

Microservices

Flexible Software Architectures

Eberhard Wolff

This book is for sale at http://leanpub.com/microservices-book
This version was published on 2016-01-10

N

Leanpub

) ok ok k0 3k

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean
Publishing process. Lean Publishing is the act of publishing an in-progress ebook
using lightweight tools and many iterations to get reader feedback, pivot until you
have the right book and build traction once you do.

) ok ok k0 3k

© 2015 - 2016 Eberhard Wolff

http://leanpub.com/microservices-book
http://leanpub.com
http://leanpub.com/manifesto

Table of Contents

1 Preface
1.1 Overview of Microservice
1.2 Why Microservices

Part I: Motivation and Basics

2 Introduction
2.1 Overview of the Book
2.2 For Whom is the Book Meant?

2.3 Chapter Overview

2.4 Essays
2.5 Paths Through the Book

2.6 Acknowledgement

3 Microservice Scenarios

3.1 Modernizing an E-Commerce Legacy Application
3.2 Developing a New Signaling System

3.3 Conclusion

Part I1: Microservices: What, Why and Why Not?

4 What are Microservices?
4.1 Size of a Microservice
4.2 Conway’s Law
4.3 Domain-Driven Design and Bounded Context
Why You Should Avoid a Canonical Data Model (Stefan Tilkov)
4.4 Microservices with UI?
4.5 Conclusion

5 Reasons for Microservices
5.1 Technical Benefits

5.2 Organizational Benefits
5.3 Benefits from a Business Perspective

5.4 Conclusion

6 Challenges

6.1 Technical Challenges
6.2 Architecture

6.3 Infrastructure and Operations
6.4 Conclusion

7 Microservices and SOA
7.1 What is SOA?
7.2 Differences Between SOA and Microservices
7.3 Conclusion

Part I11: Implementing Microservices

8 Architecture of Microservice-based Systems
8.1 Domain Architecture

8.2 Architecture Management

8.3 Techniques to Adjust the Architecture
8.4 Growing Microservice-based Systems

Don’t Miss the Exit Point or How to Avoid the Erosion of a Microservice
(Lars Gentsch)

8.5 Microservices and Legacy Applications
Hidden Dependencies (Oliver Wehrens)
8.6 Event-driven Architecture

8.7 Technical Architecture

8.8 Configuration and Coordination

8.9 Service Discovery

8.10 Load Balancing

8.11 Scalability

8.12 Security

8.13 Documentation and Metadata

8.14 Conclusion

9 Integration and Communication
9.1 Web and UI

9.2 REST

9.3 SOAP and RPC

9.4 Messaging

9.5 Data Replication

9.6 Interfaces: Internal and External
9.7 Conclusion

10 Architecture of Individual Microservices
10.1 Domain Architecture
10.2 CQRS
10.3 Event Sourcing
10.4 Hexagonal Architecture
10.5 Resilience and Stability
10.6 Technical Architecture
10.7 Conclusion

11 Testing Microservices and Microservice-based Systems
11.1 Why Tests?
11.2 How to Test?
11.3 Mitigate Risks at Deployment
11.4 Testing the Overall System
11.5 Testing Legacy Applications and Microservices
11.6 Testing Individual Microservices
11.7 Consumer-driven Contract Tests

11.8 Testing Technical Standards
11.9 Conclusion

12 Operations and Continuous Delivery of Microservices
12.1 Challenges Associated with the Operation of Microservices

12.2 Logging
12.3 Monitoring

12.4 Deployment

Combined or Separate Deployment? (Jorg Miiller)
12.5 Control

12.6 Infrastructure

12.7 Conclusion

13 Organizational Effects of a Microservices-based Architecture

13.1 Organizational Benefits of Microservices
13.2 An Alternative Approach to Conway’s Law

13.3 Micro and Macro Architecture

13.4 Technical Leadership
13.5 DevOps

When Microservices Meet Classical IT Organizations (Alexander

Heusingfeld)

13.6 Interface to the Customer
13.7 Reusable Code

13.8 Microservices Without Changing the Organization?
13.9 Conclusion

Part I'V: Technologies

14 Example for a Microservices-based Architecture
14.1 Domain Architecture

14.2 Basic Technologies

14.3 Build

14.4 Deployment Using Docker

14.5 Vagrant

14.6 Docker Machine

14.7 Docker Compose

14.8 Service Discovery

14.9 Communication

14.10 Resilience

14.11 Load Balancing

14.12 Integrating Other Technologies
14.13 Tests

Experiences with JVM-based Microservices in the Amazon Cloud (Sascha

Mollering)
14.14 Conclusion

15 Technologies for Nanoservices
15.1 Why Nanoservices?
15.2 Nanoservices: Definition
15.3 Amazon LLambda
15.4 OSGi
15.5 Java EE
15.6 Vert.x
15.7 Erlang
15.8 Seneca
15.9 Conclusion

16 How to Start with Microservices
16.1 Why Microservices?
16.2 Roads towards Microservices

16.3 Microservice: Hype or Reality?

16.4 Conclusion

1 Preface

Even though Microservices are a new term, they have haunted me already for a
long time. In 2006 Werner Vogels (CTO, Amazon) gave a talk at the JAOO
conference presenting the Amazon Cloud and Amazon’s partner model. In his talk
he mentioned the CAP theorem, today the basis for NoSQL. In addition he was
talking about small teams, which develop and run services with their own
databases. This type of organization is nowadays called DevOps, and the
architecture is known as Microservices.

Later I was asked to develop a strategy for a client allowing him to integrate
modern technologies into his existing application. After a few attempts to integrate
the new technologies directly into the Legacy code, we finally built a new
application with a completely different modern technology stack alongside the old
one. The old and the new application were only coupled via HTML links and via
a shared database. Except for the shared database this is in essence a
Microservices approach. That happened in 2008.

Already in 2009 another client had divided his complete infrastructure into REST
services, which were each developed by individual teams. This is also called
Microservices today. Many other companies with a web-based business model
had already implemented similar architectures at the time. Lately I realized in
addition that Continuous Delivery influences the software architecture. Also there
Microservices offer many advantages.

This is the reason for writing this book: Microservices constitute an approach a
number of people have already been pursuing for a long time, among them many
very experienced architects. Like every other approach to architecture
Microservices for sure cannot solve every problem, however this concept
represents an interesting alternative to existing approaches.

1.1 Overview of Microservice

Microservice: Preliminary Definition

The focus of this book are Microservices — an approach for the modularization of
software. Modularization in itself is nothing new. For quite some time large

systems have been divided into small modules to facilitate the implementation,
understanding and further development of software.

The new aspect is that Microservices use modules, which run as distinct
processes. This approach is based on the philosophy of UNIX, which can be
reduced to three aspects:

¢ One program should only fulfill one task, but this it should do really well.

e Programs should be able to work together.

e A universal interface should be used. In UNIX this is provided by text
streams.

The term Microservice is not firmly defined. Chapter 4 provides a more detailed
definition. However, the following criteria can serve as first approximation:

e Microservices are a modularization concept. Their purpose is to divide large
software systems into smaller parts. Thus they influence the organization and
development of software systems.

e Microservices can be deployed independently of each other. Changes to one
Microservice can be taken into production independently of changes to other
Microservices.

e Microservices can be implemented in different technologies. There is no
restriction on the programming language or the platform for each
Microservice.

e Microservices possess their own data storage: a private database — or a
completely separate schema in a shared database.

e Microservices can bring their own support services along, for example a
search engine or a specific database. Of course, there is a common platform
for all Microservices — for example virtual machines.

e Microservices are self-contained processes — or virtual machines e.g. to
bring the supporting services along.

e Accordingly, Microservices have to communicate via the network. To do so
Microservices use protocols, which support loose coupling such as REST or
messaging.

Deployment Monoliths

Microservices are the opposite of Deployment Monoliths. A Deployment
Monolith is a large software system, which can only be deployed in one piece. It
has to get in its entirety through all phases of the Continuous Delivery pipeline

such as deployment, the test stages and release. Due to the size of Deployment
Monoliths these processes take longer than for smaller systems. This reduces
flexibility and increases process costs. Deployment Monolith can have a modular
structure internally — still, all modules have to be brought into production
simultaneously.

1.2 Why Microservices

Microservices allow to divide software into modules and thereby improve the
software changeability.

Microservices

Strong - Legacy o Free choice of Continuous
[Modularisation] [Replaceabllity] [applications Timeio-Market technologies Delivery

Sustainable
Development

Microservices offer a number of important advantages:

Fig. 1: Advantages of Microservices

Strong Modularization

Microservices are a strong modularization concept. Whenever a system is built
from different software components such as Ruby GEMs, Java JARs, .NET
Assemblies or Node.js NPMs, unwished for dependencies can easily creep in.
Somebody references a class or function in a place where it is not supposed to be
used. After a short while so many dependencies will have accumulated that the
system can no longer be serviced or further developed.

Microservices, in contrast, communicate via explicit interfaces, which are
realized using mechanisms like messages or REST. Accordingly, the technical
hurdles for the use of Microservices are higher. Thus unwanted dependencies can
hardly arise. In principle it should be possible to achieve also a high level of
modularization in Deployment Monoliths. However, practical experience teaches
that the architecture of Deployment Monoliths progressively deteriorates over
time.

Easy Replaceability

Microservices can more easily be replaced. Other components utilize a
Microservice via an explicit interface. Whenever a service offers the same
interface, it can replace the Microservice. The new Microservice does neither
need to use a part of the code basis nor the technologies of the old Microservice.
Such like restrictions often prevent the modularization of legacy systems.

Small Microservices further facilitate replacements. Such replacements are often
neglected during the development of software systems. Who likes to take into
consideration how the just built system can be replaced in the future? The easy
replaceability of Microservices reduces in addition the costs of incorrect
decisions. When the decision for a technology or approach is limited to a
Microservice, this Microservice can be completely rewritten if need arises.

Sustainable Development

The strong modularization and the easy replaceability allow for sustainable
software development. Most of the time working on a new project is quite simple.
Upon longer project run time productivity decreases. One of the reasons is the
erosion of architecture. Microservices counteract this erosion due to the strong
modularization. Being bound to outdated technologies and the difficulties
associated with the removal of old system modules constitute additional
problems. Microservices, which are not linked to a specific technology and can
by replaced one by one, overcome these problems.

Further Development of Legacy Applications

Starting with a Microservices architecture is easy and provides immediate
advantages when working with old systems: Instead of having to add to the old
and hard to understand code base the system can be enhanced with a
Microservice. The Microservice can act on specific requests while leaving all
others to the legacy system. It can modify requests prior to their processing by the
legacy system. In this manner replacing the complete functionality of the legacy
system can be circumvented. In addition, the Microservice is not bound to the
technology stack of the legacy system, but can be developed using modern
approaches.

Time-to-Market

Microservices allow for a better time-to-market. As mentioned before,
Microservices can be brought into production on a one-by-one basis. If teams

working on a large system are responsible for one or several Microservices and if
features require only changes to these Microservices, each team can develop and
bring features into production without time consuming coordination with other
teams. In this manner many teams can work on numerous features in parallel and
bring more features into production within a certain time than would have been
possible with a Deployment Monolith. Microservices help scaling agile processes
to large teams by dividing the large team into small teams each dealing with their
own Microservices.

Independent Scaling

Each Microservice can be scaled independently of other services. This obliterates
the need to scale the whole system when it is only a few functionalities that are
used intensely. This will often be a decisive simplification.

Free Choice of Technologies

When developing Microservices there are no restrictions in regards to the usage
of technologies. This allows to test a new technology within a single
Microservice without affecting other services. Thereby the risk associated with
the introduction of new technologies and new versions of already used
technologies is decreased as these new technologies are introduced and tested in a
confined environment keeping potential costs low. In addition it is possible to use
specific technologies for specific functionalities, for example a specific database.
The risk is small as the Microservice can easily be replaced or removed. The new
technology is confined to one or few Microservices. This reduces the potential
risk and enables independent technology decisions for different Microservices.
Moreover, it facilitates the decision to try out and evaluate new, highly innovative
technologies. This increases the productivity of developers and prevents that the
technology platform becomes outdated. In addition, the use of modern
technologies will attract qualified developers.

Continuous Delivery

Microservices are advantageous for Continuous Delivery. They are small and can
be deployed independently of each other. Realizing a Continuous Delivery
pipeline is simple due to the size of a Microservice. The deployment of a single
Microservice is associated with less risk than the deployment of a large monolith.
It is also easier to assure the safe deployment of a Microservice, for instance by
running different versions in parallel. For many Microservice users Continuous
Delivery is the main reason for the introduction of Microservices.

All these reasons argue for the introduction of Microservices. Which of these
reasons are the most important will depend on the context. Scaling agile processes
and Continuous Delivery are often crucial from a business perspective. Chapter 5
describes the advantages of Microservices in detail and deals also with
prioritization.

Challenges

However, there is no light without shadow. Accordingly Chapter 6 will discuss
the challenges posed by the introduction of Microservices and how to deal with
them. In short, the main challenges are the following:

Relationships are Hidden.

The architecture of the system consists of the relationships between the services.
However, it is not evident which Microservice calls which other Microservice.
This makes working on the architecture challenging.

Refactoring is Difficult.

The strong modularization leads also to disadvantages: Refactorings, which move
functionalities between Microservices, are difficult to perform. And, once
introduced, it is hard to change the Microservices-based modularization of a
system. However, these problems can be lessened by smart approaches.

Domain Architecture is Important.

The modularization into Microservices for the different domains is important as it
determines how teams are divided. Problems at this level influence also the
organization. Only a solid domain architecture can ensure the independent
development of a Microservice. As it is difficult to change the once established
modularization, mistakes can be hard to correct later on.

Running Microservices is Complex.

A system comprised of Microservices has many components, which have to be
deployed, controlled and run. This increases the complexity for operations and the
number of runtime infrastructures used by the system. Microservices necessitate
the automatization of operations as operating the platform is otherwise too
laborious.

Distributed Systems are Complex.

The complexity the developers are facing increases: A Microservice-based
system is a distributed system. Calls between Microservices can fail due to
network problems. Calls via the network are slower and have a smaller
bandwidth than calls within a process.

Part |I: Motivation and Basics

This part of the book conveys what Microservices are, why they are interesting
and where they are of use. Practical examples demonstrate the effects of
Microservices in different scenarios. Chapter 2 explains the structure of the book.
To illustrate the importance of Microservices chapter 3 contains detailed
scenarios where Microservices can be used.

2 Introduction

This chapter focuses on the book itself: Section 2.1 explains briefly the book
concept. Section 2.2 describes the audience for which the book was written.
Section 2.3 provides an overview of the different chapters and the structure of the
book. Section 2.5 describes paths through the book for different audiences.
Section 2.6 finally contains the acknowledgements. Errata, links to examples and
additional information can be found at http://microservices-book.com/ . The

example code is available at https://github.com/ewolff/microservice/ .

2.1 Overview of the Book

This book provides a detailed introduction to Microservices. Architecture and
organization are the main topics. However, technical implementation strategies
will not be neglected. A complete example of a Microservice-based system
demonstrates a concrete technical implementation. Technologies for Nanoservices
illustrates that modularization does not stop with Microservices. The book
provides all necessary information in order to enable readers to start using
Microservices.

2.2 For Whom is the Book Meant?

The book addresses managers, architects and developers who want to introduce
Microservices as an architectural approach.

Managers

Microservices can profit from the mutual support of architecture and organization
Microservices offer. In the introduction managers get to know the basic ideas
behind Microservices. Afterwards they can focus on the organizational effects of
utilizing Microservices.

Developers

Developers are provided with a comprehensive introduction to the technical
aspects and can acquire the necessary skills to use Microservices. A detailed
example of a technical implementation of Microservices as well as numerous

http://microservices-book.com/
https://github.com/ewolff/microservice/

additional technologies, for example for Nanoservices, facilitate grasping the
basic concepts.

Architects

Architects get to know Microservices from an architecture perspective and can at
the same time deepen their understanding of the associated technical and
organizational issues.

The book highlights possibilities for experiments and additional information
sources. So the interested reader can test her/his new knowledge practically and
delve deeper into subjects that are of relevance to her/him.

2.3 Chapter Overview

Part |

The first part of the book explains the motivation for using Microservices and the
foundation of the Microservices architecture. The preface (chapter 1) already
presented the basic properties as well as advantages and disadvantages of
Microservices. Chapter 3 presents two scenarios for the use of Microservices: an
E-Commerce application and a system for signal processing. This part conveys
first insights into Microservices and already points out contexts for applications.

Part 1l

Part IT does not only explain Microservices in detail, but also deals with their
advantages and disadvantages:

e Chapter4 investigates the definition of the term Microservices” from three
perspectives: the size of a Microservice, Conway’s Law, which states that
organizations can only create specific software architectures, and finally
from a technical perspective based on Domain-Driven Design and Bounded
Context.

e The reasons for using Microservices are detailed in chapter 5.
Microservices do not only have technical, but also organizational
advantages, and also from a business perspective there are good reasons for
turning to Microservices.

e The unique challenges posed by Microservices are discussed in chapter 6.
Among these are technical challenges as well as problems related to
architecture, infrastructure and operation.

Chapter 7 aims at defining the differences between Microservices and SOA
(Service-Oriented Architecture). At first sight both concepts seem to be
closely related. However, a closer look reveals a plethora of differences.

Part Il

Part III deals with the application of Microservices and demonstrates how the
advantages that were described in part Il can be obtained and how the associated
challenges can be solved.

Chapter 8 describes the architecture of Microservice-based systems. In
addition to domain architecture comprehensive technical challenges are
discussed.

Chapter 9 presents the different possibilities for the integration of and the
communication between Microservices. This includes not only a
communication via REST or messaging, but also an integration of Uls and the
replication of data.

Chapter 10 shows possible architectures for Microservices such as CQRS,
Event Sourcing or hexagonal architecture. Finally suitable technologies for
typical challenges are addressed.

Testing is the main focus of chapter 11. Tests have to be as independent as
possible to allow for the independent deployment of the different
Microservices. Nevertheless the tests have not only to check the individual
Microservices, but also the system in its entirety.

Operation and Continuous Delivery are addressed in chapter 12.
Microservices generate a huge number of deployable artefacts and thus
increase the demands on the infrastructure. This is a substantial challenge
when introducing Microservices.

Chapter 13 illustrates how Microservices also influence the organization.
After all, Microservices are an architecture, which is supposed to influence
and improve the organization.

Part IV

The last part of the book shows in detail and at the code level how Microservices
can be technically implemented:

Chapter 14 contains an exhaustive example for a Microservices architecture
based on Java, Spring Boot, Docker and Spring Cloud. This chapter aims at
providing an application, which can be easily run, illustrates the concepts

behind Microservices in practical terms and offers a starting point for the
implementation of a Microservices system and experiments.

e Even smaller than Microservices are the Nanoservices, which are presented
in chapter 15. Nanoservices exact specific technologies and a number of
compromises. The chapter discusses different technologies in the context of
their advantages and disadvantages.

e Chapter 16 demonstrates in the end how Microservices can be adopted.

2.4 Essays

The book contains assays, which were written by Microservices experts. The
experts were asked to record their main findings regarding Microservices on
approximately two pages. Sometimes these assays complement book chapters,
sometimes they focus on other topics, and sometimes they contradict passages in
the book. This illustrates that there is in general no single right answer when it
comes to software architectures, but rather a collection of different opinions and
possibilities. The essays offer the unique opportunity to get to know different view
points in order to subsequently develop an opinion.

2.5 Paths Through the Book

The book offers suitable content (Tab. 1) for each type of audience. Of course,
everybody can and should read also chapters that are primarily meant for people
with a different type of job. Nevertheless the chapters are focussing on topics that
are most relevant for a certain audience as indicated below.

Tab. 1: Paths through the book
Chapter Developer Architect Manager
3 - Microservice Scenarios
4 - What are Microservices?
5 - Reasons for Using Microservices
6 - Challenges Regarding Microservices
7 - Microservices and SOA
8 - Architecture of Microservice-based
Systems
9 - Integration and Communication
10 - Architecture of Individual Microservices
11 - Testing Microservices and
Microservice-based Systems X

el
eI Il

o T B B e e S

12 - Operations and Continuous Delivery of

. . X X
Microservices
13 - Organizational Effects of a X
Microservices-based Architecture
14 - Example for a Microservice-based

. X

Architecture
15 - Technologies for Nanoservices X X
16 - How to start with Microservices? X X X

Readers who only want to obtain an overview are advised to concentrate on the
summary section at the end of each chapter. People who want to gain first of all
practical knowledge should commence with chapters 14 and 15, which deal with
concrete technologies and code.

The instructions for experiments, which are given in the sections “Try and
Experiment”, help to deepen the understanding by doing practical exercises.
Whenever a chapter is of particular interest for the reader, he/she is encouraged to
complete the related exercises to get a better grasp on the topics presented in the
respective chapter.

2.6 Acknowledgement

I would like to thank everybody with whom I have discussed Microservices and
all the people who asked questions or worked with me - way too many to list them
all. The interactions and discussions were very fruitful and fun!

I would like to mention especially Jochen Binder, Matthias Bohlen, Merten
Driemeyer, Martin Eigenbrodt, Oliver B. Fischer, Lars Gentsch, Oliver Gierke,
Boris Gloger, Alexander Heusingfeld, Christine Koppelt, Andreas Kriiger, Tammo
van Lessen, Sascha Mollering, André Neubauer, Till Schulte-Coerne, Stefan
Tilkov, Kai Todter, Oliver Wolf and Stefan Zorner.

My employer innoQ has also played an important role throughout the writing
process. Many discussions and suggestions of my innoQ colleagues are reflected
in the book.

Finally I would like to thank my friends and family and especially my wife whom
I have often neglected while working on the book. In addition I would like to thank

her for the English translation of the book.

Of course, my thanks go also to all the people who have been working on the
technologies that are mentioned in the book and thus have laid the foundation for
the development of Microservices. Special thanks also to the experts who shared
their knowledge of and experience with Microservices in the essays.

Leanpub has provided me with the technical infrastructure to create the
translation. It has been a pleasure to work with it and it is quite likely that the
translation would not exist without Leanpub.

Last but not least I would like to thank dpunkt.verlag and René Schonfeldt who
supported me very professionally during the genesis of the original German
version.

3 Microservice Scenarios

This chapter will present a number of scenarios in which Microservices can be
useful. Section 3.1 focuses on the modernization of a legacy web application. This
scenario is the most common context for Microservices. A very different scenario
is discussed in section 3.2. In this case a signaling system is supposed to be
developed as distributed system based on Microservices. Section 3.3 formulates a
conclusion and invites the readers to judge for themselves on the usefulness of
Microservices in the presented scenarios.

3.1 Modernizing an E-Commerce Legacy Application

Scenario

The Big Money Online Commerce inc. runs an E-commerce shop, which is the
main source of the company revenue. It is a web application offering many
different functionalities such as user registration and administration, product
search, an overview of orders and the ordering process — the central feature of an
E-commerce application.

This application is a Deployment Monolith: It can only be deployed in its entirety.
Whenever a feature is changed, the entire application needs to be deployed anew.
The E-Commerce shop works together with other systems — for instance with
accounting and logistics.

Reasons to Use Microservices

The Deployment Monolith once started out as a well-structured application.
However, over the years more and more dependencies between the individual
modules creeped in. For this reason the application is nowadays hardly
maintainable and changeable. In addition the original architecture is not suited any
more for the current requirements. Product search for instance has been greatly
modified as the Big Money Online Commerce inc. attempts to outperform its
competitors especially in this area. Likewise more and more possibilities have
been generated for clients to solve problems by themselves without the assistance
of a client service. This helped the company to reduce costs. Accordingly, these

two modules became very large with a very complex internal structure and many
dependencies on other modules that had not been planned for originally.

Slow Continuous Delivery Pipeline

Big Money has decided to use Continuous Delivery and has established a
Continuous Delivery pipeline. This pipeline is complicated and slow as the
complete Deployment Monolith needs to be tested and brought into production.
Some of the tests run for hours. A faster pipeline would be highly desirable.

Parallel Work Complicated

There are teams working on different new features. However, the parallel work is
complicated: The software structure just doesn’t really support it. The individual
modules are not well enough separated and have too many interdependencies. As
everything can only be deployed together, the entire Deployment Monolith has to
be tested. Deployment and testing phase constitute a bottle neck. Whenever a team
is having a release in the deployment pipeline, which is creating a problem, all
other teams have to wait until the problem has been fixed and the change has been
successfully deployed. Moreover, the access to the Continuous Delivery pipeline
has to be coordinated. Only one team at a time can be doing testing and
deployment. Thus it has to be regulated which team can bring which change into
production at which time.

Bottleneck During Testing

In addition to deployment also the tests have to be coordinated. When the
Deployment Monolith runs in an integration test, only the changes made by one
team are allowed to be contained in the test. There were attempts to test several
changes at once. However, in that case it was very hard to discern the origin of
errors so that error analyses were long and complex.

One integration test requires approximately one hour. Thus about six integration
tests are feasible per working day as errors have to be fixed and the environment
has to be set up again for the next test. In the case of ten teams one team can bring
one change into production every two days on average. However, often a team
also has to do error analysis, which lengthens integration. For that reason some
teams use feature branches in order to separate themselves from integration: They
perform their changes on a separate branch in the version control system.
Integrating these changes into the main branch later on often causes problems:
Changes are erroneously removed again upon merging or the software suddenly
contains errors, which are caused by the separated development process and only

show up after integration. These errors can only be eliminated in lengthy
processes after integration.

Consequently, the teams slow each other down due to the testing. Although each
team develops its own modules, they all work on the same code basis so that they
impede each other. As a consequence of the shared Continuous Delivery pipeline
and the ensuing need for coordination the teams are neither able to work
independently of each other nor in parallel.

22

Team Product Search

Continuous
—»| Monolith Delivery Production

Team Customer Pipeline

E ¥ T}

Team Order Process

Fig. 2: Teams slow each other down due to the Deployment Monoliths.

Approach

Because of the many problems Big Money Online Commerce inc. decided to split
off small Microservices from the Deployment Monolith. The Microservices each
implement one feature such as the product search and are developed by individual
teams. Each team has the complete responsibility for an individual Microservice
starting from requirements engineering up to running the application in production.
The Microservices communicate with the Monolith and other Microservices via
REST. The client GUI is also divided between the individual Microservices
based on use cases. Each Microservice delivers the HTML pages for its use
cases. Links are allowed between the HTML pages of the Microservices.
However, it is not allowed to access the database tables of the other
Microservices or the Deployment Monolith. Integration of services is exclusively
done via REST or via links between the HTML pages.

The Microservices can be deployed independently of each other. This allows to
deliver changes in a Microservice without the need to coordinate with other
Microservices or teams. This greatly facilitates parallel work on features while
reducing coordination efforts.

The Deployment Monolith is subject to far fewer changes due to the addition of
Microservices. For many features changes to the Monolith are not necessary
anymore. Thus, the Deployment Monolith is more seldom deployed and changed.
Originally, it was planned to completely replace the Deployment Monolith at
some point. However, meanwhile it seems more likely that the Deployment
Monolith will just be deployed less and less frequently as most changes take place
within the Microservices. Thus the Deployment Monolith does not disturb work
any more. To replace it entirely is in the end not necessary and also does not
appear sensible in economic terms anymore.

Challenges

Implementing Microservices creates additional complexity in the beginning: All
the Microservices need their own infrastructure. In parallel the Monolith has still
to be supported.

The Microservices comprise a lot more servers and thus pose very different
challenges. Monitoring and log file processing have to deal with the fact that the
data originate from different servers. Thus information has to be centrally
consolidated. Besides a substantially larger number of servers has to be handled —
not only in production, but also in the different test stages and team environments.
This is only possible with good infrastructure automatization. It is not only
necessary to support different types of infrastructure for the Monolith and the
Microservices, but also to provide substantially more servers in the end.

Entire Migration Lengthy

The added complexity due to the two different software types will persist for a
long time as it is a very lengthy process to completely migrate away from the
Monolith. If the Monolith is never entirely replaced, the additional infrastructure
costs will remain as well.

Testing Remains a Challenge.

Testing is an additional challenge: Previously the entire Deployment Monolith
was tested in the deployment pipeline. These tests are complex and take a long
time as all functionalities of the Deployment Monolith have to be tested. If each
change to each Microservice is sent through these tests, it will take a long time for
each change to reach production. Moreover, the changes have to be coordinated as
each change should be tested in isolation so that it is easily discernible in case of
errors which change caused them. In that scenario a Microservices-based
architecture does not seem to have major advantages over a Deployment

Monolith: While Microservices can in principle be deployed independently of
each other, the test stages preceding deployment still have to be coordinated and
each change still has to pass through them singly.

Current Status of Migration

Fig. 3 presents the current status: Product search works on an independent
Microservice and is completely independent of the Deployment Monolith.
Coordination with other teams is hardly necessary. Only in the last stage of the
deployment the Deployment Monolith and the Microservices have to be tested
together. Each change to the Monolith or any Microservice has to run through this
step. This causes a bottleneck. The team “Customer” works together with the team
“Order Process” on the Deployment Monolith. In spite of Microservices these
teams still have to closely coordinate their work. For that reason the team “Order
Process” has implemented its own Microservice, which comprises part of the
order process. In this part of the system changes can be introduced faster than in
the Deployment Monolith - not only due to the younger code basis, but also
because it is no longer necessary to coordinate with the other teams.

Continuous
Delivery
Pipeline

— .
service
Team Product Search

Team Customer \

N s : N N
Continuaus (Inte ration- (
Monolith »| Delivery > g »| Production
- tests
I I Pipeline)

Team Order Process Continuous
Micro- .
. Delivery
service o e
Pipeline

Fig. 3: Independent work through Microservices

Creating Teams

For the teams to be able to work independently on features it is important to create
teams according to functionalities such as product search, customer or order
process. If teams are instead created along technical layers such as Ul, Middle
Tier or database, each feature requires the involvement of all the teams as a
feature normally comprises changes to Ul, Middle Tier and database. Thus to
minimize coordination efforts between the teams, the best approach is to create
teams around features like product search. Microservices support the
independence of the teams by their own technical independence from each other.
Consequently, teams need to coordinate less in respect to basic technologies and
technical designs.

The tests have also to be modularized. Each test should ideally deal with a single
Microservice. In that case it is sufficient to perform the test upon changes in the
respective Microservice. In addition it might be possible to implement the test
rather as unit test than as integration test. This progressively shortens the test
phase in which all Microservices and the Monolith have to be tested together.
This reduces the coordination problems for the final test phase.

Migrating to a Microservices-based architecture created a number of performance
problems and also some problems upon network failures. However, these
problems could be solved after some time.

Advantages

Thanks to the new architecture changes can be deployed much faster. A team can
bring a change into production within 30 minutes. The Deployment Monolith on
the other hand is deployed only weekly due to the not yet fully automated tests.

Deploying the Microservices is not only much faster, but also in other respects
much more comfortable: Less coordination is required. Errors are more easily
found and fixed because developers still know very well what they have been
working on as it was only 30 minutes ago.

In summary the goal was attained: The developers can introduce more changes to
the E-Commerce shop. This is possible because the teams need to coordinate their
work less and because the deployment of a Microservice can take place
independently of the other services.

The possibility to use different technologies was sparingly used by the teams: The
previously used technology stack proved sufficient, and the teams wanted to avoid
the additional complexity caused by the use of different technologies. However,
the long needed search engine for the product search was introduced. The team
responsible for product search was able to implement this change on its own.
Previously the introduction of this new technology had been prohibited because
the associated risk had been considered too great. In addition some teams
meanwhile have new versions of the libraries of the technology stack in
production as they needed the bug fixes of the more recent version. This did not
require any coordination with the other teams.

Conclusion

Replacing a Monolith via the implementation of Microservices is nearly a
classical scenario for the introduction of Microservices. It requires a lot of effort
to keep developing a Monolith and to add new features to it. The complexity of the
Monolith and consequently the problems caused by it progressively increase over
time. Its complete replacement by a newly written system is very difficult. The
software has to be replaced in one go which is very risky.

Rapid and Independent Development of new Features

Especially in the case of companies like Big Money Online Commerce inc. the
rapid development of new features and the parallel work on several features are
vital for economic success. Only by providing state of the art features customers

can be won and kept from changing to other companies. The promise to develop
more features faster renders Microservices highly attractive for many use cases.

Influence on the Organization

The presented example illustrates also the influence of Microservices on the
organization. The teams work on their own Microservices. As the Microservices
can be developed and deployed independently of each other, the work of the
different teams is no longer linked. In order to keep it that way a Microservice
may not be changed by several teams in parallel. The Microservices architecture
requires a team organization corresponding to the different Microservices: Each
team is responsible for one or several Microservices, which implement an
isolated functionality. This relationship between organization and architecture is
especially important in the case of Microservices-based architectures. Each team
takes care of all issues revolving around “its” Microservices from requirements
engineering up to operation monitoring. Of course, especially for operation the
teams can use common infrastructure services for logging and monitoring.

And finally: If the goal is to achieve a simple and fast deployment in production,
just including Microservices into the architecture will not be sufficient. The entire
Continuous Delivery pipeline has to be checked for potential obstacles and these
have to be removed. This is illustrated by the tests in the presented example:
Testing all Microservices together should be reduced to the essential minimum.
Each change has to run through an integration test together with the other
Microservices, but this test must not require a lot of time to avoid a bottleneck in
integration tests.

Amazon Has Been Doing It for a Long Time

The scenario presented here is very similar to what Amazon has been doing
already for a very long time — and for the discussed reasons: Amazon wants to be
able to rapidly and easily implement new features on its website. In 2006 Amazon
did not only present its Cloud platform, but also discussed how it develops
software. Essential features are:

e The application is divided into different services.

e Each services provides a part of the website. For instance there is a service
for searching and another one for recommendations. In the end the individual
services are presented together in the UL

e There is always one team responsible for one service. The team takes care of
developing new features as well as of operating the service. The idea is:

“You build it — you run it!”

e The Cloud platformi.e. virtual machines constitute the common foundation of
all services. Apart from that there are no further standards. Thus the teams
are very free in their choice of technologies.

By introducing this type of architecture Amazon implemented fundamental
characteristics of Microservices already in 2006. Moreover Amazon introduced
DevOps by having teams consisting of operation experts and developers. This
approach necessitates that the deployments occur largely in an automated fashion
as the manual construction of servers is not feasible in Cloud environments — thus
Amazon also implemented at least one aspect of Continuous Delivery.

Conclusion: Microservices have been used by some companies for quite some
time already — especially by companies having an internet-based business model.
Thus the approach has already proven its practical advantages in real life. In
addition Microservices display synergy effects with other modern approaches
such as Continuous Delivery, Cloud or DevOps.

3.2 Developing a New Signaling System

Scenario

Searching airplanes and ships which have gone missing is a complex task. Rapid
action can save lives. Therefore different systems are required. Some provide
signals such as radio or radar signals. These signals have to be recorded and
processed. Radio signals for example can be used to obtain a bearing, which
subsequently has to be checked against radar-based pictures. Finally humans have
to further evaluate the information. The data analyses as well as the raw data have
to be provided to the different rescue teams. Signal inc. builds systems for exactly
these use cases. The systems are individually assembled, configured and adapted
to the specific needs of the respective client.

Radar
Sensor

0[Processing] l

4—>[Evaluation] . l
4—»[Storage j . l
_/

Communication
System
Fig. 4: Overview of the Signaling System

Radio
Sensor

Radio
Sensor

[
==
[
[

T T T 7

Reasons to Use Microservices

The system is composed of different components, which run on different
computers. The sensors are distributed all over the area to be monitored and are
provided with their own servers. However, these computers are not supposed to
handle the more detailed data processing or to store the data. Their hardware is
not sufficiently powerful for that. Besides data privacy considerations render such
an approach very undesirable as well.

Distributed System

For these reasons the system has to be a distributed system. The different
functionalities are distributed within the network. The system is unreliable as
individual components and the communication between components can fail.

It would be possible to implement a large part of the system within a Deployment
Monolith. However, upon closer consideration the different parts of the system
have to fulfill very different demands. Data processing requires rather a lot of
CPU and an approach that allows numerous algorithms to process the data. For
such purposes there are solutions, which read events out of a data or event stream
and process them. Data storage requires a very different focus: Basically, the data
have to be maintained within a data structure, which is suitable for different data

analyses. Modern NoSQL databases are well suited for this. Recent data are more
important than old data. They have to be accessible faster while old data can even
be deleted at some point. To be finally analyzed by experts the data have to be
read from the database and processed.

Technology Stack per Team

Each of the discussed tasks poses different challenges. Consequently, each
requires not only a well adapted technology stack but also a dedicated team
consisting of technical experts for the respective task. In addition people are
needed who decide which features Signal inc. will bring to the market and in line
with that define new requirements for the systems. Systems for processing and
sensors are individual products, which can be positioned on the market
independently of each other.

Integration of Other Systems

An additional reason for the use of Microservices is the possibility to easily
integrate other systems. Sensors and computing units are also provided by other
companies. The ability to integrate such solutions is a frequent requirement in
client projects. Microservices allow the easy integration of other systems as the
integration of different distributed components is anyhow a core feature of a
Microservices-based architecture.

For these reasons the architects of Signal inc. decided to indeed implement their
system as a distributed system. Each team must implement its respective domain in
several small Microservices. In this way the exchangeability of the Microservices
will be further improved, and the integration of other systems will be even more
facilitated.

Only the communication infrastructure to be used by all services for their
communication with each other is predetermined. The communication technology
supports many programming languages and platforms so that there are no
limitations as to which concrete technology is used. To allow for a flawless

communication the interfaces between the Microservices have to be clearly
defined.

Challenges

A failure of communication between the different Microservices presents an
important challenge. The system has to stay useable even if network failures
occur. This necessitates the use of technologies, which can handle such failures.

However, technologies alone will not solve this problem. It has to be decided as

part of the user requirements what should happen if a system fails. If for instance

old data are sufficient, caches can be helpful. In addition it can be possible to use
a simpler algorithm, which does not require calls to other systems.

High Technological Complexity

The technological complexity of the entire system is very high. Different
technologies are employed to fulfill the demands of the different components. The
teams working on the individual systems can make largely independent technology
decisions. This allows them to always implement the most suitable solution.

Unfortunately, this means as well that developers can no longer change easily
between teams. For example when there was a lot of work for the data storage
team, developers from other teams could hardly help out as they were not even
proficient in the programming languages the data storage team was using and did
not know the specific technologies such as the used database.

It certainly is a challenge to run a system comprising such a plethora of
technologies. For this reason there is one standardization in this area: All
Microservices must be able to be run in a largely identical manner. They are
virtual machines so that their installation is fairly simple. Furthermore, the
monitoring is standardized, which determines data formats and technologies. This
allows for the central monitoring of the applications. In addition to the typical
operational monitoring there is also monitoring of application-specific values and
finally an analysis of log files.

Advantages

In this context the main advantage offered by Microservices is the good support
for the distributed nature of the system. The sensors are at different locations so
that a centralized system is anyhow not sensible. The architecture has adapted to
this fact by further dividing the system into small Microservices, which are
distributed within the network. This enhanced the exchangeability of the
Microservices. Besides the Microservices approach supports the technology
diversity, which characterizes this system.

In this scenario time-to-market is by far not as important as in the other scenario. It
would also be hard to implement as the systems are installed at different clients
and cannot be easily reinstalled. However, some ideas from the Continuous

Delivery field are used: For instance the largely uniform installation and the
central monitoring.

Verdict

Microservices are a very suitable architecture design for the presented scenario.
The system can profit from the fact that typical problems can be solved during
implementation by established approaches from the Microservices field — for
example technology complexity and platform operation.

Still this scenario would hardly be immediately associated with the term
“Microservice”. This leads to the following conclusions:

e Microservices have a wider application than is apparent at first glance. Also
outside of web-based business models Microservices can solve many
problems — even if those issues are very different from the ones found in web
companies.

¢ Indeed many projects from different fields have been using Microservice-
based approaches for quite some time, even if they do not call them by this
name or implement them only partially.

o With the help of Microservices these projects can use technologies, which
are currently created in the Microservice field. In addition they can profit
from the experiences made in this field, for instance in regards to
architecture.

3.3 Conclusion

This chapter presented two very different scenarios from two completely distinct
business areas: a web system with a strong focus on rapid time-to-market and a
system for signal processing, which is inherently distributed. The architecture
principles are very similar for the two systems although originating from different
reasons.

In addition there are a number of common approaches, among those the creation of
teams according to Microservices, the demands in regards to infrastructure
automatization as well as other organizational topics. However, in other areas
there are also differences. For the signaxsling system it is essential to have the
possibility to use different technologies as this system anyhow has to employ a
number of different technologies. For the web system this aspect is not as

important. Here, the independent development, the fast and easy deployment and
finally the better time-to-market are the decisive factors.

Essential Points

e Microservices offer a plethora of advantages.

¢ In the case of web-based applications Continuous Delivery and short time-
to-market can constitute an important motivation for the use of
Microservices.

e However, there are also very different use cases for which Microservices as
distributed systems are extremely well suited.

Part Il: Microservices: What, Why and Why Not?

This part of the book discusses the different facettes of Microservice-based
architectures to present the diverse possibilities offered by Microservices.
Advantages as well as disadvantages are addressed so that the reader can
evaluate what can be gained by using Microservices and which points require
special attention and care during the implementation of Microservice-based
architectures.

Chapter 4 explains the term “Microservice” in detail. The term is dissected from
different perspectives, which is essential for an in depth understanding of the
Microservice approach. Important aspects are the size of a Microservice,
Conway’s Law as organizational influence and Domain-Driven Design resp.
Bounded Context from a domain perspective. Furthermore, the chapter addresses
the question whether a Microservice should contain a UL. Chapter 5 focuses on the
advantages of Microservices taking alternatingly a technical, organizational and
business perspective. Chapter 6 deals with the associated challenges in the areas
of technology, architecture, infrastructure and operation. Chapter 7 distinguishes
Microservices from SOA (Service-Oriented Architecture). By making this
distinction Microservices are viewed from a new perspective which helps to
further clarify the Microservices approach. Besides Microservices have been
frequently compared to SOAs.

Afterwards the third part of the book will introduce how Microservices can be
implemented in practice.

4 What are Microservices?

Section 1.1 provided an initial definition of the term “Microservice”. However,
there are also different possibilities to define Microservices. The different
definitions illustrate the different characteristics of Microservices and thereby
explain for which reasons the use of Microservices is advantageous. At the end of
the chapter the reader should have his/her own definition of the term
“Microservice” — depending on the individual project scenario.

The chapter discusses the term “Microservice” from different perspectives:

e Section 4.1 focuses on the size of Microservices.

e Section 4.2 sets Microservices, architecture and organization into relation by
using the law of Conway.

e Finally section 4.3 presents a fachliche division of Microservices based on
Domain-driven Design (DDD) and Bounded Context.

e Section 4.4 explains why Microservices should contain a UL

4.1 Size of a Microservice

The name “Microservices” betrays already that the size of the service matters,
obviously Microservices are supposed to be small.

One possibility to define the size of a Microservice is to count the Lines of Code
(LoC). However, such an approach entails a number of problems:

¢ It depends on the programming language used. Some languages require more
code than others to express the same content — and Microservices are
explicitly not supposed to predetermine the technology stack. Accordingly,
defining Microservices based on this metric is not very useful.

e Finally Microservices represent an architecture approach. Architectures,
however, should follow the conditions in the domain rather than adhering to
technical metrics such as LoC. Also for this reason attempts to determine size
based on code lines should be viewed critically.

http://yobriefca.se/blog/2013/04/28/micro-service-architecture/

In spite of the voiced criticism LoC can be an indicator for a Microservice. Still,
the question as to the ideal size of a Microservice remains. How many LoC may a
Microservice have? Even if there are no absolute standard values, there are
nevertheless influencing factors, which argue for larger or smaller Microservices.

Modularization

One factor is the modularization. Teams develop software in modules to be better
able to deal with its complexity: Instead of having to understand the entire
software a developer only needs to understand the module he is working on as
well as the interplay between the different modules. This is the only way for a
team to work productively in spite of the enormous complexity of a typical
software system. In daily life there are often problems as modules get larger than
originally planned. This makes them hard to understand and hard to maintain as
changes require an understanding of the software. Thus it is very sensible to keep
Microservices as small as possible. On the other hand Microservices in contrast
to many other approaches to modularization have an overhead:

Distributed Communication

Microservices run within independent processes. Therefore communication
between Microservices is distributed communication via the network. To this type
of system the “First Rule of Distributed Object Design” applies. This rule states
that systems should not be distributed if it can be avoided. The reason behind this
is that a call on another system via the network is orders of magnitude slower than
a direct call within the same process. In addition to the pure latency time
serialization and deserialization of parameters and results are time-consuming,
These processes do not only take a long time, but also cost CPU capacity.

Moreover, distributed calls might fail because the network is temporarily
unavailable or the called server cannot be reached — for instance due to a crash.
This increases complexity when implementing distributed systems as the caller
has to deal with these errors in a sensible manner.

Experience teaches that Microservice-based architectures work in spite of these
problems. When Microservices are designed to be especially small, the amount of
distributed communication increases and the overall system gets slower. This
argues for larger Microservics. When a Microservice contains a Ul and fully
implements a specific part of the domain, it can do without calling on other
Microservices in most cases because all components of this part of the domain are

http://martinfowler.com/bliki/FirstLaw.html
http://martinfowler.com/articles/distributed-objects-microservices.html

implemented within one Microservice. The wish to prevent distributed
communication is another reason to build systems according to the domain.

Sustainable Architecture

Microservices use distribution also to design architecture in a sustainable manner
through distribution into individual Microservices: It is much more difficult to use
a Microservice than a class. The developer has to deal with the distribution
technology and has to use the Microservice interface. In addition he might have to
make preparations for tests to include the called Microservice or replace it with a
stub. Finally, he has to contact the team responsible for the respective
Microservice.

To use a class within a Deployment Monolith is much simpler — even if the class
belongs to a completely different part of the Monolith and falls within the
responsibility of another team. However, as it is so simple to implement a
dependency between two classes, unintended dependencies tend to accumulate
within Deployment Monoliths. In the case of Microservices dependencies are
harder to implement, which prevents the creation of unintended dependencies.

Refactoring

However, the boundaries between Microservices create also challenges, for
instance during refactoring. When it becomes apparent that a certain functionality
is not fitting well within its present Microservice, it has to be moved to another
Microservice. If the target Microservice is written in a different programming
language, this transfer corresponds ultimately to a new implementation. Such
problems do not arise when functionalities are moved within a Microservice. This
factor argues also rather for larger Microservices. This topic is the focus of
Section 8.3.

Team Size

The independent deployment of Microservices and the division into teams result
in an upper limit for the size of an individual Microservice. A team should be able
to implement features within a Microservice independently of other teams and to
bring them also independently into production. In this way the architecture enables
the scaling of development without requiring too much coordination effort from
the teams.

A team has to be able to implement features independently of the other teams.
Therefore at first glance it seems like the Microservice should be large enough to

allow for the implementation of different features. When Microservices are
smaller, a team can be responsible for several Microservices, which together
allow the implementation of a domain. A lower limit for the Microservice size
does not result from the independent deployment and the division into teams.

However, an upper limit does result from it: When a Microservice has reached a
size that prevents its further development by a single team, it is too large. For that
matter a team should have a size that is especially well suited for agile processes,
i.e. typically three to nine people. Thus a Microservice should in no case grow so
large that three to nine people cannot develop it further by themselves. In addition
to sheer size the number of features to be implemented in an individual
Microservice plays an important role. Whenever a large amount of changes is
necessary within a short time, a team can be rapidly overloaded. Section 13.2
highlights alternatives to allow several teams to work on the same Microservice.
However, in general a Microservice should never grow so large that several
teams are necessary to work on it.

Infrastructure

Another important factor influencing the size of a Microservice is the
infrastructure. Each Microservice has to be able to be deployed independently. It
must have a Continuous Delivery pipeline and an infrastructure for running the
Microservice, which has to be present not only in production, but also during the
different test stages. Also databases and application servers might belong to
infrastructure. Moreover, there has to be a build system for the Microservice. The
Microservice code has to be versioned independently of other Microservices.
Thus a project within version control has to exist for the Microservice.

Depending on the effort that is necessary to provide the required infrastructure for
a Microservice, the sensible size for a Microservice can vary. When a small
Microservice size is chosen, the system is distributed into many Microservices
thus requiring more infrastructures. In the case of larger Microservices the system
contains overall fewer Microservices and consequently requires fewer
infrastructures.

Build and deployment of Microservices should anyhow be automated.
Nevertheless it can be laborious to provide all necessary infrastructure
components for a Microservice. Once setting up the infrastructure for new
Microservices is automated, the expenditure for providing infrastructures for
additional Microservices decreases. This allows to further reduce the

Microservice size. Companies, which have been working with Microservices for
some time, usually simplify the creation of new Microservices by providing the
necessary infrastructure in an automated manner.

Besides there are technologies, which allow to reduce the infrastructure overhead
to such an extent that substantially smaller Microservices are possible — in that
case, however, with a number of limitations. Such Nanoservices are discussed in

chapter 15.

Replaceability

A Microservice should be as easy to replace as possible. Replacing a
Microservice can be sensible when its technology is outdated or the Microservice
code is of such a bad quality that it cannot be developed any further. The
replaceability of Microservices is an advantage as compared to monolithic
applications, which hardly can be replaced at all. When a Monolith cannot be
maintained anymore, its development has either to be continued in spite of the
associated high costs or a likewise cost-intensive migration has to take place
nevertheless. The smaller a Microservice is, the easier it is to replace it by a new
implementation. Above a certain size a Microservice can hardly be replaced
anymore because replacing it then poses the same challenges as for a Monolith.
Replaceability thus limits the size of a Microservice.

Transactions and Consistency

Transactions possess the so-called ACID characteristics:

e Atomicity indicates that a given transaction is either executed completely or
not at all. In case of an error all changes are reversed again.

e Consistency means that data are consistent before and after the execution of
a transaction — validations for instance are not violated.

¢ Isolation indicates that the operations of transactions are separated from
each other.

¢ Durability indicates permanence: Changes to the transaction are stored and
are still available after a crash.

Within a Microservice changes to a transaction can take place. Moreover, the
consistency of data in a Microservice can be guaranteed very easily. Beyond an
individual Microservice this gets difficult. In that case an overall coordination is
necessary. Upon the rollback of a transaction all changes to all Microservices
would have to be reversed. This is laborious and hard to implement as there has

to be a guarantee that the decision whether changes have to be reversed is
delivered. However, communication within networks is unreliable. Until it is
decided whether a change may take place, further changes to the data are barred.
For once additional changes have taken place, it might not be possible anymore to
reverse a certain change. However, when Microservices are kept from introducing
data changes for some time, the system throughput is reduced.

However, when communicating via messaging systems, transactions are possible
(compare Section 9.4). With such an approach transactions are also possible
without a close link between the Microservices.

Consistency

In addition to transactions data consistency is important. An order for instance has
finally to be recorded as revenue. Only then will revenue and order data be
consistent. Data consistency can only be achieved through close coordination.
Data consistency can hardly be guaranteed across Microservices. This does not
mean that the revenue for an order will not be recorded at all. However, it will
likely not happen at the exact same time point and maybe not even within one
minute of order processing as the communication occurs via the network - and is
consequently slow and unreliable.

Data changes within a transaction and data consistency are only possible when all
concerned data is part of the same Microservice. Therefore they determine the
lower size limit for a Microservice: When transactions are supposed to
encompass several Microservices and data consistency is required across several
Microservices, the Microservices have been designed too small.

Compensation Transactions Across Microservices

At least in the case of transactions there is an alternative: If a data change has to
be rolled back in the end, compensation transactions can be used for that.

A classical example for a distributed transaction is a travel booking, which
consists of a hotel, a rental car and a flight. Either everything has to be booked
together or nothing at all. Within real systems and also within Microservices this
functionality is divided into three Microservices because the three tasks are very
different. Inquiries are sent to the different systems whether the desired hotel
room, the desired rental car and the desired flight are available. If that is the case,
everything is reserved. If now, for instance, the hotel room suddenly becomes
unavailable, the reservation for the flight and the rental car has to be cancelled.

However, in the real world the concerned companies will likely demand a fee for
the booking cancellation. Due to that the cancellation is not only a technical event
happening in the background like a transaction rollback, but a business process.
This is much easier to represent with a compensation transaction. With this
approach transactions across several elements in Microservice environments can
also be implemented without the presence of a close technical link. A
compensation transaction is just a normal service call. Technical as well as
business reasons can argue for the use of mechanisms like compensation
transactions for Microservices.

Summary

In conclusion the following factors influence the size of a Microservice (compare
Fig. 5):

e The team size sets an upper limit: A Microservice should never be that large
that several teams are required to work on it. Eventually, the teams are
supposed to work and bring software into production independently of each
other. This can only be achieved when each team works on a separate
deployment unit — i.e. a separate Microservice. However, one team can work
on several Microservices.

e Modularization further limits the size of a Microservice: The Microservice
should preferably be of a size that allows a developer to understand and
further develop it. Even smaller is of course better. This limit is below the
team size: Whatever one developer can still understand, a team should still
be able to develop further.

e Replaceability declines with the size of the Microservice. Therefore
replaceability can influence the upper size limit for a Microservice. This
limit lies below the one set by modularization: When somebody is able to
replace a Microservice, this person has first of all to be able to understand
the Microservice.

e A lower limit is set by infrastructure: If it is too laborious to provide the
necessary infrastructure for a Microservice, the number of Microservices
should be kept rather small — consequently the single Microservices are then
rather larger.

e Similarly, distributed communication increases with the number of
Microservices. Also for this reason the size of Microservices should not be
set too small.

e Consistency of data and transactions can only be ensured within a
Microservice. Therefore Microservices may not be that small that

consistency and transactions comprise several Microservices.

Team Size

Modularization

Replaceability

Ideal Size

of a
Microservice _
Transactions and
Consistency
Infrastructure

Distributed
Communication

Fig. 5: Factors Influencing the Size of a Microservice

These factors do not only influence the size of Microservices, but they also reflect
a certain idea of Microservices. According to this idea the main advantages of
Microservices are independent deployment and the independent work of the
different teams, and in addition the replaceability of Microservices. The optimal
size of a Microservice can be deduced from these desired features.

However, there are also other reasons for Microservices. When Microservices
are, for instance, introduced because of their independent scaling, a Microservice

size has to be chosen that ensures that each Microservice is a unit, which has to
scale independently.

How small or large a Microservice can be, cannot be deduced solely from this
lineup. This also depends on the technology. Especially the effort necessary for
providing infrastructure for a Microservice and for the distributed communication
depends on the utilized technology. Chapter 15 looks at technologies, which make
the development of very small services possible — denoted as Nanoservices.
These Nanoservices have different advantages and disadvantages as
Microservices, which, for instance, are implemented using technologies presented

in Chapter 14.

Thus, there is no ideal size. The actual Microservice size will depend on the
technology and the use case of an individual Microservice.

Try and Experiment

&‘ How large is the effort for the deployment of a Microservice in your language, platform and
infrastructure?

e Is it just a simple process? Or a complex infrastructure containing application servers or other
infrastructure elements?

e How can the effort for the deployment be reduced so that smaller Microservices become
possible?

Based on this information you can define a lower limit for the size of a Microservice. Upper limits
depend on team size and modularization — also in those terms you should think of appropriate limits.

4.2 Conway'’s Law

Conway’s Law was coined by the American computer scientist Melvin Edward
Conway and indicates:

Any organization, that designs a system (defined broadly), will produce a
design whose structure is a copy of the organization’s communication
structure.

It is important to know that this law is not only meant to apply to software, but to
any kind of design. The communication structures, which Conway mentions, do not

http://www.melconway.com/research/committees.html

have to be identical with the organization chart. Often there are informal
communication structures, which also have to be considered in this context. In
addition the geographical distribution of teams can influence communication.
After all it is much simpler to talk to a colleague who works in the same room or
at least in the same office than with one working in a different city or evenin a
different time zone.

Reasons for the Law

The reasons behind the Law of Conway derive from the fact that each
organizational unit designs a specific part of the architecture. If two architecture
parts have an interface, coordination in regards to this interface is required — and,
consequently, a communication relationship between the organizational units,
which are responsible for the respective architecture parts.

From the Law of Conway it can also be deduced that design modularization is
sensible. Via such a design it is ensured that not every team member has to
constantly coordinate with every other team member. Instead the developers
working on the same module can closely coordinate their efforts, while team
members working on different modules only have to coordinate when they
develop an interface — and even then only in regards to the specific design of this
interface.

However, the communication relationships extend beyond that. It is much easier to
collaborate with a team within the same building than with a team located in
another city, another country or even within a different time zone. Therefore
architecture parts having numerous communication relationships are better
implemented by teams, which are geographically close to each other, as it is
easier for them to communicate with each other. In the end the Law of Conway
does not focus on the organization chart, but on the real communication
relationships.

By the way, Conway postulated that a large organization has numerous
communication relationships. Thus communication becomes more difficult or even
impossible in the end. As a consequence the architecture can be more and more
affected and finally break down. In the end having too many communication
relationships is a real risk for a project.

The Law as Limitation

Normally the Law of Conway is viewed as a limitation, especially from the
perspective of software development. Let us assume that a project is modularized
according to technical aspects (Fig. 6). All developers with UI focus are grouped
into one team, the developers with backend focus are put into a second team, and
data bank experts make up the third team. This distribution has the advantage that
all three teams consist of experts for the respective technology. This makes it easy
and transparent to realize this type of organization. Moreover, this distribution
appears also logical. Team members can easily support each other, and the
technical exchange is also facilitated.

Ul
Ul Team A

y

Backend
Backend Team A

22 —
E Database

Database Team

Fig. 6: Technical Project Distribution

According to the Law of Conway it follows from such a distribution that the three
teams will implement three technical layers: a Ul, a backend and a database. The
chosen distribution corresponds to the organization, which is in fact sensibly built.
However, it has a decisive disadvantage: A typical feature requires changes to UI,
backend and database. The UI has to render the new features useable for the
clients, the backend has to implement the logic, and the database has to create

structures for the storage of the respective data. This results in the following
disadvantages:

e The person wishing to have the feature implemented has to talk to all three
teams.

e The teams have to coordinate their work and create new interfaces.

e The work of the different teams has to be coordinated in a manner that
ensures that their efforts temporally fit together. The backend, for instance,
cannot really work without getting input from the database — and the UI
cannot work without input from the backend.

e When the teams work in sprints, these dependencies cause time delays: The
database team generates in its first sprint the necessary changes, within the
second sprint the backend team implements the logic, and in the third sprint
the Ul is dealt with. In this way it takes three sprints to implement a single
feature.

In the end this approach creates a large amount of dependencies as well as a high
communication and coordination demand. Thus this type of organization does not
make much sense if the main goal is to implement new features as rapidly as
possible.

Many teams following this approach do not realize its impact on architecture and
do not consider this aspect further. This type of organization focuses rather on the
aspect that developers with similar skills should be similarly positioned within
the organization. In this way the organization turns into an obstacle for a design
driven by the domain like Microservices whose development is opposed by the
division of teams into technical layers.

The Law as Enabler

However, the law of Conway can also be used to support approaches like
Microservices. If the goal is to develop individual components as independently
of each other as possible, the system can be distributed into domain components.
Based on these domain components teams can be created. Fig. 7 illustrates this
principle: There are individual teams for product search, clients and order
process. These teams work on the respective components, which can be
technically divided into UI, backend and database. By the way, the domain
components are not explicitly named in the figure as they are identical with the
team names. Components and teams are synonymous. This approach corresponds
to the idea of so-called cross functional teams, as proposed by methods with

Scrum. These teams should encompass different roles so that they can cover a
large task spectrum. Only a team designed along such principles can be in charge
of a component — from engineering requirements via implementation up to
operation.

The division into technical artifacts and the interface between the artifacts can
then be settled within the teams. In the easiest case a developer has only to talk to
the developer sitting next to him to do so. Between teams coordination is more
complex. However, inter-team coordination is not required very often since
features are ideally implemented by independent teams. Moreover, this approach
creates thin interfaces between the components. This avoids laborious
coordination across teams to define the interface.

22 22 213

Team Product Search Team Customer Team Order Process

e) (v) (o

Backend j [Backend J [Backend

‘ Database \ ‘ Database \ ‘ Database \

Fig. 7: Project by domains

Eventually, the central point to be derived from Conway’s Law is that architecture
and organization are just two sides of the same coin. When this insight is cleverly
put to use, the system will have a clear and useful architecture for the project.
Architecture and organization have the common goal to ensure that teams can work
in an unobstructed manner and with as little coordination effort as possible.

The clean distribution of functionalities into components also facilitates
maintenance. Since an individual team is responsible for an individual
functionality and component, this distribution will have long term stability, and
consequently the system will remain maintainable.

The teams need requirements to work upon. This means that the teams need
contact persons which define the requirements. This affects the organization
beyond the projects as the requirements come from the departments of the
enterprise, and also these according to Conway’s Law have to correspond to the

team structures within the project and the domain architecture. Conway’s Law can
be expanded beyond software development to the communication structures of the
entire organization including the users. To put it the other way round: The team
structure within the project and consequently the architecture of a Microservice
system can follow from the organization of the departments of the enterprise.

The Law and Microservices

The previous discussion highlighted the relationship between architecture and
organization of a project only in a general manner. It would be perfectly
conceivable to align the architecture along functionalities and devise teams, which
each are in charge for a separate functionality without using Microservices. In this
case the project would develop a Deployment Monolith within which all
functionalities are implemented. However, Microservices support this approach.
Section 3.1 already discussed that Microservices offer technical independence. In
conjunction with the division by domains the teams become even more
independent of each other and have even less need to coordinate their work. The
technical coordination as well as the coordination concerning the domains can be
reduced to the absolute minimum. This makes it far easier to work in parallel on
numerous features and to bring the features also in production.

Microservices as technical architecture are especially well suited to support the
approach to devise a Conway’s Law-based distribution of functionalities. In fact,
exactly this aspect is an essential characteristic of a Microservices-based
architecture.

However, orienting the architecture according to the communication structures
entails that a change to the one also requires a change of the other. This renders
architecture changes between Microservices more difficult and makes the overall
process less flexible. Whenever one functionality is moved from one
Microservice to another, this might have the consequence that another team has to
take care of this functionality from that point on. This type of organizational
changes render software changes more complex.

As a next step this chapter will address how the distribution by domain can best
be implemented. Domain-driven Design (DDD) is helpful for that.

Try and Experiment

&‘ Have a look at a project you know:

e What does the team structure look like?
o Is it technically motivated or by domain?
o Would the structure have to be changed to implement a Microservices-based
approach?
o How would it have to be changed?
¢ Is there a sensible way to distribute the architecture onto different teams? Eventually each
team should be in charge of independent domain components and be able to implement
features relating to them.

o Which architectural changes would be necessary?
o How laborious would the changes be?

4.3 Domain-Driven Design and Bounded Context

In his book of the same title Eric Evans formulated Domain-Driven Design
(DDD)! as pattern language. It is a collection of connected design patterns and
supposed to support software development especially in complex domains. In the
following text the names of design patterns are written in italics.

Domain-Driven Design is important for understanding Microservices as it
supports the structuring of larger systems according to domains. Exactly such a
model is necessary for the division of a system into Microservices. Each
Microservice is meant to constitute a domain, which is designed in such a way
that only one Microservice has to be changed in order to implement changes or to
introduce new features. Only then is the benefit to be derived from the independent
development in different teams maximal as several features can be implemented in
parallel without the need for extended coordination.

Ubiquitous Language

DDD defines as basis how a model for a domain can be designed. An essential
foundation of DDD is Ubiquitous Language. This expression denotes that the
software should use exactly the same terms as the domain experts. This applies on
all levels: in regards to code and variable names as well as for database schemas.
This practice ensures that the software really encompasses and implements the
critical domain elements. Let us assume for instance that there are express orders
in an E-commerce system. One possibility would be to generate a boolean value
with the name “fast” in the order table. This creates the following problem:
domain experts have to translate the term “express order”, which they use on a

daily basis, into “order with a specific boolean value”. They might not even know
what boolean values are. This renders any discussion of the model more difficult
as terms have to be constantly explained and related to each other. The better
approach is to call the table within the database scheme “express order”. In that
case it is completely transparent how the domain terms are implemented in the
system.

Building Blocks

To design a domain model DDD identifies basic patterns:

e FEntity is an object with an individual identity. In an E-commerce application
the customer or the items could be examples for Entities. Entities are
typically stored in databases. However, this is only the technical
implementation of the concept Entity. An Entity belongs in essence to the
domain modeling like the other DDD concepts.

e Value Objects do not have their own identity. An address can be an example
for a Value Object as it makes only sense in the context of a specific
customer and therefore does not have an independent identity.

e Aggregates are composite domain objects. They facilitate the handling of
invariants and other conditions. An order for instance can be an Aggregate of
order lines. This can be used to ensure that an order from a new customer
does not exceed a certain value. This is a condition, which has to be fulfilled
by calculating values from the order lines so that the order as Aggregate can
control these conditions.

e Services contain business logic. DDD focuses on modeling business logic as
Entities, Value Objects and Aggregates. However, logic accessing several
such objects cannot be sensibly modeled using these objects. For these cases
there are Services. The order process could be such a Service as it needs
access to items and customers and requires the Entity order.

e Repositories serve to access all Entities of a type. Typically there is a
persistency technology like a database behind a Repository.

e Factories are mostly useful to generate complex domain objects. This is
especially the case when these contain for instance many associations.

Aggregates are of special importance in the context of Microservices: Within an
Aggregate consistency can be enforced. Because of the necessary consistency
parallel changes have to be coordinated in an Aggregate. Otherwise two parallel
changes might endanger consistency. For instance, when two order positions are
included in parallel into an order, consistency can be endangered. The order has

already a value of €900 and is maximally allowed to reach €1000. When two
order positions of €60 each are added in parallel, both might calculate a still
acceptable total value of €960 based on the initial value of €900. Therefore,
changes have to be serialized so that the final result of €1020 can be controlled.
Accordingly, changes to Aggregates have to be serialized. For this reason an
Aggregate cannot be distributed across two Microservices. In such a scenario
consistency cannot be ensured. Consequently, Aggregates cannot be divided
between Microservices.

Bounded Context

Building Blocks such as Aggregate represent for many people the core of DDD.
DDD describes in addition with Strategic Design how different domain models
interact and how more complex systems can be built up this way. This aspect of
DDD is probably even more important than the Building Blocks. In any case it is
the concept of DDD, which influences Microservices.

The central element of Strategic Designs is the Bounded Context. The underlying
reasoning is that each domain model is only sensible in certain limits within a
system. In E-commerce for instance number, size and weight of the ordered items
are of interest in regards to delivery, as they influence delivery routes and costs.
For accounting on the other hand prices and tax rates are relevant. A complex
system consists of several Bounded Contexts. In this it resembles the way
complex biological organisms are built out of individual cells, which are likewise
separate entities with their own inner life.

s N N ~
N e N\ e N
Customer Customer Customer
Bonus program # Delivery Billing
address address
Preferred Tax rate
delivery
_ Y. _ service y _ Y.
L Order JEN Delivery \ Billing

Fig. 8: Project by domains

Bounded Context: An example

The customer from the E-commerce system shall serve as example for a Bounded Context (Fig.
8). The different Bounded Contexts are Order, Delivery and Billing. The component Order is
responsible for the order process. The component Delivery implements the delivery process. The
component Billing generates the bills.

Each of these Bounded Contexts requires certain customer data:

o Upon ordering the customer is supposed to be rewarded with points in a bonus program. In
this Bounded Context the number of the customer has to be known to the bonus program.

o For Delivery the delivery address and the preferred delivery service of the customer are
relevant.

e Finally, for generating the bill the billing address and the tax rate of the customer have to be
known.

In this manner each Bounded Context has its own model of the customer. This renders it
possible to independently change Microservices. If for instance more information regarding the
customer is necessary for generating bills, only changes to the Bounded Context billing are
necessary.

It might be sensible to store basic information concerning the customer in a separate Bounded
Context. Such fundamental data is probably sensible in many Bounded Contexts. To this purpose
the Bounded Contexts can cooperate (compare below).

A universal model of the customer, however, is hardly sensible. It would be very complex since it
would have to contain all information regarding the customer. Moreover, each change to customer
information, which is necessary in a certain context, would concern the universal model. This
would render such changes very complicated and would probably result in permanent changes to
the model.

To illustrate the system setup in the different Bounded Contexts a Context Map
can be used (see section 8.2). Each of the Bounded Contexts then can be
implemented within one or several Microservices.

Collaboration between Bounded Contexts

How are the individual Bounded Contexts connected? There are different
possibilities:

e In case of a Shared Kernel the domain models share some common elements,
however, in other areas they differ.

e Customer/Supplier means that a subsystem offers a domain model for the
caller. The caller in this case is the client who determines the exact setup of
the model.

e This is very different in case of Conformist: The caller uses the same model
as the subsystem, and the other model is thereby forced upon him. This
approach is relatively easy — there is no need for translation. One example is

a standard software for a certain domain. The developers of this software
likely know a lot about the domain since they have seen many different use
cases. The caller can use this model to profit from the knowledge from the
modeling.

e The Anti-corruption Layer translates a domain model into another one so
that both are completely decoupled. This allows the integration of legacy
systems without having to take over the domain models. Often data modeling
is not very meaningful in legacy systems.

e Separate Ways means that the two systems are not integrated, but stay
independent of each other.

¢ In the case of Open Host Service the Bounded Context offers special
services everybody can use. In this way everybody can assemble their own
integration. This is especially useful when an integration with numerous other
systems is necessary and when the implementation of these integrations is too
laborious.

e Published Language achieves similar things. It offers a certain domain
modeling as common language between the Bounded Contexts. Since it is
widely used, this language can hardly be changed anymore afterwards.

Bounded Context and Microservices

Each Microservice is meant to model one domain so that new features or changes
have only to be implemented within one Microservice. Such a model can be
designed based on Bounded Context.

One team can work on one or several Bounded Contexts, which each serve as
foundation for one or several Microservices. Changes and new features are
supposed to concern typically only one Bounded Context — and thus only one
team. This ensures that teams can work largely independently of each other. A
Bounded Context can be divided into multiple Microservices if that seems
sensible. There can be technical reasons for that. For example a certain part of a
Bounded Context might have to be scaled up to a larger extent than the others.
This is simpler if this part is separated into its own Microservice. However, it
should be avoided to design Microservices, which contain multiple Bounded
Contexts, as this entails that several new features might have to be implemented in
one Microservice. This interferes with the goal to develop features independently.

Nevertheless, it is possible that a special requirement comprises many Bounded
Contexts — in that case additional coordination and communication will be
required.

The coordination between teams can be regulated via different collaboration
possibilities. These influence the independence of the teams as well: Separate
Ways, Anti-corruption Layer or Open Host Service offer a lot of independence.
Conformist or Customer/Supplier on the other hand tie the domain models very
closely together. For Customer/Supplier the teams have to closely coordinate
their efforts: The supplier needs to understand the requirements of the customer.
For Conformist , however, the teams do not need to coordinate: One team defines
the model that the other team just uses unchanged. (compare Fig. 9).

Shared Bounded
Context

Shared Kernel

Customer/
Supplier

Published

Langquage
Coordination guag

Effort Open Host
Service

Anticorruption
Layer

Conformist

Separate Ways

Fig. 9: Communication effort of different collaborations

Like in the case of Conway’s Law from section 4.2 it becomes very apparent that
organization and architecture are very closely linked. When the architecture
enables a distribution of the domains in which the implementation of new features

only requires changes to a defined architecture part, these parts can be distributed
to different teams in such a way that these teams can work largely independently
of each other. DDD and especially Bounded Context demonstrate what such a
distribution can look like - and how the parts can work together and how they
have to coordinate.

Large-Scale Structure

With Large-Scale Structure DDD also addresses the question how the system in its
entirety can be viewed from the different Bounded Contexts respectively
Microservices.

e A System Metaphor can serve to define the fundamental structure of the
entire system. For example, an E-commerce system can orient itself
according to the shopping process: The customer starts out looking for
products, then he/she will compare items, select one item and order it. This
can give rise to three Microservices: search, comparison and order.

e Responsibility Layer divides the system into layers with different
responsibilities. Layers can only call other layers if those are located below
them. This does not refer to a technical division into database, UI and logic.
In an E-commerce system domain layers might be for example the catalog,
the order process and billing. The catalog can call on the order process and
the order process can call on the generation of the bill. However, calls into
the other direction are not permitted.

e FEvolving Order suggests not to determine the overall structure too rigidly. It
should arise from the individual components in a stepwise manner.

These approaches can provide an idea how the architecture of a system, which
consists of different Microservices, can be organized (compare also Chapter 8).

Try and Experiment

&‘ Look at a project you know:

o Which Bounded Contexts can you identify?

¢ Generate an overview of the Bounded Contexts in a Context Map. Compare section 8.2.

e How do the Bounded Contexts cooperate? (Anti-corruption Layer, Customer/Supplier
etc.). Add this information to the Context Map.

e Would other mechanisms have been better at certain places? Why?

