Raspberry Pi Projects
for Kids

Start your own coding adventure with your kids by creating cool
and exciting games and applications on the Raspberry Pi

PACKT *

Raspberry Pi Projects for Kids

Start your own coding adventure with your kids by
creating cool and exciting games and applications
on the Raspberry Pi

Daniel Bates

open source

community experience distilled

PUBLISHING
BIRMINGHAM - MUMBAI

Raspberry Pi Projects for Kids

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: March 2014
Production Reference: 1180314

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78398-222-6
www . packtpub.com

Cover Image by ®istock.com/pringletta

Credits

Author
Daniel Bates

Reviewers
Georg Bisseling

Colin Deady
Prasanna Gautam
Sungjin Han
Claes Jakobsson

lan McAlpine

Acquisition Editors
Harsha Bharwani

Kunal Parikh

Content Development Editor
Mohammed Fahad

Technical Editors
Krishnaveni Haridas

Ankita Thakur

Copy Editors
Insiya Morbiwala

Kirti Pai

Project Coordinator
Mrudula Manjrekar

Proofreader
Maria Gould

Indexer
Priya Subramani

Graphics
Ronak Dhruv

Production Coordinator
Komal Ramchandani

Cover Work
Komal Ramchandani

About the Author

Daniel Bates is a Computer Science researcher at the University of Cambridge.
His day job involves inventing designs for future mobile phone processors, and
when he goes home, he likes playing games or working on one of his coding projects
(or both!). Daniel has been a volunteer for the Raspberry Pi Foundation since 2011,
and is enthusiastic about introducing new people to computing. He has previously
written Instant Minecraft: Pi Edition Coding How-to, Packt Publishing.

About the Reviewers

Georg Bisseling is a software developer with two decades of experience in
many fields as diverse as neural networks, cryptography, radio monitoring, high
performance computing, and business intelligence systems. He lives in Bonn, the
former capital city of Western Germany.

Colin Deady started his career in IT in the late 1990s when he discovered software
testing ("They want me to break it?"), having previously fallen in love with
computers, thanks to his parents buying a ZX81 and ZX Spectrum+ for him and
his brother in the 1980s. He graduated to using an Amiga 1200 in the early 1990s
and spent countless hours learning the insides of the operating system. Now, with
14 years of experience in testing, he works as a Test Manager with an emphasis on
test automation, extolling the virtues of Agile using Kanban and behavior-driven
development to great effect (test early, test often; fix early, fix often). In his spare
time, Colin is part of the editorial team for The MagPi (www . themagpi . com), a
community-written magazine for the Raspberry Pi. With several published articles
and having reviewed and edited many more, he has built up extensive knowledge
on this tiny platform. He can also be found jointly running The MagPi stand at
regular Bristol DigiMakers events in the UK, demonstrating things such as a
remote control robot arm, a roverbot, and LED display boards, all of which he has
programmed in Python on the Raspberry Pi. He currently runs a blog related to all
features of the Raspberry Pi at www. rasptut.co.uk.

Prasanna Gautam is an engineer who wears many different hats depending on

the occasion. He graduated from Trinity College in 2011 and is currently working as
a software engineer at ESPN on cool projects. He has worked on building robots that
extinguish fires in firefighting contests and robots that autonomously moved around
obstacles. He was involved with the One Laptop Per Child (OLPC) event in Nepal
and is fascinated by educational projects that teach programming and logic to kids.
In his free time, Prasanna attempts to play the guitar and make sense of music theory.

Sungjin Han likes to ride a bicycle and loves to tinker around on the dark terminal;
he also enjoys newly released gadgets and technologies. Now, he is working for a
startup in South Korea, looking for some more interesting stuff to dive in to.

Claes Jakobsson started his career in the mid-90s and quickly became involved

in the open source community, hacking code and organizing stuff in his hometown
of Stockholm. Although Perl is his primary focus, he made forays into PostgreSQL,
cURL, and other projects. His daytime occupation has been mostly financial systems,
but at night, playing with embedded systems, microcontrollers, virtual machines,
compilers, and the interest du jour kept the mind at bay. He is a technologist at
heart with a mind to share, and he is always eager to see what happens next.

Ian McAlpine was first introduced to computers at his school, to the research
machine RML-380Z and his Physics teacher's Compukit UK101. That was followed
by a Sinclair ZX81 and then a BBC Micro Model A, which he has to this day.

That interest resulted in an MEng in Electronic Systems Engineering from Aston
University and an MSc in Information Technology from the University of Liverpool.
Ian is currently a senior product owner at SAP. The introduction of the Raspberry Pi
rekindled his desire to "tinker", but also provided an opportunity to give back to the
community. Consequently, lan is a very active volunteer working on The MagPi,

a monthly magazine for the Raspberry Pi, which you can read online or download
for free from www . themagpi . com.

I would like to thank my darling wife, Louise, and my awesome
kids, Emily and Molly, for their patience and support.

www.PacktPub.com

Support files, eBooks, discount offers and more

You might want to visit www. PacktPub. com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at serviceepacktpub.com for more details.

At www . PacktPub. com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers
on Packt books and eBooks.

[a] PACKT

http://PacktLib.PacktPub.com

@

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
* Fully searchable across every book published by Packt

* Copy and paste, print and bookmark content
* On demand and accessible via web browser

Free Access for Packt account holders

If you have an account with Packt at www. PacktPub. com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

Table of Contents

Preface 1
Chapter 1: Getting Started with the Raspberry Pi 5
Materials needed 6
Power supply 6
Storage 6
Input 7
Video 7
Network 8
Preparing the SD card 8
Starting up the Raspberry Pi 10
Using your Raspberry Pi 13
The command line 13
Updating and installing new software 14
Other uses for Raspberry Pi 15
Troubleshooting 16
Summary 17
Chapter 2: Making Your Own Angry Birds Game 19
Scratch 20
Hello world! 21
Code tour 22
Creating a character 23
Creating a level 25
Moving the character 26
Initialization 26
Moving with the keyboard 27
Launch! 28
Flight 30

Table of Contents

Adding physics 30
Gravity 31
Bouncing 31
Ending the game 32

Scoring 33

Extensions 35

Summary 35

Chapter 3: Testing Your Speed 37

Materials needed 37

Creating the game controller 38
The controller base 39
Adding buttons 39
Connecting to the Raspberry Pi 42

Python 43

Coding the game 45
Random behavior 45
Using the controller 46
Adding a time limit 48
Bringing it all together 49

Complete code listing 50

The keyboard version 52

What's next? 53

Summary 53

Chapter 4: Making an Interactive Map of Your City 55

Hello world! 56
Tkinter 56
Writing the program 56

Getting a map 58
No Internet? No problem! 58
Google Maps 59
Generating the address 60
Downloading the image 61
Using the image 62

Adding markers 63
Detecting mouse clicks 64
Reacting to mouse clicks 64

Adding labels 66
Basic labels 66
Pop-up windows 66

Lii]

Table of Contents

Code listing 69
Extensions 71
Layout 72
Additional widgets 72
Checkbutton 72
Frame and LabelFrame 73
Listbox 73
Menu 73
Menubutton 74
Message 74
OptionMenu 74
Radiobutton 75
Scale 75
Spinbox 75
Summary 76

Index 77

[iii]

Preface

After introducing the Raspberry Pi computer and showing you how to set it up, this
book guides you and your kids through three separate mini projects. Each project is
fun, visual, and has plenty of scope for personalization. By the end of this book, you
will understand and be able to use two different programming languages, and will
be able to use them to build creative programs of your own.

What this book covers

Chapter 1, Getting Started with the Rasberry Pi, will show you what a Raspberry Pi is,
and how you can get one set up and ready to use.

Chapter 2, Making Your Own Angry Birds Game, will teach you how to make your
very own computer game using the Scratch programming language.

Chapter 3, Testing Your Speed, will guide you on how to connect lights and switches
to your Raspberry Pi to create a physical game, controlled by your computer code.
This chapter introduces the Python programming language.

Chapter 4, Making an Interactive Map of Your City, will teach you more about Python,
and will show you how to access Google Maps to create a personal map of your area.

What you need for this book

All projects in this book require a Raspberry Pi and all the necessary peripherals
(listed at the beginning of Chapter 1, Getting Started with the Rasberry Pi). Chapter 3,
Testing Your Speed, adds simple electronic components to the Raspberry Pi,

and again, these are listed at the beginning of that chapter.

Preface

Who this book is for

This book is designed to help adults and children jump into creative coding, using the

Raspberry Pi. You will need patience, a sense of adventure, and a vivid imagination!

Conventions

In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "This script waits until it receives the
launch message."

A block of code is set as follows:

def count (maximum) :
value = 0
while value < maximum:
value = value + 1

print "value =", value

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Select
Raspbian and click on Install".

& Warnings or important notes appear in a box like this.
i

a1

~Q Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book —what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedbacke@packtpub.com,
and mention the book title through the subject of your message.

[2]

Preface

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Downloading the example code

You can download the example code files for all Packt books you have purchased
from your account at http: //www.packtpub. com. If you purchased this book
elsewhere, you can visit http: //www.packtpub.com/support and register to
have the files e-mailed directly to you.

Downloading the color images of this book

We also provide you a PDF file that has color images of the screenshots/diagrams
used in this book. The color images will help you better understand the changes in
the output. You can download this file from: http://www.packtpub.com/sites/
default/files/downloads/22260S_ColoredImages.pdf

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books —maybe a mistake in the text
or the code—we would be grateful if you would report this to us. By doing so, you
can save other readers from frustration and help us improve subsequent versions
of this book. If you find any errata, please report them by visiting http: //www.
packtpub.com/support, selecting your book, clicking on the errata submission
form link, and entering the details of your errata. Once your errata are verified,
your submission will be accepted and the errata will be uploaded to our website,
or added to any list of existing errata, under the Errata section of that title.

Piracy

Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

[31]

Preface

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions

You can contact us at questionse@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

[4]

Getting Started with the
Raspberry Pi

In the mid-2000s, some of the staff at the University of Cambridge noticed that

there were fewer and fewer students applying to study Computer Science each year,
and that they had less and less experience. Something had to be done. The answer
was the Raspberry Pi — a small, inexpensive computer that makes programming

as accessible and as much fun as possible. The idea is that students can play with
the Raspberry Pi during their spare time, and in the process, learn valuable core
Computer Science skills. Since its creation, many other groups have discovered

how useful the Raspberry Pi can be, including schools, adults who want to brush

up on their skills with technology, and electronics hobbyists.

This chapter describes how to get a Raspberry Pi computer up and running.

Once this is done, the Pi behaves just like any other ordinary computer, and is
capable of standard tasks such as browsing the web and playing games. We will
learn in later chapters that the Raspberry Pi is also capable of performing some
tasks which ordinary computers can't do. The following figure shows a Raspberry
Pi board:

Getting Started with the Raspberry Pi

Materials needed

This book assumes that a Raspberry Pi Model B is used, with its two USB ports
and network connection (shown in the preceding figure). Model A (with one USB
port and no network connection) will also work, but a USB hub (described later)
will be needed to allow both a keyboard and a mouse to be used at the same time.

Along with a Raspberry Pi computer, you will need the following peripherals.

In order to keep costs down, the Raspberry Pi was designed to work with devices
that people already owned; so you may find many of these components around
your house already. Just make sure they're not in use before you take them!

http://elinux.org/RPi_ VerifiedPeripherals is a useful
%j%“ website for checking whether a particular device will work with the
g Raspberry Pi.

Power supply

The Raspberry Pi requires a Micro-USB connection (shown in the following figure),
which is capable of supplying at least 700 mA (or 0.7 A) at 5V. Power supplies that
can provide 1000 mA and more are available (and will be more reliable), but your
chosen supply must give exactly 5 V. Most standard mobile phone chargers are
suitable, and have their capabilities written on them, so you can check. Do not
attempt to power your Pi from a USB port of another computer or hub as they

are often incapable of supplying the required current.

Storage

The operating system and all files are stored on a standard SD card (shown in the
following figure), which you may find in a digital camera. You will need at least 4
GB of space (preferably 8 GB+). The Raspberry Pi Foundation sells very affordable 8
GB SD cards with the operating system preinstalled at http: //swag.raspberrypi.
org/. You will also need a way to write data to an SD card from another computer.
Many computers have built-in SD writers, but it is possible to buy USB dongles
which do the job too.

[6]

Chapter 1

Input

For inputs, we will use a USB keyboard and mouse (as shown in the following figures):

Video

We will use a monitor or a television with HDMI or DVI input, and a video cable
connected from the Pi's HDMI port to the screen's input, as shown in the following
figures. It is possible to connect to an older VGA or composite screen, but this is
more complicated (refer to the Verified Peripherals link at the start of this section).

[71

Getting Started with the Raspberry Pi

Network

An Internet connection is not essential, but is very useful as it allows you to

work directly on the Pi. The easiest approach is to use a wired Ethernet connection.
It is also possible to use a USB Wi-Fi dongle. You will need a powered USB hub to
provide additional USB ports, as shown in the following images:

You may also like to put your Raspberry Pi in a case to protect it, though this is
certainly not necessary. There are many different companies that make many
different styles, so choose one that suits you, or you could even make your own
from Lego or card!

