Getting Started with
Cubieboard

Leverage the power of the ARM-based Cubieboard to create
amazing projects

PACKT

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with
Cubieboard

Leverage the power of the ARM-based Cubieboard to
create amazing projects

Olliver M. Schinagl

open source

community experience distilled

PUBLISHING
BIRMINGHAM - MUMBAI

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Cubieboard

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2014
Production reference: 1121214

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78328-157-2

www . packtpub.com

Cover image by Mattia Grillo (mattia.grillo.04@gmail.com)

www.it-ebooks.info

http://www.it-ebooks.info/

Credits

Author
Olliver M. Schinag|

Reviewers
Praveen Palanisamy

Benjamin Henrion

Emilio Lopez

Acquisition Editor
Llewellyn Rozario

Content Development Editor
Sriram Neelakantan

Technical Editor
Shashank Desai

Copy Editor
Sarang Chari

Project Coordinators
Aboli Ambardekar

Melita Lobo

Proofreaders
Maria Gould

Ameesha Green

Indexer
Hemangini Bari

Production Coordinator
Shantanu N. Zagade

Cover Work
Shantanu N. Zagade

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author

Olliver M. Schinagl is Austrian-born and a software developer at heart with
a strong interest in electronic engineering. Embedded software is where both
his passions come together. Having lived in the Netherlands for most of his life,
Olliver is currently working at Ultimaker, a 3D printer manufacturer, where

his love for Linux, free and open source software, and embedded development
is satisfied. Having worked on open source projects, and as a longtime member
of the linux-sunxi community, Olliver has in-depth and hands-on experience
with Allwinner-based hardware.

He always had a desire to teach but a stronger desire to work on open source
projects and embedded hardware. Thus, when offered the chance to write a book
in his spare time, he decided to listen to his inner voice and took the chance to use
the printed form to teach.

Having never done any writing except for academic work, this was both a challenge
and a great experience. Hopefully, you will appreciate the effort and not only learn
from the things brought via this book, but also gain the appetite to work out creative
ideas, put the knowledge to good use, and share it with others so they can then
benefit from it.

Writing a book costs time, and to understand and support this,

I would like to thank my partner in life, Anshariah, who encouraged
and cursed those late night writing sessions. Additionally, I would
like to thank my parents and all my friends for always being there
for me, supporting me, and being proud as parents and friends
would be.

Finally, a pledge of gratitude goes out to all the free and open source
software and hardware developers and advocates for all the things
they make and create, all the things they share, and all the things

I have learned from. It is because of them that I am able to write code
and text using all the source tools. It is people like you who, in the
end, make the world a better place.

www.it-ebooks.info

http://www.it-ebooks.info/

About the Reviewers

Praveen Palanisamy is a robotics, computer vision, and embedded system
enthusiast, and he is currently pursuing his Master's degree at the Robotics Institute
at Carnegie Mellon University. He got his Bachelor's degree in Electrical and
Electronics Engineering from Vellore Institute of Technology University, Chennai.
Inventing a machine that can walk, run, think, and interact like human beings has
always intrigued and fascinated him.

He is an autodidact who learned computer programming. Spurred by his passion

for robotics, he learned image processing and computer vision techniques to program
and build intelligent robots and embedded systems. He has worked with a series

of ARM architecture-based development boards and CPUs, including Dual-core
Cortex-A9-based Pandaboard ES, Cortex-A8-based Cubieboard, and Cortex-M3-based
Stellaris IDM L-35. He has also worked with 8-bit AVR RISC microcontrollers and
Arduino. He has experience in building Linux systems from scratch on embedded
platforms. He is working part-time in a computer vision-based start-up named
Cladoop. A list of Praveen's projects and demonstrations can be explored at
http://praveenp.com.

www.it-ebooks.info

http://www.it-ebooks.info/

Benjamin Henrion has been hacking embedded devices since 2000 with the
OpenAP/LinuxAP distribution running on the first wireless router that runs Linux.
He has been an exclusive Linux user since 1996, and he owns an extensive collection
of embedded devices running Linux. He has contributed to the development of
wireless routing protocols and initiated the Wireless Battle Mesh event, which

aims to test those protocols running on routers based on OpenWrt.

Benjamin is also the President of the Foundation for a Free Information Infrastructure
e.V. (http://£f£fii.org/), and he has been fighting software patents since 1999,

from the beginning of the European debate till now. He has launched several
popular campaigns on the Internet, such as the August 2003 and June 2005 web
demonstrations against software patents (400,000 signatures), the PublicGeoData
campaign for free maps (5,000 signatures), and the campaign against Microsoft
Office's standardization at ISO (100,000 signatures); for more information, refer to
http://noocoxml.wikidot.com/.

He currently works for a VoIP company as a systems engineer. His interests
lie in computer science, politics, and mountain biking. His personal website
is http://www.zoobab.com/.

www.it-ebooks.info

http://www.it-ebooks.info/

www.PacktPub.com

Support files, eBooks, discount offers, and more

For support files and downloads related to your book, please visit www. PacktPub. com.
Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www. PacktPub. com

and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at servicee@packtpub. com for more details.

At www . PacktPub. com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers
on Packt books and eBooks.

[@ PACKT

https://www2.packtpub.com/books/subscription/packtlib

®

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
* Fully searchable across every book published by Packt

* Copy and paste, print, and bookmark content

* On demand and accessible via a web browser

Free access for Packt account holders

If you have an account with Packt at www. PacktPub . com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Preface 1
Chapter 1: Choosing the Right Board 7
Wading through the forest of available chips and boards 7
A short overview of chips 8
Choosing the right development board 9
Olimex 10
Cubietech 12
Lemaker 14

ltead and Olimex 15
Additional hardware 16
Serially interfacing with the board 16
Universal asynchronous receiver/transmitter 17

The microSD adapter 18

The microSD card 18
Power supply 19
Summary 19
Chapter 2: Getting Started with the Hardware 21
Connecting a serial port 21
Booting up the preinstalled software 24
Summary 26
Chapter 3: Installing an Operating System 27
Booting the Cubieboard 27
OS image installation background 28
Getting and preparing Fedora 29
Writing the OS image to the SD card 29
Writing the bootloader 31
Finishing the operating system installation 32
Precautionary measures for installing updates 35

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Maintaining the OS and installing updates 36
Adding more software to the OS 38
Summary 39
Chapter 4: Manually Installing an Alternative Operating System 41
Prerequisites for this chapter 41
Preparing the destination medium 42
Formatting the newly created partitions 44
Creating a Debian or Ubuntu rootfs 46
Installing debootstrap 47
Running debootstrap 48
Configuring the base system 49
Configuring the networking 50
Making the destination medium bootable 52
The root user 53
Preparing the chroot command 53
Changing the root password 54
Creating a new super user 54
Exiting chroot 55
Adding the serial console 55
Adding the serial console to Debian 55
Adding the serial console to Ubuntu 56
Rebooting the new OS 56
Getting around the new OS via the command line 57
Introducing apt 57
Configuring apt 58
Keeping the OS up to date 58
Installing additional software 60
Finding packages 60
Installing the software package using apt-get 61
Installing the software package using tasksel 62
Installing packages via metapackages 63
Summary 64
Chapter 5: Setting Up a Home Server 65
Prerequisites for the home server board 66
Accessing the server remotely 66
Interacting with services 68
Starting, stopping, restarting, or reloading a service 69
Adding or removing a service from the boot up 69
Running scheduled tasks automatically 70
Setting up a proxy server 71
Installing Squid 71

Lii]

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Setting up a caching proxy 72
Configuring a browser to use the proxy 72
Setting up a blocking proxy 75
Setting up a web server 78
Setting up a file server 79
Setting up a torrent server 81
Setting up a personal cloud 83
Summary 86
Chapter 6: Updating the Bootloader and Kernel 87
Prerequisites for this chapter 87
The bootloader overview 88
U-boot-sunxi 88
Installing the bootloader 89
Completing the bootloader 90
Exploring the kernel 91
Variants of the SoC 91
Overview of the various kernels 92
Choosing a kernel 93
Installing the kernel 93
Installing the kernel modules 94
Summary 94
Chapter 7: Compiling the Bootloader and Kernel Using a BSP 95
Prerequisites 95
Installing a toolchain 96
Debian or Ubuntu 96
Fedora 96
Other distributions 96
Other required tools and packages 97
Obtaining and maintaining the BSP 98
Updating the repositories 99
Choosing a kernel 100
Compiling for a Cubieboard 101
Summary 103
Chapter 8: Blinking Lights and Sensing the World 105
Making an LED glow 105
Resistance required 106
Sinking and sourcing 108
Amplifying the voltage and current 109
Controlling pins from software 110

[iii]

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Pulling up and pulling down 110
Reading a switch 112
Summary 13

Appendix A: Getting Help and Finding Other Helpful

Online Resources 115
Meeting the community 115
Getting in touch with the Olimex community 116
Getting in touch with the Cubietech community 116
Getting in touch with the linux-sunxi community 117
Getting help by asking the right questions 117
Getting support for any new Allwinner-based hardware 118
Summary 118

Appendix B: Basic Linux Commands Cheatsheet 119
Requesting the manual 119
Listing a directory 120
Changing through directories 120
Getting the current working directory 120
Getting the current user 120
Running commands as root 121
Changing the current user without logging out 121
Creating files or changing their dates 121
Creating directories 122
Removing files 122
Removing a directory 122
Copying files and directories 122
Moving files and directories 123
Changing file and directory access permissions 123
Changing file and directory ownership 124
Changing passwords 124
Displaying the content of a text file 125
Modifying the partitions on a disk 125
Formatting partitions 126
Mounting partitions 126
Unmounting partitions 127
Writing data 127
Changing to a special root directory 127
Forcing the system to write all content to disks 128
Adding new users 128
Additional commands 128
Summary 128

[iv]

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Appendix C: The FEX Configuration File 129
Initial boot up 129
Compiling and decompiling the FEX file 130
Understanding the FEX file format 130

Pin configurations 131
Further reading 132
Installing the configured FEX file 132
Summary 132

Appendix D: Troubleshooting the Common Pitfalls 133
Stability issues 133
Boot failures when booting from SD cards 134
No display output via a connected monitor 135
Summary 137

Index 139

[v]

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

Over the last few years, ARM chips have become trendy and ubiquitous, ranging
from the phone and tablet market to power-efficient server farms. The low cost
associated with the chips in conjunction with their powerful features makes them an
apt choice for hobbyists and enthusiasts. In addition to offering a ton of connectivity,
these chips have been used by several manufacturers on their development boards.
The Cubieboard is a type of board with built-in networking and various input and
output ports, making it an awesome utility for myriad purposes, such as media
centers, robotic projects, home automation, web servers, and home security systems,
to mention a few. The Cubieboard is a microcontroller, which provides a whole new
set of capabilities with the extensibility of desktop machines but without the bulk

or noise.

Low cost, highly expandable, and high performing with a massive, diverse range

of uses and applications, the Cubieboard will revolutionize the way we think about
computing and programming. With its power-packed attributes and versatility, you
can create fun things. There is absolutely no fixed way to develop complex projects;
however, this book will give you enough basics of the Cubieboard in a few different
realms so that you can dig deeper on your own.

What this book covers

Chapter 1, Choosing the Right Board, starts with an overview of various development
boards and compares a few popular ones to help you choose a board tailored to your
requirements. You will also take a look at the additional hardware and a few extra
peripherals that will help you understand the stuff you require for your projects.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

Chapter 2, Getting Started with the Hardware, helps you with the initial settings before
you can try out things with it. After unwrapping the Cubieboard, you will learn the
procedure to connect a serial port to the development board and move on to booting
up the preinstalled software.

Chapter 3, Installing an Operating System, explains the procedure of installing an
operating system in addition to installing a fully-functional graphical desktop

environment onto a microSD card. It also points out the difference between an
OS image and a clean installation, thereafter moving on to installing Fedora in
addition to writing the OS image to a microSD card.

Chapter 4, Manually Installing an Alternative Operating System, helps you with
the process of installing a customized OS on an alternative medium (SATA SSD)
in addition to making the destination medium bootable using the command line.

Chapter 5, Setting Up a Home Server, explains how the Cubieboard can be used as

a home server efficiently in addition to setting up different services to be used in a
home environment. You can learn about the procedure of setting up a web server,
file server, torrent server, and then summing it up with setting up a personal cloud.

Chapter 6, Updating the Bootloader and Kernel, helps you to understand the difference
between the various bootloader and kernel types while also assisting you with the
process of obtaining and installing a new bootloader or kernel onto an SD card,
which will be used as a boot device. Kernels often get updated to newer versions
with security fixes or support for new hardware, thereby making it mandatory to
know about them when working with many ARM boards, such as the Cubieboard.

Chapter 7, Compiling the Bootloader and Kernel Using a BSP, deals with the board
support package (BSP), thereby helping you compile the bootloader and kernel from
source when some changes are to be made to the source code of the bootloader and
kernel. You will learn to use BSP in conjunction with Git and create an easy-to-use,
device-specific hardware pack.

Chapter 8, Blinking Lights and Sensing the World, starts with explaining basic electronic
concepts and moves on to toggling GPIO pins and then make LEDs blink, thereby
encouraging you to try out new things as you make your foray into the world of
possibilities with the Cubieboard.

Appendix A, Getting Help and Finding Other Helpful Online Resources, educates you on
the online resources at your disposal due to the vibrant communities and also how
to obtain these resources and get help from the community in general.

[2]

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

Appendix B, Basic Linux Commands Cheatsheet, is a collection of various Linux
commands that form a major part of your workload while using the Cubieboard,
thereby helping you get to grips with the technology.

Appendix C, The FEX Configuration File, helps you understand the FEX files that are
imperative due to the fact that they are used to configure the drivers.

Appendix D, Troubleshooting the Common Pitfalls, is a small guide that will be quite
handy when faced with errors and hurdles, such as boot failures, stability issues,
and errors that pop up while executing commands.

What is needed for this book

Nearly everything covered in this book can be done be on the board.

To communicate with the board, a working PC is required with a working
USB port to connect a USB to serial 3.3 volt UART adapter. Depending on

the operating system used, a terminal emulator such as PuTTY is required.
There are two options to compile the sources used in this book, either natively
on the development board or via a so-called cross compiler on a regular PC.

If a regular PC is used, Linux is required, but this can be run from within a
virtual machine. This book was written using only freely available open
source software.

Who this book is for

This book is intended for anyone who wants to start working with Allwinner

A10, A13, or A20 ARM-based hardware. This can range from hobbyists and
developers at home working on a cool project to professionals working on a new
ARM-based product with little ARM or little Linux knowledge. No previous Linux
knowledge is required but having it certainly makes things a lot easier. Android

is not really addressed in this book, and while Android is a common operating
system preinstalled on many of these development boards, this book will not
cover Android or Android apps.

Conventions

In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles and an
explanation of their meaning.

[31]

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLSs, user input, and Twitter handles are shown as follows:
"The 1 command can be used at any time to get an overview of the available types."

Any command-line input or output is written as follows:

packt@PacktPublishing:~$ tar xJvf u-boot-sunxi-cubieboard.tar.xz
u-boot-sunxi-cubieboard-20140307T104232-b5bd4c9/

u-boot-sunxi-cubieboard-20140307T104232-b5bd4c9/u-boot-sunxi-with-
spl.bin

u-boot-sunxi-cubieboard-20140307T104232-b5bd4c9/u-boot.bin
u-boot-sunxi-cubieboard-20140307T104232-b5bd4c9/sunxi-spl.bin

New terms and important words are shown in bold. Words that you see on
the screen, for example, in menus or dialog boxes, appear in the text like this:
"Make sure to check Serial."

% Warnings or important notes appear in a box like this.

a1

~Q Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book —what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedbackepacktpub. com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

[4]

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

Downloading the example code

You can download the example code files from your account at http://www.
packtpub. com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http: //www.packtpub.com/support
and register to have the files e-mailed directly to you.

Downloading the color images of this book

We also provide you a PDF file that has color images of the screenshots/diagrams
used in this book. The color images will help you better understand the changes in
the output. You can download this file from: https://www.packtpub.com/sites/
default/files/downloads/15720S_ColoredImages.pdf

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books —maybe a mistake in the text or the
code —we would be grateful if you would report this to us. By doing so, you can save
other readers from frustration and help us improve subsequent versions of this book.
If you find any errata, please report them by visiting http: //www.packtpub.com/
submit-errata, selecting your book, clicking on the Errata Submission Form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http: //www.packtpub. com/support.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy

Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

[51]

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions

You can contact us at questionse@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

[6]

www.it-ebooks.info

http://www.it-ebooks.info/

Choosing the Right Board

It is that time of the year again when there are a few days to spare, and you are
anxious to play with one of these new ARM development boards everybody keeps
talking about. There are, however, a lot of boards available. With so many choices
available, which board do you pick? Choosing the board to start working with can
make a difference later on, so this chapter provides an introduction to the various
boards and states the major differences between them. While the focus of this book
does indeed lie on the Cubieboard family from Cubietech, it might still be prudent to
give this chapter some attention for a potential second board. Additionally, this book
does apply just as easily to the boards mentioned here.

In this first chapter, we will cover the following topics:

* Why are there so many boards to choose from?
* Anoverview of various boards
* Highlighting the most popular boards

* Ideas regarding what additional hardware is required

Wading through the forest of available
chips and boards

There are many chips and even more boards to choose from when going into ARM
development. This chapter also provides a short introduction to various chips and
compares them.

www.it-ebooks.info

http://www.it-ebooks.info/

Choosing the Right Board

A short overview of chips

In the last few years, ARM-based Systems on Chips (SoCs) have become immensely
popular. Compared to the regular x86 Intel-based or AMD-based CPUs, they are
much more energy efficient and still perform adequately. They also incorporate a

lot of peripherals, such as a Graphics Processor Unit (GPU), a Video Accelerator
(VPU), an audio controller, various storage controllers, and various buses (I12C and
SPI), to name a few things. This immensely reduces the required components on

a board. With the reduction in the required components, there are a few obvious
advantages, such as reduction in the cost and, consequentially, a much easier design
of boards. Thus, many companies with electronic engineers are able to design and
manufacture these boards cheaply.

So, there are many boards; does that mean there are also many SoCs? Quite a few
actually, but to keep the following list short, only the most popular ones are listed:

* Allwinner's A-series

* Broadcom's BCM-series

* Freescale's i.MX-series

* MediaTek's MT-series

* Rockchip's RK-series

* Samsung's Exynos-series

* NVIDIA's Tegra-series

* Texas Instruments' AM-series and OMAP-series

* Qualcomm's APQ-series and MSM-series

While many of the potential chips are interesting, Allwinner's A-series of SoCs will
be the focus of this book. Due to their low price and decent availability, quite a few
companies design development boards around these chips and sell them at a low
cost. Additionally, the A-series is presently the most open source friendly series of
chips available. There is a fully open source bootloader, and nearly all the hardware
is supported by open source drivers. Among the A-series of chips, there are a few
choices. The following is a list of the most common and most interesting devices:

* A10: This is the first chip of the A-series and the best supported one as it has
been around for a long time. It is able to communicate with the outside world
over 12C, SPI, MMC, NAND, digital and analog video out, analog audio
out, SPDIF, 12S, Ethernet MAC, USB, SATA, and HDMI. This chip initially
targeted everything, such as phones, tablets, set-top boxes, and mini PC
sticks. For its GPU, it features the MALI-400.

[8]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

* A10S: This chip followed the A10; it focused mainly on the PC stick market
and left out several parts, such as SATA and analog video in/out, and it has
no LCD interface. These parts were left out to reduce the cost of the chip,
making it interesting for cheap TV sticks.

* A13: This chip was introduced more or less simultaneously with the A10S
for primary use in tablets. It lacked SATA, Ethernet MAC, and also HDM],
which reduced the chip's cost even more.

* A20: This chip was introduced way after the others, and even was
pin-compatible to the A10 with the intend to replace it. As the name
hints, the A20 is a dual-core variant of the A10. The ARM cores are
slightly different; Cortex-A7 has been used in the A10 instead of
Cortex-A8 used previously.

* A23: This chip was introduced after the A31 and A31S and is reasonably
similar to the A31 in its design. It features a dual-core Cortex-A7 design
and is intended to replace the A13. It is mainly intended to be used in tablets.

* A31: This chip features four Cortex-A7 cores and generally has all the
connections that the A10 has. It is, however, not popular within the
community because it features a PowerVR GPU that, until now, has seen
no community support at all. Additionally, there are no development
boards commonly available for this chip.

* A31S: This chip was released slightly after the A31 to solve some issues
with the A31. There are no common development boards available.

Choosing the right development board

Allwinner's A-series of SoCs was produced and sold so cheaply that many
companies used these chips in their products, such as tablets, set-top boxes, and
eventually, development boards. Before the availability of development boards,
people worked on and with tablets and set-top boxes. The most common and
popular boards are from Cubietech and Olimex, in part because both companies
handed out development boards to community developers for free.

[o]

www.it-ebooks.info

http://www.it-ebooks.info/

Choosing the Right Board

Olimex

Olimex has released a fair amount of different development boards and peripherals.
A lot of its boards are open source hardware with schematics and layout files
available, and Olimex is also very open source friendly. You can see the Olimex
board in the following image:

Olimex offers the A10-OLinuXino-LIME, an A10-based micro board that is
marketed to compete with the famous Raspberry Pi price-wise. Due to its small
size, it uses less standard 1.27 mm pitch headers for the pins, but it has nearly
all of these pins exposed for use.

[10]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

You can see the A10-OLinuXino-LIME board in the following image:

The Olimex OLinuXino series of boards is available in the A10, A13, and A20 flavors
and has more standard 2.54 mm pitch headers that are compatible with the old IDE
and serial connectors. Olimex has various sensors, displays, and other peripherals
that are also compatible with these headers.

Olimex recently announced that it will be releasing a System on a Module (SoM).
It is identical in concept to the Itead board, which will be mentioned in a later section.

[11]

www.it-ebooks.info

http://www.it-ebooks.info/

Choosing the Right Board

Cubietech

Cubietech was formed by previous Allwinner employees and was one of the first
development boards available using the Allwinner SoC. While it is not open source
hardware, it does offer the schematics for download. Cubietech released three
boards: the Cubieboard1, the Cubieboard?2, and the Cubieboard3 —also known as the
Cubietruck. Interfacing with these boards can be quite tricky as they use 2 mm pitch
headers that might be hard to find in Europe or America. You can see the Cubietech
board in the following image:

[12]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Cubieboardl and Cubieboard?2 use identical boards; the only difference is that A20
is used instead of A10 in Cubieboard2. These boards only have a subset of the pins
exposed. You can see the Cubietruck board in the following image:

Cubietruck is quite different but is a well-designed A20 board. It features everything
that the previous boards offer, along with Gigabit Ethernet, VGA, Bluetooth, Wi-Fi,
and an optical audio out. This does come at a cost as there are fewer pins to keep

the size reasonably small. Compared to Raspberry Pi or LIME, it is almost double
the size.

[13]

www.it-ebooks.info

http://www.it-ebooks.info/

Choosing the Right Board

Lemaker

Lemaker made a smart design choice when releasing its Banana Pi board. It is an
Allwinner A20-based board but uses the same board size and connector placement
as Raspberry Pi, hence the name Banana Pi. Because of this, many of those Raspberry
Pi cases could fit the Banana Pi and even shields will fit it. Software-wise, it is quite
different and does not work when using Raspberry Pi image files. Nevertheless,

it features composite video out, stereo audio out, HDMI out Gigabit Ethernet, two
USB ports, one USB OtG port, CSI out and LVDS out, and a handful of pins. Also
available are a LiPo battery connector, a SATA connector, and two buttons, but those
might not be accessible on a lot of standard cases. See the following image for the
topside of the Banana Pi:

[14]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Itead and Olimex

Itead and Olimex both offer interesting boards, which are worth mentioning
separately. The Iteaduino Plus and the Olimex A20-SoM are quite interesting
concepts; the computing module, which is a board with the SoC, memory, and

flash, which are plugin modules, and a separate baseboard. Both of them sell a very
complete baseboard as open source hardware, but anybody can design their own
baseboard and buy the computing module. You can see the following board by Itead:

[15]

www.it-ebooks.info

http://www.it-ebooks.info/

Choosing the Right Board

Refer to the following board by Olimex:

Additional hardware

While a development board is a key ingredient, there are several other items that
are also required. A power supply, for example, is not always supplied and does
have some considerations. Also, additional hardware is required for the initial
communication and to debug.

Serially interfacing with the board

With headless systems such as these, things don't always just work. Sometimes,
debugging at a lower level is required. This is also certainly true with development
boards such as these. An error occurs, and there's no output; what could have
possibly gone wrong? So spending hours on trial and error can be avoided; the

old and trusty serial port exists on many types of hardware. With Allwinner's
SoCs, they are implemented in two ways.

[16]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Universal asynchronous receiver/transmitter

On all of the developer boards discussed throughout this book, there are dedicated
pins to connect to the serial port of the chip. If the PC that is used to connect to the
developer board has such a serial port, be wary of how this is connected. While
both speak the same protocol, they operate at different voltages to do this; thus, a
level translator is required at the least. Most PCs are without a serial port these days
anyway and have to rely on a USB to universal asynchronous receiver/transmitter
(UART) adapter. When getting a USB to UART adapter, it is important that they are
3.3V TTL. Cubieboards are usually shipped with a USB to UART adapter, as shown
in the following image:

[17]

www.it-ebooks.info

http://www.it-ebooks.info/

Choosing the Right Board

The microSD adapter

Sometimes, the UART simply isn't available for use as in the case of most tablets.
In such cases, a second UART is made available through the microSD card slot.

A specific adapter is required to connect to the previously mentioned UART. In the
following image, a microSD to UART adapter can be seen (this specific variant also
has the ability to grant access to the JTAG pins):

The microSD card

Usually, a microSD card is the boot medium for these boards. It can be thought of as
a bootable CD or USB drive used on a PC. When creating microSD cards to be used
as a medium, it is advisable to use a class 10 or faster microSD.

[18]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Power supply

Believe it or not, but most developer boards actually come without a power supply;
this is usually due to the following reasons:

* Without the power supply, developer boards do not have to pass the
FCC regulations

* Importing a power supply might require certain local certification and might
be forbidden

* It can give rise to the complexity of the developer not knowing which power
supply needs to be sent to a country

* It has reduced the cost, as not bundling the power supply has brought about
a reduction in the cost

Most boards will take 5 volts for their input, but 700 milliamp of current is the least
that they should supply when not using anything power hungry, such as an HDD

or an LCD. If extra peripherals are attached, this requirement also goes up. A proper
5-volt, 2-amp power supply will be enough to power a board under full load with

an LCD attached. Depending on the power requirements of the hard drive, even

that should be able to work quite nicely. When in doubt, always check the power
drain or power supply stability to exclude that from causing strange issues. Cheaply
made power supplies available from various shops are often overrated and thus they
might not supply the required current; however, they might not supply the required
current and cause everything to run unstably.

