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Foreword

The data science landscape is ever-evolving and has been that way since its conception. Though it is 
a rewarding field with many opportunities, navigating it can be a challenge, especially when you’re 
just getting started.

During my career, I have found that various companies can interpret data science differently depending 
on their business needs or understanding of data science. When I first began my data science journey 
in 2015, I was employed as a health data analyst with a start-up. It was there that I was exposed to 
data science, as my role was not purely data analytics or data science, but a mixture somewhere in 
between. I wanted to continue learning and advancing, but I did not know where to focus my energy 
to gain the information needed to thrive in this field. So, I curated a list of lessons I needed to learn 
in order to be competent enough to enter and advance in the field. I learned Python, data science 
with Python, R programming, linear algebra, and calculus, and as time went on, it became more and 
more daunting, the list of lessons becoming even longer than what was required for a graduate degree. 
Unfortunately, even after all of my hard work, during interviews, I found there were still concepts that 
I was unaware of. This has been the issue that I, as well as others, have noted with this field – there is 
so much information, but it can be unclear where to begin and what information is necessary to know.

On top of this, the data science interview is universally dreaded and challenging for various reasons that 
I have already alluded to. For instance, candidates are usually unsure of what that particular company 
considers data science. Plus, take-home assignments can take hours to complete – and once that time 
has been invested in completing the assignment, the company may choose to not offer feedback or, 
even worse, disappear completely when they’ve decided they aren’t interested. After experiencing this 
devastating outcome more than once, I became highly selective in what companies I chose to do a 
take-home assignment for. Many companies had a habit of immediately asking candidates to complete 
a take-home assignment before an interview, which I have learned rarely works in the candidate’s favor.

This book will address and outline the concepts that are necessary to begin or progress in a data 
science role. Because this field is ever-evolving, our understanding of concepts will continue as well, 
however this book can be used as a reference for those that are experienced in the field, or for those 
that are in data science adjacent roles and want to keep their knowledge current. This book will include 
imperative information so that candidates can be successful during a data science interview, as well 
as removing some of the guesswork in what companies are expecting.



It is widely accepted that data science candidates have an online portfolio to showcase their talent 
and application of knowledge – for this reason, there is information on how to build a portfolio and 
create a resume that will get you noticed. Salary and benefits negotiation is also outlined to streamline 
the process for you – a process many of us had to learn completely uninformed in the past, is now 
disseminated for the benefit of others.

We are certain that you will find this book helpful in your data science journey. Cheers!

Angela Baltes, PhD

Data Scientist, UnitedHealth Group
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Preface

In today’s dynamic technological landscape, the demand for skilled professionals in artificial intelligence 
(AI) and data science roles has surged, and the data science job market is increasingly saturated by 
various levels of data science and AI employees. This book is a comprehensive guide, crafted to equip 
both aspiring and seasoned individuals with the essential tools and knowledge required to navigate 
the intricacies of data science interviews. Whether you’re stepping into the AI realm for the first time 
or aiming to elevate your expertise, this book offers a holistic approach to mastering the fundamental 
and cutting-edge facets of the field.

The chapters within this book span a wide spectrum of critical subjects, from programming with 
Python and SQL to statistical analysis, pre-modeling and data cleaning concepts, machine learning 
(ML), deep learning, Large Language Models (LLMs), and generative AI. We aim to provide a 
comprehensive review and update on the foundational concepts while also delving into the latest 
advancements. In an era marked by the disruptive potential of language models and generative AI, 
it’s imperative to continually hone your skills. This book serves as a compass, guiding you through 
the intricacies of these transformative technologies, ensuring you’re poised to tackle the challenges 
and harness the opportunities they present.

Moreover, beyond technical prowess, we delve into the art of interviewing for AI roles, offering guidance 
on how to ace interviews and negotiate compensation effectively. Additionally, crafting a standout 
résumé tailored for data science roles is a crucial step, and our guide offers insights into writing 
compelling résumés that capture attention in a competitive job market. As AI reshapes industries and 
innovation accelerates, now is the ideal time to embark on or advance in your data science journey. 
We invite you to dive into this comprehensive resource and embark on your path to mastering the 
dynamic world of data science and AI.

Who this book is for
If you are a seasoned or young professional who needs to brush up on your technical skills, or you 
are looking to break into the exciting world of the data science industry, then this book is for you.

What this book covers
In Chapter 1, Exploring the Modern Data Science Landscape, we begin our journey with a brief but 
valuable overview of the contemporary landscape of data science and AI.

In Chapter 2, Finding a Job in Data Science, we will introduce data science roles and their various categories.
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In Chapter 3, Programming with Python, you will familiarize yourself with the most common and 
useful tasks and operations in the Python language.

In Chapter 4, Visualizing Data and Storytelling, you will learn techniques for telling engaging data stories.

In Chapter 5, Querying Databases with SQL, you will dive into the world of databases, understanding 
their design and how to query them to acquire data.

In Chapter 6, Scripting with Bash and Shell Commands in Linux, you will boost your operating system 
skills with the power of bash and shell commands, enabling you to interface with multiple technologies 
either locally or in the cloud.

In Chapter 7, Using Git for Version Control, we explore the most useful commands in Git for project 
collaboration and reproducibility.

In Chapter 8, Mining Data with Probability and Statistics, you will understand some of the most relevant 
topics in probability and statistics that serve as the foundation for many ML models and assumptions.

In Chapter 9, Understanding Feature Engineering and Preparing Data for Modeling, you will use your 
understanding of descriptive statistics to create clean, “machine-legible” datasets.

In Chapter 10, Mastering Machine Learning Concepts, you will learn about the most used ML algorithms, 
their assumptions, how they work, and how to best evaluate their performance.

In Chapter 11, Building Networks with Deep Learning, we take a step further into building and evaluating 
neural networks in various applications while also touching base on the latest advancements in AI.

In Chapter 12, Implementing Machine Learning Solutions with MLOps, we will review the data science 
process, tools, and strategies to effectively design and implement an end-to-end ML solution.

In Chapter 13, Mastering the Interview Rounds, you will learn the best techniques to successfully bypass 
technical and non-technical factors at every stage of the interview process.

In Chapter 14, Negotiating Compensation, you will learn to optimize your earning potential.

To get the most out of this book
To get the most out of this book, you should have a basic knowledge of Python, SQL, and statistics. 
However, you will also benefit from this book if you have familiarity with other analytical languages, 
such as R. By brushing up on critical data science concepts such as SQL, Git, statistics, and deep 
learning, you’ll be well-equipped to crack through the interview process.

Software/hardware covered in the book Operating system requirements
Python 3.12 Windows, macOS, or Linux
Bash Linux
Jupyter Notebooks Windows, macOS, or Linux
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Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, filenames, file 
extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: The 
split() method can be used to split s into individual words: words = s.split().

A block of code is set as follows:

x = 5
print(type(x)) # <class 'int'> 

Bold: Indicates a new term, an important word, or words that you see on screen. For instance, words 
in menus or dialog boxes appear in bold. Here is an example: “The increased computing power and 
the development of advanced algorithms, especially in machine learning (ML) and deep learning 
(DL), have made it possible to efficiently process and analyze massive amounts of data.”

Tips or important notes
Appear like this.

Special Note
The prevalence of accessible AI technology has exploded over the past few months, particularly over 
the course of writing this book. We encourage our readers to utilize AI during their educational 
journey, leveraging tools such as Chat GPT to test your newly acquired skills. Long gone are the days 
where you browse StackOverFlow for hours for your specific inquiry. Now, the power of asking for 
help is right at your fingertips.
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Even we, the authors of this book, leveraged generative AI to aid in minor editorial tasks and creating 
code examples. However, rest assured that humans wrote the content and laid out what is covered in 
the book! In this new era, we just wanted to make our readers aware of how we used the tool.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at customercare@
packtpub.com and mention the book title in the subject of your message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. 
If you have found a mistake in this book, we would be grateful if you would report this to us. Please 
visit www.packtpub.com/support/errata and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would 
be grateful if you would provide us with the location address or website name. Please contact us at 
copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you 
are interested in either writing or contributing to a book, please visit authors.packtpub.com.

mailto:customercare@packtpub.com
mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packtpub.com
http://authors.packtpub.com
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Share Your Thoughts
Once you’ve read Cracking the Data Science Interview, we’d love to hear your thoughts! Please click 
here to go straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re delivering 
excellent quality content.

https://packt.link/r/1-805-12050-6
https://packt.link/r/1-805-12050-6


Prefacexx

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical 
books directly into your application. 

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content 
in your inbox daily

Follow these simple steps to get the benefits:

1.	 Scan the QR code or visit the link below

https://packt.link/free-ebook/978-1-80512-050-6

2.	 Submit your proof of purchase

3.	 That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/978-1-80512-050-6


Part 1:  
Breaking into the  

Data Science Field

In the first part of this book, you will learn about the data science profession as it exists in the modern 
day, and how this relates to your endeavors in the field. This will serve as an introduction to various 
career paths and help to set expectations in terms of the skills and competencies required to be successful.

This part includes the following chapters:

•	 Chapter 1, Exploring Today’s Modern Data Science Landscape

•	 Chapter 2, Finding a Job in Data Science





1
Exploring Today’s Modern  

Data Science Landscape

If you’ve picked up this book, chances are that you’ve already heard of data science. It’s arguably one of 
the fastest-growing, most discussed professions within the tech and STEM space, all while maintaining 
its relative edge and mystique. That is, many people have heard of data scientists, but very few know 
what they do, how a data scientist produces value, or how to break into the field from scratch.

In this chapter, we will verify the definition of data science with a practical description. Then, we 
will discuss what most data science jobs entail, while spending some time describing the distinction 
between different flavors of data science. We’ll then dive into the various paths into data science and 
what makes it so challenging to land your first job. We’ll finish the chapter with an overview of the 
non-negotiable competencies expected of data scientists.

By the end of this chapter, you will have a firm understanding of the modern data scientist, the various 
paths to getting the job, and what to expect in your journey to becoming one.

With this gentle introduction, you’ll have a better understanding of the job of a data scientist, which 
path to becoming a data scientist best fits your journey, the barriers to expect in your journey, and 
which skills you should master.

In this chapter, we will cover the following topics:

•	 What is data science?

•	 Exploring the data science process

•	 Dissecting the flavors of data science

•	 Reviewing career paths in data science

•	 Tacking the experience bottleneck

•	 Understanding expected skills and competencies

•	 Exploring the evolution of data science
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What is data science?
To begin, let’s offer a definition of data science. According to Wikipedia, data science “is an interdisciplinary 
academic field that uses statistics, scientific computing, scientific methods, processes, algorithms, and 
systems to extract or extrapolate knowledge and insights from noisy, structured, and unstructured 
data”[1]. It encompasses various techniques, procedures, and tools to process, analyze, and visualize 
data, enabling businesses and organizations to make data-driven decisions and predictions. The 
primary goal of data science is to identify patterns, relationships, and trends within data to support 
decision-making and create actionable insights.

You are not alone in your interest in data science – it was called by the Harvard Business Review one 
of the sexiest jobs in the 21st century [2], and stories of data scientists earning enormous salaries 
in the six-figure range are not uncommon. Data scientists are often looked at as oracles within an 
organization, answering complex business questions such as, “If we increase our offering to this group 
of customers, can we increase our revenues?” or “What are the common causes of customer churn?”

Within organizations, the demand for the skills of data scientists has continued to grow. The U.S. 
Bureau of Labor Statistics estimated that in 2022, the number of jobs for data scientists will increase 
by roughly 36% over the next 10 years [3]. This growth in the demand for data scientists is being 
fuelled by several factors, which are shown here:

Figure 1.1: Reasons for the increased demand for data scientists

The first is the proliferation of data. The exponential growth of data generated by digital devices, 
social media, and various other sources has made it essential for organizations to harness this data 
for decision-making and innovation. This data growth is expected to continue in the future, with the 
International Data Corporation (IDC) expecting that by 2025, we will generate 175 zettabytes of 
data annually [4]. That is a staggering amount of data!
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Organizations want to take advantage of this explosion in data availability to generate insights for 
decision-making. As the world becomes more interconnected and complex, the need for evidence-based 
decision-making has grown, leading to an increased demand for skilled data scientists who can transform 
data into actionable insights. Organizations and businesses increasingly rely on data-driven insights 
to gain a competitive edge in the market, optimize operations, and improve customer experiences.

Finally, transforming data into insights couldn't be accomplished without advancements in computational 
power and the advancement of tools and platforms. The increased computing power and the development 
of advanced algorithms, especially in machine learning (ML) and deep learning (DL), have made 
it possible to efficiently process and analyze massive amounts of data. In addition, the development 
of open source tools, libraries, and platforms has made data science more accessible to a broader 
audience, fostering the growth of the profession.

Hence, data science is still an evolving field that is only expected to grow in parallel with computational 
and technological advancements (such as generative AI). Furthermore, as companies continue to 
embrace the digital age with an increased interest in maximizing their utility of data and capitalizing 
on its underlying insights for a competitive advantage, the demand for data scientists will also expand.

However, although data science is often regarded and described as a monolithic function, you’ll soon 
learn that it’s a multi-faceted discipline that often varies by team, department, or even company. 
Naturally, the data scientist job profile is also an ever-evolving description, but we will cover all our 
bases for the most common tasks.

Exploring the data science process
Performing data science work is often an iterative process, where the data scientist needs to return to 
earlier steps if they run into challenges. There are many ways to categorize the data science process, 
but it often includes:

•	 Data collection

•	 Data exploration

•	 Data modeling

•	 Model evaluation

•	 Model deployment and monitoring

Let’s briefly touch on each step and discuss what’s expected of the data scientist during them.

Data collection

Data collection and preprocessing involves gathering data from various sources (such as databases, 
APIs, and web scraping), then cleaning and transforming the data to prepare it for analysis. This step 
involves dealing with missing, inconsistent, or noisy data and converting it into a structured format. 
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Depending on the organization, a team of data engineers support this step of the data science process; 
however, it is common for the data scientist to manage this process as well. This requires them to have 
intimate knowledge of the data sources and the ability to write Structured Query Language (SQL) 
queries, code that can query databases, or custom tools such as web scrapers to gather the needed data.

Data exploration

Data exploration involves conducting exploratory data analysis (EDA) to better understand the 
data, detect anomalies, and identify relationships between variables. The key to this step is to look for 
correlations and understand the distribution of the data. This involves using descriptive statistics and 
visualization techniques to summarize the data and gain insights; therefore, the data scientist should 
be able to use summary statistics, program descriptive visualizations, or utilize reporting tools such 
as Power BI or Tableau to create robust charts.

Data modeling

Using what was learned in the data exploration step, data modeling is the step when the data scientist 
builds their predictive or descriptive models using ML and statistical techniques that identify patterns 
and relationships in the data. Here, the data scientist selects the appropriate algorithms, trains the 
models on historical data, and validates their performance.

Model evaluation

Model evaluation and optimization involves assessing the performance of models using metrics such 
as accuracy, RMSE, precision, recall, AUC, or F1 scores. Based on these evaluations, data scientists 
may refine the models or try alternative algorithms to improve their performance. Understanding the 
underlying reasons behind a model’s predictions is crucial for building trust in its results and ensuring 
that it aligns with the domain knowledge. Therefore, the data scientist must be sure the model solves 
the organizational/business goal. Here, the data scientist needs to be able to communicate their findings 
to possible technical and non-technical individuals.

Model deployment and monitoring

Model deployment and monitoring involves implementing the models in real-world applications, 
monitoring their performance, and maintaining them to ensure their continued accuracy and 
relevance. For example, the data scientist might work with a data engineering team or use tools such 
as containers to implement the model. Once deployed, the data scientist may also need to develop 
dashboards to monitor the model’s performance over time and flag stakeholders if it goes outside the 
expected performance range.
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As you can see, data science is a profession that incorporates many data-related tasks – particularly 
those that involve the acquisition, prepping, and delivery of data in one format or another. While data 
modeling makes up most of the glitz and glamour associated with the job, it is really everything else that 
takes up roughly 80% of the gig. This does not include non-data-related tasks, such as interfacing with 
stakeholders, gathering requirements, debugging software, checking emails, and research. However, 
those tasks are not necessarily unique to data scientists.

Now that you understand the common tasks associated with the job, let’s explore the different types 
or flavors of data science.

Dissecting the flavors of data science
Now that we have defined some of the critical aspects of the role of a data scientist, it is clear that the 
role often covers many different skills. Data scientists are frequently asked to perform a variety of 
data-related tasks, including designing database tables to collect data, programming ML algorithms, 
understanding statistics, and creating stunning visuals to help explain interesting findings to others, 
but it is difficult for any single person to master all of these skill areas.

Therefore, we often see data scientists who are particularly skilled in one or two areas and have basic 
competencies in the others. Their talents could be considered T-shaped, where they are proficient 
across many areas such as the horizontal line of a T, while they have deep knowledge and expertise 
in a few areas such as the vertical portion of the letter:

Figure 1.2: Example of the ‘T of Competencies’



Exploring Today’s Modern Data Science Landscape8

While this example shows an example of someone who is adequate in data engineering and visualization 
principles but exceptional in ML, you can expect to see every possible combination of skills among 
data scientists. These competencies are often aligned with a person’s unique experiences or interests. 
Perhaps they were a statistics major and took a liking to ML, or perhaps they’re a former business 
intelligence (BI) engineer with considerable experience in data extraction, transformation, and 
loading (ETL), allowing them to grasp data engineering concepts much faster.

Whatever the reason, it’s natural for someone to grasp some concepts better than others. This is 
important to remember as you navigate this book. While you are not expected to specialize in every 
facet of data science, you are expected to master the fundamentals. However, you will almost certainly 
discover your T of Competencies  – a trinity of top skill sets that will solidify your identity in the data 
science space.

While there are countless combinations of skill proficiencies, let’s review some of the most common 
that you will encounter:

•	 The data engineer

•	 The dashboarding and visual specialist

•	 The ML specialist

•	 The domain expert

Let’s take a look at these now.

Data engineer

As we discussed earlier, data engineering is a crucial aspect of the data science process that involves data 
collection, storage, processing, and management. It focuses on designing, developing, and maintaining 
scalable data infrastructure, ensuring the availability of high-quality data for analysis and modeling. 
Data engineers are most known for their oversight of the ETL process of data pipelines. On some 
data scientist teams, especially within smaller organizations, the data engineering responsibilities sit 
within the data science team. Therefore, the data scientist specializing in this area can help support 
team projects with data collection and storage, understanding the needs of the ML process, such as 
structuring the data so that it can be fed efficiently to a DL algorithm.

Data engineers have a wealth of tools to choose from. It is not expected for any single data engineer 
to know all of these technologies, especially at the same level of competencies. In fact, the more 
senior the engineer, the more competent they are in their tools of choice. Furthermore, this is not a 
comprehensive list. However, you can expect to see the following on data engineer resumes:

•	 Programming languages: Python, SQL, Scala, R, C++

•	 Data storage: Relational databases (for example, MySQL, PostgreSQL, Oracle), NoSQL databases 
(for example, MongoDB, Cassandra, DynamoDB), data warehouses (for example, Snowflake, 
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Redshift, BigQuery), distributed filesystems (for example, Hadoop Distributed File System 
(HDFS), Apache Cassandra)

•	 Data processing and analysis: Apache Spark, Apache Flink, Apache Storm, Apache Beam, 
MapReduce, Hadoop, Hive, Apache Kafka, Amazon Kinesis

•	 Data integration and ETL: Apache NiFi, Talend, Apache Airflow, AWS Glue, Google Cloud 
Dataflow, dbt

•	 Data version control and collaboration: Git, GitHub, GitLab, Bitbucket, Azure DevOps

•	 Data visualization and BI: Tableau, Power BI, Looker, QlikView, Domo

•	 Cloud platforms and infrastructure: Microsoft Azure, Google Cloud Platform (GCP), Amazon 
Web Services (AWS)

•	 Containers: Docker, Kubernetes

Dashboarding and visual specialist

Data visualization is the graphical representation of data and information using visual elements such 
as charts, graphs, and maps. It enables stakeholders to understand complex patterns, trends, and 
relationships in data, allowing for more informed decision-making. Data visualization helps simplify 
complex data and present it in an easily digestible format, identify patterns, trends, and correlations 
in data, support data-driven decision-making, and communicate insights and findings effectively to 
a broad audience. Combining data visualizations with a compelling narrative can become a powerful 
motivator to drive organizational actions. Many news organizations hire phenomenal data scientists 
specializing in data visualization to communicate complex information to their audience.

Dashboarding and visual specialists have different designations depending on the organization, 
but some of the most common names you’ll hear include BI engineer, data analyst, data visualization 
expert, data storyteller, and many others. They are commonly individuals with a strong background 
in descriptive statistics, data storytelling, and developing key performance indicators (also known 
as KPIs). The most common tools you will see used by dashboarding and visual specialists include:

•	 Programming languages: Python, SQL, R, JavaScript

•	 Data storage: Relational databases (for example, MySQL, PostgreSQL, Oracle), NoSQL databases 
(for example, MongoDB, Cassandra, DynamoDB), data warehouses (for example, Snowflake, 
Redshift, BigQuery)

•	 Frameworks: Dask, Plotly, ggplot2, Shiny, Matplotlib, Seaborn, DB.js

•	 Data visualization and BI: Tableau, Power BI, Looker, QlikView, Domo, Funnel, Excel

•	 Cloud platforms and infrastructure: Microsoft Azure, GCP, AWS
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ML specialist

When most people think about data scientists, they think about someone who designs and implements 
ML algorithms. ML specialists and engineers utilize computers to learn and improve from experience 
without explicit programming by developing algorithms and models to analyze data, identify patterns, 
and make predictions or decisions based on those patterns. They play a critical role in building 
intelligent applications and systems. ML specialists have a strong sense of which learning algorithms 
to use and how to adjust their parameters to achieve the best performance.

As a result, they have a strong propensity toward research to stay current on the latest methods 
of quantitative problem-solving and are specifically skilled in ML development, deployment, and 
maintenance tasks. They have a robust toolset as they are highly proficient in software development 
principles. While it certainly isn’t a rule, many ML specialists tend to have a strong background in 
statistics, operations research, computer science, and/or information systems. Tools used by ML 
specialists might include:

•	 Programming languages: Python, SQL,  R, Java, C++

•	 Frameworks: TensorFlow, Keras, scikit-learn, PyTorch, H2O, Hugging Face

•	 Data storage: Relational databases (for example, MySQL, PostgreSQL, Oracle), NoSQL databases 
(for example, MongoDB, Cassandra, DynamoDB), data warehouses (for example, Snowflake, 
Redshift, BigQuery), distributed filesystems (for example, HDFS, Apache Cassandra)

•	 Data processing and analysis: Apache Spark, Apache Flink, Apache Storm, Apache Beam, 
MapReduce, Apache Kafka

•	 Data integration and ETL: Apache NiFi, Talend, Apache Airflow, AWS Glue, Google Cloud Dataflow

•	 Data version control and collaboration: Git, GitHub, GitLab, Bitbucket

•	 Cloud platforms and infrastructure: Microsoft Azure, GCP, AWS

•	 Deployment: Docker, Kubernetes, Flask

Domain expert

Domain experts are data scientists with in-depth knowledge and expertise in specific domains 
within the industry or field; for example, someone who has gained much knowledge and expertise 
working on computer vision (CV) or natural language (NL) problems. They leverage their domain 
knowledge to develop custom ML models and data analysis techniques tailored to their domain’s unique 
challenges and requirements. However, there are also non-technical domain experts who gained a 
deep familiarity with a particular industry or business problem given their professional history. For 
example, someone with a background in digital marketing may have an edge for a data science role 
that requires an understanding of media mix modeling or data-driven attribution, whereas someone 
with aviation experience may have an advantage in route optimization models.
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Because domain experts tend to carry domain-specific expertise, they often are already familiar with 
the tools of their specific industry. For example, a digital marketing professional is bound to have 
some experience with a myriad of MarTech platforms, including Google Analytics, Adobe Analytics, 
HubSpot, and more.

These are just some of the flavors or different areas to specialize in within data science. You will not 
need to be an expert in all of these areas, but you will need to show some level of competency and 
willingness to grow in all of these areas. Often when working on data science projects, you will gravitate 
to one of these areas out of necessity or passion; gaining practical experience will be key here and 
strengthen your candidacy for a role where the hiring manager is looking for someone with that skill set.

If you haven’t noticed, many of these data science flavors are the consequence of one’s prior experience, 
either in tech or otherwise. For example, a software engineer may be well suited to transition into ML 
or data engineering, while a data analyst may find an easier time transitioning to data engineer or 
BI engineer. As you’ve seen, there is a considerable overlap in skills, tools, and tasks with all flavors 
of data science.

This brings us to the paths to data science. You may have already envisioned where you fit into the 
equation given some of the prior descriptions. Let’s take the time to explicitly discuss some common 
paths to the data science profession.

Reviewing career paths in data science
The field of data science is rapidly evolving, drawing professionals from various backgrounds and 
disciplines. This dynamic landscape has given rise to a multitude of career paths in data science, each 
bringing their unique perspectives, skills, and experiences to the table. In this section, we will explore 
three primary types of data scientists: the traditionalist, the domain expert, and the off-the-beaten 
path-er. Does one of these career paths best fit you?

The traditionalist

The traditionalist data scientist has followed a more conventional educational path toward data science. 
They typically possess a strong background in computer science or mathematics, often with a minor 
in the other. Other common majors include operations research, statistics, physics, and engineering. 
These individuals often go on to earn an advanced degree in these fields, including a master’s degree 
or even a Ph.D. Their rigorous academic training equips them with a deep understanding of statistical 
methodologies, programming languages, and advanced algorithms.

The traditionalist data scientist has a comprehensive understanding of the underlying mathematical 
and statistical principles that govern the field of data science. They are well-versed in probability theory, 
linear algebra, calculus, and optimization techniques, which form the basis for many ML algorithms 
and statistical modeling. This theoretical foundation enables them to grasp the nuances of various 
methods and research the most appropriate approach for a given problem.
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Equipped with a background in computer science, traditionalists are adept at programming languages 
commonly used in data science, such as Python and R. Their programming skills allow them to 
manipulate data, implement ML algorithms, and develop custom solutions tailored to specific problems. 
Furthermore, they are skilled in using specialized libraries and frameworks, such as TensorFlow, 
PyTorch, and scikit-learn, to expedite the development of data science projects.

In brief, the traditionalist data scientist is characterized by their strong STEM academic background, 
comprehensive understanding of statistical principles, and proficiency in programming and data 
manipulation. If your background is traditionalist, we suggest positioning yourself in job interviews 
as someone with deep expertise in ML. In addition, highlight any research experience you have.

Domain expert

Domain expert data scientists are professionals who initially started their careers in a specific industry, 
such as marketing, finance, healthcare, or supply chain, before branching out into data science. With 
a strong understanding of their domain, these individuals have gradually acquired data analysis and 
programming skills to supplement their expertise (for example, a company controller uses domain 
expertise and knowledge to develop an ML algorithm that flags fraudulent transactions). Domain 
experts possess a unique ability to leverage their domain knowledge to uncover relevant insights from 
data, enabling organizations to make data-driven decisions that drive growth and efficiency.

Domain experts have a comprehensive understanding of the intricacies and nuances of their industry, 
making them invaluable assets in data-driven projects. Their knowledge of industry-specific challenges, 
trends, and best practices enables them to identify critical business problems and frame data-driven 
solutions that are relevant and impactful. Armed with extensive domain knowledge and analytical 
skills, domain expert data scientists excel at developing solutions tailored to their industry. In addition, 
they have a keen ability to translate business questions into data-driven hypotheses and use their 
understanding of the sector’s unique characteristics to guide their analysis. This targeted approach 
allows them to generate insights that directly address the needs and priorities of their industry.

Additionally, domain experts are well versed in the analytical tools and software commonly used in 
their respective fields. These specialized tools, which may include industry-specific data platforms, 
visualization software, or ML frameworks, allow them to efficiently process and analyze data unique 
to their domain. Their expertise with these tools enables them to deliver insights more quickly and 
effectively than their counterparts who lack industry-specific knowledge.

Finally, one of the critical strengths of domain expert data scientists is their ability to communicate 
complex data insights to non-technical stakeholders within their industry. In addition, they understand 
the context and terminology of their domain, enabling them to present findings in a manner that 
resonates with their business partners. This skill is critical for driving data-driven decision-making 
and ensuring that the value of their work is recognized and understood by their organization.
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In summary, if you have specialized knowledge of the field you are interviewing for, we suggest 
positioning yourself as a domain expert data scientist. Highlight your deep understanding of the 
industry and their challenges, enabling you to deliver targeted and impactful data-driven solutions. 
Additionally, highlight that you can communicate complex insights effectively using industry 
terminology. Your domain knowledge and data science techniques will make you a valuable asset to 
any organization in their field.

Off-the-beaten path-er

The off-the-beaten path-er data scientist is an individual who has ventured into data science from 
what’s deemed as a non-traditional background. These professionals may come from diverse fields with 
less focus on quantitative tasks, such as psychology, music, or even journalism. This unconventional 
background can provide them with unique perspectives and creative problem-solving abilities, 
enriching the field of data science with their varied experiences.

Off-the-beaten path-ers possess a wide range of educational and professional backgrounds, which 
equip them with diverse skills and knowledge. They may have initially pursued a career in a different 
domain before discovering their passion for data science. This varied experience often results in a 
broader, interdisciplinary approach to problem-solving, allowing them to draw connections and 
insights that might be overlooked by their more traditionally trained peers. For example, off-the-beaten 
path-ers might approach the problems within ML and artificial intelligence (AI) ethics (a topic of 
increasing relevance within AI) differently than the traditionalist or domain expert. They may also 
regard ML and AI as tools to create a better world by tackling humanitarian issues such as disaster 
response, public health, food security, and human rights. Furthermore, AI may also be of interest to 
civil engineers with an interest in smart cities or political science majors with detecting implicit biases 
in the criminal justice system.

With their unconventional backgrounds, off-the-beaten path-ers bring a unique perspective to data 
science, enabling them to tackle problems from a different angle. Their creativity and innovative 
thinking can lead to the development of new methods, models, or visualizations that challenge the 
status quo and push the boundaries of what is possible in data science. This outside-the-box thinking 
is valuable, especially when addressing complex or novel challenges.

Also, with their unique backgrounds, off-the-beaten path-ers are well equipped to collaborate 
with professionals from various disciplines, leveraging their distinct perspectives to solve complex 
problems. Their ability to work effectively with interdisciplinary teams can lead to the development 
of innovative solutions that combine the strengths of multiple fields, driving growth and success for 
the organization. To facilitate working with different backgrounds, they often have to communicate 
complex ideas and insights effectively to diverse audiences. Off-the-beaten path-ers often understand 
the importance of storytelling in data science, using data visualizations and narratives to convey their 
findings clearly and compellingly. This skill enables them to bridge the gap between technical experts 
and non-technical stakeholders, facilitating collaboration.
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In conclusion, if you have come to data science as an off-the-beaten path-er, we recommend positioning 
yourself in job interviews as someone who is adaptive and can bring your unique perspective to 
facilitate creative problem-solving. Additionally, highlight any abilities to communicate and collaborate.

As the field of data science continues to expand, the diversity of its professionals will only increase. The 
traditionalist, domain expert, and off-the-beaten path-er each bring unique strengths and perspectives. 
Of course, these are just generic groupings of data science professionals and you may be a mix of all 
of these profiles. Embracing your individual strengths will allow you to best position yourself in a 
data science interview.

Nonetheless, while all of these paths have their benefits, none of them are without barriers. A common 
misconception in data science is there is a perfect path, or one that’s comprehensive such that the path 
with be without bottlenecks. While it is true that some paths have advantages over others, they each 
have gaps to address. While some of these gaps are flavor- or path-specific, they all share one: getting 
the first data science job.

Tackling the experience bottleneck
So, you want to be a data scientist? Welcome to The Hunger Games: Data Science Edition!

While that may sound like an exaggeration, the increasing demand for data scientists has turned the 
interview process into a battleground for candidates with various backgrounds and expertise.

But fear not – just as with The Hunger Games, the odds can be in your favor. 

The fact that there is competition should not scare you away from entering the field. You’ve already 
shown your interest and commitment by reading this book, and as you progress through it, you’ll 
learn how to prepare for data science interviews, regardless of your background. In addition, we will 
share strategies to fill gaps in your experience to make you a stronger candidate. Remember – you 
have your own set of strengths and weaknesses. You can come out on top by focusing on your gaps 
and understanding your unique skills.

Believe it or not, it's incredibly common for candidates to have gaps in their experience. In the next 
couple of sections, we will review two familiar sources of experience gaps: academic and work experience 
gaps. In addition to noting these gap areas, we will give you suggestions on how to close them.
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Academic experience

One common gap in a job candidate’s experience is their academic background. Employers may 
favor candidates with formal degrees in data science, computer science, or a related field, making it 
challenging for those without a traditional academic background to stand out. You may not be an 
engineer or a programmer by trade, but you understand math or computers but have yet to get into 
the details of hypothesis testing. There’s no need to worry. The first step in addressing gaps in your 
academic background is identifying them. Reflect on your education and experience, and ask yourself 
the following questions:

•	 In which areas of data science do I feel the least confident?

•	 To which technologies or concepts do I need more exposure?

•	 Which topics or tasks do I struggle with the most during interviews or when working on projects?

•	 What models are commonly needed for the job that I want? 

Once you’ve identified your gaps, you can create an action plan to address them effectively. Here are 
several methods to help you fill the academic experience gap and strengthen your data science candidacy:

•	 Pursue relevant certifications: Obtain certifications in data science, ML, AI, or related fields 
from reputable organizations or platforms (for example, DataCamp, Codeacademy, Sololearn, 
Alison, Udemy, Udacity, Google certifications, and so on). These certifications can help you 
gain credibility, showcase your expertise, and demonstrate your commitment to learning.

•	 Attend workshops and boot camps: Participate in workshops, boot camps, or short-term courses 
that provide hands-on experience in data science techniques and tools. For example, Meetup.com  
and LinkedIn are useful sites for identifying local or virtual data science groups. This will not only 
help you enhance your skills but also allow you to connect with other professionals in the field.

•	 Leverage Massive Open Online Courses (MOOCs): Enroll in MOOCs from top universities or 
platforms to learn data science concepts and techniques. Common websites include Coursera 
and edX. These courses can help you build a strong foundation in the subject and supplement 
your non-traditional academic background.

•	 Build a strong portfolio: Create a robust portfolio that showcases your data science projects, 
coding skills, and problem-solving abilities. Highlight your unique perspective and how your 
non-traditional background has contributed to your approach to data science.

•	 Network with data science professionals: Connect with professionals in the data science field 
through networking events, online forums, or social media platforms such as LinkedIn. This can 
help you gain insights into the industry, learn about job opportunities, and build relationships 
that can lead to mentorship or job referrals.
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Resources, such as books, online courses, and tutorials, help you gain the necessary knowledge. 
Develop a realistic timeline for completing any of these activities and don't become overwhelmed 
by the vast availability of online courses. Setting achievable goals and being patient with yourself is 
important when developing your learning plan. Remember – data science is a vast field, and it takes 
time to become proficient. Set a dedicated time to work on your learning plan. In addition, engage 
with the data science community through forums, social media, and networking events to learn from 
others and stay motivated.

Work experience

Another common experience gap for candidates is related to work experience. Entering the data science 
field can be challenging, particularly when faced with the work experience bottleneck. Employers often 
seek candidates with prior experience, creating a catch-22 for aspiring data scientists: you need experience 
to get a job, but you need a job to gain experience! This section will explore common reasons for gaps 
in a work background and provide strategies to help you overcome the work experience bottleneck.

There are several reasons why your work background might not perfectly align with what an employer is 
looking for, such as a career transition from a different field; you may be a recent graduate with limited 
or no full-time experience, or you may have employment gaps due to personal reasons (for example, 
caregiving, health, travel) or have done freelance or contract work, which may not be perceived as 
consistent or relevant experience.

Understanding the reasons behind work background gaps is essential for crafting a compelling narrative 
and demonstrating your value to potential employers. Here are several methods to help you fill the 
work experience gap and strengthen your data science candidacy:

•	 Personal projects: Develop and showcase personal projects demonstrating your skills, creativity, 
and problem-solving abilities. Choose projects that align with your career interests or target 
industries. This will help build your portfolio and show your passion and commitment to the field.

•	 Internships, co-ops, fellowships, and apprenticeships: Seek internships, co-ops, or apprenticeships 
to gain hands-on experience and make valuable connections in the industry. These opportunities 
can provide a foot in the door, allowing you to learn from experienced professionals and 
build a network that can lead to future job prospects. There are even some online internships. 
For example, Forage offers virtual experiences hosted by top companies including JPMorgan 
Chase, Walmart, KPMG, Lyft, Red Bull, PWC, Accenture, Deloitte, GE, and more. Many tech 
companies such as Microsoft, Amazon, and Google offer many apprenticeships for recent 
graduates and professionals. Some organizations offer online fellowships, such as Correlation 
One and Insight Fellows.

•	 Freelance and consulting work: Offer freelance or consulting services to businesses and 
organizations, even if on a pro bono basis. This allows you to gain practical experience, enhance 
your skills, and build a track record of success. In addition, it demonstrates your ability to work 
with clients and solve real-world problems. Websites include Upwork, Fiverr, FlexJobs, and so on.
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•	 Online competitions and hackathons: Participate in data science competitions and hackathons, 
such as those hosted on Kaggle or DrivenData. These events allow you to work on challenging 
problems, collaborate with others, and showcase your skills to potential employers.

•	 Open source contributions: Contribute to open source projects related to data science, ML, or 
AI. This improves your technical skills and demonstrates your ability to collaborate with others 
and contribute to the broader data science community.

By employing these strategies, you can overcome the work experience bottleneck and position yourself 
as a strong candidate in the data science job market. Remember – persistence and adaptability are key 
to success. Stay focused on your goals, seize opportunities to learn and grow, and, ultimately, you’ll 
break through the work experience barrier to land your dream data science job.

Now that you’ve had a proper introduction to bottlenecks that you might encounter, as well as methods 
and resources to address them, let’s gain a better understanding of the skills and competencies that are 
expected of you. After reviewing both hard skills and underrated soft skills, you will be able to isolate 
your competency gaps, which will not only help you identify which resources to leverage but will also 
help you navigate this book in a more pointed and goal-oriented fashion. While it is encouraged to 
review the book in its entirety, you can prepare for sections that might require more attention.

Understanding expected skills and competencies
Here’s the deal – the interview is a critical component of the data science job application process, 
where you can showcase your skills, knowledge, and personality to potential employers. The interview 
process is crucial for several reasons:

•	 Employers can assess your technical skills, problem-solving abilities, and critical thinking

•	 It lets you demonstrate your communication skills, teamwork, and cultural fit

•	 It allows you to ask questions and gather information about the company and role to ensure it 
aligns with your career goals and values

•	 Preparing for the interview is essential to stand out in the competitive job market and secure 
your dream role

Preparing for the data science interview is essential to success. In fact, it’s one of the most useful 
activities that you can do for your career. This is not only true for prospective data scientists looking to 
land their first job in the field but also for well-seasoned data scientists who wish to stay on top of new 
techniques and technologies. In later sections of this book, we will help you prepare by reviewing the 
most common data science interview topics, including technical and case study questions. In addition, 
we will give you problems to practice your problem-solving skills, coding, and data manipulation 
techniques. Including these activities, you should also prepare by researching the company, its culture, 
products, and industry trends. Additionally, prepare questions to ask the interviewer to demonstrate 
your interest and engagement.
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For now, know that most data science interviews consist of two primary areas: technical (hard) skills 
and non-technical (soft) skills. Each area serves a different purpose and requires distinct preparation 
strategies. The technical portion assesses your knowledge and skills in data science, programming, 
statistics, and ML. For example, it may include coding exercises or algorithmic questions, data 
manipulation and cleaning tasks, statistical analysis or hypothesis testing questions, and ML model 
selection and evaluation problems. Meanwhile, the non-technical portion evaluates your communication 
skills, problem-solving skills, and ability to work in a team. It may involve questions about your past 
experiences and accomplishments, situational or problem-solving scenarios, discussion of your 
strengths, weaknesses, and work style, and exploration of your motivations and career aspirations.

Mastering the data science interview is a crucial skill that can make or break your career. While we don’t 
win them all, studying for these interviews can feel like preparing for a marathon. This is especially 
true when you have to prepare for multiple interviews and/or take-home assignments. The key to 
breaking into the data science field is building strong foundations in expected skills and competencies. 
By excelling in the interview process, you can leave a lasting impression on potential employers and 
increase your chances of receiving a job offer. Furthermore, understanding the interview’s structure 
thoroughly prepares you for both technical and non-technical portions, and by effectively highlighting 
your strengths and skills, you’ll be well on your way to success in the data science field.

Let’s take a deeper look into what’s included in the hard and soft skills expected of a prospective data 
scientist. After the review, you will have a clearer concept of the proficiencies you will learn throughout 
this book.

 Hard (technical) skills

To excel in a data science role, you must possess a strong foundation in various hard technical skills. 
These skills enable you to effectively manipulate, analyze, and interpret data and develop and deploy 
ML models. In this section, we’ll discuss the essential hard technical skills required to be successful 
in a data science position:

•	 Programming languages: Proficiency in programming languages is crucial for data manipulation, 
analysis, and visualization. The most popular languages in data science are:

	� Python: A versatile, high-level programming language with extensive libraries and tools 
for data science, such as NumPy, Pandas, Matplotlib, and scikit-learn (we cover some key 
Python skills later in the book).

	� R: A language specifically designed for statistical computing and graphics, offering a wide 
range of packages for data manipulation, visualization, and modeling.

•	 Data manipulation and cleaning: Data scientists often work with raw, messy, or incomplete data. 
Therefore, you must be skilled in data preprocessing, cleaning, transforming, and organizing 
data to prepare it for analysis or modeling. Proficiency in SQL is often needed to pull data from 
databases and clean and prepare it.
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•	 Data visualization: Data visualization represents data in a graphical format to effectively 
communicate insights and trends. Essential data visualization skills include creating clear and 
informative visualizations using tools such as Matplotlib, ggplot2, or Tableau and selecting 
appropriate visualization types based on the data and the intended audience. Effectively 
communicate insights and findings through visual storytelling.

•	 Statistics: A strong foundation in statistics is vital for making data-driven decisions and interpreting 
results. Key statistical concepts and techniques in data science include descriptive statistics, 
which summarize and describe data using measures such as mean, median, mode, variance, 
and standard deviation. Additionally, a candidate must know inferential statistics, which draws 
conclusions about populations or relationships based on sample data using techniques such as 
hypothesis testing and confidence intervals. Also, probability theory is about understanding the 
likelihood of events and their relationships, including concepts such as conditional probability, 
independence, and Bayes’ theorem.

•	 ML: ML involves training algorithms to learn from data and make predictions or decisions. 
Essential ML skills include:

	� Supervised learning (SL): Building models to predict target variables based on input features. 
Some SL techniques that you should understand before your data science interview include 
linear regression, logistic regression, and decision trees.

	� Unsupervised learning (UL): Discovering patterns or structures in data without labeled 
targets. Techniques such as clustering, dimensionality reduction, and anomaly detection 
are important to understand before your data science interview.

	� Model evaluation: Assessing model performance using metrics such as accuracy, precision, 
recall, F1 score, and area under the curve (AUC).

•	 Cloud computing platforms: Services such as AWS, Azure, or Google Cloud provide scalable 
resources for data storage, processing, and ML. More and more organizations are adopting these 
platforms, and they will likely require you to know how to perform data science activities using 
them, although most services offer certificates to show your proficiency in using their service.

It’s essential to continuously refine and update your skills to stay competitive in the rapidly evolving 
field of data science. Engage in ongoing learning, attend workshops, and participate in online courses 
or boot camps to keep your technical skills sharp and relevant.

Soft (communication) skills

While hard technical skills form the foundation of a data scientist’s expertise, soft skills are equally 
important in ensuring success in the role. Soft skills are non-technical, interpersonal abilities that help 
you navigate professional relationships, collaborate with team members, and effectively communicate 
your insights. This section will discuss essential soft skills required to excel in a data science position:
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•	 Curiosity and continuous learning: A successful data scientist must possess a curious mindset 
and commitment to ongoing learning. Fostering curiosity and continuous learning includes 
staying informed about industry trends, new tools, and techniques. Additionally, seek feedback 
from peers, mentors, and supervisors to identify areas for growth. Finally, engage in professional 
development activities, such as attending conferences, workshops, or online courses.

•	 Communication: Effective communication is critical for data scientists, as it enables you 
to explain complex concepts and insights clearly and concisely, tailored to your audience. 
Also, it is crucial that you present your findings and recommendations to both technical and 
non-technical stakeholders.

•	 Teamwork and collaboration: Data scientists often work in multidisciplinary teams, collaborating 
with engineers, analysts, product managers, and other stakeholders. Essential teamwork and 
collaboration skills include active listening and consuming others’ perspectives, needs, and 
ideas. Adaptability is also essential for collaboration, adjusting your approach and priorities 
to accommodate changes in team dynamics, project requirements, or goals.

•	 Problem-solving: Data scientists must tackle complex, real-world problems by breaking them 
into smaller components, analyzing available data, and developing appropriate solutions. Key 
problem-solving skills include analytical thinking, where you identify patterns, trends, and 
relationships in data and understand the underlying structure of problems.

•	 Time management and organization: Effective time management and organization skills are 
crucial for managing multiple tasks, meeting deadlines, and prioritizing work. To excel in these 
areas, consider setting clear goals and objectives for both short-term and long-term projects. 
Also, create a structured schedule that gives time for different tasks and priorities. Finally, 
you should regularly assess progress, adjust plans as needed, and learn from past experiences.

These hard and soft skills are what make up a comprehensive data scientist who is not only equipped 
to use mathematical and computational techniques to tackle business questions but is also skilled in 
effectively managing multiple projects, deliverables, stakeholder expectations, and tight deadlines. 
While data scientists are typically not the most client-facing role in an organization, the best data 
scientists stand out when they have strong interpersonal skills to collaborate and communicate 
questions, requirements, caveats, how models work, and how to interpret results. After all, your work 
is only as good as how it’s communicated.
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Exploring the evolution of data science
The field of data science continues to evolve, both in terms of the tools used and the type of work 
conducted. This evolution is driven by advancements in technology, the increasing availability of data, 
and the growing demand for data-driven insights in a wide range of industries. As a result, it is critical 
for those interested in entering the field to not only learn fundamental techniques and technologies 
of data science but also to stay diligent and current on new developments and technologies.

New models

One of the most significant ways in which the field of data science is evolving is through the development 
of new ML and AI algorithms and techniques. As AI continues to become more sophisticated, data 
scientists are able to build more accurate and powerful predictive models that can be used to solve a 
wide range of complex problems. This includes the implementation of methods borrowed by other 
fields in industry and academia such as process improvement, operations research, game theory, 
network/graph analytics, and deep learning techniques.

It goes without saying, but developments such as the large language models (LLMs) used in 
ChatGPT are expected to have a profound impact on how data scientists work. For example, LLMs 
in integrated development environments (IDEs) have the potential to expedite the writing of code. 
This is comparable to the development of open source software (OSS) packages, which have already 
increased productivity for programmers.

New environments

Another way in which the field of data science is evolving is through the increasing use of cloud-based 
technologies and platforms. Virtualization and serverless technologies have provided data scientists 
with the ability to access powerful computing resources and scalable data storage, making it easier and 
more cost-effective to work with large datasets. Thus, cloud computing has revolutionized the data 
science landscape by offering unprecedented opportunities and transforming the way organizations 
approach data analysis and ML. With these advancements, data scientists have overcome traditionally 
inconvenient constraints such as hardware limitations, scalability challenges, and resource allocation. 
Now, data scientists can create multiple virtual machines (VMs) on a single physical server, enabling 
efficient utilization of computing resources.
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For example, serverless technology simplifies model deployment and management of software applications, 
as it eliminates the need for infrastructure provisioning and automatically scales resources based 
on demand. Cloud computing platforms such as AWS, Microsoft Azure, and GCP have dominated 
the Infrastructure-as-a-Service (IaaS), Platform-as-a-Service (PaaS), and Software-as-a-Service 
(SaaS) spaces and democratized access to high-performance computing, storage, and specialized tools, 
empowering data scientists with immense computational power at their fingertips. They offer powerful 
frameworks such as Google Cloud AI Platform and Azure Machine Learning, which can train complex 
models on massive datasets without investing in expensive hardware. Additionally, cloud-based data 
lakes such as AWS Simple Storage Service (S3) or Azure Data Lake Storage (ADLS) provide scalable 
and cost-effective storage solutions for large-scale data processing and analysis.

Overall, virtualization, serverless technology, and cloud computing have dramatically expanded the 
capabilities and reach of data science, enabling more efficient and scalable data analysis, fostering 
innovation, and accelerating the development of AI-driven solutions across industries.

New computing

Improvements in computational power will also continue to drive the field forward. As datasets 
continue to grow in size and complexity, and as AI algorithms become more sophisticated, data 
scientists require more powerful computing resources to process and analyze data. This has led to the 
development of specialized hardware and software tools designed specifically for data science, such 
as GPUs, and distributed computing frameworks such as Hadoop and Spark. In addition, many data 
scientists are now turning to cloud-based computing platforms such as AWS and Google Cloud to 
access scalable computing resources on demand.

With the rapid pace of technological advancement in the field of data science, it is critical for data 
scientists to stay up to date on the latest developments in computational power and to have the skills 
and knowledge necessary to take advantage of these resources.

New applications

In addition to these technical advancements, the field of data science is also evolving in terms of the 
industries and applications where it is being used. Data science is now applied to a wide range of 
fields, from healthcare and finance to transportation and logistics. As a result, data scientists must 
adapt to new industries and domains and be able to apply their skills and techniques to solve new 
and unique problems.

Given the rapid pace of change in the field of data science, it is critical for individuals interested in 
entering the field to stay diligent and current on new developments and technologies. This requires a 
commitment to ongoing learning and professional development, as well as an openness to new ideas 
and approaches. By staying up to date on the latest advancements in the field, data scientists can 
ensure that they remain competitive and are able to deliver value to their organizations and clients.
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Summary
In this chapter, you’ve learned about the modern data science landscape, what the role entails, what skills 
and competencies are expected of a prospective candidate, and the most common paths to becoming 
a data scientist. Furthermore, you’ve learned about the multi-faceted functionality of data science 
and how it leads to a diverse workforce of data scientists with different specialties and backgrounds.

With this in mind, you may determine what your path might look like or what knowledge gaps you hope 
to close. Whichever the case, you are now prepared to move forward with your interview preparation.

In this next chapter, we will begin the data science job search journey by mentally (and emotionally!) 
prepping you for the road ahead. We’ll discuss some underrated tips on how to identify the right job 
opportunity, where to find it, how to create a stand-out application, and how to stay ahead of the curve 
in a sea of evolving technology, project portfolios, and resumes. We hope that you are as excited as 
we are to get started!
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Finding a Job in Data Science

Now that you have decided to grow your career in data science, let's go and get one!

This chapter will cover effective job search strategies, including how to mentally prepare yourself and 
develop an effective resume and work portfolio. Our goal is to position you to be successful in your 
job search. In addition, we provide tips from insiders.

After completing this chapter, you will know how to properly develop a data science job search plan 
and strategy, complete with a stellar resume and cover letter to attract potential employers and an 
impressive project portfolio. You will also have a grasp on when and how to source jobs through 
networking and online job posts, and how to stay ahead of the curve with new technology skills.

In this chapter, we will cover the following topics:

•	 Searching for your first data science job

•	 Constructing the golden resume

•	 Prepping for landing the interview

Searching for your first data science job
Embarking on your data science job search requires careful preparation, diligence, patience, and thick 
skin. Mental readiness is as vital as technical expertise, with the search often becoming a marathon 
rather than a sprint. Therefore, maintaining composure and perseverance in this demanding field is 
paramount for success. To achieve this mindset, it is pertinent that you leverage effective job-hunting skills.

An effective job hunt leverages several tools and resources at your disposal. Job board sites are crucial, 
functioning as bridges between you and potential employers. Learning how to navigate these platforms 
effectively can convert them from daunting job databases into your personal gold mines. Equally crucial 
is a professionally curated portfolio that showcases your technical acumen, problem-solving prowess, 
creativity, and passion for data science. That’s right – landing a data science job will require more than 
technical prowess. It’s a bit of a science and art form, requiring some creative and clever strategies.
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The art of applying for jobs combines all of your job preparation efforts – resume writing, strategic 
networking, strategic applying, and so much more. The process goes beyond merely clicking a button 
or sending an email – it demands strategic timing, tailoring your applications, and aligning your 
unique skillset with the vision and goals of prospective companies.

This chapter aims to provide a comprehensive guide to successfully navigate these steps, equipping 
you with the knowledge, strategies, and tips necessary for an effective job search in the data science 
field. This begins with an exploration of the mental journey ahead.

Preparing for the road ahead

Embarking on a job search can stir up a whirlwind of emotions. However, the initial excitement of 
seeking a new role in data science can quickly be tempered by the reality of the challenges ahead. Luckily 
for you, this job search process often follows a predictable emotional cycle (as data scientists, we love 
predictability!). Much like forecasting, it allows us to take a peek at the future and plan accordingly.

The journey typically begins with a sense of optimism and excitement at the prospect of new 
opportunities. Kourtney Whitehead, a career expert and the author of Working Whole, says, “Don’t 
try to temper your expectations or assume your positive attitude is naïve. In fact, the hopefulness you 
feel in the early stages of a job search is in recognition of the true opportunity that stands before you”[1].

However, as time progresses and the realities of a competitive job market set in, feelings of frustration, 
disappointment, and self-doubt can surface. There may be periods when your applications seem to 
disappear into a void, or you might face rejection after investing significant time and energy into 
interviews. These experiences can feel disheartening and may cause emotional lows, but embracing 
the emotional cycle as a normal part of the job search process is the first step in preparing mentally 
for the journey ahead.

Strategies for emotional resilience

Here are some strategies to help you maintain emotional resilience during your job search:

•	 Identify your motivation: Understanding why you want to become a data scientist will help you 
focus on the end goal and motivate you during difficult times.

•	 Maintain perspective: Remember that your worth is not defined by your job or the number of 
rejections you receive. The job search is just one aspect of your life, and rejection is a common 
part of the process that even the most successful professionals have faced.

•	 Self-care: Prioritize activities that help you relax and de-stress. This could be exercise, meditation, 
spending time with loved ones, or pursuing a hobby. These activities can help you maintain 
balance and prevent burnout.

•	 Support network: Surround yourself with supportive friends, family, or mentors who understand 
your journey and can offer encouragement during low points.



Searching for your first data science job 27

•	 Celebrate small wins: Received a callback? Made it through a tough coding challenge? Celebrate 
these victories. They indicate progress and can boost your confidence.

•	 Reflect and learn: Use rejections as opportunities for growth. Request feedback where possible, 
reflect on your performance, and identify areas for improvement.

Staying patient and persistent

Patience and persistence are vital in navigating the ups and downs of a job search. Here are some 
strategies to cultivate these traits:

•	 Set realistic expectations: Remember that landing a job, especially in a competitive field such as 
data science, can take time. Prepare for the possibility that your job search may be a marathon, 
not a sprint.

•	 Consistent effort: Decide how much time you want to dedicate in a week or each day to your 
job search activities, such as networking, applying for jobs, and improving your skills. Set a 
dedicated time for these activities. Consistency can help you maintain momentum and progress.

•	 Flexible approach: If you’re not getting the desired results, be willing to adjust your strategy. 
This could mean broadening your job search, improving your resume, or learning a new skill.

•	 Stay informed: Keep up to date with the latest trends and demands in the data science market. 
This can help you identify new opportunities and stay motivated. We will discuss this more 
later in this chapter.

•	 Fight off procrastination: Thinking about a new job is easier than working on your resume or 
online profile. Use the motivation you identified earlier to help get you started and avoid putting 
it off for later. Remember, you can’t get your next data scientist role until you start.

How to get started when life is so busy

Searching for a job sometimes feels like a full-time job in itself. It’s especially daunting if you currently 
have a job; repetitively completing applications by reentering the same information into a portal and 
preparing for the actual interview can take hours. As a result, you may begin to question your resolve 
in finding your new position. But stick with it! You have already shown your commitment by reading 
this book; you must continue even through the challenging moments.

This is where maintaining a consistent effort during your job search is critical.

Firstly, it helps keep you engaged and prevents inertia from settling in. Job hunting can often feel 
like a numbers game, but your odds of success increase with every application you submit, every 
networking event you attend, and every new skill you learn. Designating a specific time each day or 
week for job search activities can create a routine that makes the process feel less overwhelming and 
more manageable.
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Secondly, consistency demonstrates a key professional attribute – resilience. It is the ability to stay 
focused and committed in the face of challenges, a trait highly valued in data science, where problems 
can be complex and solutions may not be immediately apparent.

Lastly, consistent effort allows you to stay current with the dynamic nature of the job market. By 
regularly checking job boards, networking, and improving your skills, you stay in tune with the evolving 
demands and trends in the data science industry. This continual engagement and adaptability can 
give you a competitive edge in the job market.

Therefore, preparing emotionally for your job search is as important as updating your resume or 
brushing up on your technical skills. You can navigate your job search journey with a healthier 
and more balanced mindset by acknowledging the emotional highs and lows, practicing emotional 
resilience, and cultivating patience and persistence. Remember, every step you take brings you closer 
to your goal, and every challenge you overcome makes you a stronger candidate.

Finding job boards

After setting yourself up for success by preparing mentally for the journey ahead, one of your next steps 
is to begin the job search. This is commonly accomplished by tapping into personal and professional 
networks and scanning job boards.

Job board sites such as LinkedIn, Glassdoor, and Indeed have revolutionized the job search process, 
providing a wealth of opportunities and resources at your fingertips. These platforms are not just 
avenues for applying for jobs but also powerful tools for research, networking, and gaining insights 
into the data science industry. This section will guide you on effectively utilizing these platforms 
beyond the simple Apply button.

Sampling job board sites

Each job board site offers unique features to aid your job search. Here are just a few:

•	 LinkedIn: Primarily a professional networking social media site, LinkedIn hosts a robust job 
board that allows you to connect with professionals in the industry, join relevant groups, follow 
companies of interest, and showcase your professional brand.

•	 Glassdoor: Glassdoor is known for its company reviews, salary reports, and interview insights 
provided by employees. It also features a job board that can be filtered by location, job title, 
and company.

•	 Indeed: Indeed is a comprehensive job board aggregating job postings from various websites. 
It also allows users to upload resumes and apply for jobs directly.

•	 Handshake: Handshake is a job site specifically tailored toward college students. It lists job and 
internship opportunities and provides opportunities to meet with company recruiters.
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•	 Built-In: Built-In is a job board known for its tech startup postings, which make great options 
for professionals looking for smaller and/or newer companies.

•	 Dice: Dice is a job board that specifically posts jobs within the tech sector.

•	 Fishbowl: Fishbowl isn't a job board, but rather a social media app where professionals can 
engage in career discussions, anonymously. This format encourages honest and transparent 
discussions on company culture, compensation, and many other topics. It's a great resource if 
you want the "insider's" perspective on working for a company.

Each of these sites has its own uniqueness, but they all offer the ability to alert you as new roles are 
added to their site that match your profile. Make sure that you utilize this ability, as it is a great way to 
continue to have leads come in. Depending on how aggressive you are with your search, you can set 
these alerts to occur anywhere between once a month to once a day. In either case, be sure to utilize 
relevant keywords and job search criteria such as Location, Format (remote versus hybrid versus 
on-site), Type (full-time versus part-time versus contract), Years of Experience, and others.

Using job board sites for research

Job board sites can be a gold mine of information to inform your job search strategy. Here’s how:

•	 Understand the market: Regularly browsing these sites can provide insights into the types of 
roles available, the most in-demand skills, and the companies hiring data scientists.

•	 Analyze job descriptions: Studying job descriptions can help you understand the qualifications, 
skills, and experience employers seek. This can guide your learning pathway and help tailor 
your applications. We will talk more about this later in the chapter.

•	 Company research: Company pages on LinkedIn, reviews on Glassdoor, and employee discourse 
on Fishbowl can give you a sense of the company culture, values, and work environment. This 
can help you identify organizations aligned with your career goals and values.

Other job site tips

Here are some more tips for using job sites:

•	 Clearly define your job search criteria. Determine the industry, location, and other specific 
requirements that align with your career goals.

•	 Consider applying for data science jobs that more closely align with your academic and/or 
professional background. For instance, if you studied geology, consider finding geospatial or 
environmental data science roles. Similarly, if you have experience in the healthcare industry, 
consider finding data science roles in pharma, insurance, or informatics.

•	 Keep your profile up to date with the latest information, such as work experience, education, 
and skills. This increases your chances of being contacted by recruiters.
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•	 Make use of advanced search filters available on job search websites to refine your search 
based on factors such as location, salary, experience level, and job type. Try to nail down a few 
keywords that are more likely to come up in the roles that you seek.

•	 Before applying for a job, research the company to gain insights into its culture, values, and 
reputation. This information will help you tailor your application and prepare for interviews.

•	 Read job descriptions carefully and follow the application instructions provided by the employer. 
Missing out on specific requirements can lead to your application being overlooked.

•	 If the website allows you to upload a profile picture, use a professional-looking image that 
presents you in a positive and suitable manner.

•	 Research salary ranges. Use job search websites to research salary ranges for positions in your 
desired industry and location. This information can help you negotiate a fair compensation 
package during the hiring process.

•	 On LinkedIn, do not fall for the habit of only applying to Easy Apply roles. The easier it is 
to apply, the more competition you will have. For this reason, use job board sites such as 
ZipRecruiter very sparingly.

•	 Focus most of your time applying to roles that have been live for no longer than one week. Unless 
recruiters are behind schedule, most of them have gathered a healthy database of applicants to 
interview. Prioritize roles by how new they are. As the saying goes, “The early bird gets the worm.”

Networking and building connections

Networking plays a pivotal role in the tech and data science industry, serving as a crucial gateway 
to professional growth, collaboration, and opportunities. In this dynamic and rapidly evolving field, 
building a robust network allows individuals to connect with like-minded professionals, experts, 
and mentors who can provide valuable insights and guidance. Through networking, professionals 
can expand their knowledge base, stay updated on the latest industry trends, discover new tools and 
technologies, and make meaningful connections with other professionals.

Moreover, networking facilitates the exchange of ideas, fostering innovation and creativity. It opens 
doors to potential job opportunities, partnerships, and collaborations, enabling individuals to advance 
their careers and make meaningful contributions to the industry.

In the tech and data science industry, where staying ahead of the curve is essential, networking acts as 
a catalyst for professional success, providing a platform for continuous learning, support, and growth. 

Here are some ways to harness this potential:

•	 Connect with professionals: Don’t hesitate to connect with other data scientists. A personalized 
connection request outlining your interest in their work or the field can go a long way. Reach 
out to recruiters or HR professionals directly to express your interest and inquire about potential 
opportunities. Build meaningful connections and seek referrals whenever possible. The more 
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you can streamline this process while creating and maintaining meaningful relationships, the 
better. Google Sheets now offers a ChatGPT plug-in, which allows you to pen personalized 
introductory emails based on each row of professional career information. Zapier can also be 
used to perform a similar task.

•	 Informational interviews: Reach out to connections for informational interviews. This is a 
non-threatening way to learn about their role and journey and gain valuable advice. Remember, 
this is not an opportunity to ask for a job but to learn and build a relationship. Although this 
will make the interviewee aware of your background, you shouldn’t hesitate to share that you 
are seeking a job.

•	 Engage with content: Commenting on posts, sharing articles, and contributing to discussions can 
increase your visibility and present you as an engaged member of the data science community.

•	 Join groups: LinkedIn groups can be a source of industry news, discussions, and job postings. 
Participate actively to gain and share insights. Other sites and apps such as Slack, Discord, and 
Meetup allow you to meet professionals with similar interests by joining topic-based groups. These 
communities often share job-hunting tips, job postings, recruitment processes, and networking 
opportunities that can lead to referrals. Sites such as Blind and Fishbowl have groups based 
on interests and company, allowing users to engage anonymously, which encourages users to 
share information that they otherwise may not. Additionally, apps such as Slack and Discord 
also allow you to join topic-based communities for networking opportunities.

•	 LinkedIn Premium: At the time of this writing, LinkedIn offers some paid features for job 
seekers. For jobs applied for via their website, this includes the ability to view how many other 
candidates have applied for the job and some of their skills, allowing you to understand your 
competition. Additionally, you have a chance to see who is viewing your profile; this information 
will enable you to network with recruiters who come across your profile.

Finding job leads

As previously mentioned, your connections and the company pages that you follow could generate 
job leads. While many companies’ job postings can be located on job board sites, many more jobs 
are never posted. According to Flex Jobs, roughly 70–80% of job openings never hit the internet [2].

However, connections who know that you’re job hunting might share relevant internal opportunities 
at their companies. This is where your personal and professional networks really make a difference. 
Letting people know you are looking for a job goes way beyond enabling the Open for Work banner 
on your LinkedIn profile.

Although networking may feel weird at first, there are countless books out there that teach you how to 
network effectively and naturally. In some cases, you may make lifelong connections and acquaintances, 
which is an enriching experience all on its own. In either case, networking increases your chances 
of finding a data science job with fewer applicants, given that many job openings never go public.
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COVID-19 leads to more remote work

The COVID-19 pandemic has impacted our society in many ways, including where and how work 
is performed. Although remote work wasn’t new at the time, the start of the pandemic forced many 
companies to adopt remote and hybrid work formats for their employees. As a result, many of those 
companies found that they could run their organization successfully this way. The tech industry, as 
well as technical workers, were perhaps those who benefited the most from having this option.

As hiring managers are now more comfortable with individuals working remotely, there has been an 
increase in remote work positions. Remote work does not suit everyone. However, candidates who 
are either uninterested or unable to relocate for a new job can pursue more roles through remote 
work. The pool of available job leads has increased, and many job board sites allow you to specifically 
filter to remote and hybrid jobs. In many cases, applications are beginning to ask for the candidate’s 
preference. However, it is worth noting that the increase in remote work has not outpaced the number 
of employees interested in landing these roles. With that said, be sure to apply for on-site and hybrid 
roles, as remote roles are more competitive.

Job board sites are powerful allies in your data science job search. By leveraging these platforms 
for research, networking, and job leads, you can make informed decisions and uncover previously 
inaccessible opportunities through traditional job search methods. Remember, in the digital age, your 
online presence and activities speak as loudly as your resume.

Interpreting job descriptions

Navigating the job market can often feel daunting, particularly when you come across a job description 
that lists an array of qualifications, some of which you might not possess. So, here’s a crucial piece 
of advice: remain confident, even if you don’t meet 100% of the job description’s requirements. It’s 
perfectly acceptable, and indeed common, to apply for roles even when you don’t meet every single 
criterion. In fact, it’s advised to apply for jobs even if you only meet 70–80% of the job requirements. 
Furthermore, some argue that if you meet 100% of a job description, it leaves little room for growth, 
to which many recruiters attribute high attrition [3].

In reality, job descriptions are typically an employer’s wish list, outlining the ideal candidate’s skills 
and qualifications. In most cases, this results in job descriptions that list more programming languages 
and technical frameworks than you actually need to know. Thus, recruiters recognize that finding 
a candidate who checks all the boxes is quite rare – potentially non-existent. Employees often look 
for high potential and a willingness to learn. If you can show that you are eager to grow, adapt, and 
have a solid foundation on which you can build the required skills, many employers will consider 
your application.

Being passionate about the job role can sometimes compensate for some lack of experience or skills. If 
you convey your enthusiasm effectively in your application and during the interview, hiring managers 
are likely to consider you seriously for the role. They understand that a passionate candidate is likely 
to be motivated, dedicated, and willing to learn – qualities that can sometimes outweigh specific 
technical skills.
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Remember, the worst-case scenario is that you’re not selected for an interview, but if you get the 
opportunity to interview, it’s your chance to explain why you’re a great fit for the role, regardless of not 
meeting all of the requirements. You can highlight transferable skills from your previous experiences, 
showcase your learning ability, and express your passion for the role and the industry.

Don’t let a job description deter you from applying for a role that you’re genuinely interested in. Believe 
in your potential and give yourself the chance to share your candidacy. After all, the job search journey 
is not just about the destination but also about the valuable lessons and skills you gain along the way.

Beginning to build a standout portfolio

Oftentimes, technical roles require an extra layer to an applicant’s candidacy. As you begin to search 
for jobs, you might notice that many of them request a link to a portfolio.

A portfolio of data science projects is a repository that highlights a spectrum of your technical 
aptitude and potential. Portfolios can differentiate you from other candidates during your job search. 
A well-crafted portfolio also showcases your creativity, problem-solving abilities, learning journey, and 
passion for the field. For junior and entry-level data scientists with limited professional experience, 
portfolios are highly recommended.

This section will provide some tips and pointers on how to build a compelling data science portfolio 
that can give you a competitive edge in the job market.

Starting your portfolio

If you’re new to data science, you may wonder what to include in your portfolio or where to host it. 
Here are a few options:

•	 Coursework projects: If you’ve completed a data science degree or boot camp, you likely have 
a collection of projects you’ve worked on. Choose those that best demonstrate your skills and 
make sure they’re polished and well documented.

•	 Personal projects: Working on a project related to a topic you’re passionate about can make 
the process enjoyable and result in a unique portfolio piece. This could be analyzing sports 
statistics, election data, or financial trends. By using public datasets, you can showcase your 
ability to extract insights from data. Just try to avoid overly used datasets often hosted on Kaggle.

•	 New techniques or algorithms: Whenever you learn a new technique or algorithm, consider 
creating a small project to apply what you’ve learned. This demonstrates your commitment to 
continual learning while solidifying your new knowledge. Over time, you’ll witness the growth 
of your portfolio and your knowledge base!
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Other methods for developing your portfolio

In addition to the previous points, consider these methods for expanding your portfolio:

•	 Competitions: Sites and organizations such as Kaggle, DataHack, DataCamp, Data Science Dojo, 
the Data Science Global Impact Challenge, and DataKind host data science competitions (also 
called hackathons) where you can apply your skills to complex problems, often alongside other 
learners of various skill levels. These projects can add depth to your portfolio and show you 
can perform under pressure.

•	 Volunteer work: Nonprofits and small businesses often need data analysis but lack resources. 
DataKind, Data for Good, and Statistics Without Borders are just a few organizations that 
consistently seek data science volunteers. Volunteering your skills can result in meaningful 
projects for your portfolio.