Preparing the SD card

The first thing we need to do is put an operating system on the SD card using
another computer. You can buy SD cards with preinstalled software, but doing
it yourself guarantees that you get the latest updates and is also a useful learning
experience. These instructions assume that you are using a computer running
Microsoft Windows or Mac OS X; if you are using another operating system or
having difficulties, detailed instructions are available online at http: //www.
raspberrypi.org/downloads.

There is a Troubleshooting section at the end of the chapter if you get stuck.
We can prepare the SD card by performing the following steps:

1. Download the SD association's formatting tool, SD Formatter,
from http://www.sdcard. org/downloads/formatter 4/.

2. Download the latest version of the NOOBS (offline install) operating
system collection from http://www.raspberrypi.org/downloads.

[8]

Chapter 1

3. Insert the SD card into the SD card writer (shown in the following image):

If the SD card writer is separate from your computer, plug it in.

5. Install and run the SD Formatter (shown in the following screenshot).
Select the SD card you just inserted and click on Format. In this example,
the SD card is drive G, but this will vary from computer to computer.

Make absolutely sure that you have the right SD card
L selected. All the data will be lost from the formatted card.

E SDFormatter V4.0 [d_E-J

Format vour drive. All of the data

on the drive will be lost when you -
format it. s ‘

S
==
S0, 5DHGC and SDXG Logos are trademarks of
S0-3C, LLG.
Drrive : |G: v| | Refresh
Size 369 GB Wolume Label :

Format Option :

QUICGK FORMAT, FORMAT SIZE ADJUSTMENT OF

Farmat | | Exit

6. Extract the contents of the NOOBS ZIP file to the SD card. The way this
is done will vary depending on what software you have installed, but will
typically involve double-clicking on NOOBS . zip, clicking on Extract or
Extract to..., and selecting the SD card as the destination. There is a lot
to extract, so this will take a few minutes to complete.

[o]

Getting Started with the Raspberry Pi

7. Safely remove/eject the SD card and take it out of the SD writer, as shown in
the following figure:

Starting up the Raspberry Pi

Now we can prepare the Raspberry Pi to start up for the first time. Place it securely
on a desk or in a case. Make sure it is not in danger of falling on the floor, and do
not rest it on top of the bag inside which it comes. We can start up the Rasberry Pi
by performing the following steps:

1. Plug the SD card, screen, keyboard, and mouse into the Raspberry Pi. Also
plug in the Internet cable if you have one, as shown in the following figure:

LU

Audio
= JAtK

S0 CARD

MICROUSB
PIWER

2. Plug the power cable into the Raspberry Pi. The red power light should
come on, and the green Activity light should flash occasionally.

3. If necessary, adjust the screen settings to display the images from the
Raspberry Pi's input.

[10]

Chapter 1

4. You should see a selection of operating systems for you to install (refer to the
following screenshot), each with a short description. This book relies on you
having Raspbian installed, so select Raspbian and click on Install. You can
always come back and select a different operating system later; I will explain
how you can do this in the next section.

NOOBS v1,3.2 - Bujlt: Nov 2 2013

8 2 o

Install (I} Edit config (@) Online help (h) Exit (Esc)

. Arch
R An Arch Linux port for ARM devices

0O l OpenELEC
OpenELEC is a fast and userfriendly XBMC Mediacenter distribution.

O Pidora
Pidora is a Fedora Remix optimized for the Raspberry Pi

@
S 15

RISC OS5 is a very fast and compact system

= RaspBMC
An XBMC media center distribution for Raspberry Pi

Raspbian
A Deblan wheezy port, optimised for the Raspberry Pi

DOD DD

. Raspbian - Boot to Scratch
A version of Raspbian that boots straight into Scratch

DD

[I Data Partition
Adds an empty 512MB extd format partitien to the partition layout.

— Disk space

Needed: 2052 MB
Avallable: 2521 MB

5. Wait. Operating systems are quite large, so the installation will take a few
minutes. You can sit back and read some of the tips shown to you or read the
next few steps in this book.

Raspbian is a free operating
system based on Linux and
optimised for the Raspberry Pi.

"’+@ = Raspbian

An operating system is the set of
basic programs and utilities that
make your Raspberry Pi run.

Raspbian: Extracting filesystem
| 99%]
1625 MB of 1639 MB written (1.9 MB/sec)

[11]

Getting Started with the Raspberry Pi

6.

When the installation has completed, you should see a blue screen with a final
list of options (shown in the following screenshot). This is the Raspberry Pi
Software Configuration Tool. Most things should be set up the way we want
them, but there are two useful settings to be changed. Select Enable Boot to
Desktop/Scratch using the arrow keys and press Enter. Select the Desktop
Log in option, and press Enter. You should now be back at the main menu.
Next, select Internationalisation Options and choose your preferred language
and keyboard layout. Use the right arrow key to move to Finish and press
Enter. You can return to this menu any time by typing sudo raspi-config

as a command line (refer to the next section for details).

MDD UAEIN -

{ Raspberry Pi Software Configuration Tool C(raspi-config) |

Setup Options

Expand Filesystem Ensures that all of the SD card storage is available to the 038
Change User Password Change passuword for the default user (pi)

Enable Boot to Desktop-/Scratch Choose whether to boot into a desktop environment, Scratch, or the command-1ine|
Internationalisation Options Set up language and regional settings to match your location

Enable Camera Enable this Pi to work with the Raspberry Pi Camera

fAdd to Rastrack fAdd this Pi to the online Raspberry Pi Map (Rastrack)

Ouerclock Configure overclocking for your Pi

Advanced Options Configure advanced settings

About raspi-config Information about this configuration tool

<Select> <Finish>

After a minute or so, the Raspberry Pi should finish rebooting, and you
should see the Raspberry Pi desktop (shown in the following screenshot).
This may be familiar to you. You can double-click on the icons to start
programs, or select from a menu. We will mainly be using Scratch and
Python in this book, but take a minute to explore what's available to you.
In particular, there are several Python Games. These are the sorts of things
that are possible after a little programming practice.

[12]

Chapter 1

Using your Raspberry Pi

Now that your Raspberry Pi is up and running, you'll want to know how to keep
it working properly and how to customize it to suit your needs.

The command line

Most of the time, it will be possible to do what you want to do using the mouse by
clicking on different parts of the screen; however, at some point, you might find the
need to use the command line, as shown in the following screenshot:

pi@raspberrypi: ~

File Edit Tabs Help
pi@raspherrypi []

The command line is a completely text-based way of controlling a computer, and can
be used to do just about anything that can be done by clicking and more. It is available
on almost all computers, but is usually hidden away. Some computer users prefer
using the command line because they can type faster than they can click the mouse!

Here is a very quick overview of some common commands. Open a command
line by double-clicking on the LXTerminal icon on the desktop, and try these out.
You will need to press Enter to inform the Raspberry Pi that your command has
been executed. A longer introduction, including information on how to watch a
movie in the command line, can be found online at http://www.techradar.com/
news/computing/pc/1161712.

* 1s: This lists directory contents. (Directory is Linux's word for a folder.)
This command will list all the files and directories available to you in the
current directory.

[13]

Getting Started with the Raspberry Pi

cd <directory names: This changes the directory and allows you to

move into another directory, so you can see its contents in the same way
that double-clicking on a directory icon moves you into that directory.

You can move through multiple levels of directories in one go by separating
the directory names with /, and you can go up to the parent directory

(the directory that contains the current directory) using the special . .
directory name.

man <program name>: This opens the manual and brings up lots of
information about a particular program, including what it does and how
to use it. It is very useful if you forget how to use something! Try man 1s
to see some advanced information about the 1s command we tried earlier,
and press g to quit. You can scroll through the information using the arrow
keys or the Space bar.

<program name> [extra information]: This starts the program, and
optionally passes some extra information to it. Try typing in scratch to start
the Scratch program (we'll cover more about this in the next chapter); or, if you
are connected to the Internet, navigate to midori www.raspberrypi.orgto
open the Midori web browser and go straight to the Raspberry Pi home page.

Tab: This key automatically completes a word. Even if you have not
completely typed in the name of a program or file or folder, try pressing
Tab. If there is only one option available that begins with the letters you
have typed so far, the whole word will be completed for you. If there are
multiple options (or none), nothing will change; you can press Tab again
to display a list of possibilities.

Updating and installing new software

The Raspberry Pi is an unusual sort of computer, so if you want to install a
program, you either need to download a version that is specifically for the
Raspberry Pi, or use Raspbian's package system.

A package is a program or a part of a program, and many versions of Linux
(including Raspbian) maintain a list of all compatible packages, making it easy

to keep all of your software up to date. You can update to the latest version of this
list if you have an Internet connection by typing sudo apt-get update in the
command line.

[14]

Chapter 1

Be very careful when using the sudo command. It forces the
. Raspberry Pi to do exactly what you tell it to do, without checking to
Q make sure that the command is sensible. The command is useful in
L situations like this, where we want to make changes to the installed
programs, but it also allows you to delete essential files. Double
check your spelling before continuing.

You can search for available packages with keywords using the apt -cache search
<keywords> command. Try apt -cache search game, for example, to see a list of
the free games available. You could even try installing one (XBubble is good, for
example). The name of the package is the first word of the line, and you can install
a package using sudo apt-get install <package names.

To update all the installed packages to the latest available version, type sudo
apt-get upgrade.

Other uses for Raspberry Pi

Although the Raspberry Pi was designed to get people interested in computing, its cost
and power make sure that it is also popular for other reasons. Since the Raspberry Pi is
a general-purpose computer, it is capable of everything a traditional computer can do,
but perhaps a little slower. There is a web browser (Midori), word processors, and web
servers that are available. A common use case is similar to a media center, to watch
films and view pictures.

There are many different operating systems included within the NOOBS package.
You can see them if you click on Shift when the Raspberry Pi first starts to boot,
as shown in the following screenshot:

[15]

Getting Started with the Raspberry Pi

This will take you back to the list you saw earlier when you started your Raspberry
Pi for the first time. Each operating system comes with a short description. There are
a couple of different flavors of Linux, the very fast RISC OS, and two different media
centers, OpenELEC and Raspbmc.

If you want to try one of these operating systems, make sure you first back up all
of your data as it will be erased when the new operating system is installed.

Troubleshooting

One of the main strengths of the Raspberry Pi is its fantastic community. If you ever
have any difficulties, consider stopping by the Raspberry Pi forums at http: //www.
raspberrypi.org/forum/. Your question may have already been asked; if not, there
are thousands of enthusiastic Pi owners on hand to help. The following are the most
common issues:

* My Raspberry Pi doesn't boot - only the red power light shows:
This suggests that the SD card was not written correctly. Try following
the instructions again, and if that fails, try a new SD card.

* My Raspberry Pi randomly restarts by itself: This is usually because the
Pi is not receiving enough power. Double check that your power supply
is capable of supplying at least 700 mA (0.7A) at 5V. This should be written
somewhere on the supply. Perhaps you can try upgrading to a 1000 mA
(1.0A) supply if you continue to have problems. Also, make sure that you
do not have particularly power-hungry peripherals plugged into your
Raspberry Pi. For example, some Wi-Fi dongles and keyboards with very
bright LEDs can cause problems.

* Ican't enter my password in the login screen: Nothing is displayed when
the password is entered (not even stars) to minimize the information that
others can gain from seeing the screen. It is likely that the keys are still being
recognized; try typing in the whole password blindly and pressing Enter.

* The display does not fill my screen or extends beyond the edges:
This is because of overscan settings. Many old televisions had cabinets
that overlapped a part of the screen, so images were given black borders
to ensure that no part of the picture was lost. Many modern monitors,
however, do not have this problem, so the black bars are just a nuisance.
First try enabling or disabling the overscan settings by typing sudo
raspi-config ata command line and selecting the appropriate option.
If this still does not work, search on the Internet for Raspberry Pi
overscan troubleshooting for detailed guides.

[16]

Chapter 1

* Ican't see anything at all on the screen: If the Pi is definitely on and the
OK/ACT light is lit or flashing, try pressing 1, 2, 3, or 4 on your keyboard
to select different video modes.

Summary

In this chapter, we learned how to connect up a Raspberry Pi computer, write

its operating system to an SD card, and start everything up. We learned that the
Raspberry Pi is capable of doing everything a normal computer can do (and more),
and that it is targeted at programming,.

In the next chapter, we will use one of the provided programming languages,
Scratch, to create our own version of Angry Birds.

[17]

Making Your Own
Angry Birds Game

In this chapter, we are going to make our own version of the popular Angry Birds
game. What's more, when we're finished, we will be able to add all sorts of new
rules and enemies to keep the game fresh. The following screenshot shows a
completed version of our game:

If you haven't played Angry Birds before, here's a quick description of how the
game works. The player launches a bird through the air using a slingshot and
attempts to hit all of the pigs at the other end of the level. In order to make things
more challenging, the pigs are often hidden behind hills or inside flimsy buildings
that the player must knock down.

Making Your Own Angry Birds Game

By creating our own version of the game, we have the freedom to change whatever
we like. We can change the level design, decrease gravity, fire the bird faster (or bee,
in our case), change all of the characters, and add new power-ups and prizes. The sky
is the limit!