¢ How could the Bounded Contexts be sensibly distributed to teams so that features are
implemented by independent teams?

These questions might be hard to answer as you need to get a new perspective on the system and
how the domains are modeled in the system.

Why You Should Avoid a Canonical Data Model (Stefan
Tilkov)

by Stefan Tilkov, innoQ

In recent times, I’ve been involved in a few architecture projects on the enterprise
level again. If you’ve never been in that world, i.e. if you’ve been focusing on
individual systems so far, let me give you the basic gist of what this kind of
environment is like: There are lots of meetings, more meetings, and even more
meetings; there’s an abundance of slide decks, packed with text and diagrams —
none of that Presentation Zen nonsense, please. There are conceptual architecture
frameworks, showing different perspectives, there are guidelines and reference
architectures, enterprise-wide layering approaches, a little bit of SOA und EAI
and ESB and Portals and (lately) API talk thrown in for good measure. Vendors
and system integrators and (of course) consultants all see their chance to exert
influence on strategic decisions, making their products or themselves an integral
part of the company’s future strategy. It can be a very frustrating, but (at least
sometimes) also very rewarding experience: Those wheels are very big and really
hard to turn, but if you manage to turn them, the effect is significant.

It’s also amazing to see how many of the things that cause problems when building
large systems are repeated on the enterprise level. (We don’t often make mistakes
... but if we do, we make them big!) My favorite one is the idea of establishing
canonical data model (CDM) for all of your interfaces.

If you haven’t heard of this idea before, a quick summary is: Whatever kind of
technology you’re using (an ESB, a BPM platform, or just some assembly of
services of some kind), you standardize the data models of the business objects
you exchange. In its extreme (and very common) form, you end up with having just
one kind of Person, Customer, Order, Product, etc., with a set of IDs, attributes,
and associations everyone can agree on. It isn’t hard to understand how that might
seem a very compelling thing to attempt: After all, even a non-technical manager
will understand that the conversion from one data model to another whenever
systems need to talk to each other is a complete waste of time. It’s obviously a
good idea to standardize. Then, anyone who happens to have a model that differs
from the canonical one will have to implement a conversion to a and from it just
once, new systems can just use the CDM directly, and everyone will be able to
communicate without further ado!

In fact, it’s a horrible, horrible idea. Don’t do it.

In his book on Domain-driven Design, Eric Evans gave a name to a concept that is
obvious to anyone who has actually successfully built a larger system: The
Bounded Context. This is a structuring mechanism that avoids having a single
huge model for all of your application, simply because that (a) becomes
unmanageable and (b) makes no sense to begin with. It recognizes that a Person or
a Contract are different things in different contexts on a conceptual level. This is
not an implementation problem — it’s reality.

If this is true for a large system — and trust me, it is — it’s infinitely more true for
an enterprise-wide architecture. Of course you can argue that with a CDM, you’re
only standardizing the interface layer, but that doesn’t change a thing: You’re still
trying to make everyone agree what a concept means, and my point is that you
should recognize that not every single system has the same needs.

But isn’t this all just pure theory? Who cares about this, anyway? The amazing
thing is that organizations are excellent in generating a huge amount of work based
on bad assumptions. The CDM (in the form I’ve described it here) requires
coordination between all the parties that use a particular object in their interfaces
(unless you trust that someone will be able to just design the right thing from
scratch on their own, which you should never do). You’ll have meetings with
some enterprise architect and a few representatives for specific systems, trying to
agree what a customer is. You’ll end up with something that has tons of optional
attributes because everyone insisted theirs need to be there, and with lots of things

that are kind of weird because they reflect some system’s internal restrictions.
Despite the fact that it’l] take you ages to agree on it, you’ll end up with a zombie
interface model will be universally hated by everyone who has to work with it.

So is a CDM a universally bad idea? Yes, unless you approach it differently. In
many cases, I doubt a CDM’s value in the first place, and think you are better off
with a different and less intrusive kind of specification. But if you want a CDM,
here are a number of things you can do to address the problems you’ll run into:

e Allow for independent parts to be specified independently. If only one
system is responsible for a particular part of your data model, leave it to the
people to specify what it looks like canonically. Don’t make them participate
in meetings. If you’re unsure whether the data model they create has a
significant overlap with another group’s, it probably hasn’t.

¢ Standardize on formats and possibly fragments of data models. Don’t try to
come up with a consistent model of the world. Instead, create small buildings
blocks. What I’'m thinking of are e.g. small XML or JSON fragments, akin to
microformats, that standardize small groups of attributes (I wouldn’t call
them business objects).

e Most importantly, don’t push your model from a central team downwards or
outwards to the individual teams. Instead, it should be the teams who decide
to “pull” them into their own context when they believe they provide value.
It’s not you who’s doing the really important stuff (even though that’s a
common delusion that’s attached to the mighty Enterprise Architect title).
Collect the data models the individual teams provide in a central location, if
you must, and make them easily browsable and searchable. (Think of
providing a big elastic search index as opposed to a central UML model).

What you actually need to as an enterprise architect is to get out of people’s way.
In many cases, a crucial ingredient to achieve this is to create as little
centralization as possible. It shouldn’t be your goal to make everyone do the same
thing. It should be your goal to establish a minimal set of rules that allows people
to work as independently as possible. A CDM of the kind I’ve described above is
the exact opposite.

4.4 Microservices with UI?

This book recommends to equip Microservices with a UL The Ul should offer the
functionality of the Microservice to the user. In this way all changes in regards to

one functionality can be implemented in one Microservice — regardless of whether
they concern the UI, the logic or the database. However, Microservice experts so
far have different opinions in regards to the question whether the integration of UI
into Microservices is really required. Ultimately, Microservices should not be too
large. And when logic is anyhow supposed to be used by multiple frontends, a
Microservice consisting of pure logic without Ul might be sensible. In addition, it
is possible to implement the logic and the Ul in two different Microservices, but
to have them implemented by one team. This allows to implement features without
coordination across teams.

Focusing on Microservices with Ul puts the main emphasis on the distribution of
the domain logic instead of a distribution by technical aspects. Many architects
are not familiar with the domain architecture, which is especially important for
Microservices-based architectures. Therefore, a design where the Microservices
contain the Ul is helpful as a first approach in order to focus the architecture on
the domains.

Technical Alternatives

Technically the UI can be implemented as Web UL. When the Microservices have
a RESTful-HTTP interface, the Web-UI and the RESTful-HTTP interface are very
similar — both use HTTP as protocol. The RESTful-HTTP interface delivers
JSON or XML, the Web Ul HTML. If the Ul is a Single-Page-App, the JavaScript
code is likewise delivered via HTTP and communicates with the logic via
RESTful HTTP. In case of mobile clients the technical implementation is more
complicated. Section 9.1 explains this in detail. Technically a deployable artifact
can deliver via an HTTP interface JSON/XML and HTML. In this way it
implements the UI and allows other Microservices to access the logic.

Self-Contained System

Instead of calling this approach “Microservice with UI” you can also call it “Self-
Contained System” (SCS). SCS define Microservices as having about 100 lines of
code, of which there might be more than one hundred in a complete project.

An SCS consists of many of those Microservices and contains a UL It should
communicate with other SCS asynchronously if at all. Ideally each functionality
should be implemented in just one SCS and there should be no need for SCSs to
communicate with each other. An alternative approach might be to integrate the
SCSs at the Ul-level.

http://scs-architecture.org

In an entire system there are then only five to 25 of these SCS. An SCS is
something one team can easily deal with. Internally the SCS can be divided into
multiple Microservices.

The following definitions result from this reasoning:

e SCS (Self-Contained System) is something a team works on and which
represents a unit in the domain architecture. This can be an order process or
anregistration. It implements a sensible functionality, and the team can
supplement the SCS with new features. An alternative name for a SCS is a
vertical. The SCS distributes the architecture by domain. This is a vertical
design in contrast to a horizontal design. A horizontal design would divide
the system into layers, which are technically motivated — for instance UI,
logic or persistence.

e A Microservice is a part of a SCS. It is a technical unit and can be
independently deployed. This conforms nearly with the Microservice
definition put forward in this book. Only the size given in the SCS world
rather correspond to what this book denotes as Nanoservices see chapter 15.

e This book refers to Nanoservices as units, which are still individually
deployable, but which make technical trade-offs in some areas to further
reduce the size of the deployment units. For that reason, Nanoservices do not
share all technical characteristics of Microservices.

SCS inspired the definition of Microservices as put forward in this book. Still
there is no reason not to separate the Ul into a different artifact in case the
Microservice gets otherwise too large. Of course, it is more important that the
Microservice is small and thus maintainable than to integrate the UL But UI and
logic should at least be implemented by the same team.

4.5 Conclusion

Microservices are a modularization approach. For a deeper understanding of
Microservices the different perspectives discussed in this chapter are very
helpful:

e Section 4.1 focused on the size of Microservices. But a closer look revealed
that the size of Microservices itself is not that important, even though there
are influencing factors. However, this perspective provided a first
impression on what a Microservice should be. Team size, modularization
and replaceability of Microservices each determine an upper size limit. The

lower limit is determined by transactions, consistency, infrastructure and
distributed communication.

e Conway’s Law (section 4.2) shows that architecture and organization of a
project are closely linked — they are nearly synonymous. Microservices can
further improve the independence of teams and thus ideally support
architectural designs, which aim at the independent development of
functionalities. Each team is responsible for a Microservice and therefore for
a certain part of a domain so that the teams are largely independent
concerning the implementation of new functionalities. Thus, in regards to
domain logic there is hardly any need for coordination across teams. The
requirement for technical coordination can likewise be reduced to a
minimum due to the possible technical independence.

e Insection 4.3 Domain-driven Design provides a very good impression as to
what the distribution of domains in a project can look like and how the
individual parts can be coordinated. Each Microservice can represent a
Bounded Context. This is a self-contained piece of domain logic with an
independent domain model. Between the Bounded Contexts there are
different possibilities for collaboration.

e Finally section 4.4 demonstrated that Microservices should contain a Ul to
be able to implement the changes for a functionality really within an
individual Microservice. This does not necessarily have to be a deployment
unit, however, Ul and Microservice should be in the responsibility of one
team.

Together these different perspectives provide a balanced picture of what
constitutes Microservices and how they can function.

Essential Points

To put it differently: A successful project requires three components:

1. An organization: This is supported by Conway’s Law.
2. A technical approach: This can be Microservices.
3. A domain design as offered by DDD and Bounded Context.

The domain design is especially important for the long-term maintainability of the
system.

Try and Experiment

Look at the three approaches for defining Microservices: size, Conway’s Law and
Domain-driven Design.

&‘ Section 1.2 showed the most important advantages of Microservices. Which of the goals to be
achieved by Microservices are best supported by the three definitions? DDD and Conway’s Law

lead for instance to a better time-to-market.

&‘ Which of the three aspects is in your opinion the most important? Why?

1. Eric Evans: Domain-Driven Design: Tackling Complexity in the Heart of
Software, Addison-Wesley,2003, ISBN 978-0-32112-521-7<

5 Reasons for Microservices

Microservices offer many advantages. These are presented in this chapter. A
detailed understanding of the advantages allows a better evaluation whether
Microservices represent a sensible approach in a given use case. The chapter
continues the discussion of section 1.2 and explains the advantages in more detail.

Section 5.1 depicts the technical advantages of Microservices. However,
Microservices also influence the organization, as described in section 5.2.
Finally, section 5.3 addresses the advantages from a business perspective.

5.1 Technical Benefits

Microservices are an effective modularization concept. Only with distributed
communication it is possible to call another Microservice. This does not happen
by accident, but a developer has to create the respective possibilities for it within
the communication infrastructure. Consequently, dependencies between
Microservices do not just creep in unintendedly, but a developer has to generate
them explicitly. Without Microservices it easily happens that a developer just uses
some class and thereby creates a dependency, which had not been architecturally
intended.

Let us assume for instance that in an E-commerce application the product search
should be able to call the order process, but not the other way round. This ensures
that the product search can be changed without influencing the order process, as
the product search does not use the order process. Now a dependency of the
product search to the order process is introduced, for instance, because a
developer found functionalities there, which were useful for him. Consequently,
product search and order process now depend on each other and can only be
changed together.

Once undesired dependencies have started to creep into the system, additional
dependencies rapidly accrue. The application architecture erodes. This
development can normally only be prevented by architecture management tools.
Such tools have a model of the desired architecture and discover when a
developer has introduced an undesired dependency. The developer then can

immediately remove the dependency again before harm is done and the
architecture suffers. Appropriate tools are presented in section 8.2.

In a Microservices-based architecture product search and order process would be
separate Microservices. To create a dependency the developer would have to
implement it within the communication mechanisms. This is laborious and thus
normally does not happen unnoticed, even without architecture management tools.
Thus the probability is lower that the architecture erodes on the level of
dependencies between Microservices. The Microservice boundaries act like
firewalls, which prevent an architecture erosion. Microservices offer a strong
modularization as it is difficult to overstep the boundaries between modules.

Replacing Microservices

Working with old software systems poses a big challenge: A further development
of the software is difficult due to bad code quality. To replace the software is
risky. Often it is unclear how exactly the software is working, and the system is
very large. The larger the software system the more laborious is its replacement.
When the software is in addition supporting important business processes, it is
nearly impossible to change it. The failure of such business processes can have
tremendous consequences, and each software change entails the danger of such a
failure.

Although this is a central problem, a software architecture is never really aimed at
replacing a software. However, Microservices support this goal: They can be
replaced individually since they are separate and small deployment units.
Therefore, the technical prerequisites for a replacement are better. Eventually it is
not necessary to replace a large software system, but only a small Microservice.
Whenever necessary, additional Microservices can be replaced.

In case of the new Microservices the developers are not tied to the old technology
stack, but free to use other technologies at will. When the Microservice
additionally is independent in a domain sense, the logic is easier to understand.
The developer does not need to understand the entire system, but just the
functionalities of an individual Microservice. Knowledge regarding the domain is
a prerequisite for the successful replacement of a Microservice.

Moreover, Microservices keep functioning when another Microservice fails. Even
if the replacement of a Microservice leads to the temporary failure of one

Microservice, the system as such can keep operating. This additionally decreases
the risk associated with a replacement.

Sustainable Software Development

The start in a new software project is simple: There is not much code yet, the
code structure is clean, and the developers make fast progress. Due to architecture
erosion and an increasing complexity development can get more difficult over
time. At some point, the software turns into a legacy system. As already discussed,
Microservices prevent architecture erosion. When a Microservice has turned into
a legacy system, it can be replaced. For these two reasons Microservices make a
sustainable software development possible. This means that a high productivity
can be reached also on the long-term. However, also in a Microservice-based
system it can happen that a lot of code has to be newly written. This will of course
decrease productivity.

Handling Legacy

Replacing Microservices is only possible if the system is already implemented in
a Microservice-based manner. However, also the replacement and amending of
existing legacy applications is easier with Microservices. The legacy applications
only have to provide an interface, which enables the Microservice to
communicate with the legacy application. Comprehensive code changes or the
integration of new code components into the legacy system are not necessary. The
code level integration is a big challenge in the case of legacy systems, which can
be avoided in this manner. Amending the system is especially easy when a
Microservice can intercept the processing of all calls and process them itself.
Such calls can be HTTP requests for the built-up of web sites or REST calls.

In these instances, the Microservice can complement the legacy system. There are
different possibilities for this:

e The Microservice can process certain requests by itself while leaving the
others to the legacy system.

¢ Alternatively, the Microservice can change the requests and afterwards
transfer them to the actual application.

This approach is similar to the SOA approach (compare Chapter 7), which deals
with the comprehensive integration of different applications. When the
applications are distributed into services, these services cannot only be

orchestrated anew, likewise it is possible to replace individual services for
instance by Microservices.

An Example for Microservices and Legacy

In a project the goal was to undertake a modernization in an existing Java-E-commerce
application. For this purpose, new technologies, for example new frameworks, were to be
introduced to enhance future software development productivity. After some time, it turned out
that the effort for the integration of the new and old technologies would be tremendous. The new
code had to be able to call the old one — and vice versa. This requires technology integration in
both directions. Transactions and database connections have to be used jointly. Likewise, the
security mechanisms have to be integrated. This integration would also render the development of
the new software more complicated and thus endanger the goal of the undertaking.

Fig. 10 shows the solution: The new system was developed completely independent of the old
system. The only integration was provided by links, which call certain behaviors in the old
software — for instance the addition of items to the shopping cart. The new system also had
access to the same database like the old system. In hindsight, a shared database is not a good
idea as the database is an internal representation of the data of the old system. When this
representation is placed at the disposal of another application, the principle of encapsulation is
violated (compare section 10.1). The data structures can hardly be changed anymore as now in
addition to the old system also the new system depends on them.

The approach to develop the system separately solved the integration-related problems to a large
extent. First of all, developers thereby could use new technological approaches without having to
consider the old code and the old approaches. This enabled much more elegant solutions.

https://en.wikipedia.org/wiki/Encapsulation_(computer_programming)

Link
Legacy New

Application Application
\- / \.. /

Database

— I

Fig. 10: Example for legacy inte gration

Continuous Delivery

Continuous Delivery brings software regularly into production thanks to a simple,
reproducible process. This is achieved by a Continuous Delivery pipeline

(compare Fig. 11):

¢ In the commit phase the software is compiled, the unit tests are run, and static
code analysis might be performed.

e The automated acceptance tests of the next phase ensure that the software is
correct concerning the business requirements so that it would be accepted by
the customer.

e Capacity tests check whether the software is sufficiently performant to
support the expected number of users. These tests are automated as well.

e Explorative tests on the other hand are performed manually and serve to test
certain areas of the system such as new features or certain aspects like
software security.

¢ Finally, the software is brought into production. This process is ideally also
automated.

Software is promoted through the individual phases: It traverses the individual
phases consecutively. For example, a release can successfully pass the acceptance
tests. However, the capacitance tests reveal that the software does not meet the
requirement regarding the expected load. In this case the software is never going
to be promoted to the remaining phases such as explorative tests or even
production.

Commit Acceptance Capacity Explorative Production
Tests Tests Tests

Fig. 11: Continuous Delivery pipeline

A Continuous Delivery pipeline with a full automation is the optimum. However,
somehow all software gets into production. Accordingly, the current process can
be optimized in a stepwise manner.

Continuous Delivery is especially easy to realize with Microservices.
Microservices are independent deployment units. Consequently, they can be
brought into production independently of other services. This has tremendous
effects onto the Continuous Delivery pipeline:

e The pipeline is faster as only a small Microservice has to be tested and
brought into production at one time. This accelerates feedback. Rapid
feedback is an essential goal of Continuous Delivery. When it takes weeks
for a developer to get to know that his/her code has caused a problem in
production, it will be difficult to become acquainted with the code again and
to analyze the problem.

e The risk of deployment decreases. The deployed units are smaller, besides
Microservice-based systems can even still be used if a number of
Microservices fail. And the deployment can more easily be rolled back.

e Measures to further decrease the risk are also easier to implement with
smaller deployment units. In case of Blue/Green Deployment for instance a
new environment is built up with the new release. This is similar for Canary
Releasing: In the case of this approach at first only one server is provided
with the new software version. Only when this server runs successfully in
production, the new version is rolled out to the other servers. For a
Deployment Monolith this approach can be hard or nearly impossible to
implement as it requires a lot of resources for the large number of

http://slideshare.net/ewolff/software-architecture-for-devops-andcontinuousdelivery

environments. In case of Microservices the required environments are much
smaller and the procedure thus easier.

e Test environments pose additional challenges. When for instance a third
party system is used, the environment has to contain also a test version of this
third system. In case of smaller deployment units, the demands to the
environments are lower. The environments for Microservices only have to
integrate the third systems, which are necessary for the individual
Microservice. It is likewise possible to test the systems using mocks of the
third systems. This facilitates the tests and represents also an interesting
method in order to test Microservices independently of each other.

Continuous Delivery is one of the most important arguments for Microservices.
Many projects invest in migrating to Microservices in order to facilitate the
creation of a Continuous Delivery pipeline.

However, Continuous Delivery is also a prerequisite for Microservices. Without
Continuous Delivery pipelines the many Microservices can hardly be brought into
production since it is not feasible to bring so many Microservices into production
manually. Thus Microservices profit from Continuous Delivery and vice versa.

Scaling

Microservices offer via the network reachable interfaces, which can be accessed
for instance via HTTP or via a message solution. Each Microservice can run on
one server — or on several. When the service runs on several servers, the load can
be distributed onto the different servers. Likewise, it is possible to install and run
Microservices on computers having different performance. Each Microservice
can implement its own scaling.

In addition, caches can be placed in front of Microservices. For REST-based
Microservices it can be sufficient to use a generic HT'TP cache. This reduces the
effort for such a cache significantly. The HTTP protocol contains a comprehensive
support for caching, which is very helpful in this context.

Furthermore, it might be possible to install the Microservices at different
locations within the network in order to bring them closer to the caller. In case of
world-wide distributed Cloud environments, it does not matter anymore in which
computing center the Microservices are running. When the Microservice
infrastructure uses several computing centers and processes calls always in the
nearest computing center, the architecture can significantly reduce the response

http://slideshare.net/ewolff/continuous-delivery-and-micro-services-a-symbiosis

times. Besides, static content can be delivered by a CDN (Content Delivery
Network), whose servers are located even closer to the users.

However, the better scaling and the support for caching cannot work miracles:
Microservices result in a distributed architecture. Calls via the network are a lot
slower than local calls. From a pure performance perspective it might be better to
combine several Microservices or to use technologies which focus on local calls

(compare chapter 15).

Robustness

Actually, Microservices should be less reliable than other architecture
approaches. After all, Microservices are a distributed system. Thus possible
network failures add to the usual sources of errors. Moreover, Microservices run
on several servers so that there is also a larger probability for hardware failure.

To ensure a high availability, the Microservices-based architecture has to be
appropriately designed. The communication between the Microservices has to
form a kind of firewall: The failure of a Microservice may not propagate. This
prevents that a problem arising in an individual Microservice causes a failure of
the complete system.

Accordingly, the Microservice, which is calling, has to somehow keep working
upon a failure. One possibility is to assume default values. Alternatively, the
failure might lead to a graceful degradation i.e. a somehow reduced service.

It can already be decisive how a failure is dealt with technically: The operation
system level timeout for TCP/IP connections is often set to five minutes, for
example. If due to the failure of a Microservice requests run into this timeout, the
thread is blocked for five minutes. At some point all threads will be blocked. If
that happens, the calling system might fail as it cannot do anything else anymore
than wait for timeouts. This can be avoided by supplying the calls with shorter
timeouts. Such ideas are around much longer than the concept of Microservices.
The book “Release It” 1 in detail presents such challenges and approaches for
solving them. When these approaches are implemented, Microservice-based
systems can tolerate the failure of entire Microservices and thus become more
robust than a Deployment Monolith.

In comparison to Deployment Monoliths Microservices have the additional
advantage that they distribute the system into multiple processes. These processes

are better isolated from each other. In a Deployment Monolith, which only starts
one process, memory leaks or a functionality using up a lot of computing resources
can make the whole system fail. Such errors are very often simple programming
mistakes or slips. The distribution into Microservices prevents such situations as
only a single Microservice would be failing in such a scenario.

Free Technology Choice

Microservices offer technological freedom. Since Microservices communicate
only via the network, they can be implemented in any language and platform as
long as communication with other Microservices is possible. This free technology
choice can be used to test new technologies without running big risks. As a test
one can use the new technology in a single Microservice. If the technology does
not perform according to expectations, only this one Microservice has to be
rewritten. In addition, troubles arising in case of failure will be limited. The free
technology choice offers for instance the advantage that developers can really use
new technologies in production. This increases motivation and has positive effects
on personnel recruitment as developers normally enjoy to use new technologies.

Moreover, in this way the most appropriate technology can be used for each
problem. A different programming language or a certain framework can be used to
implement specific system parts. It is even possible for an individual
Microservice to use a specific database or persistence technology. However,
backup and disaster recovery mechanisms have to be implemented for that.

Free technology is an option — it does not have to be made use of. Technologies
can also be defined for all Microservices in a project so each Microservice is
bound to a specific technology stack. However, Deployment Monolith inherently
narrow the choices developers have: For example, in Java applications each
library can only be used in one version. Accordingly, not only the libraries to be
used, but even the versions have to be set in a Deployment Monolith.
Microservices do not impose such technical limitations.

Independence

Decisions regarding technology and putting new versions into production concern
only individual Microservices. This makes Microservices very independent of
each other. Of course, there has to be a common technical basis. The installation
of Microservices should be automated, there should be a Continuous Delivery
pipeline for each Microservices, and Microservices should adhere to the
monitoring specifications. However, within these parameters Microservices can

implement a practically unlimited choice of technical approaches. Due to the
greater technological freedom there is less coordination necessary between
Microservices.

5.2 Organizational Benefits

Microservices are an architectural approach and thus should have only advantages
for software development and structure. However, due to Conway’s Law
(compare section 4.2) architecture affects also team communication and thus
organization.

First of all Microservices reach a high level of technical independence as the last
section (5.1) discussed. When within the organization a team is in full charge of a
Microservice, the team can make full use of the technical independence. However,
the team has also the full responsibility if a Microservice malfunctions or fails in
production.

In this manner Microservices support team independence. The technical basis
allows teams to work on the different Microservices with little coordination. This
provides the fundament for the independent work of the teams.

In other projects, technology or architecture have to be decided centrally since the
individual teams and modules are bound to these decisions due to the technical
frame conditions. It might just be impossible to use two different libraries or even
two different versions of one library within one Deployment Monolith. Thus,
central coordination is mandatory. For Microservices, the situation is different.
This allows for self organization. However, a global coordination might still be
sensible, for instance to be able to perform an update including all components in
case of a security problem with a library.

Teams have more responsibilities: They decide the architecture of their
Microservices. They cannot hand over this responsibility to a central architecture.
Thus, they also have to carry the consequences since they have the responsibility
for the Microservice.

The Scala Decision

In a project employing a Microservice-based approach the central architecture group was
supposed to decide whether Scala could be used as programming language by one team. This
decision would have transferred the responsibility for the decision to the central architecture
group. The group would have had to decide whether the team might solve its problems more

efficiently by using Scala or whether the use of Scala might create additional problems in the end.
Eventually, the decision was delegated to the team since the team has to take responsibility for its
Microservice. They have to deal with the consequences, if Scala in the end does not fulfill the
demands of production or does not support an efficient software development. They have the
investment of getting familiar with Scala first and have to estimate whether this effort will pay off
in the end. Likewise, they have a problem if suddenly all Scala developers leave the project or
change to another team. To delegate the responsibility to the central architecture group is strictly
speaking not even possible since the central architecture group is not directly affected by the
consequences. Therefore, the team just has to decide by itself. The team has to include all team
members into the decision — also the Product Owner, who would for instance suffer in the end in
case of a low productivity.

This line of action represents a radical renunciation of old forms of organization,
where the central architecture group prescribes the technology stack to be used for
everybody. In this type of organization the individual teams are not responsible for
decisions and non functional requirements like availability, performance or
scalability. In a classical architecture, the non functional properties can only be
provided for centrally since they can only be warranted by the common basis of
the entire system. When Microservices do not force a common basis anymore,
these decisions can be distributed to the teams thus enabling a greater self-
reliance and independence.

Smaller projects

Finally, Microservices allow for the distribution of large projects into numerous
small projects as the individual Microservices are so independent that a central
coordination loses importance. Therefore, a comprehensive project organization
is not necessary anymore. Large organizations are problematic as they have a
relatively large communication overhead. When Microservices enable the
fragmentation of a large organization into several smaller ones, the need for
communication decreases. This allows teams to focus more on the implementation
of requirements.

Large projects will also fail more frequently. Also from this perspective it is
better when a large project can be divided into multiple smaller projects. The
smaller extent of the individual projects enables more precise estimations. Better
estimations improve planning and decrease risk. And even if the estimation is
wrong, the impact of the incorrect decisions is lower. In conjunction with the
greater flexibility this can speed up and facilitate the process of decision making —
especially as the associated risk is so much smaller.

5.3 Benefits from a Business Perspective

The already discussed advantages from an organizational perspective lead also to
business advantages: The projects have a lower risk, and coordination between
teams needs to be less intense so that the teams can work more efficiently.

Parallel Work on Stories

The distribution into Microservices enables the parallel work on different stories
(compare Fig. 12). Each team works on a story, which only concerns their own
Microservice. Consequently, the teams can work independently, and the system as
such can be simultaneously expanded at different spots. This eventually scales the
agile process. However, scaling does not take place at the level of development
processes, but is facilitated by the architecture and the independence of the teams.
Changes and deployments of individual Microservices are possible without
complex coordination. Therefore, teams can work independently. When a team is
slower or encounters obstacles, this does hardly influence the other teams. Thus
the risk associated with the project is further reduced.

An unambiguous domain-based design and the assignment of one developer team
per Microservice can scale the development or project organization with the
number of teams.

Story Story Story

I\ I\
C C N
I\ I\ .
Team Product Search Team Customer Team Order Process

l l l

Microservice
Product
Search

Microservice Microservice
Customer Order Process

Fig. 12: Example for legacy inte gration

It is possible that changes concern several Microservices and thus several teams.
An example: Only certain customers are allowed to order some products — for
instance because of youth protection. In case of the architecture depicted in Fig.
12 changes to all Microservices would be necessary to implement this feature.
The Customer Microservice would have to store the data whether a customer is of
legal age. Product search should hide or label the products prohibited for
underage customers. Finally, the order process has to prevent the ordering of
prohibited products by underage customers. These changes have to be
coordinated. Coordination is especially required when one Microservice calls
another. In that case the called upon Microservice has to be changed first so that
the caller can afterwards use the new features.

This problem can certainly be solved. One can reason that the outlined
architecture is not optimal. If the architecture is geared to the business processes,
the changes can be limited to the order process. Eventually, only the ordering is to
be prohibited, not searching. The information whether a certain client is allowed
to order or not should also be within the responsibility of the order process.
Which architecture and consequently which team distribution is the right one,
depends on the requirements and the concerned Microservices and teams.

If the architecture has been selected appropriately, Microservices can well
support agility. This is for sure a good reason from a business perspective to use a
Microservice-based architecture.

5.4 Conclusion

In summary Microservices lead to the following technical advantages (section

5.1):

Strong modularization: Dependencies between Microservices cannot easily
creep in.

Microservices can be easily replaced.

The strong modularization and the replaceability of Microservices leads to a
sustained speed of development: The Architecture remains stable, and
Microservices, which cannot be maintained anymore, can be replaced. Thus,
the quality of the system remains high also on the long run so that the systems
stays maintainable.

Legacy systems can be supplemented with Microservices without the need
to carry around all the ballast, which has accumulated in the legacy system.
Therefore, Microservices are a good approach when dealing with legacy
systems.

Since Microservices are small deployment units, a Continuous Delivery
pipeline is much easier to set up.

Microservices can be scaled independently.

If Microservices are implemented in line with established approaches, the
system will be more robust in the end.

Each Microservice can be implemented in a different programming language
and with a different technology.

Therefore, Microservices are largely independent from each other on a
technical level.

The technical independence affects the organization (section 5.2): The teams can
work independently and on their own authority. There is less need for central
coordination. Large projects are replaced by a collection of small projects, which
positively affects risk and coordination.

From a business perspective just the effects on risk are already positive (section
5.3). However, is is even more attractive that the Microservice-based architecture

enables the scaling of agile processes without requiring an excessive amount of
coordination and communication.

Essential Points

e There are numerous technical advantages — ranging from scalability and
robustness to sustainable development.

e The technical independence results in advantages on the organizational level.
Teams become independent.

e The technical and organizational advantages taken together result in
advantages at the level of business: a lower risk and a faster implementation
of more features.

Try and Experiment

Look at a project you know:

&‘ Why are Microservices useful in this scenario? Evaluate each advantage by assigning points (1 = no
real advantage; 10 = very large advantage). The possible advantages are listed in the conclusion of
this chapter.

&‘ What would the project look like with or without the use of Microservices?

&‘ Develop a discussion of the advantages of Microservices from the perspective of an architect, a
developer, a project leader and the customer for the project. The technical advantages will be more
of interest for the developers and architects, while the organizational and business advantages matter
more for project leaders and customers. Which advantages do you put most emphasis on for the
different groups?

&‘ Visualize the current domain design in your project or product.

o Which teams are responsible for which parts of the project? Where do you see overlap?
e What should the distribution of teams to product parts and services look like to achieve a
largely independent mode of operation?

1. Michael T. Nygard: Release It!: Design and Deploy Production-Ready
Software, Pragmatic Programmers, 2007, ISBN 978-0-97873-921-8<

6 Challenges

The distribution of a system into Microservices entails a higher complexity. This
leads to challenges at the technical level (compare section 6.1) — for instance high
latency times in the network or the failure of individual services. However, also at
the level of software architecture there are a number of things to consider — for
instance because of the bad architecture changeability (section 6.2). And finally,
there are many more components to be independently delivered so that operation
and infrastructure become more complex (section 6.3). These challenges have to
be dealt with when introducing Microservices. Measures described in the
following chapters show how to appropriately handle these challenges.

6.1 Technical Challenges

Microservices are distributed systems. Calls between Microservices go via the
network. This affects the latency and thus the response times of Microservices
negatively. The already mentioned first rule for distributed objects states that
objects, if possible, should not be distributed (compare section 4.1).

The reason for that is illustrated in Fig. 13 A call has to go via the network to
reach the server, is processed there and has to return to the caller. The latency just
for network communication can be around 0.5 ms in a computing center (compare
here). Within this time a processor running at 3 Ghz can process about 1.5 million
instructions. When a computation is redistributed to another node, it should be
checked whether local processing of the request might not be faster. The latency
can even increase further by parameter marshaling and unmarshaling for a call and
the result of a call. On the other hand, network optimizations or connecting nodes
to the same network switch can improve the situation.

http://martinfowler.com/bliki/FirstLaw.html
https://www.cs.cornell.edu/projects/ladis2009/talks/dean-keynote-ladis2009.pdf

Request

Time

Response

\/

Fig. 13: Latency for a call via the network

The first rule for distributed objects and the warning to be aware of the latency
within the network dates back to the time when CORBA and EJB were used.
These technologies were often used for distributed Three Tier Architectures
(compare Fig. 14). For every client request the web tier implements only the data
rendering as HTML page. The logic resides on another server, which is called via
the network. The data are deposited in the database and thus on an again other
server. When only data are to be shown, there is little happening in the Middle
Tier. The data are not processed, just forwarded. For performance and latency, it
would be much better to keep the logic on the same server as the web tier. Though

the distribution allows to scale the Middle Tier independently, the system does not
get faster this way when it anyhow does not have much to do.

4 N

Web Server
(Ul)

_ Y,

¢

- ™
Middle Tier

(EJB, CORBA)
\ J

.y

~ 3

i - ————————

Database

— __.#

e — ———

Fig. 14: Three Tier Architecture

For Microservices the situation is different as the Ul is contained in the
Microservice. Calls between Microservices only take place when Microservices
need functionalities of other Microservices. If that is often the case, this might be a
hint that there are architectural problems as the Microservices should be largely
independent of each other.

Practically, Microservice-based architectures function in spite of the challenges
related to distribution. Still Microservices should not communicate too much with
each other in order to improve performance and reduce latency.

Code Dependencies

The great advantage of Microservice-based architectures is the option to
independently deploy the individual services. However, this option can be undone
by code dependencies. If a library is used by several Microservices and a new
version of this library is supposed to be rolled out, a coordinated deployment of
several Microservices might be required — precisely the scenario that should be
prevented. Something like that can for instance easily occur due to binary
dependencies where sometimes different versions are not compatible anymore.
The deployment has to be temporally coordinated in a way that all Microservices
are rolled out in a certain time interval and in a defined order. Besides the code
dependency has to be changed in all Microservices, a process that has likewise to
be prioritized and coordinated across all involved teams. A binary level
dependency is a very tight technical coupling, which entails a very tight
organizational coupling.

Therefore Microservices propagate a Shared Nothing Approach where the
Microservices do not possess shared code. Microservices rather accept code
redundancy and resist the urge to reuse code in order to avoid a close
organizational link.

Code dependencies can be tolerable in certain situations. When a Microservice
offers for instance a client library, which supports callers while using this
Microservice, this does not necessarily have negative consequences. The library
depends on the interface of the Microservice. If the interface is changed in a
backward compatible manner, also a caller having an old version of the client
library can still use the Microservice. The deployment remains uncoupled.
However, the client library can be the starting point to a code dependency. If the

http://martinfowler.com/articles/distributed-objects-microservices.html

client library contains for instance domain objects, this can be a problem. In fact,
if the client library contains the same code for the domain objects, which is also
internally used, changes to the internal model will affect the clients. They might
have to be deployed again if need be. If the domain object contains logic, this
logic can only be modified when all clients are likewise deployed anew. This
also violates the idea of independently deployable Microservices.

Consequences of Code Dependencies

Here is an example for the effects of code dependencies: User authentication is a central
function, which all services use. A project has developed a service implementing the
authentication. Nowadays there are open source projects, which implement such things, (section
8.12) so that an implementation of a home-grown solution is rarely sensible anymore. In that
project each Microservice could use a library for facilitating the handling of the authentication
service. Accordingly, all Microservices have a code dependency towards the authentication
service. Changes to the authentication service might require that the library has to be newly rolled
out. This in turn means that all Microservices have to be modified and newly rolled out as well. In
addition, the deployments of the Microservices and the authentication service have to be
coordinated. This can easily cost a two-digit number of man days. Thus authentication can hardly
be changed anymore due to the code dependency. If the authentication service could be deployed
just like that and if there were no code dependencies, which couple the deployment of the
Microservices and the authentication service, the problem would be solved.

Unreliable Communication

Communication between Microservices occurs via the network and is therefore
unreliable. In addition, Microservices can fail. To prevent that a failure of the
entire system ensues, the remaining Microservices in such a case have to
compensate for the failure of the malfunctioning Microservice and keep being
available. However, to achieve this goal the quality of the services has to be
degraded i.e. by using default values or limiting the useable functionality (section
10.5).

This problem cannot be completely solved on a technical level: The Microservice
availability can for instance be optimized by highly available hardware. But this
increases costs. Besides, it is no complete solution: In some respects, it even
increases risk. If the Microservice fails despite highly available hardware and the
failure propagates across the entire system, a complete failure of the entire system
occurs. Thus, the Microservices should rather compensate the failure of another
Microservice.

In addition, the threshold between a technical and a domain problem is crossed.
An ATM might serve as example: When the ATM cannot retrieve the account
balance of the customer, there are two possibilities. The ATM can refuse the
withdrawal. Although this is a safe option, it will anger the customer and decrease
revenue. Alternatively, the ATM can hand out the money — maybe up to a certain
upper limit. Which alternative should be implemented, is a business decision.
Eventually, somebody has to decide whether it is preferable to be on the safe side,
even if it means to forego some revenue and anger customers, or to run a certain
risk to pay out too much money.

Technology Pluralism

The technology freedom of Microservices can result in a project using many
different technologies. The Microservices do not need to have a shared technology
basis. Accordingly, the complexity of the whole system increases. Each team
masters the technologies, which are used in its own Microservice. However, the
large number of used technologies and approaches can cause the system as such to
reach a level of complexity no individual developer or team can understand
anymore. But often such a general understanding is not necessary since each team
only needs to understand its own Microservice. Whenever it becomes necessary
to have a look at the entire system - be it even only from a certain limited
perspective as for instance operations —, the complexity might pose a problem. In
such cases, unification can be a sensible counter measure. This does not mean that
the technology stack has to be completely uniform, but that certain parts should be
uniform or that the individual Microservices should behave in a uniform manner.
For instance, a uniform logging framework might be defined or a uniform format
for logging, which different logging frameworks might implement differently.
Alternatively, a common technical basis like the JVM (Java Virtual Machine) can
be decided upon for operational reasons without setting the programming
languages.

6.2 Architecture

The architecture of a Microservice-based system distributes the domain-based
functionalities among the Microservices. To understand the architecture at this
level dependencies and communication relationships between the Microservices
have to be known. Analyzing communication relationships is difficult. For large
Deployment Monoliths there are tools, which read source code or even only the
executable system. Based on this the tools can generate graphs visualizing
modules and relationships. This makes it possible to verify the implemented

architecture, adjust it in regards to the planned architecture and to follow the
architecture evolution over time. Such overviews are central for architectural
work, however, difficult to generate in the case of Microservices as the respective
tools are lacking — but there are solutions. Section 8.2 discusses these in detail.

Architecture = Organization

Microservices are based on the idea that organization and architecture are the
same. Microservices exploit this circumstance to implement the architecture. The
organization is structured in a way, which renders the architecture implementation
especially easy. However, this means that an architecture refactoring can entail
changes to the organization. This renders architectural changes more difficult. This
is not only a problem of Microservices: Conway’s Law (section 4.2) applies to
all projects. However, other projects often are not aware of the law and its
implications. Therefore, they do not use the law productively and cannot estimate
the organizational problems caused by architectural changes.

Architecture and Requirements

The architecture influences also the independent development of individual
Microservices and the independent streams of stories. When the domain-based
distribution of Microservices is not optimal, requirements might not only influence
one team and one Microservice, but several. In such cases a larger amount of
coordination is necessary between the different teams and Microservices. This
influences the productivity negatively and thus undoes one of the essential reasons
for the introduction of Microservices.

In case of Microservices the architecture influences not only the software quality,
but also the organization and the independent work of the teams and thereby the
productivity. Designing an optimal architecture gets even more important since
mistakes have far reaching consequences.

Many projects do not pay sufficient attention to domain architecture, often much
less than to technical architecture. Besides, most architects are not as experienced
with domain architecture as with technical architecture. These circumstances can
cause tremendous problems in the case of Microservice-based approaches. The
distribution into Microservices and therefore into fields of responsibility for the
different teams has to be performed according to domain criteria.

Refactoring

In a single Microservice refactoring is simple since the Microservice is small. It
can also be easily replaced and newly implemented.

Between Microservices the situation differs: Transferring functionalities from one
Microservice to another is difficult. The functionality has to be moved into a
different deployment unit. This is for sure more difficult than moving a
functionality within the same unit. Between Microservices technologies are not
necessarily uniform. Microservices can use different libraries or even different
programming languages. In such cases the functionality has to be moved into a new
Microservice. In some cases the functionality must be newly implemented in the
technology of the other Microservice and subsequently transferred into this
Microservice. However, this is far more complex than moving code within a
Microservice.

Agile Architecture

Microservices make it easier to bring as many changes as possible into production
in the shortest possible time and to reach a sustainable development speed. This is
especially advantageous when there are numerous and hard to predict
requirements. This is exactly the environment where Microservices are at home.
Changes to a Microservice are also very simple. However, adjusting the
architecture of the system as such, for instance by moving around functionalities,

is not so simple.

In addition, the architecture of a system is frequently not yet optimal at the first
attempt. During implementation the team learns a lot about the domain. In a second
attempt, it will be much more capable of designing an appropriate architecture.
Most projects suffering from bad architecture had a good architecture at the outset
based on the state of knowledge at that time. However, when the project
progressed, it became clear that requirements were meant differently and new
requirements arose so that the initial architecture stopped fitting. Problems arise
when this does not lead to consequences. If the project just continues with a more
and more inappropriate architecture, the architecture will not fit at all anymore at
some point. This can be avoided by adjusting the architecture step by step to the
changed requirements based on the respective state of knowledge. Architecture
changeability and architecture adjustment in line with new requirements are
central for this. However, architecture changeability at the level of the entire
system is a weakness of Microservices while changes within Microservices are
very simple.

Summary

When using Microservices, architecture is even more important than in other
systems as it influences also the organization and the independent work on
requirements. At the same time, Microservices offer many advantages in cases
where requirements are unclear and architecture therefore has to be changeable.
Unfortunately, the interplay between Microservices is hard to modify since the
distribution into Microservices is quite rigid due to the distributed communication
between them. Besides, as Microservices can be implemented by the use of
different technologies, it gets difficult to move functionalities around. On the other
hand, changes to individual Microservices or their replacement are very simple.

6.3 Infrastructure and Operations

Microservices are supposed to be brought into production independently of each
other and to be able to use individual technology stacks. Therefore, each
Microservice usually resides on its own server. This is the only way to ensure
complete technological independence. It is not possible to cope with the required
multitude of systems using hardware servers. Even with virtualization the
management of such an environment remains difficult. The number of required
virtual machines can be higher than otherwise used by an entire business I'T. When
there are hundreds of Microservices, there are also hundreds of virtual machines
needed and for some of them several instances e.g. for load balancing. This
requires automation and appropriate infrastructures, which are able to generate a
large number of virtual machines.

Continuous Delivery Pipelines

Beyond operation each Microservice requires additional infrastructure: It needs
its own Continuous Delivery pipeline so that it can be brought into production
independently of the other Microservices. This means that appropriate test
environments and automation scripts are necessary. The large number of pipelines
causes additional challenges: The pipelines have to be built up and maintained.
Furthermore, to reduce expenses they need to be largely standardized.

Monitoring

Each Microservice requires in addition monitoring. This is the only way to
recognize problems with the service at runtime. In case of a Deployment
Monolith, it is still quite easy to monitor the system. When problems arise, the
administrator can log into the system and use specific tools to analyze errors.
Microservice-based systems contain so many systems that this approach is not

feasible anymore. Consequently, there has to be a monitoring, which comprises all
systems. Thereby, not only the typical information from the operating system and
the I/O to the hard disc and to the network should be analyzed, also a view into the
application should be possible based on application metrics. This is the only way
for developers to find out where the application has to be optimized and where
problems exist at the moment.

Version control

Finally, every Microservice has to be stored under version control independent of
the other ones. Only software, which is separately versioned, can be brought into
production individually. When two software modules are versioned together, they
should always be brought into production together. Otherwise a change might have
influenced both modules so that in fact both services should be newly delivered.
Moreover, if an old version of one of the services is in production, it is not clear
whether an update is necessary or whether the new version does not contain
changes — after all the new version might only have contained changes in the other
Microservice.

For Deployment Monoliths a lower number of servers, environments and projects
in version control would be necessary. This decreases complexity. The
requirements in regards to operation and infrastructure are much higher in a
Microservices environment. To deal with this complexity is the biggest challenge
when introducing Microservices.

6.4 Conclusion

This chapter discussed the different challenges associated with Microservices-
based approaches. At the technical level (section 6.1) the challenges are mostly a
consequence of the fact that Microservices are distributed systems: Due to that,
system performance and reliability are more difficult to ensure. In addition,
technical complexity increases because of the greater variety of used technologies.
Furthermore, code dependencies can render the independent deployment of
Microservices impossible.

The architecture of a Microservice-based system (section 6.2) is extremely
important due to its impact on the organization and the parallel implementation of
multiple stories. At the same time, changes to the interplay of Microservices are
hard. Functionalities cannot be easily transferred from one Microservice to
another. Classes within a project can often even be moved automatically. Between

Microservices manual work is necessary. The interface to the code changes from
local calls to communication between Microservices. This increases the
necessary efforts. Finally, Microservices can be written in different programming
languages — in such cases to move code entails that it has to be rewritten.

However, changes to system architecture are often necessary because of unclear
requirements. Besides, the team permanently improves its knowledge about the
system and its domain. Especially in circumstances where the use of
Microservices is particularly advantageous because of rapid and independent
deployments, architecture should be peculiarly easy to change. Within
Microservices changes are indeed easy to implement, however between
Microservices they are very laborious.

Finally infrastructure complexity rises due to the larger number of services
(section 6.3) since more servers, more projects in version control and more
Continuous Delivery pipelines are necessary. This is a central challenge
encountered by Microservice-based architectures.

Part III of the book is going to show solutions for these challenges.

Essential Points

e Microservices are distributed systems. This makes them technically more
complex.

e A good architecture is very important due to its impact on the organization.
While the architecture is easy to modify within Microservices, the interplay
between Microservices is hard to change.

¢ Due to the number of Microservices more infrastructure is necessary e.g. in
terms of server environments, Continuous Delivery pipelines or projects in
version control.

Try and Experiment

&‘ Choose one of the scenarios from chapter 3 or a project you know:

Which are the challenges to be anticipated? Evaluate these challenges. The conclusion of this
chapter highlights the different challenges once again in a compressed manner.

Which of the challenges poses the biggest risk? Why?

Are there possibilities to use Microservices in a way which maximizes advantages and avoids
disadvantages? For example, heterogeneous technology stacks could be avoided.

7 Microservices and SOA

At first glance Microservices and SOA seem to have a lot in common: Both
approaches focus on the modularization of large systems into services. Are SOA
and Microservices indeed the same or are there differences? Dissecting this
question contributes to an in depth understanding of Microservices. Besides, some
ideas from the SOA field are interesting for Microservice-based architectures. A
SOA approach can be advantageous when migrating to Microservices. It separates
the functionalities of the old applications into services, which can be replaced or
supplemented by Microservices.

Section 7.1 defines the term “SOA” as well as the term “service” within the SOA
context. Section 7.2 extends this topic by highlighting the differences between
SOA and Microservices.

7.1 What is SOA?

SOA (Service-Oriented Architecture) and Microservices share one similarity:
They lack an unambiguous definition. Therefore, this section provides only one of
the possible definitions. According to other definitions Microservices and SOA
are indeed identical approaches. Eventually, both approaches are based on
services and the distribution of applications into services.

The term “service” is central for SOA.
A SOA service should have the following characteristics:

A service should comprise a domain functionality.

A service can be used independently.

It is available in the network.

Each service has an interface. Knowledge about the interface is sufficient to
use the service.

The service can be used via different programming languages and platforms.
e To make it easy to use the service is registered in a directory. Via this
directory clients search the service at run time and use it.

e The service should be coarse-grained in order to reduce dependencies.
Small services can only implement sensible functionalities together with
other services. Therefore, SOA focuses rather on larger services.

SOA services do not need to be newly implemented, but are already present in the
company applications. Introducing SOA means to make these services available
outside of those applications. Because of the distribution of applications into
services their use in different contexts is facilitated. This is supposed to improve
the flexibility of the overall IT — that is the goal of SOA. Due to the distribution
into individual services it is possible to recycle services during the
implementation of business processes. This requires only to orchestrate the
individual services.

e N
Portal lh

L) Team Portal

Integration & Orchestration

-

[Business Processes)) Team Integration

Service
Service
Service
Service
Service
Service
Service
Service

% N I ~
m CRM Order System m

Team CRM " L) Team Order

Fig. 15: Overview of a SOA lands cape

Fig. 15 depicts a possible SOA landscape. Like the previous examples this
example is derived from the E-commerce field. There are different systems in the
SOA landscape:

e The CRM (Customer Relationship Management) is an application, which
stores essential information about the customers. This information comprises
not only contact details, but also the history of all transactions with the
customer — telephone calls as well as emails or orders. The CRM exposes
services, which for instance support the creation of a new customer, provide
information about a customer or generate reports for all customers.

e The Order System is in charge of order processing. It can receive new
orders, provide information about the order status or cancel an order. Also
this system provides access to the different functionalities via individual
services. These services might have been added as additional interface to the
system after the first version was put into production.

¢ In the scheme CRM and the order system are the only systems. In reality there
would be certainly additional systems, for instance to provide the product
catalog. However, to illustrate a SOA landscape these two systems suffice.

e For the systems to be able to call each other there is an integration platform.
This platform allows for the communication between the services. It can
newly compose the services by orchestration. Orchestration can be mediated

by a technology, which models business processes and calls the individual
services to execute the different processes.

e Therefore, orchestration is responsible for coordinating the different
services. The infrastructure is intelligent and can react appropriately to the
different messages. It contains the model of the business processes and thus
an important part of the business logic.

e SOA can be used via a portal. The portal is responsible for providing the
users with an interface for using the services. There can be different portals:
for instance one for the customers, one for the support and one for internal
employees. Likewise, the system can be called via rich client applications or
mobile Apps. From an architectural perspective this does not make a
difference: All such systems use the different services to make them useable
for a user. Eventually, all these systems are a universal Ul to be able to use
all services in the SOA.

Each of these systems can be operated und further developed by an individual
team. In the example there could be one team each for the CRM and the order
system, and one additional team each for each portal and finally one team taking
care of integration and orchestration.

Fig 16 shows how communication is structured in SOA architecture. Users
typically work with SOA via the portal. Thereby business processes can be
initiated, which then are implemented in the orchestration layer. These processes
use the services. Especially when migrating from a Monolith to SOA users might
still use a Monolith via its own user interface. However, SOA usually aims for
having a portal as central user interface and an orchestration for implementing
processes.

v

(Portal

v

Integration & Orchestration

()
(service j/[Sertice)\E Service)

Fig. 16: Communication in a SOA archite cture

Introducing SOA

Introducing SOA is a strategic initiative involving different teams. In the end the
aim is to distribute the entire company IT into separate services. The distribution
supports the composition of services into new functionalities in a better manner.
However, this is only possible when all systems in the entire organization have
been adjusted. And only when so many services are available that business
processes can be implemented by simple orchestration, SOA’s advantages are
really evident. Therefore, the integration and orchestration technology has to be
used in the entire IT to enable service communication and integration. This entails
high investment costs as the entire IT landscape has to be changed. This is one of
the main points of criticism in regards to SOA.

The services can also be offered to other companies and users via internet or
private networks. Thus SOA is well suited to support business concepts, which
are based on the outsourcing of services or the inclusion of external services. In

http://apsblog.burtongroup.com/2009/01/soa-is-dead-long-live-ser-%20vices.html

an E-commerce application an external provider could for instance offer simple
services like address validation or complex services like a credit check.

Services in a SOA

At least when introducing SOA based on old systems the SOA services are only
interfaces of large Deployment Monolith. One Monolith offers several services.
The services are built upon the existing applications. Often it is not even
necessary to adjust the internals of a system in order to offer the services. Such a
service typically does not have a UI, instead it offers only an interface for other
applications. A Ul exists only for all systems. It is also not part of a service, but
independent - for instance in the portal.

In addition, it is possible to implement smaller deployment units in a SOA. The
definition of SOA services does not limit the size of the deployment units — quite
contrary to Microservices where the size of the deployment units is a defining
feature.

Interfaces and Versioning

Service versioning in SOA is a special challenge. Service changes have to be
coordinated with the users of the respective service. Because of this coordination
requirement, changes to the interface of the services are laborious. Service users
are unlikely to adjust their own software if they do not profit from the new
interface. Therefore, old interface versions frequently have to be supported as
well. This means that numerous interface versions have probably to be supported
if a service is used by many clients. This increases software complexity and
renders changes more difficult. After all, the correct functioning of the old
interfaces has to be ensured upon each new software release. If data are
supplemented, challenges arise because the old interfaces do not support these
data. This is no problem during reading. However, when writing it can be difficult
to create new data sets without the additional data.

External Interfaces

If there are external users outside the company using the service, interface changes
get even more difficult. In the worst case the service provider does not even know
exactly who is using the service since it is available to anonymous users in the
Internet. In that case it is nearly impossible to coordinate changes. Consequently,
switching off an old service version then gets nearly unfeasible. This leads to a
growing number of interface versions, and service changes get more and more
difficult. This problem concerns Microservices as well (compare section 9.6).

The interface users are also facing challenges: If they need an interface
modification, they have to coordinate this with the team offering the service. Then
the changes have to be prioritized in relation to all other changes and wishes of
other teams. As discussed already, an interface change is no easy task. Therefore,
it can take quite a long time till changes are in fact implemented. This hampers the
further development of the system.

Interfaces Enforce a Coordination of Deployments

After a change to the interface the deployment of the services has to be
coordinated. First the service has to be deployed, which offers the new interface
versions. Only then the service, which uses the new interface, can be deployed.
Since applications are mostly Deployment Monoliths in the case of SOA, several
services can always only be deployed together. This renders the coordination of
services more difficult. In addition, the risk increases as the deployment of a
Monolith takes a long time and is hard to undo — just because the changes are so
extensive.

Coordination and Orchestration

Coordinating SOA via an orchestration in the integration layer poses a number of
challenges. In a way a Monolith is generated: All business processes are echoed
in this orchestration. This Monolith is often even worse than the usual Monoliths
as it is using all systems within the enterprise IT. In extreme cases it can happen
that the services only undertake the data administration while all logic is found in
the orchestration. In such cases the entire SOA is in the end nothing else than a
Monolith, which is having its entire logic in the orchestration.

However, even in other settings changes to SOA are not really easy: Domains are
divided into services in the different systems and into business processes in
orchestration. When a change to a functionality also concerns services or the user
interface, things get difficult: Changing the business processes is relatively
simple, but changing the service is only possible by writing code and by
deploying a new version of the application providing the service. The necessary
code changes and the deployment can be very laborious. Thus, the flexibility of
SOA is lost, which was meant to arise from a simple orchestration of services.
Modifications of the user interface cause changes to the portal or to the other user
interface systems and require likewise a new deployment.

Technologies

SOA is an architecture approach and independent of a concrete technology.
However, a SOA has to define a common technology for the communication
between the services, like Microservices do. In addition, a concrete technology
needs to be set for the orchestration of the services. Often introducing a SOA
leads to the introduction of complex technologies to allow for the integration and
orchestration of the services. There are special products, which support all
aspects of SOA. However, they are correspondingly complex, and their features
are hardly ever used to full capacity.

This technology can rapidly turn into a bottleneck. Many problems with these
technologies are attributed to SOA although SOA could be implemented with other
technologies as well. One of the problems is the complexity of the web services
protocols. SOA on its own is still quite simple, however, in conjunction with the
extensions from the WS-* environment a complex protocol stack arises. WS-* is
necessary for transactions, security or other extensions. Complex protocols
exacerbate the interoperability — however, interoperability is a prerequisite for a
SOA.

An action on the user interface has to be processed by the orchestration and the
different services. These are distributed calls within the network with associated
overhead and latency. Moreover, this communication runs via the central
integration and orchestration technology, which accordingly has to cope with
numerous calls.

7.2 Differences Between SOA and Microservices

SOA and Microservices are related: Both aim at splitting applications into
services. It is also not easy to distinguish between SOA and Microservices just
because of what is happening in the network. After all, in both architecture
approaches many services exchange information via the network.

Communication

Like Microservices SOA can be based on asynchronous communication or
synchronous communication. SOAs can be uncoupled by sending merely events
like “new order”. In such cases every SOA service can react to the event with
different logic. One service can write a bill and another can initiate the delivery.
The services are strongly uncoupled since they only react to events without
knowing the trigger for the events. New services can easily be integrated into the
system by likewise reacting to such events.

Orchestration

However, already at the level of integration differences between SOA and
Microservices appear: In SOA the integration solution is also responsible for
orchestrating the services. A business process is built up from services. In a
Microservice-based architecture the integration solution does not possess any
intelligence. The Microservices are responsible for communicating with the other
services. SOA attempts to use orchestration to gain additional flexibility for the
implementation of business processes. This will only work out when services and
user interface are stable and do not frequently have to be modified.

Flexibility

For achieving the necessary flexibility Microservices on the other hand exploit the
fact that each Microservice can be easily changed and brought into production.
When the flexible business processes of SOA are not sufficient, SOA forces the
change of services into Deployment Monolith or user interfaces in an additional
Deployment Monolith.

Microservices place emphasis on isolation: Ideally a user interaction is
completely processed within one Microservice without the need to call another
Microservice. Therefore, changes required for new features are limited to
individual Microservices. SOA distributes the logic to the portal, the
orchestration and the individual services.

Microservices: Project Level

However, the most important difference between SOA and Microservices is the
level at which the architecture aims. SOA considers the entire enterprise. It
defines how a multitude of systems within the enterprise IT interacts.
Microservices on the other hand represent an architecture for an individual
system. They are an alternative to other modularization technologies. It would be
conceivable to implement a Microservice-based system with another
modularization technology and then to bring the system into production as a
Deployment Monolith without distributed services. An entire SOA spans the entire
enterprise IT. It has to look at different systems. An alternative to a distributed
approach is not conceivable. Accordingly, the decision for a Microservice-based
architecture can concern and be limited to an individual project while the
introduction and implementation of SOA pertains to the entire enterprise.

The SOA scenario depicted in Fig. 15 results in a fundamentally different
architecture (compare Fig. 17) if implemented using Microservices:

http://slideshare.net/ewolff/micro-services-neither-micro-nor-service
https://blogs.oracle.com/archbeat/entry/podcast_show_notes_micro-services_roundtable

i B 1} .
Forecast
Team Forecast
m Reports
Team Reports
Integration
‘ ' l E-Mail-
Team Marketing Marketing
‘ . l Web
: Tracking
Team Tracking % y

Fig. 17: CRM as Collection of Microservices

e Since Microservices refer to a single system, the architecture does not need
to comprise the entire I'T with its different systems, but can be limited to an
individual system. In Fig. 17 this system is the CRM. Thus, implementing
Microservices is relatively easy and not very costly as it is sufficient to
implement one individual project rather than to change the entire IT
landscape of the enterprise.

e Accordingly, a Microservice-based architecture does not require an
integration technology to be introduced and used throughout the company. The
use of a specific integration and communication technology is limited to the
Microservice system - it is even possible to use several approaches. For
instance, a high-performance access also to large data sets can be
implemented by replicating the data in the database. For access to other
systems again other technologies can be used. In case of SOA all services in
the entire company need to be accessible via a uniform technology. This
requires a uniform technology stack. Microservices focus on simpler

technologies, which do not have to fulfill as complex requirements as SOA
suites.

In addition, communication between Microservices is different:
Microservices employ simple communication systems without any
intelligence. Microservices call each other or send messages. The integration
technology does not implement an orchestration. A Microservice can call
several other Microservices and implement an orchestration on its own. In
that case, the logic for the orchestration resides in the Microservice and not
in an integration layer. In the case of Microservices the integration solution
contains no logic, because it would originate from different domains. This
conflicts with the distribution according to domains, which Microservice-
based architectures aim at.

The use of the integration is also entirely different. Microservices avoid
communication with other Microservices by having the Ul integrated into the
Microservice and due to their domain-based distribution. SOA focuses on
communication. SOA obtains its flexibility by orchestration - this is
accompanied by communication between services. And in the case of
Microservices the communication does not necessarily have to be
implemented via messaging or REST: An integration at the Ul level or via
data replication is possible as well.

CRM as complete system is not really present anymore in a Microservice-
based architecture. Instead there is a collection of Microservices, which
each cover specific functionalities like reports or forecasting transaction
volume.

While in SOA all functionalities of the CRM system are collected in a single
deployment unit, each service is an independent deployment unit and can be
brought into production independently of the other services in the case of
Microservice-based approaches. Depending on the concrete technical
infrastructure the services can be even smaller than the ones depicted in Fig.
17.

Finally, the handling of Ul is different: For Microservices the Ul is part of
the Microservice, while SOA typically offers only services, which then can
be used by a portal.

The division into UI and service in SOA has far reaching consequences: To
implement a new functionality including the UI in SOA, at least the service
has to be changed and the UI adjusted. This means that at least two teams
have to be coordinated. When other services in other applications are used,
even more teams are involved requiring consequently an even greater
coordination effort. In addition there are also orchestration changes, which

are implemented likewise by a separate team. Microservices on the other
hand attempt that an individual team can bring a new functionality into
production with as little need for coordination with other teams as possible.
Due to the Microservice-based architecture, interfaces between layers,
which normally are between teams, are now within a team. This facilitates
the implementation of changes. The changes can be processed in one team. If
another team were involved, the changes had to be prioritized in relation to
other requirements.

e Each Microservice can be developed and operated by one individual team.
This team is responsible for a specific domain and can implement new
requirements or changes to the domain completely independently of other
teams.

e Moreover, the approach is different between SOA and Microservices: SOA
introduces only one new layer above the existing services in order to
combine applications in new ways. It aims at a flexible integration of the
existing applications. Microservices serve to change the structure of the
applications themselves — in pursuit of the goal to make changes to
applications easier.

The communication relationships in case of Microservices are depicted in Fig.
18: The user interacts with the UI, which is implemented by the different
Microservices. In addition, the Microservices communicate with each other.
There is no central Ul or orchestration.

/ Service
(Service [Service

Fig. 18: Communication in the case of Microservices

Synergies

There are definitely areas where Microservices and SOA have synergies. In the
end both approaches pursue the goal to resolve applications into services. Such a
step can be helpful when migrating an application to Microservices: When the
application is split into SOA services, individual services can be replaced or
supplemented by Microservices. Certain calls can be processed by a
Microservice while other calls are still processed by the application. This allows

to migrate applications in a stepwise manner and to implement the Microservices
step by step.

Fig. 19 shows an example: The upper most service of CRM is supplemented by a
Microservice. This Microservice now takes all calls and can, if necessary, call
the CRM. The second CRM service is completely replaced by a Microservice.
Thereby the CRM can be complemented by new functionalities. At the same time,
it is not necessary to newly implement the entire CRM, instead Microservices can
complement it at selected places. Section 8.5 presents additional approaches how
legacy applications can be replaced by Microservices.

S ~ N

e ”
] Micro-
Service j<—

| service
o7 Micro-)
Service

) =
_______ - \ SerVIce)

/

CRM Service

—/

/

Service

N

J

Service
J

Fig. 19: SOA for migrating to Microservices

- <

7.3 Conclusion
Tab. 2: Differences between SOA and Microservices
SOA Microservices
Scope Enterprise-wide architecture Architecture for one project
Flexibility = Flexibility by orchestration Flexibility by fast deployment
and rapid, independent development
of Microservices
Organization Services are implemented Services are implemented
by different organizational =~ by teams in the same

units project
Deployment Monolithic deployment of = Each Microservice can
several services be deployed individually
Ul Portal as universal UI for Service contains Ul
all services

At the organizational level the approaches are very different: SOAs place
emphasis on the structure of the entire enterprise I'T, Microservices can be utilized
in an individual project. SOAs focus on an organization where some teams
develop backend services, while a different team implements the UL In a
Microservice-based approach one team should implement everything to facilitate
communication and thereby speed up the implementation of features. That is not a
goal of SOA. In SOA a new feature can entail changes to numerous services and
thus require communication between a large number of teams. Microservices try
to avoid this.

At the technical level there are commonalities: Both concepts are based on
services. The service granularity can even be similar. Because of these technical
similarities it does not seem to be so easy to distinguish SOA from Microservices.
However, from conceptual, architectural and organizational view points both
approaches have very different effects.

Essential Points

e SOA and Microservices split applications into services, which are available
in the network. Similar technologies can be employed to this end.

e SOA aims at flexibility at the level of the enterprise IT by orchestrating the
services. This is a complex undertaking and only works when the services do
not need to be modified.

e Microservices focus on individual projects and aim at facilitating
deployment and enabling parallel work on different services.

Try and Experiment

&‘ A new functionality is supposed to be incorporated into the SOA landscape depicted in Fig. 15. The
CRM does not have support for email campaigns. Therefore, a system for email campaigns has to
be implemented. It is supposed to contain a service for the creation and execution of campaigns and
a service for evaluating the results of a campaign.

An architect has to answer the following questions:

¢ Is the SOA infrastructure needed for integrating the two services? The service for campaign
evaluation needs a large amount of data.
o Would it be better to use data replication, UI-level integration or service calls for
accessing the large amount of data?
o Which of these integration options is typically offered by SOA?
o Should the service integrate into the existing portal or rather have its own user interface?
Which arguments favor the one or the other option?
¢ Should the new functionality be implemented by the CRM team?

Part lll: Implementing Microservices

This part of the book demonstrates how Microservices can be implemented. After
studying this part the reader cannot only design Microservice-based architectures,
but also implement them and evaluate the organizational effects.

Chapter 8: Architecture of Microservice-based Systems

Chapter 8 describes the architecture of Microservice-based systems. It focuses on
the interplay between individual Microservices.

The domain architecture deals with Domain-Driven Design as basis of
Microservice-based architectures and shows metrics which allow to measure the
quality of the architecture. Architecture management is a challenge: It can be
difficult to keep the overview of the numerous Microservices. However, often it is
sufficient to understand how a certain use case is implemented and which
Microservices interact in a specific scenario.

Practically all IT systems are subject to more or less profound change. Therefore
the architecture of a Microservice system has to evolve and the system has to
undergo continued development. To achieve this several challenges have to be
solved, which do not arise in this form in the case of Deployment Monoliths — for
instance the overall distribution into Microservices is difficult to change.
However, changes to individual Microservices are simple.

In addition, Microservice systems need to integrate legacy systems. This is quite
simple as Microservices can treat legacy systems as blackbox. A replacement of a
Deployment Monolith by Microservices can progressively transfer more
functionalities into Microservices without having to adjust the inner structure of
the legacy system or having to understand the code in detail.

The technical architecture comprises typical challenges for the implementation of
Microservices. In most cases there is a central configuration and coordination for
all Microservices. Furthermore, a load balancer distributes the load between the
individual instances of the Microservices. The security architecture has to leave
each Microservice the freedom to implement its own authorizations in the system,
but also ensure that a user needs to log in only once. Finally, Microservices

should return information concerning themselves as documentation and as
metadata.

Chapter 9: Integration and Communication

Chapter 9 shows the different possibilities for the integration and communication
between Microservices. There are three possible levels for integration:

e Microservices can integrate at the web level. In that case each Microservice
delivers a part of the web UL

e At the logic level Microservices can communicate via REST or messaging.

e Data replication is also possible.

Via these technologies the Microservices have internal interfaces for other
Microservices. The complete system can have one interface to the outside.
Changes to the different interfaces create different challenges. Accordingly, this
chapter also deals with versioning of interfaces and the effects thereof.

Chapter 10: Architecture of Individual Microservices

Chapter 10 describes possibilities for the architecture of an individual
Microservice. There are different approaches for an individual Microservice:

e CQRS divides read and write access into two separate services. This allows
for smaller services and an independent scaling of both parts.

e Event Sourcing administrates the state of a Microservice via a stream of
events from which the current state can be deduced.

¢ In a hexagonal architecture the Microservice possesses a core, which can be
accessed via different adaptors and which communicates also via such
adaptors with other Microservices or the infrastructure.

Each Microservice can follow an independent architecture.

In the end all Microservices have to handle technical challenges like resilience
and stability — these issues have to be solved by their technical architecture.
Chapter 11: Testing Microservices and Microservice-based Systems

Testing is the focus of chapter 11. Also tests have to take the special challenges
associated with Microservices into consideration.

The chapter starts off with explaining why tests are necessary at all and how a
system can be tested in principle.

Microservices are small deployment units. This decreases the risk associated with
deployments. Accordingly, besides tests also optimization of deployment can help
to decrease the risk.

Testing the entire system represents a special problem in case of Microservices
since only one Microservice at a time can pass through this phase. If the tests last
one hour, only eight deployments will be feasible per working day. In the case of
50 Microservices that is by far too few. Therefore, it is necessary to limit these
tests as much as possible.

Often Microservices replace legacy systems. The Microservices and the legacy
system both have to be tested — and also their interplay. Tests for the individual
Microservices differ in some respects greatly from tests for other software
systems.

Consumer-driven contract tests are an essential component of Microservice tests:
They test the expectations of a Microservice in regards to an interface. Thereby
the correct interplay of Microservices can be ensured without having to test the
Microservices together in an integration test. Instead a Microservice defines its
requirements for the interface in a test, which the used Microservice can execute.

Microservices have to adhere to certain standards in regards to monitoring or
logging. The adherence to these standards can also be checked by tests.

Chapter 12: Operation and Continuous Delivery of Microservices

Operation and Continuous Delivery are the focus of chapter 12. Especially the
infrastructure is an essential challenge when introducing Microservices. Logging
and monitoring have to be uniformly implemented across all Microservices,
otherwise the associated expenditure gets too large. In addition, there should be a
uniform deployment. Finally, starting and stopping of Microservices should be
possible in a uniform manner — i.e. via a simple control. For these areas the
chapter introduces concrete technologies and approaches. Additionally, the
chapter presents infrastructures which especially facilitate the operation of a
Microservices environment.

Chapter 13: Organizational Effects of a Microservice-based Architecture

Finally chapter 13 discusses how Microservices influence the organization.
Microservices allow for a simpler distribution of tasks to independent teams and
thus for parallel work on different features. To that end the tasks have to be
distributed to the teams, which subsequently introduce the appropriate changes
into their Microservices. However, new features can also comprise several
Microservices. In that case one team has to put requirements to another team — this
requires a lot of coordination and delays the implementation of new features.
Therefore, it can be better that teams also change Microservices of other teams.

Microservices divide the architecture into micro and macro architecture: In
regards to micro architecture the teams can make their own decisions while the
macro architecture has to be defined for and coordinated across all
Microservices. In areas like operation, architecture and testing individual aspects
can be assigned to micro or macro architecture.

DevOps as organizational form fits well to Microservices since close cooperation
between operation and development is very useful, especially for the
infrastructure intensive Microservices.

The independent teams each need their own independent requirements, which in
the end have to be derived from the domain. Consequently, Microservices have
also effects in these areas.

Code recycling is likewise an organizational problem: How do the teams
coordinate the different requirements for shared components? A model which is
inspired by open source projects can help.

However, there is of course the question whether Microservices are possible at
all without organizational changes — after all, the independent teams constitute one
of the essential reasons for introducing Microservices.