•	 Blogging: Writing about your projects, explaining the methodologies used, and discussing your 
results can demonstrate your communication skills and ability to translate technical concepts 
into plain language.

Presenting your portfolio

Once you have your projects, it’s crucial to present them effectively. Here’s how:

•	 Choose a platform: GitHub is popular for hosting data science projects. You can include code, 
datasets, and documentation. Other options include Kaggle, personal websites (e.g., Canva), 
or blog platforms such as Medium and Towards Data Science.

•	 Documentation: Ensure each project is well documented. Include an overview of the project, the 
techniques used, and a discussion of the results. Clear, concise explanations are key. Documentation 
can be provided directly in the code using comments, or can incorporate other methods such 
as a README.txt file or by using Markdown, a markup language used for creating legible and 
engaging text documents. Thanks to the explosion of generative AI, there are even platforms 
such as Docify AI and Mintify, which autogenerate documentation from code.

•	 Accessibility: Make sure that your code is accessible, reproducible, and easy to read. Good 
practices include commenting your code, formatting your code, using clear variable names, 
organizing your code neatly, and following general coding conventions and best practices when 
available. Some integrated development environments (IDEs) have features that make creating 
accessible projects easier. For example, VS Code is an IDE that offers the Integrated Accessibility 
Checker and a host of extension applications that have accessibility features.

•	 Visualizations: Effective data visualizations can make your projects stand out. They can 
demonstrate your ability to tell data stories and present data in a meaningful, interesting, and 
accessible way. We will discuss visualizations and data storytelling later!
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•	 Create a video: You can create a video of some of your work portfolio explaining and presenting 
your information. If you can create a compelling and engaging video, you can post it on YouTube 
and share it through your social media channels. This is another way for recruiters to see you 
and help you stand out. A compelling data story can encourage others to share your video, 
and since it is a video, it can make its way around the web, promoting you all the time, 24/7!

In conclusion, a well-crafted data science portfolio can greatly enhance your job prospects. By showcasing 
a range of projects demonstrating your skills, passion, and learning journey, you can make a strong 
impression on potential employers and set yourself apart in the competitive data science job market.

Applying for jobs

The job application process can often feel like a daunting maze, but you can navigate it effectively 
with the right strategies and understanding. This section outlines a range of approaches to ensure that 
you’re not just applying for jobs but doing so strategically.

When to apply

Timeliness is a critical factor for job applications. Generally, the earlier you apply after a job is posted, 
the better. Employers often start reviewing applications soon after posting a job and may even begin 
interviewing before the application deadline. Therefore, focusing on jobs posted within the past week 
can increase your chances of your application being seen.

Applying in numbers

Remember, job applications are a numbers game. The more roles you apply for, the higher your 
chances of landing an interview. However, this doesn’t mean you should apply indiscriminately. Aim 
for a balance between quantity and quality. Each application should be well-researched and tailored 
to the specific role and company.

To manage a high volume of applications, consider setting application goals per week. This approach 
can help you stay organized, motivated, and consistent in your job search. It’s also beneficial to track 
your applications in a spreadsheet, noting details such as the company name, role, date of application, 
and any follow-up actions. This helps you stay organized and makes the process less overwhelming.
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The key to a successful job search is persistence, patience, and strategy. By understanding the job market 
dynamics and applying these strategic application tactics, you can maximize your opportunities and 
land your desired data science role.

Figure 2.1: The job offer funnel [4]

Writing a compelling cover letter

A cover letter allows you to elaborate on the information in your resume and show why you’re a good 
fit for the role. Here are some tips for writing a compelling cover letter:

•	 Showcase your interest: Show that you’re genuinely interested in the role and the company. 
Mention specific aspects of the job or company that excite you.

•	 Tell your story: Use the cover letter to tell a cohesive story about your career journey, highlighting 
the experiences and skills that make you a strong candidate as dictated by the job description. 
It’s also advised to keep a record of your cover letters. Many roles with similar descriptions will 
result in a similar cover letter and can serve as a template for future applications.

•	 Align with the company: Show how your values, goals, or experiences align with the company’s 
mission or culture.

•	 Call to action: End your cover letter with a call to action, expressing your interest in an interview 
or further discussions.
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Cover letter rules

Cover letters can be a contentious topic among job seekers and recruiters. Should you always include 
one? The answer largely depends on the specific situation. If a job description explicitly requires or 
prefers a cover letter, you should certainly include one. Moreover, if you’re particularly excited about 
a job or your resume doesn’t directly align with the role, a cover letter is an excellent opportunity to 
express your enthusiasm and explain how your skills and experiences make you a suitable candidate.

However, crafting a compelling cover letter can take time, so it’s advisable to be selective and focus on 
those applications where a cover letter could make a significant difference. Furthermore, you should 
utilize AI applications such as ChatGPT, Ramped, or CoverDoc.ai to automate as much of the writing 
process as possible. Websites such as Canva also provide various professional cover letter templates.

At this point, you’ve learned about the intricacies of the job search process. But in reality, you’ve only 
skimmed the surface – applying for data science jobs is a challenging task, especially given the various 
rules and best practices to consider. Luckily, like anything else, the process will become easier over 
time. As a result, the time it takes to apply for a job, screen job descriptions, and write introductory 
emails will be reduced and you will become more efficient. Before you know it, your job search will 
become a well-oiled machine with a growing project portfolio, a repository of cover letter templates, 
a refined networking schedule and strategy, and a healthy income of job alerts.

However, a job application is incomplete without a resume! In the next section, we will discuss the 
importance of a resume, and how to create one that will attract employers and stand out from the stack.

Constructing the Golden Resume
Your resume is arguably the single most important document in your job search journey. It acts as a 
first impression, a summary of your skills and experiences, and, ultimately, the key to unlocking the 
door to the interview stage. Given its importance, investing time and effort into crafting a compelling 
resume is critical.

In today’s digital age, the initial review of your resume is often not performed by a human but rather 
by an algorithmic system known as an Applicant Tracking System (ATS). These systems perform the 
initial screening and filtering of resumes. However, while optimizing your resume for ATS, it’s equally 
crucial to make it compelling for human readers. This is why resumes should contain a cohesive and 
concise structure and format.

The perfect resume myth

When creating a resume, many job seekers fall into the trap of striving for an elusive perfect document. 
They spend countless hours fine-tuning every word and agonizing over minute details. However, the 
truth is there is no such thing as a perfect resume. What works for one recruiter or hiring manager 
may not work for another, and what lands you an interview at one company may not have the same 
effect at another. The key to an effective resume lies not in perfection but in adaptability and relevance.
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A resume is not a static document but rather a dynamic one that should be adjusted and tailored 
for each job application. Your goal should be to create a solid, well-structured baseline resume that 
effectively communicates your skills, experiences, and accomplishments. This baseline resume serves 
as a foundation that you can modify based on the specific requirements and preferences of each job 
you apply for.

Remember, the primary purpose of your resume is to communicate the most essential information 
about your qualifications for a specific role. It should provide a clear, concise, and compelling snapshot 
of your professional identity. It is essentially a marketing document for your professional value.

Understanding automated resume screening

ATS systems automatically scan and sort resumes, filtering out those not meeting specific criteria. 
Recruiters and hiring managers look for clear, concise, and well-organized resumes that effectively 
communicate a candidate’s qualifications and potential. Therefore, your resume should strike a balance 
between being ATS-friendly and human-friendly.

Getting past the stack of applicant resumes and ATSs is a challenging task, but not impossible. You just 
have to master the guidelines and standards of resume building including formatting, terminology, and 
how resumes are screened. Hence, our goal is to build the best-matched resume, not the perfect resume.

Since most resumes are initially reviewed by these automated tools, not humans, understanding how 
an ATS works is critical to ensuring your resume passes this initial screening:

•	 Keyword matching: An ATS often screens for specific keywords related to the job description. Use 
websites such as www.jobscan.co, resumeworded.com, and rampedcareers.com  
to compare your resume with the job description and align your language with the terms 
and phrases used by the company. The job description is an excellent information source for 
knowing what keywords to use. Look for job-specific words repeated within the description, 
such as “neural networks” or “Python.” You will want to ensure your resume highlights your 
experience using these terms.

•	 Formatting: An ATS may struggle with complex formatting. Use an ATS resume template. Keep 
your resume layout simple and clean, and avoid graphics, tables, columns, or unusual fonts. 
We will review this in the next section.

http://www.jobscan.co
http://resumeworded.com
http://rampedcareers.com
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Crafting an effective resume

Rather than striving for the elusive perfection, focus on these key aspects:

•	 Relevance: Highlight the experiences, skills, and accomplishments most relevant to the job 
you’re applying for. This goes beyond technical tools and tasks, but may also include industry 
terminology or areas of expertise. Use the job description as a guide to understand what the 
employer values most. You should address as many job description requirements and contexts 
as possible by incorporating them in your resume’s job tasks and professional summary

•	 Clarity and conciseness: Avoid jargon and write in clear, concise language. Your goal is to make 
it easy for the reader to quickly grasp your qualifications. When possible, use industry-specific 
language to highlight your exposure and familiarity with key aspects of the job.

•	 Quantifiable achievements: Where possible, quantify your achievements. This adds credibility to 
your claims and makes your accomplishments more tangible. A useful framework to use while 
incorporating quantified achievements is the Specific, Measurable, Achievable, Relevant, and 
Time-bound (SMART) framework.

•	 ATS optimization: Include keywords and phrases from the job description to optimize your 
resume for the ATS. These days, we are fortunate enough to have AI tools such as Talentprise, 
Pyjama Jobs, and Fortay to create your own matching job program; these flag jobs that specifically 
meet your skill set based on your experience and background. Other platforms, such as Jobscan, 
grade your resume across many metrics such as matchability, searchability, word count, and 
words to avoid. Take that, ATS!

•	 Proofreading: Ensure your resume is free of spelling, grammar, and formatting errors. Mistakes 
can create a negative impression and suggest a lack of attention to detail.

Remember to approach your resume as a work in progress – continually seek feedback and be open 
to critiques. However, resist the urge to endlessly tweak your resume in search of perfection. A 
good resume can get you in the door, but your skills, experiences, and interview performance will 
ultimately land you the job. Instead of investing excessive hours perfecting your resume, spend that 
time improving your skills, networking, preparing for interviews, and applying for jobs. Balance is 
key in the job search process.

Here are some tips for crafting a resume that can impress both the ATS and human reviewers:

•	 Use specific language: Be specific in describing your skills and experiences. Instead of saying 
you have experience with data analysis, mention the specific tools, techniques, or projects 
you’ve worked on.

•	 Active language: Use action verbs to describe your responsibilities and achievements. Words 
such as developed, analyzed, and implemented can make your experiences sound more dynamic.

•	 Quantifiable achievements: Where possible, quantify your achievements – for example, improved 
model accuracy by 20% or reduced processing time by 30
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Formatting and organization

Formatting and organizing your resume may seem straightforward; however, this section will 
highlight a few important reminders and some tips for data scientists. We will start by discussing some 
formatting reminders to give you a better chance of making it past the ATS screening process, while 
maintaining visual appeal for a hiring manager to review. Then, we will provide you with reminders 
and suggestions on organizing your resume.

First, ATSs analyze resumes for keywords and phrases that match a specific job description. However, 
these systems can only parse and understand your resume if correctly formatted. Here are some guidelines:

•	 File type: Save your resume as a .docx or .pdf file. These formats are the most compatible 
with ATSs.

•	 Styles: Refrain from adopting highly artistic or stylized resume templates, especially those that 
use page space inefficiently, feature too many icons or photos, or provide self-graded scales of 
skill aptitude. While these are aesthetically appealing, most of these features work against you. 
Not only do they not pass the ATS but they may take up valuable real estate on your resume. 
Instead, stick to formats that are well-tested and validated over time.

Tip
The Harvard Extension School publishes a Resumes and Cover Letters packet (available online) 
that provides highly effective resume formats, as well as some tips and advice to use. You can 
check them out here: https://hwpi.harvard.edu/files/ocs/files/hes-
resume-cover-letter-guide.pdf.

•	 Fonts: Use standard, ATS-friendly fonts such as Arial, Helvetica, or Calibri. Avoid fancy or 
decorative fonts, which can confuse the ATS.

•	 Font size: Keep the font size between 10 and 12 points for easy readability.

•	 Bullet points: Use bullet points to list your skills, experiences, and accomplishments. Avoid using 
complicated symbols or graphics, as these can be difficult for the ATS to interpret. Although 
some academic positions that require resumes may be an exception, you should mainly avoid 
exceeding four bullet points per job (unless you have very few roles to speak of).

•	 Avoid images, headers, and footers: ATSs often struggle to read the information in images, 
headers, and footers, so it’s best to avoid these.

https://hwpi.harvard.edu/files/ocs/files/hes-resume-cover-letter-guide.pdf
https://hwpi.harvard.edu/files/ocs/files/hes-resume-cover-letter-guide.pdf
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•	 Length: This debate is yet to be settled, but there are tons of websites, blogs, and editorials with 
their own positions on resume length. In reality, it varies. If you are an entry-level employee 
with less than five years of experience, try keeping your resume to one page. Otherwise, the 
length of your resume is debatable. Remember, the goal is to write a concise, cohesive document 
that highlights your most applicable skills and experience. On average, a recruiter spends about 
7 seconds on each resume. Thus, a resume that is too lengthy risks looking unprofessional at 
best, and hides the most relevant information from the recruiter at worst.

The organization of your resume should depend on your unique career history and the specific job 
you’re applying for. However, a standard resume typically includes the following sections:

•	 Contact Information: Include your name, email address, and phone number at the top of 
your resume.

•	 Objective or Summary: A brief statement summarizing your career goals and qualifications. 
This should be tailored to each job.

•	 Skills: For a data scientist, this is an important section. This section is comprised of your 
hard and soft skills. Technical skills relevant to the job consist of programming languages, big 
data frameworks, business intelligence platforms, cloud computing platforms, IDEs, program 
management programs, and word processing programs, whereas soft skills typically consist 
of critical thinking, communication, or problem-solving skills. While you can list soft skills if 
space permits, these skills are often best displayed during the interview.

•	 Professional History: A reverse chronological listing of your past jobs, including your title, 
the company name and location, the dates of employment, and bullet points outlining your 
responsibilities and achievements. Refrain from listing irrelevant experiences. This may also 
include relevant internships and fellowships, particularly if you do not have applicable full-time 
experience. Try not to add more than 3-4 bullets per position.

•	 Education: A brief overview of your academic qualifications, including the degree earned, grade 
point average, the institution’s name, and the graduation date. You can also use this section to 
highlight any technical certifications you have achieved or data science competitions you have 
competed in. If you feel your experience does not best summarize your skill set, you may also 
include a listing of relevant coursework here.

•	 Projects: If you are an early-career applicant or lack relevant on-the-job experience, consider 
including a Projects section that highlights some of your most relevant projects.

For recent graduates or those with less work experience, placing the Skills and Education sections near 
the top is advisable. However, if you have extensive work experience, prioritizing your Professional 
History section is more beneficial.
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Using the correct terminology

A resume is not just a list of past jobs and education. It’s a strategic document designed to market your 
skills and experiences to potential employers. Therefore, your terminology can significantly impact 
how employers perceive your qualifications and fit for the role. Additionally, using industry-specific 
terms, metrics, and phrases can put you ahead of the competition by flexing your familiarity with 
the business. This section will explore three fundamental principles of effective resume language: 
specificity, activeness, and quantifiability.

Specificity over generality

Specific language helps paint a vivid picture of your skills, experiences, and accomplishments, and by 
providing concrete examples, you will be able to demonstrate your qualifications better.

Consider these two statements:

•	 General: Experienced in data analysis

•	 Specific: Leveraged Python and R to analyze a dataset of over 1 million records, identifying key 
trends and insights

The first statement is too broad, but the second statement provides much more information and gives 
the employer a clearer understanding of your capabilities.

Active language over passive language

Active language makes your resume more dynamic and engaging. One way of gaining an active voice 
is by using action verbs to describe your experiences and accomplishments.

Consider these two statements:

•	 Passive: A data visualization project was completed

•	 Active: Completed a data visualization project using Tableau to present complex data in an easily 
understandable format

Compared to the passive statement, the active statement is more engaging and clearly communicates 
your role and contributions.

The Harvard Extension School, mentioned previously, also provides a helpful list of action verbs, 
categorized by skill areas such as leadership, communication, and technical skills – these are definitely 
worth checking out.
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Quantifiable, fact-based language

Whenever possible, quantify your accomplishments. This adds credibility to your claims and helps 
employers understand the scope and impact of your work.

Consider these two statements:

•	 Non-quantifiable: Improved sales by optimizing a pricing strategy

•	 Quantifiable: Improved sales by 20% in Q2 2023 by optimizing a pricing strategy, resulting in an 
additional revenue of $200K

As you can see, the quantifiable statement provides a clearer picture of the impact of your work.

When working on your resume, an effective trick for structuring your accomplishments is the Action-
Problem-Result format. This format describes an action you took to address a problem, followed by 
the result of your action.

Here is an example: Implemented a new machine learning algorithm to address the issue of high churn 
rate, resulting in a 15% decrease in customer attrition within six months.

The language you use in your resume can significantly impact its effectiveness. You can create a 
compelling document that effectively communicates your qualifications and potential by focusing 
on specificity, active language, and quantifiable, fact-based statements.

Industry jargon

There are some cases where using technical jargon is appropriate, and that’s when you use it to show 
off your business knowledge. For example, becoming a data scientist in the digital marketing space 
means that you should have experience with optimizing industry-specific key performance indicators 
(KPIs). These KPIs will look different for a data scientist who works in supply chain operations. Thus, 
including digital marketing-specific metrics such as click-through rate (CTR) or return on advertising 
spend (ROAS) on your resume will signal to recruiters that you have the industry-specific experience 
that they seek. Use these opportunities to shine!

For example, “Designed, validated, and optimized an MMM to optimize ROAS by increasing branded 
search investments by 20%” is a sentence that only digital marketers would understand, and in this 
case, it’s a good thing.

To conclude, using the right terminology not only sells your accomplishments to hiring managers 
and recruiters but also signals that you have the right exposure, experience, or familiarity with the 
right terms of the business. This is advantageous because it shows that you already speak the language 
of the job, and hints that you will require less training. Furthermore, it is not enough to simply state 
tasks that you’ve completed on the job; you have to convey what SMART goals you’ve accomplished. 
Remember, recruiters are looking for an accomplisher, not a doer!
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If you manage to say all the right things on your resume, though, you will increase your chances of 
getting a first-round interview.

Prepping for landing the interview
The guidelines in this section will help you increase your chances of reaching the initial screening 
stage and landing an interview.

Thorough interview preparation is paramount. It requires keeping pace with industry changes, 
researching target companies and hiring managers, and cultivating your professional brand and network.

Staying current with the fast-paced changes in the data science industry is crucial for differentiating 
yourself against candidates with outdated skills. Demonstrating your knowledge of the latest trends 
and technologies showcases your dedication and ability to master emerging challenges. Additionally, 
conducting extensive research on companies and hiring managers allows you to effectively align your 
skills and values with their needs and tailor your application and interview responses. Meanwhile, 
investing time in building your professional brand and network enhances your visibility and provides 
valuable connections and opportunities within the data science community.

By mastering these interconnected strategies, you’ll position yourself for interview success and 
increase your chances of landing a data science job. As we've learned, landing the job goes beyond 
a professional resume, cover letter, and successful interview. The landscape of technology is always 
changing, which makes data science one of the most dynamic and exciting fields. However, it also 
means staying current on the latest trends and tools in the industry.

The next section will provide you with some tips on how to do just that. By the end of the section, 
you will be able to craft a custom skilling-up strategy to ensure your skills remain relevant and fresh.

Moore’s Law

The pace of technological change can often feel akin to Moore’s Law, the principle that the speed and 
capability of computers can be expected to double approximately every two years. This idea is driven 
by technological advancements and the exponential growth in computing power, and is a fitting 
metaphor for the ever-evolving tech industry. Ultimately, the challenge lies in perpetually learning, 
unlearning, and relearning.
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As a data scientist, a significant part of your job will be to stay abreast of new developments, be it a new 
programming language, a revolutionary machine learning algorithm, or the latest data management 
system. Fortunately, there are several strategies that you can adopt to keep pace:

•	 Blogs/newsletters/podcasts: Consider subscribing to relevant data science blogs, newsletters, and 
podcasts. These resources can provide timely updates on the latest trends and breakthroughs. 
For example, The Analytics Power Hour is a fun and insightful podcast on the analytics 
profession, hosted by three analysts. DataFramed by DataCamp, and Not So Standard Deviations 
are also engaging and thought-provoking programs. Medium and Towards Data Science are 
recommended too.

•	 Participate in online communities: Participate in online communities and forums, such as 
GitHub, Stack Overflow, or Kaggle. These platforms offer a wealth of shared knowledge and 
resources and foster active discussions about the latest developments in the field. You can also 
find a variety of relevant social groups on LinkedIn, Discord, Slack, Meetup, and even Facebook. 
Plus, there are programming language-specific groups such as R-Ladies.

•	 Attend conferences and workshops: Attending conferences, webinars, and workshops can also be 
an effective way to learn about new tools and techniques and to network with other professionals 
in the field. In addition, these events often showcase the latest research and developments in 
the field and provide opportunities for networking with industry professionals, academics, and 
researchers. The Open Data Science Conference (ODSC), PyData, Data Science Summit, 
Rev4, Data Science Salon, and the annual meeting for the Institute for Operations Research 
and the Management Sciences (INFORMS) are some of the most popular.

•	 Online courses: As previously mentioned, continuous learning through online courses is a great 
way to supplement your knowledge, especially on specialty topics. DataCamp, edX, Coursera, 
SoloLearn, Udacity, Udemy, Khan Academy, and CodeAcademy are examples of online course 
sites. Some also offer graduate degrees.

•	 Review research papers: Reading research papers and even pursuing advanced degrees can 
contribute significantly to keeping your skills and knowledge fresh. One of the most accessible 
search engines for research papers is Google Scholar.

Some job searches can take months to find the proper data science role; however, it is essential to 
do what you can to stay up to date on the state of the field. Remember, the key is a commitment to 
ongoing learning and curiosity about new developments. As the field continues to evolve rapidly, these 
strategies will help ensure that you remain at the forefront of knowledge and skill.

And as a data scientist, your learning journey never truly ends – it merely evolves.

Research, research, research

Successful interviews often hinge on preparation, which entails researching the company and the 
hiring manager, anticipating likely questions, and preparing for technical queries.
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Researching the company

Understanding the company that you’re interviewing with is crucial. This research shows respect for 
the company and interviewer and gives you a chance to genuinely decide whether it’s the right place 
for you. It also makes you a prepared candidate who appears informed about the company. Here’s 
how to approach this:

•	 Company website: The company’s official website is your first and most direct source of information. 
Here you can understand the company’s mission, products, services, goals, challenges, initiatives, 
organizational structure, and culture.

•	 Recent news: Look for recent news about the company to fuel your interview conversations and 
prove that you've done your research. This could include new product launches, partnerships, 
or leadership changes, as well as recent related legislation or company acquisitions.

•	 LinkedIn, Glassdoor, Fishbowl, or Blind: These platforms can provide insights into the company’s 
culture, values, salary ranges, and employee experiences.

•	 Industry trends: Understanding the broader industry context can help you ask insightful 
questions and show that you’re in touch with current trends.

Researching the hiring manager

Understanding the person who might hire you, the hiring manager, can be a significant advantage in 
your job search journey. Typically, job seekers don’t get to know the hiring manager until they interview 
with them, however, if you are fortunate enough to find out who the hiring manager is beforehand, 
this opens up an opportunity to make a more interesting connection when you meet.

LinkedIn is a great resource to learn about the hiring manager’s professional background. By examining 
their profile, you can gain insights into their career trajectory, their roles and responsibilities, and 
perhaps most importantly, their interests and the problems they are passionate about solving. Knowing 
the hiring manager’s areas of interest can provide you with valuable context about what they find 
important in a candidate.

For example, if the hiring manager’s LinkedIn profile indicates a strong interest in machine learning 
and AI, then during the interview, you could emphasize your skills, experiences, and projects related 
to these areas. This could help establish a connection with the hiring manager and demonstrate that 
your skills align with their interests and needs. Additionally, if you discover that you and the hiring 
manager have the same alma mater, what a great opportunity to connect!

Researching the hiring manager also allows you to understand the types of problems they might be 
hiring someone to solve. You’ll be in a strong position during the interview if you can showcase how 
your skills and experiences make you an excellent candidate to address these problems.

However, while it’s beneficial to understand the hiring manager’s background, respecting their privacy 
is also important. Therefore, always approach this research with professionalism and respect.



Prepping for landing the interview 47

If you have the opportunity to research the hiring manager, take it. It provides valuable insights that 
can help you tailor your interview responses and demonstrate your potential to meet their needs. It’s 
one of the many ways to prepare for and increase your chances of landing the job.

Branding

As with any other professional field, the strength of your personal brand can be as vital as your 
technical skills. Your personal brand is the perception that others have of you based on your skills, 
experiences, and personal qualities. 

A professional brand starts with self-awareness – you need to understand your strengths, areas of 
expertise, values, passions, and what differentiates you from other data scientists. Once you have a 
clear understanding of your unique qualities, you can start communicating this to others.

Here are a few steps to developing a professional brand:

•	 Craft a consistent message: Your resume, LinkedIn profile, and personal website (if you have 
one) should tell a consistent story about your skills, experiences, and career goals.

•	 Showcase your work: Whether it’s a data science project that you've completed, a blog post that 
you've written, or a talk that you've given, make sure that your work is known by others. This 
helps to establish your credibility and showcase your expertise.

•	 Build an online presence: Social media platforms, especially LinkedIn, provide a great opportunity 
to establish a professional brand. Regularly share and engage with relevant content, showcasing 
your knowledge in your field

Summary
We reviewed a lot in this chapter, and you're probably overwhelmed with all of this information. But 
now, you should feel equipped to start your data science job search.

To begin, you were introduced to preparing and starting a job search, including how to mentally prepare 
for the process, and how to leverage job board sites to find leads, use them for networking, and gain 
insights into specific industries. Additionally, we discussed how to start to build a work portfolio to 
be used during your interviewing process.

Then, we looked into the other key element for your job search: the resume. Here, we discussed tips 
on how to craft and organize your resume to not only be noticed by someone but also to get past the 
applicant tracking systems that often perform the first filtering of resumes.

After that, we discussed prepping for the interview by conducting research on key companies who are 
hiring and staying up to date on key trends in the industry. Finally, we closed the chapter by discussing 
the importance of developing your personal, and professional brand, and how to do it.
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By using this guide on staying current with evolving technology, being diligent about networking, and 
building a smart and streamlined strategy for developing resume, portfolio, and cover letter content, 
you can maximize your chances of landing a data science interview.

Additionally, you will remain active and adaptive to new opportunities as they arise, whether from 
job board sites or networking conversations. As French scientist Louis Pasteur once stated, “Chance 
favors the prepared mind.” If the tools and tips from this chapter are properly leveraged, you will have 
the optimal opportunity to take full advantage of the chances that come your way.

In the next chapter, we will focus on helping you prepare for the technical portion of the data science 
interview by first looking at Python.
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Part 2:  
Manipulating and  

Managing Data

The second part of this book covers the most common coding, data wrangling, and productivity 
skills found in most data science jobs and interviews. From foundational to advanced concepts, this 
includes an introduction to essential skills in Python, data visualization, SQL, command-line scripts, 
and version control.

This part includes the following chapters:

•	 Chapter 3, Programming with Python

•	 Chapter 4, Visualizing Data and Data Storytelling

•	 Chapter 5, Querying Databases with SQL

•	 Chapter 6, Scripting with Bash and Shell Commands in Linux

•	 Chapter 7, Using Git for Version Control





3
Programming with Python

Starting from this chapter, we will now transition into preparing you for the technical portion of 
data science job interviews. For this reason, this second part of the book is best used as a study/quick 
reference guide as you prepare for your interviews. Therefore, feel free to skip or review chapters 
according to your studying needs. 

In each of the following chapters, we will review key concepts and provide sample problems. Thus, 
it is important that you are at least familiar with introductory programming concepts, preferably 
with functional programming. This includes, but is not limited to, syntax, data types, variables and 
assignments, control flow, and packages such as pandas and numpy for data wrangling.

By the end of this chapter in particular, you will have a handle on expected Python questions within 
a data science interview, and know how to tackle them logically. Additionally, you will be more 
comfortable and confident with thinking through questions relating to control flow, variables, data 
types, user functions, and general data wrangling.

In this chapter, we will cover the following topics:

•	 Using variables, data types, and data structures

•	 Indexing in Python

•	 Using string operations

•	 Using Python control statements, loops, and list comprehension

•	 Using user-defined functions

•	 Handling files in Python

•	 Wrangling data with pandas
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Using variables, data types, and data structures
In Python, variables are the building blocks of any code. It’s simply a value of some given type assigned 
to an object. For example, if I set a variable called x equal to 10, the variable x now holds that value (until 
it is changed). In short, variables are used to store data. Unlike some other programming languages, 
such as Java, the variable type does not need explicit declaration in Python. The declaration or type of a 
variable is determined automatically when you assign a value to it (although you can and should change 
data types as needed). There are several built-in data types in Python. Here are some common ones:

•	 Numeric types: There are numerous types of numeric data types, including int (integers), 
float (floating-point numbers), and complex (complex numbers). Numeric variables in 
Python are used to store numerical data:

	� Integers represent whole numbers without any fractional or decimal part. They can be positive 
or negative. In Python, integers are represented by the int type. Take the following example:

 x = 5
print(type(x))  # <class 'int'>

	� Floats (floating-point numbers) represent numbers with fractional or decimal parts. They 
can be positive or negative. In Python, floats are represented by the float type. Take the 
following example:

y = 5.5
print(type(y))  # <class 'float'>

	� Complex numbers represent numbers with both real and imaginary parts. They are written 
in the form a + bj, where a represents the real part and b represents the imaginary part. 
In Python, complex numbers are represented by the complex type. The imaginary part is 
denoted using the imaginary unit j or J. Take the following example:

z = 1+2j
print(type(z))  # <class 'complex'>

•	 Sequence types are data types that represent an ordered collection of elements, which can be 
from various data types. Thus, they allow you to store multiple items in a single object and 
access them by their position or index within the sequence. For example, these may include 
str (strings), list (lists), and tuple (tuples):

# strings
s = 'Hello, World!'
print(type(s))  # <class 'str'>

# lists
l = [1, 2, 3, 4, 5]
print(type(l))  # <class 'list'>
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# tuples
t = (1, 2, 3, 4, 5)
print(type(t))  # <class 'tuple'>

Tuples may seem similar to lists, and indeed they are. However, there are some key differences. 
Perhaps one of the most important differences is immutability – tuples are immutable, whereas 
items in lists can be changed after the list is created. Additionally, you may note that tuples 
utilize parentheses as opposed to brackets.

Note
Lists are generally used when the order and the ability to modify the elements are important. 
They are commonly used for dynamic data where the size or contents may change over time. 
Tuples, on the other hand, being immutable, are often used when you want to ensure that the 
collection of elements remains unchanged. Tuples are also used for situations where you want 
to enforce that the elements are not modified.

•	 The Boolean type in Python represents True or False values, which may also be represented 
by the integers 1 and 0, respectively. These values are used to perform logical operations and 
control the flow of programs based on conditions:

# boolean
b = True
a = False
print(type(b))  # <class 'bool'>
print(type(a))  # <class 'bool'>

•	 Dictionaries are mutable mapping types that store data in key-value pairs. Each key in a 
dictionary must be unique, and it is used to access its corresponding value. Dictionaries are 
defined using curly braces ({}) or the dict() constructor, with key-value pairs separated 
by colons (:). Take the following example:

# dictionary
d = {'name': 'John', 'age': 30}
print(type(d))  # <class 'dict'>

•	 None type: This data type has a single value, None:

# None
n = None
print(type(n))  # <class 'NoneType'>
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•	 DataFrame: This is a two-dimensional, tabular data structure commonly used in structured 
databases and data analysis. Because of the ease that DataFrames provide for data manipulation, 
it has become a standard data structure in analytics, or any role that requires significant data 
wrangling and preparation.

The functionality perks include simple indexing, filtering, sorting, aggregating, and calculations. 
Dataframes also offer convenient methods for importing and exporting data from various file 
formats, such as CSV, Excel, or SQL databases.

A DataFrame consists of two dimensions: columns and rows. Each column represents a 
variable or feature that describes an attribute or characteristic of the row; the row represents 
an observation or record:

Figure 3.1: Dataframe example

Note
You’ll see many of these terms used interchangeably throughout the book. Keep in mind that 
Row = Record = Observation and Column = Field = Feature = Attribute.

After that discussion of types, it is also important to note that Python is a dynamically typed language, 
which means that the variable type can change during the execution of a program. See this example:

var = 10
print(type(var))  # <class 'int'>

var = 'Hello'
print(type(var))  # <class 'str'>
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In this example, var is first an integer, then it becomes a string. In other words, Python allows the 
re-declaration of a mutable variable.

Assessment

Consider the following Python code:

x = 100

def my_func():
    x = [10, 20, 30]
    print('x inside function:', x)

my_func()
print('x outside function:', x)

Now, answer the following questions:

1.	 What is the data type of x inside the function, and what is its scope?

2.	 What is the data type of x outside the function, and what is its scope?

3.	 What will the output of the code be?

Note
This chapter will test you on the concepts that you learn. A great way to tackle interview 
questions is by using the G.U.E.S.S method. And no, this doesn’t mean just guessing! G.U.E.S.S 
is an acronym for Given, Unknown, Equation, Solve, Solution. This method is typically taught 
with math (as you can guess by the term equation), but it’s great for coding as well, particularly 
when working on multi-step and/or complex problems. The method implores problem-solvers 
to start out with given information or data, identify the unknown or problem, identify the 
equation (or formula or code) to tackle the problem, solve the problem, and provide the 
solution. Feel free to give it a try!

Answers

1.	 Inside the my_func function, x is a list. This x is local to my_func (it has local scope).

2.	 Outside the function, x is an integer. This x is in the global scope of the script.

3.	 The output of the code will be the following:

x inside function: [10, 20, 30]
x outside function: 100
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In this example, the my_func function creates a new local variable, x, which doesn’t affect the global 
x. Hence, the global x still has its original value after the function call.

Indexing in Python
To access values within a data object, we use indexing. Indexing is the process of accessing individual 
elements within a data structure. In this case, the data structure is a list, but as you will soon learn, 
indexing is applicable to many data structures.

Note
Each element or item within a data structure is assigned a unique index or position, starting 
from a specific value. In Python, this value is 0. This means that the first position in any data 
structure in Python is located at index 0, followed by the second position, which is located at 
index 1, and so on.

Indexing allows you to retrieve or manipulate specific elements within the data structure by specifying 
their index. It provides a way to refer to elements individually rather than accessing the entire data 
structure as a whole.

The basic syntax for indexing a list or tuple in Python is as follows:

list_or_tuple_name[index_position]

The list_or_tuple_name object is the name of the list and index_position is the position 
of the element you want to access. Here’s an example:

languages = ['python', 'r', 'java', 'c', 'go']
print(languages[0] #Output: 'python'

In this example, languages[0] retrieves the element at index 0, which is the first element, 
'python'. Similarly, languages[2] retrieves the element at index 2, which is 'java'.

When it comes to indexing dictionaries, instead of indexing with integer positions, dictionaries use 
keys to access their corresponding values. You can use square brackets, [], with the key inside to 
retrieve the value. Here’s an example:

my_dict = {'name': 'John', 'age': 30, 'city': 'New York'}
print(my_dict['name'])  # 'Output: John'
print(my_dict['age'])   # Output: 30

Later, we will dive into indexing DataFrames when we discuss selecting data in pandas, and string 
indexing when we discuss string operations.
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Using string operations
String operations are very common when working with Python and text data. Therefore, this section 
will review how to initialize a string, string indexing/slicing, and some common string methods.

Note
We will not review string regular expressions, as this is a large topic with significant depth. 
Check out Mastering Python Regular Expressions by Victor Romero and Felix L. Luis for more 
instructions on this topic.

Initializing a string

Python allows for string initialization (creation) in several ways. Two ways include single quotes ('') 
and double quotes (""):

# Single quotes
s = 'Hello, World!'
print(s)  # prints: Hello, World!

# Double quotes
s = "Hello, World!"
print(s)  # prints: Hello, World!

Single and double quotes are basically interchangeable. The only difference comes into play when you 
have a quote mark (single or double) inside a string. For example, one common scenario is when you 
want to include quotes within a string. To achieve this, you can use one type of quote mark to define 
the string and the other type of quote mark within the string. Here’s an example:

quote = "She said 'I want ice cream!' "

In this example, the string is defined using double quotes, and the single quotes within the string are 
included as part of the string itself. You could have also done the inverse like so:

quote = 'She said "I want ice cream!" '

For code legibility, it is recommended to be consistent, regardless of the method you use.

String indexing

In Python, strings are sequences of characters, and each character has a position or index associated 
with it. String indexing allows you to access individual characters in a string, while string slicing allows 
you to access a substring from a string.
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Strings are also zero-indexed in Python. That is, the index of the first character is 0, the index of the 
second character is 1, and so on. Python also supports negative indexing, where the index of the last 
character is -1, the index of the second to last character is -2, and so on. Just take note, spaces count 
as a character, and negative indexing actually begins at 1.

For example, consider the following string of text assigned to the variable s. We can access each 
character in the string by using string indexes:

s = "Hello, World!"

# indexing
print(s[0])  # prints: H
print(s[7])  # prints: W
print(s[-1])  # prints: !

Slicing is another method of accessing string characters, and is most often used to extract a window 
or substring from a string. The syntax for slicing is string_variable[start:stop:step] – 
start is the index where the slice starts (inclusive), stop is the index where the slice ends (exclusive), 
and step is an optional parameter used to specify the step value (also known as the number of 
characters to skip). If step is negative, the slicing will begin from right to left instead of the default 
evaluation method (left to right).

Consider the same string object, s, as before. Suppose we want to slice the strings to access a window 
of the string as opposed to just one position within the string:

s = "Hello, World!"

# slicing
print(s[0:5])  # prints: Hello
print(s[7:12])  # prints: World
print(s[::2])  # prints: Hlo ol!
print(s[::-1])  # prints: !dlroW ,olleH (reverses the string)

Let’s look at each of the slices:

•	 In the first slice, s[0:5], the slicing begins at index 0 and stops at index 5, so it extracts the 
first five characters

•	 In the second slice, s[7:12], it starts at index 7 and stops at index 12, so it extracts the 
word World

•	 In the third slice, s[::2], no start or stop is specified, so it goes through the entire string 
with a step of 2, extracting every other character

•	 In the last slice, s[::-1], a negative step is used to reverse the string
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Python provides a variety of built-in methods for string manipulation. Here are explanations and 
examples of strip(), split(), join(), replace(), and find():

•	 strip(): This method removes leading and trailing whitespace from a string. It’s often used 
in data cleaning when we want to remove unwanted spaces:

s = "  Hello, World!  "
print(s.strip())  # prints: "Hello, World!"

•	 split(): This method splits a string into a list where each word is a separate element. This 
is extremely useful in natural language processing (NLP) tasks for tokenization and other 
data transformation tasks:

s = "Hello, World!"
print(s.split())  # prints: ['Hello,', 'World!']
print(s.split(','))  # prints: ['Hello', ' World!']

You can also specify a separator to split on (for example, to split a string into sentences, you 
might split on the period (.) character).

•	 join(): This method combines a list of strings into one string. You call this method on the 
string you want to use as the separator:

words = ['Hello', 'World!']
print(' '.join(words))  # prints: "Hello World!"

•	 replace(): This method replaces occurrences of a substring within a string with another 
substring. It’s often used in data cleaning and preprocessing:

s = "Hello, World!"
print(s.replace('World', 'Python'))  # prints: "Hello, Python!"

•	 find(): This method returns the index of the first occurrence of a substring in a string. If the 
substring is not found, it returns -1:

s = "Hello, World!"
print(s.find('World'))  # prints: 7
print(s.find('Python'))  # prints: -1

Text mining and NLP tasks are generally beyond the scope of this book, but we recommend that you 
read up on it if you're specifically interested in that area of data science!

Assessment

Consider the following Python string:

s = "Data Science with Python"
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Now complete the following tasks:

1.	 What does s[5:11] return?

2.	 What does s[::-1] return?

3.	 Use a string method to split s into individual words and store the result in a list.

4.	 Use a string method to convert s to lowercase.

Answers

1.	 s[5:11] returns the string "Scienc". It starts at index 5 (inclusive) and ends at index 
11 (exclusive).

2.	 s[::-1] returns the reverse of the string s, that is, "nohtyP htiw ecneicS ataD".

3.	 The split() method can be used to split s into individual words: words = s.split(). 
This will give words as ['Data', 'Science', 'with', 'Python'].

4.	 The lower() method can be used to convert s to lowercase: lowercase_s = s.lower(). 
This will give lowercase_s as "data science with python".

Assessment

Consider the following Python string:

s = "   Hello,    World!   "

Now complete the following tasks:

1.	 Use a string method to remove the leading and trailing whitespaces.

2.	 Use a string method to replace "World" with "Python".

3.	 Use a string method to find the index of the first occurrence of "World".

Answers

1.	 The strip() method can be used to remove the leading and trailing whitespaces: s_stripped 
= s.strip(). This will give s_stripped as "Hello, World!".

2.	 The replace() method can be used to replace "World" with “Python": s_replaced 
= s.replace("World", "Python"). This will give s_replaced as " Hello, 
Python! ".

3.	 The find() method can be used to find the index of the first occurrence of "World": index 
= s.find("World"). This will give index as 11.
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Using Python control statements, loops, and list 
comprehensions
Control statements are used for various tasks. For example, they’re used to filter data based on 
certain conditions, perform a calculation on each item in a list, iterate through rows in a dataframe, 
and more. Additionally, list comprehensions are widely used in data science as they provide efficiency 
and legibility. It’s often used in data cleaning and preprocessing tasks, feature engineering, and more.

Control statements in Python allow you to control the flow of your program’s execution based on 
certain conditions or loops. The main types of control statements are conditional statements (such as 
if, elif, and else) and loop statements (such as for and while).

Meanwhile, list comprehensions are a sort of short-hand approach to writing loop statements. More 
specifically, they are a shorter, more concise syntax for creating a list based on the values of an existing list.

Conditional statements such as if, elif, and else

Conditional statements are probably one of the easiest control statements to understand because they 
operate (and are written) in a way that reflects how humans mentally evaluate if-else scenarios. Let us 
consider the if, elif, and else conditional statements:

•	 if is used to test a specific condition. If the condition is true, the code block within the if 
statement will be executed:

x = 10
if x > 0:
    print("x is positive") #Output: "x is positive"

•	 elif, which stands for else if, is used to chain multiple conditions. It’s particularly handy 
when used after an if or another elif statement. This is because if the result of an if code 
block is false, the next condition (elif) will be evaluated. If the elif condition is evaluated 
as true, it will be executed. In the following example, the if statement is evaluated first. In 
this particular case, x is greater than 0; thus, the initial if statement is false. This prompts the 
program to evaluate the following elif statement, which is true:

x = 10
if x < 0:
    print("x is negative")
elif x > 0:
    print("x is positive") # Output: "x is positive"
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•	 else is the last statement evaluated after the if and elif code blocks have been evaluated. 
else is almost identical to elif in functionality, but the major difference between the two 
is that you use else for the last logic statement check. elif is used to pass the logical check 
to another logic assessment. else is the very last logical statement to be evaluated – hence, 
the criteria in else:

x = -10
if x > 0:
    print("x is positive")
elif x == 0:
    print("x is zero")
else:
    print("x is negative") # Output: "x is negative"

Loop statements such as for and while

Loops are another category of control statements used to evaluate a block of code iteratively.

To begin, let us consider a for loop example for inspiration. for loops are a control flow mechanism 
used to evaluate items in an iterable data structure. This is most useful when you want to perform an 
operation for multiple items in an object such as a list or string.

Imagine you have a bag of M&Ms. You are tasked with drawing one M&M at a time and evaluating 
whether it is an orange M&M or not. If we write this process in pseudo-code, it might look something 
like this:

for M&M in bag:
    if M&M == "orange":
      print("This is orange!")
   else:
      print("Not orange")

The block of code within the for loop is executed once for each item in the object:

for i in range(3):
    print(i)
# prints:
# 0
# 1
# 2



Using Python control statements, loops, and list comprehensions 63

Note
for loops become even more powerful when combined with other control flow operations, 
such as if statements, and other useful mechanisms, such as functions. When combined, these 
tools allow you to perform operations, calculations, evaluations, and revisions on multiple 
items in an iterable object. Notice, we already snuck in an example of using for loops and if 
statements together in the M&M example. Did you catch it?

We also have while loops, which are used when you want to repeat a block of code as long as a certain 
condition is true. The condition is a Boolean expression that determines whether the loop should 
continue executing. As long as the condition evaluates to true, the code block inside the loop will 
execute. Once the condition becomes false, the loop will terminate. Here is an example:

i = 0
while i < 3:
    print(i)
    i += 1
# prints:
# 0
# 1
# 2

Unlike for loops, while loops iteratively evaluate a statement until it is no longer true, or if a break 
is inserted. In the previous example, the interpreter will loop over the statement until the object i is 
no longer less than 3.

You may be wondering: what happens if i is indefinitely less than 3? The answer is the program will 
(try to) run indefinitely. In the previous example, i += 1 specifies that the variable will increment 
by a value of 1 every iteration. Without this stipulation, the code would run forever. This is where the 
break operator comes into play.

The following example demonstrates how to use breaks. In this example, we use the break statement 
to exit a while loop. This is a typical use case of a break statement, when you want to terminate 
the loop based on a specific condition:

count = 1

while True:
    print(count)
    count += 1

    if count > 5:
        break
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The output of the code is as follows:

1
2
3
4
5

In this example, the while loop condition was set to True to create an infinite loop. However, the 
loop is terminated using the break statement when the count exceeds 5. This allows us to print 
numbers from 1 to 5 and then exit the loop.

List comprehension

As previously mentioned, a list comprehension can be thought of as a more compact and concise 
method of writing for loops. Here is the basic syntax of list comprehension:

[expression for item in iterable]

The expression is applied to each item in the iterable, and the results are collected into a new list.

Let’s take an example of creating a list of squares for the numbers 0 to 9:

squares = [x**2 for x in range(10)]
print(squares)  # prints: [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

You can also include an if condition in a list comprehension to filter the items:

even_squares = [x**2 for x in range(10) if x % 2 == 0]
print(even_squares)  # prints: [0, 4, 16, 36, 64]

In this example, only the squares of even numbers are included in the new list.

Assessment

Consider the following Python code:

numbers = [5, 2, -3, 7, -1, 4]
total = 0
for number in numbers:
    if number > 0:
        total += number
print(total)

What value will be printed, and why?
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Answer

The value printed will be 18. The for loop iterates over each number in the numbers list. If the 
number is positive (greater than 0), it is added to the total. Thus, the total will be the sum of all positive 
numbers in the numbers list, which is 5 + 2 + 7 + 4 = 18.

Assessment

Write a list comprehension that will create a new list of squares that contains the squares of all numbers 
from 1 to 10.

Answer

The following list comprehension will create the required list:

squares = [x**2 for x in range(1, 11)]

This will produce the list [1, 4, 9, 16, 25, 36, 49, 64, 81, 100], which are the 
squares of the numbers from 1 to 10.

Note that range(1, 11) is used instead of range(1, 10) because the stop value given to the 
range function is exclusive. Thus, to include 10 in the range, we need to specify the stop value as 11.

Using user-defined functions
Sometimes, you may need to create your own function to perform very specific operations. This 
is common in the data science world, especially as it relates to data cleaning, preprocessing, and 
modeling activities.

In this section, we will discuss user-defined functions, which are functions created by the programmer 
to perform specific tasks. They are not unlike mathematical functions, which (usually) take some inputs 
and (often) produce some outputs. User-defined functions are designed to take 0 or more inputs, do 
some specific computation(s) (we’ll just call it stuff), and produce an output.

This process is especially helpful when performing repeated tasks. In fact, the rule of thumb is to use 
it if you have to do a task more than once. In more advanced cases, user functions are also helpful for 
code reusability, organization, readability, and maintainability.

Breaking down the user-defined function syntax

When used effectively, user-defined functions are your best friend. Like everything else in programming, 
functions can get pretty complex, but the fundamentals are fairly simple.
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Let’s take a look at the syntax:

Figure 3.2: User-defined function syntax

In summary, if we were running a kitchen, the function name is the name of the receipt, the parameters 
are the ingredients, the statement(s) are the cooking instructions, and the return expression is the 
delivery method (… takeout, anyone?).

Doing “stuff ” with user-defined functions

There are different types of user-defined functions. Function types in this book are based on the 
number of inputs:

•	 No parameters: User-defined functions with no parameters might seem peculiar at first, but 
sometimes, you need to do some stuff without additional information beyond what you describe 
in the body of the function. For example, consider the following function:

# Define a function that gives us some Vulcan wisdom
def vulcanGreeting():
    print("Live long and prosper")
#Call the function
vulcanGreeting() #Output: Live long and prosper

This code creates a function called vulcanGreeting() that prints the text Live long and 
prosper (a Star Trek reference).

•	 One or multiple parameters: Some functions will have at least one input parameter. This is 
especially true in data science, where functions are used to manipulate data. To manipulate 
existing data objects, an input is required. Let’s look at an example:

# Calculate a column's average and return the value
def calculate_average(column):
    average = column.mean()
    return average
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This code creates a function called calculate_average, which calculates the average 
(mean) of an input DataFrame column and returns the value. This function can now be applied 
to a DataFrame column to return its average.

But suppose you wanted to append the result to a DataFrame. This is a common need so that 
the results can be further explored. The following code demonstrates how to achieve this using 
three inputs instead of one:

# Calculate and append a new column "Sales" to a DataFrame that 
multiplies the units and price columns
 def calculate_sales(df, units_col, price_col):
    df['Sales'] = df[units_col] * df[price_col]
    return df

Let’s break this code down:

	� Inputs: This function takes three parameters: df, units_col, and price_col. The first 
parameter is the DataFrame object, which contains the columns that represent the units 
and price columns (the other two parameters), respectively.

	� Body: The body function creates a new column called Sales, which is calculated by 
multiplying the units_col and price_col column values (note: this happens for each 
row of the dataset).

	� Return: The return statement returns the DataFrame, which now has the Sales column intact.

Note that the functionality of our function is identical to this algebraic expression: Sales = Units 
x Price. When the function is applied to the inputs, it is evaluated for each row of the dataset. 
Hence, every row is assigned a sales value in the Sales column.

•	 Default parameters: There are also functions that take default parameters. These are most useful 
in situations where you want to designate a default, static value. There are a number of scenarios 
where it might be advantageous to set a default setting (for example, when you want to provide 
a default functionality when a parameter isn’t provided). Consider the following example:

# Write a function to greet someone by name
def greet(name="Guest"):
    greeting = "Hello, " + name + "!"
    return greeting

# Calling the function without providing an argument
default_greeting = greet()
print(default_greeting) #Output: Hello, Guest!

# Calling the function with an argument
custom_greeting = greet("Alice")
print(custom_greeting) #Output: Hello, Alice!
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Let’s dissect what the function is doing. The greet function takes an argument, but notice 
it’s already assigned a value (in this case, "Guest"). The assigned value is the object’s default 
value. This means that the function will always assume the default value, unless otherwise 
overwritten. Regard how the output changes when the function is called without a parameter, 
versus when it’s called with one.

Getting familiar with lambda functions

As discussed, functions can get pretty complex, but the best functions are simple. Simple functions 
are further simplified by providing a simpler syntax option. Enter lambda functions!

Remember list comprehensions? They’re the expedited, streamlined version of for loops. Functions 
have something similar, and they’re called lambda functions! Lambda functions are used to create 
single-line functions in Python. Instead of using the def approach, lambda functions are defined 
using the lambda keyword, followed by a list of input arguments, a colon (:), and the expression or 
code block to be executed. Their syntax is as follows:

Figure 3.3: Lambda function syntax

The following code shows two different methods of accomplishing the same thing. The first one uses 
the user-defined function approach:

# Create a user-defined function that returns the sum of 2 variables
def add_numbers(a, b):
    return a + b
result = add_numbers(3, 4)
print(result)  # Output: 7
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And the second one leverages a lambda function:

# Create a lambda function that returns the sum of 2 variables
add_numbers = lambda a, b: a + b

result = add_numbers(3, 4)
print(result)  # Output: 7

Note
If your lambda function takes more than one line of code, it’s better to use a regular user-defined 
function. Furthermore, a single-line comment should suffice for documentation purposes.

Creating good functions

Here are some best practice guidelines to save some time and headaches while creating functions:

•	 Remember, your function name should be descriptive, but simple.

•	 Your function should serve a single purpose. Avoid duplication. No matter the purpose of your 
function or the stuff you have your function doing, it should only do that stuff once.

•	 Use docstrings. There are multiple docstring conventions that you can read about, such as 
Google’s format, reStructuredText (reST), or Numpydoc. But as long as your docstrings 
adequately describe the function’s functionality, parameters, and output(s), you’re good.

Assessment

Let us now review some hypothetical interview questions (note, you may choose the name of 
the function!):

1.	 Write a function that calculates the area of a rectangle given its length and width. Hint: Area 
= length x width.

2.	 Write a function that returns "Even" if a given number is even, and returns "Odd" if a given 
number is odd.

3.	 Write a function that counts the number of vowels in a given string.

4.	 Write a function that takes a DataFrame object as input and returns the count of missing values 
(NaN) in each column.
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Answers

1.	 Given the provided algebra formula, we know how to theoretically calculate the area of a 
rectangle. All we need is the width and length – these are our inputs!

def calculate_rectangle_area(length, width):
    area = length * width
    return area

Bonus points if you wrote the answer as a lambda expression, as seen in the following code:
calculate_rectangle_area = lambda length, width: length * width

2.	 If is an important word in this question. It hints that we may need to use an if/else control 
statement. Based on the question, what conditions might we want to check? Well, we want to 
check whether a number is odd (condition 1) or even (condition 2). We also know that these 
are mutually exclusive. If a number is odd, it can’t be even (and vice versa). Furthermore, a given 
number sounds a lot like an input! Thus, we have so far devised that we are writing a function 
with a single input (a number) and we want to check whether (using an if statement) that 
input is odd (condition 1) or even (condition 2).

From our previous experience with if statements, we know that conditions are designated 
using if and else (or elif if there are more than two conditions). Additionally, we know 
what each condition must return if true (in this case, "Odd" or "Even"). All that’s left is to 
determine the simplest way to check whether a number is odd or even:

def check_even_odd(number):
    if number % 2 == 0:
        return "Even"
    else:
        return "Odd"

3.	 In this example, we are given a string, and we want to count how many vowels it contains. How 
might we approach this problem? Well, the string is one input. It then sounds like we will be 
evaluating each character in the string. What Python control flow syntax helps us assess each 
index in an object? You guessed it – for loops! What other information do we need? We 
should probably specify what counts as a vowel (hint: the value sought out in the for loop is 
case sensitive!). You can see this here:

def count_vowels(string):
    vowels = "aeiouAEIOU"
    count = 0
    for char in string:
        if char in vowels:
            count += 1
    return count
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4.	 This problem tells us upfront that it will take a single DataFrame object as an input. We also 
know that the function should return the count of missing values, even if we don’t know how 
to derive it yet. Sometimes, it’s helpful to assign a placeholder variable for the final output, even 
if we don’t know how to calculate it just yet.

This leaves us with a known input and output, but we still need to figure out what stuff needs to 
happen in the body of the function. For starters, we should probably assign the output value to 
some expression. After all, the placeholder variable will not return anything unless we assign it 
a value. Now, here’s the tricky part – how do we count missing values? In Python, there are two 
useful methods: isnull() and sum(). Here is how you can string these operations together:

def count_missing_values(df):
    missing_counts = df.isnull().sum()
    return missing_counts

Handling files in Python
In Python, the built-in open function is used to open a file, and it returns a file object. Once a 
file is opened, you can read its contents using the read method. However, an important aspect to 
consider while managing files is ensuring they are closed after use, allowing for the setup and teardown 
of computational resources. One way to accomplish this is by using context managers.

Context managers are an object that manages the context of a block of code, typically with a with 
statement. It’s particularly useful for setting up and tearing down computational resources, such as 
efficiently opening and closing files. In short, the with keyword, which automatically closes the file 
once the nested block of code is executed, is more efficient and reduces the risk of a file not being 
properly closed.

The syntax to open files using context managers is as follows:

with open(<file_name.csv>) as file_object:
    # Code block

Here’s a concrete example of how to open and read a file:

with open('file.txt', 'r') as file:
    content = file.read()
print(content)

In this example, file.txt is the name of the file to open, and r is the mode in which the file should be 
opened. The r stands for read mode, which allows the contents of the file to be read but not modified.

The with open(...) as file: line opens the file and assigns the resulting file object to the 
file variable. Then, file.read() reads the contents of the file and returns it as a string, which is 
assigned to the content variable. After the with block is executed (even if an error occurs within 
the block), the file is automatically closed.
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Opening files with pandas

The pandas library in Python provides high-performance, easy-to-use data manipulation and analysis 
tools, and is frequently used in data science roles.

One of the most commonly used pandas functions for reading in data is read_csv(). Here’s an 
example of how you might use it:

import pandas as pd

df = pd.read_csv('file.csv')

print(df.head())  # print the first 5 rows of the data

In this example, the read_csv function reads the CSV file named file.csv. The resulting object 
is assigned to the df variable. The head() function is then used to print the first five rows of the 
dataframe. If you want to print the entire dataframe, you could simply write print(df).

As previously mentioned, pandas also offers a function to convert a file to a DataFrame. Simply use 
pd.DataFrame() as seen in the following code:

# Create a DataFrame from the
df = pd.DataFrame(df)
# Print the DataFrame
print(df.head) #Outputs the first 5 rows of the DataFrame

Assessment

Consider the following Python code snippet:

with open('data.txt', 'r') as file:
    content = file.read()
print(content)

Now, answer the following questions:

1.	 What does this code do?

2.	 What is the significance of r in the open function?

3.	 What is the role of with in opening the file?

Answers

1.	 This code opens a file named data.txt in read mode (r), reads its entire contents into the 
content string variable, and then prints the contents. After the with block is executed, the 
'data.txt' file is automatically closed.
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2.	 The r in the open function stands for "read", which means the file is opened in "read" 
mode. In this mode, you can read from the file, but you can’t write to or modify the file.

3.	 If 'data.txt' does not exist or can’t be found in the directory from which the Python script 
is run, Python will raise a FileNotFoundError message.

4.	 with is used when working with unmanaged resources (such as file streams). It’s a neat 
bit of syntax that ensures the File object, file, is properly closed after usage. It sets up a 
context where the file is open, and at the end of this context, it automatically closes the file, 
even if exceptions were raised within the context. This makes it the best practice for resource 
management in Python.

Wrangling data with pandas
Data wrangling is one of the most important topics in data science interviews. For starters, data is often 
not presented in an analysis-ready format, which makes it necessary for data modeling preprocessing 
and addressing data quality concerns. Thus, data scientists can spend upward of 80% of their time 
cleaning and wrangling data [1].

Furthermore, data wrangling skills demonstrate your comfort and fluency with computer programming. 
Having the ability to use functions, loops, indexing, aggregation, filtering, and forming calculations 
will serve you well in your data science journey, enabling you to complete work quickly and efficiently. 
It is also fundamental for extract, transform, load (ETL) activities, querying data, data modeling, 
descriptive statistics, reporting, and a host of other data tasks.

In this section, we will review a couple of common data wrangling challenges, including handling 
missing data, filtering data, merging, and aggregating data.

Handling missing data

Sometimes, data is incomplete. Missing data is most often indicated by completely blank values, NaN 
values, or null values. There’s a number of reasons this can happen, ranging from erroneously collected 
or deleted data to data that was never provided. In fact, there are even categories of missing data, which 
can inform how missing values are to be treated. The following are some categories of missing data:

•	 Missing completely at random (MCAR): This is data that is missing in a randomly distributed 
fashion across the entire variable (e.g., column, field, attribute, and feature), regardless of other 
variables. In other words, the data is missing completely at random, and its missingness is not 
correlated with other field values:

	� Example: If you have an electronic health record (EHR) dataset, and patient social security 
numbers are missing throughout that field, regardless of patient location, ethnicity, and 
BMI, this is MCAR.
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	� The simplest approach is to remove the missing data points (rows). This ensures that any analysis 
is not biased by the missing values. This is achievable by using pandas’ dropna() function.

•	 Missing at random (MAR): This is missing data that is systematic but can be explained by 
other observed variables in the dataset:

	� Example: For another EHR dataset, the "Smoking Status" field is missing for some 
patients, but the missingness can be explained by another observed variable, such as "Age". 
Younger patients are less likely to have their smoking status recorded.

	� You can use methods such as mean imputation, median imputation, or predictive imputation 
(e.g., regression imputation) to fill in the missing values. This is achievable by using pandas’ 
fillna() function. The choice of imputation method is up to the analyst, but there are 
some rules of thumb. Using the mean of the field to impute missing values is a suitable 
method for data with a symmetric (e.g., normal) distribution. Using the median of the field 
is more suitable for data with a skewed distribution. Advanced methods such as regression 
might be useful when there’s a significant correlation between the variable with missing 
values and other observed variables.

•	 Missing not at random (MNAR): This is when the missingness is related to unobserved factors 
or missing data itself:

	� Example: For the same EHR dataset, the "Mental Health Diagnosis" field is 
missing for some patients, but the missingness is related to the severity of their mental health 
condition. Patients with more severe conditions are less likely to have their diagnosis recorded.

	� MNAR is the most complicated case to remedy because the missingness is not easily explained 
by observed variables. Thus, it is important to carefully analyze the reasons for missingness 
and consider more sophisticated techniques such as multiple imputation or maximum 
likelihood estimation.

Let’s take a closer look at an example, using the following dataframe:

import pandas as pd
import numpy as np

df = pd.DataFrame({
    'A': [1, 2, np.nan],
    'B': [5, np.nan, np.nan],
    'C': [1, 2, 3]
})
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Here are some ways you can handle missing values:

•	 Drop missing values: The dropna() function removes missing values. By default, it removes 
any row with at least one missing value:

print(df.dropna())

•	 Fill in missing values: The fillna() function fills in (also called imputes) missing values 
with a value of your choice. Here we replace the missing data with the 'FILL VALUE' string:

print(df.fillna(value='FILL VALUE'))

Then here is an example imputing missing data with the mean:
print(df['A'].fillna(value=df['A'].mean()))

In this case we take column 'A' and fill in the missing values with the mean of column 'A'.

You may also use regression to impute the data, but this is a little more involved, and we haven’t covered 
regression yet. We will discuss regression in a later session.

Selecting data

Selecting data is a very common operation when you’re working with data. With pandas, you can 
select data in a dataframe or Series in several different ways.

Suppose you have the following dataframe:

import pandas as pd

df = pd.DataFrame({
    'A': [1, 2, 3, 4],
    'B': [5, 6, 7, 8],
    'C': ['a', 'b', 'c', 'd']
})

Here’s how you can select specific parts of the data:

•	 Selecting columns: You can select a single column using df['ColumnName'] and multiple 
columns using df[['Column1', 'Column2']]:

# select column 'A'
print(df['A'])

# select column 'A' and 'B'
print(df[['A', 'B']])
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•	 Selecting rows: You can use slicing to select rows just like you would with a list:

# select the first 2 rows
print(df[0:2])

•	 Selecting by condition: This is where pandas really shines. You can quickly filter rows based 
on the values in one or more columns:

# select rows where 'A' is greater than 2
print(df[df['A'] > 2])

# select rows where 'A' is greater than 2 and 'B' is less than 8
print(df[(df['A'] > 2) & (df['B'] < 8)])

•	 Filter with the query method: This allows you to filter using a string expression:

# select rows where 'A' is greater than 'B'
print(df.query('A > B'))

•	 Selecting with loc() and iloc(): There is also another school of thought for data selection, 
provided by the pandas package. The loc() and iloc() indexing methods are specific to 
pandas dataframes. They are designed to provide a convenient way to select and access specific 
rows and columns of a dataframe based on their labels or integer positions, respectively. Here 
are some notable differences between the two:

	� loc(): This method allows data selection based on column labels and/or row indices to 
identify and retrieve data.

	� iloc(): This method allows selection based on integer positions of rows and columns to 
locate and retrieve data. Note, it uses exclusive slicing, meaning that the stop index is not 
included in the selection. It also supports position-based slicing and indexing.

Both loc() and iloc() follow a similar syntax. You can see the loc() syntax here:

Figure 3.4: loc() syntax
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Note
The first argument can be either a row index, range or list. Similarly, the second argument can 
be a label string, range, or list.

You can see the iloc() syntax here:

Figure 3.5: iloc() syntax

Let’s look at some examples using both of these. First let’s create a dataset:
import pandas as pd

# Create a sample DataFrame
data = {
    'Name': ['John', 'Alice', 'Bob', 'Emily', 'Jack'],
    'Age': [25, 30, 35, 28, 32],
    'City': ['New York', 'London', 'Paris', 'Sydney', 'Tokyo'],
    'Salary': [50000, 60000, 70000, 55000, 80000]
}

Now, let’s review how we can use loc() to select columns and/or rows:
df = pd.DataFrame(data)

# Select specific columns using loc()
selected_columns_loc = df.loc[:, ['Name', 'City']]
print("Selected columns using loc():")
print(selected_columns_loc)
print()

 Next, we select the same information, using the iloc() method:
# Select specific columns using iloc()
selected_columns_iloc = df.iloc[:, [0, 2]]
print("Selected columns using iloc():")
print(selected_columns_iloc)
print()

# Select specific rows using loc()
selected_rows_loc = df.loc[1:3, :]
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print("Selected rows using loc():")
print(selected_rows_loc)
print()

# Select specific rows using iloc()
selected_rows_iloc = df.iloc[2:4, :]
print("Selected rows using iloc():")
print(selected_rows_iloc)
print()

# Select a range of rows and specific columns using loc()
selected_range_loc = df.loc[1:3, ['Name', 'Age', 'Salary']]
print("Selected range of rows and specific columns using 
loc():")
print(selected_range_loc)
print()

# Select a range of rows and specific columns using iloc()
selected_range_iloc = df.iloc[2:4, [0, 1, 3]]
print("Selected range of rows and specific columns using 
iloc():")
print(selected_range_iloc)

)

Sorting data

Sorting in Python using the pandas library is a powerful technique that allows you to organize and 
analyze data efficiently. pandas provides various functions and methods to sort datasets based on one 
or multiple columns, thereby gaining insights from the data in a structured manner.

To perform alphanumeric sorting in Python using pandas, use sort_values() to specify the 
columns you want to sort by and the desired sorting order. Here is an example:

 import pandas as pd

# Create a sample DataFrame
data = {
    'Name': ['John', 'Emma', 'Alex', 'Sarah'],
    'Age': [28, 32, 25, 30],
    'Salary': [5000, 7000, 4500, 6000]
}
df = pd.DataFrame(data)
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# Sort the DataFrame by the 'Age' column in ascending order
sorted_df = df.sort_values('Age')

print(sorted_df)

Here is the output:

Figure 3.6: Sorting example 1

You can also sort by more than one column, as seen in the following example:

sorted_df = df.sort_values(["Age", "Salary"], ascending=[True, False])

The ascending parameter allows you to specify which columns should be sorted in ascending 
order. A value of True will ensure the respective column is sorted in ascending order; False will 
ensure that the column is instead in descending order.

This method also has another parameter called na_position. This method allows you to determine 
how NA values should be treated in the sorting process. For instance, setting this parameter to first 
means that NA values will appear at the top of the DataFrame. Here is an example:

sorted_df = df.sort_values('Age', na_position='first')

Here is the output:

Figure 3.7: Sorting example 2
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Merging data

The pandas library provides various facilities for efficiently combining dataframe objects. In particular, 
merge is a powerful function that allows us to perform database-style merging (or joining) operations 
(similar to JOIN operations in SQL).

Let’s say you have two dataframes that share a common column key. A key is a column that’s used to 
establish a relationship between two or more datasets. When joining data, the key serves as a common 
identifier or attribute that exists in both datasets, allowing for the combination of relevant information.

The process of joining data involves matching records from different datasets based on their key values. 
This enables the creation of a consolidated dataset that contains information from multiple sources.

In Python, the pandas library provides powerful tools for joining and merging DataFrames. The key(s) 
used for joining are specified through the on parameter, which accepts one or multiple column names. 
Here’s how you can merge them:

import pandas as pd

df1 = pd.DataFrame({
    'key': ['A', 'B', 'C', 'D'],
    'value': np.random.randn(4)
})

df2 = pd.DataFrame({
    'key': ['B', 'D', 'D', 'E'],
    'value': np.random.randn(4)
})

merged = pd.merge(df1, df2, on='key')

The resulting merged DataFrame contains the df1 and df2 rows, where the key column matches, 
with the df1 and df2 columns concatenated. By default, pd.merge() performs an inner join, 
which means only the keys present in both dataframes are merged. In our example, we merge the two 
dataframes using one common key, but you can also merge on multiple keys. If a key doesn’t exist in 
either dataframe, the corresponding row is excluded from the result.

But merge() allows other types of join operations, similar to SQL. Although the following options 
are not an exhaustive list, these are the ones you’ll use most often:

•	 An inner join (the default functionality) is a join that returns only the matching records from 
both datasets based on the specified key(s). Non-matching records from either dataset are 
excluded from the result. The resulting dataset contains only the common records between 
the datasets, as seen in the following code example:

merge(df1, df2, how='inner')
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•	 An outer join (also known as a full outer join) is a join that returns both the matching and 
non-matching records from both datasets based on the specified key(s). Records from one 
table without a matching record in the other table will be filled with null or NaN values in 
the resulting dataset, as seen in the following code example:

merge(df1, df2, how='outer')

•	 A left join (also known as a full left join) returns all the records from the left (or first) dataset and 
the matching records from the right (or second) dataset. Non-matching records from the right 
dataset are filled with null or NaN values. The resulting dataset includes all records from the 
left dataset and the common records from the right dataset, as in the following code example:

merge(df1, df2, how='left')

•	 A right join is like a left join but returns all the records from the right (or second) dataset and 
the matching records from the left (or first) dataset. The resulting dataset includes all records 
from the right dataset and the common records from the left dataset, as seen in the following 
code example:

merge(df1, df2, how='right')

Aggregation with groupby()

Aggregation is a fundamental operation in data analysis that allows you to perform a summarization 
operation (e.g., sum, average, min, max, and so on) on a range of selected data by a specified grouping. 
The groupby() function in pandas provides a powerful way of performing aggregations. The 
concept of the groupby() operation can be compared with the concept of Group By in SQL and 
the Split-Apply-Combine strategy in R.