Scratch

In this chapter, we will use Scratch to create our game. Scratch is a programming
language that has been specially designed to make animations and games with ease.
Scratch Version 1.4 comes as standard with the Raspberry Pi but is also available

on other computers. You can download it from http://scratch.mit.edu/ if you
ever want to play your game away from your Raspberry Pi. Start up Scratch by
double-clicking on its icon on the desktop (it should have the picture of a cartoon
cat). The following screenshot shows the Scratch layout:

MO

' [l D File Edit share Hel

o g
B

The following are its main sections:

* Menu (1): This is where the options are to save and load your projects. If
you ever want inspiration to code for projects, take a look at the provided
examples by navigating to File | Open | Examples. Remember to save and
back up your progress regularly!

[20]

Chapter 2

* Sprite controls (2): Every picture in the game is called a sprite. These buttons
allow you to copy, remove, grow, and shrink sprites. To use them, click on
the button you want, and then click on the sprite you want to affect.

* Screen layout (3): Choose between a small Stage, a large Stage, and a
fullscreen game. The small Stage is better for smaller screens as it allows
more space for code.

* Stage (4): This is where you will see the effects of all your programming,.

* Sprite list (5): All of the sprites in your project are shown here, and you can
easily add new pictures or change existing ones.

* Script area (6): Each sprite has a number of scripts attached to it, and they
are shown in this area. Each script is a short piece of code that controls how
the sprite behaves.

* Blocks (7): Each block is a programming command that can be connected
to other blocks (like a jigsaw) to create scripts. Drag a block into the script
area to use it, and then drop it next to another block in the script area to
join the two.

* Block types (8): The blocks are separated into eight different categories,
each having different roles in your programs.

Hello world!

Let's create a very simple program to show how easy it is to produce a visible

result. From the Motion block type, drag a turn 15 degrees block into the script area
(this example uses the clockwise turn block), and do the same for the "when the green
flag clicked" and "forever" steps from the Control section. Connect them together

by dragging one block close to the other. You should see a white highlight where the
block needs to be placed. Release the mouse button and the block will snap into place.
Click on the green flag present at the top-right corner of the screen to run the program.

. |

— |

[21]

Making Your Own Angry Birds Game

You should see the cat rotating. Your script should also be highlighted to show that
it is active. You can change the rotation amount to any number you like to see the
cat spin faster or slower —click on 15, seen in the preceding code block, and type in
a new number. You can even choose a negative number, and the cat will spin in the
opposite direction. You could also try adding other types of motion blocks within
the forever block. Click on the red stop sign in the top-right corner to stop your

program.

This is how the Raspberry Pi understands your program and knows what to do.
It understands that the script should start when the green flag is clicked. As soon
as this has happened, it moves on to the next block, forever. Everything inside the
forever block will execute repeatedly until you tell it to stop. In this case, we have
told the Raspberry Pi that we want to continuously rotate the cat, and this is what
we see. You can see that no blocks can be attached at the bottom of the forever
block. If something keeps going forever, no later commands will ever run.

Code tour

There are several types of code blocks available if you want to continue
experimenting before we start on the game. A full description can be found online
athttp://info.scratch.mit.edu/Support/Reference Guide 1.4.A quiCk tour
of the code blocks is as follows:

* Motion: This allows us to control where a sprite is on the screen and in
which direction it is facing. Its options include rotating, moving to any
position, and moving in the direction that the sprite is facing.

* Control: This allows us to choose when other blocks of code should run.
In the preceding example, we saw how to decide when a script should start
and how to repeat a block; however, it is also possible to execute a block only
if some condition is true.

* Looks: These enable us to decide what a sprite will look like. Each sprite can
have multiple images or costumes associated with it, and these blocks can
be used to switch between them. It is also possible for the sprites to talk or
change in size or color.

* Sensing: This enables us to allow a sprite to detect its surroundings. We will
use it later to work out when a bird in the game hits something.

* Sound: This enables us to play sound. You can add new sounds from the
Sounds tab in the script area.

[22]

Chapter 2

* Operators: These are simple mathematical functions, such as add and
subtract. Note that some of the blocks are of different shapes; they show
which blocks fit together and will be important later.

* Pen: This enables us to allow a sprite to draw a line to show where it has been.

* Variables: These allow us to give names to pieces of information so they can
be accessed from multiple places. As an example, we will create a variable to
hold the game score.

Creating a character

To start our game, we will need a character to fling through the air. Angry Birds,
of course, used birds as its main characters, but we can use whatever we like.

MNew sprite:

At the top of the sprite list, you should see the three buttons shown in the previous
screenshot. The first lets you draw your own character, the second lets you use an
existing image (including a wide range of images included with Scratch), and the
third gives you a random image from Scratch's selection.

If you click on the first button, you will be shown the following window; it has
plenty of easy-to-use options for creating your own drawings. Hover your mouse
cursor over any of the buttons to see what they do.

Import | :Eé:
(undo | [Redo | 2
& &5 00
NIT ® & 2|
Brush size; v+
1 o I [
EOO0O0EEE 5
| ISImISIS] | | e |_i_\—|
et 1]]

HEHHH
EEEECOOE AL all 2

|t) Set costume center

14 Cancel

[23]

Making Your Own Angry Birds Game

The second button brings up a fairly standard file explorer with lots of neatly
categorized images. This is the option I will use, but feel free to do something different.

Once you have drawn or selected a sprite, click on OK to add it to the game. If you
choose not to use the default cat character, right-click on it in the sprite list and click
on Delete (this will also delete any code you have created for the cat). You can
navigate to Edit | Undelete to bring the cat and its code back.

Now that you have a main character, drag it within the Stage to roughly where you
think will be a good starting position, and resize it by clicking on the shrink button
in the sprite controls and then repeatedly clicking on the sprite. I suggest making
the sprite quite small so there is plenty of room around it to fly. Now would also
be a good time to give your character a name — there is a textbox at the top of the
script area that should say something similar to Sprite 2, which you can change
to whatever you like.

Your screen should now look something like the following image but with your
own character instead of the bee that I have used:

ao to x: EED v:
go to

glide §§ secs to x: EED y:

change x by xi-119 g 250

set x to @ New sprite: | Vo7 B | X

change y by

set y to ()

if on edge, bounce

[24]

Chapter 2

Creating a level

Now, let's make the game look a little more interesting by adding some scenery with
the following steps:

1.

At the left of the sprite list, you'll see a white rectangle called Stage. Click on
it and then select the Backgrounds tab in the script area. Again, you have
the option of drawing your own background or using a pre-existing image,
but this time, I recommend creating your own so that you can make the
level fun to play.

Click on the Edit button. Try to keep your background as simple as possible;

it will be easier to add extra objects (for example, the ground, trees, and clouds)
as additional sprites later because then you will be able to move them around
more easily. It is perhaps easiest to simply fill the background with a solid sky
blue color (and maybe some distant mountains).

Now back in the Sprite list, create sprites for all of the scenery you want in
your game. At minimum, this will be the ground, but you can add all sorts
of little details. With each sprite you create, remember to position it on the
Stage, make sure it is the size you want, and give it a descriptive name.
Remember that you can duplicate sprites using the left button in the Sprite
Control area. When you have finished, you might be left with something
like the following screenshot:

[25]

Making Your Own Angry Birds Game

I have put a hill in the middle of the level to make it more challenging to hit the
enemies on the right-hand side of the screen.

When you are happy with your level design, draw a picture of a slingshot and add
it to the left-hand side of the Stage. Give it the name Slingshot so we are able to
find it easily later on. Your Scratch window should now look as follows:

turn G B degrees

turn & degrees

paint tos

wrox @y @
go to

glide) secs to x: @ v: B

change x by
set x to @ Newsprite: | 557 @Y | 2X
change y by

sety to @

if on edge, bounce

Moving the character

Now, let's start adding some code and making the game interactive! In this section,
we'll do everything necessary to launch our main character using the slingshot.

Initialization

The first thing we want to do is make sure the position of our main character resets
every time we start the game. Click on the main character and create the following
script in the script area:

when clicked__

go to Slingshot

[26]

Chapter 2

The code snippet states that when the green flag is clicked, the current sprite
(the main character) will move to the same position as the slingshot.

Test that your code works by clicking on the green flag. You should see your character
jumping to the same position as the slingshot. You may find that the character is
behind the slingshot; if you would prefer for it to be in front, simply click on it on

the Stage and drag it a short distance. Interacting with any sprite in this way will put
it on top of all other sprites.

Moving with the keyboard

Now, let's allow the player to move the character around using the keyboard
so that they can aim their shot. We are mostly going to be making use of this
code block (from the Sensing section) but with different keys:

pressed?

Before you read any further in this book, take a minute to have a look around the
available code blocks. Can you find any useful blocks that we could combine with
this block to move a sprite up, down, left, or right? This block is a strange shape;
how can we connect it with the motion blocks?

There are actually a few different ways to do this, but in this book, we will use the
following code block:

Hopefully, this looks fairly sensible to you. If the left arrow key is pressed,
do something. That something may be a bit confusing, however, so here's a
quick explanation.

The position of every sprite on the screen is given by two numbers (or coordinates).
The x coordinate tells you how far left or right the sprite is, and the y coordinate tells
you how far up or down the sprite is. The center of the Stage is at (0, 0), that is, both
the x and y coordinates are zero. The x coordinate increases from left to right and the
y coordinate increases from bottom to top. You can see the current coordinates of any
sprite underneath its name in the script area, and the coordinates of the mouse are
shown just under the Stage.

[27]

Making Your Own Angry Birds Game

Since we want to move left when the left arrow key is pressed, we have to change x
by a negative amount. In this case, it has the same effect as subtracting 5.

We will need one of these code blocks for each arrow key:

e The left arrow key should change x by -5

* The right arrow key should change x by 5

e The up arrow key should change y by 5

* The down arrow key should change y by -5
Finally, since we want the player to be able to press each button multiple times to
continue adjusting their position, we need to put all of these blocks inside one big
forever block. The forever block should be connected at the bottom of the existing

script so the player can adjust the character's position after the position has been
reset. Your code should now look as follows:

Once again, test your code out by clicking on the green flag. You should be able
to move your character around by pressing the various arrow keys.

Launch!

Now that we've got the character in the right position, let's launch it! First, let's
think about what we want to happen when the launch happens. We want to stop
the player moving the character (so they can't cheat), and instead, we want to start
moving it with a speed and direction dependent on how far from the slingshot the
player is.

[28]

Chapter 2

Since we are moving into a new phase of the game, it is a good idea to use a
separate script when we launch. This will help keep each script relatively small
and manageable. Add the following code to the forever block, where all of your
other keyboard-handling blocks are, as follows:

key space |pressed?

&Jliﬂ

Here, launch is the name of a message. When the space key is pressed, launch is
sent to all of the other scripts, and if any of them are waiting for that particular
message, they will start to run. We also stop the current script so that we stop
repeatedly checking which keys are being pressed and the player can't continue
to move the character around.

Before we create the second script, we want to be able to calculate how fast to fling
the character. To do this, we are going to store the speed in a variable. Variables
allow us to store one value each and can be shared between different scripts. In this
case, we're using a number, but variables can also store text. We are actually going
to use two variables to store the speed: one for up-down speed and the other for
left-right speed. The reasons for this will become clear later.

Click on Variables and then on Make a variable. The following window should
pop up. Call your variable x speed, and make sure it is valid only for this sprite.
Then do the same to create another variable called y speed. You can choose
whether or not a variable is shown on the Stage by clicking on the little box next
to it in the code block area.

*
VYariable name?

% speed

(C For all sprites) For this sprite only

0K Cancel

[29]

Making Your Own Angry Birds Game

Flight

Now that we have these variables, we can create the second script, which will control
our flight through the air. The code for this is shown in the following screenshot. It's
a little complicated, but try to work out what it does as you build the script up in the
script area. I'll explain how it works shortly. (For the two long blocks that are almost
identical, it is possible to create one, then right-click on it and duplicate it to save
effort in creating the second one.)

of Slingzhot - x position | / ll

of Slingshot - "y position".l .I

change x by | x speed’

change y by [y speed’

The preceding script waits until it receives the launch message from the first script.
Only then does it start. We set the x speed variable to a value that is relative to the
distance between the character and the slingshot. I divide the value by 20 to make
sure that the flight isn't too fast, but you may prefer a different value here. We then
do exactly the same to compute the y speed value. Once the speed has been
computed, we repeatedly move the object according to our speed.

We're now in a good place to test if everything is working. Click on the green flag,
move around, and then launch using the Space bar. You should see your character
fly in a straight line across the screen. You may want to try launching from different
positions to see how this affects your speed and direction.

One thing that you may have noticed is that your character flies directly through

the middle of the slingshot, not the part that it should actually be fired from. This

is easy to fix. Click on Slingshot in the sprite list, choose the Costumes tab in the
script area, click on Edit, and click on Set costume center. You can now drag the
crosshairs around to choose a more sensible launch position. Once you have finished,
click on OK. The slingshot will probably need repositioning on the Stage, but your
character's flight should now follow a better path.

Adding physics
The next thing for us to do is to give our character a more interesting flight path.

The game would be too easy (and no fun) if we just flew in a straight line through
all the obstacles.

[30]

Chapter 2

Gravity

First, let's add some gravity. Gravity has the effect of pulling objects down towards
the ground. How can we model gravity in our game? The answer lies in the way
we split our speed into both x speed and y speed. Gravity will only affect y speed,
our speed in the up-down direction, so we can leave x speed as it is. Since the y
coordinate increases as we move up but gravity pulls us down, we want gravity to
keep subtracting a small amount from the y speed. Add the following code block
inside the forever block of your second script:

Try out the game now. You should arc through the air until you hit one of the edges
of the screen. You may tweak the number in this code block if you wish; a more
negative number will give stronger gravity. What happens if the number is positive?

