
Goldmeier

Shelve in
Applications/MS Excel

User level:
Intermediate–Advanced

www.apress.com

SOURCE CODE ONLINE

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

Advanced Excel Essentials
Advanced Excel Essentials is the only book for experienced Excel developers
who want to channel their skills into building spreadsheet applications and
dashboards. This book starts from the assumption that you are well-versed in
Excel and builds on your skills to take them to an advanced level. It provides
the building blocks of advanced development and then takes you through
the development of your own advanced spreadsheet application. For the
seasoned analyst, accountant, financial professional, management consultant,
or engineer—this is the book you’ve been waiting for!

Author Jordan Goldmeier builds on a foundation of industry best practices,
bringing his own forward-thinking approach to Excel and rich real-world
experience, to distill a unique blend of advanced essentials. Among other topics,
he covers advanced formula concepts like array formulas and Boolean logic
and provides insight into better code and formulas development. He supports
that insight by showing you how to build correctly with hands-on examples.

In this book, you learn:

• How to build better, faster, and leaner spreadsheets that will make
you a force to be reckoned with in your organization

• How to write optimized code and formulas that are easily understood
even by less experienced users

• How to turn a spreadsheet into a powerhouse application that rivals
commercial software

• About the tools and techniques for optimal layout, data storage,
and advanced analytics

RELATED

9 781484 207352

53999
ISBN 978-1-4842-0735-2

www.it-ebooks.info

http://www.it-ebooks.info/

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

www.it-ebooks.info

http://www.it-ebooks.info/

v

Contents at a Glance

About the Author��xiii

About the Technical Reviewer��� xv

Acknowledgments��� xvii

Part I: Core Advanced Excel Concepts■■ ��� 1

Chapter 1: Introduction to Advanced Excel Essentials■■ ���3

Chapter 2: Visual Basic for Applications for Excel, a Refresher■■ ���������������������������������������11

Chapter 3: Introducing Formula Concepts■■ ��31

Chapter 4: Advanced Formula Concepts■■ ��49

Chapter 5: Working with Form Controls■■ ���67

Part II: A Real World Example■■ �� 93

Chapter 6: Getting Input from Users■■ ���95

Chapter 7: Storage Patterns for User Input■■ ��115

Chapter 8: Building for Sensitivity Analysis■■ ���137

Chapter 9: Perfecting the Presentation■■ ��165

Index��191

www.it-ebooks.info

http://www.it-ebooks.info/

Part I

Core Advanced Excel Concepts

In this part, I’ll review the core concepts that make up the essentials of advanced Excel.
Chapter 1 explains what is meant by advanced Excel development, and how this book differs from many

others. For instance, several books place significant emphasis on Visual Basic for Applications code, believing
macros to be the most important feature of Excel development. This chapter will challenge that notion and
present advanced concepts as a product of many different Excel features, including code. Additionally,
I discuss the most important required skill—creativity.

Chapter 2 provides a brief Visual Basic for Applications refresher. I’ll discuss how best to set up the
coding environment to make it conducive to headache-free coding. I’ll also challenge conventional coding
conventions and propose alternatives that will prove more effective.

Chapter 3 introduces the formula concepts that will be used in this book. The chapter starts with tips
that will make your experience developing advanced formulas run more smoothly. I’ll then show you how to
perform advanced calculations by simply using range operators. You’ll develop advanced alternatives to the
IF function that will prove more powerful in practice and more readable later on. In addition, you’ll
investigate the full extent of Excel’s Boolean logic features.

Chapter 4 continues the discussion of formulas by demonstrating how they can be used with advanced
applications. I take you through several examples applying these formula concepts and demonstrate how they
can be understood with a little bit of algebra. The chapter concludes by introducing the notion of reusable
components, which are spreadsheet mechanics that can be easily reused for other projects.

Chapter 5 shows how advanced capabilities can be built into spreadsheets by using the humble form
control. In this chapter, I argue against using ActiveX and UserForms. Instead, you’ll rely on the flexibility of
form controls combined with the speed and prowess of formulas. Chapter 5 concludes with several practical
reusable components that you can start using in your own work right away.

www.it-ebooks.info

http://www.it-ebooks.info/

3

Chapter 1

Introduction to Advanced Excel
Essentials

I set out to write a book on the essentials of Excel development—that is, a book that concisely presents many of the
development principles and practices I’ve discovered through my work and consulting experience.

But whether on purpose or by accident, this book has become something considerably more than that. Indeed,
another name for this book could be A Contrarian’s Guide To Excel Development. You see, this book will push
back against the wisdom of other terrific Excel books, including my favorite book, Professional Excel Development
(Addison-Wesley 2005). To be sure, the information in those books is terrific, and whatever merits this book might
achieve, it will likely never come close to the impact of Professional Excel Development.

At the same time, much of the information in these books, I believe, is somewhat dated. For instance, let’s take
the case of Hungarian Notation. Hungarian Notation is a variable naming convention encouraged by virtually all
Excel development books. Even if you’ve never heard of Hungarian Notation, you’ve likely seen and used it, if you’ve
ever looked at or learned from example code. It basically says a variable’s name should start with a prefix of the
variable’s type. For instance, lblCaption, intCounter, and strTitle are all examples of Hungarian Notation: the lbl
in lblCaption tells us we’re working with a Label object; the int in intCounter tells us we’re working with an integer
type, and the str in strTitle tell us we’re working with a string type. If you’ve done any VBA coding before, this is
likely not new information.

You might not know this, however: most modern languages have all but abandoned Hungarian Notation.
Microsoft’s .NET style guidelines, for instance, even discourage its use. More than a decade has passed since Microsoft
last recommended Hungarian Notation. I argue that it’s time for a more modern naming style, which I introduce in
Chapter 2.

But this book is concerned with more than just naming conventions. I argue that we should change the way we
think about development. Previous books have placed significant emphasis on user interface with ActiveX objects
and UserForms. This book will eschew these bloated controls; rather, this book will show you how to develop complex
interactivity using the spreadsheet as your canvas. You’ll see that it’s easier and provides for more control and
flexibility compared to conventional methods from other books.

In addition, I’ll place less emphasis on code and a stronger emphasis on formulas (Chapters 3, 4, and 5). Many
books have narrowly defined the principles of advanced Excel in terms of VBA code. But formulas can be powerful.
And often they can be used in place of VBA code. You might be surprised by how much interactivity you can create
without writing a single line of code. And how much quicker your spreadsheet runs because of it.

This book is divided into two parts. Part I (Chapters 1-5) deals with concepts that are likely already familiar to you.
Specifically they concern VBA code and formulas—but I present these concepts in new ways. Part II makes up the last
four chapters of the book (Chapters 6-9). These chapters apply concepts from Part I to a real-world example product
I built in my consulting experience. Futhermore, in Part II, you’ll learn how to input form data without making your
spreadsheet bloated. You’ll also apply some data analytics used in the field of management science.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Introduction to Advanced Excel Essentials

4

However, if you learn anything from my book, it should be that the process of development never stops.
The most important skill you’ll need is creativity. Just as I saw different ways to approach a problem than my predecessors,
so too should you analyze what’s being presented to you. Undoubtedly, you’ll find even better approaches than I did.
I don’t expect everyone to agree with my approaches, but what’s important is that you understand them, so you can
see what works, what doesn’t, and why. Because you won’t become an advanced Excel developer through rote
memorization of the material presented herein; you must learn to think like an advanced developer. This book will
teach you the essentials of doing just that.

What to Expect from this Book
This is not a beginner level book. I assume you have intermediate level experience with formulas and Visual Basic
for Applications. At the very least, you should be able to understand and write both formulas and code. Complete
mastery isn’t necessary; because the topics presented in this book are somewhat new, a mastery in these topics might
not even help you. All that being said, if you’re an experienced Excel user—and you have the aptitude and thirst to
learn new things—there’s no reason you won’t be successful in reading this book! Again, the most important
(and cherished) skill that will guarantee your success is creativity.

What’s considered “advanced” may mean different things to different people. Here, we’re interested in the
principles that help us become better spreadsheet users and developers. That said, this book will make use of Excel
features such as formulas, tables, conditional formatting, Visual Basic for Applications code, form controls, and charts.
For the most part, I will present a brief refresher on what these features do and how they are used. However, you’ll
find this book moves at a quicker pace than beginner level treatments for these items. Features such as PivotTables,
PowerPivot, Power Map, and data tables are not discussed in this book. But you’ll find that the principles presented in
these pages are extendable to these topics.

Indeed, this book is most concerned with teaching Excel development as first principles. I will explain what they
are and how best they are used in practice. Once you learn underlying concepts, extending their use into applications
becomes trivial.

Example Files Used in This Book
This book comes with many examples as a complement to the material presented herein. The example files are
organized by chapter. Whenever there is a corresponding example file for the material presented, I’ll provide you the
name of the example file in the text. All example files are freely available to download from the book’s Apress web page
(www.apress.com/9781484207352). The files are designed to work in Excel 2007 and newer.

The Two Most Important Principles
There are many different ideas and concepts presented in this book. But I’ll be daring and attempt to sum them up as
two key concepts:

	 1.	 When it make sense, do more with less.

	 2.	 Break every rule.

Note■■  T he two most important principles are (1) when it makes sense, do more with less, and (2) break every rule.

www.it-ebooks.info

http://www.apress.com/9781484207352
http://www.it-ebooks.info/

Chapter 1 ■ Introduction to Advanced Excel Essentials

5

When It Makes Sense, Do More with Less
You don’t need VBA to do everything. Many times, the reason a spreadsheet is slow is because there is too much
reliance on code. Similarly, too many formulas—especially volatile functions like OFFSET and INDIRECT—will almost
always slow down a spreadsheet. There are better alternatives to these methods. Often, they require less code and can
get more done.

However, we should be wary of brevity for the sake of it. Bill “MrExcel” Jelen and I have a friendly disagreement1
on whether to use Option Explicit in your code. He says he doesn’t need it because he always writes perfect code to
start with—and that its use needlessly adds more lines of code. I, of course, respectfully disagree. I strongly encourage
you to use Option Explicit. Option Explicit requires that you declare your variables before they’re used. That
means that you cannot introduce a new variable in your code on the fly. Listing 1-1 shows code without Option
Explicit; Listing 1-2 shows code with Option Explicit.

Listing 1-1.  No Option Explicit

Public Sub MyResponse()
 ResponseMessage = "Code Executed Successfully!"
 MsgBox ResponseMessage
End Sub 

Listing 1-2.  With Option Explicit

Option Explicit
 
Public Sub MyResponse()
 Dim ResponseMessage as String
 
 ResponseMessage = "Code Executed Successfully!"
 MsgBox ResponseMessage
End Sub
 

Bill argued using Option Explicit required at least one additional line of code for every variable. And it might
appear Listing 1-1 is indeed doing more (or at least the same) with less code. But, as I show in Chapter 2, not using
Option Explicit might be more trouble than it is worth. Debugging is much harder without Option Explicit,
and not using it even encourages sloppy code. From my standpoint, leaving out Option Explicit (and the required
variable declaration) is simply getting less done with less code. But however you feel on this particular issue, it’s worth
testing your opinion against that first principle: ask yourself, am I really doing more with less?

Break Every Rule
I truly believe, and stand by, the material presented in this book. But I would have never discovered any of it without
departing from conventional wisdom. Again, I’ll keep hammering this point until I am blue in the face: the most
important takeway from this book is creativity. And you cannot be creative without pushing a few boundaries. Don’t
be scared to crash a spreadsheet or two in the pursuit of learning.

You’ll see in later chapters that some techniques won’t always be the best choice for every scenario. For instance,
a complex formula that is much faster in practice than a conventional formula might be useless if you must share
your spreadsheet and you’re the only one who understands it. There will always be an economy between formula
readability and utility. I present complex formulas in this book, but I also argue that readability should be a factor in
choosing when and where to use them.

1Watch Bill and I fight about this on Excel.TV: www.youtube.com/watch?v=yJRLzN3Dzmw.

www.it-ebooks.info

http://www.youtube.com/watch?v=yJRLzN3Dzmw
http://www.it-ebooks.info/

Chapter 1 ■ Introduction to Advanced Excel Essentials

6

Most important, you shouldn’t be satisfied with Excel’s perceived limitations. Over the last several years, I’ve
been blown away by what I’ve seen others accomplish with Excel. There is a thriving online community dedicated to
helping people realize their imaginations with spreadsheets. Whenever I need inspiration, I look to the community.

For your own consideration, I’ll provide two examples of my own work that show what can be done with Excel
when we think creatively. Figure 1-1 shows a three dimensional maze I created. It might surprise you to learn there is
very little code involved. And the “maze” is simply an area chart formatted to look like a three dimensional plane.

Figure 1-1.  A three dimensional maze, made with Excel

The second item I would like to present is a periodic table of elements with Excel, shown in Figure 1-2.
The periodic table uses a mouseover capability. When the user hovers their mouse over a cell, a macro is executed
that updates information about the element. However, the macro uses only a few lines of code, and besides that
update, the functionality is largely driven by formula functions. Moreover, that mouseover capability is one I
discovered by accident. Before I first wrote about it on my blog, it had been considered impossible.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ Introduction to Advanced Excel Essentials

7

Both the three dimensional maze and periodic table are available for you to investigate in the project files
included with this book. While it’s beyond the scope of this book to explain in detail how these particular spreadsheets
were created, they are the direct product of the material I present in the rest of the book. However, if you’re interested
in reading how these items were developed, see the links in the sidebar.

LINKS ON DEVELOPING A MAZE AND MOUSE OVER MECHANISM

How to Create a Rollover Effect in Excel: Execute a Macro When Your Mouse is Over a Cell

http://optionexplicitvba.blogspot.com/2011/04/rollover-b8-ov1.html

Roll Over Tooltips and Web Actions on a Microsoft Excel Dashboard

www.clearlyandsimply.com/clearly_and_simply/2012/11/roll-over-tooltips-and-web-actions-on-a-
microsoft-excel-dashboard.html

Development Principles for Excel Games and Applications

http://optionexplicitvba.com/2013/09/16/development-principles-for-excel-games-and-
applications/

Your First Maze

http://optionexplicitvba.com/2013/09/17/your-first-maze-2/

Figure 1-2.  A periodic table of elements with interactivty previously thought impossible with Excel

www.it-ebooks.info

http://optionexplicitvba.blogspot.com/2011/04/rollover-b8-ov1.html
http://www.clearlyandsimply.com/clearly_and_simply/2012/11/roll-over-tooltips-and-web-actions-on-a-microsoft-excel-dashboard.html
http://www.clearlyandsimply.com/clearly_and_simply/2012/11/roll-over-tooltips-and-web-actions-on-a-microsoft-excel-dashboard.html
http://optionexplicitvba.com/2013/09/16/development-principles-for-excel-games-and-applications/
http://optionexplicitvba.com/2013/09/16/development-principles-for-excel-games-and-applications/
http://optionexplicitvba.com/2013/09/17/your-first-maze-2/
http://www.it-ebooks.info/

Chapter 1 ■ Introduction to Advanced Excel Essentials

8

Available Resources
As I said in the previous section, sometimes you need some inspiration to help get you going. Here’s a list of resources
I use regularly.

Google
Google...Google...Google! Google is your best friend. If you’re ever stuck on a problem, simply ask Google the same way
you might your friend. Usually, you’ll find the results in Excel forums where folks have asked the very same questions.

Chandoo
This site, by Purna “Chandoo” Duggirala, is a phenomenal resource for every Excel developer, from novice to
professional. Chandoo covers many topics including dashboards, VBA, data visualization, and formula techniques.
His site is also host to a thriving online forum community.

www.chandoo.org

Cleary and Simply
Clearly and Simply is a site by Robert Mundigl. The site is mainly focused on dashboards and data visualization
techniques with Excel and Tableau.

www.ClearlyAndSimply.com

Contextures
Debra Dalgleish runs the Contextures web site, which focuses on Excel development and dashboards, particularly
with PivotTables. Her approach to dashboards and the use of PivotTables is different from mine, but well worth a read.
She is also the author of these Apress Books:

•	 Excel Pivot Tables Recipe Book: A Problem-Solution Approach

•	 Beginning PivotTables in Excel 2007: From Novice to Professional

www.contextures.com

Excel Hero
Excel Hero was created by Daniel Ferry. While his blog is not very active anymore, you will find his older content
incredibly useful. Several of his articles have served as the inspiration for the content found in these pages.

www.ExcelHero.com

Peltier Tech
Jon Peltier is a chartmaster. His web site is full of charting tutorials and examples. He provides sage wisdom on data
visualization and proper data analysis. His web site covers every conceivable thing you might want to do with a chart in Excel.

www.peltiertech.com

www.it-ebooks.info

http://www.chandoo.org/
http://www.clearlyandsimply.com/
http://www.contextures.com/
http://www.excelhero.com/
http://www.peltiertech.com/
http://www.it-ebooks.info/

Chapter 1 ■ Introduction to Advanced Excel Essentials

9

The Last Word
Above all, advanced development is about thinking creatively. You’ll see this in practice in the chapters to come.
Because some of the material is new, it may appear challenging at first. You may even find yourself frustrated at times.
In these moments, it’s best to take a break for a moment, find your bearings, and start from the beginning of the
section in which you left off. The material is complex, but well within your grasp. I urge you to push through to the
end of the book. The material is worth it; but more important, you’re worth it. What will you learn in this book will
distinguish you. We’re only still scratching the surface of what Excel can do. By the time you’re finished with this book,
you’ll be developing work that might even surprise you.

www.it-ebooks.info

http://www.it-ebooks.info/

11

Chapter 2

Visual Basic for Applications for
Excel, a Refresher

Of course, no advanced book on developing anything in Excel would be complete without a chapter on the interpreter
language housed within Excel, Visual Basic for Applications–or better known by its shorthand moniker, VBA.

This chapter won’t be an introduction to VBA but rather a review of VBA programming techniques and
development principles found in this book and practiced throughout most of my career. What follows may appear
unconventional, at first. Indeed, it may differ somewhat from what you’ve been previously taught. However, I don’t
leave you with a few instructions and no guidance. Instead, I’ll explain in detail why I believe what I believe—and
why you should believe as I do. If you find that you don’t—and I certainly welcome disagreement—consider the other
important—actually, more important—takeaway from this chapter: the code choices and styles we use should always
follow from a set of principles, guidelines, and convention. When you code, do so with structure and meaning. Know
why you believe what you believe.

But, the most important thing to do right now is to ready yourself to begin coding. This requires that you set the
right conditions in your coding environment.

Making the Most of Your Coding Experience
I tend to get more done when I’m less frustrated. I’ll be so daring to suggest you’re probably the same way. And let’s
not kid ourselves: coding in VBA can be a frustrating experience. For instance, have you ever been halfway through
writing an IF statement and then realized you needed to fix something on another line? So you click that other line
and Excel stops everything to pop up a message box saying that you’ve written a syntax error, like in Figure 2-1.
Chances are, you already knew that. In fact, you wanted to change an earlier line in the code to prevent another error
from happening.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Visual Basic for Applications for Excel, a Refresher

12

Tell Excel: Stop Annoying Me!
I mean, nobody’s perfect, but you don’t need this popup ruining your coding flow every time you click to another line.
So, save yourself from unnecessary popups by disabling Auto Syntax Check from the Options dialog box, which you
access by selecting Tools > Options (see Figure 2-2). This will only disable the popup. The offending syntax error is still
highlighted in red—in other words, you don’t lose any functionality, just the annoyance.

Figure 2-2.  Uncheck Auto Syntax Check for distraction-free coding

Figure 2-1.  That all-too-annoying popup error box telling you what you likely already know

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Visual Basic for Applications for Excel, a Refresher

13

Make Loud Comments
If you comment your code regularly—and you should—you’ve probably noticed comments don’t “stand out” very
much. In fact, I’ll be the first to admit I’ve gone through code and missed comments because they’ve “blended in”
with their surroundings. Figure 2-3 shows perhaps a more extreme example involving rather busy code, but the point
remains: the two comment markers (') I’ve placed in the routine are not easily or immediately found.

Figure 2-3.  Comment markers at 6 and 14 blend in with the code

Luckily, you don’t have to use the preset colors. In fact, you can make the comments stand out. Go back to the
Options dialog box from the Tools menu. Click the Editor Format tab and select Comment Text from the Code Colors
list box. Below the list box you can specify the foreground and background color, which are the text color and highlight
properties, respectively (see Figure 2-4). Personally, I like using a dark blue foreground and light blue background
(see Figure 2-5). You’ll have to try this on your own to get the full effect; to that end, and to preserve the formatting
guidelines of this book, the highlight does not appear in the code listings throughout the book.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Visual Basic for Applications for Excel, a Refresher

14

Figure 2-5.  Let your comments be heard with bold colors

Figure 2-4.  The Editor Format dialog box

Pick a Readable Font
Leave that Options dialog box open because you’ll need it once more. By default, Excel uses Courier New (Figure 2-6)
as its default coding font. Again, this font, like the comment style defaults, doesn’t emphasizes the clear readability.
I prefer the font Consolas shown in Figure 2-7 because I think it does a much a better job in this regard.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Visual Basic for Applications for Excel, a Refresher

15

You can change the font by selecting Normal Text from the list box (Figure 2-4) and using the font dropdown
on the side of the dialog box. Excel gives you lots of fonts to choose from, but the best fonts with which to code are
those of fixed width. So if you choose something other than Consolas or Courier New, make sure to pick a readable,
fixed-width font.

Start Using the Immediate Window, Immediately
The Immediate window is like a handy scratchpad with many uses. If the Immediate window is not already open,
go to View ➤ Immediate Window in the Visual Basic Editor. You can type calculations and expressions directly into
the Immediate window using the print keyword. Figure 2-8 provides some examples of typing directly into the
Immediate window.

Figure 2-6.  Sample code with Courier New as the font

Figure 2-7.  More readable text with Consolas

Figure 2-8.  The Immediate window

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Visual Basic for Applications for Excel, a Refresher

16

In addition, you can also print the response of a loop or method directly into the Immediate window. To do this,
use Debug.Print. Listing 2-1 shows you how.

Listing 2-1.  Using Debug.Print to Write to the Immediate Window While in Runtime

For i = 1 to 100
 Debug.Print "Current Iteration: " & i
Next i
Debug.Print "Loop finished."

Opt for Option Explicit
VBA doesn’t require you declare your variables before using them—that is, unless you place the words Option Explicit
at the top of your code module. Without Option Explicit, the For loop from Listing 2-1 would run without problems.
When you use Option Explicit, you must declare all variables before they are used. In Listing 2-2, I’ve used the Dim
keyword to declare the integer i.

Listing 2-2.  A For-Next Loop with Declared Variables

Dim i as Integer
For i = 1 to 100
 Debug.Print "Current Iteration: " & i
Next i
Debug.Print "Loop finished."
 

If you forgo Option Explicit, as I did in the first instance, Excel will simply create the variable i for you.
However, that i won’t be an integer; rather it will be of a variant type. This may not sound like such a bad thing
at first, but letting Excel simply make variables for you is a recipe for trouble. What if you misspell a variable, like
RecordCount, as I’ve done in Listing 2-3?

Listing 2-3.  An Example of a Variable Created on the Spot Because Option Explicit Wasn’t Used

RecordCount = 1
Msgbox RecordCout
 

Excel won’t alert you to an error. Instead, it will simply create RecordCout as a new variable. Do you trust your
ability to find misspellings in your code quickly?

In practice, I’ve found using Option Explicit alleviates many potential headaches. So do yourself a favor, in
the Option dialog box (Tools ➤ Options), check Require Variable Declaration to Excel to automatically (and proudly)
display Option Explicit at the top of every module. And when the error in Figure 2-9 appears, give yourself a pat on
the back for not having to scour your code to find your misspellings.

Figure 2-9.  Breath a sigh of relief ! You have Option Explicit on the case!

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Visual Basic for Applications for Excel, a Refresher

17

Seriously, I can’t tell you how important Option Explicit is. I’d repeat “Always use Option Explicit!” 1,000 times
here if I could. But I’ll just let Excel do it for me instead. Paste the following formula into an empty cell before moving
to the next section.
 
=REPT("Always use Option Explicit! ",1000)

Naming Conventions
A naming convention is a common identification system for variables, constants, and objects. By definition, then, a
good naming convention should be sufficiently descriptive about the content and nature of the thing named. In the
next subsections, I’ll talk about two naming conventions. The first, Hungarian Notation, is the most common notation
used for VBA coding. Indeed, I’m unaware of any book that has argued against its use—that is, until now. The second,
my preferred notation, is what I call “loose” CamelCase notation, and it’s similar to the standard for just about all
modern object-oriented languages.

Hungarian Notation
In this section, I’ll talk about Hungarian Notation. In this notation, the variable name consists of a prefix—usually
an abbreviated description the variable’s type—followed by one or two words describing the variable’s function
(e.g. its reason for existing). For example, in Listing 2-4, the “s” before Title is used to indicate the variable is of
String type. The term “title,” as I’m sure you can guess, describes to the string’s function—in other words, its reason
for existing.

Listing 2-4.  An Example of Hungarian Notation

Dim sTitle as String
sTitle = “The new spreadsheet.!”
 

Table 2-1 shows some suggested prefixes for common variables and classes.

Table 2-1.  Prefixes Suggested by Hungarian Notation

Prefix Data Type

B Boolean

D Double

I Integer

S String

V Variant

Rng Excel.Range

Obj Excel.Object

Chrt Excel.Chart

Ws Excel.Worksheet

Wb Excel.Workbook

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Visual Basic for Applications for Excel, a Refresher

18

In this book, I will discourage the use of Hungarian Notation in your code. I’m not here to tell you that Hungarian
Notation is terrible because it does have its uses. For instance, VBA code isn’t known for having very strict data type
rules. This means you can assign integers to strings without casting from one type to the other. So including the type
in a variables name isn’t a terrible idea at all.

But much of this type confusion can be resolved by using descriptive and proper variables names, as you’ll see
in the next few pages. For now, however, it’s a good idea to at least familiarize yourself with Hungarian Notation if you
haven’t done so already. Hungarian Notation is still widely used in VBA to this day, so it’s important that you can read
it proficiently even if you decide in this moment to never use it again. (Good choice!)

The fact is, Hungarian Notation is old. Indeed, in many ways, it’s a relic of a bygone era–namely, the era in which
people still used Visual Basic 6.0. (Those were the days, right?) In fact, Microsoft’s Design Guidelines for .NET libraries
has discouraged its use for more than decade. So what I’m proposing in this next section might feel new, but it’s
actually been around for quite some time.

“Loose” CamelCase Notation
In this section, I’ll talk about loose CamelCase notation as my preferred alternative. CamelCase notation begins with a
description (with the first letter in the “lower case,” when it’s a local, private variable—hence the name “CamelCase”)
and usually ends with the object type unabbreviated. For example, the variable in Listing 2-5 refers to chart on a
worksheet for sales.

Listing 2-5.  A Demonstration of Camel Back Notation

Dim salesChart as Excel.Chart
Set salesChart = Sheet1.ChartObjects(1).Chart
 

I’ll be honest and admit I’m not always such a stickler about that lower case descriptor, which is why I call my
use of this notation “loose.” The important takeaway when using this notation is to use very descriptive names. It’s
unlikely a variable name like ChartTitle will be confused for an integer in your code. Whether it’s recordCount or
RecordCount, you’ll likely understand that count refers to a nonnegative integer.

My rule of thumb is, local primitive types should start with a lower case, if you feel so inclined. Variables that
represent objects should end with the object name unabbreviated. Notice in Listing 2-5 that the variable name ends
with Chart. Ranges should end with Range, etc.

Descriptive names are important. Use a variable name that describes what the variable does so when you come
back to it later, you can remember what you did. If you have a test variable, then (please, for the love of God) call it
“test,”; don’t just call it “t.” It’s OK to use i in a For/Next loop where the i is simply an iterator and is not used later in
the code, but don’t name variables used to count objects with short names like i,j,k,a,b,c. Finally, there’s really no
good reason to use an underscore in your variable names. They’re not easier to read.

Named Ranges
As I said above, naming convention goes beyond just VBA. Indeed, a proper naming convention should be applied to
all Excel objects, including those that reside on a spreadsheet. Therefore, in this section, I’ll talk about naming objects
on the spreadsheet in the form of named ranges.

It’s rather common to see Excel developers use the prefix “val” to refer to named cell ranges. This prefix is an
attempt to extend the Hungarian Notation principles into the physical spreadsheet (as if we haven’t already had enough
of it!). However, I still prefer a more modern approach. Specifically, what I like to do is combine the name of the tab and
the function of the variable in to be object-oriented-like. Figure 2-10 shows a good example of what I mean.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Visual Basic for Applications for Excel, a Refresher

19

In Figure 2-10, the name of the tab is combined with the variable. Aside from being more object-oriented-ish, this
type of naming brings other distinct advantages. For one, you can more easily and logically group named ranges that
exist on the same worksheet tab. In addition, as you’ll see in the next section, this type of convention works very well
when interfacing between named ranges and VBA.

Sheet Objects
In this section, I’ll focus on naming conventions for sheet objects. There’s one property of the sheet object that I’m
a big fan of changing, and it’s the name of the object itself. When you change the name of a worksheet tab on the
spreadsheet, you’re actually changing the name of the tab (think of it as changing a caption); you are not, in fact,
changing the name of the worksheet object itself.

If for nothing else, changing the name of the worksheet object is a great way to clear up confusion when looking
at the Project Explorer window. For example, Excel seems to have a problem keeping the names of worksheet tabs
and the names of the objects themselves straight, as I’m sure you’ve noticed before. Take a look at Figure 2-11 to see
what I mean.

Figure 2-10.  An object-oriented like naming convetion for named ranges

Figure 2-11.  The Project Explorer demonstrating a lack of consistency when it comes to worksheet object and
tab names

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Visual Basic for Applications for Excel, a Refresher

20

The object name is the item outside the parenthesis; the tab name is the one inside the parenthesis. If I were to
write MsgBox Sheet1.Name in the Immediate window, I would see a response of “Sheet2.”

To change the name of the object itself, go to the Properties window from within the editor (View ➤ Properties
Window, if it’s not already visible) and change the line that says (name). In Figure 2-12, my worksheet tab’s caption is
“Financial Data,” so I’m going to change its object name to FinancialData.

