the organizational/business goal. Here, the data scientist needs to be able to communicate their findings
to possible technical and non-technical individuals.

Model deployment and monitoring

Model deployment and monitoring involves implementing the models in real-world applications,
monitoring their performance, and maintaining them to ensure their continued accuracy and
relevance. For example, the data scientist might work with a data engineering team or use tools such
as containers to implement the model. Once deployed, the data scientist may also need to develop
dashboards to monitor the model’s performance over time and flag stakeholders if it goes outside the
expected performance range.

Dissecting the flavors of data science

As you can see, data science is a profession that incorporates many data-related tasks — particularly
those that involve the acquisition, prepping, and delivery of data in one format or another. While data
modeling makes up most of the glitz and glamour associated with the job, it is really everything else that
takes up roughly 80% of the gig. This does not include non-data-related tasks, such as interfacing with
stakeholders, gathering requirements, debugging software, checking emails, and research. However,
those tasks are not necessarily unique to data scientists.

Now that you understand the common tasks associated with the job, let’s explore the different types
or flavors of data science.

Dissecting the flavors of data science

Now that we have defined some of the critical aspects of the role of a data scientist, it is clear that the
role often covers many different skills. Data scientists are frequently asked to perform a variety of
data-related tasks, including designing database tables to collect data, programming ML algorithms,
understanding statistics, and creating stunning visuals to help explain interesting findings to others,
but it is difficult for any single person to master all of these skill areas.

Therefore, we often see data scientists who are particularly skilled in one or two areas and have basic
competencies in the others. Their talents could be considered T-shaped, where they are proficient
across many areas such as the horizontal line of a T, while they have deep knowledge and expertise
in a few areas such as the vertical portion of the letter:

Data Engineering Data Visualization

Machine Learning

Figure 1.2: Example of the ‘T of Competencies’

Exploring Today’s Modern Data Science Landscape

While this example shows an example of someone who is adequate in data engineering and visualization
principles but exceptional in ML, you can expect to see every possible combination of skills among
data scientists. These competencies are often aligned with a person’s unique experiences or interests.
Perhaps they were a statistics major and took a liking to ML, or perhaps they’re a former business
intelligence (BI) engineer with considerable experience in data extraction, transformation, and
loading (ETL), allowing them to grasp data engineering concepts much faster.

Whatever the reason, it’s natural for someone to grasp some concepts better than others. This is
important to remember as you navigate this book. While you are not expected to specialize in every
facet of data science, you are expected to master the fundamentals. However, you will almost certainly
discover your T of Competencies — a trinity of top skill sets that will solidify your identity in the data
science space.

While there are countless combinations of skill proficiencies, let’s review some of the most common
that you will encounter:

o The data engineer
o The dashboarding and visual specialist
o The ML specialist

o The domain expert

Let’s take a look at these now.

Data engineer

As we discussed earlier, data engineering is a crucial aspect of the data science process that involves data
collection, storage, processing, and management. It focuses on designing, developing, and maintaining
scalable data infrastructure, ensuring the availability of high-quality data for analysis and modeling.
Data engineers are most known for their oversight of the ETL process of data pipelines. On some
data scientist teams, especially within smaller organizations, the data engineering responsibilities sit
within the data science team. Therefore, the data scientist specializing in this area can help support
team projects with data collection and storage, understanding the needs of the ML process, such as
structuring the data so that it can be fed efficiently to a DL algorithm.

Data engineers have a wealth of tools to choose from. It is not expected for any single data engineer
to know all of these technologies, especially at the same level of competencies. In fact, the more
senior the engineer, the more competent they are in their tools of choice. Furthermore, this is not a
comprehensive list. However, you can expect to see the following on data engineer resumes:

o Programming languages: Python, SQL, Scala, R, C++

o Data storage: Relational databases (for example, MySQL, PostgreSQL, Oracle), NoSQL databases
(for example, MongoDB, Cassandra, DynamoDB), data warehouses (for example, Snowflake,

Dissecting the flavors of data science

Redshift, BigQuery), distributed filesystems (for example, Hadoop Distributed File System
(HDEFS), Apache Cassandra)

o Data processing and analysis: Apache Spark, Apache Flink, Apache Storm, Apache Beam,
MapReduce, Hadoop, Hive, Apache Katka, Amazon Kinesis

o Data integration and ETL: Apache NiFi, Talend, Apache Airflow, AWS Glue, Google Cloud
Dataflow, dbt

o Data version control and collaboration: Git, GitHub, GitLab, Bitbucket, Azure DevOps
o Data visualization and BI: Tableau, Power BI, Looker, QlikView, Domo

o Cloud platforms and infrastructure: Microsoft Azure, Google Cloud Platform (GCP), Amazon
Web Services (AWS)

o Containers: Docker, Kubernetes

Dashboarding and visual specialist

Data visualization is the graphical representation of data and information using visual elements such
as charts, graphs, and maps. It enables stakeholders to understand complex patterns, trends, and
relationships in data, allowing for more informed decision-making. Data visualization helps simplify
complex data and present it in an easily digestible format, identify patterns, trends, and correlations
in data, support data-driven decision-making, and communicate insights and findings effectively to
a broad audience. Combining data visualizations with a compelling narrative can become a powerful
motivator to drive organizational actions. Many news organizations hire phenomenal data scientists
specializing in data visualization to communicate complex information to their audience.

Dashboarding and visual specialists have different designations depending on the organization,
but some of the most common names you’ll hear include BI engineer, data analyst, data visualization
expert, data storyteller, and many others. They are commonly individuals with a strong background
in descriptive statistics, data storytelling, and developing key performance indicators (also known
as KPIs). The most common tools you will see used by dashboarding and visual specialists include:

o Programming languages: Python, SQL, R, JavaScript

o Data storage: Relational databases (for example, MySQL, PostgreSQL, Oracle), NoSQL databases
(for example, MongoDB, Cassandra, DynamoDB), data warehouses (for example, Snowflake,
Redshift, BigQuery)

o Frameworks: Dask, Plotly, ggplot2, Shiny, Matplotlib, Seaborn, DB.js
o Data visualization and BI: Tableau, Power BI, Looker, QlikView, Domo, Funnel, Excel

o Cloud platforms and infrastructure: Microsoft Azure, GCP, AWS

10

Exploring Today’s Modern Data Science Landscape

ML specialist

When most people think about data scientists, they think about someone who designs and implements
ML algorithms. ML specialists and engineers utilize computers to learn and improve from experience
without explicit programming by developing algorithms and models to analyze data, identify patterns,
and make predictions or decisions based on those patterns. They play a critical role in building
intelligent applications and systems. ML specialists have a strong sense of which learning algorithms
to use and how to adjust their parameters to achieve the best performance.

As a result, they have a strong propensity toward research to stay current on the latest methods
of quantitative problem-solving and are specifically skilled in ML development, deployment, and
maintenance tasks. They have a robust toolset as they are highly proficient in software development
principles. While it certainly isn’t a rule, many ML specialists tend to have a strong background in
statistics, operations research, computer science, and/or information systems. Tools used by ML
specialists might include:

o Programming languages: Python, SQL, R, Java, C++
o Frameworks: TensorFlow, Keras, scikit-learn, PyTorch, H20, Hugging Face

o Data storage: Relational databases (for example, MySQL, PostgreSQL, Oracle), NoSQL databases
(for example, MongoDB, Cassandra, DynamoDB), data warehouses (for example, Snowflake,
Redshift, BigQuery), distributed filesystems (for example, HDFS, Apache Cassandra)

o Data processing and analysis: Apache Spark, Apache Flink, Apache Storm, Apache Beam,
MapReduce, Apache Kafka

o Data integration and ETL: Apache NiFi, Talend, Apache Airflow, AWS Glue, Google Cloud Dataflow
o Data version control and collaboration: Git, GitHub, GitLab, Bitbucket
o Cloud platforms and infrastructure: Microsoft Azure, GCP, AWS

o Deployment: Docker, Kubernetes, Flask

Domain expert

Domain experts are data scientists with in-depth knowledge and expertise in specific domains
within the industry or field; for example, someone who has gained much knowledge and expertise
working on computer vision (CV) or natural language (NL) problems. They leverage their domain
knowledge to develop custom ML models and data analysis techniques tailored to their domain’s unique
challenges and requirements. However, there are also non-technical domain experts who gained a
deep familiarity with a particular industry or business problem given their professional history. For
example, someone with a background in digital marketing may have an edge for a data science role
that requires an understanding of media mix modeling or data-driven attribution, whereas someone
with aviation experience may have an advantage in route optimization models.

Reviewing career paths in data science

Because domain experts tend to carry domain-specific expertise, they often are already familiar with
the tools of their specific industry. For example, a digital marketing professional is bound to have
some experience with a myriad of MarTech platforms, including Google Analytics, Adobe Analytics,
HubSpot, and more.

These are just some of the flavors or different areas to specialize in within data science. You will not
need to be an expert in all of these areas, but you will need to show some level of competency and
willingness to grow in all of these areas. Often when working on data science projects, you will gravitate
to one of these areas out of necessity or passion; gaining practical experience will be key here and
strengthen your candidacy for a role where the hiring manager is looking for someone with that skill set.

If you haven't noticed, many of these data science flavors are the consequence of one’s prior experience,
either in tech or otherwise. For example, a software engineer may be well suited to transition into ML
or data engineering, while a data analyst may find an easier time transitioning to data engineer or
BI engineer. As you've seen, there is a considerable overlap in skills, tools, and tasks with all flavors
of data science.

This brings us to the paths to data science. You may have already envisioned where you fit into the
equation given some of the prior descriptions. Let’s take the time to explicitly discuss some common
paths to the data science profession.

Reviewing career paths in data science

The field of data science is rapidly evolving, drawing professionals from various backgrounds and
disciplines. This dynamic landscape has given rise to a multitude of career paths in data science, each
bringing their unique perspectives, skills, and experiences to the table. In this section, we will explore
three primary types of data scientists: the traditionalist, the domain expert, and the oft-the-beaten
path-er. Does one of these career paths best fit you?

The traditionalist

The traditionalist data scientist has followed a more conventional educational path toward data science.
They typically possess a strong background in computer science or mathematics, often with a minor
in the other. Other common majors include operations research, statistics, physics, and engineering.
These individuals often go on to earn an advanced degree in these fields, including a master’s degree
or even a Ph.D. Their rigorous academic training equips them with a deep understanding of statistical
methodologies, programming languages, and advanced algorithms.

The traditionalist data scientist has a comprehensive understanding of the underlying mathematical
and statistical principles that govern the field of data science. They are well-versed in probability theory,
linear algebra, calculus, and optimization techniques, which form the basis for many ML algorithms
and statistical modeling. This theoretical foundation enables them to grasp the nuances of various
methods and research the most appropriate approach for a given problem.

1

12

Exploring Today’s Modern Data Science Landscape

Equipped with a background in computer science, traditionalists are adept at programming languages
commonly used in data science, such as Python and R. Their programming skills allow them to
manipulate data, implement ML algorithms, and develop custom solutions tailored to specific problems.
Furthermore, they are skilled in using specialized libraries and frameworks, such as TensorFlow,
PyTorch, and scikit-learn, to expedite the development of data science projects.

In brief, the traditionalist data scientist is characterized by their strong STEM academic background,
comprehensive understanding of statistical principles, and proficiency in programming and data
manipulation. If your background is traditionalist, we suggest positioning yourself in job interviews
as someone with deep expertise in ML. In addition, highlight any research experience you have.

Domain expert

Domain expert data scientists are professionals who initially started their careers in a specific industry,
such as marketing, finance, healthcare, or supply chain, before branching out into data science. With
a strong understanding of their domain, these individuals have gradually acquired data analysis and
programming skills to supplement their expertise (for example, a company controller uses domain
expertise and knowledge to develop an ML algorithm that flags fraudulent transactions). Domain
experts possess a unique ability to leverage their domain knowledge to uncover relevant insights from
data, enabling organizations to make data-driven decisions that drive growth and efficiency.

Domain experts have a comprehensive understanding of the intricacies and nuances of their industry,
making them invaluable assets in data-driven projects. Their knowledge of industry-specific challenges,
trends, and best practices enables them to identify critical business problems and frame data-driven
solutions that are relevant and impactful. Armed with extensive domain knowledge and analytical
skills, domain expert data scientists excel at developing solutions tailored to their industry. In addition,
they have a keen ability to translate business questions into data-driven hypotheses and use their
understanding of the sector’s unique characteristics to guide their analysis. This targeted approach
allows them to generate insights that directly address the needs and priorities of their industry.

Additionally, domain experts are well versed in the analytical tools and software commonly used in
their respective fields. These specialized tools, which may include industry-specific data platforms,
visualization software, or ML frameworks, allow them to efficiently process and analyze data unique
to their domain. Their expertise with these tools enables them to deliver insights more quickly and
effectively than their counterparts who lack industry-specific knowledge.

Finally, one of the critical strengths of domain expert data scientists is their ability to communicate
complex data insights to non-technical stakeholders within their industry. In addition, they understand
the context and terminology of their domain, enabling them to present findings in a manner that
resonates with their business partners. This skill is critical for driving data-driven decision-making
and ensuring that the value of their work is recognized and understood by their organization.

Reviewing career paths in data science

In summary, if you have specialized knowledge of the field you are interviewing for, we suggest
positioning yourself as a domain expert data scientist. Highlight your deep understanding of the
industry and their challenges, enabling you to deliver targeted and impactful data-driven solutions.
Additionally, highlight that you can communicate complex insights effectively using industry
terminology. Your domain knowledge and data science techniques will make you a valuable asset to
any organization in their field.

Off-the-beaten path-er

The off-the-beaten path-er data scientist is an individual who has ventured into data science from
what’s deemed as a non-traditional background. These professionals may come from diverse fields with
less focus on quantitative tasks, such as psychology, music, or even journalism. This unconventional
background can provide them with unique perspectives and creative problem-solving abilities,
enriching the field of data science with their varied experiences.

Off-the-beaten path-ers possess a wide range of educational and professional backgrounds, which
equip them with diverse skills and knowledge. They may have initially pursued a career in a different
domain before discovering their passion for data science. This varied experience often results in a
broader, interdisciplinary approach to problem-solving, allowing them to draw connections and
insights that might be overlooked by their more traditionally trained peers. For example, off-the-beaten
path-ers might approach the problems within ML and artificial intelligence (AI) ethics (a topic of
increasing relevance within AI) differently than the traditionalist or domain expert. They may also
regard ML and AI as tools to create a better world by tackling humanitarian issues such as disaster
response, public health, food security, and human rights. Furthermore, AI may also be of interest to
civil engineers with an interest in smart cities or political science majors with detecting implicit biases
in the criminal justice system.

With their unconventional backgrounds, off-the-beaten path-ers bring a unique perspective to data
science, enabling them to tackle problems from a different angle. Their creativity and innovative
thinking can lead to the development of new methods, models, or visualizations that challenge the
status quo and push the boundaries of what is possible in data science. This outside-the-box thinking
is valuable, especially when addressing complex or novel challenges.

Also, with their unique backgrounds, off-the-beaten path-ers are well equipped to collaborate
with professionals from various disciplines, leveraging their distinct perspectives to solve complex
problems. Their ability to work effectively with interdisciplinary teams can lead to the development
of innovative solutions that combine the strengths of multiple fields, driving growth and success for
the organization. To facilitate working with different backgrounds, they often have to communicate
complex ideas and insights effectively to diverse audiences. Off-the-beaten path-ers often understand
the importance of storytelling in data science, using data visualizations and narratives to convey their
findings clearly and compellingly. This skill enables them to bridge the gap between technical experts
and non-technical stakeholders, facilitating collaboration.

13

14

Exploring Today’s Modern Data Science Landscape

In conclusion, if you have come to data science as an off-the-beaten path-er, we recommend positioning
yourself in job interviews as someone who is adaptive and can bring your unique perspective to
facilitate creative problem-solving. Additionally, highlight any abilities to communicate and collaborate.

As the field of data science continues to expand, the diversity of its professionals will only increase. The
traditionalist, domain expert, and off-the-beaten path-er each bring unique strengths and perspectives.
Of course, these are just generic groupings of data science professionals and you may be a mix of all
of these profiles. Embracing your individual strengths will allow you to best position yourself in a
data science interview.

Nonetheless, while all of these paths have their benefits, none of them are without barriers. A common
misconception in data science is there is a perfect path, or one that’s comprehensive such that the path
with be without bottlenecks. While it is true that some paths have advantages over others, they each
have gaps to address. While some of these gaps are flavor- or path-specific, they all share one: getting
the first data science job.

Tackling the experience bottleneck

So, you want to be a data scientist? Welcome to The Hunger Games: Data Science Edition!

While that may sound like an exaggeration, the increasing demand for data scientists has turned the
interview process into a battleground for candidates with various backgrounds and expertise.

But fear not — just as with The Hunger Games, the odds can be in your favor.

The fact that there is competition should not scare you away from entering the field. You've already
shown your interest and commitment by reading this book, and as you progress through it, you'll
learn how to prepare for data science interviews, regardless of your background. In addition, we will
share strategies to fill gaps in your experience to make you a stronger candidate. Remember - you
have your own set of strengths and weaknesses. You can come out on top by focusing on your gaps
and understanding your unique skills.

Believe it or not, it's incredibly common for candidates to have gaps in their experience. In the next
couple of sections, we will review two familiar sources of experience gaps: academic and work experience
gaps. In addition to noting these gap areas, we will give you suggestions on how to close them.

Tackling the experience bottleneck

Academic experience

One common gap in a job candidate’s experience is their academic background. Employers may
favor candidates with formal degrees in data science, computer science, or a related field, making it
challenging for those without a traditional academic background to stand out. You may not be an
engineer or a programmer by trade, but you understand math or computers but have yet to get into
the details of hypothesis testing. There’s no need to worry. The first step in addressing gaps in your
academic background is identifying them. Reflect on your education and experience, and ask yourself
the following questions:

In which areas of data science do I feel the least confident?
To which technologies or concepts do I need more exposure?
Which topics or tasks do I struggle with the most during interviews or when working on projects?

What models are commonly needed for the job that I want?

Once you've identified your gaps, you can create an action plan to address them effectively. Here are
several methods to help you fill the academic experience gap and strengthen your data science candidacy:

Pursue relevant certifications: Obtain certifications in data science, ML, AI, or related fields
from reputable organizations or platforms (for example, DataCamp, Codeacademy, Sololearn,
Alison, Udemy, Udacity, Google certifications, and so on). These certifications can help you
gain credibility, showcase your expertise, and demonstrate your commitment to learning.

Attend workshops and boot camps: Participate in workshops, boot camps, or short-term courses
that provide hands-on experience in data science techniques and tools. For example, Meetup.com
and LinkedIn are useful sites for identifying local or virtual data science groups. This will not only
help you enhance your skills but also allow you to connect with other professionals in the field.

Leverage Massive Open Online Courses (MOOC:s): Enroll in MOOCs from top universities or
platforms to learn data science concepts and techniques. Common websites include Coursera
and edX. These courses can help you build a strong foundation in the subject and supplement
your non-traditional academic background.

Build a strong portfolio: Create a robust portfolio that showcases your data science projects,
coding skills, and problem-solving abilities. Highlight your unique perspective and how your
non-traditional background has contributed to your approach to data science.

Network with data science professionals: Connect with professionals in the data science field
through networking events, online forums, or social media platforms such as LinkedIn. This can
help you gain insights into the industry, learn about job opportunities, and build relationships
that can lead to mentorship or job referrals.

15

16

Exploring Today’s Modern Data Science Landscape

Resources, such as books, online courses, and tutorials, help you gain the necessary knowledge.
Develop a realistic timeline for completing any of these activities and don't become overwhelmed
by the vast availability of online courses. Setting achievable goals and being patient with yourself is
important when developing your learning plan. Remember - data science is a vast field, and it takes
time to become proficient. Set a dedicated time to work on your learning plan. In addition, engage
with the data science community through forums, social media, and networking events to learn from
others and stay motivated.

Work experience

Another common experience gap for candidates is related to work experience. Entering the data science
field can be challenging, particularly when faced with the work experience bottleneck. Employers often
seek candidates with prior experience, creating a catch-22 for aspiring data scientists: you need experience
to get a job, but you need a job to gain experience! This section will explore common reasons for gaps
in a work background and provide strategies to help you overcome the work experience bottleneck.

There are several reasons why your work background might not perfectly align with what an employer is
looking for, such as a career transition from a different field; you may be a recent graduate with limited
or no full-time experience, or you may have employment gaps due to personal reasons (for example,
caregiving, health, travel) or have done freelance or contract work, which may not be perceived as
consistent or relevant experience.

Understanding the reasons behind work background gaps is essential for crafting a compelling narrative
and demonstrating your value to potential employers. Here are several methods to help you fill the
work experience gap and strengthen your data science candidacy:

o Personal projects: Develop and showcase personal projects demonstrating your skills, creativity,
and problem-solving abilities. Choose projects that align with your career interests or target
industries. This will help build your portfolio and show your passion and commitment to the field.

o Internships, co-ops, fellowships, and apprenticeships: Seek internships, co-ops, or apprenticeships
to gain hands-on experience and make valuable connections in the industry. These opportunities
can provide a foot in the door, allowing you to learn from experienced professionals and
build a network that can lead to future job prospects. There are even some online internships.
For example, Forage offers virtual experiences hosted by top companies including JPMorgan
Chase, Walmart, KPMG, Lyft, Red Bull, PWC, Accenture, Deloitte, GE, and more. Many tech
companies such as Microsoft, Amazon, and Google offer many apprenticeships for recent
graduates and professionals. Some organizations offer online fellowships, such as Correlation
One and Insight Fellows.

o Freelance and consulting work: Offer freelance or consulting services to businesses and
organizations, even if on a pro bono basis. This allows you to gain practical experience, enhance
your skills, and build a track record of success. In addition, it demonstrates your ability to work
with clients and solve real-world problems. Websites include Upwork, Fiverr, FlexJobs, and so on.

Understanding expected skills and competencies

o Online competitions and hackathons: Participate in data science competitions and hackathons,
such as those hosted on Kaggle or DrivenData. These events allow you to work on challenging
problems, collaborate with others, and showcase your skills to potential employers.

o Open source contributions: Contribute to open source projects related to data science, ML, or
Al This improves your technical skills and demonstrates your ability to collaborate with others
and contribute to the broader data science community.

By employing these strategies, you can overcome the work experience bottleneck and position yourself
as a strong candidate in the data science job market. Remember - persistence and adaptability are key
to success. Stay focused on your goals, seize opportunities to learn and grow, and, ultimately, you'll
break through the work experience barrier to land your dream data science job.

Now that you've had a proper introduction to bottlenecks that you might encounter, as well as methods
and resources to address them, let’s gain a better understanding of the skills and competencies that are
expected of you. After reviewing both hard skills and underrated soft skills, you will be able to isolate
your competency gaps, which will not only help you identify which resources to leverage but will also
help you navigate this book in a more pointed and goal-oriented fashion. While it is encouraged to
review the book in its entirety, you can prepare for sections that might require more attention.

Understanding expected skills and competencies

Here’s the deal - the interview is a critical component of the data science job application process,
where you can showcase your skills, knowledge, and personality to potential employers. The interview
process is crucial for several reasons:

« Employers can assess your technical skills, problem-solving abilities, and critical thinking
o Itlets you demonstrate your communication skills, teamwork, and cultural fit

« Itallows you to ask questions and gather information about the company and role to ensure it
aligns with your career goals and values

o DPreparing for the interview is essential to stand out in the competitive job market and secure
your dream role

Preparing for the data science interview is essential to success. In fact, it’s one of the most useful
activities that you can do for your career. This is not only true for prospective data scientists looking to
land their first job in the field but also for well-seasoned data scientists who wish to stay on top of new
techniques and technologies. In later sections of this book, we will help you prepare by reviewing the
most common data science interview topics, including technical and case study questions. In addition,
we will give you problems to practice your problem-solving skills, coding, and data manipulation
techniques. Including these activities, you should also prepare by researching the company; its culture,
products, and industry trends. Additionally, prepare questions to ask the interviewer to demonstrate
your interest and engagement.

17

18

Exploring Today’s Modern Data Science Landscape

For now, know that most data science interviews consist of two primary areas: technical (hard) skills
and non-technical (soft) skills. Each area serves a different purpose and requires distinct preparation
strategies. The technical portion assesses your knowledge and skills in data science, programming,
statistics, and ML. For example, it may include coding exercises or algorithmic questions, data
manipulation and cleaning tasks, statistical analysis or hypothesis testing questions, and ML model
selection and evaluation problems. Meanwhile, the non-technical portion evaluates your communication
skills, problem-solving skills, and ability to work in a team. It may involve questions about your past
experiences and accomplishments, situational or problem-solving scenarios, discussion of your
strengths, weaknesses, and work style, and exploration of your motivations and career aspirations.

Mastering the data science interview is a crucial skill that can make or break your career. While we don't
win them all, studying for these interviews can feel like preparing for a marathon. This is especially
true when you have to prepare for multiple interviews and/or take-home assignments. The key to
breaking into the data science field is building strong foundations in expected skills and competencies.
By excelling in the interview process, you can leave a lasting impression on potential employers and
increase your chances of receiving a job offer. Furthermore, understanding the interview’s structure
thoroughly prepares you for both technical and non-technical portions, and by effectively highlighting
your strengths and skills, you’ll be well on your way to success in the data science field.

Let’s take a deeper look into what’s included in the hard and soft skills expected of a prospective data
scientist. After the review, you will have a clearer concept of the proficiencies you will learn throughout
this book.

Hard (technical) skills

To excel in a data science role, you must possess a strong foundation in various hard technical skills.
These skills enable you to effectively manipulate, analyze, and interpret data and develop and deploy
ML models. In this section, we'll discuss the essential hard technical skills required to be successful
in a data science position:

o Programming languages: Proficiency in programming languages is crucial for data manipulation,
analysis, and visualization. The most popular languages in data science are:

* Python: A versatile, high-level programming language with extensive libraries and tools
for data science, such as NumPy, Pandas, Matplotlib, and scikit-learn (we cover some key
Python skills later in the book).

* R: A language specifically designed for statistical computing and graphics, offering a wide
range of packages for data manipulation, visualization, and modeling.

o Data manipulation and cleaning: Data scientists often work with raw, messy, or incomplete data.
Therefore, you must be skilled in data preprocessing, cleaning, transforming, and organizing
data to prepare it for analysis or modeling. Proficiency in SQL is often needed to pull data from
databases and clean and prepare it.

Understanding expected skills and competencies

o Data visualization: Data visualization represents data in a graphical format to effectively
communicate insights and trends. Essential data visualization skills include creating clear and
informative visualizations using tools such as Matplotlib, ggplot2, or Tableau and selecting
appropriate visualization types based on the data and the intended audience. Effectively
communicate insights and findings through visual storytelling.

o Statistics: A strong foundation in statistics is vital for making data-driven decisions and interpreting
results. Key statistical concepts and techniques in data science include descriptive statistics,
which summarize and describe data using measures such as mean, median, mode, variance,
and standard deviation. Additionally, a candidate must know inferential statistics, which draws
conclusions about populations or relationships based on sample data using techniques such as
hypothesis testing and confidence intervals. Also, probability theory is about understanding the
likelihood of events and their relationships, including concepts such as conditional probability,
independence, and Bayes’ theorem.

o ML: ML involves training algorithms to learn from data and make predictions or decisions.
Essential ML skills include:

* Supervised learning (SL): Building models to predict target variables based on input features.
Some SL techniques that you should understand before your data science interview include
linear regression, logistic regression, and decision trees.

* Unsupervised learning (UL): Discovering patterns or structures in data without labeled
targets. Techniques such as clustering, dimensionality reduction, and anomaly detection
are important to understand before your data science interview.

* Model evaluation: Assessing model performance using metrics such as accuracy, precision,
recall, F1 score, and area under the curve (AUC).

o Cloud computing platforms: Services such as AWS, Azure, or Google Cloud provide scalable
resources for data storage, processing, and ML. More and more organizations are adopting these
platforms, and they will likely require you to know how to perform data science activities using
them, although most services offer certificates to show your proficiency in using their service.

It’s essential to continuously refine and update your skills to stay competitive in the rapidly evolving
field of data science. Engage in ongoing learning, attend workshops, and participate in online courses
or boot camps to keep your technical skills sharp and relevant.

Soft (communication) skills

While hard technical skills form the foundation of a data scientist’s expertise, soft skills are equally
important in ensuring success in the role. Soft skills are non-technical, interpersonal abilities that help
you navigate professional relationships, collaborate with team members, and effectively communicate
your insights. This section will discuss essential soft skills required to excel in a data science position:

19

20

Exploring Today’s Modern Data Science Landscape

o Curiosity and continuous learning: A successful data scientist must possess a curious mindset
and commitment to ongoing learning. Fostering curiosity and continuous learning includes
staying informed about industry trends, new tools, and techniques. Additionally, seek feedback
from peers, mentors, and supervisors to identify areas for growth. Finally, engage in professional
development activities, such as attending conferences, workshops, or online courses.

o Communication: Effective communication is critical for data scientists, as it enables you
to explain complex concepts and insights clearly and concisely, tailored to your audience.
Also, it is crucial that you present your findings and recommendations to both technical and
non-technical stakeholders.

o Teamwork and collaboration: Data scientists often work in multidisciplinary teams, collaborating
with engineers, analysts, product managers, and other stakeholders. Essential teamwork and
collaboration skills include active listening and consuming others’ perspectives, needs, and
ideas. Adaptability is also essential for collaboration, adjusting your approach and priorities
to accommodate changes in team dynamics, project requirements, or goals.

o Problem-solving: Data scientists must tackle complex, real-world problems by breaking them
into smaller components, analyzing available data, and developing appropriate solutions. Key
problem-solving skills include analytical thinking, where you identify patterns, trends, and
relationships in data and understand the underlying structure of problems.

o Time management and organization: Effective time management and organization skills are
crucial for managing multiple tasks, meeting deadlines, and prioritizing work. To excel in these
areas, consider setting clear goals and objectives for both short-term and long-term projects.
Also, create a structured schedule that gives time for different tasks and priorities. Finally,
you should regularly assess progress, adjust plans as needed, and learn from past experiences.

These hard and soft skills are what make up a comprehensive data scientist who is not only equipped
to use mathematical and computational techniques to tackle business questions but is also skilled in
effectively managing multiple projects, deliverables, stakeholder expectations, and tight deadlines.
While data scientists are typically not the most client-facing role in an organization, the best data
scientists stand out when they have strong interpersonal skills to collaborate and communicate
questions, requirements, caveats, how models work, and how to interpret results. After all, your work
is only as good as how it's communicated.

Exploring the evolution of data science

Exploring the evolution of data science

The field of data science continues to evolve, both in terms of the tools used and the type of work
conducted. This evolution is driven by advancements in technology, the increasing availability of data,
and the growing demand for data-driven insights in a wide range of industries. As a result, it is critical
for those interested in entering the field to not only learn fundamental techniques and technologies
of data science but also to stay diligent and current on new developments and technologies.

New models

One of the most significant ways in which the field of data science is evolving is through the development
of new ML and AI algorithms and techniques. As Al continues to become more sophisticated, data
scientists are able to build more accurate and powerful predictive models that can be used to solve a
wide range of complex problems. This includes the implementation of methods borrowed by other
fields in industry and academia such as process improvement, operations research, game theory,
network/graph analytics, and deep learning techniques.

It goes without saying, but developments such as the large language models (LLMs) used in
ChatGPT are expected to have a profound impact on how data scientists work. For example, LLMs
in integrated development environments (IDEs) have the potential to expedite the writing of code.
This is comparable to the development of open source software (OSS) packages, which have already
increased productivity for programmers.

New environments

Another way in which the field of data science is evolving is through the increasing use of cloud-based
technologies and platforms. Virtualization and serverless technologies have provided data scientists
with the ability to access powerful computing resources and scalable data storage, making it easier and
more cost-effective to work with large datasets. Thus, cloud computing has revolutionized the data
science landscape by offering unprecedented opportunities and transforming the way organizations
approach data analysis and ML. With these advancements, data scientists have overcome traditionally
inconvenient constraints such as hardware limitations, scalability challenges, and resource allocation.
Now, data scientists can create multiple virtual machines (VMs) on a single physical server, enabling
efficient utilization of computing resources.

21

22

Exploring Today’s Modern Data Science Landscape

For example, serverless technology simplifies model deployment and management of software applications,
as it eliminates the need for infrastructure provisioning and automatically scales resources based
on demand. Cloud computing platforms such as AWS, Microsoft Azure, and GCP have dominated
the Infrastructure-as-a-Service (IaaS), Platform-as-a-Service (PaaS), and Software-as-a-Service
(SaaS) spaces and democratized access to high-performance computing, storage, and specialized tools,
empowering data scientists with immense computational power at their fingertips. They offer powerful
frameworks such as Google Cloud AI Platform and Azure Machine Learning, which can train complex
models on massive datasets without investing in expensive hardware. Additionally, cloud-based data
lakes such as AWS Simple Storage Service (S3) or Azure Data Lake Storage (ADLS) provide scalable
and cost-effective storage solutions for large-scale data processing and analysis.

Opverall, virtualization, serverless technology, and cloud computing have dramatically expanded the
capabilities and reach of data science, enabling more efficient and scalable data analysis, fostering
innovation, and accelerating the development of AI-driven solutions across industries.

New computing

Improvements in computational power will also continue to drive the field forward. As datasets
continue to grow in size and complexity, and as Al algorithms become more sophisticated, data
scientists require more powerful computing resources to process and analyze data. This has led to the
development of specialized hardware and software tools designed specifically for data science, such
as GPUs, and distributed computing frameworks such as Hadoop and Spark. In addition, many data
scientists are now turning to cloud-based computing platforms such as AWS and Google Cloud to
access scalable computing resources on demand.

With the rapid pace of technological advancement in the field of data science, it is critical for data
scientists to stay up to date on the latest developments in computational power and to have the skills
and knowledge necessary to take advantage of these resources.

New applications

In addition to these technical advancements, the field of data science is also evolving in terms of the
industries and applications where it is being used. Data science is now applied to a wide range of
fields, from healthcare and finance to transportation and logistics. As a result, data scientists must
adapt to new industries and domains and be able to apply their skills and techniques to solve new
and unique problems.

Given the rapid pace of change in the field of data science, it is critical for individuals interested in
entering the field to stay diligent and current on new developments and technologies. This requires a
commitment to ongoing learning and professional development, as well as an openness to new ideas
and approaches. By staying up to date on the latest advancements in the field, data scientists can
ensure that they remain competitive and are able to deliver value to their organizations and clients.

Summary

Summary

In this chapter, you've learned about the modern data science landscape, what the role entails, what skills
and competencies are expected of a prospective candidate, and the most common paths to becoming
a data scientist. Furthermore, you've learned about the multi-faceted functionality of data science
and how it leads to a diverse workforce of data scientists with different specialties and backgrounds.

With this in mind, you may determine what your path might look like or what knowledge gaps you hope
to close. Whichever the case, you are now prepared to move forward with your interview preparation.

In this next chapter, we will begin the data science job search journey by mentally (and emotionally!)
prepping you for the road ahead. We'll discuss some underrated tips on how to identify the right job
opportunity, where to find it, how to create a stand-out application, and how to stay ahead of the curve
in a sea of evolving technology, project portfolios, and resumes. We hope that you are as excited as
we are to get started!

References

« [1] Data science from Wikipedia: https://en.wikipedia.org/wiki/Data_science

o [2] Is Data Scientist Still the Sexiest Job of the 21st Century? by Thomas H. Davenport and DJ Patil,
from Harvard Business Review: https://hbr.org/2022/07/is-data-scientist-
still-the-sexiest-job-of-the-21st-century

o [3] Data Scientists from U.S. Bureau of Labor Statistics: https://www.bls.gov/ooh/
math/data-scientists.htm#itab-1

o [4] The Digitization of the World by David Reinsel, John Gantz, and John Rydning, from
International Data Corporation: https: //www.seagate.com/files/www-content/
our-story/trends/files/idc-seagate-dataage-whitepaper.pdf

23

https://en.wikipedia.org/wiki/Data_science
https://hbr.org/2022/07/is-data-scientist-still-the-sexiest-job-of-the-21st-century
https://hbr.org/2022/07/is-data-scientist-still-the-sexiest-job-of-the-21st-century
https://www.bls.gov/ooh/math/data-scientists.htm#tab-1
https://www.bls.gov/ooh/math/data-scientists.htm#tab-1
https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf
https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf

2

Finding a Job in Data Science

Now that you have decided to grow your career in data science, let's go and get one!

This chapter will cover effective job search strategies, including how to mentally prepare yourself and
develop an effective resume and work portfolio. Our goal is to position you to be successful in your
job search. In addition, we provide tips from insiders.

After completing this chapter, you will know how to properly develop a data science job search plan
and strategy, complete with a stellar resume and cover letter to attract potential employers and an
impressive project portfolio. You will also have a grasp on when and how to source jobs through
networking and online job posts, and how to stay ahead of the curve with new technology skills.

In this chapter, we will cover the following topics:

o Searching for your first data science job
o Constructing the golden resume

« Prepping for landing the interview

Searching for your first data science job

Embarking on your data science job search requires careful preparation, diligence, patience, and thick
skin. Mental readiness is as vital as technical expertise, with the search often becoming a marathon
rather than a sprint. Therefore, maintaining composure and perseverance in this demanding field is
paramount for success. To achieve this mindset, it is pertinent that you leverage effective job-hunting skills.

An effective job hunt leverages several tools and resources at your disposal. Job board sites are crucial,
functioning as bridges between you and potential employers. Learning how to navigate these platforms
effectively can convert them from daunting job databases into your personal gold mines. Equally crucial
is a professionally curated portfolio that showcases your technical acumen, problem-solving prowess,
creativity, and passion for data science. That’s right - landing a data science job will require more than
technical prowess. It’s a bit of a science and art form, requiring some creative and clever strategies.

26

Finding a Job in Data Science

The art of applying for jobs combines all of your job preparation efforts — resume writing, strategic
networking, strategic applying, and so much more. The process goes beyond merely clicking a button
or sending an email - it demands strategic timing, tailoring your applications, and aligning your
unique skillset with the vision and goals of prospective companies.

This chapter aims to provide a comprehensive guide to successfully navigate these steps, equipping
you with the knowledge, strategies, and tips necessary for an effective job search in the data science
field. This begins with an exploration of the mental journey ahead.

Preparing for the road ahead

Embarking on a job search can stir up a whirlwind of emotions. However, the initial excitement of
seeking a new role in data science can quickly be tempered by the reality of the challenges ahead. Luckily
for you, this job search process often follows a predictable emotional cycle (as data scientists, we love
predictability!). Much like forecasting, it allows us to take a peek at the future and plan accordingly.

The journey typically begins with a sense of optimism and excitement at the prospect of new
opportunities. Kourtney Whitehead, a career expert and the author of Working Whole, says, “Don’t
try to temper your expectations or assume your positive attitude is naive. In fact, the hopefulness you
feel in the early stages of a job search is in recognition of the true opportunity that stands before you”[1].

However, as time progresses and the realities of a competitive job market set in, feelings of frustration,
disappointment, and self-doubt can surface. There may be periods when your applications seem to
disappear into a void, or you might face rejection after investing significant time and energy into
interviews. These experiences can feel disheartening and may cause emotional lows, but embracing
the emotional cycle as a normal part of the job search process is the first step in preparing mentally
for the journey ahead.

Strategies for emotional resilience
Here are some strategies to help you maintain emotional resilience during your job search:

o Identify your motivation: Understanding why you want to become a data scientist will help you
focus on the end goal and motivate you during difficult times.

o Maintain perspective: Remember that your worth is not defined by your job or the number of
rejections you receive. The job search is just one aspect of your life, and rejection is a common
part of the process that even the most successful professionals have faced.

o Self-care: Prioritize activities that help you relax and de-stress. This could be exercise, meditation,
spending time with loved ones, or pursuing a hobby. These activities can help you maintain
balance and prevent burnout.

o Support network: Surround yourself with supportive friends, family, or mentors who understand
your journey and can offer encouragement during low points.

Searching for your first data science job

o Celebrate small wins: Received a callback? Made it through a tough coding challenge? Celebrate
these victories. They indicate progress and can boost your confidence.

o Reflect and learn: Use rejections as opportunities for growth. Request feedback where possible,
reflect on your performance, and identify areas for improvement.

Staying patient and persistent

Patience and persistence are vital in navigating the ups and downs of a job search. Here are some
strategies to cultivate these traits:

o Set realistic expectations: Remember that landing a job, especially in a competitive field such as
data science, can take time. Prepare for the possibility that your job search may be a marathon,
not a sprint.

« Consistent effort: Decide how much time you want to dedicate in a week or each day to your
job search activities, such as networking, applying for jobs, and improving your skills. Set a
dedicated time for these activities. Consistency can help you maintain momentum and progress.

o Flexible approach: If you're not getting the desired results, be willing to adjust your strategy.
This could mean broadening your job search, improving your resume, or learning a new skill.

o Stay informed: Keep up to date with the latest trends and demands in the data science market.
This can help you identify new opportunities and stay motivated. We will discuss this more
later in this chapter.

o Fight off procrastination: Thinking about a new job is easier than working on your resume or
online profile. Use the motivation you identified earlier to help get you started and avoid putting
it off for later. Remember, you can’t get your next data scientist role until you start.

How to get started when life is so busy

Searching for a job sometimes feels like a full-time job in itself. It's especially daunting if you currently
have a job; repetitively completing applications by reentering the same information into a portal and
preparing for the actual interview can take hours. As a result, you may begin to question your resolve
in finding your new position. But stick with it! You have already shown your commitment by reading
this book; you must continue even through the challenging moments.

This is where maintaining a consistent effort during your job search is critical.

Firstly, it helps keep you engaged and prevents inertia from settling in. Job hunting can often feel
like a numbers game, but your odds of success increase with every application you submit, every
networking event you attend, and every new skill you learn. Designating a specific time each day or
week for job search activities can create a routine that makes the process feel less overwhelming and
more manageable.

27

28

Finding a Job in Data Science

Secondly, consistency demonstrates a key professional attribute - resilience. It is the ability to stay
focused and committed in the face of challenges, a trait highly valued in data science, where problems
can be complex and solutions may not be immediately apparent.

Lastly, consistent effort allows you to stay current with the dynamic nature of the job market. By
regularly checking job boards, networking, and improving your skills, you stay in tune with the evolving
demands and trends in the data science industry. This continual engagement and adaptability can
give you a competitive edge in the job market.

Therefore, preparing emotionally for your job search is as important as updating your resume or
brushing up on your technical skills. You can navigate your job search journey with a healthier
and more balanced mindset by acknowledging the emotional highs and lows, practicing emotional
resilience, and cultivating patience and persistence. Remember, every step you take brings you closer
to your goal, and every challenge you overcome makes you a stronger candidate.

Finding job boards

After setting yourself up for success by preparing mentally for the journey ahead, one of your next steps
is to begin the job search. This is commonly accomplished by tapping into personal and professional
networks and scanning job boards.

Job board sites such as LinkedIn, Glassdoor, and Indeed have revolutionized the job search process,
providing a wealth of opportunities and resources at your fingertips. These platforms are not just
avenues for applying for jobs but also powerful tools for research, networking, and gaining insights
into the data science industry. This section will guide you on effectively utilizing these platforms
beyond the simple Apply button.

Sampling job board sites
Each job board site offers unique features to aid your job search. Here are just a few:

o LinkedIn: Primarily a professional networking social media site, LinkedIn hosts a robust job
board that allows you to connect with professionals in the industry, join relevant groups, follow
companies of interest, and showcase your professional brand.

o Glassdoor: Glassdoor is known for its company reviews, salary reports, and interview insights
provided by employees. It also features a job board that can be filtered by location, job title,
and company.

o Indeed: Indeed is a comprehensive job board aggregating job postings from various websites.
It also allows users to upload resumes and apply for jobs directly.

» Handshake: Handshake is a job site specifically tailored toward college students. It lists job and
internship opportunities and provides opportunities to meet with company recruiters.

Searching for your first data science job

Built-In: Built-In is a job board known for its tech startup postings, which make great options
for professionals looking for smaller and/or newer companies.

Dice: Dice is a job board that specifically posts jobs within the tech sector.

Fishbowl: Fishbowl isn't a job board, but rather a social media app where professionals can
engage in career discussions, anonymously. This format encourages honest and transparent
discussions on company culture, compensation, and many other topics. It's a great resource if

"

you want the "insider's" perspective on working for a company.

Each of these sites has its own uniqueness, but they all offer the ability to alert you as new roles are
added to their site that match your profile. Make sure that you utilize this ability, as it is a great way to
continue to have leads come in. Depending on how aggressive you are with your search, you can set
these alerts to occur anywhere between once a month to once a day. In either case, be sure to utilize
relevant keywords and job search criteria such as Location, Format (remote versus hybrid versus
on-site), Type (full-time versus part-time versus contract), Years of Experience, and others.

Using job board sites for research

Job board sites can be a gold mine of information to inform your job search strategy. Here’s how:

Understand the market: Regularly browsing these sites can provide insights into the types of
roles available, the most in-demand skills, and the companies hiring data scientists.

Analyze job descriptions: Studying job descriptions can help you understand the qualifications,
skills, and experience employers seek. This can guide your learning pathway and help tailor
your applications. We will talk more about this later in the chapter.

Company research: Company pages on LinkedIn, reviews on Glassdoor, and employee discourse
on Fishbowl can give you a sense of the company culture, values, and work environment. This
can help you identify organizations aligned with your career goals and values.

Other job site tips

Here are some more tips for using job sites:

Clearly define your job search criteria. Determine the industry, location, and other specific
requirements that align with your career goals.

Consider applying for data science jobs that more closely align with your academic and/or
professional background. For instance, if you studied geology, consider finding geospatial or
environmental data science roles. Similarly, if you have experience in the healthcare industry,
consider finding data science roles in pharma, insurance, or informatics.

Keep your profile up to date with the latest information, such as work experience, education,
and skills. This increases your chances of being contacted by recruiters.

29

30

Finding a Job in Data Science

o Make use of advanced search filters available on job search websites to refine your search
based on factors such as location, salary, experience level, and job type. Try to nail down a few
keywords that are more likely to come up in the roles that you seek.

o Before applying for a job, research the company to gain insights into its culture, values, and
reputation. This information will help you tailor your application and prepare for interviews.

o Read job descriptions carefully and follow the application instructions provided by the employer.
Missing out on specific requirements can lead to your application being overlooked.

« If the website allows you to upload a profile picture, use a professional-looking image that
presents you in a positive and suitable manner.

o Research salary ranges. Use job search websites to research salary ranges for positions in your
desired industry and location. This information can help you negotiate a fair compensation
package during the hiring process.

« On LinkedIn, do not fall for the habit of only applying to Easy Apply roles. The easier it is
to apply, the more competition you will have. For this reason, use job board sites such as
ZipRecruiter very sparingly.

» Focus most of your time applying to roles that have been live for no longer than one week. Unless
recruiters are behind schedule, most of them have gathered a healthy database of applicants to
interview. Prioritize roles by how new they are. As the saying goes, “The early bird gets the worm”

Networking and building connections

Networking plays a pivotal role in the tech and data science industry, serving as a crucial gateway
to professional growth, collaboration, and opportunities. In this dynamic and rapidly evolving field,
building a robust network allows individuals to connect with like-minded professionals, experts,
and mentors who can provide valuable insights and guidance. Through networking, professionals
can expand their knowledge base, stay updated on the latest industry trends, discover new tools and
technologies, and make meaningful connections with other professionals.

Moreover, networking facilitates the exchange of ideas, fostering innovation and creativity. It opens
doors to potential job opportunities, partnerships, and collaborations, enabling individuals to advance
their careers and make meaningful contributions to the industry.

In the tech and data science industry, where staying ahead of the curve is essential, networking acts as
a catalyst for professional success, providing a platform for continuous learning, support, and growth.

Here are some ways to harness this potential:

o Connect with professionals: Don’t hesitate to connect with other data scientists. A personalized
connection request outlining your interest in their work or the field can go a long way. Reach
out to recruiters or HR professionals directly to express your interest and inquire about potential
opportunities. Build meaningful connections and seek referrals whenever possible. The more

Searching for your first data science job

you can streamline this process while creating and maintaining meaningful relationships, the
better. Google Sheets now offers a ChatGPT plug-in, which allows you to pen personalized
introductory emails based on each row of professional career information. Zapier can also be
used to perform a similar task.

o Informational interviews: Reach out to connections for informational interviews. This is a
non-threatening way to learn about their role and journey and gain valuable advice. Remember,
this is not an opportunity to ask for a job but to learn and build a relationship. Although this
will make the interviewee aware of your background, you shouldn’t hesitate to share that you
are seeking a job.

« Engage with content: Commenting on posts, sharing articles, and contributing to discussions can
increase your visibility and present you as an engaged member of the data science community.

o Join groups: LinkedIn groups can be a source of industry news, discussions, and job postings.
Participate actively to gain and share insights. Other sites and apps such as Slack, Discord, and
Meetup allow you to meet professionals with similar interests by joining topic-based groups. These
communities often share job-hunting tips, job postings, recruitment processes, and networking
opportunities that can lead to referrals. Sites such as Blind and Fishbowl have groups based
on interests and company, allowing users to engage anonymously, which encourages users to
share information that they otherwise may not. Additionally, apps such as Slack and Discord
also allow you to join topic-based communities for networking opportunities.

o LinkedIn Premium: At the time of this writing, LinkedIn offers some paid features for job
seekers. For jobs applied for via their website, this includes the ability to view how many other
candidates have applied for the job and some of their skills, allowing you to understand your
competition. Additionally, you have a chance to see who is viewing your profile; this information
will enable you to network with recruiters who come across your profile.

Finding job leads

As previously mentioned, your connections and the company pages that you follow could generate
job leads. While many companies’ job postings can be located on job board sites, many more jobs
are never posted. According to Flex Jobs, roughly 70-80% of job openings never hit the internet [2].

However, connections who know that you’re job hunting might share relevant internal opportunities
at their companies. This is where your personal and professional networks really make a difference.
Letting people know you are looking for a job goes way beyond enabling the Open for Work banner
on your LinkedIn profile.

Although networking may feel weird at first, there are countless books out there that teach you how to
network effectively and naturally. In some cases, you may make lifelong connections and acquaintances,
which is an enriching experience all on its own. In either case, networking increases your chances
of finding a data science job with fewer applicants, given that many job openings never go public.

31

32

Finding a Job in Data Science

COVID-19 leads to more remote work

The COVID-19 pandemic has impacted our society in many ways, including where and how work
is performed. Although remote work wasn't new at the time, the start of the pandemic forced many
companies to adopt remote and hybrid work formats for their employees. As a result, many of those
companies found that they could run their organization successfully this way. The tech industry, as
well as technical workers, were perhaps those who benefited the most from having this option.

As hiring managers are now more comfortable with individuals working remotely, there has been an
increase in remote work positions. Remote work does not suit everyone. However, candidates who
are either uninterested or unable to relocate for a new job can pursue more roles through remote
work. The pool of available job leads has increased, and many job board sites allow you to specifically
filter to remote and hybrid jobs. In many cases, applications are beginning to ask for the candidate’s
preference. However, it is worth noting that the increase in remote work has not outpaced the number
of employees interested in landing these roles. With that said, be sure to apply for on-site and hybrid
roles, as remote roles are more competitive.

Job board sites are powerful allies in your data science job search. By leveraging these platforms
for research, networking, and job leads, you can make informed decisions and uncover previously
inaccessible opportunities through traditional job search methods. Remember, in the digital age, your
online presence and activities speak as loudly as your resume.

Interpreting job descriptions

Navigating the job market can often feel daunting, particularly when you come across a job description
that lists an array of qualifications, some of which you might not possess. So, here’s a crucial piece
of advice: remain confident, even if you don’t meet 100% of the job description’s requirements. It’s
perfectly acceptable, and indeed common, to apply for roles even when you don’t meet every single
criterion. In fact, it’s advised to apply for jobs even if you only meet 70-80% of the job requirements.
Furthermore, some argue that if you meet 100% of a job description, it leaves little room for growth,
to which many recruiters attribute high attrition [3].

In reality, job descriptions are typically an employer’s wish list, outlining the ideal candidate’s skills
and qualifications. In most cases, this results in job descriptions that list more programming languages
and technical frameworks than you actually need to know. Thus, recruiters recognize that finding
a candidate who checks all the boxes is quite rare — potentially non-existent. Employees often look
for high potential and a willingness to learn. If you can show that you are eager to grow, adapt, and
have a solid foundation on which you can build the required skills, many employers will consider
your application.

Being passionate about the job role can sometimes compensate for some lack of experience or skills. If
you convey your enthusiasm effectively in your application and during the interview, hiring managers
are likely to consider you seriously for the role. They understand that a passionate candidate is likely
to be motivated, dedicated, and willing to learn — qualities that can sometimes outweigh specific
technical skills.

Searching for your first data science job

Remember, the worst-case scenario is that you're not selected for an interview, but if you get the
opportunity to interview, it’s your chance to explain why you're a great fit for the role, regardless of not
meeting all of the requirements. You can highlight transferable skills from your previous experiences,
showcase your learning ability, and express your passion for the role and the industry.

Don't let a job description deter you from applying for a role that you're genuinely interested in. Believe
in your potential and give yourself the chance to share your candidacy. After all, the job search journey
is not just about the destination but also about the valuable lessons and skills you gain along the way.

Beginning to build a standout portfolio

Oftentimes, technical roles require an extra layer to an applicant’s candidacy. As you begin to search
for jobs, you might notice that many of them request a link to a portfolio.

A portfolio of data science projects is a repository that highlights a spectrum of your technical
aptitude and potential. Portfolios can differentiate you from other candidates during your job search.
A well-crafted portfolio also showcases your creativity, problem-solving abilities, learning journey, and
passion for the field. For junior and entry-level data scientists with limited professional experience,
portfolios are highly recommended.

This section will provide some tips and pointers on how to build a compelling data science portfolio
that can give you a competitive edge in the job market.

Starting your portfolio

If youre new to data science, you may wonder what to include in your portfolio or where to host it.
Here are a few options:

o Coursework projects: If you've completed a data science degree or boot camp, you likely have
a collection of projects you've worked on. Choose those that best demonstrate your skills and
make sure they’re polished and well documented.

o Personal projects: Working on a project related to a topic you're passionate about can make
the process enjoyable and result in a unique portfolio piece. This could be analyzing sports
statistics, election data, or financial trends. By using public datasets, you can showcase your
ability to extract insights from data. Just try to avoid overly used datasets often hosted on Kaggle.

o New techniques or algorithms: Whenever you learn a new technique or algorithm, consider
creating a small project to apply what you've learned. This demonstrates your commitment to
continual learning while solidifying your new knowledge. Over time, you’ll witness the growth
of your portfolio and your knowledge base!

33

34

Finding a Job in Data Science

Other methods for developing your portfolio

In addition to the previous points, consider these methods for expanding your portfolio:

Competitions: Sites and organizations such as Kaggle, DataHack, DataCamp, Data Science Dojo,
the Data Science Global Impact Challenge, and DataKind host data science competitions (also
called hackathons) where you can apply your skills to complex problems, often alongside other
learners of various skill levels. These projects can add depth to your portfolio and show you
can perform under pressure.

Volunteer work: Nonprofits and small businesses often need data analysis but lack resources.
DataKind, Data for Good, and Statistics Without Borders are just a few organizations that
consistently seek data science volunteers. Volunteering your skills can result in meaningful
projects for your portfolio.

Blogging: Writing about your projects, explaining the methodologies used, and discussing your
results can demonstrate your communication skills and ability to translate technical concepts
into plain language.

Presenting your portfolio

Once you have your projects, it’s crucial to present them effectively. Here’s how:

Choose a platform: GitHub is popular for hosting data science projects. You can include code,
datasets, and documentation. Other options include Kaggle, personal websites (e.g., Canva),
or blog platforms such as Medium and Towards Data Science.

Documentation: Ensure each project is well documented. Include an overview of the project, the
techniques used, and a discussion of the results. Clear, concise explanations are key. Documentation
can be provided directly in the code using comments, or can incorporate other methods such
as a README.txt file or by using Markdown, a markup language used for creating legible and
engaging text documents. Thanks to the explosion of generative Al, there are even platforms
such as Docify Al and Mintify, which autogenerate documentation from code.

Accessibility: Make sure that your code is accessible, reproducible, and easy to read. Good
practices include commenting your code, formatting your code, using clear variable names,
organizing your code neatly, and following general coding conventions and best practices when
available. Some integrated development environments (IDEs) have features that make creating
accessible projects easier. For example, VS Code is an IDE that offers the Integrated Accessibility
Checker and a host of extension applications that have accessibility features.

Visualizations: Effective data visualizations can make your projects stand out. They can
demonstrate your ability to tell data stories and present data in a meaningful, interesting, and
accessible way. We will discuss visualizations and data storytelling later!

Searching for your first data science job

o Create a video: You can create a video of some of your work portfolio explaining and presenting
your information. If you can create a compelling and engaging video, you can post it on YouTube
and share it through your social media channels. This is another way for recruiters to see you
and help you stand out. A compelling data story can encourage others to share your video,
and since it is a video, it can make its way around the web, promoting you all the time, 24/7!

In conclusion, a well-crafted data science portfolio can greatly enhance your job prospects. By showcasing
a range of projects demonstrating your skills, passion, and learning journey, you can make a strong
impression on potential employers and set yourself apart in the competitive data science job market.

Applying for jobs

The job application process can often feel like a daunting maze, but you can navigate it effectively
with the right strategies and understanding. This section outlines a range of approaches to ensure that
you're not just applying for jobs but doing so strategically.

When to apply

Timeliness is a critical factor for job applications. Generally, the earlier you apply after a job is posted,
the better. Employers often start reviewing applications soon after posting a job and may even begin
interviewing before the application deadline. Therefore, focusing on jobs posted within the past week
can increase your chances of your application being seen.

Applying in numbers

Remember, job applications are a numbers game. The more roles you apply for, the higher your
chances of landing an interview. However, this doesn’t mean you should apply indiscriminately. Aim
for a balance between quantity and quality. Each application should be well-researched and tailored
to the specific role and company.

To manage a high volume of applications, consider setting application goals per week. This approach
can help you stay organized, motivated, and consistent in your job search. It’s also beneficial to track
your applications in a spreadsheet, noting details such as the company name, role, date of application,
and any follow-up actions. This helps you stay organized and makes the process less overwhelming.

35

36

Finding a Job in Data Science

The key to a successful job search is persistence, patience, and strategy. By understanding the job market
dynamics and applying these strategic application tactics, you can maximize your opportunities and
land your desired data science role.

The Job Offer Funnel

of Applications

For example, you complete 200
applications. @
02

Evidence suggests that an average
of approx. 8.4% progress to the ist
round of interviews.

of Additional Interview Rounds
Typically, only a few candidates

make it this far (about 2 or 3).

Job Offer

Evidence suggests an average of
36.2% will receive an offer.

Figure 2.1: The job offer funnel [4]

Writing a compelling cover letter

A cover letter allows you to elaborate on the information in your resume and show why you’re a good
fit for the role. Here are some tips for writing a compelling cover letter:

o Showcase your interest: Show that you’re genuinely interested in the role and the company.
Mention specific aspects of the job or company that excite you.

o Tell your story: Use the cover letter to tell a cohesive story about your career journey, highlighting
the experiences and skills that make you a strong candidate as dictated by the job description.
It’s also advised to keep a record of your cover letters. Many roles with similar descriptions will
result in a similar cover letter and can serve as a template for future applications.

o Align with the company: Show how your values, goals, or experiences align with the company’s
mission or culture.

o Call to action: End your cover letter with a call to action, expressing your interest in an interview
or further discussions.

Constructing the Golden Resume

Cover letter rules

Cover letters can be a contentious topic among job seekers and recruiters. Should you always include
one? The answer largely depends on the specific situation. If a job description explicitly requires or
prefers a cover letter, you should certainly include one. Moreover, if you're particularly excited about
a job or your resume doesn’t directly align with the role, a cover letter is an excellent opportunity to
express your enthusiasm and explain how your skills and experiences make you a suitable candidate.

However, crafting a compelling cover letter can take time, so it’s advisable to be selective and focus on
those applications where a cover letter could make a significant difference. Furthermore, you should
utilize AI applications such as ChatGPT, Ramped, or CoverDoc.ai to automate as much of the writing
process as possible. Websites such as Canva also provide various professional cover letter templates.

At this point, you've learned about the intricacies of the job search process. But in reality, you've only
skimmed the surface - applying for data science jobs is a challenging task, especially given the various
rules and best practices to consider. Luckily, like anything else, the process will become easier over
time. As a result, the time it takes to apply for a job, screen job descriptions, and write introductory
emails will be reduced and you will become more efficient. Before you know it, your job search will
become a well-oiled machine with a growing project portfolio, a repository of cover letter templates,
a refined networking schedule and strategy, and a healthy income of job alerts.

However, a job application is incomplete without a resume! In the next section, we will discuss the
importance of a resume, and how to create one that will attract employers and stand out from the stack.

Constructing the Golden Resume

Your resume is arguably the single most important document in your job search journey. It acts as a
first impression, a summary of your skills and experiences, and, ultimately, the key to unlocking the
door to the interview stage. Given its importance, investing time and effort into crafting a compelling
resume is critical.

In today’s digital age, the initial review of your resume is often not performed by a human but rather
by an algorithmic system known as an Applicant Tracking System (ATS). These systems perform the
initial screening and filtering of resumes. However, while optimizing your resume for ATS, it’s equally
crucial to make it compelling for human readers. This is why resumes should contain a cohesive and
concise structure and format.

The perfect resume myth

When creating a resume, many job seekers fall into the trap of striving for an elusive perfect document.
They spend countless hours fine-tuning every word and agonizing over minute details. However, the
truth is there is no such thing as a perfect resume. What works for one recruiter or hiring manager
may not work for another, and what lands you an interview at one company may not have the same
effect at another. The key to an effective resume lies not in perfection but in adaptability and relevance.

37

38

Finding a Job in Data Science

A resume is not a static document but rather a dynamic one that should be adjusted and tailored
for each job application. Your goal should be to create a solid, well-structured baseline resume that
effectively communicates your skills, experiences, and accomplishments. This baseline resume serves
as a foundation that you can modify based on the specific requirements and preferences of each job
you apply for.

Remember, the primary purpose of your resume is to communicate the most essential information
about your qualifications for a specific role. It should provide a clear, concise, and compelling snapshot
of your professional identity. It is essentially a marketing document for your professional value.

Understanding automated resume screening

ATS systems automatically scan and sort resumes, filtering out those not meeting specific criteria.
Recruiters and hiring managers look for clear, concise, and well-organized resumes that effectively
communicate a candidate’s qualifications and potential. Therefore, your resume should strike a balance
between being ATS-friendly and human-friendly.

Getting past the stack of applicant resumes and ATSs is a challenging task, but not impossible. You just
have to master the guidelines and standards of resume building including formatting, terminology, and
how resumes are screened. Hence, our goal is to build the best-matched resume, not the perfect resume.

Since most resumes are initially reviewed by these automated tools, not humans, understanding how
an ATS works is critical to ensuring your resume passes this initial screening:

o Keyword matching: An ATS often screens for specific keywords related to the job description. Use
websites such as www . jobscan. co, resumeworded. com, and rampedcareers . com
to compare your resume with the job description and align your language with the terms
and phrases used by the company. The job description is an excellent information source for
knowing what keywords to use. Look for job-specific words repeated within the description,
such as “neural networks” or “Python.” You will want to ensure your resume highlights your
experience using these terms.

o Formatting: An ATS may struggle with complex formatting. Use an ATS resume template. Keep
your resume layout simple and clean, and avoid graphics, tables, columns, or unusual fonts.
We will review this in the next section.

http://www.jobscan.co
http://resumeworded.com
http://rampedcareers.com

Constructing the Golden Resume

Crafting an effective resume
Rather than striving for the elusive perfection, focus on these key aspects:

o Relevance: Highlight the experiences, skills, and accomplishments most relevant to the job
you're applying for. This goes beyond technical tools and tasks, but may also include industry
terminology or areas of expertise. Use the job description as a guide to understand what the
employer values most. You should address as many job description requirements and contexts
as possible by incorporating them in your resume’s job tasks and professional summary

o Clarity and conciseness: Avoid jargon and write in clear, concise language. Your goal is to make
it easy for the reader to quickly grasp your qualifications. When possible, use industry-specific
language to highlight your exposure and familiarity with key aspects of the job.

o Quantifiable achievements: Where possible, quantify your achievements. This adds credibility to
your claims and makes your accomplishments more tangible. A useful framework to use while
incorporating quantified achievements is the Specific, Measurable, Achievable, Relevant, and
Time-bound (SMART) framework.

o ATS optimization: Include keywords and phrases from the job description to optimize your
resume for the ATS. These days, we are fortunate enough to have Al tools such as Talentprise,
Pyjama Jobs, and Fortay to create your own matching job program; these flag jobs that specifically
meet your skill set based on your experience and background. Other platforms, such as Jobscan,
grade your resume across many metrics such as matchability, searchability, word count, and
words to avoid. Take that, ATS!

o Proofreading: Ensure your resume is free of spelling, grammar, and formatting errors. Mistakes
can create a negative impression and suggest a lack of attention to detail.

Remember to approach your resume as a work in progress — continually seek feedback and be open
to critiques. However, resist the urge to endlessly tweak your resume in search of perfection. A
good resume can get you in the door, but your skills, experiences, and interview performance will
ultimately land you the job. Instead of investing excessive hours perfecting your resume, spend that
time improving your skills, networking, preparing for interviews, and applying for jobs. Balance is
key in the job search process.

Here are some tips for crafting a resume that can impress both the ATS and human reviewers:

o Use specific language: Be specific in describing your skills and experiences. Instead of saying
you have experience with data analysis, mention the specific tools, techniques, or projects
you've worked on.

o Active language: Use action verbs to describe your responsibilities and achievements. Words
such as developed, analyzed, and implemented can make your experiences sound more dynamic.

o Quantifiable achievements: Where possible, quantify your achievements - for example, improved
model accuracy by 20% or reduced processing time by 30

39

40

Finding a Job in Data Science

Formatting and organization

Formatting and organizing your resume may seem straightforward; however, this section will
highlight a few important reminders and some tips for data scientists. We will start by discussing some
formatting reminders to give you a better chance of making it past the ATS screening process, while
maintaining visual appeal for a hiring manager to review. Then, we will provide you with reminders
and suggestions on organizing your resume.

First, ATSs analyze resumes for keywords and phrases that match a specific job description. However,
these systems can only parse and understand your resume if correctly formatted. Here are some guidelines:

File type: Save your resume as a . docx or . pdf file. These formats are the most compatible
with ATSs.

Styles: Refrain from adopting highly artistic or stylized resume templates, especially those that
use page space inefficiently, feature too many icons or photos, or provide self-graded scales of
skill aptitude. While these are aesthetically appealing, most of these features work against you.
Not only do they not pass the ATS but they may take up valuable real estate on your resume.
Instead, stick to formats that are well-tested and validated over time.

Tip

The Harvard Extension School publishes a Resumes and Cover Letters packet (available online)
that provides highly effective resume formats, as well as some tips and advice to use. You can
check them out here: https://hwpi.harvard.edu/files/ocs/files/hes-
resume-cover-letter-guide.pdf.

J

Fonts: Use standard, ATS-friendly fonts such as Arial, Helvetica, or Calibri. Avoid fancy or
decorative fonts, which can confuse the ATS.

Font size: Keep the font size between 10 and 12 points for easy readability.

Bullet points: Use bullet points to list your skills, experiences, and accomplishments. Avoid using
complicated symbols or graphics, as these can be difficult for the ATS to interpret. Although
some academic positions that require resumes may be an exception, you should mainly avoid
exceeding four bullet points per job (unless you have very few roles to speak of).

Avoid images, headers, and footers: ATSs often struggle to read the information in images,
headers, and footers, so it’s best to avoid these.

https://hwpi.harvard.edu/files/ocs/files/hes-resume-cover-letter-guide.pdf
https://hwpi.harvard.edu/files/ocs/files/hes-resume-cover-letter-guide.pdf

Constructing the Golden Resume

o Length: This debate is yet to be settled, but there are tons of websites, blogs, and editorials with
their own positions on resume length. In reality, it varies. If you are an entry-level employee
with less than five years of experience, try keeping your resume to one page. Otherwise, the
length of your resume is debatable. Remember, the goal is to write a concise, cohesive document
that highlights your most applicable skills and experience. On average, a recruiter spends about
7 seconds on each resume. Thus, a resume that is too lengthy risks looking unprofessional at
best, and hides the most relevant information from the recruiter at worst.

The organization of your resume should depend on your unique career history and the specific job
you're applying for. However, a standard resume typically includes the following sections:

o Contact Information: Include your name, email address, and phone number at the top of
your resume.

« Objective or Summary: A brief statement summarizing your career goals and qualifications.
This should be tailored to each job.

o Skills: For a data scientist, this is an important section. This section is comprised of your
hard and soft skills. Technical skills relevant to the job consist of programming languages, big
data frameworks, business intelligence platforms, cloud computing platforms, IDEs, program
management programs, and word processing programs, whereas soft skills typically consist
of critical thinking, communication, or problem-solving skills. While you can list soft skills if
space permits, these skills are often best displayed during the interview.

« Professional History: A reverse chronological listing of your past jobs, including your title,
the company name and location, the dates of employment, and bullet points outlining your
responsibilities and achievements. Refrain from listing irrelevant experiences. This may also
include relevant internships and fellowships, particularly if you do not have applicable full-time
experience. Try not to add more than 3-4 bullets per position.

o Education: A brief overview of your academic qualifications, including the degree earned, grade
point average, the institution’s name, and the graduation date. You can also use this section to
highlight any technical certifications you have achieved or data science competitions you have
competed in. If you feel your experience does not best summarize your skill set, you may also
include a listing of relevant coursework here.

o Projects: If you are an early-career applicant or lack relevant on-the-job experience, consider
including a Projects section that highlights some of your most relevant projects.

For recent graduates or those with less work experience, placing the Skills and Education sections near
the top is advisable. However, if you have extensive work experience, prioritizing your Professional
History section is more beneficial.

42

Finding a Job in Data Science

Using the correct terminology

A resume is not just a list of past jobs and education. It’s a strategic document designed to market your
skills and experiences to potential employers. Therefore, your terminology can significantly impact
how employers perceive your qualifications and fit for the role. Additionally, using industry-specific
terms, metrics, and phrases can put you ahead of the competition by flexing your familiarity with
the business. This section will explore three fundamental principles of effective resume language:
specificity, activeness, and quantifiability.

Specificity over generality

Specific language helps paint a vivid picture of your skills, experiences, and accomplishments, and by
providing concrete examples, you will be able to demonstrate your qualifications better.

Consider these two statements:

o General: Experienced in data analysis

o Specific: Leveraged Python and R to analyze a dataset of over 1 million records, identifying key
trends and insights

The first statement is too broad, but the second statement provides much more information and gives
the employer a clearer understanding of your capabilities.

Active language over passive language

Active language makes your resume more dynamic and engaging. One way of gaining an active voice
is by using action verbs to describe your experiences and accomplishments.

Consider these two statements:

o DPassive: A data visualization project was completed

o Active: Completed a data visualization project using Tableau to present complex data in an easily
understandable format

Compared to the passive statement, the active statement is more engaging and clearly communicates
your role and contributions.

The Harvard Extension School, mentioned previously, also provides a helpful list of action verbs,
categorized by skill areas such as leadership, communication, and technical skills - these are definitely
worth checking out.

Constructing the Golden Resume

Quantifiable, fact-based language

Whenever possible, quantify your accomplishments. This adds credibility to your claims and helps
employers understand the scope and impact of your work.

Consider these two statements:

o Non-quantifiable: Improved sales by optimizing a pricing strategy

o Quantifiable: Improved sales by 20% in Q2 2023 by optimizing a pricing strategy, resulting in an
additional revenue of $200K

As you can see, the quantifiable statement provides a clearer picture of the impact of your work.

When working on your resume, an effective trick for structuring your accomplishments is the Action-
Problem-Result format. This format describes an action you took to address a problem, followed by
the result of your action.

Here is an example: Implemented a new machine learning algorithm to address the issue of high churn
rate, resulting in a 15% decrease in customer attrition within six months.

The language you use in your resume can significantly impact its effectiveness. You can create a
compelling document that effectively communicates your qualifications and potential by focusing
on specificity, active language, and quantifiable, fact-based statements.

Industry jargon

There are some cases where using technical jargon is appropriate, and that’s when you use it to show
off your business knowledge. For example, becoming a data scientist in the digital marketing space
means that you should have experience with optimizing industry-specific key performance indicators
(KPIs). These KPIs will look different for a data scientist who works in supply chain operations. Thus,
including digital marketing-specific metrics such as click-through rate (CTR) or return on advertising
spend (ROAS) on your resume will signal to recruiters that you have the industry-specific experience
that they seek. Use these opportunities to shine!

For example, “Designed, validated, and optimized an MMM to optimize ROAS by increasing branded
search investments by 20%” is a sentence that only digital marketers would understand, and in this
case, it’s a good thing.

To conclude, using the right terminology not only sells your accomplishments to hiring managers
and recruiters but also signals that you have the right exposure, experience, or familiarity with the
right terms of the business. This is advantageous because it shows that you already speak the language
of the job, and hints that you will require less training. Furthermore, it is not enough to simply state
tasks that you've completed on the job; you have to convey what SMART goals you've accomplished.
Remember, recruiters are looking for an accomplisher, not a doer!

43

44

Finding a Job in Data Science

If you manage to say all the right things on your resume, though, you will increase your chances of
getting a first-round interview.

Prepping for landing the interview

The guidelines in this section will help you increase your chances of reaching the initial screening
stage and landing an interview.