Bouncing

Next, we'll make something more interesting happen if we hit the edge of the screen.
As always, there are several options available, but I am going to suggest bouncing
off the edges. When we bounce, we want to have the same speed but travel in the
opposite direction. When we hit either of the side edges, we want our left-right
direction to change, and when we hit the top or bottom edges, we want our up-down
direction to change. If there is an if on edge, bounce block in the Motion section,

but it can have some unexpected effects in the game. Add it inside the forever block
to see the effects, if you like, but remember to remove it again before continuing.

Instead, we'll write our own code to handle bouncing. Add the following code
inside the forever block:

< x position = or * x position

to * x speed

All we're doing here is checking the current position to see if it is at an edge and then
reversing the direction. The numbers 240 and 180 come from the width and height

of the Stage, respectively, and multiplying by -1 is a good way to keep the speed the
same but reverse the direction.

[31]

Making Your Own Angry Birds Game

Have another test of the game. Your character should bounce around the screen in
smooth, curved paths.

Ending the game

The problem is that you bounce around forever. We want the bouncing to stop
at some point, and a good time to do this is when the character hits the ground.
This is easy to do in Scratch with the following code:

if touching Sround |2

stop script

Add this inside the forever block, and the script will end when the character sprite
hits the ground sprite (you will need to choose the name of the sprite that you used
for the ground). Since this script is in control of the character's movement, ending the
script ends the movement, which is what we wanted.

Give your physics a final test by playing the game. Your character should fly through
the air while being pulled downwards by gravity, bounce off the edges of the screen,
and stop when it hits the ground. Your second script should now look as follows:

when I receive launch

- x position i ll

- y position) .'

change x by | x speed

change y by |y speed

" x position < or © x position > LI

"y position = or © y position > FEN

[32]

Chapter 2

Scoring

Now that our main character can be launched properly, it's time to give the player
something to aim at. In Angry Birds, there are pigs, but we can have anything we
like. Draw a new sprite or use an existing one in the same way we created the main
character earlier. I am going to use a pre-made shark in this example. Resize the
sprite and put it in a good position.

Do you remember how we checked to see when the main character hit the ground?
We're going to need to do something very similar here to detect when an enemy is
hit by the main character. The following is the main piece of code to detect collisions,
and inside it, we're going to put all of the effects we want to happen when the enemy
is hit. Make sure the enemy sprite is selected when you create this script—it controls
the enemy's behavior and not the main character's. Note that we're using forever if
rather than just if as we want to keep checking for collisions. Buzzy is the name of
the sprite for my main bee character.

If everything has been done right, when an enemy is hit, the following events occur:

* The enemy disappears
* The score is updated

* The script for this enemy stops—we don't care about any future collisions

We can make the enemy disappear using the hide code block, and we've already
seen how the script can be ended using stop script. The only thing left, then,
is the score.

Create a new variable called score, and this time make sure that For all sprites is
selected. This ensures that all sprites have access to the score, so if there are multiple
enemies, they can all update the same variable. Once the variable has been created,
make sure the box next to it is marked so the score appears on the Stage.

Now we need to add some code so the score increases when the enemy is hit. Add
change score by 10 inside the forever if block.

[33]

Making Your Own Angry Birds Game

Your script should now look similar to the following screenshot:

- —
Jaunch ||

touching Buzzy |2 J

— |

Test your game by playing it and trying to hit this enemy. Remember that you can
adjust the sizes of the sprites, their launch speed, and the gravity, if the game is too
hard or too easy. You will notice that once you hit the enemy, it disappears and you
get points, but the score and enemies don't reset when you play again. Let's fix this.
Add the code shown in the following screenshot to the enemy sprite as a second script:

Now the enemy should come back, and the score should reset to 0 every time you
click on the green flag.

Only when you've finished all the code should you create multiple enemies.
Right-click on the enemy sprite in the Sprite list and click on Duplicate to create
a copy. This copy will have all the necessary code with it to update the score and
disappear after it has been hit. Create as many copies as you like, place them
wherever you like, and then sit back and enjoy your game! It should look like
the following screenshot:

[34]

Chapter 2

Extensions

So far we have created the bare minimum for a game. There are all sorts of extra
features we could add, such as the following;:

* Animation when two sprites collide

* A special enemy that gives bonus points

* Barriers that slow the player down

* Power-ups that increase the player's speed or flip gravity, for example

* Extra controls so the player can continue to affect the character after it has

been launched

I will leave the rest of your game up to you, but here are some example scripts to give
you some ideas. Try to work out what they do and where they might go, or just try
them out! Some scripts may require minor modifications elsewhere to fit in properly.

when I receive | dive bomb

sat Y =p aead

when I receive invert

set gravity |to V-1 graviby

Summary

In this chapter, we got to grips with the Scratch programming language. We learned
that it can be easy to create animations, and we went as far as creating an entire game.

In the next chapter, we'll take our knowledge of Scratch and see how we can apply
it to a different programming language called Python. There, we'll make another
game and our own game controller to go with it.

[35]

Testing Your Speed

In this chapter, we're going to create a new game that will test how quickly the
player can react. To do this, we will create our own game controller —something
you can't do on a normal computer —and write a program to handle when the
controller's buttons are to be pressed.

If you do not have the components required to create the controller, an alternative
program that uses the keyboard instead is provided at the end of the chapter. It is
very similar to the default program, so it is still worth reading through this chapter
to learn how everything works.

Materials needed

The materials that are required to make your own controller are shown in the
following figure. Think about what you would like your controller to look like and
how many buttons it should have, as this will determine how many of each item
you will need.

Testing Your Speed

The previous figure shows the items we need to create a controller, and the details
are as follows:

* Card (1) (as large as you want the controller to be)
* Wire (2)
* Paper fasteners (3) (2 x number of buttons)

* Paper clips (4) (1 x number of buttons; each clip should be plain metal with
no coating)

* Sticky tape (5)

* Pens/pencils for decoration (6)

If you already have some electric switches you'd like to use, you will not need
the paper fasteners, paper clips, or sticky tape, but I think it's more fun to make
everything from scratch!

We also need a safe way of connecting the wires to the Raspberry Pi. One approach

is to use special male-to-female wires, which behave like normal wires at one end,

but can be connected to a pin or another wire at the other end. The other way is to

use a Raspberry Pi breakout board, a ribbon cable, and a breadboard. These three
work together to give a larger area for plugging in electronic components. Adafruit is
a great online shop that sells these sorts of components for the Raspberry Pi; you even
get explanations on how to use them (http://www.adafruit.com/category/105).

Creating the game controller

In order to design a controller, we first need to know what sort of game is going to
be played. I am going to explain how to make a game where the player is told a
letter, and they have to press the button of that letter as quickly as possible. They
then are told another letter. The player has to hit as many buttons correctly as they
can in a 30 second time limit.

There are many ways in which this game can be varied; instead of ordering the player
to press a particular button, the game could ask the player a multiple-choice question,
and instead of colors, the buttons could be labeled with Yes, No, Maybe or different
colors. You could give the player multiple commands at once, and make sure that
they press all the buttons in the right order. It would even be possible to make a huge
controller and treat it as more of a board game. I will leave the game design up to
you, but I recommend that you follow the instructions in this chapter until the end,
and then change things to your liking once you know how everything works.

[38]

Chapter 3

The controller base

So now that we know how the game is going to be played, it's time to design the
controller. This is what my design looks like with four different letters:

Make sure each button area is at least a little bigger than a paper clip, as these are
what the buttons will be made of. I recommend a maximum of eight buttons.

Draw your design on to the card, decorate it however you like, and then cut it out.

Adding buttons

Now for each button, we need to perform the following steps:

1. Poke two small holes in the card, roughly 3 cm apart (or however long your
paper clips are), as shown in the following figure. Use a sharp pencil or a pair
of scissors to do this.

O O

[39]

Testing Your Speed

2. Push a paper fastener through each hole and open them out, as shown in the
following figures:

1 1[6 ¢

3. Wrap a paper clip around the head of one of the fasteners, and (if necessary)
bend it so that it grips the fastener tightly, as shown in the following figure:

O\\GD
O

4. Bend the other end of the paper clip up very slightly, so it doesn't touch the
second fastener unless you press down on it, as shown in the following figure:

i
@ A5

[40]

Chapter 3

5. Turn the card over and tape one leg of each fastener in place, making sure

that they don't touch, as shown in the following figure:

%

N |

0|

(

(

6. Tape alength of wire to each of the two remaining legs of the fasteners.
The ends of the wires should be exposed metal so that electricity can flow
through the wire, paper fastener, and paper clip (as shown in the following
figure). You may like to delay this step until later, when you have a better
idea of how long the wire should be.

[41]

Testing Your Speed

Connecting to the Raspberry Pi

Now that the controller is ready, it's time to connect it to the Raspberry Pi. One of
the things that distinguishes the Raspberry Pi from a normal computer is its set of
general purpose input/output (GPIO) pins. These are the 26 pins at the top-left
corner of the Raspberry Pi, just above the logo. As the name suggests, they can be
used for any purpose, and are capable of both sending and receiving signals.

5v 5v Ground GPIO GPIO GPIO Ground GPIO GPIO Ground GPIO GPIO GPIO
Power Power 14 15 18 23 24 25 8 7

ONONONONONONORONONONONONRS
ONONONOCHONONONONONONONONS

GPIO GPIO GPIO
3Vv3 0 (revl) 1 (revl) GPIO Ground GPIO 21 (revi) GPIO 3V3 GPIO GPIO GPIO Ground
Power 2 (rev2) 3 (rev2) 4 17 o7 (rev2) 22 Power 10 9 11

The preceding figure shows what each of the pins does. In order to create a (useful)
circuit, we need to connect one of the power pins to one of the ground pins, with
some sort of electrical component in between. The GPIO pins are particularly useful
because we can make them behave like either power or ground pins, and they can
also detect what they're connected to.

Note that there are two versions of the pin numbering system. You will almost
certainly have a revision 2 Raspberry Pi. The revision 2 board has two mounting
holes, while the revision 1 board has none. (These holes are surrounded by metal
and are large enough to put a screw through. It's easy to spot them if they're there.)
It is safest to simply not use any of the pins that have different numbers in
different revisions.

To connect your controller to the Raspberry Pi, connect one wire from each button to
a 3V3 power pin, and each of the remaining wires to a different GPIO pin (one with
GPIO in its name as in the previous figure). In my example, I will use pins 22, 23, 24,
and 25. Everything is now connected as shown in the following figure:

[42]

Chapter 3

0——o0 “o—¢
o—o0 o—¢
0——0 “o—

GPIO 23 GPI

o

24 GPI

o

25

3V3 Power GPIO 22

o

7

;

]

Python

In this chapter, we are going to use the Python programming language. Almost all
programming languages are capable of doing the same things, but they are usually
designed with different specializations. Some languages are designed to perform one
job particularly well, some are designed to run code as fast as possible, and some are
designed to be easy to read.

Scratch was designed to make animations and games, and to be easy to read and
learn, but it can be difficult to manage large programs. Python is designed to be a
good all-round language. It is easy to read and can run code much faster than Scratch.

a1

Q

Downloading the example code

You can download the example code files for all Packt books you
have purchased from your account at http: //www.packtpub.
com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to

have the files e-mailed directly to you.

[43]

Testing Your Speed

Python is a text-based language. We will type the code rather than arrange building
blocks. This makes it easier to go back and change the pieces of code that we have
already written, and it allows us to write complex pieces of code more quickly.

Lots of tutorials and information about the available features are provided online
athttp://docs.python.org/2/. Learn Python the Hard Way is another good
learning resource, which is available at http: //learnpythonthehardway.org.

As an example, let's take a look at some Scratch code and some Python code which
do the same thing, as shown in the following figure:

1""'—-_—..""-_

sat value |to [@

‘walue = maximunm

change value I:H_.r
say '.-juin value ' for SeCs

==

The Python code that does the same job looks like the following code snippet:

def count (maximum) :
value = 0
while value < maximum:
value = value + 1
print "value =", value

Even if you've never seen any Python code before, you might be able to read it and
tell what it does. Both pieces of code count from 0 to a maximum value, and display
the value each time.

The biggest difference is on the first line. Instead of waiting for a message, we define
(or create) a function, and instead of sending a message, we call the function.

(More on how to run Python code shortly.) Notice that we include maximum as

an argument to the count function. This tells Python the particular value we mean
to be the maximum, and allows us to reuse the name maximum in different parts

of the code — very useful when we have a lot of variables and need to name them all!

The other main differences are that we have while instead of forever if, and we
have print instead of say. These are just different ways of writing the same thing.
Also, instead of having a block of code wrap around other blocks, we simply put an
extra four spaces at the beginning of a line to show which code is contained within
a particular block.

[44]

Chapter 3

To run a piece of Python code, open IDLE on the Raspberry Pi desktop. Type the
previous code into IDLE and you should notice that it can recognize how many
spaces to start a line with. When you have finished, press Enter a couple of times,
until you see >>>. This shows that Python recognizes that your block of code has
completed, and that it is ready to receive a new command. Now, you can run your
code by typing in count (5) and pressing Enter. You can change the 5 to any number
you like. We're now ready to create our game!