Figure 2-12.  The Properties Explorer showing how to change the worksheet object’s name

YES, I KNOW IT’S CONFUSING

If you look at the Project Explorer window (Figure 2-12, above), you’ll see that the worksheet object name comes
first and the tab name follows in parenthesis. The Properties Explorer window appears to do just the opposite;
the first name in parenthesis, “(name)”, refers to the object’s name, while the second name item (under Enable
Selection) refers to its name as it appears on the tab. Why did Microsoft choose to do it this way? Your guess is as
good as mine.

Referencing
In this section, I’ll talk about referencing. Referencing refers to interacting with other worksheet elements from within
VBA code and also on the worksheet. This is where a good naming convention and proper coding style really makes
the difference.

Let’s take a made-up named range concerning Cost of Goods Sold. Hungarian Notation proponents would give
the named range something like valCoGS (CoGS = Cost of Goods Sold). The notation I suggest would combine the
tab name with a nicely descriptive title (you could make it shorter if you’d like, but I like long titles), something like
IncomeStatement.CostOfGoodsSold. So let’s take a look at why you might prefer a long named range such as this in
the next section.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Visual Basic for Applications for Excel, a Refresher

21

Shorthand References
This section discusses shorthand references, a syntax you can use in your code to refer named range on a sheet. Here
is where the advantage of the latter notation proves its worth. As you know, you can refer to a named range through
the sheet object where the name resides (technically, you can refer to it through any sheet object, but only on the
worksheet in which it was created will it return the correct information). So, the typical way to read from or assign to
the Cost of Goods Sold named range above using Hungarian Notation might look like this this:
 
Worksheets("Income Statement").Range("valCoGS").Value
 

On the other hand, if you use my method, you can employ the shorthand range syntax as follows:
 
[IncomeStatement.CostOfGoodsSold].Value
 

That’s right! These two lines of code mean and do the exact same thing. Now, which do you think is easier to read
and is more descriptive of what it represents? Which more easily captures the worksheet in which it resides? Which
would you rather use in your code?

Ok, so before you go off using the shorthand notation for everything, I should point out a significant caveat.
Using the shorthand brackets method can become, in certain situations, slow. Technically, it’s a slower operation for
Excel to complete than using a Worksheet object. However, you would really only notice this if you use the shorthand
notation during a very long and computationally expensive loop. For typical code looping, you’re not likely to see the
difference, but if you’re looking to speed things up inside a loop, it’s best to forgo the shorthand.

Worksheet Object Names
In the previous section, I showed you how to change the worksheet object names. In this section, you’ll see why
I think it’s such a good idea.

Think about what you can do with this change. Because the new name reflects some descriptive information
about the worksheet tab, you can use the object itself instead of the Worksheets() function to return the one you’re
interested in. Confused? Let’s take a look. Here’s the old way, which takes in the Worksheet’s tab name to return the
worksheet object:
 
Worksheets("Income Statement").Range("A1")
 

And here’s what you can do instead:
 
IncomeStatement.Range("A1")
 

Again, which do you think easier to understand and work with?

Procedures and Macros
In this section, I’ll talk about the benefit of changing sheet names on procedures. Once you’ve changed the procedure
name, you can also place your macro into the sheet object itself.

Take a look at how cleanly these procedures appear in the Macro dialog box versus the ones housed in a sheet
object with a default name in Figure 2-13. In addition, if you want to call a public procedure stored in a sheet object,
you can simply write IncomeStatement.CalculateNetTotal from within the code of another sheet object (or module)
in Excel. I’ll talk about the benefits of storing a procedure in a sheet object (versus a module) in the next section.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Visual Basic for Applications for Excel, a Refresher

22

Development Styles and Principles
Now that you’ve set up your coding environment and I’ve talked about naming conventions, I need to talk development
styles and principles. The following is a list of simple coding guidelines that if you stick to, you’ll be creating self-contained,
easy-to-follow code and design in no time. The first principle follows naturally from the last section.

Strive to Store Your Commonly Used Procedures in
Relevant Worksheet Tabs
If you’re an avid user of the Macro Recorder you know that Excel writes what you do to an open module. In many
ways, a module feels like a natural place for a procedure. But ask yourself, is there any real reason why you’re storing
the procedure there?

The problem with storing your procedures in a module is that it creates really sloppy code. I know what you’re
thinking: how dare I say that! You separate your modules into different logical pieces. The items inside each of your
well-named modules are relevant to one another. Chances are, though, the procedures in your model are only used by
one or two spreadsheets. If that’s the case, why not store the procedures in the worksheet objects themselves?

Consider this example I’ve seen time and time again. You have a Main worksheet tab that acts as a menu to direct
users to several other worksheet tabs. Then, in each of these tabs, you have a button that takes users back to the Main
worksheet. Let’s use the tabs from Figure 2-14 for this example.

Figure 2-13.  A demonstration of changing worksheet tab names and storing procedures therein

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Visual Basic for Applications for Excel, a Refresher

23

If you create this direction mechanism via the module method, you get ugly navigational code like in Listing 2-6.
I also assume in Listing 2-6 that you’re doing some type of processing work where the user goes from a different
worksheet tab back to Main.

Listing 2-6.  Ugly Navigational Code

' Links from Main screen
Public Sub From_Main_Goto_Config()
 Worksheets("Config").Activate
End Sub
Public Sub From_Main_Goto_Edit()
 Worksheets("Edit").Activate
End Sub
Public Sub From_Main_Goto_View()
 Worksheets("View").Activate
End Sub
Public Sub From_Main_Goto_Options()
 Worksheets("Options").Activate
End Sub
 
'Link back to Main from each screen
Public Sub From_Config_Goto_Main()
 .
 .
 .
 Worksheets("Main").Activate
End Sub
Public Sub From_Edit_Goto_Main()
 .
 .
 .
 Worksheets("Main").Activate
End Sub
Public Sub From_View_Goto_Main()
 .
 .
 .
 Worksheets("Main").Activate
End Sub
Public Sub From_Option_Goto_Main()
 .
 .
 .
 Worksheets("Main").Activate
End Sub
 

Figure 2-14.  A common spreadsheet layout in which Main acts a menu to take users to each tab

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Visual Basic for Applications for Excel, a Refresher

24

What do I mean by ugly? Well, creating this mechanism in a module requires you use funky procedure names
to differentiate one from the other. And just take a look at what each of these procedures look like in the Macro
dialog box (Figure 2-15). Each of these names looks so similar. It would be very easy to accidentally assign the wrong
macro. (Are you nodding your head because you’ve done it before!? I know your pain.) In addition, even if you store
procedures in separate modules, there’s nothing in the Macro dialog box to differentiate for this type of organization.

Figure 2-15.  A mess in the Macro dialog box

Figure 2-16.  A view from Project Explorer when the worksheet object names are changed

But now, let’s take a look at my suggested improvements (including changing the worksheet names above).
You can store the procedures that take you from the Main tab to other worksheet tabs in the Mai n worksheet object
(Figure 2-16).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Visual Basic for Applications for Excel, a Refresher

25

As well, you can use much cleaner-looking procedure headings, as shown in Listing 2-7.

Listing 2-7.  Cleaner Code Now Stored in the Main Worksheet Object

Public Sub SendToConfig()
 Config.Activate
End Sub
Public Sub SendToEdit()
 Edit.Activate
End Sub
Public Sub SendToView()
 View.Activate
End Sub
Public Sub SendToOptions()
 Options.Activate
End Sub
 

Next, in each separate worksheet object you would simply use something like the following procedure in
Listing 2-8. As a matter of proper style, you should use the same name, BackToMain, in each worksheet object.
Remember, unlike in modules, procedure names in worksheet objects aren’t global. Because of this, you can use the
same name across different worksheets.

Listing 2-8.  BackToMain Stored in Each Separate Procedure. Takes the User Back to the Main Page

Public Sub BackToMain()
.
.
.
 Main.Activate
End Sub.
 

Take a look at Figure 2-8. As you can see, each procedure is much easier to read and understand right away from
within the Macro dialog box. In addition, notice how you’ve made the code more object-oriented-like. Each tab that
you can navigate to from Main shares the same procedure. It’s as if they are of a similar class. When you add extra
procedures to the worksheet (but keep the one sending users back home) you are inheriting the features of each sheet
and then adding new ones to it.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Visual Basic for Applications for Excel, a Refresher

26

And another thing...
You thought I was done complaining about putting procedures in modules, didn’t you? Well, I’m not. Because

there’s another problem we need to address head on in this section. So let’s do that by taking a quick survey. Grab a
pen to mark down your answers. If this is a library book, upon returning the book, tell them you found it this way.

Figure 2-17.  The Macro dialog box showing a much clearn presentation and organization of code and procedure names

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Visual Basic for Applications for Excel, a Refresher

27

THE ACTIVE OBJECT STRESS TEST

Circle all that apply.

I ran a macro that uses the Selection object. However, I (or the user) selected the wrong worksheet item (either
manually or in the code) and accidentally made undoable changes to everything. This makes me feel

a.	A nnoyed

b.	 REPT("I want to scream!", 1000)

c.	L ike I never want to use the Selection object again!

I ran a macro that uses the ActiveSheet object, but accidentally I was looking at the wrong sheet before running
the macro. Also, I forgot to save everything before running the macro, so now I have start over. I feel

a.	E xhausted

b.	 REPT("I want to scream!", 1000)

c.	T otally done using ActiveSheet, forever!

I ran a macro that uses ActiveCell, but the wrong cell was selected for some unforgivable reason. The code
made changes to that cell and a whole bunch of cells around it. Unwittingly, I ended up making incorrect and
undoable changes to the entire spreadsheet. I feel

a.	T errible

b.	 REPT("I want to scream!", 1000)

c.	I ’m so over using ActiveCell.

Now take a look at your answers. If you circled C for any of the above questions, you’re in luck. I have some really
great news for you in the next section.

No More Using the ActiveSheet, ActiveCell, ActiveWorkbook, and
Selection Objects
You don’t need these objects; in this section, you’ll see why. It’s often the case that coding inside a module encourages
you to use these objects, since the procedures themselves aren’t worksheet-specific. But if you’re already working
inside the procedure (as I suggest above) you can use the Me object. Me is always the container object in which your
code is housed. For example, if the following code were in Sheet1, the Me object refers to Sheet1.
 
Me.Range("A1").Value = "Hello Me!"
 

That’s not all, either. You can use ThisWorkbook instead of ActiveWorkbook to ensure you are always modifying
the workbook in which your code resides. If you want to modify a cell, address it directly like I’ve done in the code
above. If you want to refer to a chart or shape, why select it first? Which gets to the point more easily, Listing 2-9 or
Listing 2-10?

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Visual Basic for Applications for Excel, a Refresher

28

Listing 2-9.  Using Selection and Active Objects

ActiveWorkbook.Worksheets("Sheet1").Activate
ActiveSheet.Shapes("Shape1").Select
Selection.Fill.ForeColor.RGB = RGB(0, 0, 0)
 

Listing 2-10.  Referencing Objects Directly

Me.Shapes("Shape1").Fill.ForeColor.RGB = RGB(0, 0, 0)
...
Dim salesChart As Excel.Chart
Set salesChart = [SalesChart].Chart
 

Isn’t VBA great? It sure is, but not for everything. That brings me to the next principle.

Render Unto Excel the Things that are Excel’s, and Unto VBA
the Things that Require VBA
VBA lets you do a lot, but it’s not a great idea to do everything in VBA, especially when it involves reinventing the
wheel. For instance, it’s tempting to store your all your program’s global variables in a module. This method brings the
advantage of total and complete accessibility: the variables can be accessed anywhere at any time by any procedure.

However, these variables are also “freed” from memory whenever your code errors out or whenever you tell Excel
to “reset (Figure 2-18). When this memory is dumped, you must start over—those variables once again become zeros
or blanks. Often those who use this method must create an Initialize or Restore procedure to restore the correct values
to these variables before one can do anything else in the spreadsheet.

Figure 2-18.  Hitting OK will reset the values of all those public variables stored in procedures

There’s a better way, people. I don’t need to tell you that Excel is a giant storage closet. It’s a much better idea
to store your application models on the spreadsheet instead of in the module where they are susceptible to being
cleared out every time there’s an error. Just create a new tab to hold your backend variables. Name it something like
Calculations, Variables, Constants—you get the picture. Then use the shorthand range syntax discussed above to
access these ranges. It couldn’t be simpler. And it brings an additional benefit worth mentioning in my next principle.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Visual Basic for Applications for Excel, a Refresher

29

Encapsulating Your Work
Encapsulation is a tenant of object-oriented programming that argues (1) associated data and procedures should be
organized together, and (2) access to and manipulation of the former items should be restricted or granted in only
certain circumstances. By coupling together relevant procedures into a relevant worksheet tab, you fulfill the first item.

The second item is fulfilled when you store application variables on the worksheet. This is because the only way
to change these variables is by either writing to them with code or updating them manually behind the scenes. Let’s
say you have a named ranged called Calculate.Input. I can change this variable’s value in the code (see below),
which requires I run a macro.
 
[Calculate.Input] = 1
 

Or I can change its value by finding it on the spreadsheet and typing in something new, as in Figure 2-19.

Figure 2-19.  A worskheet named range variable called Calc.Input

However, if I want to access this variable somewhere else on the worksheet, I must access it through a formula,
like this:
 
= Calc.Input – 1
 

Notice that this simply accesses the value stored in Calc.Input—it doesn’t change the value itself. However, it’s
impossible with a formula to change the value of Calc.Input. Like I said above, there are only two ways to change its
value, a macro or a human. This is an example of encapsulation.

The Last Word
In this chapter, I talked about how to set up your coding experience to make the most of it, proper naming
conventions, and development styles and principles. Some of these suggestions were counterintuitive to what is
commonly taught, but explanations on why they were useful for what we do were given. I don’t expect you to leave
this chapter entirely convinced, but hopefully you see the value in developing good coding practices—and why
sometimes doing things differently makes sense.

www.it-ebooks.info

http://www.it-ebooks.info/

31

Chapter 3

Introducing Formula Concepts

Q: What does every newborn spreadsheet need?

A: Formula

Spreadsheet formulas hold a unique place in advanced Excel development. Most of us are familiar with formulas as a
means to produce results more quickly than with manual calculation. For example, if we want to find the arithmetic
sum of a range, does it make sense to pull out the Burroughs Adding Machine and punch in each item one by one? No.
The very nature of a spreadsheet provides a built-in means to manipulate its elements.

Most of us are used to this type of manipulation with formulas; that is, we use formulas as a means to find and
return results. Spreadsheet formulas, when used for Excel development, however, do much more. They form the
infrastructure upon which much of our work is based.

Throughout this book we will be working with formulas. Some of these formulas will be very complex. When you
first start, they may appear daunting. However, practice makes perfect, and experience is your greatest teacher. The
more you use them, the more you develop a formula literacy. What may have appeared hard to read at first glance
should become easier. But more important than knowing the formulas themselves is understanding the concepts
behind what drives them.

And, of course, Excel includes a few tools and features to help you understand your formulas. Let’s go through a
few of them you can start using now.

Formula Help
In this section, I’ll talk about making the most of your formula experience. The following tips should make your life
easier, especially when working with complex formulas.

F2 to See the Formula of a Select Cell
Chances are you’re already pretty familiar with F2. But for the uninitiated, pressing the F2 key on a cell containing
a formula will highlight the portions of a spreadsheet upon which the formula depends. If you’re trying to evaluate a
formula, F2 is a good first start to your investigation.

F9 for On-Demand and Piecewise Calculation
F9 is the shortcut key to tell Excel to recalculate. If you type =RANDBETWEEN(1,2) in an empty cell on an Excel
worksheet and then press F9 continuously, you will see that cell update to 1 or 2 at random. (In addition, if you have
any other volatile formulas, those will update too).

F9 can also provide a piecewise, or partial, calculation of a long formula. Take the seemingly complex formula
shown in Listing 3-1.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Introducing Formula Concepts

32

Listing 3-1.  An Example of a Long, Complex Formula

=IF(SUMPRODUCT(A1:A3*(B1:B3>2))>7, CONCATENATE(A2 & L3), IFERROR(C6, "An error occurred."))
 

Let’s say you want to evaluate only a part of this formula, specifically the highlighted portion of the same formula
but now in Excel’s formula bar (Figure 3-1).

Figure 3-1.  You can select a portion of the formula to be evaluated immediately

Figure 3-2.  Pressing F9 on the highlighted portion evaluates the highlighted portion immediately

Figure 3-3.  The Evaluate Formula button

In fact, you can tell Excel to evaluate just that easily. If you highlight the portion as I’ve done in Figure 3-1, you
can press F9 to see what it evaluates to (see Figure 3-2).

You now see this portion evaluates to False. In the formula bar, Excel just rewrites this portion of highlighted text
to read “FALSE.” And you can do this to any portion of the formula. If you click outside the formula bar or press the
escape key, the formula will return to its original, unevaluated text. F9 then, when used with formulas, is the ultimate
on-demand approach for quick formula evaluation.

Evaluate Formula Button
The Evaluate Formula button allows you to step through an entire formula. Here’s how it works. First, click the cell
you’re interested in investigating. Then, click the Formulas tab on the ribbon. Go to Evaluate Formulas in the Formula
Auditing group. Take a look at Figure 3-3.

A dialog box similar to the one shown in Figure 3-4 should appear. The underlined portion is the current
expression to be evaluated. If available, you can go deeper into the formula by pressing the Step In button. You can
Step Out if that level of granularity is no longer need. For formulas that resolve to an error, the Evaluate Formula tool
can be very helpful to understand the conditions right before the error. I find Evaluate Formula an indispensable part
of my Excel Development toolkit.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Introducing Formula Concepts

33

Excel Formula Concepts
In this section, I’ll talk about formula concepts you’ll be using throughout the rest of this book. To begin,
Excel formulas are made up of four main types:

Functions, such as •	 AVERAGE( ), SUM( ), IF( )

Constants and literals, such as number, string, and Boolean values like 2, 100, 1E7, •	
“Hello world”, and FALSE

References, such as A1 or A1:A20•	

Operators, such as +, -, /, >, :•	

You’re probably already familiar with several of these types. Obviously, functions make up a huge part of formula
use. Constants that are numbers are also probably familiar. However, did you know that Boolean values like TRUE and
FALSE are also constants? Finally, you’ve probably used references and operations many times by now, but did you
know the colon (:) that forms the range A1:A20 is also an operator?

Operators, in Depth
This section will discuss Excel operators. You’re probably familiar with Excel’s arithmetic operators, plus (+),
minus (-), times (*), and divide (/). But besides arithmetic operators, Excel has a text and three reference operators.

Excel’s text operator is the ampersand (&), which stands in for the CONCATENATE function. For instance, the
formulas =A1&B1 and =CONCATENATE(A1,B1) do the exact same thing. You’ve probably also used Excel’s reference
operators many times, the colon (:) in particular, without thinking of them as operators. Excel’s two other reference
operators are the comma (,) and space () characters. Table 3-1 talks about what they do.

Figure 3-4.  The Evaluate Formula dialog box

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Introducing Formula Concepts

34

In the next few sections, I’ll go through examples of what you can do with these reference operators.

The Range Operator (:)
In this section, I discuss the range operator. The range operator (:) is one of the most used operators in Excel. It’s an
operator in every sense of the word in that it acts upon two different ranges (which are the operands, if you want to get
technical) and returns a contiguous range. What’s so great about the range operator is that you can actually combine
functions, like
 
= A1:INDEX(A:A, COUNTA(A:A))
 

and
 
= B1:OFFSET(B:B, COUNTA(B:B), 0)
 

So let’s take a look at an example that shows the power of the range operator.

EXAMPLE: DYNAMICALLY SIZED RANGES

Using the range operator, you can create dynamically sized ranges. This means you can create a range that can
grow and shrink as the list they represent is added to or subtracted from. Both the INDEX and OFFSET formulas
can help you with this mechanism. In this example, they both work about the same way.

Consider the range in Figure 3-5.

Table 3-1.  Reference Operators and Their Descritions

Reference Operator Nomenclature Definition

: (colon) Range operator Combines all cells between two ranges, and the two cells into one
contiguous range.

, (comma) Union operator Combines multiple references into one reference.

(space) Intersection operator Returns only the overlapping cells of one or more ranges.

Figure 3-5.  A sample set of data upon which you will create a dynamically sized range

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Introducing Formula Concepts

35

If I want a count of all my favorite colors in this example (in real life, I have only one favorite color, and
it’s black), I can use the COUNTA function on the range A2 to A8. But what if I want to add to the list? In that case,
I must reapply my formula to accommodate the next color in cell A9. Alternatively, I can just say something like
A2:A1000, where the second range is an arbitrarily large number. Neither the former’s formula reapplication nor
the latter’s arbitrarily high number are very good fixes.

The best solution is to use a dynamically sized range. To do this with the INDEX formula, you can write
=A2:INDEX($A:$A,COUNTA($A:$A)) like in Figure 3-6.

Figure 3-6.  A demonstration of the formula that will ultimately help you create a dynamically sized range

Figure 3-7.  Creating a new named range out of the formula

Here’s how it works. You supply the entire column range A:A to the INDEX formula. In the row argument of the
INDEX formula, you’re interested in the last row of content in the column range of A:A. COUNTA, which counts
every filled cell in the range supplied to it, will return an 8, since the last row of content is the eighth row down.
When you use INDEX, you’re probably used to its returning values. If you hadn’t added that A1 at the beginning of
the formula, the INDEX function by itself would have simply returned the word “Violate.” But behind the scenes,
Excel is actually returning a reference to the cell containing “Violate,” not just its value. So, effectively, Excel is
returns A8, which becomes A1:A8 in the formula.

When you press Enter, you’ll probably see the formula return the value Red. This is because it’s returning the top
of the range. If you continue to drag the formula down, you’ll see that it returns the other cells in the range too
(if it doesn’t, select the entire range and press Ctrl+Shift+Enter). But to really use dynamically sized ranges to
your advantage, you can assign them to a named range as I’ve done in Figure 3-7. Make sure when you do it the
cell references are absolute.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Introducing Formula Concepts

36

You can then use that named range elsewhere on your spreadsheet. For example, in cell C8 in Figure 3-8, I’ve
used the formula =COUNTA(myNamedRange). As you can see, I’ve added to my list, and the count has updated
automatically. Just imagine using these dynamically sized ranges in charts, dropdowns, and formulas! You’ll get
to do that in the next chapter.

Figure 3-8.  Using the Name Range elsewhere

You can do the same with OFFSET, using this formula:
 
=A2:OFFSET(A1,COUNTA($A:$A),0)
 
Experiment a little and see if you can figure this one out. Remember, if you need help, use the formula help
suggestions from the beginning of the chapter.

A final note is in order. There’s also some argument on whether INDEX is faster than OFFSET, since OFFSET is a
volatile function (that means it will recalculate every time the sheet recalculates) and INDEX is not. In general,
I prefer INDEX for this reason.

The Union Operator (,)
The union operator (,) is also likely familiar to you. The formula =SUM(A1:A10,C1:C5) employs the union operator to
combine the two disparate ranges into one range upon which to take the sum. Unlike the range operator, which forms
a contiguous range between two cells, the union operator essentially turns the two noncontiguous ranges into one
long range. Think of it like this:

In this next section, I’ll talk about how you can use the union operation to your advantage.

A1:A10 C1:C5(A1:A10,C1:C5) =

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Introducing Formula Concepts

37

EXAMPLE: PULLING RANK

Let’s say you wanted to find where a certain number ranks within a series of numbers, when they’re ordered.
For example, if you have an unsorted series of numbers (8,4,6,1, and 2), you can use Excel’s RANK function to find
where the number 6 resides in a descending list of these numbers.

In Figure 3-9, I have the formula =RANK(D2,A2:A6) in cell D2.

Figure 3-9.  A demonstration of finding the rank of a given number within an unsorted list

8 6 4 1 2
Six is highlighted and is in the second place in the region.

Figure 3-10.  A visual representation of how this example works

RANK will automatically turn the range in the given series in descending order (by default, descending is selected;
however, this can be changed in RANK’s third, optional parameter). The rank of the number 6 then is 2, as shown
in Figure 3-10.

This function only works when the input number (in D2 above) is a number in the set of the five given numbers.
But what if you want to find where the number 4.4 resides in the ordered series? The formula, left as is, will
return an NA( ) error if D2 is set to 4.4. To get around this, you need to add the input number to the set of
numbers. You can do this with the union operator, like so:
 
=RANK(D2,(A2:A6,D2))
 
If D2 = 4.4, the series (A2:A6,D2) becomes 8, 6, 4.4, 4, 1, 2, which returns the number 3. Consider
how this formula might be useful. If you have a list times, dates, or temperatures and want to return certain
information when an input value is between two boundaries, you can do that with this formula.

The Intersection Operator ()
The intersection operator (), demonstrated as one space, returns one or more cells from overlapping ranges. Figure 3-11
shows that the intersection of range D2:D6 and B4:F4 is 3. You can verify that both of the ranges intersect, or overlap,
at cell D4.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Introducing Formula Concepts

38

You’ll learn a creative use for the intersection operator in this next example.

INTERSECTING REGIONS AND MONTHS

Let’s say you have a table of units sold by month and region, like in Figure 3-12.

Figure 3-12.  A sample set of regional and monthly data

Figure 3-13.  An application of the union operator on sample regional and monthly data

Figure 3-11.  The intersection operator in action

To save time, you’ve had a macro assign columns B through H to be the named ranges Jan, Feb, Mar... etc. You’ve
done the same thing for each region, assigning the row ranges to North, South, East, and West.

Then, if you’re interested in the sum total of units sold in the East region on January and March, you can use the
formula =SUM(East Jan:March), as shown in Figure 3-13.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Introducing Formula Concepts

39

The formula returns 1366, which is the sum of 201, 747, and 388. If you want to see the performance for the
eastern region for just the months of January and March but not February, you can use the following formula:
 
=SUM(East Jan + East March)
 
If you’re particularly mathematically minded, and hopefully you will be somewhat by the end of the next chapter,
you can simplify this formula like so:
 
=SUM(East (Jan, March))
 
Note that East Jan + East March = East (Jan, March), which parallels the Distributive Law of algebra.
I’ll go into this in a little more detail later in the next chapter.

When to Use Conditional Expressions
In this section, you’re going to dive deeper into conditional expressions. If you’ve used IF, then you’ve used a
conditional expression before. Conditional expressions are all about testing things. For example, in the formula
=IF(AB>2, "Yes", "No"), the first argument, AB>2, is the conditional expression. Any expression that uses the logic
operators, =, <, >, etc., is a conditional expression.

So you want to test the value of a cell and return a result if it passes a test or another result if it fails.
Quick: which function should you use?

Was your answer IF? If it was, then you’re not alone. The IF function feels like a natural choice, especially
because the first parameter of the IF function calls for a logical expression. But there are also some instances
where IF isn’t the best choice. The Excel MVP, Daniel Ferry, has gone so far as to argue that the IF function is the
most overused function of all. And, as this chapter will demonstrate, there’s good reason to believe this.

Deceptively Simple Nested IF Statements
One supposed advantage to using the IF function is the ability to make use of nesting conditions. For example,
if I have multiple compounding conditions, I can place IF statements inside the value_if_true and value_if_false
parameters (Listing 3-2). In my experience, however, IF statements are nested far more often than they need to be.

Listing 3-2.  A Prototype of the IF Function

IF(logical_test, value_if_true, value_if_false)
 

Even I have to admit that nested IF statements are unavoidable. But I like to save them for formulas that exhibit
natural branching conditions. Consider
 
=IF(ProjectStatus = "Stopped", IF(Err_Code=1, "Halted by internal error.","Uknown error."),
"Project has NOT finished.")
 

I would argue this is a good example of the problem with using nested IF statements. Its inherent logic naturally
represents a branching condition (see Figure 3-14).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Introducing Formula Concepts

40

Sometimes it’s not always so clear whether the problems represent a compound branching condition. A good
rule of thumb is to start from one of the possible results and work backwards. Ask yourself: does the result naturally
follow from the test condition? In other words: does this result make sense given the conditions?

Confused? I hear you. Well, let’s consider the following example from Microsoft’s very own help guide, shown
in Listing 3-3.

Listing 3-3.  An Example of Nested IFs from Microsoft’s Excel Help

=IF(A2>89,"A",IF(A2>79,"B", IF(A2>69,"C",IF(A2>59,"D","F"))))
 

This formula returns a letter grade based on a student’s raw grade stored in A2. It’s a good example of a problem
that makes for a poor branching condition. The grade you receive isn’t the result of not receiving another grade.
(I know you’re scratching your head here but bear with me for a moment). Your letter grade is the result of where
your score falls within one of five different numerical boundaries. If anything, this is a lookup problem. You could
easily employ the RANK function example from above or use the MATCH function. But if you were to frame this problem
organically, the reason a student receives an F is not because they didn’t receive a D, C, B, or A. The IF function above
turns this lookup problem into a branching condition problem when it needn’t be.

Another common example involves using states as numbers. Consider the formula in Listing 3-4.

Listing 3-4.  Another Example Using IFs That Isn’t a Branching Condition

=IF(A2=1, "Small",IF(A2=2,"Med", "Large")).
 

ProjectStatus

Stopped?

“Project has NOT
Finished.’’

“Halted by internal
error.’’

“Unknown error.’’

Err_Code=1
?

FALSE TRUE

FALSE TRUE

Figure 3-14.  A flowchart showing the branching conditions of your IF statement

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Introducing Formula Concepts

41

In this example, A2 holds an encoded Id or state. For an example like this, the states could be anything, but
they usually form some natural ordinal scale. In the example above, the Ids map to the following results: 1=Small,
2=Medium, and 3=Large. We call these categories ordinal because they can be ordered naturally. Here again, IF is not
a good choice. The problem presented is not a branching condition but rather a test of scale. Indeed, for formulas like
these, the CHOOSE function is a much better choice.

CHOOSE Wisely
In this section, I’ll go through how to use CHOOSE, and why for some situations it makes for a better choice than IF. CHOOSE
is much like IF, but it can more naturally deal with ordinal data. Listing 3-5 includes the prototype for CHOOSE.