Thorough interview preparation is paramount. It requires keeping pace with industry changes,
researching target companies and hiring managers, and cultivating your professional brand and network.

Staying current with the fast-paced changes in the data science industry is crucial for differentiating
yourself against candidates with outdated skills. Demonstrating your knowledge of the latest trends
and technologies showcases your dedication and ability to master emerging challenges. Additionally,
conducting extensive research on companies and hiring managers allows you to effectively align your
skills and values with their needs and tailor your application and interview responses. Meanwhile,
investing time in building your professional brand and network enhances your visibility and provides
valuable connections and opportunities within the data science community.

By mastering these interconnected strategies, you’ll position yourself for interview success and
increase your chances of landing a data science job. As we've learned, landing the job goes beyond
a professional resume, cover letter, and successful interview. The landscape of technology is always
changing, which makes data science one of the most dynamic and exciting fields. However, it also
means staying current on the latest trends and tools in the industry.

The next section will provide you with some tips on how to do just that. By the end of the section,
you will be able to craft a custom skilling-up strategy to ensure your skills remain relevant and fresh.

Moore’s Law

The pace of technological change can often feel akin to Moore’s Law, the principle that the speed and
capability of computers can be expected to double approximately every two years. This idea is driven
by technological advancements and the exponential growth in computing power, and is a fitting
metaphor for the ever-evolving tech industry. Ultimately, the challenge lies in perpetually learning,
unlearning, and relearning.

Prepping for landing the interview

As a data scientist, a significant part of your job will be to stay abreast of new developments, be it a new
programming language, a revolutionary machine learning algorithm, or the latest data management
system. Fortunately, there are several strategies that you can adopt to keep pace:

o Blogs/newsletters/podcasts: Consider subscribing to relevant data science blogs, newsletters, and
podcasts. These resources can provide timely updates on the latest trends and breakthroughs.
For example, The Analytics Power Hour is a fun and insightful podcast on the analytics
profession, hosted by three analysts. DataFramed by DataCamp, and Not So Standard Deviations
are also engaging and thought-provoking programs. Medium and Towards Data Science are
recommended too.

o Participate in online communities: Participate in online communities and forums, such as
GitHub, Stack Overflow, or Kaggle. These platforms offer a wealth of shared knowledge and
resources and foster active discussions about the latest developments in the field. You can also
find a variety of relevant social groups on LinkedIn, Discord, Slack, Meetup, and even Facebook.
Plus, there are programming language-specific groups such as R-Ladies.

o Attend conferences and workshops: Attending conferences, webinars, and workshops can also be
an effective way to learn about new tools and techniques and to network with other professionals
in the field. In addition, these events often showcase the latest research and developments in
the field and provide opportunities for networking with industry professionals, academics, and
researchers. The Open Data Science Conference (ODSC), PyData, Data Science Summit,
Rev4, Data Science Salon, and the annual meeting for the Institute for Operations Research
and the Management Sciences (INFORMS) are some of the most popular.

o Online courses: As previously mentioned, continuous learning through online courses is a great
way to supplement your knowledge, especially on specialty topics. DataCamp, edX, Coursera,
SoloLearn, Udacity, Udemy, Khan Academy, and CodeAcademy are examples of online course
sites. Some also offer graduate degrees.

o Review research papers: Reading research papers and even pursuing advanced degrees can
contribute significantly to keeping your skills and knowledge fresh. One of the most accessible
search engines for research papers is Google Scholar.

Some job searches can take months to find the proper data science role; however, it is essential to
do what you can to stay up to date on the state of the field. Remember, the key is a commitment to
ongoing learning and curiosity about new developments. As the field continues to evolve rapidly, these
strategies will help ensure that you remain at the forefront of knowledge and skill.

And as a data scientist, your learning journey never truly ends — it merely evolves.

Research, research, research

Successful interviews often hinge on preparation, which entails researching the company and the
hiring manager, anticipating likely questions, and preparing for technical queries.

45

46

Finding a Job in Data Science

Researching the company

Understanding the company that youre interviewing with is crucial. This research shows respect for
the company and interviewer and gives you a chance to genuinely decide whether it’s the right place
for you. It also makes you a prepared candidate who appears informed about the company. Here’s
how to approach this:

o Company website: The company’s official website is your first and most direct source of information.
Here you can understand the company’s mission, products, services, goals, challenges, initiatives,
organizational structure, and culture.

o Recent news: Look for recent news about the company to fuel your interview conversations and
prove that you've done your research. This could include new product launches, partnerships,
or leadership changes, as well as recent related legislation or company acquisitions.

o LinkedIn, Glassdoor, Fishbowl, or Blind: These platforms can provide insights into the company’s
culture, values, salary ranges, and employee experiences.

o Industry trends: Understanding the broader industry context can help you ask insightful
questions and show that you’re in touch with current trends.

Researching the hiring manager

Understanding the person who might hire you, the hiring manager, can be a significant advantage in
your job search journey. Typically, job seekers don’t get to know the hiring manager until they interview
with them, however, if you are fortunate enough to find out who the hiring manager is beforehand,
this opens up an opportunity to make a more interesting connection when you meet.

LinkedIn is a great resource to learn about the hiring manager’s professional background. By examining
their profile, you can gain insights into their career trajectory, their roles and responsibilities, and
perhaps most importantly, their interests and the problems they are passionate about solving. Knowing
the hiring manager’s areas of interest can provide you with valuable context about what they find
important in a candidate.

For example, if the hiring manager’s LinkedIn profile indicates a strong interest in machine learning
and Al then during the interview, you could emphasize your skills, experiences, and projects related
to these areas. This could help establish a connection with the hiring manager and demonstrate that
your skills align with their interests and needs. Additionally, if you discover that you and the hiring
manager have the same alma mater, what a great opportunity to connect!

Researching the hiring manager also allows you to understand the types of problems they might be
hiring someone to solve. You'll be in a strong position during the interview if you can showcase how
your skills and experiences make you an excellent candidate to address these problems.

However, while it’s beneficial to understand the hiring manager’s background, respecting their privacy
is also important. Therefore, always approach this research with professionalism and respect.

Prepping for landing the interview

If you have the opportunity to research the hiring manager, take it. It provides valuable insights that
can help you tailor your interview responses and demonstrate your potential to meet their needs. It’s
one of the many ways to prepare for and increase your chances of landing the job.

Branding

As with any other professional field, the strength of your personal brand can be as vital as your
technical skills. Your personal brand is the perception that others have of you based on your skills,

experiences, and personal qualities.

A professional brand starts with self-awareness — you need to understand your strengths, areas of
expertise, values, passions, and what differentiates you from other data scientists. Once you have a
clear understanding of your unique qualities, you can start communicating this to others.

Here are a few steps to developing a professional brand:

o Craft a consistent message: Your resume, LinkedIn profile, and personal website (if you have
one) should tell a consistent story about your skills, experiences, and career goals.

o Showcase your work: Whether it’s a data science project that you've completed, a blog post that
you've written, or a talk that you've given, make sure that your work is known by others. This
helps to establish your credibility and showcase your expertise.

o Build an online presence: Social media platforms, especially LinkedIn, provide a great opportunity
to establish a professional brand. Regularly share and engage with relevant content, showcasing
your knowledge in your field

Summary

We reviewed a lot in this chapter, and you're probably overwhelmed with all of this information. But
now, you should feel equipped to start your data science job search.

To begin, you were introduced to preparing and starting a job search, including how to mentally prepare
for the process, and how to leverage job board sites to find leads, use them for networking, and gain
insights into specific industries. Additionally, we discussed how to start to build a work portfolio to
be used during your interviewing process.

Then, we looked into the other key element for your job search: the resume. Here, we discussed tips
on how to craft and organize your resume to not only be noticed by someone but also to get past the
applicant tracking systems that often perform the first filtering of resumes.

After that, we discussed prepping for the interview by conducting research on key companies who are
hiring and staying up to date on key trends in the industry. Finally, we closed the chapter by discussing
the importance of developing your personal, and professional brand, and how to do it.

47

48

Finding a Job in Data Science

By using this guide on staying current with evolving technology, being diligent about networking, and
building a smart and streamlined strategy for developing resume, portfolio, and cover letter content,
you can maximize your chances of landing a data science interview.

Additionally, you will remain active and adaptive to new opportunities as they arise, whether from
job board sites or networking conversations. As French scientist Louis Pasteur once stated, “Chance
favors the prepared mind.” If the tools and tips from this chapter are properly leveraged, you will have
the optimal opportunity to take full advantage of the chances that come your way.

In the next chapter, we will focus on helping you prepare for the technical portion of the data science
interview by first looking at Python.

References

« [1] Working Whole: How to Unite Your Career and Your Work To Live Fullfilled by Kourtney
Whitehead (Simply Service, 2019)

o [2] The Biggest Job Search Myth, Debunked by Jennifer Parris, from Flexjobs:
https://www.flexjobs.com/blog/post/biggest-job-search-myth-
debunked/#: ~:text=About%2070-80%20percent%200f%20job%201istings%20
are%20never,public.%$20Instead%2C%20they%E2%80%99re%20£fi11led%20
through%20word-of -mouth%2C%200r%20networking

o [3] Use the 70% Principle To Find Your Next Job, by Kelly Studer, from Ivy Exec: https://
ivyexec.com/career-advice/2014/use-70-principle-find-next-job/

o [4] 7 Benchmark Metrics to Improve Your Recruiting Funnel by Stephanie Sparks, from
Jobvite: https://www.jobvite.com/blog/recruiting-funnel/

https://www.flexjobs.com/blog/post/biggest-job-search-myth-debunked/#:~:text=About%2070-80%20percent%20of%20job%20listings%20are%20never,public.%20Instead%2C%20they%E2%80%99re%20filled%20through%20word-of-mouth%2C%20or%20networking
https://www.flexjobs.com/blog/post/biggest-job-search-myth-debunked/#:~:text=About%2070-80%20percent%20of%20job%20listings%20are%20never,public.%20Instead%2C%20they%E2%80%99re%20filled%20through%20word-of-mouth%2C%20or%20networking
https://www.flexjobs.com/blog/post/biggest-job-search-myth-debunked/#:~:text=About%2070-80%20percent%20of%20job%20listings%20are%20never,public.%20Instead%2C%20they%E2%80%99re%20filled%20through%20word-of-mouth%2C%20or%20networking
https://www.flexjobs.com/blog/post/biggest-job-search-myth-debunked/#:~:text=About%2070-80%20percent%20of%20job%20listings%20are%20never,public.%20Instead%2C%20they%E2%80%99re%20filled%20through%20word-of-mouth%2C%20or%20networking
https://ivyexec.com/career-advice/2014/use-70-principle-find-next-job/
https://ivyexec.com/career-advice/2014/use-70-principle-find-next-job/
https://www.jobvite.com/blog/recruiting-funnel/

Part 2:
Manipulating and
Managing Data

The second part of this book covers the most common coding, data wrangling, and productivity
skills found in most data science jobs and interviews. From foundational to advanced concepts, this
includes an introduction to essential skills in Python, data visualization, SQL, command-line scripts,
and version control.

This part includes the following chapters:

o Chapter 3, Programming with Python

o Chapter 4, Visualizing Data and Data Storytelling

o Chapter 5, Querying Databases with SQL

o Chapter 6, Scripting with Bash and Shell Commands in Linux
o Chapter 7, Using Git for Version Control

3

Programming with Python

Starting from this chapter, we will now transition into preparing you for the technical portion of
data science job interviews. For this reason, this second part of the book is best used as a study/quick
reference guide as you prepare for your interviews. Therefore, feel free to skip or review chapters
according to your studying needs.

In each of the following chapters, we will review key concepts and provide sample problems. Thus,
it is important that you are at least familiar with introductory programming concepts, preferably
with functional programming. This includes, but is not limited to, syntax, data types, variables and
assignments, control flow, and packages such as pandas and numpy for data wrangling.

By the end of this chapter in particular, you will have a handle on expected Python questions within
a data science interview, and know how to tackle them logically. Additionally, you will be more
comfortable and confident with thinking through questions relating to control flow, variables, data
types, user functions, and general data wrangling.

In this chapter, we will cover the following topics:

« Using variables, data types, and data structures

o Indexing in Python

o Using string operations

o Using Python control statements, loops, and list comprehension
o Using user-defined functions

o Handling files in Python

o Wrangling data with pandas

52

Programming with Python

Using variables, data types, and data structures

In Python, variables are the building blocks of any code. It's simply a value of some given type assigned
to an object. For example, if I set a variable called x equal to 10, the variable x now holds that value (until
it is changed). In short, variables are used to store data. Unlike some other programming languages,
such as Java, the variable type does not need explicit declaration in Python. The declaration or type of a
variable is determined automatically when you assign a value to it (although you can and should change
data types as needed). There are several built-in data types in Python. Here are some common ones:

« Numeric types: There are numerous types of numeric data types, including int (integers),
float (floating-point numbers), and complex (complex numbers). Numeric variables in
Python are used to store numerical data:

* Integers represent whole numbers without any fractional or decimal part. They can be positive
or negative. In Python, integers are represented by the int type. Take the following example:

x =5
print (type(x)) # <class 'int's

Floats (floating-point numbers) represent numbers with fractional or decimal parts. They
can be positive or negative. In Python, floats are represented by the £1loat type. Take the
following example:

vy = 5.5
print (type(y)) # <class 'float's>

Complex numbers represent numbers with both real and imaginary parts. They are written
in the form a + bj, where a represents the real part and b represents the imaginary part.
In Python, complex numbers are represented by the complex type. The imaginary part is
denoted using the imaginary unit j or J. Take the following example:

z = 1+27
print (type(z)) # <class 'complex's>

« Sequence types are data types that represent an ordered collection of elements, which can be
from various data types. Thus, they allow you to store multiple items in a single object and
access them by their position or index within the sequence. For example, these may include
str (strings), 1ist (lists), and tuple (tuples):

strings
s = 'Hello, World!'
print (type(s)) # <class 'str's

lists
15 = [25 31,041, 5]
print (type(l)) # <class 'list's>

Using variables, data types, and data structures

tuples
t = (1, 2, 3, 4, 5)
print (type(t)) # <class 'tuple's>

Tuples may seem similar to lists, and indeed they are. However, there are some key differences.
Perhaps one of the most important differences is immutability - tuples are immutable, whereas
items in lists can be changed after the list is created. Additionally, you may note that tuples
utilize parentheses as opposed to brackets.

Note

Lists are generally used when the order and the ability to modify the elements are important.
They are commonly used for dynamic data where the size or contents may change over time.
Tuples, on the other hand, being immutable, are often used when you want to ensure that the
collection of elements remains unchanged. Tuples are also used for situations where you want
to enforce that the elements are not modified.

J

The Boolean type in Python represents True or False values, which may also be represented
by the integers 1 and 0, respectively. These values are used to perform logical operations and
control the flow of programs based on conditions:

boolean

b = True

a = False

print (type (b)) # <class 'bool's>
print (type(a)) # <class 'bool's>

Dictionaries are mutable mapping types that store data in key-value pairs. Each key in a
dictionary must be unique, and it is used to access its corresponding value. Dictionaries are
defined using curly braces ({ }) or the dict () constructor, with key-value pairs separated
by colons (:). Take the following example:

dictionary
d = {'name': 'John', ‘'age': 30}
print (type(d)) # <class 'dict's>

None type: This data type has a single value, None:

None
n = None
print (type(n)) # <class 'NoneType'>

53

54

Programming with Python

o DataFrame: This is a two-dimensional, tabular data structure commonly used in structured
databases and data analysis. Because of the ease that DataFrames provide for data manipulation,
it has become a standard data structure in analytics, or any role that requires significant data

wrangling and preparation.

The functionality perks include simple indexing, filtering, sorting, aggregating, and calculations.
Dataframes also offer convenient methods for importing and exporting data from various file

formats, such as CSV, Excel, or SQL databases.

A DataFrame consists of two dimensions: columns and rows. Each column represents a
variable or feature that describes an attribute or characteristic of the row; the row represents

an observation or record:

bategory Group 1 |Group 2| Group 3] ~—— Column
. ™ Headers
0 A 25 35 15
1 B 30 20 25 Rows
2 c 15 25 20
Row
Index 3 D 20 30 35
Column
Figure 3.1: Dataframe example
Note

You'll see many of these terms used interchangeably throughout the book. Keep in mind that

Row = Record = Observation and Column = Field = Feature = Attribute.

After that discussion of types, it is also important to note that Python is a dynamically typed language,
which means that the variable type can change during the execution of a program. See this example:

var = 10
print (type(var)) # <class
var = 'Hello'

print (type(var)) # <class

Using variables, data types, and data structures 55

In this example, var is first an integer, then it becomes a string. In other words, Python allows the
re-declaration of a mutable variable.

Assessment

Consider the following Python code:
x = 100
def my func() :

x = [10, 20, 30]
print ('x inside function:', x)

my func ()
print ('x outside function:', x)

Now, answer the following questions:

1. What is the data type of x inside the function, and what is its scope?
2. What is the data type of x outside the function, and what is its scope?
3. What will the output of the code be?

Note

This chapter will test you on the concepts that you learn. A great way to tackle interview
questions is by using the G.U.E.S.S method. And no, this doesn’t mean just guessing! G.U.E.S.S
is an acronym for Given, Unknown, Equation, Solve, Solution. This method is typically taught
with math (as you can guess by the term equation), but it’s great for coding as well, particularly
when working on multi-step and/or complex problems. The method implores problem-solvers
to start out with given information or data, identify the unknown or problem, identify the
equation (or formula or code) to tackle the problem, solve the problem, and provide the
solution. Feel free to give it a try!

Answers

1. Inside themy func function, x is a list. This x is local to my func (it has local scope).
2. Outside the function, x is an integer. This x is in the global scope of the script.

3. The output of the code will be the following:

x inside function: [10, 20, 30]
x outside function: 100

56

Programming with Python

In this example, the my func function creates a new local variable, x, which doesn’t affect the global
x. Hence, the global x still has its original value after the function call.

Indexing in Python

To access values within a data object, we use indexing. Indexing is the process of accessing individual
elements within a data structure. In this case, the data structure is a list, but as you will soon learn,
indexing is applicable to many data structures.

(1
Note

Each element or item within a data structure is assigned a unique index or position, starting
from a specific value. In Python, this value is 0. This means that the first position in any data
structure in Python is located at index 0, followed by the second position, which is located at
index 1, and so on.

. J

Indexing allows you to retrieve or manipulate specific elements within the data structure by specifying
their index. It provides a way to refer to elements individually rather than accessing the entire data
structure as a whole.

The basic syntax for indexing a list or tuple in Python is as follows:

list or tuple name[index position]

The list _or tuple name object is the name of the list and index position is the position
of the element you want to access. Here’s an example:

languages = ['python', 'r', 'java', 'c', 'go'l]
print (languages [0] #Output: 'python'

In this example, languages [0] retrieves the element at index 0, which is the first element,
'python'. Similarly, languages [2] retrieves the element at index 2, which is ' java'.

When it comes to indexing dictionaries, instead of indexing with integer positions, dictionaries use
keys to access their corresponding values. You can use square brackets, [1, with the key inside to
retrieve the value. Here’s an example:

my dict = {’name': 'John', 'age': 30, 'city': 'New York’}
print (my dict['name']) # 'Output: John'
print (my dict['age']) # Output: 30

Later, we will dive into indexing DataFrames when we discuss selecting data in pandas, and string
indexing when we discuss string operations.

Using string operations

Using string operations

String operations are very common when working with Python and text data. Therefore, this section
will review how to initialize a string, string indexing/slicing, and some common string methods.

Note

We will not review string regular expressions, as this is a large topic with significant depth.
Check out Mastering Python Regular Expressions by Victor Romero and Felix L. Luis for more
instructions on this topic.

Initializing a string

Python allows for string initialization (creation) in several ways. Two ways include single quotes (' ')
and double quotes (" "):

Single quotes
s = 'Hello, World!'
print (s) # prints: Hello, World!

Double quotes
s = "Hello, World!"
print(s) # prints: Hello, World!

Single and double quotes are basically interchangeable. The only difference comes into play when you
have a quote mark (single or double) inside a string. For example, one common scenario is when you
want to include quotes within a string. To achieve this, you can use one type of quote mark to define
the string and the other type of quote mark within the string. Here’s an example:

quote = "She said 'I want ice cream!' "

In this example, the string is defined using double quotes, and the single quotes within the string are
included as part of the string itself. You could have also done the inverse like so:

quote = 'She said "I want ice cream!" '

For code legibility, it is recommended to be consistent, regardless of the method you use.

String indexing

In Python, strings are sequences of characters, and each character has a position or index associated
with it. String indexing allows you to access individual characters in a string, while string slicing allows
you to access a substring from a string.

57

58

Programming with Python

Strings are also zero-indexed in Python. That is, the index of the first character is 0, the index of the
second character is 1, and so on. Python also supports negative indexing, where the index of the last
character is -1, the index of the second to last character is -2, and so on. Just take note, spaces count
as a character, and negative indexing actually begins at 1.

For example, consider the following string of text assigned to the variable s. We can access each
character in the string by using string indexes:

s = "Hello, World!™"

indexing

print (s[0]) # prints: H
print(s[7]) # prints: W
print(s[-1]) # prints: !

Slicing is another method of accessing string characters, and is most often used to extract a window
or substring from a string. The syntax for slicing is string variable[start:stop:step] -
start is the index where the slice starts (inclusive), stop is the index where the slice ends (exclusive),
and step is an optional parameter used to specify the step value (also known as the number of
characters to skip). If step is negative, the slicing will begin from right to left instead of the default
evaluation method (left to right).

Consider the same string object, s, as before. Suppose we want to slice the strings to access a window
of the string as opposed to just one position within the string:

s = "Hello, World!™"

slicing

print (s[0:5]) # prints: Hello
print(s[7:12]) # prints: World
s[::2]) # prints: Hlo ol!
Sl::

(
print (
(s[::-1]1) # prints: !dlroWw ,olleH (reverses the string)

print
Let’s look at each of the slices:

o Inthefirstslice, s [0: 5], the slicing begins at index 0 and stops at index 5, so it extracts the
first five characters

o Inthe second slice, s [7:121, it starts at index 7 and stops at index 12, so it extracts the
word World

o In the third slice, s [: : 2], no start or stop is specified, so it goes through the entire string
with a step of 2, extracting every other character

o Inthelastslice, s [::-1], a negative step is used to reverse the string

Using string operations

Python provides a variety of built-in methods for string manipulation. Here are explanations and
examples of strip (), split (), join (), replace(),and £ind ():

o strip():This method removes leading and trailing whitespace from a string. It’s often used
in data cleaning when we want to remove unwanted spaces:

s =" Hello, World! o
print(s.strip()) # prints: "Hello, World!"

o split (): This method splits a string into a list where each word is a separate element. This
is extremely useful in natural language processing (NLP) tasks for tokenization and other
data transformation tasks:

s = "Hello, World!"
print(s.split()) # prints: ['Hello,', 'World!']
print (s.split(',')) # prints: ['Hello',K ' World!']

You can also specify a separator to split on (for example, to split a string into sentences, you
might split on the period (.) character).

o join/(): This method combines a list of strings into one string. You call this method on the
string you want to use as the separator:

words = ['Hello', 'World!']
print (' '.join(words)) # prints: "Hello World!"
o replace (): This method replaces occurrences of a substring within a string with another
substring. It’s often used in data cleaning and preprocessing:
s = "Hello, World!"
print (s.replace ('World', 'Python')) # prints: "Hello, Python!"
o find(): This method returns the index of the first occurrence of a substring in a string. If the

substring is not found, it returns -1:

s = "Hello, World!"
print (s.find ('World')) # prints: 7
print (s.find ('Python')) # prints: -1

Text mining and NLP tasks are generally beyond the scope of this book, but we recommend that you
read up on it if you're specifically interested in that area of data science!

Assessment

Consider the following Python string:

s = "Data Science with Python"

59

60

Programming with Python

Now complete the following tasks:

1. Whatdoes s [5:11] return?

2. Whatdoes s [::-1] return?

3. Use a string method to split s into individual words and store the result in a list.
4

Use a string method to convert s to lowercase.

Answers
1. s[5:11] returns the string "Scienc™". It starts at index 5 (inclusive) and ends at index
11 (exclusive).
2. s[::-1] returns the reverse of the string s, that is, "nohtyP htiw ecneicS ataD".

3. The split () method can be used to split s into individual words: words = s.split ().
This will give words as ['Data', 'Science', 'with', 'Python'].

4. The lower () method can be used to convert s to lowercase: lowercase s = s.lower ().
This will give lowercase sas "data science with python".

Assessment
Consider the following Python string:

SN Hello, World! o
Now complete the following tasks:

1. Use a string method to remove the leading and trailing whitespaces.
2. Use a string method to replace "World" with "Python".

3. Use a string method to find the index of the first occurrence of "World".

Answers

1. Thestrip () method can be used to remove the leading and trailing whitespaces: s_stripped
= s.strip().Thiswillgives strippedas "Hello, World!".

2. 'The replace () method can be used to replace "World" with “Python": s replaced
= s.replace ("World", "Python").Thiswillgives replacedas" Hello,
Python! ™.

3. The £ind () method can be used to find the index of the first occurrence of "World": index
= s.find ("World"). This will give indexas 11.

Using Python control statements, loops, and list comprehensions

Using Python control statements, loops, and list
comprehensions

Control statements are used for various tasks. For example, they’re used to filter data based on
certain conditions, perform a calculation on each item in a list, iterate through rows in a dataframe,
and more. Additionally, list comprehensions are widely used in data science as they provide efficiency
and legibility. It’s often used in data cleaning and preprocessing tasks, feature engineering, and more.

Control statements in Python allow you to control the flow of your program’s execution based on
certain conditions or loops. The main types of control statements are conditional statements (such as
if,elif, and else) and loop statements (such as for and while).

Meanwhile, list comprehensions are a sort of short-hand approach to writing loop statements. More
specifically, they are a shorter, more concise syntax for creating a list based on the values of an existing list.

Conditional statements such as if, elif, and else

Conditional statements are probably one of the easiest control statements to understand because they
operate (and are written) in a way that reflects how humans mentally evaluate if-else scenarios. Let us
consider the i f, elif, and else conditional statements:

o 1f isused to test a specific condition. If the condition is true, the code block within the i f
statement will be executed:

x = 10
if x > 0:
print ("x is positive") #Output: "x is positive"

o elif, which stands for else if, is used to chain multiple conditions. It’s particularly handy
when used after an i f or another e11if statement. This is because if the result of an 1 £ code
block is false, the next condition (e11f) will be evaluated. If the e1if condition is evaluated
as true, it will be executed. In the following example, the i f statement is evaluated first. In
this particular case, x is greater than 0; thus, the initial i f statement is false. This prompts the
program to evaluate the following e1if statement, which is true:

x = 10
if x < 0:
print ("x is negative")
elif x > 0:
print ("x is positive") # Output: "x is positive"

61

62 Programming with Python

o else is the last statement evaluated after the i f and e1if code blocks have been evaluated.
else is almost identical to e1if in functionality, but the major difference between the two
is that you use else for the last logic statement check. e11f is used to pass the logical check
to another logic assessment. else is the very last logical statement to be evaluated — hence,
the criteria in else:

x = -10
if x > 0:
print ("x is positive")
elif x ==
print ("x is zero")
else:
print ("x is negative") # Output: "x is negative"

Loop statements such as for and while

Loops are another category of control statements used to evaluate a block of code iteratively.

To begin, let us consider a £or loop example for inspiration. for loops are a control flow mechanism
used to evaluate items in an iterable data structure. This is most useful when you want to perform an
operation for multiple items in an object such as a list or string.

Imagine you have a bag of M&Ms. You are tasked with drawing one M&M at a time and evaluating
whether it is an orange M&M or not. If we write this process in pseudo-code, it might look something
like this:

for M&M in bag:
if M&M == "orange":
print ("This is orange!")
else:
print ("Not orange")

The block of code within the for loop is executed once for each item in the object:

for 1 in range(3):
print (i)
prints:

#
#
#
#

N P O

Using Python control statements, loops, and list comprehensions

(R
Note

for loops become even more powerful when combined with other control flow operations,
such as 1f statements, and other useful mechanisms, such as functions. When combined, these
tools allow you to perform operations, calculations, evaluations, and revisions on multiple
items in an iterable object. Notice, we already snuck in an example of using for loops and i £
statements together in the M&M example. Did you catch it?

. J

We also have while loops, which are used when you want to repeat a block of code as long as a certain
condition is true. The condition is a Boolean expression that determines whether the loop should
continue executing. As long as the condition evaluates to true, the code block inside the loop will
execute. Once the condition becomes false, the loop will terminate. Here is an example:

i=0

while 1 < 3:
print (i)
i+=1

Unlike for loops, while loops iteratively evaluate a statement until it is no longer true, or if a break
is inserted. In the previous example, the interpreter will loop over the statement until the object 1 is
no longer less than 3.

You may be wondering: what happens if i is indefinitely less than 3? The answer is the program will
(try to) run indefinitely. In the previous example, 1 += 1 specifies that the variable will increment
by a value of 1 every iteration. Without this stipulation, the code would run forever. This is where the
break operator comes into play.

The following example demonstrates how to use breaks. In this example, we use the break statement
to exit a while loop. This is a typical use case of a break statement, when you want to terminate
the loop based on a specific condition:

count = 1

while True:
print (count)
count += 1

if count > 5:
break

63

64

Programming with Python

The output of the code is as follows:

(2 I N S I S B

In this example, the while loop condition was set to True to create an infinite loop. However, the
loop is terminated using the break statement when the count exceeds 5. This allows us to print
numbers from 1 to 5 and then exit the loop.

List comprehension

As previously mentioned, a list comprehension can be thought of as a more compact and concise
method of writing for loops. Here is the basic syntax of list comprehension:

[expression for item in iterable]

The expression is applied to each item in the iterable, and the results are collected into a new list.
Let’s take an example of creating a list of squares for the numbers 0 to 9:

squares = [x**2 for x in range(10)]
print (squares) # prints: [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

You can also include an i f condition in a list comprehension to filter the items:

even squares = [x**2 for x in range(10) if x % 2 == 0]
print (even squares) # prints: [0, 4, 16, 36, 64]

In this example, only the squares of even numbers are included in the new list.

Assessment
Consider the following Python code:

numbers = [5, 2, -3, 7, -1, 4]
total = 0
for number in numbers:
if number > 0:
total += number
print (total)

What value will be printed, and why?

Using user-defined functions

Answer

The value printed will be 18. The for loop iterates over each number in the numbers list. If the
number is positive (greater than 0), it is added to the total. Thus, the total will be the sum of all positive
numbers in the numbers list, whichis 5+2 + 7 + 4 = 18.

Assessment

Write a list comprehension that will create a new list of squares that contains the squares of all numbers
from 1 to 10.

Answer

The following list comprehension will create the required list:

squares = [x**2 for x in range(l, 11)]

This will produce the list [1, 4, 9, 16, 25, 36, 49, 64, 81, 100], which are the
squares of the numbers from 1 to 10.

Note that range (1, 11) isused instead of range (1, 10) because the stop value given to the
range function is exclusive. Thus, to include 10 in the range, we need to specify the stop value as 11.

Using user-defined functions

Sometimes, you may need to create your own function to perform very specific operations. This
is common in the data science world, especially as it relates to data cleaning, preprocessing, and
modeling activities.

In this section, we will discuss user-defined functions, which are functions created by the programmer
to perform specific tasks. They are not unlike mathematical functions, which (usually) take some inputs
and (often) produce some outputs. User-defined functions are designed to take 0 or more inputs, do
some specific computation(s) (we'll just call it stuff), and produce an output.

This process is especially helpful when performing repeated tasks. In fact, the rule of thumb is to use
it if you have to do a task more than once. In more advanced cases, user functions are also helpful for
code reusability, organization, readability, and maintainability.

Breaking down the user-defined function syntax

When used effectively, user-defined functions are your best friend. Like everything else in programming,
functions can get pretty complex, but the fundamentals are fairly simple.

65

66 Programming with Python

Let’s take a look at the syntax:

Initializes user

Given function Function inputs /
name parameters

-

/
| ,
»

function — def function(parameters):

body of function «—— Function’s internal code goes here
return expression

f

Returned object

Figure 3.2: User-defined function syntax

In summary, if we were running a kitchen, the function name is the name of the receipt, the parameters
are the ingredients, the statement(s) are the cooking instructions, and the return expression is the
delivery method (... takeout, anyone?).

Doing “stuff” with user-defined functions

There are different types of user-defined functions. Function types in this book are based on the
number of inputs:

No parameters: User-defined functions with no parameters might seem peculiar at first, but
sometimes, you need to do some stuff without additional information beyond what you describe
in the body of the function. For example, consider the following function:

Define a function that gives us some Vulcan wisdom
def vulcanGreeting() :
print ("Live long and prosper")
#Call the function
vulcanGreeting () #Output: Live long and prosper

This code creates a function called vulcanGreeting () that prints the text Live long and
prosper (a Star Trek reference).

One or multiple parameters: Some functions will have at least one input parameter. This is
especially true in data science, where functions are used to manipulate data. To manipulate
existing data objects, an input is required. Let’s look at an example:

Calculate a column's average and return the wvalue
def calculate_ average (column) :

average = column.mean ()

return average

Using user-defined functions

This code creates a function called calculate average, which calculates the average
(mean) of an input DataFrame column and returns the value. This function can now be applied
to a DataFrame column to return its average.

But suppose you wanted to append the result to a DataFrame. This is a common need so that
the results can be further explored. The following code demonstrates how to achieve this using
three inputs instead of one:
Calculate and append a new column "Sales" to a DataFrame that
multiplies the units and price columns
def calculate sales(df, units col, price col):
df ['Sales'] = df[units col] * df[price col]
return df

Let’s break this code down:

* Inputs: This function takes three parameters: df, units col,and price col. The first
parameter is the DataFrame object, which contains the columns that represent the units
and price columns (the other two parameters), respectively.

* Body: The body function creates a new column called Sales, which is calculated by
multiplying theunits col and price col column values (note: this happens for each
row of the dataset).

= Return: The return statement returns the DataFrame, which now has the Sales column intact.

Note that the functionality of our function is identical to this algebraic expression: Sales = Units
x Price. When the function is applied to the inputs, it is evaluated for each row of the dataset.
Hence, every row is assigned a sales value in the Sales column.

Default parameters: There are also functions that take default parameters. These are most useful
in situations where you want to designate a default, static value. There are a number of scenarios
where it might be advantageous to set a default setting (for example, when you want to provide
a default functionality when a parameter isn’t provided). Consider the following example:

Write a function to greet someone by name
def greet (name="Guest") :
greeting = "Hello, " + name + "!"
return greeting

Calling the function without providing an argument
default greeting = greet ()
print (default greeting) #Output: Hello, Guest!

Calling the function with an argument
custom greeting = greet ("Alice")
print (custom greeting) #Output: Hello, Alice!

67

68

Programming with Python

Let’s dissect what the function is doing. The greet function takes an argument, but notice
it’s already assigned a value (in this case, "Guest"). The assigned value is the object’s default
value. This means that the function will always assume the default value, unless otherwise
overwritten. Regard how the output changes when the function is called without a parameter,
versus when it’s called with one.

Getting familiar with lambda functions

As discussed, functions can get pretty complex, but the best functions are simple. Simple functions
are further simplified by providing a simpler syntax option. Enter lambda functions!

Remember list comprehensions? They’re the expedited, streamlined version of for loops. Functions
have something similar, and they’re called lambda functions! Lambda functions are used to create
single-line functions in Python. Instead of using the def approach, lambda functions are defined
using the 1ambda keyword, followed by a list of input arguments, a colon (:), and the expression or
code block to be executed. Their syntax is as follows:

Initializes
lambda
function Single-line function expression

l f : |

Function

object — y= lambda x: x * 2
(stores 1
function’s

Function input /

expression) parameter

Figure 3.3: Lambda function syntax

The following code shows two different methods of accomplishing the same thing. The first one uses
the user-defined function approach:

Create a user-defined function that returns the sum of 2 variables
def add numbers(a, b):
return a + b
result = add numbers (3, 4)
print (result) # Output: 7

Using user-defined functions

And the second one leverages a lambda function:

Create a lambda function that returns the sum of 2 variables
add numbers = lambda a, b: a + b

result = add numbers (3, 4)

print (result) # Output: 7

Note

If your lambda function takes more than one line of code, it’s better to use a regular user-defined
function. Furthermore, a single-line comment should suffice for documentation purposes.

Creating good functions

Here are some best practice guidelines to save some time and headaches while creating functions:

Remember, your function name should be descriptive, but simple.

Your function should serve a single purpose. Avoid duplication. No matter the purpose of your
function or the stuff you have your function doing, it should only do that stuff once.

Use docstrings. There are multiple docstring conventions that you can read about, such as
Googles format, reStructuredText (reST), or Numpydoc. But as long as your docstrings
adequately describe the function’s functionality, parameters, and output(s), youre good.

Assessment

Let us now review some hypothetical interview questions (note, you may choose the name of
the function!):

L.

Write a function that calculates the area of a rectangle given its length and width. Hint: Area
= length x width.

Write a function that returns "Even" if a given number is even, and returns "0dd" if a given
number is odd.

Write a function that counts the number of vowels in a given string.

Write a function that takes a DataFrame object as input and returns the count of missing values
(NaN) in each column.

69

70

Programming with Python

Answers

Given the provided algebra formula, we know how to theoretically calculate the area of a
rectangle. All we need is the width and length - these are our inputs!

def calculate rectangle area(length, width):
area = length * width
return area

Bonus points if you wrote the answer as a lambda expression, as seen in the following code:

calculate rectangle area = lambda length, width: length * width

Ifis an important word in this question. It hints that we may need to use an if/else control
statement. Based on the question, what conditions might we want to check? Well, we want to
check whether a number is odd (condition 1) or even (condition 2). We also know that these
are mutually exclusive. If a number is odd, it can’t be even (and vice versa). Furthermore, a given
number sounds a lot like an input! Thus, we have so far devised that we are writing a function
with a single input (a number) and we want to check whether (using an if statement) that
input is odd (condition 1) or even (condition 2).

From our previous experience with if statements, we know that conditions are designated
using 1 f and else (or elif if there are more than two conditions). Additionally, we know
what each condition must return if true (in this case, "Odd" or "Even"). All that’s left is to
determine the simplest way to check whether a number is odd or even:

def check even odd(number) :
if number % 2 ==
return "Even"
else:
return "Odd"

In this example, we are given a string, and we want to count how many vowels it contains. How
might we approach this problem? Well, the string is one input. It then sounds like we will be
evaluating each character in the string. What Python control flow syntax helps us assess each
index in an object? You guessed it — for loops! What other information do we need? We
should probably specify what counts as a vowel (hint: the value sought out in the for loop is
case sensitive!). You can see this here:

def count vowels (string) :
vowels = "aeliouAEIOU"
count = 0
for char in string:
if char in vowels:
count += 1
return count

Handling files in Python

4. 'This problem tells us upfront that it will take a single DataFrame object as an input. We also
know that the function should return the count of missing values, even if we don’t know how
to derive it yet. Sometimes, it’s helpful to assign a placeholder variable for the final output, even
if we don’t know how to calculate it just yet.

This leaves us with a known input and output, but we still need to figure out what stuff needs to
happen in the body of the function. For starters, we should probably assign the output value to
some expression. After all, the placeholder variable will not return anything unless we assign it
a value. Now, here’s the tricky part - how do we count missing values? In Python, there are two
useful methods: 1snull () and sum (). Here is how you can string these operations together:

def count missing values (df) :
missing counts = df.isnull() .sum()
return missing counts

Handling files in Python

In Python, the built-in open function is used to open a file, and it returns a £i1le object. Once a
file is opened, you can read its contents using the read method. However, an important aspect to
consider while managing files is ensuring they are closed after use, allowing for the setup and teardown
of computational resources. One way to accomplish this is by using context managers.

Context managers are an object that manages the context of a block of code, typically with a with
statement. It’s particularly useful for setting up and tearing down computational resources, such as
efficiently opening and closing files. In short, the with keyword, which automatically closes the file
once the nested block of code is executed, is more efficient and reduces the risk of a file not being
properly closed.

The syntax to open files using context managers is as follows:

with open(<file name.csv>) as file object:
Code block

Here’s a concrete example of how to open and read a file:

with open('file.txt', 'r') as file:
content = file.read()
print (content)

In this example, file. txt is the name of the file to open, and r is the mode in which the file should be
opened. The r stands for read mode, which allows the contents of the file to be read but not modified.

Thewith open(...) as file: line opens the file and assigns the resulting £i1le object to the
file variable. Then, file.read () reads the contents of the file and returns it as a string, which is
assigned to the content variable. After the with block is executed (even if an error occurs within
the block), the file is automatically closed.

71

72

Programming with Python

Opening files with pandas

The pandas library in Python provides high-performance, easy-to-use data manipulation and analysis
tools, and is frequently used in data science roles.

One of the most commonly used pandas functions for reading in data is read_csv (). Here’s an
example of how you might use it:

import pandas as pd
df = pd.read csv('file.csv')
print (df .head()) # print the first 5 rows of the data

In this example, the read_csv function reads the CSV file named £ile. csv. The resulting object
is assigned to the df variable. The head () function is then used to print the first five rows of the
dataframe. If you want to print the entire dataframe, you could simply write print (df).

As previously mentioned, pandas also offers a function to convert a file to a DataFrame. Simply use
pd.DataFrame () as seen in the following code:

Create a DataFrame from the

df = pd.DataFrame (df)

Print the DataFrame

print (df .head) #Outputs the first 5 rows of the DataFrame

Assessment

Consider the following Python code snippet:

with open('data.txt', 'r') as file:
content = file.read()
print (content)

Now, answer the following questions:

1. What does this code do?
2. What is the significance of r in the open function?

3. What is the role of with in opening the file?

Answers

1. This code opens a file named data . txt in read mode (r), reads its entire contents into the
content string variable, and then prints the contents. After the with block is executed, the
'data.txt' fileis automatically closed.

Wrangling data with pandas

2. 'The r in the open function stands for "read", which means the file is opened in "read"
mode. In this mode, you can read from the file, but you can’t write to or modify the file.

3. If 'data.txt' doesnot exist or can't be found in the directory from which the Python script
is run, Python will raise a FileNotFoundError message.

4. with is used when working with unmanaged resources (such as file streams). It’s a neat
bit of syntax that ensures the File object, £ile, is properly closed after usage. It sets up a
context where the file is open, and at the end of this context, it automatically closes the file,
even if exceptions were raised within the context. This makes it the best practice for resource
management in Python.

Wrangling data with pandas

Data wrangling is one of the most important topics in data science interviews. For starters, data is often
not presented in an analysis-ready format, which makes it necessary for data modeling preprocessing
and addressing data quality concerns. Thus, data scientists can spend upward of 80% of their time
cleaning and wrangling data [1].

Furthermore, data wrangling skills demonstrate your comfort and fluency with computer programming.
Having the ability to use functions, loops, indexing, aggregation, filtering, and forming calculations
will serve you well in your data science journey, enabling you to complete work quickly and efficiently.
It is also fundamental for extract, transform, load (ETL) activities, querying data, data modeling,
descriptive statistics, reporting, and a host of other data tasks.

In this section, we will review a couple of common data wrangling challenges, including handling
missing data, filtering data, merging, and aggregating data.

Handling missing data

Sometimes, data is incomplete. Missing data is most often indicated by completely blank values, NaN
values, or null values. There’s a number of reasons this can happen, ranging from erroneously collected
or deleted data to data that was never provided. In fact, there are even categories of missing data, which
can inform how missing values are to be treated. The following are some categories of missing data:

o Missing completely at random (MCAR): This is data that is missing in a randomly distributed
fashion across the entire variable (e.g., column, field, attribute, and feature), regardless of other
variables. In other words, the data is missing completely at random, and its missingness is not
correlated with other field values:

* Example: If you have an electronic health record (EHR) dataset, and patient social security
numbers are missing throughout that field, regardless of patient location, ethnicity, and
BM]I, this is MCAR.

73

74

Programming with Python

* The simplest approach is to remove the missing data points (rows). This ensures that any analysis
is not biased by the missing values. This is achievable by using pandas’ dropna () function.

« Missing at random (MAR): This is missing data that is systematic but can be explained by
other observed variables in the dataset:

* Example: For another EHR dataset, the "Smoking Status" field is missing for some
patients, but the missingness can be explained by another observed variable, such as "Age".
Younger patients are less likely to have their smoking status recorded.

* You can use methods such as mean imputation, median imputation, or predictive imputation
(e.g., regression imputation) to fill in the missing values. This is achievable by using pandas’
fillna () function. The choice of imputation method is up to the analyst, but there are
some rules of thumb. Using the mean of the field to impute missing values is a suitable
method for data with a symmetric (e.g., normal) distribution. Using the median of the field
is more suitable for data with a skewed distribution. Advanced methods such as regression
might be useful when there’s a significant correlation between the variable with missing
values and other observed variables.

« Missing not at random (MNAR): This is when the missingness is related to unobserved factors
or missing data itself:

* Example: For the same EHR dataset, the "Mental Health Diagnosis" field is
missing for some patients, but the missingness is related to the severity of their mental health
condition. Patients with more severe conditions are less likely to have their diagnosis recorded.

* MNAR is the most complicated case to remedy because the missingness is not easily explained
by observed variables. Thus, it is important to carefully analyze the reasons for missingness
and consider more sophisticated techniques such as multiple imputation or maximum
likelihood estimation.

Let’s take a closer look at an example, using the following dataframe:

import pandas as pd
import numpy as np

df = pd.DataFrame ({

'A': [1, 2, np.nan],
'B': [5, np.nan, np.nan],
iglg [1, 2, 3]

3

Wrangling data with pandas

Here are some ways you can handle missing values:

o Drop missing values: The dropna () function removes missing values. By default, it removes
any row with at least one missing value:

print (df.dropna ())

o Fill in missing values: The fillna () function fills in (also called imputes) missing values
with a value of your choice. Here we replace the missing data with the ' FILL, VALUE' string:

print (df.fillna(value='FILL VALUE'))

Then here is an example imputing missing data with the mean:

print (df['A'] .fillna (value=df['A'] .mean()))
In this case we take column 'A"' and fill in the missing values with the mean of column 'A".

You may also use regression to impute the data, but this is a little more involved, and we haven’t covered
regression yet. We will discuss regression in a later session.

Selecting data

Selecting data is a very common operation when you're working with data. With pandas, you can
select data in a dataframe or Series in several different ways.

Suppose you have the following dataframe:

import pandas as pd

df = pd.DataFrame ({
'A': [1, 2, 3, 4],
"BYe [B, 6, 7, 81,
'c': ['ar, 'b', 'c', 'd']

|y
Here’s how you can select specific parts of the data:

o Selecting columns: You can select a single column using df [' ColumnName '] and multiple
columns usingdf [['Columnl', 'Column2']]:

select column 'A'

print (dE['A'])

select column 'A' and 'B'
print (dE[['A', 'B']])

75

76 Programming with Python

Selecting rows: You can use slicing to select rows just like you would with a list:

select the first 2 rows
print (df[0:2])

Selecting by condition: This is where pandas really shines. You can quickly filter rows based
on the values in one or more columns:

select rows where 'A' is greater than 2
print (df[df['A'] > 2])

select rows where 'A' is greater than 2 and 'B' is less than 8
print (dE[(df['A'] > 2) & (dE['B'] < 8)1)

Filter with the query method: This allows you to filter using a string expression:
select rows where 'A' is greater than 'B'

print (df .query('A > B'))

Selecting with loc() and iloc(): There is also another school of thought for data selection,
provided by the pandas package. The 1oc () and iloc () indexing methods are specific to
pandas dataframes. They are designed to provide a convenient way to select and access specific
rows and columns of a dataframe based on their labels or integer positions, respectively. Here
are some notable differences between the two:

* loc (): This method allows data selection based on column labels and/or row indices to
identify and retrieve data.

* iloc (): This method allows selection based on integer positions of rows and columns to
locate and retrieve data. Note, it uses exclusive slicing, meaning that the stop index is not
included in the selection. It also supports position-based slicing and indexing.

Both 1oc () and iloc () follow a similar syntax. You can see the 1oc () syntax here:

Row index, range or list

new_df = loc[row_index/row_indices) , col_name(s)]

Column label string, range, or list

Figure 3.4: loc() syntax

Wrangling data with pandas

Note

The first argument can be either a row index, range or list. Similarly, the second argument can
be a label string, range, or list.

You can see the iloc () syntax here:

Row index, range or list
|
|

r
new_df = iloc[row_index/row_indices) , col_name(s)]
| |
|
Column index, range, or list

Figure 3.5: iloc() syntax

Let’s look at some examples using both of these. First let’s create a dataset:

import pandas as pd

Create a sample DataFrame

data = {
'Name': ['John', 'Alice', 'Bob', 'Emily', 'Jack'],
'Age': [25, 30, 35, 28, 327,
'City': ['New York', 'London', 'Paris', 'Sydney', 'Tokyo'l,

'Salary': [50000, 60000, 70000, 55000, 80000]

}

Now, let’s review how we can use 1oc () to select columns and/or rows:

df = pd.DataFrame (data)

Select specific columns using loc ()

selected columns loc = df.loc[:, ['Name',6 'City']]
print ("Selected columns using loc():")

print (selected columns loc)

print ()

Next, we select the same information, using the 11oc () method:

Select specific columns using iloc()
selected columns_iloc = df.iloc[:, [0, 2]]
print ("Selected columns using iloc():")
print (selected columns iloc)

print ()

Select specific rows using loc()
selected rows loc = df.loc[1:3, :]

77

78

Programming with Python

print ("Selected rows using loc():")
print (selected rows loc)
print ()

Select specific rows using iloc ()
selected rows iloc = df.iloc([2:4, :]
print ("Selected rows using iloc():")
print (selected rows iloc)

print ()

Select a range of rows and specific columns using loc ()

selected range loc = df.loc[1:3, ['Name',6 'Age', 'Salary']]
print ("Selected range of rows and specific columns using
loc():")

print (selected range loc)
print ()

Select a range of rows and specific columns using iloc ()
selected range iloc = df.iloc[2:4, [0, 1, 3]]

print ("Selected range of rows and specific columns using
iloc():")

print (selected range iloc)

Sorting data

Sorting in Python using the pandas library is a powerful technique that allows you to organize and
analyze data efficiently. pandas provides various functions and methods to sort datasets based on one
or multiple columns, thereby gaining insights from the data in a structured manner.

To perform alphanumeric sorting in Python using pandas, use sort_values () to specify the
columns you want to sort by and the desired sorting order. Here is an example:

import pandas as pd

Create a sample DataFrame

data = {
'Name': ['John', 'Emma', 'Alex', 'Sarah'l],
'Age': [28, 32, 25, 30],

'Salary': [5000, 7000, 4500, 6000]

}

df = pd.DataFrame (data)

Wrangling data with pandas

Sort the DataFrame by the 'Age' column in ascending order
sorted_df = df.sort_values('Age')

print (sorted df)

Here is the output:

Figure 3.6: Sorting example 1

You can also sort by more than one column, as seen in the following example:

sorted df = df.sort values(["Age", "Salary"], ascending=[True, Falsel])

The ascending parameter allows you to specify which columns should be sorted in ascending
order. A value of True will ensure the respective column is sorted in ascending order; False will
ensure that the column is instead in descending order.

This method also has another parameter called na_position. This method allows you to determine
how NA values should be treated in the sorting process. For instance, setting this parameter to first
means that NA values will appear at the top of the DataFrame. Here is an example:

sorted df = df.sort values('Age', na position='first')

Here is the output:

Figure 3.7: Sorting example 2

79

80

Programming with Python

Merging data

The pandas library provides various facilities for efficiently combining dataframe objects. In particular,
merge is a powerful function that allows us to perform database-style merging (or joining) operations
(similar to JOIN operations in SQL).

Let’s say you have two dataframes that share a common column key. A key is a column that’s used to
establish a relationship between two or more datasets. When joining data, the key serves as a common
identifier or attribute that exists in both datasets, allowing for the combination of relevant information.

The process of joining data involves matching records from different datasets based on their key values.
This enables the creation of a consolidated dataset that contains information from multiple sources.

In Python, the pandas library provides powerful tools for joining and merging DataFrames. The key(s)
used for joining are specified through the on parameter, which accepts one or multiple column names.
Here’s how you can merge them:

import pandas as pd

dfl = pd.DataFrame ({

ISyl g (LU g0 i@l Uipy |
'value': np.random.randn (4)
b
df2 = pd.DataFrame ({
'key': ['B', 'D', 'D', 'E'],
'value': np.random.randn (4)

3

merged = pd.merge(dfl, df2, on='key')

The resulting merged DataFrame contains the df1 and df 2 rows, where the key column matches,
with the df 1 and df2 columns concatenated. By default, pd.merge () performs an inner join,
which means only the keys present in both dataframes are merged. In our example, we merge the two
dataframes using one common key, but you can also merge on multiple keys. If a key doesn’t exist in
either dataframe, the corresponding row is excluded from the result.

But merge () allows other types of join operations, similar to SQL. Although the following options
are not an exhaustive list, these are the ones you’ll use most often:

o Aninner join (the default functionality) is a join that returns only the matching records from
both datasets based on the specified key(s). Non-matching records from either dataset are
excluded from the result. The resulting dataset contains only the common records between
the datasets, as seen in the following code example:

merge (dfl, df2, how='inner')

Wrangling data with pandas

An outer join (also known as a full outer join) is a join that returns both the matching and
non-matching records from both datasets based on the specified key(s). Records from one
table without a matching record in the other table will be filled with nul1l or NaN values in
the resulting dataset, as seen in the following code example:

merge (dfl, df2, how='outer')

A left join (also known as a full left join) returns all the records from the left (or first) dataset and
the matching records from the right (or second) dataset. Non-matching records from the right
dataset are filled with nul1 or NaN values. The resulting dataset includes all records from the
left dataset and the common records from the right dataset, as in the following code example:

merge (dfl, df2, how='left"')
A right join is like a left join but returns all the records from the right (or second) dataset and
the matching records from the left (or first) dataset. The resulting dataset includes all records

from the right dataset and the common records from the left dataset, as seen in the following
code example:

merge (dfl, df2, how='right')

Aggregation with groupby()

Aggregation is a fundamental operation in data analysis that allows you to perform a summarization
operation (e.g., sum, average, min, max, and so on) on a range of selected data by a specified grouping.
The groupby () function in pandas provides a powerful way of performing aggregations. The
concept of the groupby () operation can be compared with the concept of Group By in SQL and
the Split-Apply-Combine strategy in R.

There are a variety of aggregation functions (e.g., sum, mean, median, and so on). However, most

aggregation operations involve these three steps:

1.

3.

Splitting the data into groups based on some criteria. This involves selecting one or more
categorical fields to group the data by.

Applying a function to each group. This is the function that dictates the kind of aggregation
that you want to perform. Some examples include sum, minimum (min), maximum (max),
count, and more.

Combining the results into a data structure.

Let’s consider a dataframe:

import pandas as pd

data = {

'Company': ['GOOG', 'GOOG', 'MSFT', 'MSFT', 'FB', 'FB'],

81

82 Programming with Python

'Person': ['Sam', 'Charlie', 'Amy',6 'Vanessa',K 'Carl',6 'Sarah'],
'Sales': [200, 120, 340, 124, 243, 350]

df = pd.DataFrame (data)

If we want to find the total sales of each company, we can use groupby () using the following syntax:

dataset.groupby ('<Group(s)>') ['<Aggregated Col>'] .agg function()

Here, the Group (s) parameter represents the categorical field by which you want to group the
aggregated result. The Aggregation Col parameter represents the numeric field on which you
want to perform the aggregation. Lastly, agg function () represents the function that you want
to use to perform the aggregation.

Let’s apply this syntax to our example:

by comp = df.groupby ('Company') ['Sales'] .mean ()
print (by comp.head) # Outputs the first 5 rows of the result dataset

This code will create a groupby object, and then call the mean function on this result. It will then
output the average sales for each company. In this case, the groupby () function splits the data into
groups based on the ' Company' column. The mean () function is then applied to each of these
groups independently, and the results are combined back into a new dataframe.

Here are a few more examples of how you can use groupby () :

To get the sum of sales for each company
df .groupby ('Company') ['Sales'] .sum()

To get the standard deviation of sales for each company
df .groupby ('Company') ['Sales'] .std()

To get more detailed information about each group
df .groupby ('Company') ['Sales'] .describe ()

In addition to these, you can use any function with groupby () aslong as that function can operate
on a dataframe or Series. This includes both built-in pandas and numpy functions, as well as custom
functions and lambda functions that you define yourself.

Wrangling data with pandas

You can also apply multiple aggregations with more than one function using agg () . Here are
some examples:

import pandas as pd

Create a sample DataFrame

data = {
'Name': ['John', 'Alice', 'Bob', 'Emily', 'Jack'],
'Age': [25, 30, 35, 28, 32],
'Salary': [50000, 60000, 70000, 55000, 80000]

df = pd.DataFrame (data)

Aggregate multiple columns with different functions

aggregations = {
'Age': ['mean', 'min', 'max'l],
'Salary': ['sum', 'mean']

result = df.agg(aggregations)
print (result)

Here is the output:

Figure 3.8: Aggregation output

Assessment
You are given the following dataframe with missing values:

import pandas as pd
import numpy as np

df = pd.DataFrame({'A': [1, 2, np.nan],
'B': [5, np.nan, np.nan],
'cr: [1, 2, 31}

83

84

Programming with Python

How would you fill the missing values in column 'A"' with the mean value of the non-missing values
in the same column?

Answer

We use the £111na function of pandas dataframes, which allows us to replace NaN values with some
value of our own:

df ['A'] .fillna(value=df['A'] .mean (), inplace=True)

Here we are replacing NaN (missing) values in column 'A' with the mean of non-NaN values in the
same column.

Assessment

Given a dataframe df with a column called ' Company' containing company namesand a ' Sales'
column with their respective sales, write a code snippet that would filter out rows corresponding to
the companies that have sales of more than 500.

Answer

Here,df ['Sales'] > 500 creates a Boolean Series where each element is true if the corresponding
sales value is greater than 500, and false otherwise:

df filtered = df[df['Sales'] > 500]

This Series is used to index the original dataframe, resulting in a new dataframe with only the rows
where the sales are more than 500.

Assessment

Suppose you have a dataframe df with the 'Name', 'Age',and 'Salary' columns. How would
you select the first three rows and the last two columns using the 11oc () method?

Answer
To select the first three rows and the last two columns using the 11oc () method, use the following code:

df.iloc[:3, -2:]

Wrangling data with pandas

Assessment

Given a dataframe df with the 'Name', 'Age', 'Salary',and 'Country' columns, how
would you select all rows where 'Age ' is less than 40, and only select the 'Name' and ' Country'
columns using both the 1oc () and iloc () methods?

Answer
To do this, you can use the following code:
df .loc[df ['Age'] < 40, ['Name', 'Country']]

Or alternatively, use the following code:

df.iloc[df['Age'] < 40, [0, 311

Assessment

Suppose you have the following dataset:

import pandas as pd

data = {

'OrderID': [1, 2, 3, 4, 51,

'CustomerID': [101, 102, 103, 104, 105],

'OrderDate': ['2022-01-01', '2022-02-15', '2022-03-10', '2022-04-
20', '2022-05-05'1,

'OrderTotal': [100, 150, 200, 75, 120]
}

df = pd.DataFrame (data)

How would you use the agg () function to calculate the total order amount for each customer?

Answer

First, we split the data into groups using groupby () ; in this case, we need to group each customer.
We then want to find the sum of the order totals, so we use the agg () method on the OrderTotal
column. After that, we set our aggregation function to sum () since we want the total; this newly
calculated column is given the name total order amount:

result = df.groupby ('CustomerID') ['OrderTotal'].agg(total order
amount=('sum'))

85

86

Programming with Python

Assessment

You have two DataFrames, df 1 and df2. Both DataFrames share a key column called "key". How
would you merge these datasets?

Answer

The pd.merge () function is used to merge two DataFrames on a key:

merged df = pd.merge(dfl, df2, on='key')

By default, it performs an inner join, which means it will only include rows where the key is present
in both df1 and df2. The resulting dataframe, merged_df, will include all columns from df1 and
df2, but only rows where the key value is present in both.

Summary

In this chapter, we covered many Python programming fundamentals you would need for your
technical interview. First, we covered Python variable data types and string operations, including string
indexing. Afterward, we reviewed Python list comprehensions and control statements, including loops.
Then we focused on some aspects of Python classes, indexing, merging, sorting, data aggregation,
and handling missing data.

It is incredibly important to be proficient in the area of data wrangling and manipulation, which
comprises a large part of data science interviews and assessments. Although it comprises a large part,
data wrangling is tested proportional to its presence in data science jobs.

In the next chapter, we will move our focus from Python fundamentals to data visualization and storytelling.

References

o [1] A Comparative Study of Data Cleaning Tools by Chen, Z., Oni, S., Hoban, S., & Jademi, O.,
from International Journal of Data Warehousing and Mining (II[DWM) (2019).

4

Visualizing Data and
Data Storytelling

Data visualization is the process of creating images, charts, and other visual data. This is performed to
reveal and understand underlying trends and patterns in the data. These skills are important in order
for data scientists to tell compelling data stories. For example, a marketing analyst may examine online
customer behavior to identify purchasing habit trends such as seasonal trends, product preferences,
or demographic correlations. These patterns can be used to craft targeted marketing campaigns
or develop personalized recommendations, enhancing customers. Alternatively, an analyst may
analyze historical financial time series data to identify patterns in market trends, stock performance,
or economic indicators. By recognizing patterns, they can make informed predictions about future
market behavior, guide investment decisions, and develop risk management strategies.

In this chapter, you will delve into the world of data visualization and storytelling. Here, you will learn
the key principles and techniques to choose the appropriate data visualization methods to effectively
communicate insights and patterns hidden within complex datasets. The goal of this chapter is to equip
you with the knowledge and skills necessary to create impactful and meaningful visual representations
of data. By the end of the chapter, you will know some of the tools of the trade for data visualizations,
including some software libraries, along with best practices for designing visually appealing and
informative dashboards, reports, and key performance indicators (KPIs). Additionally, you will
review coding techniques in Python that enable you to create charts and graphs programmatically.
Lastly, we will introduce a framework for data storytelling, emphasizing the importance of narrative
and context in presenting data-driven insights to various audiences.

Mastering these concepts is essential for you as a data scientist as it empowers you to effectively
communicate your findings, influence decision-making, and inform business decisions across domains
and industries.

88 Visualizing Data and Data Storytelling

In this chapter, we will cover the following topics:

o Understanding data visualization
 Surveying tools of the trade

o Developing dashboards, reports, and KPIs
o Developing charts and graphs

o Applying scenario-based storytelling

Understanding data visualization

As data scientists, we sometimes feel like we are explorers navigating the wild frontiers of massive
datasets, hunting for insightful patterns and significant relationships. Yet, the real value of our journey
lies in the capacity to translate these discoveries into stories that influence decisions, inspire action,
and propel innovation. This is where the art of data visualization and storytelling comes into play.

Data visualization is a powerful tool beyond simply showcasing statistics or trends - it breathes life
into data, transforming numbers and variables into visual narratives that capture attention, invoke
emotion, and provoke thought. It is a translation process, converting the abstract language of data
into an intuitive, visual dialect that people can understand and engage with. More than mere graphics,
well-crafted data visualizations can tell compelling stories.

The power of visualization lies in its appropriateness to the data, the narrative, and the audience.
Choosing the correct visualization is an important skill for data scientists — one that can significantly
affect the comprehension, impact, and engagement of your data narrative. Let’s take a look at different
types of data visualizations.

Bar charts

A bar chart is a versatile visual that can display categorical data or discrete quantities. It compares
different groups by representing them as rectangular bars with lengths proportional to the values they
represent. A typical bar chart looks like this:

Understanding data visualization 89

Bar Chart with Seaborn

Values

Categoryl Category2 Category3 Category4
Categories

Figure 4.1: A bar chart

As well as being vertical, bar charts can be inverted horizontally to create a side-ways bar chart:

90 Visualizing Data and Data Storytelling

Country Wold Cup Victories

Brazil

Italy

Argentina

West Germany

France

Uruguay

England

Germany

Spain

0 1 2 3 4 5
Win Totals

Figure 4.2: A sideways bar chart of FIFA World Cup victories by countries as of 2023

There are also numerous flavors of bar charts, including stacked bar charts, which display multiple bars
stacked on top of one another to represent different subcategories or components within each category,
or grouped bar charts (see Figure 4.3), which display numeric data across categories that are grouped.

Grouped Bar Chart

E Group 1l
BN Group 2
E Group 3

35

25

20+

Value

15+

10 +

Category

Figure 4.3: A grouped bar chart

Understanding data visualization

When to use it: Bar charts are excellent for comparing quantities across categories, illustrating differences
over time for a small number of groups, or presenting relative proportions.

Tips: Start the Y-axis at zero to avoid misrepresenting differences. Be sure to use appropriate scales to
clearly illustrate differences in category quantities. Use horizontal bar charts when the category labels
are long or if you have a large number of categories.

Line charts

A line chart represents quantitative data for one or more variables, making it ideal for showing the
relationship between two quantitative variables (one for each axis), or displaying trends over time
(where the X axis represents time). The plot is constructed by connecting data points with a line.

Figure 4.4 shows a typical line chart, where each axis represents numeric variables:

Simple Line Chart

1.0 15 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Figure 4.4: A line chart

As previously mentioned, line charts are sometimes used to create time series plots, which are a
special type of line chart. Time series plots are simply line charts where a series of times (minutes,
days, months, years, and so on) is the X-axis variable. While normal line charts are used to show the
relationship between two numeric variables, time series plots specifically demonstrate the relationship
between some numeric variable and time.

91

92 Visualizing Data and Data Storytelling

An example of a time series line chart is shown in Figure 4.5:

Stock Price Time Series

R an A
_

1.20 / ,1/

110

130

Stock Price

/»
\
t

1.05
/

1980 1985 1990 1995 2000 2005 2010 2015 2020
Year

Figure 4.5: Time series line chart of stock price

When to use it: Use line charts to display trends, movements, or changes over time, or to compare the
trends of different groups. Sometimes, line charts are used to assess whether two or more variables
are correlated, or if they meet some data shape, such as exponential or logarithmic. For example,
two variables may show a line chart that indicates exponential decay, which is useful when assessing
numeric variable relationships.

Tips: Keep your chart simple; too many lines can make the chart hard to interpret. Use markers for
each data point for added clarity.

Scatter plots

A scatter plot uses dots to represent values for two different variables, plotted on the X and Y axes.
It allows for the observation of relationships or correlations, and is often the precursor to line charts
if a pattern persists.

Understanding data visualization

Scatter Plot with Matplotlib

4
a
a
3
a o0
. '
2 o ¢ o« ¢
] ® 8 o o @
°® ® ® o
® 9 ®
14] ... L o
L e o
‘e * :... a °
= 01 ® ® 5, e °3s
® o e o
o *¢°
-1 o o e° Lo
%9
a
a
& o ..o‘ o ®
54 a
2 a a
. a
-3 L]
a
4
T T T T T
-2 -1 0 1 2

Figure 4.6: A scatter plot

When to use it: Scatter plots are perfect for showing relationships between two quantitative variables
or displaying the distribution of data. They are handy when you want to highlight the correlation, or
lack of any correlation, between two variables.

Tips: Use different colors or shapes to represent different categories (this may even uncover natural
segments of data not previously known). Adding a trend line can help visualize the overall relationship.

Histograms

A histogram is a graphical representation of the distribution of data. It is used to display discrete
numeric data, where the bins (or bars) represent ranges of data. It consists of a series of bars, where
each bar represents a category or range of values, and the height of the bar represents the frequency
or count of observations falling within that category. The bars in a histogram are typically placed
adjacent to each other to emphasize the discrete nature of the variable. Histograms are useful for
understanding the frequency and spread of values within different categories and identifying patterns
or outliers in the data:

93

94

Visualizing Data and Data Storytelling

Simple Histogram

Frequency

-3 -2 -1 0 1 2 3
Values

Figure 4.7: A histogram (approximately normal)

When to use it: Use histograms to show the distribution of (at least) one numeric variable and identify
patterns such as skewness, kurtosis, or outliers.

Skewness is simply the degree of asymmetry. For example, a right-skewed histogram has a longer tail
on the right side of its peak, whereas a left-skewed histogram has a longer tail on the left side of its
peak. Alternatively, kurtosis is a measurement of deviation from a normal distribution. You'll learn
more about distributions in the Chapter 8.

Tips: Be aware that bin size can greatly influence your histogram’s shape and insights. Experiment
with different sizes to find the one that best represents your data.

Density plots

Similarly, a density plot (also known as a kernel density plot) is another visualization method that’s
used to display the distribution of numeric data. Unlike histograms, density plots are used to represent
the distribution of one or more continuous variables.

Alternatively, histograms are used to represent the distribution of discrete variables (which have a
finite number of distinct values or categories). Thus, density plots provide a smooth estimate of the
underlying probability density function (PDF) of the data. The plot displays the relative frequency
of data points within different intervals along the variable’s range, showing the concentration of data
and areas of high or low density:

Understanding data visualization

Density Plot

000 T T T T T
—4 -3 -2 -1 0 1 2 3
Values

Figure 4.8: A density plot

When to use it: Use density plots to show the distribution of continuous variables and identify patterns
such as skewness, kurtosis, or outliers. It is also useful while investigating the theoretical distribution
of a variable.

We will learn more about common theoretical distributions in Chapter 8, but note that distributions
derived from real-world empirical data are known as empirical distributions, which are in turn
compared to theoretical distributions that determine data assumptions.

Tips: Similar to the histogram, you can create density plots with more than one variable to compare
variable distributions and skewness.

Quantile-quantile plots (Q-Q plots)

A Q-Q plot is another plot that’s used to assess a dataset’s distribution, typically to compare it to some
theoretical distribution (for example, normal distribution). It compares the quantiles of the empirical
date from the dataset (along the Y-axis) against the quantiles of the expected theoretical distribution
(along the X-axis). The diagonal line in this plot represents where the distributions would match exactly
— the closer the scattered dots are to the line, the closer the dataset meets the theoretical distribution.
In the case of the standard normal theoretical distribution, the expected quantiles would portray a
mean of 0 and a standard deviation of 1:

95

96

Visualizing Data and Data Storytelling

Q-Q plot

Ordered Values
[=]
1

T T T T T T
-3 -2 -1 0 1 2 3
Theoretical quantiles

Figure 4.9: A Q-Q plot

When to use it: Q-Q plots are used to check underlying statistical assumptions, typically in preparation
for statistical models that have distribution requirements, such as linear regression. The plot allows
analysts to visually review the Q-Q plot to determine if the data meets pre-modeling requirements —
that is, checking if the data fits some pre-determined theoretical distribution.

Q-Q plots are not as intuitive for visuals beyond pre-statistical analysis, so limit their use beyond your
investigative needs. Non-analysts are much more likely to understand hisrograms and density plots.

Tips: When assessing a dataset’s distribution, you may start with a histogram, which can give you some
idea of the data’s general distribution. If you are hoping for a normal distribution and the histogram
shows that the data is skewed, there’s not much point in using a Q-Q plot. However, if the histogram
shows an approximately normal shape, you may use the Q-Q plot to give you a more accurate
estimation of the distribution of data since it directly compares your data to the known quantiles of
a theoretical distribution.

Understanding data visualization

Box plots

A box plot, or box-and-whisker plot, provides a five-number visual summary of a dataset — the
minimum, first quartile, median, third quartile, and maximum:

Boxplot
5] o)
2 -
l -
) _ _
> 0
2
_1 -
-2
-3 8
T T
Data 1 Data 2

Figure 4.10: A box plot

When to use it: Box plots are great for comparing distributions between different groups or identifying
outliers in your dataset. It requires at least one continuous numeric variable, but you can also plot
numerous box plots by category. Box plots are better suited for summarizing the central tendency, spread,
and identifying outliers, making them useful for comparisons between different variables or groups.

Tips: Pair box plots with other plots, such as a swarm plot, to show individual data points and give a
more comprehensive view. Swarm plots are box plots overlaid with a scatter plot of the data.

Pie charts

A pie chart is a circular graph that represents proportions or percentages among categories, with
each slice corresponding to a category, and all category proportions adding up to 100%. While pie
charts are seemingly easy to interpret, most analytics professionals avoid them, since they have a way
of tricking the human mind. We don’t always correctly perceive the numeric proportions, making it
difficult to make out categorical differences:

97

98

Visualizing Data and Data Storytelling

Simple Pie Chart
Category 4

Category 5

Category 1 Category 3

Category 2

Figure 4.11: A pie chart

Additionally, it only takes a handful of categories before interpreting pie charts becomes extremely
challenging. Furthermore, unlike bar charts, there’s no natural ordering functionality.

When to use it: Traditionally, pie charts are suitable for displaying the proportions or a percentage of
a whole regarding a small number of categories. However, it is advised to use them sparingly. Instead,
consider using a bar chart or stacked bar chart.

Tips: Limit the slices to a manageable number (ideally under seven) to avoid overcomplicating the
chart. Label slices with their actual values or percentages for clarity.

These are just a few examples in the vast world of data visualization. Remember, the goal is not to use
the most complex visualization but the one that most effectively communicates your data story to the
audience. As you gain experience, don't be afraid to experiment with less conventional visualization
types, such as heatmaps, treemaps, or radial charts. Also, always be sure to keep your audience, the
data, and your narrative in mind.

Assessment

You are given a dataset with sales data for a chain of grocery stores. The dataset includes sales figures
by store location, product category, and time (monthly for the past 2 years). You're asked to analyze
and present the monthly trend of total sales and also compare the sales of different product categories.
What types of data visualizations would you choose for this task and why?

Surveying tools of the trade

Answer

To present the monthly trend of total sales, a line chart would be the most appropriate visualization.
Line charts are perfect for displaying trends over time and can easily showcase increases or decreases
in total sales over the given 2-year period.