Coding the game

Here's a quick recap on how this example game is going to work. The Raspberry Pi
will choose a random button and ask the player to press it. Every time the player
presses the right button, they get a point, and every time they press a wrong button,
they lose a point. Once the right button has been pressed, the Raspberry Pi selects a
new button as the target. The aim is to score as many points as possible in 30 seconds.

In IDLE, navigate to File | New Window. This will bring up a new empty window,
which is where all our code will go. This window is better for editing existing code,
and I will call it the Edit window. Whenever you want to test or run your code,
navigate to Run | Run Module, or press F5 on your keyboard. This will take you
back to the first window, which I will call the Shell, with the code ready to run.

Random behavior

The first job, then, is to write some code that will choose a random button for the
player to press. Take a look at the following code snippet. There are a few new
things here, so we'll go through them one by one afterwards.

import random
options = [22, 23, 24, 25]

def nexttarget () :
target = random.choice (options)
print target
return target

On the first line of the code, we import the random module. Python comes with a

huge amount of code that other people have written for us, separated into different
modules. Some of this code is simple, but makes life more convenient for us, and some
of it is complex, allowing us to reuse other people's solutions to the challenges we face
and concentrate on exactly what we want to do. In this case, we are making use of a
collection of functions that deal with random behavior. We must import a module
before we are able to access its contents. Information on the default modules available
can be found online.

[45]

Testing Your Speed

On the second line of the code, we create a list of options. These are the GPIO pins
that the buttons are connected to, and we show that it is a list by surrounding it
with square brackets.

Next, we create a function called nexttarget. The empty brackets afterwards
show that we do not need to pass any information to this function for it to work.
The function chooses one of the options at random and stores it in a variable called
target. The name random.choice tells us that we are using a function called
choice, which can be found inside the random module that we imported earlier.
We then print the target to display it to the player, and return the target to
whichever piece of code asked for it.

You can test your code now if you like. Type it all into the Edit window and run it.
Type nexttarget () next to the >>> marker in the Shell and press Enter, and you
should see numbers being displayed. You can do this as many times as you like to
make sure random pins are being displayed. The problem is that if the player is told
to press pin 22, he might not know which button that means. Let's change our code
to improve that. Go back to the Edit window and update your code as follows:

import random
options = {22:"A", 23:"B", 24:"C", 25:"D"}

def nexttarget () :
target = random.choice (options.keys())
print options[target]
return target

The main difference is that we've changed options from a list to a dictionary.
(Note the curly brackets instead of square ones.) Using a dictionary allows us to
give each pin a name, which will be more useful to the player. In this case, I have
connected pin 22 to the A button, and so on. In proper coding terms, the dictionary
links each key (pin number) with a value (name). Our target pin must therefore be
chosen from the dictionary's keys, so we add .keys () on the line where we choose
a pin. Finally, when we display the target to the player, we get its name from the
dictionary using the square brackets.

Using the controller

Next, we need to detect which button is currently being pressed. Look at the
following code snippet:

import RP1.GPIO as GPIO

def buttonpressed() :

[46]

Chapter 3

for pin in options.keys():
if GPIO.input (pin) == GPIO.HIGH:
return pin
else:
return None

Once again, we're importing a module that does some of the behind-the-scenes
work for us. This time, we've used as to give it a slightly shorter name, which
will hopefully make the rest of the code easier to read. We usually put all imports
together at the very top of the code, as this makes it easier to see them all at once.
All the code for this chapter is shown together towards the end, if you

are unsure where to put a particular piece of code.

Inside the but tonpressed function, we have a for loop. This is a bit like the
forever if block in Scratch, except we tell it to stop after it has run a certain
number of times. In this case, we tell it to run once for each of the pins in our
dictionary of options.

We then check to see what signal that pin is receiving. If it is receiving GP10. LOW,

we know that the button is not being pressed, but if it is receiving GPI0.HIGH, we
know that the button is being pressed and that there is a connection from this pin,
through the button, to the power pin. (In electronics, we say a signal is low if it is
connected to ground and high if it is connected to the voltage supply.) If the button is
being pressed, we return the pin number. Look out for the double-equals sign here;
a single-equals sign is used to give a variable a new value, but a double-equals sign
checks to see if two values are the same. If none of the pins are being pressed, we
return the special value None.

Before we can access the pins, we need to prepare them. Since they can be used for
any purpose, we need to tell them what their job is for this particular piece of code.
Add the following function to your code in the Edit window:

def preparepins() :
GPIO.setmode (GPIO.BCM)
for pin in options.keys():
GPIO.setup (pin, GPIO.IN, pull up down = GPIO.PUD DOWN)

The GPI0. setmode line selects a particular numbering scheme for the Raspberry Pi's
pins. Then, we have another for loop that looks at each of the pins in turn. For each
pin, we choose GPIO. IN to say that it should be an input and receive signals, and we
use GPIO.PUD_DOWN to say that if nothing is connected to the pin, its signal should
be pulled down to behave like Gp10. LOW (no button press). This function will need
to be run before we receive any signals from the pins in but tonpressed. (If you do
try to run this code now, you may get some strange error messages. We'll address
those soon.)

[47]

Testing Your Speed

Adding a time limit

We can make sure that preparepins is always run before but tonpressed by writing it
into our program. Let's now start building the function that brings everything together
to create a game. For now, we want to set up the GPIO pins and make sure the game
lasts the correct length of time.

import time

def play(duration) :
preparepins ()

start = time.time()
end = start + duration

while time.time() < end:
Do stuff
time.sleep(0.1)

Once again, we are importing a module of the existing code to do some of the hard
work for us. This time, it's a module full of functions that deal with time, and we
are particularly interested in the one that tells us what the current time is.

Notice that we give duration as an argument to the play function. This lets us
easily change the length of the game later, if we like. We then make absolutely
sure that preparepins happens first by executing it straight away.

Next, we make a note of the current time using time.time (), and storeitina
variable called start. We calculate the time at which the game should end by
adding the length of the game to the current time.

We then enter a while block (or forever if, if you prefer), which continues until the
current time passes the time when the game should end. Inside the while block, we
have a comment beginning with #. Comments are ignored by Python, but are useful
for the programmer. You can leave notes for yourself, to explain what a piece of code
does. In this case, we've left a comment to say that there is more code to go inside,
but we'll come back to it later. Finally, we put our program to sleep for 0.1 seconds.
This has the following two purposes:

* It ensures that we don't waste time checking whether the buttons are pressed
immediately after a previous check.

* It makes reading from the pins more reliable. In the instant after pressing a
button, the paper clip may actually bounce up and down a tiny bit, making
it seem like the button is being pressed multiple times. The way this game
works, the player could end up losing points as the game may think the
wrong button is being pressed.

[48]

Chapter 3

Bringing it all together

Now, let's fill in the gaps and turn our program into a game. We want to use

nexttarget and buttonpressed together to tell whether the right or wrong button
is being pressed, and we want to keep track of the score. Update your play function

so it looks like the following code snippet:

def play(duration) :
preparepins ()

start = time.time()
end = start + duration

score = 0
target = nexttarget ()
while time.time() < end:

button = buttonpressed()
if button == target:
score = score + 1
print "Correct!"
target = nexttarget ()
elif button != None:
score = score - 1
print "Wrong!"
time.sleep(0.1)

print "Your final score is", score

The following is what's changed:

e We've created a new variable called score, which starts at 0. Whenever the
player presses the right button, the score goes up, and whenever they press
the wrong button, it goes down. At the end of the game, we display the

final score.

* We added another new variable called target. This is the pin connected

to the button that we want the player to press. We set a target using
nexttarget when the game first starts, and we update the target
whenever the player presses the correct button.

* Inside the while block, we check which button is being pressed (if any).
If the pressed button is the same as the target button, we give the player
a point. Otherwise, if a different button is being pressed, we take a point
away. elif is short for else if, and is used when we have multiple if

blocks, but only want one of them to be executed.

[49]

Testing Your Speed

That's it! The game is ready to play. There's just one final small piece of code to add
to the very end of the program, which could make things easier for us later:

if name == "_ main ":
play(30)

This is a special small trick that allows us to reuse our code later as its own module,
or just play the game without having to load and run all of the code in IDLE first.

Now, if you try to play the game, you will probably get an error message. This is
because the Raspberry Pi's operating system wants to protect all of the hardware.
You could end up doing dangerous things if you were allowed to change whatever
you like! In this case, though, our actions are limited to the GPIO pins, so we can
be fairly sure that we won't break anything. Save your code and close down IDLE.
Open LXTerminal and type in sudo idle <name of programs. You might be asked
to enter your password (the default is raspberry). You should see IDLE open up,
and it should look exactly the same as before. This time, however, you should be
able to navigate to Run | Run Module and type in play (30) to play the game.
The difference is the sudo command. This tells the Raspberry Pi that we know
what we're doing and that we're sure we're not going to damage anything.

Be very careful when using the sudo command because the computer
%j%‘\ will always do exactly what you tell it to do, even if this means
g causing permanent damage.

Our little extra piece of code at the end of the program gives us a different way of
starting the game. Close down IDLE and type sudo python <name of programs
into the terminal. The game should start much more quickly this time.

Complete code listing

The complete code listing section shows the complete program. This may be useful if
you're not sure where the different code snippets should go, or if your program isn't
working and you want to compare it to something that works.

import RPi.GPIO as GPIO
import random
import time

options = {22:"A", 23:"B",

[50]

Chapter 3

4:"C"1 25:IIDII}

def preparepins() :
GPIO.setmode (GPIO.BCM)
for pin in options.keys():
GPIO.setup (pin, GPIO.IN, pull up down = GPIO.PUD DOWN)

def nexttarget () :
target = random.choice (options.keys())
print options[target]
return target

def buttonpressed() :
for pin in options.keys():
if GPIO.input (pin) == GPIO.HIGH:
return pin
else:
return None

def play(duration) :
preparepins ()

start = time.time()
end = start + duration
score = 0

target = nexttarget ()
while time.time() < end:
button = buttonpressed()
if button == target:
score = score + 1
print "Correct!"
target = nexttarget ()
elif button != None:
score = score - 1
print "Wrong!"
time.sleep(0.1)

print "Your final score is", score
if name == " main ":
play(30)

[51]

Testing Your Speed

The keyboard version

If you do not have access to the components necessary to create your own controller,
here is a slightly modified program that uses the keyboard instead. You might notice
that its structure is exactly the same as the previous program. Separating tasks out
into different functions allows us to make changes like these quickly and easily.

import pygame, pygame.event, pygame.key
from pygame.locals import *

import random

import time

options = {K_UP:"up", K DOWN:"down", K LEFT:"left", K_RIGHT:"right"}

def prepare() :
pygame.init ()
screen = pygame.display.set mode((250, 1))
pygame.display.set caption("Test your speed!")

def nexttarget () :
target = random.choice (options.keys())
print options[target]
return target

def keypressed() :

pygame.event . pump ()
keyspressed = pygame.key.get pressed()
for key in options.keys():

if keyspressed[key] :

return key

else:

return None

def play(duration) :
prepare ()

start = time.time()
end = start + duration
score = 0

target = nexttarget ()
while time.time() < end:
key = keypressed() if key == target:
score = score + 1
print "Correct!"

[52]

Chapter 3

target = nexttarget ()
elif key != None:

score = score - 1

print "Wrong!"
time.sleep(0.1)

print "Your final score is", score

pygame.quit ()

if name == " main ":
play(30)

What's next?

Now that your game is working, you might like to try using most of the same

code to create different games. (I suggest that if you make changes, you save it to a
different file, so you don't lose your current game.) In particular, you could change
nexttarget () so that it asks a question and gives some possible answers, and the
player has to choose an answer as quickly as possible. Alternatively, you could create
a Simon Says style game, where the game gives a sequence of buttons that must be
pressed, and the player tries to repeat it.

If you have an Internet connection and are feeling adventurous, you could try using
your controller to play your Angry Birds game from the previous chapter. Search the
Internet for ScratchGPIO to download an enhanced version of Scratch, and try

to explore how it can interact with the Raspberry Pi's GPIO pins.

If you're interested in learning more about electronics and what you can do with
GPIO, take a look at Adafruit's online tutorials at http://learn.adafruit.com/
category/learn-raspberry-pi.

Summary

In this chapter, we used the Python programming language to create a game.

We created an electronic circuit to act as the game controller, and used code to
detect when the buttons were being pressed. We learned the basics of the Python
language, and saw how separating the code into multiple functions makes it
more flexible and easier to manage.

In the next chapter, we will build on this Python knowledge to create an
interactive map.

[53]

Making an Interactive Map of
Your City

In this chapter, we're going to learn more about Python and its available modules
by creating a program that will allow us to create notes on a map of our local area.

A program such as this needs a proper graphical user interface (GUI), which is
just a complicated way of saying that it is a visual program, with things to see and
buttons to click. Here's what the program looks like when it's finished:

Cambridge, UK e

The Meadows
Community.
Centre

Blggg

i
Yetoria py
: = 2
Alonn :
1303 Midsummer i &
3 Comimon e
Computer Laboratory e

= Science Centre
Cambridge

&

. 4 Parker’
The Fitzwilliam = f,lggs
Museum = g
At

4603

e
v 12 University of s
Cambridge

Botanic Gardens

.
v

station

*
Cherry Hinton

Long fd

&
2

Moy,

Hall Park Fi

Mﬁ?.—dﬁi%“@m 4 Google

Making an Interactive Map of Your City

As you can see, the program looks quite professional with its title bar and buttons.
You will be able to click on locations on the map and give helpful labels. By the end
of the chapter, you will know enough about building GUIs to be able to add all sorts
of additional features.