Summary

After working your way through this chapter, you should now have an idea of the
available, popular development boards, and which one might be a good choice for
you. Finally, it should be noted that extra hardware is sometimes required or,

at least, extremely helpful to work with these boards.

The next chapter will take this newly acquired hardware and explain how you can
interact with it. If the selected board comes with preinstalled software, booting it will
be covered as well.

[19]

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started
with the Hardware

When you start to play with a new device, there are a few questions that might come
to your mind. How do I know it is working properly? How do I get an output from
or an input to the device, such as video on a monitor or key strokes from a keyboard?
These are probably the first basic questions that are asked after a board is unpacked
or started for the first time.

This chapter will cover the following topics:

* Connecting a serial port to the development board

* Booting up the preinstalled software

Connecting a serial port

A serial port might seem like something outdated, but it is in fact still very common
on certain devices. One of the main reasons is that it is very simple and reliable. It
is very simple in both hardware and software implementations, and because of its
simplicity, it is often very reliable and pretty much always works —which is why

it has been on devices since the sixties until today. A serial connection is, however,
rather slow, but for text-based input and output, it is perfectly adequate. However,
why would one want a serial port to begin with? As Murphy can attest, things just
go wrong, and with these development boards, the serial port is very often the only
thing providing any output.

There are two ways to connect the serial port or UART to the device, either with
a USB to UART adapter or with a real serial port and a level shifter to convert the
voltage to the appropriate voltage.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with the Hardware

Since most PCs actually lack a serial port, only the USB to serial approach will

be discussed here. The first step is to connect the USB to UART adapter to your
Cubieboard, which can be a challenge in itself as there are some USB to UART
adapters with three wires, where others have four or even more. Furthermore,
the colors of the cables might differ from product to product. Finally, there are
3.3-volt or 5-volt adapters. Check the user manual of the cable to find out which
color corresponds to which signal and whether the voltage is 3.3 volts. In the case
of the USB to serial adapter that is shipped with the Cubieboards, for example,
the following rules apply:

* Black is GND or ground and connects to the GND pin

* Green is TX or transmit and connects to the RX or receive pin on the board

* White is RX or receive and connects to the TX or transmit pin on the board

* Red is VCC or power and should never be connected, or the device might
get damaged

Refer to the following image to see the various connections:

A UART connection on Cubieboard1

[22]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

After connecting the UART side of things, the other end can simply be plugged into

a USB port. Depending on the operating system used, a driver might need to be
installed; furthermore, a program to connect to this serial port is required, and this
creates something referred to as a serial terminal. PuTTY is such a program, and it is
available on most operating systems. It can be downloaded for the Windows platform
at http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html.

Other operating systems might have it available via a built-in software store, and
it can be installed via this way. Other usable types of software to view the serial
console are programs such as GNU Screen or minicom and can be used equally well.

Some parameters are needed to get the serial communication working; a baud rate
of 115,200 bits per second is needed. Additionally, eight data bits, no parity, and
one stop bit might be needed (which is often abbreviated as 8n1), but both in the
aforementioned case of PuTTY or screen (which is the default) might be omitted.
For screen, screen /dev/ttyUSB0O 115200 command line can be used, assuming
/dev/ttyUSBO is the serial port that is being used.

Finding the correct device name or number might be tricky; this not only
M varies between operating systems, but obtaining the correct number can
Q also be tricky. Under Linux and OSX, for example, using dmesg after
plugging the USB converter in or using autocomplete on /dev/ttyUSB
might help. On Windows, the device manager can be used.

For PuTTY, the following screenshot portrays the required settings, assuming coMms is
the serial port. Make sure to check Serial:

B

Category: Basic options for your PuTTY sessian
| Specify the destination you want to connect to

Logging Serial line Speed

< Terminal [coms |[115200]
Keyboard Connection type:
Bell Raw Telnet Rlogin SSH (= Serial
Features Load, save or delete a stored session

- Window Saved Sessions

Appearance |

Behaviour Default Settings = Load

Translation
Selection Save
Colours Delete
Fonts
= Connection
Il

Data

Proxy, Close window on exit:

Telnet @ Always Never Only on clean exit
Rlogin i~
About Open Cancel
[23]

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with the Hardware

If the serial connection was established properly, applying power to the Cubieboard
should now yield text on the serial console. An example of this text is shown in the
following screenshot. Here, the bootloader that is usually installed on a microSD
card is displayed. First, the SPL is loaded, which probes the memory and prints

the current CPU configuration, followed by U-Boot, which prints the current
configuration. Have a look at the following screenshot:

File Edit View Search Terminal Help

The preceding screenshot is just an example. This varies between the bootloaders
used, the bootmedium, and the board used. It only illustrates what is possibly seen
on the first boot.

Booting up the preinstalled software

When a Cubieboard is first powered up, a few things happen. First, the SoC checks
various devices to see whether it can boot from them. If available, the onboard
NAND flash is very likely to be preprogrammed by the manufacturer. Booting up
the Cubieboard using whatever is preinstalled does serve a purpose. It allows you
to check whether the Cubieboard is functioning properly.

[24]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

If the Cubieboard doesn't have a preinstalled operating system or a NAND flash,

a specially prepared microSD card can be used. It should yield similar results
because the microSD card is actually the first device that the SoC tries to boot.

It can be very useful to have one around. The following chapters will give you an
idea about how to prepare such an SD card. The preinstalled operating system will
very likely require a monitor, keyboard, and mouse connected so that it can be
interacted with. While most variants have the Android OS preinstalled, there have
been cases where a command-line version of Linux was installed. With an Android
preinstallation, various components can easily be tested. Use the following checklist
to test the most obvious things:

* Does the display work?

* Does the mouse work?

* Does the keyboard work?

* Does the networking connection work?
* Does the audio playback work?

* Does the MMC card work?

When the display is being tested to see whether it works, it is quite possible that

the image is configured to be used with other peripherals than the ones that were
expected. For example, an HDMI monitor might be expected, when, in fact, a VGA
monitor is connected. The same goes for the audio; it might be routed over to HDMI
when a regular headphone is connected via the audio jack.

Going over the aforementioned checklist is harder with a command-line installation
but not entirely impossible. The display and keyboard can be tested quite easily.
Even the networking feature should be detected. With some basic Linux knowledge,
all of the earlier-mentioned components can be easily testable.

M For networking to be set up almost automatically, a DHCP server on
Q the network is recommended. Most modems/routers or wireless access
points supply this functionality by default.

[25]

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with the Hardware

Summary

Having learned how to connect and use a serial port, you should now be able
to watch a Cubieboard boot and use the preinstalled software to check whether
things are working normally.

In the next chapter, you will finally start to get some real work done that is, you will
set up a full-blown desktop system.

[26]

www.it-ebooks.info

http://www.it-ebooks.info/

Installing an Operating
System

Having a Cubieboard is only useful if you can actually use it and eventually develop
and/or play with it. The preinstalled OS might or might not be adequate for this.
Very often, Android is preinstalled on these devices, as the SoC used is usually found
in Android devices, and the manufacturer mostly or only supports it. While BSD or
Minix are also operating systems that are being developed by various developers,
this book will limit itself to Linux as an operating system. The first few sections of
this chapter will dig a little deeper into the concepts for educational purposes.

This chapter will cover the following topics:

* Finding out where the SoC chip decides to boot from

* The difference between an OS image and a clean install

* Downloading and installing Fedora

* Booting the freshly installed OS from an SD card

* The basic concepts on using Fedora and connecting to a wired network

* Maintaining Fedora via the Package Manager

Booting the Cubieboard

While it might seem natural that the system simply boots, there is a lot more to
it. The Allwinner series of SoCs has something called a Boot Read Only Memory
(BROM). The BROM is really a small program embedded into the chip itself that
always gets executed first. This program has a few drivers for a minimal set of
hardware to ensure that it is small and simple.

www.it-ebooks.info

http://www.it-ebooks.info/

Installing an Operating System

First, the BROM will try to find a valid bootloader on the first SD card, also called
the MMC slot. If nothing is found there, the NAND is checked for a valid bootloader.
Again, if nothing is found there, the second MMC slot is checked. If nothing is
found there either, the first SPI bus is probed for an SPI memory flash chip and
checked for a valid bootloader. Finally, if all of the preceding methods fail, the FEL
mode is entered. The FEL mode is a recovery mode where it is possible to upload a
piece of code over a USB connection and execute it. This can be useful to recover a
board when it fails to boot and the first MMC slot is not available to boot from. The
FEL mode does not have to be initiated. One might wonder why two MMC slots
are being probed. Sometimes, manufacturers include an embedded MMC chip, or
eMMC, in their design, which unlike an SD or MMC card looks like a regular chip,
similar to a NAND flash chip, but behaves and looks like an MMC card. By probing
the two MMC slots, you can have a board that uses an eMMC chip on the board
while still having the first MMC slot available for use cases such as boot recovery.
The Cubietruck is available with various combinations of these storage options.

OS image installation background

Many sites and forums on the Internet speak of firmware or ROMs when talking
about an installation for an embedded device. It all sounds very mysterious initially,
but this is far from the truth. A ROM is nothing more than a full disk image, which,
in turn, can be written to storage, which the board can boot from. The name ROM is
derived from the fact that the data used to be stored in a ROM chip. Many of the OS
images that can be found for Allwinner development boards are tailored to a very
specific board. This is not surprising, as the chip used might be the same on a range
of boards, but certain attached peripherals might be completely different; one board
may have different memory chips for example. Another board might not have an
onboard flash and rely completely on the secondary MMC slot for its OS. It is almost
impossible to have a single disk image that works on all these different combinations
of hardware, and thus a clean installation sounds like quite a sensible approach.
While distributions are slowly starting to support the ARM-based systems, it is

still not easy to have a common installer that can install the distribution to any
ARM-based board. To bridge these worlds, a few linux-sunxi community members
and Red Hat employees have developed a hybrid installation of Fedora, where a
generic image is downloaded, configured, and finally launched in the installer.

[28]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Getting and preparing Fedora

There have been several releases of Fedora for the A10, A10S, A13, and A20 series
of SoCs. As this book focuses on the most recent version, Fedora 20-r1, the latest
version is recommended. Additionally, if fails, Fedora 20-r1 can be written to an SD
card, which can be used as a recovery boot disk. The first step in this endeavor is to
download this disk image. About 2 GB of free disk space is required.

Fedora for this chapter can be downloaded from the Packt Publishing website in the
Help & Support section of the book's Support page.

The next few steps assume that there is a Linux computer available. If this is not

the case, the preinstalled OS on the Cubieboard can also be used; while a little bit
trickier, it should be quite possible. If the preinstalled OS is Android, then a terminal
application will be required that might not be installed. Do note that on Mac OSX,
the device path names will be different. Finally, a virtual machine can also be used,
but a detailed explanation of that is out of the scope of this book.

\ Mac OSX uses device nodes that are similar to Linux but slightly
~ different. For example, the second partition on an inserted USB
Q stick can be called at /dev/sdb2 on Linux, where on OSX
however, this would translate to /dev/disk2s2.

Writing the OS image to the SD card

First, the image needs to be written to a microSD card that is at least 4 GiB in size.

[% The next few steps will delete all the content on the SD card.]

The microSD card should be connected to the PC. If there is no card reader available,
a USB to microSD card reader can be used instead. The xzcat command is used to
decompress the downloaded xz-compressed archive onto the SD card.

In the following example, it is assumed that the microSD card is inserted into a USB
card reader and has been assigned the device node, /dev/sdd. It is up to the reader
to determine the proper device node on the system, but dmesg or one of the installed
graphical disk utilities can provide an answer here. An example output with the SD
card found on the device node /dev/sdd is as follows:

usb 2-5: new high-speed USB device number 14 using ehci-pci
usb 2-5: New USB device found, idVendor=14cd, idProduct=8123
usb 2-5: New USB device strings: Mfr=1, Product=3, SerialNumber=2

[29]

www.it-ebooks.info

http://www.it-ebooks.info/

Installing an Operating System

usb 2-5: Product: USB 2.0 SD MMC READER

usb 2-5: Manufacturer: SDMMC MA8123

usb 2-5: SerialNumber: 312811122181

usb-storage 2-5:1.0: USB Mass Storage device detected
scsil4 : usb-storage 2-5:1.0

scsi 14:0:0:0: Direct-Access USB 2.0 SD MMC Reader PQ: O
ANSI: 0 CCs
sd 14:0:0:0: [sdd] 248320 512-byte logical blocks: (127 MB/121 MiB)
sd 14:0:0:0: [sdd] Write Protect is off
sd 14:0:0:0: [sdd] Mode Sense: 03 00 00 00
sd 14:0:0:0: [sdd] No Caching mode page found
sd 14:0:0:0: [sdd] Assuming drive cache: write through
sd 14:0:0:0: [sdd] No Caching mode page found
sd 14:0:0:0: [sdd] Assuming drive cache: write through
sdd: sddl

sd 14:0:0:0: [sdd] No Caching mode page found
sd 14:0:0:0: [sdd] Assuming drive cache: write through
sd 14:0:0:0: [sdd] Attached SCSI removable disk

This command might require root privileges; to do so, prefix dmesg with sudo.

The filename used here should match the file downloaded. A cache-flush via

the sync command is forced upon successful completion. Flushing the cache is
important so that we know all the data that has actually been written to the SD card
and it is not held up in the cache. This process might take quite a while —10 minutes
is commonly reported commonly reported. The following command is an example of
writing the image to an SD card and flushing the cache:

root@packt:~# xzcat Fedora-Xfce-armhfp-20-al0-l-sda.img.xz > /dev/sdd
&& sync

Writing the OS image should be possible on Linux, OSX, the BSDs, Solaris, and
many modern POSIX-based systems. On Windows, a little more care is required.
A program such as 7-Zip can be used to decompress the image, and an image
writer such as WinDD can be used instead.

When done, remove the USB device and reinsert it to force re-reading of the SD
card's partition table. Opening a file manager will, in most cases, show the newly
created partitions on the SD card, one named u-boot and the other rootfs.

[30]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Writing the bootloader

The bootloader is very device-specific and can even vary between production runs
of the same board. This is because the memory initialization is performed by the
bootloader and thus can be different. To do this, a setup script is preinstalled in
addition to several bootloaders and several kernels for the various generations of
SoCs. This script needs to be executed from the partition labeled u-boot on the
microSD card. If the currently running OS mounts the partitions automatically,
the mount command can be used to find the mount point, as follows:

[root@packt:~]# mount

/dev/sddl on /media/u-boot type ext2 (rw,errors=remount-ro)

In the preceding example, the microSD card is mounted on /media/u-boot, and
the setup script should be run from there. This path should be adjusted as needed.
The following is an example showing a sample output of the available boards.
The bootloader is being installed using the Cubietruck. It may be required to
prefix the command with bash to force bash to execute the script.

[root@packt:~]# bash /media/u-boot/select-board.sh

If no Linux system is available, the setup script should be able to run from within the
native Android. However, an ADB or a terminal application will be required.

This will now provide a list of supported boards. Find the exact board being used,
and run the command again with the selected board as the parameter. Note that only
a small selection will be displayed, as shown in the following screenshot:

t Vit 1 fre
root@packt: =@ Seediafu-boatsselect-board. sh
Usage: "fecdiafu-boot/select-board.sh <board="
Avallable boards:

alf mid 1gh AlD tablet sold under various names [whitelabel)
213 mid Al3 tablet sold under varlous momos (whitelabel)
alis-olinuxing-m AL0S - OLinuKimo -MICAO

al3-olinuxing Al3-0LinuXing

al3-olinuxinga AL3-OLinuXine-MICRD

ard-olinuxine micro AXO-0Linudinc.MICRD

cublabanard 512 Coblabaard develapsent Board 517 ME RAM
cubieboard Lubieboard developasent board 1824 M8 RAH
cublieboard? Cobieboard 2 |AZD) dowelopsenst board

cubletruck Cubbeboard Truck (AFD) development board
poduing peluwing dovolopsant board

root@packt:-|# Feedisfu-bootSdelect-board.sh cubletruck
Are you sure you want to install the spl, u-boot amd kernel for cubietruck from fmediafu-bootfboards onto Sdev/sdd 7
Press enter To continuee, CTRL+C to cancel

Instalibng spl, u-boot and kermel Tor cubietruck omto JSdev/sdd
2%4+1 records in

254s] records out

260376 bytes (260 kB) copied, @.50GT14898 &, J64 ME/s

12848 records in

128+0 records out

131872 bytes (131 kB) copled, 9.B8B4B30Y5 5, 325 MB/Sfs

Dane

rootP@packt -~ | &

[31]

www.it-ebooks.info

http://www.it-ebooks.info/

Installing an Operating System

After setting up the board, unmount the microSD card followed by a sync to ensure
all the data is written properly. Let us take a look at the following command:

[root@packt:~]# umount /dev/sddl && eject /dev/sddl && sync

Depending on the environment that this script is being run on, a graphical version
can be launched instead; the idea, however, is identical: choose the correct board
and the script will write the image to the correct place.

Finishing the operating system
installation

Connect a monitor, USB keyboard, and USB mouse, and insert the microSD card into
the Cubieboard. Each board has a default output configured upon the first boot. For
many headless boards, this will be the HDMI port. For tablets or systems with LCD
screens, it will be the LCD screen. While not strictly required, connecting the UART,
as mentioned in the previous chapter, can be helpful in case things go wrong,

as shown in the following screenshot:

[32]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Applying power will boot the device, and after a few minutes and a few intentional
reboots to resize the partition on the SD card, the Fedora installer should pop up.

If there is no output on the monitor, refer to Appendix D, Troubleshooting the Common
Pitfalls. Also, refer to the following screenshot to see Fedora's first graphical
installer screen:

INITIAL SETUP INITIAL SETUP OF FEDORA
E us

LOCALIZATION

DATE & TIME
America/New_York timezone

SOFTWARE

NETWORK CONFIGURATION
Wired (eth0) connected

k
USER SETTINGS
ROOT PASSWORD USER CREATION
A Root password is not set A No user will be created

QuIT

L\ Please complete items marked with this icon before continuing to the next step.

[33]

www.it-ebooks.info

http://www.it-ebooks.info/

Installing an Operating System

If a mouse or, at least, a keyboard is connected, various parameters for the system
can be set up. Verify that at least the time zone is correct, and set up a password for
the root user. Also, a new user should be created for regular use of the system,

as shown in the following screenshot:

CREATE USER ANACONDA BLUESKY INSTALLATION
Done BEAus

Full name Packt Publishing

Username ppublishing

Tip: Keep your username shorter than 32 characters and do not use spaces.

& Make this user administrator
o Require a password to use this account

Password sessRIRRIRRRRRRRS

Strong

Confirm password SRR ERIRRIRRRRIRNS

Advanced...

After creating a user and finishing the installation and a short reboot, a login screen
should appear, allowing the newly created user to log in. It is now possible to log in
to the desktop, as you can see in the following screenshot:

localhost R Qo0

[34]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

The desktop environment that will be encountered is called Xfce4, where the
letters only have a historic meaning, and the number indicates the version. Version
4 has been in active development since 2003. Xfce4 is a very lightweight desktop
environment and is the default for Fedora on ARM to keep the strain light on the
available system resources. Xfce4 might ask the new user a question or two on how
the desktop should appear, but the default settings should work fine and were
used in this example as well. Feel free to explore this new desktop, launch some
applications, or just browse the Internet. Refer to the following screenshot to see
the default desktop:

i Applications Menw - 14:58 SP, Packt Publishing

Precautionary measures for installing
updates

While there is a perfectly usable desktop environment now, one of the very common
tasks is to keep the OS up-to-date and thus secure. Fedora comes with a graphical
frontend to the Yum command-line tool called Yum Extender. Before going

there, however, a warning needs to be issued. At this point, Fedora, like all other
distributions, does not officially support the Allwinner range of SoCs. This has one
major drawback when updating the OS. The updater, be it Yum or Yum Extender,
will also try to update the kernel and bootloader configuration.

[35]

www.it-ebooks.info

http://www.it-ebooks.info/

Installing an Operating System

At the time of writing this book, the Fedora 20-r1 release will try to update the
kernel and bootloader configuration, causing an unbootable device. However,

it can easily be fixed by inserting the SD card into a working system and running
the select-device. sh script as before. To prevent this corruption, edit the file
at the /etc/yum. conf location, and add the following line to that file, which will
force Yum to ignore any kernel updates:

exclude kernel*

The kernel exclusion should be added to any recent release of Fedora because it
might not be applicable to the later versions.

R Since the kernel and bootloader live in their own partition, not having the
~ u-boot partition mounted can avoid the need to update the bootloader
Q and kernel. In the next chapter, the reader will be able to edit his/her
fstab file without any difficulty.

Maintaining the OS and installing
updates

As mentioned before, the Yum Extender can be used conveniently from the GUI to
update the system or install new packages. The Yum Extender can be found under
the Administration tab in Applications Menu, as shown in the following screenshot:

‘i Applications Meny - 14:50 WP, Packt Publishing

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

As the Yum Extender is an administrator's application, the current user will have to
authorize its use. Assuming this, the user will be granted administrative privileges.
The first user of the system will have these privileges. Refer to the following
screenshot for a view of Yum Extender:

w# Agplications Menu B Yum Extender ol [l

Rle Edt View Opltions Hel lp

'~ Packages

L)

L

B Select All S Undo o Apply
.

Clicking on the Select All button followed by Apply will start installing all the new
updates to the system. Depending on the speed class of the SD card, this can take

a long time. While preparing the illustrations for this chapter on an 8 GB class 4 SD
card, the process took 5 minutes short of 6 hours. Thus, it is recommended to use at
least a class 10 or a better SD card. While using the OS, a class 4 card, even though
slow, is usable however.

M It might be wise to hold out updating the SD card for a Friday
Q evening, for example, where the process can take all weekend
without bothering anybody.

[37]

www.it-ebooks.info

http://www.it-ebooks.info/

Installing an Operating System

If a warning, as illustrated in the following screenshot, appears during the update
process, it is safe to accept it. It is a notification to import a missing GPG key.

In this case, it was sanctioned by the Fedora project as can be seen in the e-mail
address used. This message may come up early in the update process, in the first
10 minutes or so.

& Applications Menu J Yum Extandar =i

16:76 o 5 Backt Bublithing

-1.fe20 will be updated
feao will be an update

2.0-7. fea0 will ba installed
pile.ieradiia sPauTh] P& 3 N G

£ A1) b dmerallad

armvThl

Do you v
ackag L R
Y e

RURRing APM Test

Runining APM Trar

AGLL0CL T MOKEY

Fublic kay for kernal-
loaded kernal-3.14.4-300
riM; Fatrisving key from f1
: Imparting GPG ke

i Userid “Fed apfederaproject org

i Fingerprint: c7c8 B3e Tcha 2ebl 617
TiM: Package 1 inoarch (gkoji-over
YLM: Fros Jetc/pk

Adding more software to the OS

Installing additional software is very easy thanks to Package Managers that have
been present in Linux distributions for years. The Yum Extender can not only be
used to update the OS, but also to add new software to the system, as seen in the
following screenshot, which demonstrates Firefox being installed. Optionally,
the command-line version, yum, can be used instead.

[38]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

W Applications Menu W um Extender o --- 0710 S ¥ | Packt Publishing

Flo Edt View Options Help

o
= Packages -
Q frefox]
Updates Asalable mstalled @ Al
Packacge Ver, Arch. Summary 1 Size.

webCalendar 1.2.7-3fc20 noarch Singlefmultiuser web-based calendar application LEM

Monila Firefox Web browser

(< K9,

fromartplugin 1.22.03.1-124c20 armdhl Srowser phugin for Freewhl updates 18k
gnash-plugin 08.10-11.fc20 armv7hl Web-chant flash mawve player plugin fadara 100 k
gnomae-do-plugins 0.8.414fc20 armv7hi - Plugins for GNOME Do fadora zom
gnome-da-plugins firafew 0.8.4.14 fe20 armv7hl GNOME Do Firefox plugin fedara 16k
il 0.3.0-7.fc20 arm7hl Check Jvascrpt code for comman mistakes fodora 229k
kpartsplugin 0.0.1-0.10.201205 armvThi KParts technology to embed file wewers into non-kDE browsers fedara S8k
mingwaz-angleproject 0-0.9.5n2215.20] noarch Almost Natve Graphics Liyer Engine for win32 updates 413k
mingwe4-angleproject 0.0.9.5vn2215.201 noarch Almost Native Graphics Layer Engine for Wing4 updates a¥sk
mozilla-adblockplus 2.4.1-1.Mfc20 noarch adblocking extension for Moalla Arefox, Thunderbird, and Seak updates BaB k
Project UAL : hitp:itwww.mozilla.orgiprojects/ffrefos/ m™
Mazilla Firefox is an open-source wob browser, designed for standards A
conpliance, perforsance and portabilyty
i
o

sundo || o Apply

Summary

Having gone through this chapter, you should have no problem creating a fresh SD
card with a full Xfce4-based Fedora operating system. Also, keeping it up-to-date
and adding new software should not be a problem at all. All thanks to a hybrid-disk
image of Fedora!

The next chapter will do an installation in a more in-depth fashion manually and
focus more on a command line-based interface, as this is often used on server setups,
embedded systems, and so on. An entire installation will be performed manually
from scratch to learn how to create a customized system.

[39]

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Manually Installing an
Alternative Operating System

Installing a full-blown desktop operating system (OS) onto an SD card via an image
is certainly useful, but limitations arise quickly. What if an installation to an SSD is
desired? Or what about having a very minimal installation for use as a server? Surely
no heavy GUI is needed for this? All these questions will be covered in this chapter.

This chapter will cover the following topics:

* Partitioning and formatting a destination medium
* Creating rootfs

* Allowing booting of the destination medium

* Updating the OS

* Installing additional software

Prerequisites for this chapter

In this chapter, Debian (or even Ubuntu) will be installed to an alternative
installation medium. A SATA SSD will be used, but a regular SATA disk can be
equally used given that enough electrical power is available to power the drive;
a power adapter with at least 2 amperes is required in such a case. Alternatively,
a second microSD card can be used in a microSD-to-USB adapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Manually Installing an Alternative Operating System

When installing to a SATA drive, however, the Cubieboard still requires an SD
card to boot, as the SoC cannot boot from a SATA drive directly. Technically,
the onboard NAND flash or an onboard SPI flash could be used for this instead,
but SPI flash-enabled Cubieboards are hard to find, and working with NAND
requires a very old u-boot, which lacks a lot of new features. In this chapter, the
microSD card created in the previous chapter will be repurposed and used to
accomplish all these tasks.

\ USB flash drives can, in theory, be used, but at the time of writing this
~ book, the USB boot code has not landed in u-boot. At the moment, a USB
Q flash drive can only be used after booting a kernel with USB support,
which has been loaded from either a NAND or an SD card.

Preparing the destination medium

To install Debian to a SATA drive, the destination drive will need some preparation.
It needs to be partitioned and formatted.

Assuming the Cubieboard is booted up using the Fedora image created earlier and
has either a SATA drive, USB flash drive, or a microSD card with a USB adapter
connected, it is time to start £disk on the destination medium, which is assumed to
be /dev/sda. Please make sure that the correct device node is used; otherwise, the
following actions will destroy anything present on the medium.

