The practical guide for constructing
a voice-controlled virtual assistant

Tanay Pant

ApPress’

http://www.it-ebooks.info/

Building a Virtual
Assistant for
Raspberry Pi

Tanay Pant

Apress’

www.it-ebooks.info

http://www.it-ebooks.info/

Building a Virtual Assistant for Raspberry Pi

Tanay Pant
Ghaziabad, Uttar Pradesh
India

ISBN-13 (pbk): 978-1-4842-2166-2 ISBN-13 (electronic): 978-1-4842-2167-9
DOI10.1007/978-1-4842-2167-9

Library of Congress Control Number: 2016948437
Copyright © 2016 by Tanay Pant

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical
way, and transmission or information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even
if they are not identified as such, is not to be taken as an expression of opinion as to whether or
not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the

date of publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director: Welmoed Spahr

Lead Editor: Pramila Balan

Technical Reviewer: Anand T.

Editorial Board: Steve Anglin, Pramila Balan, Laura Berendson, Aaron Black,
Louise Corrigan, Jonathan Gennick, Robert Hutchinson, Celestin Suresh John,
Nikhil Karkal, James Markham, Susan McDermott, Matthew Moodie, Natalie Pao,
Gwenan Spearing

Coordinating Editor: Prachi Mehta

Copy Editor: Tiffany Taylor

Compositor: SPi Global

Indexer: SPi Global

Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233
Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate,
or promotional use. eBook versions and licenses are also available for most titles.

For more information, reference our Special Bulk Sales-eBook Licensing web page at
www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text are
available to readers at www.apress.com. For detailed information about how to locate your
book’s source code, go to www.apress.com/source-code/. Readers can also access source code
at SpringerLink in the Supplementary Material section for each chapter.

Printed on acid-free paper

www.it-ebooks.info

mailto:orders-ny@springer-sbm.com
www.springer.com
mailto:rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com
www.apress.com/source-code/
http://www.it-ebooks.info/

To my parents, who gave me the dream.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Contents at a Glance

About the AUthOrcccemmssemmmsssmnmssssmsssssmsssssssssssssssassssnsssssnnsnssns xiii
About the Technical REVIEWETccccssssemssssansmsssnsssssssssssnsssssnsssssns Xv
Acknowledgments......ccccuseemmmnssssnnnmmssssssnmmssssssnssssssssnssssssnnsssssnnnns Xvii
Chapter 1: Introduction to Virtual Assistants...........ccccunnsnnennnnnnnnns 1
Chapter 2: Understanding and Building an Application
with STT and TTScccccvimmrmsmsmsssssssssssssssssnssss s s snssasssssssssnss 9
Chapter 3: Getting Your Hands Dirty: Conversation Module 21
Chapter 4: Using the Internet to Gather Information............cc...... 31
Chapter 5: Developing a Music Player for Melissa........oceeeeennnneas 43
Chapter 6: Developing a Note-Taking Applicationc.ccccnrrisnnes 51
Chapter 7: Building a Voice-Controlled Interface for
Twitter and IMQUF ... ————— 59
Chapter 8: Building a Web Interface for Melissa.........ccusseennesssnnns 71
Chapter 9: Integrating the Software with Raspberry Pi,
and Next STepS ... ————— 81
11 OO 93
v

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Contents

About the Authorcccciieemmininsesnmmsssn s —————————— Xiii
About the Technical REVIEWETccussueemmsssssnsnssssssnsnssssssnsnssssssnnssssss XV
Acknowledgments......ccccuseemmmnssssnnnmmssssssnmmssssssnssssssssnssssssnnsssssnnnns Xvii
Chapter 1: Introduction to Virtual Assistants...........ccccunnsnnennnnnnnnns 1
Commercial Virtual ASSiStants...........cccerrrerrennseresensesnsese e 2
RASPDEITY Pi....ceereeererrr s 2
How a Virtual Assistant Works..........cccveeveriersensensesssssessessessessesssssessnnnnns 2
SPEech-t0-TEXt ENGINEc.oveeeereeecreree et 3

LOGIC ENQINE ...ttt 3
Text-t0-SPEECH ENQING ...t s 3
Setting Up Your Development Environment...........cccocovvvrvrvrvernensennennens 4
PYINON 2.X.. e e p e nn e nn 4
Python Package INAEX (DIP) «eeeeereererererrererrerseserseserersssersesessesessessssessssessssesssssssessssens 4
Version Control SYStEM (Git)cccevrereerererererererersersesereesersesesesessesessessssessssessssenaes 5
POTTAUTIO ... e e 5
PYAUAIO ..o e e e sn s n s nnsnn s nn s nnsnnsnnnnns 5
Designing MeliSSa..........cccvvrrerieriersissir s snssne e 5
Learning Methodology........cccverererererererse e sse s sesssssessessessssenns 7
SUMMAIY ... a s s sn s ene e 8
vii

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

Chapter 2: Understanding and Building an Application

With STT and TTScccciimrrisrnisssrsssssssss s ssssesssssesssnsessnns 9
Speech-10-Text ENQINEScccvverververrerrerrerres s 9
Freely AVailable STTS.....covucrrrneserrssnesesesessesesese s sssese s sessssssssesssssssssssssssssssssnns 9
Installing SPeeChRECOgNILIONccceverererrrnererrrs e 10
Recording Audio t0 @ WAV File.........coeeeeerrresnessessessessessessessessessessesenns 10
Speech ReCOgNItioNccocveercercercercer e 12
GOOGIE STT ...ttt p s s 12
WIL8T STT w.ovuvceeerereessssesssasesssssss s sssssss s ssssss s ssssss s ssssss b ssssss s sssssssasssssas 13
IBM STT «.oooeteeeeueeesusessssessssessssssssssesssssssssessssssssssessssssssssessssssssasessssssssasessasssssaeses 13
ATRT STT c..oooeeeeeetesesssesssssssssssssssessssss s ssssss s ss s s s s b sssss s sssssssasssssas 14
MelisSa’s INCEPLION.......cce e s 14
Text-t0-Speech ENGiNe ... s s 15
0S Xovturererueessseesssessssesssssessssessssssssssssssssessssssssasesssssessssessssssssssssssasessssesssssessasssssaseses 15
LINUX ettt e ss s s s n s e s n e ne e s e s e e n e e R n e n e 15
Building the TTS ENQINEccoeeeeeeecrcerceer s 16
Repeat What | Say........cccccvevririiiern et 16
Integrating STT and TTS in MeliSSa..........ccccvrerererrereeseresensessssesesenseneas 17
Version-Controlling Your Source Code...........coceeriereneriessnscssesessessnnennens 18
Obtaining the Code from GitHUD...........cccooreercrcercr e 19
31111] 142 S 19
Chapter 3: Getting Your Hands Dirty: Conversation Module 21
(T [Tog = T T (ol T o S 21
Making Melissa RESPONSIVE.........ccceeeeeererrerrersenssssessessessessessessessessessennes 22
Fixing LImitation 1........coooreeceeeee e 24
Fixing LIMitation 2.........cccevrvevr s 25
Extending Functionality..........cccoeeeeesesssscssesescesses s 28
viii

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

What’s the Time, MeliSSa?.........cccvriiininnimniisssessssssssessssssssssssessnes 29
Committing Changesccucvermrereneresniess e se s snes 29
SUMMAIY ...t 30
Chapter 4: Using the Internet to Gather Information...........ccesueeee 31
How’s the Weather? ... 31
Define Artificial Intelligence! ... 33
Read Me Some Business NEewsl...........cocovrnnsnnennnnssssssesenennns 36
Text-Controlled Virtual ASSistantccccovirrennnenennsenssesesesseseesennens 39
Selenium and AUtOMALIoNcccovererricrrnere s 39
Time 10 Sleep, MeliSSa!ccvvrverrerrerrerrirrerser s sn e saenes 41
SUMMANY ...ttt sn s snese s r s s n e sr s nssn s nr e sn s nnesnennnnnenans 42
Chapter 5: Developing a Music Player for Melissa......ccuessereessnnns 43
0S X MUSIC PIAYETcveeeeeeeeeere e sse e sse s s sne s sas s s sns s s s 43
LinuX MUSIC PIQYETeeireerrerierie st ses e ssssas s ssssssssssasssssssssssasssssssnes 44
Module WOrKFIOW.........ccerierenercrne e 44
Building the MUSIC MOAUIE ... e 45
Play Party IMIX!.......ccoeeieenerrcre e sn e sss e sss e se s ssssssnssesnsens 48
11111] 11PN 49
Chapter 6: Developing a Note-Taking Applicationc.ccccunrrisnnns 51
Design WOrkflowccccecvcercernerienser s 51
Designing the Databasecccvvvvrverrerrn s 52
Inner Workings of the Virtual Assistant............cccccooeeenererecesssesenseene 53
Building the Note-Taking Moduleccccveerercercersersesser s 54
Building a Note-Dictating Modulecccvvrvrverrerrrnnrr e 56
EXBICISES ...cueecireisi st 56
SUMMANY ...ttt sn s snesr s s sr s r e sn s snssn s sn e sn s nnesnennnnnenan 57
ix

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

Chapter 7: Building a Voice-Controlled Interface for Twitter

211 T I 11T 59
Building the Twitter Module..........cccoevrvrrrrrrrr e 59
T 63
Building the Imgur Module..........cceoeeeeeerceeee s 63
Creating the Tables in the Database...........cccocvrrvernrnsescnn s 65
SUMMAIY ...t s n s sre s 69
Chapter 8: Building a Web Interface for Melissa........uusseeemensnnnns 71
Operating Workflow...........ccocerverrervensenrerrerser s 4!
Building the Web Interfacecceoeeeeeesersessessesseesesses s 72
EXEICISES ...viiieecreee ettt sr s sn s sn e 80
SUMMANY ...t sn e n s nn s s re s 80
Chapter 9: Integrating the Software with Raspberry Pi,
and Next STePS ...cvvvvvrmmmmmsssssmnmmmmmmsmsssssssss s 81
Setting Up @ RaSpherry Picccovreeriensscnesssese s ses s 81
Setting Up MEliSSaocecercercercererer e 84
Adding New Components to the Raspberry Picccovvrvrvrcrcenennen, 85
Making Melissa Better Each Day!...........ccccoovvvrerrersessessessessessessessesenns 86
Windows Compatibilityccccevrererrernreresesesesseressesseseseseseressessssessssessesessessssesses 86
TSI e —————————————— 86
L0 3 SRS 87
Multi-Device OPEration..........ccccerrererrerrerersesessesessessssessesessesessesessessssessssessssessessssenes 87
Native USer INErface..........cccvevriernrerssr s 88
0ffline SPEECh-10-TEXE (STT)...covcerererererrererre s sa e sa e sne e saens 88

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

Where Do | USe MEeliSS7Y.......cccoremrerenerereereseesessesese s sesseesens 88
DIONES ...t 88
Humanoid RODOLS ... 88
House-Automation SYSIEMScccceeerererrerrrere e re e sa e e ens 89
Burglar-Detection SYSEM.........cccoveererrrerr e e sae s 92

SUMMAIY ... sn e s e s 92

N ¢ &

xi

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author

Tanay Pant is a writer, developer, and white hat who
has a passion for web development. He contributes
code to various open source projects and is the chief
architect of Stock Wolf (www. stockwolf.net), a global
virtual stock-trading platform that aims to impart
practical education about stocks and markets. He is also
an alumnus of the Mozilla Representative Program, and
you can find his name listed in the credits (www.mozilla.
S ko = org/credits/) of the Firefox web browser. You can also
find articles written by him on web development at
SitePoint and TutsPlus. Tanay acts as a security
consultant and enjoys helping corporations fix
vulnerabilities in their products.

xiii

www.it-ebooks.info

http://www.stockwolf.net/
http://www.mozilla.org/credits/
http://www.mozilla.org/credits/
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

About the Technical

Reviewer

T. Anand is a versatile technocrat who has worked on
various technology projects in the last 16 years. He has
also worked on industrial-grade designs; consumer
appliances such as air conditioners, TVs, refrigerators,
and supporting products; and uniquely developed
innovative gadgets for some very specific and nifty
applications, all in cross-functional domains. He offers
a unique perspective with his cross-functional domain
knowledge and is currently supporting product and
business development and brand building for various
ventures.

Anand is recognized as a Chartered Engineer by
the Institute of Engineers India, Professional Engineer

by the Institute of Engineers Australia, and a Lean Six-Sigma Master Black Belt by the
community. He is entrepreneurial by nature and is happy to support new initiatives,
ideas, ventures, startups, and nifty projects.

XV

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Acknowledgments

I'would like to express my warmest gratitude to the many people who saw me through this
book and to all those who provided support, read, wrote, assisted, and offered their insights.

I'would like to thank my family for their huge support and encouragement. Thank you
to my father, who always inspired me to do something different, something good, with my
life. I could not have asked for a better role model in my life! I am grateful to my mother,
who has been the biggest source of positivity and a pillar of support throughout my life.

I want to thank Apress for enabling me to publish this book and the Apress team for
providing smooth passage throughout the publishing process!

I also would like to thank the professors at the College of Technology, Pantnagar,
who provided me with the support I needed to write this book. Thank you to Dr. H.L.
Mandoria, Dr. Ratnesh Prasad Srivastava, Er. Sanjay Joshi, Er. Rajesh Shyam Singh,

Er. B.K. Pandey, Er. Ashok Kumar, Er. Shikha Goswami, Er. Govind Verma, Er. Subodh
Prasad, and Er. S.P. Dwivedi for your motivation. My deepest gratitude to all the teachers
who taught me from kindergarten through engineering. Last but not the least, my thanks
and appreciation go to all my friends and well wishers, without whom this book would
not have been possible.

xvii

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1

Introduction to Virtual
Assistants

This chapter gives a detailed overview of what virtual assistants are, common virtual
assistants in the market, what qualities a virtual assistant should possess, and the basic
workflow and design for building a scalable virtual assistant. You also learn about the
various tools required to build Melissa (your own virtual assistant) in upcoming chapters
and the methodology you follow in this book.

The advent of virtual assistants has been an important event in the history of
computing. Virtual assistants are useful for helping the users of a computer system
automate tasks and accomplish tasks with minimum human interaction with a machine.
The interaction that takes place between a user and a virtual assistant seems natural;
the user communicates using their voice, and the software responds in the
same way.

If you have seen the movie Iron Man, you can perhaps imagine having a virtual
assistant like Tony Stark’s Jarvis. Does that idea excite you? The movie inspired me to
build my own virtual assistant software, Melissa. Such a virtual assistant can serve in the
Internet of things as well as run a voice-controlled coffee machine or a voice-controlled
drone.

Electronic supplementary material The online version of this chapter
(d0i:10.1007/978-1-4842-2167-9_1) contains supplementary material, which is available to
authorized users.

© Tanay Pant 2016 1
T. Pant, Building a Virtual Assistant for Raspberry Pi, DOI 10.1007/978-1-4842-2167-9_1

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-2167-9_1
http://www.it-ebooks.info/

CHAPTER 1 * INTRODUCTION TO VIRTUAL ASSISTANTS

Commercial Virtual Assistants

Virtual assistants are useful for carrying out tasks such as saving notes, telling you the
weather, playing music, retrieving information, and much more. Following are some
virtual assistants that are already available in the market:

Google Now: Developed by Google for Android and iOS
mobile operating systems. It also runs on computer systems
with the Google Chrome web browser. The best thing about
this software is its voice-recognition ability.

Cortana: Developed by Microsoft and runs on Windows for
desktop and mobile, as well as in products by Microsoft such
as Band and Xbox One. It also runs on both Android and iOS.
Cortana doesn’t entirely rely on voice commands: you can
send commands by typing.

Siri: Developed by Apple and runs only on iOS, watchOS, and
tvOS. Siri is a very advanced personal assistant with lots of
features and capabilities.

These are very sophisticated software applications that are proprietary in nature.
So, you can’t run them on a Raspberry Pi.

Raspberry Pi

The software you are going to create should be able to run with limited resources. Even
though you are developing Melissa for laptop/desktop systems, you will eventually run
this on a Raspberry Pi.

The Raspberry Piis a credit-card-sized, single-board computer developed by
the Raspberry Pi Foundation for the purpose of promoting computer literacy among
students. The Raspberry Pi has been used by enthusiasts to develop interesting projects
of varying genres. In this book, you will build a voice-controlled virtual assistant named
Melissa to control this little computer with your voice.

This project uses a Raspberry Pi 2 Model B. You can find information on where to
purchase it at waw.raspberrypi.org/products/raspberry-pi-2-model-b/. Do not worry
if you don’t currently have a Raspberry Pi; you will carry out the complete development of
Melissa on a *nix-based system.

How a Virtual Assistant Works

Let’s discuss how Melissa works. Theoretically, such software primarily consists of
three components: the speech-to-text (STT) engine, the logic-handling engine, and the
text-to-speech (TTS) engine (see Figure 1-1).

www.it-ebooks.info

http://www.raspberrypi.org/products/raspberry-pi-2-model-b/
http://www.it-ebooks.info/

CHAPTER 1 * INTRODUCTION TO VIRTUAL ASSISTANTS

(o]

STT Logic Engine TTS

Figure 1-1. Virtual assistant workflow

Speech-to-Text Engine

As the name suggests, the STT engine converts the user’s speech into a text string that can
be processed by the logic engine. This involves recording the user’s voice, capturing the
words from the recording (cancelling any noise and fixing distortion in the process), and
then using natural language processing (NLP) to convert the recording to a text string.

Logic Engine

Melissa’s logic engine is the software component that receives the text string from the STT
engine and handles the input by processing it and passing the output to the TTS engine.
The logic engine can be considered Melissa’s brain; it handles user queries via a series of
if-then-else clauses in the Python programming language. It decides what the output
should be in response to specific inputs. You build Melissa’s logic engine throughout the
book, improving it and adding new functionalities and features as you go.

Text-to-Speech Engine

This component receives the output from Melissa’s logic engine and converts the string to
speech to complete the interaction with the user. TTS is crucial for making Melissa more
humane, compared to giving confirmation via text.

This three-component system removes any physical interaction between the user
and the machine; the users can interact with their system the same way they interact
with other human beings. You learn more about the STT and TTS engines and how to
implement them in Chapter 2.

From a high-level view, these are the three basic components that make up Melissa.
This book shows you how to do all the necessary programming to develop them and put
them together.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-2167-9_2
http://www.it-ebooks.info/

CHAPTER 1 * INTRODUCTION TO VIRTUAL ASSISTANTS

Setting Up Your Development Environment

This is a crucial section that is the foundation of the book’s later chapters. You need a
computer running a *nix-based operating system such as Linux or OS X. I am using a
MacBook Air (early 2015) running OS X 10.11.1 for the purpose of illustration.

Python 2.x

You will write Melissa’s code in the Python programming language. So, you need to have
the Python interpreter installed to run the Python code files. *nix systems generally have
Python preinstalled. You can check whether you have Python installed by running the
following command in the terminal of your operating system:

$ python --version

This command returns the version of the Python installed on your system. In my
case, it gives the following output:

Python 2.7.11

This should also work on other versions of Python 2.