8 Architecture of Microservice-based Systems

This chapter discusses how Microservices should behave from the outside and
how the entire Microservice system can be developed. Chapter 9 will show
possible communication technologies, which are another important technology
component. Chapter 10 focuses on the architecture of individual Microservices.

Section 8.1 describes what the domain architecture of a Microservice system
should look like. Section 8.2 presents appropriate tools to visualize and manage
the architecture. Section 8.3 shows how the architecture can be adapted in a
stepwise manner. Only the constant adaptation of the software architecture ensures
that the system remains maintainable in the long run and can be developed further.
Section 8.4 depicts which goals and which approaches are important to enable
further development.

Subsequently, a number of approaches for the architecture of a Microservice-
based system are explained. Section 8.6 introduces Event-driven Architecture.
This approach allows for architectures that are very loosely coupled. Section 8.5
discusses the special challenges which arise when a legacy application is
supposed to be supplemented or replaced by Microservices.

Finally 8.7 deals with the topic which technical aspects are relevant for the
architecture of a Microservice-based system. Some of these aspects are presented
in depth in the following sections: mechanisms for coordination and configuration
(section 8.8), for Service Discovery (section 8.9), Load Balancing (section 8.10),
scalability (section 8.11), security (section 8.12) and finally documentation and
metadata (section 8.13).

8.1 Domain Architecture

The domain architecture of a Microservice-based system determines which
Microservices within the system should implement which domain. It defines how
the entire domain is split into different areas, which are each implemented by one
Microservice and thus one team. To devise such an architecture presents a central
challenge when introducing Microservices. After all, it is an important motivation
for the use of Microservices that changes to the domain can ideally be

implemented by just one team by changing only one Microservice — so that little
coordination and communication across teams is required. In this way,
Microservices support the scaling of the software development since even large
teams need little communication and thus can still work productively.

To really achieve this, a central point is the design of a domain architecture for the
Microservices, in which changes are really limited to single Microservices and
thus individual teams. When the distribution into Microservices does not support
this, changes will require additional coordination and communication. In such a
case the Microservice-based approach cannot bring its advantages fully to bear.

Strategic Design and Domain-Driven Design

Section 4.3 discussed already the distribution of Microservices based on Strategic
Designs, which are taken from Domain-driven Design. A central element is here
that the Microservices are distributed into contexts — i.e. areas which present each
a separate functionality.

Often architects develop a Microservice architecture based on entities from a
domain model. A certain Microservice implements the logic for a certain type of
entity. In such a case there is for instance one Microservice for customers, one for
items and one for deliveries. This approach conflicts with the idea of Bounded
Context, according to which a uniform modeling of data is impossible. Moreover,
this approach isolates changes very badly. When a process is supposed to be
modified and for this reason entities have likewise to be adapted, the change is
distributed across different Microservices. Thus, changing the order process will
concern also the entity modeling for customers, items and deliveries. When that is
the case, the three Microservices for the different entities have to be changed in
addition to the Microservice for the order process. To avoid this, it can be
sensible to keep certain parts of the data for customers, items and deliveries in the
Microservice for the order process. This limits changes to the order process even
in that case to only one Microservice when the data modeling has to be modified.

However, there can still be services dedicated to the administration of certain
entities. For instance, it can be necessary to administrate at least the most
fundamental data of a certain business entity in a service. Thus, a service can
definitely administrate the client data, but leave specific client data such as a
bonus program number to other Microservices — for example to the Microservice
for the order process, which likely has to know this number.

Example Otto Shop

An example — i.e. the architecture of the Otto shop — illustrates this concept. There
are on the one hand services like user, order or product, which are rather oriented
towards data, and on the other hand areas like tracking, search & navigation and
personalization, which are not geared to data, but to functionalities. Exactly such a
domain design should be aimed at in a Microservice-based system.

A domain architecture requires a precise understanding of the domain. The domain
architecture comprises not only the division of the system into Microservices, but
also the dependencies. A dependency arises when a dependent Microservice uses
another one — for instance by calling the Microservice, by using elements from the
UI of the Microservice or by replicating its data. Such a dependency means that
changes to a Microservice can influence also the Microservice that is dependent
on it. If the Microservice modifies for instance its interface, the dependent
Microservice has to be adapted to these changes. Also new requirements
concerning the dependent Microservice might necessitate that the other
Microservice modifies its interface. If the dependent Microservice needs more
data to implement the requirements, the other Microservice has to offer these data
and to adjust its interface accordingly.

For Microservices such dependencies cause disadvantages beyond software
architecture: After all, Microservices can be implemented by different teams. In
that case a change to an interface necessitates also collaboration between teams —
this, however, is laborious and time-consuming.

Managing Dependencies

Managing dependencies between Microservices is central for the architecture of
the system. Having too many dependencies will preclude that Microservices can
be changed in isolation — which disagrees with the aim to develop Microservices
independently of each other. Here, the two fundamental rules for good architecture

apply:

e There should be a loose coupling between components such as
Microservices. This means that they should have only few dependencies on
other Microservices. This makes it easier to modify them since changes will
only affect an individual Microservice.

e Within a component such as a Microservice the constituent parts should work
closely together. This is referred to as having high cohesion. This ensures
that all constituent parts within a Microservice really belong together.

http://dev.otto.de/2013/04/14/architekturprinzipien-2/

When these two prerequisites are not given, it will be hardly possible to change
an individual Microservice in an isolated manner, and changes will have to be
coordinated across multiple teams and Microservices — this is just what
Microservice-based architectures are supposed to avoid. However, this is
actually rather a symptom: The fundamental problem is how the domain-based
split of the functionalities between the Microservices was done — obviously
functionalities, which would have belonged together in one Microservice, have
been distributed across different Microservices. An order process, for instance,
has also to generate a bill. These two functionalities are so different that they have
to be distributed into at least two Microservices. However, when each
modification of the order process affects also the Microservice, which creates the
bills, the domain-based modeling is not optimal and should be adjusted. The
functionalities have to be distributed differently to the Microservices, as we will
see.

Unintended Domain-Based Dependencies

Not only a high number of dependencies poses a problem. Certain domain-based
dependencies can simply be nonsensical. It is for instance surprising when in an
E-commerce system the team responsible for product search suddenly has an
interface with the Microservice for billing - because that should not be the case
from a domain-based point of view. However, especially concerning the domains
there are continuously surprises for laypersons. When a dependency is not
meaningful from a domain-based point of view, something regarding the
functionality of the Microservices has to be wrong. Maybe the Microservice
implements features which belong into other Microservices from a domain-based
perspective. Perhaps in the context of product search a scoring of the customer is
required, which is implemented as part of billing. In that case one should consider
whether this functionality is really implemented in the right Microservice. To keep
the system maintainable in the long run, such dependencies have to be questioned
and, if necessary, removed from the system. For instance, the scoring can be
moved into an new independent Microservice or transferred into another existing
Microservice.

Cyclic Dependencies

Cyclic dependencies can present additional problems for a comprehensive
architecture. Let us assume that the Microservice for the order process calls the
Microservice for billing (see Fig. 20). The Microservice for billing fetches data
from the order process Microservice. When the Microservice for the order
process is changed, modifications to the Microservice for billing might be

necessary since this Microservice fetches data from the Microservice for the
order process. Conversely, changes to the billing Microservice entail changes to
the order Microservice as this Microservice calls the billing Microservice. For
this reason, cyclic dependencies are problematic: The components cannot be
changed anymore in isolation, contrary to the underlying aim for a split into
separate components. In case of Microservices especially much emphasis is laid
on the independence, which is violated in this case. In addition to the necessary
coordination of changes it can happen that the deployment has to be coordinated.
When a new version of the one Microservice is rolled out, a new version of the
other Microservice might have to be rolled out as well, if they have a cyclic
dependency.

Call

Order proces Billing

Fetch data
Fig. 20: Cyclic dependency

The remainder of the chapter shows approaches which allow to build
Microservice-based architectures in such a way that they have a sound structure
from a domain-based perspective. Metrics like cohesion and loose coupling can
confirm that the architecture is really fitting. In the context of approaches like
Event-driven Architecture (section 8.6) Microservices have hardly any direct
technical dependencies since they send only messages. Who is sending the
messages and who is processing them, can hardly be determined from the code so
that the metrics look very good. However, from a domain-based perspective the
system can still be much too complicated, since the domain-based dependencies
are not examined by the metrics. Domain-based dependencies arise when two
Microservices exchange messages. However, this is hardly ascertainable by code
analysis so that the metrics will always look quite good. Thus metrics can only
hint at problems. By just optimizing the metrics, the symptoms are optimized, but
the underlying problems remain unsolved. Even worse: Even systems with good
metrics can have architectural weaknesses. Therefore the metric looses it value to
determine the quality of a software system.

A special problem in the case of Microservices is that dependencies between
Microservices can also influence the independent deployment. If a Microservice
requires a new version of another Microservice because it uses, for instance, a
new version of an interface, the deployment will also be dependent: The
Microservice has to be deployed before the dependent Microservice can be
deployed. In extreme cases this can result in a large number of Microservices that
have to be coordinately deployed — this is just what is supposed to be avoided.
Microservices should be deployed independently of each other. Therefore,
dependencies between Microservices can present an even greater problem than
would be the case for modules within a Deployment Monolith.

8.2 Architecture Management

For a domain architecture it is critical which Microservices there are and what
the communication relationships between the Microservices look like. Also in
other systems the relationships between the components are very important. When
domain-based components are mapped on modules, classes, Java packages, JAR
files or DLLs, specific tools can determine the relationships between the
components and control the adherence to certain rules. This is achieved by a static
code analysis.

Tools for Architecture Management

If no such architecture management happens, unintended dependencies will
rapidly creep in. The architecture will get more and more complex and hard to
understand. Only with the help of architecture management tools developers and
architects will be able to keep track of the system. Within a development
environment developers view only individual classes. The dependencies between
classes can only be found in the source code and are not readily discernible.

SEHR Fo% #) @GS (@@ M| Models
Model Rﬁies Views Summary |

e KB mOr By S0 PHPMTL T Oprons v

2 org

8 compiere

2 dap 2 sessicn 8 web
‘-
B server
B acct # pos
[grid F B instal 3 test
@ appﬁ B wstore
& MrgratED " @ r&p-ert ﬁ] wf
Ecm{____ﬁ}__esbe- .H}jmpe:_gp b [Bprlnt ‘Esla H tools
e R ~ - IJ___:- : K
ﬁ cc:-ntreller g 'E'_I'm‘f i 'Ei rmn.lgnd ‘ Eﬁ process
» (- L '\-'.}-

E framnwnrk -=> E& 'ITI-D-EIEH-

,’- e E} ﬁ excer Hi |mage19 E§ VoS
3 = '-_:T-_l_‘WIITQ -}f‘ Eutll
] ! ; G Cq}mpl&rﬂ",_ iy
E} api : # common a} int&rfé.ces EE layout EE plaf H} startup E} translate
org.compiere cluded from X5: [Transformed classes: [

Fig. 21: Screenshot of the Architecture Management Tool Structure 101

Fig. 21 depicts the analysis of a Java project by the architecture management tool
Structure 101. The image shows classes and Java packages, which contain
classes. A Levelized Structure Map (LSM) presents an overview of them. Classes
and packages which are further at the top of the LSM use classes and packages
which are depicted further to the bottom of the LSM. To simplify the diagram,
these relationships are not indicated there.

Cycle-Free Software

Architectures should be free of cycles. Cyclic dependencies mean that two
artifacts are using each other reciprocally. In the screenshot such cycles are
presented by dashed lines. They always run from bottom to top. The reciprocal

relationship in the cycle would be running from top to bottom and is thus not
depicted.

Apart from cycles also packages which are located at a wrong position are
relevant. There is, for instance, a package util that according to its name is
supposed to contain helper classes. However, it is not located at the very bottom
of the diagram. Thus, it has to have dependencies to packages or classes which
are further down — which should not be the case. Helper classes should be
independent from other system components and thus be depicted at the very bottom
of an LSM.

Architecture management tools like Structure 101 cannot only analyze
architectures, but with this tool architects can also define prohibited relationships
between packages and classes. If a developer violates these rules, he/she will
obtain an error message and can modify the code.

With the help of tools like Structure 101 the architecture of a system can easily be
visualized. The compiled code has only to be loaded into the tool for analysis. In
that way the visualization of the architecture is easily ensured.

Microservices and Architecture Management

For Microservices the problem is much larger: Relationships between
Microservices are not as easy to determine as the relationships between code
components. After all, the Microservices can even be implemented in different
technologies. They communicate only via the network. Their relationships elude
any management at code level since they appear only indirectly in the code.
However, if the relationships between Microservices are unknown, architecture
management becomes impossible.

There are different possibilities to visualize and manage the architecture:

e Fach Microservice can bring a documentation along (compare section 8.13),
which lists all used Microservices. This documentation has to adhere to a
predetermined format, which enables visualization.

e The communication infrastructure can deliver the necessary data. If a Service
Discovery (section 8.9) is used, it will be aware of all Microservices and
will know which Microservices have access to which other Microservices.
These data can then be used for the visualization of the relationships between
the Microservices.

e If the access between Microservices is safeguarded by a firewall, the rules
of the firewall will at least tell which Microservice can communicate with
which other Microservice. This can also be used as basis for a visualization
of relationships.

e Traffic within the network also reveals which Microservices communicate
with which other Microservices. Tools like Packetbeat (compare section
12.3) can be very helpful here. They visualize the relationships between
Microservices based on the recorded network traffic.

e The distribution into Microservices should correspond to the distribution
into teams. If two teams can hardly work independently of each other any
more, this is likely due to a problem in the architecture: The Microservices
of the two teams depend so strongly on each other that they can now only be
modified together. The involved teams probably know already due to the
increased communication requirement which Microservices are problematic.
To verify the problem, an architecture management tool or a visualization can
be used. However, manually collected information might even be sufficient.

Tools

Different tools are useful to evaluate data about dependencies:

e There are versions of Structure 101 which can use custom data structures as
input. One still has to write an appropriate importer. Structure 101 will then
recognize cyclic dependencies and can depict the dependencies graphically.

e Gephi can generate complex graphs, which are helpful for visualizing the
dependencies between Microservices. Also here a custom importer has to be
written for importing the dependencies between the Microservices from an
appropriate source into Gephi.

e jQAssistant is based on the graph database neo4;j. It can be extended by a
custom importer. Then the data model can be checked according to rules.

For all these tools custom development is necessary. It is not possible to analyze a
Microservice-based architecture just like that, there is always some extra effort
required. Since communication between Microservices cannot be standardized, it
will likely also in the future not be possible to avoid custom developments.

Is Architecture Management Important?

The architecture management of Microservices is important as it is the only way
to prevent chaos in the relationships between the Microservices. Microservices
are a special challenge in this respect: With modern tools a Deployment Monolith

http://structure101.com
http://gephi.github.io/
http://jqassistant.org/

can be quite easily and rapidly analyzed. For Microservice-based architectures
there are not even tools which can analyze the entire structure in a simple manner.
The teams first have to create the necessary prerequisites for an analysis.
Changing the relationships between Microservices is difficult — as the next section
will show. Therefore, it is even more important to constantly review the
architecture of the Microservices in order to be able to correct arising problems
as early as possible. It is in favor of Microservice-based architectures that the
architecture is also reflected in the organization. Problems with communication
thus will point out architectural problems. Even without a formal architecture
management architectural problems often become obvious.

On the other hand, experiences with complex Microservice-based systems teach
that in such systems nobody understands the entire architecture. However, this is
also not necessary since most changes are limited to individual Microservices. If
a certain use case is supposed to be changed, which involves multiple
Microservices, it is sufficient to understand this interaction and the involved
Microservices. A global understanding is not absolutely necessary. This is a
consequence of the independence of the individual Microservices.

Context Map

Context Maps present a possibility to get an overview of the architecture of a
Microservice-based system!. They illustrate which domain models are used by
which Microservices and visualize thus the different Bounded Contexts (compare
section 4.3). The Bounded Contexts do not only influence the internal data
presentation in the Microservices. Also in the case of calls between
Microservices data are exchanged. They have to be in line with some type of
model. However, the data models underlying communication can be distinct from
the internal representations. If a Microservice for instance is supposed to identify
recommendations for customers of an E-commerce shop, complex models can be
employed internally for this, which contain a lot of information about customers,
products and orders and correlate them in complex ways. To the outside these
models are presumably much simpler.

4 R e A
cui?jrlﬁer Customer
< - order data
data Basic
_ _ customer
L Registration y data L Order process y
Customer Customer
order data order data
4) (" Anti-corruption)
Layer
\ J
Customer 7 S\
order data
Mainframe
L Delivery data model
Billing

Fig. 22: An example for a Context Map
Fig. 22 shows an example for a Context Map:

e The registration registers the basic data of each customer. The order process
also uses this data format to communicate with registration.

¢ Inthe order process the customer’s basic data is supplemented by data such
as billing and delivery address to obtain the customer order data. This
corresponds to a Shared Kernel (compare section 4.3). The order process
shares the kernel of the customer data with the registration process.

e The delivery and the billing Microservice use customer order data for
communication, the delivery Microservice uses it even for the internal
representation of the customer. Thus this model is a kind of standard model
for the communication of customer data.

¢ Billing uses an old mainframe data model. Therefore, customer order data
for the outside communication are decoupled from internal representation by
an Anti-corruption Layer. The data model represents namely a very bad
abstraction, which should by no means affect other Microservices.

In this model it stands out that the internal data representation in registration
propagates to the order process. There it serves as basis for the customer order
data. This model is used in delivery as internal data model as well as in the
communication with billing and delivery. Accordingly, the model is hard to
change since it is used by so many services. If this model was to be changed, all
these services would have to be modified.

However, there are also advantages associated with this. If all these services had
to implement the same change to the data model, only a single change would be
necessary to update all Microservices at once. Nevertheless, this disagrees with
the idea that changes should always concern only a single Microservice. If the
change remains limited to the model, the shared model is advantageous since all
automatically use the current modeling. However, when the change entails changes
in the Microservices, now multiple Microservices have to be modified — and
coordinately brought into production. This conflicts with an independent
deployment of Microservices.

Try and Experiment

&‘ Download a tool for the analysis of architectures. Candidates are Structure 101, Gephi or
jQAssistant. Use this tool to get an overview of an existing code basis. Which possibilities are there
to insert your own dependency graphs into the tool? This would allow to also analyze the
dependencies within a Microservice-based architecture with this tool.

&‘ spigo is a simulation for the communication between Microservices. It can be used to get an
impression of more complex Microservice-based architectures.

8.3 Techniques to Adjust the Architecture

Microservices are first of all interesting for software which is subject to many
changes. Due to the distribution into Microservices the system disaggregates into
deployment units, which can be further developed independently of each other.
This way each Microservice can implement its own stream of stories or
requirements. Consequently, multiple changes can be worked on in parallel
without much need for coordination.

http://structure101.com
http://gephi.github.io/
http://jqassistant.org
https://github.com/adrianco/spigo

Experience teaches that the architecture of a system is subject to changes. A
certain distribution into domain-based components might seem sensible at first.
However, once the architect gets to know the domain better, he/she might come to
the conclusion that another distribution would be better. New requirements are
hard to implement with the old architecture since it was devised based on
different premises. This is especially frequent for agile processes, which entail
less planning and more flexibility.

Where Does Bad Architecture Come from?

A system with a bad architecture does normally not come into being because the
wrong architecture has been chosen at the outset. Based on the information
available at the start of the project the architecture is often good and consistent.
The problem is frequently that the architecture is not modified when there are new
insights, which suggest changes to the architecture. The symptom was already
mentioned in the last section: New requirements cannot be rapidly and easily
implemented anymore. To that end the architecture would have to be changed.
When this pressure to introduce changes is ignored for too long, the architecture
will not fit at all anymore at some point. The permanent adjustment and
modification of the architecture are essential prerequisites for keeping the
architecture in a really sustainable state.

This section shows which techniques allow to change the interplay between
Microservices in order to adapt the architecture to the entire system.

Changes in Microservices

Within a Microservice adjustments are easy. The Microservices are small and
manageable. It is no big deal to adjust structures. And if the architecture of an
individual Microservice is completely insufficient, it can be rewritten since it is
not very large. Within a Microservice it is also easy to move components or to
restructure the code in another manner. The term Refactoring 2 denotes techniques
which serve to improve the code structure. Many of them even automate
development tools. This allows for an easy adjustment of the code of an
individual Microservice.

Changes to the Overall Architecture

However, when the split of the functionalities between the Microservices is not in
line any more with the requirements, changing just one Microservice will not be
sufficient. To achieve the necessary adjustment of the complete architecture,

functionalities have to be moved between Microservices. There can be different
reasons for this:

e The Microservice is too large and has to be divided. Indications for this can
be that the Microservice is hardly intelligible anymore or even that large that
a single team is not sufficient to develop it further. Another indication can be
that the Microservice comprises more than one Bounded Context.

¢ A functionality belongs really into another Microservice. An indication for
that can be that certain parts of a Microservice communicate a lot with
another Microservice. In that case the Microservices do not have a loose
coupling anymore. Such intense communication can imply that the component
belongs into another Microservice. Likewise, a low cohesion in a
Microservice can suggest that the Microservice should be divided. In that
case there are areas in a Microservice which depend little on each other.
Consequently, they do not really have to be in one Microservice.

¢ Functionalities should be used by multiple Microservices. This can for
instance become necessary when a Microservice has to use logic from
another Microservice due to a new functionality.

There are three main challenges: Microservices have to be split, code has to be
moved from one Microservice into another, and multiple Microservices are
supposed to use the same code.

Shared Libraries

If two Microservices are supposed to use code together, the code can be
transferred into a shared library (compare Fig. 23). The code is removed from the
Microservice and packaged in a way that allows it to be used by the other
Microservices. A prerequisite for this is that the Microservices are written in
technologies that enable the use of a shared library. This is the case when they are
written in the same language or at least use the same platform — e.g. JVM (Java
Virtual Machine) or .NET Common Language Runtime (CLR).

4 N 4 ™
Microservice Microservice

_ | J _ Y,
I \ /
I
\
»)

N\

Transfer

code Library

\. J

Fig. 23: Shared library

A shared library means that the Microservices become dependent on each other.
Work on the library has to be coordinated. Features for both Microservices have
to be implemented in the library. Via the backdoor each Microservice notices
changes which are really meant for the other Microservice. This can result in
errors. Therefore, the teams have to coordinate the development of the library and
the changes to the library. Under certain conditions changes to a library can
necessitate that a Microservice has to be newly deployed — for instance because a
security gap has been closed in the library.

Moreover, via the library the Microservices might obtain additional code
dependencies to 3rd party libraries. In a Java JVM, 3rd party libraries can only be
present in one version. When the shared library requires a certain version of a 3rd
party library, also the Microservice has to use this specific version and cannot use
a different one. Besides, libraries often have a certain programming model. In that
way libraries can provide code, which can be called, or a framework, in which
custom code can be integrated, which is then called by the framework. The library
might pursue an asynchronous model or a synchronous model. Such approaches
can fit more or less well to a respective Microservice.

Microservices do not focus on the reuse of code since this leads to new
dependencies between the Microservices. An important aim of Microservices is
independence so that code reuse often causes more disadvantages than advantages.

This is a renunciation of the ideal of code recycling. Developers in the nineties
still pinned their hopes on code reuse in order to increase productivity. Moving
code into a library also has advantages. Errors and security gaps have to be
corrected only once. The Microservices use always the current library version
and thus automatically get the solutions for the errors.

Another problem associated with code reuse is that it requires a detailed
understanding of the code — especially in the case of frameworks, into which the
custom code has to embed itself. This kind of reuse is known as whitebox reuse:
The internal code structures have to be known — not only the interface. This type
of reuse requires a detailed understanding of the code which is to be reused which
sets a high hurdle for the reuse.

An example can be a library which facilitates the generation of metrics for the
system monitoring. It will be used in the billing Microservice. Other teams also
want to use the code. Therefore, the code is extracted into a library. Since it is
technical code, it is not modified in case of domain-based changes. Therefore, the
library does not influence the independent deployment and the independent
development of domain-based features. The library was supposed to be turned
into an internal open source project (compare section 13.7).

However, to transfer domain code into a shared library is problematic, as it might
introduce deployment dependencies into Microservices. When, for instance, the
modeling of a customer is implemented in a library, then each change to the data
structure has to be passed on to all Microservices, and they all have to be newly
deployed. Besides, a uniform modeling of a data structure like customer is
anyhow hardly possible due to Bounded Context.

Transfer Code

Another option for changing the architecture is to transfer code from one
Microservice to another. This is sensible when thereby a loose coupling and a
high cohesion of the entire system can be ensured. When two Microservices
communicate a lot, the loose coupling is not ensured. When the part of the
Microservice is transferred which communicates a lot with the other
Microservice, this problem can be solved.

This approach is similar to the removal into a shared library. However, the code
is no common dependency, which solves the problem of coupling between the
Microservices. However, it is possible that the Microservices have to have a

common interface in order to still be able to use the functionalities after the code
transfer. This is a blackbox dependency: Only the interface has to be known, but
not the internal code structures.

In addition, it is possible to transfer the code into another Microservice, while
keeping it in the original Microservice. This causes redundancies. Errors will
then have to be corrected in both versions. And the two versions can develop into
different directions. However, on the other hand the Microservices are
independent, especially in regards to deployment.

The technological limitations are still the same as for a shared library — the two
Microservices have to use similar technologies because otherwise the code
cannot be transferred. However, in a pinch the code can also be rewritten in a new
programming language or with a different programming model. Microservices are
not very large. The code which has to be rewritten is only a part of a
Microservice. Consequently, the required effort is manageable.

However, there is the problem that the size of that Microservice into which the
code is transferred increases. Thus the danger increases that the Microservice
turns into a monolith over time.

One example: The Microservice for the order process frequently calls the billing
Microservice in order to calculate the price for the delivery. Both services are
written in the same programming language. The code is transferred from the one
Microservice into the other. From a domain perspective it turns out that the
calculation of delivery costs rather belongs into the order process Microservice.
The code transfer is only possible when both services use the same platform and
programming language. Moreover, the communication across Microservices has to
be replaced by local communication.

Microservice r----- »| Microservice

Transfer
code

Fig. 24: Transfer Code

Reuse or Redundancy?

Instead of attributing shared code to one or the other Microservice, the code can
also be maintained in both Microservices. At first this sounds dangerous — after
all, the code will then be redundant in two places, and bug fixes have accordingly
to be performed in both places. Most of the time developers try to avoid such
situations. An established best practice is “Don’t Repeat Yourself” (DRY). Each
decision and consequently all code should only be stored at exactly one place in
the system. In Microservice-based architectures redundancy has a decisive
advantage: The two Microservices stay independent of each other and can be
independently deployed and independently developed further. In this way the
central characteristic of Microservices is preserved.

Moreover, it is questionable whether a system can be built without any
redundancies at all. Especially in the beginning of object-orientation many
projects invested a lot of effort to transfer shared code into shared frameworks
and libraries. This was meant to decrease the expenditure associated with the
creation of the individual projects. In reality the code to be reused was often
difficult to understand and thus hard to use. A redundant implementation in the
different projects might have been the better alternative. It can be less laborious to
implement code several times than to design it in a reusable manner and to
actually reuse it.

There are of course successful reuses of code: Hardly any project can get along
nowadays without open source libraries. At this level code reuse is taking place
all the time. This approach can be a good template for the reuse of code between
Microservices. However, this has effects on the organization. Section 13.7
discusses organization and thereby also code reuse according to an open source
model.

Shared Service

Instead of transferring the code into a library, it can also be moved into a new
Microservice (compare Fig. 25). Thereby the typical advantages of a
Microservice-based architecture ensue: The technology of the new Microservice
does not matter. As long as it uses the universally defined communication
technologies and can be operated like the other Microservices, its internal
structure can be arbitrary — to the point of programming language.

e ™ 4 ™
Microservice Microservice

_ : _J _ ,
|
\

S~ ™

Transfer _ _
code Microservice

_ y

Fig. 25: Shared Microservice

The use of a Microservice is simpler than the use of a library. Only the interface
of the Microservice has to be known — the internal structure does not matter.
Moving code into a new service decreases the average size of a Microservice —
and therefore the intelligibility and replaceability of the Microservices. However,
the transfer replaces local calls with calls via the network. Changes for new
features might not be limited to one Microservice anymore.

In software development big modules are often a problem. So transferring code
into new Microservices can be a good option for keeping the modules small.
Besides, the new Microservice can be further developed by the team which was
already responsible for the original Microservice. This will facilitate the close
coordination of new and old Microservices since the required communication
happens within only one team.

The split into two Microservices has also the consequence that a call to the
Microservice-based system is not processed by just one single Microservice, but
by several Microservices. These Microservices call each other. Some of those
Microservices will not have a UI, but are pure backend services.

To illustrate this, let us turn again to the order process, which frequently calls the
billing Microservice for calculating the delivery costs. The calculation of
delivery costs can also be separated into an Microservice by itself. This is even

possible when the billing service and the order process Microservice use
different platforms and technologies. However, a new interface will have to be
established, which enables the new delivery cost Microservice to communicate
with the remainder of the billing service.

Spawn a New Microservice

In addition, it is also possible to use part of the code of a certain Microservice to
generate a new Microservice (compare Fig. 26). The advantages and
disadvantages are identical to the scenario in which code is transferred into a
shared Microservice. However, the motivation is different in this case: The size
of the Microservices is meant to be reduced to increase their maintainability or
maybe to transfer the responsibility for a certain functionality to another team.
Here, the new Microservice is not supposed to be shared by multiple other
Microservices.

4)

Microservice
_ Y,

|
!
l
'.
S~ .

Transfer . .
Microservice
code
_ Y,

Fig. 26: Spawning a new Microservice

For instance, the service for the registration might have become too complex in the
meantime. Therefore, it is distributed into multiple services, which each handle
certain user groups. A technical distribution would also be possible — for instance
according to CQRS (compare section 10.2), Event Sourcing (section 10.3) or
Hexagonal Architecture (section 10.4).

Rewriting

Finally, an additional possibility to handle Microservices, whose structure does
not fit anymore, is to rewrite them. Due to the small size of Microservices and
because of their use via defined interfaces this possibility is much more feasible
with Microservices than in the case of other architectural approaches. In the end,
not the entire system has to be rewritten, but just a part. It is also possible to
implement the new Microservice in a different programming language, which is
maybe better suited for this purpose. Rewriting Microservices can also be
advantageous since new insights about the domain can leave their mark on the new
implementation in this manner.

AGrowing Number of Microservices

The experience with Microservice-based systems teaches that during the time a
project is running new Microservices will permanently be generated. This entails
a higher effort for the infrastructure and the operation of the system. The number of
deployed services will increase all the time. For classical projects such a
development is unusual and appears therefore problematic. However, as this
section demonstrated, the generation of new Microservices is the best alternative
for the shared use of logic and for the ongoing development of a system. Besides
the growing number of Microservices ensures that the average size of individual
Microservices stays constant. Consequently, the positive characteristics of
Microservices are preserved.

Generating new Microservices should be as easy as possible as this allows to
preserve the properties of the Microservice system. Potential for optimization is
mainly present when it comes to establishing Continuous Delivery pipelines, a
build infrastructure and the required server for the new Microservice. Once these
things are automated, new Microservices can be generated comparably easily.

Microservice-based Systems Are Hard to Modify

This section has shown that it is difficult to adjust the overall architecture of a
Microservice-based system. New Microservices have to be generated. This

entails changes to the infrastructure and the need for additional Continuous
Delivery pipelines. Shared code in libraries is rarely a sensible option.

In a Deployment Monolith such changes would be easy to introduce: Often the
integrated development environments even automatize the transfer of code or other
structural changes. Due to automation the changes are less laborious and less
prone to errors. Besides, there are no effects whatsoever on the infrastructure or
Continuous Delivery pipelines in the case of Deployment Monoliths.

Thus, changes are difficult at the level of the entire system — because it is hard to
transfer functionalities between different Microservices. In the end, this is exactly
the effect, which was termed “strong modularization” and listed as advantage in
section 1.2: To cross the boundaries between Microservices is difficult so that the
architecture at the level between the Microservices will also remain intact in the
long-run. However, this entails as well that the architecture is hard to adjust at this
level.

Try and Experiment

&‘ A developer has written a helper class, which facilitates the interaction with a logging framework,
which is also used by other teams. It is not very large and complex.

e Should it be used by other teams?
o Should the helper class be turned into a library or an independent Microservice or should the
code simply be copied?

8.4 Growing Microservice-based Systems

Microservices primarily have advantages in very dynamical environments. Due to
the independent deployment of individual Microservices, teams can work in
parallel on different features without much need for coordination. This is
especially advantageous when it is unclear which features are really meaningful
and experiments on the market are necessary to identify the promising approaches.

Planning Architecture?

Especially in such an environment it is hardly possible to plan a good split of the
domain logic into Microservices right from the start. The architecture has to adjust
to the facts.

e The split according to domain aspects is even more important for
Microservices than in the context of a classical architecture approach. This
is due to the fact that the domain-based distribution influences also the
distribution into teams and therefore the independent working of the teams —
the central advantage of Microservices (section 8.1).

e Section 8.2 demonstrated that tools for architecture management cannot
readily be used in Microservice-based architectures.

e As section 8.3 discussed, it is difficult to modify the architecture of
Microservices — especially in comparison to Deployment Monoliths.

e Microservices are especially advantageous in dynamic environments —
where it is even more difficult to determine a meaningful architecture right
from the start.

The architecture has to be changeable, however, this is difficult due to the
technical facts. This section shows how the architecture of a Microservice-based
system can nevertheless be modified and developed further in a stepwise manner.

Start Big

One possibility to handle this inherent problem is to start out with several big
systems, which are subsequently step by step fragmented into Microservices.
Section 4.1 defined as upper limit for the size of a Microservice the amount of
code which an individual team can still handle. At least at the outset of a project it
is hard to violate this upper limit. The same is true for the other upper limits:
modularization and replaceability.

When the entire project consists only of one or few Microservices, functionalities
are still easy to move since the transfer will mostly occur within one service
rather than between services. Step by step more people can be moved into the
project so that additional teams can be assembled. In parallel the system can be
distributed into progressively more Microservices to allow the teams to work
independently of each other. Such a ramp-up is also for organizational reasons a
good approach since the teams can be assembled in a stepwise manner.

Of course, it would also be possible to start off with a Deployment Monolith.
However, starting with a monolith has a decisive disadvantage: There is the
danger that dependencies and problems creep into the architecture, which
preclude a later distribution into Microservices. Besides, in that case there will
be only one Continuous Delivery pipeline. When the monolith gets distributed into
Microservices, the teams will have to generate new Continuous Delivery

pipelines. This can be very laborious, especially when the Continuous Delivery
pipeline for the Deployment Monolith had been generated manually. In that case
all the additional Continuous Delivery pipelines would likewise have to be

manually generated in a laborious manner.

When the projects start from the beginning with multiple Microservices, this
problem is avoided. There is no monolith which later would have to be
distributed, and there anyhow has to be an approach for the generation of new
Continuous Delivery pipelines. Thus the teams can from the start work
independently on their own Microservices. Over the course of the project the
initial Microservices are distributed into additional smaller Microservices.

Start Big corresponds to the observation that the number of Microservices will
increase over the course of the project. In line with this it is sensible to start with
few big Microservices and to spawn new Microservices in a stepwise manner.
Thereby the most current insights can always be integrated into the distribution
into Microservices. It is just not possible to define the perfect architecture right
from the start. Instead the teams should adapt the architecture step by step to the
new circumstances and insights and have the courage to implement the necessary

changes.

& D

Microservice

Microservice

- J

4)

Microservice

. J
4 A

Microservice

- J
4 A

Microservice

- A

e N
Microservice
_ J

\

Microservice
_ J
e N

Microservice

N
J \

Microservice

N
AN

Microservice

N

-

Fig. 27: Start Big: From few Microservices originate progressively more Microservices.

This approach results in a uniform technology stack — this will facilitate operation
and deployment. For developers it is also easier to work on other Microservices.

Start Small?

It is also imaginable to start with a distribution into a large number of
Microservices and to use this distribution as basis for further development.
However, the distribution of the services is very difficult. “Building
Microservices” 2 provides an example where a team was supposed to develop a
tool for the support of Continuous Delivery as a Microservice-based system. The
team was very familiar with the domain, had already created products in this area
and thus chose an architecture, which distributed the system early on into
numerous Microservices. However, as the new product was supposed to be
offered in the cloud, the architecture was, for subtle reasons, not suitable in some
respects. To implement changes got difficult because modifications for features
had to be introduced in multiple Microservices. To solve this problem and make it
easier to change the software, the Microservices were united again into a
monolith. One year later the team distributed the monolith again into
Microservices and thereby decided the final architecture. This example
demonstrates that a too early distribution into Microservices can be problematic —
even if a team knows the domain very well.

Limits of Technology

However, this is in the end a limitation of the technology. If it were easier to move
functionalities between Microservices (compare section 8.4), the split into
Microservices could be corrected. In that case it would be much less risky to start
off with a split into small Microservices. When all Microservices use the same
technology, it is easier to transfer functionalities between them. Chapter 15
discusses technologies for Nanoservices, which are based on a number of
compromises, but in exchange allow for smaller services and an easier transfer of
functionalities.

Replaceability as a Quality Criterion

An advantage of the Microservice approach is the replaceability of the
Microservices. This is only possible when the Microservices do not grow beyond
a certain size and internal complexity. One aim during the continued development
of Microservices is to maintain the replaceability of Microservices. Then a
Microservice can be replaced by a different implementation — for instance in the
case that its further development is not feasible anymore due to its bad structure.
In addition, replaceability is a meaningful aim to preserve the intelligibility and
maintainability of the Microservice. If the Microservice is not replaceable

anymore, it is probably also not intelligible anymore and therefore hard to
develop any further.

The Gravity of Monoliths

One problem is that large Microservices attract modifications and new features.
They cover already several features; therefore, it seems a good idea to implement
new features also in this service. This is true in the case of too large
Microservices, but even more so for Deployment Monoliths. A Microservices-
based architecture can be aimed at replacing a monolith. However, in that case the
monolith contains so many functionalities, that care is needed not to introduce too
many changes into the monolith. For this purpose, Microservices can be created,
even if they contain hardly any functionalities at the beginning. To introduce
changes and extensions to the monolith is exactly the course of action that has
rendered the maintenance of the Deployment Monolith impossible and led to its
replacement by Microservices.

Keep Splitting

As mentioned, most architectures do not have the problem that they were
originally planned in a way that did not fit the task. In most cases the problem is
rather that the architecture did not keep up with the changes in the environment. A
Microservice-based architecture also has to be constantly adjusted, otherwise it
will at some point not be able anymore to support the requirements. To these
adjustments belong a management of the domain-based split as well as of the size
of the individual Microservices. This is the only way to ensure that the advantages
of the Microservice-based architecture are maintained over time. Since the code
amount of a system usually increases, the number of Microservices will grow as
well in order to keep the average size constant. Thus an elevation of the number of
Microservices is not a problem, but rather a good sign.

Global Architecture?

However, not only the size of Microservices can be a problem. The dependencies
of the Microservices can also cause problems (compare section 8.1). Such
problems can be solved most of the time by adjusting a number of Microservices
— i.e. those which have problematic dependencies. This requires only
contributions from the teams, which work on these Microservices. These teams
are also the ones to spot the problems, because they will be affected by the bad
architecture and the greater need for coordination. By modifying the architecture,
they are able to solve these issues. In that case there is no need for a global
management of dependencies. Metrics like a high number of dependencies or

cyclic dependencies can only be an indication for a problem. Whether such
metrics indeed indicate a problem can only be solved by evaluating them together
with the involved teams. If the problematic components are, for instance, not going
to be developed any further in the future, it does not matter whether the metrics
indicate a problem. Maybe there have for other reasons never been problems
during development. Even if there is a global architecture management, it can only
work effectively in close cooperation with the different teams.

Don’t Miss the Exit Point or How to Avoid the Erosion of a
Microservice (Lars Gentsch)

by Lars Gentsch, E-Post Development GmbH

Practically, it is not too difficult to develop a Microservice. But how can you
ensure that the Microservice remains a Microservice and does not secretly
become a monolith? An example shall illustrate at which point a service starts to
develop into the wrong direction and which measures are necessary to ensure that
the Microservice remains a Microservice.

Let’s envision a small web application for customer registration. This scenario
can be found in nearly every web application. A customer wants to buy a product
in an Internet shop (Amazon, Otto etc.) or to register for a video-on-demand portal
(Amazon Prime, Netflix etc.). As a first step the customer is led through a small
registration workflow. He/she is asked for his/her username, a password, the
email address and the street address. This is a small self-contained functionality,
which is very well suited for a Microservice.

Technologically this service has probably a very simple structure. It consists of
two or three HTML pages or an AngularJS-Single Page App, a bit of CSS, some
Spring Boot and a MySQL database. Maven is used to build the application.

When data are entered, they are concomitantly validated, transferred into the
domain model and put into the database for persistence. How can the
Microservice grow step-by-step into a monolith?

Incorporation of New Functionality

Via the shop or the video-on-demand portal items and content are supposed to be
delivered, which are only allowed to be accessed by people who are of age. For
this purpose the age of the customer has to be verified. One possibility to do this

is to store the birth date of the client together with other data and to incorporate an
external service for the age verification.

Thus, the data model of our service has to be extended by the birth date. More
interesting is the incorporation of the external service. To achieve this, a client for
an external API has to be written, which should also be able to handle error
situations like the non-availability of the provider.

It is highly probable that the initiation of the age verification is an asynchronous
process so that our service might be forced to implement a callback interface. So
the Microservice must store data about the state of the process. When was the age
verification process initiated? Is it necessary to remind the customer via email?
Was the verification process successfully completed?

What is Happening to the Microservice here?

1. The customer data are extended by the birthdate. That is not problematic.

2. Inaddition to customer data there are now process data. Attention: Here
process data are mixed with domain data.

3. Inaddition to the original CRUD functionality of the service, some kind of
workflow is now required. Synchronous processing is mixed with
asynchronous processing.

4. An external system is incorporated. The testing effort for the registration
Microservice increases. An additional system and its behavior have to be
simulated during test.

5. The asynchronous communication with the external system has other demands
in regards to scaling. While the registration Microservice requires estimated
ten instances due to load and failover, the incorporation of the age
verification can be operated in a fail-safe and stable manner with just two
instances. Thus, different run time requirements are mixed here.

As the example demonstrates, a per se small requirement like the incorporation of
an age verification can have tremendous consequences for the size of the
Microservice.

Criteria Arguing for a new Microservice Instead of Extending an Existing One:

1. Introduction of different data models and data (domain vs. process data)
2. Intermixture of synchronous and asynchronous data processing
3. Incorporation of additional services

4. Different load scenarios for different aspects within one service

The example of the registration service could be further extended: Also the
verification of the customer’s street address could be performed by an external
provider. This is common in order to ensure the existence of the denoted address.
Another scenario is the manual clearance of a customer in case of double
registration. The incorporation of a solvency check or customer scoring upon
registration is likewise a frequent scenario.

All these domain-based aspects belong in principle to the customer registration
and tempt developers and architects to integrate the corresponding requirements
into the existing Microservice. Thereby the Microservice grows into more than
just one Microservice.

How to Recognize Whether the Initiation of a new Microservice Should Have Occurred
Already?

1. The service can only be sensibly developed further as Maven multi modul
project or Gradle multi module project.

2. Tests have to be divided into test groups and have to be parallelized for
execution since the run time of the tests surpasses five minutes (violation of
the “fast feedback” principle).

3. The configuration of the service is grouped by domain within the
configuration file or the file is divided into single configuration files to
improve the overview.

4. A complete build of the service takes long enough to make a coffee break.
Fast feedback cycles are not possible anymore (violation of the “fast
feedback” principle).

Conclusion

As the example of the registration Microservice illustrates, it is a big challenge to
let a Microservice remain a Microservice and not give in to the temptation to
integrate new functionalities into an existing Microservice due to time pressure.
This holds even true when the functionalities clearly belong, like in the example,
to the same domain.

What can prophylactically be done to prevent the erosion of a Microservice? In
principle, it has to be as simple as possible to create new services including their
own data storage. Frameworks like Spring Boot, Grails and Play make a relevant
contribution to this. The allocation of project templates like Maven archetypes and

the use of container deployments with Docker are additional measures to simplify
the generation and configuration of new Microservices as well as their way into
the production environment as much as possible. By reducing the “expenditure”
for the setting up of a new service the inhibition threshold for the introduction of a
new Microservice decreases clearly and thus the temptation to implement new
functionalities into existing services.

8.5 Microservices and Legacy Applications

The transformation of a legacy application into a Microservice-based architecture
is a scenario which is frequently met with in practice. Completely new
developments are rather rare, and Microservices first of all promise advantages
for long term maintenance. This is especially interesting for applications which
are already on the brink of not being maintainable anymore. Besides the
distribution into Microservices allows for an easier handling of Continuous
Delivery: Instead of deploying and testing a monolith in an automated fashion
small Microservices can be deployed and tested. The expenditure for this is by far
lower. A Continuous Delivery pipeline for a Microservice is not very complex —
however, for a Deployment Monolith the expenditure can be very large. This
advantage is sufficient for many companies to justify the effort of migrating to
Microservices.

In comparison to building up completely new systems there are some important
differences when migrating from a Deployment Monolith to Microservices:

e For a legacy system the functionality is clear from the domain perspective.
This can be a good basis for generating a clean domain architecture for the
Microservices. Especially such a clean domain-based division is very
important for Microservices.

e However, there is already a large amount of code in existence. The code is
often of bad quality. There are few tests, and deployment times are often
much too long. Microservices should remove these problems. Accordingly,
the challenges in this area are often significant.

e Likewise it is well possible that the module boundaries in the legacy
application do not answer to the Bounded Context idea (compare section
4.3). In that case migrating to a Microservice-based architecture is a
challenge because the domain-based design of the application has to be
changed.

Breaking up Code?

In a simple approach the code of the legacy application can be split into several
Microservices. This can be problematic when the legacy application does not
have a good domain architecture, which is often the case. The code can be
especially easily split into Microservices when the Microservices are geared to
the existing modules of the legacy application. However, when those have a bad
domain-based split, this bad division will be passed on to the Microservice-
based architecture. And the consequences of a bad domain-based design are even
more profound in a Microservice-based architecture: The design influences also
the communication between teams. Besides, the initial design is hard to change
later on in a Microservice-based architecture.

Supplementing Legacy Applications

However, it is also possible to get by without a division of the legacy application.
An essential advantage of Microservices is that the modules are distributed
systems. Due to that the module boundaries are at the same time the boundaries of
processes which communicate via the network. This has advantages for the
distribution of a legacy application: It is not at all necessary to know the internal
structures of the legacy application or, based on that, to perform a split into
Microservices. Instead Microservices can supplement or modify the legacy
application at the interface. For this it is very helpful when the system to be
replaced is already built in a SOA (section 7.2). If there are individual services,
they can be supplemented by Microservices.

Enterprise Integration Patterns

Enterprise Integration Patterns # offer an inspiration for possible integrations of
legacy applications and Microservices:

Designing, Building, and Deploying Messaging Solutions, Addison-Wesley
Longman, 2003, ISBN 978-0-32120-068-6

e Message Router describes that certain messages go to another service. A
Microservice can select some messages which are processed then by the
Microservice instead of by the legacy application. Thereby the
Microservice-based architecture does not have to newly implement the entire
logic at once, but can at first select some parts.

e A special router is the Content Based Router. It determines based on the
content of a message where the message is supposed to be sent. This allows
to send specific messages to a specific Microservice — even if the message
differs only in one field.

http://www.eaipatterns.com/toc.html

e The Message Filter avoids that a Microservice receives uninteresting
messages. For that it just filters all messages out the Microservice is not
supposed to get.

e A Message Translator translates a message into another format. Thereby the
Microservices architecture can use other data formats and does not
necessarily have to employ the formats used by the legacy application.

e The Content Enricher can supplement data in the messages. If a
Microservice requires supplementary information in addition to the data of
the legacy application, the Content Enricher can add this information
without the legacy application or the Microservice noticing anything.

e The Content Filter achieves the opposite: Certain data are removed from the
messages so that the Microservice obtains only the information which is
relevant for it.

Microservice
40/:_—
o— »(Microservice
Message
Router
L oute p
Legacy System

Fig. 28: Supplementing legacy applications by a Message Router

Fig. 28 shows a simple example: A Message Router takes calls and sends them to
a Microservice or the legacy system. This allows to implement certain
functionalities in Microservices. These functionalities are also still present in the
legacy system — but are not used there anymore. In this way the Microservices are
largely independent of the structures within the legacy system. For instance,
Microservices can start off with processing orders for certain customers or
certain items. Thereby they do not have to implement all special cases.

The patterns can serve as inspiration how a legacy application can be
supplemented by Microservices. There are numerous additional patterns — the list
provides only a glimpse of the entire catalog. Like in other cases the patterns can
be implemented in different ways: Actually, they focus on messaging systems. But
it is possible to implement them with synchronous communication mechanisms —
even though less elegant. For instance, a REST service can take a POST message,
supplement it with additional data and finally send it to another Microservice.
That would then be a Content Enricher.

To implement such patterns, the sender has to be uncoupled from the recipient.
This enables the integration of additional steps into the processing of requests
without the sender noticing anything. In case of a messaging approach this is easily
possible as the sender knows only one queue in which he/she places the messages.
The sender does not know who fetches the messages. However, in the case of
synchronous communication via REST or SOAP the message is sent directly to the
recipient. Only by Service Discovery (compare section 8.9) the sender gets
uncoupled from the recipient. Then one service can be replaced by another
service without need to change the senders. This allows for an easier
implementation of the patterns. When the legacy application is supplemented by a
Content Enricher, this Content Enricher instead of the legacy application is
registered in the Service Discovery, but no sender has to be modified. To
introduce Service Discovery can therefore be a first step towards a Microservices
architecture, since it allows to supplement or replace individual services of the
legacy application without having to modify the users of the legacy application.

Limiting Integration

Especially for legacy applications it is important that the Microservices are not
too dependent on the legacy application. Often it is especially the bad structure of
the old application which is the reason why the application is supposed to be
replaced in the first place. Therefore, certain dependencies should not be allowed
at all. When Microservices directly access the database of the legacy application,
the Microservices are dependent on the internal data representation of the legacy
application. Besides neither the legacy application nor the Microservices can still
change the schema since such changes have to be implemented in Microservices
and legacy application. The shared use of a database in legacy application and
Microservices has to be avoided on all accounts. However, to replicate the data
of the legacy application into an separate database schema is of course still an
option.

Advantages

It is an essential advantage of such an approach that the Microservices are largely
independent of the architecture of the legacy application. And the replacement of a
legacy application is mostly initiated because its architecture is not sustainable
any more. Besides, this allows to supplement systems by Microservices, which
are actually not at all meant to be extended. Though, for instance, standard
solutions in the area of CRM, E-commerce or ERP are internally extensible, their
extension by external interfaces can be a welcome alternative since such a
supplement is often easier. Moreover, such systems often attract functionalities,
which do not really belong there. A distribution into a different deployment unit
via a Microservice ensures a permanent and clear delimitation.

Integration via Ul and Data Replication

However, this approach only tackles the problem on the level of logic integration.
Chapter 9 describes another level of integration, namely data replication. This
allows a Microservice to access also comprehensive datasets of a legacy
application with good performance. It is important that the replication does not
happen based on the data model of the legacy application. In that case the data
model of the legacy application would practically not be changeable anymore
since it is also used by the Microservice. An integration based on the use of the
same database would be even worse. Also at the level of Ul integrations are
possible. Especially links in web applications are attractive since they cause only
few changes in the legacy application.

Content Management Systems

In this manner Content Management Systems (CMS), for instance, which often
contain many functionalities, can be supplemented by Microservices. CMS
contain the data of a website and administrate the content so that editors can
modify it. The Microservices take over the handling of certain URLs. Similar to a
Message Router an HTTP request can be sent to a Microservice instead of to the
CMS. Or the Microservice changes elements of the CMS like in the case of a
Content Enricher or modifies the request like in the case of a Message
Translator. Lastly, the Microservices could store data in the CMS and thereby use
it as a kind of database. Besides JavaScript representing the UI of a Microservice
can be delivered into the CMS. In that case the CMS turns into a tool for the
delivery of code in a browser.

Some examples could be:

e A Microservice can import content from certain sources. Each source can
have its own Microservice.

e The functionality which allows a visitor of the web page e.g. to follow an
author can be implemented in a separate Microservice. The Microservice
can either have its own URL and be integrated via links or it modifies the
pages, which the CMS delivers.

e While an author is still known in the CMS, there is other logic which is
completely separate from the CMS. This could be vouchers or E-commerce
functionalities. Also in this case a Microservice can appropriately
supplement the system.

Especially in the case of CMS systems, which create static HTML,
Microservices-based approaches can be useful for dynamic content. The CMS
moves into the background and is only necessary for certain content. There is a
monolithic deployment of the CMS content while the Microservices can be
deployed much more rapidly and in an independent manner. In this context the
CMS is like a legacy application.

Conclusion

The integrations all have the advantage that the Microservices are not bound to the
architecture or the technology decisions of the legacy application. This provides
the Microservices with a decisive advantage compared to a modifications of the
legacy application. However, the migration away from the legacy application
using this approach poses a challenge at the level of architecture: In effect,
Microservice-based systems have to have a well structured domain-based design
to enable the implementation of features within one Microservice and by an
individual team. In case of a migration, which follows the outlined approach, this
cannot always be put into effect since the migration is influenced by the interfaces
of the legacy application. Therefore, the design cannot always be as clear-cut as
desirable. Besides, domain-based features will still be also implemented in the
legacy application until a large part of the migration has been completed. During
this time the legacy application cannot be finally removed. When the
Microservices confine themselves to transforming the messages, the migration can
take a very long time.

No Big Bang

The outlined approaches suggest that the existing legacy application is
supplemented in a stepwise manner by Microservices or that individual parts of
the legacy application are replaced by Microservices. This type of approach has

the advantage that the risk is minimized. Replacing the entire legacy application in
one single step entails a high risk due to the size of the legacy application. In the
end, all functionalities have to be represented in the Microservices. In this
process numerous mistakes can creep in. In addition, the deployment of
Microservices is complex as they all have to be brought into production in a
concerted manner in order to replace the legacy application in one step. A
stepwise replacement nearly imposes itself in the case of Microservices since
they can be deployed independently and supplement the legacy application.
Thereby the legacy application can be replaced by Microservices in a stepwise
manner.

Legacy = Infrastructure

Part of a legacy application can also simply be continued to be used as
infrastructure for the Microservices. For example, the database of the legacy
application can also be used for the Microservices. It is important that the
schemas of the Microservices are separate from each other and also from the
legacy application. After all, the Microservices should not be closely coupled.

The use of the database of the legacy application does not have to be mandatory
for the Microservices. Microservices can definitely also use other solutions.
However, the existing database is established in regards to operation or backup.
Using this database can also for the Microservices present an advantage. The
same is true for other infrastructure components. A CMS for instance can likewise
serve as common infrastructure, to which functionalities are added from the
different Microservices and into which the Microservices can also deliver
content.

Other Qualities

The so far introduced migration approaches focus on enabling the domain-based
division into Microservices in order to facilitate the long-term maintenance and
continued development of the system. However, Microservices have many
additional advantages. When migrating it is important to understand which
advantage motivates the migration to Microservices because depending on this
motivation an entirely different strategy might be adopted. Microservices offer for
instance also increased robustness and resilience since the communication with
other services is taken care of accordingly (compare section 10.5). If the legacy
application currently has a deficit in this area or a distributed architecture already
exists, which has to be optimized in respect to these points, appropriate

technology and architecture approaches can be defined without necessarily
requiring that the application has to divided into Microservices.

Try and Experiment

&‘ Do research on the remaining Patterns of Enterprise Integration:

¢ Can they be meaningfully employed when dealing with Microservices? In which context?
e Can they really only be implemented with messaging systems?

Hidden Dependencies (Oliver Wehrens)
by Oliver Wehrens, E-Post Development GmbH

In the beginning there is the monolith. Often it is sensible and happens naturally
that software is created as a monolith. The code is clearly arranged, and the
business domain is just coming into being. In that case it is better when everything
has a common base. There is a Ul, business logic and a database. Refactoring is
simple, deployment is easy, and everybody can still understand the entire code.

Over time the amount of code grows, and it gets hard to see through. Not
everybody knows all parts of the code anymore. The compiling takes longer, and
the unit and integration tests invite developers to take a coffee break. In case of a
relatively stable business domain and a very large code basis many projects will
consider at this point the option to distribute the functionality into multiple
Microservices.

Depending on the status of the business and the understanding of the
business/product owners the necessary tasks will be completed. Source code is
distributed, Continuous Delivery pipelines are created and server provisioned.
During this step no new features are developed. The not negligible effort is
justified just by the hope that in future features will be faster and more
independently created by other teams. Developers are going to be very assured of
this, other stakeholders often have to be convinced first.

In principle everything has been done to reach a better architecture. There are
different teams which have independent source code. They can bring their
software at any time into production and independent of other teams.

Almost.

The Database

Every developer has a more or less pronounced affinity to the database. In my
experience many developers view the database as necessary evil, which is
somewhat cumbersome to refactor. Often tools are being used which generate the
database structure for the developers (e.g. Liquibase or Flyway in the JVM area).
Tools and libraries (Object Relation Mapper) render it very easy to persist
objects. A few annotations later and the domain is saved in the database.

All these tools remove the database from the typical developers, who “only” want
to write their code. This has sometimes the consequence that there is not much
attention given to the database during the development process. For instance,
indices which were not created will slow down searches on the database. This
will not show up in a typical test, which does not work with large data amounts,
and thus go like that into production.

Let’s take the fictional case of an online shoe shop. The company requires a
service which allows users to log in. A user service is created containing the
typical fields like ID, first name, family name, address and password. To now
offer fitting shoes to the users, only a selection of shoes in their actual size is
supposed to be displayed. The size is registered in the welcome mask. What could
be more sensible than to store this data in the already existing user service?
Everybody is sure: These are user-associated data, and this is the right location.

Now the shoe shop expands and starts to sell additional types of clothing. Dress
size, collar size and all other related data are now also stored in the user service.

Several teams are employed in the company. The code gets progressively more
complex. It is the point in time, where the monolith is split into domain-based
services. The refactoring in the source code works well, and a soon the monolith
is split apart into many Microservices.

Unfortunately, it turns out that it is still not easy to introduce changes. The team in
charge of shoes wants to accept different currencies because of international
expansion and has to modify the structure of the billing data including the address
format. During the upgrade the database is blocked. Meanwhile no dress size or
favorite color can be changed. Moreover, the address data are used in different

standard forms of other services and thus cannot be changed without coordination
and effort. Therefore the feature cannot be implemented promptly.

Even though the code is well separated, the teams are indirectly coupled via the
database. To rename columns in the user service database is nearly impossible
because nobody knows anymore in detail who is using which columns.
Consequently, the teams do workarounds. Either fields with the name
‘Userattribute1’ are created, which then are mapped onto the right description in
the code, or separations are introduced into the data like ‘#Color:Blue#Size:10’.
Nobody except the involved team knows what is meant by ‘Userattribute1’, and it
is difficult to generate an index on ‘#Color:#Size. Database structure and code are
progressively harder to read and to maintain.

It has to be essential for every software developer to think about how to persist
the data. This means: not only about the database structures, but also about where
which data is stored. Is the table respectively database the place where these data
should be located? From a business domain perspective do these data have
connections to other data? In order to remain flexible in the long term, it is
worthwhile to carefully consider these questions every time. Typically, databases
and tables are not created very often. However, they are a component which is
very hard to modify later. Besides, databases and tables are often the origin of a
hidden interdependence between services. In general, it has to apply that data can
only be used by exactly one service via direct database access. All other services,
which want to use the data, may only access it via the public interfaces of the
service.

8.6 Event-driven Architecture

Microservices can call each other in order to implement shared logic. For
example, at the end of the order process the Microservice for billing as well as
the Microservice for the order execution can be called to create the bill and make
sure that the ordered items are indeed delivered.

Order process

AN

Billing Delivery
Microservice Microservice

Fig. 29: Calls between Microservices

This requires that the order process knows the service for the billing and for the
delivery. If a completed orders necessitates additional steps, the order service
also has to call the services responsible for these steps.

Event-driven Architecture (EDA) enables a different modeling: When the order
processing has been successfully finished, the order process will send an event. It
is an event emitter. This event signals to all interested Microservices (event
consumers) that there is a new successful order. Thus, one Microservice can now
print a bill, and another Microservice can initiate a delivery.

(Order process]

Order Order
event event

Billing Delivery
Microservice Microservice

Fig. 30: Event-driven Archite cture

This procedure has a number of advantages:

e When other Microservices are also interested in orders, they can easily
register. Modifying the order process is not necessary anymore.

e Likewise, it is imaginable that also other Microservices trigger identical
events — again without changes to the order process.

e The processing of events is temporally unlinked. It can happen later on.

At the architectural level Event-driven Architectures have the advantage that they
allow for a very loose coupling and thus facilitate changes. The Microservices
need to know only very little about each other. However, the coupling requires
that logic is integrated and therefore implemented in different Microservices.
Thereby a split into Microservice with Ul and Microservices with logic can arise.
That is not desirable. Changes to the business logic entail often changes to logic
and UL These are then separate Microservices. The change cannot readily take
place in only one Microservice anymore and thus gets more complex.

Technically, such architectures can be implemented without a lot of effort via
messaging (compare section 9.4). Microservices within such an architecture can
very easily implement CQRS (section 10.2) or Event Sourcing (section 10.3).

8.7 Technical Architecture

To define a technology stack, with which the system can be built, is one of the
main parts of an architecture. For individual Microservices this is likewise a very
important task. However, the focus of this chapter is the Microservice-based
system in its entirety. Of course, a certain technology can be bindingly defined for
all Microservices. This has advantages: In that case the teams can exchange
knowledge about the technology. Refactorings are simpler because members of
one team can easily help out in other teams.

However, defining standard technologies is not mandatory: If they are not defined,
there will be a plethora of different technologies and frameworks. However, since
typically only one team is in contact with each technology, such an approach can
be acceptable. Generally, Microservice-based architectures aim for the largest
possible independence. In respect to the technology stack this independence
translates into the ability to use different technology stacks and to independently
make technology decisions. However, this freedom can also be restricted.

Technical Decisions for the Entire System

Nevertheless, at the level of the entire system there are some technical decisions
to make. However, other aspects are more important for the technical architecture
of the Microservice-based system than the technology stack for the
implementation:

e As discussed in the last section, there might be technologies which can be
used by all Microservices - for instances databases for data storage. Using
these technologies does not necessarily have to be mandatory. However,
especially in the case of persistence technologies, like for example
databases, backups and disaster recovery concepts have to exist so that at
least these technical solutions have to be obligatory. The same is true for
other basic systems such as CMS for instance, which likewise have to be
used by all Microservices.

e The Microservices have to adhere to certain standards in respect to
monitoring, logging and deployment. Thereby, it can be ensured that the
plethora of Microservices can still be operated in a uniform manner. Without
such standards this is hardly possible anymore in case of a larger number of
Microservices.

e Additional aspects relate to configuration (section 8.8), Service Discovery
(section 8.9) and security (section 8.12).

e Resilience (section 10.5) and Load Balancing (section 8.10) are concepts
which have to be implemented in a Microservice. Still the overall
architecture can demand that each Microservice takes precautions in this
area.

e An additional aspect is the communication of the Microservices with each
other (compare chapter 9). For the system in its entirety a communication
infrastructure has to be defined to which also the Microservices adhere.

The overall architecture does not necessarily restrict the choice of technologies.
For logging, monitoring and deployment an interface could be defined. So there
can be a standard according to which all Microservices log messages in the same
manner and hand them over to a common log infrastructure. However, the
Microservices do not necessarily have to use the same technologies for this.
Similarly, it can be defined how data can be handed to the monitoring system and
which data are relevant for the monitoring. A Microservice has to hand over the
data to the monitoring, but a technology does not necessarily have to be
prescribed. For deployment a completely automated Continuous Delivery pipeline
can be demanded, which deploys software or deposits it into a repository in a
certain manner. Which specific technology is used, is again a question for the

developers of the respective Microservice to decide. Practically, there are
advantages when all Microservices employ the same technology. This reduces
complexity, and there will also be more experience how to deal with the
employed technology. However, in case of specific requirements, it is still
possible to use a different technical solution when for this special case the
advantages of such a solution predominate. This is an essential advantage of the
technology freedom of Microservice-based architectures.

Sidecar

Even if certain technologies for implementing the demands on Microservices are
rigidly defined, it will still be possible to integrate other technologies. Therefore,
the concept of a Sidecar can be very useful. This is a process which integrates
into the Microservices-based architecture via standard technologies and offers an
interface which enables another process to use these features. This process can be
implemented in an entirely different technology so that the technology freedom is
preserved. Flg. 31 illustrates this concept: The Sidecar uses standard technologies
and renders them accessible for another Microservice in an optional technology.
The Sidecar is an independent process, and therefore can be called for instance
via REST so that Microservices in arbitrary technologies can use the Sidecar.
Section 14.12 shows a concrete example for a Sidecar.

=

~N
J
)
J

Standard
logging

Standard
monitoring

1\

\
Standard

- J Infrastructure

Microservice

1

Standard
Service
Discovery

Standard
security

/

Sidecar
_ J

Fig. 31: A Sidecar renders all standard technologies accessible via a simple interface.

With this approach also such Microservices can be integrated into the architecture
whose technological approach otherwise would exclude the use of the general
technical basis for configuration, Service Discovery and security as the client
component is not available for the entire technology.

In some regards the definition of the technology stack also affects other fields. The
definition of technologies across all Microservices also affects the organization or
can be the product of a certain organization (compare chapter 13).

Try and Experiment

&‘ A Microservices-based architecture is supposed to be defined.

o Which technical aspects could it comprise?
e Which aspects would you prescribe to the teams? Why?
e Which aspects should the teams decide on their own? Why?

In the end, the question is how much freedom one allows the teams to have. There are numerous
possibilities — ranging from complete freedom up to the prescription of practically all aspects.
However, some areas can only be centrally defined — the communication protocols for example.
Section 13.3 discusses in more detail who should make which decisions in a Microservice-based
project.

8.8 Configuration and Coordination

Configuring Microservice-based systems is laborious. They comprise a plethora
of Microservices, which all have to be provided with the appropriate
configuration parameters.

Some tools can store the configuration values and make them available to all
Microservices. Ultimately, these are solutions in key/value stores, which save a
certain value under a certain key:

e Zookeeper is a simple hierarchical system, which can be replicated onto
multiple servers in a cluster. Updates arrive in an orderly fashion at the
clients. This can also be used in a distributed environment, for instance for
synchronization. Zookeeper has a consistent data model: All nodes have
always the same data. The project is implemented in Java and is under
Apache license.

e etcd originates from the Docker/CoreOS environment. It offers an HTTP
interface with JSON as data format. etcd is implemented in Go and also
under Apache license. Similar to Zookeeper, etcd also has a consistent data
model and can be used for distributed coordination. For instance, etcd
allows to implement a locking in a distributed system.

e Spring Cloud Config likewise has a REST-API. The configuration data can
be provided by a Git backend. Thereby Spring Cloud Config directly
supports data versioning. The data can also be encrypted to protect
passwords. The system is well integrated into the Java framework Spring
and can be used without additional effort in Spring systems since Spring
itself provides already configuration mechanisms. Spring Cloud Config is

https://zookeeper.apache.org/
https://github.com/coreos/etcd
http://cloud.spring.io/spring-cloud-config/

written in Java and is under Apache license. Spring Cloud Config does not
offer support for synchronizing different distributed components.

Consistency as Problem

Some of the configuration solutions offer consistent data. This means that all
nodes return the same data in case of a call. This is in a sense an advantage.
However, according to the CAP theorem a node can only return an inconsistent
response in case of a network failure — or none at all. In the end, without a
network connection the node cannot know whether other nodes have already
received other values. If the system allows only consistent responses, there can be
no response at all in this situation. For certain scenarios this is highly sensible.

For instance, only one client should execute a certain code at a given time — for
example in order to initiate a payment exactly once. The therefore necessary
locking can be done by the configuration system: Within the configuration system
there is a variable, which upon entering this code has to be set. Only in that case
the code may be executed. In the end, it is better when the configuration system
does not return a response so that not by chance two clients execute the code in
parallel.

However, for configurations such strict requirements regarding consistency are
often not necessary. Maybe it is better when a system gets an old value rather than
that is does not get any value at all. However, in the case of CAP different
compromises are possible. etcd for instance returns under certain conditions
rather an incorrect response than no response at all.

Immutable Server

Another problem associated with the centralized storage of configuration data is
that the Microservices do not only depend on the state of their own file system and
the contained files, but also on the state of the configuration server. Therefore, a
Microservice now cannot be exactly replicated anymore — for this also the state of
the configuration server is relevant. This makes the reproduction of errors and the
search for errors in general more difficult.

In addition, the configuration server is in opposition to the concept of Immutable
Server. In this approach every software change leads to a new installation of the
software. Ultimately, the old server is terminated upon an update, and a new
server with an entirely new installation of the software is started. However, in
case of an external configuration server a part of the configuration will not be

present on the server, and therefore the server is after all changeable in the end by
adjusting the configuration. However, exactly this is not supposed to happen. To
prevent it, a configuration can be made in the server itself instead of the
configuration server. In that case configuration changes can only be implemented
by rolling out a new server.

Alternative: Installation tools

The installation tools (discussed in section 12.4) represent a completely different
approach for the configuration of individual Microservices. These tools support
not only the installation of software, but also the configuration. For the
configuration configuration files can for instance be generated, which can
subsequently be read by Microservices. The Microservice itself does not notice
the central configuration since it reads only a configuration file. Still, these
approaches support all scenarios, which typically occur in a Microservices-based
architecture. Thus, this approach allows a central configuration and is not in
opposition to Immutable Server as the configuration is completely transferred to
the server.

8.9 Service Discovery

Service Discovery ensures that Microservices can find each other. This is in a
sense a very simple task: For instance, a configuration file detailing the IP address
and the port of the Microservice can be delivered on all computers. Typical
configuration management systems enable the rollout of such files. However, this
approach is not sufficient:

e Microservices can come and go. This does not only happen due to server
failures, but also because of new deployments or the scaling of the
environment by the start of new servers. Service Discovery has to be
dynamic. A fixed configuration is not sufficient.

¢ Due to Service Discovery the calling Microservices are not so closely
coupled anymore to the called Microservice. This has positive effects for
scaling: A client is not bound to a concrete server instance anymore, but can
contact different instances — depending on the current load of the different
servers.

e When all Microservices have a common approach for Service Discovery, a
central registry of all Microservices arises. This can be helpful for an
architecture overview (compare section 8.2). Or monitoring information can
be retrieved by all systems.

In systems, which employ messaging, Service Discovery can be dispensable.
Messaging systems already decouple sender and recipient. Both know only the
shared channel via which they communicate. However, they do not know the
identity of their communication partner. The flexibility, which Service Discovery
offers, is then provided by the decoupling via the channels.

Service Discovery = Configuration?

In principle it is conceivable to implement Service Discovery by configuration
solutions (compare section 8.8). In the end, only the information which service is
reachable at which location is supposed to be transferred. However, configuration
mechanisms are in effect the wrong tools for this. For a Service Discovery a high
availability is more important than for a configuration server. In the worst case a
failure of Service Discovery can have the consequence that communication
between Microservices gets impossible. Consequently, the trade-off between
consistency and availability is different compared to configuration systems.
Therefore, configuration systems should only be used for Service Discovery when
they offer an appropriate availability. This can have consequences for the
necessary architecture of the Service Discovery system.

Technologies

There are many different technologies for Service Discovery:

e One example is DNS (Domain Name System). This protocol ensures that a
host name like www.ewolff.com can be resolved to an IP address. DNS is an
essential component of the Internet and has clearly proven its scalability and
availability. DNS is hierarchically organized: There is a DNS server which
administrates the .com domain. This DNS-Server knows which DNS server
administrates the subdomain ewolff.com, and the DNS server of this
subdomain finally knows the IP address of www.ewolff.com. In this way a
namespace can be hierarchically organized, and different organizations can
administrate different parts of the namespace. If a server named
server.ewolff.com is supposed to be created, this can be easily done by a
change in the DNS server of the domain ewolff.com. This independence fits
well to the concept of Microservices, which especially focus on
independence in regards to their architecture. To ensure reliability there are
always several servers, which administrate a domain. In order to reach
scalability DNS supports caching so that calls do not have to implement the
entire resolution of a name via multiple DNS servers, but can be served by a
cache. This does not only promote performance, but also reliability.

http://www.zytrax.com/books/dns/

For Service Discovery it is not sufficient to resolve the name of a server into an IP
address. In addition, there has to be a network port for each service. Therefore,
the DNS has SRV records. These contain the information on which computer and
port the service is reachable. In addition, a priority and a weight can be set for a
certain server. These values can be used to select one of the servers and thereby to
prefer powerful servers. Via this approach, DNS offers reliability and Load
Balancing onto multiple servers. Advantages of DNS are apart from scalability
also the availability of many different implementations and the broad support in
different programming languages.