The most common tool of choice to partition a device is £disk. While £disk has a
few parameters, starting it with a device node will start £disk in an interactive
mode where a disk can be prepared. Root access is required to use £disk and thus
may need to be prefixed with sudo, as shown in the following screenshot:

File Edit View Terminal Tabs Help
[root@PacktPublishing ~]# fdisk /dev/sda

Welcome to fdisk (util-linux 2.24).
Changes will remain in memory only, until you decide to write them.
Be careful before using the write command.

Command (m for help): |

There should not be any previous data present or at least be backed up, which
will not be covered here. Pressing the o key should clear any previously created
partitions, as shown here:

[42]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

File Edit View Terminal Tabs Help

Command (m for help): o
Created a new DOS disklabel with disk identifier 0x788935fa.

Command (m for help): fi

Partitions are a useful thing, they allow a logical separation. There are many reasons
and choices when dividing a disk, as but here, only the following four partitions are
of interest:

* Boot: This partition holds all the relevant boot files

* Root: This partition holds all the relevant system files
* Home: This partition holds all the user files

* Swap: This partition expands the RAM memory

In this example, only three primary partitions will be created as the boot partition
will be on the SD card. For the root partition, 6 GB is used, and for a swap partition,
512 MB is used. The remainder is used for the home partition.

Ultimately, however, it is up to the reader to define what is useful to you as this can
differ greatly. With the n command, a new partition can be created. In the following
screenshot, the three partitions explained earlier are created:

File Edit View Terminal Tabs Help
Command (m for help): n

Partition type:
[} primary (@ primary, 0 extended, 4 free)
e extended
Select (default p): p
Partition number (1-4, default 1): 1
First sector (2048-976773167, default 2048):
Last sector, +sectors or +size{K,M,G,T,P} (2048-976773167, default 976773167): +6G

Created a new partition 1 of type 'Linux' and of size 6 GiB.
Command (m for help): n

Partition type:
[primary (1 primary, 0 extended, 3 free)
e extended

Select (default p):

Using default response p.

Partition number (2-4, default 2):

First sector (12584960-976773167, default 12584960):

Last sector, +sectors or +size{K,M,G,T,P} (12584960-976773167, default 976773167): +512M

Created a new partition 2 of type 'Linux' and of size 512 MiB.
Command (m for help): n

Partition type:
[primary (2 primary, 0 extended, 2 free)
e extended
Select (default p): p
Partition number (3,4, default 3):
First sector (13633536-976773167, default 13633536):
Last sector, +sectors or +size{K,M,G,T,P} (13633536-976773167, default 976773167):

Created a new partition 3 of type 'Linux' and of size 459.3 GiB.

Command (m for help): Jl l

[43]

www.it-ebooks.info

http://www.it-ebooks.info/

Manually Installing an Alternative Operating System

When not entering a value for the last sector, £disk will use the last sector available
as default, thus using the remainder of the medium.

Partitions should not only be created, but also need to be categorized. By default,
fdisk will turn all newly created partitions into regular Linux filesystem partitions,
which is fine except for the swap partition. This partition needs a different type
applied to it. The t command is used to categorize a partition, which in turn wants to
know the exact type to use. For swap, this is type 82. The 1 command can be used at
any time to get an overview of the available types. The following screenshot shows
how to turn partition 2 into a swap partition:

File Edit View Terminal Tabs Help

Command (m for help): t

Partition number (1-3, default 3): 2
Hex code (type L to list all codes): 82

Changed type of partition 'Linux' to 'Linux swap / Solaris'.

Command (m for help): fi

Using the commands w to write and g to quit, the newly created partition table is
saved to the disk and £disk quits, as shown here:

File Edit View Terminal Tabs Help

Command (m for help): wq

The partition table has been altered.
Calling ioctl() to re-read partition table.
Syncing disks.

[root@PacktPublishing ~1#]

Formatting the newly created partitions

With freshly created partitions available, they now need to be formatted. In this
book, ext4 will be used as the filesystem.

M While not yet supported by the 3.4.x kernel used in this book, £2fs
Q is very interesting as it is optimized for SSD, USB, or microSD flash
usage. This is something that could be interesting in future.

[44]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

The command to format a partition is mkfs.ext4, and the parameters that are of
interest are the device node being formatted and optionally -1, which is used to
give the partition a name.

Formatting the root partition is shown here:

File Edit View Terminal Tabs Help
[root@PacktPublishing ~]# mkfs.ext4 -L root /dev/sdal
mke2fs 1.42.8 (20-Jun-2013)
Filesystem label=root
0S type: Linux
Block size=4096 (log=2)
Fragment size=4096 (log=2)
Stride=0 blocks, Stripe width=0 blocks
393216 inodes, 1572864 blocks
78643 blocks (5.00%) reserved for the super user
First data block=0
Maximum filesystem blocks=1610612736
48 block groups
32768 blocks per group, 32768 fragments per group
8192 inodes per group
Superblock backups stored on blocks:
32768, 98304, 163840, 229376, 294912, 819200, 884736

Allocating group tables: done

Writing inode tables: done

Creating journal (32768 blocks): done

Writing superblocks and filesystem accounting information: done

[root@PacktPublishing ~1# i

Formatting the swap partition can be done using the command in the
following screenshot:

File Edit View Terminal Tabs Help

[root@PacktPublishing ~1# mkswap -L swap /dev/sda2
Setting up swapspace version 1, size = 524284 KiB
LABEL=swap, UUID=11c5e681-b255-41f1-8685-b3900abee2bB
[root@PacktPublishing ~1# i

[45]

www.it-ebooks.info

http://www.it-ebooks.info/

Manually Installing an Alternative Operating System

Formatting the remainder for the user files can be done as shown here:

File Edit View Terminal Tabs Help

[root@PacktPublishing ~1# mkfs.ext4 -L home /dev/sda3

mke2fs 1.42.8 (20-Jun-2013)

Filesystem label=home

0S type: Linux

Block size=4096 (log=2)

Fragment size=4096 (log=2)

Stride=0 blocks, Stripe width=0 blocks

30105600 inodes, 120392454 blocks

6019622 blocks (5.00%) reserved for the super user

First data block=0

Maximum filesystem blocks=0

3675 block groups

32768 blocks per group, 32768 fragments per group

8192 inodes per group

Superblock backups stored on blocks:
32768, 98304, 163840, 229376, 294912, 819200, 884736, 1605632, 2654208,
4096000, 7962624, 11239424, 20480000, 23887872, 71663616, 78675968,
102400000

Allocating group tables: done

Writing inode tables: done

Creating journal (32768 blocks): done

Writing superblocks and filesystem accounting information: done

[root@PacktPublishing ~1#]

To ensure that all the data is written to the appropriate places, the partitions are
mounted on the existing filesystem as follows:

[root@packt ~]# mount /dev/sdal /mnt
[root@packt ~]# mkdir /mnt/home
[root@packt ~]# mount /dev/sda3 /mnt/home

Creating a Debian or Ubuntu rootfs

The first thing that should be mentioned here is that Ubuntu is a Debian derivative.
To cut a long story short, it is basically Debian, and as a result, it does not hugely
matter which distribution is used for installation, be it Debian or Ubuntu. So when
talking about installing Ubuntu or Debian, the same thing is really being said.

The tool used for installation here is called debootstrap and is available in a lot

of distributions.

[46]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Installing debootstrap

Fedora has debootstrap available and can be installed via the Yum tool,

as shown here:

File Edit View Terminal Tabs Help
Loaded plugins: langpacks
Resolving Dependencies

--> Running transaction check

--> Finished Dependency Resolution

Dependencies Resolved

[root@PacktPublishing ~]# yum install debootstrap

---> Package debootstrap.noarch 0:1.0.59-1.fc20 will be installed

Installed:
debootstrap.noarch 0:1.0.59-1.fc20

Complete!
[root@PacktPublishing ~1# [

Package Arch Version Repository Size
Installing:
debootstrap noarch 1.0.59-1.fc20 updates 70 k
Transaction Summary
Install 1 Package
Total download size: 70 k
Installed size: 245 k
Is this ok [y/d/N]: y
Downloading packages:
debootstrap-1.0.59-1.fc20.noarch. rpm | 70 kB 00:00
Running transaction check
Running transaction test
Transaction test succeeded
Running transaction
Installing : debootstrap-1.0.59-1.fc20.noarch 1/1
Verifying : debootstrap-1.0.59-1.fc20.noarch 1/1

www.it-ebooks.info

[47]

http://www.it-ebooks.info/

Manually Installing an Alternative Operating System

Running debootstrap

With debootstrap installed, it is almost time to get started. A few things need to be
mentioned first; debootstrap, which stands for Debian bootstrap, can be used to
install any Debian variant for any architecture for at least Debian and Ubuntu. It
does require a mirror to be supplied to its list of arguments. The list of mirrors can
be obtained for Debian at http://www.debian.org/mirror/list-full, but for
Ubuntu, there is no official list of mirrors. However, using the country code in the
URL can result in a mirror, for example, in the Netherlands, http://nl.ports.
ubuntu. comis a valid mirror. Using a mirror has the obvious advantage that the
download will proceed much faster.

Since Allwinner SoCs are based on the ARMv7 architecture, for the architecture,
armhf will be used for that.

The suite, as it is called, depends on what is desired. For Debian, there are the stable,
testing, and unstable suites, where Wheezy is the name of the stable branch, Jessie
is testing, and sid is the unstable branch. It should be noted that in future, the names
Wheezy and Jessie will change to new suite names, but sid will always remain the
unstable development version.

Finally, debootstrap is prefixed with the PATH variable to ensure debootstrap uses the
correct path. This is due to a bug currently in debootstrap in combination with the
newer distributions.

\ The -foreign parameter can be used to bootstrap any architecture,
~ even on an x86-based system, as no code is executed. Bootstrapping will
Q require some additional work using the -second-stage parameter. It is
up to the reader to learn more about this when cross bootstrapping.

The following command will start the installation of Debian Wheezy for
arm-hard-float into /mnt using the http://ftp.nl.debian.org/debian/
mirror, as shown here:

e
Flo Edit View Temensl Tabs Help
[root@localhost -]1# PATH=/bin:/sbin:/usr/bin: fusr/sbin debootstrap --arch=armhf wheezy /mnt http://ftp.nl.debian.org/debian
: Cannot check Release signature; keyring file not available fusr/share/keyrings/debian-archive-keyring.opg
: Retrieving Release
: Retrieving Packages
: Validating Packages
: Resolving dependencies of required packages..
: Resolving dependencies of base packages..
: Found additional required dependencies: insserv 1ibbz2-1.8 libdb5.1 libsemanage-common libsemanagel libslangZ? libustr-1.8-1
: Found additional base dependencies: Libeptl.4.12 libgcryptll libgnutls2é libgpg-errer® libidnll libnfretlinkd 1ibpll-kit® libsqlite3-@ Libtasnl-3 libxapian22

: Checking component main on http://ftp.nl.debian.org/debian. ..
: Retrieving Libacll 2.2.51-8

: Validating libacll 2.2.51-8

¢ Retrieving adduser 3.113+nmu3

: Validating adduser 2.113+nnu3

: Retrieving apt 0.9.7.9+debiuz

¢ Walidating apt 8.9.7.9+deb7ul

: Retrieving apt-utils 0.9.7.09+debTu2

© Validating apt-utils 8.9.7.9+deb7u2

: Retrieving libapt-instl.5 0.9.7.9+debTu2
¢ Walidating libapt-instl.5 8.9.7.9+deb7ul

[48]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

As debootstrap is written in Perl. It may be possible that Perl is not currently
installed on the system where debootstrap is being used. Installing Per]l may
follow a long list of packages that need to be downloaded and installed.

Similarly, debootstrap -foreign --arch=armhf trusty /mnt
http://nl.ports.ubuntu.com can be used to install Ubuntu

N Trusty Tahr with a note that this will only be the base system.

~ Also, debootstrap might not come with all the suites as expected.

<::E All Ubuntu suites are symlinks to the gutsy suite at /usr/share/

debootstrap/scripts aslong as it exists on http://ports.
ubuntu.com/dists/.Useln -s gutsy utopic in the scripts
directory, for example, to add utopic as a valid suite.

Configuring the base system

The so-called £stab file in Linux is responsible for mounting partitions in their
designated positions. Using any editor, the following changes need to be added
to the £stab file. While the UUID-based mount points can be used, only standard
entries are used here. However, you are welcome and even encouraged to use the
UUID-based mount points. A common editor that is relatively easy to use is nano.
After modifying the file, exit nano with the Ctrl key in combination with the x key
and answer the question to save the modified buffer with the y key. The filename
should remain the same, thus answering with the Enter key. The fstab file in the
editor is shown in the following screenshot:

—

File Edit View Terminal Tabs Help

GNU nano 2.3.2 File: /mnt/etc/fstab Modified

/Jetc/fstab: statuc file system information.

#

file system mount point type options dump pass
/dev/sdal / extd defaults 0 1
/dev/mmcblkOpl /boot extd ro,nosuid, nodev 0 2
/dev/sda2 none swap sSW 0 0
/dev/sda3 /home extd defaults 0 y] |

Wf Get Helpgly WriteOutglld Read Filgaf Prev Paggld Cut Textgd Cur Pos
W Exit W Justify @] Where Isgl| Next Paggll] UnCut Tegg] To Spell

[49]

www.it-ebooks.info

http://www.it-ebooks.info/

Manually Installing an Alternative Operating System

With /boot mounted read-only, it makes sure that not only no accidental writes
happen, but also no intended writes occur. Also, as mentioned earlier in this chapter,
the boot partition of the microSD card, which was created in the previous chapter,

is reused here.

Configuring the networking

Debian and Ubuntu use the interfaces file at /etc/network/interfaces to
configure networking. Note that this is a more permanent configuration used
when not using the graphical utilities, such as network manager. If the final
goal of this setup is a graphical desktop, it is probably wise to skip setting up
the interfaces file.

. Using the network interface etho as the parameter for dhclient
< should result in a working network connection, as shown in the
following command. However, this will be lost after a reboot.

dhclient ethO

Use nano to open the interfaces file at /mnt /etc/network/interfaces and make
the following addition at the bottom:
auto ethoO

iface eth0 inet dhcp
Generally, a similar section exists for the loopback device.

If a static IP configuration is required, the following can be used as an example
(do replace the proper values with all numbers for the desired network).
auto etho0
iface eth0 inet static
address 192.168.0.10
network 192.168.0.0
netmask 255.255.255.0
broadcast 192.168.0.255
gateway 192.168.0.1

[50]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

When using a static IP address, the system also needs to be told how to resolve
things; the resolv.conf file at /etc/resolv. conf is responsible for this. Note that
this file will get overwritten if the network is configured either via dhcp or via a
network manager. Using nano as an example editor, open the resolv.conf file at
/mnt/etc/resolv.conf to add the following lines to it:

search homedomain.local

nameserver 192.168.0.1

Also here, we need to properly replace the values with whatever is appropriate for
the network used. Remember to save the file using Ctrl + x.

If there is more than one nameserver on the local network, a new line prefixed with
the word nameserver should be used for each additional nameserver.

\ In the unlikely event that there is no nameserver available on the
~ local network, Google's or OpenDNS's nameservers can be used. For
Q Google, they are 8.8.8.8 and 8.8.4.4, and for OpenDNS, they are
208.67.222.222 and 208.67.220.220.

Finally, the system needs to be named on the network — the so-called hostname.
Simply write a name that is unique on the network in the hostname file at
/mnt/etc/hostname, as shown here:

[root@packt ~]# echo "PacktPublishing" > /mnt/etc/hostname

Another thing that needs to be set up is the so-called hosts file. It serves as the
most basic way to look up a hostname, for example, when there is no DNS server
available. The hostname needs to be in here in addition to any other hostnames that
are required to be available from the network; for example, there is a time server
on the network from where all the computers get their current time. Every system
queries this server via time.example.com. Even if there's no Internet connectivity
and no DNS service available, to ensure the time server is always able to be looked
up, an entry to the hosts file can be added. With 192.168.0.15 being the local time
server, the following command can be used as an example for the hostname and

a guide to add additional hosts. Note that quite often, there is little need to add
additional hosts, as DNS is nearly always used for this purpose. Remember to

save the file using Ctrl + x.

[root@packt ~]# nano /mnt/etc/hosts

127.0.0.1 localhost
127.0.0.1 PacktPublishing
192.168.0.15 time.example.com

[51]

www.it-ebooks.info

http://www.it-ebooks.info/

Manually Installing an Alternative Operating System

::1 localhost ip6-localhost ip6-loopback
£fe00::0 ip6-localnet

££00::0 ip6-mcastprefix

££02::1 ip6-allnodes

££02::2 ip6-allrouters

Making the destination medium bootable

Unfortunately, as mentioned before, the SoC cannot boot from SATA drives or USB
flash drives; it requires a helper component. In this book, a small microSD card is
used for this purpose. As such, it will hold the bootloader, the kernel, and a little bit
of configuration to glue it all together. In the previous chapter, the installation script
used for the Fedora installation was done automatically. The kernel that will be
installed onto the microSD card will, by default, continue loading the rootfs from the
microSD card. This will obviously need to be adjusted so that the microSD card will
boot the newly created medium. To do this, the boot partition needs to be mounted
first, as shown in the following command:

[root@packt ~]# mount /dev/mmcblkOpl /mnt/boot

Using nano, edit the utnv. txt file and modify the line that starts with root
/dev/sdal, as shown in the following screenshot. Remember to save the file
using Ctrl + x.

=] Terminal - root@localhost:— + 2O X
File Edit View Terminal Tabs Help

GNU nano 2.3.2 File: /boot/uEnv.txt Modified

console=tty0

loglevel=5

r'c-ot=/dev/sdallro rootwait rootfstype=ext4

extraargs=console=ttyS0,115200 disp.screen® output mode=EDID:1280x720p60 $

Wt Get Help gy WriteOut @il Read Filegdl Prev Pagegld Cut Text @8 Cur Pos
B Exit Ml Justify [Where Is gl Next Pagegll] UnCut Texgl] To Spell

[52]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

With the microSD card set up to boot from the newly created medium, it is safe to
unmount it again with the following command:

[root@packt ~]# umount /mnt/foo

If things go wrong and the Cubieboard refuses to boot, the microSD card can be
used in a microSD-to-USB adapter and the uEnv . txt file can be opened with a
locally installed text editor. The OS used to make this modification, however,
will need to be able to read and write ext4 or at least ext2 filesystems.

The root user

While a root user exists with any default Debian or Ubuntu installation, the question
arises as to how to log in as the root user. The following are the two options:

* Precreate a regular user that has administrative rights via sudo and don't
allow the root user to log in

* Or the easier way, set up a root password for the root user and use it

Security-wise, the first option is safer. Both options will be briefly covered here.

It is up to the reader to decide which option is better suited and how important the
security aspect of it all is. This book is also not about properly securing a system.
This is left to the reader as an exercise and is far beyond the scope of this book.

Preparing the chroot command

To set up a root password, a few steps are required, as this has to be done actually
from within the system. The chroot command makes it possible to actually enter
the system as if it was booted as such. But there is a prerequisite, that is, certain
dynamic directories need to be populated, namely, /dev and /proc, as shown here:
[root@packt ~]# mount --rbind /dev /mnt/dev

[root@packt ~]# mount none -t proc /mnt/proc

Here, the existing /dev mount is reused whereas the proc filesystem is mounted
normally. Now, it is possible to use chroot into the filesystem, as shown here:

[root@packt ~]# PATH=/bin:/sbin:/usr/bin:/usr/sbin chroot /mnt
/bin/bash

root@packt:/#

[53]

www.it-ebooks.info

http://www.it-ebooks.info/

Manually Installing an Alternative Operating System

Changing the root password

The passwd command will be used to start the password change for the root user,
where a new password is entered twice. The system will not echo anything back to
the user, as shown here:

root@packt:/# passwd

Enter new UNIX password:

Retype new UNIX password:

passwd: password updated successfully

root@packt:/#

Creating a new super user

To create a new user, the useradd command is used. There are a lot of options to
this command and it is up to you to get familiarized with them. The options used

in this example are, however, the ones generally used. Besides a new user, a new
group matching the user's username will also be automatically created; the -U flag is
responsible for that. Additionally, the -s flag is used to supply an alternative login
shell. This is completely optional but recommended as Debian defaults to the default
sh shell, which is rather limited. The -m flag creates a directory for the user and
copies some basic files. In the following example, the username used will be packt:

root@packt:/# useradd -m -G sudo -s /bin/bash -U packt
root@packt:/#

To give the new user administrative powers, it will need rights to the sudo
command. The user has already been made a part of the sudo user group via the -G
parameter. But the command needs to be actually available to be usable. While the
usage of apt will be discussed later in this chapter, use the following command to
install sudo:

root@packt:/# apt-get install sudo

Finally, the user will also require a password to actually log in. The following passwd
command can be used for this:

root@packt:/# passwd packt

Enter new UNIX password:

Retype new UNIX password:

passwd: password updated successfully

root@packt:/#

[54]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Exiting chroot

The chroot environment can now be exited using the exit command, as follows:

root@packt:/# exit
exit

[root@packt ~]#

Adding the serial console

If the system were to be rebooted at this point, the login console would show up
on tty0, which is the normal console when a monitor and keyboard are connected.
There might, however, be a case where the connected monitor is not immediately
compatible or where for some reason the USB keyboard or monitor cannot be used.
The serial console has served us very well until now, and thus, in order to enable it
on this, the Debian or Ubuntu installation is strongly recommended. Here, the first
difference between Debian and Ubuntu, however, becomes apparent. Debian still
uses the older sysvinit, whereas Ubuntu still uses upstart, and while both

are slowly in the progress of migrating to systemd, this is not applicable at this
moment. Ironically, with systemd, or at least with the one that is installed and
currently running, the Fedora image has the serial console set up by default.

Adding the serial console to Debian

The file responsible for spawning the various init services is inittab at
/etc/inittab, and uses nano; this can be edited to add the serial console.
Find the following section, uncomment the line starting with #T0, and remove
the hashtag. Also note that by default the baud speed is 9600, and our entire
setup assumes a baud speed of 115200, so make sure that this change has
been performed, as shown in the following example. Remember to save the
file using Ctrl + x.

[root@packt ~]# nano /mnt/etc/inittab

Example how to put a getty on a serial line (for a terminal)
#

T0:23:respawn:/sbin/getty -L ttyS0 115200 vt1l00
#T1:23:respawn:/sbin/getty -L ttySl 9600 vt1l00

[55]

www.it-ebooks.info

http://www.it-ebooks.info/

Manually Installing an Alternative Operating System

Adding the serial console to Ubuntu

For upstart, the situation is completely different. The files in the /etc/init/
directory are parsed by upstart. First, copy the file ttyl.conf to ttyso.conf
as this makes editing much easier; the files are similar after all, as shown here:

[root@packt ~]# cd /mnt/etc/init/
[root@packt initl# cp ttyl.conf ttySO.conf

However, a few changes need to be made to this file. First, replace all occurrences of
ttyl with ttyso. Next, in addition to 2345, add 1 to the number of run levels. Also,
remove the and (..) section. Finally, the getty line needs to be adjusted to listen to a
serial port at 115200 bps. The following command shows you how the file eventually
should look like. Alternatively, a new file can be created with the following content.
Remember to save the file using Ctrl + x.

ttys0 - getty
#
This service maintains a getty on ttyS0 from the point the system

is started until it is shut down again.

start on stopped rc RUNLEVEL=[12345]

stop on runlevel [!12345]

respawn

exec /sbin/getty -L 115200 ttyS0 vtl02

Rebooting the new OS

With all the required changes in place, it is time to reboot into the new operating
system. First, unmount all partitions that have been mounted for this installation.
Make sure that none of the mounted directories are in use. The umount -1 command
is used, where the -1 parameter stands for lazy, which means that umount will try to
unmount all subdirectories first and finish with unmounting the requested directory.
In case of errors, manual unmounting is probably required. The reboot command
will then reboot the system, as shown here:

[root@packt etcl# cd
[root@packt ~]# umount -1 /mnt
[root@packt ~]# reboot

[56]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

After the reboot, you will be greeted with a login prompt, as shown in the following
screenshot. Obviously, this differs slightly between Debian and Ubuntu. After
logging in with either the created user or the root, the installation part of this
chapter is completed, congratulations!

File Edit View Terminal Tabs Help

[ok 1 Cleaning up temporary files....

INIT: Entering runlevel: 2

[info] Using makefile-style concurrent boot in runlevel 2.
[ok] Starting enhanced syslogd: rsyslogd.

[ok] Starting periodic command scheduler: cron.

Debian GNU/Linux 7 PacktPublishing ttyS@

PacktPublishing login: packt

Password:

Last login: Sun Jul 13 16:11:19 UTC 2014 on ttySO®

Linux PacktPublishing 3.4.75.sun7i+ #1 SMP Fri Feb 7 01:45:31 CET 2014 armv7l

The programs included with the Debian GNU/Linux system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
permitted by applicable law.
packt@PacktPublishing:~3$ [

Getting around the new OS via the
command line

If you are new to GNU/Linux in general, using the cheatsheet as shown in
Appendix B, Basic Linux Commands Cheatsheet, will be helpful, as a few common
Linux commands can be explored, and it can be considered as a beginner's guide
to GNU/Linux. This section will focus a little more on common tasks, keeping
Debian or Ubuntu up to date and installing new software.

Introducing apt

Both Debian and Ubuntu rely heavily on apt for their software needs. Apt is a suite
of commands that allows the installation of new software packages or keeping the
existing ones up to date. Apt works closely together with dpkg although a regular
user will probably never invoke dpkg directly. Apt is responsible for downloading
a requested piece of software, checking what its dependencies are, and telling dpkg
to install them. It is the Swiss army knife of package management under Debian
and Ubuntu. It was the command-line AppStore before AppStores even existed.

[57]

www.it-ebooks.info

http://www.it-ebooks.info/

Manually Installing an Alternative Operating System

Configuring apt

Apt does not require a whole lot of configuring. What apt does need is a list of places
where it can check and download software from. The Debian and Ubuntu defaults
might not offer everything of interest. The file responsible for apt's configuration is
sources.list at /etc/apt/sources.list, and if you are logged in as a regular
user, it requires sudo to grant the user additional privileges to edit the file. In the
following example, the non-free component and the security repository will be
added to the main component. Note that the various sources in the sources.list
file will vary between various suites or derivatives, such as Ubuntu.

packt@PacktPublishing:/etc/apt$ sudo nano sources.list
[sudo] password for packt:

deb http://ftp.nl.debian.org/debian wheezy main non-free

deb http://security.debian.org/ wheezy/updates main non-free

deb-src http://security.debian.org/ wheezy/updates main non-free

With these changes in place, apt will need to be updated, but that is handled in the
next subsection.