Note |am using Python 2 instead of Python 3 because the various dependencies used
throughout the book are written in Python 2.

Python Package Index (PyPI)

You need pip to install the third-party modules that are required for various software
operations. You use these third-party modules so you do not have to reinvent the wheels
of assorted basic software processes.

You can check whether pip is installed on your system by issuing the following
command:
$ pip --version

In my case, it gives this output:

pip 7.1.2 from /usr/local/lib/python2.7/site-packages (python 2.7)

If you do not have pip installed, you can install it by following the guide at
https://pip.pypa.io/en/stable/installing/.

www.it-ebooks.info

https://pip.pypa.io/en/stable/installing/
http://www.it-ebooks.info/

CHAPTER 1 * INTRODUCTION TO VIRTUAL ASSISTANTS

Version Control System (Git)

You use Git for version control of your software as you work on it, to avoid losing work due
to hardware failure or system administrator mistakes. You can use GitHub to upload your
Git repository to an online server. You can check whether you have Git installed on your
system by issuing the following command:

$ git --version
This command gives me the following output:
git version 2.6.2

If you do not have Git installed, you can install it using the instructions
athttp://git-scm.com/downloads.

PortAudio

PortAudio is an open source input/output library. It is cross platform and is available in
the form of source files that can be downloaded from www. portaudio.com/download.html.
It can be compiled on many platforms such as Windows, OS X, and Unix. PortAudio
provides a simple API for recording and playing sound that is used by some of the
speech-recognition modules in future chapters.

PyAudio

PyAudio provides Python bindings for PortAudio. With the help of this software, you can
easily use Python to record and play audio on a variety of platforms, which is exactly what
you need for your STT engine. You can find the instructions for installing PyAudio at
http://people.csail.mit.edu/hubert/pyaudio/.

You also need a microphone via which you can speak to your computer (and perform
voice recording) and speakers to hear the output. Most modern laptops have these installed
by default. For a Raspberry Pi, you need an external microphone and speakers/earphones.

Designing Melissa

You will follow the DRY (don’t repeat yourself) and KISS (keep it simple, stupid) principles
and use modular code to design Melissa. Doing so helps maintain your code properly and
makes it easier to scale the code in the future when you want to add cool features to your
existing codebase. So, let’s first design the structure of your code directories:

gitignore
GreyMatter/
SenseCells/
__init__.py

www.it-ebooks.info

http://git-scm.com/downloads
http://www.portaudio.com/download.html
http://people.csail.mit.edu/hubert/pyaudio/
http://www.it-ebooks.info/

CHAPTER 1 * INTRODUCTION TO VIRTUAL ASSISTANTS

__init__.py
main.py
brain.py

profile.yaml.default
requirements.txt

In this directory structure, . . . denotes that files will be added here in the future as
you go through the chapters in this book. The folders containing _ init__.py files are
Python packages. The main. py file will be entry point of the program and will contain
the source code for the completed STT engine; it will pass commands (in the form of
strings) to brain. py for handling (this is the logic engine I previously mentioned). The
SenseCells package will contain the TTS engine, and the GreyMatter package will
contain the various mini-features that can be integrated into the software as you progress
through the book. requirements. txt file will be used for keeping tabs on the third-party
Python modules you use in this project.

The profile.yaml.default file will store information such as the name of the
user as well as the city where the user lives, in YAML format. The profile.yaml file is
crucial for executing the main. py file. The user will issue the following to get this software
up and running:

$ cp profile.yaml.default profile.yaml

You append the .default suffix so that if users put personal information in the
profile.yaml file and create a pull request on GitHub, it won't include their private
changes to the profile.yaml file, because it is mentioned in the .gitignore file.

Currently the contents of profile.yaml.default are as follows:

name:
Tanay

city name:
New Delhi

The contents of the .gitignore file are as follows:

profile.yaml
*.pyc
Now that you know the high-level directory structure of the project, you can go ahead

and create the skeleton structure. This structure will help you keep the code base clean
and properly organized as you move through the book and work on building new features.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 * INTRODUCTION TO VIRTUAL ASSISTANTS

Learning Methodology

This section describes the methodology you use throughout the book: understanding
concepts, learning by prototyping, and then developing production-quality code to
integrate into the skeleton structure you just developed (see Figure 1-2).

Understanding
Concepts

Integration in
Melissa

Figure 1-2. Learning methodology

First you explore the theoretical concepts as well as understand the core principles
that will enhance your creativity and help you see different ways to implement features.
This part may seem boring to some people, but do not skip these bits.

Next, you implement your acquired knowledge in Python code and play around
with it to convert your knowledge into skills. Prototyping will help you to understand
the functioning of individual components without the danger of messing up the main
codebase. Finally, you edit and refactor the code to create good-quality code that can be
integrated with the main codebase to enhance Melissa’s capabilities.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 * INTRODUCTION TO VIRTUAL ASSISTANTS

Summary

In this chapter, you learned about what virtual assistants are. You also saw various virtual
assistants that exist in the commercial market, the features a virtual assistant should
possess, and the workflow of a voice-controlled virtual assistant. You designed Melissa’s
codebase structure and were introduced to the methodology that this book follows to
create an effective learning workflow.

In the next chapter, you study the STT and TTS engines. You implement them in
Python to create Melissa’s senses. This lays the foundation of how Melissa will interact with
you; you use the functionalities implemented in the next chapter throughout the book.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2

Understanding and
Building an Application
with STT and TTS

This chapter introduces you to the concepts of speech-to-text (STT) and text-to-speech
(TTS). It discusses various STT engines, and you build a Python program that records
audio. You then graduate to an application that converts whatever you say to text. You
also look at the use of various TTS engines and implement them to make a program that
repeats whatever you say.

Speech-to-Text Engines

Asyou saw in Chapter 1, the STT engine is one of the three main components of the
virtual assistant, Melissa. This component is the entry point for the software’s control
flow. Hence, you need to incorporate this piece of code into the main. py file. First, you
need a sophisticated STT engine to use for Melissa. Let’s look at the various STTs available
on the Web for free use with your application

Freely Available STTs

Some of the best STTs available on the Internet are as follows:

e Google STTis the STT system developed by Google. You may
already have used the Google STT if you have an Android
smartphone, because it is used in Google Now. It has one of the
best recognition rates. But it can only transcribe a limited amount
of speech per day (API limitation) and needs an active Internet
connection to work.

© Tanay Pant 2016 9
T. Pant, Building a Virtual Assistant for Raspberry Pi, DOI 10.1007/978-1-4842-2167-9_2

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-2167-9_1
http://www.it-ebooks.info/

CHAPTER 2 © UNDERSTANDING AND BUILDING AN APPLICATION WITH STT AND TTS

e Pocketsphinxis an open source speech decoder developed under the
CMU Sphinx Project. It is quite fast and has been designed to work well
on mobile operating systems such as Android as well as embedded
systems (like Raspberry Pi). The advantage of using Pocketsphinx is
that the speech recognition is performed offline, which means you
don’t need an active Internet connection. However, the recognition
rate is nowhere close to that of Google’s STT.

e AT&T STTwas developed by AT&T. The recognition rate is good,
but it needs an active connection to work, just like Google STT.

e Juliusis a high-performance, open source speech-recognition
engine. It does not need an active Internet connection, like
Pocketsphinx. It is quite complicated to use because it requires
the user to train their own acoustic models.

e Witai STTis a cloud-based service provided to users. Like AT&T
and Google STT, it requires an active Internet connection to work.

e IBM STTwas developed by IBM and is a part of the Watson
division. It requires an active Internet connection to work.

This project uses Google STT because it is one of the most accurate STT engines
available. In order to use Google STT in your project, you need a Python module called
SpeechRecognition.

Installing SpeechRecognition

You install SpeechRecognition by issuing the following command via the terminal:
$ pip install SpeechRecognition
This sets up the SpeechRecognition module for you. This library supports Google

Speech Recognition, Wit.ai, IBM Speech to Text, and AT&T Speech to Text. You can
choose any of these for your version of Melissa.

Recording Audio to a WAV File

Let’s write a small Python program to see how this library works. This program records
the user’s voice and saves it to a .wav file. Recording the audio to a WAV file will help
you get comfortable with the SpeechRecognition library. You also use this method of
recording speech to a WAV file and then passing that file to the STT server in Chapter 8:
import speech_recognition as sr

r = sr.Recognizer()
with sr.Microphone() as source:

10

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-2167-9_8
http://www.it-ebooks.info/

CHAPTER 2 © UNDERSTANDING AND BUILDING AN APPLICATION WITH STT AND TTS

print("Say something!™)
audio = r.listen(source)

with open("recording.wav", "wb") as f:
f.write(audio.get wav_data())

Let’s examine this program line by line. The first statement imports the
SpeechRecognition module as sr. The second block of code obtains the audio from the
microphone. For this purpose, it uses the Recognizer () and Microphone() functions.
This example uses PyAudio because it uses the Microphone class. The third block of code
writes the audio to a WAV file named recording.wav.

Run this file from the terminal. You should get the results you expect: whatever you
said into the microphone was recorded to recording.wav. Notice that the Python program
stops recording when it detects a pause in your speech for a certain amount of time.

Running the program on my system gave me the output shown in Figure 2-1 and in
the following snippet. Your Python program produces the recording.wav file. You may
also receive a warning message like the one you can see on my console—if so, don’t worry
about it, because it does not effect the working of your program. Here’s my output:

Favorites ———

E Al My Files

< iCloud Drive

() Airbrop main.py recording wav

S Apphcations

[Desktop

-_‘9-_ Doecuments

o Downloads
| Devices

-) Remote Disc

k= Seagate...
Togs

® Red
Orange

Figure 2-1. Recording to a WAV file: console output

Tanays-MacBook-Air:Melissa-Core-master tanay$ python main.py

2016-01-10 20:07:11.908 Python[12321:1881200] 20:07:11.908 WARNING: 140:
This application, or a library it uses, is using the deprecated Carbon
Component Manager for hosting Audio Units. Support for this will be removed
in a future release. Also, this makes the host incompatible with version 3
audio units. Please transition to the API's in AudioComponent.h.

Say something!

11

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 © UNDERSTANDING AND BUILDING AN APPLICATION WITH STT AND TTS

Great! Now you understand the basics of working with the SpeechRecognition
library. If for some reason the speech recording is not working for you, you may want to
skip to Chapter 8 to follow a web-based approach for capturing the user’s voice, and then
continue from this chapter.

Speech Recognition

Let’s now get to the code that records the audio and sends it to the STT for conversion
to a text string. The page of the SpeechRecognition module at PyPi has a link to a code
sample that performs the STT conversion. This section discusses that example.

Google STT

Take a look at this new code snippet:

import speech recognition as sr
obtain audio from the microphone
T = sr.Recognizer()
with sr.Microphone() as source:
print("Say something!")
audio = r.listen(source)

recognize speech using Google Speech Recognition
try:
for testing purposes, you're just using the default API key
to use another API key, use “r.recognize google(audio,
key="GOOGLE_SPEECH_RECOGNITION API _KEY")
instead of “r.recognize google(audio)"
print("Google Speech Recognition thinks you said " + r.recognize
google(audio))
except sr.UnknownValueError:
print("Google Speech Recognition could not understand audio")
except sr.RequestError as e:
print("Could not request results from Google Speech Recognition service;
{0}".format(e))

First you use the microphone as the source to listen to the audio and use the
same code snippet that you used when you recorded the audio file. This snippet uses
atry/except clause for error handling. If the error is st.UnknownValueError, the
program returns “Google Speech Recognition could not understand audio” If you get a
sr.RequestError error, you take its value in e and print “Could not request results from
Google Speech Recognition service” along with the technical details of the error returned
by Google STT. In the try clause, you use the r.recognize_google() function to pass the
audio as an argument to Google STT. It then prints out what you said, as interpreted by
Google, in the form of a string. This method uses the default API key; you do not need to
enter a unique key for development purposes.

12

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-2167-9_8
http://www.it-ebooks.info/

CHAPTER 2 © UNDERSTANDING AND BUILDING AN APPLICATION WITH STT AND TTS

Note You can find instructions for how to obtain the Speech API keys from Google on
the Chromium web site: https://www.chromium.org/developers/how-tos/api-keys.

Wit.ai STT

If you wish to use Wit.ai STT, use this snippet in place of the try/except clause used in
the previous code:

recognize speech using Wit.ai
WIT_AI_KEY = "INSERT WIT.AI API KEY HERE"

try:

print("Wit.ai thinks you said " + r.recognize wit(audio, key=WIT AI KEY))
except sr.UnknownValueError:

print("Wit.ai could not understand audio")
except sr.RequestError as e:

print("Could not request results from Wit.ai service; {0}".format(e))

While using the Wit.ai service, you have to obtain the Wit.ai key stored in the
WIT_AI KEY constant. You use the r.recognize wit() function to pass the audio and the
key as arguments.

IBM STT

To use IBM STT, use the following code snippet:

recognize speech using IBM Speech to Text
IBM_USERNAME = "INSERT IBM SPEECH TO TEXT USERNAME HERE"
IBM_PASSWORD = "INSERT IBM SPEECH TO TEXT PASSWORD HERE"

try:
print("IBM Speech to Text thinks you said " + r.recognize ibm(audio,
username=IBM_USERNAME, password=IBM PASSWORD))

except sr.UnknownValueError:
print("IBM Speech to Text could not understand audio")

except sr.RequestError as e:
print("Could not request results from IBM Speech to Text service;
{0}".format(e))

When using the IBM STT service, you have to obtain an IBM STT username
and password, which you assign to the IBM_USERNAME and IBM_PASSWORD constants,

respectively. You then invoke the r.recognize_ibm() function and pass the audio,
username, and password as arguments.

13

www.it-ebooks.info

https://www.chromium.org/developers/how-tos/api-keys
http://www.it-ebooks.info/

CHAPTER 2 © UNDERSTANDING AND BUILDING AN APPLICATION WITH STT AND TTS

AT&T STT

To use AT&T STT, use the following code snippet:

recognize speech using AT&T Speech to Text
ATT_APP_KEY = "INSERT AT&T SPEECH TO TEXT APP KEY HERE"
ATT_APP_SECRET = "INSERT AT&T SPEECH TO TEXT APP SECRET HERE"

try:
print("AT8T Speech to Text thinks you said " + r.recognize att(audio,
app_key=ATT_APP_KEY, app_secret=ATT_APP_SECRET))

except sr.UnknownValueError:
print("AT8T Speech to Text could not understand audio")

except sr.RequestError as e:
print("Could not request results from AT&T Speech to Text service;
{0}".format(e))

To use the AT&T STT service, you have to obtain an AT&T app key as well as an
app secret and assign them to the ATT_APP_KEY and the ATT_APP_SECRET constants,
respectively. You then have to implement the r.recognize att() function and pass
audio, app_key, and app_secret as arguments.

Melissa’s Inception

As you may have noticed, the SpeechRecognition package provides a very nice, generic
wrapper that lets developers incorporate a wide variety of online STTs into applications.
Go ahead and run the speech-recognition program.

As expected, the following snippet shows that the program took what I said into the
microphone, recognized it, converted it into a string, and displayed it on the terminal. In
this case, I said, “hi Melissa how are you”:

Tanays-MacBook-Air:Melissa-Core-master tanay$ python main.py

2016-01-10 20:49:11.192 Python[12460:1899626] 20:49:11.191 WARNING: 140:
This application, or a library it uses, is using the deprecated Carbon
Component Manager for hosting Audio Units. Support for this will be removed
in a future release. Also, this makes the host incompatible with version 3
audio units. Please transition to the API's in AudioComponent.h.

Say something!

Google Speech Recognition thinks you said hi Melissa how are you

Wonderful! You have now programmed the first of the three components required to
build a functional virtual assistant. You can speak to your computer, and you can be rest
assured that whatever you say will be converted to a string.

14

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 © UNDERSTANDING AND BUILDING AN APPLICATION WITH STT AND TTS

Text-to-Speech Engine

Let’s turn now to the third component of the virtual assistant abstract system: text-to-
speech. A virtual assistant does not feel human if it replies to queries in the form of
text output like that in the terminal application. You need Melissa to talk; and for that
purpose, you need to use a TTS engine.

Different types of TTS are available for different platforms. Because TTS is native
software that is OS dependent, this section discusses the software available for OS X and
Linux-based systems, both of which are *nix-based. It is perfectly possible to program on
a Raspberry Pi from the beginning, but for the sake of learning and testing, I am working
on the laptop, as you may be, too. This approach allows you to work your way through the
book even if you don’t have a Raspberry Pi or if the Raspberry Pi you have ordered hasn’t
arrived just yet.

OSX

OS X comes preloaded with the say command, which allows you to access the built-in
TTS without having to install any additional third-party software. The voice quality and
dialect of say are among the best, and the response seems quite human and realistic.

To test the say command, open the command line and enter the following command:

$ say "Hi, I am Melissa"

If you have your speakers turned on or if you are listening via earphones, you can
listen to your system speak these words out loud to you.

Linux

Some Linux distributions come with software called eSpeak preinstalled. However, other
distributions, like Linux Mint, do not have eSpeak preinstalled. You can find the instructions
to install the eSpeak utility on your system at http://espeak.sourceforge.net.

Once you have installed the eSpeak software, you can test it via the terminal by
entering the following command:

$ espeak "Hi, I am Melissa"

This causes your system to speak whatever you have written. Note that eSpeak is
not as impressive as OS X’s say command; the voice quality is robotic and has a strange
accent. Despite this, I have included eSpeak because of its small size. You can use any

other TTS engine if you want to and edit the code of the TTS engine that you write shortly
accordingly.

15

www.it-ebooks.info

http://espeak.sourceforge.net/
http://www.it-ebooks.info/

CHAPTER 2 © UNDERSTANDING AND BUILDING AN APPLICATION WITH STT AND TTS

Building the TTS Engine

To make your software cross-platform between OS X and Linux, you have to determine
which OS your software is running on. You can find that out by using
sys.platformin Python. The value of sys.platformon Apple systems is Darwin, and on
Linux-based systems it is either 1inux or 1inux2.

Let’s write the Python code to accomplish the task:

import os
import sys

def tts(message):
This function takes a message as an argument and converts it to speech
depending on the 0S.

if sys.platform == 'darwin':
tts_engine = 'say'
return os.system(tts engine + ' ' + message)
elif sys.platform == 'linux2' or sys.platform == 'linux':
tts_engine = 'espeak'
return os.system(tts_engine + ' "' + message + '"")

Let’s go through the code. The first two import statements import the os and sys
modules. Then you define a function called tts that takes a message as an argument.
The if statement determines whether the platform is OS X; then it assigns the say value
to the tts_engine variable and returns os.system(tts_engine + ' ' + message). This
executes the say command with the message on the terminal. Similarly, if the platform is
Linux based, it assigns espeak to the tts_engine variable.