There are a variety of aggregation functions (e.g., sum, mean, median, and so on). However, most 
aggregation operations involve these three steps:

1.	 Splitting the data into groups based on some criteria. This involves selecting one or more 
categorical fields to group the data by.

2.	 Applying a function to each group. This is the function that dictates the kind of aggregation 
that you want to perform. Some examples include sum, minimum (min), maximum (max), 
count, and more.

3.	 Combining the results into a data structure.

Let’s consider a dataframe:

import pandas as pd

data = {
    'Company': ['GOOG', 'GOOG', 'MSFT', 'MSFT', 'FB', 'FB'],
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    'Person': ['Sam', 'Charlie', 'Amy', 'Vanessa', 'Carl', 'Sarah'],
    'Sales': [200, 120, 340, 124, 243, 350]
}

df = pd.DataFrame(data)

If we want to find the total sales of each company, we can use groupby() using the following syntax:

dataset.groupby('<Group(s)>')['<Aggregated_Col>'].agg_function()

Here, the Group(s) parameter represents the categorical field by which you want to group the 
aggregated result. The Aggregation_Col parameter represents the numeric field on which you 
want to perform the aggregation. Lastly, agg_function() represents the function that you want 
to use to perform the aggregation.

Let’s apply this syntax to our example:

by_comp = df.groupby('Company')['Sales'].mean()
print(by_comp.head) # Outputs the first 5 rows of the result dataset

This code will create a groupby object, and then call the mean function on this result. It will then 
output the average sales for each company. In this case, the groupby() function splits the data into 
groups based on the 'Company' column. The mean() function is then applied to each of these 
groups independently, and the results are combined back into a new dataframe.

Here are a few more examples of how you can use groupby():

# To get the sum of sales for each company
 df.groupby('Company')['Sales'].sum()

# To get the standard deviation of sales for each company
 df.groupby('Company')['Sales'].std()

# To get more detailed information about each group
 df.groupby('Company')['Sales'].describe()

In addition to these, you can use any function with groupby() as long as that function can operate 
on a dataframe or Series. This includes both built-in pandas and numpy functions, as well as custom 
functions and lambda functions that you define yourself.
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You can also apply multiple aggregations with more than one function using agg(). Here are 
some examples:

import pandas as pd

# Create a sample DataFrame
data = {
    'Name': ['John', 'Alice', 'Bob', 'Emily', 'Jack'],
    'Age': [25, 30, 35, 28, 32],
    'Salary': [50000, 60000, 70000, 55000, 80000]
}

df = pd.DataFrame(data)

# Aggregate multiple columns with different functions
aggregations = {
    'Age': ['mean', 'min', 'max'],
    'Salary': ['sum', 'mean']
}

result = df.agg(aggregations)
print(result)

Here is the output:

Figure 3.8: Aggregation output

Assessment

You are given the following dataframe with missing values:

import pandas as pd
import numpy as np

df = pd.DataFrame({'A': [1, 2, np.nan],
                   'B': [5, np.nan, np.nan],
                   'C': [1, 2, 3]})
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How would you fill the missing values in column 'A' with the mean value of the non-missing values 
in the same column?

Answer

We use the fillna function of pandas dataframes, which allows us to replace NaN values with some 
value of our own:

df['A'].fillna(value=df['A'].mean(), inplace=True)

Here we are replacing NaN (missing) values in column 'A' with the mean of non-NaN values in the 
same column.

Assessment

Given a dataframe df with a column called 'Company' containing company names and a 'Sales' 
column with their respective sales, write a code snippet that would filter out rows corresponding to 
the companies that have sales of more than 500.

Answer

Here, df['Sales'] > 500 creates a Boolean Series where each element is true if the corresponding 
sales value is greater than 500, and false otherwise:

df_filtered = df[df['Sales'] > 500]

This Series is used to index the original dataframe, resulting in a new dataframe with only the rows 
where the sales are more than 500.

Assessment

Suppose you have a dataframe df with the 'Name', 'Age', and 'Salary' columns. How would 
you select the first three rows and the last two columns using the iloc() method?

Answer

To select the first three rows and the last two columns using the iloc() method, use the following code:

df.iloc[:3, -2:]
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Assessment

Given a dataframe df with the 'Name', 'Age', 'Salary', and 'Country' columns, how 
would you select all rows where 'Age' is less than 40, and only select the 'Name' and 'Country' 
columns using both the loc() and iloc() methods?

Answer

To do this, you can use the following code:

df.loc[df['Age'] < 40, ['Name', 'Country']]

Or alternatively, use the following code:

df.iloc[df['Age'] < 40, [0, 3]]

Assessment

Suppose you have the following dataset:

import pandas as pd

data = {
    'OrderID': [1, 2, 3, 4, 5],
    'CustomerID': [101, 102, 103, 104, 105],
    'OrderDate': ['2022-01-01', '2022-02-15', '2022-03-10', '2022-04-
20', '2022-05-05'],
    'OrderTotal': [100, 150, 200, 75, 120]
}

df = pd.DataFrame(data)

How would you use the agg() function to calculate the total order amount for each customer?

Answer

First, we split the data into groups using groupby(); in this case, we need to group each customer. 
We then want to find the sum of the order totals, so we use the agg() method on the OrderTotal 
column. After that, we set our aggregation function to sum() since we want the total; this newly 
calculated column is given the name total_order_amount:

result = df.groupby('CustomerID')['OrderTotal'].agg(total_order_
amount=('sum'))
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Assessment

You have two DataFrames, df1 and df2. Both DataFrames share a key column called "key". How 
would you merge these datasets?

Answer

The pd.merge() function is used to merge two DataFrames on a key:

merged_df = pd.merge(df1, df2, on='key')

By default, it performs an inner join, which means it will only include rows where the key is present 
in both df1 and df2. The resulting dataframe, merged_df, will include all columns from df1 and 
df2, but only rows where the key value is present in both.

Summary
In this chapter, we covered many Python programming fundamentals you would need for your 
technical interview. First, we covered Python variable data types and string operations, including string 
indexing. Afterward, we reviewed Python list comprehensions and control statements, including loops. 
Then we focused on some aspects of Python classes, indexing, merging, sorting, data aggregation, 
and handling missing data.

It is incredibly important to be proficient in the area of data wrangling and manipulation, which 
comprises a large part of data science interviews and assessments. Although it comprises a large part, 
data wrangling is tested proportional to its presence in data science jobs.

In the next chapter, we will move our focus from Python fundamentals to data visualization and storytelling.

References
•	 [1] A Comparative Study of Data Cleaning Tools by Chen, Z., Oni, S., Hoban, S., & Jademi, O., 

from International Journal of Data Warehousing and Mining (IJDWM) (2019).
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Visualizing Data and  

Data Storytelling

Data visualization is the process of creating images, charts, and other visual data. This is performed to 
reveal and understand underlying trends and patterns in the data. These skills are important in order 
for data scientists to tell compelling data stories. For example, a marketing analyst may examine online 
customer behavior to identify purchasing habit trends such as seasonal trends, product preferences, 
or demographic correlations. These patterns can be used to craft targeted marketing campaigns 
or develop personalized recommendations, enhancing customers. Alternatively, an analyst may 
analyze historical financial time series data to identify patterns in market trends, stock performance, 
or economic indicators. By recognizing patterns, they can make informed predictions about future 
market behavior, guide investment decisions, and develop risk management strategies.

In this chapter, you will delve into the world of data visualization and storytelling. Here, you will learn 
the key principles and techniques to choose the appropriate data visualization methods to effectively 
communicate insights and patterns hidden within complex datasets. The goal of this chapter is to equip 
you with the knowledge and skills necessary to create impactful and meaningful visual representations 
of data. By the end of the chapter, you will know some of the tools of the trade for data visualizations, 
including some software libraries, along with best practices for designing visually appealing and 
informative dashboards, reports, and key performance indicators (KPIs). Additionally, you will 
review coding techniques in Python that enable you to create charts and graphs programmatically. 
Lastly, we will introduce a framework for data storytelling, emphasizing the importance of narrative 
and context in presenting data-driven insights to various audiences.

Mastering these concepts is essential for you as a data scientist as it empowers you to effectively 
communicate your findings, influence decision-making, and inform business decisions across domains 
and industries.
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In this chapter, we will cover the following topics:

•	 Understanding data visualization

•	 Surveying tools of the trade

•	 Developing dashboards, reports, and KPIs

•	 Developing charts and graphs

•	 Applying scenario-based storytelling

Understanding data visualization
As data scientists, we sometimes feel like we are explorers navigating the wild frontiers of massive 
datasets, hunting for insightful patterns and significant relationships. Yet, the real value of our journey 
lies in the capacity to translate these discoveries into stories that influence decisions, inspire action, 
and propel innovation. This is where the art of data visualization and storytelling comes into play.

Data visualization is a powerful tool beyond simply showcasing statistics or trends – it breathes life 
into data, transforming numbers and variables into visual narratives that capture attention, invoke 
emotion, and provoke thought. It is a translation process, converting the abstract language of data 
into an intuitive, visual dialect that people can understand and engage with. More than mere graphics, 
well-crafted data visualizations can tell compelling stories.

The power of visualization lies in its appropriateness to the data, the narrative, and the audience. 
Choosing the correct visualization is an important skill for data scientists – one that can significantly 
affect the comprehension, impact, and engagement of your data narrative. Let’s take a look at different 
types of data visualizations.

Bar charts

A bar chart is a versatile visual that can display categorical data or discrete quantities. It compares 
different groups by representing them as rectangular bars with lengths proportional to the values they 
represent. A typical bar chart looks like this:
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Figure 4.1: A bar chart

As well as being vertical, bar charts can be inverted horizontally to create a side-ways bar chart:
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Figure 4.2: A sideways bar chart of FIFA World Cup victories by countries as of 2023

There are also numerous flavors of bar charts, including stacked bar charts, which display multiple bars 
stacked on top of one another to represent different subcategories or components within each category, 
or grouped bar charts (see Figure 4.3), which display numeric data across categories that are grouped.

Figure 4.3: A grouped bar chart
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When to use it: Bar charts are excellent for comparing quantities across categories, illustrating differences 
over time for a small number of groups, or presenting relative proportions.

Tips: Start the Y-axis at zero to avoid misrepresenting differences. Be sure to use appropriate scales to 
clearly illustrate differences in category quantities. Use horizontal bar charts when the category labels 
are long or if you have a large number of categories.

Line charts

A line chart represents quantitative data for one or more variables, making it ideal for showing the 
relationship between two quantitative variables (one for each axis), or displaying trends over time 
(where the X axis represents time). The plot is constructed by connecting data points with a line.

Figure 4.4 shows a typical line chart, where each axis represents numeric variables:

Figure 4.4: A line chart

As previously mentioned, line charts are sometimes used to create time series plots, which are a 
special type of line chart. Time series plots are simply line charts where a series of times (minutes, 
days, months, years, and so on) is the X-axis variable. While normal line charts are used to show the 
relationship between two numeric variables, time series plots specifically demonstrate the relationship 
between some numeric variable and time.
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An example of a time series line chart is shown in Figure 4.5:

Figure 4.5: Time series line chart of stock price

When to use it: Use line charts to display trends, movements, or changes over time, or to compare the 
trends of different groups. Sometimes, line charts are used to assess whether two or more variables 
are correlated, or if they meet some data shape, such as exponential or logarithmic. For example, 
two variables may show a line chart that indicates exponential decay, which is useful when assessing 
numeric variable relationships.

Tips: Keep your chart simple; too many lines can make the chart hard to interpret. Use markers for 
each data point for added clarity.

Scatter plots

A scatter plot uses dots to represent values for two different variables, plotted on the X and Y axes. 
It allows for the observation of relationships or correlations, and is often the precursor to line charts 
if a pattern persists. 
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Figure 4.6: A scatter plot

When to use it: Scatter plots are perfect for showing relationships between two quantitative variables 
or displaying the distribution of data. They are handy when you want to highlight the correlation, or 
lack of any correlation, between two variables.

Tips: Use different colors or shapes to represent different categories (this may even uncover natural 
segments of data not previously known). Adding a trend line can help visualize the overall relationship.

Histograms

A histogram is a graphical representation of the distribution of data. It is used to display discrete 
numeric data, where the bins (or bars) represent ranges of data. It consists of a series of bars, where 
each bar represents a category or range of values, and the height of the bar represents the frequency 
or count of observations falling within that category. The bars in a histogram are typically placed 
adjacent to each other to emphasize the discrete nature of the variable. Histograms are useful for 
understanding the frequency and spread of values within different categories and identifying patterns 
or outliers in the data:
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Figure 4.7: A histogram (approximately normal)

When to use it: Use histograms to show the distribution of (at least) one numeric variable and identify 
patterns such as skewness, kurtosis, or outliers. 

Skewness is simply the degree of asymmetry. For example, a right-skewed histogram has a longer tail 
on the right side of its peak, whereas a left-skewed histogram has a longer tail on the left side of its 
peak. Alternatively, kurtosis is a measurement of deviation from a normal distribution. You'll learn 
more about distributions in the Chapter 8. 

Tips: Be aware that bin size can greatly influence your histogram’s shape and insights. Experiment 
with different sizes to find the one that best represents your data.

Density plots

Similarly, a density plot (also known as a kernel density plot) is another visualization method that’s 
used to display the distribution of numeric data. Unlike histograms, density plots are used to represent 
the distribution of one or more continuous variables.

Alternatively, histograms are used to represent the distribution of discrete variables (which have a 
finite number of distinct values or categories). Thus, density plots provide a smooth estimate of the 
underlying probability density function (PDF) of the data. The plot displays the relative frequency 
of data points within different intervals along the variable’s range, showing the concentration of data 
and areas of high or low density:
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Figure 4.8: A density plot

When to use it: Use density plots to show the distribution of continuous variables and identify patterns 
such as skewness, kurtosis, or outliers. It is also useful while investigating the theoretical distribution 
of a variable. 

We will learn more about common theoretical distributions in Chapter 8, but note that distributions 
derived from real-world empirical data are known as empirical distributions, which are in turn 
compared to theoretical distributions that determine data assumptions.

Tips: Similar to the histogram, you can create density plots with more than one variable to compare 
variable distributions and skewness.

Quantile-quantile plots (Q-Q plots)

A Q-Q plot is another plot that’s used to assess a dataset’s distribution, typically to compare it to some 
theoretical distribution (for example, normal distribution). It compares the quantiles of the empirical 
date from the dataset (along the Y-axis) against the quantiles of the expected theoretical distribution 
(along the X-axis). The diagonal line in this plot represents where the distributions would match exactly 
– the closer the scattered dots are to the line, the closer the dataset meets the theoretical distribution. 
In the case of the standard normal theoretical distribution, the expected quantiles would portray a 
mean of 0 and a standard deviation of 1:
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Figure 4.9: A Q-Q plot

When to use it: Q-Q plots are used to check underlying statistical assumptions, typically in preparation 
for statistical models that have distribution requirements, such as linear regression. The plot allows 
analysts to visually review the Q-Q plot to determine if the data meets pre-modeling requirements – 
that is, checking if the data fits some pre-determined theoretical distribution. 

Q-Q plots are not as intuitive for visuals beyond pre-statistical analysis, so limit their use beyond your 
investigative needs. Non-analysts are much more likely to understand hisrograms and density plots. 

Tips: When assessing a dataset’s distribution, you may start with a histogram, which can give you some 
idea of the data’s general distribution. If you are hoping for a normal distribution and the histogram 
shows that the data is skewed, there’s not much point in using a Q-Q plot. However, if the histogram 
shows an approximately normal shape, you may use the Q-Q plot to give you a more accurate 
estimation of the distribution of data since it directly compares your data to the known quantiles of 
a theoretical distribution.
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Box plots

A box plot, or box-and-whisker plot, provides a five-number visual summary of a dataset – the 
minimum, first quartile, median, third quartile, and maximum:

Figure 4.10: A box plot

When to use it: Box plots are great for comparing distributions between different groups or identifying 
outliers in your dataset. It requires at least one continuous numeric variable, but you can also plot 
numerous box plots by category. Box plots are better suited for summarizing the central tendency, spread, 
and identifying outliers, making them useful for comparisons between different variables or groups.

Tips: Pair box plots with other plots, such as a swarm plot, to show individual data points and give a 
more comprehensive view. Swarm plots are box plots overlaid with a scatter plot of the data.

Pie charts

A pie chart is a circular graph that represents proportions or percentages among categories, with 
each slice corresponding to a category, and all category proportions adding up to 100%. While pie 
charts are seemingly easy to interpret, most analytics professionals avoid them, since they have a way 
of tricking the human mind. We don’t always correctly perceive the numeric proportions, making it 
difficult to make out categorical differences:
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Figure 4.11: A pie chart

Additionally, it only takes a handful of categories before interpreting pie charts becomes extremely 
challenging. Furthermore, unlike bar charts, there’s no natural ordering functionality.

When to use it: Traditionally, pie charts are suitable for displaying the proportions or a percentage of 
a whole regarding a small number of categories. However, it is advised to use them sparingly. Instead, 
consider using a bar chart or stacked bar chart.

Tips: Limit the slices to a manageable number (ideally under seven) to avoid overcomplicating the 
chart. Label slices with their actual values or percentages for clarity.

These are just a few examples in the vast world of data visualization. Remember, the goal is not to use 
the most complex visualization but the one that most effectively communicates your data story to the 
audience. As you gain experience, don’t be afraid to experiment with less conventional visualization 
types, such as heatmaps, treemaps, or radial charts. Also, always be sure to keep your audience, the 
data, and your narrative in mind.

Assessment

You are given a dataset with sales data for a chain of grocery stores. The dataset includes sales figures 
by store location, product category, and time (monthly for the past 2 years). You’re asked to analyze 
and present the monthly trend of total sales and also compare the sales of different product categories. 
What types of data visualizations would you choose for this task and why?
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Answer

To present the monthly trend of total sales, a line chart would be the most appropriate visualization. 
Line charts are perfect for displaying trends over time and can easily showcase increases or decreases 
in total sales over the given 2-year period.

To compare the sales of different product categories, a stacked bar chart would be a good choice. Each 
bar could represent a month, and the segments within each bar would represent the sales of different 
product categories. This would allow the audience to visually compare the sales of different product 
categories and understand how they contribute to the total sales.

Assessment

You are working with a dataset containing responses to a customer satisfaction survey. The survey 
includes customer demographic information (age, gender, location, and so on) and responses to a 
question about satisfaction level on a scale from 1 to 5 (1 = very dissatisfied, 5 = very satisfied). What 
type of data visualization would you use to present an overview of the satisfaction level responses, 
and why?

Answer

A histogram or a bar chart would be appropriate to show an overview of the satisfaction level responses. 
A histogram would be a good choice because it shows the distribution of a single variable (in this 
case, satisfaction level). It can provide a visual representation of which satisfaction level was selected 
most and least often, as well as the general distribution of responses.

Alternatively, an ordinal bar chart could also work well, considering satisfaction levels are discrete and 
ordered categories. Each bar would represent a satisfaction level (from 1 to 5), and the length of the 
bars would show the count of responses for each level. This visualization would provide a clear view 
of customer sentiment, allowing for easy comparison between the different categories.

Both of these visualizations would help you quickly understand customer satisfaction level responses 
by visually representing the distribution and frequency of each response category.

Surveying tools of the trade
There is an array of visualization tools available that cater to a variety of needs, skill sets, and use 
cases. This section will discuss several popular data visualization tools, including Power BI, Tableau, 
R’s Shiny, and Python libraries such as Matplotlib and Seaborn, providing guidance on when to use 
one over another. However, the goal here is to help give you more general knowledge to prepare you 
for your technical interview on understanding when to choose a particular tool.
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Power BI

Power BI is a business intelligence tool developed by Microsoft. It offers interactive visualizations with 
an interface simple enough for end users to create reports and dashboards.

When to use it: Power BI is very effective when dealing with large quantities of complex data sources, 
which requires considerable data wrangling or modeling. It’s an excellent choice for businesses 
seeking to create interactive, user-friendly dashboards or for integrating analytics into existing 
Microsoft-based systems.

Tableau

Tableau is a data visualization tool that’s widely used for its intuitive ability to create complex, interactive 
visualizations, reports, and dashboards.

When to use it: Tableau shines when working with large and complex datasets, particularly when you 
need to create interactive dashboards or complex visual narratives. It’s an excellent tool for organizations 
whose primary users are business analysts or executives who want to interact with the data but don’t 
necessarily have extensive data modeling skills.

Shiny

Shiny is a package from RStudio that allows R and, as of late, Python users to build interactive web 
applications, bringing the power of R’s statistical capabilities to visualization.

When to use it: Shiny is the tool of choice when your data work requires heavy statistical analysis, and 
you want to create web-based interactive visualizations. If you’re already comfortable with R, Shiny 
allows you to leverage your existing skills while creating sophisticated applications.

ggplot2 (R)

ggplot2 is an R package known for creating elegant and aesthetically striking visualizations. It 
implements a unique grammar of graphics approach that allows for powerful plot customization and 
has a strong online community of users.

When to use it: ggplot2 is excellent when you’re working with data in R and when you need to create 
complex, customized visualizations. Its strength lies in its flexibility and the consistency of its output.

Matplotlib (Python)

Matplotlib is a multi-platform data visualization library built on NumPy arrays for Python. It’s powerful 
and flexible, capable of creating nearly any type of chart or graph.
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When to use it: Matplotlib is excellent for creating simple to moderately complex static plots. It works 
well for customizing plots for publications or presentations or working with other Python libraries 
(such as NumPy or pandas).

Seaborn (Python)

When to use it: Seaborn is particularly useful when enhancing Matplotlib visuals. It’s an excellent tool 
for exploratory data analysis and making statistical plots look more attractive.

Choosing the right visualization tool depends on the complexity of your data, the nature of your 
task, your team’s technical skills, and your project’s specific requirements. It’s beneficial to familiarize 
yourself with several tools, so you can choose the most suitable one for each data visualization 
challenge you encounter.

Assessment

You are a data scientist at a multinational corporation using Microsoft-based infrastructure. Your manager 
has asked you to perform an in-depth analysis of a complex, large-scale dataset to derive insights into 
the company’s operations and present your findings to both the technical team and non-technical 
stakeholders. You are comfortable with both R and Python. Considering these circumstances, which 
data visualization tools might best suit your task, and why?

Answer

Given the dataset’s complexity and scale and the corporation’s Microsoft-based infrastructure, Power 
BI would be an excellent choice for this task. Power BI is well-integrated with Microsoft’s ecosystem, 
enabling smooth data import and export from various Microsoft sources. It’s capable of handling large-
scale datasets and producing interactive dashboards, which can be highly beneficial for presenting 
insights to non-technical stakeholders in an accessible, interactive manner.

However, considering that some of the audience is technical and you are comfortable with coding, 
utilizing Python’s Matplotlib and Seaborn libraries or R’s ggplot2 for exploratory data analysis and 
making customized, complex statistical graphics could be beneficial. These tools offer more control 
and customization for your plots and can handle the statistical nuances that might be required in the 
in-depth analysis. So, in essence, a combination of Power BI for interactive dashboard creation and 
either Python or R for more custom and intricate visualizations would be a well-rounded approach.

Developing dashboards, reports, and KPIs
In some technical interviews, you are given a take-home technical task to complete, and this might 
include data visualization. In the previous section, we touched on some common dashboarding 
tools a data scientist might use. In this section, we will delve deeper into some best practices for your 
dashboards, reports, and KPIs.
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As a data scientist, you’re not only tasked with uncovering insights from data but also communicating 
these insights effectively. This often involves creating dashboards, reports, and KPIs. While the 
aesthetics of your visuals are important, clarity, accuracy, and usability should always take precedence. 
The following are some best practices to help you create effective dashboards and reports:

•	 Prioritize clarity and simplicity: Avoid cluttered or overly complex visualizations. Keep your 
dashboards and reports simple and intuitive. Stick to one primary message per chart and limit 
the number of visualizations on a single page or screen. Remember, the goal of your visualization 
is to clarify, not confuse.

•	 Use appropriate titles and labels: Every chart or graph should have a clear, descriptive title 
that communicates its main point. Axis labels should be succinct yet descriptive. Including 
units of measurement where applicable is also essential. Legends should be easily identifiable 
and placed strategically so as not to interfere with the data.

•	 Select the right chart type: We discussed this earlier, but it is worth mentioning here also. 
The type of chart you use should align with the nature of your data and what you want to 
communicate. Bar charts and line graphs are generally more intuitive and versatile, while pie 
charts and scatter plots might require more context or explanation. Don’t force a particular 
type of chart onto your data; instead, let the data guide your visualization choices.

•	 Use consistent design elements: Maintain consistency in color schemes, fonts, and styles across 
your dashboards and reports. This doesn’t mean everything has to look the same, but there 
should be a cohesive, professional appearance to your work. Consistency reduces cognitive 
load and helps users focus on the content.

•	 Implement interactivity: Interactivity can greatly enhance the user experience by enabling 
users to focus on areas of interest, explore the data, and gain personalized insights. Filters, 
dropdowns, and hover-over effects are common interactive elements in dashboards. However, 
ensure interactivity doesn’t compromise the clarity or performance of the dashboard.

•	 Align visuals with KPIs: KPIs should be front and center in your reports or dashboards. They 
should be visually distinct and easily understandable at a glance. Use simple but effective visual 
cues to indicate performance (such as colors or directional indicators).

•	 Iterate and gather feedback: In an interview setting, this might not be possible. Some 
interviewers like to interact with the interviewee as if they were colleagues. If this is the case, 
then don’t consider your dashboard or report as a one-and-done task. Gather feedback from 
the interviewer as if they were the end user. Understanding how users interpret and interact 
with your visualizations can provide valuable insights for improvement.

Remember, data visualization is an art as much as it is a science. Strive for clarity and simplicity, but 
don’t be afraid to experiment and innovate. The more you practice, the more intuitive and effective 
your data visualization skills will become.
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Assessment

You’ve been asked to design a dashboard for a client who wants to monitor their website’s traffic, user 
engagement, and sales performance. The client is not technically savvy, and the dashboard will be 
used by a diverse team within the organization, including sales, marketing, and product management.

The client’s key metrics include the following:

•	 Daily and monthly unique website visits

•	 Average session duration

•	 Pages per session

•	 Sales conversion rate

•	 Top-performing products (by sales)

Considering the guidelines for creating effective dashboards, reports, and KPIs, outline your approach 
to designing this dashboard, including which visualizations you would use for each metric and how 
you would apply best practices to ensure the dashboard is effective and user-friendly.

Answer

The approach to this task should keep the end user in mind, making sure the dashboard is accessible, 
clear, and relevant to a broad audience within the organization:

•	 Daily and monthly unique website visits: Line charts would be ideal for tracking these 
metrics over time. They clearly show trends and fluctuations and would allow users to quickly 
understand the website’s traffic patterns.

•	 Average session duration: Again, a line chart would be an effective visualization, providing 
an understanding of changes over time.

•	 Pages per session: A bar chart could be used here, possibly displaying average pages per session 
for each day or month.

•	 Sales conversion rate: A line chart tracking the sales conversion rate over time would be a 
clear way to display this important KPI.

•	 Top-performing products: A horizontal bar chart could effectively display top-performing 
products, making it easy for users to compare products.



Visualizing Data and Data Storytelling104

To ensure the dashboard adheres to best practices, consider the following:

•	 Each chart should have a clear, descriptive title and labels, with units of measurement 
where necessary.

•	 A consistent color scheme and style should be used across all visualizations for a cohesive look. 
For example, all line charts could use the same color palette, distinguishing different lines with 
different shades or patterns.

•	 KPIs such as sales conversion rate and top-performing products should be highlighted and 
placed in prominent positions on the dashboard.

•	 To cater to the diverse audience and provide personalized insights, interactive features should 
be implemented. For instance, drop-down menus could be used to allow users to select specific 
time ranges or to filter products by categories.

•	 The design should be kept clean and uncluttered. If there are too many visualizations to fit 
comfortably on a single screen, tabs could be used to organize them into related groups.

Developing charts and graphs
While there are many tools for creating different data visuals, we will review a few basic visualizations, 
including bar charts, scatter plots, and histograms in Python. Two standard libraries for creating data 
visualizations in Python are Matplotlib and Seaborn.

In this section, we will discuss the different chart types and how to make them in Matplotlib and Seaborn.

Bar chart – Matplotlib

Matplotlib is a foundational library for visualizations in Python. Here’s a basic example of how you 
might create a bar chart with Matplotlib:

import Matplotlib.pyplot as plt

# Categories and their associated values
categories = ['Category1', 'Category2', 'Category3', 'Category4']
values = [50, 60, 70, 80]

plt.figure(figsize=(8,6)) # Create a new figure with a specific size 
(width, height)

plt.bar(categories, values) # Create a bar chart

# Labels for x-axis, y-axis and the plot
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plt.xlabel('Categories')
plt.ylabel('Values')
plt.title('Bar Chart with Matplotlib')

plt.show() # Display the plot

Let’s take a look at what the previous code block achieves:

•	 First, we import the Matplotlib library, specifically the pyplot  module with the 
matplotlibMatplotliby convention. It’s usually imported under the plt alias.

•	 Here, we’re simply defining two lists: categories and values. These will be used for the 
X-axis (categorical data) and the Y-axis (quantitative data) of the bar chart, respectively.

•	 plt.figure() is a function that creates a new figure. The figsize parameter allows you 
to specify the width and height of the figure in inches.

•	 The plt.bar() function creates a bar chart. It takes two arguments: the X-values (our 
categories) and the Y-values (the corresponding values).

•	 The plt.xlabel(), plt.ylabel(), and plt.title() functions allow you to set 
labels for the X-axis, Y-axis, and the title of the plot, respectively. This step is crucial to make 
your plot self-explanatory.

•	 Finally, plt.show() is used to display the figure. It informs Python to display the figure 
and ensures that you can see it. This is necessary because Matplotlib is a graphical library and 
needs to interact with a graphical backend to display its figures.
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Here is the result of the code block:

Figure 4.12: The output of the Matplotlib bar chart script

Bar chart – Seaborn

As mentioned previously, Seaborn is another Python library for data visualization built on top of 
Matplotlib. It allows us to layer in additional plotting features, such as adding colors or graphing 
themes, like so:

import Matplotlib.pyplot as plt
import seaborn as sns

# Categories and their associated values
categories = ['Category1', 'Category2', 'Category3', 'Category4']
values = [50, 60, 70, 80]

# Convert data to DataFrame
import pandas as pd
data = pd.DataFrame({"Categories": categories, "Values": values})
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plt.figure(figsize=(8,6)) # Create a new figure with a specific size 
(width, height)

sns.barplot(x="Categories", y="Values", data=data) # Create a bar 
chart

# Labels for x-axis, y-axis and the plot
plt.xlabel('Categories')
plt.ylabel('Values')
plt.title('Bar Chart with Seaborn')

plt.show() # Display the plot

Let’s review what the code block achieves:

•	 First, we import the Seaborn library, with seaborn. It is typically imported under the sns alias.

•	 Next, like the Matplotlib code, we define two lists, categories and values, that will hold 
the data we will plot. Then, we import the pandas library and create a DataFrame with our 
data. A DataFrame is a table-like data structure that Seaborn can use to create visualizations. 
Each key-value pair in the dictionary we pass to pd.DataFrame corresponds to a column 
in the DataFrame.

•	 The plt.figure function from Matplotlib is used to create a new figure. We specify the 
figsize parameter to set the width and height of the figure.

•	 The sns.barplot function is used to create a bar chart. We specify the columns of our 
DataFrame for the x and y parameters and pass our DataFrame to the data parameter. This 
tells Seaborn to create a bar chart with categories on the X-axis and values on the Y-axis.

•	 We use Matplotlib functions to add labels to our X-axis (plt.xlabel), Y-axis (plt.ylabel), 
and the title of the plot (plt.title).

•	 Finally, plt.show is used to display the plot. Seaborn relies on Matplotlib to display plots, 
and this function tells Matplotlib to render the following bar chart:
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Figure 4.13: The output of the Seaborn bar chart script

Scatter plot – Matplotlib

Next, we will demonstrate how to create scatter plots with Matplotlib. Scatter plots are very useful 
for displaying relationships between two numeric variables along two different categories. It’s often 
the first sniff test for investigating covariate relationships before applying more conclusive techniques 
such as regression analysis.

Let’s take a look at how we might plot a scatter plot using the Matplotlib library:

import Matplotlib.pyplot as plt
import numpy as np

# Generate some example data
np.random.seed(0)
x = np.random.randn(100)
y = x + np.random.randn(100)
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plt.figure(figsize=(8,6))

plt.scatter(x, y) # Create a scatter plot

# Labels for x-axis, y-axis and the plot
plt.xlabel('x')
plt.ylabel('y')
plt.title('Scatter Plot with Matplotlib')

plt.show()

Let’s review the code:

•	 First, we import the Matplotlib library, specifically the pyplot  module with the 
matplotlibMatplotliby convention. It’s usually imported under the plt alias. 
Additionally, we import the NumPy module under the np alias to be used in creating a sample 
dataset later. NumPy is a library for the Python programming language that adds support 
for large, multi-dimensional arrays and matrices, along with a large collection of high-level 
mathematical functions to operate on these arrays.

•	 Additionally, we generate some random data for the scatter plot. np.random.seed(0) is used 
to keep the random numbers consistent between runs. np.random.randn(100) generates 
100 random values from a normal distribution. In y = x + np.random.randn(100), 
we generate the Y-values such that they have some relationship with the X-values (as they’re 
based on x) but also have additional random noise.

•	 We create a new figure object where the plot will be drawn, with the size of the figure set to 8 
units (width) by 6 units (height).

•	 To create the scatter plot, the plt.scatter function produces a scatter plot, with x and y 
being the data points that are plotted.

•	 The plt.xlabel(), plt.ylabel(), and plt.title() functions set labels for the 
X-axis, Y-axis, and the title of the plot, respectively.

•	 Again, we display the plot by calling the plt.show() function.
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The following figure shows the result of the code block:

Figure 4.14: The output of the Matplotlib scatter plot script

Scatter plot – Seaborn

Now that we’ve explored scatter plots in Matplotlib, let’s look at an example of using Seaborn:

import Matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
import numpy as np

# Generate some example data
np.random.seed(0)
x = np.random.randn(100)
y = x + np.random.randn(100)

# Convert data to DataFrame
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data = pd.DataFrame({"x": x, "y": y})

plt.figure(figsize=(8,6))

sns.scatterplot(data=data, x="x", y="y") # Create a scatter plot

# Labels for x-axis, y-axis and the plot
plt.xlabel('x')
plt.ylabel('y')
plt.title('Scatter Plot with Seaborn')

plt.show()

Let’s review the code:

•	 First, we import the necessary modules – that is, seaborn, numopy, and pandas.

•	 Next, the data is converted into a pandas DataFrame, a two-dimensional table data structure.

•	 Then, a new figure is created with a specified size.

•	 The scatterplot() function is called with our DataFrame passed to the data parameter 
and the column names for x and y.

•	 Finally, we add our labels to the plot and display it by calling the plt.show() function.

•	 This code will produce a scatter plot like the one produced by Matplotlib. However, Seaborn 
allows for more customization and complexity as you can map other variables to the size, hue, 
and style of the points, among other things.
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Here is the result:

Figure 4.15: The output of the Seaborn scatter plot script

Histogram plot – Matplotlib

Moving on, here is an example of how we might create a standard histogram in Matplotlib:

import Matplotlib.pyplot as plt
import numpy as np

# Generate some example data
np.random.seed(0)
data = np.random.randn(1000)

plt.figure(figsize=(8,6))

plt.hist(data, bins=30) # Create a histogram

# Labels for x-axis, y-axis and the plot
plt.xlabel('Value')
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plt.ylabel('Frequency')
plt.title('Histogram with Matplotlib')

plt.show()

Let’s review the code:

•	 First, we import the Matplotlib and NumPy modules. Additionally, we generate random data 
with the NumPy library.

•	 Again, a figure is created with a specified size.

•	 A histogram is created with plt.hist(), with the data and number of bins as arguments.

•	 Finally, the X-axis, Y-axis, and the plot title are labeled and displayed.

•	 This code will produce a histogram with 30 bins.

Here is the result:

Figure 4.16: The output of the Matplotlib histogram plot script
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Histogram plot – Seaborn

Next, let’s see how Seaborn can add more character and visual appeal to our histogram plot:

import Matplotlib.pyplot as plt
import seaborn as sns
import numpy as np

# Generate some example data
np.random.seed(0)
data = np.random.randn(1000)

plt.figure(figsize=(8,6))

sns.histplot(data, bins=30, kde=True) # Create a histogram

# Labels for x-axis, y-axis and the plot
plt.xlabel('Value')
plt.ylabel('Frequency')
plt.title('Histogram with Seaborn')

plt.show()

Let’s explain the code:

•	 The first couple of lines of the code should look familiar as we import the necessary modules, 
generate some example data, and create the plot figure.

•	 The use of the sns.histplot function creates the histogram plot. In addition to plotting, 
with 30 bins, the kernel density estimate (KDE) is also plotted, which can help in visualizing 
the underlying distribution of the data.

•	 We complete the plot by labeling the axes and displaying the plot.
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Here is the result:

Figure 4.17: The output of the Seaborn histogram plot script

Assessment

You are given a dataset with a large number of data points and are tasked with visualizing the distribution 
of the values in the dataset. Which type of plot do you think is most suitable for this task in Matplotlib 
and Seaborn? How would you implement this in code?

Answer

A histogram would be most suitable for visualizing the distribution of values in a large dataset. 
Histograms provide a visual representation of data distribution by dividing the continuous data into 
bins and then plotting the number of data points that fall into each bin.

Here is an example of how this code might look:

import Matplotlib.pyplot as plt
import seaborn as sns

# Assuming data is your dataset
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plt.figure(figsize=(8,6))

# Histogram with Matplotlib
plt.hist(data, bins=30)
plt.show()

# Histogram with Seaborn
sns.histplot(data, bins=30, kde=True)
plt.show()

In both the Matplotlib and Seaborn examples, the bins parameter determines the number of bins 
in your histogram (and can be adjusted based on your specific needs), and the kde parameter in the 
Seaborn example indicates whether or not to plot a Gaussian kernel density estimate (which can give 
you a smoother curve representative of the distribution).

Applying scenario-based storytelling
One of the most important aspects of a data scientist’s role is to translate complex datasets into a 
narrative that people who aren’t data scientists can understand. The ability to present your findings 
clearly and compellingly is a crucial skill for a data scientist. This section provides a framework for 
structuring your data story effectively:

•	 Begin with your end: Before crunching numbers, clarify your goal. What is the key message 
you want to communicate? What action do you want to take? A clear objective will guide 
your analysis, influence your choice of visualizations, and ensure your story resonates with 
your audience.

•	 Know your audience: Understanding your audience’s needs, interests, and level of knowledge 
will help you present your data meaningfully. Tailor your story to fit your audience – the detail, 
complexity, and visualizations you use should vary depending on who you’re speaking to.

•	 Build your narrative: Understanding your audience’s needs, interests, and level of knowledge 
will help you present your data in a way that’s meaningful to them. Again, here, we mention 
tailoring your story to fit your audience.

•	 Use visuals wisely: The human brain processes visuals much faster than text. Use this to your 
advantage by presenting your data visually. However, not all visuals are created equal. Your 
choice of visualization should simplify complex data, highlight the most important insights, 
and support your narrative. Keep your visuals clean and uncluttered, and avoid unnecessary 
decoration distracting from the data.
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•	 Let your data do the talking: The best stories let the data speak for themselves. Use your 
narrative to guide your audience, but let the data provide the evidence. This makes your story 
more compelling and builds credibility and trust with your audience. Keep interpretations to 
a minimum to avoid speculating and making the data fit a preconceived story.

•	 Engage and interact: Make your data story interactive where possible. Allow your audience to 
explore the data for themselves, adjust the view, or filter the data. This makes your story more 
engaging and enables your audience to see the data from different perspectives.

•	 Practice, review, and refine: Like any form of communication, compelling data storytelling 
takes practice. Test your story on a trusted colleague or mentor. Ask for feedback and refine 
your story accordingly. Remember, the most effective data stories are not just accurate – they’re 
also compelling:

Figure 4.18: Scenario-based storytelling process

In summary, data storytelling is a powerful tool to enlighten your audience and drive action. But it’s 
more than just presenting data and insights – it’s about crafting a compelling narrative, choosing the 
right visuals, and letting your data speak for itself. As you grow in your data science career, remember 
that your ability to tell a compelling data story can be just as important as your technical skills.

Assessment

You’ve been asked to present an analysis of customer churn to the company’s leadership. Considering 
the audience’s high-level position and business-oriented mindset, how would you structure your 
presentation to ensure it is effective and engaging?
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Answer

Given the audience’s high-level position, it would be crucial to focus on the broader business implications 
of your analysis rather than on the technical details:

•	 Firstly, you’d want to clearly articulate the objective of your analysis (for example, to understand 
the reasons behind customer churn and propose strategies to reduce it) and ensure this aligns 
with the company’s strategic goals.

•	 Secondly, you should build a clear and coherent narrative that guides your audience through 
your key findings and their implications, using relatable language and analogies where possible.

•	 Visuals should be used to effectively highlight the most critical insights – for example, a bar 
chart showing churn rates by customer segment or a line graph illustrating churn rates over 
time. These visuals should be clean, uncluttered, and easy to understand, focusing on the most 
critical data.

•	 Lastly, where possible, make your presentation interactive, perhaps by using a tool that 
allows your audience to explore the data further if they wish. Conclude with clear, actionable 
recommendations based on your data.

Assessment

In data storytelling, why is it important to “let your data do the talking,” and how might you accomplish 
this when presenting your findings?

Answer

Letting your data do the talking means using data to provide evidence for your conclusions and to 
drive your narrative. It also means ensuring that your visualizations are accessible to a wide audience 
including non-technical personnel. In many cases, your visualization will be used by a wide variety of 
people from different backgrounds and role functionality. Thus, you must create visuals that require 
minimal explanation, that the intended insights from the plot are clear, and that you’ve considered 
accessibility (for example, colorblindness) in your development process. This approach ensures your 
story is grounded in facts, which lends credibility to your message and builds trust with your audience.

You can accomplish this by doing the following:

•	 Highlighting key data points and trends that support your message. This can be done 
visually, through graphs or charts, or narratively, by explicitly discussing these data points in 
your presentation.

•	 Keeping interpretations and conjectures to a minimum. While some interpretation of the data 
is usually necessary, it’s important not to stray too far into speculation. Let the data drive the 
story rather than trying to make the data fit a preconceived narrative.
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•	 Presenting raw numbers or statistics where appropriate. While visuals are often more engaging, 
sometimes, the most effective way to let your data speak is to present the numbers themselves, 
especially when those numbers are particularly impactful.

•	 Using direct quotes or anecdotes from qualitative data to emphasize or illustrate a point. This 
can make the data more relatable and personal, adding another dimension to your story.

Summary
In the first half of this chapter, we established the critical role of data visualization and storytelling in 
the field of data science. Beginning with an overview of why data visualization is crucial, we delved into 
a framework for choosing the right visualization based on data types and the goal of communication. 
We explored a variety of data visualization types, such as bar charts, pie charts, histograms, scatter 
plots, and box plots, discussing their use cases, creation processes, and tips for enhancing their 
storytelling power. Additionally, we analyzed various visualization tools, including Power BI, Tableau, 
R’s Shiny, Python’s Matplotlib, and Seaborn, providing insights into their advantages, limitations, and 
ideal use cases.

The latter part of this chapter focused on the practical aspects of data visualization and storytelling. 
We covered the best practices for creating effective dashboards, reports, and KPIs, emphasizing clean, 
uncluttered visuals, appropriate titles, readable axes, and interactivity. Hands-on implementation of 
different plots using Python’s Matplotlib and Seaborn was extensively discussed, with explanations 
and code examples for creating bar charts, scatter plots, and histogram plots.

The final section emphasized the crucial role of storytelling, providing a clear framework for structuring 
a compelling data story. Throughout, you were equipped with assessment questions to reinforce your 
understanding, preparing you for job interviews and practical applications in your early career as a 
data scientist.

In the next chapter, we will look at preparing for the SQL-based questions of the technical interview.





5
Querying Databases with SQL

In this chapter, you’ll learn the essential aspects of databases, starting with a broad overview, then 
diving deep into the fundamental language of SQL, exploring crucial concepts such as subqueries, 
JOIN, CASE WHEN, window functions, aggregations, and how to tackle complex queries.

Our goal is to provide you with the knowledge and tools necessary to tackle any database-related 
question in a technical interview effectively. This is crucial for those preparing for a technical interview 
because understanding databases is a foundational skill for data scientists; equipped with the knowledge 
shared in these chapters, you’ll be ready to face any database question confidently and proficiently.

So, in this chapter, we will cover the following topics:

•	 Introducing relational databases

•	 Mastering SQL basics

•	 Aggregating with GROUP BY and HAVING

•	 Creating fields with CASE WHEN

•	 Analyzing subqueries and CTEs

•	 Merging tables with joins

•	 Calculating window functions

•	 Approaching complex queries

Introducing relational databases
A database is a critical component in data-driven businesses and organizations, and data scientists 
need to understand its structure, functions, and underlying language. This section aims to introduce 
you to relational databases, focusing on the common language of SQL.
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A relational database (also known as a SQL database) is a type of database that organizes data into 
tables, where each table has rows and columns. Each table represents a specific entity type, such as 
Customers or Products. Much like DataFrames, each row represents a unique record (or records), and 
each column represents a field (or attribute) of the data. This relational model introduced a standard 
way to represent and query data independent of any specific application. You can see an example of 
a relational database in Figure 5.1:

Figure 5.1: Relational data model example – star schema

What makes relational databases so powerful is their ability to establish efficient and useful relationships 
between multiple datasets so that they can be joined to create unique views and insights while ensuring 
data integrity.

To fully understand how relational databases work, let’s examine some key concepts:

•	 Primary key: A primary key is a unique identifier for each record in a table. It serves as a means 
to uniquely identify and distinguish individual rows within a table by joining them to a like-
primary key (called a foreign key) in another table. We will discuss joins later in this chapter.

•	 Schema: Schemas are standard data model structures and logic used in SQL databases. There 
are a handful of standard schemas, but there are a few that you will see 99% of the time:

	� Star schema: This schema consists of fact tables representing business events and dimension 
tables representing various attributes related to the facts. The fact table resides in the logical 
center of the data model and is connected to one or more dimension table(s) through primary 
and foreign key relationships. Figure 5.1 demonstrates a star schema data model with one 
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fact table and two dimension tables. The fact tables are connected to the dimension tables 
by the Customer ID and Product SKU keys.

	� Snowflake schema: This schema is an extension of the star schema and is used to normalize 
dimension tables further. In a snowflake schema, dimension tables are divided into multiple 
levels, creating a more complex network of relationships. Figure 5.2 demonstrates the structure 
of a snowflake schema using the same data as Figure 5.1, with some added detail. Instead of 
one fact table and two dimension tables, the snowflake schema expands on the dimension 
tables by giving them related dimension tables:

Figure 5.2: Relational data model example – snowflake schema

SQL is an indispensable tool for data scientists – it is used to query and manipulate the data stored in 
the database, plus it allows you to retrieve specific data, group it, sort it, and join different tables, all 
of which are key tasks in data analysis.

Note
While undergoing an SQL or database interview, be sure to ask the interviewer to specify the 
version of SQL with which you will be tested. It may also be worth reviewing the preferred 
SQL version so that you are optimally prepared.
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Mastering SQL basics
As a data scientist, mastering the basics of SQL is crucial. Luckily for you, the basics are pretty easy to 
grasp, even for non-technical learners. This is because, at this stage, SQL generally reads like English 
sentences. To get you started, this section focuses on three fundamental components of SQL: the 
SELECT, WHERE, and ORDER BY statements.

The SELECT statement

The SELECT statement is the foundation of any SQL query and is used to retrieve data from a database. 
The general syntax is as follows:

SELECT column1, column2, ..., columnN
FROM table_name;

The syntax lists the different columns you want to return, separated by a comma. Since databases 
hold numerous tables, the query code specifies which table to select the columns using the FROM 
statement. Lastly, the semi-colon (;) is used to mark the end of a query.

Note
It is standard to create a new line of the query for each main clause (which is capitalized). 
Here, we started a new line once we began our FROM clause. Although this is not a hard rule, 
this structure is fairly standard, and it is advised that you follow it when needed to keep your 
code legible and organized.

Consider an example where we have a table named employees with the first_name, last_name, 
and salary columns. We can retrieve all the first names and last names with the following SQL query:

SELECT first_name, last_name
FROM employees;

It may get daunting listing columns, especially if you want to list more than a few. SQL provides a 
useful operator called the wildcard to return all the columns of a query’s output. To use the wildcard, 
we must use *, like so:

SELECT *
FROM employees;

If your dataset has duplicates and you only want to return distinct values, use DISTINCT with 
SELECT. This clause is also an excellent method to display unique values in a column. For example, 
the following query shows all distinct breeds of dogs in the given table:

SELECT DISTINCT breeds
FROM dogs;
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The WHERE clause

While the SELECT statement allows us to specify which columns we want to retrieve, the WHERE 
clause lets us define conditions to filter the rows being selected. The general syntax is as follows:

SELECT column1, column2, ..., columnN
FROM table_name
WHERE condition;

condition can involve various logical and comparison operators:

Figure 5.3: Common logical and comparison operators

The ORDER BY clause

Once we have selected the required data, we often want to order the results in a specific way. This is 
where the ORDER BY clause comes in – it sorts the result set by one or more columns. The general 
syntax is as follows:

SELECT column1, column2, ..., columnN
FROM table_name
ORDER BY column1 [ASC|DESC], column2 [ASC|DESC], ... columnN 
[ASC|DESC];
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The ORDER BY clause, by default, sorts the results in ascending order (ASC). If you want to sort the 
results in descending order, you can use the DESC keyword.

As you can see in the provided syntax, you can also order using multiple columns by separating 
the different columns with a comma. The first column will be ordered first, followed by the second 
column, and so on.

For example, to retrieve all employees and order them by salary in descending order and then age in 
descending order, the SQL query would be as follows:

SELECT *
FROM employees
ORDER BY salary DESC, age DESC;

Here is an example output for this query (given the employee_ID, first_name, last_name, 
salary, and age fields):

4 | Sophia | Davis | 6500 | 32
2 | Emily | Johnson | 6000 | 35
5 | Daniel | Jones | 6000 | 31
3 | Michael | Williams | 5500 | 28
1 | John | Smith | 5000 | 30

Notice that the data is ordered by salary first, then by age.

Assessment

Given a table named Products with ProductID, ProductName, Category, and Price 
columns, write a SQL statement to select all the products in the 'Electronics' category where 
the price is greater than 100. The results should be ordered by Price, in descending order.

Answer

Here’s the answer:

SELECT *
FROM Products
WHERE Category = 'Electronics' AND Price > 100
ORDER BY Price DESC;

The SELECT * statement selects all columns in the Products table. The WHERE clause filters 
products that are in the 'Electronics' category and have a price greater than 100. Then, the 
ORDER BY clause orders the output by Price in descending order (from highest to lowest).
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Assessment

Consider a table named Orders with OrderID, CustomerID, ProductID, and Quantity 
columns. Write a SQL statement to select ProductID values that have been ordered in a quantity 
greater than 5. The result should be ordered by ProductID in ascending order.

Answer

Here’s the answer:

SELECT ProductID
FROM Orders
WHERE Quantity > 5
ORDER BY ProductID ASC;

The SELECT statement selects the ProductID column from the Orders table. The WHERE clause 
filters orders where the Quantity ordered is greater than 5. Then, the ORDER BY clause orders the 
output by ProductID in ascending order.

Aggregating data with GROUP BY and HAVING
Aggregation is a concept with which you should already be familiar thanks to the discussion of Python 
using pandas in Chapter 3. Just like in Python, aggregation in SQL is about summarizing or grouping 
data in a way that makes it more useful, understandable, and manageable. GROUP BY and HAVING 
are two crucial components in SQL that help accomplish this.

The GROUP BY statement

Much like how grouping is performed in Python using pandas, the GROUP BY statement in SQL is 
used with aggregate functions (such as COUNT, SUM, AVG, MAX, and MIN) to group the result set by 
one or more columns. Thus, using GROUP BY should be familiar to you! The syntax is as follows:

SELECT column1, column2, columnN aggregate_function(columnX)
FROM table
GROUP BY columns(s);

Aggregate values are best managed by using aliases. An alias is simply a nickname for a calculated or 
aggregated field or temporary table. Simply use the term AS, like so:

SELECT column1, aggregate_function(column2)AS alias
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For example, let’s say we have a table called employees with the employee_id, first_name, 
last_name, salary, and department_id columns. If we want to find out the total salary paid 
out by each department, we could write the following:

SELECT department_id, SUM(salary) as total_salary
FROM employees
GROUP BY department_id;

This query will return a list of department IDs, along with the total salary for each department. We 
assigned the total_salary alias to the sum of salaries.

Note:
Technically, you do not have to use the AS keyword to create an alias. You can simply provide 
the alias name immediately, like so: SELECT column1, agg_function(column2) 
alias FROM table;

Single-valued grouping rule

There is a little rule when it comes to using GROUP BY that will save you from a frustrating mistake 
if followed. The single-valued grouping rule dictates that any field included in the SELECT clause 
that is not part of an aggregate function should either be included in the GROUP BY clause or be part 
of a unique constraint in the table. This ensures that each column in the SELECT clause represents a 
single value for each group defined by the GROUP BY clause. Here is an example:

SELECT DepartmentID, DepartmentManager, COUNT(EmployeeID) AS 
EmployeeCount
FROM Employees
GROUP BY DepartmentID, DepartmentName;

In this example, we must group by both DepartmentID and DepartmentManagers to return 
the number of employees for each unique combination of department ID and department manager.

Here is an example output:

DepartmentID DepartmentManagers EmployeeCount
1 Anya 8
1 Lola 12
2 Dustin 24
3 Cody 15

Figure 5.4: The single-valued grouping rule applied
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However, there are exceptions to this rule. In some cases, if a field in the SELECT clause is functionally 
dependent on a column that is already part of the GROUP BY clause, it does not need to be included 
explicitly. Consider this example, where we want to return the max order amount for each customer, 
and their corresponding order dates:

SELECT CustomerID, OrderDate, MAX(TotalAmount) AS MaxOrderAmount FROM 
Orders
GROUP BY CustomerID;

Here is an example output:

CustomerID OrderDate MaxOrderAmount
101 2023-01-02 100
102 2023-01-03 200
103 2023-01-03 200

Figure 5.5: Single-valued grouping not applied

This example does not follow the single-valued grouping rule because we want the max order amount 
for each CustomerID, but not for each unique order date. Thus, the MAX function will calculate the 
maximum total order amount for each unique customer, but not for each customer’s unique order 
date. The result is the max order amount for each unique customer and that order’s corresponding 
order date.

Note
Not all database systems handle this exception consistently, so it’s generally recommended to 
follow the single-valued grouping rule for portability and clarity.

The HAVING clause

The HAVING clause was added to SQL to filter the results of the GROUP BY clause since WHERE 
does not work with aggregated results. The syntax for the HAVING clause is as follows:

SELECT column1, aggregate_function(column2)
FROM table
GROUP BY column1
HAVING aggregated_condition;
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Suppose we want to find out which departments have a total salary payout greater than 50,000. We 
would enter the following code:

SELECT department_id, SUM(salary) as total_salary
FROM employees
GROUP BY department_id
HAVING SUM(salary) > 50000;

In this query, the HAVING clause filters out the groups (in this case, departments) for which the total 
salary is not greater than 50,000.

GROUP BY and HAVING are fundamental components of SQL, especially when working with 
large datasets.

Note
The HAVING clause is similar to the WHERE clause – so similar that novice SQL learners are 
confused regarding when to use one over the other. So, let’s make the distinction between the 
two now.

The WHERE clause is used in a SELECT statement to filter rows based on specified conditions 
before the data is grouped or aggregated. It operates on individual rows and filters them based 
on the given conditions.

The HAVING clause is used in combination with the GROUP BY clause in a SELECT statement 
to filter rows based on specified conditions after the data is grouped and aggregated. It operates 
on the result of the grouping operation and filters the aggregated data.

Assessment

Consider these two tables:

•	 Employees, with columns for EmployeeId, FirstName, LastName, and DepartmentId

•	 Departments, with columns for DepartmentId and DepartmentName

Write a SQL query to find out departments that have more than five employees with a salary greater 
than 65,000.

Answer

Here’s the answer:

SELECT d.DepartmentName
FROM Employees e
INNER JOIN Departments d ON e.DepartmentId = d.DepartmentId
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WHERE e.Salary > 65000
GROUP BY d.DepartmentName
HAVING COUNT(e.EmployeeId) > 5;

In this query, INNER JOIN is used to combine rows from Employees and Departments where 
DepartmentId matches in both tables. The WHERE clause filters employees with a salary greater 
than 65,000. The GROUP BY clause groups the remaining data by DepartmentName. The HAVING 
clause is then used to filter these groups to include only those with more than five employees.

Creating fields with CASE WHEN
The CASE WHEN statement is a straightforward technique for creating new fields using conditional 
logic. It allows you to specify multiple conditions and define actions or outcomes for each condition. 
The CASE WHEN statement is often used to transform data, create calculated columns, or perform 
conditional aggregations. The syntax of the CASE WHEN statement is as follows:

CASE WHEN
condition1 THEN result1
WHEN condition2 THEN result2
WHEN conditionN THEN resultN
ELSE else_result
END As alias;

Here is an example where we create a new field that will detail if a student passed or failed, based on 
their scores:

SELECT student_id, student_name, exam_score,
CASE WHEN exam_score >= 60 THEN 'Pass'
ELSE 'Fail'
END AS result
FROM students;

This query creates a new field called result, and populates it with "Pass" when the student 
scored at least 60 on their exa; otherwise, it populates it "Fail". The results are returned with the 
student’s name and ID.

Analyzing subqueries and CTEs
SQL subqueries, also known as nested queries or inner queries, are queries that are embedded within 
the context of another SQL query. They are powerful tools for performing complex data manipulations 
that require one or more intermediary steps – that is, they are used for performing data manipulation 
operations that require multiple steps or depend on the result of an intermediary query.
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That might sound complex and, indeed, subqueries can easily get very complicated. But once you know 
the rules of engagement, you’ll soon see that they’re very doable. Before implementing a subquery, 
ask yourself the following:

•	 Where am I starting?

•	 Where am I going?

If you can answer these two questions, you’ve won half the battle. The other half is determining what 
steps need to take place to get from point A (existing data) to point B (desired data). In this section, 
we will learn how to navigate multi-step queries with subqueries.

We’ll begin our journey by examining the different types of subqueries:

•	 SELECT subqueries: Where the subquery is located in the SELECT clause

•	 FROM subqueries: Where the subquery is located in the FROM clause

•	 WHERE subqueries: Where the subquery is located in the WHERE clause

•	 HAVING subqueries: Where the subquery is located in the HAVING clause

In the following subsections, we will review the use of subqueries in the SELECT, WHERE, FROM, 
and HAVING clauses.

Subqueries in the SELECT clause

Subqueries in the SELECT clause are the easiest to grasp because it feels similar to how we used 
SELECT in the past. Historically, we simply use SELECT to return a specific column or an aggregate 
of a column (for example, SUM). Selecting a subquery is useful when we want to return something 
that doesn’t currently exist, hence the need for at least one additional, intermediary step. Consider 
the following questions while building a query:

•	 Is the desired output selectable? (In other words, is it an existing field?)

•	 Is the desired output a single-step calculation (for example a SUM (column) or CASE WHEN 
use case)?

If the answer to both of the previous questions is no, it may be a job for a SELECT clause subquery!

Here’s how it works:

SELECT column1, column2, columnN,
(SELECT agg_function(column) FROM table WHERE condition)
FROM table

This code returns the specified columns. One of the specified columns is a subquery, which uses an 
aggregation function to summarize a column in the original table.
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Here is a more concrete example:

SELECT CustomerID, SUM(TotalAmount) AS TotalSales, (
SELECT COUNT(*)
FROM Orders
WHERE CustomerID = O.CustomerID AND TotalAmount > 1000) AS 
HighTotalAmountOrderCount
FROM Orders O
GROUP BY CustomerID;

In this example, we can see the following:

•	 The subquery within the SELECT clause calculates the count of orders where TotalAmount 
is greater than 1,000 for each customer:

	� This count is specific to each customer as it correlates with the outer query using the 
CustomerID column

	� The result of the subquery is aliased as HighTotalAmountOrderCount and displayed 
as a single column in the result set

•	 The outer query retrieves CustomerID and the aggregated sum of TotalAmount as 
TotalSales for each customer:

	� GROUP BY groups the results by CustomerID

Subqueries in the FROM clause

Subqueries in the FROM clause create a temporary table that can be used for the main query. This allows 
the programmer to simplify the process by breaking the problem into smaller, more manageable parts.

To master subqueries in the FROM clause, be sure to identify your current dataset and the desired 
output. From there, it’s a process of molding your current data into the desired data in steps. Here is 
an example:

SELECT employee, total_sales
FROM (SELECT first_name || ' ' || last_name as employee, SUM(sales) as 
total_sales
      FROM sales
      GROUP BY employee) as sales_summary
WHERE total_sales > 100000;
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In this example, the subquery creates a temporary table aliased as sales_summary, which does 
the following:

•	 Concatenates each employee’s first and last name (separated by a space). This concatenation is 
aliased as employee.

•	 Calculates the total sales for each employee.

•	 Groups the total_sales by employee.

So, even without knowledge of the sales table values, we know that the structure of the output will 
look something like this:

Figure 5.6: Intermediary results of the subquery

The outer query then selects employee and total_sales from the sales_summary temporary 
table. These results are filtered to all employees who made total sales greater than $100,000.

Subqueries in the WHERE clause

Subqueries in the WHERE clause are used to filter rows based on conditions detailed in a subquery. 
This method is useful when you don’t already have access to the condition on which you want to 
filter your query.

Consider our previous example, where we performed the following basic query:

SELECT *
FROM Table
WHERE Salary < '100000';

In this example, we filtered the results from our table to rows, where the Salary field is less than 
100000. This is a single scalar value, which is available to us via the hardcoded 100000 value. But 
what if the condition isn’t readily available? What if we needed to derive the condition since it doesn’t 
already exist, or perhaps this condition isn’t scalar? Perhaps the condition is dynamic? This is the 
power of subqueries in the WHERE clause.
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Note
In the context of subqueries, the inner query is the subquery, and the outer query is the query 
that’s querying the subquery. What a mouthful! Keep in mind that the innermost query is 
always evaluated first.

WHERE subqueries are most commonly used with scalar values or non-scalar values as the condition. 
In this context, a scalar value is the result of a subquery that yields one single value. Alternatively, a 
non-scalar value is a subquery that returns a 0 (False) or 1 (True) to return true values.

Tip
Always read SQL queries from the inside out by reading the innermost query first and working 
your way out.

Scalar example

Let’s take a look at a scalar example. Suppose that we have a table called employees with employee_
id, first_name, last_name, salary, and department_id columns. If we want to find all 
employees who earn more than the average salary, we can use a subquery:

SELECT first_name, last_name, salary
FROM employees
WHERE salary > (SELECT AVG(salary) FROM employees);

The subquery (SELECT AVG(salary) FROM employees) calculates the average salary of all 
employees, which is a scalar value. The outer query filters each row by the condition that it is greater 
than the average salary of all employees. The results are the first_name, last_name, and salary 
values of employees who earn more than this average salary:

Figure 5.7: Scalar WHERE subquery explained
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Note
Some novice learners may look at this example and wonder, “Why can’t I just use WHERE 
salary > AVG(salary)?” Indeed, that would be more straightforward, but unfortunately, 
SQL does not work this way. This is because aggregate functions such as AVG, MIN, and MAX 
cannot be used in a WHERE clause. Furthermore, we cannot use HAVING in this case either, 
because there is no grouping taking place – hence the need for the subquery.

Non-scalar example

Let’s look at a non-scalar example. Suppose that we are using the same dataset as before with the 
first_name, last_name, and salary fields. We want to return the first name, last name, and 
salary of employees whose first name begins with the letter 'J':

SELECT first_name, last_name, salary
FROM employees
WHERE salary > ANY (SELECT salary FROM employees WHERE first_name LIKE 
'J%');

Let’s evaluate this multi-step process:

•	 Step 1: Starting from the innermost query, we select salary from the employees table 
where the first name begins with the letter 'J'. If the row satisfies the subquery condition, it 
will evaluate True, which means that the row is returned in the results. If the row does not 
satisfy the condition, the row will be filtered out by the outer query’s WHERE clause. Unlike 
the scalar value example, this subquery returns multiple rows.

•	 Step 2: Once the interpreter determines which rows will be returned in the inner query, the 
outer query uses this as the new base dataset. The WHERE clause of the outer query filters the 
subquery to rows where the salary is greater than any row’s salary with an employee whose 
first name starts with 'J'. To accomplish this, the ANY operator identifies any salary from 
the subquery and filters the entire employees table to rows where the salary is greater than 
those from the subquery.

Subqueries in the HAVING clause

The HAVING clause is used to filter the results of a GROUP BY query based on conditions involving 
aggregate functions. The subquery is executed for each group and filters the groups based on the 
specified condition.
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Here are some situations where subqueries in the HAVING clause are useful:

•	 Filtering groups based on aggregates: Subqueries in the HAVING clause are particularly useful 
when you need to filter groups based on aggregate calculations. For example, you can use a 
subquery to identify groups where the average order amount exceeds a certain threshold or 
groups where the count of orders meets specific criteria.

•	 Applying conditional filters: Subqueries in the HAVING clause allow you to apply conditional 
filters to the grouped results. This is especially handy when you want to include or exclude 
groups based on certain conditions. For instance, you can use a subquery to filter groups with 
a maximum value above a specified threshold or groups where a specific condition is met.

•	 Comparing aggregates across groups: Subqueries in the HAVING clause can help compare 
aggregate values across different groups. You can use a subquery to calculate aggregate values 
within each group and then compare those values across groups to identify patterns or variances.

Here is an example:

SELECT CustomerID, AVG(TotalAmount) AS AverageTotalAmount
FROM Orders
GROUP BY CustomerID
HAVING AVG(TotalAmount) > (SELECT AVG(TotalAmount)
FROM Orders);

The subquery (SELECT AVG(TotalAmount) FROM Orders) is used within the HAVING 
clause to compare the average total amount for each customer with the overall average total amount. 
It helps filter the results based on the condition specified in the subquery.

Distinguishing common table expressions (CTEs) from subqueries

Many SQL students confuse CTEs with subqueries, so now is a great time to make the distinction 
between the two. CTEs are also temporary tables typically that are formulated at the beginning of a 
query and only exist during the execution of the query. This means that CTEs cannot be used in other 
queries beyond the one in which you are using the CTE.

While CTEs and subqueries are both used in similar circumstances (such as when you need to produce 
an intermediary result), there are a couple of factors that tip off CTEs:

•	 They are typically created at the beginning of a query using the WITH operator

•	 They are followed by a query that queries the CTE

Alternatively, subqueries are a query within a query, nested within one of a query’s clauses.
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Here is how CTEs are constructed:

WITH alias AS ( <Put query here>
)
…. <Query that queries the alias>

Here is a more concrete example of using a CTE:

WITH customer_totals AS (
SELECT CustomerID, SUM(TotalAmount) AS total_sales
FROM Orders
GROUP BY CustomerID )
SELECT c.CustomerID, c.total_sales, o.avg_order_amount
FROM customer_totals c
JOIN (
SELECT CustomerID, AVG(TotalAmount) AS avg_order_amount
FROM Orders GROUP BY CustomerID ) o
ON c.CustomerID = o.CustomerID;

Here’s what’s happening:

•	 The CTE is defined using the WITH keyword and given the name customer_totals. Inside 
the parentheses, the CTE consists of a simple SELECT statement that calculates the total sales 
for each customer by summing the TotalAmount column of the Orders table. The result 
is grouped by CustomerID and aliased as total_sales.

•	 The outer SELECT statement retrieves CustomerID and total_sales from the CTE, as 
well as the avg_order_amount subquery.

•	 The FROM clause of the main query references the customer_total CTE directly as the 
"c" source table.

•	 The subquery in the JOIN clause calculates the average order amount for each customer The 
result is grouped by CustomerID and aliased as avg_order_amount. The JOIN condition 
connects the main query with the subquery using the CustomerID key column.

•	 The final result set is returned, showing the customer ID, total sales, and average order amount 
for each customer.

Note
Like subqueries, CTE tables can also be used in other clauses beyond FROM, such as WHERE 
and SELECT.
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In conclusion, when you approach SQL problems that require filtering, ask yourself if the condition is 
something that can be hardcoded, or if it requires a calculation. Then, ask yourself if you are filtering 
to a single scalar value or multiple rows.

Assessment

Consider a table called Sales with the SaleId, ProductId, SaleDate, SaleAmount, and 
CustomerId columns. Write a SQL query to retrieve CustomerId and total SaleAmount (aliased 
as TotalSaleAmount) for customers who made at least one purchase with SaleAmount over 1,000. 
The results should be ordered by TotalSaleAmount (sum of SaleAmount) in descending order.

Answer

Here’s the answer:

SELECT CustomerId, SUM(SaleAmount) as TotalSaleAmount
FROM Sales
WHERE SaleId IN (
  SELECT SaleId
  FROM Sales
  WHERE SaleAmount > 1000)
GROUP BY CustomerId
ORDER BY TotalSaleAmount DESC;

The subquery in the WHERE clause filters SaleId values, where SaleAmount is greater than 1000. 
The main query then uses these SaleId values to filter the Sales table and get CustomerId and 
total SaleAmount for these sales. The GROUP BY clause groups the data by CustomerId, and 
the SUM function calculates the total SaleAmount. Finally, the ORDER BY clause sorts the result 
by TotalSaleAmount in descending order.

Assessment

Rewrite the previous answer using a CTE instead of a subquery.

Answer

Here’s the answer:

WITH filtered_sales AS (
SELECT SaleId FROM Sales WHERE SaleAmount > 1000 )
SELECT CustomerId, SUM(SaleAmount) AS TotalSaleAmount
FROM Sales WHERE SaleId IN (
SELECT SaleId FROM filtered_sales)
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GROUP BY CustomerId
ORDER BY TotalSaleAmount DESC;

Merging tables with joins
SQL joins are used to combine rows from two or more tables based on a related column between 
them, providing a complete view of the data. We previously hinted at these related columns as primary 
keys and foreign keys.