Debian has a good tutorial for more in-depth reading at https://wiki.debian.
org/SourcesList, and an additional components and repositories are listed at
https://wiki.debian.org/UnofficialRepositories. For Ubuntu, the source

list can be found at https://help.ubuntu.com/community/SourcesList and
additional repositories at https://help.ubuntu.com/community/Repositories/
Ubuntu. Further configuration beyond what is listed in this subsection is left as an
exercise to the reader. Note that while in theory Ubuntu and Debian repositories can
be mixed, it is not recommended and will likely cause issues.

Keeping the OS up to date

Regularly checking and installing updates can be critical to security. Also, new
versions of existing software packages potentially yielding new features or fixing
bugs are also obtained in this way. The steps are identical for Ubuntu and Debian.

To download and update apt with a new list of the software, the first apt command
apt-get is introduced. The apt -get command without parameters, however, will
not do a lot more than print a help screen. As the intended action is to update the list
of applications that will be the update parameter passed. Again, if run as a regular
user, it should be prefixed with sudo. Also, if the network has not been configured
yet and the intention is to let the graphical user interface configure the network,
remember to run dhclient etho to obtain a temporary network configuration.

The following command in the screenshot runs an update of apt:

[58]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

File Edit View Terminal Tabs Help

packt@PacktPublishing:~% sudo apt-get update

Get:1 http://ftp.nl.debian.org wheezy Release.gpg [1655 B]

Hit http://ftp.nl.debian.org wheezy Release

Get:2 http://security.debian.org wheezy/updates Release.gpg [836 B]

Get:3 http://security.debian.org wheezy/updates Release [102 kB]

Hit http://ftp.nl.debian.org wheezy/main armhf Packages

Get:4 http://ftp.nl.debian.org wheezy/non-free armhf Packages [55.8 kB]

Get:5 http://ftp.nl.debian.org wheezy/main Translation-en [3847 kB]

Get:6 http://security.debian.org wheezy/updates/main armhf Packages [188 kB]
Get:7 http://security.debian.org wheezy/updates/non-free armhf Packages [14 B]
Get:8 http://security.debian.org wheezy/updates/main Translation-en [109 kB]
Get:9 http://security.debian.org wheezy/updates/non-free Translation-en [14 B]
Get:10 http://ftp.nl.debian.org wheezy/non-free Translation-en [66.1 kB]
Fetched 4371 kB in 16s (260 kB/s)

Reading package lists... Done |
packt@PacktPublishing:~$ i

If sections and components were not added in the previous subsection, the list
would obviously be shorter. At this point, the apt has an up-to-date list of the
available software. To upgrade all installed packages, most importantly because
of security updates, the upgrade parameter to apt-get is used, as shown in the
following screenshot:

File Edit View Terminal Tabs Help
packt@PacktPublishing:~$ sudo apt-get upgrade
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following packages will be upgraded:
libc-bin libc6 multiarch-support
3 upgraded, 0 newly installed, © to remove and @ not upgraded.
Need to get 5331 kB of archives.
After this operation, 5120 B of additional disk space will be used.
Do you want to continue [Y/n]? y
Get:1 http://security.debian.org/ wheezy/updates/main libc-bin armhf 2.13-38+deb7u3 [1166 kB]
Get:2 http://security.debian.org/ wheezy/updates/main libc6 armhf 2.13-38+deb7u3 [4015 kB]
Get:3 http://security.debian.org/ wheezy/updates/main multiarch-support armhf 2.13-38+deb7u3 [151 kB]
Fetched 5331 kB in 3s (1576 kB/s)
Preconfiguring packages ...
(Reading database ... 9350 files and directories currently installed.)
Preparing to replace libc-bin 2.13-38+deb7u2 (using .../libc-bin_2.13-38+deb7u3_armhf.deb) ...
Unpacking replacement libc-bin ...
Processing triggers for man-db ...
Setting up libc-bin (2.13-38+deb7u3) ...
(Reading database ... 9349 files and directories currently installed.)
Preparing to replace libc6:armhf 2.13-38+deb7u2 (using .../libc6_2.13-38+deb7u3_armhf.deb) ...
Unpacking replacement libc6:armhf ...
Setting up libc6:armhf (2.13-38+deb7u3) ...
INIT: version 2.88 reloading
(Reading database ... 9349 files and directories currently installed.)
Preparing to replace multiarch-support 2.13-38+deb7u2 (using .../multiarch-support_2.13-38+deb7u3_armhf.deb) ...
Unpacking replacement multiarch-support ...
Setting up multiarch-support (2.13-38+deb7u3) ... I
packt@PacktPublishing:~$ I

In the preceding example, there was only one update available, which was an update
to 1ibgnutls. This list can vary depending on the amount of updates, naturally.

[59]

www.it-ebooks.info

http://www.it-ebooks.info/

Manually Installing an Alternative Operating System

M The apt file at /etc/cron.daily/apt is responsible for the daily
Q update of apt and installing security critical packages, thus running the
apt-get update is not always required.

Installing additional software

The most exciting thing about any OS probably is the software. However, the default
created Debian or Ubuntu installation lacks most of the software. It is, after all, just

the bare minimum.

Finding packages

While installing packages, a problem can occur when a name is roughly

remembered but not to exactly. In that case, there is an apt tool called apt - cache.
Using the search parameter, the internal cached apt database can be searched for
available packages. Especially in combination with the grep command, these two

can be helpful to find what is needed, as shown in the following screenshot. The
grep - command is explained in Appendix B, Basic Linux Commands Cheatsheet.

File Edit View Terminal Tabs Help

packt@PacktPublishing:~$% apt-cache search xfced4 | grep -i desktop
libgarcon-1-0 - freedesktop.org compliant menu implementation for Xfce
libxfcedmenu-0.1-0 - freedesktop.org compliant menu implementation for Xfce
orage - Calendar for Xfce Desktop Environment

xfced - Meta-package for the Xfce Lightweight Desktop Environment
xfced-appfinder - Application finder for the Xfced4 Desktop Environment
xfced-artwork - additional artwork for the Xfced4 Desktop Environment
xfced-goodies - enhancements for the Xfced4 Desktop Environment

xfced-notes - Notes application for the Xfced desktop

xfced-notes-plugin - Notes plugin for the Xfced4 desktop

xfced-panel - panel for Xfced desktop environment

xfced-power-manager - power manager for Xfce desktop
xfced-power-manager-data - power manager for Xfce desktop, arch-indep files
xfced-taskmanager - process manager for the Xfce4 Desktop Environment
packt@PacktPublishing:~$ [J

Additionally, you might want to search for a filename of an application. There is an
apt tool for that as well. The apt -file tool using the search parameter will allow

you to search for files inside packages. Unfortunately, at the time of writing this

book, the apt-file tool is not yet included in the current stable release of Debian

or Ubuntu, but should be hopefully added soon.

[60]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Installing the software package using apt-get

The most basic way to install a software package is also via apt -get, the parameter
not surprisingly being install. Nano has been used often as an example editor.

This is because it is very easy to use and nearly always preinstalled as it is so small.
Vi is another small editor that is nearly always preinstalled but is far from easy

to use. Vi has a bigger brother called Vi improved or vim. Let us install vim via
apt-get, as follows:

File Edit View Terminal Tabs Help
packt@PacktPublishing:~$ sudo apt-get install vim
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following extra packages will be installed:
libgpm2 vim-runtime
Suggested packages:
gpm ctags vim-doc vim-scripts
The following NEW packages will be installed:
libgpm2 vim vim-runtime
0 upgraded, 3 newly installed, © to remove and 0 not upgraded.
Need to get 5338 kB of archives.
After this operation, 24.2 MB of additional disk space will be used.
Do you want to continue [Y/nl? y
Get:1 http://ftp.nl.debian.org/debian/ wheezy/main libgpm2 armhf 1.20.4-6 [34.0 kB]
Get:2 http://ftp.nl.debian.org/debian/ wheezy/main vim-runtime all 2:7.3.547-7 [4607 kB]
Get:3 http://ftp.nl.debian.org/debian/ wheezy/main vim armhf 2:7.3.547-7 [697 kB]
Fetched 5338 kB in 4s (1204 kB/s)
Selecting previously unselected package libgpm2:armhf.
(Reading database ... 9349 files and directories currently installed.)
Unpacking libgpm2:armhf (from .../libgpm2_1.20.4-6_armhf.deb)
Selecting previously unselected package vim-runtime.
Unpacking vim-runtime (from .../vim-runtime 2%3a7.3.547-7 all.deb)
Adding 'diversion of /usr/share/vim/vim73/doc/help.txt to /usr/share/vim/vim73/doc/help.txt.vim-tiny by vim-runtime'
Adding 'diversion of /fusr/share/vim/vim73/doc/tags to /usr/share/vim/vim73/doc/tags.vim-tiny by vim-runtime'
Selecting previously unselected package vim.
Unpacking vim (from .../vim_2%3a7.3.547-7_armhf.deb)
Processing triggers for man-db ...
Setting up libgpm2:armhf (1.20.4-6)
Setting up vim-runtime (2:7.3.547-7)
Processing /usr/share/vim/addons/doc
Setting up vim (2:7.3.547-7)
update-alternatives: using /usr/bin/vim.basic to provide /usr/bin/vim (vim) in auto mode
update-alternatives: using /usr/bin/vim.basic to provide /usr/bin/vimdiff (vimdiff) in auto mode
update-alternatives: using /usr/bin/vim.basic to provide /usr/bin/rvim (rvim) in auto mode
update-alternatives: using /usr/bin/vim.basic to provide /usr/bin/rview (rview) in auto mode
update-alternatives: using /usr/bin/vim.basic to provide /fusr/bin/vi (vi) in auto mode
update-alternatives: using /usr/bin/vim.basic to provide /usr/bin/view (view) in auto mode
update-alternatives: using /usr/bin/vim.basic to provide /fusr/bin/ex (ex) in auto mode
packt@PacktPublishing:~%

After downloading and installing a few packages, vim is now installed.

[61]

www.it-ebooks.info

http://www.it-ebooks.info/

Manually Installing an Alternative Operating System

Installing the software package using tasksel

More than often, a collection of packages is required to have the system perform
certain functions. The tasksel command can be used to install a collection of
packages to perform a certain task. Running tasksel with elevated privileges
yields the menu, as shown in the following screenshot. Ubuntu does not have
tasksel preinstalled and requires it to be installed via apt -get, as shown in
the previous example for vim.

File Edit View Terminal Tabs Help
Package configuration

| Software selection |
You can choose to install one or more of the following predefined
collections of software.

Choose software to install:
1 Bebian desktop environment
] Web server

] Print server

] SQL database

] DNS Server

] File server

] Mail server

] SSH server

1 Laptop

<0k>

Installing the Debian desktop environment task will install a graphical desktop
environment based on GNOME and some additional packages marked as standard
by Debian, such as LibreOffice.

The downloading and installation might take a while depending on the target
medium and Internet connection speed. Installation on an SSD with a very fast
Internet connection can take about thirty minutes.

Under Ubuntu, tasksel will look slightly different, but even here there is an Ubuntu
desktop option, as shown in the following screenshot. This will take about the same
time thirty minutes or more.

[62]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

File Edit View Search Terminal Help
Package configuration

{ Software selection |
You can choose to install one or more of the following predefined
collections of software.

Choose software to install:

Tomcat Java server

Ubuntu Cloud Image (instance)
Virtual Machine host

Ubuntu desktop

Ubuntu desktop USB

Edubuntu live DVD

Kubuntu live DVD

Lubuntu live CD

Ubuntu Studio live DVD

Installing packages via metapackages

The tasks available via tasksel appear to be rather limited. Instead, it is probably
easier to use metapackages. Metapackages are, in effect, not that much different from
tasks; in fact, they very well might be the same in the background. A metapackage is
not really a package that installs anything, rather it is a list of packages or a collection
of packages that get installed from it. For example, xfce4 is a metapackage for Debian,
which will install all the packages required for the xfce4 desktop environment and
will also install software that the package maintainers thought would make sense to
have for a full-fledged desktop environment, such as a file manager.

For Ubuntu, this metapackage is just called xfce, though the
= xubuntu-desktop metapackage should be more interesting here.

Another interesting metapackage to match the xfce4 metapackage is xfce4-goodies.
In fact, the following command will show you how to install multiple packages in one
go. Running the command will result in a huge list of packages to be installed, but
will yield a usable xfcef4 desktop, as if it were installed from a CD, for example.

One could even argue that an installation CD would do just that, as shown here:

packt@PacktPublishing:~$ sudo apt-get install xfce4 xfce4-goodies

[63]

www.it-ebooks.info

http://www.it-ebooks.info/

Manually Installing an Alternative Operating System

After waiting about 30 minutes for the xfce4 desktop to get installed, xfce4 can
be started using the startx command. At this point, however, the monitor and
keyboard will have to be used. Xfce4 cannot be used or started over the serial
console. This yields an almost usable desktop environment. Almost means here
that certain things with permissions are missing. A user is not allowed to shut
down the machine by default, for example.

There are several ways to allow these things to work properly, and one is the use of
a login manager; xfce4, however, does not come with one, but that is okay. There are
plenty of login managers to choose from. GNOME comes with gdm, but going with

a lightweight login manager that matches Xfce4 as a lightweight desktop manager,
LightDM should be a good candidate. Installing the 1ightdm package should require
no extra instructions. Rebooting the Cubieboard now will yield an active login
window, which upon login, wraps up this chapter.

Summary

Having worked through this chapter, admittedly a big one, the result should
technically be the same as the previous chapter; a working desktop environment
based on either Debian or Ubuntu. The installation of additional software via the
command line is now a breeze, and keeping the system up to date is not an issue
at all.

The next chapter will take this installation and turn it into a server for various tasks,
optionally retaining the desktop functionality.

[64]

www.it-ebooks.info

http://www.it-ebooks.info/

Setting Up a Home Server

Since you are now familiar with creating an entire root filesystem from scratch, it
is a good time to create something a little more complex. Granted that a desktop
can be quite useful by itself, but very often, a desktop OS on these kinds of ARM
development boards might be a little too slow. However, these devices are very
useful for low-power home servers.

The term home server is used here, as most services are useful to a person at
home, but using a Cubieboard in a colocation center and getting it to function as

a web server and mail server, for example, also works quite well. However, when
doing that, security does come to mind. Security is not strongly addressed in this
chapter, as it is a subject that requires a lot of attention and strong knowledge of
security, both of which are out of the scope of this book. It has to be said that these
instructions are not specific to a Cubieboard at all, and there are obviously many
more services that could be thought of.

In this chapter, we will cover the following topics:

* Accessing the Cubieboard remotely

* Learning how to start, stop, and restart services

* Adding and removing a service to be started at boot
* Automatically running tasks at scheduled times

* Set up various services (Squid, Apache, Samba, transmission, and ownCloud)

www.it-ebooks.info

http://www.it-ebooks.info/

Setting Up a Home Server

Prerequisites for the home server board

In this chapter, several software packages will be installed upon the previous Debian
or Ubuntu installation. If this installation has seen too much wear and tear due to
experimentation, it is recommended to go over Chapter 4, Manually Installing an
Alternative Operating System, again.

It is wise to skip the final segment, where a graphical desktop environment is
installed, as it will serve no purpose in this chapter. The initial Fedora installation on
the SD card can also be reused, but it is up to you to identify the differences between
these distributions.

Accessing the server remotely

Most of the time, if not all the time, the Cubieboard has been accessed via a serial
console, or directly via the keyboard and mouse while it is connected to a monitor.
This works fine, but after the setting up and tinkering is done, it might be interesting
to get it to sit in a different room where it can perform its task unattended. It could
even be possible to have several boards running in a dataserver, for example, where
remote access might become crucial. Thus, having remote access is very useful.

The most common and well-established way to connect to a Debian or Ubuntu
machine is via an ssh server. Installing an ssh server is simple; just use the
following command:

packt@PacktPublishing:~$ sudo apt-get install openssh-server

Just as with UART access, PuTTY can be used for ssh access. However, the
important thing here is to set the connection type to ssh. The port should be set to
22 by default, and the correct IP or hostname needs to be used. See the following
screenshot for an example of this:

[66]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

PuTTY/ Configuration

Category: Basic options for your PuTTY session
4 Specify the destination you wantto connectto———————————
Logging || Host Name (or IP address) Port
< Terminal [<IP or Hostname>] [22
Keyboard Connection type:
Bell) Raw I Telnet) Rlogin (= SS5H) Serial
Features ‘Load, save or delete a stored session ‘\
~ Window Saved Sessions
Appearance [|
Behauiour Default Settings
Translation
Selection
Colours
Fonts
=~ Connection
Data
Rigioy || Close window on exit:
Telnet ® Always () Never () Only on clean exit
Rlogin
About | Open | ‘ Cancel

If you are using an existing Linux command line, ssh can be invoked quite easily,

as shown in the following screenshot:

File Edit View Search Terminal Help

Warning: Permanently added '192.168.0.10°'
packt@192.168.0.10 password:

packt@rPacktbesktop:~$ ssh packt@192.168.0.10

The authenticity of host '192.168.0.10 (192.168.0.10)' can't be established.
|RSA key fingerprint is 3f:cc:f3:6b:5b:d5:f4:85:6b:b0:7a:80:9b:9d:11:7e.

Are you sure you want to continue connecting (yes/no)? yes

(RSA) to the list of known hosts.

[67]

www.it-ebooks.info

http://www.it-ebooks.info/

Setting Up a Home Server

The first time you connect to a host, the ssh fingerprint is displayed followed by
a question as to whether you are sure you want to connect. In this case, it is safe
to accept the proposal to continue.

\ When connecting over the Internet, it is recommended that you always
~ verify the key. If someone messed around with the server or tried to
Q perform a man-in-the-middle attack, this key will no longer match, and
you will know that something is wrong.

After entering the password, the familiar packt@pPacktPublishing:~$ command
prompt will appear.

Interacting with services

On a server, it is quite common to start, stop, or restart a service. This is not only
while trying to fix a problem, but also sometimes to reload a configuration, for
example. It might be that a service is used to run only occasionally but not every
time during booting. For these purposes, the so-called startup scripts are available.
When a service is installed, usually, a script to control its behavior is placed at
/etc/init.d.

R For a server, it usually makes sense to configure networking either
~ statically or via a DHCP server directly in the interfaces file. This to
Q ensure networking is always available, as a graphical desktop is often
not installed.

Let us take the networking script, for example. It is responsible for bringing up a
network device, but only those configured at /etc/networking/interfaces. Refer
to Chapter 4, Manually Installing an Alternative Operating System, on how to properly
set up a network configuration; it is assumed that etho is configured in this way.

Stopping the networking service will deactivate all the networking
interfaces! While this does not have to be a problem, be careful when
g using this command if you're using the connection remotely.

[68]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Starting, stopping, restarting, or reloading
a service

To stop the network interface, issue the following command. If you are logged in as
root, which is not recommended, omit the sudo command.

packt@PacktPublishing:~$ sudo /etc/init.d/networking stop

Deconfiguring network interfaces...done.

Similarly, the network interface can be started again using the start parameter,
as follows:

packt@PacktPublishing:~$ sudo /etc/init.d/networking start

Configuring network interfaces...

The same can be done using the restart or reload parameter, where reload forces
the service to reload its configuration.

. Some distributions, such as Ubuntu, might use upstart or even SystemD.
% Sometimes, scripts are left behind in the /etc/init.d directory that can
o be used as described previously, but this is not always the case, and thus

it might be required to get familiar with SystemD or upstart.

Adding or removing a service from the
boot up

Sometimes, it is required to always make a service start during boot time.
For example, in the previous chapter, 1ightdm was installed to provide a
graphical login service. This service was automatically added to be started
during booting. Preventing 1ightdm from starting during booting any longer
can be accomplished using the update-rc.d command. Passing the optional
- £ flag forces removal, as shown here:

packt@PacktPublishing:~$ sudo update-rc.d -f lightdm remove

update-rc.d: using dependency based boot sequencing

The graphical login manager will now no longer be started after a reboot using the
preceding section to stop 1ightdm immediately; a reboot is then not even needed.

[69]

www.it-ebooks.info

http://www.it-ebooks.info/

Setting Up a Home Server

Adding a service is quite similar; instead of asking it to be removed from the boot
time services, the default keyword asks that the service be started during booting,
as shown here:

packt@PacktPublishing:~$ sudo update-rc.d lightdm defaults

update-rc.d: using dependency based boot sequencing

Defaults indicate that all the default runlevel services should be started or stopped.
A Linux system has various runlevels, and you are encouraged to read more about it.

After each reboot, 1ightdm will be started. The preceding section was all specific to
Debian. Ubuntu, however, has backwards-compatible scripts for most services in
/etc/init.d and can be used as described previously.

As mentioned in the earlier chapter, both Debian's SystemV and Ubuntu's

upstart will, in time, be replaced by SystemD or both. It is up to you to
T learn more about SystemD when the time comes.

Running scheduled tasks automatically

It is often necessary to have certain tasks run at scheduled intervals. Think of
downloading and updating a virus database, for example. For this purpose, Linux
systems are equipped with a program called Cron. Cron normally runs in the
background and checks whether it was given any jobs to run at a certain time.
While it is up to you to get to know Cron in detail, by default on Debian, Cron
makes running Cron-jobs very easy by supplying four directories in /etc, namely,
cron.hourly, cron.daily, cron.weekly, and cron.monthly. From the names,

it should be obvious what their intentions are. Placing an executable file here
makes Cron run the command hourly, daily, weekly, or monthly.

A simple example is to ask apt -get to update its local database every day; a simple
script can be created for this purpose. Using the editor as root, create a new file called
apt-update in /etc/cron.daily/, as follows:

packt@PacktPublishing:~$ sudo nano /etc/cron.daily/apt-get
#!/bin/sh
apt-get update

The first line is important, as it tells the system that this is a shell script, or rather,
that /bin/sh needs to be used to execute the lines in the rest of the file. Cron runs
all its jobs in /etc/cron. * by root by default, so there is no need to prepend it
with sudo.

[70]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

With the file saved, it is important to give it the permission to execute. By default,

it is just a text file. Cron will only execute files with the proper permissions. This is
easily fixed using chmod to mark this newly created script executable, as shown in
the following command:

packt@PacktPublishing:~$ sudo chmod u+x /etc/cron.daily/apt-update

It needs to be said, however, that while this was a very useful example, Debian and
Ubuntu by default update the apt repository on a daily basis. So, while this serves
well as an example, it is recommended that you clean it up afterwards, as shown in
the following command:

packt@PacktPublishing:~$ sudo rm /etc/cron.daily/apt-update

Setting up a proxy server

When bandwidth is scarce and has to be shared with multiple members of a
household, and on top of that, a reduction of ads is desired, a proxy server can offer
a solution. Additionally, it allows Internet access without complicated firewall rules;
just configure the browser to use the proxy. In the following subsections, the steps to
set up a proxy server are explained.

Installing Squid
The proxy server used in this book is called Squid, and as you learned from the
previous chapter, it can be installed easily with the following command:

packt@PacktPublishing:~$ sudo apt-get install squid

Squid in Debian comes with a reasonable default configuration file at /etc/squid/
squid. conf. Using nano or any other editor, the file can be opened and examined.
The squid configuration file is very heavy on comments, working as a guide

or manual.

By default, Squid will only listen to the traffic on connections that it thinks are

from the internal network. The lines starting with acl localnet followed by the
internal network, IP-range, indicates this. It should be noted that an additional
localnet line can be added, but be careful —adding an IP-range internal network
that is not local can mean that the proxy is accessible worldwide, so do be careful
when experimenting here. This, however, only defines the 1ocalnet; it has not been
granted access yet. Searching through squid. conf, a commented section reading the
following command will be found:

#http access allow localnet

[71]

www.it-ebooks.info

http://www.it-ebooks.info/

Setting Up a Home Server

This line allows HTTP access where the source originates from localnet, which we
just learned about, and which was defined as the internal network range. You can
uncomment it by removing the hashtag, or the number sign; this grants access to
the so-called 1ocalnet line, and after restarting Squid, the proxy should now allow
usage from the internal network.

Setting up a caching proxy

A proxy server can temporarily store frequently accessed data so that it only needs
to be downloaded over an Internet connection once. This can, in certain cases, greatly
reduce bandwidth usage; for example, imagine that a household of five computers
with all of them requiring to download a certain update file. If all the five computers
download this update via the proxy, the proxy only downloads this the first time

the file is requested. The moment a second computer requests that same file, the
proxy would offer its internally stored file making the download much faster

and not burden the Internet connection.

By default, Squid uses a cache of 100 MB only. Take a look at the
L cache dir parameter to learn more about this.

Squid does not require any additional configuration to function as a caching proxy.
After it has been installed, it is automatically started and configured to be started
upon a reboot. To change any of these behaviors, refer to the earlier two subsections.

Configuring a browser to use the proxy

Without covering every browser or every operating system out there, at least one
example will be shown here. In this case, we choose Mozilla Firefox. To configure
the browser to use the proxy, follow these steps:

1. First, open the Preferences option, which, depending on the operating
system used, is under Edit or under Tools.

[72]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

2.

General Tabs Content Applications Privacy Security

General | Data Choices | Network Update ! Certificates |

W= 8 K ® a 0

SO Advanced

Connection

Configure how Firefox connects to the Internet

Cached Web Content
Your web content cache is currently using 350 MB of disk space
™ pverride automatic cache management

Offline Web Content and User Data

Your application cache is currently using 0 bytes of disk space

[@Tell me when a website asks to store data for offline use

settings .|

£ Clear Now

£ Clear Now

Exceptions...

The following websites are allowed to store data for offline use:

@ﬂelp

. 3 Close |

In the preference screen, navigate to the Advanced tab, and from there,
to the Network tab. The first button on the right reads Settings, and it
holds the network configuration, as shown in the following screenshot:

In the Settings dialog, select Manual proxy configuration, which will enable
the edit boxes.

For the HTTP Proxy, the hostname or the I’ address needs to be entered.
The default port for Squid is 3128.

[73]

www.it-ebooks.info

http://www.it-ebooks.info/

Setting Up a Home Server

5. Finally, the Use this proxy server for all protocols option can be safely
enabled, as Squid covers them all, as shown in the following screenshot:

Connection Settings

Configure Proxies to Access the Internet
" Na proxy
"~ Auto-detect proxy settings for this network
" Use system proxy settings

@ Manual proxy configuration:

HTTP Proxy: | <IP or Hostname=| | Port: ; 3123l ?
¥’ Use this proxy server for all protocols
SSL Proxy: | <IP or Hostname> | Port _:1_'-_:"'_“!

No Proxy for:

localhost, 127.0.0.1

Example: .mozilla.org, .net.nz, 192.168.1.0/24

" Automatic proxy configuration URL:

Help @ Cancel-

6. If the IP address is unknown, it can be obtained using the ifconfig
command on the Cubieboard where Squid is running. In this case,
the IP addressis 192.168.0.10, as shown here:

File Edit View Terminal Tabs Help

packt@PacktPublishing:~$ sudo ifconfig
ethe Link encap:Ethernet HWaddr 2a:ad:53:25:eb:a5
inet addr:10.2.0.154 Bcast:10.2.255.255 Mask:255.255.0.0
inet6 addr: fe8@::28ad:53ff:fe25:eba5/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1508 Metric:1
RX packets:261 errors:0 dropped:® overruns:@ frame:@
TX packets:305 errors:0 dropped:® overruns:® carrier:@
collisions:®@ txqueuelen:1000
RX bytes:37100 (36.2 KiB) TX bytes:39625 (38.6 KiB)
Interrupt:117 Base address:@x8000 |

[74]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

It is not strictly required to use sudo to access the ifconfig information. Most of
the time, it can be accessed via its full path, /sbin/ifconfig in this case, without
requiring elevated privileges. Additionally, ifconfig might be replaced by the
ip addr command on certain distributions.

Starting a web-surfing session should now go via the proxy. Manual configuration of
a proxy is not strictly required. As seen here, there is the Use system proxy settings
or Auto-detect proxy settings for this network option. When using the first option,
whatever is configured by and for the operating system is used as the default proxy
by the browser. The latter option is used if the proxy settings can be detected via the
so-called WPAD, which is up to the reader to learn more about and can be found at
http://en.wikipedia.org/wiki/Web Proxy Autodiscovery Protocol. Both of
these options, however, are not covered here.

Setting up a blocking proxy

One of the advantages of using a proxy is that certain sites can be easily blocked.
Let us say the sites hotmail.com, ebay.com, and live.comneed to be blocked.
This list of domain names will have to be stored somewhere, for example,
blocked.domains.acl in the /etc/squid directory. To do this, follow

these steps:

1. Start editing the file and add those names, as follows:

packt@PacktPublishing:~$ sudo nano
/etc/squid/blocked.domains.acl

hotmail.com
ebay.com

live.com

2. Next, go to a very specific section in the configuration file, as the order
does matter. Find the section called # TAG: acl, and scroll beyond the big
commented section where the acl tag gets documented. The acl localnet
definitions will show up as seen in the earlier Installing Squid section. Just
before the next section starts, find # TAG: http_access and add the
following line:

acl blockeddomain dstdomain "/etc/squid/blocked.domains.acl"

In short, under the section called ac1, a new item will be added, just before
the http_access section. Here, Squid is instructed to create an ac1 called
blocked domain and mark the domains as destination domains from the file
just created. So now there should be a list of ac1s with the blocked domain
one being last.

[75]

www.it-ebooks.info

http://www.it-ebooks.info/

Setting Up a Home Server

3. Immediately following the acl section, the http_access section starts.
Here, the order is crucial. Just above the sections where the localhost and
localnet were allowed, the following command needs to be added:

http access deny blockeddomain

The reason is that, first, things get denied, such as the blocked domains,
and then localhost and localnet are granted access to what is left. Finally,
everything else gets blocked for those that have not been allowed anything.

4. Using the restart command you learned earlier in this chapter,
Squid can be restarted and will now refuse to load all the content
from the mentioned sites.

Taking this example a step further, it would be nice to block all domains that do
nothing but serve ads. While creating a file to list all these domains is of course a
valid solution, it becomes quite tedious to list all domains and all of its permutations.
Squid can instead do regular expressions on a list, making things a lot easier.

To do this, follow these steps:

1. As before, create a file named squid.adservers, and enter the following
regular expression. It's okay if you don't understand what any of it means;
it's only an example for now.

(*|\.)wikia-ads\.wikia\.com$

2. After saving the file, open squid. conf, and just like before, add the
following lines to the appropriate sections:
acl ads dstdom regex -i "/etc/squid/squid.adservers"

http access deny ads

3. Squid is instructed to create a list following the file, but this time using a
regular expression for the destination domain list. Again, Squid will then
deny all HTTP access to the domains in the list ads, which in this case is
wikia-ads.wikia.com.

[76]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Manually, adding regular expressions for each and every ad-network can be
tiresome, especially when trying to maintain them. Luckily, a group of people
maintains a list of known ad-servers that can be used without too much work; the
list can be found at http://pgl.yoyo.org/adservers/. Someone was even kind
enough to provide a script that can be used to download the list and prepare it

to be used with Squid. Download the following file using wget, as seen in the
following example:

packt@PacktPublishing:~$ wget
http://pgl.yoyo.org/adservers/scripts/squid/update-squid-
adservers. txt

Before being able to use this script, it does require minor modification. To do this,
follow these steps:

1. Open the file, find 1isturl, and replace it as shown here:

listurl="http://pgl.yoyo.org/adservers/serverlist.
php?hostformat=squid-dstdom-regex&mimetype=plaintext'

2. Also, double-check the target file parameter, for it will have to match what
was used on the ad's acl rule that was defined as shown here:

targetfile='/etc/squid/squid.adservers’

3. After saving the file, it can be run as root, and it will download an up-to-date
list of ad-servers and reload this data into Squid. Make use of sh here, as sh
is run as root and it is told to run the script as if it were a shell script:

packt@PacktPublishing:~$ sudo sh update-squid-adservers.txt
Reloading Squid configuration files.
done.

packt@PacktPublishing:~$

4. To double-check whether all this worked accordingly, open the target
file, probably /etc/squid.adservers by default, unless adjusted as
suggested earlier.

5. One final step is to have this script update on a monthly basis. Using the
earlier section on how to set up a Cron-job should make this task easy.

M Using the cp command, the file can be copied to the
Q appropriate directory. It is probably a wise idea to drop
the . txt extension when copying.

[77]

www.it-ebooks.info

http://www.it-ebooks.info/

Setting Up a Home Server

Setting up a web server

A personal web server is something that a lot of people involved in Linux have.
Setting up one properly is, however, a topic worth of an entire book. In this section,
only the most basic of steps will be covered for you to get started. By no means is

it complete or secure, as we will rely on the default settings that Debian or Ubuntu
ship with in their packages.

There are several well-known web servers, but without a doubt, the most
well-known is the following Apache web server:

packt@PacktPublishing:~$ sudo apt-get install apache2

As before, Debian will automatically start Apache, and it can be used right away.
Using a web browser by typing the IP or hostname, such as http://192.168.0.10
which was used earlier, into the URL bar will open the following window:

Mozilla Firefox o o X

File Edit View History Bookmarks Tools Help

| http://192.168.0.10 |+

< http://192.168.0.10 H Google » 3

It works!

The file being served is from /var/www/index.html. Feel free to edit this document
or even entirely replace it.

It might be useful to give the web developer access rights to this directory
N and its files. Quite often, there is a group associated with the webroot
~ directory. Admins often even create several groups for the various
Q webroots they might have. For simplicity's sake, the user and group
is set to our example user, as follows:

sudo chown -R packt:packt /var/www

[78]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Setting up a file server

Editing the files directly on the Cubieboard can be tiresome for sure. Even when
using the previously installed Xfce desktop, once it is placed at a remote location,
accessing the files remotely will be quite useful. It might be the case that the media
files are desired to be shared throughout the household.

There are two approaches to this situation. With the ssh server installed earlier in
this chapter, any modern Linux desktop environment has the ability to access files
via ssh. While this works well, it is left to the reader as an exercise. What this section
will focus on is installing and setting up Samba as a file server. To do this, follow
these steps:

1.

The files shared via Samba are accessible via many operating systems and in
many devices it can be easily installed, as shown here:

packt@PacktPublishing:~$ sudo apt-get install samba

After Samba has been installed, it is probably a good idea to create a
directory that will be shared using the mkdir command. It can be called
mediafiles and lives in the root of the filesystem, as shown here:

packt@PacktPublishing:~$ mkdir /mediafiles

Using an editor, open the Samba configuration file at /etc/samba/smb. conf,
as shown in the following command:

packt@PacktPublishing:~$ sudo nano /etc/samba/smb.conf

One variable that probably should be changed is the so-called workgroup;
this is the name of the network that Samba will try to join:

Change this to the workgroup/NT-domain name your Samba server
will part of
workgroup = PacktNet

The other thing that needs to be added at the bottom of the file is a section
where the previously created directory is being shared, as shown here:

[mediafiles]
comment = Shared media files
read only = no
path = /mediafiles

guest ok = yes

[79]

www.it-ebooks.info

http://www.it-ebooks.info/

Setting Up a Home Server

Security-wise, this is not the best protection, as everybody is allowed to read

and write to the media files and no valid account is required to access these files.
There is one final barrier, however, and that is the permissions left on the directory.
Samba will run on the media files as the user tries to access this directory.

Since this share is being used as a guest user, or no user, the permissions will be
applied when reading the directory media files.

1.

Using chmod to change the permission to allow everybody to read and write
makes it possible that this share can be used by everybody, as shown in the
following command:

packt@PacktPublishing:~$ sudo chmod o+rw /mediafiles/

Within a home network, this is not a problem. Protecting things better,
however, is a good exercise left to the reader. Samba is a great suite offering a
whole lot more than just file sharing. Learn more at http: //www.samba.org/.

After saving these changes, Samba needs to be restarted.

Using a file browser on a desktop, there should be a network workgroup
called PacktNet, as was defined for the workgroup, and in that network,
amongst other possible hosts, there should be PacktPublishing, the name
of the host, as shown in the following screenshot:

File Edit View Go Help

& #3945 @ |[@ll smb:/packtnet/ @

»>—

S

PACKTPUBLISHING

1 item

[80]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

4. Finally, within PacktPublishing, the freshly shared directory mediafiles
will become visible.

File Edit View Go Help

v s 4y B smby/packtpublishing/mediafiles/, &

0 items, Free space: 4.9 GB

Setting up a torrent server

Torrents are a common way of sharing data. Many Linux distribution ISO files are
shared via torrents. Having a dedicated server dealing with torrents without having
the main PC turned on is also very useful. It has to be noted, however, that some
storage for that torrent data is required. Having all data on a SD card is probably not
wise. Have a look at the following command to install transmission, a torrent server:

packt@PacktPublishing:~$ sudo apt-get install transmission-daemon

After the transmission is installed, it will need to be configured if the remote
administration is desired. By default, the remove administration feature will only
listen on the localhost. Using sudo, the configuration file should be opened, and two
items, rpc-password and rpc-whitelist, need to be changed. The rpc-whitelist
item determines which hosts can access the server, and the rpc-password item
determines which password was used by any clients connecting to the server,

as shown here:

packt@PacktPublishing:~$ sudo nano /var/lib/transmission-daemon/info/
settings.json

"rpc-password": "mysecretpassword",
"rpc-whitelist": "127.0.0.1,192.168.*. %",
[81]

www.it-ebooks.info

http://www.it-ebooks.info/

Setting Up a Home Server

The default password set is an encrypted hash, but when modifying it, a regular
plain-text password can be used. This seems like a security problem, and it is, but
only very briefly. Upon being told to reload its configuration file, the transmission
will read the password, encrypt it, and rewrite the configuration file.

Transmission needs to be reloaded because if the transmission is restarted, it will
not re-read the configuration file but will rewrite configuration file on exit. The rest
of the defaults should be satisfactory though it might be wise to double-check that
rpc-authentication-required is set to true and that rpc-enabled is also true.
Additionally, the rpc-username variable can be changed to something memorable,
but do remember to use the new username in the remainder of this chapter,

as shown here:

packt@PacktPublishing:~$ sudo /etc/init.d/transmission-daemon reload

Reloading bittorrent daemon: transmission-daemon.

Once the transmission is reloaded, a web browser can be used to browse to the IP
address or the hostname on port 9091 and can be further configured from there,
as shown in the following screenshot:

o <IP or Hostname=:9091/t T onfweb/ ¥ & B\-‘ 3 Q J\-/L i

Firefox v |ETransmission Web Interface | |

[e WU o

Show | All v Al v : 0 Transfers ~ 0 kB/s -0 kB/s
Torrents Speed Peers MNetwork ®

Downloading
Download to: Jvar/lib/transmission-daer

¥ Start when added

w.ﬂppend "_part" to incomplete files' names
Seeding
w Stop seeding at ratio:

’ Stop seeding if idle for (min):

[82]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

The web interface is really nice and very usable, and there are various transmission
clients that can remotely connect. They work as if the client ran locally but talk to
the transmission-daemon running on the network. One such program is called
transmission-remote-gtk. For Android, for example, there exists an application
called Transdroid.

Setting up a personal cloud

The cloud is where everything is these days. However, a lot of people are not happy
with storing everything in the cloud on a random server. Luckily, there is something
called ownCloud. This is a web service that lets you have your own personal cloud.

For this book, ownCloud will be installed using the SQLite database. For very light,
single user workloads, SQLite will be fine.

R A more serious, multiuser installation would strongly benefit from
~ using PostgreSQL or even MySQL; however, those systems are far more
Q complex to set up and work with. After getting more comfortable with
Linux in general, this can be an exciting exercise to the reader.

Installing Mail Transport Agent (MTA) is suggested by ownCloud; However,
installing MTA is also beyond the scope here. To bypass the installation of any
MTA, a fake package called 1sb-invalid-mta exists, which can be installed as
shown here:

packt@PacktPublishing:~$ sudo apt-get install 1lsb-invalid-mta

Unfortunately, as of the time of writing this book, the ownCloud package is not yet
available for Debian Wheezy, but it is for later versions. Also, Ubuntu has had it
available in its repositories for a while now. In some cases, such as the ownCloud
package, it is available in a different repository — the backports repository. This was
covered already in the previous chapter, where the apt repository was mentioned.
Adding the backports repository can be done by adding the following line. Again,
use an appropriate mirror if you can. In the following example, the n1 mirror is used:

deb http://ftp.nl.debian.org/debian wheezy-backports main

Remember to update the apt database after adding the backports repository.
There are a few dependencies of the SQLite variant of ownCloud that were
put in a metapackage called owncloud-sqlite, as follows:

packt@PacktPublishing:~$ sudo apt-get install owncloud-sglite

[83]

www.it-ebooks.info

http://www.it-ebooks.info/

Setting Up a Home Server

With the ownCloud SQLite dependencies installed, it is time to install ownCloud
itself. Unfortunately, the ownCloud package, by default, wants to install a few
suggested packages for a database. In the case of Debian Wheezy, it will always want
to try to install the MySQL database even though a different database will be used.

To remedy this, we introduce a new options to apt -get, -no-install-suggests,
and -no-install-recommends, which, as the names suggest, do not install any
suggested or recommended packages. But even that will not prevent the full
installation of MySQL. By adding mysql-server- (notice the dash at the end of the
list of packages to be installed), apt will not install MySQL Server, as shown here:

packt@PacktPublishing:~$ sudo apt-get install -no-install-suggests -
no-install-recommends owncloud mysql-server-

At the time of writing this book, the ownCloud package in the wheezy-backports
repository is broken. At least a certain version of php-getid3, which is not available
in the standard repositories, is required by ownCloud, as shown here:

owncloud : Depends: php-getid3 (>= 1.9.5~) but 1.9.3-1+deb7ul is to be
installed

This package, however, is also available in the wheezy-backports repository, but
apt needs to be instructed to install it specifically from there. The -t parameter tells
apt to install a package from a specific repository, as shown here:

root@PacktPublishing:~$ sudo apt-get -t wheezy-backports install php-
getid3

It might be required to install this or other packages from the backports repository
as a dependency of ownCloud. Using a web browser, navigate to the IP or hostname
of the server, and the ownCloud setup wizard will display the following screenshot:

[84]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

&a http://<IP or hostname>/owncloud/ v @G| B Google Q @ iy
Firefoxv |ENownCloud 4

/usr/share/owncloud/data

Finish setup

By logging in for the first time, an administrative account will be created.
Initial setup might take a little while, after which ownCloud is ready for use.

[85]

www.it-ebooks.info

http://www.it-ebooks.info/

Setting Up a Home Server

Summary

While this chapter had nothing specific for the Cubieboard, it did teach some basic
administration tasks and used them to set up some basic but useful services for a
home server. While there are many more interesting services to think of, such as a
DHCP server (ics), a printer server (cups), or a DNS server (bind), on top of that,
one can build a device and incorporate it with the web server and control a light
switch via a web page.

The next chapter will work on upgrading the bootloader and the kernel, two
reasonably easy tasks.

[86]

www.it-ebooks.info

http://www.it-ebooks.info/

Updating the Bootloader
and Kernel

The previous chapters taught you how to get started and put the hardware and
software to good use. As described in the previous chapters, software packages are
updated automatically via the new packages; the bootloader and kernel, however,
are not. This chapter will describe the various bootloaders available as well as the
various kernels and which one to choose.

In this chapter, we will cover the following topics:

e The difference between the various bootloaders and kernels
* Obtaining a new bootloader or kernel

* Installing a new bootloader or kernel

Prerequisites for this chapter

In this chapter, you will need the destination medium used in the previous chapters,
such as an SSD or a hard disk, a USB drive, and a microSD card, to boot from.
Optionally, a low-capacity microSD card can also be used for this purpose instead.

I have used a small 128 MB microSD card for this book, but even something on the
lower side would work. All that needs to fit in the microSD card is the bootloader,
some configuration files, and a kernel. About 4 MB of space would be required for
that, though it will be really hard to find a microSD card with that capacity.

www.it-ebooks.info

http://www.it-ebooks.info/

Updating the Bootloader and Kernel

The bootloader overview

The bootloader is the first thing that gets loaded that is actually user modifiable.
The name of the bootloader that is used by the community and throughout this
book is u-boot. It comes in two separate flavors. First, there is the lichee variant but
it is not actively being developed. The reason why it is still around is that it is the
only bootloader that currently supports booting of the onboard NAND flash. This
bootloader is nearly always preinstalled and generally there isn't any reason for it to
be replaced. More interesting is the sunxi variant of u-boot, which is being actively
developed by the community and which we will check out in the following section.

U-boot-sunxi

As precompiled versions of a bootloader are already available, this chapter is not
about compiling a bootloader. They are compiled every time a new addition is done
to the codebase. Each u-boot binary is unique for each board, and an entire list of
bootloaders can be found at http://dl.linux-sunxi.org/nightly/u-boot-
sunxi/u-boot-sunxi/u-boot-sunxi-latest/. There are several files, however,
for each board, as follows:

* A build logfile ending with .build.txt
* A shal hash file for the generated file ending with . sha1
* Afilelist of generated files ending within the archive ending with . txt
* An archive with the compiled binary files ending with . tar.xz
Once the correct binary file for the development board at hand is in the downloading

stage, it becomes easy with the Linux utility wget. To use this file for Cubieboard,
the following command can be used:

packt@PacktPublishing:~$ wget http://dl.linux-sunxi.org/nightly/u-
boot-sunxi/u-boot-sunxi/u-boot-sunxi-latest/u-boot-sunxi-
cubieboard. tar.xz

This file will then need to be extracted; tar is a common tool to do this, where the x
parameter stands for extract, capital J stands for filter through xz, v asks tar to be
verbose, and f tells tar that the next argument is a filename.

The directory name inside the archive has a complex structure
%j%“ appended at the end, and most likely will not be identical to the
g one in this example.

[88]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Let us look at the archive in more detail. In the beginning, after the u-boot identifier,
there is the architecture, sunxi. Following this is the name of the board, in this case,
Cubieboard. The following command line is a timestamp of when the binary was
compiled. Finally, in the end, there is a hash for the specific Git commit:

packt@PacktPublishing:~$ tar xJvf u-boot-sunxi-cubieboard.tar.xz
u-boot-sunxi-cubieboard-20140307T104232-b5bd4c9/
u-boot-sunxi-cubieboard-20140307T104232-b5bd4c9/u-boot-sunxi-with-
spl.bin
u-boot-sunxi-cubieboard-20140307T104232-b5bd4c9/u-boot.bin
u-boot-sunxi-cubieboard-20140307T104232-b5bd4c9/sunxi-spl.bin

Some explanation is required about these three files. When the Allwinner SoC
chip boots for the first time, it cannot access the main system memory, which is
also known as RAM. There is a little bit of memory, the SRAM, available inside
the SoC chip. The SRAM, however, is too small to hold the entire u-boot, so u-boot
is split into two: the Secondary Program Loader (SPL) and the actual u-boot.
The SPL is just enough to initialize the memory and load the new, bigger u-boot
into the memory. These files both need to be written to very specific regions so
that the SoC understands where to boot from. To make it a little bit easier, there
is a third file, called u-boot - sunxi-with-spl.bin. This file consists of both
components combined with the appropriate spacing and is the only thing
required at this moment.

Installing the bootloader

The bootloader can only be installed at one location even though the SoC can
boot from three different locations. SPI-flash, at the time of writing this book,
is unsupported. However, some early experiments suggest that it should be
relatively easy. While u-boot could be written onto the NAND flash ROM, the
community-developed version of u-boot is currently unable to read or write
from the NAND flash. The only option that remains is the microSD card,
which as been used until now and will be used again.

The bootloader can be installed in the following ways:

* Using a USB to microSD adapter on either a PC or on the Cubieboard

* Using an SD card reader in a PC or on the board

[89]

www.it-ebooks.info

http://www.it-ebooks.info/

Updating the Bootloader and Kernel

Be very careful when writing the bootloader. A single mistake can
. ruin the data on the SD card. For example, writing the bootloader at
% the beginning of the SD card destroys the partition table. Writing the
L= bootloader a little too far can destroy the filesystem on the SD card. In
both cases, there will be data loss because the bootloader is not in the
right position, and thus the SD card is unbootable.

One requirement is that the microSD card has a partition table. It is quite common
for microSD cards to have no partition table. Using the knowledge acquired in
Chapter 3, Installing an Operating System, at least one partition should be created on
the microSD card with at least 4 MB of free space. The partition has to be formatted
either in fat, ext2, ext3, Or ext4.

If no partitions from the microSD card are mounted, such as the boot
\ partition, it is safe to remove the used microSD card and insert a different
~ one. Depending on which device is being used, make sure you replace
Q sdb with mmcb1k0 or whichever device node the SD card is assigned to.
Nothing to do with bits. Copying certain files, however, might be trickier,
and might have to be stored elsewhere meanwhile.

Using the dd tool, a new bootloader is written to /dev/sdb. Please make sure that
this really is the device node that holds the destination SD card. Using the wrong
device node can destroy important data, even rendering the system unbootable.
The important parameters are blocksize (bs) and seek, where blocksize, when
multiplied with seek, indicates the exact location on the microSD card —in this case,
at exactly 8 KB. The reason is simple; this is the exact location at which the SoC chip
will search the SD card for the bootloader, as illustrated by the following command:

packt@PacktPublishing:~$ sudo dd if=u-boot-sunxi-al0-olinuxino-lime-
20140307T10232-b5bd4c9/u-boot-sunxi-with-spl.bin of=/dev/sdb bs=1024
seek=8

Completing the bootloader

The bootloader does need some standard configuration files, such as the kernel that
needs to be booted. A few things that cross one's thoughts are the arguments that
need to be passed to the kernel and the address of the kernel to be loaded into the
memory. There are three helper files that can be safely copied from the previous
boot medium. They are as follows:

* Dboot.scr: This consists of a compiled list of commands that u-boot is
expected to execute

[90]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

* uEnv.txt: This consists of a list of variables that will be passed onto
the kernel

* Dboot.cmd: This consists of the source file used to generate boot . scr

. The boot . cmd command is not used or needed; it is just very helpful
~ to have around. To create boot . scr from boot . cmd, the following
command can be used:

mkimage -C none -A arm -T script -d boot.cmd boot.scr

Having copied these three files, the Cubieboard is almost bootable, and only the
kernel remains.

Exploring the kernel

For x86-based systems, there is usually only one kernel; the one supplied by

the distribution in most cases. This kernel is always based on the kernel from
http://www.kernel.org. This kernel is often called the mainline kernel, vanilla
kernel or upstream kernel. For Allwinner-based SoC chips, there is very limited
support in the kernel developed by the community since 2012 with Version 3.8.
There are older versions of the kernel where all the features have been added by
Allwinner itself. While these changes are not of the quality that the mainline kernel
accepts, it is all that there is for now. It, however, is near feature-complete and thus
often the only option available to date. All these various kernels are available in
various branches on a Git repository. There are nightly precompiled images available
just as there were for u-boot, and they can be used in this book. Before continuing to
download one of these precompiled archives, a little needs to be explained about the
various versions available.

Variants of the SoC

There are various generations of Allwinner SoC chips. There is the A10, for example.
The A10 series is internally known as the sun4i— the fourth generation of the sun
series. Similarly, the sun5i is the internal name for the A10S, and A13. A31 and A31S
are called sun6i. The A20 is called sun7i, and sun8i is the name for the new A23.

The combined name for all these is called sunxi. For almost all the kernel versions
and each of these machine types, there is either a Git branch or a nightly pre-compiled
binary version.

[91]

www.it-ebooks.info

http://www.it-ebooks.info/

Updating the Bootloader and Kernel

Overview of the various kernels

Newcomers to the sunxi community are often confused by the various kernel
versions and are not sure what kernel to use. The next few subsections explain
a little about the various available versions.

Kernel Version 2.6.36

Kernel Version 2.6.36 was originally held hostage by Allwinner, which refused to
release the GPL licensed code. Once it was liberated by a device maker of Allwinner-
based tablets, Allwinner officially released the sources for the kernel. A community
then started to form around this source release. It has been obsolete for a long time.

Kernel Versions 3.0 and stage 3.0

The Version 3.0 was the first actively developed version of the sunxi kernels.

The basis for the 3.0 kernel was also initially liberated by a third-party tablet
manufacturer. The community did start from scratch again and put in some heavy
work into this kernel's release. Later, Allwinner also released their kernel Version
3.0, but it had already diverged compared to the community-built kernel. One major
thing that was done by the community, for example, is the unification of the various
machine types. Allwinner intended to release the sun4i and sunbi kernels completely
separated, where the community brought it under a generic sunxi kernel and drivers.
It has seen many other improvements from what was supplied by Allwinner, but not
all patches and fixes were immediately put into the 3.0 series. Patches were always
first put into a so-called stage tree of 3.0, and after a few weeks of testing, those
patches were merged back into the 3.0 tree. The 3.0 tree is technically obsolete

as well but does see some active use, as it is still in use by many tablets.

Kernel Version 3.3

Allwinner has released a new version of their kernel, but this was after the
community had already started and ported everything to the mainline 3.4 kernel.
The 3.3 kernel is never used by the community, as none of the bug fixes and
improvements were picked up by Allwinner. It is sometimes also known as the
lichee kernel.

Kernel Versions 3.4 and stage 3.4

When the 3.4 kernel was released, it was marked as the Long Term Support (LTS)
release, meaning it would receive support and security patches backported to it for
an extended period. The drivers for sunxi hardware were forwardported from 3.0

to 3.4 to have the Allwinner hardware support, on a well-supported kernel release.
Just as with 3.0, the stage variant of 3.4 holds all the new patches and is merged to
3.4, as it is considered stable. The 3.4 series is currently being actively developed and
recommended for day-to-day use.

[92]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Kernel version experimental-3.14

The highly experimental branch for Version 3.14 is not usable as of now. The idea
is to take the 3.14 kernel, which is an LTS release, and apply the 3.4 sunxi drivers
to it. The big difference with 3.4 is that 3.14 was a release of the kernel, and there
was some actual support for sunxi SoCs. As long as these kernels are marked
experimental, they should not be used except to experiment with.

The devel branch of the kernel

Patches that are written against the mainline kernel end up on various mailing lists
while they are being reviewed. The devel branch, which stands for development,
tries to capture all these under-review patches and merges them into the mainline
following tree. In other words, this tree holds support for most of the hardware to
this date, but it may very well change as the review process continues. This kernel
should only be used when working on drivers, doing reviews, or wanting to help
testing new things. This branch, however, may be removed in future as things start
to settle.

Next branch of the kernel

Very similar to the devel branch, it tracks the mainline kernel and holds accepted
patches. It could be considered as the stable variant of the devel kernel. This kernel
should only be used when there is a need for the next and upcoming kernel release.

Choosing a kernel

With so many kernels available, there really is only one kernel of interest at this
moment — the 3.4 kernel. While this may change when 3.14 leave the experimental
state and start to replace 3.4 —for now, they are not an option. With that choice set,
there's the machine type to pick from, depending on the type of Cubieboard being
used. The variants section discussed earlier will explain which machine type to

go for.

Installing the kernel

Using wget, an A20-based kernel will be downloaded and extracted in the
following example:

packt@PacktPublishing:~$ wget http://dl.linux-sunxi.org/nightly/linux-
sunxi/linux-sunxi-3.4-sun7i/linux-sunxi-3.4-sun7i-latest.tar.xz
linux-sunxi-3.4-sun7i-20140215T115414-8ea347b/1ib/
linux-sunxi-3.4-sun7i-20140215T115414-8ea347b/boot/

[93]

www.it-ebooks.info

http://www.it-ebooks.info/

Updating the Bootloader and Kernel

Also here, a new directory containing a datestamped and githash named directory
will be created. Within this directory, there will be two subdirectories. The boot
directory holds the actual kernel, a file called ulmage. It is to be placed on the first
partition of the microSD card.

Installing the kernel modules

In a kernel, drivers can be compiled into the kernel and are always loaded, or they
are separated from the kernel and can be loaded as required. These separated drivers
are called modules and on most distributions live at /1ib/modules/. Copying over
this directory copies all the files needed for this new kernel.

The following command assumes that this is done natively on the
Ry Cubieboard. When using a different system to perform the copy,
Q the destination path will be different:

packt@PacktPublishing:~$ sudo cp -ar linux-sunxi-3.4-
sun7i-20140215T115414-8ea347b/1ib /

With both the kernel and modules in place, the system can be rebooted safely using
the new kernel and its modules.

Summary

This chapter covered the various bootloaders and kernels and briefly explained the
differences between them. It then showed you how to install a precompiled kernel
onto a microSD card to be used as a boot device.

The next chapter will go over the steps of actually compiling a bootloader or kernel
from scratch using sunxi-bsp or the sunxi board.

[94]

www.it-ebooks.info

http://www.it-ebooks.info/

Compiling the Bootloader and
Kernel Using a BSP

Sometimes, a special feature in the kernel is required that is not included in the
precompiled binaries, or maybe some new piece of Allwinner-based hardware was
obtained that is not yet supported in the existing list of precompiled files. To solve
issues like these, you need to compile the bootloader or kernel from source. While it
is perfectly possible to download and compile the bootloader and the kernel by itself,
the linux-sunxi community developed a board-support-package (BSP) that allows
you to compile all these components together.

This chapter will cover the following topics:

* Installing a toolchain

* Obtaining and using the BSP
* Compiling the bootloader

* Compiling the kernel

* Creating a hardware pack

Prerequisites

Compiling things requires a compiler toolchain. Here, there are two options. Either
compile on Cubieboard itself or cross compile on a regular PC. Getting a functional
toolchain working on anything but Linux is up the reader to solve. The options are
thus to use the installation created in the previous chapters and compile directly on
Cubieboard or to have a (virtual) Linux machine available where a cross-compiler
can be installed and used. In this chapter, both the methods will be described.
Additionally, a working Internet connection on the device that is being used to
compile on is initially required; this is to obtain the source code.

www.it-ebooks.info

http://www.it-ebooks.info/

Compiling the Bootloader and Kernel Using a BSP

Installing a toolchain

A toolchain is a collection of tools, including a compiler, required to compile the
source code into binary forms. In theory, just the compiler is enough, but various
other bits and pieces are often used to help with the compilation. One such example
might be well known, the make command. A combination of all the tools required to
compile things is known as a toolchain. Installing a toolchain varies from distribution
to distribution; we will only cover a few examples here.

Debian or Ubuntu

For Debian, the toolchain is called build-essential, and when cross-compiling,
the arm compiler needs to be installed on top of that; this package is called gcc-arm-
none-eabi. Unfortunately, at the time of writing this book, the gcc-arm-none-eabi
package did not exist in Debian wheezy. The version to be released after wheezy

is jessie, which contains this cross compiler. One way to get it is to set up a virtual
machine and install the testing version of Debian there.

Fedora

On Fedora, the installation is slightly different. Here, the groupinstall variant
needs to be used to install the bevelopment Tools and Development Libraries
packages. To cross compile, install the gcc-arm-1inux-gnu package in addition to
that. It is necessary to use double quotes ("") due to the spaces in the meta packages.

Other distributions

Fedora and Debian are of course only two distributions out of the potential
hundreds. These two distributions, however, give you a very good indication of
how most other distributions handle the installation of the toolchain. These two
significant distributions do it differently. For the Gentoo distribution, there is a
crossdev toolset, which will compile and install a cross-compiler toolchain. After
installing crossdev, use crossdev --target arm-pc-linux-gnueabi to install
the arm toolchain. The arch distribution has the gcc-arm-1inux-gnueabihf-bin
package in the Arch User Repository (AUR).

[96]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

There are also vendor-supplied toolchains, such as the ones supplied
by Linaro and CodeSourcery, for example. These are to be manually
+ downloaded from the vendor site. Often, the toolchain comes in a tarball
% or a ZIP package and needs to be manually extracted. These toolchains
g are commonly used when no native arm-toolchain is available. Linaro
even offers their cross-compiler for OSX and Windows; however, these
two require an immense amount of work before you can start compiling.

Other required tools and packages

Having obtained a complete toolchain, a few other packages are still required.
Git is a tool used for source-code management; the package is named git on
almost all distributions.

Additionally, u-boot -tools is required. The package is also named u-boot-tools
or uboot -mkimage on some distributions.

On some distributions, when installing the toolchain, as described earlier, the
pkg-config package sometimes doesn't get installed and needs to be installed on the
distributions that lack it. The package is nearly always called pkg-config. To compile
some of the tools, the 1ibusb header files are required. The package name can vary
between distributions. On Fedora, it is called libusb-devel. On Debian and Ubuntu,
it is called libusb-1.0-0-dev. Please note that 1ibusb is often available under several
versions in many distributions. The version required is 1.0, and other versions may
cause the compilation to fail.

Finally, the ncurses header files and libraries are required; the package is called either
ncurses-dev or ncurses-devel.

[97]

www.it-ebooks.info

http://www.it-ebooks.info/

Compiling the Bootloader and Kernel Using a BSP

Obtaining and maintaining the BSP

Whether the BSP is going to get cross-compiled or natively compiled, obtaining and
using it is identical, and thus the instructions are common. All the code are stored on
a git-server, and GitHub or Gitorious can and should be used as the main mirrors to
obtain them from. Using Git, the repository can be cloned from one of the mirrors,

as shown in the following screenshot:

File Edit View Terminal Tabs Help

packt@PacktPublishing git clone https://github.com/linux-sunxi/sunxi-bsp.git
Cloning into 'sunxi-bsp'...

remote: Counting objects: 631, done.

remote: Total 631 (delta 0), reused 0 (delta 0)

Receiving objects: 10 (631/631), 97.13 KiB | © bytes/s, done.
Resolving deltas: 100% (363/363), done.

Checking connectivity... done.

packt@PacktPublishing

After entering sunxi-bsp, the following list of files and directories will be visible:

File Edit View Terminal Tabs Help
packt@PacktPublishing 1s
configure Makefile
README . md

packt@PacktPublishing

Let us take a minute to quickly go over this list of file directories, of which some are
actually separate Git repositories:

* allwinner-tools: This is a collection of files, drivers, and tools when
working with the Allwinner-supplied material, such as livesuit. It is not
of importance when working with the community tools.

* rootfs: These are the files to be placed into the generated root filesystem,
commonly named rootfs.

* sunxi-boards: These are the FEX files of the community-supported
boards. Refer to Appendix C, The FEX Configuration File, for more
information about FEX.

* u-boot-sunxi: This is the community-developed bootloader.

* cedarx-libs: These are proprietary libraries for the Video Processing Unit
(VPU) supplied by Allwinner.

* linux-sunxi: This is the community-developed Linux kernel.

* scripts: These are various scripts used by BSP.

[98]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

* sunxi-tools: These are community-developed tools to work with Allwinner
hardware, including the FEX to a binary script.bin compiler.

* Makefile: This is a file to control how to compile various repositories.
* Configure: This is a script to choose and configure the entire BSP.

* README.md: This is a simple text file with some basic usage instructions.

Updating the repositories

Some of the directories within the BSP are not yet populated. The BSP is smart
enough to populate the required repositories by itself as and when it needs them.

If, however, one of the repositories is to be manually populated or more importantly,
updated, Git can be used to do so. Adding the -init parameter after the update is
required when updating the repository for the first time, as follows:

packt@PacktPublishing:~/sunxi-bsp$ git submodule update --init sunxi-
tools

Omitting the last parameter, in this case, sunxi-tools, will update and populate all
the Git subrepositories. However, this will not always yield the latest version of the
repository. The BSP controls the version of each repository to use. It can be said that
it locks each of the subrepositories to a certain version. The BSP itself can be updated
using Git, as follows:

packt@PacktPublishing:~/sunxi-bsp$ git pull
Already up-to-date.

If, however, the BSP is not updated or does not include the latest updates to
subrepositories, the subrepositories can be manually updated. To update one of the
repositories, enter it, and use the regular Git commands to update or check out a
different branch as follows:

packt@PacktPublishing:~/sunxi-bsp$ cd sunxi-tools/
packt@PacktPublishing:~/sunxi-bsp/sunxi-tools$ git pull

Do note that this could potentially break the version control of the BSP itself.

Or rather, the local BSP will no longer match the official BSP. To delete all changes
made to the local subrepository and bring the BSP in sync with the upstream version,
the following command can be used:

packt@PacktPublishing:~/sunxi-bsp$ git checkout - sunxi-tools

Updating and modifying the submodules in Git is perfectly safe and is done
frequently by developers. Do be careful when getting started and even more
so when unfamiliar with Git.

[99]

www.it-ebooks.info

http://www.it-ebooks.info/

Compiling the Bootloader and Kernel Using a BSP

Some experience with version control systems, especially Git, is strongly
recommended before tinkering with the repositories. In case all else fails,
' feel assured that it is always possible to remove the BSP and start again.

Choosing a kernel

As discussed in Chapter 6, Updating the Bootloader and Kernel, there are a few different
kernels available. These kernels are built from the various branches available in the
Git repository. Listing these branches is done using the git branch command, with
the addition of the -a parameter telling Git to show all the available branches. In the
following screenshot, the kernels discussed in Chapter 6, Updating the Bootloader and
Kernel, should be recognizable:

Edit View Terminal Tabs Help
packt@PacktPublishing cd linux-sunxi/
packt@PacktPublishing git branch -a
*

sunxi-3.4
-> origin/sunxi-3.4

packt@PacktPublishing

[100]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

The detached branch, in this case, is the kernel version that is linked to the BSP at the
time of writing this book. Using git checkout, it is easy to switch to an alternative
branch and eventually to a kernel. This can be seen in the following screenshot:

File Edit View Terminal Tabs Help
packt@PacktPublishing git checkout stage/sunxi-3.4

Previous HEAD position was 9ee9fc5... pwm-sunxi: pwm-sunxi.h is a local include
Switched to branch 'stage/sunxi-3.4'

Your branch 1is up-to-date with 'origin/stage/sunxi-3.4'.

packt@PacktPublishing

Compiling for a Cubieboard

Before compiling for a Cubieboard, the BSP has to be configured first. Whenever
building for a different development board, the BSP will have to be reconfigured.
This however, is an easy task using the configure script. Running configure without
a parameter will populate the sunxi-boards repository, as that repository contains
a list of supported boards and prints a list of available boards, as shown in the
following code. Take note of the prefix . /, which is used to the configure the script.
The output generated by configure is reduced here for clarity and convenience:

packt@PacktPublishing:~/sunxi-bsp$./configure
Usage: ./configure <board>
supported boards:
* alOs-olinuxino-m alOs-olinuxino-m-android
* al0-olinuxino-lime al0O-olinuxino-lime-android
* al3-olinuxino al3-olinuxino-android
* al3-olinuxinom al3-olinuxinom-android
* a20-olinuxino micro a20-olinuxino micro-android
* cubieboard cubieboard-android
* cubieboard2 cubieboard2-android

* cubietruck cubietruck-android

There are two variants for each board that are to be passed to the configure script;
the Android variant is specifically used to build Android kernels. While Android
is Linux, there are some small differences that need to be accounted for. In the
following example, the BSP is configured to build for Cubieboard?2:

packt@PacktPublishing:~/sunxi-bsp$./configure cubieboard2

cubieboard2 configured. Now run “make”

[101]

www.it-ebooks.info

http://www.it-ebooks.info/

Compiling the Bootloader and Kernel Using a BSP

Now, before running, as suggested by the BSP, one more thing needs to be
mentioned. The BSP wants to know what compiler to use, and it knows this

from the CROSS_COMPILE= parameter. By default, this parameter is forced to
arm-linux-gnueabihf- via the Makefile, which is the prefix to the installed

arm compiler. Thus gcc is expected to be named arm-1inux-gnueabihf-gcc.
Things get more interesting when compiling natively on one of these boards.

This is because in theory, no cross-compiler is desired, gcc should just be called

gcc. To remedy this, pass an empty CROSS_COMPILE= parameter to make, as follows:

packt@PacktPublishing:~/sunxi-bsp$ make CROSS COMPILE=

Otherwise, the installed compiler prefix needs to be added, and yes, the dash at the
end is a part of the prefix. If you are compiling on Debian, the following command
can be used:

packt@PacktPublishing:~/sunxi-bsp$ make CROSS COMPILE=arm-none-eabi-

Every distribution tends to name their cross-compiler differently; there is no right or
wrong. Using arm- and double tab completion should yield the prefix for almost all
distributions. Also, adding the correct cross-compiler prefix to the Makefile can be
very helpful here.

Depending on the amount of memory and which system is used to perform the
compilation, this could take from several minutes to an hour or two! If there are
strange crashes or problems, before looking at Appendix A, Getting Help and Other
Helpful Online Resources, about contacting the community for support, make sure that
the chosen board is properly supported and supplied with adequate power. Quite
often, overclocked memory or a lack of enough power will show up under the heavy
stresses that a kernel compilation encompasses.

While it is nice to be able to compile the standard kernel, often, someone will want to
compile a kernel due to customization, for example, with certain drivers or options
added or removed. Even a custom patch is something that needs a custom-compiled
kernel. Normally, the menuconfig command is used in a kernel directory. The BSP
also allows this by passing the 1inux-config parameter to the make command,

as follows:

packt@PacktPublishing:~/sunxi-bsp$ make linux-config
CROSS COMPILE=arm-none-eabi-

Following this will yield a standard menuconfig session.

Some other parameters to the make command are Linux or u-boot, which are used to
compile only the Linux kernel or only u-boot. The resulting binaries will be located
under the sunxi-bsp/build directory under their own respective trees.

[102]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

When the compilation is completed, a so-called hwpack or hardware pack is created
in the sunxi-bsp/output directory. The hardware pack is an archive containing
three subdirectories. The first is called boot loader and contains the u-boot - sunxi -
with-spl.bin bootloader.

In the kernel subdirectory, the board-specific kernel, named uimage, lives combined
with the board specific script.bin file.

The final directory is the root s directory. This directory contains everything
specific for the chosen target board. The content can and should be copied to the
target root filesystem.

Installing the files in the hwpack, specifically the bootloader, was described well in
the Chapter 6, Updating the Bootloader and Kernel.

Summary

In this chapter, the basics of the BSP were covered. Using the BSP in combination
with Git, which is a powerful tool to download and manage the various source
repositories, you can compile various components and generate an easy-to-use
device-specific hardware pack.

The next chapter will cover general purpose input output pins (GPIOs). This can
be useful to do various jobs, including blinking an LED!

[103]

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Blinking Lights and
Sensing the World

Until now, we have covered several aspects of Cubieboard, but they were all
software-related. When interfacing with real-world scenarios, ranging from blinking
a Light Emitting Diode (LED) and switching on a light to spinning motors, things
become much more interesting. There are numerous things you can do once you
connect the board to the various devices available today. A robot vacuum cleaner
very much started its development life on a development board, where engineers
connected various sensors to make the robot see what was around it. Connecting
all these devices can be highly complex and might involve more than just the
basics of electronics; therefore, this chapter will be dedicated to the fundamentals
of electronics to help you to get to grips with some basics in connecting an LED,
making it blink, and connecting a button to respond to a push.

In this chapter, we will cover the following topics:

* Anoverview of a few concepts in basic electronics
* How to toggle a General Purpose Input/Output (GPIO)

¢ How to connect a button and read its status

Making an LED glow

A world without LEDs seems almost unimaginable today. They inform us of
messages on our smartphones, they have been used as indicator lights on TV and
stereo equipment for years, and there are even big screens built of nothing but LEDs.
Ironically, the invention of the LED was more of an annoying side effect of the first
diodes. The intention was not to emit light at all, and in early equipment, the diodes
were covered in black paint to hide their glow. The name LED is so ubiquitous that
their meaning might almost have been forgotten.

www.it-ebooks.info

http://www.it-ebooks.info/

Blinking Lights and Sensing the World

Making an LED glow, however, does require a few tricks and some know-how to
make sure not to break it. Each LED has certain characteristics, such as the amount
of voltage it requires to function and the maximum amount of current that can flow
through it. A blue LED, for example, requires more voltage and more current than a
red LED. It is, therefore, imperative to know the technical details of an LED.

Resistance required

An LED is just a special form of diode. It is a one-way street for electricity,

that is, the current is only allowed to travel in one predefined way. Also, caution
must be taken while connecting an LED; if it is connected in the wrong direction,
no current will flow at all, thus emitting no light. The other way around, however,
is more interesting.

Let us examine what happens when an LED is connected in the correct direction.
Once a certain threshold voltage is supplied, read the forward voltage, the diode
starts conducting, and the LED emits light. As for the current flowing through

the diode, things look a little different. A diode will conduct all the current that

is supplied to it. Different kinds of diodes serve different purposes in the electric
design that they are used; in the case of LEDs, the purpose is often to emit light.
These types of diodes often can only sustain a very small amount of current to flow
through them, usually in the milliampere range. A resistor, as the name suggests,
restricts the flow of the current going through it and thus is used for regulation of
current, as depicted in the following diagram:

flow of current
—»>

+ diode

resistor

There are plenty websites that can help in calculating the correct resistance for a
given voltage and current; the math behind it is not very complex. Ohm's law is
the common formula used to calculate resistances. It is represented as follows:

v
R=7

[106]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

And:

To calculate the resistance, R, the voltage, V, needs to be divided by the current L
Let us understand how we determine the required voltage. For this, the diode's
forward voltage is subtracted from the available voltage. This produces the
following variant of Ohm's law:

3.0—1.2
60 = 0.030

Let us assume that our voltage source is 3.0 volt and the forward voltage of the
diode is 1.2 volt. Suppose the required current for this example is 30 milliampere,
then filling in these values in Ohm's law yields the following result:

From this little bit of math, we understand that a resistance of 60 Ohm is required to
make the LED glow without trying to consume all the available current. A resistor
of 60 Ohm, however, might be hard to find, and only two options are available.
Connect several resistors in series, one after another, to obtain the required value,
or find a resistor that is reasonably close in value, such as 68 Ohm. Rearranging
Ohm's law and filling it in yields 26.5 milliampere of current flowing through the
LED. This should generally be enough to light up the LED. This calculation can be
seen in the following formula:

68

0.0265 = ——
0 30-12

Using a resistor to limit the current flowing through an LED is not

the most power-efficient method of lighting up an LED, but is very

~ common and the simplest method. Ideally, a constant current supply is
recommended, which would no longer require a resistor. After all, the
maximum available current to the LED is what it would like to receive in
the first place. While out of the scope of this book, it is a good exercise,
to learn more about constant current power supplies and driving LEDs.

[107]

www.it-ebooks.info

http://www.it-ebooks.info/

Blinking Lights and Sensing the World

Sinking and sourcing

To connect a device to a GPIO, it would be ideal if the GPIO can deliver the correct
voltage and current. Unfortunately, this rarely is the case. The voltage supplied by
a pin is often either the supply voltage or the I/O voltage, both of which are input
voltages to the chip. In the case of the Allwinner A series of chips, this will be 3.3
volt. The amount of current a GPIO can deliver or absorb is limited. Supplying
current, or sourcing, as it is called, can vary from 10 milliampere to 40 milliampere.
The amount of current a pin can source is configured in the FEX file, which is
explained in more detail in Appendix C, The FEX Configuration File. The opposite

of sourcing is sinking, but before that is covered, let us first examine the following
diagram where an LED is connected directly to a GPIO:

GPIO
diode

resistor

= ground

In the preceding diagram, it is quite obvious that the GPIO pin supplies the voltage
and the current flows through the diode into the ground. The GPIO is the "source"
of the current. The opposite is possible too; the GPIO absorbs or sinks the current,
as shown in the following diagram:

VCC

diode

resistor
GPIO

In the preceding diagram, the diode gets supplied with a voltage and current from a
power source; in electronics, it is often called VCC. The current then flows as before
through the diode and through the resistor, and is then absorbed by the GPIO. The
GPIO "sinks" the current. While this second method works just as well as the first,
there are a few things to notice. The power source needs to supply an appropriate
voltage, or the GPIO can get overloaded and burn up parts or even the whole chip.
On the software side, the pin will function in the opposite way; when the GPIO is
high, the voltage is the same as that of VCC and thus no current flows. If the pin is
set to low, the voltage can now flow.

[108]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

An observant reader will probably notice that if the GPIO is set up
sl - . . o
~ to a source of 30 milliampere, a resistor is not even needed. While it
is bad practice, it is still possible; however, it should never be done
in a final design.

Amplifying the voltage and current

All the preceding methods work only if a small amount of current is required.
What do you do when there is a higher current demanded? In this case, a simple
transistor is used. A transistor can be thought of like a valve on a water pipe.
Normally, the valve is closed and no water is allowed to flow. When current is
applied to the base B of the transistor, the valve slowly starts to open and conduct
current from the collector C to the emitter E. The flow of current is proportional to
the current applied to the base, as a transistor is by nature a current amplifier.

In addition to that, the current applied to the base is also added to the output

of the emitter, as shown in the following diagram:

VCcC
diode
resistor

GPIO C
BN E

= ground

The voltage supplied via the VCC is determined by the specification of the transistor,
not the GPIO. It is easily possible that 24 volt is regulated via the transistor, assuming
the transistor allows this, while controlling it via the 3.3 volt of the GPIO. In essence,
this is a voltage amplifier, and a transistor is most commonly used for this effect.

There are two kinds of transistors: PNP and NPN. The general working of an

NPN transistor was explained in the previous paragraph. The PNP transistor works
the other way around, meaning it conducts current by default when there is no
current applied to the base of the transistor via the GPIO. If current is applied to

the transistors' base, the transistor will stop conducting current.

[109]

www.it-ebooks.info

http://www.it-ebooks.info/

Blinking Lights and Sensing the World

Controlling pins from software

There are several ways to control a GPIO from within Linux. From within the kernel
through a driver or from one of the many programming languages, such as a C
program or a Python script. The quickest and most basic way, however, is right
from the console. This is assuming, of course, that the driver to control the GPIOs

is loaded as a module or compiled into the kernel. Refer to Chapter 7, Compiling the
Bootloader and Kernel Using a BSP, to recompile a kernel and to add the GPIO driver.
Depending on the kernel version used, it is called the GPIO support for the sunxi
platform and can be found under GPIO in the Device Drivers option. Depending

on which GPIO is used, the FEX file will need to be modified to configure the GPIO
pin. To set up one pin as output GPIO, the following code snippet can be used:

[gpio paral
gpio used = 1
gpio num = 1

gpio pin 1 = port:PBO3<l><l><default><default><default>

If everything has been set up appropriately, the GPIO pins can be toggled via the
filesystem, for example, writing 1 into pb03 makes the GPIO high, as shown here:

packt@PacktPublishing:~ $ echo 1 > /sys/devices/virtual/misc/sunxi-
gpio/pin/pb03

Similarly, writing 0 makes it low again.

. Not only is a transistor required on higher current loads from one
% pin, often there is a maximum current that can be sourced from all the
- combined GPIOs. Thus, the best method to control things is to always use
a transistor.

Pulling up and pulling down

A GPIO that is configured as an input simply takes a measurement of the voltage
applied to it. If it is above a certain threshold, it is considered to be high, or 1. If it is
below a certain threshold, it is considered as 0. In the case of the Allwinner A series,
generally speaking, everything above 2.5 volt is considered high, and everything
below 0.8 volt is 0. Anything in between is undefined and could be either 0 or 1.

[110]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

With that knowledge at hand, it is easy to just have a three-way switch and connect
it to either the ground or the 3.3 volt. The following diagram illustrates a switch

directly connected to a GPIO:
I VCC
GPIO switch

= ground

There are a few caveats to consider. There is a transition phase, where the switch
moves from one state to the other and the voltage could be anything between 3.3
volt and 0 volt. Additionally, the maximum amount of current that a pin can source
will flow into the GPIO, making a very inefficient design and could even damage

the chip. Both issues can be addressed by connecting either state permanently to the
GPIO via a resistor. If a resistor is used to permanently connect the VCC, it is called a
pull-up resistor, as the resistor pulls the voltage up. If the resistor is used to pull the
pin down to ground, it is called a pull-down resistor, as the resistor pulls the voltage
down to ground. The following diagram demonstrates the usage of a pull-up resistor
in conjunction with a switch:

VCC
resistor
GPIO
switch

= ground

In this scenario, the GPIO will see the high voltage and interpret it as a logical 1.
When the switch is pressed, the current prefers to take the path of least resistance,
and as the GPIO has a natural resistance internally, the ground is where all the
current will go.

If the positions of the switch and the resistor are swapped, a pull-down circuit is
created. In such a scenario, by default the GPIO will see the low voltage and interpret
it as a logical 0. When the switch is pressed, the current will naturally flow to the
ground and the GPIO interprets it as a logical 1.

In both cases, the resistor value needs to be calculated in much the same way as the
resistor for the LED was. Ideally, the resistor will be as high as possible so that only

a very limited amount of current can flow, thus not wasting any power. Choosing a
resistor that is too high, however, results in too little current to flow, and thus the pin
cannot sense the voltage.

[111]

www.it-ebooks.info

http://www.it-ebooks.info/

Blinking Lights and Sensing the World

In both these cases of the Allwinner SoC, there is an internal pull-up or pull-down
resistor available that can be configured via the FEX file. The following command
can be used in this case:

[gpio paral
gpio used = 1
gpio num = 1

gpio pin 1 = port:PB03<l><0><l><default><default>

For additional details, see Appendix C, The FEX Configuration File. The choice of
whether to use a pull-up resistor or a pull-down resistor depends on the project's
requirements. Generally speaking, if the pin has to be read as 0 by default and
changed to 1 when a button is pressed, a pull-down resistor is used. In practice,
however, a pull-up resistor tends to be more power efficient and is commonly used.

Reading a switch

Reading the status of a switch is similar to writing to the LED. All the prerequisites
apply equally. The only difference is that the GPIO is read via cat, rather than
written via echo, as shown here:

packt@PacktPublishing:~ $ cat /sys/devices/virtual/misc/sunxi-
gpio/pin/pb03
1

Using this knowledge, reading a button can be done from various programming
languages in various forms.

\ A good exercise can be to write a simple script that reads the status of
~ the button and makes the LED reflect this status. Both of the previous
Q examples use the same pin as GPIO, so a second pin will need to be
configured as GPIO if not already configured.

From here on out, there are many more ways and methods to interact. There are
analog-to-digital converters (ADCs) available to read an analog voltage, the Serial
Peripheral Interface (SPI) bus and the Inter-IC (12C) bus, also known as the Two
Wire Interface (TWI), to connect a plethora of peripherals, each allowing wonderful
inventions to be created. Since this is an introductory book, going into detail would
require many more pages explaining the various techniques. But hopefully,

an interest has been sparked in you to find resources to continue experimenting

and working with Allwinner-based boards.

[112]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

Summary

In this chapter, we covered some fundamental electronics, teaching the reader how
to connect an LED and a switch. We also covered the most common pitfalls and best
practices when interfacing with LED switches. Blinking an LED is considered as the
Hello World of embedded development.

[113]

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Help and Finding
Other Helpful Online
Resources

Having worked through this book, there will probably be many questions that are
still left or even after consulting Appendix D, Troubleshooting the Common Pitfalls,

it might be quite possible that something just does not work out. Luckily, there
are quite a few helpful volunteers who are willing to help.

This appendix will cover the following topics:

* Meeting various communities

* Where to get help

* How to ask the right questions

* Getting a new Allwinner-based device supported

Meeting the community

It should come as no surprise that there are many online communities surrounding
various projects and products. This is especially true considering all the development
boards covered in this book and their SoCs. Each of these communities more or less
focus on certain tasks. There are three most important ones with regard to this book.
Firstly, the Olimex community, which focuses on all Olimex-created products and
puts forward questions related to Olimex boards and peripherals. Similarly, there

is a Cubietech community, which revolves around Cubieboards. Lastly, there is
another important group of volunteers well-known among the bunch, and that

is the linux-sunxi community. The name stems, as mentioned earlier, from the
Allwinner SoC family and also pertains to their main interest. The linux-sunxi
community focuses on bootloader, kernel, and driver development and gathers

a lot of information about Allwinner SoCs on their wiki.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Help and Finding Other Helpful Online Resources

While it is wise to get help or, even better, to give help to other users via
the Olimex or Cubietech communities when working on their hardware,
the linux-sunxi community is very knowledgeable and generally helpful.

None of these communities have fulltime paid employees
. employed by any of these companies. They are volunteers who
% do not mind helping other users as they themselves might have
&= received help from others. Additionally, this community has
people from every corner of the world, so make sure you keep
things nice and polite.

Getting in touch with the Olimex
community

The main contact point for Olimex is obviously their website, http: //www.olimex.
com. While the site's initial and main focus is their shop, they have links to reach
their forum, their wiki, and even to projects done by users to inspire others. The
direct wiki URL is http://www.olimex.com/wiki, and the direct URL for the

forum is http://www.olimex.com/forum, which can be used to bypass the main

site if desired. An account for the wiki will need to be requested with Olimex, but
anybody can create a free forum account and get support there. Additionally, there is
an Internet Relay Chat (IRC) channel on the Freenode IRC network, called #olimex
where live chat is possible with other community members.

Getting in touch with the Cubietech
community

The official website of Cubietech is http://www.cubieboard.org. The main site is
mostly a blog where new products are announced. While the site suggests that there
are various forums, these are actually links to unofficial external forums in various
languages. Do note that this can be both an advantage as one can communicate

in their native language, and a disadvantage as resources are split among various
forums. Cubietech does not have an official forum, but rather uses a Google-groups
mailing list that can be accessed as a forum via the Google web interface. The direct
link to their forums is http://www.cubieboard.org/forum/. There is also a read-
only wiki available called docs, which can be directly accessed via http://docs.
cubieboard.org. Also, Cubietech has an IRC chatroom on the Freenode network
called #cubieboard. Finally, Cubietech has a web page, http://www.cubieboard.
org/support/, where this and more is mentioned how to get support.

[116]

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A

Getting in touch with the linux-sunxi
community

The linux-sunxi community also has an official website, which is their very
resourceful wiki and can be found at http://linux-sunxi.org. The wiki itself can
be quite daunting but also very helpful. There are many tutorials and how-to sections
for various tasks. Content is being continuously worked on by kernel hackers and
regular users alike, including the author of the book. The linux-sunxi wiki might

be a little more technical than this book, but it is a great resource that should not be
overlooked. Additionally, there is also a mailing list where a lot of communication
happens. Instructions on how to join or just browse the mailing list can be found on
the linux-sunxi community website at http://linux-sunxi.org/Mailing list.
Just as with Olimex and Cubietech also, the linux-sunxi community can be found
on the Freenode IRC network on channel #linux-sunxi where many users and
developers contribute their knowledge.

Getting help by asking the right
questions

While the where has been covered in the earlier sections, the how is an equally, if not
more, important aspect of getting help. Community members often do want to help,
but questions such as Help me, it doesn't work are wrong on various levels; for one,
what does not work? What have you tried so far to make it better? Also, it sounds
demanding and when asking for help from a volunteer, demanding things usually
does not help at all. So when asking a question via a forum, a mailing list, or an IRC
channel, always try being polite and as clear as possible on how things are going
wrong. Do not let language be a barrier; many community volunteers do not speak
English natively themselves and understand that you might not be a native English
speaker either, and that is okay. If in doubt or unsure at any point, Wikipedia has

a small entry about how to behave in the online communities where the netiquette
and online etiquette sections are of interest; you can find this at http://wikipedia.
org/wiki/Etiquette_in_technology. Additionally, Eric S. Raymond also posted
an interesting read called How to ask questions the smart way at http://www.catb.
org/~esr/fags/smart-questions.html.

[117]

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Help and Finding Other Helpful Online Resources

Getting support for any new
Allwinner-based hardware

Allwinner SoCs are widely used, and while some devices are very well documented,
such as the Cubieboard, others might not yet be. Whether you have found a new
device or are developing a new device based on one of the many development
boards, this new device might not be supported yet. No worries, as Allwinner-based
devices are extremely similar to each other, and all the knowledge acquired by
working through this book will still be useful. But the hardware in question might
not yet be supported by the kernel, the community, or otherwise. The linux-sunxi
community has developed a New Device howto on their wiki that can be used to add
support on your own! With the knowledge learned from this book at hand and from
referring to the website, http: //linux-sunxi.org/New_Device_ howto, this should
be no problem at all.

Summary

This appendix has introduced you to the main communities where additional help
can be acquired from volunteers. The next appendix will give an overview of the
various basic Linux commands used in this book.

[118]

www.it-ebooks.info

http://www.it-ebooks.info/

Basic Linux Commands
Cheatsheet

A Linux-based system contains many commands. Each installed application is, in
fact, a command. This appendix will give an overview of the most basic commands
that should, in theory, be available in every basic Linux installation. Most of these
commands will be used throughout this book, some of which are considered as the
bare basics. This appendix is by no means an authoritative reference, but it should
get you well on your way.

Requesting the manual

Linux features an interesting command called man. It is special because, if installed,
it opens a manual page about any command. Try it by requesting the manual page
of man, as follows:

packt@PacktPublishing:~$ man man

Running man with the man parameter will open the manual page of man. With
the g key, you can exit man, and with the arrow keys, you can navigate around.
The h key opens a help screen where more keys are explained.

If man or manual pages are not installed, the Internet can be used instead.
There are many sites that have the most common manual pages available.
The website http://www.die.net is very popular and can be used to query
various manual pages.

Something to note is that there are several sections of manual pages available —nine
to be exact. The man-manual page will explain each of them briefly. The first section
relates to commands and these pages are queried by default.

www.it-ebooks.info

http://www.it-ebooks.info/

Basic Linux Commands Cheatsheet

Finally, a lot of commands often have a short help screen, which can be activated by
appending -h or --help to a command.

Listing a directory
The 1s command, which stands for list, is the command used to list the contents

of a directory. Without a parameter, it will list the current active directory, and if
supplied with a parameter, it will try to list that file or directory, as follows:

packt@PacktPublishing:~$ 1ls /home/
packt

Changing through directories

To change to a different directory, the cd command can be used. Without
a parameter, cd will always change to the current user's home directory;
otherwise, the directory that is supplied via the first parameter is used,
as follows:

packt@PacktPublishing:~$ cd /home

packt@PacktPublishing:/home$

Getting the current working directory

The current active directory or current working directory can be printed using the
pwd command. This can be useful when one wants to know where one is located in
the current filesystem and can be done using the following command:
packt@PacktPublishing:~$ pwd

/home/packt

Getting the current user

Finding out which user is currently logged in can be useful, especially when
swapping between several users. The whoami command will print the current
active logged-in user, as follows:

packt@PacktPublishing:~$ whoami

packt

[120]

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix B

Running commands as root

Very often, when administering or setting up a system, certain commands need

to be executed as root. The sudo command, when set up properly, can be used to
allow certain users to execute certain commands as root. The who and what queries
are controlled via the sudoers file at /etc/sudoers and should be edited with the
visudo command. The sudo command is used as a prefix to the command to be
executed as root, as follows:

packt@PacktPublishing:~$ sudo whoami
[sudo] password for packt:

root

It should be noted that while sudo is very often used to execute commands as root,
it can also be used to have any user execute any command as any user.

Changing the current user without
logging out

To actually change to a different user as if one would log in with that user, the

su command is used. With su followed by a different username, it is possible to
change the identity of the said user. Unlike sudo, which requires the current user's
password, here, the user to whom access is being requested is required, as shown in
the following command:

packt@PacktPublishing:~$ su root

Password:

Logging out of a shell or from a different user, the following exit command is used.
It takes no parameters. Alternatively, Ctrl + d can also be used to log out on nearly
all shells.

packt@PacktPublishing:~$ exit

Creating files or changing their dates

To create a new empty file, the touch command can be used. Additionally, to modify
an existing file's access and modification date can be changed to reflect a new date
and time, as follows:

packt@PacktPublishing:~$ touch /tmp/testfile

[121]

www.it-ebooks.info

http://www.it-ebooks.info/

Basic Linux Commands Cheatsheet

Creating directories

To create a new empty directory, the following mkdir command can be used:

packt@PacktPublishing:~$ mkdir /tmp/testdir

Removing files

To remove a file, the rm command can be used. The rm command removes the file
that is passed along as a parameter. By default, rm will refuse to remove a directory;
it only operates on files.

The two options that are very often passed to rmare -r and - £. First, a word of
caution on the - £ option, which stands for force; while the rm command should be
used with extreme care, the - £ option requires even more thought and attention. The
- £ option forces the removal of anything rm can delete, regardless of any permission.

The -r option also needs to be used with care, as it stands for recursively delete.
Ironically, the -r option takes a directory as a parameter, so it can recursively delete
every file and directory under the passed location. Recursively deleting a file does
not seem to make sense anyway. The following rm command shows an example to
remove a file:

packt@PacktPublishing:~$ rm /tmp/testfile

Removing a directory

Removing a directory is done via the rmdir command; it, however, will only operate
on an empty directory, as shown in the following command:

packt@PacktPublishing:~$ rmdir /tmp/testdir

Copying files and directories

To copy afile, the cp command can be used. Copying a file, you need to supply

the source file and the destination file as parameters to cp in that order. Optionally,
a directory can be supplied instead of a file to copy a directory. While copy takes
many options, which the manual page explains in detail, the -r option can be
important when dealing with directories, as it tells copy to recursively copy a
directory and everything underneath it. The following command shows the

use of the copy command:

packt@PacktPublishing:~$ cp /tmp/testfile
/tmp/testdir/copy of testfile

[122]

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix B

Moving files and directories

To move a file, the mv command can be used. Supply the source file and destination
file as parameters to mv in that order. Optionally, a directory can be supplied for the
source and the destination or just the destination.

Renaming a file is actually nothing more than moving a file from one name to
another. The following command is used to move a file:

packt@PacktPublishing:~$ mv /tmp/testfile /tmp/testdir/moved testfile

Changing file and directory access
permissions

To grant or restrict access to certain files and directories, the chmod command can
be used. This command stands for change mode and requires at least two parameters:
the mode that needs to be applied and the file or directory on which this needs to
be applied.

Managing permissions properly can be quite complex, though the manual page

does help quite a bit. The basics are as follows. Under Linux, there are three standard
access levels: user, group, and others. A fourth virtual-access level exists to cover

the three others, all. Let us take a look at each of these in detail:

* User: This access level relates to the user who owns a file or directory;
usually, it refers to the user who created the file or directory

* Group: This access level grants all the users who are also members of this
group access to this level

* Others: This access level gives access to everybody else

e All: This is the fourth virtual-access level that incorporates the preceding
three levels

The four access levels are often abbreviated with their first letters, ugoa. Next to the
access levels, there are the access rights, and here, we will look at the three common
ones. Technically, there are four, but more on that in a minute! The two primary access
rights are read and write access to a file or directory, which are abbreviated with r
and w. The third access right is execute, abbreviated with x, which grants execution
permission on a file to a user, group, or anybody else. So, for example, chmod itself
would require the execute access right to be set for anybody to actually execute that
file. The fourth access right is x again, but this time it is applied to a directory. Since
directories cannot be executed, the access right has a different meaning here and
hence has four access rights. For directories, it allows users, groups, or anybody
else to actually change into the directory and read the list of files in it.

[123]

www.it-ebooks.info

http://www.it-ebooks.info/

Basic Linux Commands Cheatsheet

Constructing a mode is done as follows. Firstly, the shorthand letter is used to
designate the user, group, or others followed by + or - to grant or revoke access
rights supplied immediately after. Users, groups, and other designators can be
combined if separated by a comma. Refer to the following example to see the
constructing mode:

packt@PacktPublishing:~$ chmod g+r-w,o+r-w-x /tmp/testfile

Very often, access permissions are applied by their numerical value, rather than
through their letters. This has its roots mostly in history, where the actual mode
bits were used. For more details on the numerical values, you can refer to the
manual page.

Changing file and directory ownership

To change the owner of a file or directory, the chown command can be used, which
stands for change owner. For this, two parameters are required: the new owner and
the file or directory that requires new ownership, as shown here:

packt@PacktPublishing:~$ chown packt /tmp/testdir

To change the group membership of a file, a similar command to chown,
called chgroup, which stands for change group, exists and works identically.

Changing passwords

To change passwords, the passwd command can be used. When executed without

a parameter, the current user's password can be changed by supplying both the old
and the new password. The root user can change any user's password by supplying
that as the first parameter to passwd, as follows:

packt@PacktPublishing:~$ passwd
Changing password for packt.
(current) UNIX password:

Enter new UNIX password:

Retype new UNIX password:

[124]

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix B

Displaying the content of a text file

There are many tools to output the content of a file; 1ess, more, or cat, to name
just a few. They all work similarly, pass a filename as their parameter, and they
will start displaying the content. Both 1less and more allow search or scrolling
through the file, with 1ess being more advanced than more. The cat utility,
which stands for concatenate, will just output whatever it finds in the file,

be it text or not, as shown here:

packt@PacktPublishing:~$ cat /tmp/testfile

One common operation used with cat is redirecting the output content of a file to
somewhere else, be it a new file where its functions mimic the copying of a file or
appending to another file.

There are a few programs that function in a manner that is very similar to cat, but
operate on compressed files, decompressing them on the fly. Such commands are
zcat, for gzip cat or xzcat, for the xz compression. A useful purpose lies herein
that when redirecting the output, a file could be decompressed and the output can
be written elsewhere. Chapter 3, Installing an Operating System, makes use of this by
taking a compressed binary file and redirecting the output directly onto a flash disk,
as shown here:

packt@PacktPublishing:~$ xzcat /tmp/archive.xz > /dev/sdb

Modifying the partitions on a disk

The £disk command, which stands for fixed disk, is a command that can create
and modify partitions on a hard or flash disk. It requires a disk device node to
be supplied as a parameter. While it is quite menu-driven, £disk has a lot of
commands. The most important ones are briefly summarized, as follows:

* m: This command shows a help menu

* p: This command prints the current partition table

* o: This command wipes out the entire partition table and creates a new
empty partition table

* n: This command creates a new partition by answering a few questions that
fdisk asks

* d: This command deletes a partition

* w: This command writes the created partition table to the disk and exits

Always take great care when working with partitions.

[125]

www.it-ebooks.info

http://www.it-ebooks.info/

Basic Linux Commands Cheatsheet

The £disk command does not actually write the changes to the disk
unless explicitly requested. If there are errors, the Ctrl + c key can be
’ used to quit £disk without writing changes to the disk.

Formatting partitions

To format a partition, the various mkfs commands can be used. It depends on
whether the supporting utilities are installed. When creating an ext4 partition,
mkfs.ext4 is used. Likewise, to create a fat or vfat partition, mkfs.vfat is used.
Each filesystem partitioning tool has different options and parameters, so the manual
page for these commands should be checked for details. Generally speaking, when
using the default settings, supplying the device-specific partition node, such as
/dev/sdb1, for the first partition (1) on the second hard or flash disk (b) is

passed as a parameter to the mkfs commands. Creating filesystems is a destructive
operation. Use it with care!

In the following example, an ext4 filesystem is created on a previously partitioned
USB flash stick. Note that sudo was used here to obtain permission to write directly
to the flash drive.

packt@PacktPublishing:~$ sudo mkfs.ext4 /dev/sdbl

A special variant of mkfs is mkswap, which creates a filesystem specifically geared to
swap space.

Mounting partitions

Attaching storage to a system is called mounting. While many graphical desktop
environments seem to just work, behind the scenes, they still mount and unmount
disks and partitions. The mount command, which makes this happen, requires two
parameters: the device node and the mount location.

Either of the two parameters might be omitted if either of them has been defined in
the fstab file at /etc/fstab. The fstab file is parsed by mount to see what needs to
be mounted, where, and how. Usage of the mount command is shown here:

packt@PacktPublishing:~$ mount /dev/sdbl /tmp/testdir

[126]

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix B

Unmounting partitions

To remove a partition from a running system, the umount command is used and
stands for unmount. The n seems to be thought about as being redundant so the term
has been abbreviated to umount. It is very important to know that umount requires
no files or directories that are being accessed or in use when detaching a partition
from the system. Either the device node or the mount point can be used to unmount
a partition, as shown here:

packt@PacktPublishing:~$ umount /dev/sdbl

Writing data

A somewhat unusual name is used for the program described in this section, dd.

It is unknown what dd stands for, but its purpose is to copy data. There are many
possible arguments to dd, but the most important ones used in this book will be
covered here. The if parameter specifies the input file where data is to be read
from. The of parameter is the output file parameter where the data is to be written.
With these two parameters, it is already possible to copy data from the source to
the destination. What makes dd so versatile is the plethora of other parameters.

The seek parameter allows you to change the start position where to start writing.
The skip parameter allows you to change the start position from where data is
read. The bs parameter, which stands for block-size, determines the size of the data
blocks involved in the transaction, and in combination with the count parameter,
determines how much data is to be copied. As dad allows you to very specifically
control a copy operation, it is often used to write full images, bootloaders at specific
locations, and much more, as shown in the following command. See the manual page
for more information.

packt@PacktPublishing:~$ dd if=inputfile of=outputfile seek=8 bs=1024

Changing to a special root directory

Normally, the root directory is the main system directory and everything branches
from there. Sometimes, we want to restrict access to only certain parts of the system
or temporarily pretend a certain directory is this root. The chroot command, which
stands for change root, ensures that the supplied directory is considered the new root
until exited. As a second parameter, chroot can be told what command to run from
within this restricted root. In the following example, the root directory is changed

to /tmp/testdir and the requested command to be executed, bash, will reside at
/tmp/testdir/bin/bash, as shown here:

packt@PacktPublishing:~$ chroot /tmp/testdir /bin/bash

[127]

www.it-ebooks.info

http://www.it-ebooks.info/

Basic Linux Commands Cheatsheet

Forcing the system to write all content
to disks

Modern systems buffer everything in memory and occasionally write that content

to disk. The obvious reason for this is that the disks are very slow and the memory
is fast. This does have a bad side effect, that is, sometimes the data that we expect to
be on a disk is not actually written. The sync command causes all the data that is not
yet written to disk to be synchronized to the disk, as follows:

packt@PacktPublishing:~$ sync

Adding new users

To add a new user to the system, the useradd command can be used. While

there are many options and parameters that can be supplied, as seen in Chapter 4,
Manually Installing an Alternative Operating System, the manual page does a great job
of explaining all the options. However, just applying a new username is sufficient
to create a bare user, as shown in the following command. Note that a new user
does not have a password yet and needs one created via the previously mentioned
passwd command.

packt@PacktPublishing:~$ useradd superpackt

Additional commands

This chapter contained a short list of the most basic commands. There are many more
commands and even more guides on the Internet that go over a lot of commands.
The website http://www.reallylinux.com/ has a nice section called Essential
Commands where these and more are briefly covered, but any site that covers the
basic Linux commands can be used to learn more about commands.

Summary

This appendix covered the most basic Linux commands as well as the ones used
throughout this book. The next appendix will give you an overview of the FEX
configuration file.

[128]

www.it-ebooks.info

http://www.it-ebooks.info/

The FEX Configuration File

Many systems have a way of configuring themselves, be it software or, in this case,
hardware. Allwinner-based hardware is no different; there are some bits and pieces
that do require configuring, such as GPIO pins. A chip cannot configure itself; that
is, it cannot parse a configuration file and configure itself. The actual configuration
of the chip is done by the various drivers. The procedure is illustrated in the
following sections.

Initial boot up

The chip starts in a hardwired way, where certain components are preprogrammed
to be active on specific pins. Because of this, the chip can boot from various boot
media, as mentioned in Chapter 3, Installing an Operating System, and load the
bootloader. The bootloader is also preconfigured to a certain hardware setup.
Hence, as mentioned earlier, each board has its own bootloader.

Besides bringing up certain components, the bootloader has the following two
important tasks:

* Loading the kernel into memory and later executing it

* Loading a configuration file into the memory for the kernel to use

However, the bootloader itself does not parse the configuration file.

M It has to be mentioned that when using a mainline kernel, the
Q principle is the same: the bootloader still loads a configuration file
named device tree binary, which the kernel uses for configuration.

www.it-ebooks.info

http://www.it-ebooks.info/

The FEX Configuration File

The FEX configuration concept is interesting in itself, where one file is changed

to configure an entire device. As mentioned earlier, the FEX file is loaded into

the memory by the bootloader, and the bootloader only checks one specific

location. While u-boot is more flexible and could be configured to allow reading

the configuration file from any location or any filename, the bootloader that is
preprogrammed into the onboard NAND flash storage will only check the first
partition on the device, and that has to be FAT formatted. As such, this is a common
convention that we will follow for the remainder of this chapter. Additionally, this
file has to be called by a specific name, script.bin, and the duplicate backup by the
name script0.bin file. When booting a kernel that supports the onboard nand flash,
the device node where this file will be stored is /dev/nanda. Otherwise, normal
device nodes will be used, most commonly the SD card at /dev/mmcblkop1.

Compiling and decompiling the FEX file

The script.bin file is, as its file extension suggests, a binary file. However, it is not
possible to directly modify this file. The linux-sunxi community has created a set of
tools to convert this binary file into a text file and vice versa. They can be found in
their GitHub repository at https://github.com/linux-sunxi/sunxi-tools.

After cloning this repository, the make fex2bin command is run to build the fexc,
the fex decompiler. Compiling and running this tool is probably best on a system
that has a comfortable text editor available.

Running fexc to decompile the binary file will look like this:
[packt@packt:~]$ fexc -I bin -0 fex script.bin script.fex

There are two shorthands in the form of symlinks to fexc, namely fex2bin and
bin2fex. Using these makes the -I and -0 parameters unnecessary.

Understanding the FEX file format

Using any text editor, a FEX file will show that it is divided in various sections,
prepended by a header within brackets, [1. In the following example, the UART o
component is explained:

[uart para0]

uart used = 1

uart port = 0

uart tx = port:PB22<2><l><default><default>
uart rx = port:PB23<2><l><default><default>

[130]

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix C

Here, the component called uart_parao, the first serial port or UART, has four fields
that a serial driver would read. Each field is set up as a key-value pair, where the
key is on the left-hand side and the value is on the right-hand side of the equal sign.
In this case, the key uart_used is set to the number 1 indicating that this definition
should be parsed and activated.

Following that is the uart_port key, which is set to the number 0, indicating that
this configuration is about UART 0— the first UART port. Some of the settings are
very straightforward key-value pairs, that is, a key on the left and a string or a
number on the right. There is, however, a key-value pair that needs some special
attention, and that is the pin configuration, where the value is a port definition.
Every component might require certain pins to function.

A basic UART requires two pins: a transmit pin and a receive pin. The SoC can
provide several UARTSs on several pins. In the preceding example, two pins are
defined, the transmit pin, uart_tx, and the receive pin, uart_rx. The pins on a
SoC are very often grouped, usually by a related function.

In the case of the A10, it has nine groups called ports. Each port can consist of a
varying amount of pins. Port B, for example, has 24 pins. The last two pins of the set
are the UART transmit and UART receive pins. The numbering starts at 0, following
from which, it should be no surprise that pB22 and pB23 in the preceding example
are Port B: pin 22 and pin 23.

As mentioned before, each pin has multiple features, or as they say, many functions
are multiplexed onto a pin. These multiplexes, or muxes, are enumerated, where
MUX 0 always configures a pin as GPIO input, and MUX 1 always configures a

pin as GPIO output. Depending on the port and pin, MUX 2 and beyond can

have various meanings —in the case of pB22 and pB23 MUX 2 are the UART pins.
The first parameter surrounded by angle brackets, <>, is thus defined as MUX 2.