To test the program, you can add the following additional line at the bottom of the code:

tts("Hi handsome, this is Melissa")

Save the code, and run the Python file. It should execute successfully.

Repeat What I Say

For the sake of exercise and fun, construct a Python program that detects whatever you
say and repeats it. This involves a combination of the STT and TTS engines. You have to
make the following assignment:

message = r.recognize google(audio)

16

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 © UNDERSTANDING AND BUILDING AN APPLICATION WITH STT AND TTS

Integrating STT and TTS in Melissa

As discussed in Chapter 1, you are past the stages of learning concepts and prototyping
STT and TTS; now it’s time to integrate the STT engine as well as the TTS engine in
Melissa in a proper, reusable fashion.

First, let’s put the TTS in place, because the TTS engine is complete and does not
require any changes or additions to the code. Put this in a file called tts.py, and place it
in the following location:

GreyMatter/
SenseCells/
__init_ .py
tts.py
__init__.py

You may remember this directory structure from the “Designing Melissa” section of
Chapter 1. Now the TTS is in a package and can be called from other Python files after
importing it. Next, edit the main.py Python file:

import sys

import yaml
import speech recognition as sr

from GreyMatter.SenseCells.tts import tts

profile = open('profile.yaml")
profile data = yaml.safe load(profile)
profile.close()

Functioning Variables
name = profile data['name']
city name = profile data['city name']

tts('Welcome ' + name + ', systems are now ready to run. How can I help you?")

def main():
r = sr.Recognizer()
with sr.Microphone() as source:
print("Say something!")
audio = r.listen(source)

try:
speech_text = r.recognize google(audio).lower().replace("'", "")
print("Melissa thinks you said '" + speech text + "'")

except sr.UnknownValueError:
print("Melissa could not understand audio")

17

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-2167-9_1
http://dx.doi.org/10.1007/978-1-4842-2167-9_1
http://www.it-ebooks.info/

CHAPTER 2 © UNDERSTANDING AND BUILDING AN APPLICATION WITH STT AND TTS

except sr.RequestError as e:
print("Could not request results from Google Speech Recognition
service; {0}".format(e))

tts(speech_text)
main()

This program performs the same function as the “Repeat What I Say” program you
created earlier, but it has a much more modular, cleaner approach. You can easily add
more features when you have new ideas, without having to touch existing code.

Let’s study the changes that have been made in the main.py file as compared to what
you had earlier. Notice that a new package named yaml has been imported. You have also
imported the tts function so that it can be used in the main file.

This is used to parse the profile.yaml file you created in Chapter 1. You open the
YAML file and use the yaml.safe_load() function to load data from the file and save it to
profile_data. You then close the file you opened. You can retrieve the data in the form of
profile data['name'] and assign it to appropriate variables for use in the future.

You then call the tts function imported from GreyMatter.SenseCells.tts to
include a welcome note for the user. If the user has customized the configuration in the
profile.yaml file, it uses their name in the welcome note. The entire STT is placed in a
function called main, and that function is called at the end of the code. This completes
your construction of two out of three components of the virtual assistant.

Version-Controlling Your Source Code

Because you have finished building all the necessary components for this chapter, let’s
version-control your source code. Start by initializing an empty Git repository by entering
the following command:
$ git init
Now, check the status of the added/modified files, add the files, and commit them:
$ git status
$ git add --all
$ git commit -m "Add STT and TTS functionality"

You can view all the previous commit messages by entering the following command
in the terminal:

$ git log --pretty=oneline
You have successfully committed the first version of changes into your local Git
repository. You can also push your changes if you have a repository for this purpose on

GitHub. If not, you can create an empty repository at GitHub, and it will give you the
directions to upload your local Git repository.

18

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-2167-9_1
http://www.it-ebooks.info/

CHAPTER 2 © UNDERSTANDING AND BUILDING AN APPLICATION WITH STT AND TTS

Obtaining the Code from GitHub

I have uploaded a completed version (completed in the sense of the chapters of this
book) of Melissa at GitHub. You can access the code from https://github.com/Melissa-
AI/Melissa-Core (see Figure 2-2).

eBe® < . @ithub.commesissa-smedssa-core v +
O Thia repostory Pull requests lssves Gist a + @-
Melissa-Al / Melissa-Core @ Uswatch~ 4 drUnstar & YFork 4
€3 Code Issaes § Pull reqaests @ Wik Puine Graghs Semngs

Alovely virtual assistant for 05 X and Linux systems. — Edit

T 39 commits 1 branch 0 reloases 2 conteibuton

= e — Mewflle Findfle HTTPS= httpsc//github.comMeliss [[Oownlosd 2P

[l tanay1237 Update USAGE md Latest commit edca2éa a day ago

149 README. md

Figure 2-2. Melissa’s codebase at GitHub

You can fork this repository by clicking the Fork button at upper right. Then you can
clone your fork to get Melissa running locally.

You can create pull requests whenever you wish to make changes to Melissa’s official
repository to either fix bugs or add features. Make sure you first create an issue before fixing
any bug that requires extensive code changes and before working to develop a new feature,
because this will let others know that you are working on it and there won’t be duplicates.

Summary

In this chapter, you learned about some of the widely used STT and TTS engines, and
you used the freely available STT and TTS engines to create a program in Python that can
record what the user is saying and repeat it. Then you integrated this code into Melissa so
that she can listen as well as talk. Finally, you version-controlled your source code so that
you can share your code on GitHub.

In the next chapter, you learn about building the third component of a virtual
assistant: the logic engine to make Melissa smarter. You build a conversation module so
you can converse with Melissa.

19

www.it-ebooks.info

https://github.com/Melissa-AI/Melissa-Core
https://github.com/Melissa-AI/Melissa-Core
http://www.it-ebooks.info/

CHAPTER 3

Getting Your Hands Dirty:
Conversation Module

In this chapter, you learn how to implement a conversation module to make Melissa
understand what you are saying, with the help of a Python program that implements
keyword-recognition techniques. You refine the code of the program to make it more
efficient, so that you can have a general conversation with Melissa and ask questions like,
“How are you?” and “Who are you?”

You have reached the step of building a virtual assistant that involves designing a
logic engine. Melissa is basically a parrot right now, repeating what you say. This assistant
needs to be more than that; it needs to understand what you say. In a quest to make
Melissa smart, let’s design a conversation module.

Before you learn how to implement this module in Python, let’s revisit the code
skeleton from Chapter 1 and see how you build and add components of the logic engine,
keeping the different modules isolated from each other. You have already incorporated
the STT and TTS in the code skeleton, so in this chapter you immediately implement the
code you develop into the project instead of prototyping.

Logic Engine Design

main.py is the STT engine of your software, and it is also the entry point to your

program. You need main.py to direct user queries to its logic engine, which you code in
the brain.py file. The brain. py file will contain a ladder of if/else clauses to determine
what the user wants to say. If there is a pattern match with one of the statements, brain.py
call the corresponding module.

Figure 3-1 shows the control flow of the program. This will be similar for all the
modules you develop for Melissa in future chapters. The difference will be that some
other module is called by brain.py instead of general_conversations.py.

The GreyMatter package will hold logic-engine modules that you build to make
Melissa smarter in the future, such as a weather module, opening a web site, playing music,
and so on. The GreyMatter package also contains the general conversations.py file.

© Tanay Pant 2016 21
T. Pant, Building a Virtual Assistant for Raspberry Pi, DOI 10.1007/978-1-4842-2167-9_3

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-2167-9_1
http://www.it-ebooks.info/

CHAPTER 3 * GETTING YOUR HANDS DIRTY: CONVERSATION MODULE

STT Logic Engine GreyMatter

main.py brain.py

general_conversations.py

Figure 3-1. Logic engine design

Making Melissa Responsive

Let’s get to the task of making Melissa responsive, so that she can respond to questions.
This requires you to compare the speech_text variable to a predefined string.

First, create the general_conversations.py file in the GreyMatter folder, and
program it as follows:

from SenseCells.tts import tts

def who_are you():
message = 'I am Melissa, your lovely personal assistant.'
tts(message)

def undefined():
tts('I dont know what that means!')

Let’s go through the code. In the first statement, you import the tts function from
the SenseCells.tts package. You then write an elementary function, who_are_you(),
in which a reply string is assigned to the variable message. This message is then spoken
by the tts function. The undefined() function is called whenever the brain cannot find a
match; it’s called from the final else statement.

For now, let’s keep general conversations.py short for the sake of illustration.
Later, you revisit this file to add features to it and improve the code.

It's time to design the brain function in the brain. py file:

from GreyMatter import general conversations

def brain(name, speech text):
def check message(check):

22

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 * GETTING YOUR HANDS DIRTY: CONVERSATION MODULE

if speech_text == check:
return True

else:
return False

if check message('who are you'):
general conversations.who are you()
else:
general _conversations.undefined()

In the first statement, you import general conversations from the GreyMatter
package. You then define a function called brain that takes name and speech_text as
arguments (you use the name argument later in this chapter). Inside it is another function
named check message() that takes check as an argument. This function compares two
strings, speech_text and check, to see if they are equal. Then the function returns either
True (if the string matches) or False (if it doesn’t).

Going further down the code, you find the if/else ladder. You invoke the
check_message() function with 'who are you' as the argument to see if this is what the
user said. If True, you call the who_are_you() function from general conversations.

If False, then you fall back to the undefined() function. You revisit this file later to edit
the code and improve check_message().

Finally, you need to make changes to main.py so that you can pass the user’s speech
to the brain function:

import sys

import yaml
import speech recognition as sr

from brain import brain
from GreyMatter.SenseCells.tts import tts

profile = open('profile.yaml')
profile data = yaml.safe load(profile)
profile.close()

Functioning Variables
name = profile data['name']
city name = profile data['city name']

tts('Welcome ' + name + ', systems are now ready to run. How can I help you?")
def main():

r = sr.Recognizer()

with sr.Microphone() as source:

print("Say something!")
audio = r.listen(source)

23

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 * GETTING YOUR HANDS DIRTY: CONVERSATION MODULE

try:
speech_text = r.recognize google(audio).lower().replace("'", "")
print("Melissa thinks you said '" + speech text + "'")

except sr.UnknownValueError:
print(“"Melissa could not understand audio")

except sr.RequestError as e:
print("Could not request results from Google Speech Recognition
service; {0}".format(e))

brain(name, speech_text)
main()

First, you import the brain() function from brain.py. Inside the main() function,
you add brain(), where you pass the name and speech_text arguments.

Your program is now ready to run and to be tested. Go to the terminal, and start the
program by issuing the following command:

$ python main.py

When you see the “Say something!” message, say “Who are you?” into the
microphone. You should get the following reply: “I am Melissa, your lovely personal
assistant” Try saying something else, and you should receive the following reply: “I dont
know what that means!”

There are two problems with the existing system:

1. The library of conversation clauses is limited and static.

2. Therecognition system in the brain is very poor, because it
compares strings.

You can solve the first problem by having an array of messages and using the random.
choice() function to answer the user’s question. The second problem is much more
complex in nature. Even if the user says something like, “Hey, who are you?” the logical
engine will pass control to the undefined() function. This shouldn’t be the case, because
“Who are you?” and “Hey, who are you?” essentially mean the same thing. This problem
can be handled by checking speech_text for certain keywords.

Fixing Limitation 1

Let’s edit general_conversations.py to implement the fix just discussed and include
some new conversation snippets:

import random
from SenseCells.tts import tts

def who_are you():
messages = ['I am Melissa, your lovely personal assistant.',
'Melissa, didnt I tell you before?’,

24

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 * GETTING YOUR HANDS DIRTY: CONVERSATION MODULE

'"You ask that so many times! I am Melissa.']
tts(random.choice(messages))

def how_am_i():
replies =['You are goddamn handsome!', 'My knees go weak when I see you.',
"You are sexy!', 'You look like the kindest person that I have met.']
tts(random.choice(replies))

def tell joke():
jokes = ['What happens to a frogs car when it breaks down? It gets toad
away.', 'Why was six scared of seven? Because seven ate nine.', 'No, I
always forget the punch line.']
tts(random.choice(jokes))

def who_am_i(name):

tts('You are ' + name + ', a brilliant person. I love you!')

def where born():
tts('I was created by a magician named Tanay, in India, the magical land
of Himalayas.')

def how_are you():
tts('I am fine, thank you.")

def undefined():
tts('I dont know what that means!")

To take care of the static replies, you import the random module on the
first line. You then make an array of appropriate replies to a particular question and pass
random.choice(array of appropriate messages) to the tts function. This causes the
virtual assistant to give different answers to a question each time the question is asked.
You also add some other questions that people may feel inclined to ask a virtual assistant.
You can find the code for general conversations.py on GitHub: https://github.com/
Melissa-AI/Melissa-Core/blob/master/GreyMatter/general conversations.py

Fixing Limitation 2

To fix the second limitation discussed earlier, edit the code in the brain. py file:
from GreyMatter import general conversations

def brain(name, speech_text):
def check message(check):

This function checks if the items in the list (specified in
argument) are present in the user's input speech.

25

www.it-ebooks.info

https://github.com/Melissa-AI/Melissa-Core/blob/master/GreyMatter/general_conversations.py
https://github.com/Melissa-AI/Melissa-Core/blob/master/GreyMatter/general_conversations.py
http://www.it-ebooks.info/

CHAPTER 3 * GETTING YOUR HANDS DIRTY: CONVERSATION MODULE

words_of message = speech_text.split()

if set(check).issubset(set(words of message)):
return True

else:
return False

if check message(['who','are', 'you']):
general conversations.who are you()

elif check message(['how', 'i', 'look']) or check message(['how', 'am', 'i']):
general conversations.how_am i()

elif check message(['tell', 'joke']):
general conversations.tell joke()

elif check message(['who', 'am', 'i']):
general conversations.who_am_i(name)

elif check message(['where', 'born']):
general conversations.where born()

elif check message(['how', 'are', 'you']):
general conversations.how_are you()

else:
general conversations.undefined()

The main change in this file is the code edit in the check_message() function
(in addition to the additions of the conversation snippets in the if/else ladder). Let’s
analyze the changes in check_message. First, you split the speech_text string and store it
in a variable called words_of message. This results in an array of words that are present in
the speech.

Note that the check argument in the updated brain.py file refers to an array of
strings (not a string, as in the previous version). You then make a set of check and
words_of_message, which removes any duplicate words. Finally, you check whether the
set checkis a subset of the setwords_of_message. If it is a subset, then it returns True;
otherwise, it returns False (see Figure 3-2).

26

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 * GETTING YOUR HANDS DIRTY: CONVERSATION MODULE

Christ who the hell are you QS8 christ who the hell are you

Speech l speech_text

[’christ’, ‘who’, ‘the’, ‘hell’, ‘are’, ‘you’]

words_of message 1

check message

function

True

boolean
Figure 3-2. Keyword-detection scheme
Now you have to learn how to use this function to improve your recognition rates.

Let’s consider the example of the question “Who are you?” Here are some possible
variations of the question:

e “Hey, who are you?”

e “Canyou tell me who are you?”

e “I'wish to know who you are!”

e “For Christ’s sake tell me who the hell you are!”

This list is by no means comprehensive, but it is representative of the various
ways a user can ask Melissa the question. Notice that three words are present in all the
statements: who, are, and you. Hence, it can be considered a safe bet to make an array of
these three keywords and consider it an identifier for the base question, “Who are you?”
The construction for checking the speech for this base question is as follows:

check_message(['who','are', 'you']):

Similarly, you can extend Melissa’s answering capability by adding a function to
general conversations.py and including the corresponding check in brain.py.
Congratulations—you have successfully built your talking virtual assistant!

27

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 * GETTING YOUR HANDS DIRTY: CONVERSATION MODULE

Extending Functionality

You having a talking virtual assistant, but it does not do anything useful as of now. To extend
Melissa’s capabilities, you can add different modules to the software, keeping in mind the
code skeleton that you are working with and maintaining a scalable code repository:

1. AsFigure 3-3 shows, the first step to add a new feature is
writing the code for the feature, storing it in a separate
file, and naming the file after the feature: for example,
general conversations.py.

Write code of Add the file
feature in to

separate file GreyMatter

Import in brain
and add
appropriate
check message

Figure 3-3. Extending functionality

2. Add the file to the GreyMatter package, from which it can be
imported as a module to be used in brain.py.

3. Importthe module in brain.py, and add appropriate checks
for keywords related to your functionality with the help of the
check_message() function. If check_message() returns true,
execute the feature.

You follow the same methodology to add new features and functionality in future
chapters. Let’s look at an example of how you can follow this process to write a new basic
feature for Melissa.

28

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 * GETTING YOUR HANDS DIRTY: CONVERSATION MODULE

What'’s the Time, Melissa?

Let’s write a new module for telling the time. It will allow you to ask Melissa the time
whenever you want. Create a new file in the GreyMatter folder, named tell time.py,
and add the following code to it:

from datetime import datetime
from SenseCells.tts import tts

def what_is time():
tts("The time is " + datetime.strftime(datetime.now(), '%H:%M:%S"'))

In this code, you first import the datetime module and the datetime function and
call datetime.now() in the tts function, in the what_is time() function. Also note that
you format the time using datetime.strftime(), using the format “x hours, y minutes,
z seconds.”

Next, make the following changes in brain. py to implement this feature:

from GreyMatter import tell time, general conversations

This change needs to be made in the first line to import the tell _time module. Now
add this elif clause under the brain() function:

elif check message(['time']):
tell time.what_is time()

Here, the keyword is 'time', and recognizing this keyword via the check_message()
function causes the execution of the feature. Go ahead and execute this program to ask
Melissa the time.

Committing Changes

It is time to commit the changes you have made to Melissa to the Git repository. Enter the
following commands in your terminal:

$ git status

$ git diff

$ git add --all

$ git commit -m "Add conversation and time modules"
$ git push

The git diff command shows you the changes in the individual files that have
taken place since the last commit. This will help you to review the changes.

29

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 * GETTING YOUR HANDS DIRTY: CONVERSATION MODULE

Summary

In this chapter, you learned to make the logical engine of a virtual assistant and develop
a text-recognition system so that the assistant can understand the meaning of your
commands. You then developed a conversation module that helps you hold conversations
with Melissa and a time module that enables Melissa to tell the time when asked.

In the next chapter, you learn to gather data from the Internet to make Melissa
smarter and more useful. You see how to scrape business news from the Internet so that
Melissa can read news to you, tell you the weather, and define things from Wikipedia.

30

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4

Using the Internet to Gather
Information

In this chapter, you learn about using information from the Internet to make Melissa
more interactive. You create modules for getting weather information, defining keywords
from Wikipedia, and mining data from various web sites (such as news web sites). You
then implement these modules in Python to make Melissa more useful.

The Internet is a mine full of loads of useful information and, well, useless
information. Some of the meaningful, useful information you can retrieve from the
Internet includes weather, definitions from Wikipedia, and business news. It would be
really useful to have a virtual assistant that can provide you with all this information on
demand. Let’s construct these functionalities in Melissa’s GreyMatter.

