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Предисловие 

Параллельные ЭВМ, возникшие преиl\Iущественно для высоко­
производительных научных вычислений, получают все более 
широкое распространение: их можно встретить в неболыпих 
научных подразделениях и офисах. Этому способствуют 1<ак 
непрерывное падение цен на них, так и постоянное усложнение 
µешаемых задач. l'v'loжнo бе:1 преувеличения сказать, что парал­
лельные компьютеры сейчас используются или планируются к 
использованию всеми, кто работает на передовых рубежах на­
уки и техники: 

• научными работниками, применяющими ЭВМ для решения
реальных задач фпзики, хиl\шп, биологии, 1'1ед1щш1ы и дру­
гих наук, носкольку упрощенные модельные задачи уже рас­
считаны на «обычных>> ЭBl\I, а переход к реа.11ы1ым задачам
сопряжен с качественныы ростом объема вычислений;

• програl\!мистами, разрабатывающиl\!и системы унравления
базаl\ш данных (СУБД), разнообразные lntei-net-cepвepы за­
просов (\Л/WW, FTP, DNS и др.) и совместного использова­
ния данных (NFS, SMB и др.), автоматизированные систе­
мы управления прои-зводством (АСУП) и технологическими
процессами (АСУТП), поскольку требуется обеспечить об­
служивание максимального количества запросов в единицу
времени, а сложность самого запроса постоянно растет.

В настоящий момент практически все крупные разрабатьша­
емые программные проекты как научной, так и ком11,1ерчсской 
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направленности либо уже содержат поддержку параллельной 
работы на кт.шьютерах разных типов, либо эта поддержка за­
планирована на ближайшее время ( причем промедление здесь 
часто вызывает поражение проекта в конкурентной борьбе). 

Настоящая книга представляет собой введение в методы про­
граммирования параллельных ЭВМ. Основной ее целью являет­
ся научить читателя самостоятельно разрабатывать максималь­
но эффективные программы для таких кш.шыотеров. Вопросы 
распараллелпвания конкретных алгорит1юв рассматриваются 
на многочисленных при.мерах. В качестве языка программиро­
вания использован язык С, как наиболее распространенный (и, 
заметп11,r, единственный (не считая своего расширения С++), на 
котором можно реалнзовать все приведенные примеры). Про­
граммы, посвященные использованию параллелизма процесса и 
MPI, 111огут быть легко переписаны на языке FORTRAN-77. Для 
иллюстрации поднрограмма умножения двух матриц, дающая 
почти 14-кратное ускорение на одном процессоре, приведена на 
двух языках: С и FORTRAN-77. 

Изложение начинается с изучения параллелизма в работе 
процессора, оперативной памяти и методов его использования. 
Затем приводится описание архитектур параллельных ЭВМ и 
бюовых 1юнятип 111ежпроцесспого взаимодействия. Для систем с 
общей памятью подробно рассматриваются два метода проrраы­
мирования: с использованием процессов и использованием задач 
( tlнeads). Для систем с распределенной памят�.,ю рассматрива­
ется ставший фактическим стандартом интерфейс MPI. Для 
указанных систем приведены описания основных функций и 
11рю.1еры их пршненепия. В описаниях намеренно выброшены 
редко используемые детали, чтобы пе пугать читателя болыпиl\J 
объемо111 информации ( чем страдают большинство руководств 
пользователя). 

Книга используется в качестве учебного пособия в основном 
курсе «Практикум на ЭВI\.11>> на :механико-математическом фа­
культете МГУ им. l\1. В. Ломоносова по инициативе и при под­
держке академика РАН Н. С. Бахвалова. 
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Порядок чтения 

Книгу можно разделить на 5 достаточно независимых частей: 

1. В главах 2, З, 4 описан параллелизм в работе процессора
и оперативной памяти, а также ра..�нообразные приемы, ис­
пользуемые для повышения эффективности их работы. Эту
информацию можно использовать для достижения значи­
тельного ускорения работы программы даже на однопро­
цессорном компьютере.

2. В главах 5 и 6 изложены основные понятия, используемые
при рассмотрении параллельных программ, а также стан­
дарты на операционные системы UNIX, установленные на
подавляющем большинстве параллельных ЭВМ.

3. В главах 7 и 8 описаны основные функции для управле­
ния процессами и осуществления межпроцессного взаимо­
действия. Эти функции можно использовать для запуска
многих совместно работающих процессов в системах с общей
памятью, а также для разработки параллельного приложе­
ния для систем, не поддерживающих задачи (threads).

4. В главах 9 и 10 описаны основные функции для управления
задачами ( threads) и осуществленю1 межзадачного взаимо­
действия. Эти функции можно использовать для разработки
параллельного приложения в систеl\tаХ с общей памятью.

5. В главе 11 описаны основные функции Message Passiнg
Interface (ИРI). Эти функции !\ЮЖНО использовать для раз­
работки параллельного приложения в системах как с общей,
так и с распределенной памятью.

Части расположены в рекомендуемом порядке чтения. По­
следние три независимы друг от друга и l\lогут изучаться в про­
извольной последовательности. Главу 1, адресованную нетерпе­
ливому читателю, при систематическом изучении рекоыенду­
ется разбирать по мере ознакомления с материалом основных 
частей книги. 

Книгой можно воспользоваться и в качестве учебника. Для 
этого в конце приведены программа курса и список типовых 
экзаменационных задач. Эти материалы будут полезны и для 
самостоятельной подготовки. 



1 
Для нетерпеливого 
читателя 

Для нетерпеливого читателя, желающего как можно быстрее 
нау•шты.:я писать параллельные приложения, сразу же приве­
дем прш,,rер превращения последовательной программы в парал­
лельную. Для простоты рассмотрим задачу вычисления опреде­
ленного интеграла от заданной функции и будем считать, что 
все входные параметры ( концы отрезка интегрирования и ко­
личество точек, в которых вы•шсляется функция) заданы кон­
станта1,ш. Все иснользованные функции будут описаны в после­

дующих главах.

1.1. Последовательная программа 

Длн вы•шслсш1я приблпжепия к определенному интегралу от 
функции .f по отрезку [а, Ь] исrюльзуеы составную форыулу тра­
пеций: 

Ь 
n-I

j f(x) dx � li(J(a)/2 + L !(а+ jh) + J(b)/2),
а J = l 

где /i = (Ь- а)/п, а параметр п задает то0шость в'ычислений. 
Вначале

-: 
файл integral. с с текстом последовательной 

програl\П\IЫ, вычисляющей определенный интеграл этим спосо­
бом: 

#include "integral.h" 



1.1. Последовательная программа 

I* Интегрируемая функция *I

douЬle f (douЬle х) 

{ 

return �; 

} 

I* Вычислить интеграл по отрезку [а, Ь] с числом точек 
разбиения n методом трапеций. *I

douЫe integrate (douЬle а, douЬle Ь, int n) 

{ 

} 

douЫe res; 
douЬle h; 
int i; 

I* результат *I

I* шаг интегрирования *I

h = (Ь - а)/ n; 

res = 0.5 * (f (а) + f (Ь)) * h; 
for (i = 1; i < n; i++) 

res += f (а + i * h) * h; 
return res; 

Соответствующий заголоuо1 1111,1й файл integral. h: 

douЬle integrate (douЬle а, douЫe Ь, int n); 

Файл sequential. с с текстоi\1 11ос.ледовательной программы: 

#include <stdio.h> 
#include "integral.h" 

I* Все параметры для простоты задаются константами *I

static douЬle а = О.; I* левый конец интервала *I

static douЫe Ь = 1.; I* правый конец интервала */ 
static int n = 100000000; I* число точек разбиения *I

int main () 

{ 

11 
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} 

Глава 1. Для нетерпеливого читателя 

douЫe total = О.; f* результат: интеграл *f 

f* Вычислить интеграл *f 
total = integrate (а, Ь, n); 

printf ("Integral from %lf to %lf 
а, Ь, total) ; 

return О; 

%.18lf\n", 

Компиляция этих файлов: 

се sequential.c integral.c -о sequential 

и запуск 

./sequential

1.2. Ускорение работы эа счет параппепиэма 

Для ус1<0рения работы программы на вычислительной установ­
ке с р процессорами мы воспользуемся аддитивностью интегра­
ла: 

Ь 
p-l Ь;

j f(x) dx = � j f(x) dx,

а i=O а; 

где ai = а+ i * l, bi = ai + l, l = (Ь - а)/р. Использовав для

приближенного определения каждого из слагаемых J;;
; f(x) dx

этой суммы составную форl\Iулу трапеций, взяв п/р в качестве 

п, и поручив эти вычисления своему процессору, мы получим 

р-кратное ускорение работы програымы. Ниже мы рассмотрим 

три способа запуска р заданий для исполнения на отдельных 

процессорах: 

1. создание новых процессов (раздел 1.3, с. 13),
2. создание новых задач (threads) (раздел 1.4, с. 18),
3. Message Passiвg Iвterface (MPI) (раздел 1.5, с. 21).



1.3. Параллельная программа, использующая процессы 13 

Первые два подхода удобно использовать в системах с общей 
памятью (см. раздел 2.5.1, с. 39). Последний подход применим 
и в системах с распределенной памятью. 

1.3. Параллельная программа, использующая процессы 

Рассмотрим пример параллельной программы вычисления опре­
деленного интеграла, использующей процессы. Описание ее ра­

боты приведено в разделе 8.4.6, с. 133, где рассматривается 
функция pipe; о функции fork см. раздел 7.1, с. 81. Файл 
process. с с текстом программы: 

#include <stdio.h> 
#include <unistd.h> 
#include <sys/types.h> 
#include <stdlib.h> 

#include "integral.h" 

I* Все параметры для простоты задаются константами *I 

static douЫe а =  О.; I* левый конец интервала *I

static douЬle Ь = 1.; I* правый конец интервала */ 

static int n = 100000000; I* число точек разбиения *I

I* Канал вывода из главного процесса в порожденные. 

from_root[O] - для чтения (в порожденных процессах), 

from_root[1] - для записи (в главном процессе). *I

static int from_root[2]; 

I* Канал вывода из порожденных процессов в главный. 

to_root[O] - для чтения (в порожденных процессах), 

to_root[1] - для записи (в главном процессе). *I

static int to_root[2]; 

I* Функция, работающая в процессе с номером my_rank, 
при общем числе процессов р. *I 

void process_function (int my_rank, int р) 
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{ 

Глава 1. Для нетерпеливого читателя 

char byte; 

I* длина отрезка интеrрирования для текущего процесса*/ 

douЬle len = (Ь - а)/ р; 

I* число точек разбиения для текущеrо процесса *I 

int local_n = n / р; 

I* левый конец интервала для текущеrо процесса *I 

douЫe local_a = а + my_rank * len; 

I* правый конец интервала для текущеrо процесса *I 

douЬle local_b = local_a + len; 

I* значение интеrрала в текущем процессе *I 

douЫe integral; 

I* Вычислить интеrрал в каждом из процессов *I 

integral = integrate (local_a, local_b, local_n); 

I* Ждать сообщения от главного процесса *I 

if (read (from_root[O], &byte, 1) != 1) 

{ 

} 

I* Ошибка чтения */ 

fprintf (stderr, 

return; 

"Error reading in process 'l.d, pid 

my_rank, getpid ()); 

I* Передать результат rлавному процессу *I 

'l.d\n", 

if (write (to_root[1], &integral, sizeof (douЬle)) 

!= sizeof (douЬle)) 

{ 

I* Ошибка записи *I 

fprintf (stderr, 

return; 

"Error writing in process 'l.d, pid 

my_rank, getpid ()); 

%d\n", 
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} 
} 

int main (int argc, char * argv[]) 

{ 
I* Идентификатор запускаемого процесса *I

pid_t pid; 
I* Общее количество процессов *I

int р; 
int i; 
char byte; 
douЫe integral = О.; 
douЫe total = О.; I* результат: интеграл *I

if (argc != 2) 

{ 

} 

printf ("Usage: %s <instances>\n", argv[O]); 
return 1; 

I* Получаем количество процессов *I

р = (int) strtol (argv[1], О, 10); 

I* Создаем каналы *I

if (pipe (from_root) == -1 11 pipe (to_root) -- -1) 

{ 

} 

fprintf (stderr, "Cannot pipe!\n"); 
return 2; 

I* Запускаем процессы *I

for (i = О; i < р ;  i++)

{ 
I* Клонировать себя *I

pid = fork () ; 

15 
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} 
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if (pid == -1) 

{ 

} 

fprintf (stderr, "Cannot fork!\n"); 
return 3 + i; 

else if (pid О) 

{ 

} 

I* Процесс - потомок *I

I* Закрываем ненужные направления обмена *I

close (from_root[l]); 
close (to_root[O]); 

I* Проводим вычисления *I

process_function (i, р); 

I* Закрываем каналы *I

close (from_root[O]); 

close (to_root[l]); 
I* Завершаем потомка *I

return О; 

I* Цикл продолжает процесс - родитель *I

I* Закрываем ненужные направления обмена *I

close (from_root[O]); 
close (to_root[l]); 

I* Получаем результаты *I
for (i = О; i < р; i++)

{ 
I* Сигнализируем процессу *I

byte = (char) i; 
if (write (from_root[l], &byte, 1) != 1) 

{ 
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} 

f* Ошибка записи *f 
fprintf (stderr, 

"Error writing in root process\n"); 
return 100; 

f* СчиТЫБаем результат *f 
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if (read (to_root[O], &integral, sizeof (douhle)) 
!= sizeof (douhle)) 

} 

{ 
f* Ошибка чтения *f 
fprintf (stderr, 

"Error reading in root process\n"); 
return 101; 

} 

total += integral; 
} 

f* Закрываем каналы *f 
close (from_root[l]);
close (to_root[O]);

printf ("Integral from %lf to %lf 
а, Ь, total); 

return О; 

%.18lf\n", 

Компиляция этих файлов: 

се process.c integral.c -о process 

и запуск 

./process 2

где аргумент программы (в данном случае 2) - количество па­

раллельно работающих процессов ( обычно равен количеству 

имеющихся процессоров). 
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1.4. Параллельная программа, использующая задачи 

Pn.ccl\loтp1н1 нриыер паралл('лыюй программы вычисления опре­
деленного интеграла, использующей задачи (thrcads). Описание 
ее работы cl\l. в µазделе 10.2, с. 168; описание использованных 
функций: 

• pthread_create --· Cl\l. раздел 9.1, с. 156;
• pthread_j oin - сы. раздел 9.2, с. 157;
• pthread_mutex_lock - см. раздел 10.1.2, с. 162;
• pthread_mutex_unlock -·· см. раздел 10.1.4, с. 162.

Файл thread. с с текстоl\1 програм1\1ы: 

#include <stdio.h> 
#include <stdlib.h> 
#include <pthread.h> 
#include "integral.h" 

I* Все параметры для простоты задаются константами *I

static douЫe а = О.; I* левый конец интервала *I

static douЫe Ь = 1.; I* правый конец интервала *I

static int n = 100000000; I* число точек разбиения *I

I* Результат: интеграл *I

static douЫe total = О.; 

I* Объект типа mutex для синхронизации доступа к total *I

static pthread_mutex_t total_mutex 
= PTHREAD_MUTEX_INITIALIZER; 

I* Общее количество процессов *I

static int р; 

I* Функция, работающая в задаче с номером my_rank *I

void * process_function (void *ра) 
{ 
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I* номер текущей задачи */ 
int my_rank = (int) ра; 
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I* длина отрезка интегрирования для текущего процесса*/ 
douЬle len = (Ь - а)/ р; 

} 

I* число точек разбиения для текущего процесса *I

int local_n = n / р; 
I* левый конец интервала для текущего процесса *I

douЬle local_a = а +  my_rank * len; 
I* правый конец интервала для текущего процесса *I

douЫe local_b = local_a + len; 
I* значение интеграла в текущем процессе *I

douЬle integral; 

I* Вычислить интеграл в каждой из задач *I

integral = integrate (local_a, local_b, local_n); 

I* "захватить" mutex для работы с total *I

pthread_mutex_lock (&total_mutex); 
I* сложить все ответы *I

total += integral; 
I* "освободить" mutex *I

pthread_mutex_unlock (&total_mutex); 
return О; 

int main (int argc, char * argv[]) 

{ 
I* массив идентификаторов созданных задач */ 
pthread_t * threads; 
int i; 

if (argc ! = 2) 

{ 
printf ("Usage: %s <instances>\n", argv[O]); 
return 1; 
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} 

I* Получаем количество процессов *I

р = (int) strtol (argv[l], О, 10); 

if (!(threads = (pthread_t*) 
malloc (р * sizeof (pthread_t)))) 

{ 

} 

fprintf (stderr, "Not enough memory!\n"); 
return 1; 

I* Запускаем задачи */ 
for (i = О; i < р; i++) 

{ 

} 

if (pthread_create (threads + i, О, 
process_function, (void*)i)) 

{ 

} 

fprintf (stderr, "cannot create thread #i.d!\n", 
i); 

return 2; 

I* Ожидаем окончания задач */ 
for (i = О; i < р; i++) 

{ 

if (pthread_join (threads[i], О)) 
fprintf (stderr, "cannot wait thread #'l.d!\n", i); 

} 

I* Освобождаем память *I

free (threads); 

printf ("Integral from %lf to %lf %.18lf\n", 
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а, Ь, total); 

return О; 

Компиляция этих файлов: 

се thread.c integral.c -о thread 

и запуск 

./thread 2

где аргумент программы (в данном случае 2)- количество па­
раллельно работающих задач ( обычно равен количеству имею­
щихся процессоров). 

1.5. Параnnеnьная проrрамма, испоnьэующая MPI 

Рассмотрим пример параллельной программы вычисления опре­
деленного интеграла, использующей MPI. Описание ее работы 
см. в разделе 11.9, с. 256; описание использованных функций: 

• MPI_Init и MPI_Finalize - см. раздел 11.1, с. 232;
• MPI_Comm_rank и MPI_Comm_size - см. раздел 11.3, с. 237;
• MPI_Reduce - см. раздел 11.8, с. 250.

Файл mpi. с с текстом программы: 

#include <stdio.h> 
#include 11mpi.h" 
#include 11integral.h 11 

I* Все параметры для простоты задаются константами *I

static douЫe а = О.; I* левый конец интервала *I

static douЫe Ь = 1.; I* правый конец интервала *I

static int n = 100000000; I* число точек разбиения *I

I* Результат: интеграл *I

static douЫe total = О.; 
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f* Функция, работающая в процессе с номером my_rank, 
при общем числе процессов р. *f 

void process_function (int my_rank, int р) 

{ 

} 

f* длина отрезка интегрирования для текущего процесса*/ 
douЫe len = (Ь - а) /  р; 

f* число точек разбиения для текущего процесса *f

int local_n = n / р; 
I* левый конец интервала для текущего процесса *I
douЬle local_a = а + my_rank * len; 

I* правый конец интервала для текущего процесса *I

douЬle local_b = local_a + len; 

I* значение интеграла в текущем процессе *I

douЫe integral; 

I* Вычислить интеграл в каждом из процессов *I 
integral = integrate (local_a, local_b, local_n); 

I* Сложить все ответы и передать процессу О *f
MPI_Reduce (&integral, &total, 1, MPI_DOUBLE, MPI_SUM, 

О, MPI_COMM_WORLD); 

int 
main (int argc, char **argv) 

{ 
int my_rank; 
int р; 

f* ранг текущего процесса *I

I* общее число процессов *I

I* Начать работу с MPI */ 
MPI_Init (&argc, &argv); 

I* Получить номер текущего процесса в группе всех 
процессов *I 
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MPI_Comm_rank (MPI_COMM_WORLD, &my_rank); 

f* Получить общее количество запущенных процессов *f 
MPI_Comm_size (MPI_COMM_WORLD, &р); 

f* Вычислить интеграл в каждом из процессов *f 
process_function (my_rank, р); 

f* Напечатать ответ в процессе О *f 
if (my_rank == О) 

printf ("Integral from %lf to %lf 
а, Ь, total); 

f* Заканчиваем работу с MPI */ 
MPI_Finalize (); 
return О; 

%.18lf\n", 

Компиляция этих файлов: 

mpicc mpi.c integral.c -о mpi 

и запуск 

mpirun -np 2 mpi 
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где опция -np задает количество параллельно работающих про­
цессов (в данном случае 2). 



2 
Пути повышения 
производительности 
процессоров 

Рассмотрим основные пути, которыми разработчики процессо­
ров пытаются повысить их производительность. Нетерпеливый 
читатель может сразу заглянуть в раздел 2.7, где приведен при-
1\-1ср програмыы умножения двух матриц, написанный с исполь­
зованием з1�ани11 о внутреннем параллелизме .в работе процессо­
ра, и дающий на обычном однопроцессорном компьютере почти 
14-кратное ускорение работы но сравнению со стандартной про­
граммой.

2.1. CISC- и RISC-npoцeccopы 

Основной вреыенноi'r характеристикой для процессора является 
время цикла, равное 1 /F, где F - тактовая частота процессора. 
Время, затрачиваемое процессором на задачу, может быть вы­
числено 110 формуле С * Т * I, где С -- число циклов на одну 
инструкцию, Т-- время на один цикл, I- число инструкций на 

задачу. 
Разработчики <<классических» систем (которые теперь на­

зывают CISC ( Coшplete Iвstx·uctioн Set Computer)) стремились 
уменьшить фактор I. В процессорах реализовывались все бо­
лее сложные 11нструкци11, для выполнения которых внутри него· 
самого запускались специальные процедуры ( так называемый 
микрокод), загружаемые из ПЗУ внутри процессора. Этому пу-
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ти способствовало то, что улучшения в технике производства 110-
лупроводников делали возможным реализацию все более слож­
ных интегрированных цепей. Однако на этом пути очень труд­
но уменьшить два других фактора: С - поскольку инструкции 
сложные и требуют программного декодирования, и Т - в силу 
аr;шаратной сложности. 

Концепция RISC (Reduced lnstruction Set Computer) возник­
ла из статистического анализа того, как программное обеспе­
чение использует ресурсы процессора. :Исследования систем­
ных ядер и объектных модулей, порожденных оптимизирую­
щими компиляторами, показали подавляющее доминирование 
простейших инструкций даже в коде для СISС-машин. Сложные 
инструкции используются редко, поскольку микрокод обычно 
не содержит в точности те процедуры, которые нужны для под­
держки различных языков высокого уровня и сред исполнения 
11рограмм. Поэтому разработчики RISC-npoцeccopoв убрали ре­
ализованные в микрокоде процедуры и передали программному 
обеспечению низкоуровневое управление машиной. Это позволи-

. ло заменить процессорный микрокод в ПЗУ па подпрограмму n 
более быстрой ОЗУ. 

Разработчики RISС-процессоров улучшили производитель­
ность за счет уменьшения двух факторов: С (за счет использо­
вания только простых инструкций) и Т (за счет упрощения про­
цессора). Однако изменения, внесенные для уменьшения числа 
циклов на инструкцию и времени на цикл, имеют тенденцию к 
увеличению числа инструкций на задачу. Этот момент был в 
центре внимания критиков RISС-архитектуры. Однако исполь­
зование оптимизирующих компиляторов и других технических 
приемов, практически ликвидирует эту проблему. 

2.2. Основные черты RISС-архитектуры 

У RISC-пpoцeccopa все инструкции иl\!еют одинаковый формат 
и состоят из битовых полей, определяющих код инструкции и 
идентифицирующих ее операнды. В силу этого ·декодирование 



26 Глава 2. Пути повышения производительности процессоров 

инструкций производится аппаратно, т. е. иикрокод не требу­
ется. Прн этоl\1 в сплу одинакового строения всех инструкций 
процессор может декодирован, несколько полей одновременно 

для ускорения этого процесса. 
Ипструкц1111, производящие операции в памяти, обычно либо 

увеличивают время цикла, либо число циклов на инструкцию. 
Такпе 1шструкцни требуют дополнительного nремени для свое­
го исполнения, так как требуется вычислить адреса опера1-щов, 
считать их из памитн, выч11слить результат операции и запи­
сать его обратно в паl\rять. Для уменьшения негативного влия­

ш1я таких инструкций разработчики RISС-процессоров выбрали 
архитектуру •1тение/запнсь, в которой все операции выполняют­
ся над 011ерандами в регистрах процессора, а основная намя'lъ 
доступшt тот,ко посредством инструкций чтения/записи. Для 
эффективности этого подхода RISС-нроцсссоры имеют большое 

количество регистров. Архитектура чтение/запис1, также поз­
воляет _уыеньишть количество режимов адресации памяти, что 
позволяет упростить декодирование инструкций. 

Для СISС-архитсктур вреыя исrюJшения инструкции обычно 
11зl\1еряется n числе циклов ш1, ш,струкцшо. Разработчики RISС­
архитектур, однюш, стре11,шлись получить скорость выполнения 

внструкции, равную одной шк1р.11кц1ш :щ цикл. 
Для RISC-щюцeccopn во �шогнх случаях только наличие оп­

тилшзирующего кил11шлятора позволяет реа.пизов.tть все его воз­

можности. Отl\rетнi\·1, что коl\шилятор может наилучшим обра­
зом оппшнзнровать код I11\1снно для RISС-архнтектур (в силу 

их простоты). Ilро1·раi\шировш-ше на языке ассемблера исчезает 

для RISС-прпложений, так как коыпиляторы языков высокого 
уровни ыогут пропзnодить очень сильную 011тимизалию. 

2.3. Конвейеризация 

Конвейеризация является одним из основных способов поны-. 
шения производнтелыюств нроцессора. Конвейерный процес­
сор приш,маст новую инструкцию каждый цикл, даже если 
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предыдущие инструкции не завершены. В результате выполне­
ние нескольких инструкций перекрывается и в процессоре нахо­
дятся сразу несколько инструкций в разной степени готовности. 

Исполнение инструкций мuжет быть разделено на несколько 
стадий: выборка, декодирование, исполнение, запись ре­
зуJJьтатов. Конвейер инструкций может уменьшить число 
циклов на инструкцию поср'едствоы однопреr.rенного испол11е­
ния нескольких инструкций, находящихся на раэных стадиях 
(рис. 2.1). При правильной аппаратной реал�пации конвейер, 
имеющий п стадий, может од11овременно ис1юлю11ъ п последо­
вателыrых инструкций. Новая инструкция может прини�1аты:я 
к исполнению на каждоы цикле, и эффективная скорость испол­
нения, таки:r-.1 образом, есть один цикл на инстrукцию. Одшшо 

поток 
инструкций

1 В I Д I И 131 инструкция ·1

1 В !д! И! З ! инструкция З

j В I Д ! И ! 3 ! инструкция 2 

1 В ! Д ! И j з j инструкция 1

поток 
инструкций

прш�ессор без конвейера 

1 В I Д j и j З ! инструкция ,1

! В jд I И j з j инструкция З

1 В ! Д ! И 13 ! инструкция 2 

! В ! Д ! И ! 3 ! инструкция 1 

процессор с конвейером 

В - выборка, Д -· декодирование, И -·· исполнение, 3 -· запись 

Рис. 2.1. Ускорение работы процессора за счет конвейера 
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это предполагает, что конвейер всегда заполнен полезными ин­

струкциями и нет задержек в прохождении инструкций через 
конвейер. 

Управление конвейером инструкций требует надлежащего 

эффективного управления такими событиями, как переходы, 

исключения или прерывания, которые могут полностью на­

рушить поток инструкций. Наприr..,1ер, результат условного пе­

рехода известен, только когда эта инструкция будет исполнена. 

Если конвейер был заполнен инструкциями, следующими за ин­

струкцией условного перехода и переход состоялся, то все эти 
инструкции должны быть выброшены из конвейера. 

Более того, внутри конвейера могут оказаться взаимоза­

висимые инструкции. Например, если инструкция в стадии 

декодирования должна читать из ячейки памяти, значение ко­

торой является результатом работы инструкции, находящейся 

в стадии исполнения, то конвейер будет остановлен на один 

цш<л, поскольку этот результат будет доступен только после 

стадии записн ре:зультатов. Поэтому компилятору необходимо 

переупорядочить инструкции в программе так, чтобы по воз­

можности пзбежать зависимостей между инструкциями внутри 

конвейера. 
Для у;,.1еньшс11ия времени простоя конвейера применяют ряд 

мер. 

• Таблица регистров ( register scoreboarding) позволяет

проследить за использованием регистров. Она имеет бит для

каждого регистра процессора. Если этот бит установлен, то

регистр находится в состоянии ожидания 3аш1си результата.

После записи результата этот бит сбрасывается, разрешая

использование данного регистра. Если этот бит сброшен для

всех регнстров, значения которых используются в текущей

инструкции, то ее можно выполнять, не дожидаясь заверше­
ния исполнешш предыдущих инструкций.

• Переименование регистров (register гenaming) являет­

ся аппаратной техникой уменьшения конфликтов из-за реги-
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стровых ресурсов. Компиляторы преобразуют языки высо­
кого уровня в ассемблерный код, назначая регистрам те или 
иные значения. В конвейерном процессоре операция может 
потребовать регистр до того, как предыдущая инструкция 
закончила использование этого регистра. Такое состояние не 
является конфликтом данных, поскольку этой операции не 
�ребуется значение регистра, а только сам регистр. Одна­
ко эта ситуация приводит к остановке конвейера до освобо­
ждения регистра. Идея разрешения этой проблемы состоит в 
следующем: берем свободный регистр, переименовываеы его 
для соответствия параметрам инструкции, и даем инструк­
ции его использовать в качестве требуемого ей регистра. 

Задержки внутри конвейера могут быть также вызваны вре­
менем доступа к оперативной памяти DRAM, которое намного 
превышает время цикла. Эта проблема в значительной степени 
снимается при использовании кэш-памяти и буфера предвыбор­
ки инструкций (очереди инструкций). 

Так как поток инструкций в СISС-процессоре нерегуляр­
ный и время исполнения одной инструкции ( С * Т) не посто­
янно, то конвейеризация в этом случае имеет серьезный недо­
статок, делающий ее малопригодной к использованию в СISС­
процессорах: именно, она приводит к очень сильному усложне­
нию процессора. 

RISС-процессоры используют один и тот же формат всех ин­
струкций для того, чтобы ускорить декодирование и упростить 
управление конвейером, поэтому все инструкции исполняются 
за один цикл. 

Одним из способов дальнейшего повышения быстродействия 
является конвейеризация стадий конвейера. Такие процессоры 
называются суперконвейерными. При таком подходе каждая 
стадия конвейера, такая как кэш (см. ниже) или АЛУ (ариф­
метическое и логическое устройство), может приниl\lать новую 
инструкцию каждый цикл, даже если эта стадия не заверши­
ла исполнение текущей инструкции. Отметим, что добавление 
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новых уровней конвейеризации нмеет смысл только в случае, 
если разработчик может значительно увеличить частоту 
процессора. Однако увеличение производительности за счет уве­
личения внутренней частоты процессора имеет ряд недостатков. 
Во-первых, это увеличивает потребление энергии процессорОl\·t, 
что делает суперконвейерные процессоры ма.тюпJн�годны!\ш для 
встранваемых (бортовых) систем, а также увеличивает габари­
ты вычнсюпелыюй установки за с•1ет внушительной системы 
охлаж;1,сния. По-вторых, это rню,r1,11т новые труднnсти в сопряже­
НIJИ процессора с ПШ\IЯтыо нижнего уровня, такой как DRAI\-1. 
Быстро;1,ействне этой IIal\IЯTII растет не тnк быстро, как скорость 
процессоров, rю:,пol\ly чеl\1 быстрее процессор, тем больше раз­
рыв в пpOll]BOДIITCЛЫIOCTH j\,Jежду IIIHI и основной Шl!\IЯТЬЮ. 

Друпщ способоl\1 увеличения про11:шодителыюсти процессо­
ров являетсн выполнени<� более '!€1\1 одной операции одновре­
менно. Такие процесспры называютсн суперскалярными. Они 
имеют два или более конвейеров инструкций, работающих 
пара.пле:rьно, что значнтелыю увеличивает скорость обработки 
1юток;:� инструкций. Одш1111 из ;�остоинств суперскалярной ар­
хитектуры явлнетсн во1:-.южность увели <1ешш производитель­
ности без необход11!\юсти увсли•1еш1я •1астоты нро11,ессора. Су­
перска.лярноl\lу процессору требуется более широкий доступ 
к nal\lЯTH, так, чтобы он l\101' брать сра.'Ч' rрунпу нз несколь­
ких ннструкннй ;щ}1 ипюс111сш1я. Диспетчер ашuшзирует эти 
группы 11 за11олш1ет каждый из конвейеров так, чтобы сии:шть 
взаимозnю1с1111юсп, данных и конфликты регистров. Выполне­
ние инструкцнй 1110:жет быть не по порядку поступления, так, 
чтобы коl\1а11ды перехuда были проа1нuш:1ированы раньше, уби­
ран задержкн в случае осущестш1снш-1 перехода. Компилятор 
должен 011т11l\1111ировn:гь код для обес:печенпя заполнения всех 
ко111зеПеров. 

Требоваш1е одного и того же ресурса несколькими инс:трук­
цнями блокирует их продвижение по конвейеру и приводпт к 
вставке циклов ожи,-�,ания требуемого ресурса. Супсрt.:калярная 
архитектура с тремн испо.1шяющн.м11 ус:тройствами будет полно-
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стыо эффективной, только если поток инструкций обеспечивает 
одновременное использование этих трех устройств. Для обеспе­
чения этого условии с мпнима.льными расходами в процессоре 
выделяют исполняющие устройства, работающие независимо: 

• Целочисленное устройство (IU, Iпteger Unit)- выполня­
·ет целочисленные операции (арифr-.rетические, логические и
операции сравнения) в своем АЛУ.

• Устройство для работы с плавающей точкой (FPU,
Flnating Point Uпit) -- обьгшо отделено от целочисленного
устройства, которое работает только с целыми числа.!1111 и
числами с фнкснрованной точкой. Болышшство FPU conl\re­
cтшro со стандартом ANSI/IEEE для двоичной арифметики
с плавающей точкой.

• Устройство управления памятью (MMU, l\'1eшory
I\-Iaнageшent Uпit) -- вычисляет рса.Jп,пый физический ад­

рес по виртуалыюl\fу ,1дресу.
• Устройство предсказания переходов (BU, Bl'anch

Uпit) -- заниыается предсказание:-1 условных перf'ходов
для того, чтобы избежа:rь нростоя конвейер::t в ожидаш�и
результата вычисления условия перехода.

Поскольку условные перехu,п,ы ыогут свести на нет все nре­
имущестна конвейерной ор1·а�ш:зации процессора, остановимся 
более подробно на прие:..-rа.х, используеl\/l,IХ l3U для уменьшения 
их неп tтивного влияния. 

• <<Отложенные слоты>> (<lelay slots). Инструкцию, переда­

ющую управление uт одной части програымы другой, труд­

но исполнпть за один цикл. Обычно загрузкn. процессор1ю­
го указателя на следующую инструкцию требует один цикл,
предвыбqрка новой инструкции требует еще один. Для из­

бежания простоя нf'которые RISС-процессоры (например,
SPARC) позволяют вставить допоJшительную инструкцшо в
так называемый <<от.1оженный слот>>. Эта инструкция рас­
положена непосредственно после команды перехода, но он..t
будет выполнена до того, как будет совершен переход.
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Однако, для суперскалярных RISС-процессоров отложен­
ные слоты работают не очень хорошо. Задержка при перехо­
де 1\Южет быть равна двум циклам, а суперскалярный про­

цессор, который выполняет за цикл п инструкций, должен 

найти п инструкций для помещения в конвейеры. 

• «Спекулятивное>> исполнение инструкций (speculative

executioп). Некоторые RISС-процессоры (например, старшие
модели семейств Po,verPC и SPARC) используют так назы­

ваемое <<Спекулятивное>> исполнение инструкций: процессор

заr'ружает в конвейер и начинает исполнять инструкции, на­

ходящиеся за точкой ветвления, еще не зная, произойд€'r пе­
реход или П€'Г. При этом часто выбирается наиболее вероят­
ная ветвь програмыы (па основе того или иного подхода, см.
ниже). Еслн после исполненш, команды перехода оказалось,
что процессор начал нсполнять не ту ветвь, то все загружен­
ные в копвеf'юр инструкции и:з этой ветви и результаты их

обработки сбрасываются, и загружается правильная ветвь.

• Биты предсказания перехода в инструкции. Неко­
торые RISС-процессоры (на11ример, Powe1·PC) используют

биты предсказания перехода, устанавливаеvst компилято­

роы в инструкции перехода, которые предсказывают, будет

или нет совершен переход.

• Эвристическое предсказание переходов. Некоторые
процессоры уменьшают задержки, шюсимые переходами, за

счет использования встроенного предсказателя пере­

ходов. Он предсказывает, что переходы вперед (проверки)

произведены не будут, а переходы нюад (циклы) - будут.

Для эффективной работы устройства предсказания перехода

важно, чтобы код условия для условного перехода был вычислен 

как 1\южно раньше (за несколько инструкций до самой коыанды 
перехода). Этого добиваются несколькими способами. 

• Независимость арифметических операций и кода
условия. В СISС-архитектурах все арифметические опе­
рации выставляют код условия но своему результату. Это
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сделано для уменьшения фактора 1 - числа инструкций на 

задачу, поскольку есть вероятность того, что следующая 

инструкция будет вычислять код условия по результату 

предыдущей инструкции и, следовательно, может быть уда­

лена. Однако это приводит к тому, что между командой 

вычисления кода условия и командой перехода очень труд­

но вставить полезные инструкции, так как они изменят 
код условия. В RISС-архитектурах арифметические опе­

рации не изменяют код условия ( если противное явно не 

указано в инструкции, см. ниже). Поэтому возможно между 
инструкцией, вычисляющей код условия, и командой пе­

рехода вставить другие инструкции (переупорядочив их). 

Это позволит заранее узнать, произойдет или нет переход, 

и загрузить конвейер инструкциями. 

Поскольку возможна ситуация, коtда следующан ин­

струкция будет вычислять код условия по результату преды­

дущей инструкции, то в RISС-архитектурах часть (SPARC) 

или все (PowerPC) арифметические операции также имеют 

вторую форму, в которой будет выставляться код условия 

по их результату. Таким образом, часть или все арифме­

тические операции присутствуют в двух вариантах: один 

не изменяет код условия (нодавляющее большинство слу­

чаев использования), а другой вычисляет код условия по 

результату операции. 

• Использование нескольких равноправных регистров

с кодом условия. Некоторые RISС-процессоры (например,

PowerPC) используют несколько равноправных регистров, в

которых образуется результат вычисления условия. Над эти-

1\Ш регистрами определены логические операции, что иногда

позволяет оптимизирующему компилятору заменить коман­

ды перехода при вычислении сложных логических выраже­

ний на команды логических операций с этими регистрами.
• Использование кода условия в каждой инструкции.

Некоторые RISС-процессоры (например, ARl\I) использу­

ют код условия в каждой инструкции. В формате каждой

2 4017 
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инструкции предусмотрено поле, где компилятором записы­

вается код условия, при котором она будет выполнена. Если 
в момент исполнения инструкции код условия не такой, как 

в инструкции, то она игнорируется. Это позволяет вообще 

обойтись без команд перехода при вычислении результатов 

условных операций. 

2.4. Кэш-память 

Время, необходимое для выборки инструкций, в основном зави­
сит от подсистемы памяти и часто является ограничивающим 
фактором для RISС-процессоров в силу высокой скорости ис­

полнения инструкций. Например, если процессор может брать 
инструкции тош,ко из DRAl\1 с временем доступа 60 нс, то ско­

рость их обработки (при расчете одна инструкция за ,�икл) бу­

дет соответствовать тактовой частоте 16. 7 МГц. Эта проблема 

в значительной степени снимается за счет использования кэш­
памяти. 

Кэш-память (сасl1е)-·это быстрое статическое ОЗУ 

(SRAM), вставленное между :исполнительными устройствами 

и системны!\1 ОЗУ (RAM). Она сохраняет последние исполь­
зованные инструкции и данные, так, что циклы и операции с 

массивами будут выполпяться быстрее. Когда исполняющему 

устройству нужны данные и они не находятся в кэш-памяти, 

то это кэш-промах: процессор должен обратиться к внешней 

памяти для выборки данных. Если требуемые данные находят­

ся в кэше, то это кэш-попадание: доступ к внешней памяти 
не требуется. 

Таки!\I образом, кэши разгружают внешние шины, уменьшая 

потребность в них для процессора. Это позволяет нескольким 

процессорам разделять внешние шины без уменьшения произ­
водительности каждого из них. 

Кэш содержит строки из нескольких последовательных бай­

тов (обычно 32 байта), которые загружаются процессором, ис­
пользуя так называемый шнпульсный (или блочный) доступ
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(burst access). Даже если CPU нужен один байт, все равно будет 

:1агружена целая строка, так как вероятно, что тем самым будут 

:3агружены следующие выполняемые инструкции или используе-

11rые данные. Блочные передачи обеспечивают высокие скорости 

11ередачи для инструкций или данных в последовательных адре­

сах памяти. При таких передачах только адрес первой инструк­

r�ии или данного будет послан в подсистему внешней памяти. 

Все последующие запросы инструкций или данных в последова­

тельных адресах памяти не требуют дополнительной передачи 

адреса. Например, загрузка 16 байтов требует 5 циклов, если 

МС68040 делает блочную передачу для загрузки строки кэша, 

и 8 циклов, если память не поддерживает бло•шый режим пе­

редачи. 

Кэш, в котором вместе хранятся данные и инструкции, назы­

вается единым кэшем. Одним из способов новышения произ­
водительностн является введение в процессоре трех шин: адре­

са, инструкций и данных. В Гарвардской архитектуре кэша 

разделяют кэши для инструкций и данных для удвоения эф­

фективности кэш-памяти. В типичной Гарвардской архитектуре 

11рисутствуют три вида кэш-памяти: специальные кэши (напри­

мер, TLB), внутренние кэши инструкций и данных (первого 

уровня или Ll-кэш) и внешний единый кэш (второго уровня 

или L2-кэш). В процессорах, имеющих интегрированные кэши 

первого и второго уровней (т. е. внутри корпуса процессора), ча­

сто дополнительно устанавливают единый кэш третьего уров­

ня (LЗ) вне процессора. Обычно Ll-кэш работает на 'Iастоте 

11роцессора и имеет размер 8 ... 32Кб, L2-кэш работает на часто­

те процессора или ее половине и имеет размер 128Кб ... 4Мб, 

JJЗ-кэш работает на частоте внешней шины и имеет размер 

512Кб ... 8Мб. 

Кэши данных в зав11симости от их поведения при записи дан-

11ых в кэш разделяют на два вида. 

1. Кэш с прямой 3аписью (write-t.hroнgh cache). Этот вид кэш­

памяти при записи в нее сразу инициирует цикл записи во
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внешнюю память. Основным достоинством такого кэша яв­
ляется простота и то, что данные в кэше и в памяти все­
гда идентичны, что упрощает построение многопроцессор­
ных систем. 

2. Кэш с обратной записью (\vrite-back cache). Этот вид кэш­
пю.1яти при записи в нее не записывает данные сразу во
внешнюю память. Запись в память осуществляется при вы­
ходе строки из кэша или по запросу системы синхрониза­
ции в многопроцессорных системах. Такая организация кэш­
паыяти может зна•штельно ускорить выполнение циклов, в
которых обновляется одна и та же ячейка па!\1яти (будет за­
писано только последнее, а не все промежуточные значения,
как в кэше с пряыой записью). Другим достоинство!\1 явля­
ется уменьшение потребности процессора во внешней шине,
что позволяет разделять ее нескольким процессорам. Недо­
статком такой организации является усложнение схемы син­
хронизации кэшей в многопроцессорных системах.

В силу его зпачите,.льно большей эффективности, большинство 
современных процессоров используют кэш с обратной записью. 

Организация кэш-памяти. Кэш основан на сравнении 
адреса. Для каждой строки кэша хранится адрес ее первого 
элемента, называеыый адресом строки. Для уменьшения объема 
дополнительно хранимой информации (адресов строк) и ускоре­
ния поиска адреса используют несколько техни,1еских приемов. 

• Пусть длина строки есть 2Ь байт. Адреса строк выровнены
на границу своего размера, т. е. последние Ь бит адреса -
нулевые и потому нс хранятся (т. е. размер адреса уменьшен
до 32 - Ь бит).

• Фиксируется некоторое i. Строки хранятся как один или
несколько (N) массивов, отсортированными по порядку i
младших битов адреса ( т. е. младших среди оставшихся 32 -
Ь). Таким образоы, k-й элемент массива имеет адрес, биты
которого в позициях от 32 - i - Ь + 1 до 32 - Ь образуют чис-
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ло, равное k. Это позволяет не хранить эти биты (т. е. размер 
адреса уменьшен до 32 - Ь - i бит). 

• Комбинация чисел Ь и i подбирается так, чтобы Ь+i младших
битов логического адреса совпадали бы с соответствующими
битами физического адреса при страничном преобразовании

( т. е. бьщи бы смещением в странице). Это позволяет парал­
лельно производить трансляцию адреса и поиск в кэше ( т. е.
параллельно работать MMU и кэшу). При типичном размере

страницы 4 Кб это означает Ь + i = 12.

• Определение того, содержится ли данный адрес в кэше, про­
изводится следующим образоl\1. Берутся биты в позициях от
32-i-Ь+l до 32-Ь, образующие число k. Затем берутся эле­
менты с номером k в каждом из N массивов и у полученных
N строк сравниваются адреса с 32 -i - Ь битами адреса ( ко�
торые уже транслированы MMU в физический адрес). Если
обнаружено совпадение (т. е. имеет место кэш-попадание), то
берется байт с номером Ь в строке.

Если рассматривается внешний кэш, то согласовывать его рабо­
ту с l\lIMU не требуется, поскольку внешний кэш работает уже 
с физическим адресом. 

Пример: для PowerPC 603 выбрано Ь = 5 (т. е. длина строки 
32 байта), i = 7 (т. е. длина массива 127), N = 2 (т. е. исполь­

зуются два массива). 

Для каждой строки кэша с обратной записью помимо адреса 

хранится также признак того, что эта строка содержит коррект­
ные данные, т. е. данные в кэш-памяти и в основной памяти сов­

надают. Этот признак используется для записи строки в память 

при ее выходе из кэш-памяти, а также в многопроцессорных 
системах. 

Алгоритмы замены данных в кэш-памяти. Если все 
строки кэш-памяти содержат корректные данные, то для обеспе­
•1ения кэширования новых областей памяти необходимо выбрать 
строку, которая будет перезаписана. Эта строка выходит из кэ-
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ша и, если требуется, ее содержиl\юе будет записано обратно в 

память. Существуют три алгоритма замены данных в кэше: 

• вероятностный алгоритм: в качестве номера перезаписы­

ваемой строки используется случайное число;

• FIFО-алгоритм: первая записанная строка будет первой пе­

резаписана;

• LRU-алгоритм (Last Recently Usecl): наименее используемая

строка будет заменена новой.

Для повышения производительности процессора вводится

ряд специальных кэшей. 

• TLB (Тranslatioн Look-aside Buffers) - это кэш-память, ис­
пользуемая MMU для хранения результатов последних

трансляциit логического адреса в физический. Содержит па­

ры: логический адрес и соответствующий физический адрес.

• ВТС (Branch Target Cache) -- это кэш-память, используемая

BU для хранения адреса предыдущего перехода и первой ин­

струкции, выполненной после перехода. Имеет целью без за­

держки заполнить конвейер инструкцией, если переход уже
ранее состоялся. ВТС ыожет значительно повысить произво­

дителыюсть процессора, учитывая время, которое он бы про­

ста�шс1.п: в ожидании заполнения конвейера после перехода.

Согласование кэшей в мультипроцессорных систе­

мах. Если несколько процессоров подсоединены к одной и той 

же шине адреса и данных и разделяют одну и ту же внешнюю 

память, то должен быть рес1.1шзован определенный следящий 

механизl\1 (sнooping) для того, чтобы uce внутрипроцессорные 

кэши всегда содержали одни и те же данные. 

Рассмотрим, наприl\!ер, систему, содержащую два процессо­

ра, каждый из которых может брать управление общей шиной. 

Если процессор 1, управляющий в данный момент шиной, запи­
сывает в ячейку памяти, которая кэширована процессором 2, то 

данные в кэше последнего становятся устаревшими. Следящий 

механизм позволяет второму процессору отслеживать состоя-
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1111е шины адреса, даже если он не является в данный момент 
1·лавным (т. е. управляющим внешней шиной). Если на шине по­
�шился адрес кэшированных данных, то эти данные помечаются 
11 кэше как некорректные. Когда второй процессор станет глав-
11ым, он должен будет выбрать в случае необходимости обнов­
ленные данные из разделяемой памяти. 

Если процессор l, управляющий в данный момент шиной, 
•штает из ячейки памяти, которая кэширована процессором 2,
то ВОЗI\ЮЖ1-ю, что реальные данные находятся в кэше процессо­
ра 2 ( еще не записаны в память, т. е. реализован кэш с обрат­
ной записью). Если это так, то следящий механизм инициирует
цикл записи строки кэша процессора 2, содержащей затребован­
ные процессором l данные, в разделяемую память. После этого
:-эти данные стаНОЕ\ЯТся доступными процессору 1 и цикл чтения
процессора 1 продолжается.

2.5. Многопроцессорные архитектуры 

Одним из самых радикальных способов повышения произ­
водительности вычислительной системы является установка 
нескольких процессоров. 

2.5. 1. Основные архитектуры 

Выделяют несколько типов построения многопроцессорных си­
стем в зависимости от степени связи между отдельными про­
цессорами в системе. 

1. Сильно связанные процессоры (или симметричные
мультипроцессорные системы, symmetrical multiprocessor
system, SMP). Все процессоры разделяют общую шину и об­
щую память, могут выполнять одну и ту же задачу, причеы
задача может переходить от одного процессора к другому.
Если один процессор отказывает, он может быть заменен
другим. SMP подраэумевает наличие аппаратного протокола
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синхронизации кэшей всех процессоров (см. выше). Типич­
ный приI11ер: плата с двуl11я процессорами Pentium. 

2. Слабо связанные процессоры. Часть системной памя­
ти l\!Ожет быть разделяема, но переход задачи от одного
процессора к другому невозможен. l\'lеханизмы синхрони­
зации снецифичны для каждой системы (почтовые ящики,
DPRA1.f, прерывания). Типичный пример: стойка промыш­
ленного стандарта Vl\'IE с несколькими процессорными пла­
тами и разделяемой памятью на одной из плат.

3. Распределенные процессоры. Несколько процессоров не
разделяют ни одного общего ресурса, за исключение!\1 линии
связи. Типи•шый пример: соединенные посредством Etliernet
рабочие ста1щии.

Очень часто 1\IIIОгопроцессорные системы делят на два клас­
са в зависиl\юстн от способа доступа процессов к оперативной 
памяти (см. раздел 5.1 о раздР.ляе!IIОЙ памяти): 

1. Системы с общей памятью-процессы могут разделять
блок оперативной памяти.

2. Системы с распределенной памятью - у каждого из
процессов своя онератшшая паыять, которая нс 1\Южет быть
сделана разделяемой !\lежду JШI\IИ.

Сш:теl\rа на сильно связанных процессорах, конечно, является 
системой с общей паl11ятью. Отметим, что система па ря.спреде­
лснных процессорах с rюмощью програ.ммногп обеспечения тоже 
может быть превращена в систему с общей па!\lятью. 

2.5.2. Комбинированные архитектуры 

Аµхитектура SMP является самой дорогой с точки зрения аппа­
ратной реализации 11 са�юй дешевой с тос1ки :3репия ря.эработки 
програl11много обеспечения. И наоборот, распределенные процес­
соры почти не требуют аппаратных затрат, но являются саыыI11 
доропш решением с точки зрения разработки ПО. Для достиже-
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ния оптиl\-rального компромисса для круга решаемых задач ис­
пользуют различные комбинации описанных выше технологий . 

• Гибридные схемы SMP используются для ускорения ра­
боты программ, требующих интенсивной работы с оператив­
ной памятью. Описанная выше схема SMP ускоряет выпол­
нение задач, которым не нужен постоянный обмен с RAM,
поскольку все процессоры разделяют одну шину и в каж­
дый момент времени только один процессор может работать
с памятью. Поэтому иногда (это очень дорогое решение) по­
ступают следующим образом: система строится на базе моду­
лей, каждый из которых является самостоятельной процес­
сорной платой с двумя (или четырьмя) процессорами, вклю­
ченньши по схеме Sl\'IP. В каждоl\1 модуле расположена сван
оперативная память, к которой через общую шину имеют
доступ процессоры этого модуля. Логически память каждо­
го модуля включена в общую память системы, т. е. память
всей системы образована как объединение памяти каждого
из 1\юдулей. Физически доступ к памяти других модулей осу­
ществляется через быстродействующую коммуникационную
шину, которая может быть как общей для всех модулей, так
и быть соединением типа <<точка-точка>> по приш�ипу <<все
со всеми>> ( абы чно используется комбинация этих способов
организации шины). Если программа может быть организо­
вана так, что в основном группе процессоров нужна не вся
память, а только ее часть (размером с память модуля), и
обмены меж.а.у этими частяыи идут не часто (это весьма ре­
алистичные предположения, особенно, если память каждого
из :модулей достаточно велика), то такая программа может
эффективно работать на описанной архитектуре.

• Гибридные схемы слабо связанных (распределен­
ных) процессоров используются для повышения надежно­
сти работы систем на основе архитектуры со слабо связан­
ными (распределенными) процессорами. Используются для
ускорения работы систем, в которых требуется обрабатывать
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одновременно много процессов и обеспечить отказоустойчи­
вость. Вместо слабо .связанных (распределенных) процессо­
ров используют слабо связанные (распределенные) процес­
сорные модули, каждый из которых является самостоятель­
ной процессорной платой с двумя (или четырьмя) процессо­
раl\-rи, включенными по схеме SI\'IP. В случае отказа одного из 
процессоров в модуле, имеется потенциальная возможность 
передать все процессы оставшимся процессорам. 

• Кластерная организация процессоров является част­
ным случаем описанных выше архитектур и используется
для ускорения работы систем, в которых требуется обраба­
тывать одновременно много процессов. Физически кластер
строится либо на базе распределенных процессоров, либо
на базе слабо связанных процессоров (без разделяемой па­
мяти, фактически несколько независимых процессорных
систем, объединенных общим корпусом, источниками пита­
ния и системами ввода-вывода). Первый способ был более
распространен в моl\1ент появления понятия <<кластер>>, вто­
рой становится популярным в настоящее время в связи с
миниатюризацией процессорных систем. Логически кластер
представляет собой систему, в которой каждый из процес­
соров независим и может независимо от других принимать
к исполнению задания. Операционная система направляет
вновь пришедший процесс на исполнение тому процессору,
который в данный момент менее загружен ( т. е. для пользо­
вателя вся система выглядит как единая многопроцессорная
установка).

Еслп коммуникационный канал, связывающий отдель­
ные процессорные модули, имеет высокую пропускную спо­
собность, то операционная система .может эмулировать на 
такой системе поведение описанной выше системы гибрид­
ной S:t\-IP, а именно, она может позволить исполнять одно 
и то же приложение на нескольких процессорах. Это отно­
сится не только к кластераl\1, но и ко всем архитектурам с 
распределенными процессора1ш. 
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2.5.3. Обанкротившиеся архитектуры 

В этом раэделе мы рассмотрим многопроцессорные архитекту­

ры, которые в чистом виде уже не применяются в новых раэра­

fiотках. Однако они оказали значительное влияние на развитие 

111,1 <шслительной техники, и некоторые их черты, уже в новом 

технологическом воплощении, присутствуют и в современных 

,tрхитектурах. 

