
Лорин Хоштейн

РенеМозер

Лорин Хохштейн и Рене Мозер

Запускаем Ansible

Lorin Hochstein & Rene Moser

AnsibLe

Up & Running

Automating Configuration Management

and DepLoyment the Easy Way

Beijing • Boston • Farnham • Sebastopol • Tokyo

Ларин Хохштейн и Рене Мазер

Запускаем
AnsibLe

Простой способ автоматизации

управления конфигурациями

и развертыванием приложений

Москва, 2018

УДК 004.4'234AnsiЫe
ББК 32. 972.1

М15

Хохштейн Л., Мозер Р.
MlS Запускаем AnsiЫe /пер. с анг. Е. В. Филонова, А. Н. Киселева. - М: ДМК

Пресс, 2018. - 382 с.: ил.

ISBN 978-5-97060-513-4

Книга рассказывает о системе управления конфиrурациями AnsiЫe с множеством
примеров продуктивной работы. Она минималистична, не требует установки про­
граммного обеспеч�ния на узлах, и легка в освоении. Вы узнаете, как написать скриm
управления конфиrурациями, установить контроль над удаленными серверами,
а также задействовать мощный функционал встроенных модулей. Рассмотрено
чем AnsiЬ!e отличается от других систем управления конфиrурациями, приведены
примеры развертывания на различных облачных платформах.

Издание будет полезно разработчикам и системным администраторам, прини­
мающим решения о выборе способов автоматизации.

УДК 004.4'234AnsiЫe
ББК 32.972.1

Copyright Authorized Russian translation of the English edition of AnsiЫe: Up and Running,
2nd Edition, ISBN 9781491979808 © 2017 Lorin Hochstein, Rene Moser.

This translation is puЬlished and sold Ьу permission of O'Reilly Media, Inc., which owns or
controls all rights to puЫish and sell the same.

Все права защищены. Любая часть этой книги не может быть воспроизведена в ка­
кой бы то ни было форме и какими бы то ни было средствами без письменного разрешения
владельцев авторских прав.

ISBN 978-1-491-97980-8 (анг.)
ISBN 978-5-97060-513-4 (рус.)

Copyright © 2017 O'Reilly Media, Inc.
© Оформление, издание, перевод, ДМК Пресс, 2018

Содержание

Предисловие .. 16

Предисловие ко второму изданию .. 18

Предисловие к первому изданию .. 20

Глава 1. Введение ... 23

Примечание о версиях ... 24
AnsiЫe: область применения ... 24
Как работает AnsiЫe .. 25
Какие преимущества дает AnsiЫe? ... 26

Простота синтаксиса .. 27
Отсутствие необходимости установки на удаленных хостах 27
Основан на технологии принудительной настройки 27
Управление небольшим числом серверов .. 28
Встроенные модули .. 28
Очень тонкий слой абстракции ... 29

Не слишком ли проста система AnsiЫe? .. 30
Что я должен знать? .. 31
О чем не рассказывается в этой книге .. 31
Установка AnsiЫe .. 32
Подготовка сервера для экспериментов ... 33

Использование Vagrant для подготовки сервера .. 3 3
Передача информации о сервере в AnsiЫe .. 36
Упрощение задачи с помощью файла ansiЫe.cfg ... 37

Что дальше .. 40

Глава 2. Сценарии: начало .. 41

Подготовка .. 41
Очень простой сценарий .. 42

Файл конфигурации Nginx ... 44
Создание начальной страницы .. .44
Создание группы веб-серверов .. 45

Запуск сценария .. 45
Сценарии пишутся на YAML .. 47

Начало файла .. 47
Комментарии .. 47

6 ❖ Содержание

Строки ... 47
Булевы выражения ... 47
Списки ... 48
Словари ... 48
Объединение строк ... 49

Структура сценария .. 49
Операции .. 50
Задачи .. 52
Модули ... 53
Резюме ... 54

Есть изменения? Отслеживание состояния хо ста .. 54
Становимся знатоками: поддержка TLS .. 55

Создание сертификата TLS .. 56
Переменные .. 56
Создание шаблона с конфигурацией Nginx .. 58
Обработчики ... 5 9
Запуск сценария ... 60

Глава 3. Реестр: описание серверов .. 63

Файл реестра .. 6 3
Вводная часть: несколько машин Vagrant .. 64
Поведенческие параметры хостов в реестре .. 67

ansiЫe_connection ... 67
ansiЫe_shell_type ... 67
ansiЫe _python _ interpreter .. 68
ansiЫe_ * _interpreter .. 68
Переопределение поведенческих параметров по умолчанию 68

Группы, группы и еще раз группы ... 68
Пример: развертывание приложения Django ... 70
Псевдонимы и порты ... 72
Группировка групп ... 72
Имена хостов с номерами (домашние питомцы и стадо) 72

Переменные хостов и групп: внутренняя сторона реестра 73
Переменные хостов и групп: создание собственных файлов 75
Динамический реестр .. 7 6
Интерфейс сценария динамического реестра .. 77

Написание сценария динамического реестра .. 78
Предопределенные сценарии реестра .. 81

Деление реестра на несколько файлов .. 82
Добавление элементов во время выполнения с помощью add_host
и group_by .. 82

add host ... 82
group_by ... 83

Содержание ❖ 7

Глава 4. Переменные и факты .. 85
Определение переменных в сценариях .. 85
Вывод значений переменных .. 86
Регистрация переменных .. 86
Факты ... 89

Просмотр всех фактов, доступных для сервера .. 90
Вывод подмножества фактов ... 91
Любой модуль может возвращать факты .. 92
Локальные факты ... 93

Использование модуля set_fact для задания новой переменной 94
Встроенные переменные ... 94

hostvars .. 9 5
inventory _ hostname ... 9 5
groups ... 96

Установка переменных из командной строки .. 96
Приоритет ... 97

Глава 5. Введение в Mezzanine: тестовое приложение 99

Почему сложно развертывать приложения в промышленном окружении 99
База данных PostgreSQL ... 103
Сервер приложений Gunicorn .. 103
Веб-сервер Nginx .. 104
Диспетчер процессов Supervisor ... 105

Глава 6. Развертывание Mezzanine с помощью AnsiЫe 106
Вывод списка задач в сценарии .. 106
Организация устанавливаемых файлов ... 107
Переменные и скрытые переменные .. 108
Использование цикла (with_items) для установки большого
количества пакетов .. 109
Добавление выражения become в задачу .. 111
Обновление кэш а диспетчера пакетов apt ... 111
Извлечение проекта из репозитория Git ... 113
Установка Mezzanine и других пакетов в virtualenv ... 115
Короткое отступление: составные аргументы задач 117
Настройка базы данных ... 120
Сt?здание файла local_settings.py из шаблона ... 121
Выполнение команд django-manage ... 124
Запуск своих сценариев на Python в контексте приложения 125

Настройка конфигурационных файлов служб ... 127
Активация конфигурации Nginx ... 130

Установка сертификатов TLS ... 130
Установка задания cron для Тwitter ... 131

8 ❖ Содержание

Сценарий целиком ... 132
Запуск сценария на машине Vagrant .. 136
Устранение проблем ... 136

Не получается извлечь файлы из репозитория Git 136
Недоступен хает с адресом 192.168.33.10.xip.io ... 137

Bad Request (400) ... 13 7
Установка Mezzanine на нескольких машинах ... 137

Глава 7. Роли: масштабирование сценария .. 138

Базовая структура роли .. 13 8

Примеры ролей: database и mezzanine .. 139
Использование ролей в сценариях .. 139
Предварительные и заключительные задачи ... 140
Роль database для развертывания базы данных ... 141
Роль mezzanine для развертывания Mezzanine .. 143

Создание файлов и директорий ролей с помощью ansiЫe-galaxy 148
Зависимые роли .. 148
AnsiЫe Galaxy .. 149

Веб-интерфейс .. 149
Интерфейс командной строки ... 150
Добавление собственной роли ... 151

Глава 8. Сnожные сценарии .. 152

Команды changed_when и failed_when ... 152

Фильтры .. 155
Фильтр default ... 156
Фильтры для зарегистрированных переменных ... 156
Фильтры для путей к файлам .. 156
Создание собственного фильтра ... 157

Подстановки .. 158
file .. 159

pipe ... 160
env .. 160
password ... 160

template ... 161
csvfile ... 161

dnstxt .. 162
redis_kv ... 163
etcd ... 164
Написание собственного плагина ... 164

Сложные циклы .. 164
with lines ... 165
with_fileglob ... 165

Содержание ❖ 9

with_dict ... 166
Циклические конструкции как плагины подстановок 167

Управление циклами .. 167
Выбор имени переменной цикла .. 167
Управление выводом .. 168

Подключение .. 169
Динамическое подключение ... 170
Подключение ролей .. 171

Блоки ... 172
Обработка ошибок с помощью блоков .. 172
Шифрование конфиденциальных данных при помощи Vault 17 5

Глава 9. Управление хостами, задачами и обработчиками 178

Шаблоны для выбора хостов .. 178
Ограничение обслуживаемых хостов .. 179
Запуск задачи на управляющей машине .. 179
Запуск задачи на сторонней машине .. 180
Последовательное выполнение задачи на хостах по одному 180
Пакетная обработка хостов .. 182
Однократный запуск ... 183
Стратегии выполнения .. 183

linear .. 184
free ... 185

Улучшенные обработчики .. 186
Обработчики в pre_tasks и post_tasks .. 186
Принудительный запуск обработчиков .. 187
Выполнение обработчиков по событиям .. 189

Сбор фактов вручную ... 19 5
Получение IР-адреса хоста .. 19 5

Глава 10. Плаrины обратного вызова .. 197

Плагины стандартного вывода .. 197
actionaЫe ... 198
debug .. 198
dense .. 199
json ... 199
minimal .. 200
oneline ... 200
selective .. 200
skippy ... 200

Другие плагины .. 201
foreman .. 201
hipchat ... 202

10 ❖ Содержание

jabber .. 202
junit .. 202
log_plays ... 203
logentries ... 203
logstash .. 203
mail .. 204
osx_say ... 204
profile_tasks ... 204
slack .. 205

timer ... 205

Глава 11. Ускорение работы Ansible .. 206

Мультиплексирование SSH и ControlPersist ... 206
Включение мультиплексирования SSH вручную ... 207
Параметры мультиплексирования SSH в AnsiЫe ... 208

Конвейерный режим .. 209
Включение конвейерного режима .. 210
Настройка хостов для поддержки конвейерного режима 210

Кэширование фактов ... 211
Кэширование фактов в файлах JSON .. 213
Кэширование фактов в Redis ... 213
Кэширование фактов в Memcached ... 214

Параллелизм ... 214
Асинхронное выполнение задач с помощью Async ... 215

Глава 12. Собственные модули ... 217

Пример: проверка доступности удаленного сервера 217
Использование модуля script вместо написания своего модуля 217
Где хранить свои модули .. 218
Как AnsiЬle вызывает модули ... 218

Генерация автономного сценария на Python с аргументами
(только модули на Python) ... 219
Копирование модуля на хост ... 219
Создание файла с аргументами на хаете (для модулей
не на языке Python) .. 219
Вызов модуля .. 219

Ожидаемый вывод .. 220
Ожидаемые выходные переменные ... 220

Реализация модулей на Python ... 221
Анализ аргументов ... 222
Доступ к параметрам ... 223
Импортирование вспомогательного класса AnsiЬleModule 22 3
Свойства аргументов .. 224

Содержание ❖ 11

AnsiЫeModule: параметры метода инициализатора 226
Возврат признака успешного завершения или неудачи 229
Вызов внешних команд .. 229
Режим проверки (пробный прогон) .. 2 30

Документирование модуля .. 2 31
Отладка модуля ... 233
Создание модуля на Bash .. 234
Альтернативное местоположение интерпретатора Bash 235
Примеры модулей .. 236

Глава 13. Vagrant .. 237

Полезные параметры настройки Vagrant ... 237
Перенаправление портов и приватные IР-адреса 237
Перенаправление агента .. 239

Сценарий наполнения AnsiЫe .. 239
Когда выполняется сценарий наполнения ... 239
Реестр, генерируемый системой Vagrant ... 240
Наполнение нескольких машин одновременно ... 241
Определение групп ... 242
Локальные сценарии наполнения ... 243

Глава 14.Amazon ЕС2 .. 244

Терминология ... 246
Экземпляр ... 2 46
Образ машины Amazon .. 2 46
Теги .. 246

Учетные данные пользователя .. 247
Переменные окружения ... 247
Файлы конфигурации ... 248

Необходимое условие: библиотека Python Boto ... 248
Динамическая инвентаризация .. 249

Кэширование реестра ... 2 51
Другие параметры настройки ... 251
Автоматические группы .. 251

Определение динамических групп с помощью тегов 252
Присваивание тегов имеющимся ресурсам ... 252
Создание более точных названий групп ... 253

ЕС2 V irtual Private Cloud (VPC) и ЕС2 Classic .. 254
Конфигурирование ansiЫe.cfg для использования с ес2 25 5
Запуск новых экземпляров .. 255
Пары ключей ECZ .. 257

Создание нового ключа .. 257
Выгрузка существующего ключа ... 258

12 ❖ Содержание

Группы безопасности ... 258
Разрешенные IР-адреса ... 260
Порты групп безопасности .. 260

Получение новейшего АМI .. 261
Добавление нового экземпляра в группу ... 262
Ожидание запуска сервера ... 264
Создание экземпляров идемпотентным способом ... 265
Подведение итогов ... 265
Создание виртуального приватного облака ... 267

Динамическая инвентаризация и VPC ... 272
Создание AMI .. 2 7 2

Использование модуля ec2_ami ... 272
Использование Packer .. 273

Другие модули .. 277

Глава 15. Docker ... 278

Объединение Docker и AnsiЫe ... 279
Жизненный цикл приложения Docker ... 280
Пример применения: Ghost ... 281
Подключение к демону Docker .. 281
Запуск контейнера на локальной машине .. 281
Создание образа из Dockerfile .. 282
Управление несколькими контейнерами на локальной машине 284
Отправка образа в реестр Docker ... 285
Запрос информации о локальном образе ... 287
Развертывание приложения в контейнере Docker ... 288

Postgres .. 288
Веб-сервер ... 289
Веб-сервер: Ghost ... 290
Веб-сервер: Nginx ... 291
Удаление контейнеров ... 291
Прямое подключение к контейнерам ... 292

Контейнеры AnsiЫe .. 293
Контейнер Conductor .. 293
Создание образов Docker ... 294

Настройка container.yml ... 295
Запуск на локальной машине .. 297
Публикация образов в реестрах .. 298
Развертывание контейнеров в промышленном окружении 300

Глава 16. Отладка сценариев Ansible .. 301

Информативные сообщения об ошибках ... 301
Отладка ошибок с SSН-подключением ... 302

Содержание ❖ 13

Модуль debug .. 303
Интерактивный отладчик сценариев .. 304
Модуль assert ... 305
Проверка сценария перед запуском .. 307

Проверка синтаксиса .. 307
Список хо сто в ... 307
Список задач ... 308
Проверка режима .. 308
Вывод изменений в файлах ... 308

Выбор задач для запуска .. 309
Пошаговое выполнение ... 309
Выполнение с указанной задачи ... 309
Теги .. 310

Глава 17. Управление хостами Windows .. 311

Подключение к Windows .. 311
PowerShell .. 312
Модули поддержки Windows .. 314
Наш первый сценарий .. 315
Обновление Windows ... 316
Добавление локальных пользователей ... 317
Итоги ... 320

Глава 18. Ansible для сетевых устройств .. 321

Статус сетевых модулей ... 322
Список поддерживаемых производителей сетевого оборудования 322
Подготовка сетевого устройства .. 322

Настройка аутентификации через SSH ... 32 3
Как работают модули .. 325
Наш первый сценарий .. 326
Реестр и переменные для сетевых модулей ... 327

Локальное подключение .. 328
Подключение к хосту .. 329
Переменные для аутентификации .. 329
Сохранение конфигурации .. 330

Использование конфигураций из файлов .. 331
Шаблоны, шаблоны, шаблоны ... 334
Сбор фактов .. 336
Итоги ... 338

Глава 19.Ansible Tower: Ansible для предприятий .. 339

Модели подписки ... 340
Пробная версия AnsiЫe Tower ... 340

14 ❖ Содержание

Какие задачи решает AnsiЫe Tower ... 341
Управление доступом ... 341
Проекты ... 342
Управление инвентаризацией ... 342
Запуск заданий из шаблонов ... 344

RESTful АР! .. 346
Интерфейс командной строки AnsiЫe Tower ... 34 7

Установка .. 347
Создание пользователя .. 348
Запуск задания .. 350

Послесловие .. 351

Приложение А. SSH .. 352

«Родной» SSH .. 352
SSН-агент ... 352
Запуск ssh-agent .. 35 3

macOS .. 353
Linux .. 354

Agent Forwarding ... 354
Команда sudo и перенаправление агента ... 356

Ключи хоста .. 3 5 7

Приложение В. Использование ролей IAM для учетных данных ЕС2 361

Консоль управления AWS .. 361
Командная строка ... 362

Глоссарий .. 365

Библиография .. 368

Предметный указатель ... 369

Об авторах .. 380

Колофон .. 381

Я буквально проглотил рукопись первого издания «Установка и работа с An­
siЫe» за несколько часов: Ларин прекрасно справился с задачей описания всех
аспектов AnsiЬle, и я был рад услышать, что он решил объединиться с Рене для
подготовки второго издания. Эти два автора проделали громадную работу, что­
бы показать нам, как пользоваться невероятно удобной утилитой, и я не могу
вспомнить ни одного момента, которого бы они не охватили в полной мере.

- Ян-Пит Мене (Jan-Piet Mens), консультант

Впечатляющая глубина освещения AnsiЫe. Эта книга прекрасно подойдет
не только начинающим, но и опытным специалистам, желающим понять все
тонкости использования продвинутых возможностей. Фантастический источ­
ник информации для стремящихся повысить свой уровень владения AnsiЫe.

- Мэтт Джейнс (Мatt Jaynes),
ведущий инженер, Нigh Velocity Ops

Самое замечательное в AnsiЫe - возможность начать с простого прототипа
и быстро продвигаться к намеченной цели. Однако со временем начинает ощу­
щаться нехватка знаний, которые порой трудно получить.

«Установка и работа с AnsiЫe» - очень ценный источник, восполняющий эту
нехватку и разъясняющий особенности AnsiЫe с самых основ до сложностей ра­
боты с УАМL и Jinja2. А благодаря наличию массы практичных примеров она по­
зволяет получить представление, как другие автоматизируют свои окружения.

В течение последних нескольких лет, проводя теоретические и практиче­
ские занятия, я всегда рекомендовал эту книгу своим коллегам и клиентам.

-Даг Виерс (Dag Wieers),
консультант и инженер-системотехник

в области систем на основе Linux,
долгое время участвовавший в разработке AnsiЫe

Эта книга помогает быстро приступить к использованию системы управле­
ния конфигурациями AnsiЫe и описывает ее во всех подробностях. В ней при­
водится большое количество подсказок и практических советов и охватывает­
ся широкий круг вариантов использования, включая AWS, Windows и Docker.

- Инга Йохим (Ingo Jochim),
руководитель отдела облачных реализаций, itelligence GMS/CIS

Ларин и Рене проделали большую работу, написав эту книгу. Авторы берут
читателя за руку и ведут его через наиболее важные этапы создания и управле­
ния проектов AnsiЫe. Эта книга намного больше, чем справочник, - она охва­
тывает ряд важнейших концептуальных тем, отсутствующих в официальной
документации. Это превосходный источник знаний для начинающих и прак­
тических идей для более опытных пользователей AnsiЬle.

-Доминик Бартон (Dominique Barton),
инженер DevOps в confirm IТ solutions

Предисловие

Разработка системы AnsiЫe началась в феврале 2012-го с создания простого
побочного проекта, и ее стремительное развитие стало приятным сюрпризом.
Сейчас над продуктом работает порядка тысячи человек (а идеи принадлежат
даже большему числу людей), и он широко используется практически во всех
странах мира. И наверняка вам удастся обнаружить, по крайней мере, несколь­
ких человек, использующих его, в сообществе знакомых вам ИТ-специалистов.

Привлекательность AnsiЫe объясняется ее простотой. И правда, AnsiЫe не
несет в себе новых, но объединяет все лучшее из уже существующих идей, раз­
работанных другими экспертами, делая их чуть более доступными.

Создавая AnsiЫe, я старался найти для нее место где-то между решениями
автоматизации ИТ-задач (естественная реакция на огромные коммерческие
пакеты программного обеспечения) и простыми сценариями, минимально не­
обходимыми для выполнения своей работы. Кроме того, мне хотелось заме­
нить систему управления конфигурациями, развертыванием и организацией
проектов и нашу библиотеку произвольных, но важных сценариев командной
оболочки единой системой. Вот в чем состояла идея.

Могли ли мы убрать важные архитектурные компоненты из стека автомати­
зации? Устранив демоны управления и переложив работу на OpenSSH, система
могла бы начать управление компьютерами незамедлительно без установки
агентов на контролируемых машинах. Кроме того, система стала бы более на­
дежной и безопасной.

Я заметил, что в предыдущих попытках создания систем автоматизации
простые вещи заметно усложнялись, а написание сценариев автоматизации
часто и надолго уводило меня в сторону от того, чему бы я хотел посвятить
больше времени. В то же время мне не хотелось получить систему, на изучение

которой не нужны месяцы.
Честно говоря, мне больше нравится писать программы, чем заниматься

управлением системами автоматизации. Мне хотелось бы тратить на автома­
тизацию как можно меньше времени, чтобы высвободить его на решение бо­
лее интересных задач. AnsiЫe - это не та система, с которой приходится рабо­
тать сутки напролет. Используя ее, вы сможете зайти, что-то поправить, выйти

и продолжить заниматься своими делами. Я надеюсь, что эта черта AnsiЫe по­
нравится вам.

Хотя я потратил много времени, стараясь сделать документацию для AnsiЫe
исчерпывающей, всегда полезно взглянуть на одни и те же вещи под разными
углами. Полезно увидеть практическое применение справочной документа­
ции. В книге «Установка и работа с AnsiЫe» Ларин представляет AnsiЫe, ис­
пользуя идиоматический подход, в точности как следовало бы изучать эту

Предисловие ❖ 17

систему. Ларин работал с AnsiЫe практически с самого начала, и я очень бла­
годарен ему за его вклад.

Я также безмерно благодарен каждому, кто принимал участие в проекте до
настоящего времени, и каждому, кто подключится к нему будущем. Наслаж­
дайтесь книгой и получайте удовольствие от управления вашим компьютер­
ным флотом! И не забудьте установить cowsay!

- Майкл ДеХаан (Michael DeHaan)

Создатель AnsiЬle (программной части),
бывший технический директор компании AnsiЫe, Inc.

апрель 2015

Предисловие

ко второму изданию

За время, прошедшее с момента выхода первого издания (еще в 2014 году),
в мире AnsiЫe произошли большие изменения. Проект AnsiЫe достиг следу­
ющей старшей версии 2.0. Также большие изменения произошли за рамками
проекта: AnsiЫe, Inc. - компания, стоящая за проектом AnsiЫe, - была при­
обретена компанией Red Hat. Это никак не повлияло на разработку проекта
AnsiЫe: он так же активно развивается и привлекает новых пользователей.

Мы внесли множество изменений в это издание. Наиболее заметным стало
появление пяти новых глав. Теперь книга охватывает плагины обратного вы­
зова, хосты под управлением Windows, сетевое оборудование и AnsiЫe Tower.
Мы добавили в главу «Сложные сценарии» так много нового, что пришлось
разбить ее на две части и добавить главу «Настройка хостов, запуск и обработ­
чики». Мы также переписали главу «Docker», включив в нее описание новых
модулей Docker.

Мы обновили все примеры кода для совместимости с AnsiЫe 2.3. Например,
устаревшую инструкцию sudo мы повсюду заменили более новой Ьесо1'1е. Мы
также удалили ссылки на устаревшие модули, такие как docker, ес2_ vpc и ec2_al'1i._
search, и заменили их более новыми. Глава «Vagrant» теперь охватывает локаль­
ные сценарии вызова AnsiЫe, глава «Amazon ЕС2» - Packer AnsiЫe, механизм
удаленного вызова, глава «Ускорение работы AnsiЫe» - асинхронные задания,
а глава «Отладка сценариев AnsiЫe» - новые средства отладки, появившиеся
в версии 2.1.

Также было внесено множество мелких изменений. Например, мы отказа­
лись от использования контрольных сумм MDS в OpenSSH и перешли на хэши
SHA256, внеся соответствующие изменения в примеры. Наконец, мы исправи­
ли ошибки, обнаруженные нашими читателями.

ПРИМЕЧАНИЕ К СТИЛЮ ИЗЛОЖЕНИЯ

Первое издание книги было написано одним автором, и в нем часто исполь­
зовалось местоимение «я» первого лица. Это издание написано уже двумя
авторами, поэтому употребление местоимения в первом лице кое-где может
показаться странным. Тем не менее мы решили не исправлять его, потому что
в большинстве случаев оно используется для выражения мнения одного из ав­
торов.

БЛАГОДАРНОСТИ

ОтЛорин

Предисловие ко второму изданию ❖ 19

Мои благодарности Яну-Пит Менсу (Jan-Piet Mens), Мэтту Джейнсу (Matt Jaynes)
и Джону Джарвису (John Jarvis) за отзывы в процессе написания книги. Спаси­
бо Айзаку Салдана (Isaac Saldana) и Майку Ровану (Mike Rowan) из SendGrid за
поддержку этого начинания. Благодарю Майкла ДеХаана (Michael DeHaan) за
создание AnsiЬle и поддержку сообщества, которое разрослось вокруг продук­
та, а также за отзыв о книге, включая объяснения, почему в качестве названия
было выбрано AnsiЬle. Спасибо моему редактору Брайану Андерсону (Brian An­
derson) за его безграничное терпение в работе со мной.

Спасибо маме и папе за их неизменную поддержку; моему брату Эрику (Eric),
настоящему писателю в нашей семье; двум моим сыновьям Бенджамину (Ben­
jamin) и Джулиану (Julian). И наконец, спасибо моей жене Стейси (Stacy) за все.

От Рене
Спасибо моей семье, моей жене Симоне (Simone) за любовь и поддержку, моим
трем деткам, Джил (Gil), Сарине (Sarina) и Лиан (Leanne), за свет и радость, что
они привнесли в мою жизнь; спасибо всем, кто внес свой вклад в развитие An­
siЫe, спасибо вам за ваш труд; и особое спасибо Маттиасу Блейзеру (Matthias
Blaser), познакомившему меня с AnsiЫe.

Предисловие

к первому изданию

ПОЧЕМУ Я НАПИСАЛ ЭТУ КНИГУ
Когда я писал свое первое веб-приложение, используя Django, популярный
фреймворк на Python, я запомнил чувство удовлетворения, когда приложе­
ние наконец-то заработало на моем компьютере. Я запустил команду django

111anage. ру runserver, указал в браузере h ttp://localhost:8000 и увидел свое веб­
приложение во всей его красе.

Потом я подумал про все эти ... моменты, которые необходимо учесть, что­
бы просто запустить это чертово приложение на Linux-cepвepe. Кроме Django
и моего приложения, мне потребовалось установить Apache и модуль 111od_python,

чтобы Apache мог работать с приложениями Django. Затем мне пришлось уста­
новить правильные значения в конфигурационном файле Apache, заставлявшие
мое приложение работать и правильно обслуживать статичные компоненты.

Это было несложно - немного усилий, и готово. Мне не хотелось завязнуть
в работе с файлами конфигурации, я лишь хотел, чтобы мое приложение ра­
ботало. И оно работало, и все было прекрасно ... пока через несколько месяцев
мне не понадобилось запустить его снова на другом сервере и проделать всю
ту же работу с самого начала.

В конце концов, я осознал, что все, что я делал, я делал неправильно. Пра­
вильный способ решать такого рода задачи имеет название, и это название -
управление конфигурациями. Самое замечательное в управлении конфигура­
циями - полученные знания всегда сохраняют свою актуальность. Больше нет
необходимости рыться в поисках нужной страницы в документации или ко­
паться в старых записях.

Недавно коллега заинтересовался применением AnsiЫe для внедрения но­
вого проекта и спросил, как можно использовать идею AnsiЫe на практике,
кроме того что указано в официальной документации. Я не знал, что посове­
товать почитать, и решил написать книгу, которая восполнит этот пробел, -
и вот вы видите эту книгу перед собой. Увы, для него эта книга вышла слишком
поздно, но я надеюсь, она окажется полезной для вас.

Кому АДРЕСОВАНА ЭТА КНИГА
Эта книга для всех, кто работает с Linux- или Uniх-подобными серверами. Если
вы когда-либо использовали термины системное администрирование, раз-

Предисловие к первому изданию ❖ 21

вертыванuе, управление конфигурациями или (вздох) DevOps, вы обязательно
найдете для себя что-то полезное.

Хотя я изучал Linux-cepвepы, моя квалификация связана с разработкой про­
граммного обеспечения. А это значит, что все примеры в книге более тяготе­
ют к внедрению программного обеспечения, хотя мы с Эндрю Клей Шафером
(Andrew Clay Shafer, [webops]) пришли к тому, что внедрение и конфигурация
не имеют четкой границы.

СТРУКТУРА книги

Я не большой фанат общепринятых принципов структурирования книг: гла­
ва 1 охватывает то-то и то-то, глава 2 охватывает это и то и тому подобное.
Я подозреваю, что никто не читает этих строк (я лично - никогда), гораздо про­
ще заглянуть в оглавление.

Книга построена так, что каждая последующая глава опирается на преды­
дущую. Таким образом, я предполагаю, что вы будете читать книгу от начала
и до конца. Книга написана в основном в стиле учебного пособия и дает воз­
можность выполнять примеры на вашем компьютере в процессе чтения. Боль­
шинство примеров основано на веб-приложениях.

ОБОЗНАЧЕНИЯ И СОГЛАШЕНИЯ, ПРИНЯТЫЕ В ЭТОЙ КНИГЕ
В книге действуют следующие типографские соглашения:

Курсив

Указывает на новые термины, названия файлов и их расширения.

Моноwиринный wрифт
Используется для листингов программ, а также в обычном тексте для обо­
значения элементов программы, таких как имена переменных или функ­
ций, баз данных, типов данных, переменных окружения, инструкций и клю­
чевых слов.

Моноwиринный полужирный шрифт

Служит для выделения команд или другого текста, который должен быть
набран самим пользователем.

Моноширинный курсив
Указывает на текст, который нужно заменить данными пользователя, или
значениями, определяемыми контекстом.

� Так обозначаются примечания общего характера.

О Так обозначаются советы и рекомендации.

С) Так обозначаются предупреж дения и предостережения.

22 ❖ Предисловие к первому изданию

(КАЧИВАНИЕ ИСХОДНОГО КОДА ПРИМЕРОВ
Скачать файлы с дополнительной информацией для книг издательства «ДМК
Пресс» можно на сайте www.dmkpress.com или www.дмк.рф на странице с опи­
санием соответствующей книги.

Мы высоко ценим, хотя и не требуем, ссылки на наши издания. В ссылке
обычно указываются имя автора, название книги, издательство и ISBN, напри­
мер: «Хохштейн Л., Мазер Р. Запускаем AnsiЫe. М.: O'Reilly; ДМК Пресс, 2018.
Copyright © 2017 O'Reilly Media, Inc., 978-1-491-97980-8 (англ.), 978-5-97060-
513-4 (рус.)».

Если вы полагаете, что планируемое использование кода выходит за рам­
ки изложенной выше лицензии, пожалуйста, обратитесь к нам по адресу dmk­

press@gmail.com.

Отзывы и пожЕлАния
Мы всегда рады отзывам наших читателей. Расскажите нам, что вы думаете об
этой книге - что понравилось или, может быть, не понравилось. Отзывы важны
для нас, чтобы выпускать книги, которые будут для вас максимально полезны.

Вы можете написать отзыв прямо на нашем сайте www.dmkpress.com, зайдя
на страницу книги, и оставить комментарий в разделе «Отзывы и рецензии».
Также можно послать письмо главному редактору по адресу dmkpress@gmail.

com, при этом напишите название книги в теме письма.
Если есть тема, в которой вы квалифицированы, и вы заинтересованы в на­

писании новой книги, заполните форму на нашем сайте по адресу http://dm­

kpress.com/authors/puЫish_book/ или напишите в издательство по адресу dmk­

press@gmail.com.

Список ОПЕЧАТОК
Хотя мы приняли все возможные меры для того, чтобы удостовериться в ка­
честве наших текстов, ошибки все равно случаются. Если вы найдете ошибку
в одной из наших книг - возможно, ошибку в тексте или в коде, - мы будем
очень благодарны, если вы сообщите нам о ней. Сделав это, вы избавите дру­
гих читателей от расстройств и поможете нам улучшить последующие версии
этой книги.

Если вы найдете какие-либо ошибки в коде, пожалуйста, сообщите о них
главному редактору по адресу dmkpress@gmail.com, и мы исправим это в сле­
дующих тиражах.

Глава 1
•••

Введение

Сейчас интересное время для работы в ИТ-индустрии. Мы не поставляем на­
шим клиентам программное обеспечение, установив его на одну-единствен­
ную машину и совершая дежурные звонки раз в день 1

• Вместо этого мы мед­
ленно превращаемся в системных инженеров.

Сейчас мы устанавливаем программные приложения, связывая воеди­
но службы, которые работают в распределенной компьютерной сети и взаи­
модействуют по разным сетевым протоколам. Типичное приложение может
включать веб-серверы, серверы приложений, систему кэширования данных
в оперативной памяти, очереди задач, очереди сообщений, базы данных SQL,
системы хранения данных, NоSQL-хранилища и балансировщики нагрузки.

Мы также должны убедиться в наличии достаточного количества ресурсов,
и в случае падения системы (а она будет падать) мы элегантно выйдем из си­
туации. Также имеются второстепенные службы, которые нужно разворачивать
и поддерживать, такие как служба журналирования, мониторинга и анализа.
Имеются и внешние службы, с которыми нужно устанавливать взаимодей­
ствие, например с интерфейсами «инфраструктура как сервис» (Infrastructure­
as-a-Service, IaaS) для управления экземплярами виртуальных машин2

•

Мы можем связать эти службы вручную: «прикрутить» нужные серверы,
зайдя на каждый из них, установив пакеты приложений, отредактировав фай­
лы конфигурации, и т. д. Но это серьезный труд. Такой процесс требует много
времени, способствует появлению множества ошибок, да и просто утомляет,
особенно в третий или четвертый раз. А работа вручную над более сложными
задачами, как, например, установка облака OpenStack для вашего приложе­
ния, - так и просто сумасшествие. Есть способ лучше.

Если вы читаете эту книгу, значит, уже загорелись идеей управления кон­
фигурациями и теперь рассматриваете AnsiЫe как средство управления. Кем

1 Да, мы согласны, никто и никогда на самом деле так не поставлял программное обе­
спечение.

2 Рекомендую превосходные книги «The Practice of Cloud System Administration»
и «Designing Data-Intensive Applications» по созданию и поддержке этих типов рас­
пределенных систем.

24 ❖ Введение

бы вы ни были, разработчиком или системным администратором, ищущим
лучшего средства автоматизации, я думаю, вы найдете в лице AnsiЫe превос­
ходное решение ваших проблем.

ПРИМЕЧАНИЕ О ВЕРСИЯХ

Все примеры кода в этой книге были протестированы в версии AnsiЫe 2.3.0.0,
которая на момент написания книги являлась самой свежей. Поскольку под­
держка предыдущих версий является важной целью проекта AnsiЫe, эти при­
меры должны поддерживаться и последующими версиями в неизменном виде.

Откуда взялось название «Ansible»?

Название заимствовано из области научной фантастики. AnsiЫe - это устройство
связи, способное передавать информацию быстрее скорости света. Писатель Урсу­
ла Ле Гуин впервые представила эту идею в своем романе «Планета Роканнона»,
а остальные писатели-фантасты подхватили ее.
Если быть более точным, Майкл ДеХаан позаимствовал название AnsiЫe из кни­
ги Орсона Скотта Карда «Игра Эндера». В этой книге AnsiЫe использовался для
одновременного контроля большого числа кораблей, удаленных на огромные
расстояния. Подумайте об этом как о метафоре контроля удаленных серверов.

ANSIBLE: ОБЛАСТЬ ПРИМЕНЕНИЯ

Систему AnsiЫe часто описывают как средство управления конфигурациями,
и обычно она упоминается в том же контексте, что и Chef, Puppet и Salt. Когда
мы говорим об управлении конфигурациями, то часто подразумеваем некое
описательное состояние серверов, а затем фиксацию их реального состояния
с использованием специальных средств: необходимые пакеты приложений
установлены, файлы конфигурации содержат ожидаемые значения и имеют
требуемые разрешения в файловой системе, необходимые службы работают
и т. д. Подобно другим средствам управления, AnsiЬle предоставляет предмет­
но-ориентированный язык (Domain Specific Language, DSL), который использу­
ется для описания состояний серверов.

Эти инструменты также можно использовать для развертывания про­
граммного обеспечения. Под развертыванием мы часто подразумеваем про­
цесс получения двоичного кода из исходного (если необходимо), копирования
необходимых файлов на сервер(ы) и запуск служб. Capistrano и Fabric- два при­
мера инструментов с открытым кодом для развертывания приложений. An­
siЫe тоже является превосходным инструментом как для развертывания, так
и для управления конфигурациями программного обеспечения. Использова­
ние единой системы управления конфигурациями и развертыванием значи­
тельно упрощает жизнь системным администраторам.

Введение ❖ 25

Некоторые специалисты отмечают необходимость согласования разверты­
вания, когда в процесс вовлечено несколько удаленных серверов и операции
должны осуществляться в определенном порядке. Например, базу данных
нужно установить до установки веб-серверов или выводить веб-серверы из­
под управления балансировщика нагрузки только по одному, чтобы система
не прекращала работу во время обновления. Система AnsiЫe хороша и в этом,
поскольку изначально создавалась для проведения манипуляций сразу на не­
скольких серверах. AnsiЫe имеет удивительно простую модель управления по­
рядком действий.

Наконец, вы услышите, как люди говорят об инициализации (provisioning) но­
вых серверов. В контексте облачных услуг, таких как Amazon ЕС2, под иници­
ализацией подразумевается развертывание нового экземпляра виртуальной
машины. AnsiЫe охватывает и эту область, предоставляя несколько модулей

поддержки облаков, включая ЕС2, Azure, Digital Ocean, Google Compute Engine,
Linode и Rackspace, а также любые облака, поддерживающие OpenStack API.

Несколько сбивает с толку использование термина инициатор в документации к утили­
те Vagrant, которую мы обсудим далее в этой главе, в отношении системы управления
конфигурациями. Так, Vagrant называет AnsiЫe своего рода инициатором там, где, как
мне кажется, инициатором является сам Vagrant, поскольку именно он отвечает за за­
пуск виртуальных машин.

КАК РАБОТАЕТ ANSIBLE

На рис. 1.1 показан простой пример использования AnsiЫe. Пользователь,
которого мы будем звать Стейси, применяет AnsiЫe для настройки трех веб­
серверов Nginx, действующих под управлением UЬuntu. Она написала для An­
siЫe сценарий webservers.yml. В терминологии AnsiЫe сценарии называются
playbook. Сценарий описывает, какие хосты (AnsiЫe называет их удаленными
серверами) подлежат настройке и упорядоченный список задач, которые долж­
ны быть выполнены на этих хостах. В этом примере хосты носят имена wеЫ,
wеЫ и web3, и для настройки каждого из них требуется выполнить следующие
задачи:

О установить Nginx;
О сгенерировать файлы конфигурации для Nginx;
О скопировать сертификат безопасности;
О запустить Nginx.
В следующей главе мы обсудим, что в действительности входит в этот сце­

нарий. Стейси запускает сценарий командой ansi.Ыe-playbook. В примере сце­
нарий называется webservers.yml и запускается командой

$ ansiЫe-playbook webservers.y�l

AnsiЬle устанавливает параллельные SSН-соединения с хостами wеЫ, wеЫ
и web3. Выполняет первую задачу из списка на всех хостах одновременно.

26 ❖ Введение

В этом примере первая задача -установка арt-пакета Nginx (поскольку UЬuntu
использует диспетчер пакетов apt). То есть данная задача в сценарии выглядит
примерно так:

паме: tnstall ngtnx

apt: naмe=ngtnx

Выполняя ее, AnsiЫe проделает следующие действия:
1. Сгенерирует сценарий на языке Python, который установит пакет Nginx.
2. Скопирует его на хосты wеЫ, wеЫ и web3.

3. Запустит на хостах web 1, wеЫ и web3.

4. Дождется, пока сценарий завершится на всех хостах.
Далее AnsiЫe приступит к следующей задаче в списке и повторит описан­

ные эти же четыре шага. Важно отметить, что:
О каждая задача выполняется на всех хостах одновременно;
О AnsiЫe ожидает, пока задача будет завершена на всех хостах, прежде чем

приступить к выполнению следующей;
О задачи выполняются в установленном вами порядке.

webservers.yml

- name: Configure webservers
hosts: webservers
tasks:

• name: Install nginx
apt: name•nginx

· name: install config file
template: src•nginx. conf. j 2

dest=/ etc/nginx/ngingx. onf
notify: restart nginx

handlers:
- name: noti fy nginx
service: nameznginx

state=restarted

$ ansiЬle-playbook webservers.yml

Рис. 1.1 ❖ AnsiЫe выполняет сценарий настройки
трех веб-серверов

КАКИЕ ПРЕИМУЩЕСТВА дАЕТ ANSIBLE?

Существует несколько открытых систем управления конфигурациями. Ниже
перечисляются некоторые особенности, привлекшие мое внимание к AnsiЬle.

Введение ❖ 27

Простота синтаксиса
Напомню, что задачи управления конфигурациями в AnsiЫe определяются
в виде сценариев (playbooks). Синтаксис сценариев AnsiЫe основан на УАМL,
языке описания данных, который создавался специально, чтобы легко воспри­
ниматься человеком. В некотором роде YAML для JSON - то же, что Markdown
дляНТМL.

Мне нравится думать про сценарии AnsiЫe как про выполняемую докумен­
тацию. Они сродни файлам README, которые описывают действия, необхо­
димые для развертывания программного обеспечения, но, в отличие от них,
сценарии всегда содержат актуальные инструкции, поскольку сами являются
выполняемым кодом.

Отсутствие необходимости установки на удаленных хостах
Для управления серверами с помощью AnsiЫe на них должна быть установле­
на поддержка SSH и Python версии 2.5 или выше либо Python 2.4 с библиотекой
simplejson. Нет никакой необходимости устанавливать на хостах любое другое
программное обеспечение.

На управляющей машине (той, что вы используете для управления удален­
ными машинами) должен быть установлен Python версии 2.6 или выше.

о
Некоторые модули могут потребовать установки Python версии 2.5 или выше,другие мо·
гут иметь иные требования. Обязательно проверяйте документацию по каждому модулю,
чтобы понять, имеет ли он специфические требования.

Основан на технологии принудительной настройки
Некоторые системы управления конфигурациями, использующие агентов, та­
кие как Chef и Puppet, по умолчанию основаны на технологии добровольной

настройки. Агенты, установленные на серверах, периодически подключаются
к центральной службе и читают информацию о конфигурации. Управление из­
менениями конфигурации серверов в этом случае выглядит так:

1. Вы: вносите изменения в сценарий управления конфигурациями.
2. Вы: передаете изменения центральный службе.
3. Агент на сервере: периодически включается по таймеру.
4. Агент на сервере: подключается к центральной службе.
5. Агент на сервере: читает новые сценарии управления конфигурациями.
6. Агент на сервере: запускает полученные сценарии локально, обновляя

состояние сервера.
AnsiЫe, напротив, по умолчанию использует технологию принудительной

настройки. Внесение изменений выглядит так:
1. Вы: вносите изменения в сценарий.
2. Вы: запускаете новый сценарий.
3. AnsiЫe: подключается к серверам и запускает модули, обновляя состоя­

ние серверов.

28 ❖ Введение

Как только вы запустите команду ansi.b le- р laybook, AnsiЫe подключится к уда­
ленным серверам и выполнит всю работу.

Принудительная настройка дает важное преимущество - вы контролируе­
те время обновления серверов. Вам не приходится ждать. Сторонники добро­
вольной настройки утверждают, что их подход лучше масштабируется на боль­
шое число серверов и удобнее, когда новые серверы могут появиться в любой
момент. Однако отложим эту дискуссию на потом, а пока отмечу, что AnsiЫe
с успехом использовался для управления тысячами узлов и показал отличные
результаты в сетях с динамически добавляемыми и удаляемыми серверами.

Если вам действительно нравится модель, основанная на приемах добро­
вольной настройки, для вас AnsiЫe официально поддерживает особый режим,
называемый ansiЫe-pull. Я не раскрываю особенностей этого режима в рамках
данной книги. Но вы можете узнать больше об этом из официальной докумен­
тации: http://docs.ansiЫe.com/ansiЬle/playbooks_intro.html#ansiЬle-pull.

Управление небольшим числом серверов
Да, AnsiЫe можно использовать для управления сотнями и даже тысячами уз­
лов. Но управлять единственным узлом с помощью AnsiЫe также очень лег­
ко - вам нужно лишь написать один сценарий. AnsiЫe подтверждает принцип
Алана Кея: «Простое должно оставаться простым, а сложное - возможным».

Встроенные модули
AnsiЫe можно использовать для выполнения произвольных команд оболочки
на удаленных серверах, но его действительно мощной стороной является на­
бор модулей. Модули необходимы для выполнения таких задач, как установка
пакетов приложений, перезапуск службы или копирование файлов конфиrу­
рации.

Как мы увидим позже, модули AnsiЫe несут декларативную функцию и ис­
пользуются для описания требуемого состояния серверов. Например, вы могли

бы вызвать модуль user, чтобы убедиться в существовании учетной записи de­
ploy в группе web:

user: naмe=deploy group=web

Модули также являются идемпотентнымu 1
• Если пользователь deploy не

существует, AnsiЫe создаст его. Если он существует, AnsiЬle просто перейдет
к следующему шаrу. То есть сценарии AnsiЫe можно запускать на сервере мно­
го раз. Это большое усовершенствование, по сравнению с подходом на основе
сценариев командной оболочки, потому что повторный запуск таких сцена­
риев может привести к незапланированным и хорошо, если безобидным по­
следствиям.

1

Идемпотентность - свойство объекта или операции при повторном применении
операции к объекту давать тот же результат, что и при одинарном. - Прим. перев.

Введение ❖ 29

Как обстоит дело с конвергенцией?

В книгах по управлению конфигурациями часто упоминается идея конвергенции

(или сходимости), которая нередко ассоциируется с именем Марка Бургесса (Mark

Burgess) и его системой управления конфигурациями CFEngine. Если система

управления конфигурациями конвергентна, она может многократно выполнять

управляющие воздействия, с каждым разом приводя сервер все ближе к желае­

мому состоянию.
Идея конвергенции неприменима к AnsiЫe из-за отсутствия понятия многоэтап­

ных воздействий на конфигурацию серверов. Модули AnsiЫe устроены так, что

единственный запуск сценария AnsiЫe сразу приводит каждый сервер в желае­
мое состояние.

Если вам интересно, что думает автор AnsiЫe об идее конвергенции, прочтите

публикацию Майкла ДеХаана «Идемпотентность, конвергенция и другие причуд­

ливые слова, которые мы используем слишком часто» («ldempotence, convergence,

and other silly fancy words we use too often») на странице группы AnsiЫe Project:

https://Ьit.ly/11nGh1A.

Очень тонкий слой абстракции
Некоторые системы управления конфигурациями предоставляют уровень аб­
стракции настолько мощный, что позволяют использовать одни и те же сцена­
рии для управления серверами с разными операционными системами. Напри­
мер, вместо конкретных диспетчеров пакетов, таких как yum или apt, можно
использовать абстракцию «пакет», поддерживаемую системой управления
конфигурациями.

AnsiЫe работает не так - для установки пакетов в системы, основанные на
диспетчере apt, вы должны использовать диспетчер apt, а в системы, основан­
ные на диспетчере yum, - диспетчер yum.

На практике это упрощает использование AnsiЫe, хотя на первый взгляд
может показаться недостатком. AnsiЫe не требует изучения новых наборов
абстракций, нивелирующих разницу между операционными системами. Это
сокращает объем документации для изучения перед началом написания сце­
нариев.

При желании вы можете писать собственные сценарии AnsiЫe для выполне­
ния определенных действий, в зависимости от операционной системы на уда­
ленном сервере. Но я стараюсь избегать этого, концентрируя свое внимание на
написании сценариев для конкретных операционных систем, таких как UЬuntu.

Модуль является основной единицей повторного использования в сооб­
ществе AnsiЫe. Поскольку область применения модуля ограничена и зависит
от определенной операционной системы, это позволяет писать качественные
и надежно работающие модули. Проект AnsiЫe всегда открыт для новых мо­
дулей, предлагаемых сообществом. Я это знаю, поскольку сам предложил не­
сколько.

30 ❖ Введение

Сценарии AnsiЫe не предназначены для использования в разных контек­
стах. В главе 7 мы обсудим роли как средство организации сценариев для по­
вторного использования. Также мы обсудим AnsiЫe Galaxy - онлайн-репози­
торий ролей.

Однако на практике каждая организация сервера настраивается с некоторы­
ми отличиями, поэтому лучше постараться написать сценарии для своей ком­
пании, чем пытаться использовать универсальные. Единственный повод для
изучения чужих сценариев - это, например, взглянуть, как и что было сделано.

Связь между Ansible и Ansible, lnc.

Название AnsiЬ/e относится как к программному обеспечению, так и к компании,
ведущей проект. Майкл ДеХаан, создатель программного обеспечения AnsiЫe,
является бывшим техническим директором компании AnsiЫe. Во избежание пу­
таницы хочу уточнить, что для обозначения продукта я использую АпsiЬ/е, а ком­
пании - AnsiЬ/e, /пс.

AnsiЫe, lnc. проводит обучение и предоставляет консультационные услуги по An­
siЫe, а также собственной веб-системе управления AnsiЬ/e Tower, о которой рас­
сказывается в главе 19. В октябре 2015-го Red Hat купила AnsiЫe lnc.

НЕ СЛИШКОМ ЛИ ПРОСТА СИСТЕМА ANSIBLE?

В период работы над книгой мой редактор сказал мне, что «некоторые специ­
алисты, использующие систему управления конфигурациями XYZ, называют
AnsiЬle «циклом for по сценариям». Планируя переход с другой системы управ­
ления конфигурациями на AnsiЫe, действительно могут возникнуть сомнения
в его эффективности.

Однако, как скоро будет показано, AnsiЫe имеет гораздо более широкую
функциональность, чем сценарии командной оболочки. Как уже упоминалось,
модули AnsiЫe гарантируют идемпотентность, AnsiЫe имеет превосходную
поддержку шаблонов и переменных с разными областями видимости. Любой,
кто считает, что суть AnsiЫe заключается в работе со сценариями командной
оболочки, никогда не занимался поддержкой нетривиальных программ на
языке оболочки. Если есть выбор, я предпочту AnsiЫe сценариям командной
оболочки.

А как насчет масштабируемости SSH? В главе 12 будет показано, что AnsiЫe
применяет SSН-мультиплексирование для оптимизации производительно­
сти. Некоторые специалисты используют AnsiЫe для управления тысячами
узлов'.

1 Например, ознакомьтесь с материалом «Использование AnsiЫe для управления мас­
штабируемым публичным облаком» («Using AnsiЫe at Scale to Manage а PuЫic Cloud»)
от Jesse Keating, бывшего сотрудника Rackspace.

Введение ❖ 31

Я не настолько хорошо знаком с остальными системами, чтобы рассматривать их раз­
личия в деталях. Если вам необходим детальный сравнительный анализ систем управ­
ления конфигурациями, прочитайте книгу «Taste Test: Puppet, Chef, Salt, AnsiЫe» Мэтта
Джейнса (Matt Jaynes). Так случилось, что Мэтт предпочел AnsiЫe.

Что я ДОЛЖЕН ЗНАТЬ?
Для эффективной работы с AnsiЫe необходимо знать основы администри­
рования операционной системы Linux. AnsiЫe позволяет автоматизировать
процессы, но не выполняет волшебным образом тех из них, с которыми вы не
справляетесь.

Предполагаю, что читатели данной книги должны быть знакомы, по край­
ней мере, с одним из дистрибутивов Linux (UЬuntu, RHEL/CentOS, SUSE и пр.)
и понимать, как:

О подключиться к удаленной машине через SSH;
О работать в командной строке Bash (каналы и перенаправление);
О устанавливать пакеты приложений;
О использовать команду sudo;
О проверять и устанавливать разрешения для файлов;
О запускать и останавливать службы;
О устанавливать переменные среды;
О писать сценарии (на любом языке).
Если все это вам известно, можете смело приступать к работе с AnsiЫe.
Я не предполагаю, что вы знаете какой-то определенный язык программи­

рования. Например, вам не нужно знать Python, если вы не собираетесь само­
стоятельно писать модули.

AnsiЫe использует формат файлов УАМL и язык шаблонов Jinja2. Следова­
тельно, вам необходимо изучить их, но обе технологии просты в освоении.

Q ЧЕМ НЕ РАССКАЗЫВАЕТСЯ В ЭТОЙ КНИГЕ
Эта книга не является исчерпывающим руководством по работе с AnsiЫe. Она
позволяет подготовиться к использованию AnsiЫe в кратчайшие сроки и дает
описание некоторых задач, которые недостаточно полно описываются в офи­
циальной документации.

Книга не описывает использования официальных модулей AnsiЬle. Их более
200, и они достаточно хорошо представлены в официальной документации.

Книга охватывает только основные возможности механизма шаблонов Jin­
ja2, поскольку их вполне достаточно для работы с AnsiЫe. Для более глубокого
изучения Jinja2 я рекомендую обратиться к официальной документации по
Jinja2 на странице http://jinja.pocoo.org/docs/dev/.

Книга не дает детального описания функций AnsiЫe, используемых в основ­
ном для работы в ранних версиях Linux. Сюда относятся клиент SSH Paramiko

и ускоренный режим.

32 ❖ Введение

Наконец, я не рассматриваю некоторых функций AnsiЫe I, чтобы сохранить
размер книги в разумных пределах. К ним относятся: режим обновления кон­
фигурации по инициативе клиентов, журналирование, соединение с хостами
по протоколам, отличным от SSH, и запрос у пользователя паролей и другой
информации.

УСТАНОВКА ANSIBLE

На сегодняшний день все основные дистрибутивы Linux включают пакет An­

siЫe. Поэтому, если вы работаете в Linux, вы сможете установить его, используя
«родной» диспетчер пакетов. Но имейте в виду, что это может быть не самая
последняя версия AnsiЫe. Если вы работаете в Мае OS Х, я рекомендую исполь­
зовать замечательный диспетчер пакетов Homebrew.

Если такого пакета в вашей версии ОС нет, вы можете установить AnsiЫe
с помощью pip, диспетчера пакетов Python, выполнив следующую команду:

$ sudo ptp insta11 ansiЫe

При желании AnsiЫe можно установить в локальное виртуальное окружение
Python (virtualenv). Если вы незнакомы с виртуальными окружениями, можете
использовать более новый инструмент под названием pipsi. Он автоматически
создаст новое виртуальное окружение и установит в него AnsiЫe:

$ wget https://гaw.gtthubuseгcontent.co�/�ttsuhtko/ptpst/�aster/get-ptpst.py

$ python get-ptpst.py

$ ptpst tnsta11 anstЫe

Если вы решите воспользоваться pipsi, добавьте путь -/.local/Ьin в перемен­
ную окружения РАТН. Некоторые плагины и модули AnsiЫe могут потребовать
установки дополнительных библиотек Python. Если вы произвели установку
с помощью pipsi и хотели бы установить docker-py (необходимый для модулей
из библиотеки AnsiЫe Docker) и Ьоtо (необходимый для модулей из библиотеки
AnsiЬle ЕС2), выполните следующие команды:

$ cd -/.local/venvs/anstЫe

$ source Ыn/activate

$ ptp tnsta11 dockeг-py boto

Если вам интересно испытать в работе новейшую версию AnsiЫe, загрузите
ее из GitHub:

$ git clone https://gtthub.co�/anstЫe/anstЫe.git -recuгsive

При работе с этой версией вам каждый раз будет нужно выполнять следую­
щие команды, чтобы установить переменные окружения, включая переменную
РАТН, чтобы оболочка смогла находить программы ansiЫe и ansiЫe-playbooks.

$ cd ./anstЫe

$ souгce ./hacktng/env-setup

Введение ❖ 33

Дополнительную информацию об установке можно найти на следующих ре­
сурсах:

О официальная документация по установке AnsiЫe (http://docs.ansiЫe.com/
ansi Ые/i ntro _i nstallation.html);

О pip (http://pip.readthedocs.io/en/staЫe/);
О virtualenv (http://docs.python-guide.org/en/latest/dev /vi rtua lenvs/);
О pipsi (https://github.com/mitsuhiko/pipsi).

ПОДГОТОВКА СЕРВЕРА ДЛЯ ЭКСПЕРИМЕНТОВ
Для выполнения примеров, приведенных в книге, вам необходимо иметь SSН­
доступ и права пользователя root на сервере Linux. К счастью, сегодня легко
получить недорогой доступ к виртуальной машине Linux в общедоступных
службах облачных услуг, таких как Amazon ЕС2, Google Compute Engine, Micro­
soft Azure', Digital Ocean, Linode .. , в общем, вы поняли.

Использование Vagrant для подготовки сервера

Если вы предпочитаете не тратиться на облачные услуги, я предложил бы уста­
новить Vagrant - отличный инструмент управления виртуальными машина­
ми с открытым кодом. С его помощью можно запустить виртуальную машину
с Linux на ноутбуке. Она и послужит вам сервером для экспериментов.

В Vagrant имеется встроенная возможность подготовки виртуальных маши,11
с AnsiЫe. Подробнее об этом будет рассказано в главе 3. А пока будем счит;-,,-..,
виртуальную машину под управлением Vagrant обычным сервером Linuv

Vagrant требует установки VirtualBox. Скачайте VirtualВox (https://WWIЛJ'71r
albox.org/), а затем Vagrant (https://www.vagrantup.com/).

Рекомендую создать отдельный каталог для сценариев AnsiЫe и проч
файлов. В следующем примере я создал такой каталог с именем play

Выполните следующие команды, чтобы создать файл конф
grant (Vagrantfile) для 64-битного образа виртуальной №пrиt1:ы2

._l'i!.!,!bl,J.j>....,..;e<.,_y...J

(Trusty Tahr) и загрузить ее.

$ мkdir playbooks

$ cd playbooks

$ vagrant init ubuntu/trustyбq

$ vagrant up

�
При первом запуске коi'Ганда vagrant up загру3ит файл образа виртуальной машины. На
это может потребоваться некоторое время в зависимости от качества соединения с Ин­
тернетом.

В случае успеха вы увидите, как в окне терминала побегут следующие строки:

1 Да, Azure поддерживает серверы Linux.
2 Виртуальная машина в терминологии Vagrant называется machine, а ее образ - Ьох.

34 ❖ Введение

Bringing мachine 'default' up with 'virtualbox' provider ...

==> default: Iмporting base Ьох 'ubuntu/trusty64' ...

==> default: Matching МАС address for NAT networking ...

==> default: Checking if Ьох 'ubuntu/trusty64' is up to date ...

==> default: Setting the паме of the VM: playbooks_default_1474348723697_56934

==> default: Clearing апу previously set forwarded ports ...

==> default: Clearing апу previously set network interfaces ...

==> default: Preparing network interfaces based on configuration ...

default: Adapter 1: nat

==> default: Forwarding ports ...

default: 22 (guest) => 2222 (host) (adapter 1)

==> default: Booting VM ...

==> default: Waiting for мachine to boot. This мау take а few мinutes ...

default: 55Н address: 127.0.0.1:2222

default: 55Н usernaмe: vagrant

default: 55Н auth мethod: private key

default: Warning: Reмote connection disconnect. Retrying .. .

default: Warning: Reмote connection disconnect. Retrying .. .

default:

default: Vagrant insecure key detected. Vagrant will autoмatically replace

default: this with а newly generated keypair for better security.

default:

default: Inserting generated puЫic key within guest ...

default: Reмoving insecure key fгом the guest if it's present ...

default: Кеу inserted! Disconnecting and reconnecting using new 55Н key ...

==> default: Machine booted and ready!

==> default: Checking for guest additions in VM ...

default: The guest additions оп this VM do not мatch the installed version

default: of VirtualBox! In мost cases this is fine, but iп гаге cases it сап

default: prevent things such as shared folders fгом working properly. If you

default: see shared folder errors, please маkе sure the guest additions

default: within the virtual мachine мatch the version of VirtualBox you have

default: installed on your host and reload your VM.

default:

default: Guest Additions Version: 4.3.36

default: VirtualBox Version: 5.0

==> default: Mounting shared folders ...

default: /vagrant => /Users/lorin/dev/ansiЫebook/ch01/playbooks

Теперь можно попробовать зайти по SSH на вашу новую виртуальную маши­
ну UЬuntu 14.04, выполнив следующую команду:

$ vagrant ssh

Если все прошло благополучно, вы увидите экран с приветствием:

Welcoмe to Ubuntu 14.04.5 LT5 (GNU/Linux 3.13.0-96-generic х86_64)

* Docuмentation: https://help.ubuntu.coм/

5ysteм inforмation as of Fri 5ер 23 05:13:05 UTC 2016

5ysteм load: 0.76 Processes: 80

Usage of /: 3.5% of 39.34GB Useгs logged in: 0

Мемогу usage: 25% IP addгess fог eth0: 10.0.2.15

Swap usage: 0%

Graph this data and мanage this systeм at:

https://landscape.canonical.coм/

Get cloud support with Ubuntu Advantage Cloud Guest:

http://www.ubuntu.coм/business/services/cloud

0 packages сап Ье updated.

0 updates аге security updates.

New release '16.04.1 LTS' availaЫe.

Run 'do-гelease-upgrade' to upgrade to it.

Введите exi.t, чтобы завершить сеанс SSH.

Введение ❖ 35

Этот подход позволяет взаимодействовать с командной оболочкой. Однако
AnsiЫe требует подключения к виртуальной машине посредством SSН-клиен­
та, а не команды vagrant ssh.

Попросите Vagrant вывести на экран детали SSН-подключения:
$ vagrant ssh-config

Я у себя получил такой результат:
Host default

HostNaмe 127.0.0.1

Useг vagгant

Рогt 2222

UserKnownHostsFile /dev/null

StrictHostKeyChecking по

PasswordAuthentication по

IdentityFile /Users/lorin/dev/ansiЫebook/ch01/playbooks/.vagrant/

мachines/default/virtualbox/private_key

IdentitiesOnly yes

Loglevel FATAL

Вот самые важные строки:
HostNaмe 127.0.0.1

User vagrant

Port 2222

IdentityFile /Users/lorin/dev/ansiЫebook/ch01/playbooks/.vagrant/

мachines/default/virtualbox/private_key

�
В Vagrant 1.7 изменился порядок работы с приватными SSН-ключами. Начиная с этой
версии Vagrant генерирует новый приватный ключ для каждой машины. Более ранние
версии использовали один и тот же ключ, который по умолчанию хранился в каталоге
-/vagrant.d/insecure_private_key. Примеры в этой книге основаны на Vagrant 1.7.

У вас строки должны выглядеть похоже, за исключением места хранения
файла идентификации.

36 ❖ Введение

Убедитесь, что сможете начать новый SSH-ceaнc из командной строки, ис­
пользуя эту информацию. В моем случае команда выглядит так:

$ ssh vagrant@127.0.0.1 -р 2222 -t /Users/loгtn/dev/anstЫebook/ch01/

playbooks/.vagrant/мachines/default/virtualbox/private_key

Вы должны увидеть экран входа в UЬuntu. Введите exi.t, чтобы завершить
SSH-ceaнc.

Передача информации о сервере в Ansible
AnsiЫe может управлять только известными ей серверами. Передать информа­
цию о серверах в AnsiЬle можно в файле реестра.

Каждому серверу должно быть присвоено имя для идентификации в AnsiЫe.
С этой целью можно использовать имя хоста или выбрать другой псевдоним.
С именем также должны определяться дополнительные параметры подключе­
ния. Присвоим нашему серверу псевдоним testserver.

Создайте в каталоге playbooks файл с именем hosts. Он будет служить реест­
ром. Если в качестве тестового сервера вы используете виртуальную машину
Vagrant, файл hosts должен выглядеть, как в примере 1.1. Я разбил содержимое
файла на несколько строк, чтобы уместить его по ширине страницы. В дей­
ствительности информация в файле представлена одной строкой без обратных
косых.

Пример 1.1 ❖ Файл playbooks/hosts

testserver ansiЫe_host=127.0.0.1 ansiЫe_port=2222 \

ansiЫe_user=vagrant \

ansiЫe_private_key_file=.vagrant/мachines/default/virtualbox/private_key

Здесь можно видеть один из недостатков использования Vagrant: мы вынуж­
дены явно передать дополнительные аргументы, чтобы сообщить AnsiЫe па­
раметры подключения. В большинстве случаев в этих дополнительных данных
нет необходимости.

Далее в этой главе вы увидите, как использовать файл ansiЫe.cfg, чтобы из­
бежать нагромождения информации в файле реестра. В последующих главах
вы увидите, как с той же целью можно использовать переменные AnsiЫe.

Если предположить, что у вас есть UЬuntu-машина в облаке Amazon ЕС2
с именем хоста ec2-203-0-113-120. coмpute-1.aмazonaws.coм, содержимое файла ре­
естра будет выглядеть так (все в одну строку):

testserver ansiЫe_host=ec2-203·0·113-120.coмpute-1.aмazonaws.coм \

ansiЫe_user=ubuntu ansiЫe_private_key_file=/path/to/keyfile.peм

Ansiьte поддерживает программу ssh-agent, поэтому нет необходимости явно указывать
файлы SSН-ключей в реестре. Если прежде вам не доводилось пользоваться этой про­
граммой, более детальную информацию о ней вы найдете в разделе «Агент SSH» в при­
ложении А.

Введение ❖ 37

Чтобы проверить способность AnsiЫe подключиться к серверу, используем
утилиту командной строки ansi.Ыe. Мы будем изредка пользоваться ею, в ос­
новном для решения специфических задач.

Попросим AnsiЫe установить соединение с сервером testserver, указанным

в файле реестра hosts, и вызвать модуль pi.ng:

$ ansiЫe testseгveг -i hosts -м ping

Если на локальном SSН-клиенте включена проверка ключей хоста, вы уви­
дите нечто, похожее на первую попытку AnsiЬle подключиться к серверу:

The authenttcity of host '[127.0.0.1):2222 ([127.0.0.1):2222)' \
can't Ье estaЫished.
RSA key fingerprtnt ts e8:0d:7d:ef:57:07:81:98:40:31:19:53:a8:d0:76:21.
Аге you sure you want to conttnue connecttng (yes/no)?

Просто введите yes.

В случае успеха появится следующий результат:

testserver I success >> {

"changed": f а lse,
"ptng": "pong"

}

о
Если AnsiЫe сообщит об ошибке,добавьте в команду флаг -vvvv, чтобы получить больше
информации об ошибке:

$ ansiЫe testseгveг -i hosts -м ping -vvvv

Мы видим, что команда выполнилась успешно. Часть ответа "changed": false

говорит о том, что выполнение модуля не изменило состояния сервера. Текст

"pi.ng": "pong" является характерной особенностью модуля pi.ng.

Модуль pi.ng не производит никаких изменений. Он лишь проверяет способ­

ность AnsiЫe начать SSH-ceaнc с сервером.

Упрощение задачи с помощью файла ansible.cfg
Нам пришлось ввести много текста в файл реестра, чтобы сообщить системе
AnsiЫe информацию о тестовом сервере. К счастью, AnsiЫe поддерживает не­
сколько способов передачи такой информации, и мы не обязаны группировать
ее в одном месте. Сейчас мы воспользуемся одним из таких способов - файлом

ansiЬle.cfg - для определения некоторых настроек по умолчанию, чтобы потом
нам не пришлось набирать так много текста.

Где лучше хранить файл ansible.cfg?

AnsiЫe будет искать файл ansiЬ/e.cfg в следующих местоположениях в указанном

порядке:

1. Файл, указанный в переменной окружения ANSIBLE_CONFIG.

2. ./ansiЬ/e.cfg (ansiЬ/e.cfg в текущем каталоге).

38 ❖ Введение

3. -/ansiЫe.cfg (.ansiЫe.cfg в вашем домашнем каталоге).
4. /etc/ansiЫe/ansiЫe.cfg.
Я обычно храню ansiЫe.cfg в текущем каталоге, вместе со сценариями. Это позво­
ляет хранить его в том же репозитории, где хранятся мои сценарии.

Пример 1.2 показывает, как в файле ansiЫe.cfg определяются местоположе­
ние файла реестра (i.nventory), имя пользователя SSH (rerюte_user) и приватный
ключ SSH (pri.vate_key_fi. le). Эти настройки предполагают использование Va­
grant. При использовании отдельного сервера необходимо установить только
значения re111ote_user и pri.vate_key_fi.le.

В нашем примере конфигурации проверка SSН-ключей хоста отключена.
Это удобно при работе с Vagrant. В противном случае необходимо вносить из­
менения в файл -/.ssh/known_hosts каждый раз, когда удаляется имеющийся
или создается новый Vagrant-cepвep. Однако отключение проверки ключей для
серверов в сети несет определенные риски. Если вы незнакомы с аутентифика­
цией при помощи ключей хоста, то можете прочитать об этом в приложении А.

Пример 1.2 ❖ ansiЫe.cfg

[defaults]

inventoгy = hosts

гемоtе_usег = vagrant

private_key_file = .vagrant/мachines/default/virtualbox/prtvate_key

host_key_checktng = False

Ansible и система управления версиями

AnsiЫe по умолчанию хранит реестр в файле /etc/ansiЬle/hosts. Однако лично
я предпочитаю хранить его вместе с моими сценариями в системе управления
версиями.
Хотя работа с такими системами не затрагивается в этой книге, я настоятельно ре­
комендую использовать для управления сценариями систему, подобную Git. Если
вы разработчик программного обеспечения, то уже знакомы с системами управ­
ления версиями. Если вы системный администратор и прежде не пользовались
ими, тогда это хороший повод начать знакомство.

С настройками по умолчанию отпадает необходимость указывать имя поль­
зователя или файл с ключами SSH в файле hosts. Запись упрощается до:

testserver anstЫe_ host=127.0.0.1 ansiЫe_ port=2222

Мы также можем запустить AnsiЫe без аргумента -i. hostna111e:

$ anstЫe testserver -м ptng

Мне нравится использовать инструмент командной строки ansi.Ыe для за­
пуска произвольных команд на удаленных серверах. Произвольные команды
также можно выполнять с помощью модуля co111111and. При запуске модуля необ­
ходимо указать аргумент -а с запускаемой командой.

Введение ❖ 39

Например, вот как можно проверить время работы сервера с момента по­
следнего запуска:

$ ansi.Ыe testserver -м соммаnd -а upti.мe

Результат должен выглядеть примерно так:

testserver I success I гс=0 >>

17:14:07 up 1:16, 1 user, load average: 0.16, 0.05, 0.04

Модуль соммаnd настолько часто используется, что сделан модулем по умол­
чанию, то есть его имя можно опустить в команде:

$ ansi.Ыe testserver -а uptiмe

Если команда в аргументе -а содержит пробелы, ее необходимо заключить
в кавычки, чтобы командная оболочка передала всю строку как единый аргу­
мент. Для примера вот как выглядит извлечение нескольких последних строк
из журнала /var/log/dmesg:

$ ansiЫe testserver -а "tail /var/log/dмesg"

Вывод, возвращаемый машиной Vagrant, выглядит следующим образом:

testserver I success I гс=0 >>

[5.170544] type=1400 audit(1409500641.335:9): apparмor="STATUS" opeгation=
"profile_replace" profile="unconfined" naмe="/usr/li.b/NetworkManager/nм-dhcp-c
lient.act оп" pid=888 сомм="аррагмог_рагsег"
[5.170547] type=1400 audit(1409500641.335:10): apparмor="STATUS" operation=
"profile_replace" profile="unconfined" naмe="/usr/li.b/connмan/scripts/dhclientscript"
pid=888 сомм="аррагмог_рагsег"
[5.222366] vboxvi.deo: Unknown syмbol dгм_ореn (егг 0)
[5.222370] vboxvideo: Unknown syмbol drм_poll (егг 0)
[5.222372] vboxvideo: Unknown syмbol drм_pci_i.nit (егг 0)
[5.222375] vboxvi.deo: Unknown syмbol drм_i.octl (егг 0)
[5.222376] vboxvi.deo: Unknown syмbol drм_vЫank_i.ni.t (егг 0)

[5.222378] vboxvi.deo: Unknown syмbol dгм_ммар (егг 0)
[5.222380] vboxvi.deo: Unknown syмbol dгм_pci._exi.t (егг 0)
[5.222381] vboxvi.deo: Unknown syмbol dгм_геlеаsе (егг 0)

Чтобы выполнить команду с привилегиями root, нужно передать параметр
-Ь. В этом случае AnsiЬle выполнит команду от лица пользователя root. Напри­
мер, для доступа к /var/log/syslog требуются привилегии root:

$ ansi.Ыe testserver -Ь -а "tai.l /vaг/log/syslog"

Результат будет выглядеть примерно так:

testserver I success I гс=0 >>

Aug 31 15:57:49 vagrant-ubuntu-tгusty-64 ntpdate[1465]: /
adjust ti.мe sегvег 91.189
94.4 offset -0.003191 sec
Aug 31 16:17:01 vagrant-ubuntu-trusty-64 CRON[1480]: (гооt) CMD (cd /
&& run-p
rts --герогt /etc/cron.hourly)
Aug 31 17:04:18 vagrant-ubuntu-trusty-64 ansiЫe-ping: Invoked with data=None

40 ❖ Введение

Aug 31 17:12:33 vagrant-ubuntu-tгusty-64 ansiЫe-ping: Invoked with data=None
Aug 31 17:14:07 vagrant-ubuntu-trusty-64 ansiЫe-coммand: Invoked with executaЫe
None shell=False aгgs=uptiмe reмoves=None creates=None chdir=None
Aug 31 17:16:01 vagrant-ubuntu-trusty-64 ansiЫe-coммand: Invoked with executaЫe
None shell=False args=tail /var/log/мessages reмoves=None creates=None chdir=None
Aug 31 17:17:01 vagrant-ubuntu-trusty-64 CRON(2091]: (гооt) CMD (cd /
&& run-pa
rts --герогt /etc/cron.hourly)
Aug 31 17:17:09 vagrant-ubuntu-trusty-64 ansiЫe-coммand: Invoked with /
executaЫe=
N one shell=False args=tail /var/log/dмesg reмoves=None creates=None chdir=None
Aug 31 17:19:01 vagrant-ubuntu-trusty-64 ansiЫe-coммand: Invoked with /
executable=
None shell=False aгgs=tail /var/log/мessages reмoves=None creates=None chdir=None
Aug 31 17:22:32 vagrant-ubuntu-trusty-64 ansiЫe-coммand: Invoked with /
executable=
one shell=False args=tail /var/log/syslog reмoves=None creates=None chdir=None

Как видите, AnsiЫe фиксирует свои действия в syslog.
Утилита ansi.b le не ограничивается модулями pi.ng и co111111and: вы можете ис­

пользовать любой модуль по желанию. Например, следующей командой мож­
но установить Nginx в UЬuntu:

$ ansiЫe testserver -Ь -м apt -а naмe=nginx

О
Если установить Nginx не удалось, возможно, нужно обновить список пакетов. Чтобы An­
siЫe выполнила эквивалент команды apt-get update перед установкой пакета, замените
аргумент nafТle=ngi.nx на "nafТle=ngi.nx update_cache=yes".

Перезапустить Nginx можно так:

$ ansiЫe testserver -Ь -м service -а "naмe=nginx \
state=restarted"

Поскольку только пользователь root может установить пакет Nginx и.переза­
пустить службы, необходимо указать аргумент -Ь.

Что ДАЛЬШЕ

Вспомним, о чем рассказывалось в этой главе. Здесь мы рассмотрели основные
понятия системы AnsiЫe, включая взаимодействия с удаленными серверами,
и отличия от других систем управления конфигурациями. Мы также увидели,
как пользоваться утилитой командной строки ansi.b le для выполнения простых
задач на единственном хосте.

Однако использование ansi.Ыe для выполнения команд на одном хосте не
особенно интересно. В следующей главе мы рассмотрим действительно полез­
ные сценарии.

Глава 2
•••

Сценарии:начало

Работая с AnsiЫe, большую часть времени вы будете уделять написанию сце­
нариев. Сценарием в AnsiЫe называется файл, описывающий порядок управ­
ления конфигурациями. Рассмотрим, например, установку веб-сервера Nginx
и его настройку для поддержки защищённых соединений.

К концу этой главы у вас должны появиться следующие файлы:
О playbooks/ansiЫe.cfg;
О playbooks/hosts;
О playbooks/Vagrantfile;
О playbooks/web-notls.yml;
О playbooks/web-tls.yml;
О playbooks/files/nginx.key;
О playbooks/files/nginx.crt;
О playbooks/files/nginx.conf;
О playbooks/templates/index.html.j2;
О playbooks/templates/nginx. conf.j2.

ПодготовКА
Прежде чем запустить сценарий на машине Vagrant, необходимо открыть пор­
ты 80 и 443. Как показано на рис. 2.1, мы настроим Vagrant так, чтобы запросы
к портам 8080 и 8443 на локальной машине перенаправлялись портам 80 и 443
на машине Vagrant. Это позволит получить доступ к веб-серверу, запущенному
на Vagrant, по адресам http://localhost:8080 и https://localhost:8443.

Измените содержимое Vagrantfile, как показано ниже:

VAGRANТFILE_API_VERSION = "2"

Vagrant.configure(VAGRANTFILE_API_VERSION) do lconfigl

confi.g.v111.box = "ubuntu/trusty64"

confi.g.v111.network "forwarded_port", guest: 80, host: 8080

confi.g.v111.network "forwarded_port", guest: 443, host: 8443

end

42 ❖ Сценарии: начало

GET htt://localhost:8080

Управляющая машина

,--------

'

1

- - - - .,

Машина
Vagrant

GET https://localhost:8443 .__ ________________,

Браузер

Рис. 2.1 ❖ Открытие портов на машине Vagrant

Эти настройки отобразят порты 8080 и 8443 локальной машины в порты 80
и 443 машины Vagrant. После сохранения изменений дайте команду приме­
нить их:

$ vagгant гetoad

В результате на экране должны появиться следующие строки:

==> default: Forwaгding ports ...

default: 80 => 8080 (adapter 1)

default: 443 => 8443 (adapter 1)

default: 22 => 2222 (adapter 1)

ОЧЕНЬ ПРОСТОЙ СЦЕНАРИЙ
В нашем первом примере сценария мы настроим хает для запуска веб-сервера
Nginx. В этом примере мы не будем настраивать поддержку ТLS-шифрования
веб-сервером. Это сделает установку проще. Однако правильный веб-сайт
должен поддерживать ТLS-шифрование, и мы увидим, как это сделать, далее
в этой главе.

TLS и SSL

Возможно, вам более знакома аббревиатура SSL, чем ТLS. SSL - это более старый
протокол, используемый для обеспечения безопасности взаимодействий брау­
зеров и веб-серверов. Но теперь он постепенно вытесняется более новым про­
токолом TLS. Несмотря на то что многие продолжают использовать аббревиатуру
SSL, подразумевая более новый протокол, в этой книге я буду использовать точное
название: ТLS.

Сначала посмотрим, что получится, если запустить сценарий из примера 2.1,
а затем детально изучим его содержимое.

Пример 2.1 ❖ web-notls.yml
- паме: Configure webserver with nginx

hosts: webservers
Ьесоме: Тгuе
tasks:

паме: install nginx
apt: naмe=nginx update_cache=yes

паме: сору nginx config file
сору: src=files/nginx.conf dest=/etc/nginx/sites-availaЫe/default

паме: епаЫе configuration
Пlе: >

dest=/etc/nginx/sites-enaЫed/default
src=/etc/nginx/sites-availaЫe/default
state=Hnk

паме: сору index.htмl

Сценарии: начало ❖ 43

teмplate: src=teмplates/index.htмl.j2 dest=/usr/share/nginx/htмl/index.htмl
моdе=0644

паме: restart nginx
service: naмe=nginx state=restaгted

Почему в одном случае используется «True>>, а в другом «Yes»?

Внимательный читатель заметит, что в примере 2.1 в одном случае используется
True (для запуска sudo) и yes в другом случае (для обновления кэша apt).
AnsiЫe - достаточно гибкая система в отношении обозначения в сценариях зна­
чений «истина» и «ложь». Строго говоря, аргументы модуля (такие как update_
cache=yes) интерпретируются иначе, чем значения где-либо еще в сценарии (такие
как sudo: True). Эти и другие значения обрабатываются синтаксическим анали­
затором YAML и, следовательно, подчиняются обозначениям значений «истина»
и «ложь» YAML:

Истина в YAfvtL

true, Тгuе, TRUE, yes, Yes, YES, оп, Оп, ON, у, У

Ложь в YAfvtL

false, False, FALSE, по, No, NO, off, Off, OFF, п, N

Аргументы передаются модулям в виде строк и подчиняются внутренним согла­
шениям в AnsiЫe:

Истина в аргументе модуля

yes, оп, 1, true

Ложь в аргументе модуля

по, off, 0, false

Я склонен следовать примерам из официальной документации AnsiЫe, где обыч­
но для передачи в аргументах модулей используются yes и no (что соответствует
документации по модулям) и True и False во всех других случаях.

44 ❖ Сценарии: начало

Файл конфигурации Nginx
Данному сценарию необходимы два дополнительных файла. Сначала созда­
дим файл конфигурации Nginx.

N ginx поставляется с файлом конфигурации, готовым к использованию толь­
ко для обслуживания статичных файлов. Но чаще его необходимо дорабаты­
вать под свои нужды. Поэтому мы изменим файл конфигурации по умолчанию
в рамках данного примера. Как станет понятно позже, мы должны добавить
в файл конфигурации поддержку TLS. В примере 2.2 приводится стандартный
файл конфигурации Nginx. Сохраните его с именем playbooks/files/nginx.conf.

В соответствии с соглашениями, принятыми в AnsiЫe, файлы должны сохраняться в под­
каталоге files, а шаблоны Jinja2 - в подкаталоге templates. Я буду придерживаться этого
соглашения на протяжении всей книги.

Пример 2.2 ❖ files/nginx.conf

server {
listen 80 default_server;
listen [::):80 default_server ipvбonly=on;
root /usr/share/nginx/htмl;
index index.htмl index.htм;

server_naмe localhost;

location / {

}

}

try_files $uri $uri/ =404;

Создание начальной страницы
Добавим свою начальную страницу. Используем шаблоны AnsiЬ}e, чтобы сге­
нерировать файл. Сохраните файл из примера 2.3 в playbooks/templates/index.
html.j2.

Пример 2.3 ❖ playbooks/templates/index.html.j2.

<htмl>
<head>

<title>Welcoмe to ansiЫe</title>
</head>
<body>

<hl>nginx, configured Ьу AnsiЫe</h1>
<p>If you сап see this, AnsiЫe successfully installed nginx. </p>

<р>{{ ansiЫe_мanaged }}</р>
</body>

</htмl>

1 Обратите внимание, что если сохранить его с именем nginx.conf, он заменит файл
sites-enaЫed/default, а не основной файл конфигурации /etc/nginx.conf.

Сценарии: начало ❖ 45

В этом шаблоне используется специальная переменная AnsiЫe ansi.Ыe_мan­
aged. Обрабатывая шаблон, AnsiЫe заменит ее информацией о времени созда­
ния файла шаблона. На рис. 2.2 показан скриншот веб-браузера с созданной
НТМL-страницей.

Wolcome to ans/Ыe

nginx, contigured Ьу AnsiЫe

If you сап scc lhis, AnsiЫc succcssfully iщ1allcd nginx.

AnsiЬ!c managcd:

Personal:

/lJ scrsЛorinhochs1cin/dcv I ansi ЫсЬооk/сh02/р !ау books/tcm platcs/indcx .htm.1.j2 modificd on
2015-02-15 14:46:35 Ьу lorinhochstcin on laptop

Рис. 2.2 ❖ Вид получившейся начальной страницы

Создание группы веб-серверов
Теперь создадим группу webservers в файле реестра, чтобы получить возмож­
ность сослаться на нее в сценарии. Пока в эту группу войдет только наш тесто­
вый сервер testserver.

Файлы реестра имеют формат .ini. Подробнее этот формат мы рассмотрим
позднее. Откройте файл playbooks/hosts в редакторе и добавьте строку [webser­
vers] над строкой testserver

,'
как показано в примере 2.4. Это означает, что

testserver включен в группу webserveгs.

Пример 2.4 ❖ playbooks/hosts

[webservers]
testserver anstЫe_host=127.0.0.1 anstЫe_port=2222

Теперь можно попробовать выполнить команду pi.ng для группы webservers
с помощью утилиты ansi.Ыe:

$ ansiЫe webseгveгs -м ping

Результат должен выглядеть так:

testserver I success >> {

"changed": false,
'1 ping 1': 11 pong 11

ЗАПУСК СЦЕНАРИЯ
Сценарии выполняются командой ansi.Ыe-playbook, например:

$ ansiЫe-playbook web-notls.yмl

46 ❖ Сценарии: начало

В примере 2.5 показано, как должен выглядеть результат.

Пример 2.5 ❖ Результат запуска сценария командой ansiЬle-playbook

PLAY [Configure webserver with nginx] *********************************

GATHERING FACTS ***

ok: [testserver]

TASK: [tnstall ngtnx] ***

changed: [testserver]

TASK: [сору nginx config file] **

changed: [testserver]

TASK: [еnаЫе configuration] **
ok: [testserver]

TASK: [сору index.ht�l] ***

changed: [testserver]

TASK: [restart nginx] ***

changed: [testserver]

PLAY RECAP **

testserver оk=б changed=4 unreachable=0 failed=0

Программа Cowsay

Если на вашей локальной машине установлена программа cowsay, вывод AnsiЫe
будет выглядеть так:

< PLAY [Configure webserver with nginx] >

\ л л

\ (оо) \ __ _
(_) \)\ / \

/ / ····W /

1 1 1 1

Если вы не хотите видеть коров, можете отключить вызов cowsay, установив пере­
менную окружения ANSIBLE_NOCOWS:

$ export ANSIBLE_NOCOWS=1

Отключить cowsay можно также, добавив в файл ansiЫe.cfg строки:

[defaults]
nocows = 1

Если вы не получили никаких ошибок 1
, у вас должно получиться открыть

в браузере страницу http://localhost:8080. В результате вы должны увидеть на­
чальную страницу, как показано на рис. 2.2.

1 Если вы столкнулись с ошибкой, обратитесь к главе 14, где описывается, как ее устра­
нить.

Сценарии: начало ❖ 47

О
Если файл сценария отмечен как выполняемый и начинается с такой строки 1:

#!/usr/bin/env ansiЫe-playbook

в подобном случае вы сможете запустить его непосредственно:

$./web-notls.yмl

СЦЕНАРИИ ПИШУТСЯ НА VAML

Все сценарии AnsiЫe пишутся на YAML. УАМL - это формат файла, напоминаю­
щий JSON, но намного проще для восприятия человеком. Прежде чем перейти
к сценарию, рассмотрим основные понятия УАМL, наиболее важные при напи­
сании сценариев_

Начало файла
Файлы YAML начинаются с трех дефисов, обозначающих начало документа:

Однако AnsiЫe не посчитает ошибкой, если вы забудете указать три дефиса
в начале сценария_

Комментарии
Комментарии начинаются со знака «решетка» и продолжаются до конца стро­
ки, как в сценариях на языке командной оболочки, Python и Ruby:

Это комментарий на языке YAML

Строки
Обычно строки в УАМL не заключаются в кавычки, даже если они включают
пробелы. Хотя это не возбраняется. Например, вот строка на языке УАМL:

это пример предложения

Аналог в JSON выглядит так:

"это пример предложения"

Иногда AnsiЫe требует заключать строки в кавычки. Обычно это строки
с фигурными скобками { {и}} , которые используются для подстановки значе­
ний переменных. Но об этом чуть позже.

Булевы выражения
В YAML есть собственный логический тип. Он предлагает широкий выбор
строк, которые могут интерпретироваться как «истина» и «ложь». Этот во­
прос мы рассмотрели в заметке «Почему в одном случае используется "True",

1 Известной также как shebang.

48 ❖ Сценарии: начало

а в другом "Yes"?» выше. Я лично всегда использую константы Тгuе и False в сво­
их сценариях.

Например, вот булево выражение на УАМL:

Тгuе

Аналог в JSON выглядит так:

true

Списки

Списки в УАМL похожи на массивы в JSON и Ruby или списки в Python. Строго
говоря, в УАМL они называются последовательностями, но я называю их спис­
ками, чтобы избежать противоречий с официальной документацией AnsiЫe.

Списки оформляются с помощью дефиса:

- Му Fai.r Lady

- Oklahol'la

- The Pi.rates of Penzance

Аналог в JSON:

"Му Fai.r Lady",

"Oklahol'la",

"The Pi.rates of Penzance"

Еще раз обратите внимание, что в YAML не нужно заключать строки в ка­
вычки, даже при наличии в них пробелов.

YAML также поддерживает формат встроенных списков. Он выглядит так:

[Му Fai.r Lady, Oklahol'la, The Pi.rates of Penzance]

Словари
Словари в YAML подобны объектам в JSON, словарям в Python или хэш-массивам
в Ruby. Технически в YAML они называются отображениями, но я называю их
словарями, чтобы избежать противоречий с официальной документацией An­
siЫe.

Они выглядят так:

address: 742 Evergreen Теггасе

ci.ty: Spri.ngfi.eld

state: North Takol'la

Аналог в JSON:

"address": "742 Evergreen Теггасе",

"ci.ty": "Spri.ngfi.eld",

"state": "North Takol'la"

Сценарии: начало ❖ 49

YAML также поддерживает формат встроенных словарей:

{addгess: 742 Evergreen Теггасе, city: Springfield, state: North Таkома}

Объединение строк
Во время написания сценариев часто возникают ситуации, когда необходимо
передать модулю много аргументов. В эстетических целях их можно помес­
тить в несколько строк в файле. Однако при этом необходимо, чтобы AnsiЫe
воспринимал их как единую строку.

В YAML для этого можно воспользоваться знаком «больше»(>). Парсер YAML
в этом случае заменит разрывы строк пробелами. Например:

addгess: >

Departмent of Сомрutег Science,

A.V. Williaмs Building,

University of Maryland

city: College Рагk

state: Maryland

}

Аналог в JSON:

"addгess": "Departмent of Сомрutег Science, А. V. Wi.l li.aмs Bui.lding,

University of Maryland",

"city": "College Рагk",

"state": "Maryland"

СТРУКТУРА СЦЕНАРИЯ
Рассмотрим наш сценарий с точки зрения УАМL. В примере 2.6 он приводится
снова:

Пример 2.6 ❖ web-notls.yml
- nаме: Configure webserver with nginx

hosts: webservers

Ьесоме: Тгuе

tasks:

nаме: install nginx

apt: naмe=nginx update_cache=yes

nаме: сору nginx config file

сору: src=files/nginx.conf dest=/etc/nginx/sites-availaЫe/default

nаме: еnаЫе configuration

fi.le: >

dest=/etc/nginx/sites-enaЫed/default

src=/etc/nginx/sites-availaЫe/default

state= li.nk

nаме: сору index.htмl

teмplate: src=teмplates/index.htмl.j2 dest=/usr/share/nginx/htмl/index.htмl

50 ❖ Сценарии: начало

l'lode=0644

nal'le: restart nginx
service: nal'le=nginx state=restarted

В примере 2.7 приводится аналог этого файла в формате JSON.

Пример 2.7 ❖ Аналог web-notls.yml в формате JSON

[
{

"nafТle": "ConПgure webserver wHh nginx",
"hosts": "webservers",
"becol'le": true,
"tasks": [

{

},
{

"nafТle": "Insta l l nginx",
"apt": "nal'le=nginx update_cache=yes"

"nal'le": "сору nginx conПg fHe",
"tel'lplate": "src=files/nginx.conf dest=/etc/nginx/

sites-available/default"
},

{
"nafТle": "еnаЫе configuration",
"file": "dest=/etc/nginx/sites-enaЫed/default src=/etc/nginx/sites-availaЫe

/default state=link"

} '

{
"nafТle": "сору index.htfТll",
"tel'lplate" : "src=tel'lplates/index.htl'll.j2 dest=/usr/share/nginx/htl'll/

index.htl'll l'lode=0644"

}

},
{

"nafТle": "restart nginx",
"service": "nal'le=nginx state=restarted"

}

Допустимый файл в формате JSON является также допустимым файлом в формате YAML,
потому что YAML допускает заключение строк в кавычки, воспринимает значения true
и false как действительные логические выражения, а также синтаксис определения
списков и словарей, аналогичный синтаксису массивов и объектов в JSON. Но я не со­
ветую писать сценарии на JSON, поскольку человеку гораздо проще читать YAML.

Операции
В любом формате - УАМL или JSON - сценарий является списком словарей, или

списком операций.

Вот как выглядит операция из нашего примера 1:

nаме: Configure webserver with nginx

hosts: webservers

Ьесоме: Тгuе

tasks:

nаме: install nginx

apt: naмe=nginx update_cache=yes

nаме: сору nginx config file

сору: src=files/nginx.conf dest=/etc/nginx/sites-availaЫe/default

nаме: еnаЫе configuration

file: >

dest=/etc/nginx/sites-enaЫed/default

src=/etc/nginx/sites-availaЫe/default

state=Hnk

nаме: сору index.htмl

Сценарии: начало ❖ 51

teмplate: src=teмplates/index.htмl.j2 dest=/usr/share/nginx/htмl/index.htмl

моdе=0644

nаме: restart nginx

service: naмe=nginx state=restarted

Каждая операция должна содержать:
О список настраиваемых хостов;

О список задач, выполняемых на этих хостах.
Воспринимайте операцию как нечто, связывающее хосты и задачи.
Кроме хостов и задач, операции также могут содержать параметры. Мы рас­

смотрим этот вопрос позднее, а сейчас познакомимся с тремя основными па­
раметрами:

nаме

Комментарий, описывающий операцию. AnsiЫe выведет его перед запуском
операции.

Ьесоме

Если имеет значение «истина», AnsiЫe выполнит каждую задачу, предвари­
тельно приобретя привилегии пользователя root (по умолчанию). Это может

пригодиться для управления серверами UЬuntu, поскольку по умолчанию
эта система не позволяет устанавливать SSН-соединение с привилегиями
root.

vars

Список переменных и значений. Мы увидим назначение этого параметра

позднее в данной главе.

1
На самом деле это список, содержащий одну операцию.

52 ❖ Сценарии: начало

Задачи
Наш пример сценария содержит одну операцию с пятью задачами. Вот первая
задача:

паме: install nginx

apt: naмe=nginx update_cache=yes

Поскольку параметр nal'le не является обязательным, задачу можно записать
так:

- apt: naмe=nginx update_cache=yes

Даже притом, что имена задач можно не указывать, я рекомендую исполь­
зовать их, поскольку они служат хорошими напоминаниями их целей. Имена
будут особенно полезны для тех, кто попытается разобраться в вашем сцена­
рии, в том числе и вам через полгода. Как мы уже видели, AnsiЫe выводит имя
задачи перед ее запуском. Наконец, как вы увидите в главе 16, можно также
использовать флаг --start-at-task <имя задачи>, чтобы с помощью ansiЫe-p1aybook
запустить сценарий с середины задачи. В этом случае необходимо сослаться на

задачу по имени.
Каждая задача должна содержать ключ с названием модуля и его аргу­

ментами. В данном примере модуль называется apt и принимает аргументы
nal'le=nginx update_cache=yes.

Эти аргументы сообщают модулю apt установить пакет nginx и обновить кэш
пакетов (аналог команды apt-get update) перед установкой.

Важно понять, что с точки зрения парсера YAML, используемого AnsiЫe, ар­
гументы воспринимаются как строки, а не словари. То есть, чтобы разбить ар­
гументы на несколько строк, необходимо использовать правило объединения
строкУАМL:

паме: install nginx

apt: >

naмe=nginx

update_cache=yes

AnsiЫe поддерживает также синтаксис, позволяющий определять аргумен­
ты модулей как словари YAML. Это может пригодиться при работе с модулями,
имеющими составные аргументы. Мы рассмотрим этот вопрос в заметке «Ко­
роткое отступление: составные аргументы задач» в главе 6.

AnsiЫe поддерживает также старый синтаксис, использующий ключ action
и записывающий имя модуля в значение. Например, предыдущий пример
можно записать так:

паме: install nginx

action: apt naмe=nginx update_cache=yes

Сценарии: начало ❖ 53

Модули
Модули - это сценарии 1 , которые поставляются с AnsiЫe и производят опре­
деленное действие на хаете. Правда, надо признать, что это довольно общее
описание, но среди модулей AnsiЫe встречается множество вариантов. В этой
главе используются следующие модули:

apt
Устанавливает или удаляет пакеты с использованием диспетчера пакетов
apt.

сору
Копирует файл с локальной машины на хосты.

fHe

Устанавливает атрибуты файла, символической ссылки или каталога.

seгvi.ce
Запускает, останавливает или перезапускает службу.

tel'1plate
Создает файл на основе шаблона и копирует его на хосты.

Чтение документации по модулям Ansible

AnsiЫe поставляется с утилитой командной строки ans'i.Ыe-doc, которая выводит
документацию по модулям AnsiЫe. Используйте ее как тап-страницы для моду­
лей. Например,для вывода документации к модулю serv'i.ce выполните команду:

$ ansiЫe-doc service

Для пользователей Мае 05 Х существует прекрасное средство просмотра доку­
ментации Dash (https://kapeli.com/dash), обладающее поддержкой AnsiЫe. Dash
индексирует всю документацию по модулям AnsiЫe. Это коммерческая програм­
ма (на момент написания книги ее стоимость составляла $24.99), но, по моему
мнению, она бесценна.

Как рассказывалось в первой главе, AnsiЫe выполняет задачу на хаете, гене­
рируя сценарий, исходя из имени модуля и его аргументов, а затем копирует
его на хост и запускает.

В состав AnsiЫe входит более 200 модулей, и их число растет с каждой новой
версией. Также можно найти модули, написанные сторонними разработчика­
ми, или написать свои собственные.

1 Модули, поставляемые с AnsiЫe, написаны на Python. Но, в принципе, они могут
быть написаны на любом языке.

54 ❖ Сценарии: начало

Резюме

Итак: сценарий содержит одну или несколько операций. Операции связывают­
ся с неупорядоченным множеством хостов и упорядоченным списком задач.
Каждая задача соответствует только одному модулю.

Диаграмма на рис. 2.3 изображает взаимосвязи между сценариями, опера­
циями, хостами, задачами и модулями.

Сценарий Операция Хост

Задача Модуль

Рис. 2.3 ❖ Диаграмма взаимосвязей

Есть ИЗМЕНЕНИЯ? ОТСЛЕЖИВАНИЕ состояния ХОСТА

Когда вы запускаете команду ansi.Ыe-playbook, она выводит информацию о со­
стоянии каждой задачи, выполняемой в рамках операции.

Вернитесь к примеру 2.5 и обратите внимание, что состояние некоторых за­
дач указано как changed (изменено), а других - ok. Например, задача i.nsta 11 ngi.nx
имеет статус changed. На моем терминале он выделен желтым.

TASK: [lnstall nglnx] ***

changed: [testserver]

С другой стороны, задача enab le confi.gu г ati.on имеет статус ok, на моем терми­
нале выделенный зеленым:

TASK: [епаЫе configuration] **

ok: [testserver]

Любая запущенная задача потенциально может изменить состояние хоста.
Перед тем как совершить какое-либо действие, модули проверяют, требуется
ли изменить состояние хоста. Если состояние хоста соответствует значениям
аргументов модуля, AnsiЫe не предпринимает никаких действий и сообщает,
что статус ok.

Если между состоянием хоста и значениями аргументов модуля есть раз­
ница, AnsiЫe вносит изменения в состояние хоста и сообщает, что статус был
изменен (changed).

Как показано в примере выше, задача i.nsta11 ngi.nx внесла изменения, а это
значит, что до запуска сценария пакет nginx не был установлен. Задача еnаЫе

Сценарии: начало ❖ 55

confi.guratton не внесла изменений, значит, на сервере уже был сохранен файл
конфигурации и он идентичен тому, который я копировал. Причина в том, что
файл nginx.conf, который я использовал в своем сценарии, идентичен файлу
nginx.conf, который устанавливается из пакета nginx в UЬuntu.

Позже в этой главе мы увидим, что способность AnsiЫe определять изме­
нение состояния можно использовать для выполнения дополнительных дей­
ствий с помощью обработчиков. Но даже без обработчиков полезно иметь
в своем распоряжении информацию об изменении состояния хостов в резуль­
тате выполнения сценария.

СТАНОВИМСЯ ЗНАТОКАМИ: ПОДДЕРЖКА TLS

Теперь рассмотрим более сложный пример. Добавим в предыдущий сценарий
настройку подцержки TLS веб-сервером. Для этого нам понадобятся следую­
щие новые элементы:

О переменные;
О обработчики.
В примере 2.8 приводится наш сценарий с включенной настройкой под­

держки TLS.

Пример 2.8 ❖ web-tls.yml

- nаме: Configure webserver with nginx and tls

hosts: webservers

Ьесоме: True

vars:

key_file: /etc/nginx/ssl/nginx.key

cert_file: /etc/nginx/ssl/nginx.crt

conf_file: /etc/nginx/sites-availaЫe/default

server_naмe: localhost

tasks:

nаме: Install nginx

apt: naмe=nginx update_cache=yes cache_valid_tiмe=3600

nаме: create directories for ssl certificates

file: path=/etc/nginx/ssl state=directory

nаме: сору TLS key

сору: src=files/nginx.key dest={{ key_file }} owner=root моdе=0600

notify: restart nginx

nаме: сору TLS certificate

сору: src=files/nginx.crt dest={{ cert_file }}

notify: restart nginx

nаме: сору nginx config file

teмplate: src=teмplates/nginx.conf.j2 dest={{ conf_file }}

notify: restart nginx

nаме: еnаЫе configuration

56 ❖ Сценарии: начало

file: dest=/etc/nginx/sites-enaЫed/default src={{ conf_file }} state=link

notify: restart nginx

nal'le: сору index.htl'll

tel'lplate: src=tel'lplates/index.htl'll.j2 dest=/usr/share/nginx/htl'll/index.htl'll

l'lode=0644

handlers:

nal'le: restart nginx

service: nal'le=nginx state=restarted

Создание сертификата TLS
Мы должны вручную создать сертификат TLS. Для промышленной эксплуа­
тации сертификат TLS необходимо приобрести в центре сертификации или
использовать бесплатную службу, такую как Let's Encrypt, которая поддержи­
вается в AnsiЫe посредством модуля letsencгypt. Мы используем «самоподпи­
санный» (self-signed) сертификат, поскольку его можно создать бесплатно.

Создайте подкаталог files в каталоге playbooks, а затем сертификат TLS
и ключ:

$ l'lkdi.r fi.les

$ openssl req -х509 -nodes -days 3650 -newkey rsa:2048 \

-subj /CN=localhost \

-keyout fi.les/ngi.nx.key -out fi.les/ngi.nx.crt

Эта пара команд создаст файлы nginx.key и nginx.crt в каталоге files. Срок дей­
ствия сертификата ограничен 10 годами (3650 дней) со дня его создания.

Переменные
Теперь операция в нашем сценарии включает раздел vars:

vars:

key_file: /etc/nginx/ssl/nginx.key

cert_file: /etc/nginx/ssl/nginx.crt

conf_file: /etc/nginx/sites-availaЫe/default

server_nal'le: localhost

Этот раздел определяет 4 переменные и их значения.
В нашем примере каждое значение - это строка (например, /etc/nginx/ssl/

nginx.key), но вообще значением переменной может служить любое выраже­
ние, допустимое в YAML. В дополнение к строкам и булевым выражениям мож­
но использовать списки и словари.

Переменные можно использовать в задачах и в файлах шаблонов. Для ссыл­
ки на переменные используются скобки { { и } }. AnsiЬle заменит скобки значе­
нием переменной.

Предположим, что в сценарии имеется следующая задача:

nal'le: сору TLS key

сору: src=files/nginx.key dest={{ key_file }} owner=root l'lode=0600

Сценарии: начало ❖ 57

При выполнении задачи AnsiЫe заменит { { key_fi.le } } на /etc/ngi..nx/ssl/

ngi.nx.key.

Когда использовать кавычки

Если ссылка на переменную следует сразу после имени модуля, парсер YAML оши­
бочно воспримет ее как начало встроенного словаря. Например:

- nаме: регfогм sоме task
соммаnd: {{ муарр }} -а foo

AnsiЫe попытается интерпретировать первую часть выражения { { rчуарр } } -а foo
не как строку, а как словарь, и выдаст ошибку. В данном случае необходимо за­
ключить аргументы в кавычки:

- nаме: регfогм sоме task
соммаnd: "{{ муарр }} -а foo"

Похожая ошибка возникает при наличии двоеточия в аргументе. Например:

- nаме: show а debug мessage
debug: мsg="The debug мodule wi..ll pri.nt а мessage: neat, eh?"

Двоеточие в аргументе rчsg сбивает синтаксический анализатор YAML. Чтобы из­
бежать этого, необходимо заключить в кавычки все выражение аргумента.
К сожалению, простое заключение аргумента в кавычки целиком также не решит
проблему.

- nаме: show а debug мessage
debug: "мsg=The debug мodule wi.ll pri.nt а мessage: neat, eh?"

Это удовлетворит синтаксический анализатор YAML, но результат будет отличать­
ся от ожидаемого:

TASK: [show а debug мessage] **
ok: [localhost] => {

}

Аргумент rчsg модуля debug требует заключения строки в кавычки для сохране­
ния пробелов. В данном конкретном случае необходимо заключить в кавычки не
только аргумент целиком, но и сам аргумент rчsg. AnsiЫe распознает одинарные
и двойные кавычки, т. е. можно поступить так:

- nаме: show а debug мessage
debug: "мsg=' The debug мodu le wi. ll pri.nt а мessage: neat, eh? "'

Это даст ожидаемый результат:

TASK: [show а debug мessage] **
ok: [localhost] => {

"мsg": "The debug мodule wi.ll pri.nt а мessage: neat, eh?"

}

AnsiЫe сгенерирует вполне информативные сообщения об ошибках, если вы за­
будете расставить кавычки и у вас получится недопустимый код YAML.

58 ❖ Сценарии: начало

Создание шаблона с конфигурацией Nginx
Если вы занимались веб-программированием, то, вероятно, сталкивались с си­
стемой шаблонов для создания разметки HTML. Если нет, то поясню, что шаб­
лон - это простой текстовый файл, в котором с использованием специального
синтаксиса определяются переменные, которые должны заменяться фактиче­
скими значениями. Если вы когда-либо получали автоматически сгенериро­
ванное электронное письмо от какой-либо компании, то наверняка заметили,
что в письме используется шаблон, аналогичный приведенному в примере 2. 9.

Пример 2.9 ❖ Шаблон электронного письма

Dear {{ nаме }},

You have {{ nuм_coments }} new coments оп your Ыоg: {{ Ыоg_nаме }}.

В случае с AnsiЫe это не НТМL-страницы или электронные письма, а файлы
конфигурации. Если можно избежать редактирования файлов конфигурации
вручную, лучше так и поступить. Это особенно полезно, если используются
одни и те же конфигурационные данные (например, IР-адрес сервера очереди
или учетные сведения для базы данных) в нескольких файлах. Гораздо разум­
нее поместить информацию о конкретном окружении в одном месте, а затем
создавать все файлы, требующие этой информации, на основе шаблона.

Для поддержки шаблонов AnsiЫe использует механизм Jinja2. Если вы ког­
да-либо пользовались библиотеками шаблонов, такими как Mustache, ЕRВ или
Django, тогда Jinja2 покажется вам знакомым инструментом.

В файл конфигурации Nginx необходимо добавить информацию о месте
хранения ключа и сертификата TLS. Чтобы исключить использование жестко
заданных значений, которые могут изменяться со временем, мы воспользуем­
ся поддержкой шаблонов в AnsiЫe.

В каталоге playbooks создайте подкаталог templates и файл templates/nginx.
conf.j2, как показано в примере 2.10.

Пример 2.10 ❖ templates/nginx.conf.j2

server {

}

listen 80 default_server;
listen [::]:80 default_server ipvбonly=on;

Hsten 443 ssl;

root /usr/share/nginx/htмl;
index index.htмl index.htм;

server_naмe {{ server_naмe }};
ssl_certificate {{ cert_file }};
ssl_certificate_key {{ key_file }};

location / {
try_files $uri $uri/ =404;

}

Сценарии: начало ❖ 59

Мы используем расширение файла . j2, чтобы показать, что файл является
шаблоном Jinja2. Однако вы можете использовать любое другое расширение.
Для AnsiЫe это неважно.

В нашем шаблоне используются три переменные:
О server _nal'le - название хоста веб-сервера (например, www.exal'1ple.co1'1);
О cert_fHe - путь к файлу сертификата TLS;
О key_fi. le - путь к файлу приватного ключа TLS.
Мы определим эти переменные в сценарии.
AnsiЫe также использует механизм шаблонов Jinja2 для определения пере­

менных в сценариях. Вспомните: мы уже встречали выражение {{ conf_fHe }}
в самом сценарии.

Ранние версии AnsiЫe использовали знак доллара ($) вместо фигурных скобок для обо­
значения переменных в сценариях. Прежде, чтобы разыменовать переменную foo, на
нее нужно было сослаться как $foo, в то время как сейчас используется форма { { foo } }.
Знак доллара прекратили использовать. И если вы встретите его в сценарии, найденном
в Интернете, знайте, что перед вами код, созданный в ранней версии AnsiЫe.

Вы можете использовать все возможности Jinja2 в своих шаблонах, но мы
не будем подробно рассматривать их здесь. За дополнительной информацией
о шаблонах Jinja2 обращайтесь к официальной документации (http://jinja.pocoo.
org/docs/dev/templates/). Впрочем, вам едва ли потребуются все продвинутые
возможности. Но вы почти наверняка будете пользоваться фильтрами; мы рас­
смотрим их в последующей главе.

Обработчики
А теперь вернемся к нашему сценарию web-tls.yml. Мы не обсудили еще два
элемента. Один из них - раздел обработчиков handlers:

handlers:
- nаме: restart nginx

service: naмe=nginx state=restarted

И второй - ключ noti.fy в некоторых задачах:

- nаме: сору TLS key
сору: src=files/nginx.key dest={{ key_file }} owner=root моdе=0600
notify: restart nginx

Обработчики - это одна из условных форм, поддерживаемых в AnsiЫe. Об­
работчик схож с задачей, но запускается только после получения уведомления
от задачи. Задача посылает уведомление, если обнаруживается изменение со­
стояния системы после ее выполнения.

Задача уведомляет обработчик с именем, переданным ей в аргументе. В пре­
дыдущем примере имя обработчика restart ng"i.nx. Сервер Nginx нужно переза­
пустить 1, если изменится любой из компонентов:

1 Вместо перезапуска службы можно перезагрузить файл конфигурации командой
state=re loaded.

60 ❖ Сценарии: начало

О ключТLS;
О сертификат TLS;
О файл конфигурации;
О содержимое каталога sites-enaЫed.

Мы добавляем инструкцию noti. fy в каждую задачу, чтобы обеспечить пере­
запуск Nginx, если выполняется одно из этих условий.

Несколько фактов об обработчиках,
которые необходимо помнить
Обработчики выполняются только после завершения всех задач и только один
раз, даже если было получено несколько. Они всегда выполняются в порядке
следования в разделе handlers, а не в порядке поступления уведомлений.

В официальной документации AnsiЬle говорится, что обработчики в основ­
ном используются для перезапуска служб и перезагрузки. Лично я использую
их исключительно для перезапуска служб. Надо сказать, что это не дает особой
выгоды, потому что перезапуск службы всегда можно организовать в конце
сценария и обойтись без использования уведомлений.

Другое неудобство обработчиков состоит в том, что они могут создавать
сложности при отладке сценария, например:

1. Я запускаю сценарий.
2. Одна из задач с уведомлением изменяет состояние.
3. В следующей задаче возникает ошибка, прерывающая работу AnsiЫe.
4. Я исправляю ошибку в сценарии.
5. Запускаю AnsiЫe снова.
6. Ни одна из задач не сообщает об изменении состояния во второй раз,

AnsiЫe не запускает обработчика.
Дополнительную информацию об обработчиках и их применении вы найде­

те в разделе «Улучшенные обработчики» в главе 9.

Запуск сценария
Запуск сценария выполняется командой ansi.Ыe-playbook.

$ ansiЫe-ptaybook web-tts.y�t

Вывод должен выглядеть примерно так:

PLAY [Configure webseгver with nginx and tls] *********************************

GATHERING FACTS ***

ok: [testseгver]

TASK: [Install nglnx] ***

changed: [testserver]

TASK: [сгеаtе diгectories fог tls certificates] *******************************
changed: [testserver]

TASK: [сору TLS key] **

Сценарии: начало ❖ 61

changed: [testserver]

TASK: [сору TLS certificate]

changed: [testserver]

**

TASK: [сору пgiпх config file]

chaпged: [testserver]

**

TASK: [епаЫе configuration]

ok: [testserver]

**

NOTIFIED: [restart пgiпх]

chaпged: [testserver]

PLAY RECAP **

testserver : ok=B changed=б uпгеасhаЫе=0 failed=0

Откройте в браузере страницу https://localhost:8443 (не забудьте «s» в конце
https). Если вы используете Chrome, то, как и я, получите неприятное сообще­
ние о том, что «установленное соединение не защищено» (см. рис. 2.4).

600 ·с
� Privacy error х

С � � �://localhost:8443

Your connection is not private

Attackers might Ье trying to steal your information from

localhost (for example, passwords, messages, or credit cards).

Advaщed

Рис. 2.4 ❖ Некоторые браузеры, такие как Chrome,
не доверяют «самоподписанным» сертификатам TLS

Не беспокойтесь. Ошибка ожидаема, поскольку мы создали «самоподписан­
ный» сертификат TLS. А такие браузеры, как Chrome, доверяют только серти­
фикатам, выпущенным доверенным центром сертификации.

62 ❖ Сценарии: начало

В этой главе мы изучили многое из того, что делает AnsiЫe с хостами. Об­
работчики - лишь одна из форм контроля, поддерживаемых в AnsiЫe. В после­
дующих главах мы рассмотрим циклическое и условное выполнение задач на
основе значений переменных.

В следующей главе мы также поговорим об аспекте кто. Другими словами,
как описать хосты, на которых выполняются сценарии.

Глава 3
•••

Реестр:

описание серверов

До настоящего момента мы рассматривали работу лишь с одним сервером (или
хостом, в терминологии AnsiЬle). В действительности вам предстоит управлять
многими хостами. Группа хостов, данными о которых располагает AnsiЫe, на­
зывается реестром. В этой главе вы узнаете, как составить реестр, описываю­
щий группу хостов.

Фдйл РЕЕСТРА

Самый простой способ описать имеющиеся хосты - перечислить их в тексто­
вых файлах, называемых файлами реестра. Простейший файл реестра содер­
жит самый обычный список имен хостов, как показано в примере 3.1.

Пример 3.1 ❖ Простейший файл реестра

ontario.exaмple.coм

newhaмpshire.exaмple.coм

мaryland.exaмple.coм

virginia.exaмple.coм

newyork.exaмple.coм

quebec.exaмple.coм

rhodeisland.exaмple.coм

По умолчанию AnsiЫe использует локальный SSН-клиент. То есть система поймет любые

псевдонимы, которые вы определите в файле конфигурации SSH. Однако это не относит­

ся к случаю, когда AnsiЫe настроена на использование плагина Paramiko, а не плагина

SSH по умолчанию .

По умолчанию AnsiЬle автоматически добавляет в реестр хост localhost. Она
понимает, что имя loca lhost ссылается на локальную машину, поэтому будет
взаимодействовать с ней напрямую, минуя SSН-соединение.

64 ❖ Реестр: описание серверов

Даже притом, что AnsiЫe автоматически добавляет localhost в реестр, в вашем файле
реестра должен иметься хотя бы один другой хост. Иначе выполнение команды ansi.Ыe­
playbook завершится с ошибкой:

ERROR: provided hosts list is емрtу

Если у вас нет других хостов для включения в файл реестра, просто добавьте в него
явную запись с именем localhost, например:

localhost ansiЫe_connection=local

ВВОДНАЯ ЧАСТЬ: НЕСКОЛЬКО МАШИН V AGRANT
Для обсуждения реестра нам необходимо иметь несколько хостов. Давайте
сконфигурируем в Vagrant три хоста и назовем их vagrant1, vagrant2 и vagrantЗ.

Прежде чем вносить изменения в существующий файл Vagrantfile, не забудьте
удалить существующую виртуальную машину, выполнив команду

$ vagгant destгoy --fогсе

Если запустить эту команду без флага - -force, Vagrant предложит подтвер­
дить удаление виртуальной машины.

После этого измените файл Vagrantfile, как показано в примере 3.2.

Пример 3.2 ❖ Vagrantfile с тремя серверами

VAGRANTFILE_API_VERSION = "2"

Vagгant.configure(VAGRANTFILE_API_VERSION) do lconfigJ
Используйте один и тот же ключ для всех маwин
config.ssh.insert_key = false

config.vм.define "vagrant1" do lvagrant11
vagrant1.vм.box = "ubuntu/trusty64"
vagrant1.vм.network "forwaгded_port", guest: 80, host: 8080
vagгant1.vм.network "forwarded_port", guest: 443, host: 8443

end
confi.g.vм.define "vagrant2" do lvagrant21

vagrant2.vм.box = "ubuntu/trusty64"
vagrant2.vм.network "forwarded_port", guest: 80, host: 8081
vagrant2.vм.network "forwarded_port", guest: 443, host: 8444

end
config.vм.define "vagrant3" do lvagrant31

vagrant3.vм.box = "ubuntu/trusty64"
vagrant3.vм.network "forwarded_port", guest: 80, host: 8082
vagrant3.vм.network "forwarded_port", guest: 443, host: 8445

end
end

Начиная с версии 1.7 Vagrant по умолчанию использует разные SSН-ключи
для каждого хоста. В примере 3.2 содержится строка, которая возвращает Va­
grant к использованию одного SSН-ключа для всех хостов:

config.ssh.insert_key = false

Реестр: описание серверов ❖ 65

Использование одного и того же ключа для всех хостов упрощает настрой­
ку AnsiЫe, поскольку в этом случае требуется указать только один SSН-ключ
в файле ansiЫe.cfg. Нам также необходимо изменить значение host_key_checki.ng
в файле ansiЬle.cfg. Измененный файл должен выглядеть, как показано в при­
мере 3.3.

Пример 3.3 ❖ ansiЫe.cfg

[defaults]
hostfile = inventoгy
гемоtе_usег = vagrant
private_key_file = -/.vagrant.d/insecure_private_key
host_key_checking = False

Предполагается, что каждый из этих серверов потенциально может быть
веб-сервером, поэтому в примере 3.2 порты 80 и 443 на каждой машине Vagrant
отображены в порты локальной машины.

Виртуальные машины запускаются командой

$ vagгant up

Если все в порядке, она выведет следующее:

Bringing мachine 'vagrantl' up with 'virtualbox' provider .. .
Bringing мachine 'vagrant2' up with 'virtualbox' pгovider .. .
Bringing мachine 'vagrantЗ' up with 'virtualbox' provider .. .

vagrantЗ: 80 => 8082 (adapter 1)
vagгantЗ: 443 => 8445 (adapter 1)
vagгantЗ: 22 => 2201 (adapter 1)

==> vagrantЗ: Booting VM ...
==> vagгantЗ: Waiting fог мachine to boot. This мау take а few мinutes ...

vagrantЗ: SSH address: 127.0.0.1:2201
vagrantЗ: SSH usегпаме: vagгant
vagгantЗ: SSH auth мethod: private key
vagrantЗ: Warning: Connection tiмeout. Retгying ...

==> vagгantЗ: Machine booted and геаdу!
==> vagrantЗ: Checking fог guest additions in VM ...
==> vagrantЗ: Mounting shared folders ...

vagгantЗ: /vagrant => /Useгs/lorinhochstein/dev/oreilly-ansiЫe/playbooks

Теперь создадим файл реестра, включающий все три машины.
Сначала посмотрим, какие порты локальной машины отображены в порт

SSH (22) каждой виртуальной машины. Напомню, что эти данные можно полу­
чить командой

$ vagrant ssh-config

Результат должен выглядеть примерно так:

Host vagrantl
HostNaмe 127.0.0.1
User vagrant

66 ❖ Реестр: описание серверов

Port 2222

UserKnownHostsFi.le /dev/null

5tri.ctHostKeyChecki.ng по

PasswordAuthenti.cati.on по

Identi.tyFi.le /Users/lori.nhochstei.n/.vagrant.d/i.nsecure_pri.vate_key

Identiti.esOnly yes

Loglevel FATAL

Host vagrant2

HostNaмe 127.0.0.1

User vagrant

Port 2200

UserKnownHostsFi.le /dev/null

5tri.ctHostKeyChecking по

PasswordAuthenti.cati.on по

Identi.tyFi.le /Users/lorinhochstein/.vagrant.d/i.nsecure_pri.vate_key

Identi.ti.esOnly yes

Loglevel FATAL

Host vagrantЗ

HostNaмe 127.0.0.1

User vagrant

Port 2201

UserKnownHostsFi.le /dev/null

5tri.ctHostKeyChecki.ng по

PasswordAuthenticati.on по

IdentityFi.le /Users/lori.nhochstei.n/.vagrant.d/i.nsecure_pri.vate_key

Identi.ti.esOnly yes

Loglevel FATAL

Как видите, для vagrantl используется порт 2222, для vagrant2 - порт 2200
и для vagrantЗ - порт 2201.

Измените файл hosts, как показано ниже:

vagrant1 ansiЫe_ssh_host=127.0.0.1 ansi.Ыe_ssh_port=2222

vagrant2 ansi.Ыe_ssh_host=127.0.0.1 ansi.Ыe_ssh_port=2200

vagrantЗ ansi.Ыe_ssh_host=127.0.0.1 ansi.Ыe_ssh_port=2201

Теперь проверим доступность этих машин. Например, получить информа­
цию о сетевом интерфейсе в vagrant2 можно командой

$ ansi.Ыe vagгant2 -а "i.p addг show dev eth0"

На моей машине я получил такой результат:

vagrant2 / success / rc=0 >>

2: eth0: <BROADCA5T,MULTICA5T,UP,LOWER_UP> мtu 1500 qdisc pfifo_fast state UP

group default qlen 1000

li.nk/ether 08:00:27:fe:1e:4d Ьгd ff:ff:ff:ff:ff:ff

inet 10.0.2.15/24 Ьгd 10.0.2.255 scope global eth0

vali.d_lft forever pгeferred_lft forever

inetб fe80::a00:27ff:fefe:1e4d/64 scope li.nk

vali.d_lft forever preferred_lft forever

Реестр: описание серверов ❖ 67

ПОВЕДЕНЧЕСКИЕ ПАРАМЕТРЫ ХОСТОВ В РЕЕСТРЕ
Для описания машин Vagrant в файле реестра AnsiЫe необходимо явно указать
имя хоста (127.0.0.1) и порт (2222, 2200 или 2201), к которому будет подклю­
чаться SSН-клиент системы AnsiЫe.

В AnsiЬle эти переменные называются поведенческими параметрами. Не­
которые из них можно использовать для изменения значений по умолчанию
(табл. 3.1).

Таблица 3.1. Поведенческие параметры

Имя Значение Описание
по умолчанию

ansi.Ыe host Имя хоста Имя хоста или IР-адрес

ansi.Ыe рогt 22 Порт для подключения по протоколу SSH

ansi.Ыe_user гооt Пользователь для подключения по протоколу SSH

ansi.Ыe password (нет) Пароль для подключения по протоколу SSH

ansi.Ыe_connecti.on Sfllart Как AnsiЫe будет подключаться к хосту (см. следующий
раздел)

ansi.Ыe_pri.vate_key_fi.le (нет) Приватный SSН-ключ для аутентификации по протоколу
SSH

ansi.Ыe_shell_type sh Командная оболочка для выполнения команд
(см. следующий раздел)

ansi.Ыe_python_i.nterpreter /usr/Ыn/python Путь к интерпретатору Python на хаете (см. следующий
раздел)

ansi.Ыe_*_i.nterpreter (нет) Аналоги ansi.Ыe_python_ i.nterpreter для других языков
(см. следующий раздел)

Назначение некоторых параметров очевидно из их названий, другие требу­
ют дополнительных пояснений.

ansible connection
AnsiЫe поддерживает несколько транспортов - механизмов подключения
к хостам. По умолчанию используется транспорт sмart. Он проверяет поддерж­
ку локальным SSН-клиентом функции Contro!Persist. Если SSН-клиент поддер­
живает ее, AnsiЫe использует локальный SSН-клиент. Если локальный клиент
не поддерживает ControlPersist, тогда транспорт sмart будет использовать биб­
лиотеку SSН-клиента на Python с названием Paramiko.

ansi ble _ sheLL_ type
AnsiЫe устанавливает SSН-соединения с удаленными машинами и затем за­
пускает на них сценарии. По умолчанию AnsiЫe считает, что удаленная обо­
лочка - это оболочка Bourne Shell, доступная как /Ьin/sh, и создает соответ­
ствующие параметры командной строки, которые используются с оболочкой
Bourne Shell.

68 ❖ Реестр: описание серверов

В этой переменной можно также передать значение csh, fi.sh или powershell
(при работе с Windows). Однако я никогда не сталкивался с необходимостью
менять тип оболочки.

ansible _python _ i nterpreter
Поскольку модули, входящие в состав AnsiЫe, реализованы на Python 2, чтобы
использовать их, AnsiЫe должна знать местоположение интерпретатора Py­
thon на удаленной машине. Вам может потребоваться изменить эту перемен­
ную, если на удаленной машине путь к выполняемому файлу интерпретатора
Python отличается от /usr/Ьin/python. Например, для хостов с Arch Linux может
понадобиться присвоить этой переменной значение /usr/Ьin/python2, потому
что путь /usr/Ьin/python в Arch Linux соответствует интерпретатору Python 3,
а модули AnsiЫe пока не совместимы с Python 3.

ansible_ *_interpreter
Если вы собираетесь использовать свой модуль, написанный не на Python, ис­
пользуйте этот параметр, чтобы определить путь к интерпретатору (например,
/usr/Ьin/ruby). Подробнее об этом мы поговорим в главе 12.

Переопределение поведенческих параметров по умолчанию
Вы можете переопределить некоторые поведенческие параметры по умолча­
нию в секции [defaults] файла ansiЫe.cfg (табл. 3.2). Напомню, что мы уже ис­
пользовали эту возможность для изменения пользователя SSH по умолчанию.

Таблица 3.2.Значения по умолчанию,
которые могут быть заменены в ansiЫe.cfg

Поведенческий параметр Параметр в файле ansiЫe.cfg

ansi.ble_port rel'юte_port

ansi.Ыe_user rel'lote_user

ansi.Ыe pri.vate key fi.le pri.vate_key_fi.le

ansi.Ыe_shell_type executaЫe (см. ниже)

Параметр executaЫe в файле ansiЫe.cfg- не совсем то же самое, что поведен­
ческий параметр aпsi.Ыe_shell_type. Параметр executaЫe определяет полный
путь к используемой оболочке на удаленной машине (например, /usr/local/Ьin/
fish). AnsiЫe выбирает имя в конце этого пути (для /usr/local/Ьin/fish это будет
имя fish) и использует его как значение по умолчанию для aпsi.b le_she l l_ type.

ГРУППЫ, ГРУППЫ И ЕЩЕ РАЗ ГРУППЫ
Занимаясь настройками, мы обычно совершаем действия не с одним хостом,
а с их группой.АnsiЫе автоматически определяет группу all (или*). Она вклю­
чает в себя все хосты, перечисленные в реестре. Например, мы можем пример­
но оценить синхронность хода часов на машинах с помощью команды:

$ ans'i.Ыe all -а "date"

или

$ ans'i.Ыe '*' -а "date"

Я у себя получил такой результат:

vagrantЗ I success I rc=0 >>

Sun Sep 7 02:56:46 UTC 2014

vagrant2 1 success I rc=0 >>

Sun Sep 7 03:03:46 UTC 2014

vagrantl I success I rc=0 >>

Sun Sep 7 02:56:47 UTC 2014

Реестр: описание серверов ❖ 69

В файле реестра можно определять свои группы. Файлы реестра в AnsiЫe
оформляются в формате .ini, в котором параметры группируются в секции.

Вот как можно объединить в группу vagrant наши Vagrant-xocты наряду с дру­
гими хостами из примера, приводившегося в начале главы:

ontario.exaмple.coм

newhaмpshire.exaмple.coм

мaryland.exaмple.coм

virginia.exaмple.coм

newyork.exaмple.coм

quebec.exaмple.coм

rhodeisland.exaмple.coм

[vagrant]

vagrantl ansiЫe_ssh_host=127.0.0.1 ansiЫe_ssh_port=2222

vagrant2 ansiЫe_ssh_host=127.0.0.1 ansiЫe_ssh_port=2200

vagrantЗ ansiЫe_ssh_host=127.0.0.1 ansiЫe_ssh_port=2201

Также можно было бы перечислить Vagrant-xocты в начале файла и потом
объединить их в группу:

мaryland.exaмple.coм

newhaмpshire.exaмple.coм

newyork.exaмple.coм

ontario.exaмple.coм

quebec.exaмple.coм

rhodeisland.exaмple.coм

vagrantl ansiЫe_ssh_host=127.0.0.1 ansiЫe_ssh_port=2222

vagrant2 ansiЫe_ssh_host=127.0.0.1 ansiЫe_ssh_port=2200

vagrantЗ ansiЫe_ssh_host=127.0.0.1 ansiЫe_ssh_port=2201

virginia.exaмple.coм

[vagrant]

vagrantl

vagrant2

vagгantЗ

70 ❖ Реестр: описание серверов

Пример: развертывание приложения Django
Представьте, что вы отвечаете за развертывание веб-приложения, реализован­
ного на основе фреймворка Django и выполняющего продолжительные опера­
ции. Чтобы развернуть приложение, на хаете должны также присутствовать:

О последняя версия самого веб-приложения Django, выполняемого НТТР­
сервером Gunicorn;

О веб-сервер Nginx, находящийся перед сервером Gunicorn и обслуживаю­
щий статические ресурсы;

О очередь задач Celery, выполняющая продолжительные операции от лица
веб-сервера;

О диспетчер очередей сообщений RabbltMQ, обеспечивающий работу Ce­
lery;

О база данных Postgres, используемая в качестве хранилища.

� В последующих главах мы подробно рассмотрим пример развертывания Djапgо-прило­
жения такого типа. Но в том примере не будут использоваться Сеlегу и RabbitMQ.

Необходимо развернуть данное приложение в разных окружениях: про­
мышленной (для реального использования), тестовой (для тестирования на
хостах, к которым члены нашей команды имеют доступ) и Vagrant (для локаль­
ного тестирования).

В промышленном окружении необходимо обеспечить быстрый и надежный

отклик системы, поэтому мы:
О запустим веб-приложение на нескольких хостах и поставим перед ними

балансировщик нагрузки;
О запустим серверы очередей задач на нескольких хостах;
О установим Gunicorn, Celery, RabbltMQ и Postgres на отдельных серверах;
О используем два хоста для размещения основной базы данных Postgres

и ее копии.
Допустим, что у нас имеются один балансировщик нагрузки, три веб-сервера,

три очереди задач, один сервер RabbltMQ и два сервера баз данных, т. е. всего
10 хостов.

Представим также, что в окружении для тестирования мы решили использо­
вать меньше хостов, чем в промышленном окружении. Это позволит сократить
издержки, поскольку нагрузка на тестовое окружение будет существенно ниже.
Допустим, для тестового окружения мы решили использовать всего два хоста.
Мы установим веб-сервер и диспетчер очереди задач на один хает, а RabbltMQ
и Postgres - на другой.

В локальном окружении Vagrant мы решили использовать три сервера:
один - для веб-приложения, второй - для диспетчера очереди задач, третий -
для установки RabbltMQ и Postgres.

В примере 3.4 представлен вариант возможного файла реестра, в котором
наши серверы сгруппированы по признаку принадлежности к окружению

Реестр: описание серверов ❖ 71

(промышленному, тестовому, Vagrant) и по функциональности (веб-сервер,
lbcgtnxth очереди задач и т. д.).

Пример 3.4 ❖ Файл реестра для развертывания приложения Django

[producti.on]
delaware.exaмple.coм
georgi.a.exaмple.coм
магуlапd.ехамрlе.сом
newhaмpshi.re.exaмple.coм
newjersey.exaмple.coм
newyork.exaмple.coм
northcaroli.na.exaмple.coм
pennsylvani.a.exaмple.coм
rhodei.sland.exaмple.coм
vi.rgi.ni.a.exaмple.coм

[stagi.ng]
ontari.o.exaмple.coм
quebec.exaмple.coм

[vagrant]
vagrant1 ansi.Ыe_ssh_host=127.0.0.1 ansi.Ыe_ssh_port=2222
vagгant2 ansi.Ыe_ssh_host=127.0.0.1 ansi.Ыe_ssh_port=2200
vagrantЗ ansi.Ыe_ssh_host=127.0.0.1 ansi.Ыe_ssh_port=2201

[lb]
delaware.exaмple.coм

[web]
georgi.a.exaмple.coм
newhaмpshi.re.exaмple.coм
newjersey.exaмple.coм
ontari.o.exaмple.coм
vagrant1

[task]
newyoгk.exaмple.coм
northcaгoli.na.exaмple.coм
магуlапd.ехамрlе.сом
ontari.o.exaмple.coм
vagrant2

[гаЬЫtмq]
pennsylvani.a.exaмple.coм
quebec.exaмple.coм
vagrantЗ

[db]
rhodei.sland.exaмple.coм
vi.rgi.ni.a.exaмple.coм
quebec.exaмple.coм
vagrantЗ

72 ❖ Реестр: описание серверов

Мы могли бы сначала перечислить все серверы в начале файла, не определяя
группы, но в этом нет необходимости, и это сделало бы файл еще длиннее.

Обратите внимание, что нам понадобилось только один раз указать пове­
денческие параметры для экземпляров Vagrant.

Псевдонимы и порты
Мы описали наши хосты Vagrant так:

[vagrant]
vagrant1 anstЫe_ssh_host=127.0.0.1 anstЫe_ssh_port=2222
vagrant2 anstЫe_ssh_host=127.0.0.1 anstЫe_ssh_port=2200
vagrantЗ anstЫe_ssh_host=127.0.0.1 anstЫe_ssh_port=2201

Имена vagгant1, vagrant2, vagrantЗ - это псевдонимы. Они - не настоящие име­
на серверов, но их удобно использовать для обозначения этих хостов.

AnsiЫe поддерживает синтаксис <hostnaмe>:<port> описания хостов. То есть
строку с описанием vagrant1 можно заменить объявлением 127.0.0.1:2222. Од­
нако нам не удастся задействовать гипотетический реестр, представленный
в примере 3.5.

Пример 3.5 ❖ Этот реестр не работает
[vagrant]
127.0.0.1:2222
127.0.0.1:2200
127.0.0.1:2201

Причина в том, что с IР-адресом 127.0.0.1 можно определить только один
хает, поэтому группа vagrant содержала бы в этом случае лишь один хает вместо
трех.

Группировка групп
AnsiЬle позволяет также определять группы, состоящие из других групп. На­
пример, на веб-серверы и на серверы очередей требуется установить фрейм­
ворк Django и его зависимости. Поэтому будет полезно определить группу
django, включающую обе вышеуказанные группы. Для этого достаточно доба­
вить следующие строки в файл реестра:

[django:chtldren]
web

task

Обратите внимание, что для определения группы групп используется дру­
гой синтаксис, отличный от синтаксиса определения группы хостов. Благодаря
этому AnsiЫe поймет, что web и task - это группы, а не хосты.

Имена хостов с номерами (домашние питомцы и стадо)
Файл реестра в примере 3.4 выглядит достаточно сложным. На самом деле он
описывает всего лишь 15 разных хостов. А это количество не так уж и велико

Реестр: описание серверов ❖ 73

в нашем облачном безразмерном мире. Тем не менее даже 15 хостов в файле
реестра могут вызывать затруднения, потому что каждый хост имеет свое, уни­
кальное имя.

Билл Бейкер (Bill Baker) из Microsoft выделил отличительные особенности
управления серверами, которые интерпретируются как домашние питом­
цы и как стадо. Своим домашним питомцам мы даем отличительные имена
и работаем с ними в индивидуальном порядке, но животных в стаде мы часто
идентифицируем по их номерам.

Подход к именованию серверов с использованием нумерации более мас­
штабируемый, и AnsiЫe с легкостью поддерживает его посредством числовых
шаблонов. Например, если у вас имеется 20 серверов с именами weЫ.example.
сот, weЫ.example.com и т. д., вы можете описать их в файле реестра так:

[web]

web[l:20].exaмple.coм

Если вы предпочитаете использовать ведущие нули (например, webOl.exam­
ple.com), укажите их в определении диапазона:

[web]

wеЬ[01:20].ехамрlе.сом

Ansile поддерживает также возможность определения диапазонов букв.
Если вы предпочитаете использовать условные обозначения web-a.example.
сот, web-b.example.com и т. д., тогда поступите так:

[web]

web-[a-t].exaмple.coм

ПЕРЕМЕННЫЕ ХОСТОВ И ГРУПП: ВНУТРЕННЯЯ СТОРОНА РЕЕСТРА

Вспомните, как мы определили поведенческие параметры для хостов Vagrant:

vagrantl anstЫe_ssh_host=127.0.0.1 anstЫe_ssh_port=2222

vagrant2 anstЫe_ssh_host=127.0.0.1 anstЫe_ssh_port=2200

vagrantЗ anstЫe_ssh_host=127.0.0.1 anstЫe_ssh_port=2201

Эти параметры являются переменными, имеющими особое значение для
AnsiЫe. Точно так же можно задать переменные с произвольными именами
и соответствующие значения для разных хостов. Например, можно определить
переменную color и установить ее значение для каждого сервера:

newhaмpshtre.exaмple.coм color=red

мaryland.exaмple.coм color=green

ontarto.exaмple.coм color=Ыue

quebec.exaмple.coм color=purple

Эту переменную затем можно использовать в сценарии, как любую другую.
Лично я редко закрепляю переменные за отдельными хостами, но я часто

связываю переменные с группами.

74 ❖ Реестр: описание серверов

В примере с Django веб-приложению и диспетчеру очереди необходимо
взаимодействовать с RabЬitMQ и Postgres. Предположим, доступ к базе дан­
ных Postgres защищен на сетевом уровне (только веб-приложение и диспетчер
очереди задач могут использовать базу данных) и на уровне учетных данных.
Доступ к RabЬitMQ защищен при этом только на сетевом уровне.

Для приведения системы в рабочее состояние нам необходимо настроить:
О в веб-сервере: имя хоста, порт, имя пользователя и пароль основного

сервера Postgres, а также имя базы данных;
О в диспетчере очереди: имя хоста, порт, имя пользователя и пароль ос-

новного сервера Postgres, а также имя базы данных;
О в веб-сервере: имя хоста и порт сервера RabЬitMQ;
О в диспетчере очереди: имя хоста и порт сервера RabЬitMQ;
О в основном сервере Postgres: имя хоста, порт, имя пользователя и пароль

копии сервера Postgres (только в промышленном окружении).
Информация о конфигурации зависит от окружения, поэтому имеет смысл

определить групповые переменные для промышленной, тестовой и vagrant
групп. В примере 3.6 показан один из вариантов объявления этой информации
в виде переменных групп в файле реестра.

Пример 3.6 ❖ Оп ределение переменных групп в реестре

[all:vaгs]

ntp_seгveг=ntp.ubuntu.coм

[pгoduction:vaгs]

db_pгiмaгy_host=гhodeisland.exaмple.coм

dЬ_ргiмагу_рогt=5432

db_гeplica_host=viгginia.exaмple.coм

db_naмe=widget_pгoduction

db_user=widgetuser
db_passwoгd=pFмMxcyD;Fcб)б

rabЫtмq_host=pennsylvania.exaмple.coм

гabЫtмq_port=5672

[staging:vars]
db_priмary_host=quebec.exaмple.coм

db_naмe=widget_staging

db_user=widgetuser

db_passwoгd=L@4Ryz8cRUXedj

rabЫtмq_host=quebec.exaмple.coм

rabЫtмq_port=5672

[vagrant:vars]

db_priмaгy_host=vagrantЗ

db_priмary_port=5432

db_priмary_port=5432

db_naмe=widget_vagrant

db_user=widgetuseг

db_password=password
rabЫtмq_host=vagrantЗ

гabЫtмq_port=5672

Реестр: описание серверов ❖ 75

Обратите внимание, что переменные групп объединяются в секции с име­
нами [<group паме>:vагs]. Также отметьте, что мы воспользовались группой all,
которую AnsiЫe создает автоматически для определения переменных для всех
хостов.

ПЕРЕМЕННЫЕ ХОСТОВ И ГРУПП:

СОЗДАНИЕ СОБСТВЕННЫХ ФАЙЛОВ
Если у вас не слишком много хостов, переменные можно поместить в файл
реестра. Но с увеличением объема информации становится все сложнее управ­
лять переменными таким способом.

Кроме того, хотя переменные AnsiЬle могут хранить логические и строковые
значения, списки и словари, в файле реестра допускается задавать только ло­
гические и строковые значения.

AnsiЫe предлагает более масштабируемый подход к управлению перемен­
ными. Вы можете создать отдельный файл с переменными для каждого хоста
и каждой группы. Такие файлы переменных должны иметь формат УАМL.

AnsiЫe проверяет наличие файлов переменных хостов в каталоге host_vars
и файлов переменных групп в каталоге group_vars. Эти каталоги должны нахо­
диться в каталоге со сценарием или в каталоге с реестром. В нашем случае это
один и тот же каталог.

Например, если бы я хранил сценарии в каталоге /home/lorin/playbooks/,
а файл реестра - в каталоге /home/lorin/playbooks/hosts, я должен был бы сохра­
нить переменные для хоста quebec.example.com в файле /home/lorin/playbooks/
host_vars/quebec.example.com, а переменные для группы хостов в промышлен­
ном окружении - в файле /home/lorin/playbooks/group_vars/production.

В примере 3. 7 показано, как выглядел бы файл /home/lorin/playbooks/group _
vars/production.

Пример 3.7 ❖ group_vars/production
db_priмaгy_host: rhodeisland.exaмple.coм
dЬ_ргiмагу_рогt=5432
db_replica_host: virginia.exaмple.coм
db_naмe: widget_production
db_user: widgetuser
db_password: рFмМхсуD;Fсб)б
гabЫtмq_host:pennsylvania.exaмple.coм
гаЬЫtмq_рогt=5672

Обратите внимание, что для представления этих значений также можно ис­
пользовать словари УАМL, как показано в примере 3.8.

Пример 3.8 ❖ group_vars/production, со словарями
db:

user: widgetuser
password: рFмМхсуD;Fсб)б

76 ❖ Реестр: описание серверов

nаме: widget_pгoduction
ргiмагу:

host: rhodeisland.exaмple.coм
рогt: 5432

replica:
host: virginia.exaмple.coм
рогt: 5432

гаЬЫtмq:
host: pennsylvania.exaмple.coм
рогt: 5672

При использовании словарей УАМL меняется способ доступа к переменным,
сравните:

{{ db_priмary_host }}

и

{{ db.priмary.host }}

При желании можно продолжить разбивку информации. AnsiЫe позволяет
определить group _ vars/production как каталог и поместить сюда несколько фай­
лов YAML с определениями переменных. Например, можно переменные, опи­
сывающие базу данных, поместить в один файл, а переменные, описывающие
RabbltMQ, - в другой, как показано в примерах 3.9 и 3.10.

Пример 3. 9 ❖ group _ vars/production/db

db:
user: widgetuser
password: рFмМхсуD;Fсб)б
nаме: widget_production
ргiмагу:

host: rhodeisland.exaмple.coм
port: 5432

replica:
host: virginia.exaмple.coм
port: 5432

Пример 3.10 ❖ group_vars/production/rabbltmq

гаЬЬНмq:
host: pennsylvania.exaмple.coм
port: 6379

В общем и целом я считаю, что лучше не усложнять и не разбивать перемен­
ные на слишком большое количество файлов.

ДИНАМИЧЕСКИЙ РЕЕСТР
До настоящего момента мы описывали наши хосты в файле реестра. Однако
вам может понадобиться хранить всю информацию о хостах во внешней си-

Реестр: описание серверов ❖ 77

стеме. Например, если хосты располагаются в облаке Amazon ЕС2, то вся ин­
формация о них будет храниться в ЕС2, и вы сможете извлекать ее посредством
веб-интерфейса ЕС2, Query API или с помощью инструмента командной стро­
ки, такого как awscl i.. Другие облачные провайдеры поддерживают похожие ин­
терфейсы. Если вы управляете вашими собственными серверами, используя
автоматизированную систему инициализации, такую как СоЬЫеr или UЬuntu
MAAS, она уже отслеживает ваши серверы. Или, может быть, вся ваша инфор­
мация хранится в одной из тех причудливых баз данных управления конфигу­
рациями (CMDB).

В этом случае вам не придется вручную копировать информацию в файл
реестра, поскольку в конечном счете этот файл не будет соответствовать со­
держимому внешней системы - подлинного источника данных о ваших хостах.
AnsiЫe поддерживает функцию динамического реестра, которая позволяет из­
бежать копирования.

Если файл реестра отмечен как выполняемый, AnsiЫe будет интерпретиро­
вать его как сценарий динамического реестра и запускать его вместо чтения.

О Сделать файл выполняемым можно командой ch111od +х. Например:

$ chмod +х dynaмic.py *

ИНТЕРФЕЙС СЦЕНАРИЯ ДИНАМИЧЕСКОГО РЕЕСТРА
Сценарий динамического реестра должен поддерживать два параметра ко­
мандной строки:

О --host=<hostпaмe> для вывода информации о хостах;
О --l i.st для вывода информации о группах.

Вывод информации о хосте

Чтобы получить данные о конкретном хаете, AnsiЬle вызывает сценарий дина­
мического реестра командой

$./dynaмic.py --host=vagrantZ

Вывод сценария должен содержать переменные для заданного хоста, вклю­
чая поведенческие параметры, например:

{ "ansi.Ыe_ssh_host": "127.0.0.1", "ansi.Ыe_ssh_port": 2200,
"ansi.Ыe_ssh_user": "vagrant"}

Результаты выводятся в виде объекта JSON, имена свойств в котором соот­
ветствуют именам переменных, а значения - значениям этих переменных.

Вывод списка членов zpynn
Сценарий динамического реестра должен уметь выводить списки членов всех
групп, а также данные об отдельных хостах. Например, если предположить, что
сценарий динамического реестра называется dynamic.py, тогда для получения
списка членов всех групп AnsiЬle вызовет его командой

78 ❖ Реестр: описание серверов

$./dynaмi.c.py --li.st

Результат должен выглядеть так:

{"producti.on": ["delaware.exaмple.coм", "georgi.a.exaмple.coм",

"мaryland.exaмple.coм", "newhaмpshi.re.exaмple.coм",

"newjersey.exaмple.coм", "newyork.exaмple.coм",

"northcaroli.na.exaмple.coм", "pennsylvani.a.exaмple.coм",

"rhodei.sland.exaмple.coм", "vi.rgi.ni.a.exaмple.coм"],

}

"stagi.ng": ["ontari.o. ехамрlе. сом", "quebec. ехамр le. сом"],

"vagrant": ["vagrant1", "vagrant2", "vagrantЗ"],

"lb": ["delaware.exaмple.coм"],

"web": ["georgi.a.exaмple.coм", "newhaмpshi.re.exaмple.coм",

"newjersey.exaмple.coм", "ontari.o.exaмple.coм", "vagrantl"]

"task": ["newyork.exaмple.coм", "northcaroli.na.exaмple.coм",

"ontari.o.exaмple.coм", "vagrant2"],

"rabЫtмq": ["pennsylvani.a.exaмple.coм", "quebec.exaмple.coм", "vagrantЗ"],

"db": ["rhodei.sland.exaмple.coм", "vi.rgi.ni.a.exaмple.coм", "vagrantЗ"]

Результат выводится в виде единого объекта JSON, имена свойств в котором
соответствуют именам групп, а значения - это массивы с именами хостов.

Для оптимизации команда - - l i.st должна поддерживать вывод всех пере­
менных всех хостов. Это освобождает AnsiЫe от необходимости повторно вы­
зывать сценарий с параметром - -host, чтобы получить переменные отдельных
хостов.

Для этого команда - - l i.st должна возвращать ключ _111eta с переменными всех
хостов, как показано ниже:
11_1'1eta'

1

:

{ "hostvars"

"vagrant1" { "ansi.Ыe_ssh_host": "127.0.0.1", "ansi.Ыe_ssh_port": 2222,

"ansi.Ыe_ssh_user": "vagrant"},

"vagrant2": { "ansi.Ыe_ssh_host": "127.0.0.1", "ansi.Ыe_ssh_port": 2200,

"ansi.Ыe_ssh_user": "vagrant"},

Написание сценария динамического реестра
Одной из удобных функций Vagrant является возможность получить список за­
пущенных виртуальных машин командой vagrant status. Допустим, у нас име­
ется файл Vagrantfule, как показано в примере 3.2. Если запустить команду va­

grant status, результат будет выглядеть, как в примере 3.11:

Пример 3.11 ❖ Выведение статуса Vagrant

$ vagrant status

Current мachi.ne states:

vagrant1

vagrant2

runni.ng (vi.rtualbox)

runni.ng (vi.rtualbox)

Реестр: описание серверов ❖ 79

vagrantЗ runntng (vtrtualbox)

Thts envtronмent represents мulttple VMs. The VMs аге all ltsted

above wtth thetr сuггепt state. Fог моге tnforмatton about а spectftc

VM, гuп ·vagrant status NAME'.

Поскольку Vagrant уже хранит информацию о состоянии машин, нет необ­
ходимости вносить их список в файл реестра. Вместо этого можно написать
сценарий динамического реестра, который запрашивает у Vagrant данные
о запущенных на данный момент машинах. В этом случае нам не нужно будет
вносить обновления в файл реестра, даже если число машин в Vagrantfile из­
менится.

Рассмотрим пример создания сценария динамического реестра, который
извлекает данные о хостах из Vagrant 1

• Наш сценарий будет получать необхо­
димую информацию, выполняя команду vagrant status. Ее вывод, который при­
водится в примере 3.11, предназначен для людей, а не машин. Чтобы получить
список запущенных хостов в формате, подходящем для анализа машиной,
нужно добавить в команду параметр - -мachi.ne-readaЫe:

$ vagгant status --мachtne-гeadaЫe

Результат выглядит так:

1410577818,vagrant1,provtder-naмe,vtrtualbox

1410577818,vagrant1,state,runntng

1410577818,vagrant1,state-huмan-short,runntng

1410577818,vagrant1,state-huмan-long,The VM ts runntng. То stop thts VM%!(VAGRANT

_СОММА) you сап run ·vagrant halt' to\nshut tt down forcefully%!(VAGRANT_COMMA)

ог you сап гuп ·vagгant suspend' to stмply\nsuspend the vtгtual мachtne. In

etther case%!(VAGRANT_COMMA to restart tt agatn%!(VAGRANT_COMMA)\nsiмply run

·vagrant up ·.

1410577818,vagrant2,provtder-naмe,vtrtualbox

1410577818,vagгant2,state,runntng

1410577818,vagrant2,state-huмan-short,runntng

1410577818,vagrant2,state-huмan-long,The VM ts runntng. То stop thts VM%!(VAGRANT

_СОММА) you сап гuп 'vagrant halt' to\nshut tt down forcefully%!(VAGRANT_COMMA)

ог you сап гuп ·vagrant suspend' to stмply\nsuspend the vtrtual мachtne. In

etther case%!(VAGRANT_COMMA) to restart tt agatn%!(VAGRANT_COMMA)\nstмply run

·vagrant up ·.

1410577818,vagгantЗ,provtder-naмe,vtrtualbox

1410577818,vagrantЗ,state,runntng

1410577818,vagrantЗ,state-huмan-short,runntng

1410577818,vagrantЗ,state-huмan-long,The VM ts runntng. То stop thts VM%!(VAGRANT

_СОММА) you сап run ·vagгant halt' to\nshut tt down forcefully%!(VAGRANT_COMMA)

ог you сап run ·vagrant suspend' to stмply\nsuspend the vtгtual мachine. In

either case%!(VAGRANT_COMMA) to restart tt agatn%!(VAGRANT_COMMA)\nstмply

run ·vagrant up·.

1 Да, в AnsiЬ!e уже имеется сценарий динамического реестра. Однако вам будет полез­
но проделать это упражнение.

80 ❖ Реестр: описание серверов

Получить информацию об отдельно взятой машине Vagrant, например va -

grant2, можно командой

$ vagгant ssh-config vagгantZ

Она выведет следующий результат:

Host vagrant2
HostNaмe 127.0.0.1
User vagrant
Рогt 2200
UserKnownHostsFi.le /dev/null
Stri.ctHostKeyChecki.ng по
PasswordAuthenti.cati.on no
Identi.tyFi.le /Users/lori.nhochstei.n/.vagrant.d/i.nsecure_pri.vate_key
Identi.ti.esOnly yes
Loglevel FATAL

Нашему сценарию динамического реестра необходимо вызвать эти коман­
ды, проанализировать результаты и вывести соответствующий текст в форма­
те JSON. Для анализа результата команды vagrant ssh-config можно воспользо­
ваться библиотекой Paramiko. Ниже приводится интерактивный сеанс Python,
объясняющий, как использовать Paramiko:

>>> i.мport subprocess
>>> i.мрогt paraмi.ko
>>> смd = "vagrant ssh-confi.g vagrant2"
>>> р = subprocess.Popen(cмd.spli.t(), stdout=subprocess.PIPE)
>>> confi.g = paraмi.ko.SSHConfi.g()
>>> confi.g.parse(p.stdout)
>>> confi.g.lookup("vagrant2")
{'i.denti.tyfi.le': ['/Users/lori.nhochstei.n/.vagrant.d/i.nsecure_pri.vate_key'],

'loglevel': 'FATAL', 'hostnaмe': '127.0.0.1', 'passwordauthenti.cati.on': 'no',
'i.denti.ti.esonly': 'yes', 'userknownhostsfi.le': '/dev/null', 'user': 'vagrant',
'stri.cthostkeychecki.ng': 'no', 'port': '2200'}

Для использования сценария необходимо установить библиотеку Paramiko для Python.
Это можно сделать с помощью диспетчера пакетов pi.p:

$ sudo pip install рагамikо

В примере 3.12 приводится полный сценарий vagrant.py.

Пример 3.12 ❖ vagrant.py

#!/usr/Ыn/env python
Основан на реализации Марка Мандела (Mark Mandel)
https://gi.thub.coм/ansi.Ыe/ansi.Ыe/Ыob/devel/plugi.ns/i.nventory/vagrant.py
Лицензия: GNU General PuЫi.c Li.cense, Versi.on З <http://www.gnu.org/li.censes/>
i.мport aгgparse
i.мport json
i.мport paraмi.ko
i.мport subprocess

Реестр: описание серверов ❖ 81

i.мport sys

def parse_aгgs():

parser = argparse.ArguмentParser(descri.pti.on="Vagrant i.nventory script")

group = parser.add_мutually_exclusi.ve_group(requi.red=True)

group.add_arguмent('--li.st', acti.on='store_true')

group.add_arguмent('--host')

return parser.parse_args()

def li.st_runni.ng_hosts():

смd = "vagrant status --мachine-readaЫe"

status = subprocess.check_output(cмd.spli.t()).rstri.p()

hosts = []

for li.ne i.n status.split('\n'):

(_, host, key, value) = li.ne.spli.t(', ')

if key == 'state' and value == 'running':

hosts.append(host)

return hosts

def get_host_detai.ls(host):

смd = "vagrant ssh-confi.g {}".forмat(host)

р = subprocess.Popen(cмd.spli.t(), stdout=subprocess.PIPE)

confi.g = paraмi.ko.SSHConfi.g()

confi.g.parse(p.stdout)

с = config.lookup(host)

return {'ansi.Ыe_ssh_host': c['hostnaмe'],

def мain():

'ansi.Ыe_ssh_port': c['port'],

'ansi.Ыe_ssh_useг': c['user'],

'ansi.Ыe_ssh_pri.vate_key_fi.le': c['i.denti.tyfi.le'][0]}

args = parse_args()

i.f args.li.st:

hosts = li.st_running_hosts()

json.duмp({'vagrant': hosts}, sys.stdout)

else:

detai.ls = get_host_detai.ls(args.host)

json.duмp(detai.ls, sys.stdout)

if nаме_

мai.n()

'_мain_':

Предопределенные сценарии реестра
В состав AnsiЫe входит несколько сценариев динамического реестра, и вы мо­
жете использовать их. Мне никогда не удавалось понять, куда эти файлы уста­
навливает мой диспетчер пакетов, поэтому я всегда загружаю нужные мне не­
посредственно из GitHub. Вы можете загрузить их со страницы AnsiЫe GitHub
(https://github.com/ansiЫe/ansiЫe) непосредственно в каталог plugins/inventory.

Многие из этих сценариев идут в сопровождении файла конфигурации.
В главе 14 мы подробно рассмотрим сценарий для Amazon ЕС2.

82 ❖ Рееар: описание серверов

ДЕЛЕНИЕ РЕЕСТРА НА НЕСКОЛЬКО ФАЙЛОВ
Если вам необходим обычный файл реестра и сценарий динамического реест­
ра (или их комбинация), просто поместите их в один каталог и настройте си­
стему AnsiЫe так, чтобы она использовала этот каталог как реестр. Это можно
сделать двумя способами - добавив параметр "i.nventoгy в ansiЫe.cfg или вклю­
чив параметр командной строки -"i.. AnsiЫe обработает все файлы и объединит
результаты в единый реестр.

Например, вот как могла бы выглядеть структура такого каталога: inventory/
hosts и inventory/vagrant.py.

Для подобной организации файл ansiЫe.cfg должен содержать строки:

[defaults]

hostfile = inventory

ДОБАВЛЕНИЕ ЭЛЕМЕНТОВ ВО ВРЕМЯ ВЫПОЛНЕНИЯ С ПОМОЩЬЮ
ADD HOST И GROUP ВУ
AnsiЫe позволяет добавлять хосты и группы в реестр прямо во время выпол­
нения сценария.

add host

Модуль add_host добавляет хает в реестр. Этот модуль может пригодиться, если
вы используете AnsiЫe для создания и настройки новых экземпляров вирту­
альных машин в облаке IaaS.

Может ли пригодиться модуль add_host при использовании динамическо­

го реестра?

Даже если вы используете сценарии динамического реестра, вам все равно мо­
жет пригодиться модуль add_host, если потребуется запустить и настроить новый
экземпляр виртуальной машины в ходе выполнения сценария.
Если новый хост появится во время выполнения сценария, сценарий динамиче­
ского реестра не подхватит его. Это объясняется тем, что создание динамического
реестра производится в начале выполнения сценария, поэтому AnsiЫe не увидит
новых хостов, появившихся после.
Мы рассмотрим пример работы использования модуля add_host в главе 14.

Запуск модуля выглядит так:

add_host naмe=hostnaмe groups=web,staging мyvar=мyval

Определение списка групп и дополнительных переменных можно опустить.
Ниже команда add_host представлена в действии. Она добавляет новую ма­

шину Vagrant и настраивает ее:

паме: Provision а vagrant мachine
hosts: localhost
vars:

Ьох: trusty64
tasks:

паме: сгеаtе а Vagrantfile
соммапd: vagrant init {{ Ьох }} creates=Vagrantfile

паме: Bring up а vagrant мachine
соммапd: vagrant up

паме: add the vagrant мachine to the inventory
add_host: >

naмe=vagrant
ansiЫe_host=127.0.0.1
ansiЫe_port=2222
ansiЫe_user=vagrant
ansiЫe_private_key_file=/Useгs/lorin/.vagrant.d/
insecure_private_key

паме: Do soмething to the vagrant мachine
hosts: vagгant
Ьесоме: yes
tasks:

Здесь находится список выполняемых задач

Реестр: описание серверов ❖ 83

Модуль add_host добавляет хост только на время исполнения сценария. Он не вносит
изменений в файл реестра.

Подготавливая свои сценарии, я предпочитаю разбивать их на две части. Пер­
вая выполняется на локальном хосте и создает хосты, а вторая настраивает их.

Обратите внимание, что для этой задачи использовался параметр
creates=Vagrantfile:

паме: create а Vagrantfile
соммапd: vagrant init {{ Ьох }} creates=Vagrantfile

Он сообщает системе AnsiЫe, что если файл Vagrantfile имеется, хост уже
находится в правильном состоянии и нет необходимости выполнять команду
снова. Это способ достижения идемпотентности в сценарии, который запуска­
ет командный модуль, благодаря которому команда (потенциально неидемпо­
тентная) выполняется только один раз.

group_by

Посредством модуля group_by AnsiЫe позволяет создавать новые группы во вре­
мя исполнения сценария, основываясь на значении переменной, которая была
установлена для каждого хоста и в терминологии AnsiЫe называет фактом 1.

1
Факты рассматриваются в главе 4.

84 ❖ Реестр: описание серверов

Если включен сбор фактов, AnsiЬle ассоциирует набор переменных с хостом.
Например, для 32-разрядных х86 машин переменная ansi.Ыe_rтiachi.ne будет
иметь значение i.386, а для 64-разрядных х86 машин - значение х86_64. Если
AnsiЫe управляет хостами с разной аппаратной архитектурой, можно создать
группы i.386 и х86_64 с отдельными задачами.

Также можно воспользоваться фактом ansi.Ыe_di.stri.buti.on для группировки
хостов по названию дистрибутива Linux (например, UЬuntu, CentOS).

- паме: сгеаtе groups based оп Linux distribution
group_by: key={{ ansiЫe_distгibution }}

В примере 3.13 мы создаем отдельные группы для хостов с UЬuntu и Cen­
tOS, используя модуль group_by, а затем устанавливаем пакеты - в UЬuntu с по­
мощью модуля apt и в CentOS с помощью модуля yurтi.

Пример 3.13 ❖ Создание специальных групп для разных дистрибутивов Linux

паме: group hosts Ьу distribution
hosts: fllyhosts
gather_facts: True
tasks:

- паме: сгеаtе groups based оп distгo
group_by: key={{ ansiЫe_distribution }}

паме: do soмething to Ubuntu hosts
hosts: Ubuntu
tasks:

- naflle: install htop
apt: паме=htор

..•

паме: do soмething else to CentOS hosts
hosts: CentOS
tasks:

- паме: install htop
yufll: паме=htор

...

Даже притом, что group_by - один из способов реализации условного пове­
дения AnsiЬle, я никогда не видел, чтобы он широко использовался. В главе 6
вы увидите пример использования параметра задачи when для осуществления
разных действий на основе значений переменных.

На этом мы заканчиваем обсуждение реестра AnsiЫe. В следующей главе
мы поближе познакомимся с переменными. Более подробную информацию
о функции ControlPersist, также известной как мультиплексирование SSH, вы
найдете в главе 11.

Глава 4
•••

Переменные и факты

AnsiЫe не является полноценным языком программирования, но в ней при­
сутствуют некоторые черты, присущие языкам программирования. Одна из
таких черт - подстановка переменных. В этой главе мы подробнее рассмотрим
поддержку переменных в AnsiЫe, включая специальный тип переменных, ко­
торый в терминах AnsiЬle называется фактом.

ОПРЕДЕЛЕНИЕ ПЕРЕМЕННЫХ В СЦЕНАРИЯХ
Самый простой способ определить переменную - поместить в сценарий сек­
цию vars с именами и значениями переменных. Мы уже использовали этот
прием в примере 2.8, где определили несколько переменных конфигурации:

vars:

key_ftle: /etc/ngtnx/ssl/ngtnx.key

cert_ftle: /etc/ngtnx/ssl/ngtnx.crt

conf_ftle: /etc/ngtnx/sttes-avatlaЫe/default

server_naмe: localhost

AnsiЫe позволяет также распределить объявления переменных по несколь­
ким файлам, использовав секцию vars_fi. les. Допустим, что в предыдущем при­
мере нам понадобилось поместить переменные в файл nginx.yml, убрав их из
сценария. Для этого достаточно заменить секцию vars секцией vars_fHes, как
показано ниже:

vars_fHes:

- ngtnx.yмl

Файл nginx.yml будет выглядеть, как показано в примере 4.1.

Пример 4.1 ❖ nginx.yml

key_ftle: /etc/ngtnx/ssl/ngtnx.key

cert_ftle: /etc/ngtnx/ssl/ngtnx.crt

conf_ftle: /etc/ngtnx/sttes-avatlaЫe/default

server_naмe: localhost

В главе 6 мы увидим пример, как использовать секцию vars_fi. les, чтобы пе­
реместить переменные с конфиденциальной информацией в отдельный файл.

86 ❖ Переменные и факты

Как уже обсуждалось в главе 3, AnsiЫe позволяет определить переменные,
связанные с хостами или группами, в файле реестра или в отдельных файлах,
существующие наряду с файлом реестра.

Вывод ЗНАЧЕНИЙ ПЕРЕМЕННЫХ
Для отладки часто удобно иметь возможность вывести значения переменных.
В главе 2 мы видели, как использовать модуль debug для вывода произвольного
сообщения. Его также можно использовать для вывода значений переменных:

- debug: vаг=муvагnаме

В этой главе нам несколько раз потребуется такая форма использования мо­
дуля debug.

РЕГИСТРАЦИЯ ПЕРЕМЕННЫХ
Часто требуется установить значение переменной в зависимости от результата
задачи. Для этого создадим зарегистрированную переменную при запуске мо­
дуля с помощью ключевого слова register. Пример 4.2 демонстрирует, как со­
хранить ввод команды whoaмi в переменной login.

Пример 4.2 ❖ Сохранение вывода команды в переменной

nаме: capture output of whoaмt соммапd

соммапd: whoaмt

regtster: logtn

Чтобы использовать переменную login позднее, мы должны знать тип ее
значения. Значением переменных, объявленных с помощью ключевого сло­
ва register, всегда является словарь, однако ключи в словаре могут отличаться
в зависимости от вызываемого модуля.

К сожалению, в официальной документации по модулям AnsiЫe не указыва­
ется, как выглядят значения, возвращаемые каждым модулем. Но в докумен­
тации к модулям часто приводятся примеры с ключевым словом register, что
может оказаться полезным. Простейший способ узнать, какие значения воз­
вращает модуль, - зарегистрировать переменную и вывести ее содержимое
с помощью модуля debug.

Допустим, у нас есть сценарий, представленный в примере 4.3.

Пример 4.3 ❖ whoami.yml

nаме: show return value of соммапd мodule

hosts: serverl

tasks:

nаме: capture output of td соммаnd

соммапd: td -un

register: logtn

debug: var=logtn

Переменные и факты ❖ 87

Вот что выведет модуль debug:

TASK: [debug var=login] ***
ok: [serverl] => {

"login": {

}

"changed": true, О
"смd": [б

lli..d"'

•1-un"

],
"delta": "0:00:00.002180",
"end": "2015-01-11 15:57:19.193699",
"invocation" : {

} '

"мodule_args": "td -un",
"мodule_naмe": "соммаnd"

11 гс 11 : 0, t\

"start": "2015-01-11 15:57:19.191519",
llstderrн: 1111, о
"stdout": "vagrant", 0
"stdout_ ltnes": [0

"vagrant"
],
"warnings": []

О Ключ changed присутствует в возвращаемых значениях всех модулей, с его помощью
AnsiЬ!e сообщает, произошли ли изменения в состоянии. Модули соммаnd и she l l всег­
да возвращают значение true, если оно не было изменено ключевым словом changed_
when, которое будет рассматриваться в главе 8.

б Ключ Cl'ld содержит запущенную команду в виде списка строк.
@ Ключ гс содержит код возврата. Если он не равен нулю, AnsiЬ!e считает, что задача

выполнилась с ошибкой.
О Ключ stderr содержит текст, записанный в стандартный вывод ошибок, в виде одной

строки.
0 Ключ stdout содержит текст, записанный в стандартный вывод, в виде одной строки.
0 Ключ stdout_ l ines содержит те·кст, записанный в стандартный вывод, с разбивкой на

строки по символу перевода строки. Это список, каждый элемент которого является
одной строкой из стандартного вывода.

При использовании ключевого слова regi.ster с модулем col'll'land обычно тре­
буется доступ к ключу stdout, как показано в примере 4.4.

Пример 4.4 ❖ Использование результата вывода команды в задаче

nal'le: capture output of id coмl'land
соммаnd: td -un
register: login
debug: мsg="Logged in as user {{ login.stdout }}"

Иногда полезно как-то обработать вывод задачи, потерпевшей ошибку. Од­
нако если задача потерпела ошибку, AnsiЫe остановит ее выполнение, не дав

88 ❖ Переменные и факты

возможности получить эту ошибку. Чтобы AnsiЫe не останавливала работу
после появления ошибки, можно использовать ключевое слово i.gnore_errors,

как показано в примере 4.5.

Пример 4.5 ❖ Игнорирование ошибки при выполнении модуля

- паме: Run мyprog
соммапd: /opt/мyprog
register: result
ignore_errors: True
debug: var=result

Возвращаемое значение модуля shell имеет такую же структуру, как возвра­
щаемое значение модуля соммаnd, но другие модули возвращают отличающиеся
ключи. В примере 4.6 показано, что возвращается модуль apt после установки
пакета, который не был установлен ранее.

Пример 4.6 ❖ Результат работы модуля apt при установке нового пакета

ok: [serverl] => {

}

"result": {
"changed": true,
"invocation": {

}

},

"мodule_args": "naмe=nginx",
"мodule_naмe": "apt"

11 stderr 11: 1111
,

"stdout": "Reading package lists ... \nBuilding dependency tree ... ",
"stdout_ lines": [

"Reading package lists ... ",
"Building dependency tree ... ",
"Reading state inforмation ... ",
"Preparing to unpack ... /nginx-coммon_1.4.6-1ubuntu3.1_all.deb

"Setting up nginx-core (1.4.6-lubuntuЗ.1) ... ",
"Setting up nginx (1.4.6-lubuntuЗ.1) ... ",
"Processing triggers for libc-Ыn (2.19-0ubuntu6.3)

Организация доступа к ключам словаря в переменной

"

. . . ,

Если переменная содержит словарь, получить доступ к его ключам можно при по­
мощи точки(.) или индекса([]). В примере 4.4 был представлен способ ссылки на
переменную с использованием точки:

{{ login.stdout }}

Однако точно так же можно было бы использовать индекс:

{{ login['stdout'] }}

Переменные и факты ❖ 89

Это правило применимо к любому уровню вложенности, то есть все следующие

выражения эквивалентны:

ansi.Ыe_eth1['i.pv4')['address']
ansi.Ыe_eth1['i.pv4'].address
ansi.Ыe_eth1.i.pv4['address']
ansi.Ыe_eth1.i.pv4.address

Обычно я предпочитаю пользоваться точкой, кроме случаев, когда ключ содержит

символы, которые нельзя использовать в качестве имени переменной, такие как

точка, пробел или дефис.

Для разыменования переменных AnsiЫe использует Jinja2. За дополнительной

информацией обращайтесь к документации Jinja2 на странице: http.//jinja.pocoo.

org/docs/dev/templates/#variaЫes.

В примере 4. 7 показано, что возвращает модуль apt, когда пакет уже был
установлен на хаете.

Пример 4.7 ❖ Результат работы модуля apt, когда пакет уже установлен

ok: [server1] => {

}

"result": {
"changed": false,
"i.nvocati.on" : {

}

}

"мodule_args": "naмe=ngi.nx",
"мodule_naмe": "apt"

Обратите внимание, что ключи stdout, stderr и stdout_Hnes присутствуют
в возвращаемом значении, только если прежде пакет не был установлен.

Если вы собираетесь использовать зарегистрированные переменные в своих сценариях,
обязательно узнайте, что возвращается в них в обоих случаях - когда состояние хоста
изменяется и когда оно не изменяется. В противном случае ваш сценарий может по­
терпеть неудачу, попытавшись обратиться к отсутствующему ключу зарегистрированной
переменной.

ФАКТЫ

Как было показано ранее, когда AnsiЫe выполняет сценарий, до запуска пер­
вой задачи происходит следующее:

GATHERING FACTS **

ok: [servernaмe]

На этапе сбора фактов (GATHERING FACТS) AnsiЬle подключается к хосту и за­
прашивает у него всю информацию: аппаратную архитектуру, название опе­
рационной системы, IР-адреса, объем памяти и диска и др. Эта информация

90 ❖ Переменные и факты

сохраняется в переменных, называемых фактами. Это самые обычные пере­
менные, как любые другие.

Вот простой сценарий, который выводит названия операционной системы
для каждого сервера:

nаме: print out operating systeм
hosts: all
gather_facts: Тгuе
tasks:
debug: var=ansiЫe_distгibution

Так выглядит вывод для серверов с UЬuntu и CentOS.

PLAY [print out operating systeм] ***

GATHERING FACTS ***
ok: [serverl]
ok: [server2]

TASK: [debug var=ansiЫe_distribution] **

ok: [serverl] => {
"ansiЫe_distгibution": "Ubuntu"

}
ok: [server2] => {

"ansib le_distribution": "CentOS"
}

PLAY RECAP **
serverl
server2

: ok=2
: ok=2

changed=0
changed=0

unreachable=0
unreachable=0

failed=0
failed=0

Список некоторых доступных фактов можно найти в официальной доку­
ментации AnsiЫe (http://Ьit.ly/1G9pVfx). Я поддерживаю более полный список
фактов в GitНub (http://Ьit.ly/1G9pX7a).

Просмотр всех фактов, доступных для сервера
AnsiЫe осуществляет сбор фактов с помощью специального модуля setup. Вам
не нужно запускать этот модуль в сценариях, потому что AnsiЫe делает это ав­
томатически на этапе сбора фактов. Однако если вручную запустить его с по­
мощью утилиты ans"i.Ыe, например:

$ anstЫe server1 -м setup

AnsiЫe выведет все факты, как показано в примере 4.8.

Пример 4.8 ❖ Результат запуска модуля setup

serverl I success >> {
"ansiЫe_facts": {

"ansiЫe_all_ipv4_addгesses":
"10.0.2.15",
"192.168.4.10"

],

"ansi.b le_a l l_ i.pvб_addresses": [
"fe80::a00:27ff:fefe:1e4d",
"fe80: :a00:27ff:fe67:bbf3"

],

(множество других фактов)

Переменные и факты ❖ 91

Обратите внимание, что возвращаемое значение является словарем с клю­
чом ansi.Ыe_facts, значением которого является словарь, содержащий имена
и значения актуальных фактов.

Вывод подмножества фактов
Поскольку AnsiЫe собирает большое количество фактов, модуль setup поддер­
живает параметр fi. l ter для фильтрации фактов по именам с поддержкой шаб­

лонных символов 1• Например, команда

$ ansiЫe web -1'1 setup -а 'filter=ansi.Ыe_eth*'

выведет:

web I success >> {
"ansi.Ыe_facts": {

"ansi.Ыe_eth0": {
"acti.ve": true,

"devi.ce": "eth0",
"i.pv4": {

} '

},

"address": "10.0.2.15",

"net!'lask": "255.255.255.0",
"network": "10.0.2.0"

"i.pvб":

],

"address": "fe80: : а00: 27ff: fefe: 1e4d",
11 prefi.x'1 : "64 11

J

"scope": "li.nk"

"l'lacaddress": "08:00:27:fe:1e:4d",
"l'lodule": "е1000",
"l'ltu": 1500,
"pro!'ltsc": false,
"type": "ether"

"ansi.Ыe_ethl": {
"acti.ve": true,
"devtce": "ethl",
"i.pv4 11 : {

"address": "192.168.33.10",

1 Шаблонные символы, например, поддерживают командные оболочки, позволяя
определять шаблоны файлов (например,*. txt).

92 ❖ Переменные и факты

}

} '

} '

"net111ask": "255.255.255.0",
"network": "192.168.33.0"

lli.pv6 11 :

{

],

"address": "fe80::a00:27ff:fe23:ae8e",
"prefi.x": "64",
"scope": "li.nk"

"111acaddress": "08:00:27:23:ае:Ве",
"111odule": "е1000",
"111tu": 1500,
"pro111i.sc": false,
"type" : "ether"

"changed": false

Любой модуль может возвращать факты
Если внимательно рассмотреть пример 4.8, можно заметить, что результатом
является словарь с ключом ansi.Ыe_facts. Ключ ansi.Ыe_facts в возвращаемом
значении - это идиома AnsiЬle. Если модуль вернет словарь, содержащий ключ
ansi.Ыe_facts, то AnsiЫe создаст переменные с этими именами и значениями
и ассоциирует их с активным хостом.

Для модулей, возвращающих факты, нет необходимости регистрировать
переменные, поскольку AnsiЫe создает их автоматически. Например, следую­
щие задачи используют модуль ec2_facts для извлечения фактов Amazon ЕС2 1

о сервере и вывода идентификатора экземпляра.

- na111e: get ес2 facts
ec2_facts:

debug: var=ansi.Ыe_ec2_i.nstance_i.d

Результат будет выглядеть так:

TASK: [debug var=ansi.Ыe_ec2_i.nstance_i.d] *************************************

ok: [111yserver] => {
"ansi.Ыe_ec2_i.nstance_i.d": "i.-a3a2f866"

Обратите внимание, что нет необходимости использовать ключевое слово
regi.ster при вызове модуля ec2_facts, потому что он возвращает факты. В со­
став AnsiЫe входит несколько модулей, возвращающих факты. Один из них,
модуль dockeг, мы рассмотрим в главе 15.

1 Amazon ЕС2 будет рассматриваться в главе 14.

Переменные и факты ❖ 93

Локальные факты
AnsiЫe поддерживает также дополнительный механизм, позволяющий ассо­
циировать факты с хостом. Разместите один или несколько файлов на хаете
в каталоге /etc/ansiЬle/facts.d, и AnsiЬle обнаружит их, если они отвечают любо­
му из следующих требований:

О имеют формат .ini;
О имеют формат JSON;
О являются выполняемыми, не принимающими аргументов и возвращаю­

щими результат в формате JSON.
Эти факты доступны в виде ключей особой переменной ansi.Ыe_local.
В примере 4.9 приводится файл факта в формате .ini.

Пример 4.9 ❖ /etc/ansiьte/facts.d/example.fact
[book]
ti.tle=Ansi.Ыe: Up and Runni.ng
author=Lori.n Hochstei.n
puЫi.sher=O'Rei.lly Medi.a

Если скопировать этот файл в /etc/ansiЬle/facts.d/example.fact на удаленном
хаете, мы получим доступ к содержимому переменной ansi.Ыe_local в сцена­
рии:

паме: pri.nt ansi.Ыe_local
debug: var=ansi.Ыe_local
паме: pri.nt book ti.tle
debug: мsg="The ti.tle of the book i.s {{ ansi.Ыe_local.exaмple.book.ti.tle }}"

Вот что получится в результате выполнения этих задач:

TASK: [pri.nt ansi.Ыe_local] ***
ok: [serverl] => {

}

"ansi.Ыe_local": {

}

"ехамрlе": {
"book": {

}

}

"author": "Lori.n Hochstei.n",
"puЫi.sher": "O'Rei.lly Medi.a",
"ti.tle": "Ansi.Ыe: Up and Runni.ng"

TASK: [pri.nt book ti.tle] **
ok: [serverl] => {

"мsg": "The ti.tle of the book i.s Ansi.Ыe: Up and Runni.ng"
}

Обратите внимание на структуру значения переменной ansi.Ыe_local. По­
скольку файл факта называется example.fact, переменная ansi.b le_ loca l получит
значение-словарь с ключом ехамрlе.

94 ❖ Переменные и факты

ИСПОЛЬЗОВАНИЕ МОДУЛЯ SET _FАСТ
ДЛЯ ЗАдАНИЯ НОВОЙ ПЕРЕМЕННОЙ
AnsiЫe позволяет устанавливать факты (по сути, создавать новые перемен­
ные) в задачах с помощью модуля set_fact. Я часто использую set_fact непо­
средственно после regi.ster, чтобы упростить обращения к переменным. При­
мер 4.1 О демонстрирует, как использовать set_ f act, чтобы к переменной можно
было обращаться по имени snap вместо snap_result.stdout.

Пример 4.10 ❖ Использование set_fact для упрощения ссылок на переменные

nаме: get snapshot id
shell: >

aws ес2 describe-snapshots --filters
Naмe=tag:Naмe,Values=мy-snapshot
1 jq --raw-output ".Snapshots[].Snapshotid"

register: snap_result

set_fact: snap={{ snap_result.stdout }}

nаме: delete old snapshot
соммаnd: aws ес2 delete-snapshot --snapshot-id "{{ snap }}"

ВСТРОЕННЫЕ ПЕРЕМЕННЫЕ
AnsiЫe определяет несколько переменных, всегда доступных в сценариях. Они
перечислены в табл. 4.1.

Таблица 4.1. Встроенные переменные

Параметр

hostvars

inventory_hostnaмe

inventoгy_hostnaмe_short

group naмes

groups

ansiЫe_check_l'lode

ansiЫe_play_batch

ansiЫe play hosts

ansiЫe_version

Описание

Словарь, ключи которого - имена хостов AnsiЬle, а значения - словари,
отображающие имена переменных в их значения

Полное квалифицированное доменное имя текущего хоста, как оно задано
в AnsiЫe (например, l'lyhost.exal'lple.coм)

Имя текущего хоста, как оно задано в AnsiЬle, без имени домена (например,
мyhost)

Список всех групп, в которые входит текущий хает

Словарь, ключи которого - имена групп в AnsiЫe, а значения - списки имен
хостов, входящих в группы. Включает группы all и ungrouped: {"all": [...],
"web": [...], "ungrouped": [...]}

Логическая переменная, принимающая истинное значение, когда сценарий
выполняется в тестовом режиме (см. раздел «Тестовый режим» в главе 16)

Список имен хостов из реестра, активных в текущем пакете (см. раздел
«Пакетная обработка хостов» в главе 9)

Список имен хостов из реестра, участвующих в текущей операции

Словарь с информацией о версии AnsiЫe: {"full": z. 3.1.0", "маjог": Z,
11 /Тli.nor":З, 11

revisi.on": 1, "stгing": 11 2.3.1.0"}

Переменные и факты ❖ 95

Переменные hostvars, i.nventory_hostna111e и groups заслуживают отдельного об­
суждения.

hostvars
В AnsiЫe область видимости переменных ограничивается хостами. Рассуждать
о значении переменной имеет смысл только в контексте заданного хоста.

Идея соответствия переменных заданному хосту может показаться стран­
ной, поскольку AnsiЫe позволяет определять переменные для групп хостов.
Например, если объявить переменную в секции vars операции, она будет опре­
делена для набора хостов в этой операции. Но на самом деле AnsiЫe создаст
копию этой переменной для каждого хоста в группе.

Иногда задача, запущенная на одном хаете, требует значения переменной,
определяемого на другом хаете. Например, вам может понадобиться создать
на веб-сервере файл конфигурации, содержащий IР-адрес интерфейса ethl
сервера базы данных, который заранее неизвестен. IР-адрес доступен как факт
ansi.Ыe_ethl. i.pv4. address сервера базы данных.

Решить проблему можно с помощью переменной hostvars. Это словарь, со­
держащий все переменные, объявленные на всех хостах, ключами которого
являются имена хостов, как они заданы в реестре AnsiЫe. Если AnsiЫe еще не
собрала фактов о хаете, тогда вы не сможете получить доступа к его фактам
с использованием переменной hostvars, кроме случая, когда включено кэши­
рование фактов 1

•

Продолжим наш пример. Если сервер базы данных имеет имя db.example.

сот, тогда мы можем добавить в шаблоне конфигурации следующую ссылку:

{{ hostvars['db.exaмple.coм'].ansiЫe_ethl.ipv4.address }}

На ее место будет подставлено значение факта ansi.Ыe_ethl. i.pv4.address, свя­
занного с хостом db.example.com.

inventory _ hostname
i.nventory_hostna111e - это имя текущего хоста, как оно задано в реестре AnsiЬle.
Если вы определили псевдоним для хоста, тогда это - псевдоним. Например,
если реестр содержит строку:

serverl ansiЫe_ssh_host=192.168.4.10

Тогда переменная i.nventory_hostna111e получит значение serverl.
Вот как с помощью hostvars и i.nventory_hostna111e можно вывести все перемен­

ные, связанные с текущим хостом:

- debug: var=hostvars[inventory_hostnaмe]

1 Информация о кэшировании данных приводится в главе 11.

96 ❖ Переменные и факты

groups

Переменная groups может пригодиться для доступа к переменным, определенным
для группы хостов. Допустим, мы настраиваем хает балансировщика нагрузки,
и требуется добавить в файл конфигурации IР-адреса всех серверов в группе web.
Тогда мы можем добавить в наш конфигурационный файл следующий фрагмент:

backend web-backend
{% for host in groups.web %}

server {{ hostvars[host].inventory_hostnaмe }} \
{{ hostvars[host].ansiЫe_default_ipv4.address }}:80

{% endfor %}

И получить такой результат:

backend web-backend
server georgia.exaмple.coм 203.0.113.15:80
server newhaмpshire.exaмple.coм 203.0.113.25:80
server newjersey.exaмple.coм 203.0.113.38:80

УСТАНОВКА ПЕРЕМЕННЫХ ИЗ КОМАНДНОЙ СТРОКИ
Переменные, установленные передачей параметра -е var=value команде ansi­
Ыe-playbook, имеют наивысший приоритет и могут заменять ранее определен­
ные переменные. В примере 4.11 показано, как установить переменную token
со значением 12345.

Пример 4.11 ❖ Установка переменной в командной строке

$ ansiЫe-playbook ехамрlе.умl -е token=12345

Используйте метод ansiЫe-playbook -е var=value, когда сценарий AnsiЫe пред­
полагается применять подобно сценарию командной оболочки, принимающе­
му аргумент командной строки. Параметр -е позволяет передавать перемен­
ные как аргументы.

В примере 4.12 демонстрируется очень простой сценарий, который выводит
сообщение, определяемое переменной.

Пример 4.12 ❖ greet.yml

- nаме: pass а мessage оп the соммаnd line
hosts: localhost
vars:

greeting: "you didn 't speci.fy а мessage"
tasks:

- nаме: output а мessage
debug: мsg="{{ greeting }}"

Если запустить его, как показано ниже:

$ ansiЫe-playbook greet.yмl -е greeting=hiya

он выведет:

Переменные и факты ❖ 97

PLAY [pass а riessage on the coririand li.ne] *************************************

TASK: [output а riessage] **

ok: [localhost] => {

}

11P1sg": 11 hi.ya 11

PLAY RECAP **

localhost : ok=l changed=0 unгeachable=0 fai.led=0

Чтобы включить пробел в значение переменной, используйте кавычки:

$ ansi.Ыe-playbook greet.yril -е 'greeti.ng="hi. there"'

Данное значение необходимо целиком заключить в одинарные кавычки
'greeti.ng="hi. there" ', чтобы оболочка интерпретировала его как один аргумент.
Кроме того, строку "hi. there" нужно заключить в двойные кавычки, чтобы An­

siЫe интерпретировала сообщение как единую строку.

Вместо отдельных переменных AnsiЫe позволяет передать ей файл с пере­
менными, для чего в параметре -е следует передать имя файла @fi.lenaf11e.yf11l.

Например, допустим, что у нас имеется файл, как показано в примере 4.13.

Пример 4.13 ❖ greetvars.yml

greeti.ng: hi.ya

Этот файл можно передать сценарию, как показано ниже:

$ ansi.Ыe-playbook greet.yril -е @greetvars.yril

ПРИОРИТЕТ

Мы рассмотрели несколько различных способов определения переменных,
и может случиться так, что вам потребуется задавать одну и ту же перемен­
ную для хоста множество раз, используя разные значения. По возможности

избегайте этого. Но если сделать это не получается, имейте в виду правила

приоритета AnsiЬle. Когда одна переменная определяется множеством спосо­
бов, правила приоритета определяют, какое из значений она получит в конце
концов.

Основные правила приоритета выглядят так:
1. (Высший) ansi.Ыe-playbook -е var=value.
2. Переменные задач.

3. Блочные переменные.
4. Переменные ролей и включений.
5. Модуль set_fact.

6. Зарегистрированные переменные.

7. Секция vars_fi. les.
8. vars_prol'lpt.

9. Переменные сценария.

98 ❖ Переменные и факты

10. Факты хостов.
11. Секция host_vars в сценарии.
12. Секция group_vars в сценарии.
13. Секция host_vars в реестре.
14. Секция group_vars в реестре.
15. Переменные реестра.
16. В файле defaults/main.yml роли 1

•

В этой главе мы рассмотрели разные способы определения переменных
и доступа к фактам и переменным. В следующей главе мы сконцентрируемся
на практических примерах развертывания приложений.

1
Роли обсуждаются в главе 7.

Глава 5
•••

Введение в Mezzanine:

тестовое приложение

В главе 2 мы рассмотрели основные правила написания сценариев. Но в реаль­
ной жизни все более запутано, чем во вводных главах книг по программиро­
ванию. По этой причине мы рассмотрим законченный пример развертывания
нетривиального приложения.

В качестве примера используем систему управления контентом (CMS) Mez­
zanine (http://mezzanine.jupo.org/), сходную по духу с WordPress. Mezzanine уста­
навливается поверх Django, свободно распространяемого фреймворка веб­
приложений.

ПОЧЕМУ СЛОЖНО РАЗВЕРТЫВАТЬ ПРИЛОЖЕНИЯ

В ПРОМЫШЛЕННОМ ОКРУЖЕНИИ

Давайте немного отклонимся от темы и поговорим о различиях между запус­
ком программного обеспечения в окружении разработки на вашем ноутбуке
и в промышленном окружении.

Mezzanine - отличный пример приложения, которое гораздо легче запус­
тить в окружении разработки, чем развернуть в промышленном окружении.
В примере 5.1 показано, что необходимо для запуска приложения на ноутбуке1

•

Пример 5.1 ❖ Запуск Mezzanine в окружении разработки

$ vtгtualenv venv

$ souгce venv/btn/acttvate

$ ptp tnstall мezzantne

$ мezzantne-pгoject мургоjесt

$ cd мургоjесt

1 В данном случае будет произведена установка пакетов Python в виртуальное окру­
жение. Подробнее о виртуальных окружениях мы поговорим в разделе «Установка
Mezzanine и других пакетов в виртуальное окружение» в главе 6.

