Advanced

Excel
Essentials

TAKE YOUR EXCEL SKILLS TO
THE NEXT LEVEL

Jordan Goldmeier

~ Apress

http://www.it-ebooks.info/

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks
and Contents at a Glance links to access them.

Apress*

www.it-ebooks.info

http://www.it-ebooks.info/

Contents at a Glance

ADOUT The AUTROL ...ceeeviireeeesiresssssssnessssssssssssssnsnssssssnnsssssssnnnsssssnnnnssssnnnnsssssnnnssssnnnnanssnnnnnnssns Xiii
Ahout the TechnICaAl REVIBWEKcuueeeeiireemmssissennssssssnsssssssnnsssssssnsssssssnnnsssssnnnsssnsnnnnsssnnnnnnssns XV
Acknowledgments........cccccuiiisnnmmmnnmmmmmmssssssssssnnnmmesssssssssssnnnneesssssssssnnnnnnnesssssssssnnnnnnnnnsssssnnn XVii

Part I: Core Advanced Excel Concepts.......ccunmmmmmmmmmmmssssssssssnsnsssssssssssssssnnnsss 1

Chapter 1: Introduction to Advanced Excel EssentialS.......cccccurrmmmsssssssmssnnnnmsssssssssssssssnnns 3
Chapter 2: Visual Basic for Applications for Excel, a Refresher.........ccccciurrerssssssnssnsnnnnnas 11
Chapter 3: Introducing Formula CONCeptS.......cccrurmsssmmnsmssssnnnssssssssssssssssnsssssssssssssssssnnssssss 31
Chapter 4: Advanced Formula CONCeptsc.cccmrmusssmmnmmssssssnmssssssssssssssssnssssssnsnssssssnnnnsssns 49
Chapter 5: Working with Form Controlscc.cccuimmmissmmmssssmmsssssmsssssmsssssssssssessssssssssssssnns 67

Part II: A Real World Example...........cmmrrmmimnnmnnnnnnsssssssssssssssssssssssssssss 93

Chapter 6: Getting Input from USers........cccvussmmnmmssssssnsmssssssnsssssssssssssssssssssssssssssssssssnssnsss 95
Chapter 7: Storage Patterns for User Inputcccccmnnnsemmmmnmsssnnnmmssssssmssssssssssssssssnnns 115
Chapter 8: Building for Sensitivity AnalySiS......cccummmmmmsssnnmmmmsssnnmmmssssssmmssssssssssssssssnnsns 137
Chapter 9: Perfecting the Presentationcccccusemminnseennnnnssesnnmnssssnmmsssssesssssns 165
1T 191
\%

www.it-ebooks.info

http://www.it-ebooks.info/

PART I

Core Advanced Excel Concepts

In this part, I'll review the core concepts that make up the essentials of advanced Excel.

Chapter 1 explains what is meant by advanced Excel development, and how this book differs from many
others. For instance, several books place significant emphasis on Visual Basic for Applications code, believing
macros to be the most important feature of Excel development. This chapter will challenge that notion and
present advanced concepts as a product of many different Excel features, including code. Additionally,

I discuss the most important required skill—creativity.

Chapter 2 provides a brief Visual Basic for Applications refresher. I'll discuss how best to set up the
coding environment to make it conducive to headache-free coding. I'll also challenge conventional coding
conventions and propose alternatives that will prove more effective.

Chapter 3 introduces the formula concepts that will be used in this book. The chapter starts with tips
that will make your experience developing advanced formulas run more smoothly. I'll then show you how to
perform advanced calculations by simply using range operators. You'll develop advanced alternatives to the
IF function that will prove more powerful in practice and more readable later on. In addition, you'll
investigate the full extent of Excel’s Boolean logic features.

Chapter 4 continues the discussion of formulas by demonstrating how they can be used with advanced
applications. I take you through several examples applying these formula concepts and demonstrate how they
can be understood with a little bit of algebra. The chapter concludes by introducing the notion of reusable
components, which are spreadsheet mechanics that can be easily reused for other projects.

Chapter 5 shows how advanced capabilities can be built into spreadsheets by using the humble form
control. In this chapter, I argue against using ActiveX and UserForms. Instead, you'll rely on the flexibility of
form controls combined with the speed and prowess of formulas. Chapter 5 concludes with several practical
reusable components that you can start using in your own work right away.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1

Introduction to Advanced Excel
Essentials

I set out to write a book on the essentials of Excel development—that is, a book that concisely presents many of the
development principles and practices I've discovered through my work and consulting experience.

But whether on purpose or by accident, this book has become something considerably more than that. Indeed,
another name for this book could be A Contrarian’s Guide To Excel Development. You see, this book will push
back against the wisdom of other terrific Excel books, including my favorite book, Professional Excel Development
(Addison-Wesley 2005). To be sure, the information in those books is terrific, and whatever merits this book might
achieve, it will likely never come close to the impact of Professional Excel Development.

At the same time, much of the information in these books, I believe, is somewhat dated. For instance, let’s take
the case of Hungarian Notation. Hungarian Notation is a variable naming convention encouraged by virtually all
Excel development books. Even if you've never heard of Hungarian Notation, you've likely seen and used it, if you've
ever looked at or learned from example code. It basically says a variable’s name should start with a prefix of the
variable’s type. For instance, 1b1Caption, intCounter, and strTitle are all examples of Hungarian Notation: the 1bl
in 1blCaption tells us we're working with a Label object; the int in intCounter tells us we're working with an integer
type, and the str in strTitle tell us we're working with a string type. If you've done any VBA coding before, this is
likely not new information.

You might not know this, however: most modern languages have all but abandoned Hungarian Notation.
Microsoft’s .NET style guidelines, for instance, even discourage its use. More than a decade has passed since Microsoft
last recommended Hungarian Notation. I argue that it’s time for a more modern naming style, which I introduce in
Chapter 2.

But this book is concerned with more than just naming conventions. I argue that we should change the way we
think about development. Previous books have placed significant emphasis on user interface with ActiveX objects
and UserForms. This book will eschew these bloated controls; rather, this book will show you how to develop complex
interactivity using the spreadsheet as your canvas. You'll see that it’s easier and provides for more control and
flexibility compared to conventional methods from other books.

In addition, I'll place less emphasis on code and a stronger emphasis on formulas (Chapters 3, 4, and 5). Many
books have narrowly defined the principles of advanced Excel in terms of VBA code. But formulas can be powerful.
And often they can be used in place of VBA code. You might be surprised by how much interactivity you can create
without writing a single line of code. And how much quicker your spreadsheet runs because of it.

This book is divided into two parts. Part I (Chapters 1-5) deals with concepts that are likely already familiar to you.
Specifically they concern VBA code and formulas—but I present these concepts in new ways. Part IT makes up the last
four chapters of the book (Chapters 6-9). These chapters apply concepts from Part I to a real-world example product
I built in my consulting experience. Futhermore, in Part II, you'll learn how to input form data without making your
spreadsheet bloated. You'll also apply some data analytics used in the field of management science.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 © INTRODUCTION TO ADVANCED EXCEL ESSENTIALS

However, if you learn anything from my book, it should be that the process of development never stops.
The most important skill you'll need is creativity. Just as I saw different ways to approach a problem than my predecessors,
so too should you analyze what's being presented to you. Undoubtedly, you'll find even better approaches than I did.
I don’t expect everyone to agree with my approaches, but what’s important is that you understand them, so you can
see what works, what doesn’t, and why. Because you won't become an advanced Excel developer through rote
memorization of the material presented herein; you must learn to think like an advanced developer. This book will
teach you the essentials of doing just that.

What to Expect from this Book

This is not a beginner level book. I assume you have intermediate level experience with formulas and Visual Basic

for Applications. At the very least, you should be able to understand and write both formulas and code. Complete
mastery isn’t necessary; because the topics presented in this book are somewhat new, a mastery in these topics might
not even help you. All that being said, if you're an experienced Excel user—and you have the aptitude and thirst to
learn new things—there’s no reason you won'’t be successful in reading this book! Again, the most important

(and cherished) skill that will guarantee your success is creativity.

What's considered “advanced” may mean different things to different people. Here, we're interested in the
principles that help us become better spreadsheet users and developers. That said, this book will make use of Excel
features such as formulas, tables, conditional formatting, Visual Basic for Applications code, form controls, and charts.
For the most part, I will present a brief refresher on what these features do and how they are used. However, you'll
find this book moves at a quicker pace than beginner level treatments for these items. Features such as PivotTables,
PowerPivot, Power Map, and data tables are not discussed in this book. But you'll find that the principles presented in
these pages are extendable to these topics.

Indeed, this book is most concerned with teaching Excel development as first principles. I will explain what they
are and how best they are used in practice. Once you learn underlying concepts, extending their use into applications
becomes trivial.

Example Files Used in This Book

This book comes with many examples as a complement to the material presented herein. The example files are
organized by chapter. Whenever there is a corresponding example file for the material presented, I'll provide you the
name of the example file in the text. All example files are freely available to download from the book’s Apress web page
(www.apress.com/9781484207352). The files are designed to work in Excel 2007 and newer.

The Two Most Important Principles

There are many different ideas and concepts presented in this book. But I'll be daring and attempt to sum them up as
two key concepts:

1. When it make sense, do more with less.

2. Breakeveryrule.

Note The two most important principles are (1) when it makes sense, do more with less, and (2) break every rule.

www.it-ebooks.info

http://www.apress.com/9781484207352
http://www.it-ebooks.info/

CHAPTER 1 © INTRODUCTION TO ADVANCED EXCEL ESSENTIALS

When It Makes Sense, Do More with Less

You don’t need VBA to do everything. Many times, the reason a spreadsheet is slow is because there is too much
reliance on code. Similarly, too many formulas—especially volatile functions like OFFSET and INDIRECT—will almost
always slow down a spreadsheet. There are better alternatives to these methods. Often, they require less code and can
get more done.

However, we should be wary of brevity for the sake of it. Bill “MrExcel” Jelen and I have a friendly disagreement’
on whether to use Option Explicit inyour code. He says he doesn’t need it because he always writes perfect code to
start with—and that its use needlessly adds more lines of code. I, of course, respectfully disagree. I strongly encourage
youto use Option Explicit. Option Explicit requires that you declare your variables before they're used. That
means that you cannot introduce a new variable in your code on the fly. Listing 1-1 shows code without Option
Explicit; Listing 1-2 shows code with Option Explicit.

Listing 1-1. No Option Explicit

Public Sub MyResponse()
ResponseMessage = "Code Executed Successfully!"
MsgBox ResponseMessage

End Sub

Listing 1-2. With Option Explicit

Option Explicit

Public Sub MyResponse()
Dim ResponseMessage as String

ResponseMessage = "Code Executed Successfully!"
MsgBox ResponseMessage
End Sub

Bill argued using Option Explicit required atleast one additional line of code for every variable. And it might
appear Listing 1-1 is indeed doing more (or at least the same) with less code. But, as I show in Chapter 2, not using
Option Explicit might be more trouble than it is worth. Debugging is much harder without Option Explicit,
and not using it even encourages sloppy code. From my standpoint, leaving out Option Explicit (and the required
variable declaration) is simply getting less done with less code. But however you feel on this particular issue, it’s worth
testing your opinion against that first principle: ask yourself, am I really doing more with less?

Break Every Rule

I truly believe, and stand by, the material presented in this book. But I would have never discovered any of it without
departing from conventional wisdom. Again, I'll keep hammering this point until I am blue in the face: the most
important takeway from this book is creativity. And you cannot be creative without pushing a few boundaries. Don’t
be scared to crash a spreadsheet or two in the pursuit of learning.

You'll see in later chapters that some techniques won’t always be the best choice for every scenario. For instance,
a complex formula that is much faster in practice than a conventional formula might be useless if you must share
your spreadsheet and you're the only one who understands it. There will always be an economy between formula
readability and utility. I present complex formulas in this book, but I also argue that readability should be a factor in
choosing when and where to use them.

'Watch Bill and I fight about this on Excel. TV: www. youtube.com/watch?v=yIRLzN3Dzmw.

www.it-ebooks.info

http://www.youtube.com/watch?v=yJRLzN3Dzmw
http://www.it-ebooks.info/

CHAPTER 1~ INTRODUCTION TO ADVANCED EXCEL ESSENTIALS

Most important, you shouldn’t be satisfied with Excel’s perceived limitations. Over the last several years, I've
been blown away by what I've seen others accomplish with Excel. There is a thriving online community dedicated to
helping people realize their imaginations with spreadsheets. Whenever I need inspiration, Ilook to the community.

For your own consideration, I'll provide two examples of my own work that show what can be done with Excel
when we think creatively. Figure 1-1 shows a three dimensional maze I created. It might surprise you to learn there is
very little code involved. And the “maze” is simply an area chart formatted to look like a three dimensional plane.

DIE|FIGH|I
2 —
3
4 [
5 T
6
7
8
9
10
11
12
13
14 START OVER
15
16 y
17
18
19
20
21| Developed by Jordan Goldmeier for the Option Explicit VBA blog
55 | http:/fOptionExplicitVBA.com
23
o4 In conjunction with Cary Walkin's blog
=7 btto/fwww. CaryWalkin.ca.in
25
26 Modified by Pedro Wave's blog MAZE EDIT
77 | http://pedrowave.blogspot.com

Figure 1-1. A three dimensional maze, made with Excel

The second item I would like to present is a periodic table of elements with Excel, shown in Figure 1-2.
The periodic table uses a mouseover capability. When the user hovers their mouse over a cell, a macro is executed
that updates information about the element. However, the macro uses only a few lines of code, and besides that
update, the functionality is largely driven by formula functions. Moreover, that mouseover capability is one I
discovered by accident. Before I first wrote about it on my blog, it had been considered impossible.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 © INTRODUCTION TO ADVANCED EXCEL ESSENTIALS

. TRANSITION METALS

B ¢ o £ ¥ o i | i K L M n 0 2 o r ! T u v v x ¥
'
2 1 H Created by Jordan Goldmeier for DesdlectAll | Filter Selection
Periodic Table of Elements Sty R
3 pe < ALKALI METALS
3 Maanesium 12 Roliover the periodic table to find ermail:
= more information about a specific jordan@goldmeierconsulting.com P —

lement. :

M H semen 2] . METALS
;) Rollover the filter table on the right : : -
e to highlight specific types of ; 2 2 . LANTHAMIDES
3 e elements. Left.click a filter 1o hold it - ! le 1
| 12 | in place. 4 5 6 7 :
2430 # ACTINIDES

. Na | MQE] F 2

POST-TRANSITION
METALS

. METALINDS
NONMETALS
. HALOGENS

NOBLE GASES

B UNENOWN

GOLDMEIER
Figure 1-2. A periodic table of elements with interactivty previously thought impossible with Excel

Both the three dimensional maze and periodic table are available for you to investigate in the project files
included with this book. While it’s beyond the scope of this book to explain in detail how these particular spreadsheets
were created, they are the direct product of the material I present in the rest of the book. However, if you're interested
in reading how these items were developed, see the links in the sidebar.

LINKS ON DEVELOPING A MAZE AND MOUSE OVER MECHANISM

How to Create a Rollover Effect in Excel: Execute a Macro When Your Mouse is Over a Cell
http://optionexplicitvba.blogspot.com/2011/04/rollover-b8-ovi.html
Roll Over Tooltips and Web Actions on a Microsoft Excel Dashboard

www.clearlyandsimply.com/clearly and simply/2012/11/roll-over-tooltips-and-web-actions-on-a-
microsoft-excel-dashboard.html

Development Principles for Excel Games and Applications

http://optionexplicitvba.com/2013/09/16/development-principles-for-excel-games-and-
applications/

Your First Maze

http://optionexplicitvba.com/2013/09/17/your-first-maze-2/

www.it-ebooks.info

http://optionexplicitvba.blogspot.com/2011/04/rollover-b8-ov1.html
http://www.clearlyandsimply.com/clearly_and_simply/2012/11/roll-over-tooltips-and-web-actions-on-a-microsoft-excel-dashboard.html
http://www.clearlyandsimply.com/clearly_and_simply/2012/11/roll-over-tooltips-and-web-actions-on-a-microsoft-excel-dashboard.html
http://optionexplicitvba.com/2013/09/16/development-principles-for-excel-games-and-applications/
http://optionexplicitvba.com/2013/09/16/development-principles-for-excel-games-and-applications/
http://optionexplicitvba.com/2013/09/17/your-first-maze-2/
http://www.it-ebooks.info/

CHAPTER 1 © INTRODUCTION TO ADVANCED EXCEL ESSENTIALS

Available Resources

As I said in the previous section, sometimes you need some inspiration to help get you going. Here’s a list of resources
T use regularly.

Google

Google...Google...Google! Google is your best friend. If you're ever stuck on a problem, simply ask Google the same way
you might your friend. Usually, you'll find the results in Excel forums where folks have asked the very same questions.

Chandoo

This site, by Purna “Chandoo” Duggirala, is a phenomenal resource for every Excel developer, from novice to
professional. Chandoo covers many topics including dashboards, VBA, data visualization, and formula techniques.
His site is also host to a thriving online forum community.

www. chandoo.org

Cleary and Simply

Clearly and Simply is a site by Robert Mundigl. The site is mainly focused on dashboards and data visualization
techniques with Excel and Tableau.

www.ClearlyAndSimply.com

Contextures

Debra Dalgleish runs the Contextures web site, which focuses on Excel development and dashboards, particularly
with PivotTables. Her approach to dashboards and the use of PivotTables is different from mine, but well worth a read.
She is also the author of these Apress Books:

e Excel Pivot Tables Recipe Book: A Problem-Solution Approach
e Beginning PivotTables in Excel 2007: From Novice to Professional

www . contextures.com

Excel Hero

Excel Hero was created by Daniel Ferry. While his blog is not very active anymore, you will find his older content
incredibly useful. Several of his articles have served as the inspiration for the content found in these pages.

www. ExcelHero.com

Peltier Tech

Jon Peltier is a chartmaster. His web site is full of charting tutorials and examples. He provides sage wisdom on data
visualization and proper data analysis. His web site covers every conceivable thing you might want to do with a chart in Excel.

www.peltiertech.com

www.it-ebooks.info

http://www.chandoo.org/
http://www.clearlyandsimply.com/
http://www.contextures.com/
http://www.excelhero.com/
http://www.peltiertech.com/
http://www.it-ebooks.info/

CHAPTER 1 © INTRODUCTION TO ADVANCED EXCEL ESSENTIALS

The Last Word

Above all, advanced development is about thinking creatively. You'll see this in practice in the chapters to come.
Because some of the material is new, it may appear challenging at first. You may even find yourself frustrated at times.
In these moments, it’s best to take a break for a moment, find your bearings, and start from the beginning of the
section in which you left off. The material is complex, but well within your grasp. I urge you to push through to the
end of the book. The material is worth it; but more important, you're worth it. What will you learn in this book will
distinguish you. We’'re only still scratching the surface of what Excel can do. By the time you're finished with this book,
you'll be developing work that might even surprise you.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2

Visual Basic for Applications for
Excel, a Refresher

Of course, no advanced book on developing anything in Excel would be complete without a chapter on the interpreter
language housed within Excel, Visual Basic for Applications-or better known by its shorthand moniker, VBA.

This chapter won’t be an introduction to VBA but rather a review of VBA programming techniques and
development principles found in this book and practiced throughout most of my career. What follows may appear
unconventional, at first. Indeed, it may differ somewhat from what you've been previously taught. However, I don’t
leave you with a few instructions and no guidance. Instead, I'll explain in detail why I believe what I believe—and
why you should believe as I do. If you find that you don’t—and I certainly welcome disagreement—consider the other
important—actually, more important—takeaway from this chapter: the code choices and styles we use should always
follow from a set of principles, guidelines, and convention. When you code, do so with structure and meaning. Know
why you believe what you believe.

But, the most important thing to do right now is to ready yourself to begin coding. This requires that you set the
right conditions in your coding environment.

Making the Most of Your Coding Experience

I tend to get more done when I'm less frustrated. I'll be so daring to suggest you're probably the same way. And let’s
not kid ourselves: coding in VBA can be a frustrating experience. For instance, have you ever been halfway through
writing an IF statement and then realized you needed to fix something on another line? So you click that other line
and Excel stops everything to pop up a message box saying that you've written a syntax error, like in Figure 2-1.
Chances are, you already knew that. In fact, you wanted to change an earlier line in the code to prevent another error
from happening.

11

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2~ VISUAL BASIC FOR APPLICATIONS FOR EXCEL, A REFRESHER

Option Explicit

Public Sub AnnoyingPopus()

Dim bDoIHateAnnoyingPopups As Boolean

bDoIHateAnnoyingPopups = False

Microsoft Visual Basic for Applicati.. SHESE

If Not bDoIHateAnnoyingPopups

End Sub y !-\

Compile error:

a Expected: Then or GoTo

Help

Figure 2-1. That all-too-annoying popup error box telling you what you likely already know

Tell Excel: Stop Annoying Me!

I mean, nobody’s perfect, but you don’t need this popup ruining your coding flow every time you click to another line.
So, save yourself from unnecessary popups by disabling Auto Syntax Check from the Options dialog box, which you
access by selecting Tools > Options (see Figure 2-2). This will only disable the popup. The offending syntax error is still
highlighted in red—in other words, you don’t lose any functionality, just the annoyance.

&

Options

(e |

Edtor | Edtor Format | General | Docking |
—Code Settings

[Auto Syntax Check

[V Require Variable Dedaration

[V Auto List Members

[V Auto Quick Info

[V Auto Data Tips

¥ Auto Indent

~ Window Settings
[V Drag-and-Drop Text Editing
[V Default to Full Module View
¥ Procedure Separator

Tab Width: |4

-

Figure 2-2. Uncheck Auto Syntax Check for distraction-free coding

12

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ' VISUAL BASIC FOR APPLICATIONS FOR EXCEL, A REFRESHER

Make Loud Comments

If you comment your code regularly—and you should—you’ve probably noticed comments don'’t “stand out” very
much. In fact, I'll be the first to admit I've gone through code and missed comments because they've “blended in”
with their surroundings. Figure 2-3 shows perhaps a more extreme example involving rather busy code, but the point
remains: the two comment markers (') I've placed in the routine are not easily or immediately found.

Public Sub CommentTest ()
MsgBox "in
MsgBox "2 "
MsgBox "3 "
MsgBox "4 "
MsgBox " 5 "
MsgBox "6 " !
MsgBox " 7 "
MsgBox " g "
MsgBox " g n
MsgBox " io "
MsgBox " 11 »
MsgBox " iz "
MsgBox "14 wo
MsgBox " i5 "
MsgBox "16 "

End Sub

Figure 2-3. Comment markers at 6 and 14 blend in with the code

Luckily, you don’t have to use the preset colors. In fact, you can make the comments stand out. Go back to the
Options dialog box from the Tools menu. Click the Editor Format tab and select Comment Text from the Code Colors
list box. Below the list box you can specify the foreground and background color, which are the text color and highlight
properties, respectively (see Figure 2-4). Personally, I like using a dark blue foreground and light blue background
(see Figure 2-5). You'll have to try this on your own to get the full effect; to that end, and to preserve the formatting
guidelines of this book, the highlight does not appear in the code listings throughout the book.

13

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2~ VISUAL BASIC FOR APPLICATIONS FOR EXCEL, A REFRESHER

[Options ﬁ |

Edtor Edtor Fomat | General | Docking |
i~ Code Colors

Font:

Normal Text - | Courier New (Arabic) |
Selection Text =

Syntax Error Text |= Size:

Execution Point Text | 10 -

Breakpoint Text T

Comment Text : -

Keyword Text = [V Margin Indicator Bar

—~Sample

Foreground: Background: Indicator: ‘ ’ ABCXYZabcxyz

(o] [Ato <] [0 =]

| OK I Cancel Help

"

Figure 2-4. The Editor Format dialog box

Public Sub CommentTest ()
MsgBox "1™
MsgBox "2 "
MsgBox "3 "
MsgBox "4 "
MsgBox " 5 ™
MsgBox "6 " *
MsgBox " 7

MsgBox " g "

MsgBox " g "
MsgBox " io0 =

MsgBox " i1 v

MsgBox " -

MsgBox "14 LN

MsgBox " i5 "
M=gBox "16 "
End Sub

Figure 2-5. Let your comments be heard with bold colors

Pick a Readable Font

Leave that Options dialog box open because you'll need it once more. By default, Excel uses Courier New (Figure 2-6)
as its default coding font. Again, this font, like the comment style defaults, doesn’t emphasizes the clear readability.
I prefer the font Consolas shown in Figure 2-7 because I think it does a much a better job in this regard.

14

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ' VISUAL BASIC FOR APPLICATIONS FOR EXCEL, A REFRESHER

Cption Explicit

Public Sub CommentTest ()

End Sub

MsgBox "Try Reading this Font."

Figure 2-6. Sample code with Courier New as the font

| Option Explicit

Public Sub CommentTest()
MsgBox "Try Reading this Font."
End Sub

Figure 2-7. More readable text with Consolas

You can change the font by selecting Normal Text from the list box (Figure 2-4) and using the font dropdown
on the side of the dialog box. Excel gives you lots of fonts to choose from, but the best fonts with which to code are

those of fixed width. So if you choose something other than Consolas or Courier New, make sure to pick a readable,

fixed-width font.

Start Using the Immediate Window, Immediately

The Immediate window is like a handy scratchpad with many uses. If the Inmediate window is not already open,
go to View » Immediate Window in the Visual Basic Editor. You can type calculations and expressions directly into
the Immediate window using the print keyword. Figure 2-8 provides some examples of typing directly into the

Immediate window.

[Immediate

Microsoft ﬁ:sel ﬁ]

helle

print 2 + 2

4

print sheetl.Range("al").Value
I am the value stored in Al
msgbox "hello”

Figure 2-8. The Immediate window

www.it-ebooks.info

15

http://www.it-ebooks.info/

CHAPTER 2 VISUAL BASIC FOR APPLICATIONS FOR EXCEL, A REFRESHER

In addition, you can also print the response of a loop or method directly into the Immediate window. To do this,
use Debug.Print. Listing 2-1 shows you how.

Listing 2-1. Using Debug.Print to Write to the Immediate Window While in Runtime

For i = 1 to 100

Debug.Print "Current Iteration: " & i
Next i
Debug.Print "Loop finished."

Opt for Option Explicit

VBA doesn’t require you declare your variables before using them—that is, unless you place the words Option Explicit
at the top of your code module. Without Option Explicit, the For loop from Listing 2-1 would run without problems.
When you use Option Explicit, you must declare all variables before they are used. In Listing 2-2, I've used the Dim
keyword to declare the integer i.

Listing 2-2. A For-Next Loop with Declared Variables

Dim i as Integer
For i = 1 to 100
Debug.Print "Current Iteration: " & i
Next i
Debug.Print "Loop finished."

If you forgo Option Explicit, asIdid in the first instance, Excel will simply create the variable i for you.
However, that 1 won’t be an integer; rather it will be of a variant type. This may not sound like such a bad thing
at first, but letting Excel simply make variables for you is a recipe for trouble. What if you misspell a variable, like
RecordCount, as I've done in Listing 2-3?

Listing 2-3. An Example of a Variable Created on the Spot Because Option Explicit Wasn't Used

RecordCount = 1
Msgbox RecordCout

Excel won't alert you to an error. Instead, it will simply create RecordCout as a new variable. Do you trust your
ability to find misspellings in your code quickly?

In practice, I've found using Option Explicit alleviates many potential headaches. So do yourself a favor, in
the Option dialog box (Tools » Options), check Require Variable Declaration to Excel to automatically (and proudly)
display Option Explicit atthe top of every module. And when the error in Figure 2-9 appears, give yourself a pat on
the back for not having to scour your code to find your misspellings.

Microsoft Visual Basic for Applicati... ﬁ

! Compile error:

Variable not defined

Figure 2-9. Breath a sigh of relief! You have Option Explicit on the case!
16

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ' VISUAL BASIC FOR APPLICATIONS FOR EXCEL, A REFRESHER

Seriously, I can’t tell you how important Option Explicit is.I'd repeat “Always use Option Explicit!” 1,000 times
here if I could. But I'll just let Excel do it for me instead. Paste the following formula into an empty cell before moving
to the next section.

=REPT("Always use Option Explicit! ",1000)

Naming Conventions

A naming convention is a common identification system for variables, constants, and objects. By definition, then, a
good naming convention should be sufficiently descriptive about the content and nature of the thing named. In the
next subsections, I'll talk about two naming conventions. The first, Hungarian Notation, is the most common notation
used for VBA coding. Indeed, I'm unaware of any book that has argued against its use—that is, until now. The second,
my preferred notation, is what I call “loose” CamelCase notation, and it’s similar to the standard for just about all
modern object-oriented languages.

Hungarian Notation

In this section, I'll talk about Hungarian Notation. In this notation, the variable name consists of a prefix—usually
an abbreviated description the variable’s type—followed by one or two words describing the variable’s function
(e.g. its reason for existing). For example, in Listing 2-4, the “s” before Title is used to indicate the variable is of
String type. The term “title,” as I'm sure you can guess, describes to the string’s function—in other words, its reason
for existing.

Listing 2-4. An Example of Hungarian Notation

Dim sTitle as String
sTitle = “The new spreadsheet.!”

Table 2-1 shows some suggested prefixes for common variables and classes.

Table 2-1. Prefixes Suggested by Hungarian Notation

Prefix Data Type

B Boolean

D Double

I Integer

S String

Vv Variant

Rng Excel.Range
0Obj Excel.Object
Chrt Excel.Chart

Ws Excel.Worksheet
Wb Excel.Workbook

17

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 VISUAL BASIC FOR APPLICATIONS FOR EXCEL, A REFRESHER

In this book, I will discourage the use of Hungarian Notation in your code. I'm not here to tell you that Hungarian
Notation is terrible because it does have its uses. For instance, VBA code isn’t known for having very strict data type
rules. This means you can assign integers to strings without casting from one type to the other. So including the type
in a variables name isn’t a terrible idea at all.

But much of this type confusion can be resolved by using descriptive and proper variables names, as you'll see
in the next few pages. For now, however, it’s a good idea to at least familiarize yourself with Hungarian Notation if you
haven’t done so already. Hungarian Notation is still widely used in VBA to this day, so it’s important that you can read
it proficiently even if you decide in this moment to never use it again. (Good choice!)

The fact is, Hungarian Notation is old. Indeed, in many ways, it’s a relic of a bygone era-namely, the era in which
people still used Visual Basic 6.0. (Those were the days, right?) In fact, Microsoft’s Design Guidelines for .NET libraries
has discouraged its use for more than decade. So what I'm proposing in this next section might feel new, butit’s
actually been around for quite some time.

“Loose” CamelCase Notation

In this section, I'll talk about loose CamelCase notation as my preferred alternative. CamelCase notation begins with a
description (with the first letter in the “lower case,” when it’s a local, private variable—hence the name “CamelCase”)
and usually ends with the object type unabbreviated. For example, the variable in Listing 2-5 refers to chart on a
worksheet for sales.

Listing 2-5. A Demonstration of Camel Back Notation

Dim salesChart as Excel.Chart
Set salesChart = Sheeti.ChartObjects(1).Chart

I'll be honest and admit I'm not always such a stickler about that lower case descriptor, which is why I call my
use of this notation “loose.” The important takeaway when using this notation is to use very descriptive names. It’s
unlikely a variable name like ChartTitle will be confused for an integer in your code. Whether it’s recordCount or
RecordCount, you'll likely understand that count refers to a nonnegative integer.

My rule of thumb is, local primitive types should start with a lower case, if you feel so inclined. Variables that
represent objects should end with the object name unabbreviated. Notice in Listing 2-5 that the variable name ends
with Chart. Ranges should end with Range, etc.

Descriptive names are important. Use a variable name that describes what the variable does so when you come
back to it later, you can remember what you did. If you have a test variable, then (please, for the love of God) call it
“test,’; don’t just call it “t” It's OK to use i in a For/Next loop where the i is simply an iterator and is not used later in
the code, but don’t name variables used to count objects with short names like i, j, k,a, b, c. Finally, there’s really no
good reason to use an underscore in your variable names. They’re not easier to read.

Named Ranges

As I said above, naming convention goes beyond just VBA. Indeed, a proper naming convention should be applied to
all Excel objects, including those that reside on a spreadsheet. Therefore, in this section, I'll talk about naming objects
on the spreadsheet in the form of named ranges.

It's rather common to see Excel developers use the prefix “val” to refer to named cell ranges. This prefix is an
attempt to extend the Hungarian Notation principles into the physical spreadsheet (as if we haven’t already had enough
of it!). However, I still prefer a more modern approach. Specifically, what I like to do is combine the name of the tab and
the function of the variable in to be object-oriented-like. Figure 2-10 shows a good example of what I mean.

18

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ' VISUAL BASIC FOR APPLICATIONS FOR EXCEL, A REFRESHER

16 Calculation.SalesForTheQuarter »

i A B c D
19

20 Sales for the quarter | -i
21
22

Calculation o

Figure 2-10. An object-oriented like naming convetion for named ranges

In Figure 2-10, the name of the tab is combined with the variable. Aside from being more object-oriented-ish, this
type of naming brings other distinct advantages. For one, you can more easily and logically group named ranges that
exist on the same worksheet tab. In addition, as you'll see in the next section, this type of convention works very well
when interfacing between named ranges and VBA.

Sheet Objects

In this section, I'll focus on naming conventions for sheet objects. There’s one property of the sheet object that I'm
a big fan of changing, and it’s the name of the object itself. When you change the name of a worksheet tab on the
spreadsheet, you're actually changing the name of the tab (think of it as changing a caption); you are not, in fact,
changing the name of the worksheet object itself.

If for nothing else, changing the name of the worksheet object is a great way to clear up confusion when looking
at the Project Explorer window. For example, Excel seems to have a problem keeping the names of worksheet tabs
and the names of the objects themselves straight, as I'm sure you've noticed before. Take a look at Figure 2-11 to see
what I mean.

Project - VBAProject x|
e
® @ ddoeSampleData (dkRandomData.xla)
E-&% VBAProject (Book1)
[=-£5 Microsoft Excel Objects
i) Sheet1 (Sheet2)

@) Sheet2 (Sheet3)
--3&] ThisWorkbook

Figure 2-11. The Project Explorer demonstrating a lack of consistency when it comes to worksheet object and
tab names

19

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 VISUAL BASIC FOR APPLICATIONS FOR EXCEL, A REFRESHER

The object name is the item outside the parenthesis; the tab name is the one inside the parenthesis. If I were to
write MsgBox Sheet1.Name in the Immediate window, I would see a response of “Sheet2.”

To change the name of the object itself, go to the Properties window from within the editor (View » Properties
Window, if it’s not already visible) and change the line that says (name). In Figure 2-12, my worksheet tab’s caption is
“Financial Data,” so I'm going to change its object name to FinancialData.

Properties - FinancialData x|
|FinancialData Worksheet |

Aphabetc | Categorized |

FinandalData

DisplayPageBreaks False

DisplayRightToleft False

EnableAutoFilter False

EnableCalculation True

EnableFormatConditionsCalcul True

EnableOutlining False

EnablePivotTable False

EnableSelection 0 - xINoRestrictions

Name Finandal Data

|ScrollArea

StandardWidth 8.43

Visible -1 - xiSheetVisible

Figure 2-12. The Properties Explorer showing how to change the worksheet object’s name

YES, | KNOW IT’S CONFUSING

If you look at the Project Explorer window (Figure 2-12, above), you’ll see that the worksheet object name comes
first and the tab name follows in parenthesis. The Properties Explorer window appears to do just the opposite;

the first name in parenthesis, “(name)”, refers to the object’s name, while the second name item (under Enable
Selection) refers to its name as it appears on the tab. Why did Microsoft choose to do it this way? Your guess is as
good as mine.

Referencing

In this section, I'll talk about referencing. Referencing refers to interacting with other worksheet elements from within
VBA code and also on the worksheet. This is where a good naming convention and proper coding style really makes
the difference.

Let’s take a made-up named range concerning Cost of Goods Sold. Hungarian Notation proponents would give
the named range something like valCoGS (CoGS = Cost of Goods Sold). The notation I suggest would combine the
tab name with a nicely descriptive title (you could make it shorter if you'd like, but I like long titles), something like
IncomeStatement.CostOfGoodsSold. So let’s take a look at why you might prefer a long named range such as this in
the next section.

20

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ' VISUAL BASIC FOR APPLICATIONS FOR EXCEL, A REFRESHER

Shorthand References

This section discusses shorthand references, a syntax you can use in your code to refer named range on a sheet. Here
is where the advantage of the latter notation proves its worth. As you know, you can refer to a named range through
the sheet object where the name resides (technically, you can refer to it through any sheet object, but only on the
worksheet in which it was created will it return the correct information). So, the typical way to read from or assign to
the Cost of Goods Sold named range above using Hungarian Notation might look like this this:

Worksheets("Income Statement").Range("valCoGS").Value
On the other hand, if you use my method, you can employ the shorthand range syntax as follows:
[IncomeStatement.Cost0fGoodsSold].Value

That'’s right! These two lines of code mean and do the exact same thing. Now, which do you think is easier to read
and is more descriptive of what it represents? Which more easily captures the worksheet in which it resides? Which
would you rather use in your code?

Ok, so before you go off using the shorthand notation for everything, I should point out a significant caveat.
Using the shorthand brackets method can become, in certain situations, slow. Technically, it’s a slower operation for
Excel to complete than using a Worksheet object. However, you would really only notice this if you use the shorthand
notation during a very long and computationally expensive loop. For typical code looping, you're not likely to see the
difference, but if you're looking to speed things up inside a loop, it’s best to forgo the shorthand.

Worksheet Object Names

In the previous section, I showed you how to change the worksheet object names. In this section, you'll see why
I think it’s such a good idea.

Think about what you can do with this change. Because the new name reflects some descriptive information
about the worksheet tab, you can use the object itself instead of the Worksheets () function to return the one you're
interested in. Confused? Let’s take a look. Here’s the old way, which takes in the Worksheet’s tab name to return the
worksheet object:

Worksheets("Income Statement").Range("A1")
And here’s what you can do instead:
IncomeStatement.Range("A1")

Again, which do you think easier to understand and work with?

Procedures and Macros

In this section, I'll talk about the benefit of changing sheet names on procedures. Once you've changed the procedure
name, you can also place your macro into the sheet object itself.

Take a look at how cleanly these procedures appear in the Macro dialog box versus the ones housed in a sheet
object with a default name in Figure 2-13. In addition, if you want to call a public procedure stored in a sheet object,
you can simply write IncomeStatement.CalculateNetTotal from within the code of another sheet object (or module)
in Excel. I'll talk about the benefits of storing a procedure in a sheet object (versus a module) in the next section.

21

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 VISUAL BASIC FOR APPLICATIONS FOR EXCEL, A REFRESHER

Macro

Macro name:
Sheet2.CalculateAcidTestRatio Ea

FinancialData.CalculateAcidTestRatio A
FinancialData.CalculateNetincome Step Into
FinancialData.CalculateROI
Sheet2.CalculateNetincome

Sheet2.CalculateROI

(]
3
,]

A Options...
Macros in: | All Open Workbooks EI
Description
Financial Data Financial Data2 @-}

Figure 2-13. A demonstration of changing worksheet tab names and storing procedures therein

Development Styles and Principles

Now that you've set up your coding environment and I've talked about naming conventions, I need to talk development
styles and principles. The following is a list of simple coding guidelines that if you stick to, you'll be creating self-contained,
easy-to-follow code and design in no time. The first principle follows naturally from the last section.

Strive to Store Your Commonly Used Procedures in
Relevant Worksheet Tabs

If you're an avid user of the Macro Recorder you know that Excel writes what you do to an open module. In many
ways, a module feels like a natural place for a procedure. But ask yourself, is there any real reason why you're storing
the procedure there?

The problem with storing your procedures in a module is that it creates really sloppy code. I know what you're
thinking: how dare I say that! You separate your modules into different logical pieces. The items inside each of your
well-named modules are relevant to one another. Chances are, though, the procedures in your model are only used by
one or two spreadsheets. If that’s the case, why not store the procedures in the worksheet objects themselves?

Consider this example I've seen time and time again. You have a Main worksheet tab that acts as a menu to direct
users to several other worksheet tabs. Then, in each of these tabs, you have a button that takes users back to the Main
worksheet. Let’s use the tabs from Figure 2-14 for this example.

22

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ' VISUAL BASIC FOR APPLICATIONS FOR EXCEL, A REFRESHER

Main | Config Edit | View Options
]

Figure 2-14. A common spreadsheet layout in which Main acts a menu to take users to each tab

If you create this direction mechanism via the module method, you get ugly navigational code like in Listing 2-6.
I also assume in Listing 2-6 that you're doing some type of processing work where the user goes from a different
worksheet tab back to Main.

Listing 2-6. Ugly Navigational Code

Links from Main screen

Public Sub From Main Goto_ Config()
Worksheets("Config").Activate

End Sub

Public Sub From Main Goto Edit()
Worksheets("Edit").Activate

End Sub

Public Sub From Main Goto View()
Worksheets("View").Activate

End Sub

Public Sub From Main Goto Options()
Worksheets("Options").Activate

End Sub

'Link back to Main from each screen
Public Sub From Config Goto Main()

Worksheets("Main").Activate
End Sub
Public Sub From Edit Goto Main()

Worksheets("Main").Activate
End Sub
Public Sub From View Goto Main()

Worksheets("Main").Activate
End Sub
Public Sub From Option_Goto Main()

Worksheets("Main").Activate
End Sub

23

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2~ VISUAL BASIC FOR APPLICATIONS FOR EXCEL, A REFRESHER

What do I mean by ugly? Well, creating this mechanism in a module requires you use funky procedure names
to differentiate one from the other. And just take a look at what each of these procedures look like in the Macro
dialog box (Figure 2-15). Each of these names looks so similar. It would be very easy to accidentally assign the wrong
macro. (Are you nodding your head because you've done it before!? I know your pain.) In addition, even if you store
procedures in separate modules, there’s nothing in the Macro dialog box to differentiate for this type of organization.

i

Macro

Macro name:
From_Main_Goto_Options

From_Config_Goto_Main
From_Edit_Goto_Main Step Into
From_Main_Goto_Config
From_Main_Goto_Edit
From Main Goto Options
From_Main_Goto_View
From_Option_Goto_Main
From_View_Goto_Main

> |

0 <
1o
3

. =]

Delete

Macros in: | All Open Workbooks El

Description

Cancel

“ “

Figure 2-15. A mess in the Macro dialog box

But now, let’s take a look at my suggested improvements (including changing the worksheet names above).
You can store the procedures that take you from the Main tab to other worksheet tabs in the Mai n worksheet object
(Figure 2-16).

évﬁ Microsoft Excel Objects
Config (Config)
| Edit (Edit)

] Sheet5 (Options)
4&) Thisworkbook
B View (View)

Figure 2-16. A view from Project Explorer when the worksheet object names are changed

24

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 © VISUAL BASIC FOR APPLICATIONS FOR EXCEL, A REFRESHER
As well, you can use much cleaner-looking procedure headings, as shown in Listing 2-7.

Listing 2-7. Cleaner Code Now Stored in the Main Worksheet Object

Public Sub SendToConfig()
Config.Activate

End Sub

Public Sub SendToEdit()
Edit.Activate

End Sub

Public Sub SendToView()
View.Activate

End Sub

Public Sub SendToOptions()
Options.Activate

End Sub

Next, in each separate worksheet object you would simply use something like the following procedure in
Listing 2-8. As a matter of proper style, you should use the same name, BackToMain, in each worksheet object.
Remember, unlike in modules, procedure names in worksheet objects aren’t global. Because of this, you can use the
same name across different worksheets.

Listing 2-8. BackToMain Stored in Each Separate Procedure. Takes the User Back to the Main Page
Public Sub BackToMain()

Main.Activate
End Sub.

Take a look at Figure 2-8. As you can see, each procedure is much easier to read and understand right away from
within the Macro dialog box. In addition, notice how you've made the code more object-oriented-like. Each tab that
you can navigate to from Main shares the same procedure. It’s as if they are of a similar class. When you add extra
procedures to the worksheet (but keep the one sending users back home) you are inheriting the features of each sheet
and then adding new ones to it.