The three information-retrieval features—telling you the weather, reading definitions
from Wikipedia, and retrieving business news—are of increasing code complexity, from
very easy to intermediate. For the first two features, you use third-party modules that
you install using pip. For the third example, you mine data and parse it to get meaningful
information from a news web site.

How’s the Weather?

In this section, you obtain weather information from the weather . com web site with the
help of a Python module name pywapi. To install pywapi, enter the following command in
your terminal:
$ pip install pywapi --allow-external --allow-unverified

pywapi requires the city code of your city in order to retrieve the weather report. To
find the city code, open the weather . com web site, search for your city name, and look at

the URL. I searched for my city name, New Delhi, and got the following URL:

http://www.weather.com/weather/today/1/INXX0096:1:IN

© Tanay Pant 2016 31
T. Pant, Building a Virtual Assistant for Raspberry Pi, DOI 10.1007/978-1-4842-2167-9_4

www.it-ebooks.info

http://www.weather.com/weather/today/l/INXX0096:1:IN
http://www.it-ebooks.info/

CHAPTER 4 ' USING THE INTERNET TO GATHER INFORMATION

Figure 4-1 shows the part of the URL to note for future use.

L Login / Signup

New Delhi, India Weather Jo-olr | / X
Observation a3 of 200 pem 5T f I’_ ;
*E DAY COND TEMP DESCRIFTION
@ LN B RR S = g i
b |

Fogks e ST TODAY 64" Sunny /0% WNW 9 mph
Haze .|
Wind WHW S mgh TONIGHT 45" Cuear o% WNW & mph
Humidity (7] k|
Dew Paint agn SUN 71® Sunny £ 0% NNE 3 mph
Pressure 2951n & iF
visiblity | _1omi §

Windex |/ | 2but ot 10
I o J

1N

Figure 4-1. Getting a city code at weather.com

Here, INXX0096 is the city code required by the pywapi module. Let’s log this
information in the profile.yaml file:

city code:
INXX0096

Now it is time to import this piece of information into the main. py file, which you do
by adding the following line of code:

city code = profile data['city code']

You also need to pass this information to the logical engine (a.k.a. the brain), so the
brain() function in the main() function must be modified as well in main. py:

brain(name, speech text, city name, city code)

Before diving into brain.py to make the edits there, first create a file named
weather.py in the GreyMatter folder and add the following code to it:

import pywapi
from SenseCells.tts import tts

def weather(city name, city code):
weather com result = pywapi.get weather from weather com(city code)
weather_result = "Weather.com says: It is " + weather_com_
result['current conditions']['text'].lower() + " and " + weather_ com_

result['current conditions']['temperature'] + "degree celcius now in " +
city_name

tts(weather result)

32

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 USING THE INTERNET TO GATHER INFORMATION

In the first line of the code, you import the pywapi module. Then you code the
weather function, which takes city name and city code as arguments. You store the
result in the weather com_result variable. You then access the current conditions’ text
and temperature from the result received from the pywapi.get weather from weather
com() function. You store the appropriate message for the user by assigning it to the
weather result variable, which is then spoken by the tts() function.

Finally, it is time to make the edits in brain.py. Edit the first line so that it imports
the weather module you built:

from GreyMatter import tell time, general conversations, weather
Now, edit the brain() function’s declaration:

def brain(name, speech text, city name, city code):
And add the code snippet to detect a weather query in the if/else ladder:

elif check_message(['how', 'weather']) or check message(['hows', 'weather']):
weather.weather(city name, city code)

This concludes the construction of the weather module for Melissa’s logical engine.
Now you can ask questions such as, “How is the weather?” and “How is the weather
today?” and Melissa will let you know!

Adding the weather feature was straightforward because it involved only simple use
of the module, and you didn’t have to write code to retrieve the weather information from
weather.com. The next example also uses a module, but its implementation is interesting
and will help you brainstorm about adding new features to Melissa and the procedure of
implementing them.

Define Artificial Intelligence!

In this example, you retrieve definitions of and information about particular keywords
from Wikipedia. This will let you ask Melissa about anything that has an article on
Wikipedia. For this command, you use a specific format: “Define subject.”

Note | would like to point out that for proper implementation of this type of functionality,
a question like “Who is Tanay Pant?” should be synonymous with “Define Tanay Pant.”
This would be possible by implementing natural language processing (NLP). Many NLP-
based tools are available for research and development work, such as Natural Language
Processing Toolkit (NLTK). You may want to read up on this topic, but let me warn you that it
is a vast field. Covering NLP is beyond the scope of this book.

Before you start building the module, install the wikipedia module via pip by
entering the following command in the terminal:

$ pip install wikipedia

33

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 ' USING THE INTERNET TO GATHER INFORMATION

Create a file named define_subject.py in the GreyMatter folder, and enter the
following code:

import re
import wikipedia
from SenseCells.tts import tts

def define_subject(speech text):
words_of message = speech_text.split()
words_of message.remove('define")

cleaned message = ' '.join(words_of message)

try:
wiki data = wikipedia.summary(cleaned message, sentences=5)

regEx = re.compile(xr' (["\(I¥IN([M\)]*\) *(.*)")
m = regEx.match(wiki data)
while m:

wiki data = m.group(1) + m.group(2)

m = regEx.match(wiki data)

wiki data = wiki data.replace("'", "")
tts(wiki data)

except wikipedia.exceptions.DisambiguationError as e:
tts('Can you please be more specific? You may choose something from
the following.")
print("Can you please be more specific? You may choose something
from the following.; {0}".format(e))

This code imports the regular-expressions module named re and the wikipedia
module that you installed via pip. The best approach to understand this code is working
through a sample case.

Suppose the user gives the command “define tanay pant.” It is passed as an argument
to the define_subject() function. The string is split into an array of words, from which
the word define is removed. This leaves you with the following two words in the array:
tanay and pant. These two words form the subject that needs defining. This new array of
words is rejoined and assigned to the cleaned_message variable. It then seeks a summary
from wikipedia via the wikipedia.summary() function. You specify two arguments:
the subject—that is, the cleaned_message variable—and the number of sentences the
summary should contain.

The next statement consists of a regular-expression pattern match that removes
anything in braces (braces inclusive) from the summary and then recombines the
summary. You do this because braces will mess with the tts() function. It then removes
all the apostrophe (') characters from the summary, because they also interfere with
tts(). Finally, the result is spoken via the tts() function.

34

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 USING THE INTERNET TO GATHER INFORMATION

You include the except statement for the disambiguation error, because if the user
asks for the definition of a subject like hacker, which has multiple meanings, a more
specific subject must be defined. The list of specific subjects is shown as an output in the
console.

Now, make the following changes in the brain.py file:

from GreyMatter import tell time, general conversations, weather, define_subject

Then, add the code snippet to recognize this feature from the user’s command to the
if/elseladder:

elif check message(['define']):
define_subject.define subject(speech text)

Running “define tanay pant” gives me the following speech output:

Tanay Pant is an Indian author, hacker, developer and tech enthusiast.
He is best known for his work on “Learning Firefox OS Application
Development” which was published by Packt. He is also an official
representative of Mozilla. He has been listed in the about:credits of the
Firefox web browser for his contributions to the different open source
projects of the Mozilla Foundation.

If you look at the page on Wikipedia (https://en.wikipedia.org/wiki/Tanay Pant)
from which it was retrieved, notice that “(born 28 September 1995)” has been removed
from the output given by Melissa (see Figure 4-2).

Tanay Pant

From Wikipodia, the free encyclopadia Removed

Tanay Pant [born 28 September 1995) is an Indian author, !l hacker, developer®l and tech enthusiast. He is best known
for his work on "Learning Firefox OS A Dy which was by Packt.”! He is also an official
representative’*! of Mozilla. He has been listed in the about:credits & of the Firelox web browser for his contributions to

the different open source projects of the Mozilla Foundation.

He also writes for a number of websites like SitePoint™! and Tuts+!% where he shares tips and tricks about web
davelopment as wall his opinions on different products. He digitally published Code ZerD in his younger days to spread
awarenass about cyber security and hacker culture.

He is also the chief architect of Stock Woll?, a global virtual stock trading platiorm that aims to impart practical education
about stocks and markets. This platform has acquired mora than 100 colleges™] and has players from about 15
countries.®!

References [eci)

1. # "Amazon.com: Tanay Pant: Books, Biography, Blog, 5. A "Tanay Pant, Author at SaoPoint” . SitePoint.
Audicbooks, Kindle™ . amazon.com. Ratrieved Retrieved 2015-10-08.
2015-10-08. 6. "Tanay Pant - Tuts+ Profile” i, Tuts+. Retrieved
2. » "Maogzilians: Tanay Pant" . mozilians.ong. Retrieved 2015-10-08.
2015-10-26. 7. % *Stock Wolf | Colleges” . slockwolt.net. Retrieved Bor 0 Segmnber 190 fage 21y
3. A "Leamning Firelox OS Asolication Development | 201R-10-0A I
Figure 4-2. Sample Wikipedia page

www.it-ebooks.info

https://en.wikipedia.org/wiki/Tanay_Pant
http://www.it-ebooks.info/

CHAPTER 4 ' USING THE INTERNET TO GATHER INFORMATION

Let’s revise the workflow for the keyword-specific functionality, where some part of
the speech is a keyword and the other part is information that needs to be used by the
logic engine. The illustration in Figure 4-3 summarizes what you just learned in the form
of a flowchart.

command subject in command

d
—

via regex function via wikipedia module

Figure 4-3. Wikipedia information-retrieval workflow

Melissa now has a functional definition system that lets you ask about a wide variety
of subjects. This particular module has helped you to boost the functionality of your
beloved virtual assistant.

Read Me Some Business News!

Let’s develop a business news reader for Melissa. As discussed earlier, instead of using
aready-made module to obtain the news via an API, you can scrape the data from a
business news web site, parsing meaningful information from the page and then passing
it to the tts() function so Melissa can read it to the user. This will enable you to build
your own module for any future functionality you may want to build in Melissa.

For the purpose of accessing web sites and parsing data from HTML, you need
requests and BeautifulSoup. You can install these modules using pip by entering the
following commands on your terminal:

$ pip install requests
$ pip install beautifulsoup4

I selected the NDTV web site for scraping business news. The business news section
islocated at http://profit.ndtv.com/news/latest/. If you want to navigate to the next
page, /page-2 is appended to the basic URL for the business-related news.

36

www.it-ebooks.info

http://profit.ndtv.com/news/latest/
http://www.it-ebooks.info/

CHAPTER 4 USING THE INTERNET TO GATHER INFORMATION

Studying the source reveals that the headlines are in <h2> tags. You may also notice
that two unnecessary <h2> tags are present and that a brief summary of the headlines
appears in <p> tags with intro set as the class. Now, having made the necessary
observations for building the news reader, create a file named business_news_reader.py
in the GreyMatter folder and enter the following code:

import requests
from bs4 import BeautifulSoup

from SenseCells.tts import tts

NDTV News

fixed_url = "http://profit.ndtv.com/news/latest/’
news_headlines list = []

news_details list = []

for i in range(1, 2):
changing slug = '/page-' + str(i)
url = fixed_url + changing_slug
r = requests.get(url)
data = r.text

soup = BeautifulSoup(data, "html.parser")

for news_headlines in soup.find_all('h2'):
news_headlines list.append(news_headlines.get text())

del news_headlines list[-2:]

for news_details in soup.find all('p', 'intro'):
news_details list.append(news details.get text())

news_headlines list small = [element.lower().replace("(", "").replace(")",

).replace("'", "") for element in news headlines list]

news_details list small = [element.lower().replace("(", "").replace(")",

).replace("'", "") for element in news details list]
news_dictionary = dict(zip(news headlines list small, news details list small))

def news_reader():
for key, value in news dictionary.items():
tts('Headline, ' + key)
tts('News, ' + value)

First, you import the requests module as well as BeautifulSoup from the bs4
module. You assign the fixed URL that you found on the web site to the fixed url

variable. Then, you declare two empty arrays named news_headlines list and
news_details_list, which will hold the headlines and the news, respectively.

37

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 ' USING THE INTERNET TO GATHER INFORMATION

Next, you have to cycle through the different pages to scrape news from them.

You do this by using a for loop and adding a dynamic changing_slug whose value
depends on the iterations of the loop. This helps to create the URL, which you call using
requests.get() to capture the page’s HTML to the data variable.

You then call the BeautifulSoup parser, which iterates through all the <h2> tags and
<p> tags with class intro to create two separate lists for headlines and news. You can
remove the two unwanted <h2> tags by slicing the headline list appropriately.

The next step involves editing the contents of both lists to remove parentheses
and quotes and make the text lowercase. Then you create a dictionary that stores the
headlines and news as key/values pairs. Finally, you build the news_reader () function,
which iterates through the items in the dictionary, and have Melissa speak the headlines
and news via the tts() function.

Note This approach is vulnerable to changes in the site’s HTML. | used the data-
mining approach to demonstrate how you can retrieve information if no other alternative is
available. Using the official API or a web site’s RSS feed will solve this problem.

The last step is adding the appropriate information to brain.py:

from GreyMatter import tell time, general conversations, weather,
define_subject, business_news_reader

Now add the corresponding code snippet to the if/else clause:

elif check message([‘business’, ‘news’]):
business_news reader.news_reader()

Congratulations—you have just built a business news reader for Melissa! I am sure
she is grateful. You can call this functionality by saying a command like, “Read me the
business news!” or “Latest business news!” Let’s revise the workflow you follow to obtain
the news from the news web site and process it in such a way that it is appropriate to pass
to tts(); see Figure 4-4.

changing
slug requests.get

parsed by
BeautifulSoup

E zip to make make lower,

headline and remove brackets
news key-value and quotes
pair

Figure 4-4. News-retrieval workflow

38

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 USING THE INTERNET TO GATHER INFORMATION

Similarly, following this workflow, you can scrape data from any web site from which
you want to retrieve data and build modules to retrieve other types of information from
the Internet.

Text-Controlled Virtual Assistant

Here is an exercise for you: try to modify Melissa’s code such that instead of executing the
main.py Python file in the usual way, you give the following command:

$ python main.py -t

As aresult, Melissa will take text input instead of voice input. This will help you to
interact with the virtual assistant if you cannot speak for some reason. This may come in
handy if your microphone does not work or if you are in a public room where speaking a
command to your computer might be awkward.

To see my implementation of the text-controlled virtual assistant flag, visit the
Melissa-Core repository under the Melissa-AI organization and take a look at the
main.py file. But I really encourage you to try to implement this yourself before opening
Melissa’s repository.

Selenium and Automation

If you have had experience in quality assurance or automated testing, you can automate
your daily web site testing with Melissa’s help via Selenium. Even if you do not have any
experience using Selenium, you should be pleased to know that you can do fun things
with it. First, install selenium using pip:

$ pip install selenium

Now, create a file named open_firefox.py in the GreyMatter folder, and type the
following code in it:

from selenium import webdriver
from SenseCells.tts import tts
def open_firefox():
tts('Aye aye captain, opening Firefox')

webdriver.Firefox()

On the first line, you import webdriver from the selenium module. Then you call the
function webdriver.Firefox(), which opens the Firefox web browser. To implement it,
open brain.py and make the following code changes/additions:

from GreyMatter import tell time, general conversations, weather,
define_subject, business _news_reader, open_firefox

elif check message(['open', 'firefox']):
open_firefox.open firefox()

39

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 ' USING THE INTERNET TO GATHER INFORMATION

This lets you open Firefox by giving commands like “Open Firefox.”

You can do a host of pretty interesting things with Selenium. For example, you can
automate logging in to a web site like Facebook so that when you give the command to
Melissa, she opens a browser, opens the web site, and then logs in to the web site using
your credentials.

Some Internet connections need the user to log in to proxy portals, also known as
captive portals, to access the Internet. You can also automate this type of login. Let’s write
a module for performing this functionality.

Store the proxy username and password in the profile.yaml file:

proxy_username:
Something

proxy_password:
Something

I'would like to point out that saving passwords in plaintext and in publicly accessible
files is a very bad idea. You may wish to save the password in a database in an encrypted
format. However, for the sake of simplicity, keep it in profile.yaml for now.

Make the following additions to main. py:

proxy username = profile data['proxy username']
proxy password = profile data['proxy password']

Edit the call to the brain() function inmain() as follows (and also in the function
declaration in brain.py):

brain(name, speech text city name, city code, proxy username, proxy password)

Now, create a connect_proxy.py file in the GreyMatter folder, and type the following
code in it:

from selenium import webdriver

from SenseCells.tts import tts

def connect_to_proxy(proxy username, proxy password):
tts("Connecting to proxy server.")
browser = webdriver.Firefox()

browser.get('http://10.1.1.9:8090/httpclient.html")

id number = browser.find element by name('username')
password = browser.find_element by name('password')

id number.send_keys(proxy username)
password.send_keys(proxy password)

browser.find element by name('btnSubmit').click()

40

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 USING THE INTERNET TO GATHER INFORMATION

As is evident from the code, the connect_to_proxy() function first opens the
browser, then opens the proxy URL, and then searches for the username text field and the
password field. Finally, it enters the username and the password in their respective fields
and presses Enter to log in the user.

You can make a similar login-automation module for any web site by first making the
changes in the URL, username, and password ID, class, or name (from the source code),
and changing the username and password.

Make the final edits and additions in brain.py:

from GreyMatter import tell time, general conversations, weather,
define_subject, business _news_reader, open_firefox, connect_proxy
elif check message(['connect', 'proxy']):
connect_proxy.connect_to_proxy(proxy_username, proxy_password)

Now, giving Melissa a command like “Connect to proxy server” will cause her to
automatically connect you to the proxy server.

Remember that you should never store passwords in plaintext in publicly accessible
files. As I mentioned, you may want to re-create the earlier instructions and store the
username and password in a database using an encryption scheme such as SHA2.

Time to Sleep, Melissa!

Let’s write a short module to shut down the software and ask Melissa to sleep. Type the
following code for sleep.py in the GreyMatter folder:

from SenseCells.tts import tts

def go to sleep():
tts('Goodbye! Have a great day!"')
quit()

Time to make the edits in brain. py:

from GreyMatter import tell time, general conversations, weather,
define_subject, business news_reader, open_firefox, connect proxy, sleep

elif check message(['sleep']):
sleep.go to_sleep()

Now, saying something like “Time to sleep, Melissa!” or “Sleep!” will shut down the
software and exit from the Python script.

You should commit your code after building a feature or completing the lessons
in any chapter. This will help you to go back to your previous state (the last time you
committed) if you accidently delete something or mess something up. You can go back to
the previously committed state by entering the following command on your terminal:

$ git reset --hard

41

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 ' USING THE INTERNET TO GATHER INFORMATION

Trust me, this command has saved my life many more times than I can remember.
I hope this will help you some day as well.