Основными причинами, приведшими к выходу из употреб­

ления этих архитектур (и разорению фирм, выпускавших на их 

основе ЭBJvl), являются: 

• необходимость разрабатывать программное обеспечение спе­

циально под конкретную архитектуру;

• конкуренция с параллельными архитектурами;

• снижение расходов на оборонные разработки (большинство

проектов по высокопроизводительным вычислениям финан­

сировалось из военных источников).

Основные архитектуры:

• Векторные процессоры - это даже не многопроцессорные

архитектуры, а одиночные процессоры, способные выпол­

нять операции с вектораl\ш как примитивные инструкции.

Это может значительно ускорить выполнение программ вы­

числительной математики, поскольку в таких задачах основ­

ное время работы приходитсн на обработку векторов и мат­
риц.

• Матричные процессоры - это процессоры, способ11ые

выполнять операции над матрицами как примитивные ин­

струкции. Обычно пре!l;ставляют собой группу процессоров,

разделяющих общую паl\-1ять и выполняющих один поток ин­

струкций.

• Транспьютеры - это многопроцессорные архитектуры, со­
стоящие из независимых про,�ессоров ( обычно кратных по

количеству 4), каждый из которых имеет свою подсистf'му
памяти. Процессоры связаны 1\1ежду собой высокоскорост-
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ными соединениями, организованными по принципу <<точка­
точка>>. Каждый процессор связан с четырьмя другими. 

2.6. Поддержка многозадачности 
и мноrопроцессорности 

В современных процессорах поддержка многозадачности и мно­
гопроцессорности не ограничивается аппаратной частью (вроде 

рассмотренного выше :механизма синхронизации кэшей). Для 
организации доступа к критическим разделяемым ресурсам 
необходимо в наборе инструкций процессора предусмотреть спе­

циальные инструкции, обеспечивающие доступ к объектам син­
хронизации. Действительно, сами объекты синхронизации яв­
ляются разделяемыми, а для обеспечения правильного доступа 
к разделяемыl\1 объектам необходимо вводить объекты синхро­
низации, которые в свою очередь тоже являются разделяемы­
ми 1;1 т. д. Для выхода из этого замкнутого круга определяют 
некоторые <<примитивные>> объекты синхронизации, к которым 
возможен одновременный доступ нескольких задач или процес­
соров за счет использования специальных инструкций доступа. 

Рассмотри�� более подробно случай булевского семафора. За­
дача или процессор, собирающийся взять управление разделя­

емым ресурсом, начинают с чтения значения семафора. Если 
он обнулен, то задача или процессор должны ждать, пока ре­

сурс станет доступным. Если семафор установлен в 1, то за­

дача или процессор немедленно его обнуляют, чтобы показать, 

что они контролируют ресурс. В процессе изменения семафо­

ра можно выделить три фаэы: чтение, изменение, запись. 

Если на стадии чтения возникнет переключение задач или дру­
гой процессор станет главнь11н на шине, то может возникнуть 

ошибка, так как две задачи или два процессора контролируют 
о,r�ин и тот же ресурс. Аналогично, если переключение контек­
ста произойдет между циклом чтения и записи, то два процесса 
мо,·ут взять семафор, что тоже приведет к системной ошибке. 
) [шт решения этой проблемы большинство процессоров имеют 
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инструкцию, выполняющую неделимый цикл чтение - изr-,1ене­
ние -- запись. Поскольку это одна инструкция, то переключение 
задач во время операции с семафором невозможно. Так как она 
производит неделимый цикл, то процессор, ее выполняющий, 
остается владельцем шины до окончания операции с семафором. 

2.7. Использование параллелизма процессора 
для повышения эффективности программ 

Рассмотрим задачу умножения двух п х п квадратных матриц: 
С = АВ. Элементы матриц в языке С хранятся в оперативной 
памяти по строкам: вначале элементы первой строки, затем 
второй и т. д. Например, последовательность элементов мат­
рицы А: 

а1,1, а1,2, · · ·, a1,n, а2,1, а2,2, · · ·, a2,n, аз,1, · · · , an,n-1, an,n· 

Таким образом, последовательные элементы строки матрицы 
лежат друг за другом и доступ к ним будет максимально быст­
рым, так как стратегия предвыборки элементов в кэш (т. е. 
чтение каждый раз целого блока оперативной памяти, равного 
по размеру строке кэша, см. раздел 2.4, с. 34) себя полностью 
оправдывает. С другой стороны, последовательные элементы 
столбца матрицы лежат на расстоянии n * sizeof (douЫe)

байт друг от друга и доступ к ним будет максимально мед­
ленным (поскольку строка кэш-памяти существенно меньше 
расстояния между элементами) . 

Вычислим произведение матриц несколькими способами: 

1. Цикл проведем по строкам матрицы С ( стандартный спо­
соб):

для всех m=l,2, ... ,n 
для всех i = 1, 2, ... , п

n 

вычислять чпi = Е amj Ьji 
j=l 

В цикле по j (вычисление суммы) элементы одной строки 
матрицы А (к которым доступ и так быстрый) будут исполь-
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зованы многократно (в цикле по i), элементы же столбцов 

матрицы В (к которыы доступ относительно !1-Iедленный) по­

вторно (в цикле по i) не используются. Тем самым при досту­
пе к элементам В кэш-память практически ничего не дает. 

2. Цикл проведем по столбцам матрицы С.

для всех 
для всех 

ni=1,2, ... ,n 

i = 1, 2, ... , п 
n 

ВЫЧИСЛЯТЬ Cim = L ЩjЬjт 
j=l 

В цикле по j (вы•шслепие суымы) элементы матрицы А 

повторно (в цикле по i) не используются. Элементы же 

столбцов 1\-1атрицы В используются многократно (в цикле 
по i). Кэш-паl\·IЯТЬ ускоряет доступ к элеl\1ентаl\1 А за счет 
предвыборюr подряд идущнх элементов, и ускоряет доступ 
к элементаl\1 В, если столбец В целиком поместился в 

кэш-память (тогда в цикле по i обращение к элементам В 

в оперативной памяти будет только на первоl\1 шаге). Отме­

тим, что если размер кэш-паl\lяти недостаточен (напрпмер, п 

велико), то этот способ может окаэаться хуже предыдущего, 

так каr, l\lЫ уху;�шили способ достуна к А и не получили 

выигрыша при доступе к В. 

3. Цикл проведеl\1 110 N х N, N = 10, блокам матрицы С,

внутри блока идеl\1 по столбцам:

для всех 
для всех 

Ьт = 1, 1 + N, 1 + 2N ... , Ьт < п 

bi = 1, 1 + N, 1 + 2N ... , Ьi < п 

для всех т. = Ьт, Ьт + 1, ... , Ьт + N - 1, т < n 

для всех i = Ьi, bi + 1, ... , Ьi + N - 1, i < п 
п 

ВЫ'IIIСЛЯТЬ Cim = L ЩjЬjт 
j=l 

Теперь 1\IЫ максимально локализуем количество вовлечен­
ных в самые впутрешше циклы элементов, увеличивая тем 
са!\1ыы эффективность работы кэш-памяти. Особенно боль­

шой выигрыш в скорости работы мы получим, если исполь­
зуе!\lые в циклах но т, i, j N строк матрицы А и N столбцов 
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матрицы В поместились в кэш-память. Если же п так вели­
ко, что даже один столбец В не поместился целиком в кэш, 
то этот способ может оказаться хуже самого первого. 

4. Зададимся параметром N (для простоты ниже предполагает­
ся, что п делится на N нацело, хотя программа разработана
для произвольного N). Всякая матрица !vl 1\ЮЖет быть пред-
ставлена как составленная из блоков:

( 

М11 !vl12 Mlk)
М21 Al22 !vl2k 

М= 

llfkl Mk2 !11kk, 

где Afij -N х N матрица, k = n/N. Тогда каждый блок Cim 
произведения С = АВ матриц А и В может быть вычислен 
через блоки матриц А и В:

п 

Cim = LAij Bjm 
j=l 

В вычислении произведения N х N матриц Aij и Bjm участ­
вует только подмножество из N2 элементов матриц А и В.

При небольшом N (в нашем тесте N = 40) это подмножество 
полностью поместится в кэш-памяти и каждое слагаемое по­
следней суммы будет вычислено максимально быстро. 

5. В предыдущем варианте мы уже практически исчерпали все
преимущества, которые дает нам кэш-память. Для получе­
ния дальнейшего прироста производительности вспомним,
что все современные процессоры имеют конвейер инструк­
ций (см. раздел 2.3, с. 26), причем весьма глубокий (может
доходить до полутора десятков стадий). Для его заполнения
длина линейного участка программы ( т. е. не содержащего
команд перехода) должна быть как минимум больше глу­
бины конвейера (желательно - в несколько раз больше). Во
всех же предьщу1цих вариантах в самом внутреннем цикле
(по j) находится 1 оператор языка С, который, в зависимо­
сти от целевого процессора, транслируется компилятором в
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7 ... 12 инструкций (включая операторы обслуживания цик­
ла). Для увеличения длины линейного участка программы 
<<развернем>> цикл в предыдущем варианте: за один виток 
цикла по j будем вычислять сразу 4 элемента матрицы С: 

Ci,m, Ci,m+l, Ci+l.m, cн1,m+l· Поскольку при их вычислении 

используются повторяющиеся элементы матриц А и В, то 
также появляются дополнительные резервы для ускорения 
работы за счет оптимизации компилятора и кэш-паl\1яти. 

Исходный текст этих пяти вариантов приведен ниже. 

#include "mmult.h" 

I* Умножить матрицу а на матрицу Ь, с = аЬ, 
ЦИКЛ ПО строкам с *I 

void matrix_mult_matrix_l (douЫe *а, douЫe *Ь, 
douЫe *С, int n) 

{ 

int i, j J 
m· ' 

douЫe *ра, *рЬ, *ре, s· ' 

for (m = О, ре = с. ' m < n· ' m++) 
{ 

for (i = о, рЬ = Ь; i < n· ' i++, рЬ++) 
{ 

for (s = О., j = о, ра = а + m * n; j < n; j++) 
s += *(ра++) * pb[j * n];

*(ре++) = s; 
} 

} 

} 

I* Умножить матрицу а на матрицу Ь, с = аЬ, 
ЦИКЛ ПО столбцам с *I 

void matrix_mult_matrix_2 (douЫe *а, douЫe *Ь, 
douЫe *С, int n) 
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{ 
int i, j, m; 
douЫe *ра, *рЬ, *ре, s; 

for (m = О, ре = е; m < n; m++, ре++) 

.{ 

for (i = О, ра 

{ 

а, рЬ = Ь + m; i < n; i++) 

for (s = О., j = О; j < n; j++) 
s += *(ра++) * pb[j * n]; 

ре [i * n] = s; 

} 
} 

} 

I* Размер блока *I 
#define N 10 

I* Умножить матрицу а на матрицу Ь, е 
цикл по блокам е *I 

void matrix_mult_matrix_З 

{ 
int bm, bi, nbm, nbi; 
int i, j, m; 
douЫe *ра, *рЬ, *ре, s; 

(douЫe 
douЫe 

for (bm О· • bm < n· • bm += N) 

{ 

*а, 
*е,

= аЬ, 

douЫe 
int n) 

nbm = (bm + N <= n ? bm + N n); 

for (Ьi = О; Ьi < n· Ьi += N) . 

{ 
nЬi (Ьi + N <= n? Ьi + N n); 

*Ь,

49 
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} 

} 
} 

I* Вычислить результирующий блок матрицы с 
с верхним левым углом (bi, bm) 
и правым нижним (nbi-1, nbm-1) *I 

for (m = bm, ре = с + bm; m < nbm; rn++, ре++) 

{ 

} 

for (i = bi, ра = а +  bi * n, рЬ = Ь + m; 
i < nЬi; i++) 

{ 

} 

f or ( s = О. , j = О; j < n; j ++) 
s += *(ра++) * pb[j * n]; 

ре [i * n] = s; 

#undef N 

I* Размер блока *I 
#define N 40 

I* Умножить матрицу а на матрицу Ь, с = аЬ, 
блочное умножение матриц *I 

void matrix_mult_rnatrix_4 (douЫe *а, douЫe •Ь, 
douЫe *С, int n) 

{ 
int bm, Ьi, nbm, nЬi; 
int 1, nl; 
int i, j, rn; 
douЫe •ра, •рЬ, •ре, s; 

for (bm = О; brn < n; brn += N) 

{ 
nbrn (brn + N <= n? brn + N n); 
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} 
} 

for (bi = О; bi < n; bi += N) 

{ 

} 

nbi = (bi + N <= n? bi + N : n); 

I* Вычислить результирующий блок матрицы с 
с верхним левым углом (bi, bm) 
и правым нижним (nbi-1, nbm-1) *I 

I* Вычисляем как произведения блоков матриц 
а и Ь */ 

for (m = bm, ре = е + bm; m < nbm; m++, ре++) 
for (i bi; i < nbi; i++) 

ре [i * n] О.; 

for (1 = О; 1 < n; 1 += N) 

{ 

} 

nl = (1 + N <= n? 1 + N : n); 
I* Вычисляем произведение 

блока матрицы а [(bi,l) х (nbi-1,nl-1)] 
на блок матрицы Ь [(l,bm)x(nl-1,nbm-1)] 
и прибавляем к блоку 
матрицы с [(Ьi,bm) х (nЬi-1,nbm-1)] *I 

for (m = bm, ре = c+bm; m < nbm; m++, ре++) 
for (i Ьi, рЬ = Ь + m; i < nЬi; i++) 

{ 
ра = а + 1 + i * n; 
for (s = о.' j = 1 ; j < nl ; j ++) 

s += *(ра++) * рЬ [j * n]; 
pc[i * n] += s; 

} 

#undef N 
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I* Размер блока, должен делиться на 2 */ 
#define N 40 

I* Умножить матрицу а на матрицу Ь, с = аЬ, 
блочное умножение матриц, внутренний цикл развернут *I

I* Работает только для четных n (для всех n придется 
усложнять разворачивание цикла) *I

void matrix_mult_matrix_5 (douЫe *а, douЫe *Ь, 
douЫe *С, int n) 

{ 
int bm, bi, nbm, nbi; 
int l, nl; 
int i, j, m; 
douЫe *ра, *рЬ, *ре; 
douЫe sOO, s01, s10, s11; 

for (bm 

{ 
nbm 
for 

{ 

о· ' bm < n· 
' 

bm += N) 

= (bm + N <= n? bm + N : n); 
(Ьi О; Ьi < n· 

' Ьi += N) 

nЬi = (Ьi + N <= n ?  Ьi + N : n); 

I* Вычислить результирующий блок матрицы с 
с верхним левым углом (Ьi, bm) 
и правым нижним (nЬi-1, nbm-1) *I

I* Вычисляем как произведения блоков матриц 
а и ь *I

for (m = 
for (i 

pc[i 

bm, ре = с +  bm; m < 
Ьi; i < nЬi; i++) 

* n] О.; 

for (l = О; 1 < n; l += N) 

{ 

nbm; m++, ре++) 
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} 
} 

} 

} 

nl = (1 + N <= n? l + N : n); 
f* Вычисляем произведение 

блока матрицы а [(bi,l) х (nbi-1,nl-1)] 
на блок матрицы Ь [(l,bm)x(nl-1,nbm-1)] 
и прибавляем к блоку 
матрицы е [(bi,bm) х (nbi-1,nbm-1)] *f 

for (m = bm, ре = е + bm; m < nbm; 
m += 2, ре += 2) 

for (i = bi, рЬ = Ь + m; i < nbi; i += 2) 

{ 

} 

ра = а +  l + i * n; 
sOO = s01 = s10 = s11 = О.; 
for (j = l; j < nl; j++, ра++) 

{ 

} 

I* элемент (i, m) *f 
sOO += ра[О] * pb[j * n]; 
f* элемент (i, m + 1) *f 
s01 += ра[О] * pb[j * n + 1]; 
f* элемент (i + 1, m) *f 
s10 += pa[n] * pb[j * n]; 
f* элемент (i + 1, m + 1) *f 
s11 += pa[n] * pb[j * n + 1]; 

ре [i * n] += sOO; 
pc[i * n + 1] += s01; 
ре [(i + 1) * n] += s10; 
ре [ (i + 1) * n + 1] += s11; 

Отношение времени работы. первого варианта ( стандартно­
го) к времени работы каждого из 5 вариантов для матриц 
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Таблица 2.1. Соотношение скорости работы 
различных алгоритмов умножения матриц 

Процессор Pentiuш III Pentium 111 PowerPC 603е 

Разм1!р1юсть 1000 2000 1000 

Алгоритм 1 1.0 1.0 1.0 
Алгориты 2 1.3 1.0 1.0 
Алгоритм 3 1.9 1.0 1.0 
Алгориты 4 2.3 7.6 5.6 
Алгориты 5 4.3 13.8 11.0 

1000 х 1000 и 2000 х 2000, вы•шслснное на процессорах Intel 
Peнtiшn III и Шl\·'I/I\'1oto1·ola Po\vei·PC 603е, IIриведено в таб­
лице 2.1. 

Отметим, •�то просто IIеренисав программу с учетом наличия 

кэш-памятп и конвейера инструкций, мы получили более чем 

10-кратное ускорение на одном процессоре, без использования

параллельной вычислительной установки!

По просьбам читателей ниже приводится текст описанных 
uыше вариантов уillножспия l\1атриц на языке FORTRAN-77. 

С Умножить матрицу а на матрицу Ь, с = аЬ, 

С цикл по строкам с 
subroutine matrix_mult_matrix_1 (а, Ь, с, n) 

real*8 а (n, n), Ь (n, n), с (n, n) 

integer n 

integer i, j, m 

real*8 s 

do m 1, n 
do i = 1, n 

s = 0.dO 
do j = 1, n 

s = s + а (m, j) * Ь (j, i)
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end do 

с (m, i) s 
end do 

end do 

end subroutine 

С Умножить матрицу а на матрицу Ь, с = аЬ, 

С цикл по столбцам с 

subroutine matrix_mult_matrix_2 (а, Ь, с, n) 

real*8 а (n, n), Ь (n, n), с (n, n) 
integer n 

integer i, j, m 

real*8 s 

do m 1, n 

do i = 1, n 

s = O.dO 

do j = 1, n 

s = s + а (i, j) * Ь (j, m)

end do 

с (i, m) = s 

end do 

end do 

end subroutine 

С Умножить матрицу а на матрицу Ь, с = аЬ, 

С цикл по блокам с 

subroutine matrix_mult_matrix_З (а, Ь, с, n) 

real*8 а (n, n), Ь (n, n), с (n, n) 

integer n 

integer bm, bi, nbm, nbi 

integer i, j, m 

real*8 s 

55 
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с 
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parameter (nn = 10) 

do bm = 1, n, nn 

if (bm + nn .le. n + 1) then 

nbm bm + nn 

else 

nbm n + 1 

endif 

do bi = 1, n, nn 

if (bi + nn .le. n + 1) then 

nЬi = Ьi + nn 

else 

nЬi = n + 1 

endif 

Вычислить результирующий блок матрицы с 

с верхним левым углом (Ьi, bm) 

и правым нижним (nЬi-1, nbm-1) 

do m = bm, nbm - 1 

do i = Ьi, nЬi - 1 

s = 0.dO

do j = 1, n 

s = s + а (i, j) * Ь (j, m) 

end do 

с (i, m) = s 

end do 

end do 

end do 

end do 

end subroutine 

С Умножить матрицу а на матрицу Ь, с = аЬ, 

С блочное умножение матриц 

subroutine matrix_mult_matrix_4 (а, Ь, с, n) 

real•8 а (n, n), Ь (n, n), с (n, n) 

integer n 
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с 

с 

с 

с 

с 

integer bm, bi, nbm, nbi 

integer l, nl 

integer i, j, m 

rea1*8 s 

parameter (nn = 40) 

do bm = 1, n, nn 

if (bm + nn .le. n + 1) then 

nbm bm + nn 

else 

nbm = n + 1 

endif 

do bi = 1, n, nn 

if (bi + nn .le. n + 1) then 

nЬi Ьi + nn 

else 

nЬi = n + 1 

endif 

Вычислить результирующий блок матрицы с 

с верхним левым углом (bi, bm) 

и правым нижним (nЬi-1, nbm-1) 

Вычисляем как произведения блоков матриц 

а и Ь 

do m = bm, nbm - 1 

do i = Ьi, nbi - 1 

с (i, m) = O.dO 

end do 

end do 

do 1 = 1, n, nn 

if (1 + nn .le. n + 1) then 

nl = l + nn 

else 

nl n + 1 
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с 

с 

с 

с 

с 

endif 

Вычисляем произведение 

блока матрицы а [(bi,l) х (nbi-1,nl-1)] 

на блок матрицы Ь [(l,bm)x(nl-1,nbm-1)] 
и прибавляем к блоку 

матрицы с [(Ьi,bm) х (nЬi-1,nbm-1)] 
do m = bm, nbm - 1 

do i = bi, nЬi - 1 

s = O.dO 

do j = 1, nl - 1 

s = s + а (i, j) * Ь (j, m)

end do 
с (i, m) = с (i, m) + s 

end do 

end do 
end do 

end do 

end do 

end subroutine 

С Умножить матрицу а на матрицу Ь, с = аЬ, 
С блочное умножение матриц, внутренний цикл развернут 

С Работает только для четных n (для всех n придется 

С усложнять разворачивание цикла) 

subroutine matrix_mult_matrix_5 (а, Ь, с, n) 

real*8 а (n, n), Ь (n, n), с (n, n) 

integer n 

integer bm, Ьi, nbm, nЬi 

integer 1, nl 

integer i, j, m 

real*8 sOO, s01, s10, s11 
parameter (nn = 40) 

do bm = 1, n, nn 



2. 7. Использование параллелизма процессора

с 

с 

с 

с 

с 

с 

с 

с 

с 

с 

if (bm + nn .le. n + 1) then 

nbm 

else 

bm + nn 

nbm = n + 1 

endif 

do bi = 1, n, nn 

if (bi + nn .le. n + 1) then 

nbi bi + nn 

else 

nЬi = n + 1 

endif 

Вычислить результирующий блок матрицы с 

с верхним левым углом (Ьi, bm) 

и правым нижним (nbi-1, nbm-1) 

Вычисляем как произведения блоков матриц 

а и Ь 

do m = bm, nbm - 1 

do i = Ьi, nЬi - 1 

с (i, m) = O.dO 

end do 

end do 

do 1 = 1, n, nn 

if (1 + nn .le. n + 1) then 

nl 1 + nn 

else 

·nl = n + 1

endif 

Вычисляем произведение 

блока матрицы а [(Ьi,1) х (nЬi-1,nl-1)] 

на блок матрицы Ь [(l,bm)x(nl-1,nbm-1)] 

и прибавляем к блоку 

матрицы с [(Ьi,bm) х (nЬi-1,nbm-1)] 

do m bm, nbm - 1, 2 

do i = Ьi, nЬi - 1, 2 
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с 

с 

с 

с 

sOO = O.dO 
s01 = O.dO 
s10 O.dO 
s11 = 0.dO 
do j = l, nl - 1

элемент (i, m) 
sOO = sOO + а (i, j) * ь (j, m) 
элемент (i, m + 1) 
s01 = s01 + а (i, j) * ь (j , m + 1) 
элемент (i + 1, m) 
s10 = s10 + а (i + 1, j) * ь (j, т)
элемент (i + 1, m + 1) 
s11 = s11 + а (i + 1, j) * Ь (j, m+l) 

end do 
с (i, m) = с (i, m) + sOO 
с (i, m + 1) = с (i, m + 1) + s01 
с (i + 1, m) = с (i + 1, m) + s10 
с (i + 1, m + 1) = с (i + 1, m+l) + s11 

end do 
end do 

end do 
end do 

end do 
end subroutine 

Отиетим, что нз-за хранения матриц по столбцам нри п = 

1000 на l11t.cl Ренtiнш 111 скорости работы первоl'о и второго ал­

горитl\lов ыеняются местами; при п = 2000 на lпtel Ренtiнш 111 

алгорптl\1 5 в 16 раз превосходит по скорости алгоритм 1. 



3 
Пути повышения 

производительности 
оперативнои памяти 

К сожалению, разрыв в производительности процессора и опера­
тивной памяти увеличивается с каждым годом. Дело в том, что 
в процессор не только внедряют все более изощренные механиз-

. мы ускорения его работы, но и поднимают его тактовую часто­
ту. Последнее не годится для оперативной памяти (по крайней 
мере, для ЭВМ общего назначения), поскольку это приводiп к 
значительному повышению выделения тепла, которое не уда­
ется отводить обычными способами. (Заметим, что существу­
ют ЭВМ, где использована значительная частота оперативной 
памяти, расплатой за что является необходимость охлаждения 
модулей памяти водяным либо ультразвуковыы воздушным по­
током.) Поэтому в настоящий момент частота процессора может 
более, чем в 10 раз превосходить частоту оперативной памяти. 
С учетом параллелизма в работе процессора это означает, что 
за время одного обращения к памяти он может выполнить более 
20 инструкций (!), таких как перемножение пары вещественных 
чисел. 

Для повышения производительности оперативной памяти 
применяют несколько приемов, идеологически схожих с мето­
дами ускорения работы процессора. Именно, оперативная па­
мять должна параллельно обрабатывать (т. е. принимать (за-



62 Глава 3. Повышение производительности оперативной памяти 

пись) или выдавать (чтение)) как можно большее колпчество 
данных: 

• Увеличение ширины шины данных: переход от Sll\,IM
(32-бнтная шина) к модулям DJt,IJ\iI, DDR (64-, 128- ил11 256-
битная шина) при построении подсистеыы памяти. Это дает
прпрост n 2, 4 или 8 раз при доступе к последовательны111
данны111 (т. с. когда стратегия предвыборки строки кэша. себя
онравдывает).

• Введение небольшой статической памяти SRAM для
буферизации DRАМ-модуJ1ей: буфсризовашrые DIММ­
модулн. Этот сrюсоб аналогичен введению кэша в 11роцессор.

• Введение конвейера в модули DRAM. Используется та
же идея, что 11 11р11 введении конвейера в нроцссеоры. Внут­
ри модуля на.мяти находится несколько обрабатываемых об­
ращений к щ1ыят11 в ра:.шой степени готов1юст11 ( формиро­
nание адреса, выбор банка, выборка да11ных, запись их на
1шсшнюю шину и т. д.). Это 1юзволяет ыодулю памяти нрн-
1-шыать/выда.вать данные каждый цикл шины (при усло­
вии овти11ш.лыюrо фушщион11рова11ия конвейера). В силу
этого такая память получила название sy11cl1ronoнs DRAJ\.I
(SDH.Al'Л). Дш1 такой. памятн в ка•rестве вреысни досту­
па. прш-IЗВО)�И'l'еJШ В рекла!'.11\ЫХ целях пишут :i\lИНИММЫIЫЙ
цикл ,шшы, •1то даст фантастические времена доступа ме­
нее 10 нс (т. с. частота шины более 100 МГц). На самом же
деле в ыодулях SDRAM использошшы обычные l\ШKIIOCXCl\IЫ
паыяти, nper.ш доступа к которыl\1 -- околn 60 нс.

• «Расслоение>> оперативной памяти. Поскольку процес­
сор обменивается с памятью только блоками размером со
строку кэша, то можно разделить этот блок на N частей (N
обы•шо 2, 4, 8) и передать каждую из частей сnоей подсисте­
ме паыяти. В результате получаются N подсистем памяти,
работающих параллельно. Если программа требует последо­
вательные адреса памяти (т. е. стратегия нредвыборки стро-
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ки кэша себя оправдывает), то этот подход может в N раз 
увеличить производительность подсистемы паl\Iяти. 

Подчеркнем еще раэ, что все описанные приемы (как и в сй­
туации с процессором) дают выигрыш только для <<правильно>> 
устроенной программы, т. е. той, которая в основном обраща­
ется к последовательно расположенным данным и за каждое 
обращение читает/записывает блок памяти, не 1\tеньший шири­
ны шины. 



4 
Организация данных 
во внешнеи памяти 

l\,lногонµоцессорные снстсJ\!ы иногда строятся на процессорах 
раэных производ11телей. Этп процессоры решают общую зада­
чу и обмениваются J\!ежду собой данными через разделяемую 
память или коммуннкацпонпый канаJI. В этой ситуации необхо­
димо соглаеованне представления данных в памяти каждым из 
участвующих в обl\fене процессоров. 

При доетупе к да�шьш (целочисленным или с плавающей 

точкой) основным вопросом является способ нуl\1ерации байтов 

в слове. 
Если бы в 32-битной архитектуре J\ПШИJ\ШЛьным адресуемым 

элel\lfШTOJ\I оперативной памяти являлось 32-битное слово, то во­
прос о нуысрации байтов в слове не вставал бы. В реаJiьной еиту­

ации, когда J\ПШI1J\1альным адресуемым элементом оперативной 

памяти }{Вляется байт (8-битное слово), данные большего раз­

мера образуются как объеюшение подряд идущих байт. Выбор 
нуr-1ерации байт в 32-бнтном (.! байта) слове может быть произ­
волы-1ыи, что дает 24 = 4! способа. На практике иепользуются 

только два: ABCD (называемый Ьig-endian) и DCBA (называе­
мый little-eщliaн). 

В модели Ьig-endiai1 баi1:ты в слове нумеруются от наиболее 
зю1•шмого к наныенес :шачнl\юму. В J\!одели little-endian байты 
в слове нуыеруются от наиJ\!енее значимого к наиболее значимо­
му. Приl\lеры Ьig-епdiан-процсссоров: i\IotOI"ola 68ххх, PowerPC 
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(110 умолчанию), SPARC; пример little-endian-пpoцeccopa: Intel 
ROx86. Процессоры PowerPC, Iпtel 80960х, ARM, SPARC (64-
битные модели) могут работать как в Ьig-епdiаn-режиме, так 
и в little-endian. 

Если процессоры, осуществляющие обмен данными, исполь­

:1уют разный режим нумерации байтов, то потребуется преобра­
:юnывать все полученные или переданные данные. Практически 
все современные процессоры имеют для этой цели специальную 
инструкцию. 

Все современные процессоры поддерживают в организации 
)�анных с плавающей точкой стандарт ANSI/IEEE 754-1985. По­
:-этому дополнительных проблем в этом случае не возникает. 
Необходи1110 только учитывать, что данные с плавающей точ­
кой содержат несколько байт, поэтому на них также оказывает 
влияние способ нумерации байтов в слове. 

3 4017 



5 
Основные положения 

В этой главе мы введем основные понятия, используемые при 
расоютреюrи любой програымной системы. 

5.1. Основные определения 

Определение. Программа -- это описание на некотором фор­
мализованноl\I языке алгоритма, решающего поставленную за­

дачу. Програl\!М<\ является статической единицей, т. е. неизменя­
емой с точки зрення операционной систеl\1ы, ее выполняющей. 

Определение. Процесс - это динамичес1<ая сущность про-
граммы, ее код в процессе своего выполнения. Имеет 

• собственные области памяти 1юд код и данные,

• собственный стек,

• ( в системах с: виртуальной намятыо) собственное отображе­

ние впртуалыюй памяти на физическую,

• собственное состояние.

Процесс 1\Южет находиться в одном из следующих типичных со­

стояний (точное количество и свойства того или иного состоя­
t�ия зависят от операцнонно11 системы): 

1. <<остыювлен>> -- процесс остановлен и не использует процес­
сор; например, в таком состоянии процесс находится сразу
пос.пе создания;
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2. <<Терминирован>> --- процесс терминирован и нс используt:�г
процессор; например, процесс закончился, но еще не удален
операционной системой;

3. <<ждет>> -- процесс ждет некоторого события (которым может
быть аппаратное или программное прерьшание, сигнал или
другая форма межпроцессного взаимодейстш1я);

4. <<ГОТОВ>> - проr�есс не остановлен, не терминирован, не ожи­
дает, не удален, но и не работает; например, процесс может
не получать доступа к процессору, если в данный i\Юмент
выполняется другой, более приоритетный нроцссс;

5. <<выполняется>> --- процесс выполняется и использует процес­
сор.

Определение. Стек (stack) - это область паыяти, в ко­

торой размещаются локальные переr-1енные, аргументы и 1юз­

вращаемые значения функций. Br-recтe с областью статйческих 
данных полностью задает текущее состояние процесса. По JЮ­

п1ческому устройству стеки бывают четырех видов (рис. 5.1): 

а) full descending-pacтeт вниз (к младшим адресам паыяти), 
указатель стека (SP, Stack Pointer) указывает на последнюю 
занятую ячейку стека (называемую вершиной стека); 

6) empty descending - растет вниз, SP укюывает на первую
свободную ячейку стека за его вершиной;
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в) full ascending ---растет вверх, SP указывает на первую за­
нятую ячейку стека; 

г) empty ascending - растет вверх, SP указывает на первую 
свободную ячейку стека за его вершиной. 

В ряде процессоров тип стека закреплен аппаратно (напри­
мер, в Motщola 68ххх и lntel 80х86 используется стек 5.la, в 
Intel 80960 - 5.ln), для других процессоров тип стека может 
выбираться разработчиками операционных систем произволь­
но (практически всегда выбирается стек 5.la). 

Определение. Виртуальная память - это <<память>>, в
адресном пространстве. которой работает процесс. Виртуальная 
память: 

1. позволяет увеличить объем памяти, доступной процессам за
счет дисковой памяти;

2. обеспечивает выделение каждому из процессов виртуально
непрерывного блока памяти, начинающегося (виртуально) с
одного и того же адреса;

3. обеспечивает изоляцию одного процесса от другого.

Трансляцией виртуаJiьного адреса в физический занимает­
ся операционная система. Для ускорения этого процесса многие 
ко�мпыотерные системы иl\1еют поддержку со стороны аппара­
туры, которая может быть либо прямо в процессоре, либо в 
специальном устройстве управления памятью. Среди r..1еханиз­
мов трансляцпи виртуального адреса преобладает страничный,

при котороr..1 виртуаJiьная и физическая память разбиваются на 
куски равного ра:СJмера, наэываемые страницами (типичный раз­
мер - 4 Кб), ыежду страницаыи виртуальной и физической па­
мяти устанавливаетсн взаимно-однозначное (для каждого про­
цесса) отображение. 

Определение. Межпроцессное взаимодействие - это
тот или иной способ передачи информации из одного процесса в 
другой. Наиболее распространенными формами взаимодействия 
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являются (не все системы подцерживают перечисленные ниже 

возможности): 

1. Разделяема� память -два (или более) процесса имеют до­
ступ к одному и тому же блоку памяти. В системах с вир­
туальной памятью организация такого вида взаимодействия
требует подцержки со стороны операционной системы, по­
скольку необходимо отобразить соответствующие блоки вир­
туальной памяти процессов на один и тот же блок физиче­

ской памяти.

2. Семафоры -два (или более) процесса имеют доступ к одной
переменной, принимающей значение О или 1. Сама перемен­
ная часто находится в области данных операционной систе­

мы и доступ к ней организуется посредством специальных
функций.

3. Сигналы - это сообщения, доставляемые процессу посред­
ством операционной системы. Процесс должен зарегистри­

ровать обработчик этого сообщения у операционной систе­
мы, чтобы получить возможность реагировать на него. Ча­
сто операционная система извещает процесс сигналом о на­
ступлении какого-либо сбоя, например, делении на О, или о
каком-либо аппарат1-юl\1 прерывании, например, прерывании
таймера.

4. Почтовые ящики - это очередь сообщений ( обычно - тех

или иных структур данных), которые помещаются в по­

чтовый ящик процессами и/или операционной системой.

Несколько процессов могут ждать поступления сообщения
в почтовый ящик и активизироваться по его поступлении.

Требует поддержки со стороны операционной системы.

Определение. Событие -это оповещение процесса со сто­
роны операционной системы о той или иной форме межпроцесс­
ного взаимодействия, например, о принятии семафором нуж­
ного значения, о наличии сигнала, о поступлении сообщения в

почтовый ящик. 
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Создание, обеспечение взаимодействия, разделение процес­

сорного временн требует от онерациошюй систеыы значитель­
ных вычислительных затрат, особенно в системах с виртуальной 
памятью. Это связано прежде всего с тем, что каждый процесс 

иысет свое отображение виртуальной памяти на физическую, 
которое надо менять при переключении процессов и при обес­
печении их доступа к объекта!\! нзаиl\lодействия (общей ШJ.1\1яти, 
семафораl\1, почтовым нщикам). Очень часто бывает так, что 

требуется запустить несколько копий одной и той же програl\1-

1\1Ы, наприыер, для использования всех процессоров систеыы. В
этом случае 1\IЫ несем двойные накладные расходы: держим в 
оператшшой памяти несколько ко1шй кода одной програl\!l\lЫ и 
еще тратиы дополнительное вреl\/я на обеспечение их взаимо­
дейстrшн. Улу,1шает ситуацию введение :задач. 

Определение. Задача (или поток, или нить, thread) 
это как бы одна из ветвей исполнения процесса: 

• разделяет с нро1\ессом область паыяти под код и данные,

• Иl\lеет собеrвенный стек,

• ( в систеl\1<1.Х с виртуальной памятью) раэделнет с процессом 
отобра:;кение в11ртуалыюй памяти на физическую, 

• иыеет собственное состояние.

Таким образоl\1, у двух задач IЗ одном процессе вся па:мять }Шля­

ется разделяемой, 11 дополнитслы1ые р<1.сходы, связанные с раз­

НЫl\1 отображением виртуальной намяти на физическую, сведе­

ны к нулю. Для задач так же, как для процессов, определяются 
понятия состошшя задачи и 1\Iежзадачного вза11модействия. От­

метим, что для двух процессов обычно требуется организовать 

что-то общее (паr,.,1ять, канал и т. д.) .,.-1,ля их взаиl\lодействия, в 

то вре1ш1 кRк для двух потоков часто требуется организовать 
что-то ( наприыер, облttсть памяти), имеющее свое значение в 
каждом из них. 

Определение. Ресурс - это объект, необходимый для ра­
боты процессу пли задаче. 
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Определение. Приоритет - это число, приписанное опе­

рационной системой каждому процессу и задаче. Чем больше 

это число, тем важнее этот процесс или задача и тем больше 

про1�ессорного времени он или она получит. 

Если в операционной систеl\tе могут одновременно существо­

вать несколько процессов или/и задач, находящихся в состоя­

нии <<выполняется>>, то говорят, что это многозадачная систеl\·rа, 

а эти. процессы называют параллельными:. Отметим, что ес­

ли процессор один, то в каждый момент времени на самом деле 

реально выполняется только один процесс или задача. Система 

ра:зделяет время между такими <<выполняющимися» процесса­

ми /задачами, давая каждому из них квант времени, пропорци­

ональный его приоритету. 

Определение. Связывание (линковка, linkage) - это про­

цесс превращения скомпилированного кода ( объектных моду­

лей) в загрузочный модуль ( т. е. то, что может исполняться 
нроцессором при поддержке операционной системы). Различа­

ют: 

• статическое связывание, когда код необходимых для ра­

боты програмыы библиотечных функций физически добав­

ляется к коду объектных модулей для получения загрузоч­

ного модуля;

• динамическое связывание, когда в результирующем за­

грузочноl\r модуле проставляются лишь ссылки на код необ­

ходимых библиотечных функций; сам код будет реально ло­

бавлеп к загрузочному модулю только при его исполнении.

При статическом связывании загрузочные модули получают­

ся очень большого размера. Поэтому подавляющее большин­

ство современных операционных систем использует динамиче­

ское связывание, несмотря на то, что при этом начальная за­

грузка процесса на исполнение медленнее, чем при статическом 

связывании из-:ш необходиl\юстн поиска и загрузки кода нуж­

ных библиотечных функций ( часто только тех из них, которые 
не были загружены для других процессов). 
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5.2. Виды ресурсов 

По своей природе ресурсы можно разделить на 

• аппаратные:

процессор, 

область памяти, 
периферийные устройства, 

прерывания, 

• программные:

программа, 
данные, 

файлы, 

сообщения. 

По своим характеристикам ресурсы разделяют на: 

• активные:

- способны изменять информацию (процессор),

• пассивные:

- способны ·хранить информацию,

• локальные:

- принадлежат одному процессу; время жизни совпадает с

временем жизни процесса,

• разделяемые:

могут быть использованы несколькими процессами; суще­

ствуют, пока есть хоть один процесс, который их исполь­

зует, 

• постоянные:

- используются посредством операций <<захватить» и «осво­

бодить>>,

• временные:

используются посредством операций <<создаты> и <<уда­

лить>>. 

Разделяемые ресурсы бывают (рис. 5.2): 

• некритичными:
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Процесс 1 

Процесс 1 

Процесс 2 

Процесс 3 

Процесс 2 

Разделяемый 

некритичный 

ресурс 

, ..... 

Процесс 3 
Разделяемый 

критичный 

ресурс 

Рис. 5.2. Виды разделяемых ресурсов 
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могут быть использованы одновременно несколькими про­

цессами (например, жесткий диск или кана.п Ethernet); 

• критичными:

могут быть использованы только одним процессом, и пока 

этот процесс нс завершит работу с ресурсом, последний 

не доступен другим процессам ( например, разделяемая 

память, доступная на запись). 

5.3. Типы взаимодействия процессов 

По типу взаимодействия различают 

• независимые процессы (рис. 5.3);

Ресурс 1 Ресурс 2 

Рис. 5.3. Типы вза�1модействия процессов: независимые процессы 
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• сотрудничающие процессы (рис. 5.4):

процессы, разделяющие только коммуникационный ка­

нал, по котороl\Iу один передает данные, а другой их по­

лучает; 
процессы, осуществляющие взаимную синхронизацию: ко­

гда работает один, другой ждет окончания его работы; 

• конкурирующие процессы (рис. 5.5):

щю1\ессы, использующие соnместно разделяемый ресурс; 

процессы, использующие критические секции; 

процессы, использую1цие взаиl\1ные исключения. 

Разделяемый 
ресурс 

Рис. 5.4. Тины взаимодействия процессов: 
СИ!!Хf>ОIIИЗИрующиР.СЯ 11роцесr.ы 

8 
\___..../ 

Разделяемый 
ресурс 

Рис. 5.5. Типы юаимодействия процессов: 
конкурирующие процессы 



5.3. Типы взаимодействия процессов 75 

Определение. Критическая секция -- это у часток про­

граl\rмы, на котором запрещается переключение задач для 

обеспечения исключительного использования ресурсов текущим 

процессом (задачей). Большинство операционных систем обще­

го назначения не предоставляют такой возможности пользова� 

тельским программам. 

Определение. Взаимное исключение (mutнal exclusion, 

mutex) -- это способ синхронизации параллельно работаю­

щих процессов (задач), использующих разделяемый постоян­

ный критичный ресурс. Если ресурс занят, то системный вызов 
<<захватить ресурс•> переводит процесс (зада•1у) из состояния вы­

полнения в состояние ожидания. Когда ресурс будет освобожi\ен 

посредством систе�шюго вызова <<освободить ресурс,>, то этот 

процесс (задача) вернется в состояние выполнения и продолжит 

свою работу. Ресурс при этом перейдет в состояшrе <<занят>>. 

Если процессы независиl\-1ы ( нс иыеют совместно используе­

мых ресурсов), то сшrхронизация их работы 11е требуется. Если 

же процессы используют ра:щелясмый ресурс, то их деятель­

rюс1ъ 11собходиыо синхронизировсtть. На11ример, при использо­

вании общего блока памяти проблемы l\Югут 1юзю1ю1ут1, даже 

сели один процР,с (задача) только 1 111тает да�шыс, а другой···· 

тою,ко пишет. На рве. 5.6 показан пример, в котором д11а про­

цесссt Р и Q увеличивают па L значение разделяемой нчейки 

паl\1яти \ТАL. Ре:1ультат работы будет разл11ч11ы111 в слу чае пла­

нирования задач 5.6 а и 5.6 б. 

При с1шхрониза1\ии задач необходиJ110 бороться с тремя про­

блемами: 

1. <<блокировка>> ( <<lockout>>):

• процесс (:задача) ожидает ресурс, который никогда не

освободится,

2. <<туrшк>> ( <<cleadlock>>):

• два процесса (задачи) владеют каждый 110 ресурсу и ожи­

дают освобождения ресурса, которым владеет другой про­

цесс (задач.t) ,
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Р1 
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Р2 Рз 

Задача Р 
r 
x=VAL 
x=x+l 
VAL=x 

..... 

� 

Задача.Q 

y=VAL 
y=y+l 
VAL=y 

Разделяемый ресурс 

Р1 

Q1 Q2 Qз 
1 

Q1 Q2 Qз 1 

1 

1 

1 

t2 t1 

� � 
Примеры планирования задач 

Р2 

Рис. 5.6. Работа с разделяемым ресурсом 

Рз 

t2 

3. <<застой>> ( <<Starvation>>):

• процесс (задача) монополизировал процессор.

Для минимизации этих проблем используются следующие 
идеи. 

• Количество ресурсов ограничено, поэтому нельзя допускать

создания задач, для которых недостаточно ресурсов для вы­
полнения.

• Задачи делятся на группы:

неактивные задачи, которым не хватило даже пассив­
ных ресурсов, и ожидающие событий задачи; таким за­
дача!\! активный ресурс (процессор) не дается вообще; 
готовые задачи, у ко'rорых есть все необходимые пассив­
ные ресурсы, но нет процессора; являются кандидатами 
на получение процессора в случае его освобождения; 
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выполняющиеся задачи, у которых есть все необходи­
мые пассивные ресурсы и процессор. 

5.4. Состояния процесса 

Рассмотрим более детально состояния процесса и переходы из 
одного состояния в другое (рис. 5.7). Состояния: 

1. не существует,
2. не обслуживается,
3. готов,
4. выполняется,
5. ожидает ресурс,
6. ожидает назначенное время,
7. ожидает события.

Переходы из состояния в состояние:

1. переход 1-2: создание процесса
2. переход 2-1: уничтожение процесса
3. переход 2-3: активизация процесса диспетчером

1. не суще­
ствует

1 3 
� <f::_не обслуживаету 

� " 2 

�
· .::-�·:115 ':}.

11 15 \ 
,, , \ 

,, , '

-- , Q выполняетv !

Рис. 5. 7. Состояния процесса 

! 10

/ 

7. ожидает
события

, 

, 
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4. переход 3-2: дезактивизация процесса
5. переход 3-4: :1агрузка на выполнеш,е процесса диспетчером
6. переход 4-3: требование обслуживания от Гiроцессора дру­

г11м процессом
7. переход 4-2: завершение процесса
8. переход 4-5: блокировка процесса до освобождения требуе­

�юго ресурса
9. rн�рf�ход 4-·6: блокировка про1\есса до истечения заданного

времс1111
10. ш�реход -!-7: блокнровка процесса до прихода события
11. нереход 2-6: актшшзацня щюцесса приводит к ожиданию

вреl\lепн6й задержю1
12. нереход 2--7: а1<тишпацш1 процесса приводит к ожиданию со­

бытш1
13. переход 2-5: а�<тнвизация нроцесса приводит к ожиданию

освобож;\сшrя ресурса
14. переход 5-3: акпши:зация процесса из-:за освобождения ожи­

давшегося ресурса
15. нсрехо,тt 6-3: RКТ11В!l'Зац11я ПJIOI\Ccca 110 исте'lении заданного

вpel\m1111
16. переход 7--3: актншоация процесса из-за прнхода ожидавше­

гося событ1ш
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Стандарты 

на операционные системы 
UNIX 

На подавляющем большинстве параллельных вычислительных 
установок используется тот или иной вариант операционной си­
стемы UNIX. В этом разделе �1ы рассмотрим несколько суще­
ствующих стандартов на ПNIХ-систсмы. Как и во !\шогих дру­
гих областях, стандарты стали появляться лишь после того, как 

уже был создан ряд диалектов UNIX. Основной целью введения 
стандартов является облегчение переноса программного обеспе­

чения из одноfi систе!\IЫ в другую. 
Мы кр<1.тко рассмотрим несколько стандартов. Подробно бу­

;�ет рассмотрен только наиболее ра:шитый из них --· POSIX. 

6.1. Стандарт BSD 4.3 

BSD 4.3 (Be1·kley Soft\vai·e Distribution версии 4.3) - это даже не 

стандарт на UNIХ-системы, а эталонная реализация UNIX, вы­
полненная в Калифорнийскоы университете г. Беркли в США 

в 1980-е годы. Она оказала очень большое влияние на л;аJiьней­
шес ра-звитие UNIX. 

6.2. Стандарт UNIX System V Release 4 

UNIX System V Release ·4 -- это тоже не стандарт па UNIХ­
системы, а эталонная реализация UNIX, выполненная фпрмой 
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АТ&Т и включающая в себя особенности большинства суще­
ствовавших UNIХ-систем. Она оказала очень большое влияние 
на дальнейшее развитие UNIX. 

6.3. Стандарт POSIX 1003 

Стандарт POSIX (PortaЫe Operating Systeш Interface), разрабо­
танный IEEE (Institute of Electrical and Electronical Engineers), 
состоит из следующих частей. 

1. POSIX 1003.1 - определяет стандарт на основные компо­
ненты операционной системы, API (application interface) для
процессов, файловой систе!\·IЫ, устройств и т. д.

2. POSIX 1003.2 -- определяет стандарт на основные утилиты.
3. POSIX 1003.lb -- определяет стандарт на основные расши­

рения <<реального времени>>.
4. POSIX 1003.lc --- определяет стандарт на задачи (threads).
5. POSIX 1003. ld - определяет стандарт на дополнительные

расширения <<реального времени>> (такие, как, например,
поддержка обработчиков прерываний).

Стандарт POSIX 1003 является наиболее всеобъемлющим
из всех рассмотренных ранее. Большинство существующих 
UNIХ-систем были адаптированы для удовлетворения этому 
стандарту. 

6.4. Стандарт UNIX X/Open 

Стандарт UNIX Х/Орен Portability Guicle 3 - это стандарт 
на UNIХ-спстемы, разработанный группой фирм-разработчиков 
програымпого обеспечения. Этот стандарт сокращенно называ­
ют ХРGЗ. В 2000 г. уже вышел XPG6. 



7 
Управление процессами 

В этой главе мы рассмотрим основные функции, позволяющие 

запускать новые процессы 11 управлять ими. 

7 .1. Функция fork 

Функция f ork, описанная в заголовочном файле <unistd. h> 

(тип возвращаемого значения описан в файле <sys/types. h> ), 

позволяет <<клою1ровать>> текущий процесс. Прототип: 

pid_t fork (void); 

Эта функция создает процесс-потомок, полностью идентичный 

текущему процессу (отличие только в том, что у них разные 

идентификаторы и потомок не наследует файловые блокировки 

и очередь сигналов). Фактически создается копия виртуальной 

памяти процесса-родителя. Во многих системах физическая па­

мять реально не копируется, а просто создается новое отображе­

ние виртуальной памяти на ту же самую физическую. И только 

при записи в память создается копия изменяеl\юй страницы для 

потомка. Функция возвращает идентификатор потомка в роди­

тельском процессе и О в порожденном процессе. 

Рассмотрим задачу создания <<демона>> - процесса, работа­

ющего в фоновом режиме даже после выхода запустившего 

его пользователя из системы. Прежде всего нсобходш.ю запу-
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стить фоновый процесс. Для этого используем функцию fork 
для создания процесса-пото111ка и завершим родительский про­
цесс. Про1�есс-потоыок нродолжает работать в фоновом режиl\!е, 
но он унаследовал от родителя связь с терыиналоl\1, с которого 
он был запущен, 11 будет терминирован операционной системой 
при окшr 1 rюш11 работы пользователя на этоl\1 терl\шнале. Для 
создания не "J,шнснl\юго от терыинала <<ДСl\юна>> 11-1ы фактиче­
ски по13ториl\1 ошrсанные выше действия еще раз: используеы 
функцшо fork ,.'\ЛЯ со:здання процесса-rютом1<а и завершим ро­
дитет,скпй процеtт. Процесс-потомок продолжает работать в 
фоновоl\1 рС!жиме II вызывает функцию daernon_process, являю­
шуюся телом «д<�!\ю11а». В паше!\1 прп111tJ.ре эта фуню\ИЯ пе•1атает 
10 раз с иптерваJЮl\1 2 секунды приветствие и завершает свою 
работу. Текст 11рогра!\1:s1ы: 

#include <stdio.h> 
#include <unistd.h> 
#include <sys/types.h> 

void daernon_process () 

{ 

} 

int i; 

fprintf (stderr, "Daernon started!\n"); 
I* Используем для тестирования конечный цикл *I 
for (i = О; i < 10; i++) 

{ 

} 

fprintf (stderr, "Hello %d!\n", i); 
sleep (2); 

fprintf (stderr, "Daernon finished!\n"); 

int rnain () 

{ 
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} 

pid_t pid; 

f* Клонировать себя *f 
pid = fork О; 
if (pid == -1) 

{ 

} 

fprintf (stderr, "Cannot fork!\n"); 
return 1; 

else if (pid != О) 

{ 

} 

f* Завершить родительский процесс *f 
return О; 

f* Процесс-потомок продолжает работу *f 
f* Клонировать себя *f 
pid = fork О; 
if (pid == -1) 

{ 

} 

fprintf (stderr, "Cannot fork!\n"); 
return 1; 

else if (pid != О) 

{ 

} 

f* Завершить родительский процесс *f 
return О; 

f* Процесс-потомок продолжает работу *f 
daemon_process (); 

return О; 
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7.2. Функции execl, execv 

Функции execl, execv, описанные в файле <unistd.h>, позво­
ляют заменить текущий процесс новым. Прототипы: 

int execl (const char *path, const char *arg, ... ); 
int execv (const char *path, char *const argv[]); 

где входные параметры: 

• path -- имя исполпиl\юго файла процесса,
• arg, ... - список аргументов (завершаемый нулевым указа­

телем),
• аrgv-указатель на список аргументов (завершаемый нуле-

вым указателеl\1).

В случае успеха эта функция не возвращает управления (по­
скою,ку текущий процесс больше не существует), в случае ошиб­
ки она возвращает -1. 

Пример использования для запуска программы см. в разде­
ле 7.3. 

7.3. Функция waitpid 

Функция waitpid, описанная в файле <sys/wait .h> (тип возвра­
щаемого значения описан в файле <sys/types. h>), позволяет 
ждать окончания порожденного процесса. Прототип: 

pid_t waitpid (pid_t pid, int *Status, int options); 

Эта функция останавливает выполнение текущего процесса до 
завершения процесса-пот01нка, указанного аргументом pid: 

• если pid > О (наиболее используемая форма), то ожидать
окончания потомка с идентификатором pid;

• если pid = О, то ожидать окончания любого потомка, при­
надлежащего к той же группе, что и текущий процесс;

• если pid < -1, то ожидать окончания любого потомка, при­
надлежащего к группе lpidl;

• если pid = -1, то ожидать окончания любого потомка.
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Причину завершения процесса можно узнать через перемен­
ную status с помощью специальных макросов (см. примеры 
ниже). Аргумент options задает поведение функции в случае, 
если процесс-потомок уже завершился или остановлен. В слу­
чае успеха функция возвращает идентификатор закончившегося 
процесса, в случае ошибки --1. 

