

Microservices

Flexible	Software	Architectures
	

Eberhard	Wolff
	

This	book	is	for	sale	at	http://leanpub.com/microservices-book

This	version	was	published	on	2016-01-10

*			*			*			*			*

This	is	a	Leanpub	book.	Leanpub	empowers	authors	and	publishers	with	the	Lean
Publishing	process.	Lean	Publishing	is	the	act	of	publishing	an	in-progress	ebook
using	lightweight	tools	and	many	iterations	to	get	reader	feedback,	pivot	until	you
have	the	right	book	and	build	traction	once	you	do.

*			*			*			*			*

©	2015	-	2016	Eberhard	Wolff

http://leanpub.com/microservices-book
http://leanpub.com
http://leanpub.com/manifesto

Table	of	Contents

1	Preface
1.1	Overview	of	Microservice
1.2	Why	Microservices

Part	I:	Motivation	and	Basics

2	Introduction
2.1	Overview	of	the	Book
2.2	For	Whom	is	the	Book	Meant?
2.3	Chapter	Overview
2.4	Essays
2.5	Paths	Through	the	Book
2.6	Acknowledgement

3	Microservice	Scenarios
3.1	Modernizing	an	E-Commerce	Legacy	Application
3.2	Developing	a	New	Signaling	System
3.3	Conclusion

Part	II:	Microservices:	What,	Why	and	Why	Not?

4	What	are	Microservices?
4.1	Size	of	a	Microservice
4.2	Conway’s	Law
4.3	Domain-Driven	Design	and	Bounded	Context
Why	You	Should	Avoid	a	Canonical	Data	Model	(Stefan	Tilkov)
4.4	Microservices	with	UI?
4.5	Conclusion

5	Reasons	for	Microservices
5.1	Technical	Benefits
5.2	Organizational	Benefits
5.3	Benefits	from	a	Business	Perspective
5.4	Conclusion

6	Challenges

6.1	Technical	Challenges
6.2	Architecture
6.3	Infrastructure	and	Operations
6.4	Conclusion

7	Microservices	and	SOA
7.1	What	is	SOA?
7.2	Differences	Between	SOA	and	Microservices
7.3	Conclusion

Part	III:	Implementing	Microservices

8	Architecture	of	Microservice-based	Systems
8.1	Domain	Architecture
8.2	Architecture	Management
8.3	Techniques	to	Adjust	the	Architecture
8.4	Growing	Microservice-based	Systems
Don’t	Miss	the	Exit	Point	or	How	to	Avoid	the	Erosion	of	a	Microservice
(Lars	Gentsch)
8.5	Microservices	and	Legacy	Applications
Hidden	Dependencies	(Oliver	Wehrens)
8.6	Event-driven	Architecture
8.7	Technical	Architecture
8.8	Configuration	and	Coordination
8.9	Service	Discovery
8.10	Load	Balancing
8.11	Scalability
8.12	Security
8.13	Documentation	and	Metadata
8.14	Conclusion

9	Integration	and	Communication
9.1	Web	and	UI
9.2	REST
9.3	SOAP	and	RPC
9.4	Messaging
9.5	Data	Replication
9.6	Interfaces:	Internal	and	External
9.7	Conclusion

10	Architecture	of	Individual	Microservices
10.1	Domain	Architecture
10.2	CQRS
10.3	Event	Sourcing
10.4	Hexagonal	Architecture
10.5	Resilience	and	Stability
10.6	Technical	Architecture
10.7	Conclusion

11	Testing	Microservices	and	Microservice-based	Systems
11.1	Why	Tests?
11.2	How	to	Test?
11.3	Mitigate	Risks	at	Deployment
11.4	Testing	the	Overall	System
11.5	Testing	Legacy	Applications	and	Microservices
11.6	Testing	Individual	Microservices
11.7	Consumer-driven	Contract	Tests
11.8	Testing	Technical	Standards
11.9	Conclusion

12	Operations	and	Continuous	Delivery	of	Microservices
12.1	Challenges	Associated	with	the	Operation	of	Microservices
12.2	Logging
12.3	Monitoring
12.4	Deployment
Combined	or	Separate	Deployment?	(Jörg	Müller)
12.5	Control
12.6	Infrastructure
12.7	Conclusion

13	Organizational	Effects	of	a	Microservices-based	Architecture
13.1	Organizational	Benefits	of	Microservices
13.2	An	Alternative	Approach	to	Conway’s	Law
13.3	Micro	and	Macro	Architecture
13.4	Technical	Leadership
13.5	DevOps
When	Microservices	Meet	Classical	IT	Organizations	(Alexander
Heusingfeld)

13.6	Interface	to	the	Customer
13.7	Reusable	Code
13.8	Microservices	Without	Changing	the	Organization?
13.9	Conclusion

Part	IV:	Technologies

14	Example	for	a	Microservices-based	Architecture
14.1	Domain	Architecture
14.2	Basic	Technologies
14.3	Build
14.4	Deployment	Using	Docker
14.5	Vagrant
14.6	Docker	Machine
14.7	Docker	Compose
14.8	Service	Discovery
14.9	Communication
14.10	Resilience
14.11	Load	Balancing
14.12	Integrating	Other	Technologies
14.13	Tests
Experiences	with	JVM-based	Microservices	in	the	Amazon	Cloud	(Sascha
Möllering)
14.14	Conclusion

15	Technologies	for	Nanoservices
15.1	Why	Nanoservices?
15.2	Nanoservices:	Definition
15.3	Amazon	Lambda
15.4	OSGi
15.5	Java	EE
15.6	Vert.x
15.7	Erlang
15.8	Seneca
15.9	Conclusion

16	How	to	Start	with	Microservices
16.1	Why	Microservices?
16.2	Roads	towards	Microservices

16.3	Microservice:	Hype	or	Reality?
16.4	Conclusion

1	Preface

Even	though	Microservices	are	a	new	term,	they	have	haunted	me	already	for	a
long	time.	In	2006	Werner	Vogels	(CTO,	Amazon)	gave	a	talk	at	the	JAOO
conference	presenting	the	Amazon	Cloud	and	Amazon’s	partner	model.	In	his	talk
he	mentioned	the	CAP	theorem,	today	the	basis	for	NoSQL.	In	addition	he	was
talking	about	small	teams,	which	develop	and	run	services	with	their	own
databases.	This	type	of	organization	is	nowadays	called	DevOps,	and	the
architecture	is	known	as	Microservices.

Later	I	was	asked	to	develop	a	strategy	for	a	client	allowing	him	to	integrate
modern	technologies	into	his	existing	application.	After	a	few	attempts	to	integrate
the	new	technologies	directly	into	the	Legacy	code,	we	finally	built	a	new
application	with	a	completely	different	modern	technology	stack	alongside	the	old
one.	The	old	and	the	new	application	were	only	coupled	via	HTML	links	and	via
a	shared	database.	Except	for	the	shared	database	this	is	in	essence	a
Microservices	approach.	That	happened	in	2008.

Already	in	2009	another	client	had	divided	his	complete	infrastructure	into	REST
services,	which	were	each	developed	by	individual	teams.	This	is	also	called
Microservices	today.	Many	other	companies	with	a	web-based	business	model
had	already	implemented	similar	architectures	at	the	time.	Lately	I	realized	in
addition	that	Continuous	Delivery	influences	the	software	architecture.	Also	there
Microservices	offer	many	advantages.

This	is	the	reason	for	writing	this	book:	Microservices	constitute	an	approach	a
number	of	people	have	already	been	pursuing	for	a	long	time,	among	them	many
very	experienced	architects.	Like	every	other	approach	to	architecture
Microservices	for	sure	cannot	solve	every	problem,	however	this	concept
represents	an	interesting	alternative	to	existing	approaches.

1.1	Overview	of	Microservice
Microservice:	Preliminary	Definition

The	focus	of	this	book	are	Microservices	–	an	approach	for	the	modularization	of
software.	Modularization	in	itself	is	nothing	new.	For	quite	some	time	large

systems	have	been	divided	into	small	modules	to	facilitate	the	implementation,
understanding	and	further	development	of	software.

The	new	aspect	is	that	Microservices	use	modules,	which	run	as	distinct
processes.	This	approach	is	based	on	the	philosophy	of	UNIX,	which	can	be
reduced	to	three	aspects:

One	program	should	only	fulfill	one	task,	but	this	it	should	do	really	well.
Programs	should	be	able	to	work	together.
A	universal	interface	should	be	used.	In	UNIX	this	is	provided	by	text
streams.

The	term	Microservice	is	not	firmly	defined.	Chapter	4	provides	a	more	detailed
definition.	However,	the	following	criteria	can	serve	as	first	approximation:

Microservices	are	a	modularization	concept.	Their	purpose	is	to	divide	large
software	systems	into	smaller	parts.	Thus	they	influence	the	organization	and
development	of	software	systems.
Microservices	can	be	deployed	independently	of	each	other.	Changes	to	one
Microservice	can	be	taken	into	production	independently	of	changes	to	other
Microservices.
Microservices	can	be	implemented	in	different	technologies.	There	is	no
restriction	on	the	programming	language	or	the	platform	for	each
Microservice.
Microservices	possess	their	own	data	storage:	a	private	database	–	or	a
completely	separate	schema	in	a	shared	database.
Microservices	can	bring	their	own	support	services	along,	for	example	a
search	engine	or	a	specific	database.	Of	course,	there	is	a	common	platform
for	all	Microservices	–	for	example	virtual	machines.
Microservices	are	self-contained	processes	–	or	virtual	machines	e.g.	to
bring	the	supporting	services	along.
Accordingly,	Microservices	have	to	communicate	via	the	network.	To	do	so
Microservices	use	protocols,	which	support	loose	coupling	such	as	REST	or
messaging.

Deployment	Monoliths

Microservices	are	the	opposite	of	Deployment	Monoliths.	A	Deployment
Monolith	is	a	large	software	system,	which	can	only	be	deployed	in	one	piece.	It
has	to	get	in	its	entirety	through	all	phases	of	the	Continuous	Delivery	pipeline

such	as	deployment,	the	test	stages	and	release.	Due	to	the	size	of	Deployment
Monoliths	these	processes	take	longer	than	for	smaller	systems.	This	reduces
flexibility	and	increases	process	costs.	Deployment	Monolith	can	have	a	modular
structure	internally	–	still,	all	modules	have	to	be	brought	into	production
simultaneously.

1.2	Why	Microservices
Microservices	allow	to	divide	software	into	modules	and	thereby	improve	the
software	changeability.

Fig.	1:	Advantages	of	Microservices

Microservices	offer	a	number	of	important	advantages:

Strong	Modularization

Microservices	are	a	strong	modularization	concept.	Whenever	a	system	is	built
from	different	software	components	such	as	Ruby	GEMs,	Java	JARs,	.NET
Assemblies	or	Node.js	NPMs,	unwished	for	dependencies	can	easily	creep	in.
Somebody	references	a	class	or	function	in	a	place	where	it	is	not	supposed	to	be
used.	After	a	short	while	so	many	dependencies	will	have	accumulated	that	the
system	can	no	longer	be	serviced	or	further	developed.

Microservices,	in	contrast,	communicate	via	explicit	interfaces,	which	are
realized	using	mechanisms	like	messages	or	REST.	Accordingly,	the	technical
hurdles	for	the	use	of	Microservices	are	higher.	Thus	unwanted	dependencies	can
hardly	arise.	In	principle	it	should	be	possible	to	achieve	also	a	high	level	of
modularization	in	Deployment	Monoliths.	However,	practical	experience	teaches
that	the	architecture	of	Deployment	Monoliths	progressively	deteriorates	over
time.

Easy	Replaceability

Microservices	can	more	easily	be	replaced.	Other	components	utilize	a
Microservice	via	an	explicit	interface.	Whenever	a	service	offers	the	same
interface,	it	can	replace	the	Microservice.	The	new	Microservice	does	neither
need	to	use	a	part	of	the	code	basis	nor	the	technologies	of	the	old	Microservice.
Such	like	restrictions	often	prevent	the	modularization	of	legacy	systems.

Small	Microservices	further	facilitate	replacements.	Such	replacements	are	often
neglected	during	the	development	of	software	systems.	Who	likes	to	take	into
consideration	how	the	just	built	system	can	be	replaced	in	the	future?	The	easy
replaceability	of	Microservices	reduces	in	addition	the	costs	of	incorrect
decisions.	When	the	decision	for	a	technology	or	approach	is	limited	to	a
Microservice,	this	Microservice	can	be	completely	rewritten	if	need	arises.

Sustainable	Development

The	strong	modularization	and	the	easy	replaceability	allow	for	sustainable
software	development.	Most	of	the	time	working	on	a	new	project	is	quite	simple.
Upon	longer	project	run	time	productivity	decreases.	One	of	the	reasons	is	the
erosion	of	architecture.	Microservices	counteract	this	erosion	due	to	the	strong
modularization.	Being	bound	to	outdated	technologies	and	the	difficulties
associated	with	the	removal	of	old	system	modules	constitute	additional
problems.	Microservices,	which	are	not	linked	to	a	specific	technology	and	can
by	replaced	one	by	one,	overcome	these	problems.

Further	Development	of	Legacy	Applications

Starting	with	a	Microservices	architecture	is	easy	and	provides	immediate
advantages	when	working	with	old	systems:	Instead	of	having	to	add	to	the	old
and	hard	to	understand	code	base	the	system	can	be	enhanced	with	a
Microservice.	The	Microservice	can	act	on	specific	requests	while	leaving	all
others	to	the	legacy	system.	It	can	modify	requests	prior	to	their	processing	by	the
legacy	system.	In	this	manner	replacing	the	complete	functionality	of	the	legacy
system	can	be	circumvented.	In	addition,	the	Microservice	is	not	bound	to	the
technology	stack	of	the	legacy	system,	but	can	be	developed	using	modern
approaches.

Time-to-Market

Microservices	allow	for	a	better	time-to-market.	As	mentioned	before,
Microservices	can	be	brought	into	production	on	a	one-by-one	basis.	If	teams

working	on	a	large	system	are	responsible	for	one	or	several	Microservices	and	if
features	require	only	changes	to	these	Microservices,	each	team	can	develop	and
bring	features	into	production	without	time	consuming	coordination	with	other
teams.	In	this	manner	many	teams	can	work	on	numerous	features	in	parallel	and
bring	more	features	into	production	within	a	certain	time	than	would	have	been
possible	with	a	Deployment	Monolith.	Microservices	help	scaling	agile	processes
to	large	teams	by	dividing	the	large	team	into	small	teams	each	dealing	with	their
own	Microservices.

Independent	Scaling

Each	Microservice	can	be	scaled	independently	of	other	services.	This	obliterates
the	need	to	scale	the	whole	system	when	it	is	only	a	few	functionalities	that	are
used	intensely.	This	will	often	be	a	decisive	simplification.

Free	Choice	of	Technologies

When	developing	Microservices	there	are	no	restrictions	in	regards	to	the	usage
of	technologies.	This	allows	to	test	a	new	technology	within	a	single
Microservice	without	affecting	other	services.	Thereby	the	risk	associated	with
the	introduction	of	new	technologies	and	new	versions	of	already	used
technologies	is	decreased	as	these	new	technologies	are	introduced	and	tested	in	a
confined	environment	keeping	potential	costs	low.	In	addition	it	is	possible	to	use
specific	technologies	for	specific	functionalities,	for	example	a	specific	database.
The	risk	is	small	as	the	Microservice	can	easily	be	replaced	or	removed.	The	new
technology	is	confined	to	one	or	few	Microservices.	This	reduces	the	potential
risk	and	enables	independent	technology	decisions	for	different	Microservices.
Moreover,	it	facilitates	the	decision	to	try	out	and	evaluate	new,	highly	innovative
technologies.	This	increases	the	productivity	of	developers	and	prevents	that	the
technology	platform	becomes	outdated.	In	addition,	the	use	of	modern
technologies	will	attract	qualified	developers.

Continuous	Delivery

Microservices	are	advantageous	for	Continuous	Delivery.	They	are	small	and	can
be	deployed	independently	of	each	other.	Realizing	a	Continuous	Delivery
pipeline	is	simple	due	to	the	size	of	a	Microservice.	The	deployment	of	a	single
Microservice	is	associated	with	less	risk	than	the	deployment	of	a	large	monolith.
It	is	also	easier	to	assure	the	safe	deployment	of	a	Microservice,	for	instance	by
running	different	versions	in	parallel.	For	many	Microservice	users	Continuous
Delivery	is	the	main	reason	for	the	introduction	of	Microservices.

All	these	reasons	argue	for	the	introduction	of	Microservices.	Which	of	these
reasons	are	the	most	important	will	depend	on	the	context.	Scaling	agile	processes
and	Continuous	Delivery	are	often	crucial	from	a	business	perspective.	Chapter	5
describes	the	advantages	of	Microservices	in	detail	and	deals	also	with
prioritization.

Challenges

However,	there	is	no	light	without	shadow.	Accordingly	Chapter	6	will	discuss
the	challenges	posed	by	the	introduction	of	Microservices	and	how	to	deal	with
them.	In	short,	the	main	challenges	are	the	following:

Relationships	are	Hidden.

The	architecture	of	the	system	consists	of	the	relationships	between	the	services.
However,	it	is	not	evident	which	Microservice	calls	which	other	Microservice.
This	makes	working	on	the	architecture	challenging.

Refactoring	is	Difficult.

The	strong	modularization	leads	also	to	disadvantages:	Refactorings,	which	move
functionalities	between	Microservices,	are	difficult	to	perform.	And,	once
introduced,	it	is	hard	to	change	the	Microservices-based	modularization	of	a
system.	However,	these	problems	can	be	lessened	by	smart	approaches.

Domain	Architecture	is	Important.

The	modularization	into	Microservices	for	the	different	domains	is	important	as	it
determines	how	teams	are	divided.	Problems	at	this	level	influence	also	the
organization.	Only	a	solid	domain	architecture	can	ensure	the	independent
development	of	a	Microservice.	As	it	is	difficult	to	change	the	once	established
modularization,	mistakes	can	be	hard	to	correct	later	on.

Running	Microservices	is	Complex.

A	system	comprised	of	Microservices	has	many	components,	which	have	to	be
deployed,	controlled	and	run.	This	increases	the	complexity	for	operations	and	the
number	of	runtime	infrastructures	used	by	the	system.	Microservices	necessitate
the	automatization	of	operations	as	operating	the	platform	is	otherwise	too
laborious.

Distributed	Systems	are	Complex.

The	complexity	the	developers	are	facing	increases:	A	Microservice-based
system	is	a	distributed	system.	Calls	between	Microservices	can	fail	due	to
network	problems.	Calls	via	the	network	are	slower	and	have	a	smaller
bandwidth	than	calls	within	a	process.

Part	I:	Motivation	and	Basics

This	part	of	the	book	conveys	what	Microservices	are,	why	they	are	interesting
and	where	they	are	of	use.	Practical	examples	demonstrate	the	effects	of
Microservices	in	different	scenarios.	Chapter	2	explains	the	structure	of	the	book.
To	illustrate	the	importance	of	Microservices	chapter	3	contains	detailed
scenarios	where	Microservices	can	be	used.

2	Introduction

This	chapter	focuses	on	the	book	itself:	Section	2.1	explains	briefly	the	book
concept.	Section	2.2	describes	the	audience	for	which	the	book	was	written.
Section	2.3	provides	an	overview	of	the	different	chapters	and	the	structure	of	the
book.	Section	2.5	describes	paths	through	the	book	for	different	audiences.
Section	2.6	finally	contains	the	acknowledgements.	Errata,	links	to	examples	and
additional	information	can	be	found	at	http://microservices-book.com/	.	The
example	code	is	available	at	https://github.com/ewolff/microservice/	.

2.1	Overview	of	the	Book
This	book	provides	a	detailed	introduction	to	Microservices.	Architecture	and
organization	are	the	main	topics.	However,	technical	implementation	strategies
will	not	be	neglected.	A	complete	example	of	a	Microservice-based	system
demonstrates	a	concrete	technical	implementation.	Technologies	for	Nanoservices
illustrates	that	modularization	does	not	stop	with	Microservices.	The	book
provides	all	necessary	information	in	order	to	enable	readers	to	start	using
Microservices.

2.2	For	Whom	is	the	Book	Meant?
The	book	addresses	managers,	architects	and	developers	who	want	to	introduce
Microservices	as	an	architectural	approach.

Managers

Microservices	can	profit	from	the	mutual	support	of	architecture	and	organization
Microservices	offer.	In	the	introduction	managers	get	to	know	the	basic	ideas
behind	Microservices.	Afterwards	they	can	focus	on	the	organizational	effects	of
utilizing	Microservices.

Developers

Developers	are	provided	with	a	comprehensive	introduction	to	the	technical
aspects	and	can	acquire	the	necessary	skills	to	use	Microservices.	A	detailed
example	of	a	technical	implementation	of	Microservices	as	well	as	numerous

http://microservices-book.com/
https://github.com/ewolff/microservice/

additional	technologies,	for	example	for	Nanoservices,	facilitate	grasping	the
basic	concepts.

Architects

Architects	get	to	know	Microservices	from	an	architecture	perspective	and	can	at
the	same	time	deepen	their	understanding	of	the	associated	technical	and
organizational	issues.

The	book	highlights	possibilities	for	experiments	and	additional	information
sources.	So	the	interested	reader	can	test	her/his	new	knowledge	practically	and
delve	deeper	into	subjects	that	are	of	relevance	to	her/him.

2.3	Chapter	Overview
Part	I

The	first	part	of	the	book	explains	the	motivation	for	using	Microservices	and	the
foundation	of	the	Microservices	architecture.	The	preface	(chapter	1)	already
presented	the	basic	properties	as	well	as	advantages	and	disadvantages	of
Microservices.	Chapter	3	presents	two	scenarios	for	the	use	of	Microservices:	an
E-Commerce	application	and	a	system	for	signal	processing.	This	part	conveys
first	insights	into	Microservices	and	already	points	out	contexts	for	applications.

Part	II

Part	II	does	not	only	explain	Microservices	in	detail,	but	also	deals	with	their
advantages	and	disadvantages:

Chapter4	investigates	the	definition	of	the	term	Microservices”	from	three
perspectives:	the	size	of	a	Microservice,	Conway’s	Law,	which	states	that
organizations	can	only	create	specific	software	architectures,	and	finally
from	a	technical	perspective	based	on	Domain-Driven	Design	and	Bounded
Context.
The	reasons	for	using	Microservices	are	detailed	in	chapter	5.
Microservices	do	not	only	have	technical,	but	also	organizational
advantages,	and	also	from	a	business	perspective	there	are	good	reasons	for
turning	to	Microservices.
The	unique	challenges	posed	by	Microservices	are	discussed	in	chapter	6.
Among	these	are	technical	challenges	as	well	as	problems	related	to
architecture,	infrastructure	and	operation.

Chapter	7	aims	at	defining	the	differences	between	Microservices	and	SOA
(Service-Oriented	Architecture).	At	first	sight	both	concepts	seem	to	be
closely	related.	However,	a	closer	look	reveals	a	plethora	of	differences.

Part	III

Part	III	deals	with	the	application	of	Microservices	and	demonstrates	how	the
advantages	that	were	described	in	part	II	can	be	obtained	and	how	the	associated
challenges	can	be	solved.

Chapter	8	describes	the	architecture	of	Microservice-based	systems.	In
addition	to	domain	architecture	comprehensive	technical	challenges	are
discussed.
Chapter	9	presents	the	different	possibilities	for	the	integration	of	and	the
communication	between	Microservices.	This	includes	not	only	a
communication	via	REST	or	messaging,	but	also	an	integration	of	UIs	and	the
replication	of	data.
Chapter	10	shows	possible	architectures	for	Microservices	such	as	CQRS,
Event	Sourcing	or	hexagonal	architecture.	Finally	suitable	technologies	for
typical	challenges	are	addressed.
Testing	is	the	main	focus	of	chapter	11.	Tests	have	to	be	as	independent	as
possible	to	allow	for	the	independent	deployment	of	the	different
Microservices.	Nevertheless	the	tests	have	not	only	to	check	the	individual
Microservices,	but	also	the	system	in	its	entirety.
Operation	and	Continuous	Delivery	are	addressed	in	chapter	12.
Microservices	generate	a	huge	number	of	deployable	artefacts	and	thus
increase	the	demands	on	the	infrastructure.	This	is	a	substantial	challenge
when	introducing	Microservices.
Chapter	13	illustrates	how	Microservices	also	influence	the	organization.
After	all,	Microservices	are	an	architecture,	which	is	supposed	to	influence
and	improve	the	organization.

Part	IV

The	last	part	of	the	book	shows	in	detail	and	at	the	code	level	how	Microservices
can	be	technically	implemented:

Chapter	14	contains	an	exhaustive	example	for	a	Microservices	architecture
based	on	Java,	Spring	Boot,	Docker	and	Spring	Cloud.	This	chapter	aims	at
providing	an	application,	which	can	be	easily	run,	illustrates	the	concepts

behind	Microservices	in	practical	terms	and	offers	a	starting	point	for	the
implementation	of	a	Microservices	system	and	experiments.
Even	smaller	than	Microservices	are	the	Nanoservices,	which	are	presented
in	chapter	15.	Nanoservices	exact	specific	technologies	and	a	number	of
compromises.	The	chapter	discusses	different	technologies	in	the	context	of
their	advantages	and	disadvantages.
Chapter	16	demonstrates	in	the	end	how	Microservices	can	be	adopted.

2.4	Essays
The	book	contains	assays,	which	were	written	by	Microservices	experts.	The
experts	were	asked	to	record	their	main	findings	regarding	Microservices	on
approximately	two	pages.	Sometimes	these	assays	complement	book	chapters,
sometimes	they	focus	on	other	topics,	and	sometimes	they	contradict	passages	in
the	book.	This	illustrates	that	there	is	in	general	no	single	right	answer	when	it
comes	to	software	architectures,	but	rather	a	collection	of	different	opinions	and
possibilities.	The	essays	offer	the	unique	opportunity	to	get	to	know	different	view
points	in	order	to	subsequently	develop	an	opinion.

2.5	Paths	Through	the	Book
The	book	offers	suitable	content	(Tab.	1)	for	each	type	of	audience.	Of	course,
everybody	can	and	should	read	also	chapters	that	are	primarily	meant	for	people
with	a	different	type	of	job.	Nevertheless	the	chapters	are	focussing	on	topics	that
are	most	relevant	for	a	certain	audience	as	indicated	below.

Tab.	1:	Paths	through	the	book
Chapter Developer Architect Manager
3	-	Microservice	Scenarios X X X
4	-	What	are	Microservices? X X X
5	-	Reasons	for	Using	Microservices X X X
6	-	Challenges	Regarding	Microservices X X X
7	-	Microservices	and	SOA 	 X X
8	-	Architecture	of	Microservice-based
Systems 	 X 	

9	-	Integration	and	Communication X X 	
10	-	Architecture	of	Individual	Microservices X X 	
11	-	Testing	Microservices	and
Microservice-based	Systems X X 	

12	-	Operations	and	Continuous	Delivery	of
Microservices X X 	

13	-	Organizational	Effects	of	a
Microservices-based	Architecture 	 	 X

14	-	Example	for	a	Microservice-based
Architecture X 	 	

15	-	Technologies	for	Nanoservices X X 	
16	-	How	to	start	with	Microservices? X X X

Readers	who	only	want	to	obtain	an	overview	are	advised	to	concentrate	on	the
summary	section	at	the	end	of	each	chapter.	People	who	want	to	gain	first	of	all
practical	knowledge	should	commence	with	chapters	14	and	15,	which	deal	with
concrete	technologies	and	code.

The	instructions	for	experiments,	which	are	given	in	the	sections	“Try	and
Experiment”,	help	to	deepen	the	understanding	by	doing	practical	exercises.
Whenever	a	chapter	is	of	particular	interest	for	the	reader,	he/she	is	encouraged	to
complete	the	related	exercises	to	get	a	better	grasp	on	the	topics	presented	in	the
respective	chapter.

2.6	Acknowledgement
I	would	like	to	thank	everybody	with	whom	I	have	discussed	Microservices	and
all	the	people	who	asked	questions	or	worked	with	me	-	way	too	many	to	list	them
all.	The	interactions	and	discussions	were	very	fruitful	and	fun!

I	would	like	to	mention	especially	Jochen	Binder,	Matthias	Bohlen,	Merten
Driemeyer,	Martin	Eigenbrodt,	Oliver	B.	Fischer,	Lars	Gentsch,	Oliver	Gierke,
Boris	Gloger,	Alexander	Heusingfeld,	Christine	Koppelt,	Andreas	Krüger,	Tammo
van	Lessen,	Sascha	Möllering,	André	Neubauer,	Till	Schulte-Coerne,	Stefan
Tilkov,	Kai	Tödter,	Oliver	Wolf	and	Stefan	Zörner.

My	employer	innoQ	has	also	played	an	important	role	throughout	the	writing
process.	Many	discussions	and	suggestions	of	my	innoQ	colleagues	are	reflected
in	the	book.

Finally	I	would	like	to	thank	my	friends	and	family	and	especially	my	wife	whom
I	have	often	neglected	while	working	on	the	book.	In	addition	I	would	like	to	thank

her	for	the	English	translation	of	the	book.

Of	course,	my	thanks	go	also	to	all	the	people	who	have	been	working	on	the
technologies	that	are	mentioned	in	the	book	and	thus	have	laid	the	foundation	for
the	development	of	Microservices.	Special	thanks	also	to	the	experts	who	shared
their	knowledge	of	and	experience	with	Microservices	in	the	essays.

Leanpub	has	provided	me	with	the	technical	infrastructure	to	create	the
translation.	It	has	been	a	pleasure	to	work	with	it	and	it	is	quite	likely	that	the
translation	would	not	exist	without	Leanpub.

Last	but	not	least	I	would	like	to	thank	dpunkt.verlag	and	René	Schönfeldt	who
supported	me	very	professionally	during	the	genesis	of	the	original	German
version.

3	Microservice	Scenarios

This	chapter	will	present	a	number	of	scenarios	in	which	Microservices	can	be
useful.	Section	3.1	focuses	on	the	modernization	of	a	legacy	web	application.	This
scenario	is	the	most	common	context	for	Microservices.	A	very	different	scenario
is	discussed	in	section	3.2.	In	this	case	a	signaling	system	is	supposed	to	be
developed	as	distributed	system	based	on	Microservices.	Section	3.3	formulates	a
conclusion	and	invites	the	readers	to	judge	for	themselves	on	the	usefulness	of
Microservices	in	the	presented	scenarios.

3.1	Modernizing	an	E-Commerce	Legacy	Application
Scenario

The	Big	Money	Online	Commerce	inc.	runs	an	E-commerce	shop,	which	is	the
main	source	of	the	company	revenue.	It	is	a	web	application	offering	many
different	functionalities	such	as	user	registration	and	administration,	product
search,	an	overview	of	orders	and	the	ordering	process	–	the	central	feature	of	an
E-commerce	application.

This	application	is	a	Deployment	Monolith:	It	can	only	be	deployed	in	its	entirety.
Whenever	a	feature	is	changed,	the	entire	application	needs	to	be	deployed	anew.
The	E-Commerce	shop	works	together	with	other	systems	–	for	instance	with
accounting	and	logistics.

Reasons	to	Use	Microservices

The	Deployment	Monolith	once	started	out	as	a	well-structured	application.
However,	over	the	years	more	and	more	dependencies	between	the	individual
modules	creeped	in.	For	this	reason	the	application	is	nowadays	hardly
maintainable	and	changeable.	In	addition	the	original	architecture	is	not	suited	any
more	for	the	current	requirements.	Product	search	for	instance	has	been	greatly
modified	as	the	Big	Money	Online	Commerce	inc.	attempts	to	outperform	its
competitors	especially	in	this	area.	Likewise	more	and	more	possibilities	have
been	generated	for	clients	to	solve	problems	by	themselves	without	the	assistance
of	a	client	service.	This	helped	the	company	to	reduce	costs.	Accordingly,	these

two	modules	became	very	large	with	a	very	complex	internal	structure	and	many
dependencies	on	other	modules	that	had	not	been	planned	for	originally.

Slow	Continuous	Delivery	Pipeline

Big	Money	has	decided	to	use	Continuous	Delivery	and	has	established	a
Continuous	Delivery	pipeline.	This	pipeline	is	complicated	and	slow	as	the
complete	Deployment	Monolith	needs	to	be	tested	and	brought	into	production.
Some	of	the	tests	run	for	hours.	A	faster	pipeline	would	be	highly	desirable.

Parallel	Work	Complicated

There	are	teams	working	on	different	new	features.	However,	the	parallel	work	is
complicated:	The	software	structure	just	doesn’t	really	support	it.	The	individual
modules	are	not	well	enough	separated	and	have	too	many	interdependencies.	As
everything	can	only	be	deployed	together,	the	entire	Deployment	Monolith	has	to
be	tested.	Deployment	and	testing	phase	constitute	a	bottle	neck.	Whenever	a	team
is	having	a	release	in	the	deployment	pipeline,	which	is	creating	a	problem,	all
other	teams	have	to	wait	until	the	problem	has	been	fixed	and	the	change	has	been
successfully	deployed.	Moreover,	the	access	to	the	Continuous	Delivery	pipeline
has	to	be	coordinated.	Only	one	team	at	a	time	can	be	doing	testing	and
deployment.	Thus	it	has	to	be	regulated	which	team	can	bring	which	change	into
production	at	which	time.

Bottleneck	During	Testing

In	addition	to	deployment	also	the	tests	have	to	be	coordinated.	When	the
Deployment	Monolith	runs	in	an	integration	test,	only	the	changes	made	by	one
team	are	allowed	to	be	contained	in	the	test.	There	were	attempts	to	test	several
changes	at	once.	However,	in	that	case	it	was	very	hard	to	discern	the	origin	of
errors	so	that	error	analyses	were	long	and	complex.

One	integration	test	requires	approximately	one	hour.	Thus	about	six	integration
tests	are	feasible	per	working	day	as	errors	have	to	be	fixed	and	the	environment
has	to	be	set	up	again	for	the	next	test.	In	the	case	of	ten	teams	one	team	can	bring
one	change	into	production	every	two	days	on	average.	However,	often	a	team
also	has	to	do	error	analysis,	which	lengthens	integration.	For	that	reason	some
teams	use	feature	branches	in	order	to	separate	themselves	from	integration:	They
perform	their	changes	on	a	separate	branch	in	the	version	control	system.
Integrating	these	changes	into	the	main	branch	later	on	often	causes	problems:
Changes	are	erroneously	removed	again	upon	merging	or	the	software	suddenly
contains	errors,	which	are	caused	by	the	separated	development	process	and	only

show	up	after	integration.	These	errors	can	only	be	eliminated	in	lengthy
processes	after	integration.

Consequently,	the	teams	slow	each	other	down	due	to	the	testing.	Although	each
team	develops	its	own	modules,	they	all	work	on	the	same	code	basis	so	that	they
impede	each	other.	As	a	consequence	of	the	shared	Continuous	Delivery	pipeline
and	the	ensuing	need	for	coordination	the	teams	are	neither	able	to	work
independently	of	each	other	nor	in	parallel.

Fig.	2:	Teams	slow	each	other	down	due	to	the	Deployment	Monoliths.

Approach

Because	of	the	many	problems	Big	Money	Online	Commerce	inc.	decided	to	split
off	small	Microservices	from	the	Deployment	Monolith.	The	Microservices	each
implement	one	feature	such	as	the	product	search	and	are	developed	by	individual
teams.	Each	team	has	the	complete	responsibility	for	an	individual	Microservice
starting	from	requirements	engineering	up	to	running	the	application	in	production.
The	Microservices	communicate	with	the	Monolith	and	other	Microservices	via
REST.	The	client	GUI	is	also	divided	between	the	individual	Microservices
based	on	use	cases.	Each	Microservice	delivers	the	HTML	pages	for	its	use
cases.	Links	are	allowed	between	the	HTML	pages	of	the	Microservices.
However,	it	is	not	allowed	to	access	the	database	tables	of	the	other
Microservices	or	the	Deployment	Monolith.	Integration	of	services	is	exclusively
done	via	REST	or	via	links	between	the	HTML	pages.

The	Microservices	can	be	deployed	independently	of	each	other.	This	allows	to
deliver	changes	in	a	Microservice	without	the	need	to	coordinate	with	other
Microservices	or	teams.	This	greatly	facilitates	parallel	work	on	features	while
reducing	coordination	efforts.

The	Deployment	Monolith	is	subject	to	far	fewer	changes	due	to	the	addition	of
Microservices.	For	many	features	changes	to	the	Monolith	are	not	necessary
anymore.	Thus,	the	Deployment	Monolith	is	more	seldom	deployed	and	changed.
Originally,	it	was	planned	to	completely	replace	the	Deployment	Monolith	at
some	point.	However,	meanwhile	it	seems	more	likely	that	the	Deployment
Monolith	will	just	be	deployed	less	and	less	frequently	as	most	changes	take	place
within	the	Microservices.	Thus	the	Deployment	Monolith	does	not	disturb	work
any	more.	To	replace	it	entirely	is	in	the	end	not	necessary	and	also	does	not
appear	sensible	in	economic	terms	anymore.

Challenges

Implementing	Microservices	creates	additional	complexity	in	the	beginning:	All
the	Microservices	need	their	own	infrastructure.	In	parallel	the	Monolith	has	still
to	be	supported.

The	Microservices	comprise	a	lot	more	servers	and	thus	pose	very	different
challenges.	Monitoring	and	log	file	processing	have	to	deal	with	the	fact	that	the
data	originate	from	different	servers.	Thus	information	has	to	be	centrally
consolidated.	Besides	a	substantially	larger	number	of	servers	has	to	be	handled	–
not	only	in	production,	but	also	in	the	different	test	stages	and	team	environments.
This	is	only	possible	with	good	infrastructure	automatization.	It	is	not	only
necessary	to	support	different	types	of	infrastructure	for	the	Monolith	and	the
Microservices,	but	also	to	provide	substantially	more	servers	in	the	end.

Entire	Migration	Lengthy

The	added	complexity	due	to	the	two	different	software	types	will	persist	for	a
long	time	as	it	is	a	very	lengthy	process	to	completely	migrate	away	from	the
Monolith.	If	the	Monolith	is	never	entirely	replaced,	the	additional	infrastructure
costs	will	remain	as	well.

Testing	Remains	a	Challenge.

Testing	is	an	additional	challenge:	Previously	the	entire	Deployment	Monolith
was	tested	in	the	deployment	pipeline.	These	tests	are	complex	and	take	a	long
time	as	all	functionalities	of	the	Deployment	Monolith	have	to	be	tested.	If	each
change	to	each	Microservice	is	sent	through	these	tests,	it	will	take	a	long	time	for
each	change	to	reach	production.	Moreover,	the	changes	have	to	be	coordinated	as
each	change	should	be	tested	in	isolation	so	that	it	is	easily	discernible	in	case	of
errors	which	change	caused	them.	In	that	scenario	a	Microservices-based
architecture	does	not	seem	to	have	major	advantages	over	a	Deployment

Monolith:	While	Microservices	can	in	principle	be	deployed	independently	of
each	other,	the	test	stages	preceding	deployment	still	have	to	be	coordinated	and
each	change	still	has	to	pass	through	them	singly.

Current	Status	of	Migration

Fig.	3	presents	the	current	status:	Product	search	works	on	an	independent
Microservice	and	is	completely	independent	of	the	Deployment	Monolith.
Coordination	with	other	teams	is	hardly	necessary.	Only	in	the	last	stage	of	the
deployment	the	Deployment	Monolith	and	the	Microservices	have	to	be	tested
together.	Each	change	to	the	Monolith	or	any	Microservice	has	to	run	through	this
step.	This	causes	a	bottleneck.	The	team	“Customer”	works	together	with	the	team
“Order	Process”	on	the	Deployment	Monolith.	In	spite	of	Microservices	these
teams	still	have	to	closely	coordinate	their	work.	For	that	reason	the	team	“Order
Process”	has	implemented	its	own	Microservice,	which	comprises	part	of	the
order	process.	In	this	part	of	the	system	changes	can	be	introduced	faster	than	in
the	Deployment	Monolith	-	not	only	due	to	the	younger	code	basis,	but	also
because	it	is	no	longer	necessary	to	coordinate	with	the	other	teams.

Fig.	3:	Independent	work	through	Microservices

Creating	Teams

For	the	teams	to	be	able	to	work	independently	on	features	it	is	important	to	create
teams	according	to	functionalities	such	as	product	search,	customer	or	order
process.	If	teams	are	instead	created	along	technical	layers	such	as	UI,	Middle
Tier	or	database,	each	feature	requires	the	involvement	of	all	the	teams	as	a
feature	normally	comprises	changes	to	UI,	Middle	Tier	and	database.	Thus	to
minimize	coordination	efforts	between	the	teams,	the	best	approach	is	to	create
teams	around	features	like	product	search.	Microservices	support	the
independence	of	the	teams	by	their	own	technical	independence	from	each	other.
Consequently,	teams	need	to	coordinate	less	in	respect	to	basic	technologies	and
technical	designs.

The	tests	have	also	to	be	modularized.	Each	test	should	ideally	deal	with	a	single
Microservice.	In	that	case	it	is	sufficient	to	perform	the	test	upon	changes	in	the
respective	Microservice.	In	addition	it	might	be	possible	to	implement	the	test
rather	as	unit	test	than	as	integration	test.	This	progressively	shortens	the	test
phase	in	which	all	Microservices	and	the	Monolith	have	to	be	tested	together.
This	reduces	the	coordination	problems	for	the	final	test	phase.

Migrating	to	a	Microservices-based	architecture	created	a	number	of	performance
problems	and	also	some	problems	upon	network	failures.	However,	these
problems	could	be	solved	after	some	time.

Advantages

Thanks	to	the	new	architecture	changes	can	be	deployed	much	faster.	A	team	can
bring	a	change	into	production	within	30	minutes.	The	Deployment	Monolith	on
the	other	hand	is	deployed	only	weekly	due	to	the	not	yet	fully	automated	tests.

Deploying	the	Microservices	is	not	only	much	faster,	but	also	in	other	respects
much	more	comfortable:	Less	coordination	is	required.	Errors	are	more	easily
found	and	fixed	because	developers	still	know	very	well	what	they	have	been
working	on	as	it	was	only	30	minutes	ago.

In	summary	the	goal	was	attained:	The	developers	can	introduce	more	changes	to
the	E-Commerce	shop.	This	is	possible	because	the	teams	need	to	coordinate	their
work	less	and	because	the	deployment	of	a	Microservice	can	take	place
independently	of	the	other	services.

The	possibility	to	use	different	technologies	was	sparingly	used	by	the	teams:	The
previously	used	technology	stack	proved	sufficient,	and	the	teams	wanted	to	avoid
the	additional	complexity	caused	by	the	use	of	different	technologies.	However,
the	long	needed	search	engine	for	the	product	search	was	introduced.	The	team
responsible	for	product	search	was	able	to	implement	this	change	on	its	own.
Previously	the	introduction	of	this	new	technology	had	been	prohibited	because
the	associated	risk	had	been	considered	too	great.	In	addition	some	teams
meanwhile	have	new	versions	of	the	libraries	of	the	technology	stack	in
production	as	they	needed	the	bug	fixes	of	the	more	recent	version.	This	did	not
require	any	coordination	with	the	other	teams.

Conclusion

Replacing	a	Monolith	via	the	implementation	of	Microservices	is	nearly	a
classical	scenario	for	the	introduction	of	Microservices.	It	requires	a	lot	of	effort
to	keep	developing	a	Monolith	and	to	add	new	features	to	it.	The	complexity	of	the
Monolith	and	consequently	the	problems	caused	by	it	progressively	increase	over
time.	Its	complete	replacement	by	a	newly	written	system	is	very	difficult.	The
software	has	to	be	replaced	in	one	go	which	is	very	risky.

Rapid	and	Independent	Development	of	new	Features

Especially	in	the	case	of	companies	like	Big	Money	Online	Commerce	inc.	the
rapid	development	of	new	features	and	the	parallel	work	on	several	features	are
vital	for	economic	success.	Only	by	providing	state	of	the	art	features	customers

can	be	won	and	kept	from	changing	to	other	companies.	The	promise	to	develop
more	features	faster	renders	Microservices	highly	attractive	for	many	use	cases.

Influence	on	the	Organization

The	presented	example	illustrates	also	the	influence	of	Microservices	on	the
organization.	The	teams	work	on	their	own	Microservices.	As	the	Microservices
can	be	developed	and	deployed	independently	of	each	other,	the	work	of	the
different	teams	is	no	longer	linked.	In	order	to	keep	it	that	way	a	Microservice
may	not	be	changed	by	several	teams	in	parallel.	The	Microservices	architecture
requires	a	team	organization	corresponding	to	the	different	Microservices:	Each
team	is	responsible	for	one	or	several	Microservices,	which	implement	an
isolated	functionality.	This	relationship	between	organization	and	architecture	is
especially	important	in	the	case	of	Microservices-based	architectures.	Each	team
takes	care	of	all	issues	revolving	around	“its”	Microservices	from	requirements
engineering	up	to	operation	monitoring.	Of	course,	especially	for	operation	the
teams	can	use	common	infrastructure	services	for	logging	and	monitoring.

And	finally:	If	the	goal	is	to	achieve	a	simple	and	fast	deployment	in	production,
just	including	Microservices	into	the	architecture	will	not	be	sufficient.	The	entire
Continuous	Delivery	pipeline	has	to	be	checked	for	potential	obstacles	and	these
have	to	be	removed.	This	is	illustrated	by	the	tests	in	the	presented	example:
Testing	all	Microservices	together	should	be	reduced	to	the	essential	minimum.
Each	change	has	to	run	through	an	integration	test	together	with	the	other
Microservices,	but	this	test	must	not	require	a	lot	of	time	to	avoid	a	bottleneck	in
integration	tests.

Amazon	Has	Been	Doing	It	for	a	Long	Time

The	scenario	presented	here	is	very	similar	to	what	Amazon	has	been	doing
already	for	a	very	long	time	–	and	for	the	discussed	reasons:	Amazon	wants	to	be
able	to	rapidly	and	easily	implement	new	features	on	its	website.	In	2006	Amazon
did	not	only	present	its	Cloud	platform,	but	also	discussed	how	it	develops
software.	Essential	features	are:

The	application	is	divided	into	different	services.
Each	services	provides	a	part	of	the	website.	For	instance	there	is	a	service
for	searching	and	another	one	for	recommendations.	In	the	end	the	individual
services	are	presented	together	in	the	UI.
There	is	always	one	team	responsible	for	one	service.	The	team	takes	care	of
developing	new	features	as	well	as	of	operating	the	service.	The	idea	is:

“You	build	it	–	you	run	it!”
The	Cloud	platform	i.e.	virtual	machines	constitute	the	common	foundation	of
all	services.	Apart	from	that	there	are	no	further	standards.	Thus	the	teams
are	very	free	in	their	choice	of	technologies.

By	introducing	this	type	of	architecture	Amazon	implemented	fundamental
characteristics	of	Microservices	already	in	2006.	Moreover	Amazon	introduced
DevOps	by	having	teams	consisting	of	operation	experts	and	developers.	This
approach	necessitates	that	the	deployments	occur	largely	in	an	automated	fashion
as	the	manual	construction	of	servers	is	not	feasible	in	Cloud	environments	–	thus
Amazon	also	implemented	at	least	one	aspect	of	Continuous	Delivery.

Conclusion:	Microservices	have	been	used	by	some	companies	for	quite	some
time	already	–	especially	by	companies	having	an	internet-based	business	model.
Thus	the	approach	has	already	proven	its	practical	advantages	in	real	life.	In
addition	Microservices	display	synergy	effects	with	other	modern	approaches
such	as	Continuous	Delivery,	Cloud	or	DevOps.

3.2	Developing	a	New	Signaling	System
Scenario

Searching	airplanes	and	ships	which	have	gone	missing	is	a	complex	task.	Rapid
action	can	save	lives.	Therefore	different	systems	are	required.	Some	provide
signals	such	as	radio	or	radar	signals.	These	signals	have	to	be	recorded	and
processed.	Radio	signals	for	example	can	be	used	to	obtain	a	bearing,	which
subsequently	has	to	be	checked	against	radar-based	pictures.	Finally	humans	have
to	further	evaluate	the	information.	The	data	analyses	as	well	as	the	raw	data	have
to	be	provided	to	the	different	rescue	teams.	Signal	inc.	builds	systems	for	exactly
these	use	cases.	The	systems	are	individually	assembled,	configured	and	adapted
to	the	specific	needs	of	the	respective	client.

Fig.	4:	Overview	of	the	Signaling	System

Reasons	to	Use	Microservices

The	system	is	composed	of	different	components,	which	run	on	different
computers.	The	sensors	are	distributed	all	over	the	area	to	be	monitored	and	are
provided	with	their	own	servers.	However,	these	computers	are	not	supposed	to
handle	the	more	detailed	data	processing	or	to	store	the	data.	Their	hardware	is
not	sufficiently	powerful	for	that.	Besides	data	privacy	considerations	render	such
an	approach	very	undesirable	as	well.

Distributed	System

For	these	reasons	the	system	has	to	be	a	distributed	system.	The	different
functionalities	are	distributed	within	the	network.	The	system	is	unreliable	as
individual	components	and	the	communication	between	components	can	fail.

It	would	be	possible	to	implement	a	large	part	of	the	system	within	a	Deployment
Monolith.	However,	upon	closer	consideration	the	different	parts	of	the	system
have	to	fulfill	very	different	demands.	Data	processing	requires	rather	a	lot	of
CPU	and	an	approach	that	allows	numerous	algorithms	to	process	the	data.	For
such	purposes	there	are	solutions,	which	read	events	out	of	a	data	or	event	stream
and	process	them.	Data	storage	requires	a	very	different	focus:	Basically,	the	data
have	to	be	maintained	within	a	data	structure,	which	is	suitable	for	different	data

analyses.	Modern	NoSQL	databases	are	well	suited	for	this.	Recent	data	are	more
important	than	old	data.	They	have	to	be	accessible	faster	while	old	data	can	even
be	deleted	at	some	point.	To	be	finally	analyzed	by	experts	the	data	have	to	be
read	from	the	database	and	processed.

Technology	Stack	per	Team

Each	of	the	discussed	tasks	poses	different	challenges.	Consequently,	each
requires	not	only	a	well	adapted	technology	stack	but	also	a	dedicated	team
consisting	of	technical	experts	for	the	respective	task.	In	addition	people	are
needed	who	decide	which	features	Signal	inc.	will	bring	to	the	market	and	in	line
with	that	define	new	requirements	for	the	systems.	Systems	for	processing	and
sensors	are	individual	products,	which	can	be	positioned	on	the	market
independently	of	each	other.

Integration	of	Other	Systems

An	additional	reason	for	the	use	of	Microservices	is	the	possibility	to	easily
integrate	other	systems.	Sensors	and	computing	units	are	also	provided	by	other
companies.	The	ability	to	integrate	such	solutions	is	a	frequent	requirement	in
client	projects.	Microservices	allow	the	easy	integration	of	other	systems	as	the
integration	of	different	distributed	components	is	anyhow	a	core	feature	of	a
Microservices-based	architecture.

For	these	reasons	the	architects	of	Signal	inc.	decided	to	indeed	implement	their
system	as	a	distributed	system.	Each	team	must	implement	its	respective	domain	in
several	small	Microservices.	In	this	way	the	exchangeability	of	the	Microservices
will	be	further	improved,	and	the	integration	of	other	systems	will	be	even	more
facilitated.

Only	the	communication	infrastructure	to	be	used	by	all	services	for	their
communication	with	each	other	is	predetermined.	The	communication	technology
supports	many	programming	languages	and	platforms	so	that	there	are	no
limitations	as	to	which	concrete	technology	is	used.	To	allow	for	a	flawless
communication	the	interfaces	between	the	Microservices	have	to	be	clearly
defined.

Challenges

A	failure	of	communication	between	the	different	Microservices	presents	an
important	challenge.	The	system	has	to	stay	useable	even	if	network	failures
occur.	This	necessitates	the	use	of	technologies,	which	can	handle	such	failures.

However,	technologies	alone	will	not	solve	this	problem.	It	has	to	be	decided	as
part	of	the	user	requirements	what	should	happen	if	a	system	fails.	If	for	instance
old	data	are	sufficient,	caches	can	be	helpful.	In	addition	it	can	be	possible	to	use
a	simpler	algorithm,	which	does	not	require	calls	to	other	systems.

High	Technological	Complexity

The	technological	complexity	of	the	entire	system	is	very	high.	Different
technologies	are	employed	to	fulfill	the	demands	of	the	different	components.	The
teams	working	on	the	individual	systems	can	make	largely	independent	technology
decisions.	This	allows	them	to	always	implement	the	most	suitable	solution.

Unfortunately,	this	means	as	well	that	developers	can	no	longer	change	easily
between	teams.	For	example	when	there	was	a	lot	of	work	for	the	data	storage
team,	developers	from	other	teams	could	hardly	help	out	as	they	were	not	even
proficient	in	the	programming	languages	the	data	storage	team	was	using	and	did
not	know	the	specific	technologies	such	as	the	used	database.

It	certainly	is	a	challenge	to	run	a	system	comprising	such	a	plethora	of
technologies.	For	this	reason	there	is	one	standardization	in	this	area:	All
Microservices	must	be	able	to	be	run	in	a	largely	identical	manner.	They	are
virtual	machines	so	that	their	installation	is	fairly	simple.	Furthermore,	the
monitoring	is	standardized,	which	determines	data	formats	and	technologies.	This
allows	for	the	central	monitoring	of	the	applications.	In	addition	to	the	typical
operational	monitoring	there	is	also	monitoring	of	application-specific	values	and
finally	an	analysis	of	log	files.

Advantages

In	this	context	the	main	advantage	offered	by	Microservices	is	the	good	support
for	the	distributed	nature	of	the	system.	The	sensors	are	at	different	locations	so
that	a	centralized	system	is	anyhow	not	sensible.	The	architecture	has	adapted	to
this	fact	by	further	dividing	the	system	into	small	Microservices,	which	are
distributed	within	the	network.	This	enhanced	the	exchangeability	of	the
Microservices.	Besides	the	Microservices	approach	supports	the	technology
diversity,	which	characterizes	this	system.

In	this	scenario	time-to-market	is	by	far	not	as	important	as	in	the	other	scenario.	It
would	also	be	hard	to	implement	as	the	systems	are	installed	at	different	clients
and	cannot	be	easily	reinstalled.	However,	some	ideas	from	the	Continuous

Delivery	field	are	used:	For	instance	the	largely	uniform	installation	and	the
central	monitoring.

Verdict

Microservices	are	a	very	suitable	architecture	design	for	the	presented	scenario.
The	system	can	profit	from	the	fact	that	typical	problems	can	be	solved	during
implementation	by	established	approaches	from	the	Microservices	field	–	for
example	technology	complexity	and	platform	operation.

Still	this	scenario	would	hardly	be	immediately	associated	with	the	term
“Microservice”.	This	leads	to	the	following	conclusions:

Microservices	have	a	wider	application	than	is	apparent	at	first	glance.	Also
outside	of	web-based	business	models	Microservices	can	solve	many
problems	–	even	if	those	issues	are	very	different	from	the	ones	found	in	web
companies.
Indeed	many	projects	from	different	fields	have	been	using	Microservice-
based	approaches	for	quite	some	time,	even	if	they	do	not	call	them	by	this
name	or	implement	them	only	partially.
With	the	help	of	Microservices	these	projects	can	use	technologies,	which
are	currently	created	in	the	Microservice	field.	In	addition	they	can	profit
from	the	experiences	made	in	this	field,	for	instance	in	regards	to
architecture.

3.3	Conclusion
This	chapter	presented	two	very	different	scenarios	from	two	completely	distinct
business	areas:	a	web	system	with	a	strong	focus	on	rapid	time-to-market	and	a
system	for	signal	processing,	which	is	inherently	distributed.	The	architecture
principles	are	very	similar	for	the	two	systems	although	originating	from	different
reasons.

In	addition	there	are	a	number	of	common	approaches,	among	those	the	creation	of
teams	according	to	Microservices,	the	demands	in	regards	to	infrastructure
automatization	as	well	as	other	organizational	topics.	However,	in	other	areas
there	are	also	differences.	For	the	signaxsling	system	it	is	essential	to	have	the
possibility	to	use	different	technologies	as	this	system	anyhow	has	to	employ	a
number	of	different	technologies.	For	the	web	system	this	aspect	is	not	as

important.	Here,	the	independent	development,	the	fast	and	easy	deployment	and
finally	the	better	time-to-market	are	the	decisive	factors.

Essential	Points

Microservices	offer	a	plethora	of	advantages.
In	the	case	of	web-based	applications	Continuous	Delivery	and	short	time-
to-market	can	constitute	an	important	motivation	for	the	use	of
Microservices.
However,	there	are	also	very	different	use	cases	for	which	Microservices	as
distributed	systems	are	extremely	well	suited.

Part	II:	Microservices:	What,	Why	and	Why	Not?

This	part	of	the	book	discusses	the	different	facettes	of	Microservice-based
architectures	to	present	the	diverse	possibilities	offered	by	Microservices.
Advantages	as	well	as	disadvantages	are	addressed	so	that	the	reader	can
evaluate	what	can	be	gained	by	using	Microservices	and	which	points	require
special	attention	and	care	during	the	implementation	of	Microservice-based
architectures.

Chapter	4	explains	the	term	“Microservice”	in	detail.	The	term	is	dissected	from
different	perspectives,	which	is	essential	for	an	in	depth	understanding	of	the
Microservice	approach.	Important	aspects	are	the	size	of	a	Microservice,
Conway’s	Law	as	organizational	influence	and	Domain-Driven	Design	resp.
Bounded	Context	from	a	domain	perspective.	Furthermore,	the	chapter	addresses
the	question	whether	a	Microservice	should	contain	a	UI.	Chapter	5	focuses	on	the
advantages	of	Microservices	taking	alternatingly	a	technical,	organizational	and
business	perspective.	Chapter	6	deals	with	the	associated	challenges	in	the	areas
of	technology,	architecture,	infrastructure	and	operation.	Chapter	7	distinguishes
Microservices	from	SOA	(Service-Oriented	Architecture).	By	making	this
distinction	Microservices	are	viewed	from	a	new	perspective	which	helps	to
further	clarify	the	Microservices	approach.	Besides	Microservices	have	been
frequently	compared	to	SOAs.

Afterwards	the	third	part	of	the	book	will	introduce	how	Microservices	can	be
implemented	in	practice.

4	What	are	Microservices?

Section	1.1	provided	an	initial	definition	of	the	term	“Microservice”.	However,
there	are	also	different	possibilities	to	define	Microservices.	The	different
definitions	illustrate	the	different	characteristics	of	Microservices	and	thereby
explain	for	which	reasons	the	use	of	Microservices	is	advantageous.	At	the	end	of
the	chapter	the	reader	should	have	his/her	own	definition	of	the	term
“Microservice”	–	depending	on	the	individual	project	scenario.

The	chapter	discusses	the	term	“Microservice”	from	different	perspectives:

Section	4.1	focuses	on	the	size	of	Microservices.
Section	4.2	sets	Microservices,	architecture	and	organization	into	relation	by
using	the	law	of	Conway.
Finally	section	4.3	presents	a	fachliche	division	of	Microservices	based	on
Domain-driven	Design	(DDD)	and	Bounded	Context.
Section	4.4	explains	why	Microservices	should	contain	a	UI.

4.1	Size	of	a	Microservice
The	name	“Microservices”	betrays	already	that	the	size	of	the	service	matters,
obviously	Microservices	are	supposed	to	be	small.

One	possibility	to	define	the	size	of	a	Microservice	is	to	count	the	Lines	of	Code
(LoC).	However,	such	an	approach	entails	a	number	of	problems:

It	depends	on	the	programming	language	used.	Some	languages	require	more
code	than	others	to	express	the	same	content	–	and	Microservices	are
explicitly	not	supposed	to	predetermine	the	technology	stack.	Accordingly,
defining	Microservices	based	on	this	metric	is	not	very	useful.
Finally	Microservices	represent	an	architecture	approach.	Architectures,
however,	should	follow	the	conditions	in	the	domain	rather	than	adhering	to
technical	metrics	such	as	LoC.	Also	for	this	reason	attempts	to	determine	size
based	on	code	lines	should	be	viewed	critically.

http://yobriefca.se/blog/2013/04/28/micro-service-architecture/

In	spite	of	the	voiced	criticism	LoC	can	be	an	indicator	for	a	Microservice.	Still,
the	question	as	to	the	ideal	size	of	a	Microservice	remains.	How	many	LoC	may	a
Microservice	have?	Even	if	there	are	no	absolute	standard	values,	there	are
nevertheless	influencing	factors,	which	argue	for	larger	or	smaller	Microservices.

Modularization

One	factor	is	the	modularization.	Teams	develop	software	in	modules	to	be	better
able	to	deal	with	its	complexity:	Instead	of	having	to	understand	the	entire
software	a	developer	only	needs	to	understand	the	module	he	is	working	on	as
well	as	the	interplay	between	the	different	modules.	This	is	the	only	way	for	a
team	to	work	productively	in	spite	of	the	enormous	complexity	of	a	typical
software	system.	In	daily	life	there	are	often	problems	as	modules	get	larger	than
originally	planned.	This	makes	them	hard	to	understand	and	hard	to	maintain	as
changes	require	an	understanding	of	the	software.	Thus	it	is	very	sensible	to	keep
Microservices	as	small	as	possible.	On	the	other	hand	Microservices	in	contrast
to	many	other	approaches	to	modularization	have	an	overhead:

Distributed	Communication

Microservices	run	within	independent	processes.	Therefore	communication
between	Microservices	is	distributed	communication	via	the	network.	To	this	type
of	system	the	“First	Rule	of	Distributed	Object	Design”	applies.	This	rule	states
that	systems	should	not	be	distributed	if	it	can	be	avoided.	The	reason	behind	this
is	that	a	call	on	another	system	via	the	network	is	orders	of	magnitude	slower	than
a	direct	call	within	the	same	process.	In	addition	to	the	pure	latency	time
serialization	and	deserialization	of	parameters	and	results	are	time-consuming.
These	processes	do	not	only	take	a	long	time,	but	also	cost	CPU	capacity.

Moreover,	distributed	calls	might	fail	because	the	network	is	temporarily
unavailable	or	the	called	server	cannot	be	reached	–	for	instance	due	to	a	crash.
This	increases	complexity	when	implementing	distributed	systems	as	the	caller
has	to	deal	with	these	errors	in	a	sensible	manner.

Experience	teaches	that	Microservice-based	architectures	work	in	spite	of	these
problems.	When	Microservices	are	designed	to	be	especially	small,	the	amount	of
distributed	communication	increases	and	the	overall	system	gets	slower.	This
argues	for	larger	Microservics.	When	a	Microservice	contains	a	UI	and	fully
implements	a	specific	part	of	the	domain	,	it	can	do	without	calling	on	other
Microservices	in	most	cases	because	all	components	of	this	part	of	the	domain	are

http://martinfowler.com/bliki/FirstLaw.html
http://martinfowler.com/articles/distributed-objects-microservices.html

implemented	within	one	Microservice.	The	wish	to	prevent	distributed
communication	is	another	reason	to	build	systems	according	to	the	domain.

Sustainable	Architecture

Microservices	use	distribution	also	to	design	architecture	in	a	sustainable	manner
through	distribution	into	individual	Microservices:	It	is	much	more	difficult	to	use
a	Microservice	than	a	class.	The	developer	has	to	deal	with	the	distribution
technology	and	has	to	use	the	Microservice	interface.	In	addition	he	might	have	to
make	preparations	for	tests	to	include	the	called	Microservice	or	replace	it	with	a
stub.	Finally,	he	has	to	contact	the	team	responsible	for	the	respective
Microservice.

To	use	a	class	within	a	Deployment	Monolith	is	much	simpler	–	even	if	the	class
belongs	to	a	completely	different	part	of	the	Monolith	and	falls	within	the
responsibility	of	another	team.	However,	as	it	is	so	simple	to	implement	a
dependency	between	two	classes,	unintended	dependencies	tend	to	accumulate
within	Deployment	Monoliths.	In	the	case	of	Microservices	dependencies	are
harder	to	implement,	which	prevents	the	creation	of	unintended	dependencies.

Refactoring

However,	the	boundaries	between	Microservices	create	also	challenges,	for
instance	during	refactoring.	When	it	becomes	apparent	that	a	certain	functionality
is	not	fitting	well	within	its	present	Microservice,	it	has	to	be	moved	to	another
Microservice.	If	the	target	Microservice	is	written	in	a	different	programming
language,	this	transfer	corresponds	ultimately	to	a	new	implementation.	Such
problems	do	not	arise	when	functionalities	are	moved	within	a	Microservice.	This
factor	argues	also	rather	for	larger	Microservices.	This	topic	is	the	focus	of
Section	8.3.

Team	Size

The	independent	deployment	of	Microservices	and	the	division	into	teams	result
in	an	upper	limit	for	the	size	of	an	individual	Microservice.	A	team	should	be	able
to	implement	features	within	a	Microservice	independently	of	other	teams	and	to
bring	them	also	independently	into	production.	In	this	way	the	architecture	enables
the	scaling	of	development	without	requiring	too	much	coordination	effort	from
the	teams.

A	team	has	to	be	able	to	implement	features	independently	of	the	other	teams.
Therefore	at	first	glance	it	seems	like	the	Microservice	should	be	large	enough	to

allow	for	the	implementation	of	different	features.	When	Microservices	are
smaller,	a	team	can	be	responsible	for	several	Microservices,	which	together
allow	the	implementation	of	a	domain.	A	lower	limit	for	the	Microservice	size
does	not	result	from	the	independent	deployment	and	the	division	into	teams.

However,	an	upper	limit	does	result	from	it:	When	a	Microservice	has	reached	a
size	that	prevents	its	further	development	by	a	single	team,	it	is	too	large.	For	that
matter	a	team	should	have	a	size	that	is	especially	well	suited	for	agile	processes,
i.e.	typically	three	to	nine	people.	Thus	a	Microservice	should	in	no	case	grow	so
large	that	three	to	nine	people	cannot	develop	it	further	by	themselves.	In	addition
to	sheer	size	the	number	of	features	to	be	implemented	in	an	individual
Microservice	plays	an	important	role.	Whenever	a	large	amount	of	changes	is
necessary	within	a	short	time,	a	team	can	be	rapidly	overloaded.	Section	13.2
highlights	alternatives	to	allow	several	teams	to	work	on	the	same	Microservice.
However,	in	general	a	Microservice	should	never	grow	so	large	that	several
teams	are	necessary	to	work	on	it.

Infrastructure

Another	important	factor	influencing	the	size	of	a	Microservice	is	the
infrastructure.	Each	Microservice	has	to	be	able	to	be	deployed	independently.	It
must	have	a	Continuous	Delivery	pipeline	and	an	infrastructure	for	running	the
Microservice,	which	has	to	be	present	not	only	in	production,	but	also	during	the
different	test	stages.	Also	databases	and	application	servers	might	belong	to
infrastructure.	Moreover,	there	has	to	be	a	build	system	for	the	Microservice.	The
Microservice	code	has	to	be	versioned	independently	of	other	Microservices.
Thus	a	project	within	version	control	has	to	exist	for	the	Microservice.

Depending	on	the	effort	that	is	necessary	to	provide	the	required	infrastructure	for
a	Microservice,	the	sensible	size	for	a	Microservice	can	vary.	When	a	small
Microservice	size	is	chosen,	the	system	is	distributed	into	many	Microservices
thus	requiring	more	infrastructures.	In	the	case	of	larger	Microservices	the	system
contains	overall	fewer	Microservices	and	consequently	requires	fewer
infrastructures.

Build	and	deployment	of	Microservices	should	anyhow	be	automated.
Nevertheless	it	can	be	laborious	to	provide	all	necessary	infrastructure
components	for	a	Microservice.	Once	setting	up	the	infrastructure	for	new
Microservices	is	automated,	the	expenditure	for	providing	infrastructures	for
additional	Microservices	decreases.	This	allows	to	further	reduce	the

Microservice	size.	Companies,	which	have	been	working	with	Microservices	for
some	time,	usually	simplify	the	creation	of	new	Microservices	by	providing	the
necessary	infrastructure	in	an	automated	manner.

Besides	there	are	technologies,	which	allow	to	reduce	the	infrastructure	overhead
to	such	an	extent	that	substantially	smaller	Microservices	are	possible	–	in	that
case,	however,	with	a	number	of	limitations.	Such	Nanoservices	are	discussed	in
chapter	15.

Replaceability

A	Microservice	should	be	as	easy	to	replace	as	possible.	Replacing	a
Microservice	can	be	sensible	when	its	technology	is	outdated	or	the	Microservice
code	is	of	such	a	bad	quality	that	it	cannot	be	developed	any	further.	The
replaceability	of	Microservices	is	an	advantage	as	compared	to	monolithic
applications,	which	hardly	can	be	replaced	at	all.	When	a	Monolith	cannot	be
maintained	anymore,	its	development	has	either	to	be	continued	in	spite	of	the
associated	high	costs	or	a	likewise	cost-intensive	migration	has	to	take	place
nevertheless.	The	smaller	a	Microservice	is,	the	easier	it	is	to	replace	it	by	a	new
implementation.	Above	a	certain	size	a	Microservice	can	hardly	be	replaced
anymore	because	replacing	it	then	poses	the	same	challenges	as	for	a	Monolith.
Replaceability	thus	limits	the	size	of	a	Microservice.

Transactions	and	Consistency

Transactions	possess	the	so-called	ACID	characteristics:

Atomicity	indicates	that	a	given	transaction	is	either	executed	completely	or
not	at	all.	In	case	of	an	error	all	changes	are	reversed	again.
Consistency	means	that	data	are	consistent	before	and	after	the	execution	of
a	transaction	–	validations	for	instance	are	not	violated.
Isolation	indicates	that	the	operations	of	transactions	are	separated	from
each	other.
Durability	indicates	permanence:	Changes	to	the	transaction	are	stored	and
are	still	available	after	a	crash.

Within	a	Microservice	changes	to	a	transaction	can	take	place.	Moreover,	the
consistency	of	data	in	a	Microservice	can	be	guaranteed	very	easily.	Beyond	an
individual	Microservice	this	gets	difficult.	In	that	case	an	overall	coordination	is
necessary.	Upon	the	rollback	of	a	transaction	all	changes	to	all	Microservices
would	have	to	be	reversed.	This	is	laborious	and	hard	to	implement	as	there	has

to	be	a	guarantee	that	the	decision	whether	changes	have	to	be	reversed	is
delivered.	However,	communication	within	networks	is	unreliable.	Until	it	is
decided	whether	a	change	may	take	place,	further	changes	to	the	data	are	barred.
For	once	additional	changes	have	taken	place,	it	might	not	be	possible	anymore	to
reverse	a	certain	change.	However,	when	Microservices	are	kept	from	introducing
data	changes	for	some	time,	the	system	throughput	is	reduced.

However,	when	communicating	via	messaging	systems,	transactions	are	possible
(compare	Section	9.4).	With	such	an	approach	transactions	are	also	possible
without	a	close	link	between	the	Microservices.

Consistency

In	addition	to	transactions	data	consistency	is	important.	An	order	for	instance	has
finally	to	be	recorded	as	revenue.	Only	then	will	revenue	and	order	data	be
consistent.	Data	consistency	can	only	be	achieved	through	close	coordination.
Data	consistency	can	hardly	be	guaranteed	across	Microservices.	This	does	not
mean	that	the	revenue	for	an	order	will	not	be	recorded	at	all.	However,	it	will
likely	not	happen	at	the	exact	same	time	point	and	maybe	not	even	within	one
minute	of	order	processing	as	the	communication	occurs	via	the	network	-	and	is
consequently	slow	and	unreliable.

Data	changes	within	a	transaction	and	data	consistency	are	only	possible	when	all
concerned	data	is	part	of	the	same	Microservice.	Therefore	they	determine	the
lower	size	limit	for	a	Microservice:	When	transactions	are	supposed	to
encompass	several	Microservices	and	data	consistency	is	required	across	several
Microservices,	the	Microservices	have	been	designed	too	small.

Compensation	Transactions	Across	Microservices

At	least	in	the	case	of	transactions	there	is	an	alternative:	If	a	data	change	has	to
be	rolled	back	in	the	end,	compensation	transactions	can	be	used	for	that.

A	classical	example	for	a	distributed	transaction	is	a	travel	booking,	which
consists	of	a	hotel,	a	rental	car	and	a	flight.	Either	everything	has	to	be	booked
together	or	nothing	at	all.	Within	real	systems	and	also	within	Microservices	this
functionality	is	divided	into	three	Microservices	because	the	three	tasks	are	very
different.	Inquiries	are	sent	to	the	different	systems	whether	the	desired	hotel
room,	the	desired	rental	car	and	the	desired	flight	are	available.	If	that	is	the	case,
everything	is	reserved.	If	now,	for	instance,	the	hotel	room	suddenly	becomes
unavailable,	the	reservation	for	the	flight	and	the	rental	car	has	to	be	cancelled.

However,	in	the	real	world	the	concerned	companies	will	likely	demand	a	fee	for
the	booking	cancellation.	Due	to	that	the	cancellation	is	not	only	a	technical	event
happening	in	the	background	like	a	transaction	rollback,	but	a	business	process.
This	is	much	easier	to	represent	with	a	compensation	transaction.	With	this
approach	transactions	across	several	elements	in	Microservice	environments	can
also	be	implemented	without	the	presence	of	a	close	technical	link.	A
compensation	transaction	is	just	a	normal	service	call.	Technical	as	well	as
business	reasons	can	argue	for	the	use	of	mechanisms	like	compensation
transactions	for	Microservices.

Summary

In	conclusion	the	following	factors	influence	the	size	of	a	Microservice	(compare
Fig.	5):

The	team	size	sets	an	upper	limit:	A	Microservice	should	never	be	that	large
that	several	teams	are	required	to	work	on	it.	Eventually,	the	teams	are
supposed	to	work	and	bring	software	into	production	independently	of	each
other.	This	can	only	be	achieved	when	each	team	works	on	a	separate
deployment	unit	–	i.e.	a	separate	Microservice.	However,	one	team	can	work
on	several	Microservices.
Modularization	further	limits	the	size	of	a	Microservice:	The	Microservice
should	preferably	be	of	a	size	that	allows	a	developer	to	understand	and
further	develop	it.	Even	smaller	is	of	course	better.	This	limit	is	below	the
team	size:	Whatever	one	developer	can	still	understand,	a	team	should	still
be	able	to	develop	further.
Replaceability	declines	with	the	size	of	the	Microservice.	Therefore
replaceability	can	influence	the	upper	size	limit	for	a	Microservice.	This
limit	lies	below	the	one	set	by	modularization:	When	somebody	is	able	to
replace	a	Microservice,	this	person	has	first	of	all	to	be	able	to	understand
the	Microservice.
A	lower	limit	is	set	by	infrastructure:	If	it	is	too	laborious	to	provide	the
necessary	infrastructure	for	a	Microservice,	the	number	of	Microservices
should	be	kept	rather	small	–	consequently	the	single	Microservices	are	then
rather	larger.
Similarly,	distributed	communication	increases	with	the	number	of
Microservices.	Also	for	this	reason	the	size	of	Microservices	should	not	be
set	too	small.
Consistency	of	data	and	transactions	can	only	be	ensured	within	a
Microservice.	Therefore	Microservices	may	not	be	that	small	that

consistency	and	transactions	comprise	several	Microservices.

Fig.	5:	Factors	Influencing	the	Size	of	a	Microservice

These	factors	do	not	only	influence	the	size	of	Microservices,	but	they	also	reflect
a	certain	idea	of	Microservices.	According	to	this	idea	the	main	advantages	of
Microservices	are	independent	deployment	and	the	independent	work	of	the
different	teams,	and	in	addition	the	replaceability	of	Microservices.	The	optimal
size	of	a	Microservice	can	be	deduced	from	these	desired	features.

However,	there	are	also	other	reasons	for	Microservices.	When	Microservices
are,	for	instance,	introduced	because	of	their	independent	scaling,	a	Microservice

size	has	to	be	chosen	that	ensures	that	each	Microservice	is	a	unit,	which	has	to
scale	independently.

How	small	or	large	a	Microservice	can	be,	cannot	be	deduced	solely	from	this
lineup.	This	also	depends	on	the	technology.	Especially	the	effort	necessary	for
providing	infrastructure	for	a	Microservice	and	for	the	distributed	communication
depends	on	the	utilized	technology.	Chapter	15	looks	at	technologies,	which	make
the	development	of	very	small	services	possible	–	denoted	as	Nanoservices.
These	Nanoservices	have	different	advantages	and	disadvantages	as
Microservices,	which,	for	instance,	are	implemented	using	technologies	presented
in	Chapter	14.

Thus,	there	is	no	ideal	size.	The	actual	Microservice	size	will	depend	on	the
technology	and	the	use	case	of	an	individual	Microservice.

Try	and	Experiment

How	large	is	the	effort	for	the	deployment	of	a	Microservice	in	your	language,	platform	and
infrastructure?

Is	it	just	a	simple	process?	Or	a	complex	infrastructure	containing	application	servers	or	other
infrastructure	elements?
How	can	the	effort	for	the	deployment	be	reduced	so	that	smaller	Microservices	become
possible?

Based	on	this	information	you	can	define	a	lower	limit	for	the	size	of	a	Microservice.	Upper	limits
depend	on	team	size	and	modularization	–	also	in	those	terms	you	should	think	of	appropriate	limits.

4.2	Conway’s	Law
Conway’s	Law	was	coined	by	the	American	computer	scientist	Melvin	Edward
Conway	and	indicates:

Any	organization,	that	designs	a	system	(defined	broadly),	will	produce	a
design	whose	structure	is	a	copy	of	the	organization’s	communication
structure.

It	is	important	to	know	that	this	law	is	not	only	meant	to	apply	to	software,	but	to
any	kind	of	design.	The	communication	structures,	which	Conway	mentions,	do	not

http://www.melconway.com/research/committees.html

have	to	be	identical	with	the	organization	chart.	Often	there	are	informal
communication	structures,	which	also	have	to	be	considered	in	this	context.	In
addition	the	geographical	distribution	of	teams	can	influence	communication.
After	all	it	is	much	simpler	to	talk	to	a	colleague	who	works	in	the	same	room	or
at	least	in	the	same	office	than	with	one	working	in	a	different	city	or	even	in	a
different	time	zone.

Reasons	for	the	Law

The	reasons	behind	the	Law	of	Conway	derive	from	the	fact	that	each
organizational	unit	designs	a	specific	part	of	the	architecture.	If	two	architecture
parts	have	an	interface,	coordination	in	regards	to	this	interface	is	required	–	and,
consequently,	a	communication	relationship	between	the	organizational	units,
which	are	responsible	for	the	respective	architecture	parts.

From	the	Law	of	Conway	it	can	also	be	deduced	that	design	modularization	is
sensible.	Via	such	a	design	it	is	ensured	that	not	every	team	member	has	to
constantly	coordinate	with	every	other	team	member.	Instead	the	developers
working	on	the	same	module	can	closely	coordinate	their	efforts,	while	team
members	working	on	different	modules	only	have	to	coordinate	when	they
develop	an	interface	–	and	even	then	only	in	regards	to	the	specific	design	of	this
interface.

However,	the	communication	relationships	extend	beyond	that.	It	is	much	easier	to
collaborate	with	a	team	within	the	same	building	than	with	a	team	located	in
another	city,	another	country	or	even	within	a	different	time	zone.	Therefore
architecture	parts	having	numerous	communication	relationships	are	better
implemented	by	teams,	which	are	geographically	close	to	each	other,	as	it	is
easier	for	them	to	communicate	with	each	other.	In	the	end	the	Law	of	Conway
does	not	focus	on	the	organization	chart,	but	on	the	real	communication
relationships.

By	the	way,	Conway	postulated	that	a	large	organization	has	numerous
communication	relationships.	Thus	communication	becomes	more	difficult	or	even
impossible	in	the	end.	As	a	consequence	the	architecture	can	be	more	and	more
affected	and	finally	break	down.	In	the	end	having	too	many	communication
relationships	is	a	real	risk	for	a	project.

The	Law	as	Limitation

Normally	the	Law	of	Conway	is	viewed	as	a	limitation,	especially	from	the
perspective	of	software	development.	Let	us	assume	that	a	project	is	modularized
according	to	technical	aspects	(Fig.	6).	All	developers	with	UI	focus	are	grouped
into	one	team,	the	developers	with	backend	focus	are	put	into	a	second	team,	and
data	bank	experts	make	up	the	third	team.	This	distribution	has	the	advantage	that
all	three	teams	consist	of	experts	for	the	respective	technology.	This	makes	it	easy
and	transparent	to	realize	this	type	of	organization.	Moreover,	this	distribution
appears	also	logical.	Team	members	can	easily	support	each	other,	and	the
technical	exchange	is	also	facilitated.

Fig.	6:	Technical	Project	Distribution

According	to	the	Law	of	Conway	it	follows	from	such	a	distribution	that	the	three
teams	will	implement	three	technical	layers:	a	UI,	a	backend	and	a	database.	The
chosen	distribution	corresponds	to	the	organization,	which	is	in	fact	sensibly	built.
However,	it	has	a	decisive	disadvantage:	A	typical	feature	requires	changes	to	UI,
backend	and	database.	The	UI	has	to	render	the	new	features	useable	for	the
clients,	the	backend	has	to	implement	the	logic,	and	the	database	has	to	create

structures	for	the	storage	of	the	respective	data.	This	results	in	the	following
disadvantages:

The	person	wishing	to	have	the	feature	implemented	has	to	talk	to	all	three
teams.
The	teams	have	to	coordinate	their	work	and	create	new	interfaces.
The	work	of	the	different	teams	has	to	be	coordinated	in	a	manner	that
ensures	that	their	efforts	temporally	fit	together.	The	backend,	for	instance,
cannot	really	work	without	getting	input	from	the	database	–	and	the	UI
cannot	work	without	input	from	the	backend.
When	the	teams	work	in	sprints,	these	dependencies	cause	time	delays:	The
database	team	generates	in	its	first	sprint	the	necessary	changes,	within	the
second	sprint	the	backend	team	implements	the	logic,	and	in	the	third	sprint
the	UI	is	dealt	with.	In	this	way	it	takes	three	sprints	to	implement	a	single
feature.

In	the	end	this	approach	creates	a	large	amount	of	dependencies	as	well	as	a	high
communication	and	coordination	demand.	Thus	this	type	of	organization	does	not
make	much	sense	if	the	main	goal	is	to	implement	new	features	as	rapidly	as
possible.

Many	teams	following	this	approach	do	not	realize	its	impact	on	architecture	and
do	not	consider	this	aspect	further.	This	type	of	organization	focuses	rather	on	the
aspect	that	developers	with	similar	skills	should	be	similarly	positioned	within
the	organization.	In	this	way	the	organization	turns	into	an	obstacle	for	a	design
driven	by	the	domain	like	Microservices	whose	development	is	opposed	by	the
division	of	teams	into	technical	layers.

The	Law	as	Enabler

However,	the	law	of	Conway	can	also	be	used	to	support	approaches	like
Microservices.	If	the	goal	is	to	develop	individual	components	as	independently
of	each	other	as	possible,	the	system	can	be	distributed	into	domain	components.
Based	on	these	domain	components	teams	can	be	created.	Fig.	7	illustrates	this
principle:	There	are	individual	teams	for	product	search,	clients	and	order
process.	These	teams	work	on	the	respective	components,	which	can	be
technically	divided	into	UI,	backend	and	database.	By	the	way,	the	domain
components	are	not	explicitly	named	in	the	figure	as	they	are	identical	with	the
team	names.	Components	and	teams	are	synonymous.	This	approach	corresponds
to	the	idea	of	so-called	cross	functional	teams,	as	proposed	by	methods	with

Scrum.	These	teams	should	encompass	different	roles	so	that	they	can	cover	a
large	task	spectrum.	Only	a	team	designed	along	such	principles	can	be	in	charge
of	a	component	–	from	engineering	requirements	via	implementation	up	to
operation.

The	division	into	technical	artifacts	and	the	interface	between	the	artifacts	can
then	be	settled	within	the	teams.	In	the	easiest	case	a	developer	has	only	to	talk	to
the	developer	sitting	next	to	him	to	do	so.	Between	teams	coordination	is	more
complex.	However,	inter-team	coordination	is	not	required	very	often	since
features	are	ideally	implemented	by	independent	teams.	Moreover,	this	approach
creates	thin	interfaces	between	the	components.	This	avoids	laborious
coordination	across	teams	to	define	the	interface.

Fig.	7:	Project	by	domains

Eventually,	the	central	point	to	be	derived	from	Conway’s	Law	is	that	architecture
and	organization	are	just	two	sides	of	the	same	coin.	When	this	insight	is	cleverly
put	to	use,	the	system	will	have	a	clear	and	useful	architecture	for	the	project.
Architecture	and	organization	have	the	common	goal	to	ensure	that	teams	can	work
in	an	unobstructed	manner	and	with	as	little	coordination	effort	as	possible.

The	clean	distribution	of	functionalities	into	components	also	facilitates
maintenance.	Since	an	individual	team	is	responsible	for	an	individual
functionality	and	component,	this	distribution	will	have	long	term	stability,	and
consequently	the	system	will	remain	maintainable.

The	teams	need	requirements	to	work	upon.	This	means	that	the	teams	need
contact	persons	which	define	the	requirements.	This	affects	the	organization
beyond	the	projects	as	the	requirements	come	from	the	departments	of	the
enterprise,	and	also	these	according	to	Conway’s	Law	have	to	correspond	to	the

team	structures	within	the	project	and	the	domain	architecture.	Conway’s	Law	can
be	expanded	beyond	software	development	to	the	communication	structures	of	the
entire	organization	including	the	users.	To	put	it	the	other	way	round:	The	team
structure	within	the	project	and	consequently	the	architecture	of	a	Microservice
system	can	follow	from	the	organization	of	the	departments	of	the	enterprise.

The	Law	and	Microservices

The	previous	discussion	highlighted	the	relationship	between	architecture	and
organization	of	a	project	only	in	a	general	manner.	It	would	be	perfectly
conceivable	to	align	the	architecture	along	functionalities	and	devise	teams,	which
each	are	in	charge	for	a	separate	functionality	without	using	Microservices.	In	this
case	the	project	would	develop	a	Deployment	Monolith	within	which	all
functionalities	are	implemented.	However,	Microservices	support	this	approach.
Section	3.1	already	discussed	that	Microservices	offer	technical	independence.	In
conjunction	with	the	division	by	domains	the	teams	become	even	more
independent	of	each	other	and	have	even	less	need	to	coordinate	their	work.	The
technical	coordination	as	well	as	the	coordination	concerning	the	domains	can	be
reduced	to	the	absolute	minimum.	This	makes	it	far	easier	to	work	in	parallel	on
numerous	features	and	to	bring	the	features	also	in	production.

Microservices	as	technical	architecture	are	especially	well	suited	to	support	the
approach	to	devise	a	Conway’s	Law-based	distribution	of	functionalities.	In	fact,
exactly	this	aspect	is	an	essential	characteristic	of	a	Microservices-based
architecture.

However,	orienting	the	architecture	according	to	the	communication	structures
entails	that	a	change	to	the	one	also	requires	a	change	of	the	other.	This	renders
architecture	changes	between	Microservices	more	difficult	and	makes	the	overall
process	less	flexible.	Whenever	one	functionality	is	moved	from	one
Microservice	to	another,	this	might	have	the	consequence	that	another	team	has	to
take	care	of	this	functionality	from	that	point	on.	This	type	of	organizational
changes	render	software	changes	more	complex.

As	a	next	step	this	chapter	will	address	how	the	distribution	by	domain	can	best
be	implemented.	Domain-driven	Design	(DDD)	is	helpful	for	that.

Try	and	Experiment

Have	a	look	at	a	project	you	know:

What	does	the	team	structure	look	like?
Is	it	technically	motivated	or	by	domain?
Would	the	structure	have	to	be	changed	to	implement	a	Microservices-based
approach?
How	would	it	have	to	be	changed?

Is	there	a	sensible	way	to	distribute	the	architecture	onto	different	teams?	Eventually	each
team	should	be	in	charge	of	independent	domain	components	and	be	able	to	implement
features	relating	to	them.

Which	architectural	changes	would	be	necessary?
How	laborious	would	the	changes	be?

4.3	Domain-Driven	Design	and	Bounded	Context
In	his	book	of	the	same	title	Eric	Evans	formulated	Domain-Driven	Design
(DDD)1	as	pattern	language.	It	is	a	collection	of	connected	design	patterns	and
supposed	to	support	software	development	especially	in	complex	domains.	In	the
following	text	the	names	of	design	patterns	are	written	in	italics.

Domain-Driven	Design	is	important	for	understanding	Microservices	as	it
supports	the	structuring	of	larger	systems	according	to	domains.	Exactly	such	a
model	is	necessary	for	the	division	of	a	system	into	Microservices.	Each
Microservice	is	meant	to	constitute	a	domain,	which	is	designed	in	such	a	way
that	only	one	Microservice	has	to	be	changed	in	order	to	implement	changes	or	to
introduce	new	features.	Only	then	is	the	benefit	to	be	derived	from	the	independent
development	in	different	teams	maximal	as	several	features	can	be	implemented	in
parallel	without	the	need	for	extended	coordination.

Ubiquitous	Language

DDD	defines	as	basis	how	a	model	for	a	domain	can	be	designed.	An	essential
foundation	of	DDD	is	Ubiquitous	Language.	This	expression	denotes	that	the
software	should	use	exactly	the	same	terms	as	the	domain	experts.	This	applies	on
all	levels:	in	regards	to	code	and	variable	names	as	well	as	for	database	schemas.
This	practice	ensures	that	the	software	really	encompasses	and	implements	the
critical	domain	elements.	Let	us	assume	for	instance	that	there	are	express	orders
in	an	E-commerce	system.	One	possibility	would	be	to	generate	a	boolean	value
with	the	name	“fast”	in	the	order	table.	This	creates	the	following	problem:
domain	experts	have	to	translate	the	term	“express	order”,	which	they	use	on	a

daily	basis,	into	“order	with	a	specific	boolean	value”.	They	might	not	even	know
what	boolean	values	are.	This	renders	any	discussion	of	the	model	more	difficult
as	terms	have	to	be	constantly	explained	and	related	to	each	other.	The	better
approach	is	to	call	the	table	within	the	database	scheme	“express	order”.	In	that
case	it	is	completely	transparent	how	the	domain	terms	are	implemented	in	the
system.

Building	Blocks

To	design	a	domain	model	DDD	identifies	basic	patterns:

Entity	is	an	object	with	an	individual	identity.	In	an	E-commerce	application
the	customer	or	the	items	could	be	examples	for	Entities.	Entities	are
typically	stored	in	databases.	However,	this	is	only	the	technical
implementation	of	the	concept	Entity.	An	Entity	belongs	in	essence	to	the
domain	modeling	like	the	other	DDD	concepts.
Value	Objects	do	not	have	their	own	identity.	An	address	can	be	an	example
for	a	Value	Object	as	it	makes	only	sense	in	the	context	of	a	specific
customer	and	therefore	does	not	have	an	independent	identity.
Aggregates	are	composite	domain	objects.	They	facilitate	the	handling	of
invariants	and	other	conditions.	An	order	for	instance	can	be	an	Aggregate	of
order	lines.	This	can	be	used	to	ensure	that	an	order	from	a	new	customer
does	not	exceed	a	certain	value.	This	is	a	condition,	which	has	to	be	fulfilled
by	calculating	values	from	the	order	lines	so	that	the	order	as	Aggregate	can
control	these	conditions.
Services	contain	business	logic.	DDD	focuses	on	modeling	business	logic	as
Entities,	Value	Objects	and	Aggregates.	However,	logic	accessing	several
such	objects	cannot	be	sensibly	modeled	using	these	objects.	For	these	cases
there	are	Services.	The	order	process	could	be	such	a	Service	as	it	needs
access	to	items	and	customers	and	requires	the	Entity	order.
Repositories	serve	to	access	all	Entities	of	a	type.	Typically	there	is	a
persistency	technology	like	a	database	behind	a	Repository.
Factories	are	mostly	useful	to	generate	complex	domain	objects.	This	is
especially	the	case	when	these	contain	for	instance	many	associations.

Aggregates	are	of	special	importance	in	the	context	of	Microservices:	Within	an
Aggregate	consistency	can	be	enforced.	Because	of	the	necessary	consistency
parallel	changes	have	to	be	coordinated	in	an	Aggregate.	Otherwise	two	parallel
changes	might	endanger	consistency.	For	instance,	when	two	order	positions	are
included	in	parallel	into	an	order,	consistency	can	be	endangered.	The	order	has

already	a	value	of	€900	and	is	maximally	allowed	to	reach	€1000.	When	two
order	positions	of	€60	each	are	added	in	parallel,	both	might	calculate	a	still
acceptable	total	value	of	€960	based	on	the	initial	value	of	€900.	Therefore,
changes	have	to	be	serialized	so	that	the	final	result	of	€1020	can	be	controlled.
Accordingly,	changes	to	Aggregates	have	to	be	serialized.	For	this	reason	an
Aggregate	cannot	be	distributed	across	two	Microservices.	In	such	a	scenario
consistency	cannot	be	ensured.	Consequently,	Aggregates	cannot	be	divided
between	Microservices.

Bounded	Context

Building	Blocks	such	as	Aggregate	represent	for	many	people	the	core	of	DDD.
DDD	describes	in	addition	with	Strategic	Design	how	different	domain	models
interact	and	how	more	complex	systems	can	be	built	up	this	way.	This	aspect	of
DDD	is	probably	even	more	important	than	the	Building	Blocks.	In	any	case	it	is
the	concept	of	DDD,	which	influences	Microservices.

The	central	element	of	Strategic	Designs	is	the	Bounded	Context.	The	underlying
reasoning	is	that	each	domain	model	is	only	sensible	in	certain	limits	within	a
system.	In	E-commerce	for	instance	number,	size	and	weight	of	the	ordered	items
are	of	interest	in	regards	to	delivery,	as	they	influence	delivery	routes	and	costs.
For	accounting	on	the	other	hand	prices	and	tax	rates	are	relevant.	A	complex
system	consists	of	several	Bounded	Contexts.	In	this	it	resembles	the	way
complex	biological	organisms	are	built	out	of	individual	cells,	which	are	likewise
separate	entities	with	their	own	inner	life.

Fig.	8:	Project	by	domains

Bounded	Context:	An	example

The	customer	from	the	E-commerce	system	shall	serve	as	example	for	a	Bounded	Context	(Fig.
8).	The	different	Bounded	Contexts	are	Order,	Delivery	and	Billing.	The	component	Order	is
responsible	for	the	order	process.	The	component	Delivery	implements	the	delivery	process.	The
component	Billing	generates	the	bills.

Each	of	these	Bounded	Contexts	requires	certain	customer	data:

Upon	ordering	the	customer	is	supposed	to	be	rewarded	with	points	in	a	bonus	program.	In
this	Bounded	Context	the	number	of	the	customer	has	to	be	known	to	the	bonus	program.
For	Delivery	the	delivery	address	and	the	preferred	delivery	service	of	the	customer	are
relevant.
Finally,	for	generating	the	bill	the	billing	address	and	the	tax	rate	of	the	customer	have	to	be
known.

In	this	manner	each	Bounded	Context	has	its	own	model	of	the	customer.	This	renders	it
possible	to	independently	change	Microservices.	If	for	instance	more	information	regarding	the
customer	is	necessary	for	generating	bills,	only	changes	to	the	Bounded	Context	billing	are
necessary.

It	might	be	sensible	to	store	basic	information	concerning	the	customer	in	a	separate	Bounded
Context.	Such	fundamental	data	is	probably	sensible	in	many	Bounded	Contexts.	To	this	purpose
the	Bounded	Contexts	can	cooperate	(compare	below).

A	universal	model	of	the	customer,	however,	is	hardly	sensible.	It	would	be	very	complex	since	it
would	have	to	contain	all	information	regarding	the	customer.	Moreover,	each	change	to	customer
information,	which	is	necessary	in	a	certain	context,	would	concern	the	universal	model.	This
would	render	such	changes	very	complicated	and	would	probably	result	in	permanent	changes	to
the	model.

To	illustrate	the	system	setup	in	the	different	Bounded	Contexts	a	Context	Map
can	be	used	(see	section	8.2).	Each	of	the	Bounded	Contexts	then	can	be
implemented	within	one	or	several	Microservices.

Collaboration	between	Bounded	Contexts

How	are	the	individual	Bounded	Contexts	connected?	There	are	different
possibilities:

In	case	of	a	Shared	Kernel	the	domain	models	share	some	common	elements,
however,	in	other	areas	they	differ.
Customer/Supplier	means	that	a	subsystem	offers	a	domain	model	for	the
caller.	The	caller	in	this	case	is	the	client	who	determines	the	exact	setup	of
the	model.
This	is	very	different	in	case	of	Conformist:	The	caller	uses	the	same	model
as	the	subsystem,	and	the	other	model	is	thereby	forced	upon	him.	This
approach	is	relatively	easy	–	there	is	no	need	for	translation.	One	example	is

a	standard	software	for	a	certain	domain.	The	developers	of	this	software
likely	know	a	lot	about	the	domain	since	they	have	seen	many	different	use
cases.	The	caller	can	use	this	model	to	profit	from	the	knowledge	from	the
modeling.
The	Anti-corruption	Layer	translates	a	domain	model	into	another	one	so
that	both	are	completely	decoupled.	This	allows	the	integration	of	legacy
systems	without	having	to	take	over	the	domain	models.	Often	data	modeling
is	not	very	meaningful	in	legacy	systems.
Separate	Ways	means	that	the	two	systems	are	not	integrated,	but	stay
independent	of	each	other.
In	the	case	of	Open	Host	Service	the	Bounded	Context	offers	special
services	everybody	can	use.	In	this	way	everybody	can	assemble	their	own
integration.	This	is	especially	useful	when	an	integration	with	numerous	other
systems	is	necessary	and	when	the	implementation	of	these	integrations	is	too
laborious.
Published	Language	achieves	similar	things.	It	offers	a	certain	domain
modeling	as	common	language	between	the	Bounded	Contexts.	Since	it	is
widely	used,	this	language	can	hardly	be	changed	anymore	afterwards.

Bounded	Context	and	Microservices

Each	Microservice	is	meant	to	model	one	domain	so	that	new	features	or	changes
have	only	to	be	implemented	within	one	Microservice.	Such	a	model	can	be
designed	based	on	Bounded	Context.

One	team	can	work	on	one	or	several	Bounded	Contexts,	which	each	serve	as
foundation	for	one	or	several	Microservices.	Changes	and	new	features	are
supposed	to	concern	typically	only	one	Bounded	Context	–	and	thus	only	one
team.	This	ensures	that	teams	can	work	largely	independently	of	each	other.	A
Bounded	Context	can	be	divided	into	multiple	Microservices	if	that	seems
sensible.	There	can	be	technical	reasons	for	that.	For	example	a	certain	part	of	a
Bounded	Context	might	have	to	be	scaled	up	to	a	larger	extent	than	the	others.
This	is	simpler	if	this	part	is	separated	into	its	own	Microservice.	However,	it
should	be	avoided	to	design	Microservices,	which	contain	multiple	Bounded
Contexts,	as	this	entails	that	several	new	features	might	have	to	be	implemented	in
one	Microservice.	This	interferes	with	the	goal	to	develop	features	independently.

Nevertheless,	it	is	possible	that	a	special	requirement	comprises	many	Bounded
Contexts	–	in	that	case	additional	coordination	and	communication	will	be
required.

The	coordination	between	teams	can	be	regulated	via	different	collaboration
possibilities.	These	influence	the	independence	of	the	teams	as	well:	Separate
Ways,	Anti-corruption	Layer	or	Open	Host	Service	offer	a	lot	of	independence.
Conformist	or	Customer/Supplier	on	the	other	hand	tie	the	domain	models	very
closely	together.	For	Customer/Supplier	the	teams	have	to	closely	coordinate
their	efforts:	The	supplier	needs	to	understand	the	requirements	of	the	customer.
For	Conformist	,	however,	the	teams	do	not	need	to	coordinate:	One	team	defines
the	model	that	the	other	team	just	uses	unchanged.	(compare	Fig.	9).

Fig.	9:	Communication	effort	of	different	collaborations

Like	in	the	case	of	Conway’s	Law	from	section	4.2	it	becomes	very	apparent	that
organization	and	architecture	are	very	closely	linked.	When	the	architecture
enables	a	distribution	of	the	domains	in	which	the	implementation	of	new	features

only	requires	changes	to	a	defined	architecture	part,	these	parts	can	be	distributed
to	different	teams	in	such	a	way	that	these	teams	can	work	largely	independently
of	each	other.	DDD	and	especially	Bounded	Context	demonstrate	what	such	a
distribution	can	look	like	-	and	how	the	parts	can	work	together	and	how	they
have	to	coordinate.

Large-Scale	Structure

With	Large-Scale	Structure	DDD	also	addresses	the	question	how	the	system	in	its
entirety	can	be	viewed	from	the	different	Bounded	Contexts	respectively
Microservices.

A	System	Metaphor	can	serve	to	define	the	fundamental	structure	of	the
entire	system.	For	example,	an	E-commerce	system	can	orient	itself
according	to	the	shopping	process:	The	customer	starts	out	looking	for
products,	then	he/she	will	compare	items,	select	one	item	and	order	it.	This
can	give	rise	to	three	Microservices:	search,	comparison	and	order.
Responsibility	Layer	divides	the	system	into	layers	with	different
responsibilities.	Layers	can	only	call	other	layers	if	those	are	located	below
them.	This	does	not	refer	to	a	technical	division	into	database,	UI	and	logic.
In	an	E-commerce	system	domain	layers	might	be	for	example	the	catalog,
the	order	process	and	billing.	The	catalog	can	call	on	the	order	process	and
the	order	process	can	call	on	the	generation	of	the	bill.	However,	calls	into
the	other	direction	are	not	permitted.
Evolving	Order	suggests	not	to	determine	the	overall	structure	too	rigidly.	It
should	arise	from	the	individual	components	in	a	stepwise	manner.

These	approaches	can	provide	an	idea	how	the	architecture	of	a	system,	which
consists	of	different	Microservices,	can	be	organized	(compare	also	Chapter	8).

Try	and	Experiment

Look	at	a	project	you	know:

Which	Bounded	Contexts	can	you	identify?
Generate	an	overview	of	the	Bounded	Contexts	in	a	Context	Map.	Compare	section	8.2.
How	do	the	Bounded	Contexts	cooperate?	(Anti-corruption	Layer,	Customer/Supplier
etc.).	Add	this	information	to	the	Context	Map.
Would	other	mechanisms	have	been	better	at	certain	places?	Why?
How	could	the	Bounded	Contexts	be	sensibly	distributed	to	teams	so	that	features	are
implemented	by	independent	teams?