Listing 3-5.  CHOOSE( ) Prototype

CHOOSE(index_num, value1, value2,...)
 

CHOOSE analyzes the argument supplied to the index_num parameter and returns the value at the given index
number. In the example above, when index_num is 1, value1 is returned; when index_num is 2, value2 is returned, and
so forth.

In the previous instance, you could simply write =CHOOSE(A2, "Small", "Med", "Large"). This appears to
be more closely align with the way this example is naturally formulated. Because of this, CHOOSE makes the data
arrangement more easy to read and understand at first glance. Compare the two arrangements:

IF arrangement
 
=IF(A2=1, "Small",IF(A2=2,"Med", "Large")).
 

CHOOSE arrangement
 
=CHOOSE(A2, "Small", "Med", "Large")
 

GENERATING RANDOM DATA WITH CHOOSE( )

CHOOSE is also great for generating random categorical or nominal data. This type of random data generation
is particularly useful to create test data for your dashboard backend database. All it takes is the addition of the
RANDBETWEEN function. Say you have categorical data of Big, Medium, and Little. You could generate data with the
following formula:
 
=CHOOSE(RANDBETWEEN(1,3), "Big", "Medium", "Little") 

Why This Discussion Is Important
Like the IF statement, CHOOSE can be useful for elements that appear on your next spreadsheet dashboard, decision
support tool, or application.

A nested IF condition will attempt to evaluate every condition until a true value results or terminates to the end
of the nest. CHOOSE makes one evaluation and goes to the specified index. On its face, CHOOSE would seem superior
for scenarios in which a nested condition isn’t necessary. Fewer evaluations means fewer instructions for Excel to
complete. In previous versions of Excel and on older machines, conserving machine processing by using optimal
formula structures really did seem to make a difference. However, now that we’ve entered the age of multithreaded
processers, I must admit the performance differences have become less noticeable.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Introducing Formula Concepts

42

So then why have I made the distinction? Well, using the formula that best matches what you’re trying to
accomplish just makes sense. In addition, and perhaps more importantly, when you come back to your formula
later after having been away from your spreadsheet for a while, a formula that better matches your test conditions will
ultimately be easier to once again comprehend, especially if it’s complex in nature.

Ok, you’re not convinced. I wasn’t at first, either. In the end, there may not be a noticeable difference between
using IF or CHOOSE, I admit. But in the previous chapter I turned conventional coding on its head. And I’ll keep doing
so throughout this book.

And if you’re tempted to keep using IF, read on. Chances are you’ll find it at least one example in which IF isn’t
necessary.

Introduction to Boolean Concepts
In this section, I’ll talk about concepts surrounding Boolean expressions. For the unfamiliar, Boolean formulas use a
type of mathematical logic called Boolean algebra and they’re the natural result of conditional expressions.

The most important feature of a Boolean expression is that it always returns one of two mutually exclusive
values: either it returns TRUE, or it returns FALSE. Excel, however, brings another important twist to the TRUE/FALSE
dynamic. Sometimes TRUE can also mean the number one, and FALSE can also mean the number zero. Let’s take a
look in the following example.

FILTERING ODD OR EVEN VALUES

Booleans are great for filtering. Take a look at Figure 3-15. In this example, I’ve created a mechanism to only
show either odd or even values in the accompanying chart.

Figure 3-15.  Booleans used for filtering

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Introducing Formula Concepts

43

I provide the user a dropdown box to select between either showing odd values or even values. On the left, I’ve
included a table that helps evaluate what the final chart will show. Figure 3-16 shows this table in more detail.

Figure 3-16.  The table that allows for chart filtering

Figure 3-17.  Testing whether the contents of the boolean filter are equal to the dropdown

In column B, I use the following formula:
 
=CHOOSE(MOD(A3,2)+1,"Even","Odd")
 
So let’s break this down.

Nested inside the CHOOSE conditional is the MOD( ) formula. MOD performs modulo division, which is a technical
way of saying it performs division like a third grader. Remember when you first started learning how to divide,
3 divided by 2 would equal 1 remainder 1? Well, modulo division performs this same operation but only returns
the remainder part. In the case of MOD(A3,2) you’re simply testing whether the list of numbers given in column
A is odd or even. As you might recall, when even numbers are divided by two, there is never a remainder
(think of it as a reminder of zero); for odd numbers there’s always a remainder of one.

What you run into is that you’re using the CHOOSE( ) formula to tell Excel whether to return the word “Odd,” or to
return the word “Even.” CHOOSE( ), however, can’t take in numbers that are less than one, and so far, it’s possible
this could return a zero. So, my solution is to add the one at the end. So going back to the original CHOOSE formula,
 
=CHOOSE(MOD(A3,2)+1,"Even","Odd")
 
...you can see how all the parts fit together.

Moving on to Column C (Figure 3-17), you’re simply testing if the contents in Column are equal to the contents of
your dropdown.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Introducing Formula Concepts

44

This is achieved by writing the following Boolean formula from cell C3:
 
=(B3=L2)
 
The parentheses surround the test condition telling Excel to either return a TRUE or FALSE value. When there’s
only one test case, the parentheses are optional. However, it’s good practice to keep parentheses anyway, keeping
in line with the idea presented above that you should match your formulas to manifest the conditions you’re
developing. And, specifically, note that the following two formulas are not equal:
 
=(B3=L2)+1 =\= =B3=L2+1
 
Finally, in Column D you multiply columns A and C (Figure 3-18). When the number in Column A is multiplied by
a TRUE value, it’s the same as multiplying it by the number one. When multiplied by a FALSE value, it’s the as
multiplying it by zero. The chart is linked to column D so the outcomes in column D are automatically updated on
the chart.

Figure 3-18.  The Final Value column of your table

I have to admit: CHOOSE wasn’t the best function for the example above. By all accounts, if you were thinking
I should have used IF instead, you wouldn’t have been off base. The values of "Even" and "Odd" aren’t ordinal.
Numbers are either only even or odd. And I’m usually of the belief that the more natural the function mirrors the
problem, the easier it is to comprehend. What makes the example above such a good IF problem is because the
Boolean dynamic, that TRUE/FALSE = 1/0, goes both ways. Recall in your test for an even or odd value, the
MOD function was returning either a zero or a one. You could have written =CHOOSE(MOD(A3,2)+1,"Even","Odd") as
=IF(MOD(A3,2),"Odd","Even") which is reasonably easier to read, and it’s probably easier to comprehend when you
come back to it later.

Condensing Your Work
What makes =IF(MOD(A3,2),"Odd","Even") so readable is because there are no nested conditions. Once you add
more conditions, it becomes much harder to comprehend at first glance. And, when you represent information on
your spreadsheet, you’ll sometimes have to condense formulas from different cells into one to save space. In the
example above, if you want to condense your work, you can do something like this in column D:
 
=IF(MOD(A3,2),IF(L2="Odd",A3,0),IF(L2="Even",A3,0))
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Introducing Formula Concepts

45

But now the IF function is longer and harder to understand. Maybe it’s time you dispense with the IF function
altogether. But how can you recreate the same conditions without using IF? Well, you can use the exclusive-or
function, XOR, like this:
 
=XOR(L2="Even",MOD(A3,2))*A3 

Note■■   XOR is available only in Excel 2013.

The Legend of XOR( )-oh
Technically, XOR is not pronounced “zore,” but rather as “ex-or,” which as you’ve likely figured is shorthand for
exclusive-or. So what the heck does XOR do? Well it’s a type of truth-testing conditional function. You’re probably
somewhat familiar with Excel’s cousin truth functions, AND and OR.

Let’s review them first. AND tests if all the supplied conditional expressions are TRUE. If they are, AND returns TRUE.
If one condition is not true, as in FALSE, AND returns FALSE. OR tests if only one argument is TRUE and returns TRUE
when at least one conditional expression evaluates to TRUE. If all arguments passed to OR evaluate to FALSE, OR returns
FALSE. Table 3-2 shows the outcomes for AND and OR formulas when supplied with only two arguments, x and y.

Table 3-2.  A Truth Table for AND and OR Functions

X Y =AND(x,y) =OR(x,y)

TRUE TRUE TRUE TRUE

TRUE FALSE FALSE TRUE

FALSE TRUE FALSE TRUE

FALSE FALSE FALSE FALSE

Table 3-3.  The Truth Table for XOR

X Y =XOR(x,y)

TRUE TRUE FALSE

TRUE FALSE TRUE

FALSE TRUE TRUE

FALSE FALSE FALSE

XOR adds an extra constraint: only one of the arguments can contain a value of TRUE. That’s what makes it so
exclusive. It’s like a club where everyone is invited but only one person is allowed to come in—and that person is you,
you lucky dog! You can think of OR as being all inclusive because it does not constrain the amount of TRUE values
required to return TRUE. It’s like a club that everyone can get into (but then everyone leaves because I decide to show up).
The truth table is for XOR is shown in Table 3-3.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Introducing Formula Concepts

46

Going back to your condensed formula, let’s see how XOR( ) works by examining this formula:
 
=XOR(L2="Even",MOD(A3,2))*A3.
 

Recall, MOD(A3,2) will return a one when A3 is odd and a zero when A3 is even. In the example above, you’re
always testing if the dropdown has “Even” selected. So, let’s say A3 equals an odd value, like the number 3. Listing 3-6
shows a step-by-step evaluation when L2 is even. Listing 3-7 shows a step-by-step evaluation when L2 is odd.
 

Listing 3-6.  Formula Evaluation When L2 Is Even

If L2="Even" then
=XOR(L2="Even", MOD(A3,2))*A3
=XOR(TRUE, 1)*A3
=FALSE*A3
=0 * 3
=0 

Listing 3-7.  Formula Evaluation When L2 Is Odd

If L2="Odd" then
=XOR(L2="Even", MOD(A3,2))*A3
=XOR(FALSE, 1)*A3
=TRUE*A3
=1 * 3
=3
 

So, think about this way: you’re actually interested in the inverse relationship between your two conditions.
If L2 has "Even" selected, for the value in A3 to show, it must also be even. For even values, MOD(A3,2) will return a
zero (which is the opposite result of the test L2 = "Even"). If L2 has "Odd" selected, the first argument will return
FALSE, but MOD(A3,2) will actually return a one.

Do We Really Need IF?
For this section, I’ll combine everything you’ve learned so far to answer the question: do we really need IF? The fact is,
many problems that feel like they need IF probably don’t need it. Let’s go through a few quick examples.

Need to test if a cell is blank so you can return a blank instead of a zero?

Use: =--REPT(A2, LEN(A2)>1)
Instead of: IF(LEN(A2) > 1, A2, "")
Note: "--" is shorthand to convert a string into a number.

Need to return a certain range based on a dropdown select?

Just add the numbers 1, 2, 3, and 4 to the beginning of your dropdown items (see Figure 3-19).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Introducing Formula Concepts

47

Use: =CHOOSE(--LEFT(A2, 1), NorthRange, EastRange, SouthRange, WestRange)
�Instead of: IF(A2 = "North", NorthRange, IF(A2 = "East", EastRange,
					   IF(A2 = "South", SouthRange, WestRange)

Want to know what grade you got?

Figure 3-20 shows a grade letter calculator.

Figure 3-19.  Adding numbers to the dropdown items can help you quickly ascertain which item was
selected without using an IF statement

Figure 3-20.  A grade calculator that uses INDEX and MATCH instead of nested IFs

Figure 3-21.  You can use Boolean functions instead of IF

Use: =INDEX(B4:B8, MATCH(B1,A4:A8,1))
Instead of: = IF(B1>89,"A",IF(B1>79,"B", IF(B1>69,"C",IF(B1>59,"D","F"))))

Need to return a -1 whenever a test condition is zero; otherwise return the value?

This example uses Figure 3-21 as an example.

Use: =-NOT(A1) + A1
Instead of: =IF(A1=0, A1, 0)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Introducing Formula Concepts

48

The Last Word
I realize some of the material in this chapter might be new for you. And perhaps you’re not yet ready to turn your back
on IF. Fair enough; although don’t expect me to use it much from here on out! The point of this chapter is to get your
mind to think differently about certain problems. IF is a common convention, but the popular choice isn’t always the
best. This chapter introduced you to formula concepts you’ve used many times before but might not have realized
what they were or what they meant. Empowered with new knowledge, I’m confident you’ll be able to think about
formulas differently.

The best formulas fit somewhere on a spectrum of performance, readability, and design simplicity. If the formula
you’re using to model your problem feels like a good fit, chances are—it is. I firmly believe that formulas that are a
natural fit to a problem give you that “intuitively pleasing” feeling when you look at them. If this chapter has you
thinking how you might do some of your own formulas differently, then my work is done here (well, except for the
other eight chapters coming your way).

www.it-ebooks.info

http://www.it-ebooks.info/

49

Chapter 4

Advanced Formula Concepts

The previous chapter’s formula examples may have appeared complicated at first, but you should be able to use them
with time, practice, and patience. If you followed the advice at the start of Chapter 3, which was to work through
formulas with techniques like Excel’s Evaluate Formula feature, you should find them easier to understand.

In this chapter, you will investigate how these formulas are applied. Specifically, I will cover the following:

Filtering and highlighting•	

Selection•	

Aggregation•	

Filtering and Highlighting
Following what you learned about ones and zeros in Chapter 3, you can use formulas for filtering results. In Chapter 3,
you employed a mechanism to filter even and odd values using Booleans. Highlighting, as it turns out, isn’t much
different than filtering. Let’s take a look.

Filtering with Formulas
Figure 4-1 shows the tables I’ve set up for the example (download Chapter4Ex1.xlsx from the project files to follow
along). If you have the example file open, we’re starting on the tab, Project List (incomplete). Throughout the example
files, tabs with the suffix “(incomplete)” will refer to the unfinished work we’ll complete together. When available, tabs
with the suffix “(complete)” will refer to completed versions I have built into the spreadsheet, so you can see what the
final version looks like.

Please also make “Project List (incomplete)” look like the times I’ve mentioned worksheet tab names. On the left
is the raw data. In the middle is the criteria that you want to filter, and on the right are some conditional tables to help
know which items fit the criteria you would like to display. The information in the middle is linked to the Dashboard
tab, which I’ll get to in a moment.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Advanced Formula Concepts

50

Let’s take a better look at the table on the right. For the NPV column, let’s set up a conditional to compare
whether the selected NPV is greater than the item in the current row of the Raw Data Table (Figure 4-2).

Figure 4-1.  An example table to demonstrate applied formula concepts

Figure 4-2.  The Raw Data Table

Figure 4-3.  You’re testing for what level of Portfolio Risk is selected

Then do the same comparisons for Portfolio Risk and Project Lead. See Figures 4-3 and 4-4.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Advanced Formula Concepts

51

In the last two columns, you identify which projects you want to be highlighted. Since you’re looking for projects
whose values come at the intersection of your criteria, you’ll test if each condition is met, and you’ll use AND for that
(Figure 4-5).

Figure 4-4.  You’re testing for which Project Lead has been selected

Figure 4-5.  Testing when all three conditions are met

Finally, for extra help, you’ll include the Project’s index in column P. This isn’t itself necessary to complete your
work, but sometimes an extra column of information can help, provided you have enough room for it.

All of this work goes to help the highlighting mechanism developed on the Dashboard tab. Click the Dashboard
(incomplete) tab in example file to see what I’m talking about (shown in Figure 4-6).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Advanced Formula Concepts

52

Now take a look at Column A. Column A tests whether the current index in Column B is the same as the index
returned from the Project List tab. Essentially, the result is the same as the Show on Front field in Column O on the
Project List tab (Figure 4-7).

Figure 4-6.  The Dashboard (incomplete) tab

Figure 4-7.  TRUE/FALSE on the dashboard corresponds to backend calculations

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Advanced Formula Concepts

53

Conditional Highlighting Using Formulas
In this section, I’ll talk about how to add condition highlighting to the spreadsheet. Let’s do the following steps.

	 1.	 Highlight the project table, as I have done in Figure 4-8 by selecting cells C8:C27.

Figure 4-8.  Selecting cells C8:C27

	 2.	 From the Home tab, go to Conditional Formatting ➤ New Rule ➤ Use a formula to
determine which cells to format.

	 3.	 Click in the address box titled Format Values where this formula is true. In the formula
box, type =(and then click on cell A8, which is the top of the condition list.

	 4.	 A8 will appear as the absolute reference A8. However, you do not want every row to test
only this cell. Rather, you want each row to test against the cell for the row. So press F4
twice to toggle through the absolute reference options until you reach $A8. Then finish the
formula by typing =TRUE). Figure 4-9 shows the correct formula. 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Advanced Formula Concepts

54

	 5.	 Click the Format button. Under the Font tab, select Bold under Font Style. In the Color
dropdown, select the Black color to change the selection from Automatic. On the Fill tab,
choose a light color to serve as the filtered item’s background. I’ve chosen a light peach
color. Finally, press OK in each dialog box until you’ve returned to the spreadsheet.

If you’ve performed these steps correctly, you should see several items highlighted in your list (see Figure 4-10).
To bring more emphasis to these items—and to deemphasize the items outside your selection—highlight the table
range again, C8:C27, and set the font to a gray color that is lighter than black but still readable. I chose the darkest
gray at the bottom of the first color column. Finally, you’ll want to get rid of those conditional formulas in Column A.
The easiest way to do this is to hide the entire column by right-clicking Column A and selecting Hide. Alternatively,
I’ve simply set the font of the condition formulas to white. Personally, I like having the extra margin of white space
on the left side of the screen.

Figure 4-9.  The Edit Formatting Rule dialog box

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Advanced Formula Concepts

55

Figure 4-10.  A list of highlighted items

One last thought before moving on: I could have created another conditional format formula testing if A8=FALSE
and then colored everything gray based on that. To me, that’s extra work. Conditional formats are volatile actions.
Consider this: no instruction is executed to set the table items that are FALSE to be grayed out if you’ve already set
them to gray by default. Remember to always be on the lookout for shortcuts.

Selecting
Selection is the process of returning only certain information (thinking of selecting from a group). Selecting is similar
to filtering and highlighting, except that selecting only returns the information you’re interested in. Filtering, for
example, simply hides the information you’re not interested in. Highlighting does the same as filtering through
emphasizing and deemphasizing certain items. Selection, on the other hand, always contains only the complete set of
information you’re interested in. Nothing more or less.

Open example file Chapter4Ex2.xlsx. In this example, you’re going to create a range that can grow and shrink
dynamically based on what you want to return. In this way, you’ll be creating the mechanism that selects the portion
to return. Go to the Project List tab, and note the column of zeros you’ve created, as shown in Figure 4-11.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Advanced Formula Concepts

56

If you recall from the previous chapter, the zeros indicate projects you don’t want to return. Alternatively, the
numbers indicate projects you DO want to return. So, what you need to do now is count those projects. I’ve already
laid out a spot for this count in cell R3. So go ahead and put this formula into R3:
 
=COUNTIF(P3:P22,">0")
 

In the columns next to the box labeled Count-non 0s, set up the column headers as I have in Figure 4-12.

Figure 4-11.  The Project List tab

Figure 4-12.  Column headers that you will use in the process of developing a selecting mechansim

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Advanced Formula Concepts

57

Now, follow these steps.

	 1.	 In cell T3, type in the following formula (shown in Figure 4-13):
 

=LARGE(P3:P22,I3)
 

Note what what’s happening here. You’re using the index you created in column I to pull out
the nth largest value from within the range indices that aren’t zero. When you drag down,
you’ll have grouped all the indices you’re interested in at the top of the range (Figure 4-14). You
should find there are six non-zero items at the top—exactly as the formula predicted.

Figure 4-13.  Using the LARGE function in the Index location

Figure 4-14.  The LARGE function returns the indices of the items you’re interested in at the top of the range

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Advanced Formula Concepts

58

	 3.	 When you press Enter you should immediately get a #VALUE! error. But don’t worry about
that for now. Using the cell anchor in the lower right of the selected cell, drag the formula
over to V3 to copy it into that cell. Now, with both U3 and V3 selected, click the formula
bar and press Ctrl+Shift+Enter. You should see a full row returned of the project name and
NPV values. Now drag down.

In case you’re wondering why you need to do this, remember that INDEX allows you to return
one or more cells from within an array; all you must supply are the row(s) or columns(s) you’d
like to grab. Because you returned more than a single cell, you had to use Ctrl+Shift+Enter. 

Note■■  R emember, any time you return more than a single cell, you have an array formula. When you have an array
formula, you must use Ctrl+Shift+Enter. 

	 4.	 Now for some fun! You’re going to use a dynamic range formula you learned about in the
previous chapter. Remember, dynamic ranges requires two things: (a) a contiguous range;
and (b) the total amount of items in the range. Luckily, the first thing you did was create
that count of non-zeros!

Figure 4-15.  Adding the INDEX formula to the Project Name column

	 2.	 Now, in cell U3, type =INDEX(A3:B22,T3,), as shown in Figure 4-15. 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Advanced Formula Concepts

59

Figure 4-16.  Using OFFSET to create a dynamic side function

Remember how OFFSET works. That fourth argument specifies the height of the offset
range to be returned. Here, you don’t actually want the returned range to be moved from
cell V3 (which is why you supply a zero in the first two arguments); you simply want V3 to
be the starting point and to have the range “grow” (or expand) downward from there.

	 5.	 When you press Enter, the result returned should be the same value as in V3. If you drag
X3’s anchor downward, you should see all six values returned, and you’ll start getting
errors thereafter. At this point, you’re simply testing the formula. Now that you know it
works, you’re going to assign it to a named range.

So, click on X3 and copy the formula now that you know it’s working. Go to Name Manager
from the Formulas tab. Click on New. Give it a name like “ProjectList.ReturnSelection”
and paste the formula you copied into the Refers To box. Press OK until you’re back at the
spreadsheet screen.

	 6.	 Go to the dashboard worksheet.

	 7.	 From the Insert tab, insert a column chart. If the chart automatically selects data,
right-click the chart and go to Select Data and remove any preloaded data.

	 8.	 Now, click the Add button and press OK for whatever default data is loaded. Series1 with a
value of 1 should be the only series in the Select Data dialog, as shown in Figure 4-17. 

Figure 4-17.  The Select Data Source dialog box

In a cell off to the side (I’ve chosen X3), type =OFFSET(V3,0,0,R3), as shown in Figure 4-16.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Advanced Formula Concepts

60

	 9.	 Click OK to return to the spreadsheet. Now click the single column displayed to see its
formula in the formula bar.

	 10.	 Now you’re going to replace the “{1}” with a reference to the named range you just created.
For this series, you must include the workbook name, as shown in Figure 4-18,
otherwise this mechanism won’t work. Why? Not sure: that’s just what Excel wants.
I don’t ask questions. 

Figure 4-18.  The SERIES function that appears when you click on a chart

Figure 4-19.  A dynamic chart that is automatically linked to your data selections

Viola! If it worked correctly, you should see a series of columns like in Figure 4-19. 

	 11.	 The last step you’ll perform is to change the numbers at the bottom of the chart to their
correct labels. You actually don’t need to create a new dynamic range for this. You can
simply supply an entire range of labels and Excel will know to only pull back the top labels
automatically.

To see what I’m talking about, right-click the chart again and go to Select Data. Press the
Edit button under the Horizontal category. Select the entire range of projects in column
U from the Project List worksheet and press OK until you reach the spreadsheet screen
(Figure 4-20). 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Advanced Formula Concepts

61

Now the labels are automatically assigned! Go ahead and mess with the dropdown boxes to see it work in action.
Okay, one last piece before moving on. Go ahead and click one of those columns again in the chart and look

at the formula bar. You should see that the range you’ve entered for your labels is now the second argument in the
formula box. Just like for the series values, you could have simply entered the label range directly in the formula box.
In case you’re interested, here’s how the series formula breaks down:
 
=SERIES(series_title , series_label_range , series_value_range , series_index)
 

If you’d like to supply this chart a title directly, go ahead and type a string into that series_title parameter.
That last parameter, series_index, holds the current index of the series. If you have multiple series in your chart, setting
the series_index will change the series order by inserting the series you’re currently editing at the index you give.

Aggregating
In this section, I’ll talk about aggregation, particularly the formulas you can use for aggregation. I’ll also take a detour
into some algebra, but nothing terrible. I promise.

Using SUMPRODUCT for Aggregation
Aggregation is the process of grouping similar items and presenting them as a whole. Excel has several aggregation
formulas that you might already use every day including SUM, AVERAGE, and COUNT. If you want to get even more
complicated—as if life isn’t already complicated enough!—you could use the SUMIF/SUMIFS functions or COUNTIF/COUNTIFS
functions to find the sum and count of multiple ranges of the same length satisfying certain criteria.

Let’s say for the information in Figure 4-21, you were interested in all projects by Larry or Barry in which NPV is
greater than 11,000,000 or portfolio risk is low.

Figure 4-20.  The Axis Labels selection box

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Advanced Formula Concepts

62

To do that, you could use this formula, which isn’t very pretty:
 
=COUNTIFS(ProjectLead,"Larry",NPV,">11000000")+COUNTIFS(ProjectLead,"Larry",PortfolioRisk,"Low")+
COUNTIFS(ProjectLead,"Barry",NPV,">11000000")+COUNTIFS(ProjectLead,"Barry",PortfolioRisk,"Low")
 

This is because SUMIFS and COUNTIFS test for the intersection of data by themselves. There’s no room for an
OR condition in these formulas. But you have alternatives. For example, you could use the SUMPRODUCT formula for this
problem, which would look like this:
 
=SUMPRODUCT(((ProjectLead="Larry")+(ProjectLead="Barry"))*((NPV>11000000)+(PortfolioRisk="Low")))
 

I know you’re scratching your head, so let’s dig deeper. SUMPRODUCT by its name suggests it was designed for matrix
algebra operations. To wit, Microsoft’s definition of SUMPRODUCT is pretty mathematical. Specifically, SUMPRODUCT
“multiplies corresponding components in the given arrays, and returns the sum of those products” (my emphasis).
But this exactly what’s so great about SUMPRODUCT.

When you write something like (ProjectLead="Barry") you’re turning the range given by ProjectLead
into array of TRUE/FALSE based on the supplied condition. That’s from Chapter 3. So something like
(ProjectLead="Larry")*(NPV>11000000) is calculated as shown in Figure 4-22.

Figure 4-21.  The Raw Data table containing projects, NPV, portfolio risk, and the project’s lead

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Advanced Formula Concepts

63

In a certain sense, you’re performing a query on the data. If you know SQL, the arrangement above could also
be written as
 
SELECT COUNT(ProjectLead)
WHERE ProjectLead = "Larry" AND NPV > 11000000

You’re About To Be FOILed!
OK, I know what you’re thinking, how the heck am I ever going to remember how to write one of those fancy SUMPRODUCT
formulas? Well, it all comes down to FOILing, which you might recall from your early days of learning algebra.

At first glance, the series of COUNTIFS functions appears easier to write and understand, even if the formula ends
up being much longer. But I’m here to tell you that if you can write a series of COUNTIFS functions, you’re already
writing the same formula. No, seriously: I can prove this to you with some simple algebra. So let’s talk FOILing
(First, Outside, Inside, Last) from your algebra class. Let’s do it on an expression inside the SUMPRODUCT formula.

So
 
((ProjectLead="Larry")+(ProjectLead="Barry"))*((NPV>11000000)+(PortfolioRisk="Low"))
=
 (ProjectLead="Larry")*(NPV>11000000)
+ (ProjectLead="Larry")*(PortfolioRisk="Low")
+ (ProjectLead="Barry")*(NPV>11000000)
+ (ProjectLead="Barry")*(PortfolioRisk="Low") 

Figure 4-22.  A visual represetation of what’s happening when you use SUMPRODUCT

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Advanced Formula Concepts

64

Now compare that FOILed expression to series of COUNTIFS functions.
 
=
 COUNTIFS(ProjectLead,"Larry",NPV,">11000000")
+ COUNTIFS(ProjectLead,"Larry",PortfolioRisk,"Low")
+ COUNTIFS(ProjectLead,"Barry",NPV,">11000000")
+ COUNTIFS(ProjectLead,"Barry",PortfolioRisk,"Low")
 

Here’s the kicker: the plus symbol (+) acts as your OR condition and the multiplication symbol acts as your
AND condition. If you think you’ll have trouble remember the plus’s + and multiplication’s *, remember that these
symbols aren’t arbitrary, they represent algebraic operations.

Note■■  R emember, for SUMPRODUCT queries, + = OR, * = AND.

If you open Chapter4Ex3, I’ve placed a summary table on the front page that employs SUMPRODUCT (Figure 4-23).

Figure 4-23.  A demonstration of SUMPRODUCT on your dashboard

Reusable Components
In this section, I’ll take a few moments to go through a concept I call reusable components. Take a look at the outlined
components in Figure 4-24.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Advanced Formula Concepts

65

Admittedly, these components were not placed with any specific care. I did this on purpose to demonstrate how
easily these components can be moved around, as shown in Figure 4-25.

Figure 4-24.  An example of reusuable componants

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Advanced Formula Concepts

66

There was some reformatting required, of course. But if I select the entire region of a table, I’m able to move it
somewhere else on the screen without having to update any code or other formulas that refer that area. In addition,
if I want to create another table similar to the one above, I can copy and paste the table into another free area on
the spreadsheet and update the formulas that make it refer to another desired location. This is what is meant by
reusability. And developing reusable components really helps down the road. We’ll return to this idea several times
before the book ends.

The Last Word
In this chapter, you build upon the formulas presented in the previous chapter. You applied what you learned to
create the processes of filtering, highlighting, selecting, and aggregation. Finally, you learned about the usefulness of
reusable components. In the next chapter, I’ll talk about working in form controls.

Figure 4-25.  A demonstration of how componants can be easily moved around

www.it-ebooks.info

http://www.it-ebooks.info/

67

Chapter 5

Working with Form Controls

When introducing controls, I like to use my own technical definition. Specifically, form controls are the whiz bangs,
doodads, whatchamacallits, and thingamajigs that give your spreadsheet enhanced interactivity. You may know them
by their street names: check boxes, scroll bars, labels, etc. Figure 5-1 shows a group of controls lounging about in their
natural habitat, the Excel spreadsheet.