Summary

In this chapter, you learned how to build applications that use the Internet to gather
useful information and present to the user when requested. You used modules to retrieve
weather information and definitions from Wikipedia. You also learned how to mine data
from web sites to extract meaningful data when a third-party module is not available. You
learned how to use Selenium to create some elementary features for Melissa. Finally, you
created a small sleep module for Melissa that shuts down the virtual assistant.

In the next chapter, you build a music player module for Melissa, which allows you to
ask Melissa to randomly play any music file as well as search for music and play a file.

42

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5

Developing a Music Player
for Melissa

This chapter covers the details of building a music player for Melissa that lets you select
all the MP3 files in a given directory and play them using a command-line music utility.
Melissa will be able to play music randomly as well as play a specific music file from a list
of files when asked.

To build this functionality for Melissa, you must first select command-line players
for OS X and Linux so that after appropriate handling by the logic engine, it can pass the
name of a song or a list of songs to the music player via the os.system() function. Let’s
discuss the command-line music players suitable for this module before moving forward
to building the module.

0S X Music Player

Apple’s OS X has a built-in command-line music player utility called afplay that helps
you play music from the command line without installing anything. To check whether
you have afplay installed on your system, open the terminal and enter the following
command:

$ afplay
This should give you the following output:
Tanays-MacBook-Air:~ tanay$ afplay
Audio File Play
Version: 2.0
Copyright 2003-2013, Apple Inc. All Rights Reserved.
Specify -h (-help) for command options

Usage:
afplay [option...] audio_file

© Tanay Pant 2016 43
T. Pant, Building a Virtual Assistant for Raspberry Pi, DOI 10.1007/978-1-4842-2167-9_5

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 * DEVELOPING A MUSIC PLAYER FOR MELISSA

Options: (may appear before or after arguments)
{-v | --volume} VOLUME
set the volume for playback of the file
{-h | --help}
print help
{ --leaks}
run leaks analysis
{-t | --time} TIME
play for TIME seconds
{-r | --rate} RATE
play at playback rate
{-q | --rQuality} QUALITY
set the quality used for rate-scaled playback (default is 0 - low
quality, 1 - high quality)
{-d | --debug}
debug print output

Linux Music Player

For Linux, I recommend installing mpg123 from its official web site, www.mpg123. de.
It is a sleek, decent music player utility like afplay. You can run mpg123 by entering the
following command in your console:

$ mpg123 'something.mp3’

Doing so plays the music file you specify.

Module Workflow

First you need to find all the MP3 files present in the path specified by the user as well
as in its subdirectories, and make a list. Next, you either choose a random music file to
play and send it to the music player or search the music list to find the song the user
requested. Then, you fingerprint the OS to determine which music player to summon
(see Figure 5-1).

44

www.it-ebooks.info

http://www.mpg123.de/
http://www.it-ebooks.info/

CHAPTER 5 * DEVELOPING A MUSIC PLAYER FOR MELISSA

Find all MP3 files and
make a list

Search for user’s request Choose a random song
in the list out of the list

Detect 0S and play the
song

Figure 5-1. Music player workflow

The work specified by the first block on the flowchart, “Find all MP3 files and make
alist,” is accomplished by using a function named mp3gen(). The second block’s work,
“Search for user’s request in the list,” is done by a function named play specific_music().
The third block’s work, “Choose a random song out of the list,” is done by a function
named play_random(). And, finally, the last block’s work, “Detect OS and play the song,’
is done by the music_player() function.

Building the Music Module

Let’s get to the task of programming the flowchart just discussed. First, add the path of the
folder where the music resides in the profile.yaml file:

music_path:

Next you need to extract the information about the path of the music files in
main.py so that it can pass that information to brain. py. Also, you need to make a couple
of additions:

from GreyMatter import play music

45

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 * DEVELOPING A MUSIC PLAYER FOR MELISSA

You import the play_music module that you create shortly in main.py. Then you add
the music_path variable from profile.yaml:

music_path = profile data['music_path']

Next, call the mp3gen() function so the list of MP3 files is created and ready to use:
play music.mp3gen(music_path)

Finally, edit the brain() function to look like the following:

brain(name, speech text, music_path, city name, city code, proxy username,
proxy password)

It’s time to program the module itself! Create a file named play music.py in the
GreyMatter folder, and type in the following code:

import os
import sys
import random

from SenseCells.tts import tts

def mp3gen(music_path):
This function finds all the MP3 files in a folder and its subfolders and
returns a list:
music_list = []
for root, dirs, files in os.walk(music_path):
for filename in files:
if os.path.splitext(filename)[1] == ".mp3":
music_list.append(os.path.join(root, filename.lower()))
return music_list

def music_player(file name):

This function takes the name of a music file as an argument and plays it

depending on the 0S.

if sys.platform == 'darwin':
player = "afplay '" + file_name +
return os.system(player)

elif sys.platform == 'linux2' or sys.platform == 'linux':
player = "mpg123 '" + file name +
return os.system(player)

46

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 * DEVELOPING A MUSIC PLAYER FOR MELISSA

def play random(music_path):

try:
music_listing = mp3gen(music_path)
music_playing = random.choice(music_listing)
tts("Now playing: " + music_playing)
music_player(music_playing)

except IndexError as e:
tts('No music files found.")
print("No music files found: {0}".format(e))

def play specific_music(speech text, music_path):
words_of message = speech_text.split()
words_of message.remove('play")
cleaned message = ' '.join(words of message)
music_listing = mp3gen(music_path)

for i in range(0, len(music_listing)):
if cleaned message in music_listing[i]:
music_player(music_listing[i])

Starting from the beginning, you import the built-in os, sys, and random. Next comes
the mp3gen() function. In this function, you pass music_path as an argument. You declare
an empty list to hold the array of music file names. You then iterate through the files, folders,
and subfolders using the os.walk() function to find all files with the .mp3 extension. When
it finds the required files, it stores the names of the files along with their complete path
address to the music_list variable. The function returns music_list as alist (array).

The music_player() function is written to play the music files after detecting the
user’s OS. The function takes file_name as an argument. Similar to what you did while
building the tts() function earlier, you use the sys.platform() function to detect
whether the OS is OS X or Linux. Accordingly, you create a variable named player in
which you concatenate the player along with the name of the music file to play; you use
either the afplay player or the mpg123 player. This player variable acts as a command that
is called using the os. system() command.

Next comes the play random() function, where you create the list of all MP3 files
present using the mp3gen() function. This function takes music_path as an argument.
Then you create a variable named music_playing that stores the name of a particular
music file by using the random. choice() function, which operates on the music_listing
list. You then pass the name of the music file stored inmusic_playing to the
music_player() function, which plays the music. You use a try/except clause here
because there may be a case when there are no MP3 files present in the music_path; this
gives an IndexError, which speaks the message “No music files found.”

Finally, the play specific_music() function takes speech text and music_path as
arguments. You implement the same functionality here as in the define_subject module.
So, you split speech_text to create an array of words. You then remove the play keyword
from the array, and whatever remains, however improbable it may be, must be the name
of the music file the user wants to search for. You combine the words of the array again and
iterate through music_list to find a match with the name of the song the user specified.
If a match is found, the music is played using the music_player() function.

47

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 * DEVELOPING A MUSIC PLAYER FOR MELISSA

Now it’s time to edit brain. py; make the following edits and additions. The first
change is to the import statement:

from GreyMatter import define_ subject, tell time, general conversations,
play music, weather, connect proxy, open_firefox, sleep, business news_reader

Edit the declaration of the brain() function to make it look like the following:

def brain(name, speech text, music_path, city name, city code, proxy
username, proxy password):

The last step is to add a code snippet to call the two functions in the file’s
logic-handling if/else clause:

elif check message(['play', 'music']) or check message(['music']):
play music.play random(music_path)

elif check message(['play']):
play_music.play specific_music(speech_text, music_path)

So far, so good! Note that you purposely put the play random() function first,
because it recognizes the call made to it via the play and music keywords. If you put just
the play keyword first, as in the play specific_music() function, then even if you want
to hear a random track, the module would split the query and completely mess it up,
resulting in “track not found” and hence an error. The first clause in an if/else ladder
takes the first priority.

Play Party Mix!

This is an exercise for you: create another function in the play_music module that makes
alist of all the MP3 files, shuffles them, and then plays them one by one. This feature
should be invoked when keywords such as party and mix or party and time are present.

I encourage you to try to implement this feature yourself before looking at the
following solution. Doing so will improve your understanding of this software and help
you scale the software in the future.

First, make a function named play_shuffle() in play music.py. Type in the
following code:

def play shuffle(music_path):

try:
music_listing = mp3gen(music_path)
random.shuffle(music_listing)
for i in range(0, len(music_listing)):

music_player(music_listing[i])

except IndexError as e:
tts('No music files found.")
print("No music files found: {0}".format(e))

48

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 * DEVELOPING A MUSIC PLAYER FOR MELISSA

This function accepts the music_path variable and makes a list of all the MP3 files
that are present. It then shuffles the music list using the random. shuffle() function.
Doing so ensures that the order in which the songs are played is different each time. Now
you iterate through the shuffled list and play the music files one by one. If there is an
IndexError exception, it passes on the message “No music files found.”

Make the following changes in brain.py and add this code snippet:

elif check message(['party', 'time']) or check message(['party', 'mix']):
play music.play shuffle(music_path)

This ensures that the party mix is called when the user says something like, “It’s party
time!” or “Party mix!” Note that you must add this code snippet above the time module’s
code snippet. If you don'’t, then if you say “It’s party time!,” the software will detect the time
keyword, and the logical engine will transfer control of the program to the time module.

Summary

In this chapter, you learned how to build music-player functionality for Melissa, and you
learned to find all the MP3 files in a folder and its subfolders, make a list of them, play
them randomly, search for specific music, and create a party mix. Did I forget to mention
that you made all of this voice controlled?

In the next chapter, you build a voice-controlled note-taking application that lets you
save notes using your voice and retrieve them later.

49

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6

Developing a Note-Taking
Application

A virtual assistant would not be truly useful if it didn’t help with tasks such as writing
notes for you so you don’t have to pick up a pen or type your creative thoughts on
the keyboard. This chapter covers the steps to build a voice-controlled, note-taking
application using Python code and a SQLite3 database. This application lets the reader
save any message in the database with the help of the note keyword and retrieve the notes
later by asking Melissa to do so.

The application uses a SQLite database to save the notes. Python by default installs
SQLite3, so don’t worry about having to install anything in this chapter.

This chapter’s very simple voice-controlled, note-taking application is invoked if it finds
the note keyword. It follows the same message-extraction technology you used to build the
define_subject module and the music-search functionality in the play_music module.

Design Workflow

In this application, you search speech_text for the keyword note. It then removes the
word note from speech_text to extract the note. You rejoin the message and insert the
note into the database along with the date. When it is saved successfully, you see an alert
(see Figure 6-1).

© Tanay Pant 2016 51
T. Pant, Building a Virtual Assistant for Raspberry Pi, DOI 10.1007/978-1-4842-2167-9_6

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 * DEVELOPING A NOTE-TAKING APPLICATION

—

Figure 6-1. Note-saving workflow

Designing the Database

First things first: you need to design a SQLite3 database for storing notes. You have to
create the database in the same format you used for the profile.yaml file (to protect the
user’s private data, which may be stored in the database). Give the database the name
memory.db.default. Remember to make the following addition to the .gitignore file:

memozry .db

To successfully run the module and work on the database, the user must enter the
following command in the terminal:

$ cp memory.db.default memory.db

Enter the following command in your terminal to set up your database. This opens
the database in the SQLite3 prompt:

$ sqlite3 memory.db

Now you have to create a table named notes containing two columns named notes
and notes_date. The datatype for both columns is TEXT, and the fields cannot be null.
So, enter the following command at the sqlite prompt:
sqlite> CREATE TABLE notes(

...> notes TEXT NOT NULL,
...> notes_date TEXT NOT NULL

e);

52

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 © DEVELOPING A NOTE-TAKING APPLICATION

You can check whether you are working on the correct database by entering the
following command at the sqlite prompt:

sqlite> .databases

If the database you intend to work on in assigned the name main, then you have
nothing to worry about. You can also consult the schema of your SQL database by
entering the following command at the sqlite prompt:

sqlite> .schema

Here is the output of the commands I ran in my terminal. You should see
something similar:

Tanays-MacBook-Air:Melissa-Core-master tanay$ sqlite3 memory.db
SQLite version 3.8.10.2 2015-05-20 18:17:19

Enter ".help" for usage hints.

sqlite> .databases

seq name file

0 main /Users/tanay/Desktop/Melissa-Core-master/memory.db
sqlite> .schema

CREATE TABLE notes(

notes TEXT NOT NULL,

notes_date TEXT NOT NULL

)

sqlite> .exit

Tanays-MacBook-Air:Melissa-Core-master tanay$

Inner Workings of the Virtual Assistant

Before moving on to develop the note-taking module, I want to revisit a topic from
Chapter 1. Adding a database makes an important modification in Melissa’s workflow.
Now the virtual assistant has a memory like a human and can store important

information that may be useful for the user or the functionality of modules you develop

later. The workflow now looks as shown in Figure 6-2.

www.it-ebooks.info

53

http://dx.doi.org/10.1007/978-1-4842-2167-9_1
http://www.it-ebooks.info/

CHAPTER 6 * DEVELOPING A NOTE-TAKING APPLICATION

&

Memory

0]
—’

|
E

STT Logic Engine TTS

Figure 6-2. Melissa’s new structure

The virtual assistant now has a feature to process information in the logical engine
and pass it on to the memory if instructed to do so by the Python code. This new addition
makes Melissa smarter and even more useful.

Building the Note-Taking Module

It's time to jump into the task of writing the Python code for the note-taking module.
Create a file named notes.py in the GreyMatter folder, and type the following code in it:

import sqlite3
from datetime import datetime

from SenseCells.tts import tts

def note_something(speech text):
conn = sqlite3.connect('memory.db")
words_of message = speech text.split()
words_of message.remove('note")

cleaned message = ' '.join(words_of message)

conn.execute("INSERT INTO notes (notes, notes date) VALUES (?, ?)",
(cleaned_message, datetime.strftime(datetime.now(), '%d-%m-%Y')))
conn.commit()

conn.close()

tts('Your note has been saved.')

54

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 © DEVELOPING A NOTE-TAKING APPLICATION

The starting line imports the built-in sqlite3 and datetime modules. You then
define a function named note_something() that takes speech_text as an argument. In
the function, you establish a connection to the memory.db database using the sqlite3.
connect () function.

You then split speech_text, remove the note keyword, extract the note by joining
the rest of the words again, and assign the note to the cleaned_message variable. You
remove the note keyword so that Melissa stores only the message that the user intends
to store—note is just a command and not part of the user’s message. Using the SQLite3
execute() function, you enter the SQL statement for inserting cleaned_message in the
notes column and the date in the notes_date column of the notes tables. You obtain the
date using the datetime.now() function and format it using the datetime.strftime()
function. You then commit the changes made to the database using the commit()
function and close the database using the SQLite3 close() function. Finally, you give oral
feedback to the user, telling them that their note has been successfully saved.

You now have to make the changes to the brain. py file. Make the following edits
and additions:

from GreyMatter import notes, define_subject, tell time, general
conversations, play music, weather, connect_proxy, open_firefox, sleep,
business_news_reader

Next, add the appropriate code snippet to the if/else ladder in Melissa’s logical engine:

elif check message(['note']):
notes.note_something(speech_text)

Congratulations—you have built note-taking functionality for your virtual assistant,
Melissa! Now you can ask Melissa to jot down any important thoughts that come to mind.
This feature makes Melissa even more useful for daily use. You can save your thoughts
by giving a command such as, “Note remember to go to college!” This will save the note
“Remember to go to college!”

You should try this activity with Melissa to save a note. To check whether your note
has been successfully saved, open the terminal and open the memory.db database at the
sqlite prompt. Enter the following command:

sqlite> select * from notes;

This shows you all the data that has been saved in the notes table. Entering it in my
terminal shows me this output:

Tanays-MacBook-Air:Melissa-Core-master tanay$ sqlite3 memory.db
SQLite version 3.8.10.2 2015-05-20 18:17:19

Enter ".help" for usage hints.

sqlite> select * from notes;

remember to go to college! | 14-01-2016

sqlite> .exit

Tanays-MacBook-Air:Melissa-Core-master tanay$

55

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 * DEVELOPING A NOTE-TAKING APPLICATION

Building a Note-Dictating Module

It is okay for a developer to look at the data stored in the database by accessing the
SQLite3 data via the command prompt. However, it would not convenient for the user
to have to revisit the note data in this way. It would be better if Melissa could dictate
previously saved notes to you. Let’s build a module for retrieving old notes.

Create a new function named show_all notes() in the notes.py file, and type the
following code in it:

def show_all notes():
conn = sqlite3.connect('memory.db")
tts('Your notes are as follows:')

cursor = conn.execute("SELECT notes FROM notes")

for row in cursor:
tts(row[0])

conn.close()

The first line in the show_all notes() function establishes the connection to your
database. You then give the message that the notes are being dictated. You execute the
same SQL statement that you entered in the terminal earlier to receive the data, iterate
through the records to select the notes, and pass them to the tts() function. Finally, you
close the connection to the database.

Add the appropriate code snippet to brain.py:

elif check message(['all', 'notes']) or check message(['notes']):
notes.show_all notes()

Now commands such as “Show me all the notes!” or “Notes” will cause Melissa to
read all the notes to you. You use or to ensure that notes.show_all notes() is called if
the user’s command contains both the all and notes keywords (check_message() returns
True only if both all and notes are present) and even if it contains just the notes keyword.

Exercises

Here are some features for you to implement in the note-taking application to increase its
usefulness. First, it would be great if a command like “Show today’s notes!” would display
the notes you saved today. This would help you easily review all the notes you saved at the
end of the day.

Also, it would make sense to have a command such as “Delete all notes!” or “Delete
today’s notes!” This would help you prune unneeded notes from the database so that
Melissa does not dictate notes you've already taken care of.

56

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 © DEVELOPING A NOTE-TAKING APPLICATION

Summary

In this chapter, you learned to develop a note-taking application that extracts a note from
a user’s command and saves it to a SQLite3 database. You then built a note-retrieval
system that lets you retrieve the saved notes by giving another command.

In the next chapter, you learn how to develop a voice-controlled interface to access
Twitter with Melissa’s help. You also study how to build a voice-controlled image
uploader that can upload images to Imgur (an image-upload web site).

57

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7

Building a Voice-Controlled
Interface for Twitter
and Imgur

In this chapter, you learn how to post status updates (tweets) on Twitter by using your
voice. You also learn how you can upload images on Imgur by asking Melissa to do so,
and save the URLs of the uploaded images in a database so they can be retrieved for
future reference.

Twitter is the most famous microblogging platform and has a huge number of users.
People love to post information about how they feel, interact with others, and express their
views on different subjects. Wouldn't it be cool if you could tell Melissa what you want your
new tweet to be, and she could post it for you? That would be a really helpful feature!