As a refresher, a primary key is a column (or a combination of columns) in a database table that uniquely 
identifies each row in that table. A foreign key, on the other hand, is a column or a combination of 
columns in a table that establishes a link or a relationship to the primary key of another table.

As we dive into SQL joins, we will put our knowledge of primary and foreign keys to work!

Note
When discussing SQL joins, we will mostly focus on joining two tables to simplify the concepts. 
Traditionally, two joined tables are referred to as the left table and the right table.

Inner joins

INNER JOIN selects records that have matching values in both tables. Figure 5.8 best demonstrates 
the logic of this join type:

Figure 5.8: Inner join logic

Table A represents the left table and Table B represents the right table. Both tables share a key (primary 
and foreign key respectively). When performing an inner join, the returned results are the rows that 
exist in both Table A and Table B.
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Let’s consider an example where we have two tables, Orders and Customers:

Figure 5.9: The Orders and Customer tables

We want to list customers from the customer table with their orders from the order table. However, 
we only want customers who have orders. This is a job for inner join! To begin, we can use the INNER 
JOIN and ON keywords to perform an inner join, like so:

SELECT Orders.OrderID, Customers.CustomerName
FROM Orders
INNER JOIN Customers ON Orders.CustomerID = Customers.CustomerID;

Let’s discuss some of this code:

•	 The first row of code selects the OrderID column from the Orders table and the CustomerID 
column from the Customers table. Since we are dealing with more than one table in this 
query, we preface every column name with its respective table name, separated by a dot (.).

•	 The second row designates that we are querying from the Orders table (see the following 
Note box for more).

•	 The last row is the meat of the joining process. We call INNER JOIN on the Customers table 
(this is because we specified the Orders table in the FROM clause – yes, you could have done 
this in reverse). All that’s left is describing which fields should be used to perform the inner join.

•	 We call ON on the Orders table’s CustomerID and set it equal to the Customer table’s 
CustomerID field:

Note
The ON keyword is used with all joins. It describes how to connect the two tables by identifying 
the primary key.
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Figure 5.10: Inner join logic

This query returns a list of order IDs, along with the name of the customer who made each order.

Note
As you’ll soon learn, joins syntax is often relative. What’s considered the left table and right 
table are completely up to you. Furthermore, the table specified in the FROM clause in the 
previous example could have been Customers instead of Orders – the results would have 
been the same since we are using an inner join. In either case, whichever table you don’t use in 
the FROM clause is the table you’ll start with in the INNER JOIN clause. Furthermore, you 
would have to update the following the ON operator. But beware – as you’ll see in other join 
types, the table in the FROM clause will matter.

Novice learners might look at the join syntax and get confused, but there is a pattern that can help 
you remember it: A, B, A, B, or B, A, B, A.

Let’s see how this applies to our most recent example with the Orders and Customers tables. 
Notice that the syntax in Figure 5.10 calls the Customers table in the INNER JOIN clause (which 
we’ll call Table A). Presuming that Orders is Table B, the rest of the code is easy to remember:

...ON TableB.Key = TableA.Key;

This can also be specified like so:

Customers ON Orders.Customer_ID = Customers.Customer_ID;
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Thus, you should note that either of the following two approaches are correct:

Figure 5.11: Same inner join with two different approaches

Left and right join

LEFT JOIN (also known as the LEFT OUTER join) selects all records from the left table and any 
matching records in the right table:

Figure 5.12: Left join logic

If no match is found between the tables, the returned row will show values from Table A, and NULL 
values from the right table.

RIGHT JOIN (also known as the RIGHT OUTER join) does just the opposite. It returns all of the 
records from the right table (Table B) and matches the records from the left table (Table A). Any 
examples where there is no match will result in NULL values from the left table.
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If you switched Table A to Table B and Table B to Table A and performed a right join, the results would 
be the same as if you never switched the tables and performed a left join. How is that for a mind twister?

Figure 5.13: Right join logic

Here is the syntax for using LEFT JOIN and RIGHT JOIN:

SELECT column_name(s)
FROM table1
LEFT JOIN table2
ON table1.column_name = table2.column_name;

SELECT column_name(s)
FROM table1
RIGHT JOIN table2
ON table1.column_name = table2.column_name;

Again, the ON clause defines how to join the two tables.

If we wanted to select all customers and any order information available, we would use LEFT JOIN, 
like this:

SELECT Customers.CustomerName, Orders.OrderID
FROM Customers
LEFT JOIN Orders ON Customers.CustomerID = Orders.CustomerID;

Suppose we wanted to select all orders and any customer information available; we would use RIGHT 
JOIN:

SELECT Orders.OrderID, Customers.CustomerName
FROM Customers
RIGHT JOIN Orders ON Customers.CustomerID = Orders.CustomerID;
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Note
You might be wondering why right joins exist in the first place since they can be achieved by 
switching the left and right table designations. The most relevant explanation to consider is 
query optimization and performance. For example, there are cases where optimizing the query 
performance can be influenced by the relative sizes of the left and right tables in a join operation.

Full outer join

FULL OUTER JOIN returns all the rows from both tables, regardless of whether there is a match 
or not. It combines the results of a left outer join and a right outer join. If a row from one table 
does not have a match in the other table, the result will contain NULL values for the columns of the 
non-matching table:

Figure 5.14: Full join logic

Let’s look at the syntax:

SELECT column_name(s)
FROM table1
FULL OUTER JOIN table2
ON table1.column_name = table2.column_name;

As an example, the following query will return the result set with the CustomerName and OrderID 
columns representing the joined data from the Customers and Orders tables. All rows from 
both tables are included in the result set, along with the relevant columns – that is, CustomerName 
and OrderID:

SELECT Customers.CustomerName, Orders.OrderID
FROM Customers
FULL OUTER JOIN Orders ON Customers.CustomerID = Orders.CustomerID;
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SQL joins are an essential feature of the SQL language, and understanding them is a must for any 
data scientist. Being proficient in joins not only helps you in data manipulation and querying tasks 
but also proves beneficial in technical interviews since understanding joins is a fundamental part of 
relational database management.

Multi-table joins

It’s common to run into situations where you need to join more than just two tables. Fortunately, the 
process is the same. You just need to remember what table you’re joining to what. Keeping track of 
this order will ensure you produce the desired results.

Let’s consider an example where we have three tables: Customers, Orders, and Products. The 
Customers table contains customer information, the Orders table stores order details, and the 
Products table contains product information. We want to retrieve the customer name, order date, 
and product name for each order.

Here’s an example SQL query to join these three tables:

SELECT c.CustomerName, o.OrderDate, p.ProductName
FROM Customers c
INNER JOIN Orders o ON c.CustomerID = o.CustomerID
INNER JOIN Products p ON o.ProductID = p.ProductID;

The JOIN clauses are arranged in the order needed to establish the desired connections between the 
tables. Note that the order in which you join these tables does not matter as the ultimate goal is to 
have all three tables joined. This is yet another perk when using inner joins. However, there are cases 
where the order in which you join the tables would matter. Regard the following example:

SELECT c.CustomerName, o.OrderDate, p.ProductName
FROM Customers c
INNER JOIN Orders o ON c.CustomerID = o.CustomerID
LEFT JOIN Products p ON o.ProductID = p.ProductID;

In this example, the Orders table is joined before the Products table, and we use LEFT JOIN 
between the Orders and Products tables. This ensures that all records from the Orders table 
are included in the result, regardless of whether there is a matching record in the Products table. 
The join condition connects the Orders and Products tables based on the ProductID column.

Assessment

Consider two these two tables:

•	 Orders, with columns for OrderId, CustomerId, and OrderDate

•	 Customers, with columns for CustomerId, FirstName, LastName, and Country
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Write a SQL query to retrieve all the orders, along with customer details. If a customer doesn’t have any 
orders, include those customers in the result. The result should contain the OrderId, OrderDate, 
CustomerId, FirstName, LastName, and Country columns.

Answer

Here’s the answer:

SELECT o.OrderId, o.OrderDate, c.CustomerId, c.FirstName, c.LastName, 
c.Country
FROM Customers c
LEFT JOIN Orders o ON c.CustomerId = o.CustomerId;

Here, we use LEFT JOIN to combine rows from Customers and Orders. This type of join 
returns all the rows from the Customers table (left table) and the matched rows from the Orders 
table (right table). If no match is found, NULL is returned for the columns of the Orders table. This 
ensures that even customers without orders are included in the result.

Calculating window functions
SQL window functions are an additional tool in your toolkit. Unlike aggregate functions, which return 
a single result per group of rows, window functions return a single result for each row, based on the 
context of that row within a window of related rows.

OVER, ORDER BY, PARTITION, and SET

Window functions have the following basic syntax:

<function> (<expression>)
OVER (
[PARTITION BY <expression_list>]
[ORDER BY <expression_list>] [ROWS|RANGE <frame specification>])

There are a few key concepts to understand here, so let’s break them down:

•	 The OVER keyword is what differentiates a window function from a regular function; once you 
see it, you know you’re in window function land. The OVER clause defines the window or subset 
of rows within a query result set that the window function operates on. In short, it provides a 
way to partition the result set into logical groups and allows the window function to perform 
calculations or aggregations over those groups. Regard Figure 5.15 for an illustrative example.

•	 Inside the OVER clause, you can use the PARTITION BY keyword to break the data into 
separate windows. It divides the result set into distinct partitions or groups based on one or 
more columns. The window function is then applied separately to each partition, allowing 
calculations or aggregations to be performed within each distinct group.
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Note:
PARTITION BY is an optional operator and is not needed to perform a window function. 
Only OVER is needed to initialize a window function. However, it is PARTITION BY that 
allows you to perform some operation over grouped categories, so it’s common to see it used 
with OVER. Without PARTITION BY, a query will consider the entire result set as a single 
partition. Lastly, ORDER BY is optional, but it is used to sort the data within those windows.

That seems like a lot, so let’s go over some examples. Suppose we have the following dataset:

Month | Year | State | Revenue -------------------------------------
January | 2022 | New York | 45000
February| 2022 | New York | 47000
March | 2022 | New York | 49000
January | 2022 | Texas | 52000
February| 2022 | Texas | 54000
March | 2022 | Texas | 55000
January | 2023 | New York | 50000
February| 2023 | New York | 52000
March | 2023 | New York | 54000
January | 2023 | Texas | 60000
February| 2023 | Texas | 61000
March | 2023 | Texas | 62000

Say that we wanted to group our results by state, and then within those state groupings, show the 
average revenue, ordered by year. OVER and PARTITION BY allows us to create windows of rows 
based on a field (in this case, State). We created these windows so that we could calculate the average 
revenue for those windows. ORDER BY simply allows us to organize the results in those windows. 
Let’s take a look at an example.

Here is the query:

SELECT Year, State, Revenue
AVG(Revenue) OVER (
PARTITION BY State ORDER BY Year)
AS AverageRevenue
FROM SalesTable;
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Let’s assume there are three states instead of two. Here are the hypothetical results:

Figure 5.15: Window functions demonstrated

Let’s review how this table is derived:

•	 The SELECT clause specifies the columns to be included in the result set: Year, State, 
Revenue, and the calculated AverageRevenue.

•	 The FROM clause specifies the SalesTable column from which the result set will be derived.

•	 The AVG function is used as a window function with the OVER clause to calculate the average 
revenue within each partition.

•	 The PARTITION BY clause is used to partition the data by the State column. This means 
that the data will be grouped and processed separately for each distinct state.

•	 The ORDER BY clause is used to order the rows within each partition by the Year column. 
This determines the sequence in which the window function is applied within each state group.

It is the combination of OVER, PARTITION BY, and ORDER BY that makes window functions so 
powerful. One common use of a window function is to calculate running totals. The SUM() function 
can be used as a window function to achieve this.
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Suppose we have a table called employees with the employee_id, first_name, last_name, 
salary, and department_id columns, and we want to calculate a running total of salaries within 
each department. We could use the following query:

SELECT employee_id, first_name, last_name, salary, department_id,
       SUM(salary) OVER (PARTITION BY department_id ORDER BY employee_
id) as running_total
FROM employees;

This query returns the running_total value of salary for each row, totaled (summed) over 
all rows with the same department_id and an employee_id value less than or equal to the 
current row.

Window functions shine when paired with SQL functions that are often calculated in windows. This 
includes LAG, LEAD, ROW_NUMBER, RANK, DENSE_RANK, and NTILE.

LAG and LEAD

LAG is an analytic function in SQL that provides access to a previous row within a result set. It allows 
us to retrieve the value of a column from the preceding row, enabling us to compare and compute 
values based on the previous row’s data. The syntax is as follows:

LAG(column, offset, default) OVER (PARTITION BY partition_clause ORDER 
BY order_clause)

Let’s review what all this stuff means:

•	 column is the column from which we want to retrieve the previous row’s value.

•	 offset specifies the number of rows to look back. It is an optional parameter, with a default 
value of 1.

•	 default is an optional parameter that sets a default value to return if no previous row is found.

•	 PARTITION BY divides the result set into partitions or groups based on specified columns.

•	 ORDER BY determines the order of rows within each partition.

Let’s consider a table called "sales" with the order_id, order_date, and revenue columns. 
Say we want to retrieve the previous order’s revenue for each order; we would do something like this:

SELECT order_id, order_date, revenue,
LAG(revenue) OVER (ORDER BY order_date) AS previous_revenue
FROM sales;

This query retrieves order_id, order_date, and revenue, and the previous order’s revenue 
using LAG(). The result set will include the columns from the sales table, along with an additional 
column named previous_revenue containing the revenue from the preceding order.
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LEAD is another analytic function in SQL that provides access to a subsequent row within a result 
set. It allows us to retrieve the value of a column from the following row, enabling us to perform 
calculations and comparisons based on the subsequent row’s data. LEAD and LAG share the same 
syntax, with the only difference being the function name itself (LEAD or LAG).

Let’s continue with our "sales" table example. Suppose we want to calculate the difference in 
revenue between consecutive orders:

SELECT order_id, order_date, revenue,
LEAD(revenue) OVER (ORDER BY order_date) - revenue AS revenue_
difference
FROM sales;

This query retrieves order_id, order_date, and revenue, and calculates the revenue difference 
between consecutive orders. The result set will include the columns from the sales table along with an 
additional column named revenue_difference representing the difference in revenue.

Assessment

Consider a table called employees with the employee_id, employee_name, and hire_date 
columns. Retrieve the previous hire date for each employee, ordered by hire_date.

Answer

Here’s the answer:

SELECT employee_id, employee_name, hire_date,
LAG(hire_date) OVER (ORDER BY hire_date) AS previous_hire_date FROM 
employees

The LAG function with the ORDER BY clause retrieves the value from the previous row within the 
result set based on the specified column (hire_date). By ordering the rows by hire_date, we 
ensure that LAG looks back at the hire date of the preceding employee for each row. The result is a 
dataset that includes the employee details, along with the hire date of the employee’s predecessor.

Assessment

Consider a table called orders with the order_id, order_date, and revenue columns. 
Calculate the revenue difference between consecutive orders, ordered by order_date.
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Answer

Here’s the answer:

SELECT order_id, order_date, revenue,
LEAD(revenue) OVER (ORDER BY order_date) - revenue AS revenue_
difference
FROM orders;

The LEAD function with the ORDER BY clause retrieves the value from the next row within the 
result set based on the specified column (order_date). By ordering the rows by order_date, 
we ensure that the LEAD function looks ahead at the revenue of the subsequent order for each row. 
Subtracting the current order’s revenue from the subsequent order’s revenue gives us the revenue 
difference. The result is a dataset that includes the order details, along with the revenue difference 
between consecutive orders.

ROW_NUMBER

ROW_NUMBER is an analytic function in SQL that assigns a unique number to each row within a 
result set. It generates a sequential integer starting from 1 for the first row and increments by one for 
each subsequent row. This function is very useful for exercises such as ranking, detecting duplicates, 
or pagination. Here is the syntax:

ROW_NUMBER() OVER (
PARTITION BY partition_clause ORDER BY order_clause)

Let’s consider a table called students with the student_id, student_name, and exam_
score columns. We want to assign a unique row number to each student based on their exam score, 
ordering them in descending order. We would do this like so:

SELECT student_id, student_name, exam_score,
ROW_NUMBER() OVER (ORDER BY exam_score DESC) AS row_number FROM 
students;

This query retrieves student_id, student_name, and exam_score, and assigns a unique row 
number to each student using ROW_NUMBER. The result set will include the columns from the students 
table, along with an additional column named row_number containing the sequential numbers.

RANK and DENSE_RANK

RANK is an analytic function in SQL that assigns a unique rank to each row within a result set based 
on the specified criteria. It allows us to determine the ranking position of a row in comparison to 
others, considering ties and skipping ranks if necessary.
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Similarly, DENSE_RANK is another analytic function in SQL that assigns a unique rank to each row 
within a result set based on the specified criteria. Unlike RANK, it does not skip ranks when there are 
ties. Instead, it assigns consecutive ranks to tied rows.

Here is the syntax for both:

[RANK() or DENSE_RANK()] OVER (PARTITION BY partition_clause ORDER BY 
order_clause)

Let’s consider a table called students with the student_id, student_name, and exam_score 
columns. We want to rank the students based on their exam scores, ordering them in descending 
order with the highest scorers on top. Here’s an example query using RANK:

SELECT student_id, student_name, exam_score,
RANK() OVER (
ORDER BY exam_score DESC) AS rank FROM students;

This query retrieves student_id, student_name, and exam_score, and assigns a unique rank 
to each student based on their exam score. The scores are presented in descending order.

However, if we replace RANK with DENSE_RANK, the results will be different if there are ties. RANK 
leaves gaps in the ranking sequence when there are ties, while DENSE_RANK assigns consecutive 
ranks to tied rows without any gaps.

For example, say that two of the students received a score of 98, and this is the top score in the data. 
Using DENSE_RANK, they will both be assigned a rank of 1, and the next highest scorer(s) will 
receive a rank of 2. Using RANK, the two students with the score of 98 will still receive a rank of 1 but 
the second-highest scorer will be given a rank of 3. This is because RANK skips ranks if there are ties.

Here is an example of using DENSE_RANK:

Figure 5.16: DENSE_RANK output
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Here is an example of using RANK:

Figure 5.17: RANK output

Notice that Michael’s rank is higher (2 instead of 3) while using DENSE_RANK. In short, if you’re 
taking a class that’s making you feel a little dense, you’d probably prefer your teacher to rank you using 
the DENSE_RANK method!

Assessment

Given a table called Sales with the SaleId, ProductId, SaleDate, SaleAmount, and 
EmployeeId columns, write a SQL query to find the total sales for each EmployeeId, along with 
the rank value of each employee in terms of total sales. The rank should be in descending order of 
total sales, with the employee having the highest total sales ranked first.

Answer

Here’s the answer:

SELECT EmployeeId, SUM(SaleAmount) OVER (PARTITION BY EmployeeId) AS 
TotalSales,
       RANK() OVER (ORDER BY SUM(SaleAmount) OVER (PARTITION BY 
EmployeeId) DESC) AS SalesRank
FROM Sales;

This query introduces two window functions:

•	 SUM(SaleAmount) OVER (PARTITION BY EmployeeId) calculates the total sales 
for each employee

•	 RANK() OVER (ORDER BY SUM(SaleAmount) OVER (PARTITION BY 
EmployeeId) DESC) assigns a rank to each employee, based on their total sales, in 
descending order.



Approaching complex queries 155

Using date functions

Date functions in SQL are used for manipulating date data types, and they are essential for performing 
operations such as calculating differences between dates, extracting date parts, and formatting dates. 
While specific functions may vary slightly between different SQL databases, most databases support 
a core set of date functions.

Let’s review several of the most common functions:

•	 NOW: The NOW function returns the current date and time:

SELECT NOW() AS 'Current Date and Time';

•	 CURDATE: The CURDATE function returns the current date:

SELECT CURDATE() AS 'Current Date';

•	 DATE_ADD: The DATE_ADD function is used to add or subtract date parts. The parameters 
of this function include a date value, an INTERVAL value, and an interval size. For example, if 
you are looking to add 2 days to each row for the date column, you would write the DAY date 
value. This is followed by INTERVAL and an interval value, which is 2 in this case. However, if 
you use a negative value for the interval, it will subtract from the date. If you want to calculate 
the date 30 days from now, use DATE_ADD:

SELECT DATE_ADD(date_column, INTERVAL 2 DAY) AS '2 Days Later';

DATEDIFF: DATEDIFF calculates the difference between two dates. Suppose we have a table 
called orders with the order_id, product_id, and order_date columns and we want 
to calculate how long it’s been since each order was placed. We would do this:

SELECT DATEDIFF(NOW(), order_date) AS 'Days Since Order'
FROM orders;

SQL date functions are a crucial part of performing complex date manipulations and calculations.

Approaching complex queries
Writing complex SQL queries can be a challenging task, especially when dealing with multiple 
tables, complex filtering conditions, and intricate calculations. However, by following a step-by-step 
approach, you can break down the problem into smaller, manageable parts and gradually build up 
to the final query.
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Here are some systematic guidelines on how to approach complex queries:

•	 Step 1 – define the objective: Begin by clearly defining the objective of your query. What specific 
information are you trying to retrieve or calculate? What is the desired output?

•	 Step 2 – identify the tables: Determine which tables contain the necessary data for your 
objective and identify their respective keys. This helps us identify our starting point. If multiple 
tables are involved, consider the relationships between them and how they should be joined. 
Determine the key(s) in each table.

•	 Step 3 – determine the filtering criteria: Identify the filtering criteria needed to narrow down 
the dataset. Determine which conditions should be applied to limit the rows returned. Consider 
both the explicit conditions (such as WHERE clauses) and any implicit conditions that may be 
required. Which table is being filtered? Is it the inner or outer query?

•	 Step 4 – start with simple joins: If your query involves multiple tables, start by performing 
simple joins between the relevant tables. Determine which table will be on the left, and how 
it will be joined with other tables. Begin with the primary relationship and gradually add 
additional join conditions as needed.

•	 Step 5 – incorporate aggregates: If your query requires aggregating data, determine the 
appropriate aggregate function(s). Consider if any grouping or partitioning is necessary to 
aggregate data at the desired level. For each aggregate, be sure to consider what level your 
aggregations should take place. Is it over the entire dataset? Is it by grouping? Is it over specific 
window segments? If grouped, consider the single-valued grouping rule.

•	 Step 6 – evaluate subqueries and CTEs: If the complexity of your query demands it, consider 
incorporating subqueries or CTEs to handle calculations, temporary views, or filter results. 
Review the granularity needs of each aggregate function for opportunities to use subqueries.

•	 Step 7 – review: Return to Step 1 to confirm that you have achieved the objective.

By following this step-by-step approach, you can tackle complex SQL queries more effectively. Although 
there is room to adjust the order of these steps, it is recommended to stick as closely to this framework 
as possible, and do not be afraid to walk through these steps out loud!

Assessment

You are working with a database that contains three tables. The interviewer has asked you to retrieve the 
total order amount for each customer, along with the product details of their most expensive order. Your 
output should be CustomerID, CustomerName, MaxOrderAmount, and TotalOrderAmount. 
Here are the table’s contents:

•	 Customers: CustomerID, CustomerName, CustomerAddress, and CustomerEmail

•	 Orders: OrderID, CustomerID, OrderDate, and OrderAmount

•	 Products: ProductID, ProductName, ProductPrice, and ProductCategory
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Process and answer

Here’s the process:

1.	 Define the objective: Our objective is to retrieve the total order amount for each customer and 
include the product details of their most expensive order. Based on the instruction, we need 
to return CustomerID, CustomerName, and ProductName, as well as the calculated 
fields, TotalOrderAmount and MaxOrderAmount. Although we don’t know where all of 
this information is coming from at this point, you can include it in the query as we know this 
is where we want to be at the end of the query development. Be sure to name any calculated 
fields exactly as instructed.

Here is the query thus far:
SELECT CustomerID, CustomerName, SUM(OrderAmount) AS 
TotalOrderAmount, ProductName, ... AS MaxOrderAmount ...

We will calculate MaxOrderAmount later. While TotalOrderAmount is an aggregate we 
need for all unique customers, MaxOrderAmount is needed for only the most expensive orders.

2.	 Identify the tables: Order information will come from the Orders table. Customer information 
will come from the Customers table. Product details will come from the Products table.

3.	 Determine the filtering criteria: We don’t have any specific filtering criteria for this objective. 
We want to retrieve information for all customers.

4.	 Start with simple joins: Based on our objective, we need total order information from the 
Orders table. Since this is for each customer, we will want all customers from the Customers 
table. This constitutes an inner join with the Customers table and the Orders table. Their 
shared key is the CustomerID field. Since we are dealing with more than one table, we will 
need to provide table aliases before every field name, separated by a dot.

Now, let’s review the query again:
SELECT c.CustomerID, c.CustomerName, SUM(o.OrderAmount) AS 
TotalOrderAmount, ProductName, ... AS MaxOrderAmount
FROM Customers c
INNER JOIN Orders o ON c.CustomerID = o.CustomerID;

Since we will also need product details, we will join the Products table to our already joined 
Customers and Orders table. Using an inner join yet again confirms that all products 
with a customer and order will be returned. The Customers table does not share an ID with 
Products, but it does with Orders, so we will use it: ProductID.

Let’s see the query with this new information:
SELECT c.CustomerID, c.CustomerName, SUM(o.OrderAmount) AS 
TotalOrderAmount, p.ProductName, ... AS MaxOrderAmount
FROM Customers c
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INNER JOIN Orders o ON c.CustomerID = o.CustomerID
INNER JOIN Products p ON o.ProductID = p.ProductID;

5.	 Incorporate aggregates: We’ve already used SUM  on OrderAmount  to derive 
TotalOrderAmount. Since this value should aggregate for each customer, we need to use 
GROUP BY on CustomerID and CustomerName. We will also need TotalOrderAmount 
for each product since we want product details for the product with MaxOrderAmount.

Let’s review the updated query at this point:
SELECT c.CustomerID, c.CustomerName, SUM(o.OrderAmount) AS 
TotalOrderAmount, p.ProductName, ... AS MaxOrderAmount
FROM Customers c
INNER JOIN Orders o ON c.CustomerID = o.CustomerID
INNER JOIN Products p ON o.ProductID = p.ProductID;
GROUP BY c.CustomerID, c.CustomerName, p.ProductName;

We can now include the product details of each customer’s most expensive order, so we’ll 
incorporate a subquery.

6.	 Evaluate subqueries and CTEs: Lastly, we need to calculate MaxOrderAmount. If you think 
the answer is just calling MAX(o.OrderAmount) AS MaxOrderAmount in the SELECT 
clause, think again! We must be mindful of granularity. Using MAX on OrderAmount would 
provide the maximum OrderAmount value for each unique combination of CustomerID, 
CustomerName, and ProductName, but this isn’t our objective – our objective is to return 
the maximum order amount that is equal to the maximum order amount among all orders. As 
this is a filtering task, we will use the WHERE clause. This sounds like a filtering exercise. (Note: 
this step could have been achieved in Step 3, but for demonstration purposes, we will do it here.) 
We include the WHERE CustomerID = c.CustomerID condition in the subquery to 
ensure that the subquery correlates with the outer query by matching the CustomerID values.

We are now ready to implement the subquery, like so:
SELECT c.CustomerID, c.CustomerName, SUM(o.OrderAmount) AS 
TotalOrderAmount, p.ProductName, o.OrderAmount AS MaxOrderAmount
FROM Customers c
INNER JOIN Orders o ON c.CustomerID = o.CustomerID
INNER JOIN Products p ON o.ProductID = p.ProductID
WHERE o.OrderAmount = (
SELECT MAX(OrderAmount)
FROM Orders
WHERE CustomerID = c.CustomerID)
GROUP BY c.CustomerID, c.CustomerName, p.ProductName;

7.	 Review: Review your query to ensure that you’ve achieved all of the necessary objectives!
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Note that we could have achieved the same results using a CTE instead of the subquery to calculate 
the max order amount for each customer. We would just need to join it onto our table and filter to 
where the order amount is equal to the max amount. This is what we would do instead:

WITH MaxOrderAmounts AS (
SELECT CustomerID, MAX(OrderAmount) AS MaxOrderAmount
FROM Orders
GROUP BY CustomerID )
SELECT c.CustomerID, c.CustomerName, SUM(o.OrderAmount) AS 
TotalOrderAmount, p.ProductName, o.OrderAmount AS MaxOrderAmount
FROM Customers c
INNER JOIN Orders o ON c.CustomerID = o.CustomerID
INNER JOIN Products p ON o.ProductID = p.ProductID
INNER JOIN MaxOrderAmounts moa ON c.CustomerID = moa.CustomerID
WHERE o.OrderAmount = moa.MaxOrderAmount
GROUP BY c.CustomerID, c.CustomerName, p.ProductName, o.OrderAmount;

As you can see, breaking down the problem into smaller steps and gradually building up the query will 
help you approach complex scenarios with greater confidence and produce accurate results. Remember 
to practice and experiment with different techniques to further enhance your SQL query writing skills.

Summary
In this chapter, we learned the basics of databases and SQL, which are topics that many data scientists 
encounter in interviews. In fact, as a data scientist, you will almost certainly be quizzed on this topic 
during interviews. We touched on basic querying concepts, subqueries, joins, window functions, 
evaluation order, aggregation, filtration, and how to approach complex problems. However, SQL is 
yet another topic that commands an entire book on its own.

Rest assured that in most cases, there is more than one way to solve a problem, but there are often 
limited optimal ways to do so. Thus, be sure to spend adequate time practicing the concepts discussed 
in this chapter. Try not to memorize queries; instead, familiarize yourself with the common use cases 
explained in this chapter. Follow the aforementioned steps to break down complex problems, but be 
aware that the order of these steps is not set in stone. Once mastered, you will be able to identify the 
right query for any occasion!

In the next chapter, we will look at shell and bash scripting with Linux.





6
Scripting with Shell and Bash 

Commands in Linux

In this brief chapter, we’ll delve into shell and Bash scripting with Linux, covering basic navigation 
control statements, functions, data processing and pipelines, and database operations. Additionally, 
you’ll learn how to leverage the cron command for task scheduling and, importantly, how to run 
Python programs from the command line.

Although the likelihood of being tested on Linux commands during a data science interview is rare, 
you’ll be better prepared to utilize data science-adjacent technologies that leverage the command line. 
In this chapter, we will cover the following topics:

•	 Introduction to operating systems

•	 Navigating system directories

•	 Filing and directory manipulation

•	 Scripting with Bash

•	 Introducing control statements

•	 Creating functions

•	 Processing data and pipelines

•	 Using cron

Introducing operating systems
An operating system (OS) is a software program that acts as an intermediary between computer 
hardware and user applications. You’re probably familiar with Windows, Android, and iOS, which 
are all different types of operating systems with their own unique features and applications.
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Linux is an open source OS known for its Unix-like architecture, allowing users to configure and 
modify the system according to their specific needs.  Like other Unix-based systems, it arranges 
files and directories in a hierarchical structure. The root directory is at the very top of this hierarchy, 
denoted by a forward slash (/).

The root directory is the top-level directory in an OS filesystem’s tree-like hierarchy and is the starting 
point for all other directories and files. For example, if you see a file path such as /home/user/
file.txt, the leading forward slash indicates that it is referencing a location relative to the root 
directory. That location is a file called file.txt in the user directory, under the home directory, 
under the root directory.

In addition to /home, there are other directories within the root directory, such as /home, /usr, and 
/etc, each serving a specific purpose. Learning how to navigate these files in the command line will 
put you ahead of the curve when it comes to expediting workflows and navigating other technologies.

The command-line interface (CLI) or shell is a text-based interface in Linux that allows users to 
interact with the computer by entering commands. In the rest of this chapter, we will learn how to 
navigate the Linux OS and its directories using Bash scripting and shell commands in the CLI!

Navigating system directories
One of the foundational aspects of working in a Linux environment is the ability to navigate the file 
structure and directories from the command line.

If you’re familiar with a filesystem on any computer, you’re already familiar with this concept. For 
example, a Windows OS might have a directory (folder) called Desktop, Pictures, Downloads, 
or Documents. These are all directories. Figure 6.1 shows an example directory called Physics, 
which has three text files and a directory called Assignments.

Figure 6.1: Example directory titled Physics
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A directory is a folder, virtual box, container, or organizational structure used to hold and organize 
files and other directories. Figure 6.1 illustrates the UI program that allows everyday Windows users to 
navigate their filesystems. However, the CLI, shown in Figure 6.2, enables us to navigate and automate 
file management using commands.

Figure 6.2: Windows CLI example

Introducing basic command-line prompts

To begin learning how to use the CLI, let’s take a look at some basic examples. These are commands 
that you will use throughout your file exploration journey:

•	 pwd (print working directory): This command prints the full pathname of the current working 
directory to the terminal (for example, /home/user/). If you ever get lost in the terminal, 
pwd is your compass.

•	 ls (lists): This command lists all files and directories in the current working directory.

•	 cd <directory_name>: This changes the current working directory to directory_name 
if it exists in the current directory.

•	 cd ..: This command navigates up one directory level (note that .. is a separate command 
on its own, so be sure to distinguish it by leaving a space between cd and ..).

•	 cd: Without any argument, this command will take you back to your home directory.

•	 cd -: This command will take you to the previous directory you were in.
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Figure 6.3 demonstrates how to use these commands using JSLinux, a Linux OS emulator:

Figure 6.3: Basic Linux commands in action

Note that the ls –l command may use the –l flag. In Linux, flags are command modifiers, used to 
modify the behavior of command-line utilities. They provide additional instructions or settings to a 
command, allowing users to customize how a command operates, and are typically represented by a 
hyphen (-) followed by a single character or a word. Here, the –l flag modifies the output of ls to 
print more comprehensive details and the format of the directory contents.

Understanding directory types

 In Linux, there are two methods for accessing directory paths:

•	 Absolute paths: Absolute paths specify the location of a file or a directory from the root directory. 
They always start with a forward slash – for example, /home/user/data/file.txt.

•	 Relative paths: Relative paths specify the location of a file or a directory relative to the current 
directory. For example, if your current directory is /home/user/data/, and you want to 
navigate to the /home/user/data/project1/ directory, you could use the following:

cd project1

The project1 directory will be interpreted as a relative path to the current working path.
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Understanding how to use both path types can help you navigate the filesystem more efficiently. Also, 
to expedite navigation and using paths, you can leverage the auto-completion feature by hitting the 
Tab key after typing a few characters.

Now that you’re familiar with basic navigation, here are some advanced techniques:

•	 pushd directory_name and popd: These commands allow you to work with a stack 
of directories. pushd adds a directory to the stack and navigates to it. popd removes the top 
directory from the stack and navigates to it. This can be very useful when you’re working with 
multiple directories and need to switch between them frequently.

•	 find: This is a powerful command to search for files or directories based on criteria such as 
name, size, and modification time. For instance, find /home/user -name "file.txt" 
will search for a file named "file.txt" in the /home/user directory and its subdirectories.

You often deal with numerous files and complex directory structures as a data scientist. Command-line 
navigation, thus, is a vital skill to master. It serves as a stepping stone to more advanced topics such as 
file and directory manipulation, Bash scripting, cron jobs, and using Python from the command line.

Assessment

Consider that you are currently in the /home/user/project/dataset1/ directory and 
you want to change to the /home/user/project/dataset2/ directory. Using only a single 
command that includes a relative path, how would you achieve this?

Answer

cd ../dataset2/

This command navigates up one level to the project directory using ../, and then into the 
dataset2 directory. The ../ part is a special directory name, meaning the parent of the current 
directory, so it always refers to the directory above. The concept of relative path is used here, where 
the path provided is relative to the current directory.

Assessment

A data scientist is working on a Linux machine. They are in the middle of a complicated data processing 
task and have navigated to multiple different directories. Now, they want to confirm their current 
directory within the filesystem. Which command should they use?

Answer

pwd
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The pwd (print working directory) command is used to display the full pathname of the current 
directory. It is a built-in command in Unix/Linux shells that prints the full pathname to the terminal, 
which helps users to confirm their current location within the filesystem’s hierarchy.

Filing and directory manipulation
Managing files and directories is a fundamental skill when working in a Unix-based environment. As 
a data scientist, you’ll frequently need to create, delete, move, and copy files and directories. Knowing 
how to use these commands in your daily activities may become a core skill, depending on the systems 
you are using. However, in a technical interview, these topics might occasionally come up. Therefore, 
we will only quickly review a few core operations here.

The following list will explain these operations and discuss how to manipulate file and directory contents:

•	 Creating files: To create a new file, use the touch command followed by the name of the file 
you want to create. For instance, to create a file named analysis.py, you would use the 
following command:

touch analysis.py

•	 Creating directories: To create a new directory, use the mkdir command. For example, to 
create a directory named new_data, use the following:

mkdir new_data

•	 Removing files: To remove a file, use the rm command. Remember to use this command carefully 
though, as deleted files cannot be recovered. So, the following example will permanently delete 
the analysis.py file:

rm analysis.py

•	 Removing directory: To remove a directory, use rmdir, like so:

rmdir new_data

Keep in mind that rmdir can only remove an empty directory. To delete a directory and its 
contents, use the rm command with the -r (recursive) flag:

rm -r old_data
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Here is an example of these commands in action:

Figure 6.4: Creating and removing files and directories

•	 Moving and renaming files and directories: The mv command serves two purposes:

	� Moving and renaming files

	� Moving and renaming directories

Here is the syntax:
mv /path/to/source /path/to/destination

For example, to rename a file, use this:
mv oldname.txt newname.txt
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Here is an example of us moving a file called experiment1.py from the myfolder 
directory to the experiments directory, located one directory above.

Figure 6.5: Moving files between directories

•	 Searching within a file for a specific pattern: The grep command searches the file for a 
specific pattern and prints the matching lines. It’s an invaluable tool for searching through 
large amounts of data. For example, the following command will print out every line in data.
csv that includes the string 'San Francisco':

grep 'San Francisco' data.csv

This function also accepts the recursive flag (-r), which will allow you to search recursively 
through a directory. If we modify our previous example, we are now able to search for San 
Francisco in each file in the data directory:

grep -r 'San Francisco' /home/user/data

As a data scientist, you may use the command line to navigate and manage Python scripts for your 
machine learning projects or to create data pipelines. These skills will undoubtedly come in handy.

Assessment

You’re in a directory that contains a large number of files. You’re interested in finding all files that 
contain the word ERROR in their content. Which command would you use?
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Answer

grep -r 'ERROR' .

The grep command is used to search for a specific pattern in file contents. The -r option tells grep 
to read all files under each directory, recursively. The . symbol represents the current directory. 
Therefore, grep -r 'ERROR' . will search for the string ERROR in all files in the current directory 
and its subdirectories.

Scripting with Bash
Bash (Bourne Again SHell) is one specific shell implementation that has gained widespread popularity 
and is the default shell for many Linux distributions. Bash scripts can automate repetitive tasks, handle 
file and text manipulation, control job scheduling, and much more.

Note
While Bash is a specific shell, the term “shell” is more generic and encompasses other 
shell implementations.

A Bash script is a plain text file that contains a series of commands. These scripts can be used to 
automate entire workflows and complex processes that you’d otherwise have to perform command 
by command on the command line.

To create a Bash script, use a text editor to write your script, save it with any name, and give it the 
.sh extension. For example, you might name your script, script.sh. You can also use Vim like so:

Figure 6.6: Creating a Bash script

In Figure 6.6, we are creating a Bash script using vi, and then providing the filename run_pipeline.
py. Once you hit Enter, you must hit the i key on the keyboard to begin editing the file. If you don’t, 
you will not be able to edit it.

Note
For more information on using the vi Unix-based text editor, check out https://www.
redhat.com/sysadmin/get-started-vi-editor, which goes deeper into this topic.

The first line of every Bash script should be #!/bin/bash (also known as a shebang) – this line 
tells the system that this is a Bash script and should be executed with the Bash shell.

https://www.redhat.com/sysadmin/get-started-vi-editor
https://www.redhat.com/sysadmin/get-started-vi-editor
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Here’s a simple Bash script:

#!/bin/bash

# This is a comment
echo "Hello, world!"

This script will simply print the string "Hello, world!" when it’s run.

Once you’re finished editing the text file, hit Esc, and type :wq to save and exit the editor. Then, hit 
Enter. You will be back to your most recent directory. To run a Bash script, use the bash command 
followed by the script name:

bash script.sh

Alternatively, you can make the script itself directly executable with the chmod command:

chmod +x script.sh

Then, you can run the script like this:

./script.sh

You can also use variables in your Bash scripts. Variables are declared using the $ symbol. It is 
important to not include space around the equal sign when assigning a variable to avoid errors. Here 
is a simple example:

#!/bin/bash

greeting="Hello, world!"
echo $greeting

In this script, greeting is a variable that stores the string "Hello, world!". The $ symbol is 
used to access the value of the variable.

Assessment

You have created a Bash script called script.sh in your current directory. However, when you try 
to run the script using ./script.sh, the terminal returns an error: "Permission denied". 
What command can you use to resolve this issue and why?

Answer

chmod +x script.sh
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This issue arises because the script does not have the execute (x) permission. The chmod command 
is used to change the permissions of a file. The +x option adds execute permissions to the file. So, 
chmod +x script.sh will give execute permissions to script.sh, which will allow you to 
run the script with ./script.sh.

Assessment

In the context of Bash scripting, what does the line #!/bin/bash at the beginning of scripts signify 
and why is it important?

Answer

The line #!/bin/bash is known as the shebang. It is used to tell the system that the following script 
should be executed using Bash. This is important because different systems can have different default 
shells, and a script intended to be run with Bash might not work correctly if run with a different shell. 
By including #!/bin/bash at the start of your scripts, you ensure that they will be run using the 
correct interpreter regardless of the system’s default shell.

Introducing control statements
Control statements, including conditional statements and loops, are an integral part of shell scripting, 
allowing you to incorporate decision-making and repetitive tasks in your scripts. As a data scientist, 
you might use control statements when automating data preprocessing, running different analyses 
based on certain conditions, or when building complex pipelines. This section will introduce the most 
commonly used control statements in Bash scripting.

Just like other programming languages, Bash provides conditional statements to control the flow of 
execution. The most common conditional statements in Bash are if, if-else, and if-elif-else.

Let’s take a look at a simple if statement:

#!/bin/bash
x=10
if [ $x -gt 5 ]
then
  echo "x is greater than 5"
fi

In this script, if the value of x is greater than 5, the message x is greater than 5 is printed 
to the console.
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As you can see, control statements are often paired with arithmetic operators. Here is a list of Bash 
arithmetic operators and their meaning:

Bash 
Arithmetic Operator

Meaning Meaning Details

-lt < Less than
-gt > Greater than
-le <= Less than and equal to
-ge >= Greater than and equal to
-eq == Equal to
-ne != Not equal to

Figure 6.7: Bash arithmetic operators

An if-else statement executes one block of code if the condition is true, and another block of 
code if it is false:

#!/bin/bash
x=10
if [ $x -gt 5 ]
then
  echo "x is greater than 5"
else
  echo "x is not greater than 5"
fi

In this case, if x is not greater than 5, the script prints x is not greater than 5.

Additionally, here is a good place to remind you that spacing is important to avoid errors when writing 
an if statement. Bash and Shell are less forgiving than Python when it comes to spacing and will 
produce an error if it is incorrect.

For multiple conditions, use if-elif-else:

#!/bin/bash
x=10
if [ $x -gt 10 ]
then
  echo "x is greater than 10"
elif [ $x -eq 10 ]
then
  echo "x is equal to 10"
else
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  echo "x is less than 10"
fi

This script checks multiple conditions and executes different blocks of code depending on which 
condition is true.

Looping constructs, specifically for and while loops, are critical for executing tasks multiple times. 
Here’s a for loop example:

#!/bin/bash
for i in {1..5}
do
  echo "This is iteration $i"
done

This script prints This is iteration x for each iteration from 1 to 5.

And here’s a while loop example:

#!/bin/bash
x=1
while [ $x -le 5 ]
do
  echo "This is iteration $x"
  x=$(( $x + 1 ))
done

The script performs the same task as the previous for loop, but it uses a while loop that continues 
until x is greater than 5. The x=$(( $x + 1 )), adds 1 to x during each iteration of the loop.

Understanding and employing these control statements in Bash scripts can help automate and streamline 
your data science workflows, making your operations more efficient and reproducible.

Assessment

Suppose you have an x variable and you want to write a script that prints x is positive if x is 
greater than 0, x is negative if x is less than 0, and x is zero if x is equal to 0. How would 
you construct this script using conditional statements?

Answer

You would use an if-elif-else statement. Here is an example of how you would construct the script:

#!/bin/bash
x=10
if [ $x -gt 0 ]
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then
  echo "x is positive"
elif [ $x -lt 0 ]
then
  echo "x is negative"
else
  echo "x is zero"
fi

This script first checks whether x is greater than 0. If this condition is true, it prints x is positive. 
If it’s false, it then checks whether x is less than 0. If this condition is true, it prints x is negative. 
If both conditions are false (i.e., x is not greater than 0 and not less than 0), it must mean x is equal 
to 0, so it prints x is zero.

Creating functions
Functions in Bash are blocks of reusable code that perform a certain action. They help structure scripts 
and avoid repetitive code, making scripts easier to maintain and debug. In data science, you might use 
Bash functions to perform recurring tasks such as loading data, processing files, or managing resources.

A function in Bash is declared with the following syntax:

function_name() {
  # Code here
}

function_name is the name of the function, which you’ll use to call it. The code inside the curly 
braces {} is the body of the function.

Here’s an example of a function that prints a greeting:

greet() {
  echo "Hello, $1"
}

This greet function prints “Hello” followed by the first argument passed to it. The $1 part is a special 
variable that refers to the first argument.

Once a function is defined, it can be called by its name. For example, to call the greet function, you 
would write the following:

greet "Data Scientist"

This line of code will print Hello, Data Scientist.
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You can pass arguments to a function just like you would with a command. Inside the function, you 
refer to these arguments with $1, $2, and so on, where $1 is the first argument, $2 is the second, 
and so on. Here’s a function that takes two arguments and prints them:

print_arguments() {
  echo "First argument: $1"
  echo "Second argument: $2"
}

To call this function with the arguments Data and Science, you would write the following:

print_arguments "Data" "Science"

This will print the following:

First argument: Data
Second argument: Science

In Bash, a function returns the exit status of the last command executed. You can explicitly specify a 
return status using the return statement, followed by an integer:

is_even() {
  if [ $(($1 % 2)) -eq 0 ]
  then
    return 0
  else
    return 1
  fi
}

This function checks whether the first argument is an even number. If it is, the function returns 0 
(indicating success in Unix-like systems); otherwise, it returns 1.

Assessment

Imagine you are writing a Bash function that takes a filename as an argument and prints the number 
of lines in that file. What would that function look like?

Answer

The function might look something like this:

count_lines() {
  echo "The file $1 has $(wc -l < $1) lines"
}
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In this function, count_lines, the $1 argument is used to represent the filename passed to the 
function. The wc -l < $1 command is used to count the lines in the file, and the entire echo 
"The file $1 has $(wc -l < $1) lines" command prints out a message with the 
filename and the line count.

Processing data and pipelines
As a data scientist, you often need to handle and process large datasets. Bash provides powerful tools 
for data processing and creating pipelines, which are sequences of processes chained by their standard 
streams. This allows the output of one command to be passed as input to the next. Several commands 
in Bash are incredibly useful for data processing. Here are a few examples:

•	 cat: Concatenates and displays the content of files.

•	 cut: Removes sections from lines of files.

•	 sort: Sorts lines in text files.

•	 uniq: Removes duplicate lines from a sorted file.

•	 head filename and tail filename: These commands output the first and last 10 
lines of a file, respectively. You can specify the number of lines by adding -n, as in head -n 
20 filename.

Here’s an example of using cat, sort, and uniq to display the unique lines in a file:

cat filename | sort | uniq

The cat function displays the contents of the file. The pipe (|) takes the output of the cat function 
and sends it to the sort function, which sorts the line in the text. Then we use the pipe (|) function 
again to take the output of the sort function and send it to the uniq function. Finally, the uniq 
function removes any duplicate lines.

For more complex text-processing tasks, you might use commands such as awk and sed. Now, awk 
is a complete text-processing language that is ideal for data manipulation, while sed (stream editor) 
is a tool that parses and transforms text.

Here’s an example of using awk to print the first column of a file:

awk '{print $1}' filename

In this command, {print $1} is an awk command that prints the first field ($1) of each line.
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Meanwhile, sed is another tool useful for performing find-and-replace operations, substitutions, 
deletions, and more on text files or input streams. Here is an example of using sed to substitute the 
word example with the word sample in a text file:

sed 's/example/sample/' example.txt

Here’s an explanation of what’s happening:

•	 sed is the command for using sed

•	 s/example/sample/ is the substitution pattern, where s/ indicates a substitution, example 
is the search pattern to find, and sample is the replacement

•	 example.txt is the input file on which the substitution is being performed

Using pipes

Pipes are a powerful feature in Bash that allow you to create complex data processing pipelines. They 
allow you to stick multiple functions together like Lego blocks to make a complex pipeline.

Here’s an example of a pipeline that processes a CSV file, removes the header, sorts the lines by the 
second column (assumed to be numeric), and writes the output to a new file:

tail -n +2 data.csv | sort -t, -k2,2n > sorted_data.csv

Here are the details of this pipeline:

•	 tail -n +2 data.csv outputs the content of data.csv starting from the second line 
(thus removing the header)

•	 sort -t, -k2,2n sorts the lines by the second column as a number

	� -t, specifies the comma as the field separator

	� -k2,2n specifies the second field as the sort key

	� n indicates that it should be sorted numerically

•	 > redirects the output to sorted_data.csv

Bash’s data processing commands and pipelines provide powerful tools for manipulating and analyzing 
data. Learning how to use these features can make your work as a data scientist more efficient, especially 
when dealing with large datasets or complex data transformations.
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Assessment

Imagine you have a CSV file with a header row. The file contains several columns of data, including a 
Year column. You want to sort the data by the Year column, which is the third column in the file. 
How would you accomplish this task in Bash?

Answer

You could use a combination of the tail, sort, and > commands to accomplish this task. The 
command would look something like this:

tail -n +2 filename.csv | sort -t, -k3,3n > sorted_filename.csv

The tail -n +2 filename.csv command removes the header row by printing all lines from 
filename.csv starting from the second line. The sort -t, -k3,3n command sorts the output 
by the third column (the Year column), treating the entries as numbers. The -t, option tells sort 
to use a comma as the field separator, and -k3,3n tells it to sort numerically on the third field. The 
> operator redirects the sorted output into sorted_filename.csv.

Using cron
cron is a powerful feature in Unix-like operating systems that allows users to schedule tasks (called 
cron jobs) to run automatically at specific times or on specific days. As a data scientist, you might use 
cron to automate tasks such as retrieving data, cleaning data, or running scripts at regular intervals.

The crontab (cron table) command allows you to create, edit, manage, and remove cron jobs. Here’s 
an example of how you might use the crontab command to view your current cron jobs:

crontab -l

The -l option tells crontab to list the current user’s cron jobs.

To edit your cron jobs, you would use the -e option:

crontab -e

This command opens the current user’s crontab file in the default text editor. If no crontab file 
exists for the user, this command creates one.
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A cron job is defined by a line in the crontab file, which consists of six fields:

*     *     *   *    *        command to be executed
-     -     -   -    -
|     |     |   |    |
|     |     |   |    +----- day of the week (0 - 6) (Sunday=0)
|     |     |   +------- month (1 - 12)
|     |     +--------- day of the month (1 - 31)
|     +----------- hour (0 - 23)
+------------- min (0 - 59)

Each field can be an asterisk (which means any value), a single value, a range of values, or a list of 
values or ranges separated by commas.

Here’s an example of a cron job that runs a script every day at 2:30 PM:

30 14 * * * /home/user/data_script.sh

This line specifies that the data_script.sh script, located in /home/user/, should run at 
minute 30 of hour 14 (2:30 PM) every day.

By default, the output from a cron job is mailed to the owner of the crontab file. However, you can 
redirect the output to a file:

30 14 * * * /home/user/data_script.sh > /home/user/data_log.txt

In this example, the output of data_script.sh is redirected to data_log.txt.

Keep in mind that while cron is powerful and flexible, it also has some limitations and isn’t the right tool 
for every job. However, there are tools, such as Airflow and Luigi, that make up for its shortcomings.

Assessment

You have a Python script called data_update.py that updates your data every week. The script is 
located in the /home/data_scientist/ directory. How would you schedule a cron job to run 
this script every Monday at 1:30 AM?

Answer

To schedule this cron job, you would open your crontab file using the crontab -e command, 
and then add the following line:

30 1 * * 1 /usr/bin/python3 /home/data_scientist/data_update.py
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This cron job is scheduled to run at minute 30 of hour 1 (1:30 AM) every Monday (1 in the day-of-
the-week field). The command to run is /usr/bin/python3 /home/data_scientist/
data_update.py, which executes the data_update.py script with Python 3. Please note that 
the path to Python might differ based on the specific system configuration.

Summary
In this chapter, we covered a broad range of topics related to basic shell and Bash scripting and 
command-Line operations for data scientists.

We began with an overview of navigating within the file structure and directory on a local computer 
or a virtual machine from the command line, explaining the use of basic commands for directory 
navigation. Then, we moved on to file and directory manipulation. In the subsequent sections, we 
delved into Bash scripting topics, discussing control statements and the use of Bash functions to 
create reusable pieces of code. We highlighted data processing and pipelines, demonstrating how to 
chain commands together to process text data. We also covered cron jobs for scheduling tasks and 
provided an overview of its syntax.

Gaining fluency in Bash scripts and basic shell commands will prepare you to engage with a variety of 
other CLI technologies commonly used in data science such as interfacing with the cloud providers 
(i.e.: AWS, Azure, GCP), Hadoop, Docker, Flask, or Kubernetes. 

In our next chapter, we will look at version control with Git.
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Using Git for Version Control

This chapter aims to prepare you for interview questions related to Git, a version control system 
integral to collaborative projects and data management.

Throughout these sections, you’ll delve into the basics of creating and managing repositories and 
common Git operations, such as config, status, push, pull, ignore, commit, and diff. 
We will also highlight the common workflow patterns for a data scientist using Git and the crucial 
role of branches in this workflow.

The goal is to equip you with practical knowledge that you can leverage during your technical 
interviews, enabling you to demonstrate not only your data science acumen but also your adeptness at 
utilizing essential collaboration tools. Understanding these concepts is pivotal in today’s data science 
landscape, as efficient version control and collaboration are as critical to a project’s success as the 
scientific methods employed.

In this chapter, we will cover the following topics:

•	 Introducing repositories (repos)

•	 Creating a repository

•	 Detailing the Git workflow for data scientists

•	 Using Git tags for data science

•	 Understanding common operations

Introducing repositories (repos)
Repos are a version control system in a centralized storage location, holding all the files, directories, 
and version history of a project. A repository allows multiple developers to collaborate on a project, 
keeping track of changes made to the project’s files over time, which is useful for projects with multiple 
data scientists and developers. It stores all the different versions of the files, along with metadata such 
as the author, timestamp, and description of each change.
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There are many version control options that organizations might use. Some popular options include 
GitHub, BitBucket, GitLab, Azure DevOps repositories, and AWS CodeCommit.

It’s important to note that there are multiple phases of version control. The major three are repos, a 
working directory, and a staging area. We’ve already explained what a repo is, but what are the other two?

A working directory is the directory on your local machine where you have cloned or initialized a 
Git repository. It contains all the project files that you can modify, create, or delete as part of your 
development process. When you make changes to files in the working directory, Git recognizes them 
as modifications to the project.

The staging area (aka an index) is an intermediary stage between your working directory and repo 
and is where the files of your project are ready to be tracked. Thus, it acts as a holding area for changes 
that you intend to include in the next available version of the project by taking a snapshot of the 
modified files. However, instead of committing to these changes directly from the working directory, 
you explicitly choose which changes to add to the staging area. In doing so, the staging area allows 
you to control which changes are included (committed), enabling you to selectively group related 
changes together or split them into separate commits.

Working with repos for version control is all about moving project files from one phase of the Git 
workflow to the next, which is demonstrated in Figure 7.1:

Figure 7.1: The Git workflow

Think of this concept as saving your progress in a video game. When you’re actively playing, you are 
navigating your “working directory.” However, if you want to save your progress, this is the equivalent 
of moving your progress to the “staging area.” If you want to share your progress with friends, you 
might migrate your saved file to another console. This is the equivalent of a “repository.”
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Creating a repo
In this section, we’ll cover the essential steps for creating a GitHub repository from an existing remote 
repository, as well as creating a local repository without an existing remote repository. Then, we will 
look at linking a local and remote repository. Let’s begin!

Cloning an existing remote repository

When working as a part of a project team, a central repository has likely already been created. If you 
are working with a project that already exists, use the clone command to make a local copy of the 
repository. Cloning allows you to have a local copy of the project on your own computer, where you 
can work on it offline, experiment with it, and contribute your changes back to the project if you wish.

Here’s how to clone a repository:

1.	 Retrieve a copy of the remote repository URL. If GitHub is your remote repository, then this 
can be found under the green Code button, currently on the Code tab of a project.

2.	 Open the terminal on your local machine.

3.	 Change the current working directory to the location where you want the cloned directory 
to be made.

4.	 Type git clone, and then paste the URL you copied earlier. If GitHub is your remote 
repository, then the command might look like this:

git clone https://github.com/YOUR-USERNAME/YOUR-REPO-NAME.git

You are passing the central remote repo URL as input to the clone command.

Afterward, Git will create a copy of the repo in your current directory.

Creating a local repository from scratch

When starting a new project from scratch, you can initialize a repo using init (meaning “initialize”) 
inside of a local project folder. This will create a .git file on your machine; however, note that it 
is not visible by default on your computer’s filing system (it will, however, show in your terminal):

git init <project-name>

This command will create a new repository in the current directory. Therefore, change to the directory 
where you want to make the repository first.

Once a repository has been created, it doesn’t automatically start tracking your files. You need to 
tell Git which files to begin tracking by using the add command. This command places files in the 
staging area. Think of the staging area as an intermediate step between the working directory and 
the repository. It plays a crucial role in managing and organizing changes before they are committed 
to the repository.
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Here is an example of using the add command:

git add <file_name>

Using the command in this method only adds one file to the staging area. However, you can use the 
--all option to stage all the files in the directory simultaneously:

git add --all

The example adds all the files in the directory to the staging area.

Note
If, for whatever reason, you need to reverse a staged add, use git reset HEAD, followed 
by a filename. This allows you to remove changes from the staging area without discarding the 
modifications in the working directory.

After adding a file to the staging area, you can use the commit command to move it to the repository. 
After executing this command, you are then asked to add a log message to your commit, which is 
basically a comment that describes your changes. You do this by adding the –m flag and then your 
message in parentheses. Here is an example of adding a message to a commit:

git commit –m "This is a message."

You want to be thoughtful with your message, since it will forever be part of the repo.

To summarize our recent discussion, here’s how to create a new local repository:

1.	 Navigate to the directory where you want to create the repository.

2.	 Within this directory, initiate a new local repository with the git init command. You’ll see 
output that says, Initialized empty Git repository in [your directory].

3.	 If you want to copy an existing repo, use git clone.

4.	 Add files to your repository by creating new files or moving existing files into this directory.

5.	 After adding or modifying files, stage the changes by using git add command, which 
stages all changes in the directory and subdirectories. You may also use git reset HEAD 
<file-name> to reverse a staged file.

6.	 Commit these changes to your repository by using git commit -m "Commit message", 
where "Commit message" is a message that describes the changes you’ve made.

At this point, you have a local repository with your initial project files.
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Linking local and remote repositories

After creating a local repository, you can link it to a remote repository to easily share your code, 
collaborate with others, and have an online backup of your work.

Here’s how to link your local repository to GitHub:

1.	 Create a new repository on GitHub (to avoid errors, do not initialize the new repository with 
README, gitignore, or License files; these can be added after your project has been 
pushed to GitHub).

2.	 Get the remote repository’s HTTPS URL from the GitHub page (the same way as described in 
the instructions about cloning).

3.	 In the terminal, change the current working directory to your local project.

4.	 To add the URL for the remote repository where your local repository will be pushed, run 
the following command, replacing https://github.com/YOUR-USERNAME/YOUR-
REPO-NAME.git with your repository’s URL:

git remote add origin https://github.com/YOUR-USERNAME/YOUR-
REPO-NAME.git

5.	 Push the changes in your local repository to GitHub using git push:

git push -u origin master

6.	 Now, your local repository is linked to your GitHub repository, and all your local changes can 
be pushed to the GitHub repository for safe-keeping and sharing.

7.	 To review the history of any project, use git log along with flags to learn details about the 
project through logs. Here are some examples:

	� git log –3 myfile.py shows the last three commits to myfile.py

	� git log –since YYYY-MM-DD shows the commits since the provided date

	� git log –author=<name> shows all commits by the provided author

There are many other flags that you can use. To look up other flags for any given command, 
use git <command> -help.

In summary, whether you’re cloning an existing repository or creating a new one, you’re setting up 
an environment where you can contribute to a project in a controlled and effective manner. Git and 
GitHub form the backbone of many modern data science workflows, and understanding these steps 
is crucial in preparing for a data science interview.
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Assessment

Create a local copy of the git@github.com:py-why/dowhy.git repository in the /home/
project/code/ directory.

Answer

cd /home/project/code/
git clone git@github.com:py-why/dowhy.git

First, the cd command is used to change to the /home/project/code/ directory. Now, once 
in that directory, the clone command is used to make a local copy of the repo within the directory.

Assessment

You’ve been working on a new data analysis project locally and want to share your progress with your 
colleagues via GitHub. Explain the process of creating a local repository and linking it to a remote 
repository on GitHub.

Answer

To create a local repository and link it to a remote repository on GitHub, follow these steps:

1.	 Create a new directory for your project on your local machine and navigate to it.

2.	 Initiate a new local repository within this directory with the git init command.

3.	 Add files to your repository by creating new files or moving existing ones into this directory.

4.	 Stage the changes with git add --all command, which stages all changes in the directory 
and subdirectories.

5.	 Commit these changes to your repository with git commit -m "Commit message".

6.	 Create a new repository on GitHub. To avoid errors, don’t initialize the new repository with 
“README”, .gitignore, or “License” files.

7.	 Copy the remote repository’s HTTPS URL from the GitHub page.

8.	 In the terminal, change the current working directory to your local project.

9.	 Add the URL for the remote repository where your local repository will be pushed with git 
remote add origin https://github.com/YOUR-USERNAME/YOUR-REPO-
NAME.git, replacing the URL with your repository’s URL.

10.	 Push the changes in your local repository to GitHub with git push -u origin master.

This process allows you to work on your project locally and then share your work via GitHub, making 
it available for others to see, clone, or contribute to.
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Detailing the Git workflow for data scientists
Understanding Git workflows is a key competency for data scientists. As we’ve discussed before, Git 
allows you to track changes, revert to previous versions, and collaborate with others. In this section, 
we’ll describe a typical Git workflow for a data scientist and explain the concept of a branch, an 
important feature in Git.

A branch in Git is essentially a unique set of code changes with a unique name. Each repository 
has one default branch (usually called master or main) and can have multiple other branches. 
The branches are used to develop features isolated from each other. When you want to create a new 
feature or experiment with something without disturbing the main line of development, you create 
a new branch. If the experiment is successful, you can merge these changes into the main branch. 
If it’s unsuccessful, you can discard the branch, and it won’t affect your main branch or repository.

Here is the typical Git workflow for a data scientist:

1.	 Create a new branch for your task: If you’re about to start work on a new feature or a bug fix, it’s 
good practice to create a new branch. This keeps your changes organized and separate from the 
main branch. The command to create a new branch is git branch new-branch-name. 
To switch to this branch, you use the git checkout new-branch-name command.

2.	 Add changes to the new branch: Once you’re on the new branch, you can make changes to 
your files and stage them with git add filename.ext, or git add --all to stage 
all changes.

3.	 Commit the changes to the branch: After staging the changes, you commit them with a 
descriptive message using git commit -m "Your commit message".

4.	 Push your changes to the remote repository: After committing your changes, you can push 
them to the remote repository with git push origin new-branch-name.

5.	 Open a pull request: On GitHub, you can open a pull request, which allows others to review 
and discuss your changes. If you’re collaborating with a team, this step is crucial for code review 
and collaborative debugging.

6.	 Merge your branch into the main branch: After your changes have been approved, you can 
merge them into the main branch. On GitHub, this can be done with the merge button in your 
pull request. Locally, you would first check out to the main branch with git checkout 
main and then merge your branch with git merge new-branch-name.

7.	 Pull the latest changes from the main branch: Other people might have made changes to the 
main branch while you were working on your feature. To make sure your local main branch is 
up to date, use git pull origin main.

8.	 Repeat the process for a new feature or bug fix: After your changes are merged into the main 
branch, you can repeat the process, starting from step 1, for your next task.
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It’s important to note that these steps describe one possible workflow with Git, known as the feature 
branch workflow. Different teams and projects might use different workflows. In the context of data 
science, you might use branches to experiment with different models or data processing techniques.

For example, you might create a new branch to experiment with a new machine learning model. If 
the model improves your results, you can merge it back into the main branch. Here, assume that you 
are working with GitHub on a classification problem and you want to explore the results using the 
decision tree algorithm. At the end of the example, we delete the local copy of the branch we created 
because it is now merged into our main branch:

git branch decision-tree
git checkout decision-tree
…(assumes that you're updating your code files and review results)
git add --all
git commit -m "Explored results using decision tree algorithm"
git push origin decision-tree
…(assumes that a submitted a pull request and it was approved)
…(assumes the branch was merged into main in GitHub)
git checkout main
git pull origin main
git branch -d decision-tree

In a technical interview, you might be asked to describe how you would use Git in a collaborative 
project, or to describe a time when you used Git to manage different versions of a data science 
project. Understanding the concept of branches and the basic Git workflow can help you answer 
these questions confidently.

Assessment

You are working on a new feature for a data science project. Describe the series of Git commands 
you would use to create a new branch, add and commit your changes, and then push these changes 
to the remote repository.

Answer

First, you would create a new branch using git branch new-branch-name, and then switch 
to it with git checkout new-branch-name. Once you’ve made your changes, you would 
stage them for commit, using git add filename.ext for specific files or git add --all 
for all changes. After staging the changes, you’d commit them with a message, using git commit 
-m "Your commit message". Finally, you would push the changes to the remote repository 
with git push origin new-branch-name.
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Assessment

Explain the importance of using different branches when working on a data science project and how 
it might influence your workflow.

Answer

Using different branches is crucial in a data science project because it allows for experimentation 
without affecting the main line of development. For instance, if you want to test a new algorithm or 
dataset, you can create a new branch and make changes there. If the changes improve your project, 
you can merge them into the main branch. If they don’t, you can simply discard the branch without 
it affecting your main code base. This ensures that the main branch only contains code that is tested 
and works properly. Moreover, in a collaborative environment, branches provide a way for multiple 
team members to work simultaneously on different features without conflict.

Using Git tags for data science
Tagging in Git is a way to mark specific points in your repository’s history as being important. Typically, 
people use this functionality to mark release points (v1.0, v2.0, and so on). In this section, we’ll cover 
the concept of tagging and how it can benefit data scientists.

Understanding Git tags

There are two types of tags that Git recognizes, lightweight and annotated. A lightweight tag is similar 
to a branch that doesn’t change. It’s just a pointer to a specific commit. Annotated tags, however, are 
stored as full objects in the Git database. Using the annotated tag is generally recommended because 
it is fully tracked and contains more info than the lightweight tag.

To create an annotated tag in Git, you can use the git tag -a command, followed by the tag name 
(usually the version), and then the message, such as the following:

git tag -a v1.0 -m "my version 1.0"

To view the tags in your repository, you can use the git tag command.

Using tagging as a data scientist

Tagging can be especially useful for data scientists for versioning models or experiments. For instance, 
if you have trained a machine learning model and want to keep track of its versions, you could use a 
tag to mark the commit that produced the model.

You could also use tags to mark the commit that generated a particular result or figure. This can be 
extremely helpful in ensuring the reproducibility of results, which is a crucial aspect of data science.
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In addition, using tags can help data scientists collaborate more effectively. Team members can use 
tags to share the specific versions of the code they are working on, or to indicate which versions 
produce the best results.

In a technical interview, you might be asked about your strategies for managing versions of your code 
or ensuring reproducibility. Discussing your experience with Git tagging can help demonstrate your 
commitment to good practices in data science.

Remember, Git tagging is not a replacement for proper experiment tracking in data science, which 
should also record parameters, performance metrics, and other important details of each experiment. 
However, it can be a helpful tool to manage your code base and collaborate with others.

Understanding common operations
Understanding the basic commands of Git is paramount for anyone working in the field of data 
science. In the previous section, we delved into how to set up a GitHub repository, either by cloning 
an existing repository or starting a new one from scratch. In this section, we will explore common 
Git operations that will help you manage your repositories more effectively.

So, let’s take a look at some operations:

•	 Configuring Git (config): Git’s configuration settings can be found in the .gitconfig 
file, which is usually located in the user’s home directory. To modify these settings, use the 
git config command. Set your name and email address, which will be attached to each 
commit you make:

git config --global user.name "Your Name"
git config --global user.email "youremail@domain.com"

Check your settings:
git config --list

•	 Checking the status (status): The git status command provides information about 
the current state of the repository, including untracked files, changes that are staged but not 
yet committed, and the branch you’re currently on:

git status

•	 Pushing changes (push): The git push command allows you to send the commits from 
your local repository to a remote repository:

git push origin master   # Push changes to the master branch

If you want to share your tags with others, you need to use the git push --tags command:
git push origin --tags
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•	 Pulling changes (pull): The git pull command is used to fetch and download content 
from a remote repository and immediately update the local repository to match that content:

git pull origin master   # Pull changes from the master branch

•	 Checking differences (diff): The git diff command is used to display the differences 
between two points in your repository:

git diff                  # Show differences not yet staged
git diff --staged         # Show differences between staged 
changes and the last commit

•	 Ignoring unnecessary files (.gitignore): When working on a project, there are often files 
that you don’t want Git to track, such as log files or files containing sensitive information. This 
can be managed with a .gitignore file in your repository’s root directory. Patterns defined 
in this file will apply to all files in the repository. Here is an example of a .gitignore file:

*.log
*.csv
secrets/*

In this example, all .log  and .csv  files will be ignored, as well as all files in the 
secrets/ directory.