These	questions	might	be	hard	to	answer	as	you	need	to	get	a	new	perspective	on	the	system	and
how	the	domains	are	modeled	in	the	system.

Why	You	Should	Avoid	a	Canonical	Data	Model	(Stefan
Tilkov)
by	Stefan	Tilkov,	innoQ

In	recent	times,	I’ve	been	involved	in	a	few	architecture	projects	on	the	enterprise
level	again.	If	you’ve	never	been	in	that	world,	i.e.	if	you’ve	been	focusing	on
individual	systems	so	far,	let	me	give	you	the	basic	gist	of	what	this	kind	of
environment	is	like:	There	are	lots	of	meetings,	more	meetings,	and	even	more
meetings;	there’s	an	abundance	of	slide	decks,	packed	with	text	and	diagrams	–
none	of	that	Presentation	Zen	nonsense,	please.	There	are	conceptual	architecture
frameworks,	showing	different	perspectives,	there	are	guidelines	and	reference
architectures,	enterprise-wide	layering	approaches,	a	little	bit	of	SOA	und	EAI
and	ESB	and	Portals	and	(lately)	API	talk	thrown	in	for	good	measure.	Vendors
and	system	integrators	and	(of	course)	consultants	all	see	their	chance	to	exert
influence	on	strategic	decisions,	making	their	products	or	themselves	an	integral
part	of	the	company’s	future	strategy.	It	can	be	a	very	frustrating,	but	(at	least
sometimes)	also	very	rewarding	experience:	Those	wheels	are	very	big	and	really
hard	to	turn,	but	if	you	manage	to	turn	them,	the	effect	is	significant.

It’s	also	amazing	to	see	how	many	of	the	things	that	cause	problems	when	building
large	systems	are	repeated	on	the	enterprise	level.	(We	don’t	often	make	mistakes
…	but	if	we	do,	we	make	them	big!)	My	favorite	one	is	the	idea	of	establishing
canonical	data	model	(CDM)	for	all	of	your	interfaces.

If	you	haven’t	heard	of	this	idea	before,	a	quick	summary	is:	Whatever	kind	of
technology	you’re	using	(an	ESB,	a	BPM	platform,	or	just	some	assembly	of
services	of	some	kind),	you	standardize	the	data	models	of	the	business	objects
you	exchange.	In	its	extreme	(and	very	common)	form,	you	end	up	with	having	just
one	kind	of	Person,	Customer,	Order,	Product,	etc.,	with	a	set	of	IDs,	attributes,
and	associations	everyone	can	agree	on.	It	isn’t	hard	to	understand	how	that	might
seem	a	very	compelling	thing	to	attempt:	After	all,	even	a	non-technical	manager
will	understand	that	the	conversion	from	one	data	model	to	another	whenever
systems	need	to	talk	to	each	other	is	a	complete	waste	of	time.	It’s	obviously	a
good	idea	to	standardize.	Then,	anyone	who	happens	to	have	a	model	that	differs
from	the	canonical	one	will	have	to	implement	a	conversion	to	a	and	from	it	just
once,	new	systems	can	just	use	the	CDM	directly,	and	everyone	will	be	able	to
communicate	without	further	ado!

In	fact,	it’s	a	horrible,	horrible	idea.	Don’t	do	it.

In	his	book	on	Domain-driven	Design,	Eric	Evans	gave	a	name	to	a	concept	that	is
obvious	to	anyone	who	has	actually	successfully	built	a	larger	system:	The
Bounded	Context.	This	is	a	structuring	mechanism	that	avoids	having	a	single
huge	model	for	all	of	your	application,	simply	because	that	(a)	becomes
unmanageable	and	(b)	makes	no	sense	to	begin	with.	It	recognizes	that	a	Person	or
a	Contract	are	different	things	in	different	contexts	on	a	conceptual	level.	This	is
not	an	implementation	problem	–	it’s	reality.

If	this	is	true	for	a	large	system	–	and	trust	me,	it	is	–	it’s	infinitely	more	true	for
an	enterprise-wide	architecture.	Of	course	you	can	argue	that	with	a	CDM,	you’re
only	standardizing	the	interface	layer,	but	that	doesn’t	change	a	thing:	You’re	still
trying	to	make	everyone	agree	what	a	concept	means,	and	my	point	is	that	you
should	recognize	that	not	every	single	system	has	the	same	needs.

But	isn’t	this	all	just	pure	theory?	Who	cares	about	this,	anyway?	The	amazing
thing	is	that	organizations	are	excellent	in	generating	a	huge	amount	of	work	based
on	bad	assumptions.	The	CDM	(in	the	form	I’ve	described	it	here)	requires
coordination	between	all	the	parties	that	use	a	particular	object	in	their	interfaces
(unless	you	trust	that	someone	will	be	able	to	just	design	the	right	thing	from
scratch	on	their	own,	which	you	should	never	do).	You’ll	have	meetings	with
some	enterprise	architect	and	a	few	representatives	for	specific	systems,	trying	to
agree	what	a	customer	is.	You’ll	end	up	with	something	that	has	tons	of	optional
attributes	because	everyone	insisted	theirs	need	to	be	there,	and	with	lots	of	things

that	are	kind	of	weird	because	they	reflect	some	system’s	internal	restrictions.
Despite	the	fact	that	it’ll	take	you	ages	to	agree	on	it,	you’ll	end	up	with	a	zombie
interface	model	will	be	universally	hated	by	everyone	who	has	to	work	with	it.

So	is	a	CDM	a	universally	bad	idea?	Yes,	unless	you	approach	it	differently.	In
many	cases,	I	doubt	a	CDM’s	value	in	the	first	place,	and	think	you	are	better	off
with	a	different	and	less	intrusive	kind	of	specification.	But	if	you	want	a	CDM,
here	are	a	number	of	things	you	can	do	to	address	the	problems	you’ll	run	into:

Allow	for	independent	parts	to	be	specified	independently.	If	only	one
system	is	responsible	for	a	particular	part	of	your	data	model,	leave	it	to	the
people	to	specify	what	it	looks	like	canonically.	Don’t	make	them	participate
in	meetings.	If	you’re	unsure	whether	the	data	model	they	create	has	a
significant	overlap	with	another	group’s,	it	probably	hasn’t.
Standardize	on	formats	and	possibly	fragments	of	data	models.	Don’t	try	to
come	up	with	a	consistent	model	of	the	world.	Instead,	create	small	buildings
blocks.	What	I’m	thinking	of	are	e.g.	small	XML	or	JSON	fragments,	akin	to
microformats,	that	standardize	small	groups	of	attributes	(I	wouldn’t	call
them	business	objects).
Most	importantly,	don’t	push	your	model	from	a	central	team	downwards	or
outwards	to	the	individual	teams.	Instead,	it	should	be	the	teams	who	decide
to	“pull”	them	into	their	own	context	when	they	believe	they	provide	value.
It’s	not	you	who’s	doing	the	really	important	stuff	(even	though	that’s	a
common	delusion	that’s	attached	to	the	mighty	Enterprise	Architect	title).
Collect	the	data	models	the	individual	teams	provide	in	a	central	location,	if
you	must,	and	make	them	easily	browsable	and	searchable.	(Think	of
providing	a	big	elastic	search	index	as	opposed	to	a	central	UML	model).

What	you	actually	need	to	as	an	enterprise	architect	is	to	get	out	of	people’s	way.
In	many	cases,	a	crucial	ingredient	to	achieve	this	is	to	create	as	little
centralization	as	possible.	It	shouldn’t	be	your	goal	to	make	everyone	do	the	same
thing.	It	should	be	your	goal	to	establish	a	minimal	set	of	rules	that	allows	people
to	work	as	independently	as	possible.	A	CDM	of	the	kind	I’ve	described	above	is
the	exact	opposite.

4.4	Microservices	with	UI?
This	book	recommends	to	equip	Microservices	with	a	UI.	The	UI	should	offer	the
functionality	of	the	Microservice	to	the	user.	In	this	way	all	changes	in	regards	to

one	functionality	can	be	implemented	in	one	Microservice	–	regardless	of	whether
they	concern	the	UI,	the	logic	or	the	database.	However,	Microservice	experts	so
far	have	different	opinions	in	regards	to	the	question	whether	the	integration	of	UI
into	Microservices	is	really	required.	Ultimately,	Microservices	should	not	be	too
large.	And	when	logic	is	anyhow	supposed	to	be	used	by	multiple	frontends,	a
Microservice	consisting	of	pure	logic	without	UI	might	be	sensible.	In	addition,	it
is	possible	to	implement	the	logic	and	the	UI	in	two	different	Microservices,	but
to	have	them	implemented	by	one	team.	This	allows	to	implement	features	without
coordination	across	teams.

Focusing	on	Microservices	with	UI	puts	the	main	emphasis	on	the	distribution	of
the	domain	logic	instead	of	a	distribution	by	technical	aspects.	Many	architects
are	not	familiar	with	the	domain	architecture,	which	is	especially	important	for
Microservices-based	architectures.	Therefore,	a	design	where	the	Microservices
contain	the	UI	is	helpful	as	a	first	approach	in	order	to	focus	the	architecture	on
the	domains.

Technical	Alternatives

Technically	the	UI	can	be	implemented	as	Web	UI.	When	the	Microservices	have
a	RESTful-HTTP	interface,	the	Web-UI	and	the	RESTful-HTTP	interface	are	very
similar	–	both	use	HTTP	as	protocol.	The	RESTful-HTTP	interface	delivers
JSON	or	XML,	the	Web	UI	HTML.	If	the	UI	is	a	Single-Page-App,	the	JavaScript
code	is	likewise	delivered	via	HTTP	and	communicates	with	the	logic	via
RESTful	HTTP.	In	case	of	mobile	clients	the	technical	implementation	is	more
complicated.	Section	9.1	explains	this	in	detail.	Technically	a	deployable	artifact
can	deliver	via	an	HTTP	interface	JSON/XML	and	HTML.	In	this	way	it
implements	the	UI	and	allows	other	Microservices	to	access	the	logic.

Self-Contained	System

Instead	of	calling	this	approach	“Microservice	with	UI”	you	can	also	call	it	“Self-
Contained	System”	(SCS).	SCS	define	Microservices	as	having	about	100	lines	of
code,	of	which	there	might	be	more	than	one	hundred	in	a	complete	project.

An	SCS	consists	of	many	of	those	Microservices	and	contains	a	UI.	It	should
communicate	with	other	SCS	asynchronously	if	at	all.	Ideally	each	functionality
should	be	implemented	in	just	one	SCS	and	there	should	be	no	need	for	SCSs	to
communicate	with	each	other.	An	alternative	approach	might	be	to	integrate	the
SCSs	at	the	UI-level.

http://scs-architecture.org

In	an	entire	system	there	are	then	only	five	to	25	of	these	SCS.	An	SCS	is
something	one	team	can	easily	deal	with.	Internally	the	SCS	can	be	divided	into
multiple	Microservices.

The	following	definitions	result	from	this	reasoning:

SCS	(Self-Contained	System)	is	something	a	team	works	on	and	which
represents	a	unit	in	the	domain	architecture.	This	can	be	an	order	process	or
an	registration.	It	implements	a	sensible	functionality,	and	the	team	can
supplement	the	SCS	with	new	features.	An	alternative	name	for	a	SCS	is	a
vertical.	The	SCS	distributes	the	architecture	by	domain.	This	is	a	vertical
design	in	contrast	to	a	horizontal	design.	A	horizontal	design	would	divide
the	system	into	layers,	which	are	technically	motivated	–	for	instance	UI,
logic	or	persistence.
A	Microservice	is	a	part	of	a	SCS.	It	is	a	technical	unit	and	can	be
independently	deployed.	This	conforms	nearly	with	the	Microservice
definition	put	forward	in	this	book.	Only	the	size	given	in	the	SCS	world
rather	correspond	to	what	this	book	denotes	as	Nanoservices	see	chapter	15.
This	book	refers	to	Nanoservices	as	units,	which	are	still	individually
deployable,	but	which	make	technical	trade-offs	in	some	areas	to	further
reduce	the	size	of	the	deployment	units.	For	that	reason,	Nanoservices	do	not
share	all	technical	characteristics	of	Microservices.

SCS	inspired	the	definition	of	Microservices	as	put	forward	in	this	book.	Still
there	is	no	reason	not	to	separate	the	UI	into	a	different	artifact	in	case	the
Microservice	gets	otherwise	too	large.	Of	course,	it	is	more	important	that	the
Microservice	is	small	and	thus	maintainable	than	to	integrate	the	UI.	But	UI	and
logic	should	at	least	be	implemented	by	the	same	team.

4.5	Conclusion
Microservices	are	a	modularization	approach.	For	a	deeper	understanding	of
Microservices	the	different	perspectives	discussed	in	this	chapter	are	very
helpful:

Section	4.1	focused	on	the	size	of	Microservices.	But	a	closer	look	revealed
that	the	size	of	Microservices	itself	is	not	that	important,	even	though	there
are	influencing	factors.	However,	this	perspective	provided	a	first
impression	on	what	a	Microservice	should	be.	Team	size,	modularization
and	replaceability	of	Microservices	each	determine	an	upper	size	limit.	The

lower	limit	is	determined	by	transactions,	consistency,	infrastructure	and
distributed	communication.
Conway’s	Law	(section	4.2)	shows	that	architecture	and	organization	of	a
project	are	closely	linked	–	they	are	nearly	synonymous.	Microservices	can
further	improve	the	independence	of	teams	and	thus	ideally	support
architectural	designs,	which	aim	at	the	independent	development	of
functionalities.	Each	team	is	responsible	for	a	Microservice	and	therefore	for
a	certain	part	of	a	domain	so	that	the	teams	are	largely	independent
concerning	the	implementation	of	new	functionalities.	Thus,	in	regards	to
domain	logic	there	is	hardly	any	need	for	coordination	across	teams.	The
requirement	for	technical	coordination	can	likewise	be	reduced	to	a
minimum	due	to	the	possible	technical	independence.
In	section	4.3	Domain-driven	Design	provides	a	very	good	impression	as	to
what	the	distribution	of	domains	in	a	project	can	look	like	and	how	the
individual	parts	can	be	coordinated.	Each	Microservice	can	represent	a
Bounded	Context.	This	is	a	self-contained	piece	of	domain	logic	with	an
independent	domain	model.	Between	the	Bounded	Contexts	there	are
different	possibilities	for	collaboration.
Finally	section	4.4	demonstrated	that	Microservices	should	contain	a	UI	to
be	able	to	implement	the	changes	for	a	functionality	really	within	an
individual	Microservice.	This	does	not	necessarily	have	to	be	a	deployment
unit,	however,	UI	and	Microservice	should	be	in	the	responsibility	of	one
team.

Together	these	different	perspectives	provide	a	balanced	picture	of	what
constitutes	Microservices	and	how	they	can	function.

Essential	Points

To	put	it	differently:	A	successful	project	requires	three	components:

1.	 An	organization:	This	is	supported	by	Conway’s	Law.
2.	 A	technical	approach:	This	can	be	Microservices.
3.	 A	domain	design	as	offered	by	DDD	and	Bounded	Context.

The	domain	design	is	especially	important	for	the	long-term	maintainability	of	the
system.

Try	and	Experiment

Look	at	the	three	approaches	for	defining	Microservices:	size,	Conway’s	Law	and
Domain-driven	Design.

Section	1.2	showed	the	most	important	advantages	of	Microservices.	Which	of	the	goals	to	be
achieved	by	Microservices	are	best	supported	by	the	three	definitions?	DDD	and	Conway’s	Law
lead	for	instance	to	a	better	time-to-market.

Which	of	the	three	aspects	is	in	your	opinion	the	most	important?	Why?

1.	 Eric	Evans:	Domain-Driven	Design:	Tackling	Complexity	in	the	Heart	of
Software,	Addison-Wesley,2003,	ISBN	978-0-32112-521-7↩

5	Reasons	for	Microservices

Microservices	offer	many	advantages.	These	are	presented	in	this	chapter.	A
detailed	understanding	of	the	advantages	allows	a	better	evaluation	whether
Microservices	represent	a	sensible	approach	in	a	given	use	case.	The	chapter
continues	the	discussion	of	section	1.2	and	explains	the	advantages	in	more	detail.

Section	5.1	depicts	the	technical	advantages	of	Microservices.	However,
Microservices	also	influence	the	organization,	as	described	in	section	5.2.
Finally,	section	5.3	addresses	the	advantages	from	a	business	perspective.

5.1	Technical	Benefits
Microservices	are	an	effective	modularization	concept.	Only	with	distributed
communication	it	is	possible	to	call	another	Microservice.	This	does	not	happen
by	accident,	but	a	developer	has	to	create	the	respective	possibilities	for	it	within
the	communication	infrastructure.	Consequently,	dependencies	between
Microservices	do	not	just	creep	in	unintendedly,	but	a	developer	has	to	generate
them	explicitly.	Without	Microservices	it	easily	happens	that	a	developer	just	uses
some	class	and	thereby	creates	a	dependency,	which	had	not	been	architecturally
intended.

Let	us	assume	for	instance	that	in	an	E-commerce	application	the	product	search
should	be	able	to	call	the	order	process,	but	not	the	other	way	round.	This	ensures
that	the	product	search	can	be	changed	without	influencing	the	order	process,	as
the	product	search	does	not	use	the	order	process.	Now	a	dependency	of	the
product	search	to	the	order	process	is	introduced,	for	instance,	because	a
developer	found	functionalities	there,	which	were	useful	for	him.	Consequently,
product	search	and	order	process	now	depend	on	each	other	and	can	only	be
changed	together.

Once	undesired	dependencies	have	started	to	creep	into	the	system,	additional
dependencies	rapidly	accrue.	The	application	architecture	erodes.	This
development	can	normally	only	be	prevented	by	architecture	management	tools.
Such	tools	have	a	model	of	the	desired	architecture	and	discover	when	a
developer	has	introduced	an	undesired	dependency.	The	developer	then	can

immediately	remove	the	dependency	again	before	harm	is	done	and	the
architecture	suffers.	Appropriate	tools	are	presented	in	section	8.2.

In	a	Microservices-based	architecture	product	search	and	order	process	would	be
separate	Microservices.	To	create	a	dependency	the	developer	would	have	to
implement	it	within	the	communication	mechanisms.	This	is	laborious	and	thus
normally	does	not	happen	unnoticed,	even	without	architecture	management	tools.
Thus	the	probability	is	lower	that	the	architecture	erodes	on	the	level	of
dependencies	between	Microservices.	The	Microservice	boundaries	act	like
firewalls,	which	prevent	an	architecture	erosion.	Microservices	offer	a	strong
modularization	as	it	is	difficult	to	overstep	the	boundaries	between	modules.

Replacing	Microservices

Working	with	old	software	systems	poses	a	big	challenge:	A	further	development
of	the	software	is	difficult	due	to	bad	code	quality.	To	replace	the	software	is
risky.	Often	it	is	unclear	how	exactly	the	software	is	working,	and	the	system	is
very	large.	The	larger	the	software	system	the	more	laborious	is	its	replacement.
When	the	software	is	in	addition	supporting	important	business	processes,	it	is
nearly	impossible	to	change	it.	The	failure	of	such	business	processes	can	have
tremendous	consequences,	and	each	software	change	entails	the	danger	of	such	a
failure.

Although	this	is	a	central	problem,	a	software	architecture	is	never	really	aimed	at
replacing	a	software.	However,	Microservices	support	this	goal:	They	can	be
replaced	individually	since	they	are	separate	and	small	deployment	units.
Therefore,	the	technical	prerequisites	for	a	replacement	are	better.	Eventually	it	is
not	necessary	to	replace	a	large	software	system,	but	only	a	small	Microservice.
Whenever	necessary,	additional	Microservices	can	be	replaced.

In	case	of	the	new	Microservices	the	developers	are	not	tied	to	the	old	technology
stack,	but	free	to	use	other	technologies	at	will.	When	the	Microservice
additionally	is	independent	in	a	domain	sense,	the	logic	is	easier	to	understand.
The	developer	does	not	need	to	understand	the	entire	system,	but	just	the
functionalities	of	an	individual	Microservice.	Knowledge	regarding	the	domain	is
a	prerequisite	for	the	successful	replacement	of	a	Microservice.

Moreover,	Microservices	keep	functioning	when	another	Microservice	fails.	Even
if	the	replacement	of	a	Microservice	leads	to	the	temporary	failure	of	one

Microservice,	the	system	as	such	can	keep	operating.	This	additionally	decreases
the	risk	associated	with	a	replacement.

Sustainable	Software	Development

The	start	in	a	new	software	project	is	simple:	There	is	not	much	code	yet,	the
code	structure	is	clean,	and	the	developers	make	fast	progress.	Due	to	architecture
erosion	and	an	increasing	complexity	development	can	get	more	difficult	over
time.	At	some	point,	the	software	turns	into	a	legacy	system.	As	already	discussed,
Microservices	prevent	architecture	erosion.	When	a	Microservice	has	turned	into
a	legacy	system,	it	can	be	replaced.	For	these	two	reasons	Microservices	make	a
sustainable	software	development	possible.	This	means	that	a	high	productivity
can	be	reached	also	on	the	long-term.	However,	also	in	a	Microservice-based
system	it	can	happen	that	a	lot	of	code	has	to	be	newly	written.	This	will	of	course
decrease	productivity.

Handling	Legacy

Replacing	Microservices	is	only	possible	if	the	system	is	already	implemented	in
a	Microservice-based	manner.	However,	also	the	replacement	and	amending	of
existing	legacy	applications	is	easier	with	Microservices.	The	legacy	applications
only	have	to	provide	an	interface,	which	enables	the	Microservice	to
communicate	with	the	legacy	application.	Comprehensive	code	changes	or	the
integration	of	new	code	components	into	the	legacy	system	are	not	necessary.	The
code	level	integration	is	a	big	challenge	in	the	case	of	legacy	systems,	which	can
be	avoided	in	this	manner.	Amending	the	system	is	especially	easy	when	a
Microservice	can	intercept	the	processing	of	all	calls	and	process	them	itself.
Such	calls	can	be	HTTP	requests	for	the	built-up	of	web	sites	or	REST	calls.

In	these	instances,	the	Microservice	can	complement	the	legacy	system.	There	are
different	possibilities	for	this:

The	Microservice	can	process	certain	requests	by	itself	while	leaving	the
others	to	the	legacy	system.
Alternatively,	the	Microservice	can	change	the	requests	and	afterwards
transfer	them	to	the	actual	application.

This	approach	is	similar	to	the	SOA	approach	(compare	Chapter	7),	which	deals
with	the	comprehensive	integration	of	different	applications.	When	the
applications	are	distributed	into	services,	these	services	cannot	only	be

orchestrated	anew,	likewise	it	is	possible	to	replace	individual	services	for
instance	by	Microservices.

An	Example	for	Microservices	and	Legacy
In	a	project	the	goal	was	to	undertake	a	modernization	in	an	existing	Java-E-commerce
application.	For	this	purpose,	new	technologies,	for	example	new	frameworks,	were	to	be
introduced	to	enhance	future	software	development	productivity.	After	some	time,	it	turned	out
that	the	effort	for	the	integration	of	the	new	and	old	technologies	would	be	tremendous.	The	new
code	had	to	be	able	to	call	the	old	one	–	and	vice	versa.	This	requires	technology	integration	in
both	directions.	Transactions	and	database	connections	have	to	be	used	jointly.	Likewise,	the
security	mechanisms	have	to	be	integrated.	This	integration	would	also	render	the	development	of
the	new	software	more	complicated	and	thus	endanger	the	goal	of	the	undertaking.

Fig.	10	shows	the	solution:	The	new	system	was	developed	completely	independent	of	the	old
system.	The	only	integration	was	provided	by	links,	which	call	certain	behaviors	in	the	old
software	–	for	instance	the	addition	of	items	to	the	shopping	cart.	The	new	system	also	had
access	to	the	same	database	like	the	old	system.	In	hindsight,	a	shared	database	is	not	a	good
idea	as	the	database	is	an	internal	representation	of	the	data	of	the	old	system.	When	this
representation	is	placed	at	the	disposal	of	another	application,	the	principle	of	encapsulation	is
violated	(compare	section	10.1).	The	data	structures	can	hardly	be	changed	anymore	as	now	in
addition	to	the	old	system	also	the	new	system	depends	on	them.

The	approach	to	develop	the	system	separately	solved	the	integration-related	problems	to	a	large
extent.	First	of	all,	developers	thereby	could	use	new	technological	approaches	without	having	to
consider	the	old	code	and	the	old	approaches.	This	enabled	much	more	elegant	solutions.

https://en.wikipedia.org/wiki/Encapsulation_(computer_programming)

Fig.	10:	Example	for	legacy	integration

Continuous	Delivery

Continuous	Delivery	brings	software	regularly	into	production	thanks	to	a	simple,
reproducible	process.	This	is	achieved	by	a	Continuous	Delivery	pipeline
(compare	Fig.	11):

In	the	commit	phase	the	software	is	compiled,	the	unit	tests	are	run,	and	static
code	analysis	might	be	performed.
The	automated	acceptance	tests	of	the	next	phase	ensure	that	the	software	is
correct	concerning	the	business	requirements	so	that	it	would	be	accepted	by
the	customer.
Capacity	tests	check	whether	the	software	is	sufficiently	performant	to
support	the	expected	number	of	users.	These	tests	are	automated	as	well.
Explorative	tests	on	the	other	hand	are	performed	manually	and	serve	to	test
certain	areas	of	the	system	such	as	new	features	or	certain	aspects	like
software	security.

Finally,	the	software	is	brought	into	production.	This	process	is	ideally	also
automated.

Software	is	promoted	through	the	individual	phases:	It	traverses	the	individual
phases	consecutively.	For	example,	a	release	can	successfully	pass	the	acceptance
tests.	However,	the	capacitance	tests	reveal	that	the	software	does	not	meet	the
requirement	regarding	the	expected	load.	In	this	case	the	software	is	never	going
to	be	promoted	to	the	remaining	phases	such	as	explorative	tests	or	even
production.

Fig.	11:	Continuous	Delivery	pipeline

A	Continuous	Delivery	pipeline	with	a	full	automation	is	the	optimum.	However,
somehow	all	software	gets	into	production.	Accordingly,	the	current	process	can
be	optimized	in	a	stepwise	manner.

Continuous	Delivery	is	especially	easy	to	realize	with	Microservices.
Microservices	are	independent	deployment	units.	Consequently,	they	can	be
brought	into	production	independently	of	other	services.	This	has	tremendous
effects	onto	the	Continuous	Delivery	pipeline:

The	pipeline	is	faster	as	only	a	small	Microservice	has	to	be	tested	and
brought	into	production	at	one	time.	This	accelerates	feedback.	Rapid
feedback	is	an	essential	goal	of	Continuous	Delivery.	When	it	takes	weeks
for	a	developer	to	get	to	know	that	his/her	code	has	caused	a	problem	in
production,	it	will	be	difficult	to	become	acquainted	with	the	code	again	and
to	analyze	the	problem.
The	risk	of	deployment	decreases.	The	deployed	units	are	smaller,	besides
Microservice-based	systems	can	even	still	be	used	if	a	number	of
Microservices	fail.	And	the	deployment	can	more	easily	be	rolled	back.
Measures	to	further	decrease	the	risk	are	also	easier	to	implement	with
smaller	deployment	units.	In	case	of	Blue/Green	Deployment	for	instance	a
new	environment	is	built	up	with	the	new	release.	This	is	similar	for	Canary
Releasing:	In	the	case	of	this	approach	at	first	only	one	server	is	provided
with	the	new	software	version.	Only	when	this	server	runs	successfully	in
production,	the	new	version	is	rolled	out	to	the	other	servers.	For	a
Deployment	Monolith	this	approach	can	be	hard	or	nearly	impossible	to
implement	as	it	requires	a	lot	of	resources	for	the	large	number	of

http://slideshare.net/ewolff/software-architecture-for-devops-andcontinuousdelivery

environments.	In	case	of	Microservices	the	required	environments	are	much
smaller	and	the	procedure	thus	easier.
Test	environments	pose	additional	challenges.	When	for	instance	a	third
party	system	is	used,	the	environment	has	to	contain	also	a	test	version	of	this
third	system.	In	case	of	smaller	deployment	units,	the	demands	to	the
environments	are	lower.	The	environments	for	Microservices	only	have	to
integrate	the	third	systems,	which	are	necessary	for	the	individual
Microservice.	It	is	likewise	possible	to	test	the	systems	using	mocks	of	the
third	systems.	This	facilitates	the	tests	and	represents	also	an	interesting
method	in	order	to	test	Microservices	independently	of	each	other.

Continuous	Delivery	is	one	of	the	most	important	arguments	for	Microservices.
Many	projects	invest	in	migrating	to	Microservices	in	order	to	facilitate	the
creation	of	a	Continuous	Delivery	pipeline.

However,	Continuous	Delivery	is	also	a	prerequisite	for	Microservices.	Without
Continuous	Delivery	pipelines	the	many	Microservices	can	hardly	be	brought	into
production	since	it	is	not	feasible	to	bring	so	many	Microservices	into	production
manually.	Thus	Microservices	profit	from	Continuous	Delivery	and	vice	versa.

Scaling

Microservices	offer	via	the	network	reachable	interfaces,	which	can	be	accessed
for	instance	via	HTTP	or	via	a	message	solution.	Each	Microservice	can	run	on
one	server	–	or	on	several.	When	the	service	runs	on	several	servers,	the	load	can
be	distributed	onto	the	different	servers.	Likewise,	it	is	possible	to	install	and	run
Microservices	on	computers	having	different	performance.	Each	Microservice
can	implement	its	own	scaling.

In	addition,	caches	can	be	placed	in	front	of	Microservices.	For	REST-based
Microservices	it	can	be	sufficient	to	use	a	generic	HTTP	cache.	This	reduces	the
effort	for	such	a	cache	significantly.	The	HTTP	protocol	contains	a	comprehensive
support	for	caching,	which	is	very	helpful	in	this	context.

Furthermore,	it	might	be	possible	to	install	the	Microservices	at	different
locations	within	the	network	in	order	to	bring	them	closer	to	the	caller.	In	case	of
world-wide	distributed	Cloud	environments,	it	does	not	matter	anymore	in	which
computing	center	the	Microservices	are	running.	When	the	Microservice
infrastructure	uses	several	computing	centers	and	processes	calls	always	in	the
nearest	computing	center,	the	architecture	can	significantly	reduce	the	response

http://slideshare.net/ewolff/continuous-delivery-and-micro-services-a-symbiosis

times.	Besides,	static	content	can	be	delivered	by	a	CDN	(Content	Delivery
Network),	whose	servers	are	located	even	closer	to	the	users.

However,	the	better	scaling	and	the	support	for	caching	cannot	work	miracles:
Microservices	result	in	a	distributed	architecture.	Calls	via	the	network	are	a	lot
slower	than	local	calls.	From	a	pure	performance	perspective	it	might	be	better	to
combine	several	Microservices	or	to	use	technologies	which	focus	on	local	calls
(compare	chapter	15).

Robustness

Actually,	Microservices	should	be	less	reliable	than	other	architecture
approaches.	After	all,	Microservices	are	a	distributed	system.	Thus	possible
network	failures	add	to	the	usual	sources	of	errors.	Moreover,	Microservices	run
on	several	servers	so	that	there	is	also	a	larger	probability	for	hardware	failure.

To	ensure	a	high	availability,	the	Microservices-based	architecture	has	to	be
appropriately	designed.	The	communication	between	the	Microservices	has	to
form	a	kind	of	firewall:	The	failure	of	a	Microservice	may	not	propagate.	This
prevents	that	a	problem	arising	in	an	individual	Microservice	causes	a	failure	of
the	complete	system.

Accordingly,	the	Microservice,	which	is	calling,	has	to	somehow	keep	working
upon	a	failure.	One	possibility	is	to	assume	default	values.	Alternatively,	the
failure	might	lead	to	a	graceful	degradation	i.e.	a	somehow	reduced	service.

It	can	already	be	decisive	how	a	failure	is	dealt	with	technically:	The	operation
system	level	timeout	for	TCP/IP	connections	is	often	set	to	five	minutes,	for
example.	If	due	to	the	failure	of	a	Microservice	requests	run	into	this	timeout,	the
thread	is	blocked	for	five	minutes.	At	some	point	all	threads	will	be	blocked.	If
that	happens,	the	calling	system	might	fail	as	it	cannot	do	anything	else	anymore
than	wait	for	timeouts.	This	can	be	avoided	by	supplying	the	calls	with	shorter
timeouts.	Such	ideas	are	around	much	longer	than	the	concept	of	Microservices.
The	book	“Release	It”	1	in	detail	presents	such	challenges	and	approaches	for
solving	them.	When	these	approaches	are	implemented,	Microservice-based
systems	can	tolerate	the	failure	of	entire	Microservices	and	thus	become	more
robust	than	a	Deployment	Monolith.

In	comparison	to	Deployment	Monoliths	Microservices	have	the	additional
advantage	that	they	distribute	the	system	into	multiple	processes.	These	processes

are	better	isolated	from	each	other.	In	a	Deployment	Monolith,	which	only	starts
one	process,	memory	leaks	or	a	functionality	using	up	a	lot	of	computing	resources
can	make	the	whole	system	fail.	Such	errors	are	very	often	simple	programming
mistakes	or	slips.	The	distribution	into	Microservices	prevents	such	situations	as
only	a	single	Microservice	would	be	failing	in	such	a	scenario.

Free	Technology	Choice

Microservices	offer	technological	freedom.	Since	Microservices	communicate
only	via	the	network,	they	can	be	implemented	in	any	language	and	platform	as
long	as	communication	with	other	Microservices	is	possible.	This	free	technology
choice	can	be	used	to	test	new	technologies	without	running	big	risks.	As	a	test
one	can	use	the	new	technology	in	a	single	Microservice.	If	the	technology	does
not	perform	according	to	expectations,	only	this	one	Microservice	has	to	be
rewritten.	In	addition,	troubles	arising	in	case	of	failure	will	be	limited.	The	free
technology	choice	offers	for	instance	the	advantage	that	developers	can	really	use
new	technologies	in	production.	This	increases	motivation	and	has	positive	effects
on	personnel	recruitment	as	developers	normally	enjoy	to	use	new	technologies.

Moreover,	in	this	way	the	most	appropriate	technology	can	be	used	for	each
problem.	A	different	programming	language	or	a	certain	framework	can	be	used	to
implement	specific	system	parts.	It	is	even	possible	for	an	individual
Microservice	to	use	a	specific	database	or	persistence	technology.	However,
backup	and	disaster	recovery	mechanisms	have	to	be	implemented	for	that.

Free	technology	is	an	option	–	it	does	not	have	to	be	made	use	of.	Technologies
can	also	be	defined	for	all	Microservices	in	a	project	so	each	Microservice	is
bound	to	a	specific	technology	stack.	However,	Deployment	Monolith	inherently
narrow	the	choices	developers	have:	For	example,	in	Java	applications	each
library	can	only	be	used	in	one	version.	Accordingly,	not	only	the	libraries	to	be
used,	but	even	the	versions	have	to	be	set	in	a	Deployment	Monolith.
Microservices	do	not	impose	such	technical	limitations.

Independence

Decisions	regarding	technology	and	putting	new	versions	into	production	concern
only	individual	Microservices.	This	makes	Microservices	very	independent	of
each	other.	Of	course,	there	has	to	be	a	common	technical	basis.	The	installation
of	Microservices	should	be	automated,	there	should	be	a	Continuous	Delivery
pipeline	for	each	Microservices,	and	Microservices	should	adhere	to	the
monitoring	specifications.	However,	within	these	parameters	Microservices	can

implement	a	practically	unlimited	choice	of	technical	approaches.	Due	to	the
greater	technological	freedom	there	is	less	coordination	necessary	between
Microservices.

5.2	Organizational	Benefits
Microservices	are	an	architectural	approach	and	thus	should	have	only	advantages
for	software	development	and	structure.	However,	due	to	Conway’s	Law
(compare	section	4.2)	architecture	affects	also	team	communication	and	thus
organization.

First	of	all	Microservices	reach	a	high	level	of	technical	independence	as	the	last
section	(5.1)	discussed.	When	within	the	organization	a	team	is	in	full	charge	of	a
Microservice,	the	team	can	make	full	use	of	the	technical	independence.	However,
the	team	has	also	the	full	responsibility	if	a	Microservice	malfunctions	or	fails	in
production.

In	this	manner	Microservices	support	team	independence.	The	technical	basis
allows	teams	to	work	on	the	different	Microservices	with	little	coordination.	This
provides	the	fundament	for	the	independent	work	of	the	teams.

In	other	projects,	technology	or	architecture	have	to	be	decided	centrally	since	the
individual	teams	and	modules	are	bound	to	these	decisions	due	to	the	technical
frame	conditions.	It	might	just	be	impossible	to	use	two	different	libraries	or	even
two	different	versions	of	one	library	within	one	Deployment	Monolith.	Thus,
central	coordination	is	mandatory.	For	Microservices,	the	situation	is	different.
This	allows	for	self	organization.	However,	a	global	coordination	might	still	be
sensible,	for	instance	to	be	able	to	perform	an	update	including	all	components	in
case	of	a	security	problem	with	a	library.

Teams	have	more	responsibilities:	They	decide	the	architecture	of	their
Microservices.	They	cannot	hand	over	this	responsibility	to	a	central	architecture.
Thus,	they	also	have	to	carry	the	consequences	since	they	have	the	responsibility
for	the	Microservice.

The	Scala	Decision
In	a	project	employing	a	Microservice-based	approach	the	central	architecture	group	was
supposed	to	decide	whether	Scala	could	be	used	as	programming	language	by	one	team.	This
decision	would	have	transferred	the	responsibility	for	the	decision	to	the	central	architecture
group.	The	group	would	have	had	to	decide	whether	the	team	might	solve	its	problems	more

efficiently	by	using	Scala	or	whether	the	use	of	Scala	might	create	additional	problems	in	the	end.
Eventually,	the	decision	was	delegated	to	the	team	since	the	team	has	to	take	responsibility	for	its
Microservice.	They	have	to	deal	with	the	consequences,	if	Scala	in	the	end	does	not	fulfill	the
demands	of	production	or	does	not	support	an	efficient	software	development.	They	have	the
investment	of	getting	familiar	with	Scala	first	and	have	to	estimate	whether	this	effort	will	pay	off
in	the	end.	Likewise,	they	have	a	problem	if	suddenly	all	Scala	developers	leave	the	project	or
change	to	another	team.	To	delegate	the	responsibility	to	the	central	architecture	group	is	strictly
speaking	not	even	possible	since	the	central	architecture	group	is	not	directly	affected	by	the
consequences.	Therefore,	the	team	just	has	to	decide	by	itself.	The	team	has	to	include	all	team
members	into	the	decision	–	also	the	Product	Owner,	who	would	for	instance	suffer	in	the	end	in
case	of	a	low	productivity.

This	line	of	action	represents	a	radical	renunciation	of	old	forms	of	organization,
where	the	central	architecture	group	prescribes	the	technology	stack	to	be	used	for
everybody.	In	this	type	of	organization	the	individual	teams	are	not	responsible	for
decisions	and	non	functional	requirements	like	availability,	performance	or
scalability.	In	a	classical	architecture,	the	non	functional	properties	can	only	be
provided	for	centrally	since	they	can	only	be	warranted	by	the	common	basis	of
the	entire	system.	When	Microservices	do	not	force	a	common	basis	anymore,
these	decisions	can	be	distributed	to	the	teams	thus	enabling	a	greater	self-
reliance	and	independence.

Smaller	projects

Finally,	Microservices	allow	for	the	distribution	of	large	projects	into	numerous
small	projects	as	the	individual	Microservices	are	so	independent	that	a	central
coordination	loses	importance.	Therefore,	a	comprehensive	project	organization
is	not	necessary	anymore.	Large	organizations	are	problematic	as	they	have	a
relatively	large	communication	overhead.	When	Microservices	enable	the
fragmentation	of	a	large	organization	into	several	smaller	ones,	the	need	for
communication	decreases.	This	allows	teams	to	focus	more	on	the	implementation
of	requirements.

Large	projects	will	also	fail	more	frequently.	Also	from	this	perspective	it	is
better	when	a	large	project	can	be	divided	into	multiple	smaller	projects.	The
smaller	extent	of	the	individual	projects	enables	more	precise	estimations.	Better
estimations	improve	planning	and	decrease	risk.	And	even	if	the	estimation	is
wrong,	the	impact	of	the	incorrect	decisions	is	lower.	In	conjunction	with	the
greater	flexibility	this	can	speed	up	and	facilitate	the	process	of	decision	making	–
especially	as	the	associated	risk	is	so	much	smaller.

5.3	Benefits	from	a	Business	Perspective
The	already	discussed	advantages	from	an	organizational	perspective	lead	also	to
business	advantages:	The	projects	have	a	lower	risk,	and	coordination	between
teams	needs	to	be	less	intense	so	that	the	teams	can	work	more	efficiently.

Parallel	Work	on	Stories

The	distribution	into	Microservices	enables	the	parallel	work	on	different	stories
(compare	Fig.	12).	Each	team	works	on	a	story,	which	only	concerns	their	own
Microservice.	Consequently,	the	teams	can	work	independently,	and	the	system	as
such	can	be	simultaneously	expanded	at	different	spots.	This	eventually	scales	the
agile	process.	However,	scaling	does	not	take	place	at	the	level	of	development
processes,	but	is	facilitated	by	the	architecture	and	the	independence	of	the	teams.
Changes	and	deployments	of	individual	Microservices	are	possible	without
complex	coordination.	Therefore,	teams	can	work	independently.	When	a	team	is
slower	or	encounters	obstacles,	this	does	hardly	influence	the	other	teams.	Thus
the	risk	associated	with	the	project	is	further	reduced.

An	unambiguous	domain-based	design	and	the	assignment	of	one	developer	team
per	Microservice	can	scale	the	development	or	project	organization	with	the
number	of	teams.

Fig.	12:	Example	for	legacy	integration

It	is	possible	that	changes	concern	several	Microservices	and	thus	several	teams.
An	example:	Only	certain	customers	are	allowed	to	order	some	products	–	for
instance	because	of	youth	protection.	In	case	of	the	architecture	depicted	in	Fig.
12	changes	to	all	Microservices	would	be	necessary	to	implement	this	feature.
The	Customer	Microservice	would	have	to	store	the	data	whether	a	customer	is	of
legal	age.	Product	search	should	hide	or	label	the	products	prohibited	for
underage	customers.	Finally,	the	order	process	has	to	prevent	the	ordering	of
prohibited	products	by	underage	customers.	These	changes	have	to	be
coordinated.	Coordination	is	especially	required	when	one	Microservice	calls
another.	In	that	case	the	called	upon	Microservice	has	to	be	changed	first	so	that
the	caller	can	afterwards	use	the	new	features.

This	problem	can	certainly	be	solved.	One	can	reason	that	the	outlined
architecture	is	not	optimal.	If	the	architecture	is	geared	to	the	business	processes,
the	changes	can	be	limited	to	the	order	process.	Eventually,	only	the	ordering	is	to
be	prohibited,	not	searching.	The	information	whether	a	certain	client	is	allowed
to	order	or	not	should	also	be	within	the	responsibility	of	the	order	process.
Which	architecture	and	consequently	which	team	distribution	is	the	right	one,
depends	on	the	requirements	and	the	concerned	Microservices	and	teams.

If	the	architecture	has	been	selected	appropriately,	Microservices	can	well
support	agility.	This	is	for	sure	a	good	reason	from	a	business	perspective	to	use	a
Microservice-based	architecture.

5.4	Conclusion
In	summary	Microservices	lead	to	the	following	technical	advantages	(section
5.1):

Strong	modularization:	Dependencies	between	Microservices	cannot	easily
creep	in.
Microservices	can	be	easily	replaced.
The	strong	modularization	and	the	replaceability	of	Microservices	leads	to	a
sustained	speed	of	development:	The	Architecture	remains	stable,	and
Microservices,	which	cannot	be	maintained	anymore,	can	be	replaced.	Thus,
the	quality	of	the	system	remains	high	also	on	the	long	run	so	that	the	systems
stays	maintainable.
Legacy	systems	can	be	supplemented	with	Microservices	without	the	need
to	carry	around	all	the	ballast,	which	has	accumulated	in	the	legacy	system.
Therefore,	Microservices	are	a	good	approach	when	dealing	with	legacy
systems.
Since	Microservices	are	small	deployment	units,	a	Continuous	Delivery
pipeline	is	much	easier	to	set	up.
Microservices	can	be	scaled	independently.
If	Microservices	are	implemented	in	line	with	established	approaches,	the
system	will	be	more	robust	in	the	end.
Each	Microservice	can	be	implemented	in	a	different	programming	language
and	with	a	different	technology.
Therefore,	Microservices	are	largely	independent	from	each	other	on	a
technical	level.

The	technical	independence	affects	the	organization	(section	5.2):	The	teams	can
work	independently	and	on	their	own	authority.	There	is	less	need	for	central
coordination.	Large	projects	are	replaced	by	a	collection	of	small	projects,	which
positively	affects	risk	and	coordination.

From	a	business	perspective	just	the	effects	on	risk	are	already	positive	(section
5.3).	However,	is	is	even	more	attractive	that	the	Microservice-based	architecture

enables	the	scaling	of	agile	processes	without	requiring	an	excessive	amount	of
coordination	and	communication.

Essential	Points

There	are	numerous	technical	advantages	–	ranging	from	scalability	and
robustness	to	sustainable	development.
The	technical	independence	results	in	advantages	on	the	organizational	level.
Teams	become	independent.
The	technical	and	organizational	advantages	taken	together	result	in
advantages	at	the	level	of	business:	a	lower	risk	and	a	faster	implementation
of	more	features.

Try	and	Experiment

Look	at	a	project	you	know:

Why	are	Microservices	useful	in	this	scenario?	Evaluate	each	advantage	by	assigning	points	(1	=	no
real	advantage;	10	=	very	large	advantage).	The	possible	advantages	are	listed	in	the	conclusion	of
this	chapter.

What	would	the	project	look	like	with	or	without	the	use	of	Microservices?

Develop	a	discussion	of	the	advantages	of	Microservices	from	the	perspective	of	an	architect,	a
developer,	a	project	leader	and	the	customer	for	the	project.	The	technical	advantages	will	be	more
of	interest	for	the	developers	and	architects,	while	the	organizational	and	business	advantages	matter
more	for	project	leaders	and	customers.	Which	advantages	do	you	put	most	emphasis	on	for	the
different	groups?

Visualize	the	current	domain	design	in	your	project	or	product.

Which	teams	are	responsible	for	which	parts	of	the	project?	Where	do	you	see	overlap?
What	should	the	distribution	of	teams	to	product	parts	and	services	look	like	to	achieve	a
largely	independent	mode	of	operation?

1.	 Michael	T.	Nygard:	Release	It!:	Design	and	Deploy	Production-Ready
Software,	Pragmatic	Programmers,	2007,	ISBN	978-0-97873-921-8↩

6	Challenges

The	distribution	of	a	system	into	Microservices	entails	a	higher	complexity.	This
leads	to	challenges	at	the	technical	level	(compare	section	6.1)	–	for	instance	high
latency	times	in	the	network	or	the	failure	of	individual	services.	However,	also	at
the	level	of	software	architecture	there	are	a	number	of	things	to	consider	–	for
instance	because	of	the	bad	architecture	changeability	(section	6.2).	And	finally,
there	are	many	more	components	to	be	independently	delivered	so	that	operation
and	infrastructure	become	more	complex	(section	6.3).	These	challenges	have	to
be	dealt	with	when	introducing	Microservices.	Measures	described	in	the
following	chapters	show	how	to	appropriately	handle	these	challenges.

6.1	Technical	Challenges
Microservices	are	distributed	systems.	Calls	between	Microservices	go	via	the
network.	This	affects	the	latency	and	thus	the	response	times	of	Microservices
negatively.	The	already	mentioned	first	rule	for	distributed	objects	states	that
objects,	if	possible,	should	not	be	distributed	(compare	section	4.1).

The	reason	for	that	is	illustrated	in	Fig.	13	A	call	has	to	go	via	the	network	to
reach	the	server,	is	processed	there	and	has	to	return	to	the	caller.	The	latency	just
for	network	communication	can	be	around	0.5	ms	in	a	computing	center	(compare
here).	Within	this	time	a	processor	running	at	3	Ghz	can	process	about	1.5	million
instructions.	When	a	computation	is	redistributed	to	another	node,	it	should	be
checked	whether	local	processing	of	the	request	might	not	be	faster.	The	latency
can	even	increase	further	by	parameter	marshaling	and	unmarshaling	for	a	call	and
the	result	of	a	call.	On	the	other	hand,	network	optimizations	or	connecting	nodes
to	the	same	network	switch	can	improve	the	situation.

http://martinfowler.com/bliki/FirstLaw.html
https://www.cs.cornell.edu/projects/ladis2009/talks/dean-keynote-ladis2009.pdf

Fig.	13:	Latency	for	a	call	via	the	network

The	first	rule	for	distributed	objects	and	the	warning	to	be	aware	of	the	latency
within	the	network	dates	back	to	the	time	when	CORBA	and	EJB	were	used.
These	technologies	were	often	used	for	distributed	Three	Tier	Architectures
(compare	Fig.	14).	For	every	client	request	the	web	tier	implements	only	the	data
rendering	as	HTML	page.	The	logic	resides	on	another	server,	which	is	called	via
the	network.	The	data	are	deposited	in	the	database	and	thus	on	an	again	other
server.	When	only	data	are	to	be	shown,	there	is	little	happening	in	the	Middle
Tier.	The	data	are	not	processed,	just	forwarded.	For	performance	and	latency,	it
would	be	much	better	to	keep	the	logic	on	the	same	server	as	the	web	tier.	Though

the	distribution	allows	to	scale	the	Middle	Tier	independently,	the	system	does	not
get	faster	this	way	when	it	anyhow	does	not	have	much	to	do.

Fig.	14:	Three	Tier	Architecture

For	Microservices	the	situation	is	different	as	the	UI	is	contained	in	the
Microservice.	Calls	between	Microservices	only	take	place	when	Microservices
need	functionalities	of	other	Microservices.	If	that	is	often	the	case,	this	might	be	a
hint	that	there	are	architectural	problems	as	the	Microservices	should	be	largely
independent	of	each	other.

Practically,	Microservice-based	architectures	function	in	spite	of	the	challenges
related	to	distribution.	Still	Microservices	should	not	communicate	too	much	with
each	other	in	order	to	improve	performance	and	reduce	latency.

Code	Dependencies

The	great	advantage	of	Microservice-based	architectures	is	the	option	to
independently	deploy	the	individual	services.	However,	this	option	can	be	undone
by	code	dependencies.	If	a	library	is	used	by	several	Microservices	and	a	new
version	of	this	library	is	supposed	to	be	rolled	out,	a	coordinated	deployment	of
several	Microservices	might	be	required	–	precisely	the	scenario	that	should	be
prevented.	Something	like	that	can	for	instance	easily	occur	due	to	binary
dependencies	where	sometimes	different	versions	are	not	compatible	anymore.
The	deployment	has	to	be	temporally	coordinated	in	a	way	that	all	Microservices
are	rolled	out	in	a	certain	time	interval	and	in	a	defined	order.	Besides	the	code
dependency	has	to	be	changed	in	all	Microservices,	a	process	that	has	likewise	to
be	prioritized	and	coordinated	across	all	involved	teams.	A	binary	level
dependency	is	a	very	tight	technical	coupling,	which	entails	a	very	tight
organizational	coupling.

Therefore	Microservices	propagate	a	Shared	Nothing	Approach	where	the
Microservices	do	not	possess	shared	code.	Microservices	rather	accept	code
redundancy	and	resist	the	urge	to	reuse	code	in	order	to	avoid	a	close
organizational	link.

Code	dependencies	can	be	tolerable	in	certain	situations.	When	a	Microservice
offers	for	instance	a	client	library,	which	supports	callers	while	using	this
Microservice,	this	does	not	necessarily	have	negative	consequences.	The	library
depends	on	the	interface	of	the	Microservice.	If	the	interface	is	changed	in	a
backward	compatible	manner,	also	a	caller	having	an	old	version	of	the	client
library	can	still	use	the	Microservice.	The	deployment	remains	uncoupled.
However,	the	client	library	can	be	the	starting	point	to	a	code	dependency.	If	the

http://martinfowler.com/articles/distributed-objects-microservices.html

client	library	contains	for	instance	domain	objects,	this	can	be	a	problem.	In	fact,
if	the	client	library	contains	the	same	code	for	the	domain	objects,	which	is	also
internally	used,	changes	to	the	internal	model	will	affect	the	clients.	They	might
have	to	be	deployed	again	if	need	be.	If	the	domain	object	contains	logic,	this
logic	can	only	be	modified	when	all	clients	are	likewise	deployed	anew.	This
also	violates	the	idea	of	independently	deployable	Microservices.

Consequences	of	Code	Dependencies
Here	is	an	example	for	the	effects	of	code	dependencies:	User	authentication	is	a	central
function,	which	all	services	use.	A	project	has	developed	a	service	implementing	the
authentication.	Nowadays	there	are	open	source	projects,	which	implement	such	things,	(section
8.12)	so	that	an	implementation	of	a	home-grown	solution	is	rarely	sensible	anymore.	In	that
project	each	Microservice	could	use	a	library	for	facilitating	the	handling	of	the	authentication
service.	Accordingly,	all	Microservices	have	a	code	dependency	towards	the	authentication
service.	Changes	to	the	authentication	service	might	require	that	the	library	has	to	be	newly	rolled
out.	This	in	turn	means	that	all	Microservices	have	to	be	modified	and	newly	rolled	out	as	well.	In
addition,	the	deployments	of	the	Microservices	and	the	authentication	service	have	to	be
coordinated.	This	can	easily	cost	a	two-digit	number	of	man	days.	Thus	authentication	can	hardly
be	changed	anymore	due	to	the	code	dependency.	If	the	authentication	service	could	be	deployed
just	like	that	and	if	there	were	no	code	dependencies,	which	couple	the	deployment	of	the
Microservices	and	the	authentication	service,	the	problem	would	be	solved.

Unreliable	Communication

Communication	between	Microservices	occurs	via	the	network	and	is	therefore
unreliable.	In	addition,	Microservices	can	fail.	To	prevent	that	a	failure	of	the
entire	system	ensues,	the	remaining	Microservices	in	such	a	case	have	to
compensate	for	the	failure	of	the	malfunctioning	Microservice	and	keep	being
available.	However,	to	achieve	this	goal	the	quality	of	the	services	has	to	be
degraded	i.e.	by	using	default	values	or	limiting	the	useable	functionality	(section
10.5).

This	problem	cannot	be	completely	solved	on	a	technical	level:	The	Microservice
availability	can	for	instance	be	optimized	by	highly	available	hardware.	But	this
increases	costs.	Besides,	it	is	no	complete	solution:	In	some	respects,	it	even
increases	risk.	If	the	Microservice	fails	despite	highly	available	hardware	and	the
failure	propagates	across	the	entire	system,	a	complete	failure	of	the	entire	system
occurs.	Thus,	the	Microservices	should	rather	compensate	the	failure	of	another
Microservice.

In	addition,	the	threshold	between	a	technical	and	a	domain	problem	is	crossed.
An	ATM	might	serve	as	example:	When	the	ATM	cannot	retrieve	the	account
balance	of	the	customer,	there	are	two	possibilities.	The	ATM	can	refuse	the
withdrawal.	Although	this	is	a	safe	option,	it	will	anger	the	customer	and	decrease
revenue.	Alternatively,	the	ATM	can	hand	out	the	money	–	maybe	up	to	a	certain
upper	limit.	Which	alternative	should	be	implemented,	is	a	business	decision.
Eventually,	somebody	has	to	decide	whether	it	is	preferable	to	be	on	the	safe	side,
even	if	it	means	to	forego	some	revenue	and	anger	customers,	or	to	run	a	certain
risk	to	pay	out	too	much	money.

Technology	Pluralism

The	technology	freedom	of	Microservices	can	result	in	a	project	using	many
different	technologies.	The	Microservices	do	not	need	to	have	a	shared	technology
basis.	Accordingly,	the	complexity	of	the	whole	system	increases.	Each	team
masters	the	technologies,	which	are	used	in	its	own	Microservice.	However,	the
large	number	of	used	technologies	and	approaches	can	cause	the	system	as	such	to
reach	a	level	of	complexity	no	individual	developer	or	team	can	understand
anymore.	But	often	such	a	general	understanding	is	not	necessary	since	each	team
only	needs	to	understand	its	own	Microservice.	Whenever	it	becomes	necessary
to	have	a	look	at	the	entire	system	-	be	it	even	only	from	a	certain	limited
perspective	as	for	instance	operations	–,	the	complexity	might	pose	a	problem.	In
such	cases,	unification	can	be	a	sensible	counter	measure.	This	does	not	mean	that
the	technology	stack	has	to	be	completely	uniform,	but	that	certain	parts	should	be
uniform	or	that	the	individual	Microservices	should	behave	in	a	uniform	manner.
For	instance,	a	uniform	logging	framework	might	be	defined	or	a	uniform	format
for	logging,	which	different	logging	frameworks	might	implement	differently.
Alternatively,	a	common	technical	basis	like	the	JVM	(Java	Virtual	Machine)	can
be	decided	upon	for	operational	reasons	without	setting	the	programming
languages.

6.2	Architecture
The	architecture	of	a	Microservice-based	system	distributes	the	domain-based
functionalities	among	the	Microservices.	To	understand	the	architecture	at	this
level	dependencies	and	communication	relationships	between	the	Microservices
have	to	be	known.	Analyzing	communication	relationships	is	difficult.	For	large
Deployment	Monoliths	there	are	tools,	which	read	source	code	or	even	only	the
executable	system.	Based	on	this	the	tools	can	generate	graphs	visualizing
modules	and	relationships.	This	makes	it	possible	to	verify	the	implemented

architecture,	adjust	it	in	regards	to	the	planned	architecture	and	to	follow	the
architecture	evolution	over	time.	Such	overviews	are	central	for	architectural
work,	however,	difficult	to	generate	in	the	case	of	Microservices	as	the	respective
tools	are	lacking	–	but	there	are	solutions.	Section	8.2	discusses	these	in	detail.

Architecture	=	Organization

Microservices	are	based	on	the	idea	that	organization	and	architecture	are	the
same.	Microservices	exploit	this	circumstance	to	implement	the	architecture.	The
organization	is	structured	in	a	way,	which	renders	the	architecture	implementation
especially	easy.	However,	this	means	that	an	architecture	refactoring	can	entail
changes	to	the	organization.	This	renders	architectural	changes	more	difficult.	This
is	not	only	a	problem	of	Microservices:	Conway’s	Law	(section	4.2)	applies	to
all	projects.	However,	other	projects	often	are	not	aware	of	the	law	and	its
implications.	Therefore,	they	do	not	use	the	law	productively	and	cannot	estimate
the	organizational	problems	caused	by	architectural	changes.

Architecture	and	Requirements

The	architecture	influences	also	the	independent	development	of	individual
Microservices	and	the	independent	streams	of	stories.	When	the	domain-based
distribution	of	Microservices	is	not	optimal,	requirements	might	not	only	influence
one	team	and	one	Microservice,	but	several.	In	such	cases	a	larger	amount	of
coordination	is	necessary	between	the	different	teams	and	Microservices.	This
influences	the	productivity	negatively	and	thus	undoes	one	of	the	essential	reasons
for	the	introduction	of	Microservices.

In	case	of	Microservices	the	architecture	influences	not	only	the	software	quality,
but	also	the	organization	and	the	independent	work	of	the	teams	and	thereby	the
productivity.	Designing	an	optimal	architecture	gets	even	more	important	since
mistakes	have	far	reaching	consequences.

Many	projects	do	not	pay	sufficient	attention	to	domain	architecture,	often	much
less	than	to	technical	architecture.	Besides,	most	architects	are	not	as	experienced
with	domain	architecture	as	with	technical	architecture.	These	circumstances	can
cause	tremendous	problems	in	the	case	of	Microservice-based	approaches.	The
distribution	into	Microservices	and	therefore	into	fields	of	responsibility	for	the
different	teams	has	to	be	performed	according	to	domain	criteria.

Refactoring

In	a	single	Microservice	refactoring	is	simple	since	the	Microservice	is	small.	It
can	also	be	easily	replaced	and	newly	implemented.

Between	Microservices	the	situation	differs:	Transferring	functionalities	from	one
Microservice	to	another	is	difficult.	The	functionality	has	to	be	moved	into	a
different	deployment	unit.	This	is	for	sure	more	difficult	than	moving	a
functionality	within	the	same	unit.	Between	Microservices	technologies	are	not
necessarily	uniform.	Microservices	can	use	different	libraries	or	even	different
programming	languages.	In	such	cases	the	functionality	has	to	be	moved	into	a	new
Microservice.	In	some	cases	the	functionality	must	be	newly	implemented	in	the
technology	of	the	other	Microservice	and	subsequently	transferred	into	this
Microservice.	However,	this	is	far	more	complex	than	moving	code	within	a
Microservice.

Agile	Architecture

Microservices	make	it	easier	to	bring	as	many	changes	as	possible	into	production
in	the	shortest	possible	time	and	to	reach	a	sustainable	development	speed.	This	is
especially	advantageous	when	there	are	numerous	and	hard	to	predict
requirements.	This	is	exactly	the	environment	where	Microservices	are	at	home.
Changes	to	a	Microservice	are	also	very	simple.	However,	adjusting	the
architecture	of	the	system	as	such,	for	instance	by	moving	around	functionalities,
is	not	so	simple.

In	addition,	the	architecture	of	a	system	is	frequently	not	yet	optimal	at	the	first
attempt.	During	implementation	the	team	learns	a	lot	about	the	domain.	In	a	second
attempt,	it	will	be	much	more	capable	of	designing	an	appropriate	architecture.
Most	projects	suffering	from	bad	architecture	had	a	good	architecture	at	the	outset
based	on	the	state	of	knowledge	at	that	time.	However,	when	the	project
progressed,	it	became	clear	that	requirements	were	meant	differently	and	new
requirements	arose	so	that	the	initial	architecture	stopped	fitting.	Problems	arise
when	this	does	not	lead	to	consequences.	If	the	project	just	continues	with	a	more
and	more	inappropriate	architecture,	the	architecture	will	not	fit	at	all	anymore	at
some	point.	This	can	be	avoided	by	adjusting	the	architecture	step	by	step	to	the
changed	requirements	based	on	the	respective	state	of	knowledge.	Architecture
changeability	and	architecture	adjustment	in	line	with	new	requirements	are
central	for	this.	However,	architecture	changeability	at	the	level	of	the	entire
system	is	a	weakness	of	Microservices	while	changes	within	Microservices	are
very	simple.

Summary

When	using	Microservices,	architecture	is	even	more	important	than	in	other
systems	as	it	influences	also	the	organization	and	the	independent	work	on
requirements.	At	the	same	time,	Microservices	offer	many	advantages	in	cases
where	requirements	are	unclear	and	architecture	therefore	has	to	be	changeable.
Unfortunately,	the	interplay	between	Microservices	is	hard	to	modify	since	the
distribution	into	Microservices	is	quite	rigid	due	to	the	distributed	communication
between	them.	Besides,	as	Microservices	can	be	implemented	by	the	use	of
different	technologies,	it	gets	difficult	to	move	functionalities	around.	On	the	other
hand,	changes	to	individual	Microservices	or	their	replacement	are	very	simple.

6.3	Infrastructure	and	Operations
Microservices	are	supposed	to	be	brought	into	production	independently	of	each
other	and	to	be	able	to	use	individual	technology	stacks.	Therefore,	each
Microservice	usually	resides	on	its	own	server.	This	is	the	only	way	to	ensure
complete	technological	independence.	It	is	not	possible	to	cope	with	the	required
multitude	of	systems	using	hardware	servers.	Even	with	virtualization	the
management	of	such	an	environment	remains	difficult.	The	number	of	required
virtual	machines	can	be	higher	than	otherwise	used	by	an	entire	business	IT.	When
there	are	hundreds	of	Microservices,	there	are	also	hundreds	of	virtual	machines
needed	and	for	some	of	them	several	instances	e.g.	for	load	balancing.	This
requires	automation	and	appropriate	infrastructures,	which	are	able	to	generate	a
large	number	of	virtual	machines.

Continuous	Delivery	Pipelines

Beyond	operation	each	Microservice	requires	additional	infrastructure:	It	needs
its	own	Continuous	Delivery	pipeline	so	that	it	can	be	brought	into	production
independently	of	the	other	Microservices.	This	means	that	appropriate	test
environments	and	automation	scripts	are	necessary.	The	large	number	of	pipelines
causes	additional	challenges:	The	pipelines	have	to	be	built	up	and	maintained.
Furthermore,	to	reduce	expenses	they	need	to	be	largely	standardized.

Monitoring

Each	Microservice	requires	in	addition	monitoring.	This	is	the	only	way	to
recognize	problems	with	the	service	at	runtime.	In	case	of	a	Deployment
Monolith,	it	is	still	quite	easy	to	monitor	the	system.	When	problems	arise,	the
administrator	can	log	into	the	system	and	use	specific	tools	to	analyze	errors.
Microservice-based	systems	contain	so	many	systems	that	this	approach	is	not

feasible	anymore.	Consequently,	there	has	to	be	a	monitoring,	which	comprises	all
systems.	Thereby,	not	only	the	typical	information	from	the	operating	system	and
the	I/O	to	the	hard	disc	and	to	the	network	should	be	analyzed,	also	a	view	into	the
application	should	be	possible	based	on	application	metrics.	This	is	the	only	way
for	developers	to	find	out	where	the	application	has	to	be	optimized	and	where
problems	exist	at	the	moment.

Version	control

Finally,	every	Microservice	has	to	be	stored	under	version	control	independent	of
the	other	ones.	Only	software,	which	is	separately	versioned,	can	be	brought	into
production	individually.	When	two	software	modules	are	versioned	together,	they
should	always	be	brought	into	production	together.	Otherwise	a	change	might	have
influenced	both	modules	so	that	in	fact	both	services	should	be	newly	delivered.
Moreover,	if	an	old	version	of	one	of	the	services	is	in	production,	it	is	not	clear
whether	an	update	is	necessary	or	whether	the	new	version	does	not	contain
changes	–	after	all	the	new	version	might	only	have	contained	changes	in	the	other
Microservice.

For	Deployment	Monoliths	a	lower	number	of	servers,	environments	and	projects
in	version	control	would	be	necessary.	This	decreases	complexity.	The
requirements	in	regards	to	operation	and	infrastructure	are	much	higher	in	a
Microservices	environment.	To	deal	with	this	complexity	is	the	biggest	challenge
when	introducing	Microservices.

6.4	Conclusion
This	chapter	discussed	the	different	challenges	associated	with	Microservices-
based	approaches.	At	the	technical	level	(section	6.1)	the	challenges	are	mostly	a
consequence	of	the	fact	that	Microservices	are	distributed	systems:	Due	to	that,
system	performance	and	reliability	are	more	difficult	to	ensure.	In	addition,
technical	complexity	increases	because	of	the	greater	variety	of	used	technologies.
Furthermore,	code	dependencies	can	render	the	independent	deployment	of
Microservices	impossible.

The	architecture	of	a	Microservice-based	system	(section	6.2)	is	extremely
important	due	to	its	impact	on	the	organization	and	the	parallel	implementation	of
multiple	stories.	At	the	same	time,	changes	to	the	interplay	of	Microservices	are
hard.	Functionalities	cannot	be	easily	transferred	from	one	Microservice	to
another.	Classes	within	a	project	can	often	even	be	moved	automatically.	Between

Microservices	manual	work	is	necessary.	The	interface	to	the	code	changes	from
local	calls	to	communication	between	Microservices.	This	increases	the
necessary	efforts.	Finally,	Microservices	can	be	written	in	different	programming
languages	–	in	such	cases	to	move	code	entails	that	it	has	to	be	rewritten.

However,	changes	to	system	architecture	are	often	necessary	because	of	unclear
requirements.	Besides,	the	team	permanently	improves	its	knowledge	about	the
system	and	its	domain.	Especially	in	circumstances	where	the	use	of
Microservices	is	particularly	advantageous	because	of	rapid	and	independent
deployments,	architecture	should	be	peculiarly	easy	to	change.	Within
Microservices	changes	are	indeed	easy	to	implement,	however	between
Microservices	they	are	very	laborious.

Finally	infrastructure	complexity	rises	due	to	the	larger	number	of	services
(section	6.3)	since	more	servers,	more	projects	in	version	control	and	more
Continuous	Delivery	pipelines	are	necessary.	This	is	a	central	challenge
encountered	by	Microservice-based	architectures.

Part	III	of	the	book	is	going	to	show	solutions	for	these	challenges.

Essential	Points

Microservices	are	distributed	systems.	This	makes	them	technically	more
complex.
A	good	architecture	is	very	important	due	to	its	impact	on	the	organization.
While	the	architecture	is	easy	to	modify	within	Microservices,	the	interplay
between	Microservices	is	hard	to	change.
Due	to	the	number	of	Microservices	more	infrastructure	is	necessary	e.g.	in
terms	of	server	environments,	Continuous	Delivery	pipelines	or	projects	in
version	control.

Try	and	Experiment

Choose	one	of	the	scenarios	from	chapter	3	or	a	project	you	know:

Which	are	the	challenges	to	be	anticipated?	Evaluate	these	challenges.	The	conclusion	of	this
chapter	highlights	the	different	challenges	once	again	in	a	compressed	manner.
Which	of	the	challenges	poses	the	biggest	risk?	Why?
Are	there	possibilities	to	use	Microservices	in	a	way	which	maximizes	advantages	and	avoids
disadvantages?	For	example,	heterogeneous	technology	stacks	could	be	avoided.

7	Microservices	and	SOA

At	first	glance	Microservices	and	SOA	seem	to	have	a	lot	in	common:	Both
approaches	focus	on	the	modularization	of	large	systems	into	services.	Are	SOA
and	Microservices	indeed	the	same	or	are	there	differences?	Dissecting	this
question	contributes	to	an	in	depth	understanding	of	Microservices.	Besides,	some
ideas	from	the	SOA	field	are	interesting	for	Microservice-based	architectures.	A
SOA	approach	can	be	advantageous	when	migrating	to	Microservices.	It	separates
the	functionalities	of	the	old	applications	into	services,	which	can	be	replaced	or
supplemented	by	Microservices.

Section	7.1	defines	the	term	“SOA”	as	well	as	the	term	“service”	within	the	SOA
context.	Section	7.2	extends	this	topic	by	highlighting	the	differences	between
SOA	and	Microservices.

7.1	What	is	SOA?
SOA	(Service-Oriented	Architecture)	and	Microservices	share	one	similarity:
They	lack	an	unambiguous	definition.	Therefore,	this	section	provides	only	one	of
the	possible	definitions.	According	to	other	definitions	Microservices	and	SOA
are	indeed	identical	approaches.	Eventually,	both	approaches	are	based	on
services	and	the	distribution	of	applications	into	services.

The	term	“service”	is	central	for	SOA.

A	SOA	service	should	have	the	following	characteristics:

A	service	should	comprise	a	domain	functionality.
A	service	can	be	used	independently.
It	is	available	in	the	network.
Each	service	has	an	interface.	Knowledge	about	the	interface	is	sufficient	to
use	the	service.
The	service	can	be	used	via	different	programming	languages	and	platforms.
To	make	it	easy	to	use	the	service	is	registered	in	a	directory.	Via	this
directory	clients	search	the	service	at	run	time	and	use	it.

The	service	should	be	coarse-grained	in	order	to	reduce	dependencies.
Small	services	can	only	implement	sensible	functionalities	together	with
other	services.	Therefore,	SOA	focuses	rather	on	larger	services.

SOA	services	do	not	need	to	be	newly	implemented,	but	are	already	present	in	the
company	applications.	Introducing	SOA	means	to	make	these	services	available
outside	of	those	applications.	Because	of	the	distribution	of	applications	into
services	their	use	in	different	contexts	is	facilitated.	This	is	supposed	to	improve
the	flexibility	of	the	overall	IT	–	that	is	the	goal	of	SOA.	Due	to	the	distribution
into	individual	services	it	is	possible	to	recycle	services	during	the
implementation	of	business	processes.	This	requires	only	to	orchestrate	the
individual	services.

Fig.	15:	Overview	of	a	SOA	landscape

Fig.	15	depicts	a	possible	SOA	landscape.	Like	the	previous	examples	this
example	is	derived	from	the	E-commerce	field.	There	are	different	systems	in	the
SOA	landscape:

The	CRM	(Customer	Relationship	Management)	is	an	application,	which
stores	essential	information	about	the	customers.	This	information	comprises
not	only	contact	details,	but	also	the	history	of	all	transactions	with	the
customer	–	telephone	calls	as	well	as	emails	or	orders.	The	CRM	exposes
services,	which	for	instance	support	the	creation	of	a	new	customer,	provide
information	about	a	customer	or	generate	reports	for	all	customers.
The	Order	System	is	in	charge	of	order	processing.	It	can	receive	new
orders,	provide	information	about	the	order	status	or	cancel	an	order.	Also
this	system	provides	access	to	the	different	functionalities	via	individual
services.	These	services	might	have	been	added	as	additional	interface	to	the
system	after	the	first	version	was	put	into	production.
In	the	scheme	CRM	and	the	order	system	are	the	only	systems.	In	reality	there
would	be	certainly	additional	systems,	for	instance	to	provide	the	product
catalog.	However,	to	illustrate	a	SOA	landscape	these	two	systems	suffice.
For	the	systems	to	be	able	to	call	each	other	there	is	an	integration	platform.
This	platform	allows	for	the	communication	between	the	services.	It	can
newly	compose	the	services	by	orchestration.	Orchestration	can	be	mediated

by	a	technology,	which	models	business	processes	and	calls	the	individual
services	to	execute	the	different	processes.
Therefore,	orchestration	is	responsible	for	coordinating	the	different
services.	The	infrastructure	is	intelligent	and	can	react	appropriately	to	the
different	messages.	It	contains	the	model	of	the	business	processes	and	thus
an	important	part	of	the	business	logic.
SOA	can	be	used	via	a	portal.	The	portal	is	responsible	for	providing	the
users	with	an	interface	for	using	the	services.	There	can	be	different	portals:
for	instance	one	for	the	customers,	one	for	the	support	and	one	for	internal
employees.	Likewise,	the	system	can	be	called	via	rich	client	applications	or
mobile	Apps.	From	an	architectural	perspective	this	does	not	make	a
difference:	All	such	systems	use	the	different	services	to	make	them	useable
for	a	user.	Eventually,	all	these	systems	are	a	universal	UI	to	be	able	to	use
all	services	in	the	SOA.

Each	of	these	systems	can	be	operated	und	further	developed	by	an	individual
team.	In	the	example	there	could	be	one	team	each	for	the	CRM	and	the	order
system,	and	one	additional	team	each	for	each	portal	and	finally	one	team	taking
care	of	integration	and	orchestration.

Fig	16	shows	how	communication	is	structured	in	SOA	architecture.	Users
typically	work	with	SOA	via	the	portal.	Thereby	business	processes	can	be
initiated,	which	then	are	implemented	in	the	orchestration	layer.	These	processes
use	the	services.	Especially	when	migrating	from	a	Monolith	to	SOA	users	might
still	use	a	Monolith	via	its	own	user	interface.	However,	SOA	usually	aims	for
having	a	portal	as	central	user	interface	and	an	orchestration	for	implementing
processes.

Fig.	16:	Communication	in	a	SOA	architecture

Introducing	SOA

Introducing	SOA	is	a	strategic	initiative	involving	different	teams.	In	the	end	the
aim	is	to	distribute	the	entire	company	IT	into	separate	services.	The	distribution
supports	the	composition	of	services	into	new	functionalities	in	a	better	manner.
However,	this	is	only	possible	when	all	systems	in	the	entire	organization	have
been	adjusted.	And	only	when	so	many	services	are	available	that	business
processes	can	be	implemented	by	simple	orchestration,	SOA’s	advantages	are
really	evident.	Therefore,	the	integration	and	orchestration	technology	has	to	be
used	in	the	entire	IT	to	enable	service	communication	and	integration.	This	entails
high	investment	costs	as	the	entire	IT	landscape	has	to	be	changed.	This	is	one	of
the	main	points	of	criticism	in	regards	to	SOA.

The	services	can	also	be	offered	to	other	companies	and	users	via	internet	or
private	networks.	Thus	SOA	is	well	suited	to	support	business	concepts,	which
are	based	on	the	outsourcing	of	services	or	the	inclusion	of	external	services.	In

http://apsblog.burtongroup.com/2009/01/soa-is-dead-long-live-ser-%20vices.html

an	E-commerce	application	an	external	provider	could	for	instance	offer	simple
services	like	address	validation	or	complex	services	like	a	credit	check.

Services	in	a	SOA

At	least	when	introducing	SOA	based	on	old	systems	the	SOA	services	are	only
interfaces	of	large	Deployment	Monolith.	One	Monolith	offers	several	services.
The	services	are	built	upon	the	existing	applications.	Often	it	is	not	even
necessary	to	adjust	the	internals	of	a	system	in	order	to	offer	the	services.	Such	a
service	typically	does	not	have	a	UI,	instead	it	offers	only	an	interface	for	other
applications.	A	UI	exists	only	for	all	systems.	It	is	also	not	part	of	a	service,	but
independent	-	for	instance	in	the	portal.

In	addition,	it	is	possible	to	implement	smaller	deployment	units	in	a	SOA.	The
definition	of	SOA	services	does	not	limit	the	size	of	the	deployment	units	–	quite
contrary	to	Microservices	where	the	size	of	the	deployment	units	is	a	defining
feature.

Interfaces	and	Versioning

Service	versioning	in	SOA	is	a	special	challenge.	Service	changes	have	to	be
coordinated	with	the	users	of	the	respective	service.	Because	of	this	coordination
requirement,	changes	to	the	interface	of	the	services	are	laborious.	Service	users
are	unlikely	to	adjust	their	own	software	if	they	do	not	profit	from	the	new
interface.	Therefore,	old	interface	versions	frequently	have	to	be	supported	as
well.	This	means	that	numerous	interface	versions	have	probably	to	be	supported
if	a	service	is	used	by	many	clients.	This	increases	software	complexity	and
renders	changes	more	difficult.	After	all,	the	correct	functioning	of	the	old
interfaces	has	to	be	ensured	upon	each	new	software	release.	If	data	are
supplemented,	challenges	arise	because	the	old	interfaces	do	not	support	these
data.	This	is	no	problem	during	reading.	However,	when	writing	it	can	be	difficult
to	create	new	data	sets	without	the	additional	data.

External	Interfaces

If	there	are	external	users	outside	the	company	using	the	service,	interface	changes
get	even	more	difficult.	In	the	worst	case	the	service	provider	does	not	even	know
exactly	who	is	using	the	service	since	it	is	available	to	anonymous	users	in	the
Internet.	In	that	case	it	is	nearly	impossible	to	coordinate	changes.	Consequently,
switching	off	an	old	service	version	then	gets	nearly	unfeasible.	This	leads	to	a
growing	number	of	interface	versions,	and	service	changes	get	more	and	more
difficult.	This	problem	concerns	Microservices	as	well	(compare	section	9.6).

The	interface	users	are	also	facing	challenges:	If	they	need	an	interface
modification,	they	have	to	coordinate	this	with	the	team	offering	the	service.	Then
the	changes	have	to	be	prioritized	in	relation	to	all	other	changes	and	wishes	of
other	teams.	As	discussed	already,	an	interface	change	is	no	easy	task.	Therefore,
it	can	take	quite	a	long	time	till	changes	are	in	fact	implemented.	This	hampers	the
further	development	of	the	system.

Interfaces	Enforce	a	Coordination	of	Deployments

After	a	change	to	the	interface	the	deployment	of	the	services	has	to	be
coordinated.	First	the	service	has	to	be	deployed,	which	offers	the	new	interface
versions.	Only	then	the	service,	which	uses	the	new	interface,	can	be	deployed.
Since	applications	are	mostly	Deployment	Monoliths	in	the	case	of	SOA,	several
services	can	always	only	be	deployed	together.	This	renders	the	coordination	of
services	more	difficult.	In	addition,	the	risk	increases	as	the	deployment	of	a
Monolith	takes	a	long	time	and	is	hard	to	undo	–	just	because	the	changes	are	so
extensive.

Coordination	and	Orchestration

Coordinating	SOA	via	an	orchestration	in	the	integration	layer	poses	a	number	of
challenges.	In	a	way	a	Monolith	is	generated:	All	business	processes	are	echoed
in	this	orchestration.	This	Monolith	is	often	even	worse	than	the	usual	Monoliths
as	it	is	using	all	systems	within	the	enterprise	IT.	In	extreme	cases	it	can	happen
that	the	services	only	undertake	the	data	administration	while	all	logic	is	found	in
the	orchestration.	In	such	cases	the	entire	SOA	is	in	the	end	nothing	else	than	a
Monolith,	which	is	having	its	entire	logic	in	the	orchestration.

However,	even	in	other	settings	changes	to	SOA	are	not	really	easy:	Domains	are
divided	into	services	in	the	different	systems	and	into	business	processes	in
orchestration.	When	a	change	to	a	functionality	also	concerns	services	or	the	user
interface,	things	get	difficult:	Changing	the	business	processes	is	relatively
simple,	but	changing	the	service	is	only	possible	by	writing	code	and	by
deploying	a	new	version	of	the	application	providing	the	service.	The	necessary
code	changes	and	the	deployment	can	be	very	laborious.	Thus,	the	flexibility	of
SOA	is	lost,	which	was	meant	to	arise	from	a	simple	orchestration	of	services.
Modifications	of	the	user	interface	cause	changes	to	the	portal	or	to	the	other	user
interface	systems	and	require	likewise	a	new	deployment.

Technologies

SOA	is	an	architecture	approach	and	independent	of	a	concrete	technology.
However,	a	SOA	has	to	define	a	common	technology	for	the	communication
between	the	services,	like	Microservices	do.	In	addition,	a	concrete	technology
needs	to	be	set	for	the	orchestration	of	the	services.	Often	introducing	a	SOA
leads	to	the	introduction	of	complex	technologies	to	allow	for	the	integration	and
orchestration	of	the	services.	There	are	special	products,	which	support	all
aspects	of	SOA.	However,	they	are	correspondingly	complex,	and	their	features
are	hardly	ever	used	to	full	capacity.

This	technology	can	rapidly	turn	into	a	bottleneck.	Many	problems	with	these
technologies	are	attributed	to	SOA	although	SOA	could	be	implemented	with	other
technologies	as	well.	One	of	the	problems	is	the	complexity	of	the	web	services
protocols.	SOA	on	its	own	is	still	quite	simple,	however,	in	conjunction	with	the
extensions	from	the	WS-*	environment	a	complex	protocol	stack	arises.	WS-*	is
necessary	for	transactions,	security	or	other	extensions.	Complex	protocols
exacerbate	the	interoperability	–	however,	interoperability	is	a	prerequisite	for	a
SOA.

An	action	on	the	user	interface	has	to	be	processed	by	the	orchestration	and	the
different	services.	These	are	distributed	calls	within	the	network	with	associated
overhead	and	latency.	Moreover,	this	communication	runs	via	the	central
integration	and	orchestration	technology,	which	accordingly	has	to	cope	with
numerous	calls.

7.2	Differences	Between	SOA	and	Microservices
SOA	and	Microservices	are	related:	Both	aim	at	splitting	applications	into
services.	It	is	also	not	easy	to	distinguish	between	SOA	and	Microservices	just
because	of	what	is	happening	in	the	network.	After	all,	in	both	architecture
approaches	many	services	exchange	information	via	the	network.

Communication

Like	Microservices	SOA	can	be	based	on	asynchronous	communication	or
synchronous	communication.	SOAs	can	be	uncoupled	by	sending	merely	events
like	“new	order”.	In	such	cases	every	SOA	service	can	react	to	the	event	with
different	logic.	One	service	can	write	a	bill	and	another	can	initiate	the	delivery.
The	services	are	strongly	uncoupled	since	they	only	react	to	events	without
knowing	the	trigger	for	the	events.	New	services	can	easily	be	integrated	into	the
system	by	likewise	reacting	to	such	events.

Orchestration

However,	already	at	the	level	of	integration	differences	between	SOA	and
Microservices	appear:	In	SOA	the	integration	solution	is	also	responsible	for
orchestrating	the	services.	A	business	process	is	built	up	from	services.	In	a
Microservice-based	architecture	the	integration	solution	does	not	possess	any
intelligence.	The	Microservices	are	responsible	for	communicating	with	the	other
services.	SOA	attempts	to	use	orchestration	to	gain	additional	flexibility	for	the
implementation	of	business	processes.	This	will	only	work	out	when	services	and
user	interface	are	stable	and	do	not	frequently	have	to	be	modified.

Flexibility

For	achieving	the	necessary	flexibility	Microservices	on	the	other	hand	exploit	the
fact	that	each	Microservice	can	be	easily	changed	and	brought	into	production.
When	the	flexible	business	processes	of	SOA	are	not	sufficient,	SOA	forces	the
change	of	services	into	Deployment	Monolith	or	user	interfaces	in	an	additional
Deployment	Monolith.

Microservices	place	emphasis	on	isolation:	Ideally	a	user	interaction	is
completely	processed	within	one	Microservice	without	the	need	to	call	another
Microservice.	Therefore,	changes	required	for	new	features	are	limited	to
individual	Microservices.	SOA	distributes	the	logic	to	the	portal,	the
orchestration	and	the	individual	services.

Microservices:	Project	Level

However,	the	most	important	difference	between	SOA	and	Microservices	is	the
level	at	which	the	architecture	aims.	SOA	considers	the	entire	enterprise.	It
defines	how	a	multitude	of	systems	within	the	enterprise	IT	interacts.
Microservices	on	the	other	hand	represent	an	architecture	for	an	individual
system.	They	are	an	alternative	to	other	modularization	technologies.	It	would	be
conceivable	to	implement	a	Microservice-based	system	with	another
modularization	technology	and	then	to	bring	the	system	into	production	as	a
Deployment	Monolith	without	distributed	services.	An	entire	SOA	spans	the	entire
enterprise	IT.	It	has	to	look	at	different	systems.	An	alternative	to	a	distributed
approach	is	not	conceivable.	Accordingly,	the	decision	for	a	Microservice-based
architecture	can	concern	and	be	limited	to	an	individual	project	while	the
introduction	and	implementation	of	SOA	pertains	to	the	entire	enterprise.

The	SOA	scenario	depicted	in	Fig.	15	results	in	a	fundamentally	different
architecture	(compare	Fig.	17)	if	implemented	using	Microservices:

http://slideshare.net/ewolff/micro-services-neither-micro-nor-service
https://blogs.oracle.com/archbeat/entry/podcast_show_notes_micro-services_roundtable

Fig.	17:	CRM	as	Collection	of	Microservices

Since	Microservices	refer	to	a	single	system,	the	architecture	does	not	need
to	comprise	the	entire	IT	with	its	different	systems,	but	can	be	limited	to	an
individual	system.	In	Fig.	17	this	system	is	the	CRM.	Thus,	implementing
Microservices	is	relatively	easy	and	not	very	costly	as	it	is	sufficient	to
implement	one	individual	project	rather	than	to	change	the	entire	IT
landscape	of	the	enterprise.
Accordingly,	a	Microservice-based	architecture	does	not	require	an
integration	technology	to	be	introduced	and	used	throughout	the	company.	The
use	of	a	specific	integration	and	communication	technology	is	limited	to	the
Microservice	system	-	it	is	even	possible	to	use	several	approaches.	For
instance,	a	high-performance	access	also	to	large	data	sets	can	be
implemented	by	replicating	the	data	in	the	database.	For	access	to	other
systems	again	other	technologies	can	be	used.	In	case	of	SOA	all	services	in
the	entire	company	need	to	be	accessible	via	a	uniform	technology.	This
requires	a	uniform	technology	stack.	Microservices	focus	on	simpler

technologies,	which	do	not	have	to	fulfill	as	complex	requirements	as	SOA
suites.
In	addition,	communication	between	Microservices	is	different:
Microservices	employ	simple	communication	systems	without	any
intelligence.	Microservices	call	each	other	or	send	messages.	The	integration
technology	does	not	implement	an	orchestration.	A	Microservice	can	call
several	other	Microservices	and	implement	an	orchestration	on	its	own.	In
that	case,	the	logic	for	the	orchestration	resides	in	the	Microservice	and	not
in	an	integration	layer.	In	the	case	of	Microservices	the	integration	solution
contains	no	logic,	because	it	would	originate	from	different	domains.	This
conflicts	with	the	distribution	according	to	domains,	which	Microservice-
based	architectures	aim	at.
The	use	of	the	integration	is	also	entirely	different.	Microservices	avoid
communication	with	other	Microservices	by	having	the	UI	integrated	into	the
Microservice	and	due	to	their	domain-based	distribution.	SOA	focuses	on
communication.	SOA	obtains	its	flexibility	by	orchestration	-	this	is
accompanied	by	communication	between	services.	And	in	the	case	of
Microservices	the	communication	does	not	necessarily	have	to	be
implemented	via	messaging	or	REST:	An	integration	at	the	UI	level	or	via
data	replication	is	possible	as	well.
CRM	as	complete	system	is	not	really	present	anymore	in	a	Microservice-
based	architecture.	Instead	there	is	a	collection	of	Microservices,	which
each	cover	specific	functionalities	like	reports	or	forecasting	transaction
volume.
While	in	SOA	all	functionalities	of	the	CRM	system	are	collected	in	a	single
deployment	unit,	each	service	is	an	independent	deployment	unit	and	can	be
brought	into	production	independently	of	the	other	services	in	the	case	of
Microservice-based	approaches.	Depending	on	the	concrete	technical
infrastructure	the	services	can	be	even	smaller	than	the	ones	depicted	in	Fig.
17.
Finally,	the	handling	of	UI	is	different:	For	Microservices	the	UI	is	part	of
the	Microservice,	while	SOA	typically	offers	only	services,	which	then	can
be	used	by	a	portal.
The	division	into	UI	and	service	in	SOA	has	far	reaching	consequences:	To
implement	a	new	functionality	including	the	UI	in	SOA,	at	least	the	service
has	to	be	changed	and	the	UI	adjusted.	This	means	that	at	least	two	teams
have	to	be	coordinated.	When	other	services	in	other	applications	are	used,
even	more	teams	are	involved	requiring	consequently	an	even	greater
coordination	effort.	In	addition	there	are	also	orchestration	changes,	which

are	implemented	likewise	by	a	separate	team.	Microservices	on	the	other
hand	attempt	that	an	individual	team	can	bring	a	new	functionality	into
production	with	as	little	need	for	coordination	with	other	teams	as	possible.
Due	to	the	Microservice-based	architecture,	interfaces	between	layers,
which	normally	are	between	teams,	are	now	within	a	team.	This	facilitates
the	implementation	of	changes.	The	changes	can	be	processed	in	one	team.	If
another	team	were	involved,	the	changes	had	to	be	prioritized	in	relation	to
other	requirements.
Each	Microservice	can	be	developed	and	operated	by	one	individual	team.
This	team	is	responsible	for	a	specific	domain	and	can	implement	new
requirements	or	changes	to	the	domain	completely	independently	of	other
teams.
Moreover,	the	approach	is	different	between	SOA	and	Microservices:	SOA
introduces	only	one	new	layer	above	the	existing	services	in	order	to
combine	applications	in	new	ways.	It	aims	at	a	flexible	integration	of	the
existing	applications.	Microservices	serve	to	change	the	structure	of	the
applications	themselves	–	in	pursuit	of	the	goal	to	make	changes	to
applications	easier.

The	communication	relationships	in	case	of	Microservices	are	depicted	in	Fig.
18:	The	user	interacts	with	the	UI,	which	is	implemented	by	the	different
Microservices.	In	addition,	the	Microservices	communicate	with	each	other.
There	is	no	central	UI	or	orchestration.

Fig.	18:	Communication	in	the	case	of	Microservices

Synergies

There	are	definitely	areas	where	Microservices	and	SOA	have	synergies.	In	the
end	both	approaches	pursue	the	goal	to	resolve	applications	into	services.	Such	a
step	can	be	helpful	when	migrating	an	application	to	Microservices:	When	the
application	is	split	into	SOA	services,	individual	services	can	be	replaced	or
supplemented	by	Microservices.	Certain	calls	can	be	processed	by	a
Microservice	while	other	calls	are	still	processed	by	the	application.	This	allows

to	migrate	applications	in	a	stepwise	manner	and	to	implement	the	Microservices
step	by	step.

Fig.	19	shows	an	example:	The	upper	most	service	of	CRM	is	supplemented	by	a
Microservice.	This	Microservice	now	takes	all	calls	and	can,	if	necessary,	call
the	CRM.	The	second	CRM	service	is	completely	replaced	by	a	Microservice.
Thereby	the	CRM	can	be	complemented	by	new	functionalities.	At	the	same	time,
it	is	not	necessary	to	newly	implement	the	entire	CRM,	instead	Microservices	can
complement	it	at	selected	places.	Section	8.5	presents	additional	approaches	how
legacy	applications	can	be	replaced	by	Microservices.

Fig.	19:	SOA	for	migrating	to	Microservices

7.3	Conclusion
Tab.	2:	Differences	between	SOA	and	Microservices

	 SOA Microservices
Scope Enterprise-wide	architecture Architecture	for	one	project
Flexibility Flexibility	by	orchestration Flexibility	by	fast	deployment
	 	 and	rapid,	independent	development
	 	 of	Microservices
Organization Services	are	implemented Services	are	implemented
	 by	different	organizational by	teams	in	the	same

	 units project
Deployment Monolithic	deployment	of Each	Microservice	can
	 several	services be	deployed	individually
UI Portal	as	universal	UI	for Service	contains	UI
	 all	services 	

At	the	organizational	level	the	approaches	are	very	different:	SOAs	place
emphasis	on	the	structure	of	the	entire	enterprise	IT,	Microservices	can	be	utilized
in	an	individual	project.	SOAs	focus	on	an	organization	where	some	teams
develop	backend	services,	while	a	different	team	implements	the	UI.	In	a
Microservice-based	approach	one	team	should	implement	everything	to	facilitate
communication	and	thereby	speed	up	the	implementation	of	features.	That	is	not	a
goal	of	SOA.	In	SOA	a	new	feature	can	entail	changes	to	numerous	services	and
thus	require	communication	between	a	large	number	of	teams.	Microservices	try
to	avoid	this.

At	the	technical	level	there	are	commonalities:	Both	concepts	are	based	on
services.	The	service	granularity	can	even	be	similar.	Because	of	these	technical
similarities	it	does	not	seem	to	be	so	easy	to	distinguish	SOA	from	Microservices.
However,	from	conceptual,	architectural	and	organizational	view	points	both
approaches	have	very	different	effects.

Essential	Points

SOA	and	Microservices	split	applications	into	services,	which	are	available
in	the	network.	Similar	technologies	can	be	employed	to	this	end.
SOA	aims	at	flexibility	at	the	level	of	the	enterprise	IT	by	orchestrating	the
services.	This	is	a	complex	undertaking	and	only	works	when	the	services	do
not	need	to	be	modified.
Microservices	focus	on	individual	projects	and	aim	at	facilitating
deployment	and	enabling	parallel	work	on	different	services.

Try	and	Experiment

A	new	functionality	is	supposed	to	be	incorporated	into	the	SOA	landscape	depicted	in	Fig.	15.	The
CRM	does	not	have	support	for	email	campaigns.	Therefore,	a	system	for	email	campaigns	has	to
be	implemented.	It	is	supposed	to	contain	a	service	for	the	creation	and	execution	of	campaigns	and
a	service	for	evaluating	the	results	of	a	campaign.

An	architect	has	to	answer	the	following	questions:

Is	the	SOA	infrastructure	needed	for	integrating	the	two	services?	The	service	for	campaign
evaluation	needs	a	large	amount	of	data.

Would	it	be	better	to	use	data	replication,	UI-level	integration	or	service	calls	for
accessing	the	large	amount	of	data?
Which	of	these	integration	options	is	typically	offered	by	SOA?

Should	the	service	integrate	into	the	existing	portal	or	rather	have	its	own	user	interface?
Which	arguments	favor	the	one	or	the	other	option?
Should	the	new	functionality	be	implemented	by	the	CRM	team?

Part	III:	Implementing	Microservices

This	part	of	the	book	demonstrates	how	Microservices	can	be	implemented.	After
studying	this	part	the	reader	cannot	only	design	Microservice-based	architectures,
but	also	implement	them	and	evaluate	the	organizational	effects.

Chapter	8:	Architecture	of	Microservice-based	Systems

Chapter	8	describes	the	architecture	of	Microservice-based	systems.	It	focuses	on
the	interplay	between	individual	Microservices.

The	domain	architecture	deals	with	Domain-Driven	Design	as	basis	of
Microservice-based	architectures	and	shows	metrics	which	allow	to	measure	the
quality	of	the	architecture.	Architecture	management	is	a	challenge:	It	can	be
difficult	to	keep	the	overview	of	the	numerous	Microservices.	However,	often	it	is
sufficient	to	understand	how	a	certain	use	case	is	implemented	and	which
Microservices	interact	in	a	specific	scenario.

Practically	all	IT	systems	are	subject	to	more	or	less	profound	change.	Therefore
the	architecture	of	a	Microservice	system	has	to	evolve	and	the	system	has	to
undergo	continued	development.	To	achieve	this	several	challenges	have	to	be
solved,	which	do	not	arise	in	this	form	in	the	case	of	Deployment	Monoliths	–	for
instance	the	overall	distribution	into	Microservices	is	difficult	to	change.
However,	changes	to	individual	Microservices	are	simple.

In	addition,	Microservice	systems	need	to	integrate	legacy	systems.	This	is	quite
simple	as	Microservices	can	treat	legacy	systems	as	blackbox.	A	replacement	of	a
Deployment	Monolith	by	Microservices	can	progressively	transfer	more
functionalities	into	Microservices	without	having	to	adjust	the	inner	structure	of
the	legacy	system	or	having	to	understand	the	code	in	detail.

The	technical	architecture	comprises	typical	challenges	for	the	implementation	of
Microservices.	In	most	cases	there	is	a	central	configuration	and	coordination	for
all	Microservices.	Furthermore,	a	load	balancer	distributes	the	load	between	the
individual	instances	of	the	Microservices.	The	security	architecture	has	to	leave
each	Microservice	the	freedom	to	implement	its	own	authorizations	in	the	system,
but	also	ensure	that	a	user	needs	to	log	in	only	once.	Finally,	Microservices

should	return	information	concerning	themselves	as	documentation	and	as
metadata.

Chapter	9:	Integration	and	Communication

Chapter	9	shows	the	different	possibilities	for	the	integration	and	communication
between	Microservices.	There	are	three	possible	levels	for	integration:

Microservices	can	integrate	at	the	web	level.	In	that	case	each	Microservice
delivers	a	part	of	the	web	UI.
At	the	logic	level	Microservices	can	communicate	via	REST	or	messaging.
Data	replication	is	also	possible.

Via	these	technologies	the	Microservices	have	internal	interfaces	for	other
Microservices.	The	complete	system	can	have	one	interface	to	the	outside.
Changes	to	the	different	interfaces	create	different	challenges.	Accordingly,	this
chapter	also	deals	with	versioning	of	interfaces	and	the	effects	thereof.

Chapter	10:	Architecture	of	Individual	Microservices

Chapter	10	describes	possibilities	for	the	architecture	of	an	individual
Microservice.	There	are	different	approaches	for	an	individual	Microservice:

CQRS	divides	read	and	write	access	into	two	separate	services.	This	allows
for	smaller	services	and	an	independent	scaling	of	both	parts.
Event	Sourcing	administrates	the	state	of	a	Microservice	via	a	stream	of
events	from	which	the	current	state	can	be	deduced.
In	a	hexagonal	architecture	the	Microservice	possesses	a	core,	which	can	be
accessed	via	different	adaptors	and	which	communicates	also	via	such
adaptors	with	other	Microservices	or	the	infrastructure.

Each	Microservice	can	follow	an	independent	architecture.

In	the	end	all	Microservices	have	to	handle	technical	challenges	like	resilience
and	stability	–	these	issues	have	to	be	solved	by	their	technical	architecture.

Chapter	11:	Testing	Microservices	and	Microservice-based	Systems

Testing	is	the	focus	of	chapter	11.	Also	tests	have	to	take	the	special	challenges
associated	with	Microservices	into	consideration.

The	chapter	starts	off	with	explaining	why	tests	are	necessary	at	all	and	how	a
system	can	be	tested	in	principle.

Microservices	are	small	deployment	units.	This	decreases	the	risk	associated	with
deployments.	Accordingly,	besides	tests	also	optimization	of	deployment	can	help
to	decrease	the	risk.

Testing	the	entire	system	represents	a	special	problem	in	case	of	Microservices
since	only	one	Microservice	at	a	time	can	pass	through	this	phase.	If	the	tests	last
one	hour,	only	eight	deployments	will	be	feasible	per	working	day.	In	the	case	of
50	Microservices	that	is	by	far	too	few.	Therefore,	it	is	necessary	to	limit	these
tests	as	much	as	possible.

Often	Microservices	replace	legacy	systems.	The	Microservices	and	the	legacy
system	both	have	to	be	tested	–	and	also	their	interplay.	Tests	for	the	individual
Microservices	differ	in	some	respects	greatly	from	tests	for	other	software
systems.

Consumer-driven	contract	tests	are	an	essential	component	of	Microservice	tests:
They	test	the	expectations	of	a	Microservice	in	regards	to	an	interface.	Thereby
the	correct	interplay	of	Microservices	can	be	ensured	without	having	to	test	the
Microservices	together	in	an	integration	test.	Instead	a	Microservice	defines	its
requirements	for	the	interface	in	a	test,	which	the	used	Microservice	can	execute.

Microservices	have	to	adhere	to	certain	standards	in	regards	to	monitoring	or
logging.	The	adherence	to	these	standards	can	also	be	checked	by	tests.

Chapter	12:	Operation	and	Continuous	Delivery	of	Microservices

Operation	and	Continuous	Delivery	are	the	focus	of	chapter	12.	Especially	the
infrastructure	is	an	essential	challenge	when	introducing	Microservices.	Logging
and	monitoring	have	to	be	uniformly	implemented	across	all	Microservices,
otherwise	the	associated	expenditure	gets	too	large.	In	addition,	there	should	be	a
uniform	deployment.	Finally,	starting	and	stopping	of	Microservices	should	be
possible	in	a	uniform	manner	–	i.e.	via	a	simple	control.	For	these	areas	the
chapter	introduces	concrete	technologies	and	approaches.	Additionally,	the
chapter	presents	infrastructures	which	especially	facilitate	the	operation	of	a
Microservices	environment.