¢ A frequently used implementation for a DNS server is BIND. BIND runs on
different operating systems (Linux, BSD, Windows, Mac OS X), is written in
the programming language C and is under an open source license.

e Eureka is part of the Netflix stack. It is written in Java and is under Apache
license. The example application in this book uses Eureka for Service
Discovery (compare section 14.8). For every service Eureka stores under the
service name a host and a port, under which the service is available. Eureka
can replicate the information about the services onto multiple Eureka servers
in order to increase the availability. Eureka is a REST service. A Java
library for the clients belongs to Eureka. Via the Sidecar concept (section
8.7) this library can also be used by systems, which are not written in Java.
The Sidecar takes over the communication with the Eureka server, which
then offers Service Discovery to the Microservice. On the clients the
information from the server can be held in a cache so that calls are possible
without communication with the server. The server regularly contacts the
registered services to determine which services failed. Eureka can be used
as basis for Load Balancing since several instances can be registered for one
service. The load can then be distributed onto these instances. Eureka was
originally designed for the Amazon Cloud.

e Consul is a key/value store and fits therefore also into the area of
configuration servers (section 8.8). Apart from consistency it can also
optimize in regards to availability. Clients can register with the server and
react to certain events. In addition to a DNS interface it also has a
HTTP/JSON interface. It can check whether services are still available by
executing health checks. Consul is written in Go and is under the Mozilla
open source license. Besides, Consul can create configuration files from
templates. Thereby a system expecting services in a configuration file can
likewise be configured by Consul.

https://www.isc.org/downloads/bind/
https://github.com/Netflix/eureka
http://www.consul.io
https://aphyr.com/posts/316-call-me-maybe-etcd-and-consul

Every Microservice-based architecture should use a Service Discovery system. It
forms the basis for the administration of a large number of Microservices and for
additional features like Load Balancing. If there is only a small number of
Microservices, it is still imaginable to get along without Service Discovery.
However, for a large system Service Discovery is indispensable. Since the
number of Microservices increases over time, Service Discovery should be
integrated into the architecture right from the start. Besides, practically each
system uses at least the name resolution of hosts, which is already a simple
Service Discovery.

8.10 Load Balancing

It is one of the advantages of Microservices that each individual service can be
independently scaled. To distribute the load between the instances, multiple
instances, which share the load, can simply be registered in a messaging solution
(compare 9.4). The actual distribution of the individual messages is then
performed by the messaging solution. Messages can either be distributed to one of
the receivers (Point-to-Point) or to all receivers (Publish/Subscribe).

REST/HTTP

In case of REST and HTTP a load balancer has to be used. The load balancer has
the function to behave to the outside like a single instance, but to distribute
requests to multiple instances. Besides, a load balancer can be useful during
deployment: Instances of the new version of the Microservice can initially start
without getting load. Afterwards the load balancer can be reconfigured in a way
that the new Microservices are put into operation. In doing so the load can also be
increased in a stepwise manner. This decreases the risk of a system failure.

Fig. 32 illustrates the principle of a proxy-based load balancer: The client sends
its requests to a load balancer running on another server. This load balancer is
responsible for sending each request to one of the known instances. There the
request is processed.

Service

instance

. Load Service
Client _

Balancer instance

Service

instance

Fig. 32: Proxy-based Load Balancer

This approach is common for websites and relatively easy to implement. The load
balancer retrieves information from the service instances to determine the load of
the different instances. In addition, the load balancer can remove a server from the
Load Balancing when the node does not react to requests anymore.

On the other hand, this approach has the disadvantage that the entire traffic for one
kind of service has to be directed via a load balancer. Thereby the load balancer
can turn into a bottleneck. Besides, a failure of the load balancer results in the
failure of a Microservice.

Central Load Balancer

A central load balancer for all Microservices is not only not to be recommended
for these reasons but also because of the configuration. The configuration of the
load balancer gets very complex when only one load balancer is responsible for
many Microservices. Besides, the configuration has to be coordinated between all
Microservices. Especially when deploying a new version of a Microservice a
modification of the load balancer can be sensible in order to put the new
Microservice only after a comprehensive test under load. The need for
coordination between Microservices should especially be avoided in regards to
deployment to ensure the independent deployment of Microservices. In case of
such a reconfiguration one has to make sure that the load balancer supports a
dynamic reconfiguration and for instance does not lose information regarding

sessions if the Microservice uses sessions. Also for this reason it cannot be
recommended to implement stateful Microservices.

ALoad Balancer pro Microservice

There should be one load balancer per Microservice, which distributes the load
between the instances of the Microservice. This allows the individual
Microservices to independently distribute load, and different configurations per
Microservice are possible. Likewise, it is simple to appropriately reconfigure the
load balancer upon the deployment of a new version. However, in case of a
failure of the load balancers the Microservice will not be available anymore.

Technologies

For Load Balancing there are different approaches:

e The Apache httpd web server supports Load Balancing with the extension
mod_proxy_balancer.

e The web server nginx can likewise be configured in a way that it supports
Load Balancing. To use a web server as load balancer has the advantage that
it can also deliver static websites, CSS and images. Besides, the number of
technologies will be reduced.

e HAProxy is a solution for Load Balancing and high availability. It does not
support HTTP, but all TCP-based protocols.

¢ Cloud providers frequently also offer load balancer. Amazon for instance
offers Elastic L.oad Balancing. This can be combined with Auto Scaling so
that higher loads automatically trigger the start of new instances, and thereby
the application automatically scales with load.

Service Discovery

Another possibility for Load Balancing is Service Discovery (Fig. 33) (compare
section 8.9). When the Service Discovery returns different nodes for a service, the
load can be distributed across several nodes. However, this approach allows
redirecting to another node only in the case that a new Service Discovery is
performed. This makes it difficult to achieve a fine granular Load Balancing. For
a new node it will therefore take some time until it gets a sufficient share of load.
Finally, the failure of a node is hard to correct because a new Service Discovery
would be necessary for that. It is useful that in case of DNS it can be stated for a
set of data how long the data is valid (time-to-live). Afterwards the Service
Discovery has to be run again. This allows a simple Load Balancing via DNS

http://httpd.apache.org/docs/2.2/mod/mod_proxy_balancer.html
http://nginx.org/en/docs/http/load_balancing.html
http://www.haproxy.org/
http://aws.amazon.com/de/elasticloadbalancing/

solutions and also with Consul. However, unfortunately this time-to-live is often
not completely correctly implemented.

Service .
Discovery [Service j

Y instance
Retums Service
instances]
instance
Client Us_es service _
instance Service
instance

Fig. 33: Load Balancing with Service Discovery

Load Balancing with Service Discovery is simple because Service Discovery
anyhow has to be present in a Microservice-based system. Therefore, the Load
Balancing does not introduce additional software components. Besides avoiding a
central load balancer has the positive effect that there is no bottle neck and no
central component whose failure would have tremendous consequences.

Client-based Load Balancing

The client itself can also use a load balancer. The load balancer can be
implemented as a part of the code of the Microservice or it can come as a proxy-
based load balancer such as nginx or Apache httpd, which runs on the same
computer as the Microservice. In that case there is no bottle neck because each
client has its own load balancer, and the failure of an individual load balancer has
hardly consequences. However, configuration changes have to be passed on to all
load balancers, which can cause quite a lot of network traffic and load.

Service
instance

Load - Service

Balancer instance
Client

Service
instance

Fig. 34: Client-based Load Balancing

Ribbon is an implementation of client-based Load Balancing. It is a library which
is written in Java and can use Eureka to find service instances. Alternatively, a list
of servers can be handed over to Ribbon. Ribbon implements different algorithms
for Load Balancing. Especially when using it in combination with Eureka, the
individual load balancer does not need to be configured anymore. Because of the
Sidecar concept Ribbon can also be used by Microservices which are not
implemented in Java. The example system uses Ribbon (compare section 14.11).

Consul offers the possibility to define a template for configuration files of load
balancers. This allows to feed the load balancer configuration with data from
Service Discovery. A client-based Load Balancing can be implemented by
defining a template for each client, into which Consul writes all service instances.
This process can be regularly repeated. In this manner a central system

https://github.com/Netflix/ribbon

configuration is again possible and a client-based Load Balancing relatively
simple to implement.

Load Balancing and Architecture

It is hardly sensible to use more than one kind of Load Balancing within a single
Microservice-based system. Therefore, this decision should be made once for the
entire system. Load Balancing and Service Discovery have a number of contact
points. Service Discovery knows all service instances; Load Balancing distributes
the loads between the instances. Both technologies have to work together. Thus the
technology decisions in this area will influence each other.

8.11 Scalability

To be able to cope with high loads, Microservices have to scale. Scalability
means that a system can process more load when it gets more resources.

There are two different kinds of scalability:

Horizontal scalability
means that more resources are used, which each process part of the load, i.e.
the number of resources increases.

Vertical scalability
means that more powerful resources are employed to handle a higher load.
Here, an individual resource will process more load, while the number of
resources stays constant.

N\

Vertical
scaling

(Microservice] [Microservice] [Microservice] (Microservice]

Horizontal scaling

Fig. 35: Horizontal and vertical scaling

Horizontal scalability is often the better choice since the limit for the possible
number of resources and therefore the limit for the scalability is very high.
Besides, it is cheaper to buy more resources than more powerful ones. One fast
computer is often more expensive than many slow ones.

Scaling, Microservices and Load Balancing

Microservices employ mostly horizontal scaling where the load is distributed
across several Microservice instances via Load Balancing. The Microservices
themselves have to be stateless for this. More precisely: They should not have any
state, which is specific for an individual user, because then the load can only be
distributed to nodes, which have the respective state. The state for a user can be
stored in a database or alternatively be put into an external storage (e.g. In-
Memory-Store), which can be accessed by all Microservices.

Dynamic Scaling

Scalability means only that the load can be distributed to multiple nodes. How the
system really reacts to the load, is not defined. In the end it is more important that
the system really adapts to an increasing load. For that it is necessary that,
depending on the load, a Microservice starts new instances, onto which the load
can be distributed. This allows the Microservice to also cope with high loads.
This process has to be automated as manual processes would be too laborious.

There are different places in the Continuous Deployment pipeline (chapter 12)
where it is necessary to start a Microservice to test the services. For that a
suitable deployment system such as Chef or Puppet can be used. Alternatively, a
new virtual machine or a new Docker container with the Microservice is simply
started. This mechanism can also be used for dynamic scaling. It only has
additionally to register the new instances with the Load Balancing. However, the
instance should be able to handle the production load right from the start:
Therefore, the caches should for instance already be filled with data.

Dynamic scaling is especially simple with Service Discovery: The Microservice
has to register with the Service Discovery. The Service Discovery can configure
the load balancer in a way that it distributes load to the new instance.

The dynamic scaling has to be performed based on a metric. When the response
time of a Microservice is too long or the number of requests is very high, new
instances have to be started. The dynamic scaling can be part of a monitoring
(compare section 12.3) since the monitoring should enable the reaction to

extraordinary metric values. Most monitoring infrastructures offer the possibility
to react to metric values by calling a script. The script can start additional
instances of the Microservice. This is fairly easy to do with most cloud and
virtualization environments. Environments like the Amazon Cloud offer suitable
solutions for automatic scaling, which work in a similar manner. However, a
home-grown solution is not very complicated since the scripts run anyhow only
every few minutes so that failures are tolerable, at least for a limited time. Since
the scripts are part of the monitoring, they will have a similar availability like the
monitoring and should therefore be sufficiently available.

Especially in the case of cloud infrastructures it is important to shut the instances
down again in case of low load because every running instance costs money in a
cloud. Also here scripts can serve as reaction to certain metric values.

Microservices: Advantages for Scaling

In regards to scaling, Microservices have first of all the advantage that they can be
scaled independently of each other. In case of a Deployment Monolith only the
entire monolith can be started as more instances. The fine granular scaling does
not appear to be an especially striking advantage at first glance, however, to run
an entire E-commerce shop in many instances just to speed up the search, causes
high expenditures: A lot of hardware is needed, a complex infrastructure has to be
built up, and system parts are held available, which are not used at all. These
system parts render the deployment and monitoring more complex. The
possibilities for dynamic scaling depend critically on the size of the services and
on the speed with which new instances can be started. In this area Microservices
possess clear advantages.

In most cases Microservices have already an automated deployment, which is also
very easy to implement. In addition, there is already a monitoring. Without
automated deployment and monitoring a Microservice-based system can hardly be
operated. If there is in addition load balancing, then it is only a script which is
still missing for automated scaling. Therefore Microservices represent an
excellent basis for dynamic scaling.

Sharding

Sharding means that the administrated data amount is divided and that each
instance gets the responsibility for part of the data. For example, an instance can
be responsible for the customers A-E or for all customers whose customer number
ends with the number 9. Sharding is a variation of horizontal scaling: More

servers are used. However, not all servers are equal, but every server is
responsible for a different subset of the dataset. In case of Microservices this type
of scaling is easy to implement since the domain is anyhow distributed across
multiple Microservices. Every Microservice can then shard its data and via this
sharding scale horizontally. A Deployment Monolith is hardly scalable in this
manner because it handles all the data. When the Deployment Monolith
administrates customers and items, it can hardly be sharded for both types of data.
In order to really implement sharding the Load Balancer has of course to
distribute the load appropriately to the shards.

Scalability, Throughput and Response Times

Scalability means that more load can be processed by more resources. The
throughput increases — i.e. the number of processed requests per unit of time.
However, the response time stays constant in the best case — depending on
circumstances it might rise, but not to such an extent that the system causes errors
or gets too slow for the user.

When faster response times are required, horizontal scaling does not help.
However, there are some approaches to optimize the response time of
Microservices:

e The Microservices can be deployed on faster computers. This is vertical
scaling. Then the Microservices can process the individual requests more
rapidly. Because of the automated deployment vertical scaling is relatively
simple to implement. The service has only to be deployed on faster
hardware.

e (Calls via the network have a long latency. Therefore, a possible optimization
can be to forego such calls. Instead caches can be used, or the data can be
replicated. Caches can often very easily be integrated into the existing
communication. For REST, for instance, a simple HTTP cache is sufficient.

¢ If the domain architecture of Microservices is well designed, a request
should only be processed in one Microservice so that no communication via
the network is necessary. In case of a good domain architecture the logic for
processing a request is implemented in one Microservice so that changes to
the logic only require changes to one Microservice. In that case
Microservices do not have longer response times than Deployment
Monoliths. In regards to an optimization of response times Microservices
have the disadvantage that their communication via the network causes rather
longer response times. However, there are means to counteract this effect.

8.12 Security

In a Microservice-based architecture each Microservice has to know which user
triggered the current call and wants to use the system. Therefore, a uniform
security architecture has to exist: After all, Microservices can work together for a
request, and for each part of the processing of the request another Microservice
might be responsible. Thus the security structure has to be defined at the level of
the entire system. This is the only way to ensure that the access of a user is
uniformly treated in the entire system in regards to security.

Security comprises two essential aspects: Authentication and authorization.
Authentication is the process, which validates the identity of the user.
Authorization denotes the decision whether a certain user is allowed to execute a
certain action. Both processes are independent of each other: The validation of the
user identity in the context of authentication is not directly related to authorization.

Security and Microservices

In a Microservice-based architecture the individual Microservices should not
perform authentication. It does not make much sense for each Microservice to
validate user name and password. For authentication a central server has to be
used. For authorization an interplay is necessary: Often there are user groups or
roles which have to be centrally administered. However, whether a certain user
group or role is allowed to use certain features of a Microservice should be
decided by the concerned Microservice. Thereby changes to the authorization of a
certain Microservice can be limited to the implementation of this Microservice.

OAuth2

One possible solution for this challenge is OAuth2. This protocol is also widely
used in the internet. Google, Microsoft, Twitter, XING or Yahoo all offer support
for this protocol.

Client /_\
V4\Access Token (
A

—

1 - Authorization

Request Resource

Owner

2 - Grant
Authorizatio

3 - Authorization

uthorization Server

5 - Access
Token

6 - Successful
Access

Resource Server

Fig. 36: The OAuth2 protocol

Fig. 36 shows the workflow of the OAuth2 protocol as defined by the standard:

1. The client inquires of the Resource Owner whether it might execute a certain
action. For example, the application can request access to the profile or

http://tools.ietf.org/html/rfc6749

i

6.

certain data in a social network which the Resource Owner stored there. The
Resource Owner is usually the user of the system.

If the Resource Owner grants the client access, the client receives a
respective response from the Resource Owner.

The client uses the response of the Resource Owner to put a request to the
authorization server. In the example the authorization server would be
located in the social network.

The authorization server returns an access token.

With this access token the client can now call a Resource Server and there
obtain the necessary information. For the call the token can for instance be
put into an HTTP header.

The Resource Server answers the requests.

Possible Authorization Grants

The interaction with the authorization server can work in different ways:

e In case of the Password Grant the client shows an HTML form to the user in

step 1. The Resource Owner can enter user name and password. In step 3 this
information is used by the client to obtain the access token from the
authorization server via an HTTP POST. This approach has the disadvantage
that the client processes user name and password. The client can be
insecurely implemented, and then these data are endangered.

In case of the Authorization Grant the client directs the user in step 1 to a
web page, which the authorization server displays. There the user can choose
whether he/she permits the access. If that is the case, the client will obtain in
step 2 an authorization code via an HTTP-URL. In this way the authorization
server can be sure that the correct client obtains the code since the server
chooses the URL. In step 3 the client can then generate the access token with
this authorization code via an HTTP POST. The approach is mainly
implemented by the authorization server and thus very easy to use by a client.
In this scenario the client would be a web application on the server: It will
obtain the code from the authorization server and is the only one able to turn
it via the HTTP POST into an access token.

In case of Implicit the procedure resembles the Authorization Grant. After
the redirect to the authorization server in step 1 the client directly gets an
access token via an HTTP redirect. This allows the browser or a mobile
application to immediately readout the access token. Step 3 and 4 are
omitted. However, here the access token is not as well protected against
attacks since the authorization server does not directly send it to the client.

This approach is sensible when JavaScript code on the client or a mobile
application is supposed to use the access token.

¢ In case of Client Credentials the client uses in step 1 a credential, which the
client knows, to obtain the access token from the authorization server.
Thereby the client can access the data without additional information from
the Resource Owner. For example, a statistics software could readout and
analyze customer data in this manner.

Via the access token the client can access resources. The access token has to be
protected: When unauthorized people obtain access to the access token, they can
thereby trigger all actions, which the Resource Owner can also trigger. Within the
token itself some information can be encoded. For instance, in addition to the real
name of the Resource Owner the token can also contain information, which
assigns certain rights to the user or the membership to certain user groups.

JSON Web Token (JWT)

JSON Web Token (JWT) is a standard for the information, which is contained in
an access token. JSON serves as data structure. For the validation of the access
token a digital signature with JWS (JSON Web Signature) can be used. Likewise
the access token can be encrypted with JSON Web Encryption (JWE). The access
token can contain information about the issuer of the access token, the Resource
Owner, the validity interval or the addressee of the access token. Individual data
can also be contained in the access token. The access token is optimized for use as
HTTP header by an encoding of the JSON with BASE64. These headers are
normally subject to size restrictions.

OAuth2, JWT and Microservices

In a Microservice-based architecture the user can initially authenticate via one of
the OAuth2 approaches. Afterwards the user can use the web page of a
Microservice or call a Microservice via REST. With each further call every
Microservice can hand over the access token to other Microservices. Based on the
access token the Microservices can decide whether a certain access is granted or
not. For that the validity of the token can first be checked. In case of JWT the
token only has to be decrypted and the signature of the authorization server has to
be checked. Subsequently, it can be decided based on the information of the token
whether the user may use the Microservice as he/she intends. Information from the
token can be used for that. For instance, it is possible to store the affiliation with
certain user groups directly in the token.

It is important that it is not defined in the access token, which access to which
Microservice is allowed. The access token is issued by the authorization server. If
the information about the access was available in the authorization server, every
modification of the access rights would have to occur in the authorization server —
and not in the Microservices. This limits the changeability of the Microservices
since modifications to the access rights would require changes of the authorization
server as central component. The authorization server should only administer the
assignment to user groups and the Microservices should then allow or prohibit
access based on such information from the token.

Technologies

In principle, other technical approaches than OAuth2 could also be used as long
as they employ a central server for authorization and use a token for regulating the
access to individual Microservices. One example is Kerberos, which has a
relatively long history. However, it is not as well tuned to REST like OAuth2.
Other alternatives are SAML and SAML 2.0. They define a protocol, which uses
XML and HTTP to perform authorization and authentication.

Finally, signed cookies can be created by a home-grown security service. Via a
cryptographic signature it can be determined whether the cookie has really been
issued by the system. The cookie can then contain the rights or groups of the user.
Microservices can examine the cookie and restrict the access if necessary. There
is the risk that the cookie is stolen. However, for that to occur the browser has to
be compromised or the cookie has to be transferred via a non encrypted
connection. This is often acceptable as risk.

With a token approach it is possible that Microservices do not have to handle the
authorization of the caller, but still can restrict the access to certain user groups or
roles.

There are good reasons for the use of OAuth2:

e There are numerous libraries for practically all established programming
languages, which implement OAuth2 or an OAuth? server. The decision for
OAuth2 hardly restricts the technology choice for Microservices.

e Between the Microservices only the access token still has to be transferred.
This can occur in a standardized manner via an HTTP header when REST is
used. In case of different communication protocols similar mechanisms can
be exploited. Also in this area OAuth2 hardly limits the technology choice.

http://tools.ietf.org/html/rfc4556
https://www.oasis-open.org/committees/security/
http://oauth.net/2/

e Via JWT information can be placed into the token, which the authorization
server communicates to the Microservices in order for them to allow or
prohibit access. Therefore, also in this area the interplay between the
individual Microservice and the shared infrastructure is simple to implement
— with standards, which are widely supported.

Spring Cloud Security offers especially for Java-based Microservices a good
basis for implementing OAuth2 systems.

Additional Security Measures

OAuth2 solves first of all the problem of authentication and authorization —
primarily for human users. There are additional measures for securing a
Microservice-based system:

e The communication between the Microservices can be protected by SSL/TLS
against wiretapping. All communication is then encrypted. Infrastructures
like REST or messaging systems mostly support such protocols.

e Apart from authentication with OAuth2 certificates can be used to
authenticate clients. A certificate authority creates the certificates. They can
be used to verify digital signatures. This makes it possible to authenticate a
client based on its digital signature. Since SSL/TLS supports certificates, at
least at this level the use of certificates and authentication via certificates is
possible.

e API keys represent a similar concept. They are given to external clients to
enable them to use the system. Via the API key the external clients
authenticate themselves and can obtain the appropriate rights. In case of
OAuth2 this can be implemented with Client Credential.

e Firewalls can be used to protect the communication between Microservices.
Normally firewalls secure a system against unauthorized access from
outside. A firewall for the communication between the Microservices
prevents that all Microservices are endangered if an individual Microservice
has been successfully taken over. In this way the intrusion can be restricted to
one Microservice.

e Finally, there should be an intrusion detection to detect unauthorized access
to the system. This topic is closely related to monitoring. The monitoring
system can also be used to trigger an appropriate alarm in case of an
intrusion.

e Datensparsamkeit is also an interesting concept. It is derived from the data
security field and states that only those data are to be saved, which are

http://cloud.spring.io/spring-cloud-security/
http://martinfowler.com/bliki/Datensparsamkeit.html

absolutely necessary. Form a security perspective this results in the
advantage that collecting lots of data is avoided. This makes the system less
attractive for attacks, and in addition the consequences of a security breach
will not be as bad.

Hashicorp Vault

Hashicorp Vault is a tool, which solves many problems in the area of

Microservice security. It offers the following features:

Secrets like passwords, API Keys, keys for encryption or certificates can be
saved. This can be useful to allow users to administrate their secrets. In
addition also Microservices can be equipped with certificates in such a
manner as to protect their communication with each other or with external
servers.

Secrets are given via a lease to services. Besides, they can be equipped with
an access control. This helps to limit the problem in case of a compromised
service. Secrets can for instance also be declared invalid.

Data can be immediately encrypted or decrypted with the keys without the
Microservices themselves having to save these keys.

Access is made traceable by an audit. This allows to trace who got which
secret and at which time.

In the background Vault can use HSMs, SQL databases or Amazon IAM to
store secrets. In addition, it can for instance also generate new access keys
for the Amazon Cloud by itself.

In this manner Vault takes care of handling keys and thereby relieves
Microservices of this task. It is a big challenge to really handle keys securely. It is
difficult to implement something like that in a really secure manner.

Additional Security Goals

In regards to a software architecture security comes in very different shapes.
Approaches like OAuth2 only help to achieve confidentiality. They prevent that
data is accessible for unauthorized users. However, even this confidentiality is not
entirely safeguarded by OAuth2 on its own: The communication in the network
likewise has to be protected against wiretapping — for instance via HTTPS or
other kinds of encryption.

Additional security aspects are:

https://www.vaultproject.io/

Integrity
means that there are no unnoticed changes to the data. Every Microservice
has to solve this problem. For instance, data can be signed to ensure that they
have not been manipulated in some way. The concrete implementation has to
be performed by each Microservice.

Confidentiality
ensures that modifications cannot be denied. This can be achieved by signing
the changes introduced by different users by keys that are specific for the
individual user. Then it is clear that exactly one specific user has modified
the data. The overall security architecture has to provide the keys; the signing
is then the task of each individual service.

Data security
is ensured as long as no data are lost. This issue can be handled by backup
solutions and highly available storage solutions. This problem has to be
addressed by the Microservices since it is within their responsibility as part
of their data storage. However, the shared infrastructure can offer certain
databases, which are equipped with appropriate backup and disaster
recovery mechanisms.

Availability
means that a system is available. Also here the Microservices have to
contribute individually. However, since especially in the case of
Microservice-based architectures one has to deal with the possibility of
failures of individual Microservices, Microservice-based systems are often
well prepared in this area. Resilience (section 10.5) is for instance useful for
this.

These aspects are often not considered when devising security measures —
however, the failure of a service has often even more dramatic consequences than
the unauthorized access to data. One danger is Denial of Service attacks, which
result in such an overloading of servers that they cannot perform any sensible
work anymore. The technical hurdles for this are often shockingly low, and the
defense against such attacks is frequently very difficult.

8.13 Documentation and Metadata

To keep the overview in a Microservice-based architecture certain information
about each Microservice has to be available. Therefore, the Microservice-based
architecture has to define how Microservices can provide such information. Only

when all Microservices provide this information in a uniform way, the information
can be easily collected. Possible information of interest is for instance:

e Fundamental information like the name of the service and the responsible
contact person.

¢ Information about the source code: Where the code can be found in the
version control and which libraries have been used. The used libraries can
be interesting in order to compare open source licenses of the libraries with
the company policies or to identify in case of a security gap in a library the
affected Microservices. For such purposes the information has to be
available even if the decision about the use of a certain library rather
concerns only one Microservice. The decision itself can be made largely
independently by the responsible team.

¢ Another interesting information is with which other Microservices the
Microservice works together. This information is central for the architecture
management (compare section 8.2).

¢ In addition, information about configuration parameters or about feature
toggles might be interesting. Feature toggles can switch features on or off.
This is useful for activating new features only in production when their
implementation is really finished, or for avoiding the failure of a service by
deactivating certain features.

It is not sensible to document all components of the Microservices or to unify the
entire documentation. A unification only makes sense for information, which is
relevant outside of the team implementing the Microservice. Whenever it is
necessary to manage the interplay of Microservices or to check licenses, the
relevant information has to be available outside of the responsible team. These
questions have to be solved across Microservices. Each team can create
additional documentation about their own Microservices. However, this
documentation is only relevant for this one team and therefore does not have to be
standardized.

Outdated Documentation

A common problem concerning the documentation of any software is that the
documentation gets easily outdated and then documents a state which is not up to
date anymore. Therefore, the documentation should be versioned together with the
code. Besides, the documentation should be created from information, which is
anyhow present in the system. For instance, the list of all used libraries can be
taken from the build system since exactly this information is needed during the

compilation of the system. Which other Microservices are used can be obtained
from Service Discovery. This information can for instance be used to create
firewall rules when a firewall is supposed to be used to protect the
communication between the Microservices. In summary, the documentation does
not have to be maintained separately, but results from the anyhow available
information.

Access to Documentation

The documentation can be part of the artifacts which are created during the build.
In addition, there can be a run-time interface which allows to read out metadata.
Such an interface can correspond to the otherwise common interfaces for
monitoring and for instance provide JSON documents via HTTP. In this way, the
metadata are only an additional information Microservices provide at run-time.

In a service template it can exemplarily be shown how the documentation is
created. The service template can then form the basis for the implementation of
new Microservices. When the service template already contains this aspect, it
facilitates the implementation of a standard-conform documentation. In addition, at
least the formal characteristics of the documentation can be checked by a test.

8.14 Conclusion

The domain architecture of a Microservice-based system is essential because it
influences not only the structure of the system, but also the organization (section
8.1). Unfortunately, especially for Microservices tools for dependency
management are rare so that teams have to develop home-made solutions.
However, often an understanding of the implementation of the individual business
processes will be sufficient and an overview of the entire architecture is not
really necessary (section 8.2).

For an architecture to be successful it has to be permanently adjusted to the
changing requirements. For Deployment Monoliths there are numerous refactoring
techniques to achieve this. Such possibilities do also exist for Microservices —
however without the support of tools and with much higher hurdles (section 8.3).
Still Microservice-based systems can be sensibly developed further — for instance
by starting initially with few large Microservices and creating over time more and
more Microservices (section 8.4). An early distribution into many Microservices
entails the risk to end up with a wrong distribution.

A special case is the migration of a legacy application to a Microservice-based
architecture (section 8.5). In this case, the code base of the legacy application can
be divided into Microservices - however this can lead to a bad architecture due to
the often bad structure of the legacy application. Alternatively, the legacy
application can be supplemented by Microservices, which replace functionalities
of the legacy application in a stepwise manner.

Event-driven Architecture (section 8.6) can serve to uncouple the logic in the
Microservices. This allows an easy extensibility of the system.

Defining the technological basis is one of the tasks of an architecture (section 8.7).
In case of Microservice-based systems this does not relate to the definition of a
shared technology stack for implementation, but to the definition of shared
communication protocols, interfaces, monitoring and logging. Additional technical
functions of the entire system are coordination and configuration (section 8.8). In
this area tools can be selected, which all Microservices have to employ.
Alternatively, one can do without a central configuration and instead leave each
Microservice to bring along its own configuration.

For Service Discovery (section 8.9) likewise a certain technology can be chosen.
A solution for Service Discovery is in any case sensible for a Microservice-based
system — except messaging is used for communication. Based on Service
Discovery Load Balancing can be introduced (section 8.10) to distribute the load
across the instances of the Microservices. Service Discovery knows all instances,
the load balancing distributes the load to these instances. Load Balancing can be
implemented via a central load balancer, via Service Discovery or via one load
balancer per client. This provides the basis for scalability (section 8.11). This
allows a Microservice to process more load by scaling up.

Microservices have a significantly higher technical complexity than Deployment
Monoliths. Operating systems, networks, load balancer, Service Discovery and
communication protocols all become part of the architecture. Developers and
architects of Deployment Monoliths are largely spared from these aspects. Thus
architects have to deal with entirely different technologies and have to carry out
architecture at an entirely different level.

In the area of security a central component has to take over at least authentication
and parts of authorization. The Microservices should then settle the details of
access (section 8.12). In order to obtain certain information from a system, which

is composed of many Microservices, the Microservices have to possess a
standardized documentation (section 8.13). This documentation can for instance
provide information about the used libraries — to compare them with open source
license regulations or to remove security issues when a library has a security gap.

The architecture of a Microservice-based system is different from classical
applications. Many decisions are only made in the Microservices, while topics
like monitoring, logging or Continuous Delivery are standardized for the entire
system.

Essential Points

e Refactoring between Microservices is laborious. Therefore, it is hard to
change the architecture at this level. Accordingly, the continued development
of the architecture is a central point.

e An essential part of the architecture is the definition of overarching
technologies for configuration and coordination, Service Discovery, Load
Balancing, security, documentation and meta data.

1. Eric Evans: Domain-Driven Design: Tackling Complexity in the Heart of
Software, Addison-Wesley,2003, ISBN 978-0-32112-521-7<

2. Martin Fowler: Refactoring: Improving the Design of Existing Code,
Addison-Wesley, 1999, ISBN 978-0201485677<

3. Sam Newman: Building Microservices: Designing Fine-Grained Systems,
O’Reilley Media, 2015, ISBN978-1-4919-5035-7<

4. Gregor Hohpe, Bobby Woolf: Enterprise Integration Patterns: <

9 Integration and Communication

Microservices have to be integrated and need to communicate. This can be
achieved at different levels (Fig. 37). Each approach has certain advantages and
disadvantages. Besides, at each level different technical implementations of
integration are possible.

Ul
Microservice |« »| Microservice
Logic
Database

Fig. 37: Different levels of integration

e Microservices contain a graphical user interface. Therefore, Microservices
can be integrated at the level of the UI. This type of integration is introduced
in section 9.1.

e Also the logic can be integrated. Microservices can use REST (section 9.2),
SOAP or RCP (section 9.3) or messaging (section 9.4) to achieve the
integration of logic.

¢ Finally, the integration can be performed at the level of the database via data
replication (section 9.5).

General rules for the design of interfaces are provided in section 9.6.

9.1 Web and Ul

Microservices should bring their own UI along. This allows to implement
functionalities even in those cases in only one Microservice, when the changes
also affect the UL At the level of the entire system it is necessary to jointly
integrate the Uls of the Microservices. This can be achieved by different
approaches, which are reviewed in the innoQ Blog.

Multiple Single-Page-Apps

Single-Page-App (SPA) implements the entire Ul with just one HTML page. The
logic is implemented in JavaScript, which dynamically changes parts of the page.
The logic can manipulate the URL displayed in the browser so that bookmarks and
other typical browser features can be used. However, SPAs are not in line with
the original web thinking: SPAs marginalize HTML as central web technology.
Most logic is implemented in JavaScript. Classical web architectures implement
logic nearly exclusively on the server.

SPAs are especially advantageous when complex interactions or offline ability are
required. Google’s GMail is an example which also decisively shaped the term
SPA. Mail clients are often native applications. GMail as SPA offers nearly the
same comfort.

There are different technologies for the implementation of Single-Page-Apps:

e Angular]JS is very popular. AngularJS has amongst other features a
bidirectional Ul data-binding: If the JavaScript code assigns a new value to
an attribute of a bound model, the view components displaying the value are
automatically changed. The binding works also from UI to the code:
AngularJS can bind the input of a user to a JavaScript variable. Furthermore,
AngularJS can render HTML templates in the browser. Thereby JavaScript
code can also generate complex DOM structures. In that case the entire
frontend logic is implemented in the JavaScript code running the browser.
AngularJS was made by Google who put the framework under the very
liberal MIT license.

e Ember.js works in line with the principle Convention over Configuration and
represents in essence the same features like AngularJS. Via the
supplementary module Ember Data it offers a model-driven approach for
accessing REST resources. Ember.js is under the MIT license and is looked
after by developers from the open source community.

e Ext JS offers apart from an MVC approach also components which
developers can compose to a Ul similar like for Rich Client applications. Ext

https://www.innoq.com/blog/st/2014/11/web-based-frontend-integration/
http://en.wikipedia.org/wiki/Single-page_application
https://angularjs.org/
http://emberjs.com/
http://www.sencha.com/products/extjs/

JS is available as Open Source under GPL v3.0. However, for commercial
development a licence has to be bought from the manufacturer Sencha.

SPA per Microservice

In case of Microservices with Single Page Apps each Microservice can bring its
own SPA along (Fig. 38). The SPA can call the Microservice for instance via
JSON/REST. This is especially easy to implement with JavaScript. Between the
SPAs a link can be used.

N e ~N
Single Page Link Single Page
< -
App App
REST ¢ REST¢
Logic Logic
Microservice y L Microservice

Fig. 38: Microservices with Single Page Apps

Thereby the SPAs are completely separate and independent. New versions of a
SPA and of the associated Microservice can be rolled out without further ado.
However, a tighter integration of SPAs is difficult. When the user switches from
one SPA to another, the browser loads a new web page and starts a different
JavaScript application. Even modern browsers need so much time for this that this
approach is only sensible when switching between SPAs is an exception.

Asset Server for Uniformity

Besides SPAs can be heterogeneous. Each brings its own individually designed UI
along. However, this issue can be solved by using an Asset Server. Such a server
is used to provide JavaScript files and CSS files for the applications. When the
SPAs of the Microservices are only allowed to use these kinds of resources via
the Asset Server, a uniform user interface can be achieved. To accomplish this, a
Proxy Server can distribute requests to the Asset Server and the Microservices.

Thereby it will look for the web browser as if all resources as well as the
Microservices possess a shared URL. This approach avoids that security rules
prohibit the use of the contents because they originate from different URLs.
Caching can then reduce the time for loading the applications. When only
JavaScript libraries, which are stored on the Asset Server, are allowed to be
used, the choice of technologies for the Microservices can be reduced. Therefore,
uniformity and free technology choice are competing aims.

Besides the shared assets will create code dependencies between the Asset
Server and all Microservices. A new version of an asset entails the modification
of all Microservices which use this asset. In the end, they have to modified in a
way that they use the new version. Such code dependencies endanger the
independent deployment and therefore should be avoided. Code dependencies in
the backend are often a problem (compare section 8.3). In fact, such dependencies
should also be reduced in the frontend. However, in such a case an Asset Server
is rather a problem than a solution.

Apart from an Asset Server Ul guidelines can be helpful, which describe the
design of the application in more detail and thereby enable a uniform approach
also at different levels. This allows for the implementation of a uniform UI even
without a shared Asset Server and code dependencies.

In addition, it has to be ensured that the SPAs possess a uniform authentication and
authorization so that the users do not have to log in multiple times. An OAuth2 or a
shared signed cookie can be a solution for this (compare also section 8.12).

JavaScript can only access data which are available under the domain from where
the JavaScript code originates. This Same Origin Policy avoids that JavaScript
code can read data from other domains. When all Microservices are accessible to
the outside under the same domain due to a Proxy, this is no limitation. Otherwise
the policy has to be deactivated when the UI of a Microservice is supposed to
access the data of another Microservice. This problem can be solved by CORS
(Cross Origin Resource Sharing) with which the server delivering the data can
also allow JavaScript from other domains. Another option is to offer all SPA and
REST services to the outside only via one domain so that an access across
domains is not necessary. In this way also the access to shared JavaScript code on
an Asset Server can be implemented.

ASingle Page App for all Microservices

The division into multiple SPAs results in a strict separation of the frontends of
the Microservices. If for instance a SPA is responsible for registering orders and
another one for a fundamentally different use case like reports, the load times
needed when changing between SPAs are still acceptable. Maybe the user groups
are even different so that changes between the applications do not occur.

There are cases when a tighter integration of the user interfaces of the
Microservices is necessary. For example, in an order also details about the items
can be displayed. Displaying the order is the responsibility of one Microservice,
displaying the items is performed by another. In this case the SPA can be
distributed into modules. Each module belongs to another Microservice and
therefore to another team. The modules should be deployed separately. They can
for instance be stored on the server in individual JavaScript files and possess
separate Continuous Delivery pipelines. Besides there have to be suitable
conventions for the interfaces. For example, only the sending of events might be
allowed. Events uncouple the modules because the modules communicate only
changes in the states, but not how other modules have to react to them.

e _ ~
Single Page App
e N N
~ N e N
Module Module
AN Y, _ J
s N e N
Logic Logic
\ Y, _ J
Microservice Microservice

\- AN J

Fig. 39: Close integration of Microservices sharing one Single-Page-App

AngularJS for instance has a module concept which allows to implement
individual parts of the SPA in separate units. A Microservice could provide an
AngularJS module for displaying the user interface of the Microservice. The
model can integrate, if necessary, AngularJS modules of other Microservices.

However, such an approach has disadvantages:

e Deploying the SPA is often only possible as complete application. When a
module is modified, the entire SPA has to be rebuilt and deployed. This has
to be coordinated between the Microservices, which provide the modules of
the application. In addition, the deployment of the Microservices on the
server has to be coordinated with the deployment of the modules since the
modules call the Microservices. This necessity for coordination for the
deployment of modules of an application should be avoided by
Microservices.

e The modules can call each other. Depending on the way calls are
implemented, changes to a module can entail that also other modules have to
changed, for instance because an interface has been modified. When the
modules belong to separate Microservices, this enforces again a
coordination across Microservices, which should be avoided.

For SPA modules a much closer coordination is necessary than for links between
applications. On the other hand the SPA modules offer the advantage that Ul
elements from different Microservices can be simultaneously displayed to the
user. However, this approach closely couples the Microservices at the level of the
UL The SPA modules correspond to the module concepts which also exist in other
programming languages and cause a simultaneous deployment. Thus, the
Microservices, which really should be independent of each other, are combined at
the UI level in one shared deployment artifact. Therefore, this approach undoes
one of the most important advantages of a Microservice-based architecture — the
independent deployment.

HTML Applications

Another option for implementing the user interface are HTML-based user
interfaces. Every Microservice has one or more web pages which are generated
on the server. The web page can also use JavaScript. Here, contrary to SPAs, only

a new HTML web page and not necessarily an application is loaded by the server
when changing between web pages.

ROCA

ROCA (Resource Oriented Client Architecture) offers the possibility to arrange
the handling of JavaScript and dynamical elements in HTML user interfaces.
ROCA views itself as alternative to SPAs. In ROCA the role of JavaScript is
limited to optimizing the usability of the web pages. JavaScript can facilitate their
use or can add effects to the HTML web pages. However, the application has to
remain useable without JavaScript. It is not the purpose of ROCA that users really
use web pages without JavaScript. The applications are only supposed to use the
architecture of the web, which is based on HTML and HTTP. Especially when a
web application is supposed to be divided into Microservices, ROCA reduces the
dependencies and simplifies the division. Between Microservices the coupling of
the UI can be achieved by links. For HTML applications links are the usual tool
for navigating between the web pages and represent a natural integration. They are
no foreign body like in the case of SPAs.

http://roca-style.org/

{ Router J
. / X R
Link
HTML R — HTML
¢ \ Asset Server / ¢
(CSS,
JavaScript) _
Logic Logic
Microservice) L Microservice)

Fig. 40: HTML user interface with an asset server

To support the uniformity of the HTML user interfaces, the Microservices can use
a shared Asset Server like in the case of SPAs (Fig. 40). It contains all CSS and
JavaScript libraries. When the teams in addition define design guidelines for the
HTML web pages and look after the assets on the Asset Server, the user interfaces
of the different Microservices will be largely identical. However, as described
before, this will lead to code dependencies between the Uls of the Microservices.

Easy Routing

To the outside the Microservices should appear like a single web application —
ideally with one URL. This also facilitates the shared use of assets since the Same
Origin Policy is not violated. However, from the outside user requests have to be
directed to the right Microservice. This is the function of the router. It can receive
HTTP requests and forward them to one of the Microservices. This can be done
based on the URL. How individual URLs are mapped to Microservices can be
decided by rules, which can also be complex. The example application uses Zuul
for this task (compare section 14.9). Reverse Proxies are an alternative. These
can for instance be web servers like Apache httpd or nginx, which can direct
requests to other servers. In the process the requests can be modified, URLs can

for instance be rewritten. However, these mechanisms are not as flexible as Zuul,
which is very easy to extend with home-grown code.

When the logic in the router is very complex, this can cause problems. If this logic
has to be changed because a new version of a Microservice is brought into
production, an isolated deployment is not easy anymore. This endangers the
independent development and the independent deployment of the Microservices.

Arrange HTML with JavaScript

In some cases, a closer integration is necessary. It can happen that information
originating from different Microservices is displayed on one HTML web page.
For example a web page might display order data from one Microservice and data
concerning the ordered items from another Microservice. In that case one router is
not sufficient anymore. A router can only allow that a Microservice generates a
complete HTML web page.

A simple solution which employs the architecture presented in Fig. 40 is based on
links. AJAX allows to load the content of a link from another Microservice.
Afterwards the link is replaced by the thereby received HTML. In the example a
link to an item could be transformed into an HTML description of this item. This
allows to implement the logic for the presentation of a product in one
Microservice, while the design of the entire web page is implemented in another
Microservice. The entire web page would be the responsibility of the order
Microservice, while the presentation of the products would be the responsibility
of the product Microservice. This enables the continued independent development
of both Microservices and displaying presentations from both components. If the
presentation of the items has to be changed or new products necessitate a revised
presentation, these modifications can be implemented in the product
Microservice. The entire logic of the order Microservice remains unchanged.

Another example for this approach is Facebook’s BigPipe. It optimizes not only
the load time, but allows also the composition of web pages from pagelets. A
custom implementation can use JavaScript to replace certain elements of the web
page by other HTML. This can be links or div-elements like the ones also
otherwise used for structuring web pages. Such a div-element can be replaced by
HTML code.

However, this approach causes relatively long load times. It is mainly
advantageous when the web UI anyhow uses a lot of JavaScript and when there

https://www.facebook.com/notes/facebook-engineering/bigpipe-pipelining-web-pages-for-high-performance/389414033919

are not many transitions between web pages.

Frontend Server

Fig. 41 shows an alternative for a tight integration. A frontend server composes
the HTML web page from HTML snippets, which are each generated by a
Microservice. Assets like CSS or JavaScript libraries can also be stored in the
frontend server. Edge Side Includes (ESI) represents a possibility to implement
this concept. ESI offers a relatively simple language for combining HTML from
different sources. With ESI caches can supplement static content — for instance the
skeleton of a web page— with dynamic content. In this way caches can help with
the delivery of web pages, even if they contain dynamic content. Proxies and
caches like Varnish or Squid implement ESI. Another alternative are Server Side
Includes (SSI). They are very similar to ESIs, however, they are not implemented
in caches, but in web servers. With SSIs web servers can integrate HTML
snippets from other servers into HTML web pages. The Microservices can
deliver components for the web page, which then will be assembled on the server.
Apache httpd supports SSIs for instance with mod_include. nginx uses the

ngx_http_ssi_module for the support of SSIs.

https://www.varnish-cache.org/
http://www.squid-cache.org/
http://httpd.apache.org/docs/2.2/mod/mod_include.html
http://nginx.org/en/docs/http/ngx_http_ssi_module.html

Frontend Server
Asset Server (CSS, JavaScript)

) « s \

HTML Snippet HTML Snippet
Logic Logic
Microservice y L Microservice

Fig. 41: Integration using a Frontend server

Portals also consolidate information from different sources on one web page.
Most products use Java Portlets in line with the Java standard JSR 168 (Portlet
1.0) or JSR 286 (Portlet 2.0). Portlets can be brought into production
independently of each other and therefore solve one of the central challenges
surrounding Microservice-based architectures. In practice these technologies
result frequently in complex solutions. Portlets behave technically very differently
in comparison to normal Java web applications so that the use of many
technologies from the Java environment is either difficult or impossible. Portlets
allow the user to compose a web page from previously defined portlets. In this
way the user can assemble for instance his/her most important information sources
on one web page. However, this is not really necessary for creating a Ul for
Microservices. The additional features result in additional complexity. Therefore,
portal servers which are based on portlets are not a really good solution for the
web user interfaces of Microservices. In addition, they restrict the available web
technologies to the Java field.

Mobile Clients and Rich Clients

Web user interfaces do not need any installation of software on the client. The
web browser is the universal client for all web applications. On the server site
the deployment of the web user interface can easily be coordinated with the
deployment of the Microservice. The Microservice implements a part of the Ul
and can deliver the code of the web user interface via HTTP. This allows for a
relatively easy coordinated deployment of client and server.

For mobile apps, Rich Clients, or desktop applications the situation is different: A
software has to be installed on the client. This client application is a Deployment
Monolith, which has to offer an interface for all Microservices. If the client
application is supposed to comprise functionalities of different Microservices, it
would technically have to be modularized, and the individual modules like the
associated Microservices would have to be brought into production independently
of each other. However, this is not possible since the client application is a
Deployment Monolith. A SPA can also easily turn into a Deployment Monolith.
Sometimes a SPA is used to separate the development of client and server. In a
Microservices context such a use of SPAs is not desirable.

When a new feature is implemented in a Microservice, which also requires
modifications of the client application, this change cannot solely be rolled out via
a new version of the Microservice. In addition, a new version of the client
application has to be delivered. However, it is unrealistic to deliver the client
application over and over again for each small change of a feature. If the client
applications is supposed to be available in the app store of a mobile operation
system, an extensive review of each version is necessary. If multiple changes are
supposed to be delivered together, the change has to be coordinated. And the new
version of the client application has to be coordinated with the Microservices so
that the new versions of the Microservices are ready in time. This results in
deployment dependencies between the Microservices, which should really be
avoided.

Organizational Level

At the organizational level there is often a designated team for developing the
client application. In this manner the division into an individual module is also
implemented at the organizational level. Especially when different platforms are
supported, it is unrealistic that there is one developer in each Microservice team
for each platform. The developers are going to form one team for each platform.
This team has to communicate with all Microservice teams, which offer
Microservices for mobile applications. This can necessitate a lot of

communication. However, Microservices have set out to avoid such excessive
communication requirements. Therefore, the Deployment Monolith poses a
challenge for client applications at the organizational level.

Mobile App
Rich Client Application

PR

Microservice Microservice

Fig. 42: Mobile Apps and Rich Client are Deployment Monoliths that integrate multiple
Microservices.

One possible solution is to develop new features initially for the web. Each
Microservice can directly bring functionalities into the web. Upon a release of the
client application these features will also be available there. However, in that
case each Microservice needs to support a certain set of features for the web
application and, where required, another set for the client application. In exchange
this approach can keep the web application and the mobile application uniform. It
supports an approach where the domain-based teams provide features of the
Microservices to mobile users as well as to web users. Mobile applications and
web applications are only two channels to offer the same functionalities.

Backend for each Frontend

However, the requirements can also be entirely different. For instance, the mobile
application can be a largely independent application which is supposed to be
developed further as independently of the Microservices and the web user
interface as possible. Often the use cases of the mobile application are so
different from the use cases of the web application that a separate development is
required due to the differences in the features.

In such cases the approach depicted in Fig. 43 can be sensible: The team for the
mobile app resp. the Rich Client has a number of developers who implement a
special backend. This allows to also develop functionalities of the mobile app

independently in the backend, because at least a part of the requirements for the
Microservices can be implemented by developers from the same team. In that case
it should not happen that logic for the mobile app is implemented in the
Microservice, which really belongs into a backend Microservice. However, the
backend for a mobile application differs from other APIs. Mobile clients have
little bandwidth and a high latency. Therefore, APIs for mobile devices are
optimized for getting by with as few calls as possible and for only transfering
really essential data. This is also true for Rich Clients, however not exactly to the
same extent. The adaption of an API to the specific requirements of a mobile
applications can be implemented in a Microservice, which is implemented by the

frontend team.
. m

Mobile App
Rich Client Application

4 .
Backend Mobile Team
_ J
7 AN
K Ry
e N
. l . Microservice] [Microservice . . l

Team Microservice

.

J

Team Microservice

Fig. 43: Mobile Apps or Rich Clients with their own backend

In a mobile app a user interaction should rapidly lead to a reaction of the app.
When it is necessary to call a Microservice as reaction to a user interaction, this
can already conflict with this aim. If there are multiple calls, the latency will
increase further. Therefore, the API for a mobile App should be optimized for
delivering the required data with as few calls as possible. Also these
optimizations can be implemented by a backend for the mobile app.

The optimizations can be implemented by the team which is responsible for the
mobile app. Thereby the Microservices can offer universally valid interfaces
while the teams for the mobile apps can assemble their special APIs by
themselves. Due to that the mobile app teams are not so dependent anymore on the
teams which are responsible for the implementation of the Microservices.

To modularize web applications is simpler than the modularization of mobile
apps, especially when the web applications are based on HTML and not on SPAs.
For mobile apps or Rich Client Apps it is much more difficult since they form an
individual deployment unit and cannot be easily divided.

The architecture shown in Fig. 43 makes it possible to reuse Microservices for
different clients. At the same time, it is an entry into a layered architecture. The Ul
layer is separated from the Microservices and is implemented by another team. In
that case requirements have to be implemented by multiple teams. Microservices
were meant to avoid exactly this. Besides this architecture entails the danger that
logic is implemented in the services for the client application, which really
belongs in the Microservices. Therefore, this solution does not only have
advantages.

Try and Experiment

&‘ This section presented as alternative for web applications a SPA per Microservice, a SPA with
modules per Microservice, an HTML application per Microservice and a frontend server with
HTML snippets. Which of these approaches would you choose? Why?

&‘ How would you deal with mobile apps? One option would be a team with backend developers — or
would you rather choose a team without backend developers?

9.2 REST

Microservices have to be able to call each other in order to implement logic
together. This can be supported by different technologies.

REST (Representational State Transfer) is one option to enable communication
between Microservices. REST is the term for the fundamental approaches of the
WWW:

e There is a plethora of resources which can be identified via URIs. URI
stands for Uniform Resource Identifier. It unambiguously and globally
identifies resources. URLs are practically the same as URIs.

e The resources can be manipulated via a fixed set of methods. In the case of
HTTP these are for instance GET for requesting a resource, PUT for storing
a resource and DELETE for deleting a resource. The methods semantics are
rigidly defined.

e There can be different representations for resources — for instance as PDF or
HTML. HTTP supports the so-called Content Negotiation via the Accept
Header. In this manner the client can determine which data representation it
can process. The Content Negotiation allows for instance to display
resources in a way that is human-readable and to provide them at the same
time under the same URL in a machine-readable manner. The client can
communicate via an Accept Header whether it only accepts human-readable
HTML or only JSON.

e Relationships between resources can be represented by links. Links can point
to other Microservices thereby enabling the integration of logic of different
Microservices.

e The servers ina REST system are supposed to be stateless. Therefore HTTP
implements a stateless protocol.

The limited vocabulary represents the exact opposite of what object-oriented
systems employ. Object-orientation focuses on a specific vocabulary with specific
methods for each class. The REST vocabulary can likewise execute complex
logic. When data validations are necessary, this can be checked at the POST or
PUT of new data. If complex processes are supposed to be represented, a POST
can start the process, and subsequently the state can be updated. The current state
of the process can be fetched by the client under the known URL via GET.
Likewise, POST or PUT can be used to initiate the next state.

Cache and Load Balancer

A RESTful HTTP interface can very easily be supplemented with a cache: Since
RESTful HTTP uses the same HTTP protocol like the web, a simple web cache is
sufficient. Likewise, the usual HTTP Load Balancer can also be used for RESTful
HTTP. The power of these concepts is impressively illustrated by the size of the
WWW. This size is only possible due to the properties of HTTP. HTTP for
instance also possesses simple and useful mechanisms for security — not only
encryption via HTTPS, but also authentication with HTTP Headers.

HATEOAS

HATEOAS (Hypermedia as the Engine of Application State) is another important
component of REST. The relationships between the resources are modeled by

links. Therefore, a client only has to know an entry point. From there it can go on
navigating at will and thereby locate all data in a stepwise manner. In the WWW it
is for instance possible to start from Google and from there to reach practically
the entire web via links.

REST describes the architecture of the WWW and thereby the largest integrated
computer system. However, REST could also be implemented with other
protocols. It is an architecture which can be implemented with different
technologies. The implementation of REST with HTTP is called RESTful HTTP.
When RESTful HTTP services exchange data as JSON or XML instead as HTML,
this approach allows to exchange data and not only to access web pages.

Microservices can also profit from HATEOAS. HATEOAS does not have a
central coordination, just links. This fits very well to the concept that
Microservices should have as little central coordination as possible. In case of
REST clients know only entry points based on which they can discover the entire
system. Therefore, in a REST-based architecture services can be moved in a
manner that is transparent for the client. The client simply gets new links. A
central coordination is likewise not necessary for this. The REST service just has
to return different links. In the ideal case the client only has to understand the
fundamentals of HATEOAS and then can navigate via links to any data in the
Microservice system. The Microservice-based systems on the other hand can
modify their links and thereby change the distribution of functionalities between
Microservices. Even extensive architecture changes can be kept transparent.

HAL

HATEOAS is a concept. HAL is a possibility to implement it. It is a standard
describing how the links to other documents should be contained in a JSON
document. Thereby HATEOAS is very easy to implement especially in
JSON/RESTful HTTP services. The links are separate from the actual document.
This allows to implement links to details or to independent data sets.

XML

XML has a long history as data format. It is easy to use together with RESTful
HTTP. There are different type systems for XML which can determine whether an
XML document is valid. This is very useful for the definition of an interface.
Among the languages for the definition of valid data is for instance XML Schema
(XSD) or RelaxNG. Some frameworks allow for the generation of code in order
to administrate XML data, which correspond to such a schema. Via XLink XML

http://stateless.co/hal_specification.html
http://www.w3.org/XML/Schema
http://relaxng.org/
http://www.w3.org/TR/xlink11/

documents can contain links to other documents. This enables the implementation
of HATEOAS.

HTML

XML was designed to transfer data and documents. To display the information is
the task of different software. Meanwhile HTML has a similar approach as XML:
HTML defines only the structures. The display occurs via CSS. For the
communication between processes HTML documents can be sufficient because in
modern web applications documents contain only data - just like XML. In a
Microservices world this approach has the advantage that the communication to
the user and between the Microservices employs the same format. This reduces
the effort. Thereby it gets even easier to implement Microservices which contain a
Ul and a communication option for other Microservices.

JSON

JSON (JavaScript Object Notation) is a representation of data which is especially
optimized for JavaScript. Like JavaScript the data are dynamically typed.
However, meanwhile there are in fact suitable JSON libraries for all
programming languages. In addition there are type systems likeJSON Schema,
which supplement JSON with an appropriate validation. With that JSON is not
inferior at all anymore to data formats like XML.

Protocol Buffer

Binary protocols like Protocol Buffer can also be used instead of text-based data
representations. This technology has been designed by Google to represent data
more efficiently and to achieve a higher performance. There are implementations
for many different programming languages so that Protocol Buffer can be
universally used similar to JSON or XML.

RESTful HTTP is synchronous.

RESTful HTTP is synchronous: Typically a service sends out a request and waits
for a response which is subsequently analyzed in order to continue with the
program sequence. This can cause problems in case of long latency times within
the network. It can lengthen the processing of a request since responses of other
services have to be waited for. Besides, after a certain waiting time the request
has to be aborted because it is likely that the request is not going to be answered
at all. Possible reasons are that the server is not available at the moment or that

http://json-schema.org/
https://developers.google.com/protocol-buffers/

the network has a problem. Correctly handled timeouts increase the stability of the
system (section 10.5).

The failure may not result in the failure of additional services. Therefore, via the
timeout it has to be ensured that the particular system still responds and the failure
does not propagate.

9.3 SOAP and RPC

It is possible to build a Microservices-based architecture on SOAP. SOAP uses
also HTTP like REST, but employs only POST messages to transfer data to a
server. In the end a SOAP calls a method on a certain object on the server.
Therefore SOAP is an RPC mechanism (Remote Procedure Call), which calls
methods in a different process.

SOAP lacks mechanisms like HATEOAS, which allow to flexibly handle
relationships between Microservices. The interfaces have to be completely
defined by the server and known on the client.

Flexible Transport

SOAP can convey messages with different transport mechanisms. It is for instance
possible to receive a message via HTTP and to subsequently sent it on as message
via JMS or as email via SMTP/POP. SOAP-based technologies also support the
forwarding of requests. For example, the security standard WS-Security can
encrypt or sign parts of a message. Afterwards the parts can be sent on to different
services without having to be decrypted. The sender can send a message in which
some parts are encrypted. This message can be processed via different stations.
Each station can process a part of the message or send it to other recipients.
Finally, the encrypted parts will arrive at their final recipients — and only there
they have to be decrypted and processed.

SOAP has many extensions for special use contexts. The different extensions from
the WS-*-environment comprise for instance transactions and the coordination of
web services. In this way a complex protocol stack can arise. The interoperability
between the different services and solutions can suffer due to the complexity.
Some technologies are also not very sensible for Microservices. For example, a
coordination of different Microservices is problematic as this will result in a
coordination layer, and modifications of a business process will probably concern
the coordination of the Microservices and also the Microservices themselves.

When the coordination layer comprises all Microservices, a Monolith is created
which also has to be changed upon each modification. This contradicts the
Microservices idea of independent deployment. WS-* is rather in line with such
concepts as SOA.

Thrift

Another communication possibility is Apache Thrift. It uses a very efficient binary
encoding like Protocol Buffer. Furthermore, Thrift can forward requests from a
process with a programming language via the network to other processes. The
interface is described in an interface definition specific for Thrift. Based on this
definition different client and server technologies can communicate with each
other.

9.4 Messaging

Another option for the communication between Microservices are messages and
messaging systems. As the name suggests, these systems are based upon the
sending of messages. The messages can result in a response which again is sent as
message. Messages can go to one or multiple recipients.

Especially in case of distributed systems messaging solutions can demonstrate
their advantages:

e Messages can still be transferred in case of network failures. The messaging
system buffers them and delivers them when the network is available again.

e The guarantees can be further strengthened: The messaging system cannot
only guarantee the correct transfer of the messages, but even their processing.
If there was a problem during the processing of the message, the message can
be transferred anew. A successful processing is possible when the error
disappears after some time. Otherwise it will be attempted a couple more
times to process the message until finally the message is discarded because it
cannot be processed successfully.

¢ In a messaging architecture responses are transferred and processed
asynchronously. Such architectures are well tuned to high latency times like
they occur in the network. Waiting for a response is the usual case in such an
architecture. Therefore the programming model always acts on the
assumption of a high latency.

e The call of another service does not block the further processing. Even if the
response has not been received yet, the service can continue working and for

https://thrift.apache.org/

instance call additional services.

e The sender does not know the recipient of the message. The sender sends the
message to a queue or a topic. There the recipient registers. Thereby sender
and recipient are decoupled. There can even be multiple recipients without
that the sender is aware of this. Besides the messages can be modified on
their way. Data can be for instance supplemented or removed. In addition,
messages can also be forwarded to entirely different recipients.

Messaging is also a good basis for certain architectures of Microservice-based
systems like Event Sourcing (compare section 10.3) or Event-driven Architecture
(section 8.6).

Messages and Transactions

Messaging offers a solution for transactional systems with Microservices. In a
Microservice-based system the guarantees for transactions are hard to ensure
when the Microservices call each other. In that case all Microservices would
have to participate in a transaction. They are only allowed to write changes when
all Microservices in the transaction have processed the logic without errors. This
means that the changes would have to be held back for a very long time. That is
bad for the performance since no new transaction can change the data meanwhile.
Besides in a network it is always possible that a participant fails. In that case the
transaction will remain open for a long time or might even not be closed at all.
This will block changes to the data for a long time. Such problems arise for
instance when the calling system crashes.

= =) 0 &=

Database

Transaction
Fig. 44: Transactions and Messaging

In a messaging system transactions can be treated differently: The sending and
receiving of messages is part of a transaction — just as for instance the writing and
reading from the database (Fig. 44). When an error occurs during the processing
of the message, all outgoing messages are canceled and the database changes are
rolled back. In the case of success all these actions take place. The recipients of
the messages can likewise be safeguarded transactionally. In that case the
processing of the outgoing messages is subject to the same transactional
guarantees.

The important point is that the sending and receiving of messages and the
transactions on the database can be combined in one transaction. The coordination
is taken care of by the infrastructure. No extra code needs to be written. For the
coordination of messaging and databases the protocol Two Phase Commit (2PC)
can be employed. This protocol is the usual solution for coordinating transactional
systems like databases and messaging systems with each other. An alternative are
products like Oracle AQ or ActiveMQ. They store the messages in a database.
Then the coordination between database and messaging can simply be achieved by
writing the messages as well as the data modifications in the same database
transaction. Messaging and database are in the end the same systems in that case.

Messaging allows to implement transactions without the need for a global
coordination. Each Microservice is transactional. The transactional sending of
messages is ensured by the messaging technology. However, when a message
cannot be processed, for instance due to invalid values, there is no possibility to
roll the already processed messages back. Therefore, the correct processing of
transactions is not given under all circumstances.

Messaging Technology

For the implementation of messaging a technology has to be used:

e AMQP (Advanced Message Queuing Protocol) is a standard. It defines a
protocol with which messaging solutions can communicate on the wire with
each other and with clients. An implementation of this standard is RabbitMQ),
which is written in Erlang and is under Mozilla licence. Another
implementation is for instance Apache Qpid.

e Apache Kafka focuses on high throughput, replication and fail safeness.
Therefore, it is well suited for distributed systems like Microservices,
especially the fail safeness is very helpful in this use context.

https://www.amqp.org/
https://www.rabbitmq.com/
http://kafka.apache.org/

e OMQ (also called ZeroMQ or ZMQ) gets along without a server and is
therefore very light-weight. It has some primitivs which can be assembled
into complexer systems. 0MQ is under the LGPL licence and written in C++.

e JMS (Java Messaging Service) defines an API, with which a Java
application can receive messages and send them. In contrast to AMQP the
specification does not define how the technology transfers messages on the
wire. Since it is a standard, Java-EE server implement this API. Well known
implementations are ActiveMQ and HornetQ.

e [tis also possible to use ATOM Feeds for messaging. This technology is
normally used to transfer blog contents. Clients can relatively easily request
new entries of a blog. In the same manner a client can use ATOM to request
new messages. ATOM is based on HTTP and therefore fits well in a REST
environment. However, ATOM has only functionalities for delivering new
information. It does not support more complex techniques like transactions.

For many messaging solutions a messaging server and therefore an additional
infrastructure are required. This infrastructure has to be operated in a manner that
prevents failures because failures would cause the communication in the entire
Microservice-based system to break down. However, messaging solutions are
mostly designed to achieve high availability for instance via clustering.

For many developers messaging is rather unfamiliar since it requires
asynchronous communication. This makes it appear as rather complex. In most
cases the calling of a method in a different process is easier to understand. With
approaches like Reactive (compare section 10.6) asynchronous development is
introduced into the Microservices themselves. Also the AJAX model from
JavaScript development resembles the asynchronous treatment of messages. More
and more developers are therefore familiar with the asynchronous model.

Try and Experiment

http://zeromq.org/
https://jcp.org/en/jsr/detail?id=343
http://activemq.apache.org/
http://hornetq.jboss.org/
http://tools.ietf.org/html/rfc4287
http://tools.ietf.org/html/rfc5023

&‘ REST, SOAP/RPC and messaging each have advantages and disadvantages. Collect the advantages
and disadvantages and make up your mind which of the alternatives to use.

&‘ In a Microservice-based system there can be different types of communication — however, there
should be one predominant communication type. Which would you choose? Which others would be
allowed in addition? In which situations?

9.5 Data Replication

At the database level Microservices could share a database and thereby
concertedly access data. This type of integration has already been in practice for a
long time: It is not unusual that a database is used by several applications. Often
databases last longer than applications so that not the application with its demands
is focused on, but rather the database. Although the integration via a shared
database is widespread, it has critical disadvantages:

e The data representation cannot easily be modified since several applications
access the data. A change can cause one of the applications to break.
Therefore, changes have to be coordinated across all applications.

e This makes it impossible to rapidly modify applications in cases where this
entails changes to the database. However, rapid changeability is exactly the
area where Microservices should bring advantages.

e Finally, it is also hardly possible to clear up the schema — i.e. to remove
columns which are not needed anymore because it is unclear whether any
system is still using these columns. In the long run the database will get more
and more complex and harder to maintain.

In the end the shared use of a database is a violation of an important architecture
rule. Components should be able to change their internal data representation
without other components being affected. The database schema is an example for
an internal data representation. When multiple components share the database, it is
not possible anymore to change the data representation. Therefore, Microservices
should have a strictly separate data storage and not share a database schema.

However, a database instance can be used for multiple Microservices when the
data sets of the individual Microservices are completely separate. For instance,
each Microservice can use its own schema within a shared database. However, in
that case there may not be any relationships between the schemas.

Replication

Replicating data is one possible alternative for the integration of Microservices.
However, the data replication must not introduce a dependency of the database
schemas by the back door. When the data are just replicated and the same schema
is used, the same problem occurs like in the case of a shared use of the database.
A schema change will also affect other Microservices so that the Microservices
are in the end coupled again. This has to be avoided.

The data should be transferred into another schema to ensure the independency of
the schemas and therefore the Microservices. In addition, such a transformation is
also in most cases desirable for domain-based reasons.

A typical example for the use of replication in classical IT are Data Warehouses.
They replicate data, but store them differently. That is due to the fact that data
accessing in the Data Warehouse has very different requirements: The aim is to
analyze lots of data. The data are optimized for reading access and often also
combined as not every single data set is relevant for statistics.

Because of Bounded Context in most cases different representations or subsets of
data are relevant for different Microservices. When replicating data between
Microservices it will for this reason frequently anyhow be necessary to transform
the data or to replicate just subsets of the data.

Problems: Redundancy and Consistency

The replication causes a redundant storage of the data. This means that the data
are not immediately consistent: It takes some time until changes will have been
replicated to all locations.

However, immediate consistency can be dispensable. In case of analysis tasks like
in a Data Warehouse an analysis which does not comprise the orders of the last
few minutes, can be sufficient. There are also other cases in which consistency is
not that important. When an order takes a little bit of time until it is visible in the
delivery Microservice, this can be acceptable because maybe anyhow nobody
will request the data in the meanwhile.

Consistency is a requirement for the system. High consistency requirements make
replication difficult. When system requirements are determined, it is often not
clear how consistent the data really have to be. This limits the possibilities for
data replication.

Also for replication there has to be a leading system which contains the current
data. All other replicates should obtain the data from this system. Then it is
always clear which data are really up-to-date. Data modifications should not be
triggered by different systems. This easily causes conflicts and a very complex
implementation. Such conflicts are excluded when there is just one source for
changes.

Implementation

Some databases offer replication as feature. However, this is not helpful for the
replication of data between Microservices because the schemas of the
Microservices should be different. The replication has to be self implemented.
For this purpose, a custom interface can be implemented. This interface should
allow for high performance access even to large data sets. To achieve the
necessary performance, one can also directly write into the target schema. The
interface does not necessarily have to use a protocol like REST, but can employ
faster alternative protocols. To this end it can be necessary to use another
communication mechanism than the one normally used by the Microservices.

Batch

The replication can be activated in a batch. In that case the entire data or at least
changes from a longer time interval can be transferred. For the first replication run
the amount of data can be large so that the replication takes a long time. It can still
be sensible to transfer all the data each time. This allows to correct mistakes
which happened during the last replication.

An easy implementation can assign a version to each data set. Based on the
version data sets which have changed can be specifically selected and replicated.
This approach can be easily restarted again in case of an interruption of the
replication because the process itself does not hold a state. Instead the state is
stored with the data itself.

Event

One alternative is to start the replication in case of certain events. For instance,
when a data set is newly generated, the data can also immediately be copied into

the replicates. Such approaches are especially easy to implement with messaging
(section 9.4).

Data replication is an especially good choice for high performance access to large
amounts of data. Many Microservice-based systems get along without replicating
data. Even those systems which use data replication will also employ other
integration mechanisms.

Try and Experiment

&‘ Would you use data replication in a Microservice-based system? In which areas? How would you
implement it?

9.6 Interfaces: Internal and External

Microservice-based systems have different types of interfaces:

e Each Microservice can have one or more interfaces for other Microservices.
A change to the interface can require coordination with other Microservice
teams.

e The interfaces between Microservices which are developed by the same
team are a special case. Team members can closely work together so that
these interfaces are easier to change.

¢ Besides the Microservice-based system can offer interfaces to the outside
with which the system can also be used outside of the organization of the
developers. In extreme cases this can be potentially every internet user when
the system offers a public interface in the internet.

These interfaces are differently easy to change: It is very easy to ask a colleague
in the same team for a change. This colleague is presumably even in the same
room.

Changes to an interface of a Microservice of another team are more difficult. The
change has to prevail against other changes and new features. When the change has
to be coordinated with other teams, additional expenditures arise.

Interface changes between Microservices can be safeguarded by appropriate tests
(Consumer-driven Contract Tests, section 11.7). These tests examine whether the

interface still fulfills the expectations of the interface users.

External Interfaces

In case of interfaces to the outside the coordination with users is more
complicated. There might be very many users. For public interfaces the users
might even be unknown. Therefore, techniques like Consumer-driven Contract
Tests are hard to implement in such scenarios. However, for interfaces to the
outside rules can be defined which determine for instance for how long a certain
version of the interface is supported. A stronger focus on backwards compatibility
can also be sensible for public interfaces.

For interfaces to the outside it can be necessary to support several versions of the
interface in order to not force all users to perform changes. Between
Microservices it should be an aim to accept multiple versions only for uncoupling
deployments. When a Microservice changes an interface, it should still support the
old interface. In that case the Microservices which depend on the old interface do
not have to be instantly deployed anew. However, the next deployment should use
the new interface. Afterwards the old interface can be removed. This reduces the
number of interfaces which have to be supported and therefore the complexity of
the system.