Рассмотрим в качестве примера следующую задачу: требу­
ется запустить заданную программу (мы используем /Ьin/ls) 
с заданным параметром ( -1) в виде отдельного процесса и до­
ждаться его окончания. Для этого мы с помощью функции fork 
создадим процесс-потомок, в котором сразу выполним execl 
для его замены на указанный процесс. Напомним, что пер­
вым аргументом любой программы (в нашем случае /Ьin/ls) 
является ее собственное путевое имя, поэтому список аргумен­
тов execl выглядит следующим образом: 

1. 11 /Ьin/ls11 
- имя исполнимого файла процесса, 

2. 1
1 /Ьin/ls 11 -первый аргумент, 

3. 11 -1 11 - второй аргумент,
4. О -нулевой указатель, обозначающий конец списка аргумен-

тов execl.

В родительском процессе мы будем ожидать окончания 
процесса-потомка с помощью wai tpid. После этого можно про­
верить причину окончания процесса, используя содержимое пе­
ременной status и специальные макросы: 

• WIFEXITED (status) -возвращает истинное значение, если
программа завершилась нормально (например, с помощью
оператора return в функции main или посредством вызо­
ва функции exit). О второй возможной причине окончания
процесса см. раздел 7.5, с. 88.

• WEXITSTATUS (status) -дает значение, которое вернула.
программа операционной системе, т. е. аргумент оператора
return в функции main или аргумент функции exit. Этот
J\,1акрос можно использовать только в случае, если значение
WIFEXITED (status) истинно. В UNIХ-системах признаком
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нормального завершения программы является нулевое зна­
чение WEXIТSTATUS (status). 

Текст програмi\1ы: 

#include <stdio.h> 
#include <unistd.h> 
#include <sys/types.h> 
#include <sys/wait.h> 

int main () 

{ 
pid_t pid; 
int status; 

f* Клонировать себя *f 
pid = fork (); 
if (pid == -1) 

{ 

} 

fprintf (stderr, "Cannot fork!\n"); 
return 1; 

if (pid == О) 

{ 

} 

f* Запускаем программу в порожденном процессе *f 

execl ("/Ьin/ls", "/Ьin/ls", "-1", О); 
I* Если этот код выполняется, значит 

ошибка при запуске *f 
fprintf (stderr, "Cannot exec!\n"); 
return 2; 

f* В родительском процессе: ожидаем завершения 
потомка *I 

if (waitpid (pid, &status, О) <= О) 

{ 
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} 

fprintf (stderr, 

"Cannot waitpid child, terminating ... \n"); 
return З; 

I* Проверяем успешность завершения потомка *I

if (!WIFEXITED (status)) 

{ 

fprintf (stderr, 
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"Child finished abnormally, terminating ... \n"); 

return 4; 

} 

I* Проверяем код завершения потомка *I

if (WEXITSTATUS (status)) 

{ 

fprintf (stderr, "Child finished with non-zero \ 

return code, terminating ... \n"); 

} 

return 5; 

} 

I* завершаем работу *I

return О; 

7 .4. Функция kill 

Функция kill, описанная в заголоnоч110111 файле <signal. h> 

( тин первого арг�1мента описан в файле <sys/types. h>), поз­

воляет послать сигнал нроцсссу. Прототип: 

int kill (pid_t pid, int sig); 

Поведение функции различно в зависимости от pid: 

• если pid > О (наиболее используемая фopl\ia), то снгна.п с

номером sig будет послан процессу с идент11фикатороl\1 pid;
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• если pid = О, то сигнал с номером sig будет послан всем
процессам, принадлежащим к той же группе, что и те.кущий
процесс;

• если pid < -1, то сигнал с номером sig будет послан всем
процессаl\1, принадлежащим к группе lpidl;

• если pid = -1, то сигна.п с номером sig будет послан всем
процессам (за исключением процесса с номером 1, которому
часто вообще нельзя послать сигнал).

В случае успеха функция возвращает О, в случае ошибки - -1. 
Процесс-получатель спгнR.па должен установить обработчик для 
сигнала (например, с помощью функции signal, см. раздел 7.5). 
П противном случае будет вы:шан стандартный обработчик, ко­
торый во r,.шоrих операционных системах терминирует процесс. 

7 .5. Функция signal 

Функция signal, описанная в заголовочном файле <signal. h>, 
позволяет указать функцию, которую следует вызывать при по­
ступлении сигнала с заданным номером. Прототип: 

sighandler_t signal (int signum, 
sighandler_t handler); 

где тип обработчика сигнала есrь 

typedef void (*sighandler_t) (int); 

Функция возвращает старый обработчик сигнала. 
Рассмотрим задачу создания «отказоустойчивого>> фоново­

го процесса (<<демона>>). Требуется разработать программу, осу­
ществляющую запуск и мониторинг состояния заданного про­
цесса ( н нашем примере -- 11 • / daemon 11). В случае ( нормального 
или аварийного) 3авершения последнего программа должна осу­
ществлять его перезапуск. Приведем вначале тексты проtрамм, 
а затем дадиl\I необходимые пояснения. Программа, осуществ­
ляющая мониторинг состояния демона: 

#include <stdio.h> 
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#include <stdlib.h> 
#include <unistd.h> 
#include <sys/types.h> 
#include <sys/wait.h> 
#include <signal.h> 
#include <errno.h> 

I* Номер запущенного процесса *I

static pid_t pid; 

int daemon_process () 

{ 
static const char * program = 11 ./daemon"; 
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static char * const program_args [] = { "./daemon", О}; 
pid_t res; 
int status; 
int i; 

fprintf (stderr, "Daemon started!\n"); 
I* Используем для тестирования конечный цикл *I

for (i = О; i < 10; i++) 

{ 
I* Клонировать себя *I

pid = fork () ; 
if (pid == -1) 

{ 

} 

fprintf (stderr, "Cannot fork!\n"); 
return 1; 

if (pid == О) 

{ 
I* Запускаем программу в порожденном процессе* 
execv (program, program_args); 
I* Если этот код выполняется, значит 

ошибка при запуске *I
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fprintf (stderr, "Cannot exec!\n"); 
return 2; 

f* В родительском процессе: ожидаем завершения 
потомка; при этом игнорируем все прерывания 
от сигналов *f 

while (((res = waitpid (pid, &status, 0)) <= О) 
&& (errno == EINTR)); 

if (res != pid) 

{ 

} 

fprintf (stderr, 
"Cannot wai tpid child, terminating ... \n") ; 

return 3; 

f* Проверяем причину завершения потомка *f 
if (WIFEXITED (status)) 

{ 

} 

fprintf (stderr, 
"Child process %d exited with code %d\n", 
pid, WEXITSTATUS (status)); 

else if (WIFSIGNALED (status)) 

{ 

} 
else 

{ 

fprintf (stderr, 
"Child process %d killed Ьу signal %d\n", 
pid, WTERМSIG (status)); 

f* никогда! *f 
fprintf (stderr, "Child process %d terminanted\ 

Ьу unknown reason\n", 
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} 

pid); 

} 
} 

fprintf (stderr, "Daemon finished!\n"); 
return О; 

I* Обработчик сигналов *I

void signal_handler (int signum) 

{ 

} 

switch (signum) 

{ 

} 

case SIGTERM: 
case SIGKILL: 

I* Ликвидируем потомка *I

fprintf (stderr, 
"Killing child process %d\n", pid); 

if (kill (pid, 9)) 
fprintf (stderr, 

"Error while killing child process %d\n'1
, 

pid); 
fprintf (stderr, 1'Daemon finished!\n"); 
exit(O); 
break 

default 
break; 

int main () 

{ 
pid_t pid; 

I* Игнорируем сигнал SIGTTOU - остановка фонового 
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процесса при попытке вывода на свой управляющий 
терминал *I

signal (SIGTTOU, SIG_IGN); 
I* Игнорируем сигнал SIGTTIN - остановка фонового 

процесса при попытке ввода со своего управляющего 
терминала *I

signal (SIGТТIN, SIG_IGN); 
I* Игнорируем сигнал SIGTSTP - разрыв связи с 

управляющим терминалом *I

signal (SIGHUP, SIG_IGN); 
I* Игнорируем сигнал SIGTSTP - остановка процесса 

нажатием на клавиатуре Ctrl+Z *I

signal (SIGTSTP, SIG_IGN); 

I* Устанавливаем свой обработчик сигнала SIG_TERM 
- завершение процесса *I

signal (SIGTERM, signal_handler); 

I* Клонировать себя *I

pid = fork О; 
if (pid == -1) 

{ 

} 

fprintf (stderr, "Cannot fork!\n"); 
return 1; 

else if (pid != О) 
{ 

} 

I* Завершить родительский процесс *I

return О; 

I* Процесс-потомок продолжает работу *I
I* Клонировать себя *I

pid = fork О; 
if (pid == -1) 
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} 

{ 

} 

fprintf (stderr, "Cannot fork!\n"); 
return 1; 

else if (pid != О) 

{ 

} 

I* Завершить родительский процесс *I

return О; 

I* Процесс-потомок продолжает работу *I

return daemon_process (); 

Программа-демон: 

#include <stdio.h> 
#include <unistd.h> 
#include <sys/types.h> 

int main О 

{ 
pid_t pid; 
int * р = О; 

pid = getpid (); 
fprintf (stderr, "Program started, pid 

I* подождать указанное время *I

sleep (10); 
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%d\n", pid); 

fprintf (stderr, "Program died, pid 

I* Сделать segmentation fault *I

%d\n", pid); 

* р = О;

return О; 

} 
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Рассl\[отриы вначале подробнее програмыу-демон. Она печа­
тает свой идентпфнкатор, ждет 10 секунд, печатает сообщение 
о своем окончании и производит запись по нулевому адресу. Это 
приводит к посылке ей операционной систеыой сигнала с номе­
ром 11 (SIGSEGV -- segшentatioп fault), стандартный обработ­
чик которого тер!\нширует програl\11\(у. 

Paccl\loтpиJ\r подробнее программу, осуществляющую мони­
торинг состоя11ш1 демона. Функция main представля<:'т собой 
улучшенный вариант онисашюй в разделе 7.1, с. 81 програм­
мы, запускающей фоновый процесс. Отличие состоит в том, что 
мы с поыощью функции signal с предопределенньп"r значениеы 
SIG_IGN зака:зываем игнорирование ряда сигналов, связываю­
щих фоновый нроцесс с термшrалоы, с которого его запустили. 
Также посредство!\1 signal мы регистрируем новый обработчик 
signal_handler для сигнала 15 (SIGTERi\I). Это делается для 
того, чтобы ври получении этого сигнала програмJ\Jа, осуществ­
ляющая ыониторниг состояния деl\[она, завершала его работу. 

Функция daemon_process, работающая в фоновом процессе, 
в цикле (конечно111 n нашем при1'rере и обычно бесконечном в ре­
ально11:1 нри!lfе1ю111ш) осуществляет следующие действия. В на­
чале цпкла с rю1110щью функций fork II execv осуществляет­
ся запуск повога процесса . / daemon Затем с памощыо фуню�ии 
wai tpid програ11ша переходит в реж и�, ожидания завершения 
этого процесса. Процесс ожидашrя �южет быть прерван посту­
шш1шш сигнаJIОi\.1. Эта ситуацня провернется по состоянию пе­
ременной errno, содержащей код ошибки, возникшей при ра­
боте последней вызванной библиотечной функции. Если зна•1е­
ние errno равно EINTR, то ожидание было прервано сигналом, 
п мы его возоб1юнляс111. Признакоl\1 успешного окончания цикла 
ожидания является возврат функцией wai tpid идентификатора 
ожидавшсгоо1 11роцесса. После этого daemon_process печатает 
инфорыацию u 11ричнне окончания процесса, используя содер­
жи11юе переменной status и спсциа.rrьные макросы: 
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• WIFEXIТED (status) и WEXIТSTATUS (status) - см. рю­
дел 7.3, с. 84.

• WIFSIGNALED (status) - возвращает истинное значение, ес­
ли программа завершилась вследствие получения сигнала.

• WTERMSIG (status) - дает номер сигнала, полученного 11µ0-
цессоr,.1. Этот макрос можно использовать только в случае,
если значение WIFSIGNALED (status) истинно.

Функция signal_handler, регистрируемая в функции main как 
обработчик сигнала SIGTERM, посылает с помощью функции 
kill сигнал 9 (SIGKILL) запущенному процессу. Это позволя­
ет терминировать процесс-демон, послав сигнал SIGTERM (на­
пример, с помощью программы kill) процессу, осуществляю­
щему его мониторинг. 



8 
Синхронизация 
и взаимодеиствие 
процессов 

Доступ процессов (задач) к разли1шыы ресурса!\, (особенно раз­
деляеыы1\1) н ыногозадачных систе1\lах требует синхронизации 
действий этих процессов {задач). Способы осуществления взаи­
модействия подразделяют на: 

• безопасное взаимодействие, когда обмен данными осу­

ществляется посредством <<объектов>> взаимодействия, пре­

доставляе1\lых системой; при этом целостность инфорыации
и неделшюсть операций с нею ( т. е. отсутствие нежелатель­

ного переключения задач) неявно обеспечиваются системой;
при1\lераl\1и таких <<объектов>> взаимодействия являются се­

мафоры, сигналы и почтовые ищики;

• небезопасное взаимодействие, когда об1\lен данными осу­

ществляется посредством разделяемых ресурсов (например,

общих переменных), не зависимых от систе11Iных объек­

тов взаимодействия; при этом целостность информации
п неделимость явно обеспечиваются самиы приложением

{ в подавляюще1\1 большинстве случаев - посредством того

или иного систеыного объекта синхронизации и взаимодей­

ствия).

Поскольку для тобого типа взаиыодействия требуются систем­
ные объекты синхронизации, то все имеющиеся операционные 
систеыы предоставляют приложениям некоторый набор таких 
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объектов. Ниже мы рассмотрим самые распространенные из 
них. 

8.1. Раэделяемая память 

Определение. Разделяемая память -- это область памяти, к ко­
торой имеют доступ несколько процессов. Взаимодействие через 
разделяемую память является базовым механизмом взаимодей­
ствия процессов, к которому сводятся все остальные. Оно, с од­
ной стороны, является самым быстрым видом взаимодействия, 
поскольку процессы напрямую (т. е. без участия операционной 
системы) передают данные друг другу. С другой стороны, оно 
является небезопасным, и для обеспечения правильности пере­
дачи информации используются те или иные объекты синхро­
низации. 

В системах с виртуальной памятью существуют два подхода 
к логической организации разделяемой памяти: 

1. Разделяемая память находится в адресном пространстве опе­
р,щиошюй системы, а виртуальные адресные пространства

процессов отображаются на нее. В зависимости от реализа­
ции операционной системы это может приводить к переклю­
чению зада'! при работе с разделяемой памятью (поскольку
она принадлежит ядру, а не процессу) и фиксации разделя­

емой памяти в физической паl\mти ( поскольку само ядро не
участвует в страничном обJ\1ене).

2. Разделяемая память логически представляется как файл,
отображенный на память (т. е. файл, рассматриваемый как
массив байтов в памяти). При этом раэделяеl\1ая паl\1ять пол­

ностью находится в пользовательскоl\1 адресном простран­

стве и отсутствуют дополнительные задержки при доступе
к ней.

В силу большей эффективности рекомендуется использовать 
второй способ работы с разделяемой памятью. 

4 4017 
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В системах с виртуальной намятью над ра.зделяемой па!\IЯ­
тью определены следующие элементарные операции. 

• создать (или открыть) рюделяеыую память, при этом разде­
ляемая п'амять появляется в процессе как объект, но доступ
1< ее содержимо!\lу еще невозможен;

• подсоедшшть разделяемую Ш\!\1ять к адресному простран­
ству процесса, при этом происходит отображение разделяе­
мой па!lfятн на виртуальное адресное пространство процесса;
после этой операции разделяемая память доступна для ис­

пользования;

• отсоединить ра..·щеляемую па.мять от адресного пространства
процесса, после этой операции доступ к содержиыоыу рюде­
ляемоfi паlllяти невозможен;

• уда.лить ( или закрыть) разделяемую память, реально разде­
ляемая IIal\-1я·1ъ будет уда.пена, когда с ней закончит работать
последний из процессов.

В системах без виртуа..пьной памяти эти операции тривиаJiьны. 

Отмети!\-r, что в разных процессах разделяемая память мо­
жет быть отображена в рюные адреса виртуальной памяти. Сле­
довательно, в разделяемой памяти нельзя хранить укюатели на 
другие эле111снты рюделяемой памяти (например, классическую 
реализацию однонаправлснноr·о списка нельзя без из!\Iенений 
хранить в ра..,деляе!\lой памяти). 

8.1.1. Функция shmget 

Функция shmget, описанная в файле <sys/ shm. h> ( используе­

мые тины ош1саны в заголовочно!\1 файле <sys/ipc. h> ), поз­
воляет создать ( или открыть существующую) область разде­
ляе!\ЮЙ памяти указанного размера и с указанными правами 
доступа. Прототип: 

int shmget (key_t key, size t size, int shmflg); 

где входные параметры: 
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• key -- числовой идентификатор области разделяемой паl\IЯ­
ти;

• size -- размер области разделяемой памяти ( округляется
вверх до величины, кратной размеру страницы виртуаль­
ной памяти);

• shmflg -- атрибуты, используемые при создании области раз­
деляемой паl\!яти (флаги и права доступа).

Функция возврюцает идентификатор области разделяемой па­
мяти (не путать с key) или -1 в случ� ошибки. 

8.1.2. Функция shmat 

Функция shmat, описанная в файле <sys/ shm. h> ( используемые 
типы описаны в заголовочном файле <sys/ i ре . h>), позволяет 
подсоединить указанную область разделяемой памяти к адрес­
ному пространству процесса. Прототип: 

void *Shmat (int shmid, const void *shmaddr, 
int shmflg); 

где входные пара1'1·tетры: 

• shm:i,d --- идентификатор области разделяеыой памяти;
• shmaddr --- пожелания процесса об адресе, начиная с которо­

го следует подсоединить область разделяеl\юй памяти, или

О, если адрес безразличен ( операционная систеыа может иг­

норировать этот аргумент);
• shmflg - права доступа к области разделяемой паыяти.

Функция возвращает адрес, начиная с которого подсоединена 
область разделяемой памяти, или -1 в случае ошибки. 

8.1.3. Функция shmctl 

Функция shmctl, опi-1санная в файле <sys/shm.h> (используе­
мые типы описаны в заголовочноы файле <sys/ipc.h>), поз­
воляет управлять областью разделяемой паl\!яти (в частности, 
удалять ее). Прототип: 
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int shmctl (int shmid, int cmd, 

struct shmid_ds *buf); 

где входные параметры: 

• shmid - идентификатор области разделяемой памяти;

• cmd - задает операцию над областью разделяемой памяти;

• buf - аргументы операции ( также служит для возврата ин­

формации о результате операции).

Функция возвращает() в случае успеха или -1 в случае ошибки. 

8.2. Семафоры 

Определение. Семафор-· это объект синхронизации, задаю­

щий количество пользователей (задач, процессов), имеющих од­
новременный доступ к некоторому ресурсу. С каждьl!\-1 семафо­
роl\1 связаны счетчик (значение семафора) и очередь ожидания 
(процессов, зада•,, ожидающих принятие счетчикоl\1 определен­
ного значения). Ра..-зличаю'r: 

• двоичные (булевские) семафоры-это механизм взаимного

исключения для защиты критичного разделяемого ресурса;

начальное значение счетчика такого семафора равно 1;
• счетные семафоры--·- это механизы взаимного исключения

для защиты ресурса, который может быть одновременно ис­
пользован не более, чем ограниченным фиксированным чис­

лом задач п; начаJiьное значение счетчика такого семафора

равно п.

Над семафорами определены следующие элементарные опера­
ции (ниже k = 1 ;�.ля булсвских семафоров): 

• взять k едпшщ из семафора, т. е. уменьшить счетчик на k

( если в счетчике нет k единиц, то эта операция переводит
задачу в состояние ожидания наличия как минимум k еди­
ниц в семафоре, п добавляет ее в конец очереди ожидания

этого семафора);
• верНУ'ГЬ k единиц в семафор, т. е. увеличить счетчик на k

(если семафор ожидается другой задачей и ей требуется не
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более, чем новое текущее значение счетчика единиц, то она 
ыожет быть активи:шрована, удалена из очереди ожидания 
и может вытеснить текущую задачу, например, если ее при­
оритет выше); 

• попробовать взять k единиц из семафора ( если в счетчике
� k единиц, то взять k единиц из него, иначе вернуть при­
знак занятости сеr..шфора без перевода задачи в состояние
ожидания);

• проверить семафор, т. е. получить значение счетчика;
• блокировать семафор, т. е. взять из него столько единиц,

сколько в нем есть (при этом иногда бывают две разновидно­
сти этой операции: взять столько, сколько есть в данный мо­
мент, или взять столько, сколько есть в начальный момент,
т. е. максимально возможное количество, именно послед1:1ее
обычно называют блокировкой, поскольку такая задача бу­
дет монопольно владеть ресурсом);

• разблокировать семафор, т. е. вернуть столько единиц,
сколько всего было взято данной задачей по команде
блокировать.

Логическая структура двоичных семафоров особенно про­
ста . С•1етчик семафора s инициализируется 1 при создании. Для 
доступа к нему определены две примитивные операции: 

• Gеt(s)-взять (или закрыть) семафор s, т. е. запросить ре­
сурс; эта операция вычитает из счетчика 1;

• Put(s)- вернуть (или открыть) семафор, т. е. освободить ре-
сурс; эта операция прибавляет к счетчику 1.

Эти операции неделимы, т. е. переключение задач во время их 
исполнения запрещено. В процессе работы состояние счетчика 
r..южет быть: 

• 1 -ресурс свободен,
• О -ресурс занят, очередь ожидания пуста,
• т < О -ресурс занят, в очереди ожидания находятся 1ml

задач.
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Рассмотрим п ример (рис. 8.1). 

1. A.Get -задача А завладела pccypcoi\.1,

2. C.Get - задача С запросила ресурс, который занят, следо­
вательно, задача С заблокирована и помещена в очередь
ожидания,

3. В .Get -- задача В запросила ресурс, который занят, следо­
вательно, задача В заблокирована и помещена в очередь
ожнданпя,

4. A.Put --- задача А освободила ресурс, который был передан
первой задаче в очереди ожидания, т. е. С (которая в свою
очередь актиnн:шрована),

5. C.Put -- задача С освободила ресурс, который был передан
первой задаче в очереди ожидания, т. с. В ( которая в свою
очередь активизирована),

состояние
rpecypca

занят

! 
свободен '"-

-----
--f-t-1 --,--t2-+- ' tз : t4состuянпе 

:с�а,з.ачи А 
активна-----------------------

'1 

.. 

б:юкирована �------+--->----+---+----+---+------
t1 t2 tз I l,1 ts fs 

состояние
за,:�ач11 В 

акпшна -----------..

состояние
задачи С 

активна�--------"'-----11

блокирована�-------,--�-----------,---�----
tt1 t2 tз t,i ts ts 

Рис. 8.1. Пример работы с семафором 
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G. В .Put --- задача В освободила ресурс, который будет передан 
первой задаче, которая вызовет Ge.t.

8.2.1. Функция semget 

Функция semget, описанная в файле <sys/ sem. h> ( используе­
l\1ые типы описаны в заголовочном файле <sys/ipc. h> ), позво­
ляет создать (или открыть существующий) сеыафор (или груп­
пу семафоров) с ука.занными правами доступа. Прототип: 

int semget (key_t key, size_t semnum, int semflg); 

где входные параметры: 

• key - числовой идентификатор набора семафоров;
• size - количество семафоров в наборе;
• semflg - атрибуты, используемые при создании набора се­

мафоров (флаги и права доступа).

Функция возвращает идентификатор набора сеыафоров ( не пу­
тать с key) или -1 в случае ошибки. 

8.2.2. Функция semop 

Функция semop, описанная в файле <sys/sem.h> (используемые 
типы описаны в заголовочном файле <sys/ipc.h>), позволяет 
изменять значения семафора. Прототип: 

int semop (int semid, struct sembuf *Sops, 
size_t nsops); 

где входные параметры: 

• semid - идентификатор набора семафоров;
• sops - укаэатель на массив структур типа sembuf, задающих

операцию над семафорами из набора;
• nsops - количество элеl\,�ентов в массиве, на которр1й указы­

вает sops.

Функция возвращает О в случае успеха или -1 в случае ошибки. 
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8.2.3. Функция semctl 

Функция semctl, описанная в файле <sys/sem. h> (используе­
мые типы описаны в заголовочном файле <sys/ipc. h> ), позво­
ляет управлять семафором (в частности, инициализировать и 

удалять его). Прототип: 

int semctl (int semid, int semnum, int cmd, ... ); 

где входные параметры: 

• semid :_ идентификатор набора семафоров;
• semnum - номер семафора из набора, над которым надо про­

извести операцию;
• cmd - задает операцию над семафором semnum.

Функц11я возвращает неотрицательное число, зависящее от опе­
рации cmd, илп -1 в случае ошибки. 

8.2.4. Пример использования семафоров 
и разделяемой памяти 

Рассмотрим пример тиш1чного клиент-серверного приложения. 
Процесс-клиент (текст которого находится в файле reader. с) 
считывает строку со стандартного ввода и передает ее через раз­

деляемую память процессу-серверу (текст которого находится в 
файле wri ter. с) выводящему ее на стандартный вывод. Для 

оргrtнизации взаи11нюго исключения при доступе к критическим 

разделяемым ресурсам (переменным done, msglen, msgbuf, нахо­

дящимся в ра.:зделяемой памяти), используется семафор, иден­

тификатор которого тоже содержится в разделяемой памяти. 

Как клиент, так и сервер используют одни и те же функции 

по работе с разделяемой памятью и семафором, находящиеся в 

файлах shdata. h и shdata. с. 
Общая часть - заголовочный файл shdata. h, в котором опи­

саны структура разделяемой памяти (SHDATA) и функции рабо­
ты с ней: 

#include <stdio.h> 
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#include <stdlib.h> 
#include <unistd.h> 
#include <string.h> 
#include <sys/types.h> 
#include <sys/ipc.h> 
#include <sys/shm.h> 
#include <sys/sem.h> 

#define BUF_LEN 256

typedef struct _shdata_ 

{ 

int sem_id; I* идентификатор семафора *I 
int done; f* признак окончания работы *f 
int msglen; f* длина сообщения *I 
char msgbuf[BUF_LEN]; f* буфер для хранения сообщения*/ 

} SHDATA; 

I* Начать работу с разделяемой памятью *I 
SHDATA * shdata_open (void); 
f* Закончить работу с разделяемой памятью *I 
int shdata_close (SHDATA * data); 
f* Обеспечить исключительную работу с разделяемой памятью 

текущему процессу. 
Возвращает не О в случае ошибки. *I 

int shdata_lock (SHDATA * data); 

I* Разрешить другим процессам работать с разделяемой 
памятью. Возвращает не О в случае ошибки. *f 

int shdata_unlock (SHDATA * data); 

Общая часть (для клиента и сервера) находится в файле 
shdata. с (см. пояснения ниже): 

#include "shdata.h" 
#include <errno.h> 
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I* Идентификатор разделяемой памяти *I 
#define SHM_KEY 1221 
I* Идентификатор семафора *I 
#define SEM_KEY (1221+1) 

I* Идентификатор разделяемой памяти *I 
static int shm_id; 

I* Идентификатор семафора *I 
static int sem_id; 

I* "Открыть" разделяемую память с ключом key и размером 
size. Возвращает указатель на память, О в случае 
ошибки. Значение *pcreated будет истинным, если 
текущий процесс создал разделяемую память. *I 

static void * 
shm_open (int key, int size, int *pcreated) 

{ 
void * res = О;/* результат *I 

*pcreated = О; I* память не создали *I 

I* Попытаться открыть разделяемую память *I 
if ((shm_id = shmget (key, size, 0)) == -1) 

{ 
I* Не удалось, рассмотрим причину*/ 
if ( errno == ENOENT) 

{ 

I* Запрошенная разделяемая память не существует. 
Создаем ее. *I 

if ((shm_id = shmget (key, size, 

{ 
fprintf (stderr, 

IPC_CREAT 0664)) -- -1) 

"Cannot create shared memory\n"); 
return О; 
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} 

} 
else 

{ 

} 
} 

} 
*pcreated 1; I* память была создана *I

fprintf (stderr, "Cannot get shared memory\n") 
return О; 

I* Подсоединяем разделяемую память к адресному 
пространству процесса *I

if ((res = (void *)shmat (shm_id, О, О))== (void *)-1 

{ 

} 

fprintf (stderr, "Cannot attach shared memory\n"); 
return О; 

return res; 

I* "Закрыть" разделяемую память. 
Возвращает не О в случае ошибки. *I

static int 
shm_close (void * тет)

{ 
I* Отсоединяем разделяемую память от адресного 

пространства процесса *I

if (shmdt (mem) == -1) 

{ 

} 

fprintf (stderr, "Cannot detach sh�red memory\n") 
return 1; 

I* Удаляем разделяемую память. Реально удаление 
произойдет, когда закончится последний процесс, 
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} 

использующий разделяемую память. Если несколько 
процессов вызывают удаление, то успешным будет 
только первый вызов, поэтому возвращаемое 
значение функции не проверяется. *I 

shmctl (shrn_id, IPC_RMID, О); 
return О; 

I* "Открыть" семафор с ключом key 
Возвращает идентификатор семафора, -1 в случае ошибки. 
Значение *pcreated будет истинным, если текущий 
процесс создал семафор. *I 

static int 
sern_open (int key, int *pcreated) 

{ 
int id; I* результат*/ 

*pcreated = О; I* семафор не создан *I 

I* Попытаться получить семафор*/ 
if ((id = sernget (key, 1, О))== -1) 

{ 
I* Не удалось, рассмотрим причину *I 
if (errno == ENOENT) 

{ 

} 

I* Запрошенный семафор не существует. 
Создаем его. *I 

if ((id = semget (key, 1, IPC_CREAT 0664)) 
== -1) 

{ 

} 

fprintf (stderr, 
"Cannot create semaphore\n"); 

return id; 

*pcreated = 1; I* семафор был создан *I 
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else 

{ 

} 

} 

fprintf (stderr, "Cannot get semaphore\n"); 

return id; 

I* Инициализировать семафор, если текущий процесс 

его создал *I 

if (*pcreated) 

{ 

I* Структура данных для управления семафором *I 

#ifdef _SEM_SEMUN_UNDEFINED 

#endif 

union semun 

{ 

}; 

I* Значение для команды SETVAL *I 

int val; 

I* Буфер для команд IPC_STAT и IPC_SET *I 

struct semid_ds *buf; 

I* Массив для команд GETALL и SETALL *I 

unsigned short int *array; 

I* Буфер для команды IPC_INFD *I 

struct seminfo * __ buf; 

union semun s_un; 

I* Начальное значение семафора *I 

s_un.val = 1; 

I* Установить начальное значение семафора *I 

if (semctl (id, О, SETVAL, s_un) == -1) 

{ 
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fprintf (stderr, "Cannot init semaphore\n"); 

I* С семафором работать нельзя, заканчиваем *I 

return -1; 
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} 
} 

return id; 

} 

I* "Закрыть" семафор с идентификатором id. 
Возвращает не О в случае ошибки. *I

static int 
sem_close (int id) 

{ 

} 

I* Удаляем семафор. Удаление происходит сразу. Все 
ожидающие семафор процессы активизируются, 
ожидание завершается с ошибкой EIDRМ -
Error IDentifier ReMoved. У них вся последующая 
работа с этим семафором будет давать ошибку, 
поэтому возвращаемое значение функции 
не проверяется. *I

semctl (id, О, IPC_RMID, О); 
return О; 

I* Заблокировать семафор с идентификатором id. 
Возвращает не О в случае ошибки. *I

static int 

sem_lock (int id) 

{ 

f* Структура данных для операций с семафором *I 
struct sembuf s buf { О, -1, О}; 

if (semop (id, &s_buf, 1) == -1) 

{ 
I* Проверяем причину*/ 
if (errno -- EIDRM) 

{ 
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} 

} 

} 

I* Семафор был удален другим процессом. *I

return -1; 

I* Еще может быть EINTR - ожидание прервано 
сигналом *I

fprintf (stderr, "Cannot lock semaphore\n"); 
return 1; I* ошибка *I

return О; 

I* Разблокировать семафор с идентификатором id. 
Возвращает не О в случае ошибки. *I

static int 
sem_unlock (int id) 

{ 

} 

I* Структура данных для операций с семафором *I

struct sembuf s_buf { О, 1, О}; 

if (semop (id, &s_buf, 1) == -1) 

{ 

} 

fprintf (stderr, "Cannot unlock semaphore\n"); 
return 1; I* ошибка *I

return О; 

I* Начать работу с разделяемой памятью *I

SHDATA * shdata_open (void) 

{ 
I* Результат */ 
SHDATA * res = О; 

I* Истинно, если текущий процесс создал разделяемую 
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память *I 

int shm_created; 

I* Истинно, если текущий процесс создал семафор *I 

int sem_created; 

I* "Открыть" разделяемую память *I 

res = (SHDATA*) shm_open (SHM_KEY, sizeof (SHDATA), 

&shm_created); 

if ( !res) 

return О; I* ошибка *I 

I* "Открыть" семафор *I 

sem_id = sem_open (SEM_KEY, &sem_created); 

if (sem_id == -1) 

{ 

} 

I* Ошибка, удаляем разделяемую память и 

заканчиваем */ 

shm_close (res); 

return О; I* ошибка *I

I* Заблокировать семафор *I 

if (sem_lock (sem_id)) 

{ 

} 

I* Ошибка, удаляем все и заканчиваем *I 

shdata_close (res); 

return О; I* ошибка *I 

I* Теперь только один процесс работает с памятью *I 

I* Пусть инициализацией структур данных занимается 

тот процесс, который создал разделяемую память */ 

if (shm_created) 

{ 

I* обнулить область разделяемой памяти *I 
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} 

} 

memset ((char*)res, О, sizeof (SHDATA)); 

f* занести идентификатор семафора в разделяемую 

память */ 

res->sem_id = sem_id; 

f* Разблокировать семафор *I 

if (sem_unlock (sem_id)) 

{ 

} 

f* Ошибка, удаляем все и заканчиваем */ 

shdata_close (res); 

return О; f* ошибка *f 

return res; 

f* Закончить работу с разделяемой памятью 

Возвращает не О в случае ошибки; *I 

int shdata_close (SHDATA * data) 

{ 

} 

f* Удаляем семафор *f 

if (sem_close (sem_id)) 

return 1; f* ошибка *f 

f* Удаляем разделяемую память *f 

if (shm_close (data)) 

return 2; /* ошибка *f 

return О; 
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f* Обеспечить исключительную работу с разделяемой памятью 

текущему процессу. 

Возвращает не О в случае ошибки. *f 

int shdata_lock (SHDATA * data) 

{ 
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} 

f* Берем идентификатор семафора из разделяемой памяти*/ 

int id = data->sem_id; 
return sem_lock (id); 

I* Разрешить другим процессам работать с разделяемой 

памятью. Возвращает не О в случае ошибки. *I 

int shdata_unlock (SHDATA * data) 

{ 

} 

f* Берем идентификатор семафора из разделяемой памяти*/ 

int id = data->sem_id; 
return sem_unlock (id); 

Дл}1 облегчения 110ш1J\-1аюн1 К()Д, работающий с блокоы раэделя­
е,:,.юй паl\lяти, рюб11т 1з файле shdata. с на ряд подпрограмы: 

• shm_open -- пытается открыть существующую разделяеыую
паыять, а в случае неудачи создает новую; инфорыация о
TOl\1, •по был создан новый блок раэделяемой памяти, воз­
вращается в вызвавшую процедуру для проведения его ини­
циал нзацин;

• shm_close -- закрьшает разделяемую паl\-1ять и посылает за­
прос на ее удаление (которыii будет выпоJшен, когда все про­
цессы вызовут эту функцию); после завершения shm_close
любое обращение к разделяемой паl\шти вызовет оuшбку;

• sem_open - пытается открыть существующий семафор, а в
слу•�ае неудачи создает новый; инфорыация о то11,1, что был
создав новый сеыафор, используется для проведения его
пниц11ализац1ш 11 возвращается в вызвавшую процедуру;

• sem_close - удаляет ce11ia<µop; после этого активизируются
все ожидавшие его процессы п любое последующее обраще­
ние к нему вызовет ошибку;

• sem_lock - <<закрыть>> семафор; после этого текущий про­
цесс становится владельцеl\1 сеыафора;
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• sem_unlock ·- <<открыть>> семафор; после этого другие про­

цессы l\югут <<закрывать>> семафор;

• shdata_open --- открывает разделяемую память и семафор,

затем инициаJiизирует разделяемую память ( если она была

создана, ИСКЛЮ';IИТСЛЬНЫЙ доступ к Тiаl\!ЯТИ текущеl\IУ про­

цессу обеснечивается с помощью сеl\шфора);

• shdata_close --- удаляет разделяемую паl\rять и семафор;

• shdata_lock-- обеспечить исключителып,тй доступ к разде­

ляе!lюй памяти текущему процессу;

• shdata_unlock ··- разрешить дру1·им процессам работать с

ра.зделяеll!ой памятью.

Програ.мl\[а-клиент находится в файле r_eader. с (см. пояс­
нения ниже): 

#include "shdata.h" 

I* Считать сообщение с терминала и записать в 
разделяемую память *f 

void reader (SHDATA * data) 
{ 

int ret; 

for (;;) 
{ 

I* Обеспечить исключительную работу с разделяемой 
памятью текущему процессу *I 

ret = shdata_lock (data); 
if ( !ret) 

{ 

if (!data->msglen) 
{ 

I* Выход по Ctrl+D *I 
if (!fgets (data->msgbuf, BUF_LEN, stdin)) 

break; 
data->msglen = strlen (data->msgbuf) + 1; 
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} 

} 

} 

} 

f* Разрешить другим процессам работать с 

разделяемой памятью. *I 

shdata_unlock (data); 

f* Дать поработать другим *f 
sleep (1); 

data->done = 1; 
fprintf (stderr, "reader process %d exits\n", getpid()); 
f* Разрешить другим процессам работать с разделяемой 

памятью. *f 
shdata_unlock (data); 

int main О 

{ 

} 

SHDATA * data 

if (data) 
{ 

shdata_open О ; 

reader (data); 
shdata_close (data); 

} 

return О; 

Процедура reader в бесконечном цикле, прерываемом по ошиб­
ке ввода: 

1. обеспечива�т себе исключительный доступ к разделяемой
памяти с помощью shdata_lock;

2. если предыдущее сообщение обработано сервером ( т. е .  длина
сообщения data->msglen равна О), то считывает строку со
стандартного ввода с помощью fgets;
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:1. в случае успешного чтения устанавливает длину сообщения 
data->msglen, иначе: прерывает цикл, устанавливает пере­
менную data->done в 1, разрешает другим процессам рабо­
тать с разделяемой памятью с помощью shdata_unlock и 
завершает работу; 

,\. разрешает другим процессам работать с разделяемой памя­
тью с помощью shdata_unlock; 

!i. для обеспечения переключения задач к процессу-серверу 
останавливает на 1 секунду выполнение текущего процесса 
с помощью sleep (иначе бы этот цикл работал вхолостую 
до окончания кванта времени, выделенного текущему про­
цессу); это крайне плохое ( исключительно модельное) реше­
ние, но у нас еще нет механизма, позволяющего ожидать, 
пока сервер не обработаJI запрос; см. <<правильное>> решение 
в разделе 8.4.5. 

Программа-клиент находится в файле wri ter. с ( см. пояс­
нения ниже): 

#include "shdata.h" 

I* Взять сообщение из разделяемой памяти и вывести 

на экран *I 

void writer (SHDATA * data) 

{ 
int ret; 

for (;;) 

{ 
I* Обеспечить исключительную работу с разделяемой 

памятью текущему процессу *I 

ret = shdata_lock (data); 
I* Проверяем признак конца работы в любом случае •! 

if (data->done) 

{ 

!• Конец работы •/ 

fprintf (stderr, "writer process %d exits\n", 
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} 

} 

} 

getpid ()); 
I* Разрешить другим процессам работать 

с разделяемой памятью. *I 
if ( !ret) 

shdata_unlock (data); 
return; 

if ( !ret) 

{ 

} 

if (data->msglen) 

{ 

} 

I* есть сообщение для вывода *I 
printf ("-> %s\n", data->msgbuf); 
data->msglen = О; 

I* Разрешить другим процессам работать с 
разделяемой памятью. *I 

shdata_unlock (data); 

I* Дать поработать другим *I 
sleep (1); 

int main () 

{ 

} 

SHDATA * data 

if (data) 

{ 

shdata_open () ; 

writer (data); 
shdata_close (data); 

} 
return О; 
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1 Iроцедура wri ter в бесконечном цикле, прерываеыом в случае 
11снулевого значения data->done: 

1. обеспечивает себе исключительный доступ к . разделяемой
памяти с помощью shdata_lock;

2. если data->done не равно О, то разрешает другим процесса1-1
работать с разделяемой памятью с поl\ющью shdata_unlock
и завершает работу;

3. если есть сообщение для обработки сервером (т. е. длина со­
общения data->msglen не равна О), то выводит строку с по-
1\ЮJЦЫО printf и устанавливает data->msglen в О;

4. разрешает другим процессам работать с разделяемой памя­
тыо с помощью shdata_unlock;

5. для обеспечения переключения задач к процессаl\1-·клнеi-1там
останавливает на 1 секунду выполнение текущего процесса
с помощью sleep (иначе бы этот цикл работал вхолостую
до окончания кванта времени, выделенного текущему про­
цессу).

Сделаем полезное замечание об отладке программ, ис­
пользующих ошн.:анные в разделах 8.1, 8.2 и 8.4 функции. В

случае аварийного завершения нрогра.111мы созданные ею объ­
екты межпроцессного взаимодействия (блоки разделяемой па­
мяти, семафоры и очереди сообщений) пе удаляются. Следова­
тельно, при повторном старте программы она получит объекты, 
оставшиеся от предыдущего запуска. При этом, например, сема­
фор l\южет ока.-заться занятым уже не существующиl\1 процессом 
и потому никогда не освободится. С большинством UNIХ-систем 
поставляются утилиты, позволяющие посl\ютрсть состояние та­
ких объектов и удалить их: 

• ipcs (IнterProcess Communicatioп Status) -- выводит сп11сок
блоков разделяемой памяти, семафоров и очередей сообще­
ний с указанием их идентификатора, владельца, прав досту­
па и т. д.
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• ipcrm (InterProcess Communication ReMove) -позволяет уда-
лить:

ipcrm shm id- блок разделяемой памяти, 
ipcrm sem id- семафор, 
ipcrm msg id- очередь сообщений 

с идентификатором id, который можно получить с поыощhю 
команды ipcs. 

8.3. События 

Определение. Событие -это логический сигна.п ( оповеще­
ние), приходящий асинхронно по отношению к течению нро­
цесса. С каждым событие111 сnязаны булевская переменная Е, 
принимающая два значения (О-событие не пришло, и 1-- со­
бытш� пришло), и о•,ередь ожидания (процессов, задач, ожидаю­
щих прихода события). Над событияыи определены следующие 
элементарные операции: 

• Signal ( Е) --· послать событие, т. е. установить переменную Е
в 1, при этоы первая в очереди ожидающая задача активизи­
руется (n некоторых системах активизируется одна из задач,
т. с. очсре;-1,11ость нс гарантируется);

• Bтoшlco.st(E)- послать событие, т. е. установить перемен­
ную Е в 1, при этт.1 все задачи из очереди ожидания ак­
тивизируются;

• l.Y ait( Е) -· ож11дать события ( ее ли события нет, т. е. перемен­
ная Е равна О, то эта операция переводит задачу в состояние
ожидания 11р11хода события и добавляет ее в конец очереди
ожидашrя этого события; как только событие придет, задача
будет активизирована);

• .Rеsеt(Е)-очистить (удалить поступившее событие), т. е .
установить переi\l�нную Е в О;

• Test(E) -- проверить (поступление) ····· получить значение пе­
ременной Е.

Рассмотрим пример (рпс. 8.2).



11.3. События 

состояние 

пришло 

непришлО'---------'----t,----,-----"4-----•
t t I t2 tз t4 ts tв 

гypffi

состояние 
задачи А 

активна�.-_____ _.__...,._....,, __ ,...._.....__..._ __ _ 

блокирована'--------+----'-----'--'---'--.....__ ___ _ 
t I t2 tз t4 ts tб состояние 

задачи В 
активна�------------

состояние 
задачи С 

активна�-----_._ _ _., _ __...._--,1 

блокирована '-----------'------'--'---.&---'-----
t1 t2 tз l4 ts tв 

Рис. 8.2. Пример работы с событием 
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1. В.Wаit-задача В вызвала Wait; поскольку Е = 1, то это
не имеет никакого эффекта, В продолжает :исполнение;

2. Resct -- была вызвана функция установки Е = О ( одной из
задач А, В или С, или другой задачей);

3. B.iVait- поскольку Е = О, то задача В заблокирована и
помещена в очередь ожидания;

4. С. iv ait -поскольку Е = О, то задача С заблокирована и
поl\Iещена в очередь ожидания;

5. А.Вrоасlсаst-установить Е = 1, активизировать все задачи
из 0•1ереди ожидания, т. е. активизировать В и С.

С помощью событий легко организовать обмен между двумя
задачами по типу клиент-сервер. Пусть есть два события Е1 и 
Е2. Задача Т1 (сервер) сразу после старта вызывает функцию 
E1.1Vait(). Тем са�,�ым она блокируется до получения события 
Е1. Задача Т2 (клиент) сразу после старта подготавливает дан-
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ные в раэделяемой с задачей Т1 памяти и вызывает функцию 
Е 1 .Send(). Это приводит к активизации задачи Т1 . Задача Т2 
щюдолжает работу и вызывает функцию E2.И/ait{), блокиру­
ясь до получения события Е2. Задача Т1 (сервер) по окончании 
обработки данных вызывает функции E2 .Send(), E1 .iVait(), ак­
тивизируя задачу Т2 (клиента) и блокируя себя. 

Ниже (см. рюдел 10.3) 1\-tЫ рассl\ютрим реализацию событий 
для задач. Для процессов общепринятая реализация событий в 
UNIХ-снстемах отсутствует. 

8.4. Очереди сообщений (почтовые ящики) 

Определение. Очереди сообщений (почтовые ящики)-это 
объект обмена данными между задачами, устроенный в виде 
очереди l<'IFO (рис. 8.3). С каждым почтовым ящиком связа­
ны: 

1. очередь сообщений (образующая содержимое почтового
ящика),

2. очередь задач, ожидающих сообщений в почтовоы ящике,
3. 0•1ере;�:ь задач, ожидающих освобождения ыеста в почтовоl\1

ящике,
4. механизм вза�tl\JНОГО искj1ючения, обеспечивающш1: правиль­

ный ;�:осту11 нескольких задач к ОДППI\I и тем же сообщениям
в ПОЧТОВО!\[ ящике.

Количество :1адач, ожидающих сообщения в почтовом ящике, 
обычно не огршшчепо. КошРrество же сообщений в ящике обыч­
но ограшР1ено параметром, указанныы при создании ящика. Это 

-1 Сообщение N � · · · 4 Сообщение 1 1-

Рис. 8.3. Почтовый ящик 
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с·шпано с тем, что размер каждого сообщения указывается при 
с·о:щанин ящика и ыожет быть значительныl\I. Если ящик полон 
11 :1адача пытается поместить А него новое сообщение, то она бло-
1шруется до тех пор, пока в ящике не появится свободное место. 
11 ад почтовыми ящиками определены следующие элементарные 
с111срации: 

• положить сообщение в почтовый ящик, при этом :задача, вы­
звавшая эту операцию, может быть блокирована и помещена
в о�ередь :задач, ожидающих освобождения места в ящике,
если в ящике нет свободного места (активизация наступит
сра:зу после взятия первого же сообщения из очереди сооб­
щений); если очередь ожидающих сообщения задач непуста,
то активизируются все задачи из этой очереди;

• попробовать положить сообщение в почтовый ящик -- если в
ящике есть свободное место, то эта операция эквивалентна
положить, иначе вернуть признак отсутствия места;

• 110.;южить в начало - то же, что положить, только сообще­
ние помещается в голову очереди;

• попробовать положить в начало -- то же, что попробовать
положить, только сообщение помещается в голову очередн;

• взять сообщение из почтового ящика, при этом задача, вы­
звавшая эту операцию, l\Южет быть блокирована и помещена
n очередь задач, ожидающих сообщения, если в ящике нет со­
общений; при поступлении сообщения она будет активизиро­
в,ша; при этом, если в очереди о:жидающих сообщения задач
находится более одной задачи, то при выполнении операции
взять обеспечииается механi1зм взаимного исключения задач
(т. е. пока вьшолняется эта онерация одной задачей, все дру­
гие задачи, запросившие ту же операцию, заблокированы);

• попробовать взять сообщение нз почтового ящика - если в
ящике есть сообщення, то эта операция эквивалентна взять,
иначе вернуть признак отсутстш1я сообщений;

• очистить ящик - удалить вес сообщения из очереди.
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Фактически описанный механизм представляет собой взаимо­
действие клиент-сервер, когда задачи-клиенты помещают за­
просы в почтовый ящик, а задачи--серверы их оттуда забирают. 

8.4.1. Функция msgget 

Функция msgget, описанная в файле <sys/msg. h> ( используе­
мые типы описаны в заголовочном файле <sys/ i ре . h>), позво­
ляет создать {или открыть существующую) очередь сообщений 
с у1<азаш-tыl\IИ правами доступа. Прототип: 

int msgget (key_t key, int msgflg); 

где входные параl\1етры: 

• key -- числовой идентификатор очереди сообщений;
• msgflg - атрибуты, используемые при создании очереди со­

общений (флаги и права доступа).

Функция возвращает идентификатор очереди сообщений (не пу­
тать с key) или -1 в случае ошибки. 

8.4.2. Функция msgsnd 

Функция msgsnd, онисанпая в файле <sys/msg. h> {используе­
мые типы описаны в :заголовочном файле <sys/ i ре . h>), позво­
ляет положить сообщение в очередь. Прототип: 

int msgsnd (int msqid, const void *msgp, 
size_t msgsz, int msgflg); 

где входные параметры: 

• msqid--- идентификатор очереди сообщений;
• msgp - указатель на сообщение, которое должно иметь сле­

дующий тип ( форы ат):

struct msgbuf 

{ 

f* Тип (тег) сообщения *f 
long int mtype; 
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}; 

f* Данные сообщения *f 
char mtext [1] ; 

• msgsz - размер сообщения;
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• msgflg -дополнительные флаги, определяющие поведение
процесса в случае, если в очереди сообщений нет свободно­
го места (можно указать: ожидать появлеюiя достаточного
ыеста или сигнализировать об ошибке).

Функция возвращает О в случае успеха или -1 в случае ошибки. 

8.4.3. Функция msgrcv 

Функция msgrcv, описанная в файле <sys/msg.h> (используе­
мые типы описаны в заголовочном файле <sy:;;/ipc.h>), позво­
ляет взять сообщение с указанным типом (тегом) из очереди. 
Прототип: 

int msgrcv (int msqid, void *msgp, size_t msgsz, 
long int msgtyp, int msgflg); 

где входные параметры: 

• msqid- идентификатор очереди сообщений;
• msgp - указатель на буфер для сообщения, которое должно

иметь тип (формат) struct msgbuf;
• msgsz -размер буфера для сообщения;
• msgtyp-тип (тег) сообщения:

если msgtyp равно О, то взять первое сообщение из оче­
реди, 
если msgtyp < О, то взять первое сообщение из очереди с 
типом < \msgtyp\, 
если msgtyp > О, то взять первое сообщение из очереди с 
типом =f. lmsgtyp\; 

• msgflg-дополнительные флаги, определяющие поведение
процесса в случае, если очередь сообщений пуста ( можно
указать: ожидать появления сообщений или сигнализиро­
вать об ошибке) или выбранное сообщение имеет длину боль-
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ше msgsz (!\южно указать: обрезать сообщение или сигнали­
зировать об ошибке). 

Функция возвращает длину полученного сообщения в случае 
успеха или -1 в случае ошибки. 

8.4.4. Функция msgctl 

Фуню\ИЯ msgctl, описанная u файле <sys/msg. h> (используе­
l\lЫС ·пшы описаны в заголовочноl\1 файле <sys/ipc .h> ), позво­
ляет у11ра.влят1, очередью сообщений (в частности, удалять ее). 
Прототип: 

int msgctl (int msgid, int cmd, 
struct msqid_ds *buf); 

где входные пар,щетры: 

• msqid- ндептифнкатор очереди сообщений;
• cmd -- задает операцию над очередью сообщений;
• buf - ар1тыенты операции (также служит для возврата ин­

форыац1ш о результате операции).

Функция uозвращает О в случае успеха или -1 в слу•,ае ошибки. 

8.4.5. Пример использования очередей 

Рассмотрим ту же задачу, что н в разделе 8.2.4. Приведенная 
в разделе 8.2.4 реа.1ш3а1щя нехороша тем, что для избе:;кания 
бесполезного 1\Ш·ша опроса переменных исiюльзуется функция 
sleep. С 1101\ющыо очередей сообщений 1\!Ы 1\IОжем избежать этой 
пpoбJiel\IЫ и при этом сократить сами програl\lr-.1ы. 

Общая часть - заголовочный файл msgdata. h, в котором 
описаны структура сообщения (MSGDATA) и функции работы с 
IIHI\I: 

#include <stdio.h> 
#include <stdlib.h> 
#include <unistd.h> 
#include <string.h> 
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#include <errno.h> 
#include <sys/types.h> 
#include <sys/ipc.h> 
#include <sys/msg.h> 

#define BUF_LEN 256 
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f* Первые два поля должны быть именно такими и в таком 

порядке для образования msgbuf *I 
typedef struct _msgdata_ 

{ 

long int mtype; f* тип сообщения *I 
char msgbuf[BUF_LEN]; f* буфер для хранения сообщения*/ 
int done; f* признак окончания работы *f 
int msglen; f* длина сообщения *f 

} MSGDATA; 

I* Длина данных сообщения (без первого поля) *f 
#define MSGDATA LEN (BUF_LEN + 2 * sizeof (int)) 

f* Идентификатор очереди сообщений *f 
#define MSG_KEY 1223 

int msg_open (int key); 
int msg_close (int id); 

Общая часть (для клиента и сервера) находится в файле 
msgdata. с (см. пояснения ниже): 

#include "msgdata.h" 

I* Идентификатор разделяемой памяти *f 
#define SHM_KEY 1221 
f* Идентификатор разделяемой памяти *f 
#define SEM_KEY (1221+1) 

f* Начать работу с очередью сообщений с ключом key. 
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Возвращает идентификатор очереди, 
-1 в случае ошибки.*/

int 
msg_open (int key) 

{ 

} 

int msg_id; f* результат *f 

f* Попытаться открыть очередь сообщений *f 
if ((msg_id = msgget (key, О))== -1)

{ 

} 

f* Не удалось, рассмотрим причину *f 
if (errno == ENOENT) 

{ 

} 

else 

{ 

} 

f* Запрошенная очередь сообщений не существует. 
Создаем ее. *f 

if ((msg_id = msgget (key, IPC_CREAT 1 0664))

=.= -1) 

{ 
fprintf (stderr, 

"Cannot create mesage queue\n"); 
return О; 

} 

fprintf (stderr, "Cannot get mesage queue\n"); 
return О; 

return msg_id; 

f* Закончить работу с очередью сообщений с 
идентификатором id. 
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Возвращает не О в случае ошибки. *f 
int 
msg_close (int id) 

{ 

} 

f* Удаляем очередь сообщений. Удаление происходит сразу. 
Все ожидающие сообщений процессы активизируются, 
ожидание завершается с ошибкой EIDRM - Error 
IDentifier ReMoved. У них вся последующая работа с 
этой очередью будет давать ошибку, поэтому 
возвращаемое значение функции не проверяется. *f 

msgctl (id, IPC_RМID, О); 
return О; 

Функции, работающие с сообщениеl\1: 

• msg_open - пытается открыть существующую очередь сооб­

щений, а в случае неудачи создает новую;

• msg_close -удаляет очередь сообщений; после этого акти­

визируются все процессы, ожидавшие сообщений в очереди,

и любое последующее обращение к ней вызовет ошибку.