These commands form the backbone of many interactions with Git and are crucial for efficient 
version control. As a data scientist, being comfortable with Git is a must, as it not only allows you to 
collaborate with other team members but also lets you keep track of changes, allowing you to revert 
back to previous versions when necessary.

In the context of a technical interview, a good understanding of Git indicates that you are familiar 
with the basic version control tooling used in data science and software development, which can make 
a strong impression on potential employers. Remember, learning Git is not just about memorizing 
commands but also understanding how these commands can be integrated into your workflow, 
improving productivity and collaboration.

Assessment

You are working on a data science project and have made several changes to your Python scripts. 
However, you realize that you’ve made a mistake and want to see what has changed since your last 
commit. Which Git command would you use, and what does it do?
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Answer

You would use the git diff command. This command shows the differences between the changes 
you’ve made in your working directory and the last commit. It’s used to review the changes you’ve 
made before staging and committing them, which is useful when you want to confirm your changes 
or when you’re troubleshooting. The output shows the lines that have been added or removed.

The following code shows an example, where a/file.txt and b/file.txt are different versions 
of the same file:

diff --git a/file.txt b/file.txt
index ce01362..5d34e82 100644
--- a/file.txt
+++ b/file.txt
@@ -1 +1 @@
-I love coding
+I love to learn

Assessment

During your work on a machine learning project, you’ve accumulated several large .csv files 
containing intermediate results. These files are cluttering up your Git status and you don’t want to 
accidentally commit them. How can you tell Git to ignore these files?

Answer

To tell Git to ignore certain files, you can use a .gitignore file. This file resides in the root directory 
of your repository. In this case, you would add *.csv to your .gitignore file, which tells Git 
to ignore all .csv files in the repository. This is very useful to exclude unnecessary files, such as 
temporary files, logs, or files with sensitive data, from being tracked by Git.

You should be careful to only ignore files that truly don’t need to be in the repository, as ignoring 
important files could lead to lost work or inconsistencies between different versions of a project.

Summary
In this chapter, we explored the core fundamentals of Git, an essential tool for data scientists looking to 
effectively manage and collaborate on projects. We kicked things off by guiding you through setting up 
a GitHub repository. This involved the creation of a new repository, both from scratch and by cloning 
an existing remote repository. We provided a step-by-step walk-through, offering a straightforward 
approach to establishing and preparing your local repository for development work.
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Following this, we navigated through the common Git operations that form the backbone of interaction 
with this tool. We explored essential commands such as config, status, push, pull, ignore, 
commit, and diff, laying out their functions and demonstrating their usage with practical examples. 
Additionally, we delved into the concept of branches, a critical feature of Git that allows you to segregate 
your changes and efficiently manage different project versions, using tags to highlight specific points in 
your repository. Finally, we described a typical Git workflow for a data scientist, providing a roadmap 
for creating, modifying, and merging branches in the context of a data science project.

With this knowledge, you are now equipped to handle version control and collaboration tasks effectively, 
a vital skill for any technical interview.

In our next chapter, we will look at analyzing data with statistics.





Part 3:  
Exploring  

Artificial Intelligence

The third part of this book covers various data mining techniques, how they work, the assumptions 
they make, their evaluation criteria, and their applications. We start with the foundations of inferential 
statistics, followed by increasingly more advanced data mining tasks, including the most popular 
machine learning models, neural networks, and generative AI. This part ends with helpful tips on 
deploying an effective MLOps strategy.

This part includes the following chapters:

•	 Chapter 8, Mining Data with Probability and Statistics

•	 Chapter 9, Understanding Feature Engineering and Preparing Data for Modeling

•	 Chapter 10, Mastering Machine Learning Concepts

•	 Chapter 11, Building Networks with Deep Learning

•	 Chapter 12, Implementing Machine Learning Solutions with MLOps





8
Mining Data with Probability 

and Statistics

In this chapter, you will be introduced to the vital world of statistics, which serves as the foundation of 
applied data science. An understanding of these concepts is crucial for drawing meaningful conclusions 
and making informed decisions and predictions from data. This knowledge is not just an intellectual 
exercise; it equips you with essential tools to excel in advanced data science interviews by allowing 
you to uncover hidden insights within datasets.

This chapter will guide you through the essential aspects of classical statistics, including the analysis 
of populations and samples, measures of central tendency and variability, and the intriguing realms 
of probability and conditional probability. You’ll also explore probability distributions, the central 
limit theorem (CLT), experimental design, hypothesis testing, and confidence intervals. This chapter 
concludes with a focus on regression and correlation, giving you comprehensive tools to understand 
relationships within data and make confident predictions.

In this chapter, we will cover the following topics:

•	 Describing data with descriptive statistics

•	 Introducing populations and samples

•	 Understanding the CLT

•	 Shaping data with sampling distributions

•	 Testing hypotheses

•	 Understanding Type I and Type II errors
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Describing data with descriptive statistics
Descriptive statistics are values that summarize the characteristics of a dataset. Before working on 
a project, data scientists use descriptive statistics to better understand the dataset they are working 
with. Think of it like exploring a treasure chest of information, with descriptive statistics as your guide 
to finding important details.

In your technical interview, you will be expected to be able to understand and use descriptive statistics. 
In this section, we will look at how to measure the central tendency of our dataset, then explore 
measures of variability or how dispersed and how much spread our dataset has.

Measuring central tendency

We are exposed to measures of centrality every day. For instance, if you live in the US, you might have 
heard that home prices in the state of California of the US are, on average, higher than in the state of 
Ohio. Of course, this doesn’t mean that every home in California is more expensive than every home 
in Ohio, but if we could collect a lot of homes from each state in two separate baskets and draw from 
each one, more often than not, the home in the California basket will cost more than the home pulled 
from the Ohio basket. We know this because, on average, according to Redfin, the median price of 
California homes averages $798,600 [1], while those in Ohio average $249,400 [2].

Measures of central tendency provide a snapshot of a dataset’s typical or central value, helping us to 
understand where data tends to cluster.

When discussing measuring centrality, we often use measures such as mean, median, and mode:

•	 The mean represents the arithmetic center of data and is calculated by summing up all the 
values in a dataset and dividing the sum by the number of observations. For example, the mean 
of [4, 6, 8, 10] is (4 + 6 + 8 + 10) / 4 = 7.

•	 The median is the middle value in a dataset when the observations are arranged in ascending or 
descending order (if the dataset has an odd number of observations, the median is the middle 
value itself, and if the dataset has an even number of observations, the median is the average 
of the two middle values). For instance, the median of [4, 6, 8, 10] is 7.

•	 The mode is the value or values that occur most frequently in a dataset. Unlike the mean and 
median, the mode does not rely on mathematical calculations. Sometimes, a dataset may have 
multiple modes (bimodal, trimodal, and so on), or there may be no mode if all values occur 
with the same frequency. For example, if given the values [4, 6, 8, 8, 10], the mode is 8.

How do we identify when we should use the mean over the median and vice versa? Let‘s consider an 
example where we try to estimate the average income of a population. Suppose we have a dataset of 
incomes for a specific population, and the distribution of income is highly skewed, with a few extremely 
high-income individuals. In this situation, using the mean as the measure of central tendency may 
not accurately represent the typical income of any singular person in the population. This is because 
high-income earners are outliers.
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In these situations, you will want to use the median, which provides a measure of centrality that is not 
influenced by outliers as much as the mean. For example, suppose I take the average of my neighbor’s 
annual income and average it with Jeff Bezos. In that case, the resulting product will look nothing 
like the average wage for any given individual in America – not unless I averaged it with many more 
people and with much smaller wages. Even then, the average would not be representative of the wage 
most people take home. Thus, the median is more valuable as it represents the middle value of the 
dataset when arranged in ascending or descending order.

Recall from Chapter 4 that you can quickly visualize your numerical data as a histogram or box plot to 
see if the data is highly skewed or has significant outliers. Based on this insight, you can then decide 
if the average or median would better represent your data:

Figure 8.1: Illustration of a histogram (left) and box plot (right) of a skewed distribution

Note
If the income distribution follows a symmetrical, bell-shaped distribution (a normal distribution), 
the mean and median would likely be very close to each other. In such cases, using either the 
mean or the median as the measure of central tendency would provide a representative estimate 
of the average income.

Measuring variability

As you’ve seen thus far, mean, median, and mode are not enough to explain a dataset’s shape. While 
measures of centrality measure the central tendency of data (that is, the tendency of the data’s central 
statistics), variability helps us understand the spread or dispersion of data points.
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Variability is the measure of a dataset's spread. For example, the mean wage in a country might be 
$54,000, but how much does this figure vary from person to person? Is this average the result of low 
variability (that is, everyone’s wage is somewhat close to $54,000) or high variability (that is, there is 
a small minority that makes billions of dollars, but their wages are saturated by the vast majority who 
make under $30,000)?

In short, variability provides insights into how data points deviate from the central tendency. Three 
commonly used measures are as follows:

•	 Range: The range of a dataset is given by subtracting the smallest figure from the largest figure. 
For example, if a group of students in a class received {5, 12, 24, 9, 18} as values for a quiz, the 
range of the values is 19 or 24-5=19.

•	 Interquartile Range (IQR): The IQR is the range of the middle 50% of the data set. It is calculated 
by subtracting the first quartile (the 25th percentile) from the third quartile (the 75th percentile). 
The IQR is less sensitive to outliers than the range and is often used to summarize skewed data.

•	 Standard deviation: The standard deviation is the data’s standardized distance (or deviation) 
from the mean of the dataset. It helps in understanding the variability of a process. The standard 
deviation is a more robust measure of variability than the range as it considers how every value 
in the dataset contributes to the dispersion. It has the same units as the original data, making 
it easier to interpret in context. Additionally, standard deviation is often represented by the 
Greek letter sigma, ​σ​, while the square of standard deviation (​​σ​​ 2​​) is variance.

Assessment

Suppose you are working with a dataset containing employees’ salaries in a large organization. The 
CEO’s salary is significantly higher than everyone else’s, causing a skew in the salary distribution. 
Which measure of central tendency (mean, median, or mode) would be the most appropriate to 
represent a “typical” employee’s salary, and why?

Answer

The median would be the most appropriate measure of central tendency to represent a “typical” 
employee’s salary in this case. The reason is that the median is less affected by outliers or extreme 
values, such as the CEO’s salary, compared to the mean. The mean takes into account all values, so an 
extremely high value can significantly skew it upwards. The median, on the other hand, is the middle 
value of the dataset when ordered from smallest to largest and thus can provide a more representative 
“typical” value when the data contains significant outliers.
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Assessment

You are examining a dataset of exam scores for two classes of students who were taught the same 
course by two different teachers. Class A has a much smaller standard deviation in exam scores than 
Class B. What can you infer from this about the distribution of scores in each class, and what might 
this suggest about the two teaching methods?

Answer

A smaller standard deviation in exam scores for Class A implies that the scores in Class A are closer 
to the mean score and hence more consistent, with less variability. The scores for Class B, with a larger 
standard deviation, are more spread out from the mean, indicating greater variability.

In terms of teaching methods, while we can’t make definitive conclusions from this data alone, it 
might suggest that the teaching method for Class A led to more consistent understanding among 
students, while the teaching method for Class B resulted in a wider range of understanding. It could 
also suggest that the teacher for Class A had a teaching style that was effective for a larger proportion 
of the students compared to the teacher for Class B. However, these are just hypotheses and would 
need further investigation and more information to support them since many other factors could be 
influencing the distribution of scores in each class.

Introducing populations and samples
Statistics is the art of extracting meaningful insights from data, and it all begins with a thorough 
understanding of populations and samples. In this section, we will explore the fundamental concepts 
that underpin statistical analysis by distinguishing between populations and samples.

Understanding these concepts is important because they form the basis for generalizing observations 
from a subset of data to a larger group. By investigating the intricacies of populations and samples, 
you will gain the necessary tools to make sound inferences and draw reliable conclusions from the 
data you encounter. So, let‘s embark on this enlightening journey and uncover the foundations of 
statistical analysis.

Defining populations and samples

In the realm of statistics, a population refers to the entire group of individuals, objects, or events that 
we are interested in studying. For instance, if we wanted to research the average height of all adults 
in a country, the population would comprise every adult within that country. It would not include 
other countries or children, for example.
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However, studying an entire population is often impractical or impossible due to factors such as time, 
cost, or accessibility. This is where samples come into play. A sample is a subset of the population 
that we select to represent the larger group. By randomly selecting and analyzing a sample, we can 
draw meaningful conclusions about the population as a whole. In data science, we are almost always 
working on a dataset that represents the sample of a larger population:

Figure 8.2: Illustration of a sample of a population

Representing samples

The key to reliable statistical analysis lies in the representativeness of the sample. A representative 
sample accurately reflects the characteristics and diversity of the population it is drawn from. Achieving 
representativeness requires carefully considering factors such as sampling methods, sample size, and 
potential biases. Simple random sampling is one of the most straightforward methods of sampling, 
where every individual in the population has an equal chance of being selected. This approach ensures 
that the sample is unbiased and, therefore, representative of the population, provided the sample size 
is sufficiently large.

Sampling bias occurs when we do not acquire a representative sample. It is a sample that is systematically 
skewed and does not accurately represent the population. For example, imagine that you are running 
for class president in your high school, and you want to conduct a poll to understand your chances 
of winning. The population of your poll is your high school, and the sample you collect is from 
all seniors. However, collecting a sample of just seniors creates a biased, unrepresentative sample 
of the high school. Perhaps you have more friends in the senior class because you are a senior.  
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You will be very disappointed on election day if first-year students, sophomores, and juniors 
overwhelmingly vote against you!

In data science, it is essential to be aware of various sources of bias, such as selection bias, non-response 
bias, and measurement bias, to minimize their impact on statistical analysis and predictions.

Now, let’s suppose you conduct a sufficiently randomized sample of 100 students from all four classes 
at the school. After tallying the poll, it looks like 80% of them are willing to vote for you on election 
day – congratulations! But not so fast. Suppose you conducted another poll the following day, and 
it turns out that only 75% of that sample committed to voting for you. You collect more samples on 
different days, and the results are all different. What gives? You might be experiencing sampling bias 
across the different days. For example, if after day 1’s poll, your poor Statistics class grade was released, 
your polling numbers may dip on day 2. Or, this could just be a case of sampling error.

Reducing the sampling error

The sampling error, also known as the standard error of a sample, is the natural variation that occurs 
between different samples from the same population. Even if the true proportion of students supporting 
you is consistent throughout the entire student body, each sample will capture a slightly different 
proportion due to just random chance. This makes sense, because rarely do we sample anything and 
get the same results every time. The sampling error reminds us that the estimates obtained from our 
samples are not exact replicas of the true population proportion and that uncertainty and variability 
are always at play in statistics.

To mitigate the impact of the sampling error, we can increase the sample size and number of samples. 
The standard error is calculated as the standard deviation of the population statistic divided by the 
square root of the sample size. Mathematically, it can be represented as follows:

​SE = ​  σ _ ​√ 
_

 n ​ ​​

Here, we have the following:

•	 SE is the standard error

•	 ​σ​ is the standard deviation of the population statistic

•	 ​​√ 
_

 n ​​ is the sample size

As the sample size grows larger, the standard error decreases. Similarly, increasing the number of samples 
also reduces the sampling error. The more samples you collect, the better you can estimate the true 
population parameter by considering the range and distribution of estimates across the samples. To 
calculate the overall standard error when combining results from multiple samples, you can compute 
the standard deviation of the sample statistics across all the samples and divide it by the square root 
of the total number of samples. This accounts for the variability between the sample estimates.
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Understanding the sampling error enables us to quantify the uncertainty in our estimates and make 
reliable inferences.

Assessment

You are studying the average commuting time of workers in a large city. Explain how you would 
define the population and a potential sample for this study. What are some of the considerations you 
would have to bear in mind when choosing the sample to ensure it's representative of the population?

Answer

In this case, the population is made up of commuting works who live in a large city. The sample might 
be a subset of these workers selected for the study, perhaps based on certain criteria such as accessibility 
or willingness to participate in the study. It’s important to ensure that the sample is randomized and 
representative of the population as a whole, which means it should reflect the diversity of commuting 
times across different areas of the city, different professions and ages, and other factors that might 
affect commuting times. Potential biases, such as choosing more people who live in certain areas of the 
city, or more people from certain professions, should be carefully avoided to ensure that the sample 
is not skewed and can accurately represent the population.

Assessment

Describe the concept of the sampling error and how it affects the reliability of estimates drawn from 
a sample. What methods can be employed to reduce the impact of sampling error?

Answer

The sampling error is the natural variation that occurs between different samples from the same 
population. It signifies that the estimates obtained from individual samples are not exact replicas of 
the true population parameters; there is always some level of uncertainty and variability involved in 
statistics. This impacts the reliability of estimates because a high sampling error could lead to estimates 
that deviate significantly from the actual population parameters.

Reducing the impact of the sampling error can be achieved by increasing the sample size or the number 
of samples. Mathematically, the standard error is calculated as the standard deviation of the sample 
statistic divided by the square root of the sample size. Thus, as the sample size increases, the standard 
error decreases. Similarly, by increasing the number of samples collected, the overall standard error 
can be reduced as it allows for a better estimation of the true population parameter by considering 
the range and distribution of estimates across the samples.
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Understanding the Central Limit Thereom (CLT)
Now that we’ve learned about sampling, now’s the time to introduce one of the most important concepts 
in classical statistics – the Central Limit Thereom (CLT).

The CLT

Measuring the center of data is not as simple as just calculating the mean, median, or mode. The CLT 
states that regardless of the original population distribution’s shape, when we repeatedly take samples 
from that population and each sample is sufficiently large, the distribution of the sample means will 
approximate a normal distribution. This approximation becomes more accurate as the size of each 
sample becomes larger. This theorem plays a crucial role in measuring centrality by allowing us to 
make reliable estimates using these measures. In turn, the CLT enables us to estimate the population 
mean with greater accuracy, making the mean a powerful tool for summarizing data. It also indirectly 
influences the estimation of the median and mode. As the sample size increases, the distribution of 
individual observations becomes less skewed, enhancing the reliability of the median and mode as a 
measure of centrality.

The CLT also allows us to accept the assumption of normality, which allows us to rely on the normal 
distribution of sample means, even when the population distribution is not normal. Many statistical 
techniques and tests rely on the assumption of normality to ensure the validity of the inferences made. 
When the population follows a normal distribution, the CLT enables us to make accurate inferences 
about population parameters using sample means. This assumption allows us to use parametric tests.

Note
Many parametric hypothesis tests (such as t-tests and z-tests) rely on the assumption of 
normality to make valid inferences. These tests assume that the population from which the 
sample is drawn follows a normal distribution. The CLT comes into play by allowing us to 
approximate the distribution of the test statistic to a normal distribution, even when the 
population distribution is not strictly normal. This approximation enables us to perform these 
tests and make reliable conclusions.

Demonstrating the assumption of normality

In the previous section, we talked about the CLT and how it supports the assumption of normality. 
Let’s look at a simple example to demonstrate how both work together.
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Let’s conduct an experiment where we roll a die repeatedly. We will be using a fair six-sided die, 
meaning that the die has not been altered, and there is an equal chance that when rolled, it might 
land on any of its six values. Since there is an equal chance of rolling any of the values on the die, 
this is considered a uniform distribution. In our experiment, we will repeatedly roll five times. Every 
time we roll the dice five times, we take the mean of our five die rolls. This is considered a sample. We 
repeat this process 10 times, computing 10 means:

Figure 8.3: Distribution of dice roll samples – 10 times
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Now, let’s perform the same exercise, but this time, we’ll replicate the experiment 100 times (resulting 
in 100 samples) instead of 10:

Figure 8.4: Distribution of dice roll samples – 100 times
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Lastly, let’s repeat the experiment one more time, only with 10,000 samples instead of 100:

Figure 8.5: Distribution of dice roll samples – 10,000 times

Notice that the sample mean distribution now resembles a normal distribution, even though we 
know that rolling dice theoretically fits a uniform distribution. This illustrates the CLT – if you take a 
sufficiently large sample of random items from a population (typically 30 or more), regardless of the 
shape of the distribution of those items (as in our example of a uniform distribution from the die), the 
average of those samples will tend to approximate a normal distribution. This approximation becomes 
more accurate with larger sample sizes.

Assessment

Can you explain what the CLT states and why it is important in statistical analysis? How does it 
contribute to the measurement of centrality in a dataset?
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Answer

The CLT is a fundamental theorem in statistics stating that, regardless of the population distribution’s 
shape, when we repeatedly take sufficiently large samples from that population and calculate their means, 
the distribution of these sample means will approximate a normal distribution. This approximation 
becomes more accurate as the size of each sample increases. The CLT is crucial because it enables 
inferences about the population based on sample data, particularly regarding the population mean.

In terms of centrality, the CLT is primarily concerned with the mean. It asserts that with increasing 
sample sizes, the sample means tend to form a normal distribution, even if the original population 
distribution is not normal. This characteristic enhances the reliability and significance of the sample 
mean as a measure of central tendency, especially in making inferences about the population mean. 
However, the CLT does not directly impact the reliability of other centrality measures such as the 
median and mode, which depend on different aspects of the data distribution.

Assessment

Describe how the assumption of normality is linked with the CLT and how it influences the application 
of various statistical tests.

Answer

The assumption of normality in statistical analysis is closely linked to the CLT. According to the CLT, 
even if the population distribution is not normal, as the number of data points in each sample increases, 
the distribution of the sample means will approximate a normal distribution. This tendency toward 
a normal distribution in sample means is essential for the validity of many statistical tests, such as 
t-tests and z-tests, which are categorized as parametric tests.

Parametric tests typically rely on the assumption of a normally distributed population, particularly 
when working with small sample sizes. However, with larger samples (that is, samples containing 
more data points), the CLT becomes increasingly significant. In these cases, even if the population 
distribution is not normal, the CLT ensures that the distribution of sample means approaches normality. 
This approximation of normality in larger samples is crucial for the applicability of parametric tests, 
enabling the distribution of the test statistic to be treated as normally distributed. Consequently, this 
allows for reliable conclusions about the population parameters based on the sample data.
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Shaping data with sampling distributions
If you’ve ever taken an introductory statistics course, you were probably taught that theoretical 
distributions (such as the ones we will discuss in this section) are a way to describe the central 
tendency and variability of a given numeric variable. Depending on the situation, it’s often more 
appropriate to use one distribution over the other. Although this is an accurate summary of probability 
distributions, it’s important to understand why we use them, and how you should think about them 
in a data science context (instead of that of a social sciences context, which is often how traditional 
introductory statistics classes are taught).

Probability distributions

Probability distributions are fundamental concepts in statistics and probability theory that describe 
the likelihood of various outcomes in a random experiment or process. In the world of data science, 
these distributions play a crucial role in modeling and understanding uncertainty. By studying the 
properties and characteristics of different probability distributions, we can gain insights into real-world 
phenomena, make predictions, and perform statistical inference. In this section, we will explore the 
major probability distributions that are commonly used in statistics and data analysis. Each distribution 
will be introduced, followed by a detailed explanation of its characteristics, formulas, and example 
scenarios where it is applicable.

To begin understanding probability distributions from a data scientist context, I want you to regard 
them as “shapes of data.” As a data scientist, you will be leveraging countless datasets of various 
content and sizes. Discrete and continuous numeric variables in a dataset can be represented using 
probability distributions. A discrete variable is one where the values are real numbers that do not have 
partial values (for example, counts of items, proportions, ratios, or fractions). Continuous variables 
are numeric values that can hold any value between negative infinity and positive infinity. Given the 
distribution of the variable, you can make some useful assumptions about it, such as how to calculate 
probabilities associated with the dataset, and which models can be applied to the dataset given the 
confirmation of its assumptions.

Uniform distribution

The uniform distribution represents outcomes where each value within a given range is equally likely. 
We talked about this distribution briefly in the previous section, where we were running experiments 
rolling a die. In that case, the probability that the die would fall on one through six was equally likely 
to happen or a one out of six (1/6) probability. Another example of uniform distribution includes 
randomly selecting a card from a deck of cards. When selecting one random card from a 52-card 
deck, the probability for any card is one out of 52 (1/52).
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In the context of data science, uniform distribution is frequently used in simulations and bootstrapping 
methods. It’s also the foundational building block for generating random numbers in algorithms and 
models. This distribution is usually very easy to understand and explain. However, it may be too 
simplistic for complex real-world phenomena. While it’s suitable for situations with equal likelihoods, 
it may not capture the nuances of datasets with more intricate structures.

Normal and student’s t-distributions

The normal distribution, also known as the Gaussian or Z distribution, is perhaps the most widely 
used and essential probability distribution. It is characterized by its bell-shaped curve and is completely 
determined by its mean (µ) and standard deviation (σ). The z-score is a standardized value that 
measures how many standard deviations a given data point is from the mean. It allows us to convert 
any value from a normal distribution to the corresponding value on the standard normal distribution, 
making it a useful tool for probability calculations. Here is the z-score formula:

​Zscore = ​ 
​(x − μ)​

 _ σ  ​​

Here, we have the following:

•	 x is the data value

•	 ​μ​ is the mean of the normal distribution

•	 ​σ​ is the standard deviation

Let’s consider an example of adult male heights. The heights of adult males in a given population 
often follow a normal distribution. Suppose the mean height is 175 cm and the standard deviation is 
6 cm. Using the normal distribution, we can calculate the probability of finding a male with a height 
between 170 cm and 180 cm.

The t-distribution is the normal distribution’s “cousin.” The biggest difference is that it’s generally 
shorter and has fatter tails. It is used instead of the normal distribution when the sample sizes are 
small. In t-distributions, the values are more likely to fall further from the mean. One thing to note is 
that as the sample size increases, the t-distribution converges to the normal distribution.

The binomial distribution

The binomial distribution models the number of successes in a fixed number of independent Bernoulli 
trials. A Bernoulli trial is a random experiment with two possible outcomes. In simpler terms, it 
describes the outcomes of repeated experiments where there are only two possible outcomes, often 
referred to as “success” and “failure.”
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A scientist might use the binomial distribution when computing the probability of flipping a fair coin 
10 times and getting exactly four heads and six tails. In this scenario, we repeated the experiment of 
flipping a coin 10 times, and in each of these flips, the probability of receiving a head or tail was the 
same in each instance.

As a data scientist, it is important to remember that when using the binomial distribution, the 
probability of each success must also be the same for each trial. Also, there can only be two possible 
outcomes (hence “bi”) for each of the trials. Finally, you cannot use a binomial distribution if the trials 
are not independent. For example, if a person is repeatedly selecting one card from a deck of cards 
but not returning the card to the deck each time, you cannot use the binomial distribution to model 
the probability of them selecting three spades over 10 tries. The chance of them selecting a spade card 
changes each time they draw a card because they are not returning it to the deck.

Here are a couple of more examples of when a data scientist might use the binomial distribution:

•	 Modeling binary outcomes: When dealing with experiments or processes that have exactly 
two possible outcomes (for example, pass/fail, on/off, and yes/no), the binomial distribution 
can be a perfect model.

•	 Quality control and manufacturing: In industries where the quality of products is critical, 
data scientists can use the binomial distribution to model the number of defective items in a 
batch. This aids in process optimization and quality assurance.

•	 Marketing campaign analysis: Data scientists can apply the binomial distribution to evaluate 
the success of marketing campaigns by analyzing the number of conversions (successes) versus 
non-conversions (failures) among targeted customers.

•	 Healthcare research: In medical trials, the binomial distribution can be used to model the 
number of patients responding positively to a treatment versus those who do not.

•	 Sports analytics: In sports, analyzing the number of wins and losses in a series of games can 
be modeled using the binomial distribution.

•	 Election forecasting: Predicting election outcomes based on sampled voter intentions, where 
voters can choose between two candidates, can also be represented with a binomial distribution.

The Poisson distribution

The Poisson distribution is the probability of a given number of (discrete) independent events 
happening in a fixed interval of time, and is commonly used in queuing theory, which answers 
questions like “How many customers are likely to purchase tickets within the first hour of announcing 
a concert?” These events must occur with a known constant mean rate (​λ​) and are independent of 
the time since the last event.
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When using this distribution, a data scientist must remember the following aspects:

•	 Each event must be independent of the others.

•	 These must be discrete events, meaning that events occur one at a time.

•	 It is assumed that the average rate of occurrences, 𝜆, is constant over the time interval. In the 
ticket purchasing example given earlier, it is assumed that the rate of ticket purchases will 
remain the same over the first hour and it doesn’t suddenly increase in the last 10 minutes of 
the hour. A data scientist should validate these model assumptions when looking to use the 
Poisson distribution.

You know that data fits a Poisson distribution if the variable of interest is discrete and independent, 
and if it answers the question of how many events happen per a regular interval of time. Here are a 
few more scenarios when you should think about using the Poisson distribution:

•	 Call center modeling: A data scientist can model the number of calls a call center receives in 
an hour based on historical data, assuming a constant average rate

•	 Website traffic analysis: Analyzing the number of hits or visits to a web page within specific 
time intervals can be modeled using the Poisson distribution

•	 Natural events: Studying the number of earthquakes in a particular region over a year or 
the number of meteorites of a certain size hitting the Earth in a century are examples of 
Poisson processes

•	 Service systems: The number of customers arriving at a bank or a gas station in a fixed period 
can be modeled with the Poisson distribution

•	 Healthcare: In medicine, a Poisson distribution might be used to model the number of 
occurrences of particular incidents, such as the number of births in a hospital in a day

•	 Quality control: In manufacturing, it might describe the number of defects found in a particular 
sample of items

Exponential distribution

Similar to the Poisson distribution, the exponential distribution is a continuous distribution that 
simply models the interval of time between two events. You can also think of this as the probability 
of time between Poisson events. The exponential distribution models the time between consecutive 
events in a Poisson process, where events occur at a constant average rate (𝜆). It is often used to model 
waiting times and lifetimes of certain processes. For example, the time between consecutive visits to 
a website follows an exponential distribution with an average rate of 0.1 visits per minute. We can 
calculate the probability that a visitor will arrive within the next 10 minutes.
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This distribution assumes that the events occur at a constant rate and that each event is independent 
of each other. A data scientist would want to check these assumptions are reasonable before modeling 
a process with this distribution.

Here are additional examples of where a data scientist might use an exponential distribution:

•	 Lifetime modeling: The exponential distribution is used to model the lifetime of products, 
machinery, and electronic components, representing the time until the first failure

•	 Service systems: It can describe the time between consecutive arrivals of customers in a system, 
such as a bank or a call center

•	 Natural phenomena: The time between occurrences of certain types of natural events, such as 
earthquakes or meteor showers, can be modeled with the exponential distribution

•	 Medical research: It can be used to model the time between successive occurrences of an 
event, such as the intervals between heartbeats or the time until the onset of a specific disease

Geometric distribution

The geometric distribution models the number of independent Bernoulli trials needed before 
observing the first success. For example, in basketball, if a player has a 70% chance of making a free 
throw (p=0.7), we can use the geometric distribution to calculate the probability of the player making 
the first free throw on their second attempt. Similar to the binomial distribution, we assume that 
each trial has two possible outcomes (success or failure), is independent of the others, and that the 
probability of success is the same for each trial. However, remember that the binomial distribution 
looks to model the number of successes over a fixed number of trials, while the geometric distribution 
models the number of trials required to achieve the first successful trial.

Again, here are some examples of where a data scientist might use a geometric distribution:

•	 Reliability analysis: The geometric distribution can model the number of uses of a product 
until it fails for the first time. This might be applied in industrial contexts to understand 
product longevity.

•	 Marketing campaigns: In marketing, this distribution might be used to model the number of 
contacts required to make the first sale to a new customer.

•	 Medical trials: In healthcare, it could represent the number of trials needed to achieve the first 
successful treatment in a series of independent treatments.

•	 Ecology: In environmental studies, it might describe the number of species sampled until the 
first endangered species is found.

•	 Quality control in manufacturing: The geometric distribution can model the number of items 
inspected until the first defective item is found.
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The Weibull distribution

The Weibull distribution is a versatile distribution that’s used in reliability engineering and survival 
analysis. It can model various shapes, including exponential (special case) and bathtub curves. 
Without getting too heavy into the math, the Weibull distribution is useful because of its flexibility, 
which is afforded to this distribution by two parameters: scale (𝜆) and shape (k). More specifically, 
the Weibull distributions are often used to model the time until a given technical device fails, but it 
also has other applications.

Here are some examples of when a data scientist might use the Weibull distribution:

•	 Survival analysis: In medical research, it’s often used to model the time until the occurrence 
of certain events, such as the time until death in a population of patients with a specific disease

•	 Weather forecasting: It can be used to model wind speeds to help with designing wind turbines 
or predicting storm damages

•	 Economics and Finance: Some economic and financial phenomena that do not follow the 
normal distribution may be modeled using the Weibull distribution

•	 Quality control in manufacturing: It can model various aspects of the manufacturing process, 
such as the time until the first failure of a product:

Figure 8.6: Three different forms of the Weibull distribution
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Assessment

What are probability distributions and how are they utilized in the context of data science?

Answer

Probability distributions are fundamental concepts in statistics and probability theory that describe 
the likelihood of various outcomes in a random experiment or process. In the context of data science, 
these distributions play a critical role in modeling and understanding uncertainty. By studying the 
properties and characteristics of different probability distributions, data scientists gain insights 
into real-world phenomena, make predictions, and perform statistical inference. Given a certain 
distribution of a variable in a dataset, useful assumptions can be made, such as how to calculate 
probabilities associated with the dataset, and which models can be applied given the confirmation of 
the distribution’s assumptions.

Assessment

Can you describe some of the major probability distributions used in statistics and data science, such as 
uniform distribution, normal distribution, t-distribution, binomial distribution, Poisson distribution, 
exponential distribution, geometric distribution, and Weibull distribution?

Answer

Here are the definitions for the different distributions:

•	 Uniform distribution: This represents outcomes where each value within a given range is 
equally likely. It’s simple yet essential for describing uniformly random events.

•	 Normal distribution: Also known as the Gaussian or Z distribution, it is perhaps the most 
widely used distribution. It’s characterized by a bell-shaped curve and is determined by its mean 
and standard deviation. A related concept is the z-score, which measures how many standard 
deviations a given data point is from the mean.

•	 T-distribution: It is similar to the normal distribution but has shorter, fatter tails. It’s used 
when sample sizes are small. As the sample size increases, the t-distribution converges to the 
normal distribution.

•	 Binomial distribution: It models the number of successes in a fixed number of independent 
Bernoulli trials. A Bernoulli trial is a random experiment with two possible outcomes: success 
or failure.

•	 Poisson distribution: It represents the probability of a given number of independent events 
happening in a fixed interval of time. It’s commonly used in queuing theory and related applications.
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•	 Exponential distribution: This distribution models the time between consecutive events in a 
Poisson process, where events occur at a constant average rate. It’s often used to model waiting 
times and lifetimes of certain processes.

•	 Geometric distribution: This models the number of independent Bernoulli trials needed 
before observing the first success. It can answer questions such as “How many trials until the 
first success?”

•	 Weibull distribution: This is a versatile distribution that’s used in reliability engineering and 
survival analysis. It can model various shapes, including exponential, and is often used to model 
time until a given technical device fails, among other applications. Its flexibility is afforded by 
two parameters: scale and shape.

Testing hypotheses
In this section, we will review hypothesis testing, which is a statistical method that’s used to make 
inferences about population parameters based on sample data. It involves formulating two competing 
hypotheses – the null hypothesis (​​H​ 0​​​) and the alternative hypothesis (​​H​ a​​​) – and then using sample 
data to determine which hypothesis is more likely to be true.

The null hypothesis, or what I like to call “business as usual,” is the default assumption or status quo 
for any given scenario. It’s also often considered the “least interesting” scenario. For example, if I want 
to test whether or not changing my sneakers makes me a better runner, the sneakers not affecting my 
running abilities is the null hypothesis since there is no significant difference, effect, or relationship 
between the variables. Oftentimes, researchers are interested in rejecting the null hypothesis.

The alternative hypothesis is the opposite of the null hypothesis (mutually exclusive) as it represents 
the claim (that is, the hypothesis) being tested. It suggests that there is a significant difference, effect, 
or relationship in the population, given the contents of the sample.

Although the computations behind identifying critical values against given experiment parameters 
are beyond the scope of this book, we will go over the basics of what each statistical test does, and in 
what situations you may use them. There are many programs, including Python, R, and other statistical 
programs, that can run these tests. The hypothesis testing procedure involves the following steps:

1.	 Formulate the null hypothesis and the alternative hypothesis.

2.	 Randomly sample the population and calculate the appropriate test statistic (for example, 
t-statistic, z-score, or chi-squared statistic) from the sample.

3.	 Determine the appropriate probability distribution for the test statistic under the assumption 
that the null hypothesis is true.

4.	 Find the p-value, which is the probability of observing a test statistic as extreme as the one 
obtained, assuming the null hypothesis is true (the p-value measures the strength of the evidence 
against the null hypothesis).
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5.	 Compare the p-value to a pre-determined significance level (alpha) to make a decision. In the 
data science industry, it is common to use a significance level of 5%. Therefore, if your p-value 
is below 5%, we reject the null hypothesis. If it is greater than the 5% threshold, we fail to reject 
the null hypothesis.

Note
We will primarily focus on the most common forms of parametric hypothesis testing since 
non-parametric testing is beyond the scope of this chapter.

Understanding one-sample t-tests

A one-sample t-test is a statistical procedure that compares the mean of a sample to a predetermined 
value to determine whether the observed difference is statistically significant or if it likely occurred 
due to chance alone.

For example, suppose we want to verify that the average male sea otter population in the Pacific 
Northwest of the US is maintaining a healthy weight, which we hypothesize to be 75 lbs. Since it’s 
impractical to measure the entire population, we collect a sample of 50 male sea otters. Then, we 
calculate the sample mean and standard deviation. These values are used to compute a t-statistic, 
which will help us determine if the population mean is statistically significantly different from 75 lbs.

Understanding two-sample t-tests

A two-sample t-test (that is, two samples assuming equal variance test) determines whether there is a 
statistically significant difference between the means in two unrelated groups. For example, consider 
comparing the mean number of hours spent emailing per week by married respondents (population 
1) and single respondents (population 2). The “Email Hours Per Week” variable is the test variable.

The independent samples t-test examines whether the difference between the mean number of 
hours married respondents spent emailing, and the mean number of hours single respondents spent 
emailing, is significantly different. To do this, we take samples from each population and compare their 
distributions. Are they significantly different? When in doubt, it’s best to use an independent-sample 
t-test. This is appropriate for “between-subjects“ designs where two groups of subjects are intended 
to differ on a critical manipulation.

Now, suppose we want to investigate whether there is a significant difference in the test scores of two 
study groups, Group A and Group B. Each group consists of different students, and the two groups 
were taught using different teaching methods:

•	 Group A test scores: [78, 86, 88, 92, 75, 82, 80, 85, 89, 94]

•	 Group B test scores: [72, 79, 84, 90, 81, 76, 88, 80, 83, 91, 85, 87]
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We want to determine if there is a statistically significant difference in their average test scores. The 
hypothesis statements are as follows:

•	 Null hypothesis: There is no significant difference between the average test scores of Group 
A and Group B (​µ​A - ​µ​B = 0)

•	 Alternative hypothesis: There is a significant difference between the average test scores of 
Group A and Group B (​μA − µB ≠ 0​)

Understanding paired sample t-tests

In your journey as a data scientist, statistical testing will be a cornerstone of your work, often used 
to verify hypotheses and draw conclusions from the data you’ve collected or analyzed. One statistical 
technique that you’ll likely encounter frequently, particularly when dealing with related samples, is 
the paired sample t-test, also known as the dependent sample t-test.

A paired sample t-test is a statistical procedure that determines whether the mean difference 
between two sets of observations is zero. The two sets of observations are typically dependent on 
each other – for example, the same set of individuals measured at two different time points or under 
two different conditions.

This test is applicable when you have two quantitative measurements, and these measurements are 
paired or related in some way. The “pairing” refers to the fact that each data point in one dataset is 
uniquely linked to a data point in the other dataset. In other words, there’s a one-to-one correspondence 
between the values in the two sets. These scenarios can often be seen in the following areas:

•	 Before-and-after observations: Here, the same individuals, items, or events are measured 
before and after a treatment or intervention – for instance, measuring student test scores before 
and after an educational program

•	 Matched pairs: The pairs of observations come from two distinct groups, but each pair is 
matched or related in some way, such as twins, paired geographical locations, or matched units

Once you identify that you have paired data, the paired sample t-test can be used to compare the 
means of the two samples. The test assumes a null hypothesis that the true mean difference between 
the paired samples is zero and an alternative hypothesis that it is not. Depending on the test’s result, 
you’ll either reject or fail to reject the null hypothesis. Keep in mind that the paired t-test assumes 
that the differences between pairs follow a roughly normal distribution.

Understanding ANOVA and MANOVA

Analysis of Variance (ANOVA) and Multivariate Analysis of Variance (MANOVA) are powerful 
statistical tests that are often utilized by data scientists to analyze the differences among group means 
and their associated procedures. They offer an extension of the two-sample t-test to scenarios with 
more than two groups or variables.
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ANOVA

ANOVA compares the means of three or more independent groups to test if they are significantly 
different from each other. The “business as usual” null hypothesis (H​ 0​​​) posits​​ that all group means are 
equal. The alternative hypothesis (​​H​ 

a
​) is that at least one group mean is different.

We can represent this symbolically:

•	 ​​H​ 0​​​: µ1 = µ2 = µ3 = ... = µn (where µi represents the mean of each group)

•	 ​​H​ a​​​: At least one µi is different

ANOVA is most appropriate when the following conditions are met:

•	 Dependent variable: The dependent variable is continuous (interval/ratio)

•	 Independent variable: The independent variable is categorical with at least three levels (different 
groups or categories)

•	 Assumptions: The data should meet the assumptions of independence, normality, and 
homogeneity of variance

MANOVA

MANOVA, an extension of ANOVA, is used when there are two or more dependent variables. The 
null hypothesis (​​H​ 0​​​) claims that the multiple population mean vectors of the different groups are equal. 
The alternative hypothesis (​​H​ 

a
​​​) asserts that they are different.

MANOVA is most suitable when the following conditions are met:

•	 Dependent variables: There are two or more continuous dependent variables

•	 Independent variable: The independent variable is categorical with at least three levels

•	 Assumptions: The data should meet the assumptions of multivariate normality and homogeneity 
of variance-covariance matrices

Chi-squared test

The chi-squared test is a non-parametric statistical method that’s frequently employed in data science, 
particularly when dealing with categorical data. It is useful for assessing the relationship between two 
categorical variables in a sample.
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There are two types of chi-squared tests:

•	 Chi-squared test of independence: Assesses if there is a significant association between two 
categorical variables

•	 Chi-squared goodness of fit test: Determines if the observed frequencies for a categorical 
variable match an expected set of frequencies

Let’s delve a bit deeper into each of these tests.

Chi-squared test of independence

The chi-squared test of independence tests the null hypothesis (​​H​ 0​​​) to see whether the two categorical 
variables are independent, with no association or relationship between them. The alternative hypothesis 
(​​H​ 

a
​​​)asserts that there is an association or relationship between the two variables.

We can represent this symbolically:

•	 ​​H​ 0​​​: The variables are independent

•	 ​​H​ a​​​: The variables are not independent

The chi-squared test of independence is appropriate under the following conditions:

•	 Variables: Both variables are categorical (nominal).

•	 Observations: Observations are independent, meaning each participant contributes only to 
one cell within the chi-squared table.

•	 Assumption: The assumption of a sufficiently large sample size is met. Generally, all expected 
frequencies should be at least 5.

Chi-squared goodness of fit test

The chi-squared goodness of fit test evaluates the null hypothesis (​​​​H​ 0​​​​) to see whether the observed 
frequency distribution of a categorical variable matches an expected frequency distribution. The 
alternative hypothesis (​​​H​ a​​​​) states that the observed distribution does not fit the expected distribution.

We can represent this symbolically:

•	 ​​​​H​ 0​​​​​​: Observed frequencies = expected frequencies

•	 ​​H​ a​​​: Observed frequencies ≠ expected frequencies
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This test is suitable when the following conditions are met:

•	 Variable: The variable under consideration is categorical

•	 Observations: Observations are independent

•	 Assumption: All expected frequencies are at least 5

A/B tests

In the realm of data science, especially in fields such as marketing, product development, and user 
experience design, A/B testing, also known as split testing or bucket testing, is an essential method 
for comparing two versions of a single variable to identify which performs better.

An A/B test randomly assigns subjects to one of two groups: the control group (A), which receives 
the “business as usual” version, and the experimental group (B), which gets the version with the 
modification. The performance of the two groups is then compared to see if the modification resulted 
in any statistically significant improvement.

The hypotheses in an A/B test relate to whether a difference exists between the two versions:

•	 Null hypothesis (​​H​ 
0
​​​): The null hypothesis posits that there is no difference in outcome between 

version A and version B

•	 Alternative hypothesis (​​​​H​ 
a
​​​): The alternative hypothesis asserts that there is a difference in 

outcome between version A and version B

For example, if pA and pB represent the probability of a customer purchase for versions A and B of a 
website, respectively, then our null and alternative hypothesis would look like this:

•	 ​​​​H​ 
0
​​​​​​: pA = pB

•	 ​​​​H​ 
a
​​​​​​: pA ≠ pB

Applicability of A/B testing

A/B testing is most applicable in scenarios where you are testing a single modification between two 
versions. Some of the common conditions are as follows:

•	 Controlled experiment: You can control and randomly assign subjects to groups A or B

•	 Single-variable testing: You’re testing a single change (for example, different headlines, page 
layouts, and color schemes)

•	 Clear metrics: There is a clear metric to measure success (for example, click-through rate, time 
spent on a page, purchase made, and so on)
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Implementing A/B testing

The process of conducting an A/B test is as follows:

1.	 Identify the variable: Determine the element you want to test (for example, the color of a 
button, the length of a sales email, and so on).

2.	 Formulate hypotheses: Establish the null and alternative hypotheses.

3.	 Split the sample: Randomly assign your subjects to two groups, A (control) and B (treatment).

4.	 Collect and analyze data: Record the performance metric for each group, then compare the 
results to see if there is a statistically significant difference.

5.	 Statistical test: Perform a statistical test (such as a two-sample t-test) to check the significance 
of the difference.

6.	 Make a decision: If the p-value from your statistical test is less than your pre-set significance 
level (usually 0.05), reject the null hypothesis, concluding that your modification made a 
significant difference.

Assessment

Suppose you are working as a data scientist at a tech company that is developing a new feature for 
its main application. The company wants to determine if this feature will increase user engagement 
time. Describe how you would use hypothesis testing to help answer this question, and what specific 
tests might you use.

Answer

Hypothesis testing is an excellent method to answer such a question. First, I would define the null 
hypothesis to be that the new feature does not affect user engagement time, meaning that the average 
engagement time remains the same with or without the new feature. The alternative hypothesis would 
then state that the new feature does change user engagement time.

To test these hypotheses, I would suggest performing an A/B test, where users are randomly assigned 
to two groups: the control group (A), who use the application without the new feature, and the 
experimental group (B), who use the application with the new feature. The engagement times of both 
groups are then collected and compared.

Specifically, a two-sample t-test could be used to determine if there’s a significant difference in the 
means of user engagement time between the two groups. If the p-value of the test is less than a pre-set 
significance level (usually 0.05), we would reject the null hypothesis in favor of the alternative hypothesis, 
indicating that the new feature has a statistically significant impact on user engagement time.
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Assessment

You conducted a survey to understand whether customers prefer product A or product B. You 
hypothesize that there is a difference in preference. Explain which statistical test you would use to 
analyze the collected data and state the null and alternative hypothesis for this scenario.

Answer

The appropriate test to use in this scenario is the chi-squared test of independence. This test is used 
to determine whether there is a significant association between two categorical variables. Here, the 
two variables are the product (A or B) and preference (yes or no).

The null hypothesis for this test would be that there is no association between the product and 
preference, meaning that the product does not influence the preference. The alternative hypothesis 
would be that there is an association between the product and preference, meaning that the preference 
depends on the product.

We would collect data on customer preferences for both products and perform the chi-squared test 
of independence. If the resulting p-value is less than our chosen significance level (commonly 0.05), 
we reject the null hypothesis and conclude that there is a significant association between product 
and preference, which supports our original hypothesis that there is a difference in preference for 
the products.

Understanding Type I and Type II errors
In hypothesis testing, there is always a chance of making errors:

•	 A Type I error occurs when we reject the null hypothesis when it is true (this is also known 
as a false positive)

•	 A Type II error occurs when we fail to reject the null hypothesis when it is false (this is also 
known as a false negative):

Figure 8.7: Type I error vs. Type II
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Understanding the nuances and implications of Type I and Type II errors is fundamental to hypothesis 
testing. In Figure 8.7, we see that Type I Error occurs at the intersection of the null hypothesis being 
true, and the action of rejecting the null hypothesis. This is similar to a pregnancy test coming back 
positive when the woman is not in fact pregnant (also known as a false positive result).

Simiarly, Type II Errors occur when the null hypothesis is false, but incorrectly fails to reject the null 
hypothesis. This is like having a pregnancy test that tells a pregnant woman that she is not pregnant 
(also known as a false negative).

Type I error (false positive)

A Type I error, or false positive, happens when we incorrectly reject a true null hypothesis. In simpler 
terms, it’s an error of overreaction. We mistakenly believe there is a significant effect or difference 
when, in fact, there isn’t. The probability of committing a Type I error is denoted by the Greek letter 
alpha (α), which corresponds to the significance level set for the test. If α is set to 0.05, for instance, 
we are willing to accept a 5% chance of committing a Type I error.

Type II error (false negative)

Conversely, a Type II error, or false negative, occurs when we fail to reject a false null hypothesis. This 
is an error of underreaction. We mistakenly believe there is no significant effect or difference when, in 
reality, there is. The probability of committing a Type II error is represented by the Greek letter beta (β).

One minus beta, or (1-β), gives us the power of the test, which is the probability of correctly rejecting 
a false null hypothesis. Hence, increasing the power of a test decreases the chances of committing a 
Type II error.

Striking a balance

The probabilities of committing Type I and Type II errors are inversely related. Reducing the risk of 
a Type I error (by choosing a smaller α) increases the risk of a Type II error, and vice versa. The key 
is finding the right balance between these two risks, and this balance depends on the context of the 
test and the potential implications of each type of error.

For example, in a medical context, a Type I error might lead to unnecessary treatment (false positive), 
while a Type II error might lead to a lack of treatment when it’s needed (false negative). The relative costs 
and implications of these errors would guide the choice of α and, indirectly, the risk of a Type II error.

In conclusion, while you can never completely eliminate the risk of committing Type I and Type II 
errors, understanding these concepts, carefully choosing your significance level, and increasing your 
sample size (where possible) can help you manage and minimize these risks.
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Assessment

In the context of a legal trial, where the null hypothesis is that the defendant is innocent (not guilty), 
can you explain what a Type I and a Type II error would correspond to and which one is considered 
more severe in this context?

Answer

In the context of a legal trial, a Type I error (false positive) would correspond to convicting an innocent 
person – that is, rejecting the null hypothesis (the defendant is innocent) when it is true. A Type II 
error (false negative) would correspond to acquitting a guilty person – that is, failing to reject the 
null hypothesis when it is false.

Generally, in legal contexts, a Type I error is considered more severe as it’s based on the principle 
that “it is better that 10 guilty people escape than one innocent suffers.” This is reflected in the idea of 
“innocent until proven guilty” and the requirement for proof “beyond a reasonable doubt.” However, 
both types of errors are undesirable, and the legal system strives to minimize both.

Assessment

Describe how the chosen significance level (alpha, α) can impact Type I and Type II errors in a 
hypothesis test. What trade-offs might you have to consider when choosing the significance level?

Answer

The significance level, denoted by alpha (α), is the probability of rejecting the null hypothesis when it 
is true – that is, it directly corresponds to the probability of making a Type I error. If you set a lower 
significance level, say 0.01 instead of 0.05, you are decreasing the chances of making a Type I error; you 
are making the test more conservative and requiring stronger evidence to reject the null hypothesis.

However, making the test more stringent to avoid Type I errors increases the chances of making a 
Type II error – where we fail to reject a false null hypothesis. This is because you are setting a higher 
bar for the evidence required to reject the null hypothesis, which might lead to failing to reject the 
null hypothesis when it is false.

The choice of the significance level involves a trade-off between these two types of errors and will 
depend on which error has more severe consequences in the given context. For instance, in medical 
testing, a Type I error could lead to unnecessary treatment (possibly with side effects), while a Type 
II error could lead to missed treatment for a sick person. The relative costs and consequences of these 
errors guide the selection of the appropriate significance level.



Summary 227

Summary
In this chapter, we dove into the core fundamentals of data mining with statistics, which are often 
assessed during data science interviews. We reviewed the basics of probability, how to describe data 
using different measures of centrality and variability, how to estimate variables with population sampling, 
the relevance of the CLT and the assumption of normality, and reviewed probability distributions 
and hypothesis testing. By learning about these principles, you will be able to identify and describe 
relevant data statistics and make testable hypotheses. You will also avoid being fooled by misused 
statistics that manipulate our understanding of data.

Be aware that some interviewers will ask theoretical questions while others will want you to work out 
the solution to a problem. In either case, statistics is the backbone of many machine learning algorithms 
and experimentation designs, which are prominent in data science in all industries.

In the next chapter, we will build on our understanding of classical statistics by diving into 
pre-modeling concepts.
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9
Understanding Feature 

Engineering and Preparing 
Data for Modeling

Wow – look how far you’ve come! Congratulations on making it to Chapter 9, where we will prepare 
you for machine learning concepts in the next chapter!

In this chapter, we will delve into the critical phase of pre-modeling. Here, you’ll combine your 
knowledge of Python, data wrangling, and statistics. 

While numerous data science texts emphasize the latest machine learning models, data preparation 
is the true foundation of successful prediction. This chapter is a vital bridge between collecting data 
and applying advanced machine learning techniques, emphasizing the data science principle, “garbage 
in, garbage out.” Poor input data will yield unreliable results no matter how advanced a model is.

Pre-modeling data preparation is about ensuring our data is accurate, consistent, and relevant. 
Mastering this stage means understanding issues such as outliers, feature engineering, and imbalances. 
By addressing these, we will enhance the analysis quality, paving the way for robust and accurate 
predictive models.

This chapter covers a wide array of essential topics and techniques that data scientists commonly 
employ to prepare their data for modeling. Here’s a brief overview of what you can expect to learn:

•	 Understanding feature engineering

•	 Applying data transformations

•	 Engineering categorical data and other features

•	 Performing feature selection

•	 Working with imbalanced data

•	 Reducing dimensionality
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Understanding feature engineering
Feature engineering is a transformative process in data science that holds the key to unlocking 
the full potential of machine learning algorithms. As data scientists, we are tasked with analyzing 
the raw data and crafting new and informative representations of that data. Feature engineering 
involves selecting, transforming, and creating features that best capture the underlying patterns and 
relationships within data. By delving deep into the domain knowledge and leveraging our creativity, 
we can engineer features that amplify the predictive power of our models, improve accuracy, and 
enable better generalization of new data.

This section looks at the art and science of feature engineering, exploring a myriad of techniques 
and methodologies to extract meaningful insights from data and empower our machine learning 
algorithms to make informed and intelligent decisions.

Note
In this section, we will use Pandas for our feature engineering process. We covered some of 
Pandas’ functions in Chapter 3.

Avoiding data leakage

Before discussing common data transformations and preprocessing techniques, we first need to 
acknowledge the importance of building reproducible and well-documented ML pipelines for 
maintaining data processing and modeling integrity. A major benefit of strong ML pipelines is that 
they ensure the modeling process avoids data leakage.

Data leakage is a phenomenon that leads to unreliable model performance due to the “leakage” of 
information beyond the training dataset that’s being used during the creation of the model. This 
additional information can allow the model to learn something that it otherwise would not know 
(aka “peeking”) and, in turn, invalidate the estimated performance of the model being constructed.

This is a mistake made by many novice data scientists who apply data transformations and preprocessing 
to the entire dataset prior to splitting the training set from the test set. This may lead to high bias and 
overly optimistic model performance.

To avoid data leakage:

•	 Split the dataset into training and testing sets.

•	 Train the transformations on the training data only, then use the results on the test set.
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Here is an example of how to properly avoid data leakage with a normalization task:

1.	  Split the dataset:

X_train, X_test, y_train, y_test = train_test_split(X, y, test_
size=0.2, random_state=42)

2.	 Create the data transformation task pipeline:

pipeline = Pipeline([ ('scaler', StandardScaler()), ])

3.	 Fit and transform the task to the training set:

X_train_transformed = pipeline.fit_transform(X_train, y_train)

4.	 Transform the testing set with the training set task pipeline:

X_test_transformed = pipeline.transform(X_test)

Using this technique, you can avoid data leakage and unreliable modeling results.

Handling missing data

Handling missing data is a common task in data preprocessing before applying machine learning 
algorithms. Missing data can introduce biases, errors, and instability in the analysis, leading to incomplete 
or misleading results. Moreover, some algorithms cannot handle missing data directly, making proper 
imputation essential for effective data processing. By replacing missing data, we maximize the utilization 
of available information and preserve underlying data patterns and relationships. This ensures an 
algorithm can operate without restrictions and enables accurate predictions and reliable outcomes.

Addressing different missing data mechanisms is equally important to avoid potential biases. Ultimately, 
replacing missing data enhances a dataset’s accuracy, integrity, and usability, making it an indispensable 
part of data preparation for robust and trustworthy machine-learning applications.

Missing data can disrupt the accuracy of our analyses and models. Before proceeding with data 
imputation, it’s crucial to identify the missing values within a dataset. Consider the following example:

import pandas as pd
# Sample dataset with missing values
data = {
    'A': [1, 2, None, 4, 5],
    'B': [6, None, 8, 9, 10],
    'C': [11, 12, 13, 14, None]
}
df = pd.DataFrame(data)
# Check for missing values in the dataset
print(df.isnull().sum()) #Output: A: 0, B: 1, C: 1
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The code snippet uses the isnull() method to check for missing values in the DataFrame. The 
sum() function is then used to count the number of missing values in each column. We can see that 
columns B and C are missing one data point.

Now that we know our dataset is missing data, let’s review how to handle this. As previously mentioned, 
there are a variety of methods to handle missing data, depending on the missingness pattern. Missingness 
patterns in data preparation refer to the systematic tendencies or structures in which data is absent, 
indicating the reasons or mechanisms behind the missing values. As promised, we will review a few 
examples of how to handle the following different scenarios:

•	 Missing Completely at Random (MCAR): In this scenario, the missingness occurs randomly 
and is unrelated to any other variable in the dataset. One common approach to handling MCAR 
is to simply remove the rows with missing values:

import pandas as pd
# Sample dataset with missing values (MCAR)
data = {
    'A': [1, 2, None, 4, 5],
    'B': [6, None, 8, 9, 10],
    'C': [11, 12, 13, 14, None]
}
df = pd.DataFrame(data)
# Removing rows with missing values (MCAR)
cleaned_df = df.dropna()

This script uses the dropna() function to remove any row from the dataset that has a 
missing value.

•	 Missing Not at Random (MNAR): In MNAR, the missingness is related to unobserved or 
unrecorded values that are not random and may be related to the value itself. A common 
technique to handle MNAR is to use imputation methods to fill in the missing values, based 
on other available information:

# Sample dataset with missing values (MNAR)
data = {
    'Age': [25, 30, None, 40, 45],
    'Income': [50000, None, 75000, 90000, None]
}
df = pd.DataFrame(data)
# Impute missing values with the mean of the 'Age' column
df['Age'].fillna(df['Age'].mean(), inplace=True)

# Impute missing values with the mean of the 'Income' column
df['Income'].fillna(df['Income'].mean(), inplace=True)
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In this example, we use the fillna() function in combination with the mean() function 
to select the Income column mean and fill in any missing values within the column.

•	 Missing at Random (MAR): In MAR, the missingness is systematic but depends only on the 
observed variables. One popular method to handle MAR is to use conditional imputation, 
where the imputed value depends on the values of other variables:

# Sample dataset with missing values (MAR)
data = {
    'Gender': ['Male', None, None, 'Male', 'Female'],
    'Income': ['80-100k', '100-120k', '80-100k', '80-100k', 
'100-120k']
}
df = pd.DataFrame(data)
# Impute 'Gender' based on the mode of 'Gender' for the 
corresponding 'Income' value
mode_by_income = df.groupby('Income')['Gender'].apply(lambda x: 
x.mode().iloc[0])
df['Gender'].fillna(df['Income'].map(mode_by_income), 
inplace=True)

This script uses the groupby(), mode(), and apply() functions to find the mode (i.e., 
most common) gender for the different income categories. From there, it fills in any missing 
rows within the gender column with the most common gender.

Remember that the choice of handling missing data depends on the nature of the missingness, the 
dataset, and the goals of the analysis. Always consider the potential impact of the imputation on the 
overall analysis and modeling results.

Scaling data

Normalizing/scaling are preprocessing techniques that transform the features of the data into a 
consistent and comparable range, enabling algorithms to work more efficiently and producing accurate 
and reliable results. Two of the most commonly used normalizing/scaling techniques include min-max 
scaling and z-score scaling.

Min-max scaling is a technique that scales the data (typically the inputs) to a fixed range, typically 
[0, 1]. It transforms the data in such a way that the minimum value of the feature becomes 0 and the 
maximum value becomes 1.

Min-max scaling is expressed using the following formula for each data point, X, in a feature:

​​X​ new​​ = ​  X− ​X​ min​​ _ ​X​ max​​− ​X​ min​​ ​​
Here is how to implement this formula in Python:

X_min_max = (X - X_min) / (X_max - X_min)
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Here, X_min is the minimum value in the feature and X_max is the maximum value in the feature. 
The result is a min-max scaled feature that falls within the [0, 1] range.

Min-max scaling is particularly useful for the following:

•	 Handling distance-based algorithms: In distance-based machine learning algorithms (which 
we will cover in Chapter 10), such as k-means clustering or hierarchical clustering, the outcome 
is sensitive to the scale of the features. Min-max scaling ensures that each feature contributes 
equally to the distance calculations.

•	 Distance-based algorithms (feature influence): When using distance-based machine learning 
algorithms such as k-nearest neighbors, hierarchical clustering, or when applying principal 
component analysis, you use algorithms that are sensitive to feature magnitudes/distance. 
Min-max-scaling the data helps ensure that each feature contributes equally to the distance 
calculations. This is important when the distance between data points is a significant factor 
in the algorithm.

Now, let’s look at the other common technique for transforming our dataset features into a consistent 
and comparable range.

Z-score scaling is a technique that transforms data (again, typically the inputs) to have a mean of 0 
and a standard deviation of 1. It centers the data around the mean and scales it relative to the spread 
of the data (the standard deviation).

The formula for scaling each data point, X, in a feature is given by:

​​X​ new​​ = ​ X− μ _ σ  ​​

Here is how to implement it in Python:

X_standardized = (X - mean) / standard_deviation

Here, mean is the mean of the feature, and standard_deviation is the standard deviation 
of the feature. The result is a standardized feature with a mean of 0 and a standard deviation of 1. 
After scaling, the data tends to range from -3 to 3. However, it can be more or less, depending on the 
distribution of the data before scaling.

Z-score scaling is particularly useful for the following:

•	 Feature influence: Some machine learning algorithms can be significantly influenced by the 
scale and range of the input features, and z-scaling helps this issue. For example, you might have 
a dataset where you want to predict someone’s BMI by measuring correlating features, such as 
their calorie intake (e.g., 1700 calories), age (e.g., 50 years), steps taken a day (e.g., 5,000 steps) 
or their blood sugar levels (e.g., 140 mg/dL). These variables are on entirely different scales. 
To ensure that one feature doesn’t over-influence the model’s performance, we use z-scaling, 
to ensure all features have the same relative influence by placing them on similar scales. Any 
relatively large or small values  will now truly represent legitimate variation.
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•	 Dealing with outliers: Scaling techniques such as Z-score scaling are less affected by outliers. 
Min-max scaling, conversely, can be influenced by extreme values and may not handle outliers 
as effectively.

So, when do you use min-max scaling over z-score scaling, or vice versa? The choice depends on 
the specific characteristics of the dataset and the requirements of the machine learning algorithm 
being used. Both techniques serve the purpose of transforming data to a comparable range, but their 
implications on the data may vary, making it important to consider the context and the nature of the 
data at hand. If unsure, experimenting with both min-max and z-score scaling and evaluating the 
model’s performance can help determine the most effective preprocessing method.

Applying data transformations
Data transformations are vital steps in the data preparation journey. It ensures that data is prepped 
for data models with unique assumptions. This is achieved by transforming data from its current 
shape (or distribution) to another.In other words, transforming data from the empirical distribution 
to theoretical distributions.

In some cases, we need to transform our input variables to ensure that they’re interpretable by the 
machine learning algorithm. An input variable (also known as a feature) is the columns of data, 
which typically explain some attribute of the data. In other cases, machine learning models require 
your output (aka a response) variable to have a certain distribution. An output variable is the column 
that we are trying to predict.

It certainly would be nice if the world accommodated our needs, but real-world data comes in all 
varieties! To remedy this scenario, you may have to perform a data transformation. In this section, 
we will explore common data transformation techniques.

Introducing data transformations

In the previous section, we discussed some popular techniques for transforming predominantly input 
data to adjust the scales or ranges. This section will discuss additional methods used to adjust the 
skew or relationships of data, including the response variable.

Remember your high school algebra course where you first learned about basic functions. If you recall, 
they looked something like this:
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Figure 9.1: Base algebraic functions

Performing these transformations were a matter of applying the function of (f(x)) on x. Now imagine 
that these graphs are instead vectors of data. Imagine a graph’s x and y coordinates represented by 
the x (the input variable/features) and y (the output variable/response) values of a dataset. In this 
scenario, each record is a vector.

When we talk about data transformation, we talk about transforming data vectors from one form to 
another, much like how we changed linear functions to square functions (also known as parabolas) 
by squaring each value. This process is helpful in pre-modeling for two primary reasons:

•	 To obtain the shape required by a model’s assumptions before using the model on the data

•	 To revert the model’s predictions to their original form (prior to the transformation)

Now that you understand the benefits of data transformations, it is important to know that there 
are many different types of data transformations. Here, we will summarize the following data 
transformation techniques:

•	 Log transformations

•	 Box-cox transformations

•	 Power transformations

•	 Exponential transformations



Applying data transformations 237

Let’s get started.

Logarithm transformations

The logarithmic (log) transformation is beneficial when dealing with (typically right/positive) skewed 
data, where extreme values cause a long tail in the distribution. By taking the logarithm of the data, 
we can compress the range of high values and spread out the lower values, making the distribution 
more symmetric. For example, consider this example, where we have sales data:

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

# Create a left-skewed dataset
np.random.seed(42)
sales_data = np.random.exponential(scale=100, size=1000)

# Apply logarithmic transformation
log_transformed_data = np.log(sales_data)

# Plot the original and transformed data distributions
plt.figure(figsize=(10, 5))

plt.subplot(1, 2, 1)
plt.title('Original Data (Left-Skewed)')
plt.hist(sales_data, bins=30, edgecolor='black')
plt.xlabel('Values')
plt.ylabel('Frequency')

plt.subplot(1, 2, 2)
plt.title('Logarithmic Transformation')
plt.hist(log_transformed_data, bins=30, edgecolor='black')
plt.xlabel('Log-Transformed Values')
plt.ylabel('Frequency')

plt.tight_layout()
plt.show()
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Here is what the sales_data variable looked like before and after the transformation:

Figure 9.2: Sales data before and after a log transformation

The data distribution on the left does not follow a normal distribution with a noticeable bell-shaped 
pattern. Therefore, if you were attempting to use this data in a statistical test, such as those discussed 
in Chapter 8, you would be limited in the type of tests you could use. This is because many statistical 
tests, such as the one sample T-test, assume that your data comes from a normal distribution, and 
using the test on non-normal data can invalidate the results. However, the log transformation can 
convert our data closer to a normal distribution. That is what we see in the plot on the right. It is closer 
to a normal curve than the data plot on the left. We can still test whether the data in the plot on the 
right fits a normal curve, but assuming that it does, we now have more tests available for us to use.

Note
The logarithm transformation does not play well with negative values!

Power transformations

A power transformation is a family of data transformation techniques that involve raising each data 
point to a power (exponent). Different power values result in different transformations, allowing flexibility 
in shaping the distribution. Common power transformations include square root transformation 
(power = 0.5), cube root transformation (power = 1/3), and reciprocal transformation (power = -1).

Power transformations are valuable for handling data of various shapes. They are techniques used to 
adjust data with nonlinear relationships or inconsistent patterns. A key use of power transformations is to 
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address heteroscedasticity, where the data’s variability is uneven across its range. These transformations 
stabilize the variance in the data, making it more uniform and symmetrical. This is particularly beneficial 
for linear modeling. In the following figure, we can see this transformation process.

Figure 9.3: Distribution before and after a power transformation

The distribution on the left starts with a skewed dataset that is missing that familiar bell-shaped 
curve of a normal distribution. We apply the square root function, np.sqrt(), from the NumPy 
package to perform the power transformation on a variable. The histogram on the right displays the 
transformed data after applying the square root transformation. As a result of the transformation, the 
data becomes less skewed, and the distribution moves closer to a normal distribution.

Box-Cox transformations

A Box-Cox transformation is a family of power transformations that are designed to stabilize variance 
in our dataset and make it more closely follow a normal distribution. The Box-Cox equation can be 
seen here:

​​y​(​​λ​)​​  = ​ {​ 
​y​​ λ​,  λ  ≠  0

​ 
​Ln​(​​y​)​​,  x  =  0​

​​​​

The transformation is driven by an exponent, lambda (λ), which varies from -5 to 5. The Box-Cox family 
of transformations also includes both the logarithmic (λ=0) and square root (λ=0.5) transformations 
as special cases. It can automatically determine the best power parameter to stabilize variance and 
normalize data. It is often used to transform model features to fit a normal distribution in order to 
avoid heteroskedasticity, which occurs when the variance of data changes across different levels of 
the independent variable.
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To implement this transformation in Python, we use boxcox() from the scipy.stats package:

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from scipy.stats import boxcox

# Create a right-skewed dataset
np.random.seed(42)
original_data = np.random.exponential(scale=100, size=1000)

# Apply Box-Cox transformation
transformed_data, lambda_value = boxcox(original_data)

# Plot the original and transformed data distributions
plt.figure(figsize=(10, 5))

plt.subplot(1, 2, 1)
plt.title('Original Data (Right-Skewed)')
plt.hist(original_data, bins=30, edgecolor='black')
plt.xlabel('Values')
plt.ylabel('Frequency')

plt.subplot(1, 2, 2)
plt.title('Box-Cox Transformation')
plt.hist(transformed_data, bins=30, edgecolor='black')
plt.xlabel('Transformed Values')
plt.ylabel('Frequency')

plt.tight_layout()
plt.show()

Here, we create a right-skewed dataset and apply the Box-Cox transformation, which can be seen in 
the following figure:
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Figure 9.4: Distribution before and after a Box-Cox transformation

The histogram on the left represents the original right-skewed data, while the histogram on the right 
displays the transformed data after applying the Box-Cox transformation. The Box-Cox transformation 
helps to stabilize the variance and achieve a more symmetric distribution in the transformed data. 
This plot demonstrates the effectiveness of the Box-Cox transformation in addressing skewness and 
making data more suitable for certain types of analyses and modeling tasks.