To compare the sales of different product categories, a stacked bar chart would be a good choice. Each
bar could represent a month, and the segments within each bar would represent the sales of different
product categories. This would allow the audience to visually compare the sales of different product
categories and understand how they contribute to the total sales.

Assessment

You are working with a dataset containing responses to a customer satisfaction survey. The survey
includes customer demographic information (age, gender, location, and so on) and responses to a
question about satisfaction level on a scale from 1 to 5 (1 = very dissatisfied, 5 = very satisfied). What
type of data visualization would you use to present an overview of the satisfaction level responses,
and why?

Answer

A histogram or a bar chart would be appropriate to show an overview of the satisfaction level responses.
A histogram would be a good choice because it shows the distribution of a single variable (in this
case, satisfaction level). It can provide a visual representation of which satisfaction level was selected
most and least often, as well as the general distribution of responses.

Alternatively, an ordinal bar chart could also work well, considering satisfaction levels are discrete and
ordered categories. Each bar would represent a satisfaction level (from 1 to 5), and the length of the
bars would show the count of responses for each level. This visualization would provide a clear view
of customer sentiment, allowing for easy comparison between the different categories.

Both of these visualizations would help you quickly understand customer satisfaction level responses
by visually representing the distribution and frequency of each response category.

Surveying tools of the trade

There is an array of visualization tools available that cater to a variety of needs, skill sets, and use
cases. This section will discuss several popular data visualization tools, including Power BI, Tableau,
R’s Shiny, and Python libraries such as Matplotlib and Seaborn, providing guidance on when to use
one over another. However, the goal here is to help give you more general knowledge to prepare you
for your technical interview on understanding when to choose a particular tool.

99

100

Visualizing Data and Data Storytelling

Power Bl

Power BI is a business intelligence tool developed by Microsoft. It offers interactive visualizations with
an interface simple enough for end users to create reports and dashboards.

When to use it: Power Bl is very effective when dealing with large quantities of complex data sources,
which requires considerable data wrangling or modeling. It’s an excellent choice for businesses
seeking to create interactive, user-friendly dashboards or for integrating analytics into existing
Microsoft-based systems.

Tableau

Tableau is a data visualization tool that’s widely used for its intuitive ability to create complex, interactive
visualizations, reports, and dashboards.

When to use it: Tableau shines when working with large and complex datasets, particularly when you
need to create interactive dashboards or complex visual narratives. It's an excellent tool for organizations
whose primary users are business analysts or executives who want to interact with the data but don't
necessarily have extensive data modeling skills.

Shiny

Shiny is a package from RStudio that allows R and, as of late, Python users to build interactive web
applications, bringing the power of R’s statistical capabilities to visualization.

When to use it: Shiny is the tool of choice when your data work requires heavy statistical analysis, and
you want to create web-based interactive visualizations. If youre already comfortable with R, Shiny
allows you to leverage your existing skills while creating sophisticated applications.

ggplot2 (R)

ggplot2 is an R package known for creating elegant and aesthetically striking visualizations. It
implements a unique grammar of graphics approach that allows for powerful plot customization and
has a strong online community of users.

When to use it: ggplot2 is excellent when youre working with data in R and when you need to create
complex, customized visualizations. Its strength lies in its flexibility and the consistency of its output.

Matplotlib (Python)

Matplotlib is a multi-platform data visualization library built on NumPy arrays for Python. It's powerful
and flexible, capable of creating nearly any type of chart or graph.

Developing dashboards, reports, and KPIs

When to use it: Matplotlib is excellent for creating simple to moderately complex static plots. It works
well for customizing plots for publications or presentations or working with other Python libraries
(such as NumPy or pandas).

Seaborn (Python)

When to use it: Seaborn is particularly useful when enhancing Matplotlib visuals. It’s an excellent tool
for exploratory data analysis and making statistical plots look more attractive.

Choosing the right visualization tool depends on the complexity of your data, the nature of your
task, your team’s technical skills, and your project’s specific requirements. It’s beneficial to familiarize
yourself with several tools, so you can choose the most suitable one for each data visualization
challenge you encounter.

Assessment

You are a data scientist at a multinational corporation using Microsoft-based infrastructure. Your manager
has asked you to perform an in-depth analysis of a complex, large-scale dataset to derive insights into
the company’s operations and present your findings to both the technical team and non-technical
stakeholders. You are comfortable with both R and Python. Considering these circumstances, which
data visualization tools might best suit your task, and why?

Answer

Given the dataset’s complexity and scale and the corporation’s Microsoft-based infrastructure, Power
BI would be an excellent choice for this task. Power BI is well-integrated with Microsoft’s ecosystem,
enabling smooth data import and export from various Microsoft sources. It’s capable of handling large-
scale datasets and producing interactive dashboards, which can be highly beneficial for presenting
insights to non-technical stakeholders in an accessible, interactive manner.

However, considering that some of the audience is technical and you are comfortable with coding,
utilizing Python’s Matplotlib and Seaborn libraries or R’s ggplot2 for exploratory data analysis and
making customized, complex statistical graphics could be beneficial. These tools offer more control
and customization for your plots and can handle the statistical nuances that might be required in the
in-depth analysis. So, in essence, a combination of Power BI for interactive dashboard creation and
either Python or R for more custom and intricate visualizations would be a well-rounded approach.

Developing dashboards, reports, and KPIs

In some technical interviews, you are given a take-home technical task to complete, and this might
include data visualization. In the previous section, we touched on some common dashboarding
tools a data scientist might use. In this section, we will delve deeper into some best practices for your
dashboards, reports, and KPIs.

101

102

Visualizing Data and Data Storytelling

As a data scientist, youre not only tasked with uncovering insights from data but also communicating
these insights effectively. This often involves creating dashboards, reports, and KPIs. While the
aesthetics of your visuals are important, clarity, accuracy, and usability should always take precedence.
The following are some best practices to help you create effective dashboards and reports:

o Prioritize clarity and simplicity: Avoid cluttered or overly complex visualizations. Keep your
dashboards and reports simple and intuitive. Stick to one primary message per chart and limit
the number of visualizations on a single page or screen. Remember, the goal of your visualization
is to clarify, not confuse.

o Use appropriate titles and labels: Every chart or graph should have a clear, descriptive title
that communicates its main point. Axis labels should be succinct yet descriptive. Including
units of measurement where applicable is also essential. Legends should be easily identifiable
and placed strategically so as not to interfere with the data.

o Select the right chart type: We discussed this earlier, but it is worth mentioning here also.
The type of chart you use should align with the nature of your data and what you want to
communicate. Bar charts and line graphs are generally more intuitive and versatile, while pie
charts and scatter plots might require more context or explanation. Don't force a particular
type of chart onto your data; instead, let the data guide your visualization choices.

o Use consistent design elements: Maintain consistency in color schemes, fonts, and styles across
your dashboards and reports. This doesn’t mean everything has to look the same, but there
should be a cohesive, professional appearance to your work. Consistency reduces cognitive
load and helps users focus on the content.

o Implement interactivity: Interactivity can greatly enhance the user experience by enabling
users to focus on areas of interest, explore the data, and gain personalized insights. Filters,
dropdowns, and hover-over effects are common interactive elements in dashboards. However,
ensure interactivity doesn’t compromise the clarity or performance of the dashboard.

o Align visuals with KPIs: KPIs should be front and center in your reports or dashboards. They
should be visually distinct and easily understandable at a glance. Use simple but effective visual
cues to indicate performance (such as colors or directional indicators).

o Iterate and gather feedback: In an interview setting, this might not be possible. Some
interviewers like to interact with the interviewee as if they were colleagues. If this is the case,
then don’t consider your dashboard or report as a one-and-done task. Gather feedback from
the interviewer as if they were the end user. Understanding how users interpret and interact
with your visualizations can provide valuable insights for improvement.

Remember, data visualization is an art as much as it is a science. Strive for clarity and simplicity, but
don't be afraid to experiment and innovate. The more you practice, the more intuitive and effective
your data visualization skills will become.

Developing dashboards, reports, and KPIs

Assessment

You've been asked to design a dashboard for a client who wants to monitor their website’s traffic, user
engagement, and sales performance. The client is not technically savvy, and the dashboard will be
used by a diverse team within the organization, including sales, marketing, and product management.

The client’s key metrics include the following:

« Daily and monthly unique website visits
o Average session duration

« Pages per session

« Sales conversion rate

o Top-performing products (by sales)

Considering the guidelines for creating effective dashboards, reports, and KPIs, outline your approach
to designing this dashboard, including which visualizations you would use for each metric and how
you would apply best practices to ensure the dashboard is effective and user-friendly.

Answer

The approach to this task should keep the end user in mind, making sure the dashboard is accessible,
clear, and relevant to a broad audience within the organization:

« Daily and monthly unique website visits: Line charts would be ideal for tracking these
metrics over time. They clearly show trends and fluctuations and would allow users to quickly
understand the website’s traffic patterns.

o Average session duration: Again, a line chart would be an effective visualization, providing
an understanding of changes over time.

« Pages per session: A bar chart could be used here, possibly displaying average pages per session
for each day or month.

o Sales conversion rate: A line chart tracking the sales conversion rate over time would be a
clear way to display this important KPI.

o Top-performing products: A horizontal bar chart could effectively display top-performing
products, making it easy for users to compare products.

103

104

Visualizing Data and Data Storytelling

To ensure the dashboard adheres to best practices, consider the following:

o Each chart should have a clear, descriptive title and labels, with units of measurement
where necessary.

« A consistent color scheme and style should be used across all visualizations for a cohesive look.
For example, all line charts could use the same color palette, distinguishing different lines with
different shades or patterns.

o KPIs such as sales conversion rate and top-performing products should be highlighted and
placed in prominent positions on the dashboard.

« To cater to the diverse audience and provide personalized insights, interactive features should
be implemented. For instance, drop-down menus could be used to allow users to select specific
time ranges or to filter products by categories.

o The design should be kept clean and uncluttered. If there are too many visualizations to fit
comfortably on a single screen, tabs could be used to organize them into related groups.

Developing charts and graphs

While there are many tools for creating different data visuals, we will review a few basic visualizations,
including bar charts, scatter plots, and histograms in Python. Two standard libraries for creating data
visualizations in Python are Matplotlib and Seaborn.

In this section, we will discuss the different chart types and how to make them in Matplotlib and Seaborn.

Bar chart - Matplotlib

Matplotlib is a foundational library for visualizations in Python. Here’s a basic example of how you
might create a bar chart with Matplotlib:

import Matplotlib.pyplot as plt

Categories and their associated values

categories = ['Categoryl',6 'Category2',6 'Category3', 'Category4']
values = [50, 60, 70, 80]
plt.figure(figsize=(8,6)) # Create a new figure with a specific size

(width, height)

plt.bar (categories, values) # Create a bar chart

Labels for x-axis, y-axis and the plot

Developing charts and graphs

plt
plt
plt

plt

.xlabel ('Categories')
.ylabel ('Values')
.title('Bar Chart with Matplotlib')

.show () # Display the plot

Let’s take a look at what the previous code block achieves:

First, we import the Matplotlib library, specifically the pyplot module with the
matplotlibMatplotliby convention. It’s usually imported under the plt alias.

Here, we're simply defining two lists: categories and values. These will be used for the
X-axis (categorical data) and the Y-axis (quantitative data) of the bar chart, respectively.

plt.figure () isafunction that creates a new figure. The f£igsize parameter allows you
to specify the width and height of the figure in inches.

The plt.bar () function creates a bar chart. It takes two arguments: the X-values (our
categories) and the Y-values (the corresponding values).

The plt.xlabel (),plt.ylabel(),andplt.title () functions allow you to set
labels for the X-axis, Y-axis, and the title of the plot, respectively. This step is crucial to make
your plot self-explanatory.

Finally, plt . show () is used to display the figure. It informs Python to display the figure
and ensures that you can see it. This is necessary because Matplotlib is a graphical library and
needs to interact with a graphical backend to display its figures.

105

106

Visualizing Data and Data Storytelling

Here is the result of the code block:

Bar Chart with Matplotlib

Values

Categoryl Category?2 Category3 Category4
Categories

Figure 4.12: The output of the Matplotlib bar chart script

Bar chart — Seaborn

As mentioned previously, Seaborn is another Python library for data visualization built on top of
Matplotlib. It allows us to layer in additional plotting features, such as adding colors or graphing
themes, like so:

import Matplotlib.pyplot as plt
import seaborn as sns

Categories and their associated values
categories = ['Categoryl', 'Category2',6 'Category3', 'Category4']
values = [50, 60, 70, 80]

Convert data to DataFrame
import pandas as pd
data = pd.DataFrame ({"Categories": categories, "Values": values})

Developing charts and graphs

plt.figure(figsize=(8,6)) # Create a new figure with a specific size
(width, height)

sns.barplot (x="Categories", y="Values", data=data) # Create a bar
chart

Labels for x-axis, y-axis and the plot
plt.xlabel ('Categories')

plt.ylabel ('Values')

plt.title('Bar Chart with Seaborn')

plt.show() # Display the plot
Let’s review what the code block achieves:

o First, we import the Seaborn library, with seaborn. It is typically imported under the sns alias.

o Next, like the Matplotlib code, we define two lists, categories and values, that will hold
the data we will plot. Then, we import the pandas library and create a DataFrame with our
data. A DataFrame is a table-like data structure that Seaborn can use to create visualizations.
Each key-value pair in the dictionary we pass to pd . DataFrame corresponds to a column
in the DataFrame.

o Theplt.figure function from Matplotlib is used to create a new figure. We specify the
figsize parameter to set the width and height of the figure.

o The sns.barplot function is used to create a bar chart. We specify the columns of our
DataFrame for the x and y parameters and pass our DataFrame to the data parameter. This
tells Seaborn to create a bar chart with categories on the X-axis and values on the Y-axis.

o We use Matplotlib functions to add labels to our X-axis (p1t .xlabel), Y-axis (plt .ylabel),
and the title of the plot (plt.title).

o Finally, p1t . show is used to display the plot. Seaborn relies on Matplotlib to display plots,
and this function tells Matplotlib to render the following bar chart:

107

108 Visualizing Data and Data Storytelling

Bar Chart with Seaborn

Values

Categoryl Category2? Category3 Category4
Categories

Figure 4.13: The output of the Seaborn bar chart script

Scatter plot - Matplotlib

Next, we will demonstrate how to create scatter plots with Matplotlib. Scatter plots are very useful
for displaying relationships between two numeric variables along two different categories. It’s often
the first sniff test for investigating covariate relationships before applying more conclusive techniques
such as regression analysis.

Let’s take a look at how we might plot a scatter plot using the Matplotlib library:

import Matplotlib.pyplot as plt
import numpy as np

Generate some example data
np.random. seed (0)

X = np.random.randn (100)

y = X + np.random.randn (100)

Developing charts and graphs

plt.figure(figsize=(8,6))
plt.scatter(x, y) # Create a scatter plot

Labels for x-axis, y-axis and the plot
plt.xlabel ('x")
plt.ylabel('y")
plt.title('Scatter Plot with Matplotlib')

plt.show ()

Let’s review the code:

« First, we import the Matplotlib library, specifically the pyplot module with the
matplotlibMatplotliby convention. It’s usually imported under the plt alias.
Additionally, we import the NumPy module under the np alias to be used in creating a sample
dataset later. NumPy is a library for the Python programming language that adds support
for large, multi-dimensional arrays and matrices, along with a large collection of high-level
mathematical functions to operate on these arrays.

« Additionally, we generate some random data for the scatter plot. np . random. seed (0) is used
to keep the random numbers consistent between runs. np . random. randn (100) generates
100 random values from a normal distribution.Iny = x + np.random.randn (100),
we generate the Y-values such that they have some relationship with the X-values (as they’re
based on x) but also have additional random noise.

o We create a new figure object where the plot will be drawn, with the size of the figure set to 8
units (width) by 6 units (height).

o To create the scatter plot, the plt . scatter function produces a scatter plot, with x and y
being the data points that are plotted.

e Theplt.xlabel(),plt.ylabel (),andplt.title () functions set labels for the
X-axis, Y-axis, and the title of the plot, respectively.

o Again, we display the plot by calling the p1t . show () function.

109

110 Visualizing Data and Data Storytelling

The following figure shows the result of the code block:

Scatter Plot with Matplotlib

4
]
.
3-
[o0
e
® o [4
2 ® .. g ® ...
.. e ™ L]
14 L] :.; . L]
L o® [I .
> DA .O. ° a® @ 5 ™ »
3% 208
® °.° -
-1 1 a .-f‘ o %
®
8 o * 3 °
[] []
-2 4 s [] .‘
. .
=3 L]
&
_4- T T T T T
-2 -1 0 1 2

Figure 4.14: The output of the Matplotlib scatter plot script

Scatter plot - Seaborn
Now that we've explored scatter plots in Matplotlib, let’s look at an example of using Seaborn:

import Matplotlib.pyplot as plt
import seaborn as sns

import pandas as pd

import numpy as np

Generate some example data
np.random.seed (0)

x = np.random.randn (100)

y = X + np.random.randn(100)

Convert data to DataFrame

Developing charts and graphs

data = pd.DataFrame ({"x": x, "y": y})

plt.figure(figsize=(8,6))

sns.scatterplot (data=data, x="x", y="y") # Create a scatter plot
Labels for x-axis, y-axis and the plot

plt.xlabel ('x")

plt.ylabel ('y")

plt.title('Scatter Plot with Seaborn')

plt.show ()

Let’s review the code:

o First, we import the necessary modules - that is, seaborn, numopy, and pandas.
o Next, the data is converted into a pandas DataFrame, a two-dimensional table data structure.
o Then, a new figure is created with a specified size.

o The scatterplot () function is called with our DataFrame passed to the data parameter
and the column names for x and y.

« Finally, we add our labels to the plot and display it by calling the p1t . show () function.

« This code will produce a scatter plot like the one produced by Matplotlib. However, Seaborn
allows for more customization and complexity as you can map other variables to the size, hue,
and style of the points, among other things.

111

112

Visualizing Data and Data Storytelling

Here is the result:

Scatter Plot with Seaborn

4
34
. .
. . *
2 . e T 8 s
e ® o .
®
[] . .
14] ... L
= . [o L I |
. .
= 01 '. o ls.
l] [} ™ ™
a . @
=14 L L] f L ..o
1] =
a » * 3
24 o o s ¢
E . .
& «
-3 < L]
.
= 4
-2 -1 0 1 2

Figure 4.15: The output of the Seaborn scatter plot script

Histogram plot - Matplotlib

Moving on, here is an example of how we might create a standard histogram in Matplotlib:

import Matplotlib.pyplot as plt
import numpy as np

Generate some example data
np.random.seed (0)
data = np.random.randn (1000)

plt.figure(figsize=(8,6))
plt.hist (data,

bins=30) # Create a histogram

Labels for x-axis,
plt.xlabel ('Value')

y-axis and the plot

Developing charts and graphs 113

plt.ylabel ('Frequency')
plt.title('Histogram with Matplotlib!')

plt.show ()

Let’s review the code:

o First, we import the Matplotlib and NumPy modules. Additionally, we generate random data
with the NumPy library.

o Again, a figure is created with a specified size.
o A histogram is created with plt . hist (), with the data and number of bins as arguments.
« Finally, the X-axis, Y-axis, and the plot title are labeled and displayed.

« This code will produce a histogram with 30 bins.

Here is the result:

Histogram with Matplotlib

B0

60 -

Frequency

201

Figure 4.16: The output of the Matplotlib histogram plot script

114 Visualizing Data and Data Storytelling

Histogram plot - Seaborn
Next, let’s see how Seaborn can add more character and visual appeal to our histogram plot:

import Matplotlib.pyplot as plt
import seaborn as sns
import numpy as np

Generate some example data
np.random.seed (0)
data = np.random.randn (1000)

plt.figure(figsize=(8,6))
sns.histplot (data, bins=30, kde=True) # Create a histogram

Labels for x-axis, y-axis and the plot
plt.xlabel ('Value')

plt.ylabel ('Frequency')
plt.title('Histogram with Seaborn')

plt.show ()

Let’s explain the code:

o The first couple of lines of the code should look familiar as we import the necessary modules,
generate some example data, and create the plot figure.

o 'The use of the sns.histplot function creates the histogram plot. In addition to plotting,
with 30 bins, the kernel density estimate (KDE) is also plotted, which can help in visualizing
the underlying distribution of the data.

o We complete the plot by labeling the axes and displaying the plot.

Developing charts and graphs 115

Here is the result:

Histogram with Seaborn

80 1

=]
(=]
L

frequency
3

-3 -2 -1 0 1 2 B
Value

Figure 4.17: The output of the Seaborn histogram plot script

Assessment

You are given a dataset with a large number of data points and are tasked with visualizing the distribution
of the values in the dataset. Which type of plot do you think is most suitable for this task in Matplotlib
and Seaborn? How would you implement this in code?

Answer

A histogram would be most suitable for visualizing the distribution of values in a large dataset.
Histograms provide a visual representation of data distribution by dividing the continuous data into
bins and then plotting the number of data points that fall into each bin.

Here is an example of how this code might look:

import Matplotlib.pyplot as plt
import seaborn as sns

Assuming data is your dataset

116 Visualizing Data and Data Storytelling

plt.figure(figsize=(8,6))

Histogram with Matplotlib
plt.hist (data, bins=30)
plt.show ()

Histogram with Seaborn

sns.histplot (data, bins=30, kde=True)
plt.show ()

In both the Matplotlib and Seaborn examples, the bins parameter determines the number of bins
in your histogram (and can be adjusted based on your specific needs), and the kde parameter in the
Seaborn example indicates whether or not to plot a Gaussian kernel density estimate (which can give

you a smoother curve representative of the distribution).

Applying scenario-based storytelling

One of the most important aspects of a data scientist’s role is to translate complex datasets into a
narrative that people who aren’t data scientists can understand. The ability to present your findings
clearly and compellingly is a crucial skill for a data scientist. This section provides a framework for
structuring your data story effectively:

Begin with your end: Before crunching numbers, clarify your goal. What is the key message
you want to communicate? What action do you want to take? A clear objective will guide
your analysis, influence your choice of visualizations, and ensure your story resonates with
your audience.

Know your audience: Understanding your audience’s needs, interests, and level of knowledge
will help you present your data meaningfully. Tailor your story to fit your audience - the detail,
complexity, and visualizations you use should vary depending on who you're speaking to.

Build your narrative: Understanding your audience’s needs, interests, and level of knowledge
will help you present your data in a way that’s meaningful to them. Again, here, we mention
tailoring your story to fit your audience.

Use visuals wisely: The human brain processes visuals much faster than text. Use this to your
advantage by presenting your data visually. However, not all visuals are created equal. Your
choice of visualization should simplify complex data, highlight the most important insights,
and support your narrative. Keep your visuals clean and uncluttered, and avoid unnecessary
decoration distracting from the data.

Applying scenario-based storytelling

o Let your data do the talking: The best stories let the data speak for themselves. Use your
narrative to guide your audience, but let the data provide the evidence. This makes your story
more compelling and builds credibility and trust with your audience. Keep interpretations to
a minimum to avoid speculating and making the data fit a preconceived story.

o Engage and interact: Make your data story interactive where possible. Allow your audience to
explore the data for themselves, adjust the view, or filter the data. This makes your story more
engaging and enables your audience to see the data from different perspectives.

o Practice, review, and refine: Like any form of communication, compelling data storytelling
takes practice. Test your story on a trusted colleague or mentor. Ask for feedback and refine
your story accordingly. Remember, the most effective data stories are not just accurate - they’re
also compelling:

‘ -
A Practice,

A Engage Rev_ieW,
A Let the and Refine
A Use DataTalk Interact

A Build Visuals

Know Your Wisely
Begin Your Narrative

with Your ~ Audience

End
Figure 4.18: Scenario-based storytelling process

In summary, data storytelling is a powerful tool to enlighten your audience and drive action. But it’s
more than just presenting data and insights - it's about crafting a compelling narrative, choosing the
right visuals, and letting your data speak for itself. As you grow in your data science career, remember
that your ability to tell a compelling data story can be just as important as your technical skills.

Assessment

You've been asked to present an analysis of customer churn to the company’s leadership. Considering
the audience’s high-level position and business-oriented mindset, how would you structure your
presentation to ensure it is effective and engaging?

117

118

Visualizing Data and Data Storytelling

Answer

Given the audience’s high-level position, it would be crucial to focus on the broader business implications
of your analysis rather than on the technical details:

o Firstly, youd want to clearly articulate the objective of your analysis (for example, to understand
the reasons behind customer churn and propose strategies to reduce it) and ensure this aligns
with the company’s strategic goals.

o Secondly, you should build a clear and coherent narrative that guides your audience through
your key findings and their implications, using relatable language and analogies where possible.

o Visuals should be used to effectively highlight the most critical insights — for example, a bar
chart showing churn rates by customer segment or a line graph illustrating churn rates over
time. These visuals should be clean, uncluttered, and easy to understand, focusing on the most
critical data.

o Lastly, where possible, make your presentation interactive, perhaps by using a tool that
allows your audience to explore the data further if they wish. Conclude with clear, actionable
recommendations based on your data.

Assessment

In data storytelling, why is it important to “let your data do the talking,” and how might you accomplish
this when presenting your findings?

Answer

Letting your data do the talking means using data to provide evidence for your conclusions and to
drive your narrative. It also means ensuring that your visualizations are accessible to a wide audience
including non-technical personnel. In many cases, your visualization will be used by a wide variety of
people from different backgrounds and role functionality. Thus, you must create visuals that require
minimal explanation, that the intended insights from the plot are clear, and that you’ve considered
accessibility (for example, colorblindness) in your development process. This approach ensures your
story is grounded in facts, which lends credibility to your message and builds trust with your audience.

You can accomplish this by doing the following:

» Highlighting key data points and trends that support your message. This can be done
visually, through graphs or charts, or narratively, by explicitly discussing these data points in
your presentation.

 Keeping interpretations and conjectures to a minimum. While some interpretation of the data
is usually necessary, it's important not to stray too far into speculation. Let the data drive the
story rather than trying to make the data fit a preconceived narrative.

Summary

o Presenting raw numbers or statistics where appropriate. While visuals are often more engaging,
sometimes, the most effective way to let your data speak is to present the numbers themselves,
especially when those numbers are particularly impactful.

« Using direct quotes or anecdotes from qualitative data to emphasize or illustrate a point. This
can make the data more relatable and personal, adding another dimension to your story.

Summary

In the first half of this chapter, we established the critical role of data visualization and storytelling in
the field of data science. Beginning with an overview of why data visualization is crucial, we delved into
a framework for choosing the right visualization based on data types and the goal of communication.
We explored a variety of data visualization types, such as bar charts, pie charts, histograms, scatter
plots, and box plots, discussing their use cases, creation processes, and tips for enhancing their
storytelling power. Additionally, we analyzed various visualization tools, including Power BI, Tableau,
R’s Shiny, Python’s Matplotlib, and Seaborn, providing insights into their advantages, limitations, and
ideal use cases.

The latter part of this chapter focused on the practical aspects of data visualization and storytelling.
We covered the best practices for creating effective dashboards, reports, and KPIs, emphasizing clean,
uncluttered visuals, appropriate titles, readable axes, and interactivity. Hands-on implementation of
different plots using Python’s Matplotlib and Seaborn was extensively discussed, with explanations
and code examples for creating bar charts, scatter plots, and histogram plots.

The final section emphasized the crucial role of storytelling, providing a clear framework for structuring
a compelling data story. Throughout, you were equipped with assessment questions to reinforce your
understanding, preparing you for job interviews and practical applications in your early career as a
data scientist.

In the next chapter, we will look at preparing for the SQL-based questions of the technical interview.

119

5
Querying Databases with SQL

In this chapter, you'll learn the essential aspects of databases, starting with a broad overview, then
diving deep into the fundamental language of SQL, exploring crucial concepts such as subqueries,
JOIN, CASE WHEN, window functions, aggregations, and how to tackle complex queries.

Our goal is to provide you with the knowledge and tools necessary to tackle any database-related
question in a technical interview effectively. This is crucial for those preparing for a technical interview
because understanding databases is a foundational skill for data scientists; equipped with the knowledge
shared in these chapters, you'll be ready to face any database question confidently and proficiently.

So, in this chapter, we will cover the following topics:

o Introducing relational databases

o Mastering SQL basics

o Aggregating with GROUP BY and HAVING
o Creating fields with CASE WHEN

o Analyzing subqueries and CTEs

o Merging tables with joins

o Calculating window functions

o Approaching complex queries

Introducing relational databases

A database is a critical component in data-driven businesses and organizations, and data scientists
need to understand its structure, functions, and underlying language. This section aims to introduce
you to relational databases, focusing on the common language of SQL.

122

Querying Databases with SQL

A relational database (also known as a SQL database) is a type of database that organizes data into
tables, where each table has rows and columns. Each table represents a specific entity type, such as
Customers or Products. Much like DataFrames, each row represents a unique record (or records), and
each column represents a field (or attribute) of the data. This relational model introduced a standard
way to represent and query data independent of any specific application. You can see an example of
a relational database in Figure 5.1:

Customer Age Product | Product | Product
SKU Category | Color

1 Chris James 30984 Shoes Blue

2 Alana Hines 55 23948 Shoes Purple
3 David Johnson 45 37648 Hats Purple
4 Robin Feaster 31 36754 Shirts Orange

Customer Dimension Table I Product Dimension Table

- PrOduct N W
ID

23948 2022
2 37648 2020 3/5
2 36754 2017 1/5
4 30984 2022 5/5

Fact Table

Figure 5.1: Relational data model example - star schema

What makes relational databases so powerful is their ability to establish efficient and useful relationships
between multiple datasets so that they can be joined to create unique views and insights while ensuring
data integrity.

To fully understand how relational databases work, let’s examine some key concepts:

o Primary key: A primary key is a unique identifier for each record in a table. It serves as a means
to uniquely identify and distinguish individual rows within a table by joining them to a like-
primary key (called a foreign key) in another table. We will discuss joins later in this chapter.

o Schema: Schemas are standard data model structures and logic used in SQL databases. There
are a handful of standard schemas, but there are a few that you will see 99% of the time:

* Star schema: This schema consists of fact tables representing business events and dimension
tables representing various attributes related to the facts. The fact table resides in the logical
center of the data model and is connected to one or more dimension table(s) through primary
and foreign key relationships. Figure 5.1 demonstrates a star schema data model with one

Introducing relational databases

fact table and two dimension tables. The fact tables are connected to the dimension tables
by the Customer ID and Product SKU keys.

* Snowflake schema: This schema is an extension of the star schema and is used to normalize
dimension tables further. In a snowflake schema, dimension tables are divided into multiple
levels, creating a more complex network of relationships. Figure 5.2 demonstrates the structure
of a snowflake schema using the same data as Figure 5.1, with some added detail. Instead of
one fact table and two dimension tables, the snowflake schema expands on the dimension
tables by giving them related dimension tables:

Promo Dim. Table

Promo ID
e
us

Spring Sale 678

78
Back to 452
UK School
Customer First Last Region Product | Product | Product | Promo
ID Name Name] SKU Category | Color ID
Chris James 30984 Shoes Blue
2 Alana Hines 55 78 23948 Shoes Purple 678
3 David Johnson 45 78 37648 Hats Purple 678
4 Robin Feaster 31 21 36754 Shirts QOrange 452

Customer Dimension Table T Product Dimension Table

Customer Year
ID

23948 2022

Fact Table

Figure 5.2: Relational data model example — snowflake schema

SQL is an indispensable tool for data scientists - it is used to query and manipulate the data stored in
the database, plus it allows you to retrieve specific data, group it, sort it, and join different tables, all
of which are key tasks in data analysis.

Note

While undergoing an SQL or database interview, be sure to ask the interviewer to specify the
version of SQL with which you will be tested. It may also be worth reviewing the preferred
SQL version so that you are optimally prepared.

123

124

Querying Databases with SQL

Mastering SQL basics

As a data scientist, mastering the basics of SQL is crucial. Luckily for you, the basics are pretty easy to
grasp, even for non-technical learners. This is because, at this stage, SQL generally reads like English
sentences. To get you started, this section focuses on three fundamental components of SQL: the
SELECT, WHERE, and ORDER BY statements.

The SELECT statement

The SELECT statement is the foundation of any SQL query and is used to retrieve data from a database.
The general syntax is as follows:

SELECT columnl, column2, ..., columnN
FROM table name;

The syntax lists the different columns you want to return, separated by a comma. Since databases
hold numerous tables, the query code specifies which table to select the columns using the FROM
statement. Lastly, the semi-colon (;) is used to mark the end of a query.

(R

Note

It is standard to create a new line of the query for each main clause (which is capitalized).
Here, we started a new line once we began our FROM clause. Although this is not a hard rule,
this structure is fairly standard, and it is advised that you follow it when needed to keep your
code legible and organized.

. J

Consider an example where we have a table named employees with the first name,last name,
and salary columns. We can retrieve all the first names and last names with the following SQL query:

SELECT first name, last name
FROM employees;

It may get daunting listing columns, especially if you want to list more than a few. SQL provides a
useful operator called the wildcard to return all the columns of a query’s output. To use the wildcard,
we must use *, like so:

SELECT *
FROM employees;

If your dataset has duplicates and you only want to return distinct values, use DISTINCT with
SELECT. This clause is also an excellent method to display unique values in a column. For example,
the following query shows all distinct breeds of dogs in the given table:

SELECT DISTINCT breeds
FROM dogs;

Mastering SQL basics

The WHERE clause

While the SELECT statement allows us to specify which columns we want to retrieve, the WHERE
clause lets us define conditions to filter the rows being selected. The general syntax is as follows:

SELECT columnl, column2,
FROM table name
WHERE condition;

., columnN

condition can involve various logical and comparison operators:

Meaning B3 Example B3 Explanation B
= Equal to SELECT * FROM Table WHERE Name= ‘Malik'; | s /oW where the Name column
equals “Malik’
<> Not equal to SELECT * FROM Table WHERE NAME <> Returns rows where the Name column
Malik; does not equal “Malik”
< Less than SELECT * FROM Table WHERE Salary < Returns rows where the Salary column is
*100000’; less than 100,000
> Greater than SELECT * FROM Table WHERE Salary > Returns rows where the Salary column is
*50000°; less than 100,000
o= sz e el i SELECT * FROM Table WHERE Salary <= Returns rows where the Salary column is
~1000007; less than or equal to 100,000
o= Greater than or equal to SELECT * FROM Table WHERE Salary >= Returns rows where the Salary column is
*50000’; greater than or equal to 50,000
BETWEEN ... Darireem o o SELECT * FROM Table WHERE Salary Returns rows where the Salary column is
AND... BETWEEN 50000 AND 100000; between the values 50,000 and 100,000
o SELECT * FROM Table WHERE City IN Returns rows where the City column is
IN Within (a list)) e . o equal to “Columbus” or “Chicage” or
("Columbus’,’Chicago’, Indianapolis’); - s
Indianapolis”.
R s A e Returns rows where the Salary column is
OR any clauses of the OR SELECT * FROM Table WHERE Salary < less than 100,000 OR the City column is
100000’ OR City = ‘Detroit’; equal to Detroit (both do not need to be
statement
true).
Returns rows which satisfy N Returns rows where the Salary column is
AND all clauses of the AND ?EEE&TAES%I\:‘WszIS::;tERE Salary < less than 100,000 AND the City column is
statement ! equal to Detroit (both must be true).

Figure 5.3: Common logical and comparison operators

The ORDER BY clause

Once we have selected the required data, we often want to order the results in a specific way. This is
where the ORDER BY clause comes in - it sorts the result set by one or more columns. The general
syntax is as follows:

SELECT columnl, column2,
FROM table name

ORDER BY columnl [ASC|DESC], column2 [ASC|DESC],
[ASC|DESC] ;

., columnN

columnN

125

126

Querying Databases with SQL

The ORDER BY clause, by default, sorts the results in ascending order (ASC). If you want to sort the
results in descending order, you can use the DESC keyword.

As you can see in the provided syntax, you can also order using multiple columns by separating
the different columns with a comma. The first column will be ordered first, followed by the second
column, and so on.

For example, to retrieve all employees and order them by salary in descending order and then age in
descending order, the SQL query would be as follows:

SELECT *
FROM employees
ORDER BY salary DESC, age DESC;

Here is an example output for this query (given the employee ID, first name, last name,
salary, and age fields):

| Sophia | Davis | 6500 | 32

| Emily | Johnson | 6000 | 35

| Daniel | Jones | 6000 | 31

| Michael | Williams | 5500 | 28
| John | Smith | 5000 | 30

P w U N

Notice that the data is ordered by salary first, then by age.

Assessment

Given a table named Products with ProductID, ProductName, Category, and Price
columns, write a SQL statement to select all the products in the 'Electronics' category where
the price is greater than 100. The results should be ordered by Price, in descending order.

Answer

Here’s the answer:

SELECT *

FROM Products

WHERE Category = 'Electronics' AND Price > 100
ORDER BY Price DESC;

The SELECT * statement selects all columns in the Products table. The WHERE clause filters
products that are in the 'Electronics' category and have a price greater than 100. Then, the
ORDER BY clause orders the output by Price in descending order (from highest to lowest).

Aggregating data with GROUP BY and HAVING

Assessment

Consider a table named Orders with OrderID, CustomerID, ProductID, and Quantity
columns. Write a SQL statement to select Product ID values that have been ordered in a quantity
greater than 5. The result should be ordered by Product ID in ascending order.

Answer
Here’s the answer:

SELECT ProductID

FROM Orders

WHERE Quantity > 5
ORDER BY ProductID ASC;

The SELECT statement selects the Product ID column from the Orders table. The WHERE clause
filters orders where the Quant ity ordered is greater than 5. Then, the ORDER BY clause orders the
output by ProductID in ascending order.

Aggregating data with GROUP BY and HAVING

Aggregation is a concept with which you should already be familiar thanks to the discussion of Python
using pandas in Chapter 3. Just like in Python, aggregation in SQL is about summarizing or grouping
data in a way that makes it more useful, understandable, and manageable. GROUP BY and HAVING
are two crucial components in SQL that help accomplish this.

The GROUP BY statement

Much like how grouping is performed in Python using pandas, the GROUP BY statement in SQL is
used with aggregate functions (such as COUNT, SUM, AVG, MAX, and MIN) to group the result set by
one or more columns. Thus, using GROUP BY should be familiar to you! The syntax is as follows:

SELECT columnl, column2, columnN aggregate function (columnX)
FROM table
GROUP BY columns (s) ;

Aggregate values are best managed by using aliases. An alias is simply a nickname for a calculated or
aggregated field or temporary table. Simply use the term AS, like so:

SELECT columnl, aggregate function (column2)AS alias

127

128

Querying Databases with SQL

For example, let’s say we have a table called employees with the employee id, first name,
last_name, salary, and department_id columns. If we want to find out the total salary paid
out by each department, we could write the following:

SELECT department id, SUM(salary) as total salary
FROM employees
GROUP BY department id;

This query will return a list of department IDs, along with the total salary for each department. We
assigned the total salary alias to the sum of salaries.

Note:

Technically, you do not have to use the AS keyword to create an alias. You can simply provide
the alias name immediately, like so: SELECT columnl, agg function (column2)
alias FROM table;

Single-valued grouping rule

There is a little rule when it comes to using GROUP BY that will save you from a frustrating mistake
if followed. The single-valued grouping rule dictates that any field included in the SELECT clause
that is not part of an aggregate function should either be included in the GROUP BY clause or be part
of a unique constraint in the table. This ensures that each column in the SELECT clause represents a
single value for each group defined by the GROUP BY clause. Here is an example:

SELECT DepartmentID, DepartmentManager, COUNT (EmployeeID) AS
EmployeeCount

FROM Employees
GROUP BY DepartmentID, DepartmentName;

In this example, we must group by both DepartmentID and DepartmentManagers to return
the number of employees for each unique combination of department ID and department manager.

Here is an example output:

DepartmentID DepartmentManagers EmployeeCount
1 Anya 8

1 Lola 12

2 Dustin 24

3 Cody 15

Figure 5.4: The single-valued grouping rule applied

Aggregating data with GROUP BY and HAVING

However, there are exceptions to this rule. In some cases, if a field in the SELECT clause is functionally
dependent on a column that is already part of the GROUP BY clause, it does not need to be included
explicitly. Consider this example, where we want to return the max order amount for each customer,
and their corresponding order dates:

SELECT CustomerID, OrderDate, MAX (TotalAmount) AS MaxOrderAmount FROM
Orders

GROUP BY CustomerID;

Here is an example output:

CustomerID OrderDate MaxOrderAmount
101 2023-01-02 100
102 2023-01-03 200
103 2023-01-03 200

Figure 5.5: Single-valued grouping not applied

This example does not follow the single-valued grouping rule because we want the max order amount
for each CustomerID, but not for each unique order date. Thus, the MAX function will calculate the
maximum total order amount for each unique customer, but not for each customer’s unique order
date. The result is the max order amount for each unique customer and that order’s corresponding
order date.

Note

Not all database systems handle this exception consistently, so it’s generally recommended to
follow the single-valued grouping rule for portability and clarity.

The HAVING clause

The HAVING clause was added to SQL to filter the results of the GROUP BY clause since WHERE
does not work with aggregated results. The syntax for the HAVING clause is as follows:

SELECT columnl, aggregate function (column2)
FROM table

GROUP BY columnl

HAVING aggregated condition;

129

130

Querying Databases with SQL

Suppose we want to find out which departments have a total salary payout greater than 50,000. We
would enter the following code:

SELECT department id, SUM(salary) as total salary
FROM employees

GROUP BY department_ id

HAVING SUM(salary) > 50000;

In this query, the HAVING clause filters out the groups (in this case, departments) for which the total
salary is not greater than 50,000.

GROUP BY and HAVING are fundamental components of SQL, especially when working with
large datasets.

(1
Note

The HAVING clause is similar to the WHERE clause - so similar that novice SQL learners are
confused regarding when to use one over the other. So, let's make the distinction between the
two now.

The WHERE clause is used in a SELECT statement to filter rows based on specified conditions
before the data is grouped or aggregated. It operates on individual rows and filters them based
on the given conditions.

The HAVING clause is used in combination with the GROUP BY clause in a SELECT statement
to filter rows based on specified conditions after the data is grouped and aggregated. It operates
on the result of the grouping operation and filters the aggregated data.

Assessment
Consider these two tables:

« Employees, with columns for Employeeld, FirstName, LastName, and DepartmentId

« Departments, with columns for DepartmentId and DepartmentName

Write a SQL query to find out departments that have more than five employees with a salary greater
than 65,000.

Answer
Here’s the answer:

SELECT d.DepartmentName
FROM Employees e
INNER JOIN Departments d ON e.DepartmentId = d.DepartmentId

Creating fields with CASE WHEN

WHERE e.Salary > 65000
GROUP BY d.DepartmentName
HAVING COUNT (e.EmployeelId) > 5;

In this query, INNER JOIN is used to combine rows from Employees and Departments where
Department Id matches in both tables. The WHERE clause filters employees with a salary greater
than 65,000. The GROUP BY clause groups the remaining data by DepartmentName. The HAVING
clause is then used to filter these groups to include only those with more than five employees.

Creating fields with CASE WHEN

The CASE WHEN statement is a straightforward technique for creating new fields using conditional
logic. It allows you to specify multiple conditions and define actions or outcomes for each condition.
The CASE WHEN statement is often used to transform data, create calculated columns, or perform
conditional aggregations. The syntax of the CASE WHEN statement is as follows:

CASE WHEN

conditionl THEN resultl

WHEN condition2 THEN result2
WHEN conditionN THEN resultN
ELSE else result

END As alias;

Here is an example where we create a new field that will detail if a student passed or failed, based on
their scores:

SELECT student id, student name, exam score,
CASE WHEN exam score >= 60 THEN 'Pass'

ELSE 'Fail'

END AS result

FROM students;

This query creates a new field called result, and populates it with "Pass" when the student
scored at least 60 on their exa; otherwise, it populates it "Fail". The results are returned with the
student’s name and ID.

Analyzing subqueries and CTEs

SQL subqueries, also known as nested queries or inner queries, are queries that are embedded within
the context of another SQL query. They are powerful tools for performing complex data manipulations
that require one or more intermediary steps - that is, they are used for performing data manipulation
operations that require multiple steps or depend on the result of an intermediary query.

131

132

Querying Databases with SQL

That might sound complex and, indeed, subqueries can easily get very complicated. But once you know
the rules of engagement, you’ll soon see that they’re very doable. Before implementing a subquery;,
ask yourself the following:

o Where am I starting?

o Where am I going?

If you can answer these two questions, you've won half the battle. The other half is determining what
steps need to take place to get from point A (existing data) to point B (desired data). In this section,
we will learn how to navigate multi-step queries with subqueries.

We'll begin our journey by examining the different types of subqueries:

o SELECT subqueries: Where the subquery is located in the SELECT clause
o FROM subqueries: Where the subquery is located in the FROM clause
o WHERE subqueries: Where the subquery is located in the WHERE clause

o HAVING subqueries: Where the subquery is located in the HAVING clause

In the following subsections, we will review the use of subqueries in the SELECT, WHERE, FROM,
and HAVING clauses.

Subqueries in the SELECT clause

Subqueries in the SELECT clause are the easiest to grasp because it feels similar to how we used
SELECT in the past. Historically, we simply use SELECT to return a specific column or an aggregate
of a column (for example, SUM). Selecting a subquery is useful when we want to return something
that doesn’t currently exist, hence the need for at least one additional, intermediary step. Consider
the following questions while building a query:

o Isthe desired output selectable? (In other words, is it an existing field?)

o Is the desired output a single-step calculation (for example a SUM (column) or CASE WHEN
use case)?

If the answer to both of the previous questions is no, it may be a job for a SELECT clause subquery!
Here’s how it works:

SELECT columnl, column2, columnN,
(SELECT agg function(column) FROM table WHERE condition)
FROM table

This code returns the specified columns. One of the specified columns is a subquery, which uses an
aggregation function to summarize a column in the original table.

Analyzing subqueries and CTEs 133

Here is a more concrete example:

SELECT CustomerID, SUM(TotalAmount) AS TotalSales, (
SELECT COUNT (*)
FROM Orders

WHERE CustomerID = O.CustomerID AND TotalAmount > 1000) AS
HighTotalAmountOrderCount

FROM Orders O
GROUP BY CustomerID;

In this example, we can see the following:

o The subquery within the SELECT clause calculates the count of orders where TotalAmount
is greater than 1,000 for each customer:

* This count is specific to each customer as it correlates with the outer query using the
CustomerID column

* The result of the subquery is aliased as HighTotalAmountOrderCount and displayed
as a single column in the result set

o The outer query retrieves CustomerID and the aggregated sum of TotalAmount as
TotalSales for each customer:

* GROUP BY groups the results by CustomerID

Subqueries in the FROM clause

Subqueries in the FROM clause create a temporary table that can be used for the main query. This allows
the programmer to simplify the process by breaking the problem into smaller, more manageable parts.

To master subqueries in the FROM clause, be sure to identify your current dataset and the desired
output. From there, it’s a process of molding your current data into the desired data in steps. Here is
an example:

SELECT employee, total sales

FROM (SELECT first name || ' ' || last name as employee, SUM(sales) as
total sales

FROM sales
GROUP BY employee) as sales summary
WHERE total sales > 100000;

134

Querying Databases with SQL

In this example, the subquery creates a temporary table aliased as sales summary, which does
the following:

 Concatenates each employee’s first and last name (separated by a space). This concatenation is
aliased as employee.

o Calculates the total sales for each employee.

o Groupsthe total sales by employee.

So, even without knowledge of the sales table values, we know that the structure of the output will
look something like this:

Figure 5.6: Intermediary results of the subquery

The outer query then selects employee and total sales from the sales summary temporary
table. These results are filtered to all employees who made total sales greater than $100,000.

Subqueries in the WHERE clause

Subqueries in the WHERE clause are used to filter rows based on conditions detailed in a subquery.
This method is useful when you don’t already have access to the condition on which you want to
filter your query.

Consider our previous example, where we performed the following basic query:

SELECT *
FROM Table
WHERE Salary < '100000';

In this example, we filtered the results from our table to rows, where the Salary field is less than
100000. This is a single scalar value, which is available to us via the hardcoded 100000 value. But
what if the condition isn’t readily available? What if we needed to derive the condition since it doesnt
already exist, or perhaps this condition isn’t scalar? Perhaps the condition is dynamic? This is the
power of subqueries in the WHERE clause.

Analyzing subqueries and CTEs

Note

In the context of subqueries, the inner query is the subquery, and the outer query is the query
that’s querying the subquery. What a mouthful! Keep in mind that the innermost query is
always evaluated first.

WHERE subqueries are most commonly used with scalar values or non-scalar values as the condition.
In this context, a scalar value is the result of a subquery that yields one single value. Alternatively, a
non-scalar value is a subquery that returns a 0 (False) or 1 (True) to return true values.

Tip
Always read SQL queries from the inside out by reading the innermost query first and working
your way out.

Scalar example

Let’s take a look at a scalar example. Suppose that we have a table called employees with employee
id, first name, last name, salary, and department id columns. If we want to find all
employees who earn more than the average salary, we can use a subquery:

SELECT first name, last name, salary
FROM employees
WHERE salary > (SELECT AVG(salary) FROM employees) ;

The subquery (SELECT AVG (salary) FROM employees) calculates the average salary of all
employees, which is a scalar value. The outer query filters each row by the condition that it is greater
than the average salary of all employees. The results are the first name, last name, and salary
values of employees who earn more than this average salary:

Outer query returns first_name,

last_name, and salary, filtered by the
inner-query condition.

SELECT first name, last name, salary
FROM employees
WHERE salary > (SELECT AVG(salary) FROM employees);

T
Inner query returns some single, scalar
value (Ex: $82,508)

Figure 5.7: Scalar WHERE subquery explained

135

136

Querying Databases with SQL

(1
Note

Some novice learners may look at this example and wonder, “Why can’t I just use WHERE
salary > AVG(salary)?” Indeed, that would be more straightforward, but unfortunately,
SQL does not work this way. This is because aggregate functions such as AVG, MIN, and MAX
cannot be used in a WHERE clause. Furthermore, we cannot use HAVING in this case either,
because there is no grouping taking place — hence the need for the subquery.

. J

Non-scalar example

Let’s look at a non-scalar example. Suppose that we are using the same dataset as before with the
first name, last_ name, and salary fields. We want to return the first name, last name, and
salary of employees whose first name begins with the letter ' J':

SELECT first name, last name, salary
FROM employees

WHERE salary > ANY (SELECT salary FROM employees WHERE first name LIKE
'J%0) ;

Let’s evaluate this multi-step process:

« Step 1: Starting from the innermost query, we select salary from the employees table
where the first name begins with the letter ' J'. If the row satisfies the subquery condition, it
will evaluate True, which means that the row is returned in the results. If the row does not
satisfy the condition, the row will be filtered out by the outer query’s WHERE clause. Unlike
the scalar value example, this subquery returns multiple rows.

o Step 2: Once the interpreter determines which rows will be returned in the inner query, the
outer query uses this as the new base dataset. The WHERE clause of the outer query filters the
subquery to rows where the salary is greater than any row’s salary with an employee whose
first name starts with ' J'. To accomplish this, the ANY operator identifies any salary from
the subquery and filters the entire employees table to rows where the salary is greater than
those from the subquery.

Subqueries in the HAVING clause

The HAVING clause is used to filter the results of a GROUP BY query based on conditions involving
aggregate functions. The subquery is executed for each group and filters the groups based on the
specified condition.

Analyzing subqueries and CTEs

Here are some situations where subqueries in the HAVING clause are useful:

« Filtering groups based on aggregates: Subqueries in the HAVING clause are particularly useful
when you need to filter groups based on aggregate calculations. For example, you can use a
subquery to identify groups where the average order amount exceeds a certain threshold or
groups where the count of orders meets specific criteria.

o Applying conditional filters: Subqueries in the HAVING clause allow you to apply conditional
filters to the grouped results. This is especially handy when you want to include or exclude
groups based on certain conditions. For instance, you can use a subquery to filter groups with
a maximum value above a specified threshold or groups where a specific condition is met.

o Comparing aggregates across groups: Subqueries in the HAVING clause can help compare
aggregate values across different groups. You can use a subquery to calculate aggregate values
within each group and then compare those values across groups to identify patterns or variances.

Here is an example:

SELECT CustomerID, AVG (TotalAmount) AS AverageTotalAmount
FROM Orders

GROUP BY CustomerID

HAVING AVG(TotalAmount) > (SELECT AVG (TotalAmount)

FROM Orders) ;

The subquery (SELECT AVG (TotalAmount) FROM Orders) is used within the HAVING
clause to compare the average total amount for each customer with the overall average total amount.
It helps filter the results based on the condition specified in the subquery.

Distinguishing common table expressions (CTEs) from subqueries

Many SQL students confuse CTEs with subqueries, so now is a great time to make the distinction
between the two. CTEs are also temporary tables typically that are formulated at the beginning of a
query and only exist during the execution of the query. This means that CTEs cannot be used in other
queries beyond the one in which you are using the CTE.

While CTEs and subqueries are both used in similar circumstances (such as when you need to produce
an intermediary result), there are a couple of factors that tip off CTEs:

o They are typically created at the beginning of a query using the WITH operator

« They are followed by a query that queries the CTE

Alternatively, subqueries are a query within a query, nested within one of a query’s clauses.

137

138

Querying Databases with SQL

Here is how CTEs are constructed:

WITH alias AS (<Put query here>

)

<Query that queries the alias>

Here is a more concrete example of using a CTE:

WITH customer totals AS (

SELECT CustomerID, SUM(TotalAmount) AS total sales
FROM Orders

GROUP BY CustomerID)

SELECT c.CustomerID, c.total sales, o.avg order amount

FROM customer totals c

JOIN (

SELECT CustomerID, AVG(TotalAmount) AS avg order amount
FROM Orders GROUP BY CustomerID) o

ON c.CustomerID = o.CustomerlD;

Here’s what’s happening:

The CTE is defined using the WITH keyword and given the name customer totals. Inside
the parentheses, the CTE consists of a simple SELECT statement that calculates the total sales
for each customer by summing the TotalAmount column of the Orders table. The result
is grouped by CustomerID and aliased as total sales.

The outer SELECT statement retrieves CustomerIDand total sales from the CTE, as
well as the avg_order amount subquery.

The FROM clause of the main query references the customer total CTE directly as the
"c" source table.

The subquery in the JOIN clause calculates the average order amount for each customer The
result is grouped by CustomerID and aliased as avg _order amount. The JOIN condition
connects the main query with the subquery using the CustomerID key column.

The final result set is returned, showing the customer ID, total sales, and average order amount
for each customer.

Note

Like subqueries, CTE tables can also be used in other clauses beyond FROM, such as WHERE
and SELECT.

Analyzing subqueries and CTEs

In conclusion, when you approach SQL problems that require filtering, ask yourself if the condition is
something that can be hardcoded, or if it requires a calculation. Then, ask yourself if you are filtering
to a single scalar value or multiple rows.

Assessment

Consider a table called Sales with the SaleId, ProductId, SaleDate, SaleAmount, and
CustomerId columns. Write a SQL query to retrieve CustomerId and total SaleAmount (aliased
as TotalSaleAmount) for customers who made at least one purchase with SaleAmount over 1,000.
The results should be ordered by TotalSaleAmount (sum of SaleAmount) in descending order.

Answer
Here’s the answer:

SELECT CustomerId, SUM(SaleAmount) as TotalSaleAmount
FROM Sales
WHERE SaleId IN (
SELECT SaleId
FROM Sales
WHERE SaleAmount > 1000)
GROUP BY CustomerId
ORDER BY TotalSaleAmount DESC;

The subquery in the WHERE clause filters SaleId values, where SaleAmount is greater than 1000.
The main query then uses these SaleId values to filter the Sales table and get CustomerId and
total SaleAmount for these sales. The GROUP BY clause groups the data by CustomerId, and
the SUM function calculates the total SaleAmount. Finally, the ORDER BY clause sorts the result
by TotalSaleAmount in descending order.

Assessment

Rewrite the previous answer using a CTE instead of a subquery.

Answer
Here’s the answer:

WITH filtered sales AS (

SELECT SaleId FROM Sales WHERE SaleAmount > 1000)
SELECT CustomerId, SUM(SaleAmount) AS TotalSaleAmount
FROM Sales WHERE SaleId IN (

SELECT SaleId FROM filtered sales)

139

140

Querying Databases with SQL

GROUP BY CustomerId
ORDER BY TotalSaleAmount DESC;

Merging tables with joins

SQL joins are used to combine rows from two or more tables based on a related column between
them, providing a complete view of the data. We previously hinted at these related columns as primary
keys and foreign keys.

As a refresher, a primary key is a column (or a combination of columns) in a database table that uniquely
identifies each row in that table. A foreign key, on the other hand, is a column or a combination of
columns in a table that establishes a link or a relationship to the primary key of another table.

As we dive into SQL joins, we will put our knowledge of primary and foreign keys to work!

Note

When discussing SQL joins, we will mostly focus on joining two tables to simplify the concepts.
Traditionally, two joined tables are referred to as the left table and the right table.

Inner joins

INNER JOIN selects records that have matching values in both tables. Figure 5.8 best demonstrates
the logic of this join type:

INNER JOIN

Figure 5.8: Inner join logic

Table A represents the left table and Table B represents the right table. Both tables share a key (primary
and foreign key respectively). When performing an inner join, the returned results are the rows that
exist in both Table A and Table B.

Merging tables with joins

Let’s consider an example where we have two tables, Orders and Customers:

| CustomerID | CustomerMame|

London|

Paris |
| Michael Bexlin]
Madrid|

Figure 5.9: The Orders and Customer tables

We want to list customers from the customer table with their orders from the order table. However,
we only want customers who have orders. This is a job for inner join! To begin, we can use the INNER
JOIN and ON keywords to perform an inner join, like so:

SELECT Orders.OrderID, Customers.CustomerName
FROM Orders
INNER JOIN Customers ON Orders.CustomerID = Customers.CustomerID;

Let’s discuss some of this code:

o The first row of code selects the OrderID column from the Orders table and the CustomerID
column from the Customers table. Since we are dealing with more than one table in this
query, we preface every column name with its respective table name, separated by a dot (.).

o The second row designates that we are querying from the Orders table (see the following
Note box for more).

o The last row is the meat of the joining process. We call INNER JOIN on the Customers table
(this is because we specified the Orders table in the FROM clause - yes, you could have done
this in reverse). All that’s left is describing which fields should be used to perform the inner join.

e We call ON on the Orders table’s CustomerID and set it equal to the Customer table’s
CustomerID field:

Note

The ON keyword is used with all joins. It describes how to connect the two tables by identifying
the primary key.

141

142

Querying Databases with SQL

Primary/Foreign Keys = CustomeriD

A

[&)
| |

INNER JOIN Customers ON Orders.CustomerID = Customers.CustomerID;

'\ |
| | L J

\fr Y

CustomerlID from Orders table CustomerID from Customers table

Figure 5.10: Inner join logic

This query returns a list of order IDs, along with the name of the customer who made each order.

Vs

-

Note

As you’ll soon learn, joins syntax is often relative. What’s considered the left table and right
table are completely up to you. Furthermore, the table specified in the FROM clause in the
previous example could have been Customers instead of Orders - the results would have
been the same since we are using an inner join. In either case, whichever table you don’t use in
the FROM clause is the table you’'ll start with in the INNER JOIN clause. Furthermore, you
would have to update the following the ON operator. But beware — as you'll see in other join
types, the table in the FROM clause will matter.

J

Novice learners might look at the join syntax and get confused, but there is a pattern that can help
you remember it: A, B, A, B, or B, A, B, A.

Let’s see how this applies to our most recent example with the Orders and Customers tables.
Notice that the syntax in Figure 5.10 calls the Customers table in the INNER JOIN clause (which
we'll call Table A). Presuming that Orders is Table B, the rest of the code is easy to remember:

...ON TableB.Key = TableA.Key;

This can also be specified like so:

Customers ON Orders.Customer ID = Customers.Customer ID;

Merging tables with joins

Thus, you should note that either of the following two approaches are correct:

OPTION 1:
FROM TableRZ
INNER JOIN TableE ON TableA.Shared Key = TableB.Shared Key;

OPTION 2:
FROM TableB
INNER JOIN TableA ON TableB.Shared Key = TableA.Shared Key;

Figure 5.11: Same inner join with two different approaches

Left and right join

LEFT JOIN (also known as the LEFT OUTER join) selects all records from the left table and any
matching records in the right table:

LEFT JOIN

TABLE B

Figure 5.12: Left join logic

If no match is found between the tables, the returned row will show values from Table A, and NULL
values from the right table.

RIGHT JOIN (also known as the RIGHT OUTER join) does just the opposite. It returns all of the
records from the right table (Table B) and matches the records from the left table (Table A). Any
examples where there is no match will result in NULL values from the left table.

143

144 Querying Databases with SQL

If you switched Table A to Table B and Table B to Table A and performed a right join, the results would
be the same as if you never switched the tables and performed a left join. How is that for a mind twister?

RIGHT JOIN

TABLE A

Figure 5.13: Right join logic

Here is the syntax for using LEFT JOINand RIGHT JOIN:

SELECT column_name (s)

FROM tablel

LEFT JOIN table2

ON tablel.column name = table2.column name;

SELECT column_name (s)

FROM tablel

RIGHT JOIN table2

ON tablel.column name = table2.column name;

Again, the ON clause defines how to join the two tables.

If we wanted to select all customers and any order information available, we would use LEFT JOIN,
like this:

SELECT Customers.CustomerName, Orders.OrderID
FROM Customers
LEFT JOIN Orders ON Customers.CustomerID = Orders.CustomerID;

Suppose we wanted to select all orders and any customer information available; we would use RIGHT
JOIN:

SELECT Orders.OrderID, Customers.CustomerName
FROM Customers
RIGHT JOIN Orders ON Customers.CustomerID = Orders.CustomerID;

Merging tables with joins 145

s N
Note

You might be wondering why right joins exist in the first place since they can be achieved by
switching the left and right table designations. The most relevant explanation to consider is
query optimization and performance. For example, there are cases where optimizing the query
performance can be influenced by the relative sizes of the left and right tables in a join operation.

L J

Full outer join

FULL OUTER JOIN returns all the rows from both tables, regardless of whether there is a match
or not. It combines the results of a left outer join and a right outer join. If a row from one table
does not have a match in the other table, the result will contain NULL values for the columns of the
non-matching table:

FULL OUTER JOIN

Figure 5.14: Full join logic

Let’s look at the syntax:

SELECT column name (s)

FROM tablel

FULL OUTER JOIN table2

ON tablel.column name = table2.column name;

As an example, the following query will return the result set with the Cust omerName and OrderID
columns representing the joined data from the Customers and Orders tables. All rows from
both tables are included in the result set, along with the relevant columns - that is, CustomerName
and OrderID:

SELECT Customers.CustomerName, Orders.OrderID
FROM Customers
FULL OUTER JOIN Orders ON Customers.CustomerID = Orders.CustomerID;

146

Querying Databases with SQL

SQL joins are an essential feature of the SQL language, and understanding them is a must for any
data scientist. Being proficient in joins not only helps you in data manipulation and querying tasks
but also proves beneficial in technical interviews since understanding joins is a fundamental part of
relational database management.

Multi-table joins

It's common to run into situations where you need to join more than just two tables. Fortunately, the
process is the same. You just need to remember what table you're joining to what. Keeping track of
this order will ensure you produce the desired results.

Let’s consider an example where we have three tables: Customers, Orders, and Products. The
Customers table contains customer information, the Orders table stores order details, and the
Products table contains product information. We want to retrieve the customer name, order date,
and product name for each order.

Here’s an example SQL query to join these three tables:

SELECT c.CustomerName, o.OrderDate, p.ProductName
FROM Customers c

INNER JOIN Orders o ON c.CustomerID = o.CustomerID
INNER JOIN Products p ON o.ProductID = p.ProductlID;

The JOIN clauses are arranged in the order needed to establish the desired connections between the
tables. Note that the order in which you join these tables does not matter as the ultimate goal is to
have all three tables joined. This is yet another perk when using inner joins. However, there are cases
where the order in which you join the tables would matter. Regard the following example:

SELECT c.CustomerName, o.OrderDate, p.ProductName
FROM Customers c

INNER JOIN Orders o ON c.CustomerID = o.CustomerID
LEFT JOIN Products p ON o.ProductID = p.ProductID;

In this example, the Orders table is joined before the Products table, and we use LEFT JOIN
between the Orders and Products tables. This ensures that all records from the Orders table
are included in the result, regardless of whether there is a matching record in the Products table.
The join condition connects the Orders and Products tables based on the Product ID column.

Assessment
Consider two these two tables:

e Orders, with columns for OrderId, Customerld, and OrderDate

e Customers, with columns for CustomerId, FirstName, LastName, and Country

Calculating window functions 147

Write a SQL query to retrieve all the orders, along with customer details. If a customer doesn’t have any
orders, include those customers in the result. The result should contain the OrderId, OrderDate,
CustomerId, FirstName, LastName, and Country columns.

Answer
Here’s the answer:

SELECT o.0OrderId, o.OrderDate, c.CustomerId, c.FirstName, c.LastName,
c.Country

FROM Customers c
LEFT JOIN Orders o ON c.CustomerId = o.CustomerId;

Here, we use LEFT JOIN to combine rows from Customers and Orders. This type of join
returns all the rows from the Customers table (left table) and the matched rows from the Orders
table (right table). If no match is found, NULL is returned for the columns of the Orders table. This
ensures that even customers without orders are included in the result.

Calculating window functions

SQL window functions are an additional tool in your toolkit. Unlike aggregate functions, which return
a single result per group of rows, window functions return a single result for each row, based on the
context of that row within a window of related rows.

OVER, ORDER BY, PARTITION, and SET

Window functions have the following basic syntax:

<function> (<expressions)

OVER (

[PARTITION BY <expression list>]

[ORDER BY <expression list>] [ROWS|RANGE <frame specifications])

There are a few key concepts to understand here, so let’s break them down:

o The OVER keyword is what differentiates a window function from a regular function; once you
see it, you know you're in window function land. The OVER clause defines the window or subset
of rows within a query result set that the window function operates on. In short, it provides a
way to partition the result set into logical groups and allows the window function to perform
calculations or aggregations over those groups. Regard Figure 5.15 for an illustrative example.

o Inside the OVER clause, you can use the PARTITION BY keyword to break the data into
separate windows. It divides the result set into distinct partitions or groups based on one or
more columns. The window function is then applied separately to each partition, allowing
calculations or aggregations to be performed within each distinct group.

148 Querying Databases with SQL

(1
Note:

PARTITION BY isan optional operator and is not needed to perform a window function.
Only OVER is needed to initialize a window function. However, it is PARTITION BY that
allows you to perform some operation over grouped categories, so it's common to see it used
with OVER. Without PARTITION BY, a query will consider the entire result set as a single
partition. Lastly, ORDER BY is optional, but it is used to sort the data within those windows.

. J

That seems like a lot, so let’s go over some examples. Suppose we have the following dataset:

Month | Year | State | Revenue ---------—----——————— - _________
January | 2022 | New York | 45000
February| 2022 | New York | 47000
March | 2022 | New York | 49000
January | 2022 | Texas | 52000
February| 2022 | Texas | 54000
March | 2022 | Texas | 55000
January | 2023 | New York | 50000
February| 2023 | New York | 52000
March | 2023 | New York | 54000
January | 2023 | Texas | 60000
February| 2023 | Texas | 61000
March | 2023 | Texas | 62000

Say that we wanted to group our results by state, and then within those state groupings, show the
average revenue, ordered by year. OVER and PARTITION BY allows us to create windows of rows
based on a field (in this case, State). We created these windows so that we could calculate the average
revenue for those windows. ORDER BY simply allows us to organize the results in those windows.
Let’s take a look at an example.

Here is the query:

SELECT Year, State, Revenue

AVG (Revenue) OVER (

PARTITION BY State ORDER BY Year)
AS AverageRevenue

FROM SalesTable;

Calculating window functions

Let’s assume there are three states instead of two. Here are the hypothetical results:

Year |

State | Revenue | AverageRevenue

2022
2022
2022

California | 50000 | 52000
California | 48000 | 52000
California | 52000 | 52000

Windows partitioned
(grouped) by State

2022
2022
2022

New York | 45000 | 47000
New York | 47000 | 47000
New York | 49000 | 47000

Results ordered by Year

2022
2022
2022

Texas | 52000 | 54000
Texas | 54000 | 54000
Texas | 55000 | 54000

2023
2023
2023
2023]
2023
2023

California | 55000 | 56333.333333333
California | 56000 | 56333.333333333
California | 58000 | 56333.333333333

New York | 50000 | 52000
New York | 52000 | 52000
New York | 54000 | 52000

2023
2023
2023

Texas | 60000 | 61000 |

Texas | 61000 | 61000
Texas | 62000 | 61000

Figure 5.15: Window functions demonstrated

Let’s review how this table is derived:

o The SELECT clause specifies the columns to be included in the result set: Year, State,

Revenue, and the calculated AverageRevenue.

« The FROM clause specifies the SalesTable column from which the result set will be derived.

« The AVG function is used as a window function with the OVER clause to calculate the average

revenue within each partition.

o The PARTITION BY clause is used to partition the data by the State column. This means
that the data will be grouped and processed separately for each distinct state.

o The ORDER BY clause is used to order the rows within each partition by the Year column.
This determines the sequence in which the window function is applied within each state group.

It is the combination of OVER, PARTITION BY, and ORDER BY that makes window functions so
powerful. One common use of a window function is to calculate running totals. The SUM () function
can be used as a window function to achieve this.

149

150

Querying Databases with SQL

Suppose we have a table called employees with the employee id, first name, last name,
salary, and department id columns, and we want to calculate a running total of salaries within
each department. We could use the following query:

SELECT employee id, first name, last name, salary, department id,

SUM (salary) OVER (PARTITION BY department id ORDER BY employee
id) as running total

FROM employees;

This query returns the running total value of salary for each row, totaled (summed) over
all rows with the same department idand an employee id value less than or equal to the
current row.

Window functions shine when paired with SQL functions that are often calculated in windows. This
includes LAG, LEAD, ROW_NUMBER, RANK, DENSE RANK, and NTILE.

LAG and LEAD

LAG is an analytic function in SQL that provides access to a previous row within a result set. It allows
us to retrieve the value of a column from the preceding row, enabling us to compare and compute
values based on the previous row’s data. The syntax is as follows:

LAG (column, offset, default) OVER (PARTITION BY partition clause ORDER
BY order clause)

Let’s review what all this stuff means:

o column is the column from which we want to retrieve the previous row’s value.

o offset specifies the number of rows to look back. It is an optional parameter, with a default
value of 1.

o default isan optional parameter that sets a default value to return if no previous row is found.
o PARTITION BY divides the result set into partitions or groups based on specified columns.

o ORDER BY determines the order of rows within each partition.

Let’s consider a table called "sales" with the order id, order date, and revenue columns.
Say we want to retrieve the previous order’s revenue for each order; we would do something like this:

SELECT order id, order date, revenue,
LAG (revenue) OVER (ORDER BY order date) AS previous revenue
FROM sales;

This query retrieves order id, order date, and revenue, and the previous order’s revenue
using LAG () . The result set will include the columns from the sales table, along with an additional
column named previous_revenue containing the revenue from the preceding order.

Calculating window functions

LEAD is another analytic function in SQL that provides access to a subsequent row within a result
set. It allows us to retrieve the value of a column from the following row, enabling us to perform
calculations and comparisons based on the subsequent row’s data. LEAD and LAG share the same
syntax, with the only difference being the function name itself (LEAD or LAG).

Let’s continue with our "sales" table example. Suppose we want to calculate the difference in
revenue between consecutive orders:

SELECT order_id, order_date, revenue,

LEAD (revenue) OVER (ORDER BY order date) - revenue AS revenue
difference

FROM sales;

This query retrieves order id, order date, and revenue, and calculates the revenue difference
between consecutive orders. The result set will include the columns from the sales table along with an
additional column named revenue difference representing the difference in revenue.

Assessment
Consider a table called employees with the employee id, employee name,and hire date
columns. Retrieve the previous hire date for each employee, ordered by hire date.
Answer
Here’s the answer:
SELECT employee id, employee name, hire date,

LAG (hire date) OVER (ORDER BY hire date) AS previous hire date FROM
employees

The LAG function with the ORDER BY clause retrieves the value from the previous row within the
result set based on the specified column (hire date). By ordering the rows by hire date, we
ensure that LAG looks back at the hire date of the preceding employee for each row. The result is a
dataset that includes the employee details, along with the hire date of the employee’s predecessor.

Assessment

Consider a table called orders with the order id, order_ date, and revenue columns.
Calculate the revenue difference between consecutive orders, ordered by order date.

151

152

Querying Databases with SQL

Answer
Here’s the answer:

SELECT order id, order date, revenue,

LEAD (revenue) OVER (ORDER BY order date) - revenue AS revenue
difference

FROM orders;

The LEAD function with the ORDER BY clause retrieves the value from the next row within the
result set based on the specified column (order date). By ordering the rows by order date,
we ensure that the LEAD function looks ahead at the revenue of the subsequent order for each row.
Subtracting the current order’s revenue from the subsequent order’s revenue gives us the revenue
difference. The result is a dataset that includes the order details, along with the revenue difference
between consecutive orders.

ROW_NUMBER

ROW_NUMBER is an analytic function in SQL that assigns a unique number to each row within a
result set. It generates a sequential integer starting from 1 for the first row and increments by one for
each subsequent row. This function is very useful for exercises such as ranking, detecting duplicates,
or pagination. Here is the syntax:

ROW_NUMBER () OVER (
PARTITION BY partition clause ORDER BY order clause)

Let’s consider a table called students with the student id, student name, and exam
score columns. We want to assign a unique row number to each student based on their exam score,
ordering them in descending order. We would do this like so:

SELECT student id, student name, exam score,

ROW_NUMBER () OVER (ORDER BY exam score DESC) AS row number FROM
students;

This query retrieves student id, student name, and exam_score, and assigns a unique row
number to each student using ROW NUMBER. The result set will include the columns from the students
table, along with an additional column named row_number containing the sequential numbers.

RANK and DENSE_RANK

RANK is an analytic function in SQL that assigns a unique rank to each row within a result set based
on the specified criteria. It allows us to determine the ranking position of a row in comparison to
others, considering ties and skipping ranks if necessary.

Calculating window functions

Similarly, DENSE_RANK is another analytic function in SQL that assigns a unique rank to each row
within a result set based on the specified criteria. Unlike RANK, it does not skip ranks when there are
ties. Instead, it assigns consecutive ranks to tied rows.

Here is the syntax for both:

[RANK () or DENSE RANK()] OVER (PARTITION BY partition clause ORDER BY
order clause)

Let’s consider a table called students with the student id, student name, and exam score
columns. We want to rank the students based on their exam scores, ordering them in descending
order with the highest scorers on top. Here’s an example query using RANK:

SELECT student id, student name, exam score,
RANK () OVER (
ORDER BY exam score DESC) AS rank FROM students;

This query retrieves student id, student name, and exam score, and assigns a unique rank
to each student based on their exam score. The scores are presented in descending order.

However, if we replace RANK with DENSE_RANK, the results will be different if there are ties. RANK
leaves gaps in the ranking sequence when there are ties, while DENSE RANK assigns consecutive
ranks to tied rows without any gaps.

For example, say that two of the students received a score of 98, and this is the top score in the data.
Using DENSE_RANK, they will both be assigned a rank of 1, and the next highest scorer(s) will
receive a rank of 2. Using RANK, the two students with the score of 98 will still receive a rank of 1 but
the second-highest scorer will be given a rank of 3. This is because RANK skips ranks if there are ties.

Here is an example of using DENSE_ RANK:

student _id |1 student_name EXEM_SChITE densz_rank

Michael
Sarah
John
Sophia

Figure 5.16: DENSE_RANK output

153

154

Querying Databases with SQL

Here is an example of using RANK:

student _id student _name BXAN_SOODe

Michasl
Sazah
John
Sophia

Figure 5.17: RANK output

Notice that Michael’s rank is higher (2 instead of 3) while using DENSE_RANK. In short, if you're
taking a class that’s making you feel a little dense, youd probably prefer your teacher to rank you using
the DENSE_RANK method!

Assessment

Given a table called Sales with the SaleId, ProductId, SaleDate, SaleAmount, and
EmployeeId columns, write a SQL query to find the total sales for each EmployeeId, along with
the rank value of each employee in terms of total sales. The rank should be in descending order of
total sales, with the employee having the highest total sales ranked first.

Answer
Here’s the answer:

SELECT EmployeeId, SUM(SaleAmount) OVER (PARTITION BY EmployeeId) AS
TotalSales,

RANK () OVER (ORDER BY SUM(SaleAmount) OVER (PARTITION BY
EmployeeId) DESC) AS SalesRank

FROM Sales;

This query introduces two window functions:

e SUM(SaleAmount) OVER (PARTITION BY EmployeeId) calculates the total sales
for each employee

¢ RANK() OVER (ORDER BY SUM(SaleAmount) OVER (PARTITION BY
EmployeeId) DESC) assigns a rank to each employee, based on their total sales, in
descending order.

Approaching complex queries

Using date functions

Date functions in SQL are used for manipulating date data types, and they are essential for performing
operations such as calculating differences between dates, extracting date parts, and formatting dates.
While specific functions may vary slightly between different SQL databases, most databases support
a core set of date functions.

Let’s review several of the most common functions:

« NOW: The NOW function returns the current date and time:

SELECT NOW() AS 'Current Date and Time';

« CURDATE: The CURDATE function returns the current date:

SELECT CURDATE() AS 'Current Date';

o DATE_ADD: The DATE_ADD function is used to add or subtract date parts. The parameters
of this function include a date value, an INTERVAL value, and an interval size. For example, if
you are looking to add 2 days to each row for the date column, you would write the DAY date
value. This is followed by INTERVAL and an interval value, which is 2 in this case. However, if
you use a negative value for the interval, it will subtract from the date. If you want to calculate
the date 30 days from now, use DATE_ADD:

SELECT DATE ADD(date column, INTERVAL 2 DAY) AS '2 Days Later';

DATEDIFF: DATEDIFF calculates the difference between two dates. Suppose we have a table
called orders with the order id, product id,and order date columnsand we want
to calculate how long it’s been since each order was placed. We would do this:

SELECT DATEDIFF (NOW(), order date) AS 'Days Since Order'

FROM orders;

SQL date functions are a crucial part of performing complex date manipulations and calculations.

Approaching complex queries

Writing complex SQL queries can be a challenging task, especially when dealing with multiple
tables, complex filtering conditions, and intricate calculations. However, by following a step-by-step
approach, you can break down the problem into smaller, manageable parts and gradually build up
to the final query.

155

156

Querying Databases with SQL

Here are some systematic guidelines on how to approach complex queries:

o Step 1 - define the objective: Begin by clearly defining the objective of your query. What specific
information are you trying to retrieve or calculate? What is the desired output?

+ Step 2 - identify the tables: Determine which tables contain the necessary data for your
objective and identify their respective keys. This helps us identify our starting point. If multiple
tables are involved, consider the relationships between them and how they should be joined.
Determine the key(s) in each table.

« Step 3 - determine the filtering criteria: Identify the filtering criteria needed to narrow down
the dataset. Determine which conditions should be applied to limit the rows returned. Consider
both the explicit conditions (such as WHERE clauses) and any implicit conditions that may be
required. Which table is being filtered? Is it the inner or outer query?

« Step 4 - start with simple joins: If your query involves multiple tables, start by performing
simple joins between the relevant tables. Determine which table will be on the left, and how
it will be joined with other tables. Begin with the primary relationship and gradually add
additional join conditions as needed.

« Step 5 - incorporate aggregates: If your query requires aggregating data, determine the
appropriate aggregate function(s). Consider if any grouping or partitioning is necessary to
aggregate data at the desired level. For each aggregate, be sure to consider what level your
aggregations should take place. Is it over the entire dataset? Is it by grouping? Is it over specific
window segments? If grouped, consider the single-valued grouping rule.

« Step 6 - evaluate subqueries and CTEs: If the complexity of your query demands it, consider
incorporating subqueries or CTEs to handle calculations, temporary views, or filter results.
Review the granularity needs of each aggregate function for opportunities to use subqueries.

o Step 7 - review: Return to Step 1 to confirm that you have achieved the objective.

By following this step-by-step approach, you can tackle complex SQL queries more effectively. Although
there is room to adjust the order of these steps, it is recommended to stick as closely to this framework
as possible, and do not be afraid to walk through these steps out loud!

Assessment

You are working with a database that contains three tables. The interviewer has asked you to retrieve the
total order amount for each customer, along with the product details of their most expensive order. Your
output should be CustomerID, CustomerName, MaxOrderAmount, and TotalOrderAmount.
Here are the table’s contents:

e Customers: CustomerID, CustomerName, CustomerAddress, and CustomerEmail
e Orders:OrderID, CustomerlD, OrderDate, and OrderAmount

e Products: ProductID, ProductName, ProductPrice, and ProductCategory

Approaching complex queries

Process and answer

Here’s the process:

1.

Define the objective: Our objective is to retrieve the total order amount for each customer and
include the product details of their most expensive order. Based on the instruction, we need
to return CustomerID, CustomerName, and ProductName, as well as the calculated
fields, TotalOrderAmount and MaxOrderAmount. Although we don’t know where all of
this information is coming from at this point, you can include it in the query as we know this
is where we want to be at the end of the query development. Be sure to name any calculated
fields exactly as instructed.

Here is the query thus far:

SELECT CustomerID, CustomerName, SUM(OrderAmount) AS
TotalOrderAmount, ProductName, ... AS MaxOrderAmount ...

We will calculate MaxOrderAmount later. While TotalOrderAmount is an aggregate we
need for all unique customers, MaxOrderAmount is needed for only the most expensive orders.

Identify the tables: Order information will come from the Orders table. Customer information
will come from the Customers table. Product details will come from the Products table.

Determine the filtering criteria: We don’t have any specific filtering criteria for this objective.
We want to retrieve information for all customers.

Start with simple joins: Based on our objective, we need total order information from the
Orders table. Since this is for each customer, we will want all customers from the Customers
table. This constitutes an inner join with the Customers table and the Orders table. Their
shared key is the CustomerID field. Since we are dealing with more than one table, we will
need to provide table aliases before every field name, separated by a dot.

Now, let’s review the query again:
SELECT c.CustomerID, c.CustomerName, SUM(o.OrderAmount) AS
TotalOrderAmount, ProductName, ... AS MaxOrderAmount
FROM Customers c
INNER JOIN Orders o ON c.CustomerID = o.CustomerID;

Since we will also need product details, we will join the Products table to our already joined
Customers and Orders table. Using an inner join yet again confirms that all products
with a customer and order will be returned. The Customers table does not share an ID with
Products, but it does with Orders, so we will use it: Product ID.

Let’s see the query with this new information:

SELECT c.CustomerID, c.CustomerName, SUM(o.OrderAmount) AS
TotalOrderAmount, p.ProductName, ... AS MaxOrderAmount

FROM Customers c

157

158

Querying Databases with SQL

INNER JOIN Orders o ON c.CustomerID = o.CustomerID
INNER JOIN Products p ON o.ProductID = p.ProductID;

Incorporate aggregates: We've already used SUM on OrderAmount to derive
TotalOrderAmount. Since this value should aggregate for each customer, we need to use
GROUP BY on CustomerID and CustomerName. We will also need TotalOrderAmount
for each product since we want product details for the product with MaxOrderAmount.

Let’s review the updated query at this point:
SELECT c.CustomerID, c.CustomerName, SUM(o.OrderAmount) AS
TotalOrderAmount, p.ProductName, ... AS MaxOrderAmount
FROM Customers c
INNER JOIN Orders o ON c.CustomerID = o.CustomerID
INNER JOIN Products p ON o.ProductID = p.ProductID;
GROUP BY c.CustomerID, c.CustomerName, p.ProductName;

We can now include the product details of each customer’s most expensive order, so we'll
incorporate a subquery.

Evaluate subqueries and CTEs: Lastly, we need to calculate MaxOrderAmount. If you think
the answer is just calling MAX (o .OrderAmount) AS MaxOrderAmount in the SELECT
clause, think again! We must be mindful of granularity. Using MAX on OrderAmount would
provide the maximum OrderAmount value for each unique combination of CustomerID,
CustomerName, and ProductName, but this isn’t our objective — our objective is to return
the maximum order amount that is equal to the maximum order amount among all orders. As
this is a filtering task, we will use the WHERE clause. This sounds like a filtering exercise. (Note:
this step could have been achieved in Step 3, but for demonstration purposes, we will do it here.)
We include the WHERE CustomerID = c.CustomerID condition in the subquery to
ensure that the subquery correlates with the outer query by matching the CustomerID values.

We are now ready to implement the subquery, like so:
SELECT c.CustomerID, c.CustomerName, SUM(o.OrderAmount) AS
TotalOrderAmount, p.ProductName, o.OrderAmount AS MaxOrderAmount
FROM Customers c
INNER JOIN Orders o ON c.CustomerID = o.CustomerID
INNER JOIN Products p ON o.ProductID = p.ProductID
WHERE o.OrderAmount = (
SELECT MAX (OrderAmount)
FROM Orders
WHERE CustomerID = c.CustomerID)
GROUP BY c.CustomerID, c.CustomerName, p.ProductName;

Review: Review your query to ensure that you've achieved all of the necessary objectives!

Summary

Note that we could have achieved the same results using a CTE instead of the subquery to calculate
the max order amount for each customer. We would just need to join it onto our table and filter to
where the order amount is equal to the max amount. This is what we would do instead:

WITH MaxOrderAmounts AS (

SELECT CustomerID, MAX (OrderAmount) AS MaxOrderAmount
FROM Orders

GROUP BY CustomerID)

SELECT c.CustomerID, c.CustomerName, SUM(o.OrderAmount) AS
TotalOrderAmount, p.ProductName, o.OrderAmount AS MaxOrderAmount

FROM Customers c

INNER JOIN Orders o ON c.CustomerID = o.CustomerID

INNER JOIN Products p ON o.ProductID = p.ProductID

INNER JOIN MaxOrderAmounts moa ON c.CustomerID = moa.CustomerID
WHERE o.OrderAmount = moa.MaxOrderAmount

GROUP BY c.CustomerID, c.CustomerName, p.ProductName, o.OrderAmount;

As you can see, breaking down the problem into smaller steps and gradually building up the query will
help you approach complex scenarios with greater confidence and produce accurate results. Remember
to practice and experiment with different techniques to further enhance your SQL query writing skills.

Summary

In this chapter, we learned the basics of databases and SQL, which are topics that many data scientists
encounter in interviews. In fact, as a data scientist, you will almost certainly be quizzed on this topic
during interviews. We touched on basic querying concepts, subqueries, joins, window functions,
evaluation order, aggregation, filtration, and how to approach complex problems. However, SQL is
yet another topic that commands an entire book on its own.

Rest assured that in most cases, there is more than one way to solve a problem, but there are often
limited optimal ways to do so. Thus, be sure to spend adequate time practicing the concepts discussed
in this chapter. Try not to memorize queries; instead, familiarize yourself with the common use cases
explained in this chapter. Follow the aforementioned steps to break down complex problems, but be
aware that the order of these steps is not set in stone. Once mastered, you will be able to identify the
right query for any occasion!

In the next chapter, we will look at shell and bash scripting with Linux.

159

6
Scripting with Shell and Bash
Commands in Linux

In this brief chapter, we'll delve into shell and Bash scripting with Linux, covering basic navigation
control statements, functions, data processing and pipelines, and database operations. Additionally,
you'll learn how to leverage the cron command for task scheduling and, importantly, how to run
Python programs from the command line.

Although the likelihood of being tested on Linux commands during a data science interview is rare,
you'll be better prepared to utilize data science-adjacent technologies that leverage the command line.
In this chapter, we will cover the following topics:

Introduction to operating systems
Navigating system directories
Filing and directory manipulation
Scripting with Bash

Introducing control statements
Creating functions

Processing data and pipelines

Using cron

Introducing operating systems

An operating system (OS) is a software program that acts as an intermediary between computer
hardware and user applications. You're probably familiar with Windows, Android, and iOS, which
are all different types of operating systems with their own unique features and applications.

162

Scripting with Shell and Bash Commands in Linux

Linux is an open source OS known for its Unix-like architecture, allowing users to configure and
modify the system according to their specific needs. Like other Unix-based systems, it arranges
files and directories in a hierarchical structure. The root directory is at the very top of this hierarchy,
denoted by a forward slash (/).

The root directory is the top-level directory in an OS filesystem’s tree-like hierarchy and is the starting
point for all other directories and files. For example, if you see a file path such as /home /user/
file. txt, the leading forward slash indicates that it is referencing a location relative to the root
directory. That location is a file called £ile. txt in the user directory, under the home directory,
under the root directory.

In addition to /home, there are other directories within the root directory, such as /home, /usr, and
/etc, each serving a specific purpose. Learning how to navigate these files in the command line will
put you ahead of the curve when it comes to expediting workflows and navigating other technologies.

The command-line interface (CLI) or shell is a text-based interface in Linux that allows users to
interact with the computer by entering commands. In the rest of this chapter, we will learn how to
navigate the Linux OS and its directories using Bash scripting and shell commands in the CLI!

Navigating system directories

One of the foundational aspects of working in a Linux environment is the ability to navigate the file
structure and directories from the command line.

If you're familiar with a filesystem on any computer, you're already familiar with this concept. For
example, a Windows OS might have a directory (folder) called Desktop, Pictures, Downloads,
or Document s. These are all directories. Figure 6.1 shows an example directory called Physics,
which has three text files and a directory called Assignments.

_ » Documents » My School Files » Physics N
(O Mame a Date modified Type Size
) __ Assignments 7/12/2023 @33 PM File folder
Day 1 Motes T/12/2023 6:38 PM Text Document 0O KB
Day 2 Notes 7/12/2023 @33 PM Text Documnent O KE
Day 3 Motes 7/12/2023 6:38 PM Text Document O KB

Figure 6.1: Example directory titled Physics

Navigating system directories 163

A directory is a folder, virtual box, container, or organizational structure used to hold and organize
files and other directories. Figure 6.1 illustrates the UI program that allows everyday Windows users to
navigate their filesystems. However, the CLI, shown in Figure 6.2, enables us to navigate and automate
file management using commands.

Command Prompt

Microsoft Windows [Version 10.0.22621.1848]
(c) Microsoft Corporation. All rights reserved.

C:\Users\leond>

Figure 6.2: Windows CLI example

Introducing basic command-line prompts

To begin learning how to use the CLI, let’s take a look at some basic examples. These are commands
that you will use throughout your file exploration journey:

o pwd (print working directory): This command prints the full pathname of the current working
directory to the terminal (for example, /home /user/). If you ever get lost in the terminal,
pwd is your compass.

o 1s (lists): This command lists all files and directories in the current working directory.

o cd <directory names: This changes the current working directory to directory name
if it exists in the current directory.

o cd . .:This command navigates up one directory level (note that . . is a separate command
on its own, so be sure to distinguish it by leaving a space between cd and . .).

o cd: Without any argument, this command will take you back to your home directory.

e cd -:This command will take you to the previous directory you were in.

164 Scripting with Shell and Bash Commands in Linux

Figure 6.3 demonstrates how to use these commands using JSLinux, a Linux OS emulator:

localhost:~# pwd

/root

localhost:~# 1s

bench.py hello.c hello.js readme. txt
localhost:~# 1s -1

otal 26

-MW-FP--r-- root root : bench.py
-rW-r--r-- root root hello.c
-rwW-r--r-- root root hello.js
dirwxr-xr-x root root

-rw-r--r-- root root readme. txt
localhost:~# cd myfolder/

localhost:~/myfolder# 1s -1

otal @

-rW-r--r-- 1 root root analysis.py
-rW-r--r-- 1 root root test.py
-PW-P--r-- 1 root root train.py
localhost:~/myfolder# cd ..

localhost:~# pwd

/root

localhost:~#

Figure 6.3: Basic Linux commands in action

Note that the 1s -1 command may use the -1 flag. In Linux, flags are command modifiers, used to
modify the behavior of command-line utilities. They provide additional instructions or settings to a
command, allowing users to customize how a command operates, and are typically represented by a
hyphen (-) followed by a single character or a word. Here, the -1 flag modifies the output of 1 s to
print more comprehensive details and the format of the directory contents.

Understanding directory types
In Linux, there are two methods for accessing directory paths:

o Absolute paths: Absolute paths specify the location of a file or a directory from the root directory.
They always start with a forward slash - for example, /home /user/data/file. txt.

« Relative paths: Relative paths specify the location of a file or a directory relative to the current
directory. For example, if your current directory is /home /user/data/, and you want to
navigate to the /home /user/data/projectl/ directory, you could use the following:

cd projectl

The projectl directory will be interpreted as a relative path to the current working path.

Navigating system directories

Understanding how to use both path types can help you navigate the filesystem more efficiently. Also,
to expedite navigation and using paths, you can leverage the auto-completion feature by hitting the
Tab key after typing a few characters.

Now that you're familiar with basic navigation, here are some advanced techniques:

o pushd directory name and popd: These commands allow you to work with a stack
of directories. pushd adds a directory to the stack and navigates to it. popd removes the top
directory from the stack and navigates to it. This can be very useful when you’re working with
multiple directories and need to switch between them frequently.

o find: This is a powerful command to search for files or directories based on criteria such as
name, size, and modification time. For instance, find /home/user -name "file.txt"
will search for a file named "file. txt" in the /home/user directory and its subdirectories.

You often deal with numerous files and complex directory structures as a data scientist. Command-line
navigation, thus, is a vital skill to master. It serves as a stepping stone to more advanced topics such as
file and directory manipulation, Bash scripting, cron jobs, and using Python from the command line.

Assessment

Consider that you are currently in the /home /user/project/datasetl/ directory and
you want to change to the /home /user/project/dataset2/ directory. Using only a single
command that includes a relative path, how would you achieve this?

Answer

cd ../dataset2/

This command navigates up one level to the project directory using . . /, and then into the
dataset?2 directory. The . . / part is a special directory name, meaning the parent of the current
directory, so it always refers to the directory above. The concept of relative path is used here, where
the path provided is relative to the current directory.

Assessment

A data scientist is working on a Linux machine. They are in the middle of a complicated data processing
task and have navigated to multiple different directories. Now, they want to confirm their current
directory within the filesystem. Which command should they use?

Answer

pwd

165

166

Scripting with Shell and Bash Commands in Linux

The pwd (print working directory) command is used to display the full pathname of the current
directory. It is a built-in command in Unix/Linux shells that prints the full pathname to the terminal,
which helps users to confirm their current location within the filesystem’s hierarchy.

Filing and directory manipulation

Managing files and directories is a fundamental skill when working in a Unix-based environment. As
a data scientist, you'll frequently need to create, delete, move, and copy files and directories. Knowing
how to use these commands in your daily activities may become a core skill, depending on the systems
you are using. However, in a technical interview, these topics might occasionally come up. Therefore,
we will only quickly review a few core operations here.

The following list will explain these operations and discuss how to manipulate file and directory contents:

« Creating files: To create a new file, use the touch command followed by the name of the file
you want to create. For instance, to create a file named analysis.py, you would use the
following command:

touch analysis.py

+ Creating directories: To create a new directory, use the mkdir command. For example, to
create a directory named new_data, use the following:

mkdir new data

» Removing files: To remove a file, use the rm command. Remember to use this command carefully
though, as deleted files cannot be recovered. So, the following example will permanently delete
the analysis.py file:

rm analysis.py

« Removing directory: To remove a directory, use rmdir, like so:
rmdir new data

Keep in mind that rmdir can only remove an empty directory. To delete a directory and its
contents, use the rm command with the -r (recursive) flag:

rm -r old data

Filing and directory manipulation

Here is an example of these commands in action:

localhost :~/myfolder
I myfolder
localh ~fmyfolder
total @
-PW-F--F-- 1 root
1 root
1 root
fmyFolder
[myfolder

1 reoot
1 root
1 root
1 root
~fmyfolder

root
root
root
root
root
~fmyfol

root
root
root
root
olderd

1 root
-rW-r--r-- 1 root
-rW-r--r-- 1 root
ocalhost 1~/ myfolder#

=P=F==P==

pwd
1s -1

%]
a

root a
touch experimentl.py
1s -1

root
mkdir predictions
1s -1

root
root
root
root
rm analy

-1

root
root
root
root
rmdir predictions/

analysis.py

experimentl.py

3} train.py

8@ analysis.py
:12 experimentl.py

2:13

8@ test.py

2:08 train.py

experimentl.py

) test.py
d train.py

2 experimentl.py

test.py
train.py

Figure 6.4: Creating and removing files and directories

o Moving and renaming files and directories: The mv command serves two purposes:

* Moving and renaming files

* Moving and renaming directories

Here is the syntax:

mv /path/to/source /path/to/destination

For example, to rename a file, use this:

mv oldname.txt newname.txt

167

168

Scripting with Shell and Bash Commands in Linux

Here is an example of us moving a file called experimentl.py from the myfolder
directory to the experiments directory, located one directory above.

localhost:~# 1s -1

otal 24

-PW-r--r-- root root : bench.py
drwxr-xr-x root root

-PW-Fr--P-- root root hello.c
-rW-r--r-- root root hello.js
drwxr-xr-x root root

-rW-r--r-- root root readme.txt
localhost:~# cd myfolder/

localhost:~/myfolder# 1s -1

otal @

-PW-r--r-- 1 root root @ Jul 13 12:12 experimentl.py
-PW-r--r-- 1 root root @ Jul 13 12:80 test.py
-PW-r--r-- 1 root root @ Jul 13 12:80 train.py
localhost:~/myfolder# mv experimentl.py ../experiments/
localhost:~/myfolder# cd ../experiments/

localhost:~/experiments# 1s -1

otal @

-rW-r--r-- 1 root root @ Jul 13 12:12 experimentl.py
localhost:~/experiments#

Figure 6.5: Moving files between directories

o Searching within a file for a specific pattern: The grep command searches the file for a
specific pattern and prints the matching lines. It’s an invaluable tool for searching through
large amounts of data. For example, the following command will print out every line in data.
csv that includes the string ' San Francisco':

grep 'San Francisco' data.csv

This function also accepts the recursive flag (- r), which will allow you to search recursively
through a directory. If we modify our previous example, we are now able to search for San
Francisco in each file in the data directory:

grep -r 'San Francisco' /home/user/data

As a data scientist, you may use the command line to navigate and manage Python scripts for your
machine learning projects or to create data pipelines. These skills will undoubtedly come in handy.

Assessment

You're in a directory that contains a large number of files. You're interested in finding all files that
contain the word ERROR in their content. Which command would you use?

Scripting with Bash

Answer
grep -r 'ERROR'

The grep command is used to search for a specific pattern in file contents. The - r option tells grep
to read all files under each directory, recursively. The . symbol represents the current directory.
Therefore, grep -r 'ERROR' . will search for the string ERROR in all files in the current directory
and its subdirectories.

Scripting with Bash

Bash (Bourne Again SHell) is one specific shell implementation that has gained widespread popularity
and is the default shell for many Linux distributions. Bash scripts can automate repetitive tasks, handle
file and text manipulation, control job scheduling, and much more.

Note

While Bash is a specific shell, the term “shell” is more generic and encompasses other
shell implementations.

A Bash script is a plain text file that contains a series of commands. These scripts can be used to
automate entire workflows and complex processes that youd otherwise have to perform command
by command on the command line.

To create a Bash script, use a text editor to write your script, save it with any name, and give it the
. sh extension. For example, you might name your script, script . sh. You can also use Vim like so:

localhost:~/pipelines# vi run_pipeline.py I

Figure 6.6: Creating a Bash script

In Figure 6.6, we are creating a Bash script using vi, and then providing the filename run pipeline.
py. Once you hit Enter, you must hit the i key on the keyboard to begin editing the file. If you don't,
you will not be able to edit it.

Note

For more information on using the vi Unix-based text editor, check out https://www.
redhat .com/sysadmin/get-started-vi-editor, which goes deeper into this topic.

The first line of every Bash script should be #! /bin/bash (also known as a shebang) - this line
tells the system that this is a Bash script and should be executed with the Bash shell.

169

https://www.redhat.com/sysadmin/get-started-vi-editor
https://www.redhat.com/sysadmin/get-started-vi-editor

170

Scripting with Shell and Bash Commands in Linux

Here’s a simple Bash script:

#!/bin/bash

This is a comment
echo "Hello, world!"

This script will simply print the string "Hello, world!" when it’s run.

Once you're finished editing the text file, hit Esc, and type : wq to save and exit the editor. Then, hit
Enter. You will be back to your most recent directory. To run a Bash script, use the bash command
followed by the script name:

bash script.sh

Alternatively, you can make the script itself directly executable with the chmod command:
chmod +x script.sh

Then, you can run the script like this:

./script.sh

You can also use variables in your Bash scripts. Variables are declared using the $ symbol. It is
important to not include space around the equal sign when assigning a variable to avoid errors. Here
is a simple example:

#!/bin/bash

greeting="Hello, world!"
echo $greeting

In this script, greet ing is a variable that stores the string "Hello, world!".The $ symbolis
used to access the value of the variable.

Assessment

You have created a Bash script called script . shin your current directory. However, when you try
to run the script using . /script. sh, the terminal returns an error: "Permission denied".
What command can you use to resolve this issue and why?

Answer

chmod +x script.sh

Introducing control statements

This issue arises because the script does not have the execute (x) permission. The chmod command
is used to change the permissions of a file. The +x option adds execute permissions to the file. So,
chmod +x script.sh will give execute permissions to script . sh, which will allow you to
run the script with . /script.sh.

Assessment

In the context of Bash scripting, what does the line #! /bin/bash at the beginning of scripts signify
and why is it important?

Answer

The line #! /bin/bash is known as the shebang. It is used to tell the system that the following script
should be executed using Bash. This is important because different systems can have different default
shells, and a script intended to be run with Bash might not work correctly if run with a different shell.
By including #! /bin/bash at the start of your scripts, you ensure that they will be run using the
correct interpreter regardless of the system’s default shell.

Introducing control statements

Control statements, including conditional statements and loops, are an integral part of shell scripting,
allowing you to incorporate decision-making and repetitive tasks in your scripts. As a data scientist,
you might use control statements when automating data preprocessing, running different analyses
based on certain conditions, or when building complex pipelines. This section will introduce the most
commonly used control statements in Bash scripting.

Just like other programming languages, Bash provides conditional statements to control the flow of
execution. The most common conditional statements in Bash are 1f, if-else,and if-elif-else.

Let’s take a look at a simple i £ statement:

#!/bin/bash

x=10
if [$x -gt 5 1
then
echo "x is greater than 5"
fi

In this script, if the value of x is greater than 5, the message x is greater than 5 is printed
to the console.

171

172 Scripting with Shell and Bash Commands in Linux

As you can see, control statements are often paired with arithmetic operators. Here is a list of Bash

arithmetic operators and their meaning:

Bash Meaning Meaning Details
Arithmetic Operator

-1t < Less than

-gt > Greater than

-le <= Less than and equal to

-ge >= Greater than and equal to

-eq == Equal to

-ne I= Not equal to

Figure 6.7: Bash arithmetic operators

An if-else statement executes one block of code if the condition is true, and another block of

code if it is false:

#!/bin/bash
x=10

if [$x -gt 5]
then

echo "x is greater than 5"

else

echo "x is not greater than 5"

fi

In this case, if x is not greater than 5, the script prints x is not greater than 5.

Additionally, here is a good place to remind you that spacing is important to avoid errors when writing
an if statement. Bash and Shell are less forgiving than Python when it comes to spacing and will

produce an error if it is incorrect.

For multiple conditions, use 1f-elif-else:

#!/bin/bash
x=10

if [$x -gt 10 1
then

echo "x is greater than 10"

elif [$x -eq 10]
then

echo "x is equal to 10"
else

Introducing control statements

echo "x is less than 10"
fi

This script checks multiple conditions and executes different blocks of code depending on which
condition is true.

Looping constructs, specifically for and while loops, are critical for executing tasks multiple times.
Here’s a for loop example:

#!/bin/bash
for i in {1..5}
do
echo "This is iteration $i"
done

This script prints This is iteration x for each iteration from 1 to 5.
And here’s a while loop example:

#!/bin/bash

x=1

while [$x -le 5]

do
echo "This is iteration S$x"
x=5(($x + 1))

done

The script performs the same task as the previous for loop, but it uses a while loop that continues
until x is greater than 5. Thex=$ (($x + 1)),adds 1 to x during each iteration of the loop.

Understanding and employing these control statements in Bash scripts can help automate and streamline

your data science workflows, making your operations more efficient and reproducible.

Assessment

Suppose you have an x variable and you want to write a script that prints x is positiveifxis
greater than 0, x is negativeifxislessthan0,andx is zero ifx isequal to 0. How would
you construct this script using conditional statements?

Answer
You would use an i f-elif -else statement. Here is an example of how you would construct the script:

#!/bin/bash
x=10
if [$x -gt 0 1

173

174 Scripting with Shell and Bash Commands in Linux

then

echo "x is positive™"
elif [s$x -1t 0]
then

echo "x is negative"
else

echo "x is zero"
fi

This script first checks whether x is greater than 0. If this condition is true, it prints x is positive.
If it’s false, it then checks whether x is less than 0. If this condition is true, it prints x is negative.
If both conditions are false (i.e., x is not greater than 0 and not less than 0), it must mean x is equal
to 0,soit printsx is zero.

Creating functions

Functions in Bash are blocks of reusable code that perform a certain action. They help structure scripts
and avoid repetitive code, making scripts easier to maintain and debug. In data science, you might use
Bash functions to perform recurring tasks such as loading data, processing files, or managing resources.

A function in Bash is declared with the following syntax:

function name () {
Code here

}

function_name is the name of the function, which you’ll use to call it. The code inside the curly
braces { } is the body of the function.

Here’s an example of a function that prints a greeting:

greet () {
echo "Hello, $1"

}

This greet function prints “Hello” followed by the first argument passed to it. The $1 part is a special
variable that refers to the first argument.

Once a function is defined, it can be called by its name. For example, to call the greet function, you
would write the following:

greet "Data Scientist"

This line of code will print Hello, Data Scientist.

Creating functions

You can pass arguments to a function just like you would with a command. Inside the function, you
refer to these arguments with $1, $2, and so on, where $1 is the first argument, $2 is the second,
and so on. Here’s a function that takes two arguments and prints them:

print_arguments () {
echo "First argument: $1"
echo "Second argument: $2"

}

To call this function with the arguments Data and Science, you would write the following:

print arguments "Data" "Science"

This will print the following:

First argument: Data

Second argument: Science

In Bash, a function returns the exit status of the last command executed. You can explicitly specify a
return status using the return statement, followed by an integer:

is even() {
if [$(($1 % 2)) -eq 0]
then
return 0
else
return 1
fi

}

This function checks whether the first argument is an even number. If it is, the function returns 0
(indicating success in Unix-like systems); otherwise, it returns 1.

Assessment

Imagine you are writing a Bash function that takes a filename as an argument and prints the number
of lines in that file. What would that function look like?

Answer
The function might look something like this:

count lines ()
echo "The file $1 has $(wec -1 < $1) lines"

175

176

Scripting with Shell and Bash Commands in Linux

In this function, count lines, the $1 argument is used to represent the filename passed to the
function. Thewc -1 < $1 command is used to count the lines in the file, and the entire echo
"The file $1 has $(wc -1 < $1) lines" command prints out a message with the
filename and the line count.

Processing data and pipelines

As a data scientist, you often need to handle and process large datasets. Bash provides powerful tools
for data processing and creating pipelines, which are sequences of processes chained by their standard
streams. This allows the output of one command to be passed as input to the next. Several commands
in Bash are incredibly useful for data processing. Here are a few examples:

« cat: Concatenates and displays the content of files.
o cut: Removes sections from lines of files.

o sort: Sorts lines in text files.

o unigq: Removes duplicate lines from a sorted file.

o head filenameand tail filename: These commands output the first and last 10
lines of a file, respectively. You can specify the number of lines by adding -n, asin head -n
20 filename.

Here’s an example of using cat, sort, and uniq to display the unique lines in a file:

cat filename | sort | unig

The cat function displays the contents of the file. The pipe (|) takes the output of the cat function
and sends it to the sort function, which sorts the line in the text. Then we use the pipe (|) function
again to take the output of the sort function and send it to the uniqg function. Finally, the uniqg
function removes any duplicate lines.

For more complex text-processing tasks, you might use commands such as awk and sed. Now, awk
is a complete text-processing language that is ideal for data manipulation, while sed (stream editor)
is a tool that parses and transforms text.

Here’s an example of using awk to print the first column of a file:

awk '{print $1}' filename

In this command, {print $1} isan awk command that prints the first field ($1) of each line.

Processing data and pipelines

Meanwhile, sed is another tool useful for performing find-and-replace operations, substitutions,
deletions, and more on text files or input streams. Here is an example of using sed to substitute the
word example with the word sample in a text file:

sed 's/example/sample/' example.txt
Here’s an explanation of what’s happening:

o sedis the command for using sed

e s/example/sample/ is the substitution pattern, where s/ indicates a substitution, example
is the search pattern to find, and sample is the replacement

o example.txt is the input file on which the substitution is being performed

Using pipes

Pipes are a powerful feature in Bash that allow you to create complex data processing pipelines. They
allow you to stick multiple functions together like Lego blocks to make a complex pipeline.

Here’s an example of a pipeline that processes a CSV file, removes the header, sorts the lines by the
second column (assumed to be numeric), and writes the output to a new file:

tail -n +2 data.csv | sort -t, -k2,2n > sorted data.csv

Here are the details of this pipeline:

e tail -n +2 data.csv outputs the content of data . csv starting from the second line
(thus removing the header)

e sort -t, -k2,2nsortsthelines by the second column as a number

* -t, specifies the comma as the field separator
* -k2, 2n specifies the second field as the sort key

* nindicates that it should be sorted numerically
o > redirects the output to sorted_data.csv

Bash’s data processing commands and pipelines provide powerful tools for manipulating and analyzing
data. Learning how to use these features can make your work as a data scientist more efficient, especially
when dealing with large datasets or complex data transformations.

177

178

Scripting with Shell and Bash Commands in Linux

Assessment

Imagine you have a CSV file with a header row. The file contains several columns of data, including a
Year column. You want to sort the data by the Year column, which is the third column in the file.
How would you accomplish this task in Bash?

Answer

You could use a combination of the tail, sort, and > commands to accomplish this task. The
command would look something like this:

tail -n +2 filename.csv | sort -t, -k3,3n > sorted filename.csv

Thetail -n +2 filename.csv command removes the header row by printing all lines from
filename.csv starting from the second line. The sort -t, -k3,3ncommand sorts the output
by the third column (the Year column), treating the entries as numbers. The -t , option tells sort
to use a comma as the field separator, and -k3, 3n tells it to sort numerically on the third field. The
> operator redirects the sorted output into sorted filename.csv.

Using cron

cron is a powerful feature in Unix-like operating systems that allows users to schedule tasks (called
cron jobs) to run automatically at specific times or on specific days. As a data scientist, you might use
cron to automate tasks such as retrieving data, cleaning data, or running scripts at regular intervals.

The crontab (cron table) command allows you to create, edit, manage, and remove cron jobs. Here’s
an example of how you might use the crontab command to view your current cron jobs:

crontab -1
The -1 option tells crontab to list the current user’s cron jobs.
To edit your cron jobs, you would use the -e option:

crontab -e

This command opens the current user’s crontab file in the default text editor. If no crontab file
exists for the user, this command creates one.

Using cron

A cron job is defined by a line in the crontab file, which consists of six fields:

@ @ @ & w command to be executed

| | I |

| | | | e day of the week (0 - 6) (Sunday=0)
| | | dommmmm - month (1 - 12)

| | S day of the month (1 - 31)

| dommmmm— - hour (0 - 23)

e T min (0 - 59)

Each field can be an asterisk (which means any value), a single value, a range of values, or a list of
values or ranges separated by commas.

Here’s an example of a cron job that runs a script every day at 2:30 PM:

30 14 * * * /home/user/data_script.sh

This line specifies that the data_script . sh script, located in /home /user/, should run at
minute 30 of hour 14 (2:30 PM) every day.

By default, the output from a cron job is mailed to the owner of the crontab file. However, you can
redirect the output to a file:

30 14 * * * /home/user/data_script.sh > /home/user/data log.txt

In this example, the output of data_script.shisredirected to data log.txt.

Keep in mind that while cron is powerful and flexible, it also has some limitations and isn’t the right tool
for every job. However, there are tools, such as Airflow and Luigi, that make up for its shortcomings.

Assessment

You have a Python script called data_update . py that updates your data every week. The script is
located in the /home/data_scientist/ directory. How would you schedule a cron job to run
this script every Monday at 1:30 AM?

Answer

To schedule this cron job, you would open your crontab file using the crontab -e command,
and then add the following line:

30 1 * * 1 /usr/bin/python3 /home/data scientist/data_update.py

179

180

Scripting with Shell and Bash Commands in Linux

This cron job is scheduled to run at minute 30 of hour 1 (1:30 AM) every Monday (1 in the day-of-
the-week field). The command to run is /usr/bin/python3 /home/data_scientist/
data_update.py, which executes the data_update . py script with Python 3. Please note that
the path to Python might differ based on the specific system configuration.

Summary

In this chapter, we covered a broad range of topics related to basic shell and Bash scripting and
command-Line operations for data scientists.

We began with an overview of navigating within the file structure and directory on a local computer
or a virtual machine from the command line, explaining the use of basic commands for directory
navigation. Then, we moved on to file and directory manipulation. In the subsequent sections, we
delved into Bash scripting topics, discussing control statements and the use of Bash functions to
create reusable pieces of code. We highlighted data processing and pipelines, demonstrating how to
chain commands together to process text data. We also covered cron jobs for scheduling tasks and
provided an overview of its syntax.

Gaining fluency in Bash scripts and basic shell commands will prepare you to engage with a variety of
other CLI technologies commonly used in data science such as interfacing with the cloud providers
(i.e.: AWS, Azure, GCP), Hadoop, Docker, Flask, or Kubernetes.

In our next chapter, we will look at version control with Git.

7

Using Git for Version Control

This chapter aims to prepare you for interview questions related to Git, a version control system
integral to collaborative projects and data management.

Throughout these sections, you'll delve into the basics of creating and managing repositories and
common Git operations, such as config, status, push, pull, ignore, commit, and diff.
We will also highlight the common workflow patterns for a data scientist using Git and the crucial
role of branches in this workflow.

The goal is to equip you with practical knowledge that you can leverage during your technical
interviews, enabling you to demonstrate not only your data science acumen but also your adeptness at
utilizing essential collaboration tools. Understanding these concepts is pivotal in today’s data science
landscape, as efficient version control and collaboration are as critical to a project’s success as the
scientific methods employed.

In this chapter, we will cover the following topics:

o Introducing repositories (repos)

o Creating a repository

o Detailing the Git workflow for data scientists
o Using Git tags for data science

o Understanding common operations

Introducing repositories (repos)

Repos are a version control system in a centralized storage location, holding all the files, directories,
and version history of a project. A repository allows multiple developers to collaborate on a project,
keeping track of changes made to the projects files over time, which is useful for projects with multiple
data scientists and developers. It stores all the different versions of the files, along with metadata such
as the author, timestamp, and description of each change.

182

Using Git for Version Control

There are many version control options that organizations might use. Some popular options include
GitHub, BitBucket, GitLab, Azure DevOps repositories, and AWS CodeCommit.

It’s important to note that there are multiple phases of version control. The major three are repos, a
working directory, and a staging area. We've already explained what a repo is, but what are the other two?

A working directory is the directory on your local machine where you have cloned or initialized a
Git repository. It contains all the project files that you can modify, create, or delete as part of your
development process. When you make changes to files in the working directory, Git recognizes them
as modifications to the project.

The staging area (aka an index) is an intermediary stage between your working directory and repo
and is where the files of your project are ready to be tracked. Thus, it acts as a holding area for changes
that you intend to include in the next available version of the project by taking a snapshot of the
modified files. However, instead of committing to these changes directly from the working directory,
you explicitly choose which changes to add to the staging area. In doing so, the staging area allows
you to control which changes are included (committed), enabling you to selectively group related
changes together or split them into separate commits.

Working with repos for version control is all about moving project files from one phase of the Git

workflow to the next, which is demonstrated in Figure 7.1

git clone
|

Working
Directory

Staging
Area

Repository

(Local)

1
git add git commit

Figure 7.1: The Git workflow

Think of this concept as saving your progress in a video game. When you're actively playing, you are
navigating your “working directory” However, if you want to save your progress, this is the equivalent
of moving your progress to the “staging area.” If you want to share your progress with friends, you
might migrate your saved file to another console. This is the equivalent of a “repository””

Creating a repo

Creating a repo

In this section, we'll cover the essential steps for creating a GitHub repository from an existing remote
repository, as well as creating a local repository without an existing remote repository. Then, we will
look at linking a local and remote repository. Let’s begin!

Cloning an existing remote repository

When working as a part of a project team, a central repository has likely already been created. If you
are working with a project that already exists, use the clone command to make a local copy of the
repository. Cloning allows you to have a local copy of the project on your own computer, where you
can work on it offline, experiment with it, and contribute your changes back to the project if you wish.

Here’s how to clone a repository:
1. Retrieve a copy of the remote repository URL. If GitHub is your remote repository, then this
can be found under the green Code button, currently on the Code tab of a project.
2. Open the terminal on your local machine.

3. Change the current working directory to the location where you want the cloned directory
to be made.

4. Typegit clone, and then paste the URL you copied earlier. If GitHub is your remote
repository, then the command might look like this:

git clone https://github.com/YOUR-USERNAME/YOUR-REPO-NAME.git
You are passing the central remote repo URL as input to the clone command.

Afterward, Git will create a copy of the repo in your current directory.

Creating a local repository from scratch

When starting a new project from scratch, you can initialize a repo using init (meaning “initialize”)
inside of a local project folder. This will create a . git file on your machine; however, note that it
is not visible by default on your computer’s filing system (it will, however, show in your terminal):

git init <project-names

This command will create a new repository in the current directory. Therefore, change to the directory
where you want to make the repository first.

Once a repository has been created, it doesn’t automatically start tracking your files. You need to
tell Git which files to begin tracking by using the add command. This command places files in the
staging area. Think of the staging area as an intermediate step between the working directory and
the repository. It plays a crucial role in managing and organizing changes before they are committed
to the repository.

183

184

Using Git for Version Control

Here is an example of using the add command:

git add <file name>

Using the command in this method only adds one file to the staging area. However, you can use the
--all option to stage all the files in the directory simultaneously:

git add --all

The example adds all the files in the directory to the staging area.

Note

If, for whatever reason, you need to reverse a staged add, use git reset HEAD, followed
by a filename. This allows you to remove changes from the staging area without discarding the
modifications in the working directory.

After adding a file to the staging area, you can use the commit command to move it to the repository.
After executing this command, you are then asked to add a log message to your commit, which is
basically a comment that describes your changes. You do this by adding the —m flag and then your
message in parentheses. Here is an example of adding a message to a commit:

git commit -m "This is a message."

You want to be thoughtful with your message, since it will forever be part of the repo.

To summarize our recent discussion, here’s how to create a new local repository:

1. Navigate to the directory where you want to create the repository.

2. Within this directory, initiate a new local repository with the git init command. You'll see
output that says, Initialized empty Git repository in [your directory].

3. Ifyou want to copy an existing repo, use git clone.
4. Add files to your repository by creating new files or moving existing files into this directory.

5. After adding or modifying files, stage the changes by using git add command, which
stages all changes in the directory and subdirectories. You may also use git reset HEAD
<file-name> to reverse a staged file.

6. Commit these changes to your repository by usinggit commit -m "Commit message'",
where "Commit message" is a message that describes the changes you've made.

At this point, you have a local repository with your initial project files.

Creating a repo

Linking local and remote repositories

After creating a local repository, you can link it to a remote repository to easily share your code,
collaborate with others, and have an online backup of your work.

Here’s how to link your local repository to GitHub:

L.

Create a new repository on GitHub (to avoid errors, do not initialize the new repository with
README, gitignore, or License files; these can be added after your project has been
pushed to GitHub).

Get the remote repository’s HTTPS URL from the GitHub page (the same way as described in
the instructions about cloning).

In the terminal, change the current working directory to your local project.

To add the URL for the remote repository where your local repository will be pushed, run
the following command, replacing https://github. com/YOUR-USERNAME /YOUR -
REPO-NAME . git with your repository’s URL:

git remote add origin https://github.com/YOUR-USERNAME/YOUR-
REPO-NAME.git

Push the changes in your local repository to GitHub using git push:
git push -u origin master

Now, your local repository is linked to your GitHub repository, and all your local changes can
be pushed to the GitHub repository for safe-keeping and sharing.

To review the history of any project, use git 1log along with flags to learn details about the
project through logs. Here are some examples:

* git log -3 myfile.py shows the last three commits to myfile.py
* git log -since YYYY-MM-DD shows the commits since the provided date
* git log -author=<name> shows all commits by the provided author

There are many other flags that you can use. To look up other flags for any given command,
usegit <command> -help.

In summary, whether you're cloning an existing repository or creating a new one, youre setting up

an environment where you can contribute to a project in a controlled and effective manner. Git and
GitHub form the backbone of many modern data science workflows, and understanding these steps
is crucial in preparing for a data science interview.

185

186

Using Git for Version Control

Assessment

Create a local copy of the git@github.com:py-why/dowhy.git repository in the /home/
project/code/ directory.

Answer

cd /home/project/code/
git clone gitegithub.com:py-why/dowhy.git

First, the cd command is used to change to the /home /project/code/ directory. Now, once
in that directory, the clone command is used to make a local copy of the repo within the directory.

Assessment

You've been working on a new data analysis project locally and want to share your progress with your
colleagues via GitHub. Explain the process of creating a local repository and linking it to a remote
repository on GitHub.

Answer
To create a local repository and link it to a remote repository on GitHub, follow these steps:

1. Create a new directory for your project on your local machine and navigate to it.

2. Initiate a new local repository within this directory with the git init command.

3. Add files to your repository by creating new files or moving existing ones into this directory.
4

Stage the changes with git add --all command, which stages all changes in the directory
and subdirectories.

u

Commit these changes to your repository withgit commit -m "Commit message'.

6. Create a new repository on GitHub. To avoid errors, don't initialize the new repository with
“README”, .gitignore, or “License” files.

7. Copy the remote repository’s HTTPS URL from the GitHub page.
8. In the terminal, change the current working directory to your local project.

9. Add the URL for the remote repository where your local repository will be pushed with git
remote add origin https://github.com/YOUR-USERNAME/YOUR-REPO-
NAME . git, replacing the URL with your repository’s URL.

10. Push the changes in your local repository to GitHub with git push -u origin master.

This process allows you to work on your project locally and then share your work via GitHub, making
it available for others to see, clone, or contribute to.

Detailing the Git workflow for data scientists

Detailing the Git workflow for data scientists

Understanding Git workflows is a key competency for data scientists. As we've discussed before, Git
allows you to track changes, revert to previous versions, and collaborate with others. In this section,
we'll describe a typical Git workflow for a data scientist and explain the concept of a branch, an
important feature in Git.

A branch in Git is essentially a unique set of code changes with a unique name. Each repository
has one default branch (usually called master or main) and can have multiple other branches.
The branches are used to develop features isolated from each other. When you want to create a new
feature or experiment with something without disturbing the main line of development, you create
a new branch. If the experiment is successful, you can merge these changes into the main branch.
If it’s unsuccessful, you can discard the branch, and it won't affect your main branch or repository.

Here is the typical Git workflow for a data scientist:

1. Create a new branch for your task: If youre about to start work on a new feature or a bug fix, it’s
good practice to create a new branch. This keeps your changes organized and separate from the
main branch. The command to create a new branch isgit branch new-branch-name.
To switch to this branch, you use the git checkout new-branch-name command.

2. Add changes to the new branch: Once you're on the new branch, you can make changes to
your files and stage them with git add filename.ext,orgit add --all to stage
all changes.

3. Commit the changes to the branch: After staging the changes, you commit them with a
descriptive message using git commit -m "Your commit message'.

4. Push your changes to the remote repository: After committing your changes, you can push
them to the remote repository with git push origin new-branch-name.

5. Open a pull request: On GitHub, you can open a pull request, which allows others to review
and discuss your changes. If you're collaborating with a team, this step is crucial for code review
and collaborative debugging.

6. Merge your branch into the main branch: After your changes have been approved, you can
merge them into the main branch. On GitHub, this can be done with the merge button in your
pull request. Locally, you would first check out to the main branch with git checkout
main and then merge your branch with git merge new-branch-name.

7. Pull the latest changes from the main branch: Other people might have made changes to the
main branch while you were working on your feature. To make sure your local main branch is
up to date, usegit pull origin main.

8. Repeat the process for a new feature or bug fix: After your changes are merged into the main
branch, you can repeat the process, starting from step 1, for your next task.

187

188

Using Git for Version Control

It’s important to note that these steps describe one possible workflow with Git, known as the feature
branch workflow. Different teams and projects might use different workflows. In the context of data
science, you might use branches to experiment with different models or data processing techniques.

For example, you might create a new branch to experiment with a new machine learning model. If
the model improves your results, you can merge it back into the main branch. Here, assume that you
are working with GitHub on a classification problem and you want to explore the results using the
decision tree algorithm. At the end of the example, we delete the local copy of the branch we created
because it is now merged into our main branch:

git branch decision-tree

git checkout decision-tree

..(assumes that you're updating your code files and review results)
git add --all

git commit -m "Explored results using decision tree algorithm"
git push origin decision-tree

..(assumes that a submitted a pull request and it was approved)
..(assumes the branch was merged into main in GitHub)

git checkout main

git pull origin main

git branch -d decision-tree

In a technical interview, you might be asked to describe how you would use Git in a collaborative
project, or to describe a time when you used Git to manage different versions of a data science
project. Understanding the concept of branches and the basic Git workflow can help you answer
these questions confidently.

Assessment

You are working on a new feature for a data science project. Describe the series of Git commands
you would use to create a new branch, add and commit your changes, and then push these changes
to the remote repository.

Answer

First, you would create a new branch using git branch new-branch-name, and then switch
toit withgit checkout new-branch-name. Once youve made your changes, you would
stage them for commit, using git add filename.ext for specific filessorgit add --all
for all changes. After staging the changes, youd commit them with a message, using git commit
-m "Your commit message". Finally, you would push the changes to the remote repository
withgit push origin new-branch-name.

Using Git tags for data science

Assessment

Explain the importance of using different branches when working on a data science project and how
it might influence your workflow.

Answer

Using different branches is crucial in a data science project because it allows for experimentation
without affecting the main line of development. For instance, if you want to test a new algorithm or
dataset, you can create a new branch and make changes there. If the changes improve your project,
you can merge them into the main branch. If they dont, you can simply discard the branch without
it affecting your main code base. This ensures that the main branch only contains code that is tested
and works properly. Moreover, in a collaborative environment, branches provide a way for multiple
team members to work simultaneously on different features without conflict.

Using Git tags for data science

Tagging in Git is a way to mark specific points in your repository’s history as being important. Typically,
people use this functionality to mark release points (v1.0, v2.0, and so on). In this section, we’ll cover
the concept of tagging and how it can benefit data scientists.

Understanding Git tags

There are two types of tags that Git recognizes, lightweight and annotated. A lightweight tag is similar
to a branch that doesn’t change. It’s just a pointer to a specific commit. Annotated tags, however, are
stored as full objects in the Git database. Using the annotated tag is generally recommended because
it is fully tracked and contains more info than the lightweight tag.

To create an annotated tag in Git, you can use the git tag -a command, followed by the tag name
(usually the version), and then the message, such as the following:

git tag -a v1.0 -m "my version 1.0"

To view the tags in your repository, you can use the git tag command.

Using tagging as a data scientist

Tagging can be especially useful for data scientists for versioning models or experiments. For instance,
if you have trained a machine learning model and want to keep track of its versions, you could use a
tag to mark the commit that produced the model.

You could also use tags to mark the commit that generated a particular result or figure. This can be
extremely helpful in ensuring the reproducibility of results, which is a crucial aspect of data science.

189

190

Using Git for Version Control

In addition, using tags can help data scientists collaborate more effectively. Team members can use
tags to share the specific versions of the code they are working on, or to indicate which versions
produce the best results.

In a technical interview, you might be asked about your strategies for managing versions of your code
or ensuring reproducibility. Discussing your experience with Git tagging can help demonstrate your
commitment to good practices in data science.

Remember, Git tagging is not a replacement for proper experiment tracking in data science, which
should also record parameters, performance metrics, and other important details of each experiment.
However, it can be a helpful tool to manage your code base and collaborate with others.

Understanding common operations

Understanding the basic commands of Git is paramount for anyone working in the field of data
science. In the previous section, we delved into how to set up a GitHub repository, either by cloning
an existing repository or starting a new one from scratch. In this section, we will explore common
Git operations that will help you manage your repositories more effectively.

So, let’s take a look at some operations:

o Configuring Git (conf ig): Gits configuration settings can be found in the .gitconfig
file, which is usually located in the user’s home directory. To modify these settings, use the
git configcommand. Set your name and email address, which will be attached to each
commit you make:

git config --global user.name "Your Name"
git config --global user.email "youremail@domain.com"

Check your settings:

git config --list

o Checking the status (status): Thegit status command provides information about
the current state of the repository, including untracked files, changes that are staged but not
yet committed, and the branch youre currently on:

git status

o Pushing changes (push): The git push command allows you to send the commits from
your local repository to a remote repository:

git push origin master # Push changes to the master branch

If you want to share your tags with others, you need to use the git push --tagscommand:

git push origin --tags

Understanding common operations

o Pulling changes (pull): Thegit pull command is used to fetch and download content
from a remote repository and immediately update the local repository to match that content:

git pull origin master # Pull changes from the master branch

o Checking differences (diff): The git diff command is used to display the differences
between two points in your repository:

git diff # Show differences not yet staged

git diff --staged # Show differences between staged
changes and the last commit

« Ignoring unnecessary files (. gitignore): When working on a project, there are often files
that you don’t want Git to track, such as log files or files containing sensitive information. This
can be managed with a . gitignore file in your repository’s root directory. Patterns defined
in this file will apply to all files in the repository. Here is an example of a . gitignore file:

*.log
*.csv

secrets/*

In this example, all . 1og and . csv files will be ignored, as well as all files in the
secrets/ directory.

These commands form the backbone of many interactions with Git and are crucial for efficient
version control. As a data scientist, being comfortable with Git is a must, as it not only allows you to
collaborate with other team members but also lets you keep track of changes, allowing you to revert
back to previous versions when necessary.

In the context of a technical interview, a good understanding of Git indicates that you are familiar
with the basic version control tooling used in data science and software development, which can make
a strong impression on potential employers. Remember, learning Git is not just about memorizing
commands but also understanding how these commands can be integrated into your workflow,
improving productivity and collaboration.

Assessment

You are working on a data science project and have made several changes to your Python scripts.
However, you realize that you’ve made a mistake and want to see what has changed since your last
commit. Which Git command would you use, and what does it do?

191

192

Using Git for Version Control

Answer

You would use the git diff command. This command shows the differences between the changes
you've made in your working directory and the last commit. It’s used to review the changes you've
made before staging and committing them, which is useful when you want to confirm your changes
or when youre troubleshooting. The output shows the lines that have been added or removed.

The following code shows an example, where a/file.txt andb/file. txt are different versions
of the same file:

diff --git a/file.txt b/file.txt
index ce01362..5d34e82 100644
--- a/file.txt

+++ b/file.txt

@@ -1 +1 @@

-I love coding

+I love to learn

Assessment

During your work on a machine learning project, you've accumulated several large . csv files
containing intermediate results. These files are cluttering up your Git status and you don't want to
accidentally commit them. How can you tell Git to ignore these files?

Answer

To tell Git to ignore certain files, you can use a . gitignore file. This file resides in the root directory
of your repository. In this case, you would add * . csv to your .gitignore file, which tells Git
to ignore all . csv files in the repository. This is very useful to exclude unnecessary files, such as
temporary files, logs, or files with sensitive data, from being tracked by Git.

You should be careful to only ignore files that truly don’t need to be in the repository, as ignoring
important files could lead to lost work or inconsistencies between different versions of a project.

Summary

In this chapter, we explored the core fundamentals of Git, an essential tool for data scientists looking to
effectively manage and collaborate on projects. We kicked things off by guiding you through setting up
a GitHub repository. This involved the creation of a new repository, both from scratch and by cloning
an existing remote repository. We provided a step-by-step walk-through, offering a straightforward
approach to establishing and preparing your local repository for development work.

Summary

Following this, we navigated through the common Git operations that form the backbone of interaction
with this tool. We explored essential commands such as config, status, push, pull, ignore,
commit, and diff, laying out their functions and demonstrating their usage with practical examples.
Additionally, we delved into the concept of branches, a critical feature of Git that allows you to segregate
your changes and efficiently manage different project versions, using tags to highlight specific points in
your repository. Finally, we described a typical Git workflow for a data scientist, providing a roadmap
for creating, modifying, and merging branches in the context of a data science project.

With this knowledge, you are now equipped to handle version control and collaboration tasks effectively,
a vital skill for any technical interview.

In our next chapter, we will look at analyzing data with statistics.

193

Part 3:
Exploring
Artificial Intelligence

The third part of this book covers various data mining techniques, how they work, the assumptions
they make, their evaluation criteria, and their applications. We start with the foundations of inferential
statistics, followed by increasingly more advanced data mining tasks, including the most popular
machine learning models, neural networks, and generative Al This part ends with helpful tips on
deploying an effective MLOps strategy.

This part includes the following chapters:

o Chapter 8, Mining Data with Probability and Statistics

o Chapter 9, Understanding Feature Engineering and Preparing Data for Modeling
o Chapter 10, Mastering Machine Learning Concepts

o Chapter 11, Building Networks with Deep Learning

o Chapter 12, Implementing Machine Learning Solutions with MLOps

8
Mining Data with Probability
and Statistics

In this chapter, you will be introduced to the vital world of statistics, which serves as the foundation of
applied data science. An understanding of these concepts is crucial for drawing meaningful conclusions
and making informed decisions and predictions from data. This knowledge is not just an intellectual
exercise; it equips you with essential tools to excel in advanced data science interviews by allowing
you to uncover hidden insights within datasets.

This chapter will guide you through the essential aspects of classical statistics, including the analysis
of populations and samples, measures of central tendency and variability, and the intriguing realms
of probability and conditional probability. You'll also explore probability distributions, the central
limit theorem (CLT), experimental design, hypothesis testing, and confidence intervals. This chapter
concludes with a focus on regression and correlation, giving you comprehensive tools to understand
relationships within data and make confident predictions.

In this chapter, we will cover the following topics:

o Describing data with descriptive statistics
o Introducing populations and samples

o Understanding the CLT

o Shaping data with sampling distributions
o Testing hypotheses

o Understanding Type I and Type II errors

198

Mining Data with Probability and Statistics

Describing data with descriptive statistics

Descriptive statistics are values that summarize the characteristics of a dataset. Before working on
a project, data scientists use descriptive statistics to better understand the dataset they are working
with. Think of it like exploring a treasure chest of information, with descriptive statistics as your guide
to finding important details.

In your technical interview, you will be expected to be able to understand and use descriptive statistics.
In this section, we will look at how to measure the central tendency of our dataset, then explore
measures of variability or how dispersed and how much spread our dataset has.

Measuring central tendency

We are exposed to measures of centrality every day. For instance, if you live in the US, you might have
heard that home prices in the state of California of the US are, on average, higher than in the state of
Ohio. Of course, this doesn’t mean that every home in California is more expensive than every home
in Ohio, but if we could collect a lot of homes from each state in two separate baskets and draw from
each one, more often than not, the home in the California basket will cost more than the home pulled
from the Ohio basket. We know this because, on average, according to Redfin, the median price of
California homes averages $798,600 [1], while those in Ohio average $249,400 [2].

Measures of central tendency provide a snapshot of a dataset’s typical or central value, helping us to
understand where data tends to cluster.

When discussing measuring centrality, we often use measures such as mean, median, and mode:

o 'The mean represents the arithmetic center of data and is calculated by summing up all the
values in a dataset and dividing the sum by the number of observations. For example, the mean
of[4,6,8,10]is(4+6+8+10)/4="7.

o The median is the middle value in a dataset when the observations are arranged in ascending or
descending order (if the dataset has an odd number of observations, the median is the middle
value itself, and if the dataset has an even number of observations, the median is the average
of the two middle values). For instance, the median of [4, 6, 8, 10] is 7.

« The mode is the value or values that occur most frequently in a dataset. Unlike the mean and
median, the mode does not rely on mathematical calculations. Sometimes, a dataset may have
multiple modes (bimodal, trimodal, and so on), or there may be no mode if all values occur
with the same frequency. For example, if given the values [4, 6, 8, 8, 10], the mode is 8.

How do we identify when we should use the mean over the median and vice versa? Let's consider an
example where we try to estimate the average income of a population. Suppose we have a dataset of
incomes for a specific population, and the distribution of income is highly skewed, with a few extremely
high-income individuals. In this situation, using the mean as the measure of central tendency may
not accurately represent the typical income of any singular person in the population. This is because
high-income earners are outliers.

Describing data with descriptive statistics

In these situations, you will want to use the median, which provides a measure of centrality that is not
influenced by outliers as much as the mean. For example, suppose I take the average of my neighbor’s
annual income and average it with Jeff Bezos. In that case, the resulting product will look nothing
like the average wage for any given individual in America - not unless I averaged it with many more
people and with much smaller wages. Even then, the average would not be representative of the wage
most people take home. Thus, the median is more valuable as it represents the middle value of the
dataset when arranged in ascending or descending order.

Recall from Chapter 4 that you can quickly visualize your numerical data as a histogram or box plot to
see if the data is highly skewed or has significant outliers. Based on this insight, you can then decide
if the average or median would better represent your data:

Histogram with Mean and Median Box Plot

== Mean: 2.13

2007 —=— Median: 1.52

]

S —

175

150

125
14 |> 4#!“1!9@0@ co (o]
100

751

L

50 4

254

Figure 8.1: lllustration of a histogram (left) and box plot (right) of a skewed distribution

Note

If the income distribution follows a symmetrical, bell-shaped distribution (a normal distribution),
the mean and median would likely be very close to each other. In such cases, using either the
mean or the median as the measure of central tendency would provide a representative estimate
of the average income.

Measuring variability

As you've seen thus far, mean, median, and mode are not enough to explain a dataset’s shape. While
measures of centrality measure the central tendency of data (that is, the tendency of the data’s central
statistics), variability helps us understand the spread or dispersion of data points.

199

200

Mining Data with Probability and Statistics

Variability is the measure of a dataset's spread. For example, the mean wage in a country might be
$54,000, but how much does this figure vary from person to person? Is this average the result of low
variability (that is, everyone’s wage is somewhat close to $54,000) or high variability (that is, there is
a small minority that makes billions of dollars, but their wages are saturated by the vast majority who
make under $30,000)?

In short, variability provides insights into how data points deviate from the central tendency. Three
commonly used measures are as follows:

« Range: The range of a dataset is given by subtracting the smallest figure from the largest figure.
For example, if a group of students in a class received {5, 12, 24, 9, 18} as values for a quiz, the
range of the values is 19 or 24-5=19.

 Interquartile Range (IQR): The IQR is the range of the middle 50% of the data set. It is calculated
by subtracting the first quartile (the 25th percentile) from the third quartile (the 75th percentile).
The IQR is less sensitive to outliers than the range and is often used to summarize skewed data.

« Standard deviation: The standard deviation is the data’s standardized distance (or deviation)
from the mean of the dataset. It helps in understanding the variability of a process. The standard
deviation is a more robust measure of variability than the range as it considers how every value
in the dataset contributes to the dispersion. It has the same units as the original data, making
it easier to interpret in context. Additionally, standard deviation is often represented by the
Greek letter sigma, 0, while the square of standard deviation (¢?) is variance.

Assessment

Suppose you are working with a dataset containing employees’ salaries in a large organization. The
CEOss salary is significantly higher than everyone else’s, causing a skew in the salary distribution.
Which measure of central tendency (mean, median, or mode) would be the most appropriate to
represent a “typical” employee’s salary, and why?

Answer

The median would be the most appropriate measure of central tendency to represent a “typical”
employee’s salary in this case. The reason is that the median is less affected by outliers or extreme
values, such as the CEO’s salary, compared to the mean. The mean takes into account all values, so an
extremely high value can significantly skew it upwards. The median, on the other hand, is the middle
value of the dataset when ordered from smallest to largest and thus can provide a more representative
“typical” value when the data contains significant outliers.

Introducing populations and samples

Assessment

You are examining a dataset of exam scores for two classes of students who were taught the same
course by two different teachers. Class A has a much smaller standard deviation in exam scores than
Class B. What can you infer from this about the distribution of scores in each class, and what might
this suggest about the two teaching methods?

Answer

A smaller standard deviation in exam scores for Class A implies that the scores in Class A are closer
to the mean score and hence more consistent, with less variability. The scores for Class B, with a larger
standard deviation, are more spread out from the mean, indicating greater variability.

In terms of teaching methods, while we can’t make definitive conclusions from this data alone, it
might suggest that the teaching method for Class A led to more consistent understanding among
students, while the teaching method for Class B resulted in a wider range of understanding. It could
also suggest that the teacher for Class A had a teaching style that was effective for a larger proportion
of the students compared to the teacher for Class B. However, these are just hypotheses and would
need further investigation and more information to support them since many other factors could be
influencing the distribution of scores in each class.

Introducing populations and samples

Statistics is the art of extracting meaningful insights from data, and it all begins with a thorough
understanding of populations and samples. In this section, we will explore the fundamental concepts
that underpin statistical analysis by distinguishing between populations and samples.

Understanding these concepts is important because they form the basis for generalizing observations
from a subset of data to a larger group. By investigating the intricacies of populations and samples,
you will gain the necessary tools to make sound inferences and draw reliable conclusions from the
data you encounter. So, let’s embark on this enlightening journey and uncover the foundations of
statistical analysis.

Defining populations and samples

In the realm of statistics, a population refers to the entire group of individuals, objects, or events that
we are interested in studying. For instance, if we wanted to research the average height of all adults
in a country, the population would comprise every adult within that country. It would not include
other countries or children, for example.

201

202

Mining Data with Probability and Statistics

However, studying an entire population is often impractical or impossible due to factors such as time,
cost, or accessibility. This is where samples come into play. A sample is a subset of the population
that we select to represent the larger group. By randomly selecting and analyzing a sample, we can
draw meaningful conclusions about the population as a whole. In data science, we are almost always
working on a dataset that represents the sample of a larger population:

Population

Figure 8.2: lllustration of a sample of a population

Representing samples

The key to reliable statistical analysis lies in the representativeness of the sample. A representative
sample accurately reflects the characteristics and diversity of the population it is drawn from. Achieving
representativeness requires carefully considering factors such as sampling methods, sample size, and
potential biases. Simple random sampling is one of the most straightforward methods of sampling,
where every individual in the population has an equal chance of being selected. This approach ensures
that the sample is unbiased and, therefore, representative of the population, provided the sample size
is sufficiently large.

Sampling bias occurs when we do not acquire a representative sample. It is a sample that is systematically
skewed and does not accurately represent the population. For example, imagine that you are running
for class president in your high school, and you want to conduct a poll to understand your chances
of winning. The population of your poll is your high school, and the sample you collect is from
all seniors. However, collecting a sample of just seniors creates a biased, unrepresentative sample
of the high school. Perhaps you have more friends in the senior class because you are a senior.

Introducing populations and samples

You will be very disappointed on election day if first-year students, sophomores, and juniors
overwhelmingly vote against you!

In data science, it is essential to be aware of various sources of bias, such as selection bias, non-response
bias, and measurement bias, to minimize their impact on statistical analysis and predictions.

Now, let’s suppose you conduct a sufficiently randomized sample of 100 students from all four classes
at the school. After tallying the poll, it looks like 80% of them are willing to vote for you on election
day - congratulations! But not so fast. Suppose you conducted another poll the following day, and
it turns out that only 75% of that sample committed to voting for you. You collect more samples on
different days, and the results are all different. What gives? You might be experiencing sampling bias
across the different days. For example, if after day 1’s poll, your poor Statistics class grade was released,
your polling numbers may dip on day 2. Or, this could just be a case of sampling error.

Reducing the sampling error

The sampling error, also known as the standard error of a sample, is the natural variation that occurs
between different samples from the same population. Even if the true proportion of students supporting
you is consistent throughout the entire student body, each sample will capture a slightly different
proportion due to just random chance. This makes sense, because rarely do we sample anything and
get the same results every time. The sampling error reminds us that the estimates obtained from our
samples are not exact replicas of the true population proportion and that uncertainty and variability
are always at play in statistics.

To mitigate the impact of the sampling error, we can increase the sample size and number of samples.
The standard error is calculated as the standard deviation of the population statistic divided by the
square root of the sample size. Mathematically, it can be represented as follows:

_ 0
SE =
Here, we have the following:

o SEis the standard error

® ¢ is the standard deviation of the population statistic

® /N is the sample size

As the sample size grows larger, the standard error decreases. Similarly, increasing the number of samples
also reduces the sampling error. The more samples you collect, the better you can estimate the true
population parameter by considering the range and distribution of estimates across the samples. To
calculate the overall standard error when combining results from multiple samples, you can compute
the standard deviation of the sample statistics across all the samples and divide it by the square root
of the total number of samples. This accounts for the variability between the sample estimates.

203

204

Mining Data with Probability and Statistics

Understanding the sampling error enables us to quantify the uncertainty in our estimates and make
reliable inferences.

Assessment

You are studying the average commuting time of workers in a large city. Explain how you would
define the population and a potential sample for this study. What are some of the considerations you
would have to bear in mind when choosing the sample to ensure it's representative of the population?

Answer

In this case, the population is made up of commuting works who live in a large city. The sample might
be a subset of these workers selected for the study, perhaps based on certain criteria such as accessibility
or willingness to participate in the study. It’s important to ensure that the sample is randomized and
representative of the population as a whole, which means it should reflect the diversity of commuting
times across different areas of the city, different professions and ages, and other factors that might
affect commuting times. Potential biases, such as choosing more people who live in certain areas of the
city, or more people from certain professions, should be carefully avoided to ensure that the sample
is not skewed and can accurately represent the population.

Assessment

Describe the concept of the sampling error and how it affects the reliability of estimates drawn from
a sample. What methods can be employed to reduce the impact of sampling error?

Answer

The sampling error is the natural variation that occurs between different samples from the same
population. It signifies that the estimates obtained from individual samples are not exact replicas of
the true population parameters; there is always some level of uncertainty and variability involved in
statistics. This impacts the reliability of estimates because a high sampling error could lead to estimates
that deviate significantly from the actual population parameters.

Reducing the impact of the sampling error can be achieved by increasing the sample size or the number
of samples. Mathematically, the standard error is calculated as the standard deviation of the sample
statistic divided by the square root of the sample size. Thus, as the sample size increases, the standard
error decreases. Similarly, by increasing the number of samples collected, the overall standard error
can be reduced as it allows for a better estimation of the true population parameter by considering
the range and distribution of estimates across the samples.

Understanding the Central Limit Thereom (CLT)

Understanding the Central Limit Thereom (CLT)

Now that we've learned about sampling, now’s the time to introduce one of the most important concepts
in classical statistics — the Central Limit Thereom (CLT).

The CLT

Measuring the center of data is not as simple as just calculating the mean, median, or mode. The CLT
states that regardless of the original population distributions shape, when we repeatedly take samples
from that population and each sample is sufficiently large, the distribution of the sample means will
approximate a normal distribution. This approximation becomes more accurate as the size of each
sample becomes larger. This theorem plays a crucial role in measuring centrality by allowing us to
make reliable estimates using these measures. In turn, the CLT enables us to estimate the population
mean with greater accuracy, making the mean a powerful tool for summarizing data. It also indirectly
influences the estimation of the median and mode. As the sample size increases, the distribution of
individual observations becomes less skewed, enhancing the reliability of the median and mode as a
measure of centrality.

The CLT also allows us to accept the assumption of normality, which allows us to rely on the normal
distribution of sample means, even when the population distribution is not normal. Many statistical
techniques and tests rely on the assumption of normality to ensure the validity of the inferences made.
When the population follows a normal distribution, the CLT enables us to make accurate inferences
about population parameters using sample means. This assumption allows us to use parametric tests.

' I
Note

Many parametric hypothesis tests (such as t-tests and z-tests) rely on the assumption of
normality to make valid inferences. These tests assume that the population from which the
sample is drawn follows a normal distribution. The CLT comes into play by allowing us to
approximate the distribution of the test statistic to a normal distribution, even when the
population distribution is not strictly normal. This approximation enables us to perform these
tests and make reliable conclusions.

Demonstrating the assumption of normality

In the previous section, we talked about the CLT and how it supports the assumption of normality.
Let’s look at a simple example to demonstrate how both work together.

205

206

Mining Data with Probability and Statistics

Let’s conduct an experiment where we roll a die repeatedly. We will be using a fair six-sided die,
meaning that the die has not been altered, and there is an equal chance that when rolled, it might
land on any of its six values. Since there is an equal chance of rolling any of the values on the die,
this is considered a uniform distribution. In our experiment, we will repeatedly roll five times. Every
time we roll the dice five times, we take the mean of our five die rolls. This is considered a sample. We
repeat this process 10 times, computing 10 means:

Distribution of Mean Values

™ —
o -

=

Q

=

[F]

3

o

o

[
S
o -

[I I T I I 1
2.0 2.5 3.0 3.5 4.0 4.5 5.0

Mean Value

Figure 8.3: Distribution of dice roll samples — 10 times

Understanding the Central Limit Thereom (CLT) 207

Now, let’s perform the same exercise, but this time, we'll replicate the experiment 100 times (resulting
in 100 samples) instead of 10:

Distribution of Mean Values

L
Y
o
&
=
2 v _|
5 =
=]
o
o
i
o _|
o -
o
! T T T 1
2 3 4 5 6

Mean Value

Figure 8.4: Distribution of dice roll samples — 100 times

208 Mining Data with Probability and Statistics

Lastly, let’s repeat the experiment one more time, only with 10,000 samples instead of 100:

Distribution of Mean Values

2500

2000
|

1500

Frequency

1000

500
1

Mean Value
Figure 8.5: Distribution of dice roll samples — 10,000 times

Notice that the sample mean distribution now resembles a normal distribution, even though we
know that rolling dice theoretically fits a uniform distribution. This illustrates the CLT - if you take a
sufficiently large sample of random items from a population (typically 30 or more), regardless of the
shape of the distribution of those items (as in our example of a uniform distribution from the die), the
average of those samples will tend to approximate a normal distribution. This approximation becomes
more accurate with larger sample sizes.

Assessment

Can you explain what the CLT states and why it is important in statistical analysis? How does it
contribute to the measurement of centrality in a dataset?

Understanding the Central Limit Thereom (CLT)

Answer

The CLT is a fundamental theorem in statistics stating that, regardless of the population distribution’s
shape, when we repeatedly take sufficiently large samples from that population and calculate their means,
the distribution of these sample means will approximate a normal distribution. This approximation
becomes more accurate as the size of each sample increases. The CLT is crucial because it enables
inferences about the population based on sample data, particularly regarding the population mean.

In terms of centrality, the CLT is primarily concerned with the mean. It asserts that with increasing
sample sizes, the sample means tend to form a normal distribution, even if the original population
distribution is not normal. This characteristic enhances the reliability and significance of the sample
mean as a measure of central tendency, especially in making inferences about the population mean.
However, the CLT does not directly impact the reliability of other centrality measures such as the
median and mode, which depend on different aspects of the data distribution.

Assessment

Describe how the assumption of normality is linked with the CLT and how it influences the application
of various statistical tests.

Answer

The assumption of normality in statistical analysis is closely linked to the CLT. According to the CLT,
even if the population distribution is not normal, as the number of data points in each sample increases,
the distribution of the sample means will approximate a normal distribution. This tendency toward
a normal distribution in sample means is essential for the validity of many statistical tests, such as
t-tests and z-tests, which are categorized as parametric tests.

Parametric tests typically rely on the assumption of a normally distributed population, particularly
when working with small sample sizes. However, with larger samples (that is, samples containing
more data points), the CLT becomes increasingly significant. In these cases, even if the population
distribution is not normal, the CLT ensures that the distribution of sample means approaches normality.
This approximation of normality in larger samples is crucial for the applicability of parametric tests,
enabling the distribution of the test statistic to be treated as normally distributed. Consequently, this
allows for reliable conclusions about the population parameters based on the sample data.

209

210

Mining Data with Probability and Statistics

Shaping data with sampling distributions

If you've ever taken an introductory statistics course, you were probably taught that theoretical
distributions (such as the ones we will discuss in this section) are a way to describe the central
tendency and variability of a given numeric variable. Depending on the situation, it’s often more
appropriate to use one distribution over the other. Although this is an accurate summary of probability
distributions, it's important to understand why we use them, and how you should think about them
in a data science context (instead of that of a social sciences context, which is often how traditional
introductory statistics classes are taught).

Probability distributions

Probability distributions are fundamental concepts in statistics and probability theory that describe
the likelihood of various outcomes in a random experiment or process. In the world of data science,
these distributions play a crucial role in modeling and understanding uncertainty. By studying the
properties and characteristics of different probability distributions, we can gain insights into real-world
phenomena, make predictions, and perform statistical inference. In this section, we will explore the
major probability distributions that are commonly used in statistics and data analysis. Each distribution
will be introduced, followed by a detailed explanation of its characteristics, formulas, and example
scenarios where it is applicable.

To begin understanding probability distributions from a data scientist context, I want you to regard
them as “shapes of data” As a data scientist, you will be leveraging countless datasets of various
content and sizes. Discrete and continuous numeric variables in a dataset can be represented using
probability distributions. A discrete variable is one where the values are real numbers that do not have
partial values (for example, counts of items, proportions, ratios, or fractions). Continuous variables
are numeric values that can hold any value between negative infinity and positive infinity. Given the
distribution of the variable, you can make some useful assumptions about it, such as how to calculate
probabilities associated with the dataset, and which models can be applied to the dataset given the
confirmation of its assumptions.

Uniform distribution

The uniform distribution represents outcomes where each value within a given range is equally likely.
We talked about this distribution briefly in the previous section, where we were running experiments
rolling a die. In that case, the probability that the die would fall on one through six was equally likely
to happen or a one out of six (1/6) probability. Another example of uniform distribution includes
randomly selecting a card from a deck of cards. When selecting one random card from a 52-card
deck, the probability for any card is one out of 52 (1/52).

Shaping data with sampling distributions

In the context of data science, uniform distribution is frequently used in simulations and bootstrapping
methods. It’s also the foundational building block for generating random numbers in algorithms and
models. This distribution is usually very easy to understand and explain. However, it may be too
simplistic for complex real-world phenomena. While it’s suitable for situations with equal likelihoods,
it may not capture the nuances of datasets with more intricate structures.

Normal and student’s t-distributions

The normal distribution, also known as the Gaussian or Z distribution, is perhaps the most widely
used and essential probability distribution. It is characterized by its bell-shaped curve and is completely
determined by its mean (u) and standard deviation (o). The z-score is a standardized value that
measures how many standard deviations a given data point is from the mean. It allows us to convert
any value from a normal distribution to the corresponding value on the standard normal distribution,
making it a useful tool for probability calculations. Here is the z-score formula:

*—#
o

Zscore =

Here, we have the following:

« xis the data value
o uis the mean of the normal distribution

o ¢is the standard deviation

Let’s consider an example of adult male heights. The heights of adult males in a given population
often follow a normal distribution. Suppose the mean height is 175 cm and the standard deviation is
6 cm. Using the normal distribution, we can calculate the probability of finding a male with a height
between 170 cm and 180 cm.

The t-distribution is the normal distribution’s “cousin” The biggest difference is that it’s generally
shorter and has fatter tails. It is used instead of the normal distribution when the sample sizes are
small. In t-distributions, the values are more likely to fall further from the mean. One thing to note is
that as the sample size increases, the t-distribution converges to the normal distribution.

The binomial distribution

The binomial distribution models the number of successes in a fixed number of independent Bernoulli
trials. A Bernoulli trial is a random experiment with two possible outcomes. In simpler terms, it
describes the outcomes of repeated experiments where there are only two possible outcomes, often
referred to as “success” and “failure”

211

212

Mining Data with Probability and Statistics

A scientist might use the binomial distribution when computing the probability of flipping a fair coin
10 times and getting exactly four heads and six tails. In this scenario, we repeated the experiment of
flipping a coin 10 times, and in each of these flips, the probability of receiving a head or tail was the
same in each instance.

As a data scientist, it is important to remember that when using the binomial distribution, the
probability of each success must also be the same for each trial. Also, there can only be two possible
outcomes (hence “bi”) for each of the trials. Finally, you cannot use a binomial distribution if the trials
are not independent. For example, if a person is repeatedly selecting one card from a deck of cards
but not returning the card to the deck each time, you cannot use the binomial distribution to model
the probability of them selecting three spades over 10 tries. The chance of them selecting a spade card
changes each time they draw a card because they are not returning it to the deck.

Here are a couple of more examples of when a data scientist might use the binomial distribution:

o Modeling binary outcomes: When dealing with experiments or processes that have exactly
two possible outcomes (for example, pass/fail, on/off, and yes/no), the binomial distribution
can be a perfect model.

 Quality control and manufacturing: In industries where the quality of products is critical,
data scientists can use the binomial distribution to model the number of defective items in a
batch. This aids in process optimization and quality assurance.

o Marketing campaign analysis: Data scientists can apply the binomial distribution to evaluate
the success of marketing campaigns by analyzing the number of conversions (successes) versus
non-conversions (failures) among targeted customers.

o Healthcare research: In medical trials, the binomial distribution can be used to model the
number of patients responding positively to a treatment versus those who do not.

» Sports analytics: In sports, analyzing the number of wins and losses in a series of games can
be modeled using the binomial distribution.

« Election forecasting: Predicting election outcomes based on sampled voter intentions, where
voters can choose between two candidates, can also be represented with a binomial distribution.

The Poisson distribution

The Poisson distribution is the probability of a given number of (discrete) independent events
happening in a fixed interval of time, and is commonly used in queuing theory, which answers
questions like “How many customers are likely to purchase tickets within the first hour of announcing
a concert?” These events must occur with a known constant mean rate (1) and are independent of
the time since the last event.

Shaping data with sampling distributions

When using this distribution, a data scientist must remember the following aspects:

Each event must be independent of the others.
These must be discrete events, meaning that events occur one at a time.

It is assumed that the average rate of occurrences, 4, is constant over the time interval. In the
ticket purchasing example given earlier, it is assumed that the rate of ticket purchases will
remain the same over the first hour and it doesn’t suddenly increase in the last 10 minutes of
the hour. A data scientist should validate these model assumptions when looking to use the
Poisson distribution.

You know that data fits a Poisson distribution if the variable of interest is discrete and independent,
and if it answers the question of how many events happen per a regular interval of time. Here are a

few more scenarios when you should think about using the Poisson distribution:

Call center modeling: A data scientist can model the number of calls a call center receives in
an hour based on historical data, assuming a constant average rate

Website traffic analysis: Analyzing the number of hits or visits to a web page within specific
time intervals can be modeled using the Poisson distribution

Natural events: Studying the number of earthquakes in a particular region over a year or
the number of meteorites of a certain size hitting the Earth in a century are examples of
Poisson processes

Service systems: The number of customers arriving at a bank or a gas station in a fixed period
can be modeled with the Poisson distribution

Healthcare: In medicine, a Poisson distribution might be used to model the number of
occurrences of particular incidents, such as the number of births in a hospital in a day

Quality control: In manufacturing, it might describe the number of defects found in a particular
sample of items

Exponential distribution

Similar to the Poisson distribution, the exponential distribution is a continuous distribution that
simply models the interval of time between two events. You can also think of this as the probability
of time between Poisson events. The exponential distribution models the time between consecutive
events in a Poisson process, where events occur at a constant average rate (4). It is often used to model

waiting times and lifetimes of certain processes. For example, the time between consecutive visits to
a website follows an exponential distribution with an average rate of 0.1 visits per minute. We can
calculate the probability that a visitor will arrive within the next 10 minutes.

213

214

Mining Data with Probability and Statistics

This distribution assumes that the events occur at a constant rate and that each event is independent
of each other. A data scientist would want to check these assumptions are reasonable before modeling
a process with this distribution.

Here are additional examples of where a data scientist might use an exponential distribution:

« Lifetime modeling: The exponential distribution is used to model the lifetime of products,
machinery, and electronic components, representing the time until the first failure

« Service systems: It can describe the time between consecutive arrivals of customers in a system,
such as a bank or a call center

o Natural phenomena: The time between occurrences of certain types of natural events, such as
earthquakes or meteor showers, can be modeled with the exponential distribution

o Medical research: It can be used to model the time between successive occurrences of an
event, such as the intervals between heartbeats or the time until the onset of a specific disease

Geometric distribution

The geometric distribution models the number of independent Bernoulli trials needed before
observing the first success. For example, in basketball, if a player has a 70% chance of making a free
throw (p=0.7), we can use the geometric distribution to calculate the probability of the player making
the first free throw on their second attempt. Similar to the binomial distribution, we assume that
each trial has two possible outcomes (success or failure), is independent of the others, and that the
probability of success is the same for each trial. However, remember that the binomial distribution
looks to model the number of successes over a fixed number of trials, while the geometric distribution
models the number of trials required to achieve the first successful trial.

Again, here are some examples of where a data scientist might use a geometric distribution:

« Reliability analysis: The geometric distribution can model the number of uses of a product
until it fails for the first time. This might be applied in industrial contexts to understand
product longevity.

o Marketing campaigns: In marketing, this distribution might be used to model the number of
contacts required to make the first sale to a new customer.

o Medical trials: In healthcare, it could represent the number of trials needed to achieve the first
successful treatment in a series of independent treatments.

« Ecology: In environmental studies, it might describe the number of species sampled until the
first endangered species is found.

o Quality control in manufacturing: The geometric distribution can model the number of items
inspected until the first defective item is found.

Shaping data with sampling distributions

The Weibull distribution

The Weibull distribution is a versatile distribution that’s used in reliability engineering and survival
analysis. It can model various shapes, including exponential (special case) and bathtub curves.
Without getting too heavy into the math, the Weibull distribution is useful because of its flexibility,
which is afforded to this distribution by two parameters: scale (1) and shape (k). More specifically,
the Weibull distributions are often used to model the time until a given technical device fails, but it
also has other applications.

Here are some examples of when a data scientist might use the Weibull distribution:

« Survival analysis: In medical research, it’s often used to model the time until the occurrence
of certain events, such as the time until death in a population of patients with a specific disease

o Weather forecasting: It can be used to model wind speeds to help with designing wind turbines
or predicting storm damages

o Economics and Finance: Some economic and financial phenomena that do not follow the
normal distribution may be modeled using the Weibull distribution

o Quality control in manufacturing: It can model various aspects of the manufacturing process,
such as the time until the first failure of a product:

Weibull Distributions

1.75 A —— lambda=0.5, k=2

—— lambda=1.0, k=2
1.50 A —— lambda=3.0, k=4

1.25 A

1.00 A

0.75 4

0.50 A

Probability Density Function (pdf)

0.25 A

0.00 A

Figure 8.6: Three different forms of the Weibull distribution

215

216

Mining Data with Probability and Statistics

Assessment

What are probability distributions and how are they utilized in the context of data science?

Answer

Probability distributions are fundamental concepts in statistics and probability theory that describe
the likelihood of various outcomes in a random experiment or process. In the context of data science,
these distributions play a critical role in modeling and understanding uncertainty. By studying the
properties and characteristics of different probability distributions, data scientists gain insights
into real-world phenomena, make predictions, and perform statistical inference. Given a certain
distribution of a variable in a dataset, useful assumptions can be made, such as how to calculate
probabilities associated with the dataset, and which models can be applied given the confirmation of
the distribution’s assumptions.

Assessment

Can you describe some of the major probability distributions used in statistics and data science, such as
uniform distribution, normal distribution, t-distribution, binomial distribution, Poisson distribution,
exponential distribution, geometric distribution, and Weibull distribution?

Answer
Here are the definitions for the different distributions:

+ Uniform distribution: This represents outcomes where each value within a given range is
equally likely. It’s simple yet essential for describing uniformly random events.

o Normal distribution: Also known as the Gaussian or Z distribution, it is perhaps the most
widely used distribution. It’s characterized by a bell-shaped curve and is determined by its mean
and standard deviation. A related concept is the z-score, which measures how many standard
deviations a given data point is from the mean.

o T-distribution: It is similar to the normal distribution but has shorter, fatter tails. It's used
when sample sizes are small. As the sample size increases, the t-distribution converges to the
normal distribution.

« Binomial distribution: It models the number of successes in a fixed number of independent
Bernoulli trials. A Bernoulli trial is a random experiment with two possible outcomes: success
or failure.

« Poisson distribution: It represents the probability of a given number of independent events
happening in a fixed interval of time. It's commonly used in queuing theory and related applications.

Testing hypotheses

« Exponential distribution: This distribution models the time between consecutive events in a
Poisson process, where events occur at a constant average rate. It’s often used to model waiting
times and lifetimes of certain processes.

¢ Geometric distribution: This models the number of independent Bernoulli trials needed
before observing the first success. It can answer questions such as “How many trials until the
first success?”

o Weibull distribution: This is a versatile distribution that’s used in reliability engineering and
survival analysis. It can model various shapes, including exponential, and is often used to model
time until a given technical device fails, among other applications. Its flexibility is afforded by
two parameters: scale and shape.

Testing hypotheses

In this section, we will review hypothesis testing, which is a statistical method that’s used to make
inferences about population parameters based on sample data. It involves formulating two competing
hypotheses — the null hypothesis (H,) and the alternative hypothesis (H,) - and then using sample
data to determine which hypothesis is more likely to be true.

The null hypothesis, or what I like to call “business as usual,” is the default assumption or status quo
for any given scenario. It’s also often considered the “least interesting” scenario. For example, if I want
to test whether or not changing my sneakers makes me a better runner, the sneakers not affecting my
running abilities is the null hypothesis since there is no significant difference, effect, or relationship
between the variables. Oftentimes, researchers are interested in rejecting the null hypothesis.

The alternative hypothesis is the opposite of the null hypothesis (mutually exclusive) as it represents
the claim (that is, the hypothesis) being tested. It suggests that there is a significant difference, effect,
or relationship in the population, given the contents of the sample.

Although the computations behind identifying critical values against given experiment parameters
are beyond the scope of this book, we will go over the basics of what each statistical test does, and in
what situations you may use them. There are many programs, including Python, R, and other statistical
programs, that can run these tests. The hypothesis testing procedure involves the following steps:

1. Formulate the null hypothesis and the alternative hypothesis.

2. Randomly sample the population and calculate the appropriate test statistic (for example,
t-statistic, z-score, or chi-squared statistic) from the sample.

3. Determine the appropriate probability distribution for the test statistic under the assumption
that the null hypothesis is true.

4. Find the p-value, which is the probability of observing a test statistic as extreme as the one
obtained, assuming the null hypothesis is true (the p-value measures the strength of the evidence
against the null hypothesis).

217

218

Mining Data with Probability and Statistics

5. Compare the p-value to a pre-determined significance level (alpha) to make a decision. In the
data science industry, it is common to use a significance level of 5%. Therefore, if your p-value
is below 5%, we reject the null hypothesis. If it is greater than the 5% threshold, we fail to reject
the null hypothesis.

Note

We will primarily focus on the most common forms of parametric hypothesis testing since
non-parametric testing is beyond the scope of this chapter.

Understanding one-sample t-tests

A one-sample t-test is a statistical procedure that compares the mean of a sample to a predetermined
value to determine whether the observed difference is statistically significant or if it likely occurred
due to chance alone.

For example, suppose we want to verify that the average male sea otter population in the Pacific
Northwest of the US is maintaining a healthy weight, which we hypothesize to be 75 Ibs. Since it’s
impractical to measure the entire population, we collect a sample of 50 male sea otters. Then, we
calculate the sample mean and standard deviation. These values are used to compute a t-statistic,
which will help us determine if the population mean is statistically significantly different from 75 Ibs.

Understanding two-sample t-tests

A two-sample t-test (that is, two samples assuming equal variance test) determines whether there is a
statistically significant difference between the means in two unrelated groups. For example, consider
comparing the mean number of hours spent emailing per week by married respondents (population
1) and single respondents (population 2). The “Email Hours Per Week” variable is the test variable.

The independent samples t-test examines whether the difference between the mean number of
hours married respondents spent emailing, and the mean number of hours single respondents spent
emailing, is significantly different. To do this, we take samples from each population and compare their
distributions. Are they significantly different? When in doubt, it’s best to use an independent-sample
t-test. This is appropriate for “between-subjects” designs where two groups of subjects are intended
to differ on a critical manipulation.

Now, suppose we want to investigate whether there is a significant difference in the test scores of two
study groups, Group A and Group B. Each group consists of different students, and the two groups
were taught using different teaching methods:

o Group A test scores: [78, 86, 88, 92, 75, 82, 80, 85, 89, 94]
o Group B test scores: [72, 79, 84, 90, 81, 76, 88, 80, 83, 91, 85, 87]

Testing hypotheses

We want to determine if there is a statistically significant difference in their average test scores. The
hypothesis statements are as follows:

o Null hypothesis: There is no significant difference between the average test scores of Group
A and Group B (pA - uB =0)

o Alternative hypothesis: There is a significant difference between the average test scores of
Group A and Group B (yA — uB # 0)

Understanding paired sample t-tests

In your journey as a data scientist, statistical testing will be a cornerstone of your work, often used
to verify hypotheses and draw conclusions from the data you've collected or analyzed. One statistical
technique that you’ll likely encounter frequently, particularly when dealing with related samples, is
the paired sample t-test, also known as the dependent sample t-test.

A paired sample t-test is a statistical procedure that determines whether the mean difference
between two sets of observations is zero. The two sets of observations are typically dependent on
each other - for example, the same set of individuals measured at two different time points or under
two different conditions.

This test is applicable when you have two quantitative measurements, and these measurements are
paired or related in some way. The “pairing” refers to the fact that each data point in one dataset is
uniquely linked to a data point in the other dataset. In other words, there’s a one-to-one correspondence
between the values in the two sets. These scenarios can often be seen in the following areas:

o Before-and-after observations: Here, the same individuals, items, or events are measured
before and after a treatment or intervention - for instance, measuring student test scores before
and after an educational program

o Matched pairs: The pairs of observations come from two distinct groups, but each pair is
matched or related in some way, such as twins, paired geographical locations, or matched units

Once you identify that you have paired data, the paired sample t-test can be used to compare the
means of the two samples. The test assumes a null hypothesis that the true mean difference between
the paired samples is zero and an alternative hypothesis that it is not. Depending on the test’s result,
you’'ll either reject or fail to reject the null hypothesis. Keep in mind that the paired t-test assumes
that the differences between pairs follow a roughly normal distribution.

Understanding ANOVA and MANOVA

Analysis of Variance (ANOVA) and Multivariate Analysis of Variance (MANOVA) are powerful
statistical tests that are often utilized by data scientists to analyze the differences among group means
and their associated procedures. They offer an extension of the two-sample t-test to scenarios with
more than two groups or variables.

219

220

Mining Data with Probability and Statistics

ANOVA

ANOVA compares the means of three or more independent groups to test if they are significantly
different from each other. The “business as usual” null hypothesis (H,) posits that all group means are
equal. The alternative hypothesis (H) is that at least one group mean is different.

We can represent this symbolically:

o H;ul=y2=u3=..=un (where yirepresents the mean of each group)

+ H_ Atleast one i is different
ANOVA is most appropriate when the following conditions are met:

o Dependent variable: The dependent variable is continuous (interval/ratio)

o Independent variable: The independent variable is categorical with at least three levels (different
groups or categories)

« Assumptions: The data should meet the assumptions of independence, normality, and
homogeneity of variance

MANOVA

MANOVA, an extension of ANOVA, is used when there are two or more dependent variables. The
null hypothesis (H,) claims that the multiple population mean vectors of the different groups are equal.
The alternative hypothesis (H) asserts that they are different.

MANOVA is most suitable when the following conditions are met:

o Dependent variables: There are two or more continuous dependent variables
o Independent variable: The independent variable is categorical with at least three levels

« Assumptions: The data should meet the assumptions of multivariate normality and homogeneity
of variance-covariance matrices

Chi-squared test

The chi-squared test is a non-parametric statistical method that’s frequently employed in data science,
particularly when dealing with categorical data. It is useful for assessing the relationship between two
categorical variables in a sample.

Testing hypotheses

There are two types of chi-squared tests:

o Chi-squared test of independence: Assesses if there is a significant association between two
categorical variables

o Chi-squared goodness of fit test: Determines if the observed frequencies for a categorical
variable match an expected set of frequencies

Let’s delve a bit deeper into each of these tests.

Chi-squared test of independence

The chi-squared test of independence tests the null hypothesis (H,) to see whether the two categorical
variables are independent, with no association or relationship between them. The alternative hypothesis
(H)asserts that there is an association or relationship between the two variables.

We can represent this symbolically:
» H: The variables are independent
+ H_: The variables are not independent
The chi-squared test of independence is appropriate under the following conditions:

o Variables: Both variables are categorical (nominal).

o Observations: Observations are independent, meaning each participant contributes only to
one cell within the chi-squared table.

o Assumption: The assumption of a sufficiently large sample size is met. Generally, all expected
frequencies should be at least 5.

Chi-squared goodness of fit test

The chi-squared goodness of fit test evaluates the null hypothesis (H,) to see whether the observed
frequency distribution of a categorical variable matches an expected frequency distribution. The
alternative hypothesis (H) states that the observed distribution does not fit the expected distribution.

We can represent this symbolically:

+ H;: Observed frequencies = expected frequencies

» H:Observed frequencies # expected frequencies

221

222

Mining Data with Probability and Statistics

This test is suitable when the following conditions are met:

 Variable: The variable under consideration is categorical
o Observations: Observations are independent

o Assumption: All expected frequencies are at least 5

A/B tests

In the realm of data science, especially in fields such as marketing, product development, and user
experience design, A/B testing, also known as split testing or bucket testing, is an essential method
for comparing two versions of a single variable to identify which performs better.

An A/B test randomly assigns subjects to one of two groups: the control group (A), which receives
the “business as usual” version, and the experimental group (B), which gets the version with the
modification. The performance of the two groups is then compared to see if the modification resulted
in any statistically significant improvement.

The hypotheses in an A/B test relate to whether a difference exists between the two versions:

« Null hypothesis (H): The null hypothesis posits that there is no difference in outcome between
version A and version B

+ Alternative hypothesis (H): The alternative hypothesis asserts that there is a difference in
outcome between version A and version B

For example, if pA and pB represent the probability of a customer purchase for versions A and B of a
website, respectively, then our null and alternative hypothesis would look like this:

« H:pA=pB
« H:pA#pB

Applicability of A/B testing

A/B testing is most applicable in scenarios where you are testing a single modification between two
versions. Some of the common conditions are as follows:

« Controlled experiment: You can control and randomly assign subjects to groups A or B

« Single-variable testing: You're testing a single change (for example, different headlines, page
layouts, and color schemes)

« Clear metrics: There is a clear metric to measure success (for example, click-through rate, time
spent on a page, purchase made, and so on)

Testing hypotheses

Implementing A/B testing
The process of conducting an A/B test is as follows:

1. Identify the variable: Determine the element you want to test (for example, the color of a
button, the length of a sales email, and so on).

2. Formulate hypotheses: Establish the null and alternative hypotheses.
3. Split the sample: Randomly assign your subjects to two groups, A (control) and B (treatment).

4. Collect and analyze data: Record the performance metric for each group, then compare the
results to see if there is a statistically significant difference.

5. Statistical test: Perform a statistical test (such as a two-sample t-test) to check the significance
of the difference.

6. Make a decision: If the p-value from your statistical test is less than your pre-set significance
level (usually 0.05), reject the null hypothesis, concluding that your modification made a
significant difference.

Assessment

Suppose you are working as a data scientist at a tech company that is developing a new feature for
its main application. The company wants to determine if this feature will increase user engagement
time. Describe how you would use hypothesis testing to help answer this question, and what specific
tests might you use.

Answer

Hypothesis testing is an excellent method to answer such a question. First, I would define the null
hypothesis to be that the new feature does not affect user engagement time, meaning that the average
engagement time remains the same with or without the new feature. The alternative hypothesis would
then state that the new feature does change user engagement time.

To test these hypotheses, I would suggest performing an A/B test, where users are randomly assigned
to two groups: the control group (A), who use the application without the new feature, and the
experimental group (B), who use the application with the new feature. The engagement times of both
groups are then collected and compared.

Specifically, a two-sample t-test could be used to determine if there’s a significant difference in the
means of user engagement time between the two groups. If the p-value of the test is less than a pre-set
significance level (usually 0.05), we would reject the null hypothesis in favor of the alternative hypothesis,
indicating that the new feature has a statistically significant impact on user engagement time.

223

224

Mining Data with Probability and Statistics

Assessment

You conducted a survey to understand whether customers prefer product A or product B. You
hypothesize that there is a difference in preference. Explain which statistical test you would use to
analyze the collected data and state the null and alternative hypothesis for this scenario.

Answer

The appropriate test to use in this scenario is the chi-squared test of independence. This test is used
to determine whether there is a significant association between two categorical variables. Here, the
two variables are the product (A or B) and preference (yes or no).

The null hypothesis for this test would be that there is no association between the product and
preference, meaning that the product does not influence the preference. The alternative hypothesis
would be that there is an association between the product and preference, meaning that the preference
depends on the product.

We would collect data on customer preferences for both products and perform the chi-squared test
of independence. If the resulting p-value is less than our chosen significance level (commonly 0.05),
we reject the null hypothesis and conclude that there is a significant association between product
and preference, which supports our original hypothesis that there is a difference in preference for
the products.

Understanding Type | and Type Il errors
In hypothesis testing, there is always a chance of making errors:

o A Typel error occurs when we reject the null hypothesis when it is true (this is also known
as a false positive)

o A Type II error occurs when we fail to reject the null hypothesis when it is false (this is also
known as a false negative):

Null Hyp. True Null Hyp. False
Reject Null Hyp. Type | Error Correct Rejection
Fail to Reject Null Hyp.
Correct Decision Type Il Error

Figure 8.7: Type | error vs. Type Il

Understanding Type | and Type Il errors

Understanding the nuances and implications of Type I and Type II errors is fundamental to hypothesis
testing. In Figure 8.7, we see that Type I Error occurs at the intersection of the null hypothesis being
true, and the action of rejecting the null hypothesis. This is similar to a pregnancy test coming back
positive when the woman is not in fact pregnant (also known as a false positive result).

Simiarly, Type II Errors occur when the null hypothesis is false, but incorrectly fails to reject the null
hypothesis. This is like having a pregnancy test that tells a pregnant woman that she is not pregnant
(also known as a false negative).

Type | error (false positive)

A Type I error, or false positive, happens when we incorrectly reject a true null hypothesis. In simpler
terms, it’s an error of overreaction. We mistakenly believe there is a significant effect or difference
when, in fact, there isn’t. The probability of committing a Type I error is denoted by the Greek letter
alpha (a), which corresponds to the significance level set for the test. If o is set to 0.05, for instance,
we are willing to accept a 5% chance of committing a Type I error.

Type Il error (false negative)

Conversely, a Type II error, or false negative, occurs when we fail to reject a false null hypothesis. This
is an error of underreaction. We mistakenly believe there is no significant effect or difference when, in
reality, there is. The probability of committing a Type II error is represented by the Greek letter beta ().

One minus beta, or (1-B), gives us the power of the test, which is the probability of correctly rejecting
a false null hypothesis. Hence, increasing the power of a test decreases the chances of committing a
Type II error.

Striking a balance

The probabilities of committing Type I and Type II errors are inversely related. Reducing the risk of
a Type I error (by choosing a smaller a) increases the risk of a Type II error, and vice versa. The key
is finding the right balance between these two risks, and this balance depends on the context of the
test and the potential implications of each type of error.

For example, in a medical context, a Type I error might lead to unnecessary treatment (false positive),
while a Type II error might lead to a lack of treatment when it’s needed (false negative). The relative costs
and implications of these errors would guide the choice of a and, indirectly, the risk of a Type II error.

In conclusion, while you can never completely eliminate the risk of committing Type I and Type II
errors, understanding these concepts, carefully choosing your significance level, and increasing your
sample size (where possible) can help you manage and minimize these risks.

225

226

Mining Data with Probability and Statistics

Assessment

In the context of a legal trial, where the null hypothesis is that the defendant is innocent (not guilty),
can you explain what a Type I and a Type II error would correspond to and which one is considered
more severe in this context?

Answer

In the context of a legal trial, a Type I error (false positive) would correspond to convicting an innocent
person - that is, rejecting the null hypothesis (the defendant is innocent) when it is true. A Type II
error (false negative) would correspond to acquitting a guilty person - that is, failing to reject the
null hypothesis when it is false.

Generally, in legal contexts, a Type I error is considered more severe as it’s based on the principle
that “it is better that 10 guilty people escape than one innocent suffers” This is reflected in the idea of
“innocent until proven guilty” and the requirement for proof “beyond a reasonable doubt” However,
both types of errors are undesirable, and the legal system strives to minimize both.

Assessment

Describe how the chosen significance level (alpha, a) can impact Type I and Type II errors in a
hypothesis test. What trade-ofts might you have to consider when choosing the significance level?

Answer

The significance level, denoted by alpha (a), is the probability of rejecting the null hypothesis when it
is true — that is, it directly corresponds to the probability of making a Type I error. If you set a lower
significance level, say 0.01 instead of 0.05, you are decreasing the chances of making a Type I error; you
are making the test more conservative and requiring stronger evidence to reject the null hypothesis.

However, making the test more stringent to avoid Type I errors increases the chances of making a
Type II error — where we fail to reject a false null hypothesis. This is because you are setting a higher
bar for the evidence required to reject the null hypothesis, which might lead to failing to reject the
null hypothesis when it is false.

The choice of the significance level involves a trade-off between these two types of errors and will
depend on which error has more severe consequences in the given context. For instance, in medical
testing, a Type I error could lead to unnecessary treatment (possibly with side effects), while a Type
IT error could lead to missed treatment for a sick person. The relative costs and consequences of these
errors guide the selection of the appropriate significance level.

Summary

Summary

In this chapter, we dove into the core fundamentals of data mining with statistics, which are often
assessed during data science interviews. We reviewed the basics of probability, how to describe data
using different measures of centrality and variability, how to estimate variables with population sampling,
the relevance of the CLT and the assumption of normality, and reviewed probability distributions
and hypothesis testing. By learning about these principles, you will be able to identify and describe
relevant data statistics and make testable hypotheses. You will also avoid being fooled by misused
statistics that manipulate our understanding of data.

Be aware that some interviewers will ask theoretical questions while others will want you to work out
the solution to a problem. In either case, statistics is the backbone of many machine learning algorithms
and experimentation designs, which are prominent in data science in all industries.

In the next chapter, we will build on our understanding of classical statistics by diving into
pre-modeling concepts.

References
o [1] California Housing Market, from Redfin (June 2023): https://www.redfin.com/
state/California/housing-market

o [2] Ohio Housing Market, from Redfin (June 2023): https://www.redfin.com/state/
Ohio/housing-market

227

https://www.redfin.com/state/California/housing-market
https://www.redfin.com/state/California/housing-market
https://www.redfin.com/state/Ohio/housing-market
https://www.redfin.com/state/Ohio/housing-market

°

Understanding Feature
Engineering and Preparing
Data for Modeling

Wow - look how far you've come! Congratulations on making it to Chapter 9, where we will prepare
you for machine learning concepts in the next chapter!

In this chapter, we will delve into the critical phase of pre-modeling. Here, you’ll combine your
knowledge of Python, data wrangling, and statistics.

While numerous data science texts emphasize the latest machine learning models, data preparation
is the true foundation of successful prediction. This chapter is a vital bridge between collecting data
and applying advanced machine learning techniques, emphasizing the data science principle, “garbage
in, garbage out” Poor input data will yield unreliable results no matter how advanced a model is.

Pre-modeling data preparation is about ensuring our data is accurate, consistent, and relevant.
Mastering this stage means understanding issues such as outliers, feature engineering, and imbalances.
By addressing these, we will enhance the analysis quality, paving the way for robust and accurate
predictive models.

This chapter covers a wide array of essential topics and techniques that data scientists commonly
employ to prepare their data for modeling. Here’s a brief overview of what you can expect to learn:

o Understanding feature engineering

« Applying data transformations

« Engineering categorical data and other features
o Performing feature selection

o Working with imbalanced data

« Reducing dimensionality

230

Understanding Feature Engineering and Preparing Data for Modeling

Understanding feature engineering

Feature engineering is a transformative process in data science that holds the key to unlocking
the full potential of machine learning algorithms. As data scientists, we are tasked with analyzing
the raw data and crafting new and informative representations of that data. Feature engineering
involves selecting, transforming, and creating features that best capture the underlying patterns and
relationships within data. By delving deep into the domain knowledge and leveraging our creativity,
we can engineer features that amplify the predictive power of our models, improve accuracy, and
enable better generalization of new data.

This section looks at the art and science of feature engineering, exploring a myriad of techniques
and methodologies to extract meaningful insights from data and empower our machine learning
algorithms to make informed and intelligent decisions.

Note

In this section, we will use Pandas for our feature engineering process. We covered some of
Pandas’ functions in Chapter 3.

Avoiding data leakage

Before discussing common data transformations and preprocessing techniques, we first need to
acknowledge the importance of building reproducible and well-documented ML pipelines for
maintaining data processing and modeling integrity. A major benefit of strong ML pipelines is that
they ensure the modeling process avoids data leakage.

Data leakage is a phenomenon that leads to unreliable model performance due to the “leakage” of
information beyond the training dataset that’s being used during the creation of the model. This
additional information can allow the model to learn something that it otherwise would not know
(aka “peeking”) and, in turn, invalidate the estimated performance of the model being constructed.

This is a mistake made by many novice data scientists who apply data transformations and preprocessing
to the entire dataset prior to splitting the training set from the test set. This may lead to high bias and
overly optimistic model performance.

To avoid data leakage:

o Split the dataset into training and testing sets.

o Train the transformations on the training data only, then use the results on the test set.

Understanding feature engineering

Here is an example of how to properly avoid data leakage with a normalization task:

1. Split the dataset:

X train, X test, y train, y test = train test split(X, y, test
size=0.2, random state=42)

2. Create the data transformation task pipeline:

pipeline = Pipeline([('scaler', StandardScaler()), 1)

3. Fitand transform the task to the training set:

X train transformed = pipeline.fit transform(X train, y train)

4. Transform the testing set with the training set task pipeline:

X test transformed = pipeline.transform(X test)

Using this technique, you can avoid data leakage and unreliable modeling results.

Handling missing data

Handling missing data is a common task in data preprocessing before applying machine learning
algorithms. Missing data can introduce biases, errors, and instability in the analysis, leading to incomplete
or misleading results. Moreover, some algorithms cannot handle missing data directly, making proper
imputation essential for effective data processing. By replacing missing data, we maximize the utilization
of available information and preserve underlying data patterns and relationships. This ensures an
algorithm can operate without restrictions and enables accurate predictions and reliable outcomes.

Addressing different missing data mechanisms is equally important to avoid potential biases. Ultimately,
replacing missing data enhances a dataset’s accuracy, integrity, and usability, making it an indispensable
part of data preparation for robust and trustworthy machine-learning applications.

Missing data can disrupt the accuracy of our analyses and models. Before proceeding with data
imputation, it’s crucial to identify the missing values within a dataset. Consider the following example:

import pandas as pd
Sample dataset with missing values
data = {
'A': [1, 2, None, 4, 5],
'B': [6, None, 8, 9, 10],
'c': [11, 12, 13, 14, None]
}
df = pd.DataFrame (data)
Check for missing values in the dataset
print (df .isnull () .sum()) #Output: A: 0, B: 1, C: 1

231

232

Understanding Feature Engineering and Preparing Data for Modeling

The code snippet uses the isnull () method to check for missing values in the DataFrame. The
sum () function is then used to count the number of missing values in each column. We can see that
columns B and C are missing one data point.

Now that we know our dataset is missing data, let’s review how to handle this. As previously mentioned,
there are a variety of methods to handle missing data, depending on the missingness pattern. Missingness
patterns in data preparation refer to the systematic tendencies or structures in which data is absent,
indicating the reasons or mechanisms behind the missing values. As promised, we will review a few
examples of how to handle the following different scenarios:

o Missing Completely at Random (MCAR): In this scenario, the missingness occurs randomly
and is unrelated to any other variable in the dataset. One common approach to handling MCAR
is to simply remove the rows with missing values:

import pandas as pd
Sample dataset with missing values (MCAR)
data = {
'A': [1, 2, None, 4, 5],
'B': [6, None, 8, 9, 10],
'c': [11, 12, 13, 14, None]
}
df = pd.DataFrame (data)
Removing rows with missing values (MCAR)
cleaned df = df.dropna()

This script uses the dropna () function to remove any row from the dataset that has a
missing value.

« Missing Not at Random (MNAR): In MNAR, the missingness is related to unobserved or
unrecorded values that are not random and may be related to the value itself. A common
technique to handle MNAR is to use imputation methods to fill in the missing values, based
on other available information:

Sample dataset with missing values (MNAR)
data = {
'Age': [25, 30, None, 40, 45],
'Income': [50000, None, 75000, 90000, Nonel]
}
df = pd.DataFrame (data)
Impute missing values with the mean of the 'Age' column
df['Age'] .fillna(df['Age'] .mean (), inplace=True)

Impute missing values with the mean of the 'Income' column
df ['Income'] .fillna(df ['Income'] .mean (), inplace=True)

Understanding feature engineering

In this example, we use the £il1lna () function in combination with the mean () function
to select the Income column mean and fill in any missing values within the column.

o Missing at Random (MAR): In MAR, the missingness is systematic but depends only on the
observed variables. One popular method to handle MAR is to use conditional imputation,
where the imputed value depends on the values of other variables:

Sample dataset with missing values (MAR)

data = {
'Gender': ['Male', None, None, 'Male', 'Female'l],
'Income': ['80-100k', '100-120k', '80-100k', '80-100k"',
1100-120k"']
}

df = pd.DataFrame (data)

Impute 'Gender' based on the mode of 'Gender' for the
corresponding 'Income' value

mode by income = df.groupby('Income') ['Gender'].apply (lambda x:
x.mode () .iloc[0])

df ['Gender'] .fillna (df ['Income'] .map (mode by income),
inplace=True)

This script uses the groupby (), mode (), and apply () functions to find the mode (i.e.,
most common) gender for the different income categories. From there, it fills in any missing
rows within the gender column with the most common gender.

Remember that the choice of handling missing data depends on the nature of the missingness, the
dataset, and the goals of the analysis. Always consider the potential impact of the imputation on the
overall analysis and modeling results.

Scaling data

Normalizing/scaling are preprocessing techniques that transform the features of the data into a
consistent and comparable range, enabling algorithms to work more efficiently and producing accurate
and reliable results. Two of the most commonly used normalizing/scaling techniques include min-max
scaling and z-score scaling.

Min-max scaling is a technique that scales the data (typically the inputs) to a fixed range, typically
[0, 1]. It transforms the data in such a way that the minimum value of the feature becomes 0 and the
maximum value becomes 1.

Min-max scaling is expressed using the following formula for each data point, X, in a feature:
X — X- Xmin
new X - X .

max min

Here is how to implement this formula in Python:

X min max = (X - X min) / (X max - X min)

233

234

Understanding Feature Engineering and Preparing Data for Modeling

Here, X_min is the minimum value in the feature and X _max is the maximum value in the feature.
The result is a min-max scaled feature that falls within the [0, 1] range.

Min-max scaling is particularly useful for the following:

« Handling distance-based algorithms: In distance-based machine learning algorithms (which
we will cover in Chapter 10), such as k-means clustering or hierarchical clustering, the outcome
is sensitive to the scale of the features. Min-max scaling ensures that each feature contributes
equally to the distance calculations.

» Distance-based algorithms (feature influence): When using distance-based machine learning
algorithms such as k-nearest neighbors, hierarchical clustering, or when applying principal
component analysis, you use algorithms that are sensitive to feature magnitudes/distance.
Min-max-scaling the data helps ensure that each feature contributes equally to the distance
calculations. This is important when the distance between data points is a significant factor
in the algorithm.

Now, let’s look at the other common technique for transforming our dataset features into a consistent
and comparable range.

Z-score scaling is a technique that transforms data (again, typically the inputs) to have a mean of 0
and a standard deviation of 1. It centers the data around the mean and scales it relative to the spread
of the data (the standard deviation).

The formula for scaling each data point, X, in a feature is given by:

Xy
Xnew -0
Here is how to implement it in Python:
X standardized = (X - mean) / standard deviation

Here, mean is the mean of the feature, and standard deviation is the standard deviation
of the feature. The result is a standardized feature with a mean of 0 and a standard deviation of 1.
After scaling, the data tends to range from -3 to 3. However, it can be more or less, depending on the
distribution of the data before scaling.

Z-score scaling is particularly useful for the following:

o Feature influence: Some machine learning algorithms can be significantly influenced by the
scale and range of the input features, and z-scaling helps this issue. For example, you might have
a dataset where you want to predict someone’s BMI by measuring correlating features, such as
their calorie intake (e.g., 1700 calories), age (e.g., 50 years), steps taken a day (e.g., 5,000 steps)
or their blood sugar levels (e.g., 140 mg/dL). These variables are on entirely different scales.
To ensure that one feature doesn't over-influence the model’s performance, we use z-scaling,
to ensure all features have the same relative influence by placing them on similar scales. Any
relatively large or small values will now truly represent legitimate variation.

Applying data transformations

o Dealing with outliers: Scaling techniques such as Z-score scaling are less affected by outliers.
Min-max scaling, conversely, can be influenced by extreme values and may not handle outliers
as effectively.

So, when do you use min-max scaling over z-score scaling, or vice versa? The choice depends on
the specific characteristics of the dataset and the requirements of the machine learning algorithm
being used. Both techniques serve the purpose of transforming data to a comparable range, but their
implications on the data may vary, making it important to consider the context and the nature of the
data at hand. If unsure, experimenting with both min-max and z-score scaling and evaluating the
model’s performance can help determine the most effective preprocessing method.

Applying data transformations

Data transformations are vital steps in the data preparation journey. It ensures that data is prepped
for data models with unique assumptions. This is achieved by transforming data from its current
shape (or distribution) to another.In other words, transforming data from the empirical distribution
to theoretical distributions.

In some cases, we need to transform our input variables to ensure that they’re interpretable by the
machine learning algorithm. An input variable (also known as a feature) is the columns of data,
which typically explain some attribute of the data. In other cases, machine learning models require
your output (aka a response) variable to have a certain distribution. An output variable is the column
that we are trying to predict.

It certainly would be nice if the world accommodated our needs, but real-world data comes in all
varieties! To remedy this scenario, you may have to perform a data transformation. In this section,
we will explore common data transformation techniques.

Introducing data transformations

In the previous section, we discussed some popular techniques for transforming predominantly input
data to adjust the scales or ranges. This section will discuss additional methods used to adjust the
skew or relationships of data, including the response variable.

Remember your high school algebra course where you first learned about basic functions. If you recall,
they looked something like this:

235

236 Understanding Feature Engineering and Preparing Data for Modeling

Identity Square Cube
fl@)=u fle) = a? flz)= 3

+
I
r
i
t
3
|
i
H

Square Root Cube Root Absolute Value
fla) == fla)= V= flx) = |«

Figure 9.1: Base algebraic functions

Performing these transformations were a matter of applying the function of (f(x)) on x. Now imagine
that these graphs are instead vectors of data. Imagine a graph’s x and y coordinates represented by
the x (the input variable/features) and y (the output variable/response) values of a dataset. In this
scenario, each record is a vector.

When we talk about data transformation, we talk about transforming data vectors from one form to
another, much like how we changed linear functions to square functions (also known as parabolas)
by squaring each value. This process is helpful in pre-modeling for two primary reasons:

» To obtain the shape required by a model’s assumptions before using the model on the data

o To revert the model’s predictions to their original form (prior to the transformation)

Now that you understand the benefits of data transformations, it is important to know that there
are many different types of data transformations. Here, we will summarize the following data
transformation techniques:

« Log transformations
o Box-cox transformations
o Power transformations

o Exponential transformations

Applying data transformations 237

Let’s get started.

Logarithm transformations

The logarithmic (log) transformation is beneficial when dealing with (typically right/positive) skewed
data, where extreme values cause a long tail in the distribution. By taking the logarithm of the data,
we can compress the range of high values and spread out the lower values, making the distribution
more symmetric. For example, consider this example, where we have sales data:

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

Create a left-skewed dataset
np.random. seed (42)
sales_data = np.random.exponential (scale=100, size=1000)

Apply logarithmic transformation
log transformed data = np.log(sales_data)

Plot the original and transformed data distributions
plt.figure(figsize=(10, 5))

plt.subplot (1, 2, 1)

plt.title('Original Data (Left-Skewed)')
plt.hist (sales _data, bins=30, edgecolor='black')
plt.xlabel ('Values')

plt.ylabel ('Frequency')

plt.subplot (1, 2, 2)

plt.title('Logarithmic Transformation')
plt.hist (log transformed data, bins=30, edgecolor='black')
plt.xlabel ('Log-Transformed Values')

plt.ylabel ('Frequency')

plt.tight layout ()
plt.show ()

238

Understanding Feature Engineering and Preparing Data for Modeling

Here is what the sales_data variable looked like before and after the transformation:

Original Data (Left-Skewed) Logarithmic Transformation
250 - 100 -
200 | 80 A
g 150 2 601
[@
3 =
g g
i =
100 + 40
50 - 20
0 0
0 100 200 300 400 500 600 700 800 -1 1 2 3 4 5
Values Log-Transformed Values

Figure 9.2: Sales data before and after a log transformation

The data distribution on the left does not follow a normal distribution with a noticeable bell-shaped
pattern. Therefore, if you were attempting to use this data in a statistical test, such as those discussed
in Chapter 8, you would be limited in the type of tests you could use. This is because many statistical
tests, such as the one sample T-test, assume that your data comes from a normal distribution, and
using the test on non-normal data can invalidate the results. However, the log transformation can
convert our data closer to a normal distribution. That is what we see in the plot on the right. It is closer
to a normal curve than the data plot on the left. We can still test whether the data in the plot on the
right fits a normal curve, but assuming that it does, we now have more tests available for us to use.

Note

The logarithm transformation does not play well with negative values!

Power transformations

A power transformation is a family of data transformation techniques that involve raising each data
point to a power (exponent). Different power values result in different transformations, allowing flexibility
in shaping the distribution. Common power transformations include square root transformation
(power = 0.5), cube root transformation (power = 1/3), and reciprocal transformation (power = -1).

Power transformations are valuable for handling data of various shapes. They are techniques used to
adjust data with nonlinear relationships or inconsistent patterns. A key use of power transformations is to

Applying data transformations

address heteroscedasticity, where the data’s variability is uneven across its range. These transformations
stabilize the variance in the data, making it more uniform and symmetrical. This is particularly beneficial
for linear modeling. In the following figure, we can see this transformation process.

Original Data (Right-Skewed) Power Transformation (Square Root)

250 A

200 A

—

w

[=]
I

Frequency
Frequency

100 4

50 4

0 10 20 30 40 50 60 70 80 4 6
Values Transformed Values

Figure 9.3: Distribution before and after a power transformation

The distribution on the left starts with a skewed dataset that is missing that familiar bell-shaped
curve of a normal distribution. We apply the square root function, np . sqrt (), from the NumPy
package to perform the power transformation on a variable. The histogram on the right displays the
transformed data after applying the square root transformation. As a result of the transformation, the
data becomes less skewed, and the distribution moves closer to a normal distribution.

Box-Cox transformations

A Box-Cox transformation is a family of power transformations that are designed to stabilize variance
in our dataset and make it more closely follow a normal distribution. The Box-Cox equation can be

seen here:
(>) { yA, A ! 0
y(A) =
Ln(y), x = 0

The transformation is driven by an exponent, lambda (A), which varies from -5 to 5. The Box-Cox family
of transformations also includes both the logarithmic (A=0) and square root (A=0.5) transformations
as special cases. It can automatically determine the best power parameter to stabilize variance and
normalize data. It is often used to transform model features to fit a normal distribution in order to
avoid heteroskedasticity, which occurs when the variance of data changes across different levels of
the independent variable.

239

240 Understanding Feature Engineering and Preparing Data for Modeling

To implement this transformation in Python, we use boxcox () from the scipy.stats package:

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt
from scipy.stats import boxcox

Create a right-skewed dataset
np.random. seed (42)
original data = np.random.exponential (scale=100, size=1000)

Apply Box-Cox transformation
transformed data, lambda value = boxcox(original data)

Plot the original and transformed data distributions
plt.figure(figsize=(10, 5))

plt.subplot (1, 2, 1)

plt.title('Original Data (Right-Skewed) ')

plt.hist (original data, bins=30, edgecolor='black')
plt.xlabel ('Values')

plt.ylabel ('Frequency')

plt.subplot (1, 2, 2)

plt.title('Box-Cox Transformation')

plt.hist (transformed data, bins=30, edgecolor='black')
plt.xlabel ('Transformed Values')

plt.ylabel ('Frequency')

plt.tight layout ()
plt.show ()

Here, we create a right-skewed dataset and apply the Box-Cox transformation, which can be seen in
the following figure:

Applying data transformations

Original Data (Right-Skewed) Box-Cox Transfarmation

2]
o
L

2501

-~
(=}
L

200 A

—
w
(=]
L
w =]
(=] o
I I

Frequency
Frequency
5 og 3
! | |

—
o
L

T t T T
0 100 200 300 400 500 600 700 800 0.0 2.5 5.0 7.5 0.0 125 150 175

Values Transformed Values

Figure 9.4: Distribution before and after a Box-Cox transformation

The histogram on the left represents the original right-skewed data, while the histogram on the right
displays the transformed data after applying the Box-Cox transformation. The Box-Cox transformation
helps to stabilize the variance and achieve a more symmetric distribution in the transformed data.
This plot demonstrates the effectiveness of the Box-Cox transformation in addressing skewness and
making data more suitable for certain types of analyses and modeling tasks.

Exponential transformations

An exponential transformation is a data transformation technique that takes the exponential function
of each data point in a dataset. Unlike the log transformation, this transformation is often used to
mitigate the effects of left-skewed or negatively skewed data, where extreme values are more frequent
and the tail of the distribution is longer. By applying the exponential transformation, we stretch the
values toward higher magnitudes, leading to a more symmetrical distribution.

Applying an exponential distribution to a variable as a pre-modeling exercise can be beneficial in
scenarios where data or a specific variable exhibits certain characteristics, related to time-to-event or
waiting time phenomena. It is also particularly useful when dealing with data that follows exponential
growth or decay patterns and when the underlying process has a constant hazard rate, meaning that
the probability of an event occurring in the next instant is independent of the time that has passed
since the last event.

Data scientists must be aware when attempting to use this technique. First, the input data should be
positive. When performing exponential transformation, many use a base of e or the natural exponential
function, and negative values when exponentiated, which can lead to complex numbers that might

241

242

Understanding Feature Engineering and Preparing Data for Modeling

not be desired in many practical applications. Additionally, they need to be aware of the magnitude
of their input values. Raising a number to 1,000 can lead to an extremely large result, which could
cause overflow in some computational environments.

To observe the shape of an exponential variable, the histogram in Figure 9.5 represents the data
distribution of time to purchase. The x-axis represents the time (in days) it takes for customers to
make their first purchase, and the y-axis represents the frequency of customers falling within each
time interval. Observe that, in most cases, customers take quite some time to make a purchase. This
is expected, as most people who visit a website or sign up for a newsletter don't immediately make
a purchase.

Original Data (Left-Skewed) Exponential Transformation

250 A

40 A
200 4

1
o
L

' 150 A z
& @
g g
£ .
100 +
50 101
0- 0-
0 2 4 6 5000 10000 15000 20000
Times (Days) Exponential-Transformed Values
Figure 9.5: Exponential distribution of time to purchase
s N
Note
While data transformations have valuable applications, it is essential to be cautious and ensure
that data truly follows the characteristics of the suspected distribution before applying it.
In practice, real-world data may not perfectly follow theoretical distributions, so model fit
assessments and hypothesis testing are required to validate the choice of distribution.
L J

There are more data transformations that we did not discuss, with their own unique applications,
including square transformations, root transformations, Weibull transformations, and hill function
transformations, but these are much rarer in generalized data science roles. We encourage you to
explore these in your own time if they strike your interest!

Engineering categorical data and other features

Engineering categorical data and other features

This section will explore the handling of categorical variables in feature engineering for data science
and machine learning projects. Categorical variables contain discrete values that represent different
groups or categories. Effectively preprocessing and engineering these variables is essential to
extract valuable insights and enhance the predictive power of machine learning models. We will
dive into various techniques and best practices to transform categorical variables into meaningful
numerical representations.

One-hot encoding

One-hot encoding is a popular technique for converting categorical variables into binary vectors.
Each category is represented as a binary feature, with a value of 1 if the data point belongs to that
category and 0 otherwise. For example, consider a categorical feature, Color, with the categories
Red, Blue, and Green. After one-hot encoding, this feature will be split into three binary features
- Color_Red, Color_ Blue,and Color Green. This allows machine learning algorithms to
process categorical data effectively.

One-hot encoding is necessary because many machine learning algorithms cannot directly process
categorical data in its original form. These values do not have a numerical relationship that algorithms
can understand. Let’s take another example - this time, a dataset with a categorical feature, Gender,
with three categories - Male, Female, and Non-Binary. We have the following data samples:

ID Gender
Male

Female

Non-Binary

Female
Male

Gl [W=

Figure 9.6: A categorical gender dataset

After applying one-hot encoding, the Gender feature is transformed into binary features representing
each category. For each data sample, we create new binary features - Gender Male, Gender
Female, and Gender Non-Binary. The binary features are assigned a value of 1 if the data
sample belongs to that category, and 0 otherwise.

ID Gender_Male Gender_Female Gender_Non-Binary
1 1 0 0

0 1 0

0 0 1

243

244

Understanding Feature Engineering and Preparing Data for Modeling

1D Gender_Male Gender_Female Gender_Non-Binary
4 0 1 0
1 0 0

Figure 9.7: A one-hot-encoded gender dataset

Before one-hot encoding, the Gender feature is in its original categorical form, with strings representing
the categories. However, machine learning algorithms require numerical data for processing. After
one-hot encoding, each category is converted into its own binary feature, creating new binary columns
that capture the presence or absence of each category for each data sample.

In Python, you can achieve this using the following code:

Create DataFrame
df = pd.DataFrame (data)

Perform One-Hot Encoding
df encoded = pd.get dummies (df, columns=['Gender'])

print ("Original DataFrame:")
df)
"\nOne-Hot Encoded DataFrame:")

print (df encoded)

(
print (
print (
(
In the code, we first create a DataFrame, df, with the example data that contains a Gender column,
with categorical values. Then, we use the pd.get dummies () function from Pandas to perform

one-hot encoding on the Gender column. This function automatically identifies the unique categories
in the Gender column and creates new binary columns for each category.

Label encoding

Label encoding is another technique used to convert categorical data into a numerical format. Unlike
one-hot encoding, which creates binary features for each category, label encoding assigns a unique
numerical label to each category in the original categorical variable. The numerical labels are sequential
integers, starting from 0 for the first category, 1 for the second category, and so on. For example,
consider a categorical feature, Size, with the categories Small, Medium, and Large. After label
encoding, the categories can be represented as 0, 1, and 2, respectively. Label encoding can be useful
when there is an inherent order or ranking among the categories.

Here is another example:

import pandas as pd

Example Data

Engineering categorical data and other features

data = {'ID':

'Color':

[ll 2I
['Red',

Create DataFrame

df = pd.DataFrame (data)

Perform Label Encoding
color mapping = {'Red': 0,
df ['Color LabelEncoded']

4, 5],
'Blue'’',

'Blue':

'Green', 'Red', 'Green']}

1, 'Green': 2}

= df ['Color'] .map (color mapping)

print ("Original DataFrame:")

print (df)

Here is the outcome:

ID Color Color_LabelEncoded
1 Red 0
2 Blue 1
3 Green 2
4 Red 0
5 Green 2

In the example, we used label encoding to convert the Color categorical variable into the Color

Figure 9.8: A label-encoded color dataset

LabelEncoded numeric feature. The Red, Blue, and Green categories are replaced with numerical

labels 0, 1, and 2, respectively.

So, what’s the difference between one-hot encoding and label encoding?

o The number of features: One-hot encoding creates binary features equal to the number of

unique categories, while label encoding creates only one numerical feature.

« Numerical representation: One-hot encoding represents each category with a separate binary

feature, where a value of 1 indicates the presence of that category. Label encoding represents
each category with a unique integer label.

o Handling high cardinality: One-hot encoding is suitable for categorical variables with low

cardinality (a few unique categories), as it creates a binary feature for each category. For high

cardinality categorical variables, one-hot encoding can lead to an explosion in the number

of features, making it computationally expensive. In contrast, label encoding handles high
cardinality efficiently, as it uses a single integer for each category.

245

246

Understanding Feature Engineering and Preparing Data for Modeling

Target encoding

Target encoding, also known as mean encoding, is a technique that leverages the target variable’s
information to transform categorical features into numeric representations. Instead of replacing the
categories with numerical labels, target encoding replaces each category with the average value of the
target variable for that category.

For example, consider a categorical feature, City, with the categories New York,Los Angeles,
and Chicago. After target encoding, each category will be replaced with the average target value for
that city, such as 0.23, 0.18, and 0.32, respectively. Target encoding can be particularly useful when
dealing with high-cardinality categorical variables.

Here’s how target encoding works:

import pandas as pd

Example Data
data = {'ID': [1, 2, 3, 4, 5],

'City': ['Indianapolis', 'Detroit', 'Chicago', 'Detroit',
'Indianapolis'],

'"Target': [0.8, 0.6, 0.9, 0.7, 0.75]}

Create DataFrame
df = pd.DataFrame (data)

Perform Target Encoding
city target mean = df.groupby('City') ['Target'] .mean()
df ['City TargetEncoded'] = df['City'] .map(city target mean)

print ("Original DataFrame:")
print (df)

Here are the results:

ID City Target City_TargetEncoded
1 Indianapolis 0.80 0.775
2 Detroit 0.60 0.650
3 Chicago 0.90 0.900
4 Detroit 0.70 0.650
5 Indianapolis 0.75 0.775

Figure 9.9: A target-encoded city dataset

Engineering categorical data and other features

In the preceding example, we used target encoding to convert the City categorical variable into the
City TargetEncoded numeric feature. The target encoding process calculated the average target
value for each category (Indianapolis, Detroit, and Chicago) and replaced each category
with its corresponding mean target value.

At this point, you may be wondering, when should you use one-hot encoding versus label encoding
versus target encoding? There’s not always a clear answer, but here are some things to consider:

o One-hot encoding: Use one-hot encoding when dealing with categorical variables with low
cardinality and no inherent ordinality. One-hot encoding is essential when you want to avoid
introducing any ordinal relationships or implied numerical order between categories. It is also
useful when dealing with machine learning algorithms that do not handle categorical data directly.

o Label encoding: Use label encoding when dealing with categorical variables with inherent
ordinality. In cases where the categories have a natural order or ranking, label encoding can
capture this information effectively. Label encoding is also efficient when handling high cardinality
categorical variables, as it reduces the number of features compared to one-hot encoding.

o Target encoding: Consider target encoding when dealing with categorical variables that show
a strong relationship with the target variable. Target encoding can capture the average target
value for each category, making it useful for generating informative numerical representations of
categorical data. However, it is essential to be cautious with target encoding to avoid overfitting
and data leakage. Target encoding can be particularly useful for high cardinality categorical
variables, as it can provide meaningful numerical representations without introducing a large
number of new features.

Calculated fields

In this section, we will explore the concept of creating calculated fields as a powerful technique for feature
engineering in data science and machine learning projects. Calculated fields involve generating new
features by applying mathematical operations, combining existing features, or extracting meaningful
information from raw data. The process of crafting calculated fields empowers data scientists to
capture intricate patterns, relationships, and domain-specific insights that might not be evident in
the original dataset.

Well-crafted calculated fields are often superior to existing raw features. New features, when carefully
designed, can capture complex patterns and relationships, making the machine learning model more
robust and accurate. We will address the risk of overfitting and data leakage and provide guidelines
for feature selection and evaluation. For example, a calculated field such as Days since Last
Purchase may be more insightful than Purchase Date in predicting customer behavior.

Calculated fields enable us to extract complex relationships and hidden patterns, making machine
learning models more effective in capturing the underlying structure of data.

247

248

Understanding Feature Engineering and Preparing Data for Modeling

There are the various types of calculated fields:

Mathematical operations: These include addition, subtraction, multiplication, division, and
exponentiation to create new features. These operations can help derive ratios, percentages, or
other meaningful indicators that may reveal important trends in data.

An example is calculating price per quantity for an e-commerce dataset by dividing the Price
feature by the Quant ity feature.

Aggregating and grouping: Aggregation involves summarizing data by grouping it based
on certain categorical features and computing statistics, such as mean, sum, and median, for
each group. It can lead to insightful new features by capturing the collective behavior of data
within specific groups.

An example is computing the average revenue per customer by grouping customers based on
their customer ID, and aggregating the Revenue feature.

Time-based calculations: These are commonly used in time-series data or scenarios that
include temporal patterns, time lags, rolling averages, and other time-related transformations
that can capture trends and seasonality in data.

An example is creating a 7-day rolling average feature for a sales dataset to identify trends and
smooth out short-term fluctuations.

Interaction terms and polynomial features: Interaction terms and polynomial features are
important for capturing non-linear relationships between features. Combining features can
reveal interactions that significantly impact the target variable.

An example is adding an interaction term by multiplying the Age feature by the Income
feature to capture the combined effect on the target variable, such as purchasing power.

Text and NLP-based calculations: For datasets containing text data, feature engineering techniques
using Natural Language Processing (NLP) can come in handy. This includes text vectorization,
text extraction, concatenation, word counts, and a host of other NLP transformations to derive
meaningful features from textual information.

An example is extracting the sentiment score from customer reviews and using it as a feature
in a sentiment analysis model.

Domain-specific calculations: Domain-specific feature engineering is extremely common
and what makes data scientists stand out. Expert knowledge plays a crucial role in generating
relevant calculated fields.

An example is, in the healthcare domain, calculatinga BMI (Body Mass Index) feature
based on a person’s weight and height.

Engineering categorical data and other features

Assessment

Why is one-hot encoding preferred over label encoding for categorical variables with no inherent order?

Answer

One-hot encoding is preferred over label encoding when dealing with categorical variables without
any inherent order because label encoding may introduce unintended ordinal relationships between
categories. For example, if we encode the colors Red, Blue, and Green as 0, 1, 2, respectively, using
label encoding, it may suggest that Green is somehow greater or more significant than Red, which
is not the case. One-hot encoding, conversely, avoids this issue by creating separate binary features
for each category, ensuring that there are no implied relationships between them.

Assessment

What are some potential challenges associated with using label encoding for categorical variables
with no ordinality?

Answer

When using label encoding for categorical variables with no inherent order, some machine learning
algorithms may interpret the numerical labels as continuous values and assume a natural ordering
between the categories. This could lead to incorrect results, as the numerical labels are purely nominal
and do not carry any meaningful numerical relationships. Additionally, if the range of label values
is large, algorithms may give higher importance to categories with higher label values, even if such
relationships do not exist in reality.

Assessment

How can target encoding help improve predictive accuracy in machine learning models?

Answer

Target encoding can help improve predictive accuracy by encoding categorical variables with the average
target value for each category. This can capture category-specific information, especially in scenarios
where the target variable exhibits distinct behavior across different categories. By incorporating this
information as a numeric representation, machine learning models can learn to differentiate between
the categories more effectively and make more informed predictions. However, it is important to be
cautious with target encoding to avoid overfitting and data leakage, as target encoding may lead to
overestimation of performance if not handled properly.

249

250

Understanding Feature Engineering and Preparing Data for Modeling

Performing feature selection

Feature selection is a critical step in the machine learning pipeline aimed at identifying the most
relevant and informative features from the original dataset. By carefully selecting features, data
scientists can improve model performance, reduce overfitting, enhance model interpretability, and
decrease computational complexity.

Feature selection helps to focus a model on the most impactful features, making it more interpretable
and reducing the risk of overfitting. In this section, we will explore scenarios where using all available
features can lead to the “curse of dimensionality” and why selecting relevant features is crucial to
mitigate this issue.

Types of feature selection
There are three main categories of feature selection techniques:

o Filter methods: These methods rank features based on statistical metrics such as correlation,
mutual information, or variance. They are computationally efficient and independent of the
chosen machine learning model.

o Wrapper methods: Wrapper methods assess feature subsets using a specific machine learning
model’s performance as an evaluation metric. They are computationally expensive but can lead
to optimal feature subsets for specific models.

« Embedded methods: Embedded methods incorporate feature selection into the model training
process. These methods assess feature importance during model training and eliminate less
relevant features automatically.

When it comes to feature selection, one challenge for both the filter and wrapper methods is that a data
scientist using these methods will need to set a threshold on the end number of features they want, or
limits on how large of a performance change they are willing to accept. There isn't a universal answer
to the question of how to set a threshold, and it is often situational-based. However, thinking about
how much it might cost to gather and store your data could be a helpful guide. In general, you want
to use the least number of features to obtain the same amount of performance from your machine
learning model. Therefore, let’s look at our first feature selection method, which uses the wrapper
technique to select features.

Recursive feature elimination

Recursive Feature Elimination (RFE) is a wrapper method for feature selection that works iteratively
to identify the most important features in a dataset. It starts by training a machine learning model
on the entire feature set and ranks the features based on their importance scores. The least important
feature(s) are then removed, and the model is retrained on the reduced feature set. This process is
repeated until the desired number of features is reached.

Performing feature selection

REFE is particularly useful when a machine learning model provides feature importance rankings, such
as decision trees or linear regression. By eliminating less important features at each iteration, RFE
aims to find an optimal subset of features that maximizes the model’s performance.

Without getting too ahead of ourselves, here is how you implement RFE in Python using the RFE package:

from sklearn.datasets import load iris
from sklearn.feature selection import RFE
from sklearn.linear model import LogisticRegression

Load the Iris dataset
data = load iris()

X = data.data

y = data.target

Create a logistic regression model
model = LogisticRegression/()

Initialize RFE and specify the number of features to select
rfe = RFE(model, n features to select=2)

Fit RFE on the data
rfe.fit (X, y)

Get the selected features
selected features = rfe.support
print ('Selected Features:', selected features)

Get the feature ranking
feature ranking = rfe.ranking
print ('Feature Ranking:', feature ranking)

In the code block, after declaring our imports, we first load in the Iris dataset, which focuses on
classifying flowers based on different physical characteristics. Once we load the dataset, we create an
instance of a logistic regression classifier, which will take the input data and attempt to learn how to
classify the different flowers.

The key in this code block is that we use an instance of the RFE function to wrap our logistic model
in. We state that we want to select the top two features in the dataset. This will take care of the RFE
feature selection process for us. Finally, we are left with the two most important features.

Now that we have looked at a feature selection process that uses the wrapper technique, let’s look at
one that uses the embedded technique.

251

252

Understanding Feature Engineering and Preparing Data for Modeling

L1 regularization

L1 regularization, also known as the Least Absolute Shrinkage and Selection Operator (LASSO),
is an embedded feature selection method that combines feature selection and regularization during
model training. In the LASSO, the linear regression coeflicients are penalized based on the absolute
values of the coefficients. This penalty encourages some of the coefficients to be exactly zero, effectively
performing feature selection by excluding irrelevant features.

The LASSO is particularly effective when dealing with high-dimensional datasets where the number
of features is much larger than the number of samples. By driving some feature coeflicients to zero, the
LASSO automatically selects the most relevant features and performs a form of dimensionality reduction.
It helps to enhance model interpretability and generalization while avoiding the risk of overfitting.

Tree-based feature selection

Tree-based models, such as random forest and gradient boosting, can provide valuable feature importance
scores. These scores indicate the relative importance of each feature in predicting the target variable.
Tree-based feature selection involves using these importance scores to rank features and selecting
the top-performing ones. We will talk more about these models in the chapter on machine learning.

Tree-based feature selection is computationally efficient and applicable to both classification and
regression tasks. It is especially useful for identifying relevant features in datasets with a mix of categorical
and numerical variables. Additionally, tree-based models can handle nonlinear relationships, making
them suitable for datasets with complex interactions between features. We will discuss tree-based
models in Chapter 10.

The variance inflation factor

Collinear features (or multicollinear features for 3 or more variables) refer to variables that are
highly correlated with each other. Such features can introduce redundancy in the dataset and impact
model interpretability. Additionally, collinearity can lead to unstable model coefficients, making it
challenging to identify the true impact of individual features on the target variable.

Techniques such as the Variance Inflation Factor (VIF) can be used to detect collinearity between
features. A high VIF score for a feature indicates strong multicollinearity, while a VIF close to 1
indicates no collinearity. To address collinearity, data scientists may choose to remove one of the
highly correlated features or perform dimensionality reduction, using techniques such as PCA to
create uncorrelated principal components.

Handling collinear features is crucial for maintaining model stability and ensuring that feature selection
and feature importance rankings are based on independent and informative features, leading to more
accurate and interpretable models.

Working with imbalanced data

Here is how to implement a VIF in Python:

import pandas as pd
import numpy as np
from sklearn.datasets import fetch california housing

from statsmodels.stats.outliers_influence import variance_inflation_
factor

Load the California Housing dataset

data = fetch california housing()

X = pd.DataFrame (data.data, columns=data.feature names)
y = data.target

Function to calculate VIF for each feature
def calculate vif (X):

vif = pd.DataFrame ()

vif ['Feature'] = X.columns

vif['VIF'] = [variance inflation factor(X.values, i) for i in
range (X.shape[1])]

return vif

Calculate VIF for the entire feature set
vif = calculate vif (X)
print (vif)

In the code block, we first load the California Housing dataset. In this dataset, we attempt to predict
the median house value for California districts, based on information such as the average number
of rooms per household and the median house age. After loading the dataset, we create a function
to compute the VIF for each feature. After running the function, we print out the results. From this
point, we can create a filter to remove those features, with a VIF greater than some threshold we set
based on our project.

Working with imbalanced data

In this section, we will explore the challenges posed by imbalanced datasets in machine learning and
various methods to effectively address this issue. Imbalanced data refers to datasets where one class
(the minority class) is significantly underrepresented compared to another class (the majority class).
The class imbalance can lead to biased and suboptimal model performance, as models tend to favor
the majority class, making accurate predictions for the minority class challenging. We will delve
into the consequences of imbalanced data and several techniques to handle imbalanced datasets for
improved model performance.

253

254

Understanding Feature Engineering and Preparing Data for Modeling

Understanding imbalanced data

Since models prioritize the majority class, there are serious consequences of imbalanced data on
model training and evaluation.

In the context of imbalanced datasets in machine learning, the majority class refers to the class that
has a significantly larger number of instances or observations compared to the other class(es) in the
dataset. It is the class that dominates the dataset in terms of its representation, and as a result, machine
learning models trained on imbalanced datasets may be biased toward predicting this majority class
more frequently.

Conversely, the minority class refers to the class that has a relatively smaller number of instances or
observations compared to the other class(es) in the dataset. This class is underrepresented and may
have fewer data points available for the model to learn from. As a consequence, machine learning
models may struggle to correctly predict this minority class and may have lower accuracy, recall, and
precision for this class.

For example, consider a binary classification problem where we try to predict whether an email is spam.
If the dataset contains 900 non-spam (not spam) emails and only 100 spam emails, the non-spam class
is the majority class and the spam class is the minority class. In this scenario, the dataset is imbalanced,
due to the significant difference in the number of instances between the two classes.

As you may have guessed, we can’t avoid these scenarios entirely because many business problems
are based on imbalanced datasets. Consider e-commerce, where you model website clicks when the
site receives thousands of visits daily. In most cases, a click is very rare. Without adjustments for the
imbalanced class, the model will likely prioritize the majority class, leading to high accuracy but poor
recall and precision for the minority class.

Treating imbalanced data

Imbalanced data can have several consequences on machine learning models. This subject could take
an entire book to explain, but here are some approaches for further investigation. Your takeaway here
should be the depth and general logic behind imbalanced dataset remedies. Showing your knowledge
in this area will show your level of understanding in pre-modeling practices and considerations.

Some remedies for imbalanced data include the following:

o Using different evaluation metrics: Use performance metrics that are more appropriate for
imbalanced datasets than simple accuracy. Metrics such as precision, recall, F1-score, and area
under the receiver operating characteristic curve (AUC-ROC) are better suited for evaluating
model performance on imbalanced data.

o Over-sampling: This involves generating synthetic samples for the minority class to increase
its representation.

Reducing the dimensionality

o Under-sampling: This involves randomly removing samples from the majority class to decrease
its dominance.

« Random under-sampling and over-sampling: Python offers libraries such as imbalanced-
learn to implement this technique.

« Synthetic minority over-sampling technique (SMOTE): SMOTE is a popular over-sampling
technique that generates synthetic samples by interpolating between neighboring samples of
the minority class. You can use SMOTE from the imblearn.over_ sampling package
in Python.

o Ensemble methods: Ensemble methods, such as Random Forest and Gradient Boosting, can
handle imbalanced data effectively due to their inherent robustness.

o Cost-sensitive learning: Cost-sensitive learning is an approach that assigns different
misclassification costs to different classes, guiding a model to prioritize the minority class.

« Using anomaly detection: Anomaly detection techniques can be useful in handling imbalanced
data by identifying and classifying rare instances as anomalies. These algorithms include
Isolation Forest and One-Class SVM.

Reducing the dimensionality

In this section, we will explore the concept of dimensionality reduction, a critical technique in
machine learning and data analysis that aims to reduce the number of features or variables in a
dataset while preserving essential information. High-dimensional datasets often suffer from the
“curse of dimensionality;” leading to increased computational complexity and potential overfitting.
Dimensionality reduction methods help to transform data into a lower-dimensional space, enabling
easier visualization, improved model performance, and enhanced interpretability.

Here, we will delve into various dimensionality reduction techniques, and their applications, and
provide code examples in Python to implement them effectively.

Principal component analysis

Principal Component Analysis (PCA) is a widely used linear dimensionality reduction technique that
projects data onto orthogonal axes to capture the maximum variance in the first principal components.

PCA is a popular linear dimensionality reduction technique used to transform high-dimensional data
into a lower-dimensional space. It achieves this by identifying the principal components, which are
orthogonal directions that capture the maximum variance in the data. The first principal component
represents the direction of the highest variance, the second principal component represents the second
highest variance, and so on. By selecting a reduced number of principal components, we can project
the data onto a lower-dimensional subspace while retaining the most relevant information.

255

256

Understanding Feature Engineering and Preparing Data for Modeling

PCA is widely used for data visualization, feature extraction, and noise reduction. It helps in identifying
the main patterns and trends in data, simplifying data representation, and speeding up machine
learning algorithms by reducing computational complexity. However, PCA assumes linearity in the
data and may not perform well on complex non-linear relationships.

To implement PCA in Python, we can use libraries such as NumPy and scikit-learn. Here’s a
step-by-step guide:

import numpy as np
from sklearn.decomposition import PCA

Sample data
X = np.random.rand (100, 5)

Create a PCA instance and fit the data
pca = PCA(n_components=2)
X pca = pca.fit transform(X)

Print the explained variance ratio of the two principal components
print ("Explained Variance Ratio: ", pca.explained variance ratio)

The code starts by generating a dataset that has five features or dimensions. Then, we use the PCA model
to select the top two components. Finally, we look at how much variance is explained by the top two
PCA components. So, we have reduced the number of dimensions from five down to two. Data scientists
look to find the how many components are needed to explain most of the variance in the dataset.

Singular value decomposition

Single Value Decomposition (SVD) is a fundamental matrix factorization technique that plays a
key role in PCA. SVD is used to decompose a matrix into three matrices, U, £, and V. U and V" are
orthogonal matrices, while X is a diagonal matrix containing the singular values.

In PCA, SVD is applied to the centered data to obtain the principal components and explained variance.
In Python, we can run SVD like this:

import numpy as np

Sample data
X = np.random.rand (100, 5)

Center the data
X centered = X - X.mean(axis=0)

Perform SVD

Reducing the dimensionality

U, S, Vt = np.linalg.svd(X centered, full matrices=False)

Reduce dimensionality to two dimensions using the first two
X svd = np.matmul (U[:, :2], np.diag(S[:2]))

Here, we reduce our initial data from five columns down to two columns.

t-SNE

t-distributed Stochastic Neighbor Embedding (t-SNE) is a non-linear dimensionality reduction
technique used when data has complex non-linear relationships. t-SNE aims to preserve local and
global structures in the data.

You can apply t-SNE in Python using libraries such as scikit-learn:

import numpy as np
from sklearn.manifold import TSNE

Sample data
X = np.random.rand (100, 5)

Create a t-SNE instance and fit_transform the data
tsne = TSNE(n_ components=2)
X_tsne = tsne.fit_transform(X)

This code takes our randomly generated data and reduces it to two dimensions. It is important to
know as a data scientist that this algorithm needs to compute pair-wise distances for each data point
in the dataset. Therefore, the time it takes to run increases with the size of the dataset. So, this may
not be a great candidate when you have a large amount of data.

Autoencoders

Autoencoders are neural networks used for unsupervised representation learning and non-linear
dimensionality reduction. They consist of an encoder that compresses data into a lower-dimensional
representation and a decoder that reconstructs the data from the compressed representation.

Here is an example of how to use an autoencoder in Python for dimensionality reduction:

import numpy as np
from keras.layers import Input, Dense
from keras.models import Model

Sample data
X = np.random.rand (100, 5)

257

258

Understanding Feature Engineering and Preparing Data for Modeling

Define the autoencoder architecture

input layer = Input (shape=(5,))

encoded = Dense (2, activation='relu') (input layer)
decoded = Dense (5, activation='sigmoid') (encoded)

autoencoder = Model (input layer, decoded)

Compile the autoencoder
autoencoder.compile (optimizer='adam', loss='mean squared error')

Train the autoencoder
autoencoder.fit (X, X, epochs=50, batch size=32)

Obtain the lower-dimensional representation (encoder part of the
autoencoder)

encoder = Model (input layer, encoded)
X autoencoder = encoder.predict (X)

In the previous code block, we created a model using Keras, where we designed it to have two layers.
The first layer encodes the input data into two dimensions. The last layer decodes that information
back. The model attempts to learn a representation, where it first encodes the data and decodes it
perfectly. Once the training is done, we can throw away the last layer and only use the encoder portion
for dimensionality reduction. This is just another tool in the data scientist’s tool bag when they need
to perform dimensionality reduction.

Summary

In this comprehensive chapter, we covered essential concepts in pre-modeling data for analytics and
feature engineering. Mastering these techniques is vital for data scientists to effectively handle real-
world datasets and build accurate machine learning models.

Understanding techniques such as data min-max scaling, z-score scaling, and feature engineering
can enhance model performance; transformations such as logarithmic, Box-Cox, and exponential
help reshape data for better algorithm compatibility; dimensionality reduction methods such as PCA
and t-SNE simplify and visualize data and aid in effective model building; and handling imbalanced
data with resampling and ensemble techniques ensure balanced datasets and unbiased predictions.

Additionally, we covered feature engineering techniques, including one-hot encoding, label encoding,
and target encoding. These techniques allow us to craft new and informative representations of data.
Feature engineering involves selecting, transforming, and creating features that best capture the
underlying patterns and relationships within data so that we ensure robust and accurate models.

In the next chapter, we will focus on machine learning algorithms.

10

Mastering Machine
Learning Concepts

It’s time to give yourself a very generous pat on the back because you've officially arrived at the chapter
on machine learning concepts. Take a moment to appreciate how far you've come, as well as all the
preliminary information in the earlier chapters it takes to truly grasp this chapter. Many learners
do themselves a disservice by jumping right into machine learning without first understanding its
underlying principles (for example, statistics) and preliminary tasks (for example, data wrangling or
pre-modeling), so this puts you ahead of the curve as someone well-equipped to understand the inner
workings of machine learning algorithms and how and when to use them.

Throughout this chapter, we will cover a wide array of machine learning topics, providing you with the
foundation needed to understand the intricacies of various algorithms and techniques. Our journey
will begin with a detailed examination of the machine learning workflow — a step-by-step process
that data scientists follow when tackling real-world problems. Then, with the groundwork laid, we
will explore the world of supervised learning, one of the fundamental branches of machine learning.
After that, we will transition to unsupervised learning, where we will explore the world of clustering
algorithms. Furthermore, we will discuss various evaluation metrics to gauge model effectiveness and
explore the bias-variance trade-off — a fundamental concept that highlights the delicate balance between
model complexity and generalization. Finally, we will explore cross-validation and hyperparameter
tuning methods to ensure our models perform optimally.

After completing this chapter, you will be able to critically analyze the strengths and weaknesses of
different machine learning models, allowing you to make informed decisions when selecting the
most appropriate algorithm for specific tasks. With hands-on coding examples and real-world use
cases throughout this chapter, you will gain practical experience and confidence in applying machine
learning concepts to tackle data-driven challenges.

260 Mastering Machine Learning Concepts

So, in this chapter, we will cover the following topics:

o Introducing the machine learning workflow
o Getting started with supervised learning

o Getting started with unsupervised learning
o Summarizing other notable models

o Understanding the bias-variance trade-oft

« Tuning with hyperparameters

Introducing the machine learning workflow

If you're a data scientist preparing for a technical interview, understanding the machine learning workflow
is non-negotiable. Machine learning is concerned with the design and application of algorithms and
techniques that allow computers to learn patterns that are often applied to solve business problems.

At its core, the workflow consists of several key stages, beginning with a well-defined problem statement
and culminating in the application of a model trained on unseen data. Each stage, whether it’s selecting
the appropriate model, tuning hyperparameters, or making predictions, serves as an essential step in
the data science process. Mastery of these stages not only sharpens your technical acumen but also
equips you with the systematic thinking required to tackle a wide range of data-related problems:

Identify Productionize
Objective Prepare Data el Model
Train Mode
* Define the * Build workflows * Once satisfied,
business problem to prep and clean # Train the model publish the
and the desired the data for on a portion (ex: model and
outcomes. modeling. 80%) of the data. results.
Collect Data Select Model Test Model
» Collect the ® Choose an ® Test the best
necessary data. appropriate trained model on
algorithm to the remaining
produce the (aka “out of
desired results. sample”) data.

Figure 10.1: Workflow for machine learning projects

The importance of the machine learning workflow extends beyond just the theoretical understanding
of algorithms. In interviews and practical settings alike, you’ll often be evaluated on your ability to
articulate the rationale behind each choice you make - why you chose a specific model, how you tuned
it, and how you assessed its performance.

Introducing the machine learning workflow

We will delve deep into these areas, covering common models, their strengths and weaknesses, and
fine-tuning techniques. You'll also learn about model evaluation metrics and how to interpret them,
ensuring that youre not just following steps, but also understanding the implications of each decision
you make. By the end of this section, you’ll be better prepared to articulate and execute a robust
machine learning workflow, setting you apart in any data science interview.

Problem statement

At the heart of every data science endeavor lies a well-defined problem statement. This initial step
involves understanding the problem at hand, identifying goals, and outlining the data needed for
analysis. Clear problem formulation helps set the direction for subsequent stages, ensuring a focused
and purpose-driven approach.

Model selection

Selecting an appropriate machine learning model is a critical decision in the data science workflow.
Depending on the nature of the problem - whether it involves classification, regression, clustering,
or other tasks — careful consideration is given to the strengths and weaknesses of various models.
The model selection stage requires a deep understanding of algorithms and their applicability to the
problem context.

Model tuning

Once a model has been chosen, the model-tuning process comes into play. This stage involves
optimizing hyperparameters to achieve the best possible model performance. Techniques such as
grid search, random search, and Bayesian optimization are employed to fine-tune the model. We will
review each of these techniques in more detail later in this chapter, but for now, just note that they
are different methods for trying different combinations of model hyperparameters to find the set
that gives the best overall model performance. Model tuning balances overfitting and underfitting,
ensuring the model generalizes well to unseen data.

Model predictions

The culmination of the data science workflow is applying the trained model to new, unseen data. This
prediction phase involves leveraging the model’s learned patterns and relationships to make accurate
predictions or classifications. It's the moment where the fruits of the entire data science process come
to fruition as the model’s effectiveness is put to the test on real-world data.

Of course, there are more stages than the ones mentioned here, including communicating with
stakeholders, tracking experiments, and monitoring data drift, but for the sake of this chapter, these
are the primary areas on which we will focus. Particularly, we will review common models in data
science, including how they work, their assumptions, common pitfalls, implementation examples,
model evaluation, and tuning.

261

262

Mastering Machine Learning Concepts

Getting started with supervised machine learning

Supervised learning is a type of machine learning where the algorithm learns from a labeled dataset,
which consists of input features and their corresponding target variables or labels. These labels are the
“response variable,” “target variable,” or “output variable” - in other words, the thing you are trying
to predict.

There are two types of supervised modeling that we will focus on:

» Regression

o Classification

Let’s take a closer look at them.

Regression versus classification

Regression is a specific type of supervised learning where the goal is to predict continuous numerical
values. In a regression task, the algorithm learns a mapping between input features and a continuous
target variable. The output of the regression model is a continuous value, which can represent quantities
such as price, temperature, sales, or any other real-valued quantity. Linear regression and polynomial
regression are common examples of regression algorithms that are used to model relationships between
variables in a continuous setting.

For example, imagine that you are performing an analysis of how prepared a person is for retirement. In
this case, you are looking to predict how much a person has saved for retirement based on demographic
data. Figure 10.2 shows an example record for input features that are mapped to a continuous output
variable, the retirement balance:

Gender Wage Years in Debt Retirement
Field Balance

64,000

Figure 10.2: Regression data example

Here, each row represents a subject’s description and their current retirement fund balance. This is an
example of regression problem data because the output variable (the thing we are trying to predict)
is a continuous target variable. Because we know that the target variables in regression problems are
continuous, we also know how to evaluate the model’s performance.

Getting started with supervised machine learning

Here are some common regression model evaluation metrics:

o Mean squared error (MSE): This metric takes the average of the squared differences between
the predicted and actual values and penalizes large errors heavily. If the dataset contains outliers,
they will have a disproportionate impact.

« Root mean squared error (RMSE): This metric takes the square root of the mean squared
error. It is also sensitive to outliers.

o Mean absolute error (MAE): This metric is the average of the absolute differences between
the predicted and actual values.

Now, let’s compare regression, which only outputs continuous variables, to classification.

Classification is another version of supervised learning that focuses on predicting categorical labels
or classes for a given set of input features. In a classification task, the algorithm learns to differentiate
between different categories based on patterns in the training data. The output of a classification
model is a discrete label representing the predicted class to which the input data belongs. Common
examples of classification problems include email spam detection (binary classification), handwritten
digit recognition (multiclass classification), and sentiment analysis (multiclass classification).

Consider Figure 10.3, which references back to our retirement analysis. However, this time, it shows
an example record for input features that are mapped to a categorical output variable — whether the
person is ready for retirement. In this scenario, we will assume that 1 equals yes and 0 equals no:

Gender Wage Years in Ready for
Field Retirement?

Figure 10.3: Classification data example

Similar to regression, if you know that your problem involves predicting a categorical variable, you
have the following model performance evaluation metrics available to you:

o Accuracy: This metric measures the percentage of predictions that are correct.

« Precision: Precision is the percentage of predicted positive classes that are positive. This can
be an important metric if your dataset is imbalanced.

o Recall (that is, the sensitivity or true positive rate): This metric is the percentage of actual
positives that are correctly predicted as positive and is complementary to precision.

263

264

Mastering Machine Learning Concepts

o Specificity (that is, the true negative rate): Specificity is the percentage of actual negatives that
are correctly predicted as negative. This is important in cases where false positives are costly,
such as in medical diagnosis.

o F1 score: This metric combines both precision and recall into one metric, and is a good
compromise between both.

o Area under the receiver operating characteristic (AUC): This metric is a measure of how
well the model can distinguish between positive and negative classes. The AUC is not affected
by class imbalance.

We've now reviewed two types of supervised learning in regression and classification. When working
through your technical interview, the interviewer will expect you to know if you are using a classification
or regression model. The target variable is the key to this decision point. Thus, if you can identify the
format of the target variable, you can identify the types of models that will best fit your data science
problem, as well as the best evaluation metrics to use.

In the rest of this section, we will provide examples of both regression and classification models, their
assumptions, and their pros and cons.

Linear regression - regression

Linear regression is a fundamental and widely used statistical method in the field of data analysis and
machine learning, providing a simple yet powerful framework for modeling the relationship between
one or more independent variables and a dependent variable. The goal of linear regression is to find
the best-fitting linear relationship that describes the data, enabling us to make predictions and gain
insights into the underlying patterns.

How it works

Linear regression works by fitting a linear equation to the observed data. The linear equation has the
following form:

Y:_ = ﬁ0+ﬂlxi

Here, Y is the dependent variable that we want to predict, B0 is our intercept or constant, and 1 is
our slope.

The goal of linear regression is to estimate the coefficients; this involves finding the line (or hyperplane
in higher dimensions) that best fits the data points. The estimation of coefficients is typically done
using optimization techniques such as the ordinal least squares method, which aims to find the
coeflicients that minimize the sum of squared residuals.

Getting started with supervised machine learning

Assumptions

Before delving into the intricacies of linear regression, it’s important to understand the assumptions
that underlie its usage. These assumptions ensure the validity and reliability of the results obtained
from linear regression models. The main assumptions are as follows:

Linearity: The relationship between the independent variables and the dependent variable
is assumed to be linear. This means that a change in the independent variables leads to a
proportional change in the dependent variable.

Independence: The observations or data points are assumed to be independent of each other.
In other words, the value of the dependent variable for one observation does not depend on
the values of the dependent variable for other observations.

Homoscedasticity: The variance of the errors (the differences between observed and predicted
values) is constant across all levels of the independent variables. This assumption ensures that
the model’s predictions are equally accurate across the entire range of the data. When a dataset
exhibits homoscedasticity, it implies that the variance of the errors is the same for all values of
the predictor variable(s). The opposite of homoscedasticity is heteroscedasticity, which occurs
when the variability of the errors or data points changes systematically as you move along the
range of the independent variable(s).

Normality of residuals: The residuals (the differences between observed and predicted values)
should follow a normal distribution. Deviations from normality can impact the accuracy of
statistical tests and confidence intervals.

Common pitfalls

While linear regression is a valuable tool, there are several pitfalls to watch out for:

Violating assumptions: Failing to meet the assumptions of linear regression can lead to
inaccurate results and misleading interpretations.

Outliers: Outliers can disproportionately influence the model’s coefficients, leading to an
erroneous fit.

Multicollinearity: Multicollinearity is when independent variables are highly correlated. When
this happens, it can be difficult to discern their individual effects on the dependent variable.

Overfitting: Adding too many variables or polynomial terms can result in overfitting, where
the model captures noise in the data rather than the underlying pattern.

265

266

Mastering Machine Learning Concepts

Regularization regression

Regularized regression (specifically L1 (lasso) and L2 (ridge) regression) is an extension of linear
regression that addresses some of its limitations. While linear regression aims to find the best-fitting
line or hyperplane, regularized regression introduces penalty terms to prevent overfitting and improve
model performance. L1 and L2 regularization methods add complexity control by imposing constraints
on the coefficients of the regression equation.

Regularization adds a penalty term to the linear regression objective function, which discourages
the model from assigning excessively large coeflicients to the features. L1 regularization adds the
absolute values of the coefficients as penalties, leading to some coefficients being exactly zero, while L2
regularization adds the squared values of the coefficients, which enforces smaller but non-zero coefficients:

L1 regularization (lasso):

minimize(zii1 ()’,- -B,- z;B,Xu) 2 + AZ; |BJ|)

L2 regularization (ridge):

. N P 2 Py
mm:m:ze(Z:i:1 <y,. -B,- Z}_ﬂﬁjxﬁ +)\ZHBJ.)
L1 and L2 regularization are particularly useful in the following ways:

+ Feature selection: L1 regularization can force some coeflicients to be exactly zero, effectively
performing feature selection and identifying the most important variables

o Multicollinearity management: L2 regularization helps mitigate the effects of multicollinearity
by shrinking the coefficients towards zero

» High-dimensional data: Regularized regression is valuable when dealing with datasets with a
large number of features, preventing overfitting and improving generalization

Implementation example
Here’s a simple example of how to implement linear regression using Python and scikit-learn:

Import necessary libraries and prepare data

from sklearn.model selection import train test split
from sklearn.datasets import fetch california housing
from sklearn.linear model import LinearRegression
from sklearn.metrics import mean squared error
housing = fetch california housing()

X = housing.data

Getting started with supervised machine learning

y = housing.target
X train, X test, y train, y test = train test split(X, y, test_
size=0.2, random state=42)

Train the model and compute error
linear reg = LinearRegression()

linear reg.fit (X train, y_train)

y _pred = linear reg.predict (X test)

mse = mean squared error (y test, y pred)
print (f'Mean Squared Error: {mse:.2f}')

Let’s take a closer look at this example:

o Initially, we run common steps for any machine learning project, first importing the needed
libraries from sklearn.

o Then, we split our dataset into a train and test set

o Next, we initialize a LinearRegession model and train it using the fit method with the
training dataset

o Using the trained model, we make predictions using the test dataset

o Finally, we check how good our predictions are by measuring the mean square error

Assessment

What are the key assumptions of linear regression?

Answer

The key assumptions include linearity, independence of observations, homoscedasticity, and normality
of residuals.

Assessment

What are some common challenges in linear regression?

Answer

Common challenges include violating assumptions, dealing with outliers, managing multicollinearity,
and avoiding overfitting.

267

268

Mastering Machine Learning Concepts

Assessment

How do you handle multicollinearity in linear regression?

Answer

Multicollinearity can be addressed by removing correlated variables, using dimensionality reduction
techniques, or applying regularization methods.

Assessment

How do L1 and L2 regularization differ? What are the benefits of regularization?

Answer

L1 regularization encourages sparsity by forcing some coefficients to be exactly zero. L2 regularization
shrinks coefficients toward zero but rarely eliminates them entirely. Regularization helps manage overfitting,
performs feature selection, and improves model generalization, particularly in high-dimensional datasets.

Logistic regression

Logistic regression is a widely used statistical method for classification that models the relationship
between one or more independent variables and a binary outcome variable. Despite its name,
logistic regression is used for classification tasks rather than regression. It estimates the probability
that an instance belongs to a particular class, making it an essential tool in binary and multi-class
classification problems.

How it works

Logistic regression transforms the linear combination of independent variables into a probability
using the logistic function (also known as the sigmoid function):

_ 1
y= 1 + e~(a+bx+ox)

The function returns a value between 0 and 1, which is the probability of the occurrence of an event or
a class, given the input values. An example where you might use logistic regression includes predicting
if a customer might churn and leave a company’s service.

Getting started with supervised machine learning

Assumptions

Logistic regression relies on the following assumptions:

o Linearity of the logit: The log odds of the probability of the outcome variable being in a certain
class is a linear combination of the independent variables

o Independence of errors: The errors or residuals are assumed to be independent of each other

o Non-multicollinearity: The independent variables should not be highly correlated with each other

« Sufficiently large sample size: Logistic regression works best with a sufficiently large sample
size to ensure stable estimates

Common pitfalls

When working with logistic regression, it's important to be aware of potential pitfalls:

o Imbalanced classes: Logistic regression may perform poorly when dealing with imbalanced

class distributions. Some methods to address imbalanced class distribution include resampling,
adjusting the weights of a class (e.g. how important an example is when training a model), and
looking at different evaluation metrics like recall.

o Non-linear relationships: Logistic regression assumes a linear relationship between the

independent variables and the log odds of the outcome. Complex non-linear relationships
may not be captured effectively.

o Overfitting: Including too many variables or polynomial terms can lead to overfitting, especially
with limited data.

o Multicollinearity: Highly correlated independent variables can affect the stability and
interpretability of coefficient estimates.

Implementation example

Here’s a simple example of how to implement logistic regression using Python and scikit-learn:

Import necessary libraries and prep dataset

from
from
from
from
iris
X =

sklearn.model selection import train test split
sklearn.datasets import load iris
sklearn.linear model import LogisticRegression
sklearn.metrics import accuracy score

= load iris()

iris.data

Binary classification: Setosa vs. Others

y':

(iris.target == 2) .astype(int)

X train, X test, y train, y test = train test split(X, y, test_

size=

0.2, random state=42)

269

270

Mastering Machine Learning Concepts

Train the Logistic Regression model and compute accuracy
logreg = LogisticRegression ()

logreg.fit (X train, y train)

y_pred = logreg.predict (X test)

accuracy = accuracy_score (y test, y pred)

print (f'Accuracy: {accuracy:.2f}')

Let’s take a closer look at this example:

o After loading the required libraries and data for the Iris flower dataset, we split the data into training
and testing datasets (the Iris dataset is often used for classification machine learning problems)

« Then, we initialize a LogisticRegression model and train it using the fit method with
the training dataset

o Using the trained model, we make predictions using the test dataset

« Finally, we check how good our predictions are by measuring the classification accuracy

Assessment

What is the logistic function, and why is it used in logistic regression?

Answer

The logistic function (sigmoid function) maps the linear combination of features to a probability
between 0 and 1, enabling classification.

Assessment

How do you address imbalanced classes in logistic regression?

Answer

Techniques to address imbalanced classes include resampling methods, adjusting class weights, and
using different evaluation metrics.

k-nearest neighbors (k-NN)

k-NN is a versatile and intuitive machine learning algorithm that operates based on the proximity of
data points. It can be used both for classification and regression problems.

Getting started with supervised machine learning

How it works

k-NN is a lazy learning algorithm, meaning it doesn’t build a distinct model during training. Instead,
it memorizes the training data, and when presented with a new data point for prediction, it identifies
the k nearest neighbors in the training set based on a chosen distance metric (for example, Euclidean
distance). The majority class among the k neighbors determines the predicted class for the new point
in classification tasks. For regression tasks, the algorithm returns the average value of the target
variable among the k neighbors.

Assumptions

k-NN operates under the assumption that points in the same class or category tend to be close to each
other in feature space. This makes it well-suited for cases where the underlying decision boundaries
are complex and not easily separable by linear methods.

Common pitfalls
Here are some common pitfalls when using k-NN:

« Choice of k: Selecting an appropriate value for k is crucial. A small k might lead to noisy
decisions, while a large k could result in overly smooth decision boundaries.

« Feature scaling: k-NN is sensitive to the scale of features. Feature scaling, such as normalization
or standardization, is often necessary to ensure that all features contribute equally to
distance calculations.

o Curse of dimensionality: In high-dimensional spaces, the “nearest“ neighbors might not be
truly representative, leading to decreased accuracy and increased computation time.

Implementation example

Here is an example implementation of k-NN in Python using the KNeighborsClassifier
module in sklearn:

Import necessary libraries and prep dataset

from sklearn.datasets import load iris

from sklearn.model selection import train test split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy score

iris = load iris()

X, v = iris.data, iris.target

X train, X test, y train, y test = train test split(X, y, test
size=0.2, random state=42)

Create a KNN classifier with k=3 and compute accuracy
knn = KNeighborsClassifier (n _neighbors=3)

271

272

Mastering Machine Learning Concepts

knn.fit (X train, y train)

y_pred = knn.predict (X test)

accuracy = accuracy score(y test, y pred)
print (f'Accuracy: {accuracy:.2f}')

Let’s take a closer look at this example:

o 'The Iris dataset, a popular dataset for classification problems, is loaded.

o The dataset is split into training (80% of the data) and testing (20% of the data) sets to evaluate
the model’s performance on unseen data.

o A k-NN dlassifier is created with three neighbors, and it’s trained using the training data

o The model’s predictions on the testing set are compared with the true labels to calculate and
print the accuracy of the classifier

Assessment

What'’s the underlying idea behind the k-NN algorithm?

Answer

k-NN predicts the class of an instance based on the classes of its k nearest neighbors in the feature
space. It assumes that similar instances have similar labels.

Assessment

How do you choose the optimal value of k in k-NN?

Answer

The choice of k is a hyperparameter. You can use techniques such as cross-validation to find the optimal
k value that balances bias and variance in your predictions.

Assessment

What are the pros and cons of k-NN?

Answer

Pros include simplicity and effectiveness in capturing complex decision boundaries. Cons include
sensitivity to noise and the need for efficient data structures for quick searching.

Getting started with supervised machine learning

Random forest

Random forest is a versatile and powerful ensemble learning technique that’s used for both classification
and regression tasks. It is an extension of decision tree algorithms that addresses their limitations
by combining multiple trees to create a more robust and accurate predictive model. Random forest
is renowned for its ability to handle complex relationships, reduce overfitting, and provide feature
importance insights.

How it works

Random forest constructs an ensemble of decision trees, each trained on a different subset of the data
and considering a subset of features. Ensemble methods are techniques in machine learning that
combine the predictions of multiple individual models to create a more robust overall prediction. The
idea behind ensemble methods is to exploit the diversity of different models to improve the overall
accuracy, stability, and generalization of the predictive model.

Ensemble methods are particularly effective when individual models have varying strengths and
weaknesses or when they can capture different aspects of the underlying data patterns. By combining
these models, ensemble methods aim to mitigate the weaknesses of individual models and produce
a more reliable and accurate prediction.

Random forest offers several advantages over individual decision trees:

o Reduced overfitting: By averaging predictions from multiple trees, random forest mitigates
the risk of overfitting and provides better generalization.

« Robustness: Random forest is less sensitive to noisy data and outliers compared to a single
decision tree

o Non-linearity handling: It can capture complex nonlinear relationships between features and
the target variable

o Feature importance: Random forest quantifies the importance of each feature, aiding in feature
selection and interpretation

Random forest calculates feature importance based on how much a particular feature contributes to the
overall predictive performance of the ensemble. The importance of a feature is assessed by measuring
the decrease in a specific metric when the values of that feature are randomly permuted while keeping
the other features constant. Beyond understanding which features are the most important in a model,
a data scientist might look to optimize the performance of the model.

273

274

Mastering Machine Learning Concepts

Random forests have several hyperparameters that allow you to customize and fine-tune the behavior
of the ensemble algorithm. Adjusting these hyperparameters can impact the performance, robustness,
and computational efficiency of the random forest model. Here’s a list of some important random
forest hyperparameters, along with explanations of what they are:

o n_estimators: The number of decision trees in the ensemble (forest). Increasing the number of
trees generally improves performance until reaching a point of diminishing returns or overfitting.

o max_depth: The maximum depth of each decision tree in the forest. It limits the number of
splits, helping to control model complexity and reduce overfitting.

o min_samples_split: The minimum number of samples required to split a node further. It
prevents nodes with very few samples from being split, potentially reducing noise.

There are many other hyperparameters a data scientist might want to explore optimizing. To find
a list of additional hyperparameters, you can reference the sklearn documentation at https://
scikit-learn.org/stable/modules/generated/sklearn.neighbors.
KNeighborsClassifier.html.

Assumptions

Random forest is a powerful ensemble learning algorithm that combines multiple decision trees to make
predictions. Unlike some other machine learning algorithms, random forest has fewer assumptions.

However, it’s important to note that while individual decision trees have certain assumptions, the
ensemble method helps to mitigate the impact of these assumptions:

+ Independence of observations: Individual decision trees assume that observations are
independent of each other. While this is a common assumption in many statistical and machine
learning methods, random forest’s ensemble approach helps reduce the impact of violations
of this assumption. The random sampling and averaging of predictions across multiple trees
tend to mitigate the effects of correlated or dependent observations.

o Linearity: Decision trees assume that relationships between features and the target variable can
be modeled with piecewise constant segments. Random forest, being an ensemble of decision
trees, can capture both linear and nonlinear relationships in the data due to the diversity of
trees it comprises.

» Homoscedasticity: Decision trees do not make explicit assumptions about the homoscedasticity
(constant variance) of errors. Similarly, random forest, being a combination of decision trees,
is not directly affected by this assumption.

o Normality of residuals: Decision trees do not rely on the assumption of normality of residuals,
and the random forest algorithm inherits this flexibility. However, if you're using random forest
as part of a broader analysis that assumes normality (for example, hypothesis testing), you
should consider this aspect in your overall approach.

https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html

Getting started with supervised machine learning

o Feature scaling: Random forest is relatively insensitive to the scale of features. It doesn’t require
features to be standardized or normalized, unlike some other algorithms, such as gradient
boosting or K-means clustering.

o Multicollinearity: Random forest can handle multicollinearity (high correlation between
features) effectively as it considers only a subset of features at each node in each tree, reducing
the potential impact of correlated features.

It's worth noting that while random forest is more robust and forgiving than individual decision trees,
it is not entirely immune to the quality and characteristics of the data. Preprocessing, data cleaning,
and understanding the data’s domain-specific properties remain important steps in building accurate
and reliable random forest models.

Common pitfalls
While random forest is a powerful algorithm, it’s important to be aware of potential pitfalls:

o Opverfitting with too many trees: Although random forest reduces overfitting, using an excessive
number of trees can still lead to unnecessary computational complexity

o Bias toward dominant classes: In imbalanced datasets, random forest might favor the majority
class due to its inherent averaging mechanism

« Computation and memory: Training a large random forest can be computationally expensive
and memory-intensive

o Feature selection: While random forest provides feature importance, it might not always
identify the optimal subset of features for a specific problem

Implementation example

Here’s a basic example of how to implement a random forest classifier using Python and the popular
scikit-learn library:

Import necessary libraries and prep dataset

import numpy as np

from sklearn.model selection import train test split
from sklearn.datasets import load iris

from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy score

iris = load iris()

X = iris.data

y = iris.target

X train, X test, y train, y test = train test split(X, y, test
size=0.2, random state=42)

Initialize the Random Forest classifier and compute accuracy

275

276

Mastering Machine Learning Concepts

random forest = RandomForestClassifier (n estimators=100, random
state=42)

random forest.fit (X train, y train)
y_pred = random forest.predict (X test)
accuracy = accuracy_score(y_test, y pred)
print (f'Accuracy: {accuracy:.2f}')

In this example, we have used the popular Iris dataset for simplicity. Here’s what the code does:

o Again, we use the popular Iris classification dataset.

o 'The dataset is split into training (80% of the data) and testing (20% of the data) sets to evaluate
the model’s performance on unseen data.

o A random forest classifier, RandomForestClassifier, which is an example of an ensemble
learning method, is initialized with 100 trees and then trained on the training data. Additionally,
the model was set with a random seed (random_state=42), ensuring reproducibility.

o After training, the model’s performance is evaluated by predicting the test set’s class labels and
subsequently calculating and printing the accuracy of these predictions compared to the true
test set labels.

Assessment

How does a random forest work?

Answer

A random forest is an ensemble of decision trees. It trains multiple trees on different subsets of the
data and combines their predictions through majority voting or averaging.

Assessment

What is the role of randomness in a random forest?

Answer

Randomness is introduced through bootstrap sampling of data and feature subsampling during tree
construction. This helps in reducing overfitting and promoting diversity among trees.

Assessment

What are the advantages of using random forest?

Getting started with supervised machine learning

Answer

Random forests are robust to overfitting, handle high-dimensional data well, provide feature importance
scores, and can handle both classification and regression tasks.

Extreme Gradient Boosting (XGBoost)

XGBoost is a powerful and highly efficient gradient-boosting algorithm that’s designed to tackle a
wide range of machine learning problems. Like random forest, it can be used for both regression and
classification. It has gained significant popularity due to its exceptional performance in predictive
modeling competitions and real-world applications. XGBoost is particularly effective in handling
structured/tabular data and is known for its robustness, scalability, and ability to capture complex patterns.

How it works

XGBoost builds an ensemble of weak predictive models (typically decision trees) sequentially, where
each subsequent model tries to correct the errors made by the previous ones. The core principles of
XGBoost are as follows:

« Gradient boosting: XGBoost employs gradient boosting, which involves minimizing a loss
function by iteratively adding new models to the ensemble

« Regularization: XGBoost incorporates L1 (lasso) and L2 (ridge) regularization terms into the
loss function to control overfitting

o Feature importance: XGBoost provides insights into feature importance, allowing you to
understand the contribution of each feature to the model’s predictions

o Cross-validation: XGBoost supports k-fold cross-validation to evaluate and optimize
model performance

Assumptions

Similar to random forest, XGBoost is an ensemble learning algorithm based on decision trees and has
fewer assumptions compared to traditional linear models. Thus, the same practical considerations
mentioned for Random Forest should also be considered here.

Clarifying boosting versus bagging

XGBoost, as its name implies, relies on gradient boosting, or simply boosting. Boosting is an iterative
technique that sequentially builds a strong model by combining multiple weak models. The idea is
to focus on the examples that the current set of models is struggling with and assign them higher
weights, effectively “boosting” their importance. The weak models are trained sequentially, and each
new model gives more weight to the misclassified examples from the previous models.

277

278

Mastering Machine Learning Concepts

However, in bagging (bootstrap aggregating), multiple instances of the same algorithm are trained
on different subsets of the training data, obtained by random sampling with replacement. The final
prediction is typically an average or majority vote of the predictions from individual models. Random
forest is a well-known ensemble method that uses bagging with decision trees.

So, the differences between bagging and boosting are as follows:

o Combination of models: Bagging involves training multiple base models independently and
then aggregating their predictions. Boosting trains a sequence of models iteratively, where each
new model focuses on correcting the errors of the previous models.

« Training approach: Bagging reduces variance by averaging predictions from diverse models.
Boosting reduces both bias and variance by iteratively refining the model’s performance.

o Weight assignment: Bagging assigns equal weights to all training examples. Boosting assigns
higher weights to misclassified examples, focusing more on difficult instances.

o Sequential versus parallel: Bagging trains base models in parallel as they are independent
of each other. Boosting trains models sequentially, where each new model depends on the
performance of the previous models.

o Performance: Boosting often results in higher accuracy but may be more prone to overfitting if
not controlled properly. Bagging tends to have lower variance and may be less prone to overfitting.

In summary, while both bagging and boosting aim to improve ensemble model performance, they
differ in their approach to combining models and how they handle training instances. The choice
between bagging and boosting depends on the nature of the problem, the available data, and the
desired trade-off between bias and variance.

Common pitfalls
While XGBoost is a powerful algorithm, there are some considerations to keep in mind:

« Hyperparameter tuning: The performance of XGBoost can be sensitive to hyperparameters.
Careful tuning is essential for optimal results

« Overfitting: Despite regularization, overfitting can still occur, especially when using a large
number of boosting rounds

o Computational complexity: Complex models or large datasets can lead to increased computational
demands and longer training times

o Interpretability: While XGBoost provides feature importance, its complex nature may make
model interpretation challenging

Getting started with unsupervised machine learning 279

Assessment

How does XGBoost work? What are the advantages of using XGBoost?

Answer

XGBoost sequentially adds new models to the ensemble, aiming to correct errors made by the previous
models through gradient boosting. XGBoost offers high performance, flexibility, feature importance
insights, regularization, and handling of imbalanced classes.

Assessment

What are the differences between bagging and boosting?

Answer

Bagging and boosting are both ensemble methods in machine learning that combine multiple models
to improve performance. Bagging trains multiple base models independently and aggregates their
predictions, typically reducing variance by averaging diverse model predictions. On the other hand,
boosting trains models sequentially, where each subsequent model corrects the errors of its predecessors,
aiming to reduce both bias and variance.

While bagging assigns equal weights to all training examples, boosting prioritizes misclassified
instances by giving them higher weights. This means that boosting focuses more on challenging cases.
Bagging’s models are trained in parallel since they operate independently, whereas boosting requires a
sequential approach because each model builds upon the performance of the previous ones. In terms
of performance, boosting often achieves higher accuracy but can be more susceptible to overfitting if
not managed carefully, whereas bagging generally offers more stability and is less prone to overfitting.

Getting started with unsupervised machine learning

Unsupervised machine learning is a fascinating branch of artificial intelligence that focuses on
discovering patterns, relationships, and structures within data without explicit guidance from labeled
outcomes. Unlike supervised learning, where models are trained with labeled data to make predictions,
unsupervised learning aims to explore the inherent information present in the data itself. This type of
learning is particularly valuable for uncovering hidden insights, finding clusters, reducing dimensionality,
and revealing underlying representations. Clustering is a common use case for unsupervised learning.

Clustering refers to grouping data points into distinct subsets or “clusters” based on similarities in
their features without using pre-labeled data as a guide. Imagine that you have a scatter plot of data
points and want to color-code groups of points that seem to cluster together; this is essentially what
clustering algorithms do but in potentially multi-dimensional spaces. The goal is to ensure that data
points in the same cluster are more alike to each other than those in different clusters.

280

Mastering Machine Learning Concepts

For businesses, clustering has numerous applications: customer segmentation for targeted marketing,
organizing large sets of documents or news articles into cohesive topics, detecting abnormal patterns
or anomalies in data, and even helping retailers optimize product placements in stores based on
purchasing behaviors. Uncovering these natural groupings allows businesses to gain insights, enhance
decision-making, and tailor strategies to specific audience segments.

In this section, we will delve into the foundational concepts of unsupervised learning, including its key
algorithms, applications, challenges, and interview questions, shedding light on how it empowers us to
extract meaningful knowledge from unannotated data. First, we will look at some common clustering
algorithms and finish with how to evaluate the clusters produced by the algorithms.

K-means

K-means clustering is a fundamental unsupervised learning algorithm that’s designed to partition data
into distinct groups, or clusters, based on similarities between data points. It is widely used for pattern
recognition, segmentation, and understanding the underlying structure within datasets. K-means is
intuitive, computationally efficient, and can provide valuable insights into the inherent grouping of data.

How it works

K-means works by iteratively assigning data points to clusters and updating cluster centroids to
minimize the sum of squared distances between points and their respective centroids. The key steps
involved are as follows:

1. Initialization: Randomly select initial cluster centroids

2. Assignment: Assign each data point to the nearest centroid
3. Update: Recalculate centroids based on the mean of data points in each cluster
4. Repeat: Iterate between assignment and update until convergence or a specified number
of iterations
Assumptions

While K-means is relatively simple and effective, it does make certain assumptions about the data and
the structure of clusters. These assumptions can impact the algorithm’s performance and the quality
of the resulting clusters. Here are the key assumptions of K-means:

+ Cluster shape and size: K-means assumes that clusters are spherical and have roughly equal
sizes. In other words, it assumes that the clusters have similar diameters and contain roughly
the same number of data points.

Getting started with unsupervised machine learning 281

o Equal variance: K-means assumes that the variance (spread) of the data points within each
cluster is roughly the same. This assumption is important because K-means uses the mean as
the center of a cluster, and equal variance helps in determining the “average® distance of data
points from the center.

o Features’ influence: K-means treats all features equally and assumes that they have a similar
influence on the clustering process. This can be problematic if some features are more relevant
or important than others.

o Independence of clusters: K-means assumes that the clusters are independent and non-overlapping.
In reality, data points may belong to multiple clusters or exhibit complex patterns that K-means
cannot capture.

« Globular clusters: K-means works well for clusters that are roughly globular in shape. If clusters
have irregular shapes, elongated structures, or densities, K-means may struggle to accurately
capture these patterns.

o Pre-defined number of clusters: K-means requires you to specify the number of clusters (k)
in advance. This can be a challenge if the true number of clusters is not known or if the data
doesn’t naturally divide into distinct clusters.

o Similar density clusters: K-means assumes that the clusters have similar densities. If some
clusters are denser than others, K-means may struggle to correctly assign data points.

o Feature scaling: Like most other cluster algorithms, it is required to scale the features to ensure
one does not influence the model more than others.

Common pitfalls
K-means has some considerations and challenges:

o Number of clusters: Choosing the optimal number of clusters (k) can be subjective and impact
the results

« Sensitive to initialization: K-means’ performance can vary based on the initial centroids

o Cluster shape and density: K-means assumes clusters are spherical and equally sized, which
might not always align with the data

« Outliers: Outliers can significantly influence cluster centroids and affect results
Implementation example

Here’s a simple example of how to implement K-means clustering using Python and the scikit-learn library:

Import necessary libraries and prep data with 4 clusters
import matplotlib.pyplot as plt

from sklearn.datasets import make blobs

from sklearn.cluster import KMeans

282 Mastering Machine Learning Concepts

X, = make blobs(n samples=300, centers=4, cluster std=0.60, random
state=0)

Initialize K-Means with 4 clusters and plot cluster centers
kmeans = KMeans (n_clusters=4)

labels = kmeans.fit predict (X)

cluster centers = kmeans.cluster_centers_

plt.scatter (X[:, 0], X[:, 1], c=labels, cmap='viridis')
plt.scatter(cluster centers([:, 0], cluster centers[:, 1], s=300,
c='red")

plt.xlabel ('Feature 1')
plt.ylabel ('Feature 2')
plt.title('K-Means Clustering')
plt.show ()

Let’s take a closer look at this example:

o Necessary libraries such as Matplotlib and relevant functions from scikit-learn are imported,
and we create our own dataset (that is, a synthetic dataset), with four distinct clusters generated
using the make blobs function, producing 300 samples. In this example, we are making our
dataset show how to use the K-means model.

« The K-means clustering algorithm is initialized to partition the data into four clusters.

o The K-means algorithm is fitted to the synthetic data, assigning each data point to one of the
four clusters. The centers of these clusters are then determined.

« Using Matplotlib, the data points are visualized on a scatter plot, color-coded based on their
assigned clusters. The centers of these clusters are also plotted in red, and the resulting plot
showcases how the K-means algorithm has grouped the data.

Assessment

What's the objective of the K-means clustering algorithm?

Answer

K-means aims to partition data points into clusters by minimizing the sum of squared distances
between each data point and the centroid of its assigned cluster.

Assessment

How does K-means initialize cluster centroids?

Getting started with unsupervised machine learning

Answer

K-means can use strategies such as random initialization, k-means++, or custom initialization to
determine the initial locations of cluster centroids.

Density-based spatial clustering of applications with noise
(DBSCAN)

DBSCAN is a powerful unsupervised learning algorithm that excels at identifying clusters of arbitrary
shapes in data. Unlike K-means, which assumes spherical clusters of equal size, DBSCAN discovers
clusters based on the density of data points in the feature space and is particularly useful when dealing
with noisy data and clusters of varying sizes and shapes.

In this chapter, we will delve into the intricacies of DBSCAN, its principles, advantages, limitations,
implementation in Python, and real-world applications.

How it works

DBSCAN identifies clusters by considering two main parameters: the radius (epsilon) that defines the
neighborhood of a data point and the minimum number of data points (min_ samples) required
to form a dense region. The algorithm operates as follows:

o Core points: A data point is considered a core point if there are at least min_samples data
points within its epsilon neighborhood

o Border points: A data point is a border point if it is within the epsilon neighborhood of a core
point but does not have enough neighbors to be considered a core point itself

« Noise points: Data points that are not core or border points are classified as noise points

DBSCAN starts by selecting an arbitrary data point, expanding its neighborhood, and recursively
growing a cluster. This process continues until no more data points can be added to the cluster, at
which point a new cluster is formed. This process is then repeated until all data points have been
classified into clusters or marked as noise.

DBSCAN offers several advantages:

o Cluster shape: DBSCAN can identify clusters of arbitrary shapes, making it suitable for
complex datasets

o Noise handling: DBSCAN can effectively handle noisy data and classify outliers as noise points
o Cluster size: DBSCAN can discover clusters of varying sizes and densities within the same dataset

o Parameter robustness: DBSCAN requires minimal parameter tuning compared to methods
that require specifying the number of clusters in advance

283

284

Mastering Machine Learning Concepts

Assumptions

DBSCAN does not make specific assumptions about the shape of clusters like some other clustering
algorithms (such as K-means), but it does have certain assumptions and characteristics:

Density-based clusters: The primary assumption of DBSCAN is that clusters are areas of
higher density separated by areas of lower density. Points within a cluster are densely packed,
and there are regions with lower point densities separating different clusters.

Density reachability: DBSCAN uses the concept of “density reachability” A data point is
considered to be density-reachable from another point if it lies within a specified distance
(epsilon, €) from the other point and the number of points within that distance exceeds a
predefined threshold (MinPts).

Core points: Core points are data points that have at least MinPts data points within a distance
¢ from them. These points are at the center of clusters.

Border points: Border points are not core points themselves but are within the e-distance of
a core point. They may belong to a cluster but are not considered the central point of a cluster.

Noise (outliers): Data points that do not meet the criteria to be core points or border points
are considered noise or outliers. They do not belong to any cluster.

Cluster connectivity: DBSCAN forms clusters by connecting core points that are density-
reachable from each other. This means that a chain of core points can be used to connect
different parts of the same cluster, even if they are not directly density-reachable.

Arbitrary shape clusters: Unlike algorithms such as K-means, DBSCAN can identify clusters
with arbitrary shapes and does not assume that clusters are spherical or elliptical.

Parameter sensitivity: DBSCAN requires two main parameters: € (epsilon) and MinPts. The
choice of these parameters can impact the results, and finding appropriate values can sometimes
require experimentation and domain knowledge.

Common pitfalls

There are several common pitfalls that data scientists may experience when working with DBSCAN:

Choosing incorrect parameters: DBSCAN requires two critical parameters: epsilon (¢) and
MinPts. Epsilon determines the maximum distance between two points for one to be considered
a neighbor of the other, and MinPts specifies the minimum number of points within ¢ to form a
core point. Choosing inappropriate values for these parameters can lead to undesirable results,
such as overfitting, underfitting, or identifying noise as clusters.

Sensitive to data scaling: DBSCAN’s density-based nature makes it sensitive to the scaling of
features. When features have significantly different scales, the choice of epsilon might not work
well for all dimensions equally. Standardizing or normalizing the data can help mitigate this issue.

Getting started with unsupervised machine learning

Noise interpretation: DBSCAN can identify noise as separate clusters or classify noise as an
outlier category. The interpretation of these noise points depends on the context of the data
and the problem. Misinterpreting noise as actual clusters can lead to misleading insights.

Uneven density clusters: DBSCAN may struggle with clusters of varying densities. If the density
within a cluster is not consistent, setting a global epsilon might not work well for all parts of
the dataset. In such cases, using other clustering algorithms or considering different density
parameters for different areas could be more appropriate.

High-dimensional data: DBSCAN'’s effectiveness can diminish in high-dimensional spaces due
to the “curse of dimensionality” As the number of dimensions increases, the distance between
points becomes less meaningful, potentially leading to sparser clusters or identifying most
points as noise. Dimensionality reduction techniques or considering other clustering methods
might be necessary for high-dimensional data.

Outliers identification: DBSCAN can be sensitive to outliers, classifying them as noise or
forming small clusters around them. Handling outliers requires a clear understanding of the
problem and the ability to distinguish between genuine clusters and noise.

Cluster shape assumption: While DBSCAN is effective at identifying clusters of varying
shapes, it might struggle with clusters with varying densities or clusters embedded within
other clusters. In such cases, alternative clustering algorithms such as hierarchical clustering
might be more suitable.

Implementation example

Here’s a basic example of how to implement DBSCAN using Python and the DBSCAN module:

Import the needed libraries and prep the dataset

from sklearn.cluster import DBSCAN

from sklearn.datasets import make blobs

import matplotlib.pyplot as plt

X,

= make blobs(n samples=300, centers=3, cluster std=0.6, random

state=0)

Create DBSCAN model, fit it, and plot clusters
dbscan = DBSCAN (eps=0.5, min samples=5)
labels = dbscan.fit predict (X)

plt
plt
plt

plt.
plt.

.scatter(X[:, 0], X[:, 1], c=labels, cmap='viridis', s=50)
.xlabel ('Feature 1')

.ylabel ('Feature 2')

title ('DBSCAN Clustering')

show ()

285

286

Mastering Machine Learning Concepts

In this example, the code does the following:

o Generates synthetic data using the make blobs function from sklearn.datasets.

o Creates a DBSCAN instance by specifying the eps (epsilon) parameter, which controls the
maximum distance between two data points for them to be considered part of the same cluster.

o Specifies themin samples parameter, which defines the minimum number of neighboring
points required to form a core point.

o Fits the model to the data using the fit_predict method, which returns cluster labels for
each data point. Finally, we visualize the clusters using a scatter plot.

Other clustering algorithms

There are tons of clustering algorithms that you may encounter in the data science world. Choosing
the correct model is all about understanding the unique scenario and business assumptions associated
with your problem. While reviewing every unsupervised model is beyond the scope of this chapter,
here are some other models you may want to consider:

 Hierarchical clustering is a clustering technique that builds a hierarchy of clusters by recursively
dividing or merging data points based on a similarity measure. Unlike other clustering methods
that produce a single partitioning of the data, hierarchical clustering creates a tree-like structure
of clusters, known as a dendrogram. This dendrogram provides insights into the hierarchical
relationships between data points and clusters.

o Spectral clustering transforms the data into a lower-dimensional space using the Laplacian
graph and then performs clustering in this transformed space. It’s especially useful for clustering
data with complex structures and is not limited by the shape of clusters.

o Ordering Points To Identify Clustering Structure (OPTICS) is a density-based clustering
algorithm similar to DBSCAN. It creates an ordering of data points based on their density-
connectedness. Unlike DBSCAN, it produces a reachability plot, which helps in visualizing
varying densities and clusters of different sizes.

o Fuzzy c-means (FCM) is a clustering algorithm that extends the traditional K-means algorithm
by allowing data points to belong to multiple clusters with varying degrees of membership.
Unlike K-means, where each data point belongs to a single cluster exclusively, FCM assigns
each data point a membership value for each cluster, representing the degree of belongingness
to that cluster. This makes FCM a fuzzy clustering algorithm, where points can have partial
membership in multiple clusters.

Getting started with unsupervised machine learning

Evaluating clusters

Now that we have covered a few clustering algorithms, the following are some common methods for
evaluating clustering algorithms:

Silhouette score: This quantifies how similar an object is to its cluster (cohesion) compared to other
clusters (separation). It ranges from -1 to 1, where higher values indicate better-defined clusters.

Elbow method: This is a graphical representation of the eigenvalues (variance) of each principal
component or factor in a dataset. In the context of clustering, it is used to understand how much
variance is explained by each cluster as the number of clusters increases. In what is called the
scree plot, the X-axis represents the number of clusters, and the Y-axis represents the sum of
squared distances (inertia). The plot typically resembles a curve that decreases sharply at first
and then starts to level off. The “elbow” point, where the rate of decrease changes, indicates
the optimal number of clusters. The elbow method helps identify a point where adding more
clusters does not significantly improve the model’s fit to the data, striking a balance between
minimizing intra-cluster distance and avoiding excessive model complexity.

Adjusted rand index (ARI): This measures the similarity between the true class assignments
and the predicted clusters, adjusting for chance.

Normalized mutual information (NMI): This quantifies the amount of information that’s shared
between true class assignments and predicted clusters, normalized to account for cluster size.

Assessment

How does DBSCAN work?

Answer

DBSCAN clusters data points based on their density. It defines dense regions as clusters and identifies
outliers as noise points. Points within a specified distance (epsilon) and a minimum number of
neighbors (min_samples) are considered part of the same cluster.

Assessment

What types of clusters can DBSCAN identify?

Answer

DBSCAN can identify clusters of varying shapes, including dense clusters, sparse clusters, and clusters
separated by areas of lower density.

287

288

Mastering Machine Learning Concepts

Assessment

How does DBSCAN handle noise and outliers?

Answer

DBSCAN can identify noise points as data points that do not belong to any cluster. Outliers that
are isolated from dense regions are considered noise, while inlier points close to dense clusters are
included in those clusters.

Summarizing other notable machine learning models

In the dynamic landscape of machine learning, a plethora of models cater to diverse data and problem
domains. In this section, we will highlight other notable models, each offering unique capabilities and
addressing specific challenges. From text processing to survival analysis, we'll explore a spectrum of
models that expand the horizons of machine learning applications.

So, let’s take a look:

+ Generalized additive models (GAMs): GAMs extend linear regression by accommodating
nonlinear relationships between variables. By employing smooth functions, GAMs offer a flexible
framework to capture complex interactions and patterns in data, making them valuable tools
for various domains, including environmental science, economics, and healthcare.

« Naive Bayes: This is a probabilistic classifier grounded in Bayes’ theorem. Despite its simplicity,
Naive Bayes excels in text classification, spam filtering, and sentiment analysis. Its efficiency
in handling high-dimensional datasets and quick training make it a go-to choice for many
text-based tasks.

 Support vector machines (SVMs): These are versatile algorithms renowned for their ability to
learn both linear and nonlinear boundaries between classes. In the realm of classification, SVMs
provide high accuracy and robustness. Linear SVMs excel in scenarios with linear separability,
while kernel methods enable SVM:s to tackle complex decision boundaries in non-linear datasets.

o Market basket analysis: Market basket analysis focuses on discovering associations between
items that are frequently purchased together. Widely used in retail, it reveals patterns that drive
product recommendations and marketing strategies. Apriori algorithm and FP-growth are
notable techniques for extracting frequent itemsets.

« Survival analysis: This analysis is used to analyze time-to-event data, such as customer churn,
medical prognosis, or failure prediction. Employing hazard functions and Kaplan-Meier curves,
this model assesses the probability of an event occurring within a given time frame.

Understanding the bias-variance trade-off

o Natural language processing (NLP): NPL tasks encompass a vast range of tasks, including
sentiment analysis, named entity recognition, machine translation, and question answering.
Advanced models such as transformer-based architectures, such as BERT and GPT, have
revolutionized NLP tasks by learning contextual representations. Examples of NLP tasks include
sentiment analysis, text classification, named entity recognition (NER), text generation, text
summarization, speech recognition, text-to-speech (TTS), and semantic labeling to name a few!

o Anomaly detection models: Anomaly detection is crucial for spotting outliers and identifying
unusual patterns that deviate from expected behavior. Models such as isolation forest, one-class
SVM, local outlier factor (LOF), and autoencoders excel in uncovering anomalies in fraud
detection, network security, and fault diagnosis.

o Recommender systems: Recommender systems predict user preferences and recommend
items or content of interest. Collaborative filtering, content-based filtering, and hybrid models
combine user behavior and item attributes to provide personalized recommendations. Matrix
factorization (NMF), alternating least squares (ALS), user-based filtering, and content-based
filtering are prominent techniques that are employed in this domain.

Understanding the bias-variance trade-off

In the journey of building machine learning models, understanding how well they perform on
unseen data is paramount. Evaluating a model’s performance provides insights into its effectiveness,
generalization capabilities, and potential areas for improvement. In this section, we delve into the
critical process of using test sets to assess model performance comprehensively.

Model evaluation is a crucial step in the machine learning pipeline that validates the utility of a model
in real-world scenarios. It gauges how well the model’s predictions align with actual outcomes, ensuring
that the model can make accurate and reliable decisions beyond the training data. When assessing a
model’s performance, it’s essential to consider two key aspects: bias and variance.

Bias refers to the error due to overly simplistic assumptions in the learning algorithm, leading to an
underfit model that misses relevant relationships. On the other hand, variance arises when a model is
excessively complex and captures noise in the training data, resulting in an overfit model that doesn’t
generalize well to new data:

289

290

Mastering Machine Learning Concepts

Low Variance High Variance

Low Bias

High Bias

Figure 10.4: Depiction of bias versus variance

Striking the right balance between bias and variance is a delicate challenge. Increasing model complexity
tends to reduce bias but can increase variance, while reducing complexity can lower variance but
may increase bias. Achieving an optimal trade-off between bias and variance is crucial to developing
models that can perform well on both training and test data.

Model complexity refers to the intricacy and flexibility of a machine learning model in capturing
relationships within the data. A more complex model can fit the training data more closely, potentially
capturing intricate patterns and noise. However, this increased complexity can also lead to overfitting,
where the model becomes highly tailored to the training data and struggles to generalize to new, unseen
data. On the other hand, a less complex model might not capture all the nuances of the data, leading
to underfitting, where it fails to capture even the basic relationships present in the data.

Assessment

What is the bias-variance trade-off in machine learning?

Answer

The bias-variance trade-off refers to the balance between a model’s ability to fit the training data well
(low bias) and its ability to generalize to new, unseen data (low variance). Increasing model complexity
can reduce bias but increase variance, and vice versa.

Tuning with hyperparameters 291

Assessment

How does underfitting relate to the bias-variance trade-off?

Answer

Underfitting occurs when a model is too simple to capture the underlying patterns in the data, leading
to high bias and poor performance on both training and test data.

Assessment

How does overfitting relate to the bias-variance trade-oft?

Answer

Opverfitting happens when a model is too complex and fits the training data noise, resulting in low bias
but high variance. This can lead to excellent performance on training data but poor generalization
to test data.

Tuning with hyperparameters

Hyperparameter tuning is the process of systematically searching for and selecting the optimal
values for the hyperparameters of a machine learning model. Unlike model parameters, which are
learned from data during training, hyperparameters are determined by the practitioner and define
characteristics such as the complexity of the model, the learning rate, regularization strength, and
more. The goal of hyperparameter tuning is to identify the hyperparameter values that lead to the
best possible model performance on unseen data.

Hyperparameter tuning involves experimenting with different values for each hyperparameter and
evaluating the model’s performance using appropriate evaluation metrics, often on a validation set. This
process can be guided by different strategies, such as grid search, random search, or more advanced
techniques such as Bayesian optimization.

Grid search

Grid search is a systematic approach to hyperparameter tuning. It involves defining a grid of possible
hyperparameter values and exhaustively searching through all combinations. Grid search evaluates
each combination using a predefined evaluation metric and identifies the configuration that yields
the best performance.

While grid search guarantees thorough exploration of the hyperparameter space, it can be computationally
expensive, especially when dealing with a large number of hyperparameters or a wide range of values.

292

Mastering Machine Learning Concepts

Random search

Random search takes a different approach by randomly sampling hyperparameter combinations
from predefined ranges. This stochastic method explores a broader range of hyperparameter values
in fewer iterations compared to grid search. While it might not guarantee exhaustive coverage,
random search has shown to be effective in discovering good hyperparameter configurations with
less computational cost.

Bayesian optimization

Bayesian optimization leverages probabilistic models to efficiently navigate the hyperparameter
space. It uses the information gained from previous evaluations to guide the selection of subsequent
hyperparameter combinations. Bayesian optimization strikes a balance between exploration (trying
new combinations) and exploitation (focusing on promising areas), making it highly efficient for
hyperparameter tuning.

Assessment

What are hyperparameters in the context of machine learning?

Answer

Hyperparameters are parameters that are set before the learning process begins and influence a model’s
behavior and performance. They are not learned from data but are determined by the practitioner.

Assessment

How do hyperparameters impact model training?

Answer

Hyperparameters influence aspects such as model complexity, convergence speed, and regularization.
Tuning hyperparameters can significantly impact a model’s performance and generalization capabilities.

Assessment

What are common techniques for tuning hyperparameters?

Answer

Common techniques include grid search, random search, and more advanced methods such as
Bayesian optimization. These methods systematically explore the hyperparameter space to find the
best configuration for the model.

Summary

Summary

In our study of machine learning, we delved deeply into crucial concepts, obtaining significant
insights. Our exploration spanned both supervised and unsupervised learning, equipping us with a
diverse set of models.

In this chapter, we harnessed models ranging from linear and logistic regression to tree-based techniques
such as random forests and XGBoost. These models have enabled us to capture intricate relationships
and accurately estimate class probabilities. Additionally, our foray into clustering methods, including
K-means, hierarchical clustering, and DBSCAN, has allowed us to master the art of extracting
patterns from unlabeled data. Furthermore, our knowledge has been augmented with vital skills in
hyperparameter tuning and model evaluation. We learned how to refine models using tools such as
grid search and have come to understand key evaluation metrics, such as accuracy and precision.

As we gear up for data science interviews, this knowledge stands as a testament to our adaptability and
problem-solving prowess. Beyond interviews, this understanding empowers us to tackle real-world
data challenges and tailor models to meet diverse business needs. Our journey equips us to excel in
interviews and make meaningful contributions to the dynamic world of data science.

In the next chapter, we will investigate deep learning concepts such as popular neural network architectures.

293

11
Building Networks with

Deep Learning

In the previous chapter, we explored machine learning (ML) concepts, including common strengths,
weaknesses, pitfalls, and various popular ML algorithms.

In this chapter, we will explore artificial intelligence (AI) as we dive into deep learning (DL)
concepts. We will review important neural network (NN) fundamentals, components, tasks, and
DL architectures that are most common in data science interviews. In doing so, we will unravel the
mysteries of weights, biases, activation functions, and loss functions while mastering the art of gradient
descent and backpropagation.

Along the way, we'll fine-tune our networks, delve into the magic of embeddings and autoencoders
(AEs), and harness the transformative power of transformers. Plus, we'll unlock the secrets of transfer
learning (TL), understand why NNs are often referred to as “black boxes,” and explore common
network architectures that have revolutionized industries and led the way for generative AI (GenAlI)
and large language models (LLMs) such as ChatGPT.

In this chapter, we will review the following topics:

o Introducing NNs and DL

o Weighing in on weights and biases

o Activating neurons with activation functions
o Unraveling backpropagation

o Using optimizers

o Understanding embeddings

« Listing common network architectures

o Introducing GenAl and LLMs

296

Building Networks with Deep Learning

Introducing neural networks and deep learning

At its core, a neural network (also known as a neural net) is a computational model inspired by the
structure and function of the human brain. It's designed to process information and make decisions
in a manner akin to how our neurons work.

An NN consists of interconnected nodes, or artificial neurons, organized into layers. These layers
typically include an input layer, one or more hidden layers, and an output layer, which you can see
in Figure 11.1. Each connection between neurons is associated with a weight, which determines the
strength of the connection, and an activation function, which defines the output of the neuron:

Hidden Hidden Hidden

Figure 11.1: Basic NN diagram

Data passes from the input layer through the hidden layers until it reaches the final layer as an output.
The preceding diagram shows two output nodes, but an NN can consist of one or even hundreds of
output nodes. The number of output nodes is an important design decision when creating an NN.
A data scientist must design the network to be effective with the problem they are working on. For
example, an NN might only have one output node for a regression problem, while for a classification
task, there may be an output node for each class.

In simpler terms, an NN takes input data, processes it through multiple hidden layers of interconnected
neurons, and produces an output. This process of transforming input into output involves complex
mathematical operations, but at its essence, NNs excel at learning patterns and making predictions
from data.

Introducing neural networks and deep learning

Deep learning is a specific application of NNs in the ML field that focuses on training NNs with
multiple hidden layers — hence the term “deep” While a standard NN might have just one or two hidden
layers, DL models can have tens, hundreds, or even thousands of hidden layers. This depth allows them
to learn intricate and hierarchical representations of data, making them particularly well suited for
complex tasks such as image and speech recognition, natural language processing (NLP), and more.

There are several benefits of using DL algorithms compared to their traditional ML counterparts:

Feature learning (FL): DL algorithms excel at automatically discovering features and patterns in
data without explicit programming. They learn from vast amounts of data and adapt their internal
representations to improve their performance on specific tasks. This ability to automatically
extract features and make high-level abstractions from raw data is one of the key reasons DL
has revolutionized fields such as computer vision (CV), natural language understanding
(NLU), and reinforcement learning (RL).

Complex data types: DL excels at handling complex data types, such as images, audio, and
natural language (NL) text. Traditional ML models may struggle to capture intricate patterns
and structures present in these data types.

Scalability: DL models can scale to handle large and complex datasets. With the increasing
availability of powerful hardware (for example, GPUs and TPUs) and distributed computing, DL
models can process massive amounts of data efficiently. This scalability is crucial in domains such
as CV, where datasets can contain millions of images, or in training LLMs such as Generative
Pre-Trained Transformer 3 (GPT-3).

Applications: DL models have achieved state-of-the-art performance in a wide range of
applications, including image recognition, speech recognition, machine translation, and
game-playing. Their ability to capture intricate patterns and representations allows them to
outperform traditional ML models in many cases.

Transfer Learning: DL models can leverage pre-trained NNs and transfer knowledge from one
task to another. For example, pre-trained models such as Bidirectional Encoder Representations
from Transformers (BERT), which was originally designed for NLU, have been fine-tuned
for various NLP tasks, demonstrating their adaptability. TL enables faster and more efficient
training on new tasks with limited data, making DL practical for real-world scenarios where
collecting large datasets may be expensive or time-consuming.

Assessment

What is the primary difference between a standard NN and a DL model, as mentioned in the text?

A. DL models are inspired by the human brain, while standard NNs are not

B. DL models have multiple hidden layers, sometimes even thousands, while standard NNs
might have one or two

297

298

Building Networks with Deep Learning

C. DL models do not use activation functions

D. Standard NNs can handle complex data types such as images, audio, and text, while DL
models cannot

Answer

The correct answer is B. DL focuses on training NNs with multiple hidden layers, whereas a standard
NN might have just one or two hidden layers.

Assessment

Which of the following benefits of DL is highlighted by its ability to learn from vast amounts of data
and adapt its internal representations for specific tasks without explicit programming?

A. Scalability

B. Complex data types

C. Feature Learning (FL)

D. Applications

Answer

The correct answer is C. DL algorithms excel at “automatically discovering features and patterns in
data without explicit programming.”

Weighing in on weights and biases

Weights and biases are some of the most important components of NNs. Their functionality within
NN nodes complements each other, similar to how weights and biases fit linear regression models.
Understanding weights and biases will help you understand how they transform an NN from a static
structure into a dynamic learning system. Proficiency in initializing, updating, and optimizing these
components is essential in the journey of training NN effectively.

Introduction to weights

Weights are numerical values that are assigned to the connections between neurons. Each connection
possesses a corresponding weight value, which dictates the strength of the influence one neuron has
on another. During training, these weights are adjusted, enabling the network to capture patterns and
relationships within the data it processes.

Weighing in on weights and biases

Initially set to random values, these weights are fine-tuned through techniques such as backpropagation
and gradient descent, which we'll discuss later. This fine-tuning process is the core mechanism through
which NNs learn and adapt to different tasks.

Introduction to biases

Biases serve as essential parameters in NN, akin to constants that influence the behavior of individual
neurons within a layer. They are added to the weighted sum of inputs to a neuron before the activation
function is applied. Biases allow the network to account for variations and offsets in the input data,
enhancing its adaptability and flexibility.

As with weights, biases are initialized with small values and updated during training. They play a
crucial role in ensuring that the NN can effectively capture complex relationships within the data. For
example, Figure 11.2 demonstrates how your model’s inputs, weights, and biases produce an output
for a single node:

Weight,

Neuron

i

Weight,

Weight,

Figure 11.2: Weights and biases in a node of a simple network

In this example, we witness a “forward pass,” which involves passing the input data to the NN where
the weights and biases are used to produce an output. The process involves the following steps:

1. Each model input is multiplied by its respective weight.

2. The sum of the weight and input products is computed in the neuron.

3. The bias value is added to the weighted sum.

299

300

Building Networks with Deep Learning

4. An activation function (more on this shortly) is applied to the remaining value.

5. The result is the model’s output.

While this example goes over a single propagation within an incredibly basic, single-layer network,
note that most DL models have tens, hundreds, and even thousands of hidden layers. In Figure 11.1,
we saw an example of a simple NN with three hidden layers. The more complex the model, the more
hidden layers are required, resulting in a deeper NN. In the next section, we will review activation
functions, which aid our weights and bias in producing the model’s output.

Assessment

Explain the role of biases in NNs and how they differ from weights.

Answer

Biases serve as essential parameters in NNs, acting as constants that influence the behavior of individual
neurons within a layer. They are added to the weighted sum of inputs to a neuron before the activation
function is applied. Biases allow the network to account for variations and offsets in the input data,
enhancing its adaptability and flexibility. On the other hand, weights are numerical values that are
assigned to connections between neurons that dictate the strength of influence one neuron has on
another. During training, these weights are adjusted to capture patterns and relationships in the data.

Activating neurons with activation functions

We reviewed how weights and biases contribute to a model’s predictions in the previous section.
However, the fourth step in Figure 11.2 involves something called an activation function. What is an
activation function anyway?

In the intricate architecture of NNs, activation functions are the gears that infuse life and non-linearity
into the system. Activation functions are mathematical functions that are applied to the output of
each neuron, introducing non-linearity to the outputs. This is a key distinction between the application
of weights and biases in linear regression. Let’s explore the role and types of activation functions that
breathe vitality into NN.

At its core, non-linearity allows NNs to capture complex patterns in data that a linear approach would
miss. Imagine trying to fit a straight line to data that twists and turns in various directions. A linear
model would fail to capture the intricacies, but with non-linearity, a model can bend and adjust to
these curves, making it more adaptable and accurate.

Within the intricate framework of NNs, activation functions are like the heartbeats that introduce
this non-linearity. They are mathematical formulas that are applied to the output of each neuron,
ensuring the outputs aren’t just a straight-line prediction. Including non-linearity is a pivotal point
that differentiates NNs from linear models such as linear regression.

Activating neurons with activation functions

Referring back to Figure 11.2, an activation function operates at the neuron. The inputs, multiplied by
their weights plus the bias value, are all summed together and given as input to the activation function.
The output of the activation function is based on this input. For example, the step activation function,
which we will highlight again shortly, returns 1 if the input is greater than 0 and 0 for anything less than
0. This output may go on to the next become the input of the next neuron, and the process starts again.

Common activation functions

Now; let’s look at some of the most common activation functions that you will encounter when building
NNs. For each of the formulas in the list, we have the following:

o erepresents the mathematical constant Euler’s number (approximately 2.71828)
o ziisan element of the input vector, z

o The denominator, which is the sum of the exponential values of all elements in the input vector
Here is a list of formulas:

o Step: The output of the step function (also known as the Heaviside step function) is either 0 or
1. It says that if the value is 0 (or less than 0), then return 0. Otherwise, if it's anything greater
than 0, return 1. Hence, the step function is a “strong function” because there’s not much room
for ambiguity:

1forx 20
H(x) =
Oforx < 0

« Sigmoid: The sigmoid activation function squashes the input values into the range of [0, 1].
It’s often used in the output layer of binary classification tasks where the network needs to
produce probabilities:

« Hyperbolic tangent (tanh): Tanh is similar to sigmoid but squashes input values into the range
of [-1, 1]. It’s often used in hidden layers of NNs:

(e*—e™
(e’+e™

tanh(x) =

« Rectified Linear Unit (ReLU): ReLU is one of the most popular activation functions. It replaces
negative inputs with zero and passes positive inputs unchanged. ReLU has been highly effective
in training deep NNs (DNNs):

RelLU (x) = max (0,x)

301

302

Building Networks with Deep Learning

o Leaky ReLU: Leaky ReLU is a variant of ReLU that allows a small, nonzero gradient for negative
inputs to avoid the “dying ReLU” problem, where neurons get stuck in a non-active state:

x, ifx 20
LeakyReLU(x) =) .
negative slope x x, otherwise
o Softmax: The softmax function ensures that the output probabilities sum to 1, making it suitable
for multiclass classification tasks:

zi

02, = <

= Z:Kezjfori =1..,K
j

Note

Softmax is often used in the output layer of NNs for tasks such as image classification, NLP,
and various other classification problems.

« Linear: You are already familiar with this function:

flx) = ax+b

Choosing the right activation function

The choice of activation function depends on the problem at hand and the characteristics of the data.
Here are some examples:

o Sigmoid and tanh are suitable for specific scenarios such as binary classification, where the
output needs to be in a bounded range.

« Sigmoid is also used in multiple-label, multiple-class problems.

o ReLU and its variants are often preferred for DNNs due to their ability to mitigate the vanishing
gradient problem, which can hinder training in deeper architectures. We will talk about the
vanishing gradient problem later in this chapter.

 Softmax is suitable for multiclass classification problems (single label, multiple classes).

Experimentation and consideration of the activation functions’ properties, such as range, are crucial
in selecting the right one for your NN.

Assessment

What role do activation functions play in NNs, and why is non-linearity crucial for these systems?

Unraveling backpropagation

Answer

Activation functions introduce non-linearity into NNs by being applied to the output of each neuron.
This non-linearity ensures that the NN can capture and model complex relationships in the data,
which a linear model might not be able to represent.

Non-linearity can be understood as the property where the outcome does not change in direct
proportion to a change in any of the inputs. Without non-linearity, every layer of an NN would
essentially be a linear transformation, and no matter how many layers are added, the final output
would still be a linear function of the input. Therefore, activation functions are essential for NNs to
learn from complex datasets.

Assessment
Take a look at the following three scenarios:

A. An NN layer that needs to produce probabilities for binary classification
B. The output layer of an NN that is meant for image classification with multiple categories
C. Ahidden layer in a DNN where the vanishing gradient problem could be an issue

Given these scenarios, pick the most appropriate activation function in terms of sigmoid, ReLU,
softmax, and tanh.

Answer
Here are the answers:
A. Sigmoid: The sigmoid activation function squashes input values into the range of [0, 1],

making it suitable for producing probabilities, especially in binary classification tasks

B. Softmax: The softmax function ensures that the output probabilities sum to 1, making it
suitable for multiclass classification tasks such as image classification with multiple categories

C. ReLU:RelU and its variants are commonly used in hidden layers of DNNs due to their ability
to mitigate the vanishing gradient problem, which can hinder training in deeper architectures

Unraveling backpropagation

At this point, you may be wondering why weights, biases, and activation functions are so special.
After all, at this point, they probably seem not much different than parameters and hyperparameters
in traditional ML models. However, understanding backpropagation will solidify your appreciation
of how weights and biases work. This journey begins with a brief discussion of gradient descent.

303

304

Building Networks with Deep Learning

Gradient descent

In short, gradient descent is a powerful optimization algorithm that’s widely used in ML and DL to
minimize a cost or loss function. It is the name that’s given to the process of training a model on a
task by first making a prediction with the model, measuring how good that prediction is, and then
adjusting its weights slightly so that it will perform better next time. This process allows the model to
gradually make better predictions over many iterations of training. It is used to train not only NNs but
also other ML models, such as linear and logistic regression and principal component analysis (PCA).

To adjust the weights to improve the model, the error gradient concerning each of the weights is
computed. In essence, this means knowing how much each weight influenced the prediction error.
To do this with NNs, we use the backpropagation algorithm.

What is backpropagation?

Backpropagation, also known as “backward propagation of errors,” is a fundamental algorithm that’s
used to train artificial NNs (ANNS). It uses the chain rule from calculus to compute gradients quickly
and efliciently. The process was invented in the 1970s, but it wasn’t until the 1980s from the work of
Hinton and others that the algorithm was appreciated by the ML community. Just take a moment to
appreciate that this simple algorithm allows NN to be trained with a million+ weights.

The gradients point in the direction of the steepest ascent, and gradient descent takes steps in the
opposite direction to minimize the loss. Figure 11.3 displays a two-dimensional gradient descent graph
where a given parameter, p, is minimized to the global loss minimum:

Gradient

Global Loss Minimum

Figure 11.3: Optimizing for the global loss minimum

Unraveling backpropagation

If you were to flip the parabola in Figure 11.3 such that the opening faced down and the apex faced
up, the point in the middle would represent the global maximum instead. Gradient descent typically
involves finding either a maximum or minimum value of a parameter.

Loss functions

Loss functions, also known as cost functions or objective functions, serve as critical guides in training
models, helping them understand how well they are performing on a given task. These functions
quantify the disparity between predicted values and true target values, providing a measure of error.

Let’s quickly review some loss function examples and their respective errors (you may recognize many
of the error metrics from Chapter 10):

Loss Function Error

Regression Mean squared error (MSE), mean
squared logarithmic error (MSLE),
mean absolute error (MAE)

Binary classification Binary cross-entropy, hinge loss,
squared hinge loss

Multiclass classification Multiclass cross-entropy, sparse
multiclass cross-entropy

Figure 11.4: Loss functions

Gradient descent steps

The following are the basic steps that are taken in the backpropagation process:

1.

Forward pass: This is what we saw earlier in Figure 11.2. During the forward pass, input data is
fed into the NN, and it passes through each layer of neurons, including the input layer, hidden
layers (if any), and the output layer. At each neuron, the weighted sum of inputs is computed,
followed by the application of an activation function, which determines the neuron’s output;
this process continues through the network until it produces a final output.

Calculate the error: Once the network makes predictions, the next step is to calculate the error
or loss between the predicted output and the actual target values. The choice of the error metric
depends on the specific task; for example, MSE is common for regression, while cross-entropy
is used for classification tasks.

Backward pass (backpropagation): In this critical phase, the error is propagated backward
through the network, layer by layer. The goal is to determine how much each parameter
(weights and biases) contributed to the error. This is done by calculating the gradient of the
error concerning each parameter using the chain rule from calculus.

305

306

Building Networks with Deep Learning

Update the parameters: With the gradients in hand, the network updates its parameters
(weights and biases) in the opposite direction of the gradient. This step aims to reduce the error
by making small adjustments to the parameters. The size of these adjustments is controlled by
a hyperparameter called the learning rate.

Reiterate: Steps I to 4 are repeated iteratively for a specified number of epochs (times) or until
the error converges to a minimum. During each iteration, the network refines its parameter
values, attempting to minimize the error on the training data.

Validation and testing: After training, the NN’s performance is evaluated on validation data
to ensure it generalizes well to unseen examples. Testing is performed on a separate test dataset
to assess the model’s performance in real-world scenarios.

In short, forward propagation uses model inputs as signals, while backpropagation uses model
errors as input signals. By constantly re-evaluating their performance and tweaking weights and
biases, DL networks can self-correct their mistakes. In turn, DL models almost eliminate the lengthy
hyperparameter tuning required in ML models.

The vanishing gradient problem

The vanishing gradient problem is a challenge that occurs during the training of DNNs, particularly
those with many layers. It is characterized by diminishing gradient values as they are backpropagated
from the output layer to the earlier layers during training. When gradients become too small, the
network’s weights and biases are updated very slowly or not at all, resulting in slow or halted learning.

There are several reasons why vanishing gradients may occur:

Chain rule and backpropagation: During backpropagation, the gradients of the loss function
concerning the parameters (weights and biases) in each layer are calculated using the chain
rule. Gradients are propagated backward from the output layer to the input layer.

Activation functions: In deep networks, non-linear activation functions such as sigmoid or
tanh are often used. These functions squash their input values into a limited range, resulting
in derivatives that are small when inputs are far from zero.

Cumulative effect: As gradients are calculated layer by layer during backpropagation, the
derivatives of the activation functions are multiplied together. If these derivatives are consistently
small, the gradients can shrink exponentially as they move backward through the layers.

Weight initialization: Initial weight values can also contribute to the vanishing gradient
problem. If weights are initialized with very small values, the gradients in the early layers may
become too small to drive effective updates.

Unraveling backpropagation

Meanwhile, the exploding gradient problem is the counterpart of the vanishing gradient problem.
Instead of gradients becoming excessively small, they become exceptionally large during backpropagation,
leading to numerical instability during training. When gradients explode, they can cause weight
updates that are so large that they overshoot the optimal parameter values and prevent the model
from converging.

Here are some possible reasons why exploding gradients may occur:

« Gradient magnification: In deep networks, the gradients of the loss function concerning the
parameters can amplify as they are calculated and propagated backward through the layers.
This amplification occurs when the derivatives of activation functions are greater than one.

o Weight initialization: Poor choices of weight initialization, especially when initial weights are
too large, can exacerbate the exploding gradient problem. If weights are initialized with values
that are too large, gradients can explode during training.

The vanishing gradient problem can hinder the training of deep networks, especially recurrent NNs
(RNNs), which are special kinds of NN that are often used when working with time series data, and
networks with many layers (deep feedforward NNs or convolutional NNs (CNNs)). It often results
in slow convergence, and the network may struggle to capture long-term dependencies in sequential
data. The exploding gradient problem can lead to model instability, divergence during training, and
numerical overflow issues.

To mitigate it, techniques such as gradient clipping, which is a technique that limits gradient values
during training, and careful weight initialization are often employed. It works by setting a threshold
value, and if the gradient exceeds this value, it is scaled down to keep it within a certain range. This
prevents the weights from being updated too drastically, maintaining stability in the training process.
There are two main types of gradient clipping: value clipping and norm clipping. In value clipping,
each element of the gradient is clipped individually. If a gradient component is greater than the positive
threshold, it is set to the threshold. Similarly, if a component is less than the negative threshold, it
is set to the negative threshold. However, in norm clipping, instead of clipping each gradient value
individually, the entire gradient vector is scaled down.

You may also explore one of the following initialization methods to avoid vanishing and exploding gradients:

« Glorot or Xavier: This is a technique that’s used to initialize weights in such a way that the
variance of the activations is the same across every layer, which helps prevent the gradient from
exploding or vanishing. It is best used with tanh, sigmoid, and softmax activation functions.

o He: Similar to the Glorot method, the He weight initialization method focuses on initializing
weights in such a way that the variance of the activations is the same across every layer. However,
the methods differ in the way they calculate the variance of weights. This method is best used
with ReLU and its variants.

307

308

Building Networks with Deep Learning

Both the vanishing and exploding gradient problems are critical challenges in training DNNs, and
addressing them is essential for the successful convergence of DL models. Techniques such as using
appropriate activation functions, careful weight initialization strategies, gradient clipping, and
architectural modifications such as skip connections have been developed to alleviate these issues
and enable deep networks to be trained effectively.

Assessment

Describe backpropagation and its relation to gradient descent and loss functions in the context of
training NNG.

Answer

Backpropagation, also known as “backward propagation of errors,” is a central algorithm that’s used for
training ANNS. It’s the method through which these networks learn from their mistakes by adjusting
their internal parameters, namely weights and biases, to enhance performance on specific tasks.

Backpropagation is closely related to gradient descent and loss functions in the following way:

« Loss functions: These are essential metrics that help models understand their performance
by quantifying the difference between predicted values and the actual target values. The error
or loss that’s calculated using loss functions is a critical input to the backpropagation process.

o Gradient descent: Gradient descent is an optimization algorithm that is utilized in the iterative
process of refining model parameters, such as weights and biases, to find the best values that
minimize the cost or loss function. Backpropagation aids in determining how much each
parameter (weights and biases) contributed to the error by calculating the gradient of the error
concerning each parameter. This gradient is then used in the gradient descent algorithm to
update the model parameters, guiding the model toward better performance.

Assessment

Which of the following statements is true regarding the vanishing and exploding gradient problems
in DNNs?

A. The vanishing gradient problem results from gradients becoming excessively large
during backpropagation

B. The exploding gradient problem can cause weight updates that are so large that they prevent
the model from converging

C. Activation functions such as ReLU are the primary reasons for the vanishing gradient problem

Using optimizers

Answer

o Ais false - the vanishing gradient problem is characterized by diminishing gradient values,
not increasing ones

o Bistrue - when gradients explode, weight updates can become so large that they prevent the
model from converging

o Cis false - the vanishing gradient problem often arises due to activation functions such as
sigmoid or tanh, not ReLU

Using optimizers

At the heart of DL lies the optimization problem: finding the best set of model parameters (weights
and biases) that minimize a chosen loss function. Optimization algorithms play a pivotal role in this
journey by iteratively adjusting these parameters to reduce errors between predictions and actual
target values.

Optimization is a fundamental concept in mathematics that refers to the process of finding the
best or most favorable solution among a set of possible solutions. In the context of ML and DL,
optimization is used to adjust model parameters to minimize a cost, objective, or loss function (all
used interchangeably), leading to improved model performance. We have already covered that the
gradient descent algorithm is used for optimization. However, there are different versions of the
algorithm, and when constructing your NN, you can choose which of them to use.

Let’s consider some key aspects of optimization:

o Objective function: Optimization involves an objective function, also known as a cost function
or loss function, as mentioned earlier. This function quantifies the difference between the
predicted values of a model and the actual target values. The goal is to minimize (or maximize,
in some cases) this function.

o Local minimum: A local minimum is a point in the solution space where the objective function
has a lower value than at all nearby points but may not necessarily be the absolute lowest point
in the entire solution space. It’s like a dip in a hilly landscape where you’re at the lowest point
around, but there might be deeper valleys elsewhere.

o Global minimum: A global minimum is the absolute lowest point in the entire solution space,
where the objective function has its smallest value. It represents the best possible solution to the
optimization problem. Finding the global minimum can be challenging, especially in complex,
high-dimensional spaces.

The optimization process is always looking for the global minimum but can sometimes get stuck in
a local minimum. Different versions of the gradient descent algorithm were developed with different
approaches to find the global minimum, and we will talk about them in our next section.

309

310

Building Networks with Deep Learning

Optimization algorithms

Optimization algorithms, such as gradient descent and its variants, are employed to navigate through
the solution space to find either the global minimum or a satisfactory local minimum, depending
on the problem. The choice of optimization algorithm, learning rate, and other hyperparameters can
significantly impact the convergence of the optimization process and the quality of the solution found.

While gradient descent forms the bedrock, numerous advanced optimization algorithms have been
developed to address its limitations and accelerate training. Some common ones include the following:

o Stochastic gradient descent (SGD): An extension of gradient descent that computes gradients and
updates parameters using mini-batches of training data, making it more computationally efficient.

« Adaptive Moment Estimation (Adam): An adaptive learning rate optimization algorithm that
combines the advantages of momentum and Root Mean Squared Propagation (RMSprop).
Adam adjusts the learning rate individually for each parameter.

o RMSprop: An optimization algorithm that adapts the learning rate for each parameter based
on the magnitude of recent gradients.

« Adaptive Gradient Algorithm (AdaGrad): An optimization algorithm that adjusts learning
rates adaptively based on the historical gradient information for each parameter.

+ Adadelta: A variant of AdaGrad that addresses its sensitivity to the initial learning rate.

o Nadam: A combination of Nesterov Accelerated Gradient (NAG) and Adam that offers
improved convergence properties.

Choosing the right optimizer is as much an art as it is a science. The optimal choice often depends
on the specific problem, dataset, and model architecture. Furthermore, understanding the interplay
between learning rates, batch sizes, and optimization algorithms is crucial for efficient training and
model convergence.

Optimizers are the captain’s wheel that steers the ship of NN training. As we navigate through the
intricacies of DL, mastering the art of optimization will empower us to train models that not only
learn but excel in a wide range of tasks.

Network tuning
There are some common parameters that you should consider while improving model performance:

o Epochs: The number of “runs” or the number of times the NN trains on all the training data.
One epoch means one complete pass through the entire training dataset. Two epochs represent
two runs over the training data. We mentioned epochs earlier when we considered gradient
descent. While increasing this value adds complexity to the model, it isn’t the most effective
way of improving results.

Using optimizers 311

o Batch size: The number of samples fed to the model at a time. The model will update its weights
after processing a batch. If the batch size is too small, it may lead to noisy gradients slowing
the optimization process. However, if it is too large, it requires more computational resources,
which may make training slower and more expensive.

o Hidden Layers (n_hidden): The number of hidden layers. The more layers, the more complex
the model (for more complex tasks). It will also take more time to run, so reducing the number
of epochs a little may be helpful when increasing this parameter. Note that the hidden layers
begin after the input layer, so they don’t include it.

o Dropout: The drop parameter randomly drops some values propagated in the network during
training with X% (where X = dropout rate). Some of the input values to the NN are randomly
set to zero. This serves as a form of regularization as it forces the network to learn redundant
patterns for better generalization. This is because each neuron becomes more capable since it
cannot fully rely on its neighbors.

o Optimizers: The specific algorithm that’s used to update the weights during model training.
Examples include gradient descent, SGD, RMSprop, and Adam.

o Learning rate: This quantifies how quickly the optimizer converges. The larger the learning
rate, the more likely it may “overstep” the optimal values. Smaller learning rates are more
precise but take longer to train.

o Regularization: It’s ideal to use regularization where there is overfitting in the model. Examples
of regularization include L1 regularization such as the Lasso technique or L2 regularization
such as the Ridge technique.

o Batch normalization: This increases training speed and accuracy because it helps prevent
activations from becoming either too small or vanishing or too big or exploding.

Assessment

Which of the following statements best describes the relationship between a local minimum and a
global minimum in the context of optimization?
A. A local minimum is always higher in value than a global minimum

B. Alocal minimum is the absolute lowest point in the solution space, while a global minimum
is just a lower value than nearby points

C. A global minimum is the absolute lowest point in the solution space, while a local minimum
might not be the lowest point overall but is lower than all nearby points

D. A local minimum and global minimum are the same and represent the absolute lowest
points in the solution space

312

Building Networks with Deep Learning

Answer

The answer is C.

A local minimum is “a point in the solution space where the objective function has a lower value than
at all nearby points but may not necessarily be the absolute lowest point in the entire solution space.”
On the other hand, a global minimum is “the absolute lowest point in the entire solution space, where
the objective function has its smallest value.”

Assessment

What is the key advantage of using SGD over basic gradient descent in the context of optimization,
and how does it achieve this advantage?

Answer

The key advantage of using SGD over basic gradient descent is computational efficiency. SGD computes
gradients and updates parameters using mini-batches of training data instead of using the entire
dataset, making the process more efficient.

Understanding embeddings

At its core, an embedding is a mapping from a high-dimensional space to a lower-dimensional space
that captures essential characteristics or features of data in a more compact form. This transformation
not only reduces the dimensionality of the data but also helps NNs process and understand it
more effectively.

These compact, meaningful representations of data play a pivotal role in various applications, from
NLP to recommendation systems. In this section, well explore the concept of embeddings, their
significance, and how they are employed to enhance the capabilities of NNs.

Word embeddings

Word embeddings are among the most renowned and widely used types of embeddings. They
represent words as vectors in a continuous space, where each dimension of the vector corresponds to
a semantic or syntactic feature of the word. This representation enables NNs to grasp meanings and
relationships between words more intuitively.

Word embedding models generate word vectors by training on a large corpus of text data, learning to
place similar words close to each other in the embedding space. Word embeddings have revolutionized
NLP tasks, from sentiment analysis (SA) to machine translation, by providing models with a richer
understanding of linguistic context.

Other embeddings include item (for example, images) and graph embeddings.

Listing common network architectures

Training embeddings

Embeddings serve as the input layer in NNs, connecting raw data to the neural architecture. As the
network learns during training, these embeddings may get adjusted to optimize model performance
for the task at hand. Moreover, embeddings can be fine-tuned or kept static, depending on the
problem requirements.

Training embeddings can take one of two approaches:

o Pre-trained embeddings: Pre-trained embeddings, such as Word2Vec or Global Vectors
(GloVe), are learned on massive datasets and can be used directly in NN architectures. They offer
a valuable starting point for various tasks as they capture general relationships within the data.

o Task-specific embeddings: In some cases, embeddings may be trained specifically for a
particular task or dataset. This custom approach tailors embeddings to a specific problem,
potentially enhancing performance.

Assessment

In the context of embeddings and NNs, how do pre-trained embeddings differ from task-specific
embeddings, and what is the potential advantage of using pre-trained embeddings?

Answer

Pre-trained embeddings, such as Word2Vec or GloVe, are learned on massive datasets and are used
directly in NN architectures, capturing general relationships within the data. These embeddings provide
a valuable starting point for various tasks due to their broad understanding of data relationships. In
contrast, task-specific embeddings are trained specifically for a particular task or dataset, aiming to tailor
the embeddings closely to that problem. The potential advantage of using pre-trained embeddings is
that they offer a rich understanding of general data relationships, thus often speeding up training and
possibly leading to better performance, especially when task-specific data is limited or lacks diversity.

Listing common network architectures

In the ever-evolving world of DL, network architectures serve as the blueprints for intelligence.
Each architecture is a unique design, meticulously crafted to tackle specific challenges and excel in
particular domains.

In this section, we'll embark on a journey through the diverse terrain of NN architectures, from CNNs,
which conquer image analysis, to RNNs, which master sequential data, and from the creative minds
behind generative adversarial networks (GANSs) to the memory-enhancing capabilities of long short-
term memory (LSTM) networks. Here, we'll list some common architectures and their applications.

313

314

Building Networks with Deep Learning

Common networks

While explaining the distinctions between different network architectures is beyond the scope of this
book, it is important to understand the basic differences between the most common networks. Here
are some to keep in mind:

« ANNs: ANNSs consist of interconnected nodes (neurons) organized in layers — an input layer,
one or more hidden layers, and an output layer. Information flows forward through the
network during inference, and backpropagation is used during training to adjust the weights
to minimize the loss function.

« RNNs: RNNGs are sequence-to-sequence (seq2seq) models, designed for processing sequential
data such as text and time series data. They process sequences by maintaining a hidden state
that carries information from the past. The hidden state is updated at each time step, allowing
RNNs to capture dependencies over time. However, vanilla RNNs can suffer from the vanishing
gradient problem.

o LSTM networks: LSTMs are a type of RNN that are designed to overcome the vanishing
gradient problem. They use a more complex architecture with specialized gates (input, forget,
output) to control the flow of information in and out of the cell state. LSTMs are well suited
for modeling long-term dependencies in sequential data.

» Gated recurrent units (GRUs): GRUs are another type of RNN architecture similar to LSTMs.
They use gating mechanisms to control the flow of information within the network. GRUs are
computationally more efficient than LSTMs and have been successful in various sequential
data tasks.

o CNNs: CNNs are designed for processing grid-like data, such as images and videos. They use
convolutional layers to automatically extract hierarchical features from the input. Convolutional
filters slide over the input to detect patterns, and pooling layers reduce spatial dimensions.
CNNss are widely used in image classification and computer vision tasks.

+ GANs: GANs consist of two NNs - a generator and a discriminator - that are trained simultaneously.
The generator tries to generate data that is indistinguishable from real data, while the discriminator
aims to differentiate between real and generated data. This adversarial training process results
in the generation of realistic data.

« Graph convolutional networks (GCNs): GCNs are used for graph-structured data, such as
social networks and molecular graphs. They generalize convolutional operations on graphs by
aggregating information from neighboring nodes. GCNs can capture structural patterns and
dependencies in graph data.

o AEs: AEs are a type of NN architecture that’s used for unsupervised learning (UL) and
dimensionality reduction. AEs find applications in tasks such as data denoising, anomaly
detection, and FL. Variations of AEs, such as convolutional AEs (CAEs) and variational AEs
(VAEs), have been developed to address specific types of data and learning objectives.

Listing common network architectures

o Transformers: Transformers are a type of feed-forward neural network architecture that helped
improve the shortcomings of sequence-to-sequence models like RNNs and LSTMs. The Vaswani
et al. paper “Attention is All You Need” proposed transformers architecture with a mechanism
called self-attention, which helped overcome the shortcomings in previously used sequence-
to-sequence models like RNNs and LSTMs. These shortcomings include the vanishing gradient
problem, and long-term memory loss due to its architectural design.

The innerworkings of transformers are somewhat complex and thus beyond the scope of this
chapter. However, it is important to note some of their architectural features and benefits:

* Encoder: An encoder compresses the input data into a lower-dimensional representation,
often referred to as a “latent space” or “encoding” This process captures the most important
features and patterns in the data. The encoder uses self-attention and multi-head attention
mechanisms. The encoder “encodes” both word vector embeddings and positioning information.

* Decoder: A decoder reconstructs the input data from the lower-dimensional representation.
The goal is to minimize reconstruction errors between the input and the output, encouraging
the AE to learn a compact representation that retains important information.

* Encoder and decoder stacks: Transformers often consist of stacked layers of encoders and
decoders, allowing them to model complex seq2seq tasks effectively.

* Multi-head Attention (MHA): Transformers also use multiple-attention heads to learn
multiple sets of weight matrices, producing more complex feature maps with multiple output
channels. A multi-head attention mechanism simply allows the model to simultaneously
learn multiple “types” of information from the same input. For example, an MHA mechanism
might learn multiple pieces of information from the word “love’, such as the context of the
word, the part of speech the word represents, etc.

* Masked Multi-head Attention: MHA may use masking techniques to improve the performance
of a transformer. Masking is a method which “masks” words to improve its learning process.
It effectively eliminates the model’s dependency on “peaking” at future information, forcing
it to identify additional patterns on less information.

We will look at transformers and attention again later in the chapter.

Tools and packages

Python has firmly established itself as the lingua franca for researchers and practitioners alike. Its vast
ecosystem of libraries, frameworks, and tools has made the development of NNs more accessible and
efficient than ever before. Let’s take a closer look at some of the most popular tools and packages that
have become indispensable companions on the journey of building, training, and deploying NNs
in Python.

315

316

Building Networks with Deep Learning

TensorFlow, developed by Google, stands as one of the heavyweight champions of DL frameworks. Its
flexibility, scalability, and extensive community support make it an ideal choice for both research and
production environments. TensorFlow’s high-level APIs such as Keras simplify the process of building
and training NN, while its lower-level operations allow for fine-grained control and optimization.

Keras, now an integral part of TensorFlow, has earned a reputation as the go-to library for building
NN with ease. Its high-level API abstracts many complexities, making it accessible to beginners and
seasoned practitioners alike. With Keras, constructing intricate neural architectures becomes a matter
of simple and expressive code.

PyTorch has gained immense popularity for its dynamic computation graph and intuitive interface.
Developed by Metas AI Research lab, it empowers researchers and developers to experiment with
complex architectures and custom operations seamlessly. PyTorch’s dynamic nature lends itself well
to tasks involving variable-length sequences, RL, and generative models.

From DL frameworks such as TensorFlow and PyTorch to essential libraries for data manipulation
and visualization, these tools provide a robust foundation upon which the future of Al is being built.

Assessment

Explain the main difference between the architectures of LSTM networks and GRU networks, and
highlight specific use cases where each is beneficial.

Answer

LSTMs and GRUs are types of RNNs that are designed to handle sequential data, but they have
different architectures:

o LSTMs: These have a more complex architecture with specialized gates - input, forget, and
output gates. These gates control the flow of information in and out of the cell state. LSTMs
were specifically designed to tackle the vanishing gradient problem, which can be a challenge in
vanilla RNNs. The additional complexity of the LSTM allows it to model long-term dependencies
in sequential data. LSTMs tend to be preferred for tasks where long-term dependencies of the
data are critical, such as machine translation or speech recognition.

« GRUs: These are somewhat simpler in structure compared to LSTMs. Instead of having three
gates like an LSTM, they use gating mechanisms to control the flow of information but combine
the forget and input gates into a single “update” gate. GRUs are computationally more efficient
than LSTMs due to their simpler structure. They have been successful in various sequential
data tasks, especially when computational efficiency is crucial.

Introducing GenAl and LLMs

Introducing GenAl and LLMs

In the dynamic field of AI, language models stand as titans of NLU and generation. These models
have not only revolutionized the way we interact with machines but have also sparked a renaissance
in GenAL

In this section, we'll delve into the world of LLMs, which are generative language models trained on
massive text corpora (think in terms of most of the public data available on the internet) and can
contain billions of parameters. We will focus on exploring LLMs: their architecture, training, and
the transformative impact they have had on various applications, from text generation to chatbots,
language translation, and even creative storytelling.

Unveiling language models

At their core, language models are GenAI models - these are Al models that generate texts, images,
or other forms of media.

Specifically, language models are probabilistic models that learn the patterns, structure, and semantics
of NL through NLP tasks. These models can predict the next word in a sentence, generate coherent
paragraphs of text, and understand the meaning behind linguistic constructs - this is all thanks to
their knowledge of language, which they gained through extensive training on large text corpora.

The impact of LLMs and GenAlI reverberates across a multitude of domains:

o They have empowered chatbots to provide more natural and context-aware interactions
« They enable machines to translate languages, summarize texts, and generate human-like content

o They have become essential tools for creative writing, content generation, and even code
completion, revolutionizing content creation and software development

The advent of transformer architecture (mentioned in the Common networks section) marked a turning
point in the world of LLMs. As LLMs continue to evolve and grow in sophistication, they promise
to bridge the gap between humans and machines in unprecedented ways. They have also shown an
enormous potential to change the day-to-day reality of data scientists, who may spend less time building
models from scratch and more time mastering the application and tuning of pre-trained models.

Furthermore, companies who wish to capitalize on the power of GenAl are eagerly seeking data
scientists and Al engineers who have familiarity with this exciting new technology that has only become
dominant in data science roles in the past few years. Thus, the journey into GenAl is far from over,
and the stories, innovations, and applications it unfolds promise to be nothing short of extraordinary.

However, while LLMs and GenAI have opened doors to incredible possibilities, they have also raised
concerns about ethics, bias, and misuse. The responsibility of ensuring that these powerful models
are used for the greater good rests on the shoulders of researchers, developers, and society at large.

317

318

Building Networks with Deep Learning

Transformers and self-attention

Transformers, which are neural network architectures using encoders and decoders, brought forth
the concept of self-attention mechanisms, enabling models to capture long-range dependencies and
contextual information efficiently (more on this in a second). They gained popularity after the release
of “Attention Is All You Need” by Ashish Vaswani et al., published in 2017, and since then, they have
become a cornerstone in NLP and various other ML tasks. Transformers are an improvement to the
sequence-to-sequence models (seq2seq) like RNNs and LSTMs.

While the encoder is responsible for representing input data as vectors, the decoder is responsible
for receiving and analyzing the output of the encoder and producing a sequential output. This is an
appropriate architecture for NLP tasks such as text translation.

With transformers, the decoder can access additional hidden states, providing more “connections”
or inputs for the decoder to decode.

Thus, the popularity of transformers almost seems to have arisen overnight, but they are in fact the
result of years of DL architecture evolution. For example, while seq2seq models such as RNNs and
LSTMs have been around since the 1990s (later enhanced with attention), transformers introduced
the concept of “self-attention.”

Let’s take a look at the difference between the two:

o Attention is used in encoder-decoder transformer models, and calculates model weights using
input queries and elements keys. These keys are then used to calculate weighted averages. The
introduction of attention allowed the network to “remember” more information by connecting
encoder outputs directly to decoder inputs. Think of the hidden state as a bottleneck like a
toothpaste tube. You can only squeeze so much toothpaste (aka information) through the tube
at a time. Attention was proposed as an extension to the encoder-decoder framework to connect
information from one sequence (for example, input or encoder) to another (for example, output
or decoder) directly, to produce predictions.

« Self-attention is like attention 2.0. Although similar, it has an important distinction. While
attention allows transformers to access information from a different sequence, self-attention
networks take this a step further by retaining an even larger context of information. This is
achieved by connecting and learning information throughout the entire model architecture,
creating multiple layers of weights of an input, which are then projected on the embeddings
space. Instead of isolating the learning process within the encoder and decoder respectively,
and then connecting them with attention, self-attention liberated AI from the seq2seq
component entirely (although it can still be used to learn seq2seq tasks). In self-attention, the
attention mechanism is used to encode information instead of seq2seq models such as RNNs
by connecting multiple input variables throughout the network. Think of self-attention as a
brain with multiple neuron connections throughout the entire brain as opposed to a system
that only has a single highway between input and learned output. It would be much harder for
us to learn information with such a limitation!

Introducing GenAl and LLMs

In short, self-attention allows each element in a sequence to consider all other elements when making
predictions, capturing long-range dependencies efficiently.

Assessment

Describe the primary components and functionalities of transformers, and explain how they differ
from traditional sequence-based models such as RNNs and LSTMs.

Answer

A transformer is a DL architecture that has become foundational in NLP and various other ML tasks.
Its primary components and functionalities include the self-attention mechanism, which efficiently
captures long-range dependencies; MHA, which allows the model to learn different types of relationships
from the data concurrently; positional encoding, which gives the model a sense of order in the data;
and encoders and decoders, which make the models great for complex seq2seq tasks.

Traditional sequence models such as RNNs and LSTMs process data in a sequential manner, with
each step being dependent on the previous. In contrast, transformers can process all elements of a
sequence in parallel thanks to the self-attention mechanism. Additionally, transformers, due to their
self-attention mechanism, can capture long-range dependencies more effectively than RNNs or LSTMs,
without worrying about issues such as the vanishing gradient problem.

Transfer Learning

After the introduction of transformers and self-attention networks, the realm of Al exploded with some
of the most influential LLMs, including BERT, GPT, Text-to-Text-Transfer Transformer (T5), and
their successors. These models became so powerful (in part because of their access to large corpora)
that they gave rise to TL.

Transfer Learning (TL) is an Al technique in which a pre-trained model, initially trained on a large
dataset for a specific task, is reused as a starting point for a different but related task. Therefore,
instead of training a model from scratch, TL leverages knowledge and learned representations from
the pre-trained model, allowing it to adapt more quickly to the new task.

TL is especially valuable when labeled data for the new task is limited, as it can significantly reduce
the amount of data required for training. This approach has democratized Al development, allowing
developers to leverage pre-trained models and adapt them to various applications.

GPT in action

As previously mentioned, GPT is one of the most popular pre-trained LLMs. Data scientists who used
to build NLP tasks from scratch using Word2Vec embedding methods may now apply and fine-tune
a GPT model, which already has a wealth of semantic language understanding. Thus, it’s important
to understand how to implement basic NLP tasks using GPT.

319

320

Building Networks with Deep Learning

This section will provide some very basic implementations of text generation, named entity recognition
(NER), and SA as a means to demonstrate the power of GPT using just a few lines of code. We encourage
you to try more advanced examples in your LLM learning journey!

(N
Note

In a real-world scenario, you would need to handle additional considerations such as model
training, data preprocessing, and error handling. There are already entire texts dedicated to
these topics. However, these examples are for illustrative purposes to provide a “crash course”
on LLM implementation and aid you in LLM implementation conversations during interviews.

- J

To get started, install the transformers library using pip:

pip install transformers
Now, let’s have a look at three different examples.

Example 1 - Sentiment Analysis (SA)

SA is an NLP task involving extracting sentiment from a given text input. This is an example of
analyzing the sentiment of a provided text:

from transformers import pipeline

nlp = pipeline("sentiment-analysis")

result = nlp("I love this movie!" [0]

print (f"label: {result['label'], with score: {round(result['score'l],

4) } ")
In this code, we do the following:

o Import the pipeline function from the transformers library
o Create an SA pipeline
o Pass text to the pipeline and index the result

o Print the sentiment prediction and its corresponding score using f-strings

Example 2 - Named Entity Recognition (NER)

NER is an NLP task involving extracting a named entity (for example, a person, place, and so on) from
a given text input. This is an example of extracting a named entity from a provided text:

from transformers import pipeline

nlp = pipeline("ner")
result = nlp("Harrison Ford was in Star Wars.")

Introducing GenAl and LLMs 321

for entity in result:
print (f"{entity['entity']l}: {entity['word']}")

In this code, we do the following:

o Import the pipeline function from the transformers library
o Create an NER pipeline
o Pass text to the pipeline and index the result

« DPrint each recognized entity and its corresponding word in the text
Example 3 - Text generation

Text generation is an NLP task involving the generation of new text from a given input text. Here is
an example of generating text provided some input text:

from transformers import GPT2LMHeadModel, GPT2Tokenizer

tokenizer = GPT2Tokenizer.from pretrained("gpt2")
model = GPT2LMHeadModel.from pretrained("gpt2")

input text = "Once upon a time"
input ids = tokenizer.encode (input text, return tensors='pt')

output = model.generate (input ids, max length=100, temperature=0.7,
do sample=True)

output text = tokenizer.decode (output[:, input ids.shape[-1]:][0],
skip special tokens=True)

print (output_ text)
In this code, we do the following:
o Import the necessary modules from the t ransformers library
o Load the GPT-2 model and GPT tokenizer

o Encode the text input into a machine-legible format

o Apply the model to generate text, specifying a maximum length and a temperature (which
controls the randomness of the output)

o Decode the output from the model into human-readable text and print it

322

Building Networks with Deep Learning

Summary

In this comprehensive exploration of DL, we embarked on a journey through the intricate landscapes
of NN, optimization algorithms, and fundamental concepts that underpin this transformative field.
We began our voyage by deciphering NN fundamentals, understanding the building blocks of DL, and
uncovering the power of activation functions, weight initialization, and embeddings. As we delved
deeper, we navigated the seas of optimization, unraveling the intricacies of gradient descent, learning
rates, and various optimization algorithms that guide the training of NNs. We also shed light on the
vanishing and exploding gradient problems, which are crucial challenges to overcome in the pursuit
of effective training.

Our odyssey continued with a tour of common network architectures, from CNNs mastering image
analysis to RNNs and LSTM:s excelling in sequential data tasks. We encountered the creative minds
behind GANS, explored the power of transformers in NLU, and marveled at the capabilities of GCNs
and GRUs. Transfer learning, auto encoders, embeddings, and the ethics of Al played pivotal roles
in our journey, each adding a unique dimension to the ever-expanding universe of DL. We then
explored the introduction of GenAl, particularly LLMs, and their evolution from seq2seq models
with attention, to self-attention networks.

As we approach the shore of this chapter’s conclusion, it’s clear that DL is not merely a collection of
techniques but a boundless realm of innovation and discovery. It empowers machines to comprehend
and generate human-like intelligence, revolutionizing industries, research, and everyday life. As the
tides of progress continue to surge, our voyage into the depths of DL is far from over, promising new
horizons of understanding, creativity, and transformation in the ever-evolving world of AL

In the next chapter, we will take our knowledge of how to build models to the next level by discussing
model deployment.

12

Implementing Machine

Learning Solutions with MLOps

Machine Learning Operations (MLOps) has emerged as a pivotal force in the data-driven age,
enabling organizations to develop, deploy, and maintain machine learning models efficiently and
effectively. It addresses key challenges related to speed, collaboration, governance, scalability, and
cost, making it a discipline to be aware of for anyone navigating the modern landscape of artificial
intelligence and machine learning.

In the following sections, we will break down the concept of MLOps, explore its core components, and
provide insights into how it can elevate your machine learning initiatives. Whether you're an aspiring
data scientist looking to see your models in action, an IT professional managing infrastructure, or a
business leader shaping data-driven strategies, this chapter will equip you with the knowledge and
tools you need to navigate the exciting and dynamic world of MLOps and have confidence in applying
machine learning concepts to tackle data-driven challenges.

In this chapter, we will cover the following topics:

Introducing MLOps

Understanding data ingestion
Learning the basics of data storage
Reviewing model development
Packaging for model deployment
Deploying a model with containers
Validating and monitoring the model

Using Azure Machine Learning (Azure ML) for MLOps

324

Implementing Machine Learning Solutions with MLOps

Introducing MLOps

MLOps is an emerging discipline that blends the principles of DevOps and data science to streamline
and enhance the machine learning life cycle. It encompasses a set of practices, principles, and tools
designed to facilitate the entire journey of a machine learning model, from its inception to deployment,
and beyond. In other words, MLOps is the bridge that connects the world of data science with the
world of IT operations.

MLOps ensures that the promising machine learning models created by data scientists can be
operationalized and maintained effectively in production environments. MLOps involves a holistic
approach to managing machine learning workflows, covering aspects such as data acquisition, model
development, testing, deployment, monitoring, and continuous improvement.

Why should you, as a reader, invest your time and energy in understanding and implementing MLOps?
Here are some compelling reasons:

» Efficiency and speed: MLOps significantly improves the efficiency and speed of machine
learning model development. It enables data scientists and machine learning/data engineers to
iterate quickly and get models into production faster. This acceleration can be a game-changer
for businesses aiming to stay competitive in rapidly changing markets.

o Collaboration: MLOps encourages close collaboration between data science and IT operations
teams. This cross-functional cooperation ensures that the expertise of each group is leveraged
effectively, leading to better outcomes and more successful projects.

o Model governance: In the era of data privacy regulations and industry standards, effective
model governance is vital. MLOps provides the infrastructure needed to track and manage
models, version data, and ensure compliance. This is particularly important for industries such
as healthcare and finance, where regulatory requirements are stringent.

o Scalability: As machine learning models become more central to business processes, scalability
is essential. MLOps helps organizations scale their machine learning workflows efficiently,
whether it's deploying models across multiple regions, handling large volumes of data, or
supporting more users and applications.

o Cost reduction: By automating repetitive tasks, optimizing resource utilization, and preventing
costly errors, MLOps can lead to significant cost savings. It reduces the risk of downtime due
to faulty models and minimizes the need for manual intervention in the deployment and
monitoring processes.

o Managing resources: In addition to managing costs, there is a significant need to manage data
from various processes (batch and streaming) across often complex data architectures, as well
as managing code with version control.

Introducing MLOps

If you ask someone what exactly MLOps entails, you’ll get a million and two answers. This is because
MLOps continues to be a very broad topic spanning roles, functionalities, and departments. While we
can already assume that data scientists and data engineers are relevant to MLOps, you’ll be surprised to
learn that even IT and governance can be included in this massive process. However, if you're working
for a smaller organization or start-up, you may discover that all of these roles are one and the same.

A model pipeline overview

A pivotal aspect of thriving in MLOps, a domain critical for modern data-driven organizations, is
the mastery of crafting efficient and highly reproducible model pipelines. These pipelines aren’t just
a component of the workflow; they are also the backbone of a transformative approach in machine
learning. By automating the intricate processes of building, training, and deploying machine learning
models, these pipelines revolutionize the journey from a mere prototype to a robust production-ready
solution. This automation not only dramatically accelerates the development cycle but also guarantees a
consistent and error-free deployment, which is indispensable in today’s fast-paced, data-centric world.

Developing model pipelines involves several essential steps and often relies on specific technologies
to ensure reliability and consistency. You can see the data pipeline here:

Model Model Model
Deployment Validation Monitoring

Data
Ingestion

Maodel

DERIAGE L Development

Figure 12.1: The data pipeline steps

This pipeline may look familiar because we've touched on most of these steps while learning about the
ML workflow. However, there’s so much more that goes on beyond the development and validation
of the model.

Assessment

What is the significance of model pipelines in MLOps, and how do they contribute to the efficiency
of machine learning workflows?

325

326

Implementing Machine Learning Solutions with MLOps

Answer

Model pipelines play a crucial role in MLOps, as they contribute to the efficiency of machine learning
workflows in several ways:

« Automation: Model pipelines automate the complex processes of building, training, and deploying
machine learning models. This automation speeds up the development cycle, making it possible
to go from a prototype to a production-ready solution quickly. For example, an e-commerce
company can use model pipelines to automate the reccommendation engine’s development and
deployment, enhancing the user experience.

» Consistency: Model pipelines ensure consistency in model deployment. They guarantee that
the same steps are followed every time, reducing the risk of errors and inconsistencies. In a
healthcare setting, consistency is vital when deploying diagnostic models to ensure patient safety.

o Reproducibility: Model pipelines facilitate reproducibility by recording every step of the
process. This is important in industries such as pharmaceuticals, where regulatory bodies
require complete documentation of the model development process.

Now, in the following sections, we will take a look at each of these steps and the tools that are involved
in each.

Understanding data ingestion

The responsibility of completing tasks within the early stages of the data pipeline (i.e., data ingestion
and data storage) often falls under the responsibility of a machine learning/data engineer and not
the data scientist. However, a data scientist should be able to understand what happens during these
stages at a high level.

In the simplest terms, data ingestion involves developing automated processes to collect the data used
for data science models automatically. Often, organizations/businesses already have processes in place
to collect basic information about their activities, such as tracking website usage or customer purchase
transactions. However, sometimes, to solve a particular organizational/business question, new data
needs to be collected. The goal here is to automate the process to ensure that the data eventually used
in a model is consistent, reliable, and free of bias to the best of the organization’ ability.

Data ingestion usually occurs with ETL (extract, transform, load) or ELT (extract, load, transform)
pipelines and typically involves batch and/or streaming processes. Going into depth about these two
pipeline processes is outside the scope of this book; however, the important aspect to know is that
these processes automatically collect data for an organization and output it, often in a structured
format, ready for further processing or storage.

Understanding data ingestion

Here is a list of some of the technologies used during this step, each with their different strengths:

Apache Storm: Apache Storm is a real-time stream processing system designed for handling
high-throughput, low-latency processing of data streams. It’s often used to process data as it
arrives and can be integrated with other databases and message brokers.

Apache Beam: Apache Beam is an open source, unified stream and batch processing model and
SDK that allows developers to write data processing pipelines, running on multiple processing
engines, including Apache Spark, Apache Flink, and Google Cloud Dataflow.

Hadoop: Hadoop is an open source framework for the distributed storage and processing of
large datasets, using a cluster of commodity hardware. It was developed by the Apache Software
Foundation and has become a fundamental technology for handling big data. Hadoop is inspired
by the Google File System and the MapReduce programming model, and it provides a scalable
and fault-tolerant infrastructure to manage and process vast amounts of data.

Hive: Hive is an open source data warehousing and SQL-like query language for Hadoop. It was
originally developed by Facebook and is now maintained by the Apache Software Foundation.
Hive provides a high-level interface to query and analyze data stored in Hadoop clusters, using
a language similar to SQL called Hive Query Language (HiveQL). Hive allows users to create
custom functions in Java, Python, or other languages to extend its functionality and perform
complex operations. Furthermore, Hive integrates with various tools and frameworks in the
Hadoop ecosystem, including HBase, Spark, and Pig.

Apache Spark: Apache Spark is an open source big data processing framework that provides a
unified and distributed computing engine for data processing. It’s designed for speed and ease
of use, making it suitable for large-scale data preprocessing and transformation tasks. It uses
an in-memory processing model to process data in parallel across a cluster of computers and
employs a directed acyclic graph (DAG) execution model to optimize data processing workflows.
Spark’s core data structure is the Resilient Distributed Dataset (RDD), which is fault-tolerant
and allows for parallel processing. In Python, you can use Spark with the PySpark APL

Dask: Dask is a versatile and powerful data processing framework, but it’s unique in the sense
that it can handle both batch and stream data processing, making it a great choice for a wide
range of data processing tasks. It is an open source parallel computing library in Python that
can handle larger-than-memory datasets. It is designed for parallel computing and distributed
computing tasks. Similar to Spark, Dask breaks down complex tasks into smaller, manageable
operations that can be parallelized. It leverages parallel computing frameworks such as threading,
multiprocessing, and distributed computing to process data in a distributed and scalable manner.

Although Spark (https://spark.apache.org/)and Dask (https://www.dask.org/)
are beyond the scope of this chapter, it’s worth looking into the documentation of both frameworks
to understand the program syntax. If you're pretty comfortable with Pandas, you’ll be up and running
in Spark and Dask in no time!

327

https://spark.apache.org/
https://www.dask.org/

328

Implementing Machine Learning Solutions with MLOps

Now that you have the data ingested, let’s discuss how you might want to organize and store it.

Learning the basics of data storage

As stated earlier, the data storage step in the model pipeline process tends to be a function of machine
learning/data engineers. However, it is beneficial for a data scientist to have a basic understanding
of this step.

Data storage is simply about housing the data that we gather from different sources. There are a
variety of approaches to this, depending on the data’s requirements (e.g., the structure, schema, size,
ingestion type, privacy, etc.).

The following are some examples of data storage options within MLOps:

Binary Large Object (BLOB) storage: BLOB storage is a type of data storage that is designed
to store and manage large binary data, such as images, videos, documents, and other types of
files. BLOBs can be of varying sizes, from small to very large, and they are typically unstructured
data, meaning they lack a specific schema or organization. In modern data architectures, the
cloud services offered by Azure Blob Storage, Amazon S3 (Simple Storage Service), and Google
Cloud Storage are used to store and manage BLOB data. These services are highly scalable,
durable, and optimized for web and cloud-based applications.

Traditional databases: As you've already learned, traditional, structured databases are relational
database management systems (RDBMSs) that use a structured and tabular format to store
and manage data. SQL is both a language and a set of conventions used to define, query, and
manipulate data within these databases. SQL databases are widely used in various applications
and systems to manage structured data efficiently.

Graph databases: Graph databases are a category of NoSQL databases designed to store and
manage data in the form of graphs. In graph databases, data is structured as nodes (vertices)
and edges (relationships), allowing for the representation and storage of complex and highly
connected data. These databases are particularly well-suited for data models where relationships
between entities are as important as the entities themselves. In a graph database, data is organized
into a graph, which consists of nodes and edges. Nodes represent entities (such as people,
products, or locations), and edges represent the relationships or connections between these
entities. They often come with their own query languages, such as Cypher (used in Neo4;j),
Gremlin (used in Apache TinkerPop), and SPARQL (used in RDF databases).

So far, data has been collected, organized, and stored. It's now ready for model development, where
you can flex your data scientist muscles to develop an awesome model.

Reviewing model development

Reviewing model development

Model development includes discovering relationships between data and features and better understanding
the context of the business question being solved. This may also be a good time to understand KPIs
and success measures, as well as the overall structure of the business problem. Performing descriptive
statistical analysis and creating data visualizations are also ideal activities at this stage of the pipeline.

As you learned in previous chapters, you can perform data analysis and model development in Python,
as well as R. Python offers a number of useful packages that we've already discussed, including Keras,
TensorFlow, and PyTorch. There are also “auto-ML’ frameworks where models can be developed and
run in the cloud, including Google AutoML, Azure ML Studio, Amazon SageMaker, IBM Watson,
Databricks AutoML, H20, and Hugging Face.

We will skip over the details of ML development, since we already discussed them at length in the
chapter on machine learning in Chapter 10. However, it is worth noting an important concept that
we did not discuss — experiments.

Experiments are systematic and structured trials or tests that you conduct during the model training
and evaluation process. In Chapter 10, we talked about model tuning, where you adjust different model
hyperparameters to find the optimal combination. Experiments allow you to do this. For example,
you might run different experiments to test how the number of random forests impacts your results.
You have already been informally exposed to experiments during the localized model-tuning process
on your machine.

However, when tuning models in the cloud, you can systematically track the performance of each
experiment with specific model architectures, features, and sets of hyperparameters. This process also
involves tracking model performance metrics.

Open source options for tools to run experiments and track the results include MLflow, Weights &
Biases (W&B), Data Version Control (DVC), and Guild Al The advantage of automating model
hyperparameter tuning through code is that it can be integrated into your model-training MLOps
pipeline. Consequently, you can easily rerun these experiments as needed in the future for retraining
purposes. Additionally, this approach documents the process of selecting the best model.

Choosing a model that meets or outperforms a given threshold is useful to determine the best-fit
model. Once the best model is chosen, stress-testing it (for example, by giving it specific test data that
it may encounter in the real world) and automating unit testing are also typically part of the model
development process. Now, let’s turn our attention to model deployment and how to package the
model for deployment.

329

330

Implementing Machine Learning Solutions with MLOps

Packaging for model deployment

Once you're happy with the model that you've chosen in the model development process, it is time
for the model deployment process! However, before deploying the model, it is important that it’s
properly packaged for production. There are a number of approaches to packaging an ML software
program, but we will review the version that you are more equipped to learn — Python pip packages.

pip is the standard package manager for Python, and it is used to install, upgrade, and manage Python
libraries and dependencies. A Python pip package refers to a software package that can be easily
installed and managed using the pip package manager.

Most Python packages are hosted on the Python Package Index (PyPI), which is a repository of
Python packages that can be easily accessed and installed using pip. These packages are designed to be
libraries or reusable modules that can be imported and used in other Python scripts or projects. The
main functionality of the package is organized in Python modules and can be accessed by importing
them, but there is no specific “main” script like you might find in a standalone application.

A pip package typically consists of one or more Python modules, scripts, or other resources that provide
specific functionality. These packages are created and distributed to facilitate the reuse of code and to
allow developers to easily integrate them into their projects.

These pip packages can take many forms depending on the project; however, when discussing packaging
for deployment, it’s important to consider any requirements for your code and the environment it runs
in for your model to run correctly. We will discuss them in the upcoming subsections.

Identifying requirements

One important point about packaging your model for deployment includes identifying the requirements
to run the model. For example, does your model script require the Python packages of NumPy,
Pandas, or scikit-learn to run correctly? If so, what versions of those packages? What version of
Python is required?

When building a pip package, you can define some of these requirements in the Requirements. txt
files. This is a configuration text/flat file that specifies all the versions of each package you want to use.
Then, when a teammate runs your code, the code references the correct packages and their versions.

Now that you've defined the requirements for your model, we should start to think about the environment
that you run your model in.

Packaging for model deployment

Virtual environments

As we journey deeper into the world of MLOps, particularly in the context of deploying ML models,
one significant aspect stands out - the creation and management of your environment using code.
Often, when using the cloud, you can use code to define what type of computing resources you want
your model to run on. For example, you can write in code that you want to deploy your model on a
computer running the exact version of Python you identified in your requirements section for your
model. This practice, often referred to as Infrastructure as Code (IaC), is a key strategy that allows
data scientists, particularly those venturing into MLOps, to handle environments where ML models
run efficiently and reliably.

Understanding the benefits of defining environments through code is crucial. Firstly, it ensures
consistency. By codifying the environment, you ensure that your model runs in a controlled and
predictable setting, reducing “it works on my machine” syndrome. This consistency is vital when
moving models from development to production, where differing environments can lead to unexpected
behaviors in models.

Moreover, using code to define environments enhances collaboration and version control. Teams can
share, review, and update environment configurations just as they would with source code, making
collaborative work more streamlined. This approach also integrates smoothly with version control
systems such as Git, allowing you to track changes and maintain a history of an environment, just
like you would with your models and data pipelines.

Tools and approaches for environment management

Several tools and approaches can be employed to manage environments in code.

For containerization, Docker (which we will talk about shortly) is a popular choice, allowing you
to package your application and its dependencies in a container that can run on any system. This
encapsulation ensures that your model has all the necessary libraries and settings, irrespective of
where it’s deployed.

To orchestrate these containers, particularly in more complex deployments, tools such as Kubernetes
can be invaluable. “Orchestrate” in this context refers to the coordinated management and control
of multiple containers, ensuring they work together seamlessly. Kubernetes helps manage and scale
your containers across multiple machines, handling tasks such as load balancing and fault tolerance.
It’s particularly useful when deploying models at scale.

On the infrastructure side, tools such as Terraform or AWS CloudFormation allow you to define cloud
resources as code. This means you can create, modify, and manage the cloud infrastructure that supports
your models in a repeatable and automated manner. By using these tools, you can easily replicate your
production environment for testing, ensuring that your models behave as expected when deployed.

331

332

Implementing Machine Learning Solutions with MLOps

As you progress from defining model requirements to deploying them, integrating environment
management into your workflow is a logical next step. By treating your environment as part of your code
base, you align it with the core principles of MLOps - reproducibility, scalability, and maintainability.
This approach not only simplifies the deployment process but also paves the way for more robust
and reliable ML systems. Container software tools such as Docker and Kubernetes are popular for
managing the model environment. Let’s discuss containers more as we discuss model deployments.

Deploying a model with containers

In the world of MLOps, containers have become a cornerstone for deploying ML models, offering a
lightweight, consistent, and scalable solution for running applications, including ML models, across
various environments. Containers encapsulate an application, its dependencies, and runtime into
a single package, ensuring that the model behaves the same way regardless of where it is deployed.

This is particularly important in MLOps, where models need to perform consistently across development,
testing, and production environments. Once the model is containerized, it can be deployed to a variety
of platforms. Cloud services such as Azure Kubernetes Service (AKS) or Amazon Elastic Kubernetes
Service (EKS) can be used to manage and scale containers.

Containers address several key challenges in MLOps. First, they solve the “it works on my machine”
problem by providing an isolated environment that is consistent across all stages of the deployment
pipeline. Second, they facilitate scalability and load balancing, which are crucial for handling
varying demands in production. Lastly, containers enhance collaboration among team members by
ensuring that everyone works in a consistent environment, reducing conflicts and speeding up the
development process.

Now that you know more about some of the benefits of containers, let’s turn our focus to a very popular
containerization tool — Docker.

Using Docker

Docker is a very popular tool for creating and managing containers. It allows you to define your
environment and dependencies in a Dockerfile, which can then be used to build a container image.
Here’s a basic example of a Dockerfile for an ML application:

Use an official Python runtime as a parent image

FROM python:3.8-slim

Set the working directory in the container

WORKDIR /usr/src/app

Copy the current directory contents into the container
COPY

Install any needed packages specified in requirements.txt
RUN pip install --no-cache-dir -r requirements.txt

Make port 80 available to the world outside this container

Deploying a model with containers

EXPOSE 80

Define environment variable

ENV NAME World

Run app.py when the container launches
CMD ["python", "app.py"]

In this Dockerfile, we define a Python environment, set up the necessary files, install dependencies,
and specify how the application should run. We then tell Docker to run the Python program called
app . py once the container launches.

Let’s assume that app . py contains code you have written to take in input from the outside world
and process it with your trained model to return a result. Once the container is up and running, this
makes your model available to start churning out predictions. However, at this point, the model is
not running yet because all we have done is give Docker a list of instructions. We still have to build
and run the container.

Once the Dockerfile is defined, you can build and run a container using Docker commands. Here’s
how you do it:

Build the Docker image
docker build -t my-model

Run the Docker container
docker run -p 4000:80 my-model

This builds a Docker image named my -model and runs it, mapping port 80 of the container to port
4000 of the host machine. Your model should now be up and running and ready to accept input.

To summarize this section, in an MLOps pipeline, containers are typically used in the training and
deployment phase. After a model is developed and trained, it is packaged into a container. This container
can then be deployed to various environments (such as testing, staging, and production) without any
changes, ensuring consistency across the pipeline. For more complex applications, especially those
requiring scalability and high availability, you might use Kubernetes in your MLOps deployment
process to manage the automation and deployment of containers across a cluster of machines, such
as the Docker container we just discussed.

Assessment

What is Docker, and how does it contribute to the containerization process in MLOps? Also, discuss
why containers are so important to the MLOps process.

Answer

Docker is a popular containerization tool used extensively in MLOps, simplifying the process of
creating and managing containers.

333

334

Implementing Machine Learning Solutions with MLOps

In the realm of MLOps, containers play a pivotal role, and they have been crucial for deploying ML
models effectively. These lightweight, portable, and self-contained units package not just the model
but also its dependencies and runtime environment. This encapsulation ensures that an ML model
behaves consistently, regardless of the environment which it’s deployed in. Additionally, collaboration
is at the heart of MLOps, and containers facilitate it by offering a standardized environment for all
team members. This harmonizes efforts, reduces conflicts, and accelerates the development cycle.

Validating and monitoring the model

After you've successfully trained and deployed your ML model, the journey doesn't end there. Model
validation and monitoring are the important next steps in your MLOps process. We will briefly discuss
validating your deployed model and then focus on monitoring it long-term.

Validating the model deployment

Once your model is deployed, you will want to validate that it works as expected. This is a relatively
short and straightforward process. The general steps involve connecting to your deployed model,
submitting some data (preferably data unseen by the model during the training process), collecting
the model predictions, and scoring them.

This will allow you to confirm a couple of things. First, you know that your deployment worked, and
your model is returning results. Secondly, if you submit unseen data to the model and score it, this
will give you another assessment of the model’s performance. You don’t want to be surprised by it.
Thus, it is a good idea to check that you're getting the results that you expected.

Assuming that your model is deployed with Docker, here is a sample of how you might validate your
deployed model (we are only providing pseudocode because the details of your code will depend a lot
on the context, such as how your model is deployed and the types of input it will expect):

import requests

Prepare unseen data (ensure it has the same features as the training
data)

unseen data =

Get the IP address of the container
ip address =

Make predictions on the unseen data

response = requests.post (f'http://{ip address}:port/predict',
json={'data': 'unseen data'})

Evaluate model performance (e.g., calculate accuracy or other
metrics)

Validating and monitoring the model

This code highlights gathering data unseen by the model during its training, finding out the IP address
of your deployed container, and then submitting the data. Finally, the response value is evaluated for
its performance. If your code cannot complete the steps of producing a prediction or the prediction
values aren’t as expected, you know you have an issue with your model or model deployment.

Once you've validated that your deployed model performs as expected, then you will need to think
about monitoring it.

Model monitoring

Model monitoring is a crucial aspect of the ML life cycle, involving tracking, analyzing, and maintaining
your models to ensure they continue to perform well in production. In Azure ML, you can implement
model monitoring as part of your broader MLOps pipeline.

Imagine you've built a model that predicts customer preferences for an e-commerce platform. Initially,
everything seems perfect; your model is making accurate recommendations, and everyone is happy.
But what happens when, over time, the data changes, user behavior evolves, or unexpected errors
occur? Without proper monitoring and logging in place, youd be operating blindly, unaware of these
critical shifts.

Logging is the practice of recording events and activities related to your model’s operations. Think
of it as a journal that documents every interaction and decision made by your model. Why is this
important? Logs serve as a historical record, helping you trace back and understand what happened
when issues arise. They are your detective tool for troubleshooting and debugging. Using these logs,
you can also monitor your deployed model.

Monitoring your deployed model provides real-time awareness of its performance. It’s like having a
dashboard that tells you how well your model is doing at any given moment. You can track metrics
such as accuracy, response times, and resource utilization. When something goes awry, such as a
sudden drop in accuracy or increased response times, monitoring alerts you immediately, allowing
you to take corrective actions swiftly. In addition to monitoring your model’s performance metrics,
you also want to monitor the input data for data drift.

Data drift occurs when the statistical properties of the input data that your model receives change over
time. These changes can be subtle or significant, and they can impact your model’s performance. You
can detect data drift by establishing a baseline for your model’s performance on your initial training
data. This baseline serves as a reference point for future evaluations. Then, regularly compare incoming
data with the data your model was trained on.

Statistical tests and techniques such as the population stability index, Jensen-Shannon divergence,
or simple feature statistics can help detect changes in data distribution. Based on the drift detection
or performance metrics, you may need to retrain your model. However, by following the principles
of MLOps, where most of the model-building process has been coded and automated, the retraining
process should be fairly easy.

335

336

Implementing Machine Learning Solutions with MLOps

We have now covered at a high level what model monitoring looks like. However, now that you have
a model in production, you might also want to think about ML/AI governance as another aspect of
model monitoring.

Thinking about governance

Congratulations! You now understand the high-level steps associated with deploying an ML model. In
many cases, this is where the “data science workflow” concludes. This is not to say that data scientists
aren't involved with down-the-line activity from this model, such as preparing memos or educational
material on the model design and performance, but rather that the bulk of the work associated with
most data science jobs has been covered. However, when it comes to monitoring your model, you might
want to consider a broader perspective that includes the system and how it’s governed. Technically, a
data scientist can implement and deploy a model, but there may be questions or concerns about how
it’s used later on. This is where governance becomes important.

A data scientist who expresses their knowledge and commitment to ML/AI governance will certainly
stand out from the crowd. Employers want data scientists who go the extra mile by considering business
context, needs, and concerns.

ML/AI governance refers to the set of policies, processes, and practices established to oversee and
manage machine learning or artificial intelligence systems and their operations, within an organization
or a broader ecosystem. It involves defining rules, regulations, and ethical principles that guide the
development, deployment, and use of Al technologies to ensure responsible, fair, and secure outcomes.

Key aspects of AI governance include the following:

« Ethical guidelines: Establishing guidelines that prioritize fairness, transparency, and accountability
in ML/AI systems. This includes addressing potential biases, discrimination, and ethical
concerns in Al applications.

o Data privacy and security: Ensuring that ML/AI systems handle data in compliance with
privacy regulations and industry standards. Protecting sensitive information and mitigating
data breaches is a fundamental component.

o Compliance and regulations: Adhering to legal requirements and regulations related to
ML/ALI, data, and cybersecurity. Compliance with industry-specific standards and international
laws is essential.

o Accountability: Defining roles and responsibilities for ML/AI system developers, operators,
and users. Accountability ensures that any issues or challenges can be appropriately addressed.

« Transparency and explainability: Demanding transparency in ML/AI decision-making processes
and making AT model predictions explainable to build trust and facilitate human understanding.

Using Azure ML for MLOps

o Monitoring and auditing: Implementing mechanisms to continuously monitor ML/AI
system performance, assess its impact, and conduct regular audits to ensure adherence to
governance principles.

o Risk management: Identifying and mitigating potential risks associated with ML/AI, including
security vulnerabilities, ethical concerns, and compliance gaps.

ML/AI governance is an evolving field, as technologies advance and organizations strive to address
the challenges and opportunities presented by this new technology. Admittedly, some industries have
more mature governance policies than others (e.g., healthcare, insurance, and finance). However,
as you can see, it plays a crucial role in balancing innovation with responsibility and ensuring that
ML/AI benefits society as a whole, while minimizing potential harm.

Using Azure ML for MLOps

There are many different platforms for orchestrating your MLOps. Here, we will just focus on one
tool, Azure ML. As a comprehensive cloud-based platform, Azure ML can play a significant role in
various stages of the MLOps pipeline, fitting seamlessly into your existing framework of data ingestion,
storage, development, deployment, validation, and monitoring. Here’s how Azure ML integrates with
each of these stages:

1. Data ingestion: Azure ML supports various data sources, allowing for flexible data ingestion. It
can connect to Azure Data Lake, Azure Blob Storage, and other external sources. This flexibility
ensures that data ingestion, a critical first step in the MLOps pipeline, is streamlined and efficient.

2. Data storage: With Azure ML, data storage is integrated with Azure’s cloud storage solutions.
It allows for the secure and scalable storage of large datasets, essential for ML workflows. This
integration facilitates easy access and management of data within the MLOps pipeline.

3. Model development: Azure ML shines in model development with its wide range of tools and
capabilities, including Jupyter notebooks, automated machine learning (AutoML), and support
for various ML frameworks. It provides an environment where data scientists can experiment,
develop, and iterate models efficiently.

4. Model deployment (using Azure ML as an example): Azure ML excels in model deployment,
offering tools for easy deployment of models as web services in the cloud or on the edge. It
simplifies the process of deploying models into production, handling the complexities of scalability,
load balancing, and security. By using Azure ML, you can demonstrate how models can be
packaged, versioned, and deployed, maintaining consistency across different environments.

5. Model validation: Azure ML supports model validation processes through its robust testing
and evaluation tools. It allows you to create various validation scenarios, track performance
metrics, and compare different model versions. This ensures that only well-performing models
are deployed.

337

338

Implementing Machine Learning Solutions with MLOps

6. Model Monitoring: Post-deployment, Azure ML offers powerful monitoring capabilities. It
tracks the performance of models in production, detects data drift, and provides insights into
model behavior. This monitoring is crucial for maintaining the accuracy and reliability of
models over time.

In summary, Azure ML is not just a tool for model deployment; it’s an end-to-end platform that
supports the entire MLOps life cycle. Its integration at each stage of your MLOps pipeline can enhance
the efficiency, scalability, and effectiveness of ML workflows.

Summary

In this high-level introduction to MLOps, a crucial discipline in the Al and data science landscape, we
delved into its key aspects. We began by understanding the significance of MLOps, its role in bridging
the gap between model development and production deployment, and the impact of a well-structured
MLOps pipeline on business outcomes.

The chapter covered the MLOps journey, emphasizing the importance of reproducibility, collaboration,
and automation in the ML workflow. We explored developing model pipelines, technologies such as
Docker and Databricks, and model versioning. Additionally, we discussed the cloud-native tools and
services available to manage ML experiments and monitor model performance. Finally, we examined
governance and compliance practices in Al ensuring ethical and regulatory alignment.

This chapter serves as a roadmap for implementing MLOps best practices, enabling organizations to
develop, deploy, and manage ML solutions efficiently and responsibly in today’s data-driven world.

Now, we will conclude the technical content of the book to help you prepare for your technical
interview. The remainder of the book will focus on other non-technical aspects of the interview. In
the next chapter, we will focus on interview preparation and what types of questions you might expect
from a recruiter or hiring manager.

Part 4:
Getting the Job

The final part of this book aims to provide tips and insight for data science interviews. You will learn
how to best prepare for them, and how to effectively negotiate your salary and benefits. At the end
of this section, you will have valuable knowledge on how to succeed in your job search and how to
optimize your outcomes.

This part includes the following chapters:

o Chapter 13, Mastering the Interview Rounds

o Chapter 14, Negotiating Compensation

13

Mastering the Interview
Rounds

So, at this point, you've explored the data science landscape, the fundamentals of programming in
Python, the puzzling world of SQL queries, the wonder of data visualization and storytelling, and
the productive advantages of leveraging the command line and Git. You then jumped head-first
into the concepts of statistics, pre-modeling tasks, machine learning, neural networks, and model
deployment. You've basically undergone a crash course in data science 101, covering about 99% of
what you'll encounter in data science interviews. Now what?

You're probably wondering what to expect if you've never interviewed for a data science role. Well,
here’s the thing: the interview process for a data science position in one organization can be very
different from another. However, there are some commonalities that we will review. Additionally, the
content covered in the earlier chapters of this book should put you in a great position to do well in
your interview too.

So, in this chapter, we will review the experiences that you can bet on having in the data science
interviewing world, the basic anatomy of the interview process, and what to expect from each stage.
This includes the following:

o Mastering early interactions with the recruiter
o Mastering the different interview stages

o Mastering the hiring manager stage

342

Mastering the Interview Rounds

Mastering early interactions with the recruiter

In Chapter 2, we shared some tips on how to optimize your data science job search. In this section,
we'll discuss what to expect when you receive your first recruiter inquiry. Hooray!

Recruiter screenings are often the first stage in most corporate interviews. It involves someone from
a company’s recruiting team reaching out to you for an initial conversation regarding the role. If you
receive a call, a message, or an email from a recruiter, you should pat yourself on the back because
the following statements are now officially true:

o You're qualified: Recruiters don't call applicants who aren’t qualified. So, you can celebrate a)
having the necessary skills for the role and b) writing an engaging resume and/or cover letter
that effectively speaks to said skills.

o You're in the top 2% of applicants: Some research suggests that corporate roles receive an average
of 250 applications (at least before they stop collecting applications!). Of those, only 4 to 6
receive callbacks [1].

But despite your fortune, the odds are still against you. You've come a long way, but not far enough.
You're now tasked with besting 3-5 others who are just as (if not more) qualified as you are. This means
proving to the hiring team that you are the best fit, not just someone who could fit (a message you’re
trying to convey throughout the entire interview process).

The introductory call/message/email will likely entail the recruiter asking you for your availability, so be
sure to provide at least three time blocks. The sooner you can bypass the recruiter screening, the better.

(A
Note
It's important to schedule your interview ASAP. Although you were called into the interview
process, you may be one of the last candidates to get invited. This means candidates further
along in the process have an advantage. If they impress the interviewers enough, it’s not unusual
for the recruiter or hiring manager to cut the process short.

. J

Although the recruiter screening is relatively simple to bypass, it’s also easy to underestimate. To
maximize your performance in this interview, prepare to answer the following questions:

o What do you know about our company?: Be sure to research the company before the recruiter
screening. This should go beyond the basic business model of the business, including strategic
bets, recent news developments, and challenges the company or industry may be facing. For
public companies, you can often find this information in the company’s latest annual report
and press releases; for start-ups and private companies, however, it can be harder to find
this information.

Mastering early interactions with the recruiter

o Why are you interested in the role?: Provide a brief description of what attracts you most to the
opportunity. It's good if you can fit in a factoid about the company that attracted you, preferably
something beyond what you can discover from a basic internet search on the company. This
shows strong compatibility with the role and your due diligence in company research.

Also, feel free to tie something in the job description to your personal interests or experiences.
For example, if you're applying for a consumer-facing role and are interested in ensuring results
from ML models are unbiased, connecting your interest to how it could impact everyday
consumers would be a great way to show your interest in the role.

o Walk me through your background and what you're working on today: Many make the mistake
of assuming this question is to learn about your background and interests. While this is true,
it's much deeper than that. The recruiter is specifically seeking to find out how your experience
meets the job description. Spend this time explicitly mentioning jobs, projects, and achievements
relating directly to the role for which you're interviewing.

In addition to these questions, the recruiter will likely ask you logistical and basic qualification questions
about work authorization, willingness to travel, preferred location, and/or the work format (remote
versus hybrid versus on-site), and so on.

' N
Note

The key to maximizing your odds of landing a role depends on maximizing your job opportunities.
This often involves removing filters from your job search that otherwise limit your options. One
major filter to consider removing is the work format. While there are still many remote roles,
they receive more applicants than on-site roles. If you're seeking your first data science job,
it might be worth sacrificing your preferred work format in order to optimize your chances.
Going into the office is also a great way to establish stronger relationships for career growth
and boost your opportunity options.

. J

In general, recruiter screenings are no longer than 20 minutes long. This is because they’re simply
validating that what you've shared in your application is legitimate and that you’re capable of (and still
interested in) pursuing the role. It is also an opportunity for the recruiter to report back on your key
qualifications to the hiring manager. In short, the recruiting stage is about maintaining and enhancing
expectations that the recruiter already has regarding your candidacy.

Once the screening concludes, the recruiter will share their notes with the hiring manager. This
candidate summary will dictate whether youre worth moving to the next stage. This is why it’s
absolutely important to provide STAR examples of your experience.

The Situation, Task, Action, and Results (STAR) method is an interview framework used to structure
behavioral interview questions aimed at investigating a candidate’s work style and ethics in the form
of work experience, critical thinking, outlook, attitude, accomplishments, and technical rigor (to
name a few).

343

344

Mastering the Interview Rounds

Although major companies such as Amazon, Walmart, and McKinsey recommend its candidates’
responses follow the STAR method, it’s a generally strong framework to leverage, regardless of the
company or even the role. Let’s break it down:

o Situation: Begin by describing the context or situation you were in. This sets the stage for your
story. Provide enough detail to help the interviewer understand the scenario you faced.

o Task: Explain a specific task or challenge you needed to address in that situation. What were
you required to accomplish or solve?

o Action: Detail the actions you took to tackle the task or resolve the situation. Focus on what
you did, emphasizing your individual contribution. Describe the steps you took, the skills you
used, and the decisions you made.

o Result: Conclude by outlining the outcomes or results of your actions. What happened as a result
of your efforts? It’s crucial to highlight the positive impact you had, whether it was achieving
a goal, improving a process, or solving a problem.

Here is an example of how you might use the STAR framework to answer the question, Tell me of a
time when you needed to handle a pressure situation:

o Situation: “Once, while attending an important meeting, I noticed a mistake made by my
manager in a solution our team was developing”

o Task: “If the error had gone unaddressed, there would have been significant financial ramifications
and potentially a loss of customer trust”

o Action: “I requested to speak with my manager one-on-one after the meeting to address the
situation. I politely raised my concern in a private setting to avoid any issues of embarrassment””

o Result: “After reviewing the issue, my manager agreed with my assessment that there was an
error, and we quickly issued a correction, avoiding any financial losses for the organization.”

As you can see, using the STAR method helps structure your responses and provides a clear framework
for showcasing your skills and experiences. It allows interviewers, including recruiters, managers, and
panelists, to understand how you approach challenges and assess your ability to handle different situations.

Mastering the different interview stages

After successfully passing the recruiter screening, where your qualifications and initial fit for the role
are evaluated, the journey intensifies as you enter the more challenging stages of the interview process.
This next phase is not just a continuation but a significant escalation in the evaluation of your skills.

Mastering the different interview stages

In addition to the hiring manager stage, where your fit within the company’s culture and soft skills are
thoroughly examined, you'll also face the technical interview. During the technical interview, your
specific skills and competencies relevant to the role are rigorously assessed. Furthermore, you may
encounter panel interviews, where multiple key stakeholders, including potential future colleagues,
assess your ability to contribute to the team dynamically.

This comprehensive approach ensures a holistic evaluation of your technical prowess, behavioral traits,
and compatibility with the company’s ethos.

The hiring manager stage

The hiring manager interview is one of the most (if not the most) important stages of the interview
process. It likely consists of both behavioral and technical inquiries to assess your fit to the role and
team. It is also an opportunity to express your interest in the role and why you are such a great fit. In
short, your goal should be to highlight why you're the best candidate and to address any concerns or
assumed gaps in your candidacy.

Thus, reaching the stage of interviewing with a hiring manager typically indicates several positive
assumptions about your stance in the interview process:

o Fit for the company culture: If you reach this stage, you likely align well with the company’s
values, mission, and work culture.

o Technical competency: You have likely demonstrated technical competencies or skills relevant
to the role. The hiring manager may focus on deeper discussions about these skills during
the interview.

o Strong communication and soft skills: Reaching this stage suggests you possess strong communication
and interpersonal skills. Hiring managers then often gauge how well you can articulate your
thoughts, engage in discussions, and handle various scenarios.

o Your interest: Making it to the hiring manager stage indicates your genuine interest in the position
and company. You've likely shown commitment and enthusiasm throughout the earlier stages.

During an interview with a hiring manager, you can expect the following:

o Deeper technical or role-specific questions: The discussion may involve more detailed questions
related to the specific job responsibilities and technical skills required.

o Assessment of fit: The hiring manager might delve into how you fit within the team dynamics
and the broader company culture.

o Behavioral and situational questions: Expect questions about past experiences and how you
handled certain situations. Again, the STAR method might be used to structure your responses.

o Discussion on career goals and aspirations: The hiring manager might inquire about your long-
term career goals and how they align with the role and the company.

345

346

Mastering the Interview Rounds

o Final assessment: Sometimes, this stage serves as a final evaluation before a hiring decision (if
there is no requirement to meet other interviewers). The hiring manager will assess whether
you are the best fit for the role and the team, typically with a take-home assignment, technical
assessment, or presentation.

When you reach the hiring manager stage, you should prepare to showcase your technical skills,
personality, cultural fit, and enthusiasm for the position and the company. However, organizations
looking to hire you are likely to be interested in not only your cultural fit but also your technical
acumen. Therefore, you should be prepared for the technical interview. The following section talks
about what you might expect in a technical interview.

The technical interview

Encountering the technical interview stage in a data science hiring process indicates that you have
demonstrated foundational skills and qualifications, advancing to a phase that specifically evaluates
technical expertise and problem-solving abilities.

At this point, assumptions about your candidacy include the following:

o Technical competence: If you've reached the technical interview stage, it’s likely that you possess
a solid foundation in data science concepts, statistics, programming languages such as Python
or R, ML algorithms, and data manipulation techniques

o Problem-solving skills: You've likely showcased your ability to solve complex data-related problems
and analyze datasets effectively in earlier stages, leading to this phase

o Understanding of algorithms and models: You've shown a thorough understanding of various
ML algorithms, statistical models, and their applications in real-world scenarios

o Programming Proficiency: Proficiency in coding and data manipulation using libraries such as
Pandas, NumPy;, scikit-learn, or TensorFlow is assumed at this stage

To excel in a technical data science interview, consider the following tips and best practices:

« Review core concepts: Ensure a strong grasp of fundamental data science concepts, including
statistical methods, ML algorithms, data preprocessing, model evaluation, and feature engineering.

o Practice coding: Practice coding in Python or R extensively. Be able to solve data science-related
problems on platforms such as LeetCode, HackerRank, or Kaggle to improve coding skills and
algorithmic understanding.

o Understand model implementation: Be prepared to discuss and implement ML models, their
advantages, limitations, and scenarios where they’re most suitable.

o Showcase projects: Highlight personal or professional projects that demonstrate data manipulation,
analysis, visualization, and modeling skills. Discuss challenges faced, methodologies used, and
outcomes achieved.

Mastering the different interview stages

Stay updated: Be aware of recent advancements and trends in data science, ML, and Al Understand
how these advancements impact the field and how they can be applied in practical scenarios.

Mock interviews: Practice technical interviews with peers or mentors. Simulate data science
interview scenarios to get accustomed to articulating technical solutions and explaining your
approach clearly.

Ask questions: During the interview, don't hesitate to ask for clarification on questions or discuss
different approaches. Communication of thought process is as important as the solution.

On top of this, coding questions are often a part of the technical interview process. You might be asked
by an interviewer directly or given a coding exam. In the next section, we will provide suggestions on
how to ace this section of the interview process.

Coding questions, step by step

Tackling technical coding questions in data science typically involves a structured approach to effectively
solving problems. Here’s a step-by-step framework:

1.

Understand the problem:

* Read the question thoroughly, making sure you understand the problem statement, input,
and expected output.

* Ifany part of the question is unclear, ask for clarification. It's crucial to have a clear understanding
before proceeding.

Define the approach:

* Identify the data requirements, including data structures or variables needed to solve
the problem.

* Choose the appropriate algorithms, data manipulation techniques, or models required to
solve the problem efficiently.

Design the solution:

* Outline the steps you’ll take to solve the problem. This helps in organizing your thoughts
before coding.

* Think about boundary or edge cases that might affect your solution.
Code implementation:

* Begin coding with simpler components or functions before tackling the entire problem.

* Clearly document your code with comments to explain the logic and steps being implemented.

347

348

Mastering the Interview Rounds

* Test your code with sample inputs, gradually increasing complexity to ensure it works
as expected.

5. Optimize and refactor:

* Analyze your code for areas where efficiency can be improved, such as reducing time
complexity or optimizing memory usage.

* Review, refine, and refactor your code to make it cleaner, more readable, and maintainable
without compromising functionality.

6. Communicate your solution:

* Ifin an interview setting, be prepared to articulate your thought process, explain the steps
you took, and justify your choices.

* Be open to suggestions or feedback on your solution and be ready to adapt or improve based
on discussions.

7. Review and learn:

* If errors occur, analyze why they happened and learn from them.

* Review alternative solutions or best practices for similar problems to enhance your
problem-solving skills.

This structured framework helps break down complex coding problems in data science into manageable
steps, ensuring a systematic approach to problem-solving and coding efficiency.

In summary, mastering a technical data science interview involves a strong foundation in core concepts,
practical application through projects, continuous practice in coding and problem-solving, and staying
updated with the evolving landscape of data science and ML.

Assessment

Consider the following common data science problem: Calculate the mean of a list of numbers while
ignoring outliers. Apply the previous answer framework to solve this problem in Python.

Answer
Here is how to apply the answer framework:
1. Understand the problem: Here, we want to calculate the mean of a list, excluding outliers. Often,

outliers lay beyond the 10th and 90th percentiles.

2. Define the approach: To solve the problem, we need a list of numbers and a method to identify
outliers based on percentiles. Plus, we'll use Python’s NumPy library for calculating percentiles
and statistics for mean calculation.

Mastering the different interview stages

3.

4

Design the solution: The pseudocode should do the following:

* Calculate the 10th and 90th percentiles
* Filter values falling within this range

= Calculate the mean of the filtered values

Code implementation: Here is how we would implement the code:

import numpy as np
from statistics import mean

def calculate mean without outliers (nums) :
lower bound = np.percentile (nums, 10)
upper bound = np.percentile (nums, 90)

filtered values = [num for num in nums if lower_ bound <= num
<= upper bound]

return mean (filtered values)

Test the function

data = [12, 15, 17, 19, 20, 21, 23, 25, 1000] # Example list
with an outlier (1000)

result = calculate mean without outliers (data)
print ('Mean without outliers:', result)

Optimize and refactor: This code provides a straightforward solution. However, we might identify
outliers using the interquartile range (IQR) method or, for larger datasets, consider optimizing
the filtering process or exploring more efficient ways to identify outliers. For example, you
might use some of the functions from the sklearn package such as the IsolationForest
function - we have not covered this function in the book, but it is used to identify outliers in
a dataset.

Communicate your solution: In an interview setting, explain the logic behind using percentiles to
identify outliers and how the mean is calculated after filtering the data. For example, you might
state, “The code sample will filter out the lowest and highest values in the dataset. Assuming
there are outliers in the dataset, they will likely be filtered out. However, if given more time,
another approach would involve first exploring the dataset with something such as a boxplot
to identify outliers in the data. Additionally, we could use the IQR method to identify outliers.
Once the code has removed the outliers from the dataset, it then computes the mean of the
remaining values”

349

350

Mastering the Interview Rounds

Review and learn: Reflect on the code, check for potential improvements or alternative methods,
and learn from different approaches to solve similar problems. As stated before, we could
improve upon our initial code by using the IQR method to identify if there are outliers in the
dataset (our initial approach does assume that there are outliers):

import numpy as np

data = [12, 15, 17, 19, 20, 21, 23, 25, 1000] # Example list
with an outlier (1000)

Calculate Q1 and Q3

Q1 = np.percentile(data, 25)

Q3 = np.percentile(data, 75)

Calculate IQR

IOR = Q3 - Q1

Define lower and upper bounds
lower bound = Q1 - 1.5 * IQR
upper bound = Q3 + 1.5 * IQR

Remove outliers

filtered values = [num for num in nums if x >= lower bound and x
<= upper bound]

Calculate the mean of the data without outliers
result = np.mean(filtered values)

print ('Mean without outliers:', result)

The panel stage

Encountering the panel stage signifies further advancement in the hiring process and suggests several
key assumptions about your candidacy:

Cultural alignment: Reaching this stage likely means that you’ve demonstrated a strong
alignment with the company’s culture and values. The panel may focus on assessing how well
your personality and work style match the team and company ethos.

Competitive candidate: Being interviewed by a panel suggests that you're among the top
contenders for the position. You've likely stood out from other applicants and are being evaluated
more comprehensively.

Comprehensive evaluation: The interview panel stage often involves a comprehensive assessment
of your skills, experience, and fit for the role - at this stage, it’s likely they already think you’ll be
a good fit. Different panel members might focus on specific aspects relevant to their expertise
or department.

Summary

During a panel interview, candidates can anticipate the following:

o Diverse perspectives: The panel may consist of individuals from various departments or levels
within the organization. Questions may vary based on each panel member’ area of interest
or expertise.

o In-depth technical and behavioral questions: Expect a mix of technical questions related to
the role, behavioral inquiries exploring past experiences, and situational scenarios to assess
problem-solving skills.

o Assessment of cultural fit: The panel might explore how your values, working style, and personality
align with the team and the company culture.

o Team dynamics: You might be evaluated on how well you could collaborate and contribute
within the team. Panel members may observe how you interact with different personalities
and respond to group dynamics.

o Final evaluation: If you have not already encountered a final evaluation assessment, you will
likely encounter it at this stage. You may be asked to talk with a wider audience, including the
members of the interview panel and potentially the hiring manager. This is typically the final
straw before making a hiring decision. Here, the panel collectively evaluates whether you are
the best fit for the role and the organization.

You should prepare for a more comprehensive evaluation during the interview panel stage, showcasing
your skills, adaptability, and collaborative abilities and how they align with both the role and broader
organizational objectives.

Summary

Approaching data science interviews involves a holistic preparation strategy tailored to different stages
of the hiring process. Initially, at the recruiter stage, focus on crafting a precise, impactful resume
highlighting relevant skills, projects, and experiences.

As you progress to the hiring manager stage, dive deeper into showcasing your alignment with the
company culture, mission, and your ability to solve problems effectively. Engage in open discussions,
highlighting your achievements and demonstrating enthusiasm for the role and organization. When
facing the interview panel, emphasize adaptability and collaborative skills, engaging with diverse
perspectives and showcasing your ability to integrate into varied team dynamics.

Lastly, during technical stages, emphasize a strong foundation in core concepts, practice problem-
solving and coding, and stay updated with the latest trends in data science. Emphasize your ability to
tackle complex problems methodically, communicate your approach clearly, and be open to feedback
throughout the process. Tailoring your preparation to these distinct stages can significantly enhance
your performance and chances of success in data science interviews.

351

352

Mastering the Interview Rounds

At this point in the book, we will assume that you have done phenomenally during your interview
process and the organization is looking to hire you. What comes next? Well, in the next chapter, we
will dive into the topic of negotiation for things such as salary and benefits.

References

o [1] 40 Important Job Interview Statistics [2023]: How Many Interviews Before Job Offer from
Zippia:https://www.zippia.com/advice/job-interview-statistics/

https://www.zippia.com/advice/job-interview-statistics/

14

Negotiating Compensation

In your journey toward your next role as a data scientist, the negotiation phase stands as the crescendo
— the culmination of your efforts, skills, and worth. It’s the moment where the dance of give and take
begins, where your value converges with the company’s offerings. This chapter serves as your compass
through this pivotal phase, navigating the intricate terrain of negotiating compensation with HR.

From the tangibles, such as salary and stock options, to the intangibles, such as flexible hours and
professional development perks, we'll delve into the spectrum of negotiables and equip you with the
strategies to navigate this negotiation effectively. Join us as we unravel the art and science of securing
not just the job, but a compensation package that echoes your true worth as a data scientist.

In this chapter, we will review the following:

o Understanding the compensation landscape

o Negotiating the offer

Understanding the compensation landscape

Congratulations, you've received a job offer! However, before embarking on the negotiation journey,
it’s crucial to map the compensation terrain. This entails delving into the company culture, industry
norms, and the specifics of the job market.

To effectively research the appropriate salary range, consider not only the role’s regional market
value but also how your personal qualifications align with industry expectations. Resources such
as Glassdoor, Payscale, Salary.com, and the Bureau of Labor Statistics (BLS) are invaluable in this
process. They provide detailed salary benchmarks, considering factors such as location, years of
experience, and the unique skill sets that the job demands. Utilize these platforms along with industry
reports and networking connections to gather a comprehensive view of what competitors are offering
for similar positions.

354

Negotiating Compensation

Why is this extensive preliminary research crucial? It sets the foundation for realistic expectations
and informed negotiations. Consider the analogy of negotiating the price of a used car. Resources
such as Kelley Blue Book offer a guide to reasonable price ranges based on specific criteria such as
make, model, year, and mileage. Similarly, when negotiating compensation for a data science role,
understanding the interplay between the job title, region, qualifications, and years of experience is
key to estimating a fair salary range.

But it’s not just about the salary. Understanding the full spectrum of compensation, including
non-monetary benefits such as tuition reimbursement, flexible work hours, or work-from-home
options, is equally important. This knowledge empowers you to negotiate a package that aligns with
your career goals and personal needs, ensuring a fair and satisfying job offer. By comprehensively
understanding the job landscape, you can effectively navigate the negotiation process, achieving a
balance between personal value and market standards.

Negotiating the offer

Undertaking the journey to secure your ideal job offer requires more than just accepting the first
proposal that comes your way. It's about understanding your worth, articulating your unique value,
and strategically negotiating for what truly matters to you. In this section, we delve into the art of
negotiation, guiding you through the essential considerations, from assessing your market value to
understanding the full spectrum of the offer’s elements. We'll explore various scenarios, including the
nuances faced by new graduates and experienced professionals when pivoting careers, to demonstrate
how tailored negotiation strategies can significantly impact your job offer.

Negotiation considerations

The first step in negotiating an offer is understanding your market value. This isn’t always obvious,
but it’s important that this assessment is objective. To begin, highlight your unique skills, experiences,
and accomplishments. Consider your contributions in previous roles and how they align with the new
opportunity. How many of the job’s requirements do you meet? Do you exceed any of the requirements?
What about the preferred qualifications? The answer to these questions will help you objectively assess
your value in the market for the particular role that you're entertaining.

Next, review your job search priorities. For example, rank your job preferences and identify
non-negotiables. Will the job require a lot of overtime or travel? Does it require working in the office?
Is there an expectation to reply to emails after hours? Is there a transparent promotion roadmap? How
is the commute? It's important to understand these details and their significance to you.

Negotiating the offer

When thinking about your priorities, you can organize different qualities of your job offer into two
buckets, personal and material:

o Personal: These are the qualities of the job that bring you personal benefits. These might include
the following:

Professional or career development

Advancement opportunities

Work experience fulfillment

Location

The person you'll report to

Mentorship

Flexible hours and/or work format (e.g., on-site versus remote or hybrid)
Interest in the business or industry (e.g., gaming, healthcare, education, etc.)

Travel opportunities

o Material: These are the qualities most people think of when considering compensation
negotiations. These include the following:

Base salary

Bonuses

Stock options/equity

Benefits (e.g., health, dental, vision, and additional discounts and perks)
Retirement plans

Tuition assistance

Training

Paid time off (PTO) and vacation time

Relocation assistance

Health and wellness programs (e.g., gym memberships, mental health services, child
services, etc.)

Office amenities

Company equipment (e.g., car, cellphone, laptop, etc.)

355

356

Negotiating Compensation

Companies may not be willing or flexible in negotiating all of the factors listed in the preceding lists,
such as the person you'll report to in the role. However, understanding them will help you compare
job opportunities and identify focus areas for your negotiations. You should focus your negotiations
on the factors that you feel are must-haves and any areas in which you think the job offer is lacking
compared to the current market standards you've identified in your research. For example, if tuition
assistance is a must-have for you because you are planning on returning to school, you should include
this as a part of your negotiations if the job offer does not include it.

Responding to the offer

After identifying your market value, and your personal and material preferences, it’s time to negotiate.
Most companies will give you about a week to consider the offer. However, there are instances where
they need a response sooner. Alternatively, some companies are more lenient with the offer acceptance
(or rejection) timeline because they’re more concerned with your certainty about the role than
their need to fill it. In either case, it is your job to make sure you and HR are on the same page. The
deadline to accept the offer should be clear and, ideally, in written form. Be sure to request as much
time as possible, particularly if you need it to discuss the details with loved ones or peers, or if youre
anticipating other offers.

Despite having time to think over the details of the offer, you should negotiate the details ASAP. This
may happen over the phone, video chat, or email. In reality, these negotiations last minutes — nothing
more. Regardless of the format, thank the representative for relaying the good news and express your
genuine excitement for the opportunity. After all, they’ve selected you over countless others, and this
is something worth celebrating.

Then, it’s time to lay your cards on the table. When doing so, it’s best to be brief, concise, and confident.
You've done your homework, so there’s nothing to worry about. You could say something like this:

“I'm thrilled about the opportunity to contribute to the team and am very appreciative of the offer.
However, based on my research and understanding of the market value for this role, as well as my specific
skills and experiences, I would like to discuss the possibility of a salary that better reflects these factors.
I believe a figure of [X amount] would be more aligned with the industry standards for someone with
my qualifications”

In most cases, the HR representative will relay the request back to the hiring manager and follow up
accordingly. The worst-case scenario is that they will reject your counteroffer. However, in a lot of cases,
the offer will be amended to a final offer. A final offer means that there is no additional negotiation.
At this point, you either “take it or leave it”

Negotiating the offer

s N
Note

One of the biggest and most frequent mistakes of job seekers is failing to negotiate at all. This
is often due to 1) candidates undervaluing themselves, 2) a lack of knowledge of the role’s pay
range, and/or 3) the fear of rejection. While the first two reasons can be attributed to ignorance
about the market or self-doubt, the last reason is almost irrational. It is very rare for jobs to
retract an offer if the counter is reasonable and requested in a professional manner. Thus,
whatever you do, negotiate!

L J

Maximum negotiable compensation and situational value

Negotiating a salary is more of an art form than a science. There are countless articles, editorials,
webinars, and even books, all designed to teach you how to advocate for yourself. Some popular
books include the following:

o You Are a Badass by Jen Sincero (Running Press Adult)
o Quiet: The Power of Introverts in a World That Can’t Stop Talking by Susan Cain (Crown)
o Getting to Yes with Yourself (and Other Worthy Opponents) by William Ury (HarperOne)

The effectiveness of negotiation strategies varies based on individual career goals, experience, knowledge
of the job/company, and prevailing market conditions. Central to all of these approaches, though,
is the concept of situational value — your unique contribution to a role, influenced by both internal
and external factors. Your situational value is a combination of your experiences, unique skills, and
personal attributes. Understanding and articulately conveying this value is key to maximizing the
benefits you can negotiate in your job offer.

Figure 14.1 illustrates the importance of internal and external factors as well as your situational value
in negotiating the maximum compensation:

Situational
value

Maximum

negotiable
compensation

Internal /
external
factors

Figure 14.1: The maximum negotiable compensation equation

357

358

Negotiating Compensation

Let’s break down the concept further for clarity. The internal factors that influence maximum
negotiable compensation, which is simply the maximum compensation, material and personal,
that you can negotiate, typically include the budget allocated for the role and the salary bands set for
the position. These are elements internal to the company’s structure and policies. On the other hand,
external factors are those outside of the company’s control, such as the regional salary range for the
role or the current market demand for your skills.

Your situational value — comprising your specific experiences and skills and how they align with the
role - interacts with these internal and external factors. For instance, even if a role has a high budget
(an internal factor) and is in a high-demand field (an external factor), your ability to negotiate a
better offer may be limited if your situational value doesn’t align closely with the job requirements.
Conversely, a strong situational value might not yield a significant salary increase if it exceeds the
role’s regional salary range or the company’s budgetary constraints.

In the following sections, we'll explore examples that illustrate how this framework operates from
various perspectives.

The college graduate

Suppose you are a new graduate seeking your first full-time data science role. Youre new to the
job market, but your experience is limited to an internship and school projects. Thus, your lack of
experience will be a hurdle to overcome, especially as you compete against other grads with similar
credentials. However, you've done your research!

Let’s explore this scenario:

o The job: You're offered a full-time junior data scientist job for a gaming start-up. The company
has multiple offices throughout the nation.

o The offer: The salary comes back much lower than expected. They’re offering the lowest end of
the market salary range, and the role is not bonus-eligible given its junior status. Additionally,
there is no formal retirement program. The healthcare package is tolerable because you're young
with no dependents or managed ailments.

o Situational value: As a new graduate, your negotiation options are limited. There isn’t a wealth
of full-time experience you can speak to, but you have a passion for gaming, an industry in
which you hope to grow. In fact, youre very familiar with the company’s game portfolio and
have a respectable grasp on industry challenges and solutions that could improve its products
and marketing plan. You even have a “proof of concept” project that you worked on in college
where you've identified the cause of player churn.

Negotiating the offer

o The counter: On a call, you express how thrilled you are about the opportunity and that you
enjoyed meeting the team. Switching gears, you inform them that you understand the offer is
on the lower end. However, you believe that your candidacy is uniquely advantageous, given
your knowledge of the industry. You already have some ideas of how to increase player return
rates and have worked on a similar project in the past. As the company is a start-up, youre
aware that funding for this role is mostly set in stone. However, youre confident in the company,
its products, and your pitch, so you request equity instead. You also request a company laptop
with the necessary computational resources, and the ability to work from home.

o The final offer: Because you are fresh out of college, the employer doesn’t feel comfortable with
you working from home. They want you to have the opportunity to engage with the team in
person and learn more about the company. However, they are willing to allow a hybrid model
where you work from home two days a week. Furthermore, they’re allowing you to choose
your location of preference. You discover that the pay doesn’t change based on the location,
so you opt for their Columbus, OH location over their San Francisco, CA office. They also
realize that providing you with a laptop is in their best interest to protect company data and
to provide the best tools for the job. Lastly, they grant you 100 shares of company stock with a
bi-annual re-evaluation period to grant additional stock based on performance. You happily
take the opportunity, knowing that the role has growth potential and will provide excellent
experience in the gaming industry.

In this negotiation scenario, you demonstrated several key strengths that contributed to a successful
outcome. Firstly, your approach was marked by a combination of enthusiasm and pragmatism. By
expressing excitement about the opportunity and acknowledging the offer’s limitations, you struck a
balance between eagerness and realistic expectations. Your strategic use of your unique value proposition,
highlighting your passion for gaming and specific industry insights, effectively showcased how your
skills and interests aligned with the company’s needs. This not only underscored your potential
contribution to the company but also provided a solid foundation for your negotiation requests.

Additionally, your understanding of the start-up’s financial constraints led to a creative negotiation
tactic, focusing on equity and practical benefits such as a company laptop and a flexible work location,
rather than just salary. This adaptability and foresight to request equity and other non-monetary
compensations demonstrated a keen understanding of the start-up environment and long-term career
growth, ultimately leading to a mutually beneficial agreement.

The pivoter

In this scenario, youre a boot camp graduate with years of full-time experience, but not in data
science. Instead, you've spent most of your career as a Paid Search Manager for a marketing firm.
After graduating from the boot camp, you're looking to pivot to a data science role.

359

360

Negotiating Compensation

Let’s explore this scenario:

The job: You're offered a data scientist job on a new marketing sciences team at a digital marketing
firm. The department has only just begun hiring data scientists, so you will only be the second
hire, although it has plans to hire more. The interview panel was very impressed with your
familiarity with digital marketing KPIs and strategies to improve paid search campaigns. You're
also very familiar with some of the firm’s clientele and, in turn, common challenges that those
brands face in their respective industries. The role is hybrid, which is exactly what you prefer.

The offer: HR sends you an email with an offer letter. You've got the job! The salary is what you
expected - it’s on the lower side of the job’s regional range and just about where you expected to
land, given the opportunity to grow in the role. The company offers pretty standard retirement
and medical plans, but it doesn’t mention anything about tuition assistance or professional
development. This is important to you as a new data scientist with only a few months of boot
camp knowledge. This is especially true since you're an early hire on the team. You also know
that there’s a huge opportunity to apply newly learned techniques to the job, such as applying
neural networks or generative AI APIs to projects. The offer includes a host of discounts
associated with the brands the company advises.

Situational value: Due to the verbal exchanges during your interviews, you've noticed that many
interviewers on the panel were impressed with your past experience as a Paid Search Manager.
They were also excited to hear about some of the previous projects that you've worked on where
you applied your knowledge of text mining to extract campaign insights and automate keyword
generation. You know that not having full-time experience as a data scientist is the biggest gap
you have to close in their minds.

The counter: You reply to the email, thanking everyone involved for having faith in your
candidacy. You're legitimately excited to get started and can’t wait to join the team. Because
you know there’s room to negotiate your wage, you ask for 10% more than the original offer.
You also state that you look forward to growing with the company and using analytics to solve
tough business challenges. As a result, to remain current on the latest methods and ensure
the most innovative solutions, you inquire about continued learning funding (such as tuition
assistance or financial support for certifications). The HR representative says that they will
check with the hiring manager and provide an update within 24 hours.

The final offer: HR responds the following morning, and it’s great news! Not only did the hiring
manager grant your 10% salary increase request, but they also agreed that career development
for your role is important. As a result, they are willing to pay up to $5,000 a year for any relevant
terminal degree or certification program of your liking. They also mention that the previous hire
(the senior data scientist on the team) has a lot of great experience but lacks some familiarity
with digital marketing. As a result, they support a mentorship engagement between you both,
which is a perk that will undoubtedly contribute to your growth as a data scientist!

Negotiating the offer

In this negotiation scenario, you adeptly leveraged your unique background and keen understanding of
the company’s needs to secure a beneficial offer. The strategic move to highlight your past experience as
a Paid Search Manager and the ability to apply this expertise in a new data science role was particularly
effective. This approach not only demonstrated your value to the company but also addressed the gap
in your data science experience.

By expressing genuine enthusiasm for the role and team, you fostered a positive tone for the negotiation.
Additionally, your request for a salary increase was anchored with a reasonable percentage, reflecting
an understanding of your worth and the market standards.

Your foresight in requesting support for continued learning and professional development was a smart
move, emphasizing your commitment to growth and innovation in the role. This not only benefited
you personally but also aligned with the company’s interest in keeping its team updated with the latest
industry practices. The successful negotiation of a mentorship with the senior data scientist further
underscored your strategic approach to your career development, ensuring a comprehensive package
that went beyond just financial compensation.

The grower

In this example, you're an experienced data scientist with a professional background that spans five
years. You're currently employed, but you're seeking a more challenging opportunity that will stretch
your skill set. You’ve mostly worked in the supply chain field and feel that you have a good chance
of landing another similar role, considering you tend to interview well. Youre leaving your current
employer as there isn't a lot of growth opportunity, and despite your efforts and the praise you've
received, they have not granted a raise in the last few years. Youre now below the market range for
your expertise, and you're seeking an opportunity to grow into management.

Let’s explore this scenario:

o The job: You're offered a senior data scientist job at a pharmaceutical company in the supply
chain department. You have very little experience in pharma, but you’re practically a supply
chain expert! The hiring manager believes that your previous experience is transferable and has
faith in your ability to learn about the new industry environment, given the proper guidance.

o The offer: The interview process goes pretty smoothly, and you receive a call from HR confirming
the company’s interest in hiring you. It offers you the higher end of the expected salary range
and a nice sign-on bonus. You're also granted company stock based on performance. You're
fairly pleased with the material offer, but it’s still unclear whether you’ll be stuck in the role
long-term or whether there’s a formal process that leads to management.

o Situational value: You already know that you’re a seasoned supply chain expert with tons of
experience in machine learning. And despite your lack of experience in pharma, you know that
you will be one of the more senior data scientists on the team. Not only were you explicitly told
this, but you were able to confirm it by researching the existing team on LinkedIn. You take
it upon yourself to reach out to a few of them to learn more about their experiences with the

361

362

Negotiating Compensation

company. Your takeaway from the conversations is that the manager is great, and the projects
are interesting, although you may be expected to put in some late hours from time to time.
Additionally, there are some data hygiene issues that theyre currently working through. You
also notice that one of your former colleagues on LinkedIn used to work for the same company.
You reach out to them to ask about their experience with the company, and they confirm that it’s
a great place. They were even willing to share their salary with you at the time of employment,
which was 2 years ago. You learn that they were paid almost 15% more than your offer for the
same role and level.

o The counter: To initiate the negotiation process, you request to speak with the hiring manager
when they have a spare 15 minutes. HR arranges the call, and you briefly greet the manager.
You're mostly satisfied with the material compensation, but you never settle for the original
offer, and you know there’s room for an increase, so you request a 15% increase. The request
is supported by the information that you gathered from your former colleague. You suspect
that you are the most senior data scientist on the team, so you feel comfortable asking for this
increase. You also pitch your potential to really shape the team and identify some opportunities
for improvement with processes, data quality, and governance. You support these details with
examples from previous roles you've held and even point out a few pain points that you noticed
during the interview. Before the call ends, you inquire about growth opportunities as you're
interested in leading teams in the future.

o The final offer: After a few days, the hiring manager calls you directly. They’re overall impressed
with your skills, eagerness, and transparency. The hiring manager agrees to a 10% increase in
salary, with the anticipation of reassessing your performance in 12 months. If you can demonstrate
your ability to learn quickly (particularly details specific to the pharmaceutical industry), they
are open to discussing a formal promotion to a managerial role. With the promotion would
come a considerable salary increase. You're impressed with the partial wage increase and efforts
to fulfill your interest in management, so you accept the role.

In this negotiation scenario, you demonstrated an exceptional blend of strategy, research, and
communication skills. Your proactive approach in reaching out to current and former employees of the
company provided valuable insights into the company culture, expectations, and salary benchmarks.
This level of research not only equipped you with a realistic view of the role but also offered a solid
foundation for your salary negotiation. By leveraging the salary information obtained from a former
colleague, you were able to confidently gain a 10% salary increase, a move that showcased your awareness
of market standards and your self-worth. Your approach to the negotiation was also characterized by
a clear articulation of your value proposition.

You effectively highlighted your expertise in supply chain management and machine learning, and
identified specific areas where you could contribute to process improvements and data governance.
This not only underscored your suitability for the role but also demonstrated your potential for
future leadership.

Summary

Additionally, your openness about your career aspirations and the request for a clear path to managerial
roles displayed foresight and ambition. Your successful negotiation for a significant salary increase
and a potential managerial promotion reflected your strong negotiation skills and strategic thinking,
setting a positive tone for your future with the company.

Assessment

What were some situational values used to negotiate compensation in the previous negotiation examples?

Answer

o In the college graduate example, the candidate identified their enthusiasm for gaming as a
situational value. Someone with that sort of passion may convince the hiring manager that
they’re there for the long haul and/or that they’ll be genuinely interested in the work they’ll be
doing. They then explain their familiarity with the company’s products and industry, which
makes for a smoother onboarding experience.

« In the pivoter example, the candidate was able to speak to their years of relevant experience
and they sold their eagerness to learn as a valuable investment for the company. The candidate
also knew that there was room for a salary increase, given the initial offer, which was on the
lower side of the regional salary range.

o In the grower example, the candidate recognized their position as a senior hire. They also
conducted research on the salary range via an acquaintance and former colleague. In turn, they
also pitched themselves as an excellent candidate for a managerial role under the correct guidance.

Summary

In the intricate dance of negotiating compensation, this chapter has unveiled a tapestry of strategies
and insights crucial to orchestrating a successful negotiation. By understanding the multifaceted
landscape of negotiables, from base salary to the nuances of work-life balance and career growth,
you've equipped yourself with the tools to navigate this pivotal phase.

Emphasizing the significance of research, timing, and a strategic approach, you’re poised to not only
negotiate but to collaboratively craft a compensation package that reflects your true value. Situational
value, that unique amalgamation of skills, experiences, and expertise you bring, becomes your guiding
star in this negotiation journey. And within this negotiation lies the concept of maximum negotiable
compensation. Your mastery of these negotiation tactics fosters an environment where both you and
the employer find equilibrium, and a satisfying agreement that extends beyond a mere transaction,
embodying a partnership founded on recognition of your worth as a data scientist. Remember,
negotiation isn’t just about securing a job; it’s about securing the compensation that resonates with
your values and aspirations in this ever-evolving landscape of data science.

363

364

Negotiating Compensation

Final words

As we draw the curtain on this journey toward cracking the data science interview, let us take a moment
to reflect on the vast amount of knowledge and skills you have now acquired. From understanding
the dynamic landscape of data science in Chapter 1 to mastering the art of negotiation in Chapter 14,
this book has been a comprehensive guide, aiming to sculpt you into a formidable candidate for your
next data science role.

You have traversed the intricacies of technical interviews, delved deep into Python programming, SQL,
machine learning, version control, and even explored the revolutionary realms of deep learning and
MLOps. But beyond the technicalities, you have learned to present yourself, your skills, and your passion
for data science in a way that resonates with recruiters and hiring managers. You have been equipped
not just with knowledge, but also with the confidence to apply it effectively to real-world scenarios.

As you step into the job market, remember that each chapter of this book was a stepping stone toward
your dream role. You are now well-prepared to not only face the challenges of job hunting and interviews
but to excel in them. You have the tools to negotiate not just a job, but a career that aligns with your
aspirations, values, and life balance. Furthermore, if you ever need a refresher on the main topics in
the field, you can always come back to freshen up!

Thank you for allowing us to be a part of your journey. Your commitment and passion for learning
is the true driving forces behind the progress you've made. As you embark on this exciting phase of
your career, know that the wisdom, skills, and insights you have gained are your greatest allies. May
your journey in data science be as fulfilling and impactful as the efforts you have put into preparing
for it. Congratulations on reaching this milestone, and here’s to the many successes that await you in
the world of data science!

Symbols

.gitignore file 191

A

absolute paths 164
A/B testing
applicability 222
implementing 223
A/B tests 222
alternative hyothesis 222
alternative hypothesis 222
null hypothesis 222
activation functions 301, 302
neurons, activating with 300, 301
selecting 302, 303
Adadelta 310
Adaptive Gradient Algorithm
(AdaGrad) 310
Adaptive Moment Estimation (Adam) 310
adjusted rand index (ARI) 287
aggregation 81
aggregation operations
data, splitting 81
function, applying 81
results, combining 81
Al governance
aspects 336

Index

alternating least squares (ALS) 289
alternative hypothesis 217, 219
Amazon Elastic Kubernetes
Service (EKS) 332

Analysis of Variance (ANOVA) 219, 220
annotated tags 189
Apache Beam 327
Apache Spark 327
Apache Storm 327
Applicant Tracking System (ATS) 37
Apriori algorithm 288
area under the ROC curve (AUC) 19
artificial neural networks (ANNs) 304, 314
assumption of normality 205-208
attention 318
AUC-ROC 254
autoencoders 257, 258, 314
automated machine learning (AutoML) 337
Azure Data Lake Storage (ADLS) 22
Azure Kubernetes Service (AKS) 332
Azure Machine Learning (Azure ML)

using, for MLOps 337, 338

backpropagation 303, 304
backward pass (backpropagation) 305

Index

error calculation 305
forward pass 305
gradient descent 304
parameter updation 306
re-iteration 306
validation and testing 306
bagging 278
bar chart 88-91
creating, with Matplotlib 104, 105
creating, with Seaborn 106, 107
Bash script 169
Bayesian optimization 292
biases 299, 300
bias-variance trade-off 289, 290
model complexity 290
model evaluation 289
Bidirectional Encoder Representations
from Transformers (BERT) 297, 319
Binary Large Object (BLOB) storage 328
binomial distribution 211,212,216
examples, for usage by data scientists 212
Boolean type 53
boosting 277
Bourne Again SHell (Bash)
scripting with 169, 170, 171
Box-Cox transformation 239, 240
box plot 97
built-in data types, Python
Boolean type 53
DataFrame 54, 55
dictionaries 53
none type 53
numeric types 52
sequence types 52
Bureau of Labor Statistics (BLS) 353
business intelligence (BI) 41

C

calculated fields 247
aggregating and grouping 248
domain-specific calculations 248
interaction terms and polynomial
features 248
mathematical operations 248
Text and NLP-based calculations 248
time-based calculations 248
career paths, reviewing
domain expert data scientists 12, 13
off-the-beaten path-er data scientist 13, 14
traditionalist data scientist 11
CASE WHEN statement
fields, creating with 131
categorical variables 243
categorical variables engineering 243
calculated fields 247, 248
label encoding 244, 245
one-hot encoding 243, 244
target encoding 246, 247
centrality
mean 198
median 198
mode 198
Central Limit Thereom (CLT) 197, 205
assumption of normality 205, 206, 207, 208
central tendency
measuring 198, 199
charts
assessment 115
developing 104
solution 115,116
chart types
bar chart 104
histogram plot 112
scatter plot 108

Index

chi-squared test 220
goodness of fit test 221
of independence 221
classification 263
data example 263
evaluation metrics 263, 264
classification model evaluation metrics
accuracy 263
AUC 264
F1 score 264
precision 263
recall 263
specificity 264
click-through rate (CTR) 43
clone command 183
clustering 279, 280
clustering algorithms
fuzzy c-means (FCM) 286
hierarchical clustering 286
OPTICS 286
spectral clustering 286
clustering algorithms, evaluating
adjusted rand index (ARI) 287
elbow method 287
normalized mutual information (NMI) 287
silhouette score 287
clusters
evaluating 287
collinear features 252
command-line interface (CLI) 162
common table expressions (CTEs)
analyzing 131, 132
assessment 139
distinguishing, from subqueries 137, 138
compensation negotiation 354
considerations 354, 356
for college graduate 358, 359
for grower 361, 362

for pivoter 359, 360
maximum and situational value 357, 358
offer, responding to 356
complex queries
approaching 155-159
assessment 156
comprehensions 61
conditional statements
elif 61
else 62
if 61
context managers 71
continuous variables 210
control statements 61, 171-174
convolutional NNs (CNNs) 307, 314
cost functions 305
cron
using 178-180
cron jobs 178

D

dashboarding and visual specialists 9
dashboards
assessment 103
developing 101, 102
solution 103, 104
Dask 327
URL 327
data
aggregation, with groupby() 81-83
columns, selecting 75
filtering, with query method 76
loc() and iloc() method, selecting 76, 77
merging 80, 81
selecting 75, 76
selecting, by condition 76
sorting 78,79

367

368 Index

data data storage options, within MLOps
and pipelines, processing 176 basics 328
data drift 335 Binary Large Object (BLOB) storage 328
data engineer 8 graph databases 328
data exploration 6 traditional databases 328
DataFrame 54 data transformations 235, 236
data ingestion 326, 327, 337 applying 235
data modeling 6 Box-Cox transformation 239-241
data science 4,5 exponential transformation 241, 242
career paths, reviewing 11 feature 235
dashboarding and visual specialist 9 input variable 235
data engineer 8 logarithmic (log) transformation 237, 238
domain experts 10 output variable 235
evolution 21 power transformation 238
ML specialist 10 response 235
skills 7, 8 data visualization 88
data science evolution assessment 98, 99
new applications 22 bar chart 88-91
new computing 22 box plot 97
new environments 21 density plot 94
new models 21 histogram 93, 94
data science job line chart 91,92
applying for 35 pie chart 97, 98
job boards, finding 28 quantile-quantile plots (Q-Q plots) 95, 96
preparing for 26 scatter plot 92, 93
searching 25 data wrangling
standout portfolio, building 33 with pandas 73
data science job search DATEDIFF function 155
consistent effort, maintaining 27, 28 date functions
emotional resilience, maintaining 26 CURDATE 155
patient and persistent strategies 27 DATE_ADD 155
data science process DATEDIFF 155
data collection 5, 6 NOW 155
data exploration 6 using 155
data modeling 6 DBSCAN 283
exploring 5 advantages 283
model deployment and monitoring 6 assumptions 284

model evaluation 6 border point 283

Index

core point 283
implementation example 285, 286
noise point 283
pitfalls 284
working 283
decoder 315
deep learning 297
deep learning algorithms
using, benefits 297
deep learning model
versus standard neural network 297, 298
DENSE_RANK function 153
density plot 94
descriptive statistics
centrall tendency, measuring 198
data, describing with 198
variability, measuring 199
dictionaries 53
dimensionality reduction 255
autoencoders 257, 258
Principal Component Analysis
(PCA) 255,256
Single Value Decomposition (SVD) 256, 257
t-SNE 257
dimension tables 122
directed acyclic graph (DAG) 327
directory 163
discrete variable 210
Docker
using 332, 333
domain expert data scientists 12, 13
domain experts 10

elbow method 287
electronic health record (EHR) 73
elif statement 61

else statement 62
embedded methods 250
embedding 312
training 313
transfer learning 319
word embedding 312
encoder 315
ensemble methods 273
epochs 306, 310
epsilon 283
existing remote repository
cloning 183
expected skills and competencies 17, 18
hard (technical) skills 18, 19
soft (communication) skills 20
experience bottleneck
academic experience 15
tackling 14
work experience 16
exploding gradient problem 307
reasons, for occurrence 307
exploratory data analysis (EDA) 6
exponential distribution 213,217
examples, for usage by data scientists 214
exponential transformation 241, 242
extract, load, transform (ELT) 326
extract, transform, load (ETL) 73, 326
Extreme Gradient Boosting (XGBoost) 277
assumptions 277
boosting, versus bagging 277
pitfalls 278
working 277

F

fact tables 122
feature branch workflow 188

369

Index

feature engineering 230
data scaling 234, 235
missing data, handling 231, 232, 233
Feature learning (FL) 297
feature selection 250
embedded methods 250
filter methods 250
L1 regularization 252
performing 250
Recursive Feature Elimination
(RFE) 250, 251
tree-based feature selection 252
variance inflation factor 253
wrapper methods 250
filter methods 250
final offer 356
flags 164
foreign key 122
for loops 62
forward pass 299
FROM clause
subqueries 133, 134
full outer join 145
functions, Bash
creating 174, 175
fuzzy c-means (FCM) clustering
algorithm 286

G

gated recurrent units (GRUs) 314, 316

generalized additive models (GAMs) 288

generative adversarial networks
(GANs) 313,314

Generative Pre-trained
Transformer 3 (GPT-3)

using 297

geometric distribution 214, 217

examples, for usage by data scientist 214

ggplot2 100
git config command 190
git diff command 191
git pull command 191
git push command 190
git status command 190
Git tags 189
annotated tags 189
lightweight tag 189
Git workflow 182
detailing 187
detailing, for data scientist 187
Given, Unknown, Equation, Solve,
Solution (G.U.E.S.S) 55
global minimum 309
Global Vectors (GloVe) 313
Glorot or Xavier 307
GPT implementation 319
NER 320
SA 320
text generation 321
gradient clipping 307
gradient descent 304, 308
steps 305, 306

graph convolutional networks (GCNs) 314

graph databases 328
graphs
assessment 115
developing 104
solution 115, 116
grid search 291
GROUP BY statement
assessment 130, 131
single-valued grouping rule 128, 129
used, for aggregating data 127
grouped bar chart 88

Index

H

hackathons 34
Hadoop 327
Hadoop Distributed File System (HDFS) 9
HAVING clause
subqueries 136, 137
used, for aggregating data 129, 130
Heaviside step function 301
heteroscedasticity 239, 265
He weight initialization 307
hierarchical clustering algorithm 286
hiring manager interview 345
histogram 93, 94
histogram plot
creating, with Matplotlib 112, 113
creating, with Seaborn 114
HIVE 327
Hive Query Language (HiveQL) 327
homoscedasticity 265
hyperbolic tangent (tanh) 301
hyperparameter tuning 291
Bayesian optimization 292
grid search 291
random search 292
hypothesis testing 217, 218, 223
A/B tests 222
ANOVA 220
chi-squared test 220
MANOVA 220
one-sample t-tests 218
paired sample t-tests 219
two-sample t-tests 218

if statement 61

imbalanced data 254
majority class 254
minority class 254
remedies 254, 255
treating 254, 255
working 253
independent samples t-test 218
index 182
Infrastructure-as-a-Service (IaaS) 22
Infrastructure as Code (IaC) 331
inner join 80, 140-142
Institute for Operations Research and the
Management Sciences (INFORMS) 45
integrated development environments
(IDEs) 21, 34
International Data Corporation (IDC) 4
interquartile range (IQR) 349
interview preparations 44
branding and networking 47
company research 46
manager research 46
Moore’s Law 44, 45
networking strategies 47
professional brand, developing 47
research 45
interview rounds
early interactions, mastering
with recruiter 342- 344
interview stages
example 348-350
hiring manager stage 345
mastering 344, 345
panelist stage 350, 351
technical coding questions, tackling 347, 348
technical interview stage 346, 347

371

372

Index

J

job applications
applying, in numbers 35, 36
cover letter rules 37
cover letter, writing 36

job board sites 28
connections, building 30, 31
for remote jobs 32
job descriptions, interpreting 32
job leads, finding 31
networking 30, 31
sampling 28
tips 29, 30
using, for search 29

joins
assessment 146
tables, merging with 140

K

Keras 316

kernel density estimate (KDE) 114

kernel density plot 94

key 80

key performance indicators (KPIs) 9, 43, 87
assessment 103
developing 102
solution 103, 104

K-means clustering 280
assumptions 280
challenges 281
considerations 281
implementation example 281, 282
working 280

k-nearest neighbors (k-NN) 270
assumptions 271
implementation example 271, 272

pitfalls 271
working 271

L

L1 regularization 252
label encoding 244-247
LAG function 150, 151
assessment 151
Lambda functions 68
landscape of negotiables 353, 354
large language models (LLMs) 21, 34
latent space 315
LEAD function 150, 151
assessment 151, 152
leaky ReLU 302
learning rate 306
Least Absolute Shrinkage and Selection
Operator (LASSO) 252
left join 81, 143
lightweight tag 189
linear function 302
linear regression 264
assumptions 265
implementation example 266, 267
pitfalls 265
regularization regression 266
working 264
line chart 91, 92
Linux 162
list comprehension 64, 65
local minimum 309
local outlier factor (LOF) 289
local repository
creating 183, 184
linking, to remote repository 185
logarithmic (log) transformation 237, 238
logging 335

Index

logistic regression 268
assumptions 269
implementation example 269, 270
pitfalls 269
working 268
long short-term memory (LSTM) 313, 316
loops 61
loop statements
for loop 62
while loop 63, 64
loss functions 305, 308
LSTM networks 314

M

machine learning models
anomaly detection models 289
generalized additive models (GAMs) 288
market basket analysis 288
Naive Bayes 288
natural language processing (NLP) 289
recommender systems 289
support vector machines (SVMs) 288
survival analysis 288
Machine Learning Operations
(MLOps) 323-325
Azure ML, using for 337, 338
features 324
model pipeline 325, 326
machine learning workflow 260
model predictions 261
model selection stage 261
model-tuning process 261
problem statement 261
market basket analysis 288
Masked Multi-head Attention 315
Matplotlib 100
used, for creating bar chart 104, 105

used, for creating histogram plot 112,113
used, for creating scatter plot 108, 109
matrix factorization (NMF) 289
maximum negotiable compensation 358
min-max scaling 233
distance-based algorithms
(feature influence) 234
distance-based algorithms, handling 234
missing at random (MAR) 74, 233
missing completely at random
(MCAR) 73,232
missing data
handling 73-75
missingness patterns 232
missing not at random (MNAR) 74, 232, 233
missing values
handling, ways 75
ML/AI governance 336
ML model
evaluation 6
governance 336, 337
monitoring 334, 335
validating 334
ML specialists 10
model deployment
packaging for 330
requirements, identifying 330
tools and approaches, for environment
management 331, 332
validating 334, 335
virtual environments 331
model development
experiments 329
reviewing 329
model performance
improving, parameters 310, 311
model pipeline
overview 325, 326

373

374

Index

model with containers, deploying 332
Docker, using 332, 333

Moore’s Law 44, 45

multicollinear 252

multi-head Attention (MHA) 315

multi-table joins 146

Multivariate Analysis of Variance
(MANOVA) 219, 220

N

Nadam 310
Naive Bayes model 288
named entity recognition (NER) 289, 320
natural language (NL) text 297
natural language processing
(NLP) 59, 248, 289, 297
Nesterov accelerated gradient (NAG) 310
network architectures 313
network tuning 310, 311
neural network (NN) 296
neurons
activating, with activation
functions 300, 301
non-linearity 300
non-scalar value 135
normal distribution 211, 216
t-distribution 211
normalized mutual information (NMI) 287
normalizing 233
null hypothesis 217
numeric types 52
complex types 52
floats (floating-point numbers) 52
integers 52

(0

objective functions 305, 309
off-the-beaten path-er data scientist 13
one-hot encoding 243-247

versus, label encoding 245
one-sample t-tests 218
Open Data Science Conference (ODSC) 45
open source software (OSS) 21
operating system (OS) 161
OPTICS clustering algorithm 286
optimization 309
optimization algorithms 310
optimizers 311

using 309
ORDER BY clause 125
ORDER BY function 147-149
ordinal least squares method 264
outer join 81
outer query 135
overfitting 290
OVER function 147-149

P

paid time off (PTO) 355
paired sample t-tests 219
scenarios 219
pandas library
used, for data wrangling 73
used, for opening file 72,73
panelist stage 350
PARTITION function 147-149
pie chart 97, 98
pipes
using 177,178
pip package 330
Platform-as-a-Service (PaaS) 22

Index

Poisson distribution 212,216

using, scenarios 213
population

defining 201
Power BI 100
power transformation 238, 239
principal component analysis

(PCA) 255,256, 304

probability density function (PDF) 94
probability distributions 210, 216
p-value 217
Python

files, handling 71

files, opening with pandas library 72

indexing 56
Python Package Index (PyPI) 330
PyTorch 316

Q

quantile-quantile plots (Q-Q plots) 95, 96

R

random forest
advantages 273
assumptions 274, 275
hyperparameters 274
implementation example 275, 276
pitfalls 275
working 273, 274

random sampling 202

random search 292

RANK function 153

recommender systems 289

recruiter screenings 342

Rectified Linear Unit (ReLU) 301, 303

recurrent neural networks (RNNs) 307, 314

Recursive Feature Elimination
(RFE) 250, 251
regression 262
data example 262
evaluation metrics 263
mean absolute error (MAE) 263
mean squared error (MSE) 263
root mean squared error (RMSE) 263
regularization regression 266
L1 regularization 266
L2 regularization 266
relational database management
systems (RDBMSs) 328
relational databases 122
relations 122
relative paths 164
remote repository
local repository, linking to 185
reports
assessment 103
developing 101, 102
solution 103, 104
repos 181
creating 183
representative sample 202
Resilient Distributed Dataset (RDD) 327
resume
automated screening 38
constructing 37
correct terminology, using 42, 43
effective resume, creating 39
formatting and organization 40, 41
myth 37
return on advertising spend (ROAS) 43
right join 81, 143, 144
root directory 162

Root Mean Square Propagation
(RMSprop) 310

375

376

Index

ROW_NUMBER 152
assessment 154

S

sample
defining 202
representing 202
sampling bias 202
sampling distributions
binomial distribution 211
data, shaping with 210
exponential distribution 213
geometric distribution 214
normal distribution, 211
Poisson distribution 212
probability distributions 210
uniform distribution 210
Weibull distribution 215
sampling error
reducing 203, 204
scalar value 135
scaling 233
min-max scaling 233, 234
z-score scaling 234
scatter plot 92,93
creating, with Matplotlib 108, 109
creating, with Seaborn 110, 111
scenario-based storytelling process
applying 116, 117
assessment 117,118
solution 118, 119
schema
snowflake schema 123
star schema 122
Seaborn 101
used, for creating bar chart 106, 107
used, for creating histogram plot 114

used, for creating scatter plot 110, 111
SELECT clause

subqueries 132
SELECT statement 124
self-attention mechanisms 318
sentiment analysis (SA) 312
sequence-to-sequence (seq2seq) models 314
sequence types 52
SET function 147-150
shell 162
Shiny 100
sigmoid 301
sigmoid function 303
silhouette score 287
Simple Storage Service (S3) 22, 328
Single Value Decomposition (SVD) 256, 257
situational value 357
Situation, Task, Action, and Results

(STAR) method 343, 344

SMOTE 255
softmax function 302, 303
Software-as-a-Service (SaaS) 22
Spark

URL 327
Specific, Measurable, Achievable , Relevant,

and Time-bound (SMART) 39

spectral clustering algorithm 286
SQL basics

assessment 126, 127

ORDER BY clause 125

SELECT statement 124

snowflake schema 124

WHERE clause 125
SQL database 122

primary key 122

schema 122
SQL joins 140
staging area 182

Index

standout portfolio
building 33
presenting 34, 35
starting 33, 34
statistics 201
stochastic gradient descent (SGD) 310
string
indexing 57-59
initializing 57
string operations
using 57
Structured Query Language (SQL) 6
subqueries
analyzing 131, 132
FROM subqueries 132
HAVING subqueries 132
in FROM clause 133,134
in SELECT clause 132,133
in WHERE clause 134, 135
SELECT subqueries 132
WHERE subqueries 132
subqueries, WHERE clause 134, 135
non-scalar example 136
scalar example 135, 136
supervised machine learning 262
classification 263
k-nearest neighbors (k-NN) 270
linear regression 264
logistic regression 268
random forest 273
regression 262, 263
XGBoost 277
support vector machines (SVMs) 288
survival analysis 288
system directories
basic command-line prompts 163
file and directory contents,
manipulating 166, 167, 168

navigating 162-165
pwd command 166
types 164

system directory types
absolute paths 164
relative paths 164

T

Tableau 100
tables

merging, with joins 140
tagging 189

using, as data scientist 189
target encoding 246, 247
t-distributed Stochastic Neighbor

Embedding (t-SNE) 257

t-distribution 211,216
technical interview stage 346, 347
TensorFlow 316
text-to-speech (TTS) 289
Text-to-Text-Transfer Transformer (T5) 319
time series plots 91
trade tools

assessment 101

ggplot2 100

Matplotlib 100

Power BI 100

Seaborn 101

Shiny tool 100

solution 101

surveying 99

Tableau 100
traditionalist data scientist 11
training embeddings

pre-trained embeddings approach 313
Transfer Learning (TL) 319

377

378 Index

transformers 318 variational autoencoders (VAEs) 314
encoder and decoder stacks 315 Version Control (DVC) 182, 329
self-attention mechanism 319

tree-based feature selection 252 W

two-sample t-tests 218

Type I error (false positive) 224, 225 Weibull distribution 215, 217
balancing, with Type II error 225,226 examples, for usage by data scientists 215

Type II error (false negative) 224, 225 weights 298

Weights & Biases (W&B) 329

U WHERE clause 125

subqueries 134, 135

underfitting 290 while loops 63, 64

uniform distribution 210, 211, 216 wildcard 124

unsupervised machine learning 279 window functions
DBSCAN 283 calculating 147
K-means clustering 280 DENSE_RANK 153

user-defined functions LAG 150, 151
creating, best practices 69 LEAD 150, 151
default parameters 67 ORDER BY 147-149
lambda functions 68, 69 OVER keyword 147-149
no parameters 66 PARTITION 147-149
one or multiple parameters 66, 67 RANK 152,153
syntax, splitting 65, 66 ROW_NUMBER 152
using 65 SET 147-149

word embedding 312
V working directory 182

wrapper methods 250
vanishing gradient problem 306

reasons, for occurrence 306 y 4
variability 200
variability measures z-score 211
Interquartile Range (IQR) 200 z-score scaling 234
range 200 feature influence 234
standard deviation 200 outliers, dealing with 235
variables
using 52

variance 289
variance inflation factor 252, 253

www . packtpub.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as
industry leading tools to help you plan your personal development and advance your career. For more
information, please visit our website.

Why subscribe?

o Spend less time learning and more time coding with practical eBooks and Videos from over
4,000 industry professionals

o Improve your learning with Skill Plans built especially for you

o Get a free eBook or video every month

o Fully searchable for easy access to vital information

o Copy and paste, print, and bookmark content
Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at packtpub . com and as a print book customer, you

are entitled to a discount on the eBook copy. Get in touch with us at customercare@packtpub.
com for more details.

Atwww . packtpub . com, you can also read a collection of free technical articles, sign up for a range
of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

http://www.packtpub.com
http://packtpub.com
mailto:customercare@packtpub.com
mailto:customercare@packtpub.com
http://www.packtpub.com

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Data Science for Web3
Gabriela Castillo Areco

ISBN: 978-1-83763-754-6

o Understand the core components of blockchain transactions and blocks.

« Identify reliable sources of on-chain and off-chain data to build robust datasets.

« Understand key Web3 business questions and how data science can offer solutions.
o Build your skills to create and query NFT- and DeFi-specific datasets.

o Implement a machine learning toolbox with real-world use cases in the Web3 space.

https://www.packtpub.com/product/data-science-for-web3/9781837637546

Other Books You May Enjoy 381

SINAN OZDEMIR

Principles of Data Science
Sinan Ozdemir

ISBN: 978-1-83763-630-3

o Master the fundamentals steps of data science through practical examples.

« Bridge the gap between math and programming using advanced statistics and ML.
o Harness probability, calculus, and models for effective data control.

« Explore transformative modern ML with large language models.

o Evaluate ML success with impactful metrics and MLOps.

o Create compelling visuals that convey actionable insights.

https://www.packtpub.com/product/principles-of-data-science-third-edition/9781837636303

382

Packt is searching for authors like you

If you're interested in becoming an author for Packt, please visit authors . packtpub. comand
apply today. We have worked with thousands of developers and tech professionals, just like you, to
help them share their insight with the global tech community. You can make a general application,
apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

Share Your Thoughts

Now you’ve finished Cracking the Data Science Interview, wed love to hear your thoughts! If you
purchased the book from Amazon, please click here to go straight to the Amazon review page for this
book and share your feedback or leave a review on the site that you purchased it from.

Your review is important to us and the tech community and will help us make sure we're delivering
excellent quality content.

http://authors.packtpub.com
https://packt.link/r/1-805-12050-6

383

Download a free PDF copy of this book

Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don't worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content
in your inbox daily

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below

[

&
vk
=

https://packt.link/free-ebook/978-1-80512-050-6

2. Submit your proof of purchase

3. That's it! We'll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/978-1-80512-050-6

	Cover
	Copyright
	Foreword
	Contributors
	Table of Contents
	Preface
	Part 1:
Breaking into the
Data Science Field
	Chapter 1: Exploring Today’s Modern Data Science Landscape
	What is data science?
	Exploring the data science process
	Data collection
	Data exploration
	Data modeling
	Model evaluation
	Model deployment and monitoring

	Dissecting the flavors of data science
	Data engineer
	Dashboarding and visual specialist
	ML specialist
	Domain expert

	Reviewing career paths in data science
	The traditionalist
	Domain expert
	Off-the-beaten path-er

	Tackling the experience bottleneck
	Academic experience
	Work experience

	Understanding expected skills and competencies
	 Hard (technical) skills
	Soft (communication) skills

	Exploring the evolution of data science
	New models
	New environments
	New computing
	New applications

	Summary
	References

	Chapter 2: Finding a Job in Data Science
	Searching for your first data science job
	Preparing for the road ahead
	Finding job boards
	Beginning to build a standout portfolio
	Applying for jobs

	Constructing the Golden Resume
	The perfect resume myth
	Understanding automated resume screening
	Crafting an effective resume
	Formatting and organization
	Using the correct terminology

	Prepping for landing the interview
	Moore’s Law
	Research, research, research
	Branding

	References

	Part 2:
Manipulating and
Managing Data
	Chapter 3: Programming with Python
	Using variables, data types, and data structures
	Indexing in Python
	Using string operations
	Initializing a string
	String indexing

	Using Python control statements, loops, and list comprehensions
	Conditional statements such as if, elif, and else
	Loop statements such as for and while
	List comprehension

	Using user-defined functions
	Breaking down the user-defined function syntax
	Doing “stuff” with user-defined functions
	Getting familiar with lambda functions
	Creating good functions

	Handling files in Python
	Opening files with pandas

	Wrangling data with pandas
	Handling missing data
	Selecting data
	Sorting data
	Merging data
	Aggregation with groupby()

	Summary
	References

	Chapter 4: Visualizing Data and
Data Storytelling
	Understanding data visualization
	Bar charts
	Line charts
	Scatter plots
	Histograms
	Density plots
	Quantile-quantile plots (Q-Q plots)
	Box plots
	Pie charts

	Surveying tools of the trade
	Power BI
	Tableau
	Shiny
	ggplot2 (R)
	Matplotlib (Python)
	Seaborn (Python)

	Developing dashboards, reports, and KPIs
	Developing charts and graphs
	Bar chart – Matplotlib
	Bar chart – Seaborn
	Scatter plot – Matplotlib
	Scatter plot – Seaborn
	Histogram plot – Matplotlib
	Histogram plot – Seaborn

	Applying scenario-based storytelling
	Summary

	Chapter 5: Querying Databases with SQL
	Introducing relational databases
	Mastering SQL basics
	The SELECT statement
	The WHERE clause
	The ORDER BY clause

	Aggregating data with GROUP BY and HAVING
	The GROUP BY statement
	The HAVING clause

	Creating fields with CASE WHEN
	Analyzing subqueries and CTEs
	Subqueries in the SELECT clause
	Subqueries in the FROM clause
	Subqueries in the WHERE clause
	Subqueries in the HAVING clause
	Distinguishing common table expressions (CTEs) from subqueries

	Merging tables with joins
	Inner joins
	Left and right join
	Full outer join
	Multi-table joins

	Calculating window functions
	OVER, ORDER BY, PARTITION, and SET
	LAG and LEAD
	ROW_NUMBER
	RANK and DENSE_RANK
	Using date functions

	Approaching complex queries
	Summary

	Chapter 6: Scripting with Shell and Bash Commands in Linux
	Introducing operating systems
	Navigating system directories
	Introducing basic command-line prompts
	Understanding directory types

	Filing and directory manipulation
	Scripting with Bash
	Introducing control statements
	Creating functions
	Processing data and pipelines
	Using pipes

	Using cron
	Summary

	Chapter 7: Using Git for Version Control
	Introducing repositories (repos)
	Creating a repo
	Cloning an existing remote repository
	Creating a local repository from scratch
	Linking local and remote repositories

	Detailing the Git workflow for data scientists
	Using Git tags for data science
	Understanding Git tags
	Using tagging as a data scientist

	Understanding common operations
	Summary

	Part 3:
Exploring
Artificial Intelligence
	Chapter 8: Mining Data with Probability and Statistics
	Describing data with descriptive statistics
	Measuring central tendency
	Measuring variability

	Introducing populations and samples
	Defining populations and samples
	Representing samples
	Reducing the sampling error

	Understanding the Central Limit Thereom (CLT)
	The CLT
	Demonstrating the assumption of normality

	Shaping data with sampling distributions
	Probability distributions
	Uniform distribution
	Normal and student’s t-distributions
	The binomial distribution
	The Poisson distribution
	Exponential distribution
	Geometric distribution
	The Weibull distribution

	Testing hypotheses
	Understanding one-sample t-tests
	Understanding two-sample t-tests
	Understanding paired sample t-tests
	Understanding ANOVA and MANOVA
	Chi-squared test
	A/B tests

	Understanding Type I and Type II errors
	Type I error (false positive)
	Type II error (false negative)
	Striking a balance

	Summary
	References

	Chapter 9: Understanding Feature Engineering and Preparing Data for Modeling
	Chapter 10: Mastering Machine
Learning Concepts
	Introducing the machine learning workflow
	Problem statement
	Model selection
	Model tuning
	Model predictions

	Getting started with supervised machine learning
	Regression versus classification
	Linear regression – regression
	Logistic regression
	k-nearest neighbors (k-NN)
	Random forest
	Extreme Gradient Boosting (XGBoost)

	Getting started with unsupervised machine learning
	K-means
	Density-based spatial clustering of applications with noise (DBSCAN)
	Other clustering algorithms
	Evaluating clusters

	Summarizing other notable machine learning models
	Understanding the bias-variance trade-off
	Tuning with hyperparameters
	Grid search
	Random search
	Bayesian optimization

	Summary

	Chapter 11: Building Networks with
Deep Learning
	Introducing neural networks and deep learning
	Weighing in on weights and biases
	Introduction to weights
	Introduction to biases

	Activating neurons with activation functions
	Common activation functions
	Choosing the right activation function

	Unraveling backpropagation
	Gradient descent
	What is backpropagation?
	Loss functions
	Gradient descent steps
	The vanishing gradient problem

	Using optimizers
	Optimization algorithms
	Network tuning

	Understanding embeddings
	Word embeddings
	Training embeddings

	Listing common network architectures
	Common networks
	Tools and packages

	Introducing GenAI and LLMs
	Unveiling language models
	Transformers and self-attention
	Transfer Learning
	GPT in action

	Summary

	Chapter 12: Implementing Machine Learning Solutions with MLOps
	Introducing MLOps
	A model pipeline overview

	Understanding data ingestion
	Learning the basics of data storage
	Reviewing model development
	Packaging for model deployment
	Identifying requirements
	Virtual environments
	Tools and approaches for environment management

	Deploying a model with containers
	Using Docker

	Validating and monitoring the model
	Validating the model deployment
	Model monitoring
	Thinking about governance

	Using Azure ML for MLOps
	Summary

	Part 4:
Getting the Job
	Chapter 13: Mastering the Interview Rounds
	Mastering early interactions with the recruiter
	Mastering the different interview stages
	The hiring manager stage
	The technical interview
	Coding questions, step by step
	The panel stage

	Summary
	References

	Chapter 14: Negotiating Compensation
	Understanding the compensation landscape
	Negotiating the offer
	Negotiation considerations
	Responding to the offer
	Maximum negotiable compensation and situational value

	Summary
	Final words

	Index
	Other Books You May Enjoy