Программа-клиент находится в файле reader. с ( см. пояс-

нения ниже): 

#include "msgdata.h" 

f* Считать сообщение с терминала и записать в очередь *f 
void reader (int msg_id) 

{ 
MSGDATA data; 

for (;;) 

{ 
f* Выход по Ctrl+D *f 
if (!fgets (data.msgbuf, BUF_LEN, stdin)) 

break; 
data.msglen = strlen (data.msgbuf) + 1; 

5 -4017 
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} 

} 

data.done = О; 
data. mtype = 1; 
f* Посылаем сообщение в очередь *f 
if (msgsnd (msg_id, &data, MSGDATA_LEN, О) -1)

{ 

} 

perror ("send"); 
fprintf (stderr, "Cannot send message\n"); 
return; 

data.mtype = 1; 
data.done = 1; 
data.msglen = О; 
f* Посылаем сообщение в очередь *f 
if (msgsnd (msg_id, &data, MSGDATA_LEN, О)== -1) 

{ 

} 

fprintf (stderr, "Cannot send message\n"); 
return; 

fprintf (stderr, "reader process %d exits\n", getpid()) 

int main О 

{ 

} 

f* Идентификатор очереди сообщений *f 
int msg_id; 

if ((msg_id 
return 1; 

msg_open (MSG_KEY)) -- -1) 

reader (msg_id); 
msg_close (msg_id); 
return О; 
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1 I роцедура reader в бесконечном цикле, прерываемо!\� по опшб­
Ю) ввода: 

1. считывает строку со стандартного ввода с помощью fgets;
2. в случае успешного чтения устанавливает реальную длину

сообщения data. msglen и посылает его, иначе: прерывает
цикл, устанавливает переменную data.done в 1, а реальную
длину сообщения data. msglen --· в О, посылает это сообще­
ние и завершает работу.

Программа-клиент находится в файле wri ter. с ( см. пояс-
11ения ниже): 

#include "msgdata.h" 

I* Взять сообщение из очереди и вывести на экран *I
void writer (int msg_id) 

{ 
MSGDATA data; 

for (;;) 
{ 

I* Получаем сообщение из очереди *I

if (msgrcv (msg_id, &data, MSGDATA_LEN, О, О) -1
{ 

} 

I* Проверяем причину*/ 
if (errno == EIDRM) 

{ 

} 

I* Очередь была удалена другим процессом.*/ 
break; I* Заканчиваем работу *I

fprintf (stderr, "Cannot recieve message\n"); 
return; 

I* Проверяем признак конца работы *I
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} 

} 

if (data.done) 

{ 

} 

I* Конец работы *I 
break; 

if (data.msglen) 

{ 

} 

I* есть сообщение для вывода *I 
printf ("-> %s\n", data.msgbuf); 
data.msglen = О; 

fprintf (stderr, "writer process %d exits\n", 
getpid О); 

int main О 
{ 

} 

I* Идентификатор очереди сообщений *I 
int msg_id; 

if ( (msg_id 
return 1; 

msg_open (MSG_KEY)) 

writer (msg_id); 
msg_close (msg_id); 
return О; 

-1)

Процедура wri ter в бесконечном цикле, прерываемом в слу­
чае ненулевого значения поля done в полученном сообщении: 

1. получает сообщение;

2. если поле done в сообщении равно О, то завершает работу;

3. если поле msglen в сообщении не равно О (т. е. есть строка
для вывода), выводит строку из сообщения.
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По поводу отладки программ, использующих очереди сооб­
щений, см. замечание в разделе 8.2.4. 

8.4.6. Функция pipe 

Функция pi ре, описанная в заголовочном файле <unistd. h>, 
предоставляет альтернативный по отношению к описанным вы­
ше функциям msgget, msgsnd, msgrcv, msgctl механизм созда­
ния очереди сообщений. Прототип: 

int pipe (int filedesc[2]); 

где filedesc - результат работы функции, представляющий со­
бой массив из двух дескрипторов файлов. В случае успешного 
выполнения эта функция создает очередь сообщений, из ко­
торой можно читать данные обычными функциями файлово­
го ввода (например, read), используя дескриптор filedesc [О], 
и в которую можно записывать данные обычными функция­
ми файлового вывода (например, write), используя дескриптор 
filedesc [1], Функция возвращает -1 в случае ошибки. 

Основные отличия функции pipe от интерфейса, предостав­
ляемого функциями msgget, msgsnd, msgrcv, msgctl: 

• Созданная pipe очередь не имеет идентификатора, позволя­
ющего выделить конкретную очередь (ер. с msgget, где есть
параметр key). Поэтому типичныы использованием pipe яв­
ляется организация очереди между процессами-потомками
одного родителя: pipe вызывается до функции fork и пото­
му дескрипторы filedesc доступны потомку и родителю.

• Использование обычных функций файлового ввода-вывода

(вроде read и write) вместо специализированных (msgsnd и

msgrcv) приводит к тому, что отсутствует гарантия целостно­
сти получаемых и передаваемых сообщений ( т. е. возможно
одновременное чтение или запись от нескольких процессов
с перемешиванием их данных). Поэтому необходимо приме­
нять тот или иной механизм взаимного исключения процес­
сов. Поскольку по определению чтение из пустой очереди
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и запись в заполненную очередь блокируют процесс, то это 
:t..южно использовать в качестве возможного механизма син­
хронизации. 

• Функция удаления созданной pipe очереди отсутствует (ер.
с msgctl). О•1ередь удаляется как только будут закрыты (с
по!\ющыо обычной файловой функции close) все дескрип­
тор,., файлов filedesc в каждоы из процессов. При этоы,
если закрыты все дескрипторы filedesc [1] (для записи),
то по окончашш данных в очереди все 011ерации чтения бу­
дут дават1, ошибку <<конец файла>>. Если же закрыты все
де<.:кр11пторы filedesc[O] (для чтения), то любая операция
зюшси в очередь будет генерировать сигнал SIGPIPE, стан­
дартный обработчик которого терминирует процесс.

При:11ер использования pipe сы: в разделе 1.3. В этой про­
грамl\1е очеред1, from_root служит для взаимного исключения 
процессов (передаваемые данные не используются), очередь 
to_root служит для передачи результата от потомка к роди­
телю. Очереди создаются в основном (т. е. из1-1а.•1ЭJ1ьно запущен­
ном пользователем) процессе, и только зате!\I р раз вы:зывается 
функция fork, создавая р процессов-потомков. Следователь­
но, вес процессы И!\-rеют одни и те же значения в from_root 
и to_root. Процессы-1ютомки сразу после старта закрыва­
ют свои копип дескрипторов для записи в очередь from_root 
(from_root [1]) и для чтения из очереди to_root (to_root [О]). 
Основной процесс после запуска потш-1ков закрывает свои ко­
пии дескрипторов для записи н очередь to_root (to_root [1]) 
и для чтения из очереди from_root (from_root [О]). Тем самым 
формируются две очереди сообщений: 

• from_root, в которую основной процесс может только запи­
сывать данные, а процессы-потомки - только их считывать,

• to_root, из которой основной процесс 1\южст только считы­
вать данные, а нроцессы-потомки - только их записывать.
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Сразу после :запуска процесс-потомок вычисляет свою часть 

ннтеграла с ПОJ\ЮЩЬЮ функции integrate и переходит в ре­

жим ожидания появления сообщения (из одного байта) в оче­

реди from_root. Один байт является минимальной величиной, 

неделимой между процессами, поэтому при отправке основным 

процессом такого сообщения будет активизирован ровно один 

из его потомков. Дождавшись сообщения, процесс-потомок за­

писывает результат в очередь to_root и заканчивает свою рабо­

ту. Основной процесс после запуска потомков р раз последова­

тельно записывает один байт в очередь from_root (тем самым 

активизируя один из процессов-пото11-1ков) и переходит в режим 

ожидания появления сообщения в очереди to_root. Получив со­

общение--- число типа douЫe, основной процесс прибавляет его 

к результату total, формируя окончательный ответ. 

8.5. Пример многопроцессной программы, 
вычисляющей произведение матрицы на вектор 

Рассмотрим задачу вычисления произведения матрицы на век­

тор. Для повышения скорости работы па многопроцессорной 
вычислительной установке с общей памятью создадим несколь­

ко процессов (по числу процессоров) и разделим работу меж­

ду НИ!\IИ:, разме<..:тив вес данные в раэделяемой памяти. Основ­
ным элементом синхронизации задач будет являться функция 

synchronize, которая дает возможность процессу ожидать, пока 

эту же функцию вызовут все другие процессы. Файлы проекта: 

• synchronize. с, synchronize. h- исходный текст и соответ­

ствующий заголовочный файл для функций синхронизации

и взаимного исключения процессов;

• get_time.c, get_time.h-иcxoдный текст и соответствую­

щий заголовочный файл для функций работы со временем;
• main. с - запуск процессов и вывод результатов;
• matrices. с, matrices. h - исходный текст и соответствую­

щий заголовочный файл для функций, работающих с мат­

рицами;
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• Makefile -для сборки проекта.

Заголовочный файл synchronize. h:

111t init_synchronize_lock (int total_processes); 
111t destroy_synchronize_lock (void); 
int lock_data (void); 
int unlock_data (void); 
void synchronize (int process_num, int total_processes); 

В файле synchronize. с находятся функции: 

• sem_open -- создает новый набор из указанного количества
семафоров и устанавливает каждый из них в указанное на­
чальное значение; для создания уникального ( т. е. отлично­
го от уже имеющихся в каком-либо процессе) набора н ка­
честве ключа для функции semget использовано значение
IPC_PRIVATE, для инициализации всех созданных семафоров
в функции semctl использовано значение SETALL;

• sem_close -удаляет указанный набор семафоров;
• init_synchronize_lock -- создает все используемые объек-

ты синхронизации и взаи!lшого исключения процессов:

1 семафор с начальным значением 1 для взаимного ис­
ключения процессов при доступе к разделяемой памяти; 
2 набора по total_processes семафоров с начальным зна­
чением О для синхронизации процессов; 
массив lock_all, используемый для операций с послед­

ними двумя наборами; 

• destroy _synchronize_lock -удаляет все созданные в
предыдущей функции объекты;

• lock_data -обеспечить исключительную работу с разделя­

емой памятью текущему процессу;
• unlock_data-paзpeшить другим процесса1,1 работать с раз­

деляемой памятью;
• synchronize_internal - основная подпрограмма функции

синхронизации; блокирует вызвавший ее процесс до тех пор,
пока ее не вызовут все total_processes процессов; схема
работы:
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1. добавить total_processes к значению семафора с номе­

ром process_num из указанного набора, состоящего из
total_processes семафоров; эта операция не приводит
к блокировке процесса;

2. вычесть 1 из значения каждого из total_processes се­

мафоров в указанном наборе; эта операция приводит к
блокировке процесса до тех пор, пока значения всех се­

мафоров не станут положительными;

другими словами, каждый из total_processes процессов 
прибавляет total_processes к одному семафору, и вычитает 

1 из всех, поэтому, например, перед приходом в эту функцию 
последнего процесса, имеющего номер k, k-й семафор в набо­

ре имеет значение 1-total_processes (и потому блокирует 
все остальные total_processes-1 процессов), а остальные 
total_processes-1 семафоров имеют значение 1; последний 

пришедший процесс описанной выше операцией 1 разрешает 

работать всем процессам, а затем операцией 2 приводит все 
семафоры в начальное значение О; 

• synchronize - основная функция синхронизации; блокиру­

ет вызвавший ее процесс до тех пор, пока ее не вызовут Rce
total_processes процессов; дважды вызывает предыдущую

функцию для двух разных наборов по total_processes се­
мафоров для того, чтобы дождаться, пока в эту функцию

все процессы войдут и выйдут, не допуская ситуации, ко­

гда один из про1\ессов, выйля из synchronize, войдет в нее

раньше, чем остальные вышли при предыдущей синхрониза­

ции, и нарушит тем самым ее работу.

Файл synchronize. с: 

#include <stdio.h> 

#include <stdlib.h> 
#include <unistd.h> 
#include <errno.h> 
#include <sys/types.h> 
#include <sys/ipc.h> 
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#include <sys/sem.h> 

#include "synchronize.h" 

I* Идентификатор семафора взаимного исключения *I

static int lock_data_sem_id; 
I* Идентификаторы наборов семафоров, используемых для 

синхронизации. *I

static int processes_in_sem_id; 
static int processes_out_sem_id; 
I* Структура данных для операций с набором семафоров *I

struct sembuf * lock_all; 

I* "Открыть" новый набор семафоров длины n и установить 
начальное значение каждого семафора val. Возвращает 
идентификатор набора, -1 в случае ошибки. *I

static int 
sem_open (int n, int val) 
{ 

int id; /* результат *I

I* Структура данных для управления семафором *I

#ifdef _SEM_SEMUN_UNDEFINED 
union semun 
{ 

I* Значение для команды SETVAL *f

int val; 
I* Буфер для команд IPC_STAT и IPC_SET *I

struct semid_ds *buf; 
I* Массив для команд GETALL и SETALL *f

unsigned short int *array; 
I* Буфер для команды IPC_INFD *I

struct seminfo * __ buf; 

}; 
#endif 

union semun s_un; 
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} 

int i; 

f* Создаем новый набор семафоров *f 
if ((id = semget (IPC_PRIVATE, n, 

{ 

} 

IPC_CREAT 1 0664)) == -1) 

fprintf (stderr, "Cannot create semaphore\n"); 
return -1; 

f* Выделяем память под массив начальных значений *f 
if (!(s_un.array = (unsigned short int*) 

{ 

} 

malloc (n * sizeof (unsigned short int)))) 

f* Мало памяти *f 
fprintf (stderr, "Not enough memory\n"); 
return -1; 

f* Начальное значение набора семафоров *f 
for (i = О; i < n; i++) 

s_un.array[i] = val; 

f* Установить начальное значение каждого семафора *f 
if (semctl (id, О, SETALL, s_un) == -1) 

{ 

} 

fprintf (stderr, "Cannot init semaphore\n"); 

f* С семафором работать нельзя, заканчиваем *f 
free (s_un.array); 
return -1; 

free (s_un.array); 
return id; 



140 Глава 8. Синхронизация и взаимодействие процессов 

!• "Закрыть" семафор с идентификатором id. 
Возвращает не О в случае ошибки. *I

static int 
sem_close (int id) 

{ 

} 

I* Удаляем семафор. *I

if (semctl (id, О, IPC_RMID, О)== -1) 

{ 

} 

fprintf (stderr, "Cannot delete semaphore\n"); 
return -1; 

return О; 

I* Инициализировать все объекты синхронизации и 
взаимного исключения. Возвращает -1 в случае ошибки.*/ 

int 
init_synchronize_lock (int total_processes) 

{ 
int i; 

I* Создаем 1 семафор с начальным значением 1 */ 
lock_data_sem_id = sem_open (1, 1); 
I* Создаем total_processes семафоров с начальным 

значением О *I

processes_in_sem_id = sem_open (total_processes, О); 
I* Создаем total_processes семафоров с начальным 

значением О *I

processes_out_sem_id = sem_open (total_processes, О); 
!• Проверяем успешность создания *I

if (lock_data_sem_id == -1 11 processes_in_sem_id == -1 
11 processes_out_sem_id == -1) 

return -1; f* семафоры не созданы *I
I* Выделяем память под массив *I
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} 

if (!(lock_all = (struct sembuf *) 

malloc (total_processes * sizeof (struct sembuf)))) 
return -2; I* нет памяти *I

I* Инициализируем массив *I

for (i = О; i < total_processes; i++) 

{ 

} 

lock_all[i] .sem_num = i; 
lock_all[i] .sem_op = -1; 
lock_all[i] .sem_flg = О; 

return О; 

I* Закончить работу со всеми объектами синхронизации и 
взаимного исключения. Возвращает -1 в случае ошибки.*/ 

int 
destroy_synchronize_lock () 

{ 

} 

if (sem_close (lock_data_sem_id) == -1 

11 sem_close (processes_in_sem_id) == -1 

11 sem_close (processes_out_sem_id) == -1) 
return -1; I* ошибка *I

free (lock_all); 
return О; 

I* Обеспечить исключительную работу с разделяемой памятью 
текущему процессу. Возвращает не О в случае ошибки. *I

int 
lock_data () 

{ 

I* Структура данных для операций с семафором *I

struct sembuf s_buf = { О, -1, О}; 
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} 

if (sernop (lock_data_sern_id, &s_buf, 1) == -1) 

{ 

} 

fprintf (stderr, "Cannot lock sernaphore\n"); 
return -1; I* ошибка *I 

return О; 

I* Разрешить другим процессам работать с разделяемой 
памятью. Возвращает не О в случае ошибки. *I 

int 
unlock_data () 

{ 

} 

f* Структура данных для операций с семафором *I 
struct sernbuf s_buf = { О, 1, О}; 

if (sernop (lock_data_sern_id, &s_buf, 1) == -1) 

{ 

} 

fprintf (stderr, "Cannot unlock sernaphore\n"); 
return -1; I* ошибка·*/ 

return О; 

I* Подпрограмма для synchronize *I 
static int 
synchronize_internal (int id, int process_nurn, 

int total_processes) 

{ 
I* Добавить total_processes единиц к семафору с номером 

process_nurn из набора с идентификатором id. *I 
I* Структура данных для операций с семафором *I 
struct sernbuf s_buf = {process_nurn, total_processes, О}; 

if (sernop (id, &s_buf, 1) == -1)
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} 

return -1; f* ошибка *f 

f* Вычесть 1 из каждоrо из total_processes семафоров 
из набора с идентификатором id. *f 

if (semop (id, lock_all, total_processes) == -1) 
return -2; I* ошибка *I

return О; 

I* Дождаться в текущем процессе с номером process_num 
остальных процессов (из общеrо числа total_processes)*/ 

void 
synchronize (int process_num, int total_processes) 
{ 

} 

I* Дождаться, пока все процессы войдут в эту функцию *I

synchronize_internal (processes_in_sem_id, process_num, 
total_processes); 

f* Дождаться, пока все процессы выйдут из этой функции*/ 
synchronize_internal (processes_out_sem_id, process_num, 

total_processes); 

Заголовочный файл get_ t ime. h: 

long int get_time (); 
long int get_full_time (); 

Файл get_time. с: 

#include <sys/time.h> 
#include <sys/resource.h> 
#include "get_time.h" 

f* Вернуть процессорное время, затраченное на текущий 
процесс, в сотых долях секунды. Берется время только 
самоrо процесса, время работы системных вызовов не 
прибавляется. *f 
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long int get_time () 

{ 

} 

struct rusage buf;· 

getrusage (RUSAGE_SELF, &buf); 
I* преобразуем время в секундах 

в сотые доли секунды *I 

return buf.ru_utime.tv_sec * 100 
I* преобразуем время в микросекундах 

в сотые доли секунды *I 

+ buf.ru_utime.tv_usec / 10000;

I* Возвращает астрономическое(!) время 

в сотых долях секунды *I 

long int get_full_time () 

{ 

} 

struct timeval buf; 

gettimeofday (&buf, О); 
I* преобразуем время в секундах 

в сотые доли секунды *I 

return buf.tv_sec * 100 
I* преобразуем время в микросекундах 

в сотые доли секунды *I 

+ buf.tv_usec / 10000;

Результат, выдаваемый get_full_time, имеет смысл лишь в том 
случае, если в систе]\[е нет других выполняющихся процессов, 
кроме запущенной этой программой группы. 

В файле main. с находится главная функция main, которая: 

• создает блок разделяемой памяти, достаточный для разме­
щения:

1. 1-й матрицы п х п,
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2 .  2-х векторов длины n,

3. 1-го целого числа , в котором будет суммироваться время
работы всех процессов;

для создания уникального ( т. е. отличного от уже имеющих­
ся в каком-либо процессе) блока разделяемой памяти в ка­
честве ключа для функции shmget использовано значение 
IPC_PRIVAТE; 

• подсоединяет созданный блок разделяемой памяти к адрес­
ному пространству процесса;

• с 1101\ющью ini t_synchronize_lock создает все используе­
мые объекты синхронизации и взаимного исключения про­
цессов;

• размещает матрицу, 2 вектора, счетчик времени в раэделяе­
мой памяти и инициализирует их;

• запускает total_processes-1 копий текущего процесса с по­
мощью fork, при этом созданный блок разделяемой памяти
и все семафоры наследуются порожденными процессами;

• каждый из total_processes процессов вызывает функцию
matrix_mul t_ vector _process, которая:

вычисляет компоненты ответа с индексаыи в диапазоне 

n * process_num / total_processes, ... ,
n * (process_num + 1) / total_processes - 1

с помощью функции matrix_mul t_ vector; 
вычисляет суммарное процессорное время, затраченное на 
все запущенные процессы; для взаимного исключения при 
доступе процессов к одной и той же ячейке разделяемой 
памяти с адресом p_total_time используются функции 
lock_data, unlock_data {см. выше); 
для целей отладки и более точного за.мера времени рабо­
ты функция вычисления произведения матрицы на вектор 
вызывается в цикле N_TESTS раз . 

• каждый из total_processes процессов вызывает функцию
synchronize для ожидания завершения всех процессов;
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• total_processes-1 порожденных процессов завершаются;
главный процесс (с ноыером О) выводит результаты работы и
удаляет все объекты синхронизации и разделяемую память.

Файл main. с: 

#include <stdio.h> 
#include <stdlib.h> 
#include <unistd.h> 
#include <errno.h> 
#include <sys/types.h> 
#include <sys/ipc.h> 
#include <sys/shm.h> 

#include 11 matrices.h" 
#include "get_time.h" 
#include "synchronize.h" 

I* Количество тестов (для отладки) *I 
#define N_TESTS 10 

I* Умножение матрицы на вектор для одного процесса *I 
void 
matrix_mult_vector_process ( 

{ 

douЫe * matrix, I* матрица *I 
douЬle * vector, I* вектор *I 
douЫe * result, I* результат *I 
int n, I* размерность *I 
long * p_total_time, I* суммарное время *I 
int process_num, I* номер процесса *I 
int total_processes) I* всего процессов *I 

long int t; 
int i; 

printf ("Process %d started\n", process_num); 
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} 

t = get_time (); I* время начала работы *I 
for (i = О; i < N_TESTS; i++) 

{ 

} 

matrix_mult_vector (matrix, vector, result, n, 
process_num, total_processes); 

printf ("Process %d mult %d times\n", 
process_num, i); 

t get_time О - t; I* время конца работы *I 

I* Суммируем времена работы *I 
I* Обеспечить исключительный доступ к памяти */ 
lock_data (); 
*p_total_time += t;

f* Разрешить другим работать с разделяемой памятью *f
unlock_data ();
printf ("Process %d finished, time = %ld\n",

process_num, t); 

int main () 

{ 
int total_processes; I* число создаваемых процессов * 

I* номер процесса *I int process_num; 
I* астрономическое 
long int t_full; 

время работы всего процесса *I 

void *shmem; 
int shm_id; 
int n; 

I* указатель на разделяемую память */ 
I* идентификатор разделяемой памяти *I 

I* размер матрицы и векторов *I 
douЫe *matrix; 
douЫe *vector; 
douЫe *result; 
long *p_total_time; 

f* матрица *f 
I* вектор *I 
I* результирующий вектор *I 
I* общее время всех процессов*/ 
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int 1; 
pid_t pid; 

printf ("Input processes number: "); 
scanf ("%d", &total_processes); 

printf ("matrix size = "); 
scanf ("%d", &n); 

I* Общий размер требуемой памяти: 
под массивы: 

1 матрица n х n типа douЫe 
2 вектора длины n типа douЫe 

для счетчика времени: 
1 число типа long int *I 

1 = (n * n + 2 * n) * sizeof (douЫe) + sizeof (long); 

I* Создаем новый блок разделяемой памяти *I

if ((shm_id = shmget (IPC_PRIVATE, 1, 

{ 

} 

IPC_CREAT 1 0664)) == -1) 

fprintf (stderr, "Cannot create shared memory\n"); 
return 1; I* завершаем работу *I

I* Подсоединяем разделяемую память к адресному 
пространству процесса *I

if ((shmem = (void *)shmat (shm_id, О, О))== (void*)-1) 

{ 

} 

fprintf (stderr, "Cannot attach shared memory\n"); 
return 3; I* завершаем работу *I

I* Устанавливаем указатели на данные 
в разделяемой памяти *I
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matrix (douЫe*) shmem; 

vector = matrix + n * n; 

result = vector + n; 

p_total_time = (long int*) (result + n); 

*p_total_time = О; I* начальное значение *I

I* Инициализируем все объекты взаимодействия */ 

if (init_synchronize_lock (total_processes)) 

return 4; I* завершаем работу в случае ошибки *I 

I* Инициализация массивов *I 

init_matrix (matrix, n); 

init_vector (vector, n); 

printf ("Matrix:\n"); 

print_matrix (matrix, n); 

printf ("Vector:\n"); 

print_vector (vector, n); 

printf ("Allocated %d bytes (%dKb or %dМЬ) of memory\n" 

1, 1 >> 10, 1 >> 20); 

I* Засекаем астрономическое время начала работы *I 

t_full = get_full_time (); 

I* Запускаем total_processes - 1 процессов, 

процесс с номером О - текущий *I 

for (process_num = total_processes - 1; 

process_num > О; process_num--) 

{ 

I* Клонировать себя *I 

pid = fork О ; 

if (pid == -1) 

{ 

} 

fprintf (stderr, "Cannot fork!\n"); 

return 5; I* завершаем работу *I 
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if (pid == О) 
{ 

I* Выполняем работу в порожденно� процессе *I 
matrix_mult_vector_process (matrix, vector, 

result, n, p_total_time, process_num, 
total_processes); 

I* Дождаться остальных процессов *I 
synchronize (process_num, total_processes); 
return О; I* завершить процесс *I 

} 
} 

I* Здесь работает главный процесс с номером О. *I 

I* Выполняем работу в процессе process_num = О *I 
matrix_mult_vector_process (matrix, vector, result, n, 

p_total_time, process_num, total_processes); 
I* Дождаться остальных процессов *I 
synchronize (process_num, total_processes); 

t_full = get_full_time () - t_full; 
if (t_full О) 

t_full = 1; I* очень быстрый компьютер ... *I 

I* Здесь можно работать с результатом *I 
print_vector (result, n); 

printf ("Total full time = %ld, \ 
total processes time = %ld (%ld%%), per process 

t_full, *p_total_time, 
(*p_total_time * 100) / t_full, 
*p_total_time / total_processes);

%ld\n", 

I* Ликвидируем созданные объекты синхронизации *I 
destroy_synchronize_lock (); 
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I* Отсоединяем разделяе�ю память от адресного 
пространства процесса *I 

if (shmdt (shmem) == -1) 

{ 
fprintf (stderr, "Cannot detach shared· memory\n"); 
return 10; 

} 

I* Удаляем разделяемую память. */ 
if (shmctl (shm_id, IPC_RМID, О)== -1) 

{ 
fprintf (stderr, "Cannot delete shared memory\n"); 
return 11; 

} 

return О; 

} 

Заголовочный файл matrices. h: 

void init_matrix (douЬle * matrix, int n); 
void init_vector (douЫe * vector, int n); 
void print_matrix (douЬle * matrix, int n); 
void print_vector (douЫe * vector, int n); 
void matrix_mult_vector (douЬle *а, douЬle *Ь, douЬle 

int n, int process_num, 
int total_processes); 

Файл matrices. с: 

#include <stdio.h> 
#include "matrices.h" 
#include "synchronize.h" 

I* Инициализация матрицы *I 
void init_matrix (douЫe * matrix, int n) 

{ 

*С 
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} 

int i, j; 
douЫe *а = matrix; 

for (i = О; i < n; i++) 
for (j О; j < n; j++) 

*(а++) = (i > j)? i : j; 

I* Инициализация вектора *I

void init_vector (douЫe * vector, int n) 

{ 

} 

int i; 
douЬle *Ь = vector; 

for (i О; i < n; i++) 
*(Ь++) = 1.; 

#define N_MAX 5 

I* Вывод матрицы *I

void print_matrix (douЫe * matrix, int n) 

{ 
int i, j; 
int m = (n > N_MAX? N_MAX n); 

for (i = О; i < m; i++) 

{ 

} 

for (j = О; j < m; j++) 
printf (" %12.бlf", matrix[i * n + j]); 

printf ("\n"); 

/• Вывод вектора *I
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void print_vector (douЫe * vector, int n) 

{ 

} 

int i; 
int m = (n > N_MAX? N_MAX n); 

for (i = О; i < m; i++) 
printf (" %12.бlf", vector[i]); 

printf ("\n"); 

f* Умножить матрицу а на вектор Ь, с = аЬ для процесса с 
номером process_num из общего количества 
total_processes. *f 

void matrix_mult_vector (douЫe *а, douЫe *Ь, douЫe *С, 
int n, int process_num, 

{ 
int i, j; 
douЫe *Р, s; 

int total_processes) 

int first_row, last_row; 

f* Первая участвующая строка матрицы *f 
first_row = n * process_nurn; 
first_row /= total_processes; 
f* Последняя участвующая строка матрицы *f 
last row = n * (process_nurn + 1); 
last_row = last_row / total_processes - 1; 

for (i = first_row, р 

{ 

а + i * n; i <= last_row; i++) 

f or ( s = О . , j = О ; j < n; j ++) 
s += *(р++) * b[j]; 

с [i] = s; 

} 

::ynchronize (process_num, total_processes); 
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} 

Файл Makefile: 

NAME process_mult 

DEBUG = -g
се gcc -с
LD gcc 

CFLAGS = $(DEBUG) -W -Wall 

LIBS -lm 

LDFLAGS $(DEBUG) 

OBJS = main.o matrices.o synchronize.o get_time.o 

all : $(NAME) 

$(NAME) : $(0BJS) 
$(LD) $(LDFLAGS) $- $(LIBS) -о$@ 

.с.о: 

$(СС) $(CFLAGS) $< -о$@ 

clean: 
rm -f $(0BJS) $(NAME) 

main.o main.c matrices.h get_time.h synchronize.h 

matrices.o matrices.c matrices.h synchronize.h 

synchronize.o: synchronize.c synchronize.h 

get_time.o get_time.c get_time.h 

Сделаем замечание об отладке приведенной выше про­
грамыы. В случае ее аварийного завершення созданные объ­
екты ыежпроцессrюго взаиr,юдействия (блок ра.з;�еляеl\ЮЙ памя­
ти и наборы семафоров) не удаляются. При повторном запуске 
програмыа будет требовать создания новых объектов, что мо­
жет оказаться невозможным из-за исчерпания объема доступ-
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11ой раэделяемой памяти или количества семафоров. Поэтому 

о<:тавшиеся после ошибки в программе объекты IPC необходи­

�ю удалить внешней процедурой, см. описание утилит ipcs и 

ipcrm в разделе 8.2.4 (с. 119). 

Заl\1етиl\1 также, что максимальный объем разделяемой па­

�шти, вьщеляемой процессу, является важным параметром лю­

fiой операционной системы, и обычно существенно меньше объ­
<�ма доступной процессу виртуальной паыяти. Часто этот пара­

метр нельзя изменить динамически (во время работы систсыы), 

а только путем перекомпиляции ядра. Поэтому для описанной 

выше задачи, требующей при больших п значительных объе­
мов памяти, предпочтительнее использовать механизl\1 задач 

(threads), где объемы разделяемой и виртуальной памяти сов­
надают. 



9 
Управление задачами 
(threads) 

В этой главе мы рассмотрим основные функции, позволяющие 
запускать новые задачи и управлять ими. 

9.1. Функция pthread_create 

Функция pthread_create, описанная в заголовочном файле 

<pthread. h>, позволяет создать новую задачу и начать ее вы­
rюлнепие с указанной фую<ции. Прототин: 

где 

int pthread_create (pthread_t *thread, 

const pthread_attr_t *attr, 
void *(*start_routine) (void *), void *arg); 

• thread - возвращаеl\юе значение -- идентификатор создан­

ной задачи;

• attr --указатель на структуру с атрибутами создаваемой за­

дачи (может быть О для использования значений по умолча­

нию);

• start_routine --указатель на функцию, с которой надо на­

чать выполнение задачи;

• arg - аргуl\1ент этой функции.

Функция возвращает О в случае успеха. 
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9.2. Функция pthread_join 

Функция pthread_join, описанная в файле <pthread.h>, поз­

воляет текущей задаче ожидать окончания указанной задачи 

(этого же процесса). Прототип: 

где 

int pthread_join (pthread_t thread, 

void **thread_return); 

• thread - идентификатор задачи, завершения которой надо

ожидать,

• thread_return - указатель на переменную, где будет сохра­

нено возвращаемое значение задачи (может быть О, если это

не требуется).

Функция возвращает О в случае успеха. 

Любую задачу установкой специального атрибута при со­

здании или с помощью специальной функции {pthread_detach) 

!\Южно перевести в такое состояние, в котором ее нельзя будет 

ожидать посредегвом pthread_join. 

9.3. Функция sched_yield 

Функция sched_yield, описанная в файле <sched. h>, позволяет 

поставить текушую задачу (процесс) в конец очереди готовых 

задач (процессов) с тем же приоритетом. Прототип: 

int sched_yield (void); 

Функция возвращает О в случае успеха. 



10 
Синхронизация 
и взаимодеиствие задач 

1:Зся память у работающих задач ЯВJIШ:)ТСя рюделяеl\ЮЙ между 
ними, поэтоыу для совысстного использования любой глоба.11ь-
11ой переJ1.1е1111ой необходимо использовать тот или иной объект 
синхронизацин. Для повышения эффект11вности работы про-
1·раыы и удобства програыынровашrя для :шдач введены спе1\и­
альные средства синхронизации. 

10.1. Объекты синхронизации типа mutex 

Объекты сннхроннза�щн типа шнtех факпР1ески представляют 
собой некоторое развитие булевских ссыафоров в плане повы­

шенин безопасности п эффективности работы программы. 

Тиничпый цнкл работы с разделяеr-лыы ресурсоы следую­

щий: взять семафор, работать с ресурсом, вернуть семафор. 

Однако, еслн в результате ошибки в прuграыме она внача.не вы­
зовет функцшо вернуть cei\iaфop (не взяп его!), а затем выпол­

нит приведенный выше цикл работы с разделяемым ресурсом, 

то фуню\ия взять семафор не блокирует зада•1у, если ресурс 

занят. 
Другой проблемой при работе с семафораl\\п является необ­

ходимость переключения задач при каждоl\1 вызове функций, 
работающих с семафором. Дело в том, что саы счетчик семафо­
ра s ( фактически являющийся разделяемой между процессаl\lи 
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11амятью) находится в области данных операционной системы, 
11 любая функция, работающая с сеl\lафором, является систем­
ным вызовом. Это особенно плохо при син·хронизации между 
эа.дачами, поскольку в этом случае сам обмен данными не тре­
бует переключения задач (так как вся память у задач общая). 

Для борьбы с этими явлениями вводится объект mutex, кото­
рый фактически состоит из пары: булевского семафора и иден­
тификатора задачи - текущего владельца семафора ( т. е. той 

задачи, которая успешно вызвала функцию взять и стала вла­
дельцем разделяемого ресурса). При этом сама эта пара хранит­
ся в разделяемой между задачаr.rи памяти (в случ;�е threads - в 
любом месте их общей памяти). Для доступа к объекту mнtex 
rn определены три примитивные операции: 

• Lock(m) -блокировать mutex т, е<.:ли туже заблокирован
другой задачей, то эта операция переводит задачу в состоя­
ние ожидания разблокирования m;

• Unlock(m)- разблокировать пшtех m, (если т ожидается
другой задачей, то опа может быть активизировюiа, удале­
на из очереди ожидания и может вытеснить текущую зада­
чу, например, если ее приоритет выше); если вызвавшая эту
операцию задача не является пладельцем m, то операцпя не
имеет никакого эффекта;

• TryLock(m) - попробовать блокировать шutex m, если т не
блокирован, то эта операция эквивалентна Lock(m), иначе
возвращается признак неудачи.

Эти операции неделимы, т. е. переключение задач во время их 
исполнения запрещено. 

Объекты mutex бывают: 

• локальными - доступны для синхронизации между зада­

чами (tlнeads) одного процесса; размещаются в любом месте
их общей памяти;

• глобальными -- доступны для синхронизации между зада­
чами (tl1reads) разных процессов; раэмещаются в разделяе­
r-юй .между процессами памяти.
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Отметим, что глобальные mutex появились значительно поз­
же локальных и предоставляются не все!\fи операционными си­
стемаыи. Причиной их появления явилось удобство локальных 
шнtех для синхронизации задач, и глобальные mнtex являются 
обобщением последних на процессы. 

Некоторые операционные системы предоставляют объекты 
ншtех cu специальны!\fи свойствами, полезными в ряде случаев. 
rассмотрпм следующую ситуацию. Функции fl и f2 работают 

с разделяеl\IЫI\Ш ресурсю,ш и используют rnutex m для синхро­
низации 1\,1ежду задачами: 

f10 

{ 
Lock(m); 

Unlock(m); 

} 

f2() 

{ 
Lock(m); 

Unlock(m); 

} 

В результате развнтия программы шш потребовалось вызвать 
функцию fl из f2: 

f20 

{ 

} 

Lock(m); 

<операторы 1> 

f10; 
<операторы 2> 
Unlock(m); 
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Однако это приводит к ситуации deadlock: задача переходит в 

вечный цикл ожидания освобождения mutex m в функции fl, 

поскоm,ку она уже является владельцем этого mutex. Поэто-

111у некоторые операционные системы предоставляют объекты 

mutex дополнительных типов: 

• error check - вы:юв Lock владельцем mutex, а также Unlock

не владельцем не производ}IТ никакого действия; отметим,

что шutex этого типа рсш.1ит проблему, описанную выше, по

появляется новая: <операторы 2> {может быть, работающпе

с ра:�деляемым ресурсом) выполняются, когда задача уже

не является владельцем mutex;

• recurcive -вызов Lock владсльце!\f rnutex увеличивает с•1ет­

чик таких вызовов, вызов Unlock вющелъцсм -у!\lеньшает

счетчик; реально разблокированпе шнtех происходит при

значении счетчика, равном О.

10.1.1. Функция pthread_mutex_init 

Функция pthread_mutex_init, описюшая в заголовочном файле 

<pthread. h>, позволяет ипициа.лизиронать nшtcx. Прототин: 

где 

int pthread_mutex_init (pthread_mutex_t *mutex, 

pthread_mutexattr_t *attr); 

• mutex - указатель на mutex,

• attr -- указатель на структуру с атрибута111и шutex {ыожет

быть О для использования значений по умою1анию).

Функция возвращает О в случае успеха. 

Для rnutcx ( объекта типа pthread_mutex_ t) вместо функции 

pthread_mutex_ini t можно использовать статическую инициа-

1шзr1.цию при объявлении: 

pthread_mutex_t mutex PTHREAD_MUTEX_INITIALIZER; 

6 4017 
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где макрос PTHREAD_MUTEX_INIТIALIZER определен в заголовоч­

ном файле <pthread. h>. Последняя запись эквивалентна после­

довательности: 

pthread_mutex_t mutex; 

pthread_mutex_init (&mutex, О); 

но, в отличие от нее, может быть использована для инициали­

зации глобальных объектов. 

10.1.2. Функция pthread_mutex_lock 

Функция pthread_mutex_lock, описанная в заголовочном файле 

<pthread.h>, позволяет блокировать mutex; если он уже забло­

кирован другой задачей, то эта функция переводит задачу в 

состояние ожидания разблокирования nшtex. Прототип: 

int pthread_mutex_lock (pthread_mutex_t *mutex); 

где mutex -укаэатель на шutex. Функция возвращает О в случае 

успеха. 

10.1.3. Функция pthread_mutex_trylock 

Функция pthread_mutex_trylock, описанная в заголовочноr..1 

файле <pthread.h>, позволяет блокировать mutex; если он уже 

заблокирован другой задачей, то эта функция возвращает ошиб­

ку, не меняя состояния шutex. Прототип: 

int pthread_mutex_trylock (pthread_mutex_t *mutex); 

где mutex - указатель на mutex. Функция возвращает О в случае 

успеха. 

10.1.4. Функция pthread_mutex_unlock 

Функция pthread_mutex_unlock, описанная в заголовочном 

файле <pthread. h>, позволяет разблокировать шutex. Прото­

тип: 

int pthread_mutex_unlock (pthread_mutex_t *mutex); 
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1')�е mutex ---- указатель на mutex. Функция возвраща ет О в случае 
уснеха. 

10.1.5. Функция pthread_mutex_destroy 

Функция pthread_mutex_destroy, описанная в заголовочном 
файле <pthread. h>, позволяет удалить пшtех, который должен 
fiыть в этот момент разблокированным. Прототип: 

int pthread_mutex_destroy (pthread_mutex_t *mutex); 

1·ле mutex - указатель на mutex. Функция возвращает О в случае 
успеха. 

10.1.6. Пример использования mutex 

Рассмотрим ту же задачу, что и в разделе 8.2.4, только вместо 
процессов будем использовать задачи. Приводпыая ниже про-
1'рамыа считывает строку со стандартного ввода и выводит ее на 
стандартный вывод. Для чтения строки и для ее вывода созда­

ются две задачи (threacl), кодом для которых являются функции 
reader и wri ter соответственно. Поскольку задачи работают в 
тоы же адресном пространстве, что и создавший их процесс, 
то они автоыатически разделяют все переменные, включая бу­
фер сообщений msgbuf. Для организации взаимного исключения 
при доступе I< критическим разделяеыым ресурсам (переыен­
ныы done, msglen, msgbuf) используется объект синхронизации 
nшtex mutex. 

#include <stdio.h> 
#include <string.h> 
#include <pthread.h> 

#define BUF_LEN 256 

I* Объект синхронизации типа mutex *I 
pthread_mutex_t mutex; 
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f* Признак окончания работы *f 
int done; 
f* Длина сообщения *f 
int msglen; 
f* Буфер для сообщения *f 
char msgbuf[BUF_LEN]; 

f* Считать сообщение и поместить его в буфер. 
Функция работает как независимая задача, вызываемая 
операционной системой, поэтому прототип фиксирован. 
Аргумент argp не используется. *f 

void * reader (void *argp) 

{ 
for (;;) 

{ 

} 

f* "захватить" mutex *f 
pthread_mutex_lock (&mutex); 
if ( ! msglen) 

{ 

} 

f* Считать сообщение. Выход по Ctrl+D *f 
if (!fgets (msgbuf, BUF_LEN, stdin)) 

break; 
msglen = strlen (msgbuf) + 1; 

f* "освободить" mutex *f 
pthread_mutex_unlock (&mutex); 
f* Поместить задачу в конец очереди готовых задач 

с тем же приоритетом *f 
sched_yield О ; 

f* Напечатать идентификатор текущей задачи *f 
printf ("Thread %х exits\n", (int)pthread_self ()); 
done = 1; 
f* "освободить" mutex *f 
pthread_mutex_unlock (&mutex); 
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} 

I* завершить задачу*/ 
return О; 

f* Ждать сообщения, по его поступлении вывести его на 
экран. Функция работает как независимая задача, 
вызываемая операционной системой, поэтому прототип 
фиксирован. Аргумент argp не используется. *f 

void * writer (void * argp) 

{ 
for (;;) 

{ 
f* "захватить" mutex *I 

pthread_mutex_lock (&mutex); 
if (done) 

{ 
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I* Напечатать идентификатор текущей задачи*/ 
printf ("Thread %х exits\n", 

} 

(int)pthread_self ()); 
I* "освободить" mutex *f 

pthread_mutex_unlock (&mutex); 
I* завершить задачу*/ 

return О; 

if (msglen) 

{ 

} 

f* вывести на экран*/ 
printf ("-> %s\n", msgbuf); 
msglen = О; 

I* "освободить" mutex *f 
pthread_mutex_unlock (&mutex); 
I* Поместить задачу в конец очереди готовых задач 

с тем же приоритетом *f 
sched_yield О; 
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} 
} 

int main () 

{ 
I* дескрипторы задач *1

pthread_t writer_thread, reader_thread; 

I* создать mutex *I

if (pthread_mutex_init (&mutex, 0)) 

{ 

} 

fprintf (stderr, "Cannot init mutex\n"); 
return 1; 

I* создать задачу reader *I

if (pthread_create (&reader_thread, О, reader, О)) 

{ 

} 

fprintf (stderr, "Cannot create reader thread\n 11
); 

return 2; 

I* создать задачу writer *I

if (pthread_create (&writer_thread, О, writer, 0)) 

{ 

} 

fprintf (stderr, "Cannot create writer thread\n 11
); 

return 3; 

I* ждать окончания задачи reader_thread *I

pthread_join (reader_thread, О); 

I* ждать окончания задачи writer_thread *I

pthread_join (writer_thread, О); 

I* удалить mutex *I
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} 

if (pthread_mutex_destroy (&mutex)) 

{ 

} 

fprintf (stderr, "Cannot destroy mutex\n"); 
return 4; 

return О; 
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Процедура reader в бесконечном цикле, прерываемом по ошиб­
ке ввода: 

1. обеспечивает себе исключительный доступ к общим неремен­
ным с помощью блокировки mutex;

2. если предыдущее сообщение обработано сервером (т. е. дли­
на сообщения msglen равна О), то считывает строку со стан­
дартного ввода с помощью fgets;

3. в случае успешного чтения устанавливает длину сообщения

msglen, иначе: прерывает цикл, устанавливает переменную

done в 1, разрешает другим задачам работать с общими пе­
ременныl\ш с помощью разблокировки mutex и завершает

работу;

4. разрешает другим задачам работать с общими переменными
с помо1цью разблокировки mutex;

5. для обеспечения переключения задач к за;�аче-серверу ис­

пользует функцию sched_yield (иначе бы этот цикл рабо­

тал вхолостую до окончания кванта времени, выделенного

текущей задаче); более надежное и универсальное решение
см. в разделе 10.3.6.

Процедура wri ter в бесконечном цикле, прерываемом в случае 
ненулевого значения done: 

1. обеспечивает себе исключительный доступ к общим перемен­
ным с помощыо блокировки mutex:
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2. если done не равно О, то разрешает другим задачам работать
с общими переменными с помощью раэблокировки mutex и
завершает работу;

3. если есть сообщение для обработки сервером (т. е. длина со­
общения msglen не равна О), то выводит строку с помощью
printf и устанавливает msglen в О;

4. разрешает другим зада•1ам работать с общими переменными
с помощью разблокировки mutex;

5. для обеснечения переключения задач к задачам--клиентам
использует функцию sched_yield.

10.2. Пример multithread-nporpaммы, вычисляющей 
определенный интеграл 

Рассмотрим в качестве примера программу, вычисляющую 
опре,11,еленный интеграл. Идея ускорения работы описана в раз­
деле 1.2, с. 12. Текст программы сы. в разделе 1.4, с. 18. Задачи 
(tl1reads) создаются в основном (т. е. изначально запущенном 
пользователеы) процессе. :Идентификаторы задач, rюлу•1сш1ые 
от pthread_create, запоминаются в массиве threads и исполь­
зуются основным нроцессом для ожидания завершения залу­
щенных задач с помощью фуню�ии pthread_join. П каждой из 
запущенных задач работает функция process_function с аргу-
1\·1ентоl\1 -- номероl\1 этой задачн. Эта функция вычисляет свою 

часть интеграла с помощью функции integrate и прибавля­

ет его к ответу total, обесi1ечивая взаш,шое исключение при 
,1оступе к переl\1енной total с помощью mutex total_mutex. 

10.3. Объекты синхронизации типа condvar 

Объект синхронизации тип<t coнdvar да,ет возможность задаче 
ожидать выполнения некоторых условий. Фактически являет­
ся событием Е (см. раздел 8.3) с дополнительными функциями 
по работе с указанным объектом mutex. Как и mнtcx, объект 
conclvar явно разыещается в разделяемой 1\lежду задачаl\IИ (про-
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,�ессами) Ilal\Iяти, что позволяет обойтись без системных вызо­
вов при синхронизации между задачами (threads). Для доступа 
к объекту condvai· Е определены ·гри примитивные операции: 

• Wait(E,m) (где т типа шutех)-производит следующие
действия (первые два из них неделимы, т. е. переключе­
ние задач во время их исполнения запрещено):

вызвать Unlock(m) для текущей задачи (т. е. вызвавшей 
эту операцию), 
вызвать Wait(E), 
вызвать Lock(m) (произойдет, когда текущая задача <<до­
ждется>> события Е), 

пшtех т перед вызовом этой функции должен быть забло­
кированным; 

• Signal(E) -- вызn<tТЬ Signal(E), если нет ожидающих задач,
то ничего не происходит;

• Bтoarlcast(E)- nызвать Bтoadcast(E), если нет ожидающих
задач, то ничего не происходит.

Рассмотрим приыер использования объектов condvar. Пусть
есть задачи То, Т1, ... , 7�1 , разделяющие общую область памя­
ти Х. Для синхронизации доступа к Х используется ншtех 1n. 
Пусть задача 1Ъ активизируется, только если вьшо.пнсно неко­
торое условие Р(Х). Для обеспечения этого взаимодействия ис­
пользуем объект coнdvai· Е. Тогда алгоритм работы 1Ъ может 
быть схематически записан так: 

т_о о 

{ 
for (;;) 

{ 
Lock (m); 

Wait (Е, m); 

f* Можем работать с разделяемой памятью Х, 

поскольку являемся владельцем mutex m *f 

if (Р(Х)) 

{ 
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I* Условие выполнено: 

исполняем необходимые действия *I 

} 
Unlock (m); 

} 
} 

Тогда алгоритм работы 'Д (i = 1, ... , п может быть схематич�­
ски записан так: 

T_i () 

{ 

} 

for (;;) 

{ 

} 

Lock (m); 

f* Можем работать с разделяемой памятью Х, 

поскольку являемся владельцем mutex m *f 

I* Записываем данные в Х *f 

Signal (Е); 
Unlock (m); 

10.3.1. Функция pthread_cond_init 

Функция pthread_cond_init, описанная в заголовочном файле 
<pthread. h>, позволяет инициализировать condvar. Прототип: 

где 

int pthread_cond_init (pthread_cond_t *Cond, 
pthread_condattr_t *attr); 

• cond --- указатель на condvar,
• аttr--указатсль на структуру с атрибутами condvar (может

быть О для использования зш1.чений по умолчанию).
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Функция возвращает О в случае успеха. 
Для condvar (объекта типа pthread_cond_t) вместо функ­

ции pthread_cond_init можно использовать статическую ини­
циализацию при объявлении: 

pthread_cond_t cond = PTHREAD_COND_INITIALIZER; 

где макрос PTHREAD_COND_INIТIALIZER определен в 
<pthread. h>. Последняя запись эквивалентна последоват<:ль­
ности: 

pthread_cond_t cond; 
pthread_cond_init (&cond, О); 

но, в отличие от нее, может быть использована для 1шицими­
з,щии глоба.льных объектов. 

10.3.2. Функция pthread_cond_signal 

Функция pthread_cond_signal, описанная в заголовочном фай­
ле <pthread. h>, позволяет во:юбновнть работу одной из за)]ач, 
ожидаюш,сй coпdvai· (какой именно, не определено), если таких 
:задач нет, то 1111чего не ЩJOJICXO)\ИT. Прототип: . 

int pthread_cond_signal (pthread_cond_t *cond); 

где cond -- указатель па COП(lvai·. Функция возвращает О в случае 
успеха. 

10.3.3. Функция pthread_cond_broadcast 

Функция pthread_cond_broadcast, описанная в заголовочном 
файле <pthread. h>, позволяет возобновить работу всех задач, 
ожидающих condvar, если таких зада•� нет, то ничего не п1юис­
ходит. Прототип: 

int pthread_cond_broadcast (pthread_cond_t *cond); 

Г/\С cond - указатель на coпdvar. Функция возвращает О в случае 
успеха. 
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10.3.4. Функция pthread_cond_wait 

Функция pthread_cond_wai t, 0111,санная в заголовочноi\1 фай­
ЛР <pthread. h>, разблокирует nшtex (как при использовании 
pthread_unlock_mutex) и останавливает работу текущей з<t-

11а1 1и, пока какая-нибудь другая задача нс вызовет фуню1ию 
pthread_cond_signal или функцию pthread_cond_broadcast, 
11ричем :-пн операцни неделимы (не допуска(�тt:я 11ерtжmочснис 
:щдач i\Н\Ж;\у 11иш1). После возuраще11ия из <..:остояния ожидашш 
эт.� фуню1ия блокирует rnнtex (к.�к нри pthread_lock_mutex). 
ГIJIOTOTИJ[: 

int pthread_cond_wait (pthread_cond_t *Cond, 
pthread_mutex_t *mutex); 

1�'\С cond -- ука:щте.11ь на coll(lvai·, mutex ··· ука:�атею, на nшtex. 
Фу11ю1ш1 возвращает О в слу<1ае уснсха. 

10.3.5. Функция pthread_cond_destroy 

Функция pthread_cond_destroy
1 

01111еа11на}1 u заrолоrючном 
файле <pthread. h>, rюзвос1яет удалить coшlYar, который нс до.'r­
жен в этот моl\1ент ожидаться (с 11омощыо pthread_cond_wait) 
1111 одной :Jадачеi1. Прототип: 

int pthread_cond_destroy (pthread_cond_t *Cond); 

где cond --- ука:затсль на co11cl,,,1x. Функция nо:шращаст О в случае 

успеха. 

10.3.6. Пример использования condvar 

Рассмотриl\1 ту же залачу, что и в рюделах 8.2.4 и 10.1.6. 
Приведенная n разделе 10.1.6 11рограыма �шляется пс со­

всем корректной в следующсы смысле. Кажда51 из фуню\нй 
reader /wri ter делает 11рсдположенне о тоl\1, что вторая функ­
ция wri ter /reader в 1\Юмент вызова функции sched_yield ждет 
только освобождения rnut.ex mutex. Для данной проr·раммы это 
нредположение верно, но n общем случае требуется обеспе•шть, 
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•1тобы после выполнения функции reader /wri ter следующей
вьшплнялась writer/reader, если же последняя занята (не об­
работала пре,:�ыдущее сообщение), то текущая задача должна
11ерейти в состояние ожидания, it не потреблять процессорные
ресурсы в бесполезном никле опроса. Ниже приводится l\юдифи­
цированный вариант этой проrрn,:,..1мы, в котором пом111\ю объек­
та nюtex для юаи;шюrп иск.шочения при доступе к paздeJШCl\IЫl\I
J\анным используется объект coщlvar для синхронизации самих
:1адач.