Hello world!

As is traditional when we learn about a new technology, we're going to start with
the simplest program possible, just to make sure that we understand the basics.
In this case, we're going to create a basic window with a title and some text inside.

Tkinter

There are many different Python modules available that let us create graphical
programs, but we're going to use one called Tkinter. This module is included with
Python by default and works on almost all computers and operating systems.

Tkinter has easy-to-use functions to create textboxes, buttons, scroll bars, menus,
and more. Collectively, these components are called widgets. To create a graphical
user interface, we combine a number of widgets with a layout, which tells Tkinter
how the widgets should be arranged. For example, we could say that all of the
buttons should be in a row or that they should be arranged vertically.

There is a summary of how to use the available widgets in the Extensions section
at the end of this chapter.

Writing the program

Before we start, open a fresh IDLE window and make sure you are at the Edit
window (navigate to File | New Window). The first thing we want to do is to
import the Tkinter module so we can make use of all the functions it contains;
therefore, add the following line of code at the top of the file:

import Tkinter

Now would also be a good time to save the program and give it a useful name.
Navigate to File | Save and save the program as hellogui.py.

Creating a window is very simple. All we need is the following code snippet:

window = Tkinter.Tk ()

window.mainloop ()

[56]

Chapter 4

Leave a blank line below the import line (for neatness) and type in the preceding
code. That's it! We can now run the program (either with Run | Run Module or by
pressing F5), and we will see an empty window appear. The first line of code creates
a window, and the second line of code tells it to enter its main loop. The main loop
causes the window to be shown on the screen and lets it wait for any of its buttons to
be pressed. (This is similar to how we had a loop in the previous chapter to wait for
our controller buttons to be pressed.)

There are a couple more very simple things we can do before we move on to
creating the main program. This extra code must go between the previous two lines.
The final mainloop line doesn't finish until the window is closed, so any code that
comes afterwards will run too late to be shown on the screen. First, we can give the
window a title as follows:

window.title ("Some text here")

We can give the window any title we like. Secondly, we're going to place a simple
widget in the window that displays some text as follows:

label = Tkinter.Label (window, text="Hello!")
label .pack()

This code is a little more complex. First, we create a Label widget—a widget for
displaying text (or images). When we're creating it, we pass in two arguments: the
window we've created and the text to be shown. Note that the second one has the
name text, but the first one doesn't have a name at all. In Python, functions can have
the option of receiving lots of different arguments. All of the essential ones come first
and don't need names; we can tell them apart from the order they are in. After that
come the optional arguments. We need to give names to these so the function can tell
which arguments have been left out. We need the first argument because the Label
widget needs to know which window it will be in. In more advanced GUIs, we can
even tell widgets which sections of the GUI they should go in. The second line of
code packs the Label widget to work out what size it is and start displaying it.

You might notice if you run your program now that the window has shrunk to fit
the Label widget we just added, so we can't see the title anymore! We can fix this by
telling the window the minimum size it is allowed to be as shown in the following
code snippet:

width = 200
height = 50
window.minsize (width, height)

[57]

Making an Interactive Map of Your City

You might like to tweak the width if you have a long window title. You should now
have a window that looks similar to the following screen:

Hella!

Now that the window has a minimum size, you will notice that if you drag the edges
of the window, you can make it larger; however, you can't make it any smaller.

We're now ready to move on. The following is a complete code for this simple
example. I've grouped some of the lines together to keep things organized, but the
main point is that anything involving the way the window looks happens between
the window being created and the window's main loop starting, as shown in the
following code snippet:

import Tkinter

width = 200

height = 50

window = Tkinter.Tk()

window.title ("Some text here")
window.minsize (width, height)

label = Tkinter.Label (window, text="Hello!")
label .pack()

window.mainloop ()

Getting a map

In this section, we're going to use Google Maps to get an image of our local area to
display it in our window.

No Internet? No problem!

Since Google Maps is an online service, an Internet connection is required to
download a map. However, if your Raspberry Pi isn't connected to the Internet,
there is still a way to proceed. Python is cross-platform. This means that it works
on lots of different computers and operating systems. So long as you have access
to another computer that does have an Internet connection, all of the code in this
chapter will work.

[58]

Chapter 4

Python can be downloaded from http://www.python.org/download/, and the
code in this book is based on Python 2.7. (Python is often preinstalled on Linux
operating systems, and it is best to keep it up to date with your built-in packaging
system.) Once installed on any computer, IDLE will be available and should behave
exactly as it does on the Raspberry Pi.

Google Maps

Google has made it very easy to access its maps from programs that we've written
ourselves (up to a 1000 times per day). All we need to do is create a web address
with all the information about the map we want.

All addresses start with https://maps.googleapis.com/maps/api/staticmap?
and contain all sorts of information, separated by & symbols after the question mark:

* center=location: This is some text describing where the location that the
map should show. It could be a town name, or a postal code, or the name
of a road or building. Web addresses should not contain any spaces,
so if your chosen location does have spaces, they should be replaced
by the + symbol.

* zoom=value: This is a number that increases as we zoom in to the map.
Around 13 to 14 seems to give good results for this project, but you might
like to try other values.

* size=widthxheight: These are values in pixels. In this chapter, I'm going
to use a width of 640 pixels and a height of 480 pixels.

* format=type (optional):This denotes the format of the image to be
downloaded, such as . jpeg, .gif, and .png (default). In this chapter, we're
going to use .gif as it works best with Tkinter.

* maptype=type (optional): This tells us what view of the map we should
get. Do we want a satellite image or a roadmap, or do we want to see the
terrain? If we don't choose a map type, we will get a road map.

* sensor=true/false: This tells us if we are using GPS (or something similar)
to choose the location. For this project, it will always be set to false.

A full list of available options and their explanations can be found online at https://
developers.google.com/maps/documentation/staticmaps/#URL Parameters.

So, an example web address might be https://maps.googleapis.com/maps/api/
staticmap?center=Cambridge, $20UK&zoom=13&s1ze=640x480&format=gif&senso
r=false. Here, I have chosen the map of Cambridge, UK, with a zoom level of 13, and
an image that is 640 x 480 pixels and in the .gif format. You may want to type this
address into a web browser and play with the various options to see what's possible.

[59]

Making an Interactive Map of Your City

Generating the address

So, how do we create these long web addresses automatically in our program?

It turns out that Python makes this very easy for us with its format function.

The format function takes some text and looks through it for markers that look like
{0}, where 0 can be any number. Whenever it sees one of these markers, it replaces
it with its argument at that position as shown in the following code snippet:

"{o}".format (14) gives "14"
"Second = {1}, first = {0}".format(1l, 2) gives "Second = 2,
first = 1"

The main thing to look out for is that programming languages like to start counting
from zero, so if you want to access the first argument of the format, you use {0},
and if you want the seventh argument, you use {6}.

To generate our address, we can use the following code snippet:

address = "http://maps.googleapis.com/maps/api/staticmap?\
center={0}&zoom={1}&size={2}x{3}saformat=gif&sensor=false"\
.format (location, zoom, width, height)

This is just a slightly longer and more complex version of what we've seen already.
The \ symbols allow us to break the line into multiple parts so it doesn't go off the
edge of the screen (or page), and they do not show up in the final address if we start
a new line immediately after the \ symbol.

To make our code more readable and useful, it is best if we put this address creation
code in a separate function. This way, we can generate addresses any time we like
when the program is running, without having to copy the code.

Place the following code snippet immediately after the import statement in
hellogui.py, and then save it to a new file called mapping.py:

import urllib
def getaddress(location, width, height, zoom) :
locationnospaces = urllib.quote plus(location)
address = "http://maps.googleapis.com/maps/api/staticmap?\
center={0}&zoom={1}&size={2}x{3}&format=gifasensor=false"\
.format (locationnospaces, zoom, width, height)
return address

[60]

Chapter 4

You'll notice that there's an extra line at the start of the function that uses urllib.
quote_plus to make sure that there are no spaces in the name of the location by
replacing them with + symbols. It can also handle any other characters that aren't
allowed in web addresses. We had to import the ur11ib module first to get access

to this function. The ur11ib module is short for URL library and allows us to access
information over the Internet. Uniform Resource Locator (URL) is just another name
for a web address. You may want to provide extra options to add extra arguments

to the function later.

We can now see if our code works. Run the program and close the window that pops
up —we're not interested in it for the moment. In the Shell (next to the >>> marker),
type in getaddress ("Cambridge, UK", 640, 480, 13),press Enter, and check
that the link is the same as the example earlier. You can even paste it into a web
browser to check that it works.

If you're really keen on controlling things with code, try out the following
code snippet:

import webbrowser
webbrowser.open (getaddress ("Cambridge, UK", 640, 480, 13))

Downloading the image

Now that we can create a web address for our map, we want to download it for use
in our program. To do this, we're going to create another function called getmap that
uses getaddress. The getmap function must therefore come after getaddress in our
program but still before the part at the end where we create the window. Here's the
code snippet:

import base64
def getmap (location, width, height, zoom) :
address = getaddress(location, width, height, zoom)
urlreader = urllib.urlopen(address)
data = urlreader.read()
urlreader.close ()
base64data = base64.encodestring(data)
image = Tkinter.PhotoImage (data=base64data)
return image

We first need to import another module. The base64 module allows us to convert
the downloaded image data into something that Tkinter can use.

[61]

Making an Interactive Map of Your City

The first thing we do in our new function is create an address using the previous
function. We can then connect to this address using ur11lib.urlopen and download
the data using read. We make sure to tidy up afterwards by using close.

The urlreader object might have used some temporary storage that is no

longer needed now that we have the data.

Unfortunately, the data we downloaded isn't in a form that Tkinter can use, so we
need to convert it using base64 . encodestring. You don't need to understand how
this works; just be aware that it's there. (If you're interested in what's going on inside
the module, take a look at http://docs.python.org/2/library/base64 .html.)
Finally, we convert the data into an image using Tkinter.PhotoImage and return it.

Using the image

We now have an image ready to use, so it's time to display it in our program. It is
possible to put the image inside the Label widget that we already have, but we will
want to draw on top of it later, so we will use a Canvas widget instead. You can
think of a Canvas widget as a bit like the canvas an artist would use. It allows us to
draw all sorts of shapes and text in any color we like. For now, we're just going to
draw our map.

Replace the two lines of code that mention the Label widget with the following
code snippet:

mapimage = getmap(location, width, height, zoom)

canvas = Tkinter.Canvas (window, width=width, height=height)
canvas.create image (0, 0,image=mapimage, anchor=Tkinter.NW)
canvas.pack ()

First, we get the image using our getmap function. We then create a Canvas inside
our window with a particular width and height. Then, we draw our image on the
Canvas. We say that we want the northwest (NW) corner of the image to be placed
at coordinates (0, 0) within the Canvas. Since the northwest and coordinates (0, 0)
both mean the top-left corner, and the Canvas is the same size as the image, the
image will fill the Canvas exactly. Finally, we pack the Canvas widget as we did
with the Label widget.

One last thing to do is give some sensible values for location, width, height, and
zoom. We already have values for the width and height, but we'd like our map to be
a little larger than our previous window. Replace the old width = and height =
lines with the following code snippet:

location = "Cambridge, UK"
width = 640

height = 480

zoom = 13

[62]

Chapter 4

Feel free to experiment with different values. When you run your program, you should
now see something like the following screenshot:

m Cambridge, UK e

M1} A The Meadows
\19 S 2 Community
Centre

Blogg

(]
Ls
L At :
S0 ‘»,\\\ Hige
fig F.f.'
Y ar b
11303 Midsummer w & ""'-'w.-r,a,_l.’ 3
- i3 Common i s

(1] Cambridge £

& \{;
o qr Parker!
The Fitzwilliam = f,l:g;s
Museum = r!f,_%
B

T
hER

4 Cambridge (= =i
1o Botanic Gardens

i) F g 3
"By] F University of

Cherry Hinton
Hall Park Fi

'1'-’01»,5,

e Grantehester Longhn— ... g, dst €2014 Google

I have also updated the title of the window to use location rather than "Some text
here" from before. If your code isn't working, it's likely that there's either a spelling
mistake somewhere, some code needs to be moved up or down within the program,
or Python isn't sure which blocks of code are meant to be inside which other blocks.
Remember that the number of spaces at the beginning of each line is very important.
The recommendation is to use four spaces for each level of indentation. For example,
the very first line of a function (in this project) should have no spaces in front of it,
code inside that function should have four spaces at the start of each line, and code
inside an if or while block inside that function should be indented with another
four spaces. If you're stuck, take a look at the code listing near the end of the chapter.

Adding markers

The next thing we want to do is add a marker to the map whenever we click on it
with the mouse. This can be done in two parts: by detecting the click and reacting
to the click.

[63]

Making an Interactive Map of Your City

Detecting mouse clicks

Detecting mouse clicks is very simple. Tkinter does most of the work for us. All we
have to do is bind a function to the mouse button. Once the program has entered
its main loop, whenever the mouse button creates an event (by being clicked), the
function will be executed. Reacting to an event in this way is similar to using a when
key pressed code block in Scratch. Place the following line of code with the rest of
the Canvas code before the main loop:

canvas.bind ("<Button-1>", canvasclick)

The preceding line of code says that whenever Button-1 (the left mouse button)
is clicked, run the canvasclick function. We'll write that function next.

