
www.it-ebooks.info

http://www.it-ebooks.info/

Building a Home Security
System with Raspberry Pi

Build your own sophisticated modular home security
system using the popular Raspberry Pi board

Matthew Poole

BIRMINGHAM - MUMBAI

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Home Security System with Raspberry Pi

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2015

Production reference: 1161215

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78217-527-8

www.packtpub.com

www.it-ebooks.info

http://www.it-ebooks.info/

Credits

Author
Matthew Poole

Reviewers
Lihang Li

Cédric Verstraeten

Commissioning Editor
Edward Bowkett

Acquisition Editors
Vivek Anantharaman

Vinay Argekar

Content Development Editor
Sumeet Sawant

Technical Editor
Namrata Patil

Copy Editor
Angad Singh

Project Coordinator
Shweta H. Birwatkar

Proofreader
Safis Editing

Indexer
Rekha Nair

Production Coordinator
Manu Joseph

Cover Work
Manu Joseph

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author

Matthew Poole is a systems engineer based near Southampton on the south coast
of England with over 20 years of industry experience. After graduating in electronics
and communications engineering, he went on to train as and to become an air traffic
engineer for the UK Civil Aviation Authority, working on microprocessor-based
control and communications systems.

Later, he became a software architect and mobile technology specialist, and worked
for several consultancies and global organizations. He is now a partner at UK Mobile
Media, a boutique systems consultancy focused on designing Bluetooth and other
wireless systems, taking ideas from concept to prototype. He is also the director of
technology for Mobile Onboard, a leading UK-based transport technology company
that specializes in on-bus connectivity and mobile ticketing.

www.it-ebooks.info

http://www.it-ebooks.info/

About the Reviewers

Lihang Li received his MS degree in computer vision from National Laboratory
of Pattern Recognition(NLPR) at Institute of Automation of the Chinese Academy
of Sciences (CAS). His interests include Linux, open source, cloud computing,
virtualization, computer vision algorithms, machine learning and data mining,
and a variety of programming languages.

You can find him at his personal website at http://hustcalm.me.

It has been a great opportunity being a part of this book. I have
always been a fan of embedded devices and systems. Thanks go
to our author and coordinator. Hope the readers will find this
book helpful.

Cédric Verstraeten has an MSc in engineering and is primarily active in the C++
community. He works as a software engineer and is a huge open source enthusiast.
He spends most of his time on side projects. He's the founder of Kerberos.io, an open
source video surveillance system built for the Raspberry Pi, and is the organizer of
the Raspberry Pi Belgium meetup group.

I would like to thank Packt Publishing for making me a reviewer
of this book. I really think their books can give people an in-depth
overview of a particular topic.

www.it-ebooks.info

http://www.it-ebooks.info/

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers
on Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.it-ebooks.info

http://www.it-ebooks.info/

[i]

Table of Contents
Preface	 vii
Chapter 1: Setting Up Your Raspberry Pi	 1

Which flavor of Pi?	 1
Raspberry Pi Model A	 3
Raspberry Pi Model B	 4
Raspberry Pi Model B+ and Model 2	 4
Model comparison table	 5
So which one?	 6

Preparing the SD card	 6
Downloading the Raspbian image	 7
Using Microsoft Windows	 7
Using Linux	 8
Booting your Pi	 9
Expanding the file system	 9

Using the raspi-config utility	 10
Setting up your Pi	 12

Getting up to date	 15
Getting the right time	 15

fake-hwclock	 16
ntp	 16

Talking of security…	 16
What is this sudo thing anyway?	 17

Connecting via Wi-Fi	 17
Summary	 18

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[ii]

Chapter 2: Connecting Things to Your Pi with GPIO	 19
Prerequisites	 19
Say hello to the GPIO	 20

Digital I/O pins	 21
The I2C bus	 22
The SPI bus	 22
The UART serial bus	 22
USB ports	 22
Power connections	 23

Getting acquainted with the GPIO	 24
Let there be light	 24

Getting flashy…	 26
Adding a switch	 28

Pulling yourself together	 28
The detection script	 29

The most elaborate light switch in the world	 31
The illuminating script	 32

Summary	 33
Chapter 3: Extending Your Pi to Connect More Things	 35

Prerequisites	 35
The I2C bus	 36

Just 2 wires	 36
What's your address?	 36
There is a parallel universe	 37

Serial-to-parallel conversion	 38
Give me power	 38
Building an I2C expander	 40

The I2C port expander circuit	 41
Let's walk through the circuit	 42

Building your expansion board	 44
Using ready-made expansion boards	 45

Hobbytronics MCP23017 expander port kit	 45
PiFace Digital I/O expansion board	 46
Gertboard	 46

Summary	 47
Chapter 4: Adding a Magnetic Contact Sensor	 49

Prerequisites	 49
The working of magnetic contact sensors	 50
Setting up the I2C port expander	 52

Enabling the I2C Bus	 52
Installing the I2C tools package	 54

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[iii]

Finding our devices	 55
Setting up the port expander	 56

Connecting our magnetic contact sensor	 57
Monitoring the sensor	 59
Anti-tamper circuits	 60
Getting into the zone	 62
Summary	 64

Chapter 5: Adding a Passive Infrared Motion Sensor	 65
Prerequisites	 66
Passive infrared sensors explained	 66

Setting up your PIR sensor	 67
Give me power (again)	 69
Connecting our PIR motion sensor	 69
12V alarm zone circuits	 71

Alarm circuit protection	 71
How it works	 72

Wireless PIR motion sensors	 73
433-MHz wireless alarm systems	 73
Connecting a 433-MHz receiver	 74

The alternative approach (because we have no choice)	 76
The receiver wiring diagram	 77

Logging detection data	 78
Summary	 79

Chapter 6: Adding Cameras to Our Security System	 81
Prerequisites	 82
The Raspberry Pi camera module	 82

Connecting the camera module	 83
Setting up the camera module	 84

Testing the camera module	 86
Be a video star	 87

Caught on camera	 88
You have new mail	 89

Setting up the e-mail sender client	 90
Sending attachments	 91
Where was that taken?	 91

Night vision	 92
An illuminating experience	 93
The Elaborate light switch re-visited	 94
Is that a badger?	 96

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[iv]

Using USB cameras	 97
Installing the webcam	 97
Taking a snap	 98

Snap snap snap	 98
The multicamera setup	 99

The Slave driver	 100
Summary	 100

Chapter 7: Building a Web-Based Control Panel	 101
Installing the web server	 102

Testing the PHP5 installation	 103
Being in control	 105

Arming yourself	 106
The master configuration file	 106
Creating the web page	 108

The control panel HTML template	 108
Giving it some style	 109
Making it dynamic	 117

Getting a bit of help first	 117
The main PHP code	 118
I'm someone else	 118

Remote access to our control panel	 120
Setting up a dynamic DNS account	 121

The Raspberry Pi dynamic DNS client	 122
Setting up a static IP on your Raspberry Pi	 122
Port-forwarding	 123

Summary	 125
Chapter 8: A Miscellany of Things	 127

Arming and disarming the system	 127
Driving inductive loads	 129
Beyond intrusion	 130

A simple water detector	 130
How it works	 131

A simple temperature sensor	 132
How it works	 133

A carbon monoxide detector	 133
Remote administration for our Raspberry Pi	 135

Getting Webmin	 135
Updating the repository sources	 135
Importing the signing key	 136
Accessing Webmin locally	 137
Remotely accessing Webmin	 139

Summary	 139

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[v]

Chapter 9: Putting It All Together	 141
Alarm system diagram	 141

Overview of the system elements	 143
A +12V power supply	 143
A +3.3V power supply	 143
The opto-isolator input module	 143
The port expander	 143
An arm/disarm switch	 144
Alarm outputs	 144

Designing the control scripts	 144
Building the control script	 146

Exploring the script code	 146
Declarations	 146
Updating config settings	 147
Setting up the GPIO	 148
Setting up the I2C port expander	 150
Decoding the zone inputs status	 150
Initialization	 152
The system monitoring loop	 153
Arming the system	 153
Monitoring the zones	 154
Entry delay	 155
Sounding the main alarm	 156
Disarming and resetting the system	 156
We're done (almost)…	 157

Automatically starting the system	 158
Preserving the SD card	 159

Creating a RAM-based file system	 159
Conclusion	 160

Tips for building systems	 160
Summary	 161

Index	 163

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[vii]

Preface
The Raspberry Pi is a powerful, low-cost, credit-card sized computer, which lends
itself perfectly as the controller of a sophisticated home security system. Using
the available on-board interfaces, the Raspberry Pi can be expanded to allow
the connection of a virtually infinite number of security sensors and devices.
The Raspberry Pi has the processing power and interfaces available to build a
sophisticated home security system but at a fraction of the cost of commercially
available systems.

Building a Home Security System with Raspberry Pi starts off by showing you the
Raspberry Pi and how to set up the Linux-based operating system. The book then
guides you through connecting switch sensors and LEDs to the native GPIO connector
safely, and it also shows you how to access these using simple Bash scripts. As you
dive further in, you'll learn how to build an input/output expansion board using
the I2C interface and power supply, allowing the connection of the large number of
sensors needed for a typical home security setup.

The book features clear diagrams and code listing every step of the way to allow you
to build a truly sophisticated and modular home security system.

What this book covers
Chapter 1, Setting Up Your Raspberry Pi, starts out by taking our Raspberry Pi out
of its box and preparing it for being the centerpiece of our home security system.
Along the way, we will install and set up the operating system, connect our Pi to
the network, and access it remotely. We'll also secure our Pi and make sure it can
keep the right time.

Chapter 2, Connecting Things to Your Pi with GPIO, explores the GPIO port and the
various interfaces it features. We'll look at the various things we can connect to the
Raspberry Pi using the GPIO including switches and sensors as we start to build our
home security system.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[viii]

Chapter 3, Extending Your Pi to Connect More Things, looks at ways of expanding the
number of things we can connect to our Raspberry Pi, overcoming the limitation of
having just the eight digital pins available to us on the GPIO by tapping into other
interfaces on the GPIO and building our own input/output expansion board.

Chapter 4, Adding a Magnetic Contact Sensor, starts to actually connect things to our
home security system, such as magnetic sensors and other types of contact devices.
You will learn how to program our I2C expansion port using Bash scripts so that
we can read the state of our sensors and switch on warning LEDs. We'll also start
to develop the control scripts for our system that will allow us to arm and disarm
the system and add delay timers.

Chapter 5, Adding a Passive Infrared Motion Sensor, looks at passive infra-red motion
detectors, how they work, and how we can connect wired and wireless types to our
home security system. We'll also learn how to create log files based on events using
Bash scripts so that we can maintain a history of detector states as they change.

Chapter 6, Adding Cameras to Our Security System, teaches you how to connect both
Raspberry Pi camera modules and USB cameras to our Pi board in order to take
image and video captures when required by our home security system. We'll
also learn how to overlay our images with informative text and have the files
immediately emailed to us.

Chapter 7, Building a Web-Based Control Panel, gets down to the business of starting to
put together modules by building a mobile-optimized web-based control panel for
our home security system. You'll learn how to set up a web server on our Raspberry
Pi and manipulate files using our web control panel, meaning we'll start to explore
how all of the elements so far will come together as part of our final system.

Chapter 8, A Miscellany of Things, looks a few other bits and pieces, such as adding
other sensors to our home security system that are not necessarily related to intruder
detection. We'll also look at how we can administer our entire Raspberry Pi system
remotely using a web browser in addition to accessing our home security control
panel.

Chapter 9, Putting It All Together, is the moment we've all been waiting for; we're
going to take all of the elements and concepts from the previous chapters and put
together our full system comprising the elements we want to feature. The star of
the show will be our Bash scripts, which will glue together all of these elements
and provide the control logic for the entire system.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[ix]

What you need for this book
You'll need the following software:

•	 Gparted dd fake-hwclock
•	 Win32 Disk Imager 0.9.5 PuTTY
•	 i2c-tools

Who this book is for
This book is for anyone who is interested in building a modular home security
system from scratch using a Raspberry Pi board, basic electronics, sensors, and
simple scripts. This book is ideal for enthusiastic novice programmers, electronics
hobbyists, and engineering professionals. It would be great if you have some basic
soldering skills in order to build some of the interface modules.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"Extract 2015-09-24-raspbian-jessie.img to your Home folder."

A block of code is set as follows:

passwd
root@raspberrypi:/home/pi# passwd
Enter new UNIX password:
Retype new UNIX password:
passwd: password updated successfully
root@raspberrypi:/home/pi#

Any command-line input or output is written as follows:

$ sudo apt-get install fake-hwclock

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[x]

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Type the
IP address of the Raspberry Pi into the Host Name box and click on Open."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[xi]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[1]

Setting Up Your Raspberry Pi
Before we can get into the realms of building our home security system, there's a bit
of preparation work needed to get our Raspberry Pi up and running. So, we're going
to go through the initial steps needed to get our Pi ready to be worked on.

In this chapter, we will cover the following topics:

•	 Exploring the different versions of the Raspberry Pi that are available
•	 Choosing the right Raspberry Pi version for your system
•	 Preparing the SD Card with the Raspbian Operating System
•	 Learning how to remotely access the Raspberry Pi over your home network
•	 Updating our operating system with the latest packages
•	 Exploring the time-keeping options on the Raspberry Pi
•	 Setting the user and root passwords to secure our Raspberry Pi

Which flavor of Pi?
Since the Raspberry Pi was released in 2012, there have been several versions
of the mini-PC board released. I'll go though each of the versions released with
their respective features so that you can choose which one is suitable for your
particular project.

www.it-ebooks.info

http://www.it-ebooks.info/

Setting Up Your Raspberry Pi

[2]

The good news is that it doesn't really matter which version you use in terms of
power, as our home security system doesn't necessarily need loads of processing
power, depending on what you want your system to do, of course). You might
have an older board kicking about that will work for you.

The other piece of good news is that the GPIO interface pin layouts are the same
across all the versions. The later versions have more pins, but the original 26 pins
still remain in the same place.

The latest Raspberry Pi Version 2

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[3]

Raspberry Pi Model A
The baby of the family is the Model A; it was released as a lower-cost version of the
Model B, shown in the following section. Its main differences from the Model B are
that it features just 256Mb of memory and has no Ethernet port; so if you want to
connect this board to a network, you are limited to using a USB Wi-Fi dongle.

The Raspberry Pi Model A Board Layout

www.it-ebooks.info

http://www.it-ebooks.info/

Setting Up Your Raspberry Pi

[4]

Raspberry Pi Model B
This was the first version of Raspberry Pi to be released; an updated revision,
which improved the power system and USB port protection, came later. It features
512Mb of memory and has an Ethernet port for connecting to your network. This is
probably the most common version used, and having the Ethernet port is incredibly
useful, especially to get up and run quickly in order to set up and configure your Pi
without the need for a keyboard and monitor.

The Raspberry Pi Model B Layout

Raspberry Pi Model B+ and Model 2
In 2014, the Raspberry Pi Foundation released a new version of the board that
had some fundamental changes as compared to the previous version. The most
fundamental changes were the board layout, form factor, and mounting points—
much to the dismay of the many enclosure and accessory manufacturers out there.

In fact, we were in the middle of prototyping an enclosure for a commercial product
that we were developing based on the Raspberry Pi—fortunately we caught wind
of the board change in the nick of time and were able to change our enclosure to
support the upcoming model B+.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[5]

The main electronic changes to this board are the addition of 2 more USB ports that
can deliver more power to peripherals, an expanded GPIO interface, and the removal
of the composite video port that is now consolidated into the audio jack. It also now
uses a micro SD card with a better card slot.

In February 2015, a more powerful Raspberry Pi was released: the Raspberry Pi
Model 2. It's similar to the Model B+ in terms of form-factor and interfaces, but
is now reportedly 6-times faster than the Model B/B+ with its upgraded ARM
processor and 1Gb of memory.

At the same low cost of less than £30, it's a fantastic little board and a great power-
house for embedded systems.

The Raspberry Pi Model B+ and Model 2 Layout

Model comparison table
Model A Model B Model B+ Version 2

Processor ARM1176JZF-S 700 MHz processor,
VideoCore IV GPU

Quad-
core ARM
Cortex-A7
CPU and a
VideoCore
IV dual-
core GPU

Memory 256Kb 512Kb 512Kb 1Gb

USB Ports 2 2 4 4

www.it-ebooks.info

http://www.it-ebooks.info/

Setting Up Your Raspberry Pi

[6]

Model A Model B Model B+ Version 2
Ethernet No Yes Yes Yes

No.GPIO
Pins

26 26 40 40

Storage SD Card SD Card Micro SD
Card

Micro SD
Card

So which one?
Essentially, any version of the Raspberry Pi will work with the modules presented in
this book, but if you want to exploit features such as the camera, which may require
more processing power and memory, or want to have an Ethernet connection, you'll
need to use the Model B.

If you want to start plugging additional stuff into the USB port, such as a GSM
modem, then I recommend that you use the Model B+ as it delivers more power
to those kinds of devices without the need for additional USB hubs.

If you want to do more processing with video and images from an attached camera,
or want to connect lots of things, then go for the latest Model 2 board. I'm going
to assume that's the one you have chosen for this project, and that's the one I'll be
using throughout this book; just be aware of any limitations if you choose to use
an earlier model.

The Raspberry Pi Foundation site has more detailed
information about each model. You can visit it at
https://www.raspberrypi.org/products.

Preparing the SD card
The Raspberry Pi only boots from an SD card (or micro SD card for the B+ and v2
models), and cannot boot from an external drive or USB stick (well that's not strictly
true, but is beyond the scope of this book).

It's recommended that you use a Class 10 SD card for performance, but a Class 4 or 6
card will be fine for this project. You'll need to have a minimum card size of 4Gb.

Now that we have our Raspberry Pi board and SD card to hand, we need to prepare
the SD Card specifically for our home security system. We're going to use the standard
Raspbian operating system as there really is no reason to use any other distribution;
it's the de facto choice for the Raspberry Pi.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[7]

Downloading the Raspbian image
You'll need to grab the latest Raspbian OS image from the Raspberry Pi site at
https://www.raspberrypi.org/downloads.

Download the Raspbian OS ZIP file containing the image to your PC.

At the time of writing, the latest version was Raspbian Jessie
version 4.1 (2015-09-24-raspbian-jessie.zip).

Once downloaded, unzip the file and you'll have the file, 2015-09-24-raspbian-
jessie.img.

The next thing to do is burn this image to your SD card…

Using Microsoft Windows
On a Windows PC, the best way to burn the image to your SD card is to use the
Win32 Disk Imager utility. This can be downloaded from http://sourceforge.
net/projects/win32diskimager.

The current version, at the time of writing, is 0.9.5.

It doesn't have an installer, and launches directly from the EXE file.

Now, it's time to create your SD card image:

1.	 Insert your SD card into the PC and launch the Win32 Disk Imager.
2.	 Select the SD card device drive letter (make sure it's right!).
3.	 Choose the Raspbian image file you've just downloaded.

www.it-ebooks.info

http://www.it-ebooks.info/

Setting Up Your Raspberry Pi

[8]

4.	 Click on the Write button to create the SD card image.

Using Linux
On a Linux PC, you'll need to use the gparted and dd utilities to burn the image on
your SD card.

Carry out the following steps to create your SD card image:

1.	 Extract 2015-09-24-raspbian-jessie.img to your Home folder.
2.	 Insert your SD card into the PC.
3.	 If you're not already in a shell terminal window, open one (you can use

Ctrl + Alt + T on most graphical-based desktop systems).
4.	 Type the following command in the shell terminal:

$ sudo fdisk -l

In the list check, your SD card appears as a drive device (for example, /dev/
sdb). It's crucial that you ensure you use the right device in the next step.
We'll assume that your device is /sdb.

5.	 To burn the image to the SD card, type the following command:
$ sudo dd if=2015-09-24-raspbian-jessie.img of=/dev/sdb

6.	 Hit Enter and go make a cup of tea or coffee as this will take a while.
You'll know that it's finished when the command ($) prompt re-appears.

7.	 When the command prompt does re-appear, type the following command:
$ sudo sync

8.	 Once that command has finished, you can remove the SD card from the PC.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[9]

Booting your Pi
You're now ready to boot up your Raspberry Pi. Pop your shiny new SD card into it
and plug in the power.

Assuming that you have a monitor attached to your Pi, you should see your system
booting up nicely. Although you could wait for it to boot up and connect to it via a
terminal session (we'll look at that later), I recommend that you connect a monitor
to it, at least in the first instance, just to make sure everything is working correctly.

In the new Jessie version of Raspbian, you'll boot straight into a desktop GUI, which
is a major change from previous versions, where you'd be taken to the raspi-config
utility, the first time the system is run, where you'd set up your Pi, and importantly,
expand the file system to use the entire space available on your SD card.

Debian Jessie boots into the GUI by default

Expanding the file system
When you first create your Raspbian SD card, you'll only be left with about 200Mb
of space in the file system, regardless of the size of your SD card. This is not much
use, so we want to expand the file system so that it uses all of the available space
on the card.

Fortunately, this is very easy on the Raspberry Pi now, as this function is available
in the Raspberry Pi Configuration Tool on the desktop.

www.it-ebooks.info

http://www.it-ebooks.info/

Setting Up Your Raspberry Pi

[10]

To access the new configuration tool, go to Menu and select Preferences |
Raspberry Pi Configuration.

The new Raspberry Pi Configuration Tool

Goodbye GUI
Most of our work is going to be done in the command-line
interface (CLI). Therefore, before we reboot the system in a
minute, let's change the Boot option by selecting To CLI, as
shown in the previous screenshot, so boot into the command
line going forward.

Anyway, now we click on the Expand Filesystem button, and in a couple of seconds,
you'll see a confirmation message. The filesystem will be expanded when the system
next reboots.

Using the raspi-config utility
If you have an older version of Raspbian, or you're not using the desktop GUI, then
you'll need to use the raspi-config utility (which is still better than the old days when
we had to do this manually in the shell). The first time you boot up, you'll be taken
straight to the raspi-config utility.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[11]

The first option is the Expand Filesystem option; select this and you'll see various
commands scrolling up the screen. Once it's finished, you'll see the following message:

Root partition has been resized.

The filesystem will be enlarged upon the next reboot

Click on OK.

Select Finish on the config screen and reboot your Pi when prompted.

After your Pi reboots with its fuller file system, you'll be taken straight to the shell
prompt where you can log in with the default user and password.

Login: pi

Password: raspberry

www.it-ebooks.info

http://www.it-ebooks.info/

Setting Up Your Raspberry Pi

[12]

Setting up your Pi
When you boot into the shell and have the Ethernet connected, hopefully the Pi will
have connected to your home network and acquired an IP address from your router.
If this is the case, you should see the IP address that has been issued just before the
login prompt, as shown in the following screenshot:

As you can see from my screenshot, it's given me the IP address, 192.168.0.118.
This is good because I can now access the Pi remotely, using a secure shell (SSH)
client to connect to it from the comfort of my laptop. This is particularly useful when
my Pi is in the office and I want to sit on my sofa in front of the telly but still work on
it, which I often do when I'm feeling lazy.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[13]

Downloading the example code
You can download the example code files from your account at
http://www.packtpub.com for all the Packt Publishing books
you have purchased. If you purchased this book elsewhere, you
can visit http://www.packtpub.com/support and register
to have the files e-mailed directly to you.

To do this, download PuTTY: a utility that allows you to connect to shell terminals
remotely over the network. You can download it from http://www.putty.org.

Install and launch PuTTY and you're ready to connect to your Pi remotely from the
comfort of your sofa.

www.it-ebooks.info

http://www.it-ebooks.info/

Setting Up Your Raspberry Pi

[14]

Type the IP address of the Raspberry Pi into the Host Name box and click on Open.
You'll be connected to your Pi in a remote terminal window. Once you've logged in,
you can do pretty much everything on your Pi, as if you were sitting in front of it.

We'll assume from now on that most of the work we do will be through a remote
shell session, unless highlighted otherwise.

If you want to use the command line to launch the Raspberry Pi remote shell—for
example, from another Linux system—use the following command from your
terminal window:

ssh pi@192.168.0.125

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[15]

You'll then be prompted for the Pi's password and taken into a shell session.

The Pi shell session launched from a Debian desktop terminal window

Getting up to date
Something that you should get into the habit of doing is updating the operating
system regularly; even though you may have the latest image installed, it's very
likely that there are updated packages available. To update your OS, enter the
following command:

$ sudo apt-get update

After this, enter the following one:

$ sudo apt-get dist-upgrade

This may take a while, depending on the number of updates required.

Getting the right time
The Raspberry Pi doesn't have on-board real-time clock hardware. This is one of the
deliberate omissions to keep the cost of the board down. Instead, the Pi gets its time
when it boots up from time servers on the Internet using the Network Time Protocol
(NTP). However, if there is no Internet connection at the time of booting up, then the
time will be wrong.

In our security system, it's important that the time is kept accurate
so that timestamps on log files and images are correct.

www.it-ebooks.info

http://www.it-ebooks.info/

Setting Up Your Raspberry Pi

[16]

fake-hwclock
The fake-hwclock package is included in the latest Raspbian distributions, but in
other past versions it wasn't. If you need to install it, use the command that follows:

$ sudo apt-get install fake-hwclock

fake-hwclock is used by the Raspberry Pi to try and keep time when there is no
network connection. It will regularly save the current time and restore it at boot-up.
The obvious problem with this is that if the Pi has been switched off a few days,
then the time will be set to the last time that it was on, using fake-hwclock.

If you want to see what time it last logged, type the following command:

$ cat /etc/fake-hwclock.data

ntp
The Network Time Protocol (NTP) is used when there is an Internet connection
available and it can request the latest most accurate time from one or more time
servers on the Internet.

By default, the ntp service is enabled on the latest Raspbian distribution, but it will
initially get its time at boot-up from fake-hwclock if there is no Internet connection.
There may be times when it's necessary to force the ntp service to update from the
Internet—for example, if the Internet connection is restored sometime after boot-up.

To force the ntp service to update from the Internet, use the following commands:

$ service ntp stop

$ ntpd –gq

$ service ntp start

Talking of security…
There's no point in having a security system if the system itself is not secure. So, now
we'll change the default password for the pi user.

From the prompt, type the following command:

$ sudo passwd pi
pi@raspberrypi ~ $ sudo passwd pi
Enter new UNIX password:
Retype new UNIX password:
passwd: password updated successfully

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[17]

What is this sudo thing anyway?
You'd have noticed that we've been putting sudo at the start of each command
that we run in the terminal window. This is so that commands are run as the root
user—the highest security level. This elevated security is required to perform many
operations. sudo actually means super do.

If you can't be bothered to type sudo every time, then you can switch to the super
user by typing the following:

$ sudo su

You'll see that the prompt changed from a $ to a #, which indicates that you are now
running as the root user.

So, this might be a good time to change the root user password too! To do this, type
the following:

passwd
root@raspberrypi:/home/pi# passwd
Enter new UNIX password:
Retype new UNIX password:
passwd: password updated successfully
root@raspberrypi:/home/pi#

Connecting via Wi-Fi
You can also connect your Raspberry Pi to your network using Wi-Fi by plugging
a USB dongle into it. There are additional configuration steps required to make this
work, which are beyond the scope of this chapter, but there are many resources
available covering this subject.

You can find recipes for connecting your Raspberry Pi using Wi-Fi in
the Raspberry Pi Networking Cookbook by Rick Golden, published
by Packt Publishing (https://www.packtpub.com/hardware-
and-creative/raspberry-pi-networking-cookbook).

www.it-ebooks.info

http://www.it-ebooks.info/

Setting Up Your Raspberry Pi

[18]

Summary
In this chapter, we took our Raspberry Pi out of its box and prepared it to be the
centerpiece of our home security system. Along the way, we installed and set up
the operating system, connected our Pi to the network, and accessed it remotely.
We also secured our Pi and made sure it could keep the right time.

In the next chapter, we're going to explore the GPIO port and the various interfaces
it features. We'll look at the various things we can connect to the Raspberry Pi
using the GPIO port, including switches and sensors, as we start to build our
home security system.

www.it-ebooks.info

http://www.it-ebooks.info/

[19]

Connecting Things to
Your Pi with GPIO

The Raspberry Pi has lots of ways to connect things to it, such as plugging things
into the USB ports, connecting devices to the on-board camera and display ports,
and connecting things to the various interfaces that make up the GPIO connector.
As part of our home security project, we'll be focusing mainly on connecting things
to the GPIO connector.

In this chapter, we will cover the following topics:

•	 Examining the GPIO connector and what each of the pins does
•	 Learning about the I2C and SPI buses that will be used in later chapters
•	 Connecting an LED and a switch safely to the data pins, and accessing these

data pins using simple scripts
•	 Understanding the USB ports and their limitations

Prerequisites
Along with your Raspberry Pi, you'll need the following parts for the projects in
this chapter:

•	 A breadboard
•	 An LED
•	 A 220 ohm resistor (red, red, black)
•	 A 10K ohm resistor (brown, black, orange)
•	 A pushbutton or toggle switch

www.it-ebooks.info

http://www.it-ebooks.info/

Connecting Things to Your Pi with GPIO

[20]

•	 A hook-up wire:

Our little collection of parts

Say hello to the GPIO
The GPIO connector is the large group of pins on the edge of your Raspberry
Pi board. On earlier models, there were 26 pins that made up this connector.
But, ever since the Model B+, there have been 40 pins, although the first 26 pins
are identical to the previous models, and it's these 26 pins we'll be working with.
You won't need to worry about the rest of the pins.

Essentially, the GPIO connector provides access to following:

•	 Power supplies
•	 Digital I/O pins
•	 I2C bus
•	 SPI bus
•	 UART Serial bus

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[21]

Some of the pins on the GPIO have more than one purpose, depending on how they
are programmed. The following diagram is a reference guide to all of the pins on
the GPIO. The GPIO numbers on the yellow labels relate directly to those on the
Broadcom chip, and are numbers generally used within the scripts.

Digital I/O pins
The GPIO has 8 digital input/output pins available for use. These can be used to
switch things on and off (in output mode), and also to detect when external things are
switched on and off (input mode). Each pin can be configured independently for input
or output operation, and I have labelled them D0 to D7 in the preceding diagram.

Obviously, if we were to use each of these pins to drive or sense an individual
device, we would be limited to a maximum of 8 devices that could be connected
to our home security system. In many scenarios, this is probably not enough, so in
the next chapter we'll learn how to use the GPIO to connect many more things to
our Raspberry Pi.

www.it-ebooks.info

http://www.it-ebooks.info/

Connecting Things to Your Pi with GPIO

[22]

The I2C bus
The Inter-Integrated Circuit (I2C) bus is a low-speed interface that can connect
multiple devices and simple sensors using a 2-wire interface without the need for a
separate clock or device select line. Typically, this bus can operate at speeds up to
100kbit/s. We'll be covering this in the next chapter to help us expand our digital
I/O and connect more things.

The SPI bus
The Serial Peripheral Interface (SPI) bus is a synchronous two-way serial connection
between a master and a slave device. It can be used to access more complex sensors or
drive displays.

The master device provides the synchronization, and each transmission is
synchronized by a clock pulse on SCLK (GPIO11/pin 23). Data is transmitted
on the MOSI (master-out-slave-in) and MISO (master-in-slave-out) (pins 19
and 21 respectively).

The UART serial bus
The Universal Asynchronous Receiver and Transmitter (UART) bus is a way to
communicate with external devices over a serial data connection, and is a common
way for the Raspberry Pi to access data from devices such as GPS modules, which
often come with serial connections. It can be a little bit fiddly getting the Pi set up to
communicate with UART-connected devices, as it's also tied in with the operating
system's serial console.

USB ports
We're probably all familiar with Universal Serial Bus (USB) ports as we use them to
connect all sorts of things to our PCs, such as keyboards, mouses, and hard disks. On
the Raspberry Pi, it's just the same; we can connect keyboards, mouses, and dongles
to give us Wi-Fi and Bluetooth connectivity.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[23]

Official Raspberry Pi USB Wi-Fi Dongle

On earlier Raspberry Pi models, the amount of current that the ports delivered was
pretty low and caused all sorts of problems if too much current was drawn by the
connected devices. This was significantly improved from the model B+ onwards,
and it's now possible to connect GSM/LTE dongles without any problems.

There are still limitations, however, if you want to connect things such as hard disk
drives; these can still draw more current than what can be supplied by the Raspberry
Pi USB ports, so it's recommended that a powered USB hub or USB power injector be
used when connecting these types of devices to your Pi.

Power connections
The GPIO connector also provides access to the on-board power supplies. The +5V
connection (pins 2 and 4) is essentially the +5V input from the external power supply
connected to the micro-USB power port. This can be used to power small external
circuits if necessary, although it is recommended that an additional external +5V
supply be used if significant current is required.

The +3.3V supply (pins 1 and 17) is the output from the on-board 3.3V regulator
and provides a small amount of current up to 50mA. If you need to draw more
than 50mA for your external circuits, then you should use an external power supply.
I'll show you how to build one later in this book.

The I/O pins on the Raspberry Pi operate at 3.3V levels. Connecting
voltages higher than this to the pins could irreversibly damage your
Pi. If you follow the instructions in this book, then everything should
be fine, but randomly connecting things to your Pi that use lots of
power will break it!

www.it-ebooks.info

http://www.it-ebooks.info/

Connecting Things to Your Pi with GPIO

[24]

Getting acquainted with the GPIO
Before we embark on connecting lots of things to our Pi board, it might be a good
idea to just get acquainted with the GPIO through a couple of simple projects that
will help us understand how to interact with the digital I/O pins using shell scripts.

Let there be light
This simple little project shows how to connect a GPIO output to an LED, and switch
it on and off using shell commands.

The following diagram shows how to connect up the circuit using a breadboard:

The pretty diagram that you just saw was produced using a free
software tool from fritzing, which is an open-source hardware
initiative to make electronics accessible as creative material for
anyone. Download it from fritzing.org.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[25]

The LED anode (the positive side) is connected to the D0 digital I/O (pin 11 of the
connector or GPIO17). When this pin is switched on, it will provide a 3.3V supply
to the LED.

The LED is connected to the Ground pin via a 220R resistor on the cathode (negative
side). The resistor limits the voltage to the LED and the current through it, otherwise
it would burn out, as you can only supply up to about 2V to LEDs. With a current of
around 10mA being drawn by the LED on a 3.3V supply, a 220R resistor works well
to protect both it and the GPIO.

Here's the circuit diagram for it:

Calculating LED Resistor Values…
While this book is not really a course on electronics theory, I thought it
would be handy to show you how to work out the resistor values for
LEDs using Ohms Law, as we'll be covering this again later.
As I mentioned, a typical LED will drop about 2V across it, although this
varies according to color and type. This is called the forward voltage of
the device or VLED.
The current required by an LED is around 10mA, again depending on its
specification. We'll call this current flowing through the LED, ILED.
Essentially, the voltage across the resistor will be the supply voltage
minus the voltage drop across the LED (for example,.2V). So, if we
have a 12V supply (VS), the voltage across the resistor will be 10V
(VS – VLED).
According to Ohms Law, the resistance R is the voltage across it divided
by the current flowing through it: R = V / I. As we require 10mA flowing
through it, with a voltage of 10V across it, the resistance required is 10V
divided by 0.01A, which is 1,000 ohms or 1K.
In summary, R = (VS-VLED) / ILED.

www.it-ebooks.info

http://www.it-ebooks.info/

Connecting Things to Your Pi with GPIO

[26]

Now, to turn the LED on and off: the GPIO pins are actually mapped as devices in
the Linux file system, so using shell commands is easy, although there are many
libraries available out there that allow you to control the GPIO using Python, for
example. However, so that you don't have to learn a new language, we're going
to do everything using shell commands.

The D0 pin that we are connected to is actually GPIO17 as far as the Raspberry Pi is
concerned (take a look at the previous diagram for reference). The first thing we need
to do is create file access to this GPIO pin. We do this with the following command:

$ sudo echo 17 > /sys/class/gpio/export

We then have to set the pin's direction to out:

$ sudo echo out > /sys/class/gpio/gpio17/direction

Next we can switch the pin on to turn the LED on:

$ sudo echo 1 > /sys/class/gpio/gpio17/value

To switch the LED off, we use this command:

$ sudo echo 0 > /sys/class/gpio/gpio17/value

Once we've finished with a GPIO port we can remove its file access:

$ sudo echo 17 > /sys/class/gpio/unexport

Getting flashy…
We can put these commands together in a single Bash script to create a flashing LED.
To create the flashy script, create a new text file in nano or some other text editor.
Or, as I usually do (don't forget that I'm quite lazy), create the text file on your laptop,
and then copy it to the remote Pi using WinSCP (although, read my note in the box
that follows if you want to prevent some heartache).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[27]

The following is the code listing for led-flash.sh:

#!/bin/bash
sudo echo 17 > /sys/class/gpio/export
sudo echo out > /sys/class/gpio/gpio17/direction
loop forever
while true
do
 sudo echo 1 > /sys/class/gpio/gpio17/value
 sleep 0.5
 sudo echo 0 > /sys/class/gpio/gpio17/value
 sleep 0.5
done

If you use Windows to create your files, remember to save your
files with the end-of-line format being Linux (a single 0x0a or Line
Feed character) rather than Windows (0x0a + 0x0d or Line Feed
+ Carriage Return characters), otherwise you might find that your
Bash script does not run properly on the Raspberry Pi. Text editors
on Windows, such as the excellent Notepad++, will convert your
script line ends for you.

Run the script by calling led-flash.sh (assuming that's what you've called it). If
you're in the same directory as the script, this can be done by typing the following:

$ sudo bash ./led-flash.sh

Since this is an endless loop with the LED flashing on and off at half second intervals,
you'll need to break out of it by using CTRL + C to stop the script.

Don't forget to remove the GPIO pin from file access by using the following command:

$ sudo echo 17 > /sys/class/gpio/unexport

Otherwise, you'll see the error, echo: write error: Device or resource busy,
if you re-run the script, as the first line tries to set GPIO17 for file access again.

www.it-ebooks.info

http://www.it-ebooks.info/

Connecting Things to Your Pi with GPIO

[28]

Adding a switch
In this project, we'll see how to connect a switch to a GPIO input and write a shell
script to read the state of the switch—that is, whether it's switched on or off.

Connect a switch to your Pi's GPIO27 pin, as shown in the following diagram:

Pulling yourself together
A really important thing to realize about GPIO inputs is that they are in what's called
a floating state. This means that, as far as the operating system is concerned, it doesn't
know what its reference state is unless it is presented with a known voltage.

This is where our resistor comes into play—it pulls up the GPIO pin to a known
voltage of 3.3V, which gives it a default state of HIGH (or binary 1).

When the pushbutton switch is pressed, this takes the GPIO pin to 0V, which is a
LOW state (or binary 0).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[29]

Here's the circuit diagram for our GPIO switch:

The detection script
Now that we've connected the switch to our Raspberry Pi, we need to write a little
script that will detect when the switch has been pushed.

It's similar to the previous LED script shown, but this time we'll set the GPIO pin as
an input and read its logic level.

In this project, we've connected our switch to D2, which is GPIO27 (again, refer to
the earlier GPIO pin-out diagram). As before, we need to create file access for the
pin by entering the following command:

$ sudo echo 27 > /sys/class/gpio/export

And now, set its direction to in:

$ sudo echo in > /sys/class/gpio/gpio27/direction

We're now ready to read its value, and we can do this with the following command:

$ sudo cat /sys/class/gpio/gpio17/value

You'll notice that it will have returned 1, or a high state. This is because of the
pull-up resistor we were talking about earlier. This means that its default state,
when the switch isn't pushed, is high.

www.it-ebooks.info

http://www.it-ebooks.info/

Connecting Things to Your Pi with GPIO

[30]

When the switch is pushed, the value should be read as 0 or low. If you have
more than two hands, you can try this by pushing the button and re-running
the command. Or, we can just create a script to poll the switch state.

The code listing for poll-switch.sh is as follows:

#!/bin/bash
sudo echo 27 > /sys/class/gpio/export
sudo echo in > /sys/class/gpio/gpio27/direction

loop forever
while true
do
 # read the switch state
 SWITCH=$(sudo cat /sys/class/gpio/gpio27/value)

 if [$SWITCH == 1]; then
 #switch not pushed so wait for a second
 sleep 1
 else
 #switch was pushed
 echo "You've pushed my button"
 fi
done

When you run the script and then push the button, you should see You've pushed
my button scrolling up the console screen until you stop pressing it.

Don't forget that, once we've finished with the GPIO port, we can remove its file access:

$ sudo echo 27 > /sys/class/gpio/unexport

We've now seen how to easily read a switch input, and the same circuit and script
can be used to read other sensors, such as door contact switches, reed switches, or
anything else that has an on and off state.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[31]

The most elaborate light switch in
the world
By combining the two little projects earlier, we can now create a system that will do
something useful when the pushbutton switch is pushed—for example, switching
on the LED that we also have connected. Granted, we could just connect the LED
directly to the switch and a battery, but not only would that be boring, it would
defeat the point of what we're trying to do, which is programmatically sensing
and controlling things.

Here's the breadboard layout for our elaborate light switch:

www.it-ebooks.info

http://www.it-ebooks.info/

Connecting Things to Your Pi with GPIO

[32]

And here's the circuit diagram:

The illuminating script
Our full Bash script for our elaborate light switch is demonstrated next. This will
loop endlessly, detecting the state of the switch GPIO pin, and will turn on the LED
GPIO pin when the switch is pushed.

The code listing for light-switch.sh is as follows:

#!/bin/bash

#set up the LED GPIO pin
sudo echo 17 > /sys/class/gpio/export
sudo echo out > /sys/class/gpio/gpio17/direction

#set up the switch GPIO pin
sudo echo 27 > /sys/class/gpio/export
sudo echo in > /sys/class/gpio/gpio27/direction

loop forever
while true

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[33]

do
 # read the switch state
 SWITCH=$(sudo cat /sys/class/gpio/gpio27/value)

 #0=Pushed 1=Not Pushed
 if [$SWITCH = "1"]
 then
 #switch not pushed so turn off LED pin
 sudo echo 0 > /sys/class/gpio/gpio17/value
 else
 #switch was pushed so turn on LED pin
 sudo echo 1 > /sys/class/gpio/gpio17/value
 fi
 #short delay
 sleep 0.5
done

So, here we are—we have a script that will detect an input state and do something in
response; in this case, it will switch on an LED. We're now forming the basis of how
we are going to put together our home security system.

Remember, don't connect anything to your Raspberry Pi in place
of the LED, such as a buzzer or any other device that consumes
lots of current. This is likely to irreversibly render your board
dead. We'll look at ways, later on in this book, to control devices
with higher power requirements.

Summary
In this chapter, we introduced various ways to connect your Raspberry Pi to the
outside world by looking at the various interfaces available on the GPIO. We've
understood how to connect things to the digital pins on your Raspberry Pi's GPIO
connector, and control and read them using simple Bash scripts. In particular, we've
safely and properly connected a switch to a digital input pin, which will form the
foundation for our home security detection circuits.

In the next chapter, we'll look at ways to expand the number of things we can
connect to our Raspberry Pi, overcoming the limitation of having just the 8 digital
pins available to us on the GPIO by tapping into other interfaces on the GPIO and
building our own input/output expansion board.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[35]

Extending Your Pi to
Connect More Things

We're now going to look at ways to expand the number of things we can connect
to our Raspberry Pi, overcoming the limitation of having just the 8 digital pins
available. We're going to do this by building our own expansion board to give us
what could in theory be an unlimited number of digital inputs and outputs.

We're also going to overcome the limitations of the +3.3V power available to us by
building our own +3.3V power supply that taps off the Raspberry Pi's +5V supply.

In this chapter, we will cover the following:

•	 Looking at the I2C bus in detail
•	 Learning about serial-to-parallel and parallel-to-serial conversions
•	 Building a +3.3V power supply
•	 Building an I2C-based port expander to give us more inputs and outputs
•	 Looking at alternative ready-made expansion boards

Prerequisites
Along with your Raspberry Pi, you'll need the following parts for the projects in
this chapter:

•	 A copper strip board (or Veroboard®)
•	 An LD1117V33 voltage regulator
•	 A 2 x 100nF, 16V ceramic capacitor
•	 A 10uF, 16V electrolytic capacitor

www.it-ebooks.info

http://www.it-ebooks.info/

Extending Your Pi to Connect More Things

[36]

•	 A 1 x MCP23017 16-bit port expander IC
•	 A 4 x 10K-ohm resistor
•	 A hook-up wire

The I2C bus
In the previous chapter, we briefly touched on the I2C bus (or Inter-Integrated
Circuit bus), which is a way to connect multiple devices together using just two
wires. I2C was invented in the early 1980s by Philips as a way to link computer
peripherals together using a common protocol. You can think of I2C as a kind of
early form of USB.

I2C typically operates at relatively low speeds of up to 100kbit/s, compared to much
faster interfaces such as Ethernet, which typically operates at up to 1Gbit/s, or USB,
which can operate at up to 480Mbit/s. However, this is fast enough to connect basic
sensors, display devices, or other peripherals such as real-time clocks—in fact; there
are faster versions of the protocol that some devices will support.

Just 2 wires
I2C is a bi-directional serial communication protocol that operates over two wires:

•	 The Serial Data Line (SDA) wire transmits the data to and from the master
device. Referring back to the GPIO reference in Chapter 2, Connecting Things
to Your Pi with GPIO, this is pin 3 of the GPIO connector.

•	 The Serial Clock Line (SCL) wire handles all timing and flow control for the
data on the bus. This is pin 5 of the GPIO connector.

You'll remember that we spoke about pull-up resistors, in the previous chapter,
which ensure that the GPIO digital inputs are pulled to a known state. Well, this is
required for the two lines on the I2C bus, and by default the lines should be pulled
high with resistors. However, on the Raspberry Pi, this has already been done for us,
so we don't need to worry about it in our case.

What's your address?
So, if we can use just two wires to communicate with multiple devices, how does our
Raspberry Pi know which device to talk to? This is where the I2C protocol comes into
its own. Each device connected to the bus has its own unique ID, or address, made
up of 7-bits or 10-bits. Some devices will allow you to set the address to ensure that
it's unique within your system, but other devices have their addresses hardcoded by
the manufacturer.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[37]

The two addressing methods (7- and 10-bit) are interoperable and you can have
devices on the same bus that use either method, since the Raspberry Pi itself
supports both methods. So, with a 10-bit addressing scheme, you can see that we
can connect a lot of things to our Raspberry Pi using the I2C bus, as compared to
the limited number of digital pins on the GPIO!

There is a parallel universe
Data is normally transmitted in serial mode or parallel mode, depending on
things such as the required data speed, cable distance, and functionality. Most
data communication between systems is transmitted in serial mode over a couple
of wires, such as the I2C bus mentioned earlier, but this also includes things such
as the Ethernet, RS232/422, and USB.

Within a computer system, data is transmitted in parallel mode using buses whose
width matches the word size of the digital system communicating between chips.
In parallel mode, all bits of the data word are transmitted simultaneously over their
respective data lines within the bus, rather than as sequential bits along a single line.

The digital I/O pins we've been talking about (including the ones on the Raspberry
Pi's GPIO connector) are usually grouped together as a parallel bus. On our system,
we'll be using parallel buses (groups of digital I/O pins) that are 8-bits wide. That is,
the bus has 8 wires that can be set or read using 8-bit binary values (our word size).

A representation of an 8-bit data bus

www.it-ebooks.info

http://www.it-ebooks.info/

Extending Your Pi to Connect More Things

[38]

So, in the preceding diagram we have the 8 digital I/O wires on our bus. If we
wanted to make the bits (or wires) 0, 1, and 4 high or on, with the rest low or off,
then we'd address the bus and set it to the following values:

•	 In binary, this would be 00010011
•	 In hex, this would be 0x13
•	 In decimal, this would be 19 (represented by 16+2+1)

So, in other words, to switch on data lines 0, 1, and 4, we send the byte value, 19,
to the bus's address.

Serial-to-parallel conversion
So, now that we know what numbers to send to our bus to switch on or switch off
certain digital outputs, or read certain digital inputs, how do we do this using our
I2C bus, which is a serial interface?

Fortunately, there are many integrated circuits (ICs) available that allow us to do
this simply and easily. These ICs are called shift registers and perform serial-to-
parallel conversions, taking the data from the serial I2C bus and converting the
incoming bits to a parallel representation by setting each of the parallel bus outputs.

When reading the parallel bus data lines as inputs, the reverse happens, converting the
bits into a serial form on the I2C bus; this is known as parallel-to-serial conversion.

This is quite a simplistic overview and there are many resources available that explain
these operations; we'll see this in action later in the chapter, but first…

Give me power
You'll remember from the previous chapter that most things to do with the GPIO
operate on a +3.3V level, rather than the +5V level that is often associated with
digital circuits. This is the same with our I2C-based shift registers—they need to
operate on +3.3V levels as well, in order to work with the Raspberry Pi.

You'll also recall, however, that there's not much +3.3V juice available directly from
the Raspberry Pi—in fact, just 50mA. This is really not enough for our interface. So,
before we go any further, we're going to build our own +3.3V power supply, which
is sufficient for our system.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[39]

For our power supply, we're going to use a basic 3.3V voltage regulator
(type LD1117V33) that will take our slightly more plentiful +5V supply from the
Raspberry Pi and regulate it to a nice smooth +3.3V supply. We should be able to
draw a few hundred milliamps from this supply—enough for the I/O circuitry on
our security system.

The parts required for our power supply are as follows:

•	 A LD1117V33 voltage regulator
•	 A 100nF, 16V ceramic capacitor
•	 A 10uF, 16V electrolytic capacitor

Here's the circuit diagram for our +3.3V power supply:

As with all our components, the LD1117V33 regulator is widely available from many
electronic component suppliers.

www.it-ebooks.info

http://www.it-ebooks.info/

Extending Your Pi to Connect More Things

[40]

Our power supply can be easily built on a small piece of strip board like this:

The strip board is shown from the top in the preceding layout.
That is, the copper tracks are on the underside of the board and the
components are inserted from the plain top-side and soldered to the
strips underneath. In this layout, it's not necessary to cut any of the
tracks on the strip board.

Building an I2C expander
Right, now that we've worked out what we need to do to give us more digital I/O
pins, and built our power supply for it, we can build our expansion port.

To do this, we're going to use a chip designed exactly for the job: the MCP23017,
manufactured by Microchip and widely available from electronic suppliers.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[41]

The MCP23017 is an integrated circuit that connects directly to the I2C bus
(the SDA and SCL pins we talked about earlier) and gives us 16 bi-directional
input and output pins. If required, we can connect up to 8 of these chips to
the same bus, giving us up to 128 inputs and outputs (yes, I know that I said
"virtually unlimited" previously, but I'll explain later).

An MCP23017 integrated circuit pinout

The full datasheet for the MCP23017 is available on Microchip's site,
which can be found at www.microchip.com/MCP23017.

The I2C port expander circuit
The basic parts you will need to build your port expander are as follows:

•	 A 1 x MCP23017 16-bit port expander IC
•	 A 4 x 10K-ohm resistor
•	 A 1 x 100nF, 16V ceramic capacitor
•	 A copper strip board (or Veroboard®)
•	 A hook-up wire

www.it-ebooks.info

http://www.it-ebooks.info/

Extending Your Pi to Connect More Things

[42]

Here's the circuit diagram for our I2C port expander circuit. It looks complicated,
but actually most of the lines are for connections to the outside world:

Let's walk through the circuit
On the right-hand side, the connector, CN1, is our Raspberry Pi GPIO connector—
note that we're only using four of the pins:

•	 The +5V Output (Pin 2)
•	 The I2C SDA (Pin 3)
•	 The I2C SCL (Pin 5)
•	 The 0V/GND (Pin 6)

You'll see my friend, the +3.3V regulator (U1, C1, and C2), discussed earlier. This takes
the +5V output from the Raspberry Pi and gives us our +3.3V for use by the rest of
the circuit.

The main component is U2—our MCP23017 port expander chip. Pins 9 and 10 on the
chip are connected to the +3.3V supply and the GND, respectively, and C3 is used as
a discoupling capacitor close to the chip to reduce any noise on the power supply.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[43]

The MCP23017 can be used as a 16-bit expander, or as 2 x 8-bit expanders. In our
circuit, we have split the device to give us 2 x 8-bit busses: I/O Bus A and I/O Bus B.
Each pin on the busses can be programmed to work as an input or output.

Connecting things to the input/output pins
The input and output pins on our busses can't usually be
connected to things directly—they provide limited current
and need to be interfaced correctly to things such as buzzers
and lights; they must also be protected against damaging
input signals. In the next chapter, we'll learn how to connect
safely to our I/O ports.

The I2C SDA/SCL lines from the Raspberry Pi are connected to pins 12 and 13 of the
chip. You'll see that there are also additional I2C outputs (PL1 to PL3) to illustrate
that we can connect other devices to the I2C bus, such as another MCP23017 chip to
give us a further 16 digital I/Os.

Resistor R1 is used to hold the RESET pin (18) high. By bringing this pin low, you
can reset the chip.

Resistors R2 to R4 are used to hold the address pins A0 to A2 (pins 15-17) low.

Highs and lows

When we use the terms high and low in respect to digital pins or inputs, we are simply
describing whether the logic level of the pin is at a binary 1 or 0, respectively. Digital
pins don't like to be left floating—whereby they are neither high nor low—as this can
cause unpredictable operations. Therefore, we always make sure they are held at a
determined logic level. In general, connecting the pin to 0V (or ground) ensures that
it's held at logic level 0, and connecting to the positive supply (e.g. 3.3V) ensures that
it's held at logic level 1.

Remember I mentioned earlier that you can connect a large number of devices to the
I2C bus in order to give us a virtually unlimited number of I/O pins? Well, actually
in many cases, this is not strictly true. This is because of the addressing scheme for
I2C devices, which makes all devices identifiable when they are all connected to the
same two wires (their unique address). The address of each device is agreed upon in
advance by manufacturers to make sure that everyone's devices will work together
on the same bus without creating conflicts. As such, the address is pre-programmed
into the device.

www.it-ebooks.info

http://www.it-ebooks.info/

Extending Your Pi to Connect More Things

[44]

The MCP23017 has been given its unique base address, but can be modified by
changing the address pins A0-A2 high or low; thus, in effect, it can be configured
to be one of 8 addresses. This is why you can only have a maximum of 8 of these
chips on the same I2C bus, giving us a theoretical maximum of 128 I/O pins
(that is, 16 I/Os x 8 chips).

Building your expansion board
This circuit can easily be built on a small piece of stripboard. The following image
shows an example of the layout, which looks a bit simpler than the circuit diagram.
In the next chapter, we'll learn how to connect up our board and program it so we
can check that it works.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[45]

When using stripboard, make sure that you cut the tracks between
the two rows of pins on the MCP23017 so that they aren't shorted
together. You can buy track cutters, which make this task easy,
from many electronic suppliers. Again, on the preceding layout,
the copper strips are underneath the board with the components
on the plain side.

You might want to add the +3.3V power supply circuit to the same piece of
stripboard too, to keep everything contained together.

In the next chapter, we will learn how to program the device
so that we can use it in our home security system.

Using ready-made expansion boards
While it's much more satisfying to build your own stuff, you might want to look at
buying some readily available expansion boards for your home security system if
you're not yet confident with your soldering iron, or if you just simply don't have
the time.

Following are some ready-made expansion boards that you can obtain; they should
work as part of our home security system with a bit of modification to our scripts to
support the libraries that are required by the hardware.

Hobbytronics MCP23017 expander port kit
This kit is almost identical to our own circuit in the previous section of this chapter.
The kit comes with an MCP23017, a PCB, and various connectors. The boards are
designed to be daisy-chained together so that you can have multiple expanders to
give you more input/output ports. Note that this kit is not pre-built and requires
soldering, but I thought I'd include it because it's the board that I use to build
such systems when prototyping. You can get it directly from Hobbytronics at
http://bit.ly/mcp23017.

www.it-ebooks.info

http://www.it-ebooks.info/

Extending Your Pi to Connect More Things

[46]

PiFace Digital I/O expansion board
The PiFace Digital I/O expansion board is a pre-built version of our board, but it uses
the MSP23S17 chip variant that operates over the SPI bus instead of the I2C bus. The
board is designed with 8 inputs and 8 outputs, as well as several additional pieces of
hardware including a couple of relays, some LEDs, and some switches. Note that the
code in this book for our system will need to be modified to work with this board,
since it uses a different interface and different libraries. It's available from Farnell
element14 at http://bit.ly/2434230.

The PiFace Digital I/O Expansion Board

Gertboard
The Gertboard is a Raspberry Pi add-on board designed by Gert van Loo—one
of the hardware engineers involved in the original design of the Raspberry Pi.

It's a very capable and reasonably-priced board that comes fully assembled and
features 12 buffered input/output lines, open collector drivers for switching
on devices that need a fair bit of current (such as sounders and lights), plus a
digital-to-analog converter.

You can only connect one of these boards to your Raspberry Pi, so if you need
more I/O lines you'll need to use something else as well. But it's a great board to
experiment with. Interestingly, it features an ATmega microcontroller, which is
the same as the one that the Arduino uses, and you can, in fact, use the Arduino
development environment for the device.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[47]

Once again, the code in this book for our system will need to be modified to work
with this board.

The Gertboard is available from Farnell element14 at http://bit.ly/2250034.

Assembled Gertboard

Summary
We've now looked at the I2C bus in detail, and learned how to build an expansion
port using this interface so that we can connect many more things to our Raspberry Pi,
rather than being restricted to just the 8 digital I/O pins offered by the Raspberry Pi's
GPIO port. In addition to that, we explored other ready-made boards that can be used
to connect lots of things to our Raspberry Pi. We have also built a power supply that
will give us more +3.3V power than we can obtain from the Raspberry Pi directly.

In the next chapter, we'll start to actually connect things to our home security
system, such as magnetic sensors and other types of contact devices, and learn
how to program our I2C expansion port using Bash scripts so that we can read
the state of our sensors and switch on warning LEDs. We'll also start developing
the control scripts for our system, which will allow us to arm and disarm the
system and add delay timers.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[49]

Adding a Magnetic
Contact Sensor

Now that we have built our port expander hardware, we need to learn how to
program it so that our Raspberry Pi can detect the things that we connect to it as
part of our home security system. We will begin by connecting switches to our
system in the form of magnetic sensors—the most common component used in
home security systems to detect intrusions through doors and windows.

In this chapter we will cover the following topics:

•	 Learning about reed switches and how they work as door sensors
•	 Enabling and setting up the I2C bus on the Raspberry Pi
•	 Connecting our sensor to an input on our port expander
•	 Learning how to access our I2C port expander from a Bash script
•	 Writing a script that will detect the state of our door sensor
•	 Looking at other types of contact sensors that can be connected

and programmed in the same way

Prerequisites
You'll need the following parts for the exercises in this chapter:

•	 Our Raspberry Pi and Port Expander board
•	 8 x 10K ohm resistors
•	 A magnetic door sensor and magnet
•	 A hook-up wire
•	 A 4-core alarm wire

www.it-ebooks.info

http://www.it-ebooks.info/

Adding a Magnetic Contact Sensor

[50]

The working of magnetic contact sensors
A reed switch is essentially what makes up our magnetic contact sensor. A reed
switch comprises two metal contacts made of magnetic material (called reeds) placed
inside a glass envelope. When the contacts touch, the switch is on, and when they
spring apart, the switch is off and the circuit is broken. The way to control these
contacts is by means of a magnetic field that makes or breaks the circuit when it is
near to the switch.

A normally open (NO) type of reed switch is normally switched off until a magnet
comes close to the switch, which then pulls the contacts together.

A normally closed (NC) variety works the other way with the switch being normally
on until the magnet comes close to the switch, pulling the two contacts apart.

A typical type of reed switch

You can now see how a magnetic reed switch can be a useful sensor in security
applications, and in particular for our home security system, to detect when doors
and windows are opened and closed. We simply put a reed switch on the door frame
and connect it to our security system, with the magnet placed opposite the switch on
the actual door. When the door opens and closes, it makes or breaks the contacts in
our reed switch.

Reed switches and their magnets, which are designed for security systems, usually
come enclosed in little plastic housings, making them easy to screw onto the door
and frame.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[51]

A door-frame-mounted magnetic sensor containing a reed switch (Type: Cherry MP201801)

The magnetic sensor is mounted on the door frame (obviously, so it can connect to
the alarm circuit wires), while the respective magnet will be attached to the door,
close enough to the edge such that the sensor contacts connect (or break, depending
on the type) when the magnet is directly opposite it.

A respective door-mounted magnetic actuator (Type: Cherry AS201801)

www.it-ebooks.info

http://www.it-ebooks.info/

Adding a Magnetic Contact Sensor

[52]

Setting up the I2C port expander
Now that we have built our port expander, we need to get it ready to connect our
sensors to. First, we need to install the tools on the Raspberry Pi to allow us to use
the I2C bus and program devices connected to it, including the MCP23017 chip that
makes up our port expander.

Don't connect your port expander to the Raspberry Pi until
after you've set up the I2C bus on your system.

Enabling the I2C Bus
It's highly likely that the module for using the I2C bus hasn't been loaded by default.
Fortunately, doing this is fairly straightforward and can be done using the Raspberry
Pi configuration tool. Perform the following steps:

1.	 Launch the Raspberry Pi configuration tool with the following command:
$ sudo raspi-config

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[53]

2.	 Select option 8: Advanced Options.

3.	 Select Option A7: I2C.

www.it-ebooks.info

http://www.it-ebooks.info/

Adding a Magnetic Contact Sensor

[54]

4.	 Select <Yes>.
5.	 Reboot your Raspberry Pi for the setting to take effect.

Now that the I2C bus has been enabled, we need to set up the operating system
so that the required modules are loaded each time the system boots. To do this,
perform the following steps:

1.	 Edit the Modules file using the following line:
$ sudo nano /etc/modules

2.	 Add the following lines to the file:
i2c-bcm2708

i2c-dev

3.	 Save the file and exit Nano.

Installing the I2C tools package
So that we can easily access the I2C bus using Bash scripts, we need to install the
i2c-tools package:

$ sudo apt-get install i2c-tools

Once installed, we should shutdown our system:

sudo shutdown –h now

After activity has stopped, switch off your Raspberry Pi, connect your port expander
to the GPIO port, and power it back up so that we can start using it.

As a quick sanity check, you can see if I2C support has been loaded by typing:

$ ls /dev/i2c-*

This should give you a list of at least one bus—for example, /dev/i2c-1—if the
module is loaded. If it's not, you'll probably get the following response:

 ls: cannot access /dev/i2c-*: No such file or directory

In this case, you'll need to check back through the previous steps as something hasn't
happened properly.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[55]

Finding our devices
The i2c-tools package installs several different tools to help us use our port
expander attached to the bus. The i2cdetect tool allows us to find I2C buses
and devices attached to the busses.

To get a list of I2C busses on our system, type the following:

$ sudo i2cdetect -l

You should get the following response:

pi@raspberrypi ~ $ sudo i2cdetect -l

i2c-1 i2c 20804000.i2c I2C adapter

The preceding output shows that we have one I2C bus, and this will be the one
connected to our GPIO. Note that earlier models of the Raspberry Pi may return the
device ID as being i2c-0.

We can now use the tool to scan for all of the devices attached to our bus. We do this
by specifying the bus ID, as in the following command:

$ sudo i2cdetect 1

With nothing attached to the I2C bus (that is, without our port expander attached)
we'd expect to see the following output:

pi@raspberrypi ~ $ sudo i2cdetect 1

WARNING! This program can confuse your I2C bus, cause data loss and
worse!

I will probe file /dev/i2c-1.

I will probe address range 0x03-0x77.

Continue? [Y/n] Y

 0 1 2 3 4 5 6 7 8 9 a b c d e f

00: -- -- -- -- -- -- -- -- -- -- -- -- --

10: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

20: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

30: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

40: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

50: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

60: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

70: -- -- -- -- -- -- -- --

pi@raspberrypi ~ $

Nothing found on the I2C bus

www.it-ebooks.info

http://www.it-ebooks.info/

Adding a Magnetic Contact Sensor

[56]

With our port expander attached, we should see the following output:

pi@raspberrypi ~ $ i2cdetect 1

WARNING! This program can confuse your I2C bus, cause data loss and
worse!

I will probe file /dev/i2c-1.

I will probe address range 0x03-0x77.

Continue? [Y/n] Y

 0 1 2 3 4 5 6 7 8 9 a b c d e f

00: -- -- -- -- -- -- -- -- -- -- -- -- --

10: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

20: 20 -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

30: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

40: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

50: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

60: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

70: -- -- -- -- -- -- -- --

pi@raspberrypi ~ $

Our I2C port expander slave device can be found at the address, 0x20 (32 decimal).

The preceding address is the location of our MCP23017 chip
connected to the I2C bus. If you don't see this, then there's
probably a wiring issue and you'll need to go back and check.

You'll recall that we can add up to 8 of these devices to the I2C bus by setting the
A0-A2 pins to a unique address. If A0 is set to high, then the address of the device
will be shown as 0x21 (33 decimal)—and up to 0x27 (39 decimal), if all pins are high.

Setting up the port expander
As discussed in the previous chapter, we can have 2 x 8-bit busses on our port
expander, with each pin being defined as an input or output. On the expander
board we built, we called them I/O BUS A and I/O BUS B.

To configure the MCP23017 chip on the I2C bus, we can send it the appropriate
commands using the i2cset tool we installed earlier.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[57]

On our home security system, we are going to assign all of the pins on BUS A as
inputs for connecting our sensors to it. To do this, we use the following command:

$ sudo i2cset –y 1 0x20 0x00 0xFF

What does this command mean?
•	 -y: This runs the command without user interaction.
•	 1: This is the ID of the bus (for example, i2c-1).
•	 0x20: This is the address of the chip.
•	 0x00: This is the data register on the chip (in this case,

the PORT A pin assignment).
•	 0xFF: This is the Value loaded into the data register

(in this case, all pins as inputs—binary %11111111).

You can check that the data register has been set correctly by reading it using
the following:

$ sudo i2cget –y 1 0x20 0x00

This should return a value of 0xFF, which is the value we set earlier.

Connecting our magnetic contact sensor
Now that we've got our port expander working with the Raspberry Pi, we can start
connecting things to it and create the scripts that will monitor the sensors on the
input pins.

Let's go back to our port expander stripboard that was built in the previous chapter
and connect our magnetic sensor. But first, we need to ensure that all of our inputs
are pulled low by default using 10Kohm resistors. This prevents them from being
in a floating state and giving us spurious data when we read the port's data.

In the following diagram, I've connected the pull-down resistors
externally, but you may want to include them directly on the
stripboard. Toward the end of this book, we'll have a new board
layout that brings everything that we've been prototyping so far
together in a single solution.

To check the port's input value, we use the i2cget command:

$ sudo i2cget –y 1 0x20 0x12

This should return 0x00, which means all inputs are off (binary %00000000).

www.it-ebooks.info

http://www.it-ebooks.info/

Adding a Magnetic Contact Sensor

[58]

What does this command mean?
•	 -y: This runs the command without user interaction.
•	 1: This is the ID of the bus (for example i2c-1).
•	 0x20: This is the address of the chip.
•	 0x12: This is the data register on the chip (in this

case, the PORT A read value).

Now let's connect one side of our magnetic sensor's reed switch to data pin 0 of
BUS A (which we'll call GPA0 for reference), and the other side to our +3.3V line.
By default, the switch is normally open (NO), which means that the input is still
pulled low by the resistor.

But when you move the accompanying magnet near to the sensor switch (for example,
if the door is closed), the switch will close, pulling the input high to the +3.3V line. If
you read the port's input value now, by running the same command, you should see
that it returns 0x01, indicating that the first bit is high (binary %00000001).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[59]

Monitoring the sensor
Now that we have everything in place and our magnetic sensor is detecting whether
the door is closed, we can monitor this sensor with a simple Bash script that uses the
I2C tool commands that we installed earlier.

The code listing for poll-magnetic-switch.sh is as follows:

#!/bin/bash
sudo i2cset –y 1 0x20 0x00 0xFF

loop forever
while true
do
 # read the sensor state
 SWITCH=$(sudo i2cget –y 1 0x20 0x12)

 if [$SWITCH == "0x01"]
 then
 #contact closed so wait for a second
 echo "The door is closed!"
 sleep 1
 else
 #contact was opened
 echo "The door is open!"
 fi
done

When you run the script and then push the button, you should see "The door is open!"
scrolling up the console screen until you stop pressing it.

By combining this with our elaborate light switch project in chapter 2, we can switch
on the LED connected to GPIO17 when the door is opened:

#!/bin/bash

#set up the LED GPIO pin
sudo echo 17 > /sys/class/gpio/export
sudo echo out > /sys/class/gpio/gpio17/direction

#set up port expander
sudo i2cset –y 1 0x20 0x00 0xFF

www.it-ebooks.info

http://www.it-ebooks.info/

Adding a Magnetic Contact Sensor

[60]

loop forever
while true
do
 # read the sensor state
 SWITCH=$(sudo i2cget –y 1 0x20 0x12)

 if [$SWITCH == "0x01"]
 then
 #switch not pushed so turn off LED pin
 sudo echo 0 > /sys/class/gpio/gpio17/value
 else
 #switch was pushed so turn on LED pin
 sudo echo 1 > /sys/class/gpio/gpio17/value
 fi
 #short delay
 sleep 0.5
done

Later, as we add more sensors to different input pins, we will need to
be able to detect which one has been triggered. We'll look at writing
a Bash function later in the book, which will parse the returned hex
value from the i2cget command, and tell us exactly which of the 8
inputs is high.

Anti-tamper circuits
If you take a closer look at our system, you might realize that depending on whether
you are detecting normally open or normally closed sensor switches, it is possible
to tamper with the sensor channel by simply cutting the wire. So, in the case of a
normally open switch, it wouldn't activate the monitoring system if the wires were
cut, as it would always appear to be open, even if the switch was closed.

To mitigate this, most alarm systems feature a 4-core wiring system to connect the
sensor devices to the main control board—two cores are used to connect the sensor
and two are used to create an anti-tamper loop, which then itself forms a sensor
input for monitoring.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[61]

4-core alarm cable

Take a look at the following circuit so that you see what I mean:

www.it-ebooks.info

http://www.it-ebooks.info/

Adding a Magnetic Contact Sensor

[62]

In this circuit, we have two sensors: one for monitoring a window and one for
monitoring a door. These are connected to the I/O BUS A inputs, 0 and 1 (or GPA0
and GPA1, as we like to call them). As before, they are pulled down to 0V by resistors
but, when switches are closed, the positive voltage rail takes the inputs high.

However, we've also added an anti-tamper loop throughout the whole system,
which is connected to GPA7 for monitoring. The loop is daisy-chained through each
of the cables connecting the sensors to the controller board. All the time the loop is
intact, the input GPA7 is kept high, but if the cable is cut anywhere, the current will
stop flowing through it and the resistor, R3, will pull the input low. This will then be
detected by the monitoring script.

Many security sensor products provide a facility to terminate anti-tamper loop wires
within them.

So, in our home security system, we're going to assign GPA7 as our anti-tamper loop.

Getting into the zone
It may have occurred to you by now that even a modest-sized property could require
plenty of door and window sensors; thus, if we used one input for each sensor, we'd
soon run out unless we put more and more port expanders onto the system. The same
is true for commercially available security systems.

So, the way this is dealt with is by creating zones, with each zone containing a group of
sensors. A bedroom, for example, may be defined as one zone with a window sensor, a
door sensor, and movement detector forming that zone. In this scenario, each sensor is
connected to the next in a series (or daisy-chained); if one of them triggers, it will alert
the monitoring system that there was a trigger in the zone. Obviously, though, it may
not necessarily be the actual detector, which in most applications isn't really an issue.

However, this can introduce some challenges when we're considering mixing normally
open and normally closed type sensors within a zone, but this is something we will
explore later on in this book.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[63]

The other sensors you can use are listed as follows:

•	 Hall Effect Sensor: Hall-effect sensors are simple electronic chips that are
used to detect magnetic fields placed near them. They are not dissimilar
to the reed switch we've been using; however, because they are electronic
devices, they are able to measure the degree of proximity in relation to the
magnet (or the strength of magnetism), rather than being just on or off, as is
the case with the reed switch. Also, because they are solid-state, they could
be seen as being more reliable than mechanical switches.

A low-cost hall effect sensor—Allegro Microsystems A1302KUA-T

•	 Pressure Mat Sensors: Pressure mats are used to detect a person standing or
walking on them, and can be placed under a floor mat to hide them from sight.
They can even be used in a chair to detect people sitting on it. Essentially,
they are switches, just like the reed switch, except that they are activated by
the pressure of walking on them, and so, can be wired and used in exactly the
same way as for our magnetic sensor circuits.

A pressure switch can be used under a front-door mat

www.it-ebooks.info

http://www.it-ebooks.info/

Adding a Magnetic Contact Sensor

[64]

Summary
In this chapter, we got our I2C-based port expander configured and working, and
we experimented with it by connecting a magnetic sensor—one of the most commonly
used sensors in security systems. We've also learned how to interact with I2C devices
using Bash scripts, and how to read and write data to and from these devices.

In addition, we should now be beginning to understand the various elements and
building blocks of a security system, including anti-tamper loops and zones. These
are concepts that will prepare us for later on in the book, when we start to piece all
of this together and build our final, all-encompassing system.

In the next chapter, we will look at passive infra-red motion detectors, how they
work, and how we can connect the wired and wireless types to our home security
system. We'll also learn how to create log files based on events using Bash scripts
so that we can maintain a history of detector states as they change.

www.it-ebooks.info

http://www.it-ebooks.info/

[65]

Adding a Passive Infrared
Motion Sensor

In the previous chapter, we started adding basic but commonly used magnetic
switch sensors to our home security system and reading their status to protect doors
and windows from intrusion. We also looked at how we can divide our home into
zones, such as by individual rooms, so that we can group our sensors into logical
circuits, which can then be identified as part of these zones rather than as individual
sensor inputs.

We will now add motion sensors to our system in the form of Passive Infra-Red
(PIR) detectors. These detectors come in a variety of types, and you may have seen
them lurking in the corners of rooms. Fundamentally, they all work in the same
way, which is detecting the presence of body heat within a certain range; so, they
are commonly used to trigger alarm systems when somebody (or something,
such as a pet cat) enters a room.

A typical PIR motion sensor (type GardScan QX-PIR)

www.it-ebooks.info

http://www.it-ebooks.info/

Adding a Passive Infrared Motion Sensor

[66]

In this chapter, we will:

•	 Learn how PIR detectors work and how they are set up
•	 Connect a wired PIR detector to an input on our port expander
•	 Start using a 12V power supply instead of 3.3V in our zone circuits
•	 Learn how to interface 12V circuits safely with our GPIO ports
•	 Learn how to connect a 433 MHz wireless receiver to our Raspberry Pi
•	 Connect a remote-controlled switch to our system using 433 MHz radio

signals
•	 Write a script that will detect and log the state of our detector inputs when it

changes

Prerequisites
You'll need the following parts for this chapter (apart from the components used in
the previous chapter):

•	 A passive infrared detector, the wired type (this is available from any
DIY store)

•	 A 4N25/4N35 opto-isolator
•	 A 1N4148 diode
•	 A 1-Kohm resistor
•	 A 10-Kohm resistor
•	 A 433 MHz receiver module and remote transmitter (this is optional)
•	 A 12V power supply
•	 A hook-up wire
•	 A 6 core alarm wire

Passive infrared sensors explained
You might not realize it, but all objects radiate heat energy (including your coffee
table); it's just that you can't see it because heat consists essentially of infrared waves,
which are invisible to the human eye (exactly the same as your TV remote control).
These waves can, however, be detected by electronic devices designed for such a
purpose, such as the infrared receiver in your TV that detects the energy emitted by
your remote control when the buttons are pressed.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[67]

You probably do realize, however, that living things such as us, our cat, and the
mouse under the floorboards generate quite a bit of heat. Passive infrared motion
sensors used in security systems and automatic lights are designed to detect this
level of heat. The term passive is used because the sensors themselves do not radiate
any energy for detection purposes—instead, they just detect the infrared radiation
emitted by objects. This is notably different from devices such as ultrasonic sensors
and radars, which rely on detecting reflections from objects of the pulses of energy
that the sensors send out.

PIR sensors need to be a little smart because they effectively have to cope with
constantly varying temperatures in the room. They settle on the background
temperature of the room they are in, such as that of a wall or floor that they point
to. When an object, such as one of us or our cat, moves between the detector unit
and the background object, the temperature in front of the sensor rises to the body
temperature quickly, and this in turn triggers the system.

Setting up your PIR sensor
PIR sensor devices come in many formats, including different materials in sensor
chips and the lens in front of the sensor view window that can widely affect the range,
field of view, and sensitivity of the device. Therefore, your best guide to setting up a
sensor will usually be in that little bit of instruction paper that comes with it.

However, regardless of the type of PIR sensor you have, here are some general
guidelines when considering where you mount your sensor in order to avoid false
triggers:

•	 Ensure that the device is mounted on a solid foundation and not affected by
vibration

•	 Never mount it in a location where direct or reflected sunlight can be picked
up by the lens

•	 Similarly, never mount the device facing or above heat sources
•	 Don't mount the unit in draughty locations as this will affect its background

temperature calibration

The location of the unit also depends on the area you want to protect. You may want
to detect people entering your living room from the hallway, so your coverage area
could be defined as being from the corner of the room where the device is mounted
to the living room door.

PIR sensors usually offer a fixed field of view (for example 90 or 110 degrees) but
have a varying range, depending on the angle at which they are pointing down and
the height at which they are located.

www.it-ebooks.info

http://www.it-ebooks.info/

Adding a Passive Infrared Motion Sensor

[68]

In my system, I will use a Gardscan QX PIR Detector for my wired units, which
is a pretty good, low-cost unit available from RS Components (the order code is
493-1289). This unit has a field view of 110 degrees and a range of up to 12 meters,
depending on the configurable down angle that it's mounted at. The coverage
patterns for this particular unit, as taken from its datasheet, are shown in the
following figure. Note that from these patterns not every part of the area in front
of the device is covered, which is possibly not quite what you expect. This is why
positioning the units in accordance with the device's datasheet is so important.

GardScan QX-PIR coverage pattern for its 110 degree field view (top/plan view)

Here is a diagram of the side view as well:

GardScan QX-PIR coverage pattern depending on the angle configured plus a "look-down" window (side view)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[69]

Give me power (again)
Before we can go on to connect off-the-shelf security devices to our alarm system,
we need to have a power supply that's compatible with such devices. Typically,
alarm circuits and their devices use a 12V supply with enough current to drive
all the devices and the alarm control system itself.

Fortunately, this is not too difficult to sort out, but it is something we need to
do now; otherwise, we won't be able to connect and power our PIR sensors. The
easiest way to do this is to buy a high-quality 12V mains adapter that provides a
nice regulated supply. These are readily available from online stores or electronics
suppliers. Alternatively, you can build your own 12V regulated supply and add it to
the power supply strip board that we built in Chapter 3, Extending Your Pi to Connect
More Things.

Another option is to use battery-powered PIR sensors, which means
that you wouldn't have to power the unit from the security system's
panel itself; however, it obviously also means that the batteries would
need replacing from time to time. The wireless PIR we will look at
later in this chapter is battery-powered.

We'll take a look at handling higher-voltage sensor circuits later on in this chapter so
that we don't blow up our home security control circuits or the Raspberry Pi.

Connecting our PIR motion sensor
Commercially available alarm systems connect to their devices using a 4 core or 6
core alarm cable. In the previous chapter, we used a 4 core cable because we were
connecting a switch that needed two wires plus an antitamper loop, which needed
another two wires.

For our PIR sensor circuit, we need the same four wires; however, we also need
to send power to the device from the control panel, so an additional two wires are
needed for this—hence the requirement for a 6 core cable.

www.it-ebooks.info

http://www.it-ebooks.info/

Adding a Passive Infrared Motion Sensor

[70]

The following diagram shows the wiring connections for my GardScan PIR sensor,
but this is in fact typical for most off-the-shelf security system devices:

Typical connections for security system sensor devices

Similar to the magnetic contact sensors that we looked at in the previous chapter,
devices can come with either a normally closed (NC) or a normally open (NO)
alarm. This particular device has a normally closed output, which means that the
alarm circuit will be broken when the detector is triggered. This is the preferred
configuration for our sensor devices as this means that they can be wired in a series
within each of our zones.

We can now add this sensor device into the alarm circuit that we started putting
together in the previous chapter. The following diagram shows the circuit for all our
sensors so far wired into a single zone:

A schematic for our zone with all three sensors plus tamper loop in the same zone

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[71]

Up until now, we used the +3.3V power supply to pass through the sensor switches
and alarm circuit. In fact, this is not a good idea, and we've been doing this only for
convenience to test out our GPIO inputs.

In reality, and in our final system, we really should use a 12V supply to pass through
the sensor and antitamper circuits. This is because a higher voltage travels better
through the system and is less susceptible to noise, which could prevent triggering
or cause false triggering. This also makes it compatible with commercially available
systems and accessories.

12V alarm zone circuits
Making our zone circuits use 12V instead of 3.3V is as simple as changing the power
supply, and in fact all of sensors we used so far can handle 12V power passed
through their switches.

However, if we were to present the 12V circuit to the inputs on our GPIO port on the
Raspberry Pi or our port expander, we would expect to see some magic smoke and
smell something burning. So, we need to add some circuitry that allows us to use
12V alarm circuits as well as protect our control board inputs.

Alarm circuit protection
An effective way to protect our zone inputs from 12V alarm inputs is to use a little
low-cost device called an opto-isolator. As the name suggests, this isolates the alarm
circuit from the digital inputs of the control board using light.

Inside an opto-isolator (also called an opto-coupler) is an infrared LED, which
transmits light to a photo-transistor when a current is passed through it, thus
switching it on. The circuits are electrically isolated as they are controlled only
by light.

www.it-ebooks.info

http://www.it-ebooks.info/

Adding a Passive Infrared Motion Sensor

[72]

The 4N25 (shown in the preceding image) and 4N35 are low-cost, 6-pin opto-coupler
devices, and most manufactures tend to use the pin layout shown in the following
diagram:

Now that we know how we will couple our 12V alarm circuit with the inputs on our
control panel, let's build the entire circuit, which we'll use for each of the zones that
we add to our system.

A 12V zone circuit optically isolated from the GPIO input

How it works
At this time, we're assuming that our zone circuits are normally closed—that is, the
alarm triggers when the circuit is broken.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[73]

The 12V supply is passed through the LED of the opto-isolator with the current being
limited by the 1-Kohm resistor. The 1N4148 diode, in reverse, is there to protect the
opto-coupler from reverse-polarity voltages.

The 1-Kohm resistor is calculated from the fact that we have a 12V
supply and a forward voltage drop (Vf) of 1.2V across the LED with
a current (If) of about 10 mA.

While the alarm circuit is closed, the current flows, and the LED is on. This keeps
the transistor on and the input to the GPIO port is held low. If the alarm circuit
is broken, the opto-coupler LED switches off, and this in turn switches off the
transistor. The GPIO input is then pulled high by the 10-Kohm resistor.

This is quite simple but effective, eh?

The other advantage of this circuit is that it should fail positive—that is, if the
opto-coupler should fail for any reason, the alarm input on the GPIO port should
be pulled high, thus triggering it rather than it just failing silently.

Wireless PIR motion sensors
Wireless motion sensors are now commonly available at a low cost, allowing them
to be installed practically anywhere without any wiring from the alarm control
panel. Some of them still require an external power supply, but many operate on
batteries. The alarm system must contain a wireless receiver compatible with the
wireless sensor.

In this section, we'll take a look at how we can use our Raspberry Pi-based security
system with wireless receiver devices.

433-MHz wireless alarm systems
Wireless systems use an unlicensed radio frequency to communicate between
the various components of an alarm system. In the UK, the two most popular
frequencies used are 433 MHz and 868 MHz. While the more recent systems now use
the 868-MHz frequency, 433 MHz is still in widespread use as it has a slightly longer
range than an 868-MHz system. However, the 433-MHz band is also used by many
other devices, which makes it congested, whereas 868 MHz is generally used only for
alarm systems.

While wireless security systems can be convenient, it's important to understand the
advantages and disadvantages of using wireless rather than wired systems.

www.it-ebooks.info

http://www.it-ebooks.info/

Adding a Passive Infrared Motion Sensor

[74]

The advantages are as follows:

•	 Their ease and speed of installation
•	 Their ease of removal, which means that you can take them anywhere with you
•	 Expanding the system in the future can be easier, with most systems

automatically detecting new units

The disadvantages are as follows:

•	 They are more expensive than wired systems, sometimes three or four times
the cost

•	 They are not as secure as wired systems and cannot achieve a security
grading greater than two in accordance with European Standard BSEN 50131
(although, this grade is suitable for domestic properties)

•	 Wireless devices need to have their batteries replaced at regular intervals
•	 Wireless systems are less reliable and susceptible to interference and even

radio jamming

Connecting a 433-MHz receiver
In the past, it was possible to roll out your own 433-MHz receiver for the Raspberry
Pi using an inexpensive receiver, such as the XY-MV-5V module along with the
433-Util library that was put together by a guy called Mark Wolfe, a contributor on
GitHub. Essentially, he gathered together code relating to 433-MHz communications
and put it all into this library. Originally developed for Arduino, this has now been
ported to the Raspberry Pi.

You can then use a readily available transmitter, such as a key fob or any other 433-
MHz transmitter, and take a look at the incoming code as you press each button on
the transmitter.

A XY-MK-5V Generic 433-MHz receiver module

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[75]

Finding a suitable 433-MHz receiver should be easy as websites such as Amazon and
eBay are awash with them, and they cost as little as a couple of pounds.

Note that the 433-MHz band is a free for many types of devices. As
such, there are various different types of receiver, and although they
may all state that they are 433-MHz receivers, they can operate using
AM or FM, and some only detect certain types of data. Some, such as
the Quasar QAM range, may also require special decoder chips in order
to read transmitted data and may only work with paired transmitters.

The receiver module can pick up signals from a key fob remote control, such as the
one shown in the following image (this can be picked up from the home security
section of any local DIY store), which gets an output as a series of square waves.
These square waves are then decoded by the 433-Util software.

A Novar/Blyss 433MHz wireless remote control

I liked this particular remote control because I thought it would be good as the
arm and disarm device for our home security system. I will talk about arming
and disarming in Chapter 8, A Miscellany of Things, where we will look at the
ways to achieve this.

www.it-ebooks.info

http://www.it-ebooks.info/

Adding a Passive Infrared Motion Sensor

[76]

The alternative approach (because we have no
choice)
I started off the previous section with the words "In the past…". This is because in
recent times, I've not been able to get the 433-Util software working with receiver
modules, which used to work in the past). I'm not entirely sure why this is so;
however, I can only guess that because the software uses "bit banging" to decode
incoming data signals, the timing is no longer correct, perhaps because later
Raspberry Pi boards are faster and therefore mess up the routines.

What is bit banging?
Bit banging is a way of using software for serial communication
instead of dedicated hardware. The software is responsible for all the
parameters of the signal, including timing, levels, and synchronization.
Bit banging can be seen as a bit of a hack, but it does allow the
implementation of different protocols at a very low cost without any
hardware changes.

So, in order to make our lives easier (and actually make the device work on all
flavors of Pi), we will resort to using a dedicated receiver module that you can pick
up for less than £5 on Amazon and doesn't require all this software bit banging
nonsense. You'll notice from the following image that it still uses a similar XY-MK-
5V radio receiver; it's just that the host board decodes the signals for us and switches
a relay on or off in response to a command from the remote control.

If you're still interested in the 433-Util software project and want to
try and roll out your own receiver, you can find the original project
at https://github.com/ninjablocks/433Utils.

A Hielec transmitter fob and receiver module, available on Amazon

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[77]

The fact that it just switches a relay on and off means that we can easily implement
this in our home security system because it simply acts as a switch. When you press
the button on the transmitter, the relay switches the contacts on; press it again, and
the relay switches off. The screw terminals on the board provide us with access to the
relay terminals.

The receiver wiring diagram
As we are just dealing with a switch input, we can use the same circuit as we did
with the zone circuit earlier but connected to our arm/disarm GPIO input, which
we'll determine in Chapter 9, Putting It All Together.

Circuit to interface the receiver module with a GPIO input

When the receiver module switches the relay on, this will complete the 12V circuit
through the opto-coupler's LED by turning it on. This will make the transistor pull
the GPIO pin down to ground, giving it a low input.

You can use this type of circuit for any paired receiver for the wireless security
devices that you want to use in your system.

www.it-ebooks.info

http://www.it-ebooks.info/

Adding a Passive Infrared Motion Sensor

[78]

Logging detection data
With any system, it's useful to be able to log data when something happens. We can
do this with our detectors too by writing to a log file every time a detector in a zone
is triggered. This way, you can keep a log of every time someone enters a room,
which you can review at a later date even if the system isn't armed. You can also
keep a log of when the system is armed and disarmed.

Here's a simple script that shows you how to do this whenever an event happens on
our zones connected to the GPIO inputs:

#!/bin/bash

#set up the I2C expansion port
sudo i2cset –y 1 0x20 0x00 0xFF

#reset status
CURR_STATE="0x00"
LAST_STATE="0x00"

#path to the log file
LOG_FILE="/etc/pi-alarm/zones.log"

loop forever
while true
do
 # read the gpio inputs
 CURR_STATE=$(sudo i2cget –y 1 0x20 0x12)

 #check if state has changed
 if ["$CURR_STATE" != "$LAST_STATE"]
 then
 #write change to log file
 TIMESTAMP=`date "+%Y-%m-%d %H:%M:%S"`
 echo "$TIMESTAMP Zone Status Changed from $LAST_STATE to
 $CURR_STATE" > $LOG_FILE
 fi
 $LAST_STATE = $CURR_STATE
 sleep 1
done

The preceding example is quite simple, but it can be made more useful by actually
writing out the zone or zones that change by decoding the hex value that's returned
by the i2cget command in the constituent zones.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[79]

In Chapter 9, Putting It All Together, you'll learn how this is done in order
to display the individual status of each zone on a web page. You can
use exactly the same technique to do this for your log files and, in fact,
output to the log file by expanding on the same script.

Summary
In this chapter, we started off by learning how passive infrared sensors are used to
detect motion to protect a predefined coverage area from intrusion. We then looked
at connecting these to the inputs on our port expander via opto-couplers as we will
now use 12V to power the alarm zone circuits.

We then looked at wireless alarm systems that operate on the open 433-MHz band,
which is commonly used for security devices. After exploring the possibility of using
the legacy 433-Util bit-banging software on our Raspberry Pi to decode the signals
transmitted by devices using a simple receiver, we opted to use a paired receiver
device that will interface easily with our alarm circuit inputs.

Finally, we created a simple script that will log the changes in our alarm inputs to a
text file, which can later be expanded to log exactly what's going on with the system
in detail.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[81]

Adding Cameras to Our
Security System

Until now, we've been putting together the elements that will allow us to connect
sensors to our alarm system to detect intrusions using either switches or passive
infra-red motion detectors, which in turn will tell our Raspberry Pi that something
has happened in a particular zone. These elements will all come together as a whole
system later in this book.

Our system is now going to become a whole lot more sophisticated with the addition
of cameras to take pictures and video clips, and e-mail them to us straightaway when
it detects something.

We'll also use e-mail to send us alerts on our smart phone when we're out and about
when any of the sensors in the system are triggered.

In this chapter we will cover the following topics:

•	 Setting up the Raspberry Pi camera module and learning how to capture
stills and video images

•	 Learning how to overlay captured images with text and time-stamps
•	 Triggering image captures with a motion detector
•	 E-mailing the image and video files to us in real time
•	 Understanding the differences between capturing images during the day

and during the night
•	 Switching on and off security lighting and other high-current devices

when required
•	 Connecting a USB webcam instead of the native camera module

www.it-ebooks.info

http://www.it-ebooks.info/

Adding Cameras to Our Security System

[82]

Prerequisites
You'll need the following parts for this chapter, on top of the components used in the
previous chapter:

•	 A Raspberry Pi standard camera module
•	 A Raspberry Pi NoIR camera module
•	 An Infra-Red LED array and/or visible LED array
•	 A USB webcam

The Raspberry Pi camera module
The Raspberry Pi Camera Module is an official Raspberry Pi accessory that works
with all models of the Pi, and can be used to take high-definition stills and video
images. It connects directly to the Pi board's camera serial interface (CSI) port,
which is dedicated to these modules to enable high-speed operation.

The camera itself is a 5 megapixel fixed-focus sensor supporting 1080p, 720p, and
VGA video modes and still captures.

The official Raspberry Pi Camera Module

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[83]

You can also obtain housings for the camera modules, which, unless you're going to
build your own enclosure for the camera system, I recommend you use.

Raspberry Pi camera housings come in various colors and styles

Connecting the camera module
As previously mentioned, the module connects directly to the Raspberry Pi board via
its dedicated camera interfaces, as shown in the following image. When connecting
the camera, the contact side of the ribbon cable is toward the HDMI connector and
the blue side of the cable is toward the network connector.

Connect the camera module to the dedicated interface

www.it-ebooks.info

http://www.it-ebooks.info/

Adding Cameras to Our Security System

[84]

As you can see in the following image, the ribbon connector is not that long, so the
camera needs to be located close to the Raspberry Pi. By using a camera enclosure,
you could actually mount the camera directly on top of the Raspberry Pi case itself,
if that works for you.

The camera module, housed within an enclosure

Setting up the camera module
Before we can use the camera module, we need to enable camera support on the
Raspberry Pi. To do this, we use the raspi-config tool, as we did with the I2C
bus earlier in our journey.

1.	 Connect to your Raspberry Pi the lazy way from your sofa using SSH,
or directly using a keyboard and monitor.

2.	 Once you've logged in, launch the config tool with the following command:
$ sudo raspi-config

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[85]

3.	 And then, select 5 Enable Camera.

4.	 You'll then be asked to confirm whether you want to enable camera support.

5.	 Select <Enable>.
6.	 Then, select Finish and reboot your Pi to enable the camera settings.

www.it-ebooks.info

http://www.it-ebooks.info/

Adding Cameras to Our Security System

[86]

Testing the camera module
Once your Raspberry Pi has rebooted, your camera should be enabled. We can test
this by taking a still image using the raspistill utility:

$ raspistill –v -o test.img

This will delay for 5 seconds then take a picture, while displaying various pieces of
information, such as that shown in the following screenshot:

The camera module needs at least 128 MB of GPU memory to
operate properly on Raspian. If you experience any issues, first
ensure that the the gpu_mem setting in the /boot/config.txt
configuration file is set to at least 128.

And if all goes well, you should find the file, test.jpg, in your home folder.
As you're connected via the shell, you wouldn't have seen the 5 second preview
image displayed when the command was running.

If you download the image file to your PC, you should see a nice quality snap taken
by the camera module.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[87]

The test photo taken by the Raspberry Pi Camera Module

If you find that raspistill outputs errors when you run it, ensure
that it is connected properly at both ends of the ribbon cable. One
other catch is that sometimes the ribbon that connects the actual
camera lens component to the tiny connector on the camera board
can come loose. Just ensure that this is securely connected too. I've
had this issue a couple times after the camera modules have been
taken out of my box of random test bits to be used.

The raspistill utility has loads of options for manipulating the images it captures,
and we'll use some of them a bit later in our capture script. In the meantime, to see
the available options, run raspistill without any options and they will be listed:

$ raspistill

Be a video star
Now that we know our camera module is working, we can try and capture some
video. To do this, we'll use the raspivid utility. The following command will take
5 seconds of high-definition video and save the file to your Raspberry Pi:

$ raspivid –o test.h264 –t 5000

You'll notice that file is called test.h264—this is because the video is captured as a
raw H.264 video stream. Unfortunately, not many media players will handle these
files (although VLC player will—it rocks and handles practically anything you throw
at it—get it on your PC at www.videolan.org).

www.it-ebooks.info

http://www.it-ebooks.info/

Adding Cameras to Our Security System

[88]

If you want to play the file on smartphones and conventional media players, then
we will need to wrap it in a container format, such as MPEG-4, and give the file a
.mp4 extension.

To do this, we'll use the GPAC package, which is an open source multimedia
framework. It comes with a utility called MP4Box, which is a tool we'll use to
create an MP4 container for our video file:

1.	 First, install the GPAC package:
$ sudo apt-get install gpac

2.	 Once it's installed, run the command to convert the test video we created:
$ MP4Box -fps 30 -add test.h264 test.mp4

You should now have the file, test.mp4, which you can download and play on your
PC or smartphone.

Another popular conversion tool is ffmpeg, which I use a lot on
Windows to convert video files; however, it can be quite complex
and although there is a package for the Raspberry Pi, I actually
couldn't get it to convert properly on the Pi. MP4Box is much
more straightforward and fitting for our needs.

Caught on camera
So, we now have a method of capturing still images and video, which we can put
to use in our security system. If we want to have this running constantly, we could
write a script to take video constantly, but this would soon fill up our memory card
and wouldn't be particularly efficient. So, we'll combine our camera system with the
motion detectors we connected earlier.

In the last chapter, we created an alarm zone which had a couple of sensors and a
motion detector connected to our system on the input GPA0. So, let's write a script
that will take a video clip whenever the motion detector is triggered:

#!/bin/bash

#set up port expander
sudo i2cset –y 1 0x20 0x00 0xFF

loop forever
while true

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[89]

do
 # read the GPA inputs
 GPA=$(sudo i2cget –y 1 0x20 0x12)

 # detect the zone on input 0
 if [$GPA == "0x01"]
 then
 #circuit normally closed so zone is OK
 #short delay
sleep 0.5

 else
 #zone is activated so take a 20 sec video clip

 #filename will be based on current timestamp
 sDate='date +%d%m%y'
 sTime='date +%T'
 echo "Zone 1 Activate at $sDate $sTime"

#take video clip
raspivid –o $sDate$sTime.h264 –t 20000

#convert to MP4
MP4Box -fps 30 -add $sDate$sTime.h264 $sDate$sTime.mp4
 fi
done

You have new mail
Having the images stored on your Raspberry Pi is not really much use—ideally,
you would want the images sent to you straightaway, as soon as they are captured,
so that you can view them on your smartphone.

An easy, quick, and reliable way to do this is to simply have them e-mailed to you.
Hence we're going to add an e-mailing functionality to our home security system
so that image captures are attached to a message and sent to your e-mail address
straightaway, which you can access from your smartphone. The images can then be
removed from your Raspberry Pi to prevent the SD card space from being clogged
up with these reasonably large files.

www.it-ebooks.info

http://www.it-ebooks.info/

Adding Cameras to Our Security System

[90]

Setting up the e-mail sender client
Fortunately, there are some good packages available that will help us with this.
Carry out the following steps to install the email packages we need:

1.	 Update the package installer with the following command:
$ sudo apt-get update

2.	 Install and set up the SMTP client with the following command:
$ sudo apt-get install ssmtp

You'll now need to set up the client to send emails through your email account.
In the following configuration file, I've assumed that you have a Gmail account.
The settings may be different if you use another email provider.

3.	 Open the ssmtp configuration file using Nano or another text editor:
$ sudo nano /etc/ssmtp/ssmtp.conf

4.	 Replace the entries with the following configuration:
root=<your-username>@gmail.com
mailhub=smtp.gmail.com:587
rewriteDomain=gmail.com
AuthUser=<your-username>@gmail.com
AuthPass=<your-password>
FromLineOverride=YES
UseSTARTTLS=YES

5.	 ssmtp can be used on its own but can be a bit of a faff while automatically
sending emails (by default, you manually type the email in with the
command line, or create a text file), so we're also going to install the
mailutils package:
$ sudo apt-get install mailutils

6.	 Once it's installed, we can use the mail command to send emails more
easily. Send a test email through the (G)mail account that we set up earlier,
using the following command to make sure your settings are working:
$ echo "Test Email" | mail –s "Test Pi-Mail" me@mydomain.com

If all goes well, you should receive the test email in your mailbox within a few
seconds or so.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[91]

Sending attachments
Now that we can send basic emails from our home security system, let's try sending
the still image taken from our camera earlier. But first, we need to install yet another
package to help us with this:

$ sudo apt-get install mpack

Once that's installed, you can send the test image file we took previously by using
the following command:

$ sudo mpack –s "Security Photo" test.jpg me@mydomain.com

We now have all of the elements needed to send alerts and images from our home
security system directly to our smartphone using email.

Where was that taken?
Ordinarily, you could just annotate the email message with where and when the
attached image was taken, but that wouldn't be as cool as actually overlaying the
image with some text, would it? So let's do some magic with the help of imagemagick,
which is a popular command-line image manipulation tool. Install it with the
following line:

$ sudo apt-get install imagemagick

We'll now use the command line to take the test photo that we took earlier, overlay
some text using one of the imagemagick utilities, and save it to another file:

$ convert test.jpg –fill red –pointsize 48 annotate +20+60 'Camera 1'
annotated.jpg

www.it-ebooks.info

http://www.it-ebooks.info/

Adding Cameras to Our Security System

[92]

After a few seconds, this will have generated a file called annotated.jpg containing
our image with Camera 1 written in red in the top corner. When we put all of this
together in our final system, we'll also overlay the image with a time stamp.

At the moment, the images generated by the raspistill tool are
pretty large, being high resolution photos. This makes manipulating
and sending them a bit time-consuming as far as processing time
is concerned, so when we build our final system, we'll be using the
raspistill options, –w, –h and, –q, to reduce the size and quality
of the images to make the system more efficient.

To capture smaller image files, try using the following command:

$ raspistill -o test.img –h 768 –w 1024 –q 25

Night vision
The standard Raspberry Pi camera is great for taking daytime snaps of people
walking up the garden path, but when it comes to night time shots, it's not really
suitable. There are two ways of dealing with this: the first is to illuminate the capture
area with a bright light when the PIR detector is triggered, and the second is to use
the Raspberry Pi NoIR camera module and an infra-red LED array to let the camera
see in the dark. More about that in a minute.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[93]

The Raspberry Pi NoIR camera module; it looks similar to the standard model

An illuminating experience
In order to switch on a light or LED array from the Raspberry Pi GPIO or our port
expander circuit, we need something that will allow us to drive higher currents and
voltages than can be provided by the GPIO ports alone.

A good candidate for this is the TIP120 Darlington transistor, which will allow
us to switch on and off loads of up to 80V and 5 A from our GPIO pins. In our full
system later on, we're going to use Port B of our MCP23017 port expander to control
outputs, but the principle stands for any of the GPIO outputs available to us.

TIP120 transistors can be bought cheaply but can drive large loads

www.it-ebooks.info

http://www.it-ebooks.info/

Adding Cameras to Our Security System

[94]

The following circuit shows how we can drive big loads from our GPIO port outputs.

In our example circuit, we're using a GPIO output pin to control the base of our
transistor via a 220 ohm resistor. When the GPIO pin goes high, the transistor is
switched on and allows the 12V circuit to flow through the LED array.

In the preceding circuit, there is no current limiting for the LEDs because they are
connected in series, and so with nine of them, each dropping about 1.5V across, this
is about right for a 12V supply (yes I know I've only included six LEDs here but it's
just for illustration). Remember to adjust for your particular needs. This circuit could
easily drive other loads, such as bulbs or sounders.

If you intend to drive high power loads, you will probably need
to attach the TIP120 to a heat sink that will dissipate any heat and
prevent it from over-heating and burning out. In our circuit that
was demonstrated previously, however, you probably won't need
one as we're only driving a couple of hundred milliwatts at most.

The Elaborate light switch re-visited
Expanding once again on our elaborate light switch from previous chapters, we can
once again write a Bash script that will switch on our camera light, take a snap with
the camera, and e-mail it to us when a PIR detector is triggered.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[95]

For the following script, we're assuming that the output controlling the TIP120
transistor is the Raspberry PI GPIO17 pin (D0 or pin 11 of our connector), which
replaces the LED in our earlier set-up. The input from the PIR trigger is, again,
connected to the GPA0 (port A, data pin 0) of our MCP23017 port expander.
All the other inputs are tied low, as before, using 10 K resistors:

#!/bin/bash

#set up the High Load GPIO pin
sudo echo 17 > /sys/class/gpio/export
sudo echo out > /sys/class/gpio/gpio17/direction

#set up port expander Port A for inputs
sudo i2cset –y 1 0x20 0x00 0xFF

#clear the output by default to switch light off
sudo echo 0 > /sys/class/gpio/gpio17/value

loop forever
while true
do
 # read the sensor state
 SWITCH=$(sudo i2cget –y 1 0x20 0x12)

 #PIR is normally closed so pin is held high
 if [$SWITCH != "0x01"]
 then
 #PIR was triggered – pin taken low

 #switch on lamp driver
 sudo echo 1 > /sys/class/gpio/gpio17/value
 sleep 0.5

#take a still image
 sudo raspistill –o –image.jpg –h 768 –w 1024 –q 25

 #email the image
 mpack –s "Security Alert Photo" test.jpg me@mydomain.com

 #switch off the lamp driver
 sudo echo 0 > /sys/class/gpio/gpio17/value

www.it-ebooks.info

http://www.it-ebooks.info/

Adding Cameras to Our Security System

[96]

 fi
 #short delay
 sleep 0.5
done

pir-camera-trigger.sh

You'll now see that we've started developing the foundations of the software that
will control our home security system.

Is that a badger?
If you don't want to illuminate an area before capturing an image, you can use
infra-red lighting in conjunction with a compatible camera. The standard Raspberry
Pi camera module won't work with infra-red lighting because it contains an infra-red
filter, but we can use the NoIR version of the camera module instead.

The Raspberry Pi NoIR camera module is exactly the same as the standard one,
except that it doesn't have an infra-red filter built in, which means it will see in the
dark with the aid of infra-red lighting. This makes it good for watching badgers at
night as well as for use in our home security system.

You will need an infra-red LED array or cluster to invisibly illuminate the area
you want to capture with the camera. These are readily available in various form
factors and intensities, or you can build your own using individual infra-red LEDs
purchased from an electronics store.

The Kingbright infra-red LED cluster runs from a 6V supply, which means you can connect two
in series—one on either side of the camera.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[97]

Connecting and driving the LED cluster modules works exactly the same as our
illuminating light above, using the TIP120 driver circuit. The only difference is
that we humans can't see when the LEDs are on.

Using USB cameras
Instead of using the Raspberry Pi Camera Module, it's also possible to use a standard
USB webcam to take still images. You should be aware though that the dedicated
camera module is far superior to a USB webcam in terms of image quality. Although,
you may already have a webcam knocking about in your box of bits, so why not try it?

Installing the webcam
After you've connected your webcam to a USB port on your Pi, you can check
whether it's been recognized using the lsusb command:

$ lsusb

I'm using a Logitech webcam that gets reported as follows with lsusb (Device 006):

pi@raspberrypi ~ $ lsusb
Bus 001 Device 002: ID 0424:9514 Standard Microsystems Corp.
Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub
Bus 001 Device 003: ID 0424:ec00 Standard Microsystems Corp.
Bus 001 Device 006: ID 046d:08d8 Logitech, Inc. QuickCam for Notebook
Deluxe

Not all webcams will work with the Raspberry Pi. Even though
it may be recognized as a USB device, it might not actually work
properly with the operating system and create a video device (for
example, /dev/video0). For example, an old cheap Trust webcam
I had appeared as a USB device but wouldn't capture any images.
You can check whether your webcam is likely to work with the
Pi by checking your make and model at http://elinux.org/
RPi_USB_Webcams.

So, now that the Pi knows that we have a webcam device attached, we can use the
fswebcam utility to capture image frames. You can find out more about fswebcam
from the developer's site at http://www.sanslogic.co.uk/fswebcam.

Install fswebcam with the following:

$ sudo apt-get install fswebcam

www.it-ebooks.info

http://www.it-ebooks.info/

Adding Cameras to Our Security System

[98]

Taking a snap
You can now test the webcam by capturing a still image, which can be done by
running the following command:

$ fswebcam test.jpg

You should expect to see output similar to the following:

fswebcam has lots of options for things like the resolution and
quality of the image. Use the command fswebcam -? to get a
list of all options.

Snap snap snap
fswebcam doesn't take video streams, but you can set it up to take a series of frames
at regular intervals. For example, to take a snap every 10 seconds, you can use the
following command:

$ fswebcam frame.jpg -l 10

An example of how this would be useful can be demonstrated by setting the webcam
to take a snap every few seconds in the background (the –q switch runs fswebcam
in the background). When our security system is triggered, we could then take the
latest image snapped with the webcam which could be looking down your pathway.

For the purpose of putting together our entire system later in this book, we'll be
focusing on the Raspberry Pi Camera Module, but you can always replace the code
with the previous examples if you want to use USB webcams instead.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[99]

You'll notice that fswebcam, unlike raspistill, has the ability to overlay the images
with timestamp information, so you don't need to worry about overlaying text as we
did previously. Look at the fswebcam command line options for more information.

The multicamera setup
It may have occurred to you that the Raspberry Pi has only one camera module
input. Now, this is obviously limiting if you want to have multiple cameras around
your property that are triggered by motion detectors.

However, there is nothing stopping us from building standalone units that have
a separate Raspberry Pi board with a PIR detector, Camera Module, and network
connection, either using a Wi-Fi dongle or Ethernet.

Because you only need a single input to the Raspberry Pi to detect when the PIR
motion sensor is triggered, you can use the on-board GPIO port to connect the
sensor, rather than using a port expander. The Raspberry Pi will email the alert
over the network, and could alert the main controller Pi if required—making it a
slave sensor device.

You can readily obtain small PIR detectors, such as the Parallax one shown next,
which you can mount onto a Raspberry Pi Case along with the camera module,
creating a self-contained unit.

A Parallax PIR motion sensor (type 555-28027)

www.it-ebooks.info

http://www.it-ebooks.info/

Adding Cameras to Our Security System

[100]

The Slave driver
While it may seem quite elaborate to have a Raspberry Pi for each camera—think
about it—you can actually build each camera unit with all of the components for
around £50, which is significantly cheaper than buying a wireless smart camera.
If you really want to be clever, you could also use this as a slave device to accept
further sensor inputs local to the unit.

There is nothing to stop you from connecting a GPIO output pin on the slave unit to
drive an input on the main controller and control the pin depending on the state of
its local sensors. By running a 6-core cable between the units, you could even power
the slave unit if your power supply is man enough (you'd need to have a supply of
5V @ 1A for the slave Pi running along the wire).

I'm not going to go into any more detail about this configuration at this time, but you
could set yourself a challenge to create a fully distributed home security system using
multiple Raspberry Pis and the building blocks and concepts learned in this book.

Summary
In this chapter, we learned how to connect both Raspberry Pi camera modules
and USB cameras to our Pi board in order to take image and video captures when
required by our home security system. We also learned how to overlay our images
with informative text and have the files immediately emailed to us.

In order to capture images from our camera at night, we also looked at ways to
illuminate the capture area using both visible and infra-red lighting, with the ability
to switch the lighting on and off as required by using a high-current Darlington
transistor driver.

In the next chapter, we're going to get down to the business of putting together
modules by building a mobile-optimized web-based control panel for our home
security system. We'll learn how to set up a Web server on our Raspberry Pi and
manipulate files using our Web control panel, which means that we'll start to
explore how all of the elements we've encountered so far can come together as
part of our final system.

www.it-ebooks.info

http://www.it-ebooks.info/

[101]

Building a Web-Based
Control Panel

We've now got all of our hardware elements together for us to create a complete
home-security system featuring contact switches for our doors and windows, and
motion detectors and cameras to take happy snaps of wannabe intruders! I've
deliberately guided you through this in a modular fashion so that you can pick and
choose and expand on the hardware sensor elements that suit your requirements.
In Chapter 9, Putting It All Together we will be wiring all of this together to form the
complete system based on zones that we looked at earlier.

One thing that all home security systems require is a control panel that allows us to
arm and disarm the system and monitor the status of the zones within our system.
We might also want to do things such as only arm certain zones, or have the system
automatically arm and disarm at certain times of the day.

The hardware required for this, such as switches, LEDs, and LCD displays, can be
quite expensive and time-consuming to put together; they can also make the system
less configurable and flexible. So, in our system, we're going to build a Web-based
control panel that we can access from our mobile phone browser. This also means
that we can control the system remotely, when we are out of the house.

In this chapter, we will cover the following:

•	 Defining the scope of our home security in terms of the number of zones we
will be monitoring and the I/O ports we will use

•	 Learning how to install and configure a web server on our Raspberry Pi
•	 Developing a basic HTML5 web page for our alarm control panel
•	 Learning how to use PHP scripts to dynamically configure our system from

the web page

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Web-Based Control Panel

[102]

Installing the web server
There are several web servers readily available that we could install on our Raspberry
Pi, and they would all be suitable for our system. But I like the lighttpd web server as
it's easy to use and lightweight. lighttpd is often referred to, and affectionately known
as, "Lighty"—which to be honest is less of a mouthful than lighttpd.

As well as the Web server itself, we're also going to install PHP support, which will
allow us to write dynamic web pages to interact with the Linux system. Now, to be
honest, I'm not a massive fan of PHP for commercial Web-based deployments for
many reasons, but for a small embedded-Linux system such as our home security
system, it's perfect and works really well. It's also quite straightforward to get into
if you've never done server-side Web-scripting as well.

To perform the following steps, you'll need to be logged into your Raspberry Pi via
the terminal console (for example, PuTTY):

1.	 Update the package installer:
$ sudo apt-get update

2.	 Install the lighttpd Web server:
$ sudo apt-get install lighttpd

Once installed, it will automatically start up as a background service, and
will do so each time your Raspberry Pi starts up.

3.	 Install PHP5 support:
$ sudo apt-get install php5-cgi

4.	 Now, we need to enable the PHP FastCGI module in our web server:
$ sudo lighty-enable-mod fastcgi-php

5.	 And finally, we need to restart the Web server:
$ sudo /etc/init.d/lighttpd

That's it! You should now have your PHP Web server installed. By default, the
web content files get installed in the location, /var/www, and Lighty installs a test
placeholder page in this location, which you can access from your browser by simply
entering the IP address of your Raspberry Pi, as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[103]

The Lighttpd placeholder page

Testing the PHP5 installation
While we're at it, we should also test our PHP installation, as this is fundamental
to building our console. This can be done by writing a simple PHP script page
that, if PHP is installed correctly, will return information about its environment
and configuration:

1.	 First, go to the web content folder:
$ cd /var/www

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Web-Based Control Panel

[104]

2.	 In Nano, create a file called phpinfo.php:
$ sudo nano phpinfo.php

3.	 In the editor, enter just the following single line, then save and exit from Nano:
<?php phpinfo(); ?>

Now, in your browser, enter the IP address of your Raspberry Pi followed by /
phpinfo.php, for example, http://192.168.0.110/phpinfo.php, and you should be
presented with the following page:

The PHP info page generated by the Web server

Now that we know our web server is working properly, we can start creating our
console web page.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[105]

Being in control
So that we know what controls we want on our alarm control panel, we need to map
out our system with the number of zone inputs and control inputs and outputs. As
you'll remember from Chapter 3, Extending Your Pi to Connect More Things we can
essentially have up to 16 zones in our system using the two I/O ports on our port
expander. We also have the eight GPIO pins at our disposal on the Raspberry Pi board
itself. So, let's now allocate these outputs and document them in the table that follows.

I'm going to set up an 8-zone system for my alarm inputs using port A on the I/O
expander board, using the native GPIO pins for things such as buttons and alert
outputs. One reason for doing it in this configuration is that the system can always
fail-safe—so if the expander board fails, the Raspberry Pi can still communicate alerts
and buzzers connected to it.

Port I/O Pin Label/Purpose
Expander A 0 (A0) Zone 1 Input (Entry/Exit Channel)

1 (A1) Zone 2 Input
2 (A2) Zone 3 Input
3 (A3) Zone 4 Input
4 (A4) Zone 5 Input
5 (A5) Zone 6 Input
6 (A6) Zone 7 Input
7 (A7) Zone 8 – Anti-Tamper Loop Input

Expander B 0 (B0)
1 (B1)
2 (B2)
3 (B3)
4 (B4)
5 (B5)
6 (B6)
7 (B7)

R-Pi GPIO 0 (GP0) Arm/Disarm Switch (Input)
1 (GP1)

2 (GP2)
3 (GP3)
4 (GP4) Armed LED (Output)

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Web-Based Control Panel

[106]

Port I/O Pin Label/Purpose
5 (GP5) Arm/Disarm Buzzer (Output)
6 (GP6) Alarm LED (Output)
7 (GP7) Alarm Bell (Output)

Arming yourself
The terms arm and disarm are alarm system-speak for switching the alarm monitoring
on (arming the system) and off (disarming the system). Zone 1 of our system is going
to be linked to the arming and disarming part of the system as it will be connected to
the sensors on the door that we leave or enter from; this will be a special zone for entry
or exit purposes.

When we set the alarm, we need a bit of time to get out of the house. The way that
the system knows we've left the property is by monitoring the exit zone to see if
we've opened and then closed the front door behind us within the time allowed.

Similarly, when we return, we will open the front door, but we don't want the
alarm to go off straightaway—we need a chance to disarm the system within a
given amount of time. We will arm and disarm the system via our web-based
control panel, or by using a switch of some sort on the input GP0.

The master configuration file
Our system will use a master configuration file that will tell it how everything is
set up and connected. This configuration file will be used by both the web control
panel and the main alarm control scripts so that the two sub-systems can "talk" to
each other. Let's create the file with our initial settings.

The settings file will be stored in the same location as where we will create our
control scripts in Chapter 9, Putting It All Together, which is in the folder. /etc/pi-
alarm. So, let's create this folder, and give it execute rights so that our scripts can
be run:

$ cd /etc

$ sudo mkdir pi-alarm

$ sudo chmod 777 pi-alarm

We'll now create the master configuration file, to be used by our system, in this folder:

$ cd pi-alarm

$ sudo nano alarm.cfg

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[107]

As before, you don't have to create your files in Nano on the
Raspberry Pi—you can create them on your desktop computer,
and then transfer them to your Pi using SCP.

ALARM MASTER CONFIG FILE

#Number of zones in the system
NUM_ZONES=8

#Display labels for each zone
ZONE_LABEL_1="Zone 1 - Entry/Exit"
ZONE_LABEL_2="Zone 2"
ZONE_LABEL_3="Zone 3"
ZONE_LABEL_4="Zone 4"
ZONE_LABEL_5="Zone 5"
ZONE_LABEL_6="Zone 6"
ZONE_LABEL_7="Zone 7"
ZONE_LABEL_8="Zone 8"

#Zones that are enabled
#Set to 0 to Disable or 1 to Enable
ZONE_ENABLE_1=1
ZONE_ENABLE_2=1
ZONE_ENABLE_3=1
ZONE_ENABLE_4=1
ZONE_ENABLE_5=1
ZONE_ENABLE_6=1
ZONE_ENABLE_7=1
ZONE_ENABLE_8=1

SYSTEM_ARMED=0

#Zone status
#Set to 1 if zone is triggered
ZONE_STATUS_1=0
ZONE_STATUS_2=0
ZONE_STATUS_3=0
ZONE_STATUS_4=0
ZONE_STATUS_5=0
ZONE_STATUS_6=0
ZONE_STATUS_7=0
ZONE_STATUS_8=0

alarm.cfg file

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Web-Based Control Panel

[108]

Creating the web page
Our Web-based control panel is going to be a single PHP-driven HTML5 web page
which will be mobile optimized. HTML5 is the latest mark-up standard for web
pages and is supported by most modern smartphones and browsers. We will also
create a cascading style-sheet (CSS) that will make our page look half reasonable
on mobile devices.

To create the web files, I recommend that you use something like the excellent
Notepad++ on your desktop computer, rather than doing it directly on the Raspberry
Pi. Alternatively, if you are a seasoned web developer, you may already have your
IDE of choice.

The control panel HTML template
The first thing we'll do is create an HTML file that we can use to test our layout
before we put the HTML into a PHP file to make it interact with our system. This
makes it easier to tweak the way we want it to look beforehand, without the PHP
scripts getting in the way.

This is not a tutorial on Web development—there is a plethora of books
out there on that subject—but I hope the code is clear enough for you
to work out what's going on. The code I'm going to show you is fully
functional, so you can just use what I give you without having to do
any more. Hopefully, it makes your control panel look OK too!

The following mark-up gives you a basic control panel with status for our 8 zones,
a master arm and disarm switch, and switches to enable or disable any of our zones.

The <head> section of the code contains some <meta> tags that help mobile devices
know that it's a mobile-friendly site. In the main <body> mark-up, we have a section
for each zone that contains the zone's name and an on/off switch. Each zone is in its
container so that we can also highlight a particular zone that needs our attention, for
example, if it's triggered.

You can find the full HTML5 markup for our control panel in the alarm-panel.html
file located inside the code folder of chapter 7.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[109]

Giving it some style
At the moment, this page doesn't look that great (in fact, it looks awful, like
something from the 1990s); it isn't particularly good for mobile devices and would
most certainly fail the sausage test. So, we're going to apply some styling to make
it look not half bad. Although the preceding mark-up contains a reference to a
CSS file—we haven't created that file—so this is what our page currently looks
like (as I said: it looks awful):

The web control panel without any styling

The following CSS3 mark-up is designed specifically for our control panel, and it
makes it look quite nice while also making it usable on touch-screen mobile devices.
The CSS is quite long and seems overwhelming, but you don't need to do anything
with it, or understand it, if you don't want to—the only thing you need to know is
that it's been designed for modern browsers and smartphones, so don't expect it to
work on Internet Explorer 7, or probably even IE9!

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Web-Based Control Panel

[110]

In essence, it contains the styling for the following:

•	 Preparing the browser for our mobile layout
•	 Our text and zone areas
•	 Creating cool switches instead of boring checkboxes
•	 Making an area flash on and off when we need it to

/* Clear browser margin and padding defaults */
body, div, dl, dt, dd, ul, ol, li, h1, h2, h3, h4, h5, h6, pre, form,
fieldset, input, textarea, p {
margin:0;padding:0;-webkit-text-size-adjust:none;
}

body {
 background: #ffffff;
 color: #4A5651;
 font-family: "Trebuchet MS", Helvetica, sans-serif;
 font-size:10px;
 height: 100%;
 padding:0;
 margin:0 auto;
 max-width:320px;
 min-width:240px;
 text-align: left;
 width:100%;
 -webkit-box-shadow: 0px 20px 40px 0px rgba(0,0,0,0.50);
 -moz-box-shadow: 0px 20px 40px 0px rgba(0,0,0,0.50);
 box-shadow: 0px 20px 40px 0px rgba(0,0,0,0.50);
}

p, .zoneLabel {
 font-size:16px;
 margin:5px;
 line-height:1.4;
 color:#4A5651;
}

#header h1 {
 font-size:20px;
 line-height:40px;
 margin:0;
 padding:0 0 0 15px;
 text-align:center;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[111]

 text-overflow: ellipsis;
 font-weight:bold;
}

.zoneControl, .masterControl{
 border-bottom:1px solid #dddddd;
 margin-top:5px;
 margin-bottom:0px;
 padding:5px;
 display:block;
 width:100%;
}

.zoneLabel {
 font-weight:bold;
 text-overflow:ellipsis;
}

input[type="submit"] {
 border: none;
 background-color: #0b70cc;
 color: white;
 height: 32px;
 display: block;
 padding: 4px 7px;
 float: left;
 border-radius: 8px;
 position: relative;
 bottom: 1px;
 margin-left: 4px;
 text-align: center;
}
input[type="submit"]:hover {background-color: #b2ceec;color:
#0b70cc;border: none;border: 1px solid #b2ceec;}

/* Flashing animation */
@-webkit-keyframes flash{0%, 50%, 100% {opacity: 1;} 25%, 75%
{opacity: 0;}}
@keyframes flash {0%, 50%, 100% {opacity: 1;} 25%, 75% {opacity: 0;}}
.flash {
 -webkit-animation-name:
 flash;animation-name:
 flash;color:#f00000;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Web-Based Control Panel

[112]

.animated {
 -webkit-animation-duration: 1s;
 animation-duration: 1s;
 -webkit-animation-fill-mode: both;
 animation-fill-mode: both;
 animation-iteration-count:infinite;
 -webkit-animation-iteration-count:infinite;
}

/*
 ON/OFF SWITCH STYLES
 The rather cool On/Off switch styling was generated on
 https://proto.io/freebies/onoff/
*/
.onoffswitch {
 position: relative;
 width: 90px;
 -webkit-user-select: none;
 -moz-user-select: none;
 -ms-user-select: none;
}

.onoffswitch-checkbox {
 display: none;
}

.onoffswitch-label {
 display: block;
 overflow: hidden;
 cursor: pointer;
 border: 2px solid #FFFFFF;
 border-radius: 20px;
}

.onoffswitch-inner {
 display: block;
 width: 200%;
 margin-left: -100%;
 transition: margin 0.3s ease-in 0s;
}

 .onoffswitch-inner:before, .onoffswitch-inner:after {
 display: block;
 float: left;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[113]

 width: 50%;
 height: 30px;
 padding: 0;
 line-height: 30px;
 font-size: 14px;
 color: white;
 font-family: Trebuchet, Arial, sans-serif;
 font-weight: bold;
 box-sizing: border-box;
 }

 .onoffswitch-inner:before {
 content: "ON";
 padding-left: 10px;
 background-color: #34C290;
 color: #FFFFFF;
 }

 .onoffswitch-inner:after {
 content: "OFF";
 padding-right: 10px;
 background-color: #EEEEEE;
 color: #999999;
 text-align: right;
 }

.onoffswitch-switch {
 display: block;
 width: 18px;
 margin: 6px;
 background: #FFFFFF;
 position: absolute;
 top: 0;
 bottom: 0;
 right: 56px;
 border: 2px solid #FFFFFF;
 border-radius: 20px;
 transition: all 0.3s ease-in 0s;
}

.onoffswitch-checkbox:checked + .onoffswitch-label .onoffswitch-inner
{
 margin-left: 0;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Web-Based Control Panel

[114]

.onoffswitch-checkbox:checked + .onoffswitch-label .onoffswitch-switch
{
 right: 0px;
}

.masterswitch {
 position: relative;
 width: 90px;
 -webkit-user-select: none;
 -moz-user-select: none;
 -ms-user-select: none;
}

.masterswitch-checkbox {
 display: none;
}

.masterswitch-label {
 display: block;
 overflow: hidden;
 cursor: pointer;
 border: 2px solid #FFFFFF;
 border-radius: 20px;
}

.masterswitch-inner {
 display: block;
 width: 200%;
 margin-left: -100%;
 transition: margin 0.3s ease-in 0s;
}

.masterswitch-inner:before, .masterswitch-inner:after {
 display: block;
 float: left;
 width: 50%;
 height: 30px;
 padding: 0;
 line-height: 30px;
 font-size: 12px;
 color: white;
 font-family: Trebuchet, Arial, sans-serif;
 font-weight: bold;
 box-sizing: border-box;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[115]

}

.masterswitch-inner:before {
 content: "ARMED";
 padding-left: 10px;
 background-color: #F00000;
 color: #FFFFFF;
}

.masterswitch-inner:after {
 content: "OFF";
 padding-right: 10px;
 background-color: #EEEEEE;
 color: #999999;
 text-align: right;
}

.masterswitch-switch {
 display: block;
 width: 18px;
 margin: 6px;
 background: #FFFFFF;
 position: absolute;
 top: 0;
 bottom: 0;
 right: 56px;
 border: 2px solid #FFFFFF;
 border-radius: 20px;
 transition: all 0.3s ease-in 0s;
}

.masterswitch-checkbox:checked + .masterswitch-label .masterswitch-
inner {
 margin-left: 0;
}

.masterswitch-checkbox:checked + .masterswitch-label .masterswitch-
switch {
 right: 0px;
}
/* END OF SWITCH STYLES */

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Web-Based Control Panel

[116]

Web control panel style sheet – alarm-panel.css

Apply the stylesheet and this is what you end up with (a little bit nicer, I think
you'll agree):

The web control panel with styling

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[117]

Making it dynamic
Now that we have the layout code defined for our control panel page, we can insert
it in our PHP page so that it can be modified dynamically by the PHP script on the
Web server, depending on the status of our home security system.

The PHP script will help us achieve the following basic functions:

•	 Updating the configuration file with the position of the on/off switches
for zones

•	 Arming and disarming the system
•	 Telling us which zone has been triggered when an intrusion has

been detected

Again, I'm not going to go into detail about how the PHP code works, but hopefully
the comments within the code will help you follow what's going on, and also help
you modify it if you want to change its behavior.

Getting a bit of help first
Unless you change some of the PHP configuration, it can be a nightmare trying to
work out what's gone wrong if you have a small bug in your code, as basically you
are presented with…nothing!

So, before we create and build our PHP page, we'll change a couple of settings in
the PHP configuration file to make sure we know if there are any issues:

1.	 Open the configuration file with Nano:
$ sudo nano /etc/php5/cgi/php.ini

2.	 The file is a bit large and unwieldy, but battle your way through it, find these
settings, and change them as follows:
error_reporting = E_ALL

display_errors = On

3.	 Save the file and exit Nano.
4.	 Finally, restart Lighty:

$ sudo /etc/init.d/lighttpd restart

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Web-Based Control Panel

[118]

The main PHP code
And here it is… But don't run it yet—there's still a bit more to do…

You can find the full main PHP code in the index.php file located inside the code
folder of chapter 7. In our Web server content folder, we should now have the
following files:

pi@raspberrypi ~ $ ls -1 /var/www
alarm-panel.css
alarm-panel.html
index.lighttpd.html
index.php
phpinfo.php

I'm someone else
Now, before we can actually open this PHP web page successfully, we need to be
aware of the fact that the Web server, by default, actually runs as a different user
called www-data. This means that it doesn't ordinarily have the right to perform
certain operations; in particular, those that interact with the file system.

If you worked through the previous PHP script, you'll see that it actually executes
some Linux commands to read and update our alarm.cfg file.

In the same way that we have to put sudo in front of many commands because we're
not the root user, it is true for other users as well, including www-data. So, to give the
Web server rights to execute certain commands, we need to add it as a sudoer, using
the visudo utility.

Run the utility to open the sudoer configuration file:

$ sudo visudo

At the bottom of the file, add the following line:

www-data ALL=(ALL) NOPASSWD:/bin/cat,/etc/pi-alarm/update-alarm-
setting.sh

Then save the file and exit.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[119]

The final thing we have to do is create a small Bash script that will handle the task of
updating settings in our alarm.cfg file. The reason why we need to do this is because
we're going to use the Linux sed command to update the file. The way that we are
invoking the sed command means that it needs to create a temporary file. Unless we
do a bit of work with configuring the Web server because of its file location context, it
won't work. So, it's easier to create a stub Bash script that is called by the PHP script.
In this way, the Bash environment deals with the temporary file context.

So, we'll create the following Bash script and save it in our /etc/pi-alarm folder:

#!/bin/bash
#/etc/pi-alarm/update-alarm-setting.sh
##
Provides access to the sed command from
PHP as it needs write access to a temp
folder.
$1 - Setting Name
$2 - Setting Value
##

sed -i "s/^\($1\s*= *\).*/\1$2/" /etc/pi-alarm/alarm.cfg

update-alarm-setting.sh

And then we need to give the script execution rights:

$ sudo chmod 777 /etc/pi-alarm/update-alarm-setting.sh

This is what we should see in our /etc/pi-alarm folder at this time:

pi@raspberrypi ~ $ ls -1 /etc/pi-alarm
alarm.cfg
update-alarm-setting.sh

Right, after all that, I think we can now launch the control panel page in our browser
at

http://<my-pi-ip>.

index.php is configured as a default page in Lighty's config, so you don't need to
add it to the end of the URL; just the IP address will suffice.

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Web-Based Control Panel

[120]

By changing the switch positions and then clicking on the Update System button,
you should find that the setting values get updated accordingly in alarm.cfg. You
can now see how this file will be the way for the status to be exchanged between our
web console and the security system scripts that we'll develop in Chapter 9, Putting It
All Together.

The final operational control panel

Remote access to our control panel
While we can set up our system to receive email alerts when our system detects an
intrusion, it would be really useful to be able to access our Web-based control panel
wherever we are so that we can perhaps arm and disarm the system or switch off
certain zones when we're not there.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[121]

However, in order to make this possible we need to do a few things:

Setting up a dynamic DNS account
Most of us won't have a fixed IP address for the Internet connection in our home; it is
likely to change from time to time, especially when we reboot or unplug our router,
whereby our Internet service provider assigns us a new one when we next connect to
them. Because of this, we can't rely on using the IP address to get to our home network
when we're out and about. To solve this, we need to set up a dynamic DNS account
that will allow us to set up a domain name for our home network (for example,
myhomenetwork.com).

It works by having a service that runs inside your network, such as on your router
or laptop, that updates the dynamic DNS service hosting your domain name with
the current IP address of your Internet connection. Then, when you use your domain
name in your browser, it will take you to a Web server on your home network.

Popular dynamic DNS providers out there include No-IP (www.noip.com) and
DynDNS (www.dyn.com). You can also get a free DnsOMatic account with OpenDNS
to manage your services (www.dnsomatic.com).

My Netgear NAS device has a DnsOMatic updater service add-on

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Web-Based Control Panel

[122]

My Netgear Router has the option of updating a Dynamic DNS service

The Raspberry Pi dynamic DNS client
Since your Raspberry Pi-based home security system is likely to always be on,
you might want to install the ddclient updater service on there instead:

$ sudo apt-get install ddclient

Once installed, you can set it up for your particular service and account details
using the following config file:

$ sudo nano /etc/ddclient.conf

Setting up a static IP on your Raspberry Pi
So that our home network always knows where to find your Raspberry Pi, we need
to set up a static IP address on it, assuming that it currently acquires an IP address
from your router's DHCP server each time it boots up.

1.	 To do this, we need to edit the network settings on the Raspberry Pi.
In Nano, open the following configuration file:
$ sudo nano /etc/network/interfaces

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[123]

2.	 You'll probably find the Ethernet port configuration set to something like this:
auto eth0

allow-hotplug eth0

iface eth0 inet manual

3.	 Change this configuration to be an unused static IP address on your network.
In my case, I've set it to 192.168.0.99. The gateway setting is the IP address
of my Internet router:
auto eth0
allow-hotplug eth0
iface eth0 inet static
 address 192.168.0.99
 netmask 255.255.255.0
 gateway 192.168.0.1

4.	 Now, we need to restart the networking service—note that you'll be
disconnected from your terminal session. You'll need to reconnect
using the new IP address:
$ sudo /etc/init.d/networking restart

If you have any issues, simply restart the Pi with sudo reboot and all should be
good when it comes back up.

Port-forwarding
The final piece of this puzzle is to make sure that our Internet router will direct
incoming traffic on a given port to our Raspberry Pi's Web server. For the purpose
of this example, I'm going to assume that we are going to stick to the default, port 80,
on our Web server.

A word about security
Given that our Web server will now be accessible from the
outside world, we need to be mindful about securing our
system properly. The two main ways to do this are to change
the Web server port to a random number other than 80 (for
example, 8799) and add password protection to your site by
applying basic authentication. Both of these can be done in
the lighttpd configuration file.

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Web-Based Control Panel

[124]

Most routers will allow you to set up port-forwarding as part of their firewall
configuration. Essentially, setting this means that any incoming traffic from the
Internet on a given TCP port will be allowed to pass through the router and will
be directed to the device with the specified IP address. On my Netgear router,
it's set up as shown in the following screenshot:

Setting up port-forwarding on a Netgear router

Now, when you enter your personal domain name in your browser, when you're
away from home you should be taken to your alarm control panel.

You might also want to consider opening up port 22 so that you can
access the Raspberry Pi directly using PuTTy and SSH from outside
your network.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[125]

Summary
We've now started building the software that will control our home security system
by determining the format of the main configuration file. We've also installed a Web
server and built a basic single-page control panel with PHP, HTML5, and CSS3,
which can be accessed nicely on our mobile phone, allowing us to configure our
system and view the status.

In addition, we've learned how to configure our home network and Raspberry Pi so
that we can access our control panel when we're away from home.

In Chapter 9, Putting It All Together, we'll put all of the electronic elements together and
write the main scripts that will run the home security system. But before that, in the
next chapter, we're going to look at a few other bits and pieces, such as adding other
sensors, not necessarily related to intruder detection, to our home security system.
We'll also look at how we can administer our entire Raspberry Pi system remotely
using a Web browser, in addition to accessing our home security control panel.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[127]

A Miscellany of Things
The previous chapters have provided us with the foundation and elements to design
and put together our entire home security system, which we will do in the next chapter.
I hope that I've guided you through this journey in a fairly structured and logical way
so that you are ready to do that.

Beforehand, though, I'm including this chapter dubbed a Miscellany of Things, as
that's exactly what it is. It comprises a few optional, but useful, extras that we should
consider for our system, but that don't really warrant a whole chapter in their own
right. I guess you could refer to them as footnotes to previous chapters.

As such, we will take a look at the following topics:

•	 Ways to arm and disarm the system without the web-based panel
•	 Driving inductive loads safely from our GPIO outputs
•	 Adding an escaped water sensor input to our system
•	 Adding a temperature sensor input to our system
•	 How carbon monoxide detectors could be added to our system
•	 Remotely managing our Raspberry Pi using Webmin

Arming and disarming the system
We've included a switch on our Web-based control panel so that you can arm and
disarm the system from your smartphone. However, this is probably not the most
convenient way of doing it, especially when you're rushing out of the house, or
you've returned home with a phone whose battery is flat. So, we need to find an
additional way of arming and disarming our system at the entry and exit point of
our property.

www.it-ebooks.info

http://www.it-ebooks.info/

A Miscellany of Things

[128]

In the zone list table in the previous chapter, you'll notice that I assigned input GP0
on the Raspberry Pi GPIO as our arm/disarm switch input. This input will work in
conjunction with our control panel switch.

This input can as be a simple as a toggle switch, or a bit more secure, such as a key
switch or electronic keypad. Either way, it will be wired to ground GP0 (GPIO17)
on our Raspberry Pi when the system is armed.

The circuit diagram for our arm/disarm switch

If you have switches or other such devices that will be outside and exposed to the
elements, you'll need to ensure that they are suitable for outdoor use so that they
don't get damaged and compromise the integrity of the system.

The IP67-rated key switch, suitable for outdoor use (type Lorlin WRL-5-E-S-2-B)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[129]

By using a standalone security keypad, you can allow each user to have their own
code to arm and disarm the system. For example, the CDVI ECO 100 is a low-cost
keypad that allows up to a 100 users. When the correct code is entered, it will arm
the system by closing an internal switch. When the code is entered again, the keypad
will disarm the system by opening the switch.

The CDVI ECO 100 programmable keypad

Driving inductive loads
I talked about driving large loads in Chapter 6, Adding Cameras to Our Security System,
but now is probably a good time to expand on this a bit and talk about driving
inductive loads such as bells and incandescent lamps. In the previous circuit example,
I used the TIP120 Darlington transistor to drive an LED array that was not inductive.
With inductive loads, you need to add a bit of diode protection to protect the circuit
against spikes generated by the coils within relays and bells as they switch on and off.

www.it-ebooks.info

http://www.it-ebooks.info/

A Miscellany of Things

[130]

Here's the modified circuit for our digital load driver with a 1N4007 rectifier diode
for protection:

The digital load driver with diode protection

Beyond intrusion
Home security is not just about protecting our property against intrusion, it's also
about protecting against other risks too, such as flood, fire, carbon monoxide leaks,
and so on. So, it makes sense to extend our home security system to detect these
other risks too.

You may choose to set up the system so that certain types of alerts only come to
your phone as emails, rather than triggering all of the outside bells, lights, and
whistles. This can be done by adapting the scripts in the next chapter so that
they operate how you want them to.

A simple water detector
There's nothing worse than being away for a few days and coming home to a flooded
kitchen because a leak has developed under the sink. Our simple circuit will detect
the presence of water and trigger an input on our home security system, which can
then alert you. You can also buy kits and ready-built modules to do this, but the
following circuit is cheap and features our opto-isolator as we're going to have a
different voltage for our actual detector.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[131]

The circuit for a simple water detector, isolated from our GPIO input

How it works
When water is placed across the probes, current flows through the water, and so,
through the R3/R4 potential divider on the base of transistor Q1. When the current
at the base is high enough to saturate it, the transistor will switch on fully, allowing
the LED inside the opto-coupler to switch on. This in turn will pull down the input
pin to our system to ground via the photo-transistor inside the optocoupler.

You can use the trimmer, R4, to calibrate the sensor by adjusting its sensitivity.
Any generic NPN bipolar transistor should work here, but obviously, they all
have different operating parameters, so choose a suitable one.

www.it-ebooks.info

http://www.it-ebooks.info/

A Miscellany of Things

[132]

A simple temperature sensor
If we want to be alerted when the ambient temperature reaches a certain threshold,
then we can build a circuit using the commonly used LM34/LM35 temperature
sensors. It's a simple device with just three pins: power, ground, and output, providing
a voltage proportional to the temperature. The difference between the LM34 and
LM35 is that the LM34 produces an output of 10mV/°F, whereas the LM35 produces
10mV/°C. There is also an LM335 variant that produces an output of 100mV/°K.

Pinout taken from the Texas Instruments LM35DZ datasheet

It may have occurred to you at this point that this is an analogue device—so how
do we interface that with our wholly digital system? One way is to incorporate an
analogue-to-digital interface onto our input control board and read the data coming
in from that so that we know the exact temperature, but that's probably a bit beyond
the scope of this book. So, we're going to implement a circuit that will alert us when
the temperature exceeds a pre-defined threshold, which is probably all we need in
the context of our home security system.

If you're interested in building an analogue-to-digital module
to extend your home security, then take a look at something
such as the PCF8591 chip from NXP, which is an I2C-based
analogue-to-digital converter. This will connect to the I2C bus
that we're already using, and so it is effectively just an add-on.
http://bit.ly/NXPPCF8591T

For our temperature detector circuit, we will use an operational amplifier
configured as a comparator that will trigger our opto-coupler input when the
pre-set temperature is reached. So, for fire detection, we might want to detect
when the ambient temperature has exceeded 50°C.

www.it-ebooks.info

http://bit.ly/NXPPCF8591T
http://www.it-ebooks.info/

Chapter 8

[133]

The temperature threshold sensor to drive our digital input

How it works
The reference voltage is set by the variable resistor, R4, which forms a voltage
divider between the 12V and the ground. This essentially means that the reference
voltage on the +ve input of the op-amp comparator can be between 0 and 12V.
Assuming that we want to detect when 50° is reached, we will need the op-amp to
trigger when the –ve is 500mV (10mV/°C).

In our circuit, the output of the op-amp is high in its normal state, which keeps
the opto-coupler on. However, when the threshold is reached, the output of the
op-amp is driven low, switching off the transistor Q1, and hence, the opto-coupler.
This pulls our alarm input high via resistor R2.

A carbon monoxide detector
It's entirely possible to build smoke and carbon-monoxide detectors that we can
connect to our home security system in a similar way to the previous sensors,
although they are a little bit more complex as they can require special handling.
The SparkFun MQ-7 Carbon Monoxide (CO) detector (which is actually made by
Winsen Electronics) can be implemented in a similar way to our temperature sensor,
triggering an alarm input when a particular threshold is reached.

www.it-ebooks.info

http://www.it-ebooks.info/

A Miscellany of Things

[134]

The Winsen MQ-7 carbon monoxide gas detector, available from SparkFun.

The maximum safe continuous exposure to carbon monoxide (CO) is
9ppm (parts-per-million) according to ASHRAE (www.ashrae.org),
and you should certainly not be exposed to CO higher than this for
prolonged periods of time, with 35ppm being the absolute maximum
for a normal 8-hour working day.

The MQ-7 detector has a sensitivity of between 10 and 500ppm, so in my mind,
I'd want to be alerted as soon as it picks up anything, therefore we should set our
comparator's reference voltage to the lower end of the scale, in accordance with
the sensitivity curve taken from the datasheet, shown as follows:

The sensitivity curve taken from the Winsen MQ-7 manufacturer's datasheet.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[135]

Warning
I've included this section on carbon monoxide detection more for
interest than anything else. It's nasty stuff, and while rolling out
your own detector is OK for interest's sake, please keep it just for
that. It's useful to have this in our home security system to alert
us when we're out of the house as an addition, but this should not
be a replacement for a commercially available one that sits next to
your boiler with all of the certifications, standards, and so on, and
makes a very loud noise when we're in the house.

Remote administration for our
Raspberry Pi
In the previous chapter, we learned how to set up our system and home network so
that we can remotely access the alarm control panel from wherever we are. I'm now
going to show you how to extend this to be able to administer and monitor our entire
Raspberry Pi system.

Getting Webmin
Webmin is a rather fine and well established web-based interface for administering
Unix/Linux systems. You can find everything about Webmin on its website at www.
webmin.com. I'm assuming, as throughout this book, that you are using the Raspbian
distribution on our Pi when it comes to installing Webmin.

There are a couple of ways to install Webmin: either by manually downloading and
unpacking it, or by updating our repository sources so that we can use apt-get.
I'm going to opt for the latter, so any dependencies are automatically installed and
updates can be managed more easily in the future. There are a few steps, but it's
pretty straightforward:

Updating the repository sources
1.	 The first thing we need to do is update our repository sources to include the

Webmin repositories:
$ sudo nano /etc/apt/sources.list

2.	 Add the following two lines to the end of the file:
deb http://download.webmin.com/download/repository sarge
contrib

www.it-ebooks.info

http://www.it-ebooks.info/

A Miscellany of Things

[136]

deb
http://webmin.mirror.somersettechsolutions.co.uk/repository
sarge contrib

3.	 Save and exit Nano.

Importing the signing key
1.	 Next, we need to download and import the repository's signing key:

$ cd ~

$ sudo wget http://www.webmin.com/jcameron-key.asc

$ sudo apt-key add jcameron-key.asc

2.	 Now that we have everything we need, we can update the package installer
and install Webmin. It can take a while, so you might want to go and make
yourself a cup of tea or coffee:
$ sudo apt-get update

$ sudo apt-get install webmin

3.	 Once it's installed, you should see the following message in the shell window:

Webmin installation

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[137]

Accessing Webmin locally
Webmin, by default, runs on port 10000 and uses the secure HTTPS protocol; so, to
access it, you need to enter the following URL in your browser:

https://<my-ip>:10000

Where <my-ip> is the IP address of your Raspberry Pi.

In the previous chapter, we set up a static IP address on our system; in my case, I set
up the address as 192.168.0.99. So, to access Webmin on my system, I would use:

https://192.168.0.99:10000

HTTPS Privacy Errors
In some browsers, such as Google Chrome, you might see a privacy
error as you try to access the Webmin Web page. This is because the
SSL certificate behind the HTTPS connection is not signed by a known
authority. This is fine—just tell your browser that you want to accept
this and proceed (in Chrome, you need to click on the Advanced link
first to access that option).

www.it-ebooks.info

http://www.it-ebooks.info/

A Miscellany of Things

[138]

You can log into Webmin using the root or pi user account, or any other account that
has sudo rights:

Webmin login

Once logged in, you'll be presented with the main system information page. Have a
good poke around in it because there's lots of useful stuff you can see and do.

Webmin system information view

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[139]

Webmin comes with a lot of modules, and not all of them are installed; therefore,
you might want to explore the Un-used Modules section of the panel to see if there
is anything you want to add to Webmin.

Remotely accessing Webmin
In the same way that we set up remote access for our alarm control panel in the
previous chapter, you can do it with Webmin—just set up port-forwarding on
your router for port 10000. You can then access Webmin from anywhere using
https://<my-public-ip>:10000.

Summary
Well, this has been a bit of a mix-and-match of various topics to end on before we
put together our home security system framework. I hope you enjoyed these various
footnotes to previous chapters, and that it's given you some ideas on how far you can
take your home security system.

We started by looking at ways we can arm and disarm our system without having
to access the Web-based control panel, by adding a mechanical or digital switch to
an arm/disarm input.

We then looked at adding analogue-type sensors to our system, which can alert us
when a threshold has been reached by using operational amplifiers set up as voltage
comparators. The idea behind these comparator circuits can be implemented for
different types of sensors where you want to know when a certain voltage threshold
has been reached at the analogue sensor output.

Finally, we learned how to install Webmin on our Raspberry Pi so that we can
monitor and configure many aspects of the Linux operating system.

The next chapter is the moment we've all been waiting for; we're going to take all
of the elements and concepts from the previous chapters and put together our full
system comprising the elements we want to feature. The star of the show will be our
Bash scripts, which will glue together all of these elements and provide the control
logic for the entire system.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[141]

Putting It All Together
Over the past eight chapters, we've explored the elements and concepts of a full-
featured home security system that you'd expect to have installed in your property.
It's been presented in a modular fashion so that you can choose which features you
want for your system, to allow you to make it as compact and basic or large and
complex as you require.

Fundamentally, the idea behind a home security system is to detect whether particular
zone inputs are triggered high or low by an external sensor, be that a switch, motion
detector, or water detector. At the end of the day, as far as the control software is
concerned, the type of sensor is irrelevant and the system software's job is to simply
check the state of its inputs and alert accordingly.

In this final chapter, we're going to put all of the concepts together to come up with
a security system framework and write the control scripts around it. This is what we
will cover:

•	 Defining a high-level overview of our system, detailing the connected elements
•	 Building the entire modular security system framework control script,

exploring the code in detail
•	 Delving into some detailed shell scripting techniques to perform certain tasks
•	 Learning how to make our system automatically start at boot-time
•	 Preventing the burning out of our SD card by creating a RAM-based file system

Alarm system diagram
So that we don't get lost in this process, the first thing I recommend is to come up
with a complete system diagram that we can follow. I do this for any system I design
and put together so that it can be built in a structured way, and easily documented
and modified.

www.it-ebooks.info

http://www.it-ebooks.info/

Putting It All Together

[142]

For the home security system in this chapter, I have come up with the following
system diagram that we will look to as a framework. The whole concept is designed
to be modular, so you can come up with your own system to suit your requirements
and implement it accordingly, using the scripts presented in this chapter.

The final home security system diagram

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[143]

Overview of the system elements
The preceding system diagram comprises the elements and modules that we have
discussed in previous chapters. Here's a quick recap of these:

A +12V power supply
This is the primary power supply to our system, which we will obtain from an external
mains adapter that could be battery-backed. This supply needs to be smooth and
regulated to ensure that it remains stable for the system as currently drawn.

All of the alarm wiring and sensors will be supplied with this power, as will
peripherals such as sounders and bells, which usually operate from a 12V supply.
Chapter 5, Adding a Passive Infrared Motion Sensor discussed the merits of using a
12V supply for the alarm circuits.

A +3.3V power supply
This supply is a regulated +3.3V supply for the digital port expander circuit; it also
provides the logical alarm zone inputs via an opto-coupler. The +3.3V power supply
can be derived from either the +12V supply (recommended), or the +5V supply from
the Raspberry Pi's GPIO connector, using a voltage regulator chosen according to
how much current you need.

Chapter 3, Extending Your Pi to Connect More Things, showed you how to build a +3.3V
regulated supply.

The opto-isolator input module
This will isolate the +12V zone input power lines from the port expander and GPIO
digital inputs, which should only have a maximum of +3.3V presented to them when
triggered high.

The circuit for these opto-isolated input modules was discussed and shown in
Chapter 5, Adding a Passive Infrared Motion Sensor.

The port expander
The port expander is our main digital input/output system that will take the alarm
zone inputs and transmit them to the Raspberry Pi using the I2C bus, or allow the
Raspberry Pi to switch outputs on and off.

We built our MCP23017-based port expander circuit in Chapter 3, Extending Your Pi to
Connect More Things and configured the software for it in Chapter 4, Adding a Magnetic
Contact Sensor.

www.it-ebooks.info

http://www.it-ebooks.info/

Putting It All Together

[144]

An arm/disarm switch
The arm/disarm input overrides the arm/disarm soft-switch function on our
web-based control panel, and is a switch (key, digital keypad, or otherwise)
connected to GP0 directly on the Raspberry Pi's GPIO connector.

Remember to connect any switch circuit appropriately to the GPIO pin to avoid
damage to your Raspberry Pi. This was discussed in Chapter 2, Connecting Things
to Your Pi with GPIO.

Alarm outputs
In our system, we have several output devices that are controlled by our Raspberry
Pi via output driver circuits. We have an output for an entry/exit buzzer, an armed
status LED, an alarm bell, and an alarm LED indicator.

These are switched on and off by our Raspberry Pi GPIO connector via driver
circuits that allow us to drive high current and inductive loads using the GPIO pins.
These driver circuits, based around TIP120 Darlington transistors, were discussed in
Chapter 6, Adding Cameras to Our Security System and Chapter 8, A Miscellany of Things.

Designing the control scripts
Before we start writing the scripts to control our alarm systems, it is probably a good
idea to outline the high-level process for the system. The following flow-chart helps
us picture how our system should work, and the various logical decisions our script
needs to make.

The flowchart might look a bit complicated with all its lines in different directions,
but it's actually pretty linear and in a downward direction. Referring to the
flowchart, it shows the following tasks that the control script will be doing:

•	 Sitting quietly until the system is armed either by the hardware key switch
or the web-based panel's soft switch.

•	 When the system is first armed, it will sound the exit buzzer for a
pre-determined amount of time before actually arming the system.
This gives you a chance to leave the property or disarm the system
again, before it starts monitoring the inputs.

•	 Once the system is armed, the armed LED will be switched on and the
system will wait to see if any of the alarm zone inputs are triggered. It will
also wait to see if the alarm is disarmed on your return to the property. We
can optionally put an entry timer in here on the entry zone to delay before
triggering the alarm.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[145]

•	 If the alarm is ultimately triggered, then the main alarm bell will be switched
on, as well as the exit buzzer. The main bell should only sound for a while,
depending on environmental restrictions in your neighborhood, and so, this
will be switched off after a pre-defined period, but the internal buzzer will
stay on.

•	 When triggered, the system will then wait for you to disarm it, before
resetting it.

The control script flowchart

www.it-ebooks.info

http://www.it-ebooks.info/

Putting It All Together

[146]

Building the control script
Now that we have designed our system the way we want it to work, we can start
writing our Bash control script. As before, we'll locate our scripts in the folder, /etc/
pi-alarm, which, you'll remember from Chapter 7, Building a Web-Based Control Panel,
is also where our Web-based control panel writes its configuration status file, alarm.
cfg to. We'll be referring to that file in our scripts too.

In this script, we are going to use the bc tool (the Bash command-line calculator)
to convert hex values to binary. It's not installed by default, so you'll need to get
the package:

$ sudo apt-get update

$ sudo apt-get install bc

Our script file is quite long so, as before, you might want to sit
on the sofa and write it on your laptop using something such as
Notepad++. Remember, however, if you're using a PC, ensure
that the end-of-line (EOL) format is converted to the Unix format,
otherwise the Bash script won't run on the Pi when you copy it
across. Notepad++ will do this for you.

Exploring the script code
I'm now going to walk you through the various sections of the control script code
I've written, which will be used as a framework for our system. I say "framework"
because, while it will provide you with a fully functional control script for the
system, it can be modified and extended to suit your particular requirements.

The following code listings are all part of the single bash script, alarm-control.sh,
that can be downloaded in full with comments from the Packt Publishing website.

Declarations
We'll start off by setting up the various control variables needed to track the
system's state:

#!/bin/bash
#/etc/pi-alarm/alarm-control.sh

ALM_BELL_DURATION=600 #duration in seconds the alarm bell
should sound for
ALM_EXIT_DELAY=30 #entry/exit zone delay in seconds

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[147]

ALM_KEY_ARMED=0 #status of the arm/disarm key switch
ALM_SYS_ARMED=0 #armed status of the system

ALM_ZONE_INPUT_READ="" #this will store the value of the zone
inputs read
ALM_ZONE_INPUT_STAT="00000000" #binary representation of the inputs
(b7-b0)
ALM_ZONE_INPUT_PREV="" #previous zone input status
ALM_ZONE_TRIGGER=0 #this will be set to 1 if one or more zones is
triggered
ALM_ZONES_STAT=(0 0 0 0 0 0 0 0) #dynamic array of normalised zone
status (z1 to z8 order) - 1 is triggered

STAT_RET_VAL="" #return value from functions

Because we could face the situation whereby a HIGH or a LOW input could
represent a triggered zone, depending on its configuration and wiring, I have
introduced an array of normalized status flags in the variable, ALM_ZONES_STAT,
which will be the definitive state as far as the script is concerned. We'll look at
the function that deals with this later.

Updating config settings
In Chapter 7, Building a Web-Based Control Panel, we introduced the configuration
file, alarm.cfg, which stores the system status and configuration for the benefit of
the Web-based control panel. This file not only needs to be read by the main control
script to get any settings made using the control panel, but also needs to be updated
with status values from the main control script so that they can be presented back to
the control panel, essentially exchanging data between the two sub-systems.

Therefore, we're going to include a helper function that contains the same code called
by the Web page PHP script to update this file from the control panel:

#This helper function will update the alarm config
#file with the specified value (alarm.cfg) so that
#the Web panel can know the latest status
function almUpdateConfigSetting()
{
 #$1 - Setting Name
 #$2 - Setting Value
 sudo sed -i "s/^\($1\s*= *\).*/\1$2/" /etc/pi-alarm/alarm.cfg
}

www.it-ebooks.info

http://www.it-ebooks.info/

Putting It All Together

[148]

Setting up the GPIO
We now need to set up the Raspberry Pi's GPIO pins for our purposes, as outlined
by the earlier system diagram. The following commands were first discussed in
Chapter 2, Connecting Things to Your Pi with GPIO:

GPIO SET UP
#Set up the Raspberry Pi GPIO pins
#Refer to Chapter 2 for info
#D0 (GPIO17) Arm/Disarm Key Input
sudo echo 17 > /sys/class/gpio/export
sudo echo in > /sys/class/gpio/gpio17/direction

#D4 (GPIO23) Armed LED Output
sudo echo 23 > /sys/class/gpio/export
sudo echo out > /sys/class/gpio/gpio23/direction
sudo echo 0 > /sys/class/gpio/gpio23/value

#D5 (GPIO24) Exit Buzzer Output
sudo echo 24 > /sys/class/gpio/export
sudo echo out > /sys/class/gpio/gpio24/direction
sudo echo 0 > /sys/class/gpio/gpio24/value

#D6 (GPIO25) Alarm LED Output
sudo echo 25 > /sys/class/gpio/export
sudo echo out > /sys/class/gpio/gpio25/direction
sudo echo 0 > /sys/class/gpio/gpio25/value

#D7 (GPIO4) Alarm Bell Output
sudo echo 4 > /sys/class/gpio/export
sudo echo out > /sys/class/gpio/gpio4/direction
sudo echo 0 > /sys/class/gpio/gpio4/value

Note that you can only export a GPIO pin once, unless it has been
subsequently unexported. Therefore, you might see the error, echo:
write error: Device or resource busy, if you re-run the
script when it tries to export the pin again. You can safely ignore this.

We'll also throw in a few helper functions that will easily allow us to switch on or off
various outputs to simplify the main code. I'm a big fan of implementing functions,
however simple, as they keep the code modular, reusable, and simpler to read in
most cases:

#This helper function will switch a specified GPIO output on or off
function almSetGPIOValue()

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[149]

{
 #$1 - GPIO pin number
 #$2 - Value
 sudo echo $2 > /sys/class/gpio/gpio$1/value
}
#Helper functions to switch on and off the outputs
function almSetArmedLED()
{
 #$1 - 0 or 1 (Off or On)
 almSetGPIOValue 23 $1
 echo "[ALM] Armed LED set to $1"
}
function almSetExitBuzzer()
{
 #$1 - 0 or 1 (Off or On)
 almSetGPIOValue 24 $1
 echo "[ALM] Exit Buzzer set to $1"
}
function almSetAlarmLED()
{
 #$1 - 0 or 1 (Off or On)
 almSetGPIOValue 25 $1
 echo "[ALM] Alarm Trigger LED set to $1"
}
function almSetAlarmBell()
{
 #$1 - 0 or 1 (Off or On)
 almSetGPIOValue 4 $1
 echo "[ALM] Alarm Bell set to $1"
}

And, we'll add a helper function that will read the ARM switch status from the D0
(GPIO17) of the Raspberry Pi and from the web-console to see if the ARM soft switch
has been set:

#this function returns whether the system is armed via
#either the web console or key switch
function almGetArmedSwitchStatus()
{
 STAT_RET_VAL="0"
 #read arm key switch input from
 local L_VAL=$(sudo cat /sys/class/gpio/gpio17/value)
 if [$L_VAL -eq 1]; then
 #system has been armed with key switch

www.it-ebooks.info

http://www.it-ebooks.info/

Putting It All Together

[150]

 echo "[ALM] System ARMED with key switch"
 ALM_KEY_ARMED=1
 almUpdateConfigSetting "SYSTEM_ARMED" "1" #set system armed
 console flag
 STAT_RET_VAL="1"
 else
 #read system armed value from web console config file
 if [$SYSTEM_ARMED == 1]; then
 echo "[ALM] System ARMED with web console"
 STAT_RET_VAL="1"
 fi
 fi
}

Setting up the I2C port expander
The next few lines of code set up the I2C port expander to set all of the pins, on both
Port A and Port B, as inputs. In our system here, we're only using Port A, but this
allows us to have another 8 inputs if we want to expand our system. We originally
looked at this in Chapter 4, Adding a Magnetic Contact Sensor:

PORT EXPANDER SET UP
#Refer to Chapter 4 for more information about the I2C bus

#We will set up I/O BUS A as all inputs
sudo i2cset -y 1 0x20 0x00 0xFF

#Whilst we're not using BUS B in our system,
#we can set that up as all inputs too
sudo i2cset -y 1 0x20 0x01 0xFF

If you don't have your I2C port expander attached, then you'll see the
following error when you try to run these commands: Error: Write failed

Decoding the zone inputs status
The next function is a big one—and key to our system. It will read the Port A value
from the I2C port expander. It'll be returned as a hexadecimal value, so we need to
convert this to a binary value with a 0 or 1 flag representing each input bit. We'll use
the bc tool installed earlier to do this.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[151]

Once we have the status of each input bit, we then normalize the status by determining
whether a 0 or a 1 determines a positive trigger. The resulting output is the array,
ALM_ZONES_STAT, which contains the status of each zone—with a 1 representing a
positive triggered zone de-facto:

#This function will read the port inputs and set the
#status of each zone
function almReadZoneInputs()
{
 #preserve previous zone status
 ALM_ZONE_INPUT_PREV=$ALM_ZONE_INPUT_STAT
 #read the 8-bit hex value of port a
 ALM_ZONE_INPUT_READ=$(sudo i2cget -y 1 0x20 0x12)

 if [[$ALM_ZONE_INPUT_READ = *"Error"*]]; then
 #An error occurred reading the I2C bus - set default value
 ALM_ZONE_INPUT_READ="0x00"
 fi

 #remove the 0x at the start of the value to get the hex value
 local L_HEX=${ALM_ZONE_INPUT_READ:2}
 #convert the hex value to binary
 local L_BIN=$(echo "obase=2; ibase=16; $L_HEX" | bc)
 #zero pad the binary to represent all 8 bits (b7-b0)
 ALM_ZONE_INPUT_STAT=$(printf "%08d" $L_BIN)

 echo "[ALM] Zone I/O Status: $ALM_ZONE_INPUT_STAT
 ($ALM_ZONE_INPUT_READ)"

 #check each zone input to see if it's in a triggered state
 #a triggered state may be either 1 or 0 depending on the input's
 configuration
 #you'll need to set the logic here accordingly for each input
 #the ALM_ZONES_STAT array contains the definitive trigger value
 for each input

 #zone 1 test (bit 0)
 local L_FLG=${ALM_ZONE_INPUT_STAT:7:1}
 if [$L_FLG -eq 0]; then ALM_ZONES_STAT[0]=0; else
 ALM_ZONES_STAT[0]=1; fi

 #zone 2 test (bit 1)
 local L_FLG=${ALM_ZONE_INPUT_STAT:6:1}
 if [$L_FLG -eq 0]; then ALM_ZONES_STAT[1]=0; else
 ALM_ZONES_STAT[1]=1; fi

www.it-ebooks.info

http://www.it-ebooks.info/

Putting It All Together

[152]

 #zone 3 test (bit 2)
 local L_FLG=${ALM_ZONE_INPUT_STAT:5:1}
 if [$L_FLG -eq 0]; then ALM_ZONES_STAT[2]=0; else
 ALM_ZONES_STAT[2]=1; fi

 #zone 4 test (bit 3)
 local L_FLG=${ALM_ZONE_INPUT_STAT:4:1}
 if [$L_FLG -eq 0]; then ALM_ZONES_STAT[3]=0; else
 ALM_ZONES_STAT[3]=1; fi

 #zone 5 test (bit 4)
 local L_FLG=${ALM_ZONE_INPUT_STAT:3:1}
 if [$L_FLG -eq 0]; then ALM_ZONES_STAT[4]=0; else
 ALM_ZONES_STAT[4]=1; fi

 #zone 6 test (bit 5)
 local L_FLG=${ALM_ZONE_INPUT_STAT:2:1}
 if [$L_FLG -eq 0]; then ALM_ZONES_STAT[5]=0; else
 ALM_ZONES_STAT[5]=1; fi

 #zone 7 test (bit 6)
 local L_FLG=${ALM_ZONE_INPUT_STAT:1:1}
 if [$L_FLG -eq 0]; then ALM_ZONES_STAT[6]=0; else
 ALM_ZONES_STAT[6]=1; fi

 #zone 8 test (bit 7)
 local L_FLG=${ALM_ZONE_INPUT_STAT:0:1}
 if [$L_FLG -eq 0]; then ALM_ZONES_STAT[7]=0; else
 ALM_ZONES_STAT[7]=1; fi

 echo "[ALM] Zone Trigger Status: $ALM_ZONES_STAT[*]"
}

Initialization
Now that we have declared our module-level variables and helper functions, we will
start our main routine. First, we'll initialize the system that clears the SYSTEM_ARMED
status and reads in the initial settings from the config file:

initialise system
echo "[ALM] Initialising system..."
almUpdateConfigSetting "SYSTEM_ARMED" "0" #clear system armed
console flag
sleep 1
sudo cat /etc/pi-alarm/alarm.cfg

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[153]

sleep 1
echo "[ALM] Initialising done"
#############################

The system monitoring loop
The script then jumps into a never-ending loop that will be the main control system,
monitoring the arm/disarm status and, when armed, monitoring the zone input
status and responding accordingly:

loop continuously###########
while true
do

 # wait for system to be armed ###############
 echo "[ALM] Alarm now in STAND-BY state - waiting to be armed"
 almSetArmedLED 0 #switch off armed LED
 STAT_RET_VAL="0"
 while [[$STAT_RET_VAL = "0"]]; do
 sleep 1
 #read the control panel status file
 . /etc/pi-alarm/alarm.cfg
 almGetArmedSwitchStatus #result is returned in STAT_RET_VAL
 echo -n "*" # indicate standby mode
 done
 ###

Arming the system
When the system goes into the ARMED state, it will first switch on the exit buzzer
and then wait for a pre-determined amount of time. This will give you time to leave
the property or disarm the system:

 # perform exit delay ########################
 echo "[ALM] Alarm now in EXIT DELAY state"
 almSetExitBuzzer 1 #switch on exit buzzer
 COUNTER=$ALM_EXIT_DELAY
 while [[$STAT_RET_VAL = "1" && $COUNTER -gt 0]]; do
 sleep 1
 #read the control panel status file
 . /etc/pi-alarm/alarm.cfg
 almGetArmedSwitchStatus #result is returned in STAT_RET_VAL
 COUNTER-=1
 echo -n "X$COUNTER " # indicate exit mode

www.it-ebooks.info

http://www.it-ebooks.info/

Putting It All Together

[154]

 done
 almSetExitBuzzer 0 #switch off exit buzzer
 ###

 # system now armed - monitor inputs #########
 ALM_SYS_ARMED=1
 echo "[ALM] Alarm now in ARMED state"
 almSetArmedLED 1 #switch on armed LED

 #read the control panel status file
 . /etc/pi-alarm/alarm.cfg
 almReadZoneInputs # > ALM_ZONES_STAT[x]

Monitoring the zones
Once armed, the system will monitor the zone inputs in a continuous loop until
either the system is disarmed, or a zone input is triggered. When a zone is triggered,
it will check against the ZONE_ENABLE_n configuration to see if that zone has been
disabled (this is done in the Web-based control panel). If the zone is not disabled,
then the alarm system is deemed triggered.

The ZONE_STATUS_n setting is also updated here so that the web-based control panel
indicates which zone or zones have been triggered:

 #check each zone input to set if it's enable
 #and has been triggered
 #NUM_ZONES setting is stored in alarm.cfg

 while [[$ALM_SYS_ARMED -eq 1]]; do
 echo -n "A" #indicate armed mode

 ALM_ZONE_TRIGGER=0
 for ((i=$NUM_ZONES; i>0; i--)); do
 if [[$ALM_ZONES_STAT[$i-1] -eq 1]]; then
 #zone has been triggered
 echo "[ALM] Zone $i TRIGGERED"
 E_VAR="ZONE_ENABLE_$i"
 E_VAL=`echo "$E_VAR"` #get zone enabled status loaded from
 alarm.cfg

 if [[$E_VAL -eq 1]]; then
 #zone is enabled
 ALM_ZONE_TRIGGER=1 #set alarm triggered flag
 echo "[ALM] Zone $i ENABLED - alarm will be triggered"

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[155]

 almUpdateConfigSetting "ZONE_STATUS_$i" "1"

 ## YOU CAN INSERT CODE HERE TO TAKE CAMERA IMAGE IF YOU
 WANT##
 ## REFER BACK TO CHAPTER 6 ##

 fi
 fi
 done

 . /etc/pi-alarm/alarm.cfg
 almGetArmedSwitchStatus #result is returned in STAT_RET_VAL

Entry delay
When an alarm zone is triggered, it will first check whether it was the entry/exit
zone that was triggered. If it was, then the system will delay before sounding the
main alarm to give you a chance to disarm the system. Only the entry buzzer will
sound at this time:

 if [[$ALM_ZONE_TRIGGER -eq 1]]; then
 # alarm has been triggered
 almSetAlarmLED 1
 echo "[ALM] A zone has been triggered"

 #####################################
 # ZONE 1 is the ENTRY zone - if that's triggered then delay
 if [[$ALM_ZONES_STAT[0] -eq 1]]; then
 # perform entry delay ###########
 echo "[ALM] Alarm now in ENTRY state"
 setExitBuzzer 1 #switch on entry/exit buzzer

 COUNTER=$ALM_EXIT_DELAY
 STAT_RET_VAL="0"
 while [[$STAT_RET_VAL = "1" && $COUNTER -gt 0]]; do
 echo -n "E$COUNTER " #indicate entry mode
 sleep 1
 #read the control panel status file
 . /etc/pi-alarm/alarm.cfg
 almGetArmedSwitchStatus #result is returned in STAT_RET_VAL
 COUNTER-=1
 done
 fi
 #####################################

www.it-ebooks.info

http://www.it-ebooks.info/

Putting It All Together

[156]

Sounding the main alarm
If, at this point, the system hasn't been disarmed, then we need to sound the main
bell. We have a duration limit for sounding the bell to cater to environmental noise
restrictions; we wouldn't want the alarm sounding for hours, annoying the neighbors
until we got home. At this point, you can also add code from Chapter 6, Adding Cameras
to Our Security System, if you want to be sent an alert email to your mobile device:

 #####################################
 # STAY in TRIGGERED mode until system has been disarmed
 if [[$STAT_RET_VAL = "1"]]; then
 #alarm has not been disabled
 almSetAlarmBell 1 #switch on alarm bell
 echo "[ALM] Alarm now in TRIGGERED state"

 ## YOU CAN INSERT CODE HERE TO SEND YOU AN EMAIL IF YOU
 WANT##
 ## REFER BACK TO CHAPTER 6 ##

 COUNTER=0
 STAT_RET_VAL="0"
 while [[$STAT_RET_VAL = "1"]]; do
 echo -n "T$COUNTER " #indicate triggered mode
 sleep 1
 #read the control panel status file
 . /etc/pi-alarm/alarm.cfg
 almGetArmedSwitchStatus #result is returned in STAT_RET_VAL

 COUNTER+=1
 if [[$COUNTER -gt $ALM_BELL_DURATION]]; then
 almSetAlarmBell 0 #switch off alarm bell
 echo "[ALM] Bell has been switched OFF"
 fi
 done
 fi
 #####################################

Disarming and resetting the system
When we disarm the system, we need to reset its status and complete the monitoring
loop so that we can start all over again and wait for it to be re-armed:

 # alarm has been disarmed ##########
 echo "[ALM] Alarm has been DISARMED"

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[157]

 ALM_SYS_ARMED=0
 almSetAlarmBell 0 #switch off alarm bell
 almSetExitBuzzer 0 #switch off exit buzzer
 almSetAlarmLED 0
 almSetArmedLED 0 #switch off armed LED

 #####################################
 fi

 done
 ###

done
###

We're done (almost)…
And there we have it: a framework for an entire alarm control script on our
Raspberry Pi. Additional features that you may want to implement within your
script could include the following:

•	 Sending a photo or video clip from a zone's camera when it's triggered
•	 Sending an email alert with status details when the alarm has been triggered
•	 Writing a regular log file recording historical status information
•	 Adding additional environmental sensors to port B

Each of the script blocks is taken from the single script file,
alarm-control.sh, so you should be able to put all of
the described pieces together into one file to have a fully
functional script.

As always, before we can run it we need to give the script execute rights:

$ sudo chmod 777 /etc/pi-alarm/alarm-control.sh

After we copy the script to our Raspberry Pi, this is what we should see in our /etc/
pi-alarm folder:

pi@raspberrypi ~ $ ls -1 /etc/pi-alarm
alarm.cfg
alarm-control.sh
update-alarm-setting.sh

www.it-ebooks.info

http://www.it-ebooks.info/

Putting It All Together

[158]

Automatically starting the system
Now, obviously, we don't want to have to manually start the alarm control script
each time the Raspberry Pi boots up, for example, after a power failure—for a start,
we may not even be there. Therefore, we need to set up our operating system so that
it will automatically start up the alarm-control.sh script at boot time.

To do this, we need to edit the rc.local file using Nano:

$ sudo nano /etc/rc.local

Before the line containing exit 0, insert the following line:

sudo /etc/pi-alarm/alarm-control.sh &

The & symbol at the end of the line is important because it will then
make the script run in a different process, otherwise the rc.local
script would never exit.

Your rc.local file should now look something like this:

#!/bin/sh -e
#
rc.local
#
This script is executed at the end of each multiuser runlevel.
Make sure that the script will "exit 0" on success or any other
value on error.
#
In order to enable or disable this script just change the execution
bits.
#
By default this script does nothing.

Print the IP address
_IP=$(hostname -I) || true
if ["$_IP"]; then
 printf "My IP address is %s\n" "$_IP"
fi

sudo /etc/pi-alarm/alarm-control.sh &
exit 0

The operating system runs the rc.local script after the system boots up, so you can
put anything in there that you want to happen automatically at this time.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[159]

Preserving the SD card
One final topic I want to share with you is that of preserving your Raspberry Pi's
SD card. SD cards have a finite write cycle, and continuous writing to the card will
eventually burn it out. If we're going to be writing lots of log file entries and taking
lots of camera images, we will want to protect our SD card in order to maintain the
integrity and reliability of our system; using the system RAM instead can help us
with this.

Creating a RAM-based file system
Our Raspberry Pi has plenty of fast system RAM available to us (1Gb on the latest
models) that isn't susceptible to this write burn-out issue. Therefore, I'm going to
show you how to allocate some of it to create a temporary disk in memory, which
we can write files to that we don't need kept on the SD card. Such files would include
the, quite large, camera image files that will be emailed out of the system— which,
therefore, don't need to be stored permanently. You should also consider any log
files that are regularly written to, which would then be shipped off the system at
regular intervals.

Remember that this is a RAM-based file system, so content will be
lost when the Raspberry Pi shuts down or reboots. So, don't store
any data here that you want to persist after a restart.

Let's create a Bash script file called setup-ramfs.sh, and copy it to our
/etc/pi-alarm folder:

#!/bin/bash
#/etc/pi-alarm/setup-ramfs.sh

RAM_DISK="/ramfs"
RAM_DISK_SIZE=64M

Create RAM Disk
if [! -z "$RAM_DISK"]; then
 echo "[INIT] Creating RAM Disk... $RAM_DISK"
 mkdir -p $RAM_DISK
 chmod 777 $RAM_DISK
 mount -t tmpfs -o size=$RAM_DISK_SIZE tmpts $RAM_DISK/
 echo "[INIT] RAM Disk created at $RAM_DISK"
fi
##

www.it-ebooks.info

http://www.it-ebooks.info/

Putting It All Together

[160]

setup-ramfs.sh RAM disk creation script

Running the preceding script will create a RAM disk folder at /ramfs—you can treat
it just like any other folder; it's just that it resides in the system memory rather than
on the SD card:

$ cd /ramfs

$ ls

You can call this script from the alarm-control.sh script as part of the initialization
process by including the line:

. /etc/pi-alarm/setup-ramfs.sh

Conclusion
The Raspberry Pi is a powerful little beast and a great platform for building
low-cost, but highly capable, embedded systems. The interfaces built into its GPIO
connector make it easy to bolt on modules using simple low-cost electronics and a
bit of configuration to create very functional and flexible systems. The inclusion of
a dedicated camera interface and networking interfaces give you everything you
could possible need for an Internet-connected home security system.

I've covered a lot of topics in this book, and I could have gone on and on, but I hope
that what I have presented has been done in a structured and methodical way, and
has given you the tools and techniques to carry on this journey so that you are able
to create the perfect home security system for your needs.

Tips for building systems
As a systems guy who has to work with many different technologies and disciplines
on a day-to-day basis, I just want to leave you with the following thoughts to
consider, if you choose to build upon the system we've put together in this book,
which, of course, I hope you will:

•	 Create a high-level diagram of your proposed system first—a bit like the
one I produced earlier in this chapter.

•	 Define everything in a modular way so that you can build and test your
system in small chunks. This makes it much easier to spot issues early on.

•	 Building the system using smaller modules makes it easier to re-use and
replace circuits and code, and don't be afraid to mix-and-match technologies
using what's best for the individual module.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

[161]

•	 Don't try to re-invent the wheel—use existing code and circuit resources that
are proven to work. This makes it much quicker to get things working and
minimizes the number of times you have to hit your head against a brick
wall. I call it blagging.

Summary
Well, we've reached the end of our journey to build a fully functional and extensible
home security system using the mighty Raspberry Pi mini-PC. In this final chapter,
we put together all of the elements and concepts from the previous chapters to create
a home security framework, both from a hardware and software perspective.

In particular, this chapter guided us toward building a modular framework for our
home security system, implementing features that you would find in any commercially
available system, and also things that you don't see out there. We walked through the
complete control script, exploring its various sections and understanding how they fit
into our system.

We also learned how to automatically start-up our home security system script
when our Raspberry Pi boots up, and how data is shared between the Pi and the
web-based control panel in real-time via the configuration file. Finally, we looked at
how to prevent our SD card from burning out by creating a rather useful RAM-based
temporary file system.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[163]

Index
Symbols
12V alarm zone circuits

protecting 71, 72
using 71
working 72, 73

433-MHz receiver
connecting 74, 75
connecting, alternative approach 76

433-MHz wireless alarm systems
about 73
advantages 74
disadvantages 74

A
alarm system

about 141
building, tips 160
diagram 141, 142
elements 143
starting automatically 158

anti-tamper circuits 60-62
anti-tamper loop 60
Arduino 46
arm device

about 75, 101, 106
documenting 106

ATmega microcontroller 46

B
Bash command-line calculator (bc tool)

used for converting hx values to binary 146
Bash script 119

battery-backed 143
bit banging 76

C
camera, adding to security systems

Pi NoIR camera module 92
prerequisites 82
Raspberry Pi camera module 82
USB webcam 97

camera serial interface (CSI) 82
carbon monoxide (CO) detector 133-135
cascading style-sheet (CSS) 108
control panel

about 101
HTML template 108
remote access, setting up 120

control scripts
building 146
code, exploring 146
designing 144, 145

control scripts code
config settings, updating 147
declarations 146, 147
entry delay 155
exploring 146
features, implementing 157
GPIO, setting up 148, 149
I2C port expander, setting up 150
initialization 152
main alarm, sounding 156
system, arming 153
system, disarming 156
system monitoring loop 153
system, resetting 156

www.it-ebooks.info

http://www.it-ebooks.info/

[164]

zone inputs status, decoding 150
zones, monitoring 154

control variables 146

D
data logging

detecting 78
ddclient updater 122
digital I/O pins 21
disarm device 75
dynamic DNS account

Raspberry Pi dynamic DNS client 122
setting up 121

DynDNS
URL 121

E
elaborate light switch

about 31, 95, 96
breadboard 31
circuit diagram 32
illuminating script 32, 33

electronic keypad 128
elements, alarm system

+3.3V power supply 143
+12V power supply 143
arm/disarm switch 144
opto-isolator input module 143
outputs 144
overview 143
port expander 143

e-mail
attachments, sending 91
information, obtaining 91, 92
notification, setting 89
sender client, setting up 90

entry / exit purposes 106

F
fake-hwclock package 16
ffmpeg tool 88
file system, SD Card

expanding 9, 10
raspi-config utility, using 9-11

fixed IP address 121
flow-chart 144
fswebcam

URL 97

G
Gertboard

about 46
URL 47

GPAC package 88
GPIO connector

about 19-21
access, providing 20
connecting, to LED 24-26
detection script 29, 30
digital I/O pins 21
floating state 28
Inter-Integrated Circuit (I2C) bus 22
power connections 23
prerequisites, for connecting to 19
Serial Peripheral Interface (SPI) bus 22
switch, adding 28
Universal Asynchronous Receiver and

Transmitter (UART) bus 22
Universal Serial Bus (USB) ports 22, 23
using 24

GPIO pin
export 148

H
H.264 video stream 87
hall-effect sensors 63
high-level process 144
Hobbytronics MCP23017 expander port kit

about 45
URL 45

I
I2C bus

about 36
address, identifying 36, 37
data, transmitting 37, 38
enabling 52-54
Serial Clock Line (SCL) wire 36

www.it-ebooks.info

http://www.it-ebooks.info/

[165]

Serial Data Line (SDA) wire 36
serial-to-parallel conversion 38
tools package, installing 54

I2C port expander
board, building 44
building 40, 41
devices, searching 55, 56
I2C bus, enabling 52-54
I2C tools package, installing 54
setting up 52-57

I2C port expander circuit
about 41-43
components 41
floating 43
high 43
low 43
MCP23017 port expander chip 42

i2cset tool 56
inductive loads

bells 129
driving 129
lamps 129

infra-red lighting 96
Inter-Integrated Circuit (I2C) bus 22
intrusion 130
IP address 12

J
Jessie version 9

K
key switch 128

L
LED Resistor Values

calculating 25
lighttpd web server 102
Linux

using 8

M
magnetic contact sensor

adding, prerequisites 49
connecting 57, 58

monitoring 59, 60
working 50, 51

magnetic field 50
master configuration file

using 106, 107
MCP23017 40
Microsoft Windows

using 7
mobile optimized 108
motion sensors 65
MP4Box 88
multicamera setup

about 99
Slave driver 100

N
Network Time Protocol (NTP) 15, 16
night time shots

badger, watching 96, 97
capturing 92
elaborate light switch 94-96
infra-red lighting, using 96
TIP120 Darlington transistor, using 93, 94

NoIR camera module 92
normally closed (NC) alarm 70
normally open (NO) alarm 70

O
operating system

fake-hwclock package 16
Network Time Protocol (NTP) 16
time, obtaining 15, 16

outputs
allocating 105
documenting 105

P
parallel-to-serial conversion 38
Passive Infrared motion sensors

(PIR sensors)
about 66-68
connecting 69-71
guidelines 67
power supply 69
prerequisites 66

www.it-ebooks.info

http://www.it-ebooks.info/

[166]

setting up 67
PHP5 installation

testing 103, 104
PiFace Digital I/O expansion board

about 46
URL 46

port-forwarding 123, 124
power supply

about 38-40
part requisites 39

PuTTY
URL, for download 13

R
RAM-based file system

creating 159
Raspberry Pi

about 160
booting 9
connecting, via Wi-Fi
file system, expanding 9, 10
Model 2 4
Model A 3
Model B 4
Model B+ 4
models, comparing 6
operating system, updating 15
security 16
setting up 12-14
static IP, setting up 122, 123
sudo 17
types 2
URL 6
version, selecting 6

Raspberry Pi camera module
about 82, 83
connecting 83, 84
setting up 84, 85
testing 86, 87

raspistill options 92
ready-made expansion boards

about 45
Gertboard 46
Hobbytronics MCP23017 expander

port kit 45

PiFace Digital I/O expansion board 46
using 45

rectifier diode 129
reed switch

about 50
normally closed (NC) alarm 50
normally open (NO) alarm 50

remote access, granting to control panel
about 120
dynamic DNS account, setting up 121
port-forwarding 123, 124
static IP, setting up on

Raspberry Pi 122, 123
remote administration, Raspberry Pi

about 135
Webmin 135

root user 17

S
SD Card

Linux, using 8
Microsoft Windows, using 7
preparing 6
preserving 159
RAM-based file system, creating 159
Raspbian OS image, downloading 7

security keypad 129
sensors

hall-effect sensors 63
pressure mat sensors 63

Serial Peripheral Interface (SPI) bus 22
serial-to-parallel conversions 38
shift registers 38
simple temperature sensor

about 132
working 133

simple water detector
about 130
working 131

soft-switch function 144
static IP address

setting, on Raspberry Pi 122, 123
system

arming 127-129
disarming 127-129

www.it-ebooks.info

http://www.it-ebooks.info/

[167]

T
TIP120 Darlington transistor 93

U
Universal Asynchronous Receiver and

Transmitter (UART) bus 22
Universal Serial Bus (USB) ports 22, 23
USB webcam

about 97
fswebcam, setting up 98
installing 97
snap, capturing 98
URL 97
using 97

V
video

capturing 87, 88
using, in security system 88

visudo utility 118

W
Webmin

about 135
accessing locally 137-139
pi user 138
remotely accessing 139
repository sources, updating 135
root user account 138
signing key, importing 136
URL 135, 139

web page
control panel HTML template 108
creating 108
main PHP code 118
modifying dynamically 117
PHP configuration file setting,

modifying 117
running, as different user 118, 119
styling 109, 116

web server
installing 102
PHP5 installation, testing 103, 104

Wi-Fi
Raspberry Pi, connecting via 17

Win32 Disk Imager utility
URL 7

wireless motion sensors (wireless
PIR sensors)

433-MHz receiver, connecting 74, 75
433-MHz wireless alarm systems 73
about 73
receiver wiring diagram 77

Z
zones

creating 62

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Thank you for buying
Building a Home Security System with Raspberry Pi

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.it-ebooks.info

http://www.it-ebooks.info/

Learning Raspberry Pi
ISBN: 978-1-78398-282-0 Paperback: 258 pages

Unlock your creative programming potential by
creating web technologies, image processing,
electronics- and robotics-based projects using the
Raspberry Pi

1.	 Learn how to create games, web, and desktop
applications using the best features of the
Raspberry Pi.

2.	 Discover the powerful development tools
that allow you to cross-compile your software
and build your own Linux distribution for
maximum performance.

3.	 Step-by-step tutorials show you how to quickly
develop real-world applications using the
Raspberry Pi.

Raspberry Pi Cookbook for
Python Programmers
ISBN: 978-1-84969-662-3 Paperback: 402 pages

Over 50 easy-to-comprehended tailor-made recipes to
get the most out of the Raspberry Pi and unleash its
huge potential using Python

1.	 Install your first operating system, share files
over the network, and run programs remotely.

2.	 Unleash the hidden potential of the Raspberry
Pi's powerful Video Core IV graphics processor
with your own hardware accelerated 3D
graphics.

3.	 Discover how to create your own electronic
circuits to interact with the Raspberry Pi.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

Raspberry Pi Robotic Projects
ISBN: 978-1-84969-432-2 Paperback: 278 pages

Create amazing robotic projects on a shoestring budget

1.	 Make your projects talk and understand speech
with Raspberry Pi.

2.	 Use standard webcam to make your projects see
and enhance vision capabilities.

3.	 Full of simple, easy-to-understand instructions
to bring your Raspberry Pi online for
developing robotics projects.

Raspberry Pi Server Essentials
ISBN: 978-1-78328-469-6 Paperback: 116 pages

Transform your Raspberry Pi into a server for hosting
websites, games, or even your Bitcoin network

1.	 Unlock the various possibilities of using
Raspberry Pi as a server.

2.	 Configure a media center for your home or
sharing with friends.

3.	 Connect to the Bitcoin network and manage
your wallet.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Setting Up your Raspberry Pi
	Which flavor of Pi?
	Raspberry Pi Model A
	Raspberry Pi Model B
	Raspberry Pi Model B+ and Model 2
	Model comparison table
	So which one?

	Preparing the SD card
	Downloading the Raspbian image
	Using Microsoft Windows
	Using Linux
	Booting your Pi
	Expanding the file system
	Using the raspi-config utility

	Setting up your Pi
	Getting up to date
	Getting the right time
	fake-hwclock
	ntp

	Talking of security…
	What is this sudo thing anyway?

	Connecting via Wi-Fi

	Summary

	Chapter 2: Connecting Things to
your Pi with GPIO
	Prerequisites
	Say hello to the GPIO
	Digital I/O pins
	The I2C bus
	The SPI bus
	The UART serial bus
	USB ports
	Power connections

	Getting acquainted with the GPIO
	Let there be light
	Getting flashy…

	Adding a switch
	Pulling yourself together
	The detection script

	The most elaborate light switch in
the world
	The illuminating script

	Summary

	Chapter 3: Extending Your Pi to Connect More Things
	Prerequisites
	The I2C bus
	Just 2 wires
	What's your address?
	There is a parallel universe
	Serial-to-parallel conversion

	Give me power
	Building an I2C expander
	The I2C port expander circuit
	Let's walk through the circuit

	Building your expansion board

	Using ready-made expansion boards
	Hobbytronics MCP23017 expander port kit
	PiFace Digital I/O expansion board
	Gertboard

	Summary

	Chapter 4: Adding a Magnetic
Contact Sensor
	Prerequisites
	The working of magnetic contact sensors
	Setting up the I2C port expander
	Enabling the I2C Bus
	Installing the I2C tools package
	Finding our devices
	Setting up the port expander

	Connecting our magnetic contact sensor
	Monitoring the sensor
	Anti-tamper circuits
	Getting into the zone
	Summary

	Chapter 5: Adding a Passive Infrared Motion Sensor
	Prerequisites
	Passive infrared sensors explained
	Setting up your PIR sensor

	Give me power (again)
	Connecting our PIR motion sensor
	12V alarm zone circuits
	Alarm circuit protection
	How it works

	Wireless PIR motion sensors
	433-MHz wireless alarm systems
	Connecting a 433-MHz receiver
	The alternative approach (because we have no choice)

	The receiver wiring diagram

	Logging detection data
	Summary

	Chapter 6: Adding Cameras to Our Security System
	Prerequisites
	The Raspberry Pi camera module
	Connecting the camera module
	Setting up the camera module
	Testing the camera module

	Be a video star
	Caught on camera

	You have new mail
	Setting up the e-mail sender client
	Sending attachments
	Where was that taken?

	Night vision
	An illuminating experience
	The Elaborate light switch re-visited
	Is that a badger?

	Using USB cameras
	Installing the webcam
	Taking a snap
	Snap snap snap

	The multicamera setup
	The Slave driver

	Summary

	Chapter 7: Building a Web-Based Control Panel
	Installing the web server
	Testing the PHP5 installation

	Being in control
	Arming yourself

	The master configuration file
	Creating the web page
	The control panel HTML template
	Giving it some style
	Making it dynamic
	Getting a bit of help first
	The main PHP code
	I'm someone else

	Remote access to our control panel
	Setting up a dynamic DNS account
	The Raspberry Pi dynamic DNS client

	Setting up a static IP on your Raspberry Pi
	Port-forwarding

	Summary

	Chapter 8: A Miscellany of Things
	Arming and disarming the system
	Driving inductive loads
	Beyond intrusion
	A simple water detector
	How it works

	A simple temperature sensor
	How it works

	A carbon monoxide detector

	Remote administration for our
Raspberry Pi
	Getting Webmin
	Updating the repository sources
	Importing the signing key
	Accessing Webmin locally
	Remotely accessing Webmin

	Summary

	Chapter 9: Putting it All Together
	Alarm system diagram
	Overview of the system elements
	A +12V power supply
	A +3.3V power supply
	The opto-isolator input module
	The port expander
	An arm/disarm switch
	Alarm outputs

	Designing the control scripts
	Building the control script
	Exploring the script code
	Declarations
	Updating config settings
	Setting up the GPIO
	Setting up the I2C port expander
	Decoding the zone inputs status
	Initialization
	The system monitoring loop
	Arming the system
	Monitoring the zones
	Entry delay
	Sounding the main alarm
	Disarming and resetting the system
	We're done (almost)…

	Automatically starting the system
	Preserving the SD card
	Creating a RAM-based file system

	Conclusion
	Tips for building systems

	Summary

	Index