Exponential transformations

An exponential transformation is a data transformation technique that takes the exponential function 
of each data point in a dataset. Unlike the log transformation, this transformation is often used to 
mitigate the effects of left-skewed or negatively skewed data, where extreme values are more frequent 
and the tail of the distribution is longer. By applying the exponential transformation, we stretch the 
values toward higher magnitudes, leading to a more symmetrical distribution.

Applying an exponential distribution to a variable as a pre-modeling exercise can be beneficial in 
scenarios where data or a specific variable exhibits certain characteristics, related to time-to-event or 
waiting time phenomena. It is also particularly useful when dealing with data that follows exponential 
growth or decay patterns and when the underlying process has a constant hazard rate, meaning that 
the probability of an event occurring in the next instant is independent of the time that has passed 
since the last event.

Data scientists must be aware when attempting to use this technique. First, the input data should be 
positive. When performing exponential transformation, many use a base of e or the natural exponential 
function, and negative values when exponentiated, which can lead to complex numbers that might 
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not be desired in many practical applications. Additionally, they need to be aware of the magnitude 
of their input values. Raising a number to 1,000 can lead to an extremely large result, which could 
cause overflow in some computational environments. 

To observe the shape of an exponential variable, the histogram in Figure 9.5 represents the data 
distribution of time to purchase. The x-axis represents the time (in days) it takes for customers to 
make their first purchase, and the y-axis represents the frequency of customers falling within each 
time interval. Observe that, in most cases, customers take quite some time to make a purchase. This 
is expected, as most people who visit a website or sign up for a newsletter don't immediately make 
a purchase.

 

Figure 9.5: Exponential distribution of time to purchase

Note
While data transformations have valuable applications, it is essential to be cautious and ensure 
that data truly follows the characteristics of the suspected distribution before applying it. 
In practice, real-world data may not perfectly follow theoretical distributions, so model fit 
assessments and hypothesis testing are required to validate the choice of distribution.

There are more data transformations that we did not discuss, with their own unique applications, 
including square transformations, root transformations, Weibull transformations, and hill function 
transformations, but these are much rarer in generalized data science roles. We encourage you to 
explore these in your own time if they strike your interest!
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Engineering categorical data and other features
This section will explore the handling of categorical variables in feature engineering for data science 
and machine learning projects. Categorical variables contain discrete values that represent different 
groups or categories. Effectively preprocessing and engineering these variables is essential to 
extract valuable insights and enhance the predictive power of machine learning models. We will 
dive into various techniques and best practices to transform categorical variables into meaningful 
numerical representations.

One-hot encoding

One-hot encoding is a popular technique for converting categorical variables into binary vectors. 
Each category is represented as a binary feature, with a value of 1 if the data point belongs to that 
category and 0 otherwise. For example, consider a categorical feature, Color, with the categories 
Red, Blue, and Green. After one-hot encoding, this feature will be split into three binary features 
– Color_Red, Color_Blue, and Color_Green. This allows machine learning algorithms to 
process categorical data effectively.

One-hot encoding is necessary because many machine learning algorithms cannot directly process 
categorical data in its original form. These values do not have a numerical relationship that algorithms 
can understand. Let’s take another example – this time, a dataset with a categorical feature, Gender, 
with three categories – Male, Female, and Non-Binary. We have the following data samples:

ID Gender
1 Male

2 Female

3 Non-Binary

4 Female

5 Male

Figure 9.6: A categorical gender dataset

After applying one-hot encoding, the Gender feature is transformed into binary features representing 
each category. For each data sample, we create new binary features – Gender_Male, Gender_
Female, and Gender_Non-Binary. The binary features are assigned a value of 1 if the data 
sample belongs to that category, and 0 otherwise.

ID Gender_Male Gender_Female Gender_Non-Binary
1 1 0 0
2 0 1 0
3 0 0 1
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ID Gender_Male Gender_Female Gender_Non-Binary
4 0 1 0
5 1 0 0

Figure 9.7: A one-hot-encoded gender dataset

Before one-hot encoding, the Gender feature is in its original categorical form, with strings representing 
the categories. However, machine learning algorithms require numerical data for processing. After 
one-hot encoding, each category is converted into its own binary feature, creating new binary columns 
that capture the presence or absence of each category for each data sample.

In Python, you can achieve this using the following code:

# Create DataFrame
df = pd.DataFrame(data)

# Perform One-Hot Encoding
df_encoded = pd.get_dummies(df, columns=['Gender'])

print("Original DataFrame:")
print(df)
print("\nOne-Hot Encoded DataFrame:")
print(df_encoded)

In the code, we first create a DataFrame, df, with the example data that contains a Gender column, 
with categorical values. Then, we use the pd.get_dummies() function from Pandas to perform 
one-hot encoding on the Gender column. This function automatically identifies the unique categories 
in the Gender column and creates new binary columns for each category.

Label encoding

Label encoding is another technique used to convert categorical data into a numerical format. Unlike 
one-hot encoding, which creates binary features for each category, label encoding assigns a unique 
numerical label to each category in the original categorical variable. The numerical labels are sequential 
integers, starting from 0 for the first category, 1 for the second category, and so on. For example, 
consider a categorical feature, Size, with the categories Small, Medium, and Large. After label 
encoding, the categories can be represented as 0, 1, and 2, respectively. Label encoding can be useful 
when there is an inherent order or ranking among the categories.

Here is another example:

import pandas as pd

# Example Data
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data = {'ID': [1, 2, 3, 4, 5],
        'Color': ['Red', 'Blue', 'Green', 'Red', 'Green']}

# Create DataFrame
df = pd.DataFrame(data)

# Perform Label Encoding
color_mapping = {'Red': 0, 'Blue': 1, 'Green': 2}
df['Color_LabelEncoded'] = df['Color'].map(color_mapping)

print("Original DataFrame:")
print(df)

Here is the outcome:

ID Color Color_LabelEncoded
1 Red 0
2 Blue 1
3 Green 2
4 Red 0
5 Green 2

Figure 9.8: A label-encoded color dataset

In the example, we used label encoding to convert the Color categorical variable into the Color_
LabelEncoded numeric feature. The Red, Blue, and Green categories are replaced with numerical 
labels 0, 1, and 2, respectively.

So, what’s the difference between one-hot encoding and label encoding?

•	 The number of features: One-hot encoding creates binary features equal to the number of 
unique categories, while label encoding creates only one numerical feature.

•	 Numerical representation: One-hot encoding represents each category with a separate binary 
feature, where a value of 1 indicates the presence of that category. Label encoding represents 
each category with a unique integer label.

•	 Handling high cardinality: One-hot encoding is suitable for categorical variables with low 
cardinality (a few unique categories), as it creates a binary feature for each category. For high 
cardinality categorical variables, one-hot encoding can lead to an explosion in the number 
of features, making it computationally expensive. In contrast, label encoding handles high 
cardinality efficiently, as it uses a single integer for each category.
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Target encoding

Target encoding, also known as mean encoding, is a technique that leverages the target variable’s 
information to transform categorical features into numeric representations. Instead of replacing the 
categories with numerical labels, target encoding replaces each category with the average value of the 
target variable for that category.

For example, consider a categorical feature, City, with the categories New York, Los Angeles, 
and Chicago. After target encoding, each category will be replaced with the average target value for 
that city, such as 0.23, 0.18, and 0.32, respectively. Target encoding can be particularly useful when 
dealing with high-cardinality categorical variables.

Here’s how target encoding works:

import pandas as pd

# Example Data
data = {'ID': [1, 2, 3, 4, 5],
        'City': ['Indianapolis', 'Detroit', 'Chicago', 'Detroit', 
'Indianapolis'],
        'Target': [0.8, 0.6, 0.9, 0.7, 0.75]}

# Create DataFrame
df = pd.DataFrame(data)

# Perform Target Encoding
city_target_mean = df.groupby('City')['Target'].mean()
df['City_TargetEncoded'] = df['City'].map(city_target_mean)

print("Original DataFrame:")
print(df)

Here are the results:

ID City Target City_TargetEncoded
1 Indianapolis 0.80 0.775
2 Detroit 0.60 0.650
3 Chicago 0.90 0.900
4 Detroit 0.70 0.650
5 Indianapolis 0.75 0.775

Figure 9.9: A target-encoded city dataset
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In the preceding example, we used target encoding to convert the City categorical variable into the 
City_TargetEncoded numeric feature. The target encoding process calculated the average target 
value for each category (Indianapolis, Detroit, and Chicago) and replaced each category 
with its corresponding mean target value.

At this point, you may be wondering, when should you use one-hot encoding versus label encoding 
versus target encoding? There’s not always a clear answer, but here are some things to consider:

•	 One-hot encoding: Use one-hot encoding when dealing with categorical variables with low 
cardinality and no inherent ordinality. One-hot encoding is essential when you want to avoid 
introducing any ordinal relationships or implied numerical order between categories. It is also 
useful when dealing with machine learning algorithms that do not handle categorical data directly.

•	 Label encoding: Use label encoding when dealing with categorical variables with inherent 
ordinality. In cases where the categories have a natural order or ranking, label encoding can 
capture this information effectively. Label encoding is also efficient when handling high cardinality 
categorical variables, as it reduces the number of features compared to one-hot encoding.

•	 Target encoding: Consider target encoding when dealing with categorical variables that show 
a strong relationship with the target variable. Target encoding can capture the average target 
value for each category, making it useful for generating informative numerical representations of 
categorical data. However, it is essential to be cautious with target encoding to avoid overfitting 
and data leakage. Target encoding can be particularly useful for high cardinality categorical 
variables, as it can provide meaningful numerical representations without introducing a large 
number of new features.

Calculated fields

In this section, we will explore the concept of creating calculated fields as a powerful technique for feature 
engineering in data science and machine learning projects. Calculated fields involve generating new 
features by applying mathematical operations, combining existing features, or extracting meaningful 
information from raw data. The process of crafting calculated fields empowers data scientists to 
capture intricate patterns, relationships, and domain-specific insights that might not be evident in 
the original dataset.

Well-crafted calculated fields are often superior to existing raw features. New features, when carefully 
designed, can capture complex patterns and relationships, making the machine learning model more 
robust and accurate. We will address the risk of overfitting and data leakage and provide guidelines 
for feature selection and evaluation. For example, a calculated field such as Days since Last 
Purchase may be more insightful than Purchase Date in predicting customer behavior.

Calculated fields enable us to extract complex relationships and hidden patterns, making machine 
learning models more effective in capturing the underlying structure of data.
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There are the various types of calculated fields:

•	 Mathematical operations: These include addition, subtraction, multiplication, division, and 
exponentiation to create new features. These operations can help derive ratios, percentages, or 
other meaningful indicators that may reveal important trends in data.

An example is calculating price per quantity for an e-commerce dataset by dividing the Price 
feature by the Quantity feature.

•	 Aggregating and grouping: Aggregation involves summarizing data by grouping it based 
on certain categorical features and computing statistics, such as mean, sum, and median, for 
each group. It can lead to insightful new features by capturing the collective behavior of data 
within specific groups.

An example is computing the average revenue per customer by grouping customers based on 
their customer ID, and aggregating the Revenue feature.

•	 Time-based calculations: These are commonly used in time-series data or scenarios that 
include temporal patterns, time lags, rolling averages, and other time-related transformations 
that can capture trends and seasonality in data.

An example is creating a 7-day rolling average feature for a sales dataset to identify trends and 
smooth out short-term fluctuations.

•	 Interaction terms and polynomial features: Interaction terms and polynomial features are 
important for capturing non-linear relationships between features. Combining features can 
reveal interactions that significantly impact the target variable.

An example is adding an interaction term by multiplying the Age feature by the Income 
feature to capture the combined effect on the target variable, such as purchasing power.

•	 Text and NLP-based calculations: For datasets containing text data, feature engineering techniques 
using Natural Language Processing (NLP) can come in handy. This includes text vectorization, 
text extraction, concatenation, word counts, and a host of other NLP transformations to derive 
meaningful features from textual information.

An example is extracting the sentiment score from customer reviews and using it as a feature 
in a sentiment analysis model.

•	 Domain-specific calculations: Domain-specific feature engineering is extremely common 
and what makes data scientists stand out. Expert knowledge plays a crucial role in generating 
relevant calculated fields.

An example is, in the healthcare domain, calculating a BMI (Body Mass Index) feature 
based on a person’s weight and height.
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Assessment

Why is one-hot encoding preferred over label encoding for categorical variables with no inherent order?

Answer

One-hot encoding is preferred over label encoding when dealing with categorical variables without 
any inherent order because label encoding may introduce unintended ordinal relationships between 
categories. For example, if we encode the colors Red, Blue, and Green as 0, 1, 2, respectively, using 
label encoding, it may suggest that Green is somehow greater or more significant than Red, which 
is not the case. One-hot encoding, conversely, avoids this issue by creating separate binary features 
for each category, ensuring that there are no implied relationships between them.

Assessment

What are some potential challenges associated with using label encoding for categorical variables 
with no ordinality?

Answer

When using label encoding for categorical variables with no inherent order, some machine learning 
algorithms may interpret the numerical labels as continuous values and assume a natural ordering 
between the categories. This could lead to incorrect results, as the numerical labels are purely nominal 
and do not carry any meaningful numerical relationships. Additionally, if the range of label values 
is large, algorithms may give higher importance to categories with higher label values, even if such 
relationships do not exist in reality.

Assessment

How can target encoding help improve predictive accuracy in machine learning models?

Answer

Target encoding can help improve predictive accuracy by encoding categorical variables with the average 
target value for each category. This can capture category-specific information, especially in scenarios 
where the target variable exhibits distinct behavior across different categories. By incorporating this 
information as a numeric representation, machine learning models can learn to differentiate between 
the categories more effectively and make more informed predictions. However, it is important to be 
cautious with target encoding to avoid overfitting and data leakage, as target encoding may lead to 
overestimation of performance if not handled properly.
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Performing feature selection
Feature selection is a critical step in the machine learning pipeline aimed at identifying the most 
relevant and informative features from the original dataset. By carefully selecting features, data 
scientists can improve model performance, reduce overfitting, enhance model interpretability, and 
decrease computational complexity.

Feature selection helps to focus a model on the most impactful features, making it more interpretable 
and reducing the risk of overfitting. In this section, we will explore scenarios where using all available 
features can lead to the “curse of dimensionality” and why selecting relevant features is crucial to 
mitigate this issue.

Types of feature selection

There are three main categories of feature selection techniques:

•	 Filter methods: These methods rank features based on statistical metrics such as correlation, 
mutual information, or variance. They are computationally efficient and independent of the 
chosen machine learning model.

•	 Wrapper methods: Wrapper methods assess feature subsets using a specific machine learning 
model’s performance as an evaluation metric. They are computationally expensive but can lead 
to optimal feature subsets for specific models.

•	 Embedded methods: Embedded methods incorporate feature selection into the model training 
process. These methods assess feature importance during model training and eliminate less 
relevant features automatically.

When it comes to feature selection, one challenge for both the filter and wrapper methods is that a data 
scientist using these methods will need to set a threshold on the end number of features they want, or 
limits on how large of a performance change they are willing to accept. There isn’t a universal answer 
to the question of how to set a threshold, and it is often situational-based. However, thinking about 
how much it might cost to gather and store your data could be a helpful guide. In general, you want 
to use the least number of features to obtain the same amount of performance from your machine 
learning model. Therefore, let’s look at our first feature selection method, which uses the wrapper 
technique to select features.

Recursive feature elimination

Recursive Feature Elimination (RFE) is a wrapper method for feature selection that works iteratively 
to identify the most important features in a dataset. It starts by training a machine learning model 
on the entire feature set and ranks the features based on their importance scores. The least important 
feature(s) are then removed, and the model is retrained on the reduced feature set. This process is 
repeated until the desired number of features is reached.
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RFE is particularly useful when a machine learning model provides feature importance rankings, such 
as decision trees or linear regression. By eliminating less important features at each iteration, RFE 
aims to find an optimal subset of features that maximizes the model’s performance.

Without getting too ahead of ourselves, here is how you implement RFE in Python using the RFE package:

from sklearn.datasets import load_iris
from sklearn.feature_selection import RFE
from sklearn.linear_model import LogisticRegression

# Load the Iris dataset
data = load_iris()
X = data.data
y = data.target

# Create a logistic regression model
model = LogisticRegression()

# Initialize RFE and specify the number of features to select
rfe = RFE(model, n_features_to_select=2)

# Fit RFE on the data
rfe.fit(X, y)

# Get the selected features
selected_features = rfe.support_
print('Selected Features:', selected_features)

# Get the feature ranking
feature_ranking = rfe.ranking_
print('Feature Ranking:', feature_ranking)

In the code block, after declaring our imports, we first load in the Iris dataset, which focuses on 
classifying flowers based on different physical characteristics. Once we load the dataset, we create an 
instance of a logistic regression classifier, which will take the input data and attempt to learn how to 
classify the different flowers.

The key in this code block is that we use an instance of the RFE function to wrap our logistic model 
in. We state that we want to select the top two features in the dataset. This will take care of the RFE 
feature selection process for us. Finally, we are left with the two most important features.

Now that we have looked at a feature selection process that uses the wrapper technique, let’s look at 
one that uses the embedded technique.
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L1 regularization

L1 regularization, also known as the Least Absolute Shrinkage and Selection Operator (LASSO), 
is an embedded feature selection method that combines feature selection and regularization during 
model training. In the LASSO, the linear regression coefficients are penalized based on the absolute 
values of the coefficients. This penalty encourages some of the coefficients to be exactly zero, effectively 
performing feature selection by excluding irrelevant features.

The LASSO is particularly effective when dealing with high-dimensional datasets where the number 
of features is much larger than the number of samples. By driving some feature coefficients to zero, the 
LASSO automatically selects the most relevant features and performs a form of dimensionality reduction. 
It helps to enhance model interpretability and generalization while avoiding the risk of overfitting.

Tree-based feature selection

Tree-based models, such as random forest and gradient boosting, can provide valuable feature importance 
scores. These scores indicate the relative importance of each feature in predicting the target variable. 
Tree-based feature selection involves using these importance scores to rank features and selecting 
the top-performing ones. We will talk more about these models in the chapter on machine learning.

Tree-based feature selection is computationally efficient and applicable to both classification and 
regression tasks. It is especially useful for identifying relevant features in datasets with a mix of categorical 
and numerical variables. Additionally, tree-based models can handle nonlinear relationships, making 
them suitable for datasets with complex interactions between features. We will discuss tree-based 
models in Chapter 10.

The variance inflation factor

Collinear features (or multicollinear features for 3 or more variables) refer to variables that are 
highly correlated with each other. Such features can introduce redundancy in the dataset and impact 
model interpretability. Additionally, collinearity can lead to unstable model coefficients, making it 
challenging to identify the true impact of individual features on the target variable.

Techniques such as the Variance Inflation Factor (VIF) can be used to detect collinearity between 
features. A high VIF score for a feature indicates strong multicollinearity, while a VIF close to 1 
indicates no collinearity. To address collinearity, data scientists may choose to remove one of the 
highly correlated features or perform dimensionality reduction, using techniques such as PCA to 
create uncorrelated principal components.

Handling collinear features is crucial for maintaining model stability and ensuring that feature selection 
and feature importance rankings are based on independent and informative features, leading to more 
accurate and interpretable models.
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Here is how to implement a VIF in Python:

import pandas as pd
import numpy as np
from sklearn.datasets import fetch_california_housing
from statsmodels.stats.outliers_influence import variance_inflation_
factor

# Load the California Housing dataset
data = fetch_california_housing()
X = pd.DataFrame(data.data, columns=data.feature_names)
y = data.target

# Function to calculate VIF for each feature
def calculate_vif(X):
    vif = pd.DataFrame()
    vif['Feature'] = X.columns
    vif['VIF'] = [variance_inflation_factor(X.values, i) for i in 
range(X.shape[1])]
    return vif

# Calculate VIF for the entire feature set
vif = calculate_vif(X)
print(vif)

In the code block, we first load the California Housing dataset. In this dataset, we attempt to predict 
the median house value for California districts, based on information such as the average number 
of rooms per household and the median house age. After loading the dataset, we create a function 
to compute the VIF for each feature. After running the function, we print out the results. From this 
point, we can create a filter to remove those features, with a VIF greater than some threshold we set 
based on our project.

Working with imbalanced data
In this section, we will explore the challenges posed by imbalanced datasets in machine learning and 
various methods to effectively address this issue. Imbalanced data refers to datasets where one class 
(the minority class) is significantly underrepresented compared to another class (the majority class). 
The class imbalance can lead to biased and suboptimal model performance, as models tend to favor 
the majority class, making accurate predictions for the minority class challenging. We will delve 
into the consequences of imbalanced data and several techniques to handle imbalanced datasets for 
improved model performance.
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Understanding imbalanced data

Since models prioritize the majority class, there are serious consequences of imbalanced data on 
model training and evaluation.

In the context of imbalanced datasets in machine learning, the majority class refers to the class that 
has a significantly larger number of instances or observations compared to the other class(es) in the 
dataset. It is the class that dominates the dataset in terms of its representation, and as a result, machine 
learning models trained on imbalanced datasets may be biased toward predicting this majority class 
more frequently.

Conversely, the minority class refers to the class that has a relatively smaller number of instances or 
observations compared to the other class(es) in the dataset. This class is underrepresented and may 
have fewer data points available for the model to learn from. As a consequence, machine learning 
models may struggle to correctly predict this minority class and may have lower accuracy, recall, and 
precision for this class.

For example, consider a binary classification problem where we try to predict whether an email is spam. 
If the dataset contains 900 non-spam (not spam) emails and only 100 spam emails, the non-spam class 
is the majority class and the spam class is the minority class. In this scenario, the dataset is imbalanced, 
due to the significant difference in the number of instances between the two classes.

As you may have guessed, we can’t avoid these scenarios entirely because many business problems 
are based on imbalanced datasets. Consider e-commerce, where you model website clicks when the 
site receives thousands of visits daily. In most cases, a click is very rare. Without adjustments for the 
imbalanced class, the model will likely prioritize the majority class, leading to high accuracy but poor 
recall and precision for the minority class.

Treating imbalanced data

Imbalanced data can have several consequences on machine learning models. This subject could take 
an entire book to explain, but here are some approaches for further investigation. Your takeaway here 
should be the depth and general logic behind imbalanced dataset remedies. Showing your knowledge 
in this area will show your level of understanding in pre-modeling practices and considerations.

Some remedies for imbalanced data include the following:

•	 Using different evaluation metrics: Use performance metrics that are more appropriate for 
imbalanced datasets than simple accuracy. Metrics such as precision, recall, F1-score, and area 
under the receiver operating characteristic curve (AUC-ROC) are better suited for evaluating 
model performance on imbalanced data.

•	 Over-sampling: This involves generating synthetic samples for the minority class to increase 
its representation.
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•	 Under-sampling: This involves randomly removing samples from the majority class to decrease 
its dominance.

•	 Random under-sampling and over-sampling: Python offers libraries such as imbalanced-
learn to implement this technique.

•	 Synthetic minority over-sampling technique (SMOTE): SMOTE is a popular over-sampling 
technique that generates synthetic samples by interpolating between neighboring samples of 
the minority class. You can use SMOTE from the imblearn.over_sampling package 
in Python.

•	 Ensemble methods: Ensemble methods, such as Random Forest and Gradient Boosting, can 
handle imbalanced data effectively due to their inherent robustness.

•	 Cost-sensitive learning: Cost-sensitive learning is an approach that assigns different 
misclassification costs to different classes, guiding a model to prioritize the minority class.

•	 Using anomaly detection: Anomaly detection techniques can be useful in handling imbalanced 
data by identifying and classifying rare instances as anomalies. These algorithms include 
Isolation Forest and One-Class SVM.

Reducing the dimensionality
In this section, we will explore the concept of dimensionality reduction, a critical technique in 
machine learning and data analysis that aims to reduce the number of features or variables in a 
dataset while preserving essential information. High-dimensional datasets often suffer from the 
“curse of dimensionality,” leading to increased computational complexity and potential overfitting. 
Dimensionality reduction methods help to transform data into a lower-dimensional space, enabling 
easier visualization, improved model performance, and enhanced interpretability.

Here, we will delve into various dimensionality reduction techniques, and their applications, and 
provide code examples in Python to implement them effectively.

Principal component analysis

Principal Component Analysis (PCA) is a widely used linear dimensionality reduction technique that 
projects data onto orthogonal axes to capture the maximum variance in the first principal components.

PCA is a popular linear dimensionality reduction technique used to transform high-dimensional data 
into a lower-dimensional space. It achieves this by identifying the principal components, which are 
orthogonal directions that capture the maximum variance in the data. The first principal component 
represents the direction of the highest variance, the second principal component represents the second 
highest variance, and so on. By selecting a reduced number of principal components, we can project 
the data onto a lower-dimensional subspace while retaining the most relevant information.
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PCA is widely used for data visualization, feature extraction, and noise reduction. It helps in identifying 
the main patterns and trends in data, simplifying data representation, and speeding up machine 
learning algorithms by reducing computational complexity. However, PCA assumes linearity in the 
data and may not perform well on complex non-linear relationships.

To implement PCA in Python, we can use libraries such as NumPy and scikit-learn. Here’s a 
step-by-step guide:

import numpy as np
from sklearn.decomposition import PCA

# Sample data
X = np.random.rand(100, 5)

# Create a PCA instance and fit the data
pca = PCA(n_components=2)
X_pca = pca.fit_transform(X)

# Print the explained variance ratio of the two principal components
print("Explained Variance Ratio: ", pca.explained_variance_ratio_)

The code starts by generating a dataset that has five features or dimensions. Then, we use the PCA model 
to select the top two components. Finally, we look at how much variance is explained by the top two 
PCA components. So, we have reduced the number of dimensions from five down to two. Data scientists 
look to find the how many components are needed to explain most of the variance in the dataset.

Singular value decomposition

Single Value Decomposition (SVD) is a fundamental matrix factorization technique that plays a 
key role in PCA. SVD is used to decompose a matrix into three matrices, U, Σ, and Vᵀ. U and Vᵀ are 
orthogonal matrices, while Σ is a diagonal matrix containing the singular values.

In PCA, SVD is applied to the centered data to obtain the principal components and explained variance. 
In Python, we can run SVD like this:

import numpy as np

# Sample data
X = np.random.rand(100, 5)

# Center the data
X_centered = X - X.mean(axis=0)

# Perform SVD
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U, S, Vt = np.linalg.svd(X_centered, full_matrices=False)

# Reduce dimensionality to two dimensions using the first two
X_svd = np.matmul(U[:, :2], np.diag(S[:2]))

Here, we reduce our initial data from five columns down to two columns.

t-SNE

t-distributed Stochastic Neighbor Embedding (t-SNE) is a non-linear dimensionality reduction 
technique used when data has complex non-linear relationships. t-SNE aims to preserve local and 
global structures in the data.

You can apply t-SNE in Python using libraries such as scikit-learn:

import numpy as np
from sklearn.manifold import TSNE

# Sample data
X = np.random.rand(100, 5)

# Create a t-SNE instance and fit_transform the data
tsne = TSNE(n_components=2)
X_tsne = tsne.fit_transform(X)

This code takes our randomly generated data and reduces it to two dimensions. It is important to 
know as a data scientist that this algorithm needs to compute pair-wise distances for each data point 
in the dataset. Therefore, the time it takes to run increases with the size of the dataset. So, this may 
not be a great candidate when you have a large amount of data.

Autoencoders

Autoencoders are neural networks used for unsupervised representation learning and non-linear 
dimensionality reduction. They consist of an encoder that compresses data into a lower-dimensional 
representation and a decoder that reconstructs the data from the compressed representation.

Here is an example of how to use an autoencoder in Python for dimensionality reduction:

import numpy as np
from keras.layers import Input, Dense
from keras.models import Model

# Sample data
X = np.random.rand(100, 5)
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# Define the autoencoder architecture
input_layer = Input(shape=(5,))
encoded = Dense(2, activation='relu')(input_layer)
decoded = Dense(5, activation='sigmoid')(encoded)

autoencoder = Model(input_layer, decoded)

# Compile the autoencoder
autoencoder.compile(optimizer='adam', loss='mean_squared_error')

# Train the autoencoder
autoencoder.fit(X, X, epochs=50, batch_size=32)

# Obtain the lower-dimensional representation (encoder part of the 
autoencoder)
encoder = Model(input_layer, encoded)
X_autoencoder = encoder.predict(X)

In the previous code block, we created a model using Keras, where we designed it to have two layers. 
The first layer encodes the input data into two dimensions. The last layer decodes that information 
back. The model attempts to learn a representation, where it first encodes the data and decodes it 
perfectly. Once the training is done, we can throw away the last layer and only use the encoder portion 
for dimensionality reduction. This is just another tool in the data scientist’s tool bag when they need 
to perform dimensionality reduction.

Summary
In this comprehensive chapter, we covered essential concepts in pre-modeling data for analytics and 
feature engineering. Mastering these techniques is vital for data scientists to effectively handle real-
world datasets and build accurate machine learning models.

Understanding techniques such as data min-max scaling, z-score scaling, and feature engineering 
can enhance model performance; transformations such as logarithmic, Box-Cox, and exponential 
help reshape data for better algorithm compatibility; dimensionality reduction methods such as PCA 
and t-SNE simplify and visualize data and aid in effective model building; and handling imbalanced 
data with resampling and ensemble techniques ensure balanced datasets and unbiased predictions.

Additionally, we covered feature engineering techniques, including one-hot encoding, label encoding, 
and target encoding. These techniques allow us to craft new and informative representations of data. 
Feature engineering involves selecting, transforming, and creating features that best capture the 
underlying patterns and relationships within data so that we ensure robust and accurate models.

In the next chapter, we will focus on machine learning algorithms.
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It’s time to give yourself a very generous pat on the back because you’ve officially arrived at the chapter 
on machine learning concepts. Take a moment to appreciate how far you’ve come, as well as all the 
preliminary information in the earlier chapters it takes to truly grasp this chapter. Many learners 
do themselves a disservice by jumping right into machine learning without first understanding its 
underlying principles (for example, statistics) and preliminary tasks (for example, data wrangling or 
pre-modeling), so this puts you ahead of the curve as someone well-equipped to understand the inner 
workings of machine learning algorithms and how and when to use them.

Throughout this chapter, we will cover a wide array of machine learning topics, providing you with the 
foundation needed to understand the intricacies of various algorithms and techniques. Our journey 
will begin with a detailed examination of the machine learning workflow – a step-by-step process 
that data scientists follow when tackling real-world problems. Then, with the groundwork laid, we 
will explore the world of supervised learning, one of the fundamental branches of machine learning. 
After that, we will transition to unsupervised learning, where we will explore the world of clustering 
algorithms. Furthermore, we will discuss various evaluation metrics to gauge model effectiveness and 
explore the bias-variance trade-off – a fundamental concept that highlights the delicate balance between 
model complexity and generalization. Finally, we will explore cross-validation and hyperparameter 
tuning methods to ensure our models perform optimally.

After completing this chapter, you will be able to critically analyze the strengths and weaknesses of 
different machine learning models, allowing you to make informed decisions when selecting the 
most appropriate algorithm for specific tasks. With hands-on coding examples and real-world use 
cases throughout this chapter, you will gain practical experience and confidence in applying machine 
learning concepts to tackle data-driven challenges.
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So, in this chapter, we will cover the following topics:

•	 Introducing the machine learning workflow

•	 Getting started with supervised learning

•	 Getting started with unsupervised learning

•	 Summarizing other notable models

•	 Understanding the bias-variance trade-off

•	 Tuning with hyperparameters

Introducing the machine learning workflow
If you’re a data scientist preparing for a technical interview, understanding the machine learning workflow 
is non-negotiable. Machine learning is concerned with the design and application of algorithms and 
techniques that allow computers to learn patterns that are often applied to solve business problems.

At its core, the workflow consists of several key stages, beginning with a well-defined problem statement 
and culminating in the application of a model trained on unseen data. Each stage, whether it’s selecting 
the appropriate model, tuning hyperparameters, or making predictions, serves as an essential step in 
the data science process. Mastery of these stages not only sharpens your technical acumen but also 
equips you with the systematic thinking required to tackle a wide range of data-related problems:

Figure 10.1: Workflow for machine learning projects

The importance of the machine learning workflow extends beyond just the theoretical understanding 
of algorithms. In interviews and practical settings alike, you’ll often be evaluated on your ability to 
articulate the rationale behind each choice you make – why you chose a specific model, how you tuned 
it, and how you assessed its performance.
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We will delve deep into these areas, covering common models, their strengths and weaknesses, and 
fine-tuning techniques. You’ll also learn about model evaluation metrics and how to interpret them, 
ensuring that you’re not just following steps, but also understanding the implications of each decision 
you make. By the end of this section, you’ll be better prepared to articulate and execute a robust 
machine learning workflow, setting you apart in any data science interview.

Problem statement

At the heart of every data science endeavor lies a well-defined problem statement. This initial step 
involves understanding the problem at hand, identifying goals, and outlining the data needed for 
analysis. Clear problem formulation helps set the direction for subsequent stages, ensuring a focused 
and purpose-driven approach.

Model selection

Selecting an appropriate machine learning model is a critical decision in the data science workflow. 
Depending on the nature of the problem – whether it involves classification, regression, clustering, 
or other tasks – careful consideration is given to the strengths and weaknesses of various models. 
The model selection stage requires a deep understanding of algorithms and their applicability to the 
problem context.

Model tuning

Once a model has been chosen, the model-tuning process comes into play. This stage involves 
optimizing hyperparameters to achieve the best possible model performance. Techniques such as 
grid search, random search, and Bayesian optimization are employed to fine-tune the model. We will 
review each of these techniques in more detail later in this chapter, but for now, just note that they 
are different methods for trying different combinations of model hyperparameters to find the set 
that gives the best overall model performance. Model tuning balances overfitting and underfitting, 
ensuring the model generalizes well to unseen data.

Model predictions

The culmination of the data science workflow is applying the trained model to new, unseen data. This 
prediction phase involves leveraging the model’s learned patterns and relationships to make accurate 
predictions or classifications. It’s the moment where the fruits of the entire data science process come 
to fruition as the model’s effectiveness is put to the test on real-world data.

Of course, there are more stages than the ones mentioned here, including communicating with 
stakeholders, tracking experiments, and monitoring data drift, but for the sake of this chapter, these 
are the primary areas on which we will focus. Particularly, we will review common models in data 
science, including how they work, their assumptions, common pitfalls, implementation examples, 
model evaluation, and tuning.
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Getting started with supervised machine learning
Supervised learning is a type of machine learning where the algorithm learns from a labeled dataset, 
which consists of input features and their corresponding target variables or labels. These labels are the 
“response variable,” “target variable,” or “output variable” – in other words, the thing you are trying 
to predict.

There are two types of supervised modeling that we will focus on:

•	 Regression

•	 Classification

Let’s take a closer look at them.

Regression versus classification

Regression is a specific type of supervised learning where the goal is to predict continuous numerical 
values. In a regression task, the algorithm learns a mapping between input features and a continuous 
target variable. The output of the regression model is a continuous value, which can represent quantities 
such as price, temperature, sales, or any other real-valued quantity. Linear regression and polynomial 
regression are common examples of regression algorithms that are used to model relationships between 
variables in a continuous setting.

For example, imagine that you are performing an analysis of how prepared a person is for retirement. In 
this case, you are looking to predict how much a person has saved for retirement based on demographic 
data. Figure 10.2 shows an example record for input features that are mapped to a continuous output 
variable, the retirement balance:

Figure 10.2: Regression data example

Here, each row represents a subject’s description and their current retirement fund balance. This is an 
example of regression problem data because the output variable (the thing we are trying to predict) 
is a continuous target variable. Because we know that the target variables in regression problems are 
continuous, we also know how to evaluate the model’s performance.
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Here are some common regression model evaluation metrics:

•	 Mean squared error (MSE): This metric takes the average of the squared differences between 
the predicted and actual values and penalizes large errors heavily. If the dataset contains outliers, 
they will have a disproportionate impact.

•	 Root mean squared error (RMSE): This metric takes the square root of the mean squared 
error. It is also sensitive to outliers.

•	 Mean absolute error (MAE): This metric is the average of the absolute differences between 
the predicted and actual values.

Now, let’s compare regression, which only outputs continuous variables, to classification.

Classification is another version of supervised learning that focuses on predicting categorical labels 
or classes for a given set of input features. In a classification task, the algorithm learns to differentiate 
between different categories based on patterns in the training data. The output of a classification 
model is a discrete label representing the predicted class to which the input data belongs. Common 
examples of classification problems include email spam detection (binary classification), handwritten 
digit recognition (multiclass classification), and sentiment analysis (multiclass classification).

Consider Figure 10.3, which references back to our retirement analysis. However, this time, it shows 
an example record for input features that are mapped to a categorical output variable – whether the 
person is ready for retirement. In this scenario, we will assume that 1 equals yes and 0 equals no:

Figure 10.3: Classification data example

Similar to regression, if you know that your problem involves predicting a categorical variable, you 
have the following model performance evaluation metrics available to you:

•	 Accuracy: This metric measures the percentage of predictions that are correct.

•	 Precision: Precision is the percentage of predicted positive classes that are positive. This can 
be an important metric if your dataset is imbalanced.

•	 Recall (that is, the sensitivity or true positive rate): This metric is the percentage of actual 
positives that are correctly predicted as positive and is complementary to precision.
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•	 Specificity (that is, the true negative rate): Specificity is the percentage of actual negatives that 
are correctly predicted as negative. This is important in cases where false positives are costly, 
such as in medical diagnosis.

•	 F1 score: This metric combines both precision and recall into one metric, and is a good 
compromise between both.

•	 Area under the receiver operating characteristic (AUC): This metric is a measure of how 
well the model can distinguish between positive and negative classes. The AUC is not affected 
by class imbalance.

We’ve now reviewed two types of supervised learning in regression and classification. When working 
through your technical interview, the interviewer will expect you to know if you are using a classification 
or regression model. The target variable is the key to this decision point. Thus, if you can identify the 
format of the target variable, you can identify the types of models that will best fit your data science 
problem, as well as the best evaluation metrics to use.

In the rest of this section, we will provide examples of both regression and classification models, their 
assumptions, and their pros and cons.

Linear regression – regression

Linear regression is a fundamental and widely used statistical method in the field of data analysis and 
machine learning, providing a simple yet powerful framework for modeling the relationship between 
one or more independent variables and a dependent variable. The goal of linear regression is to find 
the best-fitting linear relationship that describes the data, enabling us to make predictions and gain 
insights into the underlying patterns.

How it works

Linear regression works by fitting a linear equation to the observed data. The linear equation has the 
following form:

​​Y​ i​​  = ​ β​ 0​​+ ​β​ 1​​ ​Χ​ i​​​

Here, Y is the dependent variable that we want to predict, β0 is our intercept or constant, and β1 is 
our slope.

The goal of linear regression is to estimate the coefficients; this involves finding the line (or hyperplane 
in higher dimensions) that best fits the data points. The estimation of coefficients is typically done 
using optimization techniques such as the ordinal least squares method, which aims to find the 
coefficients that minimize the sum of squared residuals.
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Assumptions

Before delving into the intricacies of linear regression, it’s important to understand the assumptions 
that underlie its usage. These assumptions ensure the validity and reliability of the results obtained 
from linear regression models. The main assumptions are as follows:

•	 Linearity: The relationship between the independent variables and the dependent variable 
is assumed to be linear. This means that a change in the independent variables leads to a 
proportional change in the dependent variable.

•	 Independence: The observations or data points are assumed to be independent of each other. 
In other words, the value of the dependent variable for one observation does not depend on 
the values of the dependent variable for other observations.

•	 Homoscedasticity: The variance of the errors (the differences between observed and predicted 
values) is constant across all levels of the independent variables. This assumption ensures that 
the model’s predictions are equally accurate across the entire range of the data. When a dataset 
exhibits homoscedasticity, it implies that the variance of the errors is the same for all values of 
the predictor variable(s). The opposite of homoscedasticity is heteroscedasticity, which occurs 
when the variability of the errors or data points changes systematically as you move along the 
range of the independent variable(s).

•	 Normality of residuals: The residuals (the differences between observed and predicted values) 
should follow a normal distribution. Deviations from normality can impact the accuracy of 
statistical tests and confidence intervals.

Common pitfalls

While linear regression is a valuable tool, there are several pitfalls to watch out for:

•	 Violating assumptions: Failing to meet the assumptions of linear regression can lead to 
inaccurate results and misleading interpretations.

•	 Outliers: Outliers can disproportionately influence the model’s coefficients, leading to an 
erroneous fit.

•	 Multicollinearity: Multicollinearity is when independent variables are highly correlated. When 
this happens, it can be difficult to discern their individual effects on the dependent variable.

•	 Overfitting: Adding too many variables or polynomial terms can result in overfitting, where 
the model captures noise in the data rather than the underlying pattern.
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Regularization regression

Regularized regression (specifically L1 (lasso) and L2 (ridge) regression) is an extension of linear 
regression that addresses some of its limitations. While linear regression aims to find the best-fitting 
line or hyperplane, regularized regression introduces penalty terms to prevent overfitting and improve 
model performance. L1 and L2 regularization methods add complexity control by imposing constraints 
on the coefficients of the regression equation.

Regularization adds a penalty term to the linear regression objective function, which discourages 
the model from assigning excessively large coefficients to the features. L1 regularization adds the 
absolute values of the coefficients as penalties, leading to some coefficients being exactly zero, while L2 
regularization adds the squared values of the coefficients, which enforces smaller but non-zero coefficients:

L1 regularization (lasso):
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L2 regularization (ridge):
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L1 and L2 regularization are particularly useful in the following ways:

•	 Feature selection: L1 regularization can force some coefficients to be exactly zero, effectively 
performing feature selection and identifying the most important variables

•	 Multicollinearity management: L2 regularization helps mitigate the effects of multicollinearity 
by shrinking the coefficients towards zero

•	 High-dimensional data: Regularized regression is valuable when dealing with datasets with a 
large number of features, preventing overfitting and improving generalization

Implementation example

Here’s a simple example of how to implement linear regression using Python and scikit-learn:

# Import necessary libraries and prepare data
from sklearn.model_selection import train_test_split
from sklearn.datasets import fetch_california_housing
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error
housing = fetch_california_housing()
X = housing.data
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y = housing.target
X_train, X_test, y_train, y_test = train_test_split(X, y, test_
size=0.2, random_state=42)

# Train the model and compute error
linear_reg = LinearRegression()
linear_reg.fit(X_train, y_train)
y_pred = linear_reg.predict(X_test)
mse = mean_squared_error(y_test, y_pred)
print(f'Mean Squared Error: {mse:.2f}')

Let’s take a closer look at this example:

•	 Initially, we run common steps for any machine learning project, first importing the needed 
libraries from sklearn.

•	 Then, we split our dataset into a train and test set

•	 Next, we initialize a LinearRegession model and train it using the fit method with the 
training dataset

•	 Using the trained model, we make predictions using the test dataset

•	 Finally, we check how good our predictions are by measuring the mean square error

Assessment

What are the key assumptions of linear regression?

Answer

The key assumptions include linearity, independence of observations, homoscedasticity, and normality 
of residuals.

Assessment

What are some common challenges in linear regression?

Answer

Common challenges include violating assumptions, dealing with outliers, managing multicollinearity, 
and avoiding overfitting.
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Assessment

How do you handle multicollinearity in linear regression?

Answer

Multicollinearity can be addressed by removing correlated variables, using dimensionality reduction 
techniques, or applying regularization methods.

Assessment

How do L1 and L2 regularization differ? What are the benefits of regularization?

Answer

L1 regularization encourages sparsity by forcing some coefficients to be exactly zero. L2 regularization 
shrinks coefficients toward zero but rarely eliminates them entirely. Regularization helps manage overfitting, 
performs feature selection, and improves model generalization, particularly in high-dimensional datasets.

Logistic regression

Logistic regression is a widely used statistical method for classification that models the relationship 
between one or more independent variables and a binary outcome variable. Despite its name, 
logistic regression is used for classification tasks rather than regression. It estimates the probability 
that an instance belongs to a particular class, making it an essential tool in binary and multi-class 
classification problems.

How it works

Logistic regression transforms the linear combination of independent variables into a probability 
using the logistic function (also known as the sigmoid function):

​y = ​  1 _ 
1 + ​e​​ −​(a+b​x​ 1​​+​cx​ 2​​)​​

 ​​

The function returns a value between 0 and 1, which is the probability of the occurrence of an event or 
a class, given the input values. An example where you might use logistic regression includes predicting 
if a customer might churn and leave a company’s service.
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Assumptions

Logistic regression relies on the following assumptions:

•	 Linearity of the logit: The log odds of the probability of the outcome variable being in a certain 
class is a linear combination of the independent variables

•	 Independence of errors: The errors or residuals are assumed to be independent of each other

•	 Non-multicollinearity: The independent variables should not be highly correlated with each other

•	 Sufficiently large sample size: Logistic regression works best with a sufficiently large sample 
size to ensure stable estimates

Common pitfalls

When working with logistic regression, it’s important to be aware of potential pitfalls:

•	 Imbalanced classes: Logistic regression may perform poorly when dealing with imbalanced 
class distributions. Some methods to address imbalanced class distribution include resampling, 
adjusting the weights of a class (e.g. how important an example is when training a model), and 
looking at different evaluation metrics like recall.

•	 Non-linear relationships: Logistic regression assumes a linear relationship between the 
independent variables and the log odds of the outcome. Complex non-linear relationships 
may not be captured effectively.

•	 Overfitting: Including too many variables or polynomial terms can lead to overfitting, especially 
with limited data.

•	 Multicollinearity: Highly correlated independent variables can affect the stability and 
interpretability of coefficient estimates.

Implementation example

Here’s a simple example of how to implement logistic regression using Python and scikit-learn:

# Import necessary libraries and prep dataset
from sklearn.model_selection import train_test_split
from sklearn.datasets import load_iris
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score
iris = load_iris()
X = iris.data
# Binary classification: Setosa vs. Others
y = (iris.target == 2).astype(int)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_
size=0.2, random_state=42)
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# Train the Logistic Regression model and compute accuracy
logreg = LogisticRegression()
logreg.fit(X_train, y_train)
y_pred = logreg.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
print(f'Accuracy: {accuracy:.2f}')

Let’s take a closer look at this example:

•	 After loading the required libraries and data for the Iris flower dataset, we split the data into training 
and testing datasets (the Iris dataset is often used for classification machine learning problems)

•	 Then, we initialize a LogisticRegression model and train it using the fit method with 
the training dataset

•	 Using the trained model, we make predictions using the test dataset

•	 Finally, we check how good our predictions are by measuring the classification accuracy

Assessment

What is the logistic function, and why is it used in logistic regression?

Answer

The logistic function (sigmoid function) maps the linear combination of features to a probability 
between 0 and 1, enabling classification.

Assessment

How do you address imbalanced classes in logistic regression?

Answer

Techniques to address imbalanced classes include resampling methods, adjusting class weights, and 
using different evaluation metrics.

k-nearest neighbors (k-NN)

k-NN is a versatile and intuitive machine learning algorithm that operates based on the proximity of 
data points. It can be used both for classification and regression problems.
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How it works

k-NN is a lazy learning algorithm, meaning it doesn’t build a distinct model during training. Instead, 
it memorizes the training data, and when presented with a new data point for prediction, it identifies 
the k nearest neighbors in the training set based on a chosen distance metric (for example, Euclidean 
distance). The majority class among the k neighbors determines the predicted class for the new point 
in classification tasks. For regression tasks, the algorithm returns the average value of the target 
variable among the k neighbors.

Assumptions

k-NN operates under the assumption that points in the same class or category tend to be close to each 
other in feature space. This makes it well-suited for cases where the underlying decision boundaries 
are complex and not easily separable by linear methods.

Common pitfalls

Here are some common pitfalls when using k-NN:

•	 Choice of k: Selecting an appropriate value for k is crucial. A small k might lead to noisy 
decisions, while a large k could result in overly smooth decision boundaries.

•	 Feature scaling: k-NN is sensitive to the scale of features. Feature scaling, such as normalization 
or standardization, is often necessary to ensure that all features contribute equally to 
distance calculations.

•	 Curse of dimensionality: In high-dimensional spaces, the “nearest“ neighbors might not be 
truly representative, leading to decreased accuracy and increased computation time.

Implementation example

Here is an example implementation of k-NN in Python using the KNeighborsClassifier 
module in sklearn:

# Import necessary libraries and prep dataset
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_score
iris = load_iris()
X, y = iris.data, iris.target
X_train, X_test, y_train, y_test = train_test_split(X, y, test_
size=0.2, random_state=42)

# Create a KNN classifier with k=3 and compute accuracy
knn = KNeighborsClassifier(n_neighbors=3)
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knn.fit(X_train, y_train)
y_pred = knn.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
print(f'Accuracy: {accuracy:.2f}')

Let’s take a closer look at this example:

•	 The Iris dataset, a popular dataset for classification problems, is loaded.

•	 The dataset is split into training (80% of the data) and testing (20% of the data) sets to evaluate 
the model’s performance on unseen data.

•	 A k-NN classifier is created with three neighbors, and it’s trained using the training data

•	 The model’s predictions on the testing set are compared with the true labels to calculate and 
print the accuracy of the classifier

Assessment

What’s the underlying idea behind the k-NN algorithm?

Answer

k-NN predicts the class of an instance based on the classes of its k nearest neighbors in the feature 
space. It assumes that similar instances have similar labels.

Assessment

How do you choose the optimal value of k in k-NN?

Answer

The choice of k is a hyperparameter. You can use techniques such as cross-validation to find the optimal 
k value that balances bias and variance in your predictions.

Assessment

What are the pros and cons of k-NN?

Answer

Pros include simplicity and effectiveness in capturing complex decision boundaries. Cons include 
sensitivity to noise and the need for efficient data structures for quick searching.
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Random forest

Random forest is a versatile and powerful ensemble learning technique that’s used for both classification 
and regression tasks. It is an extension of decision tree algorithms that addresses their limitations 
by combining multiple trees to create a more robust and accurate predictive model. Random forest 
is renowned for its ability to handle complex relationships, reduce overfitting, and provide feature 
importance insights.

How it works

Random forest constructs an ensemble of decision trees, each trained on a different subset of the data 
and considering a subset of features. Ensemble methods are techniques in machine learning that 
combine the predictions of multiple individual models to create a more robust overall prediction. The 
idea behind ensemble methods is to exploit the diversity of different models to improve the overall 
accuracy, stability, and generalization of the predictive model.

Ensemble methods are particularly effective when individual models have varying strengths and 
weaknesses or when they can capture different aspects of the underlying data patterns. By combining 
these models, ensemble methods aim to mitigate the weaknesses of individual models and produce 
a more reliable and accurate prediction.

Random forest offers several advantages over individual decision trees:

•	 Reduced overfitting: By averaging predictions from multiple trees, random forest mitigates 
the risk of overfitting and provides better generalization.

•	 Robustness: Random forest is less sensitive to noisy data and outliers compared to a single 
decision tree

•	 Non-linearity handling: It can capture complex nonlinear relationships between features and 
the target variable

•	 Feature importance: Random forest quantifies the importance of each feature, aiding in feature 
selection and interpretation

Random forest calculates feature importance based on how much a particular feature contributes to the 
overall predictive performance of the ensemble. The importance of a feature is assessed by measuring 
the decrease in a specific metric when the values of that feature are randomly permuted while keeping 
the other features constant. Beyond understanding which features are the most important in a model, 
a data scientist might look to optimize the performance of the model.
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Random forests have several hyperparameters that allow you to customize and fine-tune the behavior 
of the ensemble algorithm. Adjusting these hyperparameters can impact the performance, robustness, 
and computational efficiency of the random forest model. Here’s a list of some important random 
forest hyperparameters, along with explanations of what they are:

•	 n_estimators: The number of decision trees in the ensemble (forest). Increasing the number of 
trees generally improves performance until reaching a point of diminishing returns or overfitting.

•	 max_depth: The maximum depth of each decision tree in the forest. It limits the number of 
splits, helping to control model complexity and reduce overfitting.

•	 min_samples_split: The minimum number of samples required to split a node further. It 
prevents nodes with very few samples from being split, potentially reducing noise.

There are many other hyperparameters a data scientist might want to explore optimizing. To find 
a list of additional hyperparameters, you can reference the sklearn documentation at https://
scikit-learn.org/stable/modules/generated/sklearn.neighbors.
KNeighborsClassifier.html.

Assumptions

Random forest is a powerful ensemble learning algorithm that combines multiple decision trees to make 
predictions. Unlike some other machine learning algorithms, random forest has fewer assumptions.

However, it’s important to note that while individual decision trees have certain assumptions, the 
ensemble method helps to mitigate the impact of these assumptions:

•	 Independence of observations: Individual decision trees assume that observations are 
independent of each other. While this is a common assumption in many statistical and machine 
learning methods, random forest’s ensemble approach helps reduce the impact of violations 
of this assumption. The random sampling and averaging of predictions across multiple trees 
tend to mitigate the effects of correlated or dependent observations.

•	 Linearity: Decision trees assume that relationships between features and the target variable can 
be modeled with piecewise constant segments. Random forest, being an ensemble of decision 
trees, can capture both linear and nonlinear relationships in the data due to the diversity of 
trees it comprises.

•	 Homoscedasticity: Decision trees do not make explicit assumptions about the homoscedasticity 
(constant variance) of errors. Similarly, random forest, being a combination of decision trees, 
is not directly affected by this assumption.

•	 Normality of residuals: Decision trees do not rely on the assumption of normality of residuals, 
and the random forest algorithm inherits this flexibility. However, if you’re using random forest 
as part of a broader analysis that assumes normality (for example, hypothesis testing), you 
should consider this aspect in your overall approach.

https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html


Getting started with supervised machine learning 275

•	 Feature scaling: Random forest is relatively insensitive to the scale of features. It doesn’t require 
features to be standardized or normalized, unlike some other algorithms, such as gradient 
boosting or K-means clustering.

•	 Multicollinearity: Random forest can handle multicollinearity (high correlation between 
features) effectively as it considers only a subset of features at each node in each tree, reducing 
the potential impact of correlated features.

It’s worth noting that while random forest is more robust and forgiving than individual decision trees, 
it is not entirely immune to the quality and characteristics of the data. Preprocessing, data cleaning, 
and understanding the data’s domain-specific properties remain important steps in building accurate 
and reliable random forest models.

Common pitfalls

While random forest is a powerful algorithm, it’s important to be aware of potential pitfalls:

•	 Overfitting with too many trees: Although random forest reduces overfitting, using an excessive 
number of trees can still lead to unnecessary computational complexity

•	 Bias toward dominant classes: In imbalanced datasets, random forest might favor the majority 
class due to its inherent averaging mechanism

•	 Computation and memory: Training a large random forest can be computationally expensive 
and memory-intensive

•	 Feature selection: While random forest provides feature importance, it might not always 
identify the optimal subset of features for a specific problem

Implementation example

Here’s a basic example of how to implement a random forest classifier using Python and the popular 
scikit-learn library:

# Import necessary libraries and prep dataset
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.datasets import load_iris
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score
iris = load_iris()
X = iris.data
y = iris.target
X_train, X_test, y_train, y_test = train_test_split(X, y, test_
size=0.2, random_state=42)

# Initialize the Random Forest classifier and compute accuracy
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random_forest = RandomForestClassifier(n_estimators=100, random_
state=42)
random_forest.fit(X_train, y_train)
y_pred = random_forest.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
print(f'Accuracy: {accuracy:.2f}')

In this example, we have used the popular Iris dataset for simplicity. Here‘s what the code does:

•	 Again, we use the popular Iris classification dataset.

•	 The dataset is split into training (80% of the data) and testing (20% of the data) sets to evaluate 
the model’s performance on unseen data.

•	 A random forest classifier, RandomForestClassifier, which is an example of an ensemble 
learning method, is initialized with 100 trees and then trained on the training data. Additionally, 
the model was set with a random seed (random_state=42), ensuring reproducibility.

•	 After training, the model’s performance is evaluated by predicting the test set’s class labels and 
subsequently calculating and printing the accuracy of these predictions compared to the true 
test set labels.

Assessment

How does a random forest work?

Answer

A random forest is an ensemble of decision trees. It trains multiple trees on different subsets of the 
data and combines their predictions through majority voting or averaging.

Assessment

What is the role of randomness in a random forest?

Answer

Randomness is introduced through bootstrap sampling of data and feature subsampling during tree 
construction. This helps in reducing overfitting and promoting diversity among trees.

Assessment

What are the advantages of using random forest?
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Answer

Random forests are robust to overfitting, handle high-dimensional data well, provide feature importance 
scores, and can handle both classification and regression tasks.

Extreme Gradient Boosting (XGBoost)

XGBoost is a powerful and highly efficient gradient-boosting algorithm that’s designed to tackle a 
wide range of machine learning problems. Like random forest, it can be used for both regression and 
classification. It has gained significant popularity due to its exceptional performance in predictive 
modeling competitions and real-world applications. XGBoost is particularly effective in handling 
structured/tabular data and is known for its robustness, scalability, and ability to capture complex patterns.

How it works

XGBoost builds an ensemble of weak predictive models (typically decision trees) sequentially, where 
each subsequent model tries to correct the errors made by the previous ones. The core principles of 
XGBoost are as follows:

•	 Gradient boosting: XGBoost employs gradient boosting, which involves minimizing a loss 
function by iteratively adding new models to the ensemble

•	 Regularization: XGBoost incorporates L1 (lasso) and L2 (ridge) regularization terms into the 
loss function to control overfitting

•	 Feature importance: XGBoost provides insights into feature importance, allowing you to 
understand the contribution of each feature to the model’s predictions

•	 Cross-validation: XGBoost supports k-fold cross-validation to evaluate and optimize 
model performance

Assumptions

Similar to random forest, XGBoost is an ensemble learning algorithm based on decision trees and has 
fewer assumptions compared to traditional linear models. Thus, the same practical considerations 
mentioned for Random Forest should also be considered here.

Clarifying boosting versus bagging

XGBoost, as its name implies, relies on gradient boosting, or simply boosting. Boosting is an iterative 
technique that sequentially builds a strong model by combining multiple weak models. The idea is 
to focus on the examples that the current set of models is struggling with and assign them higher 
weights, effectively “boosting” their importance. The weak models are trained sequentially, and each 
new model gives more weight to the misclassified examples from the previous models.
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However, in bagging (bootstrap aggregating), multiple instances of the same algorithm are trained 
on different subsets of the training data, obtained by random sampling with replacement. The final 
prediction is typically an average or majority vote of the predictions from individual models. Random 
forest is a well-known ensemble method that uses bagging with decision trees.

So, the differences between bagging and boosting are as follows:

•	 Combination of models: Bagging involves training multiple base models independently and 
then aggregating their predictions. Boosting trains a sequence of models iteratively, where each 
new model focuses on correcting the errors of the previous models.

•	 Training approach: Bagging reduces variance by averaging predictions from diverse models. 
Boosting reduces both bias and variance by iteratively refining the model’s performance.

•	 Weight assignment: Bagging assigns equal weights to all training examples. Boosting assigns 
higher weights to misclassified examples, focusing more on difficult instances.

•	 Sequential versus parallel: Bagging trains base models in parallel as they are independent 
of each other. Boosting trains models sequentially, where each new model depends on the 
performance of the previous models.

•	 Performance: Boosting often results in higher accuracy but may be more prone to overfitting if 
not controlled properly. Bagging tends to have lower variance and may be less prone to overfitting.

In summary, while both bagging and boosting aim to improve ensemble model performance, they 
differ in their approach to combining models and how they handle training instances. The choice 
between bagging and boosting depends on the nature of the problem, the available data, and the 
desired trade-off between bias and variance.

Common pitfalls

While XGBoost is a powerful algorithm, there are some considerations to keep in mind:

•	 Hyperparameter tuning: The performance of XGBoost can be sensitive to hyperparameters. 
Careful tuning is essential for optimal results

•	 Overfitting: Despite regularization, overfitting can still occur, especially when using a large 
number of boosting rounds

•	 Computational complexity: Complex models or large datasets can lead to increased computational 
demands and longer training times

•	 Interpretability: While XGBoost provides feature importance, its complex nature may make 
model interpretation challenging
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Assessment

How does XGBoost work? What are the advantages of using XGBoost?

Answer

XGBoost sequentially adds new models to the ensemble, aiming to correct errors made by the previous 
models through gradient boosting. XGBoost offers high performance, flexibility, feature importance 
insights, regularization, and handling of imbalanced classes.

Assessment

What are the differences between bagging and boosting?

Answer

Bagging and boosting are both ensemble methods in machine learning that combine multiple models 
to improve performance. Bagging trains multiple base models independently and aggregates their 
predictions, typically reducing variance by averaging diverse model predictions. On the other hand, 
boosting trains models sequentially, where each subsequent model corrects the errors of its predecessors, 
aiming to reduce both bias and variance.

While bagging assigns equal weights to all training examples, boosting prioritizes misclassified 
instances by giving them higher weights. This means that boosting focuses more on challenging cases. 
Bagging’s models are trained in parallel since they operate independently, whereas boosting requires a 
sequential approach because each model builds upon the performance of the previous ones. In terms 
of performance, boosting often achieves higher accuracy but can be more susceptible to overfitting if 
not managed carefully, whereas bagging generally offers more stability and is less prone to overfitting.

Getting started with unsupervised machine learning
Unsupervised machine learning is a fascinating branch of artificial intelligence that focuses on 
discovering patterns, relationships, and structures within data without explicit guidance from labeled 
outcomes. Unlike supervised learning, where models are trained with labeled data to make predictions, 
unsupervised learning aims to explore the inherent information present in the data itself. This type of 
learning is particularly valuable for uncovering hidden insights, finding clusters, reducing dimensionality, 
and revealing underlying representations. Clustering is a common use case for unsupervised learning.

Clustering refers to grouping data points into distinct subsets or “clusters” based on similarities in 
their features without using pre-labeled data as a guide. Imagine that you have a scatter plot of data 
points and want to color-code groups of points that seem to cluster together; this is essentially what 
clustering algorithms do but in potentially multi-dimensional spaces. The goal is to ensure that data 
points in the same cluster are more alike to each other than those in different clusters.
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For businesses, clustering has numerous applications: customer segmentation for targeted marketing, 
organizing large sets of documents or news articles into cohesive topics, detecting abnormal patterns 
or anomalies in data, and even helping retailers optimize product placements in stores based on 
purchasing behaviors. Uncovering these natural groupings allows businesses to gain insights, enhance 
decision-making, and tailor strategies to specific audience segments.

In this section, we will delve into the foundational concepts of unsupervised learning, including its key 
algorithms, applications, challenges, and interview questions, shedding light on how it empowers us to 
extract meaningful knowledge from unannotated data. First, we will look at some common clustering 
algorithms and finish with how to evaluate the clusters produced by the algorithms.

K-means

K-means clustering is a fundamental unsupervised learning algorithm that’s designed to partition data 
into distinct groups, or clusters, based on similarities between data points. It is widely used for pattern 
recognition, segmentation, and understanding the underlying structure within datasets. K-means is 
intuitive, computationally efficient, and can provide valuable insights into the inherent grouping of data.

How it works

K-means works by iteratively assigning data points to clusters and updating cluster centroids to 
minimize the sum of squared distances between points and their respective centroids. The key steps 
involved are as follows:

1.	 Initialization: Randomly select initial cluster centroids

2.	 Assignment: Assign each data point to the nearest centroid

3.	 Update: Recalculate centroids based on the mean of data points in each cluster

4.	 Repeat: Iterate between assignment and update until convergence or a specified number 
of iterations

Assumptions

While K-means is relatively simple and effective, it does make certain assumptions about the data and 
the structure of clusters. These assumptions can impact the algorithm’s performance and the quality 
of the resulting clusters. Here are the key assumptions of K-means:

•	 Cluster shape and size: K-means assumes that clusters are spherical and have roughly equal 
sizes. In other words, it assumes that the clusters have similar diameters and contain roughly 
the same number of data points.
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•	 Equal variance: K-means assumes that the variance (spread) of the data points within each 
cluster is roughly the same. This assumption is important because K-means uses the mean as 
the center of a cluster, and equal variance helps in determining the “average“ distance of data 
points from the center.

•	 Features’ influence: K-means treats all features equally and assumes that they have a similar 
influence on the clustering process. This can be problematic if some features are more relevant 
or important than others.

•	 Independence of clusters: K-means assumes that the clusters are independent and non-overlapping. 
In reality, data points may belong to multiple clusters or exhibit complex patterns that K-means 
cannot capture.

•	 Globular clusters: K-means works well for clusters that are roughly globular in shape. If clusters 
have irregular shapes, elongated structures, or densities, K-means may struggle to accurately 
capture these patterns.

•	 Pre-defined number of clusters: K-means requires you to specify the number of clusters (k) 
in advance. This can be a challenge if the true number of clusters is not known or if the data 
doesn’t naturally divide into distinct clusters.

•	 Similar density clusters: K-means assumes that the clusters have similar densities. If some 
clusters are denser than others, K-means may struggle to correctly assign data points.

•	 Feature scaling: Like most other cluster algorithms, it is required to scale the features to ensure 
one does not influence the model more than others.

Common pitfalls

K-means has some considerations and challenges:

•	 Number of clusters: Choosing the optimal number of clusters (k) can be subjective and impact 
the results

•	 Sensitive to initialization: K-means’ performance can vary based on the initial centroids

•	 Cluster shape and density: K-means assumes clusters are spherical and equally sized, which 
might not always align with the data

•	 Outliers: Outliers can significantly influence cluster centroids and affect results

Implementation example

Here’s a simple example of how to implement K-means clustering using Python and the scikit-learn library:

# Import necessary libraries and prep data with 4 clusters
import matplotlib.pyplot as plt
from sklearn.datasets import make_blobs
from sklearn.cluster import KMeans
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X, _ = make_blobs(n_samples=300, centers=4, cluster_std=0.60, random_
state=0)

# Initialize K-Means with 4 clusters and plot cluster centers
kmeans = KMeans(n_clusters=4)
labels = kmeans.fit_predict(X)
cluster_centers = kmeans.cluster_centers_
plt.scatter(X[:, 0], X[:, 1], c=labels, cmap='viridis')
plt.scatter(cluster_centers[:, 0], cluster_centers[:, 1], s=300, 
c='red')
plt.xlabel('Feature 1')
plt.ylabel('Feature 2')
plt.title('K-Means Clustering')
plt.show()

Let’s take a closer look at this example:

•	 Necessary libraries such as Matplotlib and relevant functions from scikit-learn are imported, 
and we create our own dataset (that is, a synthetic dataset), with four distinct clusters generated 
using the make_blobs function, producing 300 samples. In this example, we are making our 
dataset show how to use the K-means model.

•	 The K-means clustering algorithm is initialized to partition the data into four clusters.

•	 The K-means algorithm is fitted to the synthetic data, assigning each data point to one of the 
four clusters. The centers of these clusters are then determined.

•	 Using Matplotlib, the data points are visualized on a scatter plot, color-coded based on their 
assigned clusters. The centers of these clusters are also plotted in red, and the resulting plot 
showcases how the K-means algorithm has grouped the data.

Assessment

What’s the objective of the K-means clustering algorithm?

Answer

K-means aims to partition data points into clusters by minimizing the sum of squared distances 
between each data point and the centroid of its assigned cluster.

Assessment

How does K-means initialize cluster centroids?



Getting started with unsupervised machine learning 283

Answer

K-means can use strategies such as random initialization, k-means++, or custom initialization to 
determine the initial locations of cluster centroids.

Density-based spatial clustering of applications with noise 
(DBSCAN)

DBSCAN is a powerful unsupervised learning algorithm that excels at identifying clusters of arbitrary 
shapes in data. Unlike K-means, which assumes spherical clusters of equal size, DBSCAN discovers 
clusters based on the density of data points in the feature space and is particularly useful when dealing 
with noisy data and clusters of varying sizes and shapes.

In this chapter, we will delve into the intricacies of DBSCAN, its principles, advantages, limitations, 
implementation in Python, and real-world applications.

How it works

DBSCAN identifies clusters by considering two main parameters: the radius (epsilon) that defines the 
neighborhood of a data point and the minimum number of data points (min_samples) required 
to form a dense region. The algorithm operates as follows:

•	 Core points: A data point is considered a core point if there are at least min_samples data 
points within its epsilon neighborhood

•	 Border points: A data point is a border point if it is within the epsilon neighborhood of a core 
point but does not have enough neighbors to be considered a core point itself

•	 Noise points: Data points that are not core or border points are classified as noise points

DBSCAN starts by selecting an arbitrary data point, expanding its neighborhood, and recursively 
growing a cluster. This process continues until no more data points can be added to the cluster, at 
which point a new cluster is formed. This process is then repeated until all data points have been 
classified into clusters or marked as noise.

DBSCAN offers several advantages:

•	 Cluster shape: DBSCAN can identify clusters of arbitrary shapes, making it suitable for 
complex datasets

•	 Noise handling: DBSCAN can effectively handle noisy data and classify outliers as noise points

•	 Cluster size: DBSCAN can discover clusters of varying sizes and densities within the same dataset

•	 Parameter robustness: DBSCAN requires minimal parameter tuning compared to methods 
that require specifying the number of clusters in advance
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Assumptions

DBSCAN does not make specific assumptions about the shape of clusters like some other clustering 
algorithms (such as K-means), but it does have certain assumptions and characteristics:

•	 Density-based clusters: The primary assumption of DBSCAN is that clusters are areas of 
higher density separated by areas of lower density. Points within a cluster are densely packed, 
and there are regions with lower point densities separating different clusters.