Chapter	13:	Organizational	Effects	of	a	Microservice-based	Architecture

Finally	chapter	13	discusses	how	Microservices	influence	the	organization.
Microservices	allow	for	a	simpler	distribution	of	tasks	to	independent	teams	and
thus	for	parallel	work	on	different	features.	To	that	end	the	tasks	have	to	be
distributed	to	the	teams,	which	subsequently	introduce	the	appropriate	changes
into	their	Microservices.	However,	new	features	can	also	comprise	several
Microservices.	In	that	case	one	team	has	to	put	requirements	to	another	team	–	this
requires	a	lot	of	coordination	and	delays	the	implementation	of	new	features.
Therefore,	it	can	be	better	that	teams	also	change	Microservices	of	other	teams.

Microservices	divide	the	architecture	into	micro	and	macro	architecture:	In
regards	to	micro	architecture	the	teams	can	make	their	own	decisions	while	the
macro	architecture	has	to	be	defined	for	and	coordinated	across	all
Microservices.	In	areas	like	operation,	architecture	and	testing	individual	aspects
can	be	assigned	to	micro	or	macro	architecture.

DevOps	as	organizational	form	fits	well	to	Microservices	since	close	cooperation
between	operation	and	development	is	very	useful,	especially	for	the
infrastructure	intensive	Microservices.

The	independent	teams	each	need	their	own	independent	requirements,	which	in
the	end	have	to	be	derived	from	the	domain.	Consequently,	Microservices	have
also	effects	in	these	areas.

Code	recycling	is	likewise	an	organizational	problem:	How	do	the	teams
coordinate	the	different	requirements	for	shared	components?	A	model	which	is
inspired	by	open	source	projects	can	help.

However,	there	is	of	course	the	question	whether	Microservices	are	possible	at
all	without	organizational	changes	–	after	all,	the	independent	teams	constitute	one
of	the	essential	reasons	for	introducing	Microservices.

8	Architecture	of	Microservice-based	Systems

This	chapter	discusses	how	Microservices	should	behave	from	the	outside	and
how	the	entire	Microservice	system	can	be	developed.	Chapter	9	will	show
possible	communication	technologies,	which	are	another	important	technology
component.	Chapter	10	focuses	on	the	architecture	of	individual	Microservices.

Section	8.1	describes	what	the	domain	architecture	of	a	Microservice	system
should	look	like.	Section	8.2	presents	appropriate	tools	to	visualize	and	manage
the	architecture.	Section	8.3	shows	how	the	architecture	can	be	adapted	in	a
stepwise	manner.	Only	the	constant	adaptation	of	the	software	architecture	ensures
that	the	system	remains	maintainable	in	the	long	run	and	can	be	developed	further.
Section	8.4	depicts	which	goals	and	which	approaches	are	important	to	enable
further	development.

Subsequently,	a	number	of	approaches	for	the	architecture	of	a	Microservice-
based	system	are	explained.	Section	8.6	introduces	Event-driven	Architecture.
This	approach	allows	for	architectures	that	are	very	loosely	coupled.	Section	8.5
discusses	the	special	challenges	which	arise	when	a	legacy	application	is
supposed	to	be	supplemented	or	replaced	by	Microservices.

Finally	8.7	deals	with	the	topic	which	technical	aspects	are	relevant	for	the
architecture	of	a	Microservice-based	system.	Some	of	these	aspects	are	presented
in	depth	in	the	following	sections:	mechanisms	for	coordination	and	configuration
(section	8.8),	for	Service	Discovery	(section	8.9),	Load	Balancing	(section	8.10),
scalability	(section	8.11),	security	(section	8.12)	and	finally	documentation	and
metadata	(section	8.13).

8.1	Domain	Architecture
The	domain	architecture	of	a	Microservice-based	system	determines	which
Microservices	within	the	system	should	implement	which	domain.	It	defines	how
the	entire	domain	is	split	into	different	areas,	which	are	each	implemented	by	one
Microservice	and	thus	one	team.	To	devise	such	an	architecture	presents	a	central
challenge	when	introducing	Microservices.	After	all,	it	is	an	important	motivation
for	the	use	of	Microservices	that	changes	to	the	domain	can	ideally	be

implemented	by	just	one	team	by	changing	only	one	Microservice	–	so	that	little
coordination	and	communication	across	teams	is	required.	In	this	way,
Microservices	support	the	scaling	of	the	software	development	since	even	large
teams	need	little	communication	and	thus	can	still	work	productively.

To	really	achieve	this,	a	central	point	is	the	design	of	a	domain	architecture	for	the
Microservices,	in	which	changes	are	really	limited	to	single	Microservices	and
thus	individual	teams.	When	the	distribution	into	Microservices	does	not	support
this,	changes	will	require	additional	coordination	and	communication.	In	such	a
case	the	Microservice-based	approach	cannot	bring	its	advantages	fully	to	bear.

Strategic	Design	and	Domain-Driven	Design

Section	4.3	discussed	already	the	distribution	of	Microservices	based	on	Strategic
Designs,	which	are	taken	from	Domain-driven	Design.	A	central	element	is	here
that	the	Microservices	are	distributed	into	contexts	–	i.e.	areas	which	present	each
a	separate	functionality.

Often	architects	develop	a	Microservice	architecture	based	on	entities	from	a
domain	model.	A	certain	Microservice	implements	the	logic	for	a	certain	type	of
entity.	In	such	a	case	there	is	for	instance	one	Microservice	for	customers,	one	for
items	and	one	for	deliveries.	This	approach	conflicts	with	the	idea	of	Bounded
Context,	according	to	which	a	uniform	modeling	of	data	is	impossible.	Moreover,
this	approach	isolates	changes	very	badly.	When	a	process	is	supposed	to	be
modified	and	for	this	reason	entities	have	likewise	to	be	adapted,	the	change	is
distributed	across	different	Microservices.	Thus,	changing	the	order	process	will
concern	also	the	entity	modeling	for	customers,	items	and	deliveries.	When	that	is
the	case,	the	three	Microservices	for	the	different	entities	have	to	be	changed	in
addition	to	the	Microservice	for	the	order	process.	To	avoid	this,	it	can	be
sensible	to	keep	certain	parts	of	the	data	for	customers,	items	and	deliveries	in	the
Microservice	for	the	order	process.	This	limits	changes	to	the	order	process	even
in	that	case	to	only	one	Microservice	when	the	data	modeling	has	to	be	modified.

However,	there	can	still	be	services	dedicated	to	the	administration	of	certain
entities.	For	instance,	it	can	be	necessary	to	administrate	at	least	the	most
fundamental	data	of	a	certain	business	entity	in	a	service.	Thus,	a	service	can
definitely	administrate	the	client	data,	but	leave	specific	client	data	such	as	a
bonus	program	number	to	other	Microservices	–	for	example	to	the	Microservice
for	the	order	process,	which	likely	has	to	know	this	number.

Example	Otto	Shop

An	example	–	i.e.	the	architecture	of	the	Otto	shop	–	illustrates	this	concept.	There
are	on	the	one	hand	services	like	user,	order	or	product,	which	are	rather	oriented
towards	data,	and	on	the	other	hand	areas	like	tracking,	search	&	navigation	and
personalization,	which	are	not	geared	to	data,	but	to	functionalities.	Exactly	such	a
domain	design	should	be	aimed	at	in	a	Microservice-based	system.

A	domain	architecture	requires	a	precise	understanding	of	the	domain.	The	domain
architecture	comprises	not	only	the	division	of	the	system	into	Microservices,	but
also	the	dependencies.	A	dependency	arises	when	a	dependent	Microservice	uses
another	one	–	for	instance	by	calling	the	Microservice,	by	using	elements	from	the
UI	of	the	Microservice	or	by	replicating	its	data.	Such	a	dependency	means	that
changes	to	a	Microservice	can	influence	also	the	Microservice	that	is	dependent
on	it.	If	the	Microservice	modifies	for	instance	its	interface,	the	dependent
Microservice	has	to	be	adapted	to	these	changes.	Also	new	requirements
concerning	the	dependent	Microservice	might	necessitate	that	the	other
Microservice	modifies	its	interface.	If	the	dependent	Microservice	needs	more
data	to	implement	the	requirements,	the	other	Microservice	has	to	offer	these	data
and	to	adjust	its	interface	accordingly.

For	Microservices	such	dependencies	cause	disadvantages	beyond	software
architecture:	After	all,	Microservices	can	be	implemented	by	different	teams.	In
that	case	a	change	to	an	interface	necessitates	also	collaboration	between	teams	–
this,	however,	is	laborious	and	time-consuming.

Managing	Dependencies

Managing	dependencies	between	Microservices	is	central	for	the	architecture	of
the	system.	Having	too	many	dependencies	will	preclude	that	Microservices	can
be	changed	in	isolation	–	which	disagrees	with	the	aim	to	develop	Microservices
independently	of	each	other.	Here,	the	two	fundamental	rules	for	good	architecture
apply:

There	should	be	a	loose	coupling	between	components	such	as
Microservices.	This	means	that	they	should	have	only	few	dependencies	on
other	Microservices.	This	makes	it	easier	to	modify	them	since	changes	will
only	affect	an	individual	Microservice.
Within	a	component	such	as	a	Microservice	the	constituent	parts	should	work
closely	together.	This	is	referred	to	as	having	high	cohesion.	This	ensures
that	all	constituent	parts	within	a	Microservice	really	belong	together.

http://dev.otto.de/2013/04/14/architekturprinzipien-2/

When	these	two	prerequisites	are	not	given,	it	will	be	hardly	possible	to	change
an	individual	Microservice	in	an	isolated	manner,	and	changes	will	have	to	be
coordinated	across	multiple	teams	and	Microservices	–	this	is	just	what
Microservice-based	architectures	are	supposed	to	avoid.	However,	this	is
actually	rather	a	symptom:	The	fundamental	problem	is	how	the	domain-based
split	of	the	functionalities	between	the	Microservices	was	done	–	obviously
functionalities,	which	would	have	belonged	together	in	one	Microservice,	have
been	distributed	across	different	Microservices.	An	order	process,	for	instance,
has	also	to	generate	a	bill.	These	two	functionalities	are	so	different	that	they	have
to	be	distributed	into	at	least	two	Microservices.	However,	when	each
modification	of	the	order	process	affects	also	the	Microservice,	which	creates	the
bills,	the	domain-based	modeling	is	not	optimal	and	should	be	adjusted.	The
functionalities	have	to	be	distributed	differently	to	the	Microservices,	as	we	will
see.

Unintended	Domain-Based	Dependencies

Not	only	a	high	number	of	dependencies	poses	a	problem.	Certain	domain-based
dependencies	can	simply	be	nonsensical.	It	is	for	instance	surprising	when	in	an
E-commerce	system	the	team	responsible	for	product	search	suddenly	has	an
interface	with	the	Microservice	for	billing	-	because	that	should	not	be	the	case
from	a	domain-based	point	of	view.	However,	especially	concerning	the	domains
there	are	continuously	surprises	for	laypersons.	When	a	dependency	is	not
meaningful	from	a	domain-based	point	of	view,	something	regarding	the
functionality	of	the	Microservices	has	to	be	wrong.	Maybe	the	Microservice
implements	features	which	belong	into	other	Microservices	from	a	domain-based
perspective.	Perhaps	in	the	context	of	product	search	a	scoring	of	the	customer	is
required,	which	is	implemented	as	part	of	billing.	In	that	case	one	should	consider
whether	this	functionality	is	really	implemented	in	the	right	Microservice.	To	keep
the	system	maintainable	in	the	long	run,	such	dependencies	have	to	be	questioned
and,	if	necessary,	removed	from	the	system.	For	instance,	the	scoring	can	be
moved	into	an	new	independent	Microservice	or	transferred	into	another	existing
Microservice.

Cyclic	Dependencies

Cyclic	dependencies	can	present	additional	problems	for	a	comprehensive
architecture.	Let	us	assume	that	the	Microservice	for	the	order	process	calls	the
Microservice	for	billing	(see	Fig.	20).	The	Microservice	for	billing	fetches	data
from	the	order	process	Microservice.	When	the	Microservice	for	the	order
process	is	changed,	modifications	to	the	Microservice	for	billing	might	be

necessary	since	this	Microservice	fetches	data	from	the	Microservice	for	the
order	process.	Conversely,	changes	to	the	billing	Microservice	entail	changes	to
the	order	Microservice	as	this	Microservice	calls	the	billing	Microservice.	For
this	reason,	cyclic	dependencies	are	problematic:	The	components	cannot	be
changed	anymore	in	isolation,	contrary	to	the	underlying	aim	for	a	split	into
separate	components.	In	case	of	Microservices	especially	much	emphasis	is	laid
on	the	independence,	which	is	violated	in	this	case.	In	addition	to	the	necessary
coordination	of	changes	it	can	happen	that	the	deployment	has	to	be	coordinated.
When	a	new	version	of	the	one	Microservice	is	rolled	out,	a	new	version	of	the
other	Microservice	might	have	to	be	rolled	out	as	well,	if	they	have	a	cyclic
dependency.

Fig.	20:	Cyclic	dependency

The	remainder	of	the	chapter	shows	approaches	which	allow	to	build
Microservice-based	architectures	in	such	a	way	that	they	have	a	sound	structure
from	a	domain-based	perspective.	Metrics	like	cohesion	and	loose	coupling	can
confirm	that	the	architecture	is	really	fitting.	In	the	context	of	approaches	like
Event-driven	Architecture	(section	8.6)	Microservices	have	hardly	any	direct
technical	dependencies	since	they	send	only	messages.	Who	is	sending	the
messages	and	who	is	processing	them,	can	hardly	be	determined	from	the	code	so
that	the	metrics	look	very	good.	However,	from	a	domain-based	perspective	the
system	can	still	be	much	too	complicated,	since	the	domain-based	dependencies
are	not	examined	by	the	metrics.	Domain-based	dependencies	arise	when	two
Microservices	exchange	messages.	However,	this	is	hardly	ascertainable	by	code
analysis	so	that	the	metrics	will	always	look	quite	good.	Thus	metrics	can	only
hint	at	problems.	By	just	optimizing	the	metrics,	the	symptoms	are	optimized,	but
the	underlying	problems	remain	unsolved.	Even	worse:	Even	systems	with	good
metrics	can	have	architectural	weaknesses.	Therefore	the	metric	looses	it	value	to
determine	the	quality	of	a	software	system.

A	special	problem	in	the	case	of	Microservices	is	that	dependencies	between
Microservices	can	also	influence	the	independent	deployment.	If	a	Microservice
requires	a	new	version	of	another	Microservice	because	it	uses,	for	instance,	a
new	version	of	an	interface,	the	deployment	will	also	be	dependent:	The
Microservice	has	to	be	deployed	before	the	dependent	Microservice	can	be
deployed.	In	extreme	cases	this	can	result	in	a	large	number	of	Microservices	that
have	to	be	coordinately	deployed	–	this	is	just	what	is	supposed	to	be	avoided.
Microservices	should	be	deployed	independently	of	each	other.	Therefore,
dependencies	between	Microservices	can	present	an	even	greater	problem	than
would	be	the	case	for	modules	within	a	Deployment	Monolith.

8.2	Architecture	Management
For	a	domain	architecture	it	is	critical	which	Microservices	there	are	and	what
the	communication	relationships	between	the	Microservices	look	like.	Also	in
other	systems	the	relationships	between	the	components	are	very	important.	When
domain-based	components	are	mapped	on	modules,	classes,	Java	packages,	JAR
files	or	DLLs,	specific	tools	can	determine	the	relationships	between	the
components	and	control	the	adherence	to	certain	rules.	This	is	achieved	by	a	static
code	analysis.

Tools	for	Architecture	Management

If	no	such	architecture	management	happens,	unintended	dependencies	will
rapidly	creep	in.	The	architecture	will	get	more	and	more	complex	and	hard	to
understand.	Only	with	the	help	of	architecture	management	tools	developers	and
architects	will	be	able	to	keep	track	of	the	system.	Within	a	development
environment	developers	view	only	individual	classes.	The	dependencies	between
classes	can	only	be	found	in	the	source	code	and	are	not	readily	discernible.

Fig.	21:	Screenshot	of	the	Architecture	Management	Tool	Structure	101

Fig.	21	depicts	the	analysis	of	a	Java	project	by	the	architecture	management	tool
Structure	101.	The	image	shows	classes	and	Java	packages,	which	contain
classes.	A	Levelized	Structure	Map	(LSM)	presents	an	overview	of	them.	Classes
and	packages	which	are	further	at	the	top	of	the	LSM	use	classes	and	packages
which	are	depicted	further	to	the	bottom	of	the	LSM.	To	simplify	the	diagram,
these	relationships	are	not	indicated	there.

Cycle-Free	Software

Architectures	should	be	free	of	cycles.	Cyclic	dependencies	mean	that	two
artifacts	are	using	each	other	reciprocally.	In	the	screenshot	such	cycles	are
presented	by	dashed	lines.	They	always	run	from	bottom	to	top.	The	reciprocal

relationship	in	the	cycle	would	be	running	from	top	to	bottom	and	is	thus	not
depicted.

Apart	from	cycles	also	packages	which	are	located	at	a	wrong	position	are
relevant.	There	is,	for	instance,	a	package	util	that	according	to	its	name	is
supposed	to	contain	helper	classes.	However,	it	is	not	located	at	the	very	bottom
of	the	diagram.	Thus,	it	has	to	have	dependencies	to	packages	or	classes	which
are	further	down	–	which	should	not	be	the	case.	Helper	classes	should	be
independent	from	other	system	components	and	thus	be	depicted	at	the	very	bottom
of	an	LSM.

Architecture	management	tools	like	Structure	101	cannot	only	analyze
architectures,	but	with	this	tool	architects	can	also	define	prohibited	relationships
between	packages	and	classes.	If	a	developer	violates	these	rules,	he/she	will
obtain	an	error	message	and	can	modify	the	code.

With	the	help	of	tools	like	Structure	101	the	architecture	of	a	system	can	easily	be
visualized.	The	compiled	code	has	only	to	be	loaded	into	the	tool	for	analysis.	In
that	way	the	visualization	of	the	architecture	is	easily	ensured.

Microservices	and	Architecture	Management

For	Microservices	the	problem	is	much	larger:	Relationships	between
Microservices	are	not	as	easy	to	determine	as	the	relationships	between	code
components.	After	all,	the	Microservices	can	even	be	implemented	in	different
technologies.	They	communicate	only	via	the	network.	Their	relationships	elude
any	management	at	code	level	since	they	appear	only	indirectly	in	the	code.
However,	if	the	relationships	between	Microservices	are	unknown,	architecture
management	becomes	impossible.

There	are	different	possibilities	to	visualize	and	manage	the	architecture:

Each	Microservice	can	bring	a	documentation	along	(compare	section	8.13),
which	lists	all	used	Microservices.	This	documentation	has	to	adhere	to	a
predetermined	format,	which	enables	visualization.
The	communication	infrastructure	can	deliver	the	necessary	data.	If	a	Service
Discovery	(section	8.9)	is	used,	it	will	be	aware	of	all	Microservices	and
will	know	which	Microservices	have	access	to	which	other	Microservices.
These	data	can	then	be	used	for	the	visualization	of	the	relationships	between
the	Microservices.

If	the	access	between	Microservices	is	safeguarded	by	a	firewall,	the	rules
of	the	firewall	will	at	least	tell	which	Microservice	can	communicate	with
which	other	Microservice.	This	can	also	be	used	as	basis	for	a	visualization
of	relationships.
Traffic	within	the	network	also	reveals	which	Microservices	communicate
with	which	other	Microservices.	Tools	like	Packetbeat	(compare	section
12.3)	can	be	very	helpful	here.	They	visualize	the	relationships	between
Microservices	based	on	the	recorded	network	traffic.
The	distribution	into	Microservices	should	correspond	to	the	distribution
into	teams.	If	two	teams	can	hardly	work	independently	of	each	other	any
more,	this	is	likely	due	to	a	problem	in	the	architecture:	The	Microservices
of	the	two	teams	depend	so	strongly	on	each	other	that	they	can	now	only	be
modified	together.	The	involved	teams	probably	know	already	due	to	the
increased	communication	requirement	which	Microservices	are	problematic.
To	verify	the	problem,	an	architecture	management	tool	or	a	visualization	can
be	used.	However,	manually	collected	information	might	even	be	sufficient.

Tools

Different	tools	are	useful	to	evaluate	data	about	dependencies:

There	are	versions	of	Structure	101	which	can	use	custom	data	structures	as
input.	One	still	has	to	write	an	appropriate	importer.	Structure	101	will	then
recognize	cyclic	dependencies	and	can	depict	the	dependencies	graphically.
Gephi	can	generate	complex	graphs,	which	are	helpful	for	visualizing	the
dependencies	between	Microservices.	Also	here	a	custom	importer	has	to	be
written	for	importing	the	dependencies	between	the	Microservices	from	an
appropriate	source	into	Gephi.
jQAssistant	is	based	on	the	graph	database	neo4j.	It	can	be	extended	by	a
custom	importer.	Then	the	data	model	can	be	checked	according	to	rules.

For	all	these	tools	custom	development	is	necessary.	It	is	not	possible	to	analyze	a
Microservice-based	architecture	just	like	that,	there	is	always	some	extra	effort
required.	Since	communication	between	Microservices	cannot	be	standardized,	it
will	likely	also	in	the	future	not	be	possible	to	avoid	custom	developments.

Is	Architecture	Management	Important?

The	architecture	management	of	Microservices	is	important	as	it	is	the	only	way
to	prevent	chaos	in	the	relationships	between	the	Microservices.	Microservices
are	a	special	challenge	in	this	respect:	With	modern	tools	a	Deployment	Monolith

http://structure101.com
http://gephi.github.io/
http://jqassistant.org/

can	be	quite	easily	and	rapidly	analyzed.	For	Microservice-based	architectures
there	are	not	even	tools	which	can	analyze	the	entire	structure	in	a	simple	manner.
The	teams	first	have	to	create	the	necessary	prerequisites	for	an	analysis.
Changing	the	relationships	between	Microservices	is	difficult	–	as	the	next	section
will	show.	Therefore,	it	is	even	more	important	to	constantly	review	the
architecture	of	the	Microservices	in	order	to	be	able	to	correct	arising	problems
as	early	as	possible.	It	is	in	favor	of	Microservice-based	architectures	that	the
architecture	is	also	reflected	in	the	organization.	Problems	with	communication
thus	will	point	out	architectural	problems.	Even	without	a	formal	architecture
management	architectural	problems	often	become	obvious.

On	the	other	hand,	experiences	with	complex	Microservice-based	systems	teach
that	in	such	systems	nobody	understands	the	entire	architecture.	However,	this	is
also	not	necessary	since	most	changes	are	limited	to	individual	Microservices.	If
a	certain	use	case	is	supposed	to	be	changed,	which	involves	multiple
Microservices,	it	is	sufficient	to	understand	this	interaction	and	the	involved
Microservices.	A	global	understanding	is	not	absolutely	necessary.	This	is	a
consequence	of	the	independence	of	the	individual	Microservices.

Context	Map

Context	Maps	present	a	possibility	to	get	an	overview	of	the	architecture	of	a
Microservice-based	system1.	They	illustrate	which	domain	models	are	used	by
which	Microservices	and	visualize	thus	the	different	Bounded	Contexts	(compare
section	4.3).	The	Bounded	Contexts	do	not	only	influence	the	internal	data
presentation	in	the	Microservices.	Also	in	the	case	of	calls	between
Microservices	data	are	exchanged.	They	have	to	be	in	line	with	some	type	of
model.	However,	the	data	models	underlying	communication	can	be	distinct	from
the	internal	representations.	If	a	Microservice	for	instance	is	supposed	to	identify
recommendations	for	customers	of	an	E-commerce	shop,	complex	models	can	be
employed	internally	for	this,	which	contain	a	lot	of	information	about	customers,
products	and	orders	and	correlate	them	in	complex	ways.	To	the	outside	these
models	are	presumably	much	simpler.

Fig.	22:	An	example	for	a	Context	Map

Fig.	22	shows	an	example	for	a	Context	Map:

The	registration	registers	the	basic	data	of	each	customer.	The	order	process
also	uses	this	data	format	to	communicate	with	registration.
In	the	order	process	the	customer’s	basic	data	is	supplemented	by	data	such
as	billing	and	delivery	address	to	obtain	the	customer	order	data.	This
corresponds	to	a	Shared	Kernel	(compare	section	4.3).	The	order	process
shares	the	kernel	of	the	customer	data	with	the	registration	process.
The	delivery	and	the	billing	Microservice	use	customer	order	data	for
communication,	the	delivery	Microservice	uses	it	even	for	the	internal
representation	of	the	customer.	Thus	this	model	is	a	kind	of	standard	model
for	the	communication	of	customer	data.
Billing	uses	an	old	mainframe	data	model.	Therefore,	customer	order	data
for	the	outside	communication	are	decoupled	from	internal	representation	by
an	Anti-corruption	Layer.	The	data	model	represents	namely	a	very	bad
abstraction,	which	should	by	no	means	affect	other	Microservices.

In	this	model	it	stands	out	that	the	internal	data	representation	in	registration
propagates	to	the	order	process.	There	it	serves	as	basis	for	the	customer	order
data.	This	model	is	used	in	delivery	as	internal	data	model	as	well	as	in	the
communication	with	billing	and	delivery.	Accordingly,	the	model	is	hard	to
change	since	it	is	used	by	so	many	services.	If	this	model	was	to	be	changed,	all
these	services	would	have	to	be	modified.

However,	there	are	also	advantages	associated	with	this.	If	all	these	services	had
to	implement	the	same	change	to	the	data	model,	only	a	single	change	would	be
necessary	to	update	all	Microservices	at	once.	Nevertheless,	this	disagrees	with
the	idea	that	changes	should	always	concern	only	a	single	Microservice.	If	the
change	remains	limited	to	the	model,	the	shared	model	is	advantageous	since	all
automatically	use	the	current	modeling.	However,	when	the	change	entails	changes
in	the	Microservices,	now	multiple	Microservices	have	to	be	modified	–	and
coordinately	brought	into	production.	This	conflicts	with	an	independent
deployment	of	Microservices.

Try	and	Experiment

Download	a	tool	for	the	analysis	of	architectures.	Candidates	are	Structure	101,	Gephi	or
jQAssistant.	Use	this	tool	to	get	an	overview	of	an	existing	code	basis.	Which	possibilities	are	there
to	insert	your	own	dependency	graphs	into	the	tool?	This	would	allow	to	also	analyze	the
dependencies	within	a	Microservice-based	architecture	with	this	tool.

spigo	is	a	simulation	for	the	communication	between	Microservices.	It	can	be	used	to	get	an
impression	of	more	complex	Microservice-based	architectures.

8.3	Techniques	to	Adjust	the	Architecture
Microservices	are	first	of	all	interesting	for	software	which	is	subject	to	many
changes.	Due	to	the	distribution	into	Microservices	the	system	disaggregates	into
deployment	units,	which	can	be	further	developed	independently	of	each	other.
This	way	each	Microservice	can	implement	its	own	stream	of	stories	or
requirements.	Consequently,	multiple	changes	can	be	worked	on	in	parallel
without	much	need	for	coordination.

http://structure101.com
http://gephi.github.io/
http://jqassistant.org
https://github.com/adrianco/spigo

Experience	teaches	that	the	architecture	of	a	system	is	subject	to	changes.	A
certain	distribution	into	domain-based	components	might	seem	sensible	at	first.
However,	once	the	architect	gets	to	know	the	domain	better,	he/she	might	come	to
the	conclusion	that	another	distribution	would	be	better.	New	requirements	are
hard	to	implement	with	the	old	architecture	since	it	was	devised	based	on
different	premises.	This	is	especially	frequent	for	agile	processes,	which	entail
less	planning	and	more	flexibility.

Where	Does	Bad	Architecture	Come	from?

A	system	with	a	bad	architecture	does	normally	not	come	into	being	because	the
wrong	architecture	has	been	chosen	at	the	outset.	Based	on	the	information
available	at	the	start	of	the	project	the	architecture	is	often	good	and	consistent.
The	problem	is	frequently	that	the	architecture	is	not	modified	when	there	are	new
insights,	which	suggest	changes	to	the	architecture.	The	symptom	was	already
mentioned	in	the	last	section:	New	requirements	cannot	be	rapidly	and	easily
implemented	anymore.	To	that	end	the	architecture	would	have	to	be	changed.
When	this	pressure	to	introduce	changes	is	ignored	for	too	long,	the	architecture
will	not	fit	at	all	anymore	at	some	point.	The	permanent	adjustment	and
modification	of	the	architecture	are	essential	prerequisites	for	keeping	the
architecture	in	a	really	sustainable	state.

This	section	shows	which	techniques	allow	to	change	the	interplay	between
Microservices	in	order	to	adapt	the	architecture	to	the	entire	system.

Changes	in	Microservices

Within	a	Microservice	adjustments	are	easy.	The	Microservices	are	small	and
manageable.	It	is	no	big	deal	to	adjust	structures.	And	if	the	architecture	of	an
individual	Microservice	is	completely	insufficient,	it	can	be	rewritten	since	it	is
not	very	large.	Within	a	Microservice	it	is	also	easy	to	move	components	or	to
restructure	the	code	in	another	manner.	The	term	Refactoring	2	denotes	techniques
which	serve	to	improve	the	code	structure.	Many	of	them	even	automate
development	tools.	This	allows	for	an	easy	adjustment	of	the	code	of	an
individual	Microservice.

Changes	to	the	Overall	Architecture

However,	when	the	split	of	the	functionalities	between	the	Microservices	is	not	in
line	any	more	with	the	requirements,	changing	just	one	Microservice	will	not	be
sufficient.	To	achieve	the	necessary	adjustment	of	the	complete	architecture,

functionalities	have	to	be	moved	between	Microservices.	There	can	be	different
reasons	for	this:

The	Microservice	is	too	large	and	has	to	be	divided.	Indications	for	this	can
be	that	the	Microservice	is	hardly	intelligible	anymore	or	even	that	large	that
a	single	team	is	not	sufficient	to	develop	it	further.	Another	indication	can	be
that	the	Microservice	comprises	more	than	one	Bounded	Context.
A	functionality	belongs	really	into	another	Microservice.	An	indication	for
that	can	be	that	certain	parts	of	a	Microservice	communicate	a	lot	with
another	Microservice.	In	that	case	the	Microservices	do	not	have	a	loose
coupling	anymore.	Such	intense	communication	can	imply	that	the	component
belongs	into	another	Microservice.	Likewise,	a	low	cohesion	in	a
Microservice	can	suggest	that	the	Microservice	should	be	divided.	In	that
case	there	are	areas	in	a	Microservice	which	depend	little	on	each	other.
Consequently,	they	do	not	really	have	to	be	in	one	Microservice.
Functionalities	should	be	used	by	multiple	Microservices.	This	can	for
instance	become	necessary	when	a	Microservice	has	to	use	logic	from
another	Microservice	due	to	a	new	functionality.

There	are	three	main	challenges:	Microservices	have	to	be	split,	code	has	to	be
moved	from	one	Microservice	into	another,	and	multiple	Microservices	are
supposed	to	use	the	same	code.

Shared	Libraries

If	two	Microservices	are	supposed	to	use	code	together,	the	code	can	be
transferred	into	a	shared	library	(compare	Fig.	23).	The	code	is	removed	from	the
Microservice	and	packaged	in	a	way	that	allows	it	to	be	used	by	the	other
Microservices.	A	prerequisite	for	this	is	that	the	Microservices	are	written	in
technologies	that	enable	the	use	of	a	shared	library.	This	is	the	case	when	they	are
written	in	the	same	language	or	at	least	use	the	same	platform	–	e.g.	JVM	(Java
Virtual	Machine)	or	.NET	Common	Language	Runtime	(CLR).

Fig.	23:	Shared	library

A	shared	library	means	that	the	Microservices	become	dependent	on	each	other.
Work	on	the	library	has	to	be	coordinated.	Features	for	both	Microservices	have
to	be	implemented	in	the	library.	Via	the	backdoor	each	Microservice	notices
changes	which	are	really	meant	for	the	other	Microservice.	This	can	result	in
errors.	Therefore,	the	teams	have	to	coordinate	the	development	of	the	library	and
the	changes	to	the	library.	Under	certain	conditions	changes	to	a	library	can
necessitate	that	a	Microservice	has	to	be	newly	deployed	–	for	instance	because	a
security	gap	has	been	closed	in	the	library.

Moreover,	via	the	library	the	Microservices	might	obtain	additional	code
dependencies	to	3rd	party	libraries.	In	a	Java	JVM,	3rd	party	libraries	can	only	be
present	in	one	version.	When	the	shared	library	requires	a	certain	version	of	a	3rd
party	library,	also	the	Microservice	has	to	use	this	specific	version	and	cannot	use
a	different	one.	Besides,	libraries	often	have	a	certain	programming	model.	In	that
way	libraries	can	provide	code,	which	can	be	called,	or	a	framework,	in	which
custom	code	can	be	integrated,	which	is	then	called	by	the	framework.	The	library
might	pursue	an	asynchronous	model	or	a	synchronous	model.	Such	approaches
can	fit	more	or	less	well	to	a	respective	Microservice.

Microservices	do	not	focus	on	the	reuse	of	code	since	this	leads	to	new
dependencies	between	the	Microservices.	An	important	aim	of	Microservices	is
independence	so	that	code	reuse	often	causes	more	disadvantages	than	advantages.

This	is	a	renunciation	of	the	ideal	of	code	recycling.	Developers	in	the	nineties
still	pinned	their	hopes	on	code	reuse	in	order	to	increase	productivity.	Moving
code	into	a	library	also	has	advantages.	Errors	and	security	gaps	have	to	be
corrected	only	once.	The	Microservices	use	always	the	current	library	version
and	thus	automatically	get	the	solutions	for	the	errors.

Another	problem	associated	with	code	reuse	is	that	it	requires	a	detailed
understanding	of	the	code	–	especially	in	the	case	of	frameworks,	into	which	the
custom	code	has	to	embed	itself.	This	kind	of	reuse	is	known	as	whitebox	reuse:
The	internal	code	structures	have	to	be	known	–	not	only	the	interface.	This	type
of	reuse	requires	a	detailed	understanding	of	the	code	which	is	to	be	reused	which
sets	a	high	hurdle	for	the	reuse.

An	example	can	be	a	library	which	facilitates	the	generation	of	metrics	for	the
system	monitoring.	It	will	be	used	in	the	billing	Microservice.	Other	teams	also
want	to	use	the	code.	Therefore,	the	code	is	extracted	into	a	library.	Since	it	is
technical	code,	it	is	not	modified	in	case	of	domain-based	changes.	Therefore,	the
library	does	not	influence	the	independent	deployment	and	the	independent
development	of	domain-based	features.	The	library	was	supposed	to	be	turned
into	an	internal	open	source	project	(compare	section	13.7).

However,	to	transfer	domain	code	into	a	shared	library	is	problematic,	as	it	might
introduce	deployment	dependencies	into	Microservices.	When,	for	instance,	the
modeling	of	a	customer	is	implemented	in	a	library,	then	each	change	to	the	data
structure	has	to	be	passed	on	to	all	Microservices,	and	they	all	have	to	be	newly
deployed.	Besides,	a	uniform	modeling	of	a	data	structure	like	customer	is
anyhow	hardly	possible	due	to	Bounded	Context.

Transfer	Code

Another	option	for	changing	the	architecture	is	to	transfer	code	from	one
Microservice	to	another.	This	is	sensible	when	thereby	a	loose	coupling	and	a
high	cohesion	of	the	entire	system	can	be	ensured.	When	two	Microservices
communicate	a	lot,	the	loose	coupling	is	not	ensured.	When	the	part	of	the
Microservice	is	transferred	which	communicates	a	lot	with	the	other
Microservice,	this	problem	can	be	solved.

This	approach	is	similar	to	the	removal	into	a	shared	library.	However,	the	code
is	no	common	dependency,	which	solves	the	problem	of	coupling	between	the
Microservices.	However,	it	is	possible	that	the	Microservices	have	to	have	a

common	interface	in	order	to	still	be	able	to	use	the	functionalities	after	the	code
transfer.	This	is	a	blackbox	dependency:	Only	the	interface	has	to	be	known,	but
not	the	internal	code	structures.

In	addition,	it	is	possible	to	transfer	the	code	into	another	Microservice,	while
keeping	it	in	the	original	Microservice.	This	causes	redundancies.	Errors	will
then	have	to	be	corrected	in	both	versions.	And	the	two	versions	can	develop	into
different	directions.	However,	on	the	other	hand	the	Microservices	are
independent,	especially	in	regards	to	deployment.

The	technological	limitations	are	still	the	same	as	for	a	shared	library	–	the	two
Microservices	have	to	use	similar	technologies	because	otherwise	the	code
cannot	be	transferred.	However,	in	a	pinch	the	code	can	also	be	rewritten	in	a	new
programming	language	or	with	a	different	programming	model.	Microservices	are
not	very	large.	The	code	which	has	to	be	rewritten	is	only	a	part	of	a
Microservice.	Consequently,	the	required	effort	is	manageable.

However,	there	is	the	problem	that	the	size	of	that	Microservice	into	which	the
code	is	transferred	increases.	Thus	the	danger	increases	that	the	Microservice
turns	into	a	monolith	over	time.

One	example:	The	Microservice	for	the	order	process	frequently	calls	the	billing
Microservice	in	order	to	calculate	the	price	for	the	delivery.	Both	services	are
written	in	the	same	programming	language.	The	code	is	transferred	from	the	one
Microservice	into	the	other.	From	a	domain	perspective	it	turns	out	that	the
calculation	of	delivery	costs	rather	belongs	into	the	order	process	Microservice.
The	code	transfer	is	only	possible	when	both	services	use	the	same	platform	and
programming	language.	Moreover,	the	communication	across	Microservices	has	to
be	replaced	by	local	communication.

Fig.	24:	Transfer	Code

Reuse	or	Redundancy?

Instead	of	attributing	shared	code	to	one	or	the	other	Microservice,	the	code	can
also	be	maintained	in	both	Microservices.	At	first	this	sounds	dangerous	–	after
all,	the	code	will	then	be	redundant	in	two	places,	and	bug	fixes	have	accordingly
to	be	performed	in	both	places.	Most	of	the	time	developers	try	to	avoid	such
situations.	An	established	best	practice	is	“Don’t	Repeat	Yourself”	(DRY).	Each
decision	and	consequently	all	code	should	only	be	stored	at	exactly	one	place	in
the	system.	In	Microservice-based	architectures	redundancy	has	a	decisive
advantage:	The	two	Microservices	stay	independent	of	each	other	and	can	be
independently	deployed	and	independently	developed	further.	In	this	way	the
central	characteristic	of	Microservices	is	preserved.

Moreover,	it	is	questionable	whether	a	system	can	be	built	without	any
redundancies	at	all.	Especially	in	the	beginning	of	object-orientation	many
projects	invested	a	lot	of	effort	to	transfer	shared	code	into	shared	frameworks
and	libraries.	This	was	meant	to	decrease	the	expenditure	associated	with	the
creation	of	the	individual	projects.	In	reality	the	code	to	be	reused	was	often
difficult	to	understand	and	thus	hard	to	use.	A	redundant	implementation	in	the
different	projects	might	have	been	the	better	alternative.	It	can	be	less	laborious	to
implement	code	several	times	than	to	design	it	in	a	reusable	manner	and	to
actually	reuse	it.

There	are	of	course	successful	reuses	of	code:	Hardly	any	project	can	get	along
nowadays	without	open	source	libraries.	At	this	level	code	reuse	is	taking	place
all	the	time.	This	approach	can	be	a	good	template	for	the	reuse	of	code	between
Microservices.	However,	this	has	effects	on	the	organization.	Section	13.7
discusses	organization	and	thereby	also	code	reuse	according	to	an	open	source
model.

Shared	Service

Instead	of	transferring	the	code	into	a	library,	it	can	also	be	moved	into	a	new
Microservice	(compare	Fig.	25).	Thereby	the	typical	advantages	of	a
Microservice-based	architecture	ensue:	The	technology	of	the	new	Microservice
does	not	matter.	As	long	as	it	uses	the	universally	defined	communication
technologies	and	can	be	operated	like	the	other	Microservices,	its	internal
structure	can	be	arbitrary	–	to	the	point	of	programming	language.

Fig.	25:	Shared	Microservice

The	use	of	a	Microservice	is	simpler	than	the	use	of	a	library.	Only	the	interface
of	the	Microservice	has	to	be	known	–	the	internal	structure	does	not	matter.
Moving	code	into	a	new	service	decreases	the	average	size	of	a	Microservice	–
and	therefore	the	intelligibility	and	replaceability	of	the	Microservices.	However,
the	transfer	replaces	local	calls	with	calls	via	the	network.	Changes	for	new
features	might	not	be	limited	to	one	Microservice	anymore.

In	software	development	big	modules	are	often	a	problem.	So	transferring	code
into	new	Microservices	can	be	a	good	option	for	keeping	the	modules	small.
Besides,	the	new	Microservice	can	be	further	developed	by	the	team	which	was
already	responsible	for	the	original	Microservice.	This	will	facilitate	the	close
coordination	of	new	and	old	Microservices	since	the	required	communication
happens	within	only	one	team.

The	split	into	two	Microservices	has	also	the	consequence	that	a	call	to	the
Microservice-based	system	is	not	processed	by	just	one	single	Microservice,	but
by	several	Microservices.	These	Microservices	call	each	other.	Some	of	those
Microservices	will	not	have	a	UI,	but	are	pure	backend	services.

To	illustrate	this,	let	us	turn	again	to	the	order	process,	which	frequently	calls	the
billing	Microservice	for	calculating	the	delivery	costs.	The	calculation	of
delivery	costs	can	also	be	separated	into	an	Microservice	by	itself.	This	is	even

possible	when	the	billing	service	and	the	order	process	Microservice	use
different	platforms	and	technologies.	However,	a	new	interface	will	have	to	be
established,	which	enables	the	new	delivery	cost	Microservice	to	communicate
with	the	remainder	of	the	billing	service.

Spawn	a	New	Microservice

In	addition,	it	is	also	possible	to	use	part	of	the	code	of	a	certain	Microservice	to
generate	a	new	Microservice	(compare	Fig.	26).	The	advantages	and
disadvantages	are	identical	to	the	scenario	in	which	code	is	transferred	into	a
shared	Microservice.	However,	the	motivation	is	different	in	this	case:	The	size
of	the	Microservices	is	meant	to	be	reduced	to	increase	their	maintainability	or
maybe	to	transfer	the	responsibility	for	a	certain	functionality	to	another	team.
Here,	the	new	Microservice	is	not	supposed	to	be	shared	by	multiple	other
Microservices.

Fig.	26:	Spawning	a	new	Microservice

For	instance,	the	service	for	the	registration	might	have	become	too	complex	in	the
meantime.	Therefore,	it	is	distributed	into	multiple	services,	which	each	handle
certain	user	groups.	A	technical	distribution	would	also	be	possible	–	for	instance
according	to	CQRS	(compare	section	10.2),	Event	Sourcing	(section	10.3)	or
Hexagonal	Architecture	(section	10.4).

Rewriting

Finally,	an	additional	possibility	to	handle	Microservices,	whose	structure	does
not	fit	anymore,	is	to	rewrite	them.	Due	to	the	small	size	of	Microservices	and
because	of	their	use	via	defined	interfaces	this	possibility	is	much	more	feasible
with	Microservices	than	in	the	case	of	other	architectural	approaches.	In	the	end,
not	the	entire	system	has	to	be	rewritten,	but	just	a	part.	It	is	also	possible	to
implement	the	new	Microservice	in	a	different	programming	language,	which	is
maybe	better	suited	for	this	purpose.	Rewriting	Microservices	can	also	be
advantageous	since	new	insights	about	the	domain	can	leave	their	mark	on	the	new
implementation	in	this	manner.

A	Growing	Number	of	Microservices

The	experience	with	Microservice-based	systems	teaches	that	during	the	time	a
project	is	running	new	Microservices	will	permanently	be	generated.	This	entails
a	higher	effort	for	the	infrastructure	and	the	operation	of	the	system.	The	number	of
deployed	services	will	increase	all	the	time.	For	classical	projects	such	a
development	is	unusual	and	appears	therefore	problematic.	However,	as	this
section	demonstrated,	the	generation	of	new	Microservices	is	the	best	alternative
for	the	shared	use	of	logic	and	for	the	ongoing	development	of	a	system.	Besides
the	growing	number	of	Microservices	ensures	that	the	average	size	of	individual
Microservices	stays	constant.	Consequently,	the	positive	characteristics	of
Microservices	are	preserved.

Generating	new	Microservices	should	be	as	easy	as	possible	as	this	allows	to
preserve	the	properties	of	the	Microservice	system.	Potential	for	optimization	is
mainly	present	when	it	comes	to	establishing	Continuous	Delivery	pipelines,	a
build	infrastructure	and	the	required	server	for	the	new	Microservice.	Once	these
things	are	automated,	new	Microservices	can	be	generated	comparably	easily.

Microservice-based	Systems	Are	Hard	to	Modify

This	section	has	shown	that	it	is	difficult	to	adjust	the	overall	architecture	of	a
Microservice-based	system.	New	Microservices	have	to	be	generated.	This

entails	changes	to	the	infrastructure	and	the	need	for	additional	Continuous
Delivery	pipelines.	Shared	code	in	libraries	is	rarely	a	sensible	option.

In	a	Deployment	Monolith	such	changes	would	be	easy	to	introduce:	Often	the
integrated	development	environments	even	automatize	the	transfer	of	code	or	other
structural	changes.	Due	to	automation	the	changes	are	less	laborious	and	less
prone	to	errors.	Besides,	there	are	no	effects	whatsoever	on	the	infrastructure	or
Continuous	Delivery	pipelines	in	the	case	of	Deployment	Monoliths.

Thus,	changes	are	difficult	at	the	level	of	the	entire	system	–	because	it	is	hard	to
transfer	functionalities	between	different	Microservices.	In	the	end,	this	is	exactly
the	effect,	which	was	termed	“strong	modularization”	and	listed	as	advantage	in
section	1.2:	To	cross	the	boundaries	between	Microservices	is	difficult	so	that	the
architecture	at	the	level	between	the	Microservices	will	also	remain	intact	in	the
long-run.	However,	this	entails	as	well	that	the	architecture	is	hard	to	adjust	at	this
level.

Try	and	Experiment

A	developer	has	written	a	helper	class,	which	facilitates	the	interaction	with	a	logging	framework,
which	is	also	used	by	other	teams.	It	is	not	very	large	and	complex.

Should	it	be	used	by	other	teams?
Should	the	helper	class	be	turned	into	a	library	or	an	independent	Microservice	or	should	the
code	simply	be	copied?

8.4	Growing	Microservice-based	Systems
Microservices	primarily	have	advantages	in	very	dynamical	environments.	Due	to
the	independent	deployment	of	individual	Microservices,	teams	can	work	in
parallel	on	different	features	without	much	need	for	coordination.	This	is
especially	advantageous	when	it	is	unclear	which	features	are	really	meaningful
and	experiments	on	the	market	are	necessary	to	identify	the	promising	approaches.

Planning	Architecture?

Especially	in	such	an	environment	it	is	hardly	possible	to	plan	a	good	split	of	the
domain	logic	into	Microservices	right	from	the	start.	The	architecture	has	to	adjust
to	the	facts.

The	split	according	to	domain	aspects	is	even	more	important	for
Microservices	than	in	the	context	of	a	classical	architecture	approach.	This
is	due	to	the	fact	that	the	domain-based	distribution	influences	also	the
distribution	into	teams	and	therefore	the	independent	working	of	the	teams	–
the	central	advantage	of	Microservices	(section	8.1).
Section	8.2	demonstrated	that	tools	for	architecture	management	cannot
readily	be	used	in	Microservice-based	architectures.
As	section	8.3	discussed,	it	is	difficult	to	modify	the	architecture	of
Microservices	–	especially	in	comparison	to	Deployment	Monoliths.
Microservices	are	especially	advantageous	in	dynamic	environments	–
where	it	is	even	more	difficult	to	determine	a	meaningful	architecture	right
from	the	start.

The	architecture	has	to	be	changeable,	however,	this	is	difficult	due	to	the
technical	facts.	This	section	shows	how	the	architecture	of	a	Microservice-based
system	can	nevertheless	be	modified	and	developed	further	in	a	stepwise	manner.

Start	Big

One	possibility	to	handle	this	inherent	problem	is	to	start	out	with	several	big
systems,	which	are	subsequently	step	by	step	fragmented	into	Microservices.
Section	4.1	defined	as	upper	limit	for	the	size	of	a	Microservice	the	amount	of
code	which	an	individual	team	can	still	handle.	At	least	at	the	outset	of	a	project	it
is	hard	to	violate	this	upper	limit.	The	same	is	true	for	the	other	upper	limits:
modularization	and	replaceability.

When	the	entire	project	consists	only	of	one	or	few	Microservices,	functionalities
are	still	easy	to	move	since	the	transfer	will	mostly	occur	within	one	service
rather	than	between	services.	Step	by	step	more	people	can	be	moved	into	the
project	so	that	additional	teams	can	be	assembled.	In	parallel	the	system	can	be
distributed	into	progressively	more	Microservices	to	allow	the	teams	to	work
independently	of	each	other.	Such	a	ramp-up	is	also	for	organizational	reasons	a
good	approach	since	the	teams	can	be	assembled	in	a	stepwise	manner.

Of	course,	it	would	also	be	possible	to	start	off	with	a	Deployment	Monolith.
However,	starting	with	a	monolith	has	a	decisive	disadvantage:	There	is	the
danger	that	dependencies	and	problems	creep	into	the	architecture,	which
preclude	a	later	distribution	into	Microservices.	Besides,	in	that	case	there	will
be	only	one	Continuous	Delivery	pipeline.	When	the	monolith	gets	distributed	into
Microservices,	the	teams	will	have	to	generate	new	Continuous	Delivery

pipelines.	This	can	be	very	laborious,	especially	when	the	Continuous	Delivery
pipeline	for	the	Deployment	Monolith	had	been	generated	manually.	In	that	case
all	the	additional	Continuous	Delivery	pipelines	would	likewise	have	to	be
manually	generated	in	a	laborious	manner.

When	the	projects	start	from	the	beginning	with	multiple	Microservices,	this
problem	is	avoided.	There	is	no	monolith	which	later	would	have	to	be
distributed,	and	there	anyhow	has	to	be	an	approach	for	the	generation	of	new
Continuous	Delivery	pipelines.	Thus	the	teams	can	from	the	start	work
independently	on	their	own	Microservices.	Over	the	course	of	the	project	the
initial	Microservices	are	distributed	into	additional	smaller	Microservices.

Start	Big	corresponds	to	the	observation	that	the	number	of	Microservices	will
increase	over	the	course	of	the	project.	In	line	with	this	it	is	sensible	to	start	with
few	big	Microservices	and	to	spawn	new	Microservices	in	a	stepwise	manner.
Thereby	the	most	current	insights	can	always	be	integrated	into	the	distribution
into	Microservices.	It	is	just	not	possible	to	define	the	perfect	architecture	right
from	the	start.	Instead	the	teams	should	adapt	the	architecture	step	by	step	to	the
new	circumstances	and	insights	and	have	the	courage	to	implement	the	necessary
changes.

Fig.	27:	Start	Big:	From	few	Microservices	originate	progressively	more	Microservices.

This	approach	results	in	a	uniform	technology	stack	–	this	will	facilitate	operation
and	deployment.	For	developers	it	is	also	easier	to	work	on	other	Microservices.

Start	Small?

It	is	also	imaginable	to	start	with	a	distribution	into	a	large	number	of
Microservices	and	to	use	this	distribution	as	basis	for	further	development.
However,	the	distribution	of	the	services	is	very	difficult.	“Building
Microservices”	3	provides	an	example	where	a	team	was	supposed	to	develop	a
tool	for	the	support	of	Continuous	Delivery	as	a	Microservice-based	system.	The
team	was	very	familiar	with	the	domain,	had	already	created	products	in	this	area
and	thus	chose	an	architecture,	which	distributed	the	system	early	on	into
numerous	Microservices.	However,	as	the	new	product	was	supposed	to	be
offered	in	the	cloud,	the	architecture	was,	for	subtle	reasons,	not	suitable	in	some
respects.	To	implement	changes	got	difficult	because	modifications	for	features
had	to	be	introduced	in	multiple	Microservices.	To	solve	this	problem	and	make	it
easier	to	change	the	software,	the	Microservices	were	united	again	into	a
monolith.	One	year	later	the	team	distributed	the	monolith	again	into
Microservices	and	thereby	decided	the	final	architecture.	This	example
demonstrates	that	a	too	early	distribution	into	Microservices	can	be	problematic	–
even	if	a	team	knows	the	domain	very	well.

Limits	of	Technology

However,	this	is	in	the	end	a	limitation	of	the	technology.	If	it	were	easier	to	move
functionalities	between	Microservices	(compare	section	8.4),	the	split	into
Microservices	could	be	corrected.	In	that	case	it	would	be	much	less	risky	to	start
off	with	a	split	into	small	Microservices.	When	all	Microservices	use	the	same
technology,	it	is	easier	to	transfer	functionalities	between	them.	Chapter	15
discusses	technologies	for	Nanoservices,	which	are	based	on	a	number	of
compromises,	but	in	exchange	allow	for	smaller	services	and	an	easier	transfer	of
functionalities.

Replaceability	as	a	Quality	Criterion

An	advantage	of	the	Microservice	approach	is	the	replaceability	of	the
Microservices.	This	is	only	possible	when	the	Microservices	do	not	grow	beyond
a	certain	size	and	internal	complexity.	One	aim	during	the	continued	development
of	Microservices	is	to	maintain	the	replaceability	of	Microservices.	Then	a
Microservice	can	be	replaced	by	a	different	implementation	–	for	instance	in	the
case	that	its	further	development	is	not	feasible	anymore	due	to	its	bad	structure.
In	addition,	replaceability	is	a	meaningful	aim	to	preserve	the	intelligibility	and
maintainability	of	the	Microservice.	If	the	Microservice	is	not	replaceable

anymore,	it	is	probably	also	not	intelligible	anymore	and	therefore	hard	to
develop	any	further.

The	Gravity	of	Monoliths

One	problem	is	that	large	Microservices	attract	modifications	and	new	features.
They	cover	already	several	features;	therefore,	it	seems	a	good	idea	to	implement
new	features	also	in	this	service.	This	is	true	in	the	case	of	too	large
Microservices,	but	even	more	so	for	Deployment	Monoliths.	A	Microservices-
based	architecture	can	be	aimed	at	replacing	a	monolith.	However,	in	that	case	the
monolith	contains	so	many	functionalities,	that	care	is	needed	not	to	introduce	too
many	changes	into	the	monolith.	For	this	purpose,	Microservices	can	be	created,
even	if	they	contain	hardly	any	functionalities	at	the	beginning.	To	introduce
changes	and	extensions	to	the	monolith	is	exactly	the	course	of	action	that	has
rendered	the	maintenance	of	the	Deployment	Monolith	impossible	and	led	to	its
replacement	by	Microservices.

Keep	Splitting

As	mentioned,	most	architectures	do	not	have	the	problem	that	they	were
originally	planned	in	a	way	that	did	not	fit	the	task.	In	most	cases	the	problem	is
rather	that	the	architecture	did	not	keep	up	with	the	changes	in	the	environment.	A
Microservice-based	architecture	also	has	to	be	constantly	adjusted,	otherwise	it
will	at	some	point	not	be	able	anymore	to	support	the	requirements.	To	these
adjustments	belong	a	management	of	the	domain-based	split	as	well	as	of	the	size
of	the	individual	Microservices.	This	is	the	only	way	to	ensure	that	the	advantages
of	the	Microservice-based	architecture	are	maintained	over	time.	Since	the	code
amount	of	a	system	usually	increases,	the	number	of	Microservices	will	grow	as
well	in	order	to	keep	the	average	size	constant.	Thus	an	elevation	of	the	number	of
Microservices	is	not	a	problem,	but	rather	a	good	sign.

Global	Architecture?

However,	not	only	the	size	of	Microservices	can	be	a	problem.	The	dependencies
of	the	Microservices	can	also	cause	problems	(compare	section	8.1).	Such
problems	can	be	solved	most	of	the	time	by	adjusting	a	number	of	Microservices
–	i.e.	those	which	have	problematic	dependencies.	This	requires	only
contributions	from	the	teams,	which	work	on	these	Microservices.	These	teams
are	also	the	ones	to	spot	the	problems,	because	they	will	be	affected	by	the	bad
architecture	and	the	greater	need	for	coordination.	By	modifying	the	architecture,
they	are	able	to	solve	these	issues.	In	that	case	there	is	no	need	for	a	global
management	of	dependencies.	Metrics	like	a	high	number	of	dependencies	or

cyclic	dependencies	can	only	be	an	indication	for	a	problem.	Whether	such
metrics	indeed	indicate	a	problem	can	only	be	solved	by	evaluating	them	together
with	the	involved	teams.	If	the	problematic	components	are,	for	instance,	not	going
to	be	developed	any	further	in	the	future,	it	does	not	matter	whether	the	metrics
indicate	a	problem.	Maybe	there	have	for	other	reasons	never	been	problems
during	development.	Even	if	there	is	a	global	architecture	management,	it	can	only
work	effectively	in	close	cooperation	with	the	different	teams.

Don’t	Miss	the	Exit	Point	or	How	to	Avoid	the	Erosion	of	a
Microservice	(Lars	Gentsch)
by	Lars	Gentsch,	E-Post	Development	GmbH

Practically,	it	is	not	too	difficult	to	develop	a	Microservice.	But	how	can	you
ensure	that	the	Microservice	remains	a	Microservice	and	does	not	secretly
become	a	monolith?	An	example	shall	illustrate	at	which	point	a	service	starts	to
develop	into	the	wrong	direction	and	which	measures	are	necessary	to	ensure	that
the	Microservice	remains	a	Microservice.

Let’s	envision	a	small	web	application	for	customer	registration.	This	scenario
can	be	found	in	nearly	every	web	application.	A	customer	wants	to	buy	a	product
in	an	Internet	shop	(Amazon,	Otto	etc.)	or	to	register	for	a	video-on-demand	portal
(Amazon	Prime,	Netflix	etc.).	As	a	first	step	the	customer	is	led	through	a	small
registration	workflow.	He/she	is	asked	for	his/her	username,	a	password,	the
email	address	and	the	street	address.	This	is	a	small	self-contained	functionality,
which	is	very	well	suited	for	a	Microservice.

Technologically	this	service	has	probably	a	very	simple	structure.	It	consists	of
two	or	three	HTML	pages	or	an	AngularJS-Single	Page	App,	a	bit	of	CSS,	some
Spring	Boot	and	a	MySQL	database.	Maven	is	used	to	build	the	application.

When	data	are	entered,	they	are	concomitantly	validated,	transferred	into	the
domain	model	and	put	into	the	database	for	persistence.	How	can	the
Microservice	grow	step-by-step	into	a	monolith?

Incorporation	of	New	Functionality

Via	the	shop	or	the	video-on-demand	portal	items	and	content	are	supposed	to	be
delivered,	which	are	only	allowed	to	be	accessed	by	people	who	are	of	age.	For
this	purpose	the	age	of	the	customer	has	to	be	verified.	One	possibility	to	do	this

is	to	store	the	birth	date	of	the	client	together	with	other	data	and	to	incorporate	an
external	service	for	the	age	verification.

Thus,	the	data	model	of	our	service	has	to	be	extended	by	the	birth	date.	More
interesting	is	the	incorporation	of	the	external	service.	To	achieve	this,	a	client	for
an	external	API	has	to	be	written,	which	should	also	be	able	to	handle	error
situations	like	the	non-availability	of	the	provider.

It	is	highly	probable	that	the	initiation	of	the	age	verification	is	an	asynchronous
process	so	that	our	service	might	be	forced	to	implement	a	callback	interface.	So
the	Microservice	must	store	data	about	the	state	of	the	process.	When	was	the	age
verification	process	initiated?	Is	it	necessary	to	remind	the	customer	via	email?
Was	the	verification	process	successfully	completed?

What	is	Happening	to	the	Microservice	here?

1.	 The	customer	data	are	extended	by	the	birthdate.	That	is	not	problematic.
2.	 In	addition	to	customer	data	there	are	now	process	data.	Attention:	Here

process	data	are	mixed	with	domain	data.
3.	 In	addition	to	the	original	CRUD	functionality	of	the	service,	some	kind	of

workflow	is	now	required.	Synchronous	processing	is	mixed	with
asynchronous	processing.

4.	 An	external	system	is	incorporated.	The	testing	effort	for	the	registration
Microservice	increases.	An	additional	system	and	its	behavior	have	to	be
simulated	during	test.

5.	 The	asynchronous	communication	with	the	external	system	has	other	demands
in	regards	to	scaling.	While	the	registration	Microservice	requires	estimated
ten	instances	due	to	load	and	failover,	the	incorporation	of	the	age
verification	can	be	operated	in	a	fail-safe	and	stable	manner	with	just	two
instances.	Thus,	different	run	time	requirements	are	mixed	here.

As	the	example	demonstrates,	a	per	se	small	requirement	like	the	incorporation	of
an	age	verification	can	have	tremendous	consequences	for	the	size	of	the
Microservice.

Criteria	Arguing	for	a	new	Microservice	Instead	of	Extending	an	Existing	One:

1.	 Introduction	of	different	data	models	and	data	(domain	vs.	process	data)
2.	 Intermixture	of	synchronous	and	asynchronous	data	processing
3.	 Incorporation	of	additional	services

4.	 Different	load	scenarios	for	different	aspects	within	one	service

The	example	of	the	registration	service	could	be	further	extended:	Also	the
verification	of	the	customer’s	street	address	could	be	performed	by	an	external
provider.	This	is	common	in	order	to	ensure	the	existence	of	the	denoted	address.
Another	scenario	is	the	manual	clearance	of	a	customer	in	case	of	double
registration.	The	incorporation	of	a	solvency	check	or	customer	scoring	upon
registration	is	likewise	a	frequent	scenario.

All	these	domain-based	aspects	belong	in	principle	to	the	customer	registration
and	tempt	developers	and	architects	to	integrate	the	corresponding	requirements
into	the	existing	Microservice.	Thereby	the	Microservice	grows	into	more	than
just	one	Microservice.

How	to	Recognize	Whether	the	Initiation	of	a	new	Microservice	Should	Have	Occurred
Already?

1.	 The	service	can	only	be	sensibly	developed	further	as	Maven	multi	modul
project	or	Gradle	multi	module	project.

2.	 Tests	have	to	be	divided	into	test	groups	and	have	to	be	parallelized	for
execution	since	the	run	time	of	the	tests	surpasses	five	minutes	(violation	of
the	“fast	feedback”	principle).

3.	 The	configuration	of	the	service	is	grouped	by	domain	within	the
configuration	file	or	the	file	is	divided	into	single	configuration	files	to
improve	the	overview.

4.	 A	complete	build	of	the	service	takes	long	enough	to	make	a	coffee	break.
Fast	feedback	cycles	are	not	possible	anymore	(violation	of	the	“fast
feedback”	principle).

Conclusion

As	the	example	of	the	registration	Microservice	illustrates,	it	is	a	big	challenge	to
let	a	Microservice	remain	a	Microservice	and	not	give	in	to	the	temptation	to
integrate	new	functionalities	into	an	existing	Microservice	due	to	time	pressure.
This	holds	even	true	when	the	functionalities	clearly	belong,	like	in	the	example,
to	the	same	domain.

What	can	prophylactically	be	done	to	prevent	the	erosion	of	a	Microservice?	In
principle,	it	has	to	be	as	simple	as	possible	to	create	new	services	including	their
own	data	storage.	Frameworks	like	Spring	Boot,	Grails	and	Play	make	a	relevant
contribution	to	this.	The	allocation	of	project	templates	like	Maven	archetypes	and

the	use	of	container	deployments	with	Docker	are	additional	measures	to	simplify
the	generation	and	configuration	of	new	Microservices	as	well	as	their	way	into
the	production	environment	as	much	as	possible.	By	reducing	the	“expenditure”
for	the	setting	up	of	a	new	service	the	inhibition	threshold	for	the	introduction	of	a
new	Microservice	decreases	clearly	and	thus	the	temptation	to	implement	new
functionalities	into	existing	services.

8.5	Microservices	and	Legacy	Applications
The	transformation	of	a	legacy	application	into	a	Microservice-based	architecture
is	a	scenario	which	is	frequently	met	with	in	practice.	Completely	new
developments	are	rather	rare,	and	Microservices	first	of	all	promise	advantages
for	long	term	maintenance.	This	is	especially	interesting	for	applications	which
are	already	on	the	brink	of	not	being	maintainable	anymore.	Besides	the
distribution	into	Microservices	allows	for	an	easier	handling	of	Continuous
Delivery:	Instead	of	deploying	and	testing	a	monolith	in	an	automated	fashion
small	Microservices	can	be	deployed	and	tested.	The	expenditure	for	this	is	by	far
lower.	A	Continuous	Delivery	pipeline	for	a	Microservice	is	not	very	complex	–
however,	for	a	Deployment	Monolith	the	expenditure	can	be	very	large.	This
advantage	is	sufficient	for	many	companies	to	justify	the	effort	of	migrating	to
Microservices.

In	comparison	to	building	up	completely	new	systems	there	are	some	important
differences	when	migrating	from	a	Deployment	Monolith	to	Microservices:

For	a	legacy	system	the	functionality	is	clear	from	the	domain	perspective.
This	can	be	a	good	basis	for	generating	a	clean	domain	architecture	for	the
Microservices.	Especially	such	a	clean	domain-based	division	is	very
important	for	Microservices.
However,	there	is	already	a	large	amount	of	code	in	existence.	The	code	is
often	of	bad	quality.	There	are	few	tests,	and	deployment	times	are	often
much	too	long.	Microservices	should	remove	these	problems.	Accordingly,
the	challenges	in	this	area	are	often	significant.
Likewise	it	is	well	possible	that	the	module	boundaries	in	the	legacy
application	do	not	answer	to	the	Bounded	Context	idea	(compare	section
4.3).	In	that	case	migrating	to	a	Microservice-based	architecture	is	a
challenge	because	the	domain-based	design	of	the	application	has	to	be
changed.

Breaking	up	Code?

In	a	simple	approach	the	code	of	the	legacy	application	can	be	split	into	several
Microservices.	This	can	be	problematic	when	the	legacy	application	does	not
have	a	good	domain	architecture,	which	is	often	the	case.	The	code	can	be
especially	easily	split	into	Microservices	when	the	Microservices	are	geared	to
the	existing	modules	of	the	legacy	application.	However,	when	those	have	a	bad
domain-based	split,	this	bad	division	will	be	passed	on	to	the	Microservice-
based	architecture.	And	the	consequences	of	a	bad	domain-based	design	are	even
more	profound	in	a	Microservice-based	architecture:	The	design	influences	also
the	communication	between	teams.	Besides,	the	initial	design	is	hard	to	change
later	on	in	a	Microservice-based	architecture.

Supplementing	Legacy	Applications

However,	it	is	also	possible	to	get	by	without	a	division	of	the	legacy	application.
An	essential	advantage	of	Microservices	is	that	the	modules	are	distributed
systems.	Due	to	that	the	module	boundaries	are	at	the	same	time	the	boundaries	of
processes	which	communicate	via	the	network.	This	has	advantages	for	the
distribution	of	a	legacy	application:	It	is	not	at	all	necessary	to	know	the	internal
structures	of	the	legacy	application	or,	based	on	that,	to	perform	a	split	into
Microservices.	Instead	Microservices	can	supplement	or	modify	the	legacy
application	at	the	interface.	For	this	it	is	very	helpful	when	the	system	to	be
replaced	is	already	built	in	a	SOA	(section	7.2).	If	there	are	individual	services,
they	can	be	supplemented	by	Microservices.

Enterprise	Integration	Patterns

Enterprise	Integration	Patterns	4	offer	an	inspiration	for	possible	integrations	of
legacy	applications	and	Microservices:

Designing,	Building,	and	Deploying	Messaging	Solutions,	Addison-Wesley
Longman,	2003,	ISBN	978-0-32120-068-6

Message	Router	describes	that	certain	messages	go	to	another	service.	A
Microservice	can	select	some	messages	which	are	processed	then	by	the
Microservice	instead	of	by	the	legacy	application.	Thereby	the
Microservice-based	architecture	does	not	have	to	newly	implement	the	entire
logic	at	once,	but	can	at	first	select	some	parts.
A	special	router	is	the	Content	Based	Router.	It	determines	based	on	the
content	of	a	message	where	the	message	is	supposed	to	be	sent.	This	allows
to	send	specific	messages	to	a	specific	Microservice	–	even	if	the	message
differs	only	in	one	field.

http://www.eaipatterns.com/toc.html

The	Message	Filter	avoids	that	a	Microservice	receives	uninteresting
messages.	For	that	it	just	filters	all	messages	out	the	Microservice	is	not
supposed	to	get.
A	Message	Translator	translates	a	message	into	another	format.	Thereby	the
Microservices	architecture	can	use	other	data	formats	and	does	not
necessarily	have	to	employ	the	formats	used	by	the	legacy	application.
The	Content	Enricher	can	supplement	data	in	the	messages.	If	a
Microservice	requires	supplementary	information	in	addition	to	the	data	of
the	legacy	application,	the	Content	Enricher	can	add	this	information
without	the	legacy	application	or	the	Microservice	noticing	anything.
The	Content	Filter	achieves	the	opposite:	Certain	data	are	removed	from	the
messages	so	that	the	Microservice	obtains	only	the	information	which	is
relevant	for	it.

Fig.	28:	Supplementing	legacy	applications	by	a	Message	Router

Fig.	28	shows	a	simple	example:	A	Message	Router	takes	calls	and	sends	them	to
a	Microservice	or	the	legacy	system.	This	allows	to	implement	certain
functionalities	in	Microservices.	These	functionalities	are	also	still	present	in	the
legacy	system	–	but	are	not	used	there	anymore.	In	this	way	the	Microservices	are
largely	independent	of	the	structures	within	the	legacy	system.	For	instance,
Microservices	can	start	off	with	processing	orders	for	certain	customers	or
certain	items.	Thereby	they	do	not	have	to	implement	all	special	cases.

The	patterns	can	serve	as	inspiration	how	a	legacy	application	can	be
supplemented	by	Microservices.	There	are	numerous	additional	patterns	–	the	list
provides	only	a	glimpse	of	the	entire	catalog.	Like	in	other	cases	the	patterns	can
be	implemented	in	different	ways:	Actually,	they	focus	on	messaging	systems.	But
it	is	possible	to	implement	them	with	synchronous	communication	mechanisms	–
even	though	less	elegant.	For	instance,	a	REST	service	can	take	a	POST	message,
supplement	it	with	additional	data	and	finally	send	it	to	another	Microservice.
That	would	then	be	a	Content	Enricher.

To	implement	such	patterns,	the	sender	has	to	be	uncoupled	from	the	recipient.
This	enables	the	integration	of	additional	steps	into	the	processing	of	requests
without	the	sender	noticing	anything.	In	case	of	a	messaging	approach	this	is	easily
possible	as	the	sender	knows	only	one	queue	in	which	he/she	places	the	messages.
The	sender	does	not	know	who	fetches	the	messages.	However,	in	the	case	of
synchronous	communication	via	REST	or	SOAP	the	message	is	sent	directly	to	the
recipient.	Only	by	Service	Discovery	(compare	section	8.9)	the	sender	gets
uncoupled	from	the	recipient.	Then	one	service	can	be	replaced	by	another
service	without	need	to	change	the	senders.	This	allows	for	an	easier
implementation	of	the	patterns.	When	the	legacy	application	is	supplemented	by	a
Content	Enricher,	this	Content	Enricher	instead	of	the	legacy	application	is
registered	in	the	Service	Discovery,	but	no	sender	has	to	be	modified.	To
introduce	Service	Discovery	can	therefore	be	a	first	step	towards	a	Microservices
architecture,	since	it	allows	to	supplement	or	replace	individual	services	of	the
legacy	application	without	having	to	modify	the	users	of	the	legacy	application.

Limiting	Integration

Especially	for	legacy	applications	it	is	important	that	the	Microservices	are	not
too	dependent	on	the	legacy	application.	Often	it	is	especially	the	bad	structure	of
the	old	application	which	is	the	reason	why	the	application	is	supposed	to	be
replaced	in	the	first	place.	Therefore,	certain	dependencies	should	not	be	allowed
at	all.	When	Microservices	directly	access	the	database	of	the	legacy	application,
the	Microservices	are	dependent	on	the	internal	data	representation	of	the	legacy
application.	Besides	neither	the	legacy	application	nor	the	Microservices	can	still
change	the	schema	since	such	changes	have	to	be	implemented	in	Microservices
and	legacy	application.	The	shared	use	of	a	database	in	legacy	application	and
Microservices	has	to	be	avoided	on	all	accounts.	However,	to	replicate	the	data
of	the	legacy	application	into	an	separate	database	schema	is	of	course	still	an
option.

Advantages

It	is	an	essential	advantage	of	such	an	approach	that	the	Microservices	are	largely
independent	of	the	architecture	of	the	legacy	application.	And	the	replacement	of	a
legacy	application	is	mostly	initiated	because	its	architecture	is	not	sustainable
any	more.	Besides,	this	allows	to	supplement	systems	by	Microservices,	which
are	actually	not	at	all	meant	to	be	extended.	Though,	for	instance,	standard
solutions	in	the	area	of	CRM,	E-commerce	or	ERP	are	internally	extensible,	their
extension	by	external	interfaces	can	be	a	welcome	alternative	since	such	a
supplement	is	often	easier.	Moreover,	such	systems	often	attract	functionalities,
which	do	not	really	belong	there.	A	distribution	into	a	different	deployment	unit
via	a	Microservice	ensures	a	permanent	and	clear	delimitation.

Integration	via	UI	and	Data	Replication

However,	this	approach	only	tackles	the	problem	on	the	level	of	logic	integration.
Chapter	9	describes	another	level	of	integration,	namely	data	replication.	This
allows	a	Microservice	to	access	also	comprehensive	datasets	of	a	legacy
application	with	good	performance.	It	is	important	that	the	replication	does	not
happen	based	on	the	data	model	of	the	legacy	application.	In	that	case	the	data
model	of	the	legacy	application	would	practically	not	be	changeable	anymore
since	it	is	also	used	by	the	Microservice.	An	integration	based	on	the	use	of	the
same	database	would	be	even	worse.	Also	at	the	level	of	UI	integrations	are
possible.	Especially	links	in	web	applications	are	attractive	since	they	cause	only
few	changes	in	the	legacy	application.

Content	Management	Systems

In	this	manner	Content	Management	Systems	(CMS),	for	instance,	which	often
contain	many	functionalities,	can	be	supplemented	by	Microservices.	CMS
contain	the	data	of	a	website	and	administrate	the	content	so	that	editors	can
modify	it.	The	Microservices	take	over	the	handling	of	certain	URLs.	Similar	to	a
Message	Router	an	HTTP	request	can	be	sent	to	a	Microservice	instead	of	to	the
CMS.	Or	the	Microservice	changes	elements	of	the	CMS	like	in	the	case	of	a
Content	Enricher	or	modifies	the	request	like	in	the	case	of	a	Message
Translator.	Lastly,	the	Microservices	could	store	data	in	the	CMS	and	thereby	use
it	as	a	kind	of	database.	Besides	JavaScript	representing	the	UI	of	a	Microservice
can	be	delivered	into	the	CMS.	In	that	case	the	CMS	turns	into	a	tool	for	the
delivery	of	code	in	a	browser.

Some	examples	could	be:

A	Microservice	can	import	content	from	certain	sources.	Each	source	can
have	its	own	Microservice.
The	functionality	which	allows	a	visitor	of	the	web	page	e.g.	to	follow	an
author	can	be	implemented	in	a	separate	Microservice.	The	Microservice
can	either	have	its	own	URL	and	be	integrated	via	links	or	it	modifies	the
pages,	which	the	CMS	delivers.
While	an	author	is	still	known	in	the	CMS,	there	is	other	logic	which	is
completely	separate	from	the	CMS.	This	could	be	vouchers	or	E-commerce
functionalities.	Also	in	this	case	a	Microservice	can	appropriately
supplement	the	system.

Especially	in	the	case	of	CMS	systems,	which	create	static	HTML,
Microservices-based	approaches	can	be	useful	for	dynamic	content.	The	CMS
moves	into	the	background	and	is	only	necessary	for	certain	content.	There	is	a
monolithic	deployment	of	the	CMS	content	while	the	Microservices	can	be
deployed	much	more	rapidly	and	in	an	independent	manner.	In	this	context	the
CMS	is	like	a	legacy	application.

Conclusion

The	integrations	all	have	the	advantage	that	the	Microservices	are	not	bound	to	the
architecture	or	the	technology	decisions	of	the	legacy	application.	This	provides
the	Microservices	with	a	decisive	advantage	compared	to	a	modifications	of	the
legacy	application.	However,	the	migration	away	from	the	legacy	application
using	this	approach	poses	a	challenge	at	the	level	of	architecture:	In	effect,
Microservice-based	systems	have	to	have	a	well	structured	domain-based	design
to	enable	the	implementation	of	features	within	one	Microservice	and	by	an
individual	team.	In	case	of	a	migration,	which	follows	the	outlined	approach,	this
cannot	always	be	put	into	effect	since	the	migration	is	influenced	by	the	interfaces
of	the	legacy	application.	Therefore,	the	design	cannot	always	be	as	clear-cut	as
desirable.	Besides,	domain-based	features	will	still	be	also	implemented	in	the
legacy	application	until	a	large	part	of	the	migration	has	been	completed.	During
this	time	the	legacy	application	cannot	be	finally	removed.	When	the
Microservices	confine	themselves	to	transforming	the	messages,	the	migration	can
take	a	very	long	time.

No	Big	Bang

The	outlined	approaches	suggest	that	the	existing	legacy	application	is
supplemented	in	a	stepwise	manner	by	Microservices	or	that	individual	parts	of
the	legacy	application	are	replaced	by	Microservices.	This	type	of	approach	has

the	advantage	that	the	risk	is	minimized.	Replacing	the	entire	legacy	application	in
one	single	step	entails	a	high	risk	due	to	the	size	of	the	legacy	application.	In	the
end,	all	functionalities	have	to	be	represented	in	the	Microservices.	In	this
process	numerous	mistakes	can	creep	in.	In	addition,	the	deployment	of
Microservices	is	complex	as	they	all	have	to	be	brought	into	production	in	a
concerted	manner	in	order	to	replace	the	legacy	application	in	one	step.	A
stepwise	replacement	nearly	imposes	itself	in	the	case	of	Microservices	since
they	can	be	deployed	independently	and	supplement	the	legacy	application.
Thereby	the	legacy	application	can	be	replaced	by	Microservices	in	a	stepwise
manner.

Legacy	=	Infrastructure

Part	of	a	legacy	application	can	also	simply	be	continued	to	be	used	as
infrastructure	for	the	Microservices.	For	example,	the	database	of	the	legacy
application	can	also	be	used	for	the	Microservices.	It	is	important	that	the
schemas	of	the	Microservices	are	separate	from	each	other	and	also	from	the
legacy	application.	After	all,	the	Microservices	should	not	be	closely	coupled.

The	use	of	the	database	of	the	legacy	application	does	not	have	to	be	mandatory
for	the	Microservices.	Microservices	can	definitely	also	use	other	solutions.
However,	the	existing	database	is	established	in	regards	to	operation	or	backup.
Using	this	database	can	also	for	the	Microservices	present	an	advantage.	The
same	is	true	for	other	infrastructure	components.	A	CMS	for	instance	can	likewise
serve	as	common	infrastructure,	to	which	functionalities	are	added	from	the
different	Microservices	and	into	which	the	Microservices	can	also	deliver
content.

Other	Qualities

The	so	far	introduced	migration	approaches	focus	on	enabling	the	domain-based
division	into	Microservices	in	order	to	facilitate	the	long-term	maintenance	and
continued	development	of	the	system.	However,	Microservices	have	many
additional	advantages.	When	migrating	it	is	important	to	understand	which
advantage	motivates	the	migration	to	Microservices	because	depending	on	this
motivation	an	entirely	different	strategy	might	be	adopted.	Microservices	offer	for
instance	also	increased	robustness	and	resilience	since	the	communication	with
other	services	is	taken	care	of	accordingly	(compare	section	10.5).	If	the	legacy
application	currently	has	a	deficit	in	this	area	or	a	distributed	architecture	already
exists,	which	has	to	be	optimized	in	respect	to	these	points,	appropriate

technology	and	architecture	approaches	can	be	defined	without	necessarily
requiring	that	the	application	has	to	divided	into	Microservices.

Try	and	Experiment

Do	research	on	the	remaining	Patterns	of	Enterprise	Integration:

Can	they	be	meaningfully	employed	when	dealing	with	Microservices?	In	which	context?
Can	they	really	only	be	implemented	with	messaging	systems?

Hidden	Dependencies	(Oliver	Wehrens)
by	Oliver	Wehrens,	E-Post	Development	GmbH

In	the	beginning	there	is	the	monolith.	Often	it	is	sensible	and	happens	naturally
that	software	is	created	as	a	monolith.	The	code	is	clearly	arranged,	and	the
business	domain	is	just	coming	into	being.	In	that	case	it	is	better	when	everything
has	a	common	base.	There	is	a	UI,	business	logic	and	a	database.	Refactoring	is
simple,	deployment	is	easy,	and	everybody	can	still	understand	the	entire	code.

Over	time	the	amount	of	code	grows,	and	it	gets	hard	to	see	through.	Not
everybody	knows	all	parts	of	the	code	anymore.	The	compiling	takes	longer,	and
the	unit	and	integration	tests	invite	developers	to	take	a	coffee	break.	In	case	of	a
relatively	stable	business	domain	and	a	very	large	code	basis	many	projects	will
consider	at	this	point	the	option	to	distribute	the	functionality	into	multiple
Microservices.

Depending	on	the	status	of	the	business	and	the	understanding	of	the
business/product	owners	the	necessary	tasks	will	be	completed.	Source	code	is
distributed,	Continuous	Delivery	pipelines	are	created	and	server	provisioned.
During	this	step	no	new	features	are	developed.	The	not	negligible	effort	is
justified	just	by	the	hope	that	in	future	features	will	be	faster	and	more
independently	created	by	other	teams.	Developers	are	going	to	be	very	assured	of
this,	other	stakeholders	often	have	to	be	convinced	first.

In	principle	everything	has	been	done	to	reach	a	better	architecture.	There	are
different	teams	which	have	independent	source	code.	They	can	bring	their
software	at	any	time	into	production	and	independent	of	other	teams.

Almost.

The	Database

Every	developer	has	a	more	or	less	pronounced	affinity	to	the	database.	In	my
experience	many	developers	view	the	database	as	necessary	evil,	which	is
somewhat	cumbersome	to	refactor.	Often	tools	are	being	used	which	generate	the
database	structure	for	the	developers	(e.g.	Liquibase	or	Flyway	in	the	JVM	area).
Tools	and	libraries	(Object	Relation	Mapper)	render	it	very	easy	to	persist
objects.	A	few	annotations	later	and	the	domain	is	saved	in	the	database.

All	these	tools	remove	the	database	from	the	typical	developers,	who	“only”	want
to	write	their	code.	This	has	sometimes	the	consequence	that	there	is	not	much
attention	given	to	the	database	during	the	development	process.	For	instance,
indices	which	were	not	created	will	slow	down	searches	on	the	database.	This
will	not	show	up	in	a	typical	test,	which	does	not	work	with	large	data	amounts,
and	thus	go	like	that	into	production.

Let’s	take	the	fictional	case	of	an	online	shoe	shop.	The	company	requires	a
service	which	allows	users	to	log	in.	A	user	service	is	created	containing	the
typical	fields	like	ID,	first	name,	family	name,	address	and	password.	To	now
offer	fitting	shoes	to	the	users,	only	a	selection	of	shoes	in	their	actual	size	is
supposed	to	be	displayed.	The	size	is	registered	in	the	welcome	mask.	What	could
be	more	sensible	than	to	store	this	data	in	the	already	existing	user	service?
Everybody	is	sure:	These	are	user-associated	data,	and	this	is	the	right	location.

Now	the	shoe	shop	expands	and	starts	to	sell	additional	types	of	clothing.	Dress
size,	collar	size	and	all	other	related	data	are	now	also	stored	in	the	user	service.

Several	teams	are	employed	in	the	company.	The	code	gets	progressively	more
complex.	It	is	the	point	in	time,	where	the	monolith	is	split	into	domain-based
services.	The	refactoring	in	the	source	code	works	well,	and	a	soon	the	monolith
is	split	apart	into	many	Microservices.

Unfortunately,	it	turns	out	that	it	is	still	not	easy	to	introduce	changes.	The	team	in
charge	of	shoes	wants	to	accept	different	currencies	because	of	international
expansion	and	has	to	modify	the	structure	of	the	billing	data	including	the	address
format.	During	the	upgrade	the	database	is	blocked.	Meanwhile	no	dress	size	or
favorite	color	can	be	changed.	Moreover,	the	address	data	are	used	in	different

standard	forms	of	other	services	and	thus	cannot	be	changed	without	coordination
and	effort.	Therefore	the	feature	cannot	be	implemented	promptly.

Even	though	the	code	is	well	separated,	the	teams	are	indirectly	coupled	via	the
database.	To	rename	columns	in	the	user	service	database	is	nearly	impossible
because	nobody	knows	anymore	in	detail	who	is	using	which	columns.
Consequently,	the	teams	do	workarounds.	Either	fields	with	the	name
‘Userattribute1’	are	created,	which	then	are	mapped	onto	the	right	description	in
the	code,	or	separations	are	introduced	into	the	data	like	‘#Color:Blue#Size:10’.
Nobody	except	the	involved	team	knows	what	is	meant	by	‘Userattribute1’,	and	it
is	difficult	to	generate	an	index	on	‘#Color:#Size.	Database	structure	and	code	are
progressively	harder	to	read	and	to	maintain.

It	has	to	be	essential	for	every	software	developer	to	think	about	how	to	persist
the	data.	This	means:	not	only	about	the	database	structures,	but	also	about	where
which	data	is	stored.	Is	the	table	respectively	database	the	place	where	these	data
should	be	located?	From	a	business	domain	perspective	do	these	data	have
connections	to	other	data?	In	order	to	remain	flexible	in	the	long	term,	it	is
worthwhile	to	carefully	consider	these	questions	every	time.	Typically,	databases
and	tables	are	not	created	very	often.	However,	they	are	a	component	which	is
very	hard	to	modify	later.	Besides,	databases	and	tables	are	often	the	origin	of	a
hidden	interdependence	between	services.	In	general,	it	has	to	apply	that	data	can
only	be	used	by	exactly	one	service	via	direct	database	access.	All	other	services,
which	want	to	use	the	data,	may	only	access	it	via	the	public	interfaces	of	the
service.

8.6	Event-driven	Architecture
Microservices	can	call	each	other	in	order	to	implement	shared	logic.	For
example,	at	the	end	of	the	order	process	the	Microservice	for	billing	as	well	as
the	Microservice	for	the	order	execution	can	be	called	to	create	the	bill	and	make
sure	that	the	ordered	items	are	indeed	delivered.

Fig.	29:	Calls	between	Microservices

This	requires	that	the	order	process	knows	the	service	for	the	billing	and	for	the
delivery.	If	a	completed	orders	necessitates	additional	steps,	the	order	service
also	has	to	call	the	services	responsible	for	these	steps.

Event-driven	Architecture	(EDA)	enables	a	different	modeling:	When	the	order
processing	has	been	successfully	finished,	the	order	process	will	send	an	event.	It
is	an	event	emitter.	This	event	signals	to	all	interested	Microservices	(event
consumers)	that	there	is	a	new	successful	order.	Thus,	one	Microservice	can	now
print	a	bill,	and	another	Microservice	can	initiate	a	delivery.

Fig.	30:	Event-driven	Architecture

This	procedure	has	a	number	of	advantages:

When	other	Microservices	are	also	interested	in	orders,	they	can	easily
register.	Modifying	the	order	process	is	not	necessary	anymore.
Likewise,	it	is	imaginable	that	also	other	Microservices	trigger	identical
events	–	again	without	changes	to	the	order	process.
The	processing	of	events	is	temporally	unlinked.	It	can	happen	later	on.

At	the	architectural	level	Event-driven	Architectures	have	the	advantage	that	they
allow	for	a	very	loose	coupling	and	thus	facilitate	changes.	The	Microservices
need	to	know	only	very	little	about	each	other.	However,	the	coupling	requires
that	logic	is	integrated	and	therefore	implemented	in	different	Microservices.
Thereby	a	split	into	Microservice	with	UI	and	Microservices	with	logic	can	arise.
That	is	not	desirable.	Changes	to	the	business	logic	entail	often	changes	to	logic
and	UI.	These	are	then	separate	Microservices.	The	change	cannot	readily	take
place	in	only	one	Microservice	anymore	and	thus	gets	more	complex.

Technically,	such	architectures	can	be	implemented	without	a	lot	of	effort	via
messaging	(compare	section	9.4).	Microservices	within	such	an	architecture	can
very	easily	implement	CQRS	(section	10.2)	or	Event	Sourcing	(section	10.3).

8.7	Technical	Architecture
To	define	a	technology	stack,	with	which	the	system	can	be	built,	is	one	of	the
main	parts	of	an	architecture.	For	individual	Microservices	this	is	likewise	a	very
important	task.	However,	the	focus	of	this	chapter	is	the	Microservice-based
system	in	its	entirety.	Of	course,	a	certain	technology	can	be	bindingly	defined	for
all	Microservices.	This	has	advantages:	In	that	case	the	teams	can	exchange
knowledge	about	the	technology.	Refactorings	are	simpler	because	members	of
one	team	can	easily	help	out	in	other	teams.

However,	defining	standard	technologies	is	not	mandatory:	If	they	are	not	defined,
there	will	be	a	plethora	of	different	technologies	and	frameworks.	However,	since
typically	only	one	team	is	in	contact	with	each	technology,	such	an	approach	can
be	acceptable.	Generally,	Microservice-based	architectures	aim	for	the	largest
possible	independence.	In	respect	to	the	technology	stack	this	independence
translates	into	the	ability	to	use	different	technology	stacks	and	to	independently
make	technology	decisions.	However,	this	freedom	can	also	be	restricted.

Technical	Decisions	for	the	Entire	System

Nevertheless,	at	the	level	of	the	entire	system	there	are	some	technical	decisions
to	make.	However,	other	aspects	are	more	important	for	the	technical	architecture
of	the	Microservice-based	system	than	the	technology	stack	for	the
implementation:

As	discussed	in	the	last	section,	there	might	be	technologies	which	can	be
used	by	all	Microservices	-	for	instances	databases	for	data	storage.	Using
these	technologies	does	not	necessarily	have	to	be	mandatory.	However,
especially	in	the	case	of	persistence	technologies,	like	for	example
databases,	backups	and	disaster	recovery	concepts	have	to	exist	so	that	at
least	these	technical	solutions	have	to	be	obligatory.	The	same	is	true	for
other	basic	systems	such	as	CMS	for	instance,	which	likewise	have	to	be
used	by	all	Microservices.
The	Microservices	have	to	adhere	to	certain	standards	in	respect	to
monitoring,	logging	and	deployment.	Thereby,	it	can	be	ensured	that	the
plethora	of	Microservices	can	still	be	operated	in	a	uniform	manner.	Without
such	standards	this	is	hardly	possible	anymore	in	case	of	a	larger	number	of
Microservices.
Additional	aspects	relate	to	configuration	(section	8.8),	Service	Discovery
(section	8.9)	and	security	(section	8.12).
Resilience	(section	10.5)	and	Load	Balancing	(section	8.10)	are	concepts
which	have	to	be	implemented	in	a	Microservice.	Still	the	overall
architecture	can	demand	that	each	Microservice	takes	precautions	in	this
area.
An	additional	aspect	is	the	communication	of	the	Microservices	with	each
other	(compare	chapter	9).	For	the	system	in	its	entirety	a	communication
infrastructure	has	to	be	defined	to	which	also	the	Microservices	adhere.

The	overall	architecture	does	not	necessarily	restrict	the	choice	of	technologies.
For	logging,	monitoring	and	deployment	an	interface	could	be	defined.	So	there
can	be	a	standard	according	to	which	all	Microservices	log	messages	in	the	same
manner	and	hand	them	over	to	a	common	log	infrastructure.	However,	the
Microservices	do	not	necessarily	have	to	use	the	same	technologies	for	this.
Similarly,	it	can	be	defined	how	data	can	be	handed	to	the	monitoring	system	and
which	data	are	relevant	for	the	monitoring.	A	Microservice	has	to	hand	over	the
data	to	the	monitoring,	but	a	technology	does	not	necessarily	have	to	be
prescribed.	For	deployment	a	completely	automated	Continuous	Delivery	pipeline
can	be	demanded,	which	deploys	software	or	deposits	it	into	a	repository	in	a
certain	manner.	Which	specific	technology	is	used,	is	again	a	question	for	the

developers	of	the	respective	Microservice	to	decide.	Practically,	there	are
advantages	when	all	Microservices	employ	the	same	technology.	This	reduces
complexity,	and	there	will	also	be	more	experience	how	to	deal	with	the
employed	technology.	However,	in	case	of	specific	requirements,	it	is	still
possible	to	use	a	different	technical	solution	when	for	this	special	case	the
advantages	of	such	a	solution	predominate.	This	is	an	essential	advantage	of	the
technology	freedom	of	Microservice-based	architectures.

Sidecar

Even	if	certain	technologies	for	implementing	the	demands	on	Microservices	are
rigidly	defined,	it	will	still	be	possible	to	integrate	other	technologies.	Therefore,
the	concept	of	a	Sidecar	can	be	very	useful.	This	is	a	process	which	integrates
into	the	Microservices-based	architecture	via	standard	technologies	and	offers	an
interface	which	enables	another	process	to	use	these	features.	This	process	can	be
implemented	in	an	entirely	different	technology	so	that	the	technology	freedom	is
preserved.	FIg.	31	illustrates	this	concept:	The	Sidecar	uses	standard	technologies
and	renders	them	accessible	for	another	Microservice	in	an	optional	technology.
The	Sidecar	is	an	independent	process,	and	therefore	can	be	called	for	instance
via	REST	so	that	Microservices	in	arbitrary	technologies	can	use	the	Sidecar.
Section	14.12	shows	a	concrete	example	for	a	Sidecar.

Fig.	31:	A	Sidecar	renders	all	standard	technologies	accessible	via	a	simple	interface.

With	this	approach	also	such	Microservices	can	be	integrated	into	the	architecture
whose	technological	approach	otherwise	would	exclude	the	use	of	the	general
technical	basis	for	configuration,	Service	Discovery	and	security	as	the	client
component	is	not	available	for	the	entire	technology.

In	some	regards	the	definition	of	the	technology	stack	also	affects	other	fields.	The
definition	of	technologies	across	all	Microservices	also	affects	the	organization	or
can	be	the	product	of	a	certain	organization	(compare	chapter	13).

Try	and	Experiment

A	Microservices-based	architecture	is	supposed	to	be	defined.

Which	technical	aspects	could	it	comprise?
Which	aspects	would	you	prescribe	to	the	teams?	Why?
Which	aspects	should	the	teams	decide	on	their	own?	Why?

In	the	end,	the	question	is	how	much	freedom	one	allows	the	teams	to	have.	There	are	numerous
possibilities	–	ranging	from	complete	freedom	up	to	the	prescription	of	practically	all	aspects.
However,	some	areas	can	only	be	centrally	defined	–	the	communication	protocols	for	example.
Section	13.3	discusses	in	more	detail	who	should	make	which	decisions	in	a	Microservice-based
project.

8.8	Configuration	and	Coordination
Configuring	Microservice-based	systems	is	laborious.	They	comprise	a	plethora
of	Microservices,	which	all	have	to	be	provided	with	the	appropriate
configuration	parameters.

Some	tools	can	store	the	configuration	values	and	make	them	available	to	all
Microservices.	Ultimately,	these	are	solutions	in	key/value	stores,	which	save	a
certain	value	under	a	certain	key:

Zookeeper	is	a	simple	hierarchical	system,	which	can	be	replicated	onto
multiple	servers	in	a	cluster.	Updates	arrive	in	an	orderly	fashion	at	the
clients.	This	can	also	be	used	in	a	distributed	environment,	for	instance	for
synchronization.	Zookeeper	has	a	consistent	data	model:	All	nodes	have
always	the	same	data.	The	project	is	implemented	in	Java	and	is	under
Apache	license.
etcd	originates	from	the	Docker/CoreOS	environment.	It	offers	an	HTTP
interface	with	JSON	as	data	format.	etcd	is	implemented	in	Go	and	also
under	Apache	license.	Similar	to	Zookeeper,	etcd	also	has	a	consistent	data
model	and	can	be	used	for	distributed	coordination.	For	instance,	etcd
allows	to	implement	a	locking	in	a	distributed	system.
Spring	Cloud	Config	likewise	has	a	REST-API.	The	configuration	data	can
be	provided	by	a	Git	backend.	Thereby	Spring	Cloud	Config	directly
supports	data	versioning.	The	data	can	also	be	encrypted	to	protect
passwords.	The	system	is	well	integrated	into	the	Java	framework	Spring
and	can	be	used	without	additional	effort	in	Spring	systems	since	Spring
itself	provides	already	configuration	mechanisms.	Spring	Cloud	Config	is

https://zookeeper.apache.org/
https://github.com/coreos/etcd
http://cloud.spring.io/spring-cloud-config/

written	in	Java	and	is	under	Apache	license.	Spring	Cloud	Config	does	not
offer	support	for	synchronizing	different	distributed	components.

Consistency	as	Problem

Some	of	the	configuration	solutions	offer	consistent	data.	This	means	that	all
nodes	return	the	same	data	in	case	of	a	call.	This	is	in	a	sense	an	advantage.
However,	according	to	the	CAP	theorem	a	node	can	only	return	an	inconsistent
response	in	case	of	a	network	failure	–	or	none	at	all.	In	the	end,	without	a
network	connection	the	node	cannot	know	whether	other	nodes	have	already
received	other	values.	If	the	system	allows	only	consistent	responses,	there	can	be
no	response	at	all	in	this	situation.	For	certain	scenarios	this	is	highly	sensible.

For	instance,	only	one	client	should	execute	a	certain	code	at	a	given	time	–	for
example	in	order	to	initiate	a	payment	exactly	once.	The	therefore	necessary
locking	can	be	done	by	the	configuration	system:	Within	the	configuration	system
there	is	a	variable,	which	upon	entering	this	code	has	to	be	set.	Only	in	that	case
the	code	may	be	executed.	In	the	end,	it	is	better	when	the	configuration	system
does	not	return	a	response	so	that	not	by	chance	two	clients	execute	the	code	in
parallel.

However,	for	configurations	such	strict	requirements	regarding	consistency	are
often	not	necessary.	Maybe	it	is	better	when	a	system	gets	an	old	value	rather	than
that	is	does	not	get	any	value	at	all.	However,	in	the	case	of	CAP	different
compromises	are	possible.	etcd	for	instance	returns	under	certain	conditions
rather	an	incorrect	response	than	no	response	at	all.

Immutable	Server

Another	problem	associated	with	the	centralized	storage	of	configuration	data	is
that	the	Microservices	do	not	only	depend	on	the	state	of	their	own	file	system	and
the	contained	files,	but	also	on	the	state	of	the	configuration	server.	Therefore,	a
Microservice	now	cannot	be	exactly	replicated	anymore	–	for	this	also	the	state	of
the	configuration	server	is	relevant.	This	makes	the	reproduction	of	errors	and	the
search	for	errors	in	general	more	difficult.

In	addition,	the	configuration	server	is	in	opposition	to	the	concept	of	Immutable
Server.	In	this	approach	every	software	change	leads	to	a	new	installation	of	the
software.	Ultimately,	the	old	server	is	terminated	upon	an	update,	and	a	new
server	with	an	entirely	new	installation	of	the	software	is	started.	However,	in
case	of	an	external	configuration	server	a	part	of	the	configuration	will	not	be

present	on	the	server,	and	therefore	the	server	is	after	all	changeable	in	the	end	by
adjusting	the	configuration.	However,	exactly	this	is	not	supposed	to	happen.	To
prevent	it,	a	configuration	can	be	made	in	the	server	itself	instead	of	the
configuration	server.	In	that	case	configuration	changes	can	only	be	implemented
by	rolling	out	a	new	server.

Alternative:	Installation	tools

The	installation	tools	(discussed	in	section	12.4)	represent	a	completely	different
approach	for	the	configuration	of	individual	Microservices.	These	tools	support
not	only	the	installation	of	software,	but	also	the	configuration.	For	the
configuration	configuration	files	can	for	instance	be	generated,	which	can
subsequently	be	read	by	Microservices.	The	Microservice	itself	does	not	notice
the	central	configuration	since	it	reads	only	a	configuration	file.	Still,	these
approaches	support	all	scenarios,	which	typically	occur	in	a	Microservices-based
architecture.	Thus,	this	approach	allows	a	central	configuration	and	is	not	in
opposition	to	Immutable	Server	as	the	configuration	is	completely	transferred	to
the	server.

8.9	Service	Discovery
Service	Discovery	ensures	that	Microservices	can	find	each	other.	This	is	in	a
sense	a	very	simple	task:	For	instance,	a	configuration	file	detailing	the	IP	address
and	the	port	of	the	Microservice	can	be	delivered	on	all	computers.	Typical
configuration	management	systems	enable	the	rollout	of	such	files.	However,	this
approach	is	not	sufficient:

Microservices	can	come	and	go.	This	does	not	only	happen	due	to	server
failures,	but	also	because	of	new	deployments	or	the	scaling	of	the
environment	by	the	start	of	new	servers.	Service	Discovery	has	to	be
dynamic.	A	fixed	configuration	is	not	sufficient.
Due	to	Service	Discovery	the	calling	Microservices	are	not	so	closely
coupled	anymore	to	the	called	Microservice.	This	has	positive	effects	for
scaling:	A	client	is	not	bound	to	a	concrete	server	instance	anymore,	but	can
contact	different	instances	–	depending	on	the	current	load	of	the	different
servers.
When	all	Microservices	have	a	common	approach	for	Service	Discovery,	a
central	registry	of	all	Microservices	arises.	This	can	be	helpful	for	an
architecture	overview	(compare	section	8.2).	Or	monitoring	information	can
be	retrieved	by	all	systems.

In	systems,	which	employ	messaging,	Service	Discovery	can	be	dispensable.
Messaging	systems	already	decouple	sender	and	recipient.	Both	know	only	the
shared	channel	via	which	they	communicate.	However,	they	do	not	know	the
identity	of	their	communication	partner.	The	flexibility,	which	Service	Discovery
offers,	is	then	provided	by	the	decoupling	via	the	channels.