Separating Interfaces

Since the interfaces are differently easy to change, they should be implemented
separately. When an interface of a Microservice is supposed to be used externally,
it can subsequently only be changed when this change is coordinated with the
external users. However, a new interface for internal use can be split off. In that
case the interface which is exposed to the outside is the starting point for a
separate internal interface which can be more easily changed again.

Besides, several versions of the same interface can be internally implemented
together. In this way new parameters of a new version can in cases of calls to the
old interface simply be set to default values so that both interfaces internally use
the same implementation.

Implementing External Interfaces

Microservice-based systems can also offer interfaces to the outside in different
ways. Apart from a web interface for users there can also be an API, which can be
accessed from outside. For the web interface section 9.1 showed already how the

Microservices can be integrated in a way which allows that all Microservices can
implement a part of the UL

When the system offers a REST interface to the outside, the calls from outside can
be forwarded to a Microservice with the help of a router. In the example
application the router Zuul is used for this (section 14.9). Zuul is very flexible and
can forward request to different Microservices based on very detailed rules.
However, HATEOAS offers also the freedom to move resources. In that case
routing is dispensable. The Microservices are accessible from the outside via
URLs, but they can be moved at any time. In the end the URLs are dynamically
determined by HATEOAS.

It would also be possible to offer an adaptor for the external interface which
modifies the external calls before they reach the Microservices. However, in that
case a change to the logic cannot always be limited to a Microservice, but could
also affect the adaptor.

Semantic Versioning

To denote changes to an interface a version number can be used. Semantic
Versioning defines a possible version number semantics. The version number is
split into MAJOR.MINOR.PATCH. The components have the following meaning:

e A change in MAJOR indicates that the new version breaks backwards
compatibility. The clients have to adjust to the new version.

e The MINOR version is changed when the interface offers new features.
However, the changes should be backwards compatible. A change of the
clients is only necessary if they want to use the new features.

e PATCH is increased in the case of bug fixes. Such changes should be
completely backwards compatible and should not require any modifications
of the clients.

In case of REST one should keep in mind that it is not sensible to encode the
version in the URL. The URL should represent a resource — independent of the fact
with which API version it is called. Therefore, the version can for instance also
be defined in an Accept Header of the request.

Postel’s Law or the Robustness Principle

Another important basis for the definition of interfaces is Postel’s Law, which is
also known as the Robustness Principle. It states that components should be strict

http://semver.org/
http://tools.ietf.org/html/rfc793#section-2.10

in regards to what they are passing on and liberal in regards to what they are
accepting from others. Differently put: Each component should adhere as closely
as possible to the defined interface when using other components, but should
whenever possible compensate errors which arise during the use of its own
interface.

When each component behaves according to the Robustness Principle the
interoperability will improve: In fact, if each component adheres exactly to the
defined interfaces, interoperability should already be ensured. If a deviation
happens nevertheless, the used component will try to compensate for it and
thereby attempt to “save” the interoperability. This concept is also known as
Tolerant Reader.

In practice a called service should accept the calls as long as this is possible at
all. One way to achieve this is to only readout those parameters from a call which
are really necessary. On no account should a call be rejected just because it does
not formally conform with the interface specification. However, the incoming
calls should be validated. Such an approach makes it easier to ensure a smooth
communication in distributed systems like Microservices.

9.7 Conclusion

The integration of Microservices can occur at different levels.

Client

One possible level for the integration is the web interface (section 9.1):

e Each Microservice can bring along its own Single-Page-App (SPA). The
SPAs can be developed independently. The transition between the
Microservices, however, starts a completely new SPA.

e There can be one SPA for the entire system. Each Microservice supplies one
module for the SPA. Therefore, the transitions between the Microservices are
very simple in the SPA. However, the Microservices get very tightly
integrated so that a coordination of deployments can become necessary.

e FEach Microservice can bring along an HTML application. The integration
can occur via links. This approach is easy to implement and allows for a
modularization of the web application.

e JavaScript can load HTML. The HTML can be supplied by different
Microservices so that each Microservice can contribute a representation of

http://martinfowler.com/bliki/TolerantReader.html

its data. In this way an order can load the presentation of a product from
another Microservice.

e A skeleton can assemble individual HTML snippets. Thereby an E-commerce
landing page can display the last order from one Microservice and
recommendations from another Microservice. ESI (Edge Side Includes) or
SSI (Server Side Includes) can be useful for this.

In case of a Rich Client or a mobile app the integration is difficult because the
client application is a Deployment Monolith. Therefore, changes of different
Microservices can in fact only be deployed together. The teams can modify the
Microservices and then deliver a certain amount of fitting UI changes together as
new release of the client application. There can also be a team for each client
application which adopts new functionalities of the Microservices into the client
application. From an organizational perspective there can even be developers in
the team of the client application which develop a custom service. This service
can for instance implement the interface in a way that allows the client application
to use it in a high performance manner.

Logic Layer

REST is an option for the communication of the logic layer (section 9.2). REST
uses the mechanisms of the WWW to enable communication between services.
HATEOAS (Hypermedia as the Engine of Application State) means that the
relationships between systems are represented as links. The client knows only an
entry URL. All the other URLs can be changed because they are not directly
contacted by the clients, but are found by them via links starting at the entry URL.
HAL defines how links can be expressed and supports the implementation of
REST. Other possible data formats for REST are XML, JSON, HTML or Protocol
Buffer.

Classical protocols like SOAP or RPC (section 9.3) can also be used for the
communication of Microservices. SOAP offers possibilities for forwarding a
message to other Microservices. Thrift has an efficient binary protocol and can
likewise forward calls between processes.

Messaging (section 9.4) has the advantage that it can handle network problems
and high latency times very well. In addition, transactions are also very well
supported by messaging.

Data Replication

At the database level a shared schema is not recommended (section 9.5). This
would couple Microservices too tightly since they would have a shared internal
data representation. The data have to be replicated into another schema. The
schema can be in line with the requirements for the respective Microservice. As
Microservices are Bounded Contexts, it is very unlikely that the Microservices
should use the same data model.

Interfaces and Versions

Finally, interfaces are an important foundation for communication and integration
(section 9.6). Not all interfaces are equally easy to change: Public interfaces are
practically not changeable at all because too many systems depend on them.
Internal interfaces can more easily be changed. Public interfaces in the simplest
case just route certain functionalities to suitable Microservices. Semantic
Versioning is useful for giving a meaning to version numbers. To ensure a high
level of compatibility the Robustness Principle is helpful.

This section should have shown that Microservices are not just services which
use RESTful HTTP. This is only one option for the communication between
Microservices.

Essential Points

e At the Ul level the integration with HTML user interfaces is especially
simple. SPAs, desktop applications or mobile apps are Deployment
Monoliths so that changes to the user interface for a Microservice have to be
closely coordinated with other changes.

e Though REST or RPC approaches offer at the logic level a simple
programming model, messaging allows for a looser coupling and can better
cope with the challenges of distributed communication via the network.

¢ Data replication allows high performance access even to large amounts of
data. The Microservices may on no account use the same schema for their
data since in that case the internal data representation cannot be changed
anymore.

10 Architecture of Individual Microservices

When implementing Microservices a number of points have to be heeded. This
chapter addresses first the domain architecture of Microservices (section 10.1).
For implementing a Microservice-based system CQRS (section 10.2) can be
interesting. This approach separates writes to data from reading data. Event
Sourcing (section 10.3) places events into the center of the modeling. The
structure of a Microservice can correspond to a Hexagonal Architecture (section
10.4) which subdivides functionalities into a logic kernel and adaptors. Section
10.5 focuses on resilience and stability as essential requirements for
Microservices. Technical possibilities for the implementation of Microservices
such as Reactive are discussed in section 10.6.

10.1 Domain Architecture

The domain architecture of a Microservice defines how the Microservice
implements its domain-based functionalities. A Microservice-based architecture
aims at not predetermining this decision for all Microservices. Thereby, the
internal structure of Microservices can be independently decided. This allows the
teams to act largely independently of each other. It is for sure sensible to adhere to
established rules in order to keep the Microservice easy to understand, simple to
maintain and also replaceable. However, there is no strict need for regulations at
this level.

This section shows how to identify potential problems with the domain
architecture of a Microservice. Whether there really is a problem and how it can
be solved, then has to be answered by the responsible team.

Cohesion

The domain architecture of the overall system influences the domain architecture
of the individual Microservices. As presented in section 8.1, Microservices
should be loosely coupled to each other. Besides, the Microservices should have
a high internal cohesion. A Microservice should have only one responsibility in
regards to the domain. Consequently, the parts of a Microservice have to be
loosely coupled, and the Microservice has to have a high cohesion. If that is not
the case, the Microservice will likely have more than one responsibility. If the

cohesion within the Microservice is not high enough, the Microservice can be
split into several Microservices. Due to the split the Microservices remain small
and thus easier to understand, to maintain and to replace.

Encapsulation

Encapsulation means that a part of the architecture hides internal information from
the outside — especially all internal data structures. Instead, the access is supposed
to occur via an interface. Thereby the software remains easy to modify: Internal
structures can be changed without influencing other parts of the system. For this
reason, Microservices may in no case allow other Microservices access to their
internal data structures. Otherwise these data structures cannot be modified
anymore. Besides, in this manner, every Microservice needs only to understand
the interface of another Microservice. This improves the structure and
intelligibility of the system.

Domain-Driven Design

Domain-driven Design (DDD) is a possibility to internally structure
Microservices. Each Microservice can have a DDD domain model. The necessary
patterns from Domain-Driven Design were already introduced in section 4.3.
Especially when Domain-driven Design and Strategic Design define the structure
of the overall system (section 8.1), the Microservices should also use these
approaches. During the development of the overall system Strategic Design
orientates itself to the fact which domain models there are and how they are
distributed across the Microservices.

Transactions

Transactions bundle multiple actions so that they can only be executed together or
not at all. A transaction can hardly comprise more than one Microservice. Only
messaging is able to support transactions across Microservices (compare section
9.4). The domain-based design within a Microservice ensures that each operation
at the interface corresponds to one transaction. In this way it can be avoided that
multiple Microservices have to participate in one transaction. This would be very
hard to implement technically.

10.2 CQRS

Systems usually save a state. Operations can change data or read them. These two
types of operations can be separated: Operations that change data and therefore
have side effects (commands) can be distinguished from operations that just read

data (queries). An operation may not simultaneously change the state and return
data. This distinction makes the system easier to understand: When an operation
returns a value, it is a query and does not change any values. This entails
additional advantages. Queries can for example be provided with a cache. If read
operations changed also data, the addition of a cache would not be so easy since
operations with side effects still have to be executed in spite of a cache. The
separation between queries and commands is called CQS (Command Query
Separation). This principle is not limited to Microservices, but can be applied in
general. For example, classes in an object-oriented system can divide operations
in the same manner.

CQRS

CQRS (Command Query Responsibility Segregation) is more drastic than CQS
and completely separates the processing of queries and commands.

Command
Queue
Command Command Query
Store Handler Handler

NS
=3

Fig. 45: Overview of CQRS

Fig. 45 shows the structure of a CQRS system. Each command is stored in the
Command Store. In addition, there can be Command Handlers. The Command
Handler in the example uses the commands for storing the current state of the data
in a database. A Query Handler uses this database to process queries. The
database can be adjusted to the needs of the Query Handler. For example, a
database for the analysis of order processes can look completely different from a

https://speakerdeck.com/owolf/cqrs-for-great-good-2

database which customers use for displaying their own order processes. Entirely
different technologies can be employed for the query database. It is for instance
possible to use an In-Memory-Cache which loses the data in case of a server
failure. The information persistency is ensured by the Command Store. In an
emergency the content of the cache can be reconstructed by the Command Store.

Microservices and CQRS

CQRS can be implemented with Microservices:

e The communication infrastructure can implement the Command Queue when
a messaging solution is used. In case of approaches like REST a
Microservice has to forward the commands to all interested Command
Handlers and implement the Command Queue that way.

e Each Command Handler can be a separate Microservice. It can handle the
commands with its own logic. Thereby logic can very easily be distributed to
multiple Microservices.

e Likewise, a Query Handler can be a separate Microservice. The changes to
the data which the Query Handler uses can be introduced by a Command
Handler in the same Microservice. However, the Command Handler can also
be a separate Microservice. In that case the Query Handler has to offer a
suitable interface for accessing the database so that the Command Handler
can change the data.

Advantages

CQRS has a number of advantages especially in the interplay with Microservices:

e Reading and writing of data can be separated into individual Microservices.
This allows for even smaller Microservices. When the writing and reading is
that complex that a single Microservice for both would get too large and too
hard to understand, a split might be very sensible.

e Likewise, another model can be used for writing and reading. Microservices
can each represent a Bounded Context and therefore use different data
models. For instance, in an E-commerce shop a lot of data can be written for
an online purchase while statistical evaluations read only few data for each
purchase. From a technical perspective the data can be optimized for reading
operations via denormalization or via other means for certain queries.

e Writing and reading can be scaled differently by starting different numbers of
Query Handler Microservices and Command Handler Microservices. This
supports the fine granular scalability of Microservices.

e The Command Queue facilitates the handling of load peaks during writing.
The queue buffers the changes which are then processed later on. However,
in that case a change to the data will not be immediately taken into
consideration by the queries.

e It is easy to run different versions of the Command Handlers in parallel. This
facilitates the deployment of Microservices in new versions.

CQRS can serve to make Microservices even smaller, even when operations and
data are really very closely connected. Each Microservice can independently
decide for or against CQRS. There are different ways to implement an interface
which offers operations for changing and reading data. CQRS is only one option.
Both aspects can also be implemented without CQRS in just one Microservice.
The freedom to be able to use different approaches is one of the main advantages
of Microservice-based architectures.

Challenges

CQRS causes also some challenges:

e Transactions which comprise read and write operations are hard to
implement. The respective operations can be implemented in different
Microservices. In that case it is hardly possible to combine the operations
into one transaction since transactions across Microservices are usually
impossible.

e It is hard to ensure data consistency across different systems. The processing
of events is asynchronous so that different nodes can finish processing at
different points in time.

e The expenditure for development and infrastructure is higher. More system
components and more complex communication technologies are required.

It is not sensible to implement each Microservice with CQRS. However, the
approach represents in many circumstances a good supplement for Microservice-
based architectures.

10.3 Event Sourcing

Event Sourcing has a similar approach like CQRS. However, the events from
Event Sourcing differ from the commands from CQRS. Commands are specific:
They exactly define what is to be changed in an object. Events contain information
about something that has happened. Both approaches can also be combined: A

http://slideshare.net/mploed/event-sourcing-introduction-challenges

command can change data. This will result in events to which other components of
the system can react.

Instead of the state itself Event Sourcing stores events which have lead to the
current state. While the state itself is not saved, it can be reconstructed from the
events.

Event

Event

[j Event

\Event fueue)\
Event Event Event
Store Handler Handler

[gnapsh;i]

e The Event Queue sends all events to the different recipients. It can for
instance be implemented with messaging middleware.

e The Event Store saves all events. Therefore, it is always possible to
reconstruct the chain of events and the events themselves.

e An Event Handler reacts to the events. It can contain business logic which
reacts to events.

anYan

S

Fig. 46: Overview of Event Sourcing

Fig. 46 gives an overview of Event Sourcing:

¢ Insuch a system it is only the events which are easy to trace. The current
state of the system is not easy to follow up on. Therefore, it can be sensible
to maintain a Snapshot which contains the current state. At each event or
after a certain time the data in the Snapshot will be changed in line with the
new events. The Snapshot is optional. It is also possible to ad hoc
reconstruct the state from the events.

Events may not be changed afterwards. Erroneous events have to be corrected by
new events.

Event Sourcing is based on Domain-Driven Design (compare section 4.3).
Therefore, in line with Ubiquitous Language, the events should have names
which are also sensible in the business context. In some domains an event-based
model is especially sensible from a domain perspective. For instance, bookings to
an account can be considered as events. Requirements like auditing are very easy
to implement with Event Sourcing: Since the booking is modeled as an event, it is
very easy to trace who has performed which booking. In addition, it is relatively
easy to reconstruct a historical state of the system and old versions of the data.
Event Sourcing can be a good option from a domain perspective. Generally,
approaches like Event Sourcing are sensible in complex domains which also
profit from Domain-driven Design.

Event Sourcing has similar advantages and disadvantages like CQRS, and both
approaches can easily be combined. Event Sourcing is especially sensible when
the overall system works with an Event-driven Architecture (section 8.6). In that
case the Microservices anyhow send already events concerning changes of the
state and it is sensible to use this approach also in the Microservices.

Try and Experiment

Choose a project you know.

&‘ In which places would Event Sourcing be sensible? Why? Would Event Sourcing be useable in an
isolated manner at some places or would the entire system have to be changed to Events?

&‘ Where could CQRS be helpful? Why?

&‘ Do the interfaces adhere to the CQR rule? In that case the read and write operations would have to
be separate in all interfaces.

10.4 Hexagonal Architecture

A Hexagonal Architecture focuses on the logic of the application (Fig. 47). The
logic contains only the business functionalities. It has different interfaces which
are each represented by an edge of the hexagon. In the example these are the
interface for the interaction with users and the interface for administrators. Users
can utilize these interfaces via a web interface which is implemented by HT'TP
adaptors. For tests there are special adaptors. They enable the tests to simulate
users. Finally, there is an adaptor which makes the logic also accessible via
REST. This allows other Microservices to call the logic.

Interfaces do not only take requests from other systems. In addition, also other
systems are contacted via such interfaces: the database via the DB adaptor which
in fact uses a database. The alternative is an adaptor for test data. Finally, another
application can be contacted via a REST adaptor. Instead of these adaptors a test
system can be used which simulates the used system.

http://alistair.cockburn.us/Hexagonal+architecture

Web Ul DB
Adaptor Adaptor

*ﬁatabasﬁ

Test
data

Test User Data
functionalities

Application

. Events REST
Admin
p Adaptor,

Fig. 47: Overview of Hexagonal Architecture

Another name for Hexagonal Architectures is “Ports and Adaptors”. Each facet of
the application like user, admin, data or event is a port. The adaptors implement
the ports based on technologies like REST or web user interfaces. Via the ports on
the right side of the hexagon the application fetches data, while via the ports on the
left side its functionalities and data for user and other systems are offered.

The Hexagonal Architecture divides a system into a logic kernel and adaptors.
Only the adaptors enable the communication to the outside.

Hexagons or Layers?

A Hexagonal Architecture is an alternative to a layered architecture. In a layered
architecture there is a layer in which the Ul is implemented and a layer in which
the persistence is implemented. In a Hexagonal Architecture there are adaptors
which are connected to the logic via ports. A Hexagonal Architecture clearly
shows that there can be more ports than just persistence and Ul Besides the term
“adaptor” illustrates that the logic and the ports are supposed to be separate from
the concrete protocols and implementations of the adaptors.

Hexagonal Architectures and Microservices

It is very natural for Hexagonal Architectures to offer logic not only for other
Microservices via a REST interface, but also for users via a web Ul Exactly this

idea is also the basis of Microservices. They are not only supposed to provide
logic for other Microservices, but should also support the direct interaction of
users via a UL

Since individual test implementations can be implemented for all ports, the
isolated testing of a Microservice is easier with a Hexagonal Architecture. For
this purpose, test adaptors just have to be used instead of the actual
implementation. Especially the independent testing of individual Microservices is
an important prerequisite for the independent implementation and the independent
deployment of Microservices.

The necessary logic for resilience and stability (compare section 10.5) or Load
Balancing (section 8.10) can also be implemented in the adaptor.

It is likewise imaginable to distribute the adaptors and the actual logic into
individual Microservices. This will result in more distributed communication and
therefore into an overhead. However, on the other hand the implementation of
adaptor and kernel can be distributed to different teams. For instance, one team
which develops a mobile client can implement a specific adaptor which is
adapted to the bandwidth restrictions of mobile applications (compare also
section 9.1).

An Example

A Microservice for orders shall serve as example for a Hexagonal Architecture
(Fig. 48). The user can utilize the functionalities of the Microservice via the web
Ul to place orders. Likewise there is a REST interface with which other
Microservices or external clients can use the “user functionalities”. The web UI,
the REST interface and the test adaptor are three adaptors for the “user
functionalities” of the Microservice. The implementation with three adaptors
emphasizes that REST and web Ul are just two options to use the same
functionalities. Besides, in this manner Microservices are implemented which
integrate Ul and REST. Technically the adaptors can still be implemented in
separate Microservices.

Web UI DB

Eatabas;

User Test
Test —» functionalities dat
Data 2L
Order
REST Microservice \
Data .
Order eplication Reporting

Event
Test REST

Adaptor Adaptor

l

Test

Fig. 48: The order Microservice as an example for Hexagonal Archite cture

Another interface are the order events. They announce to the Microservice
“Delivery” when new orders have arrived so that the orders can be delivered. Via
this interface the Microservice “Delivery” communicates also when an order has
been delivered or when delays have occurred. In addition, this interface can be
served by an adaptor for tests. Therefore, the interface to the Microservice
“Delivery” does not just simply write data, but can also introduce changes to the
orders. This means that the interface uses other Microservices, but does also itself
take changes.

The Hexagonal Architecture has a domain-based distribution into an interface for
user functionalities and an interface for order events. Thereby the architecture
underlines the domain-based design.

The state of the orders is saved in a database. Also in this case there is an
interface where test data can be used for tests instead of the database. This
interface corresponds to the persistence layer of a classical architecture.

Finally, there is an interface which via data replication transmits the information
regarding the order to reporting. There statistics can be generated from the orders.
Reporting appears to be a persistence interface, but is really more: The data are
not just stored, but changed to enable quick generation of statistics.

As the example shows, a Hexagonal Architecture creates a good domain-based
distribution into different domain-based interfaces. Each domain-based interface
and each adaptor can be implemented as a separate Microservice. This allows to
divide the application into numerous Microservices, if necessary.

Try and Experiment

Choose a project you know.

&‘ Which individual hexagons would there be?

&‘ Which ports and adaptors would the hexagons have?

&‘ Which advantages would a Hexagonal Architecture offer?

&‘ What would the implementation look like?

10.5 Resilience and Stability

The failure of a Microservice should affect the availability of other Microservices
as little as possible. As a Microservice-based system is a distributed system, the
danger of a failure is fundamentally higher: Network and servers are unreliable.
As Microservices are distributed on multiple servers, the number of servers is
higher per system and therefore also the probability of a failure. When the failure

of one Microservice can result in the failure of additional Microservices, step by
step the entire system can break down. This has to be avoided.

For this reason, Microservices have to be shielded from the failure of other
Microservices. This property is called resilience. The necessary measures to
achieve resilience have to be part of the Microservice. Stability is a broader term
which denotes a high software availability. “Release It!” 1 lists several patterns to
this topic:

Timeout

Timeouts help to detect unavailability when communicating with another system. If
no response has been returned after the timeout, the system is considered
unavailable. Unfortunately, many APIs do not have the possibility to define
timeouts, and some default timeouts are very high. At the level of the operating
system default TCP timeouts can be e.g. five minutes. During this time the
Microservice does not respond to callers since the service is waiting for the other
Microservice. Therefore, also this Microservice seems to have failed. Besides the
request can block a thread during this time. At some point all threads are blocked,
and the Microservice cannot receive any additional requests anymore. Exactly
such a domino effect has to be avoided. When the API intends a timeout for
accessing another system or a database, this timeout should be set. An alternative
option is to let all requests to external systems or databases take place in a extra
thread and to terminate this thread after a timeout.

Circuit Breaker

A Circuit Breaker is a safety measure in an electricity circuit. In case of a short
circuit the Circuit Breaker interrupts the flow of electricity to avoid dangerous
consequences like overheating or fire. This idea can be applied to software as
well: When another system is not available anymore or returns only errors, a
Circuit Breaker prevents calling the system. Calls are anyhow meaningless in this
scenario.

Normally, the Circuit Breaker is closed, and calls are forwarded to the other
system. When an error occurs, depending on the error frequency the Circuit
Breaker will be opened. In that case calls are not send on to the other system, but
run directly into an error.

This takes load off the other system. Also there is no need for a timeout as the
error is instantaneous. After some time the Circuit Breaker will close again.

Incoming calls will now be forwarded again to the other system. If the error
persists, the Circuit Breaker will open again.

The Circuit Breaker can be combined with a timeout. A timeout can open the
Circuit Breaker. The state of the Circuit Breakers shows operations where
currently problems in the system are. An open Circuit Breaker indicates that a
Microservice is not able to communicate with another Microservice anymore.
Therefore, the state of the Circuit Breakers should be displayed in monitoring for
operations.

When the Circuit Breaker is open, an error does not necessarily have to be
generated. It is also possible to just degrade the functionality. Let us assume that a
Automated Teller Machine (ATM) cannot verify whether an account contains
enough money for the desired withdrawal, because the responsible system is not
reachable. Nevertheless, cash withdrawals can be permitted up to a certain limit
so that customers will not be dissatisfied. In addition, the bank will make less
profit if all cash withdrawals are prohibited as it will not get the withdrawal-
associated fees. Whether and up to which limit a cash withdrawal is still
permitted is a business decision. The possible damage has to be balanced against
the potential for profit. There can also be other rules to be applied in case of the
failure of another system. Calls can for instance be answered from a cache. More
important than the technical possibilities is the domain-based requirement for
deciding on the appropriate handling of a system failure.

Bulkhead

A Bulkhead is a special door on a ship which can be closed in a watertight
manner. It divides the ship into several areas. When water gets in, only a part of
the ship is affected, and thus the ship will not sink.

Similar approaches are applicable to software: The entire system has to be
divided into individual areas. A breakdown or a problem in one area may not
affect the other areas. For example, there can be several instances of a
Microservice for different clients. When a client overloads the Microservices, the
other clients will not be negatively affected. The same is true for resources like
database connections or threads. When different parts of a Microservice use
different pools for these resources, one part cannot block the other parts even if it
uses up all its resources.

In Microservices-based architectures the Microservices themselves form separate
areas. This is especially the case when each Microservice brings its own virtual
machine along. Even if the Microservice causes the entire virtual machine to crash
or overloads it, the other Microservices will hardly be affected. They run on
different virtual machines and are therefore separate.

Steady State

The term Steady State stands for the fact that systems should be built in a manner
that allows for their permanent operation. This means for instance that systems
should not store increasing amounts of data. Otherwise the system will have used
up its entire capacity at some point and therefore breakdown. Log files for
example have to be deleted at some point. Usually they are anyhow only
interesting during a certain time interval. Another example is caching: When a
cache always keeps growing, it will at some point have filled all storage space.
Therefore values also have to be deleted again from cache at some point to keep
the cache from permanently growing.

Fail Fast

Timeouts are only necessary because another system requires a long time to
respond. The idea behind Fail Fast is to address the problem from the other side:
Each system is supposed to recognize errors as fast as possible and to indicate
them immediately. When a call requires a certain service and this service is
unavailable for the moment, the call can be directly answered with an error
message. The same is true when other resources are not available at the time.
Moreover, the call can be validated right at the start. When it contains errors,
there is anyhow nothing gained by processing it. Therefore, an error message can
be returned immediately. The advantages of Fail Fast are identical with the ones
offered by timeout: A rapid failure uses up less resources and therefore results in
a more stabile system.

Handshaking

Handshaking in a protocol serves to initiate communication. Thereby protocols
allow that a server rejects additional calls in cases of overload. This avoids
additional overload, a breakdown or too slow responses. Unfortunately, protocols
like HTTP do not support this. Therefore, the application has to mimic the
functionality for instance with Health Checks. An application can signal in that
way that it is principally reachable, but has right now so much load that it is not
sensible to send more calls to it. Protocols which build on socket connections can
implement such approaches by themselves.

Test Harness

A Test Harness can be used to find out how an application behaves in certain
error situations. Among those can be problems at the level of the TCP/IP or for
instance responses of other systems which contain HTTP header, but no HTTP
body. Something like that should in fact not occur since operating system or
network stack should deal with it. Nevertheless, such errors can occur in practice
and can have dramatic consequences since applications are not at all prepared for
handling them. A Test Harness can be an extension of the tests which are
discussed in section 11.8.

Uncoupling via Middleware

Calls in one program only function on the same host at the same time in the same
process. Synchronous distributed communication (e.g. REST) allows for
communication between different hosts and different processes at the same time.
Asynchronous communication via messaging systems (section 9.4) also allows an
uncoupling over time. A system should not wait for a response of an asynchronous
process. The system should continue working on other tasks instead of just waiting
for a response. Errors which cause one system after another to break down like
domino stones are much less likely in case of asynchronous communication. The
systems are forced to deal with long response times since asynchronous
communication anyhow can result in long response times.

Stability and Microservices

Stability patterns like Bulkhead restrict failures to a unit. Microservices are the
obvious choice for a unit. They run on separate virtual machines and accordingly
are already isolated in regards to most issues. Thereby the Bulkhead pattern arises
very naturally in a Microservices-based architecture. Fig. 49 shows an overview:
A Microservice can via Bulkhead, Circuit Breaker and timeouts safeguard the use
of other Microservices. The used Microservice can additionally implement Fail
Fast. The safeguarding can be implemented via patterns in those parts of a
Microservice which are responsible for communicating with other Microservices.
Thereby this aspect is implemented in one area of the code and not distributed
across the entire code.

\

) 4 A
Bulkhead w
Circuit Breaker » Fail Fast
Timeout J
Microservice) L Microservice

Fig. 49: Stability in the case of Microservices

On a technical level the patterns can be implemented differently. For
Microservices there are the following options:

Timeouts are easy to implement: For accessing the other system an individual
thread is started which is terminated after a timeout.

At the first glance Circuit Breakers are not very complex and can be
developed in your own code. However, the implementation has also to work
under high load and has to offer an interface for operations to allow
monitoring. This is not trivial. Therefore a home-grown implementation is
not very sensible.

Bulkheads are brought along by Microservices since a problem is in many
cases already limited to just one Microservice. For instance, a memory leak
will only cause one Microservice to fail.

Steady State, Fail Fast, Handshaking and Test Harness have to be
implemented by each Microservice.

Uncoupling via Middleware is an option for the shared communication of
Microservices.

Resilience and Reactive

The Reactive Manifesto lists Resilience as essential property of a Reactive
application. Resilience can be implemented in an application by processing calls
asynchronously. Each part of an application which processes messages (“actor™)
has to be monitored. When an actor does not react anymore, it can be restarted.
This allows to handle errors and to make applications more resilient.

Hystrix

Hystrix implements timeout and Circuit Breaker. For this purpose, developers
have to encapsulate calls in commands. Alternatively, Java annotations can be
used. The calls take place in individual thread pools. Several thread pools can be

http://www.reactivemanifesto.org/
https://github.com/Netflix/Hystrix/

created. If there is one thread pool per called Microservice, the calls of the
Microservices can be separated from each other in such a manner that a problem
with one Microservice does not affect the use of the other Microservices. This is
in line with the Bulkhead idea. Hystrix is a Java library which is under Apache
license and originates from the Netflix stack. The example application uses
Hystrix together with Spring Cloud (compare section 14.10). In combination with
a Sidecar Hystrix can also be used for applications which are not written in Java
(compare section 8.7). Hystrix supplies information about the state of the thread
pools and the Circuit Breaker for monitoring and operation. This information can
be displayed in a special monitoring tool — the Hystrix dashboard. Internally
Hystrix uses the Reactive Extensions for Java (RxJava). Hystrix is the most
widely used library in the area of Resilience.

Try and Experiment

&‘ This chapter introduced eight patterns for stability. Prioritize these patterns. Which properties are
indispensable? Which are important? Which are unimportant?

&‘ How can be verified whether the Microservices really implement the patterns?

10.6 Technical Architecture

The technical architecture of a Microservice can be individually designed.
Frameworks or programming languages do not have to be uniform for all
Microservices. Therefore, each Microservice can well use different platforms.
However, certain technical infrastructures fit better to Microservices than others.

Process Engines

Process engines which normally serve to orchestrate services in a SOA (section
7.1) can be used in a Microservice to model a business process. The important
point is that one Microservice implements only one domain — for instance one
Bounded Context. A Microservice should not end up as a pure integration or
orchestration of other Microservices without its own logic. Otherwise changes
will require that not only this one Microservice is modified, but also the
integrated Microservices. However, it is a central aim of Microservice-based

architectures to limit changes to one Microservice if possible. If multiple business
processes have to be implemented, different Microservices should be used for it.
Each of these Microservices should implement one business process together with
the dependent services. Of course, it will not always be possible to avoid that
other Microservices have to be integrated to implement a business process.
However, a Microservice which just represents an integration is not sensible.

Statelessness

Stateless Microservices are very advantageous. To put it more clearly:
Microservices should not save any state in their logic layer. States in the database
or on the client are acceptable. When using this approach the failure of an
individual instance does not have a big impact. The instance can just be replaced
by a new instance. In addition, the load can be distributed between multiple
instances — without having to take into consideration which instance processed the
previous calls of the user. And finally, the deployment of a new version is easier
since the old version can just be stopped and replaced without having to migrate
its state.

Reactive

Implementing Microservices with Reactive technologies can be especially useful.
These approaches are comparable to Erlang (compare section 15.7): Applications
consist of actors. In Erlang they are called processes. Work in each actor is
sequential, however, different actors can work in parallel on different messages.
This enables the parallel processing of tasks. Actors can send messages to other
actors which end up in the mailboxes of these actors. I/O operations are not
blocking in Reactive applications: A request for data is sent out. When the data
are there, the actor is called and can process the data. In the meantime the actors
can work on other requests.

Essential properties are according to the Reactive Manifesto:

¢ Responsive: The system should react to requests as fast as possible. This
has among others advantages for Fail Fast and therefore for stability
(compare section 10.5). Once the mailbox is filled to a certain predetermined
degree, the actor can for instance reject to accept additional messages.
Thereby the sender is slowed down, and the system as such does not get
overloaded. Other requests can still be processed. The aim to be responsive
is also supported by the abdication of blocking I/O operations.

http://www.reactivemanifesto.org/

¢ Resilience and its relationship with Reactive applications has already been
discussed in section 10.5.

¢ Elastic means that new systems can be started at run time which share the
load. For that purpose the system has to be scalable, and at the same time it
has to be possible to change the system at run time in such a way that the load
can be distributed to the different nodes.

e Message Driven means that the individual components communicate with
each other via messaging. As described in section 9.4, this communication
fits well to Microservices. Reactive applications use very similar
approaches also within the application itself.

Reactive can implement Microservices especially easily since the ideas from the
Reactive area fit very well to Microservices. However, similarly good results can
also be achieved by the use of classical technologies.

Technologies from the area of Reactive are for instance:

e The programming language Scala with the Reactive framework Akka and
web framework Play which is based on it. These frameworks can also be
used with Java.

e There are Reactive extensions for practically all popular programming
languages. Among those are RxJava for Java or RxJS for JavaScript.

e Similar approaches are also supported by Vert.x (compare also section
15.6). Even though this framework is based on the JVM, it supports many
different programming languages like Java, Groovy, Scala, JavaScript,
Clojure, Ruby or Python.

Microservices without Reactive?

Reactive is only one option for implementing a system with Microservices. The
classical programming model with blocking I/O, without actors and with
synchronous calls is likewise suitable for this type of system. As previously
discussed, Resilience can be implemented via libraries. Elastic can be achieved
by starting new instances of the Microservices for instance as virtual machines or
Docker containers. And classical applications can also communicate with each
other via messages. Reactive applications have advantages for Responsive.
However, in that case it has to be ensured that operations really do not block. For
I/O operations the Reactive solutions can usually guarantee that. However, a
complex calculation can block the system. So in that case no messages can be
processed anymore, and the entire system is blocked. A Microservice does not

http://www.scala-lang.org/
http://akka.io/
https://www.playframework.com/
http://reactivex.io/
https://github.com/ReactiveX/RxJava
https://github.com/Reactive-Extensions/RxJS
http://vertx.io/

have to be implemented with Reactive technologies, but they are for sure an
interesting alternative.

Try and Experiment

Get more information about Reactive and Microservices.

&‘ How exactly are the advantages implemented?

&‘ Is there a Reactive extension for your preferred programming language? Which features does it
offer? How does this help with implementing Microservices?

10.7 Conclusion

The team implementing a certain Microservice is also responsible for its domain-
based architecture. There should be few guidelines restricting team decisions so
that the independence of the teams is ensured.

Low cohesion can be an indication for a problem with the domain-based design of
a Microservice. Domain-driven Design (DDD) is an interesting option for
structuring a Microservice. Likewise transactions can provide clues for a sensible
domain-based division: An operation of a Microservice should be a transaction
(section 10.1).

CQS (Command Query Separation) divides operations of a Microservice or a
class into read operations (queries) and write operations (commands). CQRS
(Command Query Responsibility Segregation) (section 10.2) separates data
changes via commands from Query Handlers which can process requests. Thereby
Microservices or classes are created which can only implement reading or
writing access. Event Sourcing (Section 10.3) stores events and thereby does not
focus on the current state, but on the history of all events. These approaches are
useful for building up Microservices because they allow for the creation of
smaller Microservices which can implement only read or write operations. This
enables an independent scaling and optimizations for both types of operations.

Hexagonal Architecture (section 10.4) focuses on a kernel which can be called
via adaptors for instance by a UI or an API, as the center point of each
Microservice. Likewise adaptors can enable the use of other Microservices or of
databases. For Microservices this results in an architecture which supports a Ul
and a REST interface in a Microservice.

Section 10.5 has presented some patterns for Resilience and Stability. The most
important of those are Circuit Breaker, Timeout and Bulkhead. A popular
implementation is Hystrix.

Section 10.6 introduced certain technical options for Microservices: The use of
Process Engines is for instance an option for a Microservice. Statelessness is
advantageous. And finally, Reactive approaches are a good basis for the
implementation of Microservices.

In summary, the chapter explained essential factors for the implementation of
individual Microservices.

Essential Points

e Microservices within a Microservice-based system can have different
domain-based architectures.

e Microservices can internally be implemented with Event Sourcing, CQRS or
Hexagonal Architectures.

e Technical properties like stability can only be implemented individually by
each Microservice.

1. Michael T. Nygard: Release It!: Design and Deploy Production-Ready
Software, Pragmatic Programmers, 2007, ISBN 978-0-97873-921-8<

11 Testing Microservices and Microservice-
based Systems

The separation of a system into Microservices has consequences for testing.
Section 11.1 explains the motivation behind software tests. Section 11.2 discusses
fundamental approaches for tests, not only in regards to Microservices. Section
11.3 illustrates why there are special challenges when testing Microservices
which are not present in this form in other systems. One example: In a
Microservice-based system the entire system comprising all Microservices has to
be tested (section 11.4). This is laborious since there can be a multitude of
Microservices. Section 11.5 describes the special case of a legacy application
which is supposed to be replaced by Microservices. In that case the integration of
Microservices and legacy application has to be tested. Testing just the
Microservices is not sufficient. Another possibility to safeguard the interfaces
between Microservices are consumer-driven contract tests (section 11.7). They
reduce the expenditure for testing the entire system. Of course, the individual
Microservices have to be tested as well. In this context the question arises how
individual Microservices can at all be run in isolation without other
Microservices (section 11.6). Microservices provide technology freedom,
nevertheless there have to be certain standards. Therefore tests can comprise
technical standards (section 11.8) which have been defined in the architecture.

11.1 Why Tests?

Testing software is an essential part of every software development project.
Nevertheless, questions about the goal of the testing are hardly asked. In the end
tests are risk management. They are supposed to minimize the risk that errors
appear in production and are noticed by users — or that other damage is done.

This answer entails a number of consequences:

e FEach test has to be evaluated based on the question which risk it minimizes.
In the end a test is only meaningful when it helps to avoid concrete error
scenarios which otherwise would occur in production.

e Tests represent only one option to deal with risk. Consequences of an error
occurring in production can also be minimized in different ways. An
important point is how long it will take until a certain error is corrected in
production. The longer an error persists in production, the more profound are
usually the consequences. How long it takes to put a corrected version of the
services into production depends on the deployment approach. Therefore,
there is a connection between tests and deployment strategies.

e Likewise, it is a very important aspect how long it will take until an error in
production is noticed. This depends on the quality of monitoring and logging.

In the end many measures can address errors in production. Just focusing on tests
is not sufficient in order to be able to offer high quality software to customers.

Tests Minimize Expenditure

Tests can do more than just minimize risk. They can help to minimize or avoid
expenditure. An error in production can generate a high expenditure. The error can
influence the customer service and can cause extra expenditure there. Identifying
and correcting errors in production is usually more laborious than during tests.
Access to the systems is often restricted. Besides the developers will have
implemented other features meanwhile so that they will first have to familiarize
themselves again with the erroneous code.

In addition, the approach for tests can help to avoid or reduce expenditure.
Automating tests only appears laborious at first glance. When tests are so well
defined that results are reproducible, the step to a complete formalization and
automation is not huge. In that case the costs for the execution of the tests will be
negligible. This allows to test more frequently, and this will promote quality.

Test = Documentation

A test defines what the code is supposed to do. Thereby it represents a kind of
documentation. Unit tests define how the productive code is supposed to be used
and also how it is supposed to behave in exceptional and borderline cases.
Acceptance tests reflect the requirements of the customers. The advantage of tests
in comparison to documentation is that they are executed. This ensures that the
tests really reflect the current behavior and not an outdated state or a state which
will only be reached in the future.

Test-driven Development

Test-driven development exploits the fact that tests represent requirements: In this
approach developers initially write tests and subsequently the implementation.
This ensures that the entire code is safeguarded by tests. Besides, in that case tests
are not influenced by knowledge about the code since the code does not even exist
yet when the test is written. If tests are only implemented afterwards, developers
might not test for certain potential problems due to their knowledge about the
implementation. In case of test-driven development this is very unlikely. Thereby
tests turn into a very important basis for the development process. They push the
development: Prior to each change there has to be a test which does not work.
Code may only be adjusted when the test was successful. This is true at the level
of individual classes, which are safeguarded by previously written unit tests, but
also at the level of requirements which are ensured by previously written
acceptance tests.

11.2 How to Test?
There are different types of tests which handle different risks:

Unit Tests

Unit tests examine the units the system consists of - just like their name suggests.
They minimize the risk that the individual units contain errors. Unit tests check
especially small units — individual methods or functions. For this purpose, all
dependencies have to replaced because otherwise not only the individual unit but
also the dependent units are tested. To replace the dependencies there are two
possibilities:

e Mocks simulate a certain call with a certain result. After the call the test can
verify whether the expected calls really have taken place. A test can for
instance define a Mock which will return a defined customer for a certain
customer number. After the test it can evaluate whether the customer has
really been readout by the code. In another test scenario the Mock can
simulate an error if asked for a customer. Thereby unit tests can simulate
error situations which otherwise would be hard to reproduce.

e Stubs on the other hand simulate the entire Microservice — however, with a
limited functionality. For example, the Stub can return a constant value.
Thereby a test can be performed without the really dependent Microservice.
For instance, a Stub can be implemented which returns test customers for
certain customer numbers — each with certain properties.

Unit tests are within the responsibility of the developers. There are unit test
frameworks for all popular programming languages. The tests use knowledge
about the internal structure of the units. For example they replace dependencies by
Mocks or Stubs. Besides, the knowledge can be employed to run through all code
paths for code branches within the tests. The tests are White Box Tests because
they exploit knowledge about the structure of the units. Actually, one would have
to talk of a transparent box, however, “White Box™ is the commonly used term.

One advantage of unit tests is their speed: Even for a complex project the unit tests
can be completed within a few minutes. Thereby literally each code change can be
safeguarded by unit tests.

Integration Tests

Integration tests check the interplay of the components. Thereby they are supposed
to minimize the risk that the integration of the components contains errors. They do
not use Stubs or Mocks. The components can be tested as applications via the Ul
or via special test frameworks. Integration tests evaluate at least whether the
individual parts are able to communicate with each other. Furthermore, they can
for instance test the logic based on business processes.

In cases where they test business processes the integration tests are similar to
acceptance tests which check the requirements of the customers. This area is
covered by tools for BDD (Behavior-Driven Design) and ATDD (Acceptance
Test-Driven Design). These tools enable a test-driven approach where first the
tests are written and afterwards the implementation - even for integration and
acceptance tests.

Integration tests do not use information about the system which is to be tested.
They are called Black Box Tests since they do not exploit knowledge about the
internal structure of the system.

Ul Tests

Ul tests check the application via the user interface. In principle, they only have to
test whether the user interface works correctly. There are numerous frameworks
and tools for testing the user interface. Among those are tools for web Uls, but
also for desktop or mobile applications. The tests are Blackbox tests. Since they
test the user interface, the tests are fragile: Changes to the user interface can cause
problems even if the logic remains unchanged. Besides, the tests usually require a
complete system setup so that they are slow.

Manual Tests

Finally there can be manual tests. They can either minimize the risk of errors in
new features or check certain aspects like security, performance or features which
have previously exposed quality problems. They should be explorative: They look
at problems in certain areas of the applications. Tests which are aimed at
detecting whether a certain error shows up again (regression tests), should never
be done manually since automated tests find such errors easier and in a more cost-
efficient and reproducible manner. Manual testing is limited to explorative tests.

Load Tests

Load tests analyze the behavior of the application under load. Performance tests
on the other hand check the speed, and capacity tests examine how many users or
requests the system is able to process. All of these tests evaluate the efficiency of
the application. For this purpose, they use similar tools which measure response
times and generate load. Besides, such tests can also monitor the use of resources
or check whether errors occur upon a certain load. Tests which investigate
whether a system is able to cope with a high load in the long term are called
endurance tests.

Test Pyramid

The distribution of tests is illustrated by the Test Pyramid ((Fig. 50)[#Fig50]):
The broad basis of the Pyramid demonstrates that there are many unit tests. They
can be rapidly performed, and most errors can be detected at this level. There are
fewer integration tests since they are more laborious and run longer. In addition,
there are usually not too many potential errors upon the integration of the parts.
The logic itself is also safeguarded by the unit tests. Ul tests only have to verify
the correctness of the graphical user interface. They are even more laborious since
automating Ul is complicated, and a complete environment is necessary. Manual
tests are only required now and then.

Test-driven development usually results in a Test Pyramid: For each requirement
there is an integration test written and for each change to a class a unit test.
Thereby automatically many integration tests are created and even more unit tests.

Ul
Tests

Integration Tests

Unit Tests

Fig. 50: Test Pyramide: The ideal

The Test Pyramid achieves high quality with low expenditure. The tests are
automated as much as possible. Each risk is addressed with a test that is as simple
as possible: Logic is tested by simple and rapid unit tests. More laborious tests
are restricted to areas which cannot be tested with less effort.

Many projects are very remote from the ideal of the Test Pyramid. Unfortunately,
in reality tests are often rather like an ice-cream cone (Fig. 51. In that case there
are the following challenges:

e There are comprehensive manual tests since such tests are very easy.
Besides, many testers do not have sufficient experience with test automation.

Especially if the testers are not able to write maintainable test code, it is
hardly possible to automate tests.

Tests via the user interface are the easiest type of automation because they
are very similar to the manual tests. When there are automated tests, it is
mostly Ul tests. Unfortunately, automated Ul tests are fragile: Changes to the
graphical user interface often already lead to problems. Since the tests are
testing the entire system, they are slow. If the tests are parallelized, there are
often failures because the system experiences a too high load.

There are rather few integration tests. Such tests require a comprehensive
knowledge about the system and about automation techniques, which testers
often lack.

There can be in fact more unit tests than presented in the schema. However,
their quality is often bad since developers frequently lack experience in
writing unit tests.

Manual Tests

Integration
Tests

Unit
Tests

Fig. 51: Test Ice-Cream Cone: Far too common

In addition, unnecessarily complex tests are often used for certain error sources.
Ul tests or manual tests are used to test logic. For this purpose, however, unit tests
would be sufficient and much faster. When testing, developers should try to avoid
these problems and the ice-cream cone and instead attempt to implement a Test
Pyramid.

Besides, the test concept has to be adjusted to the risks of the respective software
and provide tests for the right properties. For example, a project which is

predominantly evaluated based on performance should have automated load or
capacity tests. Functional tests might not be so important in this scenario.

Try and Experiment

&‘ In which places does the approach in your current project not correspond to the Test Pyramid, but to
the Test Ice-Cream Cone?

e Where are manual tests used? Are at least the most important tests automated?
e What is the relationship between UI to integration and unit tests?

e How is the quality of the different tests?

¢ Is test-driven development used? For individual classes or also for requirements?

Continuous Delivery Pipeline

The Continuous Delivery Pipeline (Fig. 11, section 5.1) defines the different test
phases. Therefore, it is interesting for the testing of the Microservices and not as
much for the deployment. The unit tests from the Test Pyramid are executed in the
commit phase. Ul tests can be part of the acceptance tests or can likewise be run
in the commit phase. The capacity tests use the complete system and therefore can
be regarded as integration tests from the Test Pyramid. The explorative tests are
the manual tests from the Test Pyramid.

Automating tests is even more important for Microservices than in other software
architectures. The main objective of Microservice-based architectures is
independent and frequent software deployment. This can only be implemented
when the quality of Microservices is safeguarded by tests. Otherwise the
deployment into production is too risky.

11.3 Mitigate Risks at Deployment

An important advantage of Microservices is their fast deployment due to the small
size of the deployable units. Besides Resilience avoids that the failure of an
individual Microservice causes other Microservices or the entire system to fail.
Thereby the risk is lower if an error occurs in production in spite of the tests.

However, there are additional reasons why Microservices minimize the risk of a
deployment:

e [t is much faster to correct an error since only one Microservice has to be
deployed anew. This is by far faster and easier than the deployment of a
Deployment Monolith.

e Approaches like Blue/Green Deployment or Canary Releasing (section 12.4)
further reduce the risk associated with deployments. Using these techniques a
Microservice that contains a bug can be removed from production again with
little expenditure and time loss. These approaches are easier to implement
with Microservices since it is less effort to provide the required
environments for a Microservice than for an entire Deployment Monolith.

e The service can participate in production without doing actual work.
Although it will get the same requests like the version in production, all
changes to data which the new service would trigger are not actually
performed on the data but only compared to the modifications from the
service in production. This can for example be achieved by manipulations to
the database driver or the database itself. The service can also use a copy of
the database. The main point is that in this phase the Microservice will not
change the data in production. In addition, messages which the Microservice
sends to the outside can be compared with the messages of the Microservices
in production instead of sending them really to the recipients. With this
approach the Microservice runs already with all special cases of the data in
production which even the best test cannot all cover. Moreover, such a
procedure can provide more reliable information in regards to performance,
although the writes of the data do not occur so that the performance is not
entirely comparable. Such approaches can hardly be implemented for a
Deployment Monolith since it is hardly possible to have the entire
Deployment Monolith run in another instance in production. This would
require a lot of resources and a very complex configuration because the
Deployment Monolith can introduce changes to data in numerous locations.
Even with Microservices this approach is still complex since comprehensive
support is necessary in software and deployment. Extra code has to be
written for calling the old and the new version and to compare the changes
and outgoing messages of both versions. However, this approach is at least
feasible.

¢ Finally, the service can be closely examined via monitoring in order to
rapidly recognize and solve problems. This shortens the time until a problem
is noticed and addressed. The monitoring fulfills to a certain degree the
function of acceptance criteria of load tests. Code which fails in a load test
should also create an alarm during monitoring in production. Therefore a
close coordination between monitoring and tests is sensible.

In the end the idea behind these approaches is to reduce the risk associated with
bringing a Microservice into production instead of addressing the risk by tests.
When the new version of a Microservice cannot change any data, its deployment
is practically free of risk. This is hardly possible for Deployment Monoliths since
the deployment process is much more laborious and time consuming, and requires
more resources. Therefore, the deployment cannot be performed fast. Accordingly,
the deployment cannot easily be rolled back when errors occur.

The approach is also interesting because some risks can hardly be eliminated by
tests. For example, load and performance tests can be an indicator for the
behavior of the application in production. However, these tests cannot be
completely reliable since the amount of data is different in production, the user
behavior is different and the hardware is differently sized. It is not feasible to
cover all these aspects in one test environment. In addition, there can be errors
which only occur with data sets from production. They are hard to simulate with
tests. Monitoring and rapid deployment can in fact be an alternative to tests in a
Microservices environment. It is important to think about which risk can be
reduced with which type of measure - tests or optimizations of the deployment
pipeline.

11.4 Testing the Overall System

In addition to the tests of the individual Microservices also the overall system has
to be tested. So there are multiple Test Pyramids: one for each individual
Microservice and one for the system in its entirety. For the complete system there
are integration tests of the Microservices, Ul tests of the entire application and
manual tests. Unit tests at this level are the tests of the Microservices since they
are the units of the overall system. These tests consist of a complete Test Pyramid
of the individual Microservices.

Ul

Complete Tests

system

Integration Tests

Individual
Microservices

Integration Tests Integration Tests Integration Tests

/ Unit Tests \ / Unit Tests \ / Unit Tests \

Fig. 52: Test Pyramid for Microservices

The tests of the overall system are responsible for identifying problems which
occur in the interplay of the different Microservices. Microservices are
distributed systems. Calls can require the interplay of multiple Microservices to
return a result to the user. This is a challenge for testing: Distributed systems have
many more sources of errors. Tests of the overall system have to address these
risks. However, when testing Microservices another approach is chosen: Due to
Resilience the individual Microservices should still work in case of problems
with other Microservices. Functional tests can be performed with Stubs or Mocks
of the other Microservices. In this way Microservices can be tested without the
need to build up a complex distributed system and examine it in regards to all
possible error scenarios.

Shared Integration Tests

Still each Microservice should be tested prior to its deployment in production in
regards to its integration with the other Microservices. This necessitates changes
to the Continuous Delivery Pipeline as it was described section 5.1: At the end of
the deployment pipeline each Microservice should be tested together with the
other Microservices. Each Microservice should run through this step on its own.
When new versions of multiple Microservices are tested together at this step, it

will not be clear which Microservice might have caused the failure of the test.
Only if in case of a failure it is still clear which Microservice triggered it, is it
possible to test multiple Microservices together at this step. But in practice such
optimizations are hardly feasible.

Continuous Delivery-
Pipelines of the
Microservices

. . | Acceptance | | Capacity . | Explorative

Commit Test Tests | Tests
” " Integration
Commit > AgCoptancs > Capsclty > Explorative »| Tests for all »| Production
Test Tests Tests . .
Microservices

, . | Acceptance | | Capacity . | Explorative

Commit Test Tests | Tests

Fig. 53: Integration tests at the end of the Continuous Delivery Pipelines

This reasoning leads to the procedure depicted in Fig. 53: The Continuous
Delivery Pipelines of the Microservices end in a common integration test into
which each Microservice has to enter separately. When a Microservice is in the
integration test phase, the other Microservices have to wait until the integration
test is completed. To ensure that indeed only one Microservice at at time runs
through the integration tests the tests can be performed in an extra environment. In
that case only one Microservice may be delivered in a new version in this
environment at a given point in time. The environment enforces the serialized
processing of the integration tests of the Microservices.

Such a synchronization point slows down the deployment and therefore the entire
process. If the integration test lasts for example one hour, it will only be possible
to put eight Microservices through the integration test and into production per
eight hours work day. If there are eight teams in the project, each team will be
able to deploy a Microservice exactly once per day. This is not sufficient to
achieve a rapid error correction in production. Besides, this weakens an essential
advantage of Microservices: It should be possible to deploy each Microservice
independently. Even though this is in principle still possible, the deployment takes
too long. Moreover, the Microservices have now dependencies to each other due
to the integration tests — not at the code level, but in the deployment pipelines. In
addition, things are not balanced when the Continuous Delivery without the last

integration test requires for instance only one hour, but it is still not possible to get
more than one release into production per day.

Avoiding Integration Tests of the Overall System

This problem can be solved by the Test Pyramid. It moves the focus from
integration tests of the overall system to integration tests of the individual
Microservices and unit tests. When there are few integration tests of the overall
system, they will not take as much time. In addition, less synchronization is
necessary, and the deployment in production is faster. The integration tests are
only meant to test the interplay between Microservices. It is sufficient when each
Microservices can reach all dependent Microservices. All other risks can be
taken care of prior to this last test. With consumer-driven contract tests (section
11.7) it is even possible to exclude errors in the communication between the
Microservices without having to test the Microservices together. All these
measure help to reduce the number of integration tests and thereby their total
duration. In the end there is no reduction in overall testing — the testing is just
moved to other phases: to the tests of the individual Microservices and to the unit
tests.

The tests for the overall system can be developed by all teams together.
Consistently, they form part of the macro architecture because they concern the
system as such and therefore cannot be the responsibility of an individual team
(compare section 13.3).

The complete system can also be tested manually. However, it is not feasible that
each new version of a Microservice only goes into production after a manual test
with the other Microservices. The delays will just be too large. Manual tests of
the system as such can for example address features which are not yet activated in
production. Alternatively, certain aspects like security can be tested in this manner
if problems occurred in these areas previously.

11.5 Testing Legacy Applications and Microservices

Microservices are often used to replace legacy applications. The legacy
applications are usually Deployment Monoliths. Therefore the Continuous
Delivery Pipeline of the legacy application tests many functionalities which have
to be split into Microservices. Because of the many functionalities the test steps of
the Continuous Delivery Pipeline take very long for Deployment Monoliths.
Accordingly, the deployment in production is very complex and takes long. Under

such conditions it is unrealistic that each small code change to the legacy
application goes into production. Often there are deployments at the end of a
sprint of 14 days or even only one release per quarter. Nightly tests inspect the
current state of the system. Tests can be transferred from the Continuous Delivery
Pipeline into the nightly tests. In that case the Continuous Delivery Pipeline will
be faster but certain errors are only recognized during the night-time testing. Then
the question arises which of the changes of the past day is responsible for the
erTor.

Relocating Tests of the Legacy Application

When migrating from a legacy application to Microservices, tests are especially
important. If just the tests of the legacy application are used, they will test a
number of functionalities which meanwhile have been moved to Microservices. In
that case these tests have to be run at each release of a Microservice — which
takes much too long. The tests have to be relocated. They can turn into integration
tests for the Microservices (Fig. 54). However, the integration tests of the
Microservices should run rapidly. In this phase it is not necessary to use tests for
functionalities, which reside in a single Microservice. Then the tests of the legacy
application have to turn into integration tests of the individual Microservices or
even into unit tests. In that case they are much faster. And they run as tests for a
single Microservice so that they do not slow down the shared tests of the
Microservices.

Not only the legacy application has to be migrated, but also the tests. Otherwise
fast deployments will not be possible in spite of the migration of the legacy
application.

The tests for the functionalities which have been transferred to Microservices can
be removed from the tests of the legacy application. Step by step this will speed
up the deployment of the legacy application. Consequently, changes to the legacy
application will also get increasingly easier.

Integration Tests | | Integration Tests
for all for individual Unit Tests
Microservices Microservices
Fig. 54: Relocating tests of legacy applications

Test Legacy
Application

Integration Test: Legacy Application and Microservices

The legacy application also has to be tested together with the Microservices. The
Microservices have to be tested together with the version of the legacy production
which is in production. This ensures that the Microservices will also work in
production together with the legacy application. For this purpose, the version of
the legacy application running in production can be integrated into the integration
tests of the Microservices. It is the responsibility of each Microservice to pass the
tests without any errors with this version (Fig. 55).

Legacy
Application
(Production
Microservice Version)
Continuous Delivery
Pipeline
Microservice Integration
Continuous Delivery —| Testofall —»| Production
Pipeline / Microservices

Microservice
Continuous Delivery
Pipeline

Fig. 55: Legacy Application in the Continuous Delivery Pipelines

When the deployment cycles of the legacy application last days or weeks, a new
version of the legacy application will be in development in parallel. The
Microservices also have to be tested with this version. This ensures that there
will not suddenly be errors occurring upon the release of the new legacy
application. The version of the legacy application which is currently in
development runs an integration test with the current Microservices as part of its
own deployment pipeline (Fig. 56). For this the versions of the Microservices
which are in production have to be used.

The versions of the Microservices change much more frequently than the version
of the legacy application. A new version of a Microservice can break the
Continuous Delivery Pipeline of the legacy application. The team of the legacy
application cannot solve these problems since it does not know the code of the
Microservices. This version of the Microservice is possibly already in production
though. In that case a new version of the Microservice has to be delivered to
eliminate the error — although the Continuous Delivery Pipeline of the
Microservice ran through successfully.

; Integration ;
Acceptance Capacity Test with Explorative

Test Tests . . Tests
Microservices

Commit > —»| Production

Fig. 56: Microservices in the Continuous Delivery Pipeline of the legacy application

An alternative would be to send the Microservices also through an integration test
with the version of the legacy application which is currently in development.
However, this prolongs the overarching integration test of the Microservices and
therefore renders the development of the Microservices more complex.

The problem can be addressed by consumer-driven contract tests (section 11.7).
The expectations of the legacy application to the Microservices and of the
Microservices to the legacy application can be defined by consumer-driven
contract tests so that the integration tests can be reduced to a minimum.

In addition, the legacy application can be tested together with a Stub of the
Microservices. These tests are no integration tests since they only test the legacy
application. This allows to reduce the number of overarching integration tests.
This concept is illustrated in section 11.6 using tests of Microservices as example.
However, this means that the tests of the legacy application have to be adjusted.

11.6 Testing Individual Microservices

Tests of the individual Microservices are the duty of the team which is
responsible for the respective Microservice. The team has to implement the
different tests such as unit tests, load tests and acceptance tests as part of their
own Continuous Delivery Pipeline — as would also be the case for systems which
are no Microservices.

However, Microservices require for some functionalities access to other
Microservices. This poses a challenge for the tests: It is not sensible to provide a
complete environment with all Microservices for each test of each Microservice.
On the one hand this would use up too many resources. On the other hand, it is
difficult to supply all these environments with the up-to-date software.
Technically, light-weight virtualization approaches like Docker can at least reduce
the expenditure in terms of resources. However, for 50 or 100 Microservices also
this approach will not be sufficient anymore.

Reference Environment

A reference environment in which the Microservices are available in their current
version is one possible solution. The tests of the different Microservices can use
the Microservices from this environment. However, errors can occur when
multiple teams test different Microservices in parallel with the Microservices

from the reference environment. The tests can influence each other and thereby
create errors. Besides the reference environment has to be available. When a part
of the reference environment breaks down due to a test, in extreme cases tests
might be impossible for all teams. The Microservices have to be hold available in
the reference environment in their current version. This generates additional
expenditure. Therefore a reference environment is not a good solution for the
isolated testing of Microservices.

Stubs

Another possibility is the simulation of the used Microservice. For the simulation
of parts of a system for testing there are two different options as section 11.2
presented, namely Stubs and Mocks. Stubs are the better choice for the
replacement of Microservices. They can support different test scenarios. The
implementation of a single Stubs can support the development of all dependent
Microservices.

If Stubs are used, the teams have to deliver Stubs for their Microservices. This
ensures that the Microservices and the Stubs really behave largely identically.
When consumer-driven contract tests also validate the Stubs (compare section
11.7), the correct simulation of the Microservices by the Stubs is ensured.

The Stubs should be implemented with a uniform technology. All teams which use
a Microservice also have to use stubs for testing. Handling the stubs is facilitated
by a uniform technology. Otherwise a team which employs several Microservices
has to master a plethora of technologies for the tests.

Stubs could be implemented with the same technology as the associated
Microservices. However, the Stubs should use less resources than the
Microservices. Therefore, it is better when the Stubs utilize a simpler technology
stack. The example in section 14.13 uses for the Stubs the same technology as the
associated Microservices. However, the Stubs deliver only constant values and
run in the same process as the Microservices which employ the Stub. Thereby the
Stubs use up less resources.

There are technologies which specialize on implementing Stubs. Tools for client-
driven contract tests can often also generate Stubs (compare section 11.7).

e mountebank is written in JavaScript with Node.js. It can provide Stubs for
TCP, HTTP, HTTPS and SMTP. New Stubs can be generated at run time. The

http://www.mbtest.org/

definition of the Stubs is stored in a JSON file. It defines under which
conditions which responses are supposed to be returned by the Stub. An
extension with JavaScript is likewise possible. mountebank can also serve as
proxy. In that case it forwards requests to a service — alternatively, only the
first request is forwarded and the response is recorded. All subsequent
requests will be answered by mountebank with the recorded response. In
addition to Stubs mountebank also supports Mocks.

e WireMock is written in Java and is under Apache 2 license. This framework
makes it very easy to return certain data for certain requests. The behavior is
determined by Java code. WireMock supports HTTP and HTTPS. The Stub
can run in an separate process, in a servlet container or directly in a JUnit
test.

e Moco is likewise written in Java and is under the MIT license. The behavior
of the Stubs can be expressed with Java code or with a JSON file. It supports
HTTP, HTTPS and simple socket protocols. The Stubs can be started in a
Java program or in an independent server.

e stubby4j is written in Java and under MIT license. It utilizes a YAML file for
defining the behavior of the Stub. HTTPS is supported as protocol in
addition to HTTP. The definition of the data takes place in YAML or JSON.
It is also possible to start an interaction with a server or to program the
behavior of Stubs with Java. Out of the request information can be copied
into the response.

Try and Experiment

Use the example presented in chapter 14 and supplement Stubs with a Stub
framework of your choice. The example application uses the configuration file
application-test.properties. In this configuration it is defined which Stub is used
for the tests.

11.7 Consumer-driven Contract Tests

Each interface of a component is ultimately a contract: The caller expects that
certain side effects are triggered or that values are returned when it uses the
interface. The contract is usually not formally defined. When a Microservice
violates the expectations, this manifests itself as error which is either noticed in
production or in integration tests. When the contract can be made explicit and
tested independently, the integration tests can be freed from the obligation to test
the contract without incurring a larger risk for errors during production. Besides,

http://wiremock.org/
https://github.com/dreamhead/moco
https://github.com/azagniotov/stubby4j

then it would get easier to modify the Microservices because it would be easier to
anticipate which changes cause problems with using other Microservices.

Often changes to system components are not performed because it is unclear
which other components use that specific component and how they us it. There is a
risk of errors during the interplay with other Microservices, and there are fears
that the error will be noticed too late. When it is clear how a Microservice is
used, changes are much easier to perform and to safeguard.

Components of the Contract

These aspects belong to the contract of a Microservice:

e The data formats define in which format information is expected by the other
Microservices and how they are passed over to a Microservice.

e The interface determines which operations are available.

e Procedures or protocols define which operations can be performed in which
sequence with which results.

e Finally, there is meta information associated with the calls which can
comprise for example a user authentication.

¢ In addition, there can be certain non-functional aspects like the latency time
or a certain throughput.

Contracts

There are different contracts between the consumers and the provider of a service:

e The Provider Contract comprises everything the service provider provides.
There is one such contract per service provider. It completely defines the
entire service. It can for instance change with the version of the service
(compare section 9.6).

e The Consumer Contract comprises all functionalities which a service user
really utilizes. There are several such contracts per service — at least one
with each user. The contract comprises only the parts of the service which
the user really employs. It can change through modifications to the service
consumer.

e The Consumer-driven Contract (CDC) comprises all user contracts.
Therefore, it contains all functionalities which any service consumer utilizes.
There is only one such contract per service. Since it depends on the user
contracts, it can change when the service consumers add new calls to the
service provider or when there are new requirements for the calls.

http://martinfowler.com/articles/consumerDrivenContracts.html

Consumer

[Consumer
Contract

L G
Consumer ~a
[Consumer] Contract —>[Provider]
Consumer _»
Contrac __/

Consumer-driven
Consumer Contract

Fig. 57: Differences between Consumer and Provider Contracts

The Consumer-driven Contract makes clear which which components of the
provider contracts are really used. This clarifies also where the Microservice can
still change its interface and which components of the Microservice are not used.

Implementation

Ideally, a Consumer-driven Contract turns into a consumer-driven contract test
which the service provider can perform. It has to be possible for the service
consumer to change these tests. They can be stored together in the version control
with the Microservice of the service provider. In that case the service consumers
have to get access to the version control of the service provider. Otherwise the
tests can also be stored in the version control of the service consumers. In that
case the service provider has to fetch the tests out of the version control and
execute them with each version of the software. However, in that case it is not
possible to version the tests together with the tested software since tests and tested
software are in two separate projects within the version control.

The entirety of all tests represents the Consumer-driven Contract. The tests of
each team correspond to the Consumer Contract of each team. The consumer-
driven contract tests can be performed as part of the tests of the Microservice. If
they are successful, all service consumers should be able to successfully work
together with the Microservice. The test precludes that errors will only be noticed
during the integration test. Besides, modifications to the Microservices get easier
because requirements for the interfaces are known and can be tested without

special expenditure. Therefore, the risk associated with changes which affect the
interface is much smaller since problems will be noticed prior to integration tests
and production.

Tools

To write consumer-driven contract tests a technology has to be defined. The
technology should be uniform for all projects because a Microservice can use
several other Microservices. In that case a team has to write tests for different
other Microservices. This is easier when there is a uniform technology. Otherwise
the teams have to know numerous different technologies. The technology for the
tests can differ from the technology used for implementation.

¢ An arbitrary test framework is an option for implementing the consumer-
driven contract tests. For load tests additional tools can be defined. In
addition to the functional requirements there can also be requirements in
regards to the load behavior. However, it has to be clearly defined how the
Microservice is provided for the test. For example, it can be available at a
certain port on the test machine. In this way the test can take place via the
interface which is also used for access by other Microservices.

¢ In the example application (section 14.13) simple JUnit tests are used for
testing the Microservice and for verifying whether the required
functionalities are supported. When incompatible changes to data formats are
performed or the interface is modified in a incompatible manner, the tests
fail.

e There are tools especially designed for the implementation of consumer-
driven contract tests. An example is Pacto. It is written in Ruby and under
the MIT licence. Pacto supports REST/HTTP and supplements such
interfaces with a contract. Pacto can be integrated into a test structure. In that
case Pacto compares the header with expected values and the JSON data
structures in the body with JSON schemas. This information represents the
contract. The contract can also be generated out of a recorded interaction
between a client and a server. Based on the contract Pacto can validate the
calls and responses of a system. In addition, Pacto can create with this
information simple Stubs. Moreover, Pacto can be used in conjunction with
RSpec to write tests in Ruby. Also test systems which are written in other
languages than Ruby can be tested in this way. Without RSpec Pacto offers
the possibility to run a server. Thereby it is possible to use Pacto also
outside of a Ruby system.

http://thoughtworks.github.io/pacto/

e Pact is likewise written in Ruby and under MIT licence. The service
consumer can employ Pact to write a Stub for the service and to record the
interaction with the Stub. This results in a Pact file which represents the
contract. It can also be used for testing whether the actual service correctly
implements the contract. Pact is especially useful for Ruby, however pact-
jvm supports a similar approach for different JVM languages like Scala,
Java, Groovy or Clojure.

Try and Experiment

&‘ Use the example presented in chapter 14 and supplement consumer-driven contracts with a
framework of your choice. The example application has the configuration application-
test.properties. In this configuration it is defined which Stub is used for the tests. Verify also the
contracts in the production environment.

11.8 Testing Technical Standards

Microservices have to fulfill certain technical requirements. For example,
Microservices should register themselves in Service Discovery and keep
functioning even if other Microservices break down. Tests can verify these
properties. This entails a number of advantages:

e The guidelines are unambiguously defined by the test. Therefore, there is no
discussion how precisely the guidelines are meant.

e They can be tested in an automated fashion. Thereby it is clear at any time
whether a Microservice fulfills the rules or not.

e New teams can test new components as to whether they comply with the rules
or not.

e When Microservices do not employ the usual technology stack, it can still be
ensured that they behave correctly from a technical point of view.

Among the possible tests are:

e The Microservices have to register in the Service Discovery (section 8.9).
The test can verify whether the component registers at service registry upon
starting,

e Besides, the shared mechanisms for configuration and coordination have to
be used (section 8.8). The test can control whether certain values from the

https://github.com/realestate-com-au/pact
https://github.com/DiUS/pact-jvm

central configuration are read out. For this purpose, an individual test
interface can be implemented.

e A shared security infrastructure can be checked by testing the use of the
Microservice via a certain token (section 8.12).

¢ Inregards to documentation and metadata (section 8.13) it can be tested
whether a test can access the documentation via the defined path.

¢ Inregards to monitoring (section 12.3) and logging (section 12.2) it can be
examined whether the Microservice provides data to the monitoring
interfaces upon starting and delivers values resp. log entries.

¢ Inregards to deployment (section 12.4) it is sufficient to deploy and start the
Microservice on a server. When the defined standard is used for this, this
aspect is likewise correctly implemented.

e As test for control (section 12.5) the Microservice can simply be restarted.

e To test for Resilience (section 10.5) in the simplest scenario it can be
checked whether the Microservice at least boots also in absence of the
dependent Microservices and displays errors in monitoring. The correct
functioning of the Microservice upon availability of the other Microservices
is ensured by the functional tests. However, a scenario where the
Microservice cannot reach any other service is not addressed in normal tests.