25

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2~ VISUAL BASIC FOR APPLICATIONS FOR EXCEL, A REFRESHER

Macro

Macro name:
Edit.BackToMain £

Config.BackToMain -

Step Into
Main.SendToConfig
Main,SendToEdit
Main.SendToOptions
Main.SendToView
Options.BackToMain
View.BackToMain

Delete

Options...

g '§

Macros in: | All Open Workbooks B

Description

Cancel

Figure 2-17. The Macro dialog box showing a much clearn presentation and organization of code and procedure names

And another thing...

You thought I was done complaining about putting procedures in modules, didn’t you? Well, I'm not. Because
there’s another problem we need to address head on in this section. So let’s do that by taking a quick survey. Grab a
pen to mark down your answers. If this is a library book, upon returning the book, tell them you found it this way.

26

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ' VISUAL BASIC FOR APPLICATIONS FOR EXCEL, A REFRESHER

THE ACTIVE OBJECT STRESS TEST

Gircle all that apply.

| ran a macro that uses the Selection object. However, | (or the user) selected the wrong worksheet item (either
manually or in the code) and accidentally made undoable changes to everything. This makes me feel

a. Annoyed
b. REPT("I want to scream!", 1000)
c. Like I never want to use the Selection object again!

| ran a macro that uses the ActiveSheet object, but accidentally | was looking at the wrong sheet before running
the macro. Also, | forgot to save everything before running the macro, so now | have start over. | feel

a. Exhausted
b. REPT("I want to scream!", 1000)
c. Totally done using ActiveSheet, forever!

| ran a macro that uses ActiveCell, but the wrong cell was selected for some unforgivable reason. The code
made changes to that cell and a whole bunch of cells around it. Unwittingly, | ended up making incorrect and
undoable changes to the entire spreadsheet. | feel

a. Terrible
b. REPT("I want to scream!", 1000)
c. I'mso over using ActiveCell.

Now take a look at your answers. If you circled C for any of the above questions, you're in luck. | have some really
great news for you in the next section.

No More Using the ActiveSheet, ActiveCell, ActiveWorkbook, and
Selection Objects

You don’t need these objects; in this section, you'll see why. It’s often the case that coding inside a module encourages
you to use these objects, since the procedures themselves aren’t worksheet-specific. But if you're already working
inside the procedure (as I suggest above) you can use the Me object. Me is always the container object in which your
code is housed. For example, if the following code were in Sheetl, the Me object refers to Sheetl.

Me.Range("A1").Value = "Hello Me!"
That’s not all, either. You can use ThisWorkbook instead of ActiveWorkbook to ensure you are always modifying
the workbook in which your code resides. If you want to modify a cell, address it directly like I've done in the code

above. If you want to refer to a chart or shape, why select it first? Which gets to the point more easily, Listing 2-9 or
Listing 2-10?

27

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 VISUAL BASIC FOR APPLICATIONS FOR EXCEL, A REFRESHER

Listing 2-9. Using Selection and Active Objects

ActiveWorkbook.Worksheets("Sheet1").Activate
ActiveSheet.Shapes("Shape1").Select
Selection.Fill.ForeColor.RGB = RGB(0, 0, 0)

Listing 2-10. Referencing Objects Directly
Me.Shapes ("Shape1").Fill.ForeColor.RGB = RGB(0, 0, 0)

Dim salesChart As Excel.Chart
Set salesChart = [SalesChart].Chart

Isn’t VBA great? It sure is, but not for everything. That brings me to the next principle.

Render Unto Excel the Things that are Excel’s, and Unto VBA
the Things that Require VBA

VBA lets you do a lot, but it’s not a great idea to do everything in VBA, especially when it involves reinventing the
wheel. For instance, it’s tempting to store your all your program’s global variables in a module. This method brings the
advantage of total and complete accessibility: the variables can be accessed anywhere at any time by any procedure.

However, these variables are also “freed” from memory whenever your code errors out or whenever you tell Excel
to “reset (Figure 2-18). When this memory is dumped, you must start over—those variables once again become zeros
or blanks. Often those who use this method must create an Initialize or Restore procedure to restore the correct values
to these variables before one can do anything else in the spreadsheet.

Microsoft Visual Basic for Applications lﬁ

! . This action will reset your project, proceed anyway?

oK | Cancel Help

.

Figure 2-18. Hitting OK will reset the values of all those public variables stored in procedures

There’s a better way, people. I don’t need to tell you that Excel is a giant storage closet. It’s a much better idea
to store your application models on the spreadsheet instead of in the module where they are susceptible to being
cleared out every time there’s an error. Just create a new tab to hold your backend variables. Name it something like
Calculations, Variables, Constants—you get the picture. Then use the shorthand range syntax discussed above to
access these ranges. It couldn’t be simpler. And it brings an additional benefit worth mentioning in my next principle.

28

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 ' VISUAL BASIC FOR APPLICATIONS FOR EXCEL, A REFRESHER

Encapsulating Your Work

Encapsulation is a tenant of object-oriented programming that argues (1) associated data and procedures should be
organized together, and (2) access to and manipulation of the former items should be restricted or granted in only
certain circumstances. By coupling together relevant procedures into a relevant worksheet tab, you fulfill the first item.

The second item is fulfilled when you store application variables on the worksheet. This is because the only way
to change these variables is by either writing to them with code or updating them manually behind the scenes. Let’s
say you have a named ranged called Calculate.Input.I can change this variable’s value in the code (see below),
which requires I run a macro.

[Calculate.Input] =1

Or I can change its value by finding it on the spreadsheet and typing in something new, as in Figure 2-19.

Input 3_|

+
Figure 2-19. A worskheet named range variable called Calc.Input

However, if I want to access this variable somewhere else on the worksheet, I must access it through a formula,
like this:

= Calc.Input - 1

Notice that this simply accesses the value stored in Calc.Input—it doesn’t change the value itself. However, it’s
impossible with a formula to change the value of Calc. Input. Like I said above, there are only two ways to change its
value, a macro or a human. This is an example of encapsulation.

The Last Word

In this chapter, I talked about how to set up your coding experience to make the most of it, proper naming
conventions, and development styles and principles. Some of these suggestions were counterintuitive to what is
commonly taught, but explanations on why they were useful for what we do were given. I don’t expect you to leave
this chapter entirely convinced, but hopefully you see the value in developing good coding practices—and why
sometimes doing things differently makes sense.

29

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3

Introducing Formula Concepts

Q: What does every newborn spreadsheet need?

A: Formula

Spreadsheet formulas hold a unique place in advanced Excel development. Most of us are familiar with formulas as a
means to produce results more quickly than with manual calculation. For example, if we want to find the arithmetic
sum of a range, does it make sense to pull out the Burroughs Adding Machine and punch in each item one by one? No.
The very nature of a spreadsheet provides a built-in means to manipulate its elements.

Most of us are used to this type of manipulation with formulas; that is, we use formulas as a means to find and
return results. Spreadsheet formulas, when used for Excel development, however, do much more. They form the
infrastructure upon which much of our work is based.

Throughout this book we will be working with formulas. Some of these formulas will be very complex. When you
first start, they may appear daunting. However, practice makes perfect, and experience is your greatest teacher. The
more you use them, the more you develop a formula literacy. What may have appeared hard to read at first glance
should become easier. But more important than knowing the formulas themselves is understanding the concepts
behind what drives them.

And, of course, Excel includes a few tools and features to help you understand your formulas. Let’s go through a
few of them you can start using now.

Formula Help

In this section, I'll talk about making the most of your formula experience. The following tips should make your life
easier, especially when working with complex formulas.

F2 to See the Formula of a Select Cell

Chances are you're already pretty familiar with F2. But for the uninitiated, pressing the F2 key on a cell containing
a formula will highlight the portions of a spreadsheet upon which the formula depends. If you're trying to evaluate a
formula, F2 is a good first start to your investigation.

F9 for On-Demand and Piecewise Calculation

F9 is the shortcut key to tell Excel to recalculate. If you type =RANDBETWEEN(1, 2) in an empty cell on an Excel
worksheet and then press F9 continuously, you will see that cell update to 1 or 2 at random. (In addition, if you have
any other volatile formulas, those will update too).

F9 can also provide a piecewise, or partial, calculation of a long formula. Take the seemingly complex formula
shown in Listing 3-1.

31

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ' INTRODUCING FORMULA CONCEPTS

Listing 3-1. An Example of a Long, Complex Formula
=IF(SUMPRODUCT (A1:A3*(B1:B3>2))>7, CONCATENATE(A2 & L3), IFERROR(C6, "An error occurred."))
Let’s say you want to evaluate only a part of this formula, specifically the highlighted portion of the same formula

but now in Excel’s formula bar (Figure 3-1).

=IF(SUMPRODUCT(AL:AS%(B1:B3>2))>7, CONCATENATE(A2 & L3), IFERROR|(CG, "An error occurred.”})
Figure 3-1. You can select a portion of the formula to be evaluated immediately

In fact, you can tell Excel to evaluate just that easily. If you highlight the portion as I've done in Figure 3-1, you
can press F9 to see what it evaluates to (see Figure 3-2).

:IF{FALSd, CONCATENATE(A2 & L3), IFERROR(C6, "An error occurred."))

Figure 3-2. Pressing F9 on the highlighted portion evaluates the highlighted portion immediately

You now see this portion evaluates to False. In the formula bar, Excel just rewrites this portion of highlighted text
toread “FALSE.” And you can do this to any portion of the formula. If you click outside the formula bar or press the
escape key, the formula will return to its original, unevaluated text. F9 then, when used with formulas, is the ultimate
on-demand approach for quick formula evaluation.

Evaluate Formula Button

The Evaluate Formula button allows you to step through an entire formula. Here’s how it works. First, click the cell
you're interested in investigating. Then, click the Formulas tab on the ribbon. Go to Evaluate Formulas in the Formula
Auditing group. Take a look at Figure 3-3.

E,':'-’ Trace Precedents D:Z Show Formulas ’_‘
oJ% Trace Dependents /0 Error Checking o
Watch

I_‘; Remove Arrows = '-';??\E:' Evaluate Formula \indow

Formula Auditing
Figure 3-3. The Evaluate Formula button

A dialog box similar to the one shown in Figure 3-4 should appear. The underlined portion is the current
expression to be evaluated. If available, you can go deeper into the formula by pressing the Step In button. You can
Step Out if that level of granularity is no longer need. For formulas that resolve to an error, the Evaluate Formula tool
can be very helpful to understand the conditions right before the error. I find Evaluate Formula an indispensable part
of my Excel Development toolkit.

32

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 * INTRODUCING FORMULA CONCEPTS

Evaluate Formula @ﬁ

Reference: Evaluation:

Sheet1!SES2 = |IF(SUMPRODUCT(A1:A3*(B1:B3>2))>7, CONCATENATE(A2 & -
L3), IFERROR(C6, “An error occurred.”))

To show the result of the underlined expression, click Evaluate. The most recent result

appears italicized.
| Close

Figure 3-4. The Evaluate Formula dialog box

Excel Formula Concepts

In this section, I'll talk about formula concepts you'll be using throughout the rest of this book. To begin,
Excel formulas are made up of four main types:

e Functions, such as AVERAGE(), SUM(), IF()

e Constants and literals, such as number, string, and Boolean values like 2, 100, 1E7,
“Hello world’, and FALSE

e References, such as Al or A1:A20
e Operators,suchas+, -, /,>,:

You're probably already familiar with several of these types. Obviously, functions make up a huge part of formula
use. Constants that are numbers are also probably familiar. However, did you know that Boolean values like TRUE and
FALSE are also constants? Finally, you've probably used references and operations many times by now, but did you
know the colon (:) that forms the range A1:A20 is also an operator?

Operators, in Depth

This section will discuss Excel operators. You're probably familiar with Excel’s arithmetic operators, plus (+),
minus (-), times (*), and divide (/). But besides arithmetic operators, Excel has a text and three reference operators.

Excel’s text operator is the ampersand (&), which stands in for the CONCATENATE function. For instance, the
formulas =A18B1 and =CONCATENATE (A1,B1) do the exact same thing. You've probably also used Excel’s reference
operators many times, the colon (:) in particular, without thinking of them as operators. Excel’s two other reference
operators are the comma (,) and space () characters. Table 3-1 talks about what they do.

33

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ' INTRODUCING FORMULA CONCEPTS

Table 3-1. Reference Operators and Their Descritions

Reference Operator Nomenclature Definition

: (colon) Range operator Combines all cells between two ranges, and the two cells into one
contiguous range.

, (comma) Union operator Combines multiple references into one reference.

(space) Intersection operator ~ Returns only the overlapping cells of one or more ranges.

In the next few sections, I'll go through examples of what you can do with these reference operators.

The Range Operator (:)

In this section, I discuss the range operator. The range operator (:) is one of the most used operators in Excel. It’s an
operator in every sense of the word in that it acts upon two different ranges (which are the operands, if you want to get
technical) and returns a contiguous range. What's so great about the range operator is that you can actually combine
functions, like

A1:INDEX(A:A, COUNTA(A:A))

and

B1:OFFSET(B:B, COUNTA(B:B), 0)

So let’s take a look at an example that shows the power of the range operator.

EXAMPLE: DYNAMICALLY SIZED RANGES

Using the range operator, you can create dynamically sized ranges. This means you can create a range that can
grow and shrink as the list they represent is added to or subtracted from. Both the INDEX and OFFSET formulas
can help you with this mechanism. In this example, they both work about the same way.

Consider the range in Figure 3-5.

A B C
1 My Favorite Colors
2 |Red | 1
Orange
Yellow
Green
Blue
Indigo
Violate

W0 W0 N o oW

=]

Figure 3-5. A sample set of data upon which you will create a dynamically sized range

34

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 * INTRODUCING FORMULA CONCEPTS

If | want a count of all my favorite colors in this example (in real life, | have only one favorite color, and

it's black), | can use the COUNTA function on the range A2 to A8. But what if | want to add to the list? In that case,
| must reapply my formula to accommodate the next color in cell A9. Alternatively, | can just say something like
A2:A1000, where the second range is an arbitrarily large number. Neither the former’s formula reapplication nor
the latter’s arbitrarily high number are very good fixes.

The best solution is to use a dynamically sized range. To do this with the INDEX formula, you can write
=$A%$2: INDEX($A: $A, COUNTA($A:$A)) like in Figure 3-6.

A B C D E F
.My Favorite Colors I
[Red | |=5AS2:INDEX(SA:5A,COUNTA($A:5A))
Orange

Yellow
Green
Blue
Indigo
Violate

0~ O W N

Figure 3-6. A demonstration of the formula that will ultimately help you create a dynamically sized range

Here’s how it works. You supply the entire column range A:A to the INDEX formula. In the row argument of the
INDEX formula, you’re interested in the last row of content in the column range of A:A. COUNTA, which counts
every filled cell in the range supplied to it, will return an 8, since the last row of content is the eighth row down.
When you use INDEX, you’re probably used to its returning values. If you hadn’t added that A1 at the beginning of
the formula, the INDEX function by itself would have simply returned the word “Violate.” But behind the scenes,
Excel is actually returning a reference to the cell containing “Violate,” not just its value. So, effectively, Excel is
returns A8, which becomes A1:A8 in the formula.

When you press Enter, you’ll probably see the formula return the value Red. This is because it’s returning the top
of the range. If you continue to drag the formula down, you’ll see that it returns the other cells in the range too

(if it doesn’t, select the entire range and press Ctrl+Shift+Enter). But to really use dynamically sized ranges to
your advantage, you can assign them to a named range as I've done in Figure 3-7. Make sure when you do it the
cell references are absolute.

Edit Name l_‘_J@ e S

Name: myNamedRangel

Workbook

Comment: 7

[

Refersto: —gheet1!SAS2INDEX(Sheetl!SA:SA, COUNTA(Sheetl 1SA:SA)) |ER:
| ok || cancel |

~

Figure 3-7. Creating a new named range out of the formula

35

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 * INTRODUCING FORMULA CONCEPTS

You can then use that named range elsewhere on your spreadsheet. For example, in cell C8 in Figure 3-8, I've
used the formula =COUNTA (myNamedRange). As you can see, I've added to my list, and the count has updated
automatically. Just imagine using these dynamically sized ranges in charts, dropdowns, and formulas! You’ll get
to do that in the next chapter.

A B C
1 My Favorite Colors Named Range Count
2 |Red 8
3 |Orange
4
5

Yellow
Green
6 Blue
7 |Indigo
8 |Violate
9 Black

Figure 3-8. Using the Name Range elsewhere

You can do the same with OFFSET, using this formula:

=A2:0FFSET(A1,COUNTA($A:$A),0)

Experiment a little and see if you can figure this one out. Remember, if you need help, use the formula help
suggestions from the beginning of the chapter.

Afinal note is in order. There’s also some argument on whether INDEX is faster than OFFSET, since OFFSET is a
volatile function (that means it will recalculate every time the sheet recalculates) and INDEX is not. In general,
| prefer INDEX for this reason.

The Union Operator ()

The union operator (,) is also likely familiar to you. The formula =SUM(A1:A10,C1:C5) employs the union operator to
combine the two disparate ranges into one range upon which to take the sum. Unlike the range operator, which forms
a contiguous range between two cells, the union operator essentially turns the two noncontiguous ranges into one
long range. Think of it like this:

(A1:A10,C1:C5) = {| AL:AL0 | cLes ‘

In this next section, I'll talk about how you can use the union operation to your advantage.

36

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 * INTRODUCING FORMULA CONCEPTS

EXAMPLE: PULLING RANK

Let’s say you wanted to find where a certain number ranks within a series of numbers, when they’re ordered.
For example, if you have an unsorted series of numbers (8,4,6,1, and 2), you can use Excel’s RANK function to find
where the number 6 resides in a descending list of these numbers.

In Figure 3-9, | have the formula =RANK (D2, A2: A6) in cell D2.

A B C D
MNumber
Series
B8 Input Num
Rank 2

[« RNV, R S TV I N
LB I - I

T e

Figure 3-9. A demonstration of finding the rank of a given number within an unsorted list

RANK will automatically turn the range in the given series in descending order (by default, descending is selected;
however, this can be changed in RANK’ s third, optional parameter). The rank of the number 6 then is 2, as shown
in Figure 3-10.

86412

Six is highlighted and is in the second place in the region.

Figure 3-10. A visual representation of how this example works

This function only works when the input number (in D2 above) is a number in the set of the five given numbers.
But what if you want to find where the number 4.4 resides in the ordered series? The formula, left as is, will
return an NA() error if D2 is set to 4.4. To get around this, you need to add the input number to the set of
numbers. You can do this with the union operator, like so:

=RANK (D2, (A2:A6,D2))

If D2 = 4.4, the series (A2:A6,D2) becomes 8, 6, 4.4, 4, 1, 2, which returns the number 3. Consider
how this formula might be useful. If you have a list times, dates, or temperatures and want to return certain
information when an input value is between two boundaries, you can do that with this formula.

The Intersection Operator ()

The intersection operator (), demonstrated as one space, returns one or more cells from overlapping ranges. Figure 3-11
shows that the intersection of range D2:D6 and B4:F4 is 3. You can verify that both of the ranges intersect, or overlap,
at cell D4.

37

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ' INTRODUCING FORMULA CONCEPTS

H4 v| : S =D2:D6 B4:F4
A B CDEF G H I J

1

2 1

3 2

4 45367 | 3]

5 4

6 5

Figure 3-11. The intersection operator in action

You'll learn a creative use for the intersection operator in this next example.

INTERSECTING REGIONS AND MONTHS

38

Let’s say you have a table of units sold by month and region, like in Figure 3-12.

A B C D E F G H
1 Jan Feb Mar Apr May Jun Jul
2 North 326 880 42 59 745 621 960
3 South 974 830 414 462 670 551 60
4 East 201 747 388 748 163 135 32
5 West 413 914 560 331 277 639 685

Figure 3-12. A sample set of regional and monthly data

To save time, you’ve had a macro assign columns B through H to be the named ranges Jan, Feb, Mar... etc. You've
done the same thing for each region, assigning the row ranges to North, South, East, and West.

Then, if you're interested in the sum total of units sold in the East region on January and March, you can use the
formula =SUM(East Jan:March), as shown in Figure 3-13.

EXACT v i | X & [| =SUM(EastJan:March)
A B C D E F G H
1 Jan Feb Mar Apr May Jun Jul
2 North 326 880 42 59 745 621 960
3 South 974 830 414 462 670 551 60
4 East 201 747 388 748 163 135 32[
5 West 413 914 560 331 277 639 685

Figure 3-13. An application of the union operator on sample regional and monthly data

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 * INTRODUCING FORMULA CONCEPTS

The formula returns 1366, which is the sum of 201, 747, and 388. If you want to see the performance for the
eastern region for just the months of January and March but not February, you can use the following formula:

=SUM(East Jan + East March)

If you’re particularly mathematically minded, and hopefully you will be somewhat by the end of the next chapter,
you can simplify this formula like so:

=SUM(East (Jan, March))

Note that East Jan + East March = East (Jan, March), which parallels the Distributive Law of algebra.
I'll go into this in a little more detail later in the next chapter.

When to Use Conditional Expressions

In this section, you're going to dive deeper into conditional expressions. If you've used IF, then you've used a
conditional expression before. Conditional expressions are all about testing things. For example, in the formula
=IF(AB>2, "Yes", "No"), the first argument, AB>2, is the conditional expression. Any expression that uses the logic
operators, =, <, >, etc., is a conditional expression.

So you want to test the value of a cell and return a result if it passes a test or another result if it fails.
Quick: which function should you use?

Was your answer IF? [fit was, then you're not alone. The IF function feels like a natural choice, especially
because the first parameter of the IF function calls for a logical expression. But there are also some instances
where IF isn’t the best choice. The Excel MVP, Daniel Ferry, has gone so far as to argue that the IF function is the
most overused function of all. And, as this chapter will demonstrate, there’s good reason to believe this.

Deceptively Simple Nested IF Statements

One supposed advantage to using the IF function is the ability to make use of nesting conditions. For example,
if I have multiple compounding conditions, I can place IF statements inside the value_if true and value_if false
parameters (Listing 3-2). In my experience, however, IF statements are nested far more often than they need to be.

Listing 3-2. A Prototype of the IF Function
IF(logical test, value if true, value if false)

Even I have to admit that nested IF statements are unavoidable. But I like to save them for formulas that exhibit
natural branching conditions. Consider

=IF(ProjectStatus = "Stopped", IF(Err Code=1, "Halted by internal error.","Uknown error."),
"Project has NOT finished.")

I'would argue this is a good example of the problem with using nested IF statements. Its inherent logic naturally
represents a branching condition (see Figure 3-14).

39

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 * INTRODUCING FORMULA CONCEPTS

ProjectStatus

FALSE TRUE

Stopped?

O

“Project has NOT
Finished.”

Err_Code=1
?

O

“Halted by internal “Unknown error.”
error.”

Figure 3-14. A flowchart showing the branching conditions of your IF statement

Sometimes it’s not always so clear whether the problems represent a compound branching condition. A good
rule of thumb is to start from one of the possible results and work backwards. Ask yourself: does the result naturally
follow from the test condition? In other words: does this result make sense given the conditions?

Confused? I hear you. Well, let’s consider the following example from Microsoft’s very own help guide, shown
in Listing 3-3.

Listing 3-3. An Example of Nested IFs from Microsoft’s Excel Help
=IF(A2>89,"A",IF(A2>79,"B", IF(A2>69,"C",IF(A2>59,"D","F"))))

This formula returns a letter grade based on a student’s raw grade stored in A2. It’s a good example of a problem
that makes for a poor branching condition. The grade you receive isn’t the result of not receiving another grade.

(I know you're scratching your head here but bear with me for a moment). Your letter grade is the result of where
your score falls within one of five different numerical boundaries. If anything, this is a lookup problem. You could
easily employ the RANK function example from above or use the MATCH function. But if you were to frame this problem
organically, the reason a student receives an F is not because they didn’t receive a D, C, B, or A. The IF function above

turns this lookup problem into a branching condition problem when it needn’t be.
Another common example involves using states as numbers. Consider the formula in Listing 3-4.

Listing 3-4. Another Example Using IFs That Isn’t a Branching Condition

=IF(A2=1, "Small",IF(A2=2,"Med", "Large")).

40

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 * INTRODUCING FORMULA CONCEPTS

In this example, A2 holds an encoded Id or state. For an example like this, the states could be anything, but
they usually form some natural ordinal scale. In the example above, the Ids map to the following results: 1=Small,
2=Medium, and 3=Large. We call these categories ordinal because they can be ordered naturally. Here again, IF is not
a good choice. The problem presented is not a branching condition but rather a test of scale. Indeed, for formulas like
these, the CHOOSE function is a much better choice.

CHOOSE Wisely

In this section, I'll go through how to use CHOOSE, and why for some situations it makes for a better choice than IF. CHOOSE
is much like IF, but it can more naturally deal with ordinal data. Listing 3-5 includes the prototype for CHOOSE.

Listing 3-5. CHOOSE() Prototype

CHOOSE (index_num, valuei, value2,...)

CHOOSE analyzes the argument supplied to the index_num parameter and returns the value at the given index
number. In the example above, when index_numis 1, valuel is returned; when index_numis 2, value2 is returned, and
so forth.

In the previous instance, you could simply write =CHOOSE (A2, "Small", "Med", "Large").This appears to
be more closely align with the way this example is naturally formulated. Because of this, CHOOSE makes the data
arrangement more easy to read and understand at first glance. Compare the two arrangements:

IF arrangement

=IF(A2=1, "Small",IF(A2=2,"Med", "Large")).
CHOOSE arrangement

=CHOOSE (A2, "Small", "Med", "Large")

GENERATING RANDOM DATA WITH CHOOSE()

CHOOSE is also great for generating random categorical or nominal data. This type of random data generation

is particularly useful to create test data for your dashboard backend database. All it takes is the addition of the
RANDBETWEEN function. Say you have categorical data of Big, Medium, and Little. You could generate data with the
following formula:

=CHOOSE (RANDBETWEEN(1,3), "Big", "Medium", "Little")

Why This Discussion Is Important

Like the IF statement, CHOOSE can be useful for elements that appear on your next spreadsheet dashboard, decision
support tool, or application.

A nested IF condition will attempt to evaluate every condition until a true value results or terminates to the end
of the nest. CHOOSE makes one evaluation and goes to the specified index. On its face, CHOOSE would seem superior
for scenarios in which a nested condition isn’t necessary. Fewer evaluations means fewer instructions for Excel to
complete. In previous versions of Excel and on older machines, conserving machine processing by using optimal
formula structures really did seem to make a difference. However, now that we've entered the age of multithreaded
processers, I must admit the performance differences have become less noticeable.

41

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ' INTRODUCING FORMULA CONCEPTS

So then why have I made the distinction? Well, using the formula that best matches what you're trying to
accomplish just makes sense. In addition, and perhaps more importantly, when you come back to your formula
later after having been away from your spreadsheet for a while, a formula that better matches your test conditions will
ultimately be easier to once again comprehend, especially if it’s complex in nature.

Ok, you're not convinced. I wasn't at first, either. In the end, there may not be a noticeable difference between
using IF or CHOOSE, I admit. But in the previous chapter I turned conventional coding on its head. And I'll keep doing
so throughout this book.

And if you're tempted to keep using IF, read on. Chances are you'll find it at least one example in which IF isn’t
necessary.

Introduction to Boolean Concepts

In this section, I'll talk about concepts surrounding Boolean expressions. For the unfamiliar, Boolean formulas use a
type of mathematical logic called Boolean algebra and they’re the natural result of conditional expressions.

The most important feature of a Boolean expression is that it always returns one of two mutually exclusive
values: either it returns TRUE, or it returns FALSE. Excel, however, brings another important twist to the TRUE/FALSE
dynamic. Sometimes TRUE can also mean the number one, and FALSE can also mean the number zero. Let’s take a
look in the following example.

FILTERING ODD OR EVEN VALUES

Booleans are great for filtering. Take a look at Figure 3-15. In this example, I've created a mechanism to only
show either odd or even values in the accompanying chart.

A B C D E F G H I J K L
1 Black
Raw Value Odd/Even? Boolean Finak Please Choose Odd
2 Filter Value =
3 1 Odd TRUE 1
4 2 Even FALSE Odd
5 3 Odd TRUE 3 .
6 4 Even FALSE
F i 5 Odd TRUE 5 5
8 6 Even FALSE
9 4
10
11 :
12 9
13
14 1
15 l
16 0
1 2 3 4 5 6

=
~J

L

Figure 3-15. Booleans used for filtering

42

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 * INTRODUCING FORMULA CONCEPTS

| provide the user a dropdown box to select between either showing odd values or even values. On the left, I've
included a table that helps evaluate what the final chart will show. Figure 3-16 shows this table in more detail.

A B C D
1 Black

" Boolean Final
Raw Value Odd/Even? d

2 Filter Value

3 1|Ddd _l TRUE 1
4 2 Even FALSE

5 3 Odd TRUE 3
6 4 Even FALSE

7 5 Odd TRUE 5
g 6 Even FALSE

Figure 3-16. The table that allows for chart filtering

In column B, | use the following formula:
=CHOOSE (MOD(A3,2)+1, "Even","0dd")

So let’s break this down.

Nested inside the CHOOSE conditional is the MOD() formula. MOD performs modulo division, which is a technical
way of saying it performs division like a third grader. Remember when you first started learning how to divide,
3 divided by 2 would equal 7 remainder 1? Well, modulo division performs this same operation but only returns
the remainder part. In the case of MOD(A3,2) you’re simply testing whether the list of numbers given in column
A'is odd or even. As you might recall, when even numbers are divided by two, there is never a remainder
(think of it as a reminder of zero); for odd numbers there’s always a remainder of one.

What you run into is that you’re using the CHOOSE () formula to tell Excel whether to return the word “0dd,” or to
return the word “Even.” CHOOSE (), however, can’t take in numbers that are less than one, and so far, it’s possible
this could return a zero. So, my solution is to add the one at the end. So going back to the original CHOOSE formula,

=CHOOSE (MOD(A3,2)+1, "Even”,"0dd")

...you can see how all the parts fit together.

Moving on to Column C (Figure 3-17), you're simply testing if the contents in Column are equal to the contents of
your dropdown.

EXACT - X v fo | =(83ksis2)
A B C D E F G 8 I) K L M
1
1 Final
Raw Value Odd/Even? 309 o e Please Choose Odd
- Filter Value
3 1] odd =(83=5L52) | 1
4 2 Even FALSE Odd

Figure 3-17. Testing whether the contents of the boolean filter are equal to the dropdown

43

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 * INTRODUCING FORMULA CONCEPTS

This is achieved by writing the following Boolean formula from cell C3:
=(B3=L2)

The parentheses surround the test condition telling Excel to either return a TRUE or FALSE value. When there’s
only one test case, the parentheses are optional. However, it’s good practice to keep parentheses anyway, keeping
in line with the idea presented above that you should match your formulas to manifest the conditions you’re
developing. And, specifically, note that the following two formulas are not equal:

=(B3=L2)+1 =\= =B3=L2+1

Finally, in Column D you multiply columns A and C (Figure 3-18). When the number in Column A is multiplied by
a TRUE value, it's the same as multiplying it by the number one. When multiplied by a FALSE value, it’s the as
multiplying it by zero. The chart is linked to column D so the outcomes in column D are automatically updated on
the chart.

EXACT v x v fe =A3*C3
A B 2 D E F G
1
1 Final
Raw Value Odd/Even? BO? e i
5 Filter Value
w——— u +
3 [1lodd | Fase |=A3*C3 | *{%
—] H
4 2 Even TRUE 2
c =) cAalCeE n

Figure 3-18. The Final Value column of your table

I have to admit: CHOOSE wasn’t the best function for the example above. By all accounts, if you were thinking
I'should have used IF instead, you wouldn't have been off base. The values of "Even" and "0dd" aren’t ordinal.
Numbers are either only evern or odd. And I'm usually of the belief that the more natural the function mirrors the
problem, the easier it is to comprehend. What makes the example above such a good IF problem is because the
Boolean dynamic, that TRUE/FALSE = 1/0, goes both ways. Recall in your test for an even or odd value, the
MOD function was returning either a zero or a one. You could have written =CHOOSE (MOD(A3,2)+1, "Even", "0dd") as
=IF(MOD(A3,2),"0dd","Even") which is reasonably easier to read, and it’s probably easier to comprehend when you
come back to it later.

Condensing Your Work

What makes =IF(MOD(A3,2),"0dd", "Even") so readable is because there are no nested conditions. Once you add
more conditions, it becomes much harder to comprehend at first glance. And, when you represent information on
your spreadsheet, you'll sometimes have to condense formulas from different cells into one to save space. In the
example above, if you want to condense your work, you can do something like this in column D:

=IF(MOD(A3,2),IF(L2="0dd" ,A3,0),IF (L2="Even",A3,0))

44

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 * INTRODUCING FORMULA CONCEPTS

But now the IF function is longer and harder to understand. Maybe it’s time you dispense with the IF function
altogether. But how can you recreate the same conditions without using IF? Well, you can use the exclusive-or
function, XOR, like this:

=XOR(L2="Even" ,MOD(A3,2))*A3

Note XOR is available only in Excel 2013.

The Legend of XOR()-oh

Technically, XOR is not pronounced “zore,” but rather as “ex-or,” which as you've likely figured is shorthand for
exclusive-or. So what the heck does XOR do? Well it’s a type of truth-testing conditional function. You're probably
somewhat familiar with Excel’s cousin truth functions, AND and OR.

Let’s review them first. AND tests if all the supplied conditional expressions are TRUE. If they are, AND returns TRUE.
If one condition is not true, as in FALSE, AND returns FALSE. OR tests if only one argument is TRUE and returns TRUE
when at least one conditional expression evaluates to TRUE. If all arguments passed to OR evaluate to FALSE, OR returns
FALSE. Table 3-2 shows the outcomes for AND and OR formulas when supplied with only two arguments, x and y.

Table 3-2. A Truth Table for AND and OR Functions

X Y =AND(x,y) =0R(x,y)
TRUE TRUE TRUE TRUE
TRUE FALSE FALSE TRUE
FALSE TRUE FALSE TRUE
FALSE FALSE FALSE FALSE

XOR adds an extra constraint: only one of the arguments can contain a value of TRUE. That’s what makes it so
exclusive. It’s like a club where everyone is invited but only one person is allowed to come in—and that person is you,
you lucky dog! You can think of OR as being all inclusive because it does not constrain the amount of TRUE values
required to return TRUE. It’s like a club that everyone can get into (but then everyone leaves because I decide to show up).
The truth table is for XOR is shown in Table 3-3.

Table 3-3. The Truth Table for XOR
X Y =XOR(x,y)
TRUE TRUE FALSE
TRUE FALSE TRUE

FALSE TRUE TRUE
FALSE FALSE FALSE

45

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 * INTRODUCING FORMULA CONCEPTS

Going back to your condensed formula, let’s see how XOR (') works by examining this formula:
=XOR(L2="Even",MOD(A3,2))*A3.
Recall, MOD(A3,2) will return a one when A3 is odd and a zero when A3 is even. In the example above, you're

always testing if the dropdown has “Even” selected. So, let’s say A3 equals an odd value, like the number 3. Listing 3-6
shows a step-by-step evaluation when L2 is even. Listing 3-7 shows a step-by-step evaluation when L2 is odd.

Listing 3-6. Formula Evaluation When L2 Is Even Listing 3-7. Formula Evaluation When L2 Is Odd
If L2="Even" then If L2="0dd" then

=XOR(L2="Even", MOD(A3,2))*A3 =XOR(L2="Even", MOD(A3,2))*A3
=XOR(TRUE, 1)*A3 =XOR(FALSE, 1)*A3

=FALSE*A3 =TRUE*A3

=0 * 3 =1 * 3

=0 -3

So, think about this way: you're actually interested in the inverse relationship between your two conditions.
If L2 has "Even" selected, for the value in A3 to show, it must also be even. For even values, MOD(A3,2) will return a
zero (which is the opposite result of the test L2 = "Even").If L2 has "0dd" selected, the first argument will return
FALSE, but MOD(A3, 2) will actually return a one.

Do We Really Need IF?

For this section, I'll combine everything you've learned so far to answer the question: do we really need IF? The fact is,
many problems that feel like they need IF probably don’t need it. Let’s go through a few quick examples.

Need to test if a cell is blank so you can return a blank instead of a zero?

Use: =--REPT(A2, LEN(A2)>1)
Instead of: IF(LEN(A2) > 1, A2, "")
Note: "--" is shorthand to convert a string into a number.

Need to return a certain range based on a dropdown select?

Just add the numbers 1, 2, 3, and 4 to the beginning of your dropdown items (see Figure 3-19).

46

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3

Region:

1. North
2. East
3. South
4. West

N

oo R W

INTRODUCING FORMULA CONCEPTS

Figure 3-19. Adding numbers to the dropdown items can help you quickly ascertain which item was

selected without using an IF statement

Use: =CHOOSE(--LEFT(A2, 1), NorthRange, EastRange, SouthRange, WestRange)
Instead of: IF(A2 = "North", NorthRange, IF(A2 = "East", EastRange,

IF(A2 = "South", SouthRange, WestRange)

Want to know what grade you got?

Figure 3-20 shows a grade letter calculator.

A B
Final Score 69
Final Grade |D

LS

w

50 F
60D
70C
30 B
90 A

T=- TN - I I - T, B N

Figure 3-20. A grade calculator that uses INDEX and MATCH instead of nested IFs
Use: =INDEX(B4:B8, MATCH(B1,A4:A8,1))

Instead of: =IF(B1>89,"A",IF(B1>79,"B", IF(B1>69,"C",IF(B1>59,"D","F"))))
Need to return a -1 whenever a test condition is zero; otherwise return the value?

This example uses Figure 3-21 as an example.

A B o D E F
1 ol 2 2 8 a 0
2 |=NoT(a1) +A1 2 2 8 4 -1l

Figure 3-21. You can use Boolean functions instead of IF

Use: =-NOT(A1) + A1
Instead of: =IF(A1=0, A1, 0)

www.it-ebooks.info

47

http://www.it-ebooks.info/

CHAPTER 3 * INTRODUCING FORMULA CONCEPTS

The Last Word

I realize some of the material in this chapter might be new for you. And perhaps you're not yet ready to turn your back
on IF. Fair enough; although don’t expect me to use it much from here on out! The point of this chapter is to get your
mind to think differently about certain problems. IF is a common convention, but the popular choice isn’t always the
best. This chapter introduced you to formula concepts you've used many times before but might not have realized
what they were or what they meant. Empowered with new knowledge, I'm confident you'll be able to think about
formulas differently.

The best formulas fit somewhere on a spectrum of performance, readability, and design simplicity. If the formula
you're using to model your problem feels like a good fit, chances are—it is. I firmly believe that formulas that are a
natural fit to a problem give you that “intuitively pleasing” feeling when you look at them. If this chapter has you
thinking how you might do some of your own formulas differently, then my work is done here (well, except for the
other eight chapters coming your way).

48

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4

Advanced Formula Concepts

The previous chapter’s formula examples may have appeared complicated at first, but you should be able to use them
with time, practice, and patience. If you followed the advice at the start of Chapter 3, which was to work through
formulas with techniques like Excel’s Evaluate Formula feature, you should find them easier to understand.

In this chapter, you will investigate how these formulas are applied. Specifically, I will cover the following:

e Filtering and highlighting
e Selection

e Aggregation

Filtering and Highlighting

Following what you learned about ones and zeros in Chapter 3, you can use formulas for filtering results. In Chapter 3,
you employed a mechanism to filter even and odd values using Booleans. Highlighting, as it turns out, isn’t much
different than filtering. Let’s take a look.

Filtering with Formulas

Figure 4-1 shows the tables I've set up for the example (download Chapter4Ex1.xlsx from the project files to follow
along). If you have the example file open, we're starting on the tab, Project List (incomplete). Throughout the example
files, tabs with the suffix “(incomplete)” will refer to the unfinished work we’ll complete together. When available, tabs
with the suffix “(complete)” will refer to completed versions I have built into the spreadsheet, so you can see what the
final version looks like.

Please also make “Project List (incomplete)” look like the times I've mentioned worksheet tab names. On the left
is the raw data. In the middle is the criteria that you want to filter, and on the right are some conditional tables to help
know which items fit the criteria you would like to display. The information in the middle is linked to the Dashboard
tab, which I'll get to in a moment.

49

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © ADVANCED FORMULA CONCEPTS

A

_ijects
Project A
Project B
Project C
Project D
Project E
Project F
Project G
ProjectH
Project |
Project]
Project K
ProjectL
Project M
Project N
Project O
Project P
Project Q
Project R

21 |Projea S

22 |Projecr T
n

W 00~ O W R e

B Lk ket |) |
D00~ O B Wk O

B C
Raw Data Table

NPV Portfolio Risk Project Lead

11,894,611 Low
11,676,808 Med
12,208,436 High
10,972,428 Low
10,439,155 High
10,080,330 High
11,080,632 Low
10,326,082 Low
10,215,675 Low
10,551,834 Low
11,941,962 Med
12,120,026 High
10,259,752 Low
10,253,060 Low
11,158,311 Low
10,703,286 Low
10,736,631 Low
11,508,068 High
10,524,512 High
10,162,742 Low

Larry
Larry
Larry
Larry
Larry
Larry
Barry
Barry
Barry
Barry
Barry
Barry
Barry
Barry
Harry
Harry
Larry
Larry
Larry
Larry

'NW{>1
Portfolio Risk Low | 3 ProjeaC
Project Lead |Larry | 4 ProjectD

| | # Projects
Selected | 1ProjectA
10,000,500 2 Project B

S ProjectE
& Project F
7 Project G
8 Project H
9 Project |
Project)
ProjectK
ProjectL
Project M
Project N
Project O
ProjectP
ProjectQ
ProjectR
Project S
Projea T

Figure 4-1. An example table to demonstrate applied formula concepts

K L
Information Table

NPV Portfolio Risk Project Lead

TRUE TRUE
TRUE FALSE
TRUE FALSE
TRUE TRUE
TRUE FALSE
TRUE FALSE
TRUE TRUE
TRUE TRUE
TRUE TRUE
TRUE TRUE
TRUE FALSE
TRUE FALSE
TRUE TRUE
TRUE TRUE
TRUE TRUE
TRUE TRUE
TRUE TRUE
TRUE FALSE
TRUE FALSE
TRUE TRUE

M N

TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
TRUE
TRUE
TRUE
TRUE

0

TRUE
FALSE
FALSE
TRUE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
TRUE
FALSE
FALSE
TRUE

Let’s take a better look at the table on the right. For the NPV column, let’s set up a conditional to compare
whether the selected NPV is greater than the item in the current row of the Raw Data Table (Figure 4-2).

EXACT

A

Projects

Project B
Project C
Project D
Project £

RN SRV RS TT R Y

IProjectA l

B C
Raw Data Table

X

v

D

fe
E

NPV'PDn‘.folio Risk Project Lead

11_894,6111Low

11,676,808 Med
12,208,436 High
10,972,428 Low
10,439,155 High

Figure 4-2. The Raw Data Table

Larry
Larry
Larry
Larry
Larry

=(B3>ProjectList.NPV)

F | G H

Selected

NPV (%) 10,000,500
|Portfolio Risk | Low
|Project Lead | Larry

1) K

L

Information Table

Projects NPV
1 Project A
2 ProjectB = TRUE
3 ProjectC TRUE
4 Projecc D TRUE
S ProjectE = TRUE

Portfolio Risk Pr
st.NPV)
FALSE

FALSE

TRUE

FALSE

Then do the same comparisons for Portfolio Risk and Project Lead. See Figures 4-3 and 4-4.

EXACT

A

Projects

Project A
Project B
Project €
_Project D

Draiarr F

oo e W R

B C
Raw Data Table

x

v

D

ff

E

NPV Portfolio Risk Prr.uect Lead

11,894, 611|L0w
11,676, 303 Med
12,208,436 High
10,972,428 Low
1M 420 158 Hish

1Larr\f
Larry
Larry
Larry

I zrru

=(C3=ProjectList.PortfolioRisk)

F G H

B Selected |
NPV (). 10,000,500

ortoo ik

_Prngect Lead |Larry

Figure 4-3. You're testing for what level of Portfolio Risk is selected

50

www.it-ebooks.info

| J K

L

Information Table
Portfolio Risk Project Lead

Projects NPV

1 ProjectA TRUE
2 ProjectB TRUE
3 ProjectC = TRUE

4 Project D TRUE
& Drmiart F | TDIIF

M

Show on Front? Index

O 00000000000 8OO

Sk

http://www.it-ebooks.info/

CHAPTER 4 © ADVANCED FORMULA CONCEPTS

EXACT ! - x v fe =(D3=ProjectList.ProjectLead)
A B C D E F G H 1 J K L M N 0
1 Raw Data Table Information Table
2 Projects NPV Portfolio Risk _Project Lead- # Projects NPV Portfolio Risk Project Lead Show on Front?
3 |Project A 11,894,611 Low 'I'Larry I[' Selected 1 Project A TRUE TRUE =(D3=Projectlist Projectle |
4 |ProjectB 11,676,808 Med Larry NPV (>) 10,000,500 2 Project8 TRUE FALSE TRUE FALSE
5 |ProjectC 12,208,436 High Larry Portfolio Risk | Low 3 ProjectC = TRUE FALSE TRUE FALSE
6 |Projectd 10,972,428 Low Larry Project Lead 4 ProjectD TRUE TRUE TRUE TRUE

Figure 4-4. You're testing for which Project Lead has been selected

In the last two columns, you identify which projects you want to be highlighted. Since you're looking for projects
whose values come at the intersection of your criteria, you'll test if each condition is met, and you’ll use AND for that
(Figure 4-5).

[J K L M N 0
Information Table
Projects _NPV _Portfolio Risk _Proiect Lead ! Show on Front? I
LPojectA| TRUE | TRUE | TRUE | [=AND(k3,L3,m3)
Y Draia~t B TDIIE EAICE TODIIE EAICE

Figure 4-5. Testing when all three conditions are met

Finally, for extra help, you'll include the Project’s index in column P. This isn’t itself necessary to complete your
work, but sometimes an extra column of information can help, provided you have enough room for it.

All of this work goes to help the highlighting mechanism developed on the Dashboard tab. Click the Dashboard
(incomplete) tab in example file to see what I'm talking about (shown in Figure 4-6).

51

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © ADVANCED FORMULA CONCEPTS

A B C D E
; 1
3 NPV () | $10,000,000 |
4 Portfolio Risk Low '
5 Projectlead | Larry
6
7 Project Name NPV[S] Risk
8 TRUE 1 ProjectA 11.5M L
9 FALSE 2 ProjectB 11.7M
10 FALSE 3 ProjectC 12.2M H
11 TRUE 2 ProjectD 11.0M L
12 FALSE & ProjectE 10.4M H
13 FALSE & ProjectF 10.1M H
14 |FALSE 7 ProjectG 11.1M L
15 FALSE 2 ProjectH 10.3M L
16 FALSE S Project! 10.2M L
17 |[FALSE 10 Projectl 10.6M L
18 FALSE 11 Project 119M M
19 FALSE 12 Projectl 12.1M H
20 (FALSE 12 ProjectM 10.3M L
21 FALSE 12 ProjectN 10.3M L
22 |FALSE 15 ProjectO 11.2M L
23 |FALSE 16 ProjectP 10.7M L
24 TRUE 17 ProjectQ 10.7M L
25 FALSE 1% ProjectR 11.5M H
26 |FALSE 1% Project$ 10.5M H
27 | TRUE 20 ProjectT 10.2M |

Kl
bl

Figure 4-6. The Dashboard (incomplete) tab

Now take a look at Column A. Column A tests whether the current index in Column B is the same as the index
returned from the Project List tab. Essentially, the result is the same as the Show on Front field in Column O on the
Project List tab (Figure 4-7).

Pre
| i='Project List'IF3 — Show on Front? Index
| u
FALSE HMR“E !
FALSE 2 Pre FALSE 0
FALSE 0
TRUE 4
Fre TRUE 4
FALSE 5 Pre FALSE o

LR TR - -

Figure 4-7. TRUE/FALSE on the dashboard corresponds to backend calculations

52

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © ADVANCED FORMULA CONCEPTS

Conditional Highlighting Using Formulas

In this section, I'll talk about how to add condition highlighting to the spreadsheet. Let’s do the following steps.

1.

TRUE
FALSE
FALSE

TRUE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE

TRUE
FALSE
FALSE

TRUE

Highlight the project table, as I have done in Figure 4-8 by selecting cells C8:C27.

Project Name NPV[S] Risk

1|Project A 11.9Mm L
2| Project B 11.7M M
2| ProjectC 12.2M H
%|Project D 1i.0M L
5|ProjectE 10.4M H
| Project F 10.1M H
7| Project G 11.1Mm L
2| ProjectH 10.3M L
S| Project| 10.2M L
10| ProjectJ 10.6M L
11| Project K 11.9Mm M
12| Project L 12.1M H
13| Project M 10.3M L
14| Project N 10.3M L
15| Project © 11.2M L
1E| Project P 10.7M E
17| Project @ 10.7M L
12| ProjectR 11.5M H
15| ProjectS 10.5M H
20| Project T 10.2M L

Figure 4-8. Selecting cells C8:C27

From the Home tab, go to Conditional Formatting » New Rule » Use a formula to
determine which cells to format.

Click in the address box titled Format Values where this formula is true. In the formula
box, type =(and then click on cell A8, which is the top of the condition list.

A8 will appear as the absolute reference A8. However, you do not want every row to test
only this cell. Rather, you want each row to test against the cell for the row. So press F4
twice to toggle through the absolute reference options until you reach $A8. Then finish the
formula by typing =TRUE). Figure 4-9 shows the correct formula.

53

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © ADVANCED FORMULA CONCEPTS

Edit Formatting Rule . l MJ

Select a Rule Type:

~ Format all cells based on their values I

~ Format only cells that contain

= Format only top or bottom ranked values

» Format only values that are above or below average
» Format only unique or duplicate values

= Use a formula to determine which cells to format

Edit the Rule Description:

Format values where this formula is true:

=(SAB=TRUE) 3.5

Preview: AaBbCcYyZz

[OK][Cancel]

Figure 4-9. The Edit Formatting Rule dialog box

5. Click the Format button. Under the Font tab, select Bold under Font Style. In the Color
dropdown, select the Black color to change the selection from Automatic. On the Fill tab,
choose alight color to serve as the filtered item’s background. I've chosen a light peach
color. Finally, press OK in each dialog box until you've returned to the spreadsheet.

If you've performed these steps correctly, you should see several items highlighted in your list (see Figure 4-10).
To bring more emphasis to these items—and to deemphasize the items outside your selection—highlight the table
range again, C8:C27, and set the font to a gray color that is lighter than black but still readable. I chose the darkest
gray at the bottom of the first color column. Finally, you'll want to get rid of those conditional formulas in Column A.
The easiest way to do this is to hide the entire column by right-clicking Column A and selecting Hide. Alternatively,
I've simply set the font of the condition formulas to white. Personally, I like having the extra margin of white space
on the left side of the screen.

54

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © ADVANCED FORMULA CONCEPTS

=~J

ProjectName NPV(S) Risk

3 1 ProjectA 11.9M L
9 2 ProjectB 11.7M

10 2 ProjectC 12.2M H
11 * ProjectD 11.0M L
12 5 ProjectE 10.4M H
= & ProjectF 10.1M H
14 7 ProjectG 11.1M L
15 2 ProjectH 10.3M L
16 9 Project! 10.2M L
17 10 Project) 10.eM L
18 11 ProjectK 11.9M

19 12 ProjectL 12.1M H
20 12 ProjectM 10.3M L
21 14 ProjectN 10.3M L
22 15 ProjectO 11.2M L
23 16 ProjectP 10.7M L
24 17 ProjectQ 10.7M L
25 12 ProjectR 11.5MmM H
26 1% Project$ 10.5M H
27 20 ProjectT 10.2M L
28

Figure 4-10. A list of highlighted items

One last thought before moving on: I could have created another conditional format formula testing if AB=FALSE
and then colored everything gray based on that. To me, that’s extra work. Conditional formats are volatile actions.
Consider this: no instruction is executed to set the table items that are FALSE to be grayed out if you've already set
them to gray by default. Remember to always be on the lookout for shortcuts.

Selecting

Selection is the process of returning only certain information (thinking of selecting from a group). Selecting is similar
to filtering and highlighting, except that selecting only returns the information you're interested in. Filtering, for
example, simply hides the information you're not interested in. Highlighting does the same as filtering through
emphasizing and deemphasizing certain items. Selection, on the other hand, always contains only the complete set of
information you're interested in. Nothing more or less.

Open example file Chapter4Ex2.x1sx. In this example, you're going to create a range that can grow and shrink
dynamically based on what you want to return. In this way, you'll be creating the mechanism that selects the portion
to return. Go to the Project List tab, and note the column of zeros you've created, as shown in Figure 4-11.

55

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © ADVANCED FORMULA CONCEPTS

N] P Q R S T

Show on Front? Index | Count-non 0s
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
TRUE
TRUE
TRUE
TRUE 10
FALSE
FALSE 0
TRUE 13
TRUE i4
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE

(=] IDO)*-JDD.|D[DDD

Q0000 0

Figure 4-11. The Project List tab

If you recall from the previous chapter, the zeros indicate projects you don’t want to return. Alternatively, the
numbers indicate projects you DO want to return. So, what you need to do now is count those projects. I've already
laid out a spot for this count in cell R3. So go ahead and put this formula into R3:

=COUNTIF(P3:P22,">0")

In the columns next to the box labeled Count-non 0s, set up the column headers as I have in Figure 4-12.

Q R S T U v W X
Selecting
Count-non 0s | Index Location Project Name NPV Portfolio Risk
) 6
) o

Figure 4-12. Column headers that you will use in the process of developing a selecting mechansim

56

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © ADVANCED FORMULA CONCEPTS

Now, follow these steps.

1. Incell T3, type in the following formula (shown in Figure 4-13):

=LARGE (P3:P22,13)

- . - - -~ . - - -

Information Table Selecting

_g_Projects NPV Portfolio Risk Project Lead Show on Front? _lndex_ Count-non 0s | Index Location Project t&l
| 1lProjectA TRUE TRUE FALSE FALSE , ol 6| [FLARGE(SPS3:5P522,13)

Figure 4-13. Using the LARGE function in the Index location

Note what what’s happening here. You're using the index you created in column I to pull out
the nth largest value from within the range indices that aren’t zero. When you drag down,
you'll have grouped all the indices you're interested in at the top of the range (Figure 4-14). You
should find there are six non-zero items at the top—exactly as the formula predicted.

T
Selecting
Index Location P

14[

13

=
o

000000 00000000 N w

Figure 4-14. The LARGE function returns the indices of the items youre interested in at the top of the range

57

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © ADVANCED FORMULA CONCEPTS

2. Now, in cell U3, type =INDEX(A3:B22,T3,), as shown in Figure 4-15.

A B C D S T U v w
1 Raw Data Table Selecting
2 |Projects NPV Portfolio Risk ProjectLead Index Location Project Name NPV
3 |ProjectA | 11,894,611 |Low Larry | 14| =INDEX(SAS3:58522,73,)
4 |ProjectB 11,676,808 |Med Larry 13
5 |ProjectC 12,208,436 |High Larry 10
6 |ProjectD 10,972,428 |Low Larry S
7 |ProjectE 10,439,155 |High Larry 8
& |ProjectF 10,080,330 |High Larry T
9 |Project G 11,080,632 |Low Barry 0
10 |Project H 10,326,092 |Low Barry (]
11 |Project | 10,215,675 |Low Barry 0
12 |Project) 10,551,834 |Low Barry 0
13 |ProjectK 11,941,962 |Med Barry 0
14 |ProjectL 12,120,026 |High Barry 0
15 |Project M 10,259,752 |Low Barry 0
16 |ProjectN 10,253,060 |Low Barry 0
17 |Project O 11,158,311 |Low Harry 0
18 |Project P 10,703,286 |Low Harry 0
19 |ProjectQ 10,736,631 |Low Larry 0
20 |ProjectR 11,508,068 |High Larry o]
21 |Project S 10,524,512 |High Larry (]
22 |Project T 10,162,742 lLow Larry 0
PR

Figure 4-15. Adding the INDEX formula to the Project Name column

3. When you press Enter you should immediately get a #V/ALUE! error. But don’t worry about
that for now. Using the cell anchor in the lower right of the selected cell, drag the formula
over to V3 to copy it into that cell. Now, with both U3 and V3 selected, click the formula
bar and press Ctrl+Shift+Enter. You should see a full row returned of the project name and
NPV values. Now drag down.

In case you're wondering why you need to do this, remember that INDEX allows you to return
one or more cells from within an array; all you must supply are the row(s) or columns(s) you'd
like to grab. Because you returned more than a single cell, you had to use Ctrl+Shift+Enter.

Note Remember, any time you return more than a single cell, you have an array formula. When you have an array
formula, you must use Cirl+Shift+Enter.

4. Now for some fun! You're going to use a dynamic range formula you learned about in the
previous chapter. Remember, dynamic ranges requires two things: (a) a contiguous range;
and (b) the total amount of items in the range. Luckily, the first thing you did was create
that count of non-zeros!

58

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © ADVANCED FORMULA CONCEPTS

In a cell off to the side (I've chosen X3), type =OFFSET(V3,0,0,R3), as shown in Figure 4-16.

v] " > I U v w A Y L
Selecting
ex | Count-non 0s . Index Location Project Name .NP\.I'

i —————— —
0 L G_I 14 ProjectN |_10253050_| |=OFF$EI'(:—'.- 53,0,0,5RS3

0 13 ProjectM 10259752

Figure 4-16. Using OFFSET to create a dynamic side function

Remember how OFFSET works. That fourth argument specifies the height of the offset
range to be returned. Here, you don’t actually want the returned range to be moved from
cell V3 (which is why you supply a zero in the first two arguments); you simply want V3 to
be the starting point and to have the range “grow” (or expand) downward from there.

5. When you press Enter, the result returned should be the same value as in V3. If you drag
X3’s anchor downward, you should see all six values returned, and you'll start getting
errors thereafter. At this point, you're simply testing the formula. Now that you know it
works, you're going to assign it to a named range.

So, click on X3 and copy the formula now that you know it’s working. Go to Name Manager
from the Formulas tab. Click on New. Give it a name like “ProjectList.ReturnSelection”
and paste the formula you copied into the Refers To box. Press OK until you're back at the
spreadsheet screen.

6. Go to the dashboard worksheet.

7. From the Insert tab, insert a column chart. If the chart automatically selects data,
right-click the chart and go to Select Data and remove any preloaded data.

8. Now, click the Add button and press OK for whatever default data is loaded. Series1 with a
value of 1 should be the only series in the Select Data dialog, as shown in Figure 4-17.

. Select Data Source IM\
Chart data range: |

The data range is too complex to be displayed. If a new range is selected, it will replace all of the series in the
Series panel.

Legend Entries (Series) Horizontal (Category) Axis Labels
7 Add ' £ Edit] 7< Remove 3 Edi1§‘
v Seriesl 1

Cancel

Hidden and Empty Cells | OK

Figure 4-17. The Select Data Source dialog box

59

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © ADVANCED FORMULA CONCEPTS

10.

Click OK to return to the spreadsheet. Now click the single column displayed to see its
formula in the formula bar.

Now you're going to replace the “{1}” with a reference to the named range you just created.
For this series, you must include the workbook name, as shown in Figure 4-18,

otherwise this mechanism won’t work. Why? Not sure: that’s just what Excel wants.

I don’t ask questions.

=SERIES(,,'Chapter 10 Ex3 ,xIsx'!ProjectListReturnSeIection.lﬂ

Figure 4-18. The SERIES function that appears when you click on a chart

14000000

12000000

10000000

8000000

2000000

Viola! If it worked correctly, you should see a series of columns like in Figure 4-19.

Chart Title

1 2 3 4 =

Figure 4-19. A dynamic chart that is automatically linked to your data selections

11.

60

The last step you'll perform is to change the numbers at the bottom of the chart to their
correct labels. You actually don’t need to create a new dynamic range for this. You can
simply supply an entire range of labels and Excel will know to only pull back the top labels
automatically.

To see what I'm talking about, right-click the chart again and go to Select Data. Press the
Edit button under the Horizontal category. Select the entire range of projects in column
U from the Project List worksheet and press OK until you reach the spreadsheet screen
(Figure 4-20).

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © ADVANCED FORMULA CONCEPTS

S T U v W X Y Z AA
Selecting
Index Location Project Name NPV
i 19iProjects | 10524512
18iProjectR {1 pic 1abels il =)
B:Project F :
5ipr°jgd £ i 1| | Avis label range: :
3|ProjectC . ='Project List [inwmplele]'!SUSB:S@ = Project §, Pro...
OEPm{ectA E [OK b_] I Cancel
0yProject A !
OEProjectn i 1189361
O:ijectA 111894611
NiPraisrct & 1 11R94R11

Figure 4-20. The Axis Labels selection box

Now the labels are automatically assigned! Go ahead and mess with the dropdown boxes to see it work in action.
Okay, one last piece before moving on. Go ahead and click one of those columns again in the chart and look
at the formula bar. You should see that the range you've entered for your labels is now the second argument in the
formula box. Just like for the series values, you could have simply entered the label range directly in the formula box.
In case you're interested, here’s how the series formula breaks down:

=SERIES(series title , series label range , series value range , series index)

If you'd like to supply this chart a title directly, go ahead and type a string into that series title parameter.
That last parameter, series_index, holds the current index of the series. If you have multiple series in your chart, setting
the series_index will change the series order by inserting the series you're currently editing at the index you give.

Aggregating

In this section, I'll talk about aggregation, particularly the formulas you can use for aggregation. I'll also take a detour
into some algebra, but nothing terrible. I promise.

Using SUMPRODUCT for Aggregation

Aggregation is the process of grouping similar items and presenting them as a whole. Excel has several aggregation
formulas that you might already use every day including SUM, AVERAGE, and COUNT. If you want to get even more
complicated—as if life isn't already complicated enough!—you could use the SUMIF/SUMIFS functions or COUNTIF/COUNTIFS
functions to find the sum and count of multiple ranges of the same length satisfying certain criteria.

Let’s say for the information in Figure 4-21, you were interested in all projects by Larry or Barry in which NPV is
greater than 11,000,000 or portfolio risk is low.

61

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © ADVANCED FORMULA CONCEPTS

A B C D

1 Raw Data Table
2 |Projects NPV Portfolio Ris Project Lead
3 |ProjectA 11,894,611 Low Larry
4 |ProjectB 11,676,808 Med Larry
5 |ProjectC 12,208,436 High Larry
6 |ProjectD 10,972,428 Low Larry
7 |ProjectE 10,439,155 High Larry
8 ProjectF 10,080,330 High Larry

ProjectG 11,080,632 Low Barry
10 |ProjectH 10,326,092 Low Barry
11 |Projectl 10,215,675 Low Barry
12 |Project) 10,551,834 Low Barry
13 |ProjectK 11,941,962 Med Barry
14 |ProjectL 12,120,026 High Barry
15 |ProjectM 10,259,752 Low Barry
16 |ProjectN 10,253,060 Low Barry
17 |ProjectO 11,158,311 Low Harry
18 |ProjectP 10,703,286 Low Harry
19 |ProjectQ 10,736,631 Low Larry
20 |ProjectR 11,508,068 High Larry
21 |ProjectS 10,524,512 High Larry
22 |ProjectT 10,162,742 Low Larry

Figure 4-21. The Raw Data table containing projects, NPV, portfolio risk, and the project’s lead

To do that, you could use this formula, which isn’t very pretty:

=COUNTIFS(ProjectLead, "Larry",NPV,">11000000")+COUNTIFS(ProjectLead, "Larry",PortfolioRisk, "Low")+
COUNTIFS(Projectlead, "Barry",NPV, ">11000000")+COUNTIFS(Projectlead, "Barry",PortfolioRisk, "Low")

This is because SUMIFS and COUNTIFS test for the intersection of data by themselves. There’s no room for an
OR condition in these formulas. But you have alternatives. For example, you could use the SUMPRODUCT formula for this
problem, which would look like this:

=SUMPRODUCT (((ProjectLead="Larry")+(ProjectLead="Barry"))*((NPV>11000000)+(PortfolioRisk="Low")))

I know you're scratching your head, so let’s dig deeper. SUMPRODUCT by its name suggests it was designed for matrix
algebra operations. To wit, Microsoft’s definition of SUMPRODUCT is pretty mathematical. Specifically, SUMPRODUCT
“multiplies corresponding components in the given arrays, and returns the sum of those products” (my emphasis).
But this exactly what’s so great about SUMPRODUCT.

When you write something like (ProjectLead="Barry") you're turning the range given by ProjectLead
into array of TRUE/FALSE based on the supplied condition. That’s from Chapter 3. So something like
(ProjectLead="Larry")*(NPV>11000000) is calculated as shown in Figure 4-22.

62

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © ADVANCED FORMULA CONCEPTS

L M N 0 P Q R S T U Vv
(ProjectLead="Larry")*{NPV>11000000) Dot Product Calculation
Project Lead NPV Project Lead NPV Result

Larry 11,894,611 1 il 1 1
Larry 11,676,808 1 « 9 1
Larry 12,208,436 1 » 1 1
Larry 10,972,428 1 *
Larry 10,439,155 1 - D D
Larry 0,080,330 1 o 0
Ba 0 » 1

a ")
Ba 10,551,83 - C
Barry 11,941,962 : s| 4
Barry 12,120,026 0 - 1 0
Ba 10259 753 * ~
Barry 10,253,060 0 * 0 D
Harry 11,158,311 D ‘ 1
Ha 10,703,286 ' *
Larry 10,736,631 1 ‘
Larry 11,508,068 1 * 1 1
Larry 10,524,512 1 a !
Larry 10,162,742 1 -

Figure 4-22. A visual represetation of what’s happening when you use SUMPRODUCT

In a certain sense, you're performing a query on the data. If you know SQL, the arrangement above could also
be written as

SELECT COUNT(ProjectlLead)
WHERE ProjectLead = "Larry" AND NPV > 11000000

You're About To Be FOILed!

OK, I know what you're thinking, how the heck am I ever going to remember how to write one of those fancy SUMPRODUCT
Sformulas? Well, it all comes down to FOILing, which you might recall from your early days of learning algebra.

At first glance, the series of COUNTIFS functions appears easier to write and understand, even if the formula ends
up being much longer. But I'm here to tell you that if you can write a series of COUNTIFS functions, you're already
writing the same formula. No, seriously: I can prove this to you with some simple algebra. So let’s talk FOILing
(First, Outside, Inside, Last) from your algebra class. Let’s do it on an expression inside the SUMPRODUCT formula.

So

((ProjectLead="Larry")+(ProjectLead="Barry"))*((NPV>11000000)+(PortfolioRisk="Low"))

(ProjectLead="Larry")*(NPV>11000000)
+ (ProjectLead="Larry")*(PortfolioRisk="Low")
+ (ProjectlLead="Barry")*(NPV>11000000)
+ (ProjectlLead="Barry")*(PortfolioRisk="Low")

63

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © ADVANCED FORMULA CONCEPTS

Now compare that FOILed expression to series of COUNTIFS functions.

COUNTIFS(Projectlead,"Larry",NPV,">11000000")
+ COUNTIFS(Projectlead,"Larry",PortfolioRisk,"Low")
+ COUNTIFS(Projectlead,"Barry",NPV,">11000000")
+ COUNTIFS(Projectlead,"Barry",PortfolioRisk,"Low")

Here’s the kicker: the plus symbol (+) acts as your OR condition and the multiplication symbol acts as your
AND condition. If you think you'll have trouble remember the plus’s + and multiplication’s *, remember that these
symbols aren’t arbitrary, they represent algebraic operations.

Note Remember, for SUMPRODUCT queries, + = OR, * = AND.

If you open Chapter4Ex3, I've placed a summary table on the front page that employs SUMPRODUCT (Figure 4-23).

Project Breakdown

NPV
. . <11M >12.0M {:]
LHigh _I |=SUMPRQDUCT{ NPVRange<11000000)*(ProjectList.PortfolioRiskRange='Dashboard (incomplete)'15G21))
Med 0 0
Low 9 0
12 2

Figure 4-23. A demonstration of SUMPRODUCT on your dashboard

Reusable Components

In this section, I'll take a few moments to go through a concept I call reusable components. Take a look at the outlined
components in Figure 4-24.

64

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © ADVANCED FORMULA CONCEPTS

£ A B C D E G H I J E M
2

3 NPV () $1,005,000 14000000

4 Portfolio Risk High

c Project Lead Larry 12000000

6 10000000

7 ProjectName NPV[S] Risk

8 1 ProjectA 11.9M L socaoco

9 2 ProjectB 11.7M M scomce
10 2 ProjectC 12.2M H
11 4 ProjectD 11.0M L 4000000
12 S ProjectE 10.4M H
13 5 ProjectF 101M H 2000
14 7 ProjectG 11.1M L 0
15 2 ProjectH 10.2M L Projects ProjectR ProjectF ProjectE ProjectC
16 9 Projectl 10.2M L
17 10 Project) 10.6M L
18 11 ProjectK 11.9M M Project Breakdown
19 12 Projectl 12.1M = NPV
20 12 ProjectM 10.3M L <11M >12.0M
21 12 Project N 103M L High 2
22 15 ProjectO 11.2M L Med 0 0
23 16 ProjectP 10.7M L Low 9 0
24 17 ProjectQ 10.7M L 12 2
25 12 ProjectR 11.5M H
26 12 ProjectS 10.5M H
27 20 ProjectT 10.2M L |

Figure 4-24. An example of reusuable componants

Admittedly, these components were not placed with any specific care. I did this on purpose to demonstrate how

easily these components can be moved around, as shown in Figure 4-25.

www.it-ebooks.info

65

http://www.it-ebooks.info/

CHAPTER 4 © ADVANCED FORMULA CONCEPTS

A B C D E_|F G H 1 [J] L M N
1 |
2
3
4 ProjectName NPV(S) Risk
5 14000000 1 ProjectA 11.5M L
6 daancar 2 ProjectB 11.7M M
7 2 ProjectC 12.2m H
8 10000000 4 ProjectD 11.0M L
9 5 ProjectE 10.4M H
10 #0000 & ProjectF 10.1m H
11 6000000 7 ProjectG 11.1M L
12 2 ProjectH 10.3M L
13 4000000 S Project| 10.2M L
14 000000 10 Project) 10.6M L
15 11 ProjectK 11.9M M
16 Q 12 ProjectlL 12.1M H
17 Projects Projectr ProjectF Project€ ProjectC 13 ProjectM 10.3M L
18)) 14 ProjectN 10.3M L
19 | Project Breakdown nNevp) | $1,005000 | 15 ProjectO 12M L
20 NPV Portfolio Risk | High 16 ProjectP 10.7M L
21 <11M >12.0M Project Lead Larry 17 ProjectQ 10.7M L
22| High [3 2 12 ProjectR 115M H
23 Med 0 0 15 ProjectS 10.5Mm H
24| Low 9 0 20 ProjectT 10.2M L
25 12 2
26

Figure 4-25. A demonstration of how componants can be easily moved around

There was some reformatting required, of course. But if I select the entire region of a table, I'm able to move it
somewhere else on the screen without having to update any code or other formulas that refer that area. In addition,
if I want to create another table similar to the one above, I can copy and paste the table into another free area on
the spreadsheet and update the formulas that make it refer to another desired location. This is what is meant by
reusability. And developing reusable components really helps down the road. We'll return to this idea several times
before the book ends.

The Last Word

In this chapter, you build upon the formulas presented in the previous chapter. You applied what you learned to
create the processes of filtering, highlighting, selecting, and aggregation. Finally, you learned about the usefulness of
reusable components. In the next chapter, I'll talk about working in form controls.

66

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5

Working with Form Controls

When introducing controls, I like to use my own technical definition. Specifically, form controls are the whiz bangs,
doodads, whatchamacallits, and thingamajigs that give your spreadsheet enhanced interactivity. You may know them
by their street names: check boxes, scroll bars, labels, etc. Figure 5-1 shows a group of controls lounging about in their
natural habitat, the Excel spreadsheet.

N =

|:| Checkmate
Check Please!
[] checkov

|0t A W

O

bt
N o= O

Figure 5-1. Examples of controls on a spreadsheet

67

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 WORKING WITH FORM CONTROLS

Welcome to the Control Room

Excel contains two types of controls you can use on your spreadsheets. The first are form controls, and they are the
subject of this chapter. The second are ActiveX controls, which we won’t deal with in this book. There are significant
differences between the two types of controls; however, they're both located in the same Insert box button, in the
Controls group on the Developer tab. One important difference worth noting is that form controls are always on top,
ActiveX controls are always on the bottom (see Figure 5-2).

FORMULAS DATA REV

= . [=] Prog
: ‘“ Q—J Viewn
oM Insert |
dd-Ins [MERN Mode [3]Run
15 Form Controls
[HoOERMEBEe
) 4a §
ActiveX Controls
F O VER 3
BlealaEl

Figure 5-2. The dropdown menu showing form controls and ActiveX controls

Let’s take a moment to discuss why ActiveX won’t make an appearance in this book. In many ways, form controls
are leaner, more lightweight versions of their ActiveX counterparts. For example, the ActiveX button can handle
several different types of click events. It can test if you double-click or right-click, or it can fire an event the moment
your mouse button is pressed down but before it’s released. In theory, the added functionality may feel like a boon
of capabilities has been dumped on your lap. In practice, and especially in this author’s experience, rarely does your
spreadsheet require that level of advanced functionality. In addition, ActiveX controls carry some baggage to your
memory usage and file size; moreover, they can sometimes act unpredictably on a spreadsheet. Figure 5-3 shows the
Slider Bar control acting up by appearing unexpectedly in the corner of the screen.

Q_ o - [0 | [—] B O OH] OB E B o Et_, E[: ? =
18 v Fo
|
.) . C D E F G H
2
4
5 1
=)
o] i 1
7

Figure 5-3. A very common ActiveX issue: the Slider ActiveX control appears in both the upper-left side of the
sheet and its initial location on the spreadsheet

68

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 © WORKING WITH FORM CONTROLS

Form controls, on the other hand, are much more lightweight. However, they are also much more limited in
what they can do, at least compared to their ActiveX cousins. And, unlike ActiveX controls, form controls can do a lot
without any VBA. In fact, this is one of the reasons I love form controls. Following the ideas presented in Chapter 2,
ifyou don’t need to use VBA, you shouldn’t. Below, I begin with the fundamentals of form controls and present a few
examples that will serve as reusable components continuing throughout the book.

Form Control Fundamentals

Think of form controls as simply an extension of the formulas you learned how to use in previous chapters.
Those formulas relied strongly on the spreadsheet for the storage and manipulation of values. Figure 5-4 shows an
interactive legend that lets the user check “on” and “off” for which series they want to view.

Total Population for Fake Countries

894-2000)

1554 1995 1995 1957 1958 19595 2000

v
I; - Frasionia
|7 - West Cassidy

Figure 5-4. An interactive legend using the form control CheckBox

Behind this interactive legend is the form control CheckBox. The CheckBox links to a cell location that either
results in a TRUE or FALSE depending on whether the check box is selected or not. (TRUE = selected; FALSE = not
selected.) Since TRUE and FALSE are equal to 1 and 0, you can use these response values in a formula to change the

data behind the chart. When the CheckBox is deselected, you do some work behind the scenes to change the number
the series data to something that won’t appear on the chart (see Figure 5-5).

69

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 © WORKING

Total Popu
(1994-2000)
15,000
10,000
5.000
0
1954
v
l_ - Frasionia

[V — West Cassidy

WITH FORM CONTROLS
lation for Fake Countries
1555 1956 1957 1988 1959 2000

Figure 5-5. When the check box is deselected, the line disappears from the chart

I'll talk more about how to do something like this later in the chapter in the “The Dynamic Legend” section.

As you can see from Figure 5-6, there are a total of ten form controls to choose from. Three of those form controls
are grayed out. Those controls will always be grayed out for insertion into the spreadsheet. In fact, the only time they
are ever available is for Excel 4.0 Macros, an older technology that Microsoft has deprecated in favor of UserForms and
ActiveX controls. Officially, Excel 4.0 Macros are no longer supported so I won’t spend any time on them. Table 5-1 list
all the form controls to insert.

Inset Design
- Mode [—.l_]R“"

Form Controls
OfR¥MEEe

[Aa B Bl

FREFLEEE, T SRS

Figure 5-6. The Form Controls dropdown showing controls that are available to insert onto the spreadsheet

70

www.it-ebooks.info

http://www.it-ebooks.info/

Table 5-1. Form Control Descriptions

CHAPTER 5 © WORKING WITH FORM CONTROLS

Name

Icon

Description

Button

ComboBox

CheckBox

Spinner

ListBox

Option Button

GroupBox

Label

Scroll Bar

Z °oQg @ ® 8

QB

Button inserts a gray button onto your spreadsheet. You can assign a
macro to be executed when the button is clicked.

The ComboBox is similar to the data validation dropdown you can do in
a cell. You can supply the ComboBox a list of data from your spreadsheet.
The ComboBox will create a dropdown from which to choose a selected
item from that list.

The CheckBox inserts a box onto your spreadsheet that you can toggle
to be checked or unchecked. You can link a CheckBox to a cell to have it
display TRUE or FALSE based on whether it’s checked or not.

The Spinner allows you to insert Up and Down paddles on your
spreadsheet. You can link the Spinner to a cell such that when you press
up, the cell value increases, and when you press down, the cell value
decreases.

A ListBox is similar to a ComboBox. However, instead of a dropdown,
the ListBox shows a larger list of items that users can scroll through.

The Option Button is similar to the CheckBox. However, groups of Option
Buttons are mutually exclusive. That means only one Option Button can
be selected at a time, while no such constraints exist on Checkboxes.
Similar to Checkboxes, you can link Option Buttons directly to a cell.

A GroupBox has no real interactivity but can surround other controls to
create delineation and flow.

A Label is a simple textbox that can be placed anywhere on a sheet.
Labels are a bit limited compared to Excel’s native text boxes.

The Scroll Bar is similar to the Spinner except the Scroll Bar has an area
in the middle in which you can drag the value up or down. But similar to
the Spinner, you can link the Scroll Bar to a cell and use the up and down
(and drag) paddles to change the cell’s value.

Next, we're going to go through my favorite controls. I call them my favorite because of the entire bunch, I believe
they’re the most useful. After we go through my favorites, we’ll go through my least favorites—the ones I believe you
should avoid in favor of better alternatives available.

The ComboBox Control

The ComboBox control is a useful mechanism that essentially mimics the behavior of a data validation dropdown list.
But there is a difference between the two that is worth noting. Figure 5-7 shows a data validation dropdown both when
a selection is being made (that is, the cell is active) and when no selection is being made.

71

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 WORKING WITH FORM CONTROLS

D E F

Data Validation (Selected) Data Validation (deselected)

B I |
A

C

D

E

F

Figure 5-7. On the left, the validation list dropdown is expanded. On the right, the cell has been deselected

Now compare the aesthetics of the data validation dropdown in Figure 5-7 to the form control ComboBox list
in Figure 5-8.

D E E

Form Control (Selected) From Control (deselected)

C v 13 Z|
A

C

D

E

F I !

Figure 5-8. On the left, the form control dropdown is expanded. On the right, the form control has been deseltected

Notice the different aesthetics between the two “dropdown” lists. Generally, validation lists are better when you
have a column of cells and each cell contains a dropdown, since the dropdown arrow won'’t appear in every cell,
making for a clean appearance.

To view any control’s properties, select the control and press the Properties button in the Controls group on the
Developer tab shown in Figure 5-9—or, right-click a control, select Format Control, and select the Control tab.

rn' h{ Propertiesh

— & View Code
Insert Design

* Mode Run Dialog
Controls

Figure 5-9. The Properties Button in the Controls group on the Developer tab

Figure 5-10 shows the Format Control dialog box for the ComboBox control. In this dialog box, you can change
various aspects of the form control from the Control tab.

72

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 © WORKING WITH FORM CONTROLS

I =$FS3 Format Control M
E ¥ G Size | Protection | Properties [Alt Texti Control !
Input range: SFS5:5FS12 b
Index 5 |; Cell link: SFS3
Drop down lines: |8
= P T i —
List adf : ["13-D shading
adsf]
lasdf]
asdf i
fasd :
ifasd 3
dfas]
idfas___ 1
[ok][cancel

Figure 5-10. The Format Control properties dialog box

Note that you have two fields you can connect to the spreadsheet. The Input Range field allows you to select a
desired range to fill the dropdown. The Cell link field allows you to specify a cell to display the index of the selected item.

The ListBox Control

The ListBox control is similar to the ComboBox control in that it also uses the Input range and Cell link fields.
However, I believe you can better employ several mechanisms incorporated in the ListBox control, including creating
a scrollable list (see Figure 5-11).

73

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 WORKING WITH FORM CONTROLS

A B 3 D E
1
2 List
3 Jordan Jordan
4 Stephen Stephen
Melissa
5 Melissa (e —
6 Katherine Josh
Nick
7 i Josh Nigel
8 Nick Tom
5 Nora
S Nigel Sydney v
10 Tom
1 Nora
12 Sydney
13 Lauren
14 Marsha
15 Randy

Figure 5-11. The ListBox control contains a scrollable list of elements pulled from the spreadsheet

One reason I prefer the ListBox control to the ComboBox is because I want to be able to see the data all at once.
Moreover, as you'll see when you use the ComboBox, you can make the size of the control however large you want.
But no matter how big that dropdown arrow becomes, the control’s font and selection list underneath will always
stay the same. Figure 5-12 shows a particularly egregious example. Rather than fooling the viewer with these strange
aesthetics, you're better off sticking to ListBox.

.I-} M

Figure 5-12. The combo box is sized much larger than it ever should be

74

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 © WORKING WITH FORM CONTROLS

The Scroll Bar Control

The Scroll Bar is amazing and probably my favorite form control. It’s simple but powerful. The basic idea is that you
can link the scroll bar’s value to any available cell on a spreadsheet. I've done just this in Figure 5-13. As the scroll
paddle (that’s the gray bar between the upper and lower paddles) increases, so does the value in C2. Similarly, as it
decreases, the value in C2 decreases.

KO

Figure 5-13. A form control Scroll Bar linked to the cell C2

The form control Scroll Bar contains some other great properties, as shown in Figure 5-14.

Format Control m

l Size lProtedion Properties | Alt Text

Current value: 19
Minimum value: 0 |
Maximum value: 100

Incremental change: |1

b [lalw |1l | (1<]»

Page change: 10
Cell link: $CS2 %
["]3-D shading

[0K l [Cancel

Figure 5-14. The Format Control dialog box for the Scroll Bar

75

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 WORKING WITH FORM CONTROLS

Note that the Cell link field refers to same location in the formula bar in Figure 5-13. In Figure 5-14, you can see
that the form control Scroll Bar comes with many more field properties than the ComboBox and ListBox controls. You
can use the Minimum Value and Maximum Value fields to set the upper and lower bounds of the scroll bar. Indeed,
you'll be doing just that in later chapters of this book. You can also use the Incremental Change field to set how much
the value increases or decreases when you press the scroll bar’s paddle. Finally, the Page change field refers to how
much of an increase or decrease occurs when you click into the scroll bar itself and not on a upper or lower paddle.

Note that only one of the text fields in the Format Control dialog box (see Figure 5-14) can directly tie to a cell-the
Cell link. The other fields shown in Figure 5-14 must be set either manually by a human (through the Format Control
dialog box) or programmatically with code. Listing 5-1 shows how to change the scroll bar’s Min and Max fields
through code.

Listing 5-1. The SetScrollBarLimits Procedure

Public Sub SetScrollBarLimits()
Const MAX_VAL = 20
Const MIN_VAL = 3

With Me.Shapes("Scroll Bar 1").ControlFormat

.Min = MIN_VAL
.Max = MAX_VAL
End With

End Sub

Notice if you use the shape object on a form control, the only way you can change properties of a form control is
through the ControlFormat object. Alternatively, you can also use the shorthand naming syntax shown in Listing 5-2.
Listing 5-2. The SetScrollBarLimits Procedure Using the Shorthand Syntax
Public Sub SetScrollbarLimits()

Const MAX_VAL = 20

Const MIN_VAL = 3
Dim scrollbri As ScrollBar

Set scrollbra = [Scroll Bar 1]

With scrollbri

.Min = MIN_ VAL
.Max = MAX VAL
End With

End Sub

Often, I'll use the latter method as it is more easily read and intuitively understood. However, you'll notice when
you type the As portion of creating your form control object, Scroll Bar won't appear on the list. This can become
confusing as usually figuring out the correct object requires guessing at the name (e.g. typing “label”, “checkbox”, and
“scroll bar” to see if they take). So I present both options for you to decide. Throughout the book, I'll prefer the one
that to me appears easier to read in context.

76

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 © WORKING WITH FORM CONTROLS

The Spinner Control

The Spinner control is fairly similar to the form control Scroll Bar sans the draggable paddle and scroll region between
the paddles (see Figure 5-15).

Spinner2 ~ S =5CS2

A B C D E

| &
v

[

@

o oW N e

Figure 5-15. An example Spinner control on a spreadsheet

The Spinner control is a useful replacement for a scroll bar in a pinch. However, while the scroll bar can appear
both horizontally and vertically on a sheet (see Figure 5-1), the spinner can only appear vertically, as shown in
Figure 5-15. You can of course make the spinner larger (and wider, if you'd like), but those up and down paddles will
always point in the same direction.

The CheckBox Control

The CheckBox control appears in the first example and it’s incredibly versatile. Like the Scroll Bar, the CheckBox
control links to cell whose value you can use. Unlike the Scroll Bar, the CheckBox can only take on one of three values
(see Figure 5-16). The first two values you should know by heart: TRUE and FALSE. Respectively, they generate a
Checked or Unchecked value in the CheckBox.

A B C D
1
2 Cell Link
3 Checkbox 1 Value FALSE [] Check Box 1
4 Checkbox 2 Value TRUE Check Box 2
< Checkbox 3 Value #N/A
6

Figure 5-16. A demonstration of the three states possible with a CheckBox

However, check boxes can also take on a fuzzy-gray status called a “mixed” state. The mixed state cannot be
set directly by toggling a CheckBox, at least not without some VBA. You can set the mixed state manually by using
the =NA() formula in the CheckBox’s cell link or by going into its properties dialog box and selecting the Mixed
option (see Figure 5-17). You won't use the mixed state in this book, so for now let’s focus on the TRUE and FALSE
dynamic of the CheckBox.

77

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 WORKING WITH FORM CONTROLS

Format Control @lﬁ

Value
_ Unchecked
_ Checked
@ Mixed
Cell link: | SCSS

Figure 5-17. The Format Control dialog box for a CheckBox

The Least Favorites: Button, Label, Option Button, and GroupBox Controls
Four controls are left:

. Button

e Label

e Option Button

e GroupBox

In this section I'll provide a little information on why I don’t care much for these form controls.

The Button Control

I don’t believe you should use the Button control because there are better alternatives. Let’s start by taking a look at
the Button control in Figure 5-18. There’s not much you can do with the dated grayish aesthetic.

Mr. Button \

Figure 5-18. A form control Button

0~ O B W

An alternative I would suggest is to use an autoshape text box instead. You can still add interactivity to the shape
the same way you would with a form control Button by assigning a macro to the shape. The text box will give you
much more flexibility in terms of changing its look. In addition, there is no inherent advantage to using the form
control Button that is lost when going with an Excel shape.

78

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 © WORKING WITH FORM CONTROLS

The Label Control

The Label control is also similarly restrictive. The font size, style, and color of a label cannot be edited directly. Notice
in Figure 5-19 that the format buttons have been disabled when the label is selected.

INSERT PAGE LAYOUT FORMULAS

1 Font
B
- ﬂ
C D E F
:::Label 1

Figure 5-19. A Label control placed on a spreadsheet

As a matter of fact, the only way to change a label’s style is to link it to a cell with the font styles already set.
Take a look at Figure 5-20 to see what I mean. In cell A2, I wrote some text and then set the font color and style in
the cell itself. After that, I linked the label directly to the cell. In fact, this is a workaround I discovered accidently;
officially, labels aren’t supposed to let you change their style. But in any event, a textbox shape does all of this
without the hassle.

H % £3)
Label 1 > | & Jx =SAS2
A B C D

1 X

I'm a bright and I'm a bright
’ wonderful label. Land wonderful |
3 label.
4
5

Figure 5-20. Even bright and wonderful labels can’t overcome certain limitations

79

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 WORKING WITH FORM CONTROLS

The Option Button Control

Option Button controls are similar to check boxes except that they allow for only one selection. In general, I find they
are more trouble than they are worth. ComboBox form controls do essentially the same thing as Option Buttons and
take up less screen real estate (see Figure 5-21). For situations where I would like the user to toggle between different
states, I like to use text boxes instead (see Figure 5-22). The effect is much cleaner and more visually appealing.

= T =
OptionBu... ¥ | : fe =SCS2
A B &
1
2 (O Option Byttonl 2
3 | @ Option Button2
4 {C Option Button3
5

Figure 5-21. Option butttons laid out and linked to cell C2

View Product

Large Med Small

O

Figure 5-22. My prefered method for toggling between options

Figure 5-22 simply shows a group of textboxes with some extra desired formatting. When a user clicks on a
textbox, a macro is called to color the textbox a reddish color and the rest a greenish color.

The GroupBox Control

Finally, form GroupBoxes, the last control left undiscussed, are not really useful for anything except grouping components
together. They exist purely for aesthetic value. They're not ugly by any stretch, but I'd rather use cell formatting to create a
border, especially because it delivers far more options. With the form control GroupBox you only get two options: 3D border
or no 3D border. For the sake of an example, Figure 5-23 shows a GroupBox form control over the buttons from Figure 5-22.

Fong ok View Product

Large Med Small

Figure 5-23. The group box surrounds buttons with the group box’s border

Now that you know all the form controls, you'll put the useful ones to good use in a few examples, starting with
the Scroll Bar.

80

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 © WORKING WITH FORM CONTROLS

Creating Scrollable Tables

Scrollable tables are a great form of Excel form controls. They're easy to implement and often require no VBA,
assuming what you want to display isn’t complicated (and usually it isn’t). At the heart of these tables is the venerable
scroll bar. Using the INDEX function and the scroll bar you can create a scrollable region from a larger table of values.

In this example, you will create a scrollable table that pulls data from a larger spreadsheet. The scrollable table
will allow you to scroll through a small subset of the data a time. Figure 5-24 shows what the final product will look
like. Take a look at Chapter5ScrollableTable.x1sx to grab the data and follow along.

Tornadoes by Year and Month

Year Total Jan Feb Mar Apr May June July Aug Sept Oct Nov Dec

~ 1954 550
1955 503 3 4 43 0% 148 153 43 3315

3 10 0 45 40 2
3 101 107 5 S

"o
I
*
[
4
e
+

1

o
(N
I
<
(V¥

3
5]
]
W

1956 504 2 47 31 8 78 65 %2 42 16 S

1957 858 17 5 38 216 228 147 55 20 17 18 589 38
1958 564 11 20 15 76 68 128 121 46 24 ¢ 45 1
1959 604 16 20 43 30 226 73 63 38 58 2 1 2
1960 616 ¢ 28 28 70 201 125 42 48 21 18 25 1
1961 697 1 31 124 74 137 107 77 27 53 14 3% 18
1962 657 12 25 37 41 200 171 78 51 24 11 5 2

5 6§ 48 @84 71 ©0 62 26 33 13 15 0

~ 1963 463 1
Avg 760 13 21 51 102 163 160 88 58 37 23 28 17

Figure 5-24. The final product of your scrollable table

1. To start, insert a new scroll bar into the empty spreadsheet tab in the example file. After
that, you must assign a scroll bar to a cell that will hold it. In this example, assign it to A4.
This is shown in Figure 5-25.

81

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 WORKING WITH FORM CONTROLS

ScrollBarl ~

B WK =

-~ @

4

A

X « Jfr || =sas

B Cc D E F G H | J KILI M I N|O|P.Q

~

Tornadoes by Year and Month

Year Total Jan Feb Mar Apr May June July Aug Sept Oct Nov Dec

Figure 5-25. Assiging the scroll bar to a cell value

W 0 =~ o f W R

-
o

11

=

Y
- O

w W N o kW N

When creating a scrollable table, you’ll have to decide its dimensions. In Figure 5-24,
you can see ten items at a time. You'll need to set up a series of dynamic indices, so in A4,
write the formula =A3+1 and drag down. Figure 5-26 shows this result and the formulas.

B C D E F G H [J K L M N 0 P Q

Tornadoes by Year and Month

1950-1004

Year Total Jan Feb Mar Apr May June July Aug Sept Oct Nov Dec
l‘5 =44+
6 |=A5+1
7 =A6+1
8 |=AT+1
9 =A8+1
10 |=A9+1
11 =A10+1
12 |=A11+1
13 =A12+41

AN

<

Figure 5-26. This dynamic will increase all the numbers in the list as changes to the scroll bar are made

Tip To help size the scroll bar, use the Snap to Grid feature. Choose a column where you want to house the scroll
bar and size the column to the width you’d like the scroll bar to be. Next, after you insert the scroll bar, go to the
Format tab and select Snap to Grid from the Align dropdown in the Arrange group. Now resize the scroll bar; you’ll see
it easily fits to the column.

82

www.it-ebooks.info

http://www.it-ebooks.info/

~ o O W N -

w oo

11
12
13

CHAPTER 5 © WORKING WITH FORM CONTROLS

If you try the scroll bar now, you'll see the dynamic indices increase and decrease with
each change in the scroll bar.

The backend data for this exercise is on the Data tab. The series of years is named
TornadoData.Year, the series of tornado totals is named TornadoData.Totals, and the
data range is named TornadoData.DataRegion. By naming these regions you can more
easily access them with the INDEX function.

Specifically, you can pull the first row of the data region by using the formula
INDEX(TornadoData.DataRegion, $A4,).Byleaving thatlast parameter blank,

you can drag the formula across to the desired range and then press Ctrl+Shift+Enter
(see Figure 5-27). The last parameter, which takes a column index argument, isn’t
necessary in this case. By telling Excel that you are using an array formula, Excel knows
that the first cell in the region returns the first column index, the second returns the
second column index, and so forth. However, for this to work, you must leave that

final parameter blank. INDEX(TornadoData.DataRegion, $A4,) isnotthe same as
INDEX(TornadoData.DataRegion, $A4).

B D E F G H | J K L M N | O P _Q

C
Tornadoes by Year and Month

un

Yea Total Jan Feb Mar Apr May June July Aug Sept Oct Nov Dec
~ | 593 3 4 43 55 148 153 45 33 15 23 20 3

[zl

6
7
8
9

10
"
12
13
14
15 1%

Figure 5-27. The result of using the Array formula to pull back data

Once you have the first row, you can simply drag down to fill the entire region, as shown in
Figure 5-28.

83

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 WORKING WITH FORM CONTROLS

A B C D E F G H | J K L M N O P Q
Tornadoes by Year and Month

-

1050-1004
2 Year Total Jan Feb Mar Apr May June July Aug Sept Oct Nov Dec
4 6 A 593 3 4 43 95 148 153 45 33 15 23 20 3
£ 7 504 2 7 31 8 79 6 92 42 1% 29 7]
; 8 858 17 5 38 216 228 147 5 20 17 18 59 38
- 9 564 1N 20 15 76 €8 128 121 46 24 8 45 1
3 10 604 16 20 43 30 226 73 63 38 58 24 1 2
9 1" 616 9 28 28 70 201 125 42 48 2 18 25 1
10 12 697 3 124 T4 137 W7 T 27 53 4 36 16
11 13 657 12 25 37 41 200 M 78 51 24 M 5 2
12 14 463 15 6 48 g4 7 % 6 2 3 1B 1B 0
13 15 704 14 2 36 157 134 17 8 79 5 2 17 B

Figure 5-28. Dragging the array formula down the entire table

5. You'll also need to do the same for the Year column. You need to pull the corresponding
cell for the given year from the backend data. Here, you'll use the formula
INDEX(TornadoData.Year, A4) (see Figure 5-29) and then drag down.

A B c
1 Tornadoes by Year ai
2 1950-1994

3 Year

4 [4 | ~ |=INDEX[TornadoData.Vear,-'--'-} [

e

Figure 5-29. Use INDEX to retrieve the total tornados for a given year

6. Finally, you'll want to add more information to the table. This example includes the
averages for each month over the entire year range by leaving the row index parameter
of the INDEX function blank and using a static reference for the column index. This
mechanism is similar to what you did above except you are pulling the entire column
instead of the entire row. In addition, you are not interested in return each cell in the
column; instead, you supply the entire column to an AVERAGE function to get the average
for that year (see Figure 5-30).

84

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 © WORKING WITH FORM CONTROLS

xX v [=AVERAGE{[NDExl;TornadoData.DataRegion,,E16';}|
E F G H I J K L M N 0 P Q
i57 12 25 37 41 200 171 78 51 24 11 5 2
60 21 51 102 163 160 88 58 37 23 28 17
E16))
1 2 3 4 5 6 7 8 9 10 11 12
th

Figure 5-30. Use the AVERAGE and INDEX functions to report the average tornados for each month

7. So that the dynamic indices on the left and the static reference on the bottom do not
appear in the table, change those cells to a white font, which blends in with the white
background.

8. Finally, set the Minimum Value and Maximum Value fields of the scroll bar
(see Figure 5-31).

Barl ~ p fe =aada
Format Control m
B C
Torr | Size | Protection | Properties | Alt Text v
gz || Current value: 5
Year Minimum value: 1 =
-’I.A 1954 Maximum value: 36 =5
| 1955 Incremental change: '1 e
il 1956 Page change: :10 k]
1957 Cell link: 'sAsa]
d o e [¥] 3-D shading
1959
1960
1961
1962
-~ | 1963
o0—0
Avg
[0K] [Cancel

Figure 5-31. The Format Control dialog box

85

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 WORKING WITH FORM CONTROLS

Lt

Year

The minimum, of course, is 1. The maximum is 36. Why 36? Well, the entire year range is made
up of 45 years. That’s the last year in the set, 1994, minus the beginning year, 1950. (Remember,
you're including 1950 in the set so it comes out to 45 years and not 44.) You show ten years

in your table, and you effectively do this by adding nine years to the initial value given by the
scrollbar (see Figure 5-32). So the maximum is 45 years minus 9 years, which is 36.

.

1954

1955
1956
1957
1958
1959
1960
1961
1962

1963

Figure 5-32. Notice that 1963 equals 1954 plus 9

Figure 5-33 shows the final table.

Tornadoes by Year and Month

A=

0-1994)

Year Total Jan Feb Mar Apr May June July Aug Sept Oct Nov Dec
- 1954 550 2 17 62 113 101 107 45 ¢ 21 4 2 17
1955 593 3 4 43 &% 148 153 ¢ 33 15 23 20 3
| 1956 504 2 47 31 8 79 65 92 42 16 28 7 9
1957 g8 17 5 38 216 228 147 55 20 17 18 59 38
1958 564 11 20 15 75 68 128 121 45 24 ¢ 45 1
1959 604 15 20 43 30 226 73 63 38 58 24 11 2
1960 616 ¢ 28 28 70 201 125 42 48 21 18 25 1
1961 697 1031 124 74 137 W07 7T sy 14 %18
1962 657 12 25 37 41 200 171 78 51 24 11 5 2
-« 1963 463 IS 6§ 48 84 71 80 62 26 33 13 15 0
Avg 760 13 21 51 102 163 160 88 58 37 23 28 17

Figure 5-33. The final table

86

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 © WORKING WITH FORM CONTROLS

Highlighting Data Points on Charts

You can also use form control scrollbars to highlight a point on a chart. Figure 5-34 shows a time series of the yearly
totals of tornados. Below the chart is a scroll bar that moves the black selector point left and right. As the point
changes, the label changes with it.

A B Cc D E F G H J

,,,,,,

ornadoes in the United States by

Year and Month

W~ WA W -

w

10
11
12
13
14
15
16
17
18 v
19

20 4 L3

1550 1955 1360 1965 1970 1975 1980 1985 1950

Figure 5-34. You can highlight data points on the chart using a form control Scroll Bar

The setup for this problem is somewhat similar to the last. You can follow along in the example file
ChaptersDataPoint.x1sx.

First, you start with a scroll bar. This time, however, you draw it horizontally instead of vertically. Again, for
precision, it’s a good idea to use the Snap to Grid feature. Above, you'll see that columns that border the chart, B and C,
are a bit smaller than the rest. I sized these columns about the size of the scroll bar’s paddles. That way, the paddle in
the scroll area lines up nicely with the selector on the chart. In addition, I was able to nicely align the plot and chart
area again using the handy Snap to Grid feature.

The scroll bar is linked to a value on the side of the Excel spreadsheet. The name of the cell is Scrollbar.Value
(gee, how creative...). Using the scroll bar’s value, you pull the X and Y values using the scroll bar as an index
(see Figure 5-35).

Scrollbar Value 41 s
X 1990 =INDEX(TornadoData Year,Scrollbar.Value) RS
Y 1133 =INDEX(TornadoData.Total Scrolibar.Value) |_

T T T

Figure 5-35. As the scroll bar changes, the X and Y values also change

87

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 WORKING WITH FORM CONTROLS

Now, this is where the magic happens. You're using a simple scatterplot chart for your timeseries display.
Because of this, you don’t have to add a huge series to your chart to show the selector. You only need to add the
coordinates defined in Figure 5-36. In your chart, you have a series simply named selector that points to the
coordinates off to the side. Remember, those coordinates are traced to the value given by the scroll bar. So, as the
scroll bar changes, the coordinates update with each change. That’s how I came up with the nifty effect.

Scrolibar Value

X
h 4

Figure 5-36. The Edit Series dialog box

M N 0 P Q R
Edit Series L9
Series name:
="Selector” = Selector
230 N et ER Series X values:

RS 1—? —g% ='Highlight Point Ex1SMS7 B%| =19%
Series Y values:
= Highlight Point EX'SMS3 =133

‘ OK] ’ Cancel]

T

The other series on the chart is simply the totals from your data worksheet tab (see Figure 5-37).

TornadoData.Year v Jx

.. | editseries L2 (w3
1
, Ternadoarbresl | Series name:

v voa ||| =Totats® = Totals

1 Torod) | Series X values:
o E3
or ws& | ='Tornado Data'!SAS6:5A550 = 1950, 1951, 19...
= ornado Data'!SAS6:SAS . 3 .
" nsa! 24 | Series Y values:

19535 43 -
> wd s || =Tomado Data1s856:58550 = 201, 260, 240,..
1 148! 54

L

2] tow = [oK] [Cancel J
12 “l‘l: %5
1 |!$8= 54
15 1454 (1 13 0 a3 30 226 LE] B 3 3 EZ]
1% |!6|': £33 L) bl 28 0 xm 125 @ 4% u 1%
1" 1%‘ 47 1 H 124 74 137 107 kil 7 52 1
Figure 5-37. The totals from the tornado data

But wait! This mechanism isn’t complete without grabbing information about the current year. So, let’s add a
small chart on the side that displays information for each month of the given year (see Figure 5-38).

88

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 © WORKING WITH FORM CONTROLS

- and Month

1990
s Jan 11
Feb 57
Mar 86
Apr 108
May 243
Jun 329
Jul 106
Aug 60
Sep 45
Oct 35
Nov 18
Dec 35

570 1575 1580 1935 1550

Figure 5-38. An additional chart displays information for each month of the selected year

This mechanism is not different from when you looked up rows in the table before. The difference now is that you
want to flip that row into a column. So you'll wrap it in the TRANSPOSE function as shown in Figure 5-39. Once you've
dragged that function down, you can press Ctrl+Shift+Enter because you're directing Excel to return a range.

=TRANSPOSE(INDEX(TornadoData.DataRegion,Scrollbar.Value,))I

G H | J K L M| N o] P

1990

Jan ue,)) Sa’ollbar‘u’a[ue

Feb 57 X 1990

Mar 86 Y 1133

Apr 108

May 243

Jun 329

Jul 106

Aug 60

Sep 45

Oct 35

Nov 18

Dec 35

1975 1980 1985 1950

Figure 5-39. The information table relies on the scroll bar’s value to pull monthly tornado data for a selected year

89

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 WORKING WITH FORM CONTROLS

The Dynamic Legend

To make a dynamic legend, you use the CheckBox form control for a series in the chart. In this case, however, you
won'’t use the legend Excel provides for you as a chart element. Instead, you'll create your own from scratch! Add three
check boxes (clear out the default labels). In addition, write a “minus” sign and add the label next to it, both colored
manually. You can see this for yourself by looking at Chapter5DynamicLegend.x1sx with the downloads for
this chapter.

Figure 5-40 shows that the legend is simply a cell.

7

8 gk
9 1994-2000

Total Population for Fake Countries

10| 15000
1
12
13
14
15| spoo
16
17
18
19

20| 72
21 |7 = Frasionia
22 [v = West Cassidy

e
=

% =

10000

1934 1995 19% 1997 1998 1599 2000

Figure 5-40. The legends here are simply cells

Here’s how this mechanism works: there are essentially two tables that hold the data presented in this graph.
The first table is simply static; you can think of it as a type of database. The second table is an intermediary
between the database and chart. You can think of the chart as being the presentation layer. The dynamic is laid
out in Figure 5-41.

C D E F G H J K L M N 0 P Q R 5 T u v
Database Intermediate Table
Population | 1994 1995 1996 1997 1998 1999 2000 Link Show 1994 1995 1996 1997 1958 1939 2000
Oceania 4400 3533 5000 10200 11345 12000 12500 TRUE 1 400 5533 6000 10200 11345 12000 12500
Frasionia 4310 5530 9688 6915 1580 5473 3935 e==—mmp TRUE 1 4210 5530 S688 6915 1580 5473 3835
West Cassidy 4562 2248 6017 4970 TED4 2398 8060 TRUE 1 4562 2248 6017 4870 7804 2398 8060

Lountries

Figure 5-41. The mechanism of a dynamic legend

90

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 © WORKING WITH FORM CONTROLS

Let’s take a closer look at the intermediate table. The first column of the table holds the linked cells of the three
check boxes (see Figure 5-42).

3 Total Population for Fake Countries

10 15,000

1
13| 100 M N 0 P Q R S T U v
14 Intermediate Table
15 5000 Link Show 1994 1995 1996 1997 1998 1999 2000
16 - FALSE aNJA aN/A aNJA SN/A #NJA #NJA aNfA aN/A
17 _‘/ ,TRUE | 4410 5530 9688 6915 1580 5473 3935
18| 0 /-"//:' TRUE 1 4562 2248 6017 4970 7804 2398 8060
19 194 19957
20 o

P

[— r
21 [V — Frasionia <~ ,+

,

22 !7 — West Cassidy

Figure 5-42. A closer look at the intermediate table

The next column tests whether the link has returned a TRUE or FALSE. If it returns a TRUE, Excel returns a 1;
if it’s a FALSE, Excel returns an NA() (see Figure 5-43).

_Link Show 199¢
| FALSE _|=IF(M3,1,NA) | QA
TRUE 1 441(
TRUE o e

Figure 5-43. If a CheckBox is deselected, you want to return an N/A error

The cool thing about using NA() is that it returns an #N/A error, which Excel won't plot. In addition to that,
anytime you multiply something by an #N/A, it also becomes an #N/A. And that’s exactly what you take advantage of
in your dynamic legend. The values in the intermediate table are the product of the result of the IF function multiplied
by the original values. Figure 5-44 demonstrates this mechanism.

- X S| =5n3®

C D E F G H I 1 K L M N o P Q R S T u
Database Intermediate Table

Population | 1994. !995. 1996 1997 1998 1999 2000 Link .Show L 1994 1995 1996 1997 1998 1999 2000

— PO e us ue e el CT) B =) R R R R O

Figure 5-44. The dynamic legend works by turning the values in a series into an #N/A error and thus removing it
from the chart

91

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 WORKING WITH FORM CONTROLS

WAIT...WHY AM | USING IF()? | THOUGHT YOU SAID | SHOULDN’T USE IT?

This is a case where you couldn’t get away from using IF.As you are likely familiar with by now, the CheckBox’s
value could be one or zero. Ostensibly, this response would have been perfect as the multiplier. For example,
you could have simply written a formula like this:

=(checkbox_response) * original series value - NOT(checkbox_response)

You wouldn’t require an IF in this case. If the CheckBox response is TRUE, the original series value is returned
(or just multiplied by 1). If it’s FALSE, the original series value becomes a zero and NOT(FALSE) returns a 1; thus,
the entire formula of =0-1 results in a -1, which is a point outside the viewing scale of the chart (the chart goes
from 0 to 15,000).

Here’s the issue: the dynamic described above works perfectly in Excel 2010, but it does not work as reliably
in Excel 2013, at least not as of this writing. You can test for this bug on your own if you are using Excel 2013.
Create a new line chart with a series of -1 and set the axis range from 0.0 to 10.0. Chances are, you won’t see
the line. Now, change the axis from 0.0 to 20,000. The line will reappear.

But like | said, you shouldn’t necessarily never use IF; rather, you should exercise discretion. In the example,
you only use one IF per CheckBox and the rest of the series relies on that IF. This is the best way to do it. You
could have alternatively made each datapoint in the intermediate table also be a test against the response of the
CheckBox. That would have employed far too many IF statements than necessary.

The Last Word

In this chapter, you learned how truly awesome form controls are. They're flexible, don’t often require much code,
and can be moved and placed rather easily. As you can probably guess, you'll return to form controls several times
through the rest of the book.

92

www.it-ebooks.info

http://www.it-ebooks.info/

PART Il

A Real World Example

In this part, you examine and investigate a real world example based on many of the core concepts introduced
in the first part. This real-world example is inspired by a real spreadsheet I developed for a client.

Chapter 6 proposes a new method of taking in user input by using the spreadsheet rather than ActiveX
controls and UserForms. You begin by investigating a very simple Excel-based input form and learn how
custom formats can aid in form validation. You then move onto a more complicated example of user
input—a spreadsheet-based wizard. You spend the rest of the chapter reverse engineering the components of
the wizard and learning the mechanics.

Chapter 7 takes you through a type of storage pattern using the spreadsheet as the database while
also extending the wizard built in the previous chapter. You'll reverse engineer several of the spreadsheet
components. Throughout the chapter, I'll show you how to add, delete, and edit records with methods that are
based on both formulas and code.

Chapter 8 will implement a real world model built on top of the wizard from the previous chapters. You
begin by reviewing metrics from a real study by the World Health Organization and implement a weighted
average model based on the study. You then develop features of the analysis portion of your model to allow for
sorting and scrolling using form controls.

Chapter 9 focuses on perfecting the presentation of the spreadsheet application you've built over the
previous three chapters. You work on implementing a one-way sensitivity analysis system for the metric
weights. You also incorporate a formula-based sorting method. Finally, you review design aesthetics and
decide upon the best colors and layout to use so as not to overwhelm the visual field.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6

Getting Input from Users

This chapter begins the second half of the book. From this chapter and on, you'll be creating a spreadsheet-based
application using many of the principles discussed in the first few chapters. To get an idea of what you're building,
you can download the completed version, Chapter9Final.x1sm, from within this book’s project files.

From this point forward, you might also notice a change in the learning format. Many books will have you build
your components from scratch. You did just this in previous chapters of the book. However, going forward, I will
present you with completed work whose functions you'll reverse engineer. In that way, you're going to apply the
principles from the previous chapters (as well as learn a few more along the way).

There are two good reasons for this teaching style. First, in the real world, you won’t always start from scratch.
Sometimes you'll receive work built by someone else. You have to reverse engineer what they’ve completed and also
add your own features. Many of the examples files going forward are much like that inherited spreadsheet. You should
know how they work, but I also want you to think creatively of how they can be extended (and tailored) for your use.

The second reason goes back to the phrase mentioned in a previous chapter—that of reusable components.
Many of the features I'll describe are not steps in a larger spreadsheet. Rather, they exist in their own right. They're as
applicable here as they are for other spreadsheet projects. Recall from the first chapter I said the most important skill
to succeed in this book is creativity. That creativity will help you understand how to implement these components in
your work.

The bulk of this chapter deals with creating a spreadsheet-based input wizard with Excel. But before diving into
the wizard, I'll discuss creating simple spreadsheet-based forms and why they're often the better choice compared to
UserForms. From there, you'll start with a completed version of the spreadsheet-based wizard. I'll walk you through
several of the design components, including proper layout, input pages, and features of the user interface. By the end
of the chapter, you should see how building a spreadsheet-based input wizard is consistent with building faster and
leaner Excel applications.

Note You can download project files for this chapter along with the other example files for this book from the Source
Code/Downloads tab at www. apress.com/9781484207352.

Of Input Forms and Excel

Most Excel developers would prefer UserForms to capture user input, especially when the user input has multiple
steps. Indeed, conventional wisdom often argues for using UserForms and ActiveX controls. The problem is that
ActiveX controls can be somewhat finicky and unpredictable, as established in Chapter 5. Remember this figure from
Chapter 5 (Figure 6-1)?

95

www.it-ebooks.info

http://www.apress.com/9781484207352
http://www.it-ebooks.info/

CHAPTER 6~ GETTING INPUT FROM USERS

HS - ¢-a@E & = E

-l O b = W N

Figure 6-1. This is the same ActiveX control shown in two different locations

UserForms are a type of ActiveX control and they suffer from the same unpredictability. For instance, UserForms
will sometimes appear different across different computers. This is the result of different internal settings and
hardware. Monitor resolution, DPI, and Windows’ internal font default can potentially cause these unwanted effects.

One way to get around all of this is develop input forms directly on the spreadsheet. This is what I advocate. It
may seem like a hard task at first, but you will soon find it provides flexibility not found when using UserForms. In
addition, the spreadsheet provides a better canvas upon which to create a more aesthetically pleasing experience. The
dull grey scheme that appears by default in the UserForms feels almost anachronistic in this day and age, a relic of a
bygone era. Figure 6-2 shows an example UserForm I pulled from Microsoft’s Developer Network’s help pages.

-
Save Your Information

=

documents that you create using these tools.

The information that you save in this dialog box will be automatically added to new

Name: ‘ [Office 2010 User Name]

Title: [

Address 1: ‘

Address 2: [

~ Phone, Fax, and Email -

Select or type a label from the list provided and then enter
the corresponding contact information.

I Phone ZI I

” | Emai ~| |

Paper size

& Letter

" a4

|

Figure 6-2. An example of a UserForm found in Microsoft’s Excel help

96

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 * GETTING INPUT FROM USERS

Let’s take a look at what you can do when you create input forms on the spreadsheet instead.

A Simple Input Form

In this section, I'll discuss how to create a simple input form. Open Chapter6SimpleInput.xlsx to follow along.
Figure 6-3 is a snapshot of the input form in Chapter6SimpleInput.x1sx.

A B C D E F G

Project Input Form

3 Project-Level Information

4 Project Name Hedge Growth Investment Fund v
el

6 Projected Budget $25,000 | v
8 Important Metrics

9 Metric1 X

1 Metric2 x

13 Metric3 X

15 Metric4 X

16

17

Figure 6-3. A spreadsheet-based input form

You can create a new input form in Excel with nothing more than an unused worksheet tab. With an idea of the
information you'd like to collect at hand, it’s a simple matter of laying everything out.

Nothing too fancy goes into creating something like this. Each input box is simply a named range. If you've
ever created an input form on UserForm before, you know that each input TextBox is given a name. For instance,
convention would tell us the name for TextBox on a UserForm that stores a Project Name would go by txtProjectName.
You're doing a similar action by name each cell with a named range. The named range, as you shall see, will give you
easy programmatic access to the cell’s value later on down the road. Figure 6-4 shows the named ranges and the input
cells they point to.

97

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 GETTING INPUT FROM USERS

wrm.Metricd x b2
A B Lo D E = o]
I i New... Edit... Delete Eilter =
P rOJ ect | n pu‘t F O r [n Name Value Refers To Scope Comment
B fomaetic ———— Fomis0 _ Woikbo. |
‘) Farm.Metric2 =Form!5D511 Workbao...
” o ‘=) Form.Metric3 =Form!SD313 Workbo...
Project-Level Information I Form.Metric4 =Form:sps1s Workbo...
Project Name Hedge Growth Investment Fund v — FormProjectBu... 525000 =Form:5D36 Waorkbo...
) FormProjectMa... Hedge Growth Inv... =Form!SD54 Waorkbo... h’
Projected Budget $25000
Important Metrics
Metric
Metric2
p Refers to:
Metric3 x * —FormisDsd E
Metric4 | | x Close
"

—

Figure 6-4. Input items are named ranges

The green checks and red x glyphs in Figure 6-4 serve as data validation indicators. You probably don’t need one
for each and every box, but there may be inputs you want to specifically point your users’ eyes toward completing.
There’s no fancy coding required to create these. In fact, they require no VBA code at all. It’s just a simple formula and
some custom formatting. Take a look at the formula in Figure 6-5.

v i X W fr | =(LEN(Da)0)

B C D : F
Project-Level Information
ProjectName |Jordan BEERS
Projected Budget X

Figure 6-5. A visual validation formula you can use for input

Here, you're simply testing whether the length of the text entered in the adjacent cell is greater than zero. If it is,
that means something has been written in the cell. If the length of text is zero, that means no input has been provided.
Recall that the double-dash is shorthand for converting the Boolean values of TRUE and FALSE into zero and one.

If you take a closer look at Figure 6-5, you'll notice that the formula in the cell is not readable text. The reason is
because to get the checkbox and x symbols, I used the Wingdings 2 font.

98

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 * GETTING INPUT FROM USERS

Custom Formats for Input Validation

In this section, I'll talk about how custom formats can help turn those zeros and ones into x’s and checkmarks. It's
simple; you use custom formatting. In Figure 6-6, I've used the custom formatting syntax to tell Excel what to display
when the number is either a one or zero.

Number | Alignment | Font | Border | Fill | Protection

Category:

General .| Sample
Number p
Currency
Accounting Type:
Date m e
Time [Color50)[=1]"P";[Color3][=0]"D
Percentage mm:ss

Fraction mm:ss.0

Scientific @

Text [h]:mm:ss

ﬁh _(5* ###0);_(S* (###0);_(5* ");_(@)
(*£#£0);,(* (££20);_(*"-');_(@)

(5* #,##0.00);_(S* (#,##0.00);_ (S* ; "?J;_(@_]
77 (@

[5-409]dddd, mmmm d, yyyy
[5-409]h:mm:ss AM/PM

Type the number format code, using one of the existing codes as a starting point.

oK l ‘ Cancel

Figure 6-6. Custom formats are shown in the Format Cells dialog box

So let’s break this down. With custom formats, I can create conditions to let Excel know when to display which
symbol. For example, I have two conditions in the above formula. Can you guess what they look like? If you notice
[=1] and [=0] then you're spot on! These blocks of syntax outline are the conditions. Note that the semicolon
separates each condition.

Now take a look at the two character symbols that are being returned. There’s a “P” and a really weird looking
“D” thing. To get these characters, I actually looked them up using the Symbol dialog box from on the Insert tab
(see Figure 6-8). In this case, I selected Wingdings 2 as the font and inserted into Excel the symbols I desired. When
Excel inserts these symbols into the worksheet, they’ll be in the Wingdings 2 font.

99

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 GETTING INPUT FROM USERS

But if you look again at Figure 6-6, you'll see the input box in the Format Cells dialog box is looking for regular
alphanumeric characters—not symbols. So you'll need to get those Windings 2 symbols back into regular text. The
easiest way to do this is to select the cell in which you've inserted the symbol and change it to a normal font, like
Arial, Calibri, or Times New Roman. Figure 6-7 demonstrates what happens when you convert the output from
Wingdings 2 to Calibri.

A B C D E F G
Wingdings 2 Font Calibri Font

Sutputcan B ououicen o0 |

From Wingdings 2
to a normal font.

1 U B W R -

Figure 6-7. Converting the output from Wingdings 2 to Calibri

— p— A A g alat

N @ ED 4 2 T Q

Slicer Timeline Hyperlink Text Header WordArt Signature Object Equation Symbol
Box & Footer v Line~ -

Symbols .Sp_ecial Characters |

Eont: |\ Wingdings 2

e Ve
=Y
-

Q||| @]

Becentry used symbols:

waxeti

@)

® < b4 -

Unicode name: & g 5 . :l
. 2 W
Wingdings 2: 208 Character code rom: Symbol (decimal)

Figure 6-8. The Insert Symbol dialog box

Finally, you'll notice the other two syntax blocks in Figure 6-6 that look like [ColorXX], where XX is some number.
The XX in this case is in fact a number that points to a specific color index. To see a full list of colors to choose from, go
to http://dmcritchie.mvps.org/excel/colors.htm.

100

www.it-ebooks.info

http://dmcritchie.mvps.org/excel/colors.htm
http://www.it-ebooks.info/

CHAPTER 6 * GETTING INPUT FROM USERS

The basic syntax for custom formats used here is [Color XX][condition]<symbol to return>.There are other
format options available, and I encourage you to take a look at them. But they are beyond the scope of this book.

Based on what you've learned so far, you're now ready to begin building a spreadsheet wizard to take input from
the user. Notice that this simple input form can be created rather quickly and uses only formulas. The same form
would take longer to create if made on a UserForm.

Creating a Spreadsheet-Based Wizard

In this section, you'll build off the input form created from the previous section. However, you'll also spend
considerable time on the layout mechanics of a spreadsheet-based wizard. As stated in the beginning of the
chapter, you'll focus on components rather than building from scratch. I recommend following along by opening
Chapter6Wizard.x1lsmfrom within the project files.

In Figure 6-9, you can see the beginnings of a spreadsheet-based wizard that will serve as the backbone for the
spreadsheet application you complete in forthcoming chapters. If you have Chapter6Wizard.x1smopen,
Irecommend going through all the interactive components.

A B cD E F G H) AF AG AH Al) AK AL
Complete all steps 1. Introduction Instructions
3 Lorem ipsum dolor sit amet, consectetur adipiscing
4 | » 1. Intreduction Project Name I] elit. Done:. eu elit posugre lacus congue mele.s.u.ada.
5 In hac habitasse platea dictumst. Vivamus facilisis
viverra scelerisque. Sed in semper est, bibendum

6 ! Project Budget euismod massa. Fusce posuere enim ut tempus

convallis. Nullam vel cursus libero, quis iaculis leo.

8 Project Begin Date Cras non libero sed sem facilisis accumsan a ut uma,
9 Vestibulum sollicitudin feugiat dui at feugiat.

(Comment

< Back Mext >

3 Page 1
16
23

Wizard | Helper + 1l

Figure 6-9. A beautiful spreadsheet-based wizard

For instance, a user can use the back and next buttons (Figure 6-9) and the current page in the middle will
change to reflect the choice. Figure 6-9 shows the Introduction page of the wizard.
Figure 6-10 shows the screen for the second page after pressing the Next button on the first page.

101

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 * GETTING INPUT FROM USERS

A B C K L M N [4] P Q AF AG AH Al Al AK Al
1
2 | Complete all steps 2. Survey Instructions
3 Praesent vulputate scelerisque tincidunt, Cras et
4 | odu W |intlude Option 1 | accumsan elit. Praesent in imperdiet felis. Aliquam
B 25 v i od Py vitae nisi gravida, tempus mauris at, adipiscing arcu.
s = s bt > inctide Optfon = Morbi id risus ante. Praesent eget suscipit leo,
G 3. Another 4 Include Option 3 porttitor tincidunt elit. Suspendisse nec rutrum orci,
7 | Include Option 4 quis mollis velit. Sed vitae risus vel elit semper
8 I3 Include Option 5 interdum a quis arcu.
g r Include Option 6
10 : o : v Include Option 7
11 | <Back || Newt> | [Include Option 8
12
13 Page 2
14
15
16
17
18
19
20
22
23

Figure 6-10. Page 2, Survey, of the spreadsheet-based wizard

Layout Patterns for the Spreadsheet-Based Wizard

This section discusses the proper spreadsheet layout required to create a spreadsheet-based wizard. If you look
closely at the difference between Figure 6-9 and Figure 6-10, you'll see that the column headings have changed in
the center view. This is because the first view referred to a different set of columns. When you pressed Next, it hid this
set of columns and advanced to the next set of columns. Figure 6-11 shows all of the panes built into this wizard by
unhiding the entire sheet. Notice that they are laid out from left to right an incrementally increasing order.

m . [DU ' = . L - 0 " T 0 " [[. O L L T L I S L B
Y | Complete allstep | z.Sumer z.Swrvey 2. 5urvey 4, Summary i

,

.

s

i == Wizard. View1 [Wizatd View2 W ... “ew3| Wizard.View4

"
”
"

"
n
M
21

aal —l

Figure 6-11. A view of the spreadsheet-based wizard with every item unhidden

The mechanism shows and hides these columns accordingly. If you unhide everything and then zoom out, you
can see each of these views laid out accordingly.

Note that I've named these views successively: Viewl, View2, View3, etc. In this setup, it makes it easy to know
which view you are currently on. As well, you can know the successive panes in the list in either direction, whether
you go forward or backward. Consider, if you were on View2, you’d know the previous screen would be View1 and the
next screen would be View3.

102

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 * GETTING INPUT FROM USERS

Think about the ease of this setup. If you want to make changes to each step, you simple need to make them
in that step’s set of columns. If you'd like to add another step, you could insert another series of columns in front of
Wizard View4 and name it Wizard View5. The Name Manager can help you keep track of how many views you have
(see Figure 6-12). In addition, you can jump to the step you want automatically by selecting its name.

Refers To Scope Comment
=Helper!$BS1

=) Helper.Instructi... {Lorem ipsum dolo... =Helper!SAS6:SASY Workbo...

=) Helper.TotalPag... 4 =Helper!SBS2 Workbo...

3 wizard.Checkb... {3 =Wizard!SL54:5L511 Workbo...
=) Wizard.View1 oo T =Wizardisnit) Workbo...
=) Wizard.View2 G T T T = Wizsrndisiesg Workbo...
=) Wizard.View3 20, =Wizard!SRiSW Workbo...

=) Wizard.View4 e d e ww ey wi =WIZargISESAE Workbo...

<

Refers to:
</ | =HelpensBs1

Figure 6-12. The named range manager can help you keep track of each view

The Helper Tab

In this section I'll talk about the Helper tab (see Figure 6-13), which is an integral part of the spreadsheet-based
wizard.

Wizard | Helper

Figure 6-13. The Helper tab keeps track of important information for the wizard

As has been the case with previous spreadsheets, I always suggest placing extra information either in a hidden
spot on the spreadsheet or in another tab. In this case, you have several items in the Helper tab (see Figure 6-14).

103

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 * GETTING INPUT FROM USERS

A B C D E
Current Page Index 1 <--Helper.CurrentPagelndex
2 Total Pages 4 <-- Helper.TotalPages

1

Figure 6-14. A snapshot of named ranges on the Helper tab

In Figure 6-15, cell B1 has been given the name Helper.CurrentPageIndex. Cell B2 has been given the name
Helper.TotalPages. Note that Helper.CurrentPageIndex keeps track of the current page in view. Its value is changed
within the code. Helper.TotalPages is manually updated (that is, by you, the human) when you add new views.

You could automate the process of ensuring Helper.TotalPages always has the correct total views. For now, I don’t
foresee you adding additional views, so let’s keep it as is.

B13 ¥ Je ="Page " & Helper.CurrentPagelndex
A B C D E F G H

8 Project Begin Date

9
10 Comment
11 = Back] [Next >
= L §
13| | Page 11
14 i

Figure 6-15. You can use named ranges to help you track and display information about this wizard

Going back to the Wizard tab, you can see that Helper.CurrentPageIndex is referenced to let you know what
page number you are on (see Figure 6-15).

Moving Between Views

For your wizard to have its full effect, you need a way to move back and forth between the views. That’s what the Next
and Back buttons on the wizard help you do. The following code listings show the code that is called when you press
forward (Listing 6-1) and backward (Listing 6-2).

Listing 6-1. This Code Will Tell the Wizard to Display the Next View

Public Sub GoNext()
Dim index As Integer
' Read in the current page index and increment it by one
to go next
index = [Helper.CurrentPageIndex]
index = index + 1

Check if we're already on the last page
If index > [Helper.TotalPages] Then Exit Sub

104

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 * GETTING INPUT FROM USERS

Unhide the next view
Wizard.Range("Wizard.View" & index).Columns.Hidden = False
' Check to see if we're on a page that requires special instructions
If index = 2 Then

DisplayCheckboxes
Else

HideCheckboxes
End If
' Hide the current set of columns
If index > 1 Then

Wizard.Range("Wizard.View" & index - 1).Columns.Hidden = True
End If

'Set Helper.CurrentPageIndex equal to the next page index
[Helper.CurrentPageIndex] = index
End Sub

Listing 6-2. This Code Will Tell the Wizard to Display the Previous View

Public Sub GoPrevious()
Dim index As Integer

' Read in the current page index and decrement it by one
to go previous

index = [Helper.CurrentPageIndex]

index = index - 1

Check if we're already on the first page
If index < 1 Then Exit Sub
' Unhide the previous view
Wizard.Range("Wizard.View" & index).Columns.Hidden = False
' Check to see if we're on a page that requires special instructions
If index = 2 Then

DisplayCheckboxes
Else

HideCheckboxes
End If
' Hide the current set of columns
If index < [Helper.TotalPages] Then

Wizard.Range("Wizard.View" & index + 1).Columns.Hidden = True
End If

'Set Helper.CurrentPageIndex equal to the previous page index
[Helper.CurrentPageIndex] = index

End Sub

105

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 * GETTING INPUT FROM USERS

Take a look through both listings. Notice that they are very similar except for a few minor differences. The GoNext
procedure checks to see if you've reached the end of the set of views while the GoPrevious procedure checks if you're
still at the beginning. The GoNext procedure increments the current page index, while the GoPrevious procedure
decrements the current page index. This is another example of a reusable component—the mechanism to go forward
and backward is virtually the same, so you just need to make a few accommodations. If you think about creating a
general mechanism, then reusing and adjusting the code is easy.

Views That Require Additional Instruction

Some views require extra instruction before they're displayed. For example, Figure 6-16 shows a series of check boxes,
which require additional explanation.

K L M N (o} P Q

2. Survey

Include Option 1
Include Option 2
Include Option 3
Include Option 4
Include Option 5
Include Option &
Include Option 7
Include Option 8

LYWW TWWA T

Figure 6-16. View?2 includes a series of check boxes. These require special instructions

Unlike input cells form on other views, the check boxes are form controls (CheckBox). They sit on top of the
spreadsheet. It’s not enough to simply hide the form controls by hiding the view on which they reside. The reason is
that form controls don’t always become hidden so cleanly when you hide a column, even when you set them to move
and size with cells in their properties. So you may be wondering how to ensure that these check boxes always appear
in the correct location. The answer is a technique I've come up with called anchoring.

106

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 * GETTING INPUT FROM USERS

Anchoring Controls

In this section, I'll talk about how to anchor your controls so they always appear in the same spot when you hide and
unhide columns or rows. The first thing you need to do is name your desired controls as part of a series. Let’s go back
to that second view. Figure 6-17 highlights the first check box in the series.

Checkl v | i o o=
A B C||K L

1

. | Complete all steps 2. Surve
3

4 1. Introduction |r“_ _ In
5 o 2. Survey ¥ In
6 3. Another t:}-::i:-n 1= In

Figure 6-17. This check box is anchored to the underlying cell

Notice that the name of the check box is Checkl. The check box below it is named Check2, and below that is
Checks3, all the way through to Check8. Furthermore, in Figure 6-18, I've selected the range that appears under each
check box. Notice I've named it Wizard.CheckboxAnchor. This anchor will be your guide in placing these check boxes.

Wizard.CheckboxAnchor x
A B clK L

1

2 | Complete all steps 2. Surve
4 r |inc
= ML |inc
6 _P Inc
7 Summar V | Inc
8 _F _]nc
9 _I? _]nc
10 v Inc
11 | <Back || Next> | = Inc

17

Figure 6-18. You can create a range of anchors for a set of check boxes

Now recall this snippet of code from GoNext and GoPrevious, shown in Listing 6-1 and Listing 6-2. When you are
showing the second view, View2, you call the procedure DisplayCheckboxes; when you leave the second view, you
call the procedure HideCheckboxes. Listing 6-3 excerpts this code.

107

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 * GETTING INPUT FROM USERS

Listing 6-3. An Excerpt from GoNext

Check to see if we're on a page that requires special instructions
If index = 2 Then
DisplayCheckboxes
Else
HideCheckboxes
End If

Now let’s take a look at the DisplayCheckboxes shown in Listing 6-4.

Listing 6-4. DisplayCheckboxes Will Anchor the Check Boxes to the Cell Range When Step2 Is in View

Private Sub DisplayCheckboxes()
Dim i As Integer

'Iterate through each cell in our anchor
For i = 1 To [Wizard.CheckboxAnchor].Rows.Count

'Create a shape object to point to our current Checkbox
Dim CurrentCheckbox As Excel.Shape
Set CurrentCheckbox = Me.Shapes("Check" & 1)

'Set the checkbox to be the exact same size as the

'as the cell it sits atop

With [Wizard.CheckboxAnchor].Rows(i).Cells
CurrentCheckbox.Width = .Width
CurrentCheckbox.Height = .Height
CurrentCheckbox.Top = .Top
CurrentCheckbox.Left = .Left

End With

'Ensure people can see it
CurrentCheckbox.Visible = True
Next i
End Sub

In this code, you iterate through every cell that constitutes your anchor. For your purposes, the iterator i not
only helps you track your current location through each anchor cell but it also helps you reference the corresponding
check box.

You'll notice that I reference each check box through the spreadsheet’s internal shape container. When you
treat check boxes as shapes, you are exposed to the properties that are only available to a shape object. This helps
because the check box object does not always show its properties and methods with IntelliSense (more on that later
in the chapter).

In the line With [Wizard.CheckboxAnchor].Rows(i).Cells, you are grabbing the current cell in your anchor
given at index i. With that current cell, you can tell the check box with the same name given by index i—that is, if you
are on cell 1 in Wizard.CheckboxAnchor, use the check box with the name Checkl. You then tell that check box to be
the exact same width and height, and the same top and left. This ensures the check box takes up the entire width of
any cell in your anchor. You can see this effect in Figure 6-17.

When you're not on the second view, you'll want to hide these check boxes. Listing 6-5 shows how you do just that.

108

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 * GETTING INPUT FROM USERS

Listing 6-5. This Code Will Remove the Check Boxes from the Anchored Cells
Private Sub HideCheckboxes()

Dim i As Integer

'Iterate through each cell in our anchor
For i = 1 To [Wizard.CheckboxAnchor].Rows.Count

'Create a shape object to point to our current Checkbox
Dim CurrentCheckbox As Excel.Shape
Set CurrentCheckbox = Me.Shapes("Check" & 1)

'Set the checkbox to be the exact same size as the
'as the cell it sits atop
With [Wizard.CheckboxAnchor].Rows(i).Cells
CurrentCheckbox.Top = 0
CurrentCheckbox.Left = 0
CurrentCheckbox.Width = 0
CurrentCheckbox.Height = 0
End With

"Ensure the checkbox is no longer visible
CurrentCheckbox.Visible = False

Next i
End Sub

Just as GoPrevious was similar to GoNext, but in a different direction, HideCheckBoxes is very similar to
DisplayCheckboxes. It simply undoes the work performed in DisplayCheckboxes.

But you may be wondering, is it even necessary to change the height, width, top, and left if you're just going to hide
the check boxes? The truth is, it may not be. You could simply hide these check boxes without doing anything else. At
least, at a product level it makes no difference. However, while developing anchors on your spreadsheet, moving every
unused check box to a safe location is a good idea.

Here’s why. Excel acts somewhat unpredictably when working with form controls. If the above code errors out
because there was a bug in the original loop, you might notice the check boxes didn’t disappear as they should have.
Sometimes, Excel will make several copies of the same CheckBox control (one on top of the other). What causes this
is an error in your code while working with multiple form controls. By moving each control to a safe location, you can
monitor when Excel has made copies of itself.

Anchoring for Large Sets of Controls

In the previous section’s example, one could easily insert eight check boxes and then name them accordingly. It’s
not necessarily the most enjoyable of exercises, but it’s a simple and quick task. What happens if you have so many
controls that this take becomes incredibly burdensome? In this section, I'll talk about a quick method of anchoring for
large regions.

In Figure 6-19, I've created a large check box anchor region, which I've highlighted in gray for demonstration
purposes. Like the anchor region above, I've made this region a named range.

109

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 * GETTING INPUT FROM USERS

[

Figure 6-19. Inserting several check boxes and naming each one for large regions such as this is an onerous task

You can quickly create enough check boxes for this entire region by reusing elements of the above presented
code. Listing 6-6 shows the code you can use to quickly fill up the entire region with check boxes.

110

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 * GETTING INPUT FROM USERS

Listing 6-6. This Code Will Fill in a Predefined Anchor Region with Check Boxes
Public Sub FillCheckboxAnchorRegion()

'Clear out any checkboxes already created.
'This will ensure we don't duplicate checkbox
"names.

Me.CheckBoxes.Delete

Dim i As Integer
For i = 1 To [CheckboxAnchor].Rows.Count

Dim CurrentCell As Range
Dim NewCheckbox As CheckBox

Set CurrentCell = [CheckboxAnchor].Cells(i)
Set NewCheckbox = Me.CheckBoxes.Add(0, 0, 0, 0)
With CurrentCell
NewCheckbox.Width = .Width
NewCheckbox.Height = .Height
NewCheckbox.Top = .Top
NewCheckbox.Left = .Left
End With

NewCheckbox.Name = "Check" & i
Next

End Sub

This code is fairly straightforward. Every worksheet contains a collections object that holds all the CheckBox
controls that appear on the sheet. Be careful, however; the collection is not immediately available through
IntelliSense. So you need to trust that it is there, even if IntelliSense doesn’t show it. When the check boxes are already
created, sometimes it’s easier to refer to them using the Shapes collection as you did earlier in the chapter.

The Checkbox collections object has an Add method. The parameters for this method are left, top, width,
and height. Given this, you might be wondering why I would supply this argument with zeros and then adjust the
checkbox’s dimensions thereafter. However, in my experience, sometimes changing the width and height after setting
the CheckBox control’s coordinates will slightly change its position. Therefore, your best bet is to set the dimensions
first and then set the coordinates.

Finally, you might have noticed in these examples when a check box is selected, its background will change
to help you easily visualize which options have been selected at a glance. I'll talk more about how to do that in the
next chapter.

In the meantime, let’s talk about how to provide information about the page you're on.

Components That Provide Information

This section will describe how to develop components in the spreadsheet-based wizard that provide the user with
information. This includes highlighting the steps you're on, describing the page you're looking at, and including
page-specific instructions to the user. Figure 6-20 highlights these components.

111

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 * GETTING INPUT FROM USERS

A B CD E F G H I) AF AG AH Al A) AK AL

Complete all steps 1. Introduction Instructions

Lorem ipsum dolor sit amet, consectatur adipiscing
elit. Donec eu elit posuere lacus congue malesuada.
In hac habitasse platea dictumst. Vivamus facilisis

; viverra scelerisque. Sed in semper est, bibendum

= Solas G Project Budget euismod massa. Fusce POsUere enim ut tempus

7 v SUMMA convaliis. Nullam vel cursus libero, quis iaculis leo.

s | 1. Introduction Project Name | |

Project Begin Date Cras non libero sed sem facilisis accumsan a ut urna,
vestibulum solligtudin feugiat dui at feugiat.

Comment
< Back Next >

13 Page 1

Wizard | Helper +

Figure 6-20. Highlighting components that provide information

Using Custom Formats to Highlight the Current Step

This section will cover how you can use custom formats (as you did in the first examples in this chapter) to help you
highlight which step is currently in view. Figure 6-21 shows an excerpt of the formula. This is essentially the same
formula for all the possible steps cells in Column A.

r Include Option 1

= MO

astidd]= --(--LEFT(E4,1)= Helper.CurrentPagelndexﬂ]
4 ThcIode Uption &
r Include Option 5

Figure 6-21. The large formula appears in the selected cell

Let’s break down this formula. Recall that - - is simply the shorthand operation to change a text string or Boolean
expression into a number. Because every step starts with a given number (e.g. 1. Introduction, 2. Survey, etc), you can
read in that number. In Figure 6-21, we read in that number by looking at the first character of each step. Left(B4, 1)
will return a 1; Left(B5, 1) will return a 2 and so forth. You use the shorthand value operation to turn it into a number.

Once you know the number, you can simply use a Boolean conditional to compare it to the current page you're
on. In Figure 6-19, --LEFT(B4,1)=Helper.CurrentPageIndex would return a FALSE. This is because you are on the
second page, and cell A4 refers to the first page. Cell A5 refers to the second page, so it will return a TRUE. The final - -
at the end converts the TRUE and FALSE values back to zeros and ones.

To create the dot effects above, you follow a similar custom formula described in the beginning. To all of them,
I've applied this simple custom format syntax: [Color15][=0]e;[Color9][=1]e.

112

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 * GETTING INPUT FROM USERS

Using INDEX to Provide Step-Specific Information

This section will cover the finishing touches to your wizard. On the top of every view, I've placed the same formula
throughout. You can see this formula in Figure 6-22.

v Muyinncii vu

o
=INDEX(Wizard.StepRange,Helper.CurrentPagelndex,1)

T K L M N 0 P Q AF
2. Survey

Figure 6-22. You can use the INDEX formula to display view-specific information

In Figure 6-23, you can see that Wizard. StepRange points to the list of steps on the side.

(e | =& =23 1 oo =r o e B H
Wizard.StepRange b
A B C

Complete all steps

2

3

4 1. Introduction

5 *|2. Survey

6 3. Another Question
7 4. Summary

Figure 6-23. The selected region comprises of the names of all available steps in the wizard

Because Wizard.CurrentPageIndex will always refer to the current step in view, you can simply place this formula
at the top of each wizard page. This will ensure you always show the correct heading. In addition, you can simply change
the title of the step in Wizard.StepRange and the change will be reflected automatically in its corresponding view.

The instructions follows a similar path. There’s an Instructions Table on the Helper tab that includes instructions
for each step. The Instructions Table holds particular instructions for each page in the wizard. Take a look at the
instructions formula used in Figure 6-24.

113

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 * GETTING INPUT FROM USERS

£ =INDEX(Helper.InstructionsTable,Helper.CurrentPageindex)
AF AG AH Al Al AK AL
Instructions

Praesent vulputate scelerisque tincidunt. Cras et
accumsan elit. Praesent in imperdiet felis.
Aliquam vitae nisi gravida, tempus mauris at,
adipiscing arcu. Morbi id risus ante. Praesent
eget suscipit leo, porttitor tincidunt elit.
Suspendisse nec rutrum orci, quis mollis velit,
Sed vitae risus vel elit semper interdum a quis
arcu.

Figure 6-24. Similar to the mechanism described in Figure 6-22, you can use INDEX to pull specific instructions

Again, you use the current page index to help you pull relevant information for each step.

The Last Word

In this chapter, I talked about building spreadsheets that can capture user input. Spreadsheet-based wizards are
particularly useful. You may not have thought that a spreadsheet was a good place to take user input. Conventional
wisdom suggests that you should use ActiveX components. However, compared to UserForm-based wizards,
spreadsheet-based wizards are easier to build, design, and modify.

In the next chapter, I'll talk about how to store input from these wizards.

114

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7

Storage Patterns for User Input

In the last chapter, I discussed developing the components of a spreadsheet-based wizard. The main example from
last chapter had you review the infrastructure required to create a spreadsheet-based wizard. Whereas the last chapter
concerned layout mechanics of creating an input interface, this chapter will deal with how to store the information
once the user has finished their input. What follows builds from the previous chapter. You'll still use the spreadsheet-
based wizard implementation described in the previous chapter. However, going forward, you’ll make a few changes,
which you'll see here soon.

In this chapter, I'll begin by describing a system of metrics that will become the inputs for your wizard. From
there, I'll describe the database scheme used to store information once it’s been completed. Finally, I'll discuss
handling typical database functions, like inserting a new record or deleting an existing one.

The World Health Organization: An Applied Example

In 2000, the World Health Organization ranked the healthcare systems of several different industrialized nations in a
study called the World Health Report 2000 - Health systems: Improving performance. The study used five key metrics
defined here:

e Health Level: Measures life expectancy for a given country.
¢ Responsiveness: Measures factors such as speed to health service, access to doctors, et al.

¢ Financial Fairness: Measures the fairness of who shoulders the burden of financial costs in a
country.

e Health Distribution: Measures the level of equitable distribution of healthcare in a country.

e Responsiveness Distribution: Measures the level of equitable distribution of responsiveness
defined above.

I'll make some slight modifications to the original model used by the World Health Organization. For one, each
country can score from 1 to 10 for a given metric. Second, I've generated a list of made-up countries. So, to be sure, all
the data presented herein is notional. Except for the metrics used above (and the weights used in later chapters), the
results have basically nothing to do with the actual results of the real model. That’s right, all data herein is fictitious.
Any resemblance to real life data is purely coincidental. No spreadsheets were harmed in the writing of this book.

In this chapter, you'll allow the user to create a new country, score each country based on metrics, and then store
each result into a database. All of this will be self-contained in one spreadsheet file. In addition, you'll be following
many of the themes presented in previous chapters. You'll rely heavily on named ranges and attempt to minimize
unnecessary use of code.

115

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 STORAGE PATTERNS FOR USER INPUT

Design of Your Spreadsheet File

You'll be using the example file Chapter7Wizard.x1sm for this chapter. The file is made up of five of tabs, shown in
Figure 7-1.

(%]

National Healthcare Comparison Tool

w

.

Record Management

5 Click INSERT NEW to insert a new national record into the
6| database.
; INSERT NEW
9
10 Or, select from the list below to EDIT or DELETE an entry.
SR fcoastesh N
Hoanaa
12 Iqeiskya
13 Ithha
; Jaca
14 FakePlace
15
16
17
18
19 v
20
21 EDIT DELETE VIEW ANALYSIS
22
23
24
25
Welcome | Wizard | Database | Analysis | Helper ®

Figure 7-1. The five tabs you'll be using for your workbook

Let’s go through each of these tabs.

e Welcome: Welcome is essentially your menu. When the user first opens the spreadsheet, it’s
what they should see (think: “Welcome screen”). Figure 7-2 in the following section shows
what the menu looks like.

e Wizard: Wizard contains your spreadsheet-based wizard.

e Database: Database contains the backend database you'll be using to store country record data.

116

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © STORAGE PATTERNS FOR USER INPUT

e Analysis: Analysis contains the spreadsheet analysis system you’ll be developing in the next
chapter.

e Helper: Helper contains information about the spreadsheet application. For example, it keeps
track of how many total views there are in the wizard. It also keeps track of the current wizard
page. In the next few chapters, it will keep track of even more.

The Input Wizard

The wizard used here has changed substantially from the previous chapter. In this section, I'll talk about some of
those changes in design plus additional design enhancements. Figure 7-2 shows what your wizard looks like with all
columns unhidden and zoomed out.

Compiete all steps 1 Introduction L Introduction LiIntroduction
1
. Vo ateadantinn asleqfonr HeallbLeaet l iniabed? Yosens
| [eSrongd| T T e
: Fisansial Pairaran ::]m S
: == g Wizard.Comment 41 Dinlrifatinn W. —_—
;; _|Wizard.View1| Wizard-View2 |Wizdiu.view3
" [: Aser rrapennre,

Welcome | Wizard | Database | Analysis | Helper *

L

Figure 7-2. All the different views of your wizard

Tip If you zoom out to 39%, the name of your named ranges will appear on top of the area to which they refer.

117

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 STORAGE PATTERNS FOR USER INPUT

As in the previous chapter, the inputs of the wizard have each been given a name. Figure 7-3 shows the named
ranges given for the inputs in the first view. Figure 7-4 shows the names for the inputs in the second view.

Complete all steps 1. Introduction

I 1. Introduction Country Name |Wizard.CountryName |

2. Country Information

WO = o oW B W R

2
13 Page 1

Figure 7-3. Inputs on the first view

A B c K L M N 0
1
- Complete all steps 2. Country Information
3
4 1. Introduction Health Level
5 « 2. Country Infoermation
6 3. Summary Responsiveness
7
8 Financial Fairness
9
10 Health Distribution
n | < Back . Next >]
12 Responsiveness Distribution
13 Page 2

Figure 7-4. Inputs on the second view

118

www.it-ebooks.info

3. Summary Comment Wizard.Comment

|10

710

/10

110

710

<--Wizard.HealthLevel
<--Wizard.Responsiveness
<--Wizard.FinancialFaimess
<--Wizard.HealthDistribution

<--Wizard.ResponsivenessDistribution

http://www.it-ebooks.info/

CHAPTER 7 © STORAGE PATTERNS FOR USER INPUT

If you ever need to change the location of these named ranges—or want to see where they are located
immediately—you can use the Name Manager. Figure 7-5 shows the named ranges used to create spreadsheet-level
variables. This keeps you from having to store everything in the code, which is error prone and not ideal.

Name

) Helper.TotalPages
=) Wizard.Comment

Value

3
Wizard.Comment

Refers To

=Helper!SBS2
=Wizard!SGS6

Scope

Workbo..
Workbo..

=) Wizard.CountryName Wizard.CountryNa... =Wizard!SGS4 Workbo..
‘=) Wizard.FinancialFairness =Wizard!5058 Workbo..
) Wizard.HealthDistribution =Wizard!S0S510 Waorkbo.,

=) Wizard.HealthLevel =Wizard!S0%4 Workbo..
=) Wizard.Responsiveness =Wizard!SOS6 Workbo.,

=l Wizard.ResponsivenessDistribution =Wizard!S0512 Workbo..
) Wizard.StepRange {"1. Introduction”;"... =Wizard!SB54:5B56 Workbo..
{1 WA fiward Wiaet e

<
Refers to: :
X | =Wizard!SB$4:5B56

=\AlizardISN-C1 Wiarkha

Figure 7-5. The Name Manager showing all your spreadsheet variables

Setting Focus to the First Input Cell

As the user clicks Next and Back in the wizard, one clear problem is that the selector doesn’t move with it. For
instance, if you are on the first screen, and the Comment box is selected (having just typed in some value), when you
click Next, the selector will still be on the Comment box. What you want is for the selector to automatically focus on
the top of each screen.

To do this, you'll set the first input box of each screen to follow the .FirstFocus pattern. For the first screen,
you'll create a new named range called Wizard.View1.FirstFocus (Figure 7-6).

119

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 STORAGE PATTERNS FOR USER INPUT

1. Introduction

Country Name |

Comment

Wizard.View1.FirstFocus

Figure 7-6. Setting the .FirstFocus input cell of View 1

You'll do the same for the second view (Figure 7-7).
K L M N 0 P Q
2. Country Information

Health Level | _|,f 10 \\

Responsiveness I:\/ 10

Wizard.View2. FirstFocus

Financial Fairness I:’HO
Health Distribution I:\MO
Responsiveness Distribution /10

Figure 7-7. Setting the FirstFocus for the second view

120

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © STORAGE PATTERNS FOR USER INPUT

You then need to adjust your GoNext and GoPrevious procedures, which are displayed in Listings 7-1 and 7-2.

Listing 7-1. The GoNext Procedure

Public Sub GoNext()
Dim index As Integer

' Read in the current page index and increment it by one
' to go next

index = [Helper.CurrentPageIndex]

index = index + 1

' Check if we're already on the last page
If index > [Helper.TotalPages] Then Exit Sub

" Unhide the next view
Wizard.Range("Wizard.View" & index).Columns.Hidden = False
SetFocusForView (index)

' Hide the current set of columns
If index > 1 Then
Wizard.Range("Wizard.View" & index - 1).Columns.Hidden = True

End If

'Set Helper.CurrentPageIndex equal to the next page index
[Helper.CurrentPageIndex] = index
End Sub

Listing 7-2. The GoPrevious Procedure

Public Sub GoPrevious()
Dim index As Integer

' Read in the current page index and decrement it by one
' to go previous

index = [Helper.CurrentPageIndex]

index = index - 1

' Check if we're already on the first page
If index < 1 Then Exit Sub

Unhide the previous view
Wizard.Range("Wizard.View" & index).Columns.Hidden = False
SetFocusForView (index)

' Hide the current set of columns
If index < [Helper.TotalPages] Then

Wizard.Range("Wizard.View" & index + 1).Columns.Hidden = True
End If

'Set Helper.CurrentPageIndex equal to the previous page index
[Helper.CurrentPageIndex] = index
End Sub

121

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 STORAGE PATTERNS FOR USER INPUT

The new procedure that helps you focus on the first input cell in each view is SetFocusForView, which is
highlighted in bold in the code. The code for the SetFocusForView procedure is shown in Listing 7-3.

Listing 7-3. The SetFocusForView Procedure

Private Sub SetFocusForView(PageIndex As Integer)
' We test to ensure not on the last view of the wizard since
' there is nothing to focus in this view.
If PageIndex < [Helper.TotalPages].Value Then
Me.Range("Wizard.View" & PageIndex & ".FirstFocus").Activate
End If
End Sub

Notice what SetFocusForView does. It takes in the current page number of the wizard. If you're looking at
the first view, it looks for the named range Wizard.Viewl.FirstFocus. If you're on the second page, it looks for
Wizard.View2.FirstFocus. Obviously, since you have only two pages with input (the third page gives the user a few
buttons to make a choice), you need ensure you're not looking for a . FirstFocus cell where none exists on the page.
Hence, you test to ensure you're not in the last view before doing anything.

Now let’s take a moment to think about what you've built. In a broad sense, the code doesn’t care too much about
what page you're looking at so long as there is a FirstFocus on it. Moreover, if you make changes later, and want the
FirstFocus to automatically start somewhere else, it’s as simple as changing where the name points in the name
manager. Third, because you're following a naming convention, it’s fairly clear that Wizard.Viewl.FirstFocus refers
to the first input cell in the first View on the Wizard tab. (Compare this to other naming conventions commonly in
practice, which might have used something like vwl_Focus1). Finally, you see that named ranges are super flexible.
A cell can have more than one named range pointing to it at any given time.

The Database

In this section, I'll talk about the interworkings of the database that serves to store user input. Figure 7-8 provides a
snapshot of the database setup you'll be working with.

A B C D E F G H
Country Responsivene Financial Health Responsiveness

1 Country Id Country Name Comment Health Level 55 Fairness Distribution Distribution
2 1 FakePlace 0 5 3 2 4 2
4 Record Count 5
5 Record Max 6
6 Current Index 1
T

County Health Responsive Financial Health Responsiveness
8 Country Id Country Name commenfBd Level B ness B FairnessBdl pistributid Distributiond|
8

] 1 Acoaslesh 2 2 1 10
10 2 Hoanga 5 9 10 10 1
1n | 3_||qeiskya 6 2 5 6 6
12 5 Ithha 10 1 9 7 5
13 6 Jaca 9 2 1 1 1

Figure 7-8. The backend database storing country information filled in by the user

122

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © STORAGE PATTERNS FOR USER INPUT

Figure 7-8 shows that the database is made up of three components.
1. Input Entry table: Serves as the “living” record of current inputs from the wizard.

2. Database Information table: Keeps track of the different pieces of information required to
add, edit, and delete records.

3. Database table: Keeps a record of all information stored currently in the database. I've
aptly named this table “Database,” which you can see by clicking into the table and going
to the Design context menu.

Let’s go through each section in detail.

Input Entry Table

The Input Entry table is what I like to call the “living record” of the current inputs from within the wizard. Figure 7-9
shows the actual formulas for the five metrics you're capturing beneath their values. Notice that they connect directly
to the named ranges found in your wizard. Unfortunately, because of the size of named ranges and page size, [wasn'’t
able to show full names, but you can readily understand what’s going on here.

D E F G H
Health Responsiveness
Health Level Responsiveness Financial Fairness Distribution Distribution
5 3 2 4 2
=Wizard.HealthLevel =Wizard.Responsiveness =Wizard FinancialFairne =Wizard.Healt =Wizard.Responsi
K L M N ; P Q

2. Country Information

Health Level 5_/10

Responsiveness 3//10
Financial Fairness /10

Health Distribution 4//10

Responsiveness Distribution 2//10
o

Figure 7-9. The values in the Input Entry table link directly to the cells on the wizard

The only cell that doesn’t link directly is Country Id (Figure 7-10).I'll go into more detail on that in the next
few sections.

123

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 STORAGE PATTERNS FOR USER INPUT

A B

Country Id Country Name
2 _I=INDEX(3a‘.aI:asc-:Ccu'wt’-_.-' d], !Ithha
3 |Database.Currentindex)
4 :Record Count 6
5 |Record Max 7
6 |Current Index I 4|
7
8 Country Id Country Name
9 | 1|Acoaslesh
10 2|Hoanga
1 3|Igeiskya
12 5|ithha
13 6|Jaca
14 7|FakePlace

Figure 7-10. Country Id uses the current index and the table

Once you have all the inputs from the wizard in one spot, adding it into the table can be done in fell swoop. You
simply need to copy the values from the Input Entry table into your Database table. Figure 7-11 shows how you're
going to do this conceptually.

A B C D 3 F G H
Country Health Financial = Health Responsiveness
i i - . S : A b el e

IZ | -1 FakePlace 0 5 3 2 4 2 I"---.:‘\
3 + “‘\“\
4 Record Count 5 ‘\“\‘
5 Record Max 6 W
6 Current index T b
7

County Health Financial Health Responsiveness
W countryif Country Name commentBd LevelB ResponsivenesBd Fairnesqd DistributidBd Distributiond
9 1 Acoaslesh 2 2 1 8 10 i
10| 2 Hoanga 5 9 10 10 1 /i
1| 3 Igeiskya 6 2 5 6 6 ;:,’
12 5 Ithha 10 1 9 7 s| /:,:
13 | 6 Jaca B 2 1 1 1 (/'",z
14 '~ t”

Figure 7-11. A conceptual visualization of how you add a new record to the database

Because you don’t want to do a lot of read/write action on the spreadsheet (since those are volatile), the best way to
do this is to simply copy the information from the living record down to the bottom of the table. Figure 7-12 shows Input
Entry completely filled in (the entire Input Entry row can be referred to by the named range Database. InputEntry).
When you save a new record, the SaveNewRecord procedure is called. Listing 7-4 shows the code for this procedure.

124

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © STORAGE PATTERNS FOR USER INPUT

Database.InputEntry v| @ f1 -1
A B C D E F G H
Country Health Financial Health Responsiveness
1 Country Id Country Name Comment Level Responsiveness Fairness Distribution Distribution
2 | -1 Fakeplace 0 5 3 2 4 2
3 |
4 |Record Count 6
5 Record Max
6 |Current Index -1
-
County Health Financial Health Responsiveness
B Countryidf Country Name commentBd 1eveBd ResponsivenesBd Fairnesfd DistributidBd Distributiond
9| 1 Acoaslesh 2 2 1 8 10
10 | 2 Hoanga 5 El 10 10 nE
11 | 3 Igeiskya 6 2 5 6 6
12 5 Ithha 10 1 9 7 5
13 6 Jaca 9 2 1 1 1
14| 7 FakePlace 0 5 3 2 4 2,

Figure 7-12. The result of adding a new record

Listing 7-4. The SaveNewRecord Procedure

Public Sub SaveNewRecord()
Dim LastRowOfData As Range
Dim NewRowOfData As Range
Dim DatabaseRowCount As Integer

' Find the last row in the Database table

DatabaseRowCount = Database.ListObjects("Database").ListRows.Count

Set LastRowOfData = Database.ListObjects("Database").ListRows(DatabaseRowCount).Range
' Find the next row to place the input entry
Set NewRowOfData = LastRowOfData.Offset(1, 0)
' Place the new row of data

NewRowOfData.Value = [Database.InputEntry].Value

' Set the ID of the new row of data with a new ID
NewRowOfData(1, 1).Value = [Database.RecordMax].Value + 1
End Sub

What allows this code to work effectively is the use of Excel tables. A feature of these tables is their dynamic
growth. When you add a new row of data right below its last record, it will subsume the new record. There’s no extra
VBA code required for this action to take place. It happens automatically. And here you'll use it to your advantage.

Your code finds the row count for all the data in the table. It then assigns the last row in the table to
LastRowOfData. Next, you create a new range called NewRowOfData, which you tell Excel to place one row below the
last. Next, you simply assign the NewRowOfData to be the same values as that of Database. InputEntry (one fell swoop,
right?). Finally, you assign that new row of data a unique ID, which you'll go into the next section. Figure 7-12 shows
the result of running the code.

125

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 STORAGE PATTERNS FOR USER INPUT

Database Information Table

The Database Information table keeps track of all the information required to make changes to the Excel table.
Figure 7-13 shows that the table is made up of three elements.

3

4 iRecord Count 6
5 lRecnrd Max 7
6 !CUrrentlndex -1
7 |

Figure 7-13. The Database Information Table

In this section, you'll go through them.

e Record Count keeps track of the total records in the database. It uses the formula
=COUNT (Database[Country Id]).

e Record Max keeps track of the maximum Country Id of all countries listed. You need to keep
track of the maximum Id for when you add records. The newest record will always be one plus
the maximum record. This ensures each new record is always unique. The formula used is
=MAX(Database[Country Id]).

e Current Indexkeeps track of whether you're editing a preexisting record or a new record. When
Current Index equals negative one, you're editing a new record. Otherwise, when you're editing
a preexisting record, Current Index will become the row index of the recording being edited.

The most important feature of Current Index is that it never refers to a Country Id. You may find this confusing
at first, but it’s a very important distinction. Figure 7-14 demonstrates this concept. In the Input Entry above, you see
you're editing the country Ithha. Notice that while Country Idis five, Current Index isfour. That’s because Ithha is
located in the fourth row down in your database table.

A B C D E F G H

Country Health Financial Health Responsiveness
1 Country Id Country Name Comment Level Responsiveness Fairness Distribution Distribution
2 I 5.|Ithha 0 10 1]) 7 5
3
4 Record Count 6
5 Record Max 7
6 Current Index 4
T

County Health Financial Health Responsiveness
W country B countryName [l commentBd LevelBd ResponsivenesBd Faimes$d pistributidd DistributionEd
9 1 Acoaslesh 2 2 1 8 10
10 2 Hoanga 3 9 10 10 1
1 3 Igeiskya 6 2 5 6 6
12 5 Ithha 10 1 9 7 S5
13 6 Jaca 9 2 1 1 1!
14 7 FakePlace 0 5 3 2 4 2

Figure 7-14. Ithha has a Country Id of 5 but the record index is 4

126

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © STORAGE PATTERNS FOR USER INPUT

You must separate location and Id. The reason is because later on in the chapter, you'll be sorting on country
name (in fact, you can see it’s already being sorted alphabetically in Figure 7-14). The location of the record could
change with any update. In addition, you've also included the capability to delete records. Clearly, whatever country
used to have a Country Id of 4 has been deleted from this table.

The Backend Database Table

Here you use one of Excel’s most powerful capabilities—the table. There are several wonderful features of Excel tables
that I'll talk about in this section. For one, they allow for easy dynamic range references (there’s one exception to that,
which I'll get into in the next section). If want to include the Country Name column in an Index function, I need only
supply Database[Country Name].That reference to the Country Name column is also dynamic: this means I can add
or remove records—and Excel will automatically reflect these changes in the Database[Country Name] reference.

Another great feature is the table’s ability to expand to consume new entries. If I manually type in a new value in an
unused cell directly adjacent to the table headings, Excel will expand to incorporate the new column heading. Likewise,
ifyou add any data directly below the last record, the table will expand to consume the new record. The addition of new
records is a boon to your development: you're able to add records to the database by simply writing to the spreadsheet.
There’s no extra overhead of grabbing the table object and inserting it. It's always best to let Excel handle the heavy lifting for
you. It’s not worth reinventing the wheel (perhaps I should say, “don’t reinvent the pie chart,” which is shaped like a wheel).

One other feature, which you will use in subsequent chapters, is the table’s calculated columns feature. Figure 7-15
provides an example. In the first row, I've selected the Health Level response for reach country and added an arbitrary
amount to it (for demonstration). Notice, the syntax used is the @ symbol. You can think of that @ symbol as telling Excel
that you want to do something with the values in Health Level at the same row as the current formula. Pressing Enter on
the formula will automatically fill the formula down to the end of the row. You can see by the result in Figure 7-15, that
each value in Test Column has added two to the respective values of Health Level in the same row.

Health Financial Health Responsiveness
Levelld Responsivenesﬂ Fairnesqd Distributidl@ Distributionfd Test Column Ed

2 i L 8 10)=[@[Health Level]]1-2w
9 10 10 3 |
6 2 5 6 6
10 1 9 ¥ D
9 & al ik 1
) 5 3 2 a 2 st

Health Financial Health Responsiveness
Leveﬂ Responsivenesﬂ Faimesﬂ Distributicﬂ Distributionﬂ Test Column ﬂ
2 2 1 8 10 4
5 E 10 10 1 7113
6 2 5 6 6 8
10 1 9 i 5 12
=) 2 1 1 1 11
5 3 2 4 2 7|

Figure 7-15. A demonstration of calculated columns

127

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © STORAGE PATTERNS FOR USER INPUT

Menu Screen Functionality

Now let’s focus on what's presented to the user when they first open the spreadsheet. Figure 7-16 shows the opening
menu screen. In this section, I'll go through the different elements.

ra

National Healthcare Comparison Tool

w

B

Record Management

5 Click INSERT NEW to insert a new national record into the
6 database.
7
é INSERT NEW
9
10 Or, select from the list below to EDIT or DELETE an entry.
1 Acroaslesh A
. Hoanga
= Igenskia
‘3 Jaca
4 FakePlace
15
16
17
18
19 v
20
21 EDIT DELETE VIEW ANALYSIS
22

]
w

Figure 7-16. The opening screen of your spreadsheet tool

Asyou can see, the opening screen is made up of several different elements. The most prominent of those
elements are Excel shapes and a ListBox form control. As stated earlier, I am not a fan of using form control buttons
(that look like old Windows 95 buttons) on the spreadsheet. Rather, [much prefer using clean-looking Excel shapes
and assigning macros to them.

Inserting a New Record

In this section, I'll talk about creating a new record to be inserted upon its completion. Here, I've created a button
called Insert New Record. But this may be a misnomer since it doesn’t insert a new record into the database; rather,
it clears the wizard of its values and places the user on the wizard’s first input screen. From the user’s perspective, it
prepares the wizard for the process of inserting a new record. See Listing 7-5.

128

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7

Listing 7-5. The InsertNewRecord Procedure

Public Sub InsertNewRecord()

End

Dim CurrentIndex As Integer

'Set CurrentIndex to a new record
[Database.CurrentIndex].Value = -1

'Clear all inputs
[Wizard.CountryName].Value =
[Wizard.Comment].Value = ""
[Wizard.HealthLevel].Value = ""
[Wizard.Responsiveness].Value =
[
[
[

Wizard.FinancialFairness].Value =
Wizard.HealthDistribution].Value = ""
Wizard.ResponsivenessDistribution].Value = ""

'Show the first page

CurrentIndex = [Helper.CurrentPageIndex]
Wizard.Range("Wizard.View" & CurrentIndex).Columns.Hidden = True
Wizard.Range("Wizard.View1").Columns.Hidden = False
[Helper.CurrentPageIndex].Value = 1

'Activate the wizard
Wizard.Activate
SetFocusForView 1
Sub

STORAGE PATTERNS FOR USER INPUT

As with most of my code, I've attempted to the keep the logic fairly straightforward. You set the CurrentIndex
to -1 to Excel when you're working with a new record. Next, you clear out any values in the table that may have been
previously entered. Next, you tell Excel you want to start the user on the first page of entry. Finally, you activate the
wizard to bring it into view.

Editing an Existing Record

In this section, I'll talk about how to edit an existing record. This is where the Current Index from the Database
Information table comes in. Figure 7-17 shows the cell link for the ListBox actually pointing to Database. CurrentIndex.
Recall the cell link tracks the row index for a selected item. Figure 7-18 shows that since you've selected the fourth row,
your Current Index (stored as Database.CurrentIndex)is 4.

www.it-ebooks.info

129

http://www.it-ebooks.info/

CHAPTER 7 STORAGE PATTERNS FOR USER INPUT

, Natlonal Hed | sz | protedion | propeties | atttex
Input range: :Databa;e,CountryNamel.ist E
Cell link: . Database.Currentindex @

4 | Record Manageme i
Selection type

5 | Click INSERT NEW to insert @ single
6 | database. O Mutti
? INSERT NEW © Exend
8
a [] 3-D shading
10 _Or, select from the list belo
11 Acoaslesh
Hoanga

12 Iqeiskya
13 Ithha

1 Jaca
14| FakePlace
13|
16 |
17 |
18 |
19 |
20
21 EDIT DELETE VIEW ANALYSIS
22

Figure 7-17. Cell link refers to Database.CurrentIndex

A B
1 Country Id Country Name
2 o 0
3
4 |Record Count 6
5 Record Max 7
SJ Current Index 4!
7

Figure 7-18. Current Index is 4 because the list box on the front screen has the fourth row selected

You now work in reverse of when you add a record to the table. Since you know the row location of the record you
want to edit, you simply need to fill this information in your Input Entry table. Figure 7-19 shows what this looks like
conceptually. Listing 7-6 provides the code for the procedure.

130

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © STORAGE PATTERNS FOR USER INPUT

A B C D E F G H
Country Health Financial Health Responsiveness
Country Id Country Name Comment Level Responsi Fai Distribution Distrik
2 5 Ithha 0 10 1] 7 5
f"/ 3
4 Record Count 6
5 Record Max 7
6 Current Index
i

County Health Financial Health Responsiveness

W countryif countryName [E] commentBd LevelB ResponsivenesBd Fairnes{id DistributidBd Distributionfd|

g 1 Acoaslesh 2 2 1 8 10

10 2 Hoanga 5 9 10 10 1

e M 3 Igeiskya 6 2 5 6 6
~E S lthha 10 1 9 7 R |
13| 6 Jaca 9 2 1 1 1

14 7 FakePlace 0 3 2 4 2

Figure 7-19. What happens when you edit a given record based on the user’s selection in the list box from on the
opening tab

Listing 7-6. The EditSelectedRecord Procedure
Public Sub EditSelectedRecord()

Dim CurrentSelectedIndex As Integer
Dim InputEntry As Variant
Dim CurrentIndex As Integer

' Assign the currently selected index to CurrentSelectedIndex
CurrentSelectedIndex = [Database.CurrentIndex]

InputEntry = Database.ListObjects("Database").ListRows(CurrentSelectedIndex).Range

[Wizard.CountryName].Value = InputEntry(1, 2)
[Wizard.Comment].Value = InputEntry(1, 3)
[Wizard.HealthLevel].Value = InputEntry(1, 4)
[Wizard.Responsiveness].Value = InputEntry(1, 5)
[Wizard.FinancialFairness].Value = InputEntry(1, 6)
[Wizard.HealthDistribution].Value = InputEntry(1, 7)
[Wizard.ResponsivenessDistribution].Value = InputEntry(1, 8)

'Show the first page

CurrentIndex = [Helper.CurrentPageIndex]
Wizard.Range("Wizard.View" & CurrentIndex).Columns.Hidden = True
Wizard.Range("Wizard.View1").Columns.Hidden = False
[Helper.CurrentPageIndex].Value = 1

'Activate the wizard
Wizard.Activate
SetFocusForView 1

End Sub

131

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © STORAGE PATTERNS FOR USER INPUT

This code is similar to the code in Listing 7-5. However, here you need to ensure that the values of the
Input Entry table become that of the selected record. Notice in Listing 7-6 that you're not assigning the cells of
the Input Entry table directly. This is because that would overwrite their linkages to the wizard. Rather, you
assign the values to the input cells of the wizard. This is akin to the user simply typing the information in themselves.
You might also notice that you use the constant numbers for the assignment. Generally, I don’t prefer this
practice for other applications, but it works here in a pinch. So long as you've performed the requisite planning to
ensure you won’t move the column assignments around. And, in fact, even if you did end up adding input boxes into
the wizard and you had to update the input table, you could simply add another column adjacent to the Input Entry
table. The order of inputs the user fills in within the wizard is not the same order you must follow when storing the
information. So you can add even more variables to the store without changing the order of columns above. If, in
another application, you must change these numbers in your code to accommodate the insertion of another variable,
it’s best not to use this method (instead, go for named ranges for each cell).

Deleting a Selected Record

In this section, I'll talk about how to delete a selected record. On the opening screen, I allow the user to select a record
from the list box to be deleted. Listing 7-7 shows the code to delete a selected record.

Listing 7-7. The DeleteSelectedRecord Procedure.

Public Sub DeleteSelectedRecord()
Dim CurrentSelectedIndex As Integer
' Assign the currently selected index to CurrentSelectedIndex
CurrentSelectedIndex = [Database.CurrentIndex]
' Move the ListBox Selector
If [Database.CurrentIndex].Value = [Database.RecordCount] Then "Last item on the list
[Database.CurrentIndex].Value = [Database.CurrentIndex].Value - 1
End If
' Delete the entry
Database.ListObjects("Database").ListRows (CurrentSelectedIndex).Delete
End Sub

The code is fairly straightforward. You use the CurrentIndex to find the row location of the record you want
to move. All you need to do is simply delete that row to remove it. The conditional in Listing 7-7 tests whether the
selector is pointing to the last record in the table. If it is, you need to point it to the record that comes right before it
since you'll be deleting that record. If you did not do this, CurrentIndex would continue to point to a record that no
longer exists. You can see the problem this would cause by placing the selector on the last item in the list box. If you
press Delete, the record is removed. If you pressed Delete again, an error would occur since the selector would point
to arow location that is now greater than the total count of rows in the list.

Linking the Column of Country Names to the Form Control ListBox

In this section, I'll talk about how to automatically fill the list box with the list of country names from your backend
database. Unfortunately, this is less straightforward than one might think. The problem stems from the ListBox’s inability
to accept a direct reference to the backend database. You might think you could just type Database[Country Name] into
the Input Range of the form control’s properties (refer to Figure 7-18). But doing this will generate a list box of blank
data. Therefore, you need to create a dynamically sized named range using good ol’ fashioned functions.

132

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © STORAGE PATTERNS FOR USER INPUT

Look back at Figure 7-18, and you can see you've specified the named range Database.CountryNamelList. Let’s
take a look at its formula.

=INDEX(Database[Country Name],1):INDEX(Database[Country Name],Database.RecordCount)

In previous chapters, I talked about creating dynamically sized functions such as these. The range operator
(the colon) is what makes this formula work so seamlessly. Let’s look at Figure 7-20 while attempting to go through
this function. The left side of the function INDEX(Database[Country Name],1) will always return the first record in
the Country Name column of your table—cell B9 in Figure 7-19. The right side, INDEX(Database[Country Name],
Database.RecordCount), will always return the last record in the table—cell B14 in Figure 7-20. Remember that Excel
treats what INDEX returns as a cell reference, so behind the scenes Excel constructs the range B9:B14 on the fly based
on this formula. If you added a record, Excel would construct the effective range B9:B15 on the fly.

BS b
A B) - =
New... Edit... Delete Filter ~
1 Country Id Country Name
= Mame Value Refers To Scope Comn *
2 7 Faketown
i T Database {17, "Acoaslesh”,”,"... =Database!SAS%:S5.. Workbo...
= ‘=) Database.CountryNamelList {o} =INDEX(Database[.. @ Workbo...
4 Record Count 6 ‘=) Database.Currentindex 6 =Database!$B56 Workbo...
5 Record Max i =) Database.nputEntry {7, 'Faketown","0",... =Database!SAS2:S.. Workbo...
& Current Index 6 =) Database.RecordCount 6 =Database!SBS4 Workbo..,
7 2l Database.RecordMax 7 =Database!SBS5 Waorkbo...
=! Helper.CurrentPageindex 3 =Helper!SB51 Waorkbo...
) Helper.InstructionsTable {"Lorem ipsum dolo... =HelperlSAS6:3A59 Workbo...

:fl country ||= Country Name n ‘#¢| | ' HelperTotalPages 3 =Helper!5B52 Workbo...
g TiAcoaclech =) Wizard.Comment =Wizard!SGS6 Workbo...

H ! Wizard.CountryName Faketown =Wizard!5G54 Waorkbo...
10 2 Hoanga ; i :

Haeisk =) Wizard.FinancialFairness =Wizard!S0S8 Workbo...
LL 3: Qeiskya) Wizard.HealthDistribution =WizardiSO$10 Workbo...
12 5:'“‘“3 =) Wizard.HealthLevel =Wizard!SOS4 Workbo...
13 Gllaca < >
14 7!.@5%&'329 ________ Refers to:

15 7% =INDEX(Database[Country Name], 1):INDEX(Database[Country Name],Database.RecordCou @
16

17 Close

18

Figure 7-20. Dynamic formulas help you construct this dynamic range on the fly

Looking back to Figure 7-16, it’s a matter of simply linking the ListBox’s input Range to this dynamic range.

The final button on the opening menu takes users to the analysis page. I'll go over that in more detail in the next
two chapters. In the meantime, look at the excerpted code in Listing 7-8. (Note this code is located in the Welcome
sheet object.)

Listing 7-8. The GoToAnalysis Procedure

Public Sub GoToAnalysis()
Analysis.Activate
End Sub

133

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © STORAGE PATTERNS FOR USER INPUT

Wizard Summary Buttons

Now let’s focus on the buttons that appear in the third, summary view of your wizard (see Figure 7-21). In this section,
you'll go through each of these buttons. Here’s a quick summary of what they do:

e Save, and Start New: Saves the current input and begins a new record from page 1
of the wizard.

e Save, and Go Back To Menu: Saves the current record and returns the user to
the menu screen.

e Cancel: Does nothing with the current record and simply returns the user to the menu screen.
A B C R 5 T u v W
Complete all steps 3. Summary

4 ntroductior Finished? You can

6 ® 3. Summary

. SAVE, AND START NEW
8
4 SAVE, AND GO BACK TO MENU
1 < Back Next > CANCEL
13 Page 3 Or, use the Back button to change
14 your responses.
15

-

o

Figure 7-21. The summary view of your wizard

In this section, you'll go over the Save, and Start New and the Save, and Go Back to Menu buttons.
Listings 7-9 and 7-10 show their code, respectively.

Listing 7-9. The SaveAndStartNew Procedure

Public Sub SaveAndStartNew()
Dim CurrentIndexOfRecord As Integer

CurrentIndexOfRecord = [Database.CurrentIndex].Value

If CurrentIndexOfRecord = -1 Then
Wizard.SaveNewRecord

Else
Wizard.SaveSelectedRecord (CurrentIndexOfRecord)

End If

Database.SortCountryNames

Wizard.InsertNewRecord

End Sub

134

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © STORAGE PATTERNS FOR USER INPUT

Listing 7-10. The SaveAndGoBackToMenu Procedure

Public Sub SaveAndGoBackToMenu()
Dim CurrentIndexOfRecord As Integer

CurrentIndexOfRecord = [Database.CurrentIndex].Value
If CurrentIndexOfRecord = -1 Then
Wizard.SaveNewRecord
Else
Wizard.SaveSelectedRecord (CurrentIndexOfRecord)
End If

Database.SortCountryNames
Wizard.GoToMenu
End Sub

Notice that both of these procedures perform the same functions. First, they test if the Current Indexis-1. Again,
you know if it’s -1 you're dealing with a new record. Therefore, you call SaveNewRecord (Listing 7-4, from earlier in
the chapter). Otherwise, you're dealing with a record that already exists. In that case, you call SaveSelectedRecord
(Listing 7-11).

Listing 7-11. The SaveSelectedRecord Procedure

Public Sub SaveSelectedRecord(RecordIndex)
Dim SelectedRowOfData As Range

' Assign SelectedRowOfData to the index in the database

' corresponding to the record we're editing

Set SelectedRowOfData = Database.ListObjects("Database").ListRows(RecordIndex).Range

' Assign the updated entries back to the selected row
SelectedRowOfData.Value = [Database.InputEntry].Value

End Sub

The SaveSelectedRecord procedure works similarly to that of SaveNewRecord. However, because the record
already exists on the table, you need not doing anything additional except set the values in the row location to those of
the Input Entry table.

Returning to Listing 7-9 and 7-10, both procedures call the Database.SortCountryNames (Listing 7-12). As you
make updates to the table, you want to keep the integrity of an alphabetical sort. Here, you use a simple command to
the table to resort the data using the CountryName column. Note this procedure is actually in the Database sheet object
(which is why you use Database. SortCountryNames).

Listing 7-12. The SortCountryNames Procedure

Public Sub SortCountryNames()
Me.ListObjects("Database").Sort.SortFields.Add Key:=[Database[Country Name]]
End Sub

135

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © STORAGE PATTERNS FOR USER INPUT

Finally, returning once again to Listings 7-9 and 7-10, you see two both procedures differ with respect to their
last line of code (which I've bolded). In Listing 7-9, you want to start the wizard over and insert another record. So you
call InsertNewRecord (Listing 7-5). On the other hand, Listing 7-10 takes you back to the menu, so you call GoToMenu
(Listing 7-13). Likewise, the Cancel button shown in Figure 7-21 calls GoToMenu directly.

Listing 7-13. The GoToMenuProcedure

Public Sub GoToMenu()
Welcome.Activate
End Sub

The Last Word

In this chapter, you built upon the wizard from the previous chapter. You developed a backend database system that
works seamlessly when complete. Whenever available, you let Excel do the work for you—by using formulas and
features inherent to Excel’s tables. You also used quite a bit of code, but you were careful to make your code simple
and readable. Specifically, you avoided using code for everything. By creating a proper balance between code,
formulas, and features, you've built the beginnings of a robust Excel application. And that’s thinking outside the cell.

136

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8

Building for Sensitivity Analysis

In the previous chapters, you investigated a wizard that could take in and store user input. In this chapter, you're going
to create a dashboard that allows you to perform sensitivity analysis based on the metrics described in the previous
chapter. Figure 8-1 provides a preview of what’s to come.

A B C D E F G H I J K L M N O
1
: 2 BACK TO MENU
2| Analysis of Alternatives of Sort By | Total E
Healthcare Systems Health Responsiveness
3 Health Level Responsiveness Financial Fairness Distribution Distribution
RESET WEIGHTS a o B 2 o & o 2 a &
25.0% = 125% - 25.0% = 25.0% @ 12.5%

4 Results 1-20 Total ¥ el - - [¥ 2 ¥
€ | A 1 Foujan [B7.5) I | |
7 2 Gagua I]] e
8 3 Efros | I e ——]
9 4 Heiestan | —" E— | E—
10 5 Ecaislana 763 I I |
12 & Hoanga (75.0)] e |
13 7 Esnhil | I I
14 * Ithha I S o—
15 ? Puodeiton 713 | om— — |
16 10 Efbrye (71.3) — —— o
18 11 Otiaflium o I .]
18 12 Boostan | c— s—] C—
20 15 Sodal [65.0) " L] =
21 14 Muburg (65.0) E—— L] ==
22| 15 Socia (625) I == = e
24 16 Agrines 3 | | ==
25 17 Egblines 7 | | |
26 18 Seoceudan 5] . N
27 19 Neiestein o I |]
28 | Y 20 Urwhary °] . |

SESTPOSSIELE [D P A —

w
=]
m

Figure 8-1. Analysis of alternatives decision support system

The tool shown in Figure 8-1 allows you to do many things quickly and efficiently, much of it with only a small
amount of VBA code. As you'll see, many of the mechanics are driven by Excel’s built-in functions, like conditional
formatting and formulas. The correct combination between formulas and code here is key. It’s what allows you to
make instantaneous updates to the data without the need of a “recalculate” button.

But before you do anything, let’s return to the metrics described in the previous chapter. See Table 8-1.

137

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 © BUILDING FOR SENSITIVITY ANALYSIS

Table 8-1. Metrics Used by the World Health Organization’s Study

Metric Description Weight
Health Level Measures life expectancy for a given country. 25.0%
Responsiveness Measures factors such as speed to health service, access to doctors, et al. 12.5%
Financial Fairness Measures the fairness of who shoulders the burden of financial costs in a country. 25%
Health Distribution Measures the level of equitable distribution of healthcare in a country. 25%

Responsiveness Distribution =~ Measures the level of equitable distribution of responsiveness defined above. 12%

100%

Source: The World Health Report 2000 - Health Systems: Improving Performance (www.who. int/whr/2000/en/)

The weights described herein are in fact the same weights the World Health Organization used in its original
study. However, as mentioned in the previous chapter, the data you have is notional and the countries are fakes
(Imean, they don’t even sound like real county names!).

Weighted Average Models

The metrics and weights form the basis of what's called a weighted average model, which I'll talk about in this section.
It’s called a weighted average because the metrics are not all of equal weight (otherwise, they'd all be 20%). To see how
the whole thing works, let’s take a look at the following two countries, Acoaslesh and Afon, shown in Table 8-2.

Table 8-2. The Results for Two Countries, Acoaslesh and Afon

Country Health Level Responsiveness Financial Fairness Health Distribution Responsiveness Distribution

Acoaslesh 2 2 1 8 10
Afon 4 2 4 2 3

As you will recall, each of these countries is scored out of 10. So, for Acoaslesh, 2 is a considerably low score given
that 10 is the highest. On the other hand, a 10 for Responsiveness Distribution is the best possible score. To find the
total health level (that is, the weighted average score) for Acoaslesh, you would compute as follows:

= [(Health Level Score/10 * Health Level Weight) +

(Responsiveness Score/10 * Responsiveness Weight) +

(Financial Fairness Score/10 * Financial Fairness Weight) +

(Health Distribution Score/10 * Health Distribution Weight) +

(Responsiveness Distribution Score/10 * Responsiveness Distribution Weight)] * 100
[(.20 * 12.5%) +

(.20 * 25.0%) +

(.10 * 25.0%) +

(.80 * 25.0%) +

(1.00 * 12.5%)] * 100

.425 * 100 = 42.5.

138

www.it-ebooks.info

http://www.who.int/whr/2000/en/
http://www.it-ebooks.info/

CHAPTER 8 © BUILDING FOR SENSITIVITY ANALYSIS

So for Acoaslesh, the overall health score is .425, where 1 is now the best score. That process of taking the scores
and making them proportionate to the scale of 0 to 1 is called normalization.

Sometimes it’s easier to understand these final scores as being out of 100 instead. So let’s scale .425 to be 42.5 by
multiplying the result by 100. Whether you choose .425 or 42.5, both answers are correct. It’s up to you how you want
to present the numbers to your audience.

Likewise, you can perform the same calculations for Afon.

= [(.40 * 12.5%) +

(.20 * 25.0%) +

(.40 * 25.0%) +

(.20 * 25.0%) +

(.30 * 12.5%)] * 100
= 28.8

By scaling to 100, you make the perfect score any country could get 100 (again, if you don't scale, the perfect score
is 1). You can see this yourself by assuming perfect 10s across the board and doing the calculations. When you do this
for each country, you'll come up with a list like the one below. This allows you to say the countries ranking higher are
better performers according to your model than the ones below (Figure 8-2).

8 Country Name n

9 |Foujan 87.5
10 Efros 83.8
11 |Gaqua 82.5
12 Hoanga 80.0
13 |Heiestan 78.8
14 |Esnhil 76.3
15 Ecaislana 73.8
16 |Efbrye 73.8
17 Boostan 71.3
18 |Puodeiton 71.3
19 Agrines 66.3
20 |Sodal 62.5
21 Ithha 61.3
22 Seoceudan 61.3
23 Socia 61.3
24 |Otiaflium 60.0
25 |[Egblines 57.5
26 |Muburg 55.0

Figure 8-2. A rank of country performance based on the weighted average model

139

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 © BUILDING FOR SENSITIVITY ANALYSIS

Note The statistician George E. P. Box once remarked, “All models are wrong, some are useful.” You should always
remember models are simplifications (sometimes even gross over-simplifications) of reality. By their nature, they cannot
capture everything. Indeed, this was a criticism of the World Health Organization regarding the these metrics; some
argued that other factors were not correctly captured or weighted. Therefore, it's important to be specific when discussing
model results. Rather than assert the validity of the results as being unequivocal truth, remember they are the product of
a series of assumptions.

Sensitivity Analysis on a Weighted Average Model

In this section, I'll talk about sensitivity analysis with respect to the weights for a given country. The weighted sum model
presented is used to evaluate many different countries. Broadly, you're simply investigating a resultant list of countries
whose scores follow directly from the importance of each metric (given by its weight) in your model. As such, you may
want to investigate how changing the importance of inputs impacts overall scores. This is called sensitivity analysis.

One-Way Sensitivity Analysis

One simple, if powerful, sensitivity analysis method is to vary only one weight at a time while maintaining the
proportional importance of the other weights. This is called one-way sensitivity analysis and it works like this. Let’s
say you want to see what happens if you increase Health Level by 4%. First, let’s divide the weight into two theoretical
groups (Figure 8-3).

WHAT WE WANT TO

CHANGE WHAT WE WANT TO MAINTAIN

HEALTH LEVEL HEALTH RESPONSIVENESS RESPONSIVENESS FINANCIAL SUM TOTAL
DISTRIBUTION DISTRIBUTION CAIRNESS

25.0% | 25.0% 12.5% 12.5% 25.0% 100.0%

25% 75% 100.0%

Figure 8-3. The weights split into two groups based upon which weights you want to change and which you
want to maintain

The rule here is that each group must always sum to 100%. So, if you add 4% to Health Level, you have to subtract
it from the other group (see Figure 8-4).

140

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 © BUILDING FOR SENSITIVITY ANALYSIS

Beginning Change New %
HEALTH LEVEL 25% 4% 299%
OTHER GROUP 75% 4% 71%
100% 100%

Figure 8-4. Ifyou add 4% to one group, you must remove it from the other

Now that the overall sum of the “other group” has changed, the weights that make up that group are adjusted
while maintaining the same proportion to the group’s sum as they did before. In this next stage, you find the new
proportions for the group you want to maintain (Figure 8-5).

HEALTH RESPONSIVENESS RESPONSIVENESS FINANCIAL
DISTRIBUTION DISTRIBUTION FAIRNESS

Original Weight 250% 12_5% 12.5% 250%
Divide by old 750% 750% 750% 750%

group sum

Proportion 33.3% 16.7% 16.7% 33.3%

Figure 8-5. Finding the new proportions for the group you want to maintain

In the next step, you multiply each calculated proportion by the new group weight (Figure 8-6).

HEALTH RESPONSIVENESS RESPONSIVENESS FINANCIAL
DISTRIBUTION DISTRIBUTION FAIRNESS

Proportion 333% 16.7% 16.7% 33.3%
Multiply by new 71.0% 71,0% 71-0% 71.0%

group weight

New Weight 23.7% 11.8% 11.8% 23.7%

Figure 8-6. Multiply the new proportions by the new group weight

Finally, you reassign the new weights to their metrics (Figure 8-7). If you add all the weights together, they now
once again sum to 100%.

HEALTH LEVEL HEALTH RESPONSIVENESS RESPONSIVENESS FINANCIAL
DISTRIBUTION DISTRIBUTION FAIRNESS

29.0% 23.7% 11.8% 11.8% 23.7%

Figure 8-7. New metrics weights
In this chapter, I'll talk about how to build this mechanism into your spreadsheet. I've devised a method that I
call Easy One-Way Sensitivity Analysis. You'll be surprised how easy it is to implement into your application. Indeed,

you can take advantage of Excel’s form controls to help you do much of the heavy lifting. That said, there are a few
limitations with this method, and I'll go over them in this chapter.

141

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 © BUILDING FOR SENSITIVITY ANALYSIS

Creating a Linked Values Table

In this section, I'll describe how to create the Easy One-Way Sensitivity Analysis mechanism and implement it in
the spreadsheet application from the previous chapter. If you upload Chapter8Wizard.x1sm, we're starting on
the Helper tab.

In Figure 8-8, I've placed five scroll bar form controls onto the spreadsheet, one for each metric. I've then linked
each scroll bar to a cell on the right of each metric under the column Linked Value. Just for clarification, the left-most
scroll bar links to cell B5, and the right-most links to cell B9. As you can see in Figure 8-3, the middle scroll bar is linked
to Financial Fairness, B7.

L

4 |Metrics Linked Value Adjusted Value Final Weight
5 |Health Level 66 34 14%
6 |Responsiveness ... 60 25%
7 |Financial Fairness N = .‘_;j 45 19%
8 |Health Distribution 45 55 23%
Responsiveness

9 | Distribution 55 45 19%
10 Total 239 100%
‘; ~ ~ ~ o, ~

13

14

15

16

17 VR el [S

Figure 8-8. Setting the scrollbars to the their linked cells

For each scroll bar, I've set its minimum value to 1 and its maximum value to 100. Figure 8-9 shows an example.

142

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 © BUILDING FOR SENSITIVITY ANALYSIS

Size Protection | Properties AItText: Control

Current value: [ss
Minimum value: :1
Maximum value: .
Incremental change: |
Page change: .
Cell link:

3-D shading

Figure 8-9. Each scroll bar has a minimum of 1 and a maximum of 0. Right-click the scroll bar and select format
control to see this property window

Recall from previous chapters how form control scroll bars work. The more you scroll down, the greater the
number in the linked cell. While there’s nothing wrong with that per se, it’s counterintuitive for some users. For your
purposes, you'd like the action of scrolling up to actually increase the resulting value and scrolling down to decrease.
So you need to adjust the values on the spreadsheet to reflect this preference.

Insert another column next to Linked Values and call it Adjusted Values. In each cell next to the linked
values, you'll take the scroll bar’s value and subtract it from 100 (the max value of the scroll bar). Figure 8-10 shows
this formula.

4 | Metrics Linked Value Adjusted Value Final Weight
5 |Health Level | 66=100-55] | 14%
6 |Responsiveness 40 60 25%
7 Financial Fairness 55 45 19%
§ |Health Distribution 45 55 23%
Responsiveness
9 |Distribution 55 45 19%
10 Total 235 100%

1n

Figure 8-10. Now, as you scroll down, the Adjusted Value decreases. As you scroll up, the Adjusted Value increases

Next, you need to add to find the grand total of all the adjusted values. You can do that by adding a SUM cell at the
bottom of the Adjusted Value column (see Figure 8-11).

143

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 © BUILDING FOR SENSITIVITY ANALYSIS

Adjusted Value

Final Weight

&38R

&

14%
25%
19%
23%

19%

4 |Metrics Linked Value

5 |Health Level 66
6 Responsiveness 40
7 |Financial Fairness 55
& |Health Distribution 45

Responsiveness

9 | Distribution 55
10| Total

=SUM(C5:C9)

100%

Figure 8-11. Use the SUM function to the find the total of adjusted values

Now you want to come up with the proportion each metric’s adjusted value has to the overall total. To do that,
you simply need to divide each adjusted value by the total adjusted value sum, as shown in Figure 8-12.

4 Metrics

5 Health Level

6 Responsiveness

7 |Financial Fairness

§ |Health Distribution
Responsiveness

g Distribution

10 Total

Linked Value Adjusted Value

Final Weight

66 34 14%
a0 60 25%
55| asl=c/scsig |
as 55 23%
55, 45 19%
| 239) 100%

Figure 8-12. Find the final weight by dividing each adjusted value by the total adjusted value

And that'’s it! If you play around with the scroll bars, you can change the weights as much as you want. The final
weight will always equal 100%! Figure 8-13 shows an adjustment to the scroll bar assigned to Health Level.

=

Metrics Linked Value
5 |Health Level 84
& |Responsiveness 60
7 |Financial Fairness 51
8 |Health Distribution 45
Responsiveness
9 |Distribution 55
10 Total
1 ~ n Y
2 -~
s _
14 H B
15
; ™
17 M M

Adjusted Value

16
40
45
55

45

205

Final Weight
8%

20%

24%

27%

22%
100%

Figure 8-13. No matter what values are assigned to the scroll bar, the final weights will always add up to 100%

144

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 © BUILDING FOR SENSITIVITY ANALYSIS

Linking to the Database

You're now interested in how you can link the one-way sensitivity analysis mechanism back into the database.
The first thing you want to do is give each of these weights a name. Figure 8-14 shows them named following my
usual conventions.

Helper.HealthLevelWeight ¥ S =C5/5CS
D E F G H |

2

3

4 Final Weight

5 | 25.0%.|<—— Helper.HealthLevelWeight

6 12.5% <-- Helper.ResponsivenessWeight

T 25.0% <-- Helper.FinancialFairnessWeight

8 25.0% <-- Helper.HealthDistributionWeight

9 12.5% <-- Helper.ResponsivenessDistributionWeight

10 100%

Figure 8-14. Each final weight is named in the Linked Values table

In the Database tab, I've added a few extra columns that reflect the operations you must do for each metric for
each country in your list (see Figure 8-15). Across the top of the new columns, I've included a reference to the actual
weight values for each metric. This isn’t technically necessary, as you'll see. However, I think it provides a good
reference into understanding the calculations. Anything you can do to make your work easier to understand when you
come back to it is, in my opinion, always worthwhile.

145

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 © BUILDING FOR SENSITIVITY ANALYSIS

weights
12.50% 25.00% 25.00% 12.50%

Financial Health Responsiveness
Responsiveness Fairness Distribution Distribution

=Helper.HealthLevelWeight

. Health Level (weighted) B (weighted)Bd (weighted)Bd (weighted)Ed (weighted)

3 0.225 0.1125 0.25 0.25 0.0375 87.5)
5 0.25 0.1125 0.225 0.2 0.0625 85.0
8 0.2 0.0625 0.25 0.25 0.1 86.3
1 0.125 0.1125 0.25 0.25 0.0125 75.0
10 0.175 0.0625 0.2 0.25 0.125 81.3
3 0.2 0.125 0.175 0.125 0.1125 73.8
8 0.225 0.0875 0.125 0.225 0.1 76.3
3 0.15 0.1 0.175 0.25 0.0375 71.3
8 0.125 0.1 0.225 0.125 0.1 67.5
2 0.175 0.0875 0.25 0.175 0.025 71.3
2 0.125 0.1125 0.1 0.25 0.025 61.3
7 0.175 0.0625 0.075 0.25 0.0875 65.0
5 0.25 0.0125 0.225 0.175 0.0625 72.5
4 0.025 0.05 0.225 0.225 0.05 57.5
5 0.1 0.0375 0.25 0.175 0.0625 62.5
2 0.25 0.0375 0.15 0.225 0.025 68.8
2 0.1 0.025 0.225 0.225 0.025 60.0

Figure 8-15. The weights across the top correspond to the weights you developed on the Helper tab

Tip You should develop with the future in mind. Ask yourself, will you understand what’s going on when you come
back to your spreadsheet having not seen it in three months?

Note that each of the new columns corresponding to the metrics now has “(weighted)” added to the name. This
is because these columns represent the individual scores divided by 10 and multiplied by their corresponding weight
on the Helper tab. Figure 8-16 shows the formula used for Health Level (weighted).

X v K =[@[Health Level]]/10*Helper.HealthLevelweight
1 J K L M
weights

25.00%

Health Responsiveness
Health Level Responsiveness Financial Fairness Distribution Distribution
(weighted) (weighted) (weighted) (weighted) B (weighted)
0.1125 0.25 0.25 0.0375
5 nas n1175 n 775 n?7 noRIS

Figure 8-16. Each weighted column takes the original scored value, divides it by ten, and then multiplies it by its
respective weight from the Helper tab

146

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 © BUILDING FOR SENSITIVITY ANALYSIS

Finally, the Total column is simply the sum of all weights (see Figure 8-17).

> v fe =SUM(Database[@[Health Level (weighted)]:[Responsiveness Distribution (weighted)]])*100

[J K L M N
weights
25.00% 12.50% 25.00% 25.00% 12.50%
Health
Health Level Responsiveness Financial Fairness Distribution

Distribution
(weighted) B (weighted) B (weighted) BI (weighted)B] (weighted) Ed Totalffl]

Figure 8-17. The Total column is simply the sum of all the weighted scores

You may not have realized it, but you've just built the infrastructure for one-way sensitivity analysis! If you go
back to the descriptions of weighted average models and one-way sensitivity analysis from the beginning of this
chapter, you'll see that you've re-created the algebra step-by-step.

Building the Tool

In this section, I'll talk about what the new tool does and how to build the functionality. I'll be going piece by piece, so
let’s get started.

Getting to the Backend, the Intermediate Table

As you know, I'm a huge fan of intermediate tables. We almost always need to transform (that is, do something to)
the data before presenting it to the user. Obviously, where you place your intermediate tables is up to you. For many
projects, I prefer placing them on a new tab. But sometimes when dealing with something that’s complicated, I like to
place the table in the same worksheet tab as the decision support system or dashboard. That’s what I've done here.

If you look at the Analysis tab in your file, you'll see that the rows beyond 28 are hidden. That’s because your
intermediate table is somewhere in the hidden rows. So the first thing you’ll want to do is unhide all rows to get a peek
at the intermediate table. The easiest way to do that, in my opinion, is to click the grey triangle at the upper left of your
worksheet to select everything (of course, there’s always CTRL+A). Then from on the Home tab, go to Format » Hide
& Unhide » Unhide rows. Figure 8-18 shows these steps.

147

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 © BUILDING FOR SENSITIVITY ANALYSIS

;. -' > AutoSum ~ %Y H

Fill - :
= Format ” Sort & Find &
Br < Clear~ Filter ~ Select -
Cell Size
*C Row Height...
AutoFit Row Height

1 Column Width...

AutoFit Column Width
Default Width...
Visibility
Hide & Unhide L4 Hide Rows
Organize Sheets Hide Columns
Rename Sheet Hide Sheet
Move or Copy Sheet... Unhide Rows
Tab Coler > Unhide Columns
Protection

[B7 Protect Sheet...

_L Lock Cell

Format Cells...

Figure 8-18. Steps to unhide rows

The intermediate table is shown in Figure 8-19.

148

www.it-ebooks.info

http://www.it-ebooks.info/

Intermediate Table

Scrollbar Value

Sort Column Id

Sort Column:

Total
1 87.5027
2 86.2533
3 85.0002
4 81.2525
5 76.2550
6 75.0015
7 73.7548
8 72.5038
9 71.2519
10 71.2516
11 68.7510
12 67.5037
13 65.0013
14 65.0001
15 62.5003
16 61.2512
17 60.0036
13 57.5029
19 53.7535
20 53.7526

Figure 8-19. The intermediate table

Match
Index Country

14 Foujan

15 Gaqua

9 Efros

16 Heiestan

7 Ecaislana

17 Hoanga

13 Esnhil

19 ithha

30 Puodeiton

8 Efbrye

27 Otiaflium

5 Boostan

37 Sodal

22 Muburg

36 Socia

3 Agrines

12 Eqblines

35 Seoceudan

23 Neiestein

39 Urwhary
Is Sorted On?

CHAPTER 8 © BUILDING FOR SENSITIVITY ANALYSIS

1 2 3 4 5
Responsiveness
Health Level R i Fil ial Fairness Health Distribution Distribution
S0 S0 100 100 30
80 S0 100 100 80
100 90 S0 80 50
70 50 80 100 100
90 70 50 a0 80
S0 90 100 100 10
80 100 70 50 90
100 10 a0 70 50
70 70 100 70 20
60 80 70 100 30
100 30 60 90 20
50 80 a0 50 80
70 S0 30 100 70
50 10 40 80 70
40 30 100 70 50
50 90 40 100 20
40 20 20 90 20
10 40 a0 S0 40
80 30 20 50 100
70 40 50 60 30
FALSE FALSE FALSE FALSE FALSE

Total
87.50
86.25
85.00
81.25
76.25
75.00
73.75
72.50
71.25
71.25
68.75
67.50
€5.00
65.00
62.50
61.25
€0.00
57.50
53.75
£3.75

TRUE

What each element of this table does may not be immediately clear. In the next few sections, I'll go through
the functionality of the dashboard. You will see where those functionalities tie in directly to the items on the
intermediate table.

Scrolling Capability

In this section, I'll talk about how you achieve this scrolling capability. Recall the dynamic table built previously.We
want the same functionality here. Hopefully, by now you're very familiar with the scroll bar (maybe even be sick of it!).
In this current example decision tool, you will again use this dynamic.
As Figure 8-20 shows, you've simply inserted a new scroll bar into the sheet and linked it to the cell adjacent to
Scrollbar Value. This cell contains the current value of the scroll bar.

www.it-ebooks.info

149

http://www.it-ebooks.info/

CHAPTER 8 © BUILDING FOR SENSITIVITY ANALYSIS

)31 i X v A& | =$ps3

A B

ol 1 Foujan

2 Gaqua

3 Efros

4 Heiestan
) 5 Ecaislana
6 Hoanga

3 7 Esnbhil

3 2 lthha

} 9 Puodeiton
3 10 Efbrye

3 11 Otiaflium
L 12 Boostan

3 13 Sodal

} 14 Muburg

) 15 Socia

16 Agrines

) 17 Eqblines (60.0)
3 15 Seoceudan (57.5)
l 19 Neiestein (53.8)
3 S
r

20 Urwhary (53.9)

sesT PossisLE I

) Intermediate Table

Scrollbar Value
Figure 8-20. The scroll bar for the table presented to the user is linked to a cell on your intermediate table

As is typically the case for a scrolling table, the first cell in the table is always equal to the scroll bar value.
Each cell below it is then equal to one plus the cell above. Therefore, as the scroll bar changes, each cell below changes
in tandem. Figure 8-21 shows this conceptually. Figure 8-22 shows the actual formulas.

150

www.it-ebooks.info

http://www.it-ebooks.info/

30

31

32

33 #

34 1

35 2

36 3.
37 4|
38 =A3?+J:l
39 6

40 7

41 8

42]

43 10

44 11

45 12

46 i3

47 14

48 15

49 16

50 i7

51 18

52 18

53 20

B

CHAPTER 8

C D

Intermediate Table

Scrollbar Value
Sort Column Id

Total
87.5027
86.2533
85.0002
81.2525

75.0015
73.7548
72.5038
71.2519
71.2516
68.7510
67.5037
65.0013
65.0001
62.5003
61.2512
60.0036
57.5029
53.7535
53.7526

umn: Match
Index Country

14 Foujan
15 Gaqua
9 Efros
16 Heiestan
7 Ecaislana
17 Hoanga
13 Esnhil
19 Ithha
30 Puodeiton
8 Efbrye
27 Otiaflium
S Boostan
37 Sodal
22 Muburg
36 Socia
3 Agrines
12 Eqblines
35 Seoceudan
23 Neiestein
39 Urwhary

Figure 8-21. The scrolling table dynamic shown conceptually

www.it-ebooks.info

BUILDING FOR SENSITIVITY ANALYSIS

151

http://www.it-ebooks.info/

CHAPTER 8 © BUILDING FOR SENSITIVITY ANALYSIS

36 # # l‘
3 11—[:.'. 1 I:

]
38 2 | =A34+1 3
398 3 | =A35+1 3
40 4 | =A36+1 E
41 5 |=A37+1 E
42 6 |=A38+1 E
43 7 | =A39+1 E
44 8 |/=A40+1 3
45 9 |=Ad41+1 3
46 10 | =Ad42+41 3
47 11 =A43+1 E
43 12 | =A44+1 E
49 13 | =A45+1 3
50 14 | =A46+1 3
51 15 =A4T+1 E
52 16 | =A48+1 -
53 17 =A49+1 E
54 18 | =AS0+1 E
55 19 | =A51+1 3
56 20 | =A52+1 3
Ll e Paakaod ™"V

Figure 8-22. Cells A34:A50 from above with only their formulas showing

Notice that the index numbers from the visual presentation section of your tool are directly linked to the index
numbers from below the sheet (see Figure 8-23).

152

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 © BUILDING FOR SENSITIVITY ANALYSIS

A

9 |- -‘I"_‘lHeiésl

10 5 Ecaish

11 & Hoans

12 7 Esnhil

13 & Ithha

14 9 Puode

15 10 Efbrye

16 11 Otiafli

17 12 Boost

18 13 Sodal

19 14 Mubu

20 15 Socia

21 16 Agrins

22 7 Eqblir

23 12 Seoce

24 19 Neiesl

25 20 Urwhe

el LV

27

28

29

30 Inte

31 Scrol

32 Sort ¢
Sc

33 #

34 1

35 2

36 | 3_

37| 41

20 s

Figure 8-23. The intermediate table links directly to the visual presentation section

Adjusting the Scroll Bar

In this section, I'll talk about making adjustments to the scroll bar. By default, all form control scroll bars start with a
minimum value of zero and go to 100. In your case, you'll never use the zero, so you need to adjust the minimum to
always be 1. Another issue is that you expect the size of the list to change. The current example database has about
30 data items in it. But you need to accommodate an ever-changing range of data. The only instances in which you
expect the amount of entries to change is when you either add or delete a new item.

At the end of both the InsertNewRecord and DeleteSelectedRecord procedures I've added a call to SetScrollbarMax.
Listing 8-1 shows the code for this procedure.

153

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 © BUILDING FOR SENSITIVITY ANALYSIS

Listing 8-1. SetScrollbarMax

Private Sub SetScrollbarMax()

If [Database.RecordCount].Value <= 20 Then
Analysis.Shapes("Analysis.Scrollbar").ControlFormat.Enabled = False

Else
Analysis.Shapes("Analysis.Scrollbar").ControlFormat.Enabled
Analysis.Shapes("Analysis.Scrollbar").ControlFormat.Max =

[Database.RecordCount].Value - 20 + 1
End If

True

Analysis.Shapes("Analysis.Scrollbar").ControlFormat.Value = 1
End Sub

The code works like this: you have 20 entries you can display on the visual layer (that’s just the number I've
picked, but it may be different in your own work). When the record count is greater than 20, you always want the scroll
bar max to be 19 (one less than the total amount you're showing) less than that total (the chapter on form controls
talks about why this is). On the other hand, if the RecordCount is less than 20, you won’t need the scroll bar at all so
you can just disable it. Finally, it’s always a good idea to reset the scroll position whenever there’s a change.

Formula-based Sorting Data for Analysis

In Figure 8-1, your decision support tool is sorting on total scores. (Recall that total refers to the values returned
for each country from your weighted model calculations). In the previous chapter, you sent a command to your
backend database table to sort each country by name. Considering the trouble you had in building the formula for
the list box that was required to connect to the table, sending a command to sort the table made sense. It was an
easy one-line operation.

However, in this case, you want to have the ability to sort on of any of the metrics, not just the total. But it
wouldn’t make sense to use VBA to sort the table directly as you did with the country names. Every time you change
the sort order of the table, you lose the alphabetical order required for the list box on the menu screen. You could
develop the capability to automatically sort the list box every time a user activates the menu screen, but why bother?
Because you'd then have to do the same for the analysis screen (re-sort by the last option selected by the user). Clearly
you need a way to sort on the data references in the backend table without changing its inherent sort order.

Tip It might help to think about the different sort types conceptually. The backend database is only sorted when
you’ve added or deleted a record. As such, its inherent state is always that of an alphabetical sort order—and you only
re-sort when changes to the underlying data are made to the table. On the other hand, here you’re doing work on top of
the data from that database to answer questions and investigate. Therefore, because you’re not changing any underlying
data, you want to leave the database sort order intact. In fact, it’s important you do as little to the underlying data as
possible lest you accidentally corrupt it.

Let’s take a look at Figure 8-24. The Sort Column Id input cell tells you which column you're sorting. The
numbers to the right of the cell are the Id’s. For instance, if you're sorting by the total, the number in Sort Column Id
is 6, consistent with what’s shown in Figure 8-24. If you want to sort on Health Level, Sort Column Idwould be 1.
The dynamic is fairly intuitive.

154

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 © BUILDING FOR SENSITIVITY ANALYSIS

Sort Column Id 6 1 2 3 4 5 6
Sort Column: Match Responsiveness
Total Index Country Health Level Responsiveness Financial Fairness Health Distribution Distribution Total

AT rAss A8 Faiitaa e A amm . - A

Figure 8-24. The Sort Column Id input cell and Id’s corresponding to each metric

You automatically find the Sort Column Idyou're interested in by using the Sort By dropdown box from the
visual portion of the tool. Figure 8-25 shows the dropdown from the dashboaxrd.

Sort By Total |~

Total

Health Level Responsiveness

Py Financial Fairness
25.0%

Health Distribution
Figure 8-25. The Sort By dropdown box

Responsiveness Distribution

The user response from the Sort By dropdown is used to lookup the correct Column Id, as shown in Figure 8-26.

E F G H | J
Sort By Heglth Level I
v X fo | SINDEX{5£532:50532,MATCH(Gh,56523:50533,0))
B C D E F G cH) I 1 K L M N O
Intermediate Table
Scrollbar Value 1
sort Column Id [33:50$33,0)) 1 2 3 a 5 6
Sort Column:
Health Level Match Responsiveness
[weighted) Index Country Health Level Responsiveness Financial Fairness Health Distributi Distributi Total

Figure 8-26. Health Level from the dropdown is matched to the column names below

You use the INDEX/MATCH dynamic to help you ultimately find the Id you're interested in. Health Levelis
matched to its location in the range E33:033. Because it’s in the first cell, Excel returns a 1. You then supply the index
that matches its location (in this case, a 1) to the range above and pull out the number given by that matched location.
It’s like an HLOOKUP, but in reverse.

So let’s now jump back to your database. You have this new column that’s been added called the Analysis
Sort Column.

155

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 © BUILDING FOR SENSITIVITY ANALYSIS

The Sort Column, Your New Best Friend

In this section, I'll talk about using a sort column to help you sort data from multiple columns. Sort columns are
necessary for whenever you want the ability to sort different fields or metrics through the use of a single mechanism.
So let’s take a look at the formula from the first cell in the Analysis Sort Column in Figure 8-27.

Analysis Sort
Column ﬂ
=INDEX(Database| @[Health Level (weighted)]:[Total]],
Analysis.SortColumnlid)+ @[Country 1d]] /10000

~ans

Figure 8-27. The first cell in the Analysis Sort Column in the database

The table expressions inside the INDEX may look confusing at first, so let’s only deal with the left-hand side of it
for now. The referent Database[@[Health Level (weighted)]:[Total]] issimply a row reference. Figure 8-28 shows
the row reference for the first cell. I talked about the Sort Column Id in the previous section, but here you get to see it
work its magic.

I:INDEX{Data::.?: se[@[Health Level (weighted)]:[Total]] ,Analysis.SortColumnid)
| J K L M N

Health Responsiveness
Health Level Responsiveness Financial Fairness Distribution Distribution

(weighted) [(weighted) B (weighted) B (weighted)Bd (weighted) B Totalf]

Figure 8-28. A selected row from within the database

Based on the formula above, when Analysis.SortColumnld = 1, then the values from within Health Level
(weighted) are returned and placed into the Analysis Sort Column. When Analysis.SortColumnId = 2, the values
from within Responsiveness (weighted) are returned into the Analysis Sort Column.And so forth up to Total,
which is Analysis.SortColumnId = 6. If you take alook at Figure 8-21, you'll see your Column Id line up perfectly.

For the sake of this example, let’s assume Total has been selected from the dropdown on the visual layer of the
Analysis tab. This would mean Analysis.ScoreColumnId = 6.So thenyou should expect the Analysis Sort Column
to have the same values as those of Total. But if you look at Figure 8-29, you'll see the values in the Analysis Sort
Column are really similar but not exactly alike.

156

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 © BUILDING FOR SENSITIVITY ANALYSIS

weights
25.00% 12.50% 25.00% 25.00% 12.50%
Health Responsiveness
Health Level Responsiveness Financial Fairness Distribution Distribution Analysis Sort
(weighted) (weighted) |Bd (weighted) B (weighted)Bd (weighted) B Totalfd column K4
0 0.0500 0.0250 0.0250 0.2000 0.1250 425 42.503
3 0.1000 0.0250 0.1000 0.0500 0.0375 31.3 31.252
2 0.1250 0.1125 0.1000 0.2500 0.0250 61.3 61.251
1 0.1250 0.0875 0.1500 0.0250 0.0125 40.0 40.002
8 0.1250 0.1000 0.2250 0.1250 0.1000 67.5 67.504
8 0.0750 0.0125 0.2500 0.0250 0.1000 46.3 46.251
8 0.2250 0.0875 0.1250 0.2250 0.1000 76.3 76.255
3 0.1500 0.1000 0.1750 0.2500 0.0375 713 71.252
5 0.2500 0.1125 0.2250 0.2000 0.0625 85.0 85.000

Figure 8-29. Analysis Sort Column is set to sort on Total values, but notice that they are slightly different than
the values in the Total column

I'll go into why they’re slightly off in a moment—and why you need them to be slightly off. (Hint, hint: it has to
do with the second half of the formula shown in Figure 8-27). But for now, you're going to execute a method called
formula-based sorting. With formula-based sorting, you usually use either the LARGE or SMALL functions. Both of these
functions work similarly. The prototypes for the LARGE and SMALL functions are

LARGE (array, k) and SMALL(array, k)

In either function, you supply a series of numbers in the first argument. The second argument instructs Excel to
return the largest or smallest number in the list. For instance, LARGE (A1:A10, 2) returns the second largest number in
the list of numbers stored in cells A1:A10; SMALL(C1:C10, 4) returns the fourth smallest number in the list of numbers
stored in cells C1:C10. If you want to use these formulas to return a sorted a list of numbers from greatest to least, you
use LARGE and make the K=1 in the first cell; then use LARGE again and make K=2 for the next cell. For each cell, you
increment K until it equals the total size of the list.

Let’s jump back to the intermediate table. You're now interested in the column with the heading starting
with Sort Column:. Figure 8-30 shows the formula for the heading. Note that it’s similar to the formula shown
in Figure 8-27. However, in that formula, you were interested each row of data. Here, you're instead only in the
headers. This formula will always bring up the header of the current metric you're interested in. You won’t really
use the column header for anything in the visualization layer, but when you have dynamic elements, it always helps
to keep track of what you're looking at!

B33 | fe ="Sort Column: " & INDEX(Database[[#Headers],[Health Level (weighted)]:[Total]],Analysis.SortColumnid)
A B C D E F G H I J K L M
31 Scrollbar Value 1
32 Sort Column Id 6 1 2 3 4 5
Sort Column:| Match Responsivenes
33 # Total| Index Country Health Level Responsi Financial Fairness Health Distribution Distribution
34 1 87.5027 14 Foujan 90 90 100 100 30

Figure 8-30. The Sort Column always reflects the current header from within the database of the current column
you're interested in sorting on

157

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 © BUILDING FOR SENSITIVITY ANALYSIS

Now you use the index list on the left of the Sort Column to return the greatest numbers in the list. Figure 8-31
shows the first cell in the Sort Column. As you can probably guess, when used supply the 1 to the LARGE function,
you're returning back the first largest number in the entire column range Database[Analysis Sort Column].In the
second row, you're pulling back the second largest item; in the third row, you're pulling back the third largest item;
and so forth. Figure 8-32 shows the formulas for the list.

Sort Column: Match

33 # Total Index Country
34 1l-LaRGE(Database[Analysis Sort Column],A34)
35 2 86.2533 15 Gaqua

36 3 85.0002 9 Efros

37 4 81.2525 16 Heiestan
38 5 76.2550 7 Ecaislana
39 6 75.0015 17 Hoanga
40 7 73.7548 13 Esnhil

41 8 72.5038 19 Ithha

42 9 71.2519 30 Puodeiton
43 10 71.2516 8 Efbrye

~4 11 68.7510 27 Otiaflium
45 12 67.5037 5 Boostan
46 13 65.0013 37 Sodal

47 14 65.0001 22 Muburg
48 15 62.5003 36 Socia

49 16 61.2512 3 Agrines
50 17 60.0036 12 Eqblines
51 18 57.5029 35 Seoceudan
52 19 53.7535 23 Neiestein
53 20 53.7526 39 Urwhary

~a [P e e sl

Figure 8-31. You use LARGE to create a sorted list from the data stored in the Analysis Sort Column from the database

158

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 © BUILDING FOR SENSITIVITY ANALYSIS

Sort Column: Match
Total Index Country Health Level Respc
1 87.5027 =LARGE(Database[Analysis Sort Column],A34)
2 86.2533 =LARGE(Database[Analysis Sort Column],A35)
3 85.0002 =LARGE(Database[Analysis Sort Column],A36)
4 81.2525 =LARGE(Database[Analysis Sort Column],A37)
5 76.2550 =LARGE(Database[Analysis Sort Column],A38)
6 75.0015 =LARGE(Database[Analysis Sort Column],A39)
7 73.7548 =L ARGE(Database[Analysis Sort Column] A40)
8 725038 =LARGE(Database[Analysis Sort Column] Ad1)
9 71.2519- =LARGE(Database[Analysis Sort Column],A42)
10 71.2516 =LARGE(Database[Analysis Sort Column],A43)
11 68.7510 =LARGE(Database[Analysis Sort Column],A44)
12 67.5037 =LARGE(Database[Analysis Sort Column],A45)
13 65.0013 =LARGE(Database[Analysis Sort Column],A46)
14 65.0001 =LARGE(Database[Analysis Sort Column] A47)
15 62.5003 =LARGE(Database[Analysis Sort Column],A48)
16 61.2512 =LARGE(Database[Analysis Sort Column],A49)
17 60.0036 =LARGE(Database[Analysis Sort Column],A50)
18 57.5029 =LARGE(Database[Analysis Sort Column] AS51)
19 53.7535 =LARGE(Database[Analysis Sort Column],A52)
20 53.7526 =LARGE(Database[Analysis Sort Column],A53)
~IsSorfed On? ~ FAISF —

Figure 8-32. The formulas return a sorted list

The Match Index Column, the Sort Column’s Buddy

You now have a sorted list of data. But the obvious question is to which country do these data points belong? Having a
list of sorted data tells you little if anything by itself. So now you'll need to build a Match Index (again, this follows the
simple example from Chapter 6). The Match Index simply tells you the index location of where your sorted data points
are located back in your database.

Figure 8-33 shows the formula you use in the Match Index column. You simply match the adjacent value back
into the Analysis Sort Column.It’s important to remember the Analysis Sort Column isn’t sorted. Therefore, the
largest values are likely to be all over the place. As you see from Figure 8-33, the second largest value is in the 15" row,
the third in the 9" row, etc.

159

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 © BUILDING FOR SENSITIVITY ANALYSIS

ACOT v i X « fo =MATCH(834,Database[Analysis Sort Column],0)

A B C D E F G H

Sort Column: Match

33 # Total Index Country Health Level Responsiveness
34 | 1] 87.5027|=MATCHFoujan 90 90
35 2 86.2533 15 Gaqua 80 50
36 3 85.0002 9 Efros 100 90
37 4 81.2525 16 Heiestan 70 S0
38 5 76.2550 7 Ecaislana 90 70
39 6 75.0015 17 Hoanga 50 80
40 7 73.7548 13 Esnhil 80 100
41 8 72.5038 19 Ithha 100 10
42 9 71.2519 30 Puodeiton 70 70
43 10 71.2516 8 Efbrye 60 80
44 11 68.7510 27 otiaflium 100 30
45 12 67.5037 5 Boostan 50 80
46 13 65.0013 37 Sodal 70 S50
47 14 65.0001 22 Muburg 90 10
48 15 62.5003 36 Socia 40 30
49 16 61.2512 3 Agrines 50 90
50 17 60.0036 12 Eqblines 40 20
51 18 57.5029 35 Seoceudan 10 40
52 19 53.7535 23 Neiestein 80 30
53 20 53.7526 39 Urwhary 70 40

Figure 8-33. The Match Index shows the index location each sorted value can be found back in its original column

And once you know the row location of where the total value has been matched, you can use that information to
look up the country name. Figure 8-34 shows the formula you use to look up the country name.

Sort Column: Match

33 # Total Index Country Health Level
34 1 8?.502?[14] =INDEX(Database[Country Name],C34)
35 2 86.2533 15 Gaqua 80
3 3 85.0002 9 Efros 100
37 - 81.2525 16 Heiestan 70
38 5 76.2550 7 Ecaislana 90
39 6 75.0015 17 Hoanga S0

Figure 8-34. You simply use the Match Index to find the row location of the data you're interested in

160

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 © BUILDING FOR SENSITIVITY ANALYSIS

And you can do the same with Health Level (Figure 8-35), Responsiveness, Financial Fairness,Health
Distribution, Responsiveness Distribution, and the Total. Everything displayed on the intermediate table uses
the Match Index column.

: Match
I. Irn:!eml.&:)urntr\ur Health Level
T =INDEX(Database[Health Level],c34)*10]

Figure 8-35. Using the Match Index to find the current Health Level

You Have a “Unique” Problem

Using MATCH to look through the Analysis Sort Column works terrifically, assuming you have no duplicate values.
Remember, MATCH will always return the index of only the first instance of the matched item in a list. (MATCH does not
really care if there are other items in the list once it’s found the value it’s searching for.)

In Figure 8-36, notice that some total values do indeed repeat. In your ranking, they essentially form a tie.
However, unless you do something, MATCH will always find that first 41.3 and return that row location. So you need
some way to differentiate the first instance of 41.3 from all the instances that follow. And you do that by creating some
noise in the data.

Responsiveness
Distribution

8 Country Id u Country Name (weighted) n

36 21 Pocor 0.0250 41.3

37| 39 Puafoabia 0.0250 43.8

38 | 19 Puodeiton 0.0250 71.3

39| 41 Pustein 0.0750 46.3

40 31 Rana 0.0750 51.3
| 41 7 Sauolia 0.1125 41.3|

Figure 8-36. Pocor and Sauolia have the same score

Remember the second half of the formula in Figure 8-37? Let’s see it action (Figure 8-37).

Responsiveness

Distribution Analysis Sort
countryid [Country Name [] (weighted) Bl Totalf] column EJ
0.1250 42.5 ﬂNDEX[Database[@[Hea-lth Level tiuelghted,\é: |
10| 24 afon | 0.0375 31.3 [Total]],Analysis.SortColumnld)+ @[Country
1 12 Agrines | 0.0250 61.3 I1d]]/10000

Figure 8-37. Focus on the second half of the Analysis Sort Column formula

161

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 © BUILDING FOR SENSITIVITY ANALYSIS

The second half of that formula, [@[County Id]]/10000, simply adds an incredibly small amount to data
returned by INDEX function in the left-hand side of the formula. In Figure 8-37, you're adding the amount 30/10000.
Since Country Id is always unique, you can be assured that even when you have totals that aren’t unique, once you
add this small amount the results will always be unique.

And remember, you only use the Analysis Sort Column from the database to help you find the locations of
certain rows. That is, it helps you find the Match Index. From there, you use the Match Index to find the location of the
information you're interested in. The noisy data never makes its way onto your visual layer.

Seeing It Work Altogether

The scrolling and sorting mechanisms are now complete. In fact, you can see them working together. If you adjust
the scroll bar from in the visual layer, you'll see the intermediate table change. Figure 8-38 shows the scroll bar
at value 19.

30 Intermediate Table
31 Scrollbar Value 19
32 Sort Column Id 6 1 2 3 4 5 6
Sort Column: Match Responsiveness
33 # Total Index Country Health Level R i Fi ial Fairness Health Distribution Distribution Total
34 18 53.7535 23 Neiestein 80 30 20 50 100 53.75
35 20 53.7526 39 Urwhary 70 40 50 &0 30 5375
36 21 52.5020 18 Igeiskya (-] 20 50 &0 60 52.50
37 22 51.2531 32 Rana 20 30 70 70 &0 51.25
38 23 46.2541 31 Pustein 10 30 70 &0 &0 46.25
39 24 46.2509 6 Dovaeria 30 10 100 10 80 46.25
40 25 450014 25 Opium 40 S0 40 50 10 45.00
41 26 43.7539 29 Puafoabia 30 10 90 40 20 43.75
42 27 42,5032 24 Obron 10 &0 50 20 100 42.50
43 28 42.5030 1 Acoaslesh 20 20 10 80 100 42,50
44 29 42,5028 11 Eprvil 20 80 60 20 60 42,50
45 30 41,2521 28 Pocor 50 30 70 20 20 41.25
45 31 41.2507 33 Sauoclia 40 &0 30 10 90 41.25
47 32 40.0022 4 Asnon 50 70 60 10 10 40.00
45 33 38.7551 38 Stansblink 20 30 40 50 60 38.75
49 34 36.2506 10 Elsmen 30 10 20 80 20 36.25
50 35 35.0052 21 Jordan 40 50 20 30 50 35.00
51 36 31.2524 2 Afon 40 20 40 20 30 3125
52 37 31.2511 20 Jaca S0 20 10 10 10 31.25
52 38 30.0008 26 Osppar 30 60 20 10 &0 30,00
54 Is Sorted On? FALSE FALSE FALSE FALSE FALSE TRUE

Figure 8-38. Notice that the index now starts with 19

162

www.it-ebooks.info

http://www.it-ebooks.info/

Notice your table now shows the country ranked in the 19" place in terms of its overall total score. Figure 8-39

CHAPTER 8 © BUILDING FOR SENSITIVITY ANALYSIS

shows what happens when you change the Sort By to Responsiveness.

2

33 ¥
1| 19
35 20
36 21
37 22
38 23
39 24
40 25
41 26
42 27
43 28
44 29
45 30
46 31
47 32
43 33
49 34
50 35
51 36
52 37
52 38
54

Scrollbar Value
Sort Column Id
Sort Column:
Responsiveness
(weighted)
O.DESO-

0.0638

0.0529

0.0526

0.0426

0.0416

00410

0.0406

0.0396

0.0385

0.0378

0.0286

0.0280

0.0274

0.0270

0.0261

0.0164

0.0163

0.0134

0.0131

C D

Intermediate Table

Match
Index Country
16 Heiestan
37 Sodal
35 Seoceudan
39 Urwhary
38 Stansblink
31 Pustein
23 Neiestein
32 Rana
28 Pocor
27 Otiaflium
36 Socia
12 Egblines
1 Acoaslesh
2 Afon
18 lgeiskya
20 Jaca
29 Puafoabia
19 ithha
6 Dovaeria
10 Elsmen

Is Sorted On?

19

Health Level
70
70
10
70
20
10
80
20
50

100
40
40
20
40
60
a0
30

100
30
30

FALSE

Figure 8-39. Responsivness is now the sort factor

Responsiveness
50
50
40
40
30
30
30
30
30
30
30
20
20
20
20
20
10
10
10
0

TRUE

Financial Fairness
80
30
90
50
40
70
20
70
70
60

100
90
10
40
50
10
90
90

100
20

FALSE

Health Distribution
100
100

90
&0
50
60
50
70
20
90
70
S0
80
20
60
10
40
70
10
80
FALSE

5

Responsiveness
Distribution
100
70
40
30

60
60
100
60

20

20
S0
20
100
30

&0

10

20

50
80
20
FALSE

Total
81.25
65.00
57.50
53.75
38.75
46.25
5375
51.25
41.25
68.75
62.50
60.00
42.50
31.25
52.50
31.25
43.75
72.50
46.25
36.25

Notice that the Sort Column Id now shows the number 2, reflecting the column you're interested in sorting on.
And the Sort Column shows that you are sorting on Responsiveness (weighted). Your intermediate table now has a
different sort order than you had previously when you were sorting on the Total; however, you've made no changes to

the underlying data.

The Last Word

In this chapter, I talked about the type of analysis you will be performing on your data. You created the infrastructure
to easily apply one-way sensitivity analysis. Further, you used formulas to create a robust sorting mechanism that can
sort more than one type of metric. Finally, you used the form control Scroll Bar so you don’t have to show all the data
all at once. This work builds on what’s been completed in previous chapters.
In the next chapter, you'll build the visual layer in full.

www.it-ebooks.info

163

http://www.it-ebooks.info/

CHAPTER 9

Perfecting the Presentation

In the previous chapter, you learned to build the intermediate table, which deals largely with transforming the raw data

from the backend database. The presentation or visual layer, on the other hand, deals largely with what the user sees.
In this chapter, you'll focus on the visual layer as well as its interaction with the intermediate table. Just as

before, the focus here is to create a lightweight infrastructure that isn’t heavily steeped in code. You'll be using the file

Chapter9Wizard.x1sm for this chapter. I recommend having it open as you follow along.

Implementation and Design of the Weight Adjustment System

In this section, I'll talk about implementing the weight adjustment system, shown in Figure 9-1. You'll find this across
the top of your Analysis screen.

Health Responsiveness
Health Level Responsiveness Financial Fairness Distribution Distribution
A ~ ~ [a ~
25.0% = 12.5% - 25.0% = 25.0% = 12.5%
v v v v W

Figure 9-1. The weight adjustment system

Each box is simply connected to the associated weight on the Helper tab. Figure 9-2 shows the connection to
Health Level. Note that each metric follows suit.

Je =Helper.HealthLevelweight
E F G H J K L M N (
Health Responsiveness
Health Level Responsiveness Financial Fairness Distribution Distribution
e ~ ~ N ~
25.0% ™ 12.5% = 25.0% = 25.0% = 12.5%
W W W W W

Figure 9-2. Each weight box is connected directly to the associated weights from on the Helper tab

165

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 * PERFECTING THE PRESENTATION

Likewise, the scroll bars here are exactly like the ones on the Helper tab you built in the previous chapter
(Figure 9-3). However, I don’t recommend copying and pasting those scroll bars from the Helper tab and placing them
on this tab. Scroll bars are usually set to relative references. If you copy and paste the scroll bars from the Helper tab,
Excel will try to change the same cell address on the Analysis tab. That’s not what you want.

E F
Sort By Size l Protection | Properties l Alt Text L
Current value: [20 |
Health Level

Minimum value: 0

.—) I

Maximum value: [100

25.0%

Incremental change: |4

&

.'.§}D.. | 1|D 1!?.. 1]. |

Page change: [10
Cell link: |Helper!sB55

3-D shading

Figure 9-3. Properties for the scroll bar. Notice the cell link is the same as that of the scroll bars on the Helper tab

Your best bet is to insert each of these scroll bars manually. In Figure 9-4, you can see that I've left some space in
Column F between each weight box to provide a place for a scroll bar. I used a similar space between all the weight
boxes. This is similar to the process of anchoring described in Chapter 7.

E F
The scroll bar
sits atop this Health Level Resp
buffer in B T - ~
column F. 25 06/—“’ p
\J /0 £
L'
— -

Figure 9-4. I've moved the scroll bar to the side to show the column spacer

166

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 * PERFECTING THE PRESENTATION

Next, enable the Snap to Grid feature by right-clicking or Ctrl+clicking the scroll bar. From the Format context tab,
pick Align and select Snap To Grid (see Figure 9-5).

: e N Elregns [
on [Align’| Group Rotate s Width: c

1ge | |= t Size

€

| snapto Grid
W' Snapto Shape %
[View Gridlines

Figure 9-5. The Snap To Grid feature

The Snap to Grid feature will force you to align Excel’s cell grid. So if you size a spacer column as I did in Figure 9-4
in Column E ensuring consistent alignment and size for each scroll bar is easy peasy. Of course, the “correct” size is
more art than science. To make my life easier, I like to design the first scroll bar spacer. Once I like the size, I right-click
the column and select column width to find out its size (Figure 9-6).

Health Level

25.0% Column wiath: 171

Figure 9-6. Column width for column F

167

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 * PERFECTING THE PRESENTATION

Then I right-click every other similar column and set its size to be the same. As you can see in Figure 9-7,
1.71 is what I liked best, but you may differ. As you may have guessed, I did the same for the weight boxes.

E F G H J K L M N
Health Responsiveness
Health Level Responsiveness Financial Fairness Distribution Distribution
~ ~ ~ ~ A

25.0% 12.5% 12.5%

Column width: |1.71

oK Cancel

Figure 9-7. Selecting similar columns and setting their size all at once to ensure consistency

Displaying Data from the Intermediate Table

Now let’s talk about how to display data from the intermediate table. For the most part, it’s a one-to-one mapping.
That is, if you look at Health Level in the visual presentation, you can scroll down to see the data it is visualizing
directly underneath. They share the same column.

The are a few exceptions to this. Ideally, it would be great if all data items shared the same columns but
sometimes the way your data is laid out constrains this ideal. (Of course, as you can see from this, I always try to align
them as much as possible.) So let’s go through each item in the visual layer.

Results Information Label

This section talks about building the results information formula. Figure 9-8 shows the results of this formula.
The “7-26 of 39” means the results ranked from 7 to 26 are currently in view, out of 39 total possible items
available. The formula updates as the scroll bar changes (Figure 9-9).

" Analysis of Alternatives of
Healthcare Systems

RESET WEIGHTS

Results 7-26 of 39 Total ¥
7 Esnhil (73.8)

Figure 9-8. The results information label shows the ranked items currently in view as well as the final total of items

168

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 * PERFECTING THE PRESENTATION

The formula uses the first ranked item in the list and the last ranked item in the list to define the range of
numbers in view. Database.RecordCount is used to show the total amount of records available for view (Figure 9-9).

ACOT v | X v [="Results " &A6&"-"&A25 & " of " &Database.RecordCountl
A B C D E F G H |
L - | I - Ll . e d
6 | 7 _7lEsnhil (73.8) I =) I
7 | 8 Ithha (72.5) I I A |
8 9 Puodeiton (71.3) = 1 =
9| 10 Efbrye (71.3) | — | I
10 | 11 Otiaflium (63.5) I = s |
11 12 Boostan (67.5) I ——] | — [
12 | 13 Sodal (65.0) | I—i | —
13| 14 Muburg 65.0) N |— o —
14| 15 Socia (62.5) — - I
15| 16 Agrines (61.3) I] — =
16 | 17 Eqblines (60.0) G — [| [
17| 12 Seoceudan (57.5) i} — []
18| 19 Neiestein (53.5) e | |
19 | 20 Urwhary (33.¢) N [E—— 1 I
20| 21 Iqeiskya (52.5) [| —
21| 22 Rana (51.3) = = i
22| 23 Pustein 6.3 N o f— =
23 24 Dovaeria 46.3) N — H | E—
24| 25 Opium (45.0) N — 1 =
25|\ 26|Puafoabia (43.8) N == |]

Figure 9-9. The results information label formula

The Current Rank of Each Country

The first item on the left is the current rank of each country shown. This value is pulled directly from the index created
in the intermediate table. Figure 9-10 shows how the rank and index connect.

169

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 * PERFECTING THE PRESENTATION

Figure 9-10. The rank from the data visualization layer directly connects to the intermediate table

w

—

I

E—

G H 1] M N o

5 Ecal 30 Intermediate Table
& Hef 31 Scrollbar Value 1
";‘h" 2 Sort Column Id 6 1 2 3 4 5 6
N Mate
9 Pu Sort Column: h Responsiveness
I Total Index Country Health Level Responsiveness Financial Fairness Health Distributi istributi Total
' ::' 34 ' _11 87.5027 14 Foujan 90 90 100 100 30 8750
3 Sod 35 2 862533 15 Gaqua 80 50 ¢y 100 100 80 8625
4 My 36 3 85.0002 9 Efros 100 °0 B0 50 85.00
5 Sod 37 4 812525 16 Heiestan 70 50 80 100 100 8125
e E 5 762550 7 Ecaislana 90 70 50 90 80 7625
: ::: 39 6 75.0015 17 Hoanga 50 S0 100 100 10 75.00
12 Nep 2 7 73.7548 13 Esnhil 80 100 70 50 %0 7375
20 Unwhary (535) — — —

Country Name

In this section, you're interested in the country name. Unlike the index, country name isn’t directly in the column
below. Again, when creating your own dashboards, remember that the intermediate table might not always be in the
same columns below. Figure 9-11 shows how each country is connected to the intermediate table below.

W~

o |
10 |
1

12

13|
14

15

16 |
17|
18 |
19|
20 |
21|
22 |

23

24 |
25 |

agdiu Level

AESPUIIDIVEIIEDD

riglivial rd

RESET WEIGHTS = =
A B c | D E
28
Results 1-20
= o 29
| A 1|=[::—; ‘[:- .5) y

2 Gaqua 30 Intermediate Table

3 Efros 31 Scrollbar Value 1

4 (81.3)

s 513 W 3, Sort Column Id 6 1

5 Ecaislana (76.3)

6 Hoanga (75.0) B

< E h_|g s Sort Column: h

i It::wl :_;f 33 # Total Index Country Health Level
9 Puodeiton m.3 o 34 1 87.5027 14|Foujan i 90
10 Efbrye (71.3) 35 2 86.2533 15 Gaqua 80
11 Otiaflium (68.3) W 36 3 85.0002 9 Efros 100
12 Boostan : 37 4 81.2525 16 Heiestan 70
13 Conel i 5 76.2550 7 Ecaislana 90
14 Muburg (65.0)

. . b 39 6 75.0015 17 Hoanga 50
15 Socia (62.5)

16 Agrines 613 o 40 7 73.7548 13 Esnhil 80
17 Eqblines (60.0) I 41 8 725038 19 Ithha 100
18 Seoceudan 57.5) W 42 9 71.2519 30 Puodeiton 70
19 Neiestein (53.8) Bas 2n o aCac a_ca _ ca
20 Urwhary (53.) — || —

Figure 9-11. Each country name directly links to the intermediate table below, but it’s not in the same column

170

www.it-ebooks.info

nn

%

http://www.it-ebooks.info/

CHAPTER 9 * PERFECTING THE PRESENTATION

Total Scores for Each Country

This section will show you how to display the total scores for each country. Recall that the column representing total
scores is actually the last column on the right in the intermediate table. Note how this is different for your visual layer.

Figure 9-12 shows the connection.

ACOT v X v K =" ("&TEXT(034,"#.0")&")"

A B C D E F G H [)
RESET WEIGHTS ~ ~ ~

25 0% 12 5% 25 0%

H K M o]

- Results 1-20 T

E I S Zou;an — TL:” Responsiveness !
; - E:qua 33 Financial Fairness Health Distribution Distribution Total {

ros 2 W—

] 4 Heiestan 81.3 34 100 100 30 L 8?.501 i
10 5 Ecaislana 76.3) 35 100 100 80 86.25 |
11 & Hoanga 75.0 36 90 80 50 85.00 |
12 7 Esnhil 37 80 100 100 8125 |
13 5 Ithha 72.5) —

Figure 9-12. The Total score is one of the first columns in the visual layer and one of the last columns in the intermediate table

Let’s take a moment to look at the formula. I place parentheses around the total value as a means to downplay its
importance somewhat. (I'll go over why near the end of the chapter.) Since I'm using the values in the Total cell in a
formula, I risk showing more decimal precision than required. Using the TEXT function, I've supplied a formatting rule

to ensure you also see everything to the right of the decimal and always one number to the right.

In-cell Bar Charts for All Metrics

The rest of the data items in your visual layer are in-cell bar charts. You can re-create small bar charts using the REPT
function and the pipe symbol. Figure 9-13 shows the formula as well as the best font selection for this type of chart. As
Figure 9-13 shows, Playbill size 10 is fairly reliable. Notice the cell it refers to is O34. This is the same cell referenced to

get the Total value in Figure 9-9.

3
l

Playbill “110 ~|A A BN _
BI U~ H-OD-A=E==
Font a

M e B HBE -
fe =IFERROR(REPT("|",034),")
C D £ F

|
!.

Figure 9-13. In-cell bar chart for Total

www.it-ebooks.info

171

http://www.it-ebooks.info/

CHAPTER 9 * PERFECTING THE PRESENTATION

Figure 9-14 shows the connection for Health Level. It’s virtually the same function setup as that used for Total.
In this case, it refers to the Health Level metric from the intermediate table.

X v [t =IFERROR(REPT("|",E34),"")
B [D E F G H
-are Systems
Health Level Responsiveness Financial
ET WEIGHTS o 2 5 2
25.0% 12.5% 25.
-20 Y
A G:
Sort Column: h r
33 # Total Index Country Health Level Respo{
B ——
34 3 87.5027 14 Foujan | 0] P
!s5—n L
35 2 86.2533 15 Gaqua 80 I
36 3 85.0002 9 Efros 100 I
37 4 81.2525 16 Heiestan 70 P
38 5 76.2550 7 Ecaislana 90 E
39 6 75.0015 17 Hoanga 50
40 7 73.7548 13 Esnhil 80 K
41 8 _ 72.5038 19_ Ithha 100
; 60.0) —| —

Figure 9-14. Formula for in-cell bar charts for metric data

The in-cell bar charts for the rest of the metrics follow suit. Responsiveness, Financial Fairness,Health
Distribution, and Responsiveness Distribution all use the REPT function and link to their corresponding column
from the intermediate table.

You may be wondering what'’s going on with that IFERROR. Why does it appear in the function? The answer is
because you need it. For one, you won’t always have at least 20 entries. If there are less than 20 entries, then you need
these cells to appear blank.

More importantly, however, is that you simply don’t know what lies ahead. You are using a rather simple
example here, so you're unlikely to see any other types of errors. But that’s also shortsighted thinking. For example,
in my original formulation of this spreadsheet, when you reduced a weight to zero, the result was a #DIV/0 in that
metric’s column. I didn’t want the #DIV/0 error to show when the result should show nothing. Therefore, I used
the IFERROR function as shown above. While subsequent changes to the model make such an error unlikely, I've
kept it in just in case. However, I'm unconvinced that daring folks out there can’t figure out a way to create errors
I couldn’t foresee. Moreover, since the proliferation of errors in cells can seriously slow down a spreadsheet,
preventing them is important.

172

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 * PERFECTING THE PRESENTATION

Best Possible Comparisons

At the bottom of the of the visual layer I've included the best possible scores for each metric. This allows the user to
compare instantly the results against the best result. Since 100 is the best possible score, the formula for each of these
cells is always =REPT("|", 100) (see Figure 9-15).

fe || =REPT("|",100)

Figure 9-15. The formula for best possible comparisons

Weight Box Progress Meters

Under each weight box is a progress meter that shows works exactly like the in-cell bar charts. In the Figure 9-16, you
can see each small bar chart within a weight box.

Health Responsiveness
Health Level Responsiveness Financial Fairness Distribution Distribution
A N N o) (sl
25.0% = 125% - 25.0% = 25.0% @ 12.5%
L% v v v L4

Figure 9-16. The small lines under each weight box are progress meters

Figure 9-17 shows the formula used for these bar charts. Notice the theme here. It’s essentially the same formula.
However, to make it appear smaller, I've just resized the row.

X fe | =REPT("|",E4*100)

D E F

2Mms
Health Level R
| A
v W
Total LREICTSI) 5
| B

Figure 9-17. The progress bars under each weight value are minified versions of the same bar chart formula
used previously

173

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 * PERFECTING THE PRESENTATION

“Sort By” Dropdown and Sort Labels

In the last chapter, you built the infrastructure for sorting. In this section, I'll talk about the visual elements that go
along with that sorting mechanic. One of the cool features of your sorting system is that you can use the Sort By
dropdown to select which metric you'd like to sort by. Once the user has made their selection, the corresponding
column label becomes bold and the down arrow appears next to it (see Figure 9-18).

Sort By | Financial Fairness [~ oSO 35
Financial Health Responsiveness
Health Level Responsiveness Fairness ¥ Distribution Distribution
) ~ ~ ~ ~
25.0% = 125% 25.0% 25.0% 12.5%
W W W W v

Figure 9-18. The Financial Fairness label becomes bold and a down arrow appears next to it

Following the no-code theme, this mechanism requires no VBA. However, it is a mixture of several different
elements, which I'll go through in the next few sections.

Dropdown Metric Selection

In this section, I'll talk about the Sort By dropdown. It's nothing more than a data validation list (Figure 9-19),

which you can insert into the spreadsheet from the Data tab. Generally, I don’t like to type the list source in directly.
However, the areas in which these selections appear on the spreadsheet do not appear in one contiguous region.

If you look at your current sheet, you'll see that you don’t have one list of data where Total, Health Level, etc. appear
without any cells in between. If you were to link directly to these sources, there would be space in your dropdowns.

So typing the text in directly here works best even if it’s not preferred.

Input Message | Error Alert

Validation criteria

Allow:
List | [¥] Ignore blank
Data: \¥| In-cell dropdown
between
Source:

Total, Health Level, Responsiveness, Financial Fi F%

[] Apply these changes to all other cells with the same settings

Clear All [ok || cancel

Figure 9-19. The Data Validation dialog box showing the dropdown list you've created
174

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 * PERFECTING THE PRESENTATION

Using Boolean Formulas to Define Which Metric Has Been Selected

Recall from the previous section that changes in the dropdown change the Sort Column Id. Since you selected
Financial Fairness in Figure 9-19, the Sort Column Id is a3, as expected (Figure 9-20).

30 Intermediate Table
3 Scrollbar Value 7
32| Sort Column Id [3] 1 2 3 4 5 6

Financial

Fairness Match Responsiveness
33 # [weighted) Index Country Health Level Responsiveness Financial Fairness Health Distribution Distribution Total
34 7 0.2289 29 Puafoabia 30 10 o0 40 20 43.75
35 8 0.2288 19 ithha 100 10 S0 70 50 72.50
36 9 0.2287 5 Boostan 50 80 90 50 80 67.50
37 10 0.2286 12 Egblines 40 20 S0 90 20 60.00
38 11 0.2279 35 Seoceudan 10 40 S0 90 40 57.50
39 12 0.2252 9 Efros 100 a0 90 80 50 85.00
40 13 0.2025 16 Heiestan 70 50 80 100 100 81.25
41 14 0.1798 13 Esnhil 80 100 70 50 20 73.75
42 15 0.1791 31 Pustein 10 30 70 60 60 46.25
43 16 01781 32 Rana 20 30 70 70 &0 5125
44 17 0.1771 28 Pocor 50 30 70 20 20 41.25
45 18 0.1766 8 Efbrye 60 80 70 100 30 71.25
46 19 0.1528 11 Eprvil 20 80 &0 20 60 42.50
47 20 0.1522 4 Asnon 50 70 60 10 10 40.00
48 21 0.1510 27 Otiaflium 100 30 &0 a0 20 68.75
49 22 0.1300 7 Ecaislana S0 70 50 90 80 76.25
50 23 0.1282 24 Obron 10 80 50 20 100 4250
51 24 0.1276 39 Urwhary 70 40 50 60 30 53.75
52 25 0.1270 18 Iqeiskya 60 20 50 60 60 52.50
53 26 0.1051 38 Stansblink 20 30 40 50 &0 3875
54 Is Sorted On? FALSE FALSE TRUE FALSE FALSE FALSE

Figure 9-20. Sort Column Id is equal to 3

At the bottom of Figure 9-20 is a line item that reads, “Is Sorted On?” This row highlights the row currently being
sorted on. Notice for all columns except for Financial Fairness, the value reads FALSE. For Financial Fairness,
the value reads TRUE. This is because you're sorting on this metric. Figure 9-21 shows the formula you’'re using
in this row.

175

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 * PERFECTING THE PRESENTATION

Intermediate Table

Scrollbar Value 7_
Sort Column Id | 3l 1 | 2 |
Financial
Fairness Match
(weighted) Index Country Health Level Responsiveness
0.2289 29 Puafoabia 30 10
0.2288 19 ithha 100 10
0.2287 5 Boostan 50 80
0.2286 12 Eqgblines 40 20
0.2279 35 Seoceudan 10 40
0.2252 g Efros 100 90
0.2025 16 Heiestan 70 50
0.1798 13 Esnhil 80 100
0.1791 31 Pustein 10 30
0.1781 32 Rana 20 30
0.1771 28 Pocor 50 30
0.1766 8 Efbrye 60 80
0.1528 11 Eprvil 20 80
0.1522 4 Asnon 50 70
0.1510 27 Otiaflium 100 30
0.1300 7 Ecaislana 90 70
0.1282 24 Obron 10 80
0.1276 39 Urwhary 70 40
0.1270 18 Iqeiskya 60 20
0.1051 38 Stansblink 20 30
Is Sorted On? FALSE ={G32=5D532)

Figure 9-21. The Boolean formula used to test whether you re sorting on a specific column

You'll use this Boolean formula to perform conditional formatting and add the down arrow to each header.

Connecting Everything with Conditional Format Highlighting

In this section, you'll put the finishing touches on each header by conditionally formatting the selected column
header as bold. This should hopefully feel somewhat familiar to you as it’s a reapplication of the Highlight mechanism
described in Chapter 4. (Remember, if you think of it as a reusable component, you can apply it to many different
spreadsheet applications.) Figure 9-22 shows the Conditional Formatting Rules Manager for cells E3:M3. Notice I've
applied conditional formatting rules to these column headers. You can see it for yourself by selecting cells E3:M3,
clicking on the Conditional Formatting dropdown box from the Home tab, and selecting Manage Rules.

176

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 * PERFECTING THE PRESENTATION

iy n ey e s e m——

Financial Health Responsiveness
Health Level Responsiveness Fairness ¥ Distribution Distribution

Show formatting rules for: | Current Selection

| NewRule.. | | [FEditRule.. | X DeleteRule | & v

Rule [applied in order shown) Format Applies to Stop If True

Formula: =ES4 AaBbCCYYZZ | =SES3SMS3 a

Figure 9-22. The Conditional Formatting Rules Manager dialog box

Let’s take a look at the conditional formatting rules behind the scenes. If you click on Edit Rule, you will see the
Edit Formatting Rule dialog box (Figure 9-23).

Select a Rule Type:

= Format all cells based on their values

= Format only cells that contain

= Format only top or bottom ranked values

= Format only values that are above or below average
= Format only unique or duplicate values

= Use a formula to determine which cells to format

Edit the Rule Description:

Format values where this formula is true:

- (ES4=TRUE) [

AaBbCcYyZz Format...

0K I‘ Cancel ‘

Figure 9-23. The Edit Formatting Rule dialog box

177

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 * PERFECTING THE PRESENTATION

Note that I've selected “Use a formula to determine which cells to format.” In the “Format values where this
formula is true” rule type, I'm using the formula =(E54=TRUE). This formula is what allows you to change the style of
font of the sort column that’s been selected. In addition, notice that I'm not using the absolute cell reference E54.
That absolute cell reference is what appears by default. However, if you kept the absolute reference, it would only
test cell E54. Instead, you want the test for conditional formatting to happen across every cell in the range. You might
recall you built a similar dynamic in Chapter 4 in the “Conditional Highlight Using Formulas” section.

A QUICK NOTE ON ABSOLUTE REFERENCES AND CREATING
CONDITIONAL FORMAT RULES

If you select “Use a formula to determine which cells to format” as | have in Figure 9-23, you won'’t start with
relative references by default. What that means is, if you were to set up this formula for the first time, and you
selected cell E54 from on the spreadsheet, it would look something like Figure 9-24.

Health Level Responsiveness Financial Fairness Health Distribution
70 40 50 60
60
20
10 Select a Rule Type:
= ~ Format all cells based on their values
40 = Format only cells that contain
30 = Format only top or bottom ranked values
10 ~ Format only values that are above or below average
20 = Format only unique or duplicate values
20 + Use a formula to determine which cells to format
50 : 2
Edit the Rule Description:

40
50 Format values where this formula is true:
20 =(SES54|
30
40
40 AaBbCcYyZz Eormat...
%0 B
30 oK Cancel
40

(O —... -

P FAISH FALSE FALSE FALSE

Figure 9-24. The Edit Formatting Rule dialog box uses an absolute reference by default

By default, all cells selected to populate the formula begin as absolute references. So the E54 in Figure 9-23
actually began as E54. You can change the absolute references manually by placing your cursor next to the
dollar signs and deleting them. Or, you can cycle through the references types by pressing F4 repeatedly. This is
similar to pressing F4 repeatedly in the formula box when writing a formula. In this case, if you press F4 three
times, you’ll arrive at the relative cell reference.

When you first set the cell, it's sometimes easy to forget the step of removing the absolute reference when
it’s necessary.

178

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 * PERFECTING THE PRESENTATION

If you click the Format button (see Figure 9-24), you'll be taken to the Format Cells dialog box. Here, you can
change the format of the cells whose sort column has been selected. For my formatting choices, I've selected a Bold
font style (Figure 9-25). I've stayed away from doing any other embellishments. You don’t want the selected header to
take away from the data visualization portion. Nor do you want it to overwhelm the visual field. If you're not careful,
you can go crazy with the formatting options. Here I am being subtle and tasteful.

[Number.l Border | Fill

Font: Font style:

|Bold

W Calibri Light (Headings) ~ | |Regular

T Calibri (Body) Italic

T Agency FB

T Aharoni Bold Italic

Tp Aldhabi

T Algerian

Underline: Color:

[v| | — |

Effects Preview

[=] Strikethrough
Superscript AaBbCcYyZz

Subscript

For Conditional Formatting you can set Font Style, Underline, Color, and Strikethrough.

Clear W
oK |I Cancel

Figure 9-25. Bold is selected in the Format Cells dialog box

This conditional formatting rule simply takes care of the metrics across the top. It doesn’t take care of Total,
which is not part of the same row. So you'll need to make an additional rule just for the total. Remember, however,
what the Total row refers to is in a different column on the intermediate table. Take note in Figure 9-26: the rule is
set to test the cell in 045, which, unlike the other columns in the visual layer, is not directly below the Total on the
intermediate table.

179

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 * PERFECTING THE PRESENTATION

: Heaith Level HESDOHSI\'EHESS Financial Fairness (511
RESET WEIGHTS 2) o
l 25.0% 12.5% 25.0% § 2!
sults 7-26 of 39 Total ¥) - ~ ~ J- b

Show formatting rules for: Elrrent Selection =

[Z] New Rule... (7 Edit Rule... < DeleteRule = &« v

Rule [applied in order shown) Format Applies to Stop If True
Formula: =$0554 AaBbCcYyZz =5DS4:5DS5 25 [

Figure 9-26. An individual rule is required for the Total header

The mechanism to display the down arrow in the weight box headings uses the same row as the conditional
formatting. Let’s take a look at the formulas (Figure 9-27).

=£33 & " " & REPT(UNICHAR(9660),E54)

D E F G
s of Sort By
Health Level ¥ Responsive
A
25.0% = 12.5¢

Figure 9-27. The formula used for the weight box heading

The left-side of the formula, E33, simply refers to the column header from the intermediate table. But turn your
attention to the right side. The down arrow is given by the Unicode index number 9660. And we can display the
character with the UNICHAR function. REPT, as you might recall, lets you specify a character in the first argument and
the amount of times to repeat that character in the second argument. Here, you've specified that you want to repeat
the down arrow. E54 in the formula (the value of how many times you want to repeat the formula) points to TRUE
and FALSE. And, if you remember how Boolean functions work, TRUE = 1 and FALSE = 0. So each header uses this
formula. When the Is Sorted Onrow returns TRUE for the corresponding column, it displays the down arrow (it’s
being repeated 1 time).

180

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 * PERFECTING THE PRESENTATION

The Presentation Display Buttons

In this section, I'll talk about the display buttons available to the user. The first takes the user back to the menu, and
the other resets the weights back to the original schema. Figure 9-28 shows these buttons placed adjacent to one
another. Your buttons in this case are nothing more than TextBox shapes with macros assigned to execute when the
user clicks one.

BACK TC MENU

RESET WEIGHTS

Figure 9-28. The two buttons on your dashboard

Going Back to the Menu

The Back To Menu button is simple. It simply takes the user back to the Menu screen. It can be found in the sheet
object of the Analysis worksheet tab. Listing 9-1 shows all the code that’s required.

Listing 9-1. The BackToMenu Procedure

Public Sub BackToMenu()
Welcome.Activate
End Sub

Resetting the Weights

Because you're performing sensitivity analysis, you expect the weights to change from their original scheme. Once
you've changed the weights, you might find you want to reset them back to the original scheme. Remember what
dictates the weights are the ratios of the values of the scroll bars. So, one way to create this weight scheme is with the
scroll bar linked value ratios shown in Figure 9-29 from the Helper tab.

4 Metrics Linked Value Adjusted Value Final Weight
5 |Health Level 20 80 25.0%
6 |Responsiveness 60 40 12.5%
7 |Financial Fairness 20 80 25.0%
8 |Health Distribution 20 80 25.0%
Responsiveness
9 |Distribution 60 40 12.5%
10| Total 320 100%|

Figure 9-29. The Linked Value column shows the required scroll bar values to get to the original weights

181

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 * PERFECTING THE PRESENTATION

Below this table on the Helper tab is a column of data that says Saved Weights (Figure 9-30). Notice the values match
the exact values in the Linked Value column in Figure 9-29. I've named this column of data as Helper . SavedWeights.
Likewise, I've named the column of linked values in Figure 9-29 as Helper.LinkedValues.

19 |Saved Weights

20 20|<-- Helper.SavedWeights
21 60
22 20
23 20
24 60

Figure 9-30. The scroll bar values that help you get to the correct weights

The Reset Button simply copies these saved values onto the linked values. Listing 9-2 shows the code, which can
be found in your file in the Analysis worksheet tab.

Listing 9-2. The ResetWeights Procedure

Public Sub ResetWeights()
[Helper.LinkedValues].Value = [Helper.SavedWeights].Value
End Sub

Think about this dynamic for a moment. Here you've saved only schema of weights. But you could save as many
weight scenarios as you'd like. It wouldn’t be hard to extend this model to have the user save a weight scheme they
like. Then later they could load the schema. All you would need is the simple code above to start.

Data Display and Aesthetics

In this section, I'll focus a little bit on the nature of the data you're displaying. In addition, I'll talk about some of the
aesthetic choices, including color and spacing. You may have noticed that the nature of the Total data (column O in
Figure 9-31) is different than that of the metrics (columns E, G, [, K, and M in Figure 9-31). Specifically, the metric data
is all whole multiples of ten from 0 to 100, while the Total data can be any number from 0 to 100.

182

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 * PERFECTING THE PRESENTATION

A B C D E F G H J K L M N O

30 Intermediate Table

3 Scrollbar Value 20

32 Sort Column Id 6 1 2 3 4 5 6

Sort Column: Match Responsiveness

33 # Total Index Country Health Level Responsiveness Financial Fairness Health Distributi Distributi Total
34 0 53.7526 39 Urwhary 70 40 50 &0 30 53.75
35 21 52.5020 18 Igeiskya 60 20 S0 60 60 52.50
36 22 51.2531 32 Rana 20 30 70 70 60 51.25
37 23 46,2541 31 Pustein 10 30 70 &0 &0 46.25
38 24 46.2509 & Dovaeria 30 0 100 10 80 46.25
39 25 450014 25 Opium 40 90 40 50 10 45.00
40 6 437539 29 Puafeabia 30 10 S0 40 0 4375
41 27 42,5032 24 Obron 10 80 50 20 100 42.50
42 28 42.5030 1 Acoaslesh 0 20 10 80 100 4250
43 29 425028 11 Eprvil 20 80 60 20 60 4250
ad 30 41.2521 28 Pocor 50 30 70 20 20 41.25
45 3 41.2507 33 sauclia 40 80 30 1o 90 41.25
45 32 40,0022 4 Asnon 50 70 &0 i0 10 40.00
47 33 38.7551 38 Stansblink 20 30 40 50 &0 3875
45 34 36.2506 10 Elsmen 30 10 20 80 20 36.25
49 35 35.0052 21 Jordan 40 50 20 30 50 35.00
50 36 312524 2 Afen 40 20 40 20 30 3125
51 37 31.2511 20 Jaca 90 20 10 1o 10 31.25
52 38 30.0008 26 Osppar 30 60 20 10 60 30.00
53 39 27.5023 34 Segro 40 70 10 10 30 27.50
54 Is Sorted On? FALSE FALSE FALSE FALSE FALSE TRUE

Figure 9-31. The intermediate table shows that the nature of the metric data differs from the total column

Weighted vs. Not-Weighted Metrics

The reason the nature of the Total data is different from the metrics data is that the Total data is weighted whereas
the metric data is not (Figure 9-32). Responsiveness Distribution, for example, simply uses the formula
=INDEX(Database[Health Distribution],C34)*10 in its first row cell, where C34 is the Match Index. Note
Database[Health Distribution] isn’t a weighted column. You might be wondering why you display the weighted
Total but do not display the weighted metrics (note, however, you do use the weighted metrics for your sort even if
you don’t display the results). I'll talk about that in this section.

Responsiveness
Distribution Total

70 | 55,00‘|

S0 73.75
100 53.75
80 86.25
30 53.75
100 81.25

Figure 9-32. You display the weighted Total but not weighted metrics

183

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 * PERFECTING THE PRESENTATION

The answer is that displaying the weighted metrics wouldn’t do well to highlight the variances between metrics
for a single country nor within one metric across several countries. Figure 9-33 shows how the data visualization
changes when you use weighted values for the metrics.

! -

—_— ACK Il
Analysis of Alternatives of Sort By Health Level RACKTONEN
Healthcare Systems Health Responsiveness

Health Level ¥ Responsiveness Financial Fairness Distribution Distribution
RESET WEIGHTS A & 2 2 2
25.0% = 12.5% - 25.0% @ 25.0% < 12.5%
Results 1-20 of 39 Total e - 1 - ¥ ¥ s

A 1 Ithha 725 = I =

2 Otiaflium 55.5) - 1 .

3 Efros | n ||

4 Ecaislana 00 | = ']]

5 Foujan | I . | ||

& Jaca) - = | I

7 Muburg]] | |

8 Esnhil I = | =

9 Meiestein |] | |] |

10 Gaqua I . [] [

11 Urwhary /I] 1 it}

12 Heiestan ;| I . I]

13 Puodeiton 1.3 [}] 5]

14 Sodal 6.0 I || [] |

15 Iqeiskya 525 .] |]

16 Efbrye 713 B B i |

17 Boostan 7.5 [} [] B

18 Asnon]] '] |

19 Pocor [| [z 1 =
v 20 Hoanga] m u =

EST POSSIELE NG .] |

Figure 9-33. Using weighted values instead of raw scores

Your ability to compare values is much harder now. This is because each metric now has a different base against
which to compare a best possible score. Consider country Efros, which is ranked in the third position in Figure 9-32.
It's performance in Responsiveness and Financial Fairness is, in fact, the same. But you wouldn'’t glean this
immediately since the representation in Responsiveness is half that of Financial Fairness. Switching back to raw
values shows they are the same (Figure 9-34).

Healthcare Systems Health Responsiveness
Health Level Responsiveness Financial Fairness Distribution Distribution
RESET WEIGHTS i 2 i 2 a 2 5 2 o 2
25.0% = 12.5% = 25.0% = 25.0% = 12.5%
Results 1-20 Total ¥ — - i - Y Y Y
! Foujan N | | |
2 Gaqua I —]
? Efros I N]
4 Heiestan I —— L
5 Ecaislana I ==l =
& Hoanga | —] | | —rr=oa
7 Esnhil 73.8 | | I

Figure 9-34. Responsivness and Financial Fairness result in the same score for Efros

184

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 * PERFECTING THE PRESENTATION

Generally, we intuitively understand the concept of weighted models, especially when presented visually, as is
the case here. In fact, this type of data visualization helps you mitigate your own bias. One common phenomenon,
which I've experienced in my professional career, is the assumption that high performance in one (or two) metrics will
strongly compensate for shortcomings in the rest.

In my past, I delivered a similar tool to an organization that wanted to gain insight into the performance of its
different projects. Management'’s assumption was that because two metrics had performed well, the project should
have ranked in the first or second spot. However, when presented with the tool above, they realized these two metrics
were not given high weights. Indeed, you can see an example of this in Figure 9-35.

Healthcare Systems Health Responsiveness
Health Level Responsiveness Financial Fairness Distribution Distribution
RESET WEIGHTS i Ly A o "
25.0% = 125% =~ 25.0% " 25.0% = 12.5%
Results 1-20 of 39 Total ¥ s - = % N .
2 Foujan 5 I |]
Gaqua I |
Efros I |
¢ Heiestan — — 5

Figure 9-35. The top four performing countries by weight

Heiestan, for instance, ranks very well in Responsiveness Distribution. But that only makes up 12.5% of
the overall score. Similarly, the top performer, Foujan, doesn’t do well in Responsiveness Distribution, but that
deficiency is easily offset by a strong performance in more heavily weighted metrics.

Color Choices

I chose blue as my predominant color. That choice isn’t so important; I happen to like blue as color. (And it seems

to go well with Excel’s standard grey.) Whatever color choice you go with, it should be consistent, simple, and not
overwhelming. Here, your metrics make up the total score. Varying the hue of the original blue color gives the sense of
this part-to-whole relationship while similarly establishing that these metrics exist as their own measures.

Excel’s color choices have gotten significantly better in terms of varying hue. But I've found for more than three
metrics, the difference in color sometimes feels too strong. So for this decision support tool, I deferred my color
choices to the ColorBrewer tool (www.colorbrewer2.org) shown in Figure 9-36. With this tool, you can define what
type of data you're looking at and how many data classes you have. In my case, I chose to use a sequential hue with
given data classes (based on my five metrics). ColorBrewer is a great tool to help you decide on a color palette for your
work. It can even suggest color-safe alternatives that will not cause issues for those with color blindness.

185

www.it-ebooks.info

http://www.colorbrewer2.org/
http://www.it-ebooks.info/

CHAPTER 9 © PERFECTING THE PRESENTATION
i_Numher of data classes: 5 v ; . oW Lo pa d ed

[
| Nature of your data: i
E ® sequential diverging “ qualitative

| Pick a color scheme:
| Multi-hue: Single hue:

T

| only show: i | S5-class Blues
| colorblind safe <@ % -X m
J print friendly RGB v

photocopy safe

140dx3

239,243,255

Context: i

T | e 19252
] cities i 107,174,214 |

@ borders | [0.130.189

Background: 8.81.156

® solid color (mp]

terrain

color transparency

Figure 9-36. The ColorBrewer tool (www.colorbrewer2.org)

Notice in Figure 9-36, there is a dropdown box displaying RGB. By default, this dropdown box will display the
Hex code color values often used for web development. However, to insert a custom color into Excel, you need to get
the Red, Green, and Blue (RGB) code values. So you'll need to adjust that dropdown to say RGB.

Once you have the colors you like, you can simply type each color directly into Excel’s color picker. Excel will
remember these colors for later. An easy way to add these colors is to select an empty cell and then click the dropdown
button next to the Fill Color icon in the Font group on the Home tab. From there, select More Colors and then click the
Custom tab in the Colors dialog box that appears. You can now use those RGB code values to type in the custom color,
as I have in Figure 9-37.

186

www.it-ebooks.info

http://www.colorbrewer2.org/
http://www.it-ebooks.info/

CHAPTER 9 * PERFECTING THE PRESENTATION

Standard = Custom

Colors:

Color model: '-
Red:

Green:

Blue:

Figure 9-37. The Colors dialog box where you can add custom colors to the spreadsheet

Once complete, the color will be accessible from the recent colors section in the dropdown next to the Fill Color
icon (Figure 9-38).

BElA- ==
Theme Colors u
H EEEENEER

i
«HERRNERNE

Standard Colors
"WEY PEEEEE

Recent Colors

|] NoFin

%y More Colors...

- o~ —

il
1M
"

Figure 9-38. The Fill Color dropdown shows the custom colors that have been recently added to the spreadsheet

187

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 * PERFECTING THE PRESENTATION

Data Spacing

I've similarly kept the table borders to a minimum. Here, however, I still want to channel the notion of separation.
Sometimes when there’s too much data bunched together, it’s hard to focus on any one data point.

Most folks, when faced with this problem, will create very strong, black borders. But a bold table border isn’t
needed here, and it would surely overwhelm more than it helps. Sometimes all that’s required is some added white
space. In Figure 9-39, I inserted a new row every five rows, and then, using the row sizing trick from above, I set them
all to be a consistent size. (The project file Chapter9WizardFinal.x1smincludes these extra rows as my “final” touch.)
There is one unfortunate drawback to this method: if you had to make a slight change to any of these columns, when
you drag down from the top, the extra rows would fill in with data. The intermediate table would also be misaligned,
having no spaces in it. One way around this problem is to simply add those rows to the intermediate table.

|
BACK TO MENU

Analysis of Alternatives of Sort By Total
Healthcare SyStemS Health Responsiveness
Health Level Responsiveness Financial Fairness Distribution Distribution
RESET WEIGHTS oo 2 s} e "
25.0% = 12.5% = 25.0% = 25.0% = 12.5%
v v

<
<
<

Results 1-20 of 39 Total ¥

— - —
A 1 Foujan 75 I | c— [————
2 Gaqua N]] —
3 Efros) I NN | Eo—
4 Heiestan) I I =
5 Ecaislana) I | |—]
& Hoanga N | I— —|
7 Esnhil N I
& Ithha) I E | —
9 Puodeiton))) | ——
10 Efbrye) | —]] | —
11 Otiaflium) I —
12 Boostan I I |]]
13 Sodal))] =
14 Muburg) 1 | ==
15 Socia) =3 = —
16 Agrines) 1 —
17 Eqblines) | B | —
12 Seoceudan) | == | —
19 Neiestein) | = =
¥ 20 Urwhary) | o—] || o—

Figure 9-39. Added white space every five rows creates some seperation in our minds as we compare data across
the spreadsheet

But I'm also not entirely against using borders. Another equally effective alternative is to add a light border every
five metrics or so. Figure 9-40 shows an example of this.

188

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 * PERFECTING THE PRESENTATION

BACK TO MENU

__Analysis of Alternatives of Sort By Total
Healthcare Systems Health Responsiveness
Health Level Responsiveness Financial Fairness Distribution Distribution
RESET WEIGHTS & = 2 2 i
25.0% ~ 12.5% - 25.0% 25.0% 12.5%
Results 1-20 of 39 Total ¥ = o - - e i
A 1 Foujan 75 I e
2 Gagua 363 I E—] E
3 Efros 5.00 IS BN —
4 Heiestan I B=a Ee—
5 Ecaislana | | com— —
5 Hoanga I —
Esnhil I [=——— I —
3 Ithha —— I E
2 Puodeiton) [[=—— ==
10 Efbrye) | === [=
11 Otiaflium 3 I . ——
12 Boostan 5 | =]
13 Sedal) | — =
14 Muburg | —] o ==
15 Socia) I == =
16 Agrines 3 I e ==
17 Eqblines O [} = —m
15 Seoceudan 5 o s | I
19 Neiestein 8 I | — = =
20 Urwhary || — = E—
v
BES L I DN —

Figure 9-40. Adding a slight border every five rows makes everything feel slightly less scrunched together

Ultimately, the decision is up to you. There are many good ways (and innumerable terrible ways) you can help
the user better interpret and contextualize visualized data. Here you're trying to optimize understanding of metric
performance and importance: performance in terms of individual scores and importance in terms of weight.

You should create your spreadsheet in a way that helps everyone understand both.

The Last Word

In this chapter, you perfected the link between your intermediate table and the visual layer. This included making
properly sized scroll bars and developing in-cell bar charts. You saw that many of the items used in this spreadsheet
application were not all that new. Instead, they were natural extensions of components built previously in this book.
Finally, you saw there’s a lot you can do with both code and formulas. Just as you attempt to achieve visual balance in
your data displays, so too should you attempt to find the correct balance of formulas and VBA. Pursuing this balance
is part of the journey.

But now that journey as come to an end. My hope with this book is that you learned how to do amazing things
with Excel. Many in the industry would argue we should no longer use Excel. Their experience with the spreadsheet
software is one of sluggishness, unpredictability, and application crashes. However, this book has showed that
complex products can be created in Excel that are fast, predictable, and safe.

Going forward, hopefully you'll see how concepts in this book can be applied to your own work as reusable
components. It might take creativity on your part to apply these examples, but I have faith in your ability to do
so. Remember, the most important skill when building something truly amazing in Excel can’t be found in this or
any other book. Creativity comes from within. If you choose to be never satisfied with perceived limits, and have a
continued thirst to learn new things, there’s no telling what you can accomplish.

Now go, and create.

189

www.it-ebooks.info

http://www.it-ebooks.info/

Index

A

Active object, 27
Analysis sort column, 155
Anchoring controls
DisplayCheckboxes, 108
GoNext, 108
inserting check boxes and naming, 109-110
Predefined Anchor Region, check boxes, 111
range, 107
remove, check boxes, 109
underlying cell, 107

B

Boolean concepts
chart filtering, 43
CHOOSE(), 43

Button control, 78

C

CheckBox form control, 77, 90-91
ComboBox control, 71-73
Conditional expressions

CHOOSE, 41

nested IF statements, 39

simple nested IF statements, 40
Conditional formatting

absolute reference, 178

cell reference, 178

data visualization, 179

metrics, 179

Rules Manager, 177

weight box heading, 180
COUNTIFS functions, 63-64
Custom formats, input validation

converting, output from Wingdings 2 to Calibri, 100

insert symbol dialog box, 100

D

Database information table, 126-127
Database table, 127
Data points, charts
Edit Series dialog box, 88
form control scroll bar, 87
TRANSPOSE function, 89
Dynamically sized ranges, 34-36

E

Essentials of Excel development
ActiveX objects and UserForms, 3
“break every rule’, 5-6
description, 3
resources, 8
VBA code and formulas, 3
“when It makes sense, do more with less’, 5

Evaluate formula button, 32-33

Excel formula
Boolean values, 33
intersection operator (), 37
operators, in depth, 33
range operator (:), 34
union operator (,), 36

F

Filtering with formulas
dashboard tab, 52
data table, 50
NPV column, 50
portfolio risk, 50
testing, 51

Form controls
and ActiveX, 68
CheckBox, 69
control room, 68

191

www.it-ebooks.info

http://www.it-ebooks.info/

INDEX

Form controls (cont.) N
descriptions, 71
Slider ActiveX control, 68 Naming convention system
Formula-based sorting, 157 Hungarian notation, 17-18
Formulas “loose” CamelCase notation, 18
evaluate formula button, 32-33 named ranges, 18
F2, cell selection, 31 sheet objects, 19-20
F9, calculation, 31 Normalization, 139
G 0)
Grade letter calculator, 47 One-way sensitivity analysis
GroupBoxes control, 80 advantage of Excel’s, 141
definition, 140
health level, 140
H metrics weights, 141
Highlighting using formulas proportions, 141
cells selection, 53 weights split, 140
edit formatting rule dialog box, 54 Option Button controls, 80

Hungarian notation, 17-18

PQ

|, J, K Periodic table, elements, 7
IF statements, 39-41
Input entry table R
cells, wizard, 123
conceptual visualization, 124 Range operator (:), 34
country Id, current index, 124 Reusable components, 64, 66
record, adding, 125 Rollover effect in Excel, 7
SaveNewRecord Procedure, 125
Input forms and Excel S T
ActiveX control, 96 ’
named ranges, 97 Scrollable tables
simple input form, 97-98 array formula, 83-84
spreadsheet, 97 AVERAGE and INDEX functions, 85
visual validation formula, 98 Excel form controls, 81-83
UserForm, Microsoft’s Excel, 96 Format Control dialog box, 85
Intersection operator (), 37 Scroll Bar control, 75-76
Scrolling capability
actual formulas, 150, 152
L conceptual presentation, 150-151
Label control, 79 index numbers, visual presentation section, 152-153
ListBox control, 73-74 scroll bar value, 149-150
Loud comments Selection, formulas
bold colors, 13-14 axis labels selection box, 61
editor format dialog box, 13-14 column headers, 56
markers, 13 data source dialog box, 59

dynamic chart, 60
index location, 57

M LARGE function, 57
Macro dialog box, 24 OFFSET, 59
Match Index column, 159-161 project list tab, 56
Microsoft’s .NET style guidelines, 3 project name column, 58
192

www.it-ebooks.info

http://www.it-ebooks.info/

Sensitivity analysis
adjusting the scroll bar, 153
alternatives decision support system, 137
backend, 147-149
formula-based sorting data, 154-155
intermediate table, 147-149
Match Index column, 159-161
metrics, 137-138
Pocor and Sauolia, 161
scrollbar at value 19, 162-163
scrolling capability, 149-153
second half of formula, 162
sort by to responsiveness, 163
sort column, 156-158
weighted average models, 138-147
Shorthand references, 21
Sort By dropdown and sort labels
Boolean formula, 176
conditional format, 176-178, 180
financial fairness, 174-175
metric selection, 174
Sort column
analysis in database, 156
first cell, 158
formulas, sorted list, 158-159
heading, 157
Match index column, 159-161
prototypes, 157
Spinner control, 77
Spreadsheet-based wizard, creation
additional instruction, views
anchoring, 106
series, check boxes, 106
anchoring controls, 107-109
components, 111
custom formats, 112
Helper tab
information, wizard, 103
named ranges, 104
track and display information, 104
INDEX, step-specific information, 113-114
introduction page, 101
layout patterns
mechanism, 102
named range manager, 103
moving between views, 106-107
survey, 101-102
Styles and principles
encapsulation, 29
Me object, 27
reset option, 28
worksheet tabs. See Worksheet tabs
SUMPRODUCT, aggregation, 61-62

INDEX

U

Union operator (,), 36
User input, storage patterns

control ListBox, 132-133
database, 122-123

database information table, 126
database table, 127

deleting selected record, 132
editing existing record, 129-132
input cell, 119, 121-122

input entry table, 123-124

input wizard, 117, 119

inserting a new record, 128-129
menu screen functionality, 128
spreadsheet file, design, 116-117
wizard summary buttons, 134-136
World Health Organization (WHO), 115

Vv

VBA programming techniques

annoying popup error box, 12
distraction-free coding, 12
immediate window, 15-16
loud comments. See Loud comments
naming convention system.

See Naming convention system
option explicit, 16
principles, 11
procedures and macros, 21-22
readable font, 14
shorthand references, 21
styles and principles. See Styles and principles

Visual layer

ColorBrewer tool, 186
comparisons, 173
country name, 170
custom colors, 187
data spacing, 188-189
display buttons, 181-182
IFERROR function, 172
information label, 168-169
infrastructure, 165
intermediate table, 183
mapping, 168
meters, 173
ranking, 169-170
Red, Green, and Blue (RGB), 186
REPT function, 171-172
Responsiveness Distribution, 185
“Sort By” dropdown and

Sort Labels, 174-176

193

www.it-ebooks.info

http://www.it-ebooks.info/

INDEX

Visual layer (cont.) Weighted average models
TEXT function, 171 Acoaslesh and Afon, 138-139
Total cell, 171 adjusted value, 143
weight adjustment system, 165-168 definition, 138
weighted vs. not-weighted linked values table, 142-144
metrics, 183-185 linking to database, 145-147
normalization, 139
W one-way sensitivity analysis, 140-141
rank of country performance, 139-140
Weight adjustment system WHO. See World Health Organization (WHO)
anchoring, 166 Worksheet object names, 21
column spacer, 166 Worksheet tabs, 22, 24-26
column width, 167 World Health Organization (WHO), 115
Grid feature, 167
Health Level, 165
Helper tab, 166 X’ Y’ Z
scroll bars, 166 XOR()-oh, 45-46
194

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Excel
Essentials

Jordan Goldmeier

Apress-

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Excel Essentials
Copyright © 2014 by Jordan Goldmeier

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material

is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.
Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material
supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the
purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the
Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from
Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are
liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4842-0735-2
ISBN-13 (electronic): 978-1-4842-0734-5

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion
and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified
as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may
be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Managing Director: Welmoed Spahr

Lead Editor: James DeWolf

Technical Reviewer: Fabio Ferracchiati

Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Louise Corrigan, Jim DeWolf,
Jonathan Gennick, Robert Hutchinson, Michelle Lowman, James Markham, Matthew Moodie, Jeff Olson,
Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft, Gwenan Spearing, Matt Wade,
Steve Weiss

Coordinating Editor: Kevin Walter

Copy Editor: Mary Behr

Compositor: SPi Global

Indexer: SPi Global

Artist: SPi Global

Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or

visit www. springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer
Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Special Bulk Sales-eBook
Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this text is available to readers at
www . apress.com. For detailed information about how to locate your book’s source code, go to
Www.apress.com/source-code/.

www.it-ebooks.info

http://orders-ny@springer-sbm.com
www.springeronline.com
http://rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com
www.apress.com/source-code/
http://www.it-ebooks.info/

Dedicated to my lovely wife, Katherine, who, as an undergrad, failed her required remedial
Excel course three times

www.it-ebooks.info

http://www.it-ebooks.info/

Contents

About the AULNOK ... s s s s nnr e mannn R R R R R R R R nnn Xiii
About the Technical REVIEWETccuurisseesmmsssssnssessssssssssssssssssssssssnsssssssnnsssssssnssssssssnnssssssnnnnss XV
AcKNOWIedgmeNntscuuuiiemmmmmisnnmmmssssnnnmmsssssnnmmssssssnnsssssnsneessssnnnesssssnnnesssssnnnessssnnnnesssnnnnnss Xvii
Part I: Core Advanced Excel Concepts......cccurrrmmmsssssssssssssssssssssssssssnnnnnnnnnnnnns 1
Chapter 1: Introduction to Advanced Excel EssentialS........cccccurrmmsssssssmssnmnmmsssssssssssssnsnnns 3
What to Expect from this BOOK..........ccccvverieiveriensersirsessis s se e e sassassnssnssenns 4
Example Files USEd in THiS BOOK.........cccceurrreserersssesesersssssesessssssssessnsssssans 4

The Two Most Important PrinCiples........ccccvverirriiinre s n s 4
When It Makes Sense, DO MOre With LESS......cuiiiiiiiriiniiniisiisiissississsans 5
BrEaK EVEIY RUIE ...t a e s a e s d e e e e e e e e b e b e e e e e e et e b e b e e e e e nennn 5
AVAIIADIE RESOUICESeeiereeririeriee st rsse s sae st s sae s s s s sae e e s s e e s s e e s ae s s e ae s e e ae e nn e s ae e sn e e ae e neeas 8
6100 0| OO 8

0 T2 T3 T oo O 8

L0 T T s a0 ST 11 T o T 8

0] 1 (= L0 TSRS 8

(- I 1T 0SSR 8

=] 1 (T g [T 1SS 8

L (2 [0 (o S 9
Chapter 2: Visual Basic for Applications for Excel, a Refresher........cccccciurrrrsssssssnsnnnnnnnas 11
Making the Most of Your Coding EXPEriENCE.........cccerrerrrserenrssesessessessssessssssssssssssssssssessssssssssssens 11
Tell EXcel: STop ANNOYING ME! ..o sesessssssesessssssssessssssssesss s s s sssnsnns 12

Make LoUA COMMENTES........ccoiierecreeerre e rere e se s sae e s e e ae e s aese s s s e s s e e sae e aesasaesa s e saesesaesenaesesanananes 13

Lo T T (=T T s 10 (= 0| 14

vii

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

Start Using the Immediate Window, Immediately............coo s 15
L0 01 0T 0] 10 T 3 o] o 16
NamMiNg CONVENTIONSccceueereerrcrreseresise e r e sae s n s re e r e e nn s s 17
HUNQGAKAN NOTALION.......coviricccertrccir e r e e e e e s s e e e e pn s 17
“Loose” CamelCase NOTALIONcceueerererererererere e ss s sr s s s s s s s s s s s s s s s sssssssssassssssssnsnnns 18
NAMEA RANGESceceeereercrereriese s ss s e e s s s s s e ss e s ae e s e s s e s s e e s ae e s Re e s anne s e nse e sannenannenansnanes 18
R L= A0] 19
2T (=] (11T SRS 20
SHOrthand REfEIBNCES ...t 21
WOrkSheet ODJECT NAIMEScccevrereererrererereresessersesessesessesassesassessesesasssssssassessssessssessssessessssessssessesesssssnsessnsenseneres 21
Procedures @nd MACKOS.......ccvuresirmsmsisisisisisisisisisisesesises s 21
Development Styles and PrinCIPIES........c.ccvcvcrcrcrcer s snennenns 22
Strive to Store Your Commonly Used Procedures in Relevant Worksheet Tabs..........cccoovvvenncnnscnnscnnscnnnsennes 22
No More Using the ActiveSheet, ActiveCell, ActiveWorkbook, and Selection Objects...........cocoveeeererrcicncrennnnnes 27
Render Unto Excel the Things that are Excel’s, and Unto VBA the Things that Require VBAccccovevrierennene 28
ENCapSUIAting YOUE WOTKcceieeceee et nenp s 29
L L0 2T 0T 29
Chapter 3: Introducing Formula CONCepts.......ccciummsmmmmmssssnsnmsssssssnssssssssssssssssnsssssssnnnnsssns 31
FOrMUIA HBIP ... s s n e s n e e 31
F2 to See the FOrmula of @ SEIECE Cell ... es 31
F9 for On-Demand and Piecewise CalCUlAtioNcocveeeererererirerrnerererereres e seees 31
Evaluate Formula BUEEON ..o 32
EXCel FOrmula CONCEPIS......cvvererierirrere sttt se e se s e sn e s n s sn e sn e sn e sn e nnesnennns 33
L0 T=T =Y (0] £ T I 0 o) (3R 33
THE RANGE OPEIALOL (2)..veeerererererrersererserersersssessssersesersessssessssessssessessssssssessssessssessessssessssessssessesessesssessssessnsesseneres 34
THE UNION OPBIATOT (;).eveeerererererrersererserereressessssersesersessssessssessssessessssessssessssessssessesssssssssessssessssessessssessssessssesseneres 36
The INtErseCtion OPEIALOL (().....cerereererererrerererersersesersesersessssersssersesesssssssessssessssessesesssssssessssessssessesssessssessssesseneres 37
When to Use Conditional EXPreSSionscccvcreercersessessessessesses s s ssssssssssssssssssssssssssssssssssssssnnes 39
Deceptively Simple Nested IF Statements..........cco e sn s 39
CHOOSE WISEIYceoeuerereeeesesressessesssssssessessesssssssssessessess s ssssssssessssssssssssssssessesssssssssssssessssssssssssnsssssssssnsssssnsnsens M
Why This DiScussion IS IMPOANT..........ccco e 4

viii

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

Introduction t0 BOOIEAN CONCEPLSccceereerieererieerersseserssesessssssssssesssssesssessesssessesssesssssssssssssssses 42
CONAENSING YOUE WOTKccereeereererresereesereresersesersesesssssssessssessssessssesssssssssassesssssssssesssssssssssssassesassesassessssasssnansens 44
The Legend 0f XOR()-0hcccvrrerererererereressssersesessesessesassessssessssssssssssessssessssessensssssssssssssessssessesssssssssssassenseneres 45

Do We Really NEEU IF? ..ot e e sn s sn s sn s n s sn s nn s sn s sn s nnsnnnnnannn 46

L LI 2T 0o 48

Chapter 4: Advanced Formula CONCeptsucccmmmmsssnnnmmssssssnmsssssnssssssssssnssssssnnnssssssnnnnsssss 49

Filtering and Highlighting.........coccoeoiinnicr et 49
Filtering With FOIMUIAS.........ccouiueiieieccsin et s s nenpn s 49
Conditional Highlighting USING FOrMUIAS.........cccceuieiririnieieseressssesesess e seses s sessssssssesssssssssssssssenes 53

R3] [<T (1o S 55

D0 [=TT L] o TSRS 61
Using SUMPRODUCT for AQQregationcccceecreneienemessnessssessssessesessssssessssessssessssssssssssessssessssessssssssssssssssnens 61
You're ADOUE TO BE FOILEA! ...ttt se s e et n e 63

Reusable COMPONENTS.........ccocvierirrirserserses s se s s sn e sn s n s sn s n s r s sn e e snesnesnennennennnns 64

T £ o O 66

Chapter 5: Working with Form Controlsccciusemmmsssnmmssssnmsssssmsssssssssssssssssssssssssssnsssssns 67

Welcome 10 the Control ROOM........coocceierirrccrere e 68

Form Control FUNdAmeNntals............ccocricnininir s 69
The COMBDOBOX CONTIONcccouieeeerereeccee e e e e s s e e s e e s Re e e snnns e e s 4l
THE LISTBOX CONTIOL........ce e se et e s e s e e e s R se e s Re e m e nnann e e s 73
THE SCIOHl BAr CONTIOL........ccoeeeieeeieeceeec e cse e se e sesr s se s e s e s s ae e e s e s Re e e e s Re e e e nnans e nas 75
B LEIT LT (=T 00T o S 77
The ChECKBOX CONTION ..o e e s se R psnnns e e 77
The Least Favorites: Button, Label, Option Button, and GroupBox Controlsccccvvrrrverrensennensessessessessessenns 78

Creating Scrollable TADIES.........c.ceeeiieriniierrse s 81

Highlighting Data Points 0n Charts...........cccvirirrnnensinser s se e e s e s snnns 87

The DYNamic LEJENd..........ccvcicerierrirsirsirsere s e s s sn s sn s sn e sn s sn s sn s sn s sn e r s n e nn e nn e nn e nn s 90

L LI 2T 8T o 92

ix

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

Part lI: A Real World EXample.....ccceeeeeeeeennnssmmsssssssssssssssssssssssssssssssssnssnnnnss 93

Chapter 6: Getting Input from USers........ccciumummmmmsssssnmmmssssssnmmssssssnnssssssssssssssssssssssssnnsnssss 95
Of Input FOrmS @nd EXCElceverierrerierie e riee s sssssessse e sssesssssaessssssssssessssanesssssssssssnesassnsssaes 95
A SIMPIE INPUE FOIM ...ttt reree s e s ses e rse e saesessesa s e s s e s s e e sae e saesasaesas e sae e saenasaesanaesae e nae e sae e nananaeasneres 97
Custom Formats for INPUt Validationcccceeeererererirc st serrs e sesse s e s ssesesaesessesassesassesassesassessssasasanaens 99
Creating a Spreadsheet-Based Wizard.............ccoooereeeeecescscncse s ses e 101
Layout Patterns for the Spreadsheet-Based Wizard.............ooeocerereicninnsncncsirsecsesse s 102
B Lo (o1 0T S 103
MOVING BELWEEN VIBWS........coueiiecirerines s ae st a s e s s a e e s a et p e e e s b st e a et ne e s aennnnnan 104
Views That Require Additional INSTTUCHION........ccccveececeer e 106
Components That Provide INfOrmation ..o sa e e sa e se s 111
The LasSt WOKd.........cooiiiiirinii e 114
Chapter 7: Storage Patterns for User Inputcccccnimninissmnssmsssmssms e 115
The World Health Organization: An Applied EXample........c.cccvvrervrrercersesses s sesesseneas 115
Design of Your SPreadSheet File...........cccevreercniinescrirnesesises s sessssnns 116
THE INPUE WIZANU........cceeeeecceieieecer e ae e e s s s s e s s e e e e s se e e e nnnnnnnnes 117
Setting Focus 10 the FirSt INPUL Cell ...t 119
The Database ..o ————————— 122
INPUE ENTIY TADIEceeeeceeceee e s a e s r e b e ne e e e e e e nnes 123
Database Information Table..........ccovvnnni i ——————— 126
The Backend Database TabIE........c.coverermnmnmsisismsmniniss s 127
Menu Screen FUNCONAlItY........ccocvcrcrcrcrcr s 128
INSErting @ NEW RECOKUcoveiieiceiree et e e a st e e e s a et s se e e e et e a et ne e e nennnaean 128
Editing an EXiStiNG RECOIU.........ccecieeireicene et s e s a e s s b s e b s a et ne e nennnannn 129
Deleting @ SelECtEA RECOIM ..ottt e 132
Linking the Column of Country Names to the Form Control LiStBOX.........ccccccuvernvennncnennennesnsess e sessesenaens 132
Wizard SUMmMary BUIONS.........ccocvcrrncrir st 134
LILLLC 52T o N 136

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

Chapter 8: Building for Sensitivity AnalySiS........ccusumssmssmsmssssssssssssssasssssssssssssasssasssasnns 137
Weighted Average MOTEIS.........cccvcervrierrerirerser s snssn s sn e sn e sn s sn e e 138
Sensitivity Analysis on a Weighted Average Modelccocvvrvrrerrernnnsses e 140
One-Way SenSitivity ANGIYSIScccceerrererrerererererserersersesersesersesessessssessessssesessesassessssessesssssssssessssersssesssssssssassens 140
Creating @ LINKEd VAIUES TADIEcovrereerereerererereresrereesersesessesessesessessesessesesassassessssessenssssssssessssessssesssssssssanaens 142
Linking to the Database............covurniinn s ———————— 145
BUIlAING the TOOL.......c.ceerererercr s n e n e n s n e nn e n e nnnnnnnn s 147
Getting to the Backend, the Intermediate Table............cceeereerenniennsre e 147
SCrOllNG CAPADIIILY.....ccerreereerreseee s e s ses s e e e e se e e s s et a e e e re e e Renesae e e e s s e e ene e enennnsenennnes 149
AdJusting the SCIOIl Bar........cciieiiiccririr et sa st s e b e et e bbb e 153
Formula-based Sorting Data for ANAIYSIS........ccccerierricrinnesnesse s s e s sss e ssssessesnnnens 154
The Sort Column, Your NeW BeSt FHIENd.........cccuiiimiiiniiiiiisinissns 156
The Match Index Column, the Sort Column’s BUAAY..........ccovrererrnnneninnenesirsrs s sesessssssesssssssenens 159
You Have a “UniqUE” PrODIBIMccuiviiieeceererier st ses sttt e e e sa s e sa s e s e s sa s sa s e sa st s e e sa st s sa et st e e s saesassannnns 161
Seeing [t WOrk AROGEINET ..o s s r e e e e e e bt n e e ne e aennnnnan 162
THE LASTWOKG......ccoieieeereresisesise st sn s s s sn s as s nnn e sne e nnnns 163
Chapter 9: Perfecting the Presentationcccvrmnnsmmnnsmsmssssmssssmnssssssssssssssssssssansns 165
Implementation and Design of the Weight Adjustment System ... 165
Displaying Data from the Intermediate Tableccocevererrrr s 168
Results INformation Label.........cuviiiiiissss s 168
The Current Rank 0f EQCH COUNIYcccoueeirerere s ree e e raeses e resserse e ssesesassesaesasesassesassesassassesassesssnesasenans 169
0T T T - 170
Total SCOres fOr EACH COUNTIYcoveeeeeereeireererereseresereeser e seraesessesasesaesessssesassesaesassessssesssssssssessessssesssnessssnaes 171
In-cell Bar Charts for All METIICS ..o ssens 171
Best POSSIDIE COMPAIISONScceeeeererererrereesersesereressessesersesessessssesssessessssessssssassessssessesssssssssessssessssesssssssenasaens 173
Weight BoX Progress MELEISccviriiniisminiinsssssss s sssssssssans 173
“Sort By” Dropdown and Sort Labelscccccveerierenniennscnesness s sss s e ssssesnes 174
Dropdown MELHC SEIECHONoeceeevere sttt sa e sa e e sa s s a e sesaesa s s e saesa e e sae e saeannens 174
Using Boolean Formulas to Define Which Metric Has Been Selected............cccovvevecciecrccncsnscnescsne s 175
Connecting Everything with Conditional Format Highlightingccccevvinnnniccccccrrs e 176

Xi

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

The Presentation Display BULIONScccvcrvriniennnrirsenser s se s sns e s s s eas 181
GOING BACK 10 The IMEBNUcveereeeeerererteereesereses e e s raesesse e ssesassesas e saesesaesesaesassesas e sae e saenassesassesassesasnsnaenanaens 181
RESEHING the WEIGNTES.ccveceeeeererere st ree s saese s e e se s sasae e s sa e e sa e e sae e saenaenesae e eaenenaenananes 181

Data Display and AeStNELICS........ccceeeeererercre e n s 182
Weighted vs. Not-Weighted MEIrCSccecieeicrrerecreres e sr s n e ne s 183
C0I0F CROICES......cucueticcst it bbb bbb bR bbb bR bbb 185
D L TS o2 T 1 o OO RS RRSRSRRSN 188

The LaSt WOKd.........cooiiiiinine e 189

INA@X.eiiietiinriesriessss s ————————————————————————_ 191

xii

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author

Jordan Goldmeier is a management consultant, author, educator, producer, and
Microsoft MVP. He is the owner of Cambia Factor (www.cambiafactor.com), a data
consulting agency, where he challenges companies and institutions to rethink
how they collect, work with, and interpret data. He has provided spreadsheet-
based decision support services to the NATO Training Mission in Afghanistan, the
Pentagon, Navy, Air Force, and Army as well as training and consultation to private
financial institutions in big data analytics and data visualization. Outside of work,
Jordan is a producer for and host of Excel TV, a web series dedicated to talking to
and learning from Excel experts. Jordan also loves grilling, smoked meats, and all
things BBQ. He lives in Dayton, Ohio with his wife.

xiii

www.it-ebooks.info

www.cambiafactor.com
http://www.it-ebooks.info/

About the Technical Reviewer

Fabio Claudio Ferracchiati is a senior consultant and a senior analyst/developer using Microsoft technologies.
He works at BluArancio SpA (www.bluarancio.com) as Senior Analyst/Developer and Microsoft Dynamics CRM
Specialist. He is a Microsoft Certified Solution Developer for .NET, a Microsoft Certified Application Developer for
.NET, a Microsoft Certified Professional, and a prolific author and technical reviewer. Over the past ten years,

he’s written articles for Italian and international magazines and coauthored more than ten books on a variety of
computer topics.

XV

www.it-ebooks.info

www.bluarancio.com
http://www.it-ebooks.info/

Acknowledgments

I'm not good at writing these sections. There are simply too many people to thank and acknowledge. So, before
anything else, let me first acknowledge everyone who has ever talked to me about Excel over the last five years of

my life. You know who you are. You played a key role in the formation of this book. You argued with me about using
Option Explicit, helping me establish why I believed using it is so important. You proposed alternate solutions to
methods I never questioned. This book is as much yours as it is mine. In fact, feel free to write your name with mine on
the first page of the book. You've earned it.

If I'm being honest, this book was really lead editor Jim DeWolfe’s brilliant idea. Sure, I wrote it, but it would
have never happened without him. If there’s any sense of organization or elegance in my writing, it’s surely due to
developmental editor, Chris Nelson, whose ability to spin rambling thoughts into coherent ideas is nothing short of
editorial alchemy. There’s also Fabio Claudio Ferracchiati, my technical editor, whose words of encouragement were
proof that I was writing something worth reading. And, Mary Behr, my copyeditor, who had the unenviable task of
trimming up my loquacious writing. Also, Kevin Walter, my coordinating editor, who kept us all on track. Finally, let’s
not forget the entire Apress editorial team, who graciously allowed me to publish an additional book whenIwas so
very behind on my first for them.

There are also several individuals who, whether they realize it or not, have made profound contributions to
this book (and to my work, in general). In no specific order, I'd like to thank and acknowledge Alex Gutman, Purna
“Chandoo” Duggirala, Daniel Ferry, Krisztina Szab6, Roberto Mensa, Robert Mundigl, Cary Walkin, Dick Kusleika,
Bill “MrExcel” Jelen, Szilvia Juhasz, Rick Grantham, Oz du Soleil, Rahim Zulfiqar Ali, and Jeff Weir.

Of course, there’s no way I could have completed this book without the love and support of my wife, Katherine
(who has been working on finishing her PhD and dissertation in addition to putting up with me writing all the time).
Whenever I felt stuck in my writing, she encouraged me to push through. And then there’s my brother, Stephen, who
has always been a tireless champion of my work.

The reason I even thought I could write a book was because of the support and feedback from the Excel
community. The Excel community has some of the finest talent in the world working to solve problems with Excel
nobody thought possible. This book is only but a small contribution to the work of the entire community.

Finally, I can’t forget to acknowledge Google Spreadsheets for all the great work it has done converting people
back to Excel.

xvii

www.it-ebooks.info

http://www.it-ebooks.info/

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Part I: Core Advanced Excel Concepts
	Chapter 1: Introduction to Advanced Excel Essentials
	What to Expect from this Book
	Example Files Used in This Book

	The Two Most Important Principles
	When It Makes Sense, Do More with Less
	Break Every Rule

	Available Resources
	Google
	Chandoo
	Cleary and Simply
	Contextures
	Excel Hero
	Peltier Tech

	The Last Word

	Chapter 2: Visual Basic for Applications for Excel, a Refresher
	Making the Most of Your Coding Experience
	Tell Excel: Stop Annoying Me!
	Make Loud Comments
	Pick a Readable Font
	Start Using the Immediate Window, Immediately
	Opt for Option Explicit

	Naming Conventions
	Hungarian Notation
	“Loose” CamelCase Notation
	Named Ranges
	Sheet Objects

	Referencing
	Shorthand References
	Worksheet Object Names
	Procedures and Macros

	Development Styles and Principles
	Strive to Store Your Commonly Used Procedures in Relevant Worksheet Tabs
	No More Using the ActiveSheet, ActiveCell, ActiveWorkbook, and Selection Objects
	Render Unto Excel the Things that are Excel’s, and Unto VBA the Things that Require VBA
	Encapsulating Your Work

	The Last Word

	Chapter 3: Introducing Formula Concepts
	Formula Help
	F2 to See the Formula of a Select Cell
	F9 for On-Demand and Piecewise Calculation
	Evaluate Formula Button

	Excel Formula Concepts
	Operators, in Depth
	The Range Operator (:)
	The Union Operator (,)
	The Intersection Operator ()

	When to Use Conditional Expressions
	Deceptively Simple Nested IF Statements
	CHOOSE Wisely
	Why This Discussion Is Important

	Introduction to Boolean Concepts
	Condensing Your Work
	The Legend of XOR( )-oh

	Do We Really Need IF?
	The Last Word

	Chapter 4: Advanced Formula Concepts
	Filtering and Highlighting
	Filtering with Formulas
	Conditional Highlighting Using Formulas

	Selecting
	Aggregating
	Using SUMPRODUCT for Aggregation
	You’re About To Be FOILed!

	Reusable Components
	The Last Word

	Chapter 5: Working with Form Controls
	Welcome to the Control Room
	Form Control Fundamentals
	The ComboBox Control
	The ListBox Control
	The Scroll Bar Control
	The Spinner Control
	The CheckBox Control
	The Least Favorites: Button, Label, Option Button, and GroupBox Controls
	The Button Control
	The Label Control
	The Option Button Control
	The GroupBox Control

	Creating Scrollable Tables
	Highlighting Data Points on Charts
	The Dynamic Legend
	The Last Word

	Part II: A Real World Example
	Chapter 6: Getting Input from Users
	Of Input Forms and Excel
	A Simple Input Form
	Custom Formats for Input Validation

	Creating a Spreadsheet-Based Wizard
	Layout Patterns for the Spreadsheet-Based Wizard
	The Helper Tab
	Moving Between Views
	Views That Require Additional Instruction
	Anchoring Controls
	Anchoring for Large Sets of Controls

	Components That Provide Information
	Using Custom Formats to Highlight the Current Step
	Using INDEX to Provide Step-Specific Information

	The Last Word

	Chapter 7: Storage Patterns for User Input
	The World Health Organization: An Applied Example
	Design of Your Spreadsheet File
	The Input Wizard
	Setting Focus to the First Input Cell

	The Database
	Input Entry Table
	Database Information Table
	The Backend Database Table

	Menu Screen Functionality
	Inserting a New Record
	Editing an Existing Record
	Deleting a Selected Record
	Linking the Column of Country Names to the Form Control ListBox

	Wizard Summary Buttons
	The Last Word

	Chapter 8: Building for Sensitivity Analysis
	Weighted Average Models
	Sensitivity Analysis on a Weighted Average Model
	One-Way Sensitivity Analysis
	Creating a Linked Values Table
	Linking to the Database

	Building the Tool
	Getting to the Backend, the Intermediate Table
	Scrolling Capability
	Adjusting the Scroll Bar
	Formula-based Sorting Data for Analysis
	The Sort Column, Your New Best Friend
	The Match Index Column, the Sort Column’s Buddy
	You Have a “Unique” Problem
	Seeing It Work Altogether

	The Last Word

	Chapter 9: Perfecting the Presentation
	Implementation and Design of the Weight Adjustment System
	Displaying Data from the Intermediate Table
	Results Information Label
	The Current Rank of Each Country
	Country Name
	Total Scores for Each Country
	In-cell Bar Charts for All Metrics
	Best Possible Comparisons
	Weight Box Progress Meters

	“Sort By” Dropdown and Sort Labels
	Dropdown Metric Selection
	Using Boolean Formulas to Define Which Metric Has Been Selected
	Connecting Everything with Conditional Format Highlighting

	The Presentation Display Buttons
	Going Back to the Menu
	Resetting the Weights

	Data Display and Aesthetics
	Weighted vs. Not-Weighted Metrics
	Color Choices
	Data Spacing

	The Last Word

	Index