Service	Discovery	=	Configuration?

In	principle	it	is	conceivable	to	implement	Service	Discovery	by	configuration
solutions	(compare	section	8.8).	In	the	end,	only	the	information	which	service	is
reachable	at	which	location	is	supposed	to	be	transferred.	However,	configuration
mechanisms	are	in	effect	the	wrong	tools	for	this.	For	a	Service	Discovery	a	high
availability	is	more	important	than	for	a	configuration	server.	In	the	worst	case	a
failure	of	Service	Discovery	can	have	the	consequence	that	communication
between	Microservices	gets	impossible.	Consequently,	the	trade-off	between
consistency	and	availability	is	different	compared	to	configuration	systems.
Therefore,	configuration	systems	should	only	be	used	for	Service	Discovery	when
they	offer	an	appropriate	availability.	This	can	have	consequences	for	the
necessary	architecture	of	the	Service	Discovery	system.

Technologies

There	are	many	different	technologies	for	Service	Discovery:

One	example	is	DNS	(Domain	Name	System).	This	protocol	ensures	that	a
host	name	like	www.ewolff.com	can	be	resolved	to	an	IP	address.	DNS	is	an
essential	component	of	the	Internet	and	has	clearly	proven	its	scalability	and
availability.	DNS	is	hierarchically	organized:	There	is	a	DNS	server	which
administrates	the	.com	domain.	This	DNS-Server	knows	which	DNS	server
administrates	the	subdomain	ewolff.com,	and	the	DNS	server	of	this
subdomain	finally	knows	the	IP	address	of	www.ewolff.com.	In	this	way	a
namespace	can	be	hierarchically	organized,	and	different	organizations	can
administrate	different	parts	of	the	namespace.	If	a	server	named
server.ewolff.com	is	supposed	to	be	created,	this	can	be	easily	done	by	a
change	in	the	DNS	server	of	the	domain	ewolff.com.	This	independence	fits
well	to	the	concept	of	Microservices,	which	especially	focus	on
independence	in	regards	to	their	architecture.	To	ensure	reliability	there	are
always	several	servers,	which	administrate	a	domain.	In	order	to	reach
scalability	DNS	supports	caching	so	that	calls	do	not	have	to	implement	the
entire	resolution	of	a	name	via	multiple	DNS	servers,	but	can	be	served	by	a
cache.	This	does	not	only	promote	performance,	but	also	reliability.

http://www.zytrax.com/books/dns/

For	Service	Discovery	it	is	not	sufficient	to	resolve	the	name	of	a	server	into	an	IP
address.	In	addition,	there	has	to	be	a	network	port	for	each	service.	Therefore,
the	DNS	has	SRV	records.	These	contain	the	information	on	which	computer	and
port	the	service	is	reachable.	In	addition,	a	priority	and	a	weight	can	be	set	for	a
certain	server.	These	values	can	be	used	to	select	one	of	the	servers	and	thereby	to
prefer	powerful	servers.	Via	this	approach,	DNS	offers	reliability	and	Load
Balancing	onto	multiple	servers.	Advantages	of	DNS	are	apart	from	scalability
also	the	availability	of	many	different	implementations	and	the	broad	support	in
different	programming	languages.

A	frequently	used	implementation	for	a	DNS	server	is	BIND.	BIND	runs	on
different	operating	systems	(Linux,	BSD,	Windows,	Mac	OS	X),	is	written	in
the	programming	language	C	and	is	under	an	open	source	license.
Eureka	is	part	of	the	Netflix	stack.	It	is	written	in	Java	and	is	under	Apache
license.	The	example	application	in	this	book	uses	Eureka	for	Service
Discovery	(compare	section	14.8).	For	every	service	Eureka	stores	under	the
service	name	a	host	and	a	port,	under	which	the	service	is	available.	Eureka
can	replicate	the	information	about	the	services	onto	multiple	Eureka	servers
in	order	to	increase	the	availability.	Eureka	is	a	REST	service.	A	Java
library	for	the	clients	belongs	to	Eureka.	Via	the	Sidecar	concept	(section
8.7)	this	library	can	also	be	used	by	systems,	which	are	not	written	in	Java.
The	Sidecar	takes	over	the	communication	with	the	Eureka	server,	which
then	offers	Service	Discovery	to	the	Microservice.	On	the	clients	the
information	from	the	server	can	be	held	in	a	cache	so	that	calls	are	possible
without	communication	with	the	server.	The	server	regularly	contacts	the
registered	services	to	determine	which	services	failed.	Eureka	can	be	used
as	basis	for	Load	Balancing	since	several	instances	can	be	registered	for	one
service.	The	load	can	then	be	distributed	onto	these	instances.	Eureka	was
originally	designed	for	the	Amazon	Cloud.
Consul	is	a	key/value	store	and	fits	therefore	also	into	the	area	of
configuration	servers	(section	8.8).	Apart	from	consistency	it	can	also
optimize	in	regards	to	availability.	Clients	can	register	with	the	server	and
react	to	certain	events.	In	addition	to	a	DNS	interface	it	also	has	a
HTTP/JSON	interface.	It	can	check	whether	services	are	still	available	by
executing	health	checks.	Consul	is	written	in	Go	and	is	under	the	Mozilla
open	source	license.	Besides,	Consul	can	create	configuration	files	from
templates.	Thereby	a	system	expecting	services	in	a	configuration	file	can
likewise	be	configured	by	Consul.

https://www.isc.org/downloads/bind/
https://github.com/Netflix/eureka
http://www.consul.io
https://aphyr.com/posts/316-call-me-maybe-etcd-and-consul

Every	Microservice-based	architecture	should	use	a	Service	Discovery	system.	It
forms	the	basis	for	the	administration	of	a	large	number	of	Microservices	and	for
additional	features	like	Load	Balancing.	If	there	is	only	a	small	number	of
Microservices,	it	is	still	imaginable	to	get	along	without	Service	Discovery.
However,	for	a	large	system	Service	Discovery	is	indispensable.	Since	the
number	of	Microservices	increases	over	time,	Service	Discovery	should	be
integrated	into	the	architecture	right	from	the	start.	Besides,	practically	each
system	uses	at	least	the	name	resolution	of	hosts,	which	is	already	a	simple
Service	Discovery.

8.10	Load	Balancing
It	is	one	of	the	advantages	of	Microservices	that	each	individual	service	can	be
independently	scaled.	To	distribute	the	load	between	the	instances,	multiple
instances,	which	share	the	load,	can	simply	be	registered	in	a	messaging	solution
(compare	9.4).	The	actual	distribution	of	the	individual	messages	is	then
performed	by	the	messaging	solution.	Messages	can	either	be	distributed	to	one	of
the	receivers	(Point-to-Point)	or	to	all	receivers	(Publish/Subscribe).

REST/HTTP

In	case	of	REST	and	HTTP	a	load	balancer	has	to	be	used.	The	load	balancer	has
the	function	to	behave	to	the	outside	like	a	single	instance,	but	to	distribute
requests	to	multiple	instances.	Besides,	a	load	balancer	can	be	useful	during
deployment:	Instances	of	the	new	version	of	the	Microservice	can	initially	start
without	getting	load.	Afterwards	the	load	balancer	can	be	reconfigured	in	a	way
that	the	new	Microservices	are	put	into	operation.	In	doing	so	the	load	can	also	be
increased	in	a	stepwise	manner.	This	decreases	the	risk	of	a	system	failure.

Fig.	32	illustrates	the	principle	of	a	proxy-based	load	balancer:	The	client	sends
its	requests	to	a	load	balancer	running	on	another	server.	This	load	balancer	is
responsible	for	sending	each	request	to	one	of	the	known	instances.	There	the
request	is	processed.

Fig.	32:	Proxy-based	Load	Balancer

This	approach	is	common	for	websites	and	relatively	easy	to	implement.	The	load
balancer	retrieves	information	from	the	service	instances	to	determine	the	load	of
the	different	instances.	In	addition,	the	load	balancer	can	remove	a	server	from	the
Load	Balancing	when	the	node	does	not	react	to	requests	anymore.

On	the	other	hand,	this	approach	has	the	disadvantage	that	the	entire	traffic	for	one
kind	of	service	has	to	be	directed	via	a	load	balancer.	Thereby	the	load	balancer
can	turn	into	a	bottleneck.	Besides,	a	failure	of	the	load	balancer	results	in	the
failure	of	a	Microservice.

Central	Load	Balancer

A	central	load	balancer	for	all	Microservices	is	not	only	not	to	be	recommended
for	these	reasons	but	also	because	of	the	configuration.	The	configuration	of	the
load	balancer	gets	very	complex	when	only	one	load	balancer	is	responsible	for
many	Microservices.	Besides,	the	configuration	has	to	be	coordinated	between	all
Microservices.	Especially	when	deploying	a	new	version	of	a	Microservice	a
modification	of	the	load	balancer	can	be	sensible	in	order	to	put	the	new
Microservice	only	after	a	comprehensive	test	under	load.	The	need	for
coordination	between	Microservices	should	especially	be	avoided	in	regards	to
deployment	to	ensure	the	independent	deployment	of	Microservices.	In	case	of
such	a	reconfiguration	one	has	to	make	sure	that	the	load	balancer	supports	a
dynamic	reconfiguration	and	for	instance	does	not	lose	information	regarding

sessions	if	the	Microservice	uses	sessions.	Also	for	this	reason	it	cannot	be
recommended	to	implement	stateful	Microservices.

A	Load	Balancer	pro	Microservice

There	should	be	one	load	balancer	per	Microservice,	which	distributes	the	load
between	the	instances	of	the	Microservice.	This	allows	the	individual
Microservices	to	independently	distribute	load,	and	different	configurations	per
Microservice	are	possible.	Likewise,	it	is	simple	to	appropriately	reconfigure	the
load	balancer	upon	the	deployment	of	a	new	version.	However,	in	case	of	a
failure	of	the	load	balancers	the	Microservice	will	not	be	available	anymore.

Technologies

For	Load	Balancing	there	are	different	approaches:

The	Apache	httpd	web	server	supports	Load	Balancing	with	the	extension
mod_proxy_balancer.
The	web	server	nginx	can	likewise	be	configured	in	a	way	that	it	supports
Load	Balancing.	To	use	a	web	server	as	load	balancer	has	the	advantage	that
it	can	also	deliver	static	websites,	CSS	and	images.	Besides,	the	number	of
technologies	will	be	reduced.
HAProxy	is	a	solution	for	Load	Balancing	and	high	availability.	It	does	not
support	HTTP,	but	all	TCP-based	protocols.
Cloud	providers	frequently	also	offer	load	balancer.	Amazon	for	instance
offers	Elastic	Load	Balancing.	This	can	be	combined	with	Auto	Scaling	so
that	higher	loads	automatically	trigger	the	start	of	new	instances,	and	thereby
the	application	automatically	scales	with	load.

Service	Discovery

Another	possibility	for	Load	Balancing	is	Service	Discovery	(Fig.	33)	(compare
section	8.9).	When	the	Service	Discovery	returns	different	nodes	for	a	service,	the
load	can	be	distributed	across	several	nodes.	However,	this	approach	allows
redirecting	to	another	node	only	in	the	case	that	a	new	Service	Discovery	is
performed.	This	makes	it	difficult	to	achieve	a	fine	granular	Load	Balancing.	For
a	new	node	it	will	therefore	take	some	time	until	it	gets	a	sufficient	share	of	load.
Finally,	the	failure	of	a	node	is	hard	to	correct	because	a	new	Service	Discovery
would	be	necessary	for	that.	It	is	useful	that	in	case	of	DNS	it	can	be	stated	for	a
set	of	data	how	long	the	data	is	valid	(time-to-live).	Afterwards	the	Service
Discovery	has	to	be	run	again.	This	allows	a	simple	Load	Balancing	via	DNS

http://httpd.apache.org/docs/2.2/mod/mod_proxy_balancer.html
http://nginx.org/en/docs/http/load_balancing.html
http://www.haproxy.org/
http://aws.amazon.com/de/elasticloadbalancing/

solutions	and	also	with	Consul.	However,	unfortunately	this	time-to-live	is	often
not	completely	correctly	implemented.

Fig.	33:	Load	Balancing	with	Service	Discovery

Load	Balancing	with	Service	Discovery	is	simple	because	Service	Discovery
anyhow	has	to	be	present	in	a	Microservice-based	system.	Therefore,	the	Load
Balancing	does	not	introduce	additional	software	components.	Besides	avoiding	a
central	load	balancer	has	the	positive	effect	that	there	is	no	bottle	neck	and	no
central	component	whose	failure	would	have	tremendous	consequences.

Client-based	Load	Balancing

The	client	itself	can	also	use	a	load	balancer.	The	load	balancer	can	be
implemented	as	a	part	of	the	code	of	the	Microservice	or	it	can	come	as	a	proxy-
based	load	balancer	such	as	nginx	or	Apache	httpd,	which	runs	on	the	same
computer	as	the	Microservice.	In	that	case	there	is	no	bottle	neck	because	each
client	has	its	own	load	balancer,	and	the	failure	of	an	individual	load	balancer	has
hardly	consequences.	However,	configuration	changes	have	to	be	passed	on	to	all
load	balancers,	which	can	cause	quite	a	lot	of	network	traffic	and	load.

Fig.	34:	Client-based	Load	Balancing

Ribbon	is	an	implementation	of	client-based	Load	Balancing.	It	is	a	library	which
is	written	in	Java	and	can	use	Eureka	to	find	service	instances.	Alternatively,	a	list
of	servers	can	be	handed	over	to	Ribbon.	Ribbon	implements	different	algorithms
for	Load	Balancing.	Especially	when	using	it	in	combination	with	Eureka,	the
individual	load	balancer	does	not	need	to	be	configured	anymore.	Because	of	the
Sidecar	concept	Ribbon	can	also	be	used	by	Microservices	which	are	not
implemented	in	Java.	The	example	system	uses	Ribbon	(compare	section	14.11).

Consul	offers	the	possibility	to	define	a	template	for	configuration	files	of	load
balancers.	This	allows	to	feed	the	load	balancer	configuration	with	data	from
Service	Discovery.	A	client-based	Load	Balancing	can	be	implemented	by
defining	a	template	for	each	client,	into	which	Consul	writes	all	service	instances.
This	process	can	be	regularly	repeated.	In	this	manner	a	central	system

https://github.com/Netflix/ribbon

configuration	is	again	possible	and	a	client-based	Load	Balancing	relatively
simple	to	implement.

Load	Balancing	and	Architecture

It	is	hardly	sensible	to	use	more	than	one	kind	of	Load	Balancing	within	a	single
Microservice-based	system.	Therefore,	this	decision	should	be	made	once	for	the
entire	system.	Load	Balancing	and	Service	Discovery	have	a	number	of	contact
points.	Service	Discovery	knows	all	service	instances;	Load	Balancing	distributes
the	loads	between	the	instances.	Both	technologies	have	to	work	together.	Thus	the
technology	decisions	in	this	area	will	influence	each	other.

8.11	Scalability
To	be	able	to	cope	with	high	loads,	Microservices	have	to	scale.	Scalability
means	that	a	system	can	process	more	load	when	it	gets	more	resources.

There	are	two	different	kinds	of	scalability:

Horizontal	scalability
means	that	more	resources	are	used,	which	each	process	part	of	the	load,	i.e.
the	number	of	resources	increases.

Vertical	scalability
means	that	more	powerful	resources	are	employed	to	handle	a	higher	load.
Here,	an	individual	resource	will	process	more	load,	while	the	number	of
resources	stays	constant.

Fig.	35:	Horizontal	and	vertical	scaling

Horizontal	scalability	is	often	the	better	choice	since	the	limit	for	the	possible
number	of	resources	and	therefore	the	limit	for	the	scalability	is	very	high.
Besides,	it	is	cheaper	to	buy	more	resources	than	more	powerful	ones.	One	fast
computer	is	often	more	expensive	than	many	slow	ones.

Scaling,	Microservices	and	Load	Balancing

Microservices	employ	mostly	horizontal	scaling	where	the	load	is	distributed
across	several	Microservice	instances	via	Load	Balancing.	The	Microservices
themselves	have	to	be	stateless	for	this.	More	precisely:	They	should	not	have	any
state,	which	is	specific	for	an	individual	user,	because	then	the	load	can	only	be
distributed	to	nodes,	which	have	the	respective	state.	The	state	for	a	user	can	be
stored	in	a	database	or	alternatively	be	put	into	an	external	storage	(e.g.	In-
Memory-Store),	which	can	be	accessed	by	all	Microservices.

Dynamic	Scaling

Scalability	means	only	that	the	load	can	be	distributed	to	multiple	nodes.	How	the
system	really	reacts	to	the	load,	is	not	defined.	In	the	end	it	is	more	important	that
the	system	really	adapts	to	an	increasing	load.	For	that	it	is	necessary	that,
depending	on	the	load,	a	Microservice	starts	new	instances,	onto	which	the	load
can	be	distributed.	This	allows	the	Microservice	to	also	cope	with	high	loads.
This	process	has	to	be	automated	as	manual	processes	would	be	too	laborious.

There	are	different	places	in	the	Continuous	Deployment	pipeline	(chapter	12)
where	it	is	necessary	to	start	a	Microservice	to	test	the	services.	For	that	a
suitable	deployment	system	such	as	Chef	or	Puppet	can	be	used.	Alternatively,	a
new	virtual	machine	or	a	new	Docker	container	with	the	Microservice	is	simply
started.	This	mechanism	can	also	be	used	for	dynamic	scaling.	It	only	has
additionally	to	register	the	new	instances	with	the	Load	Balancing.	However,	the
instance	should	be	able	to	handle	the	production	load	right	from	the	start:
Therefore,	the	caches	should	for	instance	already	be	filled	with	data.

Dynamic	scaling	is	especially	simple	with	Service	Discovery:	The	Microservice
has	to	register	with	the	Service	Discovery.	The	Service	Discovery	can	configure
the	load	balancer	in	a	way	that	it	distributes	load	to	the	new	instance.

The	dynamic	scaling	has	to	be	performed	based	on	a	metric.	When	the	response
time	of	a	Microservice	is	too	long	or	the	number	of	requests	is	very	high,	new
instances	have	to	be	started.	The	dynamic	scaling	can	be	part	of	a	monitoring
(compare	section	12.3)	since	the	monitoring	should	enable	the	reaction	to

extraordinary	metric	values.	Most	monitoring	infrastructures	offer	the	possibility
to	react	to	metric	values	by	calling	a	script.	The	script	can	start	additional
instances	of	the	Microservice.	This	is	fairly	easy	to	do	with	most	cloud	and
virtualization	environments.	Environments	like	the	Amazon	Cloud	offer	suitable
solutions	for	automatic	scaling,	which	work	in	a	similar	manner.	However,	a
home-grown	solution	is	not	very	complicated	since	the	scripts	run	anyhow	only
every	few	minutes	so	that	failures	are	tolerable,	at	least	for	a	limited	time.	Since
the	scripts	are	part	of	the	monitoring,	they	will	have	a	similar	availability	like	the
monitoring	and	should	therefore	be	sufficiently	available.

Especially	in	the	case	of	cloud	infrastructures	it	is	important	to	shut	the	instances
down	again	in	case	of	low	load	because	every	running	instance	costs	money	in	a
cloud.	Also	here	scripts	can	serve	as	reaction	to	certain	metric	values.

Microservices:	Advantages	for	Scaling

In	regards	to	scaling,	Microservices	have	first	of	all	the	advantage	that	they	can	be
scaled	independently	of	each	other.	In	case	of	a	Deployment	Monolith	only	the
entire	monolith	can	be	started	as	more	instances.	The	fine	granular	scaling	does
not	appear	to	be	an	especially	striking	advantage	at	first	glance,	however,	to	run
an	entire	E-commerce	shop	in	many	instances	just	to	speed	up	the	search,	causes
high	expenditures:	A	lot	of	hardware	is	needed,	a	complex	infrastructure	has	to	be
built	up,	and	system	parts	are	held	available,	which	are	not	used	at	all.	These
system	parts	render	the	deployment	and	monitoring	more	complex.	The
possibilities	for	dynamic	scaling	depend	critically	on	the	size	of	the	services	and
on	the	speed	with	which	new	instances	can	be	started.	In	this	area	Microservices
possess	clear	advantages.

In	most	cases	Microservices	have	already	an	automated	deployment,	which	is	also
very	easy	to	implement.	In	addition,	there	is	already	a	monitoring.	Without
automated	deployment	and	monitoring	a	Microservice-based	system	can	hardly	be
operated.	If	there	is	in	addition	load	balancing,	then	it	is	only	a	script	which	is
still	missing	for	automated	scaling.	Therefore	Microservices	represent	an
excellent	basis	for	dynamic	scaling.

Sharding

Sharding	means	that	the	administrated	data	amount	is	divided	and	that	each
instance	gets	the	responsibility	for	part	of	the	data.	For	example,	an	instance	can
be	responsible	for	the	customers	A-E	or	for	all	customers	whose	customer	number
ends	with	the	number	9.	Sharding	is	a	variation	of	horizontal	scaling:	More

servers	are	used.	However,	not	all	servers	are	equal,	but	every	server	is
responsible	for	a	different	subset	of	the	dataset.	In	case	of	Microservices	this	type
of	scaling	is	easy	to	implement	since	the	domain	is	anyhow	distributed	across
multiple	Microservices.	Every	Microservice	can	then	shard	its	data	and	via	this
sharding	scale	horizontally.	A	Deployment	Monolith	is	hardly	scalable	in	this
manner	because	it	handles	all	the	data.	When	the	Deployment	Monolith
administrates	customers	and	items,	it	can	hardly	be	sharded	for	both	types	of	data.
In	order	to	really	implement	sharding	the	Load	Balancer	has	of	course	to
distribute	the	load	appropriately	to	the	shards.

Scalability,	Throughput	and	Response	Times

Scalability	means	that	more	load	can	be	processed	by	more	resources.	The
throughput	increases	–	i.e.	the	number	of	processed	requests	per	unit	of	time.
However,	the	response	time	stays	constant	in	the	best	case	–	depending	on
circumstances	it	might	rise,	but	not	to	such	an	extent	that	the	system	causes	errors
or	gets	too	slow	for	the	user.

When	faster	response	times	are	required,	horizontal	scaling	does	not	help.
However,	there	are	some	approaches	to	optimize	the	response	time	of
Microservices:

The	Microservices	can	be	deployed	on	faster	computers.	This	is	vertical
scaling.	Then	the	Microservices	can	process	the	individual	requests	more
rapidly.	Because	of	the	automated	deployment	vertical	scaling	is	relatively
simple	to	implement.	The	service	has	only	to	be	deployed	on	faster
hardware.
Calls	via	the	network	have	a	long	latency.	Therefore,	a	possible	optimization
can	be	to	forego	such	calls.	Instead	caches	can	be	used,	or	the	data	can	be
replicated.	Caches	can	often	very	easily	be	integrated	into	the	existing
communication.	For	REST,	for	instance,	a	simple	HTTP	cache	is	sufficient.
If	the	domain	architecture	of	Microservices	is	well	designed,	a	request
should	only	be	processed	in	one	Microservice	so	that	no	communication	via
the	network	is	necessary.	In	case	of	a	good	domain	architecture	the	logic	for
processing	a	request	is	implemented	in	one	Microservice	so	that	changes	to
the	logic	only	require	changes	to	one	Microservice.	In	that	case
Microservices	do	not	have	longer	response	times	than	Deployment
Monoliths.	In	regards	to	an	optimization	of	response	times	Microservices
have	the	disadvantage	that	their	communication	via	the	network	causes	rather
longer	response	times.	However,	there	are	means	to	counteract	this	effect.

8.12	Security
In	a	Microservice-based	architecture	each	Microservice	has	to	know	which	user
triggered	the	current	call	and	wants	to	use	the	system.	Therefore,	a	uniform
security	architecture	has	to	exist:	After	all,	Microservices	can	work	together	for	a
request,	and	for	each	part	of	the	processing	of	the	request	another	Microservice
might	be	responsible.	Thus	the	security	structure	has	to	be	defined	at	the	level	of
the	entire	system.	This	is	the	only	way	to	ensure	that	the	access	of	a	user	is
uniformly	treated	in	the	entire	system	in	regards	to	security.

Security	comprises	two	essential	aspects:	Authentication	and	authorization.
Authentication	is	the	process,	which	validates	the	identity	of	the	user.
Authorization	denotes	the	decision	whether	a	certain	user	is	allowed	to	execute	a
certain	action.	Both	processes	are	independent	of	each	other:	The	validation	of	the
user	identity	in	the	context	of	authentication	is	not	directly	related	to	authorization.

Security	and	Microservices

In	a	Microservice-based	architecture	the	individual	Microservices	should	not
perform	authentication.	It	does	not	make	much	sense	for	each	Microservice	to
validate	user	name	and	password.	For	authentication	a	central	server	has	to	be
used.	For	authorization	an	interplay	is	necessary:	Often	there	are	user	groups	or
roles	which	have	to	be	centrally	administered.	However,	whether	a	certain	user
group	or	role	is	allowed	to	use	certain	features	of	a	Microservice	should	be
decided	by	the	concerned	Microservice.	Thereby	changes	to	the	authorization	of	a
certain	Microservice	can	be	limited	to	the	implementation	of	this	Microservice.

OAuth2

One	possible	solution	for	this	challenge	is	OAuth2.	This	protocol	is	also	widely
used	in	the	internet.	Google,	Microsoft,	Twitter,	XING	or	Yahoo	all	offer	support
for	this	protocol.

Fig.	36:	The	OAuth2	protocol

Fig.	36	shows	the	workflow	of	the	OAuth2	protocol	as	defined	by	the	standard:

1.	 The	client	inquires	of	the	Resource	Owner	whether	it	might	execute	a	certain
action.	For	example,	the	application	can	request	access	to	the	profile	or

http://tools.ietf.org/html/rfc6749

certain	data	in	a	social	network	which	the	Resource	Owner	stored	there.	The
Resource	Owner	is	usually	the	user	of	the	system.

2.	 If	the	Resource	Owner	grants	the	client	access,	the	client	receives	a
respective	response	from	the	Resource	Owner.

3.	 The	client	uses	the	response	of	the	Resource	Owner	to	put	a	request	to	the
authorization	server.	In	the	example	the	authorization	server	would	be
located	in	the	social	network.

4.	 The	authorization	server	returns	an	access	token.
5.	 With	this	access	token	the	client	can	now	call	a	Resource	Server	and	there

obtain	the	necessary	information.	For	the	call	the	token	can	for	instance	be
put	into	an	HTTP	header.

6.	 The	Resource	Server	answers	the	requests.

Possible	Authorization	Grants

The	interaction	with	the	authorization	server	can	work	in	different	ways:

In	case	of	the	Password	Grant	the	client	shows	an	HTML	form	to	the	user	in
step	1.	The	Resource	Owner	can	enter	user	name	and	password.	In	step	3	this
information	is	used	by	the	client	to	obtain	the	access	token	from	the
authorization	server	via	an	HTTP	POST.	This	approach	has	the	disadvantage
that	the	client	processes	user	name	and	password.	The	client	can	be
insecurely	implemented,	and	then	these	data	are	endangered.
In	case	of	the	Authorization	Grant	the	client	directs	the	user	in	step	1	to	a
web	page,	which	the	authorization	server	displays.	There	the	user	can	choose
whether	he/she	permits	the	access.	If	that	is	the	case,	the	client	will	obtain	in
step	2	an	authorization	code	via	an	HTTP-URL.	In	this	way	the	authorization
server	can	be	sure	that	the	correct	client	obtains	the	code	since	the	server
chooses	the	URL.	In	step	3	the	client	can	then	generate	the	access	token	with
this	authorization	code	via	an	HTTP	POST.	The	approach	is	mainly
implemented	by	the	authorization	server	and	thus	very	easy	to	use	by	a	client.
In	this	scenario	the	client	would	be	a	web	application	on	the	server:	It	will
obtain	the	code	from	the	authorization	server	and	is	the	only	one	able	to	turn
it	via	the	HTTP	POST	into	an	access	token.
In	case	of	Implicit	the	procedure	resembles	the	Authorization	Grant.	After
the	redirect	to	the	authorization	server	in	step	1	the	client	directly	gets	an
access	token	via	an	HTTP	redirect.	This	allows	the	browser	or	a	mobile
application	to	immediately	readout	the	access	token.	Step	3	and	4	are
omitted.	However,	here	the	access	token	is	not	as	well	protected	against
attacks	since	the	authorization	server	does	not	directly	send	it	to	the	client.

This	approach	is	sensible	when	JavaScript	code	on	the	client	or	a	mobile
application	is	supposed	to	use	the	access	token.
In	case	of	Client	Credentials	the	client	uses	in	step	1	a	credential,	which	the
client	knows,	to	obtain	the	access	token	from	the	authorization	server.
Thereby	the	client	can	access	the	data	without	additional	information	from
the	Resource	Owner.	For	example,	a	statistics	software	could	readout	and
analyze	customer	data	in	this	manner.

Via	the	access	token	the	client	can	access	resources.	The	access	token	has	to	be
protected:	When	unauthorized	people	obtain	access	to	the	access	token,	they	can
thereby	trigger	all	actions,	which	the	Resource	Owner	can	also	trigger.	Within	the
token	itself	some	information	can	be	encoded.	For	instance,	in	addition	to	the	real
name	of	the	Resource	Owner	the	token	can	also	contain	information,	which
assigns	certain	rights	to	the	user	or	the	membership	to	certain	user	groups.

JSON	Web	Token	(JWT)

JSON	Web	Token	(JWT)	is	a	standard	for	the	information,	which	is	contained	in
an	access	token.	JSON	serves	as	data	structure.	For	the	validation	of	the	access
token	a	digital	signature	with	JWS	(JSON	Web	Signature)	can	be	used.	Likewise
the	access	token	can	be	encrypted	with	JSON	Web	Encryption	(JWE).	The	access
token	can	contain	information	about	the	issuer	of	the	access	token,	the	Resource
Owner,	the	validity	interval	or	the	addressee	of	the	access	token.	Individual	data
can	also	be	contained	in	the	access	token.	The	access	token	is	optimized	for	use	as
HTTP	header	by	an	encoding	of	the	JSON	with	BASE64.	These	headers	are
normally	subject	to	size	restrictions.

OAuth2,	JWT	and	Microservices

In	a	Microservice-based	architecture	the	user	can	initially	authenticate	via	one	of
the	OAuth2	approaches.	Afterwards	the	user	can	use	the	web	page	of	a
Microservice	or	call	a	Microservice	via	REST.	With	each	further	call	every
Microservice	can	hand	over	the	access	token	to	other	Microservices.	Based	on	the
access	token	the	Microservices	can	decide	whether	a	certain	access	is	granted	or
not.	For	that	the	validity	of	the	token	can	first	be	checked.	In	case	of	JWT	the
token	only	has	to	be	decrypted	and	the	signature	of	the	authorization	server	has	to
be	checked.	Subsequently,	it	can	be	decided	based	on	the	information	of	the	token
whether	the	user	may	use	the	Microservice	as	he/she	intends.	Information	from	the
token	can	be	used	for	that.	For	instance,	it	is	possible	to	store	the	affiliation	with
certain	user	groups	directly	in	the	token.

It	is	important	that	it	is	not	defined	in	the	access	token,	which	access	to	which
Microservice	is	allowed.	The	access	token	is	issued	by	the	authorization	server.	If
the	information	about	the	access	was	available	in	the	authorization	server,	every
modification	of	the	access	rights	would	have	to	occur	in	the	authorization	server	–
and	not	in	the	Microservices.	This	limits	the	changeability	of	the	Microservices
since	modifications	to	the	access	rights	would	require	changes	of	the	authorization
server	as	central	component.	The	authorization	server	should	only	administer	the
assignment	to	user	groups	and	the	Microservices	should	then	allow	or	prohibit
access	based	on	such	information	from	the	token.

Technologies

In	principle,	other	technical	approaches	than	OAuth2	could	also	be	used	as	long
as	they	employ	a	central	server	for	authorization	and	use	a	token	for	regulating	the
access	to	individual	Microservices.	One	example	is	Kerberos,	which	has	a
relatively	long	history.	However,	it	is	not	as	well	tuned	to	REST	like	OAuth2.
Other	alternatives	are	SAML	and	SAML	2.0.	They	define	a	protocol,	which	uses
XML	and	HTTP	to	perform	authorization	and	authentication.

Finally,	signed	cookies	can	be	created	by	a	home-grown	security	service.	Via	a
cryptographic	signature	it	can	be	determined	whether	the	cookie	has	really	been
issued	by	the	system.	The	cookie	can	then	contain	the	rights	or	groups	of	the	user.
Microservices	can	examine	the	cookie	and	restrict	the	access	if	necessary.	There
is	the	risk	that	the	cookie	is	stolen.	However,	for	that	to	occur	the	browser	has	to
be	compromised	or	the	cookie	has	to	be	transferred	via	a	non	encrypted
connection.	This	is	often	acceptable	as	risk.

With	a	token	approach	it	is	possible	that	Microservices	do	not	have	to	handle	the
authorization	of	the	caller,	but	still	can	restrict	the	access	to	certain	user	groups	or
roles.

There	are	good	reasons	for	the	use	of	OAuth2:

There	are	numerous	libraries	for	practically	all	established	programming
languages,	which	implement	OAuth2	or	an	OAuth2	server.	The	decision	for
OAuth2	hardly	restricts	the	technology	choice	for	Microservices.
Between	the	Microservices	only	the	access	token	still	has	to	be	transferred.
This	can	occur	in	a	standardized	manner	via	an	HTTP	header	when	REST	is
used.	In	case	of	different	communication	protocols	similar	mechanisms	can
be	exploited.	Also	in	this	area	OAuth2	hardly	limits	the	technology	choice.

http://tools.ietf.org/html/rfc4556
https://www.oasis-open.org/committees/security/
http://oauth.net/2/

Via	JWT	information	can	be	placed	into	the	token,	which	the	authorization
server	communicates	to	the	Microservices	in	order	for	them	to	allow	or
prohibit	access.	Therefore,	also	in	this	area	the	interplay	between	the
individual	Microservice	and	the	shared	infrastructure	is	simple	to	implement
–	with	standards,	which	are	widely	supported.

Spring	Cloud	Security	offers	especially	for	Java-based	Microservices	a	good
basis	for	implementing	OAuth2	systems.

Additional	Security	Measures

OAuth2	solves	first	of	all	the	problem	of	authentication	and	authorization	–
primarily	for	human	users.	There	are	additional	measures	for	securing	a
Microservice-based	system:

The	communication	between	the	Microservices	can	be	protected	by	SSL/TLS
against	wiretapping.	All	communication	is	then	encrypted.	Infrastructures
like	REST	or	messaging	systems	mostly	support	such	protocols.
Apart	from	authentication	with	OAuth2	certificates	can	be	used	to
authenticate	clients.	A	certificate	authority	creates	the	certificates.	They	can
be	used	to	verify	digital	signatures.	This	makes	it	possible	to	authenticate	a
client	based	on	its	digital	signature.	Since	SSL/TLS	supports	certificates,	at
least	at	this	level	the	use	of	certificates	and	authentication	via	certificates	is
possible.
API	keys	represent	a	similar	concept.	They	are	given	to	external	clients	to
enable	them	to	use	the	system.	Via	the	API	key	the	external	clients
authenticate	themselves	and	can	obtain	the	appropriate	rights.	In	case	of
OAuth2	this	can	be	implemented	with	Client	Credential.
Firewalls	can	be	used	to	protect	the	communication	between	Microservices.
Normally	firewalls	secure	a	system	against	unauthorized	access	from
outside.	A	firewall	for	the	communication	between	the	Microservices
prevents	that	all	Microservices	are	endangered	if	an	individual	Microservice
has	been	successfully	taken	over.	In	this	way	the	intrusion	can	be	restricted	to
one	Microservice.
Finally,	there	should	be	an	intrusion	detection	to	detect	unauthorized	access
to	the	system.	This	topic	is	closely	related	to	monitoring.	The	monitoring
system	can	also	be	used	to	trigger	an	appropriate	alarm	in	case	of	an
intrusion.
Datensparsamkeit	is	also	an	interesting	concept.	It	is	derived	from	the	data
security	field	and	states	that	only	those	data	are	to	be	saved,	which	are

http://cloud.spring.io/spring-cloud-security/
http://martinfowler.com/bliki/Datensparsamkeit.html

absolutely	necessary.	Form	a	security	perspective	this	results	in	the
advantage	that	collecting	lots	of	data	is	avoided.	This	makes	the	system	less
attractive	for	attacks,	and	in	addition	the	consequences	of	a	security	breach
will	not	be	as	bad.

Hashicorp	Vault

Hashicorp	Vault	is	a	tool,	which	solves	many	problems	in	the	area	of
Microservice	security.	It	offers	the	following	features:

Secrets	like	passwords,	API	Keys,	keys	for	encryption	or	certificates	can	be
saved.	This	can	be	useful	to	allow	users	to	administrate	their	secrets.	In
addition	also	Microservices	can	be	equipped	with	certificates	in	such	a
manner	as	to	protect	their	communication	with	each	other	or	with	external
servers.
Secrets	are	given	via	a	lease	to	services.	Besides,	they	can	be	equipped	with
an	access	control.	This	helps	to	limit	the	problem	in	case	of	a	compromised
service.	Secrets	can	for	instance	also	be	declared	invalid.
Data	can	be	immediately	encrypted	or	decrypted	with	the	keys	without	the
Microservices	themselves	having	to	save	these	keys.
Access	is	made	traceable	by	an	audit.	This	allows	to	trace	who	got	which
secret	and	at	which	time.
In	the	background	Vault	can	use	HSMs,	SQL	databases	or	Amazon	IAM	to
store	secrets.	In	addition,	it	can	for	instance	also	generate	new	access	keys
for	the	Amazon	Cloud	by	itself.

In	this	manner	Vault	takes	care	of	handling	keys	and	thereby	relieves
Microservices	of	this	task.	It	is	a	big	challenge	to	really	handle	keys	securely.	It	is
difficult	to	implement	something	like	that	in	a	really	secure	manner.

Additional	Security	Goals

In	regards	to	a	software	architecture	security	comes	in	very	different	shapes.
Approaches	like	OAuth2	only	help	to	achieve	confidentiality.	They	prevent	that
data	is	accessible	for	unauthorized	users.	However,	even	this	confidentiality	is	not
entirely	safeguarded	by	OAuth2	on	its	own:	The	communication	in	the	network
likewise	has	to	be	protected	against	wiretapping	–	for	instance	via	HTTPS	or
other	kinds	of	encryption.

Additional	security	aspects	are:

https://www.vaultproject.io/

Integrity
means	that	there	are	no	unnoticed	changes	to	the	data.	Every	Microservice
has	to	solve	this	problem.	For	instance,	data	can	be	signed	to	ensure	that	they
have	not	been	manipulated	in	some	way.	The	concrete	implementation	has	to
be	performed	by	each	Microservice.

Confidentiality
ensures	that	modifications	cannot	be	denied.	This	can	be	achieved	by	signing
the	changes	introduced	by	different	users	by	keys	that	are	specific	for	the
individual	user.	Then	it	is	clear	that	exactly	one	specific	user	has	modified
the	data.	The	overall	security	architecture	has	to	provide	the	keys;	the	signing
is	then	the	task	of	each	individual	service.

Data	security
is	ensured	as	long	as	no	data	are	lost.	This	issue	can	be	handled	by	backup
solutions	and	highly	available	storage	solutions.	This	problem	has	to	be
addressed	by	the	Microservices	since	it	is	within	their	responsibility	as	part
of	their	data	storage.	However,	the	shared	infrastructure	can	offer	certain
databases,	which	are	equipped	with	appropriate	backup	and	disaster
recovery	mechanisms.

Availability
means	that	a	system	is	available.	Also	here	the	Microservices	have	to
contribute	individually.	However,	since	especially	in	the	case	of
Microservice-based	architectures	one	has	to	deal	with	the	possibility	of
failures	of	individual	Microservices,	Microservice-based	systems	are	often
well	prepared	in	this	area.	Resilience	(section	10.5)	is	for	instance	useful	for
this.

These	aspects	are	often	not	considered	when	devising	security	measures	–
however,	the	failure	of	a	service	has	often	even	more	dramatic	consequences	than
the	unauthorized	access	to	data.	One	danger	is	Denial	of	Service	attacks,	which
result	in	such	an	overloading	of	servers	that	they	cannot	perform	any	sensible
work	anymore.	The	technical	hurdles	for	this	are	often	shockingly	low,	and	the
defense	against	such	attacks	is	frequently	very	difficult.

8.13	Documentation	and	Metadata
To	keep	the	overview	in	a	Microservice-based	architecture	certain	information
about	each	Microservice	has	to	be	available.	Therefore,	the	Microservice-based
architecture	has	to	define	how	Microservices	can	provide	such	information.	Only

when	all	Microservices	provide	this	information	in	a	uniform	way,	the	information
can	be	easily	collected.	Possible	information	of	interest	is	for	instance:

Fundamental	information	like	the	name	of	the	service	and	the	responsible
contact	person.
Information	about	the	source	code:	Where	the	code	can	be	found	in	the
version	control	and	which	libraries	have	been	used.	The	used	libraries	can
be	interesting	in	order	to	compare	open	source	licenses	of	the	libraries	with
the	company	policies	or	to	identify	in	case	of	a	security	gap	in	a	library	the
affected	Microservices.	For	such	purposes	the	information	has	to	be
available	even	if	the	decision	about	the	use	of	a	certain	library	rather
concerns	only	one	Microservice.	The	decision	itself	can	be	made	largely
independently	by	the	responsible	team.
Another	interesting	information	is	with	which	other	Microservices	the
Microservice	works	together.	This	information	is	central	for	the	architecture
management	(compare	section	8.2).
In	addition,	information	about	configuration	parameters	or	about	feature
toggles	might	be	interesting.	Feature	toggles	can	switch	features	on	or	off.
This	is	useful	for	activating	new	features	only	in	production	when	their
implementation	is	really	finished,	or	for	avoiding	the	failure	of	a	service	by
deactivating	certain	features.

It	is	not	sensible	to	document	all	components	of	the	Microservices	or	to	unify	the
entire	documentation.	A	unification	only	makes	sense	for	information,	which	is
relevant	outside	of	the	team	implementing	the	Microservice.	Whenever	it	is
necessary	to	manage	the	interplay	of	Microservices	or	to	check	licenses,	the
relevant	information	has	to	be	available	outside	of	the	responsible	team.	These
questions	have	to	be	solved	across	Microservices.	Each	team	can	create
additional	documentation	about	their	own	Microservices.	However,	this
documentation	is	only	relevant	for	this	one	team	and	therefore	does	not	have	to	be
standardized.

Outdated	Documentation

A	common	problem	concerning	the	documentation	of	any	software	is	that	the
documentation	gets	easily	outdated	and	then	documents	a	state	which	is	not	up	to
date	anymore.	Therefore,	the	documentation	should	be	versioned	together	with	the
code.	Besides,	the	documentation	should	be	created	from	information,	which	is
anyhow	present	in	the	system.	For	instance,	the	list	of	all	used	libraries	can	be
taken	from	the	build	system	since	exactly	this	information	is	needed	during	the

compilation	of	the	system.	Which	other	Microservices	are	used	can	be	obtained
from	Service	Discovery.	This	information	can	for	instance	be	used	to	create
firewall	rules	when	a	firewall	is	supposed	to	be	used	to	protect	the
communication	between	the	Microservices.	In	summary,	the	documentation	does
not	have	to	be	maintained	separately,	but	results	from	the	anyhow	available
information.

Access	to	Documentation

The	documentation	can	be	part	of	the	artifacts	which	are	created	during	the	build.
In	addition,	there	can	be	a	run-time	interface	which	allows	to	read	out	metadata.
Such	an	interface	can	correspond	to	the	otherwise	common	interfaces	for
monitoring	and	for	instance	provide	JSON	documents	via	HTTP.	In	this	way,	the
metadata	are	only	an	additional	information	Microservices	provide	at	run-time.

In	a	service	template	it	can	exemplarily	be	shown	how	the	documentation	is
created.	The	service	template	can	then	form	the	basis	for	the	implementation	of
new	Microservices.	When	the	service	template	already	contains	this	aspect,	it
facilitates	the	implementation	of	a	standard-conform	documentation.	In	addition,	at
least	the	formal	characteristics	of	the	documentation	can	be	checked	by	a	test.

8.14	Conclusion
The	domain	architecture	of	a	Microservice-based	system	is	essential	because	it
influences	not	only	the	structure	of	the	system,	but	also	the	organization	(section
8.1).	Unfortunately,	especially	for	Microservices	tools	for	dependency
management	are	rare	so	that	teams	have	to	develop	home-made	solutions.
However,	often	an	understanding	of	the	implementation	of	the	individual	business
processes	will	be	sufficient	and	an	overview	of	the	entire	architecture	is	not
really	necessary	(section	8.2).

For	an	architecture	to	be	successful	it	has	to	be	permanently	adjusted	to	the
changing	requirements.	For	Deployment	Monoliths	there	are	numerous	refactoring
techniques	to	achieve	this.	Such	possibilities	do	also	exist	for	Microservices	–
however	without	the	support	of	tools	and	with	much	higher	hurdles	(section	8.3).
Still	Microservice-based	systems	can	be	sensibly	developed	further	–	for	instance
by	starting	initially	with	few	large	Microservices	and	creating	over	time	more	and
more	Microservices	(section	8.4).	An	early	distribution	into	many	Microservices
entails	the	risk	to	end	up	with	a	wrong	distribution.

A	special	case	is	the	migration	of	a	legacy	application	to	a	Microservice-based
architecture	(section	8.5).	In	this	case,	the	code	base	of	the	legacy	application	can
be	divided	into	Microservices	-	however	this	can	lead	to	a	bad	architecture	due	to
the	often	bad	structure	of	the	legacy	application.	Alternatively,	the	legacy
application	can	be	supplemented	by	Microservices,	which	replace	functionalities
of	the	legacy	application	in	a	stepwise	manner.

Event-driven	Architecture	(section	8.6)	can	serve	to	uncouple	the	logic	in	the
Microservices.	This	allows	an	easy	extensibility	of	the	system.

Defining	the	technological	basis	is	one	of	the	tasks	of	an	architecture	(section	8.7).
In	case	of	Microservice-based	systems	this	does	not	relate	to	the	definition	of	a
shared	technology	stack	for	implementation,	but	to	the	definition	of	shared
communication	protocols,	interfaces,	monitoring	and	logging.	Additional	technical
functions	of	the	entire	system	are	coordination	and	configuration	(section	8.8).	In
this	area	tools	can	be	selected,	which	all	Microservices	have	to	employ.
Alternatively,	one	can	do	without	a	central	configuration	and	instead	leave	each
Microservice	to	bring	along	its	own	configuration.

For	Service	Discovery	(section	8.9)	likewise	a	certain	technology	can	be	chosen.
A	solution	for	Service	Discovery	is	in	any	case	sensible	for	a	Microservice-based
system	–	except	messaging	is	used	for	communication.	Based	on	Service
Discovery	Load	Balancing	can	be	introduced	(section	8.10)	to	distribute	the	load
across	the	instances	of	the	Microservices.	Service	Discovery	knows	all	instances,
the	load	balancing	distributes	the	load	to	these	instances.	Load	Balancing	can	be
implemented	via	a	central	load	balancer,	via	Service	Discovery	or	via	one	load
balancer	per	client.	This	provides	the	basis	for	scalability	(section	8.11).	This
allows	a	Microservice	to	process	more	load	by	scaling	up.

Microservices	have	a	significantly	higher	technical	complexity	than	Deployment
Monoliths.	Operating	systems,	networks,	load	balancer,	Service	Discovery	and
communication	protocols	all	become	part	of	the	architecture.	Developers	and
architects	of	Deployment	Monoliths	are	largely	spared	from	these	aspects.	Thus
architects	have	to	deal	with	entirely	different	technologies	and	have	to	carry	out
architecture	at	an	entirely	different	level.

In	the	area	of	security	a	central	component	has	to	take	over	at	least	authentication
and	parts	of	authorization.	The	Microservices	should	then	settle	the	details	of
access	(section	8.12).	In	order	to	obtain	certain	information	from	a	system,	which

is	composed	of	many	Microservices,	the	Microservices	have	to	possess	a
standardized	documentation	(section	8.13).	This	documentation	can	for	instance
provide	information	about	the	used	libraries	–	to	compare	them	with	open	source
license	regulations	or	to	remove	security	issues	when	a	library	has	a	security	gap.

The	architecture	of	a	Microservice-based	system	is	different	from	classical
applications.	Many	decisions	are	only	made	in	the	Microservices,	while	topics
like	monitoring,	logging	or	Continuous	Delivery	are	standardized	for	the	entire
system.

Essential	Points

Refactoring	between	Microservices	is	laborious.	Therefore,	it	is	hard	to
change	the	architecture	at	this	level.	Accordingly,	the	continued	development
of	the	architecture	is	a	central	point.
An	essential	part	of	the	architecture	is	the	definition	of	overarching
technologies	for	configuration	and	coordination,	Service	Discovery,	Load
Balancing,	security,	documentation	and	meta	data.

1.	 Eric	Evans:	Domain-Driven	Design:	Tackling	Complexity	in	the	Heart	of
Software,	Addison-Wesley,2003,	ISBN	978-0-32112-521-7↩

2.	 Martin	Fowler:	Refactoring:	Improving	the	Design	of	Existing	Code,
Addison-Wesley,	1999,	ISBN	978-0201485677↩

3.	 Sam	Newman:	Building	Microservices:	Designing	Fine-Grained	Systems,
O’Reilley	Media,	2015,	ISBN978-1-4919-5035-7↩

4.	 Gregor	Hohpe,	Bobby	Woolf:	Enterprise	Integration	Patterns:↩

9	Integration	and	Communication

Microservices	have	to	be	integrated	and	need	to	communicate.	This	can	be
achieved	at	different	levels	(Fig.	37).	Each	approach	has	certain	advantages	and
disadvantages.	Besides,	at	each	level	different	technical	implementations	of
integration	are	possible.

Fig.	37:	Different	levels	of	integration

Microservices	contain	a	graphical	user	interface.	Therefore,	Microservices
can	be	integrated	at	the	level	of	the	UI.	This	type	of	integration	is	introduced
in	section	9.1.
Also	the	logic	can	be	integrated.	Microservices	can	use	REST	(section	9.2),
SOAP	or	RCP	(section	9.3)	or	messaging	(section	9.4)	to	achieve	the
integration	of	logic.
Finally,	the	integration	can	be	performed	at	the	level	of	the	database	via	data
replication	(section	9.5).

General	rules	for	the	design	of	interfaces	are	provided	in	section	9.6.

9.1	Web	and	UI

Microservices	should	bring	their	own	UI	along.	This	allows	to	implement
functionalities	even	in	those	cases	in	only	one	Microservice,	when	the	changes
also	affect	the	UI.	At	the	level	of	the	entire	system	it	is	necessary	to	jointly
integrate	the	UIs	of	the	Microservices.	This	can	be	achieved	by	different
approaches,	which	are	reviewed	in	the	innoQ	Blog.

Multiple	Single-Page-Apps

Single-Page-App	(SPA)	implements	the	entire	UI	with	just	one	HTML	page.	The
logic	is	implemented	in	JavaScript,	which	dynamically	changes	parts	of	the	page.
The	logic	can	manipulate	the	URL	displayed	in	the	browser	so	that	bookmarks	and
other	typical	browser	features	can	be	used.	However,	SPAs	are	not	in	line	with
the	original	web	thinking:	SPAs	marginalize	HTML	as	central	web	technology.
Most	logic	is	implemented	in	JavaScript.	Classical	web	architectures	implement
logic	nearly	exclusively	on	the	server.

SPAs	are	especially	advantageous	when	complex	interactions	or	offline	ability	are
required.	Google’s	GMail	is	an	example	which	also	decisively	shaped	the	term
SPA.	Mail	clients	are	often	native	applications.	GMail	as	SPA	offers	nearly	the
same	comfort.

There	are	different	technologies	for	the	implementation	of	Single-Page-Apps:

AngularJS	is	very	popular.	AngularJS	has	amongst	other	features	a
bidirectional	UI	data-binding:	If	the	JavaScript	code	assigns	a	new	value	to
an	attribute	of	a	bound	model,	the	view	components	displaying	the	value	are
automatically	changed.	The	binding	works	also	from	UI	to	the	code:
AngularJS	can	bind	the	input	of	a	user	to	a	JavaScript	variable.	Furthermore,
AngularJS	can	render	HTML	templates	in	the	browser.	Thereby	JavaScript
code	can	also	generate	complex	DOM	structures.	In	that	case	the	entire
frontend	logic	is	implemented	in	the	JavaScript	code	running	the	browser.
AngularJS	was	made	by	Google	who	put	the	framework	under	the	very
liberal	MIT	license.
Ember.js	works	in	line	with	the	principle	Convention	over	Configuration	and
represents	in	essence	the	same	features	like	AngularJS.	Via	the
supplementary	module	Ember	Data	it	offers	a	model-driven	approach	for
accessing	REST	resources.	Ember.js	is	under	the	MIT	license	and	is	looked
after	by	developers	from	the	open	source	community.
Ext	JS	offers	apart	from	an	MVC	approach	also	components	which
developers	can	compose	to	a	UI	similar	like	for	Rich	Client	applications.	Ext

https://www.innoq.com/blog/st/2014/11/web-based-frontend-integration/
http://en.wikipedia.org/wiki/Single-page_application
https://angularjs.org/
http://emberjs.com/
http://www.sencha.com/products/extjs/

JS	is	available	as	Open	Source	under	GPL	v3.0.	However,	for	commercial
development	a	licence	has	to	be	bought	from	the	manufacturer	Sencha.

SPA	per	Microservice

In	case	of	Microservices	with	Single	Page	Apps	each	Microservice	can	bring	its
own	SPA	along	(Fig.	38).	The	SPA	can	call	the	Microservice	for	instance	via
JSON/REST.	This	is	especially	easy	to	implement	with	JavaScript.	Between	the
SPAs	a	link	can	be	used.

Fig.	38:	Microservices	with	Single	Page	Apps

Thereby	the	SPAs	are	completely	separate	and	independent.	New	versions	of	a
SPA	and	of	the	associated	Microservice	can	be	rolled	out	without	further	ado.
However,	a	tighter	integration	of	SPAs	is	difficult.	When	the	user	switches	from
one	SPA	to	another,	the	browser	loads	a	new	web	page	and	starts	a	different
JavaScript	application.	Even	modern	browsers	need	so	much	time	for	this	that	this
approach	is	only	sensible	when	switching	between	SPAs	is	an	exception.

Asset	Server	for	Uniformity

Besides	SPAs	can	be	heterogeneous.	Each	brings	its	own	individually	designed	UI
along.	However,	this	issue	can	be	solved	by	using	an	Asset	Server.	Such	a	server
is	used	to	provide	JavaScript	files	and	CSS	files	for	the	applications.	When	the
SPAs	of	the	Microservices	are	only	allowed	to	use	these	kinds	of	resources	via
the	Asset	Server,	a	uniform	user	interface	can	be	achieved.	To	accomplish	this,	a
Proxy	Server	can	distribute	requests	to	the	Asset	Server	and	the	Microservices.

Thereby	it	will	look	for	the	web	browser	as	if	all	resources	as	well	as	the
Microservices	possess	a	shared	URL.	This	approach	avoids	that	security	rules
prohibit	the	use	of	the	contents	because	they	originate	from	different	URLs.
Caching	can	then	reduce	the	time	for	loading	the	applications.	When	only
JavaScript	libraries,	which	are	stored	on	the	Asset	Server,	are	allowed	to	be
used,	the	choice	of	technologies	for	the	Microservices	can	be	reduced.	Therefore,
uniformity	and	free	technology	choice	are	competing	aims.

Besides	the	shared	assets	will	create	code	dependencies	between	the	Asset
Server	and	all	Microservices.	A	new	version	of	an	asset	entails	the	modification
of	all	Microservices	which	use	this	asset.	In	the	end,	they	have	to	modified	in	a
way	that	they	use	the	new	version.	Such	code	dependencies	endanger	the
independent	deployment	and	therefore	should	be	avoided.	Code	dependencies	in
the	backend	are	often	a	problem	(compare	section	8.3).	In	fact,	such	dependencies
should	also	be	reduced	in	the	frontend.	However,	in	such	a	case	an	Asset	Server
is	rather	a	problem	than	a	solution.

Apart	from	an	Asset	Server	UI	guidelines	can	be	helpful,	which	describe	the
design	of	the	application	in	more	detail	and	thereby	enable	a	uniform	approach
also	at	different	levels.	This	allows	for	the	implementation	of	a	uniform	UI	even
without	a	shared	Asset	Server	and	code	dependencies.

In	addition,	it	has	to	be	ensured	that	the	SPAs	possess	a	uniform	authentication	and
authorization	so	that	the	users	do	not	have	to	log	in	multiple	times.	An	OAuth2	or	a
shared	signed	cookie	can	be	a	solution	for	this	(compare	also	section	8.12).

JavaScript	can	only	access	data	which	are	available	under	the	domain	from	where
the	JavaScript	code	originates.	This	Same	Origin	Policy	avoids	that	JavaScript
code	can	read	data	from	other	domains.	When	all	Microservices	are	accessible	to
the	outside	under	the	same	domain	due	to	a	Proxy,	this	is	no	limitation.	Otherwise
the	policy	has	to	be	deactivated	when	the	UI	of	a	Microservice	is	supposed	to
access	the	data	of	another	Microservice.	This	problem	can	be	solved	by	CORS
(Cross	Origin	Resource	Sharing)	with	which	the	server	delivering	the	data	can
also	allow	JavaScript	from	other	domains.	Another	option	is	to	offer	all	SPA	and
REST	services	to	the	outside	only	via	one	domain	so	that	an	access	across
domains	is	not	necessary.	In	this	way	also	the	access	to	shared	JavaScript	code	on
an	Asset	Server	can	be	implemented.

A	Single	Page	App	for	all	Microservices

The	division	into	multiple	SPAs	results	in	a	strict	separation	of	the	frontends	of
the	Microservices.	If	for	instance	a	SPA	is	responsible	for	registering	orders	and
another	one	for	a	fundamentally	different	use	case	like	reports,	the	load	times
needed	when	changing	between	SPAs	are	still	acceptable.	Maybe	the	user	groups
are	even	different	so	that	changes	between	the	applications	do	not	occur.

There	are	cases	when	a	tighter	integration	of	the	user	interfaces	of	the
Microservices	is	necessary.	For	example,	in	an	order	also	details	about	the	items
can	be	displayed.	Displaying	the	order	is	the	responsibility	of	one	Microservice,
displaying	the	items	is	performed	by	another.	In	this	case	the	SPA	can	be
distributed	into	modules.	Each	module	belongs	to	another	Microservice	and
therefore	to	another	team.	The	modules	should	be	deployed	separately.	They	can
for	instance	be	stored	on	the	server	in	individual	JavaScript	files	and	possess
separate	Continuous	Delivery	pipelines.	Besides	there	have	to	be	suitable
conventions	for	the	interfaces.	For	example,	only	the	sending	of	events	might	be
allowed.	Events	uncouple	the	modules	because	the	modules	communicate	only
changes	in	the	states,	but	not	how	other	modules	have	to	react	to	them.

Fig.	39:	Close	integration	of	Microservices	sharing	one	Single-Page-App

AngularJS	for	instance	has	a	module	concept	which	allows	to	implement
individual	parts	of	the	SPA	in	separate	units.	A	Microservice	could	provide	an
AngularJS	module	for	displaying	the	user	interface	of	the	Microservice.	The
model	can	integrate,	if	necessary,	AngularJS	modules	of	other	Microservices.

However,	such	an	approach	has	disadvantages:

Deploying	the	SPA	is	often	only	possible	as	complete	application.	When	a
module	is	modified,	the	entire	SPA	has	to	be	rebuilt	and	deployed.	This	has
to	be	coordinated	between	the	Microservices,	which	provide	the	modules	of
the	application.	In	addition,	the	deployment	of	the	Microservices	on	the
server	has	to	be	coordinated	with	the	deployment	of	the	modules	since	the
modules	call	the	Microservices.	This	necessity	for	coordination	for	the
deployment	of	modules	of	an	application	should	be	avoided	by
Microservices.
The	modules	can	call	each	other.	Depending	on	the	way	calls	are
implemented,	changes	to	a	module	can	entail	that	also	other	modules	have	to
changed,	for	instance	because	an	interface	has	been	modified.	When	the
modules	belong	to	separate	Microservices,	this	enforces	again	a
coordination	across	Microservices,	which	should	be	avoided.

For	SPA	modules	a	much	closer	coordination	is	necessary	than	for	links	between
applications.	On	the	other	hand	the	SPA	modules	offer	the	advantage	that	UI
elements	from	different	Microservices	can	be	simultaneously	displayed	to	the
user.	However,	this	approach	closely	couples	the	Microservices	at	the	level	of	the
UI.	The	SPA	modules	correspond	to	the	module	concepts	which	also	exist	in	other
programming	languages	and	cause	a	simultaneous	deployment.	Thus,	the
Microservices,	which	really	should	be	independent	of	each	other,	are	combined	at
the	UI	level	in	one	shared	deployment	artifact.	Therefore,	this	approach	undoes
one	of	the	most	important	advantages	of	a	Microservice-based	architecture	–	the
independent	deployment.

HTML	Applications

Another	option	for	implementing	the	user	interface	are	HTML-based	user
interfaces.	Every	Microservice	has	one	or	more	web	pages	which	are	generated
on	the	server.	The	web	page	can	also	use	JavaScript.	Here,	contrary	to	SPAs,	only

a	new	HTML	web	page	and	not	necessarily	an	application	is	loaded	by	the	server
when	changing	between	web	pages.

ROCA

ROCA	(Resource	Oriented	Client	Architecture)	offers	the	possibility	to	arrange
the	handling	of	JavaScript	and	dynamical	elements	in	HTML	user	interfaces.
ROCA	views	itself	as	alternative	to	SPAs.	In	ROCA	the	role	of	JavaScript	is
limited	to	optimizing	the	usability	of	the	web	pages.	JavaScript	can	facilitate	their
use	or	can	add	effects	to	the	HTML	web	pages.	However,	the	application	has	to
remain	useable	without	JavaScript.	It	is	not	the	purpose	of	ROCA	that	users	really
use	web	pages	without	JavaScript.	The	applications	are	only	supposed	to	use	the
architecture	of	the	web,	which	is	based	on	HTML	and	HTTP.	Especially	when	a
web	application	is	supposed	to	be	divided	into	Microservices,	ROCA	reduces	the
dependencies	and	simplifies	the	division.	Between	Microservices	the	coupling	of
the	UI	can	be	achieved	by	links.	For	HTML	applications	links	are	the	usual	tool
for	navigating	between	the	web	pages	and	represent	a	natural	integration.	They	are
no	foreign	body	like	in	the	case	of	SPAs.

http://roca-style.org/

Fig.	40:	HTML	user	interface	with	an	asset	server

To	support	the	uniformity	of	the	HTML	user	interfaces,	the	Microservices	can	use
a	shared	Asset	Server	like	in	the	case	of	SPAs	(Fig.	40).	It	contains	all	CSS	and
JavaScript	libraries.	When	the	teams	in	addition	define	design	guidelines	for	the
HTML	web	pages	and	look	after	the	assets	on	the	Asset	Server,	the	user	interfaces
of	the	different	Microservices	will	be	largely	identical.	However,	as	described
before,	this	will	lead	to	code	dependencies	between	the	UIs	of	the	Microservices.

Easy	Routing

To	the	outside	the	Microservices	should	appear	like	a	single	web	application	–
ideally	with	one	URL.	This	also	facilitates	the	shared	use	of	assets	since	the	Same
Origin	Policy	is	not	violated.	However,	from	the	outside	user	requests	have	to	be
directed	to	the	right	Microservice.	This	is	the	function	of	the	router.	It	can	receive
HTTP	requests	and	forward	them	to	one	of	the	Microservices.	This	can	be	done
based	on	the	URL.	How	individual	URLs	are	mapped	to	Microservices	can	be
decided	by	rules,	which	can	also	be	complex.	The	example	application	uses	Zuul
for	this	task	(compare	section	14.9).	Reverse	Proxies	are	an	alternative.	These
can	for	instance	be	web	servers	like	Apache	httpd	or	nginx,	which	can	direct
requests	to	other	servers.	In	the	process	the	requests	can	be	modified,	URLs	can

for	instance	be	rewritten.	However,	these	mechanisms	are	not	as	flexible	as	Zuul,
which	is	very	easy	to	extend	with	home-grown	code.

When	the	logic	in	the	router	is	very	complex,	this	can	cause	problems.	If	this	logic
has	to	be	changed	because	a	new	version	of	a	Microservice	is	brought	into
production,	an	isolated	deployment	is	not	easy	anymore.	This	endangers	the
independent	development	and	the	independent	deployment	of	the	Microservices.

Arrange	HTML	with	JavaScript

In	some	cases,	a	closer	integration	is	necessary.	It	can	happen	that	information
originating	from	different	Microservices	is	displayed	on	one	HTML	web	page.
For	example	a	web	page	might	display	order	data	from	one	Microservice	and	data
concerning	the	ordered	items	from	another	Microservice.	In	that	case	one	router	is
not	sufficient	anymore.	A	router	can	only	allow	that	a	Microservice	generates	a
complete	HTML	web	page.

A	simple	solution	which	employs	the	architecture	presented	in	Fig.	40	is	based	on
links.	AJAX	allows	to	load	the	content	of	a	link	from	another	Microservice.
Afterwards	the	link	is	replaced	by	the	thereby	received	HTML.	In	the	example	a
link	to	an	item	could	be	transformed	into	an	HTML	description	of	this	item.	This
allows	to	implement	the	logic	for	the	presentation	of	a	product	in	one
Microservice,	while	the	design	of	the	entire	web	page	is	implemented	in	another
Microservice.	The	entire	web	page	would	be	the	responsibility	of	the	order
Microservice,	while	the	presentation	of	the	products	would	be	the	responsibility
of	the	product	Microservice.	This	enables	the	continued	independent	development
of	both	Microservices	and	displaying	presentations	from	both	components.	If	the
presentation	of	the	items	has	to	be	changed	or	new	products	necessitate	a	revised
presentation,	these	modifications	can	be	implemented	in	the	product
Microservice.	The	entire	logic	of	the	order	Microservice	remains	unchanged.

Another	example	for	this	approach	is	Facebook’s	BigPipe.	It	optimizes	not	only
the	load	time,	but	allows	also	the	composition	of	web	pages	from	pagelets.	A
custom	implementation	can	use	JavaScript	to	replace	certain	elements	of	the	web
page	by	other	HTML.	This	can	be	links	or	div-elements	like	the	ones	also
otherwise	used	for	structuring	web	pages.	Such	a	div-element	can	be	replaced	by
HTML	code.

However,	this	approach	causes	relatively	long	load	times.	It	is	mainly
advantageous	when	the	web	UI	anyhow	uses	a	lot	of	JavaScript	and	when	there

https://www.facebook.com/notes/facebook-engineering/bigpipe-pipelining-web-pages-for-high-performance/389414033919

are	not	many	transitions	between	web	pages.

Frontend	Server

Fig.	41	shows	an	alternative	for	a	tight	integration.	A	frontend	server	composes
the	HTML	web	page	from	HTML	snippets,	which	are	each	generated	by	a
Microservice.	Assets	like	CSS	or	JavaScript	libraries	can	also	be	stored	in	the
frontend	server.	Edge	Side	Includes	(ESI)	represents	a	possibility	to	implement
this	concept.	ESI	offers	a	relatively	simple	language	for	combining	HTML	from
different	sources.	With	ESI	caches	can	supplement	static	content	–	for	instance	the
skeleton	of	a	web	page–	with	dynamic	content.	In	this	way	caches	can	help	with
the	delivery	of	web	pages,	even	if	they	contain	dynamic	content.	Proxies	and
caches	like	Varnish	or	Squid	implement	ESI.	Another	alternative	are	Server	Side
Includes	(SSI).	They	are	very	similar	to	ESIs,	however,	they	are	not	implemented
in	caches,	but	in	web	servers.	With	SSIs	web	servers	can	integrate	HTML
snippets	from	other	servers	into	HTML	web	pages.	The	Microservices	can
deliver	components	for	the	web	page,	which	then	will	be	assembled	on	the	server.
Apache	httpd	supports	SSIs	for	instance	with	mod_include.	nginx	uses	the
ngx_http_ssi_module	for	the	support	of	SSIs.

https://www.varnish-cache.org/
http://www.squid-cache.org/
http://httpd.apache.org/docs/2.2/mod/mod_include.html
http://nginx.org/en/docs/http/ngx_http_ssi_module.html

Fig.	41:	Integration	using	a	Frontend	server

Portals	also	consolidate	information	from	different	sources	on	one	web	page.
Most	products	use	Java	Portlets	in	line	with	the	Java	standard	JSR	168	(Portlet
1.0)	or	JSR	286	(Portlet	2.0).	Portlets	can	be	brought	into	production
independently	of	each	other	and	therefore	solve	one	of	the	central	challenges
surrounding	Microservice-based	architectures.	In	practice	these	technologies
result	frequently	in	complex	solutions.	Portlets	behave	technically	very	differently
in	comparison	to	normal	Java	web	applications	so	that	the	use	of	many
technologies	from	the	Java	environment	is	either	difficult	or	impossible.	Portlets
allow	the	user	to	compose	a	web	page	from	previously	defined	portlets.	In	this
way	the	user	can	assemble	for	instance	his/her	most	important	information	sources
on	one	web	page.	However,	this	is	not	really	necessary	for	creating	a	UI	for
Microservices.	The	additional	features	result	in	additional	complexity.	Therefore,
portal	servers	which	are	based	on	portlets	are	not	a	really	good	solution	for	the
web	user	interfaces	of	Microservices.	In	addition,	they	restrict	the	available	web
technologies	to	the	Java	field.

Mobile	Clients	and	Rich	Clients

Web	user	interfaces	do	not	need	any	installation	of	software	on	the	client.	The
web	browser	is	the	universal	client	for	all	web	applications.	On	the	server	site
the	deployment	of	the	web	user	interface	can	easily	be	coordinated	with	the
deployment	of	the	Microservice.	The	Microservice	implements	a	part	of	the	UI
and	can	deliver	the	code	of	the	web	user	interface	via	HTTP.	This	allows	for	a
relatively	easy	coordinated	deployment	of	client	and	server.

For	mobile	apps,	Rich	Clients,	or	desktop	applications	the	situation	is	different:	A
software	has	to	be	installed	on	the	client.	This	client	application	is	a	Deployment
Monolith,	which	has	to	offer	an	interface	for	all	Microservices.	If	the	client
application	is	supposed	to	comprise	functionalities	of	different	Microservices,	it
would	technically	have	to	be	modularized,	and	the	individual	modules	like	the
associated	Microservices	would	have	to	be	brought	into	production	independently
of	each	other.	However,	this	is	not	possible	since	the	client	application	is	a
Deployment	Monolith.	A	SPA	can	also	easily	turn	into	a	Deployment	Monolith.
Sometimes	a	SPA	is	used	to	separate	the	development	of	client	and	server.	In	a
Microservices	context	such	a	use	of	SPAs	is	not	desirable.

When	a	new	feature	is	implemented	in	a	Microservice,	which	also	requires
modifications	of	the	client	application,	this	change	cannot	solely	be	rolled	out	via
a	new	version	of	the	Microservice.	In	addition,	a	new	version	of	the	client
application	has	to	be	delivered.	However,	it	is	unrealistic	to	deliver	the	client
application	over	and	over	again	for	each	small	change	of	a	feature.	If	the	client
applications	is	supposed	to	be	available	in	the	app	store	of	a	mobile	operation
system,	an	extensive	review	of	each	version	is	necessary.	If	multiple	changes	are
supposed	to	be	delivered	together,	the	change	has	to	be	coordinated.	And	the	new
version	of	the	client	application	has	to	be	coordinated	with	the	Microservices	so
that	the	new	versions	of	the	Microservices	are	ready	in	time.	This	results	in
deployment	dependencies	between	the	Microservices,	which	should	really	be
avoided.

Organizational	Level

At	the	organizational	level	there	is	often	a	designated	team	for	developing	the
client	application.	In	this	manner	the	division	into	an	individual	module	is	also
implemented	at	the	organizational	level.	Especially	when	different	platforms	are
supported,	it	is	unrealistic	that	there	is	one	developer	in	each	Microservice	team
for	each	platform.	The	developers	are	going	to	form	one	team	for	each	platform.
This	team	has	to	communicate	with	all	Microservice	teams,	which	offer
Microservices	for	mobile	applications.	This	can	necessitate	a	lot	of

communication.	However,	Microservices	have	set	out	to	avoid	such	excessive
communication	requirements.	Therefore,	the	Deployment	Monolith	poses	a
challenge	for	client	applications	at	the	organizational	level.

Fig.	42:	Mobile	Apps	and	Rich	Client	are	Deployment	Monoliths	that	integrate	multiple
Microservices.

One	possible	solution	is	to	develop	new	features	initially	for	the	web.	Each
Microservice	can	directly	bring	functionalities	into	the	web.	Upon	a	release	of	the
client	application	these	features	will	also	be	available	there.	However,	in	that
case	each	Microservice	needs	to	support	a	certain	set	of	features	for	the	web
application	and,	where	required,	another	set	for	the	client	application.	In	exchange
this	approach	can	keep	the	web	application	and	the	mobile	application	uniform.	It
supports	an	approach	where	the	domain-based	teams	provide	features	of	the
Microservices	to	mobile	users	as	well	as	to	web	users.	Mobile	applications	and
web	applications	are	only	two	channels	to	offer	the	same	functionalities.

Backend	for	each	Frontend

However,	the	requirements	can	also	be	entirely	different.	For	instance,	the	mobile
application	can	be	a	largely	independent	application	which	is	supposed	to	be
developed	further	as	independently	of	the	Microservices	and	the	web	user
interface	as	possible.	Often	the	use	cases	of	the	mobile	application	are	so
different	from	the	use	cases	of	the	web	application	that	a	separate	development	is
required	due	to	the	differences	in	the	features.

In	such	cases	the	approach	depicted	in	Fig.	43	can	be	sensible:	The	team	for	the
mobile	app	resp.	the	Rich	Client	has	a	number	of	developers	who	implement	a
special	backend.	This	allows	to	also	develop	functionalities	of	the	mobile	app

independently	in	the	backend,	because	at	least	a	part	of	the	requirements	for	the
Microservices	can	be	implemented	by	developers	from	the	same	team.	In	that	case
it	should	not	happen	that	logic	for	the	mobile	app	is	implemented	in	the
Microservice,	which	really	belongs	into	a	backend	Microservice.	However,	the
backend	for	a	mobile	application	differs	from	other	APIs.	Mobile	clients	have
little	bandwidth	and	a	high	latency.	Therefore,	APIs	for	mobile	devices	are
optimized	for	getting	by	with	as	few	calls	as	possible	and	for	only	transfering
really	essential	data.	This	is	also	true	for	Rich	Clients,	however	not	exactly	to	the
same	extent.	The	adaption	of	an	API	to	the	specific	requirements	of	a	mobile
applications	can	be	implemented	in	a	Microservice,	which	is	implemented	by	the
frontend	team.

Fig.	43:	Mobile	Apps	or	Rich	Clients	with	their	own	backend

In	a	mobile	app	a	user	interaction	should	rapidly	lead	to	a	reaction	of	the	app.
When	it	is	necessary	to	call	a	Microservice	as	reaction	to	a	user	interaction,	this
can	already	conflict	with	this	aim.	If	there	are	multiple	calls,	the	latency	will
increase	further.	Therefore,	the	API	for	a	mobile	App	should	be	optimized	for
delivering	the	required	data	with	as	few	calls	as	possible.	Also	these
optimizations	can	be	implemented	by	a	backend	for	the	mobile	app.

The	optimizations	can	be	implemented	by	the	team	which	is	responsible	for	the
mobile	app.	Thereby	the	Microservices	can	offer	universally	valid	interfaces
while	the	teams	for	the	mobile	apps	can	assemble	their	special	APIs	by
themselves.	Due	to	that	the	mobile	app	teams	are	not	so	dependent	anymore	on	the
teams	which	are	responsible	for	the	implementation	of	the	Microservices.

To	modularize	web	applications	is	simpler	than	the	modularization	of	mobile
apps,	especially	when	the	web	applications	are	based	on	HTML	and	not	on	SPAs.
For	mobile	apps	or	Rich	Client	Apps	it	is	much	more	difficult	since	they	form	an
individual	deployment	unit	and	cannot	be	easily	divided.

The	architecture	shown	in	Fig.	43	makes	it	possible	to	reuse	Microservices	for
different	clients.	At	the	same	time,	it	is	an	entry	into	a	layered	architecture.	The	UI
layer	is	separated	from	the	Microservices	and	is	implemented	by	another	team.	In
that	case	requirements	have	to	be	implemented	by	multiple	teams.	Microservices
were	meant	to	avoid	exactly	this.	Besides	this	architecture	entails	the	danger	that
logic	is	implemented	in	the	services	for	the	client	application,	which	really
belongs	in	the	Microservices.	Therefore,	this	solution	does	not	only	have
advantages.

Try	and	Experiment

This	section	presented	as	alternative	for	web	applications	a	SPA	per	Microservice,	a	SPA	with
modules	per	Microservice,	an	HTML	application	per	Microservice	and	a	frontend	server	with
HTML	snippets.	Which	of	these	approaches	would	you	choose?	Why?

How	would	you	deal	with	mobile	apps?	One	option	would	be	a	team	with	backend	developers	–	or
would	you	rather	choose	a	team	without	backend	developers?

9.2	REST
Microservices	have	to	be	able	to	call	each	other	in	order	to	implement	logic
together.	This	can	be	supported	by	different	technologies.

REST	(Representational	State	Transfer)	is	one	option	to	enable	communication
between	Microservices.	REST	is	the	term	for	the	fundamental	approaches	of	the
WWW:

There	is	a	plethora	of	resources	which	can	be	identified	via	URIs.	URI
stands	for	Uniform	Resource	Identifier.	It	unambiguously	and	globally
identifies	resources.	URLs	are	practically	the	same	as	URIs.

The	resources	can	be	manipulated	via	a	fixed	set	of	methods.	In	the	case	of
HTTP	these	are	for	instance	GET	for	requesting	a	resource,	PUT	for	storing
a	resource	and	DELETE	for	deleting	a	resource.	The	methods	semantics	are
rigidly	defined.
There	can	be	different	representations	for	resources	–	for	instance	as	PDF	or
HTML.	HTTP	supports	the	so-called	Content	Negotiation	via	the	Accept
Header.	In	this	manner	the	client	can	determine	which	data	representation	it
can	process.	The	Content	Negotiation	allows	for	instance	to	display
resources	in	a	way	that	is	human-readable	and	to	provide	them	at	the	same
time	under	the	same	URL	in	a	machine-readable	manner.	The	client	can
communicate	via	an	Accept	Header	whether	it	only	accepts	human-readable
HTML	or	only	JSON.
Relationships	between	resources	can	be	represented	by	links.	Links	can	point
to	other	Microservices	thereby	enabling	the	integration	of	logic	of	different
Microservices.
The	servers	in	a	REST	system	are	supposed	to	be	stateless.	Therefore	HTTP
implements	a	stateless	protocol.

The	limited	vocabulary	represents	the	exact	opposite	of	what	object-oriented
systems	employ.	Object-orientation	focuses	on	a	specific	vocabulary	with	specific
methods	for	each	class.	The	REST	vocabulary	can	likewise	execute	complex
logic.	When	data	validations	are	necessary,	this	can	be	checked	at	the	POST	or
PUT	of	new	data.	If	complex	processes	are	supposed	to	be	represented,	a	POST
can	start	the	process,	and	subsequently	the	state	can	be	updated.	The	current	state
of	the	process	can	be	fetched	by	the	client	under	the	known	URL	via	GET.
Likewise,	POST	or	PUT	can	be	used	to	initiate	the	next	state.

Cache	and	Load	Balancer

A	RESTful	HTTP	interface	can	very	easily	be	supplemented	with	a	cache:	Since
RESTful	HTTP	uses	the	same	HTTP	protocol	like	the	web,	a	simple	web	cache	is
sufficient.	Likewise,	the	usual	HTTP	Load	Balancer	can	also	be	used	for	RESTful
HTTP.	The	power	of	these	concepts	is	impressively	illustrated	by	the	size	of	the
WWW.	This	size	is	only	possible	due	to	the	properties	of	HTTP.	HTTP	for
instance	also	possesses	simple	and	useful	mechanisms	for	security	–	not	only
encryption	via	HTTPS,	but	also	authentication	with	HTTP	Headers.

HATEOAS

HATEOAS	(Hypermedia	as	the	Engine	of	Application	State)	is	another	important
component	of	REST.	The	relationships	between	the	resources	are	modeled	by

links.	Therefore,	a	client	only	has	to	know	an	entry	point.	From	there	it	can	go	on
navigating	at	will	and	thereby	locate	all	data	in	a	stepwise	manner.	In	the	WWW	it
is	for	instance	possible	to	start	from	Google	and	from	there	to	reach	practically
the	entire	web	via	links.

REST	describes	the	architecture	of	the	WWW	and	thereby	the	largest	integrated
computer	system.	However,	REST	could	also	be	implemented	with	other
protocols.	It	is	an	architecture	which	can	be	implemented	with	different
technologies.	The	implementation	of	REST	with	HTTP	is	called	RESTful	HTTP.
When	RESTful	HTTP	services	exchange	data	as	JSON	or	XML	instead	as	HTML,
this	approach	allows	to	exchange	data	and	not	only	to	access	web	pages.

Microservices	can	also	profit	from	HATEOAS.	HATEOAS	does	not	have	a
central	coordination,	just	links.	This	fits	very	well	to	the	concept	that
Microservices	should	have	as	little	central	coordination	as	possible.	In	case	of
REST	clients	know	only	entry	points	based	on	which	they	can	discover	the	entire
system.	Therefore,	in	a	REST-based	architecture	services	can	be	moved	in	a
manner	that	is	transparent	for	the	client.	The	client	simply	gets	new	links.	A
central	coordination	is	likewise	not	necessary	for	this.	The	REST	service	just	has
to	return	different	links.	In	the	ideal	case	the	client	only	has	to	understand	the
fundamentals	of	HATEOAS	and	then	can	navigate	via	links	to	any	data	in	the
Microservice	system.	The	Microservice-based	systems	on	the	other	hand	can
modify	their	links	and	thereby	change	the	distribution	of	functionalities	between
Microservices.	Even	extensive	architecture	changes	can	be	kept	transparent.

HAL

HATEOAS	is	a	concept.	HAL	is	a	possibility	to	implement	it.	It	is	a	standard
describing	how	the	links	to	other	documents	should	be	contained	in	a	JSON
document.	Thereby	HATEOAS	is	very	easy	to	implement	especially	in
JSON/RESTful	HTTP	services.	The	links	are	separate	from	the	actual	document.
This	allows	to	implement	links	to	details	or	to	independent	data	sets.

XML

XML	has	a	long	history	as	data	format.	It	is	easy	to	use	together	with	RESTful
HTTP.	There	are	different	type	systems	for	XML	which	can	determine	whether	an
XML	document	is	valid.	This	is	very	useful	for	the	definition	of	an	interface.
Among	the	languages	for	the	definition	of	valid	data	is	for	instance	XML	Schema
(XSD)	or	RelaxNG.	Some	frameworks	allow	for	the	generation	of	code	in	order
to	administrate	XML	data,	which	correspond	to	such	a	schema.	Via	XLink	XML

http://stateless.co/hal_specification.html
http://www.w3.org/XML/Schema
http://relaxng.org/
http://www.w3.org/TR/xlink11/

documents	can	contain	links	to	other	documents.	This	enables	the	implementation
of	HATEOAS.

HTML

XML	was	designed	to	transfer	data	and	documents.	To	display	the	information	is
the	task	of	different	software.	Meanwhile	HTML	has	a	similar	approach	as	XML:
HTML	defines	only	the	structures.	The	display	occurs	via	CSS.	For	the
communication	between	processes	HTML	documents	can	be	sufficient	because	in
modern	web	applications	documents	contain	only	data	-	just	like	XML.	In	a
Microservices	world	this	approach	has	the	advantage	that	the	communication	to
the	user	and	between	the	Microservices	employs	the	same	format.	This	reduces
the	effort.	Thereby	it	gets	even	easier	to	implement	Microservices	which	contain	a
UI	and	a	communication	option	for	other	Microservices.

JSON

JSON	(JavaScript	Object	Notation)	is	a	representation	of	data	which	is	especially
optimized	for	JavaScript.	Like	JavaScript	the	data	are	dynamically	typed.
However,	meanwhile	there	are	in	fact	suitable	JSON	libraries	for	all
programming	languages.	In	addition	there	are	type	systems	likeJSON	Schema,
which	supplement	JSON	with	an	appropriate	validation.	With	that	JSON	is	not
inferior	at	all	anymore	to	data	formats	like	XML.

Protocol	Buffer

Binary	protocols	like	Protocol	Buffer	can	also	be	used	instead	of	text-based	data
representations.	This	technology	has	been	designed	by	Google	to	represent	data
more	efficiently	and	to	achieve	a	higher	performance.	There	are	implementations
for	many	different	programming	languages	so	that	Protocol	Buffer	can	be
universally	used	similar	to	JSON	or	XML.

RESTful	HTTP	is	synchronous.

RESTful	HTTP	is	synchronous:	Typically	a	service	sends	out	a	request	and	waits
for	a	response	which	is	subsequently	analyzed	in	order	to	continue	with	the
program	sequence.	This	can	cause	problems	in	case	of	long	latency	times	within
the	network.	It	can	lengthen	the	processing	of	a	request	since	responses	of	other
services	have	to	be	waited	for.	Besides,	after	a	certain	waiting	time	the	request
has	to	be	aborted	because	it	is	likely	that	the	request	is	not	going	to	be	answered
at	all.	Possible	reasons	are	that	the	server	is	not	available	at	the	moment	or	that

http://json-schema.org/
https://developers.google.com/protocol-buffers/

the	network	has	a	problem.	Correctly	handled	timeouts	increase	the	stability	of	the
system	(section	10.5).

The	failure	may	not	result	in	the	failure	of	additional	services.	Therefore,	via	the
timeout	it	has	to	be	ensured	that	the	particular	system	still	responds	and	the	failure
does	not	propagate.

9.3	SOAP	and	RPC
It	is	possible	to	build	a	Microservices-based	architecture	on	SOAP.	SOAP	uses
also	HTTP	like	REST,	but	employs	only	POST	messages	to	transfer	data	to	a
server.	In	the	end	a	SOAP	calls	a	method	on	a	certain	object	on	the	server.
Therefore	SOAP	is	an	RPC	mechanism	(Remote	Procedure	Call),	which	calls
methods	in	a	different	process.

SOAP	lacks	mechanisms	like	HATEOAS,	which	allow	to	flexibly	handle
relationships	between	Microservices.	The	interfaces	have	to	be	completely
defined	by	the	server	and	known	on	the	client.

Flexible	Transport

SOAP	can	convey	messages	with	different	transport	mechanisms.	It	is	for	instance
possible	to	receive	a	message	via	HTTP	and	to	subsequently	sent	it	on	as	message
via	JMS	or	as	email	via	SMTP/POP.	SOAP-based	technologies	also	support	the
forwarding	of	requests.	For	example,	the	security	standard	WS-Security	can
encrypt	or	sign	parts	of	a	message.	Afterwards	the	parts	can	be	sent	on	to	different
services	without	having	to	be	decrypted.	The	sender	can	send	a	message	in	which
some	parts	are	encrypted.	This	message	can	be	processed	via	different	stations.
Each	station	can	process	a	part	of	the	message	or	send	it	to	other	recipients.
Finally,	the	encrypted	parts	will	arrive	at	their	final	recipients	–	and	only	there
they	have	to	be	decrypted	and	processed.

SOAP	has	many	extensions	for	special	use	contexts.	The	different	extensions	from
the	WS-*-environment	comprise	for	instance	transactions	and	the	coordination	of
web	services.	In	this	way	a	complex	protocol	stack	can	arise.	The	interoperability
between	the	different	services	and	solutions	can	suffer	due	to	the	complexity.
Some	technologies	are	also	not	very	sensible	for	Microservices.	For	example,	a
coordination	of	different	Microservices	is	problematic	as	this	will	result	in	a
coordination	layer,	and	modifications	of	a	business	process	will	probably	concern
the	coordination	of	the	Microservices	and	also	the	Microservices	themselves.

When	the	coordination	layer	comprises	all	Microservices,	a	Monolith	is	created
which	also	has	to	be	changed	upon	each	modification.	This	contradicts	the
Microservices	idea	of	independent	deployment.	WS-*	is	rather	in	line	with	such
concepts	as	SOA.

Thrift

Another	communication	possibility	is	Apache	Thrift.	It	uses	a	very	efficient	binary
encoding	like	Protocol	Buffer.	Furthermore,	Thrift	can	forward	requests	from	a
process	with	a	programming	language	via	the	network	to	other	processes.	The
interface	is	described	in	an	interface	definition	specific	for	Thrift.	Based	on	this
definition	different	client	and	server	technologies	can	communicate	with	each
other.

9.4	Messaging
Another	option	for	the	communication	between	Microservices	are	messages	and
messaging	systems.	As	the	name	suggests,	these	systems	are	based	upon	the
sending	of	messages.	The	messages	can	result	in	a	response	which	again	is	sent	as
message.	Messages	can	go	to	one	or	multiple	recipients.

Especially	in	case	of	distributed	systems	messaging	solutions	can	demonstrate
their	advantages:

Messages	can	still	be	transferred	in	case	of	network	failures.	The	messaging
system	buffers	them	and	delivers	them	when	the	network	is	available	again.
The	guarantees	can	be	further	strengthened:	The	messaging	system	cannot
only	guarantee	the	correct	transfer	of	the	messages,	but	even	their	processing.
If	there	was	a	problem	during	the	processing	of	the	message,	the	message	can
be	transferred	anew.	A	successful	processing	is	possible	when	the	error
disappears	after	some	time.	Otherwise	it	will	be	attempted	a	couple	more
times	to	process	the	message	until	finally	the	message	is	discarded	because	it
cannot	be	processed	successfully.
In	a	messaging	architecture	responses	are	transferred	and	processed
asynchronously.	Such	architectures	are	well	tuned	to	high	latency	times	like
they	occur	in	the	network.	Waiting	for	a	response	is	the	usual	case	in	such	an
architecture.	Therefore	the	programming	model	always	acts	on	the
assumption	of	a	high	latency.
The	call	of	another	service	does	not	block	the	further	processing.	Even	if	the
response	has	not	been	received	yet,	the	service	can	continue	working	and	for

https://thrift.apache.org/

instance	call	additional	services.
The	sender	does	not	know	the	recipient	of	the	message.	The	sender	sends	the
message	to	a	queue	or	a	topic.	There	the	recipient	registers.	Thereby	sender
and	recipient	are	decoupled.	There	can	even	be	multiple	recipients	without
that	the	sender	is	aware	of	this.	Besides	the	messages	can	be	modified	on
their	way.	Data	can	be	for	instance	supplemented	or	removed.	In	addition,
messages	can	also	be	forwarded	to	entirely	different	recipients.

Messaging	is	also	a	good	basis	for	certain	architectures	of	Microservice-based
systems	like	Event	Sourcing	(compare	section	10.3)	or	Event-driven	Architecture
(section	8.6).

Messages	and	Transactions

Messaging	offers	a	solution	for	transactional	systems	with	Microservices.	In	a
Microservice-based	system	the	guarantees	for	transactions	are	hard	to	ensure
when	the	Microservices	call	each	other.	In	that	case	all	Microservices	would
have	to	participate	in	a	transaction.	They	are	only	allowed	to	write	changes	when
all	Microservices	in	the	transaction	have	processed	the	logic	without	errors.	This
means	that	the	changes	would	have	to	be	held	back	for	a	very	long	time.	That	is
bad	for	the	performance	since	no	new	transaction	can	change	the	data	meanwhile.
Besides	in	a	network	it	is	always	possible	that	a	participant	fails.	In	that	case	the
transaction	will	remain	open	for	a	long	time	or	might	even	not	be	closed	at	all.
This	will	block	changes	to	the	data	for	a	long	time.	Such	problems	arise	for
instance	when	the	calling	system	crashes.

Fig.	44:	Transactions	and	Messaging

In	a	messaging	system	transactions	can	be	treated	differently:	The	sending	and
receiving	of	messages	is	part	of	a	transaction	–	just	as	for	instance	the	writing	and
reading	from	the	database	(Fig.	44).	When	an	error	occurs	during	the	processing
of	the	message,	all	outgoing	messages	are	canceled	and	the	database	changes	are
rolled	back.	In	the	case	of	success	all	these	actions	take	place.	The	recipients	of
the	messages	can	likewise	be	safeguarded	transactionally.	In	that	case	the
processing	of	the	outgoing	messages	is	subject	to	the	same	transactional
guarantees.

The	important	point	is	that	the	sending	and	receiving	of	messages	and	the
transactions	on	the	database	can	be	combined	in	one	transaction.	The	coordination
is	taken	care	of	by	the	infrastructure.	No	extra	code	needs	to	be	written.	For	the
coordination	of	messaging	and	databases	the	protocol	Two	Phase	Commit	(2PC)
can	be	employed.	This	protocol	is	the	usual	solution	for	coordinating	transactional
systems	like	databases	and	messaging	systems	with	each	other.	An	alternative	are
products	like	Oracle	AQ	or	ActiveMQ.	They	store	the	messages	in	a	database.
Then	the	coordination	between	database	and	messaging	can	simply	be	achieved	by
writing	the	messages	as	well	as	the	data	modifications	in	the	same	database
transaction.	Messaging	and	database	are	in	the	end	the	same	systems	in	that	case.

Messaging	allows	to	implement	transactions	without	the	need	for	a	global
coordination.	Each	Microservice	is	transactional.	The	transactional	sending	of
messages	is	ensured	by	the	messaging	technology.	However,	when	a	message
cannot	be	processed,	for	instance	due	to	invalid	values,	there	is	no	possibility	to
roll	the	already	processed	messages	back.	Therefore,	the	correct	processing	of
transactions	is	not	given	under	all	circumstances.

Messaging	Technology

For	the	implementation	of	messaging	a	technology	has	to	be	used:

AMQP	(Advanced	Message	Queuing	Protocol)	is	a	standard.	It	defines	a
protocol	with	which	messaging	solutions	can	communicate	on	the	wire	with
each	other	and	with	clients.	An	implementation	of	this	standard	is	RabbitMQ,
which	is	written	in	Erlang	and	is	under	Mozilla	licence.	Another
implementation	is	for	instance	Apache	Qpid.
Apache	Kafka	focuses	on	high	throughput,	replication	and	fail	safeness.
Therefore,	it	is	well	suited	for	distributed	systems	like	Microservices,
especially	the	fail	safeness	is	very	helpful	in	this	use	context.

https://www.amqp.org/
https://www.rabbitmq.com/
http://kafka.apache.org/

0MQ	(also	called	ZeroMQ	or	ZMQ)	gets	along	without	a	server	and	is
therefore	very	light-weight.	It	has	some	primitivs	which	can	be	assembled
into	complexer	systems.	0MQ	is	under	the	LGPL	licence	and	written	in	C++.
JMS	(Java	Messaging	Service)	defines	an	API,	with	which	a	Java
application	can	receive	messages	and	send	them.	In	contrast	to	AMQP	the
specification	does	not	define	how	the	technology	transfers	messages	on	the
wire.	Since	it	is	a	standard,	Java-EE	server	implement	this	API.	Well	known
implementations	are	ActiveMQ	and	HornetQ.
It	is	also	possible	to	use	ATOM	Feeds	for	messaging.	This	technology	is
normally	used	to	transfer	blog	contents.	Clients	can	relatively	easily	request
new	entries	of	a	blog.	In	the	same	manner	a	client	can	use	ATOM	to	request
new	messages.	ATOM	is	based	on	HTTP	and	therefore	fits	well	in	a	REST
environment.	However,	ATOM	has	only	functionalities	for	delivering	new
information.	It	does	not	support	more	complex	techniques	like	transactions.

For	many	messaging	solutions	a	messaging	server	and	therefore	an	additional
infrastructure	are	required.	This	infrastructure	has	to	be	operated	in	a	manner	that
prevents	failures	because	failures	would	cause	the	communication	in	the	entire
Microservice-based	system	to	break	down.	However,	messaging	solutions	are
mostly	designed	to	achieve	high	availability	for	instance	via	clustering.

For	many	developers	messaging	is	rather	unfamiliar	since	it	requires
asynchronous	communication.	This	makes	it	appear	as	rather	complex.	In	most
cases	the	calling	of	a	method	in	a	different	process	is	easier	to	understand.	With
approaches	like	Reactive	(compare	section	10.6)	asynchronous	development	is
introduced	into	the	Microservices	themselves.	Also	the	AJAX	model	from
JavaScript	development	resembles	the	asynchronous	treatment	of	messages.	More
and	more	developers	are	therefore	familiar	with	the	asynchronous	model.

Try	and	Experiment

http://zeromq.org/
https://jcp.org/en/jsr/detail?id=343
http://activemq.apache.org/
http://hornetq.jboss.org/
http://tools.ietf.org/html/rfc4287
http://tools.ietf.org/html/rfc5023

REST,	SOAP/RPC	and	messaging	each	have	advantages	and	disadvantages.	Collect	the	advantages
and	disadvantages	and	make	up	your	mind	which	of	the	alternatives	to	use.

In	a	Microservice-based	system	there	can	be	different	types	of	communication	–	however,	there
should	be	one	predominant	communication	type.	Which	would	you	choose?	Which	others	would	be
allowed	in	addition?	In	which	situations?

9.5	Data	Replication
At	the	database	level	Microservices	could	share	a	database	and	thereby
concertedly	access	data.	This	type	of	integration	has	already	been	in	practice	for	a
long	time:	It	is	not	unusual	that	a	database	is	used	by	several	applications.	Often
databases	last	longer	than	applications	so	that	not	the	application	with	its	demands
is	focused	on,	but	rather	the	database.	Although	the	integration	via	a	shared
database	is	widespread,	it	has	critical	disadvantages:

The	data	representation	cannot	easily	be	modified	since	several	applications
access	the	data.	A	change	can	cause	one	of	the	applications	to	break.
Therefore,	changes	have	to	be	coordinated	across	all	applications.
This	makes	it	impossible	to	rapidly	modify	applications	in	cases	where	this
entails	changes	to	the	database.	However,	rapid	changeability	is	exactly	the
area	where	Microservices	should	bring	advantages.
Finally,	it	is	also	hardly	possible	to	clear	up	the	schema	–	i.e.	to	remove
columns	which	are	not	needed	anymore	because	it	is	unclear	whether	any
system	is	still	using	these	columns.	In	the	long	run	the	database	will	get	more
and	more	complex	and	harder	to	maintain.

In	the	end	the	shared	use	of	a	database	is	a	violation	of	an	important	architecture
rule.	Components	should	be	able	to	change	their	internal	data	representation
without	other	components	being	affected.	The	database	schema	is	an	example	for
an	internal	data	representation.	When	multiple	components	share	the	database,	it	is
not	possible	anymore	to	change	the	data	representation.	Therefore,	Microservices
should	have	a	strictly	separate	data	storage	and	not	share	a	database	schema.

However,	a	database	instance	can	be	used	for	multiple	Microservices	when	the
data	sets	of	the	individual	Microservices	are	completely	separate.	For	instance,
each	Microservice	can	use	its	own	schema	within	a	shared	database.	However,	in
that	case	there	may	not	be	any	relationships	between	the	schemas.

Replication

Replicating	data	is	one	possible	alternative	for	the	integration	of	Microservices.
However,	the	data	replication	must	not	introduce	a	dependency	of	the	database
schemas	by	the	back	door.	When	the	data	are	just	replicated	and	the	same	schema
is	used,	the	same	problem	occurs	like	in	the	case	of	a	shared	use	of	the	database.
A	schema	change	will	also	affect	other	Microservices	so	that	the	Microservices
are	in	the	end	coupled	again.	This	has	to	be	avoided.

The	data	should	be	transferred	into	another	schema	to	ensure	the	independency	of
the	schemas	and	therefore	the	Microservices.	In	addition,	such	a	transformation	is
also	in	most	cases	desirable	for	domain-based	reasons.

A	typical	example	for	the	use	of	replication	in	classical	IT	are	Data	Warehouses.
They	replicate	data,	but	store	them	differently.	That	is	due	to	the	fact	that	data
accessing	in	the	Data	Warehouse	has	very	different	requirements:	The	aim	is	to
analyze	lots	of	data.	The	data	are	optimized	for	reading	access	and	often	also
combined	as	not	every	single	data	set	is	relevant	for	statistics.

Because	of	Bounded	Context	in	most	cases	different	representations	or	subsets	of
data	are	relevant	for	different	Microservices.	When	replicating	data	between
Microservices	it	will	for	this	reason	frequently	anyhow	be	necessary	to	transform
the	data	or	to	replicate	just	subsets	of	the	data.

Problems:	Redundancy	and	Consistency

The	replication	causes	a	redundant	storage	of	the	data.	This	means	that	the	data
are	not	immediately	consistent:	It	takes	some	time	until	changes	will	have	been
replicated	to	all	locations.

However,	immediate	consistency	can	be	dispensable.	In	case	of	analysis	tasks	like
in	a	Data	Warehouse	an	analysis	which	does	not	comprise	the	orders	of	the	last
few	minutes,	can	be	sufficient.	There	are	also	other	cases	in	which	consistency	is
not	that	important.	When	an	order	takes	a	little	bit	of	time	until	it	is	visible	in	the
delivery	Microservice,	this	can	be	acceptable	because	maybe	anyhow	nobody
will	request	the	data	in	the	meanwhile.

Consistency	is	a	requirement	for	the	system.	High	consistency	requirements	make
replication	difficult.	When	system	requirements	are	determined,	it	is	often	not
clear	how	consistent	the	data	really	have	to	be.	This	limits	the	possibilities	for
data	replication.

Also	for	replication	there	has	to	be	a	leading	system	which	contains	the	current
data.	All	other	replicates	should	obtain	the	data	from	this	system.	Then	it	is
always	clear	which	data	are	really	up-to-date.	Data	modifications	should	not	be
triggered	by	different	systems.	This	easily	causes	conflicts	and	a	very	complex
implementation.	Such	conflicts	are	excluded	when	there	is	just	one	source	for
changes.