#include <stdio.h> 
#include <string.h> 
#include <pthread.h> 

#define BUF_LEN 256 

I* Объект синхронизации типа mutex *I

pthread_mutex_t mutex; 
f* Объект синхронизации типа condvar *f 
pthread_cond_t condvar; 
I* Признак окончания работы *I

int done; 
I* Длина сообщения *I

int msglen; 
I* Буфер для сообщения *I

char msgbuf[BUF_LEN]; 

I* Считать сообщение и поместить его в буфер. 
Функция работает как независимая задача, вызываемая 
операционной системой, поэтому прототип фиксирован. 
Аргумент argp не используется. *I

void * reader (void *argp) 

{ 
for (;;) 

{ 
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} 

} 

I* "захватить" mutex *I

pthread_mutex_lock (&mutex); 
if ( ! msglen) 

{ 

} 

I* Считать сообщение. Выход по Ctrl+D *I

if (!fgets (msgbuf, BUF_LEN, stdin)) 
break; 

msglen = strlen (msgbuf) + 1; 
I* Послать сигнал condvar *I

pthread_cond_signal (&condvar); 

т.rhile (msglen) 

{ 

} 

I* Освободить mutex и ждать сигнала от 
condvar, затем "захватить" mutex опять *I

pthread_cond_т.rait (&condvar, &mutex); 

I* "освободить" mutex *I

pthread_mutex_unlock (&mutex); 

I* Напечатать идентификатор текущей задачи *I

printf ("Thread %х exits\n", (int)pthread_self ()); 
done = 1; 
pthread_cond_signal (&condvar); 
I* "освободить" mutex *I

pthread_mutex_unlock (&mutex); 
I* завершить задачу *I

return О; 

I* Ждать сообщения, по его поступлении вывести его на 
экран. Функция работает как независимая задача, 
вызываемая операционной системой, поэтому прототип 

фиксирован. Аргумент argp не используется. *I

void * т.rriter (void * argp) 
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{ 

} 

for С;;) 

{ 

} 

I* "захватить" mutex •! 
pthread_mutex_lock (&mutex); 
while С !msglen) 

{ 

} 

if ( !done) 

{ 

} 

I* Если е ще есть задачи-клиенты, то 
освободить mutex и ждать сигнала от 
condvar, затем "захватить" mutex опять* 

pthread_cond_wait (&condvar, &mutex); 

if (done) 

{ 

} 

/*Напечатать идентификатор текущей задачи* 
printf ("Thread %х exits\n", 

(int)pthread_self ()); 
I* "освободить" mutex *I

pthread_mutex_unlock (&mutex); 
I* завершить задачу*/ 
return О; 

I* вывести на экран •/ 
printf ("-> %s\n", msgbuf); 
msglen = О; 
!• Послать сигнал condvar *I 
pthread_cond_signal (&condvar); 
I* "освободить" mutex *I

pthread_mutex_unlock (&mutex); 
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int main О 

{ 
I* дескрипторы задач */ 
pthread_t writer_thread, reader_thread; 

I* создать mutex *I

if (pthread_mutex_init (&mutex, 0)) 

{ 

} 

fprintf (stderr, "Cannot init mutex\n"); 
return 1; 

I* создать condvar *I

if (pthread_cond_init (&condvar, 0)) 

{ 

} 

fprintf (stderr, "Cannot init condvar\n"); 
return 2; 

I* создать задачу reader *I

if (pthread_create (&reader_thread, О, reader, О)) 

{ 

} 

fprintf (stderr, "Cannot create reader thread\n"); 
return З; 

I* создать задачу writer *I

if (pthread_create (&writer_thread, О, writer, О)) 

{ 

} 

fprintf (stderr, "Cannot create writer thread\n"); 
return 4; 

I* ждать окончания задачи reader_thread *I

pthread_join (reader_thread, О); 

I* ждать окончания задачи writer thread *I



10.3. Объекты синхронизации типа condvar 

} 

pthread_join (writer_thread, О); 

f* удалить mutex *I 
if (pthread_mutex_destroy (&mutex)) 

{ 

} 

fprintf (stderr, "Cannot destroy mutex\n"); 
return 5; 

I* удалить condvar *I 
if (pthread_cond_destroy (&condvar)) 

{ 

} 

fprintf (stderr, "Cannot destroy condvar\n"); 
return 6; 

return О; 

177 

Процедура reader в бесконечном цикле, прерываемом по ошиб­
ке ввода: 

1. обеспечивает себе исключительный доступ к общиы пере:мен­
ным с по�ющью блокировки mutex;

2. если предыдущее сообщение обработано сервером (т. е. дли­

на сообщения msglen равна О), то считывает строку со стан­

дартного ввода с помощью fgets;

3. в случае успешного чтения устанавливает длину сообщения

msglen, иначе: прерывает цикл, устанавливает переменную
done в 1, посылает сигнал в condvar (означающий наличие

очередного сообщения для обработки сервером), разрешает
другим задачам работать с общими переменными с ПОI\ЮЩЬЮ
разблокировки mutex и завершает работу;

·"1. посылает сигнал в condvar, означающий наличие очередного
сообщения для обработки сервером; 
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5. ожидает обработки сообщения сервером, для чего, пока
msglen не станет равной О, ожидает прихода сигнала в
condvar;

6. разрешает другим задачам работать с общими переменными
с помощью разблокировки mutex.

Процедурн. wri ter в бесконечном цикле, прерываемом в случае 
ненулевого зна•1енин done: 

1. обеспечивает себе 11ск.:1ю,1ителы1ый доступ к общим пере111ен­
ным с по1110щыо блокировки mutex;

2. ожидает прихода сообщения от клиента, для чего, пока
msglen пе станет равной О, ожидает прихода сигнала в

condvar;

3. если done не ра.1.шо О, то разрешает другим задачам работать
с общп:-.ш пере111енныыи с ПО!\ЮЩЬЮ разблокировки mutex и
завершает работу;

4. дождавшись сообщения для обработки сервером ( т. е. длина
сообщения msglen не равна О), выводит строку с помощыо
printf и устанаuливает msglen в О;

5. посылает сигнал в condvar, означающий окончание обработ­
ки серверо�1 очередного сообщения;

6. разрешает другш,1 задачам работать с общими переменными
с по11ющью разблокировки mutex.

10.4. Пример multithread-nporpaммы, вычисляющей 
произведение матрицы на вектор 

Рассмотрим задачу вычисления произведения ыа.трицы на ве1<­
тор (см. также раздел 8.5). Для повышепин скорости работы 
на многопроцессорной вы•шслительноfl установке с общей па­
мятью создадиы несколько задач (по числу процессоров) и раз­
делим работу ыежду ними. Основны!\I элеl\!ентом синхрониза­
ции задач будет являться функция synchronize, которая дает 
возможность задаче ожидать, пока эту же функцию вызовут 
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nce другие задачи (ер. с одноименной функцией в разделе 8.5). 
Файлы проекта: 

• synchronize. с, synchronize. h -исходный текст и соответ­
с:твующнй заголово•шый файл для функции синхрониза,�ии;

• get_time.c, get_time.h-иcxoдный текст и соответствую­

щий ЗаI'олово•111ый файл для функций работы со вреыенем,
которые с:оnш1дают с однонl\1енныыи файлами, приведенны­
ми в разделе 8.5); функц11я get_time ш,щаст 11роцессорпое
врсl\lя, затраченное на задачу (tlнeacl), в которой се вызвали;

• main. с - запуск задач и вывод результатоn;
• matrices. с, matrices. h -исходный текст и соответствую­

щий заголоrю•шый файл для функций, работающих с l\lат­
рицаl\lи;

• Makefile -- для сборки проект.-�.

Заголовочный файл synchronize. h:

void synchronize (int total_threads); 

Файл synchronize. с: 

#include <pthread.h> 
#include "synchronize.h" 

f* Дождаться в текущем потоке остальных потоков 

(из общего числа total_threads). *f 

void synchronize (int total_threads) 

{ 

f* Объект синхронизации типа mutex *f 
static pthread_mutex_t mutex 

= PTHREAD_MUTEX_INITIALIZER; 

f* Объект синхронизации типа condvar *f 
static pthread_cond_t condvar_in 

= PTHREAD_COND_INITIALIZER; 

f* Объект синхронизации типа condvar *f 
static pthread_cond_t condvar_out 

= PTHREAD_COND_INITIALIZER; 
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f* Число пришедших в функцию задач *f 
static int threads_in = О; 

f* Число ожидающих выхода из функции задач *f 
static int threads_out = О; 

I* "захватить" mutex для работы с переменными 

threads_in и threads_out *I

pthread_mutex_lock (&mutex); 

f* увеличить на 1 количество прибывших в 
эту функцию задач *f 

threads_in++; 

f* проверяем количество прибывших задач *f 
if (threads_in >= total_threads) 

{ 

} 

else 

{ 

f* текущий поток пришел последним *f 

f* устанавливаем начальное значение 

для threads_out *I

threads_out = О; 

f* разрешаем остальным продолжать работу *I

pthread_cond_broadcast (&condvar_in); 

f* есть еще не пришедшие потоки *I

f* ожидаем, пока в эту функцию не придут 

все потоки *f 

while (threads_in < total_threads) 

{ 
f* ожидаем разрешения продолжить работу: 

освободить mutex и ждать сигнала от 
condvar, затем "захватить" mutex опять *f 
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pthread_cond_wait (&condvar_in, &mutex); 

} 

} 

f* увеличить на 1 количество ожидающих выхода задач *f 
threads_out++; 

I* проверяем количество прибывших задач */ 
if (threads_out >= total_threads) 

{ 

} 
else 

{ 

} 

I* текущий поток пришел в очередь последним *I

I* устанавливаем начальное значение 
для threads_in *I

threads in = О; 

I* разрешаем остальным продолжать работу *I

pthread_cond_broadcast (&condvar_out); 

I* в очереди ожидания еще есть потоки *I

f* ожидаем, пока в очередь ожидания не придет 
последний поток *I

while (threads_out < total_threads) 

{ 

} 

I* ожидаем разрешения продолжить работу: 
освободить mutex и ждать сигнала от 
condvar, затем "захватить" mutex опять *I

pthread_cond_wait (&condvar_out, &mutex); 

I* "освободить" mutex *I

pthread_mutex_unlock (&mutex); 
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} 

Функния synchronize получилась достаточно сложной, по­
скольку она допускает исполь:ювание внутри циклов: 

for С .•• ) 

{ 

synchronize (total_threads); 

} 

В этоi1 ('Итуацин нсдост:-tточ1ю подсчитывать, сколько за­
дач вошло в эту функцию, поскольку ВОЗI\ЮЖПО, что, выйдя 
нз нее, одн<1 из :шд<1!1 опять войдет u функцию раньше, 11е�1 
ост.u1ы1ые успеют нз нее выйтн. Поэтому необходимо подсчн­
тьшать еще сколько задач вышло из функции. В функ-
11,1111 synchronize объект mutex обеснсчивает uзаиl'lшое нсклю­
ченис задач прн /1,оступс к общим для всех задач псремен­
НЫI\I: threads_in -- счетчику •шсла вошедших в функцию задач, 
threads_out ·-·- с•н,т•шку числа ож11даюrцих выхода из функции 
задач. Объект condvar _in нс1ю.:11,зуется д.1ш ожидания, пока 
сче·1·1 1ш< threads_in не п1ш111ет 3наче11ие total_threads (т. с. 
в фу11ю1,ию пс войдут все задачи). Сигнал о наступлении это­
го события посылает последняя пришс;1,н1ая з,,ла•�а, она же 
устанавливает в начальное зна•1с1111с О счет•шк threads_out. 
Объект condvar _out 11спол1,зуется ;1,ля ожидания, пока <..:четчик 
threads_out не 11р111\1ет з1�а•1е11ис total_ threads (т. е. в очередь 
на выхо,г1, не встанут все зада1ш). Сигнал о наступлешш этого сп­

бытия носы.паст 1юслсдняя вставшая в очередь задача, она же 
устанавщ1в<1ет в начальное значение О счетчик threads_in. 

Файл main.c: 

#include <stdio.h> 
#include <stdlib.h> 
#include <pthread.h> 
#include "matrices.h" 
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#include "get_time.h" 

I* Аргументы для потока *I 

typedef struct _ARGS 

{ 

douЫe *matrix; I* 

douЫe *vector; I* 

матрица *I 

вектор *I 

douЫe *result; I* результирующий вектор *I 

int n; I* размер матрицы и 

int thread_num; I* номер задачи *I

int total_threads; I* всеrо задач */ 

} ARGS; 

I* Суммарное время работы всех задач */ 

static long int threads_total_time = О; 

векторов 

I* Объект типа mutex для синхронизации доступа к 

threads_total_time *I 

static pthread_mutex_t threads_total_time_mutex 

= PTHREAD_MUTEX_INITIALIZER; 

f* Количество тестов (для отладки) *I

#define N_TESTS 10 

I* Умножение матрицы на вектор для одной задачи *I

void * matrix_mult_vector_threaded (void *ра) 

{ 

ARGS *pargs = (ARGS*)pa; 

long int t; 

int i; 

printf ("Thread %d started\n", pargs->thread_num); 

t = get_time (); I* время начала работы *I

for (i = О; i < N_TESTS; i++) 

{ 

matrix_mult vector (pargs->matrix, pargs->vector 
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} 

} 

pargs->result, pargs->n, 
pargs->thread_num, 
pargs->total_threads); 

printf ("Thread %d mult %d times\n", 
pargs->thread_num, i); 

t get_time () - t; f* время конца работы *f 

f* Суммируем времена работы *f 
f* "захватить" mutex для работы с threads_total_tirne *f 
pthread_mutex_lock (&threads_total_time_mutex); 
threads_total_time += t; 
f* "освободить" mutex *f 
pthread_mutex_unlock (&threads_total_time_mutex); 
printf ("Thread %d finished, time = %ld\n", 

pargs->thread_num, t); 

return О; 

int main () 

{ 
f* массив идентификаторов созданных задач *f 
pthread_t * threads; 
f* массив аргументов для созданных задач *f 
ARGS * args; 
f* число создаваемых задач *f 
int nthreads; 
f* астрономическое время работы всего процесса *f 
long int t_full; 

int n; 
douЫe *matrix; 
douЫe *vector; 

f* размер матрицы и векторов •/ 
f* матрица *f 
f* вектор *f 
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douЫe *result; 
int i, l; 

f* результирующий вектор *I 

printf ("Input threads number: "); 
scanf ("%d", &nthreads); 

if (!(threads (pthread_t*) 

{ 

} 

malloc (nthreads * sizeof (pthread_t)))) 

fprintf (stderr, "Not enough memory!\n"); 
return 1; 

if (!(args = (ARGS*) malloc (nthreads * sizeof (ARGS)))) 

{ 

} 

fprintf (stderr, "Not enough memory!\n"); 
return 2; 

printf ("matrix size = "); 
scanf ("%d", &n); 

f* Вьщеление памяти под массивы *I 
if (!(matrix (douЫe*) 

{ 

} 

malloc (n * n * sizeof (douЫe)))) 

fprintf (stderr, "Not enough memory!\n"); 
return 3; 

if (!(vector = (douЬle*) malloc (n * sizeof (douЫe)))) 

{ 
fprintf (stderr, "Not enough memory!\n"); 
return 4; 

} 
if ( ! (result 

{ 

(douЬle*) malloc (n * sizeof (douЫe)))) 
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fprintf (stderr, "Not enough memory!\n"); 
return 5; 

f* Инициализация массивов *f 
init_matrix (matrix, n); 
init_vector (vector, n); 
printf ("Matrix:\n"); 
print_matrix (matrix, n); 
printf ("Vector:\n"); 
print_vector (vector, n); 

1 = (n * n + 2 * n) * sizeof (douЬle); 
printf ("Allocated %d bytes (%dKb or %dMb) of memory\n", 

1, 1 >> 10, 1 >> 20); 

f* Инициализация аргументов задач *f 
for (i = О; i < nthreads; i++) 

{ 

} 

args[i] .matrix = matrix; 
args[i] .vector vector; 
args[i] .result = result; 
args[i] .n = n; 
args[i] .thread_num i; 
args[i] .total_threads = nthreads; 

f* Засекаем астрономическое время начала работы задач*/ 
t_full = get_full_time (); 

f* Запускаем задачи *f 
for (i = О; i < nthreads; i++) 

{ 
if (pthread_create (threads + i, О, 

matrix_mult_vector_threaded, 
args + i)) 
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{ 

} 

} 

fprintf (stderr, "cannot create thread #%d!\n", 
i) ;

return 10; 

f* Ожидаем окончания задач *f 
for (i = О; i < nthreads; i++) 

{ 
if (pthread_join (threads[i], 0)) 

fprintf (stderr, "cannot wait thread #%d!\n", i); 

} 

t_full = get_full_time () - t_full; 
if (t_full -- О) 

t_full = 1; f* очень быстрый компьютер ... *f 

f* Здесь можно работать с результатом *f 
print_vector (result, n); 

f* Освобождаем память *f 
free (threads); 
free (args); 
free (matrix); 
free (vector); 
free (result); 

printf ("Total full time = %ld, \ 
total threads time = %ld (%ld%%), per thread = %ld\n", 

t_full, threads_total_time, 
(threads_total_time * 100) / t_full, 
threads_total_time / nthreads); 

return О; 

} 
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Функция matrix_mul t_ vector _ threaded запускается в функ­
ции ma_in н ннде задач. Каждой и:3 задач необходимо пе­
редать свой набор арrуi\1ентов. Но функция, запус1<аеl\/ая 
как задача., может иметь только один аргуl\1ент типа. void*. 
Для решения этой 11роблеl\1Ы определяется структура данных 
ARGS, содержащая необходимые аргуыенты. Указатель на эту 
структур�· 11Рредается функщш matrix_mul t_ vector _ threaded 
как void* и преобраэустся к типу ARGS*. Зате!\1 вызывается 
matrix_mult_vector, вычисляющая КОl\lпопенты ответа с ин­
дексами в диава:.юнс 

n * thread_num / total_threads, ... , 
n * (thread_num + 1) / total_threads - 1 

Для ожидания завершения всех 3адач используется функция 
synchronize. 

Для вычисления сумl\lарного пр(щессорного времени, затра­
ченного на про1�ссс, в функции matrix_mul t_ vector _ threaded 
время работы каждой зада•ш прибавляется к значению разде­
ляемой переменной threads_total_time. Для взаимно1·0 исклю­
чения зсщач при доступе к этой переменной используется mutex 
threads_total_time_mutex. 

Для целей отладки и более точного замера времени работы 
фунКI\ПЯ вычислешш пронзведешш матрицы на вектор вызьша­
ется в цикле N_ TESTS раз. 

Заrоловоч11ый файл matrices. h: 

void init_matrix (douЫe * matrix, int n); 
void init_vector (douЫe * vector, int n); 
void print_matrix (douЬle * matrix, int n); 
void print_vector (douЬle * vector, int n); 
void matrix_mult_vector (douЫe *а, douЫe *Ь, douЬle *С, 

int n, int thread_num, 
int total_threads); 

Файл matrices. с: 

#include <stdio.h> 
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#include "matrices.h" 
#include "synchronize.h" 

I* Инициализация матрицы *I 
void init_matrix (douЫe * matrix, int n) 

{ 

} 

int i, j; 
douЫe *а = matrix; 

for (i = О; i < n; i++) 
for (j О; j < n; j++) 

*(а++) = (i > j)? i : j; 

I* Инициализация вектора *I 
void init_vector (douЫe * vector, int n) 

{ 

} 

int i; 
douЫe *Ь = vector; 

for (i О; i < n; i++) 
* (Ь++) = 1.;

#define N_MAX 5 

I* Вывод матрицы *I 
void print_matrix (douЫe * matrix, int n) 

{ 
int i, j; 
int m = (n > N_MAX? N_MAX n); 

for (i = О; i < m; i++) 

{ 
for (j = О; j < m; j++) 
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} 

} 

printf (" %12. бlf", matrix [i * n + j]);

printf ("\n"); 

I* Вывод вектора *I

void print_vector (douЫe * vector, int n)

{ 

} 

int i; 

int m = ·(n > N_MAX? N_MAX n); 

for (i = О; i < m; i++) 

printf (" 'l.12. бlf", vector [i]) ; 

printf ("\n"); 

I* Умножить матрицу а на вектор Ь, с = аЬ для задачи с 

номером thread_num из общего количества 

total_threads. *I 

void matrix_mult_vector (douЬle *а, douЫe *Ь, douЫe *С, 

int n, int thread_num, 

{ 

int i, j ; 

douЫe *Р, s; 

int total_threads) 

int first_row, last_row; 

I* Первая участвующая строка матрицы *I 

first_row = n * thread_num; 

first_row /= total_threads; 

I* Последняя участвующая строка матрицы *I 

last row = n * (thread_num + 1); 

last_row = last_row / total_threads - 1; 

for (i = first_row, р = а +  i * n; i <= last_row; i++)
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{ 

f or ( s = О . , j = О ; j < n ; j ++)

s +=·*(р++) * b[j]; 

с [i] = s;

} 

synchronize (total_threads); 

} 

Файл Makefile: 

NАМЕ thread_mult 

DEBUG = -g 

се gcc -с 

LD = gcc 

CFLAGS $(DEBUG) -W -Wall 

LIBS = -lpthread -lm 

LDFLAGS = $(DEBUG) 

OBJS = main.o matrices.o synchronize.o get_time.o 

all : $(NAME) 

$(NAME) : $(0BJS) 

$(LD) $(LDFLAGS) $- $(LIBS) -о$@ 

.с.о: 

$(СС) $(CFLAGS) $< -о$@ 

clean: 

rm -f $(0BJS) $(NAME) 

main.o 

matrices.o 

synchronize.o 

get_time.o 

main.c matrices.h get_time.h 

matrices.c matrices.h synchronize.h 

synchronize.c synchronize.h 

get_time.c get_time.h 
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10.5. Влияние дисциплины доступа к памяти на 
эффективность параллельной программы 

Попробуе1м обобщить программу предыдущего раздела, получив 
нз нее multith1·ea(l-пpoгpaмl\1y умножения двух ыатриц С= АВ. 
Если обозначить •�срез Xi i-й столбец матрицы Х, а через Х =

[:i.:1, ... , Хп ] - ыатрицу, составленную из столбцов Xi, то по опре­
делению уl'lшожения матриц 

С= [с1, ... , с11 ] = АВ = [АЬ1, ... , АЬп ], 

что по:шоляет легко получить из програl\1111ы уi\шожения матри­
цы на вектор пpoгpal\!l\IY уыпожения матрицы на ыатрицу. (За­
метиl\I, что этот 1юдход по.1шос.:тыо игнорирует все, 'IТО сказано в 
разделе 2.7 об эффекпшноl\1 уыножснии матрнц.) ]\,Jы прпведеы 
только текст фу11кц11и matrix_mul t_matrix, обобщ.tюще11 опи­
санную выше matrix_mul t_ vector и работающую совершенно 
aнaJIOГll'IllO: 

#include <stdio.h> 
#include "matrices.h" 
#include "synchronize.h" 

I* Умножить матрицу а на матрицу Ь, с = аЬ для задачи 
с номером thread_num из общего количества 
total_threads *I 

void matrix_mult_matrix (douЫe *а, douЫe *Ь, douЬle *С, 
int n, int thread_num, 

{ 

int total_threads) 

int i, j, m; 
douЬle *ра, *рЬ, *рс, s; 
int first_row, last_row; 

I* Первая участвующая строка матрицы *I 
first_row = n * thread_num; 
first_row /= total_threads; 
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} 

I* Последняя участвующая строка матрицы *I 
last_row = n * (thread_num + 1); 
last_row = last_row / total threads - 1; 

for (m = О, ре = с; m < n; m++, ре++) 

{ 

} 

for (i = first_row, ра а + i * n, рЬ 
i <= last_row; i++) 

{ 

} 

for (s = O., j О; j < n; j++) 

s += *(ра++) * pb[j * n]; 
pc[i * n] = s; 

synchronize (total_threads); 

Ь + m; 

Отношение вреl\-1ени работы <<обычной>> программы умножения 
ыатриц (пример 1 раздела 2.7) к времени работы этой нрограl\t­

мы (для нроцl:.'сса в целоl\1 и для одной задачи) для двух SМР­
систеl\1 при п = 2000 приведено в табл. 10.1. 

Эта таблица ноказывает: 

• практически 100% эффективность распараллелива­
ния (астрономическое вре1'1Я работы программы совпадает

с врсыенсы работы одной эада•ш);

7 4017 

Таблица 10.1. Относительное вреl\lя работы 
параллельной программы уl\1110жс11ю1 матриц 

Число 
2 х Pcntiнm III 4 х Peнt.ium Pro 

задач процесс 1 tl1read процесс 1 t.!1read 

1 l.OU 1.00 1.00 1.00 
2 1.05 1.05 0.73 0.73 
4 � -- 1.70 1.70 
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• практически полное отсутствие ускорения в работе
( во второй системе астрономическое время на двух процес­
сорах даже увеличилось в 1.37 раз по сравнению с одниы
процессором);

• практически одинаковое время работы <<обычной>> про­
граммы на двух рассыатриваемых системах (хотя частоты
процессоров отличаются почти в пять раз).

Следовательно, предложенная программа совершенно непри­
годна для параллельных вычислительных установок. Основной 
причиной этого является неудачная дисциплина доступа к об­
щей памяти, поскольку каждая из задач одновременно обра­
щается к одним и тем же элементам матрицы Ь. Несмотря 
на то, что эти элеыенты используются только для чтения, это 
приводит к конфликтам по данным в подсистемах оперативной 
памяти и кэш-памяти. Заметим, что подобный эффект можно 
отнести к недоработкам при создании управляющей аппарат­
ной логики рассматриваемых систем. 

Попробуем исправить эту ситуацию, организовав работу про­
грамr,лы таким образом, чтобы исключить одновременный до­
ступ нескольких за.дач к одним и тем же элементам общей па­
мяти. Улучшенный вариант у:множения матрицы па l\Iатрицу и 
объяснение его работы приведены ниже: 

#include <stdio.h> 

#include "matrices.h" 

#include "synchronize.h" 

I* Умножить матрицу а на матрицу Ь, с = аЬ для задачи 

с номером thread_num из общего количества 

total_threads *I 

void matrix_mult_matrix (douЫe *а, douЫe *Ь, douЫe *С 

int n, int thread_num, 

int total_threads) 

{ 

int i, j, k, 1, m; 
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int first_row, last_row, len; 
int first_row_k, last_row_k; 
douЫe •ра, •рЬ, *РС, s; 

!• Первая участвующая строка матрицы •/ 
first_row = n * thread_num; 
first_row /= total_threads; 
!• Последняя участвующая строка матрицъi •/ 
last_row = n * (thread_num + 1); 
last_row = last_row / total_threads - 1; 

!• Обнуляем результат •/ 
len = (last_row - first_row + 1) * n; /• длина с •!

for (i = О, ре = с +  first_row * n; i < len; i++) 
* (ре++) = О. ;

!• Цикл по блокам •! 
for (1 = О; 1 < total_threads; l++) 

{ 
!• Текущий номер блока для полосы Ь •/ 
k = (thread_num + 1) % total_threads; 
!• Первая строка полосы матрицы Ь •/ 
first_row_k = n * k; 
first_row_k /= total_threads; 
I* Последняя строка полосы матрицы Ь •/ 
last_row_k = n * (k + 1); 
last_row_k = last_row_k / total_threads - 1; 

!• Умножаем прямоугольный блок матрицы а 
в строках first_row ... last_row 
и столбцах first_row�k ... last_row_k 
на столбцы полосы Ь, стоящие в строках 
first_row_k ... first_row_k •! 
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for (m = О, рЬ = Ь, ре = с; m < n; m++, рЬ++, ре++) 

{ 
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} 
} 

} 
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for (i = first_row; i <= last_row; i++) 

{ 

} 

for (s = О., j = first_row_k, 
ра = а + i * n + j; 
j <= last_row_k; j++) 

s += *(ра++) * pb[j * n]; 
pc[i * n] += s; 

synchronize (total_threads); 

Функция matrix_mult_matrix в цикле по l = О, 1, ... ,Р - 1, 

р = total_ threads, вы тшс.ш1ст матрицу, являющуюся прои:зве­
де1111еl\1 блока l\1атрнцы А, стоящего в строках 

nrn/p, ... , n(ni + 1)/р - 1, т = thread_num (10.1) 
и столбцах 

(пт/р + l) (шоd р), ... , (n(rn + 1)/р - 1 + l) (nюcl р), (10.2) 
и блока матрицы В, стоящего в строках с номерами (10.2) и 
столбц,Lх 

1, ... , п. (10.3) 
Эта матрица пµ11бавляется к блоку l\rатрицы С, стоящему в стро­
ках с но!\lераыи (10.1) п столбцах. с ноыераl\\и (10.3). В этом 
цикле по l ;.,1ы испоJiьзовали synchronize (см. раздел 10.4) для 
того, чтобы rара.нтнµовашю 11с1,лючить 011,новре:.1енный доступ 
нескольких зада•� к одниl\1 и теl\1 же элемснтаы Ь. 

Иллюстрация этого про1�есса. при total_ threads = 3 при­
ведена на рпс. 10.1: в каждой нз задач 1, 2, 3 (здесь мы для 
удобства нуыеруем их, начиная с 1) вычисляются произведения 
блоков матрнц А и В, отмеченных на рисунке соответствующей 
цифрой, н прибавляются к результату в l\Iатрице С. 

Отношение вре!\lени работы <<обычной>> програымы умноже­
ния матриц (приыер 1 раздела 2. 7) к вре:.1енн работы этой про­
граммы (для процесса в целоl\1 и для одной задачи) для тех же 
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а) l =0 

6) l = l

в) l = 2 

Рис. 10.1. Организация вычислений при умножении 
матрицы на матрицу 
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S:Г,,.-IР-систем и того же п приведено в табл. 10.2, где в скобках 
привс,1�е1ю также отношение вреиспи работы этой програ11,1ыы на 
1 процессоре к времени се работы (для процесса в целом и для 
одной задачи) на многих процессорах. 

Таблица 10.2. Относительное время работы улучшенной 
параллельной програl\-1мы умножения матриц 

Число 
2 х P1шtiuш III 4 х Penti11ш Pro 

задач процесс 1 thread процесс 1 thread 

1 0.95 (1.00) 0.95 (1.00) 0.74 (1.00) 0.74 (1.00) 
2 3.56 (3.75) 3.56 (3.75) 1.40 (1.90) 1.40 (1.90) 

- - 2.53 (3.43) 2.53 {3.43) 
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Эта таблица показывает: 

• практически 100% эффективность распараллелива­
ния ( астрономическое время работы программы совпадает
с временем работы одной задачи);

• хорошее ускорение в работе при увеличении числа ис­
пользуемых процессоров (см. коэффициенты в скобках);

• замедление работы «улучшенной>> программы на од­
ноы процессоре (это распространенное для параллельных
програыы явление в данной ситуации объясняется усложне­
нием индексных выражений при обращении к массивам, что
особенно чувствительно для второй системы с более низкой
частотой процессоров);

• ускорение работы на величину, превышающую количество
использованных процессоров (для первой системы - в 3.73
раз па 2-х процессорах), которое некоторые авторы назы­
вают суперускорением (это достаточно частое для па­
раJiлельных программ явление здесь объясняется влиянием.
кэш-паыяти, поскольку работа с подматрицами уменьшает
количество вовлеченных элементов и увеличивает эффек­
тивность кэширования, см. подробное обсуждение этого в
разделе 2. 7).

Подчеркнеы, что полученное ускорение работы в основном
связано с изменением дисциплины обращения к общей памяти. 
Для даJiьнейшего повышения эффективности программы мож­
но обратиться к таблице 2.1 и выбрать в последней версии функ­
ции matrix_mul t_matrix для перемножения блоков матриц а и 
Ь алгориты 5 выесто использованного алгоритма 1. В результате 
получаем следующую (уже <<хорошую>>) подпрограмму: 

#include <stdio.h> 
#include "matrices.h" 
#include "synchronize.h" 

I* Размер блока, должен делиться на 2 */ 
#define N 40 
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I* Умножить матрицу а на матрицу Ь, с = аЬ для задачи 
с номером thread_num из общего количества 
total_threads *I
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I* Работает только для n/total_threads - четных (для всех 
n придется усложнять разворачивание цикла) *I

void matrix_mult_matrix (douЫe *а, douЬle *Ь, douЬle *С, 
int n, int thread_num, 

{ 

int total_threads) 

int i, j, k, 1, m;
int first_row, last_row, len; 
int first_row_k, last_row_k; 
douЬle *ра, *рЬ, *ре; 
douЫe sOO, s01, s10, s11; 
int c_col, c_ncol, c_row, c_nrow, a_col, a_ncol; 

I* Первая участвующая строка матрицы *I

first_row = n * thread_num; 
first_row /= total_threads; 
I* Последняя участвующая строка матрицы */ 
last row = n * (thread_num + 1); 
last_row = last_row / total_threads - 1; 

I* Обнуляем результат *I

len = (last_row - first_row + 1) * n; I* длина с *I

for (i = О, ре = с +  first_row * n; i < len; i++) 
*(ре++) = О. ; 

I* Цикл по блокам *I

for (1 = О; 1 < total_threads; l+_+) 

{ 
I* Текущий номер блока для полосы Ь */ 
k = (thread_num + 1) % total_threads; 
I* Первая строка полосы матрицы Ь */ 
first_row_k = n * k; 
first_row_k /= total_threads; 
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I* Последняя строка полосы матрицы Ь */ 
last_row_k = n * (k + 1); 
last_row_k = last_row_k / total_threads - 1; 

I* Умножаем прямоугольный блок матрицы а 
в строках first_row ... last_row 
и столбцах first_row_k ... last_row_k 
на столбцы полосы Ь, стоящие в строках 
first_row_k ... last_row_k 

· Получаем блок матрицы с, находящийся в строках
first_row ... last_row *I

for (c_col О; с col < n; с col += N) 
{ 

c_ncol = (c_col + N <= n? c_col + N : n) - 1; 
for (c_row = first_row; c_row <= last_row; 

c_row += N) 
{ 

c_nrow = (c_row + N - 1 <= last_row 
? c_row + N - 1 : last_row); 

I* Вычислить результирующий блок матрицы с 
с верхним левым углом (c_row, c_col) 
и правым нижним (c_nrow, c_ncol) *I

I* Вычисляем как произведения блоков матриц 
а и Ь */ 

for (a_col first_row_k; 

{ 
a_col <= last_row_k; a_col += N) 

a_ncol = (a_col + N - 1 <= last_row k 
? a_col + N - 1 : last_row_k); 

I* Вычисляем произведение 
блока матрицы 
а [(c_row,a_col) х (c_nrow,a_ncol)] 
на блок матрицы 
Ь [(a_col,c_col) х (a_ncol,c_ncol)] 
и прибавляем к блоку 
матрицы 
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} 

} 

} 

} 

} 

с [(c_row,c_col) х (c_nrow,c_ncol)] 
*I

for (m = e_eol, рЬ = Ь + m, ре = е + m; 
m <= c_ncol; m += 2, рЬ += 2, 
ре += 2) 

for (i = c_row; i <= e_nrow; i += 2) 

{ 

} 

sOO = s01 = s10 = s11 = О.; 
for (j = a_eol, 

{ 

ра = а +  i * n + j; 
j <= a_ncol; j++, ра++) 

f* элемент (i, m) *f 
sOO += ра[О] * pb[j * n]; 
f* элемент (i, m + 1) *f 
s01 += ра[О] * pb[j * n + 
f* элемент (i + 1, m) *f 
slO += pa[n] * pb[j * n]; 

1] ;

f* элемент (i + 1, m + 1) *f 
s11 += pa[n] * pb[j * n + 1]; 

} 

pc[i * n] 
ре [i * n + 1] 
pc[(i + 1) * n] 
pe[(i + 1) * n + 1] 

+= sOO; 
+= s01; 
+= slO; 
+= s11; 

synehronize (total_threads); 
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Таблица 10.3. Относительное время работы хорошей 
параллельной программы умножения матриц 

Число 
2 х Pentium III 4 х Pentium Pro 

задач процесс 1 thread процесс 1 tl1read 

1 13.5 (1.00) 13.5 (1.00) 3.10 (1.00) 3.10 (1.00) 
2 26.1 (1.93) 26.1 (1.93) 6.20 (1.99) 6.20 (1.99) 

- - 12.4 (3.99) 12.4 (3.99) 

Характеристики производительности этой программы при­
ведены в табл. 10.3 ( обозначения и условия эксперимента те же, 
что в табл. 10.2). 

10.6. Пример multithread-nporpaммы, решающей задачу 
Дирихле дпя уравнения Пуассона 

Рассмотрим решение задачи Дирихле для уравнения Пуассона 
в дnумерной области D = [О, l1] х [О, l2]: 

-Л
· 

(
· 

) = _ 82и(х, у) _ 82и(х, у) = f( ) и х,у 
- fJx2 f)y2 х,у , 

(х, у) Е D, и(х, у)= О, (х, у) Е дD. 

Пусть /i1, h2 > 0--достаточно малы. Тогда 

(10.4) 

-Ли(х, у)::::: -(и(х - h1, у) - 2·и(х, у)+ и(х + h1, y))/h�

-(и(х, у - h2) - 2и(х, у)+ и(х, у+ h2))/h�. 

Поэтому рассмотрим следующую конечномерную аппроксима­
цию задачи (10.4). Зададимся положительными целочисленны­
ми параметрами n1, n2. Положим 

Xi=ih1, i=0,1, ... ,n1, Yз=jh2, j=O,l, ... ,n2, 

Щj = u(xi, Уз), i = о, 1, ... 'n1, j = о, 1, ... ·, n2, 

fiJ = f(xi,YJ), i = О, 1, ... ,n1, j = О, 1, ... ,n2. 
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Вместо задачи (10.4) рассl\ютрим следующую систему линейных 
уравнений: 

-(ui-1,j -2ui,j + ин1,j)/Ji� - (Ui,j-1 - 2ui,j + ui,j+i)/h� = !1,j, 

i = 1, 2, ... , n1 -1, j = 1, 2, ... , n2 -1, 

Ui,O = о, Ui,n2 = о, i = о, 1, ... , n1, 

ио,j = О, U 111 ,j = О, j = О, 1, ... ,n2. 
(10.5) 

Эту систему часто называют разностной аппроксимацией 
задачи (10.4). 

где 

Систему (10.5) можно представить в обычном виде: 

Аи= f, (10.6) 

и= (uij)·i=O,l,.,,,n 1 .j=0,1, ... ,n2, f = (Jij)i=0,1, ... ,n 1 , j=0,l, ... ,n2 

-- (n1 + 1) х (n2 + 1) векторы, А - 1\tатр1ща (n1 + l)(n2 + 1) х (n1 +
l)(n2 + 1), действие которой на вектор за;�ается формулой 

·и= Аи,

Vij = -('�i-1,J -2щ,j + ин1,j)//1f - (lli,j-I -2ui,j + ·щ,н1)/h1 
i = 1,2, ... ,п1 -1, j = 1,2, ... ,п2 -1, 

'/Ji,O = О, Vi,n2 = О, i = О, 1, ... ,n1, 

ио,j = О, 'Un1 ,j = О, j 
= О, 1, ... , n2. 

(10.7) 
В силу большой раз!\1ерности l\lа:грицы А систему (10.6) обычно 
решают теы или иным итерационным алгоритмс)l\(, для проведе­
ния которого достаточно уметь Rычпслять произведение ыатри­
цы на вектор, а саму :-.,атр�щу А хранить не требуется. Niы рас­
смотриы простейншй из та1шх алгоритмов - метод Якоби. Он 
состоит в вычислении: последоRательности приближений {·uk }, 
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k = О, 1, ... , начиная с некоторого начального приближения -и.0 

(l\lы будеы использовать u0 
= О), по следующим формулам:

uk+ 1 - 1/
В + Auk 

= f, k = О, 1, ... , (10.8) 
Т1,: 

г;\е т1; -- 11терацнонный параl\lстр, В - - диагона.пьная матµнца, 
равная главной диагонали ыатрш\ы А. I\Iатр1ща В в итерацио11-
НОi\r процессе внда (10.8) называется предобуславливателсы и в 
силу ( 10. 7) ее действие на вектор задастся форыулой 

Вектор 

·u = Пи, -uij = ( 22 + 22) ·щ,j,
li 1 h.2 

i = 1, 2, ... , n1 - 1, j = 1, 
2
, ... , n2 - 1, 

'lli,O = О, '1Ji,n2 = О, -i = О, 1, .. , , n1,

·oo,j = О, ·vn 1 ,j = О, .i = О, 1, ... , n2.

(10.9) 

на.:зываетси невязкой и его норыа хар.tктсризует ка•rсство полу­
че11но1·0 11рнбл11жс11ия ·uk. ОбьJ tшо вы•шслсш�я в нроцсссс ( 10.8)
продо.юкают, пока норl\1а 11евнзк11 нс у11адет в залашюе число 
pa:J (нал1ml\1ер

1 
106 ) по сравнению с норl\lОЙ т0 . Итсра1\иош1ый

11ара:--1стр тk в (10.8) ыы буде�, ныбr1рать методом скорейшего 
спуска: 

Т1,: = (в-1тk, .,,k)/(Aв-11.k , в-1тk
), k = о, 1, ... 1 

l;\t' (·, ·) означает еюошдово скалярно_е произведение. Если обо­
зю1ч11·1ъ 'L,k = в-

1.,.k , то В силу Сl·ll\1:\Jетр11ч11ости матрицы Л

т. с. 

U, vk ) - (Auk , uk)
(Avk, vk)

тk = ( (.f,vk·) - (Avk, 1/) )/(Аи\ 1/), uk = в-
1

1·\ k = О, 1, ....
(10.10) 

Расчетные фор:\1улы нашего алгоритма, использующпе 3 век­
тора: п, г, J, Иl\1еют вид: 
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1. пусть 11, содержит приближение на шаге k (О на шаге О);
2. вычислясl\r r = Аи;
3. вычисляем невязку r = f - r и ее норму;
4. если нор:на невязки меньше заданной, то заканчнваеl\1 вы-

числения;
5. вычисляем r = в-

1т;
6. вычнсляеl\r т = ((j', r) - (А,·, u))/(Ar, r);
7. вычисляе:--1 приближение на шаге k + 1: 'U =и+ тr;

8. переходим к пункту 1.

В выражении для т пектор Ат не вычисJшстся целиком. Онре­
делнстся очередной cro элемент, и он сразу используетсн для 
нахож;�.ения значений скалярных про1пведе1111П (Ат, 'U) 11 (Ат, т). 

Для отш1дю1 нрогра!lrмы i\!Ы используем в качестве области 
единичный кнадрат D = [О, 1] х [О, 1], n качестnс пparюtt •1асти 
функцню 

f(x, у)= 2.т(l - 1:) + 2y(l - у), 

которой соответстнует решение 

u(:r, у)= х(1 - x)y(l - у). 

Это 1юзволнт вы•ши1я1ъ 110µ1\ly ошибки, т. с. норl\1у разности 
1\Н�Ж/1.У точвым рсшеписl\1 11 IJО.'1.)"Iепныы в итера�1.иошю�1 11ро­
цессе 1/. 

Отметим, что метод Якоб11 ;�.ля системы (10.5) является uecь-
1\Ia нсэффсктиrшым и рассl\1атр11вается здесь для простоты. 

Для 1ювыше11ия скорости работы на шюгопроцессорной вы­
числнтельной установке с общ('й Шti\IЯТЬЮ создадиl\1 несколько 
зада•� (110 числу Ilроцессоров) и разделиы работу между НИi\IИ. 

Фай.;1ы проекта: 

• get_time.c, get_time.h-иcxoдный текст и соответствую­
щий заголовочный файл для функций работы со вреыенем
(см. разде:1 10.4);

• reduce_sum. с, reduce_sum. h ---исходный текст и соответ­
ствующий заголовочный файл для функшш вычисления
суl\Iмы массивов, распределенных r-.1ежду процессаыи;
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• main. с - ввод данных, запуск задач и вывод результатов;

• init. с, init .h- исходный текст и соответствующий заго­
ловочный файл для функций, инициализирующих правую
часть уравнения (10.4) и вычисляющих ошибку решения;

• operators. с, operators. h -- исходный текст и соответству­

ющий заголовочный файл для функций, вычисляющих раз­

JШ'Шые операторы;

• laplace. с, laplace. h- исходный текст и соответствующий

заголовочный файл для функции, решающей задачу;

• Makefile --· для сборки проекта.

Заголовочный файл reduce_sum. h:

void reduce_sum (int total_threads, douЫe* а, int k); 
#define synchronize(X) reduce_sum (Х, О, О) 

Здесь 11с1юш,зовано !\Iакроопределение для получения функции 
synchronize, µаботаюrцей так же, как одноименная функция из 
ра."lдела 10.4.

Файл reduce_sum. с: 

#include <pthread.h> 

#include "reduce_sum.h" 

I* Вычислить сумму элементов массива а длины k во всех 
потоках и вернуть ее в массиве а в каждом потоке 

(из общего числа total_threads). *I 

void reduce_sum (int total_threads, douЫe* а, int k) 

{ 

I* Объект синхронизации типа mutex *I 

static pthread_mutex_t mutex 
= PTHREAD_MUTEX_INITIALIZER; 

I* Объект синхронизации типа condvar *I 
static pthread_cond_t condvar_in 

= PTHREAD_COND_INITIALIZER; 

I* Объект синхронизации типа condvar *I 
static pthread_cond_t condvar_out 
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= PTHREAD_COND_INITIALIZER; 

f* Число пришедших в функцию задач */ 

static int threads_in = О; 

f* Число ожидающих выхода из функции задач */ 

static int threads_out = О; 

f* Указатель на массив с ответом *f 

static douЫe *pres = О; 

int i; 

f* "захватить" mutex для работы с переменными 

threads_in, threads_out, pres *f 

pthread_mutex_lock (&mutex); 

f* если текущий поток пришел первым, то установить 

pres, иначе вычислить сумму с pres *f 

if ( !pres) 

{ 

} 

else 

{ 

} 

f* первый вошедший поток *f 

pres ::: а; 

f* вычислить сумму в остальных потоках *f 

for (i = О; i < k; i++) 

pres[i] += a[i]; 

f* увеличить на 1 количество прибывших в 

эту функцию задач *f 

threads_in++; 

f* проверяем количество прибывших задач *f 

if (threads_in >= total_threads) 

{ 

f* текущий поток пришел последним *f 

207 
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} 
else 

{ 

} 
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I* устанавливаем начальное значение 
для threads_out *I 

threads_out = О; 

I* разрешаем остальным продолжать работу *I 

pthread_cond_broadcast (&condvar_in); 

I* есть еще не пришедшие потоки *I 

I* ожидаем, пока в эту функцию не придут 
все потоки *I 

while (threads_in < total_threads) 

{ 

} 

I* ожидаем разрешения продолжить работу: 
освободить mutex и ждать сигнала от 
condvar, затем "захватить" mutex опять *I 

pthread_cond_wait (&condvar_in, &mutex); 

I* в pres находится результат, берем его в каждой 
задаче */ 

if (pres ! = а) 

{ 

} 

for (i 
a[i] 

О; i < k; i++) 

pres [i]; 

I* увеличить на 1 количество ожидающих выхода задаq *I 

threads_out++; 

f* проверяем количество прибывших задач */ 
if (threads_out >= total_threads) 
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} 

{ 

} 

else 
{ 

} 

I* текущий поток пришел в очередь последним *I

I* устанавливаем начальное значение для pres *I

pres = О; 
I* устанавливаем начальное значение 

для threads_in */ 
threads in О·'

I* разрешаем остальным продолжать работу *I

pthread_cond_broadcast (&condvar_out); 

I* в очереди ожидания еще есть потоки *I

I* ожидаем, пока в очередь ожидания не придет 
последний поток *I

while (threads_out < total_threads) 
{ 

} 

I* ожидаем разрешения продолжить работу: 
освободить mutex и ждать сигнала от 
condvar, затем "захватить" mutex опять *I

pthread_cond_wait (&condvar_out, &mutex); 

I* "освободить" mutex *I

pthread_mutex_unlock (&mutex); 

Функция reduce_sum работает аналогично функции 
synchronize из раздела 10.4, но, в отличие от после;�нсй, ПOI\ШI\IO 
синхронизации задач она вычисляет суы11у элсl\fентов указан­
ных в качестве аргументов массивов. Результат записывается 
на 1\tесто исходных ыассивов в каждой из задач. Если длина 
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массива равна нулю, то функции reduce_sum и synchronize 
совпадают, что использовано в файле reduce_sum. h. 

Файл main. с по структуре похож на одноименный файл из 

раздела 10.4: 

#include <stdio.h> 
#include <stdlib.h> 
#include <pthread.h> 
#include "init.h" 
#include "get_time.h" 
#include "laplace.h" 

!• Аргументы для потока •! 
typedef struct _ARGS 

{ 

unsigned int nl; 
unsigned int n2; 
douЬle hl; 
douЫe h2; 

!• 
!• 
!• 
!• 
I* 

число точек по х •! 
число точек по у *I 
шаг сетки.по х *I 
шаг сетки по у *I 
максимальное число итераций unsigned int max_it; 

douЫe prec; !• величина падения невязки •/ 
douЬle •f; !• правая часть *f 
douЫe •и; !• решение •/ 
douЫe •r; !• невязка */ 

f* номер задачи •! int thread_num; 
int total_threads; !• всего задач •/ 

} ARGS; 

int get_data (char * name, ARGS *parg); 

!• Суммарное время работы всех задач */ 
static long int threads_total_time = О; 
f* Объект типа mutex для синхронизации доступа к 

threads_total_time •/ 
static pthread_mutex_t threads_total_time_mutex 

*I
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= PTHREAD_MUTEX_INITIALIZER; 

I* Умножение матрицы на вектор для одной задачи */ 
void * laplace_solve_threaded (void *ра) 

{ 

} 

ARGS *Р = (ARGS*)pa; 
long int t; 

printf ("Thread i,d started\n", p->thread_num); 
t = get_time (); I* время начала работы *I 

laplace_solve (p->n1, p->n2, p->h1, p->h2, p->max_it, 
p->prec, p->f, p->u, p->r, 
p->thread_num, p->total_threads); 

t = get_time () - t; I* время конца работы *I 

I* Суммируем времена работы *I 
I* "захватить" mutex для работы с threads_total_time *

pthread_mutex_lock (&threads_total_time_mutex); 
threads_total_time += t; 
f* "освободить" mutex *I 
pthread_mutex_unlock (&threads_total_time_mutex); 
printf ("Thread i,d finished, time = i.ld\n", 

p->thread_num, t); 

return О; 

int main () 

{ 
I* массив идентификаторов созданных задач */ 
pthread_t * threads; 
f* массив аргументов для созданных задач *I 
ARGS * args; 
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f* астрономическое время работы всего процесса *I 
long int t_full; 
I* аргументы *I 
ARGS arg; 
int i, 1; 

I* считываем данные из файла */ 
if (get_data ("a.dat", &arg) < О) 

{ 

} 

fprintf (stderr, "Read error!\n"); 
return 1; 

printf ("Input threads number: "); 
scanf ("%d", &arg.total_threads); 
arg.thread_num = О; 

if (!(threads = (pthread_t*) 

{ 

} 

malloc (arg.total_threads 
* sizeof (pthread_t))))

fprintf (stderr, "Not enough memory!\n"); 
return 2; 

if (!(args = (ARGS*) malloc (arg.total_threads 
* sizeof (ARGS))))

{ 

} 

fprintf (stderr, "Not enough memory!\n"); 
return З; 

f* Выделение памяти под массивы *I 
1 = (arg.n1 + 1) * (arg.n2 + 1) * sizeof (douЬle); 
if С ! (arg. f (douЬle*) malloc (l)) 

11 !(arg.u = (douЫe*) malloc (1)) 
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{ 

} 

11 ! (arg.r = (douhle*) malloc (1))) 

fprintf (stderr, "Not enough memory!\n"); 
return 3; 

l *= 3; 
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printf ("Allocated %d bytes (%dKb or %dMb) of memory\n", 
l, l >> 10, l >> 20); 

I* Инициализация аргументов задач */ 
for (i = О; i < arg.total_threads; i++) 

{ 
args[i] = arg; 
args[i] .thread_num = i; 

} 

I* Засекаем астрономическое время начала работы задач*/ 
t_full = get_full_time (); 
I* Запускаем задачи */ 
for (i = О; i < arg.total_threads; i++) 

{ 

} 

if (pthread_create (threads + i, О, 
laplace_solve_threaded, 
args + i)) 

{ 

} 

fprintf (stderr, "cannot create thread #%d!\n", 
i); 

return 10; 

I* Ожидаем окончания задач *I 
for (i = О; i < arg.total_threads; i++) 

{ 
if (pthread_join (threads[i], О)) 

fprintf (stderr, "cannot wait thread #%d!\n", i) 
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} 

t full = get_full_time () - t_full; 

if (t_full -- О) 

t_full = 1; I* очень быстрый компьютер ... *I 

I* Здесь можно работать с результатом *I 

I* Воспользуемся тем, что мы знаем ответ *I 

print_error (arg.nl, arg.n2, arg.hl, arg.h2, arg.u); 

I* Освобождаем память *I 

free (arg.r); 

free (arg.u); 

free (arg.f); 

free (args); 

free (threads); 

printf ("Total full time = %ld, \ 

total threads time = %ld (%ld%%), per thread = %ld\n", 

t_full, threads_total_time, 

(threads_total_time * 100) / t_full, 

threads_total_time / arg.total_threads); 

return О; 

} 

I* Считать данные из файла, где находятся: 

число точек по х 

число точек по у 

длина стороны, параллельной оси х 

длина стороны, параллельной оси у 

максимальное число итераций 

величина падения невязки 

Например: 

32 32 1. 1. 1000 le-6 

Возвращает <О в случае ошибки. 

*I
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int get_data 

{ 
FILE *in = 
douЫe 11, 

if ( ! in) 

{ 

(char 

fopen 
12; 

* name, ARGS *р)

(name, 11r 11 ); 
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fprintf (stderr, "Error opening data file %s\n", 
name); 

} 

return -1; 

} 

if (fscanf (in·, "%u%u%lf%lf%u%lf", &p->n1, &p->n2, 
&11, &12, &p->max_it, &p->prec) _!= 6) 

{ 

} 

fprintf (stderr, "Error reading data file %s\n", 
name); 

return -2; 

I* Вычисляем шаги сетки по направлениям х и у *I 
p->h1 11 / p->n1; 
p->h2 = 11 / p->n2; 

fclose (in); 
return О; 

В качестве характеристики полученного приближения выдается 
норма ошибки, вычисляемая главным процессо11-1. 

Заголовочный файл ini t. h: 

void 
print_error (unsigned int n1, unsigned int n2, 

douЫe h1, douЫe h2, douЬle *u); 
void init_f (unsigned int n1, unsigned int n2, 
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douЬle h1, douЫe h2, douЬle *f, 
int thread_nurn, int total_threads); 

В файле ini t. с находятся функцин: 

• solution --- вычисляет TO'IIIOC решение;

• print_error --- вычисляет норr,.1у ошибки - полученного при­
блнжен11я, пш11,зуясь тем, •�то r,.1ы знаеы точное решение; для
уменьшения вычислителыюй ногрешности используется тот
же прием, 'ITO в функции get_residual (см. ниже);

• right_side --- вычисляет правую часть;
• init_f -� задает правую часть для кюк;\011 из за.дач.

Файл init.c: 

#include <stdio.h> 
#include <rnath.h> 
#include "init.h" 
#include "reduce_surn.h" 

I* Инициализация правой части задачи. 