In the easiest case the technical test can just start and deploy the Microservice.
Thereby deployment and control are already tested. Dependent Microservices do
not have to be present for that. Starting the Microservice should also be possible
without dependent Microservices due to Resilience. Subsequently, logging and
monitoring can be examined which should also work and contain errors in this
situation. Finally, the integration in the shared technical services like Service
Discovery, configuration and coordination or security can be checked.

Such a test is not hard to write and can render many discussions about the precise
interpretation of the guidelines superfluous. Therefore, this test is very useful.
Besides, it tests scenarios which are usually not covered by automated tests — for
instance the breakdown of dependent systems.

This test does not necessarily provide complete security that the Microservice
complies with all rules. However, it can at least examine whether the fundamental
mechanisms function.

Technical standards can easily be tested with scripts. The scripts should install
the Microservice in the defined manner on a virtual machine and start it.

Afterwards the behavior, for instance in regards to logging and monitoring, can be
tested. Since technical standards are specific for each project, a uniform approach
is hardly possible. Under certain conditions a tool like Serverspec can be useful.
It serves to examine the state of a server. Therefore, it can easily determine
whether a certain port is used or whether a certain service is active.

11.9 Conclusion

Reasons for testing are on the one hand the risk that problems are only noticed in
production and on the other hand that tests serve as an exact specification of the
system (section 11.1).

Section 11.2 illustrated by using the concept of the Test Pyramid how tests should
be structured: The focus should be on fast, easily automatable unit tests. They
address the risk that there are errors in the logic. Integration tests and UI tests then
only ensure the integration of the Microservices with each other and the correct
integration of the Microservices into the UL

As section 11.3 showed, Microservices can additionally deal with the risk of
errors in production in a different manner: Microservice deployments are faster,
they influence only a small part of the system, and Microservices can even run
blindly in production. Thereby the risk of deployment decreases. Thus it can be
sensible instead of comprehensive tests to rather optimize the deployment in
production to such an extent that it is for all practical purposes free of risk. In
addition, the section discussed that there are two types of Test Pyramids for
Microservice-based systems: one per Microservice and one for the overall
system.

Testing the overall system entails the problem that each change to a Microservice
necessitates a run through this test. Therefore, this test can turn into a bottleneck
and should be very fast. Thus, when testing Microservices, one objective is to
reduce the number of integration tests across all Microservices (section 11.4).

When replacing legacy applications not only their functionality has to be
transferred into Microservices, but also the tests for the functionalities have to be
moved into the tests of the Microservices (section 11.5). Besides, each
modification to a Microservice has to be tested in the integration with the version
of the legacy application used in production. The legacy application normally has
a much slower release cycle than the Microservices. Therefore, the version of the

http://serverspec.org/

legacy application which is at the time in development has to be tested together
with the Microservices.

For testing individual Microservices the other Microservices have to be replaced
by Stubs. This allows to uncouple the tests of the individual Microservices from
each other. Section 11.6 introduced a number of concrete technologies for creating
Stubs.

In section 11.7 client-driven contract tests were presented. With this approach the
contracts between the Microservices get explicit. This allows a Microservice to
check whether it fulfills the requirements of the other Microservices — without the
need for an integration test. Also for this area a number of tool are available.

Finally, section 11.8 demonstrated that technical requirements to the
Microservices can likewise be tested in an automated manner. This allows to
unambiguously establish whether a Microservice fulfills all technical standards.

Essential Points

e Established best practices like the Test Pyramid are also sensible for
Microservices.

e Common tests across all Microservices can turn into a bottleneck and
therefore should be reduced, for example by performing more consumer-
driven contract tests.

e With suitable tools Stubs can be created from Microservices.

12 Operations and Continuous Delivery of
Microservices

Deployment and operation are additional components of the Continuous Delivery
Pipeline (compare section 11.1). When the software has been tested in the context
of the pipeline the Microservices go into production. There monitoring and
logging collect information which can be used for the further development of the
Microservices.

The operation of a Microservice-based system is more laborious than the
operation of a Deployment Monolith. There are many more deployable artifacts
which all have to be surveilled. Section 12.1 discusses the typical challenges
associated with the operation of Microservice-based systems in detail. Logging is
the topic of section 12.2. Section 12.3 focuses on the monitoring of the
Microservices. Deployment is treated in section 12.4. Section 12.5 shows
necessary measures for directing a Microservice from the outside, and section
12.6 finally describes suitable infrastructures for the operation of Microservices.

The challenges associated with operation should not be underestimated. It is in
this area where the most complex problems associated with the use of
Microservices frequently arise.

12.1 Challenges Associated with the Operation of
Microservices

Challenge: Numerous Artifacts

Teams who have so far only run Deployment Monoliths are confronted with the
problem that there are very many additional deployable artifacts in
Microservices-based systems. Each Microservice is independently brought into
production and therefore a separate deployable artifact. Fifty, hundred or more
Microservices are definitely realistic. The concrete number depends on the size of
the project and the size of the Microservices. Such a number of deployable
artifacts is hardly met with outside of Microservices-based architectures. All
these artifacts have to be versioned independently because only then it can be

tracked which code runs currently in production. Besides, this allows to bring
each Microservice independently in a new version into production.

When there are so many artifacts, there has to be a correspondingly high number of
Continuous Delivery Pipelines. They do not only comprise the deployment in
production but also the different testing phases. In addition, many more artifacts
have to be surveilled in production by logging and monitoring. This is only
possible when all these processes are mostly automated. For a small number of
artifacts manual interventions might still be acceptable. Such an approach is
simply not possible anymore for the large number of artifacts contained in a
Microservice-based architecture.

The challenges in the areas of deployment and infrastructure are for sure the most
difficult ones encountered when introducing Microservices. Many organizations
are not sufficiently proficient in automation although automation is also very
advantageous in other architectural approaches and should already be routine.

There are different approaches for achieving the necessary automation:

Delegate into Teams

The easiest option is to delegate this challenge to the teams which are responsible
for the development of the Microservices. In that case each team has not only to
develop its Microservice, but also to take care of its operation. They have the
choice to either use appropriate automation for it or to adopt automation
approaches from other teams.

The team does not even have to cover all areas. When there is no need to evaluate
log data to achieve reliable operation, the team can decide not to implement a
system for evaluating log data. A reliable operation without surveilling the log
output is hardly possible though. However, this risk is then within the
responsibility of the respective team.

This approach only works when the teams have a lot of knowledge regarding
operation. Another problem is that the wheel is invented over and over again by
the different teams: Each team implements automation independently and might use
different tools for it. This approach entails the danger that the anyhow laborious
operation of the Microservices gets even more laborious due to the heterogeneous
approaches taken by the teams. The teams have to do this work. This interferes

with the rapid implementation of new features. However, the decentralized
decision which technologies to use increases the independence of the teams.

Unify Tools

Because of the higher efficiency, unification can be a sensible approach for
deployment. The easiest way to obtain uniform tools is to prescribe one tool for
each area — deployment, test, monitoring, logging, deployment pipeline. In
addition, there will be guidelines and best practices like for instance immutable
server or the separation of build environment and deployment environment. This
allows for the identical implementation of all Microservices and will facilitate
operation since the teams only need to be familiar with one tool for each area.

Specify Behavior

Another option is to specify the behavior of the system. One example: When log
output is supposed to be evaluated in a uniform manner across services, it is
sufficient to define a uniform log format. The log framework does not necessarily
have to be prescribed. Of course, it is sensible to offer for at least one log
framework a configuration which generates this output format. This increases the
motivation of the teams to use this log framework. In this way uniformity is not
forced, but emerges on its own since the teams will minimize their own effort.
When a team regards the use of another log framework or programming language
which necessitates another log framework as more advantageous, it can still use
these technologies.

Defining uniform formats for log output has an additional advantage: The
information can be delivered to different tools which process log files differently.
This allows operations to screen log files for errors while the business
stakeholders create statistics. Operation and business stakeholders can use
different tools which use the uniform format as shared basis.

Similarly, behavior can be defined for the other areas of operation such as
deployment, monitoring or the deployment pipeline.

Micro and Macro Architecture

Which decisions can be made by the team and which have to be made for the
overall project corresponds to the separation of the architecture into micro and
macro architecture (compare section 13.3). Decisions the team can make belong to
micro architecture while decisions which are made across all teams for the

overall project are part of the macro architecture. Technologies or the desired
behavior for logging can be either part of the macro or the micro architecture.

Templates

Templates offer the option to unify Microservices in these areas and to increase
the productivity of the teams. Based on a very simple Microservice a template
demonstrates how the technologies can be used and how Microservices are
integrated into the operation infrastructure. The example can simply respond to a
request with a constant value since the domain logic is not the point here.

The template will make it easy and fast for a team to implement a new
Microservice. At the same time, each team can easily make use of the standard
technology stack. So the uniform technical solution is at the same time the most
attractive for the teams. Templates achieve a large degree of technical uniformity
between Microservices without prescribing the used technology. In addition, a
faulty use of the technology stack is avoided when the template demonstrates the
correct use.

A template should contain the complete infrastructure in addition to the code for
an exemplary Microservice. This refers to the Continuous Delivery Pipeline, the
build, the Continuous Integration Platform, the deployment in production and the
necessary resources for running the Microservice. Especially build and
Continuous Delivery Pipeline are important since the deployment of a large
number of Microservices is only possible when these are automated.

The template can be very complex when it really contains the complete
infrastructure — even if the respective Microservice is very simple. It is not
necessarily required to provide at once a complete and perfect solution. The
template can also be built up in a stepwise manner.

The template can be copied into each project. This entails the problem that
changes to the template are not propagated into the existing Microservices. On the
other hand, this approach is much easier to implement than an approach which
allows for the automated adoption of changes. Besides such an approach would
create dependencies between the template and practically all Microservices. Such
dependencies should be avoided for Microservices.

The templates fundamentally facilitate the generation of new Microservices.
Accordingly, teams are more likely to create new Microservices. Thereby they

can more easily distribute Microservices in multiple smaller Microservices. Thus
templates help to keep Microservices small. When the Microservices are rather
small, the advantages of a Microservice-based architecture can be exploited even
better.

12.2 Logging

By logging an application can easily provide information about which events
occurred. These can be errors, but also events like the registration of a new user
which are mostly interesting for statistics. Finally, log data can help developers to
locate errors by providing detailed information.

In normal systems logs have the advantage that they can be written very easily and
that the data can be persisted without huge effort. Besides, log files are human-
readable and can be easily searched.

Logging for Microservices

For Microservices writing and analyzing log files is hardly sufficient:

e Many requests can only be handled by the interplay of multiple
Microservices. In that case the log file of a single Microservice is not
sufficient to understand the complete sequence of events.

e The load is often distributed across multiple instances of one Microservice.
Therefore, the information contained in the log file of an individual instance
is not very useful.

e Finally, due to increased load, new releases or crashes, new instances of a
Microservice start constantly. The data from a log file can get lost when a
virtual machine is shut down and its hard disc is subsequently deleted.

It is not necessary for Microservices to write logs into their file system because
the information can anyhow not be analyzed there. Only writing to the central log
server is definitely necessary. This has also the advantage that the Microservices
utilize less local storage.

Usually, applications just log text strings. The centralized logging parses the
string. During parsing relevant information like time stamps or server names are
extracted. Often parsing goes even beyond that and scrutinizes the texts more
closely. If it is possible to determine for instance the identity of the current user
from the logs, all information about a user can be selected from the log data of the
Microservices. In a way the Microservice hides the relevant information in a

string which the log system subsequently takes apart again. To facilitate the
parsing log data can be transferred into a data format like JSON. In that case the
data can already be structured during logging. They are not first packaged into a
string which then has to be laboriously parsed. Likewise, it is sensible to have
uniform standards: When a Microservice logs something as an error, then an error
should really have occurred. In addition, the semantics of the other log levels
should be uniform across all Microservices.

Technologies for Logging via the Network

Microservices can support central logging by sending log data directly via the
network. Most log libraries support such an approach. Special protocols like
GELF (Graylog Extended Log Format) can be used for this or long established
protocols like syslog which is the basis for logging in UNIX systems. Tools like
the logstash-forwarder, Beaver or Woodchuck are meant to send local files via the
network to a central log server. They are sensible in cases where the log data are
supposed to be also locally stored in files.

ELK for Centralized Logging

Logstash, Elasticsearch and Kibana can serve as tools for the collection and
processing of logs on a central server.

-
|Microservice |—>< Logstash Kibana)

Transfer
logs over
the network

Fig. 58: ELK infrastructure for log analysis

Parse Store Analyze

e With the aid of Logstash log files can be parsed and collected by servers in
the network. Logstash is a very powerful tool. It can read data from a source,
modify or filter data, and finally write it into a sink. Apart from importing
logs from the network and storage in Elasticsearch Logstash supports many
other data sources and data sinks. For example, data can be read from
message queues or databases or written into them. Finally, Logstash can also
parse data and supplement it — for example time stamps can be added to each
log entry or individual fields can be cut out and further processed.

¢ Elasticsearch stores log data and makes them available for analyses.
Elasticsearch cannot only search the data with full text search, but it can also

https://www.graylog.org/
https://github.com/elastic/logstash-forwarder
https://github.com/josegonzalez/beaver
https://github.com/danryan/woodchuck
http://logstash.net/
https://www.elastic.co/products/elasticsearch

search in individual fields of structured data and permanently store the data
like a database. Finally, Elasticsearch offers statistical functions and can use
those to analyze data. As a search engine Elasticsearch is optimized for fast
response times so that the data can be analyzed quasi interactively.

e Kibana is a web user interface which allows to analyze data from
Elasticsearch. In addition to simple queries also statistical evaluations,
visualizations and diagrams can be created.

These tools form the ELK stack (Elasticsearch, Logstash, Kibana). All three are
open source projects and are under Apache 2.0 license.

Scaling ELK

Especially in case of Microservices log data accumulate often in large amounts.
Therefore, in Microservice-based architectures the system for the central
processing of logs should be highly scalable. A good scalability is one of the
advantages of the ELK stack:

¢ Elasticsearch can distribute the indices into shards. Each data set is stored
in a single shard. As the shards can be located on different servers, this
allows for load balancing. In addition, shards can be replicated across
several servers to improve fail safeness. Besides, a read access can be
directed to an arbitrary replica of the data. Thereby replicas can serve to
scale read access.

e Logstash can write logs into different indices. Without an additional
configuration Logstash would write the data for each day into a different
index. Since the current data usually is read more frequently, this allows to
reduce the amount of data which has to be searched for a typical request and
therefore improves performance. Besides, there are still other possibilities to
distribute the data to indices — for instance according to the geographic origin
of the user. This also promotes the optimization of the data amounts which
have to be searched.

¢ Log data can be buffered in a Broker prior to processing by Logstash. The
Broker serves as buffer. It stores the messages when there are so many log
messages that they cannot be immediately processed. Redis is often used as
Broker — a fast in memory database.

Graylog

The ELK stack is not the only solution for the analysis of log files. Graylog is also
an open source solution and likewise utilizes Elasticsearch for storing log data.

https://www.elastic.co/products/kibana
http://redis.io/
https://www.graylog.org/

Besides it uses MongoDB for metadata. Graylog defines its own format for the log
messages: The already mentioned GELF (Graylog Extended Log Format)
standardizes the data which are transmitted via the network. For many log
libraries and programming languages there are extensions for GELF. Likewise, the
respective information can be extracted from the log data or surveyed with the
UNIX tool syslog. Also Logstash supports GELF as in- and output format so that
Logstash can be combined with Graylog. Graylog has a web interface which
allows to analyze the information from the logs.

Splunk

Splunk is a commercial solution and already for a long time on the market. Splunk
presents itself as a solution which does not only analyze log files, but can
generally analyze machine data and big data. For processing logs Splunk gathers
the data via a Forwarder, prepares it via an Indexer for searching, and Search
Heads take over the processing of search requests. Its intention to serve as an
enterprise solution is underlined by the security concept. Customized analysis, but
also alerts in case of certain problems are possible. Splunk can be extended by
numerous plug-ins. Besides there are apps which provide ready-made solutions
for certain infrastructures such as Microsoft Windows Server. The software does
not necessarily have to be installed in your own computing center, but is also
available as Cloud solution.

Stakeholders for Logs

There are different stakeholders for logging. However, the analysis options of the
log servers are so flexible and the analyses so similar that one tool is normally
sufficient. The stakeholders can create their own dashboards with the information
that is relevant to them. For specific requirements the log data can be passed on to
other systems for evaluation.

Correlation IDs

Often multiple Microservices work together on a request. The path the request
takes through the Microservices has to be traceable for analysis. For filtering all
log entries to a certain customer or to a certain request a correlation ID can be
used. This ID unambiguously identifies a request to the overall system and is
passed along during all communication between Microservices. In this manner log
entries for all systems to a single request are easy to find in the central log system,
and the processing of the requests can be tracked across all Microservices.

http://www.splunk.com/

Such an approach can for instance be implemented by transferring a request ID for
each message within the headers or within the payloads. Many projects implement
the transfer in their own code without using a framework. For Java there is the
library tracee which implements the transfer of the IDs. Some log frameworks
support a context which is logged together with each log message. In that case it is
only necessary to put the correlation ID into the context when receiving a message.
This obliterates the need to pass the correlation ID on from method to method.
When the correlation ID is bound to the thread, problems can arise when the
processing of a request involves several threads. Setting the correlation ID in the
context ensures that all log messages contain the correlation ID. How the
correlation ID is logged has to be uniform across all Microservices so that the
search for a request in the logs works for all Microservices.

Zipkin: Distributed Tracing

Also in regards to performance evaluations have to be made across
Microservices. When the complete path of the requests is traceable, it can be
identified which Microservice represents a bottleneck and requires an especially
long time for processing requests. With the aid of a distributed tracing it can be
determined for a request which Microservice needs how much time for answering
a request and where optimization should start. Zipkin enables exactly this type of
investigations. It comprises support for different network protocols so that a
request ID is automatically passed on via these protocols. In contrast to the
correlation IDs the objective is not to correlate log entries, but to analyze the time
behavior of the Microservices. For this purpose Zipkin offers suitable analysis
tools.

Try and Experiment

https://github.com/tracee/tracee
https://github.com/twitter/zipkin
https://blog.twitter.com/2012/distributed-systems-tracing-with-zipkin

&‘ Define a technology stack which enables a Microservice-based architecture to implement logging:

o How should the log messages be formatted?
e Define a logging framework if necessary.
e Determine a technology for collecting and evaluating logs.

This section listed a number of tools for the different areas. Which properties are especially
important? The objective is not a complete product evaluation, but a general weighing of advantages
and disadvantages.

&‘ Chapter 14 shows an example for a Microservice-based architecture and in section 14.14 there are
suggestions how the architecture can be supplemented with a log analysis.

How does your current project handle logging? Is it maybe possible to implement parts of these
approaches and technologies also in your project?

12.3 Monitoring

Monitoring surveils the metrics of a Microservice and uses other information
sources than logging. Monitoring uses mostly numerical values which provide
information about the current state of the application and indicate how this state
changes over time. Such values can represent the number of processed calls over
a certain time, the time needed for processing the calls or also system values like
the CPU or memory utilization. If certain thresholds are surpassed or not reached,
this indicates a problem and can trigger an alarm so that somebody can solve the
problem. Or even better: The problem is solved automatically. For example, an
overload can be addressed by starting additional instances.

Monitoring offers feedback from production which is not only relevant for
operation, but also for developers or the users of the system. Based on the
information from monitoring they can better understand the system and therefore
make informed decisions about how the system should be developed further.

Basic Information

Basic monitoring information should be mandatory for all Microservices. This
makes it easier to get an overview of the state of the system. All Microservices
should deliver the required information in the same format. Besides components

of the Microservice system can likewise use the values. Load balancing for
instance can use a health check to avoid accessing Microservices which cannot
process calls.

The basic values all Microservices should provide can comprise the following:

e There should be a value which indicates the availability of the Microservice.
In this manner the Microservice signals whether it is capable of processing
calls at all (“alive”).

e Detailed information regarding the availability of the Microservice is
another important metric. One relevant information is whether all
Microservices used by the Microservice are accessible and whether all other
resources are available (“health”). This information does not only indicate
whether the Microservice functions, but also provide hints which part of a
Microservice is currently unavailable and why it failed. Importantly, it
becomes apparent whether the Microservice is unavailable because of the
failure of another Microservice or because the respective Microservice itself
is having a problem.

¢ Information about the version of a Microservice and additional meta
information like the contact partner or used libraries and their versions as
well as other artifacts can also be provided as metrics. This can cover part
of the documentation (compare section 8.13). Alternatively, it can be checked
which version of the Microservice is actually currently in production. This
facilitates the search for errors. Besides, an automated continuous inventory
of the Microservices and other used software is possible, which simply
inquires after these values.

Additional Metrics

Additional metrics can likewise be recorded by monitoring. Among the possible
values are for instance response times, the frequency of certain errors or the
number of calls. These values are usually specific for a Microservice so that they
do not necessarily have to be offered by all Microservices. An alarm can be
triggered when certain thresholds are reached. Such thresholds are different for
each Microservice.

Nevertheless, a uniform interface for accessing the values is sensible when all
Microservices are supposed to use the same monitoring tool. Uniformity can
tremendously reduce expenditure in this area.

Stakeholders

There are different stakeholders for the information from monitoring:

e Operations wants timely to be informed about problems to enable a smooth
operation of the Microservice. In case of acute problems or failures it wants
to get an alarm — at any day or night time — via different means like pager or
SMS. Detailed information is only necessary when the error has to be
analyzed more closely — often together with the developers. Operations is not
only interested in the values from the Microservice itself, but also in
monitoring values of the operating system, the hardware or the network.

¢ Developers mostly focus on information from the application. They want to
understand how the application functions in production and how it is
employed by the users. From this information they deduce optimizations,
especially at the technical level. Therefore, they need very specific
information. If the application is for instance too slow in responding to a
certain type of call, the system has to be optimized for this type of call. To do
so it is necessary to obtain as much information as possible about exactly this
type of call. Other calls are not as interesting. Developers evaluate this
information in detail. They might even be interested in analyzing calls of just
one specific user or a circle of users.

e The business stakeholders are interested in the business success and the
resulting business numbers. Such information can be provided by the
application specifically for the business stakeholders. The business
stakeholders then generate statistics based on this information and thereby
prepare business decisions. On the other hand, they are usually not interested
in technical details.

The different stakeholders are not only interested in different values, but also
analyze them differently. Standardizing the data format is sensible to support
different tools and nevertheless enable all stakeholders to access all data.

System

metrics

Uniform Operations

interface/'

Microservice]—» Application
metrics
\ Development
Business

metrics

Business
Stakeholders

Fig. 59: Stakeholders and their monitoring data

Fig. 59 shows an overview of a possible monitoring of a Microservice-based
system. The Microservice offers the data via a uniform interface. Operations uses
monitoring to surveil for instance threshold values. Development utilizes a
detailed monitoring to understand processes within the application. And the
business stakeholders look at the business data. The individual stakeholders might
use more or less similar approaches: The stakeholders can for instance use the
same monitoring software with different dashboards or entirely different software.

Correlate with Events

In addition, it can be sensible to correlate data with an event such as a new
release. This requires that information about the event has to be handed over to
monitoring. When a new release creates markedly more revenue or causes
decisively longer response times, this is for sure an interesting realization.

Monitoring = Tests?

In a certain way monitoring is another version of testing (compare section 11.4).
While tests look at the correct functioning of a new release in a test environment,
monitoring examines the behavior of the application in a production environment.
The integration tests should also be reflected in monitoring. When a problem
causes an integration test to fail, there can be an associated alarm in monitoring.
Besides, monitoring should also be activated for test environments to pinpoint
problems already in the tests. When the risk associated with deployments is
reduced by suitable measures (compare section 12.4), the monitoring can even
take over part of the tests.

Dynamic Environment

Another challenge when working with Microservice-based architectures is that
Microservices come and go. During the deployment of a new release an instance
can be stopped and started anew with a new software version. When servers fail,
instances shut down, and new ones are started. For this reason monitoring has to
occur separated from the Microservices. Otherwise the stopping of a
Microservice would influence the monitoring infrastructure or may even cause it
to fail. Besides, Microservices are a distributed system. The values of a single
instance are not telling in themselves. Only by collecting values of multiple
instances the monitoring information gets relevant.

Concrete Technologies

Different technologies can be used for monitoring Microservices:

¢ Graphite can store numerical data and is optimized for processing time
series data. Such data occur frequently during monitoring. The data can be
analyzed in a web application. Graphite stores the data in its own database.
After some time the data are automatically deleted. Monitoring values are
accepted by Graphite in a very simple format via a socket interface.

e Grafana extends Graphite by alternative dashboards and other graphical
elements.

e Seyren extends Graphite by a functionality for triggering alarms.

e Nagios is a comprehensive solution for monitoring and can be an alternative
to Graphite.

¢ Icinga has originally been a fork of Nagios and therefore covers a very
similar use case.

¢ Riemann focuses on the processing of event streams. It uses a functional
programming language to define logic for the reaction to certain events. For

http://graphite.wikidot.com/
http://grafana.org/
https://github.com/scobal/seyren
http://www.nagios.org/
https://www.icinga.org/
http://riemann.io/

this purpose, a fitting dashboard can be configured. Messages can be sent by
SMS or e-mail.

e Packetbeat uses an agent which records the network traffic on the computer
to be monitored. This allows Packetbeat to determine with minimal effort
which requests take how long and which nodes communicate with each other.
It is especially interesting that Packetbeat uses Elasticsearch for data storage
and Kibana for analysis. These tools are also widely used for analyzing log
data (compare section 12.2). Having only one stack for the storage and
analysis of logs and monitoring reduces the complexity of the environment.

¢ In addition, there are different commercial tools. Among those are HP’s
Operations Manager, IBM Tivoli, CA Opscenter and BMC Remedy.
These tools are very comprehensive, have been on the market for a long time
and offer support for many different software and hardware products. Such
platforms are often used enterprise-wide and introducing them into an
organization is usually a very complex project. Some of these solutions can
also analyze and monitor log files. Due to their large number and the high
dynamics of the environment it can be sensible for Microservices to establish
their own monitoring tools even if an enterprise-wide standard exists
already. When the established processes and tools require a high manual
expenditure for administration, this expenditure might not be feasible
anymore in the face of the large number of Microservices and the dynamics
of the Microservice environment.

e Monitoring can be moved to the Cloud. In this manner no extra infrastructure
has to be installed. This facilitates the introduction of tools and monitoring
the applications. An example is NewRelic.

These tools are first of all useful for operations and for developers. Business
monitoring can be performed with different tools. Such monitoring is not only
based on current trends and data, but also on historical values. Therefore, the
amount of data is markedly larger than for operations and development. The data
can be exported into a separate database or investigated with Big Data solutions.
In fact, the analysis of data from web servers is one of the areas where big data
solutions have first been used.

Enabling Monitoring in Microservices

Microservices have to deliver data which are displayed in the monitoring
solutions. It is possible to provide the data via a simple interface like HTTP with
a data format such as JSON. Then the monitoring tools can read these data out and
import them. For this purpose, adaptors can be written as scripts by the

http://packetbeat.com/
http://www8.hp.com/us/en/software-solutions/operations-manager-%0Ainfrastructure-monitoring/
http://www-01.ibm.com/software/tivoli/
http://www.ca.com/us/opscenter.aspx
http://www.bmc.com/it-solutions/remedy-itsm.html
http://newrelic.com/

developers. This makes it possible to provide different tools via the same
interface with data.

Metrics

In the Java world the metrics framework can be used. It offers functionalities for
recording custom values and sending them to a monitoring tool. This makes it
possible to record metrics in the application and to hand them over to a
monitoring tool.

StatsD

StatsD can collect values from different sources, perform calculations and hand
over the results to monitoring tools. This allows to condense data before they are
passed on to the monitoring tool in order to reduce the load on the monitoring tool.
There are also many client libraries for StatsD which facilitate the sending of data
to StatsD.

collectd

collectd collects statistics about a system — like for instance the CPU utilization.
These data can be analyzed with the frontend or they can be stored in monitoring
tools. collectd can collect data froma HTTP JSON data source and send them on
to the monitoring tool. Via different plug-ins collectd can collect data from the
operating system and the basic processes.

4 ™ [Monitoringj ! . l
[Microservicej 7

[Agent

J
iy B I

Fig. 60: Parts of a monitoring system

Technology Stack for Monitoring

A technology stack for monitoring comprises different components (Fig. 60):

https://github.com/dropwizard/metrics
https://github.com/etsy/statsd
https://collectd.org/

Within the Microservice itself data have to be recorded and provided to
monitoring. For this purpose, a library can be used which directly contacts
the monitoring tool. Alternatively, the data can be offered via a uniform
interface — for example JSON via HTTP —, and another tool collects the data
and sends them on to the monitoring tool.

In addition, if necessary, there should be an agent to record the data from the
operating system and the hardware and pass them on to monitoring.

The monitoring tool stores and visualizes the data and can, if needed, trigger
an alarm. Different aspects can be covered by different monitoring
applications.

For analyses of historical data or by complex algorithms a solution based on
Big Data tools can be created in parallel.

Effects on the Individual Microservice

A Microservice also has to be integrated into the infrastructure. It has to hand over
monitoring data to the monitoring infrastructure and provide some mandatory data.

This

can be ensured by a suitable template for the Microservice and by tests.

Try and Experiment

'

Define a technology stack which allows to implement monitoring in a Microservice-based
architecture. To do so define the stakeholders and the data that are relevant for them. Each of the
stakeholders needs to have a tool for analyzing the data that are relevant for him/her. Finally, it has to
be defined with which tools the data can be recorded and how they are stored. This section listed a
number of tools for the different areas. In conjunction with further research it is possible to assemble
a technology stack that is well suited for individual projects.

Chapter 14 shows an example for a Microservice-based architecture, and in section 14.14 there is
also a suggestion how the architecture can be extended by monitoring.

How does your current project handle monitoring? Can some of the technologies presented in this
section also be advantageous for your project? Which? Why?

12.4 Deployment

Independent deployment is a central aim of Microservices. Besides, the
deployment has to be automated because manual deployment or even just manual

corrections are not feasible due to the large number of Microservices.

Deployment Automation

There are different possibilities for automating deployment:

¢ Installation scripts can be used which only install the software on the
computer. Such scripts can for instance be implemented as shell scripts. They
can install necessary software packages, generate configuration files and
create user accounts. Such scripts can be problematic when they are called
repeatedly. In that case the installation finds a computer on which the
software is already installed. However, an update is different from a fresh
installation. In such a situation a script can fail for example because user
accounts or configuration files might already be present and cannot easily be
overwritten. When the scripts are supposed to handle updates, development
and testing the scripts get more laborious.

e Immutable Servers are an option to handle these problems. Instead of
updating the software on the servers, the server are completely deployed
anew. This does not only facilitate the automation of deployment, but also the
exact reproduction of the software installed on a server. It is sufficient to
consider fresh installations. A fresh installation is easier to reproduce than an
update, that can be started from many different configuration states and
should lead to the same state from any of those. Approaches like Docker
make it possible to tremendously reduce the expenditure for installing
software. Docker is a kind of light-weight virtualization. It also optimizes the
handling of virtual hard drives. If there is already a virtual hard drive with
the correct data, it is recycled instead of installing the software anew. When
installing a package like Java, first a virtual hard drive is looked for which
already has this installation. Only when such a one does not exist, the
installation is really performed. Should there only be a change in a
configuration file when going from an old to a new version of an Immutable
Server, Docker will recycle the old virtual hard drives behind the scenes and
only supplement the new configuration file. This does not only reduce the
consumption of hard drive space, but also profoundly speeds up the
installation of the servers. Docker also decreases the time a virtual team
needs for booting. These optimizations turn Immutable Server in conjunction
with Docker into an interesting option. The new deployment of the servers is
very fast with Docker, and the new server can also rapidly be booted.

e Another possibility are tools like Puppet, Chef, Ansible or Salt. They are
specialized for installing software. Scripts for these tools describe what the

https://www.docker.com/
http://puppetlabs.com/
https://www.chef.io/
http://www.ansible.com/
http://www.saltstack.com/

system is supposed to look like after the installation. During an installation
run the tool will take the necessary steps to transfer the system into the
desired state. During the first run on a fresh system the tool completely
installs the software. If the installation is run a second time immediately
afterwards, it will not change the system any further since the system is
already in the desired state. Besides these tools can uniformly install a large
number of servers in an automated manner and are also able to roll out
changes to a large number of servers.

e Operating systems from the Linux area possess package manager like rpm
(RedHat), dpkg (Debian/Ubuntu) or zypper (SuSE). They make it possible
to centrally roll out software onto a large number of servers. The used file
formats are very simple so that it is very easy to generate a package in a
fitting format. The configuration of the software poses a problem though.
Package managers usually support scripts which are executed during
installation. Such scripts can generate the necessary configuration files.
However, there can also be an extra package with the individual
configurations for each host. The installation tools mentioned under the last
bullet point can also use package manager for installing the actual software
so that they themselves only generate the configuration files.

Installation and Configuration

Section 8.8 already described tools which can be used for configuring
Microservices. In general, it is hard to separate the installation from the software
configuration. The installation has to generate a configuration. Therefore, many of
the tools like for instance Puppet, Chef, Ansible or Salt can also create
configurations and roll them out onto servers. Thus these solutions are an
alternative to the configuration solutions which are specialized for Microservices.

Risks Associated with Microservice Deployments

Microservices are supposed to allow for an easy and independent deployment.
Nevertheless, it can never be excluded that problems arise in production. The
Microservice-based architecture by itself will already help to reduce the risk.
When a Microservice fails as result of a problem with a new version, this failure
should be limited to the functionality of this Microservice. Apart from that the
system should keep working. This is made possible by stability patterns and
resilience described in section 10.5. Already for this reason the deployment of a
Microservice is much less risky than the deployment of a monolith. In case of a
monolith it is much harder to limit a failure to a certain functionality. If a new
version of the Deployment Monolith has a memory leak, this will cause the entire

process to break down so that the entire monolith will not be available anymore.
A memory leak in a Microservice only influences this Microservice. There are
different challenges for which Microservices are not per se helpful: Schema
changes in relational databases are for instance problematic because they often
take very long and might fail — especially when the database is already containing
a lot of data. As Microservices have their own data storage, a schema migration is
always limited to just one Microservice.

Deployment Strategies

To further reduce the risk associated with a Microservice deployment there are
different strategies:

¢ A Rollback brings the old version of a Microservice back into production.
Handling the database can be problematic: Often the old version of the
Microservice does not work anymore with the database schema created by
the newer version. When there are already data in the database which use the
new schema, it can get very difficult to recreate the old state without losing
the new data. Besides the rollback is hard to test.

¢ A Roll Forward brings a new version of a Microservice in production,
which does not contain the error anymore. The procedure is identical to the
procedure for the deployment of any other new version of the Microservice
so that no special measures are necessary. The change is rather small so that
deployment and the passage through the Continuous Delivery Pipeline should
rapidly take place.

¢ Continuous Deployment is even more radical: Each change to a
Microservice is brought into production when the Continuous Delivery
Pipeline was passed successfully. This further reduces the time necessary for
the correction of errors. Besides, this entails that there are less changes per
release which further decreases the risk and makes it easier to track which
changes to the code caused a problem. Continuous Deployment is the logical
consequence when the deployment process works so well that going into
production is just a formality. Moreover, the team will pay more attention to
the quality of their code when each change really goes into production.

¢ A Blue/Green Deployment builds up a completely new environment with
the new version of a Microservice. The team can completely test the new
version and then bring it into production. Should problems occur, the old
version can be used again which is kept for this purpose. Also in this
scenario there are challenges in case of changes to the database schema.
When switching from the one version to the other version of the

Microservice, also the database has to be switched. Data which have been
written into the old database between the built-up of the new environment
and the switch have to be transferred into the new database.

e Canary Releasing is based on the idea to deploy the new version initially
just on one server in a cluster. When the new version runs without trouble on
one server, it can also be deployed on the other servers. The database has to
support the old and the new version of the Microservice in parallel.

e Microservices can also run blindly in production. In that case they get all
requests, but they may not change data, and calls which they send out are not
passed on. By monitoring, log analyses and comparison with the old version
itis possible to determine whether the new service has been correctly
implemented.

Theoretically, such procedures can also be implemented with Deployment
Monoliths. However, in practise this is very difficult. With Microservices it is
easier since they are much smaller deployment units. Microservices require less
comprehensive tests. Installing and starting Microservices is much faster.
Therefore, Microservices can more rapidly pass through the Continuous Delivery
Pipeline into production. This will have positive effects for Roll Forward or
Rollback because problems require less time to fix. A Microservice needs less
resources in operation. This is helpful for Canary Releasing or Blue/Green
Deployment since new environments have to be built up. If this is possible with
less resources, these approaches are easier to implement. For a Deployment
Monolith it is often very difficult to build up an environment at all.

Combined or Separate Deployment? (J6rg Miiller)
by Jérg Miiller, Hypoport AG

The question whether different services are rolled out together or independently
from each other is of greater relevance than sometimes suspected. This is an
experience we had to make in the context of a project which started approximately
five years ago.

The term Microservices was not yet important in our industry. However,
achieving a good modularization was our goal right from the start. The entire
application consisted initially of a number of web modules coming in the shape of
typical Java web application archives (WAR). These comprised in turn multiple
modules which had been split based on domain as well as technical criteria. In

addition to modularization we relied from the start on on Continuous Deployment
as a method for rolling out the application. Each commit goes straight into
production.

Initially, it seemed an obvious choice to build an integrated deployment pipeline
for the entire application. This enabled integration tests across all components. A
single version for the entire application enabled controlled behavior, even if
multiple components of the applications were changed simultaneously. Finally, the
pipeline itself was easier to implement. The latter was an important reason since
there were relatively few tools for continuous deployment at the time so that we
had to build most ourselves.

However, after some time the disadvantages of our approach became obvious.
The first consequence was a longer and longer run time of our deployment
pipeline. The larger the number of components that were built, tested and rolled
out, the longer the process took. The advantages of continuous deployments
rapidly diminished when the run time of the pipeline became longer. The first
counter measure was the optimization that only changed components were built
and tested. However, this increased the complexity of the deployment pipeline
tremendously. At the same time other problems like the runtime for changes to
central components or the size of the artifacts could not be improved this way.

But there was also a more subtle problem. A combined rollout with integrative
tests offered a strong security net. It was easy to perform refactorings across
multiple modules. However, this often changed interfaces between modules just
because it was so easy to do. This is in principle a good thing. However, it had
the consequence that it became very frequently necessary to start the entire system.
Especially when working on the developer machine this turned into a burden. The
requirements for the hardware got very high and the turnaround times lengthened
considerably.

The approach got even more complicated when more than one team worked with
this integrated pipeline. The more components were tested in one pipeline, the
more frequently errors were uncovered. This blocked the pipeline since the errors
had to be fixed first. At the time when only one team was dependent on the
pipeline, it was easy to find somebody who took over responsibility and fixed the
problem. When there were several teams this responsibility was not so clear
anymore. This entailed that errors in the pipeline persisted for a longer time.
Simultaneously the variety of technologies increased. Again the complexity rose.

This pipeline now needed very specialized solutions. Therefore, the expenditure
for maintenance increased, and the stability decreased. The value of continuous
deployment got hard to put into effect.

At this time point it became obvious that the combined deployment in one pipeline
could not be continued anymore. All new services, regardless whether
Microservices or larger modules, now had there own pipeline. However, it
caused a lot of expenditure to separate the previous pipeline which was based on
shared deployment into multiple pipelines.

In a new project it can be the right decision to start with a combined deployment.
This especially holds true when the borders between the individual services and
their interfaces are not yet well known. In such a case good integrative tests and
simple refactoring can be very useful. However, starting at a certain size an
independent deployment is obligatory. Indications for this are the number of
modules or services, the run time and stability of the deployment pipeline and last,
but not least the question how many teams work on the overall system. If these
indications are overlooked and the right point in time to separate the deployment
is missed, it can easily happen that one builds a monolith which consists of many
small Microservices.

12.5 Control

Interventions in a Microservice might be necessary at run time. For instance, a
problem with a Microservice might require to restart the respective Microservice.
Likewise, a start or a stop of a Microservice might be necessary. These are ways
for operation to intervene in case of a problem or for a load balancer to terminate
instances which cannot process requests anymore.

Different measures can be used for control:

e When a Microservice runs in a virtual machine, the virtual machine can be
shut down or restarted. In that case the Microservice itself does not have to
make special arrangements.

e The operating system supports services which are started together with the
operating system. Usually, services can also be stopped, started or restarted
by means of the operating system. In that case the installation only has to
register the Microservice as service. Working with services is nothing
unusual for operation which is sufficient for this approach.

¢ Finally, an interface can be used which allows restarting or shutting down,
for instance via REST. Such an interface has to be implemented by the
Microservice itself. This is supported by several libraries in the
Microservices area — for instance by Spring Boot which is used to implement
the example in chapter 14. Such an interface can be called with simple HTTP
tools like curl.

Technically, the implementation of control mechanisms is not a big problem, but
they have to be present for operating the Microservices. When they are identically
implemented for all Microservices, this can reduce the expenditure for operating
the system.

12.6 Infrastructure

Microservices have to run on a suitable platform. It is best to run each
Microservice in a separate virtual machine (VM). Otherwise it is difficult to
assure an independent deployment of the individual Microservices.

When multiple Microservices run on a virtual machine, the deployment of one
Microservice can influence another Microservice. The deployment can generate a
high load or introduce changes to the virtual machine which also concern other
Microservices running on the virtual machine.

Besides Microservices should be isolated from each other to achieve a better
stability and resilience. When multiple Microservices are running on one virtual
machine, one Microservice can generate so much load that the other
Microservices fail. However, precisely that should be prevented: When one
Microservice fails, this failure should be limited to this one Microservice and not
affect additional Microservices. The isolation of virtual machines is helpful for
limiting the failure or the load to one Microservice.

Scaling Microservices is likewise easier when each Microservice runs in an
individual virtual machine. When the load is too high, it is sufficient to start a new
virtual machine and register it with the load balancer.

In case of problems it is also easier to analyze the error when all processes on a
virtual machine belong to one Microservice. Each metric on the system then
unambiguously belongs to this Microservice.

Finally, the Microservice can be delivered as hard drive image when each
Microservice runs on its own virtual machine. Such a deployment has the
advantage that the entire environment of the virtual machine is exactly in line with
the requirements of the Microservice and that the Microservice can bring along its
own technology stack up to its own operating system.

Virtualization or Cloud

It is hardly possible to install new physical hardware upon the deployment of a
new Microservice. Besides Microservices profit from virtualization or Cloud
since this renders the infrastructures much more flexibel. New virtual machines
for scaling or testing environments can easily be provided. In the Continuous
Delivery Pipeline Microservices are constantly started to perform different tests.
Moreover, in production new instances have to be started depending on the load.

Therefore it should be possible to start a new virtual machine in a completely
automated manner. Starting new instances with simple API calls is exactly what a
Cloud offers. A Cloud infrastructure should be available in order to really be able
to implement a Microservice-based architecture. Virtual machines which are
provided by operation via manual processes are not sufficient. This also
demonstrates that Microservices can hardly be run without modern infrastructures.

Docker

When there is an individual virtual machine for each Microservice, it is laborious
to generate a test environment containing all Microservices. Even creating an
environment with relatively few Microservices can be a challenge for a developer
machine. The usage of RAM and CPU is very high for such an environment. In
fact, it is hardly sensible to use an entire virtual machine for one Microservice. In
the end, the Microservice should just run and integrate in logging and monitoring.
Therefore solutions like Docker are convenient: Docker does not comprise many
of the normally common operating system features.

Instead Docker offers a very light-weight virtualization. To this purpose Docker
uses different technologies:

e Inplace of a complete virtualization Docker employs Linux Containers (LXC
— LinuX Container). Support for similar mechanisms in Microsoft Windows
has been announced. This allows to implement a light-weight alternative to
virtual machines: All containers use the same kernel. There is only one
instance of the kernel in memory. Processes, networks, data systems and

https://www.docker.com/
https://linuxcontainers.org/

users are separate from each other. In comparison to a virtual machine with
its own kernel and often also many operating system services a container has
a profoundly lower overhead. It is easily possible to run hundreds of Linux
containers on a simple laptop. Besides a container starts much more rapidly
than a virtual machine with its own kernel and complete operating system.
The container does not have to boot an entire operating system; it just starts a
new process. The container itself does not add a lot of overhead since it only
requires a custom configuration of the operating system resources.

¢ In addition, the file system is optimized: Basic read-only file systems can be
used. At the same time additional file systems can be added to the container
which also allow for writing. One file system can be put on top of another
file system. For instance, a basic file system can be generated which contains
an operating system. If software is installed in the running container or if
files are modified, the container only has to store these additional files in a
small container-specific file system. In this way the memory requirement for
the containers on the hard drive is significantly reduced.

Besides additional interesting possibilities arise: For example, a basic file system
can be started with an operating system, and subsequently software can be
installed. As mentioned, only changes to the file system are saved which are
introduced upon the installation of the software. Based on this delta a file system
can be generated. Then a container can be started which puts a file system with
this delta on top of the basic file system containing the operating system — and
afterwards additional software can be installed in yet another layer. In this manner
each “layer” in the file system can contain specific changes. The real file system
at run time can be composed from numerous such layers. This allows to recycle
software installations very efficiently.

Fig. 61 shows an example for the file system of a running container: The lowest
level is an Ubuntu Linux installation. On top there are changes which have been
introduced by installing Java. Then there is the application. For the running
container to be able to write changes into the file system, there is a file system on
top into which the container writes files. When the container wants to read a file,
it will move through the layers from top to bottom until it finds the respective data.

Written data

Application

Java

Ubuntu

Fig. 61: Filesystems in Docker

YO YAYA
AN AN AN

Docker Container vs. Virtualization

Docker containers offer a very efficient alternative to virtualization. However,
they are no “real” virtualization since each container has separate resources, its
own memory, and its own file systems, but all share for instance one kernel.
Therefore, this approach has some disadvantages. A Docker container can only
use Linux and only the same kernel like the host operating system — consequently

Windows applications for instance cannot be run on a Linux machine this way.
The separation of the containers is not as strict as in the case of real virtual
machines. An error in the kernel would for example affect all containers.
Moreover, Docker also does not run on Mac OS X or Windows. Nevertheless,
Docker can directly be installed on these platforms. Behind the scenes a virtual
machine with Linux is being used. Microsoft has announced a version for
Windows which can run the Windows container.

Communication Between Docker Containers

Docker containers have to communicate with each other. For example, a web
application communicates with its database. For this purpose, containers export
network ports which other containers use. Besides file systems can be used
together. There containers write data which can be read by other containers.

Docker Registry

Docker images comprise the data of a virtual hard drive. Docker registries allow
to save and download Docker images. This makes it possible to save Docker
images as result of a build process and subsequently to roll them out on servers.
Because of the efficient storage of images, it is easily possible to distribute even
complex installations in a performant manner. Besides many Cloud solutions can
directly run Docker containers.

Docker and Microservices

Docker constitutes an ideal running environment for Microservices. It hardly
limits the used technology as every type of Linux software can run in a Docker
container. Docker registries allow to easily distribute Docker containers. At the
same time the overhead of a Docker container is negligible in comparison to a
normal process. Since Microservices require a multitude of virtual machines,
these optimizations are very valuable. On the one hand Docker is very efficient,
and on the other hand it does not limit the technology freedom.

Try and Experiment

&‘ At http//www.docker.com/tryit/ the Docker online tutorial can be found. Complete the tutorial — it
demonstrates the basics of working with Docker. The tutorial is fast to complete.

Docker and Servers

http://www.docker.com/tryit/

There are different possibilities to use Docker for servers:

On a Linux server Docker can be installed, and afterwards one or multiple
Docker containers can be run. Docker then serves as solution for the
provisioning of the software. For a cluster new servers are started on which
again the Docker containers are installed. Docker only serves for the
installation of the software on the servers.

Docker containers are run directly on a cluster. On which physical computer
a certain Docker is located is decided by the software for cluster
administration. Such an approach is supported by the scheduler Apache
Mesos. It administrates a cluster of servers and directs jobs to the respective
servers. Mesosphere allows to run Docker containers with the aid of the
Mesos scheduler. Besides Mesos supports many additional kinds of jobs.
Kubernetes likewise supports the execution of Docker containers in a cluster.
However, the approach taken is different from Mesos. Kubernetes offers a
service which distributes pods in the cluster. Pods are interconnected Docker
containers which are supposed to run on a physical server. As basis
Kubernetes requires only a simple operating system installation — Kubernetes
implements the cluster management.

CoreQS is a very light-weight server operating system. With etcd it supports
the cluster-wide distribution of configurations. fleetd enables the deployment
of services in a cluster — up to redundant installation, failure security,
dependencies and shared deployment on a node. All services have to be
deployed as Docker containers while the operating system itself remains
essentially unchanged.

Docker Machine allows the installation of Docker on different virtualization
and Cloud systems. Besides Docker machine can configure the Docker
command line tool in such a manner that it communicates with such a system.
Together with Docker Compose multiple Docker containers can be combined
to an overall system. The example application employs this approach,
compare section 14.6 and section 14.7. Docker Swarm adds a way to
configure and run clusters with this tool stack: Individual servers can be
installed with Docker Machine and combined to a cluster with Docker
Swarm. Docker Compose can run each Docker container on a specific
machine in the cluster.

Kubernetes, CoreOS, Docker Compose, Docker Machine, Docker Swarm and
Mesos of course influence the running of the software so that the solutions require
changes in the operation procedures in contrast to virtualization. These

http://mesos.apache.org/
http://mesosphere.com/
http://kubernetes.io/
http://coreos.com/
https://docs.docker.com/machine/
http://docs.docker.com/compose/
http://docs.docker.com/swarm/

technologies solve challenges which were previously addressed by virtualization
solutions, namely to administrate a cluster of servers so that containers resp.
virtual machines can be distributed in the cluster.

PaaS

Paa$S (Platform as a Service) is based on a fundamentally different approach. The
deployment of an application can be done simply by updating the application in
version control. The Paa$S fetches the changes, builds the application and rolls it
out on the servers. These servers are installed by PaaS and represent a
standardized environment. The actual infrastructure — i.e. the virtual machines —
are hidden from the application. PaaS offers a standardized environment for the
application. The environment takes for instance also care of the scaling and can
offer services like databases and messaging systems. Because of the uniform
platform PaaS systems limit the technology freedom which is normally an
advantage of Microservices. Only technologies which are supported by PaaS can
be used. On the other hand, deployment and scaling are further facilitated.

Microservices impose high demands on infrastructure. Automation is an essential
prerequisite for operating the numerous Microservices. A PaaS offers a good
basis for this since it profoundly facilitates automation. To use a PaaS can be
especially sensible when the development of a home-grown automation is too
laborious and there is not enough knowledge about how to build the necessary
infrastructure. However, the Microservices have to restrict themselves to the
features which are offered by the PaaS. When the Microservices have been
developed for the PaaS from the start, this is not very laborious. However, if they
have to be ported, considerable expenditure can ensue.

Nanoservices (chapter 15) have different operating environments, which for
example even further restrict the technology choice. On the other hand they are
often even easier to operate and even more efficient in regards to resource usage.

12.7 Conclusion

Operating a Microservice-based system is one of the central challenges when
working with Microservices (section 12.1). A Microservice-based system
contains a tremendous number of Microservices and therefore operating system
processes. Fifty or one hundred virtual machines are no rarity. The responsibility
for operation can be delegated to the teams. However, this approach creates a
higher overall expenditure. Standardizing operations is a more sensible strategy.

Templates are a possibility to achieve uniformity without exerting pressure.
Templates turn the uniform approach into the easiest one.

For logging (section 12.2) a central infrastructure has to be provided which
collects logs from all Microservices. There are different technologies available
for this. To trace a call across the different Microservices a Correlation ID can be
used which unambiguously identifies a call.

Monitoring (section 12.3) has to offer at least basic information such as the
availability of the Microservice. Additional metrics can for instance provide an
overview of the overall system or can be useful for load balancing. Metrics can
be individually defined for each Microservice. There are different stakeholders
for the monitoring: Operations, developers and business stakeholders. They are
interested in different values and use where necessary their own tools for
evaluating the Microservices data. Each Microservice has to offer an interface
with which the different tools can fetch values from the application. The interface
should be identical for all Microservices.

The deployment of Microservices (section 12.4) has to be automated. Simple
scripts, especially in conjunction with Immutable Server, special deployment
tools and Package Manager can be used for this purpose.

Microservices are small deployment units. They are safeguarded by stability and
resilience against the failure of other Microservices. Therefore, the risk
associated with deployments is already reduced by the Microservice-based
architecture itself. Strategies like Rollback, Roll Forward, Continuous
Deployment, Blue/Green-Deployment or a blind moving along in production can
further reduce the risk. Such strategies are easy to implement with Microservices
since the deployment units are small and the consumption of resources by
Microservices is low. Therefore, deployments are faster, and environments for
Blue/Green-Deployment or Canary Releasing are much easier to provide.

Control (section 12.5) comprises simple intervention options like starting,
stopping and restarting of Microservices.

Virtualization or Cloud are good options for infrastructures for Microservices
(section 12.6). On each VM only a single Microservice should run to achieve a
better isolation, stability and scaling. Especially interesting is Docker because the
consumption of resources by a Docker Container is much lower than the one of a

VM. This makes it possible to provide each Microservice with its own Docker
Container even if the number of Microservices is large. PaaS are likewise
interesting. They allow for a very simple automation. However, they also restrict
the choice of technologies.

This section only focuses on the specifics of Continuous Delivery and operation in
a Microservices environment. Continuous Delivery is one of the most important
reasons for the introduction of Microservices. At the same time operation poses
the biggest challenges.

Essential Points

e Operation and Continuous Delivery are central challenges for Microservices.

e The Microservices should handle monitoring, logging and deployment in a
uniform manner. This is the only way to keep the effort reasonable.

e Virtualization, Cloud, PaaS and Docker are interesting infrastructure
alternatives for Microservices.

13 Organizational Effects of a Microservices-
based Architecture

It is an essential feature of the Microservice-based approach that one team is
responsible for each Microservice. Therefore, when working with Microservices,
it is necessary to look not only at the architecture, but also at the organization of
teams and the responsibilities for the individual Microservices. This chapter
discusses the organizational effects of Microservices.

In section 13.1 organizational advantages of Microservices are described. Section
13.2 shows that collective code ownership presents an alternative to devising
teams according to Conway’s Law. The independence of the teams is an important
consequence of Microservices. Section 13.3 defines micro and macro architecture
and shows how these approaches offer a high degree of autonomy to the teams and
let them make independent decisions. Closely connected is the question about the
role of the technical leadership (section 13.4). DevOps is an organizational
approach which combines development (Dev) and operations (Ops) (section
13.5). DevOps has synergies with Microservices. Since Microservices focus on
independent development from a domain perspective, they influence also product
owners and business stakeholders e.g. the departments of the business that uses the
software. Section 13.6 discusses how these groups can handle Microservices.
Reusable code can only be achieved in Microservice systems via organizational
measures as illustrated in section 13.7. Finally, section 13.8 follows up on the
question whether an introduction of Microservices is possible without changing
the organization.

13.1 Organizational Benefits of Microservices

Microservices are an approach for tackling also large projects with small teams.
As the teams are independent of each other, less coordination is necessary
between them. Especially the communication overhead renders the work of large
teams so inefficient. Microservices are an approach on the architectural level for
solving this problem. The architecture helps to reduce the need for communication
and to let many small teams work in the project instead of one large one. Each

domain-based team can have the ideal size: The Scrum guide recommends three to
nine members.

Besides, modern enterprises stress self organization and teams which are
themselves active directly at the market. Microservices support this approach
because each service is in the responsibility of an individual team consistent with
Conway’s Law (Section 4.2). Therefore Microservices fit well to self
organization. Each team can implement new features independently of other teams
and can evaluate the success on the market by themselves.

On the other hand there is a conflict between independence and standardization:
When the teams are supposed to work on their own, they have to be independent.
Standardization restricts independence. This concerns for instance the decision
which technologies should be used. If the project is standardized in regards to a
certain technology stack, the teams cannot decide independently anymore which
technology they want to use. In addition, independence conflicts with the wish to
avoid redundancy: If the system is supposed to be free of redundancy, there has to
be coordination between the teams in order to identify the redundancies and to
eliminate them. This in turn limits the independence of the teams.

Technical Independence

An important aspect is the technological decoupling. Microservices can use
different technologies and can have entirely different structures internally. This
means that developers have less need to coordinate. Only fundamental decisions
have to be made together. All other technical decisions can be made by the teams.

Separate Deployment

Each Microservice can be brought into production independently of the other
Microservices. There is also no need to coordinate release dates or test phases
across teams. Each team can choose its own speed and its own dates. A delayed
release date of one team does not influence the other teams.

Separate Requirement Streams

The teams should each implement independent stories and requirements. This
allows each team to pursue its own business objectives.

Three Levels of Independence

Microservices enable independence on three levels:

http://www.scrumguides.org/scrum-guide.html#team

e Decoupling via independent releases: Each team takes care of one or
multiple Microservices. The team can bring them into production
independently of the other teams and the other Microservices.

e Technological decoupling: The technical decisions made by a certain team
concern first of all their Microservices and none of the other Microservices.

e Domain-based decoupling: The distribution of the domain in separate
components allows each team to implement their own requirements.

For Deployment Monoliths, in contrast, the technical coordination and deployment
concerns the entire monolith (Fig. 62). This necessitates such a close coordination
between the developers that in the end all developers working on the monolith
have to act like one team.

[Requirements J

Team

Monolith

[Deployment
=

Technical Coordination
Fig. 62: Deployment Monolith

A prerequisite for the independence of the Microservice teams is that the
architecture really offers the necessary independence of the Microservices. This
requires first of all a good domain architecture. This architecture enables also
independent requirement streams for each team.

[Requirements] [Requirements] [Requirements]

Team Team Team
User Registration Order Process Product Search
[Microservice] [Microservice j (Microservice]
e - | e
'~ Technical ~' '~ Technical > | Technical >]
coordination coordination coordination

Fig. 63: Separation into Microservices
There are the following teams in the example from Fig. 63:

e The team “user registration” takes care of how users can register in the E-
commerce shop. A possible business objective is to achieve a high number of
registrations. New features aim at optimizing this number. The components of
the team are the processes which are necessary for the registration and the UI
elements. The team can change and optimize them at will.

e The team “order process” addresses how the shopping cart turns into an
order. Here, a possible objective is that as many shopping carts as possible
turn into orders. The entire process is implemented by this team.

e The team “product search” improves the search for products. The success of
this team depends on how many search processes lead to items being put into
a shopping cart.

Of course, there can be additional teams with other goals. Overall this approach
distributes the task of developing an E-commerce shop onto multiple teams which
all have their own objectives. The teams can largely independently pursue their
objectives because the architecture of the system is distributed into Microservices
which each team can develop independently — without much need for
coordination.

In addition small projects have many more advantages:

e Estimations are more accurate since estimates concerning smaller efforts are
easier to make.

e Small projects are better to plan.

e The risk decreases — because of the more accurate estimates and because of
the better forecast reliability.

e [f there still is a problem, its effects are smaller because the project is
smaller.

In addition, Microservices offer much more flexibility. This makes decisions
faster and easier because the risk is smaller and changes can be implemented
more rapidly. This ideally supports agile software development which relies on
such flexibility.

13.2 An Alternative Approach to Conway’s Law

Section 4.2 introduced Conway’s Law. According to this law, an organization can
only generate architectures which mirror its communication structures. In
Microservice-based architectures the teams are built according to the
Microservices. Each team develops one or multiple Microservices. Thus each
Microservice is only developed by exactly one team. This ensures that the domain
architecture is not only implemented by the distribution into Microservices, but
also supported by the organizational distribution. This renders violations of the
architecture practically impossible. Moreover the teams can independently
develop features when the features are limited to one Microservice. For this to
work the distribution of domains between the Microservices has to be of very high

quality.
The Challenges Associated with Conway’s Law

However, this approach also has disadvantages:

e The teams have to remain stable in the long run. Especially when the
Microservices use different technologies, the ramp up time for an individual
Microservice is very long. Developers cannot easily switch between teams.
Especially in teams containing external consultants long term stability is
often hard to ensure. Already the usual fluctuation of personnel can turn into a
challenge when working with Microservices. In the worst case, if there is
nobody left to maintain a specific Microservice, it is still possible to rewrite

the respective Microservice. Microservices are easy to replace due to their
limited size. Of course, this still entails some expenditure.

e Only the team understands the component. When team members quit, the
knowledge about one or multiple Microservices can get lost. In that case the
Microservice cannot be modified anymore. Such islands of knowledge need
to be avoided. In such a case it will not be an option to replace the
Microservice since an exact knowledge of the domain is necessary for this.

e Changes are difficult whenever they require the coordinated work of multiple
teams. When a team can implement all changes for a feature in its own
Microservices, architecture and scaling of development will work very well.
However, when the feature concerns also another Microservice and therefore
another team, the other team needs to implement the changes to the respective
Microservice. This requires not only communication, but the necessary
changes also have to be prioritized versus the other requirements of the team.
If the teams work in sprints, a team can deliver the required changes without
prematurely terminating the current sprint earliest in the following sprint —
this causes a marked delay. In case of a sprint length of two weeks the delay
can amount to two weeks — if the team prioritizes the change high enough so
that it is taken care of in the next sprint. Otherwise the ensuing delay can be
even longer.

Collective Code Ownership

When it is always only the responsible team which can introduce changes to a
Microservice, a number of challenges result as described. Therefore it is
worthwhile to consider alternatives. Agile processes have led to the concept of
“Collective Code Ownership”. Here, each developer has not only the right, but
even the duty to alter any code — for example when he/she considers the code
quality as insufficient in a certain place. Thereby all developers take care of code
quality. Besides technical decisions are better communicated because more
developers understand them due to their reading and changing code. This leads to
the critical questioning of decisions so that the overall quality of the system
increases.

Collective Code Ownership can relate to a team and its Microservices. Since the
teams are relatively free in their organization, such an approach is possible
without much coordination.

Advantages of Collective Code Ownership

However, in principle teams can also modify Microservices which belong to
other teams. This approach is used by some Microservice projects to deal with
the discussed challenges because it entails a number of advantages:

e Changes to a Microservice of another team can be faster and more easily
implemented. When a modification is necessary, the change has not to be
introduced by another team. Instead the team requiring the change can
implement it by itself. It is not necessary anymore to prioritize the change in
regards to other changes to the component.

e Teams can be put together more flexibly. The developers are familiar with a
larger part of the code — at least superficially due to changes which they have
introduced in the code. This makes it easier to replace team members or even
an entire team — or to enlarge a team. The developers do not have to ramp up
from the very basics. A stable team is still the best option — however, often
this cannot be achieved.

e The distribution in Microservices is easy to change. Because of the broader
knowledge of the developers it is easier to move responsibility for a
Microservice to a different team. This can be sensible when Microservices
have a lot of dependencies on each other, but are in the responsibility of
different teams which then have to closely and laboriously coordinate. If the
responsibility for the Microservices is changed so that the same team is
responsible for both of the closely coupled Microservices, coordination is
easier than in the case where two teams were working on these
Microservices. Within one team the team members often sit in the same
office. Therefore they can easily and directly communicate with each other.

Disadvantages of Collective Code Ownership

However, there also disadvantages associated with this approach:

e Collective Code Ownerships is in contrast to technology freedom: When
each team uses other technologies, it is difficult for developers outside of a
team to change the respective Microservices. They might not even know the
technology used in the Microservice.

e The teams can lose their focus. The developers acquire a larger overview of
the full system. However, it might be better when the developers concentrate
on their own Microservices instead.

e The architecture is not as solid anymore. By knowing the code of other
components developers can exploit the internals and thereby rapidly create
dependencies which had not been intended in the architecture. Finally, the

distribution of the teams according to Conway’s Law is supposed to support
the architecture by turning interfaces between domain components into
interfaces between teams. However, the interfaces between the teams lose
importance when everybody can change the code of every other team.

Pull Requests for Coordination

Communication between teams is still necessary: In the end the team responsible
for the respective Microservice has the most knowledge about the Microservice.
So changes should be coordinated with the respective team. This can be
safeguarded technically: The changes of the external teams can initially be
introduced separately from other changes and subsequently be sent to the
responsible team via a pull request. Pull requests bundle changes to the source
code. Especially in the open source community they are a popular approach to
allow for external contributions without giving up control of the project. The
responsible team can accept the pull request or demand fixes. This means that
there is a review for each change by the responsible team. This allows the
responsible team to ensure that the architecture and design of the Microservice
remain sound.

Since there is still the need for communication between teams, Conway’s Law is
not violated by this approach. It is just a different way of playing the game. In case
of a bad split among teams in a Microservice-based architecture all options are
associated with tremendous disadvantages. To correct the distribution is difficult
as larger changes across Microservices are laborious as discussed in section 8.4.
Due to the unsuitable distribution the teams are forced to communicate a lot with
each other. Thereby productivity is lost. Therefore it is also no option to leave the
distribution as it is. Collective Code Ownership can be used to limit the need for
communication. The teams directly implement requirements in the code of other
teams. This causes less need for communication and better productivity. To do so
the technology freedom should be restricted. The changes to the Microservices
still have to be coordinated — at least reviews are definitely necessary. However,
if the architecture had been set up appropriately from the start, this measure would
not be necessary at all as workaround.

Try and Experiment

&‘ Did you already encounter Collective Code Ownership? Which experiences did you make with it?

&‘ Which restrictions are there in your current project when a developer wants to change some code
which has been written by another developer in the same team or by a developer from another
team? Are changes to the code of other teams not meant to occur? In that case, how is it still
possible to implement the necessary changes? Which problems are associated with this course of
action?

13.3 Micro and Macro Architecture

Microservices allow to largely avoid overarching architecture decisions. Each
team can choose the optimal type of architecture for its Microservices.

Basis for this is the Microservices architecture. It allows a large degree of
technical freedom. While normally due to technical reasons uniform technologies
are mandatory, Microservices do not have these restrictions. However, there can
be other reasons for uniformity. The question is which decision is made by whom.
There are two layers of decision making:

e Macro architecture comprises the decisions which concern the overall
system. These are at least the decisions presented in chapter 8 regarding the
domain architecture and basic technologies, which have to be used by all
Microservices, as well as communication protocols (chapter 9). The
properties and technologies of individual Microservices can also be preset
(chapter 10). However, this does not have to be the case. Decisions about the
internals of the individual Microservices do not have to be made in the
macro architecture.

e The micro architecture deals with decisions each team can make by itself.
These should address topics which concern only the Microservices
developed by the respective team. Among these topics can be all aspects
presented in chapter 10 as long as they have not already been defined as part
of the macro architecture.

The macro architecture cannot be defined once for all, but has to undergo
continuous development. New features can require a different domain architecture

or new technologies. Optimizing the macro architecture is a permanent process.

Decision = Responsibility

The question is who defines macro and micro architecture and takes care of their
optimization. It is important to keep in mind that each decision is linked to
responsibility. Whoever makes a decision is responsible for its consequences -
good or bad. In turn the responsibility for a Microservice entails the necessity to
make the required decisions for its architecture. When the macro architecture
defines a certain technology stack, the responsibility for this stack rests with the
persons responsible for the macro architecture — not with the teams which use
them in the Microservices and might later have problems with this technology
stack. Therefore a strong restriction of the technology freedom of the individual
Microservices by the macro architecture is often not helpful. It only shifts
decisions and responsibility to a level which does not have much to do with the
individual Microservices. This can lead to an ivory tower architecture that is not
based on the real requirements. In the best case it is ignored. In the worst case it
causes serious problems in the application. Microservices allow to largely do
without macro architecture decisions in order to avoid such an ivory tower
architecture.

Who Creates Macro Architecture?

For defining macro architecture decisions have to be made which affect all
Microservices. Such decisions cannot be made by a single team since the teams
only carry responsibility for their respective Microservices. Macro architecture
decisions go beyond individual Microservices.

The macro architecture can be defined by a team which is composed from
members of each individual team. This approach seems to be obvious at first
glance: It allows all teams to voice their perspectives. Nobody dictates certain
approaches. The teams are not left out of the decision process. There are many
Microservice projects which very successfully employ this approach.

However, this approach has also disadvantages:

e For decisions at the macro architecture level an overview of the overall
system is necessary and an interest to develop the system in its entirety.
Members of the individual teams often have a strong focus on their own
Microservices. That is of course very sensible since the development of
these Microservices is their primary task. However, this can make it hard for

them to make overarching decisions since those require a different
perspective.

e The group can be too large. Effective teams normally have five to ten
members at maximum. If there are many teams and each is supposed to
participate with at least one member, the macro architecture team will get too
large and thus cannot work effectively anymore. Large teams are hardly able
to define and maintain the macro architecture.

The alternative is to have a single architect or an architecture team which is
exclusively responsible for shaping the macro architecture. For larger projects
this task is so demanding that for sure an entire architecture team is needed to
work on it. This architecture team takes the perspective of the overall project.
However, there is a danger that the architecture team distances itself too much
from the real work of the other teams and consequently makes ivory-tower
decisions or solves problems the teams do not actually have. Therefore, the
architecture team should mainly moderate the process of decision making and
make sure that the view points of the different teams are all considered. It should
not set a certain direction all by itself. In the end the different Microservices
teams will have to live with the consequences of the architecture team’s decisions.

Extent of the Macro Architecture

There is no one and only way to divide the architecture into micro and macro
architecture. The company culture, the degree of self organization and other
organizational criteria play a prominent role. A highly hierarchical organization
will give the teams less freedom. When as many decisions as possible are made
on the level of the micro architecture, the teams will gain more responsibility.
This often has positive effects because the teams really feel responsible and will
act accordingly.

The NUMMI car factory in the USA for instance was a very unproductive factory
which was known for drug abuse and sabotage. By focusing more on teamwork
and trust the same workers could be turned into a very productive workforce.
When teams are able to make more decisions on their own and have more freedom
of choice, the work climate as well as productivity will profoundly benefit.

Besides, by delegating decisions to teams less time is spent on coordination so
that the teams can work more productively. To avoid the need for communication
by delegating more decisions to the teams and therefore to micro architecture is an
essential point for architecture scaling.

http://en.wikipedia.org/wiki/NUMMI#Background

However, when the teams are very restricted in their choices, one of the main
advantages of Microservices is not realized. Microservices increase the technical
complexity of the system. This only makes sense if the advantages of
Microservices are really exploited. Consequently, when the decision for
Microservices has been made, there should also be a decision for having as much
micro architecture and as little macro architecture as possible.

The decision for more or less macro architecture can be made for each area
differently.

Technology: Macro/Micro Architecture

For the technologies the following decisions can be made concerning macro vs.
micro architecture:

e Uniform security (section 8.12), service discovery (section 8.9) and
communication protocols (chapter 9) are necessary to enable Microservices
to communicate with each other. Therefore decisions in these areas clearly
belong to macro architecture. Among these are also the decisions for the use
and details of downwards compatible interfaces which are required for the
independent deployment of microservices.

e Configuration and coordination (Section 8.8) do not necessarily have to be
determined globally for the complete project. When each Microservice is
operated by its respective team, the team can also handle the configuration
and use its own tool of choice for it. However, a uniform tool for all
Microservices has clear advantages. Besides there is hardly any sensible
reason why each team should use a different mechanism.

e The use of resilience (section 10.5) or load balancing (section 8.10) can be
defined in the macro architecture. The macro architecture can either define a
certain standard technology or just enforce that these points have to be
addressed during the implementation of the Microservices. This can for
instance be ensured by tests (section 11.8). The tests can check whether a
Microservice is still available after a dependent Microservice failed. In
addition, they can check whether the load is distributed to multiple
Microservices. The decision for the use of resilience or load balancing can
be theoretically left to the teams. When they are responsible for the
availability and the performance of their service, they have to have the
freedom to use their choice of technologies for it. When their Microservices
are sufficiently available without resilience and load balancing, their strategy

is acceptable. However, in the real world such scenarios are hard to
imagine.

e Inregards to platform and programming language the decision can be made at
the level of macro or micro architecture. The decision might not only
influence the teams but also operations since operations needs to understand
the technologies and need to be able to deal with failures. It is not
necessarily required to prescribe a programming language. Alternatively, the
technology can be restricted e.g. to the JVM (Java Virtual Machine) which
supports a number of programming languages. In regards to the platform a
potential compromise is that a certain database is provided by operations,
but that the teams can also use and operate different ones. Whether the macro
architecture defines platform and programming language depends also on
whether developers need to be able to change between teams. A shared
platform facilitates transferring the responsibility for a Microservice from
one team to another team.

Fig. 64 shows which decisions are part of the macro architecture - they are on the
right side. The micro architecture parts are on the left side. The areas in the

middle can be either part of the macro or micro architecture. Each project can
handle them differently.