Implementation

Some	databases	offer	replication	as	feature.	However,	this	is	not	helpful	for	the
replication	of	data	between	Microservices	because	the	schemas	of	the
Microservices	should	be	different.	The	replication	has	to	be	self	implemented.
For	this	purpose,	a	custom	interface	can	be	implemented.	This	interface	should
allow	for	high	performance	access	even	to	large	data	sets.	To	achieve	the
necessary	performance,	one	can	also	directly	write	into	the	target	schema.	The
interface	does	not	necessarily	have	to	use	a	protocol	like	REST,	but	can	employ
faster	alternative	protocols.	To	this	end	it	can	be	necessary	to	use	another
communication	mechanism	than	the	one	normally	used	by	the	Microservices.

Batch

The	replication	can	be	activated	in	a	batch.	In	that	case	the	entire	data	or	at	least
changes	from	a	longer	time	interval	can	be	transferred.	For	the	first	replication	run
the	amount	of	data	can	be	large	so	that	the	replication	takes	a	long	time.	It	can	still
be	sensible	to	transfer	all	the	data	each	time.	This	allows	to	correct	mistakes
which	happened	during	the	last	replication.

An	easy	implementation	can	assign	a	version	to	each	data	set.	Based	on	the
version	data	sets	which	have	changed	can	be	specifically	selected	and	replicated.
This	approach	can	be	easily	restarted	again	in	case	of	an	interruption	of	the
replication	because	the	process	itself	does	not	hold	a	state.	Instead	the	state	is
stored	with	the	data	itself.

Event

One	alternative	is	to	start	the	replication	in	case	of	certain	events.	For	instance,
when	a	data	set	is	newly	generated,	the	data	can	also	immediately	be	copied	into

the	replicates.	Such	approaches	are	especially	easy	to	implement	with	messaging
(section	9.4).

Data	replication	is	an	especially	good	choice	for	high	performance	access	to	large
amounts	of	data.	Many	Microservice-based	systems	get	along	without	replicating
data.	Even	those	systems	which	use	data	replication	will	also	employ	other
integration	mechanisms.

Try	and	Experiment

Would	you	use	data	replication	in	a	Microservice-based	system?	In	which	areas?	How	would	you
implement	it?

9.6	Interfaces:	Internal	and	External
Microservice-based	systems	have	different	types	of	interfaces:

Each	Microservice	can	have	one	or	more	interfaces	for	other	Microservices.
A	change	to	the	interface	can	require	coordination	with	other	Microservice
teams.
The	interfaces	between	Microservices	which	are	developed	by	the	same
team	are	a	special	case.	Team	members	can	closely	work	together	so	that
these	interfaces	are	easier	to	change.
Besides	the	Microservice-based	system	can	offer	interfaces	to	the	outside
with	which	the	system	can	also	be	used	outside	of	the	organization	of	the
developers.	In	extreme	cases	this	can	be	potentially	every	internet	user	when
the	system	offers	a	public	interface	in	the	internet.

These	interfaces	are	differently	easy	to	change:	It	is	very	easy	to	ask	a	colleague
in	the	same	team	for	a	change.	This	colleague	is	presumably	even	in	the	same
room.

Changes	to	an	interface	of	a	Microservice	of	another	team	are	more	difficult.	The
change	has	to	prevail	against	other	changes	and	new	features.	When	the	change	has
to	be	coordinated	with	other	teams,	additional	expenditures	arise.

Interface	changes	between	Microservices	can	be	safeguarded	by	appropriate	tests
(Consumer-driven	Contract	Tests,	section	11.7).	These	tests	examine	whether	the

interface	still	fulfills	the	expectations	of	the	interface	users.

External	Interfaces

In	case	of	interfaces	to	the	outside	the	coordination	with	users	is	more
complicated.	There	might	be	very	many	users.	For	public	interfaces	the	users
might	even	be	unknown.	Therefore,	techniques	like	Consumer-driven	Contract
Tests	are	hard	to	implement	in	such	scenarios.	However,	for	interfaces	to	the
outside	rules	can	be	defined	which	determine	for	instance	for	how	long	a	certain
version	of	the	interface	is	supported.	A	stronger	focus	on	backwards	compatibility
can	also	be	sensible	for	public	interfaces.

For	interfaces	to	the	outside	it	can	be	necessary	to	support	several	versions	of	the
interface	in	order	to	not	force	all	users	to	perform	changes.	Between
Microservices	it	should	be	an	aim	to	accept	multiple	versions	only	for	uncoupling
deployments.	When	a	Microservice	changes	an	interface,	it	should	still	support	the
old	interface.	In	that	case	the	Microservices	which	depend	on	the	old	interface	do
not	have	to	be	instantly	deployed	anew.	However,	the	next	deployment	should	use
the	new	interface.	Afterwards	the	old	interface	can	be	removed.	This	reduces	the
number	of	interfaces	which	have	to	be	supported	and	therefore	the	complexity	of
the	system.

Separating	Interfaces

Since	the	interfaces	are	differently	easy	to	change,	they	should	be	implemented
separately.	When	an	interface	of	a	Microservice	is	supposed	to	be	used	externally,
it	can	subsequently	only	be	changed	when	this	change	is	coordinated	with	the
external	users.	However,	a	new	interface	for	internal	use	can	be	split	off.	In	that
case	the	interface	which	is	exposed	to	the	outside	is	the	starting	point	for	a
separate	internal	interface	which	can	be	more	easily	changed	again.

Besides,	several	versions	of	the	same	interface	can	be	internally	implemented
together.	In	this	way	new	parameters	of	a	new	version	can	in	cases	of	calls	to	the
old	interface	simply	be	set	to	default	values	so	that	both	interfaces	internally	use
the	same	implementation.

Implementing	External	Interfaces

Microservice-based	systems	can	also	offer	interfaces	to	the	outside	in	different
ways.	Apart	from	a	web	interface	for	users	there	can	also	be	an	API,	which	can	be
accessed	from	outside.	For	the	web	interface	section	9.1	showed	already	how	the

Microservices	can	be	integrated	in	a	way	which	allows	that	all	Microservices	can
implement	a	part	of	the	UI.

When	the	system	offers	a	REST	interface	to	the	outside,	the	calls	from	outside	can
be	forwarded	to	a	Microservice	with	the	help	of	a	router.	In	the	example
application	the	router	Zuul	is	used	for	this	(section	14.9).	Zuul	is	very	flexible	and
can	forward	request	to	different	Microservices	based	on	very	detailed	rules.
However,	HATEOAS	offers	also	the	freedom	to	move	resources.	In	that	case
routing	is	dispensable.	The	Microservices	are	accessible	from	the	outside	via
URLs,	but	they	can	be	moved	at	any	time.	In	the	end	the	URLs	are	dynamically
determined	by	HATEOAS.

It	would	also	be	possible	to	offer	an	adaptor	for	the	external	interface	which
modifies	the	external	calls	before	they	reach	the	Microservices.	However,	in	that
case	a	change	to	the	logic	cannot	always	be	limited	to	a	Microservice,	but	could
also	affect	the	adaptor.

Semantic	Versioning

To	denote	changes	to	an	interface	a	version	number	can	be	used.	Semantic
Versioning	defines	a	possible	version	number	semantics.	The	version	number	is
split	into	MAJOR.MINOR.PATCH.	The	components	have	the	following	meaning:

A	change	in	MAJOR	indicates	that	the	new	version	breaks	backwards
compatibility.	The	clients	have	to	adjust	to	the	new	version.
The	MINOR	version	is	changed	when	the	interface	offers	new	features.
However,	the	changes	should	be	backwards	compatible.	A	change	of	the
clients	is	only	necessary	if	they	want	to	use	the	new	features.
PATCH	is	increased	in	the	case	of	bug	fixes.	Such	changes	should	be
completely	backwards	compatible	and	should	not	require	any	modifications
of	the	clients.

In	case	of	REST	one	should	keep	in	mind	that	it	is	not	sensible	to	encode	the
version	in	the	URL.	The	URL	should	represent	a	resource	–	independent	of	the	fact
with	which	API	version	it	is	called.	Therefore,	the	version	can	for	instance	also
be	defined	in	an	Accept	Header	of	the	request.

Postel’s	Law	or	the	Robustness	Principle

Another	important	basis	for	the	definition	of	interfaces	is	Postel’s	Law,	which	is
also	known	as	the	Robustness	Principle.	It	states	that	components	should	be	strict

http://semver.org/
http://tools.ietf.org/html/rfc793#section-2.10

in	regards	to	what	they	are	passing	on	and	liberal	in	regards	to	what	they	are
accepting	from	others.	Differently	put:	Each	component	should	adhere	as	closely
as	possible	to	the	defined	interface	when	using	other	components,	but	should
whenever	possible	compensate	errors	which	arise	during	the	use	of	its	own
interface.

When	each	component	behaves	according	to	the	Robustness	Principle	the
interoperability	will	improve:	In	fact,	if	each	component	adheres	exactly	to	the
defined	interfaces,	interoperability	should	already	be	ensured.	If	a	deviation
happens	nevertheless,	the	used	component	will	try	to	compensate	for	it	and
thereby	attempt	to	“save”	the	interoperability.	This	concept	is	also	known	as
Tolerant	Reader.

In	practice	a	called	service	should	accept	the	calls	as	long	as	this	is	possible	at
all.	One	way	to	achieve	this	is	to	only	readout	those	parameters	from	a	call	which
are	really	necessary.	On	no	account	should	a	call	be	rejected	just	because	it	does
not	formally	conform	with	the	interface	specification.	However,	the	incoming
calls	should	be	validated.	Such	an	approach	makes	it	easier	to	ensure	a	smooth
communication	in	distributed	systems	like	Microservices.

9.7	Conclusion
The	integration	of	Microservices	can	occur	at	different	levels.

Client

One	possible	level	for	the	integration	is	the	web	interface	(section	9.1):

Each	Microservice	can	bring	along	its	own	Single-Page-App	(SPA).	The
SPAs	can	be	developed	independently.	The	transition	between	the
Microservices,	however,	starts	a	completely	new	SPA.
There	can	be	one	SPA	for	the	entire	system.	Each	Microservice	supplies	one
module	for	the	SPA.	Therefore,	the	transitions	between	the	Microservices	are
very	simple	in	the	SPA.	However,	the	Microservices	get	very	tightly
integrated	so	that	a	coordination	of	deployments	can	become	necessary.
Each	Microservice	can	bring	along	an	HTML	application.	The	integration
can	occur	via	links.	This	approach	is	easy	to	implement	and	allows	for	a
modularization	of	the	web	application.
JavaScript	can	load	HTML.	The	HTML	can	be	supplied	by	different
Microservices	so	that	each	Microservice	can	contribute	a	representation	of

http://martinfowler.com/bliki/TolerantReader.html

its	data.	In	this	way	an	order	can	load	the	presentation	of	a	product	from
another	Microservice.
A	skeleton	can	assemble	individual	HTML	snippets.	Thereby	an	E-commerce
landing	page	can	display	the	last	order	from	one	Microservice	and
recommendations	from	another	Microservice.	ESI	(Edge	Side	Includes)	or
SSI	(Server	Side	Includes)	can	be	useful	for	this.

In	case	of	a	Rich	Client	or	a	mobile	app	the	integration	is	difficult	because	the
client	application	is	a	Deployment	Monolith.	Therefore,	changes	of	different
Microservices	can	in	fact	only	be	deployed	together.	The	teams	can	modify	the
Microservices	and	then	deliver	a	certain	amount	of	fitting	UI	changes	together	as
new	release	of	the	client	application.	There	can	also	be	a	team	for	each	client
application	which	adopts	new	functionalities	of	the	Microservices	into	the	client
application.	From	an	organizational	perspective	there	can	even	be	developers	in
the	team	of	the	client	application	which	develop	a	custom	service.	This	service
can	for	instance	implement	the	interface	in	a	way	that	allows	the	client	application
to	use	it	in	a	high	performance	manner.

Logic	Layer

REST	is	an	option	for	the	communication	of	the	logic	layer	(section	9.2).	REST
uses	the	mechanisms	of	the	WWW	to	enable	communication	between	services.
HATEOAS	(Hypermedia	as	the	Engine	of	Application	State)	means	that	the
relationships	between	systems	are	represented	as	links.	The	client	knows	only	an
entry	URL.	All	the	other	URLs	can	be	changed	because	they	are	not	directly
contacted	by	the	clients,	but	are	found	by	them	via	links	starting	at	the	entry	URL.
HAL	defines	how	links	can	be	expressed	and	supports	the	implementation	of
REST.	Other	possible	data	formats	for	REST	are	XML,	JSON,	HTML	or	Protocol
Buffer.

Classical	protocols	like	SOAP	or	RPC	(section	9.3)	can	also	be	used	for	the
communication	of	Microservices.	SOAP	offers	possibilities	for	forwarding	a
message	to	other	Microservices.	Thrift	has	an	efficient	binary	protocol	and	can
likewise	forward	calls	between	processes.

Messaging	(section	9.4)	has	the	advantage	that	it	can	handle	network	problems
and	high	latency	times	very	well.	In	addition,	transactions	are	also	very	well
supported	by	messaging.

Data	Replication

At	the	database	level	a	shared	schema	is	not	recommended	(section	9.5).	This
would	couple	Microservices	too	tightly	since	they	would	have	a	shared	internal
data	representation.	The	data	have	to	be	replicated	into	another	schema.	The
schema	can	be	in	line	with	the	requirements	for	the	respective	Microservice.	As
Microservices	are	Bounded	Contexts,	it	is	very	unlikely	that	the	Microservices
should	use	the	same	data	model.

Interfaces	and	Versions

Finally,	interfaces	are	an	important	foundation	for	communication	and	integration
(section	9.6).	Not	all	interfaces	are	equally	easy	to	change:	Public	interfaces	are
practically	not	changeable	at	all	because	too	many	systems	depend	on	them.
Internal	interfaces	can	more	easily	be	changed.	Public	interfaces	in	the	simplest
case	just	route	certain	functionalities	to	suitable	Microservices.	Semantic
Versioning	is	useful	for	giving	a	meaning	to	version	numbers.	To	ensure	a	high
level	of	compatibility	the	Robustness	Principle	is	helpful.

This	section	should	have	shown	that	Microservices	are	not	just	services	which
use	RESTful	HTTP.	This	is	only	one	option	for	the	communication	between
Microservices.

Essential	Points

At	the	UI	level	the	integration	with	HTML	user	interfaces	is	especially
simple.	SPAs,	desktop	applications	or	mobile	apps	are	Deployment
Monoliths	so	that	changes	to	the	user	interface	for	a	Microservice	have	to	be
closely	coordinated	with	other	changes.
Though	REST	or	RPC	approaches	offer	at	the	logic	level	a	simple
programming	model,	messaging	allows	for	a	looser	coupling	and	can	better
cope	with	the	challenges	of	distributed	communication	via	the	network.
Data	replication	allows	high	performance	access	even	to	large	amounts	of
data.	The	Microservices	may	on	no	account	use	the	same	schema	for	their
data	since	in	that	case	the	internal	data	representation	cannot	be	changed
anymore.

10	Architecture	of	Individual	Microservices

When	implementing	Microservices	a	number	of	points	have	to	be	heeded.	This
chapter	addresses	first	the	domain	architecture	of	Microservices	(section	10.1).
For	implementing	a	Microservice-based	system	CQRS	(section	10.2)	can	be
interesting.	This	approach	separates	writes	to	data	from	reading	data.	Event
Sourcing	(section	10.3)	places	events	into	the	center	of	the	modeling.	The
structure	of	a	Microservice	can	correspond	to	a	Hexagonal	Architecture	(section
10.4)	which	subdivides	functionalities	into	a	logic	kernel	and	adaptors.	Section
10.5	focuses	on	resilience	and	stability	as	essential	requirements	for
Microservices.	Technical	possibilities	for	the	implementation	of	Microservices
such	as	Reactive	are	discussed	in	section	10.6.

10.1	Domain	Architecture
The	domain	architecture	of	a	Microservice	defines	how	the	Microservice
implements	its	domain-based	functionalities.	A	Microservice-based	architecture
aims	at	not	predetermining	this	decision	for	all	Microservices.	Thereby,	the
internal	structure	of	Microservices	can	be	independently	decided.	This	allows	the
teams	to	act	largely	independently	of	each	other.	It	is	for	sure	sensible	to	adhere	to
established	rules	in	order	to	keep	the	Microservice	easy	to	understand,	simple	to
maintain	and	also	replaceable.	However,	there	is	no	strict	need	for	regulations	at
this	level.

This	section	shows	how	to	identify	potential	problems	with	the	domain
architecture	of	a	Microservice.	Whether	there	really	is	a	problem	and	how	it	can
be	solved,	then	has	to	be	answered	by	the	responsible	team.

Cohesion

The	domain	architecture	of	the	overall	system	influences	the	domain	architecture
of	the	individual	Microservices.	As	presented	in	section	8.1,	Microservices
should	be	loosely	coupled	to	each	other.	Besides,	the	Microservices	should	have
a	high	internal	cohesion.	A	Microservice	should	have	only	one	responsibility	in
regards	to	the	domain.	Consequently,	the	parts	of	a	Microservice	have	to	be
loosely	coupled,	and	the	Microservice	has	to	have	a	high	cohesion.	If	that	is	not
the	case,	the	Microservice	will	likely	have	more	than	one	responsibility.	If	the

cohesion	within	the	Microservice	is	not	high	enough,	the	Microservice	can	be
split	into	several	Microservices.	Due	to	the	split	the	Microservices	remain	small
and	thus	easier	to	understand,	to	maintain	and	to	replace.

Encapsulation

Encapsulation	means	that	a	part	of	the	architecture	hides	internal	information	from
the	outside	–	especially	all	internal	data	structures.	Instead,	the	access	is	supposed
to	occur	via	an	interface.	Thereby	the	software	remains	easy	to	modify:	Internal
structures	can	be	changed	without	influencing	other	parts	of	the	system.	For	this
reason,	Microservices	may	in	no	case	allow	other	Microservices	access	to	their
internal	data	structures.	Otherwise	these	data	structures	cannot	be	modified
anymore.	Besides,	in	this	manner,	every	Microservice	needs	only	to	understand
the	interface	of	another	Microservice.	This	improves	the	structure	and
intelligibility	of	the	system.

Domain-Driven	Design

Domain-driven	Design	(DDD)	is	a	possibility	to	internally	structure
Microservices.	Each	Microservice	can	have	a	DDD	domain	model.	The	necessary
patterns	from	Domain-Driven	Design	were	already	introduced	in	section	4.3.
Especially	when	Domain-driven	Design	and	Strategic	Design	define	the	structure
of	the	overall	system	(section	8.1),	the	Microservices	should	also	use	these
approaches.	During	the	development	of	the	overall	system	Strategic	Design
orientates	itself	to	the	fact	which	domain	models	there	are	and	how	they	are
distributed	across	the	Microservices.

Transactions

Transactions	bundle	multiple	actions	so	that	they	can	only	be	executed	together	or
not	at	all.	A	transaction	can	hardly	comprise	more	than	one	Microservice.	Only
messaging	is	able	to	support	transactions	across	Microservices	(compare	section
9.4).	The	domain-based	design	within	a	Microservice	ensures	that	each	operation
at	the	interface	corresponds	to	one	transaction.	In	this	way	it	can	be	avoided	that
multiple	Microservices	have	to	participate	in	one	transaction.	This	would	be	very
hard	to	implement	technically.

10.2	CQRS
Systems	usually	save	a	state.	Operations	can	change	data	or	read	them.	These	two
types	of	operations	can	be	separated:	Operations	that	change	data	and	therefore
have	side	effects	(commands)	can	be	distinguished	from	operations	that	just	read

data	(queries).	An	operation	may	not	simultaneously	change	the	state	and	return
data.	This	distinction	makes	the	system	easier	to	understand:	When	an	operation
returns	a	value,	it	is	a	query	and	does	not	change	any	values.	This	entails
additional	advantages.	Queries	can	for	example	be	provided	with	a	cache.	If	read
operations	changed	also	data,	the	addition	of	a	cache	would	not	be	so	easy	since
operations	with	side	effects	still	have	to	be	executed	in	spite	of	a	cache.	The
separation	between	queries	and	commands	is	called	CQS	(Command	Query
Separation).	This	principle	is	not	limited	to	Microservices,	but	can	be	applied	in
general.	For	example,	classes	in	an	object-oriented	system	can	divide	operations
in	the	same	manner.

CQRS

CQRS	(Command	Query	Responsibility	Segregation)	is	more	drastic	than	CQS
and	completely	separates	the	processing	of	queries	and	commands.

Fig.	45:	Overview	of	CQRS

Fig.	45	shows	the	structure	of	a	CQRS	system.	Each	command	is	stored	in	the
Command	Store.	In	addition,	there	can	be	Command	Handlers.	The	Command
Handler	in	the	example	uses	the	commands	for	storing	the	current	state	of	the	data
in	a	database.	A	Query	Handler	uses	this	database	to	process	queries.	The
database	can	be	adjusted	to	the	needs	of	the	Query	Handler.	For	example,	a
database	for	the	analysis	of	order	processes	can	look	completely	different	from	a

https://speakerdeck.com/owolf/cqrs-for-great-good-2

database	which	customers	use	for	displaying	their	own	order	processes.	Entirely
different	technologies	can	be	employed	for	the	query	database.	It	is	for	instance
possible	to	use	an	In-Memory-Cache	which	loses	the	data	in	case	of	a	server
failure.	The	information	persistency	is	ensured	by	the	Command	Store.	In	an
emergency	the	content	of	the	cache	can	be	reconstructed	by	the	Command	Store.

Microservices	and	CQRS

CQRS	can	be	implemented	with	Microservices:

The	communication	infrastructure	can	implement	the	Command	Queue	when
a	messaging	solution	is	used.	In	case	of	approaches	like	REST	a
Microservice	has	to	forward	the	commands	to	all	interested	Command
Handlers	and	implement	the	Command	Queue	that	way.
Each	Command	Handler	can	be	a	separate	Microservice.	It	can	handle	the
commands	with	its	own	logic.	Thereby	logic	can	very	easily	be	distributed	to
multiple	Microservices.
Likewise,	a	Query	Handler	can	be	a	separate	Microservice.	The	changes	to
the	data	which	the	Query	Handler	uses	can	be	introduced	by	a	Command
Handler	in	the	same	Microservice.	However,	the	Command	Handler	can	also
be	a	separate	Microservice.	In	that	case	the	Query	Handler	has	to	offer	a
suitable	interface	for	accessing	the	database	so	that	the	Command	Handler
can	change	the	data.

Advantages

CQRS	has	a	number	of	advantages	especially	in	the	interplay	with	Microservices:

Reading	and	writing	of	data	can	be	separated	into	individual	Microservices.
This	allows	for	even	smaller	Microservices.	When	the	writing	and	reading	is
that	complex	that	a	single	Microservice	for	both	would	get	too	large	and	too
hard	to	understand,	a	split	might	be	very	sensible.
Likewise,	another	model	can	be	used	for	writing	and	reading.	Microservices
can	each	represent	a	Bounded	Context	and	therefore	use	different	data
models.	For	instance,	in	an	E-commerce	shop	a	lot	of	data	can	be	written	for
an	online	purchase	while	statistical	evaluations	read	only	few	data	for	each
purchase.	From	a	technical	perspective	the	data	can	be	optimized	for	reading
operations	via	denormalization	or	via	other	means	for	certain	queries.
Writing	and	reading	can	be	scaled	differently	by	starting	different	numbers	of
Query	Handler	Microservices	and	Command	Handler	Microservices.	This
supports	the	fine	granular	scalability	of	Microservices.

The	Command	Queue	facilitates	the	handling	of	load	peaks	during	writing.
The	queue	buffers	the	changes	which	are	then	processed	later	on.	However,
in	that	case	a	change	to	the	data	will	not	be	immediately	taken	into
consideration	by	the	queries.
It	is	easy	to	run	different	versions	of	the	Command	Handlers	in	parallel.	This
facilitates	the	deployment	of	Microservices	in	new	versions.

CQRS	can	serve	to	make	Microservices	even	smaller,	even	when	operations	and
data	are	really	very	closely	connected.	Each	Microservice	can	independently
decide	for	or	against	CQRS.	There	are	different	ways	to	implement	an	interface
which	offers	operations	for	changing	and	reading	data.	CQRS	is	only	one	option.
Both	aspects	can	also	be	implemented	without	CQRS	in	just	one	Microservice.
The	freedom	to	be	able	to	use	different	approaches	is	one	of	the	main	advantages
of	Microservice-based	architectures.

Challenges

CQRS	causes	also	some	challenges:

Transactions	which	comprise	read	and	write	operations	are	hard	to
implement.	The	respective	operations	can	be	implemented	in	different
Microservices.	In	that	case	it	is	hardly	possible	to	combine	the	operations
into	one	transaction	since	transactions	across	Microservices	are	usually
impossible.
It	is	hard	to	ensure	data	consistency	across	different	systems.	The	processing
of	events	is	asynchronous	so	that	different	nodes	can	finish	processing	at
different	points	in	time.
The	expenditure	for	development	and	infrastructure	is	higher.	More	system
components	and	more	complex	communication	technologies	are	required.

It	is	not	sensible	to	implement	each	Microservice	with	CQRS.	However,	the
approach	represents	in	many	circumstances	a	good	supplement	for	Microservice-
based	architectures.

10.3	Event	Sourcing
Event	Sourcing	has	a	similar	approach	like	CQRS.	However,	the	events	from
Event	Sourcing	differ	from	the	commands	from	CQRS.	Commands	are	specific:
They	exactly	define	what	is	to	be	changed	in	an	object.	Events	contain	information
about	something	that	has	happened.	Both	approaches	can	also	be	combined:	A

http://slideshare.net/mploed/event-sourcing-introduction-challenges

command	can	change	data.	This	will	result	in	events	to	which	other	components	of
the	system	can	react.

Instead	of	the	state	itself	Event	Sourcing	stores	events	which	have	lead	to	the
current	state.	While	the	state	itself	is	not	saved,	it	can	be	reconstructed	from	the
events.

Fig.	46:	Overview	of	Event	Sourcing

Fig.	46	gives	an	overview	of	Event	Sourcing:

The	Event	Queue	sends	all	events	to	the	different	recipients.	It	can	for
instance	be	implemented	with	messaging	middleware.
The	Event	Store	saves	all	events.	Therefore,	it	is	always	possible	to
reconstruct	the	chain	of	events	and	the	events	themselves.
An	Event	Handler	reacts	to	the	events.	It	can	contain	business	logic	which
reacts	to	events.

In	such	a	system	it	is	only	the	events	which	are	easy	to	trace.	The	current
state	of	the	system	is	not	easy	to	follow	up	on.	Therefore,	it	can	be	sensible
to	maintain	a	Snapshot	which	contains	the	current	state.	At	each	event	or
after	a	certain	time	the	data	in	the	Snapshot	will	be	changed	in	line	with	the
new	events.	The	Snapshot	is	optional.	It	is	also	possible	to	ad	hoc
reconstruct	the	state	from	the	events.

Events	may	not	be	changed	afterwards.	Erroneous	events	have	to	be	corrected	by
new	events.

Event	Sourcing	is	based	on	Domain-Driven	Design	(compare	section	4.3).
Therefore,	in	line	with	Ubiquitous	Language,	the	events	should	have	names
which	are	also	sensible	in	the	business	context.	In	some	domains	an	event-based
model	is	especially	sensible	from	a	domain	perspective.	For	instance,	bookings	to
an	account	can	be	considered	as	events.	Requirements	like	auditing	are	very	easy
to	implement	with	Event	Sourcing:	Since	the	booking	is	modeled	as	an	event,	it	is
very	easy	to	trace	who	has	performed	which	booking.	In	addition,	it	is	relatively
easy	to	reconstruct	a	historical	state	of	the	system	and	old	versions	of	the	data.
Event	Sourcing	can	be	a	good	option	from	a	domain	perspective.	Generally,
approaches	like	Event	Sourcing	are	sensible	in	complex	domains	which	also
profit	from	Domain-driven	Design.

Event	Sourcing	has	similar	advantages	and	disadvantages	like	CQRS,	and	both
approaches	can	easily	be	combined.	Event	Sourcing	is	especially	sensible	when
the	overall	system	works	with	an	Event-driven	Architecture	(section	8.6).	In	that
case	the	Microservices	anyhow	send	already	events	concerning	changes	of	the
state	and	it	is	sensible	to	use	this	approach	also	in	the	Microservices.

Try	and	Experiment

Choose	a	project	you	know.

In	which	places	would	Event	Sourcing	be	sensible?	Why?	Would	Event	Sourcing	be	useable	in	an
isolated	manner	at	some	places	or	would	the	entire	system	have	to	be	changed	to	Events?

Where	could	CQRS	be	helpful?	Why?

Do	the	interfaces	adhere	to	the	CQR	rule?	In	that	case	the	read	and	write	operations	would	have	to
be	separate	in	all	interfaces.

10.4	Hexagonal	Architecture
A	Hexagonal	Architecture	focuses	on	the	logic	of	the	application	(Fig.	47).	The
logic	contains	only	the	business	functionalities.	It	has	different	interfaces	which
are	each	represented	by	an	edge	of	the	hexagon.	In	the	example	these	are	the
interface	for	the	interaction	with	users	and	the	interface	for	administrators.	Users
can	utilize	these	interfaces	via	a	web	interface	which	is	implemented	by	HTTP
adaptors.	For	tests	there	are	special	adaptors.	They	enable	the	tests	to	simulate
users.	Finally,	there	is	an	adaptor	which	makes	the	logic	also	accessible	via
REST.	This	allows	other	Microservices	to	call	the	logic.

Interfaces	do	not	only	take	requests	from	other	systems.	In	addition,	also	other
systems	are	contacted	via	such	interfaces:	the	database	via	the	DB	adaptor	which
in	fact	uses	a	database.	The	alternative	is	an	adaptor	for	test	data.	Finally,	another
application	can	be	contacted	via	a	REST	adaptor.	Instead	of	these	adaptors	a	test
system	can	be	used	which	simulates	the	used	system.

http://alistair.cockburn.us/Hexagonal+architecture

Fig.	47:	Overview	of	Hexagonal	Architecture

Another	name	for	Hexagonal	Architectures	is	“Ports	and	Adaptors”.	Each	facet	of
the	application	like	user,	admin,	data	or	event	is	a	port.	The	adaptors	implement
the	ports	based	on	technologies	like	REST	or	web	user	interfaces.	Via	the	ports	on
the	right	side	of	the	hexagon	the	application	fetches	data,	while	via	the	ports	on	the
left	side	its	functionalities	and	data	for	user	and	other	systems	are	offered.

The	Hexagonal	Architecture	divides	a	system	into	a	logic	kernel	and	adaptors.
Only	the	adaptors	enable	the	communication	to	the	outside.

Hexagons	or	Layers?

A	Hexagonal	Architecture	is	an	alternative	to	a	layered	architecture.	In	a	layered
architecture	there	is	a	layer	in	which	the	UI	is	implemented	and	a	layer	in	which
the	persistence	is	implemented.	In	a	Hexagonal	Architecture	there	are	adaptors
which	are	connected	to	the	logic	via	ports.	A	Hexagonal	Architecture	clearly
shows	that	there	can	be	more	ports	than	just	persistence	and	UI.	Besides	the	term
“adaptor”	illustrates	that	the	logic	and	the	ports	are	supposed	to	be	separate	from
the	concrete	protocols	and	implementations	of	the	adaptors.

Hexagonal	Architectures	and	Microservices

It	is	very	natural	for	Hexagonal	Architectures	to	offer	logic	not	only	for	other
Microservices	via	a	REST	interface,	but	also	for	users	via	a	web	UI.	Exactly	this

idea	is	also	the	basis	of	Microservices.	They	are	not	only	supposed	to	provide
logic	for	other	Microservices,	but	should	also	support	the	direct	interaction	of
users	via	a	UI.

Since	individual	test	implementations	can	be	implemented	for	all	ports,	the
isolated	testing	of	a	Microservice	is	easier	with	a	Hexagonal	Architecture.	For
this	purpose,	test	adaptors	just	have	to	be	used	instead	of	the	actual
implementation.	Especially	the	independent	testing	of	individual	Microservices	is
an	important	prerequisite	for	the	independent	implementation	and	the	independent
deployment	of	Microservices.

The	necessary	logic	for	resilience	and	stability	(compare	section	10.5)	or	Load
Balancing	(section	8.10)	can	also	be	implemented	in	the	adaptor.

It	is	likewise	imaginable	to	distribute	the	adaptors	and	the	actual	logic	into
individual	Microservices.	This	will	result	in	more	distributed	communication	and
therefore	into	an	overhead.	However,	on	the	other	hand	the	implementation	of
adaptor	and	kernel	can	be	distributed	to	different	teams.	For	instance,	one	team
which	develops	a	mobile	client	can	implement	a	specific	adaptor	which	is
adapted	to	the	bandwidth	restrictions	of	mobile	applications	(compare	also
section	9.1).

An	Example

A	Microservice	for	orders	shall	serve	as	example	for	a	Hexagonal	Architecture
(Fig.	48).	The	user	can	utilize	the	functionalities	of	the	Microservice	via	the	web
UI	to	place	orders.	Likewise	there	is	a	REST	interface	with	which	other
Microservices	or	external	clients	can	use	the	“user	functionalities”.	The	web	UI,
the	REST	interface	and	the	test	adaptor	are	three	adaptors	for	the	“user
functionalities”	of	the	Microservice.	The	implementation	with	three	adaptors
emphasizes	that	REST	and	web	UI	are	just	two	options	to	use	the	same
functionalities.	Besides,	in	this	manner	Microservices	are	implemented	which
integrate	UI	and	REST.	Technically	the	adaptors	can	still	be	implemented	in
separate	Microservices.

Fig.	48:	The	order	Microservice	as	an	example	for	Hexagonal	Architecture

Another	interface	are	the	order	events.	They	announce	to	the	Microservice
“Delivery”	when	new	orders	have	arrived	so	that	the	orders	can	be	delivered.	Via
this	interface	the	Microservice	“Delivery”	communicates	also	when	an	order	has
been	delivered	or	when	delays	have	occurred.	In	addition,	this	interface	can	be
served	by	an	adaptor	for	tests.	Therefore,	the	interface	to	the	Microservice
“Delivery”	does	not	just	simply	write	data,	but	can	also	introduce	changes	to	the
orders.	This	means	that	the	interface	uses	other	Microservices,	but	does	also	itself
take	changes.

The	Hexagonal	Architecture	has	a	domain-based	distribution	into	an	interface	for
user	functionalities	and	an	interface	for	order	events.	Thereby	the	architecture
underlines	the	domain-based	design.

The	state	of	the	orders	is	saved	in	a	database.	Also	in	this	case	there	is	an
interface	where	test	data	can	be	used	for	tests	instead	of	the	database.	This
interface	corresponds	to	the	persistence	layer	of	a	classical	architecture.

Finally,	there	is	an	interface	which	via	data	replication	transmits	the	information
regarding	the	order	to	reporting.	There	statistics	can	be	generated	from	the	orders.
Reporting	appears	to	be	a	persistence	interface,	but	is	really	more:	The	data	are
not	just	stored,	but	changed	to	enable	quick	generation	of	statistics.

As	the	example	shows,	a	Hexagonal	Architecture	creates	a	good	domain-based
distribution	into	different	domain-based	interfaces.	Each	domain-based	interface
and	each	adaptor	can	be	implemented	as	a	separate	Microservice.	This	allows	to
divide	the	application	into	numerous	Microservices,	if	necessary.

Try	and	Experiment

Choose	a	project	you	know.

Which	individual	hexagons	would	there	be?

Which	ports	and	adaptors	would	the	hexagons	have?

Which	advantages	would	a	Hexagonal	Architecture	offer?

What	would	the	implementation	look	like?

10.5	Resilience	and	Stability
The	failure	of	a	Microservice	should	affect	the	availability	of	other	Microservices
as	little	as	possible.	As	a	Microservice-based	system	is	a	distributed	system,	the
danger	of	a	failure	is	fundamentally	higher:	Network	and	servers	are	unreliable.
As	Microservices	are	distributed	on	multiple	servers,	the	number	of	servers	is
higher	per	system	and	therefore	also	the	probability	of	a	failure.	When	the	failure

of	one	Microservice	can	result	in	the	failure	of	additional	Microservices,	step	by
step	the	entire	system	can	break	down.	This	has	to	be	avoided.

For	this	reason,	Microservices	have	to	be	shielded	from	the	failure	of	other
Microservices.	This	property	is	called	resilience.	The	necessary	measures	to
achieve	resilience	have	to	be	part	of	the	Microservice.	Stability	is	a	broader	term
which	denotes	a	high	software	availability.	“Release	It!”	1	lists	several	patterns	to
this	topic:

Timeout

Timeouts	help	to	detect	unavailability	when	communicating	with	another	system.	If
no	response	has	been	returned	after	the	timeout,	the	system	is	considered
unavailable.	Unfortunately,	many	APIs	do	not	have	the	possibility	to	define
timeouts,	and	some	default	timeouts	are	very	high.	At	the	level	of	the	operating
system	default	TCP	timeouts	can	be	e.g.	five	minutes.	During	this	time	the
Microservice	does	not	respond	to	callers	since	the	service	is	waiting	for	the	other
Microservice.	Therefore,	also	this	Microservice	seems	to	have	failed.	Besides	the
request	can	block	a	thread	during	this	time.	At	some	point	all	threads	are	blocked,
and	the	Microservice	cannot	receive	any	additional	requests	anymore.	Exactly
such	a	domino	effect	has	to	be	avoided.	When	the	API	intends	a	timeout	for
accessing	another	system	or	a	database,	this	timeout	should	be	set.	An	alternative
option	is	to	let	all	requests	to	external	systems	or	databases	take	place	in	a	extra
thread	and	to	terminate	this	thread	after	a	timeout.

Circuit	Breaker

A	Circuit	Breaker	is	a	safety	measure	in	an	electricity	circuit.	In	case	of	a	short
circuit	the	Circuit	Breaker	interrupts	the	flow	of	electricity	to	avoid	dangerous
consequences	like	overheating	or	fire.	This	idea	can	be	applied	to	software	as
well:	When	another	system	is	not	available	anymore	or	returns	only	errors,	a
Circuit	Breaker	prevents	calling	the	system.	Calls	are	anyhow	meaningless	in	this
scenario.

Normally,	the	Circuit	Breaker	is	closed,	and	calls	are	forwarded	to	the	other
system.	When	an	error	occurs,	depending	on	the	error	frequency	the	Circuit
Breaker	will	be	opened.	In	that	case	calls	are	not	send	on	to	the	other	system,	but
run	directly	into	an	error.

This	takes	load	off	the	other	system.	Also	there	is	no	need	for	a	timeout	as	the
error	is	instantaneous.	After	some	time	the	Circuit	Breaker	will	close	again.

Incoming	calls	will	now	be	forwarded	again	to	the	other	system.	If	the	error
persists,	the	Circuit	Breaker	will	open	again.

The	Circuit	Breaker	can	be	combined	with	a	timeout.	A	timeout	can	open	the
Circuit	Breaker.	The	state	of	the	Circuit	Breakers	shows	operations	where
currently	problems	in	the	system	are.	An	open	Circuit	Breaker	indicates	that	a
Microservice	is	not	able	to	communicate	with	another	Microservice	anymore.
Therefore,	the	state	of	the	Circuit	Breakers	should	be	displayed	in	monitoring	for
operations.

When	the	Circuit	Breaker	is	open,	an	error	does	not	necessarily	have	to	be
generated.	It	is	also	possible	to	just	degrade	the	functionality.	Let	us	assume	that	a
Automated	Teller	Machine	(ATM)	cannot	verify	whether	an	account	contains
enough	money	for	the	desired	withdrawal,	because	the	responsible	system	is	not
reachable.	Nevertheless,	cash	withdrawals	can	be	permitted	up	to	a	certain	limit
so	that	customers	will	not	be	dissatisfied.	In	addition,	the	bank	will	make	less
profit	if	all	cash	withdrawals	are	prohibited	as	it	will	not	get	the	withdrawal-
associated	fees.	Whether	and	up	to	which	limit	a	cash	withdrawal	is	still
permitted	is	a	business	decision.	The	possible	damage	has	to	be	balanced	against
the	potential	for	profit.	There	can	also	be	other	rules	to	be	applied	in	case	of	the
failure	of	another	system.	Calls	can	for	instance	be	answered	from	a	cache.	More
important	than	the	technical	possibilities	is	the	domain-based	requirement	for
deciding	on	the	appropriate	handling	of	a	system	failure.

Bulkhead

A	Bulkhead	is	a	special	door	on	a	ship	which	can	be	closed	in	a	watertight
manner.	It	divides	the	ship	into	several	areas.	When	water	gets	in,	only	a	part	of
the	ship	is	affected,	and	thus	the	ship	will	not	sink.

Similar	approaches	are	applicable	to	software:	The	entire	system	has	to	be
divided	into	individual	areas.	A	breakdown	or	a	problem	in	one	area	may	not
affect	the	other	areas.	For	example,	there	can	be	several	instances	of	a
Microservice	for	different	clients.	When	a	client	overloads	the	Microservices,	the
other	clients	will	not	be	negatively	affected.	The	same	is	true	for	resources	like
database	connections	or	threads.	When	different	parts	of	a	Microservice	use
different	pools	for	these	resources,	one	part	cannot	block	the	other	parts	even	if	it
uses	up	all	its	resources.

In	Microservices-based	architectures	the	Microservices	themselves	form	separate
areas.	This	is	especially	the	case	when	each	Microservice	brings	its	own	virtual
machine	along.	Even	if	the	Microservice	causes	the	entire	virtual	machine	to	crash
or	overloads	it,	the	other	Microservices	will	hardly	be	affected.	They	run	on
different	virtual	machines	and	are	therefore	separate.

Steady	State

The	term	Steady	State	stands	for	the	fact	that	systems	should	be	built	in	a	manner
that	allows	for	their	permanent	operation.	This	means	for	instance	that	systems
should	not	store	increasing	amounts	of	data.	Otherwise	the	system	will	have	used
up	its	entire	capacity	at	some	point	and	therefore	breakdown.	Log	files	for
example	have	to	be	deleted	at	some	point.	Usually	they	are	anyhow	only
interesting	during	a	certain	time	interval.	Another	example	is	caching:	When	a
cache	always	keeps	growing,	it	will	at	some	point	have	filled	all	storage	space.
Therefore	values	also	have	to	be	deleted	again	from	cache	at	some	point	to	keep
the	cache	from	permanently	growing.

Fail	Fast

Timeouts	are	only	necessary	because	another	system	requires	a	long	time	to
respond.	The	idea	behind	Fail	Fast	is	to	address	the	problem	from	the	other	side:
Each	system	is	supposed	to	recognize	errors	as	fast	as	possible	and	to	indicate
them	immediately.	When	a	call	requires	a	certain	service	and	this	service	is
unavailable	for	the	moment,	the	call	can	be	directly	answered	with	an	error
message.	The	same	is	true	when	other	resources	are	not	available	at	the	time.
Moreover,	the	call	can	be	validated	right	at	the	start.	When	it	contains	errors,
there	is	anyhow	nothing	gained	by	processing	it.	Therefore,	an	error	message	can
be	returned	immediately.	The	advantages	of	Fail	Fast	are	identical	with	the	ones
offered	by	timeout:	A	rapid	failure	uses	up	less	resources	and	therefore	results	in
a	more	stabile	system.

Handshaking

Handshaking	in	a	protocol	serves	to	initiate	communication.	Thereby	protocols
allow	that	a	server	rejects	additional	calls	in	cases	of	overload.	This	avoids
additional	overload,	a	breakdown	or	too	slow	responses.	Unfortunately,	protocols
like	HTTP	do	not	support	this.	Therefore,	the	application	has	to	mimic	the
functionality	for	instance	with	Health	Checks.	An	application	can	signal	in	that
way	that	it	is	principally	reachable,	but	has	right	now	so	much	load	that	it	is	not
sensible	to	send	more	calls	to	it.	Protocols	which	build	on	socket	connections	can
implement	such	approaches	by	themselves.

Test	Harness

A	Test	Harness	can	be	used	to	find	out	how	an	application	behaves	in	certain
error	situations.	Among	those	can	be	problems	at	the	level	of	the	TCP/IP	or	for
instance	responses	of	other	systems	which	contain	HTTP	header,	but	no	HTTP
body.	Something	like	that	should	in	fact	not	occur	since	operating	system	or
network	stack	should	deal	with	it.	Nevertheless,	such	errors	can	occur	in	practice
and	can	have	dramatic	consequences	since	applications	are	not	at	all	prepared	for
handling	them.	A	Test	Harness	can	be	an	extension	of	the	tests	which	are
discussed	in	section	11.8.

Uncoupling	via	Middleware

Calls	in	one	program	only	function	on	the	same	host	at	the	same	time	in	the	same
process.	Synchronous	distributed	communication	(e.g.	REST)	allows	for
communication	between	different	hosts	and	different	processes	at	the	same	time.
Asynchronous	communication	via	messaging	systems	(section	9.4)	also	allows	an
uncoupling	over	time.	A	system	should	not	wait	for	a	response	of	an	asynchronous
process.	The	system	should	continue	working	on	other	tasks	instead	of	just	waiting
for	a	response.	Errors	which	cause	one	system	after	another	to	break	down	like
domino	stones	are	much	less	likely	in	case	of	asynchronous	communication.	The
systems	are	forced	to	deal	with	long	response	times	since	asynchronous
communication	anyhow	can	result	in	long	response	times.

Stability	and	Microservices

Stability	patterns	like	Bulkhead	restrict	failures	to	a	unit.	Microservices	are	the
obvious	choice	for	a	unit.	They	run	on	separate	virtual	machines	and	accordingly
are	already	isolated	in	regards	to	most	issues.	Thereby	the	Bulkhead	pattern	arises
very	naturally	in	a	Microservices-based	architecture.	Fig.	49	shows	an	overview:
A	Microservice	can	via	Bulkhead,	Circuit	Breaker	and	timeouts	safeguard	the	use
of	other	Microservices.	The	used	Microservice	can	additionally	implement	Fail
Fast.	The	safeguarding	can	be	implemented	via	patterns	in	those	parts	of	a
Microservice	which	are	responsible	for	communicating	with	other	Microservices.
Thereby	this	aspect	is	implemented	in	one	area	of	the	code	and	not	distributed
across	the	entire	code.

Fig.	49:	Stability	in	the	case	of	Microservices

On	a	technical	level	the	patterns	can	be	implemented	differently.	For
Microservices	there	are	the	following	options:

Timeouts	are	easy	to	implement:	For	accessing	the	other	system	an	individual
thread	is	started	which	is	terminated	after	a	timeout.
At	the	first	glance	Circuit	Breakers	are	not	very	complex	and	can	be
developed	in	your	own	code.	However,	the	implementation	has	also	to	work
under	high	load	and	has	to	offer	an	interface	for	operations	to	allow
monitoring.	This	is	not	trivial.	Therefore	a	home-grown	implementation	is
not	very	sensible.
Bulkheads	are	brought	along	by	Microservices	since	a	problem	is	in	many
cases	already	limited	to	just	one	Microservice.	For	instance,	a	memory	leak
will	only	cause	one	Microservice	to	fail.
Steady	State,	Fail	Fast,	Handshaking	and	Test	Harness	have	to	be
implemented	by	each	Microservice.
Uncoupling	via	Middleware	is	an	option	for	the	shared	communication	of
Microservices.

Resilience	and	Reactive

The	Reactive	Manifesto	lists	Resilience	as	essential	property	of	a	Reactive
application.	Resilience	can	be	implemented	in	an	application	by	processing	calls
asynchronously.	Each	part	of	an	application	which	processes	messages	(“actor”)
has	to	be	monitored.	When	an	actor	does	not	react	anymore,	it	can	be	restarted.
This	allows	to	handle	errors	and	to	make	applications	more	resilient.

Hystrix

Hystrix	implements	timeout	and	Circuit	Breaker.	For	this	purpose,	developers
have	to	encapsulate	calls	in	commands.	Alternatively,	Java	annotations	can	be
used.	The	calls	take	place	in	individual	thread	pools.	Several	thread	pools	can	be

http://www.reactivemanifesto.org/
https://github.com/Netflix/Hystrix/

created.	If	there	is	one	thread	pool	per	called	Microservice,	the	calls	of	the
Microservices	can	be	separated	from	each	other	in	such	a	manner	that	a	problem
with	one	Microservice	does	not	affect	the	use	of	the	other	Microservices.	This	is
in	line	with	the	Bulkhead	idea.	Hystrix	is	a	Java	library	which	is	under	Apache
license	and	originates	from	the	Netflix	stack.	The	example	application	uses
Hystrix	together	with	Spring	Cloud	(compare	section	14.10).	In	combination	with
a	Sidecar	Hystrix	can	also	be	used	for	applications	which	are	not	written	in	Java
(compare	section	8.7).	Hystrix	supplies	information	about	the	state	of	the	thread
pools	and	the	Circuit	Breaker	for	monitoring	and	operation.	This	information	can
be	displayed	in	a	special	monitoring	tool	–	the	Hystrix	dashboard.	Internally
Hystrix	uses	the	Reactive	Extensions	for	Java	(RxJava).	Hystrix	is	the	most
widely	used	library	in	the	area	of	Resilience.

Try	and	Experiment

This	chapter	introduced	eight	patterns	for	stability.	Prioritize	these	patterns.	Which	properties	are
indispensable?	Which	are	important?	Which	are	unimportant?

How	can	be	verified	whether	the	Microservices	really	implement	the	patterns?

10.6	Technical	Architecture
The	technical	architecture	of	a	Microservice	can	be	individually	designed.
Frameworks	or	programming	languages	do	not	have	to	be	uniform	for	all
Microservices.	Therefore,	each	Microservice	can	well	use	different	platforms.
However,	certain	technical	infrastructures	fit	better	to	Microservices	than	others.

Process	Engines

Process	engines	which	normally	serve	to	orchestrate	services	in	a	SOA	(section
7.1)	can	be	used	in	a	Microservice	to	model	a	business	process.	The	important
point	is	that	one	Microservice	implements	only	one	domain	–	for	instance	one
Bounded	Context.	A	Microservice	should	not	end	up	as	a	pure	integration	or
orchestration	of	other	Microservices	without	its	own	logic.	Otherwise	changes
will	require	that	not	only	this	one	Microservice	is	modified,	but	also	the
integrated	Microservices.	However,	it	is	a	central	aim	of	Microservice-based

architectures	to	limit	changes	to	one	Microservice	if	possible.	If	multiple	business
processes	have	to	be	implemented,	different	Microservices	should	be	used	for	it.
Each	of	these	Microservices	should	implement	one	business	process	together	with
the	dependent	services.	Of	course,	it	will	not	always	be	possible	to	avoid	that
other	Microservices	have	to	be	integrated	to	implement	a	business	process.
However,	a	Microservice	which	just	represents	an	integration	is	not	sensible.

Statelessness

Stateless	Microservices	are	very	advantageous.	To	put	it	more	clearly:
Microservices	should	not	save	any	state	in	their	logic	layer.	States	in	the	database
or	on	the	client	are	acceptable.	When	using	this	approach	the	failure	of	an
individual	instance	does	not	have	a	big	impact.	The	instance	can	just	be	replaced
by	a	new	instance.	In	addition,	the	load	can	be	distributed	between	multiple
instances	–	without	having	to	take	into	consideration	which	instance	processed	the
previous	calls	of	the	user.	And	finally,	the	deployment	of	a	new	version	is	easier
since	the	old	version	can	just	be	stopped	and	replaced	without	having	to	migrate
its	state.

Reactive

Implementing	Microservices	with	Reactive	technologies	can	be	especially	useful.
These	approaches	are	comparable	to	Erlang	(compare	section	15.7):	Applications
consist	of	actors.	In	Erlang	they	are	called	processes.	Work	in	each	actor	is
sequential,	however,	different	actors	can	work	in	parallel	on	different	messages.
This	enables	the	parallel	processing	of	tasks.	Actors	can	send	messages	to	other
actors	which	end	up	in	the	mailboxes	of	these	actors.	I/O	operations	are	not
blocking	in	Reactive	applications:	A	request	for	data	is	sent	out.	When	the	data
are	there,	the	actor	is	called	and	can	process	the	data.	In	the	meantime	the	actors
can	work	on	other	requests.

Essential	properties	are	according	to	the	Reactive	Manifesto:

Responsive:	The	system	should	react	to	requests	as	fast	as	possible.	This
has	among	others	advantages	for	Fail	Fast	and	therefore	for	stability
(compare	section	10.5).	Once	the	mailbox	is	filled	to	a	certain	predetermined
degree,	the	actor	can	for	instance	reject	to	accept	additional	messages.
Thereby	the	sender	is	slowed	down,	and	the	system	as	such	does	not	get
overloaded.	Other	requests	can	still	be	processed.	The	aim	to	be	responsive
is	also	supported	by	the	abdication	of	blocking	I/O	operations.

http://www.reactivemanifesto.org/

Resilience	and	its	relationship	with	Reactive	applications	has	already	been
discussed	in	section	10.5.
Elastic	means	that	new	systems	can	be	started	at	run	time	which	share	the
load.	For	that	purpose	the	system	has	to	be	scalable,	and	at	the	same	time	it
has	to	be	possible	to	change	the	system	at	run	time	in	such	a	way	that	the	load
can	be	distributed	to	the	different	nodes.
Message	Driven	means	that	the	individual	components	communicate	with
each	other	via	messaging.	As	described	in	section	9.4,	this	communication
fits	well	to	Microservices.	Reactive	applications	use	very	similar
approaches	also	within	the	application	itself.

Reactive	can	implement	Microservices	especially	easily	since	the	ideas	from	the
Reactive	area	fit	very	well	to	Microservices.	However,	similarly	good	results	can
also	be	achieved	by	the	use	of	classical	technologies.

Technologies	from	the	area	of	Reactive	are	for	instance:

The	programming	language	Scala	with	the	Reactive	framework	Akka	and
web	framework	Play	which	is	based	on	it.	These	frameworks	can	also	be
used	with	Java.
There	are	Reactive	extensions	for	practically	all	popular	programming
languages.	Among	those	are	RxJava	for	Java	or	RxJS	for	JavaScript.
Similar	approaches	are	also	supported	by	Vert.x	(compare	also	section
15.6).	Even	though	this	framework	is	based	on	the	JVM,	it	supports	many
different	programming	languages	like	Java,	Groovy,	Scala,	JavaScript,
Clojure,	Ruby	or	Python.

Microservices	without	Reactive?

Reactive	is	only	one	option	for	implementing	a	system	with	Microservices.	The
classical	programming	model	with	blocking	I/O,	without	actors	and	with
synchronous	calls	is	likewise	suitable	for	this	type	of	system.	As	previously
discussed,	Resilience	can	be	implemented	via	libraries.	Elastic	can	be	achieved
by	starting	new	instances	of	the	Microservices	for	instance	as	virtual	machines	or
Docker	containers.	And	classical	applications	can	also	communicate	with	each
other	via	messages.	Reactive	applications	have	advantages	for	Responsive.
However,	in	that	case	it	has	to	be	ensured	that	operations	really	do	not	block.	For
I/O	operations	the	Reactive	solutions	can	usually	guarantee	that.	However,	a
complex	calculation	can	block	the	system.	So	in	that	case	no	messages	can	be
processed	anymore,	and	the	entire	system	is	blocked.	A	Microservice	does	not

http://www.scala-lang.org/
http://akka.io/
https://www.playframework.com/
http://reactivex.io/
https://github.com/ReactiveX/RxJava
https://github.com/Reactive-Extensions/RxJS
http://vertx.io/

have	to	be	implemented	with	Reactive	technologies,	but	they	are	for	sure	an
interesting	alternative.

Try	and	Experiment

Get	more	information	about	Reactive	and	Microservices.

How	exactly	are	the	advantages	implemented?

Is	there	a	Reactive	extension	for	your	preferred	programming	language?	Which	features	does	it
offer?	How	does	this	help	with	implementing	Microservices?

10.7	Conclusion
The	team	implementing	a	certain	Microservice	is	also	responsible	for	its	domain-
based	architecture.	There	should	be	few	guidelines	restricting	team	decisions	so
that	the	independence	of	the	teams	is	ensured.

Low	cohesion	can	be	an	indication	for	a	problem	with	the	domain-based	design	of
a	Microservice.	Domain-driven	Design	(DDD)	is	an	interesting	option	for
structuring	a	Microservice.	Likewise	transactions	can	provide	clues	for	a	sensible
domain-based	division:	An	operation	of	a	Microservice	should	be	a	transaction
(section	10.1).

CQS	(Command	Query	Separation)	divides	operations	of	a	Microservice	or	a
class	into	read	operations	(queries)	and	write	operations	(commands).	CQRS
(Command	Query	Responsibility	Segregation)	(section	10.2)	separates	data
changes	via	commands	from	Query	Handlers	which	can	process	requests.	Thereby
Microservices	or	classes	are	created	which	can	only	implement	reading	or
writing	access.	Event	Sourcing	(Section	10.3)	stores	events	and	thereby	does	not
focus	on	the	current	state,	but	on	the	history	of	all	events.	These	approaches	are
useful	for	building	up	Microservices	because	they	allow	for	the	creation	of
smaller	Microservices	which	can	implement	only	read	or	write	operations.	This
enables	an	independent	scaling	and	optimizations	for	both	types	of	operations.

Hexagonal	Architecture	(section	10.4)	focuses	on	a	kernel	which	can	be	called
via	adaptors	for	instance	by	a	UI	or	an	API,	as	the	center	point	of	each
Microservice.	Likewise	adaptors	can	enable	the	use	of	other	Microservices	or	of
databases.	For	Microservices	this	results	in	an	architecture	which	supports	a	UI
and	a	REST	interface	in	a	Microservice.

Section	10.5	has	presented	some	patterns	for	Resilience	and	Stability.	The	most
important	of	those	are	Circuit	Breaker,	Timeout	and	Bulkhead.	A	popular
implementation	is	Hystrix.

Section	10.6	introduced	certain	technical	options	for	Microservices:	The	use	of
Process	Engines	is	for	instance	an	option	for	a	Microservice.	Statelessness	is
advantageous.	And	finally,	Reactive	approaches	are	a	good	basis	for	the
implementation	of	Microservices.

In	summary,	the	chapter	explained	essential	factors	for	the	implementation	of
individual	Microservices.

Essential	Points

Microservices	within	a	Microservice-based	system	can	have	different
domain-based	architectures.
Microservices	can	internally	be	implemented	with	Event	Sourcing,	CQRS	or
Hexagonal	Architectures.
Technical	properties	like	stability	can	only	be	implemented	individually	by
each	Microservice.

1.	 Michael	T.	Nygard:	Release	It!:	Design	and	Deploy	Production-Ready
Software,	Pragmatic	Programmers,	2007,	ISBN	978-0-97873-921-8↩

11	Testing	Microservices	and	Microservice-
based	Systems

The	separation	of	a	system	into	Microservices	has	consequences	for	testing.
Section	11.1	explains	the	motivation	behind	software	tests.	Section	11.2	discusses
fundamental	approaches	for	tests,	not	only	in	regards	to	Microservices.	Section
11.3	illustrates	why	there	are	special	challenges	when	testing	Microservices
which	are	not	present	in	this	form	in	other	systems.	One	example:	In	a
Microservice-based	system	the	entire	system	comprising	all	Microservices	has	to
be	tested	(section	11.4).	This	is	laborious	since	there	can	be	a	multitude	of
Microservices.	Section	11.5	describes	the	special	case	of	a	legacy	application
which	is	supposed	to	be	replaced	by	Microservices.	In	that	case	the	integration	of
Microservices	and	legacy	application	has	to	be	tested.	Testing	just	the
Microservices	is	not	sufficient.	Another	possibility	to	safeguard	the	interfaces
between	Microservices	are	consumer-driven	contract	tests	(section	11.7).	They
reduce	the	expenditure	for	testing	the	entire	system.	Of	course,	the	individual
Microservices	have	to	be	tested	as	well.	In	this	context	the	question	arises	how
individual	Microservices	can	at	all	be	run	in	isolation	without	other
Microservices	(section	11.6).	Microservices	provide	technology	freedom,
nevertheless	there	have	to	be	certain	standards.	Therefore	tests	can	comprise
technical	standards	(section	11.8)	which	have	been	defined	in	the	architecture.

11.1	Why	Tests?
Testing	software	is	an	essential	part	of	every	software	development	project.
Nevertheless,	questions	about	the	goal	of	the	testing	are	hardly	asked.	In	the	end
tests	are	risk	management.	They	are	supposed	to	minimize	the	risk	that	errors
appear	in	production	and	are	noticed	by	users	–	or	that	other	damage	is	done.

This	answer	entails	a	number	of	consequences:

Each	test	has	to	be	evaluated	based	on	the	question	which	risk	it	minimizes.
In	the	end	a	test	is	only	meaningful	when	it	helps	to	avoid	concrete	error
scenarios	which	otherwise	would	occur	in	production.

Tests	represent	only	one	option	to	deal	with	risk.	Consequences	of	an	error
occurring	in	production	can	also	be	minimized	in	different	ways.	An
important	point	is	how	long	it	will	take	until	a	certain	error	is	corrected	in
production.	The	longer	an	error	persists	in	production,	the	more	profound	are
usually	the	consequences.	How	long	it	takes	to	put	a	corrected	version	of	the
services	into	production	depends	on	the	deployment	approach.	Therefore,
there	is	a	connection	between	tests	and	deployment	strategies.
Likewise,	it	is	a	very	important	aspect	how	long	it	will	take	until	an	error	in
production	is	noticed.	This	depends	on	the	quality	of	monitoring	and	logging.

In	the	end	many	measures	can	address	errors	in	production.	Just	focusing	on	tests
is	not	sufficient	in	order	to	be	able	to	offer	high	quality	software	to	customers.

Tests	Minimize	Expenditure

Tests	can	do	more	than	just	minimize	risk.	They	can	help	to	minimize	or	avoid
expenditure.	An	error	in	production	can	generate	a	high	expenditure.	The	error	can
influence	the	customer	service	and	can	cause	extra	expenditure	there.	Identifying
and	correcting	errors	in	production	is	usually	more	laborious	than	during	tests.
Access	to	the	systems	is	often	restricted.	Besides	the	developers	will	have
implemented	other	features	meanwhile	so	that	they	will	first	have	to	familiarize
themselves	again	with	the	erroneous	code.

In	addition,	the	approach	for	tests	can	help	to	avoid	or	reduce	expenditure.
Automating	tests	only	appears	laborious	at	first	glance.	When	tests	are	so	well
defined	that	results	are	reproducible,	the	step	to	a	complete	formalization	and
automation	is	not	huge.	In	that	case	the	costs	for	the	execution	of	the	tests	will	be
negligible.	This	allows	to	test	more	frequently,	and	this	will	promote	quality.

Test	=	Documentation

A	test	defines	what	the	code	is	supposed	to	do.	Thereby	it	represents	a	kind	of
documentation.	Unit	tests	define	how	the	productive	code	is	supposed	to	be	used
and	also	how	it	is	supposed	to	behave	in	exceptional	and	borderline	cases.
Acceptance	tests	reflect	the	requirements	of	the	customers.	The	advantage	of	tests
in	comparison	to	documentation	is	that	they	are	executed.	This	ensures	that	the
tests	really	reflect	the	current	behavior	and	not	an	outdated	state	or	a	state	which
will	only	be	reached	in	the	future.

Test-driven	Development

Test-driven	development	exploits	the	fact	that	tests	represent	requirements:	In	this
approach	developers	initially	write	tests	and	subsequently	the	implementation.
This	ensures	that	the	entire	code	is	safeguarded	by	tests.	Besides,	in	that	case	tests
are	not	influenced	by	knowledge	about	the	code	since	the	code	does	not	even	exist
yet	when	the	test	is	written.	If	tests	are	only	implemented	afterwards,	developers
might	not	test	for	certain	potential	problems	due	to	their	knowledge	about	the
implementation.	In	case	of	test-driven	development	this	is	very	unlikely.	Thereby
tests	turn	into	a	very	important	basis	for	the	development	process.	They	push	the
development:	Prior	to	each	change	there	has	to	be	a	test	which	does	not	work.
Code	may	only	be	adjusted	when	the	test	was	successful.	This	is	true	at	the	level
of	individual	classes,	which	are	safeguarded	by	previously	written	unit	tests,	but
also	at	the	level	of	requirements	which	are	ensured	by	previously	written
acceptance	tests.

11.2	How	to	Test?
There	are	different	types	of	tests	which	handle	different	risks:

Unit	Tests

Unit	tests	examine	the	units	the	system	consists	of	-	just	like	their	name	suggests.
They	minimize	the	risk	that	the	individual	units	contain	errors.	Unit	tests	check
especially	small	units	–	individual	methods	or	functions.	For	this	purpose,	all
dependencies	have	to	replaced	because	otherwise	not	only	the	individual	unit	but
also	the	dependent	units	are	tested.	To	replace	the	dependencies	there	are	two
possibilities:

Mocks	simulate	a	certain	call	with	a	certain	result.	After	the	call	the	test	can
verify	whether	the	expected	calls	really	have	taken	place.	A	test	can	for
instance	define	a	Mock	which	will	return	a	defined	customer	for	a	certain
customer	number.	After	the	test	it	can	evaluate	whether	the	customer	has
really	been	readout	by	the	code.	In	another	test	scenario	the	Mock	can
simulate	an	error	if	asked	for	a	customer.	Thereby	unit	tests	can	simulate
error	situations	which	otherwise	would	be	hard	to	reproduce.
Stubs	on	the	other	hand	simulate	the	entire	Microservice	–	however,	with	a
limited	functionality.	For	example,	the	Stub	can	return	a	constant	value.
Thereby	a	test	can	be	performed	without	the	really	dependent	Microservice.
For	instance,	a	Stub	can	be	implemented	which	returns	test	customers	for
certain	customer	numbers	–	each	with	certain	properties.

Unit	tests	are	within	the	responsibility	of	the	developers.	There	are	unit	test
frameworks	for	all	popular	programming	languages.	The	tests	use	knowledge
about	the	internal	structure	of	the	units.	For	example	they	replace	dependencies	by
Mocks	or	Stubs.	Besides,	the	knowledge	can	be	employed	to	run	through	all	code
paths	for	code	branches	within	the	tests.	The	tests	are	White	Box	Tests	because
they	exploit	knowledge	about	the	structure	of	the	units.	Actually,	one	would	have
to	talk	of	a	transparent	box,	however,	“White	Box”	is	the	commonly	used	term.

One	advantage	of	unit	tests	is	their	speed:	Even	for	a	complex	project	the	unit	tests
can	be	completed	within	a	few	minutes.	Thereby	literally	each	code	change	can	be
safeguarded	by	unit	tests.

Integration	Tests

Integration	tests	check	the	interplay	of	the	components.	Thereby	they	are	supposed
to	minimize	the	risk	that	the	integration	of	the	components	contains	errors.	They	do
not	use	Stubs	or	Mocks.	The	components	can	be	tested	as	applications	via	the	UI
or	via	special	test	frameworks.	Integration	tests	evaluate	at	least	whether	the
individual	parts	are	able	to	communicate	with	each	other.	Furthermore,	they	can
for	instance	test	the	logic	based	on	business	processes.

In	cases	where	they	test	business	processes	the	integration	tests	are	similar	to
acceptance	tests	which	check	the	requirements	of	the	customers.	This	area	is
covered	by	tools	for	BDD	(Behavior-Driven	Design)	and	ATDD	(Acceptance
Test-Driven	Design).	These	tools	enable	a	test-driven	approach	where	first	the
tests	are	written	and	afterwards	the	implementation	-	even	for	integration	and
acceptance	tests.

Integration	tests	do	not	use	information	about	the	system	which	is	to	be	tested.
They	are	called	Black	Box	Tests	since	they	do	not	exploit	knowledge	about	the
internal	structure	of	the	system.

UI	Tests

UI	tests	check	the	application	via	the	user	interface.	In	principle,	they	only	have	to
test	whether	the	user	interface	works	correctly.	There	are	numerous	frameworks
and	tools	for	testing	the	user	interface.	Among	those	are	tools	for	web	UIs,	but
also	for	desktop	or	mobile	applications.	The	tests	are	Blackbox	tests.	Since	they
test	the	user	interface,	the	tests	are	fragile:	Changes	to	the	user	interface	can	cause
problems	even	if	the	logic	remains	unchanged.	Besides,	the	tests	usually	require	a
complete	system	setup	so	that	they	are	slow.

Manual	Tests

Finally	there	can	be	manual	tests.	They	can	either	minimize	the	risk	of	errors	in
new	features	or	check	certain	aspects	like	security,	performance	or	features	which
have	previously	exposed	quality	problems.	They	should	be	explorative:	They	look
at	problems	in	certain	areas	of	the	applications.	Tests	which	are	aimed	at
detecting	whether	a	certain	error	shows	up	again	(regression	tests),	should	never
be	done	manually	since	automated	tests	find	such	errors	easier	and	in	a	more	cost-
efficient	and	reproducible	manner.	Manual	testing	is	limited	to	explorative	tests.

Load	Tests

Load	tests	analyze	the	behavior	of	the	application	under	load.	Performance	tests
on	the	other	hand	check	the	speed,	and	capacity	tests	examine	how	many	users	or
requests	the	system	is	able	to	process.	All	of	these	tests	evaluate	the	efficiency	of
the	application.	For	this	purpose,	they	use	similar	tools	which	measure	response
times	and	generate	load.	Besides,	such	tests	can	also	monitor	the	use	of	resources
or	check	whether	errors	occur	upon	a	certain	load.	Tests	which	investigate
whether	a	system	is	able	to	cope	with	a	high	load	in	the	long	term	are	called
endurance	tests.

Test	Pyramid

The	distribution	of	tests	is	illustrated	by	the	Test	Pyramid	((Fig.	50)[#Fig50]):
The	broad	basis	of	the	Pyramid	demonstrates	that	there	are	many	unit	tests.	They
can	be	rapidly	performed,	and	most	errors	can	be	detected	at	this	level.	There	are
fewer	integration	tests	since	they	are	more	laborious	and	run	longer.	In	addition,
there	are	usually	not	too	many	potential	errors	upon	the	integration	of	the	parts.
The	logic	itself	is	also	safeguarded	by	the	unit	tests.	UI	tests	only	have	to	verify
the	correctness	of	the	graphical	user	interface.	They	are	even	more	laborious	since
automating	UI	is	complicated,	and	a	complete	environment	is	necessary.	Manual
tests	are	only	required	now	and	then.

Test-driven	development	usually	results	in	a	Test	Pyramid:	For	each	requirement
there	is	an	integration	test	written	and	for	each	change	to	a	class	a	unit	test.
Thereby	automatically	many	integration	tests	are	created	and	even	more	unit	tests.

Fig.	50:	Test	Pyramide:	The	ideal

The	Test	Pyramid	achieves	high	quality	with	low	expenditure.	The	tests	are
automated	as	much	as	possible.	Each	risk	is	addressed	with	a	test	that	is	as	simple
as	possible:	Logic	is	tested	by	simple	and	rapid	unit	tests.	More	laborious	tests
are	restricted	to	areas	which	cannot	be	tested	with	less	effort.

Many	projects	are	very	remote	from	the	ideal	of	the	Test	Pyramid.	Unfortunately,
in	reality	tests	are	often	rather	like	an	ice-cream	cone	(Fig.	51.	In	that	case	there
are	the	following	challenges:

There	are	comprehensive	manual	tests	since	such	tests	are	very	easy.
Besides,	many	testers	do	not	have	sufficient	experience	with	test	automation.

Especially	if	the	testers	are	not	able	to	write	maintainable	test	code,	it	is
hardly	possible	to	automate	tests.
Tests	via	the	user	interface	are	the	easiest	type	of	automation	because	they
are	very	similar	to	the	manual	tests.	When	there	are	automated	tests,	it	is
mostly	UI	tests.	Unfortunately,	automated	UI	tests	are	fragile:	Changes	to	the
graphical	user	interface	often	already	lead	to	problems.	Since	the	tests	are
testing	the	entire	system,	they	are	slow.	If	the	tests	are	parallelized,	there	are
often	failures	because	the	system	experiences	a	too	high	load.
There	are	rather	few	integration	tests.	Such	tests	require	a	comprehensive
knowledge	about	the	system	and	about	automation	techniques,	which	testers
often	lack.
There	can	be	in	fact	more	unit	tests	than	presented	in	the	schema.	However,
their	quality	is	often	bad	since	developers	frequently	lack	experience	in
writing	unit	tests.

Fig.	51:	Test	Ice-Cream	Cone:	Far	too	common

In	addition,	unnecessarily	complex	tests	are	often	used	for	certain	error	sources.
UI	tests	or	manual	tests	are	used	to	test	logic.	For	this	purpose,	however,	unit	tests
would	be	sufficient	and	much	faster.	When	testing,	developers	should	try	to	avoid
these	problems	and	the	ice-cream	cone	and	instead	attempt	to	implement	a	Test
Pyramid.

Besides,	the	test	concept	has	to	be	adjusted	to	the	risks	of	the	respective	software
and	provide	tests	for	the	right	properties.	For	example,	a	project	which	is

predominantly	evaluated	based	on	performance	should	have	automated	load	or
capacity	tests.	Functional	tests	might	not	be	so	important	in	this	scenario.

Try	and	Experiment

In	which	places	does	the	approach	in	your	current	project	not	correspond	to	the	Test	Pyramid,	but	to
the	Test	Ice-Cream	Cone?

Where	are	manual	tests	used?	Are	at	least	the	most	important	tests	automated?
What	is	the	relationship	between	UI	to	integration	and	unit	tests?
How	is	the	quality	of	the	different	tests?
Is	test-driven	development	used?	For	individual	classes	or	also	for	requirements?

Continuous	Delivery	Pipeline

The	Continuous	Delivery	Pipeline	(Fig.	11,	section	5.1)	defines	the	different	test
phases.	Therefore,	it	is	interesting	for	the	testing	of	the	Microservices	and	not	as
much	for	the	deployment.	The	unit	tests	from	the	Test	Pyramid	are	executed	in	the
commit	phase.	UI	tests	can	be	part	of	the	acceptance	tests	or	can	likewise	be	run
in	the	commit	phase.	The	capacity	tests	use	the	complete	system	and	therefore	can
be	regarded	as	integration	tests	from	the	Test	Pyramid.	The	explorative	tests	are
the	manual	tests	from	the	Test	Pyramid.

Automating	tests	is	even	more	important	for	Microservices	than	in	other	software
architectures.	The	main	objective	of	Microservice-based	architectures	is
independent	and	frequent	software	deployment.	This	can	only	be	implemented
when	the	quality	of	Microservices	is	safeguarded	by	tests.	Otherwise	the
deployment	into	production	is	too	risky.

11.3	Mitigate	Risks	at	Deployment
An	important	advantage	of	Microservices	is	their	fast	deployment	due	to	the	small
size	of	the	deployable	units.	Besides	Resilience	avoids	that	the	failure	of	an
individual	Microservice	causes	other	Microservices	or	the	entire	system	to	fail.
Thereby	the	risk	is	lower	if	an	error	occurs	in	production	in	spite	of	the	tests.

However,	there	are	additional	reasons	why	Microservices	minimize	the	risk	of	a
deployment:

It	is	much	faster	to	correct	an	error	since	only	one	Microservice	has	to	be
deployed	anew.	This	is	by	far	faster	and	easier	than	the	deployment	of	a
Deployment	Monolith.
Approaches	like	Blue/Green	Deployment	or	Canary	Releasing	(section	12.4)
further	reduce	the	risk	associated	with	deployments.	Using	these	techniques	a
Microservice	that	contains	a	bug	can	be	removed	from	production	again	with
little	expenditure	and	time	loss.	These	approaches	are	easier	to	implement
with	Microservices	since	it	is	less	effort	to	provide	the	required
environments	for	a	Microservice	than	for	an	entire	Deployment	Monolith.
The	service	can	participate	in	production	without	doing	actual	work.
Although	it	will	get	the	same	requests	like	the	version	in	production,	all
changes	to	data	which	the	new	service	would	trigger	are	not	actually
performed	on	the	data	but	only	compared	to	the	modifications	from	the
service	in	production.	This	can	for	example	be	achieved	by	manipulations	to
the	database	driver	or	the	database	itself.	The	service	can	also	use	a	copy	of
the	database.	The	main	point	is	that	in	this	phase	the	Microservice	will	not
change	the	data	in	production.	In	addition,	messages	which	the	Microservice
sends	to	the	outside	can	be	compared	with	the	messages	of	the	Microservices
in	production	instead	of	sending	them	really	to	the	recipients.	With	this
approach	the	Microservice	runs	already	with	all	special	cases	of	the	data	in
production	which	even	the	best	test	cannot	all	cover.	Moreover,	such	a
procedure	can	provide	more	reliable	information	in	regards	to	performance,
although	the	writes	of	the	data	do	not	occur	so	that	the	performance	is	not
entirely	comparable.	Such	approaches	can	hardly	be	implemented	for	a
Deployment	Monolith	since	it	is	hardly	possible	to	have	the	entire
Deployment	Monolith	run	in	another	instance	in	production.	This	would
require	a	lot	of	resources	and	a	very	complex	configuration	because	the
Deployment	Monolith	can	introduce	changes	to	data	in	numerous	locations.
Even	with	Microservices	this	approach	is	still	complex	since	comprehensive
support	is	necessary	in	software	and	deployment.	Extra	code	has	to	be
written	for	calling	the	old	and	the	new	version	and	to	compare	the	changes
and	outgoing	messages	of	both	versions.	However,	this	approach	is	at	least
feasible.
Finally,	the	service	can	be	closely	examined	via	monitoring	in	order	to
rapidly	recognize	and	solve	problems.	This	shortens	the	time	until	a	problem
is	noticed	and	addressed.	The	monitoring	fulfills	to	a	certain	degree	the
function	of	acceptance	criteria	of	load	tests.	Code	which	fails	in	a	load	test
should	also	create	an	alarm	during	monitoring	in	production.	Therefore	a
close	coordination	between	monitoring	and	tests	is	sensible.

In	the	end	the	idea	behind	these	approaches	is	to	reduce	the	risk	associated	with
bringing	a	Microservice	into	production	instead	of	addressing	the	risk	by	tests.
When	the	new	version	of	a	Microservice	cannot	change	any	data,	its	deployment
is	practically	free	of	risk.	This	is	hardly	possible	for	Deployment	Monoliths	since
the	deployment	process	is	much	more	laborious	and	time	consuming,	and	requires
more	resources.	Therefore,	the	deployment	cannot	be	performed	fast.	Accordingly,
the	deployment	cannot	easily	be	rolled	back	when	errors	occur.

The	approach	is	also	interesting	because	some	risks	can	hardly	be	eliminated	by
tests.	For	example,	load	and	performance	tests	can	be	an	indicator	for	the
behavior	of	the	application	in	production.	However,	these	tests	cannot	be
completely	reliable	since	the	amount	of	data	is	different	in	production,	the	user
behavior	is	different	and	the	hardware	is	differently	sized.	It	is	not	feasible	to
cover	all	these	aspects	in	one	test	environment.	In	addition,	there	can	be	errors
which	only	occur	with	data	sets	from	production.	They	are	hard	to	simulate	with
tests.	Monitoring	and	rapid	deployment	can	in	fact	be	an	alternative	to	tests	in	a
Microservices	environment.	It	is	important	to	think	about	which	risk	can	be
reduced	with	which	type	of	measure	-	tests	or	optimizations	of	the	deployment
pipeline.

11.4	Testing	the	Overall	System
In	addition	to	the	tests	of	the	individual	Microservices	also	the	overall	system	has
to	be	tested.	So	there	are	multiple	Test	Pyramids:	one	for	each	individual
Microservice	and	one	for	the	system	in	its	entirety.	For	the	complete	system	there
are	integration	tests	of	the	Microservices,	UI	tests	of	the	entire	application	and
manual	tests.	Unit	tests	at	this	level	are	the	tests	of	the	Microservices	since	they
are	the	units	of	the	overall	system.	These	tests	consist	of	a	complete	Test	Pyramid
of	the	individual	Microservices.

Fig.	52:	Test	Pyramid	for	Microservices

The	tests	of	the	overall	system	are	responsible	for	identifying	problems	which
occur	in	the	interplay	of	the	different	Microservices.	Microservices	are
distributed	systems.	Calls	can	require	the	interplay	of	multiple	Microservices	to
return	a	result	to	the	user.	This	is	a	challenge	for	testing:	Distributed	systems	have
many	more	sources	of	errors.	Tests	of	the	overall	system	have	to	address	these
risks.	However,	when	testing	Microservices	another	approach	is	chosen:	Due	to
Resilience	the	individual	Microservices	should	still	work	in	case	of	problems
with	other	Microservices.	Functional	tests	can	be	performed	with	Stubs	or	Mocks
of	the	other	Microservices.	In	this	way	Microservices	can	be	tested	without	the
need	to	build	up	a	complex	distributed	system	and	examine	it	in	regards	to	all
possible	error	scenarios.

Shared	Integration	Tests

Still	each	Microservice	should	be	tested	prior	to	its	deployment	in	production	in
regards	to	its	integration	with	the	other	Microservices.	This	necessitates	changes
to	the	Continuous	Delivery	Pipeline	as	it	was	described	section	5.1:	At	the	end	of
the	deployment	pipeline	each	Microservice	should	be	tested	together	with	the
other	Microservices.	Each	Microservice	should	run	through	this	step	on	its	own.
When	new	versions	of	multiple	Microservices	are	tested	together	at	this	step,	it

will	not	be	clear	which	Microservice	might	have	caused	the	failure	of	the	test.
Only	if	in	case	of	a	failure	it	is	still	clear	which	Microservice	triggered	it,	is	it
possible	to	test	multiple	Microservices	together	at	this	step.	But	in	practice	such
optimizations	are	hardly	feasible.

Fig.	53:	Integration	tests	at	the	end	of	the	Continuous	Delivery	Pipelines

This	reasoning	leads	to	the	procedure	depicted	in	Fig.	53:	The	Continuous
Delivery	Pipelines	of	the	Microservices	end	in	a	common	integration	test	into
which	each	Microservice	has	to	enter	separately.	When	a	Microservice	is	in	the
integration	test	phase,	the	other	Microservices	have	to	wait	until	the	integration
test	is	completed.	To	ensure	that	indeed	only	one	Microservice	at	at	time	runs
through	the	integration	tests	the	tests	can	be	performed	in	an	extra	environment.	In
that	case	only	one	Microservice	may	be	delivered	in	a	new	version	in	this
environment	at	a	given	point	in	time.	The	environment	enforces	the	serialized
processing	of	the	integration	tests	of	the	Microservices.

Such	a	synchronization	point	slows	down	the	deployment	and	therefore	the	entire
process.	If	the	integration	test	lasts	for	example	one	hour,	it	will	only	be	possible
to	put	eight	Microservices	through	the	integration	test	and	into	production	per
eight	hours	work	day.	If	there	are	eight	teams	in	the	project,	each	team	will	be
able	to	deploy	a	Microservice	exactly	once	per	day.	This	is	not	sufficient	to
achieve	a	rapid	error	correction	in	production.	Besides,	this	weakens	an	essential
advantage	of	Microservices:	It	should	be	possible	to	deploy	each	Microservice
independently.	Even	though	this	is	in	principle	still	possible,	the	deployment	takes
too	long.	Moreover,	the	Microservices	have	now	dependencies	to	each	other	due
to	the	integration	tests	–	not	at	the	code	level,	but	in	the	deployment	pipelines.	In
addition,	things	are	not	balanced	when	the	Continuous	Delivery	without	the	last

integration	test	requires	for	instance	only	one	hour,	but	it	is	still	not	possible	to	get
more	than	one	release	into	production	per	day.

Avoiding	Integration	Tests	of	the	Overall	System

This	problem	can	be	solved	by	the	Test	Pyramid.	It	moves	the	focus	from
integration	tests	of	the	overall	system	to	integration	tests	of	the	individual
Microservices	and	unit	tests.	When	there	are	few	integration	tests	of	the	overall
system,	they	will	not	take	as	much	time.	In	addition,	less	synchronization	is
necessary,	and	the	deployment	in	production	is	faster.	The	integration	tests	are
only	meant	to	test	the	interplay	between	Microservices.	It	is	sufficient	when	each
Microservices	can	reach	all	dependent	Microservices.	All	other	risks	can	be
taken	care	of	prior	to	this	last	test.	With	consumer-driven	contract	tests	(section
11.7)	it	is	even	possible	to	exclude	errors	in	the	communication	between	the
Microservices	without	having	to	test	the	Microservices	together.	All	these
measure	help	to	reduce	the	number	of	integration	tests	and	thereby	their	total
duration.	In	the	end	there	is	no	reduction	in	overall	testing	–	the	testing	is	just
moved	to	other	phases:	to	the	tests	of	the	individual	Microservices	and	to	the	unit
tests.

The	tests	for	the	overall	system	can	be	developed	by	all	teams	together.
Consistently,	they	form	part	of	the	macro	architecture	because	they	concern	the
system	as	such	and	therefore	cannot	be	the	responsibility	of	an	individual	team
(compare	section	13.3).

The	complete	system	can	also	be	tested	manually.	However,	it	is	not	feasible	that
each	new	version	of	a	Microservice	only	goes	into	production	after	a	manual	test
with	the	other	Microservices.	The	delays	will	just	be	too	large.	Manual	tests	of
the	system	as	such	can	for	example	address	features	which	are	not	yet	activated	in
production.	Alternatively,	certain	aspects	like	security	can	be	tested	in	this	manner
if	problems	occurred	in	these	areas	previously.

11.5	Testing	Legacy	Applications	and	Microservices
Microservices	are	often	used	to	replace	legacy	applications.	The	legacy
applications	are	usually	Deployment	Monoliths.	Therefore	the	Continuous
Delivery	Pipeline	of	the	legacy	application	tests	many	functionalities	which	have
to	be	split	into	Microservices.	Because	of	the	many	functionalities	the	test	steps	of
the	Continuous	Delivery	Pipeline	take	very	long	for	Deployment	Monoliths.
Accordingly,	the	deployment	in	production	is	very	complex	and	takes	long.	Under

such	conditions	it	is	unrealistic	that	each	small	code	change	to	the	legacy
application	goes	into	production.	Often	there	are	deployments	at	the	end	of	a
sprint	of	14	days	or	even	only	one	release	per	quarter.	Nightly	tests	inspect	the
current	state	of	the	system.	Tests	can	be	transferred	from	the	Continuous	Delivery
Pipeline	into	the	nightly	tests.	In	that	case	the	Continuous	Delivery	Pipeline	will
be	faster	but	certain	errors	are	only	recognized	during	the	night-time	testing.	Then
the	question	arises	which	of	the	changes	of	the	past	day	is	responsible	for	the
error.

Relocating	Tests	of	the	Legacy	Application

When	migrating	from	a	legacy	application	to	Microservices,	tests	are	especially
important.	If	just	the	tests	of	the	legacy	application	are	used,	they	will	test	a
number	of	functionalities	which	meanwhile	have	been	moved	to	Microservices.	In
that	case	these	tests	have	to	be	run	at	each	release	of	a	Microservice	–	which
takes	much	too	long.	The	tests	have	to	be	relocated.	They	can	turn	into	integration
tests	for	the	Microservices	(Fig.	54).	However,	the	integration	tests	of	the
Microservices	should	run	rapidly.	In	this	phase	it	is	not	necessary	to	use	tests	for
functionalities,	which	reside	in	a	single	Microservice.	Then	the	tests	of	the	legacy
application	have	to	turn	into	integration	tests	of	the	individual	Microservices	or
even	into	unit	tests.	In	that	case	they	are	much	faster.	And	they	run	as	tests	for	a
single	Microservice	so	that	they	do	not	slow	down	the	shared	tests	of	the
Microservices.

Not	only	the	legacy	application	has	to	be	migrated,	but	also	the	tests.	Otherwise
fast	deployments	will	not	be	possible	in	spite	of	the	migration	of	the	legacy
application.

The	tests	for	the	functionalities	which	have	been	transferred	to	Microservices	can
be	removed	from	the	tests	of	the	legacy	application.	Step	by	step	this	will	speed
up	the	deployment	of	the	legacy	application.	Consequently,	changes	to	the	legacy
application	will	also	get	increasingly	easier.

Fig.	54:	Relocating	tests	of	legacy	applications

Integration	Test:	Legacy	Application	and	Microservices

The	legacy	application	also	has	to	be	tested	together	with	the	Microservices.	The
Microservices	have	to	be	tested	together	with	the	version	of	the	legacy	production
which	is	in	production.	This	ensures	that	the	Microservices	will	also	work	in
production	together	with	the	legacy	application.	For	this	purpose,	the	version	of
the	legacy	application	running	in	production	can	be	integrated	into	the	integration
tests	of	the	Microservices.	It	is	the	responsibility	of	each	Microservice	to	pass	the
tests	without	any	errors	with	this	version	(Fig.	55).

Fig.	55:	Legacy	Application	in	the	Continuous	Delivery	Pipelines

When	the	deployment	cycles	of	the	legacy	application	last	days	or	weeks,	a	new
version	of	the	legacy	application	will	be	in	development	in	parallel.	The
Microservices	also	have	to	be	tested	with	this	version.	This	ensures	that	there
will	not	suddenly	be	errors	occurring	upon	the	release	of	the	new	legacy
application.	The	version	of	the	legacy	application	which	is	currently	in
development	runs	an	integration	test	with	the	current	Microservices	as	part	of	its
own	deployment	pipeline	(Fig.	56).	For	this	the	versions	of	the	Microservices
which	are	in	production	have	to	be	used.

The	versions	of	the	Microservices	change	much	more	frequently	than	the	version
of	the	legacy	application.	A	new	version	of	a	Microservice	can	break	the
Continuous	Delivery	Pipeline	of	the	legacy	application.	The	team	of	the	legacy
application	cannot	solve	these	problems	since	it	does	not	know	the	code	of	the
Microservices.	This	version	of	the	Microservice	is	possibly	already	in	production
though.	In	that	case	a	new	version	of	the	Microservice	has	to	be	delivered	to
eliminate	the	error	–	although	the	Continuous	Delivery	Pipeline	of	the
Microservice	ran	through	successfully.

Fig.	56:	Microservices	in	the	Continuous	Delivery	Pipeline	of	the	legacy	application

An	alternative	would	be	to	send	the	Microservices	also	through	an	integration	test
with	the	version	of	the	legacy	application	which	is	currently	in	development.
However,	this	prolongs	the	overarching	integration	test	of	the	Microservices	and
therefore	renders	the	development	of	the	Microservices	more	complex.

The	problem	can	be	addressed	by	consumer-driven	contract	tests	(section	11.7).
The	expectations	of	the	legacy	application	to	the	Microservices	and	of	the
Microservices	to	the	legacy	application	can	be	defined	by	consumer-driven
contract	tests	so	that	the	integration	tests	can	be	reduced	to	a	minimum.

In	addition,	the	legacy	application	can	be	tested	together	with	a	Stub	of	the
Microservices.	These	tests	are	no	integration	tests	since	they	only	test	the	legacy
application.	This	allows	to	reduce	the	number	of	overarching	integration	tests.
This	concept	is	illustrated	in	section	11.6	using	tests	of	Microservices	as	example.
However,	this	means	that	the	tests	of	the	legacy	application	have	to	be	adjusted.

11.6	Testing	Individual	Microservices
Tests	of	the	individual	Microservices	are	the	duty	of	the	team	which	is
responsible	for	the	respective	Microservice.	The	team	has	to	implement	the
different	tests	such	as	unit	tests,	load	tests	and	acceptance	tests	as	part	of	their
own	Continuous	Delivery	Pipeline	–	as	would	also	be	the	case	for	systems	which
are	no	Microservices.

However,	Microservices	require	for	some	functionalities	access	to	other
Microservices.	This	poses	a	challenge	for	the	tests:	It	is	not	sensible	to	provide	a
complete	environment	with	all	Microservices	for	each	test	of	each	Microservice.
On	the	one	hand	this	would	use	up	too	many	resources.	On	the	other	hand,	it	is
difficult	to	supply	all	these	environments	with	the	up-to-date	software.
Technically,	light-weight	virtualization	approaches	like	Docker	can	at	least	reduce
the	expenditure	in	terms	of	resources.	However,	for	50	or	100	Microservices	also
this	approach	will	not	be	sufficient	anymore.

Reference	Environment

A	reference	environment	in	which	the	Microservices	are	available	in	their	current
version	is	one	possible	solution.	The	tests	of	the	different	Microservices	can	use
the	Microservices	from	this	environment.	However,	errors	can	occur	when
multiple	teams	test	different	Microservices	in	parallel	with	the	Microservices

from	the	reference	environment.	The	tests	can	influence	each	other	and	thereby
create	errors.	Besides	the	reference	environment	has	to	be	available.	When	a	part
of	the	reference	environment	breaks	down	due	to	a	test,	in	extreme	cases	tests
might	be	impossible	for	all	teams.	The	Microservices	have	to	be	hold	available	in
the	reference	environment	in	their	current	version.	This	generates	additional
expenditure.	Therefore	a	reference	environment	is	not	a	good	solution	for	the
isolated	testing	of	Microservices.

Stubs

Another	possibility	is	the	simulation	of	the	used	Microservice.	For	the	simulation
of	parts	of	a	system	for	testing	there	are	two	different	options	as	section	11.2
presented,	namely	Stubs	and	Mocks.	Stubs	are	the	better	choice	for	the
replacement	of	Microservices.	They	can	support	different	test	scenarios.	The
implementation	of	a	single	Stubs	can	support	the	development	of	all	dependent
Microservices.

If	Stubs	are	used,	the	teams	have	to	deliver	Stubs	for	their	Microservices.	This
ensures	that	the	Microservices	and	the	Stubs	really	behave	largely	identically.
When	consumer-driven	contract	tests	also	validate	the	Stubs	(compare	section
11.7),	the	correct	simulation	of	the	Microservices	by	the	Stubs	is	ensured.

The	Stubs	should	be	implemented	with	a	uniform	technology.	All	teams	which	use
a	Microservice	also	have	to	use	stubs	for	testing.	Handling	the	stubs	is	facilitated
by	a	uniform	technology.	Otherwise	a	team	which	employs	several	Microservices
has	to	master	a	plethora	of	technologies	for	the	tests.

Stubs	could	be	implemented	with	the	same	technology	as	the	associated
Microservices.	However,	the	Stubs	should	use	less	resources	than	the
Microservices.	Therefore,	it	is	better	when	the	Stubs	utilize	a	simpler	technology
stack.	The	example	in	section	14.13	uses	for	the	Stubs	the	same	technology	as	the
associated	Microservices.	However,	the	Stubs	deliver	only	constant	values	and
run	in	the	same	process	as	the	Microservices	which	employ	the	Stub.	Thereby	the
Stubs	use	up	less	resources.

There	are	technologies	which	specialize	on	implementing	Stubs.	Tools	for	client-
driven	contract	tests	can	often	also	generate	Stubs	(compare	section	11.7).

mountebank	is	written	in	JavaScript	with	Node.js.	It	can	provide	Stubs	for
TCP,	HTTP,	HTTPS	and	SMTP.	New	Stubs	can	be	generated	at	run	time.	The

http://www.mbtest.org/

definition	of	the	Stubs	is	stored	in	a	JSON	file.	It	defines	under	which
conditions	which	responses	are	supposed	to	be	returned	by	the	Stub.	An
extension	with	JavaScript	is	likewise	possible.	mountebank	can	also	serve	as
proxy.	In	that	case	it	forwards	requests	to	a	service	–	alternatively,	only	the
first	request	is	forwarded	and	the	response	is	recorded.	All	subsequent
requests	will	be	answered	by	mountebank	with	the	recorded	response.	In
addition	to	Stubs	mountebank	also	supports	Mocks.
WireMock	is	written	in	Java	and	is	under	Apache	2	license.	This	framework
makes	it	very	easy	to	return	certain	data	for	certain	requests.	The	behavior	is
determined	by	Java	code.	WireMock	supports	HTTP	and	HTTPS.	The	Stub
can	run	in	an	separate	process,	in	a	servlet	container	or	directly	in	a	JUnit
test.
Moco	is	likewise	written	in	Java	and	is	under	the	MIT	license.	The	behavior
of	the	Stubs	can	be	expressed	with	Java	code	or	with	a	JSON	file.	It	supports
HTTP,	HTTPS	and	simple	socket	protocols.	The	Stubs	can	be	started	in	a
Java	program	or	in	an	independent	server.
stubby4j	is	written	in	Java	and	under	MIT	license.	It	utilizes	a	YAML	file	for
defining	the	behavior	of	the	Stub.	HTTPS	is	supported	as	protocol	in
addition	to	HTTP.	The	definition	of	the	data	takes	place	in	YAML	or	JSON.
It	is	also	possible	to	start	an	interaction	with	a	server	or	to	program	the
behavior	of	Stubs	with	Java.	Out	of	the	request	information	can	be	copied
into	the	response.

Try	and	Experiment

Use	the	example	presented	in	chapter	14	and	supplement	Stubs	with	a	Stub
framework	of	your	choice.	The	example	application	uses	the	configuration	file
application-test.properties.	In	this	configuration	it	is	defined	which	Stub	is	used
for	the	tests.

11.7	Consumer-driven	Contract	Tests
Each	interface	of	a	component	is	ultimately	a	contract:	The	caller	expects	that
certain	side	effects	are	triggered	or	that	values	are	returned	when	it	uses	the
interface.	The	contract	is	usually	not	formally	defined.	When	a	Microservice
violates	the	expectations,	this	manifests	itself	as	error	which	is	either	noticed	in
production	or	in	integration	tests.	When	the	contract	can	be	made	explicit	and
tested	independently,	the	integration	tests	can	be	freed	from	the	obligation	to	test
the	contract	without	incurring	a	larger	risk	for	errors	during	production.	Besides,

http://wiremock.org/
https://github.com/dreamhead/moco
https://github.com/azagniotov/stubby4j

then	it	would	get	easier	to	modify	the	Microservices	because	it	would	be	easier	to
anticipate	which	changes	cause	problems	with	using	other	Microservices.

Often	changes	to	system	components	are	not	performed	because	it	is	unclear
which	other	components	use	that	specific	component	and	how	they	us	it.	There	is	a
risk	of	errors	during	the	interplay	with	other	Microservices,	and	there	are	fears
that	the	error	will	be	noticed	too	late.	When	it	is	clear	how	a	Microservice	is
used,	changes	are	much	easier	to	perform	and	to	safeguard.

Components	of	the	Contract

These	aspects	belong	to	the	contract	of	a	Microservice:

The	data	formats	define	in	which	format	information	is	expected	by	the	other
Microservices	and	how	they	are	passed	over	to	a	Microservice.
The	interface	determines	which	operations	are	available.
Procedures	or	protocols	define	which	operations	can	be	performed	in	which
sequence	with	which	results.
Finally,	there	is	meta	information	associated	with	the	calls	which	can
comprise	for	example	a	user	authentication.
In	addition,	there	can	be	certain	non-functional	aspects	like	the	latency	time
or	a	certain	throughput.

Contracts

There	are	different	contracts	between	the	consumers	and	the	provider	of	a	service:

The	Provider	Contract	comprises	everything	the	service	provider	provides.
There	is	one	such	contract	per	service	provider.	It	completely	defines	the
entire	service.	It	can	for	instance	change	with	the	version	of	the	service
(compare	section	9.6).
The	Consumer	Contract	comprises	all	functionalities	which	a	service	user
really	utilizes.	There	are	several	such	contracts	per	service	–	at	least	one
with	each	user.	The	contract	comprises	only	the	parts	of	the	service	which
the	user	really	employs.	It	can	change	through	modifications	to	the	service
consumer.
The	Consumer-driven	Contract	(CDC)	comprises	all	user	contracts.
Therefore,	it	contains	all	functionalities	which	any	service	consumer	utilizes.
There	is	only	one	such	contract	per	service.	Since	it	depends	on	the	user
contracts,	it	can	change	when	the	service	consumers	add	new	calls	to	the
service	provider	or	when	there	are	new	requirements	for	the	calls.

http://martinfowler.com/articles/consumerDrivenContracts.html

Fig.	57:	Differences	between	Consumer	and	Provider	Contracts

The	Consumer-driven	Contract	makes	clear	which	which	components	of	the
provider	contracts	are	really	used.	This	clarifies	also	where	the	Microservice	can
still	change	its	interface	and	which	components	of	the	Microservice	are	not	used.

Implementation

Ideally,	a	Consumer-driven	Contract	turns	into	a	consumer-driven	contract	test
which	the	service	provider	can	perform.	It	has	to	be	possible	for	the	service
consumer	to	change	these	tests.	They	can	be	stored	together	in	the	version	control
with	the	Microservice	of	the	service	provider.	In	that	case	the	service	consumers
have	to	get	access	to	the	version	control	of	the	service	provider.	Otherwise	the
tests	can	also	be	stored	in	the	version	control	of	the	service	consumers.	In	that
case	the	service	provider	has	to	fetch	the	tests	out	of	the	version	control	and
execute	them	with	each	version	of	the	software.	However,	in	that	case	it	is	not
possible	to	version	the	tests	together	with	the	tested	software	since	tests	and	tested
software	are	in	two	separate	projects	within	the	version	control.

The	entirety	of	all	tests	represents	the	Consumer-driven	Contract.	The	tests	of
each	team	correspond	to	the	Consumer	Contract	of	each	team.	The	consumer-
driven	contract	tests	can	be	performed	as	part	of	the	tests	of	the	Microservice.	If
they	are	successful,	all	service	consumers	should	be	able	to	successfully	work
together	with	the	Microservice.	The	test	precludes	that	errors	will	only	be	noticed
during	the	integration	test.	Besides,	modifications	to	the	Microservices	get	easier
because	requirements	for	the	interfaces	are	known	and	can	be	tested	without

special	expenditure.	Therefore,	the	risk	associated	with	changes	which	affect	the
interface	is	much	smaller	since	problems	will	be	noticed	prior	to	integration	tests
and	production.

Tools

To	write	consumer-driven	contract	tests	a	technology	has	to	be	defined.	The
technology	should	be	uniform	for	all	projects	because	a	Microservice	can	use
several	other	Microservices.	In	that	case	a	team	has	to	write	tests	for	different
other	Microservices.	This	is	easier	when	there	is	a	uniform	technology.	Otherwise
the	teams	have	to	know	numerous	different	technologies.	The	technology	for	the
tests	can	differ	from	the	technology	used	for	implementation.