*I

В тестах будем рассматривать задачу в единичном 

квадрате [0,1]х[О,1] с ответом 

u(x,y) = х * (1 - х) *у * (1 -у), 
которому 

f(x,y) 
соответствует правая часть 

2 * х * (1 - х) + 2 *у* (1 -у) 

f* Точный ответ *f 
static douЬle 
solution (douЫe х, douЫe у) 

{ 
return х * (1 - х) *у *  (1 -у); 

} 

f* Вычислить и напечатать L2 норму ошибки *f 
void 



10.6. Решение задачи Дирихле для уравнения Пуассона 

print_error ( 

{ 

unsigned int n1, f* число точек по х *f 
unsigned int n2, f* число точек по у *f 
douЫe h1, f* шаг сетки по х *f 
douЫe h2, f* шаг сетки по у *f 
douЬle *U) f* решение *f 

douЫe s1, s2, t, error; 
unsigned int i1, i2, addr; 

for (i1 = о, addr = о, s1 О.; i1 <= n1; i1++) 

{ 
for (i2 = о, s2 = о.; i2 <= n2; i2++) 

{ 
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t = u[addr++] - solution (i1 * h1, i2 * h2); 
s2 += t * t; 

} 

} 

s1 += s2; 

} 
error = sqrt (s1 * h1 * h2); 
printf ("Error = %le\n", error); 

f* Точная правая часть *f 
static douЬle 
right_side (douЫe х, douЫe у) 

{ 
return 2 * х * (1 - х) + 2 *у* (1 - у); 

} 

f* Заполнить правую часть для задачи с 
номером thread_nurn из общего количества 
total_threads. *f 

void init_f ( 
unsigned int n1, f* число точек по х *f 
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{ 

} 

unsigned int n2, I* число точек по 
douЫe h1, I* шаг сетки по х 
douЫe h2, I* шаг сетки по 

douЫe *f, I* правая часть 
int thread_num, I* номер задачи 

int total_threads) I* всего задач 

unsigned int first_row, last_row; 

unsigned int i1, i2, addr; 

I* Первая участвующая строка *I

first_row = (n1 + 1) * thread_num; 

first_row /= total_threads; 

у 

*I

*I

*I 

I* Последняя участвующая строка *I

last_row = (n1 + 1) * (thread_num + 1); 

last_row = last_row / total_threads - 1; 

у *I

*I

*I

for (i1 = first_row, addr = i1 * (n2 + 1); 

i1 <= last_row; i1++) 

for (i2 = О; i2 <= n2; i2++) 

f[addr++] = right_side (i1 * h1, i2 * h2); 

I* подождать всех *I

synchronize (total_threads); 

Заголовочный файл operators. h: 

douЫe 

get_residual (unsigned int n1, unsigned int n2, 

douЫe h1, douЫe h2, douЫe *r, 

int thread_num, int total_threads); 

void 

get_operator (unsigned int n1, unsigned int n2, 

douЫe h1, douЫe h2, douЫe *U, douЫe *v, 

int thread_num, int total_threads); 
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void 
get_preconditioner (unsigned int nl, unsigned int n2, 

douЫe h1, douЫe h2, douЫe *v, 
int thread_num, int total_threads); 

douЫe 
get_optimal_tau ( 

unsigned int nl, unsigned int n2, 
douЫe hl, douЫe h2, douЫe *f, douЫe *U, douЫe *r, 

int thread_num, int total_threads); 

В файле operators. с находятся функции: 

• get_residual -- возвращает L2 норму невязки; основные осо-
бешюсти функции:

сумма квадратов элементов ны'-шсляется в каждой задаче 
для своего участка массива, затем с помо1цыо reduce_sum 
получается сумма квадратов nccx элементоn r-лассива, ко­
торая используется для вычисления результата, возвра­
щаемого функцией в каждой задаче; 
граничные точки не учитываются; 

для у111еньшения вычислительной погрешности, связанной 
с суммированием чисел, сильно различающихся по поряд­
ку, вычисляются су11,rмы квадратов элеыентов по строкам, 
которые затем прибавляются к окончательному резуль­

тату; 

• get_operator -вычисляет произведение матрины А систе­

мы (10.6) (т. е. (10.5)) на вектор 'И: и= А-и; оператор вычис­
лнется согласно формулам (10.7) в каждой задаче для своего
участка массива, синхронность работы всех задач обеспечи­
вается с помощью synchronize;

• get_preconditioner -вычисляет произведение матрицы
в-

1 в (10.8) на вектор и: ·и = в-
1·и; оператор вычисля­

ется согласно формулам (10.9) для матрицы В в каждой
задаче для своего участка массива, синхронность работы
всех задач обеспечивается с поl\ющью synchronize;
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• get_optimal_ tau - возвращает опти111а.J1ыюе значение птера-
1щоююго параыетра Т1<: в (10.8) согласно формулаы (10.10);
основные особенности фунюпш:

скалярные произведения (j',r), (Ar,u), (Ar,r) вычисJшют­
ся в каждой зада•1е для своих участков массивов, затеы с 
НОi\ЮЩЫО reduce_sum получаются соответствующие ска­
лярные произвсдешrя )\ЛЯ всех элементов r,.1асспва, кото­
рые используются для вы•1исле1шя результата, возвр;нца­
Сl\JОГО функцией в каждой :задаче; 
зшt11сш1е Ат вы•rисляется в точке н ера.зу ис110Jп,зу<'тся 
11рп вычислении скалярных произведений (Ат, и) п (Ат, г); 

для у11епьшения вы•шс1111тсльной погрешности иснользу­
ется тот же 11риеы, что в get_residual. 

Файл operators. с: 

#include <stdio.h> 
#include <math.h> 
#include "operators.h" 
#include "reduce_sum.h" 

I* Вычислить L2 норму невязки для задачи с 
номером thread_num из общего количества total_threads. 
Граничные узлы не входят. *I 

douЫe 
get_residual (

unsigned int n1, I* число точек 
unsigned int n2, I* число точек 
douЫe h1, I* шаг сетки по 
douЫe h2, I* шаг сетки по 
douЫe *r, I* невязка *I

int thread_num, I* номер задачи 
int total_threads) I* всего задач 

{ 

unsigned int first_row, last_row; 
unsigned int i1, i2, addr; 

по х *I

ПО у *I

х *I

у *I

*I

*I
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douЫe sl, s2, t; 

I* Первая участвующая строка */ 
first_row = (nl + 1) * thread_num; 
first_row /= total_threads; 
I* Последняя участвующая строка */ 
last_row (nl + 1) * (thread_num + 1); 
last row last_row / total_threads - 1; 

I* В силу нулевых краевых условий на границе 
невязка = О *I 

if (first_row == О) 
first_row = 1; 

if (last_row -- nl) 
last_row = nl - 1; 

for (il = first_row, addr = i1 * (n2 + 1), s1 О.; 

il <= last_row; i1++) 

{ 

} 

I* в первом элементе невязка = О в силу 
краевых условий *I 

addr++; 
for (i2 = 1, s2 =О.; i2 < n2; i2++) 

{ 

} 

t = r[addr++]; 
s2 += t * t; 

s1 += s2; 
I* в последнем элементе невязка = О в силу 

краевых условий *I 
addr++; 

I* Вычислить сумму по всем задачам */ 
reduce_sum (total_threads, &sl, 1); 

221 
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return sqrt (sl * hl * h2); 
} 

I* Вычислить v = Au, где А - оператор Лапласа для задачи 
с номером thread_num из общего количества 
total_threads. *I 

void 
get_operator ( 

{ 

unsigned int nl, I* число точек по 
unsigned int n2, I* число точек по 
douЫe hl, I* шаг сетки по х 
douЬle h2, I* шаг сетки по у 
douЫe *U, I* решение *I 
douЫe *V, I* результат */ 
int thread_num, I* номер задачи */ 
int total_threads) I* всего задач *I 

unsigned int first_row, last_row; 
unsigned int il, i2, addr; 

х *I 
у *I 
*I
*I

douЫe hhl = 1. / (hl * hl), hh2 1. / (h2 * h2);

I* Первая участвующая строка *I 
first_row = (nl + 1) * thread_num; 
first_row /= total_threads; 

I* Последняя участвующая строка *I 
last_row (nl + 1) * (thread_num + 1); 
last_row = last_row / total_threads - 1; 

if (first_row == О) 

{ 
I* нулевые краевые условия *I 
for (i2 = О, addr = О; i2 <= n2; i2++) 

v[addr++] = О.; 
first_row = 1; 
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} 

} 
if (last_row == n1) 

{ 

} 

I* нулевые краевые условия *I

for (i2 = О, addr = n1 * (n2 + 1); i2 <= n2; i2++) 
v[addr++.] = О.; 

last_row = n1 - 1; 

for (i1 = first_row, addr = i1 * (n2 + 1); 
i1 <= last_row; i1++) 

{ 

} 

·;* первый элемент = О в силу краевых условий *I

v[addr++] = О.;
for (i2 = 1; i2 < n2; i2++, addr++)

{ 

} 

I* v(i1,i2) 
=- (u(i1-1,i2)-2u(i1,i2)+u(i1+1,i2))/(h1*h1) 
- (u(i1,i2-1)-2u(i1,i2)+u(i1,i2-1))/(h2*h2)*/

v[addr] = - (u[addr - (n2 + 1)] - 2 * u[addr] 
+ u[addr + (n2 + 1)]) * hh1

- (u[addr - 1] - 2 * u[addr]
+ u[addr + 1]) * hh2;

I* последний элемент = О в силу краевых условий *I

v[addr++] = О.; 

I* подождать всех *I

synchronize (total_threads); 

I* Вычислить v = в-{-l}v, где В - предобуславливатель для 
оператора Лапласа для задачи с номером thread_nurn 
из общего количества total_threads. 
В качестве В используется диагональ матрицы А. *I
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void 
get_preconditioner ( 

unsigned int nl, 
unsigned int n2, 
douЫe hl, 

I* число точек по х *I 
I* число точек по у *I 
I* шаг сетки по х *I 
I* шаг сетки по у *I 

{ 

douЫe h2, 
douЫe *V, 
int thread_num, 
int total_threads) 

I* аргумент/результат *I 
I* номер задачи */ 
I* всего задач *I 

unsigned int first_row, last_row; 
unsigned int il, i2, addr; 
douЬle hhl 1. / (hl * Ы), hh2 = 1. / (h2 * h2);
douЫe w = 1. / (2 * hhl + 2 * hh2); 

I* Первая участвующая строка *I 
first_row = (nl + 1) * thread_num; 
first_row /= total_threads; 
I* Последняя участвующая строка */ 
last_row = (nl + 1) * (thread_num + 1); 
last_row = last_row / total_threads - 1; 

if (first_row == О) 

{ 

} 

I* нулевые краевые условия *I 
for (i2 = О, addr = О; i2 <= n2; i2++) 

v[addr++] = О.; 
first_row = 1; 

if (last_row == nl) 

{ 
I* нулевые краевые условия *I 
for (i2 = О, addr = nl * (n2 + 1); i2 <= n2; i2++) 

v [addr++] = О. ; . 
last_row = n1 - 1; 
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} 

} 

for (il = first_row, addr = il * (n2 + 1); 
il <= last_row; il++) 

{ 

} 

I* первый элемент = О в силу краевых условий *I 
v[addr++] = О.; 
for (i2 = 1; i2 < n2; i2++) 

{ 

I* v(il,i2) = v(i1,i2)/(2/(h1*h1)+2/(h2*h2)) *I 
v[addr++] *= w; 

} 

I* последний элемент 
v[addr++] = О.; 

О в силу краевых условий *I 

I* подождать всех *I 
synchronize (total_threads); 

I* Вычислить ((f, r) - (Ar, u)) / (Ar, r) 
где А - оператор Лапласа для задачи с 
номером thread_num из общего количества total_threads. 
Функции u, r удовлетворяют нулевым краевым условиям *I 

douhle 

get_optimal_tau (

unsigned int nl, I* число точек по х *I 
unsigned int n2, I* число точек по у *I 
douhle hl, I* шаг сетки по х *I 
douhle h2, I* шаг сетки по у *I 
douhle *f, I* правая часть *I 
douhle *U, I* решение *I 
douhle *r, I* в-{-l}(невязка) *I 
int thread_num, I* номер задачи */ 
int total_threads) I* всего задач */ 

{ 

8 4017 
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unsigned int first_row, last_row; 
unsigned int i1, i2, addr; 
douЫe hh1 = 1. / (h1 * hl), hh2 = 1. / (h2 * h2); 
douЫe sl_fr, s2_fr; I* суммы для (f, r) 
douЫe sl_Aru, s2_Aru;/* суммы для (Ar, u) 
douЫe sl_Arr, s2_Arr;/* суммы для (Ar, r) 
douЫe Ar; I* значение Ar в точке 
douЫe а[З]; 

I* Первая участвующая строка *I 
first_row = (n1 + 1) * thread_num; 
first_row /= total_threads; 

I* Последняя участвующая строка *I 
last_row = (n1 + 1) * (thread_num + 1); 
last_row = last_row / total_threads - 1; 

*I 
*I 
*I 
*I 

I* В силу нулевых краевых условий на границе, 
слагаемые, соответствующие граничным узлам О *I 

if (first_row == О) 
first_row = 1; 

if (last_row -- n1) 
last_row = n1 - 1; 

for (i1 = first_row, addr = i1 * (n2 + 1), 
sl_fr = О., sl_Aru = О., sl_Arr О.; 
i1 <= last_row; il++) 

{ 

I* в первом элементе слагаемые 
краевых условий *I 

addr++; 

о в силу 

for (i2 = 1, s2_fr =О., s2_Aru = О., s2_Arr =О.; 

{ 

i2 < n2; i2++, addr++) 

I* Вычисляем (f, r) *I 
s2_fr += f[addr] * r[addr]; 
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} 

f* Вычисляем Ar *f 
Ar - - (r[addr - (n2 + 1)] - 2 * r[addr] 

+ r[addr + (n2 + 1)]) * hhl

- (r[addr - 1] - 2 * r[addr]

} 

} 

sl_ 

+ r[addr + 1]) * hh2;
f* Вычисляем (Ar, u) *f 
s2 Aru += Ar * u[addr]; 
f* Вычисляем (Ar, r) *I 
s2_Arr += Ar * r[addr]; 

fr += s2_fr; 
sl_Aru += s2_Aru; 
sl_ Arr += s2_Arr; 
f* в последнем элементе слагаемые 

краевых условий *I 
addr++; 

а[О] sl_fr; 
а [1] sl_Aru; 
а[2] sl_Arr; 

f* Вычислить суммы по всем задачам */ 
reduce_sum (total_threads, а, З); 

I* Вычислить ответ *f 
return (а[О] - a[l]) / а[2]; 

Заголовочный файл laplace . h: 

о в силу 
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int laplace_solve (unsigned int nl, unsigned int n2, 
douЫe hl, douЫe h2, unsigned int max_it, douЫe prec, 
douЫe *f, douЫe *и, douЫe *r, int thread_num, 
int total_threads); 
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В файле laplace. с находится функция laplace_solve, осу­
ществляющая итерационный процесс {10.8), {10.10) с матрица­
ми (10.7) и {10.9) по описанным выше расчетным формулам. 
Файл laplace. с: 

#include <stdio.h> 
#include <math.h> 
#include "init.h" 
#include "operators.h" 
#include."reduce_sum.h" 
#include "laplace.h" 

I* Решить задачу для задачи с 
номером thread_num из общего количества total_threads. 
Возвращает количество потребовавшихся итераций. *I 

int laplace_solve ( 
unsigned int n1, 
unsigned int n2, 
douЫe h1, 

I* 

I* 

I* 

число точек по х *I

число точек по у *I

шаг сетки по х *I

douЫe h2, I* шаг сетки по у *I

{ 

unsigned int max_it, 
douhle prec, 

I* максимальное число итераций 

I* величина падения 
douhle *f, 
douhle *u, 
douhle *r, 
int thread_num, 
int total_threads) 

I* 

I* 

I* 

I* 

I* 

правая часть 
решение *I

невязка */ 
номер задачи 
всего задач 

unsigned int first_row, last_row; 
unsigned int first_addr, last_addr; 
unsigned int addr; 
I* Норма невязки на первом шаге */ 
douhle norm_residual_1; 

I* Норма невязки на очередном шаге *I

douhle norm_residual; 

*I

*I

*I

невязки *I

*I
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I* Норма невязки на предыдущем шаге *f

douЫe norm_residual_prev; 
unsigned int it; I* Номер итерации *I

douЫe tau; I* Итерационный параметр *I 

!* Первая участвующая строка *I 

first_row = (n1 + 1) * thread_num; 
first_row /= total_threads; 
I* Последняя участвующая строка *f

last_row = (n1 + 1) * (thread_num + 1); 
last_row = last_row / total_threads - 1; 
I* Соответствующие адреса *I

first_addr first_row * (n2 + 1); 
last_addr = last_row * (n2 + 1) + n2; 

I* Инициализируем правую часть */ 
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init_f (n1, n2, h1, h2, f, thread_num, total_threads); 

I* Начальное приближение = О *I

for (addr = first_addr; addr <= last_addr; addr++) 
u[addr] = О.; 

I* Невязка при нулевом начальном приближении = f *I

norm_residual_1 = norm_residual = norm_residual_prev 
= get_residual (n1, n2, Ы, h2, f, thread_num, 

total_threads); 

if (thread_num == О) 
printf ("Residual = %le\n", norm_residual_1); 

I* Итерационный процесс *I 

for (it = 1; it < max_it; it++) 

{ 
I* Шаг итерационного процесса *I 
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f* Вычисляем r = Аи *f 

get_operator (n1, n2, h1, h2, u, r, thread_num, 

total_threads); 

I* Вычисляем невязку r = f - r = f - Аи *f 

for (addr = first_addr; addr <= last_addr; addr++) 

r[addr] = f[addr] - r[addr]; 

I* подождать всех *I 

synchronize (total_threads); 

f* Вычисляем норму невязки *I 

norm_residual = get_residual (n1, n2, h1, h2, r, 

thread_num, 

total_threads); 

if (thread_num == О) 

printf ("It # =%2.2d, residual=%11.4e, \ 

convergence=%6.3f, average convergence='l,6.Зf\n", 

it, norm_residual, 

norm_residual / norm_residual_prev, 

pow (norm_residual / norm_residual_1, 1./it)); 

f* Проверяем условие окончания процесса *f 

if (norm_residual < norm_residual_1 * prec)

break; 

f* Обращение предобуславливателя r = в-{-1} r *I 

get_preconditioner (n1, n2, h1, h2, r, thread_num, 

total_threads); 

f* Вычисление итерационного параметра 

tau = ((Ь, r) - (Ar, u)) i (Ar, r) *f 

tau = get_optimal_tau (n1, n2, h1, h2, f, u, r, 

thread_num, total_threads); 

I* Построение очередного приближения u+=tau * r *I 
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} 

} 

for (addr = first_addr; addr <= last_addr; addr++) 

u[addr] += tau * r[addr]; 

I* подождать всех *I 

synchronize (total_threads); 

norm_residual_prev = norm_residual; 

return it; 



11 
Интерфейс MPI 
(Message Passing lnterface) 

В этой главе мы рассмотрим интерфейс MPI (Message Passiнg 
Interface), ставший de-facto стандартом для программирования 
систем с распределенной памятью. MPI представляет собой 
набор утилит и библиотечных функций (для языков С/С++, 
FORTRAN), позволяющих создавать и запускать приложения, 
работающие на параллельных вычислительных установках са­
мой различной природы. Появившись в 1990-х годах как уни­
фицированный подход к программированию для систем с рас­
пределенной памятью, MPI приобрел большую популярность и 
теперь широко пспользуется также в системах с общей памятью 
и разнообразных СI\Iешанных вычислительных установках. 

11.1. Общее устройство МРl-программы 

Имена всех функций, типов данных, констант и т. д., относя­

щихся к МРI-библиотеке, начинаются с префикса MPI_ и описа­
ны в заголовочном файле mpi. h. Все функции (за исключением 
MPI_Wtime и MPI_Wtick) имеют тип возвращаемого значения int 
и возвращают код ошибки или MPI_SUCCESS в случае успеха. Од­

нако в случае ошибки перед возвратом из вызвавшей ее функции 
вызывается стандартный обработчик ошибки, который аварий­
но терминирует программу. Поэтому проверять возвращаемое 
значение не имеет сыысла. Стандартный обработчик ошибки 
можно заменить (с помощью функции MPI_Errhandler_set), 
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но стандарт MPI не гарантирует, что программа может про­
должать работать после ошибки. Так что это тоже обычно не 
имеет смысла. 

До первого вызова любой МРl-функции необходимо вызвать 
функцию MPI_Ini t. Ее прототип: 

int MPI_Init (int *argc, char ***argv); 

где argc, argv - указатели на число аргументов программы и на 
вектор аргументов соответственно (это адреса аргументов функ­
ции main программы). Многие реализации MPI требуют, чтобы 
процесс до вызова MPI_Init не делал ничего, что могло бы из­
менить его состояние, например открытие или чтение/запись 
файлов, включая стандартные ввод и вывод. 

После окончания работы с МРl-функциями необходимо вы­
звать функцию MPI_Finalize. Ее прототип: 

int MPI_Finalize (void); 

Количество работающих параллельных процессов после вызова 
этой функции не определено, поэтому после ее вызова лучше 
всего сразу же закончить работу программы. 

Общий вид МРI-программы: 

#include "mpi.h" 
I* Другие описания *I

int main (int argc, char * argv[]) 

{ 

} 

I* Описания локальных переменных *I

MPI_Init (&argc, &argv); 

I* Тело программы *I

MPI_Finalize (); 
return О; 
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11.2. Сообщения 

Параллельно работающие МРl-процессы обмениваются между 
собой информацией и обеспечивают взаимную синхронизацию 

посредствоl\1 сообщений. 
Различают обмен сообщениями: 

• попарный (point-to-point)- сообщение посылается одним

процессом другому, в обмене участвуют только два процесса;

• коллективный - сообщение посылается процессом всем
процсссаы из его группы (коммуникатора, см. ниже) и по­
лу'1ается всемп процессами из его группы (коммуникатора).
Коллективный обмен мож<:,vr быть представлен как последо­
ва.телыюсть попарных обменов, однако специализированные
]\IРl-функцин для коллективных обменов учитывают специ­
фику построения конкретной вычислительной установки и
ыогут выполня1ъся значительно быстрее соответствующей
после;ювателы-юсти попарных обменов.

Раэличают обмен сообщениями:

• синхронный - процесс--отправитель сообщения переходит
в состояние ожидания, пока процесс-получатель не будет го­
тов взять сообщение, а процесс-получатель сообщения перс­
ходпт в состояние ожидания, пока процесс-отправитель не
будет готов послать сообщение;

• асинхронный - процесс-отправитель сообщения не ждет

готовности процесса-получателя, сообщение копируется под­

систеl\!ой l\•[PI во внутренний буфер, и отправитель продол­

жает работу.

В первых реализациях MPI все обмены были синхронными. Для 
повышения эффективности работы (з;:�, счет параллельности ра­

боты процесса и пересылки сообщения) последние реализации 
MPI стараются сделать как можно больше обменов асинхронны-
1\Ш. Например, если размер сообщения небольшой, то его обычно 
буферизуют и устраивают асинхронный обмен. Длительное вре-
1\!Я все коллективные обмены были синхронными. 
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Отметим, что поведение некачественной программы l\южет 

быть разным при использовании синхронного или асинхронного 

режима. Например, если процесс А посылает сообщение процес­

су В, который не вызывает функцию получения сообщения, то 

это приводит к <<зависанию>> процесса А в синхронном режиме. 

В асинхронном режиме такая программа будет работать. 

Основные составляющие сообщения: 

1. Блок данных сообщения-представляется типом void*.

2. Информация о данных сообщения:

(а) тип данных-представляется типом MPI_Datatype; со­

ответствие МРI-типов данных и типов языка С приведе­
но в табл. 11.1. 

(Ь) количество данных - количество единиц данного типа 
в блоке сообщения. Представляется типом int. (Причина 
появления этого поля достаточно очевидна: выгоднее за 
один раз передать большое сообщение с 10-ю элементами, 
чем посылать 10 сообщений с одним элементом.) 

Таблица 11.1. Соответствие типов данных MPI 

и типов языка С 

Тип l\IPI Тип С 

MPI CHAR signed char 
-

!\.fPI SHORT signed slю1·t int 
-

MPI 
-

INT signed iнt 

MPI LONG signed long iпt 
-

MPI 
-

UNSIGNED CHAR uнsigned char 

MPI 
-

UNSIGNED 
-

SHORT 1шsig11ed short int 

l\1PI UNSIGNED INT uнsigned int 
- -

MPI UNSIGNED LONG ш1signcd long int 
- -

MPI FLOAT float 
-

MPI DOUBLE douЫe 
-

l\1PI 
-

LONG DOUBLE loнg douЫe 
-

l\'1PI БУТЕ нnsigned ct1ar 
-

!\IPI PACKED 
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3. Информация о получателе и отправителе сообще­
ния:

(а) коммуникатор- идентификатор группы запущенных 
программой параллельных процессов, которые могут об­
мениваться между собой сообщениями. Представляет­
ся типом MPI_Coпun. Как получатель, так и отправитель 
должны принадлежать указанной группе. Процесс мо­
жет принадлежать одновременно многим группам, все 
запущенные процессы принадлежат группе с идентифи­
катором MPI_COMM_WORLD. 

(Ь) ранг получателя - номер процесса-получателя в ука­
занной группе (коммуникаторе). Представляется типом 
int. Это поле отсутствует при коллективных обменах 
сообщениями. 

(с) ранг отправителя - номер процесса-отправителя в 
указанной группе (коммуникаторе). Представляется ти­
пом int. Получатель может указать, что он будет прини­
мать только сообщения от отправителя с определенным 
рангом, или использовать константу MPI_ANY _SOURCE, 
позволяющую принимать сообщения от любого отпра­
вителя в группе с указанным идентификатором. Это 
поле отсутствует при коллективных обменах сообще­
НИЯI\IИ. 

4. Тег сообщения - произвольное число типа int ( стандарт
гарантирует возможность использования чисел от О до 215),
приписываемое отправителем сообщению. Получатель мо­
жет указать, что он будет принимать только сообщения,
имеющие определенный тег, или использовать константу
MPI_ANY_TAG, позволяющую принимать сообщения с любым
тегом. Это поле отсутствует при коллективных обменах со­
общениями, поскольку все процессы обмениваются одинако­
ВЫI\JИ по структуре данными и в первых версиях MPI все
коллективные обмены были синхронными.
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11.3. Коммуникаторы 

Напомним, коммуникатор-это объект типа MPI_Comm, пред­
ставляющий собой идентификатор группы запущенных про­
граммой параллельных процессов, которые могут обмениваться 
сообщениями. Коммуникатор является аргументом всех функ­
ций, осуществляющих обмен сообщениями. Программа может 
разделять исходную группу всех запущенных процессов, иден­
тифицируемую коммуникатором MPI_COMM_WORLD, на подгруппы 
для: 

• организации коллективных обменов внутри этих подгрупп,
• изоляции одних обменов от других (так часто поступают па­

раллельные библиотечные функции, чтобы их сообщения не
пересекались с сообщениями вызвавшего их процесса),

• учета топологии распределенной вычислительной установ­
ки (например, часто распределенный кластер можно пред­
ставить в виде пространственной решетки, составленной из
скоростных линий связи, в узлах которой находятся рабо­
чие станции; скорости обмена данными между узлами тут
различны и это можно учесть введением соответствующих
коммуникаторов).

Получить количество процессов в группе (коммуникаторе)
можно с помощью функции MPI_Comm_size. Ее прототип: 

int MPI_Comm_size (MPI_Comm comm, int *size); 

где соmm-коммуникатор (входной параметр), size -указатель 
на результат. Например, общее количество запущенных процес­
сов можно получить следующим образом: 

int р; 
MPI_Comm_size (MPI_COMM_WORLD, &р); 

Получить ранг (номер) процесса в группе (коммуникаторе) 
можно с помощью функции MPI_Comm_rank. Ее прототип: 

int MPI_Comm_rank (MPI_Comm comm, int *rank); 
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где comm - коммуникатор ( входной параметр), rank - указатель 
на рс3ультат. Например, номер текущего процесса среди всех 
запущенных мож110 получить следующим образом: 

int my_rank; 
MPI_Comm_rank (MPI_COMM_WORLD, &my_rank); 

11.4. Попарный обмен сообщениями 

Послать сообщение можно с помощью функции MPI_Send. Ее 
щютотип: 

int MPI_Send (void *buf, int count, 
MPI_Datatype datatype, int dest, int tag, 
MPI_Comm comm); 

1')..1.С входные параметры: 

• buf - адрес буфера с данными,
• count - число элементов (типа datatype) в буфере,
• datatype - тип данных каждого из элементов буфера,
• dest---paнг (номер) получателя в коммуникаторе (группе)

comm,
• tag -- тег сообщения,
• comm - комму1111катор .

Эта функция может перевести текущий процесс в состояние 
ожиданпя, пока получатель с 1юl\1е1юl\1 dest в группе comm не 
приыет сообщение с тегом tag ( если используется синхронный 
режим обмена). 

Получить сообщf'нне l\Южно с помощью функции MPI_Recv. 
Ее прототип: 

int MPI_Recv (void *buf, int count, 
MPI_Datatype datatype, int source, int tag, 
MPI_Comrn comm, MPI_Status *status); 

где входные параметры: 

• buf - адрес буфера с данными, где сле;1,ует разместить по­
лученное сообщение,
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• count - максимальное число элементов (типа datatype) в бу­
фере,

• datatype - тип данных каждого из элементов буфера,
• source --ранг (номер) отправителя в коммуникаторе (груп­

пе) coпun (может быть MPI_ANY_SOURCE),

• tаg-тег сообщения (может быть MPI_ANY _TAG),
• comm - коммуникатор,

и выходные параметры (результаты): 

• buf - полученное сообщение,

• status - информация о получеюЮl\t сообщении (см. ниже).

Эта функция переводит текущий процесс в состояние ожидания, 
пока отправитель с номером source (или любым номером, если в 
качестве ранга используется константа MPI_ANY_SOURCE) в груп­
пе comm не отправит сообщение с тегом tag (или любым тегом, 
если в качестве тега используется константа MPI_ANY_TAG). 

При попарных обменах сообщениями получатель сообще­
ния может получить через переменную status типа MPI_Status 
* информацию о полученном сообщении. Структура данных
MPI_Status включает в себя следующие поля:

• MPI_SOURCE- рея.льный ранг отправителя (может потребо­
вап,ся, еслп в качестве ранга отправители использована кон­
станта MPI_ANY_SOURCE),

• MPI_ TAG - реальный тег сообщения (может потребоваться,

если в качестве тега сообщения использована константа
MPI_ANY _TAG),

• MPI_ERROR-- код ошибки,

• дополнительные служебные поля, зависящие от реализации
MPI.

Размер полученного сооGщения непосредственно в структуре 
данных MPI_Status не хранится, но может быть получен из нее 
с помощью функции MPI_Get_count. Ее прототип: 

int MPI_Get_count (MPI_Status *status, 
MPI_Datatype datatype, int *count); 
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где входные параметры: 

• status - информация о полученном сообщении,
• datatype -тип данных, в единицах которого требуется по­

лучить разыер сообщения,

и выходной параметр (результат): 

• count - коли•rество полученных элементов в единицах типа
datatype или константа MPI_UNDEFINED, если длина данных
сообщения не делится нацело на размер типа datatype.

Заметиы, что при коллективных обменах получатель инфор-
мацию о сообщении не получает, поскольку процессы обr--1енива­
ются одпнаковыыи по структуре данными. 

Еще раз отыетим, что поведение некачественной программы 
может быть разным при использовании синхронного или асин­
хронного режима отправки сообщений. Например, если процесс 
А последовательно посылает процессу В два сообщения с тегами 
О и 1, а процесс В последовательно вызывает функцию получе­
ния сообщения с тегами 1 и О, то это приводит к <<Зависанию>> 
обоих процессов в синхронном режиме. В асинхронном режиме 
такая программа будет работать. 

11.5. Операции ввода-вывода в МРl-программах 

РасС11ютрим вна,1але стандартный ввод-вывод (на экран). Здесь 
ситуация зависит от конкретной реализации MPI: 

• Существуют реализации MPI, в которых всем работающим
процессам раэрешено осуществлять ввод-вывод на экран. В
этом случае на экране будет наблюдаться переыешанный вы­
вод от всех процессов, в котором часто трудно разобраться.

• Для предотвращения перемешивания вывода разных процес­
соn некоторые реализации f\,fPI (и таких большинство) раз­
решают осуществлять ввод-вывод на экран только процессу
с номером О в группе MPI_COMM_WORLD. В этом случае осталь­
ные процессы посылают этому процессу запросы на произ­
водство своего ввода-вывода на экран в качестве сообщений.
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Этим обеспечивается последовательный вывод на экран {без 

перемешивания). 

• Существуют реализации MPI, в которых всем работающим
процессам запрещено осуществлять ввод-вывод на экран.

При выводе на экран создается файл, в котором содержит­
ся все выведенное, а при вводе с клавиатуры фиксируется
ошибка ввода. Обычно такие реализации работают на рас­
пределенных вычислительных установках, где запуск про­
грам1-.1ы на исполнение осуществляется с выделенного ком­
пьютера, не входящего в состав узлов, на которых собствен­
но исполняется МРl-программа. В таких реализациях весь
ввод-вывод осуществляется через файлы.

Поэтому для написания переносимой между различными реали� 

зациями МРl-программы следует придерживаться предположе­
ния о том, что программа не может осуществлять стандартный 
ввод-вывод и должна работать только с файлами (см. ниже). 
Единственным исключением является вывод на экран, который 

появится либо на экране, либо в созданном системой файле. 
На файловый ввод-вывод какие-либо ограничения формаль­

но отсутствуют. Однако при одновременной записи данных в 
файл несколькими процессами может происходить их переме­
шивание и даже потеря. Одновременное чтение данных из фай­
ла несколькими процессаl\ш на распределенной вычислитель­

ной установке может приводить к блокировке всех процессов, 
кроме одного, и их последовательному выполнению. Это свя­

зано с работой сетевой файловой системы (NFS, network file 
system). Поэтому для написания переносимой между различ­
ными реализациями МРl-программы следует придерживаться 

предположения о том, что осуществлять файловый ввод-вывод 

можно только процессу с номером О в группе MPI_COMM_WORLD. 
Остальные процессы получают или передают ему свои данные 
посредствоы сообщений. Естественно, это не относится к ситу­
ации, когда каждый из процессов осуществляет ввод-вывод в 
свой собственный файл. 
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11.б. Пример простейшей МРl-программы

Рассl\ютрим n к<1честве примера программу, выводящую на 

экран сообщение <<Hell0>> от каждого из процессов. 

#include <stdio.h> 
#include <string.h> 
#include "mpi.h" 

f* Длина буфера сообщений *I 
#define BUF_LEN 256 

int 
main (int argc, char *argv[]) 

{ 
int my_rank; f* ранг текущего процесса *I · 
int р; f* общее число процессов *I 
int source; I* ранг отправителя *I 
int dest; I* ранг получателя *f 
int tag = О; f* тег сообщений *f 
char message[BUF_LEN];/* буфер для сообщения *f 
MPI_Status status; f* информация о полученном 

f* Начать работу с MPI *I 
MPI_Init (&argc, &argv); 

сообщении *f 

I* Получить номер текущего процесса в группе всех 
процессов *f 

MPI_Comm_rank (MPI_COMM_WORLD, &my_rank); 

f* Получить общее количество запущенных процессов *I 
MPI_Comm_size (MPI_COMM_WORLD, &р); 

f* Посылаем сообщения процессу О, который их выводит 
на экран *f 



11. 7. Дополнительные функции г�опарного обмена сообщениями 243 

} 

if (my_rank != О) 

{ 

} 
else 

{ 

} 

I* Создаем сообщение *I 
sprintf (message, "Hello from process %d!", 

my_rank); 
I* Отправляем его процессу О *I 
dest = О; 
MPI_Send (message, strlen (message) + 1, MPI_CHAR, 

dest, tag, MPI_COMM_WORLD); 

I* В процессе О: получаем сообщение от процесса 
1, ... ,р-1 и выводим его на экран *I 

for (source = 1; source < р; source++) 
{ 

} 

MPI_Recv (message, BUF_LEN, MPI_CHAR, source, 
tag, MPI_COMM_WORLD, &status); 

printf ("%s\n", message); 

I* Заканчиваем работу с MPI *I 
MPI_Finalize (); 
return О; 

11. 7. Дополнительные функции для попарного обмена
сообщениями

Для удобства программиста стандарт :MPI пре,�_оставляет ряд 

дополнительных функций для по11арпого обмена сообщенияыи. 

Любая програыма может быт�, написана без их и,пользованин, 

но длн многих вычислительных ус.тановок они 1\Югут зн.1читель­

но увеличить производитеJ1ыюсть. 
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Если программе важно, чтобы был использован именно 
синхронный способ посылки сообщений, то вместо функции 
МPI_Send можно использовать функцию MPI_Ssend, имеющую те 
же аргументы и возвращаемое значение (дополнительная буква 
s в имени - от synchronous). 

При попарных обменах между процессами очень часто тре­
буется иl\Iенно обменяться данными, т. е. послать и получить 
разные сообщения. При этом программный код для этих про­

цессов получается несимметричным: для одного из них надо 
вначале использовать MPI_Send, а затем MPI_Recv, для второ­
го - эти же функции, но в обратной последовательности. Если 
же оба процесса вызывают эти функции в одинаковом порядке, 
то в случае синхронного обмена сообщениями они оба <<зави­
сают>>. Для этой ситуации стандарт MPI предоставляет функ­
цию MPI_Sendrecv, являющуюся как-бы гибридом MPI_Send и 
MPI_Recv. Ее прототип: 

int MPI_Sendrecv (void *sendbuf, int sendcount, 
MPI_Datatype sendtype, int dest, int sendtag, 

void *recvbuf, int recvcount, 

MPI_Datatype recvtype, int source, int recvtag, 

MPI_Comm comm, MPI_Status *status); 

где входные параметры: 

• sendbuf - адрес буфера с посылаемыми данными,

• sendcount - число элементов (типа sendtype) в буфере
sendbuf,

• sendtype - тип данных каждого из элементов буфера
sendbuf,

• dest - ранг (номер) получателя в коммуникаторе (группе)
comm,

• sendtag - тег посылаемого сообщения,
• recvbuf - адрес буфера с данными, где следует разместить

полученное сообщение,
• recvcount- максимальное •шсло элементов (типа recvtype)

в буфере recvbuf,



11. 7. Дополнительные функции попарного обмена сообщениями 245

• recvtype - тип данных каждого из элементов буфера
recvbuf,

• source - ранг (номер) отправителя в коммуникаторе (груп­
пе) comm (может быть MPI_ANY_SOURCE),

• recvtag- тeг получаемого сообщения (может быть констан­
той MPI_ANY_TAG),

• comm - коммуникатор,

и выходные параметры (результаты): 

• recvbuf - полученное сообщение,
• status - информация о полученном сообщении.

Эта функция может перевести текущий процесс в состояние 
ожидания, пока получатель с номером dest в группе comm не 
примет сообщение с тегом sendtag ( если используется с11нхрон­
ный режим обмена) или пока отправитель с номером source 
(или любым номером, если в качестве ранга используется кон­
станта MPI_ANY _SOURCE) в группе cornrn не отправит сооб�дение с 
тегом recvtag (или любым тегом, если в качестве тега ис1юльзу­
ется константа MPI_ANY_TAG). Посылать сообщения для приема 
этой функцией можно с помощью любой функции для поnарных 
обменов, например, MPI_Send или ее самой, принимать сообще­
ния от этой функции можно посредством любой функции для 
попарных обменов, например, MPI_Recv или ее самой. 

Стандарт MPI запрещает использовать одинаковые указате­
ли для любых двух аргументов любой МРI-функции, если хотя 
бы один из них является выходным параметром. Для функции 
MPI_Sendrecv это означает, что нельзя использовать одиJJаковые 
значения для входных и выходных буферов. Если программе это 
требуется, то надо применять функцию MPI_Sendrecv_replace. 
Ее прототип: 

int MPI_Sendrecv_replace (void *buf, int count, 
MPI_Datatype datatype, int dest, int sendtag, 
int source, int recvtag, 
MPI_Comm cornrn, MPI_Status *status); 
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где входные параметры: 

• buf -адрес буфера с посылаемыми данными (также явля-
ется ныходныl\1 параметром),

• count -- число элементов (типа datatype) в буфере,

• datatype - тип данных каждого из элементов буфера,

• dest-paнг (номер) получателя в ком1\1уникаторе (группе)
comm,

• sendtag - тег посылаемого сообщения,

• sоurсе-1жнг (номер) отправителя в коммуникаторе (груп­
пе) comm (может быть MPI_ANY_SOURCE),

• recvtag- тe1' получаемого сообщения (может быть констан­
той MPI_ANY_TAG),

• comm - коммуникатор,

и выходные параыетры (результаты): 

• buf -полученное сообrцепие (также является входным па­
раметром),

• status -- инфорl\1.-lция о полученном сообщении.

Работа этой функции аналогична MPI_Sendrecv, за исключени­
ем того, что нолученные данные замещают посланные. 

В некоторых вычислптеJ1ы1ых установках для обмена сооб­
щеш1ями существует специа.;1ы1ый коммуниюtционный процес­
сор, способный рп.ботать параллельно с основным. Следователь­
но, передача сооб1цений и вычислительная работа могут идти 
параллельно, еслн для проведения дальнейших вычислений дан­
ные сооб1цеш1я не нужны (получателю) и не будут модифици­
роваться ( отнравителсы). Послать сооб,цение без блокирования 
процесса !\южно с помощью функции MPI_Isend (дополнитель­
ная буква i n имени - от iшшe<.liate). Ее прототип: 

int MPI_Isend (void *buf, int count, 
MPI_Datatype datatype, int dest, 
int tag, MPI_Comm comm, MPI_Request *request); 

где входные параметры: 
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• buf -- адрес буфера с данными,

• count -· число элементов (типа datatype) в буфере,

• datatype -тип данных каждого из элементов буфера,
• dest -ранг (номер) получателя в коммуникаторе (группе)

comm,
• tаg---тег сообщения,
• comm -- коммуникатор,

и выходной параметр (результат): 

• request - идентификатор запроса на обслуживание сообще­
ния; ю,rеет тип MPI_Request, не доступный пользователю
(укаэатель на объект этого типа возвращается процессу и
может быть использован в качестве аргуl\tспта для других
функций).

Принимать сообщения от этой функции можно с помощью лю­
бой функции для попарных обl\lенов, наnриыер, MPI_Recv. 

Получить сообщение без блокирования процесса можно с по­
мощью функции MPI_Irecv (дополнительная буква i в имени -­
от immediate). Ее прототип: 

int MPI_Irecv (void *buf, int count, 
MPI_Datatype datatype, int source, 
int tag, MPI_Comm comm, MPI_Request *request); 

где входные параметры: 

• buf ·- адрес буфера с данными, где следует разместить по­
лученное сообщение,

• count -максимальное число элементов (типа datatype) в бу­
фере,

• datatype -тип данных каждого из элементов буфера,
• source -- ранг (номер) отправителя в коммуникаторе (груп­

пе) comm (11.южет быть MPI_ANY_SOURCE),
• tаg-тег сообщения (может быть MPI_ANY_TAG),
• comm - коммуникатор,

и выходные параыетры {результаты): 
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• buf -- полученное сообщение,
• reques,: - идентификатор запроса на обслуживания сообще­

ния.

Посылать сообщения для приема этой функцией можно с 
помощью любой функции для попарных обменов, например, 
MPI_Send. 

Узнi'tть, доставлено ли сооб1цение (как для MPI_Isend, так и 
для MPI_Irecv), r.южно с помо1цью функции MPI_Test. Ее про­
тотип: 

int MPI_Test (MPI_Request *request, int *flag, 

MPI_Status *status); 

где входной параметр: 

• request ··- идентификатор запроса на обслуживание сообще-
1шя (также является выходным параметром: сели обслужи­
вание . завершено, то он становится равным специальному
значению MPI_REQUEST_NULL).

и выходные параметры (результаты): 

• flag-- признак окончания обслуживания, значение *flag
становится истинным, если запрос обработан,

• status - если запрос обработан, то содержит информацию
о доставленном сообщении ( используется только при полу­
чешш сообщения и в этом случае играет роль одноименного
параметра функции MPI_Recv).

Функция MPI_Test не блокирует вызвавший ее процесс, а только 
устанавливает свои аргументы указанным выше образом. Если 
требуется проверить доставку одного из нескольких сообщений, 
то можно использовать функцию MPI_Testany. Ее прототип: 

int MPI_Testany (int count, 
MPI_Request array_of_requests[], int *index, 

int *flag, MPI_Status *status); 

где входные параметры 
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• count -- количество запросов в массиве array_of_requests,
• array _of _requests - массив идентификаторов запросов на

обслуживание сообщений ( также является выходным пара­
метром: если обслуживание сообщения с номером *index
в массиве array_of_requests завершено, то соответствую­
щий элемент array _of _requests [ *index] становится рав­
ным MPI_REQUEST_NULL)

и выходные параметры (результаты): 

• flag - признак окончания обслуживания, значение *flag
становится истинным, если один из запросов обработан,

• index - если один из запросов обработан, то содержит ноl\1ер
обработанного сообщения в массиве array _of _requests,

• status - если один из запросов обработан, то содержит ин­
формацию о доставленном сообщении ( используется только
при получении сообщения и в этом случае играет роль одно­
именного параметра функции MPI_Recv).

Дождаться доставки сообщения (как для MPI_Isend, так и
для MPI_Irecv) можно с помощью функции MPI_Wait. Ее про­
тотип: 

int MPI Wai t -(MPI_Request *request, 
MPI_Status *status); 

где входной пара11,1етр 

• request - идентификатор запроса на обслуживание сообще­
ния (также является выходным параметроl\1: после заверше­
ния этой функции он становится равным MPI_REQUEST_NULL).

и выходной параметр (результат): 

• status - информация о доставленном сообщении (использу­
ется только при получении сообщения и в этом случае играет
роль одноименного параметра функции MPI_Recv).

Функция MPI_Wai t блокирует вызвавший ее процесс до оконча­
ния обслуживания сообщения с идентификатором request. Если 
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требуется дождаться доставки одного из нескольких сообщений 
то можно использовать функцию MPI_Waitany. Ее прототип: 

int MPI_Waitany (int count, 

MPI_Request array_of_requests[J, int *index, 

MPI_Status *status); 

где входные параметры: 

• count - коли•1ество запросов в массиве array _of _requests,
• array _of _requests - массив идентификаторов запросов на

обслуживание сообщений ( также является выходным па­
раметром: после завершения этой функции соответстnую-

111,ий элеl\1ент array _of _requests [ *index] становится рав­
НЫl\1 MPI_REQUEST_NULL)

и выходные параметры (результаты): 

• index - содержит номер обработанного сообщения в массиве

array_of_requests,
• status - информация о доставленном сообщении (использу­

ется только при получении сообщения и в этом случае играет
роль од11011меfшого параметра функции MPI_Recv).

Функция MPI_Wai tany блокирует вызвавший ее процесс до окон­
<1ания обработки одного из запросов на обслуживание в массиве 

array _of _requests. 

11.8. Коллективный обмен сообщениями 

Все описыпае�-1ые ниже возможности t,.,f PI япляются избыточ­

ньшп в тоы смысле, что любая програ!\11\�а 1\Южет быть написа­

на без их использования. Действительно, всякий коллективный 

обl\1ен сообщенш-1ми !\lожет быть заменен на соответствующий 

цикл попарных обменов. Однако это пµипе,цет к значнтельно­
му снижению скоростн работы программы, так как, во-первых, 
простейшее решение ( один нз процессов рассы;�ает данные все!\1 
остальным) не 1·одится (в каждый момент времени работают 
только два процесса), а, во-вторых, любое решение (t1апрш,1ер, 
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рассылка по принципу бинарного дерева: первый процесс посы­
лает данные второму, затем первый и второй посылают данные 
третьему и четвертому соответственно, и т. д.) не будет учиты­
вать специфику конкретной вычислительной установки. 

Сообщения, посылаемые с помощью функций коллективного 
обмена, не могут быть получены с помощью функций попарного 
обмена и наоборот. Напомним также, что в первых версиях MPI 
все функции коллективного обмена были синхронными и это 
наложило отпечаток на их синтаксис. 

Для синхронизации процессов можно использовать функ­
цию MPI_Barrier. Ее прототип: 

int MPI_Barrier (MPI_Comm comm); 

где входной параметр 

• comm - коммуникатор.

Функция MPI_Barrier блокирует вызвавший ее процесс до тех 
пор, пока все процессьr в группе с идентификатором comm 

(коммуникаторе) не вызовут эту функцию (ер. с фуню�ией 
synchronize в разделе lOA). 

Для рассылки данных нз одного процесса всем оста.пьпым 
в его группе можно использоватъ функцию MPI_Bcast. Ее про­
тотип: 

int MPI_Bcast (void *buf, int count, 

MPI_Datatype datatype, int root, MPI_Comm comm); 

где входные параметры: 

• buf

в процессе с номером root - адрес буфера с посылаемыми 

дю1ными ( входной параметр), 
в оста.пьных процессах группы comm - адрес буфера с л.ан­
ныии, где следует разr.�естить полученное сообщение (вы­
ходной параыетр), 

• count
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в процессе с номером root - число элементов ( типа 

datatype) в буфере, 
в остальных процессах группы comm - максимальное чис­

JЮ элементов (типа datatype) в буфере, 

• datatype -тип данных каждого из элементов буфера,
• root - ранг (номер) отправителя в коммуникаторе (группе)

comm,
• comm - коммуникатор,

и выходной параметр (результат): 

• buf - в процессах группы comm с номерами, отличными от

root, - полученное сообщение.

Эта функция должна быть вызвана во всех процессах группы 

comm с одинаковыми значениями для аргументов root и comm. 

Также в большинстве реализаций MPI требуется, чтобы значе­
ния аргументов count и datatype были одинаковыми во всех 
процессах группы comm. Эта функция рассылает сообщение buf 
из процесса с номером root всем процессам группы comm. По­

скольку все процессы вызывают эту функцию одновременно и с 

одинаковыми аргументами, то, в отличие от функций MPI_Send 

и MPI_Recv, поля tag и status отсутствуют. 
Часто требуется выполнить в каком-то смысле обратную к 

производиыой функцией MPI_Bcast операцию -переслать дан­

ные одному из процессов группы от всех остальных процессов 

этой группы; прн этом часто нужно получить не сами эти дан­

ные, а некоторую функцию от них, наприl\1ер, сумму всех дан­

ных. Для этого можно использовать функцию MPI_Reduce. Ее 

прототип: 

int MPI_Reduce (void *sendbuf, void *recvbuf, 

int count, MPI_Datatype datatype, MPI_Op ор, 

int root, MPI_Comm comm); 

где входные параметры: 

• sendbuf - адрес буфера с данными,

• count -число элементов (типа datatype) в буфере,
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Таблица 11.2. Операции над данными в MPI 

Операция MPI Значение 

MPI 
-

МАХ максимум 
MPI 

-

MIN минимум 
MPI SUM сумма 

-

MPI PROD произведение 
-

l\'IPI LAND логическое «и» 
-

MPI BAND побитовое «и» 
-

MPI LOR логическое «или» 
-

:МРI BOR побитовое «или» 
-

:МРI LXOR логическое «исключающее или» 
-

l'.-IPI 
-

BXOR побитовое «исключающее или» 
l\,IPI MAXLOC максимум и его позиция 
MPI MINLOC минимум и его позиция 

• datatype - тип данных каждого из элементов буфера,

• ор- идентификатор операции (типа MPI_Op), которую нуж­
но осуществить над пересланными данными для получения
результата в буфере recvbuf; см. в табл. 11.2 возможные
значения этого аргумента,

• root --- ранг (номер) получателя в коммуникаторе (группе)
comm,

• comm - КОМl\·tуникатор,

и выходной параметр (результат): 

• recvbuf - указатель на буфер, где требуется получить ре­
зультат; используется только в .процессе с номером root в
группе comm.

Эта функция должна быть вызвана во всех процессах группы 
comm с одинаковыми значения11ш для аргументов root, comm, 
count, datatype, ор. 

Если требуется, чтобы результат, полученный посредством 
функции MPI_Reduce, стал известен не только одному процессу 
(с номером root в группе comm), а всем процессам группы, то 
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/\Южно использовать MPI_Bcast, но более эффективным реше­

нием является функция MPI_Allreduce. Ее прототип: 

int MPI_Allreduce (void *sendbuf, void *recvbuf, 
int count, MPI_Datatype datatype, MPI_Op ор, 
MPI_Comm comm); 

где входные параметры: 

• sendbuf - адрес буфера с данными,

• count - число элементов (·1·ипа datatype) в буфере,

• datatype -тип данных каждого из элементов буфера,

• ор - идентифпкатор операц1111 (тнпа MPI_Op), которую нуж­

но осу1цествить шщ пересланныыи данными для получения

результат<1. н буфере recvbuf; см. в табл. 11.2 возможные

значения этого аргуl\1ента,

• comm - комыуннкатор,

и выходной параметр (результат): 

• recvbuf - указатель на буфер, где требуется получить ре­

зультат.

Функция аналогична MPI_Reduce, но результат образуется в бу­

фере recvbuf во всех процессах группы comm, поэтоl\-rу нет ар­

гумента root. 
Если требуется выпоJШИ'lЪ свою собственную операцию над 

NШНЫI\Ш в функциях MPI_Reduce и MPI_Allreduce, то ыожно 

11сrюльзовать функцию MPI_Op_create. Ее прототип: 

int MPI_Op_create (MPI_User_function *function, 
int commute, MPI_Op *ор); 

1·;1.1· входные параыетры: 

• function -указатель на пользовательскую функцию, зада-

10111,ую операцию и ш.rеющую тип MPI_User _function, опре­

;�1·.11е1шый как

typedef void (MPI_User_function) (void * а, 
void * Ь, int * len, MPI_Datatype * datatype); 
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Эта функция выполняет операцию ор над элементами типа 

datatype :массивов а и Ь длины *len и складывает результат 

в массив Ь: 

for (i 

b[i] 

О; i < *len; i++) 

a[i] ор b[i]; 

• cornmute -целое число, истинное, если ·операция комиутатив­

па, и равное О иначе,

и выходной параметр (результат): 

• ор- идентификатор операции (типа MPI_Op).

Полученный идентификатор операции ор можно исполь:ювать в 

функциях MPI_Reduce и MPI_Allreduce. После окончания рабо­

ты с созданной операцией необходимо освободить испол1.,зуемые 

для нее ресурсы с помощью функции MPI_Op_free. Ее прототип: 

int MPI_Op_free (MPI_Op *ор); 

где входной параметр: 

• ор - идентификатор операции, возвращенный функцией

MPI_Op_create,

и выходной параметр (результат): 

• ор-устанавливается в MPI_OP _NULL

Важным случаеr,.1 коллективных обменов является запрос па

завершение всех процессов, например, в случае ошибки в одном 

из них. Для этого можно использовать функцию MPI_Abort. Ее 

прототип: 

int MPI_Abort (MPI_Comm cornm, int errorcode); 

где входные параметры: 

• comm -коммуникатор, описывающий группу задач, которую

надо завершить,

• errorcode - код завершения (аналог аргумента функции

exit).
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Функция завершает все процессы в группе comm. В большинстве 

реализаций завершаются все запущенные процессы. 

11.9. Пример МРl-проrраммы, вычисляющей 
определенный интеграл 

Рассмотрим в качестве приr-.1ера программу, вычисляющую 

определенный интеграл. Идея ускорения работы описана в раз­

деле 1.2, с. 12. Простейшая реализация этой задачи приведе­

на в разделе 1.5, с. 21. Каждый из процессов инициализиру­

ет подсистему MPI с помощью MPI_Init, получает свой но­

мер и общее количество процессов посредством MPI_Comm_rank 

и MPI_Comm_size. Основная работа производится в функции 

process_function, по окончании которой процесс заканчивает 

работу с l\1PI с помощью MPI_Finalize и завершается. Функция 

process_function вычисляет свою часть интеграла с помощью 

функции integrate и прибавляет его к ответу total в процессе 

с нor-.1epor-.lO посредством MPI_Reduce. Процесс с номером О перед 

окончаниеы своей работы выводит переменную total па экран. 