Building the Twitter Module

Let’s start by installing a third-party module named tweepy from pip. To install tweepy,
enter the following command in your terminal:

$ pip install tweepy

Now you need to get the Twitter consumer key, consumer key secret, access token,
and access token secret to authenticate the Twitter user via OAuth 2. To register an
application on Twitter, go to apps.twitter.comand click Create New App. Enter the
appropriate details for your application, and create the application. This generates the
keys and access tokens required to authenticate your application.

© Tanay Pant 2016 59
T. Pant, Building a Virtual Assistant for Raspberry Pi, DOI 10.1007/978-1-4842-2167-9_7

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © BUILDING A VOICE-CONTROLLED INTERFACE FOR TWITTER AND IMGUR
After going to your application page, click the Keys and Access Tokens tab, which

displays all the required information to create your module. Figure 7-1 shows my
consumer keys.

W Application Management ﬂ 5
R e e e e e

MelissaAl =

Details Settings Keys and Access Tokens Permissions
Application Settings

Consumer Key (APl Key)

Consumer Secret (AP| Secret)

Access Level Read and write (modify app permissions)
Cwner tanay 1337
Owner ID

Application Actions

Regenerate Consumer Key and Secret Change App Permissions

Figure 7-1. Twitter application management

Scrolling down the same page, you can get the access tokens for your Twitter
application. Click the button to generate the access tokens. Figure 7-2 shows the access
tokens after I clicked the button.

60

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 * BUILDING A VOICE-CONTROLLED INTERFACE FOR TWITTER AND IMGUR

Regenerate Consumer Key and Secret Change App Permissions

Your Access Token

Access Token

Access Token Secret

Access Lavel Read and write
Owner tanay 1337
Owner ID

Token Actions

Regenerate My Access Token and Token Secret Revoke Token Access

Figure 7-2. Getting your access token

Make the following additions to profile.yaml.default:

twitter:

access_token:
Something

access_token_secret:
Something

consumer_key:
Something

consumer_secret:
Something

Enter the correct values instead of Something in your profile.yanml file. You now
need to extract these keys from the YAML file to your program; to do so, make the
following changes in main.py:

access_token = profile data['twitter']['access token']

access_token secret = profile data['twitter']['access token secret']
consumer_key = profile data['twitter']['consumer key']
consumer_secret = profile data['twitter']['consumer_ secret']

Next you need to pass all these values to the brain() function by editing the call
made to itin main.py:

brain(name, speech text, city name, city code, proxy username, proxy
password, consumer_key, consumer secret, access token, access token secret)

61

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 * BUILDING A VOICE-CONTROLLED INTERFACE FOR TWITTER AND IMGUR

The edits made in main.py are complete. Now, create a file named
twitter interaction.py inthe GreyMatter folder, and type the following code into it:

import tweepy
from SenseCells.tts import tts

def post tweet(speech text, consumer key, consumer secret, access token,
access_token secret):

words_of message = speech_text.split()
words_of message.remove('tweet')

cleaned message = ' '.join(words of message).capitalize()

auth = tweepy.OAuthHandler(consumer key, consumer_ secret)
auth.set_access_token(access_token, access_token secret)

api = tweepy.API(auth)
api.update status(status=cleaned message)

tts('Your tweet has been posted')

The first line imports the tweepy module. You define a function named
post tweet() that takes the following arguments: speech_text, consumer_key,
consumer_secret, access_token, and access_token_secret. You then split speech_text,
remove the tweet keyword from it, and rejoin it to extract the tweet text. Next, the
tweepy.OAuthHandler () handler is called; it takes consumer_key and consumer_token
as arguments. You set the access tokens using the set_access_token() function and pass
the access_token and access_token_secret arguments. The tweepy API is called using
the tweepy.api() function. Finally, you call the update_status() function, which takes
status as an argument and posts it. On successfully completing this task, Melissa sends a
voice message that “Your tweet has been posted!”

Now, make the following edits in brain.py:

from GreyMatter import notes, define_subject, tell time, general
conversations, play music, weather, connect_proxy, open_firefox, sleep,
business_news_reader, twitter_interaction
And finally, add the appropriate code snippet to the if/else ladder:
elif check message(['tweet']):
twitter interaction.post tweet(speech text, consumer key,
consumer_secret, access token, access token secret)
This ensures that if you pass a command such as “Tweet hello twitter greetings

from melissa,” the application will remove the tweet keyword and post your message on
Twitter. Figure 7-3 shows my Twitter wall after I gave Melissa this command.

62

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 * BUILDING A VOICE-CONTROLLED INTERFACE FOR TWITTER AND IMGUR

Tweets Tweets & replies Photos & videos Your Tweet activity
Tanay Pant
tanay1d Tanay Pant . . Your Tweets eamed 4,
a
Author, Mozilla Representative, White Hat a Hello twitter greetings from melissa owver the last 28 days
and Programmer View your top Tweets
¥ 127.001
1anEyDaAn com nm Tanay Pant

Figure 7-3. Tweet posted on Twitter

This code works like a charm. Also notice that it has capitalized “Hello” because I
used the capitalize() function on the cleaned message() variable.

Exercises

Here are a few tasks for you to accomplish by yourself in order to extend the functionality
of Melissa’s Twitter module and make it more useful. First, add a function in the
twitter_interaction file to search for a person’s username and dictate the details about
them. Another interesting feature you can add is to have Twitter search for tweets on a
particular topic or subject. You should also be able to hear your own tweets as well as the
tweets of any other user. And a Twitter application is never complete in the truest sense if
it cannot send direct messages to your followers.

Adding these functionalities to the twitter_interaction.py file will improve your
understanding of the tweepy module and let you voice-control Twitter like a pro. If you
successfully implement these features, be sure to send a pull request to the Melissa-AI/
Melissa-Core repository on GitHub to get your code merged into the official repository.

Building the Imgur Module

Imgur is an image-upload web site that provides an API and a Python module for
uploading images and sharing them with your friends. Uploading images is a boring
task—you have to click the Upload File button, select the file, and then click the Upload
button. Drag-and-drop uploads certainly make the task easier, but you still have to find
the file and use the mouse to perform the drag-and-drop operation.

It would definitely make things easier for you if Melissa could do all this for you,
wouldn’t it? Also, it would be even better if the URLSs of the images you upload to Imgur
are stored in a database, along with the dates. Let’s build a module that can perform these
tasks and simplify life for you!

63

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 * BUILDING A VOICE-CONTROLLED INTERFACE FOR TWITTER AND IMGUR

First you have to install the imgurpython module, which acts as an interface to Imgur’s
REST APL To install imgurpython via pip, enter the following command in your terminal:

$ pip install imgurpython

Now you need the client_id and client_secret keys from Imgur. For this, create
an account on Imgur, and request access from the registration form for your application.
After creating the application, view your registered applications at https://imgur.com/
account/settings/apps. Figure 7-4 shows the applications I have registered.

imgur = & wo 8

O, @ A& tanay1337

v | o
7 The Imgur Mobile App Has Been Upgraded!

- e [is
"™ ‘ pg Mow with Search, Upload, and Grid View
M -~

Created Apps

Apps Used

= applications

Figure 7-4. Obtaining the Imgur client ID and secret

After getting the keys, make the following additions to your profile.yaml.default file:
images_path:

imgur:
client_id:
Something
client_secret:
Something

images_path has functionality similar to the music_path you used earlier, and the
implementation of Imgur is similar to what you did with Twitter. Be sure to make the
corresponding changes in the profile.yaml file.

64

www.it-ebooks.info

https://imgur.com/account/settings/apps
https://imgur.com/account/settings/apps
http://www.it-ebooks.info/

CHAPTER 7 * BUILDING A VOICE-CONTROLLED INTERFACE FOR TWITTER AND IMGUR

Creating the Tables in the Database

Now you need to create the appropriate tables in the database, to save the data. Open the
memory.db database by entering the following command in the terminal:

$ sqlite3 memory.db
Enter the following SQL statement at the sqlite prompt to create the table:

sqlite> CREATE TABLE image uploads(
...> filename TEXT NOT NULL,
...> url TEXT NOT NULL,
...> upload_date TEXT NOT NULL

e);

You can now check the schema of the database by entering the following command:
Sqlite> .schema
Here is the output that I received on entering the previous command:

Tanays-MacBook-Air:Melissa-Core-master tanay$ sqlite3 memory.db
SQLite version 3.8.10.2 2015-05-20 18:17:19
Enter ".help" for usage hints.

sqlite> .schema

CREATE TABLE notes(

notes TEXT NOT NULL,

notes_date TEXT NOT NULL

)

CREATE TABLE image uploads(

filename TEXT NOT NULL,

url TEXT NOT NULL,

upload_date TEXT NOT NULL

)

sqlite> .exit
Tanays-MacBook-Air:Melissa-Core-master tanay$

You need to extract this information in main.py and make the appropriate additions
and edits. First, edit the import statement to make it look like this:

from GreyMatter import play music, imgur_handler
Then extract the information from the YAML file:
images_path = profile_data['images path']

client _id = profile data['imgur']['client id']
client secret = profile data['imgur']['client secret']

65

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 * BUILDING A VOICE-CONTROLLED INTERFACE FOR TWITTER AND IMGUR

Now, add the code to create the list of all the images in images_path and edit the call

to the brain() function to pass the new arguments that are needed by your module:

imgur handler.img list gen(images path)

brain(name, speech text, music_path, city name, city code, proxy
username, proxy password, consumer_ key, consumer secret, access_token,
access_token secret, client id, client secret, images path)

Note that the module and the function you add here have not yet been constructed.
Create a file named imgur_handler.py in the GreyMatter folder, and type the

following code in it:

import os
import sqlite3
from datetime import datetime

from imgurpython import ImgurClient

from SenseCells.tts import tts

def

def

66

img list gen(images_path):

image list = []
for root, dirs, files in os.walk(images path):
for filename in files:

if os.path.splitext(filename)[1] == ".tiff" or os.path.
splitext(filename)[1] == ".png" or os.path.splitext(filename)[1]
== ".gif" or os.path.splitext(filename)[1] == ".jpg":

image list.append(os.path.join(root, filename.lower()))
return image list

image uploader(speech text, client id, client secret, images path):

words_of message = speech_text.split()
words_of message.remove('upload")

cleaned message = ' '.join(words_of message)
image listing = img list gen(images_path)

client = ImgurClient(client id, client secret)
for i in range(0, len(image listing)):
if cleaned message in image listing[i]:

result = client.upload from path(image listing[i], config=None,
anon=True)

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 * BUILDING A VOICE-CONTROLLED INTERFACE FOR TWITTER AND IMGUR

conn = sqlite3.connect('memory.db")

conn.execute("INSERT INTO image uploads (filename, url, upload date)
VALUES (2, ?, ?)", (image_listing[i], result['link'], datetime.
strftime(datetime.now(), '%d-%m-%Y')))

conn.commit()

conn.close()

print result['link']
tts('Your image has been uploaded')

def show_all uploads():
conn = sqlite3.connect('memory.db")

cursor = conn.execute("SELECT * FROM image uploads")

for row in cursor:
print(row[0] +

(" + row[1] + ') on " + row[2])
tts('Requested data has been printed on your terminal')
conn.close()

That’s a lot of code! Let’s go through it line by line. You need the sqlite3 and
datetime modules to store the URLs where the images are uploaded and to get the date
when the image was uploaded, respectively.

You import ImgurClient from the Imgur client to help you upload the images to
Imgur. The img_list gen() function takes images_path as an argument and searches for
all the PNGs, GIFs, JPGs, and TIFFs, in the current folder and its subfolders. This code is
essentially the same as the mp3gen() function you built in Chapter 5. It returns a list of all
the files found with the extensions specified.

Next comes the image_uploader() function, which takes speech_text, client_id,
client_secret, and images_path as arguments. Just as in the define_subject module,
it splits the words, removes the keyword upload, and extracts the name of the image to be
uploaded. You then pass client_id and client_secret to ImgurClient to authenticate.

Now you search for the specified image file among the list of images. If a match is
found, you upload it to Imgur using the client.upload from path() function. This
function takes the path of the image to be uploaded as an argument. You save the output
of this function to a variable named result and save the image details to the database.

You use the SQL statement to insert the image values into the corresponding columns
of the table. Note that result['1ink’] stores the link where the image was uploaded on
Imgur. The result dictionary also stores a host of other information you may wish to save
in the database or look at. You then commit the changes made to the database and close
the connection to it. You also display the link where the image has been uploaded on the
terminal, and Melissa gives the message that the image has been uploaded.

The last function is the show_all uploads() function, which retrieves all the stored
entries in the image_uploads table and displays the stored information in a formatted
fashion on the terminal. Melissa gives a message that the requested data has been

67

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-2167-9_5
http://www.it-ebooks.info/

CHAPTER 7 * BUILDING A VOICE-CONTROLLED INTERFACE FOR TWITTER AND IMGUR

printed. This function allows you to view images that have been previously uploaded to
Imgur by showing their URLs.
Finally, you need to make these appropriate edits and additions to brain.py:

from GreyMatter import notes, define subject, tell time, general
conversations, play music, weather, connect proxy, open firefox, sleep,
business_news_reader, twitter interaction, imgur_handler

Edit the brain() function’s arguments:

def brain(name, speech text, music_path, city name, city code, proxy
username, proxy password, consumer_ key, consumer secret, access_token,
access_token secret, client id, client secret, images path):

And add this code snippet to the if/else ladder:

elif check message(['upload']):
imgur handler.image uploader(speech text, client id, client secret,
images path)

elif check message(['all', 'uploads']) or check message(['all’,
"images']) or check message(['uploads']):
imgur_handler.show_all uploads()

You can now upload a file using a command such as “Upload hello.” The application
will upload an image filed named hello or that has hello in its name. You can see all the
upload entries saved in the database by issuing a command such as “Show all uploads!”
or “Show all images!” You can also check the entries in the database by entering the
following at the sqlite prompt:

sqlite> select * from image uploads;

The following output shows what I received on my terminal after entering the
previous command. It displays the name of an image I uploaded (one of the illustrations
from this book), the URL where it was uploaded, and the date on which it was uploaded:

Last login: Fri Jan 15 11:03:29 on ttys000

Tanays-MacBook-Air:~ tanay$ cd Desktop/Melissa-Core-master/
Tanays-MacBook-Air:Melissa-Core-master tanay$ sqlite3 memory.db
SQLite version 3.8.10.2 2015-05-20 18:17:19

Enter ".help" for usage hints.

sqlite> select * from image uploads;

./news reader workflow.jpg|http://i.imgur.com/fIywson.jpg|15-01-2016
sqlite> .exit

Tanays-MacBook-Air:Melissa-Core-master tanay$

68

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 * BUILDING A VOICE-CONTROLLED INTERFACE FOR TWITTER AND IMGUR

This shows the data in all the columns of the table separated by a pipe character
(])- You can also see the formatted version of the data by saying the command “Show all
uploads!” or “Show all images!”

Summary

In this chapter, you learned how to tweet and use Twitter using your voice-controlled
virtual assistant, Melissa. You also learned to build an image-finding and -uploading
facility using the imgurpython module. In addition, you can retrieve the list of images
you've uploaded, along with the date on which they were uploaded and the URL where
they were uploaded, using a SQLite3 database—also known as Melissa’'s memory.

In the next chapter, you build a web interface for Melissa by using some open source
JavaScript libraries to record the audio via the user’s web browser and saving the file to
a .wav format. This is sent to a Python program that sends the WAV file to the Google
Speech Recognition API for recognition.

69

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8

Building a Web Interface
for Melissa

In this chapter, you build a web interface for Melissa by using some open source
JavaScript libraries to record the audio using the user’s web browser and saving the file to
a .wav format. The file is sent to a Python program, which sends it to the Google Speech
Recognition API for recognition.

Accessing Melissa through your terminal may seem intimidating to users who
are not used to working on the command line. Such an interface doesn’t work for
many people who are not developers. Your current interface is good for research and
development purposes, but it is not a user-facing product. Building a web interface for
operating Melissa will help. It isn’t the best workflow for operating a virtual assistant like
Melissa via the Web, but its simplicity guarantees that you can understand what needs to
be done; after grasping the basic concepts, you can improve it.

Operating Workflow

You can build a web interface with the help of Python’s web. py. The user opens the web
site to access Melissa’s web interface, clicks a button, starts speaking, and then clicks the
same button to stop the recording. Then the user clicks the Save button to save the .wav
file. They upload the WAV file through the web form, which sends it to the Python server
and responds accordingly (see Figure 8-1).

© Tanay Pant 2016 71
T. Pant, Building a Virtual Assistant for Raspberry Pi, DOI 10.1007/978-1-4842-2167-9_8

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 " BUILDING A WEB INTERFACE FOR MELISSA

Record audio via web interface . Download the WAV file

Send the file to the Python Upload the WAV file via web
server for processing form

Figure 8-1. Operating workflow

Note The audio is recorded on the client side and must be imported from the browser into
the system on the server. For this reason, a web interface is not a trivial addition to Melissa.

I'would like to mention again that this is not the best approach to build a web
interface. You implement it in this chapter for the sake of simplicity.

Note Later in the chapter, | will invite you to interact with this application and improve
it, as opposed to just reading and putting down the book. The web interface is a beta
feature, which gives you a chance to work on something unique.

Building the Web Interface

First you need to install Python’s web module by entering the following command in
the terminal:

$ pip install web.py

Now, create a new file called web-gateway. py in the root folder of your repository.
This is the starting point of the Python server for serving your web application and so
forth. Type the following code in the file:
import os
import yaml

import web

from GreyMatter.SenseCells.tts import tts

72

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 * BUILDING A WEB INTERFACE FOR MELISSA

render = web.template.render('templates/")

urls = (
e

)

profile = open('profile.yaml")

profile data = yaml.safe load(profile)
profile.close()

"index',

Functioning Variables
name = profile data['name’]

tts('Welcome ' + name + ', systems are now ready to run. How can I help you?")

class index:
def GET(self):
return render.index()

def POST(self):

x = web.input(myfile={})

filedir = os.getcwd() + '/uploads' # change this to the directory

you want to store the file in.

if 'myfile' in x: # to check if the file-object is created
filepath=x.myfile.filename.replace('\\"',"'/") # replaces the
windows-style slashes with linux ones.
filename=filepath.split('/")[-1] # splits the command and
chooses the last part (the filename with extension)
fout = open(filedir +'/'+ filename,'w') # creates the directory
where the uploaded file should be stored
fout.write(x.myfile.file.read()) # writes the uploaded file to
the newly created file.
fout.close() # closes the file, upload complete.

os.system('python main.py ' + filename)

if _name__ == "_main_":
app = web.application(urls, globals())
app.run()

You have to import the os, yaml, and web modules. You call the web. template.render()
function because you are using web. py’s templating engine. This function takes the location
of the templates as an argument. Next you specify the list of URLs used in the application.
You then define the index class, which contains the back-end code for the index page.
The GET() function handles the rendering of the index page.