100 ❖ Введение в Mezzanine: тестовое приложение

$ sed -i..bak 's/ALLOWED_HOSTS = \[\]/ALLOWED_HOSTS = ["127.6.6.1"]/' l'lyproject\

/setti.ngs.py

$ python l'lanage.py createdb

$ python l'lanage.py runserver

Вам будет предложено ответить на несколько вопросов. Я ответил «да» на
каждый вопрос, требующий ответа «да» или «нет», и принял ответы по умолча­
нию там, где они были предложены. Вот так выглядели мои действия:

Operations to регfогм:

Apply all мigrations: adмin, auth, Ыоg, conf, contenttypes, саге,

django_coммents, forмs, galleries, generic, pages, redirects, sessions, sites,

twitter

Running мigrations:

Applying contenttypes.0001_initial ... ОК

Applying auth.0001_tnitial ... ОК

Applying adмin.0001_initial ... ОК

Applying adмin.0002_logentry_reмove_auto_add ... ОК

Applying contenttypes.0002_reмove_content_type_naмe ... ОК

Applying auth.0002_alter_perмission_naмe_мax_length ... ОК

Applying auth.0003_alter_user_eмail_мax_length ... ОК

Applying auth.0004_alter_user_usernaмe_opts ... ОК

Applying auth.0005_alter_user_last_login_null ... ОК

Applying auth.0006_require_contenttypes_0002 ... ОК

Applying auth.0007_alter_validators_add_error_мessages ... ОК

Applying auth.0008_alter_user_usernaмe_мax_length ... ОК

Applying sites.0001_initial ... ОК

Applying Ыog.0001_initial ... ОК

Applying Ыog.0002_auto_20150527_1555 ... ОК

Applying conf.0001_tnitial ... ОК

Applying core.0001_tnitial ... ОК

Applying core.0002_auto_20150414_2140 ... ОК

Applying django_coммents.0001_initial ... ОК

Applying django_coммents.0002_update_user_eмail_field_length ... ОК

Applying django_coммents.0003_add_subмit_date_index ... ОК

Applying pages.0001_tnitial ... ОК

Applying forмs.0001_initial ... ОК

Applying forмs.0002_auto_20141227_0224 ... ОК

Applying forмs.0003_eмailfield ... ОК

Applying forмs.0004_auto_20150517_0510 ... ОК

Applying forмs.0005_auto_20151026_1600 ... ОК

Applying galleries.0001_initial ... ОК

Applying galleries.0002_auto_20141227_0224 ... ОК

Applying generic.0001_initial ... ОК

Applying generic.0002_auto_20141227_0224 ... ОК

Applying pages.0002_auto_20141227_0224 ... ОК

Applying pages.0003_auto_20150527_1555 ... ОК

Applying redirects.0001_initial ... ОК

Введение в Mezzanine: тестовое приложение ❖ 101

Applying sessions.0001_initial ... ОК

Applying sites.0002_alter_doмain_unique ... ОК

Applying twitter.0001_initial ... ОК

А site record is required.

Please enter the doмain and optional port in the forмat 'doмain:port'.

For ехамрlе 'localhost:8000' or 'www.exaмple.coм'.

Hit enter to use the default (127.0.0.1:8000):

Creating default site record: 127.0.0.1:8000 ...

Creating default account ...

Usernaмe (leave Ыапk to use 'lorin'):

Eмail address: lorin@ansiЫebook.coм

Password:

Password (again):

Superuser created successfully.

Installed 2 object(s) fгом 1 fixture(s)

Would you like to install sоме initial dемо pages?

Eg: About us, Contact fогм, Gallery. (yes/no): yes

В конечном итоге вы должны увидеть следующий результат на терминале:

dллллллллль

.d'' ''Ь .

. р' q .

. d
' 'Ь .

. d' 'Ь. * Mezzanine 4.2.2

.. * Django 1.10.2

р.

р.

'Ь.

М Е Z Z А N I N Е

q.. . .р'

лq , .. рл

.. * Python 3.5.2

,. * SQLite 3.14.1

.q' * Darwin 16.0.0

.q'

.d'

Perforмing systeм checks ...

Systeм check identified по issues (0 silenced).

October 04, 2016 - 04:57:44

Django version 1.10.2, using settings 'мyproject.settings'

Starting developмent server at http://127.0.0.1:8000/

Quit the server with CONTROL-C.

Введя в браузере адрес http:// 127.0.0.1 :8000/, вы должны увидеть веб-страни­
цу, как показано на рис. 5.1.

102 ❖ Введение в Mezzanine: тестовое приложение

1]] 127.0.0.1

Mezzэл,ne Horne At:c,J� .. B·oq G.a!1e,.,,. е:_)(1fс:ц •

Home

t,cme

Congratulations!
wetcome to your new Mezzanine powered weЬsite. Неге are some quick links to get

you started:

• Log 1r. t-=> If!C .:1arn1r1 int,a1fac&

• С:-е.:.! r-g --..;<;i?rт pa[.1-t) :yCL'8

• �дх::•;, :.-...,; HТ'v,L te� r,ici;,.;:,

• С1;.с1· i •(; ••1·s t•:Jmcф ... qe

• :;:r.r:,· f��l•-;e,,tl,. ��;.;r.d qi..cs.·•o··e:.

ь.сg

Leg,1ts

Рис. 5.1 ❖ Главная страница Mezzanine сразу после установки

c1J 61
о Г+

Совсем другое дело - развертывание приложения в промышленном окру­
жении. Когда вы запустите команду мezzani.ne-project, Mezzanine сгенерирует
сценарий развертывания Fabric (http://www.fabfile.org/) в файле myproject/fabfile.
ру, который можно использовать для развертывания проекта на промышлен­
ном сервере. Fabric - это инструмент, написанный на Python, позволяющий
автоматизировать выполнение задач через SSH. Сценарий содержит почти 700
строк, без учета подключаемых им файлов конфигурации, также участвующих
в развертывании. Почему развертывание в промышленном окружении на­
столько сложнее? Я рад, что вы спросили.

В окружении разработки Mezzanine допускает следующие упрощения (см.
рис. 5.2):

О в качестве базы данных система использует SQLite и создает файл базы
данных, если он отсутствует;

О НТТР-сервер разработки обслуживает и статический контент (изображе­
ния, файлы .css, JavaScript), и динамически сгенерированную разметку
HTML;

Введение в Mezzanine: теаовое приложение ❖ 103

О НТТР-сервер разработки использует незащищенный протокол НТТР,
а не HTTPS (защищенный);

О процесс НТТР-сервера разработки запускается на переднем плане, за­
нимая окно терминала;

О имя хоста НТТР-сервера всегда 127.0.0.1 (localhost).

1. GET http:/ Лocalhost:8000/foo
2. GET http;//localhost:8000/static/style.css Сервер

,,,-..----------.i разработки
Django

Браузер
/home/myname/dev/myapp/static/style.css

Рис. 5.2 ❖ Приложение Django в режиме разработки

Теперь посмотрим, что происходит при развертывании в промышленном
окружении.

База данных PostgreSQL
SQLite - встраиваемая база данных. В промышленном окружении мы должны
запустить промышленную базу данных, которая обеспечит лучшую поддерж­
ку многочисленных одновременных запросов и позволит запускать несколько
НТТР-серверов для балансировки нагрузки. А это значит, что необходимо раз­
вернуть систему управления базами данных, такую как MySQL или PostgreSQL
(или просто Postgres). Установка одного из упомянутых серверов баз данных
создает дополнительные трудозатраты. Мы должны:

1) установить сервер базы данных;
2) убедиться в его работоспособности;
3) создать базу данных;

4) создать пользователя базы данных с соответствующими правами досту­
па к ней;

5) настроить приложение Mezzanine на использование учетных данных
пользователя базы данных и информации о соединении.

Сервер приложений Gunicorn
Поскольку Mezzanine является Djаngо-приложением, его можно запускать
под управлением НТТР-сервера Django, называемого в документации Django
сервером разработки. Вот что сказано о сервере разработки (https://docs.djan-

104 ❖ Введение в Mezzanine: тестовое приложение

goproject.com/en/1. 7 /i ntro/tutorial01/#the-development-server) в документации
к Django 1.10:

Не используйте этот сервер в промышленном окружении. Он предназначен
только для разработки. Мы делаем веб-фреймворки, а не веб-серверы.

Django реализует стандарт Web Server Gateway Interface (WSGI) 1
• То есть

любой НТТР-сервер, поддерживающий WSGI, подойдет для запуска Djаngо­
приложений, таких как Mezzanine. Мы будем использовать Gunicorn - один из
популярных НТТР-серверов с поддержкой WSGI, который использует сцена­
рий развертывания Mezzanine.

Веб-сервер Nginx
Gunicorn выполняет Djаngо-приложение в точности как север разработки. Од­
нако Gunicorn не обслуживает статических ресурсов приложения, таких как
файлы изображений, .css и JavaScript. Их называют статическими, поскольку
они никогда не изменяются, в отличие от динамически генерируемых веб­
страниц, которые обслуживает Gunicorn.

Несмотря на то что Gunicorn прекрасно справляется с шифрованием TLS,
для работы с шифрованием обычно настраивают Nginx2

•

Для обработки статических объектов и поддержки шифрования TLS мы бу­
дем использовать Nginx, как показано на рис. 5.3.

1. GЕТ http://localhost:8000/foo
2. GET http://localhost:8000/static/style.ш

nginx .
GЕТ h ttp://localhost:8000/foo

Gunicom

Браузер
/hom/deploy/myapp/static/style.css

Рис. 5.3 ❖ Nginx как реверсивный прокси

Мы должны настроить Nginx как реверсивный прокси для Gunicorn. Если по­
ступит запрос на статический объект, например файл .css, Nginx вернет его кли­
енту, взяв непосредственно из локальной файловой системы. Иначе Nginx пере­
даст запрос Gunicorn, отправив НТТР-запрос службе Gunicorn, действующей на
этой же машине. Какое из этих действий выполнить, Nginx определяет по URL.

1 Протокол WSGI задокументирован в Python Enhancement Proposal (РЕР) 3333 (https://
www.python.org/dev/peps/pep-33 33/).

2 Поддержка шифрования TLS была добавлена в Gunicorn 0.17. До этого для поддержки
шифрования приходилось использовать отдельное приложение, такое как Nginx.

Введение в Mezzanine: тестовое приложение ❖ 105

Обратите внимание, что запросы извне поступают в Nginx по протоколу
HTTPS (т. е. зашифрованы), а все запросы из Nginx в Gunicorn передаются в от­
крытом, нешифрованном виде (по протоколу НТТР).

Диспетчер процессов Supervisor
В окружении разработки мы запускаем сервер приложений в терминале, как
приложение переднего плана. Закрытие терминала в этом случае приводит
к автоматическому завершению программы. В промышленном окружении
сервер приложений должен запускаться в фоновом режиме, чтобы он не за­
вершался по окончании сеанса в терминале, в котором мы запустили процесс.

В просторечии такие процессы называют демонами, или службами. Мы долж­
ны запустить Gunicorn как демон, и еще нам нужна возможность с легкостью
останавливать и перезапускать его. Существует много диспетчеров задач, спо­
собных выполнить эту работу. Мы будем использовать Supervisor, поскольку
именно его используют сценарии развертывания Mezzanine.

Теперь вы должны понимать, что требуется для развертывания веб-прило­
жения в промышленном окружении. В главе 6 мы перейдем к реализации этой
задачи с помощью AnsiЫe.

Глава 6
•••

Развертывание Mezzanine

с помощью AnsibLe

Пришло время написать сценарий AnsiЫe для развертывания Mezzanine на
сервере. Мы проделаем это шаг за шагом. Но если вы относитесь к тому типу
людей, которые начинают читать с конца книги, чтобы узнать, чем все закон­
чится1, в конце главы в примере 6.28 вы увидите сценарий полностью. Он так­
же доступен в репозитории GitНub по адресу: http://Ьit.ly/19P00Aj. Прежде чем
запустить его, прочитайте файл README: http://Ьit.ly/10nko4u.

Я старался оставаться как можно ближе к оригинальным сценариям Fabric2,
которые написал Стефан МакДональд (Stephen McDonald), автор Mezzanine.

Вывод СПИСКА ЗАДАЧ в СЦЕНАРИИ

Прежде чем углубиться в недра нашего сценария, давайте взглянем на него
с высоты. Утилита ansib le-p laybook поддерживает параметр - - l ist-tasks. Он по­
зволяет получить список всех задач в сценарии. Это простой способ выяснить,
какие действия производятся сценарием. Вот как можно ее использовать:

$ ansiЫe-playbook --list-tasks мezzanine.yмl

Пример 6.1 демонстрирует вывод этой команды для сценария mezzanine.yml,

приведенного в примере 6.28.

Пример 6.1 ❖ Список задач в сценарии Mezzanine

playbook: мezzanine.yмl

play #1 (web): Deploy мezzanine
tasks:

TAGS: []

1 Моя жена Стейси особенно преуспела в этом.
2 Сценарии Fabric, поставляемые с Mezzanine, можно найти по адресу: http://bit.

lу/19РОТ73.

install apt packages TAGS: []
сгеаtе project path TAGS: []
сгеаtе а logs directoгy TAGS: []

Развертывание Mezzanine с помощью AnsiЫe ❖ 107

check out the repositoгy оп the host TAGS: []
install Python requireмents globally via pip TAGS: []
сгеаtе project locale TAGS: []
сгеаtе а DB user TAGS: []
сгеаtе the database TAGS: []
ensure config path exists TAGS: []
сгеаtе tls certificates TAGS: []
гемоvе the default nginx config file TAGS: []
set the nginx config file TAGS: []
епаЫе the nginx config file TAGS: []
set the supervisor config file TAGS: [)
install poll twitter сгоп job TAGS: []
set the gunicoгn config file TAGS: []
generate the settings file TAGS: []
install requireмents.txt TAGS: []
install required python packages TAGS: []
apply мigrations to сгеаtе the database, collect static content TAGS: []
set the site id TAGS: []
set the adмin password TAGS: []

ОРГАНИЗАЦИЯ УСТАНАВЛИВАЕМЫХ ФАЙЛОВ
Как уже говорилось, Mezzanine развертывается поверх Django. В терминологии
Django веб-приложение называется проектом. Нам нужно дать имя проекту,
я выбрал mezzanine_example.

Наш сценарий производит установку на машину Vagrant и помещает файлы
в домашний каталог пользователя Vagrant.

В примере 6.2 показана соответствующая структура каталогов внутри /home/
vagrant:

О /home/vagrant/mezzanine_example - каталог верхнего уровня, куда будет
копироваться исходный код из репозитория в GitHub;

О /home/vagrant/.virtualenvs/mezzanine_example - каталог виртуального окру­
жения для установки дополнительных пакетов на языке Python;

О /home/vagrant/logs - каталог для хранения журналов, создаваемых при-
ложением Mezzanine.

Пример 6.2 ❖ Структура каталогов в /home/vagrant

f- logs
f- мezzanine
1 L мezzanine_exaмple
L .virtualenvs

L мezzanine_exaмple

108 ❖ Развертывание Mezzanine с помощью AnsiЫe

ПЕРЕМЕННЫЕ И СКРЫТЫЕ ПЕРЕМЕННЫЕ

Как показано в примере 6.3, сценарий определяет довольно много переменных.

Пример 6.3 ❖ Определение переменных

vars:

user: " { { ansi.Ыe_user } } "

proj_app: мezzani.ne_exaмple

ргоj_паме: "{{ proj_app }}"

venv _hоме: " { { ansi.Ыe_env. НОМЕ } } /. vi.rtua lenvs"

venv_path: "{{ venv_hoмe }}/{{ ргоj_паме }}"

proj_path: "{{ ansi.Ыe_env.HOME }}/мezzani.ne/{{ ргоj_паме }}"

setti.ngs_path: "{{ proj_path }}/{{ proj_naмe }}"

reqs_path: requi.reмents.txt

мапаgе: " {{ python } } { { proj_path } } /мапаgе. ру"

li.ve_hostnaмe: 192.168.33.10.xi.p.i.o

doмai.ns:

- 192.168.33.10.xi.p.i.o

- www,192.168.33.10.xi.p.i.o

repo_url: gi.t@gi.thub.coм:ansi.Ыebook/мezzani.ne_exaмple.gi.t

locale: en_US.UTF-8

Переменные ниже отсутствуют в сценарии fabfi.le.py установки Mezzani.ne

#ноя добавил их для удобства

conf_path: /etc/ngi.nx/conf

tls_enaЫed: True

python: "{{ venv_path }}/Ыn/python"

database_naмe: "{{ ргоj_паме }}"

database_user: "{{ proj_naмe }}"

database_host: localhost

database_port: 5432

guni.corn_procnaмe: guni.corn_мezzani.ne

nuм_workers: "мu l ti.processi.ng. cpu_count() * 2 + 1"

vars_fi.les:

- secrets.yмl

В большинстве случаев я старался использовать те же имена переменных,

какие использует FаЬriс-сценарий установки Mezzanine. Я также добавил не­

сколько переменных, чтобы сделать процесс более прозрачным. Например,
сценарии Fabric используют переменную ргоj_паме для хранения имени базы

данных и имени пользователя базы данных. Я предпочитаю задавать вспомо­

гательные переменные, такие как database_naмe и data_base_user, и определять

их через ргоj_паме.
Отметим несколько важных моментов. Во-первых, обратите внимание, как

можно определить одну переменную на основе другой. Например, переменная
venv_path определяется на основе переменных venv_hoмe и ргоj_паме.

Во-вторых, обратите внимание, как можно сослаться на факты AnsiЫe в этих

переменных. Например, переменная venv_hoмe определена на основе факта an­

si.Ыe_env, получаемого из каждого хоста.

Развертывание Mezzanine с помощью АпsiЫе ❖ 109

И наконец, обратите внимание, что мы определили несколько переменных
в отдельном файле secrets.yml:

vars_fi.les:

- secrets.yмl

Этот файл содержит такие данные, как пароли и токены, и они должны оста­
ваться конфиденциальными. В моем репозитории на GitHub этот файл отсут­
ствует. Вместо него имеется файл secrets.yml.example. Вот как он выглядит:

db_pass: e79c9761d0b54698a8Зff3f93769e309

adмin_pass: 46041386be534591ad24902bf72071B

secret_key: Ь495а05с39684ЗЬбЬ47ас944а72с92еd

nevercache_key: b5d87bb4e17c483093296fa321056bdc

Вы должны создать приложение Twitter по адресу: https://dev.twitter.coм

чтобы получить учетные данные для интеграции Mezzanine с Twitter.

Подробности об интеграции Mezzanine с Twitter приводятся по адресу:

http://мezzanine.jupo.org/docs/twitter-integration.htмl

twitter_access_token_key: 80b557a3a8d14cЫa2b91d60398fb8ce

twitter_access_token_secret: 1974cf8419114bdd9d4ea3dЫa210d90

twitter_consuмer_key: 1f1c627530b34bb58701ac81ac3fad51

twitter_consuмer_secret: 36515c2b60ee4ffb9d3Зd972a7ec350a

Чтобы воспользоваться им, скопируйте файл secrets.yml.example в secrets.yml

и измените его так, чтобы он содержал данные вашего сайта. Также отметьте,
что secrets.yml перечислен в файле .gitignore репозитория Git, чтобы предотвра­
тить случайное сохранение этих данных в публичном репозитории.

Лучше всего воздержаться от копирования не зашифрованных данных в ваш
репозиторий, чтобы избежать рисков, связанных с безопасностью. Это всего
лишь один из способов обеспечения секретности данных. Их также можно пе­
редавать через переменные окружения. Другой способ, описанный в главе 8,
заключается в использовании зашифрованной версии файла secrets.yml при
помощи утилиты vault из AnsiЬle.

ИСПОЛЬЗОВАНИЕ ЦИКЛА (WITH_ITEMS)
ДЛЯ УСТАНОВКИ БОЛЬШОГО КОЛИЧЕСТВА ПАКЕТОВ
Нам потребуется установить два типа пакетов, чтобы развернуть Mezzanine.
Во-первых, мы должны установить системные пакеты. Поскольку мы собира­
емся развертывать приложение в UЬuntu, будем использовать для этого дис­
петчер пакетов apt. Во-вторых, нам нужно установить пакеты Python, и для
этих целей мы воспользуемся диспетчером pi.p.

Устанавливать системные пакеты обычно проще, чем пакеты Python, по­
тому что они созданы для непосредственного использования с операционной
системой. Однако в репозиториях системных пакетов зачастую отсутствуют
новейшие версии библиотек для Python, которые нам необходимы. Поэтому

110 ❖ Развертывание Mezzanine с помощью AnsiЫe

для их установки воспользуемся диспетчером пакетов для Python. Это ком­
промисс между стабильностью и использованием новейших и самых лучших
версий.

В примере 6.4 показана задача, которую мы используем для установки си­
стемных пакетов.

Пример 6.4 ❖ Установка системных пакетов
nаме: install apt packages
apt: pkg={{ iteм }} update_cache=yes cache_valid_tiмe=3600
Ьесоме: Тгuе
with_ iteмs:

. git
· Hbjpeg•dev
· Hbpq•dev
· мемсасhеd

nginx
postgresql
python·dev
python·pip
python•psycopg2
python•setuptools
python•virtualenv
supervisoг

Для установки большого количества пакетов мы воспользовались поддерж­
кой цикла в AnsiЫe, выражением wi.th_i.terТJs. Мы могли бы устанавливать паке­
ты по одному, как показано ниже:

· nаме: install git
apt: pkg=git

· nаме: install libjpeg·dev
apt: pkg=libjpeg•dev

Однако гораздо проще сгруппировать все пакеты в список. Вызывая модуль
apt, мы передаем ему { { i.terТJ } } . Эта переменная цикла будет последовательно
принимать значения элементов списка в выражении wi.th_ i.terТJs.

� AnsiЫe всегда использует имя i.teм для обозначения переменной цикла. В главе 8 вы
увидите, как можно использовать другие имена.

Кроме того, модуль apt оптимизирует одновременную установку несколь­
ких пакетов с применением выражения wi.th_i.terТJs.AnsiЫe передает модулю apt

полный список пакетов, и модуль вызывает программу apt только один раз,
передавая ей сразу весь список пакетов для установки. Некоторые модули, по­
добные apt, предусматривают обработку списков таким способом. Если в моду­
ле отсутствует собственная поддержка списков, AnsiЫe просто будет вызывать
модуль много раз - для каждого элемента списка в отдельности.

Развертывание Mezzanine с помощью AnsiЫe ❖ 111

Можно сказать, что модуль apt достаточно умен, чтобы обработать большое
количество пакетов одновременно, поэтому результат выглядит так:
TASK: [install apt packages] **
ok: [web] => (iteм=[u'git', u'libjpeg-dev', u'libpq-dev', u'мeмcached',
u'nginx', u'postgresql', u'python-dev', u'python-pip', u'python-psycopg2',
u'python-setuptools', u'python-virtualenv', u'supervisor'])

С другой стороны, модуль pi.p не поддерживает списков пакетов, поэтому
AnsiЫe вынуждена вызывать его снова для каждого элемента списка, соответ­
ственно, результат выглядит так:
TASK [install required python packages] **
ok: [web] => (iteм=gunicorn)
ok: [web] => (iteм=setproctitle)
ok: [web] => (iteм=psycopg2)
ok: [web] => (iteм=django-coмpressor)
ok: [web] => (iteм=python-мeмcached)

ДОБАВЛЕНИЕ ВЫРАЖЕНИЯ ВЕСОМЕ В ЗАДАЧУ
В примерах сценариев в главе 2 нам требовалось, чтобы сценарий целиком вы­
полнялся с привилегиями пользователя root, поэтому мы добавляли в опера­
ции выражение Ьесо1'1е: True. При развертывании Mezzanine большинство задач
будет выполняться с привилегиями пользователя, от лица которого устанавли­
вается SSН-соединение с хостом, а не root. Поэтому мы должны приобретать
привилегии root не для всей операции, а только для определенных задач.

Для этого можно добавить выражение Ьесо1'1е: True в задачи, которые необхо­
димо выполнить с привилегиями root, как в примере 6.4.

ОБНОВЛЕНИЕ КЭША ДИСПЕТЧЕРА ПАКЕТОВ АРТ

� Все примерь� команд в этом разделе выполняются на удаленном хаете (Ubuntu), а не на
уnравляющеи машине.

UЬuntu поддерживает кэш с именами всех арt-пакетов, доступных в архи­
ве пакетов UЬuntu. Представьте, что вы пытаетесь установить пакет с именем
libssl-dev. Вы можете использовать программу apt-cache, чтобы запросить из
кэша информацию об известной версии этой программы:
$ apt-cache po1icy 1ibss1-dev

Результат показан в примере 6.5.

Пример 6.5 ❖ Вывод apt cache
Hbssl-dev:

Installed: (попе)
Candidate: 1.0.1f-1ubuntu2.21

112 ❖ Развертывание Mezzanine с помощью AnsiЫe

Versi.on tаЫе:

1.0.1f-1ubuntu2.21 0

500 http://archi.ve.ubuntu.coм/ubuntu/ trusty-updates/мai.n амd64 Packages

500 http://securi.ty.ubuntu.coм/ubuntu/ trusty-securi.ty/мai.n амd64 Packages

1.0.1f-1ubuntu2 0

500 http://archi.ve.ubuntu.coм/ubuntu/ trusty/мai.n амd64 Packages

Как видите, этот пакет не был установлен. Согласно информации из кэша, на
локальной машине новейшая версия - l.0.lf-lubuntu2.21. Мы также получили
информацию о местонахождении архива пакета.

В некоторых случаях, когда проект UЬuntu выпускает новую версию пакета,
он удаляет устаревшую версию из архива. Если локальный кэш apt на сервере
UЬuntu не был обновлен, он попытается установить пакет, которого нет в ар­
хиве.

Продолжая пример, предположим, что мы решили установить пакет libssl­

dev:

$ apt-get i.nstall li.bssl-dev

Если версия l.0.lf-lubuntu2.21 больше не доступна в архиве пакетов, мы
увидим следующее сообщение:

Err http://archi.ve.ubuntu.coм/ubuntu/ trusty-updates/мai.n li.bssl-dev амd64

1.0.1f-1ubuntu2.21

404 Not Found [IP: 91.189.88.153 80]

Err http://securi.ty.ubuntu.coм/ubuntu/ trusty-securi.ty/мai.n li.bssl-dev амd64

1.0.1f-1ubuntu2.21

404 Not Found [IP: 91.189.88.149 80]

Err http://securi.ty.ubuntu.coм/ubuntu/ trusty-securi.ty/мai.n li.bssl-doc all

1.0.1f-1ubuntu2.21

404 Not Found [IP: 91.189.88.149 80]

Е: Fai.led to fetch

http://securi.ty.ubuntu.coм/ubuntu/pool/мai.n/o/openssl/li.bssl-dev_1.0.1f-1ubuntu2.

21_aмd64.deb

404 Not Found [IP: 91.189.88.149 80]

Updati.ng the Apt Cache 1 99

Е: Fai.led to fetch

http://securi.ty.ubuntu.coм/ubuntu/pool/мai.n/o/openssl/li.bssl-doc_1.0.1f-1ubuntu2.

21_all.deb

404 Not Found [IP: 91.189.88.149 80]

Е: UnaЫe to fetch sоме archi.ves, мауЬе run apt-get update ог try wi.th

--fi.x-мi.ssi.ng?

Чтобы привести локальный кэш пакетов apt в актуальное состояние, можно
выполнить команду apt-get update. Вызывая модуль apt в AnsiЬle, ему необходи­
мо передать аргумент update_cache=yes, чтобы обеспечить поддержание локаль­
ного кэша apt в актуальном состоянии, как это показано в примере 6.4.

Обновление кэша занимает некоторое время, а мы можем запускать сце­
нарий много раз подряд для отладки, поэтому, чтобы избежать ненужных

Развертывание Mezzanine с помощью AnsiЫe ❖ 113

затрат времени на обновление кэша, можно передать модулю аргумент
cache_vali.d_t'\.111e. Он разрешает обновление кэша, только если тот старше уста­
новленного порогового значения. В примере 6.4 используется аргумент cache_

vali.d_ti.111e=3600, который разрешает обновление кэша, только если он старше
3600 секунд (1 час).

ИЗВЛЕЧЕНИЕ ПРОЕКТА ИЗ РЕПОЗИТОРИЯ GIT

Хотя Mezzanine можно использовать, не написав ни строчки кода, одной из
сильных сторон этой системы является то, что она написана с использованием
фреймворка Django, который, в свою очередь, служит прекрасной платформой
для веб-приложений, если вы знаете язык Python. Если вам просто нужна си­
стема управления контентом (CMS), тогда обратите внимание на что-нибудь
вроде WordPress. Но если вы пишете специализированное приложение, вклю­
чающее функциональность CMS, вам как нельзя лучше подойдет Mezzanine.

В ходе развертывания вам потребуется получить из репозитория Git код
вашего Djаngо-приложения. Выражаясь языком Django, репозиторий должен
хранить проект. Я создал репозиторий в GitHub (https://github.com/lorin/mezza­
nine_example) с проектом Django, содержащий все необходимые файлы. Этот
проект будет развертывать наш сценарий.

С помощью программы 111ezzani.ne-project, которая поставляется вместе
с Mezzanine, я создал файлы проекта, как показано ниже:

$ мezzanine-pгoject мezzanine_exaмple

$ chмod +х мezzanine_exaмple/мanage.py

Учтите, что у меня в репозитории нет никаких конкретных Djаngо-прило­
жений. Там содержатся только файлы, необходимые для проекта. В реальных
условиях этот репозиторий содержал бы подкаталоги с дополнительными
Djаngо-приложениями.

В примере 6.6 показано, как использовать модуль gi. t для извлечения про­
екта из удаленного репозитория Git.

Пример 6.6 ❖ Извлечение проекта из репозитория Git

- паме: check out the repository оп the host

git: геро={{ repo_url }} dest={{ proj_path }} accept_hostkey=yes

Я открыл общий доступ к репозиторию, чтобы читатели смогли обращаться
к нему, но в реальной жизни вам придется обращаться к закрытым репозито­
риям Git по SSH. Поэтому я настроил переменную repo_url для использования
схемы, которая клонирует репозиторий по SSH:

repo_url: git@github.coм:lorin/мezzanine_exaмple.git

Если вы пробуете выполнять примеры на своем компьютере, для запуска
сценария вы должны:

114 ❖ Развертывание Mezzanine с помощью AnsiЫe

1) иметь учетную запись на GitНub;
2) иметь публичный ключ SSH, связанный с вашей учетной записью на

GitНub;
3) запустить SSН-агента на управляющей машине с включенным агентом

перенаправления;
4) добавить свой ключ SSH в SSН-агента.
Запустив SSН-агента, добавьте в него свой ключ:

$ ssh-add

В случае успеха следующая команда выведет публичный ключ SSH, только
что добавленный вами:

$ ssh-add -1

Вывод должен выглядеть примерно так:

2048 SHA256:o7H/I9rRZupXHJ7JnDi10RhSzeAKYiRVrlH9L/JFtfA /Users/lorin/.ssh/id_rsa

Чтобы включить агента перенаправления, добавьте следующие строки
в файл ansiЫe.cfg:

[ssh_connectton]
ssh_args = -о ControlMaster=auto -о ContгolPersist=60s -о ForwardAgent=yes

Проверить работоспособность агента перенаправления можно с помощью
AnsiЫe, как показано ниже:

$ anstЫe web -а "ssh-add -1"

Эта команда должна вывести то же самое, что команда ssh-add - l на вашей
локальной машине.

Нелишним также будет убедиться в достижимости сервера GitHub по SSH,
выполнив команду

$ ansiЫe web -а "ssh -т git@github.coPI"

В случае успеха ее вывод должен выглядеть примерно так:

web I FAILED I гс=1 >>

Hi lortn! You've successfully authenticated, but GitHub does not provide shell
access.

Пусть вас не смущает слово FAILED 1 в выводе, если появилось сообщение от
сервера GitHub, значит, все в порядке.

Кроме URL-репозитория в параметре герои пути к репозиторию в парамет­
ре dest, мы должны также передать дополнительный параметр accept_hostkey,
связанный с проверкой ключей хоста. Агента перенаправления SSH и проверку
ключей хоста мы подробно рассмотрим в приложении А.

1
Переводится как «неудача, ошибка». - Прим. перев.

Развертывание Mezzanine с помощью AnsiЫe ❖ 115

УСТАНОВКА MEZZANINE И ДРУГИХ ПАКЕТОВ В VIRTUALENV

Как уже упоминалось выше в этой главе, мы установим некоторые пакеты как
пакеты Python, чтобы получить более свежие версии, чем доступны диспетче­
ру apt.

Мы можем устанавливать пакеты Python от лица пользователя root на уров­
не всей системы, но лучше устанавливать их в изолированное окружение, что­
бы избежать конфликтов с системными пакетами Python. В Python подобные
изолированные окружения называют virtualenv. Пользователь может создать
большое количество окружений virtualenv и установить в них пакеты без ис­
пользования привилегий пользователя root.

Модуль AnsiЫe р'\.р позволяет создавать такие изолированные окружения
virtualenv и устанавливать пакеты в них.

В примере 6. 7 демонстрируется использование модуля р'\.р для установки па­
кетов Python в системный каталог. Обратите внимание, что для этого необхо­
дим параметр Ьесоме: Тгuе.

Пример 6.7 ❖ Установка пакетов Pythoп в системный каталог

- nаме: install Python requireмents globally via pip

pip: nаме={{ iteм }} state=latest

with_ iteмs:

- pip

- virtualenv

- virtualenvwrapper

Ьесоме: True

В примере 6.8 приводятся две задачи, которые устанавливают пакеты Py­
thon в изолированное окружение. Обе они используют модуль pip, хотя и не­
много по-разному.

Пример 6.8 ❖ Установка пакетов Python в изолированное окружение

- nаме: install requireмents.txt

pip: requireмents={{ proj_path }}/{{ reqs_path }} virtualenv={{ venv_path }}

- nаме: install required python packages

pip: nаме={{ iteм }} virtualenv={{ venv_path }}

with_ iteмs:

- gunicorn

- setproctitle

- psycopg2
- django-coмpressor

- python-мeмcached

Общим для проектов Python является перечисление пакетов зависимо­
стей в файле requirements.txt. И действительно, репозиторий в нашем при­
мере с системой Mezzanine содержит файл requirements.txt. Он приводится
в примере 6.9.

116 ❖ Развертывание Mezzanine с помощью AnsiЫe

Пример 6.9 ❖ requirements.txt

Mezzantne==4.2.2

В файл requirements.txt не включены некоторые другие пакеты Python, кото­
рые требуется установить. Поэтому для их установки мы создали отдельную
задачу.

Обратите внимание, что в файле requirements.txt указана конкретная версия
пакета Python Mezzanine (4.2.2), в то время как для остальных пакетов версии
не указаны. В этом случае будет установлена новейшая доступная версия. Если
бы нам не требовалось зафиксировать версию Mezzanine, мы могли бы доба­
вить имя пакета в общий список, как показано ниже:

- nаме: tnstall python packages
ptp: nаме={{ tteм }} vtrtualenv={{ venv_path }}
wtth_tteмs:

мezzantne
guntcorn
setproctttle
south
psycopg2

- django-coмpressor
- python-мeмcached

И наоборот, если бы понадобилось зафиксировать версии всех пакетов, у нас
на выбор было бы несколько вариантов. Можно было бы создать файл require­

ments.txt с информацией о пакетах и их зависимостях. Содержимое такого фай­
ла приводится в примере 6.10.

Пример 6.10 ❖ Пример файла гequirements.txt

beauttfulsoup4==4.S.3
bleach==l.5.0
chardet==Z.3.0
Django==l.10.4
django-appconf==l.0.2
django-coмpressor==Z.1
django-contrtb-coммents==l.7.3
ftlebrowser-safe==0.4.6
future==0.16.0
grappellt-safe==0.4.5
guntcorn==19.6.0
htмl5ltb==0.9999999
Mezzantne==4.2.2
oauthltb==Z.0.1
oleftle==0.43
Ptllow==4.0.0
psycopg2==2.6.2
python-мeмcached==l.58
pytz==2016.10

ГCSSl'li.n==1.0.6
requests==2.12.4
requests-oauthli.b==0.7.0
rjsl'li.n==l.0.12
setprocti.tle==l.1.10
si.x==l.10.0
tzlocal==1.3

Развертывание Mezzanine с nомощьюАnsiЫе ❖ 117

Если бы у нас уже имелось готовое изолированное окружение virtualenv
с установленными в него пакетами, мы могли бы воспользоваться командой
pi.p freeze, чтобы вывести список установленных пакетов. Например, если окру­
жение virtualenv находится в ~/mezzanine_ example, активировать его и получить
список установленных пакетов можно было бы так:

$ source -/l'lezzani.ne_exal'lple/Ыn/activate

$ pip freeze > гequirel'lents.txt

В примере 6.11 показано, как можно установить пакеты с использованием
файла requirements.txt.

Пример 6.11 ❖ Установка из requirements.txt

nal'le: сору requi.rel'lents.txt fi.le
сору: src=fi.les/requi.rel'lents.txt dest=-/requi.rel'lents.txt
nal'le: i.nstall packages
pi.p: requi.rel'lents=-/requi.rel'lents.txt vi.rtualenv={{ venv_path }}

Также можно было бы указать в списке не только имена пакетов, но и их
версии, как показано в примере 6.12. Мы передаем список словарей и разыме­
новываем элементы, обращаясь к ним как i.te1ТJ.na1ТJe и i.tel'l.versi.on.

Пример 6.12 ❖ Определение имен пакетов и их версий

nal'le: python packages
pi.p: nal'le={{ i.tel'l.nal'le }} versi.on={{ i.tel'l.versi.on }} vi.rtualenv={{ venv_path }}
wi. th_ i. tel'ls:

{nal'le: l'lezzani.ne, versi.on: 4.2.2}
{nal'le: guni.corn, versi.on: 19.6.0}
{nal'le: setprocti.tle, versi.on: 1.1.10}
{nal'le: psycopg2, versi.on: 2.6.2}
{nal'le: django-col'lpressor, versi.on: 2.1}
{nal'le: python-l'lel'lcached, versi.on: 1.58}

КОРОТКОЕ ОТСТУПЛЕНИЕ: СОСТАВНЫЕ АРГУМЕНТЫ ЗАДАЧ
До настоящего момента каждый раз, вызывая модуль, мы передавали ему ар­
гумент в виде строки. В примере 6.12 мы передали модулю pi.p строку в аргу­
менте:

nal'le: i.nstall package wi.th pi.p
pi.p: nal'le={{ i.tel'l.nal'le }} versi.on={{ i.tel'l.versi.on }} vi.rtualenv={{ venv_path }}

118 ❖ Развертывание Mezzanine с помощью Ansiьte

Если вам не нравятся длинные строки, строку аргумента можно разбить на
несколько строк с помощью функции свертки строк в YAML, о чем уже упоми­
налось в разделе «Объединение строк» в главе 2:

- nаме: install package with pip

pip: >

nаме={{ iteм.naмe }}

veгsion={{ iteм.version }}

virtualenv={{ venv_path }}

AnsiЫe поддерживает еще один способ разбиения команды вызова моду­
ля на несколько строк. Вместо строкового аргумента можно передать словарь,
в котором ключи соответствуют именам переменных. То есть пример 6.12 мог
бы выглядеть так:

nаме: install package with pip

pip:

nаме: " {{ iteм. nаме } } "

version: "{{ iteм.version }}"

virtualenv: "{{ venv_path }}"

Подход на основе словарей также очень удобно использовать для вызова мо­
дулей, использующих составные аргументы. Составной аргумент - это аргу­
мент, включающий список или словарь. Хорошим примером модуля с состав­
ными аргументами может служить модуль ес2. В примере 6.13 показано, как
можно обратиться к модулю, принимающему список в аргументе group и сло­
варь в аргументе i.nstance_tags. Более подробно данный модуль рассматривает­
ся в главе 14.

Пример 6.13 ❖ Вызов модуля с составными аргументами

- nаме: сгеаtе an ес2 instance

ес2:

iмage: амi-8саа1се4

instance_type: мЗ.меdiuм

key_naмe: муkеу

group:

- web

- ssh

instance_tags:

type: web

env: production

Эти приемы передачи аргументов можно смешивать и передавать одни ар­
гументы в виде строк, а другие в виде словарей, с помощью выражения args.

Например, предыдущий пример можно переписать так:

- nаме: сгеаtе an ес2 instance

ес2: iмage=aмi-8caa1ce4 instance_type=мЗ.мediuм key_naмe=мykey

args:

group:

- web
- ssh

i.nstance_tags:
type: web
env: producti.on

Развертывание Mezzanine с помощью AnsiЫe ❖ 119

При использовании выражения local_action (мы рассмотрим его в главе 9)
синтаксис составных аргументов несколько изменяется. Необходимо добавить
мodule: <имя_модуля>, как показано ниже:

паме: сгеаtе ап ес2 i.nstance
local_acti.on:

мodule: ес2
i.мage: амi.-8саа1се4
i.nstance_type: мЗ.меdi.uм
kеу_паме: муkеу
group:

- web
- ssh

i.nstance_tags:
type: web
env: producti.on

При использовании local_acti.on также допускается смешивать простые и со-
ставные аргументы:

паме: create an ес2 i.nstance
local_acti.on: ес2 i.мage=aмi.-8caa1ce4 i.nstance_type=мЗ.мedi.uм kеу_паме=муkеу
args:

i.мage: амi.-8саа1се4
i.nstance_type: мЗ.меdi.uм
key_naмe: муkеу
group:

- web
- ssh

i.nstance_tags:
type: web
env: producti.on

AnsiЫe позволяет определять разрешения для файлов, которые используются несколь­
кими модулями, включая fi.le, сору и teмplate. Если вы решите указать восьмеричное
значение в составном аргументе, оно должно начинаться с О или заключаться в кавычки
как строка.

Например, обратите внимание, что аргумент моdе начинается с О:

nаме: сору i.ndex.htмl
сору:
sгс: fi.les/i.ndex.htмl
dest: /usг/share/ngi.nx/htмl/i.ndex.htмl
моdе: "0644"

120 ❖ Развертывание Mezzanine с помощью AnsiЫe

Если значение аргумента моdе не будет начинаться с О или не будет заключе­
но в кавычки, AnsiЫe воспримет это значение как десятичное число и устано­
вит разрешения для файла не те, что вы ожидаете. За подробностями обращай­
тесь по адресу: http://blt.ly/lGASfЫ.

Если вы хотите разбить аргумент на несколько строк и не передаете состав­
ных аргументов, можете самостоятельно выбрать, в какой форме это сделать.
Это дело вкуса. Я обычно предпочитаю словари, но в книге использую оба ва­
рианта.

НАСТРОЙКА БАЗЫ ДАННЫХ
Когда среда Django действует в режиме для разработки, в качестве базы данных
она использует SQLite. В этом случае создается файл базы данных, если тако­
вого не существует.

Чтобы задействовать систему управления базами данных, такую как Post­
gres, сначала нужно создать базу данных внутри Postgres, а затем учетную
запись пользователя, владеющего базой данных. Чуть позже мы настроим Mez­
zanine, используя данные этого пользователя.

AnsiЫe поставляется с модулями postgresql_user и postgresql_db для создания
учетных записей пользователей и баз данных внутри Postgres. В примере 6.14
показано, как пользоваться этими модулями в сценариях.

Пример 6.14 ❖ Создание базы данных и пользователя

nаме: create project locale

locale_gen: nаме={{ locale }}

Ьесоме: True

nаме: create а DB user

postgresql_user:

nаме: "{{ database_user }}"

password: " { { db_pass } } "

Ьесоме: True

becoмe_user: postgres

nаме: create the database

postgresql_db:

nаме: " { { database_naмe } } "

owner: "{{ database_user }}"

encodtng: UTFS

lc_ ctype: " {{ loca le } } "

lc_collate: " { { loca le } } "

teмplate: teмplate0

Ьесоме: True

becoмe_user: postgres

Обратите внимание на выражения Ьесоме: Тгuе и Ьесоме_usег: postgгes в двух
последних задачах. Когда выполняется установка Postgres в UЬuntu, в ее про-

Развертывание Mezzanine с помощью AnsiЫe ❖ 121

цессе создается пользователь с именем postgres, обладающий привилегиями
администратора для данной установки. Отметьте также, что по умолчанию
пользователь root не обладает привилегиями администратора в Postgres. По
этой причине необходимо выполнить команду Ьесо111е для пользователя Post­
gres в сценарии, чтобы выполнять административные задачи, такие как созда­
ние пользователей и баз данных.

При создании базы данных мы устанавливаем кодировку (UTF8) и определя­
ем региональные настройки (LC_CTYPE, LC_COLLATE) для базы данных. Поскольку
в сценарии определяются региональные настройки, мы использовали шаблон
template01

•

СОЗДАНИЕ ФАЙЛА LOCAL _ SETTINGS.PY ИЗ ШАБЛОНА
Все настройки проекта Django должны находиться в файле settings.py. Mezza­
nine, следуя общему правилу, разбивает их на две группы:

О настройки, одинаковые для всех установок (settings.py);
О настройки, изменяющиеся от установки к установке (loca[_settings.py).
Мы определили настройки, неизменные для всех установок, в файле settings.

ру, в репозитории проекта. Вы найдете этот файл по адресу: http://Ьit.ly/2jaw4zf.
Файл settings.py содержит код на Python, который загружает файл local_set­

tings.py с настройками, зависящими от установки. Файл .gitignore настроен так,
чтобы игнорировать local_settings.py, потому что разработчики часто создают
свои версии этого файла с настройками для их окружений разработки.

Нам тоже нужно создать файл local_settings.py и выгрузить его на удаленный
хает. В примере 6.15 приводится шаблон Jinja2, который мы используем.

Пример 6.15 ❖ local_settings.py.j2
fгом _future_ iмрогt unicode_literals

SECRET_KEY = "{{ secret_key }}"

NEVERCACHE_KEY = "{{ nevercache_key }}"

ALLOWED_HOSTS = [{% fог doмain in doмains %}"{{ doмain }}",{% endfor %}]

DATABASES = {

"default": {

Может заверwаться "postgresql_psycopg2", "мysql", "sqHteЗ" ит,1 "огасlе".

"ENGINE": "django.db.backends.postgresql_psycopg2",

Имя БД или путь к файлу БД, если используется sqliteЗ.

"NAME": " { { proj_naмe } } ",

Не используется с sqliteЗ.

"USER": "{{ ргоj_nаме }}",

Не используется с sqliteЗ.

"PASSWORD": " { { db_pass } } ",

1 За более подробной информацией о шаблонах баз данных обращайтесь к документа­
ции Postgres: http://Ьit.ly/1F5AYpN.

122 ❖ Развертывание Mezzanine с помощью AnsiЫe

}

Для локального хоста можно указать пустую строку. Не используется с sqliteЗ.

"HOST": "127 .0.0.1",

Пустая строка соответствует порту по умолчанию. Не используется с sqliteЗ.

"PORT":

SECURE_PROXY _SSL_HEADER = ("НПР _X_FORWARDED_PROTOCOL", "https")

CACHE_MIDDLEWARE_SECONDS = 60

CACHE_МIDDLEWARE_KEY_PREFIX = "{{ proj_naf!le }}"

CACHES = {

"default": {

}

"BACKEND": "django.core.cache.backends.f!lef!lcached.Mef!lcachedCache",

"LOCAТION": "127.0.0.1:11211",

SESSION_ENGINE = "django.contrib.sessions.backends.cache"

Большая часть этого шаблона проста и понятна. Он использует синтаксис
{{ vагi.аЫе }} для вставки значений переменных, таких как secret_key, never­
cache_key, proj_nal'le и db_pass. Единственная неочевидная вещь - это строка,
приведенная в примере 6.16:

Пример 6.16 ❖ Использование цикла for в шаблоне Jinja2

ALLOWED_HOSTS = [{% fог dof!lain in dof!lains %}"{{ dof!lain }}",{% endfor %}]

Если вернуться к определению переменной, можно увидеть, что переменная
dol'lai.ns определена так:

dof!lains:

- 192.166.33.10.xip.io

- www.192.16B.33.10.xip.io

Система Mezzanine будет отвечать только на запросы к серверам, перечис­
ленным в списке в переменной do1ТJai.ns, в нашем случае http:f/192.168.33.10.xip.
io и http://www.192.168.33.10.xip.io. Если в Mezzanine поступит запрос к другому
хосту, сайт вернет ошибку «Bad Request (400)».

Нам нужно, чтобы эта строка в сгенерированном файле выглядела так:

ALLOWED_HOSTS = ["192.168.33.10.xip.io", "www,192.168.33.10.xip.io"]

Для этого можно использовать цикл fог, как показано в примере 6.16. Но
обратите внимание, что результат получается не совсем тот, которого мы до­
биваемся, - получающаяся строка содержит завершающую запятую:

ALLOWED_HOSTS = ["192.168.33.10.xip.io", "www,192.168.33.10.xip.io",]

Однако Python вполне устраивает наличие завершающей запятой в списке,
и мы можем оставить все, как есть.

Развертывание Mezzanine с помощью AnsiЫe ❖ 123

Что такое xip.io?

Вероятно, вы заметили, что используемые доменные имена выглядят немного
странно: 192.168.33.10.xip.io и www.192.168.33.10.xip.io. Они включают также IР­
адреса.
Переходя на сайт, вы практически всегда вводите в адресную строку браузе­
ра доменное имя, например http./jwww.ansiЫebook.com, вместо его IР-адреса
http.//151.101.192.133. Когда мы создаем сценарий развертывания Mezzanine
в Vagrant, мы должны настроить доступные имена или доменные имена.
Проблема заключается в том, что у нас нет DNS-записи, отображающей имя вир­
туальной машины Vagrant в IР-адрес (в нашем случае 192.168.33.10). Ничто не
мешает нам создать DNS-запись. Например, можно создать DNS-запись mezzanine­

intemal.ansiЫebook.com, указывающую на 192.168.33.10.

Однако, чтобы создать DNS-имя, которое разрешается в определенный IР-адрес,
можно воспользоваться удобной службой xip.io. Она предоставляется бесплатно,
и нам не придется создавать собственных DNS-записей. Если AAA.888.CCC.DDD- это
IР-адрес, тогда AAA.888.CCC.DDD.xip.io - это DNS-запись, разрешающаяся в адрес
AAA.888.CCC.DDD. Например, 192.168.33.10.xip.io разрешается в 192.168.33.10.

Кроме того, www.192.168.33.10.xip.io также разрешается в 192.168.33.10.
Мне кажется, xip.io - очень удобный инструмент для развертывания веб­
приложений с закрытыми IР-адресами с целью тестирования. С другой стороны,
вы можете просто добавить записи в файл /etc/hosts на локальной машине. Этот
прием будет работать даже в отсутствие подключения к Интернету.

Рассмотрим синтаксис цикла for в Jinja2. Чтобы было удобнее, разобьем его
на несколько строк:

ALLOWEO_HOSTS = [
{% for doмain in doмains %}

"{{ doмain }}",
{% endfor %}

Сгенерированный файл конфигурации, все еще корректный с точки зрения
Python, будет выглядеть, как показано ниже:

ALLOWEO_HOSTS = [
"192.168.33.10.xip.io",
"www.192.168.33.10.xip.io",

]

Обратите внимание, что цикл fог должен завершаться выражением{% end­
for %}. Также отметьте, что инструкции for и endfor заключены в операторные
скобки {%%}.Они отличаются от скобок { { } }, которые мы используем для под­
становки переменных.

Все переменные и факты, заданные в сценарии, доступны внутри шаблона
Jinja2, то есть нет необходимости явно передавать переменные в шаблон.

124 ❖ Развертывание Mezzanine с помощью AnsiЫe

ВЫПОЛНЕНИЕ КОМАНД DJANGO-MANAGE

Приложения Django используют особый сценарий manage.py (http://Ьit.ly/2iica5a)
для выполнения следующих административных действий:

О создания таблиц в базе данных;
О выполнения миграций баз данных;
О загрузки начальных данных в базу из файла;
О записи данных из базы в файл;
О копирования статических данных в соответствующий каталог.
В дополнение к встроенным командам, которые поддерживает тапаgе.ру,

приложения Django могут добавлять свои команды. Mezzanine, например, до­
бавляет свою команду createdb, которая используется для приведения базы дан­
ных в исходное состояние и копирования статических ресурсов в надлежащее
место. Официальные сценарии Fabric поддерживают аналогичные действия:

$ мanage.py createdb --notnput --nodata

В состав AnsiЫe входит модуль django_мanage, который запускает команды
мanage. ру. Мы можем использовать его так:

- паме: initialize the database
django_мanage:

соммапd: createdb --noinput --nodata
app_path: "{{ proj_path }}"
virtualenv: "{{ venv_path }}"

К сожалению, команда createdb, которую добавляет Mezzanine, не является
идемпотентной. При повторном запуске она завершится ошибкой:

TASK: [initialize the database] ***

f ailed: [web] => {"смd": "python мanage. ру createdb --noinput --nodata", "f ailed"
: tгue, "path": "/hoмe/vagrant/мezzanine_exaмp le/Ьin: /usr /loca l/sЬin: /usr /loca l/b
in: /usr /sЬin: /usr /Ьin: /sЬin: /Ьin: /usr /gaмes: /usr /loca l/gaмes", "state": "absent"
, "syspath": ["", "/usr/Hb/python2.7", "/usr/Hb/python2.7/plat-x86_64-Hnux-gnu
", "/usr/lib/python2.7/lib-tk", "/usr/lib/python2.7/lib-old", "/usr/lib/python2.7
/lib-dynload", "/usr/local/lib/python2.7/dist-packages", "/usr/lib/python2.7/dist
-packages"]}
мsg:
:stderr: СоммаndЕггог: Database already created, you ргоЬаЫу want the syncdb ог
мigrate соммаnd

К счастью, команда createdb эквивалентна двум идемпотентным встроен­
ным командам из мanage.py:

мi.grate
Создает и обновляет таблицы базы данных для моделей Django.

collectstati.c
Копирует статические ресурсы в надлежащие каталоги.

Развертывание Mezzanine с помощью AnsiЫe ❖ 125

Используя эти команды, можно реализовать идемпотентную задачу:
паме: apply мi.grati.ons to сгеаtе the database, collect stati.c content
django_мanage:

соммапd: "{{ Нем }}"
app_path: "{{ proj_path }}"
vi.rtualenv: "{{ venv_path }}"

with_ iteмs:
- syncdb
- collectstatic

ЗАПУСК своих СЦЕНАРИЕВ НА РvтноN

В КОНТЕКСТЕ ПРИЛОЖЕНИЯ
Для инициализации нашего приложения необходимо внести два изменения
в базу данных:

1. Создать объект модели Site (http://Ьit.ly/2hYWztG), содержащий доменное
имя сайта (в нашем случае 192.168.33.10.xip.io).

2. Задать имя пользователя с правами администратора и пароль.
Несмотря на то что все это можно сделать с помощью простых SQL-команд,

обычно это делается из кода на Python. Именно так решают эту задачу сцена­
рии Fabric в Mezzanine, и мы тоже пойдем этим путем.

Здесь есть два подводных камня. Сценарии на Python должны запускаться
в контексте созданного изолированного окружения, и окружение Python долж­
но быть настроено так, чтобы сценарий импортировал файл settings.py из ката­
лога -/mezzanine/mezzanine _ example/mezzanine _ example.

Когда мне требуется выполнить свой код на Python, я пишу свой модуль
для AnsiЫe. Однако, насколько я знаю, AnsiЫe не позволяет запускать модули
в контексте virtualenv. Поэтому данный вариант исключается.

Вместо этого я воспользовался модулем scri.pt. Он копируется поверх не­
стандартного сценария и выполняет его. Я написал два сценария: один - для
создания записи Site, другой - для создания учетной записи пользователя
с правами администратора.

Вы можете передавать аргументы модулю scri.pt через командную строку
и анализировать их. Но я решил передать аргументы через переменные окру­
жения. Мне не хотелось передавать пароли через командую строку (их можно
увидеть в списке процессов, который выводит команда ps), а кроме того, пере­
менные среды легче проанализировать в сценариях, чем аргументы команд­
ной строки.

�
AnsiЫe позволяет устанавливать переменные среды посредством выражения envi.ron­
мent, которое принимает словарь с именами и значениями переменных окружения. Вы­
ражение envi.ronмent можно добавить в любую задачу, если это не scri.pt.

126 ❖ Развертывание Mezzanine с помощью AnsiЫe

Для запуска сценариев в контексте изолированного окружения virtualenv

также необходимо установить переменную path, чтобы первый найденный

выполняемый сценарий на Python оказался внутри virtualenv. В примере 6.17

показан пример запуска двух сценариев.

Пример 6.17 ❖ Использование модуля script для запуска кода на Python

- nаме: set the site id
script: scripts/setsite.py
environмent:

РАТН: "{{ venv_path }}/bin"
PROJECT _DIR: " { { proj_path } } "
PROJECT _АРР: " { { proj_app } } "
WEBSIТE_DOMAIN: " { { live_hostnaмe } } "

nаме: set the adмin password
script: scripts/setadмin.py
environмent:

РАТН: "{{ venv_path }}/bin"
PROJECT _DIR: " { { proj_path } } "
PROJECT _АРР: " { { proj_app }}"
ADMIN_PASSWORD: "{{ adмin_pass }}"

Сами сценарии приводятся в примерах 6.18 и 6.19. Я поместил их в каталог

scripts.

Пример 6.18 ❖ scripts/setsite.py

#!/usr/bin/env python
Сценарий настраивает домен сайта
Предполагается наличие трех переменных окружения

WEBSITE_DOМAIN: домен сайта (например, www.exaмple.coм)
PROJECT_DIR: корневой каталог проекта
PROJECT_APP: имя проекта приложения
iмport os
iмport sys

Добавить путь к каталогу проекта в переменную окружения РАТН
proj_dir = os.path.expanduser(os.environ['PROJECT_DIR'))
sys.path.append(proj_dir)

proj_app = os.environ['PROJECT_APP')
os.environ['DJANGO_SETTINGS_MODULE'] = proj_app + '.settings'
iмport django
django.setup()
fгом django.conf iмport settings
fгом django.contrib.sites.l'IOdels iмport Site
doмain = os.environ['WEBSITE_DOМAIN']
Site.objects.filter(td=settings.SITE_ID).update(doмain=doмain)
Site.objects.get_or_create(doмain=doмain)

Пример 6.19 ❖ scripts/setadmin.py

#!/usг/Ыn/env python

Развертывание Mezzanine с помощью AnsiЫe ❖ 127

Сценарий настраивает учетную запись администратора
Предполагается наличие трех переменных окружения

PROJECT_DIR: каталог проекта (например, ~/ргоjпаме)
PROJECT_APP: Имя проекта приложения
ADMIN_PASSWORD: пароль администратора
iмрогt os
iмрогt sys

Добавить путь к каталогу проекта в переменную окружения РАТН
proj_dir = os.path.expanduser(os.environ['PROJECT_DIR'])
sys.path.append(proj_dir)

ргоj_арр = os.environ['PROJECT_APP']
os.environ['DJANGO_SETTINGS_MODULE'] = proj_app + '.settings'
iмрогt django
django.setup()
fгом django.contrib.auth iмрогt get_user_мodel
114 1 Chapter 6: Deploying Mezzanine with Ansi.Ыe
User = get_user_мodel()
u, _ = User.objects.get_or_create(useгnaмe='adмin')
u.is_staff = u.is_superuser = Тгuе
u.set_password(os.environ['ADMIN_PASSWORD'])
u. save()

Настройка конфигурационных файлов служб
Далее настроим конфигурационный файл для Gunicorn (сервера приложений),
Nginx (веб-сервера) и Supervisor (диспетчер процессов), как показано в приме­
ре 6.20. Шаблон файла конфигурации для Gunicorn приводится в примере 6.22,
а шаблон файла конфигурации для Supervisor - в примере 6.23

Пример 6.20 ❖ Нааройка файлов конфигурации

паме: set the gunicorn config file
teмplate:

sгс: teмplates/gunicorn.conf.py.j2
dest: "{{ proj_path }}/gunicorn.conf.py"

паме: set the supeгvisor config file
teмplate:

sгс: teмplates/supeгvisor.conf.j2
dest: /etc/supervisor/conf.d/мezzanine.conf

Ьесоме: Тгuе
notify: restaгt supervisor

паме: set the nginx config file
teмplate:

sгс: teмplates/nginx.conf.j2
dest: /etc/nginx/sites-availaЫe/мezzanine.conf

notify: restart nginx
Ьесоме: Тгuе

128 ❖ Развертывание Mezzanine с помощью AnsiЫe

Во всех трех случаях файлы конфигурации генерируются из шаблонов. Про­

цессы Supervisor и Nginx запускаются с привилегиями пользователя root (хотя
они тут же и понижают свои привилегии), поэтому нужно выполнить команду

sudo, чтобы получить право на доступ к файлам конфигурации.

Если файл конфигурации Supervisor изменится, AnsiЫe запустит обработчик

restart supervisor. Если изменится файл конфигурации Nginx, AnsiЫe запустит

обработчик restart nginx, как показано в примере 621.

Пример 6.21 ❖ Обработчики

handlers:
паме: restart supervisor
supervtsorctl: naмe=gunicorn_мezzanine state=restarted
sudo: Тгuе

- паме: restart nginx
service: naмe=nginx state=restarted
sudo: Тгuе

Пример 6.22 ❖ templates/gunicorn.conf.py.j2

fгом _future_ iмрогt unicode_literals
iмрогt мultiprocessing

Ыпd = "127.0.0.1:{{ gunicorn_port }}"
workers = мultiprocessing.cpu_count() * 2 + 1
loglevel = "еггог"
ргос_паме = "{{ ргоj_паме }}"

Пример 6.23 ❖ templates/su pervisor.conf.j2

[ргоgгам:{{ gunicorn_procnaмe }}]
соммапd={{ venv_path }}/Ыn/gunicorn -с gunicorn.conf.py -р gunicorn.ptd \

{{ proj_app }}.wsgi:application
directory={{ proj_path }}
user={{ user }}
autostart=true
stdout_logfile = /hоме/{{ user }}/logs/{{ ргоj_паме }}_supervisor
autorestart=true
redtrect_stderr=true
environмent=LдNG="{{ locale }}",LC_дLL="{{ locale }}",LC_LANG="{{ locale }}"

В примере 6.24 приводится единственный шаблон, в котором используется
дополнительная логика (кроме подстановки переменных). Он основан на ло­

гике выполнения по условию - если переменная tls_enaЫed имеет значение

true, выполняется включение поддержки TLS. В шаблоне там и сям можно уви­
деть операторы if, например:

{% if tls_enaЫed %}

{% endtf %}

Развертывание Mezzanine с помощью AnsiЫe ❖ 129

В нем также используется фильтр joi.n:

server_naмe {{ doмatnsljotn(", ") }};

Этот фрагмент кода ожидает, что переменная doмai.ns содержит список. Он
сгенерирует строку с элементами из doмai.ns, перечислив их через запятую.
В нашем случае список doмai.ns определен так:

doмatns:
· 192.168.33.10.xtp.to
· www.192.168.33.10.xtp.to

После применения шаблона получаем следующее:

server_naмe 192.168.33.10.xtp.to, www.192.168.33.10.xtp.to;

Пример 6.24 ❖ templates/nginx.conf.j2

upstreaм {{ proj_naмe }} {
server untx:{{ proj_path }}/guntcorn.sock fatl_ttмeout=0;

server {

li.sten 80;

{% tf tls_enaЫed %}
li.sten 443 ssl;
{% endtf %}
server_naмe {{ doмatnsljotn(", ") }};
cltent_мax_body_stze 10М;
keepaltve_ttмeout 15;

{% tf tls_enaЫed %}
ssl_certtftcate conf/{{ ргоj_паме }}.crt;
ssl_certtftcate_key conf/{{ proj_naмe }}.key;
ssl_sesston_cache shared:SSL:10м;
ssl_sesston_ttмeout 10м;
элемент ssl_ctpheгs слиwком длинный, чтобы показать его целиком в книге
См. https://gtthub.coм/anstЫebook/anstЫebook
ch06/playbooks/teмplates/ngtnx.conf.j2
ssl_prefer_server_ctphers оп;
{% endtf %}

locatton / {
proxy_redtrect
proxy_set_header
proxy_set_header
proxy_set_header
proxy_set_header
proxy_pass

locatton /stattc/ {

off;
Host $host;
X-Real-IP $reмote_addr;
X-Forwarded-For $proxy_add_x_forwarded_for;
X-Forwarded-Protocol $scheмe;
http://{{ ргоj_паме }};

root { { proj_path } } ;

130 ❖ Развертывание Mezzanine с помощью Ansiьte

access_log off;
log_not_found off;

}

location /robots.txt {
root {{ proj_path }}/static;
access_log off;
log_not_found off;

location /favicon.ico {

}

root {{ proj_path }}/static/iмg;
access_log off;
log_not_found off;

АКТИВАЦИЯ КОНФИГУРАЦИИ NGINX
По соглашениям, принятым для файлов конфигурации Nginx, они должны по­
мещаться в каталог /etc/nginx/sites-availaЫe и активироваться символической
ссылкой в каталог /etc/nginx/sites-enaЫed.

Сценарии Fabric Mezzanine просто копируют файл конфигурации непо­
средственно в sites-enaЫed. Но я собираюсь отклониться от способа, принятого
в Mezzanine, и использовать модуль fi. le для создания символической ссылки.
Также нужно удалить файл конфигурации, который создает пакет Nginx в /etc/
nginx/sites-enabled/default.

Как показано в примере 6.25, я использовал модуль fi. le, чтобы создать сим­
волическую ссылку и удалить конфигурационный файл по умолчанию. Этот
модуль удобно использовать для создания каталогов, символических ссылок
и пустых файлов; удаления файлов, каталогов и символических ссылок; и для
настройки свойств, таких как разрешения и принадлежность.

Пример 6.25 ❖ Активация конфигурации Nginx

паме: епаЫе the nginx config file
Hle:

src: /etc/nginx/sites-availaЫe/мezzanine.conf
dest: /etc/nginx/sites-enaЫed/мezzanine.conf
state: Hnk

Ьесоме: True

паме: гемоvе the default nginx config file
file: path=/etc/nginx/sites-enaЫed/default state=absent
notify: restart nginx
Ьесоме: True

Установка сертификатов TLS
В нашем сценарии определяется переменная tls_enaЫed. Если она получает
значение true, сценарий установит сертификаты TLS. В нашем примере мы ис-

Развертывание Mezzanine с помощью AnsiЫe ❖ 131

пользуем самоподписанный сертификат, поэтому сценарий создаст сертифи­
кат, если он не существует.

В условиях промышленной эксплуатации необходимо скопировать сущест­
вующий сертификат TLS, который вы получили от центра сертификации.

В примере 6.26 представлены две задачи, которые вовлечены в процесс на­
стройки сертификатов TLS. Модуль fi. le используется, чтобы при необходимо­
сти создать каталог для сертификатов TLS.

Пример 6.26 ❖ Установка сертификатов TLS

- nаме: ensure config path exists
file: path={{ conf_path }} state=directory
sudo: True
when: tls_enaЫed

- nаме: create tls certificates
соммаnd: >

openssl req -new -х509 -nodes -out {{ proj_naмe }}.сгt
-keyout {{ proj_naмe }}.key -subj '/CN={{ doмains[0] }}' -days 3650
chdir={{ conf_path }}
creates={{ conf_path }}/{{ proj_naмe }}.crt

sudo: True
when: tls_enaЫed
notify: restart nginx

Обратите внимание, что обе задачи содержат выражение:

when: tls_enaЫed

Если значение tls_enaЫed равно false, AnsiЫe пропустит задачу.
В AnsiЫe нет модулей для создания сертификатов TLS, поэтому приходится

использовать модуль C01'11'1and и с его помощью запускать команды openssl для
создания самоподписанного сертификата. Поскольку команда очень длинная,
мы используем возможность свертки строк в УАМL (подробности см. в разделе
«Объединение строк» в главе 2), чтобы разбить команду на несколько строк.

Две строки в конце команды содержат дополнительные параметры, пере­
даваемые модулю. Они не передаются в командную строку.

chdir={{ conf_path }}
creates={{ conf_path }}/{{ proj_naмe }}.crt

Параметр chdi.r изменяет каталог перед запуском команды. Параметр cre­
ates обеспечивает идемпотентность - AnsiЫe сначала проверит наличие файла
{{ conf_path }}/{{ proj_nal'1e }}.crt на хаете и, если он существует, пропустит эту
задачу.

УСТАНОВКА ЗАДАНИЯ CRON ДЛЯ TWITTER

Если выполнить команду 1'1anage. ру ро l l_ twi. tter, Mezzanine извлечет твиты из
настроенных учетных записей и поместит их на домашнюю страницу. Сцена-

132 ❖ Развертывание Mezzanine с помощью AnsiЫe

рии Fabric, поставляемые с Mezzanine, поддерживают актуальность сообщений
с помощью задания cron, которое вызывается каждые пять минут.

Если в точности следовать за сценариями Fabric, мы должны скопировать
сценарий с заданием cron в каталог /etc/cron.d. Для этого можно бы использо­
вать модуль tel'1p late, но в состав AnsiЫe входит модуль cron, который позволяет
создавать и удалять задания cron, что, на мой взгляд, более изящно. В приме­
ре 6.27 представлена задача, которая устанавливает задание cron.

Пример 6.27 ❖ Установка задания сгоn для синхронизации с Twitter

· nаме: i.nstall poll twi.tter сгоn job

сгоn: naмe="poll twi.tter" мi.nute="*/5" user={{ user }} job="{{ мanage }} \

poll_twltteг"

Если вручную подключиться к настраиваемой машине по SSH, командой

crontab - l можно убедиться, что требуемое задание присутствует в общем спис­
ке. Вот как все это выглядит у меня:

#Ansi.Ыe: poll twi.tter

*/5 * * * * /hoмe/vagrant/.vi.rtualenvs/мezzani.ne_exaмple/Ыn/python \
/hoмe/vagrant/мezzani.ne/мezzani.ne_exaмple/мanage.py poll_twi.tter

Обратите внимание на комментарий в первой строке. Благодаря таким ком­
ментариям модуль cron поддерживает удаление заданий по именам. Следую­
щая задача:

• nаме: гемоvе сгоn job

сгоn: naмe="poll twi.tter" state=absent

вызовет модуль cron, который отыщет строку комментария с указанным име­
нем и удалит задание.

(ЦЕНАРИЙ ЦЕЛИКОМ
В примере 6.28 представлен полный сценарий во всем своем великолепии.

Пример 6.28 ❖ mezzanine.yml: сценарий целиком

• nаме: Deploy мezzani.ne

hosts: web

vaгs:
user: "{{ ansi.Ыe_user }}"
ргоj_арр: мezzani.ne_exaмple

ргоj_nаме: "{{ ргоj_арр }}"
venv_hoмe: "{{ ansi.Ыe_env.HOME }}/.vi.rtualenvs"

venv_path: "{{ venv_hoмe }}/{{ ргоj_nаме }}"

proj_path: " { { ansi.Ыe_env. НОМЕ } } /мezzani.ne/ { { ргоj_nаме } } "
setti.ngs_path: "{{ proj_path }}/{{ ргоj_nаме }}"

reqs_path: гequi.reмents.txt

мanage: "{{ python }} {{ proj_path }}/мanage.py"

ltve_hostnaмe: 192.168.33.10.xtp.to

doмatns:

- 192.168.33.10.xtp.to

- www,192.168.33.10.xtp.to

Развертывание Mezzanine с помощью AnsiЫe ❖ 133

repo_url: gtt@gtthub.coм:anstЫebook/мezzantne_exaмple.gtt

locale: en_US.UTF-8

Переменные ниже отсутствуют в сценарии fabftle.py установки Mezzantne

#ноя добавил их для удобства

conf_path: /etc/ngtnx/conf

tls_enaЫed: Тгuе

python: " { { venv _path } } /Ыn/python"

database_naмe: " { { proj_naмe } } "

database_user: " { { ргоj_nаме } } "

database_host: localhost

database_port: 5432

guntcorn_procnaмe: guntcorn_мezzantne

nuм_workers: "мulttprocesstng.cpu_count() * 2 + 1"

vars_ftles:

- secrets.yмl

tasks:

nаме: tnstall apt packages

apt: pkg={{ iteм }} update_cache=yes cache_valid_tiмe=3600

Ьесоме: Тгuе

wtth_tteмs:

gtt

ltbjpeg-dev

ltbpq-dev

мемсасhеd

nginx

postgresql

python-dev

python-ptp

python-psycopg2

python-setuptools

python-virtualenv

supervisor

nаме: сгеаtе project path

file: path={{ proj_path }} state=directory

nаме: сгеаtе а logs dtrectory

ftle:

path: " { { ansiЫe_env. НОМЕ } } /logs"

state: diгectory

nаме: check out the reposttory on the host

git: геро={{ repo_url }} dest={{ proj_path }} accept_hostkey=yes

nаме: tnstall Python requtreмents globally vta ptp

ptp: nаме={{ tteм }} state=latest

wtth_tteмs:

pip

- vtrtualenv

- virtualenvwrapper

Ьесоме: Тгuе

134 ❖ Развертывание Mezzanine с помощью АпsiЫе

паме: сгеаtе project locale

locale_gen: паме={{ locale }}

Ьесоме: Тгuе

паме: сгеаtе а DB user

postgresql_user:

паме: " { { database_useг } } "

password: "{{ db_pass }}"

Ьесоме: Тгuе

Ьесоме_usег: postgres

паме: сгеаtе the database

postgresql_db:

паме: " { { database_naмe } } "

owner: "{{ database_user }}"

encodi.ng: UTFB

lc_ctype: " {{ loca le } } "

lc_collate: "{{ locale }}"

teмplate: teмplate0

Ьесоме: Тгuе

becoмe_user: postgres

паме: ensure confi.g path exi.sts

fi.le: path={{ conf_path }} state=di.rectory

Ьесоме: Тгuе

паме: сгеаtе tls certi.fi.cates

соммапd: >

openssl req -new -х509 -nodes -out {{ ргоj_паме }}.сгt

-keyout {{ ргоj_паме }}.key -subj '/CN={{ doмai.ns[0] }}' -days 3650
chdi.r={{ conf_path }}

creates={{ conf_path }}/{{ ргоj_паме }}.сгt

Ьесоме: Тгuе

when: tls_enaЫed

noti.fy: restart ngi.nx

паме: гемоvе the default ngi.nx confi.g fi.le

fi.le: path=/etc/ngi.nx/si.tes-enaЫed/default state=absent

noti.fy: restart ngi.nx

Ьесоме: Тгuе

паме: set the ngi.nx confi.g fi.le

teмplate:

src=teмplates/ngi.nx.conf.j2

dest=/etc/ngi.nx/si.tes-avai.laЫe/мezzani.ne.conf

noti.fy: restart ngi.nx

Ьесоме: True

паме: епаЫе the ngi.nx confi.g fi.le

fi. le:

sгс: /etc/ngi.nx/si.tes-avai.laЫe/мezzani.ne.conf

dest: /etc/ngi.nx/si.tes-enaЫed/мezzani.ne.conf

state: li.nk
Ьесоме: Тгuе

noti.fy: restart ngi.nx

паме: set the supervi.sor confi.g fi.le

teмplate:

src=teмplates/supervi.sor.conf.j2

Развертывание Mezzanine с помощью AnsiЫe ❖ 135

dest=/etc/supervisor/conf.d/мezzanine.conf

Ьесоме: True

notify: restart supervisor

nаме: install poll twitter cron job

cron:

naмe="poll twitter"

мinute="*/5"

user={{ user }}

job="{{ мanage }} poll_twitter"

nаме: set the gunicorn config file

teмplate:

src=teмplates/gunicorn.conf.py.j2

dest={{ proj_path }}/gunicorn.conf.py

nаме: generate the settings file

teмplate:

src=teмplates/local_settings.py.j2

dest={{ settings_path }}/local_settings.py

nаме: install requireмents.txt

pip: requireмents={{ proj_path }}/{{ reqs_path }} virtualenv={{ venv_path }}

nаме: install required python packages

pip: nаме={{ iteм }} virtualenv={{ venv_path }}

with_ iteмs:

gunicorn

setproctitle

psycopg2

django-coмpressor

python-мeмcached

nаме: apply мigrations to create the database, collect static content

django_мanage:

соммаnd: "{{ Нем }}"

app_path: "{{ proj_path }}"

virtua lenv: " { { venv _path } } "

with_ iteмs:

- мigrate

- collectstatic

nаме: set the site id

script: scripts/setsite.py

environмent:

РАТН: "{{ venv_path }}/Ыn"

PROJECT_DIR: "{{ proj_path }}"

PROJECT _АРР: " { { proj_app } } "

WEBSIТE_DOMAIN: " { { live_hostnaмe } } "

nаме: set the adмin password

script: scripts/setadмin.py

environмent:

РАТН: "{{ venv_path }}/Ыn"

PROJECT_DIR: "{{ proj_path }}"

PROJECT _АРР: " { { proj_app } } "

ADMIN_PASSWORD: "{{ adмin_pass }}"

handlers:

- nаме: restart supervisor

136 ❖ Развертывание Mezzanine с помощью AnsiЫe

supervi.sorctl: "nаме={ { guni.corn_procnaмe } } state=restarted"

Ьесоме: True

- nаме: restart ngi.nx

servi.ce: naмe=ngi.nx state=restarted

Ьесоме: True

ЗАПУСК СЦЕНАРИЯ НА МАШИНЕ V AGRANT

Переменные li.ve_hostnaмe и doмai.ns в нашем сценарии предполагают, что хост,
на котором должна быть развернута система,доступен по адресу 192.168.33.10.
Файл Vagrantfile, что приводится в примере 6.29, настраивает машину Vagrant
с этим IР-адресом.

Пример 6.29 ❖ Vagrantfile

VAGRANTFILE_API_VERSION = "2"

Vagrant.confi.gure(VAGRANTFILE_API_VERSION) do iconfi.gl

confi.g.vм.box = "ubuntu/trusty64"

confi.g.vм.network "pri.vate_network", i.p: "192.168.33.10"

end

Развертывание Mezzanine на машине Vagrant выполняется командой

$ ansi.Ыe-playbook l'IE!zzani.ne.yмt

После этого можно увидеть готовый сайт Mezzanine по любому из перечис-
ленных ниже адресов:

О http:!/192.168.33.10.xip.io;
О https://192.168.33.10.xip.io;
О http://www.192.168.33.10.xip.io;
О https://www.192.168.33.10.xip.io.

УСТРАНЕНИЕ ПРОБЛЕМ

При попытке выполнить сценарий на своей локальной машине вы можете
столкнуться с несколькими проблемами. В этом разделе описываются некото­
рые типичные проблемы и способы их преодоления.

Не получается извлечь файлы иэ репоэитория Git
Вы можете увидеть, как задача с именем «check out the repository on the host»
завершается со следующей ошибкой:

fatal: Could not read froм reмote reposi.tory.

Для ее исправления удалите предопределенный элемент для 192.168.33.10
из своего файла -/.ssh/known_hosts. Подробности смотрите во врезке «Непра­
вильный ключ хоста может повлечь проблемы даже при отключенной провер­
ке ключа» в приложении А.

Развертывание Mezzanine с помощью AnsiЫe ❖ 137

Недоступен хост с адресом 192.168.33.10.xip.io
Некоторые маршрутизаторы WiFi имеют встроенный сервер DNS, который не
распознает имя хоста 192.168.33.10.xip.io. Проверить это можно следующей ко­
мандой:

d1g +short 192.168.33.10.xip.10

Она должна вывести:

192.168.33.10

Если выводится пустая строка, значит, ваш сервер DNS не распознает имена
хостов xip.io. В этом случае добавьте в свой файл /etc/hosts следующую строку:

192.168.33.10 192.168.33.10.xip.1O

Bad Request (400)
Если ваш браузер вывел сообщение об ошибке «Bad Request (400)», это, скорее
всего, связано с попыткой достичь сайта Mezzanine с использованием имени
хоста или IР-адреса, который не включен в список ALLOWED_HOSTS в конфигура­
ционном файле Mezzanine. Этот список заполняется по содержимому пере­
менной do111ai.ns, объявленной в сценарии AnsiЬle:

doмa1ns:

- 192.168.33.10.xip.10

- www.192.168.33.10.x1p.1o

УСТАНОВКА MEZZANINE НА НЕСКОЛЬКИХ МАШИНАХ

Мы развернули Mezzanine на одной-единственной машине. Однако нередко
база данных устанавливается на отдельном хаете. В главе 7 мы рассмотрим
сценарий, который устанавливает базу данных и веб-службы на разные хосты.

Теперь вы знаете, как осуществляется развертывание обычного приложения
с поддержкой Mezzanine. В следующей главе мы рассмотрим другие возмож­
ности AnsiЫe, не использованные в нашем примере.

Глава 7
•••

Роли:масштабирование

сценария

Одной из особенностей AnsiЫe, вызывающих у меня восхищение, является
вертикальное масштабирование - вверх и вниз. Здесь я имею в виду не коли­
чество хостов, а сложность автоматизируемых задач.

Масштабирование вниз обусловлено простотой разработки отдельных за­
дач. Масштабирование вверх упрощается благодаря механизмам деления
сложных задач на небольшие части.

Роли в AnsiЫe - это основной механизм деления сценария на отдельные
файлы. Они упрощают написание сценариев и их повторное использование.
Думайте о роли как о чем-то, применяемом к одному или нескольким хостам.
Например, хостам, которые будут выступать в роли серверов баз данных, мож­

но присвоить роль database.

БАЗОВАЯ СТРУКТУРА РОЛИ

Роль в AnsiЫe имеет имя, например database. Файлы, связанные с ролью data­
base, хранятся в каталоге roles/database, содержащем следующие файлы и ката­

логи:

О roles/database/tasks/main.yml - задачи;
О roles/database/files/ - файлы, выгружаемые на хосты;
О roles/database/templates/ - файлы шаблонов Jinja2;
О roles/database/handlers/main.yml - обработчики;
О roles/database/vars/main.yml - переменные, которые не должны пере­

определяться;
О roles/database/defaults/main.yml - переменные, которые могут переопре­

деляться;
О roles/database/meta/main.yml - информация о зависимостях данной роли.
Все файлы являются необязательными. Если роль не имеет обработчиков,

тогда нет необходимости создавать пустой файл handlers/main.yml.

Роли: масштабирование сценария ❖ 139

Где Ansible будет искать мои роли?

AnsiЫe обращается к ролям, хранящимся в подкаталоге roles, в каталоге со сце­

нарием. Системные роли можно помещать в /etc/ansiЬle/roles. Местоположение

системных ролей можно изменить, переопределив параметр roles_path в секции

defaults файла ansiЫe.cfg, как показано в примере 7.1.

Пример 7.1 ❖ ansiЫe.cfg: изменение пути к каталогу с системными ролями

[defaults]
roles_path = ~/ansiЫe_roles

То же самое можно сделать, изменив переменную окружения ANSIBLE_ROLES_PATH,

как показано в приложении В.

ПРИМЕРЫ РОЛЕЙ: DATABASE И MEZZANINE
Возьмем за основу наш сценарий развертывания Mezzanine и изменим его, ре­
ализовав роли. Можно было бы создать единственную роль с именем riezzan'i.ne,

но я дополнительно выделю развертывание базы данных Postgres в отдельную
роль с именем database. Это упростит развертывание базы данных на хосте, от­
личном от хоста для приложения Mezzanine.

ИспользоВАНИЕ РОЛЕЙ в СЦЕНАРИЯХ

Прежде чем погрузиться в детали определения ролей, посмотрим, как назна­
чать роли к хостам в сценариях. В примере 7.2 представлен наш сценарий для
развертывания Mezzanine на единственном хаете после добавления ролей da -

tabase и riezzan'i.ne.

Пример 7.2 ❖ mezzanine-single-host.yml

- nаме: deploy мezzanine on vagrant
hosts: web
vars_files:

- secrets.yмl

roles:
- role: database

database_naмe: "{{ мezzanine_proj_naмe }}"
database_user: "{{ мezzanine_proj_naмe }}"

- role: мezzanine
live_hostnaмe: 192.168.33.10.xip.io
doмains:

- 192.168.33.10.xip.io
- www.192.168.33.10.xip.io

При использовании ролей в сценарии должна иметься секция roles со спис­
ком ролей. В нашем примере список содержит две роли - database и riezzan'i.ne.

140 ❖ Роли: масштабирование сценария

Обратите внимание, как можно передавать переменные при вызове ролей.
В нашем примере мы передаем роли database переменные database_na111e и da -
tabase_user. Если эти переменные уже были определены для роли (в vars/main.
yml или defaults/main.yml), их значения будут переопределены переданными
здесь.

Если ролям не передаются никакие переменные, можно просто определить
имена ролей:

roles:

- database

- l'lezzani.ne

После определения ролей database и 111ezzani.ne написание сценария для раз­
вертывания веб-приложения и базы данных на нескольких хостах становит­
ся намного проще. В примере 7.3 приводится сценарий развертывания базы
данных на хаете db и веб-службы на хаете web. Обратите внимание, что этот
сценарий содержит две отдельные операции.

Пример 7.3 ❖ mezzanine-across-hosts.yml

- nal'le: deploy postgres on vagrant

hosts: db

vars_Пles:

- secrets.yl'll

roles:

- role: database

database_nal'le: "{{ l'lezzani.ne_proj_nal'\e }}"

database_user: "{{ l'lezzani.ne_proj_nal'\e }}"

nal'le: deploy l'lezzani.ne on vagrant

hosts: web

vars_fi.les:

- secrets.yl'll

roles:

- role: l'\ezzani.ne

database_host: "{{ hostvars.db.ansi.Ыe_eth1.i.pv4.address }}"

li.ve_hostnal'le: 192.168.33.10.xi.p.i.o

dol'\ai.ns:

- 192.168.33.10.xi.p.i.o

- www.192.168.33.10.xi.p.i.o

ПРЕДВАРИТЕЛЬНЫЕ И ЗАКЛЮЧИТЕЛЬНЫЕ ЗДДАЧИ
Иногда требуется запускать некоторые задачи до или после запуска ролей. До­
пустим, необходимо обновить кэш диспетчера apt перед развертыванием Mez­
zanine, а после развертывания отправить уведомление в канал Slack.

AnsiЫe позволяет определить списки задач для выполнения до и после вы­
зова роли. Эти задачи необходимо определить в секциях pre_tasks и post_tasks
соответственно. В примере 7.4 представлен один из вариантов.

Роли: масштабирование сценария ❖ 141

Пример 7.4 ❖ Списки задач для выполнения до и после вызова роли

- паме: deploy мezzanine оп vagrant

hosts: web

vars_files:

- secrets.yмl

pre_tasks:

- паме: update the apt cache

apt: update_cache=yes

roles:

- гоlе: мezzanine

database_host: "{{ hostvars.db.ansiЫe_ethl.ipv4.address }}"

live_hostnaмe: 192.168.33.10.xip.io

doмains:

- 192.168.33.10.xip.io

- www.192.168.33.10.xip.io

post_tasks:

- паме: notify Slack that the servers have Ьееп updated

local_action: >

slack

doмain=acмe.slack.coм

token={{ slack_token }}

мsg="web server {{ inventory_hostnaмe }} configuгed"

Но хватит об использовании ролей; поговорим лучше об их написании.

Роль DATABASE для РАЗВЕРТЫВАНИЯ БАЗЫ ДАННЫХ

Задачей нашей роли database являются установка Postgres и создание необхо­

димых базы данных и пользователя.

Все аспекты роли database определяются в следующих файлах:

О roles/database/tasks/main.yml;
О roles/database/defaults/main.yml;
О roles/database/handlers/main.yml;
О roles/ database/files/pg_ hba. conf;
О roles/database/files/postgresql.conf
Эта роль включает два особых файла конфигурации Postgres.

postgresql.conf
Изменяет заданный по умолчанию параметр l i.sten_addresses, чтобы Post­

gres принимал соединения на любом сетевом интерфейсе. По умолчанию

Postgres принимает соединения только от loca lhost, что нам не подходит для

случая, когда база данных развертывается на отдельном хосте.

pg_hba.conf
Настраивает режим аутентификации в Postgres по сети, с использованием

имени пользователя и пароля.

142 ❖ Роли: масштабирование сценария

Я не привожу здесь этих файлов, поскольку они достаточно большие. Вы найдете их
в примерах кода в каталоге chOB, на странице https://github.com/ansiЫebook/ansiЫe­
book.

В примере 7.5 показаны задачи, вовлеченные в процесс развертывания Post­
gres.

Пример 7.5 ❖ roles/database/tasks/main.yml

паме: install apt packages
apt: pkg={{ iteм }} update_cache=yes cache_valid_tiмe=3600
Ьесоме: True
with_ iteмs:

Hbpq-dev
- postgгesql
- python-psycopg2

паме: сору configuration file
сору: >

src=postgresql.conf dest=/etc/postgresql/9.3/мain/postgresql.conf
owner=postgres group=postgres моdе=0644

Ьесоме: True
notify: restart postgres

паме: сору client authentication configuration file
сору: >

src=pg_hba.conf dest=/etc/postgresql/9.3/мain/pg_hba.conf
owner=postgres group=postgres моdе=0640

Ьесоме: Тгuе
notify: restart postgres

паме: сгеаtе project locale
locale_gen: паме={{ locale }}
Ьесоме: Тгuе

паме: create а user
postgresql_user:

паме: "{{ database_user }}"
password: "{{ db_pass }}"

Ьесоме: True
Ьесоме_usег: postgres

паме: create the database
postgresql_db:

паме: "{{ database_naмe }}"
оwпег: " { { database_user } } "
encoding: UTF8
lc_ctype: "{{ locale }}"
lc_co llate: " { { loca le } } "
teмplate: teмplate0

Ьесоме: True
becoмe_user: postgres

В примере 7.6 представлен файл обработчиков.

Пример 7.6 ❖ roles/database/handlers/main.yml

- nаме: restart postgres

service: naмe=postgresql state=restarted

Ьесоме: Тгuе

Роли: масштабирование сценария ❖ 143

Единственной переменной по умолчанию, которую мы определим, является
порт базы данных, как показано в примере 7. 7.

Пример 7.7 ❖ roles/database/defaults/main.yml

database_port: 5432

Обратите внимание, что в списке задач упоминается несколько перемен-
ных, которые не определены в роли:

О database_naмe;
О database_user;
О db_pass;

О locale.

Переменные database_naмe и database_user передаются в вызов роли в приме­
рах 7.2 и 7.3. Переменная db_pass будет определена в файле secrets.yml, который
включен в секцию vars_fHes. Переменная locale, вероятно, будет иметь одно
и то же значение для всех хостов и может быть использована разными ролями
или сценариями, поэтому я определю ее в файле group_vars/all.

Зачем два разных способа определения переменных в ролях?

Когда в AnsiЫe впервые появилась поддержка ролей, переменные для них можно

было определить только в vars/main.ym/. Переменные, объявленные в этом файле,

имели более высокий приоритет, чем переменные в секции vars сценария. Такие

переменные можно было переопределить, только передав их в вызов роли в виде

аргументов.

Позднее в AnsiЫe появилось понятие переменных по умолчанию для ролей,опреде­

ляемых в defau/ts/main.yml. Переменные этого типа определяются в ролях и имеют

низкий приоритет, то есть их можно переопределить, если объявить эти же пере­

менные с другими значениями в сценарии.

Если вы считаете, что значение переменной в роли может понадобиться изменить,

объявите ее как переменную по умолчанию. Если переменные не должны изме­

няться, объявляйте их как обычные переменные.

Роль MEZZANINE ДЛЯ РАЗВЕРТЫВАНИЯ MEZZANINE
Задачей роли мezzani.ne является установка Mezzanine. Сюда входят установка
Nginx в качестве обратного прокси и Supervisor в качестве монитора процессов.

Ниже перечислены файлы, реализующие роль:
О roles/mezzanine/defaults/main.yml;
О roles/mezzanine/handlers/main.yml;
О roles/mezzanine/tasks/django.yml;

144 ❖ Роли: масштабирование сценария

О roles/mezzanine/tasks/main.yml;
О roles/mezzanine/tasks/nginx.yml;
О roles/mezzanine/templates/gunicorn.confpy.j2;
О roles/mezzanine/templates/local_settings.py.filters.j2;
О roles/mezzanine/templates/local_settings.py.j2;
О roles/mezzanine/templates/nginx.confj2;
О roles/mezzanine/templates/supervisor.confj2;
О roles/mezzanine/vars/main.yml.
В примере 7.8 показаны переменные для данной роли. Обратите внимание,

что мы изменили их имена так, чтобы они начинались с l'lezzani.ne. Это хорошее
правило выбора имен переменных для ролей, поскольку в AnsiЫe нет отдель­
ного пространства имен для ролей. Это значит, что переменные, объявленные
в других ролях или где-то еще в сценарии, будут доступны повсеместно. Такое
поведение может приводить к нежелательным последствиям, если случайно
использовать одно и то же имя переменной в двух разных ролях.

Пример 7.8 ❖ roles/mezzanine/vars/main.yml

файл vars для мezzani.ne

мezzani.ne_user: " { { ansi.Ыe_user } } "

мezzani.ne_venv_hoмe: "{{ ansi.Ыe_env.HOME }}"

мezzani.ne_venv_path: "{{ мezzani.ne_venv_hoмe }}/{{ мezzani.ne_proj_naмe }}"

мezzani.ne_repo_url: gi.t@gi.thub.coм:lori.n/мezzani.ne-exaмple.gi.t

мezzani.ne_proj_di.rnaмe: project

мezzani.ne_proj_path: "{{ мezzani.ne_venv_path }}/{{ мezzani.ne_proj_di.rnaмe }}"

мezzani.ne_reqs_path: гequi.reмents.txt

мezzani.ne_conf_path: /etc/ngi.nx/conf

мezzani.ne_python: "{{ мezzani.ne_venv_path }}/Ыn/python"

мezzani.ne_мanage: "{{ мezzani.ne_python }} {{ мezzani.ne_proj_path }}/мanage.py"

мezzani.ne_guni.corn_port: 8000

В примере 7.9 показаны переменные по умолчанию для роли 111ezzani.ne.
В данном случае определена лишь одна переменная. Объявляя переменные по
умолчанию, я обычно не использую префикс с именем роли, потому что могу
целенаправленно изменить их где-то еще.

Пример 7.9 ❖ roles/mezzanine/defaults/main.yml

tls_enaЫed: True

Поскольку список задач получился достаточно большим, я решил разбить
его на несколько файлов. В примере 7.10 показан файл с задачей верхнего
уровня для роли 111ezzani.ne. Она устанавливает арt-пакеты, а затем использует
инструкции i.nclude, чтобы запустить задачи в двух других файлах, находящих­
ся в том же каталоге (см. примеры 7.11 и 7.12).

Пример 7.10 ❖ roles/mezzanine/tasks/main.yml

nаме: i.nstall apt packages

apt: pkg={{ i.teм }} update_cache=yes cache_vali.d_ti.мe=3600

becofТle: Т rue
wi. th_ i. tefТls:

gi.t
li.bjpeg-dev
li.bpq-dev
fТlefТlcached
ngi.nx
python-dev
python-pi.p
python-psycopg2
python-setuptools
python-vi.rtualenv
supervi.sor

i.nclude: django.yfТll

i.nclude: ngi.nx.yfТll

Пример 7.11 ❖ roles/mezzanine/tasks/django.yml

nafТle: create а logs di.rectory

Роли: масштабирование сценария ❖ 145

fi.le: path="{{ ansi.Ыe_env.HOME }}/logs" state=di.rectory

nafТle: check out the reposi.tory оп the host
gi.t:

repo: "{{ fТlezzani.ne_repo_url }}"
dest: "{{ fТlezzani.ne_proj_path }}"
accept_hostkey: yes

nafТle: i.nstall Python requi.refТlents globally vi.a pi.p
pi.p: nafТle={{ i.tefТI }} state=latest
wi. th_ i. tefТls:

pi.p
vi.rtualenv
vi.rtualenvwrapper

nafТle: i.nstall requi.red python packages
pi.p: nafТle={{ i.tefТI }} vi.rtualenv={{ fТlezzani.ne_venv_path }}
wi. th_ i. tefТls:

guni.corn
setprocti.tle
psycopg2
django-col'lpressor
python-fТlefТlcached

nafТle: i.nstall requi.refТlents.txt
pi.p: >

requi.refТlents={{ fТlezzani.ne_proj_path }}/{{ fТlezzani.ne_reqs_path }}
vi.rtualenv={{ fТlezzani.ne_venv_path }}

nafТle: generate the setti.ngs fi.le
tel'lplate: src=local_setti.ngs.py.j2 dest={{ fТlezzani.ne_proj_path }}/local_setti.ngs.py

nafТle: apply fТli.grati.ons to create the database, collect stati.c content
django_fТlanage:

146 ❖ Роли: масштабирование сценария

COl'll'land: "{{ i.tel'I }}"
app_path: "{{ l'lezzani.ne_proj_path }}"
vi.rtualenv: "{{ l'lezzani.ne_venv_path }}"

wi. th_ i. tel'IS:
l'li.grate

- collectstati.c

nal'le: set the si.te i.d
scri.pt: scri.pts/setsi.te.py
envi.ronl'lent:

РАТН: "{{ l'lezzani.ne_venv_path }}/Ыn"
PROJECT _DIR: " {{ l'lezzani.ne_proj_path } } "

PROJECТ _АРР: " { { l'lezzani.ne_proj_app } } "

WEBSIТE_DOMAIN: "{{ li.ve_hostnal'le }}"

nal'le: set the adl'li.n password
scri.pt: scri.pts/setadl'li.n.py
envi.ronl'lent:

РАТН: "{{ riezzani.ne_venv_path }}/Ыn"
PROJECT_DIR: " { { l'lezzani.ne_proj_path } } "

PROJECT _АРР: " {{ l'lezzani.ne_proj_app } }"

ADMIN_PASSWORD: " { { adrii.n_pass } } "

narie: set the guni.corn confi.g fi.le
teriplate: src=guni.corn.conf.py.j2 dest={{ riezzani.ne_proj_path }}/guni.corn.conf.py

nal'le: set the supervi.sor confi.g fi.le
tel'lplate: src=supervi.sor.conf.j2 dest=/etc/supervi.sor/conf.d/riezzani.ne.conf
becol'le: True
noti.fy: restart supervi.sor

nal'le: ensure confi.g path exi.sts
fi.le: path={{ l'lezzani.ne_conf_path }} state=di.rectory
becol'le: True
when: tls_enaЫed

narie: i.nstall poll twi.tter cron job
cron: >

narie="poll twi.tter" rii.nute="*/5" user={{ riezzani.ne_user }}
job="{{ riezzani.ne_rianage }} poll_twi.tter"

Пример 7.12 ❖ roles/mezzanine/tasks/nginx.yml

narie: set the ngi.nx confi.g fi.le
teriplate: src=ngi.nx.conf.j2 dest=/etc/ngi.nx/si.tes-avai.laЫe/riezzani.ne.conf
noti.fy: restart ngi.nx
becorie: True

narie: еnаЫе the ngi.nx confi.g fi.le
fi.le:

src: /etc/ngi.nx/si.tes-avai.laЫe/l'lezzani.ne.conf
dest: /etc/ngi.nx/si.tes-enaЫed/riezzani.ne.conf
state: li.nk

noti.fy: restart ngi.nx

Роли: масштабирование сценария ❖ 147

becol'le: Т rue

nal'le: rel'love the default ngtnx conftg ftle
ftle: path=/etc/ngtnx/sttes-enaЫed/default state=absent
nottfy: restart ngtnx
becol'le: True

nal'le: create tls certtftcates
C01'11'1and: >

openssl геq -new -х509 -nodes -out {{ 1'1ezzantne_proj_nal'1e }},crt
-keyout {{ 1'1ezzantne_proj_nal'1e }}.key -subj '/CN={{ dol'1atns[0] }}' -days 3650
chdtr={{ l'lezzantne_conf_path }}
creates={{ l'lezzantne_conf_path }}/{{ l'lezzantne_proj_nal'le }}.crt

becol'le: True
when: tls_enaЫed
nottfy: restart ngtnx

Есть существенная разница между задачами, объявленными в роли, и за­
дачами, объявленными в сценарии как обычно. Она касается использования

модулей сору и ter'1plate.
Когда модуль сору вызывается в задаче для роли, AnsiЫe сначала проверит

наличие копируемых файлов в каталоге rolename/files/. Аналогично, когда мо­
дуль ter'1plate вызывается в задаче для роли, AnsiЫe сначала проверит наличие

шаблонов в каталоге rolename/templates.
Это значит, что задача, которая раньше была определена в сценарии так:

nal'le: set the ngtnx conftg ftle
tel'lplate: src=tel'1plates/ngtnx.conf.j2 \
dest=/etc/ngtnx/sttes-avatlaЫe/l'lezzantne.conf

теперь, когда она вызывается в роли, должна выглядеть так (обратите внима­

ние на изменившийся параметр src):

nal'le: set the ngtnx conftg ftle
tel'lplate: src=nginx.conf.j2 dest=/etc/nginx/sites-availaЫe/l'lezzantne.conf
notify: restart ngtnx

В примере 7.13 приводится файл обработчиков.

Пример 7.13 ❖ roles/mezzanine/handlers/main.yml

nal'le: restart supervisor
supervtsorctl: nal'1e=guntcorn_1'1ezzantne state=restarted
becol'le: True

nal'le: restart ngtnx
servtce: nal'le=ngtnx state=restarted
becol'le: True

Я не буду приводить здесь файлы шаблонов, поскольку они остались теми
же, что и в прошлой главе, хотя имена некоторых переменных изменились. За

дополнительной информацией обращайтесь к примерам кода, прилагаемым
к книге.

148 ❖ Роли: масштабирование сценария

(ОЗДАНИЕ ФАЙЛОВ И ДИРЕКТОРИЙ РОЛЕЙ

С ПОМОЩЬЮ ANSIBLE-GALAXY
В состав AnsiЬle входит еще один инструмент командной строки, о котором
мы пока не говорили. Это ansi.Ыe-galaxy. Его основное назначение - загруз­
ка ролей, которыми поделились члены сообщества AnsiЫe (подробнее об этом
чуть позже). Но с его помощью также можно сгенерировать начальный набор
файлов и каталогов для роли:

$ ansiЫe-ga1axy init -р p1aybooks/ro1es web

Параметр -р сообщает местоположение каталога ролей. Если его опустить,
ansi.Ыe-galaxy создаст файлы в текущем каталоге.

Эта команда создаст следующие файлы и каталоги:

playbooks
L roles

L web
f- README.мd
1- defaults
1 L мain. умl
1- files
1- handlers
1 L мain. умl
1- меtа
1 L мain. умl
1- tasks
1 L 111ain.y111l
1- tемр lates
1- tests
1 1- inventory
1 L test.yмl
L vars

L 111ain.y111l

ЗАВИСИМЫЕ РОЛИ
Представьте, что у нас есть две роли - web и database - и обе требуют установ­
ки сервера NTP 1

• Мы могли бы описать установку NТР-сервера в обеих ролях,
но это привело бы к дублированию кода. Мы могли бы определить отдельную
роль ntp, но тогда нам пришлось бы помнить, что, запуская роли web и database,
мы также должны запустить роль ntp. Такой подход избавил бы от дублирова­
ния кода, но он чреват ошибками, поскольку можно забыть вызвать роль ntp.
В действительности нам нужно, чтобы роль ntp всегда присваивалась хостам,
которым присваиваются роли web и database.

1 NTP (Network Time Protocol) - протокол сетевого времени, используется для синхро­
низации времени.

Роли: масштабирование сценария ❖ 149

AnsiЫe поддерживает возможность определения зависимостей между роля­
ми для подобных случаев. Определяя роль, вы можете указать, что она зависит
от одной или нескольких других ролей, а AnsiЫe позаботится о том, чтобы за­
висимые роли выполнялись первыми.

Продолжая наш пример, допустим, что мы создали роль ntp, настраивающую
хост для синхронизации часов с сервером NTP. AnsiЫe позволяет передавать
параметры зависимым ролям, поэтому представим, что мы передали адрес
сервера NTP этой роли как параметр.

Укажем, что роль web зависит от роли ntp, создав файл roles/web/meta/main.yml
и добавив в него роль ntp с параметром, как показано в примере 7.14.

Пример 7.14 ❖ roles/web/meta/main.yml

dependenci.es:

- { role: ntp, ntp_server=ntp.ubuntu.coм}

Таким способом можно определить несколько зависимых ролей. Например,
если бы у нас была роль django для установки веб-сервера Django и мы хотели
бы определить роли nginx и 1'1el'1cached как зависимости, тогда файл метаданных
роли выглядел бы, как показано в примере 7.15.

Пример 7.15 ❖ roles/django/meta/main.yml

dependenci.es:

- { role: web}

- { role: мемсасhеd}

За более подробной информацией о зависимостях между ролями в AnsiЫe
обращайтесь к официальной документации: http://blt.ly/1F6tH9a.

ANSIBLE GдLAXY

Если вам понадобится установить на ваши хосты программное обеспечение
с открытым исходным кодом, вполне вероятно, что кто-то уже написал роль
AnsiЫe для этого. Хотя разработка сценариев для развертывания программно­
го обеспечения не особенно сложна, некоторые системы действительно требу­
ют сложных процедур развертывания.

Если вы захотите использовать роль, написанную кем-то другим, или просто
посмотреть, как кто-то другой решил похожую задачу, AnsiЫe Galaxy поможет
вам в этом. AnsiЫe Galaxy - это хранилище ролей AnsiЫe с открытым исход­
ным кодом, пополняемое членами сообщества AnsiЫe. Сами роли хранятся на
GitHub.

Веб-интерфейс
Вы можете исследовать доступные роли на сайте AnsiЬle Galaxy (http://galaxy.
ansiЫe.com). Galaxy поддерживает обычный текстовый поиск, а также фильтра­
цию по категории или разработчику.

150 ❖ Роли: масштабирование сценария

Интерфейс командной строки
Инструмент командной строки ansi.Ыe-galaxy позволяет загружать роли с ре­
сурса AnsiЫe Galaxy.

Установка роли
Допустим, вы захотели установить роль ntp, написанную пользователем GitHub
с именем bennojoy. Эта роль настраивает хает для синхронизации часов с сер­
вером NTP.

Установите роль командой i.nsta11.

$ ansiЫe-galaxy install -р ./roles bennojoy.ntp

Программа ansi.Ыe-galaxy по умолчанию устанавливает роли в системный
каталог (см. врезку «Где AnsiЫe будет искать мои роли?» в начале главы), кото­
рый в предыдущем примере мы заменили своим каталогом, передав параметр

-р.
Результат должен выглядеть так:

downloadtng гоlе 'ntp', owned Ьу bennojoy
по verston spectfted, tnstalltng маstег
- downloadtng гоlе fгом https://gtthub.coм/bennojoy/ntp/archtve/мaster.tar.gz
- extгacttng bennojoy.ntp to ./roles/bennojoy.ntp
wrtte_galaxy_tnstall_tnfo!
bennojoy.ntp was tnstalled successfully

Инструмент ansi.Ыe-galaxy установит файлы роли в roles/bennojoy.ntp.
AnsiЫe поместит некоторые метаданные об установленной роли в файл

./roles/bennojoy.ntp/meta/.galaxy_install_info. На моей машине этот файл содер­
жит:

{tnstall_date: 'Sat Oct 4 20:12:58 2014', veгston: маstег}

� Роль bennojoy.ntp не имеет конкретного номера версии, поэтому версия определена
просто как маstег (основная). Некоторые роли имеют определенную версию, например
1.2.

Вывод списка установленных ролей
Получить список установленных ролей можно следующей командой:

$ ansiЫe-galaxy list

Результат должен выглядеть так:

bennojoy.ntp, маstег

Удаление роли
Удалить роль можно командой геrюvе:

$ ansiЫe-galaxy rel'!ove bennojoy.ntp

Роли: масштабирование сценария ❖ 151

Добавление собственной роли
Чтобы узнать, как поделиться своей ролью с другими членами сообщества, об­
ращайтесь к разделу «How То Share Roles You've Written» по адресу: https://gal­
axy.ansiЫe.com/intro. Поскольку роли располагаются в репозитории GitHub, вам
потребуется создать свою учетную запись.

Теперь вы знаете, как использовать роли, создавать собственные роли и за­
гружать роли, написанные другими. Роли - мощный инструмент организации

сценариев. Я пользуюсь ими все время и настоятельно рекомендую вам.

Глава 8
•••

Сложные сценарии

В предыдущей главе мы рассмотрели полноценный сценарий AnsiЫe для раз­
вертывания Mezzanine CMS. В этом примере были использованы самые разные
возможности AnsiЬle, но далеко не все. Данная глава рассказывает о дополни­
тельных возможностях, превращаясь в кладезь не менее полезной информации.

КОМАНДЫ CHANGED _ WHEN И FAILED _ WHEN
В главе 6 мы предпочли отказаться от команды мanage. ру createdb, представлен­
ной в примере 8.1, потому что она не является идемпотентной.

Пример 8.1 ❖ Вызов команды createdb из manage.py

nаме: initialize the database
django_мanage:

соммаnd: createdb --noinput --nodata

app_path: "{{ proj_path }}"
virtualenv: "{{ venv_path }}"

Мы обошли эту проблему запуском нескольких идемпотентных команд маn -

age.py, которые в комплексе эквивалентны createdb. Но как быть, если нет мо­
дуля с эквивалентными командами? Решить эту проблему помогут выражения
changed_when и fai. led_when, влияющие на то, как AnsiЫe обнаруживает измене­
ние состояния или ошибку.

Сначала нужно разобраться, что выводит команда в первый раз, а что во
второй.

Как мы уже делали это в главе 4, добавим выражение regi.ster для сохранения
в переменной вывода задачи, завершившейся с ошибкой, и выражение fai. led_

when: Fa lse, чтобы исключить остановку сценария в случае ошибки. Следом доба­
вим задачу debug, чтобы вывести на экран содержимое переменной. И наконец,
используем выражение fai. l для остановки сценария, как показано в примере 8.2.

Пример 8.2 ❖ Вывод результата выполнения задачи

- nаме: initialize the database
django_мanage:

соммаnd: createdb --noinput --nodata

app_path: "{{ proj_path }}"
vtrtualenv: "{{ venv_path }}"

fatled_when: False
regtster: result

- debug: var=result

fatl:

Сложные сценарии ❖ 153

В примере 8.3 показан вывод сценария после попытки запустить его второй
раз.

Пример 8.3 ❖ Вывод сценария в случае, если база данных уже создана

TASK: [debug var=result] **

ok: [default] => {
"result": {

"cfТld": "python fТlanage.py createdb --notnput --nodata",
"fatled": false,
"fatled_when_result": false,
"tnvocatton": {

} '

"fТlodule_args": ''
"fТlodule_nafТle": "django_fТlanage"

"fТlsg": "\n:stderr: (OfТlfТlandError: Database already created, you ргоЬаЫу
want the syncdb ог fТltgrate COfТlfТland\n",

"path":
"/hofТle/vagrant/fТlezzantne_exafТlple/btn:/usг/local/sbtn:/usг/local/btn:
/usr/sbtn:/usr/btn:/sbtn:/btn:/usr/gafТles:/usг/local/gafТles",

}

"state": "absent",
"syspath": [

"/usr/ltb/python2.7",
"/usr/ltb/python2.7/plat-x86_64-ltnux-gnu",
"/usr/ltb/python2.7/ltb-tk",
"/usr/ltb/python2.7/ltb-old",
"/usr/ltb/python2.7/ltb-dynload",
"/usr/local/ltb/python2.7/dtst-packages",
"/usr/ltb/python2.7/dtst-packages"

Это происходит при каждом повторном запуске задачи. Чтобы увидеть, что
происходит при запуске в первый раз, удалите базу данных и позвольте сце­
нарию воссоздать ее. Самый простой способ сделать это - запустить специаль­
ную задачу AnsiЬle, которая удаляет базу данных:

$ anstЫe default --becofТle --becofТle-user postgres -fТI postgresqt_db -а\

"nafТle=fТlezzani.ne_exafТlpte state=absent"

Если теперь запустить сценарий, он выведет строки, показанные в приме­
ре 8.4.

154 ❖ Сложные сценарии

Пример 8.4 ❖ Вывод сценария при первом запуске

ASK: [debug var=result] **

ok: [default] => {
"result": {

"app_path": "/hoмe/vagrant/мezzanine_exaмple/project",
"changed": f а lse,
"смd": "python мanage. ру createdb --noinput - -nodata",
"failed": false,
"failed_when_result": false,
"invocation" : {

},

"мodule_args": ''
"мodule_naмe": "django_мanage"

"out": "Creating taЫes ... \nCreattng tаЫе auth_perмtsston\nCreattng
tаЫе auth_group_peгмtsstons\nCreattng tаЫе auth_group\nCreating tаЫе
auth_useг_gгoups\nCreattng tаЫе auth_user_user_perмtsstons\nCreattng tаЫе
auth_user\nCreattng tаЫе django_content_type\nCreattng tаЫе
django_redtrect\nCreattng tаЫе django_sesston\nCreattng tаЫе
django_site\nCreattng tаЫе conf_setttng\nCreattng tаЫе
core_stteperмisston_sttes\nCгeattng tаЫе core_siteperмission\nCreating tаЫе
genertc_threadedcoммent\nCreattng tаЫе genertc_keyword\nCreattng tаЫе
genertc_asstgnedkeyword\nCreattng tаЫе generic_rattng\nCreattng tаЫе
Ыog_Ыogpost_related_posts\nCreattng tаЫе Ыog_Ыogpost_categories\nCreattng
tаЫе Ыog_Ыogpost\nCreattng tаЫе Ыog_Ыogcategory\nCreattng tаЫе
forмs_forм\nCreattng tаЫе forмs_fteld\nCreattng tаЫе forмs_forмentry\nCreattng
tаЫе forмs_fteldentry\nCreattng tаЫе pages_page\nCreating tаЫе
pages_rtchtextpage\nCreating tаЫе pages_link\nCreating tаЫе
galleries_gallery\nCreating tаЫе gallertes_galleгytмage\nCreattng tаЫе
twitter_query\nCreating tаЫе twttter_tweet\nCreattng tаЫе
south_мtgrattonhtstory\nCreattng tаЫе django_adмtn_log\nCreating tаЫе
django_coммents\nCreattng tаЫе django_coммent_flags\n\nCreattng default stte
гесогd: vagrant-ubuntu-trusty-64 ... \n\nlnstalled 2 object(s) fгом 1
ftxture(s)\nlnstalling custoм SQL ... \nlnstalltng tndexes ... \nlnstalled 0
object(s) fгом 0 ftxtuгe(s)\n\nFaktng tnittal мtgгattons ... \n\n",

"pythonpath": null,
"settings": null,
"virtua lenv": "/hoмe/vagrant/мezzantne_exaмp le"

}

Обратите внимание, что ключ changed получает значение false, хотя состоя­

ние базы данных изменилось. Это объясняется тем, что модуль django_111anage
всегда возвращает changed=false, когда выполняет неизвестные ему команды.

Можно добавить выражение changed_when, отыскивающее подстроку "Cгeating

taЫes" в возвращаемом значении out, как показано в примере 8.5.

Пример 8.5 ❖ Первая попытка добавить changed_when

nаме: tnttialtze the database
django_мanage:

соммаnd: createdb --notnput --nodata

app_path: "{{ proj_path }}"
vi.rtua lenv: • {{ venv _path } } "

regi.ster: result
changed_when: '"Creati.ng taЫes" i.n result.out'

Сложные сценарии ❖ 155

Проблема этого подхода заключается в отсутствии переменной out, когда
сценарий выполняется повторно. Это можно увидеть, вернувшись к приме­
ру 8.3. Вместо нее объявлена переменная 111sg. Это означает, что, запустив сце­
нарий во второй раз, он выведет следующую (не особенно информативную)
ошибку:

TASK: [i.ni.ti.ali.ze the database] **

f ata l: [def ault] => еггог whi.le eva luati.ng condi.ti.ona l: "Creati.ng taЫes" i.n
result.out

Значит, мы должны убедиться в присутствии переменной result.out, прежде
чем обращаться к ней. Единственный способ сделать это:

changed_when: result.out i.s defi.ned and "Creati.ng taЫes" i.n result.out

Или, если resu lt. out отсутствует, можно присвоить ей значение по умолча­
нию с помощью Jinjа2-фильтра default:

changed_when: '"Creati.ng taЫes • i.n result. out I def ault(• •)'

Окончательный вариант идемпотентной задачи показан в примере 8.6.

Пример 8.6 ❖ Идемпотентная задача manage.py createdb

- nаме: i.ni.ti.ali.ze the database
django_мanage:

соммаnd: createdb --noi.nput --nodata
app_path: "{{ proj_path }}"
vi.rtua lenv: • { { venv _path } } •

гegi.ster: result
changed_when: '"Creati.ng taЫes" i.n result.outldefault("")'

Фильтры

Фильтры являются особенностью механизма шаблонов Jinja2. Поскольку An­
siЫe использует Jinja2 для определения значений переменных, а также для
шаблонов, вы можете использовать фильтры внутри скобок { { } } в ваших
сценариях, а также в файлах шаблонов. Использование фильтров схоже с ис­
пользованием конвейеров в Unix, где переменная передается через фильтр.
Jinja2 поддерживает набор встроенных фильтров (http://blt.ly/lFvOGzJ). Кроме
того, AnsiЬle добавляет свои фильтры, расширяя возможности фильтров Jinja2
(http://Ьit.ly/1Fv0I rj).

Далее мы рассмотрим несколько фильтров для примера, а чтобы получить
полный их список, обращайтесь к официальной документации по Jinja2 и An­
siЫe.

156 ❖ Сложные сценарии

Фильтр defauLt
Фильтр default - один из самых полезных. Его применение демонстрирует сле­
дующий пример:

"HOST": "{{ database_host I default('localhost') }}",

Если переменная database_host определена, тогда на место фигурных скобок
будет подставлено ее значение. Если она не определена, будет подставлена
строка localhost. Некоторые фильтры принимают аргументы, некоторые - нет.

Фильтры для зарегистрированных переменных
Допустим, нам нужно запустить задачу и вывести ее результат, даже если она
потерпит неудачу. Однако если задача выполнилась с ошибкой, необходимо,
чтобы сценарий завершился сразу после вывода результата. В примере 8.17
показано, как этого добиться, передав фильтр fai.led в аргументе выражению

fai. led_when.

Пример 8.7 ❖ Использование фильтра failed

nаме: Run мургоg

соммапd: /opt/мyprog

register: result

ignore_errors: True

debug: var=result

- debug: мsg="Stop running the playbook Н мyprog faHed"

failed_when: resultlfailed

далее следуют другие задачи

В табл. 8.1 перечислены фильтры, которые можно использовать для провер­
ки статуса зарегистрированных переменных.

Таблица 8.1. Фильтры для возвращаемых значений задач

Имя Описание

faHed True, если задача завершилась неудачей

changed True, если задача выполнила изменения

success True, если задача завершилась успешно

skipped True, если задача была пропущена

Фильтры для путей к файлам
В табл. 8.2 перечислены фильтры для работы с переменными, содержащими
пути к файлам в файловой системе управляющей машины.

Рассмотрим следующий фрагмент сценария:

vars:

hoмepage: /usr/share/nginx/htмl/index.htмl

tasks:

Сложные сценарии ❖ 157

- паме: сору hоме page
сору: src=ftles/tndex.htмl dest={{ hoмepage }}

Таблица 8.2. Фильтры путей к файлам

Имя Имя пути

basenaмe Базовое имя файла
dirnaмe Путь к файлу (каталог)
expanduser Путь к файлу со знаком ~, заменяющим домашний каталог
realpath Канонический путь к файлу, разрешает символические ссылки

Обратите внимание, что в нем дважды упоминается index.html: первый раз -

в определении переменной horчepage, второй - в определении пути к файлу на

управляющей машине.

Фильтр basenarчe дает возможность получить имя index.html файла, выделив

его из полного пути, что позволит записать сценарий неповторения имени

файла 1
:

vars:
hoмepage: /usr/share/ngtnx/htмl/tndex.htмl

tasks:
- паме: сору hоме page

сору: src=ftles/{{ hoмepage I basenaмe }} dest={{ hoмepage }}

Создание собственного фильтра
В нашем примере для Mezzanine мы создали файл local_settings.py из шаблона,

содержащего строку, показанную в примере 8.8.

Пример 8.8 ❖ Строка из файла local_settings.py, созданного из шаблона

ALLOWED_HOSTS = ["www.exaмple.coм", "ехамрlе.сом"]

У нас имеется переменная dorчai.ns со списком имен хостов. Первоначально

мы использовали цикл fог, чтобы получить эту строку, но с фильтром шаблон

будет выглядеть еще изящнее:

ALLOWED_HOSTS = [{{ doмainsljoin(", ") }}]

Однако в получившемся результате имена хостов не будут заключены в ка­

вычки, как показано в примере 8.9.

Пример 8.9 ❖ Имена хостов лишились кавычек

ALLOWED_HOSTS = [www.exaмple.coм, ехамрlе.сом]

Если бы у нас имелся фильтр (см. пример 8.10), заключающий строки в ка­

вычки, тогда шаблон сгенерировал бы строку, как показано в примере 8.8.

1 Спасибо Джону Джарвису (John Jarvis) за эту подсказку.

158 ❖ Сложные сценарии

Пример 8.10 ❖ Использование фильтра для заключения строк в кавычки

ALLOWED_HOSTS = [{{ dof11ai.nslsurround_by_quoteljoi.n(", ") }}]

К сожалению, готового фильтра surround_by_quote не существует. Но мы мо­
жем написать его сами. На самом деле Хэнфи Сан (Hanfei Sun) на Stack Overflow
уже раскрыл этот вопрос (https://stackoverflow.com/questions/15 514365/).

AnsiЫe ищет нестандартные фильтры в каталоге filter_plugins, находящемся
в одном каталоге со сценариями.

В примере 8.11 показано, как выглядит реализация фильтра.

Пример 8.11 ❖ filter_plugins/surround_by_quotes.py

Взято по адресу: http://stackoverflow.cof11/a/15S15929/742

def surround_by_quote(a_li.st):
return ["'%s'" % an_elef11ent fог an_elef11ent i.n a_li.st]

class Fi.lterModule(object):
def fi.lters(self):

return {'surround_by_quote': surround_by_quote}

Функция surround_by_quote реализует фильтр Jinja2. Класс Fi.lterModule опре­
деляет метод fi.lters, который выводит словарь с именем функции фильтра
и самой функцией. Класс Fi. l terModu le обеспечивает доступность фильтра для
AnsiЬle.

Кроме того, в каталог -j.ansiЬle/plugins/filter или /usr/share/ansiЬle/plugins/filter
можно установить свои плагины фильтров. Или указать другой каталог в пере­
менной окружения ANSIBLE_FIL TER_PLUGINS, где хранятся ваши плагины.

Подстдновки
В идеальном мире вся информация о вашей конфигурации хранилась бы в пе­
ременных AnsiЫe везде, где AnsiЬle позволяет определять переменные (напри­
мер, секция vars в сценарии; файлы, перечисленные в секции vars_fi.les; файлы
в каталогах host_vars или group_vars, которые мы обсуждали в главе 3).

Увы, мир несовершенен, и порой часть конфигурации должна храниться
в других местах, например в текстовом файле или в файле .csv, и вам не хоте­
лось бы копировать эти данные в переменные AnsiЫe, поскольку в этом случае
придется поддерживать две копии одних и тех же данных, а вы верите в прин­
цип DRY1

• Возможно, данные и вовсе хранятся не в файле, а в хранилище типа
«ключ/значение», таком как etcd2

• AnsiЫe поддерживает функции подстановки,

1 DRY (от англ. Don't Repeat Yourself) - «не повторяйтесь». Этот термин был введен
в замечательной книге «The Pragmatic Programmer: From Journeyman to Master» Эн­
дрю Ханта и Дэвида Томаса (Хант Э., ТомасД. Программист-прагматик. Путь от под­
мастерья к мастеру. Лори, 2009. ISBN 5-85582-213-3, 0-201-61622-Х. - Прим. перев.).

2 etcd - распределенное хранилище типа «ключ/значение», поддерживаемое проектом
CoreOS (https://coreos.com/etcd/).

Сложные сценарии ❖ 159

позволяющие читать настройки из разных источников, а затем использовать

их в сценариях и шаблонах.
Перечень этих функций приводится в табл. 8.3.

Таблица 8.3. Функции поиска

Имя Описание

fi.le Содержимое файла

password Случайно сгенерированный пароль

pi.pe Вывод команды, выполненной локально

env Переменная окружения

tel'lplate Шаблон Jinja2

csvfi.le Запись в файле .csv

dnstxt Запись в DNS типа ТХТ

redi.s kv Значение ключа в Redis

etcd Значение ключа в etcd

Выполнить подстановку можно с помощью функции lookup, принимающей
два аргумента. Первый аргумент - это строка с именем подстановки, второй -
строка, содержащая один или несколько аргументов, которые передаются
в подстановку. Например, подстановку f-\. 1е можно вызвать так:

lookup('fi.le', '/путь/к/файлу/fi.lе.tхt')

В сценариях подстановка должна заключаться в фигурные скобки { { } }, их
также можно использовать в шаблонах.

В этом разделе будет представлен только краткий обзор доступных подста­
новок. Более подробную информацию можно найти в документации AnsiЬle

(http://docs.ansiЫe.com/ansible/playbooks_lookups.html).

fiLe

Все плагины подстановок в AnsiЫe выполняются на управляющей машине, а не на уда­
ленном хосте.

Допустим, на управляющей машине имеется текстовый файл, содержащий
публичный SSН-ключ, который необходимо скопировать на удаленный сервер.
В примере 8.12 показано, как использовать подстановку fi.le для чтения содер­
жимого файла и его передачи модулю в параметре.

Пример 8.12 ❖ Использование подстановки file

- nаме: Add му puЫi.c key as an ЕС2 key
ec2_key: nаме=муkеу key_мateri.al="{{ lookup('fi.le', \
'/Useгs/lori.n/.ssh/i.d_rsa.pub') }}"

Подстановки также можно использовать в шаблонах. Если потребуется ис­
пользовать тот же прием для создания файла authorized_keys с содержимым
файла публичного ключа, можно создать шаблон Jinja2, выполняющий под-

160 ❖ Сложные сценарии

становку, как показано в примере 8.13, и затем вызвать модуль teмplate, как
показано в примере 8.14.

Пример 8.13 ❖ authorized_keys.j2

{{ lookup('ftle', '/Users/lorin/.ssh/id_rsa.pub') }}

Пример 8.14 ❖ Задача, генерирующая файл authorized_keys

nаме: сору authortzed_host ftle
teмplate: src=authorized_keys.j2 dest=/hoмe/deploy/.ssh/authorized_keys

pipe

Подстановка р-\.ре запускает внешнюю программу на управляющей машине
и принимает ее вывод.

Например, если сценарий использует систему контроля версий g-\. t и требу­
ется получить значение SHA-1 последней команды gH соммН 1, для этого можно
использовать подстановку р-\.ре:

nаме: get SHA of мost recent соммit
debug: мsg="{{ lookup('pipe', 'git rev-parse HEAD') }}"

Результат будет выглядеть примерно так:

TASK: [get the sha of the current соммit] *************************************
ok: [мyserver] => {

"мsg": "e7748af0f040d58d61de1917980a210df419eae9"

env

Подстановка env извлекает значение переменной окружения на управляющей
машине. Например:

nаме: get the current shell
debug: мsg="{{ lookup('env', 'SHELL') }}"

Поскольку я использую командную оболочку Zsh, у меня результат выглядит
так:

TASK: [get the current shell]
ok: [мyserver] => {

"мsg": "/Ыn/zsh"

}

password

Подстановка password возвращает случайно сгенерированный пароль, а также
записывает его в файл, указанный в аргументе. Например, если потребуется

1 Если это покажется вам странным, не беспокойтесь - это всего лишь пример выпол­
нения команды.

Сложные сценарии ❖ 161

создать пользователя базы данных Postgres с именем deploy и случайным па­
ролем, а затем записать пароль в файл deploypassword.txt на управляющей ма­
шине, это можно сделать так:

nаме: сгеаtе deploy postgгes user
postgгesql_user:

nаме: deploy
password: " { { lookup('password' , 'dep loy-password. txt') } } "

tempLate

Подстановка tel'lp late позволяет получить результат применения шаблона Jin­

ja2. Например, для шаблона, представленного в примере 8.15:

Пример 8.15 ❖ message.j2

This host runs {{ ansiЫe_distribution }}

следующая задача:

nаме: output мessage fгом teмplate

debug: мsg="{{ lookup('teмplate', 'мessage.j2') }}"

вернет такой результат:

TASK: [output мessage fгом teмplate] **

ok: (муsегvег] => {
"мsg": "This host runs Ubuntu\n"

csvfiLe

Подстановка csvfi. le читает запись из файла .csv. Допустим, у нас имеется файл
.csv, который выглядит, как показано в примере 8.16.

Пример 8.16 ❖ users.csv

usегnаме,емаН
lorin,lorin@ansiЫebook.coм
john,john@exaмple.coм
sue,sue@exaмple.org

и нам нужно получить электронный адрес Сью, используя плагин подстановки
csvfi.le. Для этого можно использовать плагин, как показано ниже:

lookup('csvfile', 'sue file=users.csv deliмiter=, col=l')

Подстановка csvfi. le - хороший пример подстановки, принимающей не-
сколько аргументов. В данном случае плагину передаются четыре аргумента:

О sue;
О file=users.csv;
О deliflliter=,;
О col=1.

162 ❖ Сложные сценарии

Имя первого аргумента можно не указывать, но имена всех остальных долж­
ны указываться обязательно. Первый аргумент подстановки csvfi. le - это эле­
мент, который должен присутствовать в столбце О (первый столбец, индекса­
ция начинается с О) таблицы.

Остальные аргументы определяют имя файла .csv, разделитель и какие
столбцы необходимо вывести. В данном примере мы используем файл users.
csv и указываем, что поля разделены запятыми. Мы также сообщаем плагину,
что ищем строку, в первом столбце которой хранится имя sue, и нам нужно зна­
чение второго столбца (столбец 1, индексация начинается с О). В ответ плагин
возвращает значение sue@example.org.

Если искомое имя пользователя хранится в переменной usernaмe, можно
сконструировать строку аргументов с помощью знака +, чтобы объединить
строку из usernaмe с оставшейся частью строки с аргументами:

lookup('csvfile', userna�e + ' file=users.csv deli�iter=, col=l')

dnstxt

� Модуль dnstxt требует установки пакета Python dnspython на управляющей машине.

Многие читатели наверняка знают, что такое система доменных имен (Do­
main Name System, DNS). DNS - это служба, преобразующая имена хостов, та­
кие как ansiЬlebook.com, в IР-адреса, например 64.99.80.30.

DNS ассоциирует с именем хоста одну или несколько записей. Наиболее ис­
пользуемыми типами записей DNS являются записи А и СNАМЕ, которые свя­
зывают имя хоста с IР-адресом (запись А) или с псевдонимом (запись CNAME).

Протокол DNS содержит еще один тип записей - ТХТ. Запись ТХТ - это всего

лишь произвольная строка, которую можно связать с именем хоста. Если вы
привязали запись ТХТ к имени хоста, любой сможет получить этот текст с по­
мощью клиента DNS.

Например, я владею доменом ansiЫebook.com и хочу создать запись ТХТ, свя­
занную с любыми именами хостов, входящих в домен 1

• Я привязал запись ТХТ
к имени хоста ansiЫebook.com, она содержит номер ISBN этой книги. Получить
запись ТХТможно с помощью инструмента командной строки di.g, как показа­
но в примере 8.17.

Пример 8.17 ❖ Извлечение записи ТХТ с помощью инструмента dig
$ dtg +short anstЫebook.co� ТХТ
"isbn=978-1491979808"

Подстановка dnstxt запрашивает у сервера DNS запись ТХТ, ассоциирован­
ную с хостом. Если создать такую задачу в сценарии:

1 Провайдеры услуг DNS обычно предоставляют интерфейс для выполнения задач,
связанных с DNS, таких как создание записей ТХТ.

Сложные сценарии ❖ 163

nаме: look up ТХТ record
debug: мsg="{{ lookup('dnstxt', 'anstЫebook.coм') }}"

она вернет:

TASK: [look up ТХТ record] **
ok: [мyserver] => {

"мsg": "tsbn=978-1491979808"
}

Если с хостом связано несколько записей ТХТ, тогда модуль вернет их «скле­
енными» вместе. Порядок «склеивания» каждый раз может быть разным. На­
пример, если бы для ansiЫebook.com была определена вторая запись ТХТ с тек­
стом:

author=lortn

тогда подстановка dnstxt вывела бы случайным образом один из вариантов:
О isbn=978-1491979808author=lorin;
О author=lorinisbn=978-1491979808.

redis kv

� Модуль redts_kv требует установки пакета Python redis на управляющей машине.

Redis - популярное хранилище типа «ключ/значение», часто используемое
как кэш, а также для хранения данных в службах очередей заданий, таких как
Sidekiq. С помощью подстановки redis_kv можно извлекать значения ключей.
Ключ должен иметь вид строки, поскольку модуль выполняет эквивалент ко­
манды GET.

Допустим, у нас имеется сервер Redis, запущенный на управляющей маши­
не, и мы определили ключ weather со значением sunny:

$ redts-clt SET weather sunny

Если определить в сценарии задачу извлечения этого ключа из хранилища
Redis:

nаме: look up value tn Redts
debug: мsg="{{ lookup('redts_kv', 'redts://localhost:6379,weather') }}"

она вернет следующее:

TASK: [look up value tn Redts] **
ok: [мyserver] => {

" fТ'ISQ ,, : 11 sunny ,1

}

Если адрес URL не задан, модуль по умолчанию использует адрес redis://loc­

alhost:6379. То есть предыдущую задачу можно переписать так (обратите вни­
мание на запятую перед ключом):

lookup('redts_kv', ',weather')

164 ❖ Сложные сценарии

etcd

Etcd - распределенное хранилище типа «ключ/значение», обычно использует­
ся для хранения данных конфигураций и реализации поиска служб. Для полу­
чения значения ключа из этого хранилища можно использовать подстановку
etcd.

Допустим, у нас имеется сервер etcd, запущенный на управляющей машине,
и мы определили ключ weather со значением cloudy:

$ cuгt -L http://127.0.0.1:4001/v2/keys/weatheг -XPUT -d vatue=cloudy

Если определить в сценарии задачу извлечения этого ключа из хранилища
etcd:

- nаме: look up value in etcd
debug: мsg="{{ lookup('etcd', 'weatheг') }}"

она вернет следующее:
TASK: [look up value in etcd] ***
ok: [localhost] => {

"мsg": "cloudy"

По умолчанию подстановка etcd обращается к серверу etcd по адресу
http:/!127.0.0.1:4001. Но его можно изменить, установив переменную окруже­
ния ANSIBLE_EТCD_URL перед запуском команды ans-\.Ыe-playbook.

Написание собственного плагина

Если ни один из имеющихся плагинов вас не устраивает, всегда можно напи­
сать собственный плагин. Разработка собственных плагинов для подстановок
не является темой данной книги, но если вас действительно заинтересовал
данный вопрос, я предлагаю изучить исходный код плагинов для подстановок,
которые поставляются с AnsiЫe (https://github.com/ansiЫe/ansiЬle/tree/devel/lib/
ansiЬle/plugins/lookup).

Написав свой плагин, поместите его в один из следующих каталогов:
О lookup_plugins в каталоге со сценарием;
О -/.ansihle/plugins/lookup;
О /usr/share/ansihle_plugins/lookup_plugins;
О указанный в переменной окружения ANSIBLE_LOOKUP _PLUGINS.

Сложные циклы
До сих пор, когда мы писали задачи, выполняющие обход списка объектов, мы
использовали выражение wi. th_ i. teмs, в котором определяли список объектов.
Это самый распространенный способ выполнения циклов, но AnsiЫe поддер­
живает также другие механизмы реализации итераций. Их список приводится
в табл. 8.4.

Сложные сценарии ❖ 165

Таблица 8.4. Циклические конструкции

Имя Вход Способ выполнения цикла

wi.th_ i. tel'ls Список Цикл по списку элементов

wi.th_1i.nes Команда для выполнения Цикл по строкам вывода команды

wi.th fi.leg lob Шаблон поиска Цикл по именам файлов

wi.th_fi.rst found Список путей Первый существующий файл

wi.th_di.ct Словарь Цикл по элементам словаря

wi.th_flattened Список списков Цикл по всем элементам вложенных списков

wi.th i.ndexed i.tel'ls Список Одна итерация

wi.th_nested Список Вложенный цикл

wi.th randol'I choi.ce Список Одна итерация

wi.th_sequence Последовательность целых Цикл по последовательности
чисел

wi.th_subelel'lents Список словарей Вложенный цикл

wi.th together Список списков Цикл по элементам объединенного списка

wi.th i.nventory hostnal'les Шаблон хоста Цикл по хостам в шаблоне

В официальной документации (http://Ьit.ly/1F6kfCP) эта тема рассматривает­
ся достаточно подробно, поэтому я приведу лишь несколько примеров, чтобы
дать вам представление, как работают эти конструкции.

with Lines
Конструкция wi. th_ l i.nes позволяет выполнять произвольные команды на управ­
ляющей машине и производить итерации по строкам в результатах.

Представьте, что у вас есть файл со списком имен и вы хотите отправить
Slасk-сообщение для каждого из них:

Lesli.e Lal'lport

Si.lvi.o Mi.cali.

Shafi. Goldwasser

Judea Pearl

В примере 8.18 показано, как использовать wi.th_ li.nes для чтения файла
и выполнения итераций по файлу, строка за строкой.

Пример 8.18 ❖ Цикл с помощью with_lines

nal'le: Send out а slack l'lessage

slack:

dol'lai.n: exal'lple.slack.col'I

token: "{{ slack_token }}"

l'ISg: "{{ i.tel'I }} was i.n the li.st"

wi.th_li.nes:

- cat fi.les/turi.ng.txt

with_fHegLob
Конструкция wi.th_fi. leglob используется, когда нужно выполнить итерации по
набору файлов на контрольной машине.

166 ❖ Сложные сценарии

В примере 8.19 показано, как обойти файлы с расширением .риЬ в каталоге
/var/keys, а также в подкаталоге keys, находящемся в одном каталоге со сцена­
рием.

Пример 8.19 ❖ Использование with_fileglob для добавления ключей

- паме: add puЫtc keys to account
authortzed_key: user=deploy key="{{ lookup('ftle', iteм) }}"
wtth_ ftleg lob:

/var/keys/*.pub
- keys/*.pub

with_dict
Конструкция wi.th_di.ct выполняет обход элементов словаря. При использова­
нии этой конструкции переменная цикла i.teм является словарем с двумя клю­
чами:

О key- один из ключей в словаре;
О value - значение, соответствующее ключу key.

Например, если хает имеет интерфейс eth0, тогда в AnsiЫe будет существо­
вать факт с именем ans-\.Ыe_eth0 и с ключом -\.pv4, который содержит примерно
такой словарь:

{

}

"address": "10.0.2.15",
"netмask": "255.255.255.0",
"network": "10.0.2.0"

Можно обойти элементы этого словаря и вывести их по одному:

паме: tterate оvег anstЫe_eth0
debug: мsg={{ iteм.key }}={{ iteм.value }}
wtth_dict: "{{ anstЫe_eth0.tpv4 }}"

Результат будет выглядеть так:

ТА5К: [tteгate оvег ansiЫe_eth0] ***
ok: [муsегvег] => (tteм={'key': u'netмask', 'value': u'255.255.255.0'}) => {

"i.tef'l
11

: {

},

"key": "netмask",
"value": "255.255.255.0"

"мsg": "netмask=255.255.255.0"

ok: [муsегvег] => (tteм={'key': u'network', 'value': u'10.0.2.0'}) => {

}

11 i.terч 11 : {

} .

"key": "network",
"value": "10.0.2.0"

"мsg": "network=10.0.2.0"

Сложные сценарии ❖ 167

ok: [мyserver] => (iteм={'key': u'address', 'value': u'10.0.2.15'}) => {
lli..teff1

11

: {

}

},

"key": "address",

"value": "10.0.2.15"

"мsg": "address=10.0.2.15"

Циклические конструкции как плагины подстановок
Циклические конструкции реализованы в AnsiЫe как плагины подстановок.
Достаточно подставить wi.th в начало имени плагина подстановки, чтобы ис­
пользовать его в форме цикла. Так, пример 8.12 можно переписать с использо­
ванием формы wi.th_fi.le, как показано в примере 8.20.

Пример 8.20 ❖ Использование подстановки file в качестве конструкции цикла

- nаме: Add му puЫic key as an ЕС2 key

ec2_key: nаме=муkеу key_мaterial="{{ i.teм }} "

with_file: /Users/lorin/.ssh/id_rsa.pub

Обычно плагины подстановок используются в роли циклических конструк­
ций, только если требуется получить список. Именно поэтому я отделил плаги­
ны из табл. 8.3 (возвращающие строки) от плагинов в табл. 8.4 (возвращающие
списки).

УПРАВЛЕНИЕ ЦИКЛАМИ
Начиная с версии 2.1 AnsiЫe предоставляет пользователям еще более богатые
возможности выполнения циклических операций.

Выбор имени переменной цикла
Выражение loop_ vаг позволяет дать переменной цикла другое имя, отличное от
имени i.teм, используемого по умолчанию, как показано в примере 8.21.

Пример 8.21 ❖ Использование переменной цикла user

- user:

nаме: "{{ user .nаме }} "

wi.th_ i.teмs:

{ nаме: gil }

- { nаме: sarina}

- { nаме: leanne}

loop_control:

loop_var: user

В примере 8.21 выражение loop_ vаг дает лишь косметическое удобство, но
вообще с ее помощью можно определять гораздо более сложные циклы.

В примере 8.22 реализован цикл по нескольким задачам. Для этого в нем

используется инструкция include с выражением wi.th_i.teмs.

168 ❖ Сложные сценарии

Однако файл vhosts.yml может включать задачи, также использующие вы­
ражение wi.th_i.tef11s для своих целей. Такая реализация могла бы породить
конфликты из-за совпадения имен переменных цикла, используемых по
умолчанию.

Чтобы предотвратить такие конфликты, мы можем указать другое имя в вы­
ражении loop_var для внешнего цикла.

Пример 8.22 ❖ Использование имени vhost для переменной цикла

- nаме: run а set of tasks tn one loop
tnclude: vhosts.yмl
with_ iteмs:

{ doмain: wwwl.exaмple.coм }
- { doмatn: www2.exaмple.coм }
- { doмatn: wwwЗ.exaмple.coм }

loop_control:
loop_var: vhost О

О Изменение имени переменной внешнего цикла для предотвращения конфликтов.

В подключаемой задаче (объявленной в файле vhosts.yml), которая представ­
лена в примере 8.23, мы теперь без опаски можем использовать имя i. tef11 по
умолчанию.

Пример 8.23 ❖ Подключаемый файл может содержать циклы

nаме: create nginx directories
ftle:

path: /var/www/htмl/{{ vhost.doмain }}/{{ iteм }} О
state: dtrectory
with_ iteмs:

logs
publtc_http
public_https
tncludes
nаме: create ngtnx vhost conftg

teмplate:
src: "{{ vhost.doмain }}.j2"
dest: /etc/ngtnx/conf.d/{{ vhost.doмatn }}.conf

О Мы оставили имя по умолчанию для переменной внутреннего цикла.

Управление выводом
В версии AnsiЫe 2.2 появилось новое выражение label, помогающее до опреде­
ленной степени управлять выводом цикла.

Следующий пример содержит обычный список словарей:

nаме: create nginx vhost conftgs
teмplate:

s гс: " { { Нем. doмatn } } . conf. j 2"
dest: "/etc/ngtnx/conf.d/{{ tteм.doмatn }}.conf

with_i.tel'ls:

- { dol'lai.n: www1.exaP1ple.coP1, ssl_enaЫed: yes}

{ dol'lai.n: www2.exal'lple.col'I}

{ dol'lai.n: wwwЗ.exal'lple.col'I,

ali.ases: [edge2.www.exal'lple.co1'1, eu.www.exaP1ple.coP1]}

Сложные сценарии ❖ 169

По умолчанию AnsiЫe выводит словари целиком. Если словари большие, чи­
тать вывод становится очень трудно:

TASK [сгеаtе nginx vhost configs] **

ok: [localhost] => (itel'l={u'doмain': u'www1.exaмple.coм', u'ssl_enaЫed': Тгuе})
ok: [localhost] => (iteм={u'doмai.n': u'www2.exaмple.coм'})
ok: [localhost] => (iteм={u'doмain': u'wwwЗ.exaмple.coм', u'aliases':
[u'edge2.www.exaмple.coм', u'eu.www.exaмple.coм']})

Исправить эту проблему поможет выражение labe l.

Поскольку нас интересуют только доменные имена, мы можем просто доба­
вить в раздел loop_control выражение label, описывающее, что именно должно
выводиться при обходе элементов:

nаме : сгеаtе nginx vhost configs
teмplate:

sгс: "{{ Heм.doмain }} .conf.j2"
dest: "/etc/nginx/conf.d/{{ iteм.doмain }} .conf"

wlth_Heмs:
{ doмain: www1.exaмple.coм, ssl_enaЫed: yes}
{ doмain: www2.exaмple.coм}
{ doмain: wwwЗ.exaмple.coм,

aliases: [edge2.www.exaмple.coм, eu.www.exaмple.coм] }
loop_control:

label: "fог doмain {{ Heм.doмain }}" О

О Добавление метки

В результате вывод получится более удобочитаемым:

TASK [сгеаtе nginx vhost configs] **

ok: [localhost] => (iteм=for doмain wwwl.exaмple.coм)
ok: [localhost] => (iteм=for doмain www2.exaмple.coм)
ok: [localhost] => (iteм=foг doмain wwwЗ.exaмple.coм)

Имейте в виду, что если используется флаг -v подробного вывода, словари будут выво­
диться целиком; не используйте этот флаг, чтобы скрыть пароли от посторонних глаз!
Устанавливайте в критических задачах по_ log: tгue.

ПОДКЛЮЧЕНИЕ
Функция i.nclude позволяет подключать задачи или даже целые сценарии, в за­
висимости от того, где используется эта функция. Она часто применяется в ро­
лях для определения или группировки задач и их аргументов в отдельных под­
ключаемых файлах.

170 ❖ Сложные сценарии

Рассмотрим пример. В примере 8.24 определены две задачи, использующие
идентичные аргументы в выражениях tag, when и becol'le.

Пример 8.24 ❖ Идентичные аргументы

паме: install nginx
package:

паме: nginx
tags: nginx О
Ьесоме: yes @

when: ansiЫe_os_faмily == 'RedHat' С)

паме: ensure nginx is running
service:

паме: nginx
state: started
enabled: yes

tags: nginx О
Ьесоме: yes @

when: ansiЫe_os_faмily == 'RedHat' С)

О Идентичные теги
@ Идентичные привилегии
С) Идентичные условия

Если выделить эти две задачи в отдельный файл, как показано в приме­
ре 8.25, и подключать его, как показано в примере 8.26, можно упростить сце­
нарий, определив аргументы только в операции подключения.

Пример 8.25 ❖ Выделение задач в отдельный файл

паме: install nginx
package:

паме: nginx

паме: ensure nginx is running
service:

паме: nginx
state: started
enabled: yes

Пример 8.26 ❖ Подключение задач и применение общих аргументов

include: nginx_include.yмl
tags: nginx
Ьесоме: yes
when: ansiЫe_os_faмily == 'RedHat'

Динамическое подключение
Задачи, характерные для конкретной операционной системы, в ролях часто
определяются в отдельных файлах. В зависимости от количества операцион­
ных систем, поддерживаемых ролью, для подключения задач может потребо­
ваться масса шаблонного кода.

Сложные сценарии ❖ 171

- i.nclude: Redhat.yмl
when: ansi.Ыe_os_faмi.ly == 'Redhat'

- i.nclude: DeЫan.yмl
when: ansi.Ыe_os_faмi.ly == 'DeЫan'

Начиная с версии 2.0 AnsiЫe позволяет динамически подключать файлы, ис­
пользуя подстановку переменных:

i.nclude: "{{ ansi.Ыe_os_faмHy }}.умl"
static: no

Однако такое решение на основе динамического подключения имеет свой
недостаток: команда ansi.Ыe-playbook --li.st-tasks может не вывести задачи,
подключаемые динамически, если AnsiЫe не имеет информации для заполне­
ния переменных, определяющих подключаемые файлы. Например, перемен­
ные-факты (см. главу 4) не заполняются, когда выполняется команда - - l i.st­
tasks.

Подключение ролей
Выражение i.nclude_role - это особый вид операции подключения. В отличие
от выражения role, которое будет использовать все компоненты роли, выраже­
ние i.nclude_role позволяет явно определить, какие компоненты подключаемой
роли должны использоваться.

По аналогии с выражением i.nclude, подключение ролей имеет два режима:
статический и динамический, и AnsiЫe автоматически угадывает, какой ре­
жим использовать. Однако вы всегда можете добавить выражение stati.c: yes
или stati.c: no, - чтобы явно определить режим.

- nаме: i.nstall ngi.nx
уuм:

pkg: ngi.nx

nаме: i.nstall php
i.nclude_role:

nаме: php О

nаме: confi.gure ngi.nx
teмplate:

sгс: ngi.nx.conf.j2
dest: /etc/ngi.nx/ngi.nx.conf

О Подключает и выполняет main.yml из роли php.

� Выражение i.nclude_role также открывает доступ к обработчикам.

Выражение i.nclude_role также может помочь избежать конфликтов компо­
нентов ролей, зависящих друг от друга. Представьте, что в зависимой роли,
которая выполняется перед главной ролью, имеется задача fi. le, изменяющая
владельца файла. Но в этот момент соответствующая учетная запись еще не
создана. Она будет создана позднее, в главной роли, во время установки пакета.

172 ❖ Сложные сценарии

- nаме: i.nstall ngi.nx
уuм:

pkg: ngi.nx

nаме: i.nstall php
i.nclude_role:

nаме: php
tasks_froм: i.nstall О

nаме: confi.gure ngi.nx
teмplate:

src: ngi.nx.conf.j2
dest: /etc/ngi.nx/ngi.nx.conf

nаме: confi.gure php
i.nclude_role:

nаме: php
tasks_froм: confi.gure е

О Подключает и выполняет install.yml из роли php.
б Подключает и выполняет configure.yml из роли php.

� На момент написания этих строк выражение i.nclude_role все еще было отмечено как
экспериментальное, это означает, что оно не обеспечивает обратной совместимости.

Блоки

Подобно выражению i.nclude, выражение Ыосk реализует механизм группиров­
ки задач. Выражение Ь lock позволяет определять условия или аргументы сразу
для всех задач в блоке:

- Ыосk:
nаме: i.nstall ngi.nx
package:

nаме: ngi.nx
nаме: ensure ngi.nx i.s runni.ng
servi.ce:

nаме: ngi.nx
state: started
enabled: yes

Ьесоме: yes
when: "ansi.Ыe_os_faмi.ly == 'RedHat'"

� В отличие от i.nclude, выражение Ыосk пока не поддерживает циклов.

Выражение Ыосk имеет еще одно, намного более интересное применение:
для обработки ошибок.

ОБРАБОТКА ОШИБОК С ПОМОЩЬЮ БЛОКОВ
Обработка ошибок всегда была непростой задачей. Система AnsiЫe изначаль­
но предусматривает возможность появления ошибок на хостах. Если возника-

Сложные сценарии ❖ 173

ет какая-то ошибка, она по умолчанию просто исключает хост из игры и про­
должает настраивать другие хосты, где ошибок не наблюдалось.

Комбинацией выражений seri.al и мax_fai.l_percentage AnsiЫe дает вам воз­
можность выполнить какие-то действия, когда операция объявляется потер­
певшей неудачу.

А благодаря выражению Ыосk, как показано в примере 8.27, AnsiЫe подни­
мает обработку ошибок еще на уровень выше и позволяет автоматизировать
повторное выполнение или откат задач, потерпевших ошибку.

Пример 8.27 ❖ app-upgrade.yml

Ыосk: О
- debug: �sg="You will see а failed tasks right after this"
- co��and: /bin/false
- debug: "You won' t see this �essage"
rescue: f)
- debug: "You only see this �essage in case of an failure in the Ыосk"
а lways: €)

- debug: "This will Ье always executed"

О Начало выражения Ыосk.
f) Определяет задачи, выполняемые, если в выражении Ыосk произойдет ошибка.
@) Задачи, которые выполняются всегда.

Если у вас есть опыт программирования, реализация обработки ошибок
в AnsiЫe может напомнить вам парадигму try-catch-finally, и она работает по­
хожим образом.

Для демонстрации возьмем самую обычную повседневную задачу: обнов­
ление приложения. Приложение распределяется в кластере виртуальных ма­
шин (ВМ) и развертывается в облаке IaaS (Apache CloudStack). Кроме того, обла­
ко поддерживает возможность создания снимков ВМ. Упрощенный сценарий,
выполняющий эту работу, действует по следующему алгоритму.

1. Забрать ВМ из-под управления балансировщиком нагрузки.
2. Создать снимок ВМ перед обновлением приложения.
3. Обновить приложение.
4. Выполнить тестирование.
5. Откатиться обратно, если что-то пошло не так.
6. Вернуть ВМ под управление балансировщиком нагрузки.
7. Удалить снимок ВМ.
Давайте реализуем этот алгоритм в виде сценария AnsiЫe, максимально со­

хранив простоту (см. пример 8.28).

Пример 8.28 ❖ app-upgrade.yml

hosts: app-servers
serial: 1
tasks:

174 ❖ Сложные сценарии

nаме: Take VM out of the load balancer
nаме: Сгеаtе а VM snapshot Ьеfоге the арр upgгade

block:
nаме: Upgrade the application

- nаме: Run sмoke tests

rescue:
- nаме: Revert а VM to the snapshot after а failed upgгade

always:
- nаме: Re-add webserver to the loadbalancer
- nаме: Reмove а VM snapshot

Этот сценарий почти наверняка вернет действующую ВМ в кластер, работа­
ющий под управлением балансировщика нагрузки, даже если попытка обнов­
ления потерпит неудачу.

Задачи в выражении always будут выполняться всегда, даже если будут обнаружены
ошибки при выполнении задач в выражении rescue! Тщательно отбирайте задачи, по­
мещаемые в always.

Если под управление балансировщиком нагрузки должна возвращаться
только обновленная ВМ, сценарий нужно изменить, как показано в приме­
ре 8.29.

Пример 8.29 ❖ app-upgrade.yml

hosts: app-servers
serial: 1
tasks:

nаме: Take VM out of the load balancer
nаме: Сгеаtе а VM snapshot Ьеfоге the арр upgгade

block:
nаме: Upgrade the application

- nаме: Run sмoke tests

rescue:
- nаме: Revert а VM to the snapshot after а failed upgгade

nаме: Re-add webserver to the loadbalancer
nаме: Reмove а VM snapshot

В этой версии исчезло выражение always, а две его задачи помещены в конец
сценария. Они будут выполнены, только если выражение rescue не будет вы­
полнено. То есть под управление балансировщика нагрузки будут возвращать­
ся только обновленные ВМ.

Окончательная версия сценария представлена в примере 8.30.

Пример 8.30 ❖ Сценарий обновления приложения с обработкой ошибок

- hosts: app-servers

seri.al: 1

tasks:

nаме: Take арр server out of the load balancer

loca l_acti.on:

мodule: cs_loadbalancer_rule_мeмber

nаме: balance_http

vм: "{{ i.nventory_hostnaмe_short }}"

state: absent

nаме: Сгеаtе а VM snapshot Ьеfоге an upgrade

local_acti.on:

мodule: cs_vмsnapshot

nаме: Snapshot Ьеfоге upgrade

vм: "{{ i.nventory_hostnaмe_short }}"

snapshot_мeмory: yes

Ыосk:

nаме: Upgrade the appli.cati.on

scri.pt: upgrade-app.sh

nаме: Run sмoke tests

scгi.pt: sмoke-tests.sh

rescue:

nаме: Revert the VM to а snapshot after а fai.led upgrade

local_acti.on:

мodule: cs_vмsnapshot

nаме: Snapshot Ьеfоге upgrade

vм: " { { i.nventory _hostnaмe_short } } "

state: геvегt

nаме: Re-add арр sегvег to the loadbalancer

local_acti.on:

мodule: cs_loadbalancer_rule_мeмber

nаме: balance_http

vм: "{{ i.nventory_hostnaмe_short }}"

state: pгesent

Сложные сценарии ❖ 175

nаме: Reмove а VM snapshot after successful upgrade ог successful rollback

local_acti.on:

мodule: cs_vмsnapshot

nаме: Snapshot Ьеfоге upgrade

vм: " { { i.nventory_hostnaмe_short } } "

state: absent

ШИФРОВАНИЕ КОНФИДЕНЦИАЛЬНЫХ дАННЫХ

ПРИ помощи V дULT

Сценарий Mezzanine требует доступа к конфиденциальной информации, такой
как пароли базы данных и администратора. Мы уже имели с этим дело в гла­
ве 6, где поместили все конфиденциальные данные в отдельный файл secrets.
yml. Этот файл хранился вне системы управления версиями.

176 ❖ Сложные сценарии

AnsiЫe предлагает альтернативное решение: вместо хранения файла secrets.
yml вне системы управления версиями можно создать его зашифрованную ко­
пию. В этом случае, если наша система управления версиями будет взломана,
нарушитель не получит доступа к содержимому файла secrets.yml, если он не
располагает паролем для дешифрования.

Утилита командной строки ansi.Ыe-vault позволяет создавать и редактиро­
вать зашифрованный файл, который ansi.Ыe-playbook будет автоматически рас­
познавать и расшифровывать с помощью пароля.

Вот как можно зашифровать имеющийся файл:

$ ansiЫe-vault encгypt secгets.y�l

А так можно создать новый зашифрованный файл secrets.yml:

$ ansiЫe-vault сгеаtе secгets.y�l

Вам будет предложено ввести пароль, а затем ansi.Ыe-vault запустит тексто­
вый редактор, чтобы вы могли заполнить файл. Для редактирования использу­
ется редактор, указанный в переменной окружения $EDIТOR. Если эта перемен­
ная не определена, по умолчанию используется vi.м.

В примере 8.31 показан вариант содержимого файла, зашифрованного с по­
мощью ansi.ble-vault.

Пример 8.31 ❖ Содержимое файла, зашифрованного с помощью ansiЫe-vault

$ANSIBLE_VAULT;l.l;AES256

34306434353230663665633539363736353836333936383931316434343030316366653331363262

6630633366383135386266333030393634303664613662350а623837663462393031626233376232

31613735376632333231626661663766626239333738356532393162303863393033303666383530

62346633343464313330383832646531623338633438336465323166626335623639383363643438

64636665366538343038383031656461613665663265633066396438333165653436

К файлу, зашифрованному с помощью ansi.Ыe-vault, можно обращаться
в секции vars_fi. les, как к обычному файлу, - вам не придется ничего менять
в примере 6.28, если зашифровать файл secrets.yml.

Однако, чтобы не происходило ошибки при обращении к зашифрованному
файлу, нужно подсказать утилите ansi.Ыe-playbook, что она должна запросить
пароль перед чтением зашифрованного файла. Для этого достаточно передать
аргумент --ask-vault-pass:

$ ansiЫe-playbook �ezzanine.y�l --ask-vault-pass

Также можно сохранить пароль в текстовом файле и сообщить ansi.Ыe-play­
book, где он находится, добавив параметр - -vault-password-fi.le:

$ ansiЫe-playbook �ezzanine --vault-passwoгd-file �/passwoгd.txt

Если аргумент параметра --vault-password-fi.le представляет выполняемый
файл, AnsiЫe запустит его и использует содержимое стандартного вывода как

Сложные сценарии ❖ 177

пароль. Благодаря этому для передачи пароля в AnsiЬ!e можно использовать
сценарии.

В табл. 8.5 перечислены доступные команды ansi.Ыe-vault.

Таблица 8.5. Команды ansiЬle-vault

Команда Описание

ansi.Ыe-vault encrypt fi le.yl'll Шифрует текстовый файл file.yml

ansi.Ыe-vault decrypt file.yl'll Дешифрует зашифрованный файл file.yml

ansi.Ыe-vault vi.ew file.yl'll Выводит содержимое зашифрованного файла file.ym/

ansi.Ыe-vault сгеаtе file.yl'll Создает новый зашифрованный файл file.yml

ansi.Ыe-vault edi.t fi le.yl'll Открывает в редакторе зашифрованный файл fi/e.yml

ansi.Ыe-vault геkеу fi le .y/1/l Изменяет пароль к зашифрованному файлу file.yml

Глава 9
•••

Управление хостами,

задачами и обработчиками

Иногда поведение по умолчанию системы AnsiЫe не в полной мере соответ­
ствует нашим желаниям. В этой главе мы познакомимся с инструментами An­

siЬle, которые позволяют настроить выбор обслуживаемых хостов, запуск за­
дач и использование обработчиков.

ШАБЛОНЫ ДЛЯ ВЫБОРА ХОСТОВ
До сих пор параметр hosts в наших операциях определял единичный хает или
группу, например:

hosts: web

Однако вместо единичного хоста или группы можно указать шаблон. Мы

уже видели шаблон all, который позволяет запускать задачи на всех извест­
ных хостах:

hosts: all

Можно определить объединение двух групп с помощью двоеточия, напри­
мер все машины в группах dev и stagi.ng:

hosts: dev:stagtng

С помощью двоеточия и знака амперсанда (&) можно определить пересече­

ние. Например, все серверы базы данных в тестовом окружении (группа stag­

i.ng) можно выбрать так:

hosts: stagtng:&database

В табл. 9.1 перечислены шаблоны, поддерживаемые в AnsiЬle. Обратите вни­
мание, что регулярные выражения всегда начинаются со знака тильды (-).

Управление хостами, задачами и обработчиками ❖ 179

Таблица 9.1. Поддерживаемые шаблоны

Действие Пример использования

Все хосты all

Все хосты *

Объединение dev:stagi.ng

Пересечение stagi.ng:&database

Исключение dev: !queue

Шаблон подстановки *. exai'lp le. coi'I

Диапазон нумерованных серверов web[S:10]
Регулярное выражение ~web\d\.exal'lple\.(col'I

AnsiЫe поддерживает также комбинации шаблонов. Например:

hosts: dev:stagi.ng:&database:!queue

ОГРАНИЧЕНИЕ ОБСЛУЖИВАЕМЫХ ХОСТОВ
Для ограничения хостов, на которых будет выполняться сценарий, использу­

ются флаги -l hosts или - -li.111i.t hosts, как показано в примере 9.1.

Пример 9.1 ❖ Ограничение обслуживаемых хостов

$ ansi.Ыe-playbook -l hosts playbook.yl'll
$ ansi.Ыe-playbook --li.мi.t hosts playbook.yl'll

Для определения комбинаций хостов можно использовать только что опи­

санный синтаксис шаблонов, например:

$ ansi.Ыe-playbook -l 'stagi.ng:&database' playbook.yмl

ЗАПУСК ЗДДДЧИ НА УПРАВЛЯЮЩЕЙ МАШИНЕ
Иногда необходимо выполнить конкретную задачу на управляющей машине.

Для этого AnsiЫe предлагает выражение local_acti.on.

Представьте, что сервер, на который нужно установить Mezzanine, толь­

ко что перезагрузился. Если запустить сценарий слишком рано, мы получим

ошибку, поскольку сервер еще не закончил процедуру загрузки. Можно при­

остановить сценарий, обратившись к модулю wai.t_for, и перед повторным за­

пуском сценария дождаться момента, когда сервер SSH будет готов принимать

соединения. В данном случае мы запускаем модуль на нашем ноутбуке, а не на

удаленном хаете.

Первая задача приостанавливает сценарий:

nai'le: wai.t for ssh server to Ье runni.ng
local_acti.on: wai.t_for port=22 host="{{ i.nventory_hostnal'le }}"

search_regex=OpenSSH

180 ❖ Управление хостами, задачами и обработчиками

Обратите внимание, что в задаче мы ссылаемся на переменную i.nventory_
hostnaмe, вместо которой будет подставлено имя удаленного хоста, а не local­
host. Это происходит потому, что эти переменные все еще представляют уда­
ленные хосты, хотя задача выполняется локально.

о
Если операция охватывает несколько хостов и вы используете local_acti.on, задача вы­
полнится несколько раз - по одному для каждого хоста. Такое поведение можно за­
претить, использовав гun_once, как показано в разделе «Последовательное выполнение
задачи на хостах по одному» ниже.

ЗАПУСК ЗДДДЧИ НА СТОРОННЕЙ МАШИНЕ
Иногда необходимо запустить задачу, связанную с хостом, но на другом серве­
ре. Для этого можно использовать выражение delegate_to.

Обычно это требуется в двух случаях:
О для активации триггеров в системах мониторинга, таких как Nagios;
О для передачи хоста под управление балансировщика нагрузки, такого

как НАРrоху.
Представьте, например, что нам необходимо активировать уведомления

Nagios для всех хостов в группе web. Допустим, у нас в реестре имеется запись
nagios.example.com. На этом хаете запущена система мониторинга Nagios. В при­
мере 9.2 показано, как можно было бы использовать выражение delegate_to
в этом случае.

Пример 9.2 ❖ Использование delegate_to для настройки Nagios

- nаме: еnаЫе alerts fог web servers

hosts: web

tasks:

- nаме: еnаЫе alerts

nagi.os: acti.on=enaЫe_aleгts servi.ce=web host={{ i.nventory_hostnaмe }}

delegate_to: nagi.os.exaмple.coм

В этом примере AnsiЫe выполняет задачу nagi.os на сервере nagios.example.
сот, но переменная i.nventoгy_hostnaмe, используемая в операции, ссылается на
хост web.

Более подробно о delegate_to рассказывается в lamp_haproxy/rolling_update.
yml, в примерах проекта AnsiЫe (https://github.com/ansiЬle/ansiЬle-examples).

ПОСЛЕДОВАТЕЛЬНОЕ ВЫПОЛНЕНИЕ ЗАДАЧИ НА ХОСТАХ

ПО ОДНОМУ
По умолчанию AnsiЫe выполняет каждую задачу на всех хостах параллельно.
Но иногда требуется, чтобы задача выполнялась на хостах по очереди. Кано­
ническим примером является обновление серверов приложений, которые
действуют под управлением балансировщика нагрузки. Обычно сервер при-

Управление хостами, задачами и обработчиками ❖ 181

ложений выводится из-под управления балансировщиком нагрузки, обновля­
ется и возвращается обратно. При этом не хотелось бы приостанавливать все
серверы сразу, потому что в этом случае служба станет недоступной.

Ограничить число хостов, на которых AnsiЬle запускает сценарий, можно
выражением seгial. В примере 9.3 продемонстрированы последовательный
вывод хостов из-под управления балансировщиком нагрузки Amazon ЕС2,
обновление системных пакетов и возвращение хостов обратно. Подробнее
о Amazon ЕС2 рассказывается в главе 14.

Пример 9.3 ❖ Вывод хостов из-под управления балансировщиком нагрузки
и обновление пакетов

nаме: upgгade packages on servers behind load balancer

hosts: мyhosts

serial: 1

tasks:

- nаме: get the ес2 instance id and elastic load balancer id

ec2_facts:

nаме: take the host out of the elastic load balancer

local_action: ec2_elb

aгgs:

instance_ id: " { { ansiЫe_ec2_ instance_ id } } "

state: absent

nаме: upgrade packages

apt: update_cache=yes upgrade=yes

nаме: put the host back in the elastic load balancer

local_action: ec2_elb

args:

instance_id: "{ { ansiЫe_ec2_instance_id } }"

state: present

ec2_elbs: "{{ Нем}}"

with_iteмs: ec2_elbs

В нашем примере мы передали выражению serial аргумент 1, сообщив си­
стеме AnsiЫe, что хосты должны обрабатываться последовательно. Если бы мы

передали 2, AnsiЫe обрабатывала бы по два хоста сразу.
Обычно, когда задача терпит неудачу, AnsiЫe прекращает обработку данно­

го хоста, но продолжает обработку остальных. Если используется балансиров­
щик нагрузки, возможно, практичнее будет отменить выполнение всей опера­
ции до того, как ошибка возникнет на всех хостах. Иначе может получиться так,
что все хосты будут выведены из-под управления балансировщиком нагрузки
и ему нечем будет управлять.

Определить максимальное количество хостов, находящихся в состоянии
ошибки (в процентах), по достижении которого AnsiЫe прекратит выполнение
операции, можно с помощью выражения мax_fai l_percentage вместе с seria l. На­
пример, допустим, что мы указали максимальный процент неудач 25%:

182 ❖ Управление хостами, задачами и обработчиками

nаме: upgrade packages on servers behind load balancer

hosts: мyhosts

serial: 1

мax_fail_percentage: 25

tasks:

далее следуют задачи

Если бы у нас было 4 хоста и один потерпел неудачу при выполнении задачи,
тогда AnsiЫe продолжила бы выполнение операции, потому что порог в 25% не
превышен. Однако если на втором хаете задача также завершится с ошибкой,
тогда AnsiЬle остановит всю операцию, поскольку уже 50% хостов будут нахо­
диться в состоянии ошибки, а это выше 25%. Чтобы остановить операцию при
первой же ошибке, установите J11ax_fai. l_percentage равным О.

ПАКЕТНАЯ ОБРАБОТКА ХОСТОВ

В выражение seri.a l можно также передать проценты вместо целого числа.
В этом случае AnsiЫe сама определит, сколько хостов из числа участвующих
в операции соответствуют этому значению, как показано в примере 9.4.

Пример 9.4 ❖ Использование процентов в выражении serial

nаме: upgrade 50% of web servers

hosts: мyhosts

serial: 50%

tasks:

далее следуют задачи

Можно пойти еще дальше. Например, выполнить операцию сначала на од­
ном хаете, убедиться, что все прошло благополучно, и затем последовательно
выполнять операцию на большем числе хостов сразу. Это может пригодиться
для управления большими логическими кластерами независимых хостов; на­
пример, 30 хостами в сети доставки содержимого (Content Delivery Network,
CDN).

Для реализации такого поведения, начиная с версии 2.2, AnsiЫe позволя­
ет задавать список с размерами пакетов. Элементами этого могут быть целые
числа или проценты, как показано в примере 9.5.

Пример 9.5 ❖ Использование списка с размерами пакетов

nаме: configure CDN servers

hosts: cdn

serial:

- 1

- 30%

tasks:

далее следуют задачи

AnsiЫe будет ограничивать количество хостов в каждом пакете, следуя по
списку, пока не будет достигнут последний его элемент или не останется хос-

Управление хостами, задачами и обработчиками ❖ 183

тов для обработки. Это значит, что последний элемент в списке seri.al продол­
жит действовать до окончания операции, пока не будут обработаны все хосты.

Если предположить, что предыдущая операция охватывает 30 хостов сети
CDN, тогда AnsiЫe сначала выполнит операцию на одном хаете, а затем после­
довательно будет обрабатывать хосты пакетами по 30% от общего числа хостов
(то есть 1, 10, 10, 9).

0дНОКРАТНЫЙ ЗАПУСК
Иногда может потребоваться выполнить задачу однократно, даже при наличии
нескольких хостов. Например, представьте, что у вас есть несколько серверов
приложений, запущенных за балансировщиком нагрузки, и вам необходимо
осуществить миграцию базы данных, но только на одном из них.

Для этого можно воспользоваться выражением run_once и потребовать от An-
siЫe выполнить задачу только один раз.

nаме: run the database мigrations
соммаnd: /opt/run_мigrations
run_once: true

Выражение run_once может также пригодиться при использовании local_ac­
ti.on, если сценарий вовлекает несколько хостов и необходимо выполнить ло­
кальную задачу только один раз:

nаме: run the task locally, only once
local_action: соммаnd /opt/мy-custoм-coммand
run_once: true

СТРАТЕГИИ ВЫПОЛНЕНИЯ
Выражение strategy на уровне операции дает дополнительную возможность
управления выполнением задач на всех хостах.

Мы уже знаем, что по умолчанию используется стратегия линейного выпол­
нения li.near. Согласно этой стратегии, AnsiЫe запускает задачу на всех хостах
сразу, ждет ее завершения (успешного или с ошибкой) и затем запускает следу­
ющую задачу на всех хостах. Как результат на выполнение каждой задачи уходит
ровно столько времени, сколько для этого требуется самому медленному хосту.

Давайте используем сценарий, представленный в примере 9.7, для демон­
страции применения разных стратегий. Мы используем минимальный файл
hosts, представленный в примере 9.6, содержащий три хоста, для каждого из
которых определена переменная sleep_seconds со своим значением секунд.

Пример 9.6 ❖ Файл hosts с тремя хостами и с разными значениями переменной
sleep_seconds

one sleep_seconds=1
two sleep_seconds=б

three sleep_seconds=10

184 ❖ Управление хосrами, задачами и обработчиками

Linear

Сценарий в примере 9. 7 выполняет операцию с тремя задачами локально, как
того требует выражение соппесti.оп: loca l. Каждая задача приостанавливается
на время, указанное в переменной sleep_seconds.

Пример 9.7 ❖ Сценарий для проверки стратегии liпеаг

hosts: all
connection: local
tasks:

nаме: first task
shell: sleep "{{ sleep_seconds }}"

nаме: second task
shell: sleep "{{ sleep_seconds }}"

nаме: third task
shell: sleep "{{ sleep_seconds }}"

Если запустить этот сценарий со стратегией по умолчанию l i.near, он выве­
дет результаты, показанные в примере 9.8.

Пример 9.8 ❖ Результаты выполнения сценария со стратегией linear

$ ansiЫe-playbook strategy.yмl -i hosts

PLAY [all] ***

TASK [setup] ***

ok: [two]
ok: [three]
ok: [one]

TASK [ftrst task] **

changed: [one]
changed: [two]
changed: [thгee]

TASK [second task] ***

changed: [one]
changed: [two]
changed: [three]

TASK [thtrd task] **

changed: [one]
changed: [two]
changed: [three]

PLAY RECAP ***

one
three
two

ok=4
ok=4
ok=4

changed=З
changed=З
changed=З

unreachable=0
unreachaЫe=0
unreachaЫe=0

failed=0
failed=0
failed=0

Мы получили уже знакомый нам упорядоченный вывод. Обратите внима­
ние на одинаковый порядок выполнения задач. Это объясняется тем, что хает

Управление хостами, задачами и обработчиками ❖ 185

опе всегда выполняет задачи быстрее всех (так как для него установлена самая

короткая задержка), а хает three - медленнее всех (для него установлена самая
долгая задержка).

free

В AnsiЫe доступна еще одна стратегия - стратегия free. Действуя в соответ­
ствии со стратегией free, AnsiЫe не ждет результатов выполнения задачи на
всех хостах. Вместо этого как только каждый хает выполнит очередную задачу,
ему тут же передается следующая.

В зависимости от быстродействия аппаратуры и задержек в сети один из
хостов может справляться с задачами быстрее других, находящихся на другом
краю света. Как результат некоторые хосты могут оказаться уже настроенны­
ми, тогда как другие - находиться в середине операции.

Если определить для сценария стратегию free, как показано в примере 9.9,
его вывод изменится (см. пример 9.10).

Пример 9.9 ❖ Выбор стратегии fгее в сценарии

hosts: а ll
connection: local
strategy: fгее О
tasks:

na�e: first task
shell: sleep "{{ sleep_seconds }}"

na�e: second task
shell: sleep "{{ sleep_seconds }}"

na�e: third task
shell: sleep "{{ sleep_seconds }}"

О Установлена стратегия free.

Как показывает вывод в примере 9.10, хает опе завершил операцию еще до
того, как два других хоста успели выполнить первую задачу.

Пример 9.10 ❖ Результаты выполнения сценария со стратегией fгее

$ ansiЫe-playbook strategy.y�l -i hosts

PLAY [all] ***

TASK [setup] ***

ok: [one]
ok: [two]
ok: [three]

TASK [ftrst task] **

changed: [one]

TASK [second task] ***

changed: [one]

186 ❖ Управление хостами, задачами и обработчиками

TASK [third task] **

changed: [опе]

TASK [first task] **

changed: [two]
changed: [three]

TASK [second task] ***

changed: [two]

TASK [third task] **

changed: [two]

TASK [second task] ***

changed: [three]

TASK [thlrd task] **

changed: [three]

PLAY RECAP ***

one
three
two

ok=4 changed=З unreachaЫe=0 failed=0
ok=4 changed=З uпгеасhаЫе=0 failed=0
ok=4 changed=З uпгеасhаЫе=0 failed=0

В обоих случаях операция выполняется за то же время. Однако при определенных усло­
виях операция может выполняться быстрее, когда используется стратегия free.

Подобно многим базовым компонентам в AnsiЫe, управление стратегиями

реализовано в виде плагина нового типа.

УЛУЧШЕННЫЕ ОБРАБОТЧИКИ

Иногда можно обнаружить, что поведение по умолчанию обработчиков в An­

siЫe не соответствует желаемому. Этот подраздел описывает, как получить бо­

лее полный контроль над моментом запуска обработчиков.

Обработчики в pre_tasks и post_tasks
Когда мы обсуждали обработчики, вы узнали, что они обычно выполняются

после всех задач, один раз и только после получения уведомлений. Но не за­
бывайте, что кроме раздела tasks существуют еще pre_tasks и post_tasks.

Каждый раздел tasks в сценарии обрабатывается отдельно; любые обработ­

чики, которым были отправлены уведомления из pre_tasks, tasks или post_tasks,

выполняются в конце каждого раздела. Как результат какой-то обработчик мо­

жет выполниться несколько раз в ходе операции:

hosts: localhost
pre_tasks:

соммаnd: echo Рге Tasks
notify: print мessage

tasks:
соммаnd: echo Tasks
notify: print мessage

post_tasks:

Управление хостами, задачами и обрабоТ'!иками ❖ 187

соммаnd: echo Post Tasks
notify: print мessage

handlers:
nаме: pгint мessage
соммаnd: echo handler executed

Если запустить этот сценарий, он выведет следующее:

$ ansiЫe-playbook pre_post_tasks_handlers.yмl

PLAY [localhost] ***

TASK [setup] ***

ok: [localhost]

TASK [соммапd] ***

changed: [localhost] ·

RUNNING HANDLER [print мessage] **.
changed: [localhost]

TASK [соммаnd] ***

changed: [localhost]

RUNNING HANDLER [print мessage] **
changed: [localhost]

TASK [соммаnd] ***

changed: [localhost]

RUNNING HANDLER [print мessage] **
changed: [localhost]

PLAY RECAP ***

localhost : ok=7 changed=б unreachaЫe=0 failed=0

Принудительный запуск обработчиков
Возможно, вам показалось странным, что выше я написал: обычно выполняют­

ся после всех задач. Обычно, потому что таково поведение по умолчанию. Од­
нако AnsiЫe позволяет управлять моментом выполнения обработчиков с по­

мощью специального модуля меtа.

В примере 9.12 приводится часть роли пgi..nx, где используется модуль меtа
с выражением flush_handlers в середине.

Сделано это по двум причинам:
1) чтобы очистить некоторые старые данные в разделе vhost конфигурации

Nginx, что можно сделать только в отсутствие любых процессов, исполь­

зующих его (например, после перезапуска службы);

188 ❖ Управление хоаами, задачами и обработчиками

2) чтобы выполнить некоторые тесты и убедиться, что обращение к неко­

торому URL возвращает ОК. Но такая проверка не имеет большого смыс­

ла до перезапуска служб.

В примере 9.11 показана конфигурация роли ng'i.nx: имя хоста и порт для про­

верки, список в разделе vhosts с именем и шаблоном и некоторые устаревшие

виртуальные хосты, которые требуется удалить:

Пример 9.11 ❖ Конфигурация для роли nginx

nginx_healthcheck_host: health.exaмple.coм
nginx_healthcheck_port: 8080

vhosts:
- паме: www.exaмple.coм

teмplate: default.conf.j2

absent_vhosts:
- obsolete.exaмple.coм
- www2.exaмple.coм

В файл задач для роли roles/nginx/tasks/main.yml (см. пример 9.12) мы доба­

вили задачи 111eta с соответствующим аргументом flush_handlers, между други­

ми задачами, но именно там, где нам хотелось бы: перед задачами проверки

и очистки.

Пример 9.12 ❖ Очистка и проверка после перезапуска службы

- паме: install nginx
уuм:

pkg: nginx
notify: restart nginx

паме: configure nginx vhosts
teмplate:

src: conf.d/{{ iteм.teмplate I default(iteм.naмe) }}.conf.j2
dest: /etc/nginx/conf.d/{{ itем.паме }}.conf

with_iteмs: "{{ vhosts }}"
when: itем.паме not in vhosts_absent
notify: restart nginx

паме: reмoved unused nginx vhosts
fHe:

path: /etc/nginx/conf.d/{{ iteм }}.conf
state: absent

with_ iteмs: " { { vhosts_absent } } "
notify: restart nginx

паме: validate nginx config О
соммапd: nginx -t
changed_when: false
check_мode: false

· nаме: flush the handlers

меtа: flush_handlers б

nаме: гемоvе unused vhost directory

file:

Управление хостами, задачами и обработчиками ❖ 189

path: /srv/www/{{ iteм }} state=absent

when: iteм not in vhosts

with_iteмs: "{{ vhosts_absent }}"

nаме: check healthcheck �

local_action:

мodule: uri

url: http://{{ nginx_healthcheck_host }}:{{ nginx_healthcheck_port }}/healthcheck

return_content: true
retries: 10

delay: 5

register: webpage

faH:

мsg: "fail if healthcheck is not ok"

when: not webpagelskipped and webpagelsuccess and "ok" not in webpage.content

О Проверка конфигурации непосредственно перед принудительным запуском обра­
ботчиков.

8 Принудительный запуск обработчиков между задачами.

� Выполнение проверочных тестов. Обратите внимание, что это может быть динами­
ческая страница, проверяющая доступность базы данных.

Выполнение обработчиков по событиям
До появления версии AnsiЫe 2.2 поддерживался только один способ уведом­
ления обработчиков: вызов пot-\.fy с именем обработчика. Этот простой способ
подходит для большинства ситуаций. Прежде чем углубиться в рассуждения,
как выполнение обработчиков по событиям может облегчить нам жизнь, рас­
смотрим короткий пример:

hosts: мailservers

tasks:

сору:

src: мain. conf

dest: /etc/postfix/мain.cnf

notify: postfix config changed О

handlers:

nаме: restart postfix

service: naмe=postfix state=restarted

listen: postfix config changed О

О Регистрация события, появления которого должны дождаться обработчики.

Выражение l i.steп определяет то, что мы называем событием, появления
которого должны дождаться обработчики. Таким способом можно отвязать

190 ❖ Управление хостами, задачами и обработчиками

уведомление, посылаемое задачей, от конкретного имени обработчика. Чтобы
уведомить больше обработчиков об одном и том же событии, достаточно прос­
то указать в дополнительных обработчиках то же событие.

� Область видимости обработчиков ограничивается уровнем операции. Нельзя известить
обработчики в другой операции с использованием или без использования выражения
l i.sten.

Выполнение обработчиков по событиям: случай SSL
Истинная ценность задержки обработчиков проявляется при определении ро­
лей или зависимостей между ролями. Один из очевидных случаев, с которыми
я сталкивался, - управление сертификатами SSL для разных служб.

Поскольку мы очень широко используем SSL в наших проектах, имеет смысл
создать отдельную роль SSL. Это очень простая роль, единственное назначение
которой - скопировать сертификаты SSL и ключи на удаленный хост. Для этого
в файле roles/ssl/tasks/main.yml (см. пример 9.13) определяется несколько задач.
Они предназначены для выполнения на хостах с операционной системой Red
Hat Linux, из-за конкретных путей к файлам, настроенным в переменных roles/
ssl/vars/RedHat.yml (пример 9.14).

Пример 9.13 ❖ Задачи для роли SSL

- nаме: i.nclude 05 speci.fi.c vari.aЫes
i.nclude_vars: "{{ ansi.Ыe_os_faмi.ly }}.умl"

- nаме: сору SSL certs
сору:

sгс: "{{ i.teм }}"
dest: {{ ssl_certs_path }}/
owner: гооt
group: гооt
моdе: 0644

wi.th_i.teмs: "{{ ssl_certs }}"

- nаме: сору SSL keys
сору:

sгс: "{{ i.teм }}"
dest: "{{ ssl_keys_path }}/"
owner: гооt
group: гооt
моdе: 0644

wi.th_ i.teм5: " { { 55 l_key5 } } "
no_log: tгue

Пример 9.14 ❖ Переменные для систем на основе Red Hat

55l_cert5_path: /etc/pki./tl5/cert5
5sl_key5_path: /etc/pki./tl5/pri.vate

Управление хостами, задачами и обработчиками ❖ 191

В настройках по умолчанию для роли (пример 9.15) мы определили пустые
списки сертификатов и ключей SSL, поэтому никакие сертификаты и ключи
фактически обрабатываться не будут. У нас есть возможность переопределить
эти значения по умолчанию, чтобы заставить роль копировать файлы.

Пример 9.15 ❖ Настройки по умолчанию для роли SSL

ssl_certs: []

ssl_keys: []

С этого момента у нас появляется возможность использовать роль SSL в дру­
гих ролях как зависимость, как показано в примере 9.16, где определена роль
ngi.nx (файл roles/nginx/meta/main.yml). Все зависимые роли выполняются до ро­
дительской роли. То есть в нашем случае задачи из роли SSL выполнятся до задач
из роли ngi.nx. В результате сертификаты и ключи SSL уже будут находиться на
месте и готовы к использованию ролью ngi.nx (например, в конфигурации vhost).

Пример 9.16 ❖ Роль nginx зависит от SSL

dependenci.es:

- role: ssl

Логически зависимости имеют однонаправленный характер: роль пgi.nx за­
висит от роли ssl, как показано на рис. 9.1.

Рис. 9.1 ❖ Однонаправленная зависимость

Конечно, роль пgi.пх могла бы обрабатывать все аспекты, касающиеся веб­
сервера Nginx. Эта роль имеет задачу в файле roles/nginx/tasks/main.yml (при­
мер 9.17) для развертывания шаблона с конфигурацией nginx и перезапускает
службу nginx, посылая уведомление обработчику по его имени.

Пример 9.17 ❖ Задачи в роли ngi.nx

- nаме: confi.gure ngi.nx

192 ❖ Управление хостами, задачами и обработчиками

te/Тlplate:
sгс: ngi.nx.conf.j2
dest: /etc/ngi.nx/ngi.nx.conf

noti.fy: restart ngi.nx О

О Известить обработчик, перезапускающий службу nginx.

Соответствующий обработчик для роли ngi.nx определен в файле roles/nginx/
handlers/main.yml, как показано в примере 9.18.

Пример 9.18 ❖ Обработчики для роли ngi.nx

na/Тle: restart ngi.nx О
servi.ce:

na/Тle: ngi.nx
state: restarted

О Обработчик restart ngi.nx перезапускает службу Nginx.

Так правильно? Не совсем. Сертификаты SSL иногда требуется менять. И ког­
да происходит замена сертификатов, все службы, использующие их, должны
перезапускаться, чтобы взять в работу новые сертификаты.

И как это сделать? Известить обработчик restart ngi.nx из роли SSL, вы имен­
но это подумали, я угадал? Хорошо, давайте попробуем.

Исправим роль SSH в файле roles/ssl/tasks/main.yml, добавив в конец задачи
копирования сертификатов и ключей выражение noti.fy для перезапуска Nginx,
как показано в примере 9 .19.

Пример 9.19 ❖ Добавление выражения noti.fy в задачу для перезапуска Ngiпx

na/Тle: i.nclude 05 speci.fi.c vaгi.aЫes
i.nclude_vaгs: "{{ ansi.Ыe_os_fafТli.ly }}.yfТll"

- nafТle: сору SSL certs
сору:

sгс: "{{ i.te/ТJ }}"
dest: {{ ssl_certs_path }}/
owner: гооt
group: гооt
/Тlode: 0644

wi.th_i.te/Тls: "{{ ssl_certs }}"
noti.fy: restart ngi.nx О

- na/Тle: сору SSL keys
сору:

sгс: "{{ i.tefТI }}"
dest: "{{ ssl_keys_path }}/"
owner: гооt
group: гооt
/Тlode: 0644

wi.th_i.tefТls: "{{ ssl_keys }}"

Управление хостами, задачами и обработчиками ❖ 193

no_log: true
noti.fy: restart ngi.nx О

О Известить обработчик в роли ngi.nx.

Отлично, сработало! Но подождите, мы только что добавили новую зависи­
мость в нашу роль SSL: зависимость от роли ngi.nx, как показано на рис. 9.2.

Рис. 9.2 ❖ Роль nginx зависит от роли SSL,
а роль SSL зависит от роли nginx

И что из этого следует? Если теперь использовать такую роль SSL как зави­
симость в других ролях (таких как postfi.x, dovecot или ldap), AnsiЫe будет жало­
ваться на попытку известить неизвестный обработчик, потому что restart ngi.nx
не будет определен в этих других ролях.

Версия AnsiЫe 1.9 сообщала о попытке известить отсутствующий обработчик. Такое по­
ведение было повторно реализовано в версии AnsiЬle 2.2, потому что было замечено
как ошибка регресса. Однако его можно изменить с помощью параметра error _on_мi.ss­

i.ng_handler в файле ansiЫe.cfg, который по умолчанию имеет значение error _on_мi.ss­

i.ng_handler = True.

Кроме того, нам могло бы понадобиться добавить в роль SSL больше имен
обработчиков для уведомления. Однако такое решение очень плохо масшта­
бируется.

Решить эту проблему поможет поддержка выполнения обработчиков по со­
бытиям! Вместо уведомления обработчика по имени мы можем послать собы­
тие - например, ssl_certs_changed, как показано в примере 9.20.

Пример 9.20 ❖ Уведомление обработчиков о наступлении события

nаме: i.nclude OS speci.fic vari.aЫes
i.nclude_vars: "{{ ansi.Ыe_os_faмi.ly }}.умl"

nаме: сору SSL certs
сору:

src: "{{ Нем}}"

194 ❖ Управление хостами, задачами и обработчиками

dest: "{{ ssl_certs_path }}/"
owner: гооt
group: гооt
rюde: 0644

wi.th_i.teмs: "{{ ssl_certs }}"
noti.fy: ssl_certs_changed О

- nаме: сору SSL keys
сору:

src: "{{ tteм }}"
dest: "{{ ssl_keys_path }}/"
owner: гооt
group: гооt
моdе: 0644

wi.th_i.teмs: "{{ ssl_keys }}"
no_log: true
noti.fy: ssl_certs_changed О

О Отправка события ssl_certs_chaпged.

Как отмечалось, AnsiЫe продолжит жаловаться на попытку уведомить не­
известный обработчик, и чтобы избавиться от назойливых жалоб, достаточно
лишь добавить пустой обработчик в роль SSL, как показано в примере 9.21.

Пример 9.21 ❖ Добавление пустого обработчика в роль SSL

- nаме: SSL certs changed
debug:

мsg: SSL changed event tri.ggered
li.sten: ssl_certs_changed О

О Пустой обработчик события ssl_certs_changed.

Вернемся к нашей роли nginx, где мы должны в ответ на событие ssl_certs_
changed перезапустить службу Nginx. Так как у нас уже есть требуемый обработ­
чик, мы просто добавим в него выражение l isten, как показано в примере 9.22.

Пример 9.22 ❖ Добавление выражения Hsten в существующий обработчик в роли ngi.nx

nаме: restart ngi.nx
servi.ce:

nаме: ngi.nx
state: restarted

li.sten: ssl_certs_changed О

О Добавление выражения l i.sten в существующий обработчик.

Если теперь опять взглянуть на граф зависимостей, можно заметить, что он
изменился, как показано на рис. 9.3. Мы восстановили однонаправленный ха­
рактер зависимости и получили возможность использовать роль ssl в других
ролях.

Управление хостами, задачами и обработчиками ❖ 19 5

Рис. 9.3 ❖ Использование роли ssl в других ролях

И последнее замечание для создателей ролей, размещающих свои роли
в AnsiЫe Galaxy: добавляйте обработчики событий и отправку событий в свои
роли, если это имеет смысл.

(БОР ФАКТОВ ВРУЧНУЮ
В случаях, когда сервер SSH еще не запущен, полезно явно отключить сбор фак­
тов. В противном случае AnsiЫe попытается установить соединение с хостом
и собрать факты еще до запуска первой задачи. Поскольку доступ к фактам не­
обходим (напоминаю, что мы используем факт anstЫe_env в нашем сценарии),
можно обратиться к модулю setup для инициации сбора фактов, как показано
в примере 9.23.

Пример 9.23 ❖ Ожидание запуска SSH-cepвepa

- nаме: Deploy мezzantne

hosts: web

gather_facts: False

разделы vars и vars_ftles здесь не показаны

tasks:

nаме: watt fог ssh sегvег to Ье runntng

local_actlon: waH_for port=22 host="{{ tnventory_hostnaмe }}"

seaгch_regex=OpenSSH

nаме: gather facts

setup:

Далее следуют остальные задачи

ПОЛУЧЕНИЕ IР-ддРЕСА ХОСТА
В нашем сценарии несколько имен хостов искусственно создано из IР-адреса
веб-сервера.

ltve_hostnaмe: 192.168.33.10.xtp.to

doмatns:

196 ❖ Управление хостами, задачами и обработчиками

- 192.168.33.10.xi.p.i.o
- WWW.192.168.33.10.xi.p.i.o

А если мы захотим использовать такую же схему, но не определять IР-адреса
в переменных? В этом случае, если IР-адрес веб-сервера изменится, нам не
придется вносить изменений в сценарий.

AnsiЫe получает IР-адрес каждого хоста и сохраняет его как факт. Каждый
сетевой интерфейс представлен связанным с ним фактом. Например, данные
о сетевом интерфейсе eth0 хранятся в факте ansi..Ыe_eth0. Это показано в при­
мере 9.24.

Пример 9.24 ❖ Факт ansi.Ыe_eth0

"ansi.Ыe_eth0": {

}

"acti.ve": true,
"devi.ce": "eth0",
llipv4 11: {

"address": "10.0.2.15",
"netl'1ask": "255.255.255.0",
"network": "10.0.2.0"

},
"i.pvб":

{

}

],

"address" : "fe80: : а00: 27ff: fefe: 1e4d",
"prefi.x": 1164 11 ,

"scope": "l i.nk"

"1'1acaddгess": "08:00:27:fe:1e:4d",
"1'1odule": "е1000",
"1'1tU": 1500,
"prol'1i.sc": false,
"type": "ether"

Наша машина Vagrant имеет два интерфейса, eth0 и ethl. Интерфейс
eth0 - приватный, с IР-адресом (10.0.2.15), недоступным для нас. Интерфейс
ethl - тот самый, которому мы присвоили IР-адрес в нашем файле Vagrantfile

(192.168.33.10).
Мы можем определить переменные следующим образом:

li.ve_hostnal'1e: "{{ ansi.Ыe_eth1.i.pv4.address }}.xi.p.i.o"
dol'1ai.ns:

"{{ ansi.Ыe_eth1.i.pv4.address }}.xi.p.i.o"
- "www.{{ ansi.Ыe_eth1.i.pv4.addгess }}.xi.p.i.o"

Глава 10
•••

Плагины

обратного вызова

СистемаАnsiЫе поддерживает так называемые плагuны обратного вызова (call­
back plugins), которые могут выполнять некоторые действия в ответ на такие
события, как запуск операции или завершение задачи на хаете. Плагины об­
ратного вызова можно использовать, например, для отправки сообщений Slack
или для вывода записей в удаленный журнал. Даже информация, которую вы
видите в окне терминала во время выполнения сценария AnsiЫe, фактически
выводится плагином обратного вызова.

AnsiЬle поддерживает два вида плагинов обратного вызова:
О плагuны стандартного вывода (stdout plugins), влияющие на информа­

цию, что выводится в окно терминала;
О другие плагuны, выполняющие любые другие действия, не изменяющие

вывода на экран:

Технически плагины обратного вызова делятся на три вида, а не на два:

• стандартного вывода;

• уведомлений;

• агрегаты.

Однако, поскольку реализация AnsiЫe не различает плагины уведомлений
и агрегаты, мы будем рассматривать их как одну разновидность, под названи­
ем другие плагuны.

ПЛАГИНЫ СТАНДАРТНОГО ВЫВОДА
Плагин стандартного вывода управляет форматом отображения информации
на экране. В каждый конкретный момент времени активным может быть толь­
ко один плагин стандартного вывода.

Назначается плагин стандартного вывода установкой параметра stdout_call­

back в разделе defaults в файле ansiЫe.cfg. Например, вот как можно выбрать
плагин acttonaЫe:

198 ❖ Плагины обратного вызова

[defaults]

stdout_callback = acti.onaЫe

В табл. 10.1 перечислены плагины стандартного вывода, поддерживаемые

вAnsiЫe.

Таблица 10.1. Плагины стандартного вывода

Имя Описание

acti.onaЫe Выводит только сообщения об изменениях и ошибках

debug Выводит содержимое stderr и stdout в удобочитаемом виде

default Отображает вывод по умолчанию

dense Затирает старый вывод вместо прокрутки

json Выводит информацию в формате JSON

1ТJi.ni.1ТJal Выводит результаты выполнения задач с минимальным форматированием

oneli.ne Действует подобно плагину minimal, но выводит информацию в одну строку

selecti.ve Отображает вывод только отмеченных задач

ski.ppy Подавляет вывод для пропущенных хостов

actionable
Плагин acti.onaЫe отображает вывод задачи, только если она изменила состоя­
ние хоста или потерпела неудачу. Это способствует уменьшению объема вы­
вода.

debug
Плагин debug упрощает чтение потоков stdout и stderr задачи и может приго­
диться для отладки. При использовании плагина default чтение вывода может
оказаться сложной задачей:

TASK [check out the reposi.tory оп the host] *************************************

fatal: [web]: FAILED! => {"changed": false, "смd": "/usr/Ыn/gi.t clone --ori.gi.n о

ri.gi.n '' /hoмe/vagrant/мezzani.ne/мezzani.ne_exaмple", "fai.led": true, "мsg": "Clon

i.ng i.nto '/hoмe/vagrant/мezzani.ne/мezzani.ne_exaмple' ... \nPerмi.ssi.on deni.ed (puЫi.

ckey).\r\nfatal: Could not геаd fгом гемоtе reposi.toгy.\n\nPlease маkе sure you h

ave the соггесt access ri.ghts\nand the reposi.tory exi.sts.", "гс": 128, "stderr":

"Cloni.ng i.nto '/hoмe/vagrant/мezzani.ne/мezzani.ne_exaмple' ... \nPerмi.ssi.on deni.ed (

puЫi.ckey).\r\nfatal: Could not read fгом гемоtе reposi.tory.\n\nPlease маkе sure

you have the соггесt access ri.ghts\nand the reposi.tory exi.sts.\n", "stdeгr_li.nes"

: ["Cloni.ng i.nto '/hoмe/vagrant/мezzani.ne/мezzani.ne_exaмple' ... ", "Perмi.ssi.on den

i.ed (puЫi.ckey).", "fatal: Could not read fгом гемоtе reposi.tory.", "", "Please 1'1

ake sure you have the correct access ri.ghts", "and the reposi.tory exi.sts."], "std

out": "", "stdout_li.nes": []}

Но благодаря дополнительному форматированию, осуществляемому плаги­

ном debug, читать вывод намного проще:

TASK [check out the reposi.tory оп the host] *************************************

fatal: [web]: FAILED! => {

Плагины обратного вызова ❖ 199

"changed": false,
"смd": "/usr/btn/g\t clone --ortgtn ortgtn '' /hoмe/vagrant/мezzantne/мezzan\
ne_exaмple",
"fatled": true,
"гс": 128

}

STDERR:

Clontng tnto '/hoмe/vagrant/мezzantne/мezzantne_exaмple' ...
Perмtsston dented (puЫ\ckey).
fatal: Could not read froм гемоtе repos\toгy.

Please маkе sure you have the correct access rtghts
and the reposttory extsts.

MSG:

Clontng tnto '/hoмe/vagrant/мezzantne/мezzantne_exaмple' ...
Perмtsston dented (puЫtckey).
fatal: Could not read fгом reмote reposttory.

Please маkе sure you have the correct access r\ghts
and the reposttory extsts.

dense

Плагин dense (появился в версии AnsiЫe 2 .3) всегда отображает только две стро­
ки вывода. Он затирает предыдущие строки, не выполняя скроллинга:

PLAY 1: CONFIGURE WEBSERVER WITH NGINX
task 6: testserver

json

Плагин json выводит информацию в машиночитаемом формате JSON. Он мо­
жет пригодиться в случаях, когда требуется организовать обработку вывода
AnsiЫe с использованием программ. Обратите внимание, что этот плагин не
генерирует вывода, пока сценарий не завершится целиком.

Вывод в формате JSON обычно получается слишком объемным, чтобы по­
казать его здесь, поэтому приведем лишь фрагмент:

{
"plays": [

"play": {

},

"\d": "a4Se60df-9Sf9-Sa33-6619-000000000002"
"nаме": "Conftgure webserver wtth ng\nx",

"tasks": [

{
"task": {
"nаме": "tnstall ngtnx",
"td": "a4Se60df-9Sf9-Sa33-6619-000000000004"

}

200 ❖ Плагины обратного вызова

"hosts": {
"testserver": {

}
}

"changed": false,
"i.nvocati.on": {

"Pюdule_args": { ... }
}

minimaL

Плагин применяет минимум обработки к результатам, возвращаемым с собы­
тием AnsiЬle. Например, если плагин default форматирует вывод задачи так:

TASK [create а logs di.rectory] **

ok: [web]
то плагин мi.ni.мal выведет:
web I SUCCESS => {

"changed": false,
"gi.d": 1000,
"group": "vagrant",
"моdе": "0775",
11QWПer'': 111/agrant'',
"path": "/hoмe/vagrant/logs",
"si.ze": 4096,
"state": "di.rectory",
"ui.d": 1000

oneLine

Плагин oneli.ne напоминает плагин 111i.ni.111al, но выводит информацию в одну
строку (здесь пример вывода показан в нескольких строках, потому что на
книжной странице он не умещается в одну строку):

web I SUCCESS => {"changed": false, "gi.d": 1000, "group": "vagrant", "моdе": "0775", "owner":
"vagrant", "path": "/hoмe/vagrant/logs", "si.ze": 4096, "state": "di.rectory", "ui.d": 1000}

seLective
Плагин selecti.ve отображает вывод задач, завершившихся благополучно, толь­
ко если они отмечены тегом pri.nt_acti.on. Сообщения об ошибках выводятся
всегда.

skippy
Плагин ski.ppy не отображает ничего для пропускаемых хостов. Плагин default
выводит ski.ppi.ng: [hostna111e], если хает пропускается для данной задачи, - пла­
гин ski.ppy подавляет этот вывод.

Плаrины обратного вызова ❖ 201

ДРУГИЕ ПЛАГИНЫ
Другие плагины выполняют разнообразные действия, такие как запись време­

ни выполнения или отправка уведомлений Slack. Эти плагины перечислены
в табл. 10.2.

В отличие от плагинов стандартного вывода, другие плагины могут действо­
вать одновременно. Активировать любые плагины из этой категории можно
с помощью параметра callback_whi.teli.st в файле ansiЫe.cfg, перечислив их че­

рез запятую, например:

[defaults]

callback_whi.teli.st = мai.l, slack

Многие из этих плагинов имеют дополнительные параметры настройки,

определяемые через переменные окружения.

Таблица 10.2.Друzие плаzины

Имя Описание

foreмan Посылает уведомление в Foreman

hi.pchat Посылает уведомление в HipChat

jabber Посылает уведомление в Jabber

juni.t Записывает данные в ХМL-файл в формате Junit

log_plays Записывает в журнал результаты выполнения сценария для каждого хоста

logentri.es Посылает уведомление в Logentries

logstash Посылает результаты в Logstash

маН Посылает электронное письмо, если выполнение задачи завершилось с ошибкой

osx_say Голосовые уведомления в macOS

profi.le_tasks Создает отчет о времени выполнения для каждой задачи

slack Посылает уведомление в Slack

ti.мer Создает отчет об общем времени выполнения

foreman

Плагин foreмan посылает уведомления в Foreman. В табл. 10.3 перечислены пе­

ременные окружения, используемые для настройки плагина.

Таблица 10.3. Переменные окружения плаzина foreman

Переменная Описание По умолчанию

FOREМAN_URL Адрес URL-cepвepa Foreman http://localhost:3000

FOREМAN_SSL_CERT Сертификат Х509 для аутентификации на сервере /etc/foreмan/cli.ent_cert.peм
Foreman, если используется протокол НТТРS

FOREМAN SSL КЕУ Соответствующий приватный ключ /etc/foreмan/cli.ent_key.peм

FOREМAN_SSL_VERIFY Необходимость проверки сертификата Foreman. 1
Значение 1 требует проверять сертификаты SSL
с использованием установленных центров серти-
фикации. Значение О запрещает проверку

202 ❖ Плагины обратного вызова

hipchat
Плагин hi.pchat посылает уведомления в НipChat. В табл. 10.4 перечислены пе­
ременные окружения, используемые для настройки плагина.

Таблица 10.4. Переменные окружения плагина hipchat

Переменная Описание По умолчанию

НIРСНАТ TOKEN Адрес URL сервера Foreman (Нет)
НIРСНАТ ROOM Комната HipChat для отправки сообщения ansi.Ыe

НIPCHAT_NAME Имя в HipChat для подписи сообщения ansi.Ыe

НIPCHAT_NOТIFY Добавлять флаг уведомления к важным сообщениям true

Для использования плагина htpchat требуется установить Руthоп-библиотеку pretty­
taЫe:

pip install prettytaЫe

jabber
Плагин jabber посылает уведомления в Jabber. Обратите внимание, что на­

стройки для этого плагина не имеют значений по умолчанию. Они перечисле­
ны в табл. 10.5.

Таблица 10.5. Переменные окружения плагина jabber

Переменная Описание

JABBER SERV Имя хоста сервера Jabber
JABBER_USER Имя пользователя Jabber для аутентификации
JABBER_PASS Пароль пользователя Jabber для аутентификации
JABBER ТО Пользователь Jabber, которому посылается уведомление

� Для использования плагина jabber требуется установить Руthоп-библиотеку х111рр:
pip install git+https://github.co111/ArchipelProject/x111pppy

junit
Плагин juni.t записывает результаты выполнения сценария в ХМL-файл в фор­

мате JUnit. Настраивается с помощью переменных окружения, перечисленных

в табл. 10.6. Создание ХМL-отчетов производится в соответствии с соглашения­

ми, перечисленными в табл. 10.7.

Таблица 10.6. Переменные окружения плагина junit

Переменная Описание По умолчанию

JUNIT OUTPUT DIR Каталог для файлов отчетов -/.ansi.Ыe.log

JUNIT TASK CLASS Настройки вывода: по одному классу в файле YAML false

Плагины обратного вызова ❖ 203

Таблица 10.7. Отчет JUnit

Вывод задачи AnsiЫe Отчет Junit

ok pass
Ошибка с текстом ЕХРЕСТЕD FAILURE в имени задачи pass
Ошибка как результат исключения еггог
Ошибка по другой причине failure
skipped skipped

� Для использования плагина juni.t требуется установить Руthоп-библиотеку juni.t_xl'll:
pip install junit_xl'll

Log_pLays
Плагин log_plays записывает результаты в файлы журналов в /var/log/ansiЬle/
hosts, по одному файлу на хает. Путь к каталогу не настраивается.

Вместо плагина log_p lays можно использовать параметр настройки log_path в ansiЬ/e.cfg.
Например:

[defaults]
log_path = /var/log/ansi.Ыe.log

В результате будет создаваться единый файл журнала для всех хостов, в от­
личие от плагина, который создает отдельные файлы для разных хостов.

Logentries
Плагин logentri.es посылает результаты в Logentries. В табл. 10.8 перечислены
переменные окружения, используемые для настройки плагина.

Таблица 10.8. Переменные окружения плагина logentries

Переменная Описание По умолчанию

LOGENTRIES ANSIBLE TOKEN Токен сервера Logeпtries (Нет)
LOGENTRIES API Имя хоста конечной точки Logentries data.logentries.coм
LOGENTRIES_PORT Порт Logentries 80

LOGENTRIES TLS PORT Порт TLS Logentries 443

LOGENTRIES USE TLS Использовать TLS для взаимодействий с Logentries false
LOGENTRIES_FLATTEN Реструктурировать результаты false

Для использования плагина logentri.es требуется установить Руthоп-библиотеки certi.fi.
и flctdi.ct:

pip install ceгtifi flctdict

Logstash
Плагин logstash записывает результаты в Logstash. В табл. 10.9 перечислены
переменные окружения, используемые для настройки плагина.

204 ❖ Плагины обратного вызова

Таблица 10.9. Переменные окружения плаzина logstash

Переменная Описание По умолчанию

LOGSTASH SERVER Имя хоста сервера Logstash localhost

LOGSTASH РОRТ Порт сервера Logstash 5000

LOGSTASH ТУРЕ Тип сообщения ansi.Ыe

Для использования плагина logstash требуется установить Руthоп-библиотеку python·

logstash:

pip install python-logstash

maiL
Плагин мai. l посылает электронное письмо, когда задача завершается с ошиб­
кой. В табл. 10.10 перечислены переменные окружения, используемые для на­
стройки плагина.

Таблица 10.10. Переменные окружения плаzина mail

Переменная

SMTPHOST

osx_say

Описание По умолчанию

Имя хоста сервера SMTP localhost

Плагин osx_say использует программу say для вывода голосовых оповещений
в macOS. Не имеет параметров настройки.

profi Le _ tasks
Плагин pгofi. le_ tasks генерирует отчет о времени выполнения отдельных задач
и общего времени выполнения сценария, например:

Saturday 22 Apri.l 2017 20:05:51 •0700 (0:00:01.465) 0:01:02.732 ********

i.nstall ngi.nx ········--······-·······-···-·······-·····-··············· 57.82s
Gatheri.ng Facts ··· 1.90s
гestart ngi.nx ·····-··· 1.47s
сору ngi.nx confi.g fi.le •··· 0.69s
сору i.ndex.htl'1l •····························· ········ •··············· •·· 0.44s
еnаЫе confi.gurati.on ·· 0.35s

Плагин также выводит информацию о времени во время выполнения задач,
в том числе:

О дату и время запуска задачи;

О время выполнения предыдущей задачи, в скобках;

О накопленное время выполнения для данного сценария.
Вот пример вывода такой информации:

TASK [install ngtnx] ***

Saturday 22 Apri.l 2017 20:09:31 ·0700 (0:00:01.983) 0:00:02.030 ******

ok: [testserver]

Плагины обратного вызова ❖ 205

В табл. 10.11 перечислены переменные окружения, используемые для на­
стройки плагина.

Таблица 10.11. Переменные окружения плагина profile-tasks

Переменная Описание По умолчанию

PROFILE TASKS SORT ORDER Сортировка вывода (ascendi.ng, попе) попе
PROFILE TASKS TASK OUTPUT_LIMIT Максимальное количество задач в отчете или all 20

sLack

Плагин slack посылает уведомления в Slack. В табл. 10.12 перечислены пере­
менные окружения, используемые для настройки плагина.

Таблица 10.12. Переменные окружения плагина slack

Переменная Описание По умолчанию

SLACK WEBHOOK URL Адрес URL точки входа в Slack (Нет)
SLACK CHANNEL Комната Slack для отправки сообщения #ansi.Ыe
SLACK_USERNAМE Имя пользователя, отправившего сообщение ansi.Ыe
SLACK INVOCATION Показать детали вызова команды 20

� Для использования плагина slack требуется установить Руthоn-библиотеку prettytaЫe:
pip insta11 prettytaЫe

TIMER

Плагин ti.мer выводит общее время выполнения сценария, например:

Playbook run took 0 days, 0 hours, 2 мinutes, 16 seconds

Для этой цели обычно лучше использовать плагин profi. le_tasks, который до­
полнительно выводит время выполнения каждой задачи.

Глава 11
•• •••••••

Ускорение

работы AnsibLe

Начав использовать AnsiЫe на регулярной основе, у вас быстро появится жела­
ние ускорить работу сценариев. В этой главе мы обсудим стратегии сокраще­
ния времени, которое требуется AnsiЫe для выполнения сценариев.

МУльтиплЕксиРовдниЕ SSH и CoNтRoLPERs1sт

Дочитав книгу до этой главы, вы уже знаете, что в качестве основного транс­
портного механизма AnsiЫe использует протокол SSH. В частности, по умолча­
нию AnsiЬle использует именно SSH.

Поскольку протокол SSH работает поверх протокола ТСР, вам потребуется
установить новое ТСР-соединение с удаленной машиной. Клиент и сервер
должны выполнить начальную процедуру установки соединения, прежде чем
начать выполнять какие-то фактические действия. Эта процедура занимает
некоторое время, хоть и небольшое.

Во время выполнения сценариев AnsiЫe устанавливает достаточно много
SSН-соединений, например для копирования файлов или выполнения команд.
Каждый раз AnsiЫe устанавливает новое SSН-соединение с хостом.

OpenSSH - наиболее распространенная реализация SSH и SSН-клиент по
умолчанию, который установлен на вашей локальной машине, если вы работае­
те в Linux или Мае OS Х. OpenSSH поддерживает вид оптимизации с названием
мультиплексирование каналов SSH, который также называют Contro!Persist. Ког­
да используется мультиплексирование, несколько SSН-сеансов с одним и тем
же хостом использует одно и то же ТСР-соединение, то есть ТСР-соединение
устанавливается лишь однажды.

Когда активируется мультиплексирование:
О при первом подключении к хосту OpenSSH устанавливает основное со­

единение;
О OpenSSH создает сокет домена Unix (известный как управляющий сокет),

связанный с удаленным хостом;

Ускорение работы AnsiЫe ❖ 207

О при следующем подключении к хосту вместо нового ТСР-подключения
OpenSSH использует контрольный сокет.

Основное соединение остается открытым в течение заданного пользовате­
лем интервала времени, а затем закрывается SSН-клиентом. По умолчанию
AnsiЫe устанавливает интервал, равный 60 секундам.

Включение мультиплексирования SSH вручную
AnsiЫe включает мультиплексирование SSH автоматически. Но, чтобы вы по­
нимали, что за этим стоит, включим его вручную и соединимся с удаленной
машиной посредством SSH.

В примере 11.1 показаны настройки мультиплексирования из файла -/.ss/1/
config для myserver.example.com.

Пример 11.1 ❖ Включение мультиплексирования в ssh/config

Host мyserver.exaмple.coм
ControlMaster auto
ControlPath /tмp/%r@%h:%p
ControlPersist 10м

Строка Control�aster auto включает мультиплексирование SSH и сообщает
SSH о необходимости создать основное соединение и управляющий сокет, если
они еще не существуют.

Строка ControlPath /trчp/%r@%h:%p сообщает SSH, где расположить файл сокета
домена Unix в файловой системе. %h - имя целевого хоста, %r - имя пользова­
теля для удаленного доступа, и %р - порт. Если соединение осуществляется от
имени пользователя ubuntu:

$ ssh ubuntu@мyserver.exaмple.coм

В этом случае SSH создаст файл управляющего сокета /tmp/ubuntu@myserver.
example.com:22 при первом подключении к серверу.

Строка ControlPersi.st 10rч требует от SSH разорвать основное соединение,
если в течение 10 минут не производилось попыток создать SSН-подключение.

Проверить состояние основного соединения можно с помощью параметра
-О check:

$ ssh -О check ubuntu@мyserver.exaмple.coм

Если основное соединение активно, эта команда вернет следующее:

Master running (pid=4388)

Вот так выглядит основной управляющий процесс в выводе команды ps 4388:

PID ТТ STAT TIME COMМAND
4388 ?? Ss 0:00.00 ssh: /tмp/ubuntu@мyserver.exaмple.coм:22 [мuх]

Разорвать основное соединение можно с помощью параметра -О exi.t:

$ ssh -0 exit ubuntu@мyserver.exaмple.coм

208 ❖ Ускорение работы АпsiЫе

Больше деталей об этих настройках можно найти на странице ssh_config ру­
ководства тап.

Я протестировал скорость создания SSН-соединения:

$ ttмe ssh ubuntu@мyserver.exaмple.coм /Ыn/true

Эта команда вернет время, которое требуется для SSН-подключения и вы­
полнения программы /b-\.n/true, которая завершается с кодом О.

Когда я первый раз запустил ее, результат по времени выглядел так 1
:

0.01s user 0.01s systeм 2% cpu 0.913 total

Наибольший интерес для нас представляет общее время: 0. 913 tota l. Это го­
ворит о том, что на выполнение всей команды потребовалось 0.913 секунды.
Общее время иногда также называют астрономическим временем, поскольку
оно показывает, сколько прошло времени, как если бы его измеряли по на­
стенным часам.

Во второй раз результат выглядел так:

0.00s user 0.00s systeм 8% cpu 0.063 total

Общее время сократилось до 0.063 секунды, то есть экономия составляет
примерно 0.85 секунды для каждого SSН-соединения, начиная со второго. На­
помним, что для выполнения задачи AnsiЫe открывает, по крайней мере, два
SSH-ceaнca: один - для копирования файла модуля на хает, второй - для за­
пуска модуля на хосте2

• Это означает, что мультиплексирование может сэконо­
мить порядка одной или двух секунд на каждой задаче в сценарии.

Параметры мультиплексирования SSH в Ansible
В табл. 11.1 перечислены параметры мультиплексирования SSH, используемые
вAnsiЫe.

Таблица 11.1. Параметры мультиплексирования SSH в AnsiЫe

Параметр Значение

ControlMaster auto

ControlPath $HOME/.anstЫe/cp/anstЫe-ssh-%h-%p-%r

ControlPersist 60s

На практике мне приходилось изменять только значение ControlPath, пото­
му что операционная система устанавливает максимальную длину пути к фай­
лу сокета домена Unix. Если строка в ControlPath окажется слишком длинной,
мультиплексирование не будет работать. К сожалению, система AnsiЫe не со-

1 Формат результата может отличаться в зависимости от командной оболочки и ОС.
Я использую Zsh в Мае OS Х.

2 Один из этих шагов можно оптимизировать, использовав конвейерный режим, опи­
санный далее в этой главе.

Ускорение работы АпsiЫе ❖ 209

общает, если строка в CoпtrolPath превысит это ограничение, она просто не бу­
дет использовать мультиплексирования SSH.

Управляющую машину можно протестировать вручную, устанавливая SSН­
соединение с помощью того же значения CoпtrolPath, что использует AnsiЬle:

$ CP=~/.ansiЫe/cp/ansiЫe-ssh-%h-%p-%r
$ ssh -о ControlMaster=auto -о ControlPersist=60s \
-о ControlPath=$CP \
ubuntu@ec2-203-0-113-12.coмpute-1.aмazonaws.coм \
/Ьin/true

Если строка CoпtrolPath окажется слишком длинной, вы увидите сообщение
об ошибке, как показано в примере 11.2.

Пример 11.2 ❖ Слишком длинная строка ControlPath

ControlPath
"/Users/lorinhochstein/.ansiЫe/cp/ansiЫe-ssh-ec2-203-0-113-12.coмpute-1.aмazonaws.
coм-22-ubuntu.KiwEKEsRzCKFABch"
too long fог Unix doмain socket

Это обычное дело при подключении к экземплярам Amazon ЕС2, которым
назначаются длинные имена хостов.

Решить проблему можно настройкой использования более коротких строк
в Сопtго lPath. Официальная документация (http://blt.ly/2kKpsJ 1) рекомендует так
определять этот параметр в файле ansiЫe.cfg:

[ssh_connection]
control_path = %(diгectory)s/%%h-%%r

AnsiЫe заменит %(dtrectory)s на $НОМЕ/. апstЫе .ер (двойной знак процента
(%%) необходим для экранирования, потому что знак процента в файлах .ini яв­
ляется специальным символом).

При изменении конфигурации SSН-соединения, например параметра ssh_args, когда
мультиплексирование уже включено, такое изменение не вступит в силу, пока управля­
ющий сокет остается открытым с прошлого подключения.

КОНВЕЙЕРНЫЙ РЕЖИМ

Вспомним, как AnsiЫe выполняет задачу:
1. Генерирует сценарий на Python, основанный на вызываемом модуле.
2. Копирует его на хает.
3. И запускает его там.
AnsiЫe поддерживает прием оптимизации - конвейерный режим, - объеди­

няя открытие сеанса SSH с запуском сценария на Python. Экономия достига­
ется за счет того, что в этом случае требуется открыть только один сеанс SSH
вместо двух.

210 ❖ Ускорение работы AnsiЫe

Включение конвейерного режима
По умолчанию конвейерный режим не используется, потому что требует на­
стройки удаленных хостов, но мне нравится использовать его, поскольку он
ускоряет процесс. Чтобы включить этот режим, внесите изменения в файл an­
siЫe.cfg, как показано в примере 11.3.

Пример 11.3 ❖ ansiЫe.cfg, включение конвейерного режима

[defaults]
pipelining = True

Настройка хостов для поддержки конвейерного режима
Для поддержки конвейерного режима необходимо убедиться, что на хостах
в файле /etc/sudoers выключен параметр requiretty. Иначе при выполнении
сценария вы будете получать ошибки, как показано в примере 11.4.

Пример 11.4 ❖ Ошибка при включенном параметре requiretty

failed: [vagгant1] => {"failed": true, "parsed": false}
invalid output was: sudo: sorry, you �ust have а tty to run sudo

Если утилита sudo на хостах настроена на чтение файлов из каталога /etc/
sudoers.d, тогда самое простое решение - добавить файл конфигурации sudoers,
выключающий ограничение requiretty для пользователя, с именем которого
вы устанавливаете SSН-соединения.

Если каталог /etc/sudoers.d существует, хосты должны поддерживать добав­
ление файлов конфигурации sudoers. Проверить наличие каталога можно с по­
мощью утилиты ansiЫe:

$ ansiЫe vagrant -а "file /etc/sudoers.d"

Если каталог имеется, вы увидите примерно такие строки:

vagrantl I success I rc=0 >>
/etc/sudoers.d: directory

vagrantЗ I success I rc=0 >>
/etc/sudoers.d: directory

vagrant2 1 success I rc=0 >>
/etc/sudoers.d: directory

Если каталог отсутствует, вы увидите:

vagrantЗ I FAILED I rc=1 >>
/etc/sudoers.d: ERROR: cannot open '/etc/sudoers.d' (No such file ог
directory)

vagrant2 1 FAILED I гс=1 >>
/etc/sudoers.d: ERROR: cannot open '/etc/sudoers.d' (No such file ог
directory)

Ускорение работы AnsiЫe ❖ 211

vagгantl I FAILED I гс=l >>

/etc/sudoers.d: ERROR: cannot ореп '/etc/sudoers.d' (No such ftle ог
di.rectoгy)

Если каталог имеется, создайте шаблон файла, как показано в примере 11.5.

Пример 11.S ❖ templates/disaЬle-requiretty.j2

Defaults:{{ anstЫe_user }} !requtretty

Затем запустите сценарий, приведенный в примере 11.6, заменив JТ1yhosts

именами ваших хостов. Не забудьте выключить конвейерный режим, прежде
чем сделать это, иначе сценарий завершится с ошибкой.

Пример 11.6 ❖ disaЬle-requiretty.yml

паме: do поt requtre tty fог ssh-tng user
hosts: мyhosts
sudo: Тгuе
tasks:

- паме: Set а sudoers ftle to dtsaЫe tty
teмplate: >

src=teмplates/dtsaЫe-requtretty.j2
dest=/etc/sudoers.d/dtsaЫe-requtretty
owner=root group=root моdе=0440
valtdate="vtsudo -cf %s"

Обратите внимание на использование va l i.date="vi.sudo -cf %s". В разделе
«Проверка достоверности файлов», в приложении А, вы узнаете, почему жела­
тельно использовать проверку при изменении файлов sudoers.

КЭШИРОВАНИЕ ФАКТОВ

Если в вашем сценарии не используются факты, их сбор можно отключить
с помощью выражения gather _facts. Например:

- паме: ап ехамрlе play that doesn't пееd facts
hosts: мyhosts
gather_facts: False
tasks:

здесь находятся задачи:

Также можно отключить сбор фактов по умолчанию, добавив в файл ansiЬle.

cfg:

[defaults]
gathertng = expltci.t

Если ваши операции используют факты, их сбор можно организовать так,
что AnsiЫe будет делать это для каждого хоста только однажды, даже если вы

запустите этот же или другой сценарий для того же самого хоста.

212 ❖ Ускорение работы AnsiЫe

Если кэширование фактов включено, AnsiЫe сохранит факты в кэше, полу­
ченные после первого подключения к хостам. В последующих попытках вы­
полнить сценарий AnsiЬle будет извлекать факты из кэша, не обращаясь к уда­
ленным хостам. Такое положение вещей сохраняется до истечения времени
хранения кэша.

В примере 11. 7 приводятся строки, которые необходимо добавить в файл
ansiЫe.cfg для включения кэширования фактов. Значение fact_cachi.ng_ti.111eout

выражается в секундах, в примере используется тайм-аут, равный 24 часам

(86 400 секундам).

С)
Как это всегда бывает с решениями, использующими кэширование, существует опас­
ность, что кэшированные данные станут неактуальными. Некоторые факты, такие как
архитектура CPU (факт ansi.Ыe_archi.tecture), редко изменяются. Другие, такие как дата
и время, сообщаемые машиной (факт ansi.Ыe_date_til'le), гарантированно изменяются
очень часто.

Если вы решили включить кэширование фактов, убедитесь, что знаете, как
часто изменяются факты, используемые вашим сценарием, и задайте соответ­
ствующее значение тайм-аута кэширования. Чтобы очистить кэш до запуска
сценария, передайте параметр - -flush-cache утилите ansi.Ыe-playbook.

Пример 11.7 ❖ ansiЬ/e.cfg. Включение кэширования фактов

[defaults]
gathering = sl'lart
кэщ остается действительным 24 часа, измените, если необходимо
fact_caching_til'leout = 86400
Обязательно укажите реализацию кэширования фактов
fact_caching = . . .

Значение s111art в параметре gatheri.ng сообщает, что необходимо использо­
вать интеллектуальный сбор фактов (smart gathering). То есть AnsiЫe будет со­
бирать факты, только если они отсутствуют в кэше или срок хранения кэша
истек.

Если вы собираетесь использовать кэширование фактов, убедитесь, что в сценариях от­

сутствует выражение gather _facts: True или gather _facts: False. Когда включен режим
интеллектуального сбора фактов, факты будут собираться, только если они отсутствуют
в кэше.

Необходимо явно указать тип fact_cachi.ng в ansiЫe.cfg, иначе кэширование
не будет использоваться. На момент написания книги имелись три реализации
кэширования данных:

О в файлах JSON;
О Redis;
О Memcached.

Ускорение работы АпsiЫе ❖ 213

Кэширование фактов в файлах JSON
Реализация кэширования фактов в файлах JSON записывает собранные факты
в файлы на управляющей машине. Если файлы присутствуют в вашей системе,
AnsiЫe будет использовать их вместо соединений с хостами.

Чтобы задействовать реализацию кэширования фактов в файлах JSON, до­
бавьте в файл ansiЫe.cfg настройки, как показано в примере 11.8.

Пример 11.8 ❖ ansiЬ/e.cfg, включение кэширования фактов в файлах JSON

[defaults]

gathering = sмart

кэw остается действительным 24 часа, измените, если необходимо

fact_caching_tiмeout = 86400

кэwировать в файлах JSON

fact_caching = jsonfile

fact_caching_connection = /tмp/ansiЫe_fact_cache

Параметр fact_cachi.ng_connect-Lon определяет каталог, куда AnsiЫe будет со­
хранять файлы JSON с фактами. Если каталог отсутствует, AnsiЫe создаст его.

Для определения тайм-аута кэширования AnsiЬle использует время моди­
фикации файла.

Кэширование фактов в Redis
Redis - популярное хранилище данных типа «ключ/значение», часто использу­
емое в качестве кэша. Для кэширования фактов в Redis необходимо:

1. Установить Redis на управляющей машине.
2. Убедиться, что служба Redis запущена на управляющей машине.
3. Установить пакет Redis для Python.
4. Включить кэширование в Redis в файле ansiЫe.cfg.
В примере 11.9 показано, какие настройки следует добавить в ansiЫe.cfg,

чтобы организовать кэширование в Redis.

Пример 11.9 ❖ ansiЫe.cfg, кэширование фактов в Redis

[defaults]

gathering = sмart

кэw остается действительным 24 часа, измените, если необходимо

fact_caching_tiмeout = 86400

fact_caching = redis

Для работы с хранилищем Redis требуется установить пакет Redis для Python
на управляющей машине, например с помощью р-\.р1

:

$ pip install redis

1 Может потребоваться выполнить команду sudo или активировать virtualenv, в зави­
симости от способа установки AnsiЫe на управляющей машине.

214 ❖ Ускорение работы AnsiЬle

Вы также должны установить программное обеспечение Redis и запустить
его на управляющей машине. В OS Х Redis можно установить с помощью дис­
петчера пакетов Homebrew. В Linux это можно сделать с помощью системного
диспетчера пакетов.

Кэширование фактов в Memcached
Memcached - еще одно популярное хранилище данных типа «ключ/значение»,
которое также часто используется в качестве кэша. Для кэширования фактов
в Memcached необходимо:

1. Установить Memcached на управляющей машине.
2. Убедиться, что служба Memcached запущена на управляющей машине.
3. Установить пакет Memcached для Python.
4. Включить кэширование в Memcached в файле ansiЫe.cfg.
В примере 11.10 показано, какие настройки следует добавить в ansiЫe.cfg,

чтобы организовать кэширование в Memcached.

Пример 11.10 ❖ ansiьte.cfg, кэширование фактов в Memcached

[defaults]

gathertng = sмагt

кэw остается действительным 24 часа, измените, если необходимо

fact_cachtng_ttмeout = 86400

fact_cachtng = мемсасhеd

Для работы с хранилищем Memcached требуется установить пакет Mem­
cached для Python на управляющей машине, например с помощью pi.p. Может
потребоваться выполнить команду sudo или активировать virtualenv, в зависи­
мости от способа установки AnsiЫe на управляющей машине.

$ ptp tnstall python-мeмcached

Вы также должны установить программное обеспечение Memcached и за­
пустить его на управляющей машине. В OS Х Memcached можно установить
с помощью диспетчера пакетов Homebrew. В Linux это можно сделать с по­
мощью системного диспетчера пакетов.

Более полную информацию о кэшировании фактов можно найти в офици­
альной документации (http://Ьit.ly/1F6BHap).

ПАРАЛЛЕЛИЗМ

Для каждой задачи AnsiЬle устанавливает соединения параллельно с несколь­
кими хостами и запускает на них одну и ту же задачу параллельно. Однако An­
siЫe необязательно будет устанавливать соединения сразу со всеми хостами -
уровень параллелизма контролируется параметром по умолчанию, равным 5.
Изменить его можно одним из двух способов.

Ускорение работы AnsiЫe ❖ 215

Можно настроить переменную среды ANSIBLE_FORKS, как это показано в при­
мере 11.11.

Пример 11.11 ❖ Настройка ANSIBLE_FORKS

$ ехрогt ANSIBLE_FORKS=20
$ ansiЫe-playbook playbook.yмl

Можно также изменить настройки в файле конфигурации AnsiЫe (ansiЫe.cfg),
определив параметр forks в секции default, как показано в примере 11.12.

Пример 11.12 ❖ ansiЬ/e.cfg. Настройка параллелизма

[defaults]
forks = 20

АСИНХРОННОЕ ВЫПОЛНЕНИЕ ЗАДАЧ С ПОМОЩЬЮ ASYNC
В AnsiЫe появилось новое выражение async, позволяющее выполнять асин­
хронные действия и обходить проблемы с тайм-аутами SSH. Если время выпол­
нения задачи превышает тайм-аут SSH, AnsiЫe закроет соединение с хостом

и сообщит об ошибке. Если добавить в определение такой задачи выражение
async, это устранит риск истечения тайм-аута SSH.

Однако механизм поддержки асинхронных действий можно также исполь­
зовать для других целей, например чтобы запустить вторую задачу до оконча­
ния выполнения первой. Это может пригодиться, например, если обе задачи
выполняются очень долго и не зависят друг от друга (то есть нет нужды ждать,
пока завершится первая, чтобы запустить вторую).

В примере 11.13 показан список задач, в котором имеется задача с выраже­
нием async, выполняющая клонирование большого репозитория Git. Так как
задача отмечена как асинхронная, AnsiЬle не будет ждать завершения клони­
рования репозитория и продолжит установку системных пакетов.

Пример 11.13 ❖ Использование async для параллельного выполнения задач

- nаме: install git
apt: naмe=git update_cache=yes
Ьесоме: yes
nаме: clone Linus's git repo
git:

геро: git://git.kernel.org/pub/scм/linux/kernel/git/torvalds/linux.git
dest: /hoмe/vagrant/linux

async: 3600 О
poll: 0 &
register: linux_clone f)
nаме: install seveгal packages
apt:

nаме: "{{ Нем}}"
wit h _ iteмs:

- apt-transport-https

216 ❖ Ускорение работы AnsiЫe

ca-certi.fi.cates
li.nux-i.мage-extra-vi.rtual
software-properti.es-coммon
python-pi.p

Ьесоме: yes
паме: wai.t for li.nux clone to coмplete
async_status: О

ji.d: "{{ li.nux_clone.ansi.Ыe_job_i.d }}" 0
regi.ster: result
unti.l: result.fi.ni.shed 0
retri.es: 3600

О Определяем эту задачу как асинхронную, и что она должна выполняться не дольше
3600 секунд. Если время выполнения задачи превысит это значение, AnsiЫe автома­
тически завершит процесс, связанный с задачей.

8 Значение О в арrументе ро l l сообщает системе AnsiЫe, что она может сразу перейти
к следующей задаче после запуска этой. Если бы мы указали ненулевое значение,
AnsiЫe не смогла бы перейти к следующей задаче. Вместо этого она периодически
опрашивала бы состояние асинхронной задачи, ожидая ее завершения, приостанав­
ливаясь между проверками на интервал времени, указанный в параметре ро l l (в се­
кундах).

«) Когда имеется асинхронная задача, необходимо добавить выражение regi.ster, чтобы
захватить результат ее выполнения. Объект result содержит значение ans"i.Ыe_job_id,
которое можно использовать позднее для проверки состояния задания.

О Для опроса состояния асинхронного задания мы используем модуль async_status.
0 Для идентификации асинхронного задания необходимо указать значение jid.
0 Модуль async_status выполняет опрос только один раз. Чтобы продолжить опрос до

завершения задания, нужно указать выражение unt"i. l и определить значение retries
максимального числа попыток.

Теперь вы знаете, как настроить мультиплексирование SSH, конвейерный
режим, кэширование фактов, а также параллельное и асинхронное выполне­
ния задач, чтобы ускорить выполнение сценария. Далее мы обсудим написа­
ние собственных модулей.

Глава 12
•••

Собственные модули

Иногда желательно выполнить задачу, слишком сложную для модулей COl'll'land
или she l l. И не существует готовых модулей для ее выполнения. В этом случае
можно написать модуль самостоятельно.

В прошлом я писал свои модули для получения публичного IР-адреса, когда
управляющая машина находилась за шлюзом, выполняющим преобразование
сетевых адресов (Network Address Translation, NAT), и требовалось создавать
базы данных в окружении OpenStack. Я думал о написании своего модуля для
создания самоподписанного сертификата, хотя так и не занялся этим.

Свои модули могут также пригодиться для взаимодействий со сторонними
службами REST API. Например, GitНub предлагает то, что они называют Releas­
es, позволяющее сохранять в репозитории двоичные ресурсы. Если для развер­
тывания проекта требуется загрузить двоичный ресурс, хранящийся в частном
репозитории GitHub, это станет отличным поводом написать свой модуль.

ПРИМЕР: ПРОВЕРКА ДОСТУПНОСТИ УДДЛЕННОГО СЕРВЕРА
Допустим, нужно проверить доступность конкретного порта удаленного сер­
вера. Если соединение с этим портом установить невозможно, нужно, чтобы
AnsiЫe считала это ошибкой и прекращала операцию.

� Свой модуль, которым мы будем заниматься в данной главе, является упрощенной вер­
сией модуля wai.t_for.

ИСПОЛЬЗОВАНИЕ МОДУЛЯ SCRIPT ВМЕСТО НАПИСАНИЯ

СВОЕГО МОДУЛЯ
Помните, как в примере 6.17 мы использовали модуль scri.pt для запуска своих
сценариев на удаленных хостах? Иногда действительно проще использовать
модуль scri.pt, чем писать свой, полноценный модуль AnsiЬle.

Я храню такие сценарии в папке scripts рядом со сценариями AnsiЫe. Напри­
мер, можно создать сценарий playbooks/scripts/can_reach.sh, который принима­
ет имя хоста, порт и количество попыток соединения.

can_reach.sh www.exaмple.coм 80 1

218 ❖ Собавенные модули

Можно создать сценарий, как в примере 12.1.

Пример 12.1 ❖ сап reach.sh

#!/bi.n/bash
host=$1
port=$2
ti.мeout=$3

пс -z -w $ti.мeout $host $port

А затем вызвать его, как показано ниже:

- nаме: run му custoм scri.pt
scri.pt: scri.pts/can_reach.sh www.exaмple.coм 80 1

Имейте в виду, что сценарий будет запускаться на удаленных хостах так же,
как модули AnsiЫe. Вследствие этого любые программы, необходимые сце­
нарию, должны быть установлены на удаленных хостах заранее. Например,
можно написать сценарий на Ruby, если Ruby установлен на удаленных хостах,
и в первой строке указать интерпретатор Ruby:

#! /usr /Ыn/ruby

can_reach как модуль

Теперь реализуем can_reach в виде полноценного модуля AnsiЫe, который мож­
но вызвать так:

- nаме: check i.f host сап reach the database server
сап_геасh: host=db.exaмple.coм port=5432 ti.мeout=1

Так можно проверить доступность порта 5432 на хаете db.example.com. Если
соединение установить невозможно, через секунду будет зафиксирована
ошибка превышения тайм-аута.

Мы будем пользоваться этим примером на протяжении всей главы.

ГдЕ ХРАНИТЬ СВОИ МОДУЛИ
Поиск модулей производится в каталоге library, находящемся рядом со сцена­
рием AnsiЫe. В нашем примере сценарии хранятся в каталоге playbooks, поэто­
му свой модуль мы сохраним в файле playbooks/library/can_reach.

КАК ANSIBLE ВЫЗЫВАЕТ МОДУЛИ
Прежде чем реализовать модуль, давайте посмотрим, как AnsiЫe вызывает их.
Для этого AnsiЫe:

1) генерирует автономный сценарий на Python с аргументами (только мо­

дули на Python);
2) копирует модуль на хает;
3) создает файл аргументов на хаете (только для модулей не на языке Py­

thon);

Собственные модули ❖ 219

4) вызывает модуль на хаете, передавая ему файл с аргументами;
5) анализирует стандартный вывод модуля.
Разберем каждый шаг более детально.

Генерация автономного сценария на Python с арrументами

(только модули на Python)
Если модуль написан на Python и использует вспомогательный код, предо­
ставляемый системой AnsiЫe (описан ниже), AnsiЫe сгенерирует автономный
сценарий на Python со встроенным вспомогательным кодом и аргументами
модуля.

Копирование модуля на хост
Сгенерированный сценарий на Python (для модулей на Python) или локальный
файл playbooks/library/can_reach (для модулей не на языке Python) копирует­
ся во временный каталог на удаленном хаете. Если соединение с удаленным
хостом устанавливается от имени пользователя ubuntu, AnsiЫe сохранит файл:
/home/ubuntu/.ansiЬ/e/tmp/ansiЫe-tmp-1412459504.14-47728545618200/can_reach.

Создание файла с арrументами на хосте

(для модулей не на языке Python)
Если модуль написан не на языке Python, AnsiЫe создаст на удаленном хаете
файл: /home/ubuntu/.ansiЬ/e/tmp/ansiЫe-tmp-1412459504.14-47728545618200/ar­
guments.

Если вызвать модуль, как показано ниже:

- nаме: check if host сап геасh the database sегvег

can_reach: host=db.exaмple.coм port=5432 tiмeout=l

файл аргументов в этом случае будет содержать следующую информацию:

host=db.exaмple.coм port=5432 tiмeout=l

Можно потребовать от AnsiЬle сгенерировать файл аргументов в формате
JSON, добавив следующую строку в playbooks/library/can_reach:

WANT_JSON

В этом случае файл аргументов будет выглядеть так:

{"host": "www.exaмple.coм", "рогt": "80", "tiмeout": "1"}

Вызов модуля
AnsiЫe вызовет модуль и передаст ему файл с аргументами. Если модуль на­
писан на Python, AnsiЬle выполнит эквивалент следующей команды (заменив
/path/to/ действительным путем к каталогу):

/path/to/can_reach

220 ❖ Собственные модули

Если модуль написан на другом языке, AnsiЫe определит интерпретатор по
первой строке в модуле и выполнит эквивалент следующей команды:

/path/to/interpreter /path/to/can_reach /path/to/arguмents

Если предположить, что модуль сап reach реализован как сценарий Bash
и начинается со строки:

! /Ьin/bash

тогда AnsiЬle выполнит такую команду:

/Ьin/bash /path/to/can_reach /path/to/arguмents

Но это только приближенный эквивалент. На самом деле AnsiЬle выполнит
такую команду:

/bin/sh -с 'LANG=en_US.UTF-8 LC_CTVPE=en_US.UTF-8 /Ьin/bash /path/to/can_reach \
/path/to/arguмents; гм -гf /path/to/ >/dev/null 2>&1'

Точную команду, которую выполняет AnsiЫe, можно увидеть, передав пара­
метр -vvv утилите ansiЫe-playbook.

ОЖИДАЕМЫЙ ВЫВОД
AnsiЬle ожидает, что модуль выведет результат в формате JSON. Например:

{'changed': false, 'failed': true, 'мsg': 'could not геасh the host'}

До версии 1.8 AnsiЫe поддерживала вывод информации в формате условных обозна­
чений, также известный как ЬаЬу JSON, который выглядел как key=value. Поддержка этого
формата была прекращена в версии 1.8. Как вы увидите ниже, если модуль написан на
Python, AnsiЫe предоставляет вспомогательные методы, облегчающие вывод информа­
ции в JSON.

Ожидаемые выходные переменные
Модуль может выводить любые переменные, однако AnsiЫe определяет специ­
альные правила для переменных возврата:

changed

Все модули AnsiЫe должны возвращать переменную changed. По этой логиче­
ской переменной AnsiЫe определяет факт изменения состояния хоста моду­
лем. Если в задаче имеется выражение notify для уведомления обработчика,
уведомление будет отправлено, только если changed имеет значение true.

failed

Если модуль потерпел неудачу, он должен вернуть failed=true. AnsiЫe расце­
нит попытку выполнения такой задачи неудачной и прервет выполнение по­
следующих задач на хаете, кроме случая, когда задача содержит выражение
ignore_errors или failed_when.

Собственные модули ❖ 221

Если модуль выполнился успешно, он должен вернуть fai.led=false или во­
обще опустить эту переменную.

msg

Переменную мsg можно использовать для вывода сообщения с причиной не­
удачи выполнения модуля.

Если задача потерпела неудачу и модуль вернул переменную мsg, AnsiЫe вы­
ведет значение этой переменной, хотя и в несколько ином виде. Например,
если модуль вернул:

{"fai.led": true, "мsg": "could not reach www.exaмple.coм:81"}

AnsiЫe выведет:

fai.led: [vagrantl] => {"fai.led": true}
мsg: could not reach www.exaмple.coм:81

РЕАЛИЗАЦИЯ МОДУЛЕЙ НА РУТНОN
Для модулей на Python AnsiЫe предоставляет класс Ans i.b leModu le, упрощающий
следующие действия:

О анализ входной информации;
О вывод результатов в формате JSON;
О вызов сторонних программ.
Обрабатывая модули на Python, AnsiЫe внедряет аргументы непосредствен­

но в сгенерированный код, избавляя от необходимости анализировать файл
с аргументами. Подробнее об этом мы поговорим далее в этой главе.

Давайте создадим модуль на Python и сохраним его в файле can_reach. Сна­
чала рассмотрим полную реализацию, а потом обсудим ее (см. пример 12.2).

Пример 12.2 ❖ can_reach

#!/usr/Ыn/python

froм ansiЫe.мodule_utils.basic iмport AnsiЫeModule О

def can_reach(мodule, host, port, tiмeout):
nc_path = мodule.get_Ыn_path('nc', required=True)@
args = [nc_path, "-z", "-w", str(tiмeout),

host, str(port)]
(гс, stdout, stderr) = мodule.run_coммand(args) �
return гс == 0

def мain():

мodule = AnsiЫeModule(О

arguмent_spec=dict(0

) ,

host=dict(required=True), Ф
port=dict(required=True, type='int'),
tiмeout=dict(required=False, type='int', default=З) 6

supports_check_мode=True 0

222 ❖ Собственные модули

В режиме проверки никаких действий не выполняется

Так как этот модуль не изменяет состояния хоста, он просто

возвращает changed=False

tf мodule.check_мode: 0

мodule.extt_json(changed=False) ОФ

host = мodule.paгaмs['host'] 00

рогt = мodule.paraмs['port']

ttмeout = мodule.paraмs['ttмeout']

tf can_reach(мodule, host, рогt, ttмeout):

мodule.extt_json(changed=False)

else:

мsg = "Could not геасh %s:%s" % (host, рогt) 00

мodule.fatl_json(мsg=мsg)

tf _nаме_ == "_мatn ":

мatn()

О Импорт вспомогательного класса Ansi.ЫeModule.
б Получение пути к внешней программе.
8 Вызов внешней программы.
О Создание экземпляра класса Ansi.ЫeModule.
0 Определение допустимого набора аргументов.

0 Обязательный аргумент.
& Необязательный аргумент со значением по умолчанию.
0 Определяет, что модуль поддерживает режим проверки.
0 Определение запуска модуля в режиме проверки.
00 Успешное завершение, передает возвращаемое значение.
00 Извлекает аргумент.
00 Завершается с ошибкой, возвращает сообщение с описанием ошибки.

Анализ арrументов
Гораздо проще понять, как Ansi.ЫeModule выполняет анализ аргументов, на при­
мере. Напомню, что наш модуль вызывается, как показано ниже:

- nаме: check if host can reach the database server

can_reach: host=db.exaмp1e.coм port=5432 tiмeout=1

Предположим, параметры host и port являются обязательными, а ti.мeout -
нет, со значением по умолчанию 3 секунды.

Создадим экземпляр Ansi.ЫeModule, передав словарь arguмent_spec, ключи ко­
торого соответствуют именам параметров, а значения являются словарями
с информацией о параметрах.

мodule = AnstЫeModule(

arguмent_spec=dtct(

В нашем примере мы объявили аргумент host обязательным. AnsiЫe выдаст
ошибку, если забыть передать его в вызов задачи.

Собственные модули ❖ 223

host=dict(required=True),

Параметр ti.мeout является необязательным. AnsiЫe считает, что в аргумен­
тах передаются строки, кроме случаев, когда заявлено иное. Переменная ti.мe­

out - целое число. Ее тип определяется как i.nt, чтобы AnsiЫe могла автомати­
чески преобразовать значение в число Python. Если параметр ti.мeout не задан,
модуль установит его равным 3:

tiмeout=dict(required=False, type='int', default=З)

Конструктор Ansi.ЫeModule принимает также другие аргументы, кроме argu­

мent_spec. В предыдущем примере мы добавили аргумент:

supports_check_мode = True

Он сообщает, что модуль поддерживает режим проверки. Мы рассмотрим
его далее в этой главе.

Доступ к параметрам
После объявления объекта Ansi.ЫeModule появляется возможность доступа
к значениям аргументов через словарь рагамs:

мodule = AnsiЫeModule(...)

host = мodule.paraмs["host"]

рогt = мodule.paraмs["poгt"]

tiмeout = мodule.paraмs["tiмeout"]

Импортирование вспомогательного класса AnsibleModuLe
Начиная с версии AnsiЫe 2.1.0 модули на хосты стали передаваться в файле
ZIP, включающем также вспомогательные файлы для импорта. Как следствие
теперь можно явно импортировать классы, например:

fгом ansiЫe.мodule_utils.basic iмрогt AnsiЫeModule

До версии AnsiЫe 2.1.0 инструкция i.мрогt в модуле AnsiЫe в действитель­
ности была псевдоинструкцией импорта. В предыдущих версиях AnsiЬle ко­
пировала на удаленный хост единственный файл с кодом на Python. AnsiЫe
имитировала поведение традиционной инструкции i.мрогt включением импор­
тируемого кода непосредственно в генерируемый файл на Python (примерно
так, как это делает инструкция #i.nclude в С или С+\+). Поскольку она вела себя
иначе, чем традиционная инструкция i.мрогt, при попытке явно импортировать
класс отладка модулей AnsiЫe превращалась порой в очень сложную задачу.
Вы должны были использовать инструкцию импорта с шаблонным символом
и вставлять ее в конец файла, непосредственно перед началом главного блока:

fгом ansiЫe.мodule_utils.basic iмрогt *

if nаме_ == "_мain_":

мain()

224 ❖ Собственные модули

Свойства арrументов
Каждый аргумент модуля AnsiЫe имеет несколько свойств, перечисленных
в табл. 12.1.

Таблица 12.1. Свойства аргументов

Свойство Описание

requi.red Если True, аргумент считается обязательным

default Значение по умолчанию для необязательного аргумента

choi.ces Список допустимых значений для аргумента

ali.ases Другие имена, которые можно использовать как псевдонимы этого аргумента

type Тип аргумента. Допустимые значения: 'str', 'li.st', 'di.ct', 'bool', 'i.nt', 'float'

required

Свойство requi.red - единственное, которое всегда нужно определять. Если его

значение равно True, AnsiЫe сообщит об ошибке при попытке вызвать модуль
без этого аргумента.

В примере модуля can_reach аргументы host и port являются обязательными,
а ti.мeout нет.

default

Для аргументов с requt.red=False необходимо определить в этом свойстве значе­
ние по умолчанию. В нашем примере:

ti.мeout=di.ct(requi.red=False, type='i.nt', default=З)

Если пользователь попытается вызвать модуль так:

can_reach: host=www.exaмple.coм port=443

аргумент мodu le. ра r амs ["tt.мeout"] автоматически получит значение 3.

choices

Свойство chot.ces позволяет ограничить значения аргумента предопределен­
ным списком, как аргумент dt.stros в следующем примере:

di.stro=di.ct(requi.red=True, choi.ces=('ubuntu', 'centos', 'fedora'])

Если пользователь попробует передать в аргументе значение, отсутствую­

щее в списке, например:

di.stro=suse

AnsiЫe выведет сообщение об ошибке.

aliases

Свойство а l t.ases позволяет использовать другие имена для обращения к аргу­
менту. Например, рассмотрим аргумент package в модуле apt:

мodule = AnsiЫeModule(

arguмent_spec=dict(

Собственные модули ❖ 225

package = dict(default=None, aliases=['pkg', 'паме'], type='list'),

Поскольку pkg и nаме являются псевдонимами аргумента package, следующие

вызовы модуля эквиваленты:

apt: package=viм

- apt: naмe=viм

- apt: pkg=viм

type

Свойство type дает возможность объявить тип аргумента. По умолчанию An­

siЫe считает, что аргументы являются строками.
Однако вы можете явно объявить тип аргумента, и AnsiЫe преобразует аргу-

мент в желаемый формат. Поддерживаются следующие типы:
О str;

О li.st;

О di.ct;

О bool;

О i.nt;

О float.

В нашем примере мы объявили аргумент рогt с типом i.nt:

port=dict(required=True, type='int'),

При обращении к нему через словарь рагамs:

рогt = мodule.paraмs['port']

мы получим переменную рогt с целым числом. Если бы мы не объявили тип ар­
гумента как i.nt в момент объявления свойства рогt, ссылка мodule. рагамs['рогt']

вернула бы строку, а не целое число.
Списки разделяются запятой. Например, если представить, что у нас есть

модуль foo с аргументом colors, принимающим список:

colors=dict(required=True, type='list')

мы должны будем передавать в нем список, как показано ниже:

foo: colors=red,green,Ыue

Для передачи словарей можно использовать нотацию пар key=value, разде­

ленных запятыми, либо формат JSON.
Например, пусть имеется модуль Ьаг с аргументом tags типа di.ct:

tags=dict(required=False, type='dict', default={})

226 ❖ Собавенные модули

В этом случае аргумент tags можно передать так:

Ьаг: tags=env=stagtng,function=web

Или так:

- Ьаг: tags={"env": "staging", "function": "web"}

Для обозначения списков и словарей, которые передаются модулям в качест­
ве аргументов, в официальной документации AnsiЫe используется термин со­
ставные аргументы (complex args). Порядок передачи сценариям аргументов
передачи этих типов аргументов описывается в разделе «Короткое отступле­
ние: составные аргументы задач».

AnsibleModuLe: параметры метода инициализатора

Метод-инициализатор класса Ansi.ЫeModule принимает несколько параметров.
Единственным обязательным параметром является argu111ent_spec.

Таблица 12.2.Арzументы инициализатора AnsiьteModule

Параметр По умолчанию Описание

arguмent_spec (Нет) Словарь с информацией об аргументах

bypass_checks False Если Тгuе, не проверяет никаких ограничений для параметров

no log False Если Тгuе, не журналирует поведения этого модуля

check_invalid_arguмents Тгuе Если Тгuе, возвращает ошибку при попытке вызвать модуль
с неопознанным аргументом

мutually exclusive (Нет) Список взаимоисключающих аргументов

required_together (Нет) Список аргументов, которые должны передаваться вместе

required_one_of (Нет) Список аргументов, из которых хотя бы один должен
передаваться модулю

add file соммоn_агgs False Поддержка аргументов модуля П le

supports_check_мode False Если Тгuе, модуль поддерживает режим проверки

argument_spec
Словарь, содержащий описания всех допустимых аргументов модуля, как рас­
сказывалось в предыдущем разделе.

no_log
Когда модуль выполняется на хаете, он выводит информацию о работе в жур­
нал syslog, находящийся в UЬuntu в каталоге /var/log/syslog.

Вывод выглядит следующим образом:

Sep 28 02:31:47 vagrant-ubuntu-trusty-64 ansiЫe-ping: Invoked with data=None

Sep 28 02:32:18 vagrant-ubuntu-trusty-64 ansiЫe-apt: Invoked with dpkg_options=

force-confdef,force-confold upgrade=None force=False naмe=nginx package=['nginx'

] purge=False state=installed update_cache=True default_гelease=None install_rec

oммends=True deb=None cache_valid_tiмe=None Sep 28 02:33:01 vagгant-ubuntu-trust

у-64 ansiЫe-file: Invoked with src=None

Собственные модули ❖ 227

original_basenaмe=None directory_мode=None force=False reмote_src=None selevel=N

one seuser=None recuгse=False serole=None content=None deliмiter=None state=dire

ctory diff_peek=None мode=None regexp=None owner=None group=None path=/etc/nginx

/ssl backup=None validate=None setype=None

Sep 28 02:33:01 vagrant-ubuntu-trusty-64 ansiЫe-copy: Invoked with src=/hoмe/va

grant/.ansiЫe/tмp/ansiЫe-tмp-1411871581.19-43362494744716/source directory_мod

e=None force=True reмote_src=None dest=/etc/nginx/ssl/nginx.key selevel=None seu

ser=None serole=None gгoup=None content=NOT_LOGGING_PARAMETER setype=None origin

al_basenaмe=nginx.key deliмiter=None моdе=0600 owner=root regexp=None validate=N

one backup=False

Sep 28 02:33:01 vagrant-ubuntu-trusty-64 ansiЫe-copy: Invoked with src=/hoмe/va

grant/.ansiЫe/tмp/ansiЫe-tмp-1411871581.31-95111161791436/source diгectory_мod

e=None force=True reмote_src=None dest=/etc/nginx/ssl/nginx.crt selevel=None seu

ser=None seгole=None group=None content=NOT_LOGGING_PARAMETER setype=None origin

al_basenaмe=nginx.crt deliмiter=None мode=None owner=None regexp=None validate=N

one backup=False

Если модуль принимает конфиденциальную информацию в арrументах,
предпочтительнее отключить журналирование. Для отключения записи в sys­
log передайте параметр no_log=True в инициализатор Ansi..ЫeModule.

check_invalid_arguments

По умолчанию AnsiЫe проверяет допустимость всех аргументов, передавае­
мых пользователем. Эту проверку можно отключить, передав параметр check_
i..nvalid_argш11ents=False в инициализатор Ansi..ЫeModule.

mutually _ exclusive
Параметр мutually_exclusi..ve содержит список аргументов, которые нельзя
одновременно передавать в вызов модуля. Например, модуль l i..nei..nfi.. le по­
зволяет добавить строку в файл. Ему можно передать аргумент i..nsertbefore со
строкой для вставки перед указанной или аргумент i..nsertbefore со строкой для
вставки после указанной. Но нельзя передать сразу оба аргумента.

Поэтому модуль определяет эти два аргумента как взаимоисключающие:

мutually_exclusive=[['inseгtbefore', 'insertafter']]

required _ опе _ of
Параметр requi..red_one_of определяет список аргументов, из которых хотя бы
один должен быть передан модулю. Например, модуль pi..p, используемый для
установки пакетов Python, может принять либо аргумент паме с именем пакета,
либо аргумент requi..reмents с именем файла, содержащим список пакетов. Не­
обходимость передачи хотя бы одного из аргументов определена в модуле так:

гequired_one_of=[['naмe', 'requireмents']]

add_file_common_args
Многие модули создают или модифицируют файлы. Пользователю часто тре­
буется установить некоторые атрибуты конечного файла, такие как владелец,
группа и разрешения.

228 ❖ Собавенные модули

Установку этих атрибутов можно произвести с помощью модуля fi.le:

nаме: download а file
get_url: url=http://www.exaмple.coм/мyfile.dat dest=/tмp/мyfile.dat

nаме: set the perмissions
file: path=/tмp/мyfile.dat owner=ubuntu моdе=0600

AnsiЫe позволяет указать, что модуль принимает все те же аргументы, что

и модуль fi. le. Благодаря этому можно потребовать установить атрибуты фай­
ла, просто передав соответствующие аргументы модулю, который создает или
изменяет файлы. Например:

- nаме: download а file
get_url: url=http://www.exaмple.coм/мyfile.dat dest=/tмp/мyfile.dat \
owner=ubuntu моdе=0600

Чтобы объявить поддержку модулем этих аргументов, необходимо передать
параметр:

add_file_coммon_args=True

Класс Ans'\.ЫeModule предоставляет вспомогательные методы для обработки
перечисленных параметров.

Метод load_fi.le_co111111on_argu111ents принимает словарь с параметрами и воз­
вращает словарь параметров со всеми аргументами, соответствующими уста­
новленным атрибутам файла.

Метод set_fs_attг'\.butes_'\.f _d'\.fferent принимает словарь с параметрами и ло­
гический флаг как признак изменения состояния хоста. Метод устанавлива­
ет атрибуты файла и возвращает Тгuе, если состояние хоста изменилось (либо
входной аргумент-флаг имел значение Тгuе, либо выполнено изменение файла
как побочный эффект).

Если вы используете общие аргументы для установки атрибутов файлов, не
определяйте их явно. Для доступа к этим аргументам и установки атрибутов
файла используйте вспомогательные методы:

мodule = AnsiЫeModule(
arguмent_spec=dict(

dest=dict(required=True),

),

add_file_coммon_args=True

"changed" получит значение True, если модуль изменил состояние хоста
changed = do_мodule_stuff(paraм)

file_args = мodule.load_file_coммon_arguмents(мodule.paraмs)

changed = мodule.set_fs_attributes_if_different(file_args, changed)
мodule.exit_json(changed=changed, ...)

Собственные модули ❖ 229

� AnsiЫe предполагает, что модуль имеет аргумент path или dest, содержащий путь
к файлу.

bypass _ checks

Прежде чем запустить модуль, AnsiЬle проверит, все ли аргументы удовлет­
воряют ограничениям, и, если какое-то ограничение нарушено, сообщит об
ошибке. Проверка считается пройденной, если:

О нет взаимоисключающих аргументов;
О переданы все аргументы, отмеченные как requi.red;
О аргументы со свойством choi.ces имеют допустимые значения;
О аргументы с заданным типом type имеют соответствующие значения;
О аргументы со свойством requi.red_together используются совместно;
О передан хотя бы один аргумент из списка equi.red_one_of.
Все эти проверки можно отменить, установив bypass_checks=True.

Возврат признака успешного завершения или неудачи
Чтобы сообщить об успешном завершении, используйте метод exi.t_json. Вы
всегда должны возвращать флаг changed, и хорошей практикой считается воз­
вращать мsg с осмысленным сообщением:
мodule = Ans\ЫeModule(...)

мodule.ex\t_json(changed=False, мsg="мean\ngful мessage goes hеге")

Для вывода сообщения о неудаче используйте метод fai.l_json. Всегда воз­
вращайте сообщение мsg, объясняющее причины неудачи:
мodule = Ans\ЫeModule(...)

мodule.fa\l_json(мsg="Out of d\sk space")

Вызов внешних команд
Класс Ansi.ЫeModule предоставляет метод гuп_соммапd для вызова внешних про­
грамм, который использует модуль Python subprocess. Он принимает следую­
щие аргументы.

Таблица 12.3.Арzументы run_command

Арrумент Тип Значение Описание
по умолчанию

args Строка или список (Нет) Команда для выполнения (см. следующий
(по умолчанию) строк раздел)

check_rc Логический False Если True, производит вызов fa\l_json, когда
команда возвращает ненулевое значение

close_fds Логический True Передает как аргумент close_fds в вызов
subprocess.Popen

230 ❖ Собственные модули

Окончание табл.12.3

Арrумент Тип Значение Описание
по умолчанию

executaЫe Строка (Нет) Передает как аргумент executaЫe в вызов
(путь к программе) subprocess.Popen

data Строка (Нет) Посылается в стандартный ввод дочернего
процесса

bi.nary_data Логический False Если False и присутствует data, тогда AnsiЬle
передаст символ перевода строки в стандарт-
ный ввод после data

path_prefi.x Строка (Нет) Список путей, разделенных двоеточиями,
(список путей) для добавления перед содержимым

переменной окружения РАТН

cwd Строка (Нет) Если определена, AnsiЫe перейдет в этот
(путь к директории) каталог перед запуском

use unsafe_shell Логический False См. следующий раздел

Если args передается как список (см. пример 12.3), тогда AnsiЫe вызовет sub­
process. Popen с параметром she l l=Fa lse.

Пример 12.3 ❖ Передача args со списком

мodule = Ansi.ЫeModule(...)

мodule.run_coммand(['/usr/local/bin/мyprog', '-i', 'мyarg'])

Если в args передать строку, как показано в примере 12.4, поведение в этом
случае будет зависеть от значения use_unsafe_she ll. Если use_unsafe_she ll=Fa lse,
AnsiЬ!e разобьет args на список и вызовет subprocess. Popen с параметром
shell=False. Если use_unsafe_shell=True, AnsiЫe передаст args в subprocess.Popen
в виде строки с shell=True1

•

Пример 12.4 ❖ Передача args со строкой

мodule = AnsiЫeModule(...)

мodule.run_coммand('/usr/local/bin/мyprog -i муагg')

Режим проверки (пробный прогон)
AnsiЫe поддерживает специальный режим проверки, который включается при пе­
редаче команде ans'\.Ыe-playbook параметра -С или --check. По своей сути он похож
на режим пробного прогона, который поддерживают многие другие инструменты.

При выполнении в режиме проверки сценарий не производит на хаете ни­
каких изменений, а просто сообщает, какие задачи могут изменить состояние
хоста, возвращая признак успешного выполнения без внесения изменений

или сообщение об ошибке.

1 За дополнительной информацией о классе subprocess. Popen в стандартной библио­

теке Python обращайтесь к электронной документации: http://Ьit.ly/1F72tiU.

Собавенные модули ❖ 231

Модуль должен явно поддерживать режим проверки. Если вы собираетесь написать
свой модуль, рекомендую добавить в него поддержку режима проверки, чтобы он был
добропорядочным гражданином AnsiЫe.

Чтобы сообщить AnsiЫe, что модуль поддерживает режим проверки, пере­
дайте методу-инициализатору класса Ansi.ЫeModule параметр supports_check_

моdе со значением Тгuе, как показано в примере 12.5.

Пример 12.S ❖ Уведомление AnsiЫe о поддержке режима проверки

мodule = AnsiЫeModule(
arguмent_spec=dict(...),
supports_check_мode=True)

Модуль должен определить режим проверкой значения атрибута check_мode1

объекта Ansi.ЫeModule, как показано в примере 12.6, и вызвать метод exi.t_json

или fai. l_json, как обычо.

Пример 12.6 ❖ Проверка режима

мodule = AnsiЫeModule(...)

if мodule.check_мode:
проверить, мог бы модуль внести изменения
would_change = would_executing_this_мodule_change_soмething()
мodule.exit_json(changed=would_change)

Как автор модуля вы должны также гарантировать, что в режиме проверки
ваш модуль не изменит состояния хоста.

ДОКУМЕНТИРОВАНИЕ МОДУЛЯ
В соответствии со стандартами проекта AnsiЬle модули обязательно должны
документироваться, чтобы НТМL-документация по модулю генерировалась
корректно и программа ansiЫe-doc могла отобразить ее. AnsiЬ!e использует
особый синтаксис YAML для документирования модулей.

Ближе к началу модуля определите строковую переменную DOCUMENTAТION
с описанием и строковую переменную EXAMPLES с примерами использования.

В примере 12.7 приводится раздел с документацией для модуля can_reach.

Пример 12.7 ❖ Пример модуля с документацией

DOCUMENTATION = '''

мodule: can_reach
short_description: Проверяет доступность сервера
description:

- Проверяет возможность подключения к удаленному серверу
version_added: "1.8"

1 Уф! Слишком много проверок.

232 ❖ Собственные модули

opti.ons:

host:

descri.pti.on:

- Имя хоста или IР-адрес

requi.red: true

рогt:

descri.pti.on:

- Номер порта ТСР

requi.red: true

ti.l'leout:

descгtpti.on:

- Длительность попытки (в секундах) установить соединение, прежде чем она будет объявлена

неудачной

гequtred: false

default: З

flavor:

descrtption:

- Это искусственный параметр, чтобы показать, какой выбор был сделан.
гequired: false

chotces: ("chocolate", "vanilla", "stгаwЬеггу"]

ali.ases: ("flavor"]

default: chocolate

requirel'lents: (netcat]

author: Lortn Hochstei.n

notes:

Это просто пример, демонстрирующий, как писать модули.

- Возможно, вы предпочтете использовать встроенный модуль M(wai.t_for).

EXAMPLES = ' ' '

Проверка доступности хоста через ssh с тайм-аутом по умолчанию

- can_reach: host=l'lyhost.exal'lple.col'l рогt=22

Проверка доступности сервера postgres с нестандартным тайм-аутом

- can_reach: host=db.exal'lple.col'l port=5432 ti.1'1eout=1

В документации допускается использовать рудиментарную разметку.
В табл. 12.4 описывается синтаксис разметки, поддерживаемой инструментом
вывода документации, а также советы по ее использованию.

Таблица 12.4. Разметка в документации

Тип Пример синтаксиса Когда использовать

URL U(http://www.example.com) Для отображения адресов URL

Модуль M(apt) Имена модулей

Курсив l(port) Имена параметров

Моноширинный С(/Ьi n/bash) Имена файлов и параметров

Существующие модули AnsiЫe являются превосходным источником приме­
ров документирования.

Собственные модули ❖ 233

ОТЛАДКА МОДУЛЯ
В репозитории AnsiЫe на GitHub имеется пара сценариев, позволяющих за­
пускать модули непосредственно на локальной машине, без использования
команды ansi.Ыe или ansi.Ыe-playbook.

Клонируйте репозиторий AnsiЫe:

$ git clone https://github.coм/ansiЫe/ansiЫe.git --recursive

Настройте переменные окружения, чтобы было можно вызвать модуль:

$ source ansiЫe/hacking/env-setup

Вызовите модуль:

$ ansiЫe/hacking/test-мodule -м /path/to/can_reach -а "host=exaмple.coм рогt=81"

� Занимаясь отладкой, вы можете столкнуться с такими ошибками:

IмрогtЕггог: No мodule naмed уамl
IмрогtЕггог: No мodule naмed jinjaZ.exceptions

В этом случае установите эти недостающие зависимости:

pip install pyYAML jinjaZ

Поскольку на ехамр le. сом нет службы, обслуживающей порт 81, модуль завер­
шится с ошибкой и вернет сообщение:

* including generated source, if any, saving to:
/Users/lorin/.ansiЫe_мodule_generated
* ansiballz мodule detected; extracted мodule source to:
/Users/lorin/debug_diг

RAW OUTPUT
{"мsg": "Could not геасh ехамрlе.сом:81", "failed": true, "invocation":
{"мodule_args": {"host": "ехамрlе.сом", "рогt": 81, "tiмeout": З}}}

PARSEO OUTPUT
{

"failed": true,
"invocation": {

"мodule_args": {

}
},

"host": "ехамрlе.сом",
"port": 81,
"tiмeout": З

"мsg": "Could not reach ехамрlе.сом:81"

Как следует из полученного сообщения, при запуске test-мodule AnsiЫe сге­
нерирует сценарий на Python и скопирует его в ~/.ansiЫe_module_generated. Это

234 ❖ Собавенные модули

автономный сценарий на Python, который можно использовать непосред­
ственно.

Начиная с версии AnsiЫe 2.1.0 этот сценарий на Python включает содержи­
мое ZIР-файла с исходным кодом вашего модуля, а также код для распаковки
этого ZIР-файла и выполнения кода внутри него.

Этот файл не принимает никаких аргументов - все необходимые аргументы
AnsiЫe встраивает непосредственно в файл, в переменную ANSIBALLZ_PARAMS:

ANSIBALLZ_PARAMS = '{"ANSIBLE_MODULE_ARGS": {"host": "exal'lple.col'l", \

"_ansiЫe_selinux_special_fs": ["fuse", "nfs", "vboxsf", "ral'lfs"), \
11 рогt 11 : 11 81 11}} 1

СозддниЕ модуля нд Вдsн
Если вы собираетесь создавать свои модули для AnsiЫe, я советую писать их
на Python, потому что, как мы видели выше в этой главе, для таких модулей
AnsiЫe предоставляет вспомогательные классы. Однако при желании моду­
ли можно писать на других языках. Это может потребоваться, например, если
модуль зависит от сторонней библиотеки, не реализованной на Python. Или,
может быть, модуль настолько прост, что его проще написать на Bash. Или вам
просто нравится писать сценарии на Ruby.

В этом разделе мы рассмотрим пример создания модуля в виде сценария на
Bash. Он будет очень похож на реализацию в примере 12.1. Главным отличием
являются анализ входных аргументов и генерация вывода, который ожидает
получить AnsiЫe.

Я использую формат JSON для передачи входных аргументов и инструмент
jq (https://stedolan.github.io/jq/) для парсинга JSON в командной строке. Это зна­
чит, что для запуска модуля на хаете придется установить jq. В примере 12.8
приводится полный листинг модуля на Bash.

Пример 12.8. ❖ Модуль can_reach на Bash

! /Ьin/bash

WANT_JSON

Чтение переменных из файла

host='jq -г .host < $1'

port='jq -г ,port < $1'

til'leout='jq -r ,til'leout < $1'

По умолчанию til'leout=З

if [[$til'leout = null)]; then

til'leout=З

fi

Проверить достижимость хоста

пс -z -w $ti.1'1eout $host $port

Вернуть результат

if [$? -eq 0]; then
echo '{"changed": false}'

else

Собственные модули ❖ 235

echo "{\"failed\": true, \"мsg\": \"could not reach $host:$port\"}"
fi

Мы добавили в комментарий WANT_JSON, чтобы AnsiЫe знала, что входные
данные должны передаваться в формате JSON_

Модули Bash и сокращенный синтаксис ввода

В модулях на Bash можно использовать сокращенный синтаксис ввода. Но я не
рекомендую использовать этот прием, потому что он предполагает использование
встроенной команды source, что несет потенциальную угрозу безопасности. Од­
нако если вы настроены решительно, прочитайте статью «Shell scripts as AnsiЫe
modules» («Сценарии на языке оболочки в качестве модулей AnsiЫe») по адресу:
http.//Ьit.ly/1F189tb, написанную Яном-Питом Менсом (Jan-Piet Mens).

АльтЕРНАТИВНОЕ МЕСТОПОЛОЖЕНИЕ ИНТЕРПРЕТАТОРА BASH

Обратите внимание: модуль предполагает, что интерпретатор Bash находится
в /Ьin/bash. Однако не во всех системах выполняемый файл интерпретатора
находится именно там. Мы можем предложить AnsiЫe проверить наличие ин­
терпретатора Bash в других каталогах, определив переменную ans-\.Ыe_bash_-\.n­
terpreter на хостах, где он может устанавливаться в другие каталоги.

Например, допустим, что у нас имеется хост fileserver.example.com с ОС Free­
BSD, где интерпретатор Bash доступен как /usr/local/Ьin/bash. Создав файл host_
vars/fileserver.example.com со следующим содержимым:

ansiЫe_bash_interpreter: /usr/local/Ыn/bash

можно создать переменную хоста.
Тогда, когда AnsiЬle будет запускать модуль на хаете fileserver.example.com,

она использует /usr/local/Ьin/bash вместо /Ьin/bash.
Выбор интерпретатора AnsiЫe определяет поиском символов # ! и просмот­

ром базового имени первого элемента. В нашем примере AnsiЫe найдет строку:

#! /Ыn/bash

извлечет из /Ьin/bash базовое имя, то есть bash. Затем использует переменную
ans-\.Ыe_bash_ -\.nteгpreter, если она задана пользователем.

Учитывая, как AnsiЫe определяет интерпретатор, если вы в строке «she-bang» укажете
вызов команды /usr/Ьin/env, например:

#!/usr/Ыn/env bash

AnsiЬle ошибочно определит интерпретатор как env, потому что будет анализировать
путь /usr/Ьin/env.

236 ❖ Собственные модули

Поэтому, чтобы не попасть впросак, не вызывайте env в строке «she-bang», точно ука­
зывайте путь к интерпретатору и переопределяйте его с помощью переменной ansi.Ыe_
bash_i.nterpreter (или ее аналогом), если это необходимо.

ПРИМЕРЫ МОДУЛЕЙ
Лучшим способом научиться писать модули для AnisЫe является изучение ис­
ходного кода модулей, поставляемых с AnsiЫe. Вы найдете их в GitHub (https://
github.com/ansible/ansiьte/tree/devel/lib/ansiьte/modules).

В этой главе мы рассмотрели, как писать модули на Python и на других язы­
ках, а также как можно избежать написания собственных модулей с использо­
ванием модуля script. Если вы все-таки беретесь за написание модуля, я реко­
мендую постараться включить его в основной проект AnsiЬle.

Глава 13
•••

Vagrant

Vagrant является отличной средой для тестирования сценариев AnsiЬle. Имен­
но поэтому я использую ее на протяжении всей книги, а также часто тестирую
в ней свои собственные сценарии. Vagrant подходит не только для тестирова­
ния сценариев управления конфигурациями. Изначально это программное
обеспечение разрабатывалось для многократного создания окружений разра­
ботки. Если вам доводилось присоединяться к новой команде разработчиков
и тратить несколько дней на выяснение, какое ПО следует установить на свой
ноутбук, чтобы запустить внутреннюю версию разрабатываемого продукта,
значит, вы испытали ту боль, которую Vagrant может облегчить. Сценарии An­
siЬle -прекрасный способ определения конфигурации машины Vagrant, помо­
гающий новичкам в вашей команде взяться за дело незамедлительно.

В Vagrant встроена определенная поддержка AnsiЫe, преимуществами кото­
рой мы еще не пользовались. В этой главе мы рассмотрим эти дополнительные
возможности, помогающие настраивать машины Vagrant.

Полное описание Vagrant не является целью данной книги. За дополнительной инфор­

мацией обращайтесь к книге «Vagrant: Up and Running» Митчела Хашимото (Mitchell

Hashimoto}, создателя Vagrant.

ПОЛЕЗНЫЕ ПАРАМЕТРЫ НАСТРОЙКИ VAGRANT

Vagrant предлагает большое количество параметров настройки виртуальных
машин, но две из них, на мой взгляд, являются особенно полезными при ис­
пользовании для тестирования -установка IР-адреса и настройка перенаправ­
ления агента.

Перенаправление портов и приватные IР-адреса
При создании нового файла Vagrantfile командой vagrant i.nit сетевые настрой­
ки по умолчанию позволяют получить доступ к виртуальной машине Vagrant
только через порт SSH, перенаправленный с локального хоста. Первой машине
Vagrant назначается порт 2222, каждой последующей -порт с номером на еди­
ницу больше. Как следствие единственный способ получить доступ к машине

238 ❖ Vagrant

Vagrant с сетевыми настройками по умолчанию - установка SSН-соединения
с портом 2222 на локальный хает localhost. Vagrant перенаправляет это соеди­
нение на порт 22 в машине Vagrant.

Сетевые настройки по умолчанию плохо подходят для тестирования веб­
приложений, поскольку они ожидают соединений на другом порте, к которому

у нас нет доступа.
Есть два способа решить эту проблему. Первый - дать Vagrant команду на­

строить перенаправление еще одного порта. Например, если веб-приложение
принимает соединения на порте 80 внутри машины Vagrant, можно перена­
править порт 8000 на локальной машине в порт 80 на машине Vagrant. В при­
мере 13.1 показано, как настроить перенаправление порта в файле Vagrantfile.

Пример 13.1 ❖ Перенаnравление локального порта 8000 в порт 80 на машине Vagrant

Vagrantfi.le
VAGRANTFILE_API_VERSION = "2"

Vagrant.configure(VAGRANTFILE_API_VERSION) do jconfigj

Другие параметры настройки не показаны

config.vм.network :forwarded_port, host: 8000, guest: 80
end

Перенаправление порта решает проблему, но мне кажется, полезнее будет
присвоить машине Vagrant собственный IР-адрес. В этом случае взаимодей­
ствие будет больше походить на связь с настоящим удаленным сервером

можно установить соединение напрямую с портом 80 по IР-адресу машины
вместо порта 8000 локальной машины.

Самый простой способ - присвоить машине приватный IР-адрес. В приме­
ре 13.2 показано, как присвоить IР-адрес 192.168.33.10 машине, отредактиро­
вав файл Vagrantfile.

Пример 13.2 ❖ Присваивание приватного IР-адреса машине Vagrant

Vagrantfile
VAGRANTFILE_API_VERSION = "2"

Vagrant.configure(VAGRANTFILE_API_VERSION) do jconfigl

Другие параметры настройки не показаны

confi.g. vм. network "private_network", ip: "192 .168. 33 .10"
end

Если теперь на машине Vagrant запустить веб-сервер, обслуживающий порт
80, к нему можно получить доступ по ссылке: http:f/192.168.33.10.

Данная конфигурация использует частную сеть Vagrant. Это значит, что
виртуальная машина будет доступна только с машины, где действует Vagrant.
Подключиться к этому IР-адресу с другой физической машины невозможно,
даже находящейся в той же сети, что и машина, где выполняется Vagrant. Но
разные машины Vagrant могут соединяться друг с другом.

Vagrant ❖ 239

За более полной информацией о разных параметрах настройки сети обра­

щайтесь к документации по Vagrant.

Перенаправление агента
Если вы извлекаете файлы из репозитория Git по SSH и вам нужно исполь­
зовать перенаправление агента, настройте машину Vagrant так, чтобы Vagrant
включала перенаправление агента при соединении с ним через SSH. В при­
мере 13.3 показано, как это сделать. Дополнительную информацию о перена­
правлении вы найдете в приложении А.

Пример 13.3 ❖ Включение перенаправления агента

Vagrantfi.le

VAGRANТFILE_API_VERSION = "2"

Vagrant.configure(VAGRANTFILE_API_VERSION) do lconfigl

Другие параметры настройки не показаны

config.ssh.forward_agent = true

end

(ЦЕНАРИЙ НАПОЛНЕНИЯ ANSIBLE
В Vagrant существует понятие сценариев наполнения (provisioners). Сценарии
наполнения являются внешним инструментом, который используется систе­
мой Vagrant для настройки виртуальной машины в момент запуска. В допол­
нение к AnsiЫe Vagrant может также взаимодействовать со сценариями обо­
лочки, Chef, Puppet, CFengine и даже Docker.

В примере 13.4 показан файл Vagrantfile, использующий AnsiЫe для наполне­
ния виртуальной машины, в данном случае с помощью сценария playbook.yml.

Пример 13.4 ❖ Vagrantfile

VAGRANТFILE_API_VERSION = "2"

Vagrant.configure(VAGRANTFILE_API_VERSION) do lconfigl

config.vl'1.box = "ubuntu/trusty64"

config.Vl'1.provision "ansiЫe" do lansiЫel

ansiЫe.playbook = "playbook.yl'1l"

end

end

Когдд ВЫПОЛНЯЕТСЯ СЦЕНАРИЙ НАПОЛНЕНИЯ
Когда в первый раз запускается команда vagrant up, Vagrant выполнит сценарий
наполнения и сделает запись, что он запускался. После остановки и повторно­
го запуска виртуальной машины Vagrant вспомнит, что сценарий наполнения

уже выполнялся, и не будет повторно запускать его.

240 ❖ Vagrant

При желании можно принудительно запустить сценарий наполнения на за­
пущенной виртуальной машине:

$ vagгant provision

Можно перезагрузить виртуальную машину и запустить сценарий наполне­
ния после перезагрузки:

$ vagrant гetoad --provision

Аналогично можно запустить остановленную виртуальную машину с при­
нудительным запуском сценария наполнения:

$ vagrant up --provtsion

РЕЕСТР, ГЕНЕРИРУЕМЫЙ СИСТЕМОЙ V AGRANT
Во время работы Vagrant создает файл реестра AnsiЬle с именем . vagrant/pro­
visioners/ansihle/inventory/vagrant_ansihle_inventory. В примере 13.5 показано со­
держимое этого в нашем случае.

Пример 13.5 ❖ vagrant_ansiЫe_inventory

Geneгated Ьу Vagrant

default ansiЫe_ssh_host=127.0.0.1 ansiЫe_ssh_port=2202

Обратите внимание, что в качестве имени хоста используется имя default.
Поэтому, когда будете писать сценарии AnsiЫe для использования в качестве
сценариев наполнения Vagrant, используйте объявления hosts: default или
hosts: all.

Еще интереснее случай, когда имеется окружение с большим количеством
машин Vagrant, в котором Vagrantfile определяет несколько виртуальных ма­
шин. Взгляните на пример 13.6.

Пример 13.6 ❖ Vagrantfile (несколько машин)

VAGRANTFILE_API_VERSION = "2"

Vagrant.configure(VAGRANTFILE_API_VERSION) do lconfigl
сопПg. vм. define "vagrantl" do I vagrantl 1

vagrantl.vм.box = "ubuntu/trusty64"
vagrantl.vм.provision "ansiЫe" do lansiЫel

ansiЫe.playbook = "playbook.yмl"
end

end
сопПg.vм.dеПпе "vagrant2" do lvagrant21

vagrant2.vм.box = "ubuntu/trusty64"
vagrant2.vм.provision "ansiЫe" do lansiЫel

ansiЫe.playbook = "playbook.yмl"
end

end
config.vм.define "vagrantЗ" do lvagrantЗI

vagгantЗ.vм.box = "ubuntu/trusty64"
vagrantЗ.vм.provision "ansiЫe" do lansiЫel

ansiЫe.playbook = "playbook.yмl"
end

end
епd

Vagrant ❖ 241

Сформированный файл реестра будет выглядеть, как показано в приме­
ре 13.7. Обратите внимание, что псевдонимы (vagrant1, vagrant2, vagrantЗ) соот­
ветствуют именам машин в файле Vagrantfile.

Пример 13.7 ❖ vagrant_ansiЫe_inventory (несколько машин)

Generated Ьу Vagrant

vagrantl ansiЫe_ssh_host=127.0.0.1 ansiЫe_ssh_port=2222
vagгant2 ansiЫe_ssh_host=127.0.0.1 ansiЫe_ssh_port=2200
vagrantЗ ansiЫe_ssh_host=127.0.0.1 ansiЫe_ssh_port=2201

НАПОЛНЕНИЕ НЕСКОЛЬКИХ МАШИН ОДНОВРЕМЕННО
В примере 13.6 показано, что Vagrant вызывает ansi.Ыe-playbook для каждой
виртуальной машины с параметром - -li.мi.t, чтобы сценарий наполнения за­
пускался каждый раз только для одной машины.

Однако при таком подходе не используется возможность AnsiЬle выполнять
задачи на хостах параллельно. Эту проблему можно решить, настроив в Va­
grantfile запуск сценария наполнения после запуска последней виртуальной
машины и потребовав от Vagrant не передавать AnsiЫe параметр --l i.мi. t, как
показано в примере 13.8.

Пример 13.8 ❖ Vagrantfi/e (несколько машин с параллельным выполнением сценария

наполнения)

VAGRANTFILE_API_VERSION = "2"

Vagrant.configure(VAGRANTFILE_API_VERSION) do lconfigl
Для всех маwин используется один и тот же ключ
config.ssh.insert_key = false

config.vм.define "vagгantl" do lvagrantll
vagrantl.vм.box = "ubuntu/trusty64"

end
config.vм.define "vagrant2" do lvagrant21

vagrant2.vм.box = "ubuntu/trusty64"
end
config.vм.define "vagгantЗ" do lvagrantЗI

vagrantЗ.vм.box = "ubuntu/tгusty64"
vagrantЗ.vм.provision "ansiЫe" do lansiЫel

ansiЫe.liмit = 'all'
ansiЫe.playbook = "playbook.yмl"

end
end

end

242 ❖ Vagrant

Теперь при первом запуске команды vagrant up сценарий наполнения будет

запущен только после запуска всех трех виртуальных машин.
С точки зрения Vagrant только последняя виртуальная машина, vagrantЗ, вы­

полняет сценарий наполнения. Поэтому выполнение vagrant provi.si.on vagrant1

или vagrant provi.si.on vagrant2 не даст никакого результата.
Как это уже обсуждалось в разделе «Вводная часть: несколько машин Va­

grant» в главе 3, Vagrant 1.7+ по умолчанию использует разные ключи SSH для
разных хостов. Если требуется организовать параллельное выполнение сцена­
рия наполнения, необходимо настроить виртуальные машины так, чтобы все
они использовали один и тот же ключ SSH. Именно поэтому пример 13.8 со­
держит строку

config.ssh.inseгt_key = false

ОПРЕДЕЛЕНИЕ ГРУПП
Иногда полезно объединить виртуальные машины Vagrant в группы, особенно

при использовании сценариев, ссылающихся на существующие группы. В при­
мере 13.9 показано, как поместить vagrant1 в группу web, vagrant2 в группу task
и vagrantЗ в группу redi.s.

Пример 13.9 ❖ Vagrantfile (несколько машин с группами)

VAGRANTFILE_API_VERSION = "2"

Vagrant.configure(VAGRANTFILE_API_VERSION) do lconfigl
Для всех маwин используется один и тот же ключ
config.ssh.insert_key = false

config.vм.define "vagrant1" do lvagrantll
vagrant1.vм.box = "ubuntu/trusty64"

end
conПg.vм.deПne "vagrant2" do lvagrant21

vagrant2.vм.box = "ubuntu/trusty64"

end
conПg.vм.deПne "vagrantЗ" do lvagrantЗI

vagrantЗ.vм.box = "ubuntu/trusty64"
vagrantЗ.vм.provision "ansiЫe" do lansiЫel

ansiЫe.liмit = 'all'
ansiЫe.playbook = "playbook.yмl"
ansiЫe.gгoups = {

}
end

end
end

"web" => ("vagrant1"],
"task" => ("vagrant2"],
"redis" => ["vagrantЗ"]

Vagrant ❖ 243

В примере 13.10 представлен окончательный вариант файла реестра, сгене­
рированного системой Vagrant.

Пример 13.10 ❖ vagrant_ansi.Ыe_i.nventory (несколько машин, с группами)

Generated Ьу Vagrant

vagrant1 ansi.Ыe_ssh_host=127.0.0.1 ansi.Ыe_ssh_port=2222
vagrant2 ansi.Ыe_ssh_host=127.0.0.1 ansi.Ыe_ssh_port=2200
vagrantЗ ansi.Ыe_ssh_host=127.0.0.1 ansi.Ыe_ssh_port=2201

[web]
vagrant1

[task]
vagrant2

[redi.s]
vagrantЗ

ЛОКАЛЬНЫЕ СЦЕНАРИИ НАПОЛНЕНИЯ
Начиная с версии 1.8 Vagrant позволяет также запускать AnsiЫe из гостевой
системы. Этот режим может пригодиться, когда нежелательно устанавливать
AnsiЫe на хает-машину. Если AnsiЫe отсутствует на гостевой машине, Vagrant
попытается установить ее с помощью pi.p, однако это поведение можно изме­
нить.

Vagrant ищет сценарии AnsiЫe в каталоге /vagrant гостевой системы. По
умолчанию Vagrant монтирует каталог хоста, содержащий Vagrantfile, в каталог
/vagrant, то есть фактически Vagrant просматривает тот же каталог, как при ис­
пользовании обычного сценария наполнения AnsiЬle.

Чтобы использовать локальный сценарий наполнения AnsiЫe, определите
режим наполнения ansi.Ыe_local, как показано в примере 13.11.

Пример 13.11 ❖ Vagrantfile (локальный сценарий наполнения AnsiЬle)

Vagrant.confi.gure("2") do Jconfi.gJ
confi.g.v111.box = "ubuntu/trusty64"
confi.g.v111.provi.si.on "ansi.Ыe_local" do Jansi.Ыel

ansi.Ыe.playbook = "playbook.y111l"
end

end

Эта глава оказалась коротким, но, я надеюсь, полезным обзором эффектив­
ного использования Vagrant и AnsiЫe. Сценарии наполнения AnsiЫe в Vagrant
поддерживают многие другие параметры, которые не были упомянуты в дан­
ной главе. Дополнительную информацию можно найти в официальной доку­
ментации к Vagrant (http://Ьit.ly/1F7ekxp).

Глава 14
•••

Amazon ЕС2

AnsiЫe поддерживает возможность работы с облачными услугами типа «ин­
фраструктура как услуга» (Infrastructure-as-a-Service, IaaS). Основное внима­
ние в этой главе мы будем уделять Amazon ЕС2, поскольку это самое популяр­
ное IааS-облако, к тому же его я знаю лучше всего. Однако большинство идей
можно применить к другим облакам, которые поддерживает AnsiЬle.

AnsiЫe включает два механизма поддержки ЕС2:
О плагин для автоматического заполнения реестра AnsiЫe вместо опреде­

ления серверов вручную;
О модули для выполнения действий с ЕС2, такие как создание новых сер­

веров.
В этой главе мы рассмотрим оба механизма: и плагин динамической инвен-

таризации ЕС2, и модули поддержки ЕС2.

На момент написания этих строк в AnsiЫe имелась почти сотня модулей поддержки ЕС2,

а также других инструментов, предлагаемых Amazon Web Services (AWS). Мы не можем

в полной мере охватить их все в этой книге, поэтому сосредоточимся только на самых

ОСНОВНЫХ.

Что такое облако laaS?

Вероятно, вы столько раз сталкивались с упоминанием облака в технической прес­
се, что уже устали от этого словечка 1

• Я постараюсь быть педантичным в своем
определении облака типа «инфраструктура как услуга» (laaS).
Для начала приведу пример типичного взаимодействия пользователя с lааS­
облаком:

Пользователь

Мне необходимо пять новых серверов на Ubuntu 16.04, каждый из которых
оснащен двумя CPU, 4 Гбайт оперативной памяти и 100 Гбайт дисковой памяти.

1 Национальный институт стандартов и технологий США (NIST) дал хорошее опреде­
ление облачным вычислениям в работе Питера Мелла (Peter Mell) и Тимоти Гранца
(Timothy Grance) «The NIST Definition of Cloud Computing». NIST Special PuЫication
800-145, 2011.

Amazon ЕС2 ❖ 245

Услуга

Запрос получен. Номер вашего обращения 432789.

Пользователь

Каков статус обращения 432789?

Услуга

Ваши серверы готовы к запуску, IР-адреса:203.О.113.5,203.0.113.13,203.О.113.49,

203.0.113.124, 203.0.113.209.

Пользователь

Я закончил работу с серверами, полученными согласно обращению 432789.

Услуга

Запрос получен, серверы будут удалены.

lааS-облако - это услуга, позволяющая пользователю создавать новые виртуаль­
ные серверы. Все lааS-облака обладают функцией самообслуживания, т. е. пользо­

ватель взаимодействует непосредственно с услугой, не подавая запросов в ИТ­
отдел. Большинство lааS-облаков предлагает пользователю три типа интерфейсов

для взаимодействия с системой:

О веб-интерфейс;
О интерфейс командной строки;

О REST API.

В случае с ЕС2 веб-интерфейс называется «управляющей консолью AWS» (https://
console.aws.amazon.com), а интерфейс командной строки (неоригинально) - ин­
терфейсом командной строки AWS (http://aws.amazon.com/cli/}. Информацию

о REST API можно найти на сайте Amazon по ссылке http://amzn.to/1F7g6yA.
Для создания серверов lааS-облака обычно используют виртуальные машины,

хотя вообще для создания такого облака можно использовать физические, вы­

деленные серверы (т. е. пользователи будут работать непосредственно с аппарат­
ным обеспечением вместо виртуальных машин) или контейнеры. Облака Softlayer

и Rackspace, например, предлагают физические серверы; облака Amazon Elastic

Compute Cloud, Google Compute Engine и Joyent предлагают контейнеры.
Большинство lааS-облаков позволяет вам делать большее, нежели запускать
и останавливать серверы. В частности, как правило, они позволяют определять

хранилища так, чтобы вы могли подключать и отключать диски от своих серверов.
Этот тип хранилища обычно называется блочное хранилище. Они также предостав­

ляют возможность определить свою топологию сети, описывающую соединения

между вашими серверами, а еще задать правила брандмауэра, ограничивающего

доступ к ним.

Amazon ЕС2 является самым популярным поставщиком публичных облаков типа
laaS, но наряду с ним существует ряд других облаков того же типа. Кроме ЕС2,

система AnsiЫe включает также поддержку Microsoft Azure, Digital Осеап, Google

Compute Engine, Linode и Rackspace, а еще облаков, построенных с использовани­
ем oVirt, OpenStack, CloudStack и VMWare vSphere.

246 ❖ Amazon ЕС2

ТЕРМИНОЛОГИЯ

ЕС2 использует много разных понятий. Я планирую пояснять их по мере их по­
явления в тексте, однако два из них мне хотелось бы объяснить заранее.

Экземпляр
В документации ЕС2 используется понятие экземпляра (instance) для обозна­
чения виртуальной машины. В данной главе я использую именно этот термин.
Имейте в виду, что понятию экземпляра в ЕС2 соответствует понятие хоста
в AnsiЫe.

В документации ЕС2 (http://amzn.to/1Fw5S8l) используются взаимозаменяе­
мые понятия создания экземпляров и запуска экземпляров для описания процес­
са создания новых экземпляров. Но понятие перезапуска экземпляров означает
нечто совершенно другое - перезапуск экземпляра, который ранее был при­
остановлен.

Образ машины Amazon
Образ машины Amazon (Amazon Machine Image, АМI) - это образ виртуальной
машины с файловой системой и установленной операционной системой. При
создании экземпляра ЕС2 предлагается выбрать операционную систему, кото­
рая будет запущена в образе, указав на тот или иной образ AMI.

Каждому образу AMI присвоена своя строка идентификации, называемая
АМI ID. Она начинается с приставки af11i.-, за которой следуют восемь шестнад­
цатеричных символов. Например, af11i.-12345abc.

Теги
ЕС2 позволяет отмечать экземпляры1 комментариями с метаданными. Они
называются тегами. Тег - это пара строк типа ключ/значение. Например, мож­
но снабдить свой экземпляр такими тегами:

Naмe=Staging database

env=staging

type=database

Если вам приходилось задавать имя экземпляру ЕС2 в консоли управления
AWS, то вы, сами того не осознавая, уже использовали теги. Имена экземпля­
ров в ЕС2 реализованы как тег с ключом Naf11e, значением которого является
имя, присвоенное экземпляру. В остальном тег Naf11e ничем не отличается от
других тегов, и вы можете настроить консоль управления так, чтобы она вы­
водила значения всех остальных тегов в дополнение к тегу Naf11e.

Теги не обязательно должны быть уникальными. Можно создать 100 экзем­
пляров с одним и тем же тегом. Модули AnsiЫe для поддержки ЕС2 широко ис-

1 Теги можно добавлять не только к экземплярам, но и к другим объектам, таким как
образы АМI, тома и группы безопасности.

Amazon ЕС2 ❖ 247

пользуют теги для идентификации ресурсов и обеспечения идемпотентности,
в чем вы не раз убедитесь в этой главе.

С) Старайтесь присваивать всем ресурсам в ЕС2 осмысленные теги, потому что они играют
роль своеобразной документации.

УЧЕТНЫЕ ДАННЫЕ ПОЛЬЗОВАТЕЛЯ
Выполняя запросы к Amazon ЕС2, необходимо указывать учетные данные. Пе­
ред использованием веб-консоли Amazon вы регистрируетесь и вводите свои
логин и пароль для доступа. Однако все компоненты AnsiЫe, взаимодейству­
ющие с ЕС2, используют программный интерфейс ЕС2 API. Этот программный
интерфейс не предусматривает использования имени пользователя и пароля.
Вместо этого используются две строки - идентификатор ключа доступа (access
key ID) и секретный ключ доступа (secret access key).

Обычно эти строки выглядят так:
О идентификатор ключа доступа: AKIAI0SF0DNN7EXAMPLE;

О секретный ключ доступа: wJalrXUtnFEMI/K7MDENG/bPxRfi.CYEXAMPLEKEY.

Получить эти учетные данные можно в службе uдентuфuкацuu и управления
доступом (Identity and Access Management, IАМ). С ее помощью можно соз­
дать нескольких пользователей IAM с разными привилегиями. После создания
пользователя для него можно сгенерировать идентификатор ключа и секрет­
ный ключ доступа.

При вызове модулей поддержки ЕС2 эти строки можно передать как аргу­
менты. Для плагина динамической инвентаризации учетные данные можно
определить в файле ec2.ini (обсуждается в следующем разделе). Однако модули
ЕС2 и плагин динамической инвентаризации позволяют передавать учетные
данные в переменных окружения. Также можно использовать IАМ-роли, если
ваша управляющая машина сама является экземпляром Amazon ЕС2. Этот слу­
чай рассмотрен в приложении В.

Переменные окружения
Учетные данные ЕС2 модулям AnsiЫe можно передавать не только через аргу­
менты, но и через переменные окружения. В примере 14.1 показано, как опре­

делить такие переменные.

Пример 14.1 ❖ Определение переменных окружения с учетными данными ЕС2

Не забудьте заменить эти значения фактическими учетными данными!
ехрогt AWS_ACCESS_KEY_ID=AKIAIOSFODNN7EXAMPLE
export AWS_SECRET_ACCESS_KEY=wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY

Не все модули ЕС2 в AnsiЫe поддерживают переменную окружения AWS_REGION, поэто­
му я рекомендую всегда передавать регион ЕС2 явно, как аргумент. Во всех примерах
в этой главе регион передается как аргумент.

248 ❖ Amazon ЕС2

Я рекомендую использовать переменные окружения, так как они позволя­
ют применять модули ЕС2 и плагины инвентаризации без сохранения учет­
ных данных в файлах AnsiЫe. Я помещаю их в файл с именем, начинающимся
с точки, который выполняется при запуске сеанса. Я пользуюсь Zsh, поэтому
использую для этого файл ~/.zshrc. Если вы пользуетесь Bash, можете поместить
их в файл ~/.profile 1

• Если вы используете другую командную оболочку, отлич­
ную от Bash или Zsh, возможно, вы уже знаете, какой файл изменить для опре­
деления этих переменных окружения.

После настройки переменных окружения с учетными данными можно за­
пускать модули ЕС2 AnsiЫe на управляющей машине, а также использовать
плагины инвентаризации.

Файлы конфигурации
В качестве альтернативы переменным окружения можно использовать конфи­
гурационный файл. Как обсуждается в следующем разделе, AnsiЫe использует
библиотеку Python Boto для поддержки соглашений Boto о хранении учетных
данных в файле конфигурации Boto. Я не буду рассматривать этот формат
здесь и за дополнительной информацией отсылаю вас к документации по Boto
(http://blt.ly/1Fw66MM).

НЕОБХОДИМОЕ УСЛОВИЕ: БИБЛИОТЕКА РvтноN Вото

Для использования поддержки ЕС2 в AnsiЫe необходимо установить на управ­
ляющей машине библиотеку Python Boto как системный пакет Python. Для это­
го выполните следующую команду2

:

$ pip instatt boto

Если у вас имеются запущенные экземпляры ЕС2, попробуйте проверить
правильность установки Boto и корректность учетных данных с помощью ко­
мандной строки Python, как показано в примере 14.2.

Пример 14.2 ❖ Тестирование Boto и учетных данных

$ python
Python 2.7.12 (default, Nov 6 2016, 20:41:56)
[GCC 4.2.1 СомраtiЫе Apple LLVM 8.0.0 (clang-800.0.42.1)] оп darwin
Туре "help", "copyright", "credits" ог "license" for моге inforмation.
>>> iмрогt boto.ec2
»> conn = boto.ec2.connect_to_region("us-east-1")
>>> statuses = conn.get_att_instance_status()

»> statuses

[]

1 Или, может быть, в -/.bashrc? Я никогда не понимал разницы между этими файлами
в Bash.

2 Для установки пакета может потребоваться использовать команду sudo или активи­
ровать виртуальное окружение virtualenv, в зависимости от того, как была установ­
лена система AnsiЬ!e.

Amazon ЕС2 ❖ 249

ДИНАМИЧЕСКАЯ ИНВЕНТАРИЗАЦИЯ
Я уверен, что при работе с северами в ЕС2 у вас едва ли появится желание под­
держивать свою копию реестра AnsiЫe, поскольку она будет устаревать по
мере появления новых серверов и удаления старых. Гораздо проще отслежи­
вать серверы ЕС2, используя преимущества динамической инвентаризации,
которая позволяет получить информацию о хостах непосредственно из ЕС2.
В составе AnsiЫe имеется сценарий динамической инвентаризации ЕС2, но
я рекомендую загрузить его последнюю версию из репозитория AnsiЫe1

• Вам
потребуются два файла:

О ес2.ру- актуальный сценарий инвентаризации (http://Ьit.ly/2lAsN8);
О ec2.ini - файл конфигурации для сценария инвентаризации (http://Ьit.

ly/2l168KP).
Ранее у нас имелся файл playbooks/hosts, который мы использовали в качест­

ве реестра. Сейчас мы будем использовать каталог playbooks/inventory. Помес­
тим файлы ес2.ру и ec2.ini в этот каталог и установим для ес2.ру разрешение на
выполнение. В примере 14.3 показано, как это сделать.

Пример 14.3 ❖ Установка сценария динамической инвентаризации ЕС2

$ cd playbooks/inventoгy

$ wget https://гaw.githubuseгcontent.co�/ansiЫe/ansiЫe/devel/contгib/inventoгy\
/ес2.ру
$ wget https://гaw.githubuseгcontent.co�/ansiЫe/ansiЫe/devel/contгib/inventoгy\

/ec2.ini

$ ch�od +х ес2.ру

Если вы используете Ansiьte в дистрибутиве Linux (например, Arch Linux), где по умол­
чанию применяется Python версии 3.х, тогда сценарий ес2.ру не будет работать без из­
менений, потому что он написан для Python версии 2.х.
Убедитесь, что в вашей системе установлена версия Python 2.х, и замените первую стро­
ку в ес2.ру:

#!/usr/Ыn/env python

на:

#!/usr/Ыn/env python2

Если вы определили переменные окружения, как описывалось в предыду­
щем разделе, у вас должно получиться проверить работоспособность сценария:

$./ес2.ру --list

Сценарий должен вывести информацию о ваших экземплярах ЕС2, как по­
казано ниже:

11_l'leta 11 : {

1

По правде сказать, я не имею ни малейшего представления, куда устанавливают этот
файл диспетчеры пакетов.

250 ❖ Amazon ЕС2

}

"hostvars": {

"ec2-203-0-113-75.coмpute-1.aмazonaws.coм": {

"ec2_i.d": "i.-1234567890abcdef0",

"ec2_i.nstance_type": "cЗ.large",

}

}

},

"ec2-203-0-113-75.coмpute-1.aмazonaws.coм",

],

"us-east-1":

"ec2-203-0-113-75.coмpute-1.aмazonaws.coм",

],
"us-east-la":

"ec2-203-0-113-75.coмpute-1.aмazonaws.coм",

],
"i.-12345678":

"ec2-203-0-113-75.coмpute-1.aмazonaws.coм",

],
"key_мysshkeynaмe": [

"ec2-203-0-113-75.coмpute-1.aмazonaws.coм",

],
"securi.ty_group_ssh":

"ec2-203-0-113-75.coмpute-1.aмazonaws.coм",

],
"tag_Naмe_мy_cool_server":

"ec2-203-0-113-75.coмpute-1.aмazonaws.coм",

],
"type_cЗ_large":

"ec2-203-0-113-75.coмpute-1.aмazonaws.coм",

о
Если вы не включили явно в своей учетной записи AWS поддержку RDS и ElastiCache,
сценарий ес2.ру завершится с ошибкой. Чтобы включить RDS и ElastiCache, зарегист­
рируйтесь в службе реляционной базы данных (Relational Database Service, RDS)
и ElastiCache с помощью консоли AWS и дождитесь, когда Amazon активирует эти
службы для вас.
Если вы не пользуетесь этими службами, отредактируйте свой файл ec2.ini, чтобы запре­
тить сценарию инвентаризации подключаться к ним:

[ес2]

rds = False

elasttcache = False

Amazon ЕС2 ❖ 251

Эти строки присутствуют в файле, но закомментированы по умолчанию, поэтому вам
останется только раскомментировать их!

Кэширование реестра
Когда AnsiЫe использует сценарий динамической инвентаризации ЕС2, он
(сценарий) должен посылать запросы одной или нескольким конечным точ­
кам ЕС2 для получения информации. Поскольку все это требует времени, при
первом запуске скрипт кэширует информацию, создавая следующие файлы:

О $HOME/.ansiЬle/tmp/ansiЫe-ec2.cache;
О $HOME/.ansiЬle/tmp/ansiЫe-ec2.index.
В последующем сценарий динамической инвентаризации будет обращаться

к кэшу, пока срок его годности не истечет.
Такое поведение можно изменить, изменив параметр настройки cache_111ax_

age в файле конфигурации ec2.ini. По умолчанию время действия кэша состав­
ляет 300 секунд (5 минут). Если вы не хотите сохранять кэш, можно установить
значение, равное О:

[ес2]

cache_�ax_age = 0

Также можно заставить сценарий инвентаризации обновить кэш, запустив
его с параметром - - ref resh-cache:

$./ecZ.py --гefгesh-cache

При создании или удалении экземпляров сценарий динамической инвентаризации ЕС2
не будет отражать эти изменения, кроме случаев, когда срок годности кэша истек или
был обновлен принудительно.

Другие параметры настройки
Файл ec2.ini содержит несколько параметров настройки, управляющих поведе­
нием сценария динамической инвентаризации. Поскольку сам файл снабжен по­
дробными комментариями, я не буду рассказывать об этих параметрах в деталях.

Автоматические группы
Сценарий динамической инвентаризации ЕС2 автоматически создает сле­
дующие группы:

Таблица 14.1. Группы, сгенерированные ЕС2

Тип Пример Название группы в Ansible

Экземпляр i-123456789OabcdefO i-12 345 6 789OabcdefO

Образ AMI ami-79df8219 ami-79df8219

Тип экземпляра cl.medium type cl medium

252 ❖ Amazon ЕС2

Окончание табл. 14.1

Тип Пример Название группы в Ansible

Группа безопасности ssh security group ssh

Пара ключей SSH foo key foo

Регион us-east-1 us-east-1

Тег env=staging tag_env staging

Зона доступности us-east-1b us-east-1b

VPC vpc-14dd1Ы0 vpc_id_ vpc-14dd1Ы0

Все экземпляры нет ес2

В именах группы допускается использовать только буквенно-цифровые
символы, дефис и нижнее подчеркивание. Все другие символы сценарий ди­
намической инвентаризации преобразует в нижнее подчеркивание.

Например, представьте, что у вас имеется экземпляр с тегом:

Na�e=My cool server!

AnsiЫe сгенерирует имя группы tag_NaJ11e_J11y_cool_server.

ОПРЕДЕЛЕНИЕ ДИНАМИЧЕСКИХ ГРУПП С ПОМОЩЬЮ ТЕГОВ
Напоминаю, что сценарий динамической инвентаризации создает группы на
основании таких данных, как тип экземпляра, группа безопасности, пара клю­
чей и теги. Теги ЕС2 являются наиболее удобным способом создания групп,
поскольку их можно определить каким угодно способом.

Например, всем веб-серверам можно присвоить тег:

type=web

AnsiЫe автоматически создаст группу с именем tag_type_web, содержащую
все серверы с тегом type=web.

ЕС2 позволяет присваивать экземплярам по нескольку тегов. Например, при
наличии отдельных окружений для тестирования и промышленной эксплуата­
ции можно присвоить промышленным веб-серверам тег:

env=producti.on
type=web

После этого на промышленные машины можно ссылаться с помощью tag_

env_producti.on, а на веб-серверы - с помощью tag_type_web. При необходимости
сослаться на промышленные веб-серверы можно использовать перекрестный
синтаксис AnsiЫe:

hosts: tag_env_production:&tag_type_web

Присваивание тегов имеющимся ресурсам
В идеальном случае присваивание тегов экземплярам ЕС2 происходит в мо­
мент их создания. Однако если AnsiЫe устанавливается для управления уже

Amazon ЕС2 ❖ 253

существующими экземплярами ЕС2, у вас наверняка будет иметься некоторое
их количество, которым было бы желательно присвоить теги. В AnsiЫe имеется
модуль ес2_ tag, позволяющий присвоить теги имеющимся экземплярам.

Например, чтобы присвоить экземплярам теги env=produti.on и type=web, мож­
но использовать простой сценарий, представленный в примере 14.4.

Пример 14.4 ❖ Присваивание тегов ЕС2 существующим экземплярам

- паме: Add tags to extsttng tnstances

hosts: localhost

vars:

web_productlon:

- t-1234567890abcdef0

· t-1234567890abcdef1

web_stagtng:

- t-abcdef01234567890

· t-33333333333333333

tasks:

- паме: Tag productton webservers

ec2_tag: resource={{ tteм }} regton=us-west-1

args:

tags: { type: web, env: productton}

wHh_Heмs: "{{ web_productlon }}"

паме: Tag stagtng webservers

ec2_tag: resource={{ tteм }} regton=us-west-1

args:

tags: { type: web, env: stagtng}

wHh_Heмs: "{{ web_stagtng }}"

В этом примере используется синтаксис YAML встраиваемых словарей, ког­
да теги ({ type: web, env: producti.on}) помогают сделать сценарий более компакт­
ным, но точно так же можно использовать обычный синтаксис:

tags:

type: web

env: producHon

Создание более точных названий групп
Лично мне не нравятся имена групп, такие как tag_type_web. Я бы предпочел
более простое имя web.

Для этого в каталог playbooks/inventory необходимо добавить новый файл
с информацией о группах. Это обычный файл реестра AnsiЫe с именем play­
books/inventory/hosts (см. пример 14.5).

Пример 14.5 ❖ playbooks/inventoryjhosts

[web:chHdren]

tag_type_web

[tag_type_web]

254 ❖ Amazon ЕС2

После этого вы можете обращаться к группе web в операциях AnsiЫe.

о
Если не определить пустую группу tag_type_web в статическом файле реестра, и сцена­
рий динамической инвентаризации не определяет ее, AnsiЫe выдаст ошибку:

ERR0R! Atte�pted to геаd "/Users/lorin/dev/ansiЫebook
/ch12/playbooks/inventoгy/hosts" as YAML:
'AnsiЫeUnicode' object has no attгibute 'keys'
Atte�pted to геаd "/Users/lorin/dev/ansiЫebook
/ch12/playbooks/inventory/hosts" as ini file:
/Users/lorin/dev/ansiЫebook/ch12
/playbooks/inventory/hosts:4:
Section [web:children] includes undefined group:
tag_type_web

ЕС2 VtRTUAL PRIVATE (LOUD (VPC) и ЕС2 CLASSIC
Когда в 2006 году Amazon впервые запустила ЕС2, все экземпляры ЕС2 были
подключены к одной плоской сети 1

• Каждый экземпляр ЕС2 получает приват­
ный и публичный IР-адреса.

В 2009 году Amazon представила новый механизм организации виртуально­
го приватного облака (Virtual Private Cloud, VPC). VPC позволяет пользователям
управлять способом объединения экземпляров в сеть и определять, будет она
публично доступной или изолированной. Термин VPC используется в Amazon
для описания виртуальных сетей, которые пользователи могут создавать внут­
ри ЕС2. Термин EC2-VPC в Amazon обозначает экземпляры, запущенные внут­
ри VPC, а термин EC2-Classic- экземпляры, запущенные вне VPC.

Amazon активно стимулирует пользователей к использованию EC2-VPC.
Например, некоторые типы экземпляров, такие как t2.micro, доступны только
в EC2-VPC. В зависимости от того, где вы создали учетную запись AWS и в ка­
ком регионе ЕС2 в прошлом вы запускали свои экземпляры, EC2-Classic может
быть не доступен. В табл. 14.2 перечислены учетные записи, которым доступен
EC2-Classic2

•

Таблица 14.2. Есть ли у меня доступ к EC2-Classic?

Моя учетная запись создана Доступность EC2-Classic

До 18 марта 2013 года Да, но только в регионе, где вы работали раньше
Между 18 марта и 4 декабря 2013 года Возможно, но только в регионе, где вы работали раньше
После 4 декабря 2013 года Нет

1 Внутренняя сеть Amazon делится на подсети, но пользователи не могут управлять
распределением экземпляров по этим подсетям.

2 Дополнительная информация о VPC доступна на сайте Amazon (http://amzn.
to/1Fwбv1D). О доступности EC2-Classic в вашем регионе можно узнать по адресу:
http://аmzn.to/1 FwбwS М.

Amazon ЕС2 ❖ 255

Основная разница в наличии или отсутствии поддержки EC2-Classic состоит
в том, что происходит при создании нового экземпляра ЕС2 и отсутствии воз­
можности явно привязать VPC 1D к этому экземпляру. Если в учетной записи
активирована поддержка EC2-Classic, новый экземпляр не связывается с VPC.
Если поддержка EC2-Classic в учетной записи выключена, новый экземпляр
будет привязан к VPC по умолчанию.

Вот одна из причин, по которой стоит заботиться об этой разнице: в EC2-
Classic все экземпляры могут устанавливать исходящие соединения к любым
хостам в Интернете. В EC2-VPC исходящие соединения по умолчанию запре­
щены. Если экземпляру в VPC потребуется установить исходящее соединение,
он должен быть включен в группу безопасности, которая позволяет это.

В этой главе я буду предполагать, что у нас имеется только поддержка EC2-
VPC, и я включу все экземпляры в группу безопасности, которая позволяет осу­
ществлять исходящие соединения.

КОНФИГУРИРОВАНИЕ ANSIBLE.CFG ДЛЯ ИСПОЛЬЗОВАНИЯ С ЕС2
Используя AnsiЫe для настройки экземпляров ЕС2, я добавляю следующие

строки в файл ansiЫe.cfg:

[defaults]

reмote_user = ubuntu

host_key_checking = False

Я всегда использую образы UЬuntu и подключаюсь к ним по SSH с использо­
ванием имени пользователя ubuntu. Я также отключаю проверку ключей хоста,
поскольку заранее не знаю, какие ключи получат новые экземпляры 1

•

ЗАПУСК НОВЫХ ЭКЗЕМПЛЯРОВ

Модуль ес2 позволяет запускать новые экземпляры в ЕС2. Это один из наибо­
лее сложных модулей AnsiЫe, поскольку поддерживает огромное количество
аргументов.

В примере 14.6 показан простой сценарий для запуска экземпляра ЕС2
UЬuntu 16.04.

Пример 14.6 ❖ Простой сценарий для создания экземпляра ЕС2

- паме: Create ап ubuntu instance оп Амаzоп ЕС2

hosts: localhost

tasks:

- паме: start the instance

ес2:

1 Получить ключи можно, послав ECZ запрос на вывод экземпляра в консоли. Но дол­
жен признаться, что я никогда не утруждал себя этим, поскольку никогда не сталки­
вался с необходимостью анализа ключей хоста.

256 ❖ Amazoп ЕС2

iмage: aмi-79df8219

гegion: us-west-1

instance_type: мЗ.меdiuм

key_naмe: муkеу

group: [web, ssh, outbound]

instance_tags: { Nаме: ansiЫebook, type: web, env: production}

Давайте рассмотрим значения параметров.
Параметр i.rчage определяет идентификатор образа машины Amazon (AMI),

который всегда нужно указывать. Как уже говорилось выше, образ - это, по
сути, файловая система, содержащая установленную операционную систему.
Использованный в примере идентификатор arчi.-79df8219 относится к образу
с установленной 64-битной версией UЬuntu 16.04.

Параметр regi.on определяет географическое местоположение, где будет за­
пущен экземпляр 1

•

Параметр i.nstance_type описывает количество ядер CPU, объем памяти
и хранилища, которыми будет располагать экземпляр. ЕС2 не позволяет уста­
навливать произвольные комбинации количества ядер, объема памяти и хра­
нилища. Вместо этого Amazon определяет набор типов экземпляров2

• В при­
мере 14.6 используется тип экземпляра m3.medium. Это 64-битный экземпляр
с одним ядром, 3.75 Гбайт оперативной памяти и 4 Гбайт дискового простран­
ства на SSD.

С) Не все образы совместимы со всеми типами экземпляров. Я на самом деле не тестиро­

вал, работает ли амi.-8саа1се4 с m3.medium. Поэтому будьте внимательны!

Параметр key_narчe ссылается на пару ключей SSH. Amazon использует пары
ключей SSH для предоставления доступа к их серверам. До запуска первого
сервера вам необходимо либо создать новую пару SSН-ключей, либо выгрузить
открытый ключ из пары, созданной вами заранее. Вне зависимости от того, что
вы сделаете, - создадите новую пару или выгрузите существующую, - вам не­
обходимо дать имя паре ключей SSH.

Параметр group определяет список групп безопасности, связанных с экзем­
пляром. Эти группы определяют, какие типы входящих и исходящих соедине­
ний разрешены.

Параметр i.nstance_tags связывает метаданные с экземпляром в форме тегов
ЕС2 ключ/значение. В предыдущем примере были назначены следующие теги:

Naмe=ansiЫebook

type=web

env=production

1 Список поддерживаемых регионов вы найдете на сайте Amazon (http://amzn.
to/1Fw60cE).

2 Существует удобный (неофициальный) веб-сайт (http://www.ec2instances.info/), где
можно найти единую таблицу со всеми доступными типами экземпляров ЕС2.

Amazon ЕС2 ❖ 257

о
Вызов модуля ес2 из командной строки - самый простой способ завершить экземпляр,
если вы знаете его идентификатор:

$ ansiЫe localhost -м ес2 -а\

'instance_id=i-01176c6682556a360 \

state=absent'

ПАРЫ КЛЮЧЕЙ ЕС2

В примере 14.6 мы предположили, что Amazon уже знает о паре ключей SSH
с именем муkеу. Давайте посмотрим, как можно использовать AnsiЫe для соз­
дания новых пар ключей.

Создание нового ключа
При создании новой пары ключей Amazon генерирует закрытый и соответ­
ствующий ему открытый ключ. Затем отправляет вам приватный ключ. Ama­
zon не хранит копию приватного ключа, то есть вам обязательно нужно сохра­
нить его. Вот как можно создать новый ключ с помощью AnsiЫe:

Пример 14.7 ❖ Создание новой пары ключей SSH

nаме: сгеаtе а new keypair
hosts: localhost
tasks:
- nаме: сгеаtе муkеу

ec2_key: nаме=муkеу region=us-west-1
register: keypair

- nаме: write the key to а file
сору:

dest: files/мykey.peм
content: "{{ keypair.key.private_key }}"
моdе: 0600

when: keypair.changed

В примере 14. 7 для создания новой пары ключей использовался модуль ес2_
key. Затем мы вызвали модуль сору с параметром content для сохранения за­
крытого ключа SSH в файл.

Если модуль создал новую пару ключей, зарегистрированная переменная
keypai.r будет содержать значения, подобные следующим:

"keypair": {
"changed": true,
,tkey .. : {

"fingerprint": "с5:ЗЗ:74:84:63:2Ь:01:29:бf:14:аб:1с:7Ь:27:65:69:61:f0:е8:Ь9",
11 Паf"1е 11

:
11 fТ'lykey 11

J

"private_key": " - ----BEGIN RSA PRIVATE КЕУ--- - -\nMIIEowIBMKCAQEAjAJpvhYЗQGKh

0PkCRPl8ZHKtShKESisGЗWC\n-----END RSA PRIVATE КЕУ-----"
}

}

258 ❖ Amazon ЕС2

Если пара ключей уже существует, тогда зарегистрированная переменная
keypa"i.r будет содержать такие значения:

"keypai.r": {
"changed": false,
"key": {

}

}

"fi.ngerpri.nt": "c5:33:74:84:63:2b:01:29:бf:14:aб:lc:7b:27:65:69:61:f0:e8:b9",
"nal'1e": "1'1ykey"

Поскольку значение pr"i.vate_key отсутствует, если ключ уже существует, необ­
ходимо добавить выражение when в вызов сору, чтобы запись в файл с закрытым
ключом производилась, только если это необходимо.

Добавим строку:

when: keypai.r.changed

чтобы просто записать файл на диск, если произошло изменение состояния
при выполнении ec2_key (например, был создан новый ключ). Можно посту­
пить иначе - проверить наличие значения pr"i.vate_key:

- nal'1e: wri.te the key to а fi.le

сору:

dest: fi.les/1'1ykey.pel'1
content: "{{ keypai.r.key.pri.vate_key }}"
1'1ode: 0600

when: keypai.r.key.pri.vate_key i.s defi.ned

Мы используем проверку deПned 1 , поддерживаемую механизмом Jinja2 для
проверки наличия pr"i.vate_key.

Выгрузка существующего ключа
Если у вас уже есть публичный ключ SSH, его можно выгрузить в Amazon и при­
вязать к паре ключей:

nal'1e: сгеаtе а keypai.r based оп 1'1У ssh key
hosts: localhost

tasks:
- nal'1e: upload puЫi.c key

ec2_key: nal'1e=l'1ykey key_l'1ateri.al=" { { i.tel'1 } } "

wi.th_fi.le: ~/.ssh/i.d_rsa.pub

ГРУППЫ БЕЗОПАСНОСТИ

В примере 14.6 подразумевается, что группы безопасности web, ssh и outbound

уже существуют. Проверить наличие групп перед их использованием можно
с помощью модуля ec2_group.

1 За дополнительной информацией о проверках, поддерживаемых Jinja2, обращайтесь
к документации по адресу: http://blt.ly/1Fw77n0.

Amazon ЕС2 ❖ 259

Группы безопасности похожи на правила брандмауэра: они определяют
правила, кто и как может устанавливать подключения.

В примере 14.8 определяется группа web, позволяющая любому хосту в Ин­
тернете подключаться к портам 80 и 443. Группа ssh разрешает любому осу­
ществлять подключение к порту 22. Группа outbound разрешает устанавливать
исходящие соединения с кем угодно в Интернете. Исходящие соединения нам
необходимы для загрузки пакетов из Интернета.

Пример 14.8 ❖ Группы безопасности

nаме: web security group
ec2_group:

nаме: web
descгiption: allow http and https access
region: " { { region } } "
rules:

ргоtо: tcp
fгом_рогt: 80
to_port: 80
cidr_ip: 0.0.0.0/0
proto: tcp
fгом_рогt: 443
to_port: 443
cidг_ip: 0.0.0.0/0

nаме: ssh security group
ec2_group:

nаме: ssh
description: allow ssh access
region: "{{ region }}"
rules:

ргоtо: tcp
fгом_рогt: 22
to_port: 22
cidг_ip: 0.0.0.0/0

nаме: outbound group
ec2_group:

�

nаме: outbound
description: allow outbound connections to the internet

region: "{{ гegion }}"
rules_egress:

ргоtо: all
cidг_ip: 0.0.0.0/0

При использовании EC2-Classic нет необходимости задавать группу outbound, поскольку

EC2-Classic не запрещает исходящих соединений для экземпляров.

Для тех, кто прежде не пользовался группами безопасности, поясним назна­
чение параметров в словаре rules (см. табл. 14.3).

260 ❖ Amazon ЕС2

Таблица 14.3. Параметры правил групп безопасности

Параметр Описание

proto Протокол IP (tcp, udp, i.cl'lp) или all, чтобы разрешить все протоколы и порты

ci.dr _ i.p Подсеть IР-адресов, разрешенных для подключения, в нотации CIDR

frol'l_port Первый порт в списке разрешенных

to_port Последний порт в списке разрешенных

Разрешенные IР-адреса
Группы безопасности позволяют определять IР-адреса, разрешенные для со­
единения с экземпляром. Подсеть определяется с помощью нотации бес­
классовой адресации (Classless InterDomain Routing, CIDR). Пример подсети,
описанной с помощью нотации CIDR: 203.0.113.0/241

• Эта запись означает, что
первые 24 бита IР-адреса должны соответствовать первым 24 битам адреса
203.0.113.0. Иногда люди говорят «/24» для обозначения размера CIDR, закан­
чивающегося на /24.

/24 - удобное значение, поскольку соответствует трем первым октетам
адреса, а именно 203.0.11J2. Это значит, что любой IР-адрес, начинающийся
с 203.0.113, находится в этой подсети, то есть любой IР-адрес из диапазона от
203.0.113.0 до 203.0.113.255.

Адрес О.О.О.О/О означает, что устанавливать соединения разрешено любому

IР-адресу.

Порты групп безопасности
Единственное, что мне кажется странным в группах безопасности ЕС2, - это
нотация fro111_port и to_port. ЕС2 позволяет определять диапазон портов, к кото­
рым разрешен доступ. Например, вот как можно указать, что ТСР-соединения
разрешены с любым из портов с 5900 по 5999:

proto: tcp

frol'l_port: 5900

to_port: 5999

ci.dr_i.p: 0.0.0.0/0

Однако я считаю такую нотацию запутывающей, поскольку сам никогда не
указываю диапазона портов3

• Вместо этого я обычно разрешаю порты с номе­
рами, не идущими подряд, такими как 80 и 443. Вследствие этого почти в лю­
бой ситуации параметры fro111_port и to_port будут одинаковыми.

1 Так случилось, что этот пример соответствует особому диапазону IР-адресов TEST­
NET-3, зарезервированному для примеров. Это example.com из IР-подсетей.

2 Подсети /8, /16, /24 - очень хорошие примеры, поскольку расчеты в этом случае го­
раздо легче выполнять, чем, скажем, в случае /17 или /23.

3 Проницательные читатели наверняка заметили, что порты 5900-5999 обычно ис­
пользуются протоколом VNC управления удаленным рабочим столом - одним из не­
многих, для которых указание диапазона портов имеет смысл.

Amazoп ЕС2 ❖ 261

Модуль ec2_group имеет много других параметров, в том числе для определе­
ния правил входящих соединений с использованием идентификаторов групп,
а также правил исходящих соединений. За дополнительной информацией об­

ращайтесь к документации.

ПОЛУЧЕНИЕ НОВЕЙШЕГО АМ 1

В примере 14.6 машина АМI была выбрана явно:

iмage: aмi-79df8219

Но такой подход не годится, если вдруг появится желание запустить новей­
ший образ UЬuntu 16.04. Связано это с тем, что Canonical 1 часто выпускает не­
большие обновления для UЬuntu, и каждый раз при их выпуске генерируется

новая машина АМI. Если еще вчера идентификатор амi.-79df8219 соответствовал

новейшему релизу Ubuntu 16.04, то завтра это может быть уже не так.
В AnsiЫe имеется интересный модуль ec2_aмi._fi.nd, извлекающий список

идентификаторов AMI, соответствующих критериям поиска, таким как имя
образа или теги. Пример 14.9 демонстрирует, как использовать этот модуль для

запуска последней 64-битной версии UЬuntu Xenial Xerus 16.04.

Пример 14.9 ❖ Извлечение идентификатора AMI новейшей версии Ubuntu

- паме: Сгеаtе an ubuntu instance оп Aмazon ЕС2
hosts: localhost
tasks:
- nаме: Get the ubuntu xenial ebs ssd AMI

ec2_aмi._fi.nd:
паме: "ubuntu/i.мages/ebs-ssd/ubuntu-xeni.al-16.04-aмd64-server-*"
regi.on: "{{ regi.on }}"
sort: паме
sогt_огdег: descendi.ng
soгt_end: 1

no_result_action: fai.l
regi.ster: ubuntu_i.мage

паме: start the i.nstance
ес2:

region: "{{ regi.on }}"
i.мage: "{{ ubuntu_iмage.results[0].aмi._i.d }}"
instance_type: мЗ.меdi.uм
key_naмe: муkеу
gгoup: [web, ssh, outbound]
i.nstance_tags: { type: web, env: production}

В данном случае мы должны знать соглашение, используемое для имено­
вания образов UЬuntu. В случае с UЬuntu имя образа всегда заканчивается от-

1 Canonical - это компания, которая управляет проектом Ubuntu.

262 ❖ Amazon ЕС2

меткой времени, например: ubuntu/images/ebs-ssd/ubuntu-xenial-16.04-amd64-
server-20170202.

В параметре na111e модуля ec2_a111i._Hnd допускается использовать шаблонный
символ *, благодаря чему можно получить самый свежий образ, отсортировав
список имен в порядке убывания и ограничив область поиска одним именем
(то есть взять первый элемент из этого отсортированного списка).

По умолчанию модуль ec2_a111i._fi.nd возвращает признак успеха, даже если не
находит ни одного образа AMI, соответствующего заданным критериям. По­
скольку это почти всегда нежелательно, я рекомендую добавлять выражение
no_result_acti.on: fai.l, чтобы заставить модуль вернуть признак ошибки в от­
сутствие результатов.

Каждый дистрибутив следует своей стратегии именования AMI, поэтому, если вы решите

использовать другой дистрибутив, отличный от Ubuntu, вы должны самостоятельно вы­

яснить правила именования и определить соответствующую строку поиска.

ДОБАВЛЕНИЕ НОВОГО ЭКЗЕМПЛЯРА В ГРУППУ
Иногда я предпочитаю писать единый сценарий для запуска экземпляра и за­
тем выполнять на экземпляре другой сценарий.

К сожалению, до запуска сценария хает еще не существует. Запрет кэширо­
вания в сценарии динамической инвентаризации тут не поможет, потому что
AnsiЫe вызывает его только в самом начале выполнения сценария, что пред­
шествует созданию хоста.

Для добавления экземпляра в группу можно использовать задачу, вызываю­
щую модуль add_host, как показано в примере 14.10.

Пример 14.10 ❖ Добавление экземпляра в группу

nаме: Create an ubuntu tnstance on Aмazon ЕС2

hosts: localhost

tasks:

- nаме: start the tnstance

ес2:

tмage: амt-8саа1се4

tnstance_type: мЗ.меdtuм

key_naмe: муkеу

group: [web, ssh, outbound]

tnstance_tags: { type: web, env: productton}

regtster: ес2

- nаме: add the tnstance to web and productton groups

add_host: hostnaмe={{ tteм.puЫtc_dns_naмe }} groups=web,productton

wtth_tteмs: "{{ ec2.tnstances }}"

nаме: do soмethtng to productton webservers

hosts: web:&productton

tasks:

Amazon ЕС2 ❖ 263

Значение, возвращаемое модулем ес2

Модуль ес2 выводит словарь с тремя полями, перечисленными в табл. 14.4.

Таблица 14.4. Возвратные значения модуля ес2

Поле Описание

i.nstance_i.ds Список идентификаторов экземпляров
i.nstances Список словарей экземпляра

tagged_i.nstances Список словарей экземпляра

При передаче пользователем параметра exact_count модуль ес2 может не созда­
вать новых экземпляров, как это описано ниже, в разделе «Создание экземпляров

идемпотентным способом». В этом случае поля i.nstance_i.ds и i.nstances будут за­
полнены, только если модуль создает новые экземпляры. Однако поле tagged_i.n­
stances будет содержать словари всех экземпляров, удовлетворяющих тегу, были
ли они только что созданы или существовали ранее.
Словарь экземпляра содержит поля, перечисленные в табл. 14.5.

Таблица 14.5. Содержимое словарей экземпляров

Поле Описание

i.d Идентификатор экземпляра
aмi._1aunch_i.ndex Индекс экземпляра между О и N-1, если запущено N экземпляров

pri.vate_i.p Внутренний IР-адрес (недоступный за пределами ЕС2)

pri.vate_dns_naмe Внутреннее имя DNS (недоступное за пределами ЕС2)
puЫi.c_i.p Публичный IР-адрес
puЫi.c_dns_naмe Публичное имя DNS

state_code Код причины изменения состояния
archi.tecture Аппаратная архитектура
i.мage_i.d AMI

key_naмe Имя пары ключей
p1aceмent Место, где был запущен экземпляр
kerne1 Образ ядра Amazon (Amazon Kernel lmage,AKI)
raмdi.sk Образ RАМ-диска Amazon (Amazon Kamdisk lmage,ARI)
1aunch_ti.мe Время запуска экземпляра
i.nstance_type Тип экземпляра

root_devi.ce_type Тип корневого устройства (ephemeral, EBS)
root_devi.ce_naмe Имя корневого устройства
state Состояние экземпляра

hypervi.sor Тип гипервизора

За дополнительной информацией о значениях полей обращайтесь к документа­
ции с описанием класса boto. ес2. i.nstance. Instance (http://blt.ly/1Fw7HSO) или
к документации с описанием результатов команды run-i.nstances (http://amzn.
to/1Fw7Jd9).

264 ❖ Amazon ЕС2

ОЖИДАНИЕ ЗАПУСКА СЕРВЕРА
Облака IaaS, такие как ЕС2, также требуют определенного времени для созда­
ния нового экземпляра. Это значит, что невозможно запустить сценарий на
экземпляре ЕС2 сразу после отправки запроса на его создание. Необходимо
подождать, пока запустится экземпляр ЕС2.

Модуль ес2 поддерживает для этого параметр wai.t. Если в нем передать yes,
модуль ес2 не вернет управления, пока экземпляр не перейдет в рабочее со­
стояние:

- паме: start the instance
ес2:

iмage: амi-8саа1се4
instance_type: мЗ.меdiuм
key_naмe: муkеу
group: [web, ssh, outbound]
instance_tags: { type: web, env: production}
wait: yes

register: ес2

Однако простой задержки в ожидании запуска экземпляра недостаточно,
необходимо дождаться, пока экземпляр продвинется достаточно далеко в про­
цессе загрузки и запустит сервер SSH.

Как раз для таких случаев написан модуль wai.t_for. Вот как можно исполь­
зовать модули ес2 и wai.t_for, чтобы запустить экземпляр и дождаться, когда он
станет готов принимать соединения через SSH:

- nаме: start the instance
ес2:

iмage: амi-8саа1се4
instance_type: мЗ.меdiuм
key_naмe: муkеу
group: [web, ssh, outbound]
instance_tags: { type: web, env: production}
wait: yes

register: ес2

паме: wait for ssh server to Ье running
wait_for: host={{ iteм.puЫic_dns_naмe }} port=22 search_regex=OpenSSH
with_iteмs: "{{ ec2.instances }}"

Вызов wai.t_for использует аргумент search_regex для просмотра строки
OpenSSH после подключения к хосту. Идея состоит в том, что в ответ на попытку
установить соединение функционирующий сервер SSH вернет строку, похо­
жую на ту, что показана в примере 14.11.

Пример 14.11 ❖ Ответ сервера SSH, работающего в Ubuntu

SSH-2.0-OpenSSH_S.9p1 Debian-Subuntu1.4

Можно было бы с помощью модуля wai.t_for просто проверить доступность
порта 22. Однако иногда случается так, что в процессе загрузки сервер SSH

Amazon ЕС2 ❖ 265

успел открыть порт 22, но еще не готов обрабатывать запросы. Ожидание

первоначального ответа гарантирует, что модуль wa'l.t_for вернет управление,
только когда сервер SSH будет полностью работоспособен.

(ОЗДАНИЕ ЭКЗЕМПЛЯРОВ ИДЕМПОТЕНТНЫМ СПОСОБОМ
Сценарий, вызывающий модуль ес2, обычно не является идемпотентным. Если
бы потребовалось выполнить пример 14.6 несколько раз, ЕС2 создал бы не­

сколько экземпляров.

Придать идемпотентность сценариям, использующим модуль ес2, можно
с помощью параметров count_tag и exact_count.

Допустим, требуется написать сценарий, запускающий три экземпляра,

и этот сценарий должен быть идемпотентным. То есть, если три экземпляра
уже работают, сценарий не должен ничего делать. В примере 14.12 показано,

как это можно реализовать.

Пример 14.12 ❖ Создание экземпляров идемпотентным способом

- nаме: start the instance

ес2:

iмage: амi-8саа1се4

instance_type: мЗ.меdiuм

key_naмe: муkеу

group: [web, ssh, outbound]

instance_tags: { type: web, env: production}

exact_count: З

count_tag: { type: web}

Параметр exact_count: З сообщает системе AnsiЫe, что она должна прове­
рить наличие именно трех экземпляров, удовлетворяющих тегу, указанному

в count_tag. В нашем примере я указал только один тег в count_tag, но вообще

можно указать несколько тегов.

При выполнении этого сценария в первый раз AnsiЫe проверит, сколь­
ко экземпляров с тегом type=web существует на данный момент. Так как та­
ких экземпляров нет, AnsiЫe создаст три новых и присвоит им теги type=web

и env=productton.
При повторном запуске AnsiЫe проверит, сколько экземпляров с тегом

type=web существует на данный момент. Обнаружив три экземпляра, она не бу­

дет создавать новых.

ПОДВЕДЕНИЕ ИТОГОВ
В примере 14.13 приводится сценарий, создающий три экземпляра ЕС2 и на­

страивающий их как веб-серверы. Сценарий является идемпотентным, то есть
его можно спокойно запускать несколько раз, он будет создавать новые экзем­

пляры, только если они еще не были созданы.

266 ❖ Amazon ЕС2

Обратите внимание, что здесь вместо значения i..nstances используется зна­

чение tagged_i..nstances, возвращаемое модулем ес2. Причина была описана
выше, во врезке «Значение, возвращаемое модулем ес2».

Пример 14.13 ❖ ec2-example.yml: законченный сценарий ЕС2

nаме: launch webservers

hosts: localhost

vars:

region: us-west-1

instance_type: t2.мiсго

count: 1

tasks:

nаме: ес2 keypair

ec2_key: "паме=муkеу key_мaterial={{ iteм }} region={{ region }}"

with_file: ~/.ssh/id_rsa.pub

nаме: web security group

ec2_gгoup:

nаме: web

description: allow http and https access

region: " { { гegion } } "
rules:

ргоtо: tcp

fгом_рогt: 80

to_port: 80

cidr_ip: 0.0.0.0/0

ргоtо: tcp

fгом_рогt: 443

to_port: 443

cidr_ip: 0.0.0.0/0

nаме: ssh security group

ec2_group:

nаме: ssh

description: allow ssh access

region: "{{ region }}"

rules:

ргоtо: tcp

fгом_рогt: 22

to_port: 22

cidr_ip: 0.0.0.0/0

nаме: outbound security group

ec2_group:

nаме: outbound

description: allow outbound connections to the internet

region: "{{ гegion }}"

rules_egress:

ргоtо: all

cidr_ip: 0.0.0.0/0

nаме: Get the ubuntu xenial ebs ssd AMI

ec2_aмi_Hnd:

nаме: "ubuntu/iмages/hvм-ssd/ubuntu-xenial-16.04-aмd64-server-*"

region: "{{ region }}"

sort: nafl1e

sort_order: descending

sort_end: 1

no_result_action: fail

register: ubuntu_ifl1age

set_fact: "afl1i={{ ubuntu_ifl1age.results[0].afl1i_id }}"

nafl1e: start the instances

ес2:

region: "{{ region }}"

ifl1age: "{{ afl1i }}"

instance_type: "{{ instance_type }}"

key_naJ11e: 1'1ykey

group: [web, ssh, outbound]

instance_tags: { NaJ11e: ansiЫebook, type: web, env: production}

exact_count: "{{ count }}"

count_tag: { type: web}

wait: yes

register: ес2

nafl1e: add the instance to web and production groups

add_host: hostnafl1e={{ iteJ11.puЫic_dns_naJ11e }} groups=web,production

with_ itefl1S: • { { ес2. tagged_ instances } } •

when: iteJ11.puЫic_dns_naJ11e is defined

- nafl1e: wait for ssh server to Ье running

wait_for: host={{ itel'1.puЫic_dns_nafl1e }} port=22 search_regex=OpenSSH

with_itefl1s: "{{ ес2. tagged_instances }}"

when: iteJ11.puЫic_dns_naJ11e is defined

naJ11e: configure webservers

hosts: web:&production

becoJ11e: True

gather_facts: False

pre_tasks:

- nafl1e: install python

raw: apt-get install -у python-1'1inifl1al

roles:

- web

СозддНИЕ ВИРТУАЛЬНОГО ПРИВАТНОГО ОБЛАКА

Amazon ЕС2 ❖ 267

До сих пор мы запускали экземпляры в виртуальном приватном облаке (VPC)
по умолчанию. Однако AnsiЫe позволяет также создавать новые облака VPC

и запускать в них экземпляры.

Что такое VPC?

Виртуальное приватное облако (УРС) можно рассматривать как изолирован­

ную сеть. Создавая такое облако, вы должны определить диапазон IР-адресов.

Это должно быть подмножество одного из приватных диапазонов (10.0.0.0/8,

172.16.0.0/12 или 192.168.0.0/16).

268 ❖ Amazon ЕС2

Виртуальное облако делится на подсети - поддиапазоны IР-адресов из обще­
го диапазона всего облака. В примере 14.14 облако располагает диапазоном
10.0.0.0/16, и мы выделили в нем две подсети: 10.0.0.0/24 и 10.0.10/24.

Запуская экземпляр, вы должны включить его в одну из подсетей в облаке. Под­
сети можно настроить так, что экземпляры будут получать публичные или при­
ватные IР-адреса. ЕС2 также позволяет определять таблицы маршрутизации для
передачи трафика между подсетями и создавать интернет-шлюзы для передачи
трафика из подсетей в Интернет.
Настройка сети - сложная тема, выходящая далеко за рамки этой книги. Допол­
нительную информацию вы сможете найти в документации Amazon с описанием
приемов создания ЕС2 в VPC (http://amzn.to/1Fw89Af).

В примере 14.14 показано, как создать VPC с интернет-шлюзом, двумя под­
сетями и таблицей маршрутизации, которая определяет порядок направления
исходящих соединений через интернет-шлюз.

Пример 14.14 ❖ create-vpc.yml: создание УРС

nаме: сгеаtе а vpc

ec2_vpc_net:

гegi.on: "{{ regi.on }}"

nаме: "Book ехамрlе"

ci.dr_Ыock: 10.0.0.0/16

tags:

env: producti.on

regi.ster: result

set_ f act: "vpc_ i.d={{ resu lt. vpc. i.d } } "

nаме: add gateway

ec2_vpc_i.gw:

regi.on: "{{ regi.on }}"

vpc_i.d: "{{ vpc_i.d }}"

nаме: сгеаtе web subnet

ec2_vpc_subnet:

regi.on: "{{ regi.on }}"

vpc_ i.d: " { { vpc_ i.d } } "

ci.dг: 10.0.0.0/24

tags:

env: producti.on

ti.er: web

- nаме: сгеаtе db subnet

ec2_vpc_subnet:

regi.on: "{{ regi.on }}"

vpc_i.d: "{{ vpc_i.d }}"

ci.dr: 10.0.1.0/24

tags:

env: producti.on

ti.er: db

nаме: set routes

ec2_vpc_route_taЫe:

regi.on: "{{ regi.on }}"
vpc_i.d: "{{ vpc_i.d }}"
tags:

purpose: perмi.t-outbound
subnets:

- 10.0.0.0/24
- 10.0.1.0/24

routes:
- dest: 0.0.0.0/0

gateway_i.d: i.gw

Amazon ЕС2 ❖ 269

Все эти команды являются идемпотентными, но каждый модуль реализует
механизм контроля идемпотентности по-своему (см. табл. 14.6).

Таблица 14.6.Лоzика контроля идемпотентности в некоторых модулях поддержки VPC

Модуль Контроль идемпотентности

ec2_vpc_net Параметры паме и ci.dr

ec2_vpc_i.gw Наличие интернет-шлюза

ec2_vpc_subnet Параметры vpc i.d и ci.dr

ec2_vpc_route_taЫe Параметры vpc i.d и tags1

Если в ходе проверки идемпотентности будет обнаружено несколько экзем­
пляров, AnsiЫe завершит модуль с признаком ошибки.

С) Если не указать теги в ec2_vpc_route_taЫe, при каждом обращении к модулю будет соз­

даваться новая таблица маршрутизации.

Необходимо отметить, что пример 14.14 довольно прост с точки зрения на­
стройки сети, потому что мы определили всего две подсети и обе они подклю­
чены к Интернету. В реальной жизни чаще встречаются ситуации, когда выход
в Интернет имеет только одна из подсетей, а также заданы правила маршрути­
зации трафика между ними.

В примере 14.15 показан законченный сценарий создания VPC и запуска на
нем экземпляров.

Пример 14.15 ❖ ec2-vpc-example.yml: законченный сценарий ЕС2 для задания УРС

nаме: launch webservers i.nto а speci.fi.c vpc
hosts: localhost
vars:

regi.on: us-west-1
i.nstance_type: t2.мi.cro
count: 1
ci.drs:

web: 10.0.0.0/24

1 Если в параметре lookup передано значение i.d, для контроля идемпотентности вмес­
то tags будет использоваться параметр route_taЫe_i.d.

270 ❖ Amazon ЕС2

db: 10.0.1.0/24

tasks:

паме: create а vpc

ec2_vpc_net:

regi.on: "{{ regi.on }}"

nаме: book

ci.dr_Ыock: 10.0.0.0/16

tags: {env: producti.on }

regi.ster: result

set_fact: "vpc_i.d={{ result.vpc.i.d }}"

nаме: add gateway

ec2_vpc_i.gw:

regi.on: "{{ regi.on }}"

vpc_i.d: "{{ vpc_i.d }}"

nаме: create web subnet

ec2_vpc_subnet:

regi.on: "{{ regi.on }}"

vpc_i.d: "{{ vpc_i.d }}"

ci.dr: "{{ ci.drs.web }}"

tags: { env: producti.on, ti.er: web}

regi.ster: web_subnet

set_f act: "web_subnet_ i.d={ { web_subnet. subnet. i.d } } "

nаме: create db subnet

ec2_vpc_subnet:

regi.on: " { { regi.on } } "

vpc_i.d: "{{ vpc_i.d }}"

ci.dr: "{{ ci.drs.db }}"

tags: { env: producti.on, ti.er: db}

nаме: add routi.ng tаЫе

ec2_vpc_route_taЫe:

regton: "{{ regi.on }}"

vpc_i.d: "{{ vpc_i.d }}"

tags:
purpose: perмi.t-outbound

subnets:

- "{{ ci.drs.web }}"

- "{{ ci.drs.db }}"

routes:

dest: 0.0.0.0/0

gateway_i.d: i.gw

nаме: set ес2 keypai.r

ec2_key: "nаме=муkеу key_мateri.a l={ { Нем } } •

wi.th_fi.le: ~/.ssh/i.d_rsa.pub

паме: web securi.ty group

ec2_group:

паме: web

regi.on: "{{ regi.on }}"

descri.pti.on: allow http and https access

vpc_i.d: "{{ vpc_i.d }}"

rules:

- proto: tcp

froм_port: 80

to_port: 80

cidr_ip: 0.0.0.0/0

- proto: tcp

froм_port: 443

to_port: 443

cidr_ip: 0.0.0.0/0

nаме: ssh security group

ec2_group:

nаме: ssh

region: "{{ region }}"

description: allow ssh access

vpc_id: "{{ vpc_id }}"

rules:

proto: tcp

froм_port: 22

to_port: 22

cidr_ip: 0.0.0.0/0

nаме: outbound security group

ec2_group:

nаме: outbound

description: allow outbound connections to the internet

region: " { { region } } "

vpc_id: "{{ vpc_id }}"

rules_egress:

ргоtо: all

cidr_ip: 0.0.0.0/0

nаме: Get the ubuntu xenial ebs ssd AMI

ec2_aмi_Пnd:

nаме: "ubuntu/iмages/hvм-ssd/ubuntu-xenial-16.04-aмd64-server-*"

region: "{{ region }}"

sort: nаме

sort_order: descending

sort_end: 1

no_result_action: fail

register: ubuntu_iмage

set_fact: "амi={{ ubuntu_iмage.results[0] .al'li_id }}"

nаме: start the instances

ес2:

iмage: "{{ амi }}"

region: "{{ region }}"

instance_type: "{{ instance_type }}"

assign_puЫic_ip: True

key_naмe: муkеу

group: [web, ssh, outbound]

instance_tags: { Nаме: book, type: web, env: production}

exact_count: "{{ count }}"

count_tag: { type: web}

vpc_subnet_id: "{{ web_subnet_id }}"

wait: yes

register: ес2

Amazon ЕС2 ❖ 271

272 ❖ Amazon ЕС2

- паме: add the instance to web and production groups
add_host: hostnaмe={{ iteм.puЫic_dns_naмe }} groups=web,production
with_iteмs: "{{ ec2.tagged_instances }}"
when: iteм.puЫic_dns_naмe is defined

- паме: wait for ssh server to Ье running

wait_for: host={{ iteм.puЫic_dns_naмe }} port=22 search_regex=OpenSSH
with_iteмs: "{{ ec2.tagged_instances }}"
when: iteм.puЫic_dns_naмe is defined

паме: configure webservers
hosts: web:&production
Ьесоме: True
gather_facts: False
pre_tasks:

- паме: install python
raw: apt-get install -у python-мiniмal

roles:
- web

Динамическая инвентаризация и VPC
При использовании VPC экземпляры часто помещаются в приватную подсеть,
не соединенную с Интернетом. В этом случае экземпляры не имеют публич­
ных IР-адресов.

В такой ситуации может потребоваться запустить AnsiЫe в экземпляре внут­
ри VPC. Сценарий динамической инвентаризации достаточно эффективно от­
личает внутренние IР-адреса экземпляров VPC, не имеющих публичных IР­
адресов.

В приложении В подробно рассказывается, как можно использовать роли
IAM для запуска AnsiЫe внутри VPC без необходимости копирования учетных
данных ЕС2 в экземпляр.

СОЗДАНИЕ АМ 1

Существуют два подхода к созданию образов Amazon (AMI) с помощью AnsiЫe:
используя модуль ес2_амi. или инструмент Packer, который поддерживает An­
siЬle.

Использование модуля ec2_ami
Модуль ес2_амi. создает снимок запущенного экземпляра AMI. В примере 14.16
показано, как действует этот модуль.

Пример 14.16 ❖ Создание AMI с помощью модуля ес2_амi

- паме: create ап АМI
hosts: localhost
vars:

instance_id: i-e5bfc266641flb918
tasks:

- паме: create the AMI

ес2_амi.:

паме: web-ngi.nx

descri.pti.on: Ubuntu 16.04 wi.th ngi.nx i.nstalled

i.nstance_i.d: "{{ i.nstance_i.d }}"

wai.t: yes

regi.ster: амi.

- паме: output АМI detai.ls

debug: var=aмi.

Использование Packer

Amazon ЕС2 ❖ 273

Модуль ес2_амi. прекрасно справляется со своей задачей, но требует писать до­
полнительный код для создания и удаления экземпляров. Существует инстру­
мент с открытым кодом, Packer (https://www.packer.io), который автоматически
создает и удаляет экземпляры. Этот инструмент написал Митчел Хашимото
(Mitchell Hashimoto), который также является создателем Vagrant.

Packer может создавать разные типы образов и поддерживает разные ин­
струменты управления конфигурациями. В этом разделе мы сфокусируемся на
использовании Packer для создания АМI с помощью AnsiЬle, но его также мож­
но использовать для создания образов других облаков laaS, например Google
Compute Engine, DigitalOcean или OpenStack. Его даже можно использовать для
создания машин Vagrant и контейнеров Docker. Он также поддерживает другие
инструменты управления конфигурациями, такие как Chef, Puppet и Salt.

Для использования Packer необходимо создать файл конфигурации в фор­
мате JSON и затем использовать утилиту packer для создания образа.

Packer поддерживает два механизма наполнения, которые можно использо­
вать из сценариев AnsiЫe для создания AMI: более новый механизм AnsiЫe
Remote (с именем ansi.Ыe) и более старый AnsiЫe Local (с именем ansi.Ыe-local).
Чтобы понять разницу между ними, сначала нужно разобраться в том, как ра­
ботает Packer.

В процессе создания образа АМI Packer выполняет следующие действия:
1. Запускает новый экземпляр ЕС2, опираясь на образ AMI, указанный

в файле конфигурации.
2. Создает временную пару ключей и группу безопасности.
3. Выполняет вход в новый экземпляр через SSH и выполняет все сценарии

наполнения, указанные в файле конфигурации.
4. Останавливает экземпляр.
5. Создает новый образ АМI.
6. Удаляет экземпляр, группу безопасности и пару ключей.
7. Выводит идентификатор AMI в терминал.

Механизм AnsiЬle Remote

Когда используется механизм наполнения AnsiЫe Remote, Packer выполняет
сценарии AnsiЫe на локальной машине. Когда используется механизм напол­
нения AnsiЫe Local, Packer копирует сценарии AnsiЫe в экземпляр и запускает

274 ❖ Amazon ЕС2

их там. Я предпочитаю использовать механизм AnsiЫe Remote, потому что он
проще в конфигурировании, как вы убедитесь чуть ниже.

Сначала рассмотрим механизм AnsiЫe Remote. В примере 14.17 представлен
сценарий web-ami.yml, выполняющий подготовку экземпляра для создания об­
раза. Это простой сценарий, который применяет роль web к машине с именем
default. Packer автоматически создает псевдоним default. При желании псевдо­
ним можно изменить, определив параметр host_a l i.as в разделе AnsiЫe внутри
файла конфигурации Packer.

Пример 14.17 ❖ web-ami.ym/

nаме: conftgure а webserver as an амi

hosts: default

Ьесоме: True
roles:

• web

В примере 14.18 показан вариант файла конфигурации Packer, который ис­
пользует механизм AnsiЫe Remote для создания AMI с использованием нашего
сценария.

Пример 14.18 ❖ web.json с использованием механизма AnsiЫe Remote

{

}

"builders":

"type": "aмazon-ebs",
"region": "us-west-1",
"source_aмi": "aмi-79df8219",
"instance_type": "t2.мicro",
"ssh_usernaмe": "ubuntu",

"амi_nаме": "web-nginx-{{tiмestaмp}}",

"tags": {
"Nаме": "web-ngtnx"

}

}

],
"provisioners": [

{

} '

{

"type": "shell",
"inHne": [

"sleep 30",
"sudo apt-get update",
"sudo apt-get install ·У python-мiniмal"

]

"type": "ansiЫe",
"playbook_fHe": "web-aмt.yмl"

Используйте команду packer bui. ld для создания АМI:

$ расkег build web.json

Результат будет выглядеть примерно так:

==> aмazon-ebs: Prevalidating AMI Nаме ...

aмazon-ebs: Found Iмage ID: aмi-79df8219

==> aмazon-ebs: Creating tемрогагу keypair:

packer_S8a0d118-b798-62ca-50d3-18d0e270e423

==> aмazon-ebs: Creating tемрогагу security group fог this instance ...

Amazon ЕС2 ❖ 275

==> aмazon-ebs: Authorizing access to port 22 the tемрогагу security group ...

==> aмazon-ebs: Launching а source AWS instance ...

aмazon-ebs: Instance ID: i-0f4b09dc0cd806248

==> aмazon-ebs: Waiting for instance (i-0f4b09dc0cd806248) to Ьесоме ready ...

==> aмazon-ebs: Adding tags to source instance

==> aмazon-ebs: Waiting for SSH to Ьесоме availaЫe ...

==> aмazon-ebs: Connected to SSH!

==> aмazon-ebs: Provtsioning with shell script: /var/folders/g_/S23vqбg1037d1

0231ммbx1780000gp/T/packer-shell574734910

==> aмazon-ebs: Stopping the source instance ...

==> aмazon-ebs: Waiting for the instance to stop ...

==> aмazon-ebs: Creating the AMI: web-nginx-1486934296

aмazon-ebs: AMI: aмi-42ffa322

==> aмazon-ebs: Waiting for АМI to Ьесоме геаdу .. .

==> aмazon-ebs: Adding tags to АМI (aмi-42ffa322) .. .

==> aмazon-ebs: Tagging snapshot: snap-01b570285183a1d35

==> aмazon-ebs: Creating АМI tags

==> aмazon-ebs: Creating snapshot tags

==> aмazon-ebs: Terмinating the source AWS instance ...

==> aмazon-ebs: Cleaning up any extra voluмes ...

==> aмazon-ebs: No voluмes to clean up, skipping

==> aмazon-ebs: Deleting tемрогагу security group ...

==> aмazon-ebs: Deleting tемрогагу keypair ...

Build 'aмazon-ebs' finished.

==> Builds finished. The artifacts of successful builds аге:

- -> aмazon-ebs: AMis were created:

us-west-1: aмi-42ffa322

В примере 14.18 имеются две секции: bui.lders и provi.si.oners. Секция bui.ld­
ers определяет тип создаваемого образа. В данном случае создается ЕВS-образ
(Elastic Block Store-backed), поэтому мы используем построитель aмazon-ebs.

Чтобы создать образ АМI, Packer должен запустить новый экземпляр, поэто­
му мы должны указать всю необходимую информацию, обычно используемую
при создании экземпляра: регион ЕС2, АМI и тип экземпляра. Packer не тре­
бует настраивать группу безопасности, потому что, как отмечалось выше, он
автоматически создает временную группу безопасности, а затем удаляет ее по
завершении. Подобно AnsiЫe, Packer должен иметь возможность установить

276 ❖ Amazon ЕС2

SSН-соединение с созданным экземпляром. Поэтому мы должны указать имя
пользователя в файле конфигурации Packer.

Также необходимо указать имя экземпляра и все теги, которые требуется
присвоить. Поскольку имена AMI должны быть уникальными, мы использо­
вали функцию {{t'l.111esta111p}} для добавления метки времени. Метка времени
определяет дату и время в виде количества секунд, прошедших с 1 января
1970 года, UTC. За дополнительной информацией о функциях Packer обращай­
тесь к документации Packer (http://blt.ly/1Fw9hEc).

Поскольку для создания образа требуется взаимодействовать с ЕС2, Packer
должен иметь доступ к учетным данным ЕС2. Так же как AnsiЫe, Packer может
читать их из переменных окружения, поэтому нет необходимости явно указы­
вать их в файле конфигурации, хотя, если хочется, это можно сделать.

Секция provi.si.oners определяет инструменты, используемые для конфигура­
ции экземпляра до его сохранения в виде образа. Packer поддерживает сценарий
на языке командной оболочки, который позволяет запускать произвольные ко­
манды на экземпляре. Он используется в примере 14.18 для установки Python 2.
Чтобы избежать состояния гонки, пытаясь установить пакеты до того, как опе­
рационная система полностью загрузится, сценарий командной оболочки в на­
шем примере настроен так, чтобы выждать 30 секунд перед установкой AnsiЫe.

Механизм AnsiЫe Local

Использование механизма наполнения AnsiЫe Local похоже на использование
механизма AnsiЫe Remote, за исключением небольших, но важных отличий.

По умолчанию механизм AnsiЫe Local копирует на удаленный хост только
файл самого сценария AnsiЫe: любые другие файлы, от которых зависит сце­
нарий, не копируются автоматически. Для решения этой проблемы необхо­
димо средство доступа к нескольким файлам. Packer позволяет задать в пара­
метре playbook_di.r каталог, который будет рекурсивно копироваться в целевой
каталог на экземпляре. Вот пример фрагмента файла конфигурации Packer, где
определяется каталог для копирования:

"type": "anstЫe-local",
"playbook_ftle": "web-af11t-local.yf111",
"playbook_dtr": " .. /playbooks"

Если требуется скопировать только файлы, определяющие роли, с помощью
параметра role_paths можно явно задать список каталогов ролей:

}

"type": "anstЫe-local",
"playbook_ftle": "web-af11t-local.yf111",
"го le_paths" : [

" .. /playbooks/roles/web"

]

Amazoп ЕС2 ❖ 277

Другое важное отличие: в выражении hosts вместо default следует использо­
вать localhost.

Возможности Packer намного шире, чем мы рассмотрели здесь, включая
множество параметров настройки механизмов наполнения обоих типов. До­
полнительную информацию вы найдете в документации: https://www.packer.io/

docs/.

ДРУГИЕ МОДУЛИ
AnsiЫe обладает более обширной поддержкой ЕС2, чем мы описали, а также
может взаимодействовать с другими службами AWS. Например, AnsiЫe можно
использовать для запуска стеков CloudFormation с помощью модуля cloudfor­

мat"i.oп, сохранения файлов в S3 с помощью модуля s3, изменения записи DNS
с помощью модуля route53, создания группы автоматического масштабирова­
ния с помощью модуля ec2_asg, создания конфигурации автоматического мас­
штабирования с помощью модуля ес2_ lc и многого другого.

Использование AnsiЫe с ЕС2 - обширная тема, о которой можно написать
отдельную книгу. На самом деле Ян Курниаван (Yan Kurniawan) работает над
книгой об AnsiЬle и AWS.

Теперь вы обладаете достаточным объемом знаний, чтобы справиться с эти­
ми дополнительными модулями без проблем.

Глава 15
•••

Docker

Проект Docker стремительно захватил мир IТ. Я не могу вспомнить ни одной
другой технологии, которая была бы так быстро подхвачена сообществом.
В этой главе рассказывается, как с помощью AnsiЫe создавать образы и раз­
вертывать контейнеры Docker.

Что такое контейнер?

Контейнер- это одна из форм виртуализации. Когда виртуализация используется для

запуска процессов в гостевой операционной системе, эти процессы невидимы опе­

рационной системе-носителю, выполняющейся на физической аппаратуре. В част­

ности, процессы, запущенные в гостевой операционной системе, не имеют прямого

доступа к физическим ресурсам, даже если наделены правами суперпользователя.

Контейнеры иногда называют виртуализацией операционной системы, чтобы от­

делить их от технологий виртуализации аппаратного обеспечения. При виртуа­

лизации аппаратного обеспечения программное обеспечение, называемое ги­

первизором, воссоздает физическую машину целиком, включая виртуальные CPU,

память, а также устройства, такие как диски и сетевые интерфейсы. Виртуализация

аппаратного обеспечения - очень гибкая технология, поскольку виртуализации

подвергается вся машина целиком. В частности, в качестве гостевой можно уста­

новить любую операционную систему, даже в корне отличающуюся от системы­

носителя (например, гостевую систему Windows Server 2012 в системе-носителе

RedHat Enterprise Linux), и останавливать и запускать виртуальную машину точно

так же, как физическую. Эта гибкость несет с собой потери в производительности,

необходимые для виртуализации аппаратного обеспечения.

При виртуализации операционной системы (контейнеры) гостевые процессы

просто изолируются от процессов системы-носителя. Они запускаются на том же

ядре, что и система-носитель, но при этом система-носитель обеспечивает полную

изоляцию гостевых процессов от ядра. Если программное обеспечение поддерж­

ки контейнеров, такое как Docker, действует в ОС Linux, гостевые процессы также

должны быть процессами Linux. При этом издержки оказываются гораздо ниже,

чем при виртуализации аппаратного обеспечения, поскольку запускается только

одна операционная система. В частности, процессы в контейнерах запускаются

гораздо быстрее, чем на виртуальных машинах.

Docker ❖ 279

Docker - это больше, чем контейнеры. Это ПО можно считать платформой,
в которой контейнеры играют роль строительных блоков. Контейнеры в Do­
cker - это почти то же самое, что виртуальные машины в облаках IaaS. Две
другие важные составляющие Docker - формат образов и Docker API.

Образы Docker можно считать аналогами образов виртуальных машин. Об­
раз Docker содержит файловую систему с установленной операционной систе­
мой, а также некоторые метаданные. Одно существенное отличие в том, что
образы Docker - многоуровневые. Для создания нового образа Docker берется
существующий образ и модифицируется добавлением, изменением или уда­
лением файлов. Представление нового образа Docker содержит информацию
об оригинальном образе Docker, а также отличия в файловой системе между
оригинальным и новым образами Docker. Например: официальный образ
Nginx для Docker (http://Ьit.ly/2ktXbqS) реализован наложением дополнитель­
ных уровней на официальный образ DeЬian Jessie. Благодаря такой много­
уровневой организации образы Docker гораздо меньше традиционных обра­
зов виртуальных машин, а значит, их легче передать через Интернет. Проект
Docker поддерживает реестр публично доступных образов (https://registry.hub.
docker.com/).

Также Docker поддерживает API удаленного управления, позволяющий осу­
ществлять взаимодействия со сторонними инструментами. Этот API как раз
использует модуль AnsiЫe docker.

ОБЪЕДИНЕНИЕ DocкER и ANSIBLE

Контейнеры Docker позволяют легко упаковать приложение в образ, который
легко развертывается в различных системах. Именно поэтому в отношении
проекта Docker используется метафора корабельных контейнеров. API удален­
ного управления в Docker упрощает автоматизацию программных систем, за­
пускаемых поверх Docker.

Есть две области, в которых AnsiЫe упрощает работу с Docker. Одна связана
с управлением контейнерами Docker. Для установки «Dосkеr'изированного»
программного обеспечения обычно приходится создавать несколько контей­
неров Docker, содержащих разные службы. Эти службы должны иметь возмож­
ность взаимодействовать между собой, поэтому нужно правильно объединить
соответствующие контейнеры и убедиться, что они запускаются в правиль­
ном порядке. Изначально проект Docker не включал развитых инструментов
управления, по этой причине появились сторонние инструменты. AnsiЫe была
создана для управления, поэтому ее использование для развертывания при­
ложений в Docker выглядит естественным решением.

Другая область - это создание образов Docker. Официальный способ созда­
ния своих образов Docker заключается в создании особых текстовых файлов,
называемых Dockerfiles, которые похожи на сценарии командной оболочки.
Dockerfiles прекрасно подходят для создания простых образов. Но когда требу-

280 ❖ Docker

ется реализовать что-то более сложное, вся мощь AnsiЫe теряется. К счастью,
AnsiЬle можно использовать для создания сценариев.

Совсем недавно появился новый проект Ansiьte Container - официальное решение ис­
пользования сценариев AnsiЫe для создания образов контейнеров Docker. На момент
написания этих строк самой свежей была версия AnsiЫe Container 0.2. В конце января
2017-го руководители проекта объявили в списке рассылки AnsiЫe Container, что сле­
дующая версия проекта,АпsiЫе Container Mk. /1, будет включать существенные отличия.
Поскольку AnsiЫe Container все еще находится на начальной стадии развития, мы ре­
шили не углубляться в описание его особенностей в этой книге. Но будет очень хорошо,
если вы самостоятельно познакомитесь с этим проектом.

Жизненный цикл приложения DocкER
Вот как выглядит обычный жизненный цикл приложения Docker:

1. Создание образов Docker на локальной машине.
2. Передача образов Docker с локальной машины в реестр.

3. Извлечение образов Docker на удаленный хает из реестра.

4. Запуск контейнеров Docker на удаленном хаете путем передачи им ин­
формации о конфигурации.

Обычно образ Docker создается на локальной машине или в системе не­
прерывной интеграции, поддерживающей их создание, например Jenkins или

CircleCI. После создания образ необходимо где-то сохранить, откуда его легко
будет загрузить на удаленные хосты.

Образы Docker обычно хранятся в хранилище, называемом реестром. Про­
ект Docker поддерживает реестр Docker НиЬ, в котором могут храниться как
публичные, так и частные образы. Существует инструмент командной строки
со встроенной поддержкой размещения образов в реестре и загрузки из него.

После размещения образа Docker в реестре можно соединиться с удаленным
хостом, загрузить образ контейнера и запустить его. Обратите внимание, что
если попытаться запустить контейнер, образа которого нет на хаете, Docker
автоматически загрузит его из реестра. Поэтому нет необходимости явно ис­
пользовать команду загрузки образа из реестра.

При использовании AnsiЫe для создания образов Docker и запуска контей­
неров на удаленных хостах жизненный цикл приложения будет выглядеть сле­
дующим образом:

1. Написание сценариев AnsiЬle для создания образов Docker.
2. Выполнение сценариев для создания образов Docker на локальной ма­

шине.

3. Передача образов Docker с локальной машины в реестр.
4. Написание сценариев AnsiЫe для извлечения образов Docker на удален­

ные хосты, запуск контейнеров Docker на удаленных хостах путем пере­
дачи информации о конфигурации.

5. Выполнение сценариев AnsiЫe для запуска контейнеров.

Docker ❖ 281

ПРИМЕР ПРИМЕНЕНИЯ: Gноsт
В этой главе мы оставим в стороне приложение Mezzanine и возьмем за основу
другое приложение - Ghost. Ghost - это платформа блогинга с открытым ис­
ходным кодом, напоминающая WordPress. Проект Ghost имеет официальный
контейнер Docker, который мы используем в качестве основы.

Вот о чем мы поговорим далее в этой главе:
О запуск контейнера Ghost на локальной машине;
О запуск контейнера Ghost поверх контейнера Nginx с настройкой SSL;
О добавление своего образа Nginx в реестр;
О развертывание контейнеров Ghost и Nginx на удаленной машине.

ПодключЕНИЕ к дЕмону DocкER
Все модули AnsiЫe Docker взаимодействуют с демоном Docker. Если вы работа­
ете в Linux или в macOS и используете поддержку Docker для Мае, все модули
должны просто работать без всяких дополнительных параметров.

Если вы работаете в macOS и используете Boot2Docker или Docker Machine,
а также когда модуль и демон Docker выполняются на разных машинах, вам
может понадобиться передать модулям дополнительную информацию, чтобы
они могли связаться с демоном Docker. В табл. 15.1 перечислены параметры,
которые можно передавать модулям через аргументы командной строки или
через переменные окружения. Дополнительные подробности вы найдете в до­
кументации с описанием модуля docker _contai.ner.

Таблица 15.1. Параметры подключения к демону Docker

Арrумент модуля Переменная окружения Значение по умолчанию
docker host DDCKER_HDST unix://var/run/docker.sock

tls hostnal'le DOCKER_TLS НOSTNAME localhost

api version DOCKER API VERSION auto

cert_path DOCKER_CERT_PATH (Нет)
ssl_version DOCKER_SSL_VERSION (Нет)
tls DOCKER TLS по

tls verify DOCKER TLS VERIFY по

til'leout DOCKER_ ПМЕОUТ 60 (секунд)

ЗАПУСК КОНТЕЙНЕРА НА ЛОКАЛЬНОЙ МАШИНЕ
Модуль docker _contai.ner запускает и останавливает контейнеры Docker, реали­
зуя некоторые возможности инструмента командной строки docker, такие как
команды run, ki. l l и пт1.

Если предположить, что программное обеспечение Docker уже установлено
на локальном компьютере, следующая команда загрузит образ ghost из реест­
ра Docker и запустит его. Она отобразит порт 2368 в контейнере в порт 8000

282 ❖ Docker

локальной машины, благодаря чему вы сможете обратиться к Ghost по адресу:
h ttp://localhost:8000.

$ ansi.Ыe localhost •1'1 dockeг_contai.neг -а "nal'le=test-ghost i.1'1age=ghost \

poгts=8000:Z368"

В первый раз может потребоваться некоторое время на загрузку образа.
В случае успеха команда docker ps покажет работающий контейнер:

$ dockeг ps

CONTAINER ID IMAGE
48еб9dа90023 ghost

STATUS

COMМAND CREATED
"/entгypotnt.sh пр ... " 37 seconds ago
PORTS NAMES

Up 36 seconds 0.0.0.0:8000->2368/tcp test-ghost

Следующая команда остановит и удалит контейнер:

$ ansi.Ыe localhost •1'1 dockeг_contai.neг -а "nal'le=test-ghost state=absent"

Модуль docker _conta'Lner поддерживает несколько параметров: практически
для всех параметров, поддерживаемых командой docker, имеются эквивалент­
ные параметры для модуля docker _conta'Lner.

СОЗДАНИЕ ОБРАЗА из DocKERFILE

Стандартный образ Ghost прекрасно работает сам по себе, но, чтобы обеспе­
чить безопасность доступа, перед ним нужно запустить веб-сервер с настроен­
ной поддержкой TLS.

Проект Nginx поддерживает свой стандартный образ Nginx, но нам нужно
настроить его для работы с Ghost и включить в нем поддержку TLS, как мы де­
лали это в главе 6, когда развертывали приложение Mezzanine. В примере 15.1
представлен файл Dockerfile, реализующий все необходимое.

Пример 15.1 ❖ Dockerfile

FROM ngtnx
RUN Г1'1 /etc/ngtnx/conf.d/default.conf
СОРУ ghost.conf /etc/ngtnx/conf.d/ghost.conf

В примере 15.2 приводится конфигурация веб-сервера Nginx, обслужива­
ющего Ghost. Главное ее отличие от примера конфигурации для приложения
Mezzanine заключается в том, что теперь Nginx взаимодействует с Ghost через
ТСР-сокет (порт 2368), тогда как для взаимодействий с Mezzanine использовал­
ся сокет домена Unix.

Другое отличие - путь к каталогу с файлами сертификатов TLS: /certs.

Пример 15.2 ❖ ghost.conf

upstгeal'1 ghost {
sегvег ghost:2368;

server {

}

li.sten 80;

li.sten 443 ssl;

client_мax_body_size 10М;

keepalive_tiмeout 15;

ssl_certificate /certs/nginx.crt;

ssl_certificate_key /certs/nginx.key;

ssl_session_cache shared:SSL:10м;

ssl_session_tiмeout 10м;

##параметр ssl_ciphers слиwком длинный,

##чтобы приводить его на страницах книги

ssl_prefer_server_ciphers оп;

location / {

proxy_redirect off;

proxy_set_header Host $host;

proxy_set_header X-Real-IP $reмote_addr;

proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;

proxy_set_header X-Forwarded-Protocol $scheмe;

proxy_pass http://ghost;

Docker ❖ 283

Как можно заметить в этой конфигурации, веб-сервер Nginx обращается
к серверу Ghost, используя имя хоста ghost. Развертывая эти контейнеры, вы
должны гарантировать это соответствие; иначе контейнер Nginx не сможет об­
служивать контейнер Ghost.

Если предположить, что Dockerfile и nginx.conf хранятся в каталоге nginx, сле­
дующая задача создаст образ lorin/nginx-ghost. Здесь использован префикс an­
siЫebook/, потому что собираемся поместить образ в репозиторий Docker Hub
с именем ansiЫebook/nginx-ghost:

паме: create Nginx iмage

docker_iмage:

паме: ansiЫebook/nginx-ghost

path: nginx

Убедиться в успешном выполнении задачи можно с помощью команды dock­
er i.l'lages:

$ docker 'i.мages

REPOSIТORY TAG

ansiЫebook/nginx-ghost latest

ghost latest

nginx latest

SIZE

182 мв

326 мв

182 мв

IМAGE ID

23fd848947a7

066a22d980f4

сс1Ь61406712

CREATED

37 seconds ago

3 days ago

11 days ago

284 ❖ Docker

Обратите внимание, что вызов модуля docker _i.111age завершится ничем, если
образ с таким именем уже существует, даже если содержимое Dockerfile изме­
нилось. Если вы внесли изменения в Dockerfile и хотите пересобрать образ, до­
бавьте параметр fогсе: yes.

В общем случае предпочтительнее добавлять параметр tag с номером версии
и увеличивать его для каждой новой сборки. В этом случае модуль docker _i./1lage
будет создавать новые образы без явного использования параметра forced.

УПРАВЛЕНИЕ НЕСКОЛЬКИМИ КОНТЕЙНЕРАМИ

НА ЛОКАЛЬНОЙ МАШИНЕ

Часто бывает нужно запустить несколько контейнеров Docker и связать их
вместе. В процессе разработки все такие контейнеры обычно запускаются на
локальной машине. Но в промышленном окружении они нередко запускаются
на разных машинах.

Для нужд разработки, когда все контейнеры выполняются на одной машине,
проект Docker предоставляет инструмент Docker Compose, упрощающий запуск
и связывание контейнеров. Для управления контейнерами с помощью инстру­
мента Docker Compose можно использовать модуль docker _servi.ce.

В примере 15.3 представлен файл docker-compose.yml, который запускает
Nginx и Ghost. В данном случае предполагается наличие каталога ./certs с фай­
лами сертификатов TLS.

Пример 15.3 ❖ docker-compose.yml

versi.on: '2'

servi.ces:

ngi.nx:

i.мage: ansi.Ыebook/ngi.nx-ghost

ports:

- "8000:80"

- "8443:443"

voluмes:

- ${PWD}/certs:/certs

li.nks:

- ghost

ghost:

i.мage: ghost

В примере 15.4 приводится сценарий, который создает файл образа Nginx,
затем создает самоподписанные сертификаты и запускает службы, описанные
в примере 15.3.

Пример 15.4 ❖ ghost.yml

- nаме: Run Ghost locally

hosts: localhost

gather_facts: False

tasks:

nаме: сгеаtе Nginx iмage

docker_iмage:

nаме: ansiЫebook/nginx-ghost

path: nginx

nаме: сгеаtе certs

соммаnd: >

openssl геq -new -х509 -nodes

-out certs/nginx.crt -keyout certs/nginx.key

-subj '/CN=localhost' -days 3650

creates=certs/nginx.crt

nаме: bгing up services

docker_service:

project_src:

state: present

ОТПРАВКА ОБРАЗА в РЕЕСТР DocKER

Docker ❖ 285

Для отправки образа в репозиторий Docker Hub мы используем отдельный сце­
нарий, представленный в примере 15.5. Обратите внимание, что модуль dock­
er _logi.n должен вызываться для регистрации в реестре до попытки отправить
туда образ. Оба модуля - docker _ logi.n и docker _ i.l'lage - по умолчанию используют
в качестве реестра репозиторий Docker Hub.

Пример 15.5 ❖ puЬ/ish.yml

nаме: puЫish iмages to docker hub

hosts: localhost

gather_facts: False

vагs_ргомрt:

nаме: usernaмe

ргомрt: Enter Docker Registгy usernaмe

nаме: eмail

ргомрt: Enter Docker Registry eмail

nаме: password

ргомрt: Enter Docker Registry password

private: yes

tasks:

nаме: authenticate with repository

docker_login:

useгnaмe: 11 { { usernaмe } } 11

eмail: 11{{ eмail }} 11

password: 11{{ password }} 11

nаме: push iмage up

docker_iмage:

nаме: ansiЫebook/nginx-ghost

push: yes

Если вы собираетесь использовать другой реестр, определите параметр reg­
i.stгy_url в docker _ logi.n и префикс имени образа с именем хоста и номером пор-

286 ❖ Docker

та реестра (если реестр использует нестандартный порт НТТР/НТТРS). В при­
мере 15.6 показано, как следует изменить задачи при использовании реестра
http://reg.example.com. Сценарий создания образа также необходимо изменить,
чтобы отразить в нем новое имя образа: reg.example.com/ansiЫebook/nginx-ghost.

Пример 15.6 ❖ puьtish.yml для случая использования нестандартного реестра

tasks:

- nаме: authenticate with repository

docker_login:

usernaмe: "{{ usernaмe }}"

eмail: "{{ eмail }}"

password: " { { password } } "

registry_url: http://reg.exaмple.coм

nаме: push iмage up

docker_iмage:

nаме: reg.exaмple.coм/ansiЫebook/nginx-ghost

push: yes

Проверить сохранение образа в реестре Docker можно с использованием
локального реестра. Сценарий в примере 15.7 запускает реестр в контейнере
Docker, отмечает образ ansiЫebook/nginx-ghost как localhost:5000/ansiЫebook/
nginx-ghost и помещает его в реестр. Обратите внимание, что по умолчанию
локальные реестры не требуют аутентификации, поэтому в данном сценарии
отсутствует задача, вызывающая docker _logi.n.

Пример 15.7 ❖ puьtish.yml для случая использования локального реестра

- nаме: puЫish iмages to local docker registry

hosts: localhost

gather_facts: False

vars:

repo_port: 5000

геро: "localhost:{{repo_port}}"

iмage: ansiЫebook/nginx-ghost

tasks:

- nаме: start а registry locally

docker_container:

паме: registry

iмage: registry:2

ports: "{{ repo_port }}:5000"

- debug:

мsg: nаме={{ iмage }} геро={{ repo }}/{{ iмage }}

- nаме: tag the nginx-ghost iмage to the repository

docker_iмage:

nаме: "{{ iмage }}"

repository: "{{ геро }}/{{ iмage }}"

push: yes

Проверку можно выполнить, загрузив файл манифеста:

$ cuгl http://localhost:5000/v2/ansiЫebook/nginx-ghost/мanifests/latest

{

}

"scheмaVersion": 1,
"nаме": "ansiЫebook/nginx-ghost",
"tag": "latest",

ЗАПРОС ИНФОРМАЦИИ О ЛОКАЛЬНОМ ОБРАЗЕ

Docker ❖ 287

Модуль docker _i.мage_facts позволяет запросить метаданные, описывающие об­
раз, который хранится локально. Пример 15.8 демонстрирует сценарий, ис­
пользующий этот модуль для получения информации из образа ghost об от­
крытых портах и томах.

Пример 15.8 ❖ image-facts.yml

nаме: get exposed ports and voluмes
hosts: localhost
gather_facts: False
vars:

iмage: ghost
tasks:

nаме: get iмage info
docker_iмage_facts: naмe=ghost
register: ghost
nаме: extract ports
set_fact:

ports: "{{ ghost.iмages[0].Config.ExposedPorts.keys() }}"
nаме: we expect only one port to Ье exposed
assert:

that: "ports I length == 1"
nаме: output exposed port
debug:

мsg: "Exposed port: {{ ports[0] }}"
nаме: extract voluмes
set_fact:

voluмes: "{{ ghost.iмages[0].Config.Voluмes.keys() }}"
nаме: output voluмes
debug:

мsg: "Voluмe: {{ iteм }}"
with_iteмs: "{{ voluмes }}"

Если запустить его, он выведет следующее:

$ ansiЫe-playbook iмage-facts.yмl

PLAY [get exposed ports and voluмes] ***

TASK [get iмage info] **

ok: [localhost]

288 ❖ Docker

TASK [extract ports] ***

ok: [localhost]

TASK [we expect only one рогt to Ье exposed] ***********************************
ok: [localhost] => {

"changed": false,

"мsg": "All assertions passed"

}

TASK [output exposed рогt] ***

ok: [localhost] => {

"мsg": "Exposed рогt: 2368/tcp"

}

TASK [extract voluмes] ***
ok: [localhost]

TASK [output voluмes] **

ok: [localhost] => (iteм=/var/lib/ghost) => {
"iteм": "/var/lib/ghost",

"мsg": "Voluмe: /var/Hb/ghost"

}

PLAY RECAP ***

localhost : оk=б changed=0 unreachable=0 failed=0

РАЗВЕРТЫВАНИЕ ПРИЛОЖЕНИЯ в КОНТЕЙНЕРЕ DocKER
По умолчанию в качестве базы данных Ghost использует SQLite. В промыш­
ленном окружении мы будем использовать базу данных Postgres по причинам,
обсуждавшимся в главе 5.

Все приложение мы развернем на двух машинах. На одной (ghost) развернем
контейнеры Ghost и Nginx. На другой (postgres) - контейнер Postgres, который
будет действовать как постоянное хранилище для данных Ghost.

В этом примере предполагается, что где-то, например в group_vars/all, опре-
делены следующие переменные с параметрами настройки обеих машин:

О database_naмe;

О database_user;
О database_password.

Postgres
Для настройки контейнера Postgres мы должны передать имя пользователя базы
данных, пароль и имя базы данных в переменных окружения. Нам также нужно
смонтировать каталог на машине-носителе как том для хранения данных, чтобы
хранимые данные не исчезли после остановки и удаления контейнера.

В примере 15.9 приводится сценарий, развертывающий контейнер Postgres.

В нем определены �:олько две задачи: одна создает каталог для хранения дан­

ных, а другая запускает контейнер Postgres. Обратите внимание: этот сценарий

Docker ❖ 289

предполагает, что на хаете postgres уже установлено программное обеспечение
Docker Engine.

Пример 15.9 ❖ postgres.yml

nаме: deploy postgres

hosts: postgres

Ьесоме: True

gather_facts: False

vars:

data_dir: /data/pgdata

tasks:

nаме: create data dir with correct ownership

Пlе:

path: "{{ data_dir }}"

state: directory

nаме: start postgres container

docker_container:

nаме: postgres_ghost

iмage: postgres:9.6

ports:

- "0.0.0.0:5432:5432"

voluмes:

- "{{ data_dir }}:/var/lib/postgresql/data"

env:

POSTGRES_USER: "{{ database_user }}"

POSTGRES_PASSWORD: "{{ database_password }}"

POSTGRES_DB: " { { database_naмe } }"

Веб-сервер
Развертывание веб-сервера - более сложная задача, потому что требуется раз­

вернуть два контейнера: Ghost и Nginx. Кроме того, их нужно связать между со­

бой и вдобавок передать в контейнер Ghost конфигурационную информацию,
необходимую для подключения к базе данных Postgres.

Чтобы связать контейнеры Nginx и Ghost, мы используем сети Docker. Сети

замещают устаревший механизм ссылок l i.nks, использовавшийся ранее для

связывания контейнеров. То есть мы создадим свою сеть Docker, подключим
к ней контейнеры, и они смогут взаимодействовать друг с друrом, используя

имена контейнеров как имена хостов.
Сеть Docker создается просто:

nаме: create network

docker_network: naмe=ghostnet

Имя сети предпочтительнее хранить в переменной окружения, потому что
оно понадобится во всех запускаемых нами контейнерах. Вот как выглядит

фрагмент сценария, отвечающий за запуск сети:

290 ❖ Docker

naflle: deploy ghost

hosts: ghost

becoflle: Тгuе

gather_facts: False

vars:

url: "https://{{ ansiЫe_host }}"

database_host: "{{ groups['postgres'][0] }}"

data_dir: /data/ghostdata

certs_dir: /data/certs

net_naflle: ghostnet

tasks:

- naflle: сгеаtе network

docker_network: "naflle={{ net_naflle }}"

Обратите внимание: здесь предполагается существование группы с именем
postgres, которая содержит единственный хост; сценарий использует эту ин­

формацию для заполнения переменной database_host.

Веб-сервер: Ghost

Нам нужно настроить возможность соединения Ghost с базой данных Postgres,
а также предусмотреть запуск в режиме промышленной эксплуатации пере­
дачей флага - -product-\.on команде nрм start.

Мы также должны гарантировать запись файлов хранилища в смонтирован­

ный том.

Вот часть сценария, которая создает каталог для хранения данных, генери­
рует конфигурационный файл Ghost из шаблона и запускает контейнер, под­
ключенный к сети ghostnet:

naflle: сгеаtе ghostdata directory

fHe:

path: " {{ data_dir } } "

state: directory

na/lle: generate the config file

tefllplate: src=tel'1plates/config.js.j2 dest={{ data_dir }}/config.js

naflle: start ghost container

docker_container:

naflle: ghost

ifllage: ghost

COfllflland: npfll start --production

voluflles:

- "{{ data_dir }}:/var/lib/ghost"

networks:

- naflle: "{{ net_naflle }}"

Обратите внимание, что нам не пришлось объявлять никаких сетевых пор­

тов, потому что с контейнером Ghost будет взаимодействовать только контей­
нер Nginx.

Docker ❖ 291

Веб-сервер: Nginx
Для контейнера Nginx была определена своя конфигурация, когда мы создава­
ли образ ansiЬlebook/nginx-ghost: он настроен на подключение к ghos t: 2368.

Теперь нам нужно скопировать сертификаты TLS. Поступим так же, как
в предыдущих примерах: сгенерируем само подписанные сертификаты:

nаме: сгеаtе certs directory

file:

path: " { { certs_dir } } "

state: diгectory

nаме: generate tls certs

соммаnd: >

openssl геq -new -х509 -nodes

-out "{{ certs_dir }}/nginx.crt" -keyout "{{ certs_dir }}/nginx.key"

-subj "/CN={{ ansiЫe_host}}" -days 3650

creates=certs/nginx.crt

nаме: staгt nginx container

docker_container:

nаме: nginx_ghost

iмage: ansiЫebook/nginx-ghost

pull: yes

networks:

- nаме: "{{ net_naмe }}"

ports:

- "0.0.0.0:80:80"

- "0.0.0.0:443:443"

voluмes:

- "{{ ceгts_dir }}:/certs"

Удаление контейнеров
AnsiЫe предлагает простой способ остановки и удаления контейнеров, кото­
рый может пригодиться в процессе разработки и тестирования сценариев раз­
вертывания. Вот сценарий, который очищает хает ghost.

nаме: гемоvе all ghost containers and networks

hosts: ghost

Ьесоме: Тгuе

gather_facts: False

tasks:

nаме: гемоvе containers

docker_container:

nаме: "{{ Нем }}"

state: absent

with_ iteмs:

- nginx_ghost

- ghost

nаме: гемоvе network

docker_network:

nаме: ghostnet

state: absent

292 ❖ Docker

Прямое подключение к контейнерам
AnsiЫe обладает возможностью напрямую взаимодействовать с запущенными
контейнерами. Плагин инвентаризации контейнеров Docker в AnsiЫe автома­
тически генерирует реестр действующих и доступных хостов, а плагин соеди­
нений действует подобно команде docker ехес, позволяя запускать процессы
в контексте выполняющихся контейнеров.

Плагин инвентаризации контейнеров Docker доступен в репозитории an­
siЬle/ansiЫe на GitНub как contrib/inventory/docker.py. По умолчанию этот плагин
обращается к демону Docker на локальной машине. С его помощью можно так­
же взаимодействовать с демонами Docker на удаленных машинах посредством
Docker REST API или серверов SSH, выполняющихся в контейнерах. Но оба ва­
рианта требуют дополнительной настройки. Для удаленного доступа к Docker
REST АРI-хост, на котором запущен Docker, должен открыть порт ТСР. Чтобы
подключиться к контейнеру через SSH, в контейнере должен быть настроен
запуск сервера SSH. Мы не будем рассматривать эти случаи здесь, но вы сможе­
те найти пример конфигурационного файла в репозитории: contrib/inventory/
docker.yml.

Допустим, что на локальной машине запущены следующие контейнеры:

CONTAINER ID IМAGE NAМES

63b6767de77f ansiЫebook/nginx-ghost ch14_nginx_l

057d72a95016 ghost ch14_ghost_l

В этом случае сценарий инвентаризации docker.py создаст следующий спи-
сок хостов:

О ch14_ngtnx_1;

О ch14_ghost_1.

Он также создаст группы, соответствующие коротким идентификаторам,
длинным идентификаторам, образам Docker, а также группу со всеми действу­
ющими контейнерами. В данном случае будут созданы следующие группы:

О 63b6767de77fe (ch14_ngtnx_1);

О 63b6767de77fe01aaбd840dd897329766bbd3dc60409001cc36e900f8d501dбd(ch14_ng1nx_1);

О 057d72a950163 (ch14_ghost_1);

О 057d72a950163769c2Ьcc1ecc81ba377d03c39Ыd19f8f4a9f0c748230b42c5c(ch14_ghost_1)$

О 1мage_ans1b lebook/ngtnx-ghost (ch14_ngtnx_1);

О tмage_ghost (ch14_ghost_1);

О runntng (ch14_ngtnx_1, ch14_ghost_1).

Вот как можно использовать сценарий динамической инвентаризации
Docker с плагином подключения к Docker (включается передачей флага -с ко­
манде docker), чтобы получить список всех процессов, выполняющихся в каж­
дом контейнере:

$ ansiЫe -с dockeг гunning -� гаw -а 'ps aux'

ch14_ghost_l I SUCCESS I гс=0 >>

USER PID %CPU %МЕМ VSZ RSS ТТУ STAT START TIME COMMAND

user 1 0.0 2. 2 1077892 45040?

user 34 0.0 0.0 4340 804?

user 35 0.0 5.9 1255292 121728?

root 108 0.0 0.0 4336

root 114 0.0 0.1 17500

ch14_ngi.nx_1 1 SUCCESS I rc=0 >>

USER PID %CPU %МЕМ VSZ

root 1 0.0 0.2 46320

ngi.nx 6 0. 0 0 .1 46736

root 71 0.0 0.0 4336

root 77 0.0 0.0 17500

КОНТЕЙНЕРЫ ANSIBLE

724 ?

2076?

RSS ТТУ

5668?

3020?

752?

2028?

5sl 05:19

5 05:19

Sl 05:19

Ss 06:20

R 06:20

STAT START

Ss 05:19

S 05: 19

5s 06:20

R 06: 20

0:00 npfll

0:00 sh -с node ind

0:02 node index

0:00 /Ыn/sh -с ps

0:00 ps aux

ПМЕ COMMAND

0:00 ngi.nx: fl!aster

0:00 ngi.nx: worker

0:00 /Ыn/sh -с ps

0:00 ps aux

Docker ♦:♦ 293

Одновременно с версией AnsiЫe 2.1 проект AnsiЫe выпустил новый инстру­

мент с названием AnsiЫe Container, упрощающий работу с образами и контей­

нерами Docker. Далее мы рассмотрим версию AnsiЫe Container 0.9, вышедшую

одновременно с AnsiЫe 2.3.
AnsiЫe Container обладает довольно богатыми возможностями. В частности,

его можно использовать для:
О создания новых образов (взамен файлов Dockerfiles);

О публикации образов Docker в реестрах (взамен docker push);

О запуска контейнеров Docker в режиме разработки (взамен Docker Com­

pose);

О развертывания в промышленном окружении (взамен Docker Swarm).
На момент написания этих строк AnsiЫe Container поддерживал разверты­

вание в Kubernetes и OpenShift, хотя этот список, скорее всего, будет расти. Если

вы не пользуетесь ни одним из этих окружений, не волнуйтесь: вы сможете пи­
сать сценарии, использующие модуль docker _contai.ner (как описывается далее

в этой главе) для остановки и запуска своих контейнеров в любом окружении,

имеющемся у вас.

Контейнер Conductor
AnsiЫe Container позволяет настраивать образы Docker, используя роли AnsiЫe
вместо файлов Dockerfiles. Когда для настройки хостов используется система

AnsiЫe, на них должен быть установлен интерпретатор Python. Но в общем

случае, когда используются контейнеры Docker, такое требование оказывается

нежелательным, потому что пользователи обычно стремятся создавать кон­

тейнеры как можно меньшего размера и не горят желанием устанавливать Py­

thon в контейнер, если он фактически не нужен для работы.

AnsiЬle Container избавляет от необходимости устанавливать Python в кон­

тейнеры благодаря использованию особого контейнера с названием Conductor

и возможности Docker монтировать тома из одного контейнера в другой.

294 ❖ Docker

В момент запуска AnsiЫe Container создает локальный каталог ansiЫe-deploy­

ment, копирует в него все файлы, необходимые контейнеру Conductor, и монти­
рует этот каталог в контейнер Conductor.

AnsiЫe Container монтирует каталоги со средой выполнения Python и всеми
необходимыми библиотеками из контейнера Conductor в настраиваемые кон­
тейнеры. Для этого каталог /usr из контейнера Conductor монтируется в ката­
лог /_usr внутри настраиваемого контейнера и затем AnsiЫe настраивается на
использование интерпретатора Python из каталога /_usr. Чтобы это решение
работало как надо, дистрибутив Linux в контейнере Conductor должен совпа­
дать с дистрибутивом Linux образа Docker, служащего основой для других кон­
тейнеров, подлежащих настройке.

Если базовый образ для контейнера Conductor является официальным об­
разом одного из поддерживаемых дистрибутивов Linux, AnsiЫe Container ав­
томатически добавит в контейнер необходимые пакеты. Версия 0.9.0 поддер­
живала такие дистрибутивы, как Fedora, CentOS, Deblan, Ubuntu и Alpine. Вы
можете взять за основу неподдерживаемый образ, но в этом случае вам при­
дется самим обеспечить установку всех необходимых пакетов.

Более полный перечень пакетов, которые должны устанавливаться в кон­
тейнер Conductor, вы найдете в файле container/docker/templates/conductor­

dockerfile.j2, в репозитории AnsiЫe Container на GitHub (https://github.com/an­
siЫe/ansiЬle-container).

Если вы не хотите, чтобы AnsiЫe Container монтировал среду выполнения
из контейнера Conductor в настраиваемые контейнеры, передайте флаг --use­
local-python команде ansi.Ыe-contai.ner. В этом случае AnsiЬle Container будет
использовать интерпретатор Python, установленный в образ настраиваемого
контейнера.

Создание образов Docker

Давайте задействуем AnsiЫe Container для создания простого образа Nginx на
основе примера 15.1.

Создание начальных файлов
В первую очередь нужно выполнить команду инициализации:

$ ansiЫe-container init

Эта команда создаст набор файлов в текущем каталоге:

f-- ansiЫe-гequireмents.txt
f-- ansiЫe.cfg

f-- containeг.yмl
f-- меtа.умl
L requireмents.yмl

Docker ❖ 295

Создание ролей
Далее мы должны создать роль для настройки контейнера. Назовем ее ghost­
ngi.nx, потому что она отвечает за настройку образа для обслуживания Ghost.

Это очень простая роль; ей нужны лишь конфигурационный файл ghost.conf
из примера 15.2 и файл с задачами, реализующими пример 15.1. Вот как вы­
глядит структура каталогов для роли:

L roles
L ghost-ngi.nx

f- ftles
1 L ghost. conf
L tasks

L l'lain.yl'll

А вот содержимое файла tasks/main.yml:

nal'le: rel'love default confi.g
fHe:

path: /etc/ngi.nx/conf.d/default.conf
state: absent

nal'le: add ghost confi.g

сору:
src: ghost.conf
dest: /etc/ngi.nx/conf.d/ghost.conf

НАСТРОЙКА CONTAINER. YML

Далее добавим сценарий container.yml, использующий роль, описанную выше,
для создания контейнера, как показано в примере 15.10. Он напоминает сце­
нарий docker-compose.yml и добавляет дополнительные поля, характерные для
AnsiЫe, и использует поддержку фильтров и подстановки переменных в стиле
Jinja2.

Пример.15.10 ❖ container.yml

versi.on: "2" О
setti.ngs:

conductor_base: deЫan:jessi.e &
servi.ces: С)

ac-ngi.nx: О
frol'I: ngi.nx 0
COl'll'land: [ngi.nx, ·9, dael'lon off;] Ф
roles:

- ghost-ngi.nx 8
regi.stri.es: {} 0

О Это выражение сообщает инструменту AnsiЫe Container, что поддерживается вер­
сия 2 схем Docker Compose. По умолчанию используется версия 1, но вы почти всегда
должны использовать версию 2.

296 ❖ Docker

@ В качестве основы для контейнера Conductor используется образ debi.an: jessi.e, по­
тому что с его помощью предполагается настраивать официальный образ Nginx, ко­
торый также основан на образе deЫan: jessi.e.

t) Поле servi.ces - это словарь, ключами которого являются имена создаваемых нами
контейнеров. В данном примере создается только один контейнер.

О Контейнеру присваивается имя ac-ngi.nx, от AnsiЬ/e Conductor Nginx.
0 Задается базовый образ ngi.nx.
0 Мы должны указать команду, которую требуется вызвать сразу после запуска контей­

нера.
& Роли, которые должны использоваться для настройки этого образа. В данном случае

используется только одна роль: ghost-ngi.nx.
0 Поле regi.stri.es определяет внешние реестры для сохранения контейнеров. Мы еще

не настроили ни одного реестра, поэтому поле оставлено пустым.

AnsiЫe Container не загружает базовых образов на локальную машину. Это нужно сде­
лать вручную, до сборки контейнеров. Например, прежде чем запустить пример 15.10,
необходимый для сборки ac-ngi.nx, базовый образ ngi.nx можно загрузить так:

$ docker pull ngi.nx

Сборка контейнеров

Наконец, можно выполнить сборку:

$ ansi.Ыe-contai.ner bui.ld

Вот как должен выглядеть вывод этой команды:

Bui.ldi.ng Docker Engi.ne context ...
Starti.ng Docker bui.ld of Ansi.Ыe Contai.ner Conductor i.мage (please Ье pati.ent) ...
Parsi.ng conductor CLI args.
Dockeг• daeмon i.ntegrati.on engi.ne loaded. Bui.ld starti.ng. project=ans-con
Bui.ldi.ng servi.ce... project=ans-con servi.ce=ac-ngi.nx

PLAY [ac�nginx] **

TASK [Gatheri.ng Facts] ***

ok: [ac-ngi.nx]

TASK [ghost-ngi.nx : гемоvе default confi.g] *************************************

changed: [ac-ngi.nx]

TASK [ghost-ngi.nx : add ghost confi.g] **

changed: [ac-ngi.nx]

PLAY RECAP ***

ac-ngi.nx : оk=З changed=2 unreachable=0 fai.led=0

Appli.ed гоlе to servi.ce role=ghost-ngi.nx servi.ce=ac-ngi.nx
Coммi.tted lауег as i.мage i.мage=sha256:SeЬ75981fc5117b3fca3207Ы94f3faбc9ccb85
7718f91d674ec53d86323ffe3 servi.ce=ac-ngi.nx
Bui.ld coмplete. servi.ce=ac-ngi.nx
All i.мages successfully bui.lt.
Conductor terмi.nated. Cleani.ng up. соммапd_гс=0 conductor_i.d=Bc68ca4720beae5d9c
7ca10ed70a3c08Ы07cd3f68868b3670dcc853abf9b62b save_contai.ner=False

Docker ❖ 297

Для именования образов AnsiЫe Container использует соглашение {имя_
проекта}-{имя_службы}; имя проекта определяется по имени каталога, в котором
выполняется команда ans i.b le-contai.ner i.ni. t. В данном случае каталог называет­
ся ans-con, поэтому созданный образ получил имя ans-con-ac-nginx.

Кроме того, AnsiЫe всегда создает образ контейнера Conductor, следуя шаб­
лону {имя_проекта}-сопduсtог.

Если нежелательно, чтобы в качестве имени проекта AnsiЫe Container ис­
пользовал имя каталога, можно передать параметр --project-naмe с требуемым
именем.

Если теперь выполнить команду

$ dockeг il'lages

она выведет следующие созданные образы контейнеров:

REPOSIТORY TAG IMAGE ID

ans-con-ac-nginx 20170424035545 5еЫ5981fс51
ans-con-ac-nginx latest 5еЫ5981fс51
ans-con-conductor latest 742cf2e046a3

CREATED SIZE

2 l'linutes ago 182 МВ
2 l'linutes ago 182 МВ
2 l'linutes ago 622 МВ

Устранение неполадок во время сборки
Если команда сборки завершилась с ошибкой, выяснить ее причины можно,
заглянув в журналы, генерируемые контейнером Conductor. Сделать это можно
двумя способами.

Первый: использовать флаг --debug в вызове команды ansi.Ыe-contai.ner.
Если по каким-то причинам повторный запуск команды с флагом - -debug не­

желателен, можно заглянуть в журнал, который генерирует Docker. Для этого
нужно знать идентификатор контейнера Conductor. Поскольку этот контейнер
больше не выполняется, используйте команду docker ps -а, чтобы вывести иден­
тификаторы завершившихся контейнеров:

$ dockeг ps -а

CONTAINER ID IMAGE COMМAND CREATED STATUS

78е78Ь9а1863 0c238eaf1819 "/Ыn/sh -с 'cd /_ ... " 21 мinutes ago Exited (1)

Имея идентификатор, можно получить записи из журнала, как показано
ниже:

$ dockeг logs 78е78Ь9а1863

Запуск на локальной машине
AnsiЫe Container позволяет запустить несколько контейнеров локально, в точ­
ности как Docker Compose. Файл container.yml имеет такой же формат, как файл
docker-compose.yml. Он показан в примере 15.11.

Пример 15.11 ❖ container.yml для запуска на локальной машине

version: "2"
settings:

conductor_base: deЫan:jessie

298 ❖ Docker

servi.ces:
ac-ngi.nx:

fгом: ngi.nx
соммаnd: [ngi.nx, -g, daeмon off;]
roles:

- ghost-ngi.nx
ports:

- "8443:443"

- "8000:80"

dev_overгi.des: О
voluмes:

- $PWD/certs:/certs
li.nks:

- ghost
ghost: f)

fгом: ghost
dev_overгi.des:

voluмes:
- $PWD/ghostdata:/var/li.b/ghost

regi.stri.es: {}

Обратите внимание на различия между примерами 15 .1 О и 15 .11.

О В описание службы ac-ngi.nx добавлен раздел dev_overri.des, содержащий данные, ха­
рактерные для запуска на локальной машине (то есть они не используются для созда­
ния образов или развертывания в промышленном окружении). В данном случае вы­
полняется монтирование локального каталога с сертификатами TLS и определяется
связь данного контейнера с контейнером ghost.

f) Добавлена служба ghost, содержащая приложение Ghost. Прежде в этом не было не­
обходимости, потому что мы не создавали свой контейнер Ghost, а просто запускали
официальный, неизмененный контейнер.

Обратите также внимание на различия в синтаксисе с Docker Compose. На­
пример, AnsiЫe Container использует выражение fгом, тогда как Docker Com­

pose использует t.мage, и в Docker Compose нет раздела dev_oveггt.des.

Запустить контейнеры на локальной машине можно командой

$ ansi.Ыe-contai.ner run

а остановить - командой

$ ansi.Ыe-contai.ner stop

Остановить все контейнеры и удалить все созданные образы можно коман­
дой

$ ansi.Ыe-contai.ner destroy

Публикация образов в реестрах
Получив образы, удовлетворяющие требованиям, вы можете сохранить их
(опубликовать) в реестре, чтобы затем использовать для развертывания.

Docker ❖ 299

Для этого необходимо настроить раздел regi.stri.es, указав в нем нужный ре­
естр. В примере 15.12 показано, как можно изменить container.yml, чтобы соз­
данные образы сохранялись в Docker-peecтpe в пространстве имен ansiЬlebook.

Пример 15.12 ❖ Раздел registries в файле container.yml

regi.stri.es:

docker:

url: https://i.ndex.docker.i.o/vl/

naмespace: ansi.Ыebook

Аутентификация
Сохраняя образ в первый раз, необходимо передать свое имя пользователя
в аргументе командной стоки:

$ ansi.Ыe-contai.ner push --usernaмe $YOUR_USERNAHE

Сразу после запуска команды вам будет предложено ввести пароль. В первой
попытке сохранить образ AnsiЫe Container запомнит ваши учетные данные
в -/.docker/config.json, и в последующем вам не придется повторно указывать
имя пользователя или вводить пароль.

Вот как будет выглядеть вывод предыдущей команды:

Parsi.ng conductor CLI args.

Engi.ne i.ntegrati.on loaded. Prepari.ng push. engi.ne=Dockeг• daeмon

Taggi.ng ansi.Ыebook/ans-con-ac-ngi.nx

Pushi.ng ansi.Ыebook/ans-con-ac-ngi.nx:20170430055647 ...

The push геfегs to а reposi.tory [docker.i.o/ansi.Ыebook/ans-con-ac-ngi.nx]

Prepari.ng

Pushi.ng

Mounted fгом li.bгary/ngi.nx

Pushed

20170430055647: di.gest: sha256:5050749Sa9538e9865fe3038d56793a1620b9b372482667a

Conductor terмi.nated. Cleani.ng up. соммаnd_гс=0 conductor_i.d=ld4cfa04a055c1040

Несколько реестров
AnsiЫe Container позволяет определить несколько реестров. Например, вот как

может выглядеть раздел regi.stri.es с двумя реестрами, Docker Hub и Quay:

regi.stri.es:

docker:

naмespace: ansi.Ыebook

url: https://i.ndex.docker.i.o/vl/

quay:

naмespace: ansi.Ыebook

url: https://quay.i.o

Чтобы сохранить образы только в один реестр, используйте флаг - -push-to.
Например, следующая команда сохранит образы в реестр Quay:

$ ansi.Ыe-contai.ner push --push-to quay

300 ❖ Docker

Развертывание контейнеров в промышленном окружении
Хотя мы не рассматривали этого вопроса, тем не менее AnsiЫe Container так­
же поддерживает развертывание контейнеров в промышленном окружении,
для чего можно воспользоваться командой ansi.Ыe-contai.ner deploy. На момент
написания этих строк AnsiЫe Container поддерживал развертывание на двух
платформах управления контейнерами: OpenShift и Kubernetes.

Если для запуска своих контейнеров вы ищете публичное облако, поддержи­
ваемое AnsiЫe Container, обратите внимание на облачные платформы Open­
Shift Online (основанная на OpenShift и управляемая компанией Red Hat) и Ku­
bernetes (часть облачной платформы Google Compute Engine). Обе платформы
также являются проектами с открытым исходным кодом, поэтому при нали­
чии собственного аппаратного обеспечения вы можете бесплатно развернуть
свое облако OpenShift или Kubernetes. Если потребуется развернуть свой про­
ект на какой-то другой платформе (например, ЕС2 Container Service или Azure
Container Service), вы не сможете использовать для этого AnsiЫe Container.

Технология Docker ясно продемонстрировала широту своих возможностей.
В этой главе мы узнали, как управлять образами, контейнерами и сетями
Docker. Несмотря на то что мы не рассматривали тему создания образов Docker
в сценариях AnsiЫe, к тому моменту, когда вы будете читать эти строки, вы
почти наверняка будете достаточно полно представлять, как это можно сде­
лать.

Глава 16
•••

Отладка сценариев AnsibLe

Давайте признаем - ошибки случаются. Ошибка ли это в сценарии или же не­
верное значение в файле конфигурации, в любом случае, что-то идет не так.
В этой главе мы рассмотрим приемы, позволяющие вылавливать эти ошибки.

ИНФОРМАТИВНЫЕ СООБЩЕНИЯ ОБ ОШИБКАХ
Когда задача AnsiЫe терпит неудачу, она выводит сообщение не в самом удоб­
ном формате для человека, который будет искать причину проблемы. Вот при­
мер сообщения об ошибке, с которой мы столкнулись, работая над этой книгой:

TASK [check out the reposi.tory оп the host] *************************************

fatal: [web]: FAILED! => {"changed": false, "cl'ld": "/usr/Ыn/gi.t clone --ori.gi.n о
ri.gi.n '' /hol'1e/vagrant/1'1ezzani.ne/1'1ezzani.ne_exal'1ple", "fai.led": true, "l'lsg": "Clon
i.ng i.nto '/hol'1e/vagrant/1'1ezzani.ne/1'1ezzani.ne_exal'1ple' ... \nPerJ'li.ssi.on deni.ed (puЫi.
ckey).\r\nfatal: Could not read frol'l rel'lote reposi.tory.\n\nPlease J'lake sure you h
ave the correct access ri.ghts\nand the reposi.tory exi.sts. ", "гс": 128, "stderr":
"Cloni.ng i.nto '/hol'1e/vagrant/1'1ezzani.ne/1'1ezzani.ne_exal'1ple' ... \nPerl'li.ssi.on deni.ed (
puЫi.ckey).\r\nfatal: Could not read frol'l rel'lote reposi.tory.\n\nPlease l'lake sure
you have the correct access ri.ghts\nand the reposi.tory exi.sts. \n", "stderr _li.nes"
: ["Cloni.ng i.nto '/hol'1e/vagrant/1'1ezzani.ne/1'1ezzani.ne_exal'1ple' ... ", "Perl'li.ssi.on den
i.ed (puЫi.ckey).", "fatal: Could not read frol'l rel'lote reposi.tory.", "", "Please 1'1
ake sure you have the correct access ri.ghts", "and the reposi.tory exi.sts."], "std
out": "", "stdout_li.nes": []}

Как упоминалось в главе 10, плагин обратного вызова debug может привести
это сообщение к более удобочитаемому виду:

TASK [check out the reposi.tory оп the host] *************************************

fatal: [web]: FAILED! => {

}

"changed": false,
"cl'ld": "/usr/Ыn/gi.t clone --ori.gi.n ori.gi.n '' /hol'1e/vagrant/1'1ezzani.ne/1'1ezzani.
ne_exal'lple",
"fai.led": true,
"гс": 128

STDERR:

302 ❖ Отладка сценариев AnsiЬle

Cloning into 1 /hoмe/vagгant/мezzanine/мezzanine_exaмple 1

• • •

Perмission denied (puЫickey).
fatal: Could not геаd fгом гемоtе repository.

Please маkе sure you have the соггесt access rights
and the repositoгy exists.

MSG:

Cloning into 1 /hoмe/vagrant/мezzanine/мezzanine_exaмple 1

• • •

Perмission denied (puЫickey).
fatal: Could not read fгом гемоtе repository.

Please маkе sure you have the соггесt access rights
and the repositoгy exists.

Чтобы включить плагин, достаточно добавить следующую строку в раздел
defaults в файле ansiЫe.cfg:

[defaults]
stdout_callback = debug

ОтлАДКА ошиБок с SSН-подключением
Иногда AnsiЬle не удается установить SSН-соединение с хостом. В этом случае
полезно проверить, какие аргументы AnsiЫe передает SSН-клиенту, и воспро­
извести действие вручную в командной строке.

Если вызвать ansi.Ыe-playbook с аргументом -vvv, можно увидеть, как именно
AnsiЬle вызывает SSH. Это может пригодиться для отладки.

В примере 16.1 показано, что вывела AnsiЬle, попытавшись вызвать модуль,
чтобы скопировать файл.

Пример 16.1 ❖ Пример вывода при передаче флага, включающего подробный вывод

TASK: [сору TLS key] **

task path: /Users/lorin/dev/ansiЫebook/ch15/playbooks/playbook.yмl:5
Using мodule file /usr/local/lib/python2.7/site-packages/ansiЫe/мodules/core/
files/stat.py
<127.0.0.1> SSH: ЕХЕС ssh -с -о ControlMaster=auto -о ControlPersist=60s -о
StrictHostKeyChecking=no -о Port=2222 -о 1 IdentityFile=".vagrant/мachines/default/
virtualbox/private_key 1

" -о KbdinteгactiveAuthentication=no -о
PrefeгredAuthentications=gssapi-with-мic,gssapi-keyex,hostbased,puЫickey -о
PasswordAuthentication=no -о User=vagrant -о ConnectTiмeout=10 -о ContгolPath=
/Users/lorin/.ansiЫe/cp/ansiЫe-ssh-%h-%p-%r 127.0.0.1 1/bin/sh -с 1 " 1 "1(uмask
77 && мkdir -р "' echo -/.ansiЫe/tмp/ansiЫe-tмp-1487128449.23-168248620529755 '11

&& echo ansiЫe-tмp-1487128449.23-168248620529755="' echo -/,ansiЫe/tмp/ansiЫetмp-
1487128449.23-168248620529755 '") && sleep 01111111 1

<127.0.0.1> PUT /var/folders/g_/523vqбg1037d10231ммbx1780000gp/T/tмpyOxLM ТО
/hoмe/vagrant/.ansiЫe/tмp/ansiЫe-tмp-1487128449,23-168248620529755/stat.py
<127,0.0.1> SSH: ЕХЕС sftp -Ь - -С -о ControlMaster=auto -о ControlPersist=60s -о
StrictHostKeyChecking=no -о Рогt=2222 -о 1 IdentityFile=".vagrant/мachines/default/
virtualbox/private_key 1

" -о KbdinteractiveAuthentication=no -о

Отладка сценариев AnsiЫe ❖ 303

PreferredAuthenttcattons=gssapt-wtth-мtc,gssapt-keyex,hostbased,puЫtckey -о

PasswordAuthenttcatton=no -о User=vagrant -о ConnectTtмeout=10 -о ControlPath=

/Users/lorin/.ansiЫe/cp/ansiЫe-ssh-%h-%p-%r '[127.0.0.1]'

Иногда, при отладке проблем с подключением, может даже понадобиться
использовать флаг -vvvv, чтобы увидеть сообщение об ошибке, возвращаемое
SSН-клиентом. Например, на хаете не запущен сервер SSH, вы увидите при­
мерно такую ошибку:

testserver I FAILED => SSH encountered ап unknown еггог. The output was:

OpenSSH_6.2p2, OSSLShtм 0.9.Вг 8 Dec 2011

debugl: Reading configuration data /etc/ssh_conftg

debugl: /etc/ssh_config line 20: Applying options for *

debugl: /etc/ssh_config line 102: Applying options for *

debugl: auto-мux: Trying extsttng мaster

debugl: Control socket "/Users/lorin/.ansiЫe/cp/ansiЫe-ssh-127.0.0.1-

2222-vagrant" does not exist

debug2: ssh_connect: needprtv 0

debugl: Connecting to 127.0.0.1 [127.0.0.1] port 2222.

debug2: fd 3 setting O_NONBLOCK

debugl: соппесt to address 127.0.0.1 port 2222: Connection refused

ssh: connect to host 127.0.0.1 port 2222: Connection refused

Если включена проверка ключей хостов и выявится несоответствие ключа
хоста с ключом в -/.ssh/known_hosts, аргумент -vvvv поможет обнаружить эту
ошибку:

@@@

@ WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED!@

@@@

IT IS POSSIBLE ТНАТ SOMEONE IS DOING SOMETHING NASTY!

Sомеопе could Ье eavesdropptng оп you right now (мan-tn-the-мtddle attack)!

It ts also posstЫe that а host key has just Ьееп changed.

The fingerprtnt for the RSA key sent Ьу the гемоtе host ts

c3:99:c2:8f:18:ef:68:fe:ca:86:a9:f5:95:9e:a7:23.

Please contact your systeм adмtnistrator.

Add correct host key in /Users/lorin/.ssh/known_hosts to get rtd of this

мessage.

Offending RSA key iп /Users/lortn/.ssh/known_hosts:1

RSA host key for [127.0.0.1):2222 has changed and you have requested strtct

checktng.

Host key vertficatton failed.

Если дело в этом, удалите старую запись из файла -/,ssh/known_hosts.

МОДУЛЬ DEBUG

В этой книге мы уже использовали модуль debug несколько раз. Это аналог ин­
струкции pri.nt в синтаксисе AnsiЫe. Его можно использовать для вывода зна­
чений переменных и произвольных строк, как показано в примере 16.2.

304 ❖ Отладка сценариев AnsiЫe

Пример 16.2 ❖ Модуль debug в действии

debug: var=мyvariaЫe
debug: мsg="The value of мyvariaЫe is {{ var }}"

Как уже говорилось в главе 4, можно вывести значения всех переменных,
связанных с текущим хостом, как показано ниже:

- debug: var=hostvars[inventory_hostnaмe]

ИНТЕРАКТИВНЫЙ ОТЛАДЧИК СЦЕНАРИЕВ
В AnsiЫe 2.1 была добавлена поддержка интерактивного отладчика. Чтобы
включить режим отладки, добавьте strategy: debug в свою операцию, например:

nаме: an ехамрlе play
strategy: debug
tasks:

Когда включен режим отладки, AnsiЫe запускает отладчика в случае появле­
ния ошибки в задаче:

TASK [try to apt install а package] **

fatal: [localhost): FAILED! => {"changed": false, "смd": "apt-get update",
"failed": true, "мsg": "[Errno 2] No such file ог directory", "гс": 2}
Debugger invoked
(debug)

В табл. 16.1 перечислены команды, поддерживаемые отладчиком.

Таблица 16.1. Команды отладчика

Команда Описание

р var Вывести значение переменой
task.args[key]=value Изменить аргумент задачи, допустившей ошибку
vars[key]=value Изменить значение переменной
г Перезапустить задачу
с Продолжить выполнение операции

q Прервать операцию и завершить работу отладчика
help Показать справку

В табл. 16.2 перечислены переменные, поддерживаемые отладчиком.

Таблица 16.2. Переменные, поддерживаемые отладчиком

Команда Описание

р task Имя задачи, где возникла ошибка

р task. args Аргументы модуля

р result Результат, который вернула задача, допустившая ошибку

р vars Значения всех известных переменных

р vars[key] Значение одной переменной

Вот пример сеанса работы с отладчиком:

(debug) р task

TASK: tгу to apt tnstall а package

(debug) р task.args

{u'паме': u'foo'}

(debug) р result

{'_anstЫe_no_log': False,

'_anstЫe_parsed': True,

'changed': False,

u'cмd': u'apt-get update',

u'fatled': True,

Отладка сценариев AnsiЫe ❖ 305

'tnvocatton': {u'мodule_args': {u'allow_unauthenttcated': False,

u'autoreмove': False,

u'cache_valid_tiмe': 0,

u 'deb' : None,

u'default_release': None,

u'dpkg_options': u'force-confdef,force-confold',

u'force': False,

u'install_recoммends': None,

u'паме': u'foo',

u'only_upgrade': False,

u' package' : [u' foo'] ,

u'purge': False,

u'state': u'present',

u'update_cache': False,

u'upgrade': None},

'мodule_naмe': u'apt'},

u'мsg': u'[Errno 2] No such file ог directory',

u'rc': 2}

(debug) р vars['inventory_hostnaмe']

u'localhost'

(debug) р vars

{u'ansiЫe_all_ipv4_addresses': [u'192.168.86.113'],

u'ansiЫe_all_ipvб_addresses': [u'fe80::f89b:ffff:fe32:Se5%awdl0',

u'fe80::Зe60:8f83:34b5:fc17%utun0',

u'fe80::9679:241b:e93:8Ыf%utun2'],

u'ansiЫe_architecture': u'x86_64',

Вывод значений переменных - одна из самых полезных возможностей, од­
нако отладчик позволяет также изменять переменные и аргументы задачи,
потерпевшей неудачу. За более подробной информацией обращайтесь к доку­
ментации с описанием отладчика AnsiЫe (http://blt.ly/2lvAm8B).

МОДУЛЬ ASSERT
Модуль assert завершает выполнение с ошибкой при невыполнении заданно­
го условия. Например, сценарий завершится с ошибкой, если не будет найден

сетевой интерфейс ethl:

306 ❖ Отладка сценариев AnsiЫe

nаме: asseгt that ethl interface exists
assert:

that: ansiЫe_ethl is defined

Такая проверка тех или иных условий может очень пригодиться при отладке
сценария.

о
Имейте в виду, что код в выражении assert - это инструкции Jinja2, а не Python. Напри­
мер, для проверки длины списка так соблазнительно использовать такой код:

Недопустимый для Jinja2 код, который не будет работать!
assert:

that: "len(ports) == 1"

К сожалению, движок Jinja2 не поддерживает встроенную функцию len. Вместо нее сле­
дует использовать Jinjа2-фильтр length:

assert:
that: "ports l length == 1"

Чтобы проверить статус файла в файловой системе хоста, можно сначала
вызвать модуль stat и добавить проверку возвращаемого модулем значения:

nаме: stat /opt/foo
stat: path=/opt/foo
register: st
nаме: assert that /opt/foo is а directory
assert:

that: st.stat.isdir

Модуль stat собирает информацию о файле и возвращает словарь, содержа­
щий поле stat со значениями, перечисленными в табл. 16.3.

Таблица 16.3. Возвращаемые значения модуля stat

Поле Описание

ati.мe Время последнего доступа к файлу в формате меток времени Unix

cti.мe Время создания в формате меток времени Unix

dev Числовой идентификатор устройства, где находится данный индексный узел

exi.sts Тгuе, если путь существует

gi.d Числовой идентификатор группы владельца

i.node Номер индексного узла

i.sЫk Тгuе, если файл - специальный файл блочного устройства

i.schr Тгuе, если файл - специальный файл символьного устройства

i.sdi.r Тгuе, если файл - каталог

i.sfi.fo Тгuе, если файл - именованный канал

i.sgi.d Тгuе, если установлен бит set-group-lD

i.slnk Тгuе, если файл - символическая ссылка

i.sreg Тгuе, если файл - обычный файл

i.ssock Тгuе, если файл - сокет

Отладка сценариев AnsiЫe ❖ 307

Окончание табл. 16.3

Поле Описание

i.sui.d Тгuе, если установлен бит set-user-lD

l'lode Режим доступа к файлу в виде строки (например, «1177»)

l'lti.l'le Время последнего изменения в формате меток времени Unix

n li.nk Количество жестких ссылок на файл

pw_nal'le Имя пользователя владельца файла

гgгр Тгuе, если дано разрешение на чтение для группы

roth True, если дано разрешение на чтение для остальных

rusr Тгuе, если дано разрешение на чтение для пользователя

si.ze Размер файла в байтах, если это обычный файл

ui.d Числовой идентификатор пользователя владельца

wgrp True, если дано разрешение на запись для группы

woth True, если дано разрешение на запись для остальных

wusr True, если дано разрешение на запись для пользователя

xgrp True, если дано разрешение на выполнение для группы

xoth True, если дано разрешение на выполнение для остальных

xusr True, если дано разрешение на выполнение для пользователя

ПРОВЕРКА СЦЕНАРИЯ ПЕРЕД ЗАПУСКОМ
Команда ans-\.Ыe-playbook поддерживает несколько флагов, позволяющих про­
вести проверку сценария перед запуском.

Проверка синтаксиса

Как показано в примере 16.3, флаг --syntax-check включает проверку допусти­
мости синтаксиса сценария, но не запускает его.

Пример 16.3 ❖ Проверка синтаксиса

$ ansi.Ыe-playbook --syntax-check playbook.yl'll

Список хостов

Как показано в примере 16.4, флаг - -l"ist-hosts выводит список хостов, на кото­
рых будет выполняться сценарий, но не запускает его.

Пример 16.4 ❖ Список хостов
$ ansi.Ыe-playbook --li.st-hosts playbook.yl'll

�
Иногда можно получить ошибку:

ERROR: provi.ded hosts li.st i.s el'lpty

В реестре явно должен быть указан хотя бы один хост, иначе AnsiЫe вернет эту ошибку,
даже если сценарий выполняется только на локальном хаете. При пустом реестре (на­
пример, если используется сценарий динамической инвентаризации и в данный момент

308 ❖ Отладка сценариев AnsiЫe

ни один хает не запущен) можно предотвратить появление этого сообщения, добавив
в реестр следующую строку:

localhost ansiЫe_connection=local

Список задач
Как показано в примере 16.5, флаг - - l i.st- tasks выводит список задач, которые
запускает сценарий, но не запускает его.

Пример 16.5 ❖ Список задач

$ ansiЫe-playbook --list-tasks playbook.yмl

Мы уже использовали этот флаг в примере 6.1 для вывода списка задач в на­
шем первом сценарии для развертывания Mezzanine.

Проверка режима
Флаги - С и - -check запускают AnsiЫe в режиме проверки (также известном как
dry-run - холостой запуск), который показывает, изменила бы каждая задача
состояние хоста, но при этом не выполняют никаких изменений.

$ ansiЫe-playbook -с playЬook.yмl
$ ansiЫe-playbook --check playbook.yмl

Одна из сложностей использования режима проверки состоит в том, что
успех выполнения последующих частей сценария зависит от выполнения пре­
дыдущих. Если запустить в режиме проверки сценарий из примера 6.28, он
вернет признак ошибки, как показано в примере 16.6, потому что данная за­
дача зависит от предыдущей, устанавливающей программу Git на хает.

Пример 16.6 ❖ Ошибка при выполнении сценария в режиме проверки
GATHERING FACTS ***

ok: [web]

TASK: [install apt packages] **

changed: [web] => (iteм=git,libjpeg-dev,libpq-dev,мeмcached,nginx,postgresql,py
thon-dev,python-pip,python-psycopg2,python-setuptools,python-virtualenv,supervi
sог)

TASK: [check out the repositoгy оп the host] **********************************
failed: [web] => {"failed": tгue}

мsg: Failed to find required executaЫe git

FATAL: all hosts have already failed -- aborting

В главе 12 уже рассказывалось, как модули реализуют режим проверки.

Вывод изменений в файлах
Флаги -D и -di.ff выводят информацию об изменениях, выполненных в любых
файлах на удаленной машине. Этот флаг удобно использовать вместе с - -check,

чтобы увидеть, как AnsiЫe изменит файл в нормальном режиме.

Отладка сценариев AnsiЫe ❖ 309

$ ansiЫe-playbook -D --check playbook.yмl

$ ansiЫe-playbook --diff --check playbook.yмl

Если AnsiЫe внесет изменения в какой-то файл (например, используя такие
модули, как сору, tемр late и l i.nei.nfi. le), изменения будут отображены в формате

.diff:

TASK: [set the gunicorn config file] **

--- before: /hoмe/vagrant/мezzanine-exaмple/project/gunicorn.conf.py
+++ after: /Users/lorin/dev/ansiЫebook/ch06/playbooks/teмplates/gunicor
n.conf.py.jZ

@@ -1,7 +1,7 @@

fгом _future_ iмport unicode_literals
iмport мultiprocessing

Ыnd = "127.0.0.1:8000"
workers = мultiprocessing.cpu_count() * 2 + 1

-loglevel = "еггог"
+loglevel = "warning"
ргос_nаме = "мezzanine-exaмple"

ВЫБОР ЗАДАЧ ДЛЯ ЗАПУСКА
Иногда желательно, чтобыАnsiЫе выполнила не все задачи в сценарии, напри­
мер во время разработки и отладки сценария. Для этого AnsiЬle поддерживает
несколько параметров командной строки, позволяющих управлять выполне­
нием задач.

Пошаговое выполнение
Флаг --step, показанный в примере 16.7, заставляет AnsiЫe запрашивать под­
тверждение на запуск каждой задачи:

Регfогм task: install packages (y/n/c):

В ответ можно потребовать выполнить задачу (у), пропустить ее (п) или по­
просить AnsiЫe выполнить оставшуюся часть сценария без дополнительных
подтверждений (с).

Пример 16.7 ❖ Пошаговое выполнение

$ ansiЫe-playbook --step playbook.yмl

Выполнение с указанной задачи
Флаг - -start-at-task tasknaмe, показанный в примере 16.8, требует от AnsiЫe
выполнить сценарий, начиная с указанной задачи. Это удобно, если какая­
то задача потерпела неудачу из-за ошибки в одной из предыдущих задач
и вы хотите перезапустить сценарий с той задачи, которую только что ис­
правили.

310 ❖ Отладка сценариев AnsiЫe

Пример 16.8 ❖ Выполнение с указанной задачи

$ ansi.Ыe-playbook --staгt-at-task="i.nstall packages" playbook.yl'll

Теги

AnsiЫe позволяет добавлять теги к задачам и операциям. Например, следую­
щая операция отмечена тегом foo, а задача - тегами Ьаг и quux:

hosts: l'lyservers

tags:

- foo

tasks:

nal'le: install editors

apt: nal'le={{ itel'I }}

with_ itel'ls:

Vil'I

e!'lacs

nano

nal'le: run arbitrary COl'll'land

col'll'land: /opt/l'lyprog

tags:

- bar

- quux

Добавив в команду флаг -t имена_ тегов или - -tags имена_ тегов, можно потребо­

вать от AnsiЫe выполнить только операции и задачи, отмеченные определен­
ными тегами. Добавив флаг - -sk-\.p-tags, можно потребовать пропустить опера­

ции и задачи, отмеченные указанными тегами. Взгляните на пример 16.9.

Пример 16.9 ❖ Использование тегов

$ ansi.Ыe-playbook -t fоо,Ьаг playЬook.yl'll

$ ansi.Ыe-playbook --tags=foo,baг playbook.yl'll

$ ansi.Ыe-playbook --ski.p-tags=baz,quux playbook.yl'll

Глава 17
••••••••••••••••••••••••••••••••• ••••••••••••••

Управление

хостами Windows

AnsiЫe часто называют «системой управления конфигурациями на стерои­
дах». Исторически система AnsiЫe имеет тесные связи с Unix и Linux, и сви­
детельства этому можно наблюдать повсюду, например в именах переменных
(таких как ansi.Ыe_ssh_host, ansi.Ыe_ssh_connecti.on и sudo). Однако с самого нача­
ла AnsiЬle включает поддержку разных механизмов соединения.

Поддержка чужеродных операционных систем - таких как Windows для Li­
nux - заключалась не только в реализации механизмов подключения к Win­
dows, но и в использовании более универсальных имен (например, в переиме­
новании переменной ansi.Ыe_ssh_host в ansi.Ыe_host и выражения sudo в Ьесо1'1е).

Поддержка Microsoft Windows впервые появилась в версии AnsiЫe 1.7, но она вышла из
статуса «бета» только в версии 2.1. Кроме того, запустить AnsiЫe на хаете с Windows (то
есть использовать его в качестве управляющей машины) можно только при использова­
нии Windows Subsystem for Linux (WSL).

Также следует отметить, что богатство библиотеки модулей для Windows
уступает богатству библиотеки модулей для Linux.

ПОДКЛЮЧЕНИЕ К WINDOWS

Добавляя поддержку Windows, разработчики AnsiЫe решили не отходить от
своего правила и не стали добавлять специального агента для Windows - и это,
как мне кажется, было верным решением. AnsiЫe использует интегрирован­
ный механизм удаленного управления Windows Remote Management (WinRM),
поддерживающий SОАР-подобный протокол.

WinRM - это наша главнейшая зависимость в Windows, и для взаимодей­
ствий с этим механизмом из Python нужно установить соответствующий пакет
на управляющий хает:

$ sudo pip install pywi.nгм

312 ❖ Управление хостами Windows

По умолчанию система AnsiЫe пытается подключиться к удаленной машине
по протоколу SSH, поэтому мы должны явно потребовать сменить механизм
подключения. В большинстве случаев желательно включить все хосты с Win­
dows в отдельную группу в реестре. Выбор конкретного имени для такой груп­
пы не имеет большого значения, но в последующих примерах сценариев мы
будем использовать одно и то же имя:

[wi.ndows]

wi.n01.exaмple.coм

wi.n02.exaмple.coм

После этого нужно добавить в group_var/windows конфигурацию подключе-
ния, чтобы все хосты в группе унаследовали ее.

В 2015 г. компания Microsoft объявила в своем благе (https//Ьlogs.msdn.microsoft.com/

powershell/2015/06/03/looking-forward-microsoft-support-for-secure-shell-ssh/) о начале
работ по реализации встроенной поддержки Secure Shell (SSH). Это означает, что в бу­
дущем системе AnsiЫe не нужно будет использовать особую конфигурацию для под­
ключения к хостам с Windows.

Как отмечалось выше, для подключения к Windows система AnsiЫe исполь­
зует SОАР-подобный протокол, реализованный поверх НТТР. По умолчанию
AnsiЫe пытается установить соединение по защищенному протоколу НТТР
(HTTPS) с портом 5986, если в переменной ansi.Ыe_port не указано другое зна­
чение.

ansi.Ыe_user: Adмi.ni.stгator

ansi.Ыe_password: 2XLL43hDpQ1z

ansi.Ыe_connecti.on: wi.nrм

Чтобы использовать другой порт для HTTPS или НТТР, настройте его и схе­
му, как показано ниже:

ansi.Ыe_wi.nrм_scheмe: https

ansi.Ыe_port: 5999

PowERSHELL

PowerShell в Microsoft Windows - это мощный интерфейс командной строки
и язык сценариев, реализованный на платформе .NET и поддерживающий
полный спектр возможностей управления не только локальным окружением,
но и удаленными хостами.

Все модули AnsiЫe для Windows написаны для PowerShell и на языке Power­
Shell.

В 2016 г. компания Microsoft открыла исходный код PowerShell на условиях лицензии
МIТ. Исходные коды и двоичные пакеты последних версий для macOS, Ubuntu и CentOS
можно найти на GitHub (https//github.com/PowerShell/PowerSheЩ. На момент написания
этих строк последней стабильной была версия PowerShell 5.1.

Управление хостами Windows ❖ 313

AnsiЫe требует, чтобы на удаленных хостах была установлена версия Pow­
erShell не ниже 3. Оболочка PowerShell 3 доступна в Microsoft Windows 7 SPl,
Microsoft Windows Server 2008 SPl и в более поздних версиях.

� На управляющую машину, то есть на машину, где работает AnsiЫe, требование о наличии
PowerShell не распространяется!

Однако в версии 3 имеются ошибки, поэтому, если по каким-то причинам
вы не можете использовать более новую версию, вам придется установить по­
следние исправления от Microsoft.

Чтобы упростить процесс установки, обновления и настройки PowerShell
и Windows, в AnsiЫe имеется сценарий (https://github.com/ansiЫe/ansiЫe/Ьlob/
deveVexamples/scripts/ConfigureRemotingForAnsiЫe.ps1).

Установить и запустить его можно парой команд, представленной в приме­
ре 17.1. Сценарий ничего не нарушит, если запустить его несколько раз.

Пример 17.1 ❖ Установка в Windows поддержки AnsiЫe
wget http://bit.ly/1rHMn7b -OutFile .\anstЫe-setup.ps1
.\ansiЫe-setup.ps1

� wget - это псевдоним для lnvoke-WebRequest из PowerShell.

Чтобы узнать установленную версию PowerShell, выполните следующую ко­
манду в консоли PowerShell:

$PSVersionTaЫe

Вы должны увидеть вывод, показанный на рис. 17.1.
Мы настроили механизм подключения, а теперь для начала проверим до­

ступность хоста с Windows, выполнив команду wi.n_pi.ng. Похожая на команду
pi.ng в GNU/Linux или Unix, она не использует протокол ICMP, а проверяет воз­
можность установки соединения с AnsiЫe:

$ ansiЫe wi.ndows -i hosts -м wi.n_ping

Если в ответ появится сообщение об ошибке, как показано в примере 17.2,
необходимо или получить действительный публичный сертификат TLS/SSL,
или добавить доверительную цепочку для существующего внутреннего удос­
товеряющего центра (Certificate Authority, СА).

Пример 17.2 ❖ Ошибка, вызванная недействительным сертификатом
$ ansiЫe -м wi.n_ping -i hosts wi.ndows

win01.exaмple.coм I UNREACHABLE! => {

"changed": false,
"мsg": "ssl: (\"bad handshake: Error([('SSL routines', 'tls_process_server_certi

ficate', 'certificate verify faHed')],)\",)",
"unreachaЫe": tгue

314 ❖ Управление хостами Windows

Рис. 17.1 ❖ Определение версии PowerShell

Вы можете запретить проверку сертификатов на свой страх и риск:

ansiЫe_winrм_server_cert_validation: ignore

Если в ответ появится вывод, как показано в примере 17.3, значит, проверка
подключения выполнилась успешно.

Пример 17.3 ❖ Результат успешной проверки подключения

$ ansiЫe -м wtn_ping -i hosts windows

win01.exaмple.coм I SUCCESS => {

}

"changed": false,
"ping": "pong"

МОДУЛИ ПОДДЕРЖКИ WINDOWS
Имена модулей AnsiЫe для Windows начинаются с префикса wi.n_. На момент
написания этих строк существовало более 40 таких модулей, из которых 19
считаются базовыми. Краткий обзор всех модулей для Windows можно найти
в онлайн-документации (http://docs.ansiЫe.com/ansiЬle/latest/list_of_windows_

modules.html).

Управление хостами Windows ❖ 315

�
В отношении имен модулей есть одно исключение: для сбора фактов из Windows модуль
должен запускаться с именем setup, а не wi.n_setup: ansi.Ыe -111 setup -i. hosts wi.ndows.

НАШ ПЕРВЫЙ СЦЕНАРИЙ
Теперь, когда у нас есть хает с Windows, добавим его в нашу систему монито­
ринга. Для этого напишем сценарий AnsiЬle, который будет использовать не­
которые модули для Windows.

Для мониторинга была выбрана хорошо известная открытая система Zabblx,

соответственно, мы должны установить zabЬix-agentd на наш хает с Windows.
Давайте создадим простой сценарий (см. пример 17.4), в котором опишем

установку Zabblx Agent.

Пример 17.4 ❖ Сценарий для установки ZabЬix Agent в Windows

hosts: wi.ndows
gather_facts: yes
tasks:

- па111е: i.nstall zabЫx-agent
wi.n_chocolatey: О

па111е: zabЫx-agent

- па111е: confi.gure zabЫx-agent
wi.n_te111plate:

src: zabЫx_agentd.conf.j2
dest: "С: \Progra111Data\zabbix\zabЫx_agentd. conf"

noti.fy: zabЫx-agent restart

па111е: zabЫx-agent restart
wi.n_servi.ce:

па111е: ZаЬЫх Agent
state: started

handlers:
- па111е: zabЫx-agent restart

win_servi.ce:
па111е: Zabbix Agent
state: restarted

О win_choco latey использует chocolatey- открытый диспетчер пакетов для Windows, рас­
пространяемый на условиях лицензии Apache License 2.0.

Сценарий в примере 17.4 не сильно отличается от того, что мы написали бы
для Linux, разница только в используемых модулях.

Для установки программного обеспечения мы использовали диспетчер па­
кетов chocolatey (https://chocolatey.org/). Вместо него также можно было бы при­
менить модуль w-\.n_package. Для конфигурирования мы задействовали модуль
w-\.n_ tемр late, вместе с которым использовали факты (например, ans-\.b le_hostnaмe).

Конечно, zabblx_agentd.conf необходимо скопировать с хоста Windows, преж­
де чем создавать его шаблон. Язык шаблонов идентичен используемому моду­

лем teмplate: Jinja2.

316 ❖ Управление хоаами Windows

Последний модуль, задействованный в сценарии, - wi.n_servi.ce - не требует

пояснений.

ОБНОВЛЕНИЕ WINDOWS

Одна из важнейших повседневных задач администратора - установка об­

новлений безопасности. Это одна из задач, которые администраторы по­

настоящему не любят, в основном из-за рутины, даже притом, что она важна
и необходима, а также потому, что может породить массу проблем, если что-то

пойдет не так. Именно поэтому предпочтительнее запретить автоматическую
установку обновлений в настройках операционной системы и проверять вновь

появившиеся обновления перед их установкой в промышленном окружении.
AnsiЫe поможет автоматизировать эту задачу с помощью простого сцена­

рия, представленного в примере 17.5. Сценарий не только устанавливает об­

новления безопасности, но также перезагружает машину после установки,

если необходимо. В заключение он информирует всех пользователей о необ­
ходимости выйти перед остановкой системы.

Пример 17.S ❖ Сценарий для установки обновлений безопасности

- hosts: wi.ndows
gather_facts: yes
seri.al: 1 О
tasks:

- nаме: i.nstall software securi.ty updates
wi.n_updates:

category_naмes:
- Securi.tyUpdates
- Cri.ti.calUpdates

regi.ster: update_result

nаме: reboot wi.ndows i.f needed
wi.n_reboot:

shutdown_ti.мeout_sec: 1200 &
мsg: "Due to securi.ty updates thi.s host wi.ll Ье rebooted i.n 20 мi.nutes." С)

when: update_result.reboot_requi.red

О Использовать seri.al для накатывания обновлений.

8 Дать некоторое время системе для установки всех обновлений.
� Сообщить пользователям, что система будет перезагружена.

Давайте посмотрим, как он работает (см. пример 17.6).

Управление хостами Windows ❖ 317

Пример 17.6 ❖ Результаты работы сценария установки обновлений

$ ansiЫe-ptaybook security-updates.yмt -i hosts -v
No config file found; using defaults

PLAY [windows] **

TASK [Gathering Facts] **

ok: [win01.exaмp1e.coм]

TASK [insta11 software security updates] **************************************

ok: [win01.exaмp1e.coм] => {"changed": false, "found_update_count": 0, "insta11
ed_update_count": 0, "reboot_required": false, "updates": {}} О

TASK [reboot windows if needed] ***

skipping: [win01. ехамр le. сом] => { "changed": fa lse, "skip_reason": "Conditional
result was False", "skipped": true} @

PLAY RECAP **

win01.exaмp1e.coм : ok=2 changed=0 unreachaЫe=0 failed=0

О wi.n_updates вернул false в значении reboot_requi.red.
б Задача пропускается, потому что не выполнено условие when: update_result. reboot_re­

qui.red.

Все получилось! К сожалению, в данный момент у нас не было под рукой
никаких обновлений безопасности, поэтому задача геЬооt была пропущена.

ДОБАВЛЕНИЕ ЛОКАЛЬНЫХ ПОЛЬЗОВАТЕЛЕЙ
В этой части главы мы посмотрим, как создавать учетные записи пользова­
телей и группы в Windows. Кто-то может подумать, что это давно решенная
проблема: достаточно воспользоваться Microsoft Active Directory. Однако хост
с Windows может действовать где-то в облаке, а отказ от использования службы
каталогов в некоторых случаях может дать дополнительные преимущества.

Сценарий в примере 17. 7 создает две группы и две учетные записи поль­
зователей, согласно списку словарей. В промышленном окружении словарь
с пользователями мог бы находиться в group_vars или host_vars, но для удобо­
читаемости мы поместили его в сценарий.

Пример 17.7 ❖ Управление локальными группами и пользователями в Windows

hosts: windows
gather_facts: по
tasks:

nаме: create user groups
win_group:

318 ❖ Управление хостами Windows

nal'1e: "{{ i.tel'1 }}"
wi. th_ i. tel'1s:

appli.cati.on
- deployl'1ents

nal'1e: create users
wi.n_user:

nal'1e: "{{ i.tel'1.nal'1e }}"
password: " {{ i. tel'1. password } } "
groups: "{{ i.tel'1.groups }}"
password_expi.red: "{{ i.tel'1.password_expi.red I default(false) }}" О
groups_acti.on: "{{ i.tel'1.groups_acti.on I default('add') }}" б

wi. th_ i. tel'1s:
nal'1e: gi.l
password: t3lCj1hU2Tnr
groups:

- Users
- deployl'1ents

nal'1e: sari.na
password: SЗcrЗt!
password_expi.red: true «)
groups:

Users
- appli.cati.on

О По умолчанию срок действия пароля неограничен, если в словаре явно не указано
иное.

8 По умолчанию для групп wi.n_user выполняет операцию rep lace: пользователь исклю­
чается из любых других групп. Мы указали, что по умолчанию должна выполняться
операция add, чтобы предотвратить исключение пользователей из групп. Поведение
по умолчанию можно переопределить для каждого отдельного пользователя.

«) Мы указали, что срок действия пароля Сабрины истек. Она должна будет выбрать
новый пароль при следующей попытке входа.

Запустим его:

$ anstЫe-playbook users.y1'1l -t hosts

PLAY [w\ndows] **

TASK [create user groups) ***

changed: [wi.n01.exal'1ple.co1'1] => (i.tel'1=appli.cati.on)
changed: [wi.n01.exal'1ple.co1'1] => (i.tel'1=deployl'1ents)

TASK [create users] ***

changed: [wi.n01.exal'1ple.co1'1] => (i.te1'1={u'password': u't3lCj1hU2Tnr', u'nal'1e':
u 'gi.l' , u 'groups' : [u 'Users' , u 'dep loyl'1ents']})

Управление хостами Windows ❖ 319

changed: [win01.exaмple.coм] => (iteм={u'password_expired': True, u'password':
u'SЗcrЗt! ', u'naмe': u'sarina', u'groups': [u'Users', u'application']})

PLAY RECAP **

win01.exaмple.coм : ok=2 changed=2 unreachaЫe=0 failed=0

Как будто все работает, но давайте проверим.
Как можно видеть на рис. 17.2, группы были благополучно созданы. Отлично!

Jr

Fi1e Action View Help

"" � ::_ Т';! 2 -"-' ifj '7
�;1- Co�-p�erMllniigem��t(Locadf Na� -- -
i ,,i tJ SystemToo1s !! �AcceнControlAssist ...

t> f.J;! Task Schedulet· j! .J,Adminismtors
r., W] EventViewer j �-Backup Operotors
r., 'N.., Shared FoJders 1 �Certificate Service ОС ...
.:t �· loc11I Users and Groups �·Cryptographic Operat"

USt:rs �·Di,tributed СОМ Users
...; Groups

r., 1�) Performzince
,а Dev1ce Manager

1 .il е:_; Storage

� Event log Readers
�Guests

-�Нyper-VAdministntors

t> '·-, Windows Server Васkщ:
� Disk Management

�•IIS_IUSRS
�№:twork Configuratio ...

/ � Performance log Users t> J.,, Services and Applications

<, tU

J �Performance Monitor ...
�PowerUsers

tOperators
S Endpoint Strvers
S Management Ser ...
S Remote Ассеи S.

ote Desktop Us

Coniputer .Мanagement

Description
Members of this group can remot .. .
Administrators have complete an .. .
Backup Operators can override se .. .
Members of this group are allowe .. .
Mi!:mbers are authorized to perfor .. .
Members are aHowed to launch, а .. .
Members of thi5 group can геаd е .. .
Guests havt the same access as m .. .
Members of this group have com .. .
Built-in group щеd Ьу lnternet lnf ...
Mi!:mbeп in this group can have s ...
Members of this group may sche .. .
Members of this group can ассе, .. .
Power Users ;не cnctuded for back ...

nister pr1nters ...

ers of this group can acces ...

---------===�=--'�---------------------------''

Рис.17.2 ❖ Новые группы созданы

Actions

Groups

- С1

More Actions

Проверим также учетные записи пользователей и посмотрим, какие на­
стройки они получили. На рис. 17.3 можно видеть, что AnsiЫe создала учетные
записи пользователей и для sari.na установлено требование сменить пароль
при следующей попытке входа.

320 ❖ Управление хостами Windows

Action View Help

� .. , tJ �J)(в.;,, lij ;Ещ:
Computer M1Jn11gement (1.ос11 №1me

.11 f! System Tools
� (ЭTaskScheduler
� MntViNrer
� i!J Sh1red Foldш

Local Uнrs 1Jnd Groups
..:] Usш
:...3 Group,

� ® Perform1nc
$) Dtvice

.11 �Stor119e
�

<[,.

1...-.....

l ,

Computer Management

Description
Buitt-in 11ccountfor admini,tering .. ,

A<tlons

Users

- [] х

Built-in accountfor guest ассеи t., More Actions

satina Properties

Remotew,t1ol j RemoteDetktcpSeм:::e� ()�-,
G

�

,I
�""

М....Ь.,ОI f P,ofie rr;;,-;;;;..,, S""'°"'

J

FuH nмne l'.пwi
�=======:

Oescфtion;

Рис.17.3 ❖ Учетные записи новых пользователей созданы

Итоги

AnsiЫe делает управление хостами с Microsoft Windows таким же простым, как
управление хостами Linux и Unix.

Механизм Microsoft WinRM прекрасно работает, хотя и действует медлен­
нее, чем протокол SSH. Будет интересно посмотреть, как улучшится произ­
водительность при использовании встроенной поддержки SSH для Windows
и PowerShell.

Модули для Windows позволяют выполнять с помощью AnsiЫe достаточно
широкий круг задач, даже притом, что сообщество вокруг них пока еще неве­
лико. Тем не менее AnsiЫe - уже самый простой инструмент для управления
парком хостов с разными операционными системами.

Глава 18
•••••••••••••• •••••••••••••••••••••••••••••••••

AnsibLe

для сетевых устройств

Управление сетевыми устройствами и их настройка всегда вызывают у меня
ностальгию. Вход с консоли через telnet, ввод нескольких команд, сохранение
конфигурации - и работа сделана. Последовательность действий не меняется
для этих устройств. Ладно-ладно, соглашусь, что некоторые изменения все же
произошли, например появилась подцержка SSH.

Долгое время мы использовали две основные стратегии управления сетевы­
ми устройствами:

О приобретение дорогостоящего патентованного программного обеспе­
чения для настройки этих устройств;

О разработка минималистского набора инструментов для управления кон­
фигурационными файлами: копирования файлов в локальную систему,
внесения некоторых изменений путем редактирования и копирования
их обратно в устройство.

Однако в последние несколько лет ситуация стала заметно меняться. Первое,
что я заметил, - производители сетевых устройств стали создавать или откры­
вать свои API. Во-вторых, так называемое движение DevOps не остановилось
и продолжило спуск по стеку, к ядру: аппаратные серверы, балансировщики
нагрузки, устройства защиты сетей, сетевые устройства и даже роутеры.

Как мне кажется, AnsiЫe является одним из самых перспективных решений
для задачи управления сетевыми устройствами по трем причинам:

О поддерживает сетевые устройства с консольным доступом через SSH
и не ограниченные прикладными интерфейсами производителей;

О любой сетевой администратор может освоить этот стиль управления за
час или даже меньше, потому что создание модулей мало чем отличается
от привычной ему работы;

О AnsiЬle - открытое программное обеспечение; мы можем использовать
его здесь и сейчас!

322 ❖ AnsiЫe для сетевых устройств

СТАТУС СЕТЕВЫХ МОДУЛЕЙ
Прежде чем двинуться дальше, должен предупредить вас: сетевые модули все
еще относительно новые - они продолжают развиваться и в настоящий мо­
мент находятся. в стадии предварительных версий, предназначенных только
для ознакомления. С течением времени ситуация изменится к лучшему. Но
это не должно удерживать нас; мы с успехом можем использовать то, что уже
имеется.

Список ПОДДЕРЖИВАЕМЫХ ПРОИЗВОДИТЕЛЕЙ

СЕТЕВОГО ОБОРУДОВАНИЯ
Первый вопрос, который вы, скорее всего, зададите: «Поддерживается ли вы­
бранный мной производитель сетевого оборудования или операционной си­
стемы?» Вот неполный, но довольно внушительный список поддерживаемых
производителей и операционных систем:

О Cisco ASA, IOS, IOS XR, NX-OS;
О Juniper Junos OS;
О Dell Networking OS 6, 9 и 10;
О Cumulus;
О Al0 Networks;
О FS Networks;
О Arista EOS;
О VyOS.
Если вы не нашли своего производителя в списке, загляните в документа­

цию, возможно, он уже поддерживается, потому что разработка сетевых моду­
лей идет очень быстрыми темпами! На момент написания этих строк в состав
AnsiЫe входило около 200 модулей для взаимодействий с сетевыми устрой­
ствами.

ПОДГОТОВКА СЕТЕВОГО УСТРОЙСТВА
Прежде чем начать экспериментировать с сетевыми модулями, необходимо
иметь, как вы уже поняли, само сетевое устройство.

Работая над книгой, я выпросил сетевое устройство. Этим устройством ока­
зался не самый плохой, но довольно устаревший коммутатор Cisco Catalyst
2960G Series Layer 2, действующий под управлением IOS. Устройство было сня­
то с производства в 2013 г. В этом устройстве нет ничего примечательного,
кроме того что эта древняя штуковина может управляться с помощью AnsiЫe !

Итак, прежде чем переходить к конфигурированию коммутатора с помощью
AnsiЫe, нужно проверить возможность соединения с ним. И тут нас поджи­
дало первое препятствие - с заводскими настройками устройство принимало

AnsiЫe для сетевых уаройав ❖ 323

соединения только по протоколу telnet. Мы должны привести его в состояние,
когда оно будет принимать SSН-соединения, - нельзя использовать протокол
telnet в промышленном окружении.

� Ansiьte не поддерживает соединения с сетевыми устройствами через telnet.

Возможно, кто-то из вас уже настроил поддержку подключения по SSH
в своих коммутаторах. Я не могу назвать себя опытным сетевым инженером;
мне потребовалось время, чтобы узнать, как настроить поддержку SSH в моем
коммутаторе Catalyst.

Настройка аутентификации через SSH
Для включения поддержки SSH необходимо выполнить несколько шагов. Ко­
манды, которые мы будем использовать, должны работать на большинстве
устройств с IOS, но могут немного отличаться. Однако это не причина для вол­
нений, потому что всегда остается возможность получить список допустимых
параметров, введя в консоли знак вопроса (?).

Я сбросил настройки своего коммутатора Cisco в исходное состояние и пере­
вел его в режим Express Setup. Так как все операции я выполнял в Linux, подклю­
чение к устройству через telnet не составило никакого труда (см. пример 18.1).

Пример 18.1 ❖ Вход через telnet
$ telnet 10.е.е.1

Trying 10.0.0.1 ...

Connected to 10.0.0.1.

Escape character is •л]•.

Switch#

Для настройки устройства его необходимо перевести в режим настройки,

как показано в примере 18.2. Очевидный шаг, верно?

Пример 18.2 ❖ Перевод устройства в режим настройки
switchl#configure

Configuring fгом terмinal, мемогу, ог network [terмinal]? terмinal

Enter configuration соммапds, опе рег line. End with CNTL/Z.

Первое, что нужно сделать, - настроить IР-адрес, как показано в приме­
ре 18.3, чтобы можно было подключиться к устройству по окончании настрой­
ки.

Пример 18.3 ❖ Настройка статического IP-apeca
swi.tch1(config)tn.nterface vlan 1

swi.tch1(config-if)#ip address 10.0.0.10 25S.25S.2S5.0

Чтобы сгенерировать ключ RSA, нужно присвоить устройству имя хоста
и доменное имя, как показано в примере 18.4.

324 ❖ AnsiЫe для сетевых устройств

Пример 18.4 ❖ Настройка имени хоста и доменного имени

switch(config)#hostnaмe switch1

switch1(config)#tp doмain-naмe exaмple.net

switch1(config)#

Теперь можно сгенерировать ключ шифрования, как показано в приме­
ре 18.5. Когда я писал эти строки, документация не рекомендовала генериро­
вать ключи RSA с размером меньше 2048 бит.

Пример 18.5 ❖ Генерирование ключа RSA - это может потребовать некоторого времени

switch1(config)#cгypto key geneгate гsа

The nаме fог the keys will Ье: switch1.exaмple.net
Choose the size of the key мodulus in the range of 360 to 4096 fог уоuг

General Purpose Keys. Choosing а key мodulus gгеаtег than 512 мау take
а few мinutes.

How маnу Ыts in the мodulus [512]: 4096
% Generating 4096 bit R5A keys, keys will Ье non-exportaЫe ...
[ОК] (elapsed tiмe was 164 seconds)

switch1(config)#

Возможно, вы обратили внимание, что мы подключились к устройству по
протоколу telnet без ввода учетных данных. В отличие от telnet, SSH всегда тре­
бует указывать имя пользователя и пароль.

Поэтому следующим шагом, который показан в примере 18.6, мы добавим
нового пользователя, а также дадим ему уровень привилегий 15 (высший уро­
вень).

Пароль можно установить двумя способами, как secret и как password. Пароль, установ­
ленный как password, хранится в открытом текстовом виде, тогда как secret сохранит
пароль в виде хэш-суммы, тип которой зависит от устройства и версии прошивки.

Пример 18.6 ❖ Добавление нового пользователя admin

switch1(config)#usernaмe adмin privi.lege 15 secret sЗсгЗt

Последний шаг, показанный в примере 18.7, - настройка модели аутенти­
фикации. Мой коммутатор по умолчанию использует старую модель. В этом
режиме он запрашивает только пароль.

Но нам требуется, чтобы устройство запрашивало не только пароль, но так­
же имя пользователя; это называется новой моделью авторизации, аутентифи­
кации и учета (Authentication, Authorization and Accounting - ААА).

Пример 18.7 ❖ Настройка модели аутентификации

switch1(config)#aaa new-мodel

Дополнительно установим пароль для привилегированного режима, как по­
казано в примере 18.8, только чтобы показать, что AnsiЬle также поддерживает
эту особенность.

AnsiЫe для сетевых устройств ❖ 325

Пример 18.8 ❖ Установка пароля для привилегированного режима

swi.tch1(config)#enaЫe secret Зn4ЫЗsЗсгЗt

Теперь все готово и можно отключить простой текстовый и небезопасный
протокол telnet, как показано в примере 18.9, на любом из 16 виртуальных тер­
миналов.

Пример 18.9 ❖ Отключение поддержки telnet на устройстве

switch1(config)#line vty 0 15
swi.tch1(config-line)#transport input?

all All protocols

попе No protocols

ssh TCP/IP SSH protocol

telnet TCP/IP Telnet protocol

switch1(config-line)#transport input ssh
switchl(config-line)#exit

Вот и все. Теперь сохраним конфигурацию и выйдем из режима настройки,
как показано в примере 18.10. Имейте в виду, что после этого шага соединение
с устройством может быть разорвано, но это не проблема.

Пример 18.10 ❖ Сохранение конфигурации в качестве используемой на запуске

swi.tch1#copy running-config startup-config
Destination filenaмe [startup-config]?

Теперь убедимся, что поддержка telnet выключена, а поддержка SSH включе­
на, как показано в примере 18.11.

Пример 18.11 ❖ Вход через SSH

$ telnet 10.0.0.10
Trying 10.0.0.10 ...

telnet: UnaЫe to connect to гемоtе host: Connection refused

$ ssh adмin@10.0.0.10
Password:

switch01>

Все работает!

КАК РАБОТАЮТ МОДУЛИ
Прежде чем приступить к первому сценарию, вернемся немного назад и по­
говорим о том, как работают модули AnsiЫe. Если говорить простыми словами,
когда выполняется сценарий AnsiЫe, модуль, используемый задачей, копиру­
ется на целевую машину и выполняется там.

В отношении сетевых модулей и сетевых устройств эта процедура не работа­
ет. Обычно на сетевых устройствах отсутствует интерпретатор Python или, по
крайней мере, недоступен для нас. Именно поэтому сетевые модули действуют
несколько иначе.

326 ❖ AnsiЫe для сетевых устройств

Их можно сравнить с модулями, взаимодействующими с НТТР API. Модули
AnsiЬle, использующие НТТР API, обычно выполняются локально - их код на
языке Python взаимодействует с удаленным API по протоколу НТТР. Сетевые
модули действуют примерно так же, только взаимодействуют не с НТТР API,
а с консолью!

НАШ ПЕРВЫЙ СЦЕНАРИЙ
Я постараюсь сохранить этот первый сценарий максимально простым и реали­
зую в нем только изменение имени хоста.

Так как наше сетевое устройство действует под управлением операционной
системы Cisco IOS, мы используем модуль i.os_confi.g, который управляет кон­
фигурационными разделами Cisco IOS.

Создадим первую задачу, i.os_confi.g, в сценарии, как показано в приме­
ре 18.12.

Пример 18.12 ❖ Изменение имени хоста в Cisco Catalyst

- hosts: localhost
gather_facts: по
connection: local О
tasks:

паме: set а hostnaмe
ios_conПg:

lines: hostnaмe swl
provider:

host: 10.0.0.10 б
usernaмe: adмin С)

password: sЗcrЗt О
authorize: true 0
auth_pass: Зn4Ы3s3cr3t 0

О Установить тип соединения loca l, чтобы все задачи обрабатывались системой AnsiЫe
как простые локальные действия.

б Доменное имя или IР-адрес сетевого устройства.
8 Имя пользователя для входа на устройство через SSH.
О Пароль для входа на устройство.
0 Выражением authori.ze: true мы сообщаем модулю, что команда должна выполняться

в привилегированном режиме.
0 Пароль для входа в привилегированный режим.

Вместо передачи аргументов usernaмe, password, authori.ze и auth_pass в каждой задаче
можно определить следующие переменные окружения, которые автоматически будут
использоваться взамен: ANSIBLE_NET _USERNAME, ANSIBLE_NEТ _PASSWORD, ANSIBLE_NET _AUTHO­
RIZE и ANSIBLE_NET_AUTH_PASS.

Это может помочь уменьшить объем шаблонного кода в каждой задаче.
Имейте в виду, что эти переменные окружения будут использоваться несколь-

AnsiЫe для сетевых устройств ❖ 327

кими сетевыми модулями. Однако каждую переменную всегда можно пере­
определить, явно передав модулю необходимые аргументы, как мы только что
сделали это.

И это все? Да, это все. Давайте выполним сценарий:
$ ansiЫe-playbook playbook.yмl -v
No config file found; using defaults
[WARNING]: Host file not found: /etc/ansiЫe/hosts
[WARNING]: provided hosts list is емрtу, only localhost is availaЫe
PLAY [localhost] **
TASK [set а hostnaмe] ***
changed: [localhost] => {"changed": tгue, "updates": ["hostnaмe sw1"],
"warnings": []}
PLAY RECAP **
localhost : ok=1 changed=1 unreachable=0 failed=0

На первый взгляд все получилось, но, чтобы убедиться, попробуем зайти на
устройство:
$ ssh adмtn@10.0.0.10
Password:
SW1>

Действительно все получилось! Мы благополучно выполнили свой первый
сценарий, настраивающий Cisco Catalyst.

� Сетевые модули пишутся с учетом поддержки идемпотентного выполнения. Мы можем
выполнить сценарий сколько угодно раз, ничего при этом не нарушив!

РЕЕСТР И ПЕРЕМЕННЫЕ ДЛЯ СЕТЕВЫХ МОДУЛЕЙ
Возможно, вы заметили, что в последнем сценарии целевой хает был обозна­
чен как localhost. Если бы у нас имелась ферма коммутаторов Cisco Catalyst,
нам пришлось бы написать для каждого из них отдельный сценарий с целевым
хостом localhost, потому что для каждого устройства нужны свои настройки
и свои переменные.

Но давайте сделаем еще один шаг вперед и используем с сетевыми моду­
лями уже знакомый нам прием: создадим статический файл реестра сетевых
устройств, как показано в примере 18.13, и сохраним его с именем Jnetwork_

hosts.

Пример 18.13 ❖ Файл хостов с сетевыми устройствами
[ios_switches]
sw1.exaмple.coм

Теперь можно поменять цель в сценарии на i.os_swi.tches, как показано в при­
мере 18.14.

328 ❖ Ansiьte для сетевых устройств

Пример 18.14 ❖ Изменение имени хоста в Cisco Catalyst

hosts: i.os_swi.tches О
gather_facts: по
connecti.on: local
tasks:

nаме: set а hostnaмe
i.os_confi.g:

li.nes: hostnaмe swl
provi.der:

host: 10.0.0.10
usernaмe: adмi.n
password: sЗсгЗt
authori.ze: true
auth_pass: Зn4Ьl3s3cr3t

О Использовать t.os_swi.tches как цель.

Теперь, поскольку у нас есть реестр, можно использовать некоторые внут­
ренние переменные AnsiЫe. Переменная t.nventory_hostnafТ1e_short содержит
имя хоста из элемента в реестре (например, swl из элемента swl.example.com).
То есть можно упростить сценарий, как показано в примере 18.15.

Пример 18.15 ❖ Использование i.nventory_hostnaмe_short для настройки

hosts: i.os_swi.tches
gather_facts: по
connecti.on: local
tasks:

nаме: set а hostnaмe
i.os_confi.g:

li.nes: hostnaмe {{ i.nventory_hostnaмe_short }} О
provi.der:

host: 10.0.0.10
usernaмe: adмi.n
password: s3cr3t
authori.ze: true
auth_pass: Зn4Ы3s3cr3t

О Теперь можно использовать переменную i.nventory_hostnaмe_short.

Локальное подключение
Как правило, сценарии для сетевых устройств должны выполняться с локаль­
ным подключением.

Вынесем этот параметр из сценария и поместим в файлgrоuр_ vars/ios_switch­
es, как показано в примере 18.16.

Пример 18.16 ❖ Файл с групповыми переменными для i.os_swi.tches

ansi.Ыe_connecti.on: local

AnsiЫe для сетевых устройств ❖ 329

Подключение к хосту
Из сценария в примере 18.15 также можно убрать конфигурационные пара­
метры для модуля i.os_confi.g, которые наверняка будут отличаться для разных
сетевых устройств (например, адрес host для подключения).

По аналогии с hostname мы можем использовать внутреннюю переменную;
на этот раз i.nventory_hostnaмe. В нашем случае i.nventoгy_hostnaмe соответствует
полному квалифицированному доменному имени swl.example.com. Нам до­
статочно было бы, чтобы это доменное имя правильно распознавалось нашим
сервером имен. Но на этапе разработки конфигурации дела могут обстоять
иначе.

Чтобы не полагаться на DNS, мы добавим немного гибкости и создадим пе­
ременную net_host, которая будет использоваться для подключения. На край­
ний случай, если переменная net_host не будет определена, используем i.nven­

tory_hostnaмe.

На первый взгляд это условие может показаться сложным, но в действитель­
ности реализуется оно очень просто. Взгляните на пример 18.17.

Пример 18.17 ❖ Использование переменной для подключения

hosts: ios_switches
gather_facts: no
tasks:

паме: set а hostnaмe
ios_config:

lines: hostnaмe {{ inventory_hostnaмe_short }}
provider:

host: "{{ net_host I default(inventory_hostnaмe) }}" О
usегпаме: аdмiп
password: sЗсгЗt
authorize: true
auth_pass: Зп4ЫЗsЗсг3t

О Использовать для подключения переменную net_host, а если она не определена -
переменную inventory_hostnaмe.

Такие переменные обычно принято помещать в файл hosts_vars.
Так как эта переменная имеет некоторое отношение к подключению, воз­

можно, лучше будет поместить ее в файл реестра Jnetwork_hosts, как показано
в примере 18.18.

Пример 18.18 ❖ Добавление переменной net_host в соответствующую запись в реестре

[ios_switches]
sw1.exaмple.coм net_host=10.0.0.10

Переменные для аутентификации
Как последний шаг используем переменные для настройки параметров аутен­
тификации. Это обеспечит нам максимальную гибкость.

330 ❖ AnsiЫe для сетевых устройств

Параметры аутентификации, общие для всех устройств в группе, можно
определить в файле group_vars. Именно так мы и поступим (см. пример 18.19).

Пример 18.19 ❖ Файл с групповыми переменными для i.os_swi.tches

ansi.Ыe_connecti.on: local

net_userna�e: ad�i.n

net_password: sЗсгЗt

net_authori.ze: true

net_auth_pass: Зп4ЫЗsЗсгЗt

Если для некоторых устройств используются иные параметры аутентифика­
ции, их можно переопределить на уровне hosts_ vars.

Сохранение конфигурации
Пришло время реализовать сохранение конфигурации, чтобы гарантировать
ее вступление в силу после следующей перезагрузки устройства. К счастью,
для этого достаточно добавить в задачу i.os_config параметр save со значени­
ем true.

Для любителей делать резервные копии AnsiЫe предоставляет такую воз­
можность. Если добавить параметр backup со значением true, задача сохранит
резервную копию перед применением изменений.

Резервная копия конфигурации будет сохранена на управляющей машине
в каталоге backup, рядом со сценарием. Если каталог backup отсутствует,АnsiЫе
автоматически создаст его:

$ ls backup/

swi.tchl_confi.g.2017-02-19@17:14:00

� Файл резервной копии будет содержать действующую конфигурацию, а не начальную.

Новая версия сценария представлена в примере 18.20.

Пример 18.20 ❖ Окончательная версия сценария, устанавливающего имя хоста
на устройстве Catalyst

hosts: i.os_swi.tches

gather_facts: по

tasks:

- nal'le: set а hostnal'le

i.os_confi.g:

li.nes: hostnal'le {{ i.nventory_hostnal'le_short }}

provi.der:

host: "{{ net_host I default(i.nventory_hostna�e) }}"

usernal'le: "{{ net_userna�e I default(ol'li.t) }}" О

password: "{{ net_password I default(ol'li.t) }}" О

authori.ze: " { { net_authori.ze I def aul t(ol'li. t) } } " О

AnsiЫe для сетевых устройств ❖ 331

auth_pass: "{{ net_auth_pass I default(oмi.t) }}" О
backup: true &
save: true С}

О Все эти переменные можно определить на уровне group_vars или host_vars.
б Сохранит резервную копию действующей конфигурации в ./backup.
@ Сохранит runni.ng-config в startup-confi.g на устройстве.

Параметры backup и save обрабатываются как отдельные операции. Они выполняются,
даже если никаких изменений не было произведено. Я также заметил, что операция соз­
дания резервной коnии не возвращает changed=True, а существующие резервные копии
удаляются перед созданием новых.

ИспользовдНИЕ КОНФИl'УРАЦИЙ из ФАЙЛОВ
Параметр l ines хорошо подходит для случаев, когда требуется изменить лишь
несколько настроек. Однако я привык использовать подход, заключающийся
в копировании конфигурации, хранящейся в локальном файле. Для этого я вы­
полняю настройки в локальном файле и затем копирую его на устройство.

К счастью, ios_config принимает еще один параметр, позволяющий копиро­
вать конфигурационные файлы на устройства: параметр src. Благодаря этому
параметру можно создать статический конфигурационный файл ios_init_tem­

plate.conf, как показано в примере 18.21.

Пример 18.21 ❖ Пример статического конфигурационного файла для IOS

по servi.ce pad
servi.ce ti.мestaмps debug dateti.мe мsес
servi.ce ti.мestaмps log dateti.мe мsес
servi.ce password-encrypti.on
boot-start-мarker
boot-end-мarker
ааа new-мodel

clock ti.мezone СЕТ 1 0
clock sul'll'ler-ti.мe CEST recurri.ng last Sun Маг 2:00 last Sun Oct 3:00

systeм мtu routi.ng 1500

vtp моdе transparent

i.p dhcp snoopi.ng vlan 10-20

i.p dhcp snoopi.ng
по i.p doмai.n-lookup

spanni.ng-tree моdе rapi.d-pvst
spanni.ng-tree extend systeм-i.d

vlan i.nternal allocati.on poli.cy ascendi.ng

332 ❖ AnsiЫe для сетевых устройств

i.nterface Vlan1

по i.p address

по i.p route-cache

shutdown

i.p default-gateway 10.0.0.1

по i.p http server

по i.p http secure-server

snмp-server coммuni.ty pri.vate

snмp-server coммuni.ty puЫi.c RO

snмp-server locati.on earth

snмp-server contact adмi.n@exaмple.coм

ntp server 10.123.0.5

ntp server 10.100.222.12

Не волнуйтесь! Я не собираюсь рассказывать, что значат все эти настройки.
Вместо этого мы вернемся к нашему сценарию из предыдущего раздела и до­
бавим в него задачу для копирования статического конфигурационного файла,
как показано в примере 18.22.

Теперь в нашем сценарии две задачи настройки сетевого устройства. Ис­

пользование параметра backup в двух задачах может привести к появлению
большого количества промежуточных резервных копий, тогда как нам доста­
точно одной резервной копии действующей конфигурации, созданной перед
любыми изменениями.

Поэтому добавим в начало сценария еще одну задачу, специально для созда­
ния резервной копии. По той же причине добавим обработчик, который будет
вызывать save, только если произошли какие-то изменения.

Пример 18.22 ❖ Использование sгс для передачи статического конфигурационного файла

hosts: i.os_swi.tches

gather_facts: по

tasks:

nаме: backup the runni.ng confi.g

i.os_confi.g:

backup: true

provi.der:

host: "{{ net_host I default(i.nventory_hostnaмe) }}"

usernaмe: "{{ net_usernaмe I default(oмi.t) }}"

password: "{{ net_password I default(oмi.t) }}"

authori.ze: "{{ net_authori.ze I default(oмi.t) }}"

auth_pass: "{{ net_auth_pass I default(oмi.t) }}"

nаме: i.ni.t the stati.c confi.g

i.os_confi.g:

src: fi.les/i.os_i.ni.t_confi.g.conf О

AnsiЫe для сетевых устройств ❖ 333

pгovi.der:
host: "{{ net_host I default(i.nventory_hostnaмe) }}"
usегпаме: "{{ net_usernaмe I default(oмi.t) }}"
password: • {{ net_password I default(oмi.t) }} •
authori.ze: "{{ net_authori.ze I default(oмi.t) }}"
auth_pass: "{{ net_auth_pass I default(oмi.t) }}"

noti.fy: save the runni.ng confi.g &
паме: set а hostnaмe
i.os_confi.g:

li.nes: hostnaмe {{ i.nventory_hostnaмe_short }}
pгovi.der:

host: "{{ net_host I default(i.nventoгy_hostnaмe) }}"
usегпаме: "{{ net_usernaмe I default(oмi.t) }}"
password: "{{ net_password I default(oмi.t) }}"
authori.ze: "{{ net_authori.ze I default(oмi.t) }}"
auth_pass: "{{ net_auth_pass I default(oмi.t) }}"

noti.fy: save the runni.ng confi.g &

handlers:
паме: save the runni.ng confi.g
i.os_confi.g:

save: true
provi.der:

host: • { { net_host I def ault(i.nventoгy_hostnaмe) } } •
useгnaмe: "{{ net_usernaмe I default(oмi.t) }}"
password: • { { net_password I def ault(oмi.t) } } •
authori.ze: "{{ net_authori.ze I default(oмi.t) }}"
auth_pass: "{{ net_auth_pass I default(oмi.t) }}"

О Читает конфигурационный файл IOS files/ios_init_config.conf

6 Посылает уведомление обработчику сохранить конфигурацию.

Теперь мы умеем смешивать статические и динамические настройки. Ко­

нечно, мы можем продолжить идти тем же путем и расширить сценарий, до­
бавив в него другие динамические настройки. Однако можно поступить иначе.

Но, прежде чем продолжить, обратите внимание, что сценарии от задачи

к задаче повторяют немаленькие блоки prov"i.der. Мы можем устранить это по­

вторение, как показано в примере 18.23.

Пример 18.23 ❖ Использование src для передачи статического конфигурационного файла

hosts: i.os_swi.tches
gather_facts: no
vaгs:

pгovi.der: О
host: "{{ net_host I default(i.nventoгy_hostnaмe) }}"
usегпаме: "{{ net_usernaмe I default(oмi.t) }}"
password: "{{ net_password I default(oмi.t) }}"
authori.ze: "{{ net_authori.ze I default(oмi.t) }}"
auth_pass: "{{ net_auth_pass I default(oмi.t) }}"

334 ❖ AnsiЫe для сетевых устройств

tasks:
nаме: init the static config with backup before
ios_confi.g:

backup: true &
src: files/ios_init_config.conf
provider: " {{ provider } } " t)

notify: save the running config

nаме: set а hostnaмe
ios_confi.g:

lines: hostnaмe {{ inventory_hostnaмe_short }}
provider: " { { provider } } " t)

notify: save the running config

handlers:
nаме: save the running config
ios_confi.g:

save: true
provider: " { { provider } } " t)

О Выражение vars объявляет переменную provi.der для общего использования.
б Так как у нас только одна задача затрагивает конфигурацию, мы переместили пара­

метр backup в эту задачу.
@ Использование переменной provi.der variaЬ!e.

О
Модуль i.os_confi.g можно вызвать с единственным параметром backup, чтобы получить
начальный шаблон конфигурации.

ШАБЛОНЫ, ШАБЛОНЫ, ШАБЛОНЫ
Теперь мы знаем, что параметр src модуля i.os_confi.g можно использовать для
передачи статических файлов конфигурации. А можно ли использовать шабло­
ны Jinja2? К счастью, i.os_confi.g имеет встроенную поддержку шаблонов, как
показано в примере 18.24.

Пример 18.24 ❖ Использование src для передачи статического конфигурационного файла
и конфигурирование с помощью шаблона

hosts: ios_switches
gather_facts: по
vars:

provider:
host: "{{ net_host I default(inventory_hostnaмe) }}"
usernaмe: "{{ net_usernaмe I default(oмit) }}"
password: "{{ net_password I default(oмit) }}"
authorize: "{{ net_authorize I default(oмit) }}"
auth_pass: "{{ net_auth_pass I default(oмit) }}"

tasks:
nаме: сору the static config
ios_confi.g:

backup: true

src: fi.les/i.os_i.ni.t_confi.g.conf.j2 О

provi.der: " { { provi.der } } "

noti.fy: save the runni.ng confi.g

handlers:

nаме: save the runni.ng confi.g

i.os_config:

save: true

provi.der: " { { provi.der } } "

AnsiЫe для сетевых устройств ❖ 335

О Мы создали шаблон из предыдущего статического конфиrурационного файла и со­

хранили его в files/ios_init_config.confj2, следуя принятым соглашениям.

Мы превратили свой сценарий в адаптивный сценарий AnsiЫe для настрой­
ки сетевых устройств, действующих под управлением IOS. Любые конфигура­
ции сетевых устройств, статические или динамические, можно обрабатывать
с помощью шаблона, показанного в примере 18.25.

Пример 18.25 ❖ Шаблон конфигурации IOS, включающий динамические настройки VLAN
и интерфейсов

hostnaмe {{ i.nventory_hostnaмe_short }}

no servi.ce pad

servi.ce ti.мestaмps debug dateti.мe мsес

servi.ce ti.мestaмps log dateti.мe мsес

servi.ce password-encrypti.on

boot-start-мarker

boot-end-мarker

clock ti.мezone СЕТ 1 0

clock suммer-ti.мe CEST recurri.ng last Sun Маг 2:00 last Sun Oct 3:00

i.p dhcp snoopi.ng

no i.p doмai.n-lookup

spanni.ng-tree моdе rapi.d-pvst

spanni.ng-tree extend systeм-i.d

vlan i.nternal allocati.on poli.cy ascendi.ng

{% i.f vlans i.s defi.ned %} О

{% for vlan i.n vlans %}

vlan {{ vlan.i.d }}

nаме {{ vlan.naмe }}

{% endfor %}

{% endi.f %}

{% i.f i.faces i.s defi.ned %} О

{% for i.face i.n i.faces %}

336 ❖ Ansiьte для сетевых устройств

tnterface {{ tface.naмe}}
descrtptton {{ tface.descr }}

{% tf tface.vlans ts deftned %}
{% endtf %}

swttchport access vlan {{ tface.vlans I jotn(' ,') }}
spanntng-tree portfast

{% endfor %}
{% endtf %}

no tp http server
no tp http secure-server

snмp-server coммuntty puЫtc RO
snмp-server locatton earth
snмp-server contact adмtn@exaмple.coм
! add маге conftgs here ...

О Пример использования динамических настроек в файле шаблона

Так как это обычный шаблон, в нем можно использовать все возможности

механизма шаблонов Jinja2, включая наследование шаблонов и макросы. На

момент написания эти строк - -di.ff не возвращал различий между файлами

в формате diff.

Давайте попробуем выполнить этот сценарий:

$ anstЫe-playbook playbook.yмl -t netwoгk_hosts

PLAY [tos_swttches] **

TASK [сору the stattc conftg] **
changed: [swttch1]

RUNNING HANDLER [save the runntng conftg] **************************************
changed: [swttch1]

PLAY RECAP ***
swttch1 : ok=2 changed=2 unreachaЫe=0 fatled=0

Просто, не правда ли?

(БОР ФАКТОВ

Сбор фактов из сетевых устройств реализует отдельный модуль - в данном слу­

чае i.os_facts.

� Устанавливайте параметр gather _facts: false в операциях с сетевыми устройствами
в своих сценариях.

В предыдущем разделе мы уже подготовили все настройки соединения и те­

перь готовы перейти к сценарию, представленному в примере 18.26.

AnsiЫe для сетевых устройств ❖ 337

Модуль i.os_facts имеет только один необязательный параметр: gather _subset.
Этот параметр используется для ограничения желательных или фильтрации
нежелательных фактов (с добавлением восклицательного знака). По умолча­
нию этот параметр принимает значение ! confi.g, что соответствует всем фак­

там, кроме конфигурации.

Пример 18.26 ❖ Сбор фактов из устройства IOS

hosts: i.os_swi.tches
gather_facts: по
tasks:

паме: gatheri.ng IOS facts
i.os_facts:
gather_subset: hardware О
host: "{{ net_host I default(i.nventory_hostnaмe) }}"
provi.der:

usегпаме: "{{ net_usernaмe I default(oмi.t) }}"
password: "{{ net_password I default(oмit) }}">
authori.ze: "{{ net_authori.ze I default(oмi.t) }}"
auth_pass: "{{ net_auth_pass I default(oмi.t) }}"

паме: pгi.nt out the IOS versi.on
debug:

vаг: ansi.Ыe_net_veгsi.on &

О Собирать только факты об оборудовании.
б Все факты о сети начинаются с префикса ansi.Ыe_net_.

� Факты сохраняются в переменных хоста и не требуют регистрации (например, regi.ster:
result) на уровне задач.

Попробуем запустить сценарий:

$ ansi.Ыe-playbook facts.yмl -i. network_hosts -v

No confi.g fi.le found; usi.ng defaults

PLAY [tos_swltches] **

TASK [get sоме facts] **
ok: [swi.tchl] => {"ansi.Ыe_facts": {"ansi.Ыe_net_fi.lesysteмs": ["flash:"], "ansi.
Ыe_net_gather_subset": ["hardware", "default"], "ansi.Ыe_net_hostnaмe": "swl",
"ansi.Ыe_net_i.мage": "flash:c2960-lanbasek9-мz.150-1.SE/c2960-lanbasek9-мz.150-1
. SE. Ып", "ansi.b le_net_мeмf гее_мЬ": 17292, "ansi.b le_net_мeмtota l_мЬ": 20841,
"ansi.Ыe_net_мode l": nu ll, • ansi.Ыe_net_seri.a lnuм": "FOC1132Z0ZA", "ansi.Ыe_net_
versi.on": "15.0(1)5Е"}, "changed": false, "fai.led_coммands": []}
TASK [pri.nt out the IOS versi.on] ***
ok: [swi.tchl] => {

"ansi.Ыe_net_versi.on": "15.0(1)SE"
}

PLAY RECAP ***
swi.tchl : ok=2 changed=0 unreachaЫe=0 fai.led=0

338 ❖ AnsiЫe для сетевых устройств

Итоги

Теперь вы получили первое представление, как управлять сетевыми устрой­
ствами, настраивать их и извлекать факты с помощью AnsiЬle. Модули "i.os_con­

Пg и "i.os_facts - обычные модули из множества других, аналогичных им, пред­
назначенных для поддержки сетевых устройств с разными операционными
системами (например, delloslo_conf"i.g для Dell ЕМС Networking OS10 или eos_

conf"i.g для Arista EOS).

Но в зависимости от операционной системы и интерфейса, поддерживаемо­
го сетевым устройством, количество и разнообразие модулей могут значитель­
но отличаться. За подробной информацией о других модулях я рекомендую об­
ращаться к документации (http://Ьit.ly/2uvBe2f).

Глава 19
•••

AnsibLe Tower:

AnsibLe для предприятий

AnsiЫe Tower - коммерческий программный продукт, первоначально создан­
ный в AnsiЫe, Inc., а ныне предлагаемый компанией Red Hat. AnsiЫe Tower реа­
лизован как классическая локальная веб-служба, действующая поверх AnsiЫe.
Эта служба поддерживает более тонкое управление пользователями, а полити­
ки доступа на основе ролей объединены с пользовательским веб-интерфейсом,
пример которого показан на рис. 19 .1, и RESTful API.

о TOWER ?ROJEГТS- ЩI/ENTCЯIES TEMPt.дm ,JOeS.

DASrt&CiARD

о

JOB SТATVS

.,

04/U С...'!- С41'1 ON'i� WZ'· c,.vlJ � i)i4Jl7 (>4.• .. -, r.6.�I

RECENnY ШЕО JOB T[MPLATES

№ j\)!) t№1pM,1�v1�� re«'l'\Gy �
'?OOC�(f�/1,j.,Ь�e,np.<'i(e�t:

""'

llt{CfNn" RUNJ08$

Рис.19.1 ❖ Панель управления AnsiЫe Tower

1/; С>

о

340 ❖ AnsiЫe Тоwег: AnsiЫe для предприятий

МодЕЛи подписки
Red Hat предлагает подцержку в виде ежегодной подписки трех типов, каждый
с разными соглашениями об уровне обслуживания (Service-Level Agreement, SLA):

О самостоятельная поддержка (без официальной поддержки и каких-либо
обязательств);

О стандартная (поддержка с уровнем: 8х5);
О премиум (поддержка с уровнем: 24х7).
Все подписки включают рассылку регулярных обновлений и новых версий

AnsiЫe Tower. Модель самостоятельной поддержки ограничивается 250 хоста­
ми и не включает следующих возможностей:

О изменения стандартного приветствия, отображаемого при входе;
О аутентификации через SAML, RADIUS и LDAP;
О поддержки нескольких организаций;
О потоков действий и систем протоколирования.

�
После того как в 2015 г. Red Hat приобрела AnsiЫe, lnc., Red Hat выразила намерение
продолжить разработку открытой версии AnsiЫe Тоwег. Но на момент написания этих
строк никакой дополнительной информации и никаких графиков выпуска не было об­
народовано.

Пробная версия Ansible Tower
Red Hat предоставляет свободную пробную лицензию (https://www.ansiЫe.com/
license) с набором возможностей из модели подписки самостоятельной под­
держки, до 10 управляемых хостов без ограничения срока использования.

Для быстрой оценки этой версии можно воспользоваться Vagrant:

$ vagгant init ansiЫe/toweг

$ vagгant up --pгovideг viгtualbox

$ vagгant ssh

После входа через SSH появится текст с приветствием, представленный
в примере 19.1, где можно увидеть URL веб-интерфейса, имя пользователя
и пароль.

Пример 19.1 ❖ Текст приветствия
Welcol'le to AnsiЫe Тоwег!

Log into the web inteгface here:

https://10.42.0.42/

Useгnal'le: adl'lin
Passwoгd: JSKYl'lEBJATFn

The docul'lentation fог AnsiЫe Тоwег is availaЫe hеге:

http://www.ansiЫe.co1'1/tower/

Fог help, visit http://support.ansiЫe.co1'1/

AnsiЫe Tower: AnsiЫe для предприятий ❖ 341

После входа в веб-интерфейс будет предложено заполнить форму для полу-
чения файла лицензии по электронной почте.

Если машина Vagrant недоступна по адресу 10.42.0.42, попробуйте выполнить следую­
щую коман ду внутри нее, чтобы запустить сетевой интерфейс, связанный с этим IР­
адресом:

$ sudo syste�ctl гestaгt netwoгk.seгvice

КАКИЕ ЗДДАЧИ РЕШАЕТ ANSIBLE Т OWER
AnsiЬle Tower - не просто веб-интерфейс к AnsiЫe. AnsiЫe Tower добавляет
в AnsiЫe некоторые дополнительные возможности. Рассмотрим их поближе
в этом разделе.

Управление доступом
В крупных организациях с большим количеством отделов AnsiЬle Tower по­
могает автоматизировать управление группами служащих с использованием
ролей, наделяя их правами для управления хостами и устройствами, насколько
это необходимо для выполнения служебных обязанностей.

AnsiЫe Tower действует как защита для хостов. При использовании AnsiЬle
Tower ни одна группа и ни один работник не должны иметь прямого доступа
к управляемым хостам. Это снижает сложность и увеличивает безопасность.
На рис. 19.2 показан веб-интерфейс AnsiЫe Tower для настройки прав доступа
пользователей.

Подключение AnsiЫe Tower к существующей системе аутентификации, та­
кой как LDAP, может снизить затраты на администрирование пользователей.

Рис.19.2 ❖ Веб-интерфейс для настройки прав доступа пользователей

342 ❖ AnsiЫe Tower: AnsiЫe для предприятий

Проекты
Проектом в терминологии AnsiЫe Tower называется пакет логически связан­
ных сценариев и ролей.

В классических проектах AnsiЫe вместе со сценариями и ролями часто мож­
но видеть статические реестры. AnsiЫe Tower осуществляет инвентаризацию
иначе. Все, что имеет отношение к инвентаризации и связанным с ней пере­
менным, таким как переменные групп или хостов, будет недоступно.

�
Цель (например, hosts: <target>) в этих сценариях особенно важна. Старайтесь исполь­
зовать общие имена. Это позволит вам выполнять сценарии с разными реестрами, о чем
подробнее рассказываетс я далее в этой главе.

Следуя общепринятым рекомендациям, мы храним свои проекты со сце­
нариями в системе управления версиями. Механизм управления проектами
в AnsiЫe Tower поддерживает такие системы, как Git, Mercurial и Subversion,
и может быть настроен на загрузку проектов из них.

В крайнем случае, если нет возможности использовать систему управления
версиями, можно определить статический путь в файловой системе, где проект
будет храниться локально, на сервере AnsiЫe Tower.

Так как проекты имеют свойство развиваться с течением времени, исход­
ный код сценариев на сервере AnsiЫe Tower должен синхронизироваться с со­
держимым системы управления версиями. Для этого в AnsiЫe Tower имеется
множество решений.

Например, гарантировать использование последних версий проектов в An­
siЫe Tower можно, установив флажок «Update on Launch» (обновление на запус­
ке) в параметрах проекта, как показано на рис. 19.3. Также можно настроить
задания обновления проектов по расписанию. Наконец, проекты можно об­
новлять вручную, если вы хотите сами управлять обновлением.

Управление инвентаризацией
AnsiЫe Tower позволяет управлять реестрами как самостоятельными ресур­

сами, включая управление доступом к этим реестрам. Типичный шаблон -
определить разные реестры с хостами для эксплуатации, разработки и тести­
рования.

В каждом из реестров можно определять свои переменные по умолчанию
и вручную добавлять группы и хо сты. Кроме того, как показано на рис. 19 .4, An­
siЫe Tower позволяет запрашивать список хостов динамически из некоторого
ресурса (например, из VМware vCenter) и помещать их в группу.

АпsiЫе Tower: АпsiЫе для предприятий ❖ 343

фтО\"/ЕR ;oes

Oen,oProject

�moProjкt Q_ Oef3Ult

♦',,Чt'""l ()

�:•=7,1-"
https:/1 .�om/ansiЫt-l&ns1ble-tower•sampt6 ·

.:,{1',(,Jfp�_;l Q � · -,C!t�

C,aeariO
О Delete on Update Q
� Upddre on Laurich

,О

PROJECT$ 0

ф10w,R

CR:EATIHS�OUP

Q,

S:OJUPDATf

<;i)(' '" \<с_., V � � ;; "', 'L; ., • � -1

•!р<!• � ,... !'>< ,..,...,,,, .., "' ' • , 1,

·""'

Рис.19.3 ❖ Параметры настроики ооновления проекта
из системы управления версиями в AnsiЫe Tower

)OBS

С} Ovi!rv.тlte VМ1ВЬl6 t1
(""1 Update оп L3Ul'1Ch О

(1

Рис.19.4 ❖ Выбор источника информации о хостах в AnsiЫe Tower

§;

!,;j ![[;

344 ❖ AnsiЫe Tower: AnsiЫe для предприятий

С помощью специальной формы можно добавлять переменные групп и хос­
тов и переопределять значения по умолчанию.

Также есть возможность временно отключать хосты, щелкая на кнопках, как
показано на рис. 19.5, и тем самым исключать их из обработки.

ф TOWER PR:OjEffi fl\l\'ENTOR1ES ТNPL-'.ffi JOВS

6kOUPS -

Рис. 19.5. Исключение хостов из обработки в AnsiЫe Tower

Запуск заданий из шаблонов

/j С)

Aiilfiii

Q "'

�CТIONS

Шаблоны заданий, как показано на рис. 19.6, связывают проекты с реестрами.
Они определяют, как пользователи смогут запускать сценарии из проекта на
определенных хостах из выбранного реестра.

На уровне сценария можно применять такие уточнения, как дополнитель­
ные параметры и теги. Также есть возможность указать режим запуска сцена­
рия (например, одним пользователям можно позволить запускать сценарии
только в режиме проверки, а другим - только на определенном подмножестве
хостов, зато в полноценном режиме).

На уровне целей есть возможность выбирать определенные хосты и группы.
Для выполняемого шаблона задания создается новая запись, как показано

на рис.19.7.
В детальном обзоре каждой записи, как показано на рис. 19.8, приводится

информация не только об успехе или неудаче его выполнения, но также о дате
и времени запуска задания, о моменте его завершения, кто его запустил и с ка­
кими параметрами.

Есть возможность даже выполнять фильтрацию по операциям, чтобы уви­
деть все задачи и их результаты. Вся эта информация сохраняется в базе дан­
ных, что дает возможность исследовать ее в любой момент.

фrowER

D@moJobTemplate

ю

• з

.. '

AnsiЫe Tower: AnsiЫe для предприятий ❖ 345

jOS'S.

Q Q

Q !п.Ь!:е l'r!YHege Esca!-,tton О
:') Aliow Provislon1ng Callbacks �
О E�eCмcurreniJOЬsV

Рис.19.6 ❖ Шаблоны заданий в AnsiЫe ''-'""'

Pf�kRun

SСМ Update

SCM Upda�

JОВ.5

Q

flNISHED • i.A&LS

5/14/20175:40:57 РМ

5/14/2017 5:36:58 РМ

Рис.19.7 ❖ Записи заданий в AnsiЫe Tower

о IJi

1

!

(1 �

346 ❖ AnsiЫe Tower: AnsiЫe для предприятий

о TOWER ?MOJem l'WfNТQRIES ТЕМРLАТТ';, }065

OEТAlt.S " g DemoJob T1trnpl111te

0, KfY
fЩ;5t1[0 �1412017 �:41:10 РМ

ТЕМ?t.А7Е

jOBTYPf Run

Pt.AYGOCK

МА(Н!NЕ

<:REOENTIAL

FORI\S

VERBOS!ТV

8 DemaPrc:Je<t

3.47e44fea03бc94d5f68eS44de68
6453�Sc7lad

O(Norm•I)

f'lAV [иe.llo \IIOrld Stt111ple} ... •••••••••••••••••• .. •• .. •••·••••••·••••••• ""•••••

Н.-41,�й

1'д5i< fGatht:r1ng t=act!>J ... ��· .. •··••••••• .. ·•�••••.•••0••••••·•••···•·•••••·•··"
!1 �1 '/'L

Рис.19.8 ❖ Подробный обзор результатов задания в AnsiЫe Tower

RESTFUL API

о

Сервер AnsiЫe Tower поддерживает REST API (Representational State Transfer -
программный интерфейс передачи представления о состоянии), позволяю­
щий интегрировать его с имеющимися конвейерами сборки и установки или
системами непрерывного развертывания.

API можно исследовать с помощью браузера, открывая в нем страницы
с адресами вида http://<tower_server>/api:

$ fiгefox https://10.42.0.42/api

На момент написания этих строк последней версией API была версия vl.
Щелкнув на соответствующей ссылке или просто дополнив URLдo http://<tower_
server>/api/vl, можно получить список всех доступных ресурсов, как показано
на рис. 19.9.

AnsiЫe Tower: AnsiЫe для предприятий ❖ 347

• TOWER REST АР!

REST АР! versioп 1

Version 1 °

GЕТ / apii\11 ,

НТТР 2ее ок

Allow: GET, НЕ.АО, OPl IOt..!S

content-Type; �pplн:at1.oп/json

vary: Acc�pt

X-API-Time: 0. 010s

Рис.19.9 ❖ AnsiЫe Tower API версии 1

о о

OPTIONS GП

Самую свежую документацию с описанием API можно найти по адресу:
http://docs.ansiЫe.com/ansiЬle-tower/.

ИНТЕРФЕЙС КОМАНДНОЙ СТРОКИ ANSIBLE TOWER

Как создать нового пользователя или запустить задание, используя только про­
граммный интерфейс AnsiЫe Tower? Конечно, можно было бы ограничиться
лишь инструментом cURL для выполнения этих и других операций из команд­
ной строки по протоколу НТТР, но в AnsiЫe имеется намного более удобный
инструмент: tower-cli..

В отличие от приложения AnsiЫe Tower, клиент командной строки tower-cH является
открытым программным обеспечением и доступен в репозитории GitHub на условиях
лицензии Apache 2.0.

Установка

Чтобы установить tower-cli., воспользуемся диспетчером пакетов для Python,

pi.p.
Клиента tower-cli. можно установить на уровне системы, если имеются при­

вилегии root, или, как в данном случае, для локального пользователя Linux:

$ pip install ansiЫe-toweг-cli

348 ❖ AnsiЫe Tower: AnsiЫe для предприятий

Если установка выполняется с привилегиями обычного пользователя, кли­
ент будет установлен в каталог ~/.local/Ьin/. Не забудьте добавить путь -/.local/

Ып в переменную окружения РАТН.

$ echo 'export PATH=$PATH:$HOME/.local/bin' >> $H011E/.profile

$ source $HOME/.profile

Прежде чем взаимодействовать с API, нужно настроить параметры учетной
записи:

$ tower-cli config host 10.42.0.42

$ tower-cli config usernaмe adмin

$ tower-cli config password JSKYмEBJATFn

Поскольку AnsiЫe Tower использует самоподписанный сертификат SSI./ГLS,
просто пропустим его проверку:

$ tower-cli config verify_ssl false

Вывод по умолчанию содержит ровно столько информации, сколько необ­
ходимо. Но если у вас появится желание получить более подробный вывод по
умолчанию, выберите формат yaml как формат по умолчанию. Впрочем, точно
так же можно добавлять ключ --forмat [huмanljsonlyaмl] в конец команды для
переопределения настроек по умолчанию:

$ tower-cli config fогмаt уамl

Для проверки просто выполните эту команду:

$ tower-cli config

Создание пользователя
Попробуем создать нового пользователя с помощью команды tower-cli. user,

как показано в примере 19.2. Если просто ввести эту команду без дополни­
тельных параметров, она выведет список доступных действий.

Пример 19.2 ❖ Доступные действия клиента командной строки AnsiЫe Tower CLI

$ tower-cli user

Usage: tower-cli. user [OPTIONS] СОММАND [ARGS] ...

Manage users wi.thi.n Ansi.Ыe Тоwег.

Dpti.ons:

--help Show thi.s мessage апd exi.t.

Соммапds:

сгеаtе

delete

get

li.st

мodi.fy

Сгеаtе а user.

Reмove the gi.ven user.

Return опе апd exactly опе user.

Return а li.st of users.

Modi.fy ап already exi.sti.ng user.

Ansiьte Tower: Ansiьte для предприятий ❖ 349

RESTful API поддерживает типичные действия для этого вида программ­
ного интерфейса, с некоторыми исключениями. Главное отличие - доступные
параметры и флаги, которые можно использовать при обращении к ресурсу.
Если выполнить команду tower-cl i user create - -help, она выведет все доступные
параметры.

Для создания пользователя требуется указать несколько параметров:

$ tower-cli. user create \

--usernaмe guy \

--password 's3cr3t$' \

--eмai.l 'guy@exaмple.coм' \

--fi.rst-naмe Guybrush \

--last-naмe Threepwood

Клиент tower-cli обладает некоторой внутренней логикой, и с настройками
по умолчанию его можно запустить несколько раз подряд, не рискуя получить
сообщение об ошибке. tower-cli запросит ресурс, опираясь на ключевые поля,
и вернет информацию о только что созданном пользователе, как показано
в примере 19.3.

Пример 19.3 ❖ Вывод tower-cli. после создания или обновления учетной записи
пользователя

changed: true
i.d: 2
type: user
url: /api./vl/users/2/
related:

adмi.n_of_organi.zati.ons: /api./vl/users/2/adмi.n_of_organi.zati.ons/
organi.zati.ons: /api./vl/users/2/organi.zati.ons/
roles: /api./vl/users/2/roles/
access_li.st: /api./vl/users/2/access_li.st/
teaмs: /api./vl/users/2/teaмs/
credenti.als: /api./vl/users/2/credenti.als/
acti.vi.ty_streaм: /api./vl/users/2/acti.vi.ty_streaм/
projects: /api./vl/users/2/pгojects/

created: '2017-02-05Т11: 15: 37. 275Z'
usernaмe: guy
fi.rst_naмe: Guybгush
last_naмe: Threepwood
eмai.l: guy@exaмple.coм
i.s_superuser: false
i.s_systeм_audi.tor: false
ldap_dn: ' '
external_account: null
auth: []

Однако tower-cli не обновит учетную запись, если попытаться изменить
какие-то ее поля, например адрес электронной почты. Чтобы внести изме­
нения, нужно или добавить флаг - -force-on-exists, или явно указать действие
111odify вместо create.

3 50 ❖ Ansiьte Tower: Ansiьte для предприятий

Запуск задания
Первое, что нам наверняка понадобится автоматизировать, - это запуск зада­
ния из шаблона после успешной сборки на сервере непрерывной интеграции.

Клиент tower-cli. существенно упрощает эту задачу. Достаточно лишь знать
идентификатор или имя шаблона задания, которое требуется запустить. Чтобы
узнать имя шаблона, можно воспользоваться действием li.st:
$ tower-cli. job_teмplate li.st --fогмаt huмan

i.d nаме

5 Оемо Job Teмplate

7 Deploy Арр ..

i.nventoгy project playbook

1

1

4 hello_world.yмl

5 арр.умl

В данный момент у нас имеются только два шаблона, и мы без труда можем
сделать выбор. В больших промышленных окружениях порой имеются огром­
ные коллекции шаблонов, и сделать правильный выбор намного труднее. Что­
бы упростить задачу, tower _cli. поддерживает возможность фильтрации вывода
(например, по проекту --project <i.d> или по реестру --i.nventory).

Более сложные правила фильтрации больших коллекций шаблонов зада­
ний (например, «вывести все шаблоны, имеющие определенное слово в имени
с учетом регистра») можно определять с помощью параметра --query.

Например, вот как выглядит URL, сгенерированный клиентом для парамет­
ра - -query с двумя аргументами - паме_ i.contai.ns и dep loy:
https://10.42.0.42/api./vl/job_teмplates/?naмe_i.contai.ns=deploy

� Все доступные фильтры можно найти в документации с описанием API (http://docs.an­
sible.com/ansible-tower/latest/htmVtowerapi/filtering.html).

Вызов действия l i.st с желаемыми фильтрами вернет следующий результат:
$ tower-cli. job_teмplate li.st --query naмe_i.contai.ns deploy --fогмаt huмan

i.d nаме i.nventory project playbook

7 Deploy Арр ху 4 hello_world.yмl

Отыскав требуемый шаблон, его можно запустить, как показано в приме­
ре 19.4, указав действие job launch, аргумент --job-teмplate и имя или иденти­
фикатор выбранного шаблона.

Пример 19.4 ❖ Запуск задания с помощью tower-cli
$ tower-cli. job launch --job-teмplate 'Deploy Арр ху' --fогмаt huмan

Resource changed.

i.d job_teмplate created status elapsed

AnsiЫe Tower: AnsiЫe для предприятий ❖ 351

11 7 2017-02-05T14:08:05.022Z pendi.ng

Для мониторинга выполняющегося задания команда tower-cli. job поддер­
живает действие rюnitor с аргументом- идентификатором задания. Эта коман­
да запустится и будет ждать завершения задания.

tower-cli job �onitor 11 --forмat huмan

Resource changed.

i.d job_teмplate created status elapsed

11 5 2017-02-05T13:57:30.504Z successful 6.486

Используя немного волшебства командной строки и утилиту jq, можно объ­
единить запуск и мониторинг задания в одну команду:

tower-cli. job мoni.tor $(tower-cli. job launch --job-teмplate 5 --fогмаt json I jq '.i.d')

ПОСЛЕСЛОВИЕ

С окончанием этой главы подходит к концу и наше совместное путешествие_
Но ваше путешествие с AnsiЫe только начинается. Я надеюсь, что вам, так
же как и мне, понравится работать с ним, и в следующий раз, столкнувшись

с коллегами, нуждающимися в инструменте автоматизации, вы расскажете им
о том, как AnsiЫe может облегчить жизнь.

Приложение Д
•••

SSH

В качестве транспортного механизма AnsiЫe использует протокол SSH, поэто­
му важно знать и понимать некоторые особенности SSH, чтобы успешно ис­
пользовать этот протокол в работе с AnsiЫe.

«Родной» SSH
По умолчанию AnsiЫe использует SSН-клиент, установленный в операцион­
ной системе. Это значит, что AnsiЫe может пользоваться всеми основными
функциями SSH, включая Kerberos и SSН-шлюзы (jump hosts). Если у вас име­
ется свой файл -/.ssh/config с настройками SSH, AnsiЫe будет использовать их.

SSH-AГEHT
Существует программа с именем ssh-agent, которая позволяет упростить рабо­
ту с приватными ключами SSH.

Когда на машине запущен ssh-agent, приватные ключи можно добавлять ко­
мандой ssh-add.
$ ssh-add /path/to/keyfile.peм

� Должна быть определена переменная окружения SSH_AUTH_SOCK, иначе команда ssh-add
не сможет взаимодействовать с ssh-agent. Подробности смотрите в разделе «Запуск ssh­
agent» ниже.

Получить список добавленных ключей можно командой ssh_add с ключом - L
или -1, как показано в примере А.1. В данном случае были добавлены два клю­
ча.

Пример А.1 ❖ Вывод ключей в агенте
$ ssh-add -l

2048 SHA256:o7H/I9rRZupXHJ7JnDi10RhSzeAKYiRVrlH9L/JFtfA /Users/lorin/.ssh/id_rsa
2048 SHA256:xLTмHqvHHDidcrHiHdtoOXxqSsм9DOEVi+/jnObkKKM insecure_private_key

$ ssh-add ·L

ssh-rsa AAAABЗNzaClyc2EAAМDAQABAAABAQDWAfog5tz4W9bPVbPDlNC8HWMfhjTgKOhpSZYI+clc

e3/pz5viqsHDQijzSiмoVzIOTV0tOifE8qMkqEYk7igESccCy0zN9VnD6EfYVkExlC+xqkCtZTEVuQn

d+4qyo222EAVkHмбbAhgyoA9nt9Uм9WFO0045yHZL2Do9Z7KXTS4xOqeGFSvv7SiuKcsljORPcWcYqC

fYdrdUdRD9dFq7zFKмpCPJqNwDQDrXbgaTOe+Hбcu2f4RrJLp88WY8voBЗzJ7avv68eOgah82dovSgw

hcsZp4SycZSTy+WqZQhzLogaifvtdgdzaooxNtsм+qRvQJyHkwdoXR6nJgt /Users/lorin/.ssh/i

d_rsa

ssh-rsa AAAABЗNzaClyc2EAAAABiwAAAQEA6NF8iallvQVp22WDkTkyrtvp9eWW6A8YVr+kz4TjGYe7

gHzlw+niNltGEFHzD8+vlI2YJ6oXevct1YeS0o9HZyN1Q9qgCgzUFtdOKLv6IedplqoPkcмF0aYet2P

kEDo3MlTBckFXPITAMzF8dJSIFo9D8HfdOV0IAdx4O7PtixWKn5y2hMNG0zQPyUecp4pzC6kivAihyf

HilFR61RGL+GPXQ2MWZWFYbAGjyiYJnAмCPЗNOTd0jMZEnDkbUvxhMмBYSdETklrRgм+R4LOzFUGaHq

HDFIPKcF96hrucXzcWyLЫbEgE98OHlnVYCzRdK8jlqм8tehUc9c9WhQ== insecure_private_key

SSH ❖ 353

При попытке подключиться к удаленному хосту, когда запущен ssh-agent,
клиент SSH попытается использовать для аутентификации ключи, хранящие­
ся в ssh -agent.

Использование SSН-агента дает несколько преимуществ:
О SSН-агент упрощает работу с зашифрованными приватными ключами

SSH. При использовании зашифрованного приватного SSН-ключа файл,
содержащий этот ключ, защищен паролем. При использовании ключа
для установки SSН-соединения с хостом вам будет предложено ввести
пароль. Даже если кто-либо получит доступ к вашему приватному SSН­
ключу, его будет невозможно использовать без пароля. При использо­
вании зашифрованного приватного SSН-ключа без участия SSН-агента
каждое использование приватного ключа будет требовать ввода пароля
шифрования. При использовании SSН-агента вводить пароль приватно­
го ключа потребуется только во время добавления ключа в агента;

О если AnsiЫe используется для управления хостами с разными SSН­
ключами, применение SSН-агента упрощает конфигурирование An­
siЫe - вам не придется явно определять ansi.Ыe_ssh_pri.vate_key_fi.le на
хостах, как мы это делали в примере 1.1;

О если понадобится установить соединение SSH между удаленным и дру­
гим хостами (например, для клонирования приватного репозитория Git
посредством SSН), можно воспользоваться преимуществом перенаправ­

ленuя агента (agent forwarding) и избавиться от необходимости копиро­
вать приватный SSН-ключ на удаленный хает. Далее я поясню суть пере­
направления агента.

ЗАПУСК SSH-AGENT

Способ запуска SSН-агента зависит от операционной системы.

macOS

macOS уже настроена на автоматический запуск ssh-agent, поэтому вам не нуж­
но предпринимать каких-либо действий.

354 ❖ SSH

Linux

В Linux необходимо запустить ssh-agent и проверить правильность определе­
ний переменных окружения. Если запустить команду ssh-agent непосредствен­
но, она выведет список переменных окружения, которые необходимо опреде­
лить. Например:

$ ssh-agent

SSH_AUTH_SOCK=/tмp/ssh-YI7PBGlkOteo/agent.2547; export SSH_AUTH_SOCK;

SSH_AGENT_PID=2548; export SSH_AGENT_PID;

echo Agent pid 2548;

Вы можете автоматически экспортировать эти переменные, вызвав ssh­
agent, как показано ниже:

$ eval $(ssh-agent)

Вы также должны гарантировать, что в каждый конкретный момент време­
ни выполняется только один экземпляр ssh-agent. В Linux имеется множество
разных инструментов, таких как Keychain и Gnome Keyring, обеспечивающих ав­
томатический запуск ssh-agent. Для этого также можно отредактировать файл
.profile. Тема настройки поддержки ssh-agent в учетной записи выходит далеко
за рамки этой книги, поэтому за дополнительной информацией я рекомендую
обратиться к документации с описанием вашего дистрибутива Linux.

AGENT FoRwдRDING

При клонировании репозитория Git через SSH необходимо использовать при­
ватный SSН-ключ, распознаваемый сервером Git. Я стараюсь избегать копиро­
вания приватных SSН-ключей на хосты, чтобы минимизировать потенциаль­
ный ущерб, если вдруг хает будет взломан.

Для этого на локальной машине можно использовать программу ssh -agent
с функцией перенаправления агента (agent forwarding). Если вы установили
SSН-соединение между вашим ноутбуком и хостом А при включенном пере­
направлении агента, то сможете установить SSН-соединение между хостами
А и В, используя приватный ключ, хранящийся на ноутбуке.

На рис. А.1 показан пример работы функции перенаправления агента. До­
пустим, вам нужно получить исходный код из репозитория GitHub через SSH.
На вашем ноутбуке запущена утилита ssh-agent, и вы добавили приватный
ключ командой ssh-add.

Если SSН-соединение с севером приложений установлено вручную, вы смо­
жете вызвать команду ssh с ключом -А, который активирует перенаправление
агента:

$ ssh -А муusег@муаррsегvег.ехамрlе.сом

На сервере выполняется команда клонирования репозитория Git:

$ git clone git@github.coм:loгin/мezzanine-exaмple.git

[;J

Ноутбук

SSН-соединение
О ноутбука с сервером

поиложений

, Сервер выполняет
' Q процедуру аутентифика-
r+ ___ ции с ключом в ssh-agent

:

SSН-соединение
О между сервером

приложений и github
�

github посылает запрос о серверу приложений

Сервер приложений �
на аутентификацию

перенаправляет запрос _ о на аутентификацию
' агенту ssh-ageпt
!t----------------

1

Сервер приложений

Рис.д.1 ❖ Перенаправление агента в действии

SSH ❖ 355

t

github.com

Git установит SSН-соединение с GitHub. SSH-cepвep на GitHub попытается

выполнить аутентификацию SSН-клиента на сервере приложений. Приватный
ключ отсутствует на сервере приложений, однако, так как было включено пере­

направление агента, SSН-клиент на сервере приложений подключится к аген­
ту ssh-agent, запущенному на ноутбуке, и произведет аутентификацию.

При использовании функции перенаправления агента с AnsiЬle нужно пом­
нить о некоторых проблемах.

Во-первых, вы должны сообщить AnsiЫe о необходимости включить пере­
направление агента при установке соединения с удаленными машинами, по­
скольку SSH не включает его по умолчанию. Для включения перенаправления
агента на всех узлах, с которыми устанавливается SSН-соединение, можно до­
бавить следующие строки в файл -/.ssh/config на управляющей машине:

Host *

ForwardAgent yes

Также можно включить перенаправление для конкретного сервера:

Host аррsегvег.ехамрlе.сом

ForwardAgent yes

Если нужно включить перенаправление агента только для AnsiЬle, добавьте
в файл ansiЫe.cfg параметр ssh_args в раздел ssh_connecti.on:

[ssh_connecti.on]

ssh_aгgs = -о ControlMaster=auto -о ControlPersi.st=б0s -о ForwardAgent=yes

Здесь я использовал более длинный флаг -о ForwardAgent=yes вместо коротко­
го -А, но оба они действуют совершенно идентично.

Параметры ControlMaster и ControlPers'l.st необходимы для оптимизации ра­
боты - мультиплексирования SSH. По умолчанию они включены, но когда вы-

356 ❖ SSH

полняется переопределение переменной ssh_args, их необходимо указать явно,
иначе можно лишиться этой функции. Мультиплексирование SSH обсуждается
в главе 11.

Команда sudo и перенаправление агента

При включении перенаправления агента удаленная машина устанавливает
переменную окружения SSH_AUTH_SOCK, куда записывает путь к сокету домена
Unix (например, /tmp/ssh-FShDVu5924/agent.5924). Однако, когда выполняет­
ся команда sudo, переменная SSH_AUTH_SOCK не переносится в новое окружение,
если только вы не настроили такого поведения sudo явно.

Чтобы обеспечить перенос переменной SSH_AUTH_SOCK в окружение пользо­
вателя root, можно добавить следующую строку в файл /etc/sudoers или в свой
файл /etc/sudoers.d (для дистрибутивов на основе Deblan, таких как UЬuntu).

Defaults>root env_keep+=SSH_AUTH_SOCK

Сохраните этот файл с именем 99-keep-ssh-auth-sock-env в каталоге files на
локальной машине.

Проверка достоверности файлов

Модули сору и tel'lp late поддерживают выражение va li.date. Оно позволяет указать
программу для проверки файла, сгенерированного системой AnsiЫe. Используйте
%s вместо имени файла. Например:

valtdate: visudo -cf %s

При наличии выражения vali.date AnsiЫe копирует файл сначала во временный
каталог, а потом запускает указанную программу проверки. Если программа за­
вершится успешно (О), AnsiЫe скопирует файл из временного каталога в постоян­
ное местоположение. Если программа вернет результат, отличный от нуля, AnsiЫe
выведет сообщение об ошибке:

faHed: [мyhost] => {"checksuм": "ac32f572f0a670c3579ac2864cc3069ee8a19588",

"faHed": true}

мsg: failed to valtdate: гс:1 еггог:

FATAL: all hosts have already fatled ·· aborting

Поскольку файл sudoers с ошибками может нарушить доступ к привилегиям
пользователя root, его всегда полезно проверить с помощью программы visu­
do. Для понимания проблем, которые несут файлы sudoers, предлагаю вашему
вниманию статью участника проекта AnsiЬle Жан-Пита Мэна (Jan-Piet Men)
«Don't try this at the office: /etc/sudoers» (http://blt.ly/lDfeQY7).

• nаме: сору the sudoers ftle so we сап do agent forwardtng

сору:

src: files/99-keep-ssh-auth-sock-env

dest: /etc/sudoers.d/99-keep-ssh-auth-sock-env

owner: root group=root моdе=0440

validate: visudo -cf %s

SSH ❖ 357

К сожалению, на данный момент невозможно вызвать sudo с привилегиями
обычного пользователя и использовать функцию перенаправления агента от
имени другого непривилегированного пользователя. Например, представьте,
что вам нужно вызвать sudo от имени пользователя ubuntu, чтобы выполнять

команды от имени пользователя deploy. Проблема в том, что сокет домена Unix,
ссылка на который хранится в SSH_AUTH_SOCK, принадлежит пользователю ubuntu
и недоступен для чтения или изменения пользователю deploy.

Как вариант можно вызвать модуль gi. t с привилегиями root и изменить раз­
решения с помощью модуля fi. le, как показано в примере А.2.

Пример А.2 ❖ Копирование пользователем root и изменение разрешений

паме: vertfy the conftg 1s valid sudoers file

local_action: соммапd visudo -cf files/99-keep-ssh-auth-sock-env

sudo: True

паме: сору the sudoers ftle so we сап do agent forwarding

сору:

src: files/99-keep-ssh-auth-sock-env

dest: /etc/sudoers.d/99-keep-ssh-auth-sock-env

owner: root

group: root

моdе: "0440"

validate: 'visudo -cf %s'

sudo: True

паме: check out му private git repository

gH:

repo: g1t@g1thub.coм:lor1n/мezzan1ne-exaмple.g1t

dest: "{{ proj_path }}"

sudo: True

паме: set file ownership

fHe:

path: "{{ proj_path }}"

state: directory

recurse: yes

owner: "{{ user }}"

group: "{{ user }}"

sudo: True

Ключи ХОСТА

Каждый хает, где выполняется сервер SSH, имеет свой ключ хоста. Ключ хоста
играет роль подписи, уникально идентифицирующей хает. Ключи хоста помо­

гают предотвратить атаки типа «человек в середине». При клонировании ре-

358 ❖ SSH

позитория с GitHub через SSH никогда нельзя знать наверняка, действительно

ли сервер, объявляющий себя github.com, является сервером GitHub или же это
мошеннический сервер, подделывающий доменное имя. Ключи хоста позво­
ляют убедиться, что сервер, объявляющий себя как github.com, действительно
им является. Это значит, что вы должны иметь ключ хоста (копию подписи) до
попытки установить соединение с этим хостом.

По умолчанию AnsiЫe проверяет ключ хоста, но эту проверку можно отклю­
чить в файле ansiЫe.cfg:

[defaults]

host_key_checking = False

Проверка ключа хоста используется вместе с модулем gi.t. Вспомните, как

в главе 6 модуль gi.t использовал параметр accept_hostkey:

- na�e: check out the repository оп the host

git: геро={{ repo_url }} dest={{ proj_path }} accept_hostkey=yes

Модуль gi.t может зависнуть при клонировании репозитория Git через SSH,
если проверка ключа хоста отключена, а SSН-ключ хоста сервера Git текущему
хосту неизвестен.

Самое простое решение - использовать параметр accept_hostkey, чтобы со­
общить Git о необходимости автоматически принять ключ хоста, если он не­
известен. Этот подход мы использовали в примере 6.6.

Многие просто принимают ключ хоста и не заботятся о вероятности таких
атак. Именно так мы и поступили в сценарии, определив аргумент accept_

hostkey=yes модуля gi.t. Однако если вы относитесь к безопасности с большей
ответственностью и не хотите автоматически принимать ключ хоста, можете
вручную извлечь и провести проверку ключа, а затем добавить его в систем­
ный файл /etc/ssh/known_hosts для всей системы или в пользовательский файл
-/.ssh/known_hosts для конкретного пользователя.

Чтобы вручную проверить SSН-ключ хоста, необходимо получить отпеча­
ток SSН-ключа хоста альтернативным способом. При использовании GitHub
в качестве сервера Git отпечаток SSН-ключа можно найти на сайте GitHub по
ссылке http://Ьit.ly/1DffcxK.

На момент написания книги отпечаток SНА256 RSA сервера GitHub в форма­
те base64 (новейший формат) 1 имел вид 16: 27: ас: aS: 76: 28: 2d: 36: 63: 1Ь: 56: 4d: еЬ: d

f: а6: 48, но лучше не верить мне на слово и проверить на сайте.
Далее необходимо извлечь полный SSН-ключ хоста. Для этого можно исполь­

зовать программу ssh-keyscan, которая извлечет ключ хоста с именем github.
сот. Я предпочитаю помещать файлы, с которыми работает AnsiЫe, в каталог
files. Давайте сделаем это:

1 Формат по умолчанию изменился в версии OpenSSH 6.8 с прежнего MDS на base64
SHA256.

$ мkdi.r fi.les

$ ssh-keyscan gi.thub.coм > fi.tes/known_hosts

Результат будет выглядеть так:

gi.thub.col'I ssh-rsa
AAAABЗNzaC1yc2EAAAABiwAAAQEAq2A7hRGмdnм9tUDbO9IDSwBK6TbQa+PXYPCPyбrЫrTtw7PHkccK
rpp0yVhpSHdEicKrбpllVDBfOLX9QUsyCOV0wzfjIJNlGEYsdlLJizHhbn2мUjvSAHQqZETYP81eFzLQ
NnPHt4EWUh7VfDESUB4KezмDSQlWpXLмvU31/yMf+Se8xhHTvKSCZIFir1WwoG6r1bU0Wf9nzpioaSjB+
weqqUUмpaaasXVal72J+UX2B+2RPWЗRcT0eOzQgqlJLЗRKrTJvdsjEЗJEAvGq3lGHSZXy28GЗskua2Sм
Vi./w4yCE6gbODqnTWlg7+wC604ydGXA8VJi.S5ap43JXi.UFFAaQ==

SSH ❖ 359

Повысить уровень безопасности поможет ключ -н, поддерживаемый коман­
дой ssh-keyscan. Благодаря ему имя хоста не появится в файле known_hosts. Даже
если кто-то попытается получить доступ к вашему файлу со списком хостов, он
не сможет определить имена хостов. При использовании этого ключа резуль­
тат будет выглядеть так:

l1IBI+ZSHЗhzbcмTWna9R4orrwrNrg=lwCxJf50pTQ83JFzyXG4aNLxEмzc= ssh-rsa AAAABЗNzaC1y
c2EAAAABiwAAAQEAq2A7hRGмdnм9tUDbO9IDSwBK6TbQa+PXYPCPyбrЫrTtw7PHkccKrpp0yVhp5HdEI
cKrбpllVDBfOLX9QUsyCOV0wzfjIJNlGEYsdlLJi.zHhbn2мUjvSAHQqZETYP81eFzLQNnPHt4EWUh7Vf
DESU84KezмDSQlWpXLмvU31/yMf+Se8xhHTvKSCZIFir1WwoG6r1bU0Wf9nzpioaSjB+weqqUUмpaaasXVa
l72J+UX2B+2RPWЗRcT0eOzQgqlJLЗRKrTJvdsjEЗJEAvGq3lGHSZXy28GЗskua2SмVi/w4yCEбgbODqnT
Wlg7+wC604ydGXA8VJi.S5ap43JXi.UFFAaQ==

Далее необходимо проверить, совпадает ли ключ хоста в файле files/known_
hosts с отпечатком, полученным с сайта GitHub. Это можно сделать с помощью
программы ssh-keygen:

$ ssh-keygen -tf fi.les/known_hosts

Ее вывод должен совпадать с отпечатком RSA, представленным на сайте:

2048 SHA256:nThbgбkXUpJWGl7E1IGOCspRoмTxdCARLvi.KwбESSY8 github.coм (RSA)

Теперь, когда вы уверены в достоверности ключа сервера Git, можно с по­
мощью модуля сору скопировать его в каталог /etc/ssh/known_hosts.

- nаме: сору systeм-wide known hosts
сору: src=files/known_hosts dest=/etc/ssh/known_hosts owner=root group=root
моdе=0644

Или в каталог конкретного пользователя ~/.ssh/known_hosts. В примере А.3
показано, как скопировать файл со списком хостов с управляющей машины на
удаленные хосты.

Пример д.3 ❖ Добавление известного хоста

nаме: ensure the -/.ssh directory exists
file: path=-/.ssh state=directory
nаме: сору known hosts file
сору: src=files/known_hosts dest=~/.ssh/known_hosts моdе=0600

360 ❖ SSH

Неправильный ключ хоста может вызвать проблемы

даже при отключенной проверке ключа

Если вы отключили проверку ключа хоста в AnsiЫe, определив в файле ansiЫe.
cfg параметр host_key_check'\.ng со значением false, а ключ для хоста, с которым
AnsiЫe пытается установить связь, не соответствует ключу в файле -/ssh/known_
hosts, функция перенаправления агента работать не будет. Попытка клонировать
репозиторий Git в этом случае завершится ошибкой:

TASK: [check out the repository оп the host] ********************************

failed: [web] => {"смd": "/usr/bin/git ls-reмote git@github.coм:lorin/
мezzanine- exaмple.git -h refs/heads/HEAD", "failed": true, "гс": 128}
stderr: Perмission denied (puЫickey).
fatal: Could not геаd fгом гемоtе repository.

Please маkе sure you have the соггесt access rights
апd the repositoгy exists.

мsg: Perмission denied (puЫickey).
fatal: Could not геаd fгом гемоtе repositoгy.

Please маkе sure you have the соггесt access rights
апd the repository exists.

FATAL: all hosts have already failed -- aborting

Это может произойти, если вы использовали и удалили машину Vagrant, а затем
создали новую, потому что в этом случае ключ хоста изменится. Проверить работу
перенаправления агента можно следующим образом:

$ ansi.Ыe web -а "ssh-add -t"

Если функция работает, результат будет выглядеть так:

web I success I гс=0 >>
2048 SHA256:ScSt41+elNd0YkvRXW2nGapX6AZ8MP1J1UNg/qalBUs /Users/lorin/.ssh
/id_rsa (RSA)

Если не работает, результат будет такой:

web I FAILED I rc=2 >>
Could not ореп а connection to your authentication agent.

Если это случится, удалите соответствующий элемент из файла ~/ssh/known_hosts.
Обратите внимание, что при использовании мультиплексирования SSH AnsiЫe
поддерживает соединение с хостом открытым в течение 60 секунд. Поэтому вы
должны дождаться истечения срока соединения, иначе нельзя будет увидеть эф­
фект внесения изменений в файл known_hosts.

Очевидно, что проверка достоверности SSН-ключа хоста требует гораздо

больше усилий, чем простой его прием не глядя. Как всегда, это компромисс
между безопасностью и удобством.

Приложение В
•••

Использование ролей IAM

для учетных данных ЕС2

Если вы собираетесь запускать AnsiЫe внутри VPC, можете воспользоваться
поддержкой ролей службы идентификации и управления доступом (Identity and
Access Management, IАМ) в Amazon, чтобы избавиться от необходимости опре­
делять переменные окружения для передачи учетных данных ЕС2 в экземпляр.
IАМ-роли в Amazon позволяют определять пользователей и группы и управ­
лять их разрешениями в ЕС2 (например, получать информацию о запущенных

экземплярах, создавать экземпляры, создавать образы). IАМ-роли также мож­
но присваивать запущенным экземплярам, чтобы, например, заявить: «Этому
экземпляру позволено запускать другие экземпляры».

Когда вы посылаете запрос в ЕС2 с помощью клиентской программы, под­
держивающей IАМ-роли, и экземпляру предоставлены соответствующие ро­
лям разрешения, клиент извлекает учетные данные из службы метаданных
экземпляра ЕС2 (http://amzn.to/1CuOfТl) и использует их для отправки запроса
конечной точке ЕС2.

IАМ-роли можно создавать в консоли управления Amazon Web Services (AWS)
или из командной строки, с помощью клиента командной строки AWS (AWS
CLI, http://aws.amazon.com/cli/).

Консоль УПРдвления AWS

Посмотрим, как с помощью консоли управления AWS создавать IАМ-роли, пре­
доставляющие привилегированный доступ «Power User Access», позволяющий
делать практически все, что угодно, кроме изменения пользователей и групп
IAM.

1. Зайдите в консоль управления AWS (https://console.aws.amazon.com).
2. Щелкните на ссылке Identity & Access Management.
3. Щелкните на кнопке Roles (Роли) слева.
4. Щелкните на кнопке Create New Role (Создать новую роль).

362 ❖ Использование ролей IAM для учетных данных ЕС2

5. Дайте роли имя и затем щелкните на кнопке Next (далее). Я предпочи­
таю использовать имя роли anst.Ыe для экземпляра, на котором будет
запущена AnsiЫe.

6. В меню AWS Service Roles (Роли AWS Service) выберите пункт Amazon
ЕС2.

7. Выберите привилегии PowerUserAccess. Щелкните на кнопке Next Step
(Следующий шаг).

8. Щелкните на кнопке Create Role (Создать роль).
Если после создания роли выбрать ее и щелкнуть на кнопке Show Policy (По­

казать разрешения), на экране должен появиться документ JSON, как показано
в примере В.1.

Пример В.1 ❖ Документ с разрешениями IАМ-роли «Роwег User»

{

}

"Verston": "2012-10-17",

"Statel'lent": [

{
"Effect": "Allow",

"NotActton": ["tal'I:*", "organtzattons:*"],
1

1Resource 11 : 1'* 11

},{

}

]

"Effect": "Allow",

"Actton": "organtzattons:DescrtbeDrgantzatton",

"Resource 11 : 11* 11

При создании роли в веб-интерфейсе AWS также автоматически создаст про­
филь экземпляра с именем роли (например, anst.Ыe), а еще свяжет роль с име­
нем профиля экземпляра. При создании экземпляра с помощью модуля ес2
и передаче имени профиля экземпляра в параметре t.nstance_proft. le_naJТ1e соз­
данный экземпляр будет обладать разрешениями роли.

КОМАНДНАЯ СТРОКА
Роль и профиль экземпляра можно также создать с помощью клиента команд­
ной строки AWS CLI. Но для этого потребуется чуть больше усилий:

1. Создайте роль, определив политику безопасности. Политика безопасно­
сти описывает объекты, которые могут принять на себя роль и условия
доступа роли.

2. Создайте политику, описывающую разрешения для роли. В данном слу­
чае нам нужно создать эквивалент привилегированного пользователя,
чтобы обладатель роли смог производить любые действия с AWS, кроме
операций с ролями и группами IAM.

3. Создайте профиль экземпляра.
4. Свяжите роль с профилем экземпляра.

Использование ролей IAM для учетных данных ЕС2 ❖ 363

Сначала нужно создать два файла с политиками IAM. Они должны иметь
формат JSON. Политика безопасности представлена в примере В.2. Это та же
политика, которая автоматически генерируется AWS при создании роли через
веб-интерфейс.

Политика роли определяет ее возможности и показана в примере В.3.

Пример В.2 ❖ trust-policy.json

{

}

"Versi.on": "2012-10-17",

"Stateмent": [

{

}

''Si.d":
111,,

"Effect": "Allow",

"Pri.nci.pal": {

"Servi.ce": "ec2.aмazonaws.coм"

},
"Acti.on": "sts:AssuмeRole"

Пример В.3 ❖ power-user.json

{

}

"Veгsi.on": "2012-10-17",

"Stateмent": [

{

}

"Effect": "Allow",

"NotActi.on": "i.ам:*",
11

Resource'': 1'* 11

В примере В.4 показано, как создать профиль экземпляра из командной
строки, когда файлы, приведенные в примерах В.2 и В.3, уже созданы.

Пример В.4 ❖ Создание профиля экземпляра из командной строки

Файлы trust-poli.cy.json и power-user.json должны находиться

в теку111ем каталоге, иначе измените аргументы fi.le://,

указав в них полный путь

$ aws i.ам create-role --role-naмe ansi.Ыe --assuмe-role-poli.cy-docuмent \

fi.le://trust-poli.cy.json

$ aws i.ам put-role-poli.cy --role-naмe ansi.Ыe --poli.cy-naмe \

PowerUserAccess-ansi.Ыe-20170214 --poli.cy-docuмent fi.le://power-user.json

$ aws i.ам create-i.nstance-profi.le --i.nstance-profi.te-naмe ansi.Ыe

$ aws i.ам add-role-to-i.nstance-profi.le --i.nstance-profi.te-naмe ansi.Ыe \

--гоtе-nаме ansi.Ыe

Как видите, работать с веб-интерфейсом гораздо проще. Но для автоматиза­

ции проще использовать командную строку. За дополнительной информацией

364 ❖ Использование ролей IAM для учетных данных ЕС2

по IAM обращайтесь к руководству пользователя AWS Identity and Access Man­
agement (http://docs.aws.amazon.com/lAM/latest/UserGuide/).

После создания профиля можно запустить экземпляр ЕС2 с этим профилем,
например с помощью модуля ес2, использовав параметр i.nstance_prof-\. le_naмe:

- паме: launch ап tnstance wtth tам role
ес2:

tnstance_proftle_naмe: anstЫe
Другие параметры не показаны

При установке SSН-соединения с экземпляром можно запросить у службы
метаданных ЕС2 подтверждение, что он связан с профилем AnsiЫe. Результат
должен выглядеть приблизительно так:

$ curl http:f/169.254.169.254/latest/мeta-data/taм/tnfo

{
"Code" : "Success",
"LastUpdated" : "2014-11-17T02:44:03Z",
"InstanceProftleArn" : "arn:aws:taм::549704298184:tnstance-proftle/anstЫe",
"InstanceProftleid" : "AIPAINM7F44YGDNIBHPYC"

Можно, конечно, детально изучить учетные данные, но, вообще говоря,
в этом нет никакой необходимости. Библиотека Boto автоматически извлечет
их при выполнении модуля ес2 или сценария динамической инвентаризации:

$ curl http://169.254.169.254/latest/мeta-data/taм/securtty-credenttals/anstЫe

{
"Code" : "Success",
"LastUpdated" : "2015-02-09T21:45:20Z",
"Туре" : "AWS-HMAC",
"AccessKeyid" : "ASIAIYXCUETJPY42AC2Q",
"SecretAccessKey" : "ORp9gldtyмIKH9+rFtWEx8BjGRteNTQSRnLnlмWq",
"Token" : "AQoDYXdzEGca4AМPCSW69pvtENpXjw79oH9 ... ",
"Exptratton" : "2015-02-10T04:10:36Z"

Эти учетные данные являются временными. Amazon постоянно изменяет
их.

Теперь вы можете использовать этот экземпляр в качестве управляющей
машины без определения учетных данных в переменных окружения. Модули
ес2 автоматически извлекут их из службы метаданных.

Глоссарий

Группа - набор хостов, обладающий названием.
Операция - сопоставляет группу хостов со списком задач, назначенных для

выполнения на данных хостах.
Декларативный - тип языка программирования, когда программист опи­

сывает желаемый результат, а не процесс его достижения. Сценарии AnsiЫe
являются декларативными. Язык SQL является еще одним примером деклара­
тивного языка. Напротив, такие языки, как Java и Python, являются процедур­
ными.

Динамический реестр (динамическая инвентаризация) - источник, снаб­
жающий AnsiЫe информацией о хостах и группах во время исполнения сце­
нария.

Задача - единица работы в операциях AnsiЫe. Задача определяет модуль
и его аргументы, а также дополнительные имя и параметры.

Зарегистрированная переменная - переменная, созданная с помощью
выражения regi.ster в задаче.

Идемпотентный - действие является идемпотентным, если многократное
его выполнение дает тот же результат, что и однократное.

Конвергентность - свойство системы управления конфигурациями, когда
система запускается на сервере несколько раз для приведения сервера в жела­
емое состояние, с каждым разом приближая к нему. Конвергенция наиболее
тесно ассоциируется с системой управления конфигурациями CFEngine. An­
siЬle не обладает свойством конвергентности, поскольку желаемое состояние
достигается после первого запуска.

Контейнер - форма виртуализации, которая осуществляется на уровне опе­
рационной системы, когда экземпляр виртуальной машины использует то же
ядро, что и система-носитель. Docker является наиболее известной технологи­
ей контейнеров.

Модуль - сценарий AnsiЫe, выполняющий определенную задачу. Приме­
ром модуля может послужить создание учетной записи пользователя, установ­
ка пакета или запуск службы. Большинство модулей AnsiЫe является идемпо­
тентными.

Мультиплексирование SSH- особенность SSН-клиента OpenSSH, позволя­
ющая сократить время на установке SSН-соединений, когда требуется устано­
вить несколько SSН-соединений с одной машиной. AnsiЫe использует мульти­
плексирование SSH для повышения производительности.

Обработчик - напоминает задачу, но выполняется только в ответ на уве­
домление, посылаемое задачей.

366 ❖ Глоссарий

Оркестрация (согласование)- выполнение серии задач в строго определен­
ном порядке на группе серверов. Оркестрация часто необходима для развер­
тывания.

Подстановки - код, выполняемый на управляющей машине для получения
конфигурационных данных, необходимых AnsiЫe во время работы со сцена­
рием.

Псевдоним (Alias) - имя хоста в реестре, отличающееся от действительного.
Развертывание -процесс установки программного обеспечения в работа­

ющую систему.
Реестр (инвентаризация) - список хостов и групп.
Режим проверки (Check mode) - особый режим запуска сценария. В этом ре­

жиме сценарии AnsiЫe не производят изменений на удаленных хостах. Вместо
этого формируется отчет о возможных изменениях состояния хоста при испол­
нении каждой задачи. Иногда упоминается как режим «dry run» (холостой ход).

Роль - механизм AnsiЫe, служащий для объединения задач, обработчиков,
файлов, шаблонов и переменных.

Например, роль ngi.nx может содержать задачи по установке пакета Nginx,
созданию конфигурационного файла для Nginx, копированию файлов серти­
фиката TLS и запуску службы Nginx.

Составные аргументы - аргументы модулей, имеющие вид списка или
словаря.

Сценарий (Playbook) - определяет список операций и группу хостов, на ко­
торых выполняются данные операции.

Транспорт (Transport) - протокол и механизм, используемые в AnsiЫe для
подключения к удаленному хосту. По умолчанию роль транспорта выполняет
протокол SSH.

Управление конфигурациями (Configuration management) - процесс под­
держания серверов в рабочем состоянии. Под рабочим состоянием подразуме­
вается, что файлы конфигурации хранят допустимые настройки, имеются все
необходимые файлы, запущены нужные службы, имеются в наличии ожидае­
мые учетные записи пользователей, установлены корректные разрешения и т. д.

Управляющая машина- компьютер, на котором установлена система An­
siЬle, осуществляющая управление удаленными хостами.

Управляющий сокет - сокет домена Unix, который используется SSН-кли­
ентом для соединения с удаленным хостом при включенном мультиплексиро­
вании SSH.

Факт - переменная с информацией об определенном хаете.
Хост -удаленный сервер, управляемый AnsiЫe.
Шаблон - синтаксис AnsiЫe для описания хостов, на которых выполняется

операция.
АМI (Amazon Machine Image) - образ виртуальной машины в облаке Amazon

Elastic Compute Cloud, также известном как ЕС2.

AnsiЫe, Inc. - компания, осуществляющая контроль над проектом AnsiЫe.

Глоссарий ❖ 367

AnsiЫe Galaxy- репозиторий (https://galaxy.ansiЫe.com/) ролей AnsiЫe, раз­
работанных сообществом.

AnsiЫe Tower - платная веб-система и интерфейс REST для управления An­
siЫe, продается компанией AnsiЬle, Inc.

CIDR (Classless Inter-Domain Routing, бесклассовая адресация) - правило
определения диапазона IР-адресов, используемых в группах безопасности
Amazon ЕС2.

ControlPersist - синоним мультиплексирования SSH.
DevOps - жаргонный профессиональный термин в IТ, ставший популярным

в середине 2010-х rr. (https://ru.wikipedia.org/wiki/DevOps).
Dry run- смотрите Режим проверки (Check mode).
DSL (Domain Specific Language) - предметно-ориентированный язык. В си­

стемах, использующих предметно-ориентированные языки, пользователь
взаимодействует с системой, создавая и выполняя файлы на таких языках.
Предметно-ориентированные языки не обладают такой же широтой возмож­
ностей, как универсальные языки программирования, но (если правильно
сконструированы) они проще читаются и на них легче писать управляющие
программы. AnsiЫe поддерживает предметно-ориентированный язык, ис­
пользующий синтаксис YAML.

EBS (Elastic Block Store) - блочное хранилище. В терминах Amazon ЕС2 под
EBS подразумевается дисковое пространство, которое может быть закреплено
за экземплярами.

Glob - шаблон, используемый оболочками Unix для выбора файлов по име­
нам. Например, шаблон *. txt соответствует всем файлам с расширением . txt.

IАМ (ldentity andAccess Management)-cлyжбa облака Elastic Compute Cloud ком­
пании Amazon, позволяющая управлять разрешениями пользователей и групп.

Ohai - инструмент, используемый Chef для извлечения информации о хосте.
Если Ohai установлен, AnsiЫe запускает его в процессе сбора фактов о хосте.

TLS - протокол защиты транспортного уровня (Тransport Layer Security). Ис­
пользуется для защиты взаимодействий между веб-серверами и браузерами.
TLS заменил более ранний протокол защищённых сокетов (Secure Sockets Lay­
er, SSL). Многие неправильно упоминают TLS как SSL.

Vault - механизм, используемый в AnsiЫe для шифрования конфиденци­
альных данных на диске. Обычно применяется для безопасного хранения сек­
ретных данных в системах управления версиями.

Vagrant - инструмент для управления виртуальными машинами. Использу­
ется разработчиками для создания повторяемых окружений разработки.

Virtualenv - механизм для установки пакетов Python в виртуальные окру­
жения, которые можно включать и выключать. Позволяет пользователю уста­
навливать пакеты Python, не обладая правами пользователя root и не засоряя
глобальную библиотеку пакетов Python на машине.

VPC (Virtual Private Cloud) - используется Amazon ЕС2 для описания изоли­
рованной сети, которую можно создать для экземпляров ЕС2.

Библиография

1. Hashimoto М. Vagrant: Up and Running. O'Reilly Media, 2013.
2. Hunt А., Т1ютаs D. The Pragmatic Programmer: From Journeyman to Master.

Addison-Wesley, 1999 1
•

3. Jaynes М. Taste Test: Puppet, Chef, Salt, AnsiЫe. PuЬlisher, 20142
•

4. Кlерртапп М. Designing Data-Intensive Applications. O'Reilly Media, 2015.
5. Kurniawan У. AnsiЫe for AWS. Leanpub, 2016.
6. Limoncelli Т. А., Hogan С. J., Chalup S. R. The Practice of Cloud System Admin­

istration: Designing and Operating Large Distributed Systems. Addison-Wesley
Professional, 2014.

7. Mell Р., Grance Т. The NIST Definition of Cloud Computing. NIST Special PuЫica­
tion 800-145, 2011.

8. OpenSSH/Cookbook/Мultiplexing, Wikibooks. URL: http://blt.ly/1bpeV0y. Octo­

ber 28, 2014.
9. Shafer А. С. Agile Infrastructure in Web Operations: Keeping the Data on Time.

O'Reilly Media, 2010.

1 Хант Э., Томас Д., Алексашин А. Программист-прагматик. Путь от подмастерья к мас­
теру. Лори, 2016. ISBN 0-201-61622-х. -Прим. перев.

2 Клеппман М. Высоконагруженные приложения. Программирование, масштабирова­
ние, поддержка. СПб.: Питер, 2018. ISBN 978-5-4461-0512-0. -Прим. перев.

Предметный указатель

Символы

{%%},операторные скобки, 123

А

actionaЫe, плагин обратного
вызова, 198
Agent Forwarding, 354

и команда sudo, 356
always, выражение, 174
Amazon ЕС2, 244

автоматические группы, 251
виртуальные приватные
облака,267

логика контроля
идемпотентности, 269

группы безопасности,258
динамическая инвентаризация, 249
другие параметры настройки, 251
запуск новых экземпляров, 255
кэширование реестра, 251
ожидание запуска сервера, 264
пары ключей, 257
переменные окружения, 247
получение новейшего образа, 261
создание нового ключа, 257
создание своего образа АМI, 272
создание экземпляров
идемпотентным способом, 265
терминология, 246

образ машины Amazon, 2 46
теги,246
экземпляр, 246

учетные данные, 247
Amazon Elastic Compute Cloud, 245
AnsiЫe

введение, 23
вызов модулей, 218
добавление пользователей
в Windows, 317

и AnsiЫe Inc., 30
и Docker, 279

и PowerShell, 312
интерактивный отладчик
сценариев,304
и система управления версиями, 38
как работает, 25
контейнер Conductor, 293
контейнеры, 293
масштабирование вверх и вниз, 138
модули поддержки Windows, 314

область применения, 24
обновление Windows, 316
откуда взялось название, 24
отладка сценариев, 301

выбор задач для запуска, 309
выполнение с указанной
задачи,309
ошибки с SSH, 302
пошаговое выполнение, 309
проверка режима, 308
сообщения об ошибках, 301
список задач, 308
список хостов, 307
теги,310

подключение к Windows, 311
преимущества, 26

встроенные модули, 28
не требует установки на
удаленных хостах, 27
принудительно выполняет
настройки, 2 7
простота синтаксиса, 27
тонкий слой абстракции, 29

примечание о версиях, 24
проверка синтаксиса, 307
проверка сценария перед
запуском, 307

370 ❖ Предметный указатель

публикация образов в реестрах, 298
сетевые устройства, 321

ios_config, модуль, 326
аутентификация через SSH, 323
использование конфигураций
из файлов, 331
отключение telnet, 325
подготовка устройства, 322
поддерживаемые
производители,322
реестр и переменные, 327
сбор фактов, 336
шаблоны, 3 34

создание образов Docker, 294
статус сетевых модулей, 322
сценарии наполнения, 239
управление хостами Windows, 311
ускорение работы, 206
установка, 32

ansiЫe.cfg, файл, 37, 65
host_key_checking, значение, 65
roles_path, параметр, 139
переопределение поведенческих
параметров по умолчанию, 68

ansiЫe_check_mode, встроенная
переменная, 94
ansiЫe_connection, параметр, 67
AnsiЬle Container, 280, 293
ANSIВLE_ETCD_URL, переменная
окружения, 164
ANSIВLE_FORКS, переменная
окружения, 215
AnsiЫe Galaxy, 30, 149

веб-интерфейс,149
инструмент командной строки, 150

ansiЫe-galaxy, утилита
вывод списка установленных
ролей,150
добавление своей роли, 151
создание файлов и каталогов
для роли, 148
удаление роли, 150
установка роли, 150

ansiЫe_host, параметр, 67
ansiЫe_ * _interpreter, параметр, 67
ANSIВLE_LOOKUP _PLUGINS,
переменная окружения, 164
ansiЫe_managed, переменная, 45
AnsiЬleModule, вспомогательный
класс, 223

параметры метода
инициализатора, 226

ANSIВLE_NET_AUTHORIZE,
переменная окружения, 326
ANSIВLE_NET_AUTH_PASS,
переменная окружения, 326
ANSIВLE_NET_PASSWORD,
переменная окружения, 326
ANSIВLE _ NET _ USERNAME,
переменная окружения, 326
ansiЫe_password, параметр, 67
ansiЫe _play _ batch, встроенная
переменная, 94
ansiЫe_play_hosts, встроенная
переменная,94
ansiЫe_port, параметр, 67
ansiЫe_private_key_file, параметр, 67
ansiЬle_python_interpreter,
параметр, 67
ANSIВLE_ROLES_PATH, переменная
окружения, 139
ansiЫe_shell_type, параметр, 67

AnsiЬle Tower, 339
RESTful API, 346
запуск заданий из шаблонов, 344
инвентаризация,342
интерфейс командной строки, 347

запуск задания, 350
создание пользователя, 348
установка, 347

какие задачи решает, 341
модели подписки, 340
пробная версия, 340
проекты, 342
управление доступом, 341

ansiЬle_user, параметр, 67

ansiЫe-vault, утилита, 176
ansiЫe _ version, встроенная
переменная, 94
apt, модуль

обновление кэша, 111
установка множества пакетов
с помощью with_items, 109

assert, модуль, 305
async, выражение, 215

в

basename, фильтр, 157
become, выражение, добавление
в задачу, 111
Ыосk, выражение, 172
Boto, библиотека для Python, 248

с

can_reach, модуль, 218
changed_when, выражение, 152
collectstatic, команда, 124
command, модуль, 87,217

запуск команды openssl, 131
Conductor, контейнеры, 293
ControlPersist, 206
сору, модуль

в задачах для ролей, 147
cowsay, программа, 46
createdb, команда, 124, 152
csvfile, подстановка, 159, 161

D

debug, модуль, 86, 303
debug, плагин обратного
вызова, 198
default, фильтр, 156
delegate_to, выражение, 180
dense, плагин обратного вызова, 199
dirname, фильтр, 157
Django

и Mezzanine, 107
проекты, 113

django-manage, команда, 124
Django, пример развертывания
приложения, 70

Предметный указатель ❖ 371

DNS, отображение доменных имен
в IР-адреса, 123
dnstxt, подстановка, 159, 162
Docker, 278

жизненный цикл приложения, 280
запуск контейнера на локальной
машине, 281
и AnsiЫe, 279
контейнеры, 278
подключение к демону, 281
прямое подключение
к контейнерам, 292
развертывание приложения
в контейнере, 288
реестры, 2 8 5
создание образа, 282
удаление контейнеров, 291

docker_container, модуль, 281
docker_service, модуль, 284

Е

ЕС2, учетные данные и IАМ-роли, 361
ec2_ami, модуль, 272
ЕС2 Classic, 254
ЕС2 Virtual Private Cloud (VPC), 254

ес2, модуль
возвращаемое значение, 263
пример составных аргументов, 118

еnv,подстановка,159,160
etcd, подстановка, 159, 164
etcd, хранилище, 158
expanduser, фильтр, 157

F

Fabric, сценарии развертывания, 102
fact_caching_timeout, выражение, 212
failed_when, выражение, 152,156
failed, фильтр, 156
files, подкаталог, 44
file, модуль, 130
file, подстановка, 159
FilterModule, класс

filters, метод, 158
filter_plugins, каталог, 158

372 ❖ Предметный указатель

flush_handlers, выражение, 187
FOREMAN_SSL_CERT, переменная
окружения, 201
FOREMAN_SSL_КEY, переменная
окружения, 201
FOREМAN_SSL_VERIFY, переменная
окружения, 201
FOREMAN_URL, переменная
окружения,201
foreman, плагин, 201
free, стратегия, 185

G

Ghost, пример, 281
git, модуль

извлечение проекта
из репозитория, 113

Gnome Keyring, 354
Google Compute Engine, 245
group_names, встроенная
переменная, 94
groups, встроенная
переменная,94,96
Gunicorn, сервер приложений, 103

н

НIРСНАТ_NАМЕ, переменная
окружения, 202
НIРСНАТ_RООМ, переменная
окружения, 202
НIРСНАТ _ TOKEN, переменная
окружения, 202
hipchat, плагин, 202
host_key_checking, значение, 65
hosts, файл, 38
hostvars, встроенная
переменная,94,95

IaaS, 244
IАМ-роли, 361
if, операторы, 128
ignore_errors, ключевое слово, 88
include_role, операция
подключения, 171

include, функция, 169
inventory _hostname_short, встроенная
переменная, 94
inventory _hostname, встроенная
переменная, 94, 9 5
inventory _ hostname,
переменная, 180
Invoke-WebRequest, Windows-aнaлor
wget, 313
ios_config, модуль, 326
item, переменная цикла, 110

J

JABBER_PASS, переменная
окружения, 202
JAВBER_SERV, переменная
окружения, 202
JAВBER_TO, переменная
окружения, 202
JAВBER_USER, переменная
окружения, 202
jabber, плагин, 202
Joyent, 245
json, плагин обратного вызова, 199
JUNIТ_OUTPUT_DIR, переменная
окружения, 202
JUNIТ _ TASK_ CLASS, переменная
окружения,202
JUnit, отчеты, соглашения, 203
junit, плагин, 202

к

Keychain, 354

L

linear, стратегия, 184
listen, выражение, 189
local_action, выражение, 179

и составные аргументы, 119
local_settings.py, файл, создание
из шаблона, 121
LOGENТRIES _ANSIВLE_ TOKEN,
переменная окружения, 203
LOGENТRIES_API, переменная
окружения, 203

LOGENTRIES_FLATTEN, переменная
окружения,203
LOGENТRIES_PORT, переменная
окружения, 203
LOGENТRIES_TLS_PORT, переменная
окружения, 203
LOGENТRIES _ USE _ TLS, переменная
окружения, 203
logentries, плагин, 203
log_plays, плагин, 203
LOGSTASH_PORT, переменная
окружения,204
LOGSTASH_SERVER, переменная
окружения, 204
LOGSTASH_ТYPE, переменная
окружения, 204
logstash, плагин, 203
loop_var, выражение, 167

м

mail, плагин, 204
manage.py, сценарий, 124
max_fail_percentage, выражение, 182
meta, модуль, 187
Mezzanine

и Django, 107
организация устанавливаемых
файлов,107
развертывание с помощью
AnsiЫe, 106

активация конфигурации
Nginx, 130
добавление become в задачу, 111
задания cron для Тwitter, 131
законченный сценарий, 132
извлечение проекта
из репозитория, 113
настройка конфигурационных
файлов, 127
обновление кэша apt, 111
переменные и скрытые
переменные, 108
установка Mezzanine и других
пакетов в virtualenv, 115

Предметный указатель ❖ 373

установка на несколько
машин, 137
установка сертификатов TLS, 130
устранение проблем, 136

список задач в сценарии, 106
mezzanine-project, программа, 102
Mezzanine, система управления
контентом, 99

запуск в окружении разработки, 99
веб-сервер Nginx, 104

запуск в промышленном
окружении,103

migrate, команда, 124
minimal, плагин обратного
вызова, 200

N

Nginx
открытие портов на машине

Vagrant, 41
создание шаблона
с конфигурацией, 58

Nginx, веб-сервер, 104

о

oneline, плагин обратного
вызова, 200
openssl, команда, 131
osx_say, плагин, 204

р

Packer, 273
password, подстановка, 159, 160
pipe, подстановка, 159, 160
pip freeze, команда, 117
pip, модуль

установка пакетов в системный
каталог, 115

PostgreSQL
настройка базы данных
для Mezzanine, 120

postgresql_db, модуль, 120
postgresql_user, модуль, 120
PostgreSQL, база данных, 103

374 ❖ Предметный указатель

post_tasks, секция, 140
PowerShell, 312
pre_tasks, секция, 140
PROFILE_TASKS_SORT_ORDER,
переменная окружения, 205
PROFILE_ TASKS _ TASK _ OUTPUТ _ LIMIТ,
переменная окружения, 205
profile_tasks, плагин, 204

R

Rackspace, 245
realpath, фильтр, 157
redis_kv, подстановка, 159, 163
register, ключевое слово, 86
repo_url, переменная, 113
requirements.txt, файл, 115

пример, 115
rescue, выражение, 174

s

script, модуль, 125,217
selective, плагин обратного
вызова, 200
set_fact, модуль, 94
settings.py, файл, 121
shell, модуль, 217
skippy, плагин обратного
вызова, 200
SLACK _ CНANNEL, переменная
окружения, 205
SLACK_INVOCATION, переменная
окружения,205
SLACK _ USERNAМE, переменная
окружения,205
SLACK_WEBHOOK_URL, переменная
окружения,205
slack, плагин, 205
SMTPHOST, переменная
окружения,204
SoftLayer, 245
SQLite, встраиваемая база
данных, 102
SSН,мультиплексирование,206
ssh-agent, утилита, 354

SSН-агент, 352
запуск,353

SSН,протокол,352
SSL (Secure Sockets Layer), 42
stat, модуль, возвращаемые
значения,306
stdout_ callback, параметр, 197
strategy, выражение, 183
Supervisor, диспетчер процессов, 105

т

templates, подкаталог, 44
template, модуль, в задачах
для ролей, 147
template, подстановка, 159, 161
timer, плагин, 205
tls_enaЫed, переменная, 130
TLS (Transport Layer Security), 42

V

Vagrant, 33, 237
настройка трех хостов, 64
открытие портов на машине, 41
параметры настройки, 237

IР-адреса, 237
перенаправление агента SSH, 239
перенаправление портов, 237

vagrant destroy-- force, команда, 64
vars_files, секция, 85
vars, секция, 85
virtualenv, изолированное
окружение, 115

w

wait_for, модуль, 179,217
Windows Remote Management
(WinRM), механизм
подключения, 311
Windows Subsystem f or Linux
(WSL), 311
win_ping, команда, 313
with_dict, конструкция цикла, 165, 166
with_fileglob, конструкция
цикла, 165

with_first_found, конструкция
цикла, 165
with _ flattened, конструкция
цикла,165
with_indexed_items, конструкция
цикла, 165
with_inventory _ hostnames,
конструкция цикла, 165
with_items, конструкция цикла, 165
with_lines, конструкция цикла, 165
with_nested, конструкция цикла, 165
with_random_choice, конструкция
цикла, 165
with_sequence, конструкция
цикла, 165
with_subelements, конструкция
цикла, 165
with _ together, конструкция
цикла, 165
WSGI (Web Server Gateway Interface),
протокол,104

х

xip.io, 123

у

УАМL, язык разметки, 47
булевы выражения, 48
комментарии, 47
начало файла, 47
объединение строк,49
словари, 48
списки,48
строки,47

А

активация конфигурации Nginx, 130
альтернативное местоположение
интерпретатора Bash, 235
аргументы, составные, 117,226
асинхронное выполнение задач
с помощью Async, 215

Б

базы данных, настройка
PostgreSQL, 120

Предметный указатель ❖ 375

блоки, 172
обработка ошибок, 172

в

виртуальные приватные облака, 267
логика контроля
идемпотентности, 269

встроенные переменные, 94
выбор имени переменной цикла, 167
вызов модуля, 219

г

группировка групп, 72
группы, 72
группы серверов,45
группы хостов, 68

д
динамический реестр, 7 6

сценарий, 77
добавление пользователей
в Windows, 317
доступ к ключам словаря
в переменной, 88

3

зависимости в файле
requirements.txt, 115
зависимые роли, 148
задания cron для Тwitter, 131
задачи, 52

pre_tasks и post_tasks, секции, 140
выделение в отдельный файл, 170
запуск на сторонней машине, 180
запуск на управляющей
машине, 179
однократный запуск, 183
последовательное выполнение
на хостах по одному, 180
составные аргументы, 117,226
список в сценарии, 106

законченный сценарий, 132
запуск сценария, 45, 60
запуск сценария на машине
Vagrant, 136

376 ❖ Предметный указатель

и л

изолированное окружение, установка
пакетов, 115
имена ролей, 138
имена хостов с номерами, 72
интерактивный отладчик
сценариев,304

команды, 304
поддерживаемые переменные, 304

использование Vagrant
для подготовки сервера, 33
истинные и ложные значения
в сценариях, 43

к

кавычки, когда использовать, 57
клиент командной строки AWS, 362
ключи словаря в переменной,
доступ,88
ключи хоста, 357
когда использовать кавычки, 5 7
конвейерный режим, 209

включение, 210
настройка, 210

консоль управления AWS, 361
контейнеры

AnsiЬle, 293
Conductor, контейнер, 293
запуск на локальной машине, 297
развертывание в промышленном
окружении, 300
создание образов Docker, 294

запуск на локальной машине, 281
прямое подключение к, 292
развертывание приложения, 288
удаление,291
управление на локальной
машине, 284
что такое контейнеры, 278

кэширование фактов, 211
в JSON, 213
в memcached, 214
в Redis, 213

локальные сценарии наполнения, 243
локальные факты, 93

м

Майкл ДеХаан, 24
Митчел Хашимото (Mitchell
Hashimoto), 237
модули, 53

альтернативное местоположение
интерпретатора Bash, 235
анализ аргументов, 222
возврат признака успешного
завершения или неудачи, 229
возвращаемые переменные, 220
вызов, 219
вызов внешних команд, 229
вызов системой AnsiЫe, 218
где хранить, 218
документирование,231
доступ к параметрам, 223
на Bash, 234
на Python, 221
ожидаемый вывод, 220
отладка, 2 3 3
примеры, 236
разметка в документации, 232
режим проверки, 230
свойства аргументов, 224

собственные, 217
модули поддержки Windows, 314
мультиплексирование SSH, 206

включение вручную, 207
параметры, 208

н

наполнение нескольких машин

одновременно,241
настройка конфигурационных
файлов для приложения
Mezzanine, 127
недоступен хост с адресом
192.168.33.10.xip.io, 137

не получается извлечь файлы
из репозитория Git, 136
нотация бесклассовой адресации
(CIDR), 260

о

область применения AnsiЫe, 24
обновление Windows, 316
обработка ошибок с помощью
блоков, 172
обработчики, 59

в pre_tasks и post_tasks, 186
выполнение по событиям, 189
для ролей, 13 8
принудительный запуск, 187
улучшенные, 186

отладка сценариев AnsiЫe, 301
интерактивный отладчик, 304
ошибки с SSH, 302
сообщения об ошибках, 301

отслеживание состояния хоста, 54

п

параллелизм, 214
переменные, 56, 85, 159

встроенные, 94
выбор имени переменной
цикла,167
зарегистрированные, 86
зарегистрированные, фильтры, 156
и скрытые переменные в примере
сценария,108
определение в сценариях, 85
приоритет, 97
установка из командной строки, 96

переменные по умолчанию
для роли, 143
перенаправление агента, 354

и команда sudo, 356
плагин инвентаризации
контейнеров, 292
плагины собственные, 164
плагины, другие, 201

foreman, 201

hipchat, 202
jabber, 202

Предметный указатель ❖ 377

junit, 202
logentries, 203
log_plays, 203
logstash, 203

mail, 204
osx_say, 204
profile_tasks, 204
slack, 205

timer, 205
плагины обратного вызова, 197

actionaЫe, 198
debug, 198
dense, 199

json, 199
minimal, 200
oneline,200
selective, 200
skippy, 200

плагины стандартного вывода, 197
поведенческие параметры хостов

в реестре, 67
подготовка сервера
для экспериментов, 33
подключение, 169

динамическое, 170
ролей,171

подключение к демону Docker, 281
подстановки,158

csvfile, 159
dnstxt, 159
env,159
etcd, 159
file, 159
password, 159
pipe, 159
redis_kv, 159
template, 159
доступные в AnsiЫe, 158

предварительные и заключительные
задачи,140

378 ❖ Предметный указатель

примеры
can_reach, модуль, 218
проверка доступности удаленного
сервера,217

проверка достоверности файлов, 356
проверка доступности удаленного
сервера,217
псевдонимы и порты, 72
развертывание приложения Django,
пример, 70

р

реверсивный прокси, 104
регистрация переменных, 86
реестр,63

add_host, 82
group_by, 82
группы хостов,68
деление на несколько файлов, 82
динамический, 7 6
динамический, сценарий, 77
несколько машин Vagrant, 64
переменные хостов и групп, 73
файл реестра, 63

роли, 138

с

AnsiЫe Galaxy, 149
database для развертывания базы
данных, 141
базовая структура, 138
зависимые, 148
использование в сценариях, 139
определение переменных, 143
переменные по умолчанию для, 143
предварительные и
заключительные задачи, 140

сбор фактов, 336
сетевые интерфейсы, получение
информации о машинах Vagrant, 66
сетевые устройства

ios_config, модуль, 326
аутентификация через SSH, 323
и AnsiЫe, 321

использование конфигураций
из файлов, 331
отключение telnet, 325
подготовка,322
поддерживаемые
производители,322
реестр и переменные, 327
сбор фактов, 3 36
статус сетевых модулей, 322
шаблоны, 334

символические ссылки, 130
словари, обход элементов с помощью
with_dict, 166
сложные циклы, 164
создание сертификата TLS, 56
создание шаблона
с конфигурацией, 58
составные аргументы, 117,226
статус сетевых модулей, 322
стратегии выполнения, 183
структура сценария, 49
сценарии,42

YAML, язык разметки, 47
булевы выражения, 48
комментарии, 47
начало файла, 47
объединение строк, 49
словари, 48
списки,48
строки,47

выбор задач для запуска, 309
выполнение с указанной
задачи, 309
дополнительные возможности, 152

подстановки,158
задачи,51,52
запуск,45,60
интерактивный отладчик, 304
использование ролей в, 139
модули, 53
обработчики,59
операции,50
определение переменных в, 85

отладка, 301
ошибки с SSH, 302
переменные, 56
пошаговое выполнение, 309

проверка перед запуском, 307
проверка режима, 308
проверка синтаксиса, 307
сообщения об ошибках, 301
список задач, 308
список хостов, 307

структура,49
теги,310
фильтры, 155

сценарии наполнения, 239
локальные, 243
определение групп, 242

сценарий динамического реестра, 77

у

управление выводом, 168
управление хостами Windows, 311
ускорение работы AnsiЫe, 206

установка AnsiЫe, 32
установка сертификатов TLS, 130

ф

файл реестра, 6 3
факты, 89

кэширование, 211

локальные, 93
просмотр доступных для

сервера,90
сбор вручную, 195

Предметный указатель ❖ 379

фильтры, 155

х

для возвращаемых значений

задач,156

для заключения строк
в кавычки, 158

для зарегистрированных

переменных, 156

собственные, создание, 157

хосты

ц

ограничение обслуживаемых, 179

пакетная обработка, 182

получение IР-адреса, 195
последовательное выполнение

задач на хостах по одному, 180
реестр,63

шаблоны для выбора, 178

циклы

with_dict, конструкция цикла, 166

with_ fileglob, конструкция

цикла, 165
with_lines, конструкция цикла, 165

выбор имени переменной

цикла, 167

сложные, 164

ш

шаблоны, 178
поддерживаемые в AnsiЫe, 178

шифрование, 175

06 авторах

Лорин Хохштейн (Lorin Hochstein) родился и вырос в Монреале, провинция
Квебек, хотя по его акценту вы никогда не догадались бы, что он канадец, разве
что по его привычке неправильно строить некоторые фразы. Занимался на­
учной деятельностью - два года работал доцентом на кафедре информацион­
ных технологий в университете Небраска-Линкольн и еще четыре - научным
сотрудником в институте информационных технологий Южно-Калифорний­
ского университета. Получил степень бакалавра в области информационных
технологий в университете Макгилла, степень магистра в области проектиро­
вания электрических систем в Бостонском университете, защитил докторскую
диссертацию в университете Мериленда. В настоящее время работает старшим
разработчиком в Netflix, где практикует методику Chaos Engineering.

Рене Мозер (Rene Moser) живет в Швейцарии со своей женой и тремя деть­
ми. Любит простые программы, которые легко масштабируются. Имеет дип­
лом о высшем образовании в сфере информационных технологий. Участвует
в жизни сообщества программного обеспечения с открытым кодом уже более
15 лет. В последнее время является членом основной команды разработчиков
AnsiЫe и написал более 40 модулей для AnsiЫe. Также является членом ко­
митета Project Management Committee Apache CloudStack. В настоящее время
работает системным инженером в SWISS ТХТ.

Колофон

На обложке «Установка и работа с AnsiЫe» изображена корова голштино­
фризской породы, которую в Северной Америке часто называют голштинской,
а в Европе - фризской. Она была выведена в Европе, в Нидердандах, с целью
получить коров, питающихся исключительно травой - самый богатый ресурс
в этом районе, - в результате чего получилась черно-белая молочная порода.
Голштино-фризская порода была завезена в США где-то между 1621 и 1664 го­
дом, но она не вызывала интереса у американских селекционеров до 1830-х
годов.

Животные этой породы отличаются крупными размерами, четкими чер­
ными и белыми пятнами и высокой продуктивностью молока. Черно-белая
окраска является результатом искусственного отбора селекционерами. Теля­
та рождаются крупными, весом 40-45 килограммов; зрелые голштинцы могут
достигать в весе 580 килограммов и в холке до 1,5 метра. Половая зрелость
у этой породы наступает в возрасте 13-15 месяцев; срок беременности длится
9,5 месяца.

Коровы этой породы дают в среднем 7600 литров молока в год; продуктив­
ность племенных животных может достигать 8100 литров в год, а в течение
жизни могут производить до 26 ООО литров.

В сентябре 2000 г. голштинцы оказались в центре жарких дискуссий, когда
компания Hanoverhill Starbuck клонировала одно животное из замороженных
клеток соединительной ткани, взятых у него за месяц до смерти. Клонирован­
ный экземпляр появился через 21 год и 5 месяцев после рождения оригинала.

Многие животные, изображенные на обложках книг издательства O'Reilly,
находятся под угрозой вымирания; все они очень важны для биосферы. Чтобы
узнать, чем вы можете помочь, посетите сайт animals.oreilly.com.

Изображение для обложки взято из второго тома энциклопедии Лидеккера
(Lydekker) «Royal Natural Нistory». Текст на обложке набран шрифтами URW
Тypewriter и Guardian Sans. Текст книги набран шрифтом Adobe Minion Pro;
текст заголовков - шрифтом Adobe Myriad Condensed; а фрагменты программ­
ного кода - шрифтом UЬuntu Mono, созданным Далтоном Магом (Dalton Maag).

Книги издательства «ДМК Пресс» можно заказать
в торгово-издательском холдинге «Планета Альянс» наложенным платежом,

выслав открытку или письмо по почтовому адресу:
115487, г. Москва, 2-й Нагатинский пр-д, д. бА.

При оформлении заказа следует указать адрес (полностью),
по которому должны быть высланы книги;

фамилию, имя и отчество получателя.
Желательно также указать свой телефон и электронный адрес.

Эти книги вы можете заказать и в интернет-магазине: www.alians-kniga.ru.
Оптовые закупки: тел. (499) 782-38-89.

Электронный адрес: books@alians-kniga.ru.

Лорин Хохштейн, Рене Мозер

Запускаем Ansible

Главный редактор Мовчан Д. А.

dmkpress@gmaiLcom

Научный редактор Маркелов А. А.

Перевод ФШ1онов Е. В., Киселев А. Н.

Корректор Синяева Г. И.

Верстка Чаннова А. А.

Дизайн обложки Мовчан А. Г.

Формат 70х100 1/16.
Гарнитура «РТ Serif». Печать офсетная.

Усл. печ. л. 21,25. Тираж 200 экз.

Веб-сайт издательства: www.dmkpress.com

«Я запоем прочитш� рукопись первого издания книги за несколько часов. Лорин создш� нечто
невероятное, продемонстрировав AnsiЬ/e со всех сторон. Я очень обрадовш�ся, узнав,

что он решил обоединить свои усшия с Рене для работы над вторым изданием. Авторы проделш�и
выдающуюся работу, показав как эффективно использовать необычайно полезный инструмент.

По моему мнению, никто бы не смог справиться с этой задачей на столь же глубоком уровне».

-Жан-Пит Мене (Jan-Piet Mens), консультант

Среди множества систем управления конфигурациями AnsiЫe обладает неоспоримыми

преимуществами. Он минималистичен, не требует установки программного обеспече­

ния на узлах, а также легок в освоении. Второе издание книги научит вас выстраивать
продуктивную работу в кратчайшие сроки, будь вы разработчик, разворачивающий код

в производственной среде, или системный администратор в поисках более эффектив­

ного решения дЛЯ автоматизации.

Авторы книги расскажут вам, как написать сценарий (скрипт управления конфигура­

циями AnsiЫe), установить контроль над удаленными серверами, а также задействовать

мощный функционал встроенных декларативных модулей.

Вы поймете, что AnsiЫe обладает всеми функциональными возможностями, которые

вам необходимы, и той простотой, о которой вы мечтаете.

• узнайте, qем AnsiЫe отличается от других систем управления конфигурациями;

• используйте формат файлов УАМL дЛЯ написания собственных сценариев;

• изучите пример полного сценария для развертьmания нетривиального приложения;

• администрируйте машины Windows и автоматизируйте конфигурацию сетевых
устройств;

• производите развертьmание приложений на Amazon ЕС2 и других облачных
платформах;

• используйте AnsiЫe дЛЯ создания образов Docker и развертывания контейнеров
Docker.

Мы рекомендуем изучать книrу последовательно от начала и до конца, поскольку последующие
главы основаны на содержании предьщущих. Книга написана в стиле учебного пособия, что дает
возможность выполнять все операции на вашем компьютере во время ее чтения. Большинство
примеров основано на веб-приложениях.

Лорш, Хохштейн (Lorin Hochstein) является старшим инженером по программному обеспечению (Senior
Software Engineer) команды Chaos в компании Netflix. Он также работш� старшим инженером по
программному обеспечению в компании SendGrid Labs, был ведущим архитектором облачных сервисов
(Lead Architect for C/oud Services) в компании NimЬis Services и занимш� должность ученого в области
компьютерных наук, в Институте инrjюрматик,и Университета Южной Кш�иrjюрнии (University of
Southem Ca/ifomia's Information Sciences Institute).
Рене Мозер (Rene Moser) занимает позицию системного инженера в компании Swiss, является разра­
ботчиком ASF C/oudStack, автором интеграции CloudStack в AnsiЬ/e и ключевым членом сообщества
AnsiЬ/e с 20 I 6 года.

Интернет-магазин:

ww\v.dшkpress.coш

Книга - почтой:

orders@alians-kniga. п1

Оптовая продажа:

"Альянс-книга"

тел.(499) 782-38-89

books@alia11s-kniga.ru

ISBN 978-5-97060-513-4

,&t\
www.дмк.рф 9 785970 605134 >