В ЭТОJ\1 разделе ыы разовьем описанный выше пример так, 

чтобы входные данные считьша.1rись из файла. Этим будет зани­

маться функция get_data. В процессе с номером О она откры­

вает указанный файл, считьшает из него данные и закрывает. 

Затем эти данные рассылаются из процесса с номером О всем 

остальньш процессам с помощью MPI_Bcast. Текст программы: 

#include <stdio.h> 

#include "mpi.h" 

#include "integral.h" 

f* Получить данные *f 

void get_data (char * name, douЫe *a_ptr, douЫe *b_ptr, 

int *n_ptr, int my_rank); 

int 

main (int argc, char **argv) 
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{ 

int my_rank; 

int р; 

douЫe а; 

douЬle Ь; 

int n; 

!• длина отрезка 

douЬle len; 

I* ранг текущего процесса *I

I* общее число процессов *I 

!• левый конец интервала */ 

I* правый конец интервала */ 

I* число точек разбиения */ 

интегрирования для текущего процесса•/ 

!• левый конец интервала для текущего процесса •/ 

douЫe local_a; 

!• правый конец интервала для текущего процесса •/ 

douЫe local_b; 

!• число точек разбиения для текущего процесса •/ 

int local_n; 

!• значение интеграла в текущем процессе *I 

douЬle integral; 

douЬle total; I* результат: интеграл *I 

!• Начать работу с MPI *I

MPI_Init (&argc, &argv); 

I* Получить номер текущего процесса в группе всех 

процессов *I 

MPI_Comm_rank (MPI_COMM_WORLD, &my_rank); 

I* Получить общее количество запущенных процессов *I

MPI_Comm_size (MPI_COMM_WORLD, &р); 

I* Получить данные *I

get_data ("a.dat", &а, &Ь, &n, my_rank); 

len = (Ь - а) / р; 

local_n = n / р; 

I* Вычисляем отрезок интегрирования для текущего 

9--4017 
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} 

процесса *f 
local_a = а +  my_rank * len; 
local_b = local_a + len; 
I* Вычислить интеграл в каждом из процессов *f 
integral = integrate (local_a, local_b, local_n); 

f* Сложить все ответы и передать процессу О *I 
MPI_Reduce (&integral, &total, 1, MPI_DOUBLE, MPI_SUM, 

О, MPI_COMM_WORLD); 

I* Напечатать ответ *f 
if (my_rank == О) 

printf ("Integral frorn i.lf to i.lf 
а, Ь, total); 

I* Заканчиваем работу с MPI *I 
MPI_Finalize (); 
return О; 

i..18lf\n", 

f* Прочитать значения а, Ь, и n из файла name *f 
void 
get_data (char * name, douЫe *a_ptr, douЬle *b_ptr, 

int *n_ptr, int rny_rank) 

{ 
I* Читаем данные в процессе О *f 
if (my_rank == О) 

{ 

FILE *in 
if ( ! in) 

{ 

fopen (name, "r"); 

fprintf (stderr, "Error opening data file i.s\n' 
name); 

*a_ptr О.; 
*b_ptr О.; 
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} 

} 

} 
else 

{ 

} 

*n_ptr 1
' 

if (fscanf (in, "i.lfi.lfi.d", a_ptr, b_ptr, n_ptr) 
!= 3) 

{ 

fprintf 

*a_ptr =

*b_ptr
*n_ptr =

} 

(stderr, 
"Error reading data file i.s\n", name); 

о.; 

о.; 
1; 

fclose (in); 

f* Рассылаем данные из процесса О остальным *f 
MPI_Bcast (a_ptr, 1, MPI_DOUBLE, О, MPI_COMM_WORLD); 
MPI_Bcast (b_ptr, 1, MPI_DOUBLE, О, MPI_COММ_WORLD); 
MPI_Bcast (n_ptr, 1, MPI_INT, О, MPI_COMM_WORLD); 

Текст функции integrate приведен в разделе 1.1. 

11.10. Работа с временем 

В разделе 10.4 мы вычисляли процессорное и астрономическое 
времена работы программы. Однако для МРI-приложения про­

цессnрное время не является показателем скорости работы, по­

скольку оно не учитывает время передачи сообщений между 

процессами (которое может быть больше процессорного време­
ни!). С другой стороны, и абсолютное значение астрономиче­
ского времени может быть различным в разных процессах из-за 
несинхронности часов на узлах параллельного компьютера. По­
этому MPI предоставляет свои функции работы с временем. 
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Узнать астрономическое время можно с помощью функ­

ции MPI_Wtime. Ее прототип: 

douЫe MPI_Wtime (); 

Она возвращает для текущего процесса астрономическое время 

в секундах от некоторого фиксированного момента в прошлом. 
Это время может быть, а может не быть синхронизированным 

для всех процессов работающей программы. Точность функции 
MPI_Wtime можно узнать с помощью функции MPI_Wtick. Ее 

прототип: 

douЬle MPI_Wtick (); 

Она возвращает частоту внутреннего таймера. Например, ес­
ли счетчик времени увеличивается 100 раз в секунду, то эта 

функция вернет 10-2.
На всех вычислительных установках, где используется MPI, 

разрешается запускать только один процесс на каждый процес­

сор {иначе очень тяжело балансировать загруженность всех уз­

лов параллельного компьютера). В такой ситуации астрономи­
ческое время почти совпадает с временем работы задачи. 

Типичная процедура измерения времени работы программы 
в MPI выглядит следующим образом: 

douЬle t; 

I* Синхронизация всех процессов *I 

MPI_Barrier (MPI_COММ_WORLD); 

I* Время начала */ 

t = MPI_Wtime (); 

/*Вызов процедуры, время работы которой надо измерить*/ 

I* Синхронизация всех процессов •/ 

MPI_Barrier (MPI_COMM_WORLD); 

I* Время работы */ 

t = MPI_Wtime () - t; 
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11.11. Пример МРl-программы, вычисляющей 
произведение матрицы на вектор 

Рассмотрим задачу вычисления произведения матрицы на век­
тор (см. раздел 10.4). Файлы проекта: 

• main. с - инициализация данных и вывод результатов;
• matrices. с, matrices. h - исходный текст и соответствую­

щий заголовочный файл для функций, работающих с мат­

рицаыи.
• Makefile - для сборки проекта.

Файл main. с:

#include <stdio.h> 
#include <stdlib.h> 
#include "mpi.h" 
#include "matrices.h" 

f* Получить данные *f 
void get_data (char * name, int *n_ptr, int my_rank); 

f* Количество тестов (для отладки) *f 
#define N_TESTS 10 

int 
main (int argc, char **argv) 

{ 

int my_rank; 
int р; 
int n; 
douЫe t; 

f* ранг текущего процесса *f 
f* общее число процессов *f 
f* размер матрицы и векторов *f 
f* время работы всей задачи */ 

int first_row, last_row, rows; 
·int max_rows;
douЫe *matrix;
douЫe *vector;

f* матрица */ 
f* вектор *f 

10 4017 
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douЫe *result; 

int i; 
I* результирующий вектор *I

I* Начать работу с MPI *I

MPI_Init (&argc, &argv); 

I* Получить номер текущего процесса в группе всех 

процессов *I

MPI_Comm_rank (MPI_COMM_WORLD, &my_rank); 

I* Получить общее количество запущенных процессов *I

MPI_Comm_size (MPI_COMM_WORLD, &р); 

I* Получить данные */ 
get_data ("a.dat", &n, my_rank); 

I* Первая участвующая строка матрицы *I

first_row = n * my_rank; 

first_row /= р; 

I* Последняя участвующая строка матрицы *I

last_row = n * (my_rank + 1); 
last_row = last_row / р - 1; 

I* Количество участвующих строк матрицы *I

rows = last_row - first_row + 1; 

I* Вычисляем максимальное количество строк на процесс*/ 

max_rows = n / р + n % р; 

I* Выделение памяти под массивы *I

if (!(matrix (douЫe*) 

{ 

} 

malloc (max_rows * n * sizeof (douЬle))) 

fprintf (stderr, "Not enough memory!\n"); 

MPI_Abort (MPI_COMM_WORLD, 1); 
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if (!(vector = (douЫe*) 

{ 

} 

malloc (max_rows * sizeof (douЫe)))) 

fprintf (stderr, "Not enough memory!\n"); 

MPI_Abort (MPI_COMM_WORLD, 2); 

if (!(result (douЫe*) 

{ 

} 

malloc (max_rows * sizeof (douЬle)))) 

fprintf (stderr, "Not enough memory!\n"); 

MPI_Abort (MPI_COMM_WORLD, 3); 

I* Инициализация массивов *I 

init_matrix (matrix, n, first_row, last_row); 

init_vector (vector, first_row, last_row); 

if (my_rank == О) 

{ 

int 1; 

printf ("Matrix:\n"); 

print_matrix (matrix, n, first_row, last_row); 

printf ("Vector:\n"); 

print_vector (vector, first_row, last_row); 

1 = (max_rows * n + 2 * max_rows) * sizeof (douЬle); 

printf ("Allocated %d bytes (%dKb or %dMb) \ 

of memory per process\n", 1, 1 >> 10, l >> 20); 

} 

I* Синхронизация всех процессов *I 

MPI_Barrier (MPI_COMM_WORLD); 

/* Время начала *I 

t = MPI_Wtime (); 
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} 

for (i = О; i < N_TESTS; i++) 

{ 
I* Умножить матрицу на вектор для процесса с номером 

my_rank из общего количества р */ 
matrix_mult_vector (matrix, vector, result, n, 

first_row, last_row, my_rank, р); 
printf ("Process %d mult %d times\n", my_rank, i); 

} 

I* Синхронизация всех процессов *f 
MPI_Barrier (MPI_COMM_WORLD); 
I* Время работы *I 
t = MPI_Wtime () - t; 
if (my_rank == О) 

{ 

} 

print_vector (result, first_row, last_row); 
printf ("Total time = %le\n", t); 

I* Освобождаем память *f 
free (matrix); 
free (vector); 
free (result); 

I* Заканчиваем работу с MPI *f 
MPI_Finalize (); 
return О; 

void 
get_data (char * name, int *n_ptr, int my_rank) 

{ 
f* Читаем данные в процессе О *f 
if (my_rank == О) 

{ 



11.11. Пример МРl-программы, умножающей матрицу на вектор 265 

} 

} 

FILE *in = fopen (name, "r"); 
if (!in) 

{ 

} 

else 

{ 

} 

fprintf (stderr, "Error opening data file %s\n", 
name); 

*n_ptr О; 

if (fscanf (in, "%d", n_ptr) != 1) 

{ 

} 

fprintf (stderr, 
"Error reading data file %s\n", name); 

*n_ptr = О;

fclose (in); 

I* Рассылаем данные из процесса О остальным *I 
MPI_Bcast (n_ptr, 1, MPI_INT, О, MPI_COMM_WORLD); 

I3 функщш main ка.ж:дый 1п процессов и11ицнализ11рует 110,�­
систему MPI с поl\ющыо MPI_Init, полу•rает свой номер my_rank 
и общее количееrво процессов р 1юсредспюм MPI_Comm_rank и 
MPI_Comm_size. Затем значение размерности матрицы n сч11ты­
ваетб1 1п файла функцией get_data так, как описано в разде­
ле 11.9. I3 каждом из процессов хранятся строки матрИI\Ы а и 
КО!\IПОНС!IТЫ векторов Ь И С С HOI\Iepal\111 

n * my_rank / р, ... , n * (my_rank + 1) / р - 1.

Поскольку эти блоки пересылаются 1\Iежду процессаl\lи, то па­
мять в каждоl\1 из них выделяется под блок с максн;1,1а.11ы1ыl\1 
•шсло;,.1 компонент

max_rows = n / р + n % р.
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Блоки инициализируются в каждом из процессов, затем про­

цесс с номером О печатает свою часть. С помощью механизма, 

описанного в разделе 11.10, замеряется время работы функции 

matrix_mul t_ vector, вычисляющей компоненты произведения 

матрицы на вектор, ииеющие индексы в диапазоне 

n * my_rank / р, ... , n * (my_rank + 1) / р - 1.

Для целей отладки и более точного замера времени работы 

функция. вычисления произведения матрицы на вектор вызы­

вается в цйкле N_TESTS раз. 

Заголовочный файл matrices. h: 

void init_matrix (douЫe * matrix, int n, int first_row, 

int last_row); 

void init_vector (douЫe * vector, int first_row, 

int last_row); 

void print_matrix (douЫe * matrix, int n, int first_row, 

int last_row); 

void print_vector (douЫe * vector, int first_row, 

int last_row); 

void matrix_mult_vector (douЫe *а, douЫe *Ь, douЫe *С, 

int n, int first_row, 

Файл matrices. с: 

#include <stdio.h> 

#include "matrices.h" 

#include "mpi.h" 

int last_row, int my_rank,int р); 

I* Инициализация матрицы */ 

void init_matrix (douЫe * matrix, int n, int first_row, 

int last_row) 

{ 

int i, j; 

douЫe *а = matrix; 
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} 

for (i = first_row; i <= last_row; i++) 
for (j = О; j < n; j ++) 

* (а++) = ( i > j ) ? i : j ;

I* Инициализация вектора *I 

void init vector (douЫe * vector, int first_row, 
int last_row) 

{ 

} 

int i; 
douЫe *Ь = vector; 

for (i = first_row; i <= last_row; i++) 
*(Ь++) = 1.; 

#define N_MAX б 

I* Вывод матрицы *I 

void print_matrix (douЫe * matrix, int n, int first_row 
int last_row) 

{ 

} 

int 
int 
int 
int 

i' j; 
rows 
mi =

mj 

= last_row - first_row + 1; 
(rows > N_MAX? N_MAX: rows); 
(n > N_MAX? N_MAX : n); 

for (i = О; i < mi; i++) 
{ 

} 

for (j = О; j < mj; j++) 
printf ( 11 %12.бlf", matrix[i * n + j]);

printf ("\n"); 
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f* Вывод вектора *I 
void print_vector (douЫe * vector, int first_row, 

int last_row) 

{ 

} 

int i; 
int rows = last_row - first_row + 1; 
int m = (rows > N МАХ? N_MAX rows); 

for (i = О; i < m; i++) 
printf (" %12.бlf", vector[i]); 

printf ("\n"); 

I* Умножить матрицу а на вектор Ь, с = аЬ для процесса с 
номером my_rank из общего количества р */ 

void matrix_mult_vector (douЫe *а, douЫe *Ь, douЫe *С, 
int n, int first_row, 

{ 

int last_row, int my_rank, int р 

int i , j , k, 1 ; 
int rows = last_row - first_row + 1; 
int· max_rows; 
int first_row_k, last_row_k, rows_k; 
douЫe s; 
int dest, source, tag = О; 
MPI_Status status; 

I* Вычисляем максимальное количество строк на процесс*/ 
max_rows = n / р + n % р; 

I* Обнуляем результат *I 
for (i О; i < rows; i++) 

с [i] = о. ;

I* Вычисляем источник и получатель для текущего 
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процесса *f 
source = (my_rank + 1) % р; 
if (my_rank == О)

dest р - 1; 
else 

dest = my_rank - 1; 

I* Цикл по блокам *f 
for (1 = О; 1 < р; 1++) 

{ 
f* Номер процесса, от которого был получен вектор*/ 
k = (my_rank + 1) % р; 

f* Первая участвующая строка матрицы в процессе k*/ 
first_row_k = n * k; 
first_row_k /= р; 
f* Последняя участвующая строка в процессе k *f 
last_row_k = n * (k + 1); 
last_row_k = last_row_k / р - 1; 

f* Количество участвующих строк в процессе k *f 
rows_k = last_row_k - first_row_k + 1; 

f* Умножаем прямоугольный блок матрицы а 
в строках first_row ... last_row 
и столбцах first_row_k ... last_row_k 

на вектор Ь, соответствующий компонентам 
first_row_k ... first_row_k *f 

for (i = О; i < rows; i++) 

{ 

} 

for (s = О., j О; j < rows_k; j++) 

s += a[i * n + j + first_row_k] * b[j]; 

с [i] += s; 

f* Пересылаем вектор Ь процессу dest и получаем его 
от source *f 
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} 

} 

MPI_Sendrecv_replace (Ь, max_rows, MPI_DOUBLE, 

dest, tag, source, tag, MPI_COMM_WORLD, &status); 

Функция matrix_mult_vector получает указатели на строки 
матрицы а и коl\шоненты векторов Ь и с с номерами 

n * my_rank / р, ... , n * (my_rank + 1) / р - 1

и вычисляет указанные компоненты ответа с - произведения 
матрицы а на вектор Ь. При этом память под матрицы и векто­
ры выделена для хранения 

max_rows = n / р + n % р 

компонент ( строк матрицы пли элементов вектора). 
Обозначим А = (Clij), i,j = О, 1, ... , п - 1- матрица А, Ь =

(bi), i = О, 1, ... , п - 1, с = (Ci), 'i = О, 1, ... , п - 1 - векторы 
Ь и с, т = my_rank. Функция matrix_mult_vector в цикле по 
l = О, 1, ... , р - 1 вычисляет вектор, являющийся произведением 
блока матрицы А, стоящего в строках 

пт/р, ... , п(т + 1)/р - 1 (11.1) 

и столбцах 

(пт/р + l) (mod р), ... , (п(т + 1)/р - 1 + l) (шоd р), (11.2) 

и вектора, образованного компонентами вектора Ь с номера­
ми (11.2). Этот вектор прибавляется к вектору, образованно-
1\IУ КОI\IПОнентами вектора с с номерами ( 11.1). Затем вектор, 
образованный компонентами вектора Ь с номерами (11.2), пере­
сылается процессу с номером (т. - 1) (шоd р), а на его место 
помещается вектор, полученный от процесса с номером ( rn + 1) 
(шо(i р), т. е. осуществляется циклическая пересылка доступной 
каждому щю1(ессу части вектора Ь длиной не более max_rows. 
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а 

1 

2 

3 

ь ь 

х� � 
а) умножение соответствующих блоков 

в соответствующем процессе (l = О) 
6) пересылки между

процессами (l = О)

а 

1 

3 

2 

ь ь 

х� � 
в) ушюжение соответствующих блоков 

в соответствующем процессе (l = 1) 
г) 11ересылки между 

11роцессаыи ( l = 1) 

с а 

�+

= 2 

3 

1 

ь ь 

х� � 
д) умножение соответствующих блоков 

в соответствующем процессе ( l = 2)
е) пересылки между 

11роцессами (/ = 2)

Рис. 11.1. Организация вычислений и пересылки данных при 

умножении матрицы на вектор 

Иллюстрация этого процесса при р

рис. 11.1: 
3 приведена на 

а) в каждом из процессов 1, 2, 3 (здесь мы для удобства нумеру­
ем их, начиная с 1) вычисляем произведения блоков ыатрицы 
а и вектора Ь, отмеченных на рисунке соответствующей циф­
рой, и прибавляем их к результату в векторе с; 

6) цнклически пересылаем блоки вектора Ь;
в) перемножаем соответствующие блоки матрицы а и вектора

Ь и прибавляем их к результату в векторе с; 
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г) циклически r1ересылаеl\1 блоки вектора Ь; 

д) пepel\IНOЖ<tCl\1 соответствующие блокн матрицы а и вектора 

Ь и прибавляем их к результату в векторе с, получая при 

этом окончательный результат; 

е) цпклнчески пересылаеl\! блоки вектора Ь, восстанавливая его 

первон<1,чаJiы-юе состояние. 

Файл Makefile: 

NAME mpi_mult 

DEBUG = 

се mpicc -с

LD mpicc 

CFLAGS $(DEBUG) 

LIBS -lm

LDFLAGS = $(DEBUG) 

-W -Wall

OBJS = main.o matrices.o 

all : $(NAME) 

$(NAME) : $(0BJS) 

$(LD) $(LDFLAGS) $- $(LIBS) -о$@ 

.с.о: 

$(СС) $(CFLAGS) $< -о$@ 

clean: 

rm -f $(0BJS) $(NAME) 

main.o 

matrices.o 

main.c matrices.h 

matrices.c matrices.h 
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11.12. Допо11ните11ьные функции ко1111ективного обмена 
сообщениями ДIIЯ работы с массивами 

В программе, вы <шсляющей произведение матрицы на вектор 
(см. раздел 11.11), ни один из процессов не хранит массивы 
полностью, а в каждый ыомент вреl'\-1ени работает только с их ча­
стями. Такая МРl-программа при запуске на установке с общей 
паыятыо нс использует для хранения массивов памяти больше, 
чем ее mнltithread-aнaлoг (cl\1. раздел 10.4). Если некотоjюl'\1у 
процессу потребовался весь массив целикоl\1 (например, для nы­
вода в процессе с номероl'\1 О), то можно переслать ему части 
массива от других процессов с помощью функций попарного 
обмена сообщениями. Однако удобнее и быстрее это сделать по­
средством функции MPI_Gather. Ее прототип: 

int MPI_Gather (void *sendbuf, int sendcount, 
MPI_Datatype sendtype, void *recvbuf, 
int recvcount, MPI_Datatype recvtype, int root, 
MPI_Comm comm); 

где входные параметры: 

• sendbuf -- адрес буфера с посылаемымп данными,

• sendcount - число элементов (типа sendtype) в буфере
sendbuf,

• sendtype -- тип данных каждого из элементов буфера
sendbuf,

• recvbuf - адрес буфера с данныыи, где следует разместить
полученное сообщение (используется толhко 13 процессе с по­
!\!ером root группы comm),

• recvcount - максимальное чJ,Jсло ЭJ1Сi\1енто13 (типа recvtype)

в буфере recvbuf (используется только в процессе с номером
root группы comm),

• recvtype - тип данных каждого из эле.ментов буфера
re'cvbuf (используется только в процессе с номером root
группы comm),
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• root - ранг (но:мер) получателя в коммуникаторе (группе)
conun,

• conun -комыуникатор,

и выходной параметр (результат) в процессе с номером root 
группы conun: 

• recvbuf -указатель на полученные данные.

Эта функция: 

• в процессе с номером root группы conun -- принимает
recvcount данных типа recvtype от всех остальных процес­
сов группы conun и размещает их последовательно в буфере
recvbuf: вна11ане данные от процесса с номером О группы
comm, затем данные от процесса с номером 1 группы comm
и т. д.; от ca!.IOl'O себя процесс данные, конечно, не прини-
11шет, а просто копирует их из sendbuf в соответствующее
место recvbuf;

• в процессе группы conun с номероl\-r, отличным от root, -по­
сылает sendcount данных типа sendtype нз буфера sendbuf
процессу с ноыером root.

Эта функция должна быть вызвана во всех процессах груп­
пы conun с одинаковыми значениями для аргументов root и 
comm. Также в большинстве случаев требуется, чтобы значения 
аргуl\1ентов sendcount и sendtype были одинаковыми во всех 
процессах группы comm, причем равными значенияы recvcount 
и recvtype соответственно. 

Если требуется, чтобы результат, полученный посредством 
функции MPI_Gather, стал известен не только одному процессу 
(с номероы root в группе conun), а всем процессам группы, то 
�южно использовать MPI_Bcast, но более эффективным реше­
ниеы является функция MPI_Allgather ( ер. ситуацию с функ­
цияl\IИ MPI_Reduce и MPI_Allreduce). Ее прототип: 

int MPI_Allgather (void *Sendbuf, int sendcount, 
MPI_Datatype sendtype, void *recvbuf, 
int recvcount, MPI_Datatype recvtype, 
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MPI_Comm comm); 

где входные параметры: 

• sendbuf - адрес буфера с посылаемыми данными,
• sendcount - число элементов (типа sendtype) в буфере

sendbuf,
• sendtype -- тип данных каждого из элементов буфера

sendbuf,
• recvbuf - адрес буфера с данными, где следует разместить

полученное сообщение,
• recvcount -- максиl\1альное число элементов (типа recvtype)

n буфере recvbuf,
• recvtype - тип данных каждого из элементов буфера

recvbuf,
• comm - коммуникатор,

и выходной параметр (результат): 

• recvbuf ·-указатель на полученные данные.

Функция аналогична MPI_Gather, но результат образуется в бу­
фере recvbuf во всех процессах группы comm, поэтоJ\!у нет ар­
гумента root. 

MPI предоставляет функцию MPI_Scatter, в некоторо!\1 
смысле обратную к MPI_Gather. Ее прототип: 

int MPI_Scatter (void *Sendbuf, int sendcount, 
MPI_Datatype sendtype, void *recvbuf, 
int recvcount, MPI_Datatype recvtype, int root, 
MPI_Comm comm); 

где входные параметры: 

• sendbuf - адрес буфера с посылаемыми данными (использу­
ется только в процессе с ноыером root группы comm),

• sendcount- число элементов (типа sendtype) в буфере
sendbuf (используется только в процессе с номером root
группы comm),
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• sendtype -- тип данных каждого из элеl\1ентов буфера

sendbuf (используется только в процессе с номером root

rрупны comm),

• recvbuf -- адрес буфера с данными, где следует разместить

полученное сооб1цение,

• recvcount -- l\lаксимальпое число элементов (типа recvtype)

в буфере recvbuf,

• recvtype -- тип данных каждого нз элементов буфера

recvbuf,

• root - ранг ( нuмер) отнравптеля в коммуникаторе (группе)

comm,

• comm --- коыму,шкатор,

и выходной пара!11етр (результат): 

• recvbuf --- укюатель на полученные данные.

Эта функция: 

• в процессе с номсро!'.I root группы comm ---- 1юсылает первые

sendcount элементов т11па sendtype в буфере sendbuf про­

цессу с rJOi\IeJIOl\l () группы comm, следующие sendcount эле-

1\rентов т11па sendtype в буфере sendbuf - процессу с номе­

ром 1 I'руш1ы comm и т. д.; сам себе процесс данные, конечно,

не посылает, а просто конирует нх из соответствующего ме­

ст,-1, sendbuf в recvbuf;

• в процессе группы comm с номером, отли•шым от root, -- при-

11111\шет recvcount данных типа recvtype от процесса с 110-

1\lероы root 11 складывает 13 буфер recvbuf.

Эта функция должна быть пызвана во всех процессах груп­

пы comm с одинаковыми зна•1е1шЯl\Ш для аргуыептов root и 

comm. Также н болышшстве случае13 требуется, чтобы зна•1еш1я 

аргументов recvcount и recvtype были одинаковыl\!и 130 всех 

нро,�ессах группы comm, причем равныl\НI значениям sendcount 

и sendtype соответственно. 
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11.13. Пересылка структур данных 

Рассмотрим задачу пересылки между процессами определенной 
пользователем структуры данных на примере двух наиболее ча­
сто встречающихся задач: 

1. пересылка разнородных данных, локализованных в одном
блоке памяти (например, пересылка определенного с помо­
щью конструкции struct языка С типа данных);

2. пересылка распределенных в памяти однородных данных
(например, пересылка столбца матрицы в языке С, где мно­
гомерные массивы хранятся по строкам).

Описанные ниже способы пересылки можно комбинировать, об­
разуя, например, методы пересылки распределенных разнород­
ных данных и т. д. 

11.13. 1. Пересылка локализованных разнородных данных 

Пусть между процессами требуется пересылать определенную 
пользователем структуру данных, например, следующего вида: 

typedef struct 

{ 

int n; 

char s [20]; 
douЫe v; 

} 
USERTYPE; 

Для этой задачи можно предложить следующие решения: 

1. один раз создать новый МРI-тип, соответствующий С типу
USERTYPE, и использовать его в функциях обмена сообще­
ниями;

2. при каждой пересылке процесс-отправитель запаковывает
объект типа USERTYPE в один объект типа MPI_PACKED и пе­
ресылает его процессу-получателю, который его распаковы­
вает;
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3. при любом обмене объект типа USERTYPE рассматривает­
ся как массив длины sizeof (USERTYPE) элементов типа·
MPI_BYTE (это решение работает только на однородных вы­
числительных установках).

Создание нового тип.а данных. При создании нового ти­
па данных подсистеме MPI необходимо указать спецификацию 
этого типа следующего вида: 

п, {(со, do, to), (с1, d1, t1), ... , (Сп-1, dn-1, tn-1)}, (11.3) 
где 

• п ( типа int) -количество элементов базовых типов в новом
типе;

• Ci (типа int)-количество элементов типа ti в i-м базовом
элементе нового типа;

• di (типа MPI_Aint, <<address int>>) -смещение i-го базового
элемента от начала объекта;

• ti (типа MPI_Datatype)-тип i-го базового элемента.

Например, для С-типа USERTYPE спецификация МРI-типа на 32-
битной вычислительной установке будет иметь вид: 

3, {(1, О, MPI_INT), (20, 4, MPI_CHAR), (1, 24, MPI_DOUBLE)}. 

Использование типа MPI_Aint (равного int или long int) поз­
воляет не зависеть от выбранного в языке С размера типа int на 
64-битных компьютерах. Получить адрес любого объекта в тер­
минах типа MPI_Aint можно с помощью функции MPI_Address.
Ее прототип:

int MPI Address (void *location, MPI_Aint *address); 

где входной параметр: 

• location - адрес объекта в терминах языка С,

и выходной параметр (результат): 

• address - адрес объекта как MPI_Aint.



11.13. Пересылка структур данных 279 

Функция MPI_Address не связана с межпроцессным обменом и 
выполняется локально, в одном процессе. 

Построением нового типа по.спецификации вида (11.3) зани­
мается функция MPI_Type_struct. Ее прототип: 

int MPI_Type_struct (int count, int Ыocklens[], 
MPI_Aint displacements[], MPI_Datatype oldtypes[], 
MPI_Datatype *newtype); 

где входные параметры: 

• count - количество элементов в создаваемом типе, т. е. п

в (11.3);
• Ыocklens - массив длины count, содержащий количество

элементов базового типа в каждом поле создаваемого ти­
па, т. е.

Ыocklens [] = {со, с1, ... , Сп-1} 

в терминах описания (11.3); 
. • displacements -массив длины count, содержащий смеще­

ние элементов базовых типов (полей) от начала объекта со­
здаваемого типа, т. е. 

displacements [] = {do, d1, ... , dn-1} 

в терминах описания (11.3), 
• oldtypes -массив длины count, содержащий типы базовых

элементов (полей) создаваемого типа, т. е.

oldtypes [] = { to, t1 , ... , tn-1} 

в терминах описания (11.3); 

и выходной параметр {результат): 

• newtype -идентификатор созданного типа.

Функция MPI_ Type_struct не связана с межпроцессным обме­
ном и выполняется локально, в одном процессе. Это связано с 
тем, что мы можем строить новый·тип не только для пересылки 
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данных этого типа между процессами, а для использования его 
в качестве одного из базовых типов ti в (11.3). 

Созданный тип нельзя сразу использовать для передачи со­
общений между процессами. Перед этим необходимо вызвать 
функцию MPI_Type_commit, которая создает для указанного в 
качестве аргумента типа все структуры данных, необходимые 
для его эффективной пересылки. Ее прототип: 

int MPI_Type_commit (МPI_Datatype •newtype); 

где единственный входной и выходной аргумент newtype -ука­
затель на созданный тип. Эта функция должна быть вызвана 
всеми процессами, которые будут обмениваться между собой 
объектами типа newtype. 

Если построенный тип не требуется для дальнейшей работы 
программы, то необходимо освободить все выделенные в момент 
его построения ресурсы с помощью функции MPI_Type_free. Ее 
прототип: 

int MPI_Type_free (MPI_Datatype •newtype); 

где единственный входной и выходной аргумент nеwtуре-ука­
затель на созданный тип, который после выполнения этой функ­
ции становится равным MPI_DATATYPE_NULL. Если в качестве ар­
гумента этой функции передать стандартный МРI-тип (напри­
мер, любой из табл. 11.1), то это приведет к ошибке. 

Теперь мы можем привести законченный пример построения 

МРI-типа, соответствующего С-типу USERTYPE: 

/• Объект исходного типа USERTYPE •/ 

USERTYPE t = { 1 , { 'Н' , ) е ' , ) 1 ) , '1 ' , ' о ' , О} , 2 . } ; 

!• Количество элементов в каждом поле USERTYPE •/ 

int t_с[З] = { 1, 20, 1 }; 
!• Смещение каждого поля относительно начала 

структуры USERTYPE: предстоит вычислить *I 

MPI_Aint t_d[З]; 
f* МРI-тип каждого поля в USERTYPE *I 

MPI_Datatype t_t[З] = {MPI_INT, MPI_CHAR, MPI_DOUBLE}; 
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!• Результат: МРI-тип, соответствующий USERTYPE •/ 
MPI_Datatype MPI_USERTYPE; 
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!• Переменные, используемые для вычисления смещений *I

MPI_Aint start_address, address; 

I* Вычисляем адрес начала структуры•/ 
MPI_Address (&t, &start_address); 
I* Вычисляем смещение первого поля •!

MPI_Address (&t.n, &address); 
t_d[O] = address - start_address; 
!• Вычисляем смещение второго поля •!

MPI_Address (&t.s, &address); 
t_d[1] = address - start_address; 
!• Вычисляем смещение третьего поля •/ 
MPI_Address (&t.v, &address); 
t_d[2] = address - start_address; 

!• Создаем МРI-тип данных с вычисленными свойствами •/ 
MPI_Type_struct (3, t_c, t_d, t_t, &MPI_USERTYPE); 
!• Делаем его доступным при обмене сообщениями •! 
MPI_Type_commit (&MPI_USERTYPE); 

!• Тип MPI_USERTYPE можно теперь использовать наряду 
со стандартными типами *I

I* Например: разослать данные из процесса О остальным*/ 
MPI_Bcast (&t, 1, MPI_USERTYPE, О, MPI_COMM_WORLD); 

!• Удалить тип, если он больше не понадобится *I

MPI_Type_free (&MPI_USERTYPE); 

Отметим, что процедура построения нового тнпа является 

достаточно длительной и оправдана лишь в то!\r случае, если 

этот тип будет использоваться 1\IНОгократно. 

11 4017 



282 Глава 11. Интерфейс MPI (Message Passing lnterface) 

Запаковка/распаковка данных может применяться к лю­
быl\1 данныы, необязательно лока.пизованным в ОДНО!\! блоке па­
мнти. При запаковке данные последовательно записываются 
подряд в указанном пользователеы буфере, а затем пересыла­
ются как один объект типа MPI_PACKED. При распаковке данные 
последовательно извлекаются из этого буфера. 

Запаковать данные !\IOЖIIO с помпщыо функции MPI_Pack. 
Ее прптот1111: 

int MPI_Pack (void *pack_data, int pack_count, 
MPI_Datatype pack_type, void *buffer, 
int buffer_size, int *position, MPI_Comm comm); 

где входные параметры: 

• pack_data- а,,\рес пакуемых данных,
• pack_count -- колнчество пакуеl\1ых элементов (каждый типа

pack_type),

• pack_type ---- тип ю1ждо1·0 из ш1куеl\1ых pack_count данных,
• buffer --- адрес буфера, в который скла,т\ывается запакован­

ный результат,
• buffer_size - размер буфf�ра buffer,
• posi tion - адрес целого числа., задающего сыещение в бай­

тах первой свободной позиц1111 в buffer,

• comm --- КОl\1!\!УНИкатор, идентифицирующий группу процес­
сов, которая будет в последующеl\1 использовать buffer для

обмена данныl\lи,

и выходные нараметры (результаты): 

• buffer -- буфер, в которо!\! обраэуется запакованный резуль­
тат,

• position --указывает уже на новое значение первой свобод­
ной ПО31ЩIШ В буфере.

Узнать раз:-.,ер буфера, нсобход11мого для запаковки данных,
можно с по!\ющыо функции MPI_Pack_size. Ее прототип: 

int MPI_Pack_size (int pack_count, 
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MPI_Datatype pack_type, MPI_Comm comm, int *size); 

где входные параметры: 

• pack_count - количество пакуемых элементов (каждый типа
pack_ t уре),

• pack_ type -тип каждого из пакуемых pack_count данных,

• comm - коммуникатор, идентифицирующий группу процес­

сов, которая будет в последующеы использовать запакован­

ные данные,

и выходной: параметр (результат): 

• size -раэыер буфера (в байтах), достаточный для зашtков­

кн pack_count элементов типа pack_type.

Запаков<t1111ые данные можно переслать/получить лю­

бой функцией передачи сообщений, указав в качестве типа 
MPI_PACKED, а в качестве раэыера ·- buffer _size. Еслп ис­

пользуется попарный обмен сообщения1'rи, то можно избежать 
передачи неиснользованной части буфера, указав в процессе­

отнравнтеле в качестве длины 'Значение posi tion после по­
следнего вызова MPI_Pack, а в процессе-получателе -- значение 
buffer _size (поскольку значение position известно только 

отнравителю). 

Распаковать данные можно с помощью функции MPI_Unpack. 

Ее прототип: 

int MPI_Unpack (void *buffer, int buffer_size, 

int *position, void *unpack_data, 

int unpack_count, MPI_Datatype unpack_type, 

MPI_Comm comm); 

где входные параметры: 

• buffer - адрес буфера, нз которого берется заnакОFншный
результат,

• buffer_size -размер бу(рера buffer,

• posi tion - адрес целого числа, задающего смещение в бай­
тах позиции n buffer, с которой начинается распаковка,
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• unpack_data - адрес буфера, в который следует разместить
распаковываемые данные,

• unpack_count - количество распаковываемых элементов
{типа unpack_type),

• unpack_ type - тип каждого из unpack_count распаковывае-
1\IЫХ данных, 

• comm - коммуникатор, идентифицирующий группу процес­
сов, которая использовала buffer для обмена данными,

и выходные параметры (результаты): 

• unpack_data - распакованные данные,
• роsitiоn-указьшает уже на новое значение позиции в бу­

фере, с которой начнется распаковка очередного э.пеыепта.

Приведем законченный пример пересылки структуры дан­
ных типа USERTYPE от процессR. О всем остальным процессам: 

f* Размер буфера *f 
#define BUF_SIZE 128 
char buffer[BUF_SIZE]; f* буфер *f 

int position; I* текущая позиция в буфере *f 
f* Объект исходного типа USERTYPE *f 
USERTYPE t; 

if (my_rank О) 

{ 
f* Процесс О заносит данные в объект t */ 
t.n = 1;
strcpy (t.s, "Hello");
t.v = 2.;

f* Запаковываем объект t в процессе О *f 
position = О; f* складываем в начало буфера *f 
f* Пакуем первое поле *f 
MPI_Pack (&t.n, 1, MPI_INT, buffer, BUF_SIZE, 
&position, MPI_COMM_WORLD); 
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} 

I* Пакуем второе поле, position указывает на место, 
где с�едует разместить результат *I

MPI_Pack (&t.s, 20, MPI_CHAR, buffer, BUF_SIZE, 
&position, MPI_COММ_WORLD); 

I* Пакуем третье поле, position указывает на место, 
где следует разместить результат *I

MPI_Pack (&t.v, 1, MPI_DOUBLE, buffer, BUF_SIZE, 
&position, MPI_COMM_WORLD); 

I* Рассылаем буфер из процесса О всем остальным *I 
MPI_Bcast (buffer, BUF_SIZE, MPI_PACKED, О, 

MPI_COMM_WORLD); 

if (my_rank != О) 

{ 

} 

I* Распаковываем объект t в остальных процессах •! 
position = О; /*начинаем с первой позиции буфера*/ 
I* Распаковываем первое поле *I 
MPI_Unpack (buffer, BUF_SIZE, &position, &t.n, 1, 
MPI_INT, MPI_COMM_WORLD); 

I* Распаковываем второе поле, position указывает 
на место, откуда следует начинать *I 

MPI_Unpack (buffer, BUF_SIZE, &position, &t.s, 20, 
MPI_CHAR, MPI_COMM_WORLD); 

I* Распаковываем третье поле, position указывает 
на место, откуда следует начинать */ 

MPI_Unpack (buffer, BUF_SIZE, &position, &t.v, 1, 
MPI_DOUBLE, MPI_COMM_WORLD); 

Отметим, что исполюование MPI_Pack, MPI_Unpack для пе­

редачи информации может приводить к многократному копи­

рованию данных: вначале они поr-.rещаются в буфер функци­

ей MPI_Pack, затем, при отправке, -во внутренний буфер .I\IPI 
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для формирования сообщения. При получении сообщения дан­
ные копируются из внутреннего буфера 1\IPI в буфер функции 
MPI_Unpack, затеl\r уже они попадают на свое место. Поэтому 
этот способ можно рекомендовать лишь для единичных обме­
нов. Некоторые реализации f\1IPI для уменьшения лишних пере­
сылок данных обрабатывают тип MPI_PACKED специа.J1ы1ым об-. 
разои: данные этого типа не буферизируются подсистемой MPI, 
а сам buffer в MPI_Pack, MPI_Unpack используется для форl\Ш­
ровапия сообщения. Это снижает накладные расходы при таком 
с11особе обмена. 

Пересылка неформатированпых данных. l\JРI-подс11сте-
1\1а пересылки сообщений работает с блока11111 д;:шных, о которых 
ей нужно знать лишь размер блока. Содержимое блока (т. е. тип 
данных элеыентuв) при пересылке не важен. Тип данных ста-
1ювптся важны!\1 Jшшь толы<0 ,юслс доставки сообщения, ко­
гда данные в дrюи11ном формате процесса-от11равителн должны 
быть представлены в д1юичпом форыатс процесса-получателя. 
Если этн процессы работают на процессорах раэпой арх11текту­
ры, то двоичный формат данных ыожет отлнчат1,ся (см. гла­
ву 4). Как отыечалось в г.ilаве 4, все соврсыенныс процессоры 
И!\1еют е,л,нный форыат для цело•111слсн11ых данных и ;\анных 
с плавающей то•1ко11. От:ш•1а'Iъся �1о;.кет .1111шь способ ну111сра-
1щи байтов в этих ,т�а�шых, 11 тогда после ;\оставю1 сообщения 
веобходшю преобраэоваrше двон•,ных данных. Гадн под,.-,;ержки 
таких гетерогенных ш,!'шслит<•лы1ых установок (т. е. составлен­
ных нз процессоµон разrю11 архитектуры) снсте!\�а MPI требует 
указания пша каждого пеµссыл;:�еыого объекта. 

Однако окаэалось, что рi\.зработка l\'1Pl-пporpю1!I-I явля('Т­
ся весьыа сложной, н подавляющее болышшство про1·ра1\11111ю­
го обсспечешш строится при рядР упрощающих его рюработку 
предположений. Основным из них является прслполо)ке1ше о ра­
венстве производительности всех процессоров, на которых вы­
полняется l\-lPl-пµoгpaмr--ra. Собственно, это предполаrrtем и мы 
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во всех примерах, разделяя вычислительную работу поровну 

между всеми процессами. Следовательно, если, наприl\,�ер, один 

процессор И!'vrеет меньшую производительность, чем остальные, 

то вся программа будет работат1, именно с его скоростью, по­

скольку остальные процессы будут ожидать работающий на неi\1 

процесс в точках обмена сообщениями. Поэтому в настоящий 

l\fОМент подавляющее большинство нараллельных ЭВМ исполь­

зуют нс просто процессоры одной архитектуры, а одинаковые 

процессоры (т. е. одной архитектуры с равной тактовой часто­

тоi'�). 

Рассмотрим задачу пересылки структуры данных на одно­

родной в слабом смысле вычислительной установке ( т. е .  ис­

пользованы процессоры одной архитектуры, а их частота нам 

не nажпа). Эту структуру можно переслать как единый блок 

элементов типа MPI_BYTE размером, рttвным размеру структуры 

п байтах. Приведем законченный пример пересылки структуры 

данных типа USERTYPE от процесса О всем оста.r�ьным процессам: 

f* Объект исходного типа USERTYPE *f 
USERTYPE t; 

if (my_rank О) 

{ 

} 

I* Процесс О заносит данные в объект t */ 
t.n = 1; 
strcpy (t. s, "Hello"); 
t. V = 2.; 

I* Рассылаем структуру из процесса О всем остальным *I 
MPI_Bcast (&t, sizeof (USERTYPE), MPI_BYTE, О, 

MPI_COMM_WORLD); 

Этот текст является самыы коротки!\1 и быстродействующим 11:3 

всех приведенных выше, но работает нс на всех вычислительных 

установках . 
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11.13.2. Пересылка распределенных однородных данных 

Рассмотрим подробнее работу с двумерными массивами. Если 

мы храним п х п массив а как вектор размера п2: 

douЫe * а; f* массив n х n *f, 

то переслать k-ю строку этого массива от процесса src процессу 

dest 1\южно посредством 

if (my�rank == src)

MPI_Send (а + k * n, n, MPI_DOUBLE, dest, tag, 

MPI_COMM_WORLD); 

else if (my_rank == dest) 

MPI_Recv (а + k * n, n, MPI_DOUBLE, src, tag, 

MPI_COMM_WORLD, &status); 

Если требуется переслать k-й столбец, то можно скопировать 

его эле111енты в вектор длины п и затем переслать его; процесс­

получатель принимает данные также во вспОl\1О1·ательный век­

тор и зате!\I заносит их на J\,1есто k-го столбца. Однако l\Южет 

нолучитъся, что данные при отправке будут ко1шроваться !\ШО­

гократно: вначале из столбца матрицы в наш вспомогательный 

вектор, затем - но внутренний буфер l\'1PI ;�лн формирования 

сообщешш. То же, но в обратном порядке, происходит при по­

лучении сообrцен11я. Если такие пересылки пронсходят часто, то 

Иl\tеет Сl\lЫСЛ соз;�ать новый тип J\IPI для столбца 1\lатрицы. Это 

можно сделать с ПО!\ЮЩЫО функции MPI_Type_struct, как опи­

сано в разделе 11.13.1. Но стандарт l\IPI предоставляет для этого 

случая более удобную функцию MPI_Type_vector. Ее прототип: 

int MPI_Type_vector (int count, int Ыocklen, 

int stride, MPI_Datatype oldtype, 

MPI_Datatype·*newtype); 

где входные параl\fстры: 

• count - количество элеl\Iснтов в создаваемом векторнОl\I ти­

пе,
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• Ыocklen - длина одного элемента (в единицах тина
.oldtype) в создаваемом векторном типе,

• stride - расстояние между элементами (в единицах тина
oldtype) в создаваемом векторном типе,

• oldtype - базовый тип элементов в создаваемом векторном

типе,

и выходной параметр (результат): 

• newtype - идентификатор созданного векторного типа.

Функция создает новый тип данных: вектор длины count, эле-

1\·1ентами которого являются массивы длины Ыocklen объектов 

типа oldtype; расстояние между элементами - stride объектов 

типа oldtype. Например, тип, соответствуюш,ий столбцу п х п 

матрицы, можно создать следующим образом: 

MPI_Datatype column_t; 
MPI_Type_vector (n, 1, n, MPI_DOUBLE, &column_t); 

Созданный тип нельзя сразу использовать для переда­

чи сообщений. Перед этим необходимо вызвать фушщию 

MPI_Type_commit, см. раздел 11.13.1: 

MPI_Type_commit (&column_t); 

После этого переслать k-й столбец массива а от процесса src 

процессу dest можно посредством 

if (my_rank == src) 

MPI_Send (а + k, 1, column_t, dest, tag, 

MPI_COMM_WORLD); 

else if (my_rank == dest) 

MPI_Recv (а + k, 1, column_t, src, tag, 

MPI_COMM_WORLD, &status); 

Если построенный векторный тип нс требуется для дальней­
шей работы программы, то необходимо освободить все выде­
ленные в момент его построения ресурсы с ПОI\ЮЩЬЮ фуню�ии 

MPI_Type_free. 



290 Глава 11. Интерфейс MPI (Message Passing lnterface) 

Напомнпм, что создание нового типа- достаточно дорого­
стоящпя операция и к ней иыеет смысл прибегать, только если 
тип будет использоваться многократно. 

11.14. Ограничение коппективного обмена 
на подмножество процессов 

Пусть 11al\1 требуется многократно пересылать сообщения между 
всеми процессами некоторой подгруппы всех процессов. Можно 
использовать функцип попарного обмена сообщениями, по более 
эффективным является использование функций коллективного 
обмена (см. раздел 11.8), ограниченных на эту подгруппу. Для 
этого нам необхоi�Иl\Ю создать новый комыуникатор. 

С каждым коммуникатором (т. е. идентификатором группы 
процессов) связана собствешю группа- список процессов, вхо­
дящих в группу. Структура этого объекта завпсит от реализации 
:Г-V-IPI, и потому недоступна для непосредственного использова­
шiя в прпкладных программах. Группа имет тип MPI_Group и 
l\tожет быть полу'lена по комl\1уникатору с помощью функции 
MPI_Comm_group. Ее прототип: 

int MPI_Comm_group (MPI_Comm comm, 

MPI_Group *group); 

где входной параl\tетр comm - коммуникатор, и выходной пара­

J\,tЕ'Тр (результат) group- группа. Создать новую группу, вклю­
чающую выбранное подмножество процессов из существующей 
группы (или все, но перенумерованные по-другому), можно с 
ПОI\ЮЩЬЮ функции MPI_:Group_incl. Ее прототип: 

int MPI_Group_incl (MPI_Group group, int n, 

int * ranks, MPI_Group *newgroup); 

где входные параметры: 

• group - существующая группа,
• n -- количество элементов в массиве ranks ( и тем самым раз-

1\tер новой группы),
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• ranks - номера процессов из старой группы, которые войдут
в новую,

и выходной параметр (результат): 

• newgroup - созданная группа, процесс номер k в ней имеет

номер ranks [k] в группе group, где k = О, 1, ... , n - l.

Создать новый коммуникатор, соответствующий созданной 

группе, 11южнu с помощью функции MPI_Comm_create. Ее про­

тотип: 

int MPI_Comm_create (MPI_Comm comm, 

MPI_Group newgroup, MPI_Comm *newcomm); 

где входные параметры: 

• comm - существующий коммуникатор,

• newgroup -- группа, являющаяся нодl\шожеством группы с

идентификаторuы comm,

и выходной параыетр (результат): 

• newcomm -- созданный коммуникатор, состояrций из процес­
сов, входящих в сотт и группу newgroup.

Например, создать ком!\Iуннкатор для коллективного обыена

между процессами с четпЫJ\.I номероl\I можно с помощью следу­

ющего фрагмента (здесь р -размер MPI_COMM_WORLD): 

MPI_Group group_world; 

MPI_Group group_even; 

MPI_Comm comm_even; 

int * ranks; 

int size; I* размер новой группы *I 

size = (р + р 'l. 2) / 2; 

ranks = (int*) malloc (size * sizeof (int)); 

if (!ranks) ... I* обработка ошибки *I 

for (i = О; i < size; i++) 

ranks[i] = 2 * i; 
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MPI_Comm_group (MPI_COMM_WORLD, &group_world); 

MPI_Group_incl (group_world, size, ranks, &group_even); 

MPI_Comm_create (MPI_COMM_WORLD,group_even,&comm�even);

После окончания работы с созданным коммуникатором его 
необходимо уда.пить с помощью функции MPI_Comm_free. Ее 

прототип: 

int MPI_Comm_free (MPI_Comm comm); 

где входной и одновременно выходной параметр comm - удаляе­
�1ый коммуникатор. 

11.15. Пример МРl-программы, решающей задачу 
Дирих11е д11я уравнения Пуассона 

Рассмотрим решенпе зRдачи Дирихле для уравнения Пуассо­
на (10.4) в двуыерной области (см. раздел 10.6). Используем 
алгоритм, описанный в разделе 10.6. 

:Г,.,Iы исполыуем такое же, как в разделе 11.11, разделение 
(п1 + 1) х (n2 + 1) ыатриц и, f, r между процессами. Именно, 
процесс с 11омеро1,1 my _rank из общего количества р работает со 
строками l\,1атриц с номерами 

(n1+1)*my_rank / р, ... , (n1+1)*(my_rank + 1) / р - 1, 

т. е. с блокоы rows х (n2+1), где 

rows = (n1+1)*(my_rank + 1) / р - (n1+1)*my_rank / р. 

Поскольку в силу выражения (10.7) для оператора А при вы­
числении i-й строки матрицы Аи (i = 1, 2, ... , n1 - 1) требуется 

знать предыдуrцую и последующую строки, то в процессах с но­

мером my _rank > О l\lЫ булем хранить предыдущую к первой 
строку, т. е. строку с номером 

(n1 + 1) * my_rank / р - 1, 

а в процессах с номером my _rank < р - 1 мы буде:-.� хранить 
следующую за последней строку, т. е. строку с номером 
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(nl + 1) * (rny_rank + 1) / р. 

Следовательно, распределение данных между процессами будет 
следующим: 

• в первом процессе (rny _rank = О) находится блок раз:мером
(rows + 1) х (n2 + 1), составленный из строк с номерами

(nl+l)*rny_rank / р, ... , (n1+1)*(rny_rank+1) / р,

• в <<средних>> процессах (О< rny_rank < р -1) находится блок
(rows + 2) х (n2 + 1), составленный из строк с номерами

(nl+l)*rny_rank / р - 1, ... , (n1+1)*(rny_rank+1) / р,

• в последнем процессе (rny_rank = р - 1) находится блок
(rows + 1) х (n2 + 1), составленный из строк с номерами

(n1+1)*rny_rank/p - 1, ... , (n1+1)*(rny_rank+1)/p - 1.

Следовательно, во всех блоках, кроме первого, в первой стро­
ке находится предпоследняя строка предыдущего блока; во всех 
блоках, кроме последнего, в последней строке находится вторая 
строка следующего блока. При вычислении любого оператора от 
матрицы (т. е. вектора) это соотношение между блоками долж­
но быть соблюдено в получившемся результате. Этого можно 
добиться двумя способаl\ш: 

1. Вычислить uтвет, находящийся в строках с номераl\lи

(nl+l)*rny_rank / р, ... , (n1+1)*(my_rank+1) / р - 1,

а затем:

(а) при my_rank > О: переслать первую из вычисленных
строк (т. е. вторую. в блоке) предыдущему (по номеру) 
процессу; 

(Ь) при rny_rank < р- 1: переслать последнюю из вычислен­
ных строк (т. е. предпоследнюю в блоке) следующему (по 
номеру) процессу. 

Этот способ r-.-1ы будем использовать при вычислении опера­
тора А в (10.7). 
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2. Если i-ю строку ответа можно вычислить, зная только i-ю
строку аргумента (как, например, в (10.9)), то: вычислить
ответ для всех строк блока. При этом значения в дублиру­

ющихся строках (т. е. в первой строке при my_rank > О и
в последней строке при my_rank < р - 1) будут вычисле­

ны дважды, но разными процессами. Если вычисления не
очень сложные, то это дает выигрыш в производительности

(из-за отсутствия пересылок) и упрощает программу. l\'lы бу­

дем использовать этот способ при вычислении оператора В

в (10.9).

Для упрощения програмыы мы будем выделять в каждоl\1 про­

цессе блоки памяти однпаковой длины, не учитывая, что в пер­
вом _и последнем (по номеру) процессах количество хранимых 
строк меньше. 

Файлы проекта: 

• main. с -- ввод данных и вывод результатов;

• ini t. с, ini t. h -- исхощiый текст и соответствующий заго­

ловочный файл для функций, ишщиали:зирующих правую
часть уравнения (10.4) п nычисляющих ошибку решения;

• operators. с, operators. h -- исходный те1<ст и соответству­
ющий заголовочный файл для функций, вычисляющих раз­

личные операторы;

• laplace. с, laplace. h - исходный текст и соответствующий

заголовочный файл для функции, решающей задR.•1у.