The POST() function handles the file upload using web . py’s form-handling
technology and saves the upload to the uploads folder. The comments explain the
functionality of each line of code in the function. Finally, the file that is uploaded by the

73

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 " BUILDING A WEB INTERFACE FOR MELISSA

user is passed on to the main.py file as an argument. The Python file is opened from the
terminal using the os.system() command.

Now you need to edit main.py to handle the WAV file that is passed as an argument
to it. Make the following edits:

import sys
voice file = os.getcwd() + '/uploads/' + sys.argv[1]

def main(voice file):
r = sr.Recognizer()
with sr.WavFile(voice file) as source:
audio = r.record(source)

try:
speech_text = r.recognize google(audio).lower().replace("'", "")
print(“"Melissa thinks you said '" + speech_text + "'")

except sr.UnknownValueError:
print("Melissa could not understand audio")

except sr.RequestError as e:
print("Could not request results from Google Speech Recognition
service; {0}".format(e))

play music.mp3gen(music_path)
imgur_handler.img_list_gen(images_path)

brain(name, speech text, music_path, city name, city code, proxy
username, proxy_password, consumer_key, consumer secret, access_token,
access_token secret, client id, client secret, images path)

main(voice file)

Let’s go through these edits. Using os.getcwd(), the location of the uploads folder,
and sys.argv[1] (the name passed via the command line), you can retrieve the WAV file
from its location. The main function takes voice_file as an argument. As you may have
noticed, you change the code to accept voice input from the WAV file using sr.WavFile()
rather than the sr.Microphone() function. You now use the WAV file as the audio source.
Do not forget to create the uploads directory in the root by typing the following command
in the terminal:

$ mkdir uploads

Now you need to accept the audio input via the web browser so you can save that file
as a WAV file. You use Chris Wilson’s Apache Licensed Code to do that. I am not including
the JavaScript files in this book for the sake of brevity, but I highly recommend that you

go through the code in depth, to get a greater understanding of how the voice is recorded
efficiently using a web browser.

74

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 * BUILDING A WEB INTERFACE FOR MELISSA

Another note: the images used for this project were obtained from iconarchive.com,
and their respective authors have approved their commercial use. The JavaScript files
are readymade and lengthy. You can obtain all the static files from https://github.com/
Melissa-AI/Melissa-Web/tree/master/static

Next, create the index.html file in the templates folder:

<!doctype html>
<html>
<head>
<meta name="viewport" content="width=device-width,initial-scale=1">
<title>Melissa - Web Version</title>
<link rel="stylesheet" href="http://maxcdn.bootstrapcdn.com/
bootstrap/3.3.5/css/bootstrap.min.css">
<script src="https://ajax.googleapis.com/ajax/1libs/jquery/1.11.3/jquery.
min.js"></script>
<script src="http://maxcdn.bootstrapcdn.com/bootstrap/3.3.5/js/bootstrap.
min.js"></script>
<script src="../static/audiodisplay.js"></script>
<script src="../static/recorder.js"></script>
<script src="../static/main.js"></script>
<style>
html { overflow: hidden; }
body {
font: 14pt Arial, sans-serif;
background: url(../static/img/bg-sky.png);
background-repeat: repeat !important;
background-attachment: fixed;
display: flex;
flex-direction: column;
height: 100vh;
width: 100%;
margin: 0 0;

}
canvas {
display: inline-block;
background: #202020;
width: 95%;
height: 45%;
box-shadow: Opx Opx 7px blue;
}

#controls {
display: flex;
flex-direction: row;
align-items: center;
justify-content: space-around;
height: 20%;
width: 100%;

75

www.it-ebooks.info

https://github.com/Melissa-AI/Melissa-Web/tree/master/static
https://github.com/Melissa-AI/Melissa-Web/tree/master/static
http://www.it-ebooks.info/

CHAPTER 8 " BUILDING A WEB INTERFACE FOR MELISSA

</head>
<body>

76

#record { height: 13vh;}
#record.recording {
background: red;
background: -webkit-radial-gradient(center, ellipse cover,
#ffo000 0%,lightgrey 75%,lightgrey 100%,#7db9e8 100%);
background: -moz-radial-gradient(center, ellipse cover,
#ff0000 0%,lightgrey 75%,lightgrey 100%,#7db9e8 100%);
background: radial-gradient(center, ellipse cover, #ff0000
0%,lightgrey 75%,lightgrey 100%,#7db9e8 100%); opacity: 0.5;
}
#save, #save img { height: 10vh; }
#tsave { opacity: 0.35;}
#save[download] { opacity: 1;}
#viz {
height: 80%;
width: 100%;
display: flex;
flex-direction: column;
justify-content: space-around;
align-items: center;
}
@media (orientation: landscape) {
body { flex-direction: row;}
#controls { flex-direction: column; height: 100%; width: 10%;}
#viz { height: 100%; width: 90%;}
}

</style>

<div id="viz"»
<canvas id="analyser" width="1024" height="500"></canvas>
<div id-"melissa"><span style="color: #56600FF; text-shadow: -1px
1px 8px #67C8FF, 1px -1px 8px #67C8FF;">Melissa</div>
<canvas id="wavedisplay"” width="1024" height="500"></canvas>
</div>

<div id="controls">
<img id="record" src="static/img/mic.png" onclick="toggleRe
cording(this);">

<a data-toggle="modal" data-target="#myModal" href="#">

</div>

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 * BUILDING A WEB INTERFACE FOR MELISSA

<div id="myModal" class="modal fade" role="dialog">
<div class="modal-dialog">

<!-- Modal content-->
<div class="modal-content">
<div class="modal-header">
<button type="button" class="close" data-
dismiss="modal">×</button>
<h4 class="modal-title">Give Melissa The Audio File</h4>
</div>
<div class="modal-body">
<form method="POST" enctype="multipart/form-data"
action=""><input type="file" name="myfile" />
<input
type="submit" value="Submit"/></form>

</div>
</div>
</div>
</div>
</body>
</html>

First you include all the necessary scripts and CSS files for adding the functionality
and styling, respectively. Then comes the canvas element, which displays the waveform
simulation of the sounds detected by the microphone. The other canvas element
represents the waveforms of the recorded audio from which you want to create the
WAV file.

You then have the controls section, which contains a button to toggle starting and
stopping recording the user’s voice. The next button saves the WAV file that has been
recorded to your system. The third button opens a bootstrap modal dialog that gives the user
the option to upload the file and submit it to Melissa. As soon as the file is uploaded,
the back-end code runs Python main.py audio_file.wav in the terminal using the
os.system() function. The WAV audio file is then sent to Google Speech Recognition for
conversion of the speech to text. The rest of the machinery works exactly as it did before.

Although I haven’t included the static files here, I would still like to discuss the
audiodisplay. js file:

function drawBuffer(width, height, context, data) {

var step = Math.ceil(data.length / width);
var amp = height / 2;
context.fillStyle = "silver";
context.clearRect(0,0,width,height);
for(var i=0; i < width; i++){

var min = 1.0;

var max = -1.0;

for (j=0; j<step; j++) {

var datum = data[(i*step)+jl;

77

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 " BUILDING A WEB INTERFACE FOR MELISSA

if (datum < min)
min = datum;
if (datum > max)
max = datum;

}

context.fillRect(i, (1+min)*amp,1,Math.max(1, (max-min)*amp));

In the drawBuffer () function, if you give the width, height, context, and data as
arguments, then, based on the sound levels, it creates a brilliant graph of rectangles side
by side. This code, like all the other JavaScript files, was written by Chris Wilson.

This concludes the construction of the front end of Melissa’s system—you have
a user interface, ready for use. You can start Python’s web. py server by entering the
following command on your terminal:

$ python web-gateway.py 127.0.0.1

This command notifies you that the server is running on http://127.0.0.1:8080/.
Go to your web browser (use only Firefox or Chrome) and open the URL, and you will see
a web interface like that shown in Figure 8-2.

£y e ¢ OO0+ A®E E =

[l wasar visnes = Getting Surtes Srac wes | Face Sroci W Segis Appie it Yo Bing Oosgle W Widpesia Facebsok Tetmer Lirieain »

Melissa

Figure 8-2. Melissa’s web interface

78

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 * BUILDING A WEB INTERFACE FOR MELISSA

As you can see, the upper panel shows a cool simulation of the sound it receives in
real time. (I coughed while taking the screenshot.) Now it’s time to record something
using your web interface. Say “How are you?” Figure 8-3 shows the waveform of my
recorded command in the second canvas element.

Mesigss - Web Version

€ 127000 o OO +AdEEH =

[l Masar innes = Getting Surtes Srach wed | Face Sroci W Segis Appie it Yo Bing Oosgle W Wikpesia Facebsok Tetmer Lirieain »

Melissa

| 4=

Figure 8-3. Recording audio via the web interface

I deliberately paused between the words How, are, and you. You can see that there
are three main areas of distortion in the waveform indicator (the straight line indicates
silence). Save the file using the Save button; it is saved with the name myRecording01.wav.
Click the button with Melissa’s logo (yes, that’s Melissa’s logo) to upload the WAV file and
submit it. Figure 8-4 shows the modal dialog that gives you the option to upload the file
and submit it to the Python back end.

79

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 " BUILDING A WEB INTERFACE FOR MELISSA

eoe Mefipss - Web Version

€ 127000 @ OO +IaPpaE =

[l wasar viszes = Genting St Srach wes | Face Sroci W Segis Appie Ciowd Yoo Bng 5 Ooogle W Wikpess Facebsok Tetmer Lirigtie, »

Give Melissa The Audio File

Browse... myRecording01.wav

Submit

Figure 8-4. Uploading the audio file to the server

Great—you have successfully created Melissa’s easy-to-use web user interface! You
have applied existing libraries and your knowledge of Python to develop this system.

Exercises

This web interface needs some functionality to accept input in the form of text. The
option of submitting input from a text field can be incorporated in the modal dialog.

The current workflow for Melissa’s front end requires too many clicks. This many
clicks for a single command may be frustrating for a user. Your exercise is to devise a new
workflow that requires fewer clicks and hence is more user friendly.

Summary

In this chapter, you developed a web interface for your virtual assistant software, Melissa.
You learned to use a third-party JavaScript library for recording a voice using a web
browser. You wrote the back-end code using Python’s web . py module and learned to work
using WAV files. Finally, you wrote the front-end code in HTML and integrated all the
pieces of code together to create a working web-based interface for Melissa.

In the next chapter, you get Raspberry Pi running and integrate your software to
work in its operating system, Raspbian. You also see how this proof-of-concept software
can be scaled to make a full-fledged assistant. The chapter goes through the various
enhancements you can make to make Melissa and various sample use cases for the
virtual assistant.

80

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9

Integrating the Software with
Raspberry Pi, and Next Steps

In this chapter, you learn to get a Raspberry Pi running and integrate your software to
work in its operating system, Raspbian. You see how this proof-of-concept software can
be scaled to make a full-fledged assistant, and you go through various enhancements and
use cases for Melissa.

To this point, you have successfully developed a virtual assistant that listens to you,
understands what you say to some extent, and speaks back to you. It can also do a lot of
useful things for you, such that tell you the time and weather, tweet, upload pictures, play
music, and so on. You have Melissa running successfully on OS X and Linux. Now it’s time
to set up Melissa in a Raspberry Pi so that she can contribute to making the Internet of
Things (IoT) smarter.

First you need to set up your Raspberry Pi (RPi). Even if you don’t have a RPi yet,
you should still go through this chapter; it will broaden your views on how you can scale
Melissa to make her more useful and how you can employ Melissa in different scenarios
to make your devices smarter.

Setting Up a Raspberry Pi

If you have a RPi ready, read about its configuration on the official RPi web site. As you
have probably noticed, the RPi comes as a bare-bones board. You need accessories such
as a5V /2amp output micro-USB power adapter, a microSD card for installing the
operating system, and an Ethernet cable for connecting the RPi to either your system or
your router.

© Tanay Pant 2016 81
T. Pant, Building a Virtual Assistant for Raspberry Pi, DOI 10.1007/978-1-4842-2167-9_9

www.it-ebooks.info

https://www.raspberrypi.org
http://www.it-ebooks.info/

CHAPTER 9 ' INTEGRATING THE SOFTWARE WITH RASPBERRY PI, AND NEXT STEPS

Once you have these accessories ready, go ahead with the task of installing Raspbian
on the microSD card:

e Linux:If you own a Linux system, you can install Raspbian
on the microSD card using the instructions provided at
https://www.raspberrypi.org/documentation/installation/
installing-images/1linux.md.

e Windows: If you own a Windows system, you can install
Raspbian on the microSD card using the instructions provided at
https://www.raspberrypi.org/documentation/installation/
installing-images/windows.md.

e OSX:Ifyouown a Mac system, you can install Raspbian on the
microSD card using the instructions provided at https://www.
raspberrypi.org/documentation/installation/installing-
images/mac.md.

This will take a while to complete. Once you have the operating system installed,
boot up the RPi (connect the power adapter). If you do not have a spare display,
keyboard, and mouse, set up VNC on the RPi via ssh, as described next. You can get the
IP address of your Raspberry Pi from your router’s administration page under the DHCP
Clients section (see Figure 9-1).

It indicates the current DHCP client of your router.

Hostname MAC Address 1P Address Expires In
257991
259153
raspberrypi 192.168.1.3 259156
259172
MAC Address 1P Address Live Time (s)
Refresh

Figure 9-1. Getting the RPi’s IP address from the router

To establish a SSH connection from your system to the RPj, enter the following
command on your terminal:

$ ssh pi@ipaddress

www.it-ebooks.info

https://www.raspberrypi.org/documentation/installation/installing-images/linux.md
https://www.raspberrypi.org/documentation/installation/installing-images/linux.md
https://www.raspberrypi.org/documentation/installation/installing-images/linux.md
https://www.raspberrypi.org/documentation/installation/installing-images/windows.md
https://www.raspberrypi.org/documentation/installation/installing-images/windows.md
https://www.raspberrypi.org/documentation/installation/installing-images/mac.md
https://www.raspberrypi.org/documentation/installation/installing-images/mac.md
https://www.raspberrypi.org/documentation/installation/installing-images/mac.md
http://www.it-ebooks.info/

CHAPTER 9 ' INTEGRATING THE SOFTWARE WITH RASPBERRY PI, AND NEXT STEPS

If the connection is successful, it will ask for a password; the default is raspberry.
Now you can install tightvncserver on the system by entering the following
command on your terminal:

$ sudo apt-get install tightvncserver
$ tightvncserver

This asks for an optional view-only password. Start the server by entering the
following command after installation:

$ vncserver :0 -geometry 1920x1080 -depth 24
Next, install software such as a VNC viewer to connect to the VNC server run by the
RPi. You can download VNC software for your platform from https://www.realvnc.

com/download/. Figure 9-2 shows Real VNC Viewer running on my system and asking for
details to connect to the VNC server.

® O VNC Viewer

VNC® Viewer Ve

VNC Server:| 192.168.1.3:1

Encryption: Let VNC Server choose

oo

About... Options...

Figure 9-2. VNC Viewer login screen

83

www.it-ebooks.info

https://www.realvnc.com/download/
https://www.realvnc.com/download/
http://www.it-ebooks.info/

CHAPTER 9 ' INTEGRATING THE SOFTWARE WITH RASPBERRY PI, AND NEXT STEPS

This connects you to the RPi VNC server. You see a graphical interface of Raspbian
running on the RPi. Figure 9-3 shows Raspbian on my Mac via the VNC connection.

pi's X desktop (raspberrypi:1) - VNC Viewer

e0e —
 PEELE T £ @ oo

5

Trash

Figure 9-3. Raspbian desktop via VNC

You can also connect to your VNC server via a VNC viewer on your mobile.

Setting Up Melissa

To set up Melissa, you first have to repeat all the steps like installing third-party utilities
such as PortAudio, PyAudio, espeak, and mpg123. You can find the entire list of things you
need to install at https://github.com/melissa-ai/melissa-core.

Now you need to transfer your code repository from your local development
environment to RPi. I recommend that you fork the repository linked in the previous
paragraph and clone it with the help of git. I entered the following command on my RPi
terminal to clone Melissa:

$ git clone https://github.com/Melissa-AI/Melissa-Core.git

84

www.it-ebooks.info

https://github.com/melissa-ai/melissa-core
http://www.it-ebooks.info/

CHAPTER 9 ' INTEGRATING THE SOFTWARE WITH RASPBERRY PI, AND NEXT STEPS

There is another advantage to setting up Melissa by cloning the repository.
You can install all the pip modules you have on your local system by entering the
following command:

$ pip install -r requirements.txt --allow-external pywapi --allow-unverified
pywapi

If you are transferring Melissa from your local environment, you must export a list
of the Python modules you have installed via pip. You can export all this information to a
text file by entering the following commands on your terminal:

$ pip freeze > requirements.txt
$ cp profile.yaml.default profile.yaml
$ cp memory.db.default memory.db

Once you have successfully set up your development environment, open profile.yaml
to customize the file and add details about yourself. Then you can shift your codebase
to RPi and install the modules using the method described earlier. You should now be
able to run Melissa on Raspbian. If you get any error messages, you may be missing
a component. Try to debug Melissa using the error messages provided by Python’s
interpreter.

Adding New Components to the Raspberry Pi

You should add some components and accessories to your RPi to work with Melissa. First,
you should purchase a case for the RPi. You can find cases on e-commerce web sites like
Amazon. I bought a transparent case for my Raspberry Pi, as shown in Figure 9-4.

Figure 9-4. Raspberry Piwith a transparent case

85

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 ' INTEGRATING THE SOFTWARE WITH RASPBERRY PI, AND NEXT STEPS

It is very important to put your RPi in a case if you power on the RPi while holding it
in your hand, because skin conducts electricity. Static electricity can potentially damage
semiconductors on the board and kill the RPi.

You also need a microphone so that you can give commands to Melissa, who now
resides in the RPi. Microphones that connect via a USB cable are available on Amazon;
you can check for compatibility with the RPi in the product’s description before
purchasing it.

Another thing you need is either earphones or speakers to connect to your RPi so you
can hear Melissa’s responses to your queries.

Making Melissa Better Each Day!

This section talks about how you can add new and more complex functionalities to make
Melissa better each day. The preferred way to do this is to fork the official repo, open an
issue for discussion under new features (this will save you some time if someone else

is already working on the issue and will let people decide if they want to help you on a
complicated issue), create a new branch for working on your module, and start to work
on it. After you have finished building your feature, open a pull request referencing the
issue you created earlier. After testing your feature, you can merge it into the official
codebase.

The goal is to obtain as many e-karma points as you can by contributing to Melissa’s
repository. Remember, 1 green box = 1 e-karma point. You can help improve this
community-driven, completely open source initiative and make it one of the best virtual
assistants in the world. Let’s go through some sample features/subprojects that you can
own and that would make a big impact on Melissa’s functionality.

Windows Compatibility

Melissa currently supports only OS X and Linux systems. It would be great to include
compatibility for Windows as well. That would require going through the entire install
methodology in Melissa’s repository and documenting changes. It would also require
changing the code where the sys.platform() function is called and adding references to
the Windows platform.

This is one of the easiest yet most important issues that needs to be taken care of in
Melissa’s repository. It would help you run Melissa on Windows IoT on your Raspberry Pi.

Tests

No code repository is truly professional unless it has tests built for it. Melissa currently
does not have any tests for her health check. These tests would be run by contributors
before submitting their pull requests. They might include checking for errors, trailing
blank spaces, PEP-8 guidelines conformation, and much more.

You could make a package of tests by creating a test directory in the root folder of
the project. Or perhaps a test package is not be a good idea at the beginning, but tests
should be put in a different directory of their own.

86

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 " INTEGRATING THE SOFTWARE WITH RASPBERRY PI, AND NEXT STEPS
Vision
Melissa currently accepts voice input from the user, as discussed in the workflow in
Chapter 1. It would be great if Melissa could gather information using camera(s). You
could use OpenCYV for this purpose to add functionalities such as detecting whether a
room is empty, counting how many people are in the room, recognizing faces, converting
text in photos to strings, and so on.

This would redefine Melissa’s current workflow. Figure 9-5 demonstrates how
Melissa’s workflow might look in the future.

STT Logic Engine TTS

Figure 9-5. Melissa’s possible future workflow

Melissa would then be able to gather data using vision. This vision feature would go
in the SenseCells package, and functionalities built on it would reside in the GreyMatter
package.

Multi-Device Operation

Wouldn't it be cool to have two instances of Melissa running at the same time on different
devices but communicating with each other via a server? This would require another
piece of software running on a server that handles such requests for devices and connects
them using keys that can be requested by a user.

This is easier said than done. It would require quite a lot of programming to build
the code for the cloud-based server as well as additions to Melissa-Core for handling the
requests made to and from by the server code.

87

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-2167-9_1
http://www.it-ebooks.info/

CHAPTER 9 ' INTEGRATING THE SOFTWARE WITH RASPBERRY PI, AND NEXT STEPS

Native User Interface

Two things that determine the success of software are its usability and looks. Currently

Melissa works only via the command line. You built a web interface, but it doesn’t have
the best workflow, and it is dependent on the user running the Python web-gateway . py
file and the voice engine from the command line.

I'would like to have a user interface for Melissa that uses the widely used Ul
Framework (still under discussion) for Python. This would help users interact with
Melissa more easily. This is quite a task and would definitely require some time to
construct, but it is a very high priority for the project to have a good UI.

Offline Speech-to-Text (STT)

Another high-priority addition to Melissa would be to integrate a STT like either Julius or
CMU Sphinx to provide offline STT conversion for users. The results might not be as good
as the Google Speech Recognition engine, so you can give users the choice to selecta STT
from the STTs you have available. They could choose between an offline STT or a more
accurate STT.

By the time you read this, some of these functionalities may already have been
constructed by contributors. However, you should still practice building these features
on your own, because doing so will help you to achieve a greater understanding of the
software. Feel free to discuss any new functionality that you think can make Melissa even
better via GitHub issues.

Where Do | Use Melissa?

You may have the following thought: “Everything is cool, but except for R&D and on a
laptop, where do I use Melissa?” Good question! Other than using Melissa on your laptop,
there are a couple of sample use cases where I think Melissa can be helpful and make
your devices and utilities more accessible and impressive.

Drones

Many people are building drones using Raspberry Pis and drone kits that are readily
available in e-commerce stores. By connecting the motors and functionality to an
Arduino board and then to a RPj, you can control the drone’s movement, direction of
flight, and so on using Melissa, your voice-controlled virtual assistant. You can start
the drone simply by giving voice commands and tell it to fly, land, or follow you. The
possibilities are limitless with a creative mind.

Humanoid Robots

Humanoid robots are being developed by big corporations as well as individuals. These
autonomous robots use software like Melissa to make them more interactive and, well,
human like. If you plan to build a humanoid robot, or any robot for that matter, you can
integrate it with Melissa and build appropriate functionalities that extend Melissa to
handle your robot.

88

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 ' INTEGRATING THE SOFTWARE WITH RASPBERRY PI, AND NEXT STEPS

House-Automation Systems

You can build your own house-automation system with the help of Melissa. In order to
build a small-scale replica as a proof of concept for a house-automation system, you can
connect LEDs via a breadboard to the general-purpose input output (GPIO) pins, write a
Python script to control the LEDs, and hook it up with Melissa.

Or, if you are like me and prefer not to work with electronics, feel free to purchase
a USB-controlled RGB LED stick such as blink(1) (http://blink1.thingm.com). It has
built-in integration for USB firmware and can be controlled via a Python script. You just
have to plug it into the USB, and then you can control the LEDs via the command line and
a Python script. To install the blink(1) command-line tool, enter the following commands
on your terminal:

$ git clone https://github.com/todbot/blink1.git
$ cd blink1/commandline

$ make

$ sudo make install

This installs the blink(1) command-line tool on your system and adds blink1-tool
to your path. Enter the following command on your terminal to see the various flags you
can use to operate the device, as well as some examples:

$ blinki-tool

Here is the output this command gave me when I entered it in the terminal:
Tanays-MacBook-Air:~ tanay$ blinki-tool
Usage:

blink1-tool <cmd> [options]
where <cmd> is one of:

--list List connected blink(1) devices
--rgb=<red>,<green>,<blue> Fade to RGB value

--1gb=[#]RRGGBB Fade to RGB value, as hex color code
--hsb=<hue>,<sat>,<bri> Fade to HSB value

--blink <numtimes> Blink on/off (use --rgb to blink a color)
--flash <numtimes> Flash on/off (same as blink)

--on | --white Turn blink(1) full-on white

--off Turn blink(1) off

--red Turn blink(1) red

--green Turn blink(1) green

--blue Turn blink(1) blue

--cyan Turn blink(1) cyan (green + blue)

--magenta Turn blink(1) magenta (red + blue)

--yellow Turn blink(1) yellow (red + green)

--rgbread Read last RGB color sent (post gamma-correction)
--setpattline <pos> Write pattern RGB val at pos (--rgb/hsb to set)

89

www.it-ebooks.info

http://blink1.thingm.com/
http://www.it-ebooks.info/

CHAPTER 9 ' INTEGRATING THE SOFTWARE WITH RASPBERRY PI, AND NEXT STEPS

--getpattline <pos> Read pattern RGB value at pos
--savepattern Save color pattern to flash (mk2)
--play <1/0,pos> Start playing color sequence (at pos)

--play <1/0,start,end,cnt> Playing color sequence sub-loop (mk2)
--playpattern <patternstr> Play BlinkiControl pattern string
--servertickle <1/0>[,1/0] Turn on/off servertickle (w/on/off, uses -t msec)
--chase, --chase=<num,start,stop> Multi-LED chase effect. <num>=0 runs forever.
--random, --random=<num> Flash a number of random colors, num=1 if omitted
--glimmer, --glimmer=<num> Glimmer a color with --rgb (num times)
Nerd functions: (not used normally)

--eeread <addr> Read an EEPROM byte from blink(1)
--eewrite <addr>,<val> Write an EEPROM byte to blink(1)
--fwversion Display blink(1) firmware version
--version Display blinki-tool version info

and [options] are:
-d dNums --id all|devicelds Use these blink(1) ids (from --list)

-g -nogamma Disable autogamma correction
-m ms, --millis=millis Set millisecs for color fading (default 300)
-q, --quiet Mutes all stdout output (supercedes --verbose)
-t ms, --delay=millis Set millisecs between events (default 500)
-1 <led>, --led=<led> Set which LED in a mk2 to use, 0=all,1=top,2=bottom
-1 1,3,5,7 Can also specify list of LEDs to light
-v, --verbose verbose debugging msgs

Examples
blink1-tool -m 100 --rgb=255,0,255 # fade to #FFOOFF in 0.1 seconds
blink1-tool -t 2000 --random=100 # every 2 seconds new random color
blink1-tool --ledn 2 --random=100 # random colors on both LEDs
blink1-tool --rgb 0xff,0x00,0x00 --blink 3 # blink red 3 times
blink1-tool --rgb '#FF9900' # make blink1 pumpkin orange

blink1-tool --rgb FF9900 --ledn 2 # make blink1 pumpkin orange on
lower LED

blink1-tool --playpattern '10,#ffooff,0.1,0,#00ff00,0.1,0'

blink1-tool --chase=5,3,18 # chase 5 times, on leds 3-18

Notes
- To blink a color with specific timing, specify 'blink' command last:
blinki-tool -t 200 -m 100 --rgb ffooff --blink 5
- If using several blink(1)s, use '-d all' or '-d 0,2' to select 1st,3rd:
blinki-tool -d all -t 50 -m 50 -rgb 00ff00 --blink 10

Tanays-MacBook-Air:~ tanay$

90

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 ' INTEGRATING THE SOFTWARE WITH RASPBERRY PI, AND NEXT STEPS

I also created a new module named 1ighting.py in the GreyMatter folder that
contains the following code:

import osfrom SenseCells.tts import tts
def very dark():
os.system('blinki-tool --white')
tts('Better now?")

def feeling angry():
os.system('blinki-tool --cyan')
tts('Calm down dear!')

def feeling creative():
os.system('blinki-tool --magenta')
tts('So good to hear that!")

def feeling lazy():
os.system('blink1i-tool --yellow')
tts('Rise and shine dear!")

def turn off():
os.system('blinki-tool --off')

Now make the following edits/additions to the brain.py file:
from GreyMatter import notes, define subject, tell time, general
conversations, play music, weather, connect proxy, open_ firefox, sleep,

business_news_reader, twitter interaction, imgur_handler, lighting

elif check message(['feeling', 'angry']):
lighting.feeling_angry()

elif check message(['feeling', 'creative']):
lighting.feeling creative()

elif check message(['feeling', 'lazy']):
lighting.feeling lazy()

elif check message(['dark']):
lighting.very dark()

elif check message(['lights', 'off']):
lighting.turn_off()

This acts as a small-scale replica of how you can control your house lighting, doors,
and so on using programming. All you have to do is add this code to a separate file

and make the appropriate changes to brain.py. This way, a command like “Smoothen
lighting!” could make the your lights turn blue.

91

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 ' INTEGRATING THE SOFTWARE WITH RASPBERRY PI, AND NEXT STEPS

You can make many variations of this functionality with just a little programming.
For example, you could use this along with the “Party mix!” command you integrated into
your software earlier in this book, to set the lights to blink or change color randomly!

Burglar-Detection System

Using vision integration with OpenCV, you can detect whether someone has entered your
house in your absence. Extending that functionality, you can program Melissa to take a
picture of the person; alert you by ending a message that someone is in your house, along
with their photo; call 911; and sound an alarm.

Many other features can be integrated into such a system. Try brainstorming about it.

Summary

In this chapter, you learned how to set up a Raspberry Pi and integrate Melissa into it.
Then you saw how to continue your learning after you finish reading this book and where
you can implement this virtual assistant to make the most of your devices.

In this book, you learned about virtual assistants, famous virtual assistants available
on the market, developing a new virtual assistant, and making the virtual assistant speak,
listen, and understand what the user says. You then built several modules that let you
talk with Melissa and ask her for information such the weather report, definitions from
Wikipedia, and the time. You also developed modules with which Melissa can tweet for
you, play music for you, save notes for you, and upload images for you.

I strongly encourage you to keep working on Melissa after you finish reading this
book. Doing so will reinforce the concepts in your brain. Follow the principle of “Making
Melissa Better Each Day!” Together, we can make Melissa one of the best open source
virtual assistants in the world.

Stay hungry; stay foolish!

92

www.it-ebooks.info

http://www.it-ebooks.info/

Index

A,B,C,DEF
Conversation module

brain function, 23

brain.py file, 22

check_message() function, 23

commit changes, 29

extending functionality, 28

implement fix #1, 24

implement fix #2, 25

logic engine design, 21-22

Melissa responsive, 22

random.choice() function, 24

tell_time.py, 29

undefined() function, 24

G, H

General-purpose input output (GPIO), 89

,J,K L

Imgur module
brain() function, 66
client_id, 64
client_secret, 64
command, 65
if/else ladder, 68
image_uploader() function, 67
img_list_gen() function, 67
imgur_handler.py, 66
install imgurpython, 64
mp3gen() function, 67
profile.yaml file, 64
show_all_uploads() function, 67
sqlite prompt, 68
table creation, 65
YAML file, 65

© Tanay Pant 2016

Melissa

feature
multi-device operation, 87
native user interface, 88
STT, 88
tests, 86
vision feature, 87
windows compatibility, 86
uses
burglar-detection system, 92
drones, 88
house-automation system, 89
Humanoid robots, 88

Melissa features

business news
business_news_reader.py, 37
command, 36
if/else clause, 38
NDTV web site, 36
news_reader() function, 38
<h2> tags, 37
workflow, 38
install selenium, 39
automated testing, 39
connect_proxy.py file, 40
Firefox web browser, 39
open_firefox.py, 39
profile.yaml file, 40
sleep.py, 41
text-controlled virtual assistant, 39
weather com
city code, 32
pywapi, 31
tts() function, 33
Wikipedia
define_subject.py, 34

93

T. Pant, Building a Virtual Assistant for Raspberry Pi, DOI 10.1007/978-1-4842-2167-9

www.it-ebooks.info

http://www.it-ebooks.info/

INDEX

Melissa features (cont.)
define tanay pant, 35
NLP, 33
$ pip install, 33
sample page, 35
tts() function, 34
workflow, 36
Music player

$ afplay, 43

Linux, 44

0SX, 43

play_music module
if/else clause, 48
MP3 files, 46
mp3gen() function, 46
music_path, 45
music_player() function, 47
party mix, 49
play_music.py, 46
play_random() function, 47

play_specific_music() function, 47
random.shuffle() function, 49
play_specific_music() function, 45

workflow, 45

N, O

Natural language processing (NLP), 33

Note-dictating module, 56
Note-taking module, 54

PQ

Python Package Index (PIP), 4

R

Raspberry Pi
add components, 85
administration page, 82
configuration, 81
e-commerce web sites, 85
Mac via VNC, 84
microSD card, 82
set up, Melissa, 84
SSH connection, 82
VNC viewer, 83

94

S

Speech-to-Text (STT), 88
STT and TTS engine
added/modified files, 18
Melissa GitHub, 19
Python file, 17
tts.py, 17
yaml.safe_load() function, 18
STT engine
AT&T, 10
Google, 9
IBM, 10
Julius, 10
Pocketsphinx, 10
install SpeechRecognition, 10
SpeechRecognition module
AT&T, 14
Google, 12
IBM, 13
Melissa inception, 14
Wit.ai, 13
WAV file, 10-11
Wit.ai, 10

T, U

TTS engine
assignment, 16
Linux, 15
0SX, 15
Python code, 16

Twitter module
access tokens, 60
application page, 60
arguments, 62
brain() function, 61
command, 62
install tweepy, 59
profile.yaml file, 61
tweepy.api() function, 62
twitter_interaction.py, 62

\'

Virtual assistants
Cortana, 2
development

www.it-ebooks.info

http://www.it-ebooks.info/

Git, 5
PIP, 4
PortAudio, 5
Python 2.x, 4
directory structure, 5
Google Now, 2
Iron Man, 1
learning methodology, 7
Melissa’s structure, 54
Note-saving workflow, 52
PyAudio, 5
Raspberry Pi, 2
Siri, 2
SQLite3 database, 52
workflow
logic engine, 3
speech-to-text engine, 3
text-to-speech engine, 3

INDEX

W, X,Y,Z

Web interface, Melissa

audiodisplay.js, 77
drawBuffer() function, 78
GET() function, 73
index.html, 75
installation, 72
os.getcwd() function, 74
POST() function, 73
recorded command, 79
run command, 78
sr.WavFile() function, 74
upload WAV file, 79

WAV file, 71
web-gateway.py, 72
web.template.render() function, 73
workflow, 72

95

www.it-ebooks.info

http://www.it-ebooks.info/

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Chapter 1: Introduction to Virtual Assistants
	Commercial Virtual Assistants
	Raspberry Pi
	How a Virtual Assistant Works
	Speech-to-Text Engine
	Logic Engine
	Text-to-Speech Engine

	Setting Up Your Development Environment
	Python 2.x
	Python Package Index (PyPI)
	Version Control System (Git)
	PortAudio

	PyAudio
	Designing Melissa
	Learning Methodology
	Summary

	Chapter 2: Understanding and Building an Application with STT and TTS
	Speech-to-Text Engines
	Freely Available STTs
	Installing SpeechRecognition

	Recording Audio to a WAV File
	Speech Recognition
	Google STT
	Wit.ai STT
	IBM STT
	AT&T STT

	Melissa’s Inception
	Text-to-Speech Engine
	OS X
	Linux

	Building the TTS Engine
	Repeat What I Say

	Integrating STT and TTS in Melissa
	Version-Controlling Your Source Code
	Obtaining the Code from GitHub
	Summary

	Chapter 3: Getting Your Hands Dirty: Conversation Module
	Logic Engine Design
	Making Melissa Responsive
	Fixing Limitation 1
	Fixing Limitation 2
	Extending Functionality
	What’s the Time, Melissa?
	Committing Changes
	Summary

	Chapter 4: Using the Internet to Gather Information
	How’s the Weather?
	Define Artificial Intelligence!
	Read Me Some Business News!
	Text-Controlled Virtual Assistant
	Selenium and Automation
	Time to Sleep, Melissa!
	Summary

	Chapter 5: Developing a Music Player for Melissa
	OS X Music Player
	Linux Music Player
	Module Workflow
	Building the Music Module
	Play Party Mix!

	Summary

	Chapter 6: Developing a Note-Taking Application
	Design Workflow
	Designing the Database
	Inner Workings of the Virtual Assistant
	Building the Note-Taking Module
	Building a Note-Dictating Module
	Exercises
	Summary

	Chapter 7: Building a Voice-Controlled Interface for Twitter and Imgur
	Building the Twitter Module
	Exercises
	Building the Imgur Module
	Creating the Tables in the Database

	Summary

	Chapter 8: Building a Web Interface for Melissa
	Operating Workflow
	Building the Web Interface
	Exercises
	Summary

	Chapter 9: Integrating the Software with Raspberry Pi, and Next Steps
	Setting Up a Raspberry Pi
	Setting Up Melissa
	Adding New Components to the Raspberry Pi
	Making Melissa Better Each Day!
	Windows Compatibility
	Tests
	Vision
	Multi-Device Operation
	Native User Interface
	Offline Speech-to-Text (STT)

	Where Do I Use Melissa?
	Drones
	Humanoid Robots
	House-Automation Systems
	Burglar-Detection System

	Summary

	Index