An	arbitrary	test	framework	is	an	option	for	implementing	the	consumer-
driven	contract	tests.	For	load	tests	additional	tools	can	be	defined.	In
addition	to	the	functional	requirements	there	can	also	be	requirements	in
regards	to	the	load	behavior.	However,	it	has	to	be	clearly	defined	how	the
Microservice	is	provided	for	the	test.	For	example,	it	can	be	available	at	a
certain	port	on	the	test	machine.	In	this	way	the	test	can	take	place	via	the
interface	which	is	also	used	for	access	by	other	Microservices.
In	the	example	application	(section	14.13)	simple	JUnit	tests	are	used	for
testing	the	Microservice	and	for	verifying	whether	the	required
functionalities	are	supported.	When	incompatible	changes	to	data	formats	are
performed	or	the	interface	is	modified	in	a	incompatible	manner,	the	tests
fail.
There	are	tools	especially	designed	for	the	implementation	of	consumer-
driven	contract	tests.	An	example	is	Pacto.	It	is	written	in	Ruby	and	under
the	MIT	licence.	Pacto	supports	REST/HTTP	and	supplements	such
interfaces	with	a	contract.	Pacto	can	be	integrated	into	a	test	structure.	In	that
case	Pacto	compares	the	header	with	expected	values	and	the	JSON	data
structures	in	the	body	with	JSON	schemas.	This	information	represents	the
contract.	The	contract	can	also	be	generated	out	of	a	recorded	interaction
between	a	client	and	a	server.	Based	on	the	contract	Pacto	can	validate	the
calls	and	responses	of	a	system.	In	addition,	Pacto	can	create	with	this
information	simple	Stubs.	Moreover,	Pacto	can	be	used	in	conjunction	with
RSpec	to	write	tests	in	Ruby.	Also	test	systems	which	are	written	in	other
languages	than	Ruby	can	be	tested	in	this	way.	Without	RSpec	Pacto	offers
the	possibility	to	run	a	server.	Thereby	it	is	possible	to	use	Pacto	also
outside	of	a	Ruby	system.

http://thoughtworks.github.io/pacto/

Pact	is	likewise	written	in	Ruby	and	under	MIT	licence.	The	service
consumer	can	employ	Pact	to	write	a	Stub	for	the	service	and	to	record	the
interaction	with	the	Stub.	This	results	in	a	Pact	file	which	represents	the
contract.	It	can	also	be	used	for	testing	whether	the	actual	service	correctly
implements	the	contract.	Pact	is	especially	useful	for	Ruby,	however	pact-
jvm	supports	a	similar	approach	for	different	JVM	languages	like	Scala,
Java,	Groovy	or	Clojure.

Try	and	Experiment

Use	the	example	presented	in	chapter	14	and	supplement	consumer-driven	contracts	with	a
framework	of	your	choice.	The	example	application	has	the	configuration	application-
test.properties .	In	this	configuration	it	is	defined	which	Stub	is	used	for	the	tests.	Verify	also	the
contracts	in	the	production	environment.

11.8	Testing	Technical	Standards
Microservices	have	to	fulfill	certain	technical	requirements.	For	example,
Microservices	should	register	themselves	in	Service	Discovery	and	keep
functioning	even	if	other	Microservices	break	down.	Tests	can	verify	these
properties.	This	entails	a	number	of	advantages:

The	guidelines	are	unambiguously	defined	by	the	test.	Therefore,	there	is	no
discussion	how	precisely	the	guidelines	are	meant.
They	can	be	tested	in	an	automated	fashion.	Thereby	it	is	clear	at	any	time
whether	a	Microservice	fulfills	the	rules	or	not.
New	teams	can	test	new	components	as	to	whether	they	comply	with	the	rules
or	not.
When	Microservices	do	not	employ	the	usual	technology	stack,	it	can	still	be
ensured	that	they	behave	correctly	from	a	technical	point	of	view.

Among	the	possible	tests	are:

The	Microservices	have	to	register	in	the	Service	Discovery	(section	8.9).
The	test	can	verify	whether	the	component	registers	at	service	registry	upon
starting.
Besides,	the	shared	mechanisms	for	configuration	and	coordination	have	to
be	used	(section	8.8).	The	test	can	control	whether	certain	values	from	the

https://github.com/realestate-com-au/pact
https://github.com/DiUS/pact-jvm

central	configuration	are	read	out.	For	this	purpose,	an	individual	test
interface	can	be	implemented.
A	shared	security	infrastructure	can	be	checked	by	testing	the	use	of	the
Microservice	via	a	certain	token	(section	8.12).
In	regards	to	documentation	and	metadata	(section	8.13)	it	can	be	tested
whether	a	test	can	access	the	documentation	via	the	defined	path.
In	regards	to	monitoring	(section	12.3)	and	logging	(section	12.2)	it	can	be
examined	whether	the	Microservice	provides	data	to	the	monitoring
interfaces	upon	starting	and	delivers	values	resp.	log	entries.
In	regards	to	deployment	(section	12.4)	it	is	sufficient	to	deploy	and	start	the
Microservice	on	a	server.	When	the	defined	standard	is	used	for	this,	this
aspect	is	likewise	correctly	implemented.
As	test	for	control	(section	12.5)	the	Microservice	can	simply	be	restarted.
To	test	for	Resilience	(section	10.5)	in	the	simplest	scenario	it	can	be
checked	whether	the	Microservice	at	least	boots	also	in	absence	of	the
dependent	Microservices	and	displays	errors	in	monitoring.	The	correct
functioning	of	the	Microservice	upon	availability	of	the	other	Microservices
is	ensured	by	the	functional	tests.	However,	a	scenario	where	the
Microservice	cannot	reach	any	other	service	is	not	addressed	in	normal	tests.

In	the	easiest	case	the	technical	test	can	just	start	and	deploy	the	Microservice.
Thereby	deployment	and	control	are	already	tested.	Dependent	Microservices	do
not	have	to	be	present	for	that.	Starting	the	Microservice	should	also	be	possible
without	dependent	Microservices	due	to	Resilience.	Subsequently,	logging	and
monitoring	can	be	examined	which	should	also	work	and	contain	errors	in	this
situation.	Finally,	the	integration	in	the	shared	technical	services	like	Service
Discovery,	configuration	and	coordination	or	security	can	be	checked.

Such	a	test	is	not	hard	to	write	and	can	render	many	discussions	about	the	precise
interpretation	of	the	guidelines	superfluous.	Therefore,	this	test	is	very	useful.
Besides,	it	tests	scenarios	which	are	usually	not	covered	by	automated	tests	–	for
instance	the	breakdown	of	dependent	systems.

This	test	does	not	necessarily	provide	complete	security	that	the	Microservice
complies	with	all	rules.	However,	it	can	at	least	examine	whether	the	fundamental
mechanisms	function.

Technical	standards	can	easily	be	tested	with	scripts.	The	scripts	should	install
the	Microservice	in	the	defined	manner	on	a	virtual	machine	and	start	it.

Afterwards	the	behavior,	for	instance	in	regards	to	logging	and	monitoring,	can	be
tested.	Since	technical	standards	are	specific	for	each	project,	a	uniform	approach
is	hardly	possible.	Under	certain	conditions	a	tool	like	Serverspec	can	be	useful.
It	serves	to	examine	the	state	of	a	server.	Therefore,	it	can	easily	determine
whether	a	certain	port	is	used	or	whether	a	certain	service	is	active.

11.9	Conclusion
Reasons	for	testing	are	on	the	one	hand	the	risk	that	problems	are	only	noticed	in
production	and	on	the	other	hand	that	tests	serve	as	an	exact	specification	of	the
system	(section	11.1).

Section	11.2	illustrated	by	using	the	concept	of	the	Test	Pyramid	how	tests	should
be	structured:	The	focus	should	be	on	fast,	easily	automatable	unit	tests.	They
address	the	risk	that	there	are	errors	in	the	logic.	Integration	tests	and	UI	tests	then
only	ensure	the	integration	of	the	Microservices	with	each	other	and	the	correct
integration	of	the	Microservices	into	the	UI.

As	section	11.3	showed,	Microservices	can	additionally	deal	with	the	risk	of
errors	in	production	in	a	different	manner:	Microservice	deployments	are	faster,
they	influence	only	a	small	part	of	the	system,	and	Microservices	can	even	run
blindly	in	production.	Thereby	the	risk	of	deployment	decreases.	Thus	it	can	be
sensible	instead	of	comprehensive	tests	to	rather	optimize	the	deployment	in
production	to	such	an	extent	that	it	is	for	all	practical	purposes	free	of	risk.	In
addition,	the	section	discussed	that	there	are	two	types	of	Test	Pyramids	for
Microservice-based	systems:	one	per	Microservice	and	one	for	the	overall
system.

Testing	the	overall	system	entails	the	problem	that	each	change	to	a	Microservice
necessitates	a	run	through	this	test.	Therefore,	this	test	can	turn	into	a	bottleneck
and	should	be	very	fast.	Thus,	when	testing	Microservices,	one	objective	is	to
reduce	the	number	of	integration	tests	across	all	Microservices	(section	11.4).

When	replacing	legacy	applications	not	only	their	functionality	has	to	be
transferred	into	Microservices,	but	also	the	tests	for	the	functionalities	have	to	be
moved	into	the	tests	of	the	Microservices	(section	11.5).	Besides,	each
modification	to	a	Microservice	has	to	be	tested	in	the	integration	with	the	version
of	the	legacy	application	used	in	production.	The	legacy	application	normally	has
a	much	slower	release	cycle	than	the	Microservices.	Therefore,	the	version	of	the

http://serverspec.org/

legacy	application	which	is	at	the	time	in	development	has	to	be	tested	together
with	the	Microservices.

For	testing	individual	Microservices	the	other	Microservices	have	to	be	replaced
by	Stubs.	This	allows	to	uncouple	the	tests	of	the	individual	Microservices	from
each	other.	Section	11.6	introduced	a	number	of	concrete	technologies	for	creating
Stubs.

In	section	11.7	client-driven	contract	tests	were	presented.	With	this	approach	the
contracts	between	the	Microservices	get	explicit.	This	allows	a	Microservice	to
check	whether	it	fulfills	the	requirements	of	the	other	Microservices	–	without	the
need	for	an	integration	test.	Also	for	this	area	a	number	of	tool	are	available.

Finally,	section	11.8	demonstrated	that	technical	requirements	to	the
Microservices	can	likewise	be	tested	in	an	automated	manner.	This	allows	to
unambiguously	establish	whether	a	Microservice	fulfills	all	technical	standards.

Essential	Points

Established	best	practices	like	the	Test	Pyramid	are	also	sensible	for
Microservices.
Common	tests	across	all	Microservices	can	turn	into	a	bottleneck	and
therefore	should	be	reduced,	for	example	by	performing	more	consumer-
driven	contract	tests.
With	suitable	tools	Stubs	can	be	created	from	Microservices.

12	Operations	and	Continuous	Delivery	of
Microservices

Deployment	and	operation	are	additional	components	of	the	Continuous	Delivery
Pipeline	(compare	section	11.1).	When	the	software	has	been	tested	in	the	context
of	the	pipeline	the	Microservices	go	into	production.	There	monitoring	and
logging	collect	information	which	can	be	used	for	the	further	development	of	the
Microservices.

The	operation	of	a	Microservice-based	system	is	more	laborious	than	the
operation	of	a	Deployment	Monolith.	There	are	many	more	deployable	artifacts
which	all	have	to	be	surveilled.	Section	12.1	discusses	the	typical	challenges
associated	with	the	operation	of	Microservice-based	systems	in	detail.	Logging	is
the	topic	of	section	12.2.	Section	12.3	focuses	on	the	monitoring	of	the
Microservices.	Deployment	is	treated	in	section	12.4.	Section	12.5	shows
necessary	measures	for	directing	a	Microservice	from	the	outside,	and	section
12.6	finally	describes	suitable	infrastructures	for	the	operation	of	Microservices.

The	challenges	associated	with	operation	should	not	be	underestimated.	It	is	in
this	area	where	the	most	complex	problems	associated	with	the	use	of
Microservices	frequently	arise.

12.1	Challenges	Associated	with	the	Operation	of
Microservices
Challenge:	Numerous	Artifacts

Teams	who	have	so	far	only	run	Deployment	Monoliths	are	confronted	with	the
problem	that	there	are	very	many	additional	deployable	artifacts	in
Microservices-based	systems.	Each	Microservice	is	independently	brought	into
production	and	therefore	a	separate	deployable	artifact.	Fifty,	hundred	or	more
Microservices	are	definitely	realistic.	The	concrete	number	depends	on	the	size	of
the	project	and	the	size	of	the	Microservices.	Such	a	number	of	deployable
artifacts	is	hardly	met	with	outside	of	Microservices-based	architectures.	All
these	artifacts	have	to	be	versioned	independently	because	only	then	it	can	be

tracked	which	code	runs	currently	in	production.	Besides,	this	allows	to	bring
each	Microservice	independently	in	a	new	version	into	production.

When	there	are	so	many	artifacts,	there	has	to	be	a	correspondingly	high	number	of
Continuous	Delivery	Pipelines.	They	do	not	only	comprise	the	deployment	in
production	but	also	the	different	testing	phases.	In	addition,	many	more	artifacts
have	to	be	surveilled	in	production	by	logging	and	monitoring.	This	is	only
possible	when	all	these	processes	are	mostly	automated.	For	a	small	number	of
artifacts	manual	interventions	might	still	be	acceptable.	Such	an	approach	is
simply	not	possible	anymore	for	the	large	number	of	artifacts	contained	in	a
Microservice-based	architecture.

The	challenges	in	the	areas	of	deployment	and	infrastructure	are	for	sure	the	most
difficult	ones	encountered	when	introducing	Microservices.	Many	organizations
are	not	sufficiently	proficient	in	automation	although	automation	is	also	very
advantageous	in	other	architectural	approaches	and	should	already	be	routine.

There	are	different	approaches	for	achieving	the	necessary	automation:

Delegate	into	Teams

The	easiest	option	is	to	delegate	this	challenge	to	the	teams	which	are	responsible
for	the	development	of	the	Microservices.	In	that	case	each	team	has	not	only	to
develop	its	Microservice,	but	also	to	take	care	of	its	operation.	They	have	the
choice	to	either	use	appropriate	automation	for	it	or	to	adopt	automation
approaches	from	other	teams.

The	team	does	not	even	have	to	cover	all	areas.	When	there	is	no	need	to	evaluate
log	data	to	achieve	reliable	operation,	the	team	can	decide	not	to	implement	a
system	for	evaluating	log	data.	A	reliable	operation	without	surveilling	the	log
output	is	hardly	possible	though.	However,	this	risk	is	then	within	the
responsibility	of	the	respective	team.

This	approach	only	works	when	the	teams	have	a	lot	of	knowledge	regarding
operation.	Another	problem	is	that	the	wheel	is	invented	over	and	over	again	by
the	different	teams:	Each	team	implements	automation	independently	and	might	use
different	tools	for	it.	This	approach	entails	the	danger	that	the	anyhow	laborious
operation	of	the	Microservices	gets	even	more	laborious	due	to	the	heterogeneous
approaches	taken	by	the	teams.	The	teams	have	to	do	this	work.	This	interferes

with	the	rapid	implementation	of	new	features.	However,	the	decentralized
decision	which	technologies	to	use	increases	the	independence	of	the	teams.

Unify	Tools

Because	of	the	higher	efficiency,	unification	can	be	a	sensible	approach	for
deployment.	The	easiest	way	to	obtain	uniform	tools	is	to	prescribe	one	tool	for
each	area	–	deployment,	test,	monitoring,	logging,	deployment	pipeline.	In
addition,	there	will	be	guidelines	and	best	practices	like	for	instance	immutable
server	or	the	separation	of	build	environment	and	deployment	environment.	This
allows	for	the	identical	implementation	of	all	Microservices	and	will	facilitate
operation	since	the	teams	only	need	to	be	familiar	with	one	tool	for	each	area.

Specify	Behavior

Another	option	is	to	specify	the	behavior	of	the	system.	One	example:	When	log
output	is	supposed	to	be	evaluated	in	a	uniform	manner	across	services,	it	is
sufficient	to	define	a	uniform	log	format.	The	log	framework	does	not	necessarily
have	to	be	prescribed.	Of	course,	it	is	sensible	to	offer	for	at	least	one	log
framework	a	configuration	which	generates	this	output	format.	This	increases	the
motivation	of	the	teams	to	use	this	log	framework.	In	this	way	uniformity	is	not
forced,	but	emerges	on	its	own	since	the	teams	will	minimize	their	own	effort.
When	a	team	regards	the	use	of	another	log	framework	or	programming	language
which	necessitates	another	log	framework	as	more	advantageous,	it	can	still	use
these	technologies.

Defining	uniform	formats	for	log	output	has	an	additional	advantage:	The
information	can	be	delivered	to	different	tools	which	process	log	files	differently.
This	allows	operations	to	screen	log	files	for	errors	while	the	business
stakeholders	create	statistics.	Operation	and	business	stakeholders	can	use
different	tools	which	use	the	uniform	format	as	shared	basis.

Similarly,	behavior	can	be	defined	for	the	other	areas	of	operation	such	as
deployment,	monitoring	or	the	deployment	pipeline.

Micro	and	Macro	Architecture

Which	decisions	can	be	made	by	the	team	and	which	have	to	be	made	for	the
overall	project	corresponds	to	the	separation	of	the	architecture	into	micro	and
macro	architecture	(compare	section	13.3).	Decisions	the	team	can	make	belong	to
micro	architecture	while	decisions	which	are	made	across	all	teams	for	the

overall	project	are	part	of	the	macro	architecture.	Technologies	or	the	desired
behavior	for	logging	can	be	either	part	of	the	macro	or	the	micro	architecture.

Templates

Templates	offer	the	option	to	unify	Microservices	in	these	areas	and	to	increase
the	productivity	of	the	teams.	Based	on	a	very	simple	Microservice	a	template
demonstrates	how	the	technologies	can	be	used	and	how	Microservices	are
integrated	into	the	operation	infrastructure.	The	example	can	simply	respond	to	a
request	with	a	constant	value	since	the	domain	logic	is	not	the	point	here.

The	template	will	make	it	easy	and	fast	for	a	team	to	implement	a	new
Microservice.	At	the	same	time,	each	team	can	easily	make	use	of	the	standard
technology	stack.	So	the	uniform	technical	solution	is	at	the	same	time	the	most
attractive	for	the	teams.	Templates	achieve	a	large	degree	of	technical	uniformity
between	Microservices	without	prescribing	the	used	technology.	In	addition,	a
faulty	use	of	the	technology	stack	is	avoided	when	the	template	demonstrates	the
correct	use.

A	template	should	contain	the	complete	infrastructure	in	addition	to	the	code	for
an	exemplary	Microservice.	This	refers	to	the	Continuous	Delivery	Pipeline,	the
build,	the	Continuous	Integration	Platform,	the	deployment	in	production	and	the
necessary	resources	for	running	the	Microservice.	Especially	build	and
Continuous	Delivery	Pipeline	are	important	since	the	deployment	of	a	large
number	of	Microservices	is	only	possible	when	these	are	automated.

The	template	can	be	very	complex	when	it	really	contains	the	complete
infrastructure	–	even	if	the	respective	Microservice	is	very	simple.	It	is	not
necessarily	required	to	provide	at	once	a	complete	and	perfect	solution.	The
template	can	also	be	built	up	in	a	stepwise	manner.

The	template	can	be	copied	into	each	project.	This	entails	the	problem	that
changes	to	the	template	are	not	propagated	into	the	existing	Microservices.	On	the
other	hand,	this	approach	is	much	easier	to	implement	than	an	approach	which
allows	for	the	automated	adoption	of	changes.	Besides	such	an	approach	would
create	dependencies	between	the	template	and	practically	all	Microservices.	Such
dependencies	should	be	avoided	for	Microservices.

The	templates	fundamentally	facilitate	the	generation	of	new	Microservices.
Accordingly,	teams	are	more	likely	to	create	new	Microservices.	Thereby	they

can	more	easily	distribute	Microservices	in	multiple	smaller	Microservices.	Thus
templates	help	to	keep	Microservices	small.	When	the	Microservices	are	rather
small,	the	advantages	of	a	Microservice-based	architecture	can	be	exploited	even
better.

12.2	Logging
By	logging	an	application	can	easily	provide	information	about	which	events
occurred.	These	can	be	errors,	but	also	events	like	the	registration	of	a	new	user
which	are	mostly	interesting	for	statistics.	Finally,	log	data	can	help	developers	to
locate	errors	by	providing	detailed	information.

In	normal	systems	logs	have	the	advantage	that	they	can	be	written	very	easily	and
that	the	data	can	be	persisted	without	huge	effort.	Besides,	log	files	are	human-
readable	and	can	be	easily	searched.

Logging	for	Microservices

For	Microservices	writing	and	analyzing	log	files	is	hardly	sufficient:

Many	requests	can	only	be	handled	by	the	interplay	of	multiple
Microservices.	In	that	case	the	log	file	of	a	single	Microservice	is	not
sufficient	to	understand	the	complete	sequence	of	events.
The	load	is	often	distributed	across	multiple	instances	of	one	Microservice.
Therefore,	the	information	contained	in	the	log	file	of	an	individual	instance
is	not	very	useful.
Finally,	due	to	increased	load,	new	releases	or	crashes,	new	instances	of	a
Microservice	start	constantly.	The	data	from	a	log	file	can	get	lost	when	a
virtual	machine	is	shut	down	and	its	hard	disc	is	subsequently	deleted.

It	is	not	necessary	for	Microservices	to	write	logs	into	their	file	system	because
the	information	can	anyhow	not	be	analyzed	there.	Only	writing	to	the	central	log
server	is	definitely	necessary.	This	has	also	the	advantage	that	the	Microservices
utilize	less	local	storage.

Usually,	applications	just	log	text	strings.	The	centralized	logging	parses	the
string.	During	parsing	relevant	information	like	time	stamps	or	server	names	are
extracted.	Often	parsing	goes	even	beyond	that	and	scrutinizes	the	texts	more
closely.	If	it	is	possible	to	determine	for	instance	the	identity	of	the	current	user
from	the	logs,	all	information	about	a	user	can	be	selected	from	the	log	data	of	the
Microservices.	In	a	way	the	Microservice	hides	the	relevant	information	in	a

string	which	the	log	system	subsequently	takes	apart	again.	To	facilitate	the
parsing	log	data	can	be	transferred	into	a	data	format	like	JSON.	In	that	case	the
data	can	already	be	structured	during	logging.	They	are	not	first	packaged	into	a
string	which	then	has	to	be	laboriously	parsed.	Likewise,	it	is	sensible	to	have
uniform	standards:	When	a	Microservice	logs	something	as	an	error,	then	an	error
should	really	have	occurred.	In	addition,	the	semantics	of	the	other	log	levels
should	be	uniform	across	all	Microservices.

Technologies	for	Logging	via	the	Network

Microservices	can	support	central	logging	by	sending	log	data	directly	via	the
network.	Most	log	libraries	support	such	an	approach.	Special	protocols	like
GELF	(Graylog	Extended	Log	Format)	can	be	used	for	this	or	long	established
protocols	like	syslog	which	is	the	basis	for	logging	in	UNIX	systems.	Tools	like
the	logstash-forwarder,	Beaver	or	Woodchuck	are	meant	to	send	local	files	via	the
network	to	a	central	log	server.	They	are	sensible	in	cases	where	the	log	data	are
supposed	to	be	also	locally	stored	in	files.

ELK	for	Centralized	Logging

Logstash,	Elasticsearch	and	Kibana	can	serve	as	tools	for	the	collection	and
processing	of	logs	on	a	central	server.

Fig.	58:	ELK	infrastructure	for	log	analysis

With	the	aid	of	Logstash	log	files	can	be	parsed	and	collected	by	servers	in
the	network.	Logstash	is	a	very	powerful	tool.	It	can	read	data	from	a	source,
modify	or	filter	data,	and	finally	write	it	into	a	sink.	Apart	from	importing
logs	from	the	network	and	storage	in	Elasticsearch	Logstash	supports	many
other	data	sources	and	data	sinks.	For	example,	data	can	be	read	from
message	queues	or	databases	or	written	into	them.	Finally,	Logstash	can	also
parse	data	and	supplement	it	–	for	example	time	stamps	can	be	added	to	each
log	entry	or	individual	fields	can	be	cut	out	and	further	processed.
Elasticsearch	stores	log	data	and	makes	them	available	for	analyses.
Elasticsearch	cannot	only	search	the	data	with	full	text	search,	but	it	can	also

https://www.graylog.org/
https://github.com/elastic/logstash-forwarder
https://github.com/josegonzalez/beaver
https://github.com/danryan/woodchuck
http://logstash.net/
https://www.elastic.co/products/elasticsearch

search	in	individual	fields	of	structured	data	and	permanently	store	the	data
like	a	database.	Finally,	Elasticsearch	offers	statistical	functions	and	can	use
those	to	analyze	data.	As	a	search	engine	Elasticsearch	is	optimized	for	fast
response	times	so	that	the	data	can	be	analyzed	quasi	interactively.
Kibana	is	a	web	user	interface	which	allows	to	analyze	data	from
Elasticsearch.	In	addition	to	simple	queries	also	statistical	evaluations,
visualizations	and	diagrams	can	be	created.

These	tools	form	the	ELK	stack	(Elasticsearch,	Logstash,	Kibana).	All	three	are
open	source	projects	and	are	under	Apache	2.0	license.

Scaling	ELK

Especially	in	case	of	Microservices	log	data	accumulate	often	in	large	amounts.
Therefore,	in	Microservice-based	architectures	the	system	for	the	central
processing	of	logs	should	be	highly	scalable.	A	good	scalability	is	one	of	the
advantages	of	the	ELK	stack:

Elasticsearch	can	distribute	the	indices	into	shards.	Each	data	set	is	stored
in	a	single	shard.	As	the	shards	can	be	located	on	different	servers,	this
allows	for	load	balancing.	In	addition,	shards	can	be	replicated	across
several	servers	to	improve	fail	safeness.	Besides,	a	read	access	can	be
directed	to	an	arbitrary	replica	of	the	data.	Thereby	replicas	can	serve	to
scale	read	access.
Logstash	can	write	logs	into	different	indices.	Without	an	additional
configuration	Logstash	would	write	the	data	for	each	day	into	a	different
index.	Since	the	current	data	usually	is	read	more	frequently,	this	allows	to
reduce	the	amount	of	data	which	has	to	be	searched	for	a	typical	request	and
therefore	improves	performance.	Besides,	there	are	still	other	possibilities	to
distribute	the	data	to	indices	–	for	instance	according	to	the	geographic	origin
of	the	user.	This	also	promotes	the	optimization	of	the	data	amounts	which
have	to	be	searched.
Log	data	can	be	buffered	in	a	Broker	prior	to	processing	by	Logstash.	The
Broker	serves	as	buffer.	It	stores	the	messages	when	there	are	so	many	log
messages	that	they	cannot	be	immediately	processed.	Redis	is	often	used	as
Broker	–	a	fast	in	memory	database.

Graylog

The	ELK	stack	is	not	the	only	solution	for	the	analysis	of	log	files.	Graylog	is	also
an	open	source	solution	and	likewise	utilizes	Elasticsearch	for	storing	log	data.

https://www.elastic.co/products/kibana
http://redis.io/
https://www.graylog.org/

Besides	it	uses	MongoDB	for	metadata.	Graylog	defines	its	own	format	for	the	log
messages:	The	already	mentioned	GELF	(Graylog	Extended	Log	Format)
standardizes	the	data	which	are	transmitted	via	the	network.	For	many	log
libraries	and	programming	languages	there	are	extensions	for	GELF.	Likewise,	the
respective	information	can	be	extracted	from	the	log	data	or	surveyed	with	the
UNIX	tool	syslog.	Also	Logstash	supports	GELF	as	in-	and	output	format	so	that
Logstash	can	be	combined	with	Graylog.	Graylog	has	a	web	interface	which
allows	to	analyze	the	information	from	the	logs.

Splunk

Splunk	is	a	commercial	solution	and	already	for	a	long	time	on	the	market.	Splunk
presents	itself	as	a	solution	which	does	not	only	analyze	log	files,	but	can
generally	analyze	machine	data	and	big	data.	For	processing	logs	Splunk	gathers
the	data	via	a	Forwarder,	prepares	it	via	an	Indexer	for	searching,	and	Search
Heads	take	over	the	processing	of	search	requests.	Its	intention	to	serve	as	an
enterprise	solution	is	underlined	by	the	security	concept.	Customized	analysis,	but
also	alerts	in	case	of	certain	problems	are	possible.	Splunk	can	be	extended	by
numerous	plug-ins.	Besides	there	are	apps	which	provide	ready-made	solutions
for	certain	infrastructures	such	as	Microsoft	Windows	Server.	The	software	does
not	necessarily	have	to	be	installed	in	your	own	computing	center,	but	is	also
available	as	Cloud	solution.

Stakeholders	for	Logs

There	are	different	stakeholders	for	logging.	However,	the	analysis	options	of	the
log	servers	are	so	flexible	and	the	analyses	so	similar	that	one	tool	is	normally
sufficient.	The	stakeholders	can	create	their	own	dashboards	with	the	information
that	is	relevant	to	them.	For	specific	requirements	the	log	data	can	be	passed	on	to
other	systems	for	evaluation.

Correlation	IDs

Often	multiple	Microservices	work	together	on	a	request.	The	path	the	request
takes	through	the	Microservices	has	to	be	traceable	for	analysis.	For	filtering	all
log	entries	to	a	certain	customer	or	to	a	certain	request	a	correlation	ID	can	be
used.	This	ID	unambiguously	identifies	a	request	to	the	overall	system	and	is
passed	along	during	all	communication	between	Microservices.	In	this	manner	log
entries	for	all	systems	to	a	single	request	are	easy	to	find	in	the	central	log	system,
and	the	processing	of	the	requests	can	be	tracked	across	all	Microservices.

http://www.splunk.com/

Such	an	approach	can	for	instance	be	implemented	by	transferring	a	request	ID	for
each	message	within	the	headers	or	within	the	payloads.	Many	projects	implement
the	transfer	in	their	own	code	without	using	a	framework.	For	Java	there	is	the
library	tracee	which	implements	the	transfer	of	the	IDs.	Some	log	frameworks
support	a	context	which	is	logged	together	with	each	log	message.	In	that	case	it	is
only	necessary	to	put	the	correlation	ID	into	the	context	when	receiving	a	message.
This	obliterates	the	need	to	pass	the	correlation	ID	on	from	method	to	method.
When	the	correlation	ID	is	bound	to	the	thread,	problems	can	arise	when	the
processing	of	a	request	involves	several	threads.	Setting	the	correlation	ID	in	the
context	ensures	that	all	log	messages	contain	the	correlation	ID.	How	the
correlation	ID	is	logged	has	to	be	uniform	across	all	Microservices	so	that	the
search	for	a	request	in	the	logs	works	for	all	Microservices.

Zipkin:	Distributed	Tracing

Also	in	regards	to	performance	evaluations	have	to	be	made	across
Microservices.	When	the	complete	path	of	the	requests	is	traceable,	it	can	be
identified	which	Microservice	represents	a	bottleneck	and	requires	an	especially
long	time	for	processing	requests.	With	the	aid	of	a	distributed	tracing	it	can	be
determined	for	a	request	which	Microservice	needs	how	much	time	for	answering
a	request	and	where	optimization	should	start.	Zipkin	enables	exactly	this	type	of
investigations.	It	comprises	support	for	different	network	protocols	so	that	a
request	ID	is	automatically	passed	on	via	these	protocols.	In	contrast	to	the
correlation	IDs	the	objective	is	not	to	correlate	log	entries,	but	to	analyze	the	time
behavior	of	the	Microservices.	For	this	purpose	Zipkin	offers	suitable	analysis
tools.

Try	and	Experiment

https://github.com/tracee/tracee
https://github.com/twitter/zipkin
https://blog.twitter.com/2012/distributed-systems-tracing-with-zipkin

Define	a	technology	stack	which	enables	a	Microservice-based	architecture	to	implement	logging:

How	should	the	log	messages	be	formatted?
Define	a	logging	framework	if	necessary.
Determine	a	technology	for	collecting	and	evaluating	logs.

This	section	listed	a	number	of	tools	for	the	different	areas.	Which	properties	are	especially
important?	The	objective	is	not	a	complete	product	evaluation,	but	a	general	weighing	of	advantages
and	disadvantages.

Chapter	14	shows	an	example	for	a	Microservice-based	architecture	and	in	section	14.14	there	are
suggestions	how	the	architecture	can	be	supplemented	with	a	log	analysis.

How	does	your	current	project	handle	logging?	Is	it	maybe	possible	to	implement	parts	of	these
approaches	and	technologies	also	in	your	project?

12.3	Monitoring
Monitoring	surveils	the	metrics	of	a	Microservice	and	uses	other	information
sources	than	logging.	Monitoring	uses	mostly	numerical	values	which	provide
information	about	the	current	state	of	the	application	and	indicate	how	this	state
changes	over	time.	Such	values	can	represent	the	number	of	processed	calls	over
a	certain	time,	the	time	needed	for	processing	the	calls	or	also	system	values	like
the	CPU	or	memory	utilization.	If	certain	thresholds	are	surpassed	or	not	reached,
this	indicates	a	problem	and	can	trigger	an	alarm	so	that	somebody	can	solve	the
problem.	Or	even	better:	The	problem	is	solved	automatically.	For	example,	an
overload	can	be	addressed	by	starting	additional	instances.

Monitoring	offers	feedback	from	production	which	is	not	only	relevant	for
operation,	but	also	for	developers	or	the	users	of	the	system.	Based	on	the
information	from	monitoring	they	can	better	understand	the	system	and	therefore
make	informed	decisions	about	how	the	system	should	be	developed	further.

Basic	Information

Basic	monitoring	information	should	be	mandatory	for	all	Microservices.	This
makes	it	easier	to	get	an	overview	of	the	state	of	the	system.	All	Microservices
should	deliver	the	required	information	in	the	same	format.	Besides	components

of	the	Microservice	system	can	likewise	use	the	values.	Load	balancing	for
instance	can	use	a	health	check	to	avoid	accessing	Microservices	which	cannot
process	calls.

The	basic	values	all	Microservices	should	provide	can	comprise	the	following:

There	should	be	a	value	which	indicates	the	availability	of	the	Microservice.
In	this	manner	the	Microservice	signals	whether	it	is	capable	of	processing
calls	at	all	(“alive”).
Detailed	information	regarding	the	availability	of	the	Microservice	is
another	important	metric.	One	relevant	information	is	whether	all
Microservices	used	by	the	Microservice	are	accessible	and	whether	all	other
resources	are	available	(“health”).	This	information	does	not	only	indicate
whether	the	Microservice	functions,	but	also	provide	hints	which	part	of	a
Microservice	is	currently	unavailable	and	why	it	failed.	Importantly,	it
becomes	apparent	whether	the	Microservice	is	unavailable	because	of	the
failure	of	another	Microservice	or	because	the	respective	Microservice	itself
is	having	a	problem.
Information	about	the	version	of	a	Microservice	and	additional	meta
information	like	the	contact	partner	or	used	libraries	and	their	versions	as
well	as	other	artifacts	can	also	be	provided	as	metrics.	This	can	cover	part
of	the	documentation	(compare	section	8.13).	Alternatively,	it	can	be	checked
which	version	of	the	Microservice	is	actually	currently	in	production.	This
facilitates	the	search	for	errors.	Besides,	an	automated	continuous	inventory
of	the	Microservices	and	other	used	software	is	possible,	which	simply
inquires	after	these	values.

Additional	Metrics

Additional	metrics	can	likewise	be	recorded	by	monitoring.	Among	the	possible
values	are	for	instance	response	times,	the	frequency	of	certain	errors	or	the
number	of	calls.	These	values	are	usually	specific	for	a	Microservice	so	that	they
do	not	necessarily	have	to	be	offered	by	all	Microservices.	An	alarm	can	be
triggered	when	certain	thresholds	are	reached.	Such	thresholds	are	different	for
each	Microservice.

Nevertheless,	a	uniform	interface	for	accessing	the	values	is	sensible	when	all
Microservices	are	supposed	to	use	the	same	monitoring	tool.	Uniformity	can
tremendously	reduce	expenditure	in	this	area.

Stakeholders

There	are	different	stakeholders	for	the	information	from	monitoring:

Operations	wants	timely	to	be	informed	about	problems	to	enable	a	smooth
operation	of	the	Microservice.	In	case	of	acute	problems	or	failures	it	wants
to	get	an	alarm	–	at	any	day	or	night	time	–	via	different	means	like	pager	or
SMS.	Detailed	information	is	only	necessary	when	the	error	has	to	be
analyzed	more	closely	–	often	together	with	the	developers.	Operations	is	not
only	interested	in	the	values	from	the	Microservice	itself,	but	also	in
monitoring	values	of	the	operating	system,	the	hardware	or	the	network.
Developers	mostly	focus	on	information	from	the	application.	They	want	to
understand	how	the	application	functions	in	production	and	how	it	is
employed	by	the	users.	From	this	information	they	deduce	optimizations,
especially	at	the	technical	level.	Therefore,	they	need	very	specific
information.	If	the	application	is	for	instance	too	slow	in	responding	to	a
certain	type	of	call,	the	system	has	to	be	optimized	for	this	type	of	call.	To	do
so	it	is	necessary	to	obtain	as	much	information	as	possible	about	exactly	this
type	of	call.	Other	calls	are	not	as	interesting.	Developers	evaluate	this
information	in	detail.	They	might	even	be	interested	in	analyzing	calls	of	just
one	specific	user	or	a	circle	of	users.
The	business	stakeholders	are	interested	in	the	business	success	and	the
resulting	business	numbers.	Such	information	can	be	provided	by	the
application	specifically	for	the	business	stakeholders.	The	business
stakeholders	then	generate	statistics	based	on	this	information	and	thereby
prepare	business	decisions.	On	the	other	hand,	they	are	usually	not	interested
in	technical	details.

The	different	stakeholders	are	not	only	interested	in	different	values,	but	also
analyze	them	differently.	Standardizing	the	data	format	is	sensible	to	support
different	tools	and	nevertheless	enable	all	stakeholders	to	access	all	data.

Fig.	59:	Stakeholders	and	their	monitoring	data

Fig.	59	shows	an	overview	of	a	possible	monitoring	of	a	Microservice-based
system.	The	Microservice	offers	the	data	via	a	uniform	interface.	Operations	uses
monitoring	to	surveil	for	instance	threshold	values.	Development	utilizes	a
detailed	monitoring	to	understand	processes	within	the	application.	And	the
business	stakeholders	look	at	the	business	data.	The	individual	stakeholders	might
use	more	or	less	similar	approaches:	The	stakeholders	can	for	instance	use	the
same	monitoring	software	with	different	dashboards	or	entirely	different	software.

Correlate	with	Events

In	addition,	it	can	be	sensible	to	correlate	data	with	an	event	such	as	a	new
release.	This	requires	that	information	about	the	event	has	to	be	handed	over	to
monitoring.	When	a	new	release	creates	markedly	more	revenue	or	causes
decisively	longer	response	times,	this	is	for	sure	an	interesting	realization.

Monitoring	=	Tests?

In	a	certain	way	monitoring	is	another	version	of	testing	(compare	section	11.4).
While	tests	look	at	the	correct	functioning	of	a	new	release	in	a	test	environment,
monitoring	examines	the	behavior	of	the	application	in	a	production	environment.
The	integration	tests	should	also	be	reflected	in	monitoring.	When	a	problem
causes	an	integration	test	to	fail,	there	can	be	an	associated	alarm	in	monitoring.
Besides,	monitoring	should	also	be	activated	for	test	environments	to	pinpoint
problems	already	in	the	tests.	When	the	risk	associated	with	deployments	is
reduced	by	suitable	measures	(compare	section	12.4),	the	monitoring	can	even
take	over	part	of	the	tests.

Dynamic	Environment

Another	challenge	when	working	with	Microservice-based	architectures	is	that
Microservices	come	and	go.	During	the	deployment	of	a	new	release	an	instance
can	be	stopped	and	started	anew	with	a	new	software	version.	When	servers	fail,
instances	shut	down,	and	new	ones	are	started.	For	this	reason	monitoring	has	to
occur	separated	from	the	Microservices.	Otherwise	the	stopping	of	a
Microservice	would	influence	the	monitoring	infrastructure	or	may	even	cause	it
to	fail.	Besides,	Microservices	are	a	distributed	system.	The	values	of	a	single
instance	are	not	telling	in	themselves.	Only	by	collecting	values	of	multiple
instances	the	monitoring	information	gets	relevant.

Concrete	Technologies

Different	technologies	can	be	used	for	monitoring	Microservices:

Graphite	can	store	numerical	data	and	is	optimized	for	processing	time
series	data.	Such	data	occur	frequently	during	monitoring.	The	data	can	be
analyzed	in	a	web	application.	Graphite	stores	the	data	in	its	own	database.
After	some	time	the	data	are	automatically	deleted.	Monitoring	values	are
accepted	by	Graphite	in	a	very	simple	format	via	a	socket	interface.
Grafana	extends	Graphite	by	alternative	dashboards	and	other	graphical
elements.
Seyren	extends	Graphite	by	a	functionality	for	triggering	alarms.
Nagios	is	a	comprehensive	solution	for	monitoring	and	can	be	an	alternative
to	Graphite.
Icinga	has	originally	been	a	fork	of	Nagios	and	therefore	covers	a	very
similar	use	case.
Riemann	focuses	on	the	processing	of	event	streams.	It	uses	a	functional
programming	language	to	define	logic	for	the	reaction	to	certain	events.	For

http://graphite.wikidot.com/
http://grafana.org/
https://github.com/scobal/seyren
http://www.nagios.org/
https://www.icinga.org/
http://riemann.io/

this	purpose,	a	fitting	dashboard	can	be	configured.	Messages	can	be	sent	by
SMS	or	e-mail.
Packetbeat	uses	an	agent	which	records	the	network	traffic	on	the	computer
to	be	monitored.	This	allows	Packetbeat	to	determine	with	minimal	effort
which	requests	take	how	long	and	which	nodes	communicate	with	each	other.
It	is	especially	interesting	that	Packetbeat	uses	Elasticsearch	for	data	storage
and	Kibana	for	analysis.	These	tools	are	also	widely	used	for	analyzing	log
data	(compare	section	12.2).	Having	only	one	stack	for	the	storage	and
analysis	of	logs	and	monitoring	reduces	the	complexity	of	the	environment.
In	addition,	there	are	different	commercial	tools.	Among	those	are	HP’s
Operations	Manager,	IBM	Tivoli,	CA	Opscenter	and	BMC	Remedy.
These	tools	are	very	comprehensive,	have	been	on	the	market	for	a	long	time
and	offer	support	for	many	different	software	and	hardware	products.	Such
platforms	are	often	used	enterprise-wide	and	introducing	them	into	an
organization	is	usually	a	very	complex	project.	Some	of	these	solutions	can
also	analyze	and	monitor	log	files.	Due	to	their	large	number	and	the	high
dynamics	of	the	environment	it	can	be	sensible	for	Microservices	to	establish
their	own	monitoring	tools	even	if	an	enterprise-wide	standard	exists
already.	When	the	established	processes	and	tools	require	a	high	manual
expenditure	for	administration,	this	expenditure	might	not	be	feasible
anymore	in	the	face	of	the	large	number	of	Microservices	and	the	dynamics
of	the	Microservice	environment.
Monitoring	can	be	moved	to	the	Cloud.	In	this	manner	no	extra	infrastructure
has	to	be	installed.	This	facilitates	the	introduction	of	tools	and	monitoring
the	applications.	An	example	is	NewRelic.

These	tools	are	first	of	all	useful	for	operations	and	for	developers.	Business
monitoring	can	be	performed	with	different	tools.	Such	monitoring	is	not	only
based	on	current	trends	and	data,	but	also	on	historical	values.	Therefore,	the
amount	of	data	is	markedly	larger	than	for	operations	and	development.	The	data
can	be	exported	into	a	separate	database	or	investigated	with	Big	Data	solutions.
In	fact,	the	analysis	of	data	from	web	servers	is	one	of	the	areas	where	big	data
solutions	have	first	been	used.

Enabling	Monitoring	in	Microservices

Microservices	have	to	deliver	data	which	are	displayed	in	the	monitoring
solutions.	It	is	possible	to	provide	the	data	via	a	simple	interface	like	HTTP	with
a	data	format	such	as	JSON.	Then	the	monitoring	tools	can	read	these	data	out	and
import	them.	For	this	purpose,	adaptors	can	be	written	as	scripts	by	the

http://packetbeat.com/
http://www8.hp.com/us/en/software-solutions/operations-manager-%0Ainfrastructure-monitoring/
http://www-01.ibm.com/software/tivoli/
http://www.ca.com/us/opscenter.aspx
http://www.bmc.com/it-solutions/remedy-itsm.html
http://newrelic.com/

developers.	This	makes	it	possible	to	provide	different	tools	via	the	same
interface	with	data.

Metrics

In	the	Java	world	the	metrics	framework	can	be	used.	It	offers	functionalities	for
recording	custom	values	and	sending	them	to	a	monitoring	tool.	This	makes	it
possible	to	record	metrics	in	the	application	and	to	hand	them	over	to	a
monitoring	tool.

StatsD

StatsD	can	collect	values	from	different	sources,	perform	calculations	and	hand
over	the	results	to	monitoring	tools.	This	allows	to	condense	data	before	they	are
passed	on	to	the	monitoring	tool	in	order	to	reduce	the	load	on	the	monitoring	tool.
There	are	also	many	client	libraries	for	StatsD	which	facilitate	the	sending	of	data
to	StatsD.

collectd

collectd	collects	statistics	about	a	system	–	like	for	instance	the	CPU	utilization.
These	data	can	be	analyzed	with	the	frontend	or	they	can	be	stored	in	monitoring
tools.	collectd	can	collect	data	from	a	HTTP	JSON	data	source	and	send	them	on
to	the	monitoring	tool.	Via	different	plug-ins	collectd	can	collect	data	from	the
operating	system	and	the	basic	processes.

Fig.	60:	Parts	of	a	monitoring	system

Technology	Stack	for	Monitoring

A	technology	stack	for	monitoring	comprises	different	components	(Fig.	60):

https://github.com/dropwizard/metrics
https://github.com/etsy/statsd
https://collectd.org/

Within	the	Microservice	itself	data	have	to	be	recorded	and	provided	to
monitoring.	For	this	purpose,	a	library	can	be	used	which	directly	contacts
the	monitoring	tool.	Alternatively,	the	data	can	be	offered	via	a	uniform
interface	–	for	example	JSON	via	HTTP	–,	and	another	tool	collects	the	data
and	sends	them	on	to	the	monitoring	tool.
In	addition,	if	necessary,	there	should	be	an	agent	to	record	the	data	from	the
operating	system	and	the	hardware	and	pass	them	on	to	monitoring.
The	monitoring	tool	stores	and	visualizes	the	data	and	can,	if	needed,	trigger
an	alarm.	Different	aspects	can	be	covered	by	different	monitoring
applications.
For	analyses	of	historical	data	or	by	complex	algorithms	a	solution	based	on
Big	Data	tools	can	be	created	in	parallel.

Effects	on	the	Individual	Microservice

A	Microservice	also	has	to	be	integrated	into	the	infrastructure.	It	has	to	hand	over
monitoring	data	to	the	monitoring	infrastructure	and	provide	some	mandatory	data.
This	can	be	ensured	by	a	suitable	template	for	the	Microservice	and	by	tests.

Try	and	Experiment

Define	a	technology	stack	which	allows	to	implement	monitoring	in	a	Microservice-based
architecture.	To	do	so	define	the	stakeholders	and	the	data	that	are	relevant	for	them.	Each	of	the
stakeholders	needs	to	have	a	tool	for	analyzing	the	data	that	are	relevant	for	him/her.	Finally,	it	has	to
be	defined	with	which	tools	the	data	can	be	recorded	and	how	they	are	stored.	This	section	listed	a
number	of	tools	for	the	different	areas.	In	conjunction	with	further	research	it	is	possible	to	assemble
a	technology	stack	that	is	well	suited	for	individual	projects.

Chapter	14	shows	an	example	for	a	Microservice-based	architecture,	and	in	section	14.14	there	is
also	a	suggestion	how	the	architecture	can	be	extended	by	monitoring.

How	does	your	current	project	handle	monitoring?	Can	some	of	the	technologies	presented	in	this
section	also	be	advantageous	for	your	project?	Which?	Why?

12.4	Deployment
Independent	deployment	is	a	central	aim	of	Microservices.	Besides,	the
deployment	has	to	be	automated	because	manual	deployment	or	even	just	manual

corrections	are	not	feasible	due	to	the	large	number	of	Microservices.

Deployment	Automation

There	are	different	possibilities	for	automating	deployment:

Installation	scripts	can	be	used	which	only	install	the	software	on	the
computer.	Such	scripts	can	for	instance	be	implemented	as	shell	scripts.	They
can	install	necessary	software	packages,	generate	configuration	files	and
create	user	accounts.	Such	scripts	can	be	problematic	when	they	are	called
repeatedly.	In	that	case	the	installation	finds	a	computer	on	which	the
software	is	already	installed.	However,	an	update	is	different	from	a	fresh
installation.	In	such	a	situation	a	script	can	fail	for	example	because	user
accounts	or	configuration	files	might	already	be	present	and	cannot	easily	be
overwritten.	When	the	scripts	are	supposed	to	handle	updates,	development
and	testing	the	scripts	get	more	laborious.
Immutable	Servers	are	an	option	to	handle	these	problems.	Instead	of
updating	the	software	on	the	servers,	the	server	are	completely	deployed
anew.	This	does	not	only	facilitate	the	automation	of	deployment,	but	also	the
exact	reproduction	of	the	software	installed	on	a	server.	It	is	sufficient	to
consider	fresh	installations.	A	fresh	installation	is	easier	to	reproduce	than	an
update,	that	can	be	started	from	many	different	configuration	states	and
should	lead	to	the	same	state	from	any	of	those.	Approaches	like	Docker
make	it	possible	to	tremendously	reduce	the	expenditure	for	installing
software.	Docker	is	a	kind	of	light-weight	virtualization.	It	also	optimizes	the
handling	of	virtual	hard	drives.	If	there	is	already	a	virtual	hard	drive	with
the	correct	data,	it	is	recycled	instead	of	installing	the	software	anew.	When
installing	a	package	like	Java,	first	a	virtual	hard	drive	is	looked	for	which
already	has	this	installation.	Only	when	such	a	one	does	not	exist,	the
installation	is	really	performed.	Should	there	only	be	a	change	in	a
configuration	file	when	going	from	an	old	to	a	new	version	of	an	Immutable
Server,	Docker	will	recycle	the	old	virtual	hard	drives	behind	the	scenes	and
only	supplement	the	new	configuration	file.	This	does	not	only	reduce	the
consumption	of	hard	drive	space,	but	also	profoundly	speeds	up	the
installation	of	the	servers.	Docker	also	decreases	the	time	a	virtual	team
needs	for	booting.	These	optimizations	turn	Immutable	Server	in	conjunction
with	Docker	into	an	interesting	option.	The	new	deployment	of	the	servers	is
very	fast	with	Docker,	and	the	new	server	can	also	rapidly	be	booted.
Another	possibility	are	tools	like	Puppet,	Chef,	Ansible	or	Salt.	They	are
specialized	for	installing	software.	Scripts	for	these	tools	describe	what	the

https://www.docker.com/
http://puppetlabs.com/
https://www.chef.io/
http://www.ansible.com/
http://www.saltstack.com/

system	is	supposed	to	look	like	after	the	installation.	During	an	installation
run	the	tool	will	take	the	necessary	steps	to	transfer	the	system	into	the
desired	state.	During	the	first	run	on	a	fresh	system	the	tool	completely
installs	the	software.	If	the	installation	is	run	a	second	time	immediately
afterwards,	it	will	not	change	the	system	any	further	since	the	system	is
already	in	the	desired	state.	Besides	these	tools	can	uniformly	install	a	large
number	of	servers	in	an	automated	manner	and	are	also	able	to	roll	out
changes	to	a	large	number	of	servers.
Operating	systems	from	the	Linux	area	possess	package	manager	like	rpm
(RedHat),	dpkg	(Debian/Ubuntu)	or	zypper	(SuSE).	They	make	it	possible
to	centrally	roll	out	software	onto	a	large	number	of	servers.	The	used	file
formats	are	very	simple	so	that	it	is	very	easy	to	generate	a	package	in	a
fitting	format.	The	configuration	of	the	software	poses	a	problem	though.
Package	managers	usually	support	scripts	which	are	executed	during
installation.	Such	scripts	can	generate	the	necessary	configuration	files.
However,	there	can	also	be	an	extra	package	with	the	individual
configurations	for	each	host.	The	installation	tools	mentioned	under	the	last
bullet	point	can	also	use	package	manager	for	installing	the	actual	software
so	that	they	themselves	only	generate	the	configuration	files.

Installation	and	Configuration

Section	8.8	already	described	tools	which	can	be	used	for	configuring
Microservices.	In	general,	it	is	hard	to	separate	the	installation	from	the	software
configuration.	The	installation	has	to	generate	a	configuration.	Therefore,	many	of
the	tools	like	for	instance	Puppet,	Chef,	Ansible	or	Salt	can	also	create
configurations	and	roll	them	out	onto	servers.	Thus	these	solutions	are	an
alternative	to	the	configuration	solutions	which	are	specialized	for	Microservices.

Risks	Associated	with	Microservice	Deployments

Microservices	are	supposed	to	allow	for	an	easy	and	independent	deployment.
Nevertheless,	it	can	never	be	excluded	that	problems	arise	in	production.	The
Microservice-based	architecture	by	itself	will	already	help	to	reduce	the	risk.
When	a	Microservice	fails	as	result	of	a	problem	with	a	new	version,	this	failure
should	be	limited	to	the	functionality	of	this	Microservice.	Apart	from	that	the
system	should	keep	working.	This	is	made	possible	by	stability	patterns	and
resilience	described	in	section	10.5.	Already	for	this	reason	the	deployment	of	a
Microservice	is	much	less	risky	than	the	deployment	of	a	monolith.	In	case	of	a
monolith	it	is	much	harder	to	limit	a	failure	to	a	certain	functionality.	If	a	new
version	of	the	Deployment	Monolith	has	a	memory	leak,	this	will	cause	the	entire

process	to	break	down	so	that	the	entire	monolith	will	not	be	available	anymore.
A	memory	leak	in	a	Microservice	only	influences	this	Microservice.	There	are
different	challenges	for	which	Microservices	are	not	per	se	helpful:	Schema
changes	in	relational	databases	are	for	instance	problematic	because	they	often
take	very	long	and	might	fail	–	especially	when	the	database	is	already	containing
a	lot	of	data.	As	Microservices	have	their	own	data	storage,	a	schema	migration	is
always	limited	to	just	one	Microservice.

Deployment	Strategies

To	further	reduce	the	risk	associated	with	a	Microservice	deployment	there	are
different	strategies:

A	Rollback	brings	the	old	version	of	a	Microservice	back	into	production.
Handling	the	database	can	be	problematic:	Often	the	old	version	of	the
Microservice	does	not	work	anymore	with	the	database	schema	created	by
the	newer	version.	When	there	are	already	data	in	the	database	which	use	the
new	schema,	it	can	get	very	difficult	to	recreate	the	old	state	without	losing
the	new	data.	Besides	the	rollback	is	hard	to	test.
A	Roll	Forward	brings	a	new	version	of	a	Microservice	in	production,
which	does	not	contain	the	error	anymore.	The	procedure	is	identical	to	the
procedure	for	the	deployment	of	any	other	new	version	of	the	Microservice
so	that	no	special	measures	are	necessary.	The	change	is	rather	small	so	that
deployment	and	the	passage	through	the	Continuous	Delivery	Pipeline	should
rapidly	take	place.
Continuous	Deployment	is	even	more	radical:	Each	change	to	a
Microservice	is	brought	into	production	when	the	Continuous	Delivery
Pipeline	was	passed	successfully.	This	further	reduces	the	time	necessary	for
the	correction	of	errors.	Besides,	this	entails	that	there	are	less	changes	per
release	which	further	decreases	the	risk	and	makes	it	easier	to	track	which
changes	to	the	code	caused	a	problem.	Continuous	Deployment	is	the	logical
consequence	when	the	deployment	process	works	so	well	that	going	into
production	is	just	a	formality.	Moreover,	the	team	will	pay	more	attention	to
the	quality	of	their	code	when	each	change	really	goes	into	production.
A	Blue/Green	Deployment	builds	up	a	completely	new	environment	with
the	new	version	of	a	Microservice.	The	team	can	completely	test	the	new
version	and	then	bring	it	into	production.	Should	problems	occur,	the	old
version	can	be	used	again	which	is	kept	for	this	purpose.	Also	in	this
scenario	there	are	challenges	in	case	of	changes	to	the	database	schema.
When	switching	from	the	one	version	to	the	other	version	of	the

Microservice,	also	the	database	has	to	be	switched.	Data	which	have	been
written	into	the	old	database	between	the	built-up	of	the	new	environment
and	the	switch	have	to	be	transferred	into	the	new	database.
Canary	Releasing	is	based	on	the	idea	to	deploy	the	new	version	initially
just	on	one	server	in	a	cluster.	When	the	new	version	runs	without	trouble	on
one	server,	it	can	also	be	deployed	on	the	other	servers.	The	database	has	to
support	the	old	and	the	new	version	of	the	Microservice	in	parallel.
Microservices	can	also	run	blindly	in	production.	In	that	case	they	get	all
requests,	but	they	may	not	change	data,	and	calls	which	they	send	out	are	not
passed	on.	By	monitoring,	log	analyses	and	comparison	with	the	old	version
it	is	possible	to	determine	whether	the	new	service	has	been	correctly
implemented.

Theoretically,	such	procedures	can	also	be	implemented	with	Deployment
Monoliths.	However,	in	practise	this	is	very	difficult.	With	Microservices	it	is
easier	since	they	are	much	smaller	deployment	units.	Microservices	require	less
comprehensive	tests.	Installing	and	starting	Microservices	is	much	faster.
Therefore,	Microservices	can	more	rapidly	pass	through	the	Continuous	Delivery
Pipeline	into	production.	This	will	have	positive	effects	for	Roll	Forward	or
Rollback	because	problems	require	less	time	to	fix.	A	Microservice	needs	less
resources	in	operation.	This	is	helpful	for	Canary	Releasing	or	Blue/Green
Deployment	since	new	environments	have	to	be	built	up.	If	this	is	possible	with
less	resources,	these	approaches	are	easier	to	implement.	For	a	Deployment
Monolith	it	is	often	very	difficult	to	build	up	an	environment	at	all.

Combined	or	Separate	Deployment?	(Jörg	Müller)
by	Jörg	Müller,	Hypoport	AG

The	question	whether	different	services	are	rolled	out	together	or	independently
from	each	other	is	of	greater	relevance	than	sometimes	suspected.	This	is	an
experience	we	had	to	make	in	the	context	of	a	project	which	started	approximately
five	years	ago.

The	term	Microservices	was	not	yet	important	in	our	industry.	However,
achieving	a	good	modularization	was	our	goal	right	from	the	start.	The	entire
application	consisted	initially	of	a	number	of	web	modules	coming	in	the	shape	of
typical	Java	web	application	archives	(WAR).	These	comprised	in	turn	multiple
modules	which	had	been	split	based	on	domain	as	well	as	technical	criteria.	In

addition	to	modularization	we	relied	from	the	start	on	on	Continuous	Deployment
as	a	method	for	rolling	out	the	application.	Each	commit	goes	straight	into
production.

Initially,	it	seemed	an	obvious	choice	to	build	an	integrated	deployment	pipeline
for	the	entire	application.	This	enabled	integration	tests	across	all	components.	A
single	version	for	the	entire	application	enabled	controlled	behavior,	even	if
multiple	components	of	the	applications	were	changed	simultaneously.	Finally,	the
pipeline	itself	was	easier	to	implement.	The	latter	was	an	important	reason	since
there	were	relatively	few	tools	for	continuous	deployment	at	the	time	so	that	we
had	to	build	most	ourselves.

However,	after	some	time	the	disadvantages	of	our	approach	became	obvious.
The	first	consequence	was	a	longer	and	longer	run	time	of	our	deployment
pipeline.	The	larger	the	number	of	components	that	were	built,	tested	and	rolled
out,	the	longer	the	process	took.	The	advantages	of	continuous	deployments
rapidly	diminished	when	the	run	time	of	the	pipeline	became	longer.	The	first
counter	measure	was	the	optimization	that	only	changed	components	were	built
and	tested.	However,	this	increased	the	complexity	of	the	deployment	pipeline
tremendously.	At	the	same	time	other	problems	like	the	runtime	for	changes	to
central	components	or	the	size	of	the	artifacts	could	not	be	improved	this	way.

But	there	was	also	a	more	subtle	problem.	A	combined	rollout	with	integrative
tests	offered	a	strong	security	net.	It	was	easy	to	perform	refactorings	across
multiple	modules.	However,	this	often	changed	interfaces	between	modules	just
because	it	was	so	easy	to	do.	This	is	in	principle	a	good	thing.	However,	it	had
the	consequence	that	it	became	very	frequently	necessary	to	start	the	entire	system.
Especially	when	working	on	the	developer	machine	this	turned	into	a	burden.	The
requirements	for	the	hardware	got	very	high	and	the	turnaround	times	lengthened
considerably.

The	approach	got	even	more	complicated	when	more	than	one	team	worked	with
this	integrated	pipeline.	The	more	components	were	tested	in	one	pipeline,	the
more	frequently	errors	were	uncovered.	This	blocked	the	pipeline	since	the	errors
had	to	be	fixed	first.	At	the	time	when	only	one	team	was	dependent	on	the
pipeline,	it	was	easy	to	find	somebody	who	took	over	responsibility	and	fixed	the
problem.	When	there	were	several	teams	this	responsibility	was	not	so	clear
anymore.	This	entailed	that	errors	in	the	pipeline	persisted	for	a	longer	time.
Simultaneously	the	variety	of	technologies	increased.	Again	the	complexity	rose.

This	pipeline	now	needed	very	specialized	solutions.	Therefore,	the	expenditure
for	maintenance	increased,	and	the	stability	decreased.	The	value	of	continuous
deployment	got	hard	to	put	into	effect.

At	this	time	point	it	became	obvious	that	the	combined	deployment	in	one	pipeline
could	not	be	continued	anymore.	All	new	services,	regardless	whether
Microservices	or	larger	modules,	now	had	there	own	pipeline.	However,	it
caused	a	lot	of	expenditure	to	separate	the	previous	pipeline	which	was	based	on
shared	deployment	into	multiple	pipelines.

In	a	new	project	it	can	be	the	right	decision	to	start	with	a	combined	deployment.
This	especially	holds	true	when	the	borders	between	the	individual	services	and
their	interfaces	are	not	yet	well	known.	In	such	a	case	good	integrative	tests	and
simple	refactoring	can	be	very	useful.	However,	starting	at	a	certain	size	an
independent	deployment	is	obligatory.	Indications	for	this	are	the	number	of
modules	or	services,	the	run	time	and	stability	of	the	deployment	pipeline	and	last,
but	not	least	the	question	how	many	teams	work	on	the	overall	system.	If	these
indications	are	overlooked	and	the	right	point	in	time	to	separate	the	deployment
is	missed,	it	can	easily	happen	that	one	builds	a	monolith	which	consists	of	many
small	Microservices.

12.5	Control
Interventions	in	a	Microservice	might	be	necessary	at	run	time.	For	instance,	a
problem	with	a	Microservice	might	require	to	restart	the	respective	Microservice.
Likewise,	a	start	or	a	stop	of	a	Microservice	might	be	necessary.	These	are	ways
for	operation	to	intervene	in	case	of	a	problem	or	for	a	load	balancer	to	terminate
instances	which	cannot	process	requests	anymore.

Different	measures	can	be	used	for	control:

When	a	Microservice	runs	in	a	virtual	machine,	the	virtual	machine	can	be
shut	down	or	restarted.	In	that	case	the	Microservice	itself	does	not	have	to
make	special	arrangements.
The	operating	system	supports	services	which	are	started	together	with	the
operating	system.	Usually,	services	can	also	be	stopped,	started	or	restarted
by	means	of	the	operating	system.	In	that	case	the	installation	only	has	to
register	the	Microservice	as	service.	Working	with	services	is	nothing
unusual	for	operation	which	is	sufficient	for	this	approach.

Finally,	an	interface	can	be	used	which	allows	restarting	or	shutting	down,
for	instance	via	REST.	Such	an	interface	has	to	be	implemented	by	the
Microservice	itself.	This	is	supported	by	several	libraries	in	the
Microservices	area	–	for	instance	by	Spring	Boot	which	is	used	to	implement
the	example	in	chapter	14.	Such	an	interface	can	be	called	with	simple	HTTP
tools	like	curl.

Technically,	the	implementation	of	control	mechanisms	is	not	a	big	problem,	but
they	have	to	be	present	for	operating	the	Microservices.	When	they	are	identically
implemented	for	all	Microservices,	this	can	reduce	the	expenditure	for	operating
the	system.

12.6	Infrastructure
Microservices	have	to	run	on	a	suitable	platform.	It	is	best	to	run	each
Microservice	in	a	separate	virtual	machine	(VM).	Otherwise	it	is	difficult	to
assure	an	independent	deployment	of	the	individual	Microservices.

When	multiple	Microservices	run	on	a	virtual	machine,	the	deployment	of	one
Microservice	can	influence	another	Microservice.	The	deployment	can	generate	a
high	load	or	introduce	changes	to	the	virtual	machine	which	also	concern	other
Microservices	running	on	the	virtual	machine.

Besides	Microservices	should	be	isolated	from	each	other	to	achieve	a	better
stability	and	resilience.	When	multiple	Microservices	are	running	on	one	virtual
machine,	one	Microservice	can	generate	so	much	load	that	the	other
Microservices	fail.	However,	precisely	that	should	be	prevented:	When	one
Microservice	fails,	this	failure	should	be	limited	to	this	one	Microservice	and	not
affect	additional	Microservices.	The	isolation	of	virtual	machines	is	helpful	for
limiting	the	failure	or	the	load	to	one	Microservice.

Scaling	Microservices	is	likewise	easier	when	each	Microservice	runs	in	an
individual	virtual	machine.	When	the	load	is	too	high,	it	is	sufficient	to	start	a	new
virtual	machine	and	register	it	with	the	load	balancer.

In	case	of	problems	it	is	also	easier	to	analyze	the	error	when	all	processes	on	a
virtual	machine	belong	to	one	Microservice.	Each	metric	on	the	system	then
unambiguously	belongs	to	this	Microservice.

Finally,	the	Microservice	can	be	delivered	as	hard	drive	image	when	each
Microservice	runs	on	its	own	virtual	machine.	Such	a	deployment	has	the
advantage	that	the	entire	environment	of	the	virtual	machine	is	exactly	in	line	with
the	requirements	of	the	Microservice	and	that	the	Microservice	can	bring	along	its
own	technology	stack	up	to	its	own	operating	system.

Virtualization	or	Cloud

It	is	hardly	possible	to	install	new	physical	hardware	upon	the	deployment	of	a
new	Microservice.	Besides	Microservices	profit	from	virtualization	or	Cloud
since	this	renders	the	infrastructures	much	more	flexibel.	New	virtual	machines
for	scaling	or	testing	environments	can	easily	be	provided.	In	the	Continuous
Delivery	Pipeline	Microservices	are	constantly	started	to	perform	different	tests.
Moreover,	in	production	new	instances	have	to	be	started	depending	on	the	load.

Therefore	it	should	be	possible	to	start	a	new	virtual	machine	in	a	completely
automated	manner.	Starting	new	instances	with	simple	API	calls	is	exactly	what	a
Cloud	offers.	A	Cloud	infrastructure	should	be	available	in	order	to	really	be	able
to	implement	a	Microservice-based	architecture.	Virtual	machines	which	are
provided	by	operation	via	manual	processes	are	not	sufficient.	This	also
demonstrates	that	Microservices	can	hardly	be	run	without	modern	infrastructures.

Docker

When	there	is	an	individual	virtual	machine	for	each	Microservice,	it	is	laborious
to	generate	a	test	environment	containing	all	Microservices.	Even	creating	an
environment	with	relatively	few	Microservices	can	be	a	challenge	for	a	developer
machine.	The	usage	of	RAM	and	CPU	is	very	high	for	such	an	environment.	In
fact,	it	is	hardly	sensible	to	use	an	entire	virtual	machine	for	one	Microservice.	In
the	end,	the	Microservice	should	just	run	and	integrate	in	logging	and	monitoring.
Therefore	solutions	like	Docker	are	convenient:	Docker	does	not	comprise	many
of	the	normally	common	operating	system	features.

Instead	Docker	offers	a	very	light-weight	virtualization.	To	this	purpose	Docker
uses	different	technologies:

In	place	of	a	complete	virtualization	Docker	employs	Linux	Containers	(LXC
–	LinuX	Container).	Support	for	similar	mechanisms	in	Microsoft	Windows
has	been	announced.	This	allows	to	implement	a	light-weight	alternative	to
virtual	machines:	All	containers	use	the	same	kernel.	There	is	only	one
instance	of	the	kernel	in	memory.	Processes,	networks,	data	systems	and

https://www.docker.com/
https://linuxcontainers.org/

users	are	separate	from	each	other.	In	comparison	to	a	virtual	machine	with
its	own	kernel	and	often	also	many	operating	system	services	a	container	has
a	profoundly	lower	overhead.	It	is	easily	possible	to	run	hundreds	of	Linux
containers	on	a	simple	laptop.	Besides	a	container	starts	much	more	rapidly
than	a	virtual	machine	with	its	own	kernel	and	complete	operating	system.
The	container	does	not	have	to	boot	an	entire	operating	system;	it	just	starts	a
new	process.	The	container	itself	does	not	add	a	lot	of	overhead	since	it	only
requires	a	custom	configuration	of	the	operating	system	resources.
In	addition,	the	file	system	is	optimized:	Basic	read-only	file	systems	can	be
used.	At	the	same	time	additional	file	systems	can	be	added	to	the	container
which	also	allow	for	writing.	One	file	system	can	be	put	on	top	of	another
file	system.	For	instance,	a	basic	file	system	can	be	generated	which	contains
an	operating	system.	If	software	is	installed	in	the	running	container	or	if
files	are	modified,	the	container	only	has	to	store	these	additional	files	in	a
small	container-specific	file	system.	In	this	way	the	memory	requirement	for
the	containers	on	the	hard	drive	is	significantly	reduced.

Besides	additional	interesting	possibilities	arise:	For	example,	a	basic	file	system
can	be	started	with	an	operating	system,	and	subsequently	software	can	be
installed.	As	mentioned,	only	changes	to	the	file	system	are	saved	which	are
introduced	upon	the	installation	of	the	software.	Based	on	this	delta	a	file	system
can	be	generated.	Then	a	container	can	be	started	which	puts	a	file	system	with
this	delta	on	top	of	the	basic	file	system	containing	the	operating	system	–	and
afterwards	additional	software	can	be	installed	in	yet	another	layer.	In	this	manner
each	“layer”	in	the	file	system	can	contain	specific	changes.	The	real	file	system
at	run	time	can	be	composed	from	numerous	such	layers.	This	allows	to	recycle
software	installations	very	efficiently.

Fig.	61	shows	an	example	for	the	file	system	of	a	running	container:	The	lowest
level	is	an	Ubuntu	Linux	installation.	On	top	there	are	changes	which	have	been
introduced	by	installing	Java.	Then	there	is	the	application.	For	the	running
container	to	be	able	to	write	changes	into	the	file	system,	there	is	a	file	system	on
top	into	which	the	container	writes	files.	When	the	container	wants	to	read	a	file,
it	will	move	through	the	layers	from	top	to	bottom	until	it	finds	the	respective	data.

Fig.	61:	Filesystems	in	Docker

Docker	Container	vs.	Virtualization

Docker	containers	offer	a	very	efficient	alternative	to	virtualization.	However,
they	are	no	“real”	virtualization	since	each	container	has	separate	resources,	its
own	memory,	and	its	own	file	systems,	but	all	share	for	instance	one	kernel.
Therefore,	this	approach	has	some	disadvantages.	A	Docker	container	can	only
use	Linux	and	only	the	same	kernel	like	the	host	operating	system	–	consequently

Windows	applications	for	instance	cannot	be	run	on	a	Linux	machine	this	way.
The	separation	of	the	containers	is	not	as	strict	as	in	the	case	of	real	virtual
machines.	An	error	in	the	kernel	would	for	example	affect	all	containers.
Moreover,	Docker	also	does	not	run	on	Mac	OS	X	or	Windows.	Nevertheless,
Docker	can	directly	be	installed	on	these	platforms.	Behind	the	scenes	a	virtual
machine	with	Linux	is	being	used.	Microsoft	has	announced	a	version	for
Windows	which	can	run	the	Windows	container.

Communication	Between	Docker	Containers

Docker	containers	have	to	communicate	with	each	other.	For	example,	a	web
application	communicates	with	its	database.	For	this	purpose,	containers	export
network	ports	which	other	containers	use.	Besides	file	systems	can	be	used
together.	There	containers	write	data	which	can	be	read	by	other	containers.

Docker	Registry

Docker	images	comprise	the	data	of	a	virtual	hard	drive.	Docker	registries	allow
to	save	and	download	Docker	images.	This	makes	it	possible	to	save	Docker
images	as	result	of	a	build	process	and	subsequently	to	roll	them	out	on	servers.
Because	of	the	efficient	storage	of	images,	it	is	easily	possible	to	distribute	even
complex	installations	in	a	performant	manner.	Besides	many	Cloud	solutions	can
directly	run	Docker	containers.

Docker	and	Microservices

Docker	constitutes	an	ideal	running	environment	for	Microservices.	It	hardly
limits	the	used	technology	as	every	type	of	Linux	software	can	run	in	a	Docker
container.	Docker	registries	allow	to	easily	distribute	Docker	containers.	At	the
same	time	the	overhead	of	a	Docker	container	is	negligible	in	comparison	to	a
normal	process.	Since	Microservices	require	a	multitude	of	virtual	machines,
these	optimizations	are	very	valuable.	On	the	one	hand	Docker	is	very	efficient,
and	on	the	other	hand	it	does	not	limit	the	technology	freedom.

Try	and	Experiment

At	http://www.docker.com/tryit/	the	Docker	online	tutorial	can	be	found.	Complete	the	tutorial	–	it
demonstrates	the	basics	of	working	with	Docker.	The	tutorial	is	fast	to	complete.

Docker	and	Servers

http://www.docker.com/tryit/

There	are	different	possibilities	to	use	Docker	for	servers:

On	a	Linux	server	Docker	can	be	installed,	and	afterwards	one	or	multiple
Docker	containers	can	be	run.	Docker	then	serves	as	solution	for	the
provisioning	of	the	software.	For	a	cluster	new	servers	are	started	on	which
again	the	Docker	containers	are	installed.	Docker	only	serves	for	the
installation	of	the	software	on	the	servers.
Docker	containers	are	run	directly	on	a	cluster.	On	which	physical	computer
a	certain	Docker	is	located	is	decided	by	the	software	for	cluster
administration.	Such	an	approach	is	supported	by	the	scheduler	Apache
Mesos.	It	administrates	a	cluster	of	servers	and	directs	jobs	to	the	respective
servers.	Mesosphere	allows	to	run	Docker	containers	with	the	aid	of	the
Mesos	scheduler.	Besides	Mesos	supports	many	additional	kinds	of	jobs.
Kubernetes	likewise	supports	the	execution	of	Docker	containers	in	a	cluster.
However,	the	approach	taken	is	different	from	Mesos.	Kubernetes	offers	a
service	which	distributes	pods	in	the	cluster.	Pods	are	interconnected	Docker
containers	which	are	supposed	to	run	on	a	physical	server.	As	basis
Kubernetes	requires	only	a	simple	operating	system	installation	–	Kubernetes
implements	the	cluster	management.
CoreOS	is	a	very	light-weight	server	operating	system.	With	etcd	it	supports
the	cluster-wide	distribution	of	configurations.	fleetd	enables	the	deployment
of	services	in	a	cluster	–	up	to	redundant	installation,	failure	security,
dependencies	and	shared	deployment	on	a	node.	All	services	have	to	be
deployed	as	Docker	containers	while	the	operating	system	itself	remains
essentially	unchanged.
Docker	Machine	allows	the	installation	of	Docker	on	different	virtualization
and	Cloud	systems.	Besides	Docker	machine	can	configure	the	Docker
command	line	tool	in	such	a	manner	that	it	communicates	with	such	a	system.
Together	with	Docker	Compose	multiple	Docker	containers	can	be	combined
to	an	overall	system.	The	example	application	employs	this	approach,
compare	section	14.6	and	section	14.7.	Docker	Swarm	adds	a	way	to
configure	and	run	clusters	with	this	tool	stack:	Individual	servers	can	be
installed	with	Docker	Machine	and	combined	to	a	cluster	with	Docker
Swarm.	Docker	Compose	can	run	each	Docker	container	on	a	specific
machine	in	the	cluster.

Kubernetes,	CoreOS,	Docker	Compose,	Docker	Machine,	Docker	Swarm	and
Mesos	of	course	influence	the	running	of	the	software	so	that	the	solutions	require
changes	in	the	operation	procedures	in	contrast	to	virtualization.	These

http://mesos.apache.org/
http://mesosphere.com/
http://kubernetes.io/
http://coreos.com/
https://docs.docker.com/machine/
http://docs.docker.com/compose/
http://docs.docker.com/swarm/

technologies	solve	challenges	which	were	previously	addressed	by	virtualization
solutions,	namely	to	administrate	a	cluster	of	servers	so	that	containers	resp.
virtual	machines	can	be	distributed	in	the	cluster.

PaaS

PaaS	(Platform	as	a	Service)	is	based	on	a	fundamentally	different	approach.	The
deployment	of	an	application	can	be	done	simply	by	updating	the	application	in
version	control.	The	PaaS	fetches	the	changes,	builds	the	application	and	rolls	it
out	on	the	servers.	These	servers	are	installed	by	PaaS	and	represent	a
standardized	environment.	The	actual	infrastructure	–	i.e.	the	virtual	machines	–
are	hidden	from	the	application.	PaaS	offers	a	standardized	environment	for	the
application.	The	environment	takes	for	instance	also	care	of	the	scaling	and	can
offer	services	like	databases	and	messaging	systems.	Because	of	the	uniform
platform	PaaS	systems	limit	the	technology	freedom	which	is	normally	an
advantage	of	Microservices.	Only	technologies	which	are	supported	by	PaaS	can
be	used.	On	the	other	hand,	deployment	and	scaling	are	further	facilitated.

Microservices	impose	high	demands	on	infrastructure.	Automation	is	an	essential
prerequisite	for	operating	the	numerous	Microservices.	A	PaaS	offers	a	good
basis	for	this	since	it	profoundly	facilitates	automation.	To	use	a	PaaS	can	be
especially	sensible	when	the	development	of	a	home-grown	automation	is	too
laborious	and	there	is	not	enough	knowledge	about	how	to	build	the	necessary
infrastructure.	However,	the	Microservices	have	to	restrict	themselves	to	the
features	which	are	offered	by	the	PaaS.	When	the	Microservices	have	been
developed	for	the	PaaS	from	the	start,	this	is	not	very	laborious.	However,	if	they
have	to	be	ported,	considerable	expenditure	can	ensue.

Nanoservices	(chapter	15)	have	different	operating	environments,	which	for
example	even	further	restrict	the	technology	choice.	On	the	other	hand	they	are
often	even	easier	to	operate	and	even	more	efficient	in	regards	to	resource	usage.

12.7	Conclusion
Operating	a	Microservice-based	system	is	one	of	the	central	challenges	when
working	with	Microservices	(section	12.1).	A	Microservice-based	system
contains	a	tremendous	number	of	Microservices	and	therefore	operating	system
processes.	Fifty	or	one	hundred	virtual	machines	are	no	rarity.	The	responsibility
for	operation	can	be	delegated	to	the	teams.	However,	this	approach	creates	a
higher	overall	expenditure.	Standardizing	operations	is	a	more	sensible	strategy.

Templates	are	a	possibility	to	achieve	uniformity	without	exerting	pressure.
Templates	turn	the	uniform	approach	into	the	easiest	one.

For	logging	(section	12.2)	a	central	infrastructure	has	to	be	provided	which
collects	logs	from	all	Microservices.	There	are	different	technologies	available
for	this.	To	trace	a	call	across	the	different	Microservices	a	Correlation	ID	can	be
used	which	unambiguously	identifies	a	call.

Monitoring	(section	12.3)	has	to	offer	at	least	basic	information	such	as	the
availability	of	the	Microservice.	Additional	metrics	can	for	instance	provide	an
overview	of	the	overall	system	or	can	be	useful	for	load	balancing.	Metrics	can
be	individually	defined	for	each	Microservice.	There	are	different	stakeholders
for	the	monitoring:	Operations,	developers	and	business	stakeholders.	They	are
interested	in	different	values	and	use	where	necessary	their	own	tools	for
evaluating	the	Microservices	data.	Each	Microservice	has	to	offer	an	interface
with	which	the	different	tools	can	fetch	values	from	the	application.	The	interface
should	be	identical	for	all	Microservices.

The	deployment	of	Microservices	(section	12.4)	has	to	be	automated.	Simple
scripts,	especially	in	conjunction	with	Immutable	Server,	special	deployment
tools	and	Package	Manager	can	be	used	for	this	purpose.

Microservices	are	small	deployment	units.	They	are	safeguarded	by	stability	and
resilience	against	the	failure	of	other	Microservices.	Therefore,	the	risk
associated	with	deployments	is	already	reduced	by	the	Microservice-based
architecture	itself.	Strategies	like	Rollback,	Roll	Forward,	Continuous
Deployment,	Blue/Green-Deployment	or	a	blind	moving	along	in	production	can
further	reduce	the	risk.	Such	strategies	are	easy	to	implement	with	Microservices
since	the	deployment	units	are	small	and	the	consumption	of	resources	by
Microservices	is	low.	Therefore,	deployments	are	faster,	and	environments	for
Blue/Green-Deployment	or	Canary	Releasing	are	much	easier	to	provide.

Control	(section	12.5)	comprises	simple	intervention	options	like	starting,
stopping	and	restarting	of	Microservices.

Virtualization	or	Cloud	are	good	options	for	infrastructures	for	Microservices
(section	12.6).	On	each	VM	only	a	single	Microservice	should	run	to	achieve	a
better	isolation,	stability	and	scaling.	Especially	interesting	is	Docker	because	the
consumption	of	resources	by	a	Docker	Container	is	much	lower	than	the	one	of	a

VM.	This	makes	it	possible	to	provide	each	Microservice	with	its	own	Docker
Container	even	if	the	number	of	Microservices	is	large.	PaaS	are	likewise
interesting.	They	allow	for	a	very	simple	automation.	However,	they	also	restrict
the	choice	of	technologies.

This	section	only	focuses	on	the	specifics	of	Continuous	Delivery	and	operation	in
a	Microservices	environment.	Continuous	Delivery	is	one	of	the	most	important
reasons	for	the	introduction	of	Microservices.	At	the	same	time	operation	poses
the	biggest	challenges.

Essential	Points

Operation	and	Continuous	Delivery	are	central	challenges	for	Microservices.
The	Microservices	should	handle	monitoring,	logging	and	deployment	in	a
uniform	manner.	This	is	the	only	way	to	keep	the	effort	reasonable.
Virtualization,	Cloud,	PaaS	and	Docker	are	interesting	infrastructure
alternatives	for	Microservices.

13	Organizational	Effects	of	a	Microservices-
based	Architecture

It	is	an	essential	feature	of	the	Microservice-based	approach	that	one	team	is
responsible	for	each	Microservice.	Therefore,	when	working	with	Microservices,
it	is	necessary	to	look	not	only	at	the	architecture,	but	also	at	the	organization	of
teams	and	the	responsibilities	for	the	individual	Microservices.	This	chapter
discusses	the	organizational	effects	of	Microservices.

In	section	13.1	organizational	advantages	of	Microservices	are	described.	Section
13.2	shows	that	collective	code	ownership	presents	an	alternative	to	devising
teams	according	to	Conway’s	Law.	The	independence	of	the	teams	is	an	important
consequence	of	Microservices.	Section	13.3	defines	micro	and	macro	architecture
and	shows	how	these	approaches	offer	a	high	degree	of	autonomy	to	the	teams	and
let	them	make	independent	decisions.	Closely	connected	is	the	question	about	the
role	of	the	technical	leadership	(section	13.4).	DevOps	is	an	organizational
approach	which	combines	development	(Dev)	and	operations	(Ops)	(section
13.5).	DevOps	has	synergies	with	Microservices.	Since	Microservices	focus	on
independent	development	from	a	domain	perspective,	they	influence	also	product
owners	and	business	stakeholders	e.g.	the	departments	of	the	business	that	uses	the
software.	Section	13.6	discusses	how	these	groups	can	handle	Microservices.
Reusable	code	can	only	be	achieved	in	Microservice	systems	via	organizational
measures	as	illustrated	in	section	13.7.	Finally,	section	13.8	follows	up	on	the
question	whether	an	introduction	of	Microservices	is	possible	without	changing
the	organization.

13.1	Organizational	Benefits	of	Microservices
Microservices	are	an	approach	for	tackling	also	large	projects	with	small	teams.
As	the	teams	are	independent	of	each	other,	less	coordination	is	necessary
between	them.	Especially	the	communication	overhead	renders	the	work	of	large
teams	so	inefficient.	Microservices	are	an	approach	on	the	architectural	level	for
solving	this	problem.	The	architecture	helps	to	reduce	the	need	for	communication
and	to	let	many	small	teams	work	in	the	project	instead	of	one	large	one.	Each

domain-based	team	can	have	the	ideal	size:	The	Scrum	guide	recommends	three	to
nine	members.

Besides,	modern	enterprises	stress	self	organization	and	teams	which	are
themselves	active	directly	at	the	market.	Microservices	support	this	approach
because	each	service	is	in	the	responsibility	of	an	individual	team	consistent	with
Conway’s	Law	(Section	4.2).	Therefore	Microservices	fit	well	to	self
organization.	Each	team	can	implement	new	features	independently	of	other	teams
and	can	evaluate	the	success	on	the	market	by	themselves.

On	the	other	hand	there	is	a	conflict	between	independence	and	standardization:
When	the	teams	are	supposed	to	work	on	their	own,	they	have	to	be	independent.
Standardization	restricts	independence.	This	concerns	for	instance	the	decision
which	technologies	should	be	used.	If	the	project	is	standardized	in	regards	to	a
certain	technology	stack,	the	teams	cannot	decide	independently	anymore	which
technology	they	want	to	use.	In	addition,	independence	conflicts	with	the	wish	to
avoid	redundancy:	If	the	system	is	supposed	to	be	free	of	redundancy,	there	has	to
be	coordination	between	the	teams	in	order	to	identify	the	redundancies	and	to
eliminate	them.	This	in	turn	limits	the	independence	of	the	teams.

Technical	Independence

An	important	aspect	is	the	technological	decoupling.	Microservices	can	use
different	technologies	and	can	have	entirely	different	structures	internally.	This
means	that	developers	have	less	need	to	coordinate.	Only	fundamental	decisions
have	to	be	made	together.	All	other	technical	decisions	can	be	made	by	the	teams.

Separate	Deployment

Each	Microservice	can	be	brought	into	production	independently	of	the	other
Microservices.	There	is	also	no	need	to	coordinate	release	dates	or	test	phases
across	teams.	Each	team	can	choose	its	own	speed	and	its	own	dates.	A	delayed
release	date	of	one	team	does	not	influence	the	other	teams.

Separate	Requirement	Streams

The	teams	should	each	implement	independent	stories	and	requirements.	This
allows	each	team	to	pursue	its	own	business	objectives.

Three	Levels	of	Independence

Microservices	enable	independence	on	three	levels:

http://www.scrumguides.org/scrum-guide.html#team

Decoupling	via	independent	releases:	Each	team	takes	care	of	one	or
multiple	Microservices.	The	team	can	bring	them	into	production
independently	of	the	other	teams	and	the	other	Microservices.
Technological	decoupling:	The	technical	decisions	made	by	a	certain	team
concern	first	of	all	their	Microservices	and	none	of	the	other	Microservices.
Domain-based	decoupling:	The	distribution	of	the	domain	in	separate
components	allows	each	team	to	implement	their	own	requirements.

For	Deployment	Monoliths,	in	contrast,	the	technical	coordination	and	deployment
concerns	the	entire	monolith	(Fig.	62).	This	necessitates	such	a	close	coordination
between	the	developers	that	in	the	end	all	developers	working	on	the	monolith
have	to	act	like	one	team.

Fig.	62:	Deployment	Monolith

A	prerequisite	for	the	independence	of	the	Microservice	teams	is	that	the
architecture	really	offers	the	necessary	independence	of	the	Microservices.	This
requires	first	of	all	a	good	domain	architecture.	This	architecture	enables	also
independent	requirement	streams	for	each	team.

Fig.	63:	Separation	into	Microservices

There	are	the	following	teams	in	the	example	from	Fig.	63:

The	team	“user	registration”	takes	care	of	how	users	can	register	in	the	E-
commerce	shop.	A	possible	business	objective	is	to	achieve	a	high	number	of
registrations.	New	features	aim	at	optimizing	this	number.	The	components	of
the	team	are	the	processes	which	are	necessary	for	the	registration	and	the	UI
elements.	The	team	can	change	and	optimize	them	at	will.
The	team	“order	process”	addresses	how	the	shopping	cart	turns	into	an
order.	Here,	a	possible	objective	is	that	as	many	shopping	carts	as	possible
turn	into	orders.	The	entire	process	is	implemented	by	this	team.
The	team	“product	search”	improves	the	search	for	products.	The	success	of
this	team	depends	on	how	many	search	processes	lead	to	items	being	put	into
a	shopping	cart.

Of	course,	there	can	be	additional	teams	with	other	goals.	Overall	this	approach
distributes	the	task	of	developing	an	E-commerce	shop	onto	multiple	teams	which
all	have	their	own	objectives.	The	teams	can	largely	independently	pursue	their
objectives	because	the	architecture	of	the	system	is	distributed	into	Microservices
which	each	team	can	develop	independently	–	without	much	need	for
coordination.

In	addition	small	projects	have	many	more	advantages:

Estimations	are	more	accurate	since	estimates	concerning	smaller	efforts	are
easier	to	make.
Small	projects	are	better	to	plan.
The	risk	decreases	–	because	of	the	more	accurate	estimates	and	because	of
the	better	forecast	reliability.
If	there	still	is	a	problem,	its	effects	are	smaller	because	the	project	is
smaller.

In	addition,	Microservices	offer	much	more	flexibility.	This	makes	decisions
faster	and	easier	because	the	risk	is	smaller	and	changes	can	be	implemented
more	rapidly.	This	ideally	supports	agile	software	development	which	relies	on
such	flexibility.

13.2	An	Alternative	Approach	to	Conway’s	Law
Section	4.2	introduced	Conway’s	Law.	According	to	this	law,	an	organization	can
only	generate	architectures	which	mirror	its	communication	structures.	In
Microservice-based	architectures	the	teams	are	built	according	to	the
Microservices.	Each	team	develops	one	or	multiple	Microservices.	Thus	each
Microservice	is	only	developed	by	exactly	one	team.	This	ensures	that	the	domain
architecture	is	not	only	implemented	by	the	distribution	into	Microservices,	but
also	supported	by	the	organizational	distribution.	This	renders	violations	of	the
architecture	practically	impossible.	Moreover	the	teams	can	independently
develop	features	when	the	features	are	limited	to	one	Microservice.	For	this	to
work	the	distribution	of	domains	between	the	Microservices	has	to	be	of	very	high
quality.

The	Challenges	Associated	with	Conway’s	Law

However,	this	approach	also	has	disadvantages:

The	teams	have	to	remain	stable	in	the	long	run.	Especially	when	the
Microservices	use	different	technologies,	the	ramp	up	time	for	an	individual
Microservice	is	very	long.	Developers	cannot	easily	switch	between	teams.
Especially	in	teams	containing	external	consultants	long	term	stability	is
often	hard	to	ensure.	Already	the	usual	fluctuation	of	personnel	can	turn	into	a
challenge	when	working	with	Microservices.	In	the	worst	case,	if	there	is
nobody	left	to	maintain	a	specific	Microservice,	it	is	still	possible	to	rewrite

the	respective	Microservice.	Microservices	are	easy	to	replace	due	to	their
limited	size.	Of	course,	this	still	entails	some	expenditure.
Only	the	team	understands	the	component.	When	team	members	quit,	the
knowledge	about	one	or	multiple	Microservices	can	get	lost.	In	that	case	the
Microservice	cannot	be	modified	anymore.	Such	islands	of	knowledge	need
to	be	avoided.	In	such	a	case	it	will	not	be	an	option	to	replace	the
Microservice	since	an	exact	knowledge	of	the	domain	is	necessary	for	this.
Changes	are	difficult	whenever	they	require	the	coordinated	work	of	multiple
teams.	When	a	team	can	implement	all	changes	for	a	feature	in	its	own
Microservices,	architecture	and	scaling	of	development	will	work	very	well.
However,	when	the	feature	concerns	also	another	Microservice	and	therefore
another	team,	the	other	team	needs	to	implement	the	changes	to	the	respective
Microservice.	This	requires	not	only	communication,	but	the	necessary
changes	also	have	to	be	prioritized	versus	the	other	requirements	of	the	team.
If	the	teams	work	in	sprints,	a	team	can	deliver	the	required	changes	without
prematurely	terminating	the	current	sprint	earliest	in	the	following	sprint	–
this	causes	a	marked	delay.	In	case	of	a	sprint	length	of	two	weeks	the	delay
can	amount	to	two	weeks	–	if	the	team	prioritizes	the	change	high	enough	so
that	it	is	taken	care	of	in	the	next	sprint.	Otherwise	the	ensuing	delay	can	be
even	longer.

Collective	Code	Ownership

When	it	is	always	only	the	responsible	team	which	can	introduce	changes	to	a
Microservice,	a	number	of	challenges	result	as	described.	Therefore	it	is
worthwhile	to	consider	alternatives.	Agile	processes	have	led	to	the	concept	of
“Collective	Code	Ownership”.	Here,	each	developer	has	not	only	the	right,	but
even	the	duty	to	alter	any	code	–	for	example	when	he/she	considers	the	code
quality	as	insufficient	in	a	certain	place.	Thereby	all	developers	take	care	of	code
quality.	Besides	technical	decisions	are	better	communicated	because	more
developers	understand	them	due	to	their	reading	and	changing	code.	This	leads	to
the	critical	questioning	of	decisions	so	that	the	overall	quality	of	the	system
increases.

Collective	Code	Ownership	can	relate	to	a	team	and	its	Microservices.	Since	the
teams	are	relatively	free	in	their	organization,	such	an	approach	is	possible
without	much	coordination.

Advantages	of	Collective	Code	Ownership

However,	in	principle	teams	can	also	modify	Microservices	which	belong	to
other	teams.	This	approach	is	used	by	some	Microservice	projects	to	deal	with
the	discussed	challenges	because	it	entails	a	number	of	advantages:

Changes	to	a	Microservice	of	another	team	can	be	faster	and	more	easily
implemented.	When	a	modification	is	necessary,	the	change	has	not	to	be
introduced	by	another	team.	Instead	the	team	requiring	the	change	can
implement	it	by	itself.	It	is	not	necessary	anymore	to	prioritize	the	change	in
regards	to	other	changes	to	the	component.
Teams	can	be	put	together	more	flexibly.	The	developers	are	familiar	with	a
larger	part	of	the	code	–	at	least	superficially	due	to	changes	which	they	have
introduced	in	the	code.	This	makes	it	easier	to	replace	team	members	or	even
an	entire	team	–	or	to	enlarge	a	team.	The	developers	do	not	have	to	ramp	up
from	the	very	basics.	A	stable	team	is	still	the	best	option	–	however,	often
this	cannot	be	achieved.
The	distribution	in	Microservices	is	easy	to	change.	Because	of	the	broader
knowledge	of	the	developers	it	is	easier	to	move	responsibility	for	a
Microservice	to	a	different	team.	This	can	be	sensible	when	Microservices
have	a	lot	of	dependencies	on	each	other,	but	are	in	the	responsibility	of
different	teams	which	then	have	to	closely	and	laboriously	coordinate.	If	the
responsibility	for	the	Microservices	is	changed	so	that	the	same	team	is
responsible	for	both	of	the	closely	coupled	Microservices,	coordination	is
easier	than	in	the	case	where	two	teams	were	working	on	these
Microservices.	Within	one	team	the	team	members	often	sit	in	the	same
office.	Therefore	they	can	easily	and	directly	communicate	with	each	other.

Disadvantages	of	Collective	Code	Ownership

However,	there	also	disadvantages	associated	with	this	approach:

Collective	Code	Ownerships	is	in	contrast	to	technology	freedom:	When
each	team	uses	other	technologies,	it	is	difficult	for	developers	outside	of	a
team	to	change	the	respective	Microservices.	They	might	not	even	know	the
technology	used	in	the	Microservice.
The	teams	can	lose	their	focus.	The	developers	acquire	a	larger	overview	of
the	full	system.	However,	it	might	be	better	when	the	developers	concentrate
on	their	own	Microservices	instead.
The	architecture	is	not	as	solid	anymore.	By	knowing	the	code	of	other
components	developers	can	exploit	the	internals	and	thereby	rapidly	create
dependencies	which	had	not	been	intended	in	the	architecture.	Finally,	the

distribution	of	the	teams	according	to	Conway’s	Law	is	supposed	to	support
the	architecture	by	turning	interfaces	between	domain	components	into
interfaces	between	teams.	However,	the	interfaces	between	the	teams	lose
importance	when	everybody	can	change	the	code	of	every	other	team.

Pull	Requests	for	Coordination

Communication	between	teams	is	still	necessary:	In	the	end	the	team	responsible
for	the	respective	Microservice	has	the	most	knowledge	about	the	Microservice.
So	changes	should	be	coordinated	with	the	respective	team.	This	can	be
safeguarded	technically:	The	changes	of	the	external	teams	can	initially	be
introduced	separately	from	other	changes	and	subsequently	be	sent	to	the
responsible	team	via	a	pull	request.	Pull	requests	bundle	changes	to	the	source
code.	Especially	in	the	open	source	community	they	are	a	popular	approach	to
allow	for	external	contributions	without	giving	up	control	of	the	project.	The
responsible	team	can	accept	the	pull	request	or	demand	fixes.	This	means	that
there	is	a	review	for	each	change	by	the	responsible	team.	This	allows	the
responsible	team	to	ensure	that	the	architecture	and	design	of	the	Microservice
remain	sound.

Since	there	is	still	the	need	for	communication	between	teams,	Conway’s	Law	is
not	violated	by	this	approach.	It	is	just	a	different	way	of	playing	the	game.	In	case
of	a	bad	split	among	teams	in	a	Microservice-based	architecture	all	options	are
associated	with	tremendous	disadvantages.	To	correct	the	distribution	is	difficult
as	larger	changes	across	Microservices	are	laborious	as	discussed	in	section	8.4.
Due	to	the	unsuitable	distribution	the	teams	are	forced	to	communicate	a	lot	with
each	other.	Thereby	productivity	is	lost.	Therefore	it	is	also	no	option	to	leave	the
distribution	as	it	is.	Collective	Code	Ownership	can	be	used	to	limit	the	need	for
communication.	The	teams	directly	implement	requirements	in	the	code	of	other
teams.	This	causes	less	need	for	communication	and	better	productivity.	To	do	so
the	technology	freedom	should	be	restricted.	The	changes	to	the	Microservices
still	have	to	be	coordinated	–	at	least	reviews	are	definitely	necessary.	However,
if	the	architecture	had	been	set	up	appropriately	from	the	start,	this	measure	would
not	be	necessary	at	all	as	workaround.

Try	and	Experiment

Did	you	already	encounter	Collective	Code	Ownership?	Which	experiences	did	you	make	with	it?

Which	restrictions	are	there	in	your	current	project	when	a	developer	wants	to	change	some	code
which	has	been	written	by	another	developer	in	the	same	team	or	by	a	developer	from	another
team?	Are	changes	to	the	code	of	other	teams	not	meant	to	occur?	In	that	case,	how	is	it	still
possible	to	implement	the	necessary	changes?	Which	problems	are	associated	with	this	course	of
action?

13.3	Micro	and	Macro	Architecture
Microservices	allow	to	largely	avoid	overarching	architecture	decisions.	Each
team	can	choose	the	optimal	type	of	architecture	for	its	Microservices.

Basis	for	this	is	the	Microservices	architecture.	It	allows	a	large	degree	of
technical	freedom.	While	normally	due	to	technical	reasons	uniform	technologies
are	mandatory,	Microservices	do	not	have	these	restrictions.	However,	there	can
be	other	reasons	for	uniformity.	The	question	is	which	decision	is	made	by	whom.
There	are	two	layers	of	decision	making:

Macro	architecture	comprises	the	decisions	which	concern	the	overall
system.	These	are	at	least	the	decisions	presented	in	chapter	8	regarding	the
domain	architecture	and	basic	technologies,	which	have	to	be	used	by	all
Microservices,	as	well	as	communication	protocols	(chapter	9).	The
properties	and	technologies	of	individual	Microservices	can	also	be	preset
(chapter	10).	However,	this	does	not	have	to	be	the	case.	Decisions	about	the
internals	of	the	individual	Microservices	do	not	have	to	be	made	in	the
macro	architecture.
The	micro	architecture	deals	with	decisions	each	team	can	make	by	itself.
These	should	address	topics	which	concern	only	the	Microservices
developed	by	the	respective	team.	Among	these	topics	can	be	all	aspects
presented	in	chapter	10	as	long	as	they	have	not	already	been	defined	as	part
of	the	macro	architecture.

The	macro	architecture	cannot	be	defined	once	for	all,	but	has	to	undergo
continuous	development.	New	features	can	require	a	different	domain	architecture

or	new	technologies.	Optimizing	the	macro	architecture	is	a	permanent	process.

Decision	=	Responsibility

The	question	is	who	defines	macro	and	micro	architecture	and	takes	care	of	their
optimization.	It	is	important	to	keep	in	mind	that	each	decision	is	linked	to
responsibility.	Whoever	makes	a	decision	is	responsible	for	its	consequences	-
good	or	bad.	In	turn	the	responsibility	for	a	Microservice	entails	the	necessity	to
make	the	required	decisions	for	its	architecture.	When	the	macro	architecture
defines	a	certain	technology	stack,	the	responsibility	for	this	stack	rests	with	the
persons	responsible	for	the	macro	architecture	–	not	with	the	teams	which	use
them	in	the	Microservices	and	might	later	have	problems	with	this	technology
stack.	Therefore	a	strong	restriction	of	the	technology	freedom	of	the	individual
Microservices	by	the	macro	architecture	is	often	not	helpful.	It	only	shifts
decisions	and	responsibility	to	a	level	which	does	not	have	much	to	do	with	the
individual	Microservices.	This	can	lead	to	an	ivory	tower	architecture	that	is	not
based	on	the	real	requirements.	In	the	best	case	it	is	ignored.	In	the	worst	case	it
causes	serious	problems	in	the	application.	Microservices	allow	to	largely	do
without	macro	architecture	decisions	in	order	to	avoid	such	an	ivory	tower
architecture.

Who	Creates	Macro	Architecture?

For	defining	macro	architecture	decisions	have	to	be	made	which	affect	all
Microservices.	Such	decisions	cannot	be	made	by	a	single	team	since	the	teams
only	carry	responsibility	for	their	respective	Microservices.	Macro	architecture
decisions	go	beyond	individual	Microservices.

The	macro	architecture	can	be	defined	by	a	team	which	is	composed	from
members	of	each	individual	team.	This	approach	seems	to	be	obvious	at	first
glance:	It	allows	all	teams	to	voice	their	perspectives.	Nobody	dictates	certain
approaches.	The	teams	are	not	left	out	of	the	decision	process.	There	are	many
Microservice	projects	which	very	successfully	employ	this	approach.

However,	this	approach	has	also	disadvantages:

For	decisions	at	the	macro	architecture	level	an	overview	of	the	overall
system	is	necessary	and	an	interest	to	develop	the	system	in	its	entirety.
Members	of	the	individual	teams	often	have	a	strong	focus	on	their	own
Microservices.	That	is	of	course	very	sensible	since	the	development	of
these	Microservices	is	their	primary	task.	However,	this	can	make	it	hard	for

them	to	make	overarching	decisions	since	those	require	a	different
perspective.
The	group	can	be	too	large.	Effective	teams	normally	have	five	to	ten
members	at	maximum.	If	there	are	many	teams	and	each	is	supposed	to
participate	with	at	least	one	member,	the	macro	architecture	team	will	get	too
large	and	thus	cannot	work	effectively	anymore.	Large	teams	are	hardly	able
to	define	and	maintain	the	macro	architecture.

The	alternative	is	to	have	a	single	architect	or	an	architecture	team	which	is
exclusively	responsible	for	shaping	the	macro	architecture.	For	larger	projects
this	task	is	so	demanding	that	for	sure	an	entire	architecture	team	is	needed	to
work	on	it.	This	architecture	team	takes	the	perspective	of	the	overall	project.
However,	there	is	a	danger	that	the	architecture	team	distances	itself	too	much
from	the	real	work	of	the	other	teams	and	consequently	makes	ivory-tower
decisions	or	solves	problems	the	teams	do	not	actually	have.	Therefore,	the
architecture	team	should	mainly	moderate	the	process	of	decision	making	and
make	sure	that	the	view	points	of	the	different	teams	are	all	considered.	It	should
not	set	a	certain	direction	all	by	itself.	In	the	end	the	different	Microservices
teams	will	have	to	live	with	the	consequences	of	the	architecture	team’s	decisions.

Extent	of	the	Macro	Architecture

There	is	no	one	and	only	way	to	divide	the	architecture	into	micro	and	macro
architecture.	The	company	culture,	the	degree	of	self	organization	and	other
organizational	criteria	play	a	prominent	role.	A	highly	hierarchical	organization
will	give	the	teams	less	freedom.	When	as	many	decisions	as	possible	are	made
on	the	level	of	the	micro	architecture,	the	teams	will	gain	more	responsibility.
This	often	has	positive	effects	because	the	teams	really	feel	responsible	and	will
act	accordingly.

The	NUMMI	car	factory	in	the	USA	for	instance	was	a	very	unproductive	factory
which	was	known	for	drug	abuse	and	sabotage.	By	focusing	more	on	teamwork
and	trust	the	same	workers	could	be	turned	into	a	very	productive	workforce.
When	teams	are	able	to	make	more	decisions	on	their	own	and	have	more	freedom
of	choice,	the	work	climate	as	well	as	productivity	will	profoundly	benefit.

Besides,	by	delegating	decisions	to	teams	less	time	is	spent	on	coordination	so
that	the	teams	can	work	more	productively.	To	avoid	the	need	for	communication
by	delegating	more	decisions	to	the	teams	and	therefore	to	micro	architecture	is	an
essential	point	for	architecture	scaling.

http://en.wikipedia.org/wiki/NUMMI#Background

However,	when	the	teams	are	very	restricted	in	their	choices,	one	of	the	main
advantages	of	Microservices	is	not	realized.	Microservices	increase	the	technical
complexity	of	the	system.	This	only	makes	sense	if	the	advantages	of
Microservices	are	really	exploited.	Consequently,	when	the	decision	for
Microservices	has	been	made,	there	should	also	be	a	decision	for	having	as	much
micro	architecture	and	as	little	macro	architecture	as	possible.

The	decision	for	more	or	less	macro	architecture	can	be	made	for	each	area
differently.

Technology:	Macro/Micro	Architecture

For	the	technologies	the	following	decisions	can	be	made	concerning	macro	vs.
micro	architecture:

Uniform	security	(section	8.12),	service	discovery	(section	8.9)	and
communication	protocols	(chapter	9)	are	necessary	to	enable	Microservices
to	communicate	with	each	other.	Therefore	decisions	in	these	areas	clearly
belong	to	macro	architecture.	Among	these	are	also	the	decisions	for	the	use
and	details	of	downwards	compatible	interfaces	which	are	required	for	the
independent	deployment	of	microservices.
Configuration	and	coordination	(Section	8.8)	do	not	necessarily	have	to	be
determined	globally	for	the	complete	project.	When	each	Microservice	is
operated	by	its	respective	team,	the	team	can	also	handle	the	configuration
and	use	its	own	tool	of	choice	for	it.	However,	a	uniform	tool	for	all
Microservices	has	clear	advantages.	Besides	there	is	hardly	any	sensible
reason	why	each	team	should	use	a	different	mechanism.
The	use	of	resilience	(section	10.5)	or	load	balancing	(section	8.10)	can	be
defined	in	the	macro	architecture.	The	macro	architecture	can	either	define	a
certain	standard	technology	or	just	enforce	that	these	points	have	to	be
addressed	during	the	implementation	of	the	Microservices.	This	can	for
instance	be	ensured	by	tests	(section	11.8).	The	tests	can	check	whether	a
Microservice	is	still	available	after	a	dependent	Microservice	failed.	In
addition,	they	can	check	whether	the	load	is	distributed	to	multiple
Microservices.	The	decision	for	the	use	of	resilience	or	load	balancing	can
be	theoretically	left	to	the	teams.	When	they	are	responsible	for	the
availability	and	the	performance	of	their	service,	they	have	to	have	the
freedom	to	use	their	choice	of	technologies	for	it.	When	their	Microservices
are	sufficiently	available	without	resilience	and	load	balancing,	their	strategy

is	acceptable.	However,	in	the	real	world	such	scenarios	are	hard	to
imagine.
In	regards	to	platform	and	programming	language	the	decision	can	be	made	at
the	level	of	macro	or	micro	architecture.	The	decision	might	not	only
influence	the	teams	but	also	operations	since	operations	needs	to	understand
the	technologies	and	need	to	be	able	to	deal	with	failures.	It	is	not
necessarily	required	to	prescribe	a	programming	language.	Alternatively,	the
technology	can	be	restricted	e.g.	to	the	JVM	(Java	Virtual	Machine)	which
supports	a	number	of	programming	languages.	In	regards	to	the	platform	a
potential	compromise	is	that	a	certain	database	is	provided	by	operations,
but	that	the	teams	can	also	use	and	operate	different	ones.	Whether	the	macro
architecture	defines	platform	and	programming	language	depends	also	on
whether	developers	need	to	be	able	to	change	between	teams.	A	shared
platform	facilitates	transferring	the	responsibility	for	a	Microservice	from
one	team	to	another	team.

Fig.	64	shows	which	decisions	are	part	of	the	macro	architecture	-	they	are	on	the
right	side.	The	micro	architecture	parts	are	on	the	left	side.	The	areas	in	the
middle	can	be	either	part	of	the	macro	or	micro	architecture.	Each	project	can
handle	them	differently.

Fig.	64:	Technology:	macro	and	micro	architecture

Operations

In	the	area	of	operations	there	is	control	(section	12.5),	monitoring	(section	12.3),
logging	(section	12.2)	and	deployment	(section	12.4).	To	reduce	the	complexity	of
the	environment	and	to	enable	a	uniform	operations	solution	these	areas	have	to	be
defined	by	macro	architecture.	The	same	holds	true	for	platform	and	programming
language.	However,	standardizing	is	not	obligatory:	When	the	entire	operations	of

the	Microservices	rests	with	the	teams,	theoretically	each	team	can	use	a	different
technology	for	each	of	the	mentioned	areas.	But	while	this	scenario	does	not
generate	many	advantages,	it	creates	a	huge	technological	complexity.	However,	it
is	for	example	possible	that	the	teams	use	their	own	special	solution	for	certain
tasks.	When	for	instance	the	revenue	is	supposed	to	be	transferred	in	a	different
way	into	the	monitoring	for	the	business	stakeholders,	this	is	certainly	doable.

Fig.	65:	Operations:	macro	and	micro	architecture

Domain	Architecture

In	the	context	of	domain	architecture	the	distribution	of	domains	to	teams	is	part	of
the	macro	architecture	(section	8.1).	It	does	not	only	influence	the	architecture,	but
decides	also	which	teams	are	responsible	for	which	domains.	Therefore	this	task
cannot	be	moved	into	the	micro	architecture.	However,	the	domain	architecture	of
the	individual	Microservices	has	to	be	left	to	the	teams	(section	10.1,	10.2,	10.3,
10.4).	To	dictate	the	domain	architecture	of	the	individual	Microservices	to	the
teams	would	be	equivalent	to	treating	Microservices	at	the	organizational	level
like	monoliths	because	the	entire	architecture	is	centrally	coordinated.	In	that	case
one	could	as	well	develop	a	Deployment	Monolith	which	is	technically	easier.
Such	a	decision	would	not	make	sense.

Fig.	66:	Architecture:	macro	and	micro	architecture

Tests

In	the	area	of	testing	integration	tests	(section	11.4)	belong	to	the	macro
architecture.	In	practice	it	has	to	be	decided	whether	there	should	be	an

integration	test	for	a	certain	domain	and	who	should	implement	it.	Integration	tests
only	make	sense	when	they	concern	functionalities	across	teams.	The	respective
teams	can	test	all	other	functionalities	on	their	own.	Therefore	integration	tests
have	to	be	globally	coordinated	across	teams.	Technical	tests	(section	11.8)	can
be	dictated	to	the	teams	by	the	macro	architecture.	They	are	a	good	option	to
enforce	and	control	global	standards	and	technical	areas	of	macro	architecture.
Consumer-driven	contract	tests	(CDC)	(section	11.7)	and	Stubs	(section	11.6)	can
be	coordinated	between	the	teams	themselves.	A	shared	technological	foundation
as	part	of	macro	architecture	can	profoundly	facilitate	development.	Uniform
technologies	are	especially	sensible	in	this	area	since	teams	have	to	use	the	CDCs
and	Stubs	of	other	teams.	When	only	one	technology	is	used,	work	is	markedly
easier.	However,	it	is	not	obligatory	that	technologies	are	rigidly	prescribed	by
the	macro	architecture.

How	to	test	the	respective	Microservices	should	be	up	to	the	individual	teams	as
they	have	the	responsibility	for	the	quality	of	the	Microservices.

Fig.	67:	Test:	macro	and	micro	architecture

In	many	areas	decisions	can	be	made	either	at	the	level	of	macro	or	at	the	level	of
micro	architecture.	It	is	a	central	objective	of	Microservice-based	architectures	to
give	the	individual	teams	as	much	independence	as	possible.	Therefore,	as	many
decisions	as	possible	should	be	made	on	the	level	of	micro	architecture	and
therefore	by	the	individual	teams.	However,	in	regards	to	operations	the	question
arises	whether	the	teams	really	profit	from	the	freedom	to	use	their	own	distinct
tools.	It	seems	more	likely	that	the	technology	zoo	just	gets	bigger	without	real
advantages.	In	this	area	there	is	a	connection	to	DevOps	(section	13.5).
Depending	on	the	degree	of	cooperation	between	developers	and	operations	there
can	be	different	degrees	of	freedom.	In	case	of	a	clear	division	between

development	and	operations	operations	will	define	many	standards	in	macro
architecture.	In	the	end	operations	will	have	to	take	care	of	the	Microservices	in
production.	When	all	Microservices	employ	a	uniform	technology,	this	task	is
easier.

When	defining	programming	language	and	platform	one	should	likewise	weigh	the
advantages	of	specialized	technology	stacks	versus	the	disadvantages	of	having
heterogeneous	technologies	in	the	overall	system.	Depending	on	the	circumstances
the	decision	to	prescribe	a	technology	stack	might	be	as	sensible	as	the	decision	to
leave	the	technology	choice	to	the	individual	teams.	A	uniform	technology	stack
can	facilitate	operations	and	make	it	easier	for	developers	to	change	between
Microservices	and	teams.	Specialized	technology	stacks	make	it	easier	to	handle
special	challenges	and	motivate	employees	who	thus	have	the	possibility	to	use
cutting	edge	technologies.

Whether	a	Microservice	really	conforms	to	the	macro	architecture	can	be
evaluated	by	a	test	(compare	section	11.8).	This	test	can	be	an	artifact	which	is
likewise	part	of	the	macro	architecture.	The	group	responsible	for	the	macro
architecture	can	use	this	artifact	to	unambiguously	define	the	macro	architecture.
This	allows	to	check	whether	all	Microservices	are	in	line	with	macro
architecture.

13.4	Technical	Leadership
The	division	in	micro	and	macro	architecture	completely	changes	the	technical
leadership	teams	and	is	an	essential	advantage	of	Microservices.	The	macro
architecture	defines	technical	duties	and	freedom.	The	freedom	of	choice	entails
also	the	responsibility	for	the	respective	decisions.

For	example	a	database	can	be	prescribed.	In	that	case	the	team	can	delegate	the
responsibility	for	the	database	to	the	technical	leadership	team.	If	the	database
decision	were	part	of	the	micro	architecture,	the	database	would	be	run	by	the
team	since	it	made	the	decision	for	the	technology.	No	other	team	would	need	to
deal	with	potential	consequences	of	this	decision	(compare	section	8.7).	Whoever
makes	the	decision,	also	has	the	responsibility.	The	technical	leadership	team	for
sure	can	make	such	decisions,	but	by	doing	so	it	takes	away	responsibility	from
the	Microservices	teams	and	thereby	independence.

A	larger	degree	of	freedom	entails	more	responsibility.	The	teams	have	to	be	able
to	deal	with	this	and	also	have	to	want	this	freedom.	Unfortunately,	this	is	not

always	the	case.	This	can	either	argue	for	more	macro	architecture	or	for
organizational	improvements	which	in	the	end	lead	to	more	self	organization	and
thus	less	macro	architecture.	It	is	one	of	the	objectives	of	the	technical	leadership
team	to	enable	less	macro	architecture	and	to	lead	the	way	to	more	self
organization.

Developer	Anarchy

The	approach	Developer	Anarchy	is	even	more	radical	in	regards	to	the	freedom
of	the	teams.	It	confers	the	entire	responsibility	to	the	developers.	They	cannot
only	freely	choose	technologies,	but	even	rewrite	code	if	they	deem	it	necessary.
Besides,	they	communicate	directly	with	the	stake	holders.	This	approach	is
employed	in	very	fast	growing	enterprises	and	works	very	well	there.	Behind	this
idea	is	Fred	George	who	has	collected	more	than	40	years	of	experience	while
working	in	many	different	companies.	In	a	model	like	this	macro	architecture	and
Deployment	Monoliths	are	abolished	so	that	the	developers	can	do	what	they	think
is	best.	This	approach	is	very	radical	and	shows	how	far	the	idea	can	be
extended.

Try	and	Experiment

In	Fig.	64,	Fig.	65,	Fig.	66	and	Fig.	67	areas	are	marked	which	can	belong	to	either	micro	or	macro
architecture.	These	are	the	elements	which	are	depicted	in	the	center	of	the	respective	figure.	Look
through	these	elements	and	decide	whether	you	would	place	them	in	micro	or	macro	architecture.
Most	important	is	your	reasoning	for	the	one	or	the	other	alternative.	Take	into	consideration	that
making	decisions	at	the	level	of	the	micro	architecture	rather	corresponds	to	the	Microservice	idea
of	independent	teams.

13.5	DevOps
DevOps	denotes	the	concept	that	developments	(Dev)	and	operations	(Ops)	merge
into	one	team	(DevOps).	This	is	an	organizational	change:	Each	team	has
developers	and	operations	experts.	They	work	together	in	order	to	develop	and
operate	a	Microservice.	This	requires	a	different	mindset	since	operations-
associated	topics	are	often	unfamiliar	to	developers	while	people	working	in
operations	often	do	not	work	in	projects,	but	usually	run	systems	independently	of
projects.	Ultimately,	the	technical	skills	become	very	similar:	Operations	works
more	on	automation	and	associated	suitable	tests	–	and	this	is	in	the	end	software

http://www.infoq.com/news/2012/02/programmer-anarchy
https://www.youtube.com/watch?v=uk-CF7klLdA

development.	At	the	same	time	monitoring,	log	analysis	or	deployment	turn	more
and	more	also	into	topics	for	developers.

DevOps	and	Microservices

DevOps	and	Microservices	ideally	complement	each	other:

The	teams	cannot	only	take	care	of	the	development,	but	also	of	the
operations	of	the	Microservices.	This	requires	that	the	teams	have
knowledge	in	the	areas	of	operations	and	development.
Orienting	the	teams	in	line	with	features	and	Microservices	represents	a
sensible	organizational	alternative	to	the	division	into	operations	and
development.
Communication	between	operations	and	development	gets	easier	when
members	of	both	areas	work	together	in	one	team.	Communication	within	a
team	is	easier	than	between	teams.	This	is	in	line	with	the	aim	of
Microservices	to	reduce	the	need	for	coordination	and	communication.

DevOps	and	Microservices	fit	very	well	together.	In	fact,	the	aim	that	teams
deploy	Microservices	up	to	production	and	keep	taking	care	of	them	in	production
can	only	be	achieved	with	DevOps	teams.	This	is	the	only	way	to	ensure	that
teams	have	the	necessary	knowledge	about	both	areas.

Do	Microservices	Necessitate	DevOps?

DevOps	is	such	a	profound	change	in	organization	that	many	enterprises	are	still
reluctant	to	take	this	step.	Therefore	the	question	arises	whether	Microservices
can	also	be	implemented	without	introducing	DevOps.	In	fact,	this	is	possible:

Via	the	macro	vs.	micro	architecture	division	operations	can	define
standards.	Then	technical	elements	like	logging,	monitoring	or	deployment
belong	to	the	macro	architecture.	When	these	standards	are	conformed	to,
operations	can	take	over	the	software	and	make	it	part	of	the	standard
operations	processes.
In	addition,	platform	and	programming	language	can	be	defined	as	much	as
needed	for	operations.	When	operations	only	feels	comfortable	with	running
Java	applications	on	a	Tomcat,	this	can	be	prescribed	as	platform	in	the
macro	architecture.	The	same	holds	true	for	infrastructure	elements	like
databases	or	messaging	systems.
Moreover,	there	can	be	organizational	requirements:	For	example,	operations
can	ask	that	members	of	the	Microservices	teams	are	available	at	certain

times	so	that	problems	arising	in	production	can	be	referred	to	the	teams.	To
put	it	concretely:	Who	wants	to	deploy	on	his/her	own,	has	to	provide	a
phone	number	and	will	also	be	called	at	night	in	case	of	problems.	If	the	call
is	not	answered,	the	management	can	be	called	next.	This	increases	the
likelihood	that	developers	actually	answer	such	calls.

In	such	a	context	the	teams	cannot	be	responsible	anymore	for	bringing	all
Microservices	up	to	production.	Access	and	responsibility	rest	with	operations.
There	has	to	be	a	point	in	the	Continuous	Delivery	Pipeline	where	the
Microservices	are	passed	on	to	operations	and	then	are	rolled	out	in	production.
At	this	point	the	Microservice	passes	into	the	responsibility	of	operations	which
has	to	coordinate	with	the	respective	team	about	their	Microservices.	A	typical
point	for	the	transfer	to	operations	is	immediately	after	the	test	phases,	prior	to
possible	explorative	tests.	Operations	is	at	least	responsible	for	the	last	phase,	i.e.
the	rollout	in	production.	Operations	can	turn	into	a	bottleneck	if	a	high	number	of
modified	Microservices	have	to	be	brought	into	production.

Overall	DevOps	and	Microservices	have	synergies	–	however,	it	is	not
necessarily	required	to	also	introduce	DevOps	when	deciding	for	Microservices.

When	Microservices	Meet	Classical	IT	Organizations
(Alexander	Heusingfeld)
by	Alexander	Heusingfeld,	innoQ

The	“Microservices”	topic	has	meanwhile	reached	numerous	IT	departments	and
is	discussed	there.	Interestingly,	initiatives	for	introducing	Microservices	are
often	started	by	middle	management.	However,	frequently	too	little	thought	is
spent	on	the	effect	a	Microservice	architecture	has	on	the	(IT)	organization	of
enterprises.	Because	of	this	I	would	like	to	tell	of	a	number	of	“surprises”	which	I
experienced	during	the	introduction	of	such	an	architecture	approach.

Pets	vs.	Cattle

“Pets	vs.	Cattle”	is	a	slogan	which	reached	a	certain	fame	at	the	outset	of	the
DevOps	movement.	Its	basic	message	is	that	in	times	of	cloud	and	virtualization
servers	should	not	be	treated	like	pets,	but	rather	like	a	herd	of	cattle.	If	a	pet	gets
sick,	the	owner	will	likely	nurse	it	back	to	health.	Sick	cattle	on	the	other	hand	is
killed	immediately	in	order	not	to	endanger	the	health	of	the	entire	herd.

http://www.slideshare.net/randybias/architectures-for-open-and-scalable-clouds

Thus	the	point	is	to	avoid	the	personification	of	servers	–	e.g.	by	giving	them
names	(like	Leviathan,	Pollux,	Berlin	or	Lorsch).	If	you	assign	such	“pet”	names
to	servers,	there	will	be	a	tendency	to	care	for	them	like	pets	and	thus	provide
individual	updates,	scripts,	adjustments	or	other	specific	modifications.	However,
it	is	well	known	that	this	has	negative	consequences	for	the	reproducibility	of
installations	and	server	state.	Especially	considering	auto-scaling	and	failover
features	as	they	are	required	for	Microservice-based	architectures,	this	is	a	K.O.
criterion.

One	of	my	projects	addressed	this	problem	in	a	very	interesting	manner:	The
server	and	virtual	machines	still	had	names.	However,	the	administration	of	these
systems	was	completely	automated	via	Puppet.	Puppet	downloaded	the	respective
scripts	from	an	SVN	repository.	In	this	repository	individual	scripts	for	each
server	were	stored.	This	scenario	could	be	called	“Puppets	for	automated	pet
care”.	The	advantage	is	that	crashed	servers	can	quickly	be	replaced	by	exact
copies.

However,	requirements	for	scalability	are	not	taken	into	consideration	at	all,	since
there	can	always	only	be	one	instance	of	a	“pet	server”	named	Leviathan.	An
alternative	is	to	switch	to	parameterized	scripts	and	to	use	templates	like
“production	VM	for	app	XYZ”.	At	the	same	time	this	also	allows	more	flexible
deployment	scenarios	like	Blue/Green	Deployments.	In	that	case	it	is	not	relevant
anymore	whether	the	VM	app-xyz-prod08.zone1.company.com	or	app-xyz-
prod045.zone1.company.com	gets	the	job	done.	The	only	relevant	point	is	that
eight	instances	of	this	service	are	constantly	available	and	at	times	of	high	load
additional	instances	can	be	started.	How	these	instances	are	named	does	not
matter.

Us	vs.	Them

“Alarming	is	our	concern!”

“You	shouldn’t	care	about	that!”

“That	is	none	of	your	business,	it’s	our	area!”

Unfortunately	I	frequently	hear	sentences	like	these	in	so-called	cross-functional
teams.	These	are	teams	composed	of	architects,	developers,	testers	and
administrators.	Especially	if	the	members	previously	worked	in	other,	purely
functional	teams	within	the	same	company,	old	trench	wars	and	prejudices	are

carried	along	into	the	new	team	–	often	subconsciously.	Therefore,	it	is	important
to	be	aware	of	the	social	aspects	right	from	the	start	and	to	counter	these
proactively.	For	example,	in	my	experience	it	has	very	positive	effects	to	let
newly	setup	teams	work	in	the	same	office	for	the	first	two	to	four	weeks.	This
allows	the	new	team	mates	to	get	to	know	each	other’s	human	side	and	to	directly
experience	the	colleague’s	body	language,	character	and	humor.	This	will
markedly	facilitate	communication	during	the	later	course	of	the	project,
misunderstandings	are	avoided.

In	addition,	team	building	measures	during	the	first	weeks	which	require	that	the
team	members	rely	on	each	other	can	help	to	break	the	ice,	to	get	an	idea	of	the
strengths	and	weaknesses	of	the	individual	members	and	to	build	up	and
strengthen	trust	within	the	team.	If	these	points	are	neglected,	there	will	be
noticeable	adverse	consequences	throughout	the	run	time	of	the	project.	People
who	do	not	like	each	other	or	do	not	trust	each	other,	will	not	rely	on	each	other,
even	if	only	subconsciously.	And	this	means	that	they	will	not	be	able	to	work
100%	as	a	team.

Development	vs.	Test	vs.	Operation:	Change	of	Perspective

In	many	companies	there	are	initiatives	for	a	change	of	perspective.	For	example,
employees	from	sales	may	work	in	the	purchasing	department	for	a	day	to	get	to
know	the	people	and	the	processes	there.	The	expectation	is	that	the	employees
will	develop	a	better	understanding	for	their	colleagues	and	to	let	that	become
part	of	their	daily	work	so	that	cross-department	processes	harmonize	better.	The
motto	is:	“On	‘the	other	side’	you	get	to	know	a	new	perspective!”

Such	a	change	of	perspective	can	also	be	advantageous	in	IT.	A	developer	could
for	instance	get	a	new	perspective	with	regards	to	the	use	cases	or	test	cases.	This
might	motivate	them	to	enforce	a	modularization	in	the	development	which	is
easier	to	test.	Or	they	might	consider	early	in	development	which	criteria	will	be
needed	later	on	to	better	monitor	the	software	in	production	or	to	more	easily	find
errors.	A	deeper	insight	into	the	internal	processes	of	the	application	can	help	an
administrator	to	develop	a	better	understanding	for	implementing	a	more	specific
and	more	efficient	monitoring.	Each	perspective,	which	deviates	from	one’s	own
perspective,	can	raise	questions	which	previously	were	not	considered	in	this
section	of	the	application	life	cycle.	And	these	questions	will	help	the	team	to
evolve	as	a	whole	and	deliver	better	software.

For	Ops	there	is	Never	an	“Entirely	Green	Field”

For	sure	Microservices	are	a	topical	subject	and	bring	along	new	technologies,
concepts	and	organizational	changes.	However,	one	should	always	consider	that
enterprises	introducing	Microservices	hardly	ever	start	from	scratch!	There	are
always	some	kind	of	legacy	systems	or	entire	IT	environments	which	already	exist
and	might	better	not	be	replaced	in	a	Big	Bang	approach.	Usually	these	legacy
systems	have	to	be	integrated	into	the	brave	new	world	of	Microservices,	at	least
they	will	have	to	coexist.

For	this	reason,	it	is	important	to	take	these	systems	into	consideration	when
planning	a	Microservices-based	architecture,	especially	in	regards	to	IT	costs.
Can	the	existing	hardware	infrastructure	really	be	restructured	for	the
Microservices	or	is	there	a	legacy	system	which	relies	exactly	on	this
infrastructure?	These	are	often	questions	which	get	caught	on	the	infrastructure	or
operations	team	–	if	there	is	such	an	organizational	unit	in	the	company.	Otherwise
it	might	happen	that	these	questions	first	arise	when	a	deployment	to	the	system
test	or	production	environment	is	supposed	to	be	done.	Especially	for	being	able
to	recognize	these	questions	early	on,	I	recommend	to	deal	with	the	deployment
pipeline	as	early	as	possible	in	the	reorganization	project.	The	deployment
pipeline	should	already	be	in	place	before	the	first	business	functionality	is
implemented	by	the	teams.	A	simple	“Hello	World”	will	often	be	sufficient	which
then	is	brought	towards	production	by	the	combined	forces	of	the	entire	team.
While	doing	so,	the	team	will	almost	always	encounter	open	questions	which	in
the	worst	case	will	have	effects	on	the	design	of	the	systems.	However,	as	not
much	is	implemented	at	this	stage,	early	on	during	the	project	such	changes	are
still	comparably	cost-efficient	to	implement.

Conclusion

The	organizational	changes	(resp.	“Conway’s	Law”),	which	accompany	the
introduction	of	Microservices,	are	up	to	now	often	underestimated.	Old	habits,
prejudices	and	maybe	even	trench	wars	are	often	deep-rooted.	Especially	if	the
new	team	mates	were	previously	assigned	to	different	departments.	However,
“one	team”	has	to	be	more	than	just	a	buzzword.	If	the	team	manages	to	bury	their
prejudices	and	to	put	their	different	experiences	to	good	use,	it	can	advance
together.	Everyone	has	to	understand	that	all	of	them	now	share	the	task	and
responsibility	to	bring	a	stable	software	into	production	for	the	customer.
Everybody	can	profit	from	the	experiences	of	the	others	when	everybody	acts	on
the	premise:	“Everybody	voices	their	concerns,	and	we	will	solve	it	jointly”.

13.6	Interface	to	the	Customer

To	ensure	that	the	development	can	really	be	scaled	to	multiple	teams	and
Microservices,	each	team	needs	to	have	its	own	Product	Owner.	In	line	with
Scrum	approaches	he/she	is	responsible	for	the	further	development	of	the
Microservice.	For	this	purpose	he/she	defines	stories	which	are	implemented	in
the	Microservice.	The	Product	Owner	is	the	source	of	all	requirements	and
prioritizes	them.	This	is	especially	easy	when	a	Microservice	only	comprises
features	which	are	within	the	responsibility	of	a	single	department	at	the	business
level	(Fig.	68).	Usually	this	objective	is	achieved	by	adjusting	Microservices	and
teams	to	the	organization	of	departments.	Each	department	gets	“its”	Product
Owner	and	therefore	“its”	team	and	“its”	Microservices.

When	the	Microservices	have	a	good	domain	architecture,	they	can	be
independently	developed.	Ultimately,	each	domain	should	be	implemented	in	one
or	many	Microservices,	and	the	domain	should	only	be	of	interest	to	one
department.	The	architecture	has	to	take	the	organization	of	the	departments	into
consideration	when	distributing	the	domains	into	Microservices.	This	ensures	that
each	department	has	its	own	Microservices	that	are	not	shared	with	other	domains
or	departments.

Fig.	68:	Department,	product	owner	and	Microservices

Unfortunately,	the	architecture	often	is	not	perfect.	Besides,	Microservices	have
interfaces	–	an	indication	that	functionalities	might	span	multiple	Microservices.
When	multiple	functionalities	concern	one	Microservice	and	therefore	multiple
departments	want	to	influence	the	development	of	a	Microservice,	the	Product
Owner	has	to	ensure	a	prioritization	which	is	coordinated	with	the	different
departments.	This	can	be	a	challenge	because	departments	can	have	different
priorities.	In	that	case	the	Product	Owner	has	to	coordinate	between	the	concerned
departments.

Let	us	assume	that	there	is	a	department	which	takes	care	of	sales	campaigns	in	an
E-commerce	shop.	It	starts	a	campaign	where	orders	containing	a	certain	item	get
a	rebate	on	the	delivery	cost.	The	required	modification	concerns	the	order	team:
It	has	to	find	out	whether	an	order	contains	such	an	item.	This	information	has	to
be	transmitted	to	the	delivery	Microservice	which	has	to	calculate	the	costs	for

the	delivery.	Accordingly,	the	Product	Owners	of	these	two	teams	have	to
prioritize	these	changes	in	regards	to	the	changes	desired	by	the	departments	in
charge	of	delivery	and	orders.	Unfortunately,	many	of	these	sales	campaigns
combine	different	functionalities	so	that	such	a	prioritization	is	often	required.	The
departments	for	orders	and	deliveries	have	their	own	Microservices,	while	the
department	in	charge	of	sales	campaigns	does	not	have	its	own	Microservices.
Instead	it	has	to	introduce	its	features	into	the	other	Microservices.

Architecture	Leads	to	Departments

The	Microservice	architecture	can	thus	be	a	direct	result	of	the	departmental
organization	of	the	company.	However,	there	are	also	cases	where	a	new
department	is	created	around	an	IT	system,	which	then	takes	care	of	this	system
from	the	business	side.	In	such	a	case	one	can	argue	that	the	Microservices
architecture	directly	influences	the	organization.	For	instance	there	might	be	a	new
Internet	market	place	which	is	implemented	by	an	IT	system.	If	it	is	successful,	a
department	can	be	created	which	takes	over	the	further	development	of	this
marketplace.	This	department	will	continue	to	develop	the	IT	system	from	a
domain	and	from	a	business	perspective.	In	this	case	the	marketplace	was
developed	first	and	subsequently	the	department	has	been	created.	Therefore	the
system	architecture	has	defined	the	departmental	structure	of	the	organization.

13.7	Reusable	Code
At	first	sight	the	reuse	of	code	is	a	technical	problem.	[Section	8.3]{#section8-3}
already	described	the	challenges	which	arise	when	two	Microservices	use	the
same	library:	When	the	Microservices	use	the	library	in	such	a	way	that	a	new
release	of	the	library	necessitates	a	new	deployment	of	the	Microservices,	the
result	is	a	deployment	dependency.	This	has	to	be	avoided	to	allow	for	an
independent	deployment	of	the	Microservices.	There	is	additional	expenditure
because	the	teams	responsible	for	the	Microservices	have	to	coordinate	their
changes	to	the	library.	New	features	for	the	different	Microservices	have	to	be
prioritized	and	developed.	These	represent	also	dependencies	between	the	teams
which	should	rather	be	avoided.

Client	Libraries

Client	libraries	which	encapsulate	calls	from	a	Microservice	can	be	acceptable.
When	the	interfaces	of	the	Microservices	are	downwards	compatible,	the	client
library	does	not	have	to	be	replaced	in	case	of	a	new	version	of	the	Microservice.
In	such	a	scenario	client	libraries	do	not	cause	problems	because	a	new

deployment	of	the	called	Microservices	does	not	lead	to	an	update	of	the	client
library	or	a	new	deployment	of	the	calling	Microservice.

However,	when	the	client	library	also	contains	domain	objects,	problems	can
occur.	When	a	Microservice	wants	to	change	the	domain	model,	the	team	has	to
coordinate	this	change	with	the	other	users	of	the	client	library	and	therefore
cannot	develop	independently	anymore.	The	boundaries	between	a	simplified	use
of	the	interface	which	can	be	sensible	and	a	shared	implementation	of	logic	or
other	deployment	dependencies	which	can	be	problematic	is	not	clear	cut.	One
option	is	to	entirely	forbid	shared	code.

Reuse	Anyhow?

However,	obviously,	projects	can	reuse	code.	Hardly	any	project	nowadays
manages	without	some	open	source	library.	Using	this	code	is	obviously	easy	and
thus	facilitates	work.	Problems	like	the	ones	arising	upon	reusing	code	between
Microservices	are	unlikely	for	a	number	of	reasons:

Open	source	projects	in	general	are	of	high	quality.	Developers	working	in
different	companies	use	the	code	and	thereby	spot	errors.	Often	they	even
remove	the	errors	so	that	the	quality	permanently	increases.	To	publish
source	code	and	thereby	provide	insight	into	internals	is	often	already
motivation	enough	to	increase	the	quality.
The	documentation	allows	to	immediately	start	to	use	the	code	without	a
need	to	directly	communicate	with	the	developers.	Without	a	good
documentation	open	source	projects	hardly	find	enough	users	or	additional
developers	since	getting	started	would	be	too	hard.
There	is	a	coordinated	development	with	a	bug	tracker	and	a	process	for
accepting	code	changes	introduced	by	external	developers.	Therefore	errors
and	their	fixes	can	be	tracked.	In	addition,	it	is	clear	how	changes	from	the
outside	can	be	incorporated	into	the	code	basis.
Moreover,	in	case	of	a	new	version	of	the	open	source	library	it	is	not
necessary	for	all	users	to	use	the	new	version.	The	dependencies	in	regards
to	the	library	are	not	so	pronounced	that	a	deployment	dependency	ensues.
Finally,	there	are	clear	rules	how	one’s	own	supplements	can	be
incorporated	into	the	open	source	library.

In	the	end	the	difference	between	a	shared	library	and	an	open	source	project	is
mainly	a	higher	quality	in	regards	to	different	aspects.	Besides	there	is	also	an
organizational	aspect:	There	is	a	team	which	takes	care	of	the	open	source

project.	It	directs	the	project	and	keeps	developing	it.	This	team	does	not
necessarily	make	all	changes,	but	it	coordinates	them.	Ideally,	the	team	has
members	from	different	organizations	and	projects	so	that	the	open	source	project
is	developed	under	different	view	points	and	in	the	context	of	different	use	cases.

Reuse	as	Open	Source

With	open	source	projects	as	role	models	in	mind	there	are	different	options	for
reusable	code	in	a	Microservices	project:

The	organization	around	reusable	libraries	is	structured	like	in	an	open
source	project.	There	are	employees	responsible	for	the	continued	code
development,	the	consolidation	of	requirements	and	for	incorporating	the
changes	of	other	employees.	The	team	members	ideally	come	from	different
Microservice	teams.
The	reusable	code	turns	into	a	real	open	source	project.	Developers	outside
of	the	organization	can	use	and	extend	the	project.

Both	decisions	can	result	into	a	significant	investment	since	markedly	more	effort
has	to	go	into	quality	and	documentation	etc.	Besides,	the	employees	working	on
the	project	have	to	get	enough	freedom	to	do	so	in	their	teams.	The	teams	can
control	the	prioritization	in	the	open	source	project	by	only	making	their	members
available	for	certain	tasks.	Due	to	the	large	investment	and	potential	problems
with	prioritization	the	decision	to	establish	an	open	source	project	should	be	well
considered.	The	idea	itself	is	not	new	–	experiences	in	this	area	have	already
been	collected	for	quite	some	time.

If	the	investment	is	very	high,	it	means	that	the	code	is	hardly	reusable	for	the
moment	and	using	the	code	in	its	current	state	causes	quite	some	effort.	Probably
the	code	is	not	only	hard	to	reuse,	but	hard	to	use	at	all.	The	question	is	why	team
members	would	accept	such	a	bad	code	quality.	Investing	into	code	quality	in
order	to	make	the	code	reusable	can	pay	off	already	by	reusing	it	just	once.

At	first	glance	it	does	not	appear	very	sensible	to	make	code	available	to	external
developers.	This	requires	that	code	quality	and	documentation	are	of	high	enough
quality	for	external	developers	to	be	able	to	use	the	code	without	direct	contact	to
the	developers	of	the	open	source	project.	Only	the	external	developers	seem	to
profit	from	this	approach	as	they	get	good	code	for	free.

However,	a	real	open	source	project	has	a	number	of	advantages:

http://dirkriehle.com/2015/05/20/inner-source-in-platform-based-%0Aproduct-engineering/

External	developers	find	weak	spots	by	using	the	code.	Besides,	they	will
use	the	code	in	different	projects	so	that	it	gets	more	generalized.	This	will
improve	quality	as	well	as	documentation.
Maybe	external	developers	contribute	to	the	further	development	of	the	code.
However,	this	is	rather	the	exception	than	the	norm.	But	having	external
feedback	via	bug	reports	and	requests	for	new	features	can	already	represent
a	significant	advantage.
Running	open	source	projects	is	great	marketing	for	technical	competence.
This	can	be	useful	for	attracting	employees	as	well	as	customers.	Important
is	the	extent	of	the	project.	If	it	is	only	a	simple	supplement	of	an	existing
open	source	project,	the	investment	can	be	manageable.	An	entirely	new
open	source	framework	is	a	very	different	topic.

Blueprints,	i.e.	documentations	for	certain	approaches,	represent	elements	which
are	fairly	easy	to	reuse.	This	can	be	elements	of	macro	architecture	like	for
instance	a	document	detailing	the	correct	approach	for	logging.	Likewise	there	can
be	templates	which	contain	all	necessary	components	of	a	Microservice	including
a	code	skeleton,	a	build	script	and	a	Continuous	Delivery	Pipeline.	Such	artifacts
can	rapidly	be	written	and	are	immediately	useful.

Try	and	Experiment

Maybe	you	have	already	previously	used	your	own	technical	libraries	in	projects	or	even	developed
some	yourself.	Try	to	estimate	how	large	the	expenditure	would	be	to	turn	these	libraries	into	real
open	source	libraries.	Apart	from	a	good	code	quality	this	necessitates	also	documentation	about	the
use	and	the	extension	of	the	code.	Besides,	there	have	to	be	a	bug	tracker	and	forums.	How	easy
would	it	be	to	reuse	it	in	the	project	itself?	How	high	would	be	the	quality	of	the	library?

13.8	Microservices	Without	Changing	the	Organization?
Microservices	are	more	than	just	an	approach	for	software	architecture.	They
have	pronounced	effects	on	organization.	Changes	to	the	organization	are	often
very	difficult.	Therefore	the	question	arises	whether	Microservices	can	be
implemented	without	changing	the	organization.

Microservices	Without	Changing	the	Organization?

Microservices	allow	for	independent	teams.	The	domain-focused	teams	are
responsible	for	one	or	multiple	Microservices	–	this	includes	ideally	their

development	as	well	as	operations.	Theoretically	it	is	possible	to	implement
Microservices	without	dividing	developers	into	domain-focused	teams.	In	that
case	the	developers	could	modify	each	Microservice	–	an	extension	of	the	ideas
presented	in	section	13.2.	It	would	even	be	possible	that	technically	focused
teams	work	on	Microservices	which	are	split	according	to	domain-based	criteria.
In	this	scenario	there	would	be	a	UI,	a	middle	tier	and	a	database	team	which
work	on	domain	Microservices	such	as	order	process	or	registration.	However,	a
number	of	advantages	usually	associated	with	Microservices	cannot	be	exploited
anymore	in	that	case.	Firstly,	it	is	not	possible	anymore	to	scale	the	agile
processes	via	Microservices.	Secondly,	it	will	be	necessary	to	restrict	the
technology	freedom	since	the	teams	will	not	be	able	to	handle	the	different
Microservices	if	they	all	employ	different	technologies.	Besides,	each	team	can
modify	each	Microservice.	This	entails	the	danger	that	though	a	distributed	system
is	created	there	are	dependencies	which	prevent	the	independent	development	of
individual	Microservices.	The	necessity	for	independent	Microservices	is
obliterated	because	a	team	can	change	multiple	Microservices	together	and
therefore	can	handle	also	Microservices	having	numerous	dependencies.
However,	even	under	these	conditions	sustainable	development,	an	easier	start
with	Continuous	Delivery,	independent	scaling	of	individual	Microservices	or	a
simple	handling	of	legacy	systems	can	still	be	implemented	because	the
deployment	units	are	smaller.

Evaluation

To	put	it	clearly:	Introducing	Microservices	without	creating	domain-focused
teams	does	not	lead	to	the	main	benefits	meant	to	be	derived	from	Microservices.
It	is	always	problematic	to	implement	only	some	parts	of	a	certain	approach	as
only	the	synergies	between	the	different	parts	will	generate	the	overall	value.
Although	implementing	Microservices	without	domain-focused	teams	is	a
possible	option	–	it	is	for	sure	not	recommended.

Departments

As	already	discussed	in	section	13.6,	the	Microservice	structure	should	ideally
extend	to	the	departments.	However,	in	reality	this	is	sometimes	hard	to	achieve
since	the	Microservice	architecture	often	deviates	too	much	from	the
organizational	structure	of	the	departments.	It	is	unlikely	that	the	organization	of
the	departments	will	adapt	to	the	distribution	into	Microservices.	When	the
distribution	of	the	Microservice	cannot	be	adjusted,	the	respective	Product
Owners	have	to	take	care	of	prioritization	and	coordinate	the	wishes	of	the
departments,	which	concern	multiple	Microservices,	in	such	a	way	that	all

requirements	are	unambiguously	prioritized	for	the	teams.	If	this	is	not	possible,	a
Collective	Code	Ownership	approach	(section	13.2)	can	limit	the	problem.	In	this
case	the	Product	Owner	and	his/her	team	can	also	modify	Microservices	which	do
not	really	belong	to	their	sphere	of	influence.	This	can	be	the	better	alternative	in
contrast	to	a	coordination	across	teams	–	however	both	solutions	are	not	optimal.

Operations

In	many	organizations	there	is	a	separate	team	for	operations.	The	teams
responsible	for	the	Microservices	should	also	take	care	of	the	operations	of	their
Microservices	following	the	principle	of	DevOps.	However,	as	discussed	in
section	13.5,	it	is	not	a	strict	requirement	for	Microservices	to	introduce	DevOps.
If	the	separation	between	operations	and	development	is	supposed	to	be
maintained,	operations	has	to	define	the	necessary	standards	for	the	Microservices
in	the	macro	architecture	to	ensure	a	smooth	operations	of	the	system.

Architecture

Often	architecture	and	development	are	likewise	kept	separated.	In	a
Microservices	environment	there	is	the	area	of	macro	architecture	where
architects	make	global	decisions	for	all	teams.	Alternatively,	the	architects	can	be
distributed	to	the	different	teams	and	work	together	with	the	teams.	In	addition,
they	can	found	an	overarching	committee	which	defines	topics	for	macro
architecture.	In	that	case	it	has	to	be	ensured	that	the	architects	really	have	time	for
this	task	and	are	not	completely	busy	with	work	in	their	team.

Try	and	Experiment

What	does	the	organization	of	a	project	you	know	look	like?

Is	there	a	special	organizational	unit	which	takes	care	of	architecture?	How	would	they	fit
into	a	Microservices-based	architecture?
How	is	operations	organized?	How	can	the	organization	of	operations	best	support
Microservices?
How	well	does	the	domain-based	division	fit	to	the	departments?	How	could	it	be	optimized?
Can	a	Product	Owner	with	fitting	task	area	be	assigned	to	each	team?

13.9	Conclusion
Microservices	enable	the	independence	of	teams	in	regards	to	technical	decisions
and	deployments	(section	13.1).	This	allows	the	teams	to	independently

implement	requirements.	In	the	end	this	makes	it	possible	for	numerous	small
teams	to	work	together	on	a	large	project.	This	reduces	the	communication
overhead	between	the	teams.	Since	the	teams	can	deploy	independently,	the
overall	risk	of	the	project	is	reduced.

Ideally	the	teams	should	be	put	together	in	a	way	that	allows	them	to	work
separately	on	different	domain	aspects.	If	this	is	not	possible	or	requires	too	much
coordination	between	the	teams,	Collective	Code	Ownership	can	be	an	alternative
(section	13.2).	In	that	case	each	developer	can	change	all	of	the	code.	Still	one
team	has	the	responsibility	for	each	Microservice.	Changes	to	this	Microservice
have	to	be	coordinated	with	the	responsible	team.

Section	13.3	described	that	Microservices	have	a	macro	architecture	which
comprises	decisions	which	concern	all	Microservices.	In	addition,	there	is	the
micro	architecture	which	can	be	different	for	each	Microservice.	In	the	areas	of
technology,	operations,	domain	architecture	and	testing	there	are	decisions	which
can	either	be	attributed	to	micro	or	macro	architecture.	Each	project	has	the
choice	to	delegate	them	to	teams	(micro	architecture)	or	to	centrally	define	them
(macro	architecture).	Delegating	into	teams	is	in	line	with	the	objective	to	achieve
a	large	degree	of	independence	–	and	is	therefore	often	the	better	option.	A
separate	architecture	team	can	define	the	macro	architecture	–	alternatively,	the
responsible	team	is	assembled	from	members	of	the	different	Microservice	teams.

Responsibility	for	the	macro	architecture	is	closely	linked	to	a	concept	for
technical	leadership	(section	13.4):	Less	macro	architecture	means	more
responsibility	for	the	Microservice	teams	and	less	responsibility	for	the	central
architecture	team.

Though	Microservices	profit	from	merging	operations	and	development	to
DevOps	(section	13.5),	it	is	not	strictly	required	to	introduce	DevOps	to	do
Microservices.	If	DevOps	is	not	possible	or	desired,	operations	can	define
guidelines	in	the	context	of	macro	architecture	to	unify	certain	aspects	in	order	to
ensure	a	smooth	operations	of	the	Microservice-based	system.

Microservices	should	always	implement	their	own	separate	requirements.
Therefore	it	is	best	when	each	Microservice	can	be	assigned	to	a	certain
department	on	the	business	side	(section	13.6).	If	this	is	not	possible,	the	Product
Owners	have	to	coordinate	the	requirements	coming	from	different	departments	in
such	a	way	that	each	Microservice	has	clearly	prioritized	requirements.	When

Collective	Code	Ownership	is	used,	a	Product	Owner	and	his/her	team	can	also
change	Microservices	of	other	teams	–	which	can	limit	the	communication
overhead.	Instead	of	coordinating	priorities,	a	team	will	introduce	the	changes
which	are	necessary	for	a	new	feature	by	itself	–	even	if	they	concern	different
Microservices.	The	team	responsible	for	the	modified	Microservice	can	review
the	introduced	changes	and	adjust	them	if	necessary.

Code	can	be	reused	in	a	Microservices	project	if	the	code	is	treated	like	an	open
source	project	(section	13.7).	An	internal	project	can	be	handled	like	an	internal
open	source	project	–	or	can	in	fact	be	turned	into	a	public	open	source	project.	It
has	to	be	considered	that	the	effort	for	a	real	open	source	project	is	high.
Therefore,	it	can	be	more	efficient	not	to	reuse	code.	Besides,	the	developers	of
the	open	source	project	have	to	prioritize	domain	requirements	versus	changes	to
the	open	source	project	which	can	be	a	difficult	decision	at	times.

Section	13.8	discussed	that	an	introduction	of	Microservices	without	changes	to
the	organizational	structure	at	the	development	level	does	not	work	in	real	life.
When	there	are	no	domain-focused	teams	which	can	develop	certain	domain
aspects	independently	of	other	teams,	it	is	practically	impossible	to	develop
multiple	features	in	parallel	and	thus	to	bring	more	features	to	the	market	within
the	same	time.	However,	this	is	just	what	Microservices	were	meant	to	achieve.
Sustainable	development,	an	easy	introduction	of	Continuous	Delivery,
independent	scaling	of	individual	Microservices	or	a	simple	handling	of	legacy
systems	are	still	possible.	Operations	and	an	architecture	team	can	define	the
macro	architecture	so	that	in	this	area	changes	to	the	organizational	structure	are
not	strictly	required.	Ideally,	the	requirements	of	the	departments	are	always
reflected	by	one	Microservice.	If	that	is	not	possible,	the	Product	Owners	have	to
coordinate	and	prioritize	the	required	changes.

Essential	Points

Microservices	have	significant	effects	on	the	organization.	Independent	small
teams	which	together	work	on	a	large	project	are	an	important	advantage	of
Microservices.
Viewing	the	organization	as	part	of	the	architecture	is	an	essential	innovation
of	Microservices.
A	combination	of	DevOps	and	Microservices	is	advantageous,	but	not
obligatory.

Part	IV:	Technologies

This	part	of	the	book	shows	how	Microservices	can	be	implemented	with
concrete	technologies.	Chapter	14	contains	a	complete	example	for	a
Microservices-architecture	based	on	Java,	Spring,	Spring	Boot,	Spring	Cloud,	the
Netflix	stack	and	Docker.	The	example	is	a	good	starting	point	for	your	own
implementation	or	experiments.	Many	of	the	technological	challenges	discussed	in
Part	3	are	solved	in	this	part	with	the	aid	of	concrete	technologies	â€“	for	instance
build,	deployment,	services	discovery,	communication,	load	balancing	and	tests.

Even	smaller	than	Microservices	are	the	Nanoservices	from	chapter	15.	They
require	special	technologies	and	a	number	of	compromises.	Therefore	the	chapter
introduces	technologies	which	can	implement	very	small	services	i.e.	Amazon
Lambda	for	JavaScript	and	Java,	OSGi	for	Java,	Java	EE,	Vert.x	on	the	JVM
(Java	Virtual	Machine)	with	support	for	languages	like	Java,	Scala,	Clojure,
Groovy,	Ceylon,	JavaScript,	Ruby	or	Python.	The	programming	language	Erlang
likewise	enables	very	small	services,	but	is	also	able	to	integrate	other	systems.
Seneca	is	a	JavaScript	framework	specialized	in	the	implementation	of
Nanoservices.

At	the	close	of	the	book	chapter	16	shows	what	can	be	achieved	with
Microservices.

14	Example	for	a	Microservices-based
Architecture

This	chapter	provides	an	example	for	an	implementation	of	a	Microservices-
based	architecture.	It	aims	at	demonstrating	concrete	technologies	in	order	to	lay
the	foundation	for	experiments.	The	example	application	has	a	very	simple	domain
architecture	containing	a	few	compromises.	Section	14.1	deals	with	this	topic	in
detail.

For	a	real	system	with	a	comparable	low	complexity	as	the	presented	example
application	an	approach	without	Microservices	would	be	better	suited.	However,
the	low	complexity	makes	the	example	application	easy	to	understand	and	simple
to	extend.	Some	aspects	of	a	Microservice	environment,	such	as	security,
documentation,	monitoring	or	logging,	are	not	illustrated	in	the	example
application	–	but	these	aspects	can	be	relatively	easily	addressed	with	some
experiments.

Section	14.2	explains	the	technology	stack	of	the	example	application.	The	build
tools	are	described	in	section	14.3.	Section	14.4	deals	with	Docker	as	technology
for	the	deployment.	Docker	needs	to	run	in	a	Linux	environment.	Section	14.5
describes	Vagrant	as	a	tool	for	generating	such	environments.	Section	14.6
introduces	Docker	Machine	as	alternative	tool	for	the	generation	of	a	Docker
environment,	which	can	be	combined	with	Docker	Compose	for	the	coordination
of	several	Docker	Containers	(section	14.7).	The	implementation	of	Service
Discovery	is	discussed	in	section	14.8.	The	communication	between	the
Microservices	and	the	user	interface	is	the	main	topic	of	section	14.9.	Thanks	to
Resilience	other	Microservices	are	not	affected	if	a	single	Microservice	fails.	In
the	example	application	resilience	is	implemented	with	Hystrix	(section	14.10).
Load	Balancing	(section	14.11),	which	can	distribute	the	load	onto	several
instances	of	a	Microservice,	is	closely	related	to	that.	Possibilities	for	the
integration	of	Non-Java-technologies	are	detailed	in	section	14.12,	and	testing	is
discussed	in	section	14.13.

The	code	of	the	example	application	can	be	found	at
https://github.com/ewolff/microservice.	It	is	Apache-licensed,	and	can,

https://github.com/ewolff/microservice

accordingly,	be	used	and	extended	freely	for	any	purpose.

14.1	Domain	Architecture
The	example	application	has	a	simple	web	interface,	with	which	users	can	submit
orders.	There	are	three	Microservices	(Fig.	69):

Catalog	keeps	track	of	products.	Items	can	be	added	or	deleted.
Customer	performs	the	same	task	in	regards	to	customers:	It	can	register
new	customers	or	delete	existing	ones.
Order	cannot	only	show	orders,	but	also	create	new	orders.

Fig.	69:	Architecture	of	the	example	application

For	the	orders	the	Microservice	“Order”	needs	access	to	the	two	other
Microservices,	“Customer”	and	“Catalog”.	The	communication	is	achieved	via
REST.	However,	this	interface	is	only	meant	for	the	internal	communication
between	the	Microservices.	The	user	can	interact	with	all	three	Microservices	via
the	HTML-/HTTP-interface.

Separate	Data	Storages

The	data	storages	of	the	three	Microservices	are	completely	separate.	Only	the
respective	Microservice	knows	the	information	about	the	business	objects.	The
Microservice	“Order”	saves	only	the	primary	keys	of	the	items	and	customers,
which	are	necessary	for	the	access	via	the	REST	interface.	A	real	system	should
rather	use	artificial	keys	as	the	internal	primary	keys	otherwise	get	visible	to	the
outside.	These	are	internal	details	of	the	data	storage	that	should	be	hidden.	To
expose	the	primary	keys,	the	class	SpringRestDataConfig	within	the
Microservices	configures	Spring	Data	Rest	accordingly.

Lots	of	Communication

Whenever	an	order	needs	to	be	shown,	the	Microservice	“Customer”	is	called	for
the	customer	data	and	the	Microservice	“Catalog”	for	each	line	of	the	order	in
order	to	determine	the	price	of	the	item.	This	can	have	a	negative	influence	on	the
response	times	of	the	application	as	the	display	of	the	order	cannot	take	place
before	all	requests	have	been	answered	by	the	other	Microservices.	As	the
requests	to	the	other	services	take	place	synchronously	and	sequentially,	latencies
will	add	up.	This	problem	can	be	solved	by	using	asynchronous	parallel	requests.

In	addition	a	lot	of	computing	power	is	needed	to	marshal	the	data	for	sending	and
receiving.	This	is	acceptable	in	case	of	such	a	small	example	application.	When
such	an	application	is	supposed	to	run	in	production,	alternatives	have	to	be
considered.

This	problem	can	for	instance	be	solved	by	caching.	This	is	relatively	easy	as
customer	data	will	not	change	frequently.	Items	can	change	more	often	–	still,	by
far	not	so	fast	that	caching	would	pose	a	problem.	Only	the	amount	of	data	can
interfere	with	this	approach.	The	use	of	Microservices	has	the	advantage	that	such
a	cache	can	be	implemented	relatively	simply	at	the	interface	of	the
Microservices,	or	even	at	the	level	of	HTTP,	if	this	protocol	is	used.	An	HTTP
Cache,	like	the	one	used	for	websites,	can	be	added	to	REST	Services	in	a
transparent	manner	and	without	much	programming	effort.

Bounded	Context

Caching	will	solve	the	problem	of	too	long	response	times	technically.	However,
very	long	response	times	can	also	be	a	sign	for	a	fundamental	problem.	Section
4.3	argued	that	a	Microservice	should	contain	a	Bounded	Context.	A	specific
domain	model	is	only	valid	in	a	Bounded	Context.	The	modularization	into
Microservices	in	this	example	contradicts	this	idea:	The	domain	model	is	used	to
modularize	the	system	into	the	Microservices	“Order”	for	orders,	“Catalog”	for

items	and	“Customer”	for	customers.	In	principle	the	data	of	these	entities	should
be	modularized	in	different	Bounded	Contexts.

The	described	modularization	implements	in	spite	of	low	domain	complexity	a
system	consisting	of	three	Microservices.	In	this	manner	the	example	application
is	easy	to	understand	while	still	having	several	Microservices	and	demonstrating
the	communication	between	Microservices.	In	a	real	system	the	Microservice
“Order”	can	also	handle	information	about	the	items	that	is	relevant	for	the	order
process	such	as	the	price.	If	necessary,	the	service	can	replicate	the	data	from
another	Microservice	into	its	own	database	in	order	to	access	it	efficiently.	This
is	an	alternative	to	the	aforementioned	caching.	There	are	different	possibilities
how	the	domain	models	can	be	modularized	into	the	different	Bounded	Contexts
“Order”	and	“Customer”	resp.	“Catalog”.

This	design	can	cause	errors:	When	an	order	has	been	put	into	the	system	and
afterwards	the	price	of	the	item	is	changed,	the	price	of	the	order	changes	as	well
–	that	should	not	happen.	In	case	the	item	is	deleted,	there	is	even	an	error	when
displaying	the	order.	In	principle	the	information	concerning	the	item	and	the
customer	should	become	part	of	the	order.	In	that	case	the	historical	data	of	the
orders	including	customer	and	item	data	would	be	transferred	into	the	service
“Order”.

Don’t	Modularize	Microservices	by	Data!

It	is	important	to	understand	the	problem	inherent	in	architecting	a	Microservices
system	by	domain	model.	Often	the	task	of	a	global	architecture	is	misunderstood:
The	team	designs	a	domain	model,	which	comprises	for	instance	objects	such	as
customers,	order	and	items.	Based	on	this	model	Microservices	are	defined.	That
is	how	the	modularization	into	Microservices	could	have	come	about	in	the
example	application,	resulting	in	a	huge	amount	of	communication.	A
modularization	based	on	processes	such	as	ordering,	customer	registration	and
product	search	might	be	more	advantageous.	Each	process	could	be	a	Bounded
Context	that	has	its	own	domain	model	for	the	most	important	domain	objects.	For
product	search	the	categories	of	items	might	be	the	most	relevant	while	for	the
ordering	process	data	like	weight	and	size	might	matter	more.

The	modularization	by	data	can	also	be	advantageous	in	a	real	system.	When	the
Microservice	“Order”	gets	too	big	in	combination	with	the	handling	of	customer
and	product	data,	it	is	sensible	to	modularize	data	handling.	In	addition	the	data
can	be	used	by	other	Microservices.	When	devising	the	architecture	for	a	system,

there	is	rarely	a	single	right	way	of	doing	things.	The	best	approach	depends	on
the	system	and	the	properties	the	system	should	have.

14.2	Basic	Technologies
Microservices	in	the	example	application	are	implemented	with	Java.	Basic
functionalities	for	the	example	application	are	provided	by	the	Spring	Framework.
This	framework	offers	not	only	Dependency	Injection,	but	also	a	Web-Framework,
which	allows	for	the	implementation	of	REST-based	services.

HSQL	Database

The	database	HSQLDB	handles	and	stores	data.	It	is	an	In-Memory	database,
which	is	written	in	Java.	The	database	stores	the	data	only	in	RAM	so	that	all	data
are	lost	upon	restarting	the	application.	In	line	with	this,	this	database	is	not	really
suited	for	production	use,	even	if	it	can	write	data	to	a	hard	disk.	On	the	other
hand	it	is	not	necessary	to	install	an	additional	database	server,	which	keeps	the
example	application	easy.	The	database	runs	in	the	respective	Java	application.

Spring	Data	REST

The	Microservices	use	Spring	Data	REST	in	order	to	provide	the	domain	objects
with	little	effort	via	REST	and	to	write	them	into	the	database.	Handing	objects
out	directly	means	that	the	internal	data	representation	leaks	into	the	interface
between	the	services.	Changing	the	data	structures	is	very	difficult	as	the	clients
need	to	be	adjusted	as	well.	However,	Spring	Data	REST	can	hide	certain	data
elements	and	can	be	configured	flexibly	so	that	the	tight	coupling	between	the
internal	model	and	the	interface	can	be	decoupled	if	necessary.

Spring	Boot

Spring	Boot	facilitates	Spring	further.	Spring	Boot	renders	the	generation	of	a
Spring	system	very	easy:	With	Spring	Boot	Starters	predefined	packages	are
available,	which	contain	everything	that	is	necessary	for	a	certain	type	of
application.	Spring	Boot	can	generate	WAR	files,	which	can	be	installed	on	a
Java	application	or	web	server.	In	addition	it	is	possible	to	run	the	application
without	an	application	or	web	server.	The	result	of	the	build	is	a	JAR	file	in	that
case,	which	can	be	run	with	a	Java	Runtime	Environment	(JRE).	The	JAR	file
contains	everything	for	running	the	application	and	also	the	necessary	code	to	deal
with	HTTP	requests.	This	approach	is	by	far	less	demanding	and	simpler	than	the
use	of	an	application	server	https://jaxenter.com/java-application-servers-dead-
112186.html.

http://projects.spring.io/spring-framework/
http://projects.spring.io/spring-data-rest/
http://projects.spring.io/spring-boot/
https://jaxenter.com/java-application-servers-dead-112186.html

A	simple	example	for	a	Spring	Boot	application	is	shown	in	Listing	1.	The	main
program	main	hands	the	control	over	to	Spring	Boot.	The	class	is	passed	in	as	a
parameter	so	that	the	application	can	be	called.	The	annotation
@SpringBootApplication	makes	sure	that	Spring	Boot	generates	a	suitable
environment.	For	example	a	web	server	is	started,	and	an	environment	for	a
Spring	web	application	is	generated	as	the	application	is	a	web	application.
Because	of	@RestController	the	Spring	Framework	instantiates	the	class	and
calls	methods	for	the	processing	of	REST	requests.	@RequestMapping	shows
which	method	is	supposed	to	handle	which	request.	Upon	requests	of	the	URL	“/”
the	method	hello()	is	called,	which	returns	as	result	the	sign	chain	“hello”	in	the
HTTP	body.	In	a	@RequestMapping	annotation	URL	templates	such	as
“/customer/{id}”	can	be	used.	Then	a	URL	like	“/customer/42”	can	be	cut	into
separate	parts	and	the	42	bound	to	a	parameter	annotated	with	@PathVariable.
As	dependency	the	application	uses	only	spring-boot-starter-web	pulling	all
necessary	libraries	for	the	application	along,	for	instance	the	web	server,	the
Spring	Framework	and	additional	dependent	classes.	Section	14.3	will	discuss
this	topic	in	more	detail.
Listing	1:	A	simple	Spring	Boot	REST	service

	1	@RestController

	2	@SpringBootApplication

	3	public	class	ControllerAndMain	{

	4	

	5		@RequestMapping("/")

	6		public	String	hello()	{

	7			return	"hello";

	8		}

	9	

10		public	static	void	main(String[]	args)	{

11			SpringApplication.run(ControllerAndMain.class,

12			args);

13		}

14	

15	}

Spring	Cloud

Finally	the	example	application	uses	Spring	Cloud	to	gain	easy	access	to	the
Netflix	Stack.	Fig70	shows	an	overview.

http://projects.spring.io/spring-cloud/

Fig.	70:	Overview	of	Spring	Cloud

Spring	Cloud	offers	via	the	Spring	Cloud	Connectors	access	to	the	PaaS	(Platform
as	a	Service)	Heroku	and	Cloud	Foundry.	Spring	Cloud	for	Amazon	Web	Services
offers	an	interface	for	services	from	the	Amazon	Cloud.	This	part	of	Spring	Cloud
is	responsible	for	the	name	of	the	project,	but	not	helpful	for	the	implementation	of
Microservices.

However,	the	other	sub	projects	of	Spring	Cloud	provide	a	very	good	basis	for	the
implementation	of	Microservices:

Spring	Cloud	Security	supports	the	implementation	of	security	mechanisms
as	typically	required	for	Microservices,	among	those	Single	Sign	On	into	a
Microservices	environment.	That	way	a	user	can	use	each	of	the
Microservices	without	having	to	log	in	anew	every	time.	In	addition	the	user
token	is	transferred	automatically	for	all	calls	to	other	REST	services	to
ensure	that	those	calls	can	also	work	with	the	correct	user	rights.
Spring	Cloud	Config	can	be	used	to	centralize	and	dynamically	adjust	the
configuration	of	Microservices.	Section	12.4	already	presented	technologies,
which	configure	Microservices	during	deployment.	To	be	able	to	reproduce
the	state	of	a	server	at	any	time,	a	new	server	should	be	started	with	a	new
Microservice	instance	in	case	of	a	configuration	change	instead	of
dynamically	adjusting	an	existing	server.	If	a	server	is	dynamically	adjusted,
there	is	no	guarantee	that	new	servers	are	generated	with	the	right
configuration	as	they	are	configured	via	a	different	way.	Because	of	these
disadvantages	the	example	application	refrains	from	using	this	technology.
Spring	Cloud	Bus	can	send	dynamic	configuration	changes	for	Spring	Cloud
Config.	Moreover,	the	Microservices	can	communicate	via	Spring	Cloud
Bus.	However,	the	example	application	does	not	use	this	technology	because
Spring	Cloud	Config	is	not	used	and	the	Microservices	communicate	via
REST.
Spring	Cloud	Sleuth	enables	distributed	tracing	with	tools	like	Zipkin	or
Htrace.	It	can	also	use	a	central	log	storage	with	ELK	(see	section	12.2).
Spring	Cloud	Zookeeper	support	Apache	Zookeeper	(see	section	8.8).	This
technology	can	be	used	to	coordinate	and	configure	distributed	services.
Spring	Cloud	Consult	facilitates	Services	Discovery	using	Consul	(see
section	8.9).
Spring	Cloud	Cluster	implements	leader	election	and	stateful	patterns	using
technologies	like	Zookeeper	or	Consul.	It	can	also	used	the	NoSQL	datastore
Redis	or	the	Hazelcast	cache.
Finally	Spring	Cloud	Stream	supports	messaging	using	Redis,	Rabbit	or
Kafka.

Spring	Cloud	Netflix

Spring	Cloud	Netflix	offers	simple	access	to	Netflix	Stack,	which	has	been
especially	designed	for	the	implementation	of	Microservices.	The	following
technologies	are	part	of	this	stack:

Zuul	can	implement	routing	of	requests	to	different	services.
Ribbon	serves	as	Load	Balancer.

Hystrix	assists	with	implementing	resilience	in	Microservices.
Turbine	can	consolidate	monitoring	data	from	different	Hystrix	servers.
Feign	is	an	option	for	an	easier	implementation	of	REST	clients.	It	is	not
limited	to	Microservices.	It	is	not	used	in	the	example	application.
Eureka	can	be	used	for	Service	Discovery.

These	technologies	are	the	ones	that	influence	the	implementation	of	the	example
application	most.

Try	and	Experiment
For	an	introduction	into	Spring	it	is	worthwhile	to	check	out	the	Spring	Guides	at
https://spring.io/guides/.	They	show	in	detail	how	Spring	can	be	used	to	implement	REST	services	or
to	realize	messaging	solutions	via	JMS.	An	introduction	into	Spring	Boot	can	be	found	at
https://spring.io/guides/gs/spring-boot/.	Working	your	way	through	these	guides	provides	you	with	the
necessary	know-how	for	understanding	the	additional	examples	in	this	chapter.

14.3	Build
The	example	project	is	built	with	the	tool	Maven.	The	installation	of	the	tool	is
described	at	https://maven.apache.org/download.cgi.	The	command	mvn	package
in	the	directory	microservice/microservice-demo	can	be	used	to	download	all
dependent	libraries	from	the	Internet	and	to	compile	the	application.

The	configuration	of	the	projects	for	Maven	is	saved	in	files	named	pom.xml.	The
example	project	has	a	Parent-POM	in	the	directory	microservice-demo.	It
contains	the	universal	settings	for	all	modules	and	in	addition	a	list	of	the	example
project	modules.	Each	Microservice	is	such	a	module,	and	some	infrastructure
servers	are	modules	as	well.	The	individual	modules	have	their	own	pom.xml,
which	contains	the	module	name	among	other	information.	In	addition	they	contain
the	dependencies,	i.e.	the	Java	libraries	they	use.
Listing	2:	Part	of	pom.xml	including	dependencies
	1	...

	2	<dependencies>

	3	

	4		<dependency>

	5					<groupId>org.springframework.cloud</groupId>

	6					<artifactId>spring-cloud-starter-eureka</artifactId>

	7			</dependency>

https://spring.io/guides/
https://spring.io/guides/gs/spring-boot/
http://maven.apache.org/
https://maven.apache.org/download.cgi

	8	

	9			<dependency>

10					<groupId>org.springframework.boot</groupId>

11					<artifactId>

12		 		spring-boot-starter-data-jpa

13		 </artifactId>

14			</dependency>

15	...

16	</dependencies>

17	...

Listing	2	shows	a	part	of	a	pom.xml,	which	lists	the	dependencies	of	the	module.
Depending	on	the	nature	of	the	Spring	Cloud	features	the	project	is	using,
additional	entries	have	to	be	added	in	this	part	of	the	pom.xml	usually	with	the
groupId	org.springframework.cloud.

The	build	process	results	in	one	JAR	file	per	Microservice,	which	contains	the
compiled	code,	the	configuration	and	all	necessary	libraries.	Java	can	directly
start	such	JAR	files.	Although	the	Microservices	can	be	accessed	via	HTTP,	they
do	not	have	to	be	deployed	on	an	application	or	web	server.	This	part	of	the
infrastructure	is	also	contained	in	the	JAR	file.

As	the	projects	are	built	with	Maven,	they	can	be	imported	into	all	usual	Java
IDEs	(Integrated	Development	Environment)	for	further	development.	IDEs
simplify	code	changes	tremendously.

Try	and	Experiment

Download	and	Compile	the	Example
Download	the	example	provided	at	https://github.com/ewolff/microservice.	Install	Maven,	see
https://maven.apache.org/download.cgi.	In	the	sub	directory	microservices-demo	execute	the
command	mvn	package .	This	will	build	the	complete	project.

Create	a	Continuous	Integration	Server	for	the	Project
https://github.com/ewolff/user-registration	is	an	example	project	for	a	Continuous	Delivery	project.
This	contains	in	sub	directory	ci-setup	a	setup	for	a	Continuous	Integration	Server	(Jenkins)	with
static	code	analysis	(Sonarqube)	and	Artifactory	for	the	handling	of	binary	artefacts.	Integrate	the
Microservices	project	into	this	infrastructure	so	that	a	new	built	is	triggered	upon	each	change.

The	next	section	(14.4)	will	discuss	Vagrant	in	more	detail.	This	tool	is	used	for	the	Continuous
Integration	Servers.	It	simplifies	the	generation	of	test	environments	greatly.

14.4	Deployment	Using	Docker
Deploying	Microservices	is	very	easy:

Java	has	to	be	installed	on	the	server.
The	JAR	file,	which	resulted	from	the	build,	has	to	be	copied	to	the	server.
A	separate	configuration	file	application.properties	can	be	created	for
further	configurations.	It	is	automatically	read	out	by	Spring	Boot	and	can	be
used	for	additional	configurations.	An	application.properties	containing
default	values	is	comprised	in	the	JAR	file.
Finally	a	Java	process	has	to	start	the	application	out	of	the	JAR	file.

Each	Microservice	starts	within	its	own	Docker	Container.	As	discussed	in
section	12.6,	Docker	uses	Linux	Containers.	In	this	manner	the	Microservice
cannot	interfere	with	processes	in	other	Docker	Containers	and	has	a	completely
independent	file	system.	The	Docker	Image	is	the	basis	for	this	file	system.
However,	all	Docker	Containers	share	the	Linux	Kernel.	This	saves	resources.	In
comparison	to	an	operating	system	process	a	Docker	Container	has	virtually	no
additional	overhead.
Listing	3:	Dockerfile	for	a	Microservice	used	in	the	example	application

https://github.com/ewolff/microservice
https://maven.apache.org/download.cgi
https://github.com/ewolff/user-registration

1	FROM	java

2	CMD	/usr/bin/java	-Xmx400m	-Xms400m	\

3			-jar	/microservice-demo/microservice-demo-catalog\

4			/target/microservice-demo-catalog-0.0.1-SNAPSHOT.jar

5	EXPOSE	8080

A	file	called	Dockerfile	defines	the	composition	of	a	Docker	Container.	Listing	3
shows	a	Dockerfile	for	a	Microservice	used	in	the	example	application:

FROM	determines	the	base	image	used	by	the	Docker	Container.	A
Dockerfile	for	the	image	java	is	contained	in	the	example	project.	It
generates	a	minimal	Docker	image	with	only	a	JVM	installed.
CMD	defines	the	command	executed	at	the	start	of	the	Docker	Container.	In
the	case	of	this	example	it	is	a	simple	command	line.	This	line	starts	a	Java
application	out	of	the	JAR	file	generated	by	the	build.
Docker	Containers	are	able	to	communicate	with	the	outside	via	network
ports.	EXPOSE	determines	which	ports	are	accessible	from	outside.	In	the
example	the	application	receives	HTTP	requests	via	port	8080.

14.5	Vagrant
Docker	runs	exclusively	under	Linux	as	it	uses	Linux	Containers.	However,	there
are	solutions	for	other	operating	systems,	which	start	a	virtual	Linux	machine	and
thus	allow	the	use	of	Docker.	This	is	largely	transparent	so	that	the	use	is
practically	identical	to	the	use	under	Linux.	But	in	addition	all	Docker	Containers
need	to	be	built	and	started.

To	make	installing	and	handling	Docker	as	easy	as	possible,	the	example
application	uses	Vagrant.	Fig.	71	shows	how	Vagrant	works:

Fig.	71:	How	Vagrant	works

To	configure	Vagrant	a	single	file	is	necessary,	the	Vagrantfile.	Listing	4	shows	the
Vagrantfile	of	the	example	application:
Listing	4:	Vagrantfile	from	the	example	application

	1	Vagrant.configure("2")	do	|config|

	2			config.vm.box	=	"	ubuntu/trusty64"

	3			config.vm.synced_folder	"../microservice-demo",

	4					"/microservice-demo",	create:	true

	5				config.vm.network	"forwarded_port",

	6						guest:	8080,	host:	18080

	7				config.vm.network	"forwarded_port",

	8						guest:	8761,	host:	18761

	9				config.vm.network	"forwarded_port",

10		 	guest:	8989,	host:	18989

11	

12			config.vm.provision	"docker"	do	|d|

13					d.build_image	"--tag=java	/vagrant/java"

14					d.build_image	"--tag=eureka	/vagrant/eureka"

15					d.build_image

16		 		"--tag=customer-app	/vagrant/customer-app"

17					d.build_image

18		 		"--tag=catalog-app	/vagrant/catalog-app"

19					d.build_image	"--tag=order-app	/vagrant/order-app"

20					d.build_image	"--tag=turbine	/vagrant/turbine"

21					d.build_image	"--tag=zuul	/vagrant/zuul"

22			end				

23			config.vm.provision	"docker",	run:	"always"	do	|d|

24					d.run	"eureka",

25							args:	"-p	8761:8761"+

26		 			"	-v	/microservice-demo:/microservice-demo"

27					d.run	"customer-app",

28							args:	"-v	/microservice-demo:/microservice-demo"+

29		 			"	--link	eureka:eureka"

30					d.run	"catalog-app",

31							args:	"-v	/microservice-demo:/microservice-demo"+

32		 			"	--link	eureka:eureka"

33					d.run	"order-app",

34							args:	"-v	/microservice-demo:/microservice-demo"+

35		 			"	--link	eureka:eureka"

36					d.run	"zuul",

37							args:	"-v	/microservice-demo:/microservice-demo"+

38		 			"	-p	8080:8080		--link	eureka:eureka"

39					d.run	"turbine",

40							args:	"-v	/microservice-demo:/microservice-demo"+

41		 			"	--link	eureka:eureka"

42			end

43	

44	end

config.vm.box	selects	a	base	image	–	in	this	case	a	Ubuntu-14.04	Linux
installation	(Trusty	Tahr).
config.vm.synced_folder	mounts	the	directory	containing	the	results	of	the
Maven	build	into	the	virtual	machine.	In	this	manner	the	Docker	Containers
can	directly	make	use	of	the	build	results.
The	ports	of	the	virtual	machine	can	be	linked	to	the	ports	of	the	computer
running	the	virtual	machine.	The	config.vm.network	settings	can	be	used	for
that.	In	this	manner	applications	in	the	Vagrant	virtual	machine	become
accessible	as	if	running	directly	on	the	computer.
config.vm.provision	starts	the	part	of	the	configuration,	which	deals	with	the
software	provisioning	within	the	virtual	machine.	Docker	serves	as
provisioning	tool	and	is	automatically	installed	within	the	virtual	machine.
Finally	d.build_image	generates	the	Docker	images	using	Dockerfiles.	First
the	base	image	java	is	created.	Images	for	the	three	Microservices	customer-
app,	catalog-app	and	order-app	follow.	The	images	for	the	Netflix
technologies	servers	belong	to	the	infrastructure:	Eureka	for	Service
Discovery,	Turbine	for	monitoring	and	Zuul	for	routing	of	client	requests.
Vagrant	starts	the	individual	images	using	d.run.	This	step	is	not	only
performed	when	provisioning	the	virtual	machine,	but	also	when	the	system
is	started	anew	(run:	“always”).	The	option	–v	mounts	the	directory
/microservice-demo	into	each	Docker	Container	so	that	the	Docker
Container	can	directly	execute	the	compiled	code.	-p	links	a	port	of	the
Docker	Container	to	a	port	of	virtual	machine.	This	link	allows	to	access	the
Docker	Container	Eureka	under	the	host	name	eureka	from	within	the	other
Docker	Containers.

In	the	Vagrant	setup	the	JAR	files	containing	the	application	code	are	not
contained	in	the	Docker	image.	The	directory	/microservice-demo	does	not
belong	to	the	Docker	Container.	It	resides	on	the	host	running	the	Docker
Containers	i.e.	the	Vagrant	VM.	It	would	also	be	possible	to	copy	these	files	into
the	Docker	image.	Afterwards	the	resulting	image	could	be	copied	on	a	repository
server	and	downloaded	from	there.	Then	the	Docker	Container	would	contain	all
necessary	files	to	run	the	Microservice.	A	deployment	in	production	then	only
needs	to	start	the	Docker	images	on	a	production	server.	This	approach	is	used	in
the	Docker	Machine	setup	(see	section	14.6).

Networking	in	the	Example	Application

Fig.	72	shows	how	the	individual	Microservices	of	the	example	application
communicate	via	the	network.	All	Docker	Containers	are	accessible	in	the
network	via	IP	addresses	from	the	172.17.0.0/16	range.	Docker	generates	such	a
network	automatically	and	connects	all	Docker	Containers	to	the	network.	Within
the	network	all	ports	are	accessible	that	are	defined	in	the	Dockerfiles	using
EXPOSE.	The	Vagrant	virtual	machine	is	also	connected	to	this	network.	Via	the
Docker	links	(compare	Listing	4)	all	Docker	Containers	know	the	Eureka
container	and	can	access	it	under	the	host	name	eureka.	The	other	Microservices
have	to	be	looked	up	via	Eureka.	All	further	communication	takes	place	via	the	IP
address.

In	addition	the	-p-Option	in	the	d.run	entries	for	the	Docker	Containers	in	Listing
4	has	connected	the	ports	to	the	Vagrant	virtual	machine.	These	Containers	can	be
accessed	via	these	ports	of	the	Vagrant	virtual	machine.	To	reach	them	also	from
the	computer	running	the	Vagrant	virtual	machine	there	is	a	port	mapping,	which
links	the	ports	to	the	local	computer.	This	is	accomplished	via	the
config.vm.network	entries	in	Vagrantfile.	The	port	8080	of	the	Docker	Container
“zuul”	can	for	instance	be	accessed	via	the	port	8080	in	the	Vagrant	virtual
machine.	This	port	can	be	reached	from	the	local	computer	via	the	port	18080.	So
the	URL	http://localhost:18080/	accesses	this	Docker	Container.

Fig.	72:	Network	and	ports	of	the	example	application

Try	and	Experiment

Run	the	Example	Application
The	example	application	does	not	need	much	effort	to	make	it	run.	A	running	example	application
lays	the	foundation	for	the	experiments	described	later	in	this	chapter.

One	remark:	The	Vagrantfile 	defines	how	much	RAM	and	how	many	CPUs	the	virtual	machines
gets.	The	settings	v.memory	and	v.cpus ,	which	are	not	shown	in	the	Listing,	deal	with	this.
Depending	on	the	used	computer,	the	values	should	be	increased	if	a	lot	of	RAM	or	many	CPUs	are
present.	Whenever	the	values	can	be	increased,	they	should	be	elevated	in	order	to	speed	the
application	up.

The	installation	of	Vagrant	is	described	in	http://docs.vagrantup.com/v2/installation/index.html.
Vagrant	needs	a	virtualization	solution	like	VirtualBox.	The	installation	of	VirtualBox	is	explained	at
https://www.virtualbox.org/wiki/Downloads.	Both	tools	are	free.

The	example	can	only	be	started	once	the	code	has	been	compiled.	Instructions	how	to	compile	the
code	can	be	found	in	the	experiment	described	in	section	14.3.	Afterwards	you	can	change	into	the
directory	docker-vagrant	and	start	the	example	demo	using	the	command	vagrant	up.

To	interact	with	the	different	Docker	Containers	you	have	to	log	into	the	virtual	machine	via	the
command	vagrant	ssh.	This	command	has	to	be	executed	within	the	sub	directory	docker-
vagrant.	For	this	to	be	possible	a	ssh	client	has	to	be	installed	on	the	computer.	On	Linux	and	Mac
OS	X	such	a	client	is	usually	already	present.	In	Windows	installing	git	will	bring	an	ssh	client	along
as	described	at	http://git-scm.com/download/win.	Afterwards	vagrant	ssh	should	work.

Investigate	Docker	Containers
Docker	contains	several	useful	commands:

docker	ps 	provides	an	overview	of	the	running	Docker	Containers.
The	command	docker	log	“name	of	Docker	Container”	shows	the	logs.
docker	log	-f	“name	of	Docker	Container”	provides	incessantly	the	up-to-date	log
information	of	the	Container.
docker	kill	“name	of	the	Docke	Container”	terminates	a	Docker	Container.
docker	rm	“name	of	the	Docker	Container”	deletes	all	data.	For	that	all	Containers	first
needs	to	be	stopped.

After	starting	the	application	the	log	files	of	the	individual	Docker	Containers	can	be	looked	at.

http://docs.vagrantup.com/v2/installation/index.html
https://www.virtualbox.org/wiki/Downloads
http://git-scm.com/download/win

Update	Docker	Containers
A	Docker	Container	can	be	terminated	(docker	kill)	and	the	data	of	the	Container	deleted	(docker
rm).	The	commands	have	to	be	executed	inside	the	Vagrant	virtual	machine.	vagrant	provision
starts	the	missing	Docker	Containers	again.	This	command	has	to	be	executed	on	the	host	running
Vagrant.	If	you	want	to	change	the	Docker	Container,	simply	delete	it,	compile	the	code	again	and
generate	the	system	anew	using	vagrant	provision.

Additional	Vagrant	commands:

vagrant	halt	terminates	the	virtual	machine.
vagrant	up	starts	it	again.
vagrant	destroy	destroys	the	virtual	machine	and	all	saved	data.

Store	Data	on	Disk
Right	now	the	Docker	Container	does	not	save	the	data	so	that	it	is	lost	upon	restarting.	The	used
HSQLDB	database	can	also	save	the	data	into	a	file.	To	achieve	that	a	suitable	HSQLDB	URL	has
to	be	used,	see	http://hsqldb.org/doc/guide/dbproperties-chapt.html#dpc_connection_url	.	Spring	Boot
can	read	the	JDBC	URL	out	of	the	application.properties 	file,	see	http://docs.spring.io/spring-
boot/docs/current/reference/html/boot-features-sql.html#boot-features-connect-to-production-
database	.	Now	the	Container	can	be	restarted	without	data	loss.	But	what	happens	if	the	Docker
Container	has	to	be	generated	again?	Docker	can	save	data	also	outside	of	the	Container	itself,
compare	https://docs.docker.com/userguide/dockervolumes/.	These	options	provide	a	good	basis	for
further	experiments.	Also	another	database	than	HSQLDB	can	be	used	such	as	MySQL.	For	that
purpose	another	Docker	Container	has	to	be	installed,	which	contains	the	database.	In	addition	to
adjusting	the	JDBC	URL	a	JDBC	driver	has	to	be	added	to	the	project.

How	is	the	Java	Docker	Image	Built?
The	Docker	file	is	more	complex	than	the	ones	discussed	here.
https://docs.docker.com/reference/builder/	demonstrates	which	commands	are	available	in
Dockerfiles.	Try	to	understand	the	structure	of	the	Dockerfiles.

14.6	Docker	Machine
Vagrant	serves	to	install	environments	on	a	developer	laptop.	In	addition	to
Docker	Vagrant	can	use	e.g.	simple	shell	scripts	for	deployment.	However,	for
production	environments	this	solution	is	unsuitable.	Docker	Machine	is

http://hsqldb.org/doc/guide/dbproperties-chapt.html#dpc_connection_url
http://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-sql.html#boot-features-connect-to-production-database
https://docs.docker.com/userguide/dockervolumes/
https://docs.docker.com/reference/builder/
https://docs.docker.com/machine/

specialized	in	Docker.	It	supports	many	more	virtualization	solutions	as	well	as
some	Cloud	providers.

Fig.	73	demonstrates	how	Docker	Machine	builds	a	Docker	environment:	First,
using	a	virtualization	solution	like	VirtualBox	a	virtual	machine	is	installed.	This
virtual	machine	is	based	on	boot2docker,	a	very	lightweight	Linux	designed
specifically	as	a	running	environment	for	Docker	Containers.	On	that	Docker
Machine	installs	a	current	version	of	Docker.	A	command	like	docker-machine
create	–driver	virtualbox	dev	generates	for	instance	a	new	environment	with	the
name	dev	running	on	a	VirtualBox	computer.

Fig.	73:	Docker	Machine

The	Docker	tool	now	can	communicate	with	this	environment.	The	Docker
command	line	tools	use	a	REST	interface	to	communicate	with	the	Docker	server.
Accordingly,	the	command	line	tool	just	has	to	be	configured	in	a	way	that	allows
it	to	communicate	with	the	server	in	a	suitable	manner.	In	Linux	or	Mac	OS	X	the
command	eval	“$(docker-machine	env	dev)”	is	sufficient	to	configure	the
Docker	appropriately.	For	Windows	PowerShell	the	command	docker-
machine.exe	env	–shell	powershell	dev	must	be	used	and	in	Windows	cmd
docker-machine.exe	env	–shell	cmd	dev	.

Docker	Machine	renders	it	thus	very	easy	to	install	one	or	several	Docker
environments.	All	the	environments	can	be	handled	by	Docker	Machine	and
accessed	by	the	Docker	command	line	tool.	As	Docker	Machine	also	supports
technologies	like	Amazon	Cloud	or	VMware	vSphere,	it	can	be	used	to	generate
production	environments.

Try	and	Experiment
The	example	application	can	also	run	in	an	environment	created	by	Docker	Machine.

The	installation	of	Docker	Machine	is	described	at	https://docs.docker.com/machine/#installation.
Docker	Machine	requires	a	virtualization	solution	like	VirtualBox.	How	to	install	VirtualBox	can	be
found	at	https://www.virtualbox.org/wiki/Downloads.	Using	docker-machine	create	–virtualbox-
memory	“4096”	–driver	virtualbox	dev	a	Docker	environment	called	dev	can	now	be	created
on	a	Virtual	Box.	Without	any	further	configuration	the	storage	space	is	set	to	1	GB,	which	is	not
sufficient	for	a	larger	number	of	Java	Virtual	Machines.

docker-machine 	without	parameters	displays	a	help	text,	and	docker-machine	create 	shows	the
options	for	the	generation	of	a	new	environment.	https://docs.docker.com/machine/get-started-cloud/
demonstrates	how	Docker	Machine	can	be	used	in	a	Cloud.	This	means	that	the	example	application
can	also	easily	be	started	in	a	Cloud	environment.

At	the	end	of	your	experiments	docker-machine	rm	deletes	the	environment

14.7	Docker	Compose
A	Microservice-based	system	comprises	typically	several	Docker	Containers.
These	have	to	be	generated	together	and	need	to	be	put	into	production
simultaneously.

This	can	be	achieved	with	Docker	Compose.	It	enables	the	definition	of	Docker
Containers,	which	each	house	one	service.	YAML	serves	as	format.
Listing	5:	Docker	compose	configuration	for	the	example	application
	1	eureka:

	2			build:	../microservice-demo/microservice-demo-eureka-server

	3			ports:

	4					-	"8761:8761"

	5	customer:

	6			build:	../microservice-demo/microservice-demo-customer

	7			links:

	8				-	eureka

	9	catalog:

10			build:	../microservice-demo/microservice-demo-catalog

11			links:

12				-	eureka

13	order:

14			build:	../microservice-demo/microservice-demo-order

15			links:

16				-	eureka

17	zuul:

18			build:	../microservice-demo/microservice-demo-zuul-server

https://docs.docker.com/machine/#installation
https://www.virtualbox.org/wiki/Downloads
https://docs.docker.com/machine/get-started-cloud/
http://docs.docker.com/compose/

19			links:

20				-	eureka

21			ports:

22					-	"8080:8080"

23	turbine:

24			build:	../microservice-demo/microservice-demo-turbine-server

25			links:

26				-	eureka

27			ports:

28					-	"8989:8989"

Listing	5	shows	the	configuration	of	the	example	application.	It	consists	of	the
different	services.	build	references	the	directory	containing	the	Dockerfile.	The
Dockerfile	is	used	to	generate	the	image	for	the	service.	links	defines	which
additional	Docker	Containers	the	respective	Container	should	be	able	to	access.
All	Containers	can	access	the	Eureka	Container	under	the	name	eureka.	In
contrast	to	the	Vagrant	configuration	there	is	no	Java	base	image,	which	contains
only	a	Java	installation.	This	is	because,	Docker	Compose	supports	only
containers	which	really	offer	a	service.	Therefore	this	base	image	has	to	be
downloaded	from	the	Internet.	Besides,	in	case	of	the	Docker	Compose	containers
the	JAR	files	are	copied	into	the	Docker	images	so	that	the	images	contain
everything	for	starting	the	Microservices.

Fig.	74:	Network	for	Docker	Compose

The	resulting	system	is	very	similar	to	the	Vagrant	system	(Fig.	74).	The	Docker
containers	are	linked	via	their	own	private	network.	From	the	outside	only	Zuul
can	be	accessed	for	the	processing	of	requests	and	Eureka	for	the	dashboard.	The
are	running	directly	on	a	host	that	then	can	be	accessed	from	the	outside.

Using	docker-compose	build	the	system	is	created	based	on	the	Docker	Compose
configuration.	Thus	the	suitable	Images	are	generated.	docker-compose	up	then
starts	the	system.	Docker	Compose	uses	the	same	settings	as	the	Docker	command
line	tool.	So	it	can	also	work	together	with	Docker	Machine.	Thus	it	is	transparent
whether	the	system	is	generated	on	a	local	virtual	machine	or	somewhere	in	the
Cloud.

Try	and	Experiment

Run	the	Example	with	Docker	Compose
The	example	application	possesses	a	suitable	Docker	Compose	configuration.	Upon	the	generation
of	an	environment	with	Docker	Machine	Docker	Compose	can	be	used	to	create	the	Docker
containers.	README.md	in	the	directory	docker	describes	the	necessary	procedure.

Scale	the	Application
Have	a	look	at	the	docker-compose	scale 	command.	It	can	scale	the	environment.	Services	can
be	restarted,	logs	can	be	analyzed	and	finally	stopped.	Once	you	have	started	the	application,	you
can	test	these	functionalities.

Cluster	Environments	for	Docker
Mesos	(http://mesos.apache.org/)	together	with	Mesosphere	(http://mesosphere.com/),	Kubernetes
(http://kubernetes.io/)	or	CoreOS	(http://coreos.com/)	offers	similar	options	as	Docker	Compose	and
Docker	Machine,	however	they	are	meant	for	servers	and	server	clusters.	The	Docker	Compose
and	Docker	Machine	configurations	can	provide	a	good	basis	for	running	the	application	on	these
platforms.

14.8	Service	Discovery
Section	8.9	introduced	the	general	principles	of	Service	Discovery.	The	example
application	uses	Eureka	for	Service	Discovery.

Eureka	is	a	REST-based	server,	which	allows	services	to	register	themselves	so
that	other	services	can	request	their	location	in	the	network.	In	essence,	each
service	can	register	a	URL	under	its	name.	Other	services	can	find	the	URL	by	the
name	of	the	service.	Using	this	URL	other	services	can	then	send	REST	messages
to	this	service.

Eureka	supports	replication	onto	several	servers	and	caches	on	the	client.	This
makes	the	system	fail-safe	against	the	failure	of	individual	Eureka	servers	and
allows	to	answer	requests	rapidly.	Changes	to	data	have	to	be	replicated	to	all

http://mesos.apache.org/
http://mesosphere.com/
http://kubernetes.io/
http://coreos.com/
https://github.com/Netflix/Eureka

servers.	Accordingly,	it	can	take	some	time	till	they	are	really	updated
everywhere.	During	this	time	the	data	is	inconsistent:	Each	server	has	a	different
version	of	the	data.

In	addition	Eureka	supports	Amazon	Web	Services	because	Netflix	uses	it	in	this
environment.	Eureka	can	for	instance	quite	easily	be	combined	with	Amazon’s
scaling.

Eureka	monitors	the	registered	services	and	removes	them	from	the	server	list	if
they	cannot	be	reached	anymore	by	the	Eureka	server.

Eureka	is	the	basis	for	many	other	services	of	the	Netflix	Stack	and	for	Spring
Cloud.	Through	a	uniform	Service	Discovery	other	aspects	such	as	routing	can
easily	be	implemented.

Eureka	Client

For	a	Spring	Boot	application	to	be	able	to	register	with	a	Eureka	server	and	to
find	other	Microservices,	the	application	has	to	be	annotated	with
@EnableDiscoveryClient	or	@EnableEurekaClient.	In	addition	a	dependency
from	spring-cloud-starter-eureka	has	to	be	included	in	the	pom.xml.	The
application	registers	automatically	with	the	Eureka	server	and	can	access	other
Microservices.	The	example	application	accesses	other	Microservices	via	a	load
balancer.	This	is	described	in	detail	in	section	14.11.

Configuration

Configuring	the	application	is	necessary	to	define	for	instance	the	Eureka	server	to
be	used.	The	file	application.properties	(Listing	6)	is	used	for	that.	Spring	Boot
reads	it	out	automatically	in	order	to	configure	the	application.	This	mechanism
can	also	be	used	to	configure	one’s	own	code.	In	the	example	application	the
values	serve	to	configure	the	Eureka	client:

The	first	line	defines	the	Eureka-Server.	The	example	application	uses	the
Docker	link,	which	provides	the	Eureka	server	under	the	host	name	“eureka”.
leaseRenewalIntervalInSeconds	determines	how	often	data	are	updated
between	client	and	server.	As	the	data	have	to	be	held	locally	in	a	cache	on
each	client,	a	new	service	first	needs	to	create	its	own	cache	and	replicate	it
onto	the	server.	Afterwards	the	data	are	replicated	onto	the	clients.	Within	a
test	environment	it	is	important	to	track	system	changes	rapidly	so	that	the
example	application	uses	five	seconds	instead	of	the	preset	value	of	30

seconds.	In	production	with	many	clients	this	value	should	be	increased.
Otherwise	the	updates	of	information	will	use	a	lot	of	resources,	even	though
the	information	remains	essentially	unchanged.
spring.application.name	serves	as	name	for	the	service	during	the
registration	at	Eureka.	During	registration	the	name	is	converted	into	capital
letters.	This	service	would	thus	be	known	by	Eureka	under	the	name
“CUSTOMER”.
There	can	be	several	instances	of	each	service	to	achieve	fail	over	and	load
balancing.	The	instanceId	has	to	be	unique	for	each	instance	of	a	service.
Because	of	that	it	contains	a	random	number,	which	ensures
unambiguousness.
preferIpAddress	makes	sure	that	Microservices	register	with	their	IP
address	and	not	with	their	host	name.	In	a	Docker	environment	host	names
are	unfortunately	not	easily	resolvable	by	other	hosts.	This	problem	is
circumvented	by	the	use	of	IP	addresses.

Listing	6:	Part	of	application.properties 	with	Eureka	configuration

1	eureka.client.serviceUrl.defaultZone=http://eureka:8761/eureka/

2	eureka.instance.leaseRenewalIntervalInSeconds=5

3	spring.application.name=catalog

4	eureka.instance.metadataMap.instanceId=catalog:${random.value}

5	eureka.instance.preferIpAddress=true

Eureka	Server

The	Eureka	server	(Listing	7)	is	a	simple	Spring	Boot	application,	which	turns
into	a	Eureka	server	via	the	@EnableEurekaServer	annotation.	In	addition	the
server	needs	a	dependency	on	spring-cloud-starter-eureka-server.
Listing	7:	Eureka	Server
1	@EnableEurekaServer

2	@EnableAutoConfiguration

3	public	class	EurekaApplication	{

4			public	static	void	main(String[]	args)	{

5					SpringApplication.run(EurekaApplication.class,

6						args);

7			}

8	}

The	Eureka	server	offers	a	dashboard,	which	shows	the	registered	services.	In	the
example	application	this	can	be	found	at	http://localhost:18761/	(Vagrant)	or	on
Docker	host	under	port	8761	(Docker	Compose).	Fig.	75	shows	a	screenshot	of
the	Eureka	Dashboards	for	the	example	application.	The	three	Microservices	and

the	Zuul-Proxy,	which	is	discussed	in	the	next	section,	are	present	on	the
dashboard.

Fig.	75:	Eureka	Dashboard

14.9	Communication
Chapter	9	explained	how	Microservices	communicate	with	each	other	and	can	be
integrated.	The	example	application	uses	REST	for	internal	communication.	The
REST	end	points	can	be	contacted	from	outside,	however	the	web	interface	the
system	offers	is	of	far	greater	importance.	The	REST	implementation	uses
HATEOAS.	The	list	containing	all	orders	for	instance	contains	links	to	the
individual	orders.	This	is	automatically	implemented	by	Spring	Data	REST.
However,	there	are	no	links	to	the	customer	and	the	items	of	the	order.

Using	HATEOAS	can	go	further:	The	JSON	can	contain	a	link	to	an	HTML
document	for	each	order	–	and	vice	versa.	In	this	way	a	JSON-REST-based
service	can	generate	links	to	HTML	pages	to	display	or	modify	data.	Such	HTML
code	can	for	instance	present	an	item	in	an	order.	As	the	catalog	team	provides	the
HTML	code	for	the	item,	the	catalog	team	itself	can	introduce	changes	to	the
presentation	–	even	if	the	items	are	displayed	in	another	module.

REST	is	also	of	use	here:	HTML	and	JSON	are	really	only	representations	of	the
same	resource	that	can	be	addressed	by	a	URL.	Via	Content	Negotiation	the	right
resource	representation	as	JSON	or	HTML	can	be	selected	(compare	section	9.2).

Zuul:	Routing

The	Zuul	Proxy	transfers	incoming	requests	to	the	respective	Microservices.	The
Zuul	Proxy	is	a	separate	Java	process.	To	the	outside	only	one	URL	is	visible,
however	internally	the	calls	are	processed	by	different	Microservices.	This
allows	the	system	to	internally	change	the	structure	of	the	Microservices,	while
still	offering	a	URL	to	the	outside.	In	addition	Zuul	can	provide	web	resources.	In
the	example	Zuul	provides	the	first	HTML	page	viewed	by	the	user.

https://github.com/Netflix/zuul

Fig.	76:	Zuul-Proxy	in	the	example	application

Zuul	needs	to	know	which	requests	to	transfer	to	which	Microservice.	Without
additional	configuration	Eureka	will	forward	a	request	to	a	URL	starting	with
“/customer”	to	the	Microservice	called	CUSTOMER.	This	renders	the	internal
Microservice	names	visible	to	the	outside.	But	this	routing	can	also	be	configured
differently.	Moreover	Zuul	filters	can	change	the	requests	in	order	to	implement
general	aspects	in	the	system.	There	is	for	instance	an	integration	with	Spring
Cloud	Security	to	pass	on	security	tokens	to	the	Microservices.	Such	filters	can
also	be	used	to	pass	on	certain	requests	to	specific	servers.	This	allows	for
instance	to	transfer	requests	to	servers	having	additional	analysis	options	for
investigating	error	situations.	In	addition	a	part	of	a	Microservice	functionality
can	be	replaced	by	another	Microservice.

Implementing	the	Zuul-Proxy	server	with	Spring	Cloud	is	very	easy	and	analogous
to	the	Eureka	server	presented	in	Listing	7.	Instead	of	@EnableEurekaServer	it
is	@EnableZuulProxy,	which	activates	the	Zuul-Proxy.	As	additional
dependency	spring-cloud-starter-zuul	has	to	be	added	to	the	application,	for

instance	within	the	Maven	build	configuration,	which	then	integrates	the	remaining
dependencies	of	Zuul	into	the	application.

A	Zuul	server	represents	an	alternative	to	a	Zuul	Proxy.	It	does	not	have	routing
built-in,	but	uses	filters	instead.	A	Zuul	server	is	activated	by
@EnableZuulServer.

Try	and	Experiment

Add	Links	to	Customer	and	Items
Extend	the	application	so	that	an	order	contains	also	links	to	the	customer	and	to	the	items	and	thus
implements	HATEOAS	better.	Supplement	the	JSON	documents	for	customer,	items	and	orders
with	links	to	the	forms.

Use	the	Catalog	Service	to	Show	Items	in	Orders
Change	the	order	presentation	so	that	HTML	from	the	Catalog	service	is	used	for	items.	To	do	so,
you	have	to	insert	suitable	JavaScript	code	into	the	order	component,	which	loads	HTML	code	from
the	Catalog.

Implement	Zuul	Filters
Implement	your	own	Zuul	filter	(compare	https://github.com/Netflix/zuul/wiki/Writing-Filters).	The
filter	can	for	instance	only	release	the	requests.	Introduce	an	additional	routing	to	an	external	URL.
For	instance	/google	could	redirect	to	http://google.com/.	Compare	the

Spring	Cloud	reference	documentation	.

Authentication	and	Authorization
Insert	an	authentication	and	authorization	with	Spring	Cloud	Security.	Compare
http://cloud.spring.io/spring-cloud-security/.

https://github.com/Netflix/zuul/wiki/Writing-Filters
http://projects.spring.io/spring-cloud/docs/1.0.3/spring-cloud.html
http://cloud.spring.io/spring-cloud-security/

14.10	Resilience
Resilience	means	that	Microservices	can	deal	with	the	failure	of	other
Microservices.	Even	if	a	called	Microservice	is	not	available,	they	will	still
work.	Section10.5	presented	this	topic.

The	example	application	implements	Resilience	with	Hystrix.	This	library
protects	calls	so	that	no	problems	arise	if	a	system	fails.	When	a	call	is	protected
by	Hystrix,	it	is	executed	in	a	different	thread	than	the	call	itself.	This	thread	is
taken	from	a	distinct	thread	pool.	This	makes	it	comparatively	easy	to	implement	a
timeout	during	a	call.

Circuit	Breaker

In	addition	Hystrix	implements	a	Circuit	Breaker.	If	a	call	causes	an	error,	the
Circuit	Breaker	will	open	after	a	certain	number	of	errors.	In	that	case	subsequent
calls	are	not	directed	to	the	called	system	anymore,	but	generate	an	error
immediately.	After	a	sleep	window	the	Circuit	Breaker	closes	so	that	calls	are
directed	to	the	actual	system	again.	The	exact	behavior	can	be	configured.	In	the
configuration	the	error	threshold	percentage	can	be	determined.	That	is	the
percentage	of	calls	which	have	to	cause	an	error	within	the	time	window	for	the
Circuit	Breaker	to	open.	Also	the	sleep	window	can	be	defined,	in	which	the
Circuit	Breaker	is	open	and	not	sending	calls	to	the	system.

Hystrix	with	Annotations

Spring	Cloud	uses	Java	Annotations	from	the	project	hystrix-javanica	for	the
configuration	of	Hystrix.	This	project	is	part	of	hystrix-contrib	.	The	annotated
methods	are	protected	according	to	the	setting	in	the	Annotation.	Without	this
approach	Hystrix	commands	would	have	to	be	written,	which	is	a	lot	more	effort
than	just	adding	some	Annotations	to	a	Java	method.

To	be	able	to	use	Hystrix	within	a	Spring	Cloud	application,	the	application	has	to
be	annotated	with	@EnableCircuitBreaker	resp.	@EnableHystrix.	Moreover,
the	project	needs	to	contain	a	dependency	to	spring-cloud-starter-hystrix.

Listing	8	shows	a	section	from	the	class	CatalogClient	of	the	Order	Microservice
from	the	example	application.	The	method	findAll()	is	annotated	with
@HystrixCommand.	This	activates	the	processing	in	a	different	thread	and	the
Circuit	Breaker.	The	Circuit	Breaker	can	be	configured	–	in	the	example	the
number	of	calls,	which	have	to	cause	an	error	in	order	to	open	the	Circuit	Breaker,

https://github.com/Netflix/Hystrix/
https://github.com/Netflix/Hystrix/wiki/Configuration
https://github.com/Netflix/Hystrix/tree/master/hystrix-contrib

is	set	to	2.	In	addition	the	example	defines	a	fallbackMethod.	Hystrix	calls	this
method	if	the	original	method	generates	an	error.	The	logic	in	findAll()	saves	the
last	result	in	a	cache,	which	is	returned	by	the	fallbackMethod	without	calling	the
real	system.	In	this	way	a	reply	can	still	be	returned	when	the	called	Microservice
fails,	however	this	reply	might	no	longer	be	up-to-date.
Listing	8:	Example	for	a	method	protected	by	Hystrix

	1	@HystrixCommand(

	2		fallbackMethod	=	"getItemsCache",

	3		commandProperties	=	{

	4		@HystrixProperty(

	5			name	=	"circuitBreaker.requestVolumeThreshold",	

	6			value	=	"2")	})

	7	public	Collection<Item>	findAll()	{

	8			this.itemsCache	=	...

	9			...

10			return	pagedResources.getContent();

11	}

12	

13	private	Collection<Item>	getItemsCache()	{

14			return	itemsCache;

15	}

Monitoring	with	the	Hystrix	Dashboard

Whether	a	Circuit	Breaker	is	currently	open	or	closed,	gives	an	indication	of	how
well	a	system	is	running.	Hystrix	offers	data	to	monitor	this.	A	Hystrix	system
provides	such	data	as	a	stream	of	JSON	documents	via	HTTP.	The	Hystrix
Dashboard	can	visualize	the	data	in	a	web	interface.	The	dashboard	presents	all
Circuit	Breakers	along	with	the	number	of	requests	and	their	state	(open/closed)
(Fig.	77).	In	addition	it	displays	the	state	of	the	thread	pools.

Fig.	77:	Example	for	a	Hystrix	Dashboard

A	Spring	Boot	Application	needs	to	have	the	annotation
@EnableHystrixDashboard	and	a	dependency	to	spring-cloud-starter-hystrix-
dashboard	to	be	able	to	display	a	Hystrix	Dashboard.	That	way	any	Spring	Boot
application	might	in	addition	show	a	Hystrix	Dashboard	or	the	dashboard	can	be
implemented	in	an	application	by	itself.

Turbine

In	a	complex	Microservices	environment	it	is	not	useful	that	each	instance	of	a
Microservice	visualizes	the	information	concerning	the	state	of	its	Hystrix	Circuit
Breaker.	The	state	of	all	Circuit	Breakers	in	the	entire	system	should	be
summarized	on	a	single	dashboard.	To	visualize	the	data	of	the	different	Hystrix
systems	on	one	dashboard	there	is	the	Turbine	project.	Fig.	78	illustrates	the
approach	Turbine	takes:	The	different	streams	of	the	Hystrix	enabled
Microservices	are	provided	at	URLs	like	http://<host:port>/hystrix.stream.	The
Turbine	server	requests	them	and	provides	them	in	a	consolidated	manner	at	the
URL	http://<host:port>/turbine.stream.	This	URL	can	be	used	by	the	dashboard	in
order	to	display	the	information	of	all	Circuit	Breakers	of	the	different
Microservice	instances.

Fig.	78:	Turbine	consolidates	Hystrix	monitoring	data.

Turbine	runs	in	a	separate	process.	With	Spring	Boot	the	Turbine	server	is	a
simple	application,	which	is	annotated	with	@EnableTurbine	and
@EnableEurekaClient.	In	the	example	application	it	has	the	additional
annotation	@EnableHystrixDashboard	so	that	it	also	displays	the	Hystrix
Dashboard.	It	also	needs	a	dependency	on	spring-cloud-starter-turbine.

Which	data	are	consolidated	by	the	Turbine	server	is	determined	by	the
configuration	of	the	application.	Listing	9	shows	the	configuration	of	the	Turbine
servers	of	the	example	project.	It	serves	as	a	configuration	for	a	Spring	Boot
application	just	like	application.properties	files,	but	is	written	in	YAML.	The
configuration	sets	the	value	“ORDER”	for	turbine.aggregator.clusterConfig.
This	is	the	application	name	in	Eureka.	turbine.aggregator.appConfig	is	the
name	of	the	data	stream	in	the	Turbine	server.	In	the	Hystrix	Dashboard	a	URL	like
http://172.17.0.10:8989/turbine.stream?cluster=ORDER	has	to	be	used	in
visualize	the	data	stream.	Part	of	the	URL	is	the	IP-Adresse	of	the	Turbine	server,
which	can	be	found	in	the	Eureka	Dashboard.	The	dashboard	accesses	the	Turbine
server	via	the	network	between	the	Docker	containers.

Listing	9:	Configuration	application.yml

1	turbine:

2		aggregator:

3			clusterConfig:	ORDER

4		appConfig:	order

Try	and	Experiment

Terminate	Microservices
Using	the	example	application	generate	a	number	of	orders.	Find	the	name	of	the	Catalog	Docker
Container	using	docke	ps .	Stop	the	Catalog	Docker	Container	with	docker	kill.	This	use	is
protected	by	Hystrix.	What	happens?

What	happens	if	the	Customer	Docker	Container	is	terminated	as	well?	The	use	of	this
Microservice	is	not	protected	by	Hystrix.

Add	Hystrix	to	Customer	Microservice
Protect	the	use	of	the	Customer	Docker	Container	also	with	Hystrix.	In	order	to	do	so	change	the
class	CustomerClient	from	the	Order	project.	CatalogClient	can	serve	as	a	template.

Change	Hystrix	Configuration
Change	the	configuration	of	Hystrix	for	the	Catalog	Microservice.	There	are	several	configuration
options.	Listing	8	(CatalogClient	from	the	Order-Project)	shows	the	use	of	the	Hystrix	annotations.
Other	time	intervals	for	opening	and	closing	of	the	Circuit	Breakers	are	for	instance	a	possible
change.

14.11	Load	Balancing
For	Load	Balancing	the	example	application	uses	Ribbon.	Many	Load	Balancers
are	proxy-based.	In	this	model	the	clients	send	all	calls	to	a	Load	Balancer.	The
Load	Balancer	runs	as	a	distinct	server	and	forwards	the	request	to	a	web	server
–	often	depending	on	the	current	load	of	the	web	servers.

https://github.com/Netflix/Hystrix/wiki/Configuration
https://github.com/Netflix/ribbon/wiki

Ribbon	implements	a	different	model	called	Client	Side	Load	Balancing:	The
client	has	all	the	information	to	communicate	with	the	right	server.	The	client	calls
the	server	directly	and	distributes	the	load	by	itself	to	different	servers.	In	the
architecture	there	is	no	bottle	neck	as	there	is	no	central	server	all	calls	would
have	to	pass.	In	conjunction	with	data	replication	by	Eureka	Ribbon	is	quite
resilient:	As	long	as	the	client	runs,	it	can	send	requests.	The	failure	of	a	Proxy
Load	Balancer	would	stop	all	calls	to	the	server.

Dynamic	scaling	is	very	simple	within	this	system:	A	new	instance	is	started,
enlists	itself	at	Eureka	and	then	the	Ribbon	Clients	redirect	load	to	the	instance.

As	already	discussed	in	the	section	dealing	with	Eureka	(Section	14.8),	data	can
be	inconsistent	over	the	different	servers.	Because	data	are	not	up-to-date,	servers
can	be	contacted,	which	really	should	be	left	out	by	the	Load	Balancing.

Ribbon	with	Spring	Cloud

Spring	Cloud	simplifies	the	use	of	Ribbon.	The	application	has	to	be	annotated
with	@RibbonClient.	While	doing	so,	a	name	for	the	application	can	be	defined.
In	addition	the	application	needs	to	have	a	dependency	on	spring-cloud-starter-
ribbon.	In	that	case	an	instance	of	a	Microserve	can	be	accessed	using	code	like
in	Listing	10.	For	that	purpose	the	code	uses	the	Eureka	name	of	the	Microservice.
Listing	10:	Determining	a	server	with	Ribbon	Load	Balancing

1	ServiceInstance	instance

2		=	loadBalancer.choose("CATALOG");

3	String	url	=	"http://"	+

4		instance.getHost()	+	":"	+

5		instance.getPort()	+

6		"/catalog/";

The	use	can	also	be	transparent	to	a	large	extent.	To	illustrate	this	Listing	11
shows	the	use	of	RestTemplates	with	Ribbon.	This	is	a	Spring	class,	which	can
be	used	to	call	REST	services.	In	the	Listing	the	RestTemplate	of	Spring	is
injected	into	the	object	as	it	is	annotated	with	@Autowired.	The	call	in
callMicroservice()	looks	like	it	is	contacting	a	server	called	“stores”.	In	reality
this	name	is	used	to	search	a	server	at	Eureka,	and	to	this	server	the	REST	call	is
sent.	This	is	done	via	Ribbon	so	that	the	load	is	also	distributed	across	the
available	servers.
Listing	11:	Using	Ribbon	with	RestTemplate
	1	@RibbonClient(name	=	"ribbonApp")

	2		…	//	Left	out	other	Spring	Cloud	/	Boot	Annotations

	3	public	class	RibbonApp	{

	4		

	5		@Autowired

	6				private	RestTemplate	restTemplate;

	7		

	8				public	void	callMicroservice()	{

	9						Store	store	=	restTemplate.

10							getForObject("http://stores/store/1",	Store.class);

11				}

12		

13		}

Try	and	Experiment

Load	Balance	to	an	Additional	Service	Instance
The	Order	Microservice	distributes	the	load	onto	several	instances	of	the	Customer	and	Catalog
Microservice	–	if	several	instances	exist.	Without	further	measures,	only	a	single	instance	is	started.
The	Order	Microservice	shows	in	the	log	which	Catalog	or	Customer	Microservice	it	contacts.
Initiate	an	order	and	observe	which	Services	are	contacted.

Afterwards	start	an	additional	Catalog	Microservice.	You	can	do	that	using	the	command:	docker
run	-v	/microservice-demo:/microservice-demo	–link	eureka:eureka	catalog-app	in
Vagrant.	For	Docker	Compose	docker-compose	scale	catalog=2	should	be	enough.	Verify
whether	the	container	is	running	and	observe	the	log	output.

For	reference:	Try	and	Experiment	in	section	14.4	shows	the	main	commands	for	using	Docker.
Section	14.7	shows	how	to	use	Docker	Compose.

Create	Data
Create	a	new	dataset	with	a	new	item.	Is	the	item	always	displayed	in	the	selection	of	items?	Hint:
The	database	runs	within	the	process	of	the	Microservice	–	i.e.	each	Microservice	instance
possesses	its	own	database.

14.12	Integrating	Other	Technologies
Spring	Cloud	and	the	entire	Netflix	Stack	are	based	on	Java.	Thus,	it	seems
impossible	for	other	programming	languages	and	platforms	to	use	this
infrastructure.	However,	there	is	a	solution:	The	application	can	be	supplied	with
a	sidecar.	The	sidecar	is	written	in	Java	and	uses	Java	libraries	to	integrate	into	a
Netflix-based	infrastructure.	The	sidecar	for	instance	takes	care	of	registration

and	finding	other	Microservices	in	Eureka.	Netflix	itself	offers	for	this	purpose
the	Prana	project.	The	Spring	Cloud	solution	is	explained	in	the	documentation.
The	sidecar	runs	in	a	distinct	process	and	serves	as	an	interface	between	the
Microservice	itself	and	the	Microservice	infrastructure.	In	this	manner	other
programming	languages	and	platforms	can	be	easily	integrated	into	a	Netflix	or
Spring	Cloud	environment.

14.13	Tests
The	example	application	contains	test	applications	for	the	developers	of
Microservices.	These	do	not	need	a	Microservice	infrastructure	or	additional
Microservices	–	in	contrast	to	the	production	system.	This	allows	developers	to
run	each	Microservice	without	a	complex	infrastructure.

The	class	OrderTestApp	in	the	Order	project	contains	such	a	test	application.
The	applications	contain	their	own	configuration	file	application-test.properties
with	specific	settings	within	the	directory	src/test/resources.	The	settings	prevent
that	the	applications	register	with	the	Service	Discovery	Eureka.	Besides	they
contain	different	URLs	for	the	dependent	Microservices.	This	configuration	is
automatically	used	by	the	test	application	as	it	uses	a	Spring	profile	called	“test”.
All	JUnit	tests	use	these	settings	as	well	so	that	they	can	run	without	dependent
services.

Stubs

The	URLs	for	the	dependent	Microservices	in	the	test	application	and	the	JUnit
tests	point	to	Stubs.	These	are	simplified	Microservices,	which	only	offer	a	part
of	the	functionalities.	They	run	within	the	same	Java	process	as	the	real
Microservices	or	JUnit	tests.	So	only	a	single	Java	process	has	to	be	started	for
the	development	of	a	Microservice,	analogous	to	the	usual	way	of	developing
with	Java.	The	Stubs	can	be	implemented	differently	–	for	instance	using	a
different	programming	language	or	even	a	web	server,	which	returns	certain	static
documents	representing	the	test	data	(compare	section	11.6).	Such	approaches
might	be	better	suited	for	real-life	applications.

Stubs	facilitate	development.	If	each	developer	needs	to	use	a	complete
environment	including	all	Microservices	during	development,	a	tremendous
amount	of	hardware	resources	and	a	lot	of	effort	to	keep	the	environment
continuously	up-to-date	would	be	necessary.	The	Stubs	circumvent	this	problem
as	no	dependent	Microservices	are	needed	during	development.	Due	to	the	stubs

http://githib.com/Netflix/Prana/
http://projects.spring.io/spring-cloud/docs/1.0.3/spring-cloud.html#_polyglot_support_with_sidecar

the	effort	to	start	a	Microservice	is	hardly	bigger	than	the	one	for	a	regular	Java
application.

In	a	real	project	the	teams	can	implement	Stubs	together	with	the	real
Microservices.	The	Customer	team	can	implement	in	addition	to	the	real	service	a
stub	for	the	Customer	Microservice,	which	is	used	by	the	other	Microservices	for
development.	This	ensures	that	the	stub	largely	resembles	the	Microservice	and	is
updated	if	the	original	service	is	changed.	The	Stub	can	be	taken	care	of	in	a
different	Maven	projects,	which	can	be	used	by	the	other	teams.

Consumer-driven	Contract	Test

It	has	to	be	ensured	that	the	Stubs	behave	like	the	Microservices	they	simulate.	In
addition	a	Microservice	has	to	define	the	expectations	regarding	the	interface	of	a
different	Microservice.	This	is	achieved	by	Consumer-driven	Contract	Tests
(compare	section	11.7).	These	are	written	by	the	team,	which	uses	the
Microservices.	In	the	example	this	is	the	team,	which	is	responsible	for	the	Order
Microservice.	In	the	Order	Microservice	the	Consumer-driven	Contract	Tests	are
found	in	the	classes	CatalogConsumerDrivenContractTest	and
CustomerConsumerDrivenContractTest.	They	run	there	to	test	the	stubs	of	the
Customer	and	Catalog	Microservice	for	correctness.

Even	more	important	than	the	correct	functioning	of	the	stubs	is	the	correct
functioning	of	the	Microservices	themselves.	For	that	reason	the	Consumer-driven
Contract	Tests	are	also	contained	in	the	Customer	and	Catalog	project.	There	they
run	against	the	implemented	Microservices.	This	ensures	that	the	Stubs	as	well	as
the	real	Microservices	are	in	line	with	this	specification.	In	case	the	interface	is
supposed	to	be	changed,	these	tests	can	be	used	to	confirm	that	the	change	does
not	break	the	calling	Microservice.	It	is	up	to	the	used	Microservices	–	Customer
and	Catalog	in	the	example	–,	to	comply	with	these	tests.	In	this	manner	the
requirements	of	the	Order	Microservice	in	regards	to	the	Customer	and	Catalog
Microservice	can	be	formally	defined	and	tested.	The	Consumer-driven	Contract
Tests	serve	in	the	end	as	formal	definition	of	the	agreed	interface.

In	the	example	application	the	Consumer-driven	Contract	Tests	are	part	of	the
Customer	and	Catalog	projects	in	order	to	verify	that	the	interface	is	correctly
implemented.	Besides	they	are	part	of	the	Order	project	for	verifying	the	correct
functioning	of	the	stubs.	In	a	real	project	copying	the	tests	should	be	prevented.
The	Consumer-driven	Contract	Tests	can	be	located	in	one	project	together	with
the	tested	Microservices.	Then	all	teams	need	to	have	access	to	the	Microservice

projects	to	be	able	to	alter	the	tests.	Alternatively,	they	are	located	within	the
projects	of	the	different	teams,	which	are	using	the	Microservice.	In	that	case	the
tested	Microservice	has	to	collect	the	tests	from	the	other	projects	and	execute
them.

In	a	real	project	it	is	not	really	necessary	to	protect	stubs	by	Consumer-driven
Contract	Tests,	especially	as	it	is	the	purpose	of	the	stubs	to	offer	an	easier
implementation	than	the	real	Microservices.	Thus	the	functionalities	will	be
different	and	conflict	with	Consumer-driven	Contract	Tests.

Try	and	Experiment

Insert	a	field	into	Catalog	or	Customer	data.	Is	the	system	still	working?	Why?

Delete	a	field	in	the	implementation	of	the	server	for	Catalog	or	Customer.	Where	is	the	problem
noticed?	Why?

Replace	the	home	grown	stubs	with	stubs,	which	use	a	tool	from	Section	11.6.

Replace	the	Consumer-driven	Contract	Tests	with	tests,	which	use	a	tool	from	Section	11.7.

Experiences	with	JVM-based	Microservices	in	the	Amazon
Cloud	(Sascha	Möllering)
by	Sascha	Möllering,	zanox	AG

During	the	last	months	zanox	has	implemented	a	light-weight	Microservices
architecture	in	Amazon	Web	Services	(AWS),	which	runs	in	several	AWS	regions.
Regions	divide	the	Amazon	Cloud	into	sections	like	US-East	or	EU-West,	which
each	have	their	own	data	centers.	They	work	completely	independently	of	each

other	and	do	not	exchange	any	data	directly.	Different	AWS	regions	are	used
because	latency	is	very	important	for	this	type	of	application	and	is	minimized	by
latency-based	routing.	In	addition	it	was	a	fundamental	aim	to	design	the
architecture	in	an	event-driven	manner.	Furthermore,	the	individual	services	were
intended	not	to	communicate	directly,	but	rather	to	be	separated	by	message
queues	resp.	bus	systems.	An	Apache	Kafka	cluster	as	message	bus	in	the	zanox
data	center	serves	as	central	point	of	synchronization	for	the	different	regions.
Each	service	is	implemented	as	a	stateless	application.	The	state	is	stored	in
external	systems	like	the	bus	systems,	Amazon	ElastiCache	(based	on	the	NoSQL
database	Redis),	the	data	stream	processing	technology	Amazon	Kinesis	and	the
NoSQL	database	Amazon	DynamoDB.	The	JVM	serves	as	basis	for	the
implementation	of	the	individual	services.	We	chose	Vert.x	and	the	embedded	web
server	Jetty	as	frameworks.	We	developed	all	applications	as	self-contained
services	so	that	a	Fat	JAR,	which	can	easily	be	started	via	java	–jar,	is	generated
at	the	end	of	the	build	process.

There	is	no	need	to	install	any	additional	components	or	an	application	server.
Vert.x	serves	as	basis	framework	for	the	HTTP	part	of	the	architecture.	Within	the
application	work	is	performed	almost	completely	asynchronously	to	achieve	high
performance.	For	the	remaining	components	we	use	Jetty	as	framework:	These	act
either	as	Kafka/Kinesis	consumer	or	update	the	Redis	cache	for	the	HTTP	layer.
All	called	applications	are	delivered	in	Docker	Containers.	This	allows	the	use	of
a	uniform	deployment	mechanism	independent	of	the	utilized	technology.	To	be
able	to	deliver	the	services	independently	in	the	different	regions,	an	individual
Docker	Registry	storing	the	Docker	images	in	a	S3	bucket	was	implemented	in
each	region.	S3	is	a	service	that	allows	the	storage	of	large	file	on	Amazon	server.

If	you	intend	to	use	Cloud	Services,	you	have	to	address	the	question	whether	you
want	to	use	the	managed	services	of	a	Cloud	provider	or	develop	and	run	the
infrastructure	yourself.	zanox	decided	to	use	the	managed	services	of	a	Cloud
provider	because	building	and	administrating	proprietary	infrastructure	modules
does	not	provide	any	business	value.	The	EC2	computers	of	the	Amazon	portfolio
are	pure	infrastructure.	IAM	on	the	other	hand	offers	comprehensive	security
mechanisms.	In	the	deployed	services	the	AWS	Java	SDK	is	used,	which	allows
in	combination	with	IAM	roles	for	EC2	to	generate	applications,	which	are	able
to	access	the	managed	services	of	AWS	without	using	explicit	credentials.	During
initial	bootstrapping	an	IAM	role	containing	the	necessary	permissions	is	assigned
to	an	EC2	instance.	Via	the	Metadata	Service	the	AWS	SDK	is	given	the
necessary	credentials.	This	enables	the	application	to	access	the	managed

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-metadata.html

services	defined	in	the	role.	Thus,	an	application	can	be	implemented,	which
sends	metrics	to	the	monitoring	system	Amazon	Cloud	Watch	and	events	to	the
data	streaming	processing	solution	Amazon	Kinesis	without	having	to	role	out
explicit	credentials	together	with	the	application.

All	applications	are	equipped	with	REST	interfaces	for	heartbeats	and
healthchecks	so	that	the	application	itself	as	well	as	the	infrastructure	necessary
for	the	availability	of	the	application	can	be	monitored	at	all	times:	Each
application	uses	healthchecks	to	monitor	the	infrastructure	components	it	uses.
Application	scaling	is	implemented	via	Elastic	Load	Balancing	(ELB)	and
AutoScaling	to	be	able	to	achieve	a	fine-grained	application	depending	on	the
concrete	load.	AutoScaling	starts	additional	EC2	instances	if	needed.	ELB
distributes	the	load	between	the	instances.	The	AWS	ELB	service	is	not	only
suitable	for	web	applications	working	with	HTTP	protocols,	but	for	all	types	of
applications.	A	healthcheck	can	also	be	implemented	based	on	a	TCP	protocol
without	HTTP.	This	is	even	simpler	than	an	HTTP	healthcheck.

Still	the	developer	team	decided	to	implement	the	ELB	healthchecks	via	HTTP	for
all	services	to	achieve	that	they	all	behave	exactly	the	same,	independent	of	the
implemented	logic,	the	used	frameworks	and	the	language.	It	is	well	possible	that
in	the	future	also	applications,	which	do	not	run	on	JVM	and	for	instance	use	Go
or	Python	as	programming	languages,	are	deployed	in	AWS.

For	the	ELB	healthcheck	zanox	uses	the	application	heartbeat	URL.	As	a	result,
traffic	is	only	directed	to	the	application	resp.	potentially	necessary	infrastructure
scaling	operations	are	only	performed	once	the	EC2	instance	with	the	application
has	properly	been	started	and	the	heartbeat	was	successfully	monitored.

For	application	monitoring	Amazon	CloudWatch	is	a	good	choice	as	CloudWatch
alarms	can	be	used	to	define	scaling	events	for	the	AutoScaling	Policies,	i.e.	the
infrastructure	scales	automatically	based	on	metrics.	For	this	purpose	EC2	basis
metrics	like	CPU	can	for	instance	be	used.	Alternatively,	it	is	possible	to	send
your	own	metrics	to	CloudWatch.	For	this	purpose	this	project	uses	a	fork	of	the
project	jmxtrans-agent,	which	uses	the	CloudWatch	API	to	send	JMX	metrics	to
the	monitoring	system.	JMX	(Java	Management	Extension)	is	the	standard	for
monitoring	and	metrics	in	the	Java	world.	Besides	metrics	are	sent	from	within	the
application	(i.e.	from	within	the	business	logic)	using	the	library	Coda	Hale
Metrics	and	a	module	for	the	CloudWatch	integration	by	Blacklocus.

https://docs.aws.amazon.com/AutoScaling/latest/DeveloperGuide/as-add-elb-healthcheck.html
https://github.com/SaschaMoellering/jmxtrans-agent
https://dropwizard.github.io/metrics/
https://github.com/blacklocus/metrics-cloudwatch

A	slightly	different	approach	is	chosen	for	the	logging:	In	a	Cloud	environment	it
is	never	possible	to	rule	out	that	a	server	instance	is	abruptly	terminated.	This
causes	often	the	sudden	loss	of	data,	which	are	stored	on	the	server.	Log	files	are
an	example	for	that.	For	this	reason	a	logstash-forwarder	runs	in	parallel	to	the
core	application	on	the	server	for	sending	the	log	entries	to	our	ELK-Service
running	in	our	own	data	center.	This	stack	consists	of	Elasticsearch	for	storage,
Logstash	for	parsing	the	log	data	and	Kibana	for	UI-based	analysis.	ELK	is	an
acronym	for	Elasticsearch,	Logstash	und	Kibana.	In	addition	a	UUID	is	calculated
for	each	request	resp.	each	event	in	our	HTTP	layer	so	that	log	entries	can	still	be
assigned	to	events	after	EC2	instances	have	ceased	to	exist.

Conclusion

The	pattern	of	Microservices	architectures	fits	well	to	the	dynamic	approach	of
Amazon	Cloud	if	the	architecture	is	well	designed	and	implemented.	The	clear
advantage	over	implementing	in	your	own	data	center	is	the	infrastructure
flexibility.	This	allows	to	implement	a	nearly	endlessly	scalable	architecture,
which	is	in	addition	very	cost-efficient.

14.14	Conclusion
The	technologies	used	in	the	example	provide	a	very	good	foundation	for
implementing	a	Microservices	architecture	with	Java.	Essentially,	the	example	is
based	on	the	Netflix	Stack,	which	has	demonstrated	its	efficacy	for	years	already
in	one	of	the	largest	websites.

The	example	demonstrates	the	interplay	of	different	technologies	for	Service
Discovery,	Load	Balancing	and	Resilience	–	as	well	as	an	approach	for	testing
Microservices	und	for	their	execution	in	Docker	Containers.	The	example	is	not
meant	to	be	directly	useable	in	a	production	context,	but	is	first	of	all	designed	to
be	very	easy	to	set	up	and	get	running.	This	entails	a	number	of	compromises.
However,	the	example	serves	very	well	as	foundation	for	further	experiments	and
the	testing	of	ideas.

In	addition	the	example	demonstrates	a	Docker-based	application	deployment,
which	is	a	good	foundation	for	Microservices.

Essential	Points

Spring,	Spring	Boot,	Spring	Cloud	and	the	Netflix	Stack	offer	a	well
integrated	stack	for	Java-based	Microservices.	These	technologies	solve	all

https://github.com/elastic/logstash-forwarder

typical	challenges	posed	during	the	development	of	Microservices.
Docker	based	deployment	is	easy	to	implement	and	in	conjunction	with
Docker	Machine	and	Docker	Compose	can	be	used	for	deployment	in	the
Cloud,	too.
The	example	application	shows	how	to	test	Microservices	using	Consumer-
Driven	Contract	Tests	and	Stubs	without	special	tools.	However,	for	real	life
projects	tools	might	be	more	useful.

Try	and	Experiment

Add	Log	Analysis
The	log	analysis	of	all	log	files	is	important	for	running	a	Microservice	system.	At
https://github.com/ewolff/user-registration	an	example	project	is	provided.	In	the	sub	directory	log-
analysis 	it	contains	a	setup	for	an	ELK	(Elasticsearch,	Logstash	und	Kibana)	stack-based	log
analysis.	Use	this	approach	to	also	add	a	log	analysis	to	the	Microservice	example.

Add	Monitoring
In	addition	the	example	project	from	the	Continuous	Delivery	book	contains	in	the	sub	directory
graphite	an	installation	of	Graphite	for	monitoring.	Adapt	this	installataion	for	the	Microservice
example.

Rewrite	a	Service
Rewrite	one	of	the	services	in	a	different	programming	language.	Use	the	Consumer-driven
Contract	Tests	(compare	Section	14.13	and	11.7	to	protect	the	implementation.	Make	use	of	a
sidecar	for	the	integration	into	the	technology	stack	(compare	Section	14.12).

https://github.com/ewolff/user-registration

15	Technologies	for	Nanoservices

Section	15.1	discusses	the	advantages	of	Nanoservices	and	why	Nanoservices	can
be	useful.	Section	15.2	defines	Nanoservices	and	distinguishes	them	from
Microservices.	Section	15.3	focuses	on	Amazon	Lambda:	a	Cloud	technology
which	can	be	used	with	Python,	JavaScript	or	Java.	Here	each	function	call	is
billed	instead	of	renting	virtual	machines	or	application	servers.	OSGi	(section
15.4)	modularizes	Java	applications	and	also	provides	services.	Another	Java
technology	for	Nanoservices	is	Java	EE	(section	15.5),	if	used	correctly.	Vert.x,
another	option,	(section	15.6)	also	runs	on	the	JVM,	but	supports	in	addition	to
Java	a	broad	variety	of	programming	languages.	Section	15.7	focuses	on	the
programming	language	Erlang	which	is	quite	old.	The	architecture	of	Erlang
allows	the	implementation	of	Nanoservices.	Seneca	(section	15.8)	has	a	similar
approach	as	Erlang,	but	is	based	on	JavaScript	and	has	been	specially	designed
for	the	development	of	Nanoservices.

The	term	Microservice	is	not	uniformly	defined.	Some	people	believe
Microservices	should	be	extremely	small	services	–	i.e.	ten	to	a	hundred	lines	of
code	(LoC).	This	book	calls	such	services	Nanoservices.	The	distinction	between
Microservices	and	Nanoservices	is	the	focus	of	this	chapter.	A	suitable
technology	is	an	essential	prerequisite	for	the	implementation	of	small	services.	If
the	technology	for	instance	combines	several	services	into	one	operating	system
process,	the	resource	utilization	per	service	can	be	decreased	and	the	service
rollout	in	production	facilitated.	This	decreases	the	expenditure	per	service	which
allows	to	support	a	large	number	of	small	Nanoservices.

15.1	Why	Nanoservices?
Nanoservices	are	well	in	line	with	the	already	discussed	size	limits	of
Microservices:	Their	size	is	below	the	maximum	size,	which	was	defined	in
section	4.1and	depends	for	instance	on	the	number	of	team	members.	In	addition,	a
Microservice	should	be	small	enough	to	still	be	understood	by	a	developer.	With
suitable	technologies	the	technical	limits	for	the	minimal	size	of	a	Microservice,
which	were	discussed	in	section	4.1,	can	be	further	reduced.

Very	small	modules	are	easier	to	understand	and	therefore	easier	to	maintain	and
change.	Besides	smaller	Microservices	can	more	easily	be	replaced	by	new
implementations	or	a	rewrite.	Accordingly,	systems	consisting	of	minimally	sized
Nanoservices	can	more	easily	be	developed	further.

There	are	systems	which	successfully	employ	Nanoservices.	In	fact,	in	practice	it
is	rather	the	too	large	modules	that	are	the	source	of	problems	and	prevent	the
successful	further	development	of	a	system.	Each	functionality	could	be
implemented	in	its	own	Microservice	–	each	class	or	function	could	become	a
separate	Microservice.	Section	10.2	demonstrated	that	it	can	be	sensible	for
CQRS	to	implement	a	Microservice	which	only	reads	data	of	a	certain	type.
Writing	the	same	type	of	data	can	already	be	implemented	in	another
Microservice.	So	Microservices	can	really	have	a	pretty	small	scope.

Minimum	Size	of	Microservices	is	Limited

What	are	reasons	against	very	tiny	Microservices?	Section	4.1	identified	factors
which	render	Microservices	below	a	certain	size	not	practicable:

The	expenditure	for	infrastructure	increases.	When	each	Microservice	is	a
separate	process	and	requires	infrastructure	such	as	an	application	server
and	monitoring,	the	expenditure	necessary	for	running	hundreds	or	even
thousands	of	Microservices	becomes	too	large.	Therefore,	Nanoservices
require	technologies	which	allow	to	keep	the	expenditure	for	infrastructure
per	individual	service	as	small	as	possible.	In	addition,	a	low	resource
utilization	is	desirable.	The	individual	services	should	consume	as	little
memory	and	CPU	as	possible.
In	case	of	very	small	services	a	lot	of	communication	via	the	network	is
required.	That	has	a	negative	influence	on	system	performance.
Consequently,	when	working	with	Nanoservices	communication	between	the
services	should	not	occur	via	the	network.	This	might	result	in	less
technological	freedom.	When	all	Nanoservices	run	in	a	single	process,	they
are	usually	required	to	employ	the	same	technology.	Such	an	approach	also
affects	system	robustness.	When	several	services	run	in	the	same	process,	it
is	much	more	difficult	to	isolate	them	from	each	other.	A	Nanoservice	can
use	up	so	many	resources	that	other	Nanoservices	do	not	operate	error-free
anymore.	When	two	Nanoservices	run	in	the	same	process,	the	operating
system	cannot	intervene	in	such	situations.	In	addition,	a	crash	of	a
Nanoservice	can	result	in	the	failure	of	additional	Nanoservices.	If	the

processes	crashes,	it	will	affect	all	Nanoservices	running	in	the	same
process.

The	technical	compromises	can	have	a	negative	effect	on	the	properties	of
Nanoservices.	In	any	case	the	essential	feature	of	Microservices	has	to	be
maintained	–	namely,	the	independent	deployment	of	the	individual	services.

Compromises

In	the	end	the	main	task	is	to	identify	technologies	which	minimize	the	overhead
per	Nanoservice	and	at	the	same	time	preserve	as	many	advantages	of
Microservices	as	possible.

In	detail	the	following	points	need	to	be	achieved:

The	expenditure	for	infrastructure	such	as	monitoring	and	deployment	has	to
be	kept	low.	It	has	to	be	possible	to	bring	a	new	Nanoservice	into	production
without	much	effort	and	to	have	it	immediately	displayed	in	monitoring.
Resource	utilization	for	instance	in	regards	to	memory	should	be	as	low	as
possible	to	allow	a	large	number	of	Nanoservices	also	with	little	hardware.
This	does	not	only	make	the	production	environment	cheaper,	but	also
facilitates	the	generation	of	test	environments.
Communication	should	be	possible	without	network.	This	does	not	only
improve	latency	and	performance,	but	increases	the	reliability	of	the
communication	between	Nanoservices	because	it	is	not	influenced	by
network	failures.
Concerning	isolation	a	compromise	has	to	be	found.	The	Nanoservices
should	be	isolated	from	each	other	so	that	one	Nanoservice	cannot	cause
another	Nanoservice	to	fail.	Otherwise	a	single	Nanoservice	might	cause	the
entire	system	to	break	down.	However,	achieving	a	perfect	isolation	might	be
less	important	than	having	a	lower	expenditure	for	infrastructure,	a	low
resource	utilization	and	the	other	advantages	of	Nanoservices.
Using	Nanoservices	can	limit	the	choice	of	programming	languages,
platforms	and	frameworks.	Microservices	on	the	other	hand	allow	in
principle	a	free	choice	of	technology.

Desktop	Applications

Nanoservices	enable	the	use	of	Microservice	approaches	in	areas	in	which
Microservices	themselves	are	hardly	useable.	One	example	is	the	possibility	to
divide	a	desktop	application	in	Nanoservices.	OSGi	(section	15.4)	is	for	instance

used	for	desktop	and	even	for	embedded	applications.	A	desktop	application
consisting	of	Microservices	is	on	the	other	hand	probably	too	difficult	to	deploy
to	really	use	it	for	desktop	applications.	Each	Microservice	has	to	be	deployed	by
itself	and	that	is	hardly	possible	for	a	large	number	of	desktop	clients	-	some	of
which	might	even	be	located	in	other	companies.	Moreover	the	integration	of
several	Microservices	into	a	coherent	desktop	application	is	hard	-	in	particular	if
they	are	implemented	as	completely	separated	processes.

15.2	Nanoservices:	Definition
A	Nanoservice	differs	from	a	Microservice:	It	compromises	in	certain	areas.	One
of	these	areas	is	isolation:	Multiple	Nanoservices	run	on	a	single	virtual	machine
or	in	a	single	process.	Another	area	is	technology	freedom:	Nanoservices	use	a
shared	platform	or	programming	language.	Only	with	these	limitations	does	the
use	of	Nanoservices	become	feasible.	The	infrastructure	can	be	so	efficient	that	a
much	larger	number	of	services	is	possible.	This	allows	the	individual	services	to
be	smaller.	A	Nanoservice	might	comprise	only	a	few	lines	of	code.

However,	by	no	means	may	the	technology	require	a	joint	deployment	of
Nanoservices	since	independent	deployment	is	the	central	characteristic	of
Microservices	and	also	Nanoservices.	Independent	deployment	constitutes	the
basis	for	the	essential	advantages	of	Microservices:	Teams	which	can	work
independently,	a	strong	modularization	and	as	consequence	a	sustainable
development.

Therefore,	Nanoservices	can	be	defined	as	follows:

Nanoservices	compromise	in	regards	to	some	Microservice	properties	such
as	isolation	and	technology	freedom.	However,	Nanoservices	still	have	to	be
independently	deployable.
The	compromises	allow	for	a	larger	number	of	services	and	therefore	for
smaller	services.	Nanoservices	can	contain	just	a	few	lines	of	code.
To	achieve	this,	Nanoservices	use	highly	efficient	runtime	environments.
These	exploit	the	restrictions	of	Nanoservices	in	order	to	allow	for	more	and
smaller	services.

Thus	Nanoservices	depend	a	lot	on	the	employed	technologies.	The	technology
enables	certain	compromises	in	Nanoservices	and	therefore	Nanoservices	of	a
certain	size.	Therefore,	this	chapter	is	geared	to	different	technologies	to	explain
the	possible	varieties	of	Nanoservices.

The	objective	of	Nanoservices	is	to	amplify	a	number	of	advantages	of
Microservices.	Having	even	smaller	deployment	units	decreases	the	deployment
risk	further,	facilitates	deployment	even	more	and	achieves	better	understandable
and	replaceable	services.	In	addition,	the	domain	architecture	will	change:	A
Bounded	Context	which	might	consist	of	one	or	a	few	Microservices	will	now
comprise	a	multitude	of	Nanoservices	which	each	implement	a	very	narrowly
defined	functionality.

The	difference	between	Microservices	and	Nanoservices	is	not	strictly	defined:	If
two	Microservices	are	deployed	in	the	same	virtual	machine,	efficiency	increases
and	isolation	is	compromised.	The	two	Microservices	now	share	an	operating
system	instance	and	a	virtual	machine.	When	one	of	the	Microservices	uses	up	the
resources	of	the	virtual	machine,	the	other	Microservice	running	on	the	same
virtual	machine	will	also	fail.	This	is	the	compromise	in	terms	of	isolation.	So	in
a	sense	these	Microservices	are	already	Nanoservices.

By	the	way,	the	term	“Nanoservice”	is	not	used	very	much.	This	book	uses	the
term	“Nanoservice”	to	make	it	plain	that	there	are	modularizations	which	are
similar	to	Microservices,	but	differ	when	it	comes	to	detail	thereby	allowing	for
even	smaller	services.	To	distinguish	these	technologies	with	their	compromises
clearly	from	“real”	Microservices	the	term	“Nanoservice”	is	useful.

15.3	Amazon	Lambda
Amazon	Lambda	is	a	service	in	the	Amazon	Cloud.	It	is	available	worldwide	in
all	Amazon	computing	centers.

Amazon	Lambda	can	execute	individual	functions	which	are	written	in	Python,
JavaScript	with	Node.js	or	Java	8	with	OpenJDK.	The	code	of	these	functions
does	not	have	dependencies	on	Amazon	Lambda.	Access	to	the	operating	system
is	possible.	The	computers	the	code	is	executed	on	contain	the	Amazon	Web
Services	SDK	as	well	as	ImageMagick	for	image	manipulations.	These
functionalities	can	be	used	by	Amazon	Lambda	applications.	Besides	additional
libraries	can	be	installed.

Amazon	Lambda	functions	have	to	start	quickly	because	it	can	happen	that	they	are
started	for	each	request.	Therefore,	the	functions	may	also	not	hold	a	state.

Thus	there	are	no	costs	when	there	are	no	requests	that	cause	an	execution	of	the
functions.	Each	request	is	billed	individually.	Currently	the	first	million	requests

http://aws.amazon.com/lambda

is	for	free	and	a	further	million	costs	0,20	$.

Calling	Lambda	Functions

Lambda	functions	can	be	called	directly	via	a	command	line	tool.	The	processing
occurs	asynchronously.	The	functions	can	return	results	via	different	Amazon
functionalities.	For	this	purpose,	the	Amazon	Cloud	contains	messaging	solutions
such	as	SNS	(Simple	Notification	Service)	or	SQS	(Simple	Queuing	Service).

The	following	events	can	trigger	a	call	of	a	Lambda	function:

In	S3	(Simple	Storage	Service)	large	files	can	be	stored	and	downloaded.
Such	actions	trigger	events	to	which	an	Amazon	Lambda	function	can	react.
Amazon	Kinesis	can	be	used	to	administrate	and	distribute	data	streams.	This
technology	is	meant	for	the	real	time	processing	of	large	data	amounts.
Lambda	can	be	called	as	reaction	to	new	data	in	these	streams.
With	Amazon	Cognito	it	is	possible	to	use	Amazon	Lambda	to	provide
simple	backends	for	mobile	applications.
The	API	Gateway	provides	a	way	to	implement	REST	APIs	using	Amazon
Lambda.
Furthermore	it	is	possible	to	have	Amazon	Lambda	functions	be	called	at
regular	intervals.
As	a	reaction	to	a	notification	in	SNS	(Simple	Notification	Service)	an
Amazon	Lambda	function	can	be	executed.	As	there	are	many	services	which
can	provide	such	notifications,	this	makes	Amazon	Lambda	useable	in	many
scenarios.
DynamoDB	is	a	database	within	the	Amazon	Cloud.	In	case	of	changes	to	the
database	it	can	call	Lambda	functions.	So	Lambda	functions	essentially
become	database	triggers.

Evaluation	for	Nanoservices

Amazon	Lambda	allows	the	independent	deployment	of	different	functions	without
problems.	They	can	also	bring	their	own	libraries	along.

The	technological	expenditure	for	infrastructure	is	minimal	when	using	this
technology:	A	new	version	of	an	Amazon	Lambda	function	can	easily	be	deployed
with	a	command	line	tool.	Monitoring	is	also	simple:	The	functions	are
immediately	integrated	into	Cloud	Watch.	Cloud	Watch	is	offered	by	Amazon	to
create	metrics	of	Cloud	applications	and	to	consolidate	and	monitor	log	files.	In
addition,	alarms	can	be	defined	based	on	these	data	which	can	be	forwarded	by

SMS	or	email.	Since	all	Amazon	services	can	be	contacted	via	an	API,	monitoring
or	deployment	can	be	automated	and	integrated	into	their	own	infrastructures.

Amazon	Lambda	provides	integration	with	the	different	Amazon	services	e.g.	S3,
Kinesis	and	DynamoDB.	It	is	also	easily	possible	to	contact	an	Amazon	Lambda
function	via	REST	using	the	API	Gateway.	However,	Amazon	Lambda	exacts	that
Node.js,	Python	or	Java	are	used.	This	profoundly	limits	the	technology	freedom.

Amazon	Lambda	offers	an	excellent	isolation	of	functions.	This	is	also	necessary
since	the	platform	is	used	by	many	different	users.	It	would	not	be	acceptable	for	a
Lambda	function	of	one	user	to	negatively	influence	the	Lambda	functions	of	other
users.

Conclusion

Amazon	Lambda	allows	to	implement	extremely	small	services.	The	overhead	for
the	individual	services	is	very	small.	Independent	deployment	is	easily	possible.
A	Python,	JavaScript	or	Java	function	are	the	smallest	deployment	units	supported
by	Amazon	Lambda	–	it	is	hardly	possible	to	make	them	any	smaller.	Even	if	there
is	a	multitude	of	Python,	Java	or	JavaScript	functions,	the	expenditure	for	the
deployments	remains	relatively	low.

Amazon	Lambda	is	a	part	of	the	Amazon	ecosystem.	Therefore,	it	can	be
supplemented	by	technologies	like	Amazon	Elastic	Beanstalk.	There
Microservices	can	run	which	can	be	larger	and	written	in	other	languages.	In
addition,	a	combination	with	EC2	(Elastic	Computing	Cloud)	is	possible.	EC2
offers	virtual	machines	on	which	any	software	can	be	installed.	Moreover,	there	is
a	broad	choice	in	regards	to	databases	and	other	services	which	can	be	used	with
little	additional	effort.	Amazon	Lambda	defines	itself	as	a	supplement	of	this	tool
kit.	In	the	end	one	of	the	crucial	advantages	of	the	Amazon	Cloud	is	that	nearly
every	possible	infrastructure	is	available	and	can	easily	be	used.	Thus	developers
can	concentrate	on	the	development	of	specific	functionalities	while	most	standard
components	can	just	be	rented.

Try	and	Experiment

There	is	a	comprehensive	tutorial	which	illustrates	how	to	use	Amazon	Lambda.	It	does	not	only
demonstrate	simple	scenarios,	but	also	shows	how	to	use	complex	mechanisms	such	as	different
Node.js	libraries,	implementing	REST	services	or	how	to	react	to	different	events	in	the	Amazon
system.	Amazon	offers	cost	free	quotas	of	most	services	to	new	customers.	In	case	of	Lambda
each	customer	gets	such	a	large	free	quota	that	it	is	fully	sufficient	for	tests	and	a	first	getting	to
know	the	technology.	Also	note	that	the	first	million	calls	during	a	month	are	free.	However,	you
should	check	the	current	pricing.

15.4	OSGi
OSGi	is	a	standard	with	many	different	implementations.	Embedded	systems	often
use	OSGi.	Also	the	development	environment	Eclipse	is	based	on	OSGi,	and
many	Java	desktop	applications	use	the	Eclipse	framework.	OSGi	defines	a
modularization	within	the	JVM	(Java	Virtual	Machine).	Even	though	Java	allows
for	a	division	of	code	into	classes	or	packages,	there	is	no	modular	concept	for
larger	units.

The	OSGi	Module	System

OSGi	supplements	Java	by	such	a	module	system.	To	do	so	OSGi	introduces
bundles	into	the	Java	world.	Bundles	are	based	on	Java’s	JAR	files	which
comprise	code	of	multiple	classes.	Bundles	have	a	number	of	additional	entries	in
the	file	META-INF/MANIFEST.MF,	which	each	JAR	file	should	contain.	These
entries	define	which	classes	and	interfaces	the	bundle	exports.	Other	bundles	can
import	these	classes	and	interfaces.	Thereby	OSGi	extends	Java	with	a	quite
sophisticated	module	concept	without	inventing	entirely	new	concepts.
Listing	12:	OSGi	MANIFEST.MF
1	Bundle-Name:	A	service

2	Bundle-SymbolicName:	com.ewolff.service

3	Bundle-Description:	A	small	service

4	Bundle-ManifestVersion:	2

5	Bundle-Version:	1.0.0

6	Bundle-Acltivator:	com.ewolff.service.Activator

7	Export-Package:	com.ewolff.service.interfaces;version="1.0.0"

8	Import-Package:	com.ewolff.otherservice.interfaces;version="1.3.0"

Listing	12	shows	an	example	of	a	MANIFEST.MF	file.	It	contains	the	description
and	name	of	the	bundle	and	the	bundle	activator.	This	Java	class	is	executed	upon
the	start	of	the	bundle	and	can	initialize	the	bundle.	Export-Package	indicates

http://aws.amazon.com/lambda/getting-started/
https://aws.amazon.com/lambda/pricing/
http://www.osgi.org/
http://en.wikipedia.org/wiki/OSGi#Current_framework_implementations

which	Java	packages	are	provided	by	this	bundle.	All	classes	and	interfaces	of
these	packages	are	available	to	other	bundles.	Import-Package	serves	to	import
packages	from	another	bundle.	The	packages	can	also	be	versioned.

In	addition	to	interfaces	and	classes	bundles	can	also	export	services.	However,
an	entry	in	MANIFEST.MF	is	not	sufficient	for	this.	Code	has	to	be	written.
Services	are	in	the	end	only	Java	objects.	Other	bundles	can	import	and	use	the
services.	Also	calling	the	services	happens	in	the	code.

Bundles	can	be	installed,	started,	stopped	and	uninstalled	at	runtime.	So	bundles
are	easy	to	update:	Stop	and	uninstall	the	old	version,	then	install	a	new	version
and	start.	However,	if	a	bundle	exports	classes	or	interfaces	and	another	bundle
uses	these,	an	update	is	not	so	simple	anymore.	All	bundles	which	use	classes	or
interfaces	of	the	old	bundle	and	now	want	to	use	the	newly	installed	bundle	have
to	be	restarted.

Handling	Bundles	in	Practice

Sharing	code	is	by	far	not	as	important	for	Microservices	as	the	use	of	services.
Nevertheless	at	least	the	interface	of	the	services	has	to	be	offered	to	other
bundles.

In	practice	a	procedure	has	been	established	where	a	bundle	only	exports	the
interface	code	of	the	service	as	classes	and	Java	interfaces.	Another	bundle
contains	the	implementation	of	the	service.	The	classes	of	the	implementation	are
not	exported.	The	service	implementation	is	exported	as	OSGi	service.	To	use	the
service	a	bundle	has	to	import	the	interface	code	from	the	one	bundle	and	the
service	from	the	other	bundle	(compare	Fig.	79).

OSGi	allows	to	restart	services.	With	the	described	approach	the	implementation
of	the	service	can	be	exchanged	without	having	to	restart	other	bundles.	These
bundles	only	import	the	Java	interfaces	and	classes	of	the	interface	code.	That
code	does	not	change	for	a	new	service	implementation	so	that	restarting	is	not
necessary	anymore.	That	way	the	access	to	services	can	be	implemented	in	such	a
manner	that	the	new	version	of	the	service	is	in	fact	used.

With	the	aid	of	OSGi	blueprints	or	OSGi	declarative	services	these	details	can	be
abstracted	away	when	dealing	with	the	OSGi	service	model.	This	facilitates	the
handling	of	OSGi.	These	technologies	for	instance	render	it	much	easier	to	handle
the	restart	of	a	service	or	its	temporary	failure	during	the	restart	of	a	bundle.

http://wiki.osgi.org/wiki/Blueprint
http://wiki.osgi.org/wiki/Declarative_Services

Fig.	79:	OSGi	service,	implementation	and	interface	code

An	independent	deployment	of	services	is	possible,	but	also	laborious	since
interface	code	and	service	implementation	have	to	be	contained	in	different
bundles.	This	model	allows	only	changes	to	the	implementation.	Modifications	of
the	interface	code	are	more	complex.	In	such	a	case	the	bundles	using	a	service
have	to	be	restarted	because	they	have	to	reload	the	interface.

In	reality	OSGi	systems	are	often	completely	reinstalled	for	these	reasons	instead
of	modifying	individual	bundles.	An	Eclipse	update	for	instance	often	entails	a
restart.	A	complete	reinstallation	facilitates	also	the	reproduction	of	the
environment.	When	an	OSGi	system	is	dynamically	changed,	at	some	point	it	will
be	in	a	state	which	nobody	is	able	to	reproduce.	However,	modifying	individual
bundles	is	an	essential	prerequisite	for	implementing	the	Nanoservice	approach
with	OSGi.	Independent	deployment	is	an	essential	property	of	a	Nanoservice.	So
OSGi	compromises	this	essential	property.

Evaluation	for	Nanoservices

OSGi	has	a	positive	effect	on	Java	projects	in	regards	to	architecture.	The	bundles
are	usually	relatively	small	so	that	the	individual	bundles	are	easy	to	understand.

In	addition,	the	split	into	bundles	forces	the	developers	and	architects	to	think
about	the	relationships	between	the	bundles	and	to	define	them	in	the
configurations	of	the	bundles.	Other	dependencies	between	bundles	are	not
possible	within	the	system.	Normally	this	leads	to	a	very	clean	architecture	with
clear	and	intended	dependencies.

However,	OSGi	does	not	offer	technological	freedom:	It	is	based	on	the	JVM	and
therefore	can	only	be	used	with	Java	or	JVM-based	languages.	For	example,	it	is
nearly	impossible	that	an	OSGi	bundle	brings	along	its	own	database	because
databases	are	normally	not	written	in	Java.	For	such	cases	additional	solutions
alongside	the	OSGi	infrastructure	have	to	be	found.

For	some	Java	technologies	an	integration	with	OSGi	is	difficult	since	loading
Java	classes	works	differently	without	OSGi.	Moreover,	many	popular	Java
application	servers	do	not	support	OSGi	for	deployed	applications	so	that
changing	code	at	runtime	is	not	supported	in	such	environments.	The	infrastructure
has	to	be	specially	adapted	for	OSGi.

Furthermore,	the	bundles	are	not	fully	isolated:	When	a	bundle	uses	a	lot	of	CPU
or	causes	the	JVM	to	crash,	the	other	bundles	in	the	same	JVM	will	be	affected.
Failures	can	occur	for	instance	due	to	memory	leak	which	causes	more	and	more
memory	to	be	allocated	due	to	an	error	until	the	system	breaks	down.	Such	errors
easily	arise	due	to	blunders.

On	the	other	hand,	the	bundles	can	locally	communicate	due	to	OSGi.	Distributed
communication	is	also	possible	with	different	protocols.	Moreover,	the	bundles
share	a	JVM	which	reduces	for	instance	the	memory	utilization.

Solutions	for	monitoring	are	likewise	present	in	the	different	OSGi
implementations.

Conclusion

OSGi	leads	first	of	all	to	restrictions	in	regards	to	technological	freedom.	It
restricts	the	project	to	Java	technologies.	In	practice	the	independent	deployment
of	the	bundles	is	hard	to	implement.	Especially	interface	changes	are	poorly
supported.	Besides	bundles	are	not	well	isolated	from	each	other.	On	the	other
hand,	bundles	can	easily	interact	via	local	calls.

Try	and	experiment

Get	familiar	with	OSGi	for	instance	with	the	aid	of	a	tutorial.

Create	a	concept	for	the	distribution	into	bundles	and	services	for	a	part	of	a	system	you
know.
If	you	had	to	implement	the	system	with	OSGi:	Which	additional	technologies	(databases	etc.)
would	you	have	to	use?	How	would	you	handle	this?

15.5	Java	EE
Java	EE	is	a	standard	from	the	Java	field.	It	comprises	different	APIs	such	as	for
instance	JSF	(Java	ServerFaces),	Servlet	and	JSP	(Java	Server	Pages)	for	web
applications,	JPA	(Java	Persistence	API)	for	persistence	or	JTA	for	transactions.
Besides	Java	EE	defines	a	deployment	model.	Web	applications	can	be	packaged
into	WAR	files	(Web	ARchive),	JAR	files	(Java	ARchive)	can	contain	logic
components	like	Enterprise	Java	Beans	(EJBs),	and	EARs	(Enterprise	ARchives)
can	comprise	a	collection	of	JARs	and	WARs.	All	these	components	are	deployed
in	one	application	server.	The	application	server	implements	the	Java	EE	APIs
and	offers	for	instance	support	for	HTTP,	threads	and	network	connections	and
also	support	for	accessing	databases.

This	section	deals	with	WARs	and	the	deployment	model	of	Java	EE	application
servers.	Chapter	14	already	described	in	detail	a	Java	system	that	does	not
require	an	application	server.	Instead	it	directly	starts	a	Java	application	on	the
Java	Virtual	Machine	(JVM).	The	application	is	packaged	in	a	JAR	file	and
contains	the	entire	infrastructure.	This	deployment	is	called	Fat	JAR	deployment,
because	the	application	including	the	entire	infrastructure	is	contained	in	one
single	JAR.	The	example	from	chapter	14	uses	Spring	Boot	which	also	supports	a
number	of	Java	EE	APIs	such	as	JAX-RS	for	REST.	Dropwizard	also	offers	such
a	JAR	model.	It	is	actually	focused	on	JAX	RS-based	REST	web	services,
however,	it	can	also	support	other	applications.	Wildfly	Swarm	is	a	variant	of	the
Java	EE	server	Wildfly	which	also	supports	such	a	deployment	model.

Nanoservices	with	Java	EE

http://www.vogella.com/tutorials/OSGi/article.html
http://www.oracle.com/technetwork/java/javaee/overview/index.html
https://dropwizard.github.io/dropwizard/
http://github.com/wildfly-swarm/

A	Fat	JAR	deployment	utilizes	too	many	resources	for	Nanoservices.	In	a	Java	EE
application	server	multiple	WARs	can	be	deployed	thereby	saving	resources.
Each	WAR	can	be	accessed	via	its	own	URL.	Furthermore,	each	WAR	can	be
individually	deployed.	This	allows	to	bring	each	Nanoservice	individually	into
production.

However,	the	separation	between	WARs	is	not	optimal:

Memory	and	CPU	are	collectively	used	by	all	Nanoservices.	When	a
Nanoservice	uses	a	lot	of	CPU	or	memory,	this	can	interfere	with	other
Nanoservices.	A	crash	of	one	Nanoservice	propagates	to	all	other
Nanoservices.
In	practice,	redeployment	of	a	WAR	causes	memory	leaks	if	it	is	not	possible
to	remove	the	entire	application	from	memory.	Therefore,	in	practice	the
independent	deployment	of	individual	Nanoservices	is	hard	to	achieve.
In	contrast	to	OSGi	the	ClassLoaders	of	the	WARs	are	completely	separate.
There	is	no	possibility	for	accessing	the	code	of	other	Nanoservices.
Because	of	the	separation	of	the	code	WARs	can	only	communicate	via
HTTP	or	REST.	Local	method	calls	are	not	possible.

Since	multiple	Nanoservices	share	an	application	server	and	a	JVM,	this	solution
is	more	efficient	than	the	Fat	JAR	Deployment	of	individual	Microservices	in
their	own	JVM	as	described	in	chapter	14.	The	Nanoservices	use	a	shared	heap
and	thereby	use	less	memory.	However,	scaling	works	only	by	starting	more
application	servers.	Each	of	the	application	servers	contains	all	Nanoservices.
All	Nanoservices	have	to	be	scaled	collectively.	It	is	not	possible	to	scale
individual	Nanoservices.

The	technology	choice	is	restricted	to	JVM	technologies.	Besides	all	technologies
are	excluded	which	do	not	work	with	the	servlet	model	such	as	Vert.x	(section
15.6)	or	Play.

Microservices	with	Java	EE?

For	Microservices	Java	EE	can	also	be	an	option:	Theoretically	it	would	be
possible	to	run	each	Microservice	in	its	own	application	server.	In	this	case	an
application	server	has	to	be	installed	and	configured	in	addition	to	the
application.	The	version	of	the	application	server	and	its	configuration	have	to	fit
to	the	version	of	the	application.	For	Fat	JAR	deployment	there	is	no	need	for	a
specific	configuration	of	the	application	server	because	it	is	part	of	the	Fat	JAR

and	therefore	configured	just	like	the	application.	This	additional	complexity	of
the	application	server	is	not	counterbalanced	by	any	advantage.	Since	deployment
and	monitoring	of	the	application	server	only	work	for	Java	applications,	these
features	can	only	be	used	in	a	Microservices-based	architecture	when	the
technology	choice	is	restricted	to	Java	technologies.	In	general,	application
servers	have	hardly	any	advantages	–	especially	for	Microservices.

An	example

The	application	from	chapter	14	is	also	available	with	the	Java	EE	deployment
model.	Fig.	80	provides	an	overview	of	the	example:	There	are	three	WARs,
which	comprise	order,	customer	and	catalog.	They	communicate	with	each	other
via	REST.	When	customer	fails,	order	would	also	fail	in	the	host	since	order
communicates	only	with	this	single	customer	instance.	To	achieve	better
availability,	the	access	would	have	to	be	rerouted	to	other	customer	instances.

A	customer	can	use	the	UI	of	the	Nanoservices	from	the	outside	via	HTML/HTTP.
The	code	contains	only	small	modifications	compared	to	the	solution	from	chapter
14.	The	Netflix	libraries	have	been	removed.	On	the	other	hand,	the	application
has	been	extended	with	support	for	servlet	containers.

Fig.	80:	Example	application	with	Java	EE	Nanoservices

Try	and	Experiment

http://jaxenter.com/java-application-servers-dead-1-111928.html
https://github.com/ewolff/javaee-example/

The	application	as	Java	EE	Nanoservices	can	be	found	on	GitHub.

The	application	does	not	use	the	Netflix	technologies.

Hystrix	offers	Resilience	(compare	section	14.10).

Does	it	make	sense	to	integrate	Hystrix	into	the	application?
How	are	the	Nanoservices	isolated	from	each	other?
Is	Hystrix	always	helpful?
Compare	also	section	10.5	concerning	stability	and	resilience.	How	can	these	patterns	be
implemented	in	this	application?

Eureka	is	helpful	for	service	discovery.	How	would	it	fit	into	the	Java	EE	Nanoservices?
How	can	other	service	discovery	technologies	be	integrated	(compare	section	8.9)?

Ribbon	for	load	balancing	between	REST	services	could	likewise	be	integrated.	Which
advantages	would	that	have?	Would	it	also	be	possible	to	use	Ribbon	without	Eureka?

15.6	Vert.x
Vert.x	is	a	framework	containing	numerous	interesting	approaches.	Although	it
runs	on	the	(Java	Virtual	Machine),	it	supports	many	different	programming
languages	–	such	as	Java,	Scala,	Clojure,	Groovy,	Ceylon	as	well	as	JavaScript,
Ruby	or	Python.	A	Vert.x	system	is	built	from	Verticles.	They	receive	events	and
can	return	messages.

Listing	13	shows	a	simple	Vert.x	Verticle,	which	only	returns	the	incoming
messages.	The	code	creates	a	server.	When	a	client	connects	to	the	server,	a
callback	is	called,	and	the	server	creates	a	pump.	The	pump	serves	to	transfer
data	from	a	source	to	a	target.	In	the	example	source	and	target	are	identical.

The	application	becomes	only	active	when	a	client	connects	and	the	callback	is
called.	Likewise,	the	pump	becomes	only	active	when	new	data	are	available

https://github.com/ewolff/javaee-example/
http://vertx.io/

from	the	client.	Such	events	are	processed	by	the	event	loop	which	calls	the
Verticles.	The	Verticles	then	have	to	process	the	events.	An	event	loop	is	a	thread.
Usually	one	event	loop	is	started	per	CPU	core	so	that	the	event	loops	are
processed	in	parallel.	An	event	loop	and	thus	a	thread	resp.	a	CPU	core	can
support	an	arbitrary	number	of	network	connections.	Events	of	all	connections	can
be	processed	in	a	single	event	loop.	Therefore,	Vert.x	is	also	suitable	for
applications	which	have	to	handle	a	large	number	of	network	connections.
Listing	13:	Simple	Java	Vert.x	Echo	Verticle

	1	public	class	EchoServer	extends	Verticle	{

	2	

	3			public	void	start()	{

	4					vertx.createNetServer().connectHandler(new	Handler<NetSocket>()	{

	5							public	void	handle(final	NetSocket	socket)	{

	6									Pump.createPump(socket,	socket).start();

	7							}

	8					}).listen(1234);

	9			}

10	}

As	described	Vert.x	supports	different	programming	languages.	Listing	14	shows
the	same	Echo	Verticle	in	JavaScript.	The	code	adheres	to	JavaScript	conventions
and	uses	for	instance	a	JavaScript	function	for	callback.	Vert.x	has	a	layer	for	each
programming	language	that	adapts	the	basic	functionality	in	such	a	way	that	it
seems	like	a	native	library	for	the	respective	programming	language.
Listing	14:	Simple	JavaScript	Vert.x	Echo	Verticle
1	var	vertx	=	require('vertx')

2	

3	vertx.createNetServer().connectHandler(function(sock)	{

4			new	vertx.Pump(sock,	sock).start();

5	}).listen(1234);

Vert.x	modules	can	contain	multiple	Verticles	in	different	languages.	Verticles	and
modules	can	communicate	with	each	other	via	an	event	bus.	The	messages	on	the
event	bus	use	JSON	as	data	format.	The	event	bus	can	be	distributed	onto	multiple
servers.	In	this	manner	Vert.x	supports	distribution	and	can	implement	high
availability	by	starting	modules	on	other	servers.	Besides	the	Verticles	and
modules	are	loosely	coupled	since	they	only	exchange	messages.	Vert.x	also	offers
support	for	other	messaging	systems	and	can	also	communicate	with	HTTP	and
REST.	So	it	is	relatively	easy	to	integrate	Vert.x	systems	into	Microservice-based
systems.

Modules	can	be	individually	deployed	and	also	removed	again.	Since	the	modules
communicate	with	each	other	via	events,	modules	can	be	easily	replaced	by	new
modules	at	runtime.	They	only	have	to	process	the	same	messages.	A	module	can
implement	a	Nanoservice.	Modules	can	be	started	in	new	nodes	so	that	the	failure
of	a	JVM	can	be	compensated.

Vert.x	supports	also	Fat	JARs	where	the	application	brings	all	necessary	libraries
along.	This	is	useful	for	Microservices	since	this	means	that	the	application	brings
all	dependencies	along	and	is	easier	to	deploy.	For	Nanoservices	this	approach	is
not	so	useful	because	the	approach	consumes	too	many	resource	-	deploying
multiple	Vert.x	modules	in	one	JVM	is	a	better	option	for	Nanoservices.

Conclusion

Via	the	independent	module	deployment	and	the	loose	coupling	by	the	event	bus
Vert.x	supports	multiple	Nanoservices	within	a	JVM.	However,	a	crash	of	the
JVM,	a	memory	leak	or	blocking	the	event	loop	would	affect	all	modules	and
Verticles	in	the	JVM.	On	the	other	hand,	Vert.x	supports	many	different
programming	languages	–	in	spite	of	the	restriction	to	JVM.	This	is	not	only	a
theoretical	option.	In	fact	Vert.x	aims	at	being	easily	useable	in	all	supported
languages.	Vert.x	presumes	that	the	entire	application	is	written	in	a	non	blocking
manner.	However,	there	is	the	possibility	to	execute	blocking	tasks	in	Worker
Verticles.	They	use	separate	thread	pools	so	that	they	do	not	influence	the	non
blocking	Verticles.	So	even	code	that	does	not	support	the	Vert.x	non	blocking
approach	can	still	be	used	in	a	Vert.x	system.	This	allows	for	even	greater
technological	freedom.

Try	and	Experiment

The	Vert.x	homepage	offers	an	easy	start	to	developing	with	Vert.x.	It
demonstrates	how	a	web	server	can	be	implemented	and	executed	with	different
programming	languages.	The	modules	in	the	example	use	Java	and	Maven.	There
are	also	complex	examples	in	other	programming	languages.

15.7	Erlang
Erlang	is	a	functional	programming	language	which	is	first	of	all	used	in
combination	with	the	OTP	(Open	Telecom	Platform)	framework.	Originally,
Erlang	has	been	developed	for	telecommunication.	In	this	field	applications	have
to	be	very	reliable.	Meanwhile	Erlang	is	employed	in	all	areas	which	profit	from

http://vertx.io/
http://vertx.io/maven_dev.html
https://github.com/vert-x/vertx-examples
http://www.erlang.org/

its	strengths.	Erlang	uses	a	virtual	machine	similar	to	Java	as	runtime	environment
which	is	called	BEAM	(Bogdan/	Björn’s	Erlang	Abstract	Machine).

Erlang’s	strengths	are	first	of	all	its	resilience	against	failures	and	the	possibility
to	let	systems	run	for	years.	This	is	only	possible	via	dynamic	software	updates.
At	the	same	time	Erlang	has	a	light-weight	concept	for	parallelism.	Erlang	uses
the	concept	of	processes	for	parallel	computing.	These	processes	are	not	related
to	operating	system	processes	and	are	even	more	light-weight	than	operating
system	threads.	In	an	Erlang	system	millions	of	processes	can	run	which	are	all
isolated	from	each	other.

Another	factor	contributing	to	the	isolation	is	the	asynchronous	communication.
Processes	in	an	Erlang	system	communicate	with	each	other	via	messages.
Messages	are	sent	to	the	mailbox	of	a	process	(see	Fig.	81).	In	one	process	only
one	message	is	processed	at	a	time.	This	facilitates	the	handling	of	parallelism:
There	is	parallel	execution	because	many	messages	can	be	handled	at	the	same
time.	But	each	process	takes	care	of	only	one	message	at	a	time.	Parallelism	is
achieved	because	there	are	multiple	processes.	The	functional	approach	of	the
language,	which	attempts	to	get	by	without	a	state,	fits	well	to	this	model.	This
approach	corresponds	to	the	Verticles	in	Vert.x	and	their	communication	via	the
event	bus.

Fig.	81:	Communication	between	Erlang	processes

Listing	15	shows	a	simple	Erlang	server	which	returns	the	received	message.	It	is
defined	in	its	own	module.	The	module	exports	the	function	loop,	which	does	not
have	any	parameters.	The	function	receives	a	message	Msg	from	a	node	From	and
then	returns	the	same	message	to	this	node.	The	operator	“!”	serves	for	sending	the
message.	Afterwards	the	function	is	called	again	and	waits	for	the	next	message.
Exactly	the	same	code	can	also	be	used	for	being	called	by	another	computer	via
the	network.	Local	messages	and	messages	via	the	network	are	processed	by	the
same	mechanisms.
Listing	15:	An	Erlang	echo	server

1	-module(server).

2	-export([loop/0]).

3	loop()	->

4					receive

5							{From,	Msg}	->

6									From	!	Msg,

7									loop()

8	end.

Due	to	the	sending	of	messages	Erlang	systems	are	especially	robust.	Erlang
makes	use	of	“Let	It	Crash”.	An	individual	process	is	just	restarted	when
problems	occur.	This	is	the	responsibility	of	the	supervisor:	A	process	which	is
specifically	dedicated	to	monitoring	other	processes	and	restarting	them	if
necessary.	The	supervisor	itself	is	also	monitored	and	restarted	in	case	of
problems.	Thereby	a	tree	is	created	in	Erlang	which	in	the	end	prepares	the
system	for	the	case	that	processes	should	fail	(see	Fig.	82).

Fig.	82:	Monitoring	in	Erlang	systems

Since	the	Erlang	process	model	is	so	light-weight,	restarting	a	process	is	rapidly
done.	When	the	state	is	stored	in	other	components,	there	will	also	be	no
information	loss.	The	remainder	of	the	system	is	not	affected	by	the	failure	of	the
process:	As	the	communication	is	asynchronous,	the	other	processes	can	handle
the	higher	latency	caused	by	the	restart.	In	practice	this	approach	has	proven	very
reliable.	Erlang	systems	are	very	robust	and	still	easy	to	develop.

This	approach	is	based	on	the	actor	model:	Actors	communicate	with	each	other
via	asynchronous	messages.	As	a	response	they	can	themselves	send	messages,
start	new	actors	or	change	their	behavior	for	the	next	messages.	Erlang’s
processes	correspond	to	actors.

In	addition,	there	are	easy	possibilities	to	monitor	Erlang	systems.	Erlang	itself
has	built-in	functions	which	can	monitor	memory	utilization	or	the	state	of	the

http://en.wikipedia.org/wiki/Actor_model

mailboxes.	OTP	offers	for	this	purpose	the	Operations	and	Maintenance	Support
(OAM),	which	can	for	instance	also	be	integrated	into	SNMP	systems.

Since	Erlang	solves	typical	problems	arising	upon	the	implementation	of
Microservices	like	resilience,	it	supports	the	implementation	of	Microservices
quite	well.	In	that	case	a	Microservice	is	a	system	written	in	Erlang	which
internally	consists	of	multiple	processes.

However,	the	services	can	also	get	smaller:	Each	process	in	an	Erlang	system
could	be	considered	as	Nanoservice.	It	can	be	deployed	independently	of	the
others,	even	during	runtime.	Furthermore,	Erlang	supports	operating	system
processes.	In	that	case	they	are	also	integrated	into	the	supervisor	hierarchy	and
restarted	in	case	of	a	break	down.	This	means	that	any	operating	system	process
written	in	any	language	might	become	a	part	of	an	Erlang	system	and	its
architecture.

Evaluation	for	Nanoservices

As	discussed	an	individual	process	in	Erlang	can	be	viewed	as	Nanoservice.	The
expenditure	for	the	infrastructure	is	relatively	small	in	that	case:	Monitoring	is
possible	with	built-in	Erlang	functions.	The	same	is	true	for	deployment.	Since	the
processes	share	a	BEAM	instance,	the	overhead	for	a	single	process	is	not	very
high.	In	addition,	it	is	possible	for	the	processes	to	exchange	messages	without
having	to	communicate	via	the	network	and	therefore	with	little	overhead.	The
isolation	of	processes	is	also	implemented.

Finally,	even	processes	in	other	languages	can	be	added	to	an	Erlang	system.	For
this	purpose	an	operating	system	process	which	can	be	implemented	in	an
arbitrary	language	is	put	under	the	control	of	Erlang.	The	operating	system	process
can	for	instance	be	safeguarded	by	“Let	It	Crash”.	This	allows	to	integrate
practically	all	technologies	into	Erlang	–	even	if	they	run	in	a	separate	process.

On	the	other	hand,	Erlang	is	not	very	common.	The	consequent	functional
approach	also	needs	getting	used	to.	Finally,	the	Erlang	syntax	is	not	very	intuitive
for	many	developers.

Try	and	Experiment

https://www.innoq.com/en/talks/2015/01/talk-microservices-erlang-otp/

A	very	simple	example	is	based	on	the	code	from	this	section	and	demonstrates	how	communication
between	nodes	is	possible.	You	can	use	it	to	get	a	basic	understanding	of	Erlang.

There	is	a	very	nice	tutorial	for	Erlang,	which	also	treats	deployment	and	operation.	With	the	aid	of
the	information	from	the	tutorial	the	example	can	be	supplemented	by	a	supervisor.

An	alternative	language	out	of	the	Erlang	ecosystem	is	Elixir.	Elixir	has	a	different	syntax,	but	also
profits	from	the	concepts	of	OTP.	Elixir	is	much	simpler	to	learn	than	Erlang	and	thus	lends	itself	to
a	first	start.

There	are	many	other	implementations	of	the	actor	model.	It	is	worthwhile	to	look	more	closely
before	deciding	whether	such	technologies	are	also	useful	for	the	implementation	of	Microservices
or	Nanoservices	and	which	advantages	might	be	associated.	Akka	from	the	Scala	/	Java	area	might
be	of	interest	here.

15.8	Seneca
Seneca	is	based	on	Node.js	and	accordingly	uses	JavaScript	on	the	server.
Node.js	has	a	programming	model	where	one	operating	system	process	can	take
care	of	many	tasks	in	parallel.	To	achieve	this	there	is	an	event	loop	which
handles	the	events.	When	a	message	enters	the	system	via	a	network	connection,
the	system	will	first	wait	until	the	event	loop	is	free.	Then	the	event	loop
processes	the	message.	The	processing	has	to	be	fast	since	the	loop	is	blocked
otherwise	resulting	in	long	waiting	times	for	all	other	messages.	For	this	reason,
the	response	of	other	servers	may	in	no	case	be	waited	for	in	the	event	loop.	That
would	block	the	system	for	too	long.	The	interaction	with	other	systems	has	to	be
implemented	in	such	a	way	that	the	interaction	is	only	initiated.	Then	the	event
loop	is	freed	to	handle	other	events.	Only	when	the	response	of	the	other	system
arrives,	it	is	processed	by	the	event	loop.	Then	the	event	loop	calls	a	callback
which	has	been	registered	upon	the	initiation	of	the	interaction.	This	model	is
similar	to	the	approaches	used	by	Vert.x	and	Erlang.

https://github.com/ewolff/erlang-example/
http://learnyousomeerlang.com/
https://github.com/ewolff/erlang-example/
https://github.com/ewolff/erlang-example/
http://en.wikipedia.org/wiki/Actor_model
http://senecajs.org/

Seneca	introduces	a	mechanism	in	Node.js	which	allows	to	process	commands.
Patterns	of	commands	are	defined	which	cause	certain	code	to	be	executed.

Communicating	via	such	commands	is	also	easy	to	do	via	the	network.	Listing	16
shows	a	server	which	calls	seneca.add().	Thereby	a	new	pattern	and	code	for
handling	events	with	this	pattern	are	defined.	To	the	command	with	the	component
cmd:	“echo”	a	function	reacts.	It	reads	out	the	value	from	the	command	and	puts
it	into	the	value	parameter	of	the	function	callback.	Then	the	function	callback	is
called.	With	seneca.listen()	the	server	is	started	and	listens	to	commands	from	the
network.
Listing	16:	Seneca	Server

1	var	seneca	=	require("seneca")()

2	

3	seneca.add({cmd:	"echo"},	function(args,callback){

4					callback(null,{value:args.value})

5	})

6	

7	seneca.listen()

The	client	in	Listing	17	sends	all	commands	which	cannot	be	processed	locally
via	the	network	to	the	server.	seneca.client().	seneca.act()	creates	the	commands
that	are	sent	to	the	server.	It	contains	cmd:	“echo”	–	therefore	the	function	of	the
server	in	Listing	16	is	called.	“echo	this”	is	used	as	value.	The	server	returns	this
string	to	the	function	which	was	passed	in	as	a	callback	–	and	in	this	way	it	is
finally	printed	on	the	console.	The	example	code	can	be	found	on	GitHub.
Listing	16:	Seneca	Client
1	var	seneca=require("seneca")()

2	

3	seneca.client()

4	

5	seneca.act('cmd:	"echo",value:"echo	this",	function(err,result){

6					console.log(result.value)

7	})

Therefore,	it	is	very	easy	to	implement	a	distributed	system	with	Seneca.
However,	the	services	do	not	use	a	standard	protocol	like	REST	for
communicating.	Nevertheless,	also	REST	systems	can	be	implemented	with
Seneca.	Besides	the	Seneca	protocol	is	based	on	JSON	and	therefore	can	also	be
used	by	other	languages.

https://github.com/ewolff/seneca-example/

A	Nanoservice	can	be	a	function	which	reacts	with	Seneca	to	calls	from	the
network	–	and	therefore	it	can	be	very	small.	As	already	described,	a	Node.js
system	as	implemented	with	Seneca	is	fragile	when	a	function	blocks	the	event
loop.	Therefore,	the	isolation	is	not	very	good.

For	the	monitoring	of	a	Seneca	application	there	is	an	admin	console	which	at
least	offers	a	simple	monitoring.	However,	it	is	in	each	case	only	available	for
one	Node.js	process.	Monitoring	across	all	servers	has	to	be	achieved	by
different	means.

An	independent	deployment	of	a	single	Seneca	function	is	only	possible	if	there	is
a	single	Node.js	process	for	the	Seneca	function.	This	represents	a	profound
limitation	for	independent	deployment	since	the	expenditure	of	a	Node.js	process
is	hardly	acceptable	for	a	single	JavaScript	function.	In	addition,	it	is	not	easy	to
integrate	other	technologies	into	a	Seneca	system.	In	the	end	the	entire	Seneca
system	has	to	be	implemented	in	JavaScript.

Evaluation	for	Nanoservices

Seneca	has	been	especially	developed	for	the	implementation	of	Microservices
with	JavaScript.	In	fact,	it	enables	a	very	simple	implementation	for	services
which	can	also	be	contacted	via	the	network.	The	basic	architecture	is	similar	to
Erlang:	In	both	approaches	services	send	messages	resp.	commands	to	each	other
to	which	functions	react.	In	regards	to	the	independent	deployment	of	individual
services,	the	isolation	of	services	from	each	other	and	the	integration	of	other
technologies	Erlang	is	clearly	superior.	Besides	Erlang	has	a	much	longer	history
and	has	long	been	employed	in	different	very	demanding	applications.

Try	and	Experiment

The	code	example	can	be	a	first	step	to	get	familiar	with	Seneca.	You	can	also	use	the	basic	tutorial.
In	addition,	it	is	worthwhile	to	look	at	other	examples.	The	Nanoservice	example	can	be	enlarged	to
a	comprehensive	application	or	can	be	distributed	to	a	larger	number	of	Node.js	processes.

15.9	Conclusion
The	technologies	presented	in	this	chapter	show	how	Microservices	can	also	be
implemented	very	differently.	Since	the	difference	is	so	large,	the	use	of	the
separate	term	“Nanoservice”	appears	justified.	Nanoservices	are	not	necessarily

https://github.com/ewolff/seneca-example/
http://senecajs.org/getting-started.html
https://github.com/rjrodger/seneca-examples/

independent	processes	anymore	which	can	only	be	contacted	via	the	network,	but
might	run	together	in	one	process	and	use	local	communication	mechanisms	to
contact	each	other.	Thereby	not	only	the	use	of	extremely	small	services	is
possible,	but	also	the	adoption	of	Microservice	approaches	in	areas	such	as
embedded	or	desktop	applications.

An	overview	of	the	advantages	and	disadvantages	of	different	technologies	in
regards	to	Nanoservices	is	provided	in	Tab.	3.	Erlang	is	the	most	interesting
technology	since	it	also	allows	the	integration	of	other	technologies	and	is	able	to
isolate	the	individual	Nanoservices	quite	well	from	each	other	so	that	a	problem
in	one	Nanoservice	will	not	trigger	the	failure	of	the	other	services.	In	addition,
Erlang	has	been	the	basis	of	many	important	systems	for	a	long	time	already	so
that	the	technology	as	such	has	proven	its	reliability	beyond	doubt.

Seneca	follows	a	similar	approach,	but	cannot	compete	with	other	technologies	in
terms	of	isolation	and	the	integration	of	other	technologies	than	JavaScript.	Vert.x
has	a	similar	approach	on	the	JVM	and	supports	numerous	languages.	However,	it
does	not	isolate	Nanoservices	as	well	as	Erlang.	Java	EE	does	not	allow	for
communication	without	network,	and	individual	deployment	is	difficult	in	Java
EE.	In	practice	memory	leaks	occur	frequently	during	the	deployment	of	WARs.
So	during	a	deployment	the	application	server	is	usually	restarted	to	avoid
memory	leaks.	Then	all	Nanoservices	are	unavailable	for	some	time.	Therefore	a
Nanoservice	cannot	be	deployed	without	influencing	the	other	Nanoservices.
OSGi	allows	in	contrast	to	Java	EE	the	shared	use	of	code	between	Nanoservices.
In	addition,	OSGi	uses	methods	calls	for	communication	between	services	and	not
commands	resp.	messages	like	Erlang	and	Seneca.	Commands	or	messages	have
the	advantage	of	being	more	flexible.	Parts	of	a	message	which	a	certain	service
does	not	understand	are	not	a	problem-	they	can	just	be	ignored.

Tab.3:	Technology	evaluation	for	Nanoservices
	 Lambda OSGi Java	EE Vert.x Erlang Seneca
Effort	for	infrastructure ++ + + + ++ ++
per	service 	 	 	 	 	 	
Resource	consumption ++ ++ ++ ++ ++ ++
Communication - ++ -	- + ++ -
with	network 	 	 	 	 	 	
Isolation ++ -	- -	- - ++ -
of	services 	 	 	 	 	 	
Use	of	different - -	- -	- + + -	-

technologies 	 	 	 	 	 	

Amazon	Lambda	is	especially	interesting	since	it	is	integrated	into	the	Amazon
ecosystem.	This	makes	handling	the	infrastructure	very	easy.	The	infrastructure
can	be	a	challenging	problem	in	case	of	small	Nanoservices	because	so	many
more	environments	are	needed	due	to	the	high	number	of	services.	With	Amazon	a
database	server	is	only	an	API	call	or	a	click	away	–	alternatively,	an	API	can	be
used	to	store	data	instead	of	a	server.	Servers	become	invisible	for	storing	data	–
and	this	is	also	the	case	with	Amazon	Lambda	for	executing	code.	There	is	no
infrastructure	for	an	individual	service,	but	only	code	which	is	executed	and	can
be	used	by	other	services.	Because	of	the	prepared	infrastructure	monitoring	is
also	no	challenge	anymore.

Essential	Points

Nanoservices	divide	systems	into	even	smaller	services.	To	achieve	this,
they	compromise	in	certain	areas	such	as	technology	freedom	or	isolation.
Nanoservices	require	efficient	infrastructures	which	can	handle	a	large
number	of	small	Nanoservices.

16	How	to	Start	with	Microservices

As	conclusion	of	the	book	this	chapter	shows	what	the	start	with	Microservices
can	look	like.	Section	16.1	enumerates	the	different	advantages	of	Microservices
once	more	to	illustrate	that	there	is	not	only	a	single	reason	to	introduce
Microservices,	but	several.	Section	16.2	describes	several	ways	for	introducing
Microservices	–	depending	on	the	use	context	and	the	expected	advantages.
Section	16.3	finally	follows	up	on	the	question	whether	Microservices	are	more
than	just	a	hype.

16.1	Why	Microservices?
Microservices	entail	a	number	of	advantages	such	as	(compare	also	chapter	5):

Microservices	make	it	easier	to	implement	agility	for	large	projects	since
teams	can	work	independently.
Microservices	can	help	to	supplement	and	replace	legacy	applications
stepwise.
Microservice-based	architectures	allow	for	sustainable	development	since
they	are	less	susceptible	to	architecture	decay	and	because	individual
Microservices	can	be	easily	replaced.	This	increases	the	long-term
maintainability	of	the	system.
In	addition,	there	are	technical	reasons	for	Microservices	such	as	robustness
and	scalability.

To	prioritize	these	advantages	and	the	additional	ones	mentioned	in	chapter	5
should	be	the	first	step	when	considering	the	adaptation	of	a	Microservice-based
architecture.	Likewise	the	challenges	discussed	in	chapter	6	have	to	be	evaluated
and,	where	necessary,	strategies	for	dealing	with	these	challenges	have	to	be
devised.

Continuous	Delivery	and	infrastructure	play	a	prominent	role	in	this	context.	If	the
deployment	processes	are	still	manual,	the	expenditure	for	operating	a	large
number	of	Microservices	is	so	high	that	their	introduction	is	hardly	feasible.
Unfortunately,	many	organizations	still	have	profound	weaknesses	especially	in
the	area	of	Continuous	Delivery	and	infrastructure.	In	such	a	case	Continuous

Delivery	should	be	introduced	alongside	Microservices.	Since	Microservices	are
much	smaller	than	Deployment	Monoliths,	Continuous	Delivery	is	also	easier	with
Microservices.	Therefore,	both	approaches	have	synergies.

In	addition	the	organizational	level	(chapter	13)	has	to	be	taken	into	account.
When	the	scalability	of	agile	processes	constitutes	an	important	reason	for
introducing	Microservices,	the	agile	processes	should	already	be	well
established.	For	example,	there	has	to	be	a	Product	Owner	per	team,	who	also
decides	about	all	features,	as	well	as	agile	planning.	The	teams	should	also	be
already	largely	self-reliant	–	otherwise	in	the	end	they	might	not	make	use	of	the
independence	Microservices	offer.

Introducing	Microservices	can	solve	more	than	just	one	problem.	The	specific
motivation	for	Microservices	will	differ	between	projects.	The	large	number	of
advantages	can	on	its	own	be	a	good	reason	for	introducing	Microservices.	In	the
end	the	strategy	for	introducing	Microservices	has	to	be	adapted	to	the	advantages
that	are	most	important	in	the	context	of	a	specific	project.

16.2	Roads	towards	Microservices
There	are	different	approaches	which	pave	the	way	towards	Microservices:

The	most	typical	scenario	is	to	start	out	with	a	monolith	which	is	converted
stepwise	into	a	multitude	of	Microservices.	Usually,	different	functionalities
are	transferred	one	by	one	into	Microservices.	A	driving	force	behind	this
conversion	is	often	the	wish	for	an	easier	deployment.	However,	independent
scaling	and	achieving	a	more	sustainable	architecture	can	also	be	important
reasons.
However,	migrating	from	a	monolith	to	Microservices	can	also	occur	in	a
different	manner.	When	for	instance	resilience	is	the	main	reason	for
switching	to	Microservices,	the	migration	can	be	started	by	first	adding
technologies	like	Hystrix	to	the	monolith.	Afterwards	the	system	can	be	split
into	Microservices.
Starting	a	Microservice-based	system	from	scratch	is	by	far	the	rarer
scenario.	Even	in	such	a	case	a	project	can	start	by	building	a	monolith.
However,	it	is	more	sensible	to	devise	a	first	coarse-grained	domain
architecture	which	leads	to	the	first	Microservices.	Thereby	an	infrastructure
is	created	which	supports	more	than	just	one	Microservice.	This	approach
also	allows	teams	to	already	work	independently	on	features.	However,	a

fine-granular	division	into	Microservices	right	from	the	start	often	does	not
make	sense	because	it	will	probably	have	to	be	revised	again	later	on.
Introducing	the	necessary	profound	changes	into	an	already	existing
Microservices	architecture	can	be	highly	complex.

Microservices	are	easy	to	combine	with	existing	systems	which	facilitates	their
introduction.	A	small	Microservice	as	supplement	to	an	existing	Deployment
Monolith	is	rapidly	written.	If	problems	arise,	such	a	Microservice	can	also	be
rapidly	removed	again	from	the	system.	Other	technical	elements	can	then	be
introduced	in	a	stepwise	manner.

The	easy	combination	of	Microservices	with	legacy	systems	is	an	essential	reason
for	the	fact	that	the	introduction	of	Microservices	is	quite	simple	and	can
immediately	result	in	advantages.

16.3	Microservice:	Hype	or	Reality?
Without	doubt	Microservices	are	an	approach	which	is	in	the	focus	of	attention
right	now.	This	does	not	have	to	be	bad	–	yet,	such	approaches	often	are	at	second
glance	only	a	fashion	and	do	not	solve	any	real	problems.

However,	the	interest	in	Microservices	is	more	than	just	a	fashion	or	hype:

As	described	in	the	introduction,	Amazon	has	been	employing	Microservices
for	many	years.	Likewise,	many	internet	companies	have	been	following	this
approach	for	a	long	time.	Therefore,	Microservices	are	not	just	a	new
fashion,	but	have	already	been	used	for	a	long	time	behind	the	scenes	in	many
companies	before	they	became	fashionable.
For	the	Microservice	pioneers	the	advantages	associated	with	Microservices
were	so	profound	that	they	were	willing	to	invest	a	lot	of	money	into	creating
the	not	yet	existing	necessary	infrastructures.	These	infrastructures	are
nowadays	available	free	of	cost	as	Open	Source	–	Netflix	is	a	prominent
example.	Therefore,	it	is	much	easier	nowadays	to	introduce	Microservices.
The	trend	towards	agility	and	Cloud	infrastructures	is	suitably	complemented
by	Microservices-based	architectures:	They	enable	the	scaling	of	agility	and
fulfill	the	demands	of	the	Cloud	in	regards	to	robustness	and	scalability.
Likewise	Microservices	as	small	deployment	units	support	Continuous
Delivery	which	is	employed	by	many	enterprises	to	increase	software	quality
and	to	bring	software	more	rapidly	into	production.

There	is	more	than	one	reason	for	Microservices.	Therefore,	Microservices
represent	an	improvement	for	many	areas.	Since	there	is	not	a	single	reason
for	the	introduction	of	Microservices,	but	a	number	of	them,	it	is	more	likely
that	even	very	diverse	projects	will	in	the	end	really	benefit	from	switching
to	Microservices.

Presumably,	everybody	has	already	seen	large,	complex	systems.	Maybe	it	is	now
the	time	to	develop	smaller	systems	and	to	profit	from	the	associated	advantages.
In	any	case	there	seem	to	be	only	very	few	reasons	arguing	for	monoliths	–	except
for	their	lower	technical	complexity.

16.4	Conclusion
Introducing	Microservices	makes	sense	for	a	number	of	reasons:

There	is	a	plethora	of	advantages	(discussed	in	section	16.1	and	chapter	5).
The	way	to	Microservices	is	evolutionary.	It	is	not	necessary	to	start
adopting	Microservices	for	the	whole	system	from	the	beginning.	Quite	in
contrast:	A	stepwise	migration	is	the	usual	way	(section	16.2).	Many
different	approaches	can	be	chosen	in	order	to	profit	as	quickly	as	possible
from	the	advantages	Microservices	offer.
The	start	is	reversible:	If	Microservices	prove	not	to	be	suitable	for	a	certain
project,	they	can	easily	be	replaced	again.
Microservices	are	clearly	more	than	a	hype	(section	16.3).	For	being	just	a
hype	they	have	been	in	use	for	too	long	and	have	been	too	broadly	adapted.
Therefore,	one	should	at	least	experiment	with	Microservices	–	and	this
books	invites	the	reader	in	many	places	to	do	just	that.

Try	and	Experiment

Answer	the	following	questions	for	an	architecture/system	you	are	familiar	with:

Which	are	the	most	important	advantages	of	Microservices	in	this	context?
How	could	a	migration	to	Microservices	be	achieved?	Possible	approaches:

Implement	new	functionalities	in	Microservices
Enable	certain	properties	(e.g.	robustness	or	rapid	deployment)	via	suitable
technologies

What	could	a	project	look	like	which	tests	the	introduction	of	Microservices	with	as	little
expenditure	as	possible?

In	which	case	would	this	project	be	a	success	and	the	introduction	of	Microservices
therefore	sensible?

	1 Preface
	1.1 Overview of Microservice
	1.2 Why Microservices

	Part I: Motivation and Basics
	2 Introduction
	2.1 Overview of the Book
	2.2 For Whom is the Book Meant?
	2.3 Chapter Overview
	2.4 Essays
	2.5 Paths Through the Book
	2.6 Acknowledgement

	3 Microservice Scenarios
	3.1 Modernizing an E-Commerce Legacy Application
	3.2 Developing a New Signaling System
	3.3 Conclusion

	Part II: Microservices: What, Why and Why Not?
	4 What are Microservices?
	4.1 Size of a Microservice
	4.2 Conway’s Law
	4.3 Domain-Driven Design and Bounded Context
	Why You Should Avoid a Canonical Data Model (Stefan Tilkov)
	4.4 Microservices with UI?
	4.5 Conclusion

	5 Reasons for Microservices
	5.1 Technical Benefits
	5.2 Organizational Benefits
	5.3 Benefits from a Business Perspective
	5.4 Conclusion

	6 Challenges
	6.1 Technical Challenges
	6.2 Architecture
	6.3 Infrastructure and Operations
	6.4 Conclusion

	7 Microservices and SOA
	7.1 What is SOA?
	7.2 Differences Between SOA and Microservices
	7.3 Conclusion

	Part III: Implementing Microservices
	8 Architecture of Microservice-based Systems
	8.1 Domain Architecture
	8.2 Architecture Management
	8.3 Techniques to Adjust the Architecture
	8.4 Growing Microservice-based Systems
	Don’t Miss the Exit Point or How to Avoid the Erosion of a Microservice (Lars Gentsch)
	8.5 Microservices and Legacy Applications
	Hidden Dependencies (Oliver Wehrens)
	8.6 Event-driven Architecture
	8.7 Technical Architecture
	8.8 Configuration and Coordination
	8.9 Service Discovery
	8.10 Load Balancing
	8.11 Scalability
	8.12 Security
	8.13 Documentation and Metadata
	8.14 Conclusion

	9 Integration and Communication
	9.1 Web and UI
	9.2 REST
	9.3 SOAP and RPC
	9.4 Messaging
	9.5 Data Replication
	9.6 Interfaces: Internal and External
	9.7 Conclusion

	10 Architecture of Individual Microservices
	10.1 Domain Architecture
	10.2 CQRS
	10.3 Event Sourcing
	10.4 Hexagonal Architecture
	10.5 Resilience and Stability
	10.6 Technical Architecture
	10.7 Conclusion

	11 Testing Microservices and Microservice-based Systems
	11.1 Why Tests?
	11.2 How to Test?
	11.3 Mitigate Risks at Deployment
	11.4 Testing the Overall System
	11.5 Testing Legacy Applications and Microservices
	11.6 Testing Individual Microservices
	11.7 Consumer-driven Contract Tests
	11.8 Testing Technical Standards
	11.9 Conclusion

	12 Operations and Continuous Delivery of Microservices
	12.1 Challenges Associated with the Operation of Microservices
	12.2 Logging
	12.3 Monitoring
	12.4 Deployment
	Combined or Separate Deployment? (Jörg Müller)
	12.5 Control
	12.6 Infrastructure
	12.7 Conclusion

	13 Organizational Effects of a Microservices-based Architecture
	13.1 Organizational Benefits of Microservices
	13.2 An Alternative Approach to Conway’s Law
	13.3 Micro and Macro Architecture
	13.4 Technical Leadership
	13.5 DevOps
	When Microservices Meet Classical IT Organizations (Alexander Heusingfeld)
	13.6 Interface to the Customer
	13.7 Reusable Code
	13.8 Microservices Without Changing the Organization?
	13.9 Conclusion

	Part IV: Technologies
	14 Example for a Microservices-based Architecture
	14.1 Domain Architecture
	14.2 Basic Technologies
	14.3 Build
	14.4 Deployment Using Docker
	14.5 Vagrant
	14.6 Docker Machine
	14.7 Docker Compose
	14.8 Service Discovery
	14.9 Communication
	14.10 Resilience
	14.11 Load Balancing
	14.12 Integrating Other Technologies
	14.13 Tests
	Experiences with JVM-based Microservices in the Amazon Cloud (Sascha Möllering)
	14.14 Conclusion

	15 Technologies for Nanoservices
	15.1 Why Nanoservices?
	15.2 Nanoservices: Definition
	15.3 Amazon Lambda
	15.4 OSGi
	15.5 Java EE
	15.6 Vert.x
	15.7 Erlang
	15.8 Seneca
	15.9 Conclusion

	16 How to Start with Microservices
	16.1 Why Microservices?
	16.2 Roads towards Microservices
	16.3 Microservice: Hype or Reality?
	16.4 Conclusion