• Makefile -- для сборки проекта.

Файл main. с по структуре похож на одноименный файл из
ра:щела 11.11: 

#include <stdio.h> 

#include <stdlib.h> 

#includ·e "mpi.h" 
#include "init.h" 

#include "laplace.h" 
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I* Аргументы для задачи *I 

typedef struct _ARGS 

{ 

unsigned int nl; I* число точек по х *I 

unsigned int n2; I* число точек по у *I 

douЫe hl; I* шаг сетки по х *I 

douЫe' h2; I* шаг сетки по у *I 

unsigned int max_it; I* максимальное число итераций 

douЫe prec; I* величина падения невязки *I 

} ARGS; 

I* Получить данные *I 

int get_data (char * name, ARGS *parg, int my_rank); 

int 

main (int argc, char **argv) 

{ 

int my_rank; 

int р; 

douЫe t; 

ARGS arg; 

unsigned int 

douЫe *f; 

douЬle *u; 

douЫe *r; 

int l; 

I* ранг текущего процесса *I 

I* общее число процессов *I 

I* время работы всей задачи *I 

I* аргументы *I 

first_row, last_row, rows, max_rows; 

I* правая часть *I 

I* решение *I 

I* невязка *I 

I* Начать работу с MPI *I 

MPI_Init (&argc, &argv); 

I* Получить номер текущего процесса в группе всех 

процессов *I 

MPI_Comm_rank (MPI_COMM_WORLD, &my_rank); 

*I
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f* Получить общее количество запущенных процессов *f 
MPI_Comm_size (MPI_COMM_WDRLD, &р); 

f* Получить данные */ 
if (get_data ("a.dat", &arg, my_rank) < О) 

{ 
if (my_rank == О) 

fprintf (stderr, "Read error!\n"); 
f* Заканчиваем работу с MPI *f 
MPI_Finalize (); 
return 1; 

} 

f* Первая участвующая строка *f 
first_row = (arg.n1 + 1) * my_rank; 
first_row /= р; 
f* Последняя участвующая строка *f 
last_row = (arg.n1 + 1) * (my_rank + 1); 
last_row = last_row / р - 1; 
f* Количество участвующих строк *f 
rows = last_row - first_row + 1; 

f* Вычисляем максимальное количество строк на процесс*/ 
max_rows = (arg.n1 + 1) / р + (arg.n1 + 1) % р + 2; 

f* Выделение памяти под массивы *f 
1 = max_rows * (arg.n2 + 1) * sizeof (douЬle); 
if ( !(f = (douЫe*) malloc (1)) 

11 ! (u (douЫe*) malloc (1)) 

11 !(r = (douЫe*) malloc (1))) 

{ 

fprintf (stderr, "Not enough memory!\n"); 
MPI_Abort (MPI_COMM_WORLD, 1); 

} 
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if (my_rank О) 

{ 

1 *= 3; 
printf ("Allocated %d bytes (%dKb or %dMb) \ 

of memory per process\n", 1, l >> 10, l >> 20); 

} 

f* Синхронизация всех процессов *f 
MPI_Barrier (MPI_COMM_WORLD); 
f* Время начала */ 
t = MPI_Wtime (); 
f* Решить уравнение *f 
laplace_solve (arg.n1, arg.n2, arg.h1, arg.h2, 

arg.max_it, arg.prec, f, u, r, 
my_rank, р); 

f* Синхронизация всех процессов *f 
MPI_Barrier (MPI_COMM_WORLD); 
f* Время работы *f 
t = MPI_Wtime () - t; 

I* Здесь можно работать с результатом *f 
f* Воспользуемся тем, что мы знаем ответ *I 
print_error (arg.n1, arg.n2, arg.h1, arg.h2, u, 

my_rank, р); 

if (my_rank == О) 

{ 
printf ("Total time 

} 

f* Освобождаем память *f 
free (r); 
free (u); 
free (f); 

%le\n", t); 

297 
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} 

f* Заканчиваем работу с MPI *f 

MPI_Finalize (); 
return О; 

f* Считать данные из файла, rде находятся: 

число точек по х 

*f

число точек по у 

длина стороны, параллельной оси х 

длина стороны, параллельной оси у 
максимальное число итераций 

величина падения невязки 

Например: 

32 32 1. 1. 1000 1е-6 

int get_data (char * name, ARGS *Р, int my_rank) 

{ 
f* Количество полей в типе ARGS *f 

#define N_ARGS 6 

f* Структуры данных, необходимых для создания МРI-типа 

данных, соответствующего С-типу ARGS *f 

f* МРI-тип каждого поля в ARGS *f 

MPI_Datatype ARGS_types[N_ARGS] = { MPI_INT, MPI_INT, 
MPI_DOUBLE, MPI_DOUBLE, MPI_INT, MPI_DOUBLE }; 

I* Количество элементов этого типа в каждом поле ARGS*/ 

int ARGS_counts[N_ARGS] = { 1, 1, 1, 1, 1, 1 }; 

I* Смещение каждого поля относительно начала 

структуры *I 
MPI_Aint ARGS_disp[N_ARGS]; 

f* Переменные, используемые для вычисления смещений *f 

MPI_Aint start_address, address; 

f* Новый тип *f 
MPI_Datatype MPI_ARGS; 

f* Читаем данные в процессе О *f 
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if (my_rank == О) 
{ 

} 

FILE *in = fopen (name, "r"); 
douЫe 11, 12; 
static ARGS zero_args; I* инициализируется О *I

if ( ! in) 
{ 

} 
else 

{ 

} 

fprintf (stderr, "Error opening data file %s\n'' , 
name); 

*Р = zero_args; I* обнулить все поля *I

if (fscanf (in, "%u%u%lf%lf%u%lf", &p->n1, 
&p->n2, &11, &12, &p->max_it, 
&p->prec) != 6) 

{ 

} 

fprintf (stderr, 
"Error reading data file %s\n", 
name); 

*Р zero_args; I* обнулить все поля *f

fclose (in); 

I* Вычисляем шаги сетки по направлениям х и у*/ 
p->h1 = 11 / p->n1; 
p->h2 = 11 / p->n2; 

/*Создаем МРI-тип данных, соответствующий С-типу ARGS*/ 
I* Вычисляем начало структуры *I

MPI_Addres� (р, &start_address); 
I* Вычисляем смещение первого поля *I
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} 

MPI_Address (&p->n1, &address); 

ARGS_disp[O] = address - start_address; 

I* Вычисляем смещение второго поля *I 

MPI_Address (&p->n2, &address); 

ARGS_disp[1] = address - start_address; 

I* Вычисляем смещение третьего поля *I 

MPI_Address (&p->h1, &address); 

ARGS_disp[2] = address - start_address; 

I* Вычисляем смещение четвертого поля *I 

MPI_Address (&p->h2, &address); 

ARGS_disp[З] = address - start_address; 

I* Вычисляем смещение пятого поля *I 

MPI_Address (&p->max_it, &address); 

ARGS_disp[4] = address - start_address; 

I* Вычисляем смещение шестого поля *I 

MPI_Address (&p->prec, &address); 

ARGS_disp[5] = address - start_address; 

I* Создаем МРI-тип данных с вычисленными свойствами *I 

MPI_Type_struct (N_ARGS, ARGS_counts, ARGS_disp, 

ARGS_types, &MPI_ARGS); 

I* Делаем его доступным при обмене сообщениями *I 

MPI_Type_commit (&MPI_ARGS); 

I* Рассылаем данные из процесса О остальным *I 

MPI_Bcast (р, 1, MPI_ARGS, О, MPI_COMM_WORLD); 

I* Тип нам больше не понадобится *I

MPI_Type_free (&MPI_ARGS); 

I* Проверяем, не было ли ошибки *I

if (p->n1 == О && p->n2 О) 

return -1; I* ошибка *I 

return О; 
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Основные отличия от примера из раздела 11.11: 

• По аналогии с разделом 10.6 мы использовали структуру
данных для хранения всех входных параметров алгоритма.
Для пересылки этой структуры соз1,ается МРI-тип данных
(см. раздел 11.13.1). Это решение неэффективно для одно­
кратной пересылки и выбрано исключительно для еще одной
иллюстрации создания нового МРI-типа.

• В случае ошибки чтения из файла все процессы будут
корректно завершены с кодом ошибки, поскольку функция
get_data вернет признак неудачи во всех процессах.

• В качестве характеристики полученного приближения вы­

дается порыа ошибки.

Заголово•шый файл ini t. h:

void 
print_error (unsigned int n1, unsigned int n2, 

douhle h1, douhle h2, douhle *и, 
int my_rank, int р); 

void init_f (unsigned int n1, unsigned int n2, 
douhle h1, douhle h2, douhle *f, 
int my_rank, int р); 

В файле ini t . с находятся функции: 

• solution ·-· вычисляет то•11юе решение;

• print_error - вычисляет норму оншбки полученного при­
ближения, пользуясь тем, что мы знаеы точное решение; для

уыеньшения вычислительной поrртпности используется тот

же прием, что в функции get_residual (см. ниже);

• right_side - вычисляет пр,шую часть;

• init_f -задает правую часть в каждом процессе.

Файл ini t. с: 

#include <stdio.h> 
#include <math.h> 
#include "mpi.h" 
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#include "init.h" 

I* Инициализация правой части задачи. 
В тестах будем рассматривать задачу в единичном 
квадрате [О,1]х[О,1] с ответом 
u(x,y) = х * (1 - х) *у* (1 - у) 
которому соответствует правая часть 
f(x,y) = 2 * х * (1 - х) + 2 *у* (1 - у) 

*I 

I* Точный ответ *I

static douЫe 
solution (douЫe х, douЫe у) 

{ 
return х * (1 - х) *у* (1 - у); 

.} 

I* Вычислить и напечатать L2 норму ошибки 
в процессе с номером my_rank из общего количества р.*/ 

void 
print_error (

unsigned int n1, I* число точек по х *I

unsigned int n2, I* число точек по у *I

douЬle h1, I* шаг сетки по х *I

{ 

douЫe h2, I* шаг сетки по у 
douЬle *u, I* решение *I

int my_rank, I* номер процесса 
int р) I* всего процессов 

unsigned int first_row, last_row, rows; 
douЫe s1, s2, t, error; 
unsigned int i1, i2, addr; 

f* Первая участвующая строка *f 
first_row = (n1 + 1) * my_rank; 

*I

*I

*I
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first_row /= р; 
f* Последняя участвующая строка *f 
last_row = (n1 + 1) * (my_rank + 1); 
last_row = last_row / р - 1; 
f* Количество участвующих строк *f 
rows = last row - first_row + 1; 
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addr = (first_row >О? n2 + 1 : О); f* начало блока *f 
for (i1 = О, s1 О.; i1 < rows; i1++) 

} 

{ 

} 

for (i2 

{ 

О, s2 

t = u [addr++] 

О.; i2 <= n2; i2++) 

- solution ((first_row + i1) * hl, i2*h2);
s2 += t * t; 

} 
sl += s2; 

f* Сложить все sl и передать процессу О *f 
MPI_Reduce (&s1, &error, 1, MPI_DOUBLE, MPI_SUM, О, 

MPI_COMM_WORLD); 

f* Напечатать ошибку *f 
if (my_rank == О) 

{ 

} 

error = sqrt (error * hl * h2); 
printf ("Error = %le\n", error); 

f* Точная правая часть *f 
static douЫe 
right_side (douЬle х, douЫe у) 

{ 
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return 2 * х * (1 - х) + 2 *у* (1 - у); 

} 

f* Заполнить правую часть в процессе с номером my_rank из 

общего количества р. *f 

void init_f ( 

{ 

unsigned int 

unsigned int 

douЬle .h1, 

douЫe h2, 

douЬle *f, 

int my_rank, 

int р) 

nl, 

n2, 

f* 

f* 

f* 

f* 

f* 

f* 

f* 

число точек по х *f 

число точек по у *f 

шаг сетки по х *f 

шаг сетки по у *f 

правая часть *f 

номер процесса *f 

всего процессов *f 

unsigned int first_row, last_row, rows; 

unsigned int il, i2, addr = О; 

f* Первая участвующая строка *f 

first_row = (n1 + 1) * my_rank; 

first_row /= р; 

f* Последняя участвующая строка *f 

last_row = (n1 + 1) * (my_rank + 1); 

last_row = last_row / р - 1; 

f* Количество участвующих строк *f 

rows = last_row - first_row + 1; 

f* Первая строка блока *f 

if (first_row > О) 

{ 

f* в первом блоке нет дублирования данных в первой 

строке, в остальных блоках в первой строке 

находится предпоследняя строка предыдущего 

блока *f 

for (i2 = О; i2 <= n2; i2++) 

f[addr++] = right_side ((first_row - 1) * h1, 
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} 

I* Середина блока *I

for (i1 = О; i1 < rows; i1++) 

for (i2 = О; i2 <= n2; i2++) 

i2 * h2); 

f[addr++J = right_side ((first_row + i1) * h1, 

i2 * h2); 

I* Последняя строка блока *I 

if (last_row < n1) 

{ 
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I* в последнем блоке нет дублирования данных в 

последней строке, в остальных блоках в последней 

строке находится вторая строка следующего 

} 

} 

блока *I 

for (i2 = О; i2 <= n2; i2++) 

f[addr++] = right_side ((last_row + 1) * h1, 

i2 * h2); 

Заголовочный файл operators. h: 

douЫe 

get_residual (unsigned int ':n.1, unsigned int n2, 

douЫe h1, douЫe h2, douЫe *r, 

int my_rank, int р); 

void 

get_operator (unsigned int n1, unsigned int n2, 

void 

douhle h1, douhle h2, douhle *u, douЫe *v, 

int my_rank, int р); 

get_preconditioner (unsigned int n1, unsigned int n2, 

douhle h1, douЫe h2, douЫe *v, 

int my_rank, int р); 
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douЫe 
get_optimal_tau (unsigned int n1, unsigned int n2, 

douЫe h1, douЫe h2, douЫe *f, 
douЫe *u, douЫe *r, 
int my_rank, int р); 

В файле operators. с находятся фушщи11: 

• get_residual -· возвращает L2 норr,1у невязки; основные осо-
Gетюсти функции:

сумма квадратов элементов вычисляется в каждом про­
цессе для строк с ноr,1ерами 

(n1+1)*my_rank/p, ... , (n1+1)*(my_rank+1)/p-1, 
затем с помощью MPI_Allreduce получается суыма квад­
ратов всех элеыентов l\Iассива, которая используется для 
вычисле11ш1 результата, nозвращаеl\юго функцией в каж­
до:-.-1 ПJ)ОЩ!СС.е; 
I'рани•ш1,1е то•1ю1 не учнтываются; 
для у�1ены11е11ия вычиСJш·1·елыюй погрешности, связанной 
с сумы11µован11е:.1 чисел, сильно µазлич,нощахся 110 поряд­
ку, Bhl'IIICJJHIOTCЯ Cy:',ll\lbl квадратоu ЭЛСлН'll'l'()В 110 строкаы, 
которые эан.�l\I прибавляются к окончательному резуль­

тату; 

• get_operator ·- вычш:ляет произведение матрицы А систе­
ыы (10.G) (т. с. (10.5)) на вектор и: и= А-и; оператор вычис­
ляется со1·ю1с110 форl\lулаы (10.7) ошн:анным выше способом
1; схс111а 11ер<хъ1лкп данных прш:едена па рнс. 11.2:

а) на перво!II этапе (рис. 11.2 а):
в перном процессе (my _rank = О) пересылае111 сле­
дующеыу процессу (my_rank+1) предпоследнюю стро­
ку, 1шеющую номер rows - 1 (поскольку всего строк 
rows + 1), с IЮI\Ю!ЦЬЮ функции MPI_Send; 
в <<сре:11111х» процессах (О< my_rank < р - 1) 11ересы­
лаеi\1 с.1едующе1у процессу (my _rank+1) предпослед­
шою строку, Иl\Jеющую номер rows (110(:ко.1ьку всего 
строк rows + 2), и по:1учаем от 11редыду1цего процесса 
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(my _rank-1) первую строку, имеющую номер О, с nоl\ю­

щью функции MPI_Sendrecv; 

в последнем процессе ( ту _rank = р - 1) получаем 
от предыдущего процесса (my _rank-1) первую строку, 

имеющую номер О, с помощью функции MPI_Recv; 

6) на второы этапе этапе (рис. 11.2 6):

в нервоы процессе (my _rank = О) получаем от следу­

ющс�·о процесса (my_rank+1) последнюю строку, имею-

1.цую номер rows, с помощью функции MPI_Recv; 

в <<средних>> процесса.х (О < my_rank < р - 1) пересы­

лаем предыдущеl\1у процессу (my_rank-1) вторую стро­

ку, иыеюIJJ.уЮ номер 1, и получаеы от следующего 11ро-

первый блок первый блок 

из rows+1 строк из rows+1 строк 

111 

предпоследняя строка 

)110слс11,няя строка 

первая строка 

вторая строка 

предпосш';,няя строка 

rюследнш, строка 

Dпервая строка 

вторая строка 

блок из rows+2 строк блок из rows+2 строк 

пре;rпосrедпяя строка 

)1юследш1я строка 

первая строка 

вторая строка 

11ред11осле11,няя строка 

последняя строка 

Dпервая строка 

вторая строка 

последний блок последний блок 

из rows+1 строк из rows+1 строк 

а) б) 

Рис. 11.2. Схема пересылки данных ыежду процессами при 
вычислении оператора Лапласа 
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цесса (my_rank+1) последнюю строку, имеющую номер 
rows+1, с ПОJ\ЮЩЬЮ функции MPI_Sendrecv; 
в послсдпеы процессе (my_rank = р - 1) пересыла­
ем предыдущему процессу (my_rank-1) вторую строку, 
имеющую номер 1, с помощью функции MPI_Send; 

этапы не зависят друг от друга и могут вьшолня'lъся в 
произвольном порядке; 

• get_precondi tioner - вычисляет произведение матрицы
в-l В (10.8) на вектор и: V = в-

1u; оператор ВЫЧИСЛЯ­
еТСЯ согласно формулам (10.9) для матрицы В описанным
выше способоl\1 2;

• get_optimal_ tau - возвращает оптныалыюс значение итера­
циошюго параметра Tk в (10.8) согласно формулам (10.10);
оt:новные особенности функции:

скалярные произведения (!, r), (Ar, и), (Ar, r) вычисляют­
ся в каждоl\1 процессе для строк с ноыераыи 
(n1+1)*my_rank/p, ... , (n1+1)*(my_rank+1)/p-1, 
затем с помощью MPI_Allreduce получаются соответству-
ющие скалярные произведения для всех элементов мас­
сива, которые используются для вычисления результата, 
возвраш,а.емого функцией в каждой задаче; 
значение Ar вычпсляется в точке и сразу используется 
при вычнслеюш скалярных произведений (Ar, и) и (Ar, т); 
для уменьшения вычислительной погрешности использу­
ется тот же прием, что в get_residual. 

Файл operators. с: 

#include <stdio.h> 
#include <math.h> 
#include "mpi.h" 
#include "operators.h" 

f* Вычислить L2 норму невязки 
в процессе с номером my_rank из общего количества р. 
Граничные узлы не входят. *f 
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douЬle 
get_residual ( 

{ 

unsigned int nl, I* число точек по х *I

unsigned int n2, I* число точек по у *I

douЫe hl, I* шаг сетки по х *I

douЬle h2, I* шаг сетки по у *I

douЫe *r, I* невязка *I

int my_rank, I* номер процесса *I

int р) I* всего процессов 

unsigned int first_row, last_row, rows; 
unsigned int il, i2, addr; 
douЬle sl, s2, t, residual; 

I* Первая участвующая строка *I

first_row = (nl + 1) * my_rank; 
first_row /= р; 

I* Последняя участвующая строка */ 
last_row (n1 + 1) * (my_rank + 1); 
last_row = last_row / р - 1; 

*I

I* В силу нулевых краевых условий на границе 
невязка = О *I

I* Адрес начала рассматриваемой части блока *I

addr = n2 + 1; 

if (first_row == О) 
first_row = 1; 

if (last_row n1) 
last_row = n1 - 1; 

I* Количество участвующих строк *I
rows = last_row - first_row + 1; 

for (i1 = О, sl 

{ 

О.; i1 < rows; i1++) 
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} 

f* в первом элементе невязка 
краевых условий *f 

addr++; 

о в силу 

for (i2 = 1, s2 =О.; i2 < n2; i2++) 

} 

{ 

} 

t = r[addr++]; 
s2 += t * t; 

s1 += s2; 

f* в последнем элементе невязка 
краевых условий *I 

addr++; 

о в силу 

f* Сложить все s1 и передать ответ всем процессам *f 
MPI_Allreduce (&s1, &residual, 1, MPI_DOUBLE, MPI_SUM, 

MPI_COMM_WORLD); 

return sqrt (residual * h1 * h2); 

f* Вычислить v = Аи, где А - оператор Лапласа, 
в процессе с номером my_rank из общего количества р.*/ 

void 
get_operator ( 

unsigned. int n1, f* число точек по х *f 
unsigned int n2, f* число точек по у *f 
douЫe h1, f* шаг сетки по х *f 
douЬle h2, I* шаг сетки по у *f 
douЫe *U, f* решение *f 
douЫe *V, f* результат *f 
int my_rank, f* номер процесса *f 
int р) f* всего процессов *f 

{ 

unsigned int first_row, last_row, rows; 
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unsigned int i1, i2, addr; 
douЫe hh1 = 1. / (h1 * h1), hh2 = 1. / (h2 * h2);
int tag = О; 
MPI_Status status; 

I* Первая участвующая строка *I

first_row = (n1 + 1) * my_rank; 
first_row /= р; 
I* Последняя участвующая строка *I

last_row = (n1 + 1) * (my_rank + 1); 
last_row = last_row / р - 1; 
I* Количество участвующих строк в середине блока *I

rows = last_row - first_row + 1; 
if (first_row == О) 
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rows--; I* первая строка будет вычислена ниже *I

if (last_row == n1) 
rows--; I* последняя строка будет вычислена ниже *I

if (first_row == О) 

{ 

} 

else 

{ 

} 

I* Первая строка = О в силу краевых условий *I

for (i2 = О, addr = О; i2 <= n2; i2++) 
v[addr++] = О.; 

I* Адрес начала рассматриваемой части блока *I

addr = n2 + 1; 

I* Середина блока *I

for (i1 = О; i1 < rows; i1++) 

{ 
I* первый элемент 
v [addr++] = О. ; 

О в силу краевых условий *I
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for (i2 = 1; i2 < n2; i2++, addr++) 

{ 

} 

I* v(i1,i2) 
=- (u(i1-1,i2)-2u(i1,i2)+u(i1+1,i2))/(h1*h1) 
- (u(i1,i2-1)-2u(i1,i2)+u(i1,i2-1))/(h2*h2)*/

v[addr] = - (u[addr - (n2 + 1)] - 2 * u[addr] 
+ u[addr + (n2 + 1)]) * hhl

- (u[addr - 1] - 2 * u[addr]
+ u[addr + 1]) * hh2;

I* последний элемент = О в силу краевых условий *I 
v[addr++] = О.; 

if (last_row == nl) 

{ 

} 

I* Последняя строка = О в силу краевых условий *I 
for (i2 = О; i2 <= n2; i2++) 

v [addr++] = О . ; 

if (first_row == О && last_row == nl) 

{ 

} 

I* Случай одного процесса: все сделано. *I 
return; 

I* Количество участвующих строк *I 
rows = last_row - first_row + 1; 

I* В первом блоке первая строка равна О в силу краевых 
условий, ·в остальных блоках в первой строке 
находится предпоследняя строка предыдущего блока. 
В последнем блоке последняя строка равна О в силу 
краевых условий, в остальных блоках в последней 
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строке находится вторая строка следующего блока. *I

if (first_row == О) 

{ 

} 

I* Посылаем предпоследнюю строку следующему. 
В первом блоке rows + 1 строк *I

MPI_Send (v + (rows - 1) * (n2 + 1), n2 + 1, 
MPI_DDUBLE, my_rank + 1, tag, 
MPI_COMM_WORLD); 

if (last_row == n1) 

{ 

} 

I* Принимаем первую строку от предыдущего. 
В последнем блоке rows + 1 строк *I

MPI_Recv (v, n2 + 1, MPI_DOUBLE, my_rank - 1, tag, 
MPI_COMM_WORLD, &status); 

if (first_row > О && last_row < n1) 

{ 

} 

I* Посылаем предпоследнюю строку следующему 
и принимаем первую от предыдущего. 
В блоке rows + 2 строк *I

MPI_Sendrecv (v + rows * (n2 + 1), n2 + 1, 
MPI_DOUBLE, my_rank + 1, tag, 
v, n2 + 1, MPI_DDUBLE, my_rank - 1, 
tag, MPI_CDMM_WORLD, &status); 

if (first_row -- О) 

{ 

} 

12 4017 

I* Принимаем последнюю строку от следующего. 
В первом блоке rows + 1 строк *I

MPI_Recv (v + rows * (n2 + 1), n2 + 1, MPI_DDUBLE, 
my_rank + 1, tag, MPI_COMM_WORLD, 
&status); 
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} 

if (last_row == n1) 

{ 

} 

f* Посылаем вторую строку предыдущему. 
В последнем блоке rows + 1 строк *f 

MPI_Send (v + (n2 + 1), n2 + 1, MPI_DOUBLE, 
my_rank - 1, tag, MPI_COMM_WORLD); 

if (first_row > О && last_row < n1) 

{ 

} 

f* Посылаем вторую строку предыдущему 
и принимаем последнюю от.следующего. 
В блоке rows + 2 строк *f 

MPI_Sendrecv (v + (n2 + 1), n2 + 1, MPI_DOUBLE, 
my_rank - 1, tag, 
v, (rows + 1) * (n2 + 1), MPI_DOUBLE 
my_rank + 1, tag, MPI_COMM_WORLD, 
&status); 

f* Вычислить v = в-{-1}v, где В - предобуславливатель 
для оператора Лапласа в процессе с номером my_rank 
из общего количества р. 
В качестве В используется диагональ матрицы А. *f 

void 
get_preconditioner (

unsigned int n1, f* число точек по х *f 
unsigned int n2, f* число точек по у *f 
douЬle h1, f* шаг сетки по х *f 
douЬle h2, f* шаг сетки по у *f 
douЫe *V, f* аргумент/результат *f 
int my_rank, f* номер процесса *f 
int р) f* всего процессов *f 

{ 
unsigned int first_row, last_row, rows; 
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unsigned int il, i2, addr = О; 
douЫe hhl = 1. / (hl * hl), hh2 = 1. / (h2 * h2); 
douЬle w = 1. / (2 * hhl + 2 * hh2); 

f* Первая участвующая строка *f 
first_row = (nl + 1) * my_rank; 
first_row /= р; 
f* Последняя участвующая строка *f 
last_row = (nl + 1) * (my_rank + 1); 
last_row = last_row / р - 1; 
f* Количество участвующих строк *f 
rows = last_row - first_row + 1; 

f* Первая строка блока *f 
if (first_row == О) 

{ 

} 

f* нулевые краевые условия *f 
for (i2 = О; i2 <= n2; i2++) 

v[addr++] = О.; 
rows--; f* первая строка уже вычислена *f 

else f* first_row > О *f 

{ 
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f* В первой строке находится предпоследняя строка 
предыдущего блока *f 

} 

for (i2 = О; i2 <= n2; i2++) 

{ 

} 

f* v(i1,i2) = v(i1,i2)/(2/(h1*h1)+2/(h2*h2)) *f 
v[addr++] *= w; 

if (last_row == nl) 
rows--; f* последняя строка будет вычислена ниже *f 
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} 

I* Середина блока *f 
for (il = О; il < rows; il++) 

{ 

} 

элемент О в силу краевых условий *f 

= о.; 

f* первый 
v[addr++] 
for (i2 = 1; i2 < n2; i2++) 

{ 

I* v(i1,i2) v(i1,i2)/(2/(h1*h1)+2/(h2*h2)} *I 
.v[addr++] *= w; 

} 
f* последний элемент 
v[addr++] = О.; 

О в силу краевых условий *I 

f* Последняя строка блока *f 
if (last_row == nl) 

{ 

} 

f* нулевые краевые условия *f 
for (i2 = О; i2 <= n2; i2++) 

v[addr++] = О.; 

else I* last_row < nl *I 

{ 

} 

f* В последней строке находится вторая строка 
следующеrо блока *f 

for (i2 = О; i2 <= n2; i2++) 

{ 

} 

I* v(i1,i2) = v(i1,i2)/(2/(h1*h1)+2/(h2*h2)) *f 
v[addr++] *= w; 

I* Вычислить ((f, r) - (Ar, u)) / (Ar, r) 
rде А - оператор Лапласа, 
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в процессе с номером my_rank из общего количества р. 
Функции u, r удовлетворяют нулевым краевым условиям *f 

douЫe 
get_optimal_tau ( 

{ 

unsigned int n1, f* число точек по х *f 
unsigned int n2, f* число точек по у *f 
douЬle h1, f* шаг сетки по х *f 
douЬle h2, f* шаг сетки по у *f 
douЫe *f' f* правая часть *f 
douЬle *U, f* решение *f 
douЫe *r, f* невязка *f 
int my_rank, f* номер процесса *f 
int р) f* всего процессов *f 

unsigned int first_row, last_row, rows; 
unsigned int i1, i2, addr; 
douЫe hh1 = 1. / (h1 * h1), hh2 = 1. / (h2 * h2); 
douЫe s1_fr, s2_fr; f* суммы для (f' r) 
douЫe s1_Aru, s2_Aru;/* суммы для (Ar, u) 
douЬle s1_Arr, s2_Arr;/* суммы для (Ar, r) 
douЬle Ar; f* значение Ar в точке 
douЫe а[З], Ь[З]; 

f* Первая участвующая строка *f 
first_row = (n1 + 1) * my_rank; 
first_row /= р; 

f* Последняя участвующая строка *f 
last_row (n1 + 1) * (my_rank + 1); 
last_row = last_row / р - 1; 

f* В силу нулевых краевых условий на границе, 

*f 
*f 
*f 
*f 

слагаемые, соответствующие граничным узлам О *f 
f* Адрес начала рассматриваемой части блока *f 
addr = n2 + 1; 
if (first_row == О) 
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first_row = 1; 

if (last_row -- n1) 

last_row = n1 - 1; 

f* Количество участвующих строк в середине блока *f 

rows = last_row - first_row + 1; 

for (i1 О, sl_fr =О., s1_Aru = О., s1_Arr О.; 

i1 < rows; i1++) 

{ 

} 

f* в первом элементе слагаемые 

краевых условий *f 

addr++; 

о в силу 

for (i2 1, s2_fr =О., s2_Aru =О., s2_Arr О.; 

i2 < n2; i2++, addr++) 

{ 

f* Вычисляем (f, r) *f 

s2_fr += f[addr] * r[addr]; ' 

f* Вычисляем Ar *f 
Ar = - (r[addr - (n2 + 1)] - 2 * r[addr] 

+ r[addr + (n2 + 1)]) * hhl

- (r[addr - 1] - 2 * r[addr]

} 

+ r[addr + 1]) * hh2;

f* Вычисляем (Ar, и) *f 

s2 Aru += Ar * u[addr]; 

f* Вычисляем (Ar, r) *f 

s2_Arr += Ar * r[addr]; 

sl_fr += s2_fr; 

sl_ Aru += s2_Aru; 

sl_Arr += s2_Arr; 

f* в последнем элементе слагаемые 

краевых условий *f 

addr++; 

о в силу 
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} 

а[О] s1_fr; 
а[1] = s1_Aru; 
а[2] = s1_Arr; 

f* Вычислить суммы по всем процессам *f 
MPI_Allreduce (а, Ь, 3, MPI_DOUBLE, MPI_SUM, 

MPI_COMM_WORLD); 

f* Вычислить ответ *f 
return (Ь[О] - Ь[1]) / Ь[2]; 

Заголовочный файл laplace . h: 
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int laplace_solve (unsigned int n1, unsigned int n2, 
douЫe hl, douЫe h2, unsigned int max_it, douЫe prec, 
douЫe *f, douЫe *и, douЫe *r, int my_rank, int р); 

В файле laplace. с находится функция laplace_sol ve, осу­
ществляющая итерационный процесс {10.8), {10.10) с матрица-
1\Ш {10.7) и (10.9) по описанным в разделе 10.6 расчетным фор­
мулам. Файл laplace. с: 

#include <stdio.h> 
#include <math.h> 
#include "mpi.h" 
#include "init.h" 
#include "operators.h" 
#include "laplace.h" 

f* Решить задачу в процессе с номером my_rank из общего 

количества р. 
Возвращает количество потребовавшихся итераций. *f 

int laplace_solve ( 
unsigned int n1, 
unsigned int n2, 

f* число точек по х *I 
f* число точек по у *f 
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{ 

douЫe h1, f* шаг сетки по х *f 
douЫe h2, f* шаг сетки по у *f 
unsigned int max_it, f* максимальное число итераций 
douЫe prec, f* величина падения невязки *f 
douЫe *f 

J f* правая часть *f 
douЫe *U, f* решение *f 
douЫe *r, I* невязка *I 
int my_rank, f* номер процесса *f 
int р} f* всего процессов *I 

unsigned int first_row, last_row, rows, width, len; 

unsigned int addr; 

I* Норма невязки на первом шаге *I 
douЬle norm_residual_1; 

I* Норма невязки на очередном шаге *I 
douЬle norm_residual; 

I* Норма невязки на предыдущем шаге *I 
douЫe norm_residual_prev; 

unsigned int it; I* Номер итерации *f 
douЫe tau; f* Итерационный параметр*/ 

I* Первая участвующая строка *I 
first_row = (n1 + 1) * my_rank; 

first_row /= р; 

I* Последняя участвующая строка *I 
last_row = (n1 + 1) * (my_rank + 1); 
last_row = last_row / р - 1; 

f* Количество участвующих строк *f 
rows = last_row - first_row + 1; 

f* Первый и последний блоки имеют по rows + 1 строк; 

остальные по rows + 2 */ 
width = rows + 2; 
if (first_row == О) 

width--; 
if (last_row == n1) 

*f 
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width--; 

I* Длина блока *I

len = width * (n2 + 1); 

I* Инициализируем правую часть *I

init_f (n1, n2, h1, h2, f, my_rank, р); 

I* Начальное приближение = О *I

for (addr = О; addr < len; addr++) 
u[addr] = О.; 
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I* Невязка при нулевом начальном приближении = f *I

norm_residual_1 = norm_residual = norm_residual_prev 
= get_residual (n1, n2, h1, h2, f, my_rank, р); 

if (my_rank == О) 
printf ("Residual = %le\n", norm_residual_1); 

f* Итерационный процесс *f

for (it = 1; it < max_it; it++) 

{ 
f* Шаг итерационного процесса *I

I* Вычисляем r = Au */ 
get_operator (n1, n2, h1, h2, u, r, my_rank, р); 

I* Вычисляем невязку r = f - r = f - Au *I

for (addr О; addr < len; addr++) 
r[addr] = f[addr] - r[addr]; 

I* Вычисляем норму невязки *I

norm_residual = get_residual (n1, n2, h1, h2, r, 
my_rank, р); 

if (my_rank == О) 
printf ("It # =%2.2d, residual=%11.4e, \ 
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convergence=%6.3f, average convergence=%6.3f\n", 

it, norm_residual, 

} 

} 

norm_residual / norm_residual_prev, 

pow (norm_residual / norm_residual_1, 1./it)); 

I* Проверяем условие окончания процесса *I 

if (norm_residual < norm_residual_1 * prec) 

break; 

I* Обращение предобуславливателя r = в-{-1} r *I 

get_preconditioner (n1, n2, h1, h2, r, my_rank, р); 

I* Вычисление итерационного параметра 

tau = ((Ь, r) - (Ar, u)) / (Ar, r) *I

tau = get_optimal_tau (n1, n2, h1, h2, f, u, r, 

my_rank, р); 

I* Построение очередного приближения u+=tau * r *I

for (addr = О; addr < len; addr++) 

u[addr] += tau *.r[addr]; 

norm_residual_prev = norm_residual; 

return it; 



Источники дополнительной 
информации 

Этот ра::щел является аналогоJ\,1 раздела <<список литературы>>, 
а несколько необычное пазнание связано с теl\1, что практиче­
ски вся перечисленная ниже документа,�ия существует только 
n электронном виде. 

Основш,11\1 нсточш1ком дополнительной информации о всех 
описанных функциях, их аргументах, поведении в различных 
ситуациях, о сnя:зи с другими фунющя!\ш можно получит1, из 

установленной в UNIX справочной системы (шав pages). ДJ1я 
этого на,ТJ,о набрать ко!\1а11ду: 

man <имя функции> 

ИJШ 

man -а <имя функции> 

если II!\JH встречается в нескольких разделах справочника ('1'0l'Д.=t 
бу,r1,ут выданы все вхождения). 

Для того •пабы по команде man можно было получать 1ш­
форl\tац11ю о 1IРI-функц11ях, необходн!\ю уста1юннп, на КО!\ШЫО­

тере 1юдсисте!\1у l\IPI. Существует несколько сrюбодно рас11ро­
страняеы ых реализаций MPI. 

1. Реализация mpich, разработанная Агgоппс Natioш:tl La1> и
l\Iississippi Sta.te UвiYeл.;ity, i�остуш,а 110 адресу

ftp://info.mcs.anl.gov/puЬ/mpi 
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2. РеаJiизация LАЫ, разработанная Ohio Sнpercornputer Ceнter,
доступна по адресу

ftp://ftp.osc.edu/puЬ/lam 

3. Реализация CHIMP, разработанная EdiпЬнrgh Parallel

Сошрнtiнg Cente1·, доступна по адресу

ftp://ftp.epcc.ed.ac.uk/puЬ/chimp/release 

Стандаrт l\1IPI верси11 1 достунен по ,щрссу 

ftp://ftp.netlib.org 

как Сошрнtег Science Dept,. Techнica.J Repoгt CS-94-230, 
Uнivcrsity of' Тсrшеsнее, Kпoxville, TN, f..Iay 5, 1994. Стандарт 
l\.JPI nерсни 1.1 доступен по адресу 

ftp://ftp.mcs.anl.gov 



Программа курса 

1. CISC- и RISС-процсссоры. Основные •1ерты RISС­

архитсктуры.

2. Повышение производительности процессоров за счет конвей­

ериза1\ии. Условия оптюшwыюго функционирования кошзей­

ера.

3. Суперконвсйерные и суперска.llярные щю11,ессоры. Выделе­

ние независимо работающих устройств: IU, FPU, Mf\!IU, BU.

4. Мето/1,ы уиеныuсния негативного влияния и11струкций пере­

хода на производительность процессора.

5. Повышение производительности процессоров за счет тзеде­

ню, кэш-памяти. Кэшп: единый, Гарвардский, с прямой за­

rшсью, с обратной записью.

6. Организа1\ия кэш-памяти. Алгоритмы заыены данных в К:'ШI­

памяти. Снециальные кэши.

7. Согласование кэшей в мультипроцессорных систеl\н1.х с об­

щей паыятью.

8. Виды l\шогопроцессорных архитектур.

9. Поддержка многозадачности и !\11югопроцессорпости снеци­

мьными инструкциями процессор<1.. Организация данных во

внешней памяти.

10. Програ:\,[l\Ш, процессор, процесс. Основные составляющие

процесса, состояния процесса. Стек, виртуальная па:,_шть,

механизмы трансляции aдpectt.
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11. l\1еханп:зыы взаиыодействия процессов. Разделяемая память,
сеыафоры, СИI'налы, почтовые ящики, события. Задачи (thre­
acls). Сравнение с процессами. Ресурсы, приоритеты. Парал­
лельные процессы. Связывание. Статическое и динамическое
снязьшанис.

12. Виды ресурсов: аппаратные, програмыные, активные, пас­
сивные, локальные, разделяемые, постоянные, временные,
некр1п11•111ые, крити•�ные.

13. Тнны взан:\юдеi1ствня проце<.:сов: сотрудничающие п конку­
рпрующие процессы. Критические сею\ии, взаимное ис1<лю­
чение процессов (задач).

14. Пробле;1.1ы, возникающие при синхроннзации задач и идеп
их разреше1111я.

15. Состоюшя нроцесса и механизмы перехода из одного состо­
я11ш1 в другое.

16. Стандарты на UNIХ-снстсмы.

17. Управление прсщсссаl\!и. Функции fork, execl, execv,
wai tpid. Приl\1сры использования.

18. Работа с с111'11алаl\ш. Функция signal. Прш,·1ер ис:пользоnа­
ш,я.

19. Раз;1,еш1е�1ан тtл1ят1,. Фу11кц1111 shmget, shmat, shmctl. Прн­
лн·ры испол•,:зовашш.

20. Сеыаqюры. Фу11кци11 semget, semop, semctl. Прш1сры 11с-
1юл1,юва111ш.

21. Событ1ш. Пр1ш11пшш,ю 011срации. Организация вза111\юдей­
стшш кл11с11т·-серnер с по:--ющыо событий.

22. О·н�рс;щ сообщений. Функ��ии msgget, msgsnd, msgrcv,
msgctl. Пр11:--1еры ис1юль:юва111ш.

23. �:прав.r�сш1с ·3;_ца11.нм1 (tlн·eads). Функнии pthread_create,
pthread_join, sched_yield. Приl\1еры 11с1юльзов1tння.

24. Объекты с1111хрош1зац1111 тпп.1 mнt.cx. Фу111,ци11
pthread_mutex_init, pthread_mutex_lock,
pthread_mutex_trylock, pthread_mutex_unlock,
pthread_mutex_destroy. Примеры использования.
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25. Объекты синхронизации тина condvar. Функции
pthread_cond_init, pthread_cond_signal,
pthread_cond_broadcast, pthread_cond_wait,
pthread_cond_destroy. Примеры использования.
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26. Пример multithread-пpoгpaммы умножения матрицы на век­
тор.

27. Message Passing Interface (MPI). Общая структура МРl-прог­
раммы. Функции MPI_Init, MPI_Finalize. Сообщения и их

виды.

28. Коммуникаторы. Функции MPI_Comm_size, MPI_Comm_rank.
Примеры использования.

29. Попарный обмен сообщениями. Функции MPI_Send, 
MPI_Recv. Примеры использования.

30. Операции ввода-вывода в МРl-программах. Примеры.

31. Дополнительные возможности для попарного обмена сооб­
щениями. Функции MPI_Sendrecv, MPI_Sendrecv_replace.

32. Дополнительные возможности для попарного обмена
сообщениями. Функции MPI_Isend, MPI_Irecv, MPI_Test,
MPI_Testany, MPI_Wait,MPI_Waitany

33. Коллективный обмен сообщениями. Функции MPI_Barrier,
MPI_Abort, MPI_Bcast.

34. Коллективный обмен сообщениями. Функции MPI_Reduce,

MPI_Allreduce, MPI_Op_create, MPI_Op_free. При:мер МРI­

программы, вычисляющей определенный интеграл.

35. Время в МРl-программах. Функции MPI_Wtime, MPI_Wtick.

Пример использования.

36. Пример МРl-программы умножения матрицы на вектор.

37. Дополнительные возможности для коллективного обмена
массивами данных. Функции MPI_Gather, MPI_Allgather,
MPI_Scatter,

38. Пересылка структур данных. Создание нового l\IРI-типа
данных с помощью MPI_Type_struct. Функции MPI_Address,

MPI_Type_commit, MPI_Type_free. Пример использования.
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39. Упаковка/распаковка разнородных данных для блочной пе­

ресылки с помощью функций MPI_Pack, MPI_Unpack. Функ­

ция MPI_Pack_size. Пример использования.

40. Гетерогенные и однородные вычислительные установки. Пе­

ресылка структур данных в однородных параллельных

ЭВМ. Прпмеры.

41. Пересылки строк и столбцов матриц. Создание нового МРI­

тина данных с помощью MPI_Type_vector. Пример исполь­

зования.

42. Ограничение коллективного обl\Iена на подl\шожество

процессов. Функции MPI_Comm_group, MPI_Group_incl,

MPI_Comm_create, MPI_Comm_free. Примеры использования.



Список задач 

1. Написать програl\1му, вычисляющую сумму элементов п 110-

следовательностей вещественных чисел, нахпдящихся в п

файлах, имена которых заданы массивом а. Ответ должен

быть записан в файл res. txt. Программа запускает п про­

цессов, вычисляющих ответ для каждого из файлов и при­

бавляющих его к результату, находящемуся в выходноl\1 фай­

ле. Взаимное исключение при досту11е к файлу обеспечива­

ется с помощью семафора.

2. Написать функцию, полу•�аю1цую в качестве аргументов

t\CJJOC число п и массив длины п с именаl\lи файлов, со­

держащих единую последователы-юсть веш,ествснных чисел

неизвестнпй длины, и возвращающую количество участков

постоянства этой последоватеш,ности. Функцпя возвраща­

ет -1, -2 и т. д., если она не смогла открыть какой-либо

файл, прочитать элеыент и т. д. Функция должна запускать

п процессов, обрабатывающих свой файл и передающих ре­

зультаты в основной процесс через очередь сообщений для 

формирования ответа для последовательности в целом. 

3. Написать програ,мму, осуществляю1цую мониторинг и пере­

запуск в случае завершения работы заданного колпчестна

приложений. Приложения задаются r-.�ассшзом строк, яnляю-

1цихся их полныl\,1 путевым ныf'нем, и пе ИI\J<:'IOT аргументов.

4. Написать реализацию стека строк в разделяемой памяти.

При запуске программа создаст блок раэделяемой памяти
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{ если его еще нет) или присоединяется к существующему 
блоку. Програмыа должна обеспечивать основные функции 
работы со стеком (добавить и удалить элемент) и возмож­
ность запуска себя во многих экземплярах. 

5. Нюшсать реализацию набора конфигурационных парамет­
ров для многих одновременно работающих экземпляров про­
граымы. Набор нараметров задается некоторой структурой
данных и хранится в рюдеJJяемой памяти. Блок разделяе­
мой наыяти создается при запуске первого экземпляра про­
ГJ.>аЫl\!Ы и заполняется из файла. Перед окончанием рабо­
ты последнего экземнляра набор параметров сохраняется в
файле, а блок разделяе:-.юй памяти удаляется. Програыма
должна обеспечивать основные функции работы с набором
11ара:1.1етроJЗ (прочитать и изменить элемент), причем в слу­
чае изыенення данных одним из экземпляров он оповещает
все остальные экземпляры � помощью сигнала.

6. Наппсать mнltitlнeatl-фyнкцшo, получающую в качестве ар­
гументов п х п массив а вещественных чисел, целое число
n, номер задачи (tlн·eau) k, об1цее количество задач (tl1reads)
р, и uозвращаюп.1,ую ненулевое значение, если массив а сим­
метричен (т. е. Щj = aji), О в противном случае. При этом
должна быть обеспечена равномерная загрузка всех задач.
Основная программа должна вводить числа р, п и массив
а (из файла или по заданной форыуле), запускать задачи,
вызывать эту функцию и выводить на экран результат ее
работы.

7. Наrшсать шнltitlнеаu-подпрограмму, получающую в ка•1е­
стве аргуr,,1ентов 11 х п 1\!ассив а вещественных чисел, целое
чнсло п, но!\1ер задачи (t.l1read) k, общее количество задач
( tlн·eacls) р, и заменяющую матрицу а на ее транспонирован­
ную. Прп этом должна быть обеспечена равномерная загруз­
ка всех задач. Основная программа должна вводить числа
р, rz и массив а (из файла или по заданной формуле), за­
пускать задачи, вызывать эту подпрограмму и выводить на
экран результат ее работы.
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8. Написать multithread-пoдпpoгpaммy, получаю1цую в каче­
стве аргументов п х п массив а вещественных <шсел, целое
число п, номер задачи (thread) k, общее количество задач
( t}1reads) р, и заменяющую матрицу а на матрицу (а+ at ) /2,
где а' - транспонированная матрица а. При этом должна
быть обеспечена равномерная загрузка нсех задач. Основ­
ная программа должна вводить числа р, п и l\tacc1ш а ( из
файла или по заданной формуле), запускать задачи, nызы­
вать эту подпрограмму н выводить на экран результат ее
работы.

9. Написать multithread-пoдпpoгpaммy, получающую в каче­
стве аргуыентов массив а вещественных чисел, целое число
п, являющееся длиной это1·0 массиnа, IIOI\·Iep задачи ( t}1reru.i)
k, общее количество зада•� (t.lireads) р, и заl\lеняющую каж­
дый элеыент массива (для которого это rюзl\южно) на сред­
нее арифыетическое соседних эле11-1снтов. При этом должна
быть обеспечена равномерна}! загрузка всех за;1,а.ч. Ос11ов11ая
програмыа должна вводить •111сла р, п и массшз а. (11з фай;1а
или по за;1,ан11ой форi\1уле), запускать за;1,ач11, вы:зывать эту
под11рогµаl\11\IУ II ныводить на экран результат ее работы.

10. Нанисать шнlt.itlне.нl-под11рогра?\н,1у, получающую в каче­
стве apl')'l\1€IITOB 11 Х n l'vlclCCIIB а ве11\ССТВСН/IЫХ •шссл, ЛСIIО­

моrательный l\Нtссил Ь вс1.цествсн11ых чисел д.111111ы п (в каж­
дом t}нead слой), целое ч11сJю п, нo!llep :ыдачи (tlн·ead) k,

общее коли•1ество задач (t.l1н�acls) р, н заl\1еняющую каж­
дый элемент aiJ матрицы а (для которого это 1юз1110жно)
на ai+1,J + ai-1,j + ai,j+l + Щ,j--1 - 4Щ,J. Прн этом должна
быть обеспечена равнсшерная загрузка всех :1а;1,а1 1. Основ­
ная нрограыма должна вво,т1,11ть чнсла р, п и 1'1ассиn о (нз
файла или по заданным фор:\1уш11'1), :запускат,, :щдач11, вы­
зыват,, эту подпрограыl\1у II выводит,, на экра.11 рс3ультат ее
работы.

11. Написать пшltitlн·ещi-подпрограl\lыу, получающую н каче­
стве аргументов п х п массив а ве1цсствс1111ых •шсРл, вс1ю:.ю­
га:rельный. массив Ь всщсстuсш1ых •шссл дл1111ы 2n (в каж-
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доl\1 tlirend свой), целое число п, нol\lcp задачи (thread) k, 

общее коJ111чество задач (thrcads) р, 11 заменяющую каж­
дый элс!Ш)НТ aiJ 1\Iатрицы а (дня которого это возможно) 
па анц + ai-'.!.,j + ai,j+2 + ai,j-2 - 4ai,j· При этом должна 
быть обеспс·н�ш1_ равномерная загрузка всех задач. Основная 
програыма должна вводить числа р, n и массив а (из файла 
нли по �шданш-,1111 фор111улам), запускать задачи, вызывать 
эту тюдпро1·1ншму и вьшодить на экран результат ее работы. 

12. Написать i\iIРI-фувю\ию, получающую в качестве аргу111сн­
тов соответствующую •iac'IЪ (блок) п х п массива а ве1це­
ственных ч11ссл, ,�слое число п, но111ср процесса k, общее
количество ПJЮЦРссов р, и возвращающую ненулевое значе­
ние, сс.1ш маспш а с11111111стрнче11 (т. с. U.ij = a)i), О в протнв-
110111 случае. Прн :')TOI\I должна быть обеспечена равномерная
загрузка всех процессов. Основная програмl\Нt должна начп­
нать работу с J\-IPI, ввод1пъ •1исJю пи ыасснв а (из файла или
по заданной фор111улс), вьгзывать :-эту функцию и вьшодить
на экран резут,п�т ее работы.

LЗ. Нанисать l\IPI-110дщю1·p::t!\1111y, 11олучаю1.цую н качестве ар­
гуr-.1ентов соответстuующую часть (блок) п х п массива а 

вещественных •шсел, целое 'ШСЛО п, ноыер процесса k, об­
ЩРС 1<0.п11чество 11роцессов р, и заменшощую матрицу а на 
et\ транспонированную. При :-этом должна быть обеспе'tена 
рав110!\1ер11ая :ш,·рузка всех процессов. Основная 11рогра!\1ма 
должна на,шшtтт, работу с l\IPI, 1шод11ть число п и мас­
сив а ( нз файла или no заданной фор:-.,уле), вызывать эту 
1юдпрогра111i11у II выводить на экран результат ее работы. 

14. Написать Т\IРl-110дпрогра1'11\1у, получающую в качестве ар­
гументов соответствующую часть (блок) п х п массива а
вещественных ·шее.а, целое 'Шсло п, но111ер процесса k, об­
щее количество процессов р, и замсняюiцую матр11цу а на
матрицу (а + о,1 }/2, где at - транспонирова1111ая матрица а.

При это!\-1 должна быть обеспечена равноl\1ерная загрузка
всех процессов. Основная програ111ма должна начинать ра­
боту с iЧPI. вводить число п и 111ассив а ( из файла или во
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заданной формуле), вызывать эту подпрограмму и вьшо­
дить на экран результат ее работы. 

15. Написать l\1РI-подпрограмr-,1у, получаюш,ую в качестве аргу­
ментов соответствующую часть (блок) м<tсс1ша а веществен­
ных чисел, целое число п, являющееся длиной этого массива,
ноыер процесса k, общее коюг1ество нроцессов р, и за1-1е11яю­
щую каждый элемент ыассива (для которого это возможно)
на среднее арифметическое соседних элсl\1е11тов. При этом
должна быть обеспечена ра1шоl\1ерная за.грузка всех щюцес­
сов. Основная програмыа до;1ж11а начинать работу с MPI,
1шо,r1,ить чпсло п и массив а (из файла или по заданной
форl\lуле), uызыва.ть эту подпрограыму н выводить на экран
результат ее работы.

16. Написать f\-IРI-rюднрограмму, получающую в качестве ар­
гу:шттов соответствующие •н1сти (блоки) п х п массива
а вещественных чисел, вспоыогательный l\lассив Ь веще­
ственных чисРл длины n, целое 'IИCJIO п, помер процесса
k, общее количество процессов р, и заl\lРНяющую каждый
ЭJ1емепт Uij матрицы а (для которого это воз!lюжно) на

a;+1,J + a;-.. J,J + °'i,J+I + Oi,.i-1 - 4ai,j. При этом должна бы'!ъ
обеспечена равномерная загрузка всех процессов. Основ11а>1
программа до;1жна 11ачи11ат1, работу с l\JPI, вводить число п
и массив а (из файла или 1ю :задашюi1 форl\1уле), вызывать
эту подпрограмму и выводить на экран рс:�ультат ее работы.

17. Написать l\IРI-11одпрограмму, 11олучающую в качестве ар­
гументов соответствующие части (блою1) п х п 1\1ассива
а вещественных чисел, вс1101\1огатет,111,1ii 1\tассив Ь веще­
ственных чисел длины 2n, 11,елое чш·. 110 п, номер процесса
k, обrцее количество процессов р, 11 :1аысняю1цую каждый
элеJ\,1ент aiJ матрицы а (для которого это воЗJ\IОЖНО) на

Ui+2,j + ai-2,J + Ui,j+2 + ai,j-2 - 4ai,J· При этоl\1 должна быть
обеспечена равноl\lерная загрузка всех нроцессов. Основная
программа должна начинать работу с l\IPI, 1шодить число п
и массив а (из файла или по задюшой формуле), вызывать
эту подпрограмыу и выводн'lъ па экран рt':зульта.т ее работы.
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