Pin configurations

Chapter 8, Blinking Lights and Sensing the World, talks about the purpose of a
pull-up resistor and a pull-down resistor. Allwinner-based SoCs actually have
pull-up or pull-down resistors attached internally to the pins. The second
angle-bracket surrounded parameter, <1>, in this case, enables the internal
pull-up, a <0> here disables the pull-up/pull-down feature, and a <2> enables
the pull-down feature. The pull-down feature is, however, only valid when the
port is configured as an input; the SoC does not support pull-down on outputs.
One more valid option is to use the keyword <defaults, which tells the driver
to use a safe default value.

[131]

www.it-ebooks.info

http://www.it-ebooks.info/

The FEX Configuration File

The third angle-bracket surrounded parameter defines the current strength that the
pin should output. There are four valid values: 0, 1, 2, and 3, where 0 corresponds to
10 mA, 1 to 20 mA, 2 to 30 mA, and 3 to 40 mA. The default value can be used to let
the driver choose a safe default.

The fourth position defines the initial output level of the pin, which can be either
low, <05, or high, <1>. Naturally, this is only valid when configuring the pin
as output. Also here, default means that the driver uses a safe default value.

M While Port B: pins 22 and 23 were discussed and explained here, the rest
Q of the pins and their muxes can be found on the linux-sunxi community
wiki at http://linux-sunxi.org/PIO.

Further reading

The FEX file contains many other such components that can be set up, varying
from configuring which pins are used for the SD card reader to what color format
is used for the LCD. All options that have been discovered are also documented at
the linux-sunxi wiki page, http://linux-sunxi.org/Fex_Guide. However, since
each driver is written to read a key-value pair, things easily and often do change
depending on the progression of the driver and kernel as a whole. When in doubt,
the kernel source code can always be checked.

Installing the configured FEX file

Compiling the FEX file back into a bin file is nearly identical.
[packt@packt:~]$ fexc -I fex -O bin script.fex script.bin

Depending what boot medium is being used, script.bin has to be copied back

so that the device can use these new, changed values. This can be the /dev/nanda
partition on the onboard NAND flash or the first partition that is FAT formatted on
a microSD card.

After having put the script.bin into place, a reboot is required for the system to
read these changes.

Summary

This appendix gave a small introduction to the FEX file and showed how to modify
it. The next appendix will try to cover the most basic troubleshooting for the most
common pitfalls.

[132]

www.it-ebooks.info

http://www.it-ebooks.info/

Troubleshooting the
Common Pitfalls

When experimenting with new things, a lot can go wrong. In this appendix, a few of
these common pitfalls are covered briefly. Anticipating everything that can go wrong
is plainly impossible, but an overview of the most common problems is what this
appendix is for.

Some general things that do tend to happen more often than one can imagine is
the reading and entering of commands. A typo is easily made, or something is
easily overlooked and read wrong. These things naturally happen and are all part
of working with something exciting and new. So the first general tip is to always
double-check your input. Despite the many eyes that went over all the pages in
this book, there is always the possibility that a mistake has crawled into this book,
so if something still goes wrong, even when following the book to the letter,
check the errata.

Stability issues

Quite often, users find the many communities surrounding these devices and
complain about strange crashes, unstable systems or random reboots. While it is,
of course, always possible that the actual device might be damaged, very often a
flaky power supply is to blame, which either provides unstable power or is not
powerful enough.

Testing the strength or stability of a power supply is very difficult without additional
equipment. What tends to happen if the power supply cannot deliver enough current
is that the voltage starts to drop. This can be measured with a standard multimeter.

www.it-ebooks.info

http://www.it-ebooks.info/

Troubleshooting the Common Pitfalls

If the voltage drops below 4.8 volt, things are likely to go wrong. A very noisy
power supply is even harder to test and requires an oscilloscope. It is probably

best to get a well-known and good power supply. Phone chargers, for example,
come in different strengths. There are cheap phone power supplies that barely
deliver 500 milliampere, which, when the device is heavily stressed, is not enough.
Obviously, there are also decent chargers that come with high-end smartphones that
can easily supply 2000 milliampere, but even here, in combination with the hard
disk or solid-state disk, the power requirement can be too high. It is thus advised

to disconnect as many devices as possible. No USB device and no SATA storage as
they get their power from the board. No other components that might receive power
directly from the board. Ideally, only a power connection and a serial connection
should be made, and a multimeter or another power measuring device should be
used to see that the voltage does not drop too low.

Should the board still remain unstable even after all that, where other people with
the same board using the same bootloader and ideally the same root filesystem
have no problem, then the board might be defective. It is probably best to ask

for an exchange where the board was purchased. But please, always try to verify
everything else, as a board exchange is no fun for all the parties involved.

Boot failures when booting from
SD cards

There is nothing more frustrating than spending hours on compiling and preparing
an SD card to boot the board with, only to have it not work. While it is critical to
have a serial console to see a debugging output during this stage, sometimes no
output is generated at all due to an incorrect SD card or binary. The most important
thing when experimenting with the bootloader is to always have a known working
copy at hand. This is to make sure that modifications to u-boot are not the cause.

The nightlies from linux-sunxi are an alternative, as those should always work. See
http://dl.linux-sunxi.org/nightly/u-boot-sunxi/u-boot-sunxi/u-boot-
sunxi-latest/ for a list of available bootloaders.

Sometimes, the microSD card might simply not be compatible or might even be
broken. A different microSD card should be used to make sure the microSD card

is not the cause. It is not unheard of that the first few bytes on the card are broken
beyond repair. This is not generally a problem if the card is used as a simple storage
medium. Because the bootloader gets written and read from the start of the SD card,
this can thus result in a system that is unable to boot.

[134]

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix D

Now, going with either one of the nightlies or a self-compiled bootloader, quite
often, users tend to choose the wrong file. This is not a big surprise, as there are
many files and various instructions on the Internet that, sometimes, become outdated
and are no longer accurate. A common example is that many older guides suggest
writing u-boot .bin or sunxi-spl.bin using various seek offsets. Using the correct
files and parameters, this can still work, whereas using the wrong parameters or
wrong settings will cause failure. The recommended way, as described in Chapter 4,
Manually Installing an Alternative Operating System, onto the board is to use u-boot -
sunxi-with-spl.bin using ablocksize (bs) of 1024 and seek of 8. Applying
this to, for example, sdb, the following command should be used:

packt@packt:~# dd if=u-boot-sunxi-with-spl.bin of=/dev/sdb bs=1024
seek=8

This is because both the previous mentioned files are combined in one big file, so
fewer things can go wrong. Finally, after writing the bootloader, the intention is

to format the first partition to store the kernel. The partition number gets omitted
and not /dev/sdb1, but /dev/sdb gets formatted. This is completely legal to do;
having partitions on a storage medium is optional, though often useful. Formatting
the entire disk, rather than the partition, however, has a side effect that the earlier
written bootloader is now overwritten and gone. When the board boots, the
bootloader is no more to be found and hence no output is generated.

No display output via a connected
monitor

Quite often, when a monitor is connected via HDMI or VGA, there is no display
output. This can be, understandably, very frustrating. Even more so, it probably
worked fine with the preinstalled Android was working fine, but now when

booting Linux from the SD card, nothing happens anymore. There are of course
many possible reasons for not getting an image on the monitor, such as the cable
might not be connected properly, the monitor might be set to the wrong input, and
so on. Even though all these things seem very obvious and common, they do happen,
and there are a few cases that are not so easily checked.

The Allwinner SoC is actually not very smart when it comes to displaying outputs.
It needs to be told what is connected and what to use as an output. For this purpose,
monitors and TVs, which really are just fancy monitors, have a communication
channel in the cable called Display Data Channel (DDC). The purpose of the DDC
is for the monitor to tell whoever asks what its capabilities and resolutions are.

And this is where things get ugly.

[135]

www.it-ebooks.info

http://www.it-ebooks.info/

Troubleshooting the Common Pitfalls

For VGA, it was once agreed upon that there were two colors for the plugs: black

if the port does not care about DDC and ignores it, and blue if it does read the

DDC information and can respond accordingly. Unfortunately, many creators of
development boards simply use a blue connector, thinking that is the standard VGA
connector, but do not implement DDC. Without DDC, the board has no idea what is
connected and how to send signals to it. And because of the ignorant usage of blue
and black VGA plugs, there is no simple rule to follow anymore, which says that if
your connector is black, you have to set up your VGA port manually.

For HDM]I, the problem is very similar. The Allwinner HDMI display controller was
created with television in mind for the most part. Thus, there are some quirks when
connecting it to an HDMI monitor or when using a DVI to HDMI adapter. Android
might, for example, have a purple hue over the image when being connected to a
DVI monitor, which is a quirk caused by the driver in combination with the design
of the display controller; running a linux-sunxi kernel usually fixes this.

The first thing that can be checked and changed is the utnv. txt file that resides

on the bootloader partition, possibly /dev/sdb1, when we use a microSD card

in a USB adapter. Here, there should be a setting called disp.screen0_output_
mode=EDID:1280x720p60 or something similar for the bottom extraargs parameter.

This means that for the output, first try to probe the monitor via EDID, which is

an extended form of DDC, and if that fails, fall back to the 1280 by 720 progressive
resolution running at a refresh rate of 60 Hz. Some monitors might not properly
announce their EDID information, so the first thing to try is removing the EDID bit
from output_mode and thus forcing the output to 1280x720p60. Additionally, it is
possible that after EDID fails, the fixed resolution supplied is simply something the
monitor does not accept. For valid resolutions and settings, check the second column
in the table used in the following section. It should be noted that when we use a VGA
monitor, EDID must be removed, as the driver will ignore the entire output_mode

in that case. Additionally, the desired video output type needs to be appended to
extraargs as disp.screen0_output_ type=4 for VGA or 3 for HDMI.

Overriding the kernel parameters via the utnv. txt file might not be enough and
cause things to not work. The same settings can and should also be supplied via
the FEX file. The driver should, in theory, check both the kernel command line and
the FEX file, but one might overrule the other, and thus, in case of trouble, both
possibilities should be covered.

[136]

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix D

To force a video output mode, the FEX file needs to modified. The section that
controls the display controller in the FEX file is the [disp_init] section. All the
parameters for the display controller on the linux-sunxi wiki, http://linux-sunxi.
org/Fex_Guide, there are a few things that need to be looked at. When getting
things going for the first time, disp_mode is probably best set to 0, indicating one
frame buffer on screeno. Depending how the monitor is connected, screeno_
output_type should be set to either 3 or 4, where 3 is an HDMI display and 4 is a
VGA display. The screenl_output_type object is best disabled by setting it to o.
For screen0_output_mode, the following table should be used, and any setting
applied to screenl_output_mode will be ignored:

output_mode Used for the TV/HDMI output Used for the VGA output
0 480i 1680 * 1050
1 576i 1440 * 900
2 480p 1360 * 768
3 576p 1280 * 1024
4 720p50 1024 * 768
5 720p60 800 * 600

6 1080150 640 * 480

7 1080160

8 1080p24

9 1080p50

10 1080p60 1920 * 1080
11 pal 1280 * 720
14 ntsc

The other settings should not be significant for the display output. The display
should be able to output data now when booting, for example, the Fedora installation
image, as was used in Chapter 3, Installing an Operating System.

Summary

This appendix went over the three most common issues, which most often happen
when starting to work with the various development boards. The things covered
in this appendix by no means cover every possibly scenario but should give you a
decent strategy on tackling these early problems.

[137]

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

A

A10 chip 8
A10S chip 9
A13 chip 9
A20 chip 9
A23 chip 9
A31 chip 9
A31S chip 9
ad-servers
reference link 77
Allwinner-based hardware 118
analog-to-digital converters (ADCs) 112
apt-cache tool 60
apt-file tool 60
apt-get command
about 58
used, for installing software package 61
Arch User Repository (AUR) 96

B

board-support-package. See BSP
boot.cmd file 91
bootloader
about 31, 88
completing 90
installing 89, 90
lichee variant 88
overview 88
prerequisites 87
standard configuration files 90
u-boot-sunxi 88, 89
writing 31, 32
Boot Read Only Memory. See BROM
boot.scr file 90

BROM 27

BSP
about 95
maintaining 98
obtaining 98
prerequisites 95

repositories, updating 99

build-essential 96

C

chips
A10 8
A10S 9
A13 9
A20 9
A23 9
A31 9
A31S 9
about 7
overview 8
chroot command
preparing 53
chroot environment
exiting 55
Cron 70,71
Cubieboard
booting 27, 28
compiling for 101-103
Cubietech
about 12,13
community 116
the Cubieboardl 12
the Cubieboard2 12
the Cubieboard3 12
the Cubietruck 12

www.it-ebooks.info

Index

http://www.it-ebooks.info/

reference links, for community 116 Cubietech 12

current, LED interfacing serially 16
amplifying 109 Itead and Olimex 15
Lemaker 14
D microSD adapter 18
microSD card 18
d command 125 Olimex 10
dd tf")l power supply 19
using 90 selecting 9
Debian universal asynchronous
base system, configuring 49 receiver/transmitter 17
debootstrap, installing 47 Display Data Channel (DDC) 135,136
debootstrap, running 48 docs 116
destination medium, making bootable 52
destination medium, preparing 42-44 F
newly created partitions, formatting 44-46
installing 41 fdisk tool 42
networking, configuring 50, 51 fdisk command 125
prerequisites 41 Fedora
rebooting 56 downloading 29
reference link, for tutorial 58 preparing 29
reference link, for repositories 58 toolchain, installing 96
reference link, for source list 58 fexc tool 130
root user 53 FEX configuration file
serial console, adding 55 about 129
toolchain, installing 96 compiling 130
Debian, via command line decompiling 130
about 57 file format 130, 131
additional software, installing 60 initial boot up 129, 130
apt 57 installing 132
apt, configuring 58 pin configurations 131, 132
packages, finding 60 reference 132
packages, installing via file directories
metapackages 63, 64 allwinner-tools 98
software package, installing via apt-get 61 cedarx-libs 98
software package, installing via tasksel 62 Configure 99
updating 58, 59 linux-sunxi 98
debootstrap Makefile 99
about 46 README.md 99
installing 47 rootfs 98
running 48 scripts 98
destination medium, Debian sunxi-boards 98
making bootable 52 sunxi-tools 99
preparing 42-44 u-boot-sunxi 98
development boards file server
additional hardware 16 setting up 79-81
[140]

www.it-ebooks.info

http://www.it-ebooks.info/

G

General Purpose Input/Output. See GPIO
Git 97
git checkout
using 101
GNOME 62
GPIO
about 105
controlling 110
toggling 111,112
Graphics Processor Unit (GPU) 8
grep - command 60

H

home server

about 65

accessing remotely 66-68

file server, setting up 79-81

personal cloud, setting up 83-85

prerequisites, for board 66

proxy server, setting up 71

scheduled tasks, running
automatically 70, 71

service, adding from boot up 69, 70

service, reloading 69

service, removing from boot up 69, 70

service, restarting 69

services, interacting with 68

service, starting 69

service, stopping 69

torrent server, setting up 81-83

web server, setting up 78

Inter-IC (I12C) bus 112
Internet Relay Chat (IRC) 116
Itead and Olimex 15, 16

K

kernel
about 91
devel branch 93
exploring 91
installing 93

modules, installing 94
next branch 93
overview 92
prerequisites 87
selecting 93, 100, 101
URL 91
variants, of SoC 91
Kernel Version 2.6.36 92
Kernel Version 3.3 92
Kernel Version 3.0 92
Kernel Version 3.4 92
Kernel version experimental-3.14 93

L

LED
about 105
current, amplifying 109
glowing 105, 106
pins, controlling from software 110
pull-down resistor 110, 111
pull-up resistor 111
resistance, calculating 106, 107
sinking 108
sourcing 108
switch, reading 112
voltage, amplifying 109
Lemaker 14
libusb-1.0-0-dev 97
libusb-devel 97
lightdm 69
Light Emitting Diode. See LED
Linux
additional commands 128
all permissions 123
commands, running as root 121
content, writing to disks 128
current user, changing without
logging out 121
current user, identifying 120
current working directory, obtaining 120
data, writing 127
dates, changing 121
directories, changing through 120
directories, copying 122
directories, creating 122
directories, moving 123

[141]

www.it-ebooks.info

http://www.it-ebooks.info/

directory access permissions, changing 123
directory, listing 120
directory ownership, changing 124
directory, removing 122
file access permissions, changing 123
file ownership, changing 124
files, copying 122
files, creating 121
files, moving 123
files, removing 122
group permissions 123
manual, requesting 119
new users, adding 128
others permissions 123
partitions, formatting 126
partitions, modifying on disk 125
partitions, mounting 126
partitions, unmounting 127
passwords, changing 124
special root directory, changing 127
text file content, displaying 125
user permissions 123

linux-sunxi community
about 117
reference links 117, 118, 132

Long Term Support (LTS) 92

Mail Transport Agent (MTA) 83
m command 125
menuconfig command 102
metapackages
used, for installing software package 63, 64
microSD adapter 18
microSD card 18
mkfs.extd 45
mount command 126

N

n command 125

ncurses-devel (ncurses-dev) 97

netiquette and online etiquette sections
reference link 117

(0

o command 125
Olimex
A10-OLinuXino-LIME 10
about 10
community 116
Olimex OLinuXino series 11
reference links, for community 116
online communities
about 115
Cubietech community 116
help 117
linux-sunxi community 117
Olimex community 116
operating system installation
additional software, adding 38
background, on image installation 28
Cubieboard, booting 27, 28
initial setup 33-35
maintaining 36
precautionary measures, for installing
updates 35
updates, installing 36, 37
OS image
writing, to SD card 29, 30
ownCloud 83

P

p command 125
personal cloud
setting up 83-85
pkg-config package 97
preinstalled software
booting up 24, 25
proxy server
blocking proxy, setting up 75-77
browser, configuring for using 72-75
caching proxy, setting up 72
setting up 71
Squid, installing 71, 72
pull-down resistor 112
pull-up resistor 111
PuTTY
download link 23

[142]

www.it-ebooks.info

http://www.it-ebooks.info/

R Texas Instruments' AM-series
and OMAP-series 8

RAM 89 SoC, variants
resistance, LED about 91
calculating 106, 107 sundi 91
root user, Debian sunbi 91
about 53 sun6i 91
chroot command, preparing 53 sun7i 91
new user, creating 54 sun8i 91
root password, changing 54 sunxi 91
rpc-password item 81 Squid
rpc-whitelist item 81 about 71
installing 71, 72
S SRAM 89
ssh server
Samba installing 66
about 80 stability issues
URL 80 troubleshooting 133, 134
SATA drive standard configuration files, bootloader
boot partition 43 about 90
home partition 43 boot.cmd 91
root partition 43 boot.scr 90
swap partition 43 uEnv.txt 91
SATASSD 41 sudo command 121
SD card sundi 91
OS image, writing to 29, 30 sun5i 91
troubleshooting 134, 135 sun6i 91
search parameter 60 sun7i 91
Secondary Program Loader (SPL) 89 sun8i 91
serial console sunxi 91
adding 55 System on a Module (SoM) 11

adding, to Debian 55

! Systems on Chips. See SoCs
adding, to Ubuntu 56

Serial Peripheral Interface (SPI) 112 T
serial port
about 21 tasksel
connecting 21-24 used, for installing software package 62
SoCs toolchain
about 8 about 96
Allwinner's A-series 8 for Debian or Ubuntu 96
Broadcom's BCM-series 8 installing 96
Freescale's i.MX-series 8 on Fedora 96
MediaTek's MT-series 8 other distributions 96
NVIDIA's Tegra-series 8 tools, linux-sunxi community
Qualcomm's APQ-series and MSM-series 8 reference link 130
Rockchip's RK-series 8 torrent server
Samsung's Exynos-series 8 setting up 81-83
[143]

www.it-ebooks.info

http://www.it-ebooks.info/

Transdroid 83
transmission-remote-gtk 83
troubleshooting

no display output,

via connected monitor 135-137

SD cards 134, 135

stability issues 133
Two Wire Interface (TWI) 112

U

u-boot 88
uboot-mkimage 97
u-boot-sunxi

about 88, 89

reference link 88
u-boot-sunxi-with-spl.bin 89
u-boot-tools 97
Ubuntu

toolchain, installing 96
Ubuntu rootfs

creating 46
uEnv.txt file 91
ulmage 94
umount command 127
umount -1 command 56
universal asynchronous

receiver/transmitter 17

USB to UART adapter 17

\'

Vi 61
Video Processing Unit (VPU) 98
voltage, LED

amplifying 109

w

w command 125
web server
setting up 78
wget 88
WPAD
about 75
reference link 75

X

xfced 35, 63
xzcat command 29

Y

Yum Extender 35

[144]

www.it-ebooks.info

http://www.it-ebooks.info/

open source

community experience distilled

PUBLISHING

Thank you for buying
Getting Started with Cubieboard

About Packt Publishing

Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www . packtpub. com.

About Packt Open Source

In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt

We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to authorepacktpub. com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.it-ebooks.info

http://www.it-ebooks.info/

open source

community experience distilled

PUBLISHING

Raspberry Pi Home
Automation with Arduino

Raspberry Pi Home Automation

with Arduino
ISBN: 978-1-84969-586-2 Paperback: 176 pages

Automate your home with a set of exciting projects
for the Raspberry Pi!

1. Learn how to dynamically adjust your
living environment with detailed
step-by-step examples.

2. Discover how you can utilize the combined
power of the Raspberry Pi and Arduino for
your own projects.

3. Revolutionize the way you interact with your
home on a daily basis.

~ Quich anawers to comenan problemns

Raspberry Pi
Networking Cookbook

Raspberry Pi Networking

Cookbook
ISBN: 978-1-84969-460-5 Paperback: 204 pages

An epic collection of practical and engaging recipes
for the Raspberry Pi!

1. Learn how to install, administer, and maintain
your Raspberry Pi.

2. Create a network file server for sharing
documents, music, and videos.

3. Connect to your desktop remotely
with minimum hassle.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

open source

community experience distilled

PUBLISHING

Raspberry Pi Projects for Kids
ISBN: 978-1-78398-222-6 Paperback: 96 pages

1“ Start your own coding adventure with your kids by
creating cool and exciting games and applications on
the Raspberry Pi

1. Learn how to use your own Raspberry Pi device
to create your own applications, including
games, interactive maps, and animations.

Raspberry Pi Projects
for Kids 2. Become a computer programmer by using the

Scratch and Python languages to create all sorts
o excing games o of cool applications and games.

3. Get hands-on with electronic circuits to turn
your Raspberry Pi into a nifty sensor.

Raspberry Pi Media Center
ISBN: 978-1-78216-302-2 Paperback: 108 pages

Transform your Raspberry Pi into a full-blown media
center within 24 hours

1. Discover how you can stream video, music,
and photos straight to your TV.

2. Play existing content from your computer
or USB drive.

3. Watch and record TV via satellite, cable,
or terrestrial.

4. Build your very own library that
PACKT . automatically includes detailed information
and cover material.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover

	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Choosing the Right Board

	Wading through the forest of available chips and boards
	A short overview of chips
	Choosing the right development board
	Olimex
	Cubietech
	Lemaker
	Itead and Olimex

	Additional hardware
	Serially interfacing with the board
	Universal asynchronous receiver/transmitter
	The microSD adapter
	The microSD card
	Power supply

	Summary

	Chapter 2
: Getting Started
with the Hardware
	Connecting a serial port
	Booting up the preinstalled software
	Summary

	Chapter 3
: Installing an Operating System
	Booting the Cubieboard
	OS image installation background
	Getting and preparing Fedora
	Writing the OS image to the SD card
	Writing the bootloader

	Finishing the operating system installation
	Precautionary measures for installing updates
	Maintaining the OS and installing updates
	Adding more software to the OS
	Summary

	Chapter 4
: Manually Installing an Alternative Operating System
	Prerequisites for this chapter
	Preparing the destination medium
	Formatting the newly created partitions
	Creating a Debian or Ubuntu rootfs
	Installing debootstrap
	Running debootstrap
	Configuring the base system
	Configuring the networking

	Making the destination medium bootable
	The root user
	Preparing the chroot command
	Changing the root password
	Creating a new super user

	Exiting chroot

	Adding the serial console
	Adding the serial console to Debian
	Adding the serial console to Ubuntu

	Rebooting the new OS
	Getting around the new OS via the command line
	Introducing apt
	Configuring apt
	Keeping the OS up to date
	Installing additional software
	Finding packages
	Installing the software package using apt-get
	Installing the software package using tasksel
	Installing packages via metapackages

	Summary

	Chapter 5
: Setting Up a Home Server
	Prerequisites for the home server board
	Accessing the server remotely
	Interacting with services
	Starting, stopping, restarting, or reloading a service
	Adding or removing a service from the boot up
	Running scheduled tasks automatically
	Setting up a proxy server
	Installing Squid
	Setting up a caching proxy
	Configuring a browser to use the proxy

	Setting up a blocking proxy

	Setting up a web server
	Setting up a file server
	Setting up a torrent server
	Setting up a personal cloud
	Summary

	Chapter 6
: Updating the Bootloader
and Kernel
	Prerequisites for this chapter
	The bootloader overview
	U-boot-sunxi
	Installing the bootloader
	Completing the bootloader

	Exploring the kernel
	Variants of the SoC
	Overview of the various kernels

	Choosing a kernel
	Installing the kernel
	Installing the kernel modules

	Summary

	Chapter 7
: Compiling the Bootloader and Kernel Using a BSP
	Prerequisites
	Installing a toolchain
	Debian or Ubuntu
	Fedora
	Other distributions

	Other required tools and packages
	Obtaining and maintaining the BSP
	Updating the repositories

	Choosing a kernel
	Compiling for a Cubieboard
	Summary

	Chapter 8
: Blinking Lights and
Sensing the World
	Making an LED glow
	Resistance required
	Sinking and sourcing

	Amplifying the voltage and current
	Controlling pins from software
	Pulling up and pulling down
	Reading a switch
	Summary

	Appendix A: Getting Help and Finding Other Helpful Online Resources

	Meeting the community
	Getting in touch with the Olimex community
	Getting in touch with the Cubietech community
	Getting in touch with the linux-sunxi community
	Getting help by asking the right questions
	Getting support for any new
Allwinner-based hardware
	Summary

	Appendix B:
Basic Linux Commands Cheatsheet
	Requesting the manual
	Listing a directory
	Changing through directories
	Getting the current working directory
	Getting the current user
	Running commands as root
	Changing the current user without logging out
	Creating files or changing their dates
	Creating directories
	Removing files
	Removing a directory
	Copying files and directories
	Moving files and directories
	Changing file and directory access permissions
	Changing file and directory ownership
	Changing passwords
	Displaying the content of a text file
	Modifying the partitions on a disk
	Formatting partitions
	Mounting partitions
	Unmounting partitions
	Writing data
	Changing to a special root directory
	Forcing the system to write all content
to disks
	Adding new users
	Additional commands
	Summary

	Appendix C:
The FEX Configuration File
	Initial boot up
	Compiling and decompiling the FEX file
	Understanding the FEX file format
	Pin configurations

	Further reading
	Installing the configured FEX file
	Summary

	Appendix D:
Troubleshooting the
Common Pitfalls
	Stability issues
	Boot failures when booting from
SD cards
	No display output via a connected monitor
	Summary

	Index