We can create these bindings for as many buttons and keys as we like and for

any widget that we like. The "<Button-3>" button is the right mouse button,
"<space>" is the Space bar, "<Returns>" is the Enter key, and "a", "b", "c", and so
on correspond to the letters. There are even events called "<Enter>" and "<Leave>"
that can tell when the mouse moves over the widget.

Reacting to mouse clicks

When the mouse button is clicked, an event is given to our canvasclick function.
The event contains lots of information, including the position of the click, the widget
that was clicked, and the key that was pressed (if any).

Here's a quick version of canvasclick that should let you make sure that mouse
clicks are being detected properly. Place it beneath the getmap function as follows:

def canvasclick(event) :
print "Mouse click at position", event.x, event.y

When we run the program, we should now see pairs of numbers being displayed in
the Shell whenever we click on our map. These numbers should change depending
on where we click on the map. What we really want, though, is to draw a marker on
the map so we can highlight interesting points. We'll replace the print line with the
following code, and a circle will be drawn on the map at each position clicked:

X,y = event.x, event.y

widget = event.widget

size = 10

widget.create oval (x-size, y-size, x+size, y+size, width=2)

[64]

Chapter 4

We're going to use event .x and event .y a few times, so here we've given them

the more convenient names of x and y. We've done the same thing for event .widget
(the widget that received this mouse click event), giving it the more convenient name
of widget. The size variable stores the distance, in pixels, from the click position to
the edge of the circle. You can change it if you like.

Finally, we draw the circle using widget .create_oval. The first four arguments
are the coordinates of the left, top, right, and bottom edges of the circle, and width
is the width of the line used to draw the circle. You can add extra arguments such
as outline="red" to change the color of the line and £ill="blue" to change the
internal color. I particularly like the activeoutline and activefill arguments,
which work in the same way but only show their colors if the mouse is over the
marker. Experiment until you have a marker design you like.

You should now have a program that looks like something similar to the
following screenshot:

m Cambridge, UK R

M1} gi S The Meadows
13 oY Community
= Centre
j’?,,,. River Cam
e
o Oy
07 S
% ' Ches
T o T),
;_-‘: 5 Fen Dittar
4 o =
"3, @ Hige” 5
: 3 5
Mictar. 3
g fq =
4 &) o] \q?—“ e
41303 Midsurmmer 2 W ey
T 2 ! ket By
k 3 Common & Z RAL
4 = b =
= B
(W11 Cambridge
&
i BT Parker"
The Fitzwilliam = ﬂ.-:g;s
- Museum rlg,__?q
e o 4603 4 &7
=, F 0 b A
e] o University of e
L Cambridge (= = @
o Botanic Gardens
i <
: 2 herry
&
oF o Hinten
§‘ ¥,
o & ey = &
gﬁ- - & Cherry Hinton
& i g Hall Park Fi
=]
=) = A
: g LongRd Wap.dsts ©2014 Google

[65]

Making an Interactive Map of Your City

Adding labels

It would be useful if whenever we clicked on the map, along with adding a circular
marker, we could also add a few words to describe what it is we're marking.

Basic labels

Getting some text from the program's user is going to be slightly complex, so let's
create a simple version first to make sure we have the right code structure. Add the
following two lines of code right at the end inside the canvasclick function:

label = getlabelname ()
widget.create text (x, y+2*size, text=label)

The first line of code gets some text from a function that we haven't written yet
called getlabelname. This function will eventually ask the user to type some text
into a small pop-up window, but for now, it will just give us a default message. The
second line of code draws our text at a particular position just underneath the circle.
As with widget .create oval earlier, widget.create text allows the text color to
be set using the extra arguments of £ill="colour" and activefill="colour".

Here is our most basic version of the getlabelname function. We will flesh it out in
the next section. Since it is used in canvasclick, getlabelname needs to be placed
somewhere before it in the program. Putting get labelname immediately above
canvasclick is a good idea because the two functions are used together, and this
way, we can see both of them in the Edit window at the same time as follows:

def getlabelname () :
text = "This is a label"

return text

When you run your program, you should now see small text labels appear below
the markers whenever you click on the map.

Pop-up windows

Let's now make getlabelname a little more interesting. We're going to open a new
window that asks the user to give a name for their marker. This window should
have an instruction for the user telling them what to do, a place for the user to
type their marker's name, and a button to click when they're finished.

First, we'll create a new window in a way similar to how we made our main
window. Add the following code at the beginning of get1abelname, somewhere
before the return line (there's a complete copy of the function at the end of this
section if you're not sure where a particular piece of code should go):

[66]

Chapter 4

popup = Tkinter.Tk()
popup.title ("New marker")
popup.wait window ()

This time, we're using Tkinter. Toplevel instead of Tkinter.Tk. We only use Tk for
the main window, and use Toplevel for all the others. The wait window () method
then behaves like mainloop (), and waits until the window is closed.

Next, we'll add a label with the instruction for the user. Remember that all the contents
of a window must be created after the window is created but before we start its main
loop. Type the following lines of code immediately above popup .mainloop ():

label = Tkinter.Label (popup, text="Please enter a label for your
marker")

label .pack()

The code so far is very similar to the very first window we created at the beginning
of the chapter. You might like to try running the program and make sure that the
new window does appear whenever you click on the map, and that the default
label appears.

Next, we're going to add a textbox for the user to type into, as follows:

labelname = Tkinter.StringVar ()

textbox = Tkinter.Entry (popup, textvariable=labelname)
textbox.pack ()

textbox.focus force()

There are a couple of new things here. First, we create a StringVar called 1abelname.
StringVar is short for String Variable, and string is another word that programmers
use for text. So, labelname is going to hold a text variable for us. Second, Tkinter's
name for a textbox is Entry. This reflects the fact that we can enter text into the

box, rather than simply viewing text which is already there. We pass our variable
to the Entry when it is created. Now, we can access the text in the Entry through
our variable —we'll get to this soon. As usual, we pack the Entry to prepare it to be
displayed. Finally, we use focus_force to make sure that the textbox is the thing
that has the user's attention. The pop-up window will now be the active window,
and the textbox will be ready to type into. Without this line of code, the user would
have to click on the textbox themselves before they could type anything in.

Next, we're going to add a button. When the button is clicked, the pop-up window
should close, and we'll be ready to get the message out of the textbox. Here's the
code we need:

button = Tkinter.Button (popup, text="Done")
button.pack ()

[67]

Making an Interactive Map of Your City

This simply creates a new button that says Done in our new window. With this
in place, the pop-up window should look finished. If you test your code now,
you should see something like the following screenshot:

New marker

Please enter a label for your marker

Done |

However, you'll notice that the button doesn't actually do anything yet. We need
to give it a command. Update the button creation line as follows:

button = Tkinter.Button (popup, text="Done", command=popup.destroy)

Our window called popup has a function called destroy which closes the window.
When the button is clicked, we want this function to be executed, so the window
closes and we can retrieve the label name that the user typed in. To do this, we pass
in the function as an extra argument when we create the button. Finally, to get the
label name, replace the existing text = line with the following line of code:

text = labelname.get ()

That's it! You should now be able to click on the map, type in a label name, and
see it appears when you click on Done. Your running program should now look
something like the following screenshot:

Cambridge, UK
] AL, The Meadows
¥ Z - Canamunity
b 2 Cenire
y 72
B 1 =
- b
Ay] -y -
>z =, \:i.t 1 I“ {I:
Elcny .
-y : __._ o
Mdurnmie 2 o M ungs
1§ | Comamon & : .
Computer Labaratary = O N Z
= Sciance Centre i
11 ?Znn'hrl-:l'r,r- 2
£
_I'
" : 3 o
The Filrmilsam - i ey
Museum Pitce dy =
{l_ o
Ry 'E & Eiiverairy af e
i Cambimige | =
= Botinic Garde
) P e Trairy station
i
T £
¥
& £ .
= | g : Cherry Minton
i} v # Ha Park i
e o el 0014 Doogle

[68]

Chapter 4

This is what your completed getlabelname function should look like:

def getlabelname () :

popup = Tkinter.Toplevel ()

popup.title ("New marker")

label = Tkinter.Label (popup, text="Please enter a label for your
marker")

label.pack()

labelname = Tkinter.StringVar ()

textbox = Tkinter.Entry(popup, textvariable=labelname)
textbox.pack ()

textbox.focus force()

button = Tkinter.Button (popup, text="Done", command=popup.destroy)
button.pack ()

popup.wait window ()

text = labelname.get ()
return text

Code listing

Here is the complete code for the project in this chapter. It can be used if you're

getting strange error messages and want to compare your code with something

that is known to work. It can also help you see which order the various snippets
of code should be in.

The very first thing in the file should be the import statements. It's a good idea to
put these in alphabetical order so we can search through them more quickly when
we import a lot of modules; this is shown in the following code snippet:

import base64
import Tkinter

import urllib

Next, we have two functions that work together. The first one creates a web address
and the second downloads the map image from that address as shown in the
following code snippet:

def getaddress(location, width, height, zoom) :

locationnospaces = urllib.quote plus(location)

address = "http://maps.googleapis.com/maps/api/staticmap?\
center={0}&zoom={1}&size={2}x{3}&format=gifasensor=false"\
.format (locationnospaces, zoom, width, height)

return address

[69]

Making an Interactive Map of Your City

def getmap (location, width, height, zoom) :
address = getaddress(location, width, height, zoom)
urlreader = urllib.urlopen (address)
data = urlreader.read()
urlreader.close ()
base64data = baseéb4.encodestring(data)
image = Tkinter.PhotoImage (data=base64data)
return image

Then, we have the functions to deal with the pop-up window that collects the label
to give to a marker on the map. The first function tells the window what to do when
Done is clicked and the second then uses this function when it builds the window
as shown in the following code snippet:

def getlabelname () :

popup = Tkinter.Toplevel ()

popup.title ("New marker")

label = Tkinter.Label (popup, text="Please enter a label for your
marker")

label .pack()

labelname = Tkinter.StringVar ()

textbox = Tkinter.Entry(popup, textvariable=labelname)
textbox.pack ()

textbox.focus force()

button = Tkinter.Button (popup, text="Done", command=popup.destroy)
button.pack ()

popup.wait window ()

text = labelname.get ()
return text

We then have the function that is executed whenever the map is clicked. This makes
use of the preceding functions as follows.

def canvasclick (event) :
X,y = event.x, event.y
widget = event.widget
size = 10
widget.create oval (x-size, y-size, x+size, y+size, width=2)

[70]

Chapter 4

label = getlabelname ()
widget.create text (x, y+2*size, text=label)

Finally, we have the following code that has to be executed when we first run the
program (this function is traditionally called main):

def main() :

location = "Cambridge, UK"
width = 640

height = 480

zoom = 13

window = Tkinter.Tk()
window.title (location)
window.minsize (width, height)

mapimage = getmap (location, width, height, zoom)

canvas = Tkinter.Canvas (window, width=width, height=height)
canvas.create image (0, 0,image=mapimage, anchor=Tkinter.NW)
canvas.bind ("<Button-1>", canvasclick)

canvas.pack ()

window.mainloop ()

if name == " main ":

main ()

Extensions

There are lots of things we could do now that we have a basic working GUI. Here are
a few possible ideas:

Add buttons to zoom in or out

Add a textbox and button to update the location

Add a way of selecting different styles of map marker
Select whether the map is a satellite image or a road map

Save and load the map settings (the location, position of markers, labels,
and so on)

Allow markers and their labels to be changed after they have been created

Complete details on how to use Tkinter can be found online at https://wiki.
python.org/moin/TkInter

[71]

Making an Interactive Map of Your City

Layout

In this chapter, we have used only the pack layout, but there are also other ways of
telling Python where you want your widgets to be displayed.

The pack layout is useful for filling the screen with a single widget (like our map)
or placing widgets in a line (like our window for typing in label names).

The grid layout allows us to line up widgets both vertically and horizontally.

All widgets that we put in the same column form a vertical line, and all widgets

in the same row form a horizontal line. If no row or column is given, Python will
put the widget in the first available place it finds. We can also have a widget reach
across (or span) multiple rows or columns. Try replacing the three . pack () lines in
getlabelname with the following lines of code:

label.grid (columnspan=2)
textbox.grid(column=0, row=1)
button.grid(column=1, row=1)

The pack and grid layouts do not work together. If you would like
to use one of these layouts, you will need to make sure that the same
g layout is used for every widget.

There is also a third option, place, which allows us to set the exact position of the
widget. This isn't used often because pack and grid do such a good job, and it has
too many necessary arguments to summarize here.

Additional widgets

The next few sections give some very short code snippets showing how widgets that
we haven't covered in this chapter can be created. If you want to test them out, put
the code just before the window.mainloop () line in your program. The new widget
will usually appear just below the map when you run the program. If you run out
of space on your screen, try reducing the height of the map to make more space.

Checkbutton

Checkbutton can either be empty or contain a check (tick).

state = Tkinter.StringVar ()

checkbutton = Tkinter.Checkbutton (window, text="Button",
variable=state, onvalue="checked", offvalue="unchecked")

checkbutton.pack ()

[72]

Chapter 4

Along with the button, we also need a Stringvar variable (which is a text variable).
The button has a particular value when it is on (onvalue) and a particular value
when it is off (offvalue). These values are stored in the StringVvar variable.

To access the current state of the button, use state.get ().

Frame and LabelFrame

Frames and LabelFrames simply contain other widgets. They allow us to structure
lots of widgets better. A Frame is a plain container and a LabelFrame adds an
outline and a label, as shown in the following code snippet:

labelframe = Tkinter.LabelFrame (window, text="LabelFrame")
button = Tkinter.Button(labelframe, text="Button")
button.pack ()

labelframe.pack ()

As you can see, we add Button to LabelFrame in the same way we would add it to
a window, by passing LabelFrame as the first argument when we create the button.

Listbox

Listbox has a different option on each line. Options can be selected and deselected
by being clicked on. Let's have a look at the following code snippet:

options = Tkinter.StringVar ()

options.set ("Optionl Option2 Option3")

listbox = Tkinter.Listbox(window, listvariable=options)
listbox.pack ()

Along with Listbox, we also need a StringVar variable to hold the available
options. Each option is separated by a space. We can access the number of the
current selection using listbox.curselection (). (Remember that programmers
like to count from 0, so the first option is at position 0.)

Menu

Menu contains several different options, and some kind of action is taken when an
option is clicked.

topmenu = Tkinter.Menu (window)
dropmenu = Tkinter.Menu (topmenu)

window ["menu"] = topmenu
topmenu.add cascade (label="Menu", menu=dropmenu)
dropmenu.add command (label="Optionl", command=functionl)
dropmenu.add command (label="Option2", command=function2)

[73]

Making an Interactive Map of Your City

Here, we are creating two menus. The first (topmenu) goes across the top of the screen.
The second (dropmenu) drops down when it is clicked. The topmenu can contain

any number of drop-down menus; these are added using topmenu.add_cascade.

The dropmenu can contain any number of options; these are added using dropmenu.
add_command. A different function is executed when each of the options is clicked.
(I've just used the names functionl and function2 as examples. You will need to
actually name the functions in your program.)

Menubutton

Menubutton is very similar to dropdownmenu from the previous section, except that
it is positioned as a button instead of within another menu at the top of the window.
Let's take a look at the following code snippet:

menubutton = Tkinter.Menubutton (text="MenuButton")

menu = Tkinter.Menu (menubutton)

menubutton["menu"] = menu

menu.add command (label="Optionl", command=functionl)
menu.add command (label="Option2", command=function2)

menubutton.pack ()

Message

Message is a lot like Label, which we have already seen, except that it is designed for
longer pieces of text and can spread across multiple lines as shown in the following
code snippet:

message = Tkinter.Message (window, text="This is a message")
message.pack ()

OptionMenu

OptionMenu gives a drop-down list, allowing the user to select one of a fixed number
of options, as shown in the following code snippet:

state = Tkinter.StringVar ()

optionmenu = Tkinter.OptionMenu (window, state, "Optionl",\
"Option2")

optionmenu.pack()

We need a stringvar variable to hold the current selection, and this selection can
be accessed using state.get ().

[74]

Chapter 4

Radiobutton

Radiobuttons are usually used in groups, and only one can be selected at a time as
shown in the following code snippet:

state = Tkinter.IntVar ()

radiobuttonl = Tkinter.Radiobutton (window, text="Optionl",\
value=1, variable=state)

radiobutton2 = Tkinter.Radiobutton (window, text="Option2",\
value=2, variable=state)

radiobuttonl.pack ()

radiobutton2.pack ()

We need a variable to hold the current selection. This time we're using an Intvar
variable (integer, which is a whole number variable), and each button has a value
that will be stored in the variable when that button is selected. The key to only
having one radio button selected at a time is to give the whole group the same
variable argument. The current selection can be accessed using state.get ().

Scale

Scale gives a slider that can be used to choose a value between two limits as shown
in the following code snippet:

state = Tkinter.IntVar ()

scale = Tkinter.Scale(window, label="Scale", from =0, to=10,\
variable=state)

scale.pack()

We need Intvar (a whole number variable) to hold the current value, and we can
choose the smallest and largest possible values using the from and to arguments.
We can get the current value of Scale using state.get ().

Spinbox
Spinbox is a box containing a number. Next to the box are two small arrow buttons
that make the number larger or smaller as shown in the following code snippet:

spinbox = Tkinter.Spinbox(window, from =0, to=100, increment=10)
spinbox.pack ()

We choose the smallest and largest possible values for spinbox using the from and
to arguments, and we choose how much the value should change by when a button
is pressed using increment. We can get the current value using spinbox.get ().

[75]

Making an Interactive Map of Your City

Summary

In this chapter, we learned how to make a GUI in Python. We learned how to create
all sorts of different widgets that let the GUI do interesting things, and we also
learned how to react to events, such as mouse buttons, being clicked.

In particular, we created a mapping program that lets us click on the map to mark
points of interest and even add useful descriptions for the markers. We have the
knowledge and skills to add many extra features to our program by continuing

to add buttons and other widgets.

Throughout this book, we've learned about the Raspberry Pi and what it can be

used for. We've learned some core programming concepts and seen how they apply
to both Scratch and Python. They apply to many other programming languages too.
We've seen how programming can be a creative skill and can be used to create games
or build useful tools. Above all, I hope you've found programming fun. It's a really
valuable skill to learn and can provide unlimited entertainment.

If you've enjoyed this book and would like to continue your Raspberry Pi exploration,
here are a few related books from Packt Publishing that you might find interesting:

* Scratch 1.4: Beginner's Guide

* Raspberry Pi Cookbook for Python Programmers

* Instant Minecraft: Pi Edition Coding How-to

* Raspberry Pi for Secret Agents

[76]

Symbols

<program name> [extra information] com-
mand 14

A

Adafruit
URL 38, 53

additional widgets
Checkbutton 72,73
Frame 73
LabelFrame 73
Listbox 73
Menu 73, 74
Menubutton 74
Message 74
OptionMenu 74
Scale 75
Spinbox 75

address
generating 60

apt-cache search <keywords> command 15

B

base64 method 61
basic labels 66
buttonpressed function 47
buttons

adding 39-41

C

canvasclick function 64, 66
cd <directory name> command 14

Index

center=location 59
character
creating 23, 24
flight, controlling 30
launching 28
moving 26
character, moving
initialization 26, 27
keyboard, using 27, 28
Checkbutton, widgets 72,73
code blocks
about 22,23
URL 22
code listing 69-71
command line, Raspberry Pi 13,14
complete code listing 50
controller
using 46, 47
controller base 39
count function 44

E

Edit button 25

extensions
about 35,71
layout 72
widgets 72

F

flight

controlling 30
format function 60
format=type (optional) 59
Frame, widgets 73

G

game
coding 45
ending 32
game, coding
controller, using 46, 47
random module 45, 46
time limit, adding 48
game controller
buttons, adding 39-41
controller base 39
creating 38
Raspberry Pi, connecting 42
general purpose input/output (GPIO) 42
getmap function 61-64
Google Maps
about 59
URL 59
graphical user interface (GUI) 55
gravity
adding 31

H

Hello world!
about 21, 22
program, writing 56, 57
Tkinter 56

image
downloading 61
using 62

inputs, peripherals 7

K

keyboard
used, for creating controller 52
using 27, 28

L

LabelFrame, widgets 73
labels, adding
basic labels 66

pop-up windows 66
layout 72
level

creating 25, 26
Listbox, widgets 73
Is command 13

man <program name> command 14
map

address, generating 60

Google Maps 59

image, downloading 61

image, using 62, 63

obtaining 58
maptype=type (optional) 59
markers, adding

mouse clicks, detecting 64

mouse clicks, reacting to 64
materials

for creating controller 37
Menubutton, widgets 74
Menu, widgets 73,74
Message, widgets 74
mouse clicks

detecting 64

reacting to 64

N

network, peripherals 8
nexttarget function 46
NOOBS

URL 8

(0

OptionMenu, widgets 74

P

physics, adding
bouncing 31
game, ending 32
gravity 31

play function 48, 49

pop-up windows 66

[78]

power supply, peripherals 6
program

writing 56, 57
Python

about 43-45

URL 44, 59

R

Radiobutton, widgets 75
random module 45, 46
Raspberry Pi
connecting to 42
starting up 10-12
troubleshooting 16
uses 15
using 13
Raspberry Pi forums
URL 16
Raspberry Pi, peripherals
inputs 7
network 8
power supply 6
storage 6
video 7
Raspberry Pi, using
command line 13, 14
new software, installing 14, 15
new software, updating 14, 15
Raspberry Pi verified peripherals
URL 6

S

Scale, widgets 75
scoring 33, 34
Scratch
about 20, 21
code blocks 22, 23
Hello world! 21, 22
URL 20
SD card
preparing 8,9
SD Formatter
URL 8
sensor=true/false 59

size=widthxheight 59
software
installing 14, 15
updating 14, 15
Spinbox, widgets 75
sprite 21
storage, peripherals 6
StringVar variable 73, 74
sudo command 15, 50

T
Tab 14
time limit
adding 48
Tkinter
about 56
URL 71
troubleshooting, Raspberry Pi 16

U

Uniform Resource Locator (URL) 61

\'

video, peripherals 7

w

widgets 56

Y4

zoom=value 59

[79]

open source

community experience distilled

PUBLISHING

Thank you for buying
Raspberry Pi Projects for Kids

About Packt Publishing

Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www . packtpub . com.

About Packt Open Source

In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around Open Source licences, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each Open Source project about whose software a book is sold.

Writing for Packt

We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to authorepacktpub. com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

open source

community experience distilled

PUBLISHING

Instant Raspberry Pi Gaming
ISBN: 978-1-78328-323-1 Paperback: 60 pages

Your guide to gaming on the Raspberry Pi, from
classic arcade games to modern 3D adventures

1. Learn something new in an Instant! A short,
fast, focused guide delivering immediate
results.

Short | Fast | Focused

Raspberry Pi Gaming

2. Play classic and modern video games on your
new Raspberry Pi computer.

3. Learn how to use the Raspberry Pi app store.

4. Written in an easy-to-follow, step-by-step

Shea Silv C i ing i i
e== [PACKTI manner that will have you gaming in no time.

Raspberry Pi Networking

Cookbook
ISBN: 978-1-84969-460-5 Paperback: 204 pages

An epic collection of practical and engaging recipes
for the Raspberry Pi!

1. Learn how to install, administer, and maintain
your Raspberry Pi.

Raspberry Pi

Networking Cookbook 2. Create a network fileserver for sharing
documents, music, and videos.

on of practical and engaging

3. Host a web portal, collaboration wiki,

Rick Golden [,,,,.W,] or even your own wireless access pomt.

4. Connect to your desktop remotely,
with minimum hassle.

Please check www.PacktPub.com for information on our titles

open source

community experience distilled

PUBLISHING

Raspberry Pi Home
Automation with Arduino

PACKT

Raspberry Pi Home Automation

with Arduino
ISBN: 978-1-84969-586-2 Paperback: 176 pages

Automate your home with a set of exciting projects
for the Raspberry Pi!

1. Learn how to dynamically adjust your living
environment with detailed step-by-step
examples.

2. Discover how you can utilize the combined
power of the Raspberry Pi and Arduino for
your own projects.

3. Revolutionize the way you interact with
your home on a daily basis.

Raspberry Pi for
Secret Agents

Raspberry Pi for Secret Agents
ISBN: 978-1-84969-578-7 Paperback: 152 pages

Turn your Raspberry Pi into your very own secret
agent toolbox with this set of exciting projects!

1. Detect an intruder on camera and set off
an alarm.

2. Listen in or record conversations from
a distance.

3. Find out what the other computers on
your network are up to.

4. Unleash your Raspberry Pi on the world.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started with the Raspberry Pi
	Materials needed
	Power supply
	Storage
	Input
	Video
	Network

	Preparing the SD card
	Starting up the Raspberry Pi
	Using your Raspberry Pi
	The command line
	Updating and installing new software
	Other uses for Raspberry Pi
	Troubleshooting

	Summary

	Chapter 2: Making Your Own
Angry Birds Game
	Scratch
	Hello world!
	Code tour

	Creating a character
	Creating a level
	Moving the character
	Initialization
	Moving with the keyboard
	Launch!
	Flight

	Adding physics
	Gravity
	Bouncing
	Ending the game

	Scoring
	Extensions
	Summary

	Chapter 3: Testing Your Speed
	Materials needed
	Creating the game controller
	The controller base
	Adding buttons
	Connecting to the Raspberry Pi

	Python
	Coding the game
	Random behavior
	Using the controller
	Adding a time limit
	Bringing it all together

	Complete code listing
	The keyboard version
	What's next?
	Summary

	Chapter 4: Making an Interactive Map of Your City
	Hello world!
	Tkinter
	Writing the program

	Getting a map
	No Internet? No problem!
	Google Maps
	Generating the address
	Downloading the image
	Using the image

	Adding markers
	Detecting mouse clicks
	Reacting to mouse clicks

	Adding labels
	Basic labels
	Pop-up windows

	Code listing
	Extensions
	Layout
	Additional widgets
	Checkbutton
	Frame and LabelFrame
	Listbox
	Menu
	Menubutton
	Message
	OptionMenu
	Radiobutton
	Scale
	Spinbox

	Summary

	Index