Figure 5-1.  Examples of controls on a spreadsheet

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Working with Form Controls

68

Welcome to the Control Room
Excel contains two types of controls you can use on your spreadsheets. The first are form controls, and they are the
subject of this chapter. The second are ActiveX controls, which we won’t deal with in this book. There are significant
differences between the two types of controls; however, they’re both located in the same Insert box button, in the
Controls group on the Developer tab. One important difference worth noting is that form controls are always on top,
ActiveX controls are always on the bottom (see Figure 5-2).

Figure 5-2.  The dropdown menu showing form controls and ActiveX controls

Figure 5-3.  A very common ActiveX issue: the Slider ActiveX control appears in both the upper-left side of the
sheet and its initial location on the spreadsheet

Let’s take a moment to discuss why ActiveX won’t make an appearance in this book. In many ways, form controls
are leaner, more lightweight versions of their ActiveX counterparts. For example, the ActiveX button can handle
several different types of click events. It can test if you double-click or right-click, or it can fire an event the moment
your mouse button is pressed down but before it’s released. In theory, the added functionality may feel like a boon
of capabilities has been dumped on your lap. In practice, and especially in this author’s experience, rarely does your
spreadsheet require that level of advanced functionality. In addition, ActiveX controls carry some baggage to your
memory usage and file size; moreover, they can sometimes act unpredictably on a spreadsheet. Figure 5-3 shows the
Slider Bar control acting up by appearing unexpectedly in the corner of the screen.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Working with Form Controls

69

Form controls, on the other hand, are much more lightweight. However, they are also much more limited in
what they can do, at least compared to their ActiveX cousins. And, unlike ActiveX controls, form controls can do a lot
without any VBA. In fact, this is one of the reasons I love form controls. Following the ideas presented in Chapter 2,
if you don’t need to use VBA, you shouldn’t. Below, I begin with the fundamentals of form controls and present a few
examples that will serve as reusable components continuing throughout the book.

Form Control Fundamentals
Think of form controls as simply an extension of the formulas you learned how to use in previous chapters.
Those formulas relied strongly on the spreadsheet for the storage and manipulation of values. Figure 5-4 shows an
interactive legend that lets the user check “on” and “off” for which series they want to view.

Figure 5-4.  An interactive legend using the form control CheckBox

Behind this interactive legend is the form control CheckBox. The CheckBox links to a cell location that either
results in a TRUE or FALSE depending on whether the check box is selected or not. (TRUE = selected; FALSE = not
selected.) Since TRUE and FALSE are equal to 1 and 0, you can use these response values in a formula to change the
data behind the chart. When the CheckBox is deselected, you do some work behind the scenes to change the number
the series data to something that won’t appear on the chart (see Figure 5-5).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Working with Form Controls

70

I’ll talk more about how to do something like this later in the chapter in the “The Dynamic Legend” section.
As you can see from Figure 5-6, there are a total of ten form controls to choose from. Three of those form controls

are grayed out. Those controls will always be grayed out for insertion into the spreadsheet. In fact, the only time they
are ever available is for Excel 4.0 Macros, an older technology that Microsoft has deprecated in favor of UserForms and
ActiveX controls. Officially, Excel 4.0 Macros are no longer supported so I won’t spend any time on them. Table 5-1 list
all the form controls to insert.

Figure 5-6.  The Form Controls dropdown showing controls that are available to insert onto the spreadsheet

Figure 5-5.  When the check box is deselected, the line disappears from the chart

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Working with Form Controls

71

Table 5-1.  Form Control Descriptions

Name Icon Description

Button Button inserts a gray button onto your spreadsheet. You can assign a
macro to be executed when the button is clicked.

ComboBox The ComboBox is similar to the data validation dropdown you can do in
a cell. You can supply the ComboBox a list of data from your spreadsheet.
The ComboBox will create a dropdown from which to choose a selected
item from that list.

CheckBox The CheckBox inserts a box onto your spreadsheet that you can toggle
to be checked or unchecked. You can link a CheckBox to a cell to have it
display TRUE or FALSE based on whether it’s checked or not.

Spinner The Spinner allows you to insert Up and Down paddles on your
spreadsheet. You can link the Spinner to a cell such that when you press
up, the cell value increases, and when you press down, the cell value
decreases.

ListBox A ListBox is similar to a ComboBox. However, instead of a dropdown,
the ListBox shows a larger list of items that users can scroll through.

Option Button The Option Button is similar to the CheckBox. However, groups of Option
Buttons are mutually exclusive. That means only one Option Button can
be selected at a time, while no such constraints exist on Checkboxes.
Similar to Checkboxes, you can link Option Buttons directly to a cell.

GroupBox A GroupBox has no real interactivity but can surround other controls to
create delineation and flow.

Label A Label is a simple textbox that can be placed anywhere on a sheet.
Labels are a bit limited compared to Excel’s native text boxes.

Scroll Bar The Scroll Bar is similar to the Spinner except the Scroll Bar has an area
in the middle in which you can drag the value up or down. But similar to
the Spinner, you can link the Scroll Bar to a cell and use the up and down
(and drag) paddles to change the cell’s value.

Next, we’re going to go through my favorite controls. I call them my favorite because of the entire bunch, I believe
they’re the most useful. After we go through my favorites, we’ll go through my least favorites—the ones I believe you
should avoid in favor of better alternatives available.

The ComboBox Control
The ComboBox control is a useful mechanism that essentially mimics the behavior of a data validation dropdown list.
But there is a difference between the two that is worth noting. Figure 5-7 shows a data validation dropdown both when
a selection is being made (that is, the cell is active) and when no selection is being made.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Working with Form Controls

72

Now compare the aesthetics of the data validation dropdown in Figure 5-7 to the form control ComboBox list
in Figure 5-8.

Figure 5-7.  On the left, the validation list dropdown is expanded. On the right, the cell has been deselected

Figure 5-8.  On the left, the form control dropdown is expanded. On the right, the form control has been deseltected

Figure 5-9.  The Properties Button in the Controls group on the Developer tab

Notice the different aesthetics between the two “dropdown” lists. Generally, validation lists are better when you
have a column of cells and each cell contains a dropdown, since the dropdown arrow won’t appear in every cell,
making for a clean appearance.

To view any control’s properties, select the control and press the Properties button in the Controls group on the
Developer tab shown in Figure 5-9—or, right-click a control, select Format Control, and select the Control tab.

Figure 5-10 shows the Format Control dialog box for the ComboBox control. In this dialog box, you can change
various aspects of the form control from the Control tab.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Working with Form Controls

73

Note that you have two fields you can connect to the spreadsheet. The Input Range field allows you to select a
desired range to fill the dropdown. The Cell link field allows you to specify a cell to display the index of the selected item.

The ListBox Control
The ListBox control is similar to the ComboBox control in that it also uses the Input range and Cell link fields.
However, I believe you can better employ several mechanisms incorporated in the ListBox control, including creating
a scrollable list (see Figure 5-11).

Figure 5-10.  The Format Control properties dialog box

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Working with Form Controls

74

One reason I prefer the ListBox control to the ComboBox is because I want to be able to see the data all at once.
Moreover, as you’ll see when you use the ComboBox, you can make the size of the control however large you want.
But no matter how big that dropdown arrow becomes, the control’s font and selection list underneath will always
stay the same. Figure 5-12 shows a particularly egregious example. Rather than fooling the viewer with these strange
aesthetics, you’re better off sticking to ListBox.

Figure 5-11.  The ListBox control contains a scrollable list of elements pulled from the spreadsheet

Figure 5-12.  The combo box is sized much larger than it ever should be

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Working with Form Controls

75

The Scroll Bar Control
The Scroll Bar is amazing and probably my favorite form control. It’s simple but powerful. The basic idea is that you
can link the scroll bar’s value to any available cell on a spreadsheet. I’ve done just this in Figure 5-13. As the scroll
paddle (that’s the gray bar between the upper and lower paddles) increases, so does the value in C2. Similarly, as it
decreases, the value in C2 decreases.

Figure 5-13.  A form control Scroll Bar linked to the cell C2

Figure 5-14.  The Format Control dialog box for the Scroll Bar

The form control Scroll Bar contains some other great properties, as shown in Figure 5-14.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Working with Form Controls

76

Note that the Cell link field refers to same location in the formula bar in Figure 5-13. In Figure 5-14, you can see
that the form control Scroll Bar comes with many more field properties than the ComboBox and ListBox controls. You
can use the Minimum Value and Maximum Value fields to set the upper and lower bounds of the scroll bar. Indeed,
you’ll be doing just that in later chapters of this book. You can also use the Incremental Change field to set how much
the value increases or decreases when you press the scroll bar’s paddle. Finally, the Page change field refers to how
much of an increase or decrease occurs when you click into the scroll bar itself and not on a upper or lower paddle.

Note that only one of the text fields in the Format Control dialog box (see Figure 5-14) can directly tie to a cell–the
Cell link. The other fields shown in Figure 5-14 must be set either manually by a human (through the Format Control
dialog box) or programmatically with code. Listing 5-1 shows how to change the scroll bar’s Min and Max fields
through code.

Listing 5-1.  The SetScrollBarLimits Procedure

Public Sub SetScrollBarLimits()
 Const MAX_VAL = 20
 Const MIN_VAL = 3
  
 With Me.Shapes("Scroll Bar 1").ControlFormat
 .Min = MIN_VAL
 .Max = MAX_VAL
 End With
End Sub
 

Notice if you use the shape object on a form control, the only way you can change properties of a form control is
through the ControlFormat object. Alternatively, you can also use the shorthand naming syntax shown in Listing 5-2.

Listing 5-2.  The SetScrollBarLimits Procedure Using the Shorthand Syntax

Public Sub SetScrollbarLimits()
  
 Const MAX_VAL = 20
 Const MIN_VAL = 3
 Dim scrollbr1 As ScrollBar
  
 Set scrollbr1 = [Scroll Bar 1]
  
 With scrollbr1
 .Min = MIN_VAL
 .Max = MAX_VAL
 End With
End Sub
 

Often, I’ll use the latter method as it is more easily read and intuitively understood. However, you’ll notice when
you type the As portion of creating your form control object, Scroll Bar won’t appear on the list. This can become
confusing as usually figuring out the correct object requires guessing at the name (e.g. typing “label” , “checkbox” , and
“scroll bar” to see if they take). So I present both options for you to decide. Throughout the book, I’ll prefer the one
that to me appears easier to read in context.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Working with Form Controls

77

The Spinner control is a useful replacement for a scroll bar in a pinch. However, while the scroll bar can appear
both horizontally and vertically on a sheet (see Figure 5-1), the spinner can only appear vertically, as shown in
Figure 5-15. You can of course make the spinner larger (and wider, if you’d like), but those up and down paddles will
always point in the same direction.

The CheckBox Control
The CheckBox control appears in the first example and it’s incredibly versatile. Like the Scroll Bar, the CheckBox
control links to cell whose value you can use. Unlike the Scroll Bar, the CheckBox can only take on one of three values
(see Figure 5-16). The first two values you should know by heart: TRUE and FALSE. Respectively, they generate a
Checked or Unchecked value in the CheckBox.

Figure 5-15.  An example Spinner control on a spreadsheet

Figure 5-16.  A demonstration of the three states possible with a CheckBox

However, check boxes can also take on a fuzzy-gray status called a “mixed” state. The mixed state cannot be
set directly by toggling a CheckBox, at least not without some VBA. You can set the mixed state manually by using
the =NA() formula in the CheckBox’s cell link or by going into its properties dialog box and selecting the Mixed
option (see Figure 5-17). You won’t use the mixed state in this book, so for now let’s focus on the TRUE and FALSE
dynamic of the CheckBox.

The Spinner Control
The Spinner control is fairly similar to the form control Scroll Bar sans the draggable paddle and scroll region between
the paddles (see Figure 5-15).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Working with Form Controls

78

The Least Favorites: Button, Label, Option Button, and GroupBox Controls
Four controls are left:

Button•	

Label•	

Option Button•	

GroupBox•	

In this section I’ll provide a little information on why I don’t care much for these form controls.

The Button Control
I don’t believe you should use the Button control because there are better alternatives. Let’s start by taking a look at
the Button control in Figure 5-18. There’s not much you can do with the dated grayish aesthetic.

Figure 5-18.  A form control Button

Figure 5-17.  The Format Control dialog box for a CheckBox

An alternative I would suggest is to use an autoshape text box instead. You can still add interactivity to the shape
the same way you would with a form control Button by assigning a macro to the shape. The text box will give you
much more flexibility in terms of changing its look. In addition, there is no inherent advantage to using the form
control Button that is lost when going with an Excel shape.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Working with Form Controls

79

The Label Control
The Label control is also similarly restrictive. The font size, style, and color of a label cannot be edited directly. Notice
in Figure 5-19 that the format buttons have been disabled when the label is selected.

Figure 5-19.  A Label control placed on a spreadsheet

Figure 5-20.  Even bright and wonderful labels can’t overcome certain limitations

As a matter of fact, the only way to change a label’s style is to link it to a cell with the font styles already set.
Take a look at Figure 5-20 to see what I mean. In cell A2, I wrote some text and then set the font color and style in
the cell itself. After that, I linked the label directly to the cell. In fact, this is a workaround I discovered accidently;
officially, labels aren’t supposed to let you change their style. But in any event, a textbox shape does all of this
without the hassle.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Working with Form Controls

80

The Option Button Control
Option Button controls are similar to check boxes except that they allow for only one selection. In general, I find they
are more trouble than they are worth. ComboBox form controls do essentially the same thing as Option Buttons and
take up less screen real estate (see Figure 5-21). For situations where I would like the user to toggle between different
states, I like to use text boxes instead (see Figure 5-22). The effect is much cleaner and more visually appealing.

Figure 5-23.  The group box surrounds buttons with the group box’s border

Figure 5-22.  My prefered method for toggling between options

Figure 5-21.  Option butttons laid out and linked to cell C2

Figure 5-22 simply shows a group of textboxes with some extra desired formatting. When a user clicks on a
textbox, a macro is called to color the textbox a reddish color and the rest a greenish color.

The GroupBox Control
Finally, form GroupBoxes, the last control left undiscussed, are not really useful for anything except grouping components
together. They exist purely for aesthetic value. They’re not ugly by any stretch, but I’d rather use cell formatting to create a
border, especially because it delivers far more options. With the form control GroupBox you only get two options: 3D border
or no 3D border. For the sake of an example, Figure 5-23 shows a GroupBox form control over the buttons from Figure 5-22.

Now that you know all the form controls, you’ll put the useful ones to good use in a few examples, starting with
the Scroll Bar.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Working with Form Controls

81

Creating Scrollable Tables
Scrollable tables are a great form of Excel form controls. They’re easy to implement and often require no VBA,
assuming what you want to display isn’t complicated (and usually it isn’t). At the heart of these tables is the venerable
scroll bar. Using the INDEX function and the scroll bar you can create a scrollable region from a larger table of values.

In this example, you will create a scrollable table that pulls data from a larger spreadsheet. The scrollable table
will allow you to scroll through a small subset of the data a time. Figure 5-24 shows what the final product will look
like. Take a look at Chapter5ScrollableTable.xlsx to grab the data and follow along.

Figure 5-24.  The final product of your scrollable table

	 1.	 To start, insert a new scroll bar into the empty spreadsheet tab in the example file. After
that, you must assign a scroll bar to a cell that will hold it. In this example, assign it to A4.
This is shown in Figure 5-25.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Working with Form Controls

82

	 2.	 When creating a scrollable table, you’ll have to decide its dimensions. In Figure 5-24,
you can see ten items at a time. You’ll need to set up a series of dynamic indices, so in A4,
write the formula =A3+1 and drag down. Figure 5-26 shows this result and the formulas.

Figure 5-25.  Assiging the scroll bar to a cell value

Figure 5-26.  This dynamic will increase all the numbers in the list as changes to the scroll bar are made

Tip■■  T o help size the scroll bar, use the Snap to Grid feature. Choose a column where you want to house the scroll
bar and size the column to the width you’d like the scroll bar to be. Next, after you insert the scroll bar, go to the
Format tab and select Snap to Grid from the Align dropdown in the Arrange group. Now resize the scroll bar; you’ll see
it easily fits to the column. 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Working with Form Controls

83

If you try the scroll bar now, you’ll see the dynamic indices increase and decrease with
each change in the scroll bar.

	 3.	 The backend data for this exercise is on the Data tab. The series of years is named
TornadoData.Year, the series of tornado totals is named TornadoData.Totals, and the
data range is named TornadoData.DataRegion. By naming these regions you can more
easily access them with the INDEX function.

Specifically, you can pull the first row of the data region by using the formula
INDEX(TornadoData.DataRegion, $A4,). By leaving that last parameter blank,
you can drag the formula across to the desired range and then press Ctrl+Shift+Enter
(see Figure 5-27). The last parameter, which takes a column index argument, isn’t
necessary in this case. By telling Excel that you are using an array formula, Excel knows
that the first cell in the region returns the first column index, the second returns the
second column index, and so forth. However, for this to work, you must leave that
final parameter blank. INDEX(TornadoData.DataRegion, $A4,) is not the same as
INDEX(TornadoData.DataRegion, $A4).

Figure 5-27.  The result of using the Array formula to pull back data

	 4.	 Once you have the first row, you can simply drag down to fill the entire region, as shown in
Figure 5-28.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Working with Form Controls

84

	 5.	 You’ll also need to do the same for the Year column. You need to pull the corresponding
cell for the given year from the backend data. Here, you’ll use the formula
INDEX(TornadoData.Year, A4) (see Figure 5-29) and then drag down.

Figure 5-28.  Dragging the array formula down the entire table

Figure 5-29.  Use INDEX to retrieve the total tornados for a given year

	 6.	 Finally, you’ll want to add more information to the table. This example includes the
averages for each month over the entire year range by leaving the row index parameter
of the INDEX function blank and using a static reference for the column index. This
mechanism is similar to what you did above except you are pulling the entire column
instead of the entire row. In addition, you are not interested in return each cell in the
column; instead, you supply the entire column to an AVERAGE function to get the average
for that year (see Figure 5-30).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Working with Form Controls

85

Figure 5-30.  Use the AVERAGE and INDEX functions to report the average tornados for each month

	 7.	 So that the dynamic indices on the left and the static reference on the bottom do not
appear in the table, change those cells to a white font, which blends in with the white
background.

	 8.	 Finally, set the Minimum Value and Maximum Value fields of the scroll bar
(see Figure 5-31).

Figure 5-31.  The Format Control dialog box

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Working with Form Controls

86

The minimum, of course, is 1. The maximum is 36. Why 36? Well, the entire year range is made
up of 45 years. That’s the last year in the set, 1994, minus the beginning year, 1950. (Remember,
you’re including 1950 in the set so it comes out to 45 years and not 44.) You show ten years
in your table, and you effectively do this by adding nine years to the initial value given by the
scrollbar (see Figure 5-32). So the maximum is 45 years minus 9 years, which is 36.

Figure 5-32.  Notice that 1963 equals 1954 plus 9

Figure 5-33.  The final table

Figure 5-33 shows the final table.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Working with Form Controls

87

Highlighting Data Points on Charts
You can also use form control scrollbars to highlight a point on a chart. Figure 5-34 shows a time series of the yearly
totals of tornados. Below the chart is a scroll bar that moves the black selector point left and right. As the point
changes, the label changes with it.

Figure 5-34.  You can highlight data points on the chart using a form control Scroll Bar

The setup for this problem is somewhat similar to the last. You can follow along in the example file
Chapter5DataPoint.xlsx.

First, you start with a scroll bar. This time, however, you draw it horizontally instead of vertically. Again, for
precision, it’s a good idea to use the Snap to Grid feature. Above, you’ll see that columns that border the chart, B and C,
are a bit smaller than the rest. I sized these columns about the size of the scroll bar’s paddles. That way, the paddle in
the scroll area lines up nicely with the selector on the chart. In addition, I was able to nicely align the plot and chart
area again using the handy Snap to Grid feature.

The scroll bar is linked to a value on the side of the Excel spreadsheet. The name of the cell is Scrollbar.Value
(gee, how creative…). Using the scroll bar’s value, you pull the X and Y values using the scroll bar as an index
(see Figure 5-35).

Figure 5-35.  As the scroll bar changes, the X and Y values also change

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Working with Form Controls

88

Now, this is where the magic happens. You’re using a simple scatterplot chart for your timeseries display.
Because of this, you don’t have to add a huge series to your chart to show the selector. You only need to add the
coordinates defined in Figure 5-36. In your chart, you have a series simply named selector that points to the
coordinates off to the side. Remember, those coordinates are traced to the value given by the scroll bar. So, as the
scroll bar changes, the coordinates update with each change. That’s how I came up with the nifty effect.

Figure 5-36.  The Edit Series dialog box

Figure 5-37.  The totals from the tornado data

The other series on the chart is simply the totals from your data worksheet tab (see Figure 5-37).

But wait! This mechanism isn’t complete without grabbing information about the current year. So, let’s add a
small chart on the side that displays information for each month of the given year (see Figure 5-38).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Working with Form Controls

89

This mechanism is not different from when you looked up rows in the table before. The difference now is that you
want to flip that row into a column. So you’ll wrap it in the TRANSPOSE function as shown in Figure 5-39. Once you’ve
dragged that function down, you can press Ctrl+Shift+Enter because you’re directing Excel to return a range.

Figure 5-38.  An additional chart displays information for each month of the selected year

Figure 5-39.  The information table relies on the scroll bar’s value to pull monthly tornado data for a selected year

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Working with Form Controls

90

The Dynamic Legend
To make a dynamic legend, you use the CheckBox form control for a series in the chart. In this case, however, you
won’t use the legend Excel provides for you as a chart element. Instead, you’ll create your own from scratch! Add three
check boxes (clear out the default labels). In addition, write a “minus” sign and add the label next to it, both colored
manually. You can see this for yourself by looking at Chapter5DynamicLegend.xlsx with the downloads for
this chapter.

Figure 5-40 shows that the legend is simply a cell.

Figure 5-40.  The legends here are simply cells

Figure 5-41.  The mechanism of a dynamic legend

Here’s how this mechanism works: there are essentially two tables that hold the data presented in this graph.
The first table is simply static; you can think of it as a type of database. The second table is an intermediary
between the database and chart. You can think of the chart as being the presentation layer. The dynamic is laid
out in Figure 5-41.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Working with Form Controls

91

Let’s take a closer look at the intermediate table. The first column of the table holds the linked cells of the three
check boxes (see Figure 5-42).

Figure 5-42.  A closer look at the intermediate table

The next column tests whether the link has returned a TRUE or FALSE. If it returns a TRUE, Excel returns a 1;
if it’s a FALSE, Excel returns an NA() (see Figure 5-43).

Figure 5-43.  If a CheckBox is deselected, you want to return an N/A error

The cool thing about using NA() is that it returns an #N/A error, which Excel won’t plot. In addition to that,
anytime you multiply something by an #N/A, it also becomes an #N/A. And that’s exactly what you take advantage of
in your dynamic legend. The values in the intermediate table are the product of the result of the IF function multiplied
by the original values. Figure 5-44 demonstrates this mechanism.

Figure 5-44.  The dynamic legend works by turning the values in a series into an #N/A error and thus removing it
from the chart

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Working with Form Controls

92

WAIT…WHY AM I USING IF()? I THOUGHT YOU SAID I SHOULDN’T USE IT?

This is a case where you couldn’t get away from using IF. As you are likely familiar with by now, the CheckBox’s
value could be one or zero. Ostensibly, this response would have been perfect as the multiplier. For example,
you could have simply written a formula like this:
 
=(checkbox_response) * original_series_value – NOT(checkbox_response)
 
You wouldn’t require an IF in this case. If the CheckBox response is TRUE, the original series value is returned
(or just multiplied by 1). If it’s FALSE, the original series value becomes a zero and NOT(FALSE) returns a 1; thus,
the entire formula of =0-1 results in a -1, which is a point outside the viewing scale of the chart (the chart goes
from 0 to 15,000).

Here’s the issue: the dynamic described above works perfectly in Excel 2010, but it does not work as reliably
in Excel 2013, at least not as of this writing. You can test for this bug on your own if you are using Excel 2013.
Create a new line chart with a series of -1 and set the axis range from 0.0 to 10.0. Chances are, you won’t see
the line. Now, change the axis from 0.0 to 20,000. The line will reappear.

But like I said, you shouldn’t necessarily never use IF; rather, you should exercise discretion. In the example,
you only use one IF per CheckBox and the rest of the series relies on that IF. This is the best way to do it. You
could have alternatively made each datapoint in the intermediate table also be a test against the response of the
CheckBox. That would have employed far too many IF statements than necessary.

The Last Word
In this chapter, you learned how truly awesome form controls are. They’re flexible, don’t often require much code,
and can be moved and placed rather easily. As you can probably guess, you’ll return to form controls several times
through the rest of the book.

www.it-ebooks.info

http://www.it-ebooks.info/

Part II

A Real World Example

In this part, you examine and investigate a real world example based on many of the core concepts introduced
in the first part. This real-world example is inspired by a real spreadsheet I developed for a client.

Chapter 6 proposes a new method of taking in user input by using the spreadsheet rather than ActiveX
controls and UserForms. You begin by investigating a very simple Excel-based input form and learn how
custom formats can aid in form validation. You then move onto a more complicated example of user
input—a spreadsheet-based wizard. You spend the rest of the chapter reverse engineering the components of
the wizard and learning the mechanics.

Chapter 7 takes you through a type of storage pattern using the spreadsheet as the database while
also extending the wizard built in the previous chapter. You’ll reverse engineer several of the spreadsheet
components. Throughout the chapter, I’ll show you how to add, delete, and edit records with methods that are
based on both formulas and code.

Chapter 8 will implement a real world model built on top of the wizard from the previous chapters. You
begin by reviewing metrics from a real study by the World Health Organization and implement a weighted
average model based on the study. You then develop features of the analysis portion of your model to allow for
sorting and scrolling using form controls.

Chapter 9 focuses on perfecting the presentation of the spreadsheet application you’ve built over the
previous three chapters. You work on implementing a one-way sensitivity analysis system for the metric
weights. You also incorporate a formula-based sorting method. Finally, you review design aesthetics and
decide upon the best colors and layout to use so as not to overwhelm the visual field.

www.it-ebooks.info

http://www.it-ebooks.info/

95

Chapter 6

Getting Input from Users

This chapter begins the second half of the book. From this chapter and on, you’ll be creating a spreadsheet-based
application using many of the principles discussed in the first few chapters. To get an idea of what you’re building,
you can download the completed version, Chapter9Final.xlsm, from within this book’s project files.

From this point forward, you might also notice a change in the learning format. Many books will have you build
your components from scratch. You did just this in previous chapters of the book. However, going forward, I will
present you with completed work whose functions you’ll reverse engineer. In that way, you’re going to apply the
principles from the previous chapters (as well as learn a few more along the way).

There are two good reasons for this teaching style. First, in the real world, you won’t always start from scratch.
Sometimes you’ll receive work built by someone else. You have to reverse engineer what they’ve completed and also
add your own features. Many of the examples files going forward are much like that inherited spreadsheet. You should
know how they work, but I also want you to think creatively of how they can be extended (and tailored) for your use.

The second reason goes back to the phrase mentioned in a previous chapter—that of reusable components.
Many of the features I’ll describe are not steps in a larger spreadsheet. Rather, they exist in their own right. They’re as
applicable here as they are for other spreadsheet projects. Recall from the first chapter I said the most important skill
to succeed in this book is creativity. That creativity will help you understand how to implement these components in
your work.

The bulk of this chapter deals with creating a spreadsheet-based input wizard with Excel. But before diving into
the wizard, I’ll discuss creating simple spreadsheet-based forms and why they’re often the better choice compared to
UserForms. From there, you’ll start with a completed version of the spreadsheet-based wizard. I’ll walk you through
several of the design components, including proper layout, input pages, and features of the user interface. By the end
of the chapter, you should see how building a spreadsheet-based input wizard is consistent with building faster and
leaner Excel applications.

Note■■   You can download project files for this chapter along with the other example files for this book from the Source
Code/Downloads tab at www.apress.com/9781484207352.

Of Input Forms and Excel
Most Excel developers would prefer UserForms to capture user input, especially when the user input has multiple
steps. Indeed, conventional wisdom often argues for using UserForms and ActiveX controls. The problem is that
ActiveX controls can be somewhat finicky and unpredictable, as established in Chapter 5. Remember this figure from
Chapter 5 (Figure 6-1)?

www.it-ebooks.info

http://www.apress.com/9781484207352
http://www.it-ebooks.info/

Chapter 6 ■ Getting Input from Users

96

UserForms are a type of ActiveX control and they suffer from the same unpredictability. For instance, UserForms
will sometimes appear different across different computers. This is the result of different internal settings and
hardware. Monitor resolution, DPI, and Windows’ internal font default can potentially cause these unwanted effects.

One way to get around all of this is develop input forms directly on the spreadsheet. This is what I advocate. It
may seem like a hard task at first, but you will soon find it provides flexibility not found when using UserForms. In
addition, the spreadsheet provides a better canvas upon which to create a more aesthetically pleasing experience. The
dull grey scheme that appears by default in the UserForms feels almost anachronistic in this day and age, a relic of a
bygone era. Figure 6-2 shows an example UserForm I pulled from Microsoft’s Developer Network’s help pages.

Figure 6-1.  This is the same ActiveX control shown in two different locations

Figure 6-2.  An example of a UserForm found in Microsoft’s Excel help

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ Getting Input from Users

97

Let’s take a look at what you can do when you create input forms on the spreadsheet instead.

A Simple Input Form
In this section, I’ll discuss how to create a simple input form. Open Chapter6SimpleInput.xlsx to follow along.
Figure 6-3 is a snapshot of the input form in Chapter6SimpleInput.xlsx.

Figure 6-3.  A spreadsheet-based input form

You can create a new input form in Excel with nothing more than an unused worksheet tab. With an idea of the
information you’d like to collect at hand, it’s a simple matter of laying everything out.

Nothing too fancy goes into creating something like this. Each input box is simply a named range. If you’ve
ever created an input form on UserForm before, you know that each input TextBox is given a name. For instance,
convention would tell us the name for TextBox on a UserForm that stores a Project Name would go by txtProjectName.
You’re doing a similar action by name each cell with a named range. The named range, as you shall see, will give you
easy programmatic access to the cell’s value later on down the road. Figure 6-4 shows the named ranges and the input
cells they point to.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ Getting Input from Users

98

The green checks and red x glyphs in Figure 6-4 serve as data validation indicators. You probably don’t need one
for each and every box, but there may be inputs you want to specifically point your users’ eyes toward completing.
There’s no fancy coding required to create these. In fact, they require no VBA code at all. It’s just a simple formula and
some custom formatting. Take a look at the formula in Figure 6-5.

Figure 6-4.  Input items are named ranges

Figure 6-5.  A visual validation formula you can use for input

Here, you’re simply testing whether the length of the text entered in the adjacent cell is greater than zero. If it is,
that means something has been written in the cell. If the length of text is zero, that means no input has been provided.
Recall that the double-dash is shorthand for converting the Boolean values of TRUE and FALSE into zero and one.

If you take a closer look at Figure 6-5, you’ll notice that the formula in the cell is not readable text. The reason is
because to get the checkbox and x symbols, I used the Wingdings 2 font.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ Getting Input from Users

99

Custom Formats for Input Validation
In this section, I’ll talk about how custom formats can help turn those zeros and ones into x’s and checkmarks. It’s
simple; you use custom formatting. In Figure 6-6, I’ve used the custom formatting syntax to tell Excel what to display
when the number is either a one or zero.

Figure 6-6.  Custom formats are shown in the Format Cells dialog box

So let’s break this down. With custom formats, I can create conditions to let Excel know when to display which
symbol. For example, I have two conditions in the above formula. Can you guess what they look like? If you notice
[=1] and [=0] then you’re spot on! These blocks of syntax outline are the conditions. Note that the semicolon
separates each condition.

Now take a look at the two character symbols that are being returned. There’s a “P” and a really weird looking
“Ð” thing. To get these characters, I actually looked them up using the Symbol dialog box from on the Insert tab
(see Figure 6-8). In this case, I selected Wingdings 2 as the font and inserted into Excel the symbols I desired. When
Excel inserts these symbols into the worksheet, they’ll be in the Wingdings 2 font.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ Getting Input from Users

100

But if you look again at Figure 6-6, you’ll see the input box in the Format Cells dialog box is looking for regular
alphanumeric characters—not symbols. So you’ll need to get those Windings 2 symbols back into regular text. The
easiest way to do this is to select the cell in which you’ve inserted the symbol and change it to a normal font, like
Arial, Calibri, or Times New Roman. Figure 6-7 demonstrates what happens when you convert the output from
Wingdings 2 to Calibri.

Figure 6-8.  The Insert Symbol dialog box

Figure 6-7.  Converting the output from Wingdings 2 to Calibri

Finally, you’ll notice the other two syntax blocks in Figure 6-6 that look like [ColorXX], where XX is some number.
The XX in this case is in fact a number that points to a specific color index. To see a full list of colors to choose from, go
to http://dmcritchie.mvps.org/excel/colors.htm.

www.it-ebooks.info

http://dmcritchie.mvps.org/excel/colors.htm
http://www.it-ebooks.info/

Chapter 6 ■ Getting Input from Users

101

The basic syntax for custom formats used here is [Color XX][condition]<symbol to return>. There are other
format options available, and I encourage you to take a look at them. But they are beyond the scope of this book.

Based on what you’ve learned so far, you’re now ready to begin building a spreadsheet wizard to take input from
the user. Notice that this simple input form can be created rather quickly and uses only formulas. The same form
would take longer to create if made on a UserForm.

Creating a Spreadsheet-Based Wizard
In this section, you’ll build off the input form created from the previous section. However, you’ll also spend
considerable time on the layout mechanics of a spreadsheet-based wizard. As stated in the beginning of the
chapter, you’ll focus on components rather than building from scratch. I recommend following along by opening
Chapter6Wizard.xlsm from within the project files.

In Figure 6-9, you can see the beginnings of a spreadsheet-based wizard that will serve as the backbone for the
spreadsheet application you complete in forthcoming chapters. If you have Chapter6Wizard.xlsm open,
I recommend going through all the interactive components.

Figure 6-9.  A beautiful spreadsheet-based wizard

For instance, a user can use the back and next buttons (Figure 6-9) and the current page in the middle will
change to reflect the choice. Figure 6-9 shows the Introduction page of the wizard.

Figure 6-10 shows the screen for the second page after pressing the Next button on the first page.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ Getting Input from Users

102

Layout Patterns for the Spreadsheet-Based Wizard
This section discusses the proper spreadsheet layout required to create a spreadsheet-based wizard. If you look
closely at the difference between Figure 6-9 and Figure 6-10, you’ll see that the column headings have changed in
the center view. This is because the first view referred to a different set of columns. When you pressed Next, it hid this
set of columns and advanced to the next set of columns. Figure 6-11 shows all of the panes built into this wizard by
unhiding the entire sheet. Notice that they are laid out from left to right an incrementally increasing order.

Figure 6-11.  A view of the spreadsheet-based wizard with every item unhidden

Figure 6-10.  Page 2, Survey, of the spreadsheet-based wizard

The mechanism shows and hides these columns accordingly. If you unhide everything and then zoom out, you
can see each of these views laid out accordingly.

Note that I’ve named these views successively: View1, View2, View3, etc. In this setup, it makes it easy to know
which view you are currently on. As well, you can know the successive panes in the list in either direction, whether
you go forward or backward. Consider, if you were on View2, you’d know the previous screen would be View1 and the
next screen would be View3.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ Getting Input from Users

103

Think about the ease of this setup. If you want to make changes to each step, you simple need to make them
in that step’s set of columns. If you’d like to add another step, you could insert another series of columns in front of
Wizard.View4 and name it Wizard.View5. The Name Manager can help you keep track of how many views you have
(see Figure 6-12). In addition, you can jump to the step you want automatically by selecting its name.

Figure 6-12.  The named range manager can help you keep track of each view

Figure 6-13.  The Helper tab keeps track of important information for the wizard

The Helper Tab
In this section I’ll talk about the Helper tab (see Figure 6-13), which is an integral part of the spreadsheet-based
wizard.

As has been the case with previous spreadsheets, I always suggest placing extra information either in a hidden
spot on the spreadsheet or in another tab. In this case, you have several items in the Helper tab (see Figure 6-14).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ Getting Input from Users

104

In Figure 6-15, cell B1 has been given the name Helper.CurrentPageIndex. Cell B2 has been given the name
Helper.TotalPages. Note that Helper.CurrentPageIndex keeps track of the current page in view. Its value is changed
within the code. Helper.TotalPages is manually updated (that is, by you, the human) when you add new views.
You could automate the process of ensuring Helper.TotalPages always has the correct total views. For now, I don’t
foresee you adding additional views, so let’s keep it as is.

Figure 6-14.  A snapshot of named ranges on the Helper tab

Figure 6-15.  You can use named ranges to help you track and display information about this wizard

Going back to the Wizard tab, you can see that Helper.CurrentPageIndex is referenced to let you know what
page number you are on (see Figure 6-15).

Moving Between Views
For your wizard to have its full effect, you need a way to move back and forth between the views. That’s what the Next
and Back buttons on the wizard help you do. The following code listings show the code that is called when you press
forward (Listing 6-1) and backward (Listing 6-2).

Listing 6-1.  This Code Will Tell the Wizard to Display the Next View

Public Sub GoNext()
 Dim index As Integer
  
 ' Read in the current page index and increment it by one
 ' to go next
 index = [Helper.CurrentPageIndex]
 index = index + 1
 
 ' Check if we're already on the last page
 If index > [Helper.TotalPages] Then Exit Sub
  

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ Getting Input from Users

105

 ' Unhide the next view
 Wizard.Range("Wizard.View" & index).Columns.Hidden = False
  
 ' Check to see if we're on a page that requires special instructions
 If index = 2 Then
 DisplayCheckboxes
 Else
 HideCheckboxes
 End If
  
 ' Hide the current set of columns
 If index > 1 Then
 Wizard.Range("Wizard.View" & index - 1).Columns.Hidden = True
 End If
  
 'Set Helper.CurrentPageIndex equal to the next page index
 [Helper.CurrentPageIndex] = index
End Sub
 

Listing 6-2.  This Code Will Tell the Wizard to Display the Previous View

Public Sub GoPrevious()
 Dim index As Integer
  
 ' Read in the current page index and decrement it by one
 ' to go previous
 index = [Helper.CurrentPageIndex]
 index = index - 1
  
 ' Check if we're already on the first page
 If index < 1 Then Exit Sub
  
 ' Unhide the previous view
 Wizard.Range("Wizard.View" & index).Columns.Hidden = False
  
 ' Check to see if we're on a page that requires special instructions
 If index = 2 Then
 DisplayCheckboxes
 Else
 HideCheckboxes
 End If
  
 ' Hide the current set of columns
 If index < [Helper.TotalPages] Then
 Wizard.Range("Wizard.View" & index + 1).Columns.Hidden = True
 End If
  
 'Set Helper.CurrentPageIndex equal to the previous page index
 [Helper.CurrentPageIndex] = index
  
End Sub
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ Getting Input from Users

106

Take a look through both listings. Notice that they are very similar except for a few minor differences. The GoNext
procedure checks to see if you’ve reached the end of the set of views while the GoPrevious procedure checks if you’re
still at the beginning. The GoNext procedure increments the current page index, while the GoPrevious procedure
decrements the current page index. This is another example of a reusable component—the mechanism to go forward
and backward is virtually the same, so you just need to make a few accommodations. If you think about creating a
general mechanism, then reusing and adjusting the code is easy.

Views That Require Additional Instruction
Some views require extra instruction before they’re displayed. For example, Figure 6-16 shows a series of check boxes,
which require additional explanation.

Figure 6-16.  View2 includes a series of check boxes. These require special instructions

Unlike input cells form on other views, the check boxes are form controls (CheckBox). They sit on top of the
spreadsheet. It’s not enough to simply hide the form controls by hiding the view on which they reside. The reason is
that form controls don’t always become hidden so cleanly when you hide a column, even when you set them to move
and size with cells in their properties. So you may be wondering how to ensure that these check boxes always appear
in the correct location. The answer is a technique I’ve come up with called anchoring.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ Getting Input from Users

107

Anchoring Controls
In this section, I’ll talk about how to anchor your controls so they always appear in the same spot when you hide and
unhide columns or rows. The first thing you need to do is name your desired controls as part of a series. Let’s go back
to that second view. Figure 6-17 highlights the first check box in the series.

Figure 6-17.  This check box is anchored to the underlying cell

Figure 6-18.  You can create a range of anchors for a set of check boxes

Notice that the name of the check box is Check1. The check box below it is named Check2, and below that is
Check3, all the way through to Check8. Furthermore, in Figure 6-18, I’ve selected the range that appears under each
check box. Notice I’ve named it Wizard.CheckboxAnchor. This anchor will be your guide in placing these check boxes.

Now recall this snippet of code from GoNext and GoPrevious, shown in Listing 6-1 and Listing 6-2. When you are
showing the second view, View2, you call the procedure DisplayCheckboxes; when you leave the second view, you
call the procedure HideCheckboxes. Listing 6-3 excerpts this code.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ Getting Input from Users

108

Listing 6-3.  An Excerpt from GoNext

' Check to see if we're on a page that requires special instructions
If index = 2 Then
 DisplayCheckboxes
Else
 HideCheckboxes
End If
 

Now let’s take a look at the DisplayCheckboxes shown in Listing 6-4.

Listing 6-4.  DisplayCheckboxes Will Anchor the Check Boxes to the Cell Range When Step2 Is in View

Private Sub DisplayCheckboxes()
 Dim i As Integer
  
 'Iterate through each cell in our anchor
 For i = 1 To [Wizard.CheckboxAnchor].Rows.Count
  
 'Create a shape object to point to our current Checkbox
 Dim CurrentCheckbox As Excel.Shape
 Set CurrentCheckbox = Me.Shapes("Check" & i)
  
 'Set the checkbox to be the exact same size as the
 'as the cell it sits atop
 With [Wizard.CheckboxAnchor].Rows(i).Cells
 CurrentCheckbox.Width = .Width
 CurrentCheckbox.Height = .Height
 CurrentCheckbox.Top = .Top
 CurrentCheckbox.Left = .Left
 End With
  
 'Ensure people can see it
 CurrentCheckbox.Visible = True
 Next i
End Sub
 

In this code, you iterate through every cell that constitutes your anchor. For your purposes, the iterator i not
only helps you track your current location through each anchor cell but it also helps you reference the corresponding
check box.

You’ll notice that I reference each check box through the spreadsheet’s internal shape container. When you
treat check boxes as shapes, you are exposed to the properties that are only available to a shape object. This helps
because the check box object does not always show its properties and methods with IntelliSense (more on that later
in the chapter).

In the line With [Wizard.CheckboxAnchor].Rows(i).Cells, you are grabbing the current cell in your anchor
given at index i. With that current cell, you can tell the check box with the same name given by index i—that is, if you
are on cell 1 in Wizard.CheckboxAnchor, use the check box with the name Check1. You then tell that check box to be
the exact same width and height, and the same top and left. This ensures the check box takes up the entire width of
any cell in your anchor. You can see this effect in Figure 6-17.

When you’re not on the second view, you’ll want to hide these check boxes. Listing 6-5 shows how you do just that.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ Getting Input from Users

109

Listing 6-5.  This Code Will Remove the Check Boxes from the Anchored Cells

Private Sub HideCheckboxes()
 
 Dim i As Integer
  
 'Iterate through each cell in our anchor
 For i = 1 To [Wizard.CheckboxAnchor].Rows.Count
  
 'Create a shape object to point to our current Checkbox
 Dim CurrentCheckbox As Excel.Shape
 Set CurrentCheckbox = Me.Shapes("Check" & i)
  
 'Set the checkbox to be the exact same size as the
 'as the cell it sits atop
 With [Wizard.CheckboxAnchor].Rows(i).Cells
 CurrentCheckbox.Top = 0
 CurrentCheckbox.Left = 0
 CurrentCheckbox.Width = 0
 CurrentCheckbox.Height = 0
 End With
 
 'Ensure the checkbox is no longer visible
 CurrentCheckbox.Visible = False
 
 Next i
End Sub
 

Just as GoPrevious was similar to GoNext, but in a different direction, HideCheckBoxes is very similar to
DisplayCheckboxes. It simply undoes the work performed in DisplayCheckboxes.

But you may be wondering, is it even necessary to change the height, width, top, and left if you’re just going to hide
the check boxes? The truth is, it may not be. You could simply hide these check boxes without doing anything else. At
least, at a product level it makes no difference. However, while developing anchors on your spreadsheet, moving every
unused check box to a safe location is a good idea.

Here’s why. Excel acts somewhat unpredictably when working with form controls. If the above code errors out
because there was a bug in the original loop, you might notice the check boxes didn’t disappear as they should have.
Sometimes, Excel will make several copies of the same CheckBox control (one on top of the other). What causes this
is an error in your code while working with multiple form controls. By moving each control to a safe location, you can
monitor when Excel has made copies of itself.

Anchoring for Large Sets of Controls
In the previous section’s example, one could easily insert eight check boxes and then name them accordingly. It’s
not necessarily the most enjoyable of exercises, but it’s a simple and quick task. What happens if you have so many
controls that this take becomes incredibly burdensome? In this section, I’ll talk about a quick method of anchoring for
large regions.

In Figure 6-19, I’ve created a large check box anchor region, which I’ve highlighted in gray for demonstration
purposes. Like the anchor region above, I’ve made this region a named range.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ Getting Input from Users

110

Figure 6-19.  Inserting several check boxes and naming each one for large regions such as this is an onerous task

You can quickly create enough check boxes for this entire region by reusing elements of the above presented
code. Listing 6-6 shows the code you can use to quickly fill up the entire region with check boxes.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ Getting Input from Users

111

Listing 6-6.  This Code Will Fill in a Predefined Anchor Region with Check Boxes

Public Sub FillCheckboxAnchorRegion()
 
 'Clear out any checkboxes already created.
 'This will ensure we don't duplicate checkbox
 'names.
 Me.CheckBoxes.Delete
  
 Dim i As Integer
  
 For i = 1 To [CheckboxAnchor].Rows.Count
  
 Dim CurrentCell As Range
 Dim NewCheckbox As CheckBox
  
 Set CurrentCell = [CheckboxAnchor].Cells(i)
 Set NewCheckbox = Me.CheckBoxes.Add(0, 0, 0, 0)
 With CurrentCell
 NewCheckbox.Width = .Width
 NewCheckbox.Height = .Height
 NewCheckbox.Top = .Top
 NewCheckbox.Left = .Left
 End With
  
 NewCheckbox.Name = "Check" & i
 Next
 
End Sub
 

This code is fairly straightforward. Every worksheet contains a collections object that holds all the CheckBox
controls that appear on the sheet. Be careful, however; the collection is not immediately available through
IntelliSense. So you need to trust that it is there, even if IntelliSense doesn’t show it. When the check boxes are already
created, sometimes it’s easier to refer to them using the Shapes collection as you did earlier in the chapter.

The Checkbox collections object has an Add method. The parameters for this method are left, top, width,
and height. Given this, you might be wondering why I would supply this argument with zeros and then adjust the
checkbox’s dimensions thereafter. However, in my experience, sometimes changing the width and height after setting
the CheckBox control’s coordinates will slightly change its position. Therefore, your best bet is to set the dimensions
first and then set the coordinates.

Finally, you might have noticed in these examples when a check box is selected, its background will change
to help you easily visualize which options have been selected at a glance. I’ll talk more about how to do that in the
next chapter.

In the meantime, let’s talk about how to provide information about the page you’re on.

Components That Provide Information
This section will describe how to develop components in the spreadsheet-based wizard that provide the user with
information. This includes highlighting the steps you’re on, describing the page you’re looking at, and including
page-specific instructions to the user. Figure 6-20 highlights these components.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ Getting Input from Users

112

Using Custom Formats to Highlight the Current Step
This section will cover how you can use custom formats (as you did in the first examples in this chapter) to help you
highlight which step is currently in view. Figure 6-21 shows an excerpt of the formula. This is essentially the same
formula for all the possible steps cells in Column A.

Figure 6-20.  Highlighting components that provide information

Figure 6-21.  The large formula appears in the selected cell

Let’s break down this formula. Recall that -- is simply the shorthand operation to change a text string or Boolean
expression into a number. Because every step starts with a given number (e.g. 1. Introduction, 2. Survey, etc), you can
read in that number. In Figure 6-21, we read in that number by looking at the first character of each step. Left(B4, 1)
will return a 1; Left(B5, 1) will return a 2 and so forth. You use the shorthand value operation to turn it into a number.

Once you know the number, you can simply use a Boolean conditional to compare it to the current page you’re
on. In Figure 6-19, --LEFT(B4,1)=Helper.CurrentPageIndex would return a FALSE. This is because you are on the
second page, and cell A4 refers to the first page. Cell A5 refers to the second page, so it will return a TRUE. The final --
at the end converts the TRUE and FALSE values back to zeros and ones.

To create the dot effects above, you follow a similar custom formula described in the beginning. To all of them,
I’ve applied this simple custom format syntax: [Color15][=0]●;[Color9][=1]●.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ Getting Input from Users

113

Using INDEX to Provide Step-Specific Information
This section will cover the finishing touches to your wizard. On the top of every view, I’ve placed the same formula
throughout. You can see this formula in Figure 6-22.

Figure 6-22.  You can use the INDEX formula to display view-specific information

Figure 6-23.  The selected region comprises of the names of all available steps in the wizard

In Figure 6-23, you can see that Wizard.StepRange points to the list of steps on the side.

Because Wizard.CurrentPageIndex will always refer to the current step in view, you can simply place this formula
at the top of each wizard page. This will ensure you always show the correct heading. In addition, you can simply change
the title of the step in Wizard.StepRange and the change will be reflected automatically in its corresponding view.

The instructions follows a similar path. There’s an Instructions Table on the Helper tab that includes instructions
for each step. The Instructions Table holds particular instructions for each page in the wizard. Take a look at the
instructions formula used in Figure 6-24.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ Getting Input from Users

114

Again, you use the current page index to help you pull relevant information for each step.

The Last Word
In this chapter, I talked about building spreadsheets that can capture user input. Spreadsheet-based wizards are
particularly useful. You may not have thought that a spreadsheet was a good place to take user input. Conventional
wisdom suggests that you should use ActiveX components. However, compared to UserForm-based wizards,
spreadsheet-based wizards are easier to build, design, and modify.

In the next chapter, I’ll talk about how to store input from these wizards.

Figure 6-24.  Similar to the mechanism described in Figure 6-22, you can use INDEX to pull specific instructions

www.it-ebooks.info

http://www.it-ebooks.info/

115

Chapter 7

Storage Patterns for User Input

In the last chapter, I discussed developing the components of a spreadsheet-based wizard. The main example from
last chapter had you review the infrastructure required to create a spreadsheet-based wizard. Whereas the last chapter
concerned layout mechanics of creating an input interface, this chapter will deal with how to store the information
once the user has finished their input. What follows builds from the previous chapter. You’ll still use the spreadsheet-
based wizard implementation described in the previous chapter. However, going forward, you’ll make a few changes,
which you’ll see here soon.

In this chapter, I’ll begin by describing a system of metrics that will become the inputs for your wizard. From
there, I’ll describe the database scheme used to store information once it’s been completed. Finally, I’ll discuss
handling typical database functions, like inserting a new record or deleting an existing one.

The World Health Organization: An Applied Example
In 2000, the World Health Organization ranked the healthcare systems of several different industrialized nations in a
study called the World Health Report 2000 – Health systems: Improving performance. The study used five key metrics
defined here:

•	 Health Level: Measures life expectancy for a given country.

•	 Responsiveness: Measures factors such as speed to health service, access to doctors, et al.

•	 Financial Fairness: Measures the fairness of who shoulders the burden of financial costs in a
country.

•	 Health Distribution: Measures the level of equitable distribution of healthcare in a country.

•	 Responsiveness Distribution: Measures the level of equitable distribution of responsiveness
defined above.

I’ll make some slight modifications to the original model used by the World Health Organization. For one, each
country can score from 1 to 10 for a given metric. Second, I’ve generated a list of made-up countries. So, to be sure, all
the data presented herein is notional. Except for the metrics used above (and the weights used in later chapters), the
results have basically nothing to do with the actual results of the real model. That’s right, all data herein is fictitious.
Any resemblance to real life data is purely coincidental. No spreadsheets were harmed in the writing of this book.

In this chapter, you’ll allow the user to create a new country, score each country based on metrics, and then store
each result into a database. All of this will be self-contained in one spreadsheet file. In addition, you’ll be following
many of the themes presented in previous chapters. You’ll rely heavily on named ranges and attempt to minimize
unnecessary use of code.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Storage Patterns for User Input

116

Design of Your Spreadsheet File
You’ll be using the example file Chapter7Wizard.xlsm for this chapter. The file is made up of five of tabs, shown in
Figure 7-1.

Figure 7-1.  The five tabs you’ll be using for your workbook

Let’s go through each of these tabs.

•	 Welcome: Welcome is essentially your menu. When the user first opens the spreadsheet, it’s
what they should see (think: “Welcome screen”). Figure 7-2 in the following section shows
what the menu looks like.

•	 Wizard: Wizard contains your spreadsheet-based wizard.

•	 Database: Database contains the backend database you’ll be using to store country record data.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Storage Patterns for User Input

117

•	 Analysis: Analysis contains the spreadsheet analysis system you’ll be developing in the next
chapter.

•	 Helper: Helper contains information about the spreadsheet application. For example, it keeps
track of how many total views there are in the wizard. It also keeps track of the current wizard
page. In the next few chapters, it will keep track of even more.

The Input Wizard
The wizard used here has changed substantially from the previous chapter. In this section, I’ll talk about some of
those changes in design plus additional design enhancements. Figure 7-2 shows what your wizard looks like with all
columns unhidden and zoomed out.

Figure 7-2.  All the different views of your wizard

Tip■■   If you zoom out to 39%, the name of your named ranges will appear on top of the area to which they refer. 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Storage Patterns for User Input

118

Figure 7-4.  Inputs on the second view

Figure 7-3.  Inputs on the first view

As in the previous chapter, the inputs of the wizard have each been given a name. Figure 7-3 shows the named
ranges given for the inputs in the first view. Figure 7-4 shows the names for the inputs in the second view.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Storage Patterns for User Input

119

If you ever need to change the location of these named ranges—or want to see where they are located
immediately—you can use the Name Manager. Figure 7-5 shows the named ranges used to create spreadsheet-level
variables. This keeps you from having to store everything in the code, which is error prone and not ideal.

Figure 7-5.  The Name Manager showing all your spreadsheet variables

Setting Focus to the First Input Cell
As the user clicks Next and Back in the wizard, one clear problem is that the selector doesn’t move with it. For
instance, if you are on the first screen, and the Comment box is selected (having just typed in some value), when you
click Next, the selector will still be on the Comment box. What you want is for the selector to automatically focus on
the top of each screen.

To do this, you’ll set the first input box of each screen to follow the .FirstFocus pattern. For the first screen,
you’ll create a new named range called Wizard.View1.FirstFocus (Figure 7-6).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Storage Patterns for User Input

120

You’ll do the same for the second view (Figure 7-7).

Figure 7-7.  Setting the FirstFocus for the second view

Figure 7-6.  Setting the .FirstFocus input cell of View 1

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Storage Patterns for User Input

121

You then need to adjust your GoNext and GoPrevious procedures, which are displayed in Listings 7-1 and 7-2.

Listing 7-1.  The GoNext Procedure

Public Sub GoNext()
 Dim index As Integer
  
 ' Read in the current page index and increment it by one
 ' to go next
 index = [Helper.CurrentPageIndex]
 index = index + 1
 
 ' Check if we're already on the last page
 If index > [Helper.TotalPages] Then Exit Sub
  
 ' Unhide the next view
 Wizard.Range("Wizard.View" & index).Columns.Hidden = False
 SetFocusForView (index)
  
 ' Hide the current set of columns
 If index > 1 Then
 Wizard.Range("Wizard.View" & index - 1).Columns.Hidden = True
 End If
  
 'Set Helper.CurrentPageIndex equal to the next page index
 [Helper.CurrentPageIndex] = index
End Sub 

Listing 7-2.  The GoPrevious Procedure

Public Sub GoPrevious()
 Dim index As Integer
  
 ' Read in the current page index and decrement it by one
 ' to go previous
 index = [Helper.CurrentPageIndex]
 index = index - 1
  
 ' Check if we're already on the first page
 If index < 1 Then Exit Sub
  
 ' Unhide the previous view
 Wizard.Range("Wizard.View" & index).Columns.Hidden = False
 SetFocusForView (index)
  
 ' Hide the current set of columns
 If index < [Helper.TotalPages] Then
 Wizard.Range("Wizard.View" & index + 1).Columns.Hidden = True
 End If
  
 'Set Helper.CurrentPageIndex equal to the previous page index
 [Helper.CurrentPageIndex] = index
End Sub
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Storage Patterns for User Input

122

The new procedure that helps you focus on the first input cell in each view is SetFocusForView, which is
highlighted in bold in the code. The code for the SetFocusForView procedure is shown in Listing 7-3.

Listing 7-3.  The SetFocusForView Procedure

Private Sub SetFocusForView(PageIndex As Integer)
 ' We test to ensure not on the last view of the wizard since
 ' there is nothing to focus in this view.
 If PageIndex < [Helper.TotalPages].Value Then
 Me.Range("Wizard.View" & PageIndex & ".FirstFocus").Activate
 End If
End Sub
 

Notice what SetFocusForView does. It takes in the current page number of the wizard. If you’re looking at
the first view, it looks for the named range Wizard.View1.FirstFocus. If you’re on the second page, it looks for
Wizard.View2.FirstFocus. Obviously, since you have only two pages with input (the third page gives the user a few
buttons to make a choice), you need ensure you’re not looking for a .FirstFocus cell where none exists on the page.
Hence, you test to ensure you’re not in the last view before doing anything.

Now let’s take a moment to think about what you’ve built. In a broad sense, the code doesn’t care too much about
what page you’re looking at so long as there is a FirstFocus on it. Moreover, if you make changes later, and want the
FirstFocus to automatically start somewhere else, it’s as simple as changing where the name points in the name
manager. Third, because you’re following a naming convention, it’s fairly clear that Wizard.View1.FirstFocus refers
to the first input cell in the first View on the Wizard tab. (Compare this to other naming conventions commonly in
practice, which might have used something like vw1_Focus1). Finally, you see that named ranges are super flexible.
A cell can have more than one named range pointing to it at any given time.

The Database
In this section, I’ll talk about the interworkings of the database that serves to store user input. Figure 7-8 provides a
snapshot of the database setup you’ll be working with.

Figure 7-8.  The backend database storing country information filled in by the user

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Storage Patterns for User Input

123

Figure 7-8 shows that the database is made up of three components.

	 1.	 Input Entry table: Serves as the “living” record of current inputs from the wizard.

	 2.	 Database Information table: Keeps track of the different pieces of information required to
add, edit, and delete records.

	 3.	 Database table: Keeps a record of all information stored currently in the database. I’ve
aptly named this table “Database,” which you can see by clicking into the table and going
to the Design context menu.

Let’s go through each section in detail.

Input Entry Table
The Input Entry table is what I like to call the “living record” of the current inputs from within the wizard. Figure 7-9
shows the actual formulas for the five metrics you’re capturing beneath their values. Notice that they connect directly
to the named ranges found in your wizard. Unfortunately, because of the size of named ranges and page size, I wasn’t
able to show full names, but you can readily understand what’s going on here.

Figure 7-9.  The values in the Input Entry table link directly to the cells on the wizard

The only cell that doesn’t link directly is Country Id (Figure 7-10). I’ll go into more detail on that in the next
few sections.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Storage Patterns for User Input

124

Once you have all the inputs from the wizard in one spot, adding it into the table can be done in fell swoop. You
simply need to copy the values from the Input Entry table into your Database table. Figure 7-11 shows how you’re
going to do this conceptually.

Figure 7-10.  Country Id uses the current index and the table

Figure 7-11.  A conceptual visualization of how you add a new record to the database

Because you don’t want to do a lot of read/write action on the spreadsheet (since those are volatile), the best way to
do this is to simply copy the information from the living record down to the bottom of the table. Figure 7-12 shows Input
Entry completely filled in (the entire Input Entry row can be referred to by the named range Database.InputEntry).
When you save a new record, the SaveNewRecord procedure is called. Listing 7-4 shows the code for this procedure.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Storage Patterns for User Input

125

Listing 7-4.  The SaveNewRecord Procedure

Public Sub SaveNewRecord()
 Dim LastRowOfData As Range
 Dim NewRowOfData As Range
 Dim DatabaseRowCount As Integer
  
 ' Find the last row in the Database table
 DatabaseRowCount = Database.ListObjects("Database").ListRows.Count
 Set LastRowOfData = Database.ListObjects("Database").ListRows(DatabaseRowCount).Range
  
 ' Find the next row to place the input entry
 Set NewRowOfData = LastRowOfData.Offset(1, 0)
 
 ' Place the new row of data
 NewRowOfData.Value = [Database.InputEntry].Value
  
 ' Set the ID of the new row of data with a new ID
 NewRowOfData(1, 1).Value = [Database.RecordMax].Value + 1
End Sub
 

What allows this code to work effectively is the use of Excel tables. A feature of these tables is their dynamic
growth. When you add a new row of data right below its last record, it will subsume the new record. There’s no extra
VBA code required for this action to take place. It happens automatically. And here you’ll use it to your advantage.

Your code finds the row count for all the data in the table. It then assigns the last row in the table to
LastRowOfData. Next, you create a new range called NewRowOfData, which you tell Excel to place one row below the
last. Next, you simply assign the NewRowOfData to be the same values as that of Database.InputEntry (one fell swoop,
right?). Finally, you assign that new row of data a unique ID, which you’ll go into the next section. Figure 7-12 shows
the result of running the code.

Figure 7-12.  The result of adding a new record

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Storage Patterns for User Input

126

Database Information Table
The Database Information table keeps track of all the information required to make changes to the Excel table.
Figure 7-13 shows that the table is made up of three elements.

Figure 7-13.  The Database Information Table

Figure 7-14.  Ithha has a Country Id of 5 but the record index is 4

In this section, you’ll go through them.

•	 Record Count keeps track of the total records in the database. It uses the formula
=COUNT(Database[Country Id]).

•	 Record Max keeps track of the maximum Country Id of all countries listed. You need to keep
track of the maximum Id for when you add records. The newest record will always be one plus
the maximum record. This ensures each new record is always unique. The formula used is
=MAX(Database[Country Id]).

•	 Current Index keeps track of whether you’re editing a preexisting record or a new record. When
Current Index equals negative one, you’re editing a new record. Otherwise, when you’re editing
a preexisting record, Current Index will become the row index of the recording being edited.

The most important feature of Current Index is that it never refers to a Country Id. You may find this confusing
at first, but it’s a very important distinction. Figure 7-14 demonstrates this concept. In the Input Entry above, you see
you’re editing the country Ithha. Notice that while Country Id is five, Current Index is four. That’s because Ithha is
located in the fourth row down in your database table.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Storage Patterns for User Input

127

You must separate location and Id. The reason is because later on in the chapter, you’ll be sorting on country
name (in fact, you can see it’s already being sorted alphabetically in Figure 7-14). The location of the record could
change with any update. In addition, you’ve also included the capability to delete records. Clearly, whatever country
used to have a Country Id of 4 has been deleted from this table.

The Backend Database Table
Here you use one of Excel’s most powerful capabilities—the table. There are several wonderful features of Excel tables
that I’ll talk about in this section. For one, they allow for easy dynamic range references (there’s one exception to that,
which I’ll get into in the next section). If I want to include the Country Name column in an Index function, I need only
supply Database[Country Name]. That reference to the Country Name column is also dynamic: this means I can add
or remove records—and Excel will automatically reflect these changes in the Database[Country Name] reference.

Another great feature is the table’s ability to expand to consume new entries. If I manually type in a new value in an
unused cell directly adjacent to the table headings, Excel will expand to incorporate the new column heading. Likewise,
if you add any data directly below the last record, the table will expand to consume the new record. The addition of new
records is a boon to your development: you’re able to add records to the database by simply writing to the spreadsheet.
There’s no extra overhead of grabbing the table object and inserting it. It’s always best to let Excel handle the heavy lifting for
you. It’s not worth reinventing the wheel (perhaps I should say, “don’t reinvent the pie chart,” which is shaped like a wheel).

One other feature, which you will use in subsequent chapters, is the table’s calculated columns feature. Figure 7-15
provides an example. In the first row, I’ve selected the Health Level response for reach country and added an arbitrary
amount to it (for demonstration). Notice, the syntax used is the @ symbol. You can think of that @ symbol as telling Excel
that you want to do something with the values in Health Level at the same row as the current formula. Pressing Enter on
the formula will automatically fill the formula down to the end of the row. You can see by the result in Figure 7-15, that
each value in Test Column has added two to the respective values of Health Level in the same row.

Figure 7-15.  A demonstration of calculated columns

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Storage Patterns for User Input

128

Menu Screen Functionality
Now let’s focus on what’s presented to the user when they first open the spreadsheet. Figure 7-16 shows the opening
menu screen. In this section, I’ll go through the different elements.

Figure 7-16.  The opening screen of your spreadsheet tool

As you can see, the opening screen is made up of several different elements. The most prominent of those
elements are Excel shapes and a ListBox form control. As stated earlier, I am not a fan of using form control buttons
(that look like old Windows 95 buttons) on the spreadsheet. Rather, I much prefer using clean-looking Excel shapes
and assigning macros to them.

Inserting a New Record
In this section, I’ll talk about creating a new record to be inserted upon its completion. Here, I’ve created a button
called Insert New Record. But this may be a misnomer since it doesn’t insert a new record into the database; rather,
it clears the wizard of its values and places the user on the wizard’s first input screen. From the user’s perspective, it
prepares the wizard for the process of inserting a new record. See Listing 7-5.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Storage Patterns for User Input

129

Listing 7-5.  The InsertNewRecord Procedure

Public Sub InsertNewRecord()
 Dim CurrentIndex As Integer
  
 'Set CurrentIndex to a new record
 [Database.CurrentIndex].Value = -1
 
 'Clear all inputs
 [Wizard.CountryName].Value = ""
 [Wizard.Comment].Value = ""
 [Wizard.HealthLevel].Value = ""
 [Wizard.Responsiveness].Value = ""
 [Wizard.FinancialFairness].Value = ""
 [Wizard.HealthDistribution].Value = ""
 [Wizard.ResponsivenessDistribution].Value = ""
  
 'Show the first page
 CurrentIndex = [Helper.CurrentPageIndex]
 Wizard.Range("Wizard.View" & CurrentIndex).Columns.Hidden = True
 Wizard.Range("Wizard.View1").Columns.Hidden = False
 [Helper.CurrentPageIndex].Value = 1
  
 'Activate the wizard
 Wizard.Activate
 SetFocusForView 1
End Sub
 

As with most of my code, I’ve attempted to the keep the logic fairly straightforward. You set the CurrentIndex
to -1 to Excel when you’re working with a new record. Next, you clear out any values in the table that may have been
previously entered. Next, you tell Excel you want to start the user on the first page of entry. Finally, you activate the
wizard to bring it into view.

Editing an Existing Record
In this section, I’ll talk about how to edit an existing record. This is where the Current Index from the Database
Information table comes in. Figure 7-17 shows the cell link for the ListBox actually pointing to Database.CurrentIndex.
Recall the cell link tracks the row index for a selected item. Figure 7-18 shows that since you’ve selected the fourth row,
your Current Index (stored as Database.CurrentIndex) is 4.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Storage Patterns for User Input

130

Figure 7-17.  Cell link refers to Database.CurrentIndex

Figure 7-18.  Current Index is 4 because the list box on the front screen has the fourth row selected

You now work in reverse of when you add a record to the table. Since you know the row location of the record you
want to edit, you simply need to fill this information in your Input Entry table. Figure 7-19 shows what this looks like
conceptually. Listing 7-6 provides the code for the procedure.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Storage Patterns for User Input

131

Listing 7-6.  The EditSelectedRecord Procedure

Public Sub EditSelectedRecord()
 Dim CurrentSelectedIndex As Integer
 Dim InputEntry As Variant
 Dim CurrentIndex As Integer
  
 ' Assign the currently selected index to CurrentSelectedIndex
 CurrentSelectedIndex = [Database.CurrentIndex]
  
 InputEntry = Database.ListObjects("Database").ListRows(CurrentSelectedIndex).Range
  
 [Wizard.CountryName].Value = InputEntry(1, 2)
 [Wizard.Comment].Value = InputEntry(1, 3)
 [Wizard.HealthLevel].Value = InputEntry(1, 4)
 [Wizard.Responsiveness].Value = InputEntry(1, 5)
 [Wizard.FinancialFairness].Value = InputEntry(1, 6)
 [Wizard.HealthDistribution].Value = InputEntry(1, 7)
 [Wizard.ResponsivenessDistribution].Value = InputEntry(1, 8)
  
 'Show the first page
 CurrentIndex = [Helper.CurrentPageIndex]
 Wizard.Range("Wizard.View" & CurrentIndex).Columns.Hidden = True
 Wizard.Range("Wizard.View1").Columns.Hidden = False
 [Helper.CurrentPageIndex].Value = 1
  
 'Activate the wizard
 Wizard.Activate
 SetFocusForView 1
End Sub
 

Figure 7-19.  What happens when you edit a given record based on the user’s selection in the list box from on the
opening tab

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Storage Patterns for User Input

132

This code is similar to the code in Listing 7-5. However, here you need to ensure that the values of the
Input Entry table become that of the selected record. Notice in Listing 7-6 that you’re not assigning the cells of
the Input Entry table directly. This is because that would overwrite their linkages to the wizard. Rather, you
assign the values to the input cells of the wizard. This is akin to the user simply typing the information in themselves.

You might also notice that you use the constant numbers for the assignment. Generally, I don’t prefer this
practice for other applications, but it works here in a pinch. So long as you’ve performed the requisite planning to
ensure you won’t move the column assignments around. And, in fact, even if you did end up adding input boxes into
the wizard and you had to update the input table, you could simply add another column adjacent to the Input Entry
table. The order of inputs the user fills in within the wizard is not the same order you must follow when storing the
information. So you can add even more variables to the store without changing the order of columns above. If, in
another application, you must change these numbers in your code to accommodate the insertion of another variable,
it’s best not to use this method (instead, go for named ranges for each cell).

Deleting a Selected Record
In this section, I’ll talk about how to delete a selected record. On the opening screen, I allow the user to select a record
from the list box to be deleted. Listing 7-7 shows the code to delete a selected record.

Listing 7-7.  The DeleteSelectedRecord Procedure.

Public Sub DeleteSelectedRecord()
 Dim CurrentSelectedIndex As Integer
  
 ' Assign the currently selected index to CurrentSelectedIndex
 CurrentSelectedIndex = [Database.CurrentIndex]
 
 ' Move the ListBox Selector
 If [Database.CurrentIndex].Value = [Database.RecordCount] Then 'Last item on the list
 [Database.CurrentIndex].Value = [Database.CurrentIndex].Value - 1
 End If
  
 ' Delete the entry
 Database.ListObjects("Database").ListRows(CurrentSelectedIndex).Delete
End Sub
 

The code is fairly straightforward. You use the CurrentIndex to find the row location of the record you want
to move. All you need to do is simply delete that row to remove it. The conditional in Listing 7-7 tests whether the
selector is pointing to the last record in the table. If it is, you need to point it to the record that comes right before it
since you’ll be deleting that record. If you did not do this, CurrentIndex would continue to point to a record that no
longer exists. You can see the problem this would cause by placing the selector on the last item in the list box. If you
press Delete, the record is removed. If you pressed Delete again, an error would occur since the selector would point
to a row location that is now greater than the total count of rows in the list.

Linking the Column of Country Names to the Form Control ListBox
In this section, I’ll talk about how to automatically fill the list box with the list of country names from your backend
database. Unfortunately, this is less straightforward than one might think. The problem stems from the ListBox’s inability
to accept a direct reference to the backend database. You might think you could just type Database[Country Name] into
the Input Range of the form control’s properties (refer to Figure 7-18). But doing this will generate a list box of blank
data. Therefore, you need to create a dynamically sized named range using good ol’ fashioned functions.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Storage Patterns for User Input

133

Look back at Figure 7-18, and you can see you’ve specified the named range Database.CountryNameList. Let’s
take a look at its formula.
 
=INDEX(Database[Country Name],1):INDEX(Database[Country Name],Database.RecordCount)
 

In previous chapters, I talked about creating dynamically sized functions such as these. The range operator
(the colon) is what makes this formula work so seamlessly. Let’s look at Figure 7-20 while attempting to go through
this function. The left side of the function INDEX(Database[Country Name],1) will always return the first record in
the Country Name column of your table—cell B9 in Figure 7-19. The right side, INDEX(Database[Country Name],
Database.RecordCount), will always return the last record in the table—cell B14 in Figure 7-20. Remember that Excel
treats what INDEX returns as a cell reference, so behind the scenes Excel constructs the range B9:B14 on the fly based
on this formula. If you added a record, Excel would construct the effective range B9:B15 on the fly.

Figure 7-20.  Dynamic formulas help you construct this dynamic range on the fly

Looking back to Figure 7-16, it’s a matter of simply linking the ListBox’s input Range to this dynamic range.
The final button on the opening menu takes users to the analysis page. I’ll go over that in more detail in the next

two chapters. In the meantime, look at the excerpted code in Listing 7-8. (Note this code is located in the Welcome
sheet object.)

Listing 7-8.  The GoToAnalysis Procedure

Public Sub GoToAnalysis()
 Analysis.Activate
End Sub

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Storage Patterns for User Input

134

Wizard Summary Buttons
Now let’s focus on the buttons that appear in the third, summary view of your wizard (see Figure 7-21). In this section,
you’ll go through each of these buttons. Here’s a quick summary of what they do:

•	 Save, and Start New: Saves the current input and begins a new record from page 1
of the wizard.

•	 Save, and Go Back To Menu: Saves the current record and returns the user to
the menu screen.

•	 Cancel: Does nothing with the current record and simply returns the user to the menu screen. 

Figure 7-21.  The summary view of your wizard

In this section, you’ll go over the Save, and Start New and the Save, and Go Back to Menu buttons.
Listings 7-9 and 7-10 show their code, respectively.

Listing 7-9.  The SaveAndStartNew Procedure

Public Sub SaveAndStartNew()
 Dim CurrentIndexOfRecord As Integer
  
 CurrentIndexOfRecord = [Database.CurrentIndex].Value
 If CurrentIndexOfRecord = -1 Then
 Wizard.SaveNewRecord
 Else
 Wizard.SaveSelectedRecord (CurrentIndexOfRecord)
 End If
 Database.SortCountryNames
 Wizard.InsertNewRecord
End Sub 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Storage Patterns for User Input

135

Listing 7-10.  The SaveAndGoBackToMenu Procedure

Public Sub SaveAndGoBackToMenu()
 Dim CurrentIndexOfRecord As Integer
  
 CurrentIndexOfRecord = [Database.CurrentIndex].Value
 If CurrentIndexOfRecord = -1 Then
 Wizard.SaveNewRecord
 Else
 Wizard.SaveSelectedRecord (CurrentIndexOfRecord)
 End If
 
 Database.SortCountryNames
 Wizard.GoToMenu
End Sub
 

Notice that both of these procedures perform the same functions. First, they test if the Current Index is -1. Again,
you know if it’s -1 you’re dealing with a new record. Therefore, you call SaveNewRecord (Listing 7-4, from earlier in
the chapter). Otherwise, you’re dealing with a record that already exists. In that case, you call SaveSelectedRecord
(Listing 7-11).

Listing 7-11.  The SaveSelectedRecord Procedure

Public Sub SaveSelectedRecord(RecordIndex)
 Dim SelectedRowOfData As Range
  
 ' Assign SelectedRowOfData to the index in the database
 ' corresponding to the record we're editing
 Set SelectedRowOfData = Database.ListObjects("Database").ListRows(RecordIndex).Range
  
 ' Assign the updated entries back to the selected row
 SelectedRowOfData.Value = [Database.InputEntry].Value
End Sub
 

The SaveSelectedRecord procedure works similarly to that of SaveNewRecord. However, because the record
already exists on the table, you need not doing anything additional except set the values in the row location to those of
the Input Entry table.

Returning to Listing 7-9 and 7-10, both procedures call the Database.SortCountryNames (Listing 7-12). As you
make updates to the table, you want to keep the integrity of an alphabetical sort. Here, you use a simple command to
the table to resort the data using the CountryName column. Note this procedure is actually in the Database sheet object
(which is why you use Database.SortCountryNames).

Listing 7-12.  The SortCountryNames Procedure

Public Sub SortCountryNames()
 Me.ListObjects("Database").Sort.SortFields.Add Key:=[Database[Country Name]]
End Sub
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Storage Patterns for User Input

136

Finally, returning once again to Listings 7-9 and 7-10, you see two both procedures differ with respect to their
last line of code (which I’ve bolded). In Listing 7-9, you want to start the wizard over and insert another record. So you
call InsertNewRecord (Listing 7-5). On the other hand, Listing 7-10 takes you back to the menu, so you call GoToMenu
(Listing 7-13). Likewise, the Cancel button shown in Figure 7-21 calls GoToMenu directly.

Listing 7-13.  The GoToMenuProcedure

Public Sub GoToMenu()
 Welcome.Activate
End Sub

The Last Word
In this chapter, you built upon the wizard from the previous chapter. You developed a backend database system that
works seamlessly when complete. Whenever available, you let Excel do the work for you—by using formulas and
features inherent to Excel’s tables. You also used quite a bit of code, but you were careful to make your code simple
and readable. Specifically, you avoided using code for everything. By creating a proper balance between code,
formulas, and features, you’ve built the beginnings of a robust Excel application. And that’s thinking outside the cell.

www.it-ebooks.info

http://www.it-ebooks.info/

137

Chapter 8

Building for Sensitivity Analysis

In the previous chapters, you investigated a wizard that could take in and store user input. In this chapter, you’re going
to create a dashboard that allows you to perform sensitivity analysis based on the metrics described in the previous
chapter. Figure 8-1 provides a preview of what’s to come.

Figure 8-1.  Analysis of alternatives decision support system

The tool shown in Figure 8-1 allows you to do many things quickly and efficiently, much of it with only a small
amount of VBA code. As you’ll see, many of the mechanics are driven by Excel’s built-in functions, like conditional
formatting and formulas. The correct combination between formulas and code here is key. It’s what allows you to
make instantaneous updates to the data without the need of a “recalculate” button.

But before you do anything, let’s return to the metrics described in the previous chapter. See Table 8-1.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Building for Sensitivity Analysis

138

The weights described herein are in fact the same weights the World Health Organization used in its original
study. However, as mentioned in the previous chapter, the data you have is notional and the countries are fakes
(I mean, they don’t even sound like real county names!).

Weighted Average Models
The metrics and weights form the basis of what’s called a weighted average model, which I’ll talk about in this section.
It’s called a weighted average because the metrics are not all of equal weight (otherwise, they’d all be 20%). To see how
the whole thing works, let’s take a look at the following two countries, Acoaslesh and Afon, shown in Table 8-2.

Table 8-1.  Metrics Used by the World Health Organization’s Study

Metric Description Weight

Health Level Measures life expectancy for a given country. 25.0%

Responsiveness Measures factors such as speed to health service, access to doctors, et al. 12.5%

Financial Fairness Measures the fairness of who shoulders the burden of financial costs in a country. 25%

Health Distribution Measures the level of equitable distribution of healthcare in a country. 25%

Responsiveness Distribution Measures the level of equitable distribution of responsiveness defined above. 12%

100%

Source: The World Health Report 2000 - Health Systems: Improving Performance (www.who.int/whr/2000/en/)

Table 8-2.  The Results for Two Countries, Acoaslesh and Afon

Country Health Level Responsiveness Financial Fairness Health Distribution Responsiveness Distribution

Acoaslesh 2 2 1 8 10

Afon 4 2 4 2 3

As you will recall, each of these countries is scored out of 10. So, for Acoaslesh, 2 is a considerably low score given
that 10 is the highest. On the other hand, a 10 for Responsiveness Distribution is the best possible score. To find the
total health level (that is, the weighted average score) for Acoaslesh, you would compute as follows:
 
= [(Health Level Score/10 * Health Level Weight) +
 (Responsiveness Score/10 * Responsiveness Weight) +
 (Financial Fairness Score/10 * Financial Fairness Weight) +
 (Health Distribution Score/10 * Health Distribution Weight) +
 (Responsiveness Distribution Score/10 * Responsiveness Distribution Weight)] * 100
= [(.20 * 12.5%) +
 (.20 * 25.0%) +
 (.10 * 25.0%) +
 (.80 * 25.0%) +
 (1.00 * 12.5%)] * 100
 

= .425 * 100 = 42.5.

 

www.it-ebooks.info

http://www.who.int/whr/2000/en/
http://www.it-ebooks.info/

Chapter 8 ■ Building for Sensitivity Analysis

139

So for Acoaslesh, the overall health score is .425, where 1 is now the best score. That process of taking the scores
and making them proportionate to the scale of 0 to 1 is called normalization.

Sometimes it’s easier to understand these final scores as being out of 100 instead. So let’s scale .425 to be 42.5 by
multiplying the result by 100. Whether you choose .425 or 42.5, both answers are correct. It’s up to you how you want
to present the numbers to your audience.

Likewise, you can perform the same calculations for Afon.
 
= [(.40 * 12.5%) +
 (.20 * 25.0%) +
 (.40 * 25.0%) +
 (.20 * 25.0%) +
 (.30 * 12.5%)] * 100
 

= 28.8

 
By scaling to 100, you make the perfect score any country could get 100 (again, if you don’t scale, the perfect score

is 1). You can see this yourself by assuming perfect 10s across the board and doing the calculations. When you do this
for each country, you’ll come up with a list like the one below. This allows you to say the countries ranking higher are
better performers according to your model than the ones below (Figure 8-2).

Figure 8-2.  A rank of country performance based on the weighted average model

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Building for Sensitivity Analysis

140

Note■■  T he statistician George E. P. Box once remarked, “All models are wrong, some are useful.” You should always
remember models are simplifications (sometimes even gross over-simplifications) of reality. By their nature, they cannot
capture everything. Indeed, this was a criticism of the World Health Organization regarding the these metrics; some
argued that other factors were not correctly captured or weighted. Therefore, it’s important to be specific when discussing
model results. Rather than assert the validity of the results as being unequivocal truth, remember they are the product of
a series of assumptions.

Sensitivity Analysis on a Weighted Average Model
In this section, I’ll talk about sensitivity analysis with respect to the weights for a given country. The weighted sum model
presented is used to evaluate many different countries. Broadly, you’re simply investigating a resultant list of countries
whose scores follow directly from the importance of each metric (given by its weight) in your model. As such, you may
want to investigate how changing the importance of inputs impacts overall scores. This is called sensitivity analysis.

One-Way Sensitivity Analysis
One simple, if powerful, sensitivity analysis method is to vary only one weight at a time while maintaining the
proportional importance of the other weights. This is called one-way sensitivity analysis and it works like this. Let’s
say you want to see what happens if you increase Health Level by 4%. First, let’s divide the weight into two theoretical
groups (Figure 8-3).

Figure 8-3.  The weights split into two groups based upon which weights you want to change and which you
want to maintain

The rule here is that each group must always sum to 100%. So, if you add 4% to Health Level, you have to subtract
it from the other group (see Figure 8-4).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Building for Sensitivity Analysis

141

Now that the overall sum of the “other group” has changed, the weights that make up that group are adjusted
while maintaining the same proportion to the group’s sum as they did before. In this next stage, you find the new
proportions for the group you want to maintain (Figure 8-5).

Figure 8-4.  If you add 4% to one group, you must remove it from the other

Figure 8-5.  Finding the new proportions for the group you want to maintain

In the next step, you multiply each calculated proportion by the new group weight (Figure 8-6).

Figure 8-6.  Multiply the new proportions by the new group weight

Finally, you reassign the new weights to their metrics (Figure 8-7). If you add all the weights together, they now
once again sum to 100%.

Figure 8-7.  New metrics weights

In this chapter, I’ll talk about how to build this mechanism into your spreadsheet. I’ve devised a method that I
call Easy One-Way Sensitivity Analysis. You’ll be surprised how easy it is to implement into your application. Indeed,
you can take advantage of Excel’s form controls to help you do much of the heavy lifting. That said, there are a few
limitations with this method, and I’ll go over them in this chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Building for Sensitivity Analysis

142

Creating a Linked Values Table
In this section, I’ll describe how to create the Easy One-Way Sensitivity Analysis mechanism and implement it in
the spreadsheet application from the previous chapter. If you upload Chapter8Wizard.xlsm, we’re starting on
the Helper tab.

In Figure 8-8, I’ve placed five scroll bar form controls onto the spreadsheet, one for each metric. I’ve then linked
each scroll bar to a cell on the right of each metric under the column Linked Value. Just for clarification, the left-most
scroll bar links to cell B5, and the right-most links to cell B9. As you can see in Figure 8-3, the middle scroll bar is linked
to Financial Fairness, B7.

Figure 8-8.  Setting the scrollbars to the their linked cells

For each scroll bar, I’ve set its minimum value to 1 and its maximum value to 100. Figure 8-9 shows an example.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Building for Sensitivity Analysis

143

Recall from previous chapters how form control scroll bars work. The more you scroll down, the greater the
number in the linked cell. While there’s nothing wrong with that per se, it’s counterintuitive for some users. For your
purposes, you’d like the action of scrolling up to actually increase the resulting value and scrolling down to decrease.
So you need to adjust the values on the spreadsheet to reflect this preference.

Insert another column next to Linked Values and call it Adjusted Values. In each cell next to the linked
values, you’ll take the scroll bar’s value and subtract it from 100 (the max value of the scroll bar). Figure 8-10 shows
this formula.

Figure 8-9.  Each scroll bar has a minimum of 1 and a maximum of 0. Right-click the scroll bar and select format
control to see this property window

Figure 8-10.  Now, as you scroll down, the Adjusted Value decreases. As you scroll up, the Adjusted Value increases

Next, you need to add to find the grand total of all the adjusted values. You can do that by adding a SUM cell at the
bottom of the Adjusted Value column (see Figure 8-11).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Building for Sensitivity Analysis

144

Figure 8-11.  Use the SUM function to the find the total of adjusted values

Figure 8-12.  Find the final weight by dividing each adjusted value by the total adjusted value

Figure 8-13.  No matter what values are assigned to the scroll bar, the final weights will always add up to 100%

Now you want to come up with the proportion each metric’s adjusted value has to the overall total. To do that,
you simply need to divide each adjusted value by the total adjusted value sum, as shown in Figure 8-12.

And that’s it! If you play around with the scroll bars, you can change the weights as much as you want. The final
weight will always equal 100%! Figure 8-13 shows an adjustment to the scroll bar assigned to Health Level.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Building for Sensitivity Analysis

145

Linking to the Database
You’re now interested in how you can link the one-way sensitivity analysis mechanism back into the database.
The first thing you want to do is give each of these weights a name. Figure 8-14 shows them named following my
usual conventions.

Figure 8-14.  Each final weight is named in the Linked Values table

In the Database tab, I’ve added a few extra columns that reflect the operations you must do for each metric for
each country in your list (see Figure 8-15). Across the top of the new columns, I’ve included a reference to the actual
weight values for each metric. This isn’t technically necessary, as you’ll see. However, I think it provides a good
reference into understanding the calculations. Anything you can do to make your work easier to understand when you
come back to it is, in my opinion, always worthwhile.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Building for Sensitivity Analysis

146

Tip■■  Y ou should develop with the future in mind. Ask yourself, will you understand what’s going on when you come
back to your spreadsheet having not seen it in three months?

Note that each of the new columns corresponding to the metrics now has “(weighted)” added to the name. This
is because these columns represent the individual scores divided by 10 and multiplied by their corresponding weight
on the Helper tab. Figure 8-16 shows the formula used for Health Level (weighted).

Figure 8-15.  The weights across the top correspond to the weights you developed on the Helper tab

Figure 8-16.  Each weighted column takes the original scored value, divides it by ten, and then multiplies it by its
respective weight from the Helper tab

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Building for Sensitivity Analysis

147

Finally, the Total column is simply the sum of all weights (see Figure 8-17).

Figure 8-17.  The Total column is simply the sum of all the weighted scores

You may not have realized it, but you’ve just built the infrastructure for one-way sensitivity analysis! If you go
back to the descriptions of weighted average models and one-way sensitivity analysis from the beginning of this
chapter, you’ll see that you’ve re-created the algebra step-by-step.

Building the Tool
In this section, I’ll talk about what the new tool does and how to build the functionality. I’ll be going piece by piece, so
let’s get started.

Getting to the Backend, the Intermediate Table
As you know, I’m a huge fan of intermediate tables. We almost always need to transform (that is, do something to)
the data before presenting it to the user. Obviously, where you place your intermediate tables is up to you. For many
projects, I prefer placing them on a new tab. But sometimes when dealing with something that’s complicated, I like to
place the table in the same worksheet tab as the decision support system or dashboard. That’s what I’ve done here.

If you look at the Analysis tab in your file, you’ll see that the rows beyond 28 are hidden. That’s because your
intermediate table is somewhere in the hidden rows. So the first thing you’ll want to do is unhide all rows to get a peek
at the intermediate table. The easiest way to do that, in my opinion, is to click the grey triangle at the upper left of your
worksheet to select everything (of course, there’s always CTRL+A). Then from on the Home tab, go to Format ➤ Hide
& Unhide ➤ Unhide rows. Figure 8-18 shows these steps.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Building for Sensitivity Analysis

148

The intermediate table is shown in Figure 8-19.

Figure 8-18.  Steps to unhide rows

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Building for Sensitivity Analysis

149

What each element of this table does may not be immediately clear. In the next few sections, I’ll go through
the functionality of the dashboard. You will see where those functionalities tie in directly to the items on the
intermediate table.

Scrolling Capability
In this section, I’ll talk about how you achieve this scrolling capability. Recall the dynamic table built previously.We
want the same functionality here. Hopefully, by now you’re very familiar with the scroll bar (maybe even be sick of it!).
In this current example decision tool, you will again use this dynamic.

As Figure 8-20 shows, you’ve simply inserted a new scroll bar into the sheet and linked it to the cell adjacent to
Scrollbar Value. This cell contains the current value of the scroll bar.

Figure 8-19.  The intermediate table

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Building for Sensitivity Analysis

150

As is typically the case for a scrolling table, the first cell in the table is always equal to the scroll bar value.
Each cell below it is then equal to one plus the cell above. Therefore, as the scroll bar changes, each cell below changes
in tandem. Figure 8-21 shows this conceptually. Figure 8-22 shows the actual formulas.

Figure 8-20.  The scroll bar for the table presented to the user is linked to a cell on your intermediate table

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Building for Sensitivity Analysis

151

Figure 8-21.  The scrolling table dynamic shown conceptually

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Building for Sensitivity Analysis

152

Notice that the index numbers from the visual presentation section of your tool are directly linked to the index
numbers from below the sheet (see Figure 8-23).

Figure 8-22.  Cells A34:A50 from above with only their formulas showing

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Building for Sensitivity Analysis

153

Adjusting the Scroll Bar
In this section, I’ll talk about making adjustments to the scroll bar. By default, all form control scroll bars start with a
minimum value of zero and go to 100. In your case, you’ll never use the zero, so you need to adjust the minimum to
always be 1. Another issue is that you expect the size of the list to change. The current example database has about
30 data items in it. But you need to accommodate an ever-changing range of data. The only instances in which you
expect the amount of entries to change is when you either add or delete a new item.

At the end of both the InsertNewRecord and DeleteSelectedRecord procedures I’ve added a call to SetScrollbarMax.
Listing 8-1 shows the code for this procedure.

Figure 8-23.  The intermediate table links directly to the visual presentation section

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Building for Sensitivity Analysis

154

Listing 8-1.  SetScrollbarMax

Private Sub SetScrollbarMax()
 If [Database.RecordCount].Value <= 20 Then
 Analysis.Shapes("Analysis.Scrollbar").ControlFormat.Enabled = False
 Else
 Analysis.Shapes("Analysis.Scrollbar").ControlFormat.Enabled = True
 Analysis.Shapes("Analysis.Scrollbar").ControlFormat.Max =
 [Database.RecordCount].Value - 20 + 1
 End If
  
 Analysis.Shapes("Analysis.Scrollbar").ControlFormat.Value = 1
End Sub
 

The code works like this: you have 20 entries you can display on the visual layer (that’s just the number I’ve
picked, but it may be different in your own work). When the record count is greater than 20, you always want the scroll
bar max to be 19 (one less than the total amount you’re showing) less than that total (the chapter on form controls
talks about why this is). On the other hand, if the RecordCount is less than 20, you won’t need the scroll bar at all so
you can just disable it. Finally, it’s always a good idea to reset the scroll position whenever there’s a change.

Formula-based Sorting Data for Analysis
In Figure 8-1, your decision support tool is sorting on total scores. (Recall that total refers to the values returned
for each country from your weighted model calculations). In the previous chapter, you sent a command to your
backend database table to sort each country by name. Considering the trouble you had in building the formula for
the list box that was required to connect to the table, sending a command to sort the table made sense. It was an
easy one-line operation.

However, in this case, you want to have the ability to sort on of any of the metrics, not just the total. But it
wouldn’t make sense to use VBA to sort the table directly as you did with the country names. Every time you change
the sort order of the table, you lose the alphabetical order required for the list box on the menu screen. You could
develop the capability to automatically sort the list box every time a user activates the menu screen, but why bother?
Because you’d then have to do the same for the analysis screen (re-sort by the last option selected by the user). Clearly
you need a way to sort on the data references in the backend table without changing its inherent sort order.

Tip■■  I t might help to think about the different sort types conceptually. The backend database is only sorted when
you’ve added or deleted a record. As such, its inherent state is always that of an alphabetical sort order—and you only
re-sort when changes to the underlying data are made to the table. On the other hand, here you’re doing work on top of
the data from that database to answer questions and investigate. Therefore, because you’re not changing any underlying
data, you want to leave the database sort order intact. In fact, it’s important you do as little to the underlying data as
possible lest you accidentally corrupt it.

Let’s take a look at Figure 8-24. The Sort Column Id input cell tells you which column you’re sorting. The
numbers to the right of the cell are the Id’s. For instance, if you’re sorting by the total, the number in Sort Column Id
is 6, consistent with what’s shown in Figure 8-24. If you want to sort on Health Level, Sort Column Id would be 1.
The dynamic is fairly intuitive.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Building for Sensitivity Analysis

155

You automatically find the Sort Column Id you’re interested in by using the Sort By dropdown box from the
visual portion of the tool. Figure 8-25 shows the dropdown from the dashboard.

Figure 8-25.  The Sort By dropdown box

Figure 8-26.  Health Level from the dropdown is matched to the column names below

Figure 8-24.  The Sort Column Id input cell and Id’s corresponding to each metric

The user response from the Sort By dropdown is used to lookup the correct Column Id, as shown in Figure 8-26.

You use the INDEX/MATCH dynamic to help you ultimately find the Id you’re interested in. Health Level is
matched to its location in the range E33:O33. Because it’s in the first cell, Excel returns a 1. You then supply the index
that matches its location (in this case, a 1) to the range above and pull out the number given by that matched location.
It’s like an HLOOKUP, but in reverse.

So let’s now jump back to your database. You have this new column that’s been added called the Analysis
Sort Column.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Building for Sensitivity Analysis

156

The Sort Column, Your New Best Friend
In this section, I’ll talk about using a sort column to help you sort data from multiple columns. Sort columns are
necessary for whenever you want the ability to sort different fields or metrics through the use of a single mechanism.
So let’s take a look at the formula from the first cell in the Analysis Sort Column in Figure 8-27.

Figure 8-28.  A selected row from within the database

Figure 8-27.  The first cell in the Analysis Sort Column in the database

The table expressions inside the INDEX may look confusing at first, so let’s only deal with the left-hand side of it
for now. The referent Database[@[Health Level (weighted)]:[Total]] is simply a row reference. Figure 8-28 shows
the row reference for the first cell. I talked about the Sort Column Id in the previous section, but here you get to see it
work its magic.

Based on the formula above, when Analysis.SortColumnId = 1, then the values from within Health Level
(weighted) are returned and placed into the Analysis Sort Column. When Analysis.SortColumnId = 2, the values
from within Responsiveness (weighted) are returned into the Analysis Sort Column. And so forth up to Total,
which is Analysis.SortColumnId = 6. If you take a look at Figure 8-21, you’ll see your Column Id line up perfectly.

For the sake of this example, let’s assume Total has been selected from the dropdown on the visual layer of the
Analysis tab. This would mean Analysis.ScoreColumnId = 6. So then you should expect the Analysis Sort Column
to have the same values as those of Total. But if you look at Figure 8-29, you’ll see the values in the Analysis Sort
Column are really similar but not exactly alike.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Building for Sensitivity Analysis

157

I’ll go into why they’re slightly off in a moment—and why you need them to be slightly off. (Hint, hint: it has to
do with the second half of the formula shown in Figure 8-27). But for now, you’re going to execute a method called
formula-based sorting. With formula-based sorting, you usually use either the LARGE or SMALL functions. Both of these
functions work similarly. The prototypes for the LARGE and SMALL functions are

LARGE(array, k) and SMALL(array, k)

In either function, you supply a series of numbers in the first argument. The second argument instructs Excel to
return the largest or smallest number in the list. For instance, LARGE(A1:A10, 2) returns the second largest number in
the list of numbers stored in cells A1:A10; SMALL(C1:C10, 4) returns the fourth smallest number in the list of numbers
stored in cells C1:C10. If you want to use these formulas to return a sorted a list of numbers from greatest to least, you
use LARGE and make the K=1 in the first cell; then use LARGE again and make K=2 for the next cell. For each cell, you
increment K until it equals the total size of the list.

Let’s jump back to the intermediate table. You’re now interested in the column with the heading starting
with Sort Column:. Figure 8-30 shows the formula for the heading. Note that it’s similar to the formula shown
in Figure 8-27. However, in that formula, you were interested each row of data. Here, you’re instead only in the
headers. This formula will always bring up the header of the current metric you’re interested in. You won’t really
use the column header for anything in the visualization layer, but when you have dynamic elements, it always helps
to keep track of what you’re looking at!

Figure 8-29.  Analysis Sort Column is set to sort on Total values, but notice that they are slightly different than
the values in the Total column

Figure 8-30.  The Sort Column always reflects the current header from within the database of the current column
you’re interested in sorting on

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Building for Sensitivity Analysis

158

Now you use the index list on the left of the Sort Column to return the greatest numbers in the list. Figure 8-31
shows the first cell in the Sort Column. As you can probably guess, when used supply the 1 to the LARGE function,
you’re returning back the first largest number in the entire column range Database[Analysis Sort Column]. In the
second row, you’re pulling back the second largest item; in the third row, you’re pulling back the third largest item;
and so forth. Figure 8-32 shows the formulas for the list.

Figure 8-31.  You use LARGE to create a sorted list from the data stored in the Analysis Sort Column from the database

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Building for Sensitivity Analysis

159

The Match Index Column, the Sort Column’s Buddy
You now have a sorted list of data. But the obvious question is to which country do these data points belong? Having a
list of sorted data tells you little if anything by itself. So now you’ll need to build a Match Index (again, this follows the
simple example from Chapter 6). The Match Index simply tells you the index location of where your sorted data points
are located back in your database.

Figure 8-33 shows the formula you use in the Match Index column. You simply match the adjacent value back
into the Analysis Sort Column. It’s important to remember the Analysis Sort Column isn’t sorted. Therefore, the
largest values are likely to be all over the place. As you see from Figure 8-33, the second largest value is in the 15th row,
the third in the 9th row, etc.

Figure 8-32.  The formulas return a sorted list

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Building for Sensitivity Analysis

160

And once you know the row location of where the total value has been matched, you can use that information to
look up the country name. Figure 8-34 shows the formula you use to look up the country name.

Figure 8-33.  The Match Index shows the index location each sorted value can be found back in its original column

Figure 8-34.  You simply use the Match Index to find the row location of the data you’re interested in

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Building for Sensitivity Analysis

161

And you can do the same with Health Level (Figure 8-35), Responsiveness, Financial Fairness, Health
Distribution, Responsiveness Distribution, and the Total. Everything displayed on the intermediate table uses
the Match Index column.

Figure 8-35.  Using the Match Index to find the current Health Level

Figure 8-36.  Pocor and Sauolia have the same score

Figure 8-37.  Focus on the second half of the Analysis Sort Column formula

You Have a “Unique” Problem
Using MATCH to look through the Analysis Sort Column works terrifically, assuming you have no duplicate values.
Remember, MATCH will always return the index of only the first instance of the matched item in a list. (MATCH does not
really care if there are other items in the list once it’s found the value it’s searching for.)

In Figure 8-36, notice that some total values do indeed repeat. In your ranking, they essentially form a tie.
However, unless you do something, MATCH will always find that first 41.3 and return that row location. So you need
some way to differentiate the first instance of 41.3 from all the instances that follow. And you do that by creating some
noise in the data.

Remember the second half of the formula in Figure 8-37? Let’s see it action (Figure 8-37).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Building for Sensitivity Analysis

162

The second half of that formula, [@[County Id]]/10000, simply adds an incredibly small amount to data
returned by INDEX function in the left-hand side of the formula. In Figure 8-37, you’re adding the amount 30/10000.
Since Country Id is always unique, you can be assured that even when you have totals that aren’t unique, once you
add this small amount the results will always be unique.

And remember, you only use the Analysis Sort Column from the database to help you find the locations of
certain rows. That is, it helps you find the Match Index. From there, you use the Match Index to find the location of the
information you’re interested in. The noisy data never makes its way onto your visual layer.

Seeing It Work Altogether
The scrolling and sorting mechanisms are now complete. In fact, you can see them working together. If you adjust
the scroll bar from in the visual layer, you’ll see the intermediate table change. Figure 8-38 shows the scroll bar
at value 19.

Figure 8-38.  Notice that the index now starts with 19

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Building for Sensitivity Analysis

163

Notice that the Sort Column Id now shows the number 2, reflecting the column you’re interested in sorting on.
And the Sort Column shows that you are sorting on Responsiveness (weighted). Your intermediate table now has a
different sort order than you had previously when you were sorting on the Total; however, you’ve made no changes to
the underlying data.

The Last Word
In this chapter, I talked about the type of analysis you will be performing on your data. You created the infrastructure
to easily apply one-way sensitivity analysis. Further, you used formulas to create a robust sorting mechanism that can
sort more than one type of metric. Finally, you used the form control Scroll Bar so you don’t have to show all the data
all at once. This work builds on what’s been completed in previous chapters.

In the next chapter, you’ll build the visual layer in full.

Notice your table now shows the country ranked in the 19th place in terms of its overall total score. Figure 8-39
shows what happens when you change the Sort By to Responsiveness.

Figure 8-39.  Responsivness is now the sort factor

www.it-ebooks.info

http://www.it-ebooks.info/

165

Chapter 9

Perfecting the Presentation

In the previous chapter, you learned to build the intermediate table, which deals largely with transforming the raw data
from the backend database. The presentation or visual layer, on the other hand, deals largely with what the user sees.

In this chapter, you’ll focus on the visual layer as well as its interaction with the intermediate table. Just as
before, the focus here is to create a lightweight infrastructure that isn’t heavily steeped in code. You’ll be using the file
Chapter9Wizard.xlsm for this chapter. I recommend having it open as you follow along.

Implementation and Design of the Weight Adjustment System
In this section, I’ll talk about implementing the weight adjustment system, shown in Figure 9-1. You’ll find this across
the top of your Analysis screen.

Figure 9-1.  The weight adjustment system

Each box is simply connected to the associated weight on the Helper tab. Figure 9-2 shows the connection to
Health Level. Note that each metric follows suit.

Figure 9-2.  Each weight box is connected directly to the associated weights from on the Helper tab

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Perfecting the Presentation

166

Likewise, the scroll bars here are exactly like the ones on the Helper tab you built in the previous chapter
(Figure 9-3). However, I don’t recommend copying and pasting those scroll bars from the Helper tab and placing them
on this tab. Scroll bars are usually set to relative references. If you copy and paste the scroll bars from the Helper tab,
Excel will try to change the same cell address on the Analysis tab. That’s not what you want.

Figure 9-3.  Properties for the scroll bar. Notice the cell link is the same as that of the scroll bars on the Helper tab

Figure 9-4.  I’ve moved the scroll bar to the side to show the column spacer

Your best bet is to insert each of these scroll bars manually. In Figure 9-4, you can see that I’ve left some space in
Column F between each weight box to provide a place for a scroll bar. I used a similar space between all the weight
boxes. This is similar to the process of anchoring described in Chapter 7.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Perfecting the Presentation

167

Next, enable the Snap to Grid feature by right-clicking or Ctrl+clicking the scroll bar. From the Format context tab,
pick Align and select Snap To Grid (see Figure 9-5).

Figure 9-5.  The Snap To Grid feature

The Snap to Grid feature will force you to align Excel’s cell grid. So if you size a spacer column as I did in Figure 9-4
in Column F, ensuring consistent alignment and size for each scroll bar is easy peasy. Of course, the “correct” size is
more art than science. To make my life easier, I like to design the first scroll bar spacer. Once I like the size, I right-click
the column and select column width to find out its size (Figure 9-6).

Figure 9-6.  Column width for column F

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Perfecting the Presentation

168

Displaying Data from the Intermediate Table
Now let’s talk about how to display data from the intermediate table. For the most part, it’s a one-to-one mapping.
That is, if you look at Health Level in the visual presentation, you can scroll down to see the data it is visualizing
directly underneath. They share the same column.

The are a few exceptions to this. Ideally, it would be great if all data items shared the same columns but
sometimes the way your data is laid out constrains this ideal. (Of course, as you can see from this, I always try to align
them as much as possible.) So let’s go through each item in the visual layer.

Results Information Label
This section talks about building the results information formula. Figure 9-8 shows the results of this formula.
The “7-26 of 39” means the results ranked from 7 to 26 are currently in view, out of 39 total possible items
available. The formula updates as the scroll bar changes (Figure 9-9).

Figure 9-7.  Selecting similar columns and setting their size all at once to ensure consistency

Figure 9-8.  The results information label shows the ranked items currently in view as well as the final total of items

Then I right-click every other similar column and set its size to be the same. As you can see in Figure 9-7,
1.71 is what I liked best, but you may differ. As you may have guessed, I did the same for the weight boxes.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Perfecting the Presentation

169

The formula uses the first ranked item in the list and the last ranked item in the list to define the range of
numbers in view. Database.RecordCount is used to show the total amount of records available for view (Figure 9-9).

Figure 9-9.  The results information label formula

The Current Rank of Each Country
The first item on the left is the current rank of each country shown. This value is pulled directly from the index created
in the intermediate table. Figure 9-10 shows how the rank and index connect.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Perfecting the Presentation

170

Country Name
In this section, you’re interested in the country name. Unlike the index, country name isn’t directly in the column
below. Again, when creating your own dashboards, remember that the intermediate table might not always be in the
same columns below. Figure 9-11 shows how each country is connected to the intermediate table below.

Figure 9-10.  The rank from the data visualization layer directly connects to the intermediate table

Figure 9-11.  Each country name directly links to the intermediate table below, but it’s not in the same column

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Perfecting the Presentation

171

Total Scores for Each Country
This section will show you how to display the total scores for each country. Recall that the column representing total
scores is actually the last column on the right in the intermediate table. Note how this is different for your visual layer.
Figure 9-12 shows the connection.

Figure 9-12.  The Total score is one of the first columns in the visual layer and one of the last columns in the intermediate table

Let’s take a moment to look at the formula. I place parentheses around the total value as a means to downplay its
importance somewhat. (I’ll go over why near the end of the chapter.) Since I’m using the values in the Total cell in a
formula, I risk showing more decimal precision than required. Using the TEXT function, I’ve supplied a formatting rule
to ensure you also see everything to the right of the decimal and always one number to the right.

In-cell Bar Charts for All Metrics
The rest of the data items in your visual layer are in-cell bar charts. You can re-create small bar charts using the REPT
function and the pipe symbol. Figure 9-13 shows the formula as well as the best font selection for this type of chart. As
Figure 9-13 shows, Playbill size 10 is fairly reliable. Notice the cell it refers to is O34. This is the same cell referenced to
get the Total value in Figure 9-9.

Figure 9-13.  In-cell bar chart for Total

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Perfecting the Presentation

172

Figure 9-14 shows the connection for Health Level. It’s virtually the same function setup as that used for Total.
In this case, it refers to the Health Level metric from the intermediate table.

Figure 9-14.  Formula for in-cell bar charts for metric data

The in-cell bar charts for the rest of the metrics follow suit. Responsiveness, Financial Fairness, Health
Distribution, and Responsiveness Distribution all use the REPT function and link to their corresponding column
from the intermediate table.

You may be wondering what’s going on with that IFERROR. Why does it appear in the function? The answer is
because you need it. For one, you won’t always have at least 20 entries. If there are less than 20 entries, then you need
these cells to appear blank.

More importantly, however, is that you simply don’t know what lies ahead. You are using a rather simple
example here, so you’re unlikely to see any other types of errors. But that’s also shortsighted thinking. For example,
in my original formulation of this spreadsheet, when you reduced a weight to zero, the result was a #DIV/0 in that
metric’s column. I didn’t want the #DIV/0 error to show when the result should show nothing. Therefore, I used
the IFERROR function as shown above. While subsequent changes to the model make such an error unlikely, I’ve
kept it in just in case. However, I’m unconvinced that daring folks out there can’t figure out a way to create errors
I couldn’t foresee. Moreover, since the proliferation of errors in cells can seriously slow down a spreadsheet,
preventing them is important.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Perfecting the Presentation

173

Best Possible Comparisons
At the bottom of the of the visual layer I’ve included the best possible scores for each metric. This allows the user to
compare instantly the results against the best result. Since 100 is the best possible score, the formula for each of these
cells is always =REPT("|", 100) (see Figure 9-15).

Figure 9-15.  The formula for best possible comparisons

Figure 9-16.  The small lines under each weight box are progress meters

Weight Box Progress Meters
Under each weight box is a progress meter that shows works exactly like the in-cell bar charts. In the Figure 9-16, you
can see each small bar chart within a weight box.

Figure 9-17 shows the formula used for these bar charts. Notice the theme here. It’s essentially the same formula.
However, to make it appear smaller, I’ve just resized the row.

Figure 9-17.  The progress bars under each weight value are minified versions of the same bar chart formula
used previously

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Perfecting the Presentation

174

“Sort By” Dropdown and Sort Labels
In the last chapter, you built the infrastructure for sorting. In this section, I’ll talk about the visual elements that go
along with that sorting mechanic. One of the cool features of your sorting system is that you can use the Sort By
dropdown to select which metric you’d like to sort by. Once the user has made their selection, the corresponding
column label becomes bold and the down arrow appears next to it (see Figure 9-18).

Figure 9-18.  The Financial Fairness label becomes bold and a down arrow appears next to it

Figure 9-19.  The Data Validation dialog box showing the dropdown list you’ve created

Following the no-code theme, this mechanism requires no VBA. However, it is a mixture of several different
elements, which I’ll go through in the next few sections.

Dropdown Metric Selection
In this section, I’ll talk about the Sort By dropdown. It’s nothing more than a data validation list (Figure 9-19),
which you can insert into the spreadsheet from the Data tab. Generally, I don’t like to type the list source in directly.
However, the areas in which these selections appear on the spreadsheet do not appear in one contiguous region.
If you look at your current sheet, you’ll see that you don’t have one list of data where Total, Health Level, etc. appear
without any cells in between. If you were to link directly to these sources, there would be space in your dropdowns.
So typing the text in directly here works best even if it’s not preferred.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Perfecting the Presentation

175

Using Boolean Formulas to Define Which Metric Has Been Selected
Recall from the previous section that changes in the dropdown change the Sort Column Id. Since you selected
Financial Fairness in Figure 9-19, the Sort Column Id is a 3, as expected (Figure 9-20).

Figure 9-20.  Sort Column Id is equal to 3

At the bottom of Figure 9-20 is a line item that reads, “Is Sorted On?” This row highlights the row currently being
sorted on. Notice for all columns except for Financial Fairness, the value reads FALSE. For Financial Fairness,
the value reads TRUE. This is because you’re sorting on this metric. Figure 9-21 shows the formula you’re using
in this row.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Perfecting the Presentation

176

You’ll use this Boolean formula to perform conditional formatting and add the down arrow to each header.

Connecting Everything with Conditional Format Highlighting
In this section, you’ll put the finishing touches on each header by conditionally formatting the selected column
header as bold. This should hopefully feel somewhat familiar to you as it’s a reapplication of the Highlight mechanism
described in Chapter 4. (Remember, if you think of it as a reusable component, you can apply it to many different
spreadsheet applications.) Figure 9-22 shows the Conditional Formatting Rules Manager for cells E3:M3. Notice I’ve
applied conditional formatting rules to these column headers. You can see it for yourself by selecting cells E3:M3,
clicking on the Conditional Formatting dropdown box from the Home tab, and selecting Manage Rules.

Figure 9-21.  The Boolean formula used to test whether you’re sorting on a specific column

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Perfecting the Presentation

177

Let’s take a look at the conditional formatting rules behind the scenes. If you click on Edit Rule, you will see the
Edit Formatting Rule dialog box (Figure 9-23).

Figure 9-22.  The Conditional Formatting Rules Manager dialog box

Figure 9-23.  The Edit Formatting Rule dialog box

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Perfecting the Presentation

178

Note that I’ve selected “Use a formula to determine which cells to format.” In the “Format values where this
formula is true” rule type, I’m using the formula =(E54=TRUE). This formula is what allows you to change the style of
font of the sort column that’s been selected. In addition, notice that I’m not using the absolute cell reference E54.
That absolute cell reference is what appears by default. However, if you kept the absolute reference, it would only
test cell E54. Instead, you want the test for conditional formatting to happen across every cell in the range. You might
recall you built a similar dynamic in Chapter 4 in the “Conditional Highlight Using Formulas” section.

A QUICK NOTE ON ABSOLUTE REFERENCES AND CREATING
CONDITIONAL FORMAT RULES

If you select “Use a formula to determine which cells to format” as I have in Figure 9-23, you won’t start with
relative references by default. What that means is, if you were to set up this formula for the first time, and you
selected cell E54 from on the spreadsheet, it would look something like Figure 9-24.

Figure 9-24.  The Edit Formatting Rule dialog box uses an absolute reference by default

By default, all cells selected to populate the formula begin as absolute references. So the E54 in Figure 9-23
actually began as E54. You can change the absolute references manually by placing your cursor next to the
dollar signs and deleting them. Or, you can cycle through the references types by pressing F4 repeatedly. This is
similar to pressing F4 repeatedly in the formula box when writing a formula. In this case, if you press F4 three
times, you’ll arrive at the relative cell reference.

When you first set the cell, it’s sometimes easy to forget the step of removing the absolute reference when
it’s necessary.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Perfecting the Presentation

179

If you click the Format button (see Figure 9-24), you’ll be taken to the Format Cells dialog box. Here, you can
change the format of the cells whose sort column has been selected. For my formatting choices, I’ve selected a Bold
font style (Figure 9-25). I’ve stayed away from doing any other embellishments. You don’t want the selected header to
take away from the data visualization portion. Nor do you want it to overwhelm the visual field. If you’re not careful,
you can go crazy with the formatting options. Here I am being subtle and tasteful.

Figure 9-25.  Bold is selected in the Format Cells dialog box

This conditional formatting rule simply takes care of the metrics across the top. It doesn’t take care of Total,
which is not part of the same row. So you’ll need to make an additional rule just for the total. Remember, however,
what the Total row refers to is in a different column on the intermediate table. Take note in Figure 9-26: the rule is
set to test the cell in O45, which, unlike the other columns in the visual layer, is not directly below the Total on the
intermediate table.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Perfecting the Presentation

180

The mechanism to display the down arrow in the weight box headings uses the same row as the conditional
formatting. Let’s take a look at the formulas (Figure 9-27).

Figure 9-26.  An individual rule is required for the Total header

Figure 9-27.  The formula used for the weight box heading

The left-side of the formula, E33, simply refers to the column header from the intermediate table. But turn your
attention to the right side. The down arrow is given by the Unicode index number 9660. And we can display the
character with the UNICHAR function. REPT, as you might recall, lets you specify a character in the first argument and
the amount of times to repeat that character in the second argument. Here, you’ve specified that you want to repeat
the down arrow. E54 in the formula (the value of how many times you want to repeat the formula) points to TRUE
and FALSE. And, if you remember how Boolean functions work, TRUE = 1 and FALSE = 0. So each header uses this
formula. When the Is Sorted On row returns TRUE for the corresponding column, it displays the down arrow (it’s
being repeated 1 time).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Perfecting the Presentation

181

The Presentation Display Buttons
In this section, I’ll talk about the display buttons available to the user. The first takes the user back to the menu, and
the other resets the weights back to the original schema. Figure 9-28 shows these buttons placed adjacent to one
another. Your buttons in this case are nothing more than TextBox shapes with macros assigned to execute when the
user clicks one.

Figure 9-28.  The two buttons on your dashboard

Figure 9-29.  The Linked Value column shows the required scroll bar values to get to the original weights

Going Back to the Menu
The Back To Menu button is simple. It simply takes the user back to the Menu screen. It can be found in the sheet
object of the Analysis worksheet tab. Listing 9-1 shows all the code that’s required.

Listing 9-1.  The BackToMenu Procedure

Public Sub BackToMenu()
 Welcome.Activate
End Sub

Resetting the Weights
Because you’re performing sensitivity analysis, you expect the weights to change from their original scheme. Once
you’ve changed the weights, you might find you want to reset them back to the original scheme. Remember what
dictates the weights are the ratios of the values of the scroll bars. So, one way to create this weight scheme is with the
scroll bar linked value ratios shown in Figure 9-29 from the Helper tab.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Perfecting the Presentation

182

Below this table on the Helper tab is a column of data that says Saved Weights (Figure 9-30). Notice the values match
the exact values in the Linked Value column in Figure 9-29. I’ve named this column of data as Helper.SavedWeights.
Likewise, I’ve named the column of linked values in Figure 9-29 as Helper.LinkedValues.

Figure 9-30.  The scroll bar values that help you get to the correct weights

The Reset Button simply copies these saved values onto the linked values. Listing 9-2 shows the code, which can
be found in your file in the Analysis worksheet tab.

Listing 9-2.  The ResetWeights Procedure

Public Sub ResetWeights()
 [Helper.LinkedValues].Value = [Helper.SavedWeights].Value
End Sub
 

Think about this dynamic for a moment. Here you’ve saved only schema of weights. But you could save as many
weight scenarios as you’d like. It wouldn’t be hard to extend this model to have the user save a weight scheme they
like. Then later they could load the schema. All you would need is the simple code above to start.

Data Display and Aesthetics
In this section, I’ll focus a little bit on the nature of the data you’re displaying. In addition, I’ll talk about some of the
aesthetic choices, including color and spacing. You may have noticed that the nature of the Total data (column O in
Figure 9-31) is different than that of the metrics (columns E, G, I, K, and M in Figure 9-31). Specifically, the metric data
is all whole multiples of ten from 0 to 100, while the Total data can be any number from 0 to 100.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Perfecting the Presentation

183

Weighted vs. Not-Weighted Metrics
The reason the nature of the Total data is different from the metrics data is that the Total data is weighted whereas
the metric data is not (Figure 9-32). Responsiveness Distribution, for example, simply uses the formula
=INDEX(Database[Health Distribution],C34)*10 in its first row cell, where C34 is the Match Index. Note
Database[Health Distribution] isn’t a weighted column. You might be wondering why you display the weighted
Total but do not display the weighted metrics (note, however, you do use the weighted metrics for your sort even if
you don’t display the results). I’ll talk about that in this section.

Figure 9-31.  The intermediate table shows that the nature of the metric data differs from the total column

Figure 9-32.  You display the weighted Total but not weighted metrics

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Perfecting the Presentation

184

The answer is that displaying the weighted metrics wouldn’t do well to highlight the variances between metrics
for a single country nor within one metric across several countries. Figure 9-33 shows how the data visualization
changes when you use weighted values for the metrics.

Figure 9-34.  Responsivness and Financial Fairness result in the same score for Efros

Figure 9-33.  Using weighted values instead of raw scores

Your ability to compare values is much harder now. This is because each metric now has a different base against
which to compare a best possible score. Consider country Efros, which is ranked in the third position in Figure 9-32.
It’s performance in Responsiveness and Financial Fairness is, in fact, the same. But you wouldn’t glean this
immediately since the representation in Responsiveness is half that of Financial Fairness. Switching back to raw
values shows they are the same (Figure 9-34).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Perfecting the Presentation

185

Generally, we intuitively understand the concept of weighted models, especially when presented visually, as is
the case here. In fact, this type of data visualization helps you mitigate your own bias. One common phenomenon,
which I’ve experienced in my professional career, is the assumption that high performance in one (or two) metrics will
strongly compensate for shortcomings in the rest.

In my past, I delivered a similar tool to an organization that wanted to gain insight into the performance of its
different projects. Management’s assumption was that because two metrics had performed well, the project should
have ranked in the first or second spot. However, when presented with the tool above, they realized these two metrics
were not given high weights. Indeed, you can see an example of this in Figure 9-35.

Figure 9-35.  The top four performing countries by weight

Heiestan, for instance, ranks very well in Responsiveness Distribution. But that only makes up 12.5% of
the overall score. Similarly, the top performer, Foujan, doesn’t do well in Responsiveness Distribution, but that
deficiency is easily offset by a strong performance in more heavily weighted metrics.

Color Choices
I chose blue as my predominant color. That choice isn’t so important; I happen to like blue as color. (And it seems
to go well with Excel’s standard grey.) Whatever color choice you go with, it should be consistent, simple, and not
overwhelming. Here, your metrics make up the total score. Varying the hue of the original blue color gives the sense of
this part-to-whole relationship while similarly establishing that these metrics exist as their own measures.

Excel’s color choices have gotten significantly better in terms of varying hue. But I’ve found for more than three
metrics, the difference in color sometimes feels too strong. So for this decision support tool, I deferred my color
choices to the ColorBrewer tool (www.colorbrewer2.org) shown in Figure 9-36. With this tool, you can define what
type of data you’re looking at and how many data classes you have. In my case, I chose to use a sequential hue with
given data classes (based on my five metrics). ColorBrewer is a great tool to help you decide on a color palette for your
work. It can even suggest color-safe alternatives that will not cause issues for those with color blindness.

www.it-ebooks.info

http://www.colorbrewer2.org/
http://www.it-ebooks.info/

Chapter 9 ■ Perfecting the Presentation

186

Notice in Figure 9-36, there is a dropdown box displaying RGB. By default, this dropdown box will display the
Hex code color values often used for web development. However, to insert a custom color into Excel, you need to get
the Red, Green, and Blue (RGB) code values. So you’ll need to adjust that dropdown to say RGB.

Once you have the colors you like, you can simply type each color directly into Excel’s color picker. Excel will
remember these colors for later. An easy way to add these colors is to select an empty cell and then click the dropdown
button next to the Fill Color icon in the Font group on the Home tab. From there, select More Colors and then click the
Custom tab in the Colors dialog box that appears. You can now use those RGB code values to type in the custom color,
as I have in Figure 9-37.

Figure 9-36.  The ColorBrewer tool (www.colorbrewer2.org)

www.it-ebooks.info

http://www.colorbrewer2.org/
http://www.it-ebooks.info/

Chapter 9 ■ Perfecting the Presentation

187

Once complete, the color will be accessible from the recent colors section in the dropdown next to the Fill Color
icon (Figure 9-38).

Figure 9-37.  The Colors dialog box where you can add custom colors to the spreadsheet

Figure 9-38.  The Fill Color dropdown shows the custom colors that have been recently added to the spreadsheet

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Perfecting the Presentation

188

Data Spacing
I’ve similarly kept the table borders to a minimum. Here, however, I still want to channel the notion of separation.
Sometimes when there’s too much data bunched together, it’s hard to focus on any one data point.

Most folks, when faced with this problem, will create very strong, black borders. But a bold table border isn’t
needed here, and it would surely overwhelm more than it helps. Sometimes all that’s required is some added white
space. In Figure 9-39, I inserted a new row every five rows, and then, using the row sizing trick from above, I set them
all to be a consistent size. (The project file Chapter9WizardFinal.xlsm includes these extra rows as my “final” touch.)
There is one unfortunate drawback to this method: if you had to make a slight change to any of these columns, when
you drag down from the top, the extra rows would fill in with data. The intermediate table would also be misaligned,
having no spaces in it. One way around this problem is to simply add those rows to the intermediate table.

Figure 9-39.  Added white space every five rows creates some seperation in our minds as we compare data across
the spreadsheet

But I’m also not entirely against using borders. Another equally effective alternative is to add a light border every
five metrics or so. Figure 9-40 shows an example of this.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Perfecting the Presentation

189

Ultimately, the decision is up to you. There are many good ways (and innumerable terrible ways) you can help
the user better interpret and contextualize visualized data. Here you’re trying to optimize understanding of metric
performance and importance: performance in terms of individual scores and importance in terms of weight.
You should create your spreadsheet in a way that helps everyone understand both.

The Last Word
In this chapter, you perfected the link between your intermediate table and the visual layer. This included making
properly sized scroll bars and developing in-cell bar charts. You saw that many of the items used in this spreadsheet
application were not all that new. Instead, they were natural extensions of components built previously in this book.
Finally, you saw there’s a lot you can do with both code and formulas. Just as you attempt to achieve visual balance in
your data displays, so too should you attempt to find the correct balance of formulas and VBA. Pursuing this balance
is part of the journey.

But now that journey as come to an end. My hope with this book is that you learned how to do amazing things
with Excel. Many in the industry would argue we should no longer use Excel. Their experience with the spreadsheet
software is one of sluggishness, unpredictability, and application crashes. However, this book has showed that
complex products can be created in Excel that are fast, predictable, and safe.

Going forward, hopefully you’ll see how concepts in this book can be applied to your own work as reusable
components. It might take creativity on your part to apply these examples, but I have faith in your ability to do
so. Remember, the most important skill when building something truly amazing in Excel can’t be found in this or
any other book. Creativity comes from within. If you choose to be never satisfied with perceived limits, and have a
continued thirst to learn new things, there’s no telling what you can accomplish.

Now go, and create.

Figure 9-40.  Adding a slight border every five rows makes everything feel slightly less scrunched together

www.it-ebooks.info

http://www.it-ebooks.info/

A�       �
Active object, 27
Analysis sort column, 155
Anchoring controls

DisplayCheckboxes, 108
GoNext, 108
inserting check boxes and naming, 109–110
Predefined Anchor Region, check boxes, 111
range, 107
remove, check boxes, 109
underlying cell, 107

B�       �
Boolean concepts

chart filtering, 43
CHOOSE(), 43

Button control, 78

C�       �
CheckBox form control, 77, 90–91
ComboBox control, 71–73
Conditional expressions

CHOOSE, 41
nested IF statements, 39
simple nested IF statements, 40

Conditional formatting
absolute reference, 178
cell reference, 178
data visualization, 179
metrics, 179
Rules Manager, 177
weight box heading, 180

COUNTIFS functions, 63–64
Custom formats, input validation

converting, output from Wingdings 2 to Calibri, 100
insert symbol dialog box, 100

D�       �
Database information table, 126–127
Database table, 127
Data points, charts

Edit Series dialog box, 88
form control scroll bar, 87
TRANSPOSE function, 89

Dynamically sized ranges, 34–36

E�       �
Essentials of Excel development

ActiveX objects and UserForms, 3
“break every rule”, 5–6
description, 3
resources, 8
VBA code and formulas, 3
“when It makes sense, do more with less”, 5

Evaluate formula button, 32–33
Excel formula

Boolean values, 33
intersection operator (), 37
operators, in depth, 33
range operator (:), 34
union operator (,), 36

F�       �
Filtering with formulas

dashboard tab, 52
data table, 50
NPV column, 50
portfolio risk, 50
testing, 51

Form controls
and ActiveX, 68
CheckBox, 69
control room, 68

Index

191

www.it-ebooks.info

http://www.it-ebooks.info/

descriptions, 71
Slider ActiveX control, 68

Formula-based sorting, 157
Formulas

evaluate formula button, 32–33
F2, cell selection, 31
F9, calculation, 31

G�       �
Grade letter calculator, 47
GroupBoxes control, 80

H�       �
Highlighting using formulas

cells selection, 53
edit formatting rule dialog box, 54

Hungarian notation, 17–18

I, J, K�       �
IF statements, 39–41
Input entry table

cells, wizard, 123
conceptual visualization, 124
country Id, current index, 124
record, adding, 125
SaveNewRecord Procedure, 125

Input forms and Excel
ActiveX control, 96

named ranges, 97
simple input form, 97–98
spreadsheet, 97
visual validation formula, 98

UserForm, Microsoft’s Excel, 96
Intersection operator (), 37

L�       �
Label control, 79
ListBox control, 73–74
Loud comments

bold colors, 13–14
editor format dialog box, 13–14
markers, 13

M�       �
Macro dialog box, 24
Match Index column, 159–161
Microsoft’s .NET style guidelines, 3

N�       �
Naming convention system

Hungarian notation, 17–18
“loose” CamelCase notation, 18
named ranges, 18
sheet objects, 19–20

Normalization, 139

O�       �
One-way sensitivity analysis

advantage of Excel’s, 141
definition, 140
health level, 140
metrics weights, 141
proportions, 141
weights split, 140

Option Button controls, 80

P, Q�       �
Periodic table, elements, 7

R�       �
Range operator (:), 34
Reusable components, 64, 66
Rollover effect in Excel, 7

S, T�       �
Scrollable tables

array formula, 83–84
AVERAGE and INDEX functions, 85
Excel form controls, 81–83
Format Control dialog box, 85

Scroll Bar control, 75–76
Scrolling capability

actual formulas, 150, 152
conceptual presentation, 150–151
index numbers, visual presentation section, 152–153
scroll bar value, 149–150

Selection, formulas
axis labels selection box, 61
column headers, 56
data source dialog box, 59
dynamic chart, 60
index location, 57
LARGE function, 57
OFFSET, 59
project list tab, 56
project name column, 58

■ index

192

Form controls (cont.)

www.it-ebooks.info

http://www.it-ebooks.info/

Sensitivity analysis
adjusting the scroll bar, 153
alternatives decision support system, 137
backend, 147–149
formula-based sorting data, 154–155
intermediate table, 147–149
Match Index column, 159–161
metrics, 137–138
Pocor and Sauolia, 161
scrollbar at value 19, 162–163
scrolling capability, 149–153
second half of formula, 162
sort by to responsiveness, 163
sort column, 156–158
weighted average models, 138–147

Shorthand references, 21
Sort By dropdown and sort labels

Boolean formula, 176
conditional format, 176–178, 180
financial fairness, 174–175
metric selection, 174

Sort column
analysis in database, 156
first cell, 158
formulas, sorted list, 158–159
heading, 157
Match index column, 159–161
prototypes, 157

Spinner control, 77
Spreadsheet-based wizard, creation

additional instruction, views
anchoring, 106
series, check boxes, 106

anchoring controls, 107–109
components, 111
custom formats, 112
Helper tab

information, wizard, 103
named ranges, 104
track and display information, 104

INDEX, step-specific information, 113–114
introduction page, 101
layout patterns

mechanism, 102
named range manager, 103

moving between views, 106–107
survey, 101–102

Styles and principles
encapsulation, 29
Me object, 27
reset option, 28
worksheet tabs. See Worksheet tabs

SUMPRODUCT, aggregation, 61–62

U�       �
Union operator (,), 36
User input, storage patterns

control ListBox, 132–133
database, 122–123
database information table, 126
database table, 127
deleting selected record, 132
editing existing record, 129–132
input cell, 119, 121–122
input entry table, 123–124
input wizard, 117, 119
inserting a new record, 128–129
menu screen functionality, 128
spreadsheet file, design, 116–117
wizard summary buttons, 134–136
World Health Organization (WHO), 115

V�       �
VBA programming techniques

annoying popup error box, 12
distraction-free coding, 12
immediate window, 15–16
loud comments. See Loud comments
naming convention system.

See Naming convention system
option explicit, 16
principles, 11
procedures and macros, 21–22
readable font, 14
shorthand references, 21
styles and principles. See Styles and principles

Visual layer
ColorBrewer tool, 186
comparisons, 173
country name, 170
custom colors, 187
data spacing, 188–189
display buttons, 181–182
IFERROR function, 172
information label, 168–169
infrastructure, 165
intermediate table, 183
mapping, 168
meters, 173
ranking, 169–170
Red, Green, and Blue (RGB), 186
REPT function, 171–172
Responsiveness Distribution, 185
“Sort By” dropdown and

Sort Labels, 174–176

■ Index

193

www.it-ebooks.info

http://www.it-ebooks.info/

TEXT function, 171
Total cell, 171
weight adjustment system, 165–168
weighted vs. not-weighted

metrics, 183–185

W�       �
Weight adjustment system

anchoring, 166
column spacer, 166
column width, 167
Grid feature, 167
Health Level, 165
Helper tab, 166
scroll bars, 166

Weighted average models
Acoaslesh and Afon, 138–139
adjusted value, 143
definition, 138
linked values table, 142–144
linking to database, 145–147
normalization, 139
one-way sensitivity analysis, 140–141
rank of country performance, 139–140

WHO. See World Health Organization (WHO)
Worksheet object names, 21
Worksheet tabs, 22, 24–26
World Health Organization (WHO), 115

X, Y, Z�       �
XOR()-oh, 45–46

■ index

194

Visual layer (cont.)

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Excel
Essentials

Jordan Goldmeier

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Excel Essentials

Copyright © 2014 by Jordan Goldmeier

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.
Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material
supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the
purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the
Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from
Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are
liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4842-0735-2

ISBN-13 (electronic): 978-1-4842-0734-5

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion
and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified
as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may
be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: James DeWolf
Technical Reviewer: Fabio Ferracchiati
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Louise Corrigan, Jim DeWolf,

Jonathan Gennick, Robert Hutchinson, Michelle Lowman, James Markham, Matthew Moodie, Jeff Olson,
Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft, Gwenan Spearing, Matt Wade,
Steve Weiss

Coordinating Editor: Kevin Walter
Copy Editor: Mary Behr
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or
visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer
Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Special Bulk Sales–eBook
Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this text is available to readers at
www.apress.com. For detailed information about how to locate your book’s source code, go to
www.apress.com/source-code/.

www.it-ebooks.info

http://orders-ny@springer-sbm.com
www.springeronline.com
http://rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com
www.apress.com/source-code/
http://www.it-ebooks.info/

Dedicated to my lovely wife, Katherine, who, as an undergrad, failed her required remedial
Excel course three times

www.it-ebooks.info

http://www.it-ebooks.info/

vii

Contents

About the Author��xiii

About the Technical Reviewer��� xv

Acknowledgments��� xvii

Part I: Core Advanced Excel Concepts■■ ��� 1

Chapter 1: Introduction to Advanced Excel Essentials■■ ���3

What to Expect from this Book���4

Example Files Used in This Book�� 4

The Two Most Important Principles��4

When It Makes Sense, Do More with Less�� 5

Break Every Rule�� 5

Available Resources���8

Google��� 8

Chandoo�� 8

Cleary and Simply��� 8

Contextures�� 8

Excel Hero��� 8

Peltier Tech��� 8

The Last Word���9

Chapter 2: Visual Basic for Applications for Excel, a Refresher■■ ���������������������������������������11

Making the Most of Your Coding Experience��11

Tell Excel: Stop Annoying Me!��� 12

Make Loud Comments�� 13

Pick a Readable Font�� 14

www.it-ebooks.info

http://www.it-ebooks.info/

■ Contents

viii

Start Using the Immediate Window, Immediately��� 15

Opt for Option Explicit��� 16

Naming Conventions��17

Hungarian Notation��� 17

“Loose” CamelCase Notation��� 18

Named Ranges��� 18

Sheet Objects��� 19

Referencing��20

Shorthand References�� 21

Worksheet Object Names��� 21

Procedures and Macros�� 21

Development Styles and Principles��22

Strive to Store Your Commonly Used Procedures in Relevant Worksheet Tabs�� 22

No More Using the ActiveSheet, ActiveCell, ActiveWorkbook, and Selection Objects��� 27

Render Unto Excel the Things that are Excel’s, and Unto VBA the Things that Require VBA�������������������������������� 28

Encapsulating Your Work�� 29

The Last Word���29

Chapter 3: Introducing Formula Concepts■■ ��31

Formula Help��31

F2 to See the Formula of a Select Cell��� 31

F9 for On-Demand and Piecewise Calculation��� 31

Evaluate Formula Button�� 32

Excel Formula Concepts���33

Operators, in Depth��� 33

The Range Operator (:)�� 34

The Union Operator (,)��� 36

The Intersection Operator ()��� 37

When to Use Conditional Expressions��39

Deceptively Simple Nested IF Statements�� 39

CHOOSE Wisely��� 41

Why This Discussion Is Important��� 41

www.it-ebooks.info

http://www.it-ebooks.info/

■ Contents

ix

Introduction to Boolean Concepts��42

Condensing Your Work�� 44

The Legend of XOR( )-oh��� 45

Do We Really Need IF?���46

The Last Word���48

Chapter 4: Advanced Formula Concepts■■ ��49

Filtering and Highlighting���49

Filtering with Formulas��� 49

Conditional Highlighting Using Formulas�� 53

Selecting��55

Aggregating��61

Using SUMPRODUCT for Aggregation��� 61

You’re About To Be FOILed!��� 63

Reusable Components���64

The Last Word���66

Chapter 5: Working with Form Controls■■ ���67

Welcome to the Control Room��68

Form Control Fundamentals���69

The ComboBox Control��� 71

The ListBox Control��� 73

The Scroll Bar Control��� 75

The Spinner Control�� 77

The CheckBox Control�� 77

The Least Favorites: Button, Label, Option Button, and GroupBox Controls��� 78

Creating Scrollable Tables��81

Highlighting Data Points on Charts���87

The Dynamic Legend��90

The Last Word���92

www.it-ebooks.info

http://www.it-ebooks.info/

■ Contents

x

Part II: A Real World Example■■ �� 93

Chapter 6: Getting Input from Users■■ ���95

Of Input Forms and Excel���95

A Simple Input Form��� 97

Custom Formats for Input Validation�� 99

Creating a Spreadsheet-Based Wizard���101

Layout Patterns for the Spreadsheet-Based Wizard��� 102

The Helper Tab�� 103

Moving Between Views��� 104

Views That Require Additional Instruction�� 106

Components That Provide Information��� 111

The Last Word���114

Chapter 7: Storage Patterns for User Input■■ ��115

The World Health Organization: An Applied Example��115

Design of Your Spreadsheet File��� 116

The Input Wizard��� 117

Setting Focus to the First Input Cell��� 119

The Database���122

Input Entry Table��� 123

Database Information Table�� 126

The Backend Database Table�� 127

Menu Screen Functionality���128

Inserting a New Record�� 128

Editing an Existing Record�� 129

Deleting a Selected Record�� 132

Linking the Column of Country Names to the Form Control ListBox�� 132

Wizard Summary Buttons���134

The Last Word���136

www.it-ebooks.info

http://www.it-ebooks.info/

■ Contents

xi

Chapter 8: Building for Sensitivity Analysis■■ ���137

Weighted Average Models��138

Sensitivity Analysis on a Weighted Average Model��140

One-Way Sensitivity Analysis��� 140

Creating a Linked Values Table��� 142

Linking to the Database�� 145

Building the Tool���147

Getting to the Backend, the Intermediate Table�� 147

Scrolling Capability��� 149

Adjusting the Scroll Bar�� 153

Formula-based Sorting Data for Analysis��� 154

The Sort Column, Your New Best Friend��� 156

The Match Index Column, the Sort Column’s Buddy��� 159

You Have a “Unique” Problem�� 161

Seeing It Work Altogether��� 162

The Last Word���163

Chapter 9: Perfecting the Presentation■■ ��165

Implementation and Design of the Weight Adjustment System���165

Displaying Data from the Intermediate Table���168

Results Information Label��� 168

The Current Rank of Each Country��� 169

Country Name��� 170

Total Scores for Each Country�� 171

In-cell Bar Charts for All Metrics�� 171

Best Possible Comparisons�� 173

Weight Box Progress Meters�� 173

“Sort By” Dropdown and Sort Labels���174

Dropdown Metric Selection�� 174

Using Boolean Formulas to Define Which Metric Has Been Selected��� 175

Connecting Everything with Conditional Format Highlighting�� 176

www.it-ebooks.info

http://www.it-ebooks.info/

■ Contents

xii

The Presentation Display Buttons��181

Going Back to the Menu��� 181

Resetting the Weights��� 181

Data Display and Aesthetics���182

Weighted vs. Not-Weighted Metrics��� 183

Color Choices�� 185

Data Spacing�� 188

The Last Word���189

Index��191

www.it-ebooks.info

http://www.it-ebooks.info/

xiii

About the Author

Jordan Goldmeier is a management consultant, author, educator, producer, and
Microsoft MVP. He is the owner of Cambia Factor (www.cambiafactor.com), a data
consulting agency, where he challenges companies and institutions to rethink
how they collect, work with, and interpret data. He has provided spreadsheet-
based decision support services to the NATO Training Mission in Afghanistan, the
Pentagon, Navy, Air Force, and Army as well as training and consultation to private
financial institutions in big data analytics and data visualization. Outside of work,
Jordan is a producer for and host of Excel.TV, a web series dedicated to talking to
and learning from Excel experts. Jordan also loves grilling, smoked meats, and all
things BBQ. He lives in Dayton, Ohio with his wife.

www.it-ebooks.info

www.cambiafactor.com
http://www.it-ebooks.info/

xv

About the Technical Reviewer

Fabio Claudio Ferracchiati is a senior consultant and a senior analyst/developer using Microsoft technologies.
He works at BluArancio SpA (www.bluarancio.com) as Senior Analyst/Developer and Microsoft Dynamics CRM
Specialist. He is a Microsoft Certified Solution Developer for .NET, a Microsoft Certified Application Developer for
.NET, a Microsoft Certified Professional, and a prolific author and technical reviewer. Over the past ten years,
he’s written articles for Italian and international magazines and coauthored more than ten books on a variety of
computer topics.

www.it-ebooks.info

www.bluarancio.com
http://www.it-ebooks.info/

xvii

Acknowledgments

I’m not good at writing these sections. There are simply too many people to thank and acknowledge. So, before
anything else, let me first acknowledge everyone who has ever talked to me about Excel over the last five years of
my life. You know who you are. You played a key role in the formation of this book. You argued with me about using
Option Explicit, helping me establish why I believed using it is so important. You proposed alternate solutions to
methods I never questioned. This book is as much yours as it is mine. In fact, feel free to write your name with mine on
the first page of the book. You’ve earned it.

If I’m being honest, this book was really lead editor Jim DeWolfe’s brilliant idea. Sure, I wrote it, but it would
have never happened without him. If there’s any sense of organization or elegance in my writing, it’s surely due to
developmental editor, Chris Nelson, whose ability to spin rambling thoughts into coherent ideas is nothing short of
editorial alchemy. There’s also Fabio Claudio Ferracchiati, my technical editor, whose words of encouragement were
proof that I was writing something worth reading. And, Mary Behr, my copyeditor, who had the unenviable task of
trimming up my loquacious writing. Also, Kevin Walter, my coordinating editor, who kept us all on track. Finally, let’s
not forget the entire Apress editorial team, who graciously allowed me to publish an additional book when I was so
very behind on my first for them.

There are also several individuals who, whether they realize it or not, have made profound contributions to
this book (and to my work, in general). In no specific order, I’d like to thank and acknowledge Alex Gutman, Purna
“Chandoo” Duggirala, Daniel Ferry, Krisztina Szabó, Roberto Mensa, Robert Mundigl, Cary Walkin, Dick Kusleika,
Bill “MrExcel” Jelen, Szilvia Juhasz, Rick Grantham, Oz du Soleil, Rahim Zulfiqar Ali, and Jeff Weir.

Of course, there’s no way I could have completed this book without the love and support of my wife, Katherine
(who has been working on finishing her PhD and dissertation in addition to putting up with me writing all the time).
Whenever I felt stuck in my writing, she encouraged me to push through. And then there’s my brother, Stephen, who
has always been a tireless champion of my work.

The reason I even thought I could write a book was because of the support and feedback from the Excel
community. The Excel community has some of the finest talent in the world working to solve problems with Excel
nobody thought possible. This book is only but a small contribution to the work of the entire community.

Finally, I can’t forget to acknowledge Google Spreadsheets for all the great work it has done converting people
back to Excel.

www.it-ebooks.info

http://www.it-ebooks.info/

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Part I: Core Advanced Excel Concepts
	Chapter 1: Introduction to Advanced Excel Essentials
	What to Expect from this Book
	Example Files Used in This Book

	The Two Most Important Principles
	When It Makes Sense, Do More with Less
	Break Every Rule

	Available Resources
	Google
	Chandoo
	Cleary and Simply
	Contextures
	Excel Hero
	Peltier Tech

	The Last Word

	Chapter 2: Visual Basic for Applications for Excel, a Refresher
	Making the Most of Your Coding Experience
	Tell Excel: Stop Annoying Me!
	Make Loud Comments
	Pick a Readable Font
	Start Using the Immediate Window, Immediately
	Opt for Option Explicit

	Naming Conventions
	Hungarian Notation
	“Loose” CamelCase Notation
	Named Ranges
	Sheet Objects

	Referencing
	Shorthand References
	Worksheet Object Names
	Procedures and Macros

	Development Styles and Principles
	Strive to Store Your Commonly Used Procedures in Relevant Worksheet Tabs
	No More Using the ActiveSheet, ActiveCell, ActiveWorkbook, and Selection Objects
	Render Unto Excel the Things that are Excel’s, and Unto VBA the Things that Require VBA
	Encapsulating Your Work

	The Last Word

	Chapter 3: Introducing Formula Concepts
	Formula Help
	F2 to See the Formula of a Select Cell
	F9 for On-Demand and Piecewise Calculation
	Evaluate Formula Button

	Excel Formula Concepts
	Operators, in Depth
	The Range Operator (:)
	The Union Operator (,)
	The Intersection Operator ()

	When to Use Conditional Expressions
	Deceptively Simple Nested IF Statements
	CHOOSE Wisely
	Why This Discussion Is Important

	Introduction to Boolean Concepts
	Condensing Your Work
	The Legend of XOR( )-oh

	Do We Really Need IF?
	The Last Word

	Chapter 4: Advanced Formula Concepts
	Filtering and Highlighting
	Filtering with Formulas
	Conditional Highlighting Using Formulas

	Selecting
	Aggregating
	Using SUMPRODUCT for Aggregation
	You’re About To Be FOILed!

	Reusable Components
	The Last Word

	Chapter 5: Working with Form Controls
	Welcome to the Control Room
	Form Control Fundamentals
	The ComboBox Control
	The ListBox Control
	The Scroll Bar Control
	The Spinner Control
	The CheckBox Control
	The Least Favorites: Button, Label, Option Button, and GroupBox Controls
	The Button Control
	The Label Control
	The Option Button Control
	The GroupBox Control

	Creating Scrollable Tables
	Highlighting Data Points on Charts
	The Dynamic Legend
	The Last Word

	Part II: A Real World Example
	Chapter 6: Getting Input from Users
	Of Input Forms and Excel
	A Simple Input Form
	Custom Formats for Input Validation

	Creating a Spreadsheet-Based Wizard
	Layout Patterns for the Spreadsheet-Based Wizard
	The Helper Tab
	Moving Between Views
	Views That Require Additional Instruction
	Anchoring Controls
	Anchoring for Large Sets of Controls

	Components That Provide Information
	Using Custom Formats to Highlight the Current Step
	Using INDEX to Provide Step-Specific Information

	The Last Word

	Chapter 7: Storage Patterns for User Input
	The World Health Organization: An Applied Example
	Design of Your Spreadsheet File
	The Input Wizard
	Setting Focus to the First Input Cell

	The Database
	Input Entry Table
	Database Information Table
	The Backend Database Table

	Menu Screen Functionality
	Inserting a New Record
	Editing an Existing Record
	Deleting a Selected Record
	Linking the Column of Country Names to the Form Control ListBox

	Wizard Summary Buttons
	The Last Word

	Chapter 8: Building for Sensitivity Analysis
	Weighted Average Models
	Sensitivity Analysis on a Weighted Average Model
	One-Way Sensitivity Analysis
	Creating a Linked Values Table
	Linking to the Database

	Building the Tool
	Getting to the Backend, the Intermediate Table
	Scrolling Capability
	Adjusting the Scroll Bar
	Formula-based Sorting Data for Analysis
	The Sort Column, Your New Best Friend
	The Match Index Column, the Sort Column’s Buddy
	You Have a “Unique” Problem
	Seeing It Work Altogether

	The Last Word

	Chapter 9: Perfecting the Presentation
	Implementation and Design of the Weight Adjustment System
	Displaying Data from the Intermediate Table
	Results Information Label
	The Current Rank of Each Country
	Country Name
	Total Scores for Each Country
	In-cell Bar Charts for All Metrics
	Best Possible Comparisons
	Weight Box Progress Meters

	“Sort By” Dropdown and Sort Labels
	Dropdown Metric Selection
	Using Boolean Formulas to Define Which Metric Has Been Selected
	Connecting Everything with Conditional Format Highlighting

	The Presentation Display Buttons
	Going Back to the Menu
	Resetting the Weights

	Data Display and Aesthetics
	Weighted vs. Not-Weighted Metrics
	Color Choices
	Data Spacing

	The Last Word

	Index