•	 Density reachability: DBSCAN uses the concept of “density reachability.” A data point is 
considered to be density-reachable from another point if it lies within a specified distance 
(epsilon, ε) from the other point and the number of points within that distance exceeds a 
predefined threshold (MinPts).

•	 Core points: Core points are data points that have at least MinPts data points within a distance 
ε from them. These points are at the center of clusters.

•	 Border points: Border points are not core points themselves but are within the ε-distance of 
a core point. They may belong to a cluster but are not considered the central point of a cluster.

•	 Noise (outliers): Data points that do not meet the criteria to be core points or border points 
are considered noise or outliers. They do not belong to any cluster.

•	 Cluster connectivity: DBSCAN forms clusters by connecting core points that are density-
reachable from each other. This means that a chain of core points can be used to connect 
different parts of the same cluster, even if they are not directly density-reachable.

•	 Arbitrary shape clusters: Unlike algorithms such as K-means, DBSCAN can identify clusters 
with arbitrary shapes and does not assume that clusters are spherical or elliptical.

•	 Parameter sensitivity: DBSCAN requires two main parameters: ε (epsilon) and MinPts. The 
choice of these parameters can impact the results, and finding appropriate values can sometimes 
require experimentation and domain knowledge.

Common pitfalls

There are several common pitfalls that data scientists may experience when working with DBSCAN:

•	 Choosing incorrect parameters: DBSCAN requires two critical parameters: epsilon (ε) and 
MinPts. Epsilon determines the maximum distance between two points for one to be considered 
a neighbor of the other, and MinPts specifies the minimum number of points within ε to form a 
core point. Choosing inappropriate values for these parameters can lead to undesirable results, 
such as overfitting, underfitting, or identifying noise as clusters.

•	 Sensitive to data scaling: DBSCAN’s density-based nature makes it sensitive to the scaling of 
features. When features have significantly different scales, the choice of epsilon might not work 
well for all dimensions equally. Standardizing or normalizing the data can help mitigate this issue.
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•	 Noise interpretation: DBSCAN can identify noise as separate clusters or classify noise as an 
outlier category. The interpretation of these noise points depends on the context of the data 
and the problem. Misinterpreting noise as actual clusters can lead to misleading insights.

•	 Uneven density clusters: DBSCAN may struggle with clusters of varying densities. If the density 
within a cluster is not consistent, setting a global epsilon might not work well for all parts of 
the dataset. In such cases, using other clustering algorithms or considering different density 
parameters for different areas could be more appropriate.

•	 High-dimensional data: DBSCAN’s effectiveness can diminish in high-dimensional spaces due 
to the “curse of dimensionality.” As the number of dimensions increases, the distance between 
points becomes less meaningful, potentially leading to sparser clusters or identifying most 
points as noise. Dimensionality reduction techniques or considering other clustering methods 
might be necessary for high-dimensional data.

•	 Outliers identification: DBSCAN can be sensitive to outliers, classifying them as noise or 
forming small clusters around them. Handling outliers requires a clear understanding of the 
problem and the ability to distinguish between genuine clusters and noise.

•	 Cluster shape assumption: While DBSCAN is effective at identifying clusters of varying 
shapes, it might struggle with clusters with varying densities or clusters embedded within 
other clusters. In such cases, alternative clustering algorithms such as hierarchical clustering 
might be more suitable.

Implementation example

Here’s a basic example of how to implement DBSCAN using Python and the DBSCAN module:

# Import the needed libraries and prep the dataset
from sklearn.cluster import DBSCAN
from sklearn.datasets import make_blobs
import matplotlib.pyplot as plt
X, _ = make_blobs(n_samples=300, centers=3, cluster_std=0.6, random_
state=0)

# Create DBSCAN model, fit it, and plot clusters
dbscan = DBSCAN(eps=0.5, min_samples=5)
labels = dbscan.fit_predict(X)
plt.scatter(X[:, 0], X[:, 1], c=labels, cmap='viridis', s=50)
plt.xlabel('Feature 1')
plt.ylabel('Feature 2')
plt.title('DBSCAN Clustering')
plt.show()
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In this example, the code does the following:

•	 Generates synthetic data using the make_blobs function from sklearn.datasets.

•	 Creates a DBSCAN instance by specifying the eps (epsilon) parameter, which controls the 
maximum distance between two data points for them to be considered part of the same cluster.

•	 Specifies the min_samples parameter, which defines the minimum number of neighboring 
points required to form a core point.

•	 Fits the model to the data using the fit_predict method, which returns cluster labels for 
each data point. Finally, we visualize the clusters using a scatter plot.

Other clustering algorithms

There are tons of clustering algorithms that you may encounter in the data science world. Choosing 
the correct model is all about understanding the unique scenario and business assumptions associated 
with your problem. While reviewing every unsupervised model is beyond the scope of this chapter, 
here are some other models you may want to consider:

•	 Hierarchical clustering is a clustering technique that builds a hierarchy of clusters by recursively 
dividing or merging data points based on a similarity measure. Unlike other clustering methods 
that produce a single partitioning of the data, hierarchical clustering creates a tree-like structure 
of clusters, known as a dendrogram. This dendrogram provides insights into the hierarchical 
relationships between data points and clusters.

•	 Spectral clustering transforms the data into a lower-dimensional space using the Laplacian 
graph and then performs clustering in this transformed space. It’s especially useful for clustering 
data with complex structures and is not limited by the shape of clusters.

•	 Ordering Points To Identify Clustering Structure (OPTICS) is a density-based clustering 
algorithm similar to DBSCAN. It creates an ordering of data points based on their density-
connectedness. Unlike DBSCAN, it produces a reachability plot, which helps in visualizing 
varying densities and clusters of different sizes.

•	 Fuzzy c-means (FCM) is a clustering algorithm that extends the traditional K-means algorithm 
by allowing data points to belong to multiple clusters with varying degrees of membership. 
Unlike K-means, where each data point belongs to a single cluster exclusively, FCM assigns 
each data point a membership value for each cluster, representing the degree of belongingness 
to that cluster. This makes FCM a fuzzy clustering algorithm, where points can have partial 
membership in multiple clusters.
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Evaluating clusters

Now that we have covered a few clustering algorithms, the following are some common methods for 
evaluating clustering algorithms:

•	 Silhouette score: This quantifies how similar an object is to its cluster (cohesion) compared to other 
clusters (separation). It ranges from -1 to 1, where higher values indicate better-defined clusters.

•	 Elbow method: This is a graphical representation of the eigenvalues (variance) of each principal 
component or factor in a dataset. In the context of clustering, it is used to understand how much 
variance is explained by each cluster as the number of clusters increases. In what is called the 
scree plot, the X-axis represents the number of clusters, and the Y-axis represents the sum of 
squared distances (inertia). The plot typically resembles a curve that decreases sharply at first 
and then starts to level off. The “elbow” point, where the rate of decrease changes, indicates 
the optimal number of clusters. The elbow method helps identify a point where adding more 
clusters does not significantly improve the model’s fit to the data, striking a balance between 
minimizing intra-cluster distance and avoiding excessive model complexity.

•	 Adjusted rand index (ARI): This measures the similarity between the true class assignments 
and the predicted clusters, adjusting for chance.

•	 Normalized mutual information (NMI): This quantifies the amount of information that’s shared 
between true class assignments and predicted clusters, normalized to account for cluster size.

Assessment

How does DBSCAN work?

Answer

DBSCAN clusters data points based on their density. It defines dense regions as clusters and identifies 
outliers as noise points. Points within a specified distance (epsilon) and a minimum number of 
neighbors (min_samples) are considered part of the same cluster.

Assessment

What types of clusters can DBSCAN identify?

Answer

DBSCAN can identify clusters of varying shapes, including dense clusters, sparse clusters, and clusters 
separated by areas of lower density.
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Assessment

How does DBSCAN handle noise and outliers?

Answer

DBSCAN can identify noise points as data points that do not belong to any cluster. Outliers that 
are isolated from dense regions are considered noise, while inlier points close to dense clusters are 
included in those clusters.

Summarizing other notable machine learning models
In the dynamic landscape of machine learning, a plethora of models cater to diverse data and problem 
domains. In this section, we will highlight other notable models, each offering unique capabilities and 
addressing specific challenges. From text processing to survival analysis, we’ll explore a spectrum of 
models that expand the horizons of machine learning applications.

So, let’s take a look:

•	 Generalized additive models (GAMs): GAMs extend linear regression by accommodating 
nonlinear relationships between variables. By employing smooth functions, GAMs offer a flexible 
framework to capture complex interactions and patterns in data, making them valuable tools 
for various domains, including environmental science, economics, and healthcare.

•	 Naïve Bayes: This is a probabilistic classifier grounded in Bayes’ theorem. Despite its simplicity, 
Naive Bayes excels in text classification, spam filtering, and sentiment analysis. Its efficiency 
in handling high-dimensional datasets and quick training make it a go-to choice for many 
text-based tasks.

•	 Support vector machines (SVMs): These are versatile algorithms renowned for their ability to 
learn both linear and nonlinear boundaries between classes. In the realm of classification, SVMs 
provide high accuracy and robustness. Linear SVMs excel in scenarios with linear separability, 
while kernel methods enable SVMs to tackle complex decision boundaries in non-linear datasets.

•	 Market basket analysis: Market basket analysis focuses on discovering associations between 
items that are frequently purchased together. Widely used in retail, it reveals patterns that drive 
product recommendations and marketing strategies. Apriori algorithm and FP-growth are 
notable techniques for extracting frequent itemsets.

•	 Survival analysis: This analysis is used to analyze time-to-event data, such as customer churn, 
medical prognosis, or failure prediction. Employing hazard functions and Kaplan-Meier curves, 
this model assesses the probability of an event occurring within a given time frame.
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•	 Natural language processing (NLP): NPL tasks encompass a vast range of tasks, including 
sentiment analysis, named entity recognition, machine translation, and question answering. 
Advanced models such as transformer-based architectures, such as BERT and GPT, have 
revolutionized NLP tasks by learning contextual representations. Examples of NLP tasks include 
sentiment analysis, text classification, named entity recognition (NER), text generation, text 
summarization, speech recognition, text-to-speech (TTS), and semantic labeling to name a few!

•	 Anomaly detection models: Anomaly detection is crucial for spotting outliers and identifying 
unusual patterns that deviate from expected behavior. Models such as isolation forest, one-class 
SVM, local outlier factor (LOF), and autoencoders excel in uncovering anomalies in fraud 
detection, network security, and fault diagnosis.

•	 Recommender systems: Recommender systems predict user preferences and recommend 
items or content of interest. Collaborative filtering, content-based filtering, and hybrid models 
combine user behavior and item attributes to provide personalized recommendations. Matrix 
factorization (NMF), alternating least squares (ALS), user-based filtering, and content-based 
filtering are prominent techniques that are employed in this domain.

Understanding the bias-variance trade-off
In the journey of building machine learning models, understanding how well they perform on 
unseen data is paramount. Evaluating a model’s performance provides insights into its effectiveness, 
generalization capabilities, and potential areas for improvement. In this section, we delve into the 
critical process of using test sets to assess model performance comprehensively.

Model evaluation is a crucial step in the machine learning pipeline that validates the utility of a model 
in real-world scenarios. It gauges how well the model’s predictions align with actual outcomes, ensuring 
that the model can make accurate and reliable decisions beyond the training data. When assessing a 
model’s performance, it’s essential to consider two key aspects: bias and variance.

Bias refers to the error due to overly simplistic assumptions in the learning algorithm, leading to an 
underfit model that misses relevant relationships. On the other hand, variance arises when a model is 
excessively complex and captures noise in the training data, resulting in an overfit model that doesn’t 
generalize well to new data:
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Figure 10.4: Depiction of bias versus variance

Striking the right balance between bias and variance is a delicate challenge. Increasing model complexity 
tends to reduce bias but can increase variance, while reducing complexity can lower variance but 
may increase bias. Achieving an optimal trade-off between bias and variance is crucial to developing 
models that can perform well on both training and test data.

Model complexity refers to the intricacy and flexibility of a machine learning model in capturing 
relationships within the data. A more complex model can fit the training data more closely, potentially 
capturing intricate patterns and noise. However, this increased complexity can also lead to overfitting, 
where the model becomes highly tailored to the training data and struggles to generalize to new, unseen 
data. On the other hand, a less complex model might not capture all the nuances of the data, leading 
to underfitting, where it fails to capture even the basic relationships present in the data.

Assessment

What is the bias-variance trade-off in machine learning?

Answer

The bias-variance trade-off refers to the balance between a model’s ability to fit the training data well 
(low bias) and its ability to generalize to new, unseen data (low variance). Increasing model complexity 
can reduce bias but increase variance, and vice versa.
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Assessment

How does underfitting relate to the bias-variance trade-off?

Answer

Underfitting occurs when a model is too simple to capture the underlying patterns in the data, leading 
to high bias and poor performance on both training and test data.

Assessment

How does overfitting relate to the bias-variance trade-off?

Answer

Overfitting happens when a model is too complex and fits the training data noise, resulting in low bias 
but high variance. This can lead to excellent performance on training data but poor generalization 
to test data.

Tuning with hyperparameters
Hyperparameter tuning is the process of systematically searching for and selecting the optimal 
values for the hyperparameters of a machine learning model. Unlike model parameters, which are 
learned from data during training, hyperparameters are determined by the practitioner and define 
characteristics such as the complexity of the model, the learning rate, regularization strength, and 
more. The goal of hyperparameter tuning is to identify the hyperparameter values that lead to the 
best possible model performance on unseen data.

Hyperparameter tuning involves experimenting with different values for each hyperparameter and 
evaluating the model’s performance using appropriate evaluation metrics, often on a validation set. This 
process can be guided by different strategies, such as grid search, random search, or more advanced 
techniques such as Bayesian optimization.

Grid search

Grid search is a systematic approach to hyperparameter tuning. It involves defining a grid of possible 
hyperparameter values and exhaustively searching through all combinations. Grid search evaluates 
each combination using a predefined evaluation metric and identifies the configuration that yields 
the best performance.

While grid search guarantees thorough exploration of the hyperparameter space, it can be computationally 
expensive, especially when dealing with a large number of hyperparameters or a wide range of values.
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Random search

Random search takes a different approach by randomly sampling hyperparameter combinations 
from predefined ranges. This stochastic method explores a broader range of hyperparameter values 
in fewer iterations compared to grid search. While it might not guarantee exhaustive coverage, 
random search has shown to be effective in discovering good hyperparameter configurations with 
less computational cost.

Bayesian optimization

Bayesian optimization leverages probabilistic models to efficiently navigate the hyperparameter 
space. It uses the information gained from previous evaluations to guide the selection of subsequent 
hyperparameter combinations. Bayesian optimization strikes a balance between exploration (trying 
new combinations) and exploitation (focusing on promising areas), making it highly efficient for 
hyperparameter tuning.

Assessment

What are hyperparameters in the context of machine learning?

Answer

Hyperparameters are parameters that are set before the learning process begins and influence a model’s 
behavior and performance. They are not learned from data but are determined by the practitioner.

Assessment

How do hyperparameters impact model training?

Answer

Hyperparameters influence aspects such as model complexity, convergence speed, and regularization. 
Tuning hyperparameters can significantly impact a model’s performance and generalization capabilities.

Assessment

What are common techniques for tuning hyperparameters?

Answer

Common techniques include grid search, random search, and more advanced methods such as 
Bayesian optimization. These methods systematically explore the hyperparameter space to find the 
best configuration for the model.
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Summary
In our study of machine learning, we delved deeply into crucial concepts, obtaining significant 
insights. Our exploration spanned both supervised and unsupervised learning, equipping us with a 
diverse set of models.

In this chapter, we harnessed models ranging from linear and logistic regression to tree-based techniques 
such as random forests and XGBoost. These models have enabled us to capture intricate relationships 
and accurately estimate class probabilities. Additionally, our foray into clustering methods, including 
K-means, hierarchical clustering, and DBSCAN, has allowed us to master the art of extracting 
patterns from unlabeled data. Furthermore, our knowledge has been augmented with vital skills in 
hyperparameter tuning and model evaluation. We learned how to refine models using tools such as 
grid search and have come to understand key evaluation metrics, such as accuracy and precision.

As we gear up for data science interviews, this knowledge stands as a testament to our adaptability and 
problem-solving prowess. Beyond interviews, this understanding empowers us to tackle real-world 
data challenges and tailor models to meet diverse business needs. Our journey equips us to excel in 
interviews and make meaningful contributions to the dynamic world of data science.

In the next chapter, we will investigate deep learning concepts such as popular neural network architectures.





11
Building Networks with  

Deep Learning

In the previous chapter, we explored machine learning (ML) concepts, including common strengths, 
weaknesses, pitfalls, and various popular ML algorithms.

In this chapter, we will explore artificial intelligence (AI) as we dive into deep learning (DL) 
concepts. We will review important neural network (NN) fundamentals, components, tasks, and 
DL architectures that are most common in data science interviews. In doing so, we will unravel the 
mysteries of weights, biases, activation functions, and loss functions while mastering the art of gradient 
descent and backpropagation.

Along the way, we’ll fine-tune our networks, delve into the magic of embeddings and autoencoders 
(AEs), and harness the transformative power of transformers. Plus, we’ll unlock the secrets of transfer 
learning (TL), understand why NNs are often referred to as “black boxes,” and explore common 
network architectures that have revolutionized industries and led the way for generative AI (GenAI) 
and large language models (LLMs) such as ChatGPT.

In this chapter, we will review the following topics:

•	 Introducing NNs and DL

•	 Weighing in on weights and biases

•	 Activating neurons with activation functions

•	 Unraveling backpropagation

•	 Using optimizers

•	 Understanding embeddings

•	 Listing common network architectures

•	 Introducing GenAI and LLMs
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Introducing neural networks and deep learning
At its core, a neural network (also known as a neural net) is a computational model inspired by the 
structure and function of the human brain. It’s designed to process information and make decisions 
in a manner akin to how our neurons work.

An NN consists of interconnected nodes, or artificial neurons, organized into layers. These layers 
typically include an input layer, one or more hidden layers, and an output layer, which you can see 
in Figure 11.1. Each connection between neurons is associated with a weight, which determines the 
strength of the connection, and an activation function, which defines the output of the neuron:

Figure 11.1: Basic NN diagram

Data passes from the input layer through the hidden layers until it reaches the final layer as an output. 
The preceding diagram shows two output nodes, but an NN can consist of one or even hundreds of 
output nodes. The number of output nodes is an important design decision when creating an NN. 
A data scientist must design the network to be effective with the problem they are working on. For 
example, an NN might only have one output node for a regression problem, while for a classification 
task, there may be an output node for each class.

In simpler terms, an NN takes input data, processes it through multiple hidden layers of interconnected 
neurons, and produces an output. This process of transforming input into output involves complex 
mathematical operations, but at its essence, NNs excel at learning patterns and making predictions 
from data.
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Deep learning is a specific application of NNs in the ML field that focuses on training NNs with 
multiple hidden layers – hence the term “deep.” While a standard NN might have just one or two hidden 
layers, DL models can have tens, hundreds, or even thousands of hidden layers. This depth allows them 
to learn intricate and hierarchical representations of data, making them particularly well suited for 
complex tasks such as image and speech recognition, natural language processing (NLP), and more.

There are several benefits of using DL algorithms compared to their traditional ML counterparts:

•	 Feature learning (FL): DL algorithms excel at automatically discovering features and patterns in 
data without explicit programming. They learn from vast amounts of data and adapt their internal 
representations to improve their performance on specific tasks. This ability to automatically 
extract features and make high-level abstractions from raw data is one of the key reasons DL 
has revolutionized fields such as computer vision (CV), natural language understanding 
(NLU), and reinforcement learning (RL).

•	 Complex data types: DL excels at handling complex data types, such as images, audio, and 
natural language (NL) text. Traditional ML models may struggle to capture intricate patterns 
and structures present in these data types.

•	 Scalability: DL models can scale to handle large and complex datasets. With the increasing 
availability of powerful hardware (for example, GPUs and TPUs) and distributed computing, DL 
models can process massive amounts of data efficiently. This scalability is crucial in domains such 
as CV, where datasets can contain millions of images, or in training LLMs such as Generative 
Pre-Trained Transformer 3 (GPT-3).

•	 Applications: DL models have achieved state-of-the-art performance in a wide range of 
applications, including image recognition, speech recognition, machine translation, and 
game-playing. Their ability to capture intricate patterns and representations allows them to 
outperform traditional ML models in many cases.

•	 Transfer Learning: DL models can leverage pre-trained NNs and transfer knowledge from one 
task to another. For example, pre-trained models such as Bidirectional Encoder Representations 
from Transformers (BERT), which was originally designed for NLU, have been fine-tuned 
for various NLP tasks, demonstrating their adaptability. TL enables faster and more efficient 
training on new tasks with limited data, making DL practical for real-world scenarios where 
collecting large datasets may be expensive or time-consuming.

Assessment

What is the primary difference between a standard NN and a DL model, as mentioned in the text?

A.	 DL models are inspired by the human brain, while standard NNs are not

B.	 DL models have multiple hidden layers, sometimes even thousands, while standard NNs 
might have one or two
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C.	 DL models do not use activation functions

D.	 Standard NNs can handle complex data types such as images, audio, and text, while DL 
models cannot

Answer

The correct answer is B. DL focuses on training NNs with multiple hidden layers, whereas a standard 
NN might have just one or two hidden layers.

Assessment

Which of the following benefits of DL is highlighted by its ability to learn from vast amounts of data 
and adapt its internal representations for specific tasks without explicit programming?

A.	 Scalability

B.	 Complex data types

C.	 Feature Learning (FL)

D.	 Applications

Answer

The correct answer is C. DL algorithms excel at “automatically discovering features and patterns in 
data without explicit programming.”

Weighing in on weights and biases
Weights and biases are some of the most important components of NNs. Their functionality within 
NN nodes complements each other, similar to how weights and biases fit linear regression models. 
Understanding weights and biases will help you understand how they transform an NN from a static 
structure into a dynamic learning system. Proficiency in initializing, updating, and optimizing these 
components is essential in the journey of training NNs effectively.

Introduction to weights

Weights are numerical values that are assigned to the connections between neurons. Each connection 
possesses a corresponding weight value, which dictates the strength of the influence one neuron has 
on another. During training, these weights are adjusted, enabling the network to capture patterns and 
relationships within the data it processes.
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Initially set to random values, these weights are fine-tuned through techniques such as backpropagation 
and gradient descent, which we’ll discuss later. This fine-tuning process is the core mechanism through 
which NNs learn and adapt to different tasks.

Introduction to biases

Biases serve as essential parameters in NNs, akin to constants that influence the behavior of individual 
neurons within a layer. They are added to the weighted sum of inputs to a neuron before the activation 
function is applied. Biases allow the network to account for variations and offsets in the input data, 
enhancing its adaptability and flexibility.

As with weights, biases are initialized with small values and updated during training. They play a 
crucial role in ensuring that the NN can effectively capture complex relationships within the data. For 
example, Figure 11.2 demonstrates how your model’s inputs, weights, and biases produce an output 
for a single node:

Figure 11.2: Weights and biases in a node of a simple network

In this example, we witness a “forward pass,” which involves passing the input data to the NN where 
the weights and biases are used to produce an output. The process involves the following steps:

1.	 Each model input is multiplied by its respective weight.

2.	 The sum of the weight and input products is computed in the neuron.

3.	 The bias value is added to the weighted sum.
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4.	 An activation function (more on this shortly) is applied to the remaining value.

5.	 The result is the model’s output.

While this example goes over a single propagation within an incredibly basic, single-layer network, 
note that most DL models have tens, hundreds, and even thousands of hidden layers. In Figure 11.1, 
we saw an example of a simple NN with three hidden layers. The more complex the model, the more 
hidden layers are required, resulting in a deeper NN. In the next section, we will review activation 
functions, which aid our weights and bias in producing the model’s output.

Assessment

Explain the role of biases in NNs and how they differ from weights.

Answer

Biases serve as essential parameters in NNs, acting as constants that influence the behavior of individual 
neurons within a layer. They are added to the weighted sum of inputs to a neuron before the activation 
function is applied. Biases allow the network to account for variations and offsets in the input data, 
enhancing its adaptability and flexibility. On the other hand, weights are numerical values that are 
assigned to connections between neurons that dictate the strength of influence one neuron has on 
another. During training, these weights are adjusted to capture patterns and relationships in the data.

Activating neurons with activation functions
We reviewed how weights and biases contribute to a model’s predictions in the previous section. 
However, the fourth step in Figure 11.2 involves something called an activation function. What is an 
activation function anyway?

In the intricate architecture of NNs, activation functions are the gears that infuse life and non-linearity 
into the system. Activation functions are mathematical functions that are applied to the output of 
each neuron, introducing non-linearity to the outputs. This is a key distinction between the application 
of weights and biases in linear regression. Let’s explore the role and types of activation functions that 
breathe vitality into NNs.

At its core, non-linearity allows NNs to capture complex patterns in data that a linear approach would 
miss. Imagine trying to fit a straight line to data that twists and turns in various directions. A linear 
model would fail to capture the intricacies, but with non-linearity, a model can bend and adjust to 
these curves, making it more adaptable and accurate.

Within the intricate framework of NNs, activation functions are like the heartbeats that introduce 
this non-linearity. They are mathematical formulas that are applied to the output of each neuron, 
ensuring the outputs aren’t just a straight-line prediction. Including non-linearity is a pivotal point 
that differentiates NNs from linear models such as linear regression.
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Referring back to Figure 11.2, an activation function operates at the neuron. The inputs, multiplied by 
their weights plus the bias value, are all summed together and given as input to the activation function. 
The output of the activation function is based on this input. For example, the step activation function, 
which we will highlight again shortly, returns 1 if the input is greater than 0 and 0 for anything less than 
0. This output may go on to the next become the input of the next neuron, and the process starts again.

Common activation functions

Now, let’s look at some of the most common activation functions that you will encounter when building 
NNs. For each of the formulas in the list, we have the following:

•	 ​e​ represents the mathematical constant Euler’s number (approximately 2.71828)

•	 ​zi​ is an element of the input vector, z

•	 The denominator, which is the sum of the exponential values of all elements in the input vector

Here is a list of formulas:

•	 Step: The output of the step function (also known as the Heaviside step function) is either 0 or 
1. It says that if the value is 0 (or less than 0), then return 0. Otherwise, if it’s anything greater 
than 0, return 1. Hence, the step function is a “strong function” because there’s not much room 
for ambiguity:

​H​(x)​  = ​ {​
1 for x  ≥  0 

​ 
0 for x  <  0 

 ​​​

•	 Sigmoid: The sigmoid activation function squashes the input values into the range of [0, 1]. 
It’s often used in the output layer of binary classification tasks where the network needs to 
produce probabilities:

​θ​(x)​  = ​   1 _ ​(​​1 + ​e​​ −x​​)​​ ​​

•	 Hyperbolic tangent (tanh): Tanh is similar to sigmoid but squashes input values into the range 
of [-1, 1]. It’s often used in hidden layers of NNs:

​tanh​(x)​  = ​  ​(​​ ​e​​ x​− ​e​​ −x​​)​​ _ ​(​​ ​e​​ x​+ ​e​​ −x​​)​​ ​​

•	 Rectified Linear Unit (ReLU): ReLU is one of the most popular activation functions. It replaces 
negative inputs with zero and passes positive inputs unchanged. ReLU has been highly effective 
in training deep NNs (DNNs):

​ReLU ​(x)​  =  max​ ​(​​0, x​)​​​​
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•	 Leaky ReLU: Leaky ReLU is a variant of ReLU that allows a small, nonzero gradient for negative 
inputs to avoid the “dying ReLU” problem, where neurons get stuck in a non-active state:

​LeakyReLU​(x)​ = ​{​ 
x,  if x  ≥  0 

​  
negative slope × x, otherwise

​​​

•	 Softmax: The softmax function ensures that the output probabilities sum to 1, making it suitable 
for multiclass classification tasks:

​θ ​​(z)​​ i​​  = ​   ​e​​ zi​ _ 
​∑ j​ 

K​ ​e​​ zj​​
 ​ for i  =  1, … , K​

Note
Softmax is often used in the output layer of NNs for tasks such as image classification, NLP, 
and various other classification problems.

•	 Linear: You are already familiar with this function:

​f​(x)​  =  ax + b​

Choosing the right activation function

The choice of activation function depends on the problem at hand and the characteristics of the data. 
Here are some examples:

•	 Sigmoid and tanh are suitable for specific scenarios such as binary classification, where the 
output needs to be in a bounded range.

•	 Sigmoid is also used in multiple-label, multiple-class problems.

•	 ReLU and its variants are often preferred for DNNs due to their ability to mitigate the vanishing 
gradient problem, which can hinder training in deeper architectures. We will talk about the 
vanishing gradient problem later in this chapter.

•	 Softmax is suitable for multiclass classification problems (single label, multiple classes).

Experimentation and consideration of the activation functions’ properties, such as range, are crucial 
in selecting the right one for your NN.

Assessment

What role do activation functions play in NNs, and why is non-linearity crucial for these systems?
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Answer

Activation functions introduce non-linearity into NNs by being applied to the output of each neuron. 
This non-linearity ensures that the NN can capture and model complex relationships in the data, 
which a linear model might not be able to represent.

Non-linearity can be understood as the property where the outcome does not change in direct 
proportion to a change in any of the inputs. Without non-linearity, every layer of an NN would 
essentially be a linear transformation, and no matter how many layers are added, the final output 
would still be a linear function of the input. Therefore, activation functions are essential for NNs to 
learn from complex datasets.

Assessment

Take a look at the following three scenarios:

A.	 An NN layer that needs to produce probabilities for binary classification

B.	 The output layer of an NN that is meant for image classification with multiple categories

C.	 A hidden layer in a DNN where the vanishing gradient problem could be an issue

Given these scenarios, pick the most appropriate activation function in terms of sigmoid, ReLU, 
softmax, and tanh.

Answer

Here are the answers:

A.	 Sigmoid: The sigmoid activation function squashes input values into the range of [0, 1], 
making it suitable for producing probabilities, especially in binary classification tasks

B.	 Softmax: The softmax function ensures that the output probabilities sum to 1, making it 
suitable for multiclass classification tasks such as image classification with multiple categories

C.	 ReLU: ReLU and its variants are commonly used in hidden layers of DNNs due to their ability 
to mitigate the vanishing gradient problem, which can hinder training in deeper architectures

Unraveling backpropagation
At this point, you may be wondering why weights, biases, and activation functions are so special. 
After all, at this point, they probably seem not much different than parameters and hyperparameters 
in traditional ML models. However, understanding backpropagation will solidify your appreciation 
of how weights and biases work. This journey begins with a brief discussion of gradient descent.
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Gradient descent

In short, gradient descent is a powerful optimization algorithm that’s widely used in ML and DL to 
minimize a cost or loss function. It is the name that’s given to the process of training a model on a 
task by first making a prediction with the model, measuring how good that prediction is, and then 
adjusting its weights slightly so that it will perform better next time. This process allows the model to 
gradually make better predictions over many iterations of training. It is used to train not only NNs but 
also other ML models, such as linear and logistic regression and principal component analysis (PCA).

To adjust the weights to improve the model, the error gradient concerning each of the weights is 
computed. In essence, this means knowing how much each weight influenced the prediction error. 
To do this with NNs, we use the backpropagation algorithm.

What is backpropagation?

Backpropagation, also known as “backward propagation of errors,” is a fundamental algorithm that’s 
used to train artificial NNs (ANNs). It uses the chain rule from calculus to compute gradients quickly 
and efficiently. The process was invented in the 1970s, but it wasn’t until the 1980s from the work of 
Hinton and others that the algorithm was appreciated by the ML community. Just take a moment to 
appreciate that this simple algorithm allows NNs to be trained with a million+ weights.

The gradients point in the direction of the steepest ascent, and gradient descent takes steps in the 
opposite direction to minimize the loss. Figure 11.3 displays a two-dimensional gradient descent graph 
where a given parameter, p, is minimized to the global loss minimum:

Figure 11.3: Optimizing for the global loss minimum
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If you were to flip the parabola in Figure 11.3 such that the opening faced down and the apex faced 
up, the point in the middle would represent the global maximum instead. Gradient descent typically 
involves finding either a maximum or minimum value of a parameter.

Loss functions

Loss functions, also known as cost functions or objective functions, serve as critical guides in training 
models, helping them understand how well they are performing on a given task. These functions 
quantify the disparity between predicted values and true target values, providing a measure of error.

Let’s quickly review some loss function examples and their respective errors (you may recognize many 
of the error metrics from Chapter 10):

Loss Function Error
Regression Mean squared error (MSE), mean 

squared logarithmic error (MSLE), 
mean absolute error (MAE)

Binary classification Binary cross-entropy, hinge loss, 
squared hinge loss

Multiclass classification Multiclass cross-entropy, sparse 
multiclass cross-entropy

Figure 11.4: Loss functions

Gradient descent steps

The following are the basic steps that are taken in the backpropagation process:

1.	 Forward pass: This is what we saw earlier in Figure 11.2. During the forward pass, input data is 
fed into the NN, and it passes through each layer of neurons, including the input layer, hidden 
layers (if any), and the output layer. At each neuron, the weighted sum of inputs is computed, 
followed by the application of an activation function, which determines the neuron’s output; 
this process continues through the network until it produces a final output.

2.	 Calculate the error: Once the network makes predictions, the next step is to calculate the error 
or loss between the predicted output and the actual target values. The choice of the error metric 
depends on the specific task; for example, MSE is common for regression, while cross-entropy 
is used for classification tasks.

3.	 Backward pass (backpropagation): In this critical phase, the error is propagated backward 
through the network, layer by layer. The goal is to determine how much each parameter 
(weights and biases) contributed to the error. This is done by calculating the gradient of the 
error concerning each parameter using the chain rule from calculus.
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4.	 Update the parameters: With the gradients in hand, the network updates its parameters 
(weights and biases) in the opposite direction of the gradient. This step aims to reduce the error 
by making small adjustments to the parameters. The size of these adjustments is controlled by 
a hyperparameter called the learning rate.

5.	 Reiterate: Steps 1 to 4 are repeated iteratively for a specified number of epochs (times) or until 
the error converges to a minimum. During each iteration, the network refines its parameter 
values, attempting to minimize the error on the training data.

6.	 Validation and testing: After training, the NN’s performance is evaluated on validation data 
to ensure it generalizes well to unseen examples. Testing is performed on a separate test dataset 
to assess the model’s performance in real-world scenarios.

In short, forward propagation uses model inputs as signals, while backpropagation uses model 
errors as input signals. By constantly re-evaluating their performance and tweaking weights and 
biases, DL networks can self-correct their mistakes. In turn, DL models almost eliminate the lengthy 
hyperparameter tuning required in ML models.

The vanishing gradient problem

The vanishing gradient problem is a challenge that occurs during the training of DNNs, particularly 
those with many layers. It is characterized by diminishing gradient values as they are backpropagated 
from the output layer to the earlier layers during training. When gradients become too small, the 
network’s weights and biases are updated very slowly or not at all, resulting in slow or halted learning.

There are several reasons why vanishing gradients may occur:

•	 Chain rule and backpropagation: During backpropagation, the gradients of the loss function 
concerning the parameters (weights and biases) in each layer are calculated using the chain 
rule. Gradients are propagated backward from the output layer to the input layer.

•	 Activation functions: In deep networks, non-linear activation functions such as sigmoid or 
tanh are often used. These functions squash their input values into a limited range, resulting 
in derivatives that are small when inputs are far from zero.

•	 Cumulative effect: As gradients are calculated layer by layer during backpropagation, the 
derivatives of the activation functions are multiplied together. If these derivatives are consistently 
small, the gradients can shrink exponentially as they move backward through the layers.

•	 Weight initialization: Initial weight values can also contribute to the vanishing gradient 
problem. If weights are initialized with very small values, the gradients in the early layers may 
become too small to drive effective updates.
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Meanwhile, the exploding gradient problem is the counterpart of the vanishing gradient problem. 
Instead of gradients becoming excessively small, they become exceptionally large during backpropagation, 
leading to numerical instability during training. When gradients explode, they can cause weight 
updates that are so large that they overshoot the optimal parameter values and prevent the model 
from converging.

Here are some possible reasons why exploding gradients may occur:

•	 Gradient magnification: In deep networks, the gradients of the loss function concerning the 
parameters can amplify as they are calculated and propagated backward through the layers. 
This amplification occurs when the derivatives of activation functions are greater than one.

•	 Weight initialization: Poor choices of weight initialization, especially when initial weights are 
too large, can exacerbate the exploding gradient problem. If weights are initialized with values 
that are too large, gradients can explode during training.

The vanishing gradient problem can hinder the training of deep networks, especially recurrent NNs 
(RNNs), which are special kinds of NNs that are often used when working with time series data, and 
networks with many layers (deep feedforward NNs or convolutional NNs (CNNs)). It often results 
in slow convergence, and the network may struggle to capture long-term dependencies in sequential 
data. The exploding gradient problem can lead to model instability, divergence during training, and 
numerical overflow issues.

To mitigate it, techniques such as gradient clipping, which is a technique that limits gradient values 
during training, and careful weight initialization are often employed. It works by setting a threshold 
value, and if the gradient exceeds this value, it is scaled down to keep it within a certain range. This 
prevents the weights from being updated too drastically, maintaining stability in the training process. 
There are two main types of gradient clipping: value clipping and norm clipping. In value clipping, 
each element of the gradient is clipped individually. If a gradient component is greater than the positive 
threshold, it is set to the threshold. Similarly, if a component is less than the negative threshold, it 
is set to the negative threshold. However, in norm clipping, instead of clipping each gradient value 
individually, the entire gradient vector is scaled down.

You may also explore one of the following initialization methods to avoid vanishing and exploding gradients:

•	 Glorot or Xavier: This is a technique that’s used to initialize weights in such a way that the 
variance of the activations is the same across every layer, which helps prevent the gradient from 
exploding or vanishing. It is best used with tanh, sigmoid, and softmax activation functions.

•	 He: Similar to the Glorot method, the He weight initialization method focuses on initializing 
weights in such a way that the variance of the activations is the same across every layer. However, 
the methods differ in the way they calculate the variance of weights. This method is best used 
with ReLU and its variants.
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Both the vanishing and exploding gradient problems are critical challenges in training DNNs, and 
addressing them is essential for the successful convergence of DL models. Techniques such as using 
appropriate activation functions, careful weight initialization strategies, gradient clipping, and 
architectural modifications such as skip connections have been developed to alleviate these issues 
and enable deep networks to be trained effectively.

Assessment

Describe backpropagation and its relation to gradient descent and loss functions in the context of 
training NNs.

Answer

Backpropagation, also known as “backward propagation of errors,” is a central algorithm that’s used for 
training ANNs. It’s the method through which these networks learn from their mistakes by adjusting 
their internal parameters, namely weights and biases, to enhance performance on specific tasks.

Backpropagation is closely related to gradient descent and loss functions in the following way:

•	 Loss functions: These are essential metrics that help models understand their performance 
by quantifying the difference between predicted values and the actual target values. The error 
or loss that’s calculated using loss functions is a critical input to the backpropagation process.

•	 Gradient descent: Gradient descent is an optimization algorithm that is utilized in the iterative 
process of refining model parameters, such as weights and biases, to find the best values that 
minimize the cost or loss function. Backpropagation aids in determining how much each 
parameter (weights and biases) contributed to the error by calculating the gradient of the error 
concerning each parameter. This gradient is then used in the gradient descent algorithm to 
update the model parameters, guiding the model toward better performance.

Assessment

Which of the following statements is true regarding the vanishing and exploding gradient problems 
in DNNs?

A.	 The vanishing gradient problem results from gradients becoming excessively large 
during backpropagation

B.	 The exploding gradient problem can cause weight updates that are so large that they prevent 
the model from converging

C.	 Activation functions such as ReLU are the primary reasons for the vanishing gradient problem
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Answer

•	 A is false – the vanishing gradient problem is characterized by diminishing gradient values, 
not increasing ones

•	 B is true – when gradients explode, weight updates can become so large that they prevent the 
model from converging

•	 C is false – the vanishing gradient problem often arises due to activation functions such as 
sigmoid or tanh, not ReLU

Using optimizers
At the heart of DL lies the optimization problem: finding the best set of model parameters (weights 
and biases) that minimize a chosen loss function. Optimization algorithms play a pivotal role in this 
journey by iteratively adjusting these parameters to reduce errors between predictions and actual 
target values.

Optimization is a fundamental concept in mathematics that refers to the process of finding the 
best or most favorable solution among a set of possible solutions. In the context of ML and DL, 
optimization is used to adjust model parameters to minimize a cost, objective, or loss function (all 
used interchangeably), leading to improved model performance. We have already covered that the 
gradient descent algorithm is used for optimization. However, there are different versions of the 
algorithm, and when constructing your NN, you can choose which of them to use.

Let’s consider some key aspects of optimization:

•	 Objective function: Optimization involves an objective function, also known as a cost function 
or loss function, as mentioned earlier. This function quantifies the difference between the 
predicted values of a model and the actual target values. The goal is to minimize (or maximize, 
in some cases) this function.

•	 Local minimum: A local minimum is a point in the solution space where the objective function 
has a lower value than at all nearby points but may not necessarily be the absolute lowest point 
in the entire solution space. It’s like a dip in a hilly landscape where you’re at the lowest point 
around, but there might be deeper valleys elsewhere.

•	 Global minimum: A global minimum is the absolute lowest point in the entire solution space, 
where the objective function has its smallest value. It represents the best possible solution to the 
optimization problem. Finding the global minimum can be challenging, especially in complex, 
high-dimensional spaces.

The optimization process is always looking for the global minimum but can sometimes get stuck in 
a local minimum. Different versions of the gradient descent algorithm were developed with different 
approaches to find the global minimum, and we will talk about them in our next section.



Building Networks with Deep Learning310

Optimization algorithms

Optimization algorithms, such as gradient descent and its variants, are employed to navigate through 
the solution space to find either the global minimum or a satisfactory local minimum, depending 
on the problem. The choice of optimization algorithm, learning rate, and other hyperparameters can 
significantly impact the convergence of the optimization process and the quality of the solution found.

While gradient descent forms the bedrock, numerous advanced optimization algorithms have been 
developed to address its limitations and accelerate training. Some common ones include the following:

•	 Stochastic gradient descent (SGD): An extension of gradient descent that computes gradients and 
updates parameters using mini-batches of training data, making it more computationally efficient.

•	 Adaptive Moment Estimation (Adam): An adaptive learning rate optimization algorithm that 
combines the advantages of momentum and Root Mean Squared Propagation (RMSprop). 
Adam adjusts the learning rate individually for each parameter.

•	 RMSprop: An optimization algorithm that adapts the learning rate for each parameter based 
on the magnitude of recent gradients.

•	 Adaptive Gradient Algorithm (AdaGrad): An optimization algorithm that adjusts learning 
rates adaptively based on the historical gradient information for each parameter.

•	 Adadelta: A variant of AdaGrad that addresses its sensitivity to the initial learning rate.

•	 Nadam: A combination of Nesterov Accelerated Gradient (NAG) and Adam that offers 
improved convergence properties.

Choosing the right optimizer is as much an art as it is a science. The optimal choice often depends 
on the specific problem, dataset, and model architecture. Furthermore, understanding the interplay 
between learning rates, batch sizes, and optimization algorithms is crucial for efficient training and 
model convergence.

Optimizers are the captain’s wheel that steers the ship of NN training. As we navigate through the 
intricacies of DL, mastering the art of optimization will empower us to train models that not only 
learn but excel in a wide range of tasks.

Network tuning

There are some common parameters that you should consider while improving model performance:

•	 Epochs: The number of “runs” or the number of times the NN trains on all the training data. 
One epoch means one complete pass through the entire training dataset. Two epochs represent 
two runs over the training data. We mentioned epochs earlier when we considered gradient 
descent. While increasing this value adds complexity to the model, it isn’t the most effective 
way of improving results.
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•	 Batch size: The number of samples fed to the model at a time. The model will update its weights 
after processing a batch. If the batch size is too small, it may lead to noisy gradients slowing 
the optimization process. However, if it is too large, it requires more computational resources, 
which may make training slower and more expensive.

•	 Hidden Layers (n_hidden): The number of hidden layers. The more layers, the more complex 
the model (for more complex tasks). It will also take more time to run, so reducing the number 
of epochs a little may be helpful when increasing this parameter. Note that the hidden layers 
begin after the input layer, so they don’t include it.

•	 Dropout: The drop parameter randomly drops some values propagated in the network during 
training with X% (where X = dropout rate). Some of the input values to the NN are randomly 
set to zero. This serves as a form of regularization as it forces the network to learn redundant 
patterns for better generalization. This is because each neuron becomes more capable since it 
cannot fully rely on its neighbors.

•	 Optimizers: The specific algorithm that’s used to update the weights during model training. 
Examples include gradient descent, SGD, RMSprop, and Adam.

•	 Learning rate: This quantifies how quickly the optimizer converges. The larger the learning 
rate, the more likely it may “overstep” the optimal values. Smaller learning rates are more 
precise but take longer to train.

•	 Regularization: It’s ideal to use regularization where there is overfitting in the model. Examples 
of regularization include L1 regularization such as the Lasso technique or L2 regularization 
such as the Ridge technique.

•	 Batch normalization: This increases training speed and accuracy because it helps prevent 
activations from becoming either too small or vanishing or too big or exploding.

Assessment

Which of the following statements best describes the relationship between a local minimum and a 
global minimum in the context of optimization?

A.	 A local minimum is always higher in value than a global minimum

B.	 A local minimum is the absolute lowest point in the solution space, while a global minimum 
is just a lower value than nearby points

C.	 A global minimum is the absolute lowest point in the solution space, while a local minimum 
might not be the lowest point overall but is lower than all nearby points

D.	 A local minimum and global minimum are the same and represent the absolute lowest 
points in the solution space
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Answer

The answer is C.

A local minimum is “a point in the solution space where the objective function has a lower value than 
at all nearby points but may not necessarily be the absolute lowest point in the entire solution space.” 
On the other hand, a global minimum is “the absolute lowest point in the entire solution space, where 
the objective function has its smallest value.”

Assessment

What is the key advantage of using SGD over basic gradient descent in the context of optimization, 
and how does it achieve this advantage?

Answer

The key advantage of using SGD over basic gradient descent is computational efficiency. SGD computes 
gradients and updates parameters using mini-batches of training data instead of using the entire 
dataset, making the process more efficient.

Understanding embeddings
At its core, an embedding is a mapping from a high-dimensional space to a lower-dimensional space 
that captures essential characteristics or features of data in a more compact form. This transformation 
not only reduces the dimensionality of the data but also helps NNs process and understand it 
more effectively.

These compact, meaningful representations of data play a pivotal role in various applications, from 
NLP to recommendation systems. In this section, we’ll explore the concept of embeddings, their 
significance, and how they are employed to enhance the capabilities of NNs.

Word embeddings

Word embeddings are among the most renowned and widely used types of embeddings. They 
represent words as vectors in a continuous space, where each dimension of the vector corresponds to 
a semantic or syntactic feature of the word. This representation enables NNs to grasp meanings and 
relationships between words more intuitively.

Word embedding models generate word vectors by training on a large corpus of text data, learning to 
place similar words close to each other in the embedding space. Word embeddings have revolutionized 
NLP tasks, from sentiment analysis (SA) to machine translation, by providing models with a richer 
understanding of linguistic context.

Other embeddings include item (for example, images) and graph embeddings.
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Training embeddings

Embeddings serve as the input layer in NNs, connecting raw data to the neural architecture. As the 
network learns during training, these embeddings may get adjusted to optimize model performance 
for the task at hand. Moreover, embeddings can be fine-tuned or kept static, depending on the 
problem requirements.

Training embeddings can take one of two approaches:

•	 Pre-trained embeddings: Pre-trained embeddings, such as Word2Vec or Global Vectors 
(GloVe), are learned on massive datasets and can be used directly in NN architectures. They offer 
a valuable starting point for various tasks as they capture general relationships within the data.

•	 Task-specific embeddings: In some cases, embeddings may be trained specifically for a 
particular task or dataset. This custom approach tailors embeddings to a specific problem, 
potentially enhancing performance.

Assessment

In the context of embeddings and NNs, how do pre-trained embeddings differ from task-specific 
embeddings, and what is the potential advantage of using pre-trained embeddings?

Answer

Pre-trained embeddings, such as Word2Vec or GloVe, are learned on massive datasets and are used 
directly in NN architectures, capturing general relationships within the data. These embeddings provide 
a valuable starting point for various tasks due to their broad understanding of data relationships. In 
contrast, task-specific embeddings are trained specifically for a particular task or dataset, aiming to tailor 
the embeddings closely to that problem. The potential advantage of using pre-trained embeddings is 
that they offer a rich understanding of general data relationships, thus often speeding up training and 
possibly leading to better performance, especially when task-specific data is limited or lacks diversity.

Listing common network architectures
In the ever-evolving world of DL, network architectures serve as the blueprints for intelligence. 
Each architecture is a unique design, meticulously crafted to tackle specific challenges and excel in 
particular domains.

In this section, we’ll embark on a journey through the diverse terrain of NN architectures, from CNNs, 
which conquer image analysis, to RNNs, which master sequential data, and from the creative minds 
behind generative adversarial networks (GANs) to the memory-enhancing capabilities of long short-
term memory (LSTM) networks. Here, we’ll list some common architectures and their applications.
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Common networks

While explaining the distinctions between different network architectures is beyond the scope of this 
book, it is important to understand the basic differences between the most common networks. Here 
are some to keep in mind:

•	 ANNs: ANNs consist of interconnected nodes (neurons) organized in layers – an input layer, 
one or more hidden layers, and an output layer. Information flows forward through the 
network during inference, and backpropagation is used during training to adjust the weights 
to minimize the loss function.

•	 RNNs: RNNs are sequence-to-sequence (seq2seq) models, designed for processing sequential 
data such as text and time series data. They process sequences by maintaining a hidden state 
that carries information from the past. The hidden state is updated at each time step, allowing 
RNNs to capture dependencies over time. However, vanilla RNNs can suffer from the vanishing 
gradient problem.

•	 LSTM networks: LSTMs are a type of RNN that are designed to overcome the vanishing 
gradient problem. They use a more complex architecture with specialized gates (input, forget, 
output) to control the flow of information in and out of the cell state. LSTMs are well suited 
for modeling long-term dependencies in sequential data.

•	 Gated recurrent units (GRUs): GRUs are another type of RNN architecture similar to LSTMs. 
They use gating mechanisms to control the flow of information within the network. GRUs are 
computationally more efficient than LSTMs and have been successful in various sequential 
data tasks.

•	 CNNs: CNNs are designed for processing grid-like data, such as images and videos. They use 
convolutional layers to automatically extract hierarchical features from the input. Convolutional 
filters slide over the input to detect patterns, and pooling layers reduce spatial dimensions. 
CNNs are widely used in image classification and computer vision tasks.

•	 GANs: GANs consist of two NNs – a generator and a discriminator – that are trained simultaneously. 
The generator tries to generate data that is indistinguishable from real data, while the discriminator 
aims to differentiate between real and generated data. This adversarial training process results 
in the generation of realistic data.

•	 Graph convolutional networks (GCNs): GCNs are used for graph-structured data, such as 
social networks and molecular graphs. They generalize convolutional operations on graphs by 
aggregating information from neighboring nodes. GCNs can capture structural patterns and 
dependencies in graph data.

•	 AEs: AEs are a type of NN architecture that’s used for unsupervised learning (UL) and 
dimensionality reduction. AEs find applications in tasks such as data denoising, anomaly 
detection, and FL. Variations of AEs, such as convolutional AEs (CAEs) and variational AEs 
(VAEs), have been developed to address specific types of data and learning objectives.
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•	 Transformers: Transformers are a type of feed-forward neural network architecture that helped 
improve the shortcomings of sequence-to-sequence models like RNNs and LSTMs. The Vaswani 
et al. paper “Attention is All You Need” proposed transformers architecture with a mechanism 
called self-attention, which helped overcome the shortcomings in previously used sequence-
to-sequence models like RNNs and LSTMs. These shortcomings include the vanishing gradient 
problem, and long-term memory loss due to its architectural design.

The innerworkings of transformers are somewhat complex and thus beyond the scope of this 
chapter. However, it is important to note some of their architectural features and benefits:

	� Encoder: An encoder compresses the input data into a lower-dimensional representation, 
often referred to as a “latent space” or “encoding.” This process captures the most important 
features and patterns in the data. The encoder uses self-attention and multi-head attention 
mechanisms. The encoder “encodes” both word vector embeddings and positioning information.

	� Decoder: A decoder reconstructs the input data from the lower-dimensional representation. 
The goal is to minimize reconstruction errors between the input and the output, encouraging 
the AE to learn a compact representation that retains important information.

	� Encoder and decoder stacks: Transformers often consist of stacked layers of encoders and 
decoders, allowing them to model complex seq2seq tasks effectively.

	� Multi-head Attention (MHA): Transformers also use multiple-attention heads to learn 
multiple sets of weight matrices, producing more complex feature maps with multiple output 
channels. A multi-head attention mechanism simply allows the model to simultaneously 
learn multiple “types” of information from the same input. For example, an MHA mechanism 
might learn multiple pieces of information from the word “love”, such as the context of the 
word, the part of speech the word represents, etc.

	� Masked Multi-head Attention: MHA may use masking techniques to improve the performance 
of a transformer. Masking is a method which “masks” words to improve its learning process. 
It effectively eliminates the model’s dependency on “peaking” at future information, forcing 
it to identify additional patterns on less information.

We will look at transformers and attention again later in the chapter.

Tools and packages

Python has firmly established itself as the lingua franca for researchers and practitioners alike. Its vast 
ecosystem of libraries, frameworks, and tools has made the development of NNs more accessible and 
efficient than ever before. Let’s take a closer look at some of the most popular tools and packages that 
have become indispensable companions on the journey of building, training, and deploying NNs 
in Python.
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TensorFlow, developed by Google, stands as one of the heavyweight champions of DL frameworks. Its 
flexibility, scalability, and extensive community support make it an ideal choice for both research and 
production environments. TensorFlow’s high-level APIs such as Keras simplify the process of building 
and training NNs, while its lower-level operations allow for fine-grained control and optimization.

Keras, now an integral part of TensorFlow, has earned a reputation as the go-to library for building 
NNs with ease. Its high-level API abstracts many complexities, making it accessible to beginners and 
seasoned practitioners alike. With Keras, constructing intricate neural architectures becomes a matter 
of simple and expressive code.

PyTorch has gained immense popularity for its dynamic computation graph and intuitive interface. 
Developed by Meta’s AI Research lab, it empowers researchers and developers to experiment with 
complex architectures and custom operations seamlessly. PyTorch’s dynamic nature lends itself well 
to tasks involving variable-length sequences, RL, and generative models.

From DL frameworks such as TensorFlow and PyTorch to essential libraries for data manipulation 
and visualization, these tools provide a robust foundation upon which the future of AI is being built.

Assessment

Explain the main difference between the architectures of LSTM networks and GRU networks, and 
highlight specific use cases where each is beneficial.

Answer

LSTMs and GRUs are types of RNNs that are designed to handle sequential data, but they have 
different architectures:

•	 LSTMs: These have a more complex architecture with specialized gates – input, forget, and 
output gates. These gates control the flow of information in and out of the cell state. LSTMs 
were specifically designed to tackle the vanishing gradient problem, which can be a challenge in 
vanilla RNNs. The additional complexity of the LSTM allows it to model long-term dependencies 
in sequential data. LSTMs tend to be preferred for tasks where long-term dependencies of the 
data are critical, such as machine translation or speech recognition.

•	 GRUs: These are somewhat simpler in structure compared to LSTMs. Instead of having three 
gates like an LSTM, they use gating mechanisms to control the flow of information but combine 
the forget and input gates into a single “update” gate. GRUs are computationally more efficient 
than LSTMs due to their simpler structure. They have been successful in various sequential 
data tasks, especially when computational efficiency is crucial.
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Introducing GenAI and LLMs
In the dynamic field of AI, language models stand as titans of NLU and generation. These models 
have not only revolutionized the way we interact with machines but have also sparked a renaissance 
in GenAI.

In this section, we’ll delve into the world of LLMs, which are generative language models trained on 
massive text corpora (think in terms of most of the public data available on the internet) and can 
contain billions of parameters. We will focus on exploring LLMs: their architecture, training, and 
the transformative impact they have had on various applications, from text generation to chatbots, 
language translation, and even creative storytelling.

Unveiling language models

At their core, language models are GenAI models – these are AI models that generate texts, images, 
or other forms of media.

Specifically, language models are probabilistic models that learn the patterns, structure, and semantics 
of NL through NLP tasks. These models can predict the next word in a sentence, generate coherent 
paragraphs of text, and understand the meaning behind linguistic constructs – this is all thanks to 
their knowledge of language, which they gained through extensive training on large text corpora.

The impact of LLMs and GenAI reverberates across a multitude of domains:

•	 They have empowered chatbots to provide more natural and context-aware interactions

•	 They enable machines to translate languages, summarize texts, and generate human-like content

•	 They have become essential tools for creative writing, content generation, and even code 
completion, revolutionizing content creation and software development

The advent of transformer architecture (mentioned in the Common networks section) marked a turning 
point in the world of LLMs. As LLMs continue to evolve and grow in sophistication, they promise 
to bridge the gap between humans and machines in unprecedented ways. They have also shown an 
enormous potential to change the day-to-day reality of data scientists, who may spend less time building 
models from scratch and more time mastering the application and tuning of pre-trained models.

Furthermore, companies who wish to capitalize on the power of GenAI are eagerly seeking data 
scientists and AI engineers who have familiarity with this exciting new technology that has only become 
dominant in data science roles in the past few years. Thus, the journey into GenAI is far from over, 
and the stories, innovations, and applications it unfolds promise to be nothing short of extraordinary.

However, while LLMs and GenAI have opened doors to incredible possibilities, they have also raised 
concerns about ethics, bias, and misuse. The responsibility of ensuring that these powerful models 
are used for the greater good rests on the shoulders of researchers, developers, and society at large.
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Transformers and self-attention

Transformers, which are neural network architectures using encoders and decoders, brought forth 
the concept of self-attention mechanisms, enabling models to capture long-range dependencies and 
contextual information efficiently (more on this in a second). They gained popularity after the release 
of “Attention Is All You Need” by Ashish Vaswani et al., published in 2017, and since then, they have 
become a cornerstone in NLP and various other ML tasks. Transformers are an improvement to the 
sequence-to-sequence models (seq2seq) like RNNs and LSTMs.

While the encoder is responsible for representing input data as vectors, the decoder is responsible 
for receiving and analyzing the output of the encoder and producing a sequential output. This is an 
appropriate architecture for NLP tasks such as text translation.

With transformers, the decoder can access additional hidden states, providing more “connections” 
or inputs for the decoder to decode.

Thus, the popularity of transformers almost seems to have arisen overnight, but they are in fact the 
result of years of DL architecture evolution. For example, while seq2seq models such as RNNs and 
LSTMs have been around since the 1990s (later enhanced with attention), transformers introduced 
the concept of “self-attention.”

Let’s take a look at the difference between the two:

•	 Attention is used in encoder-decoder transformer models, and calculates model weights using 
input queries and elements keys. These keys are then used to calculate weighted averages. The 
introduction of attention allowed the network to “remember” more information by connecting 
encoder outputs directly to decoder inputs. Think of the hidden state as a bottleneck like a 
toothpaste tube. You can only squeeze so much toothpaste (aka information) through the tube 
at a time. Attention was proposed as an extension to the encoder-decoder framework to connect 
information from one sequence (for example, input or encoder) to another (for example, output 
or decoder) directly, to produce predictions.

•	 Self-attention is like attention 2.0. Although similar, it has an important distinction. While 
attention allows transformers to access information from a different sequence, self-attention 
networks take this a step further by retaining an even larger context of information. This is 
achieved by connecting and learning information throughout the entire model architecture, 
creating multiple layers of weights of an input, which are then projected on the embeddings 
space. Instead of isolating the learning process within the encoder and decoder respectively, 
and then connecting them with attention, self-attention liberated AI from the seq2seq 
component entirely (although it can still be used to learn seq2seq tasks). In self-attention, the 
attention mechanism is used to encode information instead of seq2seq models such as RNNs 
by connecting multiple input variables throughout the network. Think of self-attention as a 
brain with multiple neuron connections throughout the entire brain as opposed to a system 
that only has a single highway between input and learned output. It would be much harder for 
us to learn information with such a limitation!
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In short, self-attention allows each element in a sequence to consider all other elements when making 
predictions, capturing long-range dependencies efficiently.

Assessment

Describe the primary components and functionalities of transformers, and explain how they differ 
from traditional sequence-based models such as RNNs and LSTMs.

Answer

A transformer is a DL architecture that has become foundational in NLP and various other ML tasks. 
Its primary components and functionalities include the self-attention mechanism, which efficiently 
captures long-range dependencies; MHA, which allows the model to learn different types of relationships 
from the data concurrently; positional encoding, which gives the model a sense of order in the data; 
and encoders and decoders, which make the models great for complex seq2seq tasks.

Traditional sequence models such as RNNs and LSTMs process data in a sequential manner, with 
each step being dependent on the previous. In contrast, transformers can process all elements of a 
sequence in parallel thanks to the self-attention mechanism. Additionally, transformers, due to their 
self-attention mechanism, can capture long-range dependencies more effectively than RNNs or LSTMs, 
without worrying about issues such as the vanishing gradient problem.

Transfer Learning

After the introduction of transformers and self-attention networks, the realm of AI exploded with some 
of the most influential LLMs, including BERT, GPT, Text-to-Text-Transfer Transformer (T5), and 
their successors. These models became so powerful (in part because of their access to large corpora) 
that they gave rise to TL.

Transfer Learning (TL) is an AI technique in which a pre-trained model, initially trained on a large 
dataset for a specific task, is reused as a starting point for a different but related task. Therefore, 
instead of training a model from scratch, TL leverages knowledge and learned representations from 
the pre-trained model, allowing it to adapt more quickly to the new task.

TL is especially valuable when labeled data for the new task is limited, as it can significantly reduce 
the amount of data required for training. This approach has democratized AI development, allowing 
developers to leverage pre-trained models and adapt them to various applications.

GPT in action

As previously mentioned, GPT is one of the most popular pre-trained LLMs. Data scientists who used 
to build NLP tasks from scratch using Word2Vec embedding methods may now apply and fine-tune 
a GPT model, which already has a wealth of semantic language understanding. Thus, it’s important 
to understand how to implement basic NLP tasks using GPT.
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This section will provide some very basic implementations of text generation, named entity recognition 
(NER), and SA as a means to demonstrate the power of GPT using just a few lines of code. We encourage 
you to try more advanced examples in your LLM learning journey!

Note
In a real-world scenario, you would need to handle additional considerations such as model 
training, data preprocessing, and error handling. There are already entire texts dedicated to 
these topics. However, these examples are for illustrative purposes to provide a “crash course” 
on LLM implementation and aid you in LLM implementation conversations during interviews.

To get started, install the transformers library using pip:

pip install transformers

Now, let’s have a look at three different examples.

Example 1 – Sentiment Analysis (SA)

SA is an NLP task involving extracting sentiment from a given text input. This is an example of 
analyzing the sentiment of a provided text:

from transformers import pipeline
nlp = pipeline("sentiment-analysis")
result = nlp("I love this movie!"[0]
print(f"label: {result['label'], with score: {round(result['score'], 
4)}")

In this code, we do the following:

•	 Import the pipeline function from the transformers library

•	 Create an SA pipeline

•	 Pass text to the pipeline and index the result

•	 Print the sentiment prediction and its corresponding score using f-strings

Example 2 – Named Entity Recognition (NER)

NER is an NLP task involving extracting a named entity (for example, a person, place, and so on) from 
a given text input. This is an example of extracting a named entity from a provided text:

from transformers import pipeline

nlp = pipeline("ner")
result = nlp("Harrison Ford was in Star Wars.")
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for entity in result:
    print(f"{entity['entity']}: {entity['word']}")

In this code, we do the following:

•	 Import the pipeline function from the transformers library

•	 Create an NER pipeline

•	 Pass text to the pipeline and index the result

•	 Print each recognized entity and its corresponding word in the text

Example 3 – Text generation

Text generation is an NLP task involving the generation of new text from a given input text. Here is 
an example of generating text provided some input text:

from transformers import GPT2LMHeadModel, GPT2Tokenizer

tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
model = GPT2LMHeadModel.from_pretrained("gpt2")

input_text = "Once upon a time"
input_ids = tokenizer.encode(input_text, return_tensors='pt')

output = model.generate(input_ids, max_length=100, temperature=0.7, 
do_sample=True)
output_text = tokenizer.decode(output[:, input_ids.shape[-1]:][0], 
skip_special_tokens=True)

print(output_text)

In this code, we do the following:

•	 Import the necessary modules from the transformers library

•	 Load the GPT-2 model and GPT tokenizer

•	 Encode the text input into a machine-legible format

•	 Apply the model to generate text, specifying a maximum length and a temperature (which 
controls the randomness of the output)

•	 Decode the output from the model into human-readable text and print it
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Summary
In this comprehensive exploration of DL, we embarked on a journey through the intricate landscapes 
of NNs, optimization algorithms, and fundamental concepts that underpin this transformative field. 
We began our voyage by deciphering NN fundamentals, understanding the building blocks of DL, and 
uncovering the power of activation functions, weight initialization, and embeddings. As we delved 
deeper, we navigated the seas of optimization, unraveling the intricacies of gradient descent, learning 
rates, and various optimization algorithms that guide the training of NNs. We also shed light on the 
vanishing and exploding gradient problems, which are crucial challenges to overcome in the pursuit 
of effective training.

Our odyssey continued with a tour of common network architectures, from CNNs mastering image 
analysis to RNNs and LSTMs excelling in sequential data tasks. We encountered the creative minds 
behind GANs, explored the power of transformers in NLU, and marveled at the capabilities of GCNs 
and GRUs. Transfer learning, auto encoders, embeddings, and the ethics of AI played pivotal roles 
in our journey, each adding a unique dimension to the ever-expanding universe of DL. We then 
explored the introduction of GenAI, particularly LLMs, and their evolution from seq2seq models 
with attention, to self-attention networks.

As we approach the shore of this chapter’s conclusion, it’s clear that DL is not merely a collection of 
techniques but a boundless realm of innovation and discovery. It empowers machines to comprehend 
and generate human-like intelligence, revolutionizing industries, research, and everyday life. As the 
tides of progress continue to surge, our voyage into the depths of DL is far from over, promising new 
horizons of understanding, creativity, and transformation in the ever-evolving world of AI.

In the next chapter, we will take our knowledge of how to build models to the next level by discussing 
model deployment.



12
Implementing Machine 

Learning Solutions with MLOps

Machine Learning Operations (MLOps) has emerged as a pivotal force in the data-driven age, 
enabling organizations to develop, deploy, and maintain machine learning models efficiently and 
effectively. It addresses key challenges related to speed, collaboration, governance, scalability, and 
cost, making it a discipline to be aware of for anyone navigating the modern landscape of artificial 
intelligence and machine learning.

In the following sections, we will break down the concept of MLOps, explore its core components, and 
provide insights into how it can elevate your machine learning initiatives. Whether you’re an aspiring 
data scientist looking to see your models in action, an IT professional managing infrastructure, or a 
business leader shaping data-driven strategies, this chapter will equip you with the knowledge and 
tools you need to navigate the exciting and dynamic world of MLOps and have confidence in applying 
machine learning concepts to tackle data-driven challenges.

In this chapter, we will cover the following topics:

•	 Introducing MLOps

•	 Understanding data ingestion

•	 Learning the basics of data storage

•	 Reviewing model development

•	 Packaging for model deployment

•	 Deploying a model with containers

•	 Validating and monitoring the model

•	 Using Azure Machine Learning (Azure ML) for MLOps
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Introducing MLOps
MLOps is an emerging discipline that blends the principles of DevOps and data science to streamline 
and enhance the machine learning life cycle. It encompasses a set of practices, principles, and tools 
designed to facilitate the entire journey of a machine learning model, from its inception to deployment, 
and beyond. In other words, MLOps is the bridge that connects the world of data science with the 
world of IT operations.

MLOps ensures that the promising machine learning models created by data scientists can be 
operationalized and maintained effectively in production environments. MLOps involves a holistic 
approach to managing machine learning workflows, covering aspects such as data acquisition, model 
development, testing, deployment, monitoring, and continuous improvement.

Why should you, as a reader, invest your time and energy in understanding and implementing MLOps? 
Here are some compelling reasons:

•	 Efficiency and speed: MLOps significantly improves the efficiency and speed of machine 
learning model development. It enables data scientists and machine learning/data engineers to 
iterate quickly and get models into production faster. This acceleration can be a game-changer 
for businesses aiming to stay competitive in rapidly changing markets.

•	 Collaboration: MLOps encourages close collaboration between data science and IT operations 
teams. This cross-functional cooperation ensures that the expertise of each group is leveraged 
effectively, leading to better outcomes and more successful projects.

•	 Model governance: In the era of data privacy regulations and industry standards, effective 
model governance is vital. MLOps provides the infrastructure needed to track and manage 
models, version data, and ensure compliance. This is particularly important for industries such 
as healthcare and finance, where regulatory requirements are stringent.

•	 Scalability: As machine learning models become more central to business processes, scalability 
is essential. MLOps helps organizations scale their machine learning workflows efficiently, 
whether it’s deploying models across multiple regions, handling large volumes of data, or 
supporting more users and applications.

•	 Cost reduction: By automating repetitive tasks, optimizing resource utilization, and preventing 
costly errors, MLOps can lead to significant cost savings. It reduces the risk of downtime due 
to faulty models and minimizes the need for manual intervention in the deployment and 
monitoring processes.

•	 Managing resources: In addition to managing costs, there is a significant need to manage data 
from various processes (batch and streaming) across often complex data architectures, as well 
as managing code with version control.



Introducing MLOps 325

If you ask someone what exactly MLOps entails, you’ll get a million and two answers. This is because 
MLOps continues to be a very broad topic spanning roles, functionalities, and departments. While we 
can already assume that data scientists and data engineers are relevant to MLOps, you’ll be surprised to 
learn that even IT and governance can be included in this massive process. However, if you’re working 
for a smaller organization or start-up, you may discover that all of these roles are one and the same.

A model pipeline overview

A pivotal aspect of thriving in MLOps, a domain critical for modern data-driven organizations, is 
the mastery of crafting efficient and highly reproducible model pipelines. These pipelines aren’t just 
a component of the workflow; they are also the backbone of a transformative approach in machine 
learning. By automating the intricate processes of building, training, and deploying machine learning 
models, these pipelines revolutionize the journey from a mere prototype to a robust production-ready 
solution. This automation not only dramatically accelerates the development cycle but also guarantees a 
consistent and error-free deployment, which is indispensable in today’s fast-paced, data-centric world.