Programming
Language / Plattform

Security (8.12)
Configuration and
Coordination (8.8) Service
Discovery (8.9)

Resilience (10.5)
Communication

Load Balancing (8.10) Protocols (9)
Micro Macro
Architecture Architecture

Fig. 64: Technology: macro and micro architecture

Operations

In the area of operations there is control (section 12.5), monitoring (section 12.3),
logging (section 12.2) and deployment (section 12.4). To reduce the complexity of
the environment and to enable a uniform operations solution these areas have to be
defined by macro architecture. The same holds true for platform and programming
language. However, standardizing is not obligatory: When the entire operations of

the Microservices rests with the teams, theoretically each team can use a different
technology for each of the mentioned areas. But while this scenario does not
generate many advantages, it creates a huge technological complexity. However, it
is for example possible that the teams use their own special solution for certain
tasks. When for instance the revenue is supposed to be transferred in a different
way into the monitoring for the business stakeholders, this is certainly doable.

Control (12.5)
Monitoring (12.3)
Logging (12.2)
Deployment (12.4)

Micro Macro
Architecture Architecture

Fig. 65: Operations: macro and micro archite cture

Domain Architecture

In the context of domain architecture the distribution of domains to teams is part of
the macro architecture (section 8.1). It does not only influence the architecture, but
decides also which teams are responsible for which domains. Therefore this task
cannot be moved into the micro architecture. However, the domain architecture of
the individual Microservices has to be left to the teams (section 10.1, 10.2, 10.3,
10.4). To dictate the domain architecture of the individual Microservices to the
teams would be equivalent to treating Microservices at the organizational level
like monoliths because the entire architecture is centrally coordinated. In that case
one could as well develop a Deployment Monolith which is technically easier.
Such a decision would not make sense.

Overall Domain
Architecture (8.1)

Domain Architecture
of Individual Services

(10.1/10.2/10.3)
>
Micro Macro
Architecture Architecture

Fig. 66: Architecture: macro and micro architecture

Tests

In the area of testing integration tests (section 11.4) belong to the macro
architecture. In practice it has to be decided whether there should be an

integration test for a certain domain and who should implement it. Integration tests
only make sense when they concern functionalities across teams. The respective
teams can test all other functionalities on their own. Therefore integration tests
have to be globally coordinated across teams. Technical tests (section 11.8) can
be dictated to the teams by the macro architecture. They are a good option to
enforce and control global standards and technical areas of macro architecture.
Consumer-driven contract tests (CDC) (section 11.7) and Stubs (section 11.6) can
be coordinated between the teams themselves. A shared technological foundation
as part of macro architecture can profoundly facilitate development. Uniform
technologies are especially sensible in this area since teams have to use the CDCs
and Stubs of other teams. When only one technology is used, work is markedly
easier. However, it is not obligatory that technologies are rigidly prescribed by
the macro architecture.

How to test the respective Microservices should be up to the individual teams as
they have the responsibility for the quality of the Microservices.

Stubs (11.6)

Testing Technical
Standards (11.8)

Tests of Individual Consumer-driven Integrationstests
Microservices (11.6) Contract Tests (11.7) (11.4)
|
Micro Macro
Architecture Architecture

Fig. 67: Test: macro and micro architecture

In many areas decisions can be made either at the level of macro or at the level of
micro architecture. It is a central objective of Microservice-based architectures to
give the individual teams as much independence as possible. Therefore, as many
decisions as possible should be made on the level of micro architecture and
therefore by the individual teams. However, in regards to operations the question
arises whether the teams really profit from the freedom to use their own distinct
tools. It seems more likely that the technology zoo just gets bigger without real
advantages. In this area there is a connection to DevOps (section 13.5).
Depending on the degree of cooperation between developers and operations there
can be different degrees of freedom. In case of a clear division between

development and operations operations will define many standards in macro
architecture. In the end operations will have to take care of the Microservices in
production. When all Microservices employ a uniform technology, this task is
easier.

When defining programming language and platform one should likewise weigh the
advantages of specialized technology stacks versus the disadvantages of having
heterogeneous technologies in the overall system. Depending on the circumstances
the decision to prescribe a technology stack might be as sensible as the decision to
leave the technology choice to the individual teams. A uniform technology stack
can facilitate operations and make it easier for developers to change between
Microservices and teams. Specialized technology stacks make it easier to handle
special challenges and motivate employees who thus have the possibility to use
cutting edge technologies.

Whether a Microservice really conforms to the macro architecture can be
evaluated by a test (compare section 11.8). This test can be an artifact which is
likewise part of the macro architecture. The group responsible for the macro
architecture can use this artifact to unambiguously define the macro architecture.
This allows to check whether all Microservices are in line with macro
architecture.

13.4 Technical Leadership

The division in micro and macro architecture completely changes the technical
leadership teams and is an essential advantage of Microservices. The macro
architecture defines technical duties and freedom. The freedom of choice entails
also the responsibility for the respective decisions.

For example a database can be prescribed. In that case the team can delegate the
responsibility for the database to the technical leadership team. If the database
decision were part of the micro architecture, the database would be run by the
team since it made the decision for the technology. No other team would need to
deal with potential consequences of this decision (compare section 8.7). Whoever
makes the decision, also has the responsibility. The technical leadership team for
sure can make such decisions, but by doing so it takes away responsibility from
the Microservices teams and thereby independence.

A larger degree of freedom entails more responsibility. The teams have to be able
to deal with this and also have to want this freedom. Unfortunately, this is not

always the case. This can either argue for more macro architecture or for
organizational improvements which in the end lead to more self organization and
thus less macro architecture. It is one of the objectives of the technical leadership
team to enable less macro architecture and to lead the way to more self
organization.

Developer Anarchy

The approach Developer Anarchy is even more radical in regards to the freedom
of the teams. It confers the entire responsibility to the developers. They cannot
only freely choose technologies, but even rewrite code if they deem it necessary.
Besides, they communicate directly with the stake holders. This approach is
employed in very fast growing enterprises and works very well there. Behind this
idea is Fred George who has collected more than 40 years of experience while
working in many different companies. In a model like this macro architecture and
Deployment Monoliths are abolished so that the developers can do what they think
is best. This approach is very radical and shows how far the idea can be

extended.

Try and Experiment

&‘ In Fig. 64, Fig. 65, Fig. 66 and Fig. 67 areas are marked which can belong to either micro or macro
architecture. These are the elements which are depicted in the center of the respective figure. Look
through these elements and decide whether you would place them in micro or macro architecture.
Most important is your reasoning for the one or the other alternative. Take into consideration that
making decisions at the level of the micro architecture rather corresponds to the Microservice idea
of independent teams.

13.5 DevOps

DevOps denotes the concept that developments (Dev) and operations (Ops) merge
into one team (DevOps). This is an organizational change: Each team has
developers and operations experts. They work together in order to develop and
operate a Microservice. This requires a different mindset since operations-
associated topics are often unfamiliar to developers while people working in
operations often do not work in projects, but usually run systems independently of
projects. Ultimately, the technical skills become very similar: Operations works
more on automation and associated suitable tests — and this is in the end software

http://www.infoq.com/news/2012/02/programmer-anarchy
https://www.youtube.com/watch?v=uk-CF7klLdA

development. At the same time monitoring, log analysis or deployment turn more
and more also into topics for developers.

DevOps and Microservices

DevOps and Microservices ideally complement each other:

e The teams cannot only take care of the development, but also of the
operations of the Microservices. This requires that the teams have
knowledge in the areas of operations and development.

e Orienting the teams in line with features and Microservices represents a
sensible organizational alternative to the division into operations and
development.

e Communication between operations and development gets easier when
members of both areas work together in one team. Communication within a
team is easier than between teams. This is in line with the aim of
Microservices to reduce the need for coordination and communication.

DevOps and Microservices fit very well together. In fact, the aim that teams
deploy Microservices up to production and keep taking care of them in production
can only be achieved with DevOps teams. This is the only way to ensure that
teams have the necessary knowledge about both areas.

Do Microservices Necessitate DevOps?

DevOps is such a profound change in organization that many enterprises are still
reluctant to take this step. Therefore the question arises whether Microservices
can also be implemented without introducing DevOps. In fact, this is possible:

¢ Via the macro vs. micro architecture division operations can define
standards. Then technical elements like logging, monitoring or deployment
belong to the macro architecture. When these standards are conformed to,
operations can take over the software and make it part of the standard
operations processes.

¢ In addition, platform and programming language can be defined as much as
needed for operations. When operations only feels comfortable with running
Java applications on a Tomcat, this can be prescribed as platform in the
macro architecture. The same holds true for infrastructure elements like
databases or messaging systems.

e Moreover, there can be organizational requirements: For example, operations
can ask that members of the Microservices teams are available at certain

times so that problems arising in production can be referred to the teams. To
put it concretely: Who wants to deploy on his/her own, has to provide a
phone number and will also be called at night in case of problems. If the call
is not answered, the management can be called next. This increases the
likelihood that developers actually answer such calls.

In such a context the teams cannot be responsible anymore for bringing all
Microservices up to production. Access and responsibility rest with operations.
There has to be a point in the Continuous Delivery Pipeline where the
Microservices are passed on to operations and then are rolled out in production.
At this point the Microservice passes into the responsibility of operations which
has to coordinate with the respective team about their Microservices. A typical
point for the transfer to operations is immediately after the test phases, prior to
possible explorative tests. Operations is at least responsible for the last phase, i.e.
the rollout in production. Operations can turn into a bottleneck if a high number of
modified Microservices have to be brought into production.

Overall DevOps and Microservices have synergies — however, it is not
necessarily required to also introduce DevOps when deciding for Microservices.

When Microservices Meet Classical IT Organizations
(Alexander Heusingfeld)

by Alexander Heusingfeld, innoQ

The “Microservices” topic has meanwhile reached numerous IT departments and
is discussed there. Interestingly, initiatives for introducing Microservices are
often started by middle management. However, frequently too little thought is
spent on the effect a Microservice architecture has on the (IT) organization of
enterprises. Because of this I would like to tell of a number of “surprises” which I
experienced during the introduction of such an architecture approach.

Pets vs. Cattle

“Pets vs. Cattle” is a slogan which reached a certain fame at the outset of the
DevOps movement. Its basic message is that in times of cloud and virtualization
servers should not be treated like pets, but rather like a herd of cattle. If a pet gets
sick, the owner will likely nurse it back to health. Sick cattle on the other hand is
killed immediately in order not to endanger the health of the entire herd.

http://www.slideshare.net/randybias/architectures-for-open-and-scalable-clouds

Thus the point is to avoid the personification of servers — e.g. by giving them
names (like Leviathan, Pollux, Berlin or Lorsch). If you assign such “pet” names
to servers, there will be a tendency to care for them like pets and thus provide
individual updates, scripts, adjustments or other specific modifications. However,
it is well known that this has negative consequences for the reproducibility of
installations and server state. Especially considering auto-scaling and failover
features as they are required for Microservice-based architectures, this is a K.O.
criterion.

One of my projects addressed this problem in a very interesting manner: The
server and virtual machines still had names. However, the administration of these
systems was completely automated via Puppet. Puppet downloaded the respective
scripts from an SVN repository. In this repository individual scripts for each
server were stored. This scenario could be called “Puppets for automated pet
care”. The advantage is that crashed servers can quickly be replaced by exact
copies.

However, requirements for scalability are not taken into consideration at all, since
there can always only be one instance of a “pet server” named Leviathan. An
alternative is to switch to parameterized scripts and to use templates like
“production VM for app XYZ”. At the same time this also allows more flexible
deployment scenarios like Blue/Green Deployments. In that case it is not relevant
anymore whether the VM app-xyz-prod08.zone1.company.com or app-xyz-
prod045.zonel.company.com gets the job done. The only relevant point is that
eight instances of this service are constantly available and at times of high load
additional instances can be started. How these instances are named does not
matter.

Us vs. Them

“Alarming is our concern!”
“You shouldn’t care about that!”
“That is none of your business, it’s our area!”

Unfortunately I frequently hear sentences like these in so-called cross-functional
teams. These are teams composed of architects, developers, testers and
administrators. Especially if the members previously worked in other, purely
functional teams within the same company, old trench wars and prejudices are

carried along into the new team — often subconsciously. Therefore, it is important
to be aware of the social aspects right from the start and to counter these
proactively. For example, in my experience it has very positive effects to let
newly setup teams work in the same office for the first two to four weeks. This
allows the new team mates to get to know each other’s human side and to directly
experience the colleague’s body language, character and humor. This will
markedly facilitate communication during the later course of the project,
misunderstandings are avoided.

In addition, team building measures during the first weeks which require that the
team members rely on each other can help to break the ice, to get an idea of the
strengths and weaknesses of the individual members and to build up and
strengthen trust within the team. If these points are neglected, there will be
noticeable adverse consequences throughout the run time of the project. People
who do not like each other or do not trust each other, will not rely on each other,
even if only subconsciously. And this means that they will not be able to work
100% as a team.

Development vs. Test vs. Operation: Change of Perspective

In many companies there are initiatives for a change of perspective. For example,
employees from sales may work in the purchasing department for a day to get to
know the people and the processes there. The expectation is that the employees
will develop a better understanding for their colleagues and to let that become
part of their daily work so that cross-department processes harmonize better. The
motto is: “On ‘the other side’ you get to know a new perspective!”

Such a change of perspective can also be advantageous in IT. A developer could
for instance get a new perspective with regards to the use cases or test cases. This
might motivate them to enforce a modularization in the development which is
easier to test. Or they might consider early in development which criteria will be
needed later on to better monitor the software in production or to more easily find
errors. A deeper insight into the internal processes of the application can help an
administrator to develop a better understanding for implementing a more specific
and more efficient monitoring. Each perspective, which deviates from one’s own
perspective, can raise questions which previously were not considered in this
section of the application life cycle. And these questions will help the team to
evolve as a whole and deliver better software.

For Ops there is Never an “Entirely Green Field”

For sure Microservices are a topical subject and bring along new technologies,
concepts and organizational changes. However, one should always consider that
enterprises introducing Microservices hardly ever start from scratch! There are
always some kind of legacy systems or entire IT environments which already exist
and might better not be replaced in a Big Bang approach. Usually these legacy
systems have to be integrated into the brave new world of Microservices, at least
they will have to coexist.

For this reason, it is important to take these systems into consideration when
planning a Microservices-based architecture, especially in regards to IT costs.
Can the existing hardware infrastructure really be restructured for the
Microservices or is there a legacy system which relies exactly on this
infrastructure? These are often questions which get caught on the infrastructure or
operations team — if there is such an organizational unit in the company. Otherwise
it might happen that these questions first arise when a deployment to the system
test or production environment is supposed to be done. Especially for being able
to recognize these questions early on, I recommend to deal with the deployment
pipeline as early as possible in the reorganization project. The deployment
pipeline should already be in place before the first business functionality is
implemented by the teams. A simple “Hello World” will often be sufficient which
then is brought towards production by the combined forces of the entire team.
While doing so, the team will almost always encounter open questions which in
the worst case will have effects on the design of the systems. However, as not
much is implemented at this stage, early on during the project such changes are
still comparably cost-efficient to implement.

Conclusion

The organizational changes (resp. “Conway’s Law”), which accompany the
introduction of Microservices, are up to now often underestimated. Old habits,
prejudices and maybe even trench wars are often deep-rooted. Especially if the
new team mates were previously assigned to different departments. However,
“one team” has to be more than just a buzzword. If the team manages to bury their
prejudices and to put their different experiences to good use, it can advance
together. Everyone has to understand that all of them now share the task and
responsibility to bring a stable software into production for the customer.
Everybody can profit from the experiences of the others when everybody acts on
the premise: “Everybody voices their concerns, and we will solve it jointly”.

13.6 Interface to the Customer

To ensure that the development can really be scaled to multiple teams and
Microservices, each team needs to have its own Product Owner. In line with
Scrum approaches he/she is responsible for the further development of the
Microservice. For this purpose he/she defines stories which are implemented in
the Microservice. The Product Owner is the source of all requirements and
prioritizes them. This is especially easy when a Microservice only comprises
features which are within the responsibility of a single department at the business
level (Fig. 68). Usually this objective is achieved by adjusting Microservices and
teams to the organization of departments. Each department gets “its” Product
Owner and therefore “its” team and “its” Microservices.

When the Microservices have a good domain architecture, they can be
independently developed. Ultimately, each domain should be implemented in one
or many Microservices, and the domain should only be of interest to one
department. The architecture has to take the organization of the departments into
consideration when distributing the domains into Microservices. This ensures that
each department has its own Microservices that are not shared with other domains
or departments.

22: 2 %: 22

Department Department Department
Product Search User Registration Order Process

! !

Product Owner Product Owner Product Owner
Product Search User Registration Order Process

Team Product Search Team Team Order Process
User Registration

Microservice Microservice Microservice
Product Search User Order Process

Fig. 68: Department, product owner and Microservices

Unfortunately, the architecture often is not perfect. Besides, Microservices have
interfaces — an indication that functionalities might span multiple Microservices.
When multiple functionalities concern one Microservice and therefore multiple
departments want to influence the development of a Microservice, the Product
Owner has to ensure a prioritization which is coordinated with the different
departments. This can be a challenge because departments can have different
priorities. In that case the Product Owner has to coordinate between the concerned
departments.

Let us assume that there is a department which takes care of sales campaigns in an
E-commerce shop. It starts a campaign where orders containing a certain item get
a rebate on the delivery cost. The required modification concerns the order team:
It has to find out whether an order contains such an item. This information has to
be transmitted to the delivery Microservice which has to calculate the costs for

the delivery. Accordingly, the Product Owners of these two teams have to
prioritize these changes in regards to the changes desired by the departments in
charge of delivery and orders. Unfortunately, many of these sales campaigns
combine different functionalities so that such a prioritization is often required. The
departments for orders and deliveries have their own Microservices, while the
department in charge of sales campaigns does not have its own Microservices.
Instead it has to introduce its features into the other Microservices.

Architecture Leads to Departments

The Microservice architecture can thus be a direct result of the departmental
organization of the company. However, there are also cases where a new
department is created around an IT system, which then takes care of this system
from the business side. In such a case one can argue that the Microservices
architecture directly influences the organization. For instance there might be a new
Internet market place which is implemented by an IT system. If it is successful, a
department can be created which takes over the further development of this
marketplace. This department will continue to develop the IT system from a
domain and from a business perspective. In this case the marketplace was
developed first and subsequently the department has been created. Therefore the
system architecture has defined the departmental structure of the organization.

13.7 Reusable Code

At first sight the reuse of code is a technical problem. [Section 8.3]{#section8-3}
already described the challenges which arise when two Microservices use the
same library: When the Microservices use the library in such a way that a new
release of the library necessitates a new deployment of the Microservices, the
result is a deployment dependency. This has to be avoided to allow for an
independent deployment of the Microservices. There is additional expenditure
because the teams responsible for the Microservices have to coordinate their
changes to the library. New features for the different Microservices have to be

prioritized and developed. These represent also dependencies between the teams
which should rather be avoided.

Client Libraries

Client libraries which encapsulate calls from a Microservice can be acceptable.
When the interfaces of the Microservices are downwards compatible, the client
library does not have to be replaced in case of a new version of the Microservice.
In such a scenario client libraries do not cause problems because a new

deployment of the called Microservices does not lead to an update of the client
library or a new deployment of the calling Microservice.

However, when the client library also contains domain objects, problems can
occur. When a Microservice wants to change the domain model, the team has to
coordinate this change with the other users of the client library and therefore
cannot develop independently anymore. The boundaries between a simplified use
of the interface which can be sensible and a shared implementation of logic or
other deployment dependencies which can be problematic is not clear cut. One
option is to entirely forbid shared code.

Reuse Anyhow?

However, obviously, projects can reuse code. Hardly any project nowadays
manages without some open source library. Using this code is obviously easy and
thus facilitates work. Problems like the ones arising upon reusing code between
Microservices are unlikely for a number of reasons:

e Open source projects in general are of high quality. Developers working in
different companies use the code and thereby spot errors. Often they even
remove the errors so that the quality permanently increases. To publish
source code and thereby provide insight into internals is often already
motivation enough to increase the quality.

e The documentation allows to immediately start to use the code without a
need to directly communicate with the developers. Without a good
documentation open source projects hardly find enough users or additional
developers since getting started would be too hard.

e There is a coordinated development with a bug tracker and a process for
accepting code changes introduced by external developers. Therefore errors
and their fixes can be tracked. In addition, it is clear how changes from the
outside can be incorporated into the code basis.

e Moreover, in case of a new version of the open source library it is not
necessary for all users to use the new version. The dependencies in regards
to the library are not so pronounced that a deployment dependency ensues.

¢ Finally, there are clear rules how one’s own supplements can be
incorporated into the open source library.

In the end the difference between a shared library and an open source project is
mainly a higher quality in regards to different aspects. Besides there is also an
organizational aspect: There is a team which takes care of the open source

project. It directs the project and keeps developing it. This team does not
necessarily make all changes, but it coordinates them. Ideally, the team has
members from different organizations and projects so that the open source project
is developed under different view points and in the context of different use cases.

Reuse as Open Source

With open source projects as role models in mind there are different options for
reusable code in a Microservices project:

e The organization around reusable libraries is structured like in an open
source project. There are employees responsible for the continued code
development, the consolidation of requirements and for incorporating the
changes of other employees. The team members ideally come from different
Microservice teams.

e The reusable code turns into a real open source project. Developers outside
of the organization can use and extend the project.

Both decisions can result into a significant investment since markedly more effort
has to go into quality and documentation etc. Besides, the employees working on
the project have to get enough freedom to do so in their teams. The teams can
control the prioritization in the open source project by only making their members
available for certain tasks. Due to the large investment and potential problems
with prioritization the decision to establish an open source project should be well
considered. The idea itself is not new — experiences in this area have already
been collected for quite some time.

If the investment is very high, it means that the code is hardly reusable for the
moment and using the code in its current state causes quite some effort. Probably
the code is not only hard to reuse, but hard to use at all. The question is why team
members would accept such a bad code quality. Investing into code quality in
order to make the code reusable can pay off already by reusing it just once.

At first glance it does not appear very sensible to make code available to external
developers. This requires that code quality and documentation are of high enough
quality for external developers to be able to use the code without direct contact to
the developers of the open source project. Only the external developers seem to
profit from this approach as they get good code for free.

However, a real open source project has a number of advantages:

http://dirkriehle.com/2015/05/20/inner-source-in-platform-based-%0Aproduct-engineering/

e External developers find weak spots by using the code. Besides, they will
use the code in different projects so that it gets more generalized. This will
improve quality as well as documentation.

e Maybe external developers contribute to the further development of the code.
However, this is rather the exception than the norm. But having external
feedback via bug reports and requests for new features can already represent
a significant advantage.

e Running open source projects is great marketing for technical competence.
This can be useful for attracting employees as well as customers. Important
is the extent of the project. If it is only a simple supplement of an existing
open source project, the investment can be manageable. An entirely new
open source framework is a very different topic.

Blueprints, i.e. documentations for certain approaches, represent elements which
are fairly easy to reuse. This can be elements of macro architecture like for
instance a document detailing the correct approach for logging. Likewise there can
be templates which contain all necessary components of a Microservice including
a code skeleton, a build script and a Continuous Delivery Pipeline. Such artifacts
canrapidly be written and are immediately useful.

Try and Experiment

&‘ Maybe you have already previously used your own technical libraries in projects or even developed
some yourself. Try to estimate how large the expenditure would be to turn these libraries into real
open source libraries. Apart from a good code quality this necessitates also documentation about the
use and the extension of the code. Besides, there have to be a bug tracker and forums. How easy
would it be to reuse it in the project itself? How high would be the quality of the library?

13.8 Microservices Without Changing the Organization?

Microservices are more than just an approach for software architecture. They
have pronounced effects on organization. Changes to the organization are often
very difficult. Therefore the question arises whether Microservices can be
implemented without changing the organization.

Microservices Without Changing the Organization?

Microservices allow for independent teams. The domain-focused teams are
responsible for one or multiple Microservices — this includes ideally their

development as well as operations. Theoretically it is possible to implement
Microservices without dividing developers into domain-focused teams. In that
case the developers could modify each Microservice — an extension of the ideas
presented in section 13.2. It would even be possible that technically focused
teams work on Microservices which are split according to domain-based criteria.
In this scenario there would be a Ul, a middle tier and a database team which
work on domain Microservices such as order process or registration. However, a
number of advantages usually associated with Microservices cannot be exploited
anymore in that case. Firstly, it is not possible anymore to scale the agile
processes via Microservices. Secondly, it will be necessary to restrict the
technology freedom since the teams will not be able to handle the different
Microservices if they all employ different technologies. Besides, each team can
modify each Microservice. This entails the danger that though a distributed system
is created there are dependencies which prevent the independent development of
individual Microservices. The necessity for independent Microservices is
obliterated because a team can change multiple Microservices together and
therefore can handle also Microservices having numerous dependencies.
However, even under these conditions sustainable development, an easier start
with Continuous Delivery, independent scaling of individual Microservices or a
simple handling of legacy systems can still be implemented because the
deployment units are smaller.

Evaluation

To put it clearly: Introducing Microservices without creating domain-focused
teams does not lead to the main benefits meant to be derived from Microservices.
It is always problematic to implement only some parts of a certain approach as
only the synergies between the different parts will generate the overall value.
Although implementing Microservices without domain-focused teams is a
possible option — it is for sure not recommended.

Departments

As already discussed in section 13.6, the Microservice structure should ideally
extend to the departments. However, in reality this is sometimes hard to achieve
since the Microservice architecture often deviates too much from the
organizational structure of the departments. It is unlikely that the organization of
the departments will adapt to the distribution into Microservices. When the
distribution of the Microservice cannot be adjusted, the respective Product
Owners have to take care of prioritization and coordinate the wishes of the
departments, which concern multiple Microservices, in such a way that all

requirements are unambiguously prioritized for the teams. If this is not possible, a
Collective Code Ownership approach (section 13.2) can limit the problem. In this
case the Product Owner and his/her team can also modify Microservices which do
not really belong to their sphere of influence. This can be the better alternative in
contrast to a coordination across teams — however both solutions are not optimal.

Operations

In many organizations there is a separate team for operations. The teams
responsible for the Microservices should also take care of the operations of their
Microservices following the principle of DevOps. However, as discussed in
section 13.5, it is not a strict requirement for Microservices to introduce DevOps.
If the separation between operations and development is supposed to be
maintained, operations has to define the necessary standards for the Microservices
in the macro architecture to ensure a smooth operations of the system.

Architecture

Often architecture and development are likewise kept separated. In a
Microservices environment there is the area of macro architecture where
architects make global decisions for all teams. Alternatively, the architects can be
distributed to the different teams and work together with the teams. In addition,
they can found an overarching committee which defines topics for macro
architecture. In that case it has to be ensured that the architects really have time for
this task and are not completely busy with work in their team.

Try and Experiment

&‘ What does the organization of a project you know look like?

 Is there a special organizational unit which takes care of architecture? How would they fit
into a Microservices-based architecture?

e How is operations organized? How can the organization of operations best support
Microservices?

o How well does the domain-based division fit to the departments? How could it be optimized?

¢ Can a Product Owner with fitting task area be assigned to each team?

13.9 Conclusion

Microservices enable the independence of teams in regards to technical decisions
and deployments (section 13.1). This allows the teams to independently

implement requirements. In the end this makes it possible for numerous small
teams to work together on a large project. This reduces the communication
overhead between the teams. Since the teams can deploy independently, the
overall risk of the project is reduced.

Ideally the teams should be put together in a way that allows them to work
separately on different domain aspects. If this is not possible or requires too much
coordination between the teams, Collective Code Ownership can be an alternative
(section 13.2). In that case each developer can change all of the code. Still one
team has the responsibility for each Microservice. Changes to this Microservice
have to be coordinated with the responsible team.

Section 13.3 described that Microservices have a macro architecture which
comprises decisions which concern all Microservices. In addition, there is the
micro architecture which can be different for each Microservice. In the areas of
technology, operations, domain architecture and testing there are decisions which
can either be attributed to micro or macro architecture. Each project has the
choice to delegate them to teams (micro architecture) or to centrally define them
(macro architecture). Delegating into teams is in line with the objective to achieve
a large degree of independence — and is therefore often the better option. A
separate architecture team can define the macro architecture — alternatively, the
responsible team is assembled from members of the different Microservice teams.

Responsibility for the macro architecture is closely linked to a concept for
technical leadership (section 13.4): Less macro architecture means more
responsibility for the Microservice teams and less responsibility for the central
architecture team.

Though Microservices profit from merging operations and development to
DevOps (section 13.5), it is not strictly required to introduce DevOps to do
Microservices. If DevOps is not possible or desired, operations can define
guidelines in the context of macro architecture to unify certain aspects in order to
ensure a smooth operations of the Microservice-based system.

Microservices should always implement their own separate requirements.
Therefore it is best when each Microservice can be assigned to a certain
department on the business side (section 13.6). If this is not possible, the Product
Owners have to coordinate the requirements coming from different departments in
such a way that each Microservice has clearly prioritized requirements. When

Collective Code Ownership is used, a Product Owner and his/her team can also
change Microservices of other teams — which can limit the communication
overhead. Instead of coordinating priorities, a team will introduce the changes
which are necessary for a new feature by itself — even if they concern different
Microservices. The team responsible for the modified Microservice can review
the introduced changes and adjust them if necessary.

Code can be reused in a Microservices project if the code is treated like an open
source project (section 13.7). An internal project can be handled like an internal
open source project — or can in fact be turned into a public open source project. It
has to be considered that the effort for a real open source project is high.
Therefore, it can be more efficient not to reuse code. Besides, the developers of
the open source project have to prioritize domain requirements versus changes to
the open source project which can be a difficult decision at times.

Section 13.8 discussed that an introduction of Microservices without changes to
the organizational structure at the development level does not work in real life.
When there are no domain-focused teams which can develop certain domain
aspects independently of other teams, it is practically impossible to develop
multiple features in parallel and thus to bring more features to the market within
the same time. However, this is just what Microservices were meant to achieve.
Sustainable development, an easy introduction of Continuous Delivery,
independent scaling of individual Microservices or a simple handling of legacy
systems are still possible. Operations and an architecture team can define the
macro architecture so that in this area changes to the organizational structure are
not strictly required. Ideally, the requirements of the departments are always
reflected by one Microservice. If that is not possible, the Product Owners have to
coordinate and prioritize the required changes.

Essential Points

e Microservices have significant effects on the organization. Independent small
teams which together work on a large project are an important advantage of
Microservices.

e Viewing the organization as part of the architecture is an essential innovation
of Microservices.

¢ A combination of DevOps and Microservices is advantageous, but not
obligatory.

Part IV: Technologies

This part of the book shows how Microservices can be implemented with
concrete technologies. Chapter 14 contains a complete example for a
Microservices-architecture based on Java, Spring, Spring Boot, Spring Cloud, the
Netflix stack and Docker. The example is a good starting point for your own
implementation or experiments. Many of the technological challenges discussed in
Part 3 are solved in this part with the aid of concrete technologies a€“ for instance
build, deployment, services discovery, communication, load balancing and tests.

Even smaller than Microservices are the Nanoservices from chapter 15. They
require special technologies and a number of compromises. Therefore the chapter
introduces technologies which can implement very small services i.e. Amazon
Lambda for JavaScript and Java, OSGi for Java, Java EE, Vert.x on the JVM
(Java Virtual Machine) with support for languages like Java, Scala, Clojure,
Groovy, Ceylon, JavaScript, Ruby or Python. The programming language Erlang
likewise enables very small services, but is also able to integrate other systems.
Seneca is a JavaScript framework specialized in the implementation of
Nanoservices.

At the close of the book chapter 16 shows what can be achieved with
Microservices.

14 Example for a Microservices-based
Architecture

This chapter provides an example for an implementation of a Microservices-
based architecture. It aims at demonstrating concrete technologies in order to lay
the foundation for experiments. The example application has a very simple domain
architecture containing a few compromises. Section 14.1 deals with this topic in
detail.

For a real system with a comparable low complexity as the presented example
application an approach without Microservices would be better suited. However,
the low complexity makes the example application easy to understand and simple
to extend. Some aspects of a Microservice environment, such as security,
documentation, monitoring or logging, are not illustrated in the example
application — but these aspects can be relatively easily addressed with some
experiments.

Section 14.2 explains the technology stack of the example application. The build
tools are described in section 14.3. Section 14.4 deals with Docker as technology
for the deployment. Docker needs to run in a Linux environment. Section 14.5
describes Vagrant as a tool for generating such environments. Section 14.6
introduces Docker Machine as alternative tool for the generation of a Docker
environment, which can be combined with Docker Compose for the coordination
of several Docker Containers (section 14.7). The implementation of Service
Discovery is discussed in section 14.8. The communication between the
Microservices and the user interface is the main topic of section 14.9. Thanks to
Resilience other Microservices are not affected if a single Microservice fails. In
the example application resilience is implemented with Hystrix (section 14.10).
Load Balancing (section 14.11), which can distribute the load onto several
instances of a Microservice, is closely related to that. Possibilities for the
integration of Non-Java-technologies are detailed in section 14.12, and testing is
discussed in section 14.13.

The code of the example application can be found at
https://github.com/ewolff/microservice. It is Apache-licensed, and can,

https://github.com/ewolff/microservice

accordingly, be used and extended freely for any purpose.

14.1 Domain Architecture

The example application has a simple web interface, with which users can submit

orders. There are three Microservices (Fig. 69):

e Catalog keeps track of products. Items can be added or deleted.

e Customer performs the same task in regards to customers: It can register
new customers or delete existing ones.

e Order cannot only show orders, but also create new orders.

HTTP/HTML

4)

Customer
_ Y,

REST

REST

Fig. 69: Architecture of the example application

4 ™
Catalog
_ Y,

For the orders the Microservice “Order” needs access to the two other

Microservices, “Customer” and “Catalog”. The communication is achieved via

REST. However, this interface is only meant for the internal communication
between the Microservices. The user can interact with all three Microservices via

the HTML-/HTTP-

Separate Data Storag

interface.

es

The data storages of the three Microservices are completely separate. Only the
respective Microservice knows the information about the business objects. The
Microservice “Order” saves only the primary keys of the items and customers,
which are necessary for the access via the REST interface. A real system should
rather use artificial keys as the internal primary keys otherwise get visible to the
outside. These are internal details of the data storage that should be hidden. To
expose the primary keys, the class SpringRestDataConfig within the
Microservices configures Spring Data Rest accordingly.

Lots of Communication

Whenever an order needs to be shown, the Microservice “Customer” is called for
the customer data and the Microservice “Catalog” for each line of the order in
order to determine the price of the item. This can have a negative influence on the
response times of the application as the display of the order cannot take place
before all requests have been answered by the other Microservices. As the
requests to the other services take place synchronously and sequentially, latencies
will add up. This problem can be solved by using asynchronous parallel requests.

In addition a lot of computing power is needed to marshal the data for sending and
receiving. This is acceptable in case of such a small example application. When
such an application is supposed to run in production, alternatives have to be
considered.

This problem can for instance be solved by caching. This is relatively easy as
customer data will not change frequently. Items can change more often — still, by
far not so fast that caching would pose a problem. Only the amount of data can
interfere with this approach. The use of Microservices has the advantage that such
a cache can be implemented relatively simply at the interface of the
Microservices, or even at the level of HTTP, if this protocol is used. An HTTP
Cache, like the one used for websites, can be added to REST Services in a
transparent manner and without much programming effort.

Bounded Context

Caching will solve the problem of too long response times technically. However,
very long response times can also be a sign for a fundamental problem. Section
4.3 argued that a Microservice should contain a Bounded Context. A specific
domain model is only valid in a Bounded Context. The modularization into
Microservices in this example contradicts this idea: The domain model is used to
modularize the system into the Microservices “Order” for orders, “Catalog” for

items and “Customer” for customers. In principle the data of these entities should
be modularized in different Bounded Contexts.

The described modularization implements in spite of low domain complexity a
system consisting of three Microservices. In this manner the example application
is easy to understand while still having several Microservices and demonstrating
the communication between Microservices. In a real system the Microservice
“Order” can also handle information about the items that is relevant for the order
process such as the price. If necessary, the service can replicate the data from
another Microservice into its own database in order to access it efficiently. This
is an alternative to the aforementioned caching. There are different possibilities
how the domain models can be modularized into the different Bounded Contexts
“Order” and “Customer” resp. “Catalog”.

This design can cause errors: When an order has been put into the system and
afterwards the price of the item is changed, the price of the order changes as well
— that should not happen. In case the item is deleted, there is even an error when
displaying the order. In principle the information concerning the item and the
customer should become part of the order. In that case the historical data of the
orders including customer and item data would be transferred into the service
“Order”.

Don’t Modularize Microservices by Data!

It is important to understand the problem inherent in architecting a Microservices
system by domain model. Often the task of a global architecture is misunderstood:
The team designs a domain model, which comprises for instance objects such as
customers, order and items. Based on this model Microservices are defined. That
is how the modularization into Microservices could have come about in the
example application, resulting in a huge amount of communication. A
modularization based on processes such as ordering, customer registration and
product search might be more advantageous. Each process could be a Bounded
Context that has its own domain model for the most important domain objects. For
product search the categories of items might be the most relevant while for the
ordering process data like weight and size might matter more.

The modularization by data can also be advantageous in a real system. When the
Microservice “Order” gets too big in combination with the handling of customer
and product data, it is sensible to modularize data handling. In addition the data
can be used by other Microservices. When devising the architecture for a system,

there is rarely a single right way of doing things. The best approach depends on
the system and the properties the system should have.

14.2 Basic Technologies

Microservices in the example application are implemented with Java. Basic
functionalities for the example application are provided by the Spring Framework.
This framework offers not only Dependency Injection, but also a Web-Framework,
which allows for the implementation of REST-based services.

HSQL Database

The database HSQLDB handles and stores data. It is an In-Memory database,
which is written in Java. The database stores the data only in RAM so that all data
are lost upon restarting the application. In line with this, this database is not really
suited for production use, even if it can write data to a hard disk. On the other
hand it is not necessary to install an additional database server, which keeps the
example application easy. The database runs in the respective Java application.

Spring Data REST

The Microservices use Spring Data REST in order to provide the domain objects
with little effort via REST and to write them into the database. Handing objects
out directly means that the internal data representation leaks into the interface
between the services. Changing the data structures is very difficult as the clients
need to be adjusted as well. However, Spring Data REST can hide certain data
elements and can be configured flexibly so that the tight coupling between the
internal model and the interface can be decoupled if necessary.

Spring Boot

Spring Boot facilitates Spring further. Spring Boot renders the generation of a
Spring system very easy: With Spring Boot Starters predefined packages are
available, which contain everything that is necessary for a certain type of
application. Spring Boot can generate WAR files, which can be installed on a
Java application or web server. In addition it is possible to run the application
without an application or web server. The result of the build is a JAR file in that
case, which can be run with a Java Runtime Environment (JRE). The JAR file
contains everything for running the application and also the necessary code to deal
with HTTP requests. This approach is by far less demanding and simpler than the
use of an application server https://jaxenter.com/java-application-servers-dead-
112186.html.

http://projects.spring.io/spring-framework/
http://projects.spring.io/spring-data-rest/
http://projects.spring.io/spring-boot/
https://jaxenter.com/java-application-servers-dead-112186.html

A simple example for a Spring Boot application is shown in Listing 1. The main
program main hands the control over to Spring Boot. The class is passed in as a
parameter so that the application can be called. The annotation

@ SpringBootApplication makes sure that Spring Boot generates a suitable
environment. For example a web server is started, and an environment for a
Spring web application is generated as the application is a web application.
Because of @RestController the Spring Framework instantiates the class and
calls methods for the processing of REST requests. @RequestMapping shows
which method is supposed to handle which request. Upon requests of the URL “/”
the method hello() is called, which returns as result the sign chain “hello” in the
HTTP body. In a @RequestMapping annotation URL templates such as
“/customer/{id}” can be used. Then a URL like “/customer/42” can be cut into
separate parts and the 42 bound to a parameter annotated with @PathVariable.
As dependency the application uses only spring-boot-starter-web pulling all
necessary libraries for the application along, for instance the web server, the
Spring Framework and additional dependent classes. Section 14.3 will discuss
this topic in more detail.

Listing 1: A simple Spring Boot REST service

1 @RestController
2 @SpringBootApplication
3 public class ControllerAndMain {

@RequestMapping("/")
public String hello() {
return "hello";

}

o ~N O 01 b

10 public static void main(String[] args) {

11 SpringApplication.run(ControllerAndMain.class,
12 args);

13 }

14

15 }

Spring Cloud

Finally the example application uses Spring Cloud to gain easy access to the
Netflix Stack. Fig70 shows an overview.

http://projects.spring.io/spring-cloud/

Spring Cloud Spring Cloud Spring Cloud

Consul Zookeeper Connectors
Spring .
Cloud Bus Turbine
/ZUUI
/ .
Spring Cloud ——» Ribbon
Netflix > Eureka
Spring Hystrix
Cloud \
Spring Cloud Feign
Security
Spring Cloud
Stream
Spring Cloud
Config
Sleuth Cluster

Web Services
Fig. 70: Overview of Spring Cloud

Spring Cloud offers via the Spring Cloud Connectors access to the PaaS (Platform
as a Service) Heroku and Cloud Foundry. Spring Cloud for Amazon Web Services
offers an interface for services from the Amazon Cloud. This part of Spring Cloud
is responsible for the name of the project, but not helpful for the implementation of
Microservices.

However, the other sub projects of Spring Cloud provide a very good basis for the
implementation of Microservices:

Spring Cloud Security supports the implementation of security mechanisms
as typically required for Microservices, among those Single Sign On into a
Microservices environment. That way a user can use each of the
Microservices without having to log in anew every time. In addition the user
token is transferred automatically for all calls to other REST services to
ensure that those calls can also work with the correct user rights.

Spring Cloud Config can be used to centralize and dynamically adjust the
configuration of Microservices. Section 12.4 already presented technologies,
which configure Microservices during deployment. To be able to reproduce
the state of a server at any time, a new server should be started with a new
Microservice instance in case of a configuration change instead of
dynamically adjusting an existing server. If a server is dynamically adjusted,
there is no guarantee that new servers are generated with the right
configuration as they are configured via a different way. Because of these
disadvantages the example application refrains from using this technology.
Spring Cloud Bus can send dynamic configuration changes for Spring Cloud
Config. Moreover, the Microservices can communicate via Spring Cloud
Bus. However, the example application does not use this technology because
Spring Cloud Config is not used and the Microservices communicate via
REST.

Spring Cloud Sleuth enables distributed tracing with tools like Zipkin or
Htrace. It can also use a central log storage with ELK (see section 12.2).
Spring Cloud Zookeeper support Apache Zookeeper (see section 8.8). This
technology can be used to coordinate and configure distributed services.
Spring Cloud Consult facilitates Services Discovery using Consul (see
section 8.9).

Spring Cloud Cluster implements leader election and stateful patterns using
technologies like Zookeeper or Consul. It can also used the NoSQL datastore
Redis or the Hazelcast cache.

Finally Spring Cloud Stream supports messaging using Redis, Rabbit or
Kafka.

Spring Cloud Netflix

Spring Cloud Netflix offers simple access to Netflix Stack, which has been
especially designed for the implementation of Microservices. The following
technologies are part of this stack:

e Zuul can implement routing of requests to different services.
¢ Ribbon serves as Load Balancer.

Hystrix assists with implementing resilience in Microservices.

Turbine can consolidate monitoring data from different Hystrix servers.
Feign is an option for an easier implementation of REST clients. It is not
limited to Microservices. It is not used in the example application.
Eureka can be used for Service Discovery.

These technologies are the ones that influence the implementation of the example
application most.

Ng
& Try and Experiment

For an introduction into Spring it is worthwhile to check out the Spring Guides at
https:/spring.io/guides/. They show in detail how Spring can be used to implement REST services or
to realize messaging solutions via JMS. An introduction into Spring Boot can be found at
https:/spring.io/guides/gs/spring-boot/. Working your way through these guides provides you with the
necessary know-how for understanding the additional examples in this chapter.

14.3 Build

The example project is built with the tool Maven. The installation of the tool is
described at https://maven.apache.org/download.cgi. The command mvn package
in the directory microservice/microservice-demo can be used to download all
dependent libraries from the Internet and to compile the application.

The configuration of the projects for Maven is saved in files named pom.xml. The
example project has a Parent-POM in the directory microservice-demo. It
contains the universal settings for all modules and in addition a list of the example
project modules. Each Microservice is such a module, and some infrastructure
servers are modules as well. The individual modules have their own pom.xml,
which contains the module name among other information. In addition they contain
the dependencies, i.e. the Java libraries they use.

Listing 2: Part of pom.xml including dependencies

<dependencies>

<dependency>
<groupId>0rg.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-eureka</artifactId>
</dependency>

N o o~ WwN R

https://spring.io/guides/
https://spring.io/guides/gs/spring-boot/
http://maven.apache.org/
https://maven.apache.org/download.cgi

8
9 <dependency>

10 <groupId>0rg.springframework.boot</groupid>
11 <artifactId>

12 spring-boot-starter-data-jpa

13 </artifactId>

14 </dependency>
15 ...
16 </dependencies>
17 ...

Listing 2 shows a part of a pom.xml, which lists the dependencies of the module.
Depending on the nature of the Spring Cloud features the project is using,
additional entries have to be added in this part of the pom.xml usually with the
groupld org.springframework.cloud.

The build process results in one JAR file per Microservice, which contains the
compiled code, the configuration and all necessary libraries. Java can directly
start such JAR files. Although the Microservices can be accessed via HTTP, they
do not have to be deployed on an application or web server. This part of the
infrastructure is also contained in the JAR file.

As the projects are built with Maven, they can be imported into all usual Java
IDEs (Integrated Development Environment) for further development. IDEs
simplify code changes tremendously.

Try and Experiment

»
& Download and Compile the Example

Download the example provided at https:/github.com/ewolff/microservice. Install Maven, see
https://maven.apache.org/download.cgi. In the sub directory microservices-demo execute the
command mvn package. This will build the complete project.

N\
& Create a Continuous Integration Server for the Project

https://github.com/ewolff/user-registration is an example project for a Continuous Delivery project.
This contains in sub directory ci-setup a setup for a Continuous Integration Server (Jenkins) with
static code analysis (Sonarqube) and Artifactory for the handling of binary artefacts. Integrate the
Microservices project into this infrastructure so that a new built is triggered upon each change.

The next section (14.4) will discuss Vagrant in more detail. This tool is used for the Continuous
Integration Servers. It simplifies the generation of test environments greatly.

14.4 Deployment Using Docker

Deploying Microservices is very easy:

e Java has to be installed on the server.

e The JAR file, which resulted from the build, has to be copied to the server.

e A separate configuration file application.properties can be created for
further configurations. It is automatically read out by Spring Boot and can be
used for additional configurations. An application.properties containing
default values is comprised in the JAR file.

e Finally a Java process has to start the application out of the JAR file.

Each Microservice starts within its own Docker Container. As discussed in
section 12.6, Docker uses Linux Containers. In this manner the Microservice
cannot interfere with processes in other Docker Containers and has a completely
independent file system. The Docker Image is the basis for this file system.
However, all Docker Containers share the Linux Kernel. This saves resources. In
comparison to an operating system process a Docker Container has virtually no
additional overhead.

Listing 3: Dockerfile for a Microservice used in the example application

https://github.com/ewolff/microservice
https://maven.apache.org/download.cgi
https://github.com/ewolff/user-registration

FROM java
CMD /usr/bin/java -Xmx400m -Xms400m \
-jar /microservice-demo/microservice-demo-catalog\
/target/microservice-demo-catalog-0.0.1-SNAPSHOT. jar
EXPOSE 8080

a h~ WON R

A file called Dockerfile defines the composition of a Docker Container. Listing 3
shows a Dockerfile for a Microservice used in the example application:

e FROM determines the base image used by the Docker Container. A
Dockerfile for the image java is contained in the example project. It
generates a minimal Docker image with only a JVM installed.

e CMD defines the command executed at the start of the Docker Container. In
the case of this example it is a simple command line. This line starts a Java
application out of the JAR file generated by the build.

e Docker Containers are able to communicate with the outside via network
ports. EXPOSE determines which ports are accessible from outside. In the
example the application receives HTTP requests via port 8080.

14.5 Vagrant

Docker runs exclusively under Linux as it uses Linux Containers. However, there
are solutions for other operating systems, which start a virtual Linux machine and
thus allow the use of Docker. This is largely transparent so that the use is
practically identical to the use under Linux. But in addition all Docker Containers
need to be built and started.

To make installing and handling Docker as easy as possible, the example
application uses Vagrant. Fig. 71 shows how Vagrant works:

installs

e.g.. Virtual
1 efurie VirtualBox Machine
Vagrant
2 ., starts Software
e.g. Docker (Docker
Container)
provisions

Fig. 71: How Vagrant works

To configure Vagrant a single file is necessary, the Vagrantfile. Listing 4 shows the
Vagrantfile of the example application:

Listing 4: Vagrantfile from the example application

1 Vagrant.configure("2") do |config]|

2 config.vm.box = " ubuntu/trusty64"

3 config.vm.synced_folder "../microservice-demo",

4 "/microservice-demo", create: true

5 config.vm.network "forwarded_port",

6 guest: 8080, host: 18080

7 config.vm.network "forwarded_port",

8 guest: 8761, host: 18761

9 config.vm.network "forwarded_port",

10 guest: 8989, host: 18989

11

12 config.vm.provision "docker" do |d|

13 d.build_image "--tag=java /vagrant/java"

14 d.build_image "--tag=eureka /vagrant/eureka"

15 d.build_image

16 "--tag=customer-app /vagrant/customer-app"
17 d.build_image

18 "--tag=catalog-app /vagrant/catalog-app"

19 d.build_image "--tag=order-app /vagrant/order-app"
20 d.build_image "--tag=turbine /vagrant/turbine"
21 d.build_image "--tag=zuul /vagrant/zuul"

22 end

23 config.vm.provision "docker", run: "always" do |d|
24 d.run "eureka",

25 args: "-p 8761:8761"+

26 " -v /microservice-demo:/microservice-demo"

27 d.run "customer-app",

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

args: "-v /microservice-demo:/microservice-demo"+
" --1ink eureka:eureka"
d.run "catalog-app",
args: "-v /microservice-demo:/microservice-demo"+
" --1ink eureka:eureka"
d.run "order-app",
args: "-v /microservice-demo:/microservice-demo"+
" --1ink eureka:eureka"
d.run "zuul",
args: "-v /microservice-demo:/microservice-demo"+
" -p 8080:8080 --link eureka:eureka"
d.run "turbine",
args: "-v /microservice-demo:/microservice-demo"+
" --1ink eureka:eureka"
end

end

config.vim.box selects a base image — in this case a Ubuntu-14.04 Linux
installation (Trusty Tahr).

config.vim.synced_folder mounts the directory containing the results of the
Maven build into the virtual machine. In this manner the Docker Containers
can directly make use of the build results.

The ports of the virtual machine can be linked to the ports of the computer
running the virtual machine. The config.vim.network settings can be used for
that. In this manner applications in the Vagrant virtual machine become
accessible as if running directly on the computer.

config.vim.provision starts the part of the configuration, which deals with the
software provisioning within the virtual machine. Docker serves as
provisioning tool and is automatically installed within the virtual machine.
Finally d.build_image generates the Docker images using Dockerfiles. First
the base image java is created. Images for the three Microservices customer-
app, catalog-app and order-app follow. The images for the Netflix
technologies servers belong to the infrastructure: Eureka for Service
Discovery, Turbine for monitoring and Zuul for routing of client requests.
Vagrant starts the individual images using d.run. This step is not only
performed when provisioning the virtual machine, but also when the system
is started anew (run: “always”). The option —v mounts the directory
/microservice-demo into each Docker Container so that the Docker
Container can directly execute the compiled code. -p links a port of the
Docker Container to a port of virtual machine. This link allows to access the
Docker Container Eureka under the host name eureka from within the other
Docker Containers.

In the Vagrant setup the JAR files containing the application code are not
contained in the Docker image. The directory /microservice-demo does not
belong to the Docker Container. It resides on the host running the Docker
Containers i.e. the Vagrant VM. It would also be possible to copy these files into
the Docker image. Afterwards the resulting image could be copied on a repository
server and downloaded from there. Then the Docker Container would contain all
necessary files to run the Microservice. A deployment in production then only
needs to start the Docker images on a production server. This approach is used in
the Docker Machine setup (see section 14.6).

Networking in the Example Application

Fig. 72 shows how the individual Microservices of the example application
communicate via the network. All Docker Containers are accessible in the
network via IP addresses from the 172.17.0.0/16 range. Docker generates such a
network automatically and connects all Docker Containers to the network. Within
the network all ports are accessible that are defined in the Dockerfiles using
EXPOSE. The Vagrant virtual machine is also connected to this network. Via the
Docker links (compare Listing 4) all Docker Containers know the Eureka
container and can access it under the host name eureka. The other Microservices
have to be looked up via Eureka. All further communication takes place via the IP
address.

In addition the -p-Option in the d.run entries for the Docker Containers in Listing
4 has connected the ports to the Vagrant virtual machine. These Containers can be
accessed via these ports of the Vagrant virtual machine. To reach them also from
the computer running the Vagrant virtual machine there is a port mapping, which
links the ports to the local computer. This is accomplished via the
config.vm.network entries in Vagrantfile. The port 8080 of the Docker Container
“zuul” can for instance be accessed via the port 8080 in the Vagrant virtual
machine. This port can be reached from the local computer via the port 18080. So
the URL http://localhost: 18080/ accesses this Docker Container.

18761 18989 18080
() ()

4 N / N/)\
8761 8989 8080
() () ()
4 I N\ \/ ™
8761 8989 8080

(arwa) (wome) (oo)
~ 7

[172.17.0.0/16 network j

customer catalog-
order-app -app app

Vagrant VM

_/

localhost
_ Y,

Fig. 72: Network and ports of the example application

Try and Experiment

Run the Example Application

The example application does not need much effort to make it run. A running example application
lays the foundation for the experiments described later in this chapter.

One remark: The Vagrantfile defines how much RAM and how many CPUs the virtual machines
gets. The settings v.memory and v.cpus, which are not shown in the Listing, deal with this.
Depending on the used computer, the values should be increased if a lot of RAM or many CPUs are
present. Whenever the values can be increased, they should be elevated in order to speed the
application up.

The installation of Vagrant is described in http://docs.vagrantup.com/v2/installation/index. html.
Vagrant needs a virtualization solution like VirtualBox. The installation of VirtualBox is explained at
https://www.virtualbox.org/wiki/Downloads. Both tools are free.

The example can only be started once the code has been compiled. Instructions how to compile the
code can be found in the experiment described in section 14.3. Afterwards you can change into the
directory docker-vagrant and start the example demo using the command vagrant up.

To interact with the different Docker Containers you have to log into the virtual machine via the
command vagrant ssh. This command has to be executed within the sub directory docker
vagrant. For this to be possible a ssh client has to be installed on the computer. On Linux and Mac
OS X such a client is usually already present. In Windows installing git will bring an ssh client along
as described at http:/git-scm.com/download/win. Afterwards vagrant ssh should work.

Investigate Docker Containers

Docker contains several useful commands:

¢ docker ps provides an overview of the running Docker Containers.

e The command docker log “name of Docker Container” shows the logs.

¢ dockerlog -f “name of Docker Container” provides incessantly the up-to-date log
information of the Container.

¢ docker kill “name of the Docke Container” terminates a Docker Container.

e docker rm “name of the Docker Container” deletes all data. For that all Containers first
needs to be stopped.

After starting the application the log files of the individual Docker Containers can be looked at.

http://docs.vagrantup.com/v2/installation/index.html
https://www.virtualbox.org/wiki/Downloads
http://git-scm.com/download/win

N\
& Update Docker Containers

A Docker Container can be terminated (docker kill) and the data of the Container deleted (docker
rm). The commands have to be executed inside the Vagrant virtual machine. vagrant provision
starts the missing Docker Containers again. This command has to be executed on the host running
Vagrant. If you want to change the Docker Container, simply delete it, compile the code again and
generate the system anew using vagrant provision.

Additional Vagrant commands:

o vagrant halt terminates the virtual machine.
e vagrant up starts it again.
e vagrant destroy destroys the virtual machine and all saved data.

NS
& Store Data on Disk

Right now the Docker Container does not save the data so that it is lost upon restarting. The used
HSQLDB database can also save the data into a file. To achieve that a suitable HSQLDB URL has

to be used, see http://hsqldb.org/doc/guide/dbproperties-chapt.html#dpc connection url . Spring Boot
can read the JDBC URL out of the application.properties file, see http://docs.spring.io/spring-

boot/docs/current/reference/html/boot-features-sql. html#boot-features-connect-to-production-
database . Now the Container can be restarted without data loss. But what happens if the Docker

Container has to be generated again? Docker can save data also outside of the Container itself,
compare https://docs.docker.com/userguide/dockervolumes/. These options provide a good basis for
further experiments. Also another database than HSQLDB can be used such as MySQL. For that
purpose another Docker Container has to be installed, which contains the database. In addition to
adjusting the JDBC URL a JDBC driver has to be added to the project.

N\
& How is the Java Docker Image Built?

The Docker file is more complex than the ones discussed here.
https://docs.docker.com/reference/builder/ demonstrates which commands are available in
Dockerfiles. Try to understand the structure of the Dockerfiles.

14.6 Docker Machine

Vagrant serves to install environments on a developer laptop. In addition to
Docker Vagrant can use e.g. simple shell scripts for deployment. However, for
production environments this solution is unsuitable. Docker Machine is

http://hsqldb.org/doc/guide/dbproperties-chapt.html#dpc_connection_url
http://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-sql.html#boot-features-connect-to-production-database
https://docs.docker.com/userguide/dockervolumes/
https://docs.docker.com/reference/builder/
https://docs.docker.com/machine/

specialized in Docker. It supports many more virtualization solutions as well as
some Cloud providers.

Fig. 73 demonstrates how Docker Machine builds a Docker environment: First,
using a virtualization solution like VirtualBox a virtual machine is installed. This
virtual machine is based on boot2docker, a very lightweight Linux designed
specifically as a running environment for Docker Containers. On that Docker
Machine installs a current version of Docker. A command like docker-machine
create —driver virtualbox dev generates for instance a new environment with the
name dev running on a VirtualBox computer.

starts installs

Virtual
Docker e.g. . .
. . Machine with
Machine VirtualBox
Docker
uses
Docker/
Docker
Compose

Fig. 73: Docker Machine

The Docker tool now can communicate with this environment. The Docker
command line tools use a REST interface to communicate with the Docker server.
Accordingly, the command line tool just has to be configured in a way that allows
it to communicate with the server in a suitable manner. In Linux or Mac OS X the
command eval “$(docker-machine env dev)” is sufficient to configure the
Docker appropriately. For Windows PowerShell the command docker-
machine.exe env —shell powershell dev must be used and in Windows cmd
docker-machine.exe env —shell cmd dev .

Docker Machine renders it thus very easy to install one or several Docker
environments. All the environments can be handled by Docker Machine and
accessed by the Docker command line tool. As Docker Machine also supports
technologies like Amazon Cloud or VMware vSphere, it can be used to generate
production environments.

Ng
& Try and Experiment

The example application can also run in an environment created by Docker Machine.

The installation of Docker Machine is described at https://docs.docker.com/machine/#installation.
Docker Machine requires a virtualization solution like VirtualBox. How to install VirtualBox can be
found at https//www.virtualbox.org/wiki/Downloads. Using docker-machine create —virtualbox-
memory “4096” —driver virtualbox dev a Docker environment called dev can now be created
on a Virtual Box. Without any further configuration the storage space is set to 1 GB, which is not
sufficient for a larger number of Java Virtual Machines.

docker-machine without parameters displays a help text, and docker-machine create shows the
options for the generation of a new environment. https://docs.docker.com/machine/get-started-cloud/
demonstrates how Docker Machine can be used in a Cloud. This means that the example application
can also easily be started in a Cloud environment.

At the end of your experiments docker-machine rm deletes the environment

14.7 Docker Compose

A Microservice-based system comprises typically several Docker Containers.
These have to be generated together and need to be put into production
simultaneously.

This can be achieved with Docker Compose. It enables the definition of Docker
Containers, which each house one service. YAML serves as format.

Listing 5: Docker compose configuration for the example application

1 eureka:

2 build: ../microservice-demo/microservice-demo-eureka-server
3 ports:

4 "'8761:8761"

5 customer:

6 build: ../microservice-demo/microservice-demo-customer
7 links:

8 - eureka

9 catalog:

10 build: ../microservice-demo/microservice-demo-catalog
11 links:

12 - eureka

13 order:

14 build: ../microservice-demo/microservice-demo-order

15 links:

16 - eureka

17 zuul:

18 build: ../microservice-demo/microservice-demo-zuul-server

https://docs.docker.com/machine/#installation
https://www.virtualbox.org/wiki/Downloads
https://docs.docker.com/machine/get-started-cloud/
http://docs.docker.com/compose/

19 links:

20 - eureka

21 ports:

22 - ""8080:8080"

23 turbine:

24 build: ../microservice-demo/microservice-demo-turbine-server
25 links:

26 - eureka

27 ports:

28 - '"8989:8989"

Listing 5 shows the configuration of the example application. It consists of the
different services. build references the directory containing the Dockerfile. The
Dockerfile is used to generate the image for the service. links defines which
additional Docker Containers the respective Container should be able to access.
All Containers can access the Eureka Container under the name eureka. In
contrast to the Vagrant configuration there is no Java base image, which contains
only a Java installation. This is because, Docker Compose supports only
containers which really offer a service. Therefore this base image has to be
downloaded from the Internet. Besides, in case of the Docker Compose containers
the JAR files are copied into the Docker images so that the images contain
everything for starting the Microservices.

8761 8989 8080
e e

7\

~
8761 8989 8080

eureka turbine zuul

™~

172.17.0.0/16 network

-

customer catalog-
order-app _app app

Docker Host
- Y,

Fig. 74: Network for Docker Compose

The resulting system is very similar to the Vagrant system (Fig. 74). The Docker
containers are linked via their own private network. From the outside only Zuul
can be accessed for the processing of requests and Eureka for the dashboard. The
are running directly on a host that then can be accessed from the outside.

Using docker-compose build the system is created based on the Docker Compose
configuration. Thus the suitable Images are generated. docker-compose up then

starts the system. Docker Compose uses the same settings as the Docker command
line tool. So it can also work together with Docker Machine. Thus it is transparent

whether the system is generated on a local virtual machine or somewhere in the
Cloud.

Try and Experiment

»
& Run the Example with Docker Compose

The example application possesses a suitable Docker Compose configuration. Upon the generation
of an environment with Docker Machine Docker Compose can be used to create the Docker
containers. README.md in the directory docker describes the necessary procedure.

Ng
& Scale the Application

Have a look at the docker-compose scale command. It can scale the environment. Services can
be restarted, logs can be analyzed and finally stopped. Once you have started the application, you
can test these functionalities.

N\
& Cluster Environments for Docker

Mesos (http://mesos.apache.org/) together with Mesosphere (http://mesosphere.com/), Kubernetes
(http://kubernetes.io/) or CoreOS (http:/coreos.com/) offers similar options as Docker Compose and
Docker Machine, however they are meant for servers and server clusters. The Docker Compose
and Docker Machine configurations can provide a good basis for running the application on these
platforms.

14.8 Service Discovery

Section 8.9 introduced the general principles of Service Discovery. The example
application uses Eureka for Service Discovery.

Eureka is a REST-based server, which allows services to register themselves so
that other services can request their location in the network. In essence, each
service can register a URL under its name. Other services can find the URL by the
name of the service. Using this URL other services can then send REST messages
to this service.

Eureka supports replication onto several servers and caches on the client. This
makes the system fail-safe against the failure of individual Eureka servers and
allows to answer requests rapidly. Changes to data have to be replicated to all

http://mesos.apache.org/
http://mesosphere.com/
http://kubernetes.io/
http://coreos.com/
https://github.com/Netflix/Eureka

servers. Accordingly, it can take some time till they are really updated
everywhere. During this time the data is inconsistent: Each server has a different
version of the data.

In addition Eureka supports Amazon Web Services because Netflix uses it in this
environment. Eureka can for instance quite easily be combined with Amazon’s
scaling.

Eureka monitors the registered services and removes them from the server list if
they cannot be reached anymore by the Eureka server.

Eureka is the basis for many other services of the Netflix Stack and for Spring
Cloud. Through a uniform Service Discovery other aspects such as routing can
easily be implemented.

Eureka Client

For a Spring Boot application to be able to register with a Eureka server and to
find other Microservices, the application has to be annotated with
@EnableDiscoveryClient or @Enable EurekaClient. In addition a dependency
from spring-cloud-starter-eureka has to be included in the pom.xml. The
application registers automatically with the Eureka server and can access other
Microservices. The example application accesses other Microservices via a load
balancer. This is described in detail in section 14.11.

Configuration

Configuring the application is necessary to define for instance the Eureka server to
be used. The file application.properties (Listing 6) is used for that. Spring Boot
reads it out automatically in order to configure the application. This mechanism
can also be used to configure one’s own code. In the example application the
values serve to configure the Eureka client:

e The first line defines the Eureka-Server. The example application uses the
Docker link, which provides the Eureka server under the host name “eureka”.

¢ leaseRenewallntervallnSeconds determines how often data are updated
between client and server. As the data have to be held locally in a cache on
each client, a new service first needs to create its own cache and replicate it
onto the server. Afterwards the data are replicated onto the clients. Within a
test environment it is important to track system changes rapidly so that the

example application uses five seconds instead of the preset value of 30

seconds. In production with many clients this value should be increased.
Otherwise the updates of information will use a lot of resources, even though
the information remains essentially unchanged.

e spring.application.name serves as name for the service during the
registration at Eureka. During registration the name is converted into capital
letters. This service would thus be known by Eureka under the name
“CUSTOMER”.

e There can be several instances of each service to achieve fail over and load
balancing. The instanceld has to be unique for each instance of a service.
Because of that it contains a random number, which ensures
unambiguousness.

o preferIpAddress makes sure that Microservices register with their IP
address and not with their host name. In a Docker environment host names
are unfortunately not easily resolvable by other hosts. This problem is
circumvented by the use of IP addresses.

Listing 6: Part of application.properties with Eureka configuration

eureka.client.serviceUrl.defaultZone=http://eureka:8761/eureka/
eureka.instance.leaseRenewalIntervalInSeconds=5
spring.application.name=catalog
eureka.instance.metadataMap.instanceId=catalog:${random.value}
eureka.instance.preferIpAddress=true

a h~ WON R

Eureka Server

The Eureka server (Listing 7) is a simple Spring Boot application, which turns
into a Eureka server via the @Enable EurekaServer annotation. In addition the
server needs a dependency on spring-cloud-starter-eureka-server.

Listing 7: Eureka Server

1 @EnableEurekaServer

2 @EnableAutoConfiguration

3 public class EurekaApplication {

4 public static void main(String[] args) {

SpringApplication.run(EurekaApplication.class,
args);

0 ~N O O

The Eureka server offers a dashboard, which shows the registered services. In the
example application this can be found at http://localhost: 18761/ (Vagrant) or on
Docker host under port 8761 (Docker Compose). Fig. 75 shows a screenshot of
the Eureka Dashboards for the example application. The three Microservices and

the Zuul-Proxy, which is discussed in the next section, are present on the
dashboard.

. Eureka x Eberhard

L o C' A | [localhost:18761 >~ &

; Spl’lng HOME LAST 1000 SINCE STARTUP

System Status

Environment Current time 2015-04-03T08:20:56 +0000
Data center Uptime 00:04

Lease expiration enabled true

Renews threshold 7

Renews (last min) 10
DS Replicas

localhost

Instances currently registered with Eureka

Application AMis Availability Zones Status

CATALOG n/a(1) (1) UP (1) - 172.17.0.25:catalog:a5fb7f7dc1dfbb6cb83c55¢198cbb637
CUSTOMER nfa(1) (1) UP (1) - 172.17.0.24:customer:a0a7d00a5632633912632e9994720148
ORDER nfa (1) (1) UP (1) - 172.17.0.26:0rder:903933c9d8fcd6d56578051df2e7efde
ZUUL n/a(1) (1) UP (1) - 017f72e4c4a3

Fig. 75: Eureka Dashboard

14.9 Communication

Chapter 9 explained how Microservices communicate with each other and can be
integrated. The example application uses REST for internal communication. The
REST end points can be contacted from outside, however the web interface the
system offers is of far greater importance. The REST implementation uses
HATEOAS. The list containing all orders for instance contains links to the
individual orders. This is automatically implemented by Spring Data REST.
However, there are no links to the customer and the items of the order.

Using HATEOAS can go further: The JSON can contain a link to an HTML
document for each order — and vice versa. In this way a JSON-REST-based
service can generate links to HTML pages to display or modify data. Such HTML
code can for instance present an item in an order. As the catalog team provides the
HTML code for the item, the catalog team itself can introduce changes to the
presentation — even if the items are displayed in another module.

REST is also of use here: HTML and JSON are really only representations of the
same resource that can be addressed by a URL. Via Content Negotiation the right
resource representation as JSON or HTML can be selected (compare section 9.2).

Zuul: Routing

The Zuul Proxy transfers incoming requests to the respective Microservices. The
Zuul Proxy is a separate Java process. To the outside only one URL is visible,
however internally the calls are processed by different Microservices. This
allows the system to internally change the structure of the Microservices, while
still offering a URL to the outside. In addition Zuul can provide web resources. In
the example Zuul provides the first HTML page viewed by the user.

https://github.com/Netflix/zuul

HTTP/HTML

Zuul
Proxy

Customer Order Catalog

Fig. 76: Zuul-Proxy in the example application

Zuul needs to know which requests to transfer to which Microservice. Without
additional configuration Eureka will forward a request to a URL starting with
“/customer” to the Microservice called CUSTOMER. This renders the internal
Microservice names visible to the outside. But this routing can also be configured
differently. Moreover Zuul filters can change the requests in order to implement
general aspects in the system. There is for instance an integration with Spring
Cloud Security to pass on security tokens to the Microservices. Such filters can
also be used to pass on certain requests to specific servers. This allows for
instance to transfer requests to servers having additional analysis options for
investigating error situations. In addition a part of a Microservice functionality
can be replaced by another Microservice.

Implementing the Zuul-Proxy server with Spring Cloud is very easy and analogous
to the Eureka server presented in Listing 7. Instead of @EnableEurekaServer it
is @Enable ZuulProxy, which activates the Zuul-Proxy. As additional
dependency spring-cloud-starter-zuul has to be added to the application, for

instance within the Maven build configuration, which then integrates the remaining
dependencies of Zuul into the application.

A Zuul server represents an alternative to a Zuul Proxy. It does not have routing
built-in, but uses filters instead. A Zuul server is activated by
@EnableZuulServer.

Try and Experiment

N\
& Add Links to Customer and Items

Extend the application so that an order contains also links to the customer and to the items and thus
implements HATEOAS better. Supplement the JSON documents for customer, items and orders
with links to the forms.

N\
& Use the Catalog Service to Show Items in Orders

Change the order presentation so that HTML from the Catalog service is used for items. To do so,
you have to insert suitable JavaScript code into the order component, which loads HTML code from
the Catalog.

NS
& Implement Zuul Filters

Implement your own Zuul filter (compare https:/github.com/Netflix/zuul/wiki/Writing-Filters). The
filter can for instance only release the requests. Introduce an additional routing to an external URL.
For instance /google could redirect to http://google.com/. Compare the

Spring Cloud reference documentation .

N\
& Authentication and Authorization

Insert an authentication and authorization with Spring Cloud Security. Compare
http/cloud. spring.io/spring-cloud-security/.

https://github.com/Netflix/zuul/wiki/Writing-Filters
http://projects.spring.io/spring-cloud/docs/1.0.3/spring-cloud.html
http://cloud.spring.io/spring-cloud-security/

14.10 Resilience

Resilience means that Microservices can deal with the failure of other
Microservices. Even if a called Microservice is not available, they will still
work. Section10.5 presented this topic.

The example application implements Resilience with Hystrix. This library
protects calls so that no problems arise if a system fails. When a call is protected
by Hystrix, it is executed in a different thread than the call itself. This thread is
taken from a distinct thread pool. This makes it comparatively easy to implement a
timeout during a call.

Circuit Breaker

In addition Hystrix implements a Circuit Breaker. If a call causes an error, the
Circuit Breaker will open after a certain number of errors. In that case subsequent
calls are not directed to the called system anymore, but generate an error
immediately. After a sleep window the Circuit Breaker closes so that calls are
directed to the actual system again. The exact behavior can be configured. In the
configuration the error threshold percentage can be determined. That is the
percentage of calls which have to cause an error within the time window for the
Circuit Breaker to open. Also the sleep window can be defined, in which the
Circuit Breaker is open and not sending calls to the system.

Hystrix with Annotations

Spring Cloud uses Java Annotations from the project hystrix-javanica for the
configuration of Hystrix. This project is part of hystrix-contrib . The annotated
methods are protected according to the setting in the Annotation. Without this
approach Hystrix commands would have to be written, which is a lot more effort
than just adding some Annotations to a Java method.

To be able to use Hystrix within a Spring Cloud application, the application has to
be annotated with @Enable CircuitBreaker resp. @Enable Hystrix. Moreover,
the project needs to contain a dependency to spring-cloud-starter-hystrix.

Listing 8 shows a section from the class CatalogClient of the Order Microservice
from the example application. The method findAll() is annotated with
@HystrixCommand. This activates the processing in a different thread and the
Circuit Breaker. The Circuit Breaker can be configured — in the example the
number of calls, which have to cause an error in order to open the Circuit Breaker,

https://github.com/Netflix/Hystrix/
https://github.com/Netflix/Hystrix/wiki/Configuration
https://github.com/Netflix/Hystrix/tree/master/hystrix-contrib

is set to 2. In addition the example defines a fallbackMethod. Hystrix calls this
method if the original method generates an error. The logic in findAll() saves the
last result in a cache, which is returned by the fallbackMethod without calling the
real system. In this way a reply can still be returned when the called Microservice
fails, however this reply might no longer be up-to-date.

Listing 8: Example for a method protected by Hystrix

1 @HystrixCommand (

2 fallbackMethod = "getItemsCache",

3 commandProperties = {

4 @HystrixProperty(

5 name = "circuitBreaker.requestVolumeThreshold",
6 value = "2") })

7 public Collection<Item> findAll() {

8 this.itemsCache = ...

9

10 return pagedResources.getContent();

11 }

12

13 private Collection<Item> getItemsCache() {
14 return itemsCache;

15 }

Monitoring with the Hystrix Dashboard

Whether a Circuit Breaker is currently open or closed, gives an indication of how
well a system is running. Hystrix offers data to monitor this. A Hystrix system
provides such data as a stream of JSON documents via HTTP. The Hystrix
Dashboard can visualize the data in a web interface. The dashboard presents all
Circuit Breakers along with the number of requests and their state (open/closed)
(Fig. 77). In addition it displays the state of the thread pools.

./ Hystrix Monitor x Eberhard

€« C' f [I) localhost:7979/hystrix/monitor?stream=http%3A %2F %2Flocalhost % 3AB080%2F hystrix.stream W =

1L
Hystrix Stream: http://localhost:8080/hystrix.stream HYSTRIX

Nyy”' DEFEND YOUR APP
Circuit Sort: Error then Volume | Alphabetical | Volume | Error | Mean | Median | 90 | 99 | 99.5

Success | Short-Circuited | Tir | Rejected | Failure | Error %

circuitBreaker withFallback simple
+0| ©0/100.0 % - 0 0.0 % n 0 0.0 %

20| 0 0|0 ’ 0|0

M [1 | 0 AN 0
" Host: 2.1/s Host: 0.0/s Host: 0.0/s
vy U Cluster: 2.1/8 P [y — ciuster: 0.0/s g W - Cluster: 0.0/s
Circuit Open Circuit Closed Circuit Closed
Hosts 1 90th Oms Hosts 1 90th Oms Hosts 1 90th 1ms
Madian Oms 99th Oms Median Oms 93th Oms Median Oms ggth ims
Mear Oms 99.5th Oms Mean Oms 99.5th Oms Mean Oms 99.5th ims

Thread Pools sort: Alphabetical | Volume |

OtherMicroService

Host: 0.1/
0.1/s

Fig. 77: Example for a Hystrix Dashboard

A Spring Boot Application needs to have the annotation
@EnableHystrixDashboard and a dependency to spring-cloud-starter-hystrix-
dashboard to be able to display a Hystrix Dashboard. That way any Spring Boot
application might in addition show a Hystrix Dashboard or the dashboard can be
implemented in an application by itself.

Turbine

In a complex Microservices environment it is not useful that each instance of a
Microservice visualizes the information concerning the state of its Hystrix Circuit
Breaker. The state of all Circuit Breakers in the entire system should be
summarized on a single dashboard. To visualize the data of the different Hystrix
systems on one dashboard there is the Turbine project. Fig. 78 illustrates the
approach Turbine takes: The different streams of the Hystrix enabled
Microservices are provided at URLs like http://<host:port>/hystrix.stream. The
Turbine server requests them and provides them in a consolidated manner at the
URL http://<host:port>/turbine.stream. This URL can be used by the dashboard in
order to display the information of all Circuit Breakers of the different
Microservice instances.

Hystrix
System)
http://<host:port>/turbine.str 4 N
p://<host:port>/turbine.stream Hystrix
System
Hystrix Turbine |4\ _>Y)
e R
Dashboard Server |w— Hystrix
System)
)
Hystrix
System)

http:/<host:port>/hystrix.stream

Fig. 78: Turbine consolidates Hystrix monitoring data.

Turbine runs in a separate process. With Spring Boot the Turbine server is a
simple application, which is annotated with @Enable Turbine and
@EnableEurekaClient. In the example application it has the additional
annotation @Enable HystrixDashboard so that it also displays the Hystrix
Dashboard. It also needs a dependency on spring-cloud-starter-turbine.

Which data are consolidated by the Turbine server is determined by the
configuration of the application. Listing 9 shows the configuration of the Turbine
servers of the example project. It serves as a configuration for a Spring Boot
application just like application.properties files, but is written in YAML. The
configuration sets the value “ORDER” for turbine.aggregator.clusterConfig.
This is the application name in Eureka. turbine.aggregator.appConfig is the
name of the data stream in the Turbine server. In the Hystrix Dashboard a URL like
http://172.17.0.10:8989/turbine.stream?cluster=ORDER has to be used in
visualize the data stream. Part of the URL is the IP-Adresse of the Turbine server,
which can be found in the Eureka Dashboard. The dashboard accesses the Turbine
server via the network between the Docker containers.

Listing 9: Configuration application.yml

1 turbine:

2 aggregator:

3 clusterConfig: ORDER
4 appConfig: order

Try and Experiment

N\
& Terminate Microservices

Using the example application generate a number of orders. Find the name of the Catalog Docker
Container using docke ps. Stop the Catalog Docker Container with docker kill. This use is
protected by Hystrix. What happens?

What happens if the Customer Docker Container is terminated as well? The use of this
Microservice is not protected by Hystrix.

N\
& Add Hystrix to Customer Microservice

Protect the use of the Customer Docker Container also with Hystrix. In order to do so change the
class CustomerClient from the Order project. CatalogClient can serve as a template.

»
& Change Hystrix Configuration

Change the configuration of Hystrix for the Catalog Microservice. There are several configuration
options. Listing 8 (CatalogClient from the Order-Project) shows the use of the Hystrix annotations.
Other time intervals for opening and closing of the Circuit Breakers are for instance a possible
change.

14.11 Load Balancing

For Load Balancing the example application uses Ribbon. Many Load Balancers
are proxy-based. In this model the clients send all calls to a Load Balancer. The

Load Balancer runs as a distinct server and forwards the request to a web server
— often depending on the current load of the web servers.

https://github.com/Netflix/Hystrix/wiki/Configuration
https://github.com/Netflix/ribbon/wiki

Ribbon implements a different model called Client Side Load Balancing: The
client has all the information to communicate with the right server. The client calls
the server directly and distributes the load by itself to different servers. In the
architecture there is no bottle neck as there is no central server all calls would
have to pass. In conjunction with data replication by Eureka Ribbon is quite
resilient: As long as the client runs, it can send requests. The failure of a Proxy
Load Balancer would stop all calls to the server.

Dynamic scaling is very simple within this system: A new instance is started,
enlists itself at Eureka and then the Ribbon Clients redirect load to the instance.

As already discussed in the section dealing with Eureka (Section 14.8), data can
be inconsistent over the different servers. Because data are not up-to-date, servers
can be contacted, which really should be left out by the Load Balancing.

Ribbon with Spring Cloud

Spring Cloud simplifies the use of Ribbon. The application has to be annotated
with @RibbonClient. While doing so, a name for the application can be defined.
In addition the application needs to have a dependency on spring-cloud-starter-
ribbon. In that case an instance of a Microserve can be accessed using code like
in Listing 10. For that purpose the code uses the Eureka name of the Microservice.

Listing 10: Determining a server with Ribbon Load Balancing

1 Servicelnstance instance

2 = loadBalancer.choose("CATALOG");
3 String url = "http://" +
4 instance.getHost() + ":" +

5 instance.getPort() +
6 "/catalog/";

The use can also be transparent to a large extent. To illustrate this Listing 11
shows the use of RestTemplates with Ribbon. This is a Spring class, which can
be used to call REST services. In the Listing the RestTemplate of Spring is
injected into the object as it is annotated with @Autowired. The call in
callMicroservice() looks like it is contacting a server called “stores”. In reality
this name is used to search a server at Eureka, and to this server the REST call is
sent. This is done via Ribbon so that the load is also distributed across the
available servers.

Listing 11: Using Ribbon with RestTemplate

1 @RibbonClient(name = "ribbonApp")
2 .. // Left out other Spring Cloud / Boot Annotations

3
4
5
6
7
8
9

10
11
12
13}

public class RibbonApp {

@Autowired
private RestTemplate restTemplate;

public void callMicroservice() {

Store store = restTemplate.
getForObject("http://stores/store/1", Store.class);

Try and Experiment

'

Load Balance to an Additional Service Instance

The Order Microservice distributes the load onto several instances of the Customer and Catalog
Microservice — if several instances exist. Without further measures, only a single instance is started.
The Order Microservice shows in the log which Catalog or Customer Microservice it contacts.
Initiate an order and observe which Services are contacted.

Afterwards start an additional Catalog Microservice. You can do that using the command: docker
run -v /microservice-demo:/microservice-demo -link eureka:eureka catalog-app in
Vagrant. For Docker Compose docker-compose scale catalog=2 should be enough. Verify
whether the container is running and observe the log output.

For reference: Try and Experiment in section 14.4 shows the main commands for using Docker.
Section 14.7 shows how to use Docker Compose.

Create Data

Create a new dataset with a new item. Is the item always displayed in the selection of items? Hint:
The database runs within the process of the Microservice — i.e. each Microservice instance
possesses its own database.

14.12 Integrating Other Technologies

Spring Cloud and the entire Netflix Stack are based on Java. Thus, it seems
impossible for other programming languages and platforms to use this
infrastructure. However, there is a solution: The application can be supplied with
a sidecar. The sidecar is written in Java and uses Java libraries to integrate into a
Netflix-based infrastructure. The sidecar for instance takes care of registration

and finding other Microservices in Eureka. Netflix itself offers for this purpose
the Prana project. The Spring Cloud solution is explained in the documentation.
The sidecar runs in a distinct process and serves as an interface between the
Microservice itself and the Microservice infrastructure. In this manner other
programming languages and platforms can be easily integrated into a Netflix or
Spring Cloud environment.

14.13 Tests

The example application contains test applications for the developers of
Microservices. These do not need a Microservice infrastructure or additional
Microservices — in contrast to the production system. This allows developers to
run each Microservice without a complex infrastructure.

The class OrderTestApp in the Order project contains such a test application.
The applications contain their own configuration file application-test.properties
with specific settings within the directory src/test/resources. The settings prevent
that the applications register with the Service Discovery Eureka. Besides they
contain different URLs for the dependent Microservices. This configuration is
automatically used by the test application as it uses a Spring profile called “test”.
All JUnit tests use these settings as well so that they can run without dependent
services.

Stubs

The URLSs for the dependent Microservices in the test application and the JUnit
tests point to Stubs. These are simplified Microservices, which only offer a part
of the functionalities. They run within the same Java process as the real
Microservices or JUnit tests. So only a single Java process has to be started for
the development of a Microservice, analogous to the usual way of developing
with Java. The Stubs can be implemented differently — for instance using a
different programming language or even a web server, which returns certain static
documents representing the test data (compare section 11.6). Such approaches
might be better suited for real-life applications.

Stubs facilitate development. If each developer needs to use a complete
environment including all Microservices during development, a tremendous
amount of hardware resources and a lot of effort to keep the environment
continuously up-to-date would be necessary. The Stubs circumvent this problem
as no dependent Microservices are needed during development. Due to the stubs

http://githib.com/Netflix/Prana/
http://projects.spring.io/spring-cloud/docs/1.0.3/spring-cloud.html#_polyglot_support_with_sidecar

the effort to start a Microservice is hardly bigger than the one for a regular Java
application.

In a real project the teams can implement Stubs together with the real
Microservices. The Customer team can implement in addition to the real service a
stub for the Customer Microservice, which is used by the other Microservices for
development. This ensures that the stub largely resembles the Microservice and is
updated if the original service is changed. The Stub can be taken care of in a
different Maven projects, which can be used by the other teams.

Consumer-driven Contract Test

It has to be ensured that the Stubs behave like the Microservices they simulate. In
addition a Microservice has to define the expectations regarding the interface of a
different Microservice. This is achieved by Consumer-driven Contract Tests
(compare section 11.7). These are written by the team, which uses the
Microservices. In the example this is the team, which is responsible for the Order
Microservice. In the Order Microservice the Consumer-driven Contract Tests are
found in the classes CatalogConsumerDrivenContractTest and
CustomerConsumerDrivenContractTest. They run there to test the stubs of the
Customer and Catalog Microservice for correctness.

Even more important than the correct functioning of the stubs is the correct
functioning of the Microservices themselves. For that reason the Consumer-driven
Contract Tests are also contained in the Customer and Catalog project. There they
run against the implemented Microservices. This ensures that the Stubs as well as
the real Microservices are in line with this specification. In case the interface is
supposed to be changed, these tests can be used to confirm that the change does
not break the calling Microservice. It is up to the used Microservices — Customer
and Catalog in the example —, to comply with these tests. In this manner the
requirements of the Order Microservice in regards to the Customer and Catalog
Microservice can be formally defined and tested. The Consumer-driven Contract
Tests serve in the end as formal definition of the agreed interface.

In the example application the Consumer-driven Contract Tests are part of the
Customer and Catalog projects in order to verify that the interface is correctly
implemented. Besides they are part of the Order project for verifying the correct
functioning of the stubs. In a real project copying the tests should be prevented.
The Consumer-driven Contract Tests can be located in one project together with
the tested Microservices. Then all teams need to have access to the Microservice

projects to be able to alter the tests. Alternatively, they are located within the
projects of the different teams, which are using the Microservice. In that case the
tested Microservice has to collect the tests from the other projects and execute
them.

In a real project it is not really necessary to protect stubs by Consumer-driven
Contract Tests, especially as it is the purpose of the stubs to offer an easier
implementation than the real Microservices. Thus the functionalities will be
different and conflict with Consumer-driven Contract Tests.

Try and Experiment

&‘ Insert a field into Catalog or Customer data. Is the system still working? Why?

&‘ Delete a field in the implementation of the server for Catalog or Customer. Where is the problem
noticed? Why?

&‘ Replace the home grown stubs with stubs, which use a tool from Section 11.6.

&‘ Replace the Consumer-driven Contract Tests with tests, which use a tool from Section 11.7.

Experiences with JVM-based Microservices in the Amazon
Cloud (Sascha Méllering)

by Sascha Méllering, zanox AG

During the last months zanox has implemented a light-weight Microservices
architecture in Amazon Web Services (AWS), which runs in several AWS regions.
Regions divide the Amazon Cloud into sections like US-East or EU-West, which
each have their own data centers. They work completely independently of each

other and do not exchange any data directly. Different AWS regions are used
because latency is very important for this type of application and is minimized by
latency-based routing. In addition it was a fundamental aim to design the
architecture in an event-driven manner. Furthermore, the individual services were
intended not to communicate directly, but rather to be separated by message
queues resp. bus systems. An Apache Kafka cluster as message bus in the zanox
data center serves as central point of synchronization for the different regions.
Each service is implemented as a stateless application. The state is stored in
external systems like the bus systems, Amazon ElastiCache (based on the NoSQL
database Redis), the data stream processing technology Amazon Kinesis and the
NoSQL database Amazon DynamoDB. The JVM serves as basis for the
implementation of the individual services. We chose Vert.x and the embedded web
server Jetty as frameworks. We developed all applications as self-contained
services so that a Fat JAR, which can easily be started via java —jar, is generated
at the end of the build process.

There is no need to install any additional components or an application server.
Vert.x serves as basis framework for the HTTP part of the architecture. Within the
application work is performed almost completely asynchronously to achieve high
performance. For the remaining components we use Jetty as framework: These act
either as Kafka/Kinesis consumer or update the Redis cache for the HTTP layer.
All called applications are delivered in Docker Containers. This allows the use of
a uniform deployment mechanism independent of the utilized technology. To be
able to deliver the services independently in the different regions, an individual
Docker Registry storing the Docker images in a S3 bucket was implemented in
each region. S3 is a service that allows the storage of large file on Amazon server.

If you intend to use Cloud Services, you have to address the question whether you
want to use the managed services of a Cloud provider or develop and run the
infrastructure yourself. zanox decided to use the managed services of a Cloud
provider because building and administrating proprietary infrastructure modules
does not provide any business value. The EC2 computers of the Amazon portfolio
are pure infrastructure. IAM on the other hand offers comprehensive security
mechanisms. In the deployed services the AWS Java SDK is used, which allows
in combination with IAM roles for EC2 to generate applications, which are able
to access the managed services of AWS without using explicit credentials. During
initial bootstrapping an IAM role containing the necessary permissions is assigned
to an EC2 instance. Via the Metadata Service the AWS SDK is given the
necessary credentials. This enables the application to access the managed

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-metadata.html

services defined in the role. Thus, an application can be implemented, which
sends metrics to the monitoring system Amazon Cloud Watch and events to the
data streaming processing solution Amazon Kinesis without having to role out
explicit credentials together with the application.

All applications are equipped with REST interfaces for heartbeats and
healthchecks so that the application itself as well as the infrastructure necessary
for the availability of the application can be monitored at all times: Each
application uses healthchecks to monitor the infrastructure components it uses.
Application scaling is implemented via Elastic Load Balancing (ELB) and
AutoScaling to be able to achieve a fine-grained application depending on the
concrete load. AutoScaling starts additional EC2 instances if needed. ELB
distributes the load between the instances. The AWS ELB service is not only
suitable for web applications working with HTTP protocols, but for all types of
applications. A healthcheck can also be implemented based on a TCP protocol
without HTTP. This is even simpler than an HTTP healthcheck.

Still the developer team decided to implement the ELB healthchecks via HTTP for
all services to achieve that they all behave exactly the same, independent of the
implemented logic, the used frameworks and the language. It is well possible that
in the future also applications, which do not run on JVM and for instance use Go
or Python as programming languages, are deployed in AWS.

For the ELB healthcheck zanox uses the application heartbeat URL. As a result,
traffic is only directed to the application resp. potentially necessary infrastructure
scaling operations are only performed once the EC2 instance with the application
has properly been started and the heartbeat was successfully monitored.

For application monitoring Amazon CloudWatch is a good choice as CloudWatch
alarms can be used to define scaling events for the AutoScaling Policies, i.e. the
infrastructure scales automatically based on metrics. For this purpose EC2 basis
metrics like CPU can for instance be used. Alternatively, it is possible to send
your own metrics to CloudWatch. For this purpose this project uses a fork of the
project jmxtrans-agent, which uses the CloudWatch API to send JMX metrics to
the monitoring system. JMX (Java Management Extension) is the standard for
monitoring and metrics in the Java world. Besides metrics are sent from within the
application (i.e. from within the business logic) using the library Coda Hale
Metrics and a module for the CloudWatch integration by Blacklocus.

https://docs.aws.amazon.com/AutoScaling/latest/DeveloperGuide/as-add-elb-healthcheck.html
https://github.com/SaschaMoellering/jmxtrans-agent
https://dropwizard.github.io/metrics/
https://github.com/blacklocus/metrics-cloudwatch

A slightly different approach is chosen for the logging: In a Cloud environment it
is never possible to rule out that a server instance is abruptly terminated. This
causes often the sudden loss of data, which are stored on the server. Log files are
an example for that. For this reason a logstash-forwarder runs in parallel to the
core application on the server for sending the log entries to our ELK-Service
running in our own data center. This stack consists of Elasticsearch for storage,
Logstash for parsing the log data and Kibana for Ul-based analysis. ELK is an
acronym for Elasticsearch, Logstash und Kibana. In addition a UUID is calculated
for each request resp. each event in our HTTP layer so that log entries can still be
assigned to events after EC2 instances have ceased to exist.

Conclusion

The pattern of Microservices architectures fits well to the dynamic approach of
Amazon Cloud if the architecture is well designed and implemented. The clear
advantage over implementing in your own data center is the infrastructure
flexibility. This allows to implement a nearly endlessly scalable architecture,
which is in addition very cost-efficient.

14.14 Conclusion

The technologies used in the example provide a very good foundation for
implementing a Microservices architecture with Java. Essentially, the example is
based on the Netflix Stack, which has demonstrated its efficacy for years already
in one of the largest websites.

The example demonstrates the interplay of different technologies for Service
Discovery, Load Balancing and Resilience — as well as an approach for testing
Microservices und for their execution in Docker Containers. The example is not
meant to be directly useable in a production context, but is first of all designed to
be very easy to set up and get running. This entails a number of compromises.
However, the example serves very well as foundation for further experiments and
the testing of ideas.

In addition the example demonstrates a Docker-based application deployment,
which is a good foundation for Microservices.

Essential Points

e Spring, Spring Boot, Spring Cloud and the Netflix Stack offer a well
integrated stack for Java-based Microservices. These technologies solve all

https://github.com/elastic/logstash-forwarder

typical challenges posed during the development of Microservices.

e Docker based deployment is easy to implement and in conjunction with
Docker Machine and Docker Compose can be used for deployment in the
Cloud, too.

e The example application shows how to test Microservices using Consumer-
Driven Contract Tests and Stubs without special tools. However, for real life
projects tools might be more useful.

Try and Experiment

NS
& Add Log Analysis

The log analysis of all log files is important for running a Microservice system. At
https://github.com/ewolff/user-registration an example project is provided. In the sub directory log-
analysis it contains a setup for an ELK (Elasticsearch, Logstash und Kibana) stack-based log
analysis. Use this approach to also add a log analysis to the Microservice example.

» L
& Add Monitoring

In addition the example project from the Continuous Delivery book contains in the sub directory
graphite an installation of Graphite for monitoring. Adapt this installataion for the Microservice
example.

» . .
& Rewrite a Service

Rewrite one of the services in a different programming language. Use the Consumer-driven
Contract Tests (compare Section 14.13 and 11.7 to protect the implementation. Make use of a
sidecar for the integration into the technology stack (compare Section 14.12).

https://github.com/ewolff/user-registration

15 Technologies for Nanoservices

Section 15.1 discusses the advantages of Nanoservices and why Nanoservices can
be useful. Section 15.2 defines Nanoservices and distinguishes them from
Microservices. Section 15.3 focuses on Amazon Lambda: a Cloud technology
which can be used with Python, JavaScript or Java. Here each function call is
billed instead of renting virtual machines or application servers. OSGi (section
15.4) modularizes Java applications and also provides services. Another Java
technology for Nanoservices is Java EE (section 15.5), if used correctly. Vert.x,
another option, (section 15.6) also runs on the JVM, but supports in addition to
Java a broad variety of programming languages. Section 15.7 focuses on the
programming language Erlang which is quite old. The architecture of Erlang
allows the implementation of Nanoservices. Seneca (section 15.8) has a similar
approach as Erlang, but is based on JavaScript and has been specially designed
for the development of Nanoservices.

The term Microservice is not uniformly defined. Some people believe
Microservices should be extremely small services — i.e. ten to a hundred lines of
code (LoC). This book calls such services Nanoservices. The distinction between
Microservices and Nanoservices is the focus of this chapter. A suitable
technology is an essential prerequisite for the implementation of small services. If
the technology for instance combines several services into one operating system
process, the resource utilization per service can be decreased and the service
rollout in production facilitated. This decreases the expenditure per service which
allows to support a large number of small Nanoservices.

15.1 Why Nanoservices?

Nanoservices are well in line with the already discussed size limits of
Microservices: Their size is below the maximum size, which was defined in
section 4.1and depends for instance on the number of team members. In addition, a
Microservice should be small enough to still be understood by a developer. With
suitable technologies the technical limits for the minimal size of a Microservice,
which were discussed in section 4.1, can be further reduced.

Very small modules are easier to understand and therefore easier to maintain and
change. Besides smaller Microservices can more easily be replaced by new
implementations or a rewrite. Accordingly, systems consisting of minimally sized
Nanoservices can more easily be developed further.

There are systems which successfully employ Nanoservices. In fact, in practice it
is rather the too large modules that are the source of problems and prevent the
successful further development of a system. Each functionality could be
implemented in its own Microservice — each class or function could become a
separate Microservice. Section 10.2 demonstrated that it can be sensible for
CQRS to implement a Microservice which only reads data of a certain type.
Writing the same type of data can already be implemented in another
Microservice. So Microservices can really have a pretty small scope.

Minimum Size of Microservices is Limited

What are reasons against very tiny Microservices? Section 4.1 identified factors
which render Microservices below a certain size not practicable:

e The expenditure for infrastructure increases. When each Microservice is a
separate process and requires infrastructure such as an application server
and monitoring, the expenditure necessary for running hundreds or even
thousands of Microservices becomes too large. Therefore, Nanoservices
require technologies which allow to keep the expenditure for infrastructure
per individual service as small as possible. In addition, a low resource
utilization is desirable. The individual services should consume as little
memory and CPU as possible.

e In case of very small services a lot of communication via the network is
required. That has a negative influence on system performance.
Consequently, when working with Nanoservices communication between the
services should not occur via the network. This might result in less
technological freedom. When all Nanoservices run in a single process, they
are usually required to employ the same technology. Such an approach also
affects system robustness. When several services run in the same process, it
is much more difficult to isolate them from each other. A Nanoservice can
use up so many resources that other Nanoservices do not operate error-free
anymore. When two Nanoservices run in the same process, the operating
system cannot intervene in such situations. In addition, a crash of a
Nanoservice can result in the failure of additional Nanoservices. If the

processes crashes, it will affect all Nanoservices running in the same
process.

The technical compromises can have a negative effect on the properties of
Nanoservices. In any case the essential feature of Microservices has to be
maintained — namely, the independent deployment of the individual services.

Compromises

In the end the main task is to identify technologies which minimize the overhead
per Nanoservice and at the same time preserve as many advantages of
Microservices as possible.

In detail the following points need to be achieved:

e The expenditure for infrastructure such as monitoring and deployment has to
be kept low. It has to be possible to bring a new Nanoservice into production
without much effort and to have it immediately displayed in monitoring.

e Resource utilization for instance in regards to memory should be as low as
possible to allow a large number of Nanoservices also with little hardware.
This does not only make the production environment cheaper, but also
facilitates the generation of test environments.

e Communication should be possible without network. This does not only
improve latency and performance, but increases the reliability of the
communication between Nanoservices because it is not influenced by
network failures.

e Concerning isolation a compromise has to be found. The Nanoservices
should be isolated from each other so that one Nanoservice cannot cause
another Nanoservice to fail. Otherwise a single Nanoservice might cause the
entire system to break down. However, achieving a perfect isolation might be
less important than having a lower expenditure for infrastructure, a low
resource utilization and the other advantages of Nanoservices.

e Using Nanoservices can limit the choice of programming languages,
platforms and frameworks. Microservices on the other hand allow in
principle a free choice of technology.

Desktop Applications

Nanoservices enable the use of Microservice approaches in areas in which
Microservices themselves are hardly useable. One example is the possibility to
divide a desktop application in Nanoservices. OSGi (section 15.4) is for instance

used for desktop and even for embedded applications. A desktop application
consisting of Microservices is on the other hand probably too difficult to deploy
to really use it for desktop applications. Each Microservice has to be deployed by
itself and that is hardly possible for a large number of desktop clients - some of
which might even be located in other companies. Moreover the integration of
several Microservices into a coherent desktop application is hard - in particular if
they are implemented as completely separated processes.

15.2 Nanoservices: Definition

A Nanoservice differs from a Microservice: It compromises in certain areas. One
of these areas is isolation: Multiple Nanoservices run on a single virtual machine
or in a single process. Another area is technology freedom: Nanoservices use a
shared platform or programming language. Only with these limitations does the
use of Nanoservices become feasible. The infrastructure can be so efficient that a
much larger number of services is possible. This allows the individual services to
be smaller. A Nanoservice might comprise only a few lines of code.

However, by no means may the technology require a joint deployment of
Nanoservices since independent deployment is the central characteristic of
Microservices and also Nanoservices. Independent deployment constitutes the
basis for the essential advantages of Microservices: Teams which can work
independently, a strong modularization and as consequence a sustainable
development.

Therefore, Nanoservices can be defined as follows:

e Nanoservices compromise in regards to some Microservice properties such
as isolation and technology freedom. However, Nanoservices still have to be
independently deployable.

e The compromises allow for a larger number of services and therefore for
smaller services. Nanoservices can contain just a few lines of code.

e To achieve this, Nanoservices use highly efficient runtime environments.
These exploit the restrictions of Nanoservices in order to allow for more and
smaller services.

Thus Nanoservices depend a lot on the employed technologies. The technology
enables certain compromises in Nanoservices and therefore Nanoservices of a
certain size. Therefore, this chapter is geared to different technologies to explain
the possible varieties of Nanoservices.

The objective of Nanoservices is to amplify a number of advantages of
Microservices. Having even smaller deployment units decreases the deployment
risk further, facilitates deployment even more and achieves better understandable
and replaceable services. In addition, the domain architecture will change: A
Bounded Context which might consist of one or a few Microservices will now
comprise a multitude of Nanoservices which each implement a very narrowly
defined functionality.

The difference between Microservices and Nanoservices is not strictly defined: If
two Microservices are deployed in the same virtual machine, efficiency increases
and isolation is compromised. The two Microservices now share an operating
system instance and a virtual machine. When one of the Microservices uses up the
resources of the virtual machine, the other Microservice running on the same
virtual machine will also fail. This is the compromise in terms of isolation. So in
a sense these Microservices are already Nanoservices.

By the way, the term “Nanoservice” is not used very much. This book uses the
term “Nanoservice” to make it plain that there are modularizations which are
similar to Microservices, but differ when it comes to detail thereby allowing for
even smaller services. To distinguish these technologies with their compromises
clearly from “real” Microservices the term “Nanoservice” is useful.

15.3 Amazon Lambda

Amazon [Lambda is a service in the Amazon Cloud. It is available worldwide in
all Amazon computing centers.

Amazon Lambda can execute individual functions which are written in Python,
JavaScript with Node.js or Java 8 with OpenJDK. The code of these functions
does not have dependencies on Amazon Lambda. Access to the operating system
is possible. The computers the code is executed on contain the Amazon Web
Services SDK as well as ImageMagick for image manipulations. These
functionalities can be used by Amazon Lambda applications. Besides additional
libraries can be installed.

Amazon Lambda functions have to start quickly because it can happen that they are
started for each request. Therefore, the functions may also not hold a state.

Thus there are no costs when there are no requests that cause an execution of the
functions. Each request is billed individually. Currently the first million requests

http://aws.amazon.com/lambda

is for free and a further million costs 0,20 $.

Calling Lambda Functions

Lambda functions can be called directly via a command line tool. The processing
occurs asynchronously. The functions can return results via different Amazon
functionalities. For this purpose, the Amazon Cloud contains messaging solutions
such as SNS (Simple Notification Service) or SQS (Simple Queuing Service).

The following events can trigger a call of a Lambda function:

e In S3 (Simple Storage Service) large files can be stored and downloaded.
Such actions trigger events to which an Amazon Lambda function can react.

e Amazon Kinesis can be used to administrate and distribute data streams. This
technology is meant for the real time processing of large data amounts.
Lambda can be called as reaction to new data in these streams.

e With Amazon Cognito it is possible to use Amazon Lambda to provide
simple backends for mobile applications.

e The API Gateway provides a way to implement REST APIs using Amazon
Lambda.

e Furthermore it is possible to have Amazon Lambda functions be called at
regular intervals.

e As areaction to a notification in SNS (Simple Notification Service) an
Amazon Lambda function can be executed. As there are many services which
can provide such notifications, this makes Amazon Lambda useable in many
scenarios.

e DynamoDB is a database within the Amazon Cloud. In case of changes to the
database it can call Lambda functions. So Lambda functions essentially
become database triggers.

Evaluation for Nanoservices

Amazon Lambda allows the independent deployment of different functions without
problems. They can also bring their own libraries along.

The technological expenditure for infrastructure is minimal when using this
technology: A new version of an Amazon Lambda function can easily be deployed
with a command line tool. Monitoring is also simple: The functions are
immediately integrated into Cloud Watch. Cloud Watch is offered by Amazon to
create metrics of Cloud applications and to consolidate and monitor log files. In
addition, alarms can be defined based on these data which can be forwarded by

SMS or email. Since all Amazon services can be contacted via an API, monitoring
or deployment can be automated and integrated into their own infrastructures.

Amazon Lambda provides integration with the different Amazon services e.g. S3,
Kinesis and DynamoDB. It is also easily possible to contact an Amazon Lambda

function via REST using the API Gateway. However, Amazon Lambda exacts that
Node.js, Python or Java are used. This profoundly limits the technology freedom.

Amazon Lambda offers an excellent isolation of functions. This is also necessary
since the platform is used by many different users. It would not be acceptable for a
Lambda function of one user to negatively influence the Lambda functions of other
users.

Conclusion

Amazon Lambda allows to implement extremely small services. The overhead for
the individual services is very small. Independent deployment is easily possible.
A Python, JavaScript or Java function are the smallest deployment units supported
by Amazon Lambda — it is hardly possible to make them any smaller. Even if there
is a multitude of Python, Java or JavaScript functions, the expenditure for the
deployments remains relatively low.

Amazon Lambda is a part of the Amazon ecosystem. Therefore, it can be
supplemented by technologies like Amazon Elastic Beanstalk. There
Microservices can run which can be larger and written in other languages. In
addition, a combination with EC2 (Elastic Computing Cloud) is possible. EC2
offers virtual machines on which any software can be installed. Moreover, there is
a broad choice in regards to databases and other services which can be used with
little additional effort. Amazon Lambda defines itself as a supplement of this tool
kit. In the end one of the crucial advantages of the Amazon Cloud is that nearly
every possible infrastructure is available and can easily be used. Thus developers
can concentrate on the development of specific functionalities while most standard
components can just be rented.

Try and Experiment

&‘ There is a comprehensive tutorial which illustrates how to use Amazon Lambda. It does not only
demonstrate simple scenarios, but also shows how to use complex mechanisms such as different
Node.js libraries, implementing REST services or how to react to different events in the Amazon
system. Amazon offers cost free quotas of most services to new customers. In case of Lambda
each customer gets such a large free quota that it is fully sufficient for tests and a first getting to
know the technology. Also note that the first million calls during a month are free. However, you

should check the current pricing.

15.4 OSGi

OSGi is a standard with many different implementations. Embedded systems often
use OSGi. Also the development environment Eclipse is based on OSGi, and
many Java desktop applications use the Eclipse framework. OSGi defines a
modularization within the JVM (Java Virtual Machine). Even though Java allows
for a division of code into classes or packages, there is no modular concept for
larger units.

The OSGi Module System

OSGi supplements Java by such a module system. To do so OSGi introduces
bundles into the Java world. Bundles are based on Java’s JAR files which
comprise code of multiple classes. Bundles have a number of additional entries in
the file META-INF/MANIFEST.MF, which each JAR file should contain. These
entries define which classes and interfaces the bundle exports. Other bundles can
import these classes and interfaces. Thereby OSGi extends Java with a quite
sophisticated module concept without inventing entirely new concepts.

Listing 12: OSGi MANIFEST.MF

Bundle-Name: A service

Bundle-SymbolicName: com.ewolff.service

Bundle-Description: A small service

Bundle-ManifestVersion: 2

Bundle-Version: 1.0.0

Bundle-Acltivator: com.ewolff.service.Activator

Export-Package: com.ewolff.service.interfaces;version="1.0.0"
Import-Package: com.ewolff.otherservice.interfaces;version="1.3.0"

0o ~NO O WN R

Listing 12 shows an example of a MANIFEST.MF file. It contains the description
and name of the bundle and the bundle activator. This Java class is executed upon
the start of the bundle and can initialize the bundle. Export-Package indicates

http://aws.amazon.com/lambda/getting-started/
https://aws.amazon.com/lambda/pricing/
http://www.osgi.org/
http://en.wikipedia.org/wiki/OSGi#Current_framework_implementations

which Java packages are provided by this bundle. All classes and interfaces of
these packages are available to other bundles. Import-Package serves to import
packages from another bundle. The packages can also be versioned.

In addition to interfaces and classes bundles can also export services. However,
an entry in MANIFEST.MF is not sufficient for this. Code has to be written.
Services are in the end only Java objects. Other bundles can import and use the
services. Also calling the services happens in the code.

Bundles can be installed, started, stopped and uninstalled at runtime. So bundles
are easy to update: Stop and uninstall the old version, then install a new version
and start. However, if a bundle exports classes or interfaces and another bundle

uses these, an update is not so simple anymore. All bundles which use classes or
interfaces of the old bundle and now want to use the newly installed bundle have
to be restarted.

Handling Bundles in Practice

Sharing code is by far not as important for Microservices as the use of services.

Nevertheless at least the interface of the services has to be offered to other
bundles.

In practice a procedure has been established where a bundle only exports the
interface code of the service as classes and Java interfaces. Another bundle
contains the implementation of the service. The classes of the implementation are
not exported. The service implementation is exported as OSGi service. To use the
service a bundle has to import the interface code from the one bundle and the
service from the other bundle (compare Fig. 79).

OSGi allows to restart services. With the described approach the implementation
of the service can be exchanged without having to restart other bundles. These
bundles only import the Java interfaces and classes of the interface code. That
code does not change for a new service implementation so that restarting is not
necessary anymore. That way the access to services can be implemented in such a
manner that the new version of the service is in fact used.

With the aid of OSGi blueprints or OSGi declarative services these details can be
abstracted away when dealing with the OSGi service model. This facilitates the
handling of OSGi. These technologies for instance render it much easier to handle
the restart of a service or its temporary failure during the restart of a bundle.

http://wiki.osgi.org/wiki/Blueprint
http://wiki.osgi.org/wiki/Declarative_Services

(Bundle (interface

Calling Bundle |«
Package L code)
(interface
code)
Package
(interface
Service code)
A4
Bundle
(implementation

and service)

Fig. 79: OSGi service, implementation and interface code

An independent deployment of services is possible, but also laborious since
interface code and service implementation have to be contained in different
bundles. This model allows only changes to the implementation. Modifications of
the interface code are more complex. In such a case the bundles using a service
have to be restarted because they have to reload the interface.

In reality OSGi systems are often completely reinstalled for these reasons instead
of modifying individual bundles. An Eclipse update for instance often entails a
restart. A complete reinstallation facilitates also the reproduction of the
environment. When an OSGi system is dynamically changed, at some point it will
be in a state which nobody is able to reproduce. However, modifying individual
bundles is an essential prerequisite for implementing the Nanoservice approach
with OSGi. Independent deployment is an essential property of a Nanoservice. So
OSGi compromises this essential property.

Evaluation for Nanoservices

OSGi has a positive effect on Java projects in regards to architecture. The bundles
are usually relatively small so that the individual bundles are easy to understand.

In addition, the split into bundles forces the developers and architects to think
about the relationships between the bundles and to define them in the
configurations of the bundles. Other dependencies between bundles are not
possible within the system. Normally this leads to a very clean architecture with
clear and intended dependencies.

However, OSGi does not offer technological freedom: It is based on the JVM and
therefore can only be used with Java or JVM-based languages. For example, it is
nearly impossible that an OSGi bundle brings along its own database because
databases are normally not written in Java. For such cases additional solutions
alongside the OSGi infrastructure have to be found.

For some Java technologies an integration with OSGi is difficult since loading
Java classes works differently without OSGi. Moreover, many popular Java
application servers do not support OSGi for deployed applications so that
changing code at runtime is not supported in such environments. The infrastructure
has to be specially adapted for OSGi.

Furthermore, the bundles are not fully isolated: When a bundle uses a lot of CPU
or causes the JVM to crash, the other bundles in the same JVM will be affected.
Failures can occur for instance due to memory leak which causes more and more
memory to be allocated due to an error until the system breaks down. Such errors
easily arise due to blunders.

On the other hand, the bundles can locally communicate due to OSGi. Distributed
communication is also possible with different protocols. Moreover, the bundles
share a JVM which reduces for instance the memory utilization.

Solutions for monitoring are likewise present in the different OSGi
implementations.

Conclusion

OSGi leads first of all to restrictions in regards to technological freedom. It
restricts the project to Java technologies. In practice the independent deployment
of the bundles is hard to implement. Especially interface changes are poorly
supported. Besides bundles are not well isolated from each other. On the other
hand, bundles can easily interact via local calls.

Try and experiment

»
& ¢ Get familiar with OSGi for instance with the aid of a tutorial.

»
& e Create a concept for the distribution into bundles and services for a part of a system you
know.
o If you had to implement the system with OSGi: Which additional technologies (databases etc.)
would you have to use? How would you handle this?

15.5 Java EE

Java EE is a standard from the Java field. It comprises different APIs such as for
instance JSF (Java ServerFaces), Servlet and JSP (Java Server Pages) for web
applications, JPA (Java Persistence API) for persistence or JTA for transactions.
Besides Java EE defines a deployment model. Web applications can be packaged
into WAR files (Web ARchive), JAR files (Java ARchive) can contain logic
components like Enterprise Java Beans (EJBs), and EARs (Enterprise ARchives)
can comprise a collection of JARs and WARs. All these components are deployed
in one application server. The application server implements the Java EE APIs
and offers for instance support for HTTP, threads and network connections and
also support for accessing databases.

This section deals with WARs and the deployment model of Java EE application
servers. Chapter 14 already described in detail a Java system that does not
require an application server. Instead it directly starts a Java application on the
Java Virtual Machine (JVM). The application is packaged in a JAR file and
contains the entire infrastructure. This deployment is called Fat JAR deployment,
because the application including the entire infrastructure is contained in one
single JAR. The example from chapter 14 uses Spring Boot which also supports a
number of Java EE APIs such as JAX-RS for REST. Dropwizard also offers such
a JAR model. It is actually focused on JAX RS-based REST web services,
however, it can also support other applications. Wildfly Swarm is a variant of the
Java EE server Wildfly which also supports such a deployment model.

Nanoservices with Java EE

http://www.vogella.com/tutorials/OSGi/article.html
http://www.oracle.com/technetwork/java/javaee/overview/index.html
https://dropwizard.github.io/dropwizard/
http://github.com/wildfly-swarm/

A Fat JAR deployment utilizes too many resources for Nanoservices. In a Java EE
application server multiple WARs can be deployed thereby saving resources.
Each WAR can be accessed via its own URL. Furthermore, each WAR can be
individually deployed. This allows to bring each Nanoservice individually into
production.

However, the separation between WARS is not optimal:

e Memory and CPU are collectively used by all Nanoservices. When a
Nanoservice uses a lot of CPU or memory, this can interfere with other
Nanoservices. A crash of one Nanoservice propagates to all other
Nanoservices.

¢ In practice, redeployment of a WAR causes memory leaks if it is not possible
to remove the entire application from memory. Therefore, in practice the
independent deployment of individual Nanoservices is hard to achieve.

¢ In contrast to OSGi the ClassLoaders of the WARs are completely separate.
There is no possibility for accessing the code of other Nanoservices.

e Because of the separation of the code WARs can only communicate via
HTTP or REST. Local method calls are not possible.

Since multiple Nanoservices share an application server and a JVM, this solution
is more efficient than the Fat JAR Deployment of individual Microservices in
their own JVM as described in chapter 14. The Nanoservices use a shared heap
and thereby use less memory. However, scaling works only by starting more
application servers. Each of the application servers contains all Nanoservices.
All Nanoservices have to be scaled collectively. It is not possible to scale
individual Nanoservices.

The technology choice is restricted to JVM technologies. Besides all technologies
are excluded which do not work with the servlet model such as Vert.x (section
15.6) or Play.

Microservices with Java EE?

For Microservices Java EE can also be an option: Theoretically it would be
possible to run each Microservice in its own application server. In this case an
application server has to be installed and configured in addition to the
application. The version of the application server and its configuration have to fit
to the version of the application. For Fat JAR deployment there is no need for a
specific configuration of the application server because it is part of the Fat JAR

and therefore configured just like the application. This additional complexity of
the application server is not counterbalanced by any advantage. Since deployment
and monitoring of the application server only work for Java applications, these
features can only be used in a Microservices-based architecture when the
technology choice is restricted to Java technologies. In general, application

servers have hardly any advantages — especially for Microservices.

An example

The application from chapter 14 is also available with the Java EE deployment
model. Fig. 80 provides an overview of the example: There are three WARs,
which comprise order, customer and catalog. They communicate with each other
via REST. When customer fails, order would also fail in the host since order
communicates only with this single customer instance. To achieve better
availability, the access would have to be rerouted to other customer instances.

A customer can use the UI of the Nanoservices from the outside via HTML/HTTP.
The code contains only small modifications compared to the solution from chapter
14. The Netflix libraries have been removed. On the other hand, the application
has been extended with support for servlet containers.

HTTP/HTML - <
- ~
order.war
— (%E> to Ilc::sj-l:-ost
— (customer.war] />

. -
(catalog.war]

Tomcat Java EE

rver
L Serve)

\ Docker Container

Fig. 80: Example application with Java EE Nanoservices

Try and Experiment

http://jaxenter.com/java-application-servers-dead-1-111928.html
https://github.com/ewolff/javaee-example/

The application as Java EE Nanoservices can be found on GitHub.

The application does not use the Netflix technologies.

&‘ Hystrix offers Resilience (compare section 14.10).

Does it make sense to integrate Hystrix into the application?

How are the Nanoservices isolated from each other?

Is Hystrix always helpful?

Compare also section 10.5 concerning stability and resilience. How can these patterns be
implemented in this application?

»
& o FEureka is helpful for service discovery. How would it fit into the Java EE Nanoservices?
e How can other service discovery technologies be integrated (compare section 8.9)?

»
& ¢ Ribbon for load balancing between REST services could likewise be integrated. Which
advantages would that have? Would it also be possible to use Ribbon without Eureka?

15.6 Vert.x

Vert.x is a framework containing numerous interesting approaches. Although it
runs on the (Java Virtual Machine), it supports many different programming
languages — such as Java, Scala, Clojure, Groovy, Ceylon as well as JavaScript,
Ruby or Python. A Vert.x system is built from Verticles. They receive events and
can return messages.

Listing 13 shows a simple Vert.x Verticle, which only returns the incoming
messages. The code creates a server. When a client connects to the server, a
callback is called, and the server creates a pump. The pump serves to transfer
data from a source to a target. In the example source and target are identical.

The application becomes only active when a client connects and the callback is
called. Likewise, the pump becomes only active when new data are available

https://github.com/ewolff/javaee-example/
http://vertx.io/

from the client. Such events are processed by the event loop which calls the
Verticles. The Verticles then have to process the events. An event loop is a thread.
Usually one event loop is started per CPU core so that the event loops are
processed in parallel. An event loop and thus a thread resp. a CPU core can
support an arbitrary number of network connections. Events of all connections can
be processed in a single event loop. Therefore, Vert.x is also suitable for
applications which have to handle a large number of network connections.

Listing 13: Simple Java Vert.x Echo Verticle

public class EchoServer extends Verticle {

1
2
3 public void start() {

4 vertx.createNetServer().connectHandler (new Handler<NetSocket>() {
5 public void handle(final NetSocket socket) {

6 Pump.createPump(socket, socket).start();

7

8

9

}
}).listen(1234);

}
10 }

As described Vert.x supports different programming languages. Listing 14 shows
the same Echo Verticle in JavaScript. The code adheres to JavaScript conventions
and uses for instance a JavaScript function for callback. Vert.x has a layer for each
programming language that adapts the basic functionality in such a way that it
seems like a native library for the respective programming language.

Listing 14: Simple JavaScript Vert.x Echo Verticle

1 var vertx = require('vertx")

2

3 vertx.createNetServer().connectHandler (function(sock) {
4 new vertx.Pump(sock, sock).start();

5 }).listen(1234);

Vert.x modules can contain multiple Verticles in different languages. Verticles and
modules can communicate with each other via an event bus. The messages on the
event bus use JSON as data format. The event bus can be distributed onto multiple
servers. In this manner Vert.x supports distribution and can implement high
availability by starting modules on other servers. Besides the Verticles and
modules are loosely coupled since they only exchange messages. Vert.x also offers
support for other messaging systems and can also communicate with HTTP and
REST. So it is relatively easy to integrate Vert.x systems into Microservice-based
systems.

Modules can be individually deployed and also removed again. Since the modules
communicate with each other via events, modules can be easily replaced by new
modules at runtime. They only have to process the same messages. A module can
implement a Nanoservice. Modules can be started in new nodes so that the failure
of a JVM can be compensated.

Vert.x supports also Fat JARs where the application brings all necessary libraries
along. This is useful for Microservices since this means that the application brings
all dependencies along and is easier to deploy. For Nanoservices this approach is
not so useful because the approach consumes too many resource - deploying
multiple Vert.x modules in one JVM is a better option for Nanoservices.

Conclusion

Via the independent module deployment and the loose coupling by the event bus
Vert.x supports multiple Nanoservices within a JVM. However, a crash of the
JVM, a memory leak or blocking the event loop would affect all modules and
Verticles in the JVM. On the other hand, Vert.x supports many different
programming languages — in spite of the restriction to JVM. This is not only a
theoretical option. In fact Vert.x aims at being easily useable in all supported
languages. Vert.x presumes that the entire application is written in a non blocking
manner. However, there is the possibility to execute blocking tasks in Worker
Verticles. They use separate thread pools so that they do not influence the non
blocking Verticles. So even code that does not support the Vert.x non blocking
approach can still be used in a Vert.x system. This allows for even greater
technological freedom.

Try and Experiment

The Vert.x homepage offers an easy start to developing with Vert.x. It
demonstrates how a web server can be implemented and executed with different
programming languages. The modules in the example use Java and Maven. There

are also complex examples in other programming languages.

15.7 Erlang

Erlang is a functional programming language which is first of all used in
combination with the OTP (Open Telecom Platform) framework. Originally,
Erlang has been developed for telecommunication. In this field applications have
to be very reliable. Meanwhile Erlang is employed in all areas which profit from

http://vertx.io/
http://vertx.io/maven_dev.html
https://github.com/vert-x/vertx-examples
http://www.erlang.org/

its strengths. Erlang uses a virtual machine similar to Java as runtime environment
which is called BEAM (Bogdan/ Bjorn’s Erlang Abstract Machine).

Erlang’s strengths are first of all its resilience against failures and the possibility
to let systems run for years. This is only possible via dynamic software updates.
At the same time Erlang has a light-weight concept for parallelism. Erlang uses
the concept of processes for parallel computing. These processes are not related
to operating system processes and are even more light-weight than operating
system threads. In an Erlang system millions of processes can run which are all
isolated from each other.

Another factor contributing to the isolation is the asynchronous communication.
Processes in an Erlang system communicate with each other via messages.
Messages are sent to the mailbox of a process (see Fig. 81). In one process only
one message is processed at a time. This facilitates the handling of parallelism:
There is parallel execution because many messages can be handled at the same
time. But each process takes care of only one message at a time. Parallelism is
achieved because there are multiple processes. The functional approach of the
language, which attempts to get by without a state, fits well to this model. This
approach corresponds to the Verticles in Vert.x and their communication via the
event bus.

[Process j—»[Message]—» Message

Message

Message

Mailbox }[Process]

Fig. 81: Communication between Erlang processes

Listing 15 shows a simple Erlang server which returns the received message. It is
defined in its own module. The module exports the function loop, which does not
have any parameters. The function receives a message Msg from a node From and
then returns the same message to this node. The operator “!” serves for sending the
message. Afterwards the function is called again and waits for the next message.
Exactly the same code can also be used for being called by another computer via
the network. Local messages and messages via the network are processed by the
same mechanisms.

Listing 15: An Erlang echo server

(server).
([loop/0]).
loop() ->
receive
{From, Msg} ->
From ! Msg,
loop()

0o ~NO Ol WN R

(1]
=
o

Due to the sending of messages Erlang systems are especially robust. Erlang
makes use of “Let It Crash”. An individual process is just restarted when
problems occur. This is the responsibility of the supervisor: A process which is
specifically dedicated to monitoring other processes and restarting them if
necessary. The supervisor itself is also monitored and restarted in case of
problems. Thereby a tree is created in Erlang which in the end prepares the
system for the case that processes should fail (see Fig. 82).

Supervisor Supervisor

A4 A4

[Process] [7 Process] [Process] [7 Process j

Fig. 82: Monitoring in Erlang systems

Process j [7 Process

Since the Erlang process model is so light-weight, restarting a process is rapidly
done. When the state is stored in other components, there will also be no
information loss. The remainder of the system is not affected by the failure of the
process: As the communication is asynchronous, the other processes can handle
the higher latency caused by the restart. In practice this approach has proven very
reliable. Erlang systems are very robust and still easy to develop.

This approach is based on the actor model: Actors communicate with each other
via asynchronous messages. As a response they can themselves send messages,
start new actors or change their behavior for the next messages. Erlang’s
processes correspond to actors.

In addition, there are easy possibilities to monitor Erlang systems. Erlang itself
has built-in functions which can monitor memory utilization or the state of the

http://en.wikipedia.org/wiki/Actor_model

mailboxes. OTP offers for this purpose the Operations and Maintenance Support
(OAM), which can for instance also be integrated into SNMP systems.

Since Erlang solves typical problems arising upon the implementation of
Microservices like resilience, it supports the implementation of Microservices
quite well. In that case a Microservice is a system written in Erlang which
internally consists of multiple processes.

However, the services can also get smaller: Each process in an Erlang system
could be considered as Nanoservice. It can be deployed independently of the
others, even during runtime. Furthermore, Erlang supports operating system
processes. In that case they are also integrated into the supervisor hierarchy and
restarted in case of a break down. This means that any operating system process
written in any language might become a part of an Erlang system and its
architecture.

Evaluation for Nanoservices

As discussed an individual process in Erlang can be viewed as Nanoservice. The
expenditure for the infrastructure is relatively small in that case: Monitoring is
possible with built-in Erlang functions. The same is true for deployment. Since the
processes share a BEAM instance, the overhead for a single process is not very
high. In addition, it is possible for the processes to exchange messages without
having to communicate via the network and therefore with little overhead. The
isolation of processes is also implemented.

Finally, even processes in other languages can be added to an Erlang system. For
this purpose an operating system process which can be implemented in an
arbitrary language is put under the control of Erlang. The operating system process
can for instance be safeguarded by “Let It Crash”. This allows to integrate
practically all technologies into Erlang — even if they run in a separate process.

On the other hand, Erlang is not very common. The consequent functional
approach also needs getting used to. Finally, the Erlang syntax is not very intuitive
for many developers.

Try and Experiment

https://www.innoq.com/en/talks/2015/01/talk-microservices-erlang-otp/

&‘ A very simple example is based on the code from this section and demonstrates how communication
between nodes is possible. You can use it to get a basic understanding of Erlang.

&‘ There is a very nice tutorial for Erlang, which also treats deployment and operation. With the aid of
the information from the tutorial the example can be supplemented by a supervisor.

&‘ An alternative language out of the Erlang ecosystem is Elixir. Elixir has a different syntax, but also
profits from the concepts of OTP. Elixir is much simpler to learn than Erlang and thus lends itself to
a first start.

&‘ There are many other implementations of the actor model. It is worthwhile to look more closely
before deciding whether such technologies are also useful for the implementation of Microservices
or Nanoservices and which advantages might be associated. Akka from the Scala / Java area might
be of interest here.

15.8 Seneca

Seneca is based on Node.js and accordingly uses JavaScript on the server.
Node.js has a programming model where one operating system process can take
care of many tasks in parallel. To achieve this there is an event loop which
handles the events. When a message enters the system via a network connection,
the system will first wait until the event loop is free. Then the event loop
processes the message. The processing has to be fast since the loop is blocked
otherwise resulting in long waiting times for all other messages. For this reason,
the response of other servers may in no case be waited for in the event loop. That
would block the system for too long. The interaction with other systems has to be
implemented in such a way that the interaction is only initiated. Then the event
loop is freed to handle other events. Only when the response of the other system
arrives, it is processed by the event loop. Then the event loop calls a callback
which has been registered upon the initiation of the interaction. This model is
similar to the approaches used by Vert.x and Erlang.

https://github.com/ewolff/erlang-example/
http://learnyousomeerlang.com/
https://github.com/ewolff/erlang-example/
https://github.com/ewolff/erlang-example/
http://en.wikipedia.org/wiki/Actor_model
http://senecajs.org/

Seneca introduces a mechanism in Node.js which allows to process commands.
Patterns of commands are defined which cause certain code to be executed.

Communicating via such commands is also easy to do via the network. Listing 16
shows a server which calls seneca.add(). Thereby a new pattern and code for
handling events with this pattern are defined. To the command with the component
cmd: “echo” a function reacts. It reads out the value from the command and puts
it into the value parameter of the function callback. Then the function callback is
called. With seneca.listen() the server is started and listens to commands from the
network.

Listing 16: Seneca Server
var seneca = require("seneca")()

1

2

3 seneca.add({cmd: "echo"}, function(args,callback){
4 callback(null, {value:args.value})
5
6
7

3

seneca.listen()

The client in Listing 17 sends all commands which cannot be processed locally
via the network to the server. seneca.client(). seneca.act() creates the commands
that are sent to the server. It contains cmd: “echo” — therefore the function of the
server in Listing 16 is called. “echeo this” is used as value. The server returns this
string to the function which was passed in as a callback — and in this way it is
finally printed on the console. The example code can be found on GitHub.

Listing 16: Seneca Client

var seneca=require("seneca")()
seneca.client()

seneca.act('cmd: "echo",value:'"echo this", function(err,result){
console.log(result.value)

N o o b~ WwN R

3

Therefore, it is very easy to implement a distributed system with Seneca.
However, the services do not use a standard protocol like REST for
communicating. Nevertheless, also REST systems can be implemented with
Seneca. Besides the Seneca protocol is based on JSON and therefore can also be
used by other languages.

https://github.com/ewolff/seneca-example/

A Nanoservice can be a function which reacts with Seneca to calls from the
network — and therefore it can be very small. As already described, a Node.js
system as implemented with Seneca is fragile when a function blocks the event
loop. Therefore, the isolation is not very good.

For the monitoring of a Seneca application there is an admin console which at
least offers a simple monitoring. However, it is in each case only available for
one Node.js process. Monitoring across all servers has to be achieved by
different means.

An independent deployment of a single Seneca function is only possible if there is
a single Node.js process for the Seneca function. This represents a profound
limitation for independent deployment since the expenditure of a Node.js process
is hardly acceptable for a single JavaScript function. In addition, it is not easy to
integrate other technologies into a Seneca system. In the end the entire Seneca
system has to be implemented in JavaScript.

Evaluation for Nanoservices

Seneca has been especially developed for the implementation of Microservices
with JavaScript. In fact, it enables a very simple implementation for services
which can also be contacted via the network. The basic architecture is similar to
Erlang: In both approaches services send messages resp. commands to each other
to which functions react. In regards to the independent deployment of individual
services, the isolation of services from each other and the integration of other
technologies Erlang is clearly superior. Besides Erlang has a much longer history
and has long been employed in different very demanding applications.

Try and Experiment

&‘ The code example can be a first step to get familiar with Seneca. You can also use the basic tutorial.
In addition, it is worthwhile to look at other examples. The Nanoservice example can be enlarged to
a comprehensive application or can be distributed to a larger number of Node.js processes.

15.9 Conclusion

The technologies presented in this chapter show how Microservices can also be
implemented very differently. Since the difference is so large, the use of the
separate term “Nanoservice” appears justified. Nanoservices are not necessarily

https://github.com/ewolff/seneca-example/
http://senecajs.org/getting-started.html
https://github.com/rjrodger/seneca-examples/

independent processes anymore which can only be contacted via the network, but
might run together in one process and use local communication mechanisms to
contact each other. Thereby not only the use of extremely small services is
possible, but also the adoption of Microservice approaches in areas such as
embedded or desktop applications.

An overview of the advantages and disadvantages of different technologies in
regards to Nanoservices is provided in Tab. 3. Erlang is the most interesting
technology since it also allows the integration of other technologies and is able to
isolate the individual Nanoservices quite well from each other so that a problem
in one Nanoservice will not trigger the failure of the other services. In addition,
Erlang has been the basis of many important systems for a long time already so
that the technology as such has proven its reliability beyond doubt.

Seneca follows a similar approach, but cannot compete with other technologies in
terms of isolation and the integration of other technologies than JavaScript. Vert.x
has a similar approach on the JVM and supports numerous languages. However, it
does not isolate Nanoservices as well as Erlang. Java EE does not allow for
communication without network, and individual deployment is difficult in Java
EE. In practice memory leaks occur frequently during the deployment of WARs.
So during a deployment the application server is usually restarted to avoid
memory leaks. Then all Nanoservices are unavailable for some time. Therefore a
Nanoservice cannot be deployed without influencing the other Nanoservices.
OSGi allows in contrast to Java EE the shared use of code between Nanoservices.
In addition, OSGi uses methods calls for communication between services and not
commands resp. messages like Erlang and Seneca. Commands or messages have
the advantage of being more flexible. Parts of a message which a certain service
does not understand are not a problem- they can just be ignored.

Tab.3: Technology evaluation for Nanoservices

Lambda OSGi Java EE Vert.x Erlang Seneca

Effort for infrastructure ++ + + + ++ ++
per service

Resource consumption ++ ++ ++ ++ ++ ++
Communication - ++ - - + ++ -
with network

Isolation ++ -- - } 4 }

of services
Use of different - -- -- + + -

technologies

Amazon Lambda is especially interesting since it is integrated into the Amazon
ecosystem. This makes handling the infrastructure very easy. The infrastructure
can be a challenging problem in case of small Nanoservices because so many
more environments are needed due to the high number of services. With Amazon a
database server is only an API call or a click away — alternatively, an API can be
used to store data instead of a server. Servers become invisible for storing data —
and this is also the case with Amazon Lambda for executing code. There is no
infrastructure for an individual service, but only code which is executed and can
be used by other services. Because of the prepared infrastructure monitoring is
also no challenge anymore.

Essential Points

e Nanoservices divide systems into even smaller services. To achieve this,
they compromise in certain areas such as technology freedom or isolation.

e Nanoservices require efficient infrastructures which can handle a large
number of small Nanoservices.

16 How to Start with Microservices

As conclusion of the book this chapter shows what the start with Microservices
can look like. Section 16.1 enumerates the different advantages of Microservices
once more to illustrate that there is not only a single reason to introduce
Microservices, but several. Section 16.2 describes several ways for introducing
Microservices — depending on the use context and the expected advantages.
Section 16.3 finally follows up on the question whether Microservices are more
than just a hype.

16.1 Why Microservices?

Microservices entail a number of advantages such as (compare also chapter 5):

e Microservices make it easier to implement agility for large projects since
teams can work independently.

e Microservices can help to supplement and replace legacy applications
stepwise.

e Microservice-based architectures allow for sustainable development since
they are less susceptible to architecture decay and because individual
Microservices can be easily replaced. This increases the long-term
maintainability of the system.

¢ In addition, there are technical reasons for Microservices such as robustness
and scalability.

To prioritize these advantages and the additional ones mentioned in chapter 5
should be the first step when considering the adaptation of a Microservice-based
architecture. Likewise the challenges discussed in chapter 6 have to be evaluated
and, where necessary, strategies for dealing with these challenges have to be
devised.

Continuous Delivery and infrastructure play a prominent role in this context. If the
deployment processes are still manual, the expenditure for operating a large
number of Microservices is so high that their introduction is hardly feasible.
Unfortunately, many organizations still have profound weaknesses especially in
the area of Continuous Delivery and infrastructure. In such a case Continuous

Delivery should be introduced alongside Microservices. Since Microservices are
much smaller than Deployment Monoliths, Continuous Delivery is also easier with
Microservices. Therefore, both approaches have synergies.

In addition the organizational level (chapter 13) has to be taken into account.
When the scalability of agile processes constitutes an important reason for
introducing Microservices, the agile processes should already be well
established. For example, there has to be a Product Owner per team, who also
decides about all features, as well as agile planning. The teams should also be
already largely self-reliant — otherwise in the end they might not make use of the
independence Microservices offer.

Introducing Microservices can solve more than just one problem. The specific
motivation for Microservices will differ between projects. The large number of
advantages can on its own be a good reason for introducing Microservices. In the
end the strategy for introducing Microservices has to be adapted to the advantages
that are most important in the context of a specific project.

16.2 Roads towards Microservices

There are different approaches which pave the way towards Microservices:

e The most typical scenario is to start out with a monolith which is converted
stepwise into a multitude of Microservices. Usually, different functionalities
are transferred one by one into Microservices. A driving force behind this
conversion is often the wish for an easier deployment. However, independent
scaling and achieving a more sustainable architecture can also be important
reasons.

e However, migrating from a monolith to Microservices can also occur in a
different manner. When for instance resilience is the main reason for
switching to Microservices, the migration can be started by first adding
technologies like Hystrix to the monolith. Afterwards the system can be split
into Microservices.

e Starting a Microservice-based system from scratch is by far the rarer
scenario. Even in such a case a project can start by building a monolith.
However, it is more sensible to devise a first coarse-grained domain
architecture which leads to the first Microservices. Thereby an infrastructure
is created which supports more than just one Microservice. This approach
also allows teams to already work independently on features. However, a

fine-granular division into Microservices right from the start often does not
make sense because it will probably have to be revised again later on.
Introducing the necessary profound changes into an already existing
Microservices architecture can be highly complex.

Microservices are easy to combine with existing systems which facilitates their
introduction. A small Microservice as supplement to an existing Deployment
Monolith is rapidly written. If problems arise, such a Microservice can also be
rapidly removed again from the system. Other technical elements can then be
introduced in a stepwise manner.

The easy combination of Microservices with legacy systems is an essential reason
for the fact that the introduction of Microservices is quite simple and can
immediately result in advantages.

16.3 Microservice: Hype or Reality?

Without doubt Microservices are an approach which is in the focus of attention
right now. This does not have to be bad — yet, such approaches often are at second
glance only a fashion and do not solve any real problems.

However, the interest in Microservices is more than just a fashion or hype:

e As described in the introduction, Amazon has been employing Microservices
for many years. Likewise, many internet companies have been following this
approach for a long time. Therefore, Microservices are not just a new
fashion, but have already been used for a long time behind the scenes in many
companies before they became fashionable.

e For the Microservice pioneers the advantages associated with Microservices
were so profound that they were willing to invest a lot of money into creating
the not yet existing necessary infrastructures. These infrastructures are
nowadays available free of cost as Open Source — Netflix is a prominent
example. Therefore, it is much easier nowadays to introduce Microservices.

e The trend towards agility and Cloud infrastructures is suitably complemented
by Microservices-based architectures: They enable the scaling of agility and
fulfill the demands of the Cloud in regards to robustness and scalability.

e Likewise Microservices as small deployment units support Continuous
Delivery which is employed by many enterprises to increase software quality
and to bring software more rapidly into production.

e There is more than one reason for Microservices. Therefore, Microservices
represent an improvement for many areas. Since there is not a single reason
for the introduction of Microservices, but a number of them, it is more likely
that even very diverse projects will in the end really benefit from switching
to Microservices.

Presumably, everybody has already seen large, complex systems. Maybe it is now
the time to develop smaller systems and to profit from the associated advantages.
In any case there seem to be only very few reasons arguing for monoliths — except
for their lower technical complexity.

16.4 Conclusion

Introducing Microservices makes sense for a number of reasons:

e There is a plethora of advantages (discussed in section 16.1 and chapter 5).

e The way to Microservices is evolutionary. It is not necessary to start
adopting Microservices for the whole system from the beginning. Quite in
contrast: A stepwise migration is the usual way (section 16.2). Many
different approaches can be chosen in order to profit as quickly as possible
from the advantages Microservices offer.

e The start is reversible: If Microservices prove not to be suitable for a certain
project, they can easily be replaced again.

e Microservices are clearly more than a hype (section 16.3). For being just a
hype they have been in use for too long and have been too broadly adapted.
Therefore, one should at least experiment with Microservices — and this
books invites the reader in many places to do just that.

Try and Experiment

Answer the following questions for an architecture/system you are familiar with:

o Which are the most important advantages of Microservices in this context?
e How could a migration to Microservices be achieved? Possible approaches:
o Implement new functionalities in Microservices
o Enable certain properties (e.g. robustness or rapid deployment) via suitable
technologies
e What could a project look like which tests the introduction of Microservices with as little
expenditure as possible?
o In which case would this project be a success and the introduction of Microservices
therefore sensible?

	1 Preface
	1.1 Overview of Microservice
	1.2 Why Microservices

	Part I: Motivation and Basics
	2 Introduction
	2.1 Overview of the Book
	2.2 For Whom is the Book Meant?
	2.3 Chapter Overview
	2.4 Essays
	2.5 Paths Through the Book
	2.6 Acknowledgement

	3 Microservice Scenarios
	3.1 Modernizing an E-Commerce Legacy Application
	3.2 Developing a New Signaling System
	3.3 Conclusion

	Part II: Microservices: What, Why and Why Not?
	4 What are Microservices?
	4.1 Size of a Microservice
	4.2 Conway’s Law
	4.3 Domain-Driven Design and Bounded Context
	Why You Should Avoid a Canonical Data Model (Stefan Tilkov)
	4.4 Microservices with UI?
	4.5 Conclusion

	5 Reasons for Microservices
	5.1 Technical Benefits
	5.2 Organizational Benefits
	5.3 Benefits from a Business Perspective
	5.4 Conclusion

	6 Challenges
	6.1 Technical Challenges
	6.2 Architecture
	6.3 Infrastructure and Operations
	6.4 Conclusion

	7 Microservices and SOA
	7.1 What is SOA?
	7.2 Differences Between SOA and Microservices
	7.3 Conclusion

	Part III: Implementing Microservices
	8 Architecture of Microservice-based Systems
	8.1 Domain Architecture
	8.2 Architecture Management
	8.3 Techniques to Adjust the Architecture
	8.4 Growing Microservice-based Systems
	Don’t Miss the Exit Point or How to Avoid the Erosion of a Microservice (Lars Gentsch)
	8.5 Microservices and Legacy Applications
	Hidden Dependencies (Oliver Wehrens)
	8.6 Event-driven Architecture
	8.7 Technical Architecture
	8.8 Configuration and Coordination
	8.9 Service Discovery
	8.10 Load Balancing
	8.11 Scalability
	8.12 Security
	8.13 Documentation and Metadata
	8.14 Conclusion

	9 Integration and Communication
	9.1 Web and UI
	9.2 REST
	9.3 SOAP and RPC
	9.4 Messaging
	9.5 Data Replication
	9.6 Interfaces: Internal and External
	9.7 Conclusion

	10 Architecture of Individual Microservices
	10.1 Domain Architecture
	10.2 CQRS
	10.3 Event Sourcing
	10.4 Hexagonal Architecture
	10.5 Resilience and Stability
	10.6 Technical Architecture
	10.7 Conclusion

	11 Testing Microservices and Microservice-based Systems
	11.1 Why Tests?
	11.2 How to Test?
	11.3 Mitigate Risks at Deployment
	11.4 Testing the Overall System
	11.5 Testing Legacy Applications and Microservices
	11.6 Testing Individual Microservices
	11.7 Consumer-driven Contract Tests
	11.8 Testing Technical Standards
	11.9 Conclusion

	12 Operations and Continuous Delivery of Microservices
	12.1 Challenges Associated with the Operation of Microservices
	12.2 Logging
	12.3 Monitoring
	12.4 Deployment
	Combined or Separate Deployment? (Jörg Müller)
	12.5 Control
	12.6 Infrastructure
	12.7 Conclusion

	13 Organizational Effects of a Microservices-based Architecture
	13.1 Organizational Benefits of Microservices
	13.2 An Alternative Approach to Conway’s Law
	13.3 Micro and Macro Architecture
	13.4 Technical Leadership
	13.5 DevOps
	When Microservices Meet Classical IT Organizations (Alexander Heusingfeld)
	13.6 Interface to the Customer
	13.7 Reusable Code
	13.8 Microservices Without Changing the Organization?
	13.9 Conclusion

	Part IV: Technologies
	14 Example for a Microservices-based Architecture
	14.1 Domain Architecture
	14.2 Basic Technologies
	14.3 Build
	14.4 Deployment Using Docker
	14.5 Vagrant
	14.6 Docker Machine
	14.7 Docker Compose
	14.8 Service Discovery
	14.9 Communication
	14.10 Resilience
	14.11 Load Balancing
	14.12 Integrating Other Technologies
	14.13 Tests
	Experiences with JVM-based Microservices in the Amazon Cloud (Sascha Möllering)
	14.14 Conclusion

	15 Technologies for Nanoservices
	15.1 Why Nanoservices?
	15.2 Nanoservices: Definition
	15.3 Amazon Lambda
	15.4 OSGi
	15.5 Java EE
	15.6 Vert.x
	15.7 Erlang
	15.8 Seneca
	15.9 Conclusion

	16 How to Start with Microservices
	16.1 Why Microservices?
	16.2 Roads towards Microservices
	16.3 Microservice: Hype or Reality?
	16.4 Conclusion