Developing model pipelines involves several essential steps and often relies on specific technologies 
to ensure reliability and consistency. You can see the data pipeline here:

Figure 12.1: The data pipeline steps

This pipeline may look familiar because we’ve touched on most of these steps while learning about the 
ML workflow. However, there’s so much more that goes on beyond the development and validation 
of the model.

Assessment

What is the significance of model pipelines in MLOps, and how do they contribute to the efficiency 
of machine learning workflows?
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Answer

Model pipelines play a crucial role in MLOps, as they contribute to the efficiency of machine learning 
workflows in several ways:

•	 Automation: Model pipelines automate the complex processes of building, training, and deploying 
machine learning models. This automation speeds up the development cycle, making it possible 
to go from a prototype to a production-ready solution quickly. For example, an e-commerce 
company can use model pipelines to automate the recommendation engine’s development and 
deployment, enhancing the user experience.

•	 Consistency: Model pipelines ensure consistency in model deployment. They guarantee that 
the same steps are followed every time, reducing the risk of errors and inconsistencies. In a 
healthcare setting, consistency is vital when deploying diagnostic models to ensure patient safety.

•	 Reproducibility: Model pipelines facilitate reproducibility by recording every step of the 
process. This is important in industries such as pharmaceuticals, where regulatory bodies 
require complete documentation of the model development process.

Now, in the following sections, we will take a look at each of these steps and the tools that are involved 
in each.

Understanding data ingestion
The responsibility of completing tasks within the early stages of the data pipeline (i.e., data ingestion 
and data storage) often falls under the responsibility of a machine learning/data engineer and not 
the data scientist. However, a data scientist should be able to understand what happens during these 
stages at a high level.

In the simplest terms, data ingestion involves developing automated processes to collect the data used 
for data science models automatically. Often, organizations/businesses already have processes in place 
to collect basic information about their activities, such as tracking website usage or customer purchase 
transactions. However, sometimes, to solve a particular organizational/business question, new data 
needs to be collected. The goal here is to automate the process to ensure that the data eventually used 
in a model is consistent, reliable, and free of bias to the best of the organization’s ability.

Data ingestion usually occurs with ETL (extract, transform, load) or ELT (extract, load, transform) 
pipelines and typically involves batch and/or streaming processes. Going into depth about these two 
pipeline processes is outside the scope of this book; however, the important aspect to know is that 
these processes automatically collect data for an organization and output it, often in a structured 
format, ready for further processing or storage.
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Here is a list of some of the technologies used during this step, each with their different strengths:

•	 Apache Storm: Apache Storm is a real-time stream processing system designed for handling 
high-throughput, low-latency processing of data streams. It’s often used to process data as it 
arrives and can be integrated with other databases and message brokers.

•	 Apache Beam: Apache Beam is an open source, unified stream and batch processing model and 
SDK that allows developers to write data processing pipelines, running on multiple processing 
engines, including Apache Spark, Apache Flink, and Google Cloud Dataflow.

•	 Hadoop: Hadoop is an open source framework for the distributed storage and processing of 
large datasets, using a cluster of commodity hardware. It was developed by the Apache Software 
Foundation and has become a fundamental technology for handling big data. Hadoop is inspired 
by the Google File System and the MapReduce programming model, and it provides a scalable 
and fault-tolerant infrastructure to manage and process vast amounts of data.

•	 Hive: Hive is an open source data warehousing and SQL-like query language for Hadoop. It was 
originally developed by Facebook and is now maintained by the Apache Software Foundation. 
Hive provides a high-level interface to query and analyze data stored in Hadoop clusters, using 
a language similar to SQL called Hive Query Language (HiveQL). Hive allows users to create 
custom functions in Java, Python, or other languages to extend its functionality and perform 
complex operations. Furthermore, Hive integrates with various tools and frameworks in the 
Hadoop ecosystem, including HBase, Spark, and Pig.

•	 Apache Spark: Apache Spark is an open source big data processing framework that provides a 
unified and distributed computing engine for data processing. It’s designed for speed and ease 
of use, making it suitable for large-scale data preprocessing and transformation tasks. It uses 
an in-memory processing model to process data in parallel across a cluster of computers and 
employs a directed acyclic graph (DAG) execution model to optimize data processing workflows. 
Spark’s core data structure is the Resilient Distributed Dataset (RDD), which is fault-tolerant 
and allows for parallel processing. In Python, you can use Spark with the PySpark API.

•	 Dask: Dask is a versatile and powerful data processing framework, but it’s unique in the sense 
that it can handle both batch and stream data processing, making it a great choice for a wide 
range of data processing tasks. It is an open source parallel computing library in Python that 
can handle larger-than-memory datasets. It is designed for parallel computing and distributed 
computing tasks. Similar to Spark, Dask breaks down complex tasks into smaller, manageable 
operations that can be parallelized. It leverages parallel computing frameworks such as threading, 
multiprocessing, and distributed computing to process data in a distributed and scalable manner.

Although Spark (https://spark.apache.org/) and Dask (https://www.dask.org/) 
are beyond the scope of this chapter, it’s worth looking into the documentation of both frameworks 
to understand the program syntax. If you’re pretty comfortable with Pandas, you’ll be up and running 
in Spark and Dask in no time!

https://spark.apache.org/
https://www.dask.org/
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Now that you have the data ingested, let’s discuss how you might want to organize and store it.

Learning the basics of data storage
As stated earlier, the data storage step in the model pipeline process tends to be a function of machine 
learning/data engineers. However, it is beneficial for a data scientist to have a basic understanding 
of this step.

Data storage is simply about housing the data that we gather from different sources. There are a 
variety of approaches to this, depending on the data’s requirements (e.g., the structure, schema, size, 
ingestion type, privacy, etc.).

The following are some examples of data storage options within MLOps:

•	 Binary Large Object (BLOB) storage: BLOB storage is a type of data storage that is designed 
to store and manage large binary data, such as images, videos, documents, and other types of 
files. BLOBs can be of varying sizes, from small to very large, and they are typically unstructured 
data, meaning they lack a specific schema or organization. In modern data architectures, the 
cloud services offered by Azure Blob Storage, Amazon S3 (Simple Storage Service), and Google 
Cloud Storage are used to store and manage BLOB data. These services are highly scalable, 
durable, and optimized for web and cloud-based applications.

•	 Traditional databases: As you’ve already learned, traditional, structured databases are relational 
database management systems (RDBMSs) that use a structured and tabular format to store 
and manage data. SQL is both a language and a set of conventions used to define, query, and 
manipulate data within these databases. SQL databases are widely used in various applications 
and systems to manage structured data efficiently.

•	 Graph databases: Graph databases are a category of NoSQL databases designed to store and 
manage data in the form of graphs. In graph databases, data is structured as nodes (vertices) 
and edges (relationships), allowing for the representation and storage of complex and highly 
connected data. These databases are particularly well-suited for data models where relationships 
between entities are as important as the entities themselves. In a graph database, data is organized 
into a graph, which consists of nodes and edges. Nodes represent entities (such as people, 
products, or locations), and edges represent the relationships or connections between these 
entities. They often come with their own query languages, such as Cypher (used in Neo4j), 
Gremlin (used in Apache TinkerPop), and SPARQL (used in RDF databases).

So far, data has been collected, organized, and stored. It’s now ready for model development, where 
you can flex your data scientist muscles to develop an awesome model.
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Reviewing model development
Model development includes discovering relationships between data and features and better understanding 
the context of the business question being solved. This may also be a good time to understand KPIs 
and success measures, as well as the overall structure of the business problem. Performing descriptive 
statistical analysis and creating data visualizations are also ideal activities at this stage of the pipeline.

As you learned in previous chapters, you can perform data analysis and model development in Python, 
as well as R. Python offers a number of useful packages that we’ve already discussed, including Keras, 
TensorFlow, and PyTorch. There are also “auto-ML” frameworks where models can be developed and 
run in the cloud, including Google AutoML, Azure ML Studio, Amazon SageMaker, IBM Watson, 
Databricks AutoML, H20, and Hugging Face.

We will skip over the details of ML development, since we already discussed them at length in the 
chapter on machine learning in Chapter 10. However, it is worth noting an important concept that 
we did not discuss – experiments.

Experiments are systematic and structured trials or tests that you conduct during the model training 
and evaluation process. In Chapter 10, we talked about model tuning, where you adjust different model 
hyperparameters to find the optimal combination. Experiments allow you to do this. For example, 
you might run different experiments to test how the number of random forests impacts your results. 
You have already been informally exposed to experiments during the localized model-tuning process 
on your machine.

However, when tuning models in the cloud, you can systematically track the performance of each 
experiment with specific model architectures, features, and sets of hyperparameters. This process also 
involves tracking model performance metrics.

Open source options for tools to run experiments and track the results include MLflow, Weights & 
Biases (W&B), Data Version Control (DVC), and Guild AI. The advantage of automating model 
hyperparameter tuning through code is that it can be integrated into your model-training MLOps 
pipeline. Consequently, you can easily rerun these experiments as needed in the future for retraining 
purposes. Additionally, this approach documents the process of selecting the best model.

Choosing a model that meets or outperforms a given threshold is useful to determine the best-fit 
model. Once the best model is chosen, stress-testing it (for example, by giving it specific test data that 
it may encounter in the real world) and automating unit testing are also typically part of the model 
development process. Now, let’s turn our attention to model deployment and how to package the 
model for deployment.
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Packaging for model deployment
Once you’re happy with the model that you’ve chosen in the model development process, it is time 
for the model deployment process! However, before deploying the model, it is important that it’s 
properly packaged for production. There are a number of approaches to packaging an ML software 
program, but we will review the version that you are more equipped to learn – Python pip packages.

pip is the standard package manager for Python, and it is used to install, upgrade, and manage Python 
libraries and dependencies. A Python pip package refers to a software package that can be easily 
installed and managed using the pip package manager.

Most Python packages are hosted on the Python Package Index (PyPI), which is a repository of 
Python packages that can be easily accessed and installed using pip. These packages are designed to be 
libraries or reusable modules that can be imported and used in other Python scripts or projects. The 
main functionality of the package is organized in Python modules and can be accessed by importing 
them, but there is no specific “main” script like you might find in a standalone application.

A pip package typically consists of one or more Python modules, scripts, or other resources that provide 
specific functionality. These packages are created and distributed to facilitate the reuse of code and to 
allow developers to easily integrate them into their projects.

These pip packages can take many forms depending on the project; however, when discussing packaging 
for deployment, it’s important to consider any requirements for your code and the environment it runs 
in for your model to run correctly. We will discuss them in the upcoming subsections.

Identifying requirements

One important point about packaging your model for deployment includes identifying the requirements 
to run the model. For example, does your model script require the Python packages of NumPy, 
Pandas, or scikit-learn to run correctly? If so, what versions of those packages? What version of 
Python is required?

When building a pip package, you can define some of these requirements in the Requirements.txt 
files. This is a configuration text/flat file that specifies all the versions of each package you want to use. 
Then, when a teammate runs your code, the code references the correct packages and their versions.

Now that you’ve defined the requirements for your model, we should start to think about the environment 
that you run your model in.
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Virtual environments

As we journey deeper into the world of MLOps, particularly in the context of deploying ML models, 
one significant aspect stands out – the creation and management of your environment using code. 
Often, when using the cloud, you can use code to define what type of computing resources you want 
your model to run on. For example, you can write in code that you want to deploy your model on a 
computer running the exact version of Python you identified in your requirements section for your 
model. This practice, often referred to as Infrastructure as Code (IaC), is a key strategy that allows 
data scientists, particularly those venturing into MLOps, to handle environments where ML models 
run efficiently and reliably.

Understanding the benefits of defining environments through code is crucial. Firstly, it ensures 
consistency. By codifying the environment, you ensure that your model runs in a controlled and 
predictable setting, reducing “it works on my machine” syndrome. This consistency is vital when 
moving models from development to production, where differing environments can lead to unexpected 
behaviors in models.

Moreover, using code to define environments enhances collaboration and version control. Teams can 
share, review, and update environment configurations just as they would with source code, making 
collaborative work more streamlined. This approach also integrates smoothly with version control 
systems such as Git, allowing you to track changes and maintain a history of an environment, just 
like you would with your models and data pipelines.

Tools and approaches for environment management

Several tools and approaches can be employed to manage environments in code.

For containerization, Docker (which we will talk about shortly) is a popular choice, allowing you 
to package your application and its dependencies in a container that can run on any system. This 
encapsulation ensures that your model has all the necessary libraries and settings, irrespective of 
where it’s deployed.

To orchestrate these containers, particularly in more complex deployments, tools such as Kubernetes 
can be invaluable. “Orchestrate” in this context refers to the coordinated management and control 
of multiple containers, ensuring they work together seamlessly. Kubernetes helps manage and scale 
your containers across multiple machines, handling tasks such as load balancing and fault tolerance. 
It’s particularly useful when deploying models at scale.

On the infrastructure side, tools such as Terraform or AWS CloudFormation allow you to define cloud 
resources as code. This means you can create, modify, and manage the cloud infrastructure that supports 
your models in a repeatable and automated manner. By using these tools, you can easily replicate your 
production environment for testing, ensuring that your models behave as expected when deployed.
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As you progress from defining model requirements to deploying them, integrating environment 
management into your workflow is a logical next step. By treating your environment as part of your code 
base, you align it with the core principles of MLOps – reproducibility, scalability, and maintainability. 
This approach not only simplifies the deployment process but also paves the way for more robust 
and reliable ML systems. Container software tools such as Docker and Kubernetes are popular for 
managing the model environment. Let’s discuss containers more as we discuss model deployments.

Deploying a model with containers
In the world of MLOps, containers have become a cornerstone for deploying ML models, offering a 
lightweight, consistent, and scalable solution for running applications, including ML models, across 
various environments. Containers encapsulate an application, its dependencies, and runtime into 
a single package, ensuring that the model behaves the same way regardless of where it is deployed.

This is particularly important in MLOps, where models need to perform consistently across development, 
testing, and production environments. Once the model is containerized, it can be deployed to a variety 
of platforms. Cloud services such as Azure Kubernetes Service (AKS) or Amazon Elastic Kubernetes 
Service (EKS) can be used to manage and scale containers.

Containers address several key challenges in MLOps. First, they solve the “it works on my machine” 
problem by providing an isolated environment that is consistent across all stages of the deployment 
pipeline. Second, they facilitate scalability and load balancing, which are crucial for handling 
varying demands in production. Lastly, containers enhance collaboration among team members by 
ensuring that everyone works in a consistent environment, reducing conflicts and speeding up the 
development process.

Now that you know more about some of the benefits of containers, let’s turn our focus to a very popular 
containerization tool – Docker.

Using Docker

Docker is a very popular tool for creating and managing containers. It allows you to define your 
environment and dependencies in a Dockerfile, which can then be used to build a container image. 
Here’s a basic example of a Dockerfile for an ML application:

# Use an official Python runtime as a parent image
FROM python:3.8-slim
# Set the working directory in the container
WORKDIR /usr/src/app
# Copy the current directory contents into the container
COPY . .
# Install any needed packages specified in requirements.txt
RUN pip install --no-cache-dir -r requirements.txt
# Make port 80 available to the world outside this container
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EXPOSE 80
# Define environment variable
ENV NAME World
# Run app.py when the container launches
CMD ["python", "app.py"]

In this Dockerfile, we define a Python environment, set up the necessary files, install dependencies, 
and specify how the application should run. We then tell Docker to run the Python program called 
app.py once the container launches.

Let’s assume that app.py contains code you have written to take in input from the outside world 
and process it with your trained model to return a result. Once the container is up and running, this 
makes your model available to start churning out predictions. However, at this point, the model is 
not running yet because all we have done is give Docker a list of instructions. We still have to build 
and run the container.

Once the Dockerfile is defined, you can build and run a container using Docker commands. Here’s 
how you do it:

# Build the Docker image
docker build -t my-model .
# Run the Docker container
docker run -p 4000:80 my-model

This builds a Docker image named my-model and runs it, mapping port 80 of the container to port 
4000 of the host machine. Your model should now be up and running and ready to accept input.

To summarize this section, in an MLOps pipeline, containers are typically used in the training and 
deployment phase. After a model is developed and trained, it is packaged into a container. This container 
can then be deployed to various environments (such as testing, staging, and production) without any 
changes, ensuring consistency across the pipeline. For more complex applications, especially those 
requiring scalability and high availability, you might use Kubernetes in your MLOps deployment 
process to manage the automation and deployment of containers across a cluster of machines, such 
as the Docker container we just discussed.

Assessment

What is Docker, and how does it contribute to the containerization process in MLOps? Also, discuss 
why containers are so important to the MLOps process.

Answer

Docker is a popular containerization tool used extensively in MLOps, simplifying the process of 
creating and managing containers.
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In the realm of MLOps, containers play a pivotal role, and they have been crucial for deploying ML 
models effectively. These lightweight, portable, and self-contained units package not just the model 
but also its dependencies and runtime environment. This encapsulation ensures that an ML model 
behaves consistently, regardless of the environment which it’s deployed in. Additionally, collaboration 
is at the heart of MLOps, and containers facilitate it by offering a standardized environment for all 
team members. This harmonizes efforts, reduces conflicts, and accelerates the development cycle.

Validating and monitoring the model
After you’ve successfully trained and deployed your ML model, the journey doesn’t end there. Model 
validation and monitoring are the important next steps in your MLOps process. We will briefly discuss 
validating your deployed model and then focus on monitoring it long-term.

Validating the model deployment

Once your model is deployed, you will want to validate that it works as expected. This is a relatively 
short and straightforward process. The general steps involve connecting to your deployed model, 
submitting some data (preferably data unseen by the model during the training process), collecting 
the model predictions, and scoring them.

This will allow you to confirm a couple of things. First, you know that your deployment worked, and 
your model is returning results. Secondly, if you submit unseen data to the model and score it, this 
will give you another assessment of the model’s performance. You don’t want to be surprised by it. 
Thus, it is a good idea to check that you’re getting the results that you expected.

Assuming that your model is deployed with Docker, here is a sample of how you might validate your 
deployed model (we are only providing pseudocode because the details of your code will depend a lot 
on the context, such as how your model is deployed and the types of input it will expect):

import requests

# Prepare unseen data (ensure it has the same features as the training 
data)
unseen_data = ...

# Get the IP address of the container
ip_address = ...

# Make predictions on the unseen data
response = requests.post(f'http://{ip_address}:port/predict', 
json={'data': 'unseen_data'})

# Evaluate model performance (e.g., calculate accuracy or other 
metrics)
...
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This code highlights gathering data unseen by the model during its training, finding out the IP address 
of your deployed container, and then submitting the data. Finally, the response value is evaluated for 
its performance. If your code cannot complete the steps of producing a prediction or the prediction 
values aren’t as expected, you know you have an issue with your model or model deployment.

Once you’ve validated that your deployed model performs as expected, then you will need to think 
about monitoring it.

Model monitoring

Model monitoring is a crucial aspect of the ML life cycle, involving tracking, analyzing, and maintaining 
your models to ensure they continue to perform well in production. In Azure ML, you can implement 
model monitoring as part of your broader MLOps pipeline.

Imagine you’ve built a model that predicts customer preferences for an e-commerce platform. Initially, 
everything seems perfect; your model is making accurate recommendations, and everyone is happy. 
But what happens when, over time, the data changes, user behavior evolves, or unexpected errors 
occur? Without proper monitoring and logging in place, you’d be operating blindly, unaware of these 
critical shifts.

Logging is the practice of recording events and activities related to your model’s operations. Think 
of it as a journal that documents every interaction and decision made by your model. Why is this 
important? Logs serve as a historical record, helping you trace back and understand what happened 
when issues arise. They are your detective tool for troubleshooting and debugging. Using these logs, 
you can also monitor your deployed model.

Monitoring your deployed model provides real-time awareness of its performance. It’s like having a 
dashboard that tells you how well your model is doing at any given moment. You can track metrics 
such as accuracy, response times, and resource utilization. When something goes awry, such as a 
sudden drop in accuracy or increased response times, monitoring alerts you immediately, allowing 
you to take corrective actions swiftly. In addition to monitoring your model’s performance metrics, 
you also want to monitor the input data for data drift.

Data drift occurs when the statistical properties of the input data that your model receives change over 
time. These changes can be subtle or significant, and they can impact your model’s performance. You 
can detect data drift by establishing a baseline for your model’s performance on your initial training 
data. This baseline serves as a reference point for future evaluations. Then, regularly compare incoming 
data with the data your model was trained on.

Statistical tests and techniques such as the population stability index, Jensen–Shannon divergence, 
or simple feature statistics can help detect changes in data distribution. Based on the drift detection 
or performance metrics, you may need to retrain your model. However, by following the principles 
of MLOps, where most of the model-building process has been coded and automated, the retraining 
process should be fairly easy.
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We have now covered at a high level what model monitoring looks like. However, now that you have 
a model in production, you might also want to think about ML/AI governance as another aspect of 
model monitoring.

Thinking about governance

Congratulations! You now understand the high-level steps associated with deploying an ML model. In 
many cases, this is where the “data science workflow” concludes. This is not to say that data scientists 
aren’t involved with down-the-line activity from this model, such as preparing memos or educational 
material on the model design and performance, but rather that the bulk of the work associated with 
most data science jobs has been covered. However, when it comes to monitoring your model, you might 
want to consider a broader perspective that includes the system and how it’s governed. Technically, a 
data scientist can implement and deploy a model, but there may be questions or concerns about how 
it’s used later on. This is where governance becomes important.

A data scientist who expresses their knowledge and commitment to ML/AI governance will certainly 
stand out from the crowd. Employers want data scientists who go the extra mile by considering business 
context, needs, and concerns.

ML/AI governance refers to the set of policies, processes, and practices established to oversee and 
manage machine learning or artificial intelligence systems and their operations, within an organization 
or a broader ecosystem. It involves defining rules, regulations, and ethical principles that guide the 
development, deployment, and use of AI technologies to ensure responsible, fair, and secure outcomes.

Key aspects of AI governance include the following:

•	 Ethical guidelines: Establishing guidelines that prioritize fairness, transparency, and accountability 
in ML/AI systems. This includes addressing potential biases, discrimination, and ethical 
concerns in AI applications.

•	 Data privacy and security: Ensuring that ML/AI systems handle data in compliance with 
privacy regulations and industry standards. Protecting sensitive information and mitigating 
data breaches is a fundamental component.

•	 Compliance and regulations: Adhering to legal requirements and regulations related to  
ML/AI, data, and cybersecurity. Compliance with industry-specific standards and international 
laws is essential.

•	 Accountability: Defining roles and responsibilities for ML/AI system developers, operators, 
and users. Accountability ensures that any issues or challenges can be appropriately addressed.

•	 Transparency and explainability: Demanding transparency in ML/AI decision-making processes 
and making AI model predictions explainable to build trust and facilitate human understanding.
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•	 Monitoring and auditing: Implementing mechanisms to continuously monitor ML/AI 
system performance, assess its impact, and conduct regular audits to ensure adherence to 
governance principles.

•	 Risk management: Identifying and mitigating potential risks associated with ML/AI, including 
security vulnerabilities, ethical concerns, and compliance gaps.

ML/AI governance is an evolving field, as technologies advance and organizations strive to address 
the challenges and opportunities presented by this new technology. Admittedly, some industries have 
more mature governance policies than others (e.g., healthcare, insurance, and finance). However, 
as you can see, it plays a crucial role in balancing innovation with responsibility and ensuring that  
ML/AI benefits society as a whole, while minimizing potential harm.

Using Azure ML for MLOps
There are many different platforms for orchestrating your MLOps. Here, we will just focus on one 
tool, Azure ML. As a comprehensive cloud-based platform, Azure ML can play a significant role in 
various stages of the MLOps pipeline, fitting seamlessly into your existing framework of data ingestion, 
storage, development, deployment, validation, and monitoring. Here’s how Azure ML integrates with 
each of these stages:

1.	 Data ingestion: Azure ML supports various data sources, allowing for flexible data ingestion. It 
can connect to Azure Data Lake, Azure Blob Storage, and other external sources. This flexibility 
ensures that data ingestion, a critical first step in the MLOps pipeline, is streamlined and efficient.

2.	 Data storage: With Azure ML, data storage is integrated with Azure’s cloud storage solutions. 
It allows for the secure and scalable storage of large datasets, essential for ML workflows. This 
integration facilitates easy access and management of data within the MLOps pipeline.

3.	 Model development: Azure ML shines in model development with its wide range of tools and 
capabilities, including Jupyter notebooks, automated machine learning (AutoML), and support 
for various ML frameworks. It provides an environment where data scientists can experiment, 
develop, and iterate models efficiently.

4.	 Model deployment (using Azure ML as an example): Azure ML excels in model deployment, 
offering tools for easy deployment of models as web services in the cloud or on the edge. It 
simplifies the process of deploying models into production, handling the complexities of scalability, 
load balancing, and security. By using Azure ML, you can demonstrate how models can be 
packaged, versioned, and deployed, maintaining consistency across different environments.

5.	 Model validation: Azure ML supports model validation processes through its robust testing 
and evaluation tools. It allows you to create various validation scenarios, track performance 
metrics, and compare different model versions. This ensures that only well-performing models 
are deployed.
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6.	 Model Monitoring: Post-deployment, Azure ML offers powerful monitoring capabilities. It 
tracks the performance of models in production, detects data drift, and provides insights into 
model behavior. This monitoring is crucial for maintaining the accuracy and reliability of 
models over time.

In summary, Azure ML is not just a tool for model deployment; it’s an end-to-end platform that 
supports the entire MLOps life cycle. Its integration at each stage of your MLOps pipeline can enhance 
the efficiency, scalability, and effectiveness of ML workflows.

Summary
In this high-level introduction to MLOps, a crucial discipline in the AI and data science landscape, we 
delved into its key aspects. We began by understanding the significance of MLOps, its role in bridging 
the gap between model development and production deployment, and the impact of a well-structured 
MLOps pipeline on business outcomes.

The chapter covered the MLOps journey, emphasizing the importance of reproducibility, collaboration, 
and automation in the ML workflow. We explored developing model pipelines, technologies such as 
Docker and Databricks, and model versioning. Additionally, we discussed the cloud-native tools and 
services available to manage ML experiments and monitor model performance. Finally, we examined 
governance and compliance practices in AI, ensuring ethical and regulatory alignment.

This chapter serves as a roadmap for implementing MLOps best practices, enabling organizations to 
develop, deploy, and manage ML solutions efficiently and responsibly in today’s data-driven world.

Now, we will conclude the technical content of the book to help you prepare for your technical 
interview. The remainder of the book will focus on other non-technical aspects of the interview. In 
the next chapter, we will focus on interview preparation and what types of questions you might expect 
from a recruiter or hiring manager.



Part 4:  
Getting the Job

The final part of this book aims to provide tips and insight for data science interviews. You will learn 
how to best prepare for them, and how to effectively negotiate your salary and benefits. At the end 
of this section, you will have valuable knowledge on how to succeed in your job search and how to 
optimize your outcomes.

This part includes the following chapters:

•	 Chapter 13, Mastering the Interview Rounds

•	 Chapter 14, Negotiating Compensation





13
Mastering the Interview 

Rounds

So, at this point, you’ve explored the data science landscape, the fundamentals of programming in 
Python, the puzzling world of SQL queries, the wonder of data visualization and storytelling, and 
the productive advantages of leveraging the command line and Git. You then jumped head-first 
into the concepts of statistics, pre-modeling tasks, machine learning, neural networks, and model 
deployment. You’ve basically undergone a crash course in data science 101, covering about 99% of 
what you’ll encounter in data science interviews. Now what?

You’re probably wondering what to expect if you’ve never interviewed for a data science role. Well, 
here’s the thing: the interview process for a data science position in one organization can be very 
different from another. However, there are some commonalities that we will review. Additionally, the 
content covered in the earlier chapters of this book should put you in a great position to do well in 
your interview too.

So, in this chapter, we will review the experiences that you can bet on having in the data science 
interviewing world, the basic anatomy of the interview process, and what to expect from each stage. 
This includes the following:

•	 Mastering early interactions with the recruiter

•	 Mastering the different interview stages

•	 Mastering the hiring manager stage
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Mastering early interactions with the recruiter
In Chapter 2, we shared some tips on how to optimize your data science job search. In this section, 
we’ll discuss what to expect when you receive your first recruiter inquiry. Hooray!

Recruiter screenings are often the first stage in most corporate interviews. It involves someone from 
a company’s recruiting team reaching out to you for an initial conversation regarding the role. If you 
receive a call, a message, or an email from a recruiter, you should pat yourself on the back because 
the following statements are now officially true:

•	 You’re qualified: Recruiters don’t call applicants who aren’t qualified. So, you can celebrate a) 
having the necessary skills for the role and b) writing an engaging resume and/or cover letter 
that effectively speaks to said skills.

•	 You’re in the top 2% of applicants: Some research suggests that corporate roles receive an average 
of 250 applications (at least before they stop collecting applications!). Of those, only 4 to 6 
receive callbacks [1].

But despite your fortune, the odds are still against you. You’ve come a long way, but not far enough. 
You’re now tasked with besting 3-5 others who are just as (if not more) qualified as you are. This means 
proving to the hiring team that you are the best fit, not just someone who could fit (a message you’re 
trying to convey throughout the entire interview process).

The introductory call/message/email will likely entail the recruiter asking you for your availability, so be 
sure to provide at least three time blocks. The sooner you can bypass the recruiter screening, the better.

Note
It’s important to schedule your interview ASAP. Although you were called into the interview 
process, you may be one of the last candidates to get invited. This means candidates further 
along in the process have an advantage. If they impress the interviewers enough, it’s not unusual 
for the recruiter or hiring manager to cut the process short.

Although the recruiter screening is relatively simple to bypass, it’s also easy to underestimate. To 
maximize your performance in this interview, prepare to answer the following questions:

•	 What do you know about our company?: Be sure to research the company before the recruiter 
screening. This should go beyond the basic business model of the business, including strategic 
bets, recent news developments, and challenges the company or industry may be facing. For 
public companies, you can often find this information in the company’s latest annual report 
and press releases; for start-ups and private companies, however, it can be harder to find 
this information.



Mastering early interactions with the recruiter 343

•	 Why are you interested in the role?: Provide a brief description of what attracts you most to the 
opportunity. It’s good if you can fit in a factoid about the company that attracted you, preferably 
something beyond what you can discover from a basic internet search on the company. This 
shows strong compatibility with the role and your due diligence in company research.

Also, feel free to tie something in the job description to your personal interests or experiences. 
For example, if you’re applying for a consumer-facing role and are interested in ensuring results 
from ML models are unbiased, connecting your interest to how it could impact everyday 
consumers would be a great way to show your interest in the role.

•	 Walk me through your background and what you’re working on today: Many make the mistake 
of assuming this question is to learn about your background and interests. While this is true, 
it’s much deeper than that. The recruiter is specifically seeking to find out how your experience 
meets the job description. Spend this time explicitly mentioning jobs, projects, and achievements 
relating directly to the role for which you’re interviewing.

In addition to these questions, the recruiter will likely ask you logistical and basic qualification questions 
about work authorization, willingness to travel, preferred location, and/or the work format (remote 
versus hybrid versus on-site), and so on.

Note
The key to maximizing your odds of landing a role depends on maximizing your job opportunities. 
This often involves removing filters from your job search that otherwise limit your options. One 
major filter to consider removing is the work format. While there are still many remote roles, 
they receive more applicants than on-site roles. If you’re seeking your first data science job, 
it might be worth sacrificing your preferred work format in order to optimize your chances. 
Going into the office is also a great way to establish stronger relationships for career growth 
and boost your opportunity options.

In general, recruiter screenings are no longer than 20 minutes long. This is because they’re simply 
validating that what you’ve shared in your application is legitimate and that you’re capable of (and still 
interested in) pursuing the role. It is also an opportunity for the recruiter to report back on your key 
qualifications to the hiring manager. In short, the recruiting stage is about maintaining and enhancing 
expectations that the recruiter already has regarding your candidacy.

Once the screening concludes, the recruiter will share their notes with the hiring manager. This 
candidate summary will dictate whether you’re worth moving to the next stage. This is why it’s 
absolutely important to provide STAR examples of your experience.

The Situation, Task, Action, and Results (STAR) method is an interview framework used to structure 
behavioral interview questions aimed at investigating a candidate’s work style and ethics in the form 
of work experience, critical thinking, outlook, attitude, accomplishments, and technical rigor (to 
name a few).
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Although major companies such as Amazon, Walmart, and McKinsey recommend its candidates’ 
responses follow the STAR method, it’s a generally strong framework to leverage, regardless of the 
company or even the role. Let’s break it down:

•	 Situation: Begin by describing the context or situation you were in. This sets the stage for your 
story. Provide enough detail to help the interviewer understand the scenario you faced.

•	 Task: Explain a specific task or challenge you needed to address in that situation. What were 
you required to accomplish or solve?

•	 Action: Detail the actions you took to tackle the task or resolve the situation. Focus on what 
you did, emphasizing your individual contribution. Describe the steps you took, the skills you 
used, and the decisions you made.

•	 Result: Conclude by outlining the outcomes or results of your actions. What happened as a result 
of your efforts? It’s crucial to highlight the positive impact you had, whether it was achieving 
a goal, improving a process, or solving a problem.

Here is an example of how you might use the STAR framework to answer the question, Tell me of a 
time when you needed to handle a pressure situation:

•	 Situation: “Once, while attending an important meeting, I noticed a mistake made by my 
manager in a solution our team was developing.”

•	 Task: “If the error had gone unaddressed, there would have been significant financial ramifications 
and potentially a loss of customer trust.”

•	 Action: “I requested to speak with my manager one-on-one after the meeting to address the 
situation. I politely raised my concern in a private setting to avoid any issues of embarrassment.”

•	 Result: “After reviewing the issue, my manager agreed with my assessment that there was an 
error, and we quickly issued a correction, avoiding any financial losses for the organization.”

As you can see, using the STAR method helps structure your responses and provides a clear framework 
for showcasing your skills and experiences. It allows interviewers, including recruiters, managers, and 
panelists, to understand how you approach challenges and assess your ability to handle different situations.

Mastering the different interview stages
After successfully passing the recruiter screening, where your qualifications and initial fit for the role 
are evaluated, the journey intensifies as you enter the more challenging stages of the interview process. 
This next phase is not just a continuation but a significant escalation in the evaluation of your skills.
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In addition to the hiring manager stage, where your fit within the company’s culture and soft skills are 
thoroughly examined, you’ll also face the technical interview. During the technical interview, your 
specific skills and competencies relevant to the role are rigorously assessed. Furthermore, you may 
encounter panel interviews, where multiple key stakeholders, including potential future colleagues, 
assess your ability to contribute to the team dynamically.

This comprehensive approach ensures a holistic evaluation of your technical prowess, behavioral traits, 
and compatibility with the company’s ethos.

The hiring manager stage

The hiring manager interview is one of the most (if not the most) important stages of the interview 
process. It likely consists of both behavioral and technical inquiries to assess your fit to the role and 
team. It is also an opportunity to express your interest in the role and why you are such a great fit. In 
short, your goal should be to highlight why you’re the best candidate and to address any concerns or 
assumed gaps in your candidacy.

Thus, reaching the stage of interviewing with a hiring manager typically indicates several positive 
assumptions about your stance in the interview process:

•	 Fit for the company culture: If you reach this stage, you likely align well with the company’s 
values, mission, and work culture.

•	 Technical competency: You have likely demonstrated technical competencies or skills relevant 
to the role. The hiring manager may focus on deeper discussions about these skills during 
the interview.

•	 Strong communication and soft skills: Reaching this stage suggests you possess strong communication 
and interpersonal skills. Hiring managers then often gauge how well you can articulate your 
thoughts, engage in discussions, and handle various scenarios.

•	 Your interest: Making it to the hiring manager stage indicates your genuine interest in the position 
and company. You’ve likely shown commitment and enthusiasm throughout the earlier stages.

During an interview with a hiring manager, you can expect the following:

•	 Deeper technical or role-specific questions: The discussion may involve more detailed questions 
related to the specific job responsibilities and technical skills required.

•	 Assessment of fit: The hiring manager might delve into how you fit within the team dynamics 
and the broader company culture.

•	 Behavioral and situational questions: Expect questions about past experiences and how you 
handled certain situations. Again, the STAR method might be used to structure your responses.

•	 Discussion on career goals and aspirations: The hiring manager might inquire about your long-
term career goals and how they align with the role and the company.
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•	 Final assessment: Sometimes, this stage serves as a final evaluation before a hiring decision (if 
there is no requirement to meet other interviewers). The hiring manager will assess whether 
you are the best fit for the role and the team, typically with a take-home assignment, technical 
assessment, or presentation.

When you reach the hiring manager stage, you should prepare to showcase your technical skills, 
personality, cultural fit, and enthusiasm for the position and the company. However, organizations 
looking to hire you are likely to be interested in not only your cultural fit but also your technical 
acumen. Therefore, you should be prepared for the technical interview. The following section talks 
about what you might expect in a technical interview.

The technical interview

Encountering the technical interview stage in a data science hiring process indicates that you have 
demonstrated foundational skills and qualifications, advancing to a phase that specifically evaluates 
technical expertise and problem-solving abilities.

At this point, assumptions about your candidacy include the following:

•	 Technical competence: If you’ve reached the technical interview stage, it’s likely that you possess 
a solid foundation in data science concepts, statistics, programming languages such as Python 
or R, ML algorithms, and data manipulation techniques

•	 Problem-solving skills: You’ve likely showcased your ability to solve complex data-related problems 
and analyze datasets effectively in earlier stages, leading to this phase

•	 Understanding of algorithms and models: You’ve shown a thorough understanding of various 
ML algorithms, statistical models, and their applications in real-world scenarios

•	 Programming Proficiency: Proficiency in coding and data manipulation using libraries such as 
Pandas, NumPy, scikit-learn, or TensorFlow is assumed at this stage

To excel in a technical data science interview, consider the following tips and best practices:

•	 Review core concepts: Ensure a strong grasp of fundamental data science concepts, including 
statistical methods, ML algorithms, data preprocessing, model evaluation, and feature engineering.

•	 Practice coding: Practice coding in Python or R extensively. Be able to solve data science-related 
problems on platforms such as LeetCode, HackerRank, or Kaggle to improve coding skills and 
algorithmic understanding.

•	 Understand model implementation: Be prepared to discuss and implement ML models, their 
advantages, limitations, and scenarios where they’re most suitable.

•	 Showcase projects: Highlight personal or professional projects that demonstrate data manipulation, 
analysis, visualization, and modeling skills. Discuss challenges faced, methodologies used, and 
outcomes achieved.
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•	 Stay updated: Be aware of recent advancements and trends in data science, ML, and AI. Understand 
how these advancements impact the field and how they can be applied in practical scenarios.

•	 Mock interviews: Practice technical interviews with peers or mentors. Simulate data science 
interview scenarios to get accustomed to articulating technical solutions and explaining your 
approach clearly.

•	 Ask questions: During the interview, don’t hesitate to ask for clarification on questions or discuss 
different approaches. Communication of thought process is as important as the solution.

On top of this, coding questions are often a part of the technical interview process. You might be asked 
by an interviewer directly or given a coding exam. In the next section, we will provide suggestions on 
how to ace this section of the interview process.

Coding questions, step by step

Tackling technical coding questions in data science typically involves a structured approach to effectively 
solving problems. Here’s a step-by-step framework:

1.	 Understand the problem:

	� Read the question thoroughly, making sure you understand the problem statement, input, 
and expected output.

	� If any part of the question is unclear, ask for clarification. It’s crucial to have a clear understanding 
before proceeding.

2.	 Define the approach:

	� Identify the data requirements, including data structures or variables needed to solve 
the problem.

	� Choose the appropriate algorithms, data manipulation techniques, or models required to 
solve the problem efficiently.

3.	 Design the solution:

	� Outline the steps you’ll take to solve the problem. This helps in organizing your thoughts 
before coding.

	� Think about boundary or edge cases that might affect your solution.

4.	 Code implementation:

	� Begin coding with simpler components or functions before tackling the entire problem.

	� Clearly document your code with comments to explain the logic and steps being implemented.
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	� Test your code with sample inputs, gradually increasing complexity to ensure it works 
as expected.

5.	 Optimize and refactor:

	� Analyze your code for areas where efficiency can be improved, such as reducing time 
complexity or optimizing memory usage.

	� Review, refine, and refactor your code to make it cleaner, more readable, and maintainable 
without compromising functionality.

6.	 Communicate your solution:

	� If in an interview setting, be prepared to articulate your thought process, explain the steps 
you took, and justify your choices.

	� Be open to suggestions or feedback on your solution and be ready to adapt or improve based 
on discussions.

7.	 Review and learn:

	� If errors occur, analyze why they happened and learn from them.

	� Review alternative solutions or best practices for similar problems to enhance your 
problem-solving skills.

This structured framework helps break down complex coding problems in data science into manageable 
steps, ensuring a systematic approach to problem-solving and coding efficiency.

In summary, mastering a technical data science interview involves a strong foundation in core concepts, 
practical application through projects, continuous practice in coding and problem-solving, and staying 
updated with the evolving landscape of data science and ML.

Assessment

Consider the following common data science problem: Calculate the mean of a list of numbers while 
ignoring outliers. Apply the previous answer framework to solve this problem in Python.

Answer

Here is how to apply the answer framework:

1.	 Understand the problem: Here, we want to calculate the mean of a list, excluding outliers. Often, 
outliers lay beyond the 10th and 90th percentiles.

2.	 Define the approach: To solve the problem, we need a list of numbers and a method to identify 
outliers based on percentiles. Plus, we’ll use Python’s NumPy library for calculating percentiles 
and statistics for mean calculation.
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3.	 Design the solution: The pseudocode should do the following:

	� Calculate the 10th and 90th percentiles

	� Filter values falling within this range

	� Calculate the mean of the filtered values

4.	 Code implementation: Here is how we would implement the code:

import numpy as np
from statistics import mean

def calculate_mean_without_outliers(nums):
    lower_bound = np.percentile(nums, 10)
    upper_bound = np.percentile(nums, 90)

    filtered_values = [num for num in nums if lower_bound <= num 
<= upper_bound]

    return mean(filtered_values)

# Test the function
data = [12, 15, 17, 19, 20, 21, 23, 25, 1000]  # Example list 
with an outlier (1000)
result = calculate_mean_without_outliers(data)
print('Mean without outliers:', result)

5.	 Optimize and refactor: This code provides a straightforward solution. However, we might identify 
outliers using the interquartile range (IQR) method or, for larger datasets, consider optimizing 
the filtering process or exploring more efficient ways to identify outliers. For example, you 
might use some of the functions from the sklearn package such as the IsolationForest 
function – we have not covered this function in the book, but it is used to identify outliers in 
a dataset.

6.	 Communicate your solution: In an interview setting, explain the logic behind using percentiles to 
identify outliers and how the mean is calculated after filtering the data. For example, you might 
state, “The code sample will filter out the lowest and highest values in the dataset. Assuming 
there are outliers in the dataset, they will likely be filtered out. However, if given more time, 
another approach would involve first exploring the dataset with something such as a boxplot 
to identify outliers in the data. Additionally, we could use the IQR method to identify outliers. 
Once the code has removed the outliers from the dataset, it then computes the mean of the 
remaining values.”
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7.	 Review and learn: Reflect on the code, check for potential improvements or alternative methods, 
and learn from different approaches to solve similar problems. As stated before, we could 
improve upon our initial code by using the IQR method to identify if there are outliers in the 
dataset (our initial approach does assume that there are outliers):

import numpy as np

data = [12, 15, 17, 19, 20, 21, 23, 25, 1000]  # Example list 
with an outlier (1000)
# Calculate Q1 and Q3
Q1 = np.percentile(data, 25)
Q3 = np.percentile(data, 75)
# Calculate IQR
IQR = Q3 - Q1
# Define lower and upper bounds
lower_bound = Q1 - 1.5 * IQR
upper_bound = Q3 + 1.5 * IQR
# Remove outliers
filtered_values = [num for num in nums if x >= lower_bound and x 
<= upper_bound]

# Calculate the mean of the data without outliers
result = np.mean(filtered_values)

print('Mean without outliers:', result)

The panel stage

Encountering the panel stage signifies further advancement in the hiring process and suggests several 
key assumptions about your candidacy:

•	 Cultural alignment: Reaching this stage likely means that you’ve demonstrated a strong 
alignment with the company’s culture and values. The panel may focus on assessing how well 
your personality and work style match the team and company ethos.

•	 Competitive candidate: Being interviewed by a panel suggests that you’re among the top 
contenders for the position. You’ve likely stood out from other applicants and are being evaluated 
more comprehensively.

•	 Comprehensive evaluation: The interview panel stage often involves a comprehensive assessment 
of your skills, experience, and fit for the role – at this stage, it’s likely they already think you’ll be 
a good fit. Different panel members might focus on specific aspects relevant to their expertise 
or department.
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During a panel interview, candidates can anticipate the following:

•	 Diverse perspectives: The panel may consist of individuals from various departments or levels 
within the organization. Questions may vary based on each panel member’s area of interest 
or expertise.

•	 In-depth technical and behavioral questions: Expect a mix of technical questions related to 
the role, behavioral inquiries exploring past experiences, and situational scenarios to assess 
problem-solving skills.

•	 Assessment of cultural fit: The panel might explore how your values, working style, and personality 
align with the team and the company culture.

•	 Team dynamics: You might be evaluated on how well you could collaborate and contribute 
within the team. Panel members may observe how you interact with different personalities 
and respond to group dynamics.

•	 Final evaluation: If you have not already encountered a final evaluation assessment, you will 
likely encounter it at this stage. You may be asked to talk with a wider audience, including the 
members of the interview panel and potentially the hiring manager. This is typically the final 
straw before making a hiring decision. Here, the panel collectively evaluates whether you are 
the best fit for the role and the organization.

You should prepare for a more comprehensive evaluation during the interview panel stage, showcasing 
your skills, adaptability, and collaborative abilities and how they align with both the role and broader 
organizational objectives.

Summary
Approaching data science interviews involves a holistic preparation strategy tailored to different stages 
of the hiring process. Initially, at the recruiter stage, focus on crafting a precise, impactful resume 
highlighting relevant skills, projects, and experiences.

As you progress to the hiring manager stage, dive deeper into showcasing your alignment with the 
company culture, mission, and your ability to solve problems effectively. Engage in open discussions, 
highlighting your achievements and demonstrating enthusiasm for the role and organization. When 
facing the interview panel, emphasize adaptability and collaborative skills, engaging with diverse 
perspectives and showcasing your ability to integrate into varied team dynamics.

Lastly, during technical stages, emphasize a strong foundation in core concepts, practice problem-
solving and coding, and stay updated with the latest trends in data science. Emphasize your ability to 
tackle complex problems methodically, communicate your approach clearly, and be open to feedback 
throughout the process. Tailoring your preparation to these distinct stages can significantly enhance 
your performance and chances of success in data science interviews.
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At this point in the book, we will assume that you have done phenomenally during your interview 
process and the organization is looking to hire you. What comes next? Well, in the next chapter, we 
will dive into the topic of negotiation for things such as salary and benefits.
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14
Negotiating Compensation

In your journey toward your next role as a data scientist, the negotiation phase stands as the crescendo 
– the culmination of your efforts, skills, and worth. It’s the moment where the dance of give and take 
begins, where your value converges with the company’s offerings. This chapter serves as your compass 
through this pivotal phase, navigating the intricate terrain of negotiating compensation with HR.

From the tangibles, such as salary and stock options, to the intangibles, such as flexible hours and 
professional development perks, we’ll delve into the spectrum of negotiables and equip you with the 
strategies to navigate this negotiation effectively. Join us as we unravel the art and science of securing 
not just the job, but a compensation package that echoes your true worth as a data scientist.

In this chapter, we will review the following:

•	 Understanding the compensation landscape

•	 Negotiating the offer

Understanding the compensation landscape
Congratulations, you’ve received a job offer! However, before embarking on the negotiation journey, 
it’s crucial to map the compensation terrain. This entails delving into the company culture, industry 
norms, and the specifics of the job market.

To effectively research the appropriate salary range, consider not only the role’s regional market 
value but also how your personal qualifications align with industry expectations. Resources such 
as Glassdoor, Payscale, Salary.com, and the Bureau of Labor Statistics (BLS) are invaluable in this 
process. They provide detailed salary benchmarks, considering factors such as location, years of 
experience, and the unique skill sets that the job demands. Utilize these platforms along with industry 
reports and networking connections to gather a comprehensive view of what competitors are offering 
for similar positions.
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Why is this extensive preliminary research crucial? It sets the foundation for realistic expectations 
and informed negotiations. Consider the analogy of negotiating the price of a used car. Resources 
such as Kelley Blue Book offer a guide to reasonable price ranges based on specific criteria such as 
make, model, year, and mileage. Similarly, when negotiating compensation for a data science role, 
understanding the interplay between the job title, region, qualifications, and years of experience is 
key to estimating a fair salary range.

But it’s not just about the salary. Understanding the full spectrum of compensation, including 
non-monetary benefits such as tuition reimbursement, flexible work hours, or work-from-home 
options, is equally important. This knowledge empowers you to negotiate a package that aligns with 
your career goals and personal needs, ensuring a fair and satisfying job offer. By comprehensively 
understanding the job landscape, you can effectively navigate the negotiation process, achieving a 
balance between personal value and market standards.

Negotiating the offer
Undertaking the journey to secure your ideal job offer requires more than just accepting the first 
proposal that comes your way. It’s about understanding your worth, articulating your unique value, 
and strategically negotiating for what truly matters to you. In this section, we delve into the art of 
negotiation, guiding you through the essential considerations, from assessing your market value to 
understanding the full spectrum of the offer’s elements. We’ll explore various scenarios, including the 
nuances faced by new graduates and experienced professionals when pivoting careers, to demonstrate 
how tailored negotiation strategies can significantly impact your job offer.

Negotiation considerations

The first step in negotiating an offer is understanding your market value. This isn’t always obvious, 
but it’s important that this assessment is objective. To begin, highlight your unique skills, experiences, 
and accomplishments. Consider your contributions in previous roles and how they align with the new 
opportunity. How many of the job’s requirements do you meet? Do you exceed any of the requirements? 
What about the preferred qualifications? The answer to these questions will help you objectively assess 
your value in the market for the particular role that you’re entertaining.

Next, review your job search priorities. For example, rank your job preferences and identify 
non-negotiables. Will the job require a lot of overtime or travel? Does it require working in the office? 
Is there an expectation to reply to emails after hours? Is there a transparent promotion roadmap? How 
is the commute? It’s important to understand these details and their significance to you.



Negotiating the offer 355

When thinking about your priorities, you can organize different qualities of your job offer into two 
buckets, personal and material:

•	 Personal: These are the qualities of the job that bring you personal benefits. These might include 
the following:

	� Professional or career development

	� Advancement opportunities

	� Work experience fulfillment

	� Location

	� The person you’ll report to

	� Mentorship

	� Flexible hours and/or work format (e.g., on-site versus remote or hybrid)

	� Interest in the business or industry (e.g., gaming, healthcare, education, etc.)

	� Travel opportunities

•	 Material: These are the qualities most people think of when considering compensation 
negotiations. These include the following:

	� Base salary

	� Bonuses

	� Stock options/equity

	� Benefits (e.g., health, dental, vision, and additional discounts and perks)

	� Retirement plans

	� Tuition assistance

	� Training

	� Paid time off (PTO) and vacation time

	� Relocation assistance

	� Health and wellness programs (e.g., gym memberships, mental health services, child 
services, etc.)

	� Office amenities

	� Company equipment (e.g., car, cellphone, laptop, etc.)
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Companies may not be willing or flexible in negotiating all of the factors listed in the preceding lists, 
such as the person you’ll report to in the role. However, understanding them will help you compare 
job opportunities and identify focus areas for your negotiations. You should focus your negotiations 
on the factors that you feel are must-haves and any areas in which you think the job offer is lacking 
compared to the current market standards you’ve identified in your research. For example, if tuition 
assistance is a must-have for you because you are planning on returning to school, you should include 
this as a part of your negotiations if the job offer does not include it.

Responding to the offer

After identifying your market value, and your personal and material preferences, it’s time to negotiate. 
Most companies will give you about a week to consider the offer. However, there are instances where 
they need a response sooner. Alternatively, some companies are more lenient with the offer acceptance 
(or rejection) timeline because they’re more concerned with your certainty about the role than 
their need to fill it. In either case, it is your job to make sure you and HR are on the same page. The 
deadline to accept the offer should be clear and, ideally, in written form. Be sure to request as much 
time as possible, particularly if you need it to discuss the details with loved ones or peers, or if you’re 
anticipating other offers.

Despite having time to think over the details of the offer, you should negotiate the details ASAP. This 
may happen over the phone, video chat, or email. In reality, these negotiations last minutes – nothing 
more. Regardless of the format, thank the representative for relaying the good news and express your 
genuine excitement for the opportunity. After all, they’ve selected you over countless others, and this 
is something worth celebrating.

Then, it’s time to lay your cards on the table. When doing so, it’s best to be brief, concise, and confident. 
You’ve done your homework, so there’s nothing to worry about. You could say something like this:

“I’m thrilled about the opportunity to contribute to the team and am very appreciative of the offer. 
However, based on my research and understanding of the market value for this role, as well as my specific 
skills and experiences, I would like to discuss the possibility of a salary that better reflects these factors. 
I believe a figure of [X amount] would be more aligned with the industry standards for someone with 
my qualifications.”

In most cases, the HR representative will relay the request back to the hiring manager and follow up 
accordingly. The worst-case scenario is that they will reject your counteroffer. However, in a lot of cases, 
the offer will be amended to a final offer. A final offer means that there is no additional negotiation. 
At this point, you either “take it or leave it.”
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Note
One of the biggest and most frequent mistakes of job seekers is failing to negotiate at all. This 
is often due to 1) candidates undervaluing themselves, 2) a lack of knowledge of the role’s pay 
range, and/or 3) the fear of rejection. While the first two reasons can be attributed to ignorance 
about the market or self-doubt, the last reason is almost irrational. It is very rare for jobs to 
retract an offer if the counter is reasonable and requested in a professional manner. Thus, 
whatever you do, negotiate!

Maximum negotiable compensation and situational value

Negotiating a salary is more of an art form than a science. There are countless articles, editorials, 
webinars, and even books, all designed to teach you how to advocate for yourself. Some popular 
books include the following:

•	 You Are a Badass by Jen Sincero (Running Press Adult)

•	 Quiet: The Power of Introverts in a World That Can’t Stop Talking by Susan Cain (Crown) 

•	 Getting to Yes with Yourself (and Other Worthy Opponents) by William Ury (HarperOne) 

The effectiveness of negotiation strategies varies based on individual career goals, experience, knowledge 
of the job/company, and prevailing market conditions. Central to all of these approaches, though, 
is the concept of situational value – your unique contribution to a role, influenced by both internal 
and external factors. Your situational value is a combination of your experiences, unique skills, and 
personal attributes. Understanding and articulately conveying this value is key to maximizing the 
benefits you can negotiate in your job offer.

Figure 14.1 illustrates the importance of internal and external factors as well as your situational value 
in negotiating the maximum compensation:

Figure 14.1: The maximum negotiable compensation equation
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Let’s break down the concept further for clarity. The internal factors that influence maximum 
negotiable compensation, which is simply the maximum compensation, material and personal, 
that you can negotiate, typically include the budget allocated for the role and the salary bands set for 
the position. These are elements internal to the company’s structure and policies. On the other hand, 
external factors are those outside of the company’s control, such as the regional salary range for the 
role or the current market demand for your skills.

Your situational value – comprising your specific experiences and skills and how they align with the 
role – interacts with these internal and external factors. For instance, even if a role has a high budget 
(an internal factor) and is in a high-demand field (an external factor), your ability to negotiate a 
better offer may be limited if your situational value doesn’t align closely with the job requirements. 
Conversely, a strong situational value might not yield a significant salary increase if it exceeds the 
role’s regional salary range or the company’s budgetary constraints.

In the following sections, we’ll explore examples that illustrate how this framework operates from 
various perspectives.

The college graduate

Suppose you are a new graduate seeking your first full-time data science role. You’re new to the 
job market, but your experience is limited to an internship and school projects. Thus, your lack of 
experience will be a hurdle to overcome, especially as you compete against other grads with similar 
credentials. However, you’ve done your research!

Let’s explore this scenario:

•	 The job: You’re offered a full-time junior data scientist job for a gaming start-up. The company 
has multiple offices throughout the nation.

•	 The offer: The salary comes back much lower than expected. They’re offering the lowest end of 
the market salary range, and the role is not bonus-eligible given its junior status. Additionally, 
there is no formal retirement program. The healthcare package is tolerable because you’re young 
with no dependents or managed ailments.

•	 Situational value: As a new graduate, your negotiation options are limited. There isn’t a wealth 
of full-time experience you can speak to, but you have a passion for gaming, an industry in 
which you hope to grow. In fact, you’re very familiar with the company’s game portfolio and 
have a respectable grasp on industry challenges and solutions that could improve its products 
and marketing plan. You even have a “proof of concept” project that you worked on in college 
where you’ve identified the cause of player churn.
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•	 The counter: On a call, you express how thrilled you are about the opportunity and that you 
enjoyed meeting the team. Switching gears, you inform them that you understand the offer is 
on the lower end. However, you believe that your candidacy is uniquely advantageous, given 
your knowledge of the industry. You already have some ideas of how to increase player return 
rates and have worked on a similar project in the past. As the company is a start-up, you’re 
aware that funding for this role is mostly set in stone. However, you’re confident in the company, 
its products, and your pitch, so you request equity instead. You also request a company laptop 
with the necessary computational resources, and the ability to work from home.

•	 The final offer: Because you are fresh out of college, the employer doesn’t feel comfortable with 
you working from home. They want you to have the opportunity to engage with the team in 
person and learn more about the company. However, they are willing to allow a hybrid model 
where you work from home two days a week. Furthermore, they’re allowing you to choose 
your location of preference. You discover that the pay doesn’t change based on the location, 
so you opt for their Columbus, OH location over their San Francisco, CA office. They also 
realize that providing you with a laptop is in their best interest to protect company data and 
to provide the best tools for the job. Lastly, they grant you 100 shares of company stock with a 
bi-annual re-evaluation period to grant additional stock based on performance. You happily 
take the opportunity, knowing that the role has growth potential and will provide excellent 
experience in the gaming industry.

In this negotiation scenario, you demonstrated several key strengths that contributed to a successful 
outcome. Firstly, your approach was marked by a combination of enthusiasm and pragmatism. By 
expressing excitement about the opportunity and acknowledging the offer’s limitations, you struck a 
balance between eagerness and realistic expectations. Your strategic use of your unique value proposition, 
highlighting your passion for gaming and specific industry insights, effectively showcased how your 
skills and interests aligned with the company’s needs. This not only underscored your potential 
contribution to the company but also provided a solid foundation for your negotiation requests.

Additionally, your understanding of the start-up’s financial constraints led to a creative negotiation 
tactic, focusing on equity and practical benefits such as a company laptop and a flexible work location, 
rather than just salary. This adaptability and foresight to request equity and other non-monetary 
compensations demonstrated a keen understanding of the start-up environment and long-term career 
growth, ultimately leading to a mutually beneficial agreement.

The pivoter

In this scenario, you’re a boot camp graduate with years of full-time experience, but not in data 
science. Instead, you’ve spent most of your career as a Paid Search Manager for a marketing firm. 
After graduating from the boot camp, you’re looking to pivot to a data science role.
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Let’s explore this scenario:

•	 The job: You’re offered a data scientist job on a new marketing sciences team at a digital marketing 
firm. The department has only just begun hiring data scientists, so you will only be the second 
hire, although it has plans to hire more. The interview panel was very impressed with your 
familiarity with digital marketing KPIs and strategies to improve paid search campaigns. You’re 
also very familiar with some of the firm’s clientele and, in turn, common challenges that those 
brands face in their respective industries. The role is hybrid, which is exactly what you prefer.

•	 The offer: HR sends you an email with an offer letter. You’ve got the job! The salary is what you 
expected – it’s on the lower side of the job’s regional range and just about where you expected to 
land, given the opportunity to grow in the role. The company offers pretty standard retirement 
and medical plans, but it doesn’t mention anything about tuition assistance or professional 
development. This is important to you as a new data scientist with only a few months of boot 
camp knowledge. This is especially true since you’re an early hire on the team. You also know 
that there’s a huge opportunity to apply newly learned techniques to the job, such as applying 
neural networks or generative AI APIs to projects. The offer includes a host of discounts 
associated with the brands the company advises.

•	 Situational value: Due to the verbal exchanges during your interviews, you’ve noticed that many 
interviewers on the panel were impressed with your past experience as a Paid Search Manager. 
They were also excited to hear about some of the previous projects that you’ve worked on where 
you applied your knowledge of text mining to extract campaign insights and automate keyword 
generation. You know that not having full-time experience as a data scientist is the biggest gap 
you have to close in their minds.

•	 The counter: You reply to the email, thanking everyone involved for having faith in your 
candidacy. You’re legitimately excited to get started and can’t wait to join the team. Because 
you know there’s room to negotiate your wage, you ask for 10% more than the original offer. 
You also state that you look forward to growing with the company and using analytics to solve 
tough business challenges. As a result, to remain current on the latest methods and ensure 
the most innovative solutions, you inquire about continued learning funding (such as tuition 
assistance or financial support for certifications). The HR representative says that they will 
check with the hiring manager and provide an update within 24 hours.

•	 The final offer: HR responds the following morning, and it’s great news! Not only did the hiring 
manager grant your 10% salary increase request, but they also agreed that career development 
for your role is important. As a result, they are willing to pay up to $5,000 a year for any relevant 
terminal degree or certification program of your liking. They also mention that the previous hire 
(the senior data scientist on the team) has a lot of great experience but lacks some familiarity 
with digital marketing. As a result, they support a mentorship engagement between you both, 
which is a perk that will undoubtedly contribute to your growth as a data scientist!
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In this negotiation scenario, you adeptly leveraged your unique background and keen understanding of 
the company’s needs to secure a beneficial offer. The strategic move to highlight your past experience as 
a Paid Search Manager and the ability to apply this expertise in a new data science role was particularly 
effective. This approach not only demonstrated your value to the company but also addressed the gap 
in your data science experience.

By expressing genuine enthusiasm for the role and team, you fostered a positive tone for the negotiation. 
Additionally, your request for a salary increase was anchored with a reasonable percentage, reflecting 
an understanding of your worth and the market standards.

Your foresight in requesting support for continued learning and professional development was a smart 
move, emphasizing your commitment to growth and innovation in the role. This not only benefited 
you personally but also aligned with the company’s interest in keeping its team updated with the latest 
industry practices. The successful negotiation of a mentorship with the senior data scientist further 
underscored your strategic approach to your career development, ensuring a comprehensive package 
that went beyond just financial compensation.

The grower

In this example, you’re an experienced data scientist with a professional background that spans five 
years. You’re currently employed, but you’re seeking a more challenging opportunity that will stretch 
your skill set. You’ve mostly worked in the supply chain field and feel that you have a good chance 
of landing another similar role, considering you tend to interview well. You’re leaving your current 
employer as there isn’t a lot of growth opportunity, and despite your efforts and the praise you’ve 
received, they have not granted a raise in the last few years. You’re now below the market range for 
your expertise, and you’re seeking an opportunity to grow into management.

Let’s explore this scenario:

•	 The job: You’re offered a senior data scientist job at a pharmaceutical company in the supply 
chain department. You have very little experience in pharma, but you’re practically a supply 
chain expert! The hiring manager believes that your previous experience is transferable and has 
faith in your ability to learn about the new industry environment, given the proper guidance.

•	 The offer: The interview process goes pretty smoothly, and you receive a call from HR confirming 
the company’s interest in hiring you. It offers you the higher end of the expected salary range 
and a nice sign-on bonus. You’re also granted company stock based on performance. You’re 
fairly pleased with the material offer, but it’s still unclear whether you’ll be stuck in the role 
long-term or whether there’s a formal process that leads to management.

•	 Situational value: You already know that you’re a seasoned supply chain expert with tons of 
experience in machine learning. And despite your lack of experience in pharma, you know that 
you will be one of the more senior data scientists on the team. Not only were you explicitly told 
this, but you were able to confirm it by researching the existing team on LinkedIn. You take 
it upon yourself to reach out to a few of them to learn more about their experiences with the 
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company. Your takeaway from the conversations is that the manager is great, and the projects 
are interesting, although you may be expected to put in some late hours from time to time. 
Additionally, there are some data hygiene issues that they’re currently working through. You 
also notice that one of your former colleagues on LinkedIn used to work for the same company. 
You reach out to them to ask about their experience with the company, and they confirm that it’s 
a great place. They were even willing to share their salary with you at the time of employment, 
which was 2 years ago. You learn that they were paid almost 15% more than your offer for the 
same role and level.

•	 The counter: To initiate the negotiation process, you request to speak with the hiring manager 
when they have a spare 15 minutes. HR arranges the call, and you briefly greet the manager. 
You’re mostly satisfied with the material compensation, but you never settle for the original 
offer, and you know there’s room for an increase, so you request a 15% increase. The request 
is supported by the information that you gathered from your former colleague. You suspect 
that you are the most senior data scientist on the team, so you feel comfortable asking for this 
increase. You also pitch your potential to really shape the team and identify some opportunities 
for improvement with processes, data quality, and governance. You support these details with 
examples from previous roles you’ve held and even point out a few pain points that you noticed 
during the interview. Before the call ends, you inquire about growth opportunities as you’re 
interested in leading teams in the future.

•	 The final offer: After a few days, the hiring manager calls you directly. They’re overall impressed 
with your skills, eagerness, and transparency. The hiring manager agrees to a 10% increase in 
salary, with the anticipation of reassessing your performance in 12 months. If you can demonstrate 
your ability to learn quickly (particularly details specific to the pharmaceutical industry), they 
are open to discussing a formal promotion to a managerial role. With the promotion would 
come a considerable salary increase. You’re impressed with the partial wage increase and efforts 
to fulfill your interest in management, so you accept the role.

In this negotiation scenario, you demonstrated an exceptional blend of strategy, research, and 
communication skills. Your proactive approach in reaching out to current and former employees of the 
company provided valuable insights into the company culture, expectations, and salary benchmarks. 
This level of research not only equipped you with a realistic view of the role but also offered a solid 
foundation for your salary negotiation. By leveraging the salary information obtained from a former 
colleague, you were able to confidently gain a 10% salary increase, a move that showcased your awareness 
of market standards and your self-worth. Your approach to the negotiation was also characterized by 
a clear articulation of your value proposition.

You effectively highlighted your expertise in supply chain management and machine learning, and 
identified specific areas where you could contribute to process improvements and data governance. 
This not only underscored your suitability for the role but also demonstrated your potential for 
future leadership.
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Additionally, your openness about your career aspirations and the request for a clear path to managerial 
roles displayed foresight and ambition. Your successful negotiation for a significant salary increase 
and a potential managerial promotion reflected your strong negotiation skills and strategic thinking, 
setting a positive tone for your future with the company.

Assessment

What were some situational values used to negotiate compensation in the previous negotiation examples?

Answer

•	 In the college graduate example, the candidate identified their enthusiasm for gaming as a 
situational value. Someone with that sort of passion may convince the hiring manager that 
they’re there for the long haul and/or that they’ll be genuinely interested in the work they’ll be 
doing. They then explain their familiarity with the company’s products and industry, which 
makes for a smoother onboarding experience.

•	 In the pivoter example, the candidate was able to speak to their years of relevant experience 
and they sold their eagerness to learn as a valuable investment for the company. The candidate 
also knew that there was room for a salary increase, given the initial offer, which was on the 
lower side of the regional salary range.

•	 In the grower example, the candidate recognized their position as a senior hire. They also 
conducted research on the salary range via an acquaintance and former colleague. In turn, they 
also pitched themselves as an excellent candidate for a managerial role under the correct guidance.

Summary
In the intricate dance of negotiating compensation, this chapter has unveiled a tapestry of strategies 
and insights crucial to orchestrating a successful negotiation. By understanding the multifaceted 
landscape of negotiables, from base salary to the nuances of work-life balance and career growth, 
you’ve equipped yourself with the tools to navigate this pivotal phase.

Emphasizing the significance of research, timing, and a strategic approach, you’re poised to not only 
negotiate but to collaboratively craft a compensation package that reflects your true value. Situational 
value, that unique amalgamation of skills, experiences, and expertise you bring, becomes your guiding 
star in this negotiation journey. And within this negotiation lies the concept of maximum negotiable 
compensation. Your mastery of these negotiation tactics fosters an environment where both you and 
the employer find equilibrium, and a satisfying agreement that extends beyond a mere transaction, 
embodying a partnership founded on recognition of your worth as a data scientist. Remember, 
negotiation isn’t just about securing a job; it’s about securing the compensation that resonates with 
your values and aspirations in this ever-evolving landscape of data science.
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Final words
As we draw the curtain on this journey toward cracking the data science interview, let us take a moment 
to reflect on the vast amount of knowledge and skills you have now acquired. From understanding 
the dynamic landscape of data science in Chapter 1 to mastering the art of negotiation in Chapter 14, 
this book has been a comprehensive guide, aiming to sculpt you into a formidable candidate for your 
next data science role.

You have traversed the intricacies of technical interviews, delved deep into Python programming, SQL, 
machine learning, version control, and even explored the revolutionary realms of deep learning and 
MLOps. But beyond the technicalities, you have learned to present yourself, your skills, and your passion 
for data science in a way that resonates with recruiters and hiring managers. You have been equipped 
not just with knowledge, but also with the confidence to apply it effectively to real-world scenarios.

As you step into the job market, remember that each chapter of this book was a stepping stone toward 
your dream role. You are now well-prepared to not only face the challenges of job hunting and interviews 
but to excel in them. You have the tools to negotiate not just a job, but a career that aligns with your 
aspirations, values, and life balance. Furthermore, if you ever need a refresher on the main topics in 
the field, you can always come back to freshen up!

Thank you for allowing us to be a part of your journey. Your commitment and passion for learning 
is the true driving forces behind the progress you’ve made. As you embark on this exciting phase of 
your career, know that the wisdom, skills, and insights you have gained are your greatest allies. May 
your journey in data science be as fulfilling and impactful as the efforts you have put into preparing 
for it. Congratulations on reaching this milestone, and here’s to the many successes that await you in 
the world of data science!
